Search is not available for this dataset
text
string
meta
dict
module sn-calculus-compatconf where open import sn-calculus open import utility renaming (_U̬_ to _∪_) open import context-properties using (get-view ; ->E-view ; ->pot-view) open import sn-calculus-compatconf.eview using (1-steplρ-E-view) open import sn-calculus-compatconf.pot using (1-steplρ-pot) open import sn-calculus-confluence using (R-confluent) open import Esterel.Lang open import Esterel.Lang.Binding open import Esterel.Lang.Properties open import Esterel.Environment as Env using (Env ; Θ ; _←_ ; module SigMap ; module ShrMap ; module VarMap) open import Esterel.Context using (EvaluationContext ; EvaluationContext1 ; _⟦_⟧e ; _≐_⟦_⟧e ; Context ; Context1 ; _⟦_⟧c ; _≐_⟦_⟧c) open import Esterel.CompletionCode as Code using () renaming (CompletionCode to Code) open import Esterel.Variable.Signal as Signal using (Signal ; _ₛ) open import Esterel.Variable.Shared as SharedVar using (SharedVar ; _ₛₕ) open import Esterel.Variable.Sequential as SeqVar using (SeqVar ; _ᵥ) open import Relation.Nullary using (¬_ ; Dec ; yes ; no) open import Relation.Binary.PropositionalEquality using (_≡_ ; refl ; sym ; cong ; trans ; subst ; module ≡-Reasoning) open import Data.Bool using (Bool ; if_then_else_) open import Data.Empty using (⊥ ; ⊥-elim) open import Data.List using (List ; _∷_ ; [] ; _++_) open import Data.List.Any using (Any ; any ; here ; there) open import Data.List.Any.Properties using () renaming (++⁺ˡ to ++ˡ ; ++⁺ʳ to ++ʳ) open import Data.Maybe using (Maybe ; just ; nothing) open import Data.Nat using (ℕ ; zero ; suc ; _+_) renaming (_⊔_ to _⊔ℕ_) open import Data.Product using (Σ-syntax ; Σ ; _,_ ; _,′_ ; proj₁ ; proj₂ ; _×_ ; ∃) open import Data.Sum using (_⊎_ ; inj₁ ; inj₂) open import Function using (_∘_ ; id ; _∋_) open import Data.OrderedListMap Signal Signal.unwrap Signal.Status as SigM open import Data.OrderedListMap SharedVar SharedVar.unwrap (Σ SharedVar.Status (λ _ → ℕ)) as ShrM open import Data.OrderedListMap SeqVar SeqVar.unwrap ℕ as SeqM open ->E-view open ->pot-view open EvaluationContext1 open _≐_⟦_⟧e open Context1 open _≐_⟦_⟧c open ListSet Data.Nat._≟_ 1-step-sn⟶₁ : ∀{p q r BV FV} → CorrectBinding p BV FV → p sn⟶₁ q → p sn⟶₁ r → Σ[ p' ∈ Term ] (q sn⟶* p' × r sn⟶* p') 1-step-sn⟶₁ cb psn⟶₁q psn⟶₁r with R-confluent cb psn⟶₁q psn⟶₁r ... | inj₁ refl = _ , rrefl ,′ rrefl ... | inj₂ (inj₁ (_ , qsn⟶₁s , rsn⟶₁s)) = _ , sn⟶*-inclusion (sn⟶-inclusion qsn⟶₁s) ,′ sn⟶*-inclusion (sn⟶-inclusion rsn⟶₁s) ... | inj₂ (inj₂ (inj₁ qsn⟶₁r)) = _ , sn⟶*-inclusion (sn⟶-inclusion qsn⟶₁r) ,′ rrefl ... | inj₂ (inj₂ (inj₂ rsn⟶₁q)) = _ , rrefl ,′ sn⟶*-inclusion (sn⟶-inclusion rsn⟶₁q) 1-steplρ : ∀{p q r θ θq BV FV A Aq} → CorrectBinding (ρ⟨ θ , A ⟩· p) BV FV → ρ⟨ θ , A ⟩· p sn⟶₁ ρ⟨ θq , Aq ⟩· q → p sn⟶ r → Σ[ p' ∈ Term ] ((ρ⟨ θq , Aq ⟩· q) sn⟶* p' × (ρ⟨ θ , A ⟩· r) sn⟶* p') 1-steplρ {p} {q} {r} cb ρθ·psn⟶₁ρθq·q psn⟶r@(rcontext {.p} {rin} {ro} C p≐C⟦rin⟧ rinsn⟶₁ro) with get-view ρθ·psn⟶₁ρθq·q ... | inj₂ (refl , refl , pot) = _ , 1-steplρ-pot cb pot psn⟶r ... | inj₁ (E , qin , qo , p≐E⟦qin⟧ , q≐E⟦qo⟧ , e-view) = _ , proj₂ (1-steplρ-E-view cb p≐E⟦qin⟧ q≐E⟦qo⟧ e-view p≐C⟦rin⟧ rinsn⟶₁ro) 1-stepl : ∀{p q r BV FV} → CorrectBinding p BV FV → p sn⟶₁ q → p sn⟶ r → Σ[ p' ∈ Term ] (q sn⟶* p' × r sn⟶* p') 1-stepl cb psn⟶₁q (rcontext [] dchole psn⟶₁r) = 1-step-sn⟶₁ cb psn⟶₁q psn⟶₁r 1-stepl cb (rpar-done-right p' q') (rcontext (ceval (epar₁ _) ∷ crs) (dcpar₁ dcr) psn⟶₁r) = ⊥-elim (halted-¬sn⟶ p' (rcontext _ dcr psn⟶₁r)) 1-stepl cb (rpar-done-left (dhalted p') q') (rcontext (ceval (epar₁ _) ∷ crs) (dcpar₁ dcr) psn⟶₁r) = ⊥-elim (halted-¬sn⟶ p' (rcontext _ dcr psn⟶₁r)) 1-stepl cb (rpar-done-left (dpaused p') hnothin) (rcontext (ceval (epar₁ _) ∷ crs) (dcpar₁ dcr) psn⟶₁r) = _ , sn⟶*-inclusion (rcontext _ dcr psn⟶₁r) ,′ sn⟶*-inclusion (rcontext _ dchole (rpar-done-left (dpaused (paused-sn⟶ p' (rcontext _ dcr psn⟶₁r))) hnothin)) 1-stepl cb (rpar-done-left (dpaused p') (hexit n)) (rcontext (ceval (epar₁ _) ∷ crs) (dcpar₁ dcr) psn⟶₁r) = _ , rrefl ,′ sn⟶*-inclusion (rcontext _ dchole (rpar-done-left (dpaused (paused-sn⟶ p' (rcontext _ dcr psn⟶₁r))) (hexit n))) 1-stepl cb (rpar-done-right p' (dhalted q')) (rcontext (ceval (epar₂ p₁) ∷ crs) (dcpar₂ dcr) psn⟶₁r) = ⊥-elim (halted-¬sn⟶ q' (rcontext _ dcr psn⟶₁r)) 1-stepl cb (rpar-done-right hnothin (dpaused q')) (rcontext (ceval (epar₂ .nothin) ∷ crs) (dcpar₂ dcr) psn⟶₁r) = _ , sn⟶*-inclusion (rcontext _ dcr psn⟶₁r) ,′ sn⟶*-inclusion (rcontext _ dchole (rpar-done-right hnothin (dpaused (paused-sn⟶ q' (rcontext _ dcr psn⟶₁r))))) 1-stepl cb (rpar-done-right (hexit n) (dpaused q')) (rcontext (ceval (epar₂ .(exit n)) ∷ crs) (dcpar₂ dcr) psn⟶₁r) = _ , rrefl ,′ sn⟶*-inclusion (rcontext _ dchole (rpar-done-right (hexit n) (dpaused (paused-sn⟶ q' (rcontext _ dcr psn⟶₁r))))) 1-stepl cb (rpar-done-left p' q') (rcontext (ceval (epar₂ p₁) ∷ crs) (dcpar₂ dcr) psn⟶₁r) = ⊥-elim (halted-¬sn⟶ q' (rcontext _ dcr psn⟶₁r)) 1-stepl cb rseq-done (rcontext _ (dcseq₁ dchole) psn⟶₁r) = ⊥-elim (halted-¬sn⟶₁ hnothin psn⟶₁r) 1-stepl cb rseq-exit (rcontext _ (dcseq₁ dchole) psn⟶₁r) = ⊥-elim (halted-¬sn⟶₁ (hexit _) psn⟶₁r) 1-stepl cb rloopˢ-exit (rcontext _ (dcloopˢ₁ dchole) psn⟶₁r) = ⊥-elim (halted-¬sn⟶₁ (hexit _) psn⟶₁r) 1-stepl cb (rsuspend-done p') (rcontext (ceval (esuspend S) ∷ crs) (dcsuspend dcr) psn⟶₁r) = ⊥-elim (halted-¬sn⟶₁ (halted-⟦⟧c p' dcr) psn⟶₁r) 1-stepl cb (rtrap-done p') (rcontext (ceval etrap ∷ crs) (dctrap dcr) psn⟶₁r) = ⊥-elim (halted-¬sn⟶₁ (halted-⟦⟧c p' dcr) psn⟶₁r) 1-stepl cb rraise-signal (rcontext (csignl S ∷ crs) (dcsignl dcr) psn⟶₁r) = _ , sn⟶*-inclusion (rcontext _ (dcenv dcr) psn⟶₁r) ,′ sn⟶*-inclusion (rcontext _ dchole rraise-signal) 1-stepl cb rloop-unroll (rcontext (cloop ∷ crs) (dcloop dcr) psn⟶₁r) = _ , rstep (rcontext _ (dcloopˢ₁ dcr) psn⟶₁r) (rstep (rcontext _ (dcloopˢ₂ dcr) psn⟶₁r) rrefl) ,′ sn⟶*-inclusion (rcontext [] dchole rloop-unroll) 1-stepl cb rseq-done (rcontext (cseq₂ .nothin ∷ crs) (dcseq₂ dcr) psn⟶₁r) = _ , sn⟶*-inclusion (rcontext _ dcr psn⟶₁r) ,′ sn⟶*-inclusion (rcontext _ dchole rseq-done) 1-stepl cb rseq-exit (rcontext (cseq₂ .(exit _) ∷ crs) (dcseq₂ dcr) psn⟶₁r) = _ , rrefl ,′ sn⟶*-inclusion (rcontext _ dchole rseq-exit) 1-stepl cb rloopˢ-exit (rcontext (cloopˢ₂ .(exit _) ∷ crs) (dcloopˢ₂ dcr) psn⟶₁r) = _ , rrefl ,′ sn⟶*-inclusion (rcontext _ dchole rloopˢ-exit) 1-stepl {ρ⟨ .θ , .A ⟩· p} cb ρθpsn⟶₁q ρθpsn⟶r@(rcontext {p = p₂} {p' = r} (cenv θ A ∷ crs) (dcenv p≐crs⟦p₂⟧) p₂sn⟶₁r) with ρ-stays-ρ-sn⟶₁ ρθpsn⟶₁q ... | θ' , A' , qin , refl = 1-steplρ cb ρθpsn⟶₁q (rcontext crs p≐crs⟦p₂⟧ p₂sn⟶₁r) 1-step : ∀{p q r BV FV} → CorrectBinding p BV FV → p sn⟶ q → p sn⟶ r → Σ[ p' ∈ Term ] (q sn⟶* p' × r sn⟶* p') 1-step cb (rcontext [] dchole psn⟶₁q) psn⟶r = 1-stepl cb psn⟶₁q psn⟶r 1-step cb psn⟶q@(rcontext (_ ∷ _) _ _) (rcontext [] dchole psn⟶₁r) with 1-stepl cb psn⟶₁r psn⟶q ... | _ , rsn⟶*p' , qsn⟶*p' = _ , qsn⟶*p' ,′ rsn⟶*p' 1-step cb@(CBpar cbp cbq _ _ _ _) (rcontext (cq ∷ cqs) (dcpar₁ dcq) psn⟶₁q) (rcontext (cr ∷ crs) (dcpar₁ dcr) psn⟶₁r) with 1-step cbp (rcontext cqs dcq psn⟶₁q) (rcontext crs dcr psn⟶₁r) ... | p'' , q'sn⟶*p'' , r'sn⟶*p'' = _ , Context1-sn⟶* cq q'sn⟶*p'' ,′ Context1-sn⟶* cr r'sn⟶*p'' 1-step cb@(CBpar cbp cbq _ _ _ _) (rcontext (cq ∷ cqs) (dcpar₁ dcq) psn⟶₁q) (rcontext (cr ∷ crs) (dcpar₂ dcr) psn⟶₁r) = _ , sn⟶*-inclusion (rcontext _ (dcpar₂ dcr) psn⟶₁r) ,′ sn⟶*-inclusion (rcontext _ (dcpar₁ dcq) psn⟶₁q) 1-step cb@(CBpar cbp cbq _ _ _ _) (rcontext (cq ∷ cqs) (dcpar₂ dcq) psn⟶₁q) (rcontext (cr ∷ crs) (dcpar₁ dcr) psn⟶₁r) = _ , sn⟶*-inclusion (rcontext _ (dcpar₁ dcr) psn⟶₁r) ,′ sn⟶*-inclusion (rcontext _ (dcpar₂ dcq) psn⟶₁q) 1-step cb@(CBpar cbp cbq _ _ _ _) (rcontext (cq ∷ cqs) (dcpar₂ dcq) psn⟶₁q) (rcontext (cr ∷ crs) (dcpar₂ dcr) psn⟶₁r) with 1-step cbq (rcontext cqs dcq psn⟶₁q) (rcontext crs dcr psn⟶₁r) ... | p'' , q'sn⟶*p'' , r'sn⟶*p'' = _ , Context1-sn⟶* cq q'sn⟶*p'' ,′ Context1-sn⟶* cr r'sn⟶*p'' 1-step cb@(CBseq cbp cbq _) (rcontext (cq ∷ cqs) (dcseq₁ dcq) psn⟶₁q) (rcontext (cr ∷ crs) (dcseq₁ dcr) psn⟶₁r) with 1-step cbp (rcontext cqs dcq psn⟶₁q) (rcontext crs dcr psn⟶₁r) ... | p'' , q'sn⟶*p'' , r'sn⟶*p'' = _ , Context1-sn⟶* cq q'sn⟶*p'' ,′ Context1-sn⟶* cr r'sn⟶*p'' 1-step cb (rcontext (cq ∷ cqs) (dcseq₁ dcq) psn⟶₁q) (rcontext (cr ∷ crs) (dcseq₂ dcr) psn⟶₁r) = _ , sn⟶*-inclusion (rcontext _ (dcseq₂ dcr) psn⟶₁r) ,′ sn⟶*-inclusion (rcontext _ (dcseq₁ dcq) psn⟶₁q) 1-step cb (rcontext (cq ∷ cqs) (dcseq₂ dcq) psn⟶₁q) (rcontext (cr ∷ crs) (dcseq₁ dcr) psn⟶₁r) = _ , sn⟶*-inclusion (rcontext _ (dcseq₁ dcr) psn⟶₁r) ,′ sn⟶*-inclusion (rcontext _ (dcseq₂ dcq) psn⟶₁q) 1-step cb@(CBseq cbp cbq _) (rcontext (cq ∷ cqs) (dcseq₂ dcq) psn⟶₁q) (rcontext (cr ∷ crs) (dcseq₂ dcr) psn⟶₁r) with 1-step cbq (rcontext cqs dcq psn⟶₁q) (rcontext crs dcr psn⟶₁r) ... | p'' , q'sn⟶*p'' , r'sn⟶*p'' = _ , Context1-sn⟶* cq q'sn⟶*p'' ,′ Context1-sn⟶* cr r'sn⟶*p'' 1-step cb@(CBloopˢ cbp cbq _ _) (rcontext (cq ∷ cqs) (dcloopˢ₁ dcq) psn⟶₁q) (rcontext (cr ∷ crs) (dcloopˢ₁ dcr) psn⟶₁r) with 1-step cbp (rcontext cqs dcq psn⟶₁q) (rcontext crs dcr psn⟶₁r) ... | p'' , q'sn⟶*p'' , r'sn⟶*p'' = _ , Context1-sn⟶* cq q'sn⟶*p'' ,′ Context1-sn⟶* cr r'sn⟶*p'' 1-step cb (rcontext (cq ∷ cqs) (dcloopˢ₁ dcq) psn⟶₁q) (rcontext (cr ∷ crs) (dcloopˢ₂ dcr) psn⟶₁r) = _ , sn⟶*-inclusion (rcontext _ (dcloopˢ₂ dcr) psn⟶₁r) ,′ sn⟶*-inclusion (rcontext _ (dcloopˢ₁ dcq) psn⟶₁q) 1-step cb (rcontext (cq ∷ cqs) (dcloopˢ₂ dcq) psn⟶₁q) (rcontext (cr ∷ crs) (dcloopˢ₁ dcr) psn⟶₁r) = _ , sn⟶*-inclusion (rcontext _ (dcloopˢ₁ dcr) psn⟶₁r) ,′ sn⟶*-inclusion (rcontext _ (dcloopˢ₂ dcq) psn⟶₁q) 1-step cb@(CBloopˢ cbp cbq _ _) (rcontext (cq ∷ cqs) (dcloopˢ₂ dcq) psn⟶₁q) (rcontext (cr ∷ crs) (dcloopˢ₂ dcr) psn⟶₁r) with 1-step cbq (rcontext cqs dcq psn⟶₁q) (rcontext crs dcr psn⟶₁r) ... | p'' , q'sn⟶*p'' , r'sn⟶*p'' = _ , Context1-sn⟶* cq q'sn⟶*p'' ,′ Context1-sn⟶* cr r'sn⟶*p'' 1-step cb@(CBsusp cb' _) (rcontext (cq ∷ cqs) (dcsuspend dcq) psn⟶₁q) (rcontext (cr ∷ crs) (dcsuspend dcr) psn⟶₁r) with 1-step cb' (rcontext cqs dcq psn⟶₁q) (rcontext crs dcr psn⟶₁r) ... | p'' , q'sn⟶*p'' , r'sn⟶*p'' = _ , Context1-sn⟶* cq q'sn⟶*p'' ,′ Context1-sn⟶* cr r'sn⟶*p'' 1-step cb@(CBtrap cb') (rcontext (cq ∷ cqs) (dctrap dcq) psn⟶₁q) (rcontext (cr ∷ crs) (dctrap dcr) psn⟶₁r) with 1-step cb' (rcontext cqs dcq psn⟶₁q) (rcontext crs dcr psn⟶₁r) ... | p'' , q'sn⟶*p'' , r'sn⟶*p'' = _ , Context1-sn⟶* cq q'sn⟶*p'' ,′ Context1-sn⟶* cr r'sn⟶*p'' 1-step cb@(CBsig cb') (rcontext (cq ∷ cqs) (dcsignl dcq) psn⟶₁q) (rcontext (cr ∷ crs) (dcsignl dcr) psn⟶₁r) with 1-step cb' (rcontext cqs dcq psn⟶₁q) (rcontext crs dcr psn⟶₁r) ... | p'' , q'sn⟶*p'' , r'sn⟶*p'' = _ , Context1-sn⟶* cq q'sn⟶*p'' ,′ Context1-sn⟶* cr r'sn⟶*p'' 1-step cb@(CBpresent cbp cbq) (rcontext (cq ∷ cqs) (dcpresent₁ dcq) psn⟶₁q) (rcontext (cr ∷ crs) (dcpresent₁ dcr) psn⟶₁r) with 1-step cbp (rcontext cqs dcq psn⟶₁q) (rcontext crs dcr psn⟶₁r) ... | p'' , q'sn⟶*p'' , r'sn⟶*p'' = _ , Context1-sn⟶* cq q'sn⟶*p'' ,′ Context1-sn⟶* cr r'sn⟶*p'' 1-step cb (rcontext (cq ∷ cqs) (dcpresent₁ dcq) psn⟶₁q) (rcontext (cr ∷ crs) (dcpresent₂ dcr) psn⟶₁r) = _ , sn⟶*-inclusion (rcontext _ (dcpresent₂ dcr) psn⟶₁r) ,′ sn⟶*-inclusion (rcontext _ (dcpresent₁ dcq) psn⟶₁q) 1-step cb (rcontext (cq ∷ cqs) (dcpresent₂ dcq) psn⟶₁q) (rcontext (cr ∷ crs) (dcpresent₁ dcr) psn⟶₁r) = _ , sn⟶*-inclusion (rcontext _ (dcpresent₁ dcr) psn⟶₁r) ,′ sn⟶*-inclusion (rcontext _ (dcpresent₂ dcq) psn⟶₁q) 1-step cb@(CBpresent cbp cbq) (rcontext (cq ∷ cqs) (dcpresent₂ dcq) psn⟶₁q) (rcontext (cr ∷ crs) (dcpresent₂ dcr) psn⟶₁r) with 1-step cbq (rcontext cqs dcq psn⟶₁q) (rcontext crs dcr psn⟶₁r) ... | p'' , q'sn⟶*p'' , r'sn⟶*p'' = _ , Context1-sn⟶* cq q'sn⟶*p'' ,′ Context1-sn⟶* cr r'sn⟶*p'' 1-step cb@(CBloop cb' _) (rcontext (cq ∷ cqs) (dcloop dcq) psn⟶₁q) (rcontext (cr ∷ crs) (dcloop dcr) psn⟶₁r) with 1-step cb' (rcontext cqs dcq psn⟶₁q) (rcontext crs dcr psn⟶₁r) ... | p'' , q'sn⟶*p'' , r'sn⟶*p'' = _ , Context1-sn⟶* cq q'sn⟶*p'' ,′ Context1-sn⟶* cr r'sn⟶*p'' 1-step cb@(CBshared cb') (rcontext (cq ∷ cqs) (dcshared dcq) psn⟶₁q) (rcontext (cr ∷ crs) (dcshared dcr) psn⟶₁r) with 1-step cb' (rcontext cqs dcq psn⟶₁q) (rcontext crs dcr psn⟶₁r) ... | p'' , q'sn⟶*p'' , r'sn⟶*p'' = _ , Context1-sn⟶* cq q'sn⟶*p'' ,′ Context1-sn⟶* cr r'sn⟶*p'' 1-step cb@(CBvar cb') (rcontext (cq ∷ cqs) (dcvar dcq) psn⟶₁q) (rcontext (cr ∷ crs) (dcvar dcr) psn⟶₁r) with 1-step cb' (rcontext cqs dcq psn⟶₁q) (rcontext crs dcr psn⟶₁r) ... | p'' , q'sn⟶*p'' , r'sn⟶*p'' = _ , Context1-sn⟶* cq q'sn⟶*p'' ,′ Context1-sn⟶* cr r'sn⟶*p'' 1-step cb@(CBif cbp cbq) (rcontext (cq ∷ cqs) (dcif₁ dcq) psn⟶₁q) (rcontext (cr ∷ crs) (dcif₁ dcr) psn⟶₁r) with 1-step cbp (rcontext cqs dcq psn⟶₁q) (rcontext crs dcr psn⟶₁r) ... | p'' , q'sn⟶*p'' , r'sn⟶*p'' = _ , Context1-sn⟶* cq q'sn⟶*p'' ,′ Context1-sn⟶* cr r'sn⟶*p'' 1-step cb (rcontext (cq ∷ cqs) (dcif₁ dcq) psn⟶₁q) (rcontext (cr ∷ crs) (dcif₂ dcr) psn⟶₁r) = _ , sn⟶*-inclusion (rcontext _ (dcif₂ dcr) psn⟶₁r) ,′ sn⟶*-inclusion (rcontext _ (dcif₁ dcq) psn⟶₁q) 1-step cb (rcontext (cq ∷ cqs) (dcif₂ dcq) psn⟶₁q) (rcontext (cr ∷ crs) (dcif₁ dcr) psn⟶₁r) = _ , sn⟶*-inclusion (rcontext _ (dcif₁ dcr) psn⟶₁r) ,′ sn⟶*-inclusion (rcontext _ (dcif₂ dcq) psn⟶₁q) 1-step cb@(CBif cbp cbq) (rcontext (cq ∷ cqs) (dcif₂ dcq) psn⟶₁q) (rcontext (cr ∷ crs) (dcif₂ dcr) psn⟶₁r) with 1-step cbq (rcontext cqs dcq psn⟶₁q) (rcontext crs dcr psn⟶₁r) ... | p'' , q'sn⟶*p'' , r'sn⟶*p'' = _ , Context1-sn⟶* cq q'sn⟶*p'' ,′ Context1-sn⟶* cr r'sn⟶*p'' 1-step cb@(CBρ cb') (rcontext (cq ∷ cqs) (dcenv dcq) psn⟶₁q) (rcontext (cr ∷ crs) (dcenv dcr) psn⟶₁r) with 1-step cb' (rcontext cqs dcq psn⟶₁q) (rcontext crs dcr psn⟶₁r) ... | p'' , q'sn⟶*p'' , r'sn⟶*p'' = _ , Context1-sn⟶* cq q'sn⟶*p'' ,′ Context1-sn⟶* cr r'sn⟶*p''
{ "alphanum_fraction": 0.5917344173, "avg_line_length": 41.6949152542, "ext": "agda", "hexsha": "57aba13abe277a62d2890838e77d1e4287efd81d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "florence/esterel-calculus", "max_forks_repo_path": "agda/sn-calculus-compatconf.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "florence/esterel-calculus", "max_issues_repo_path": "agda/sn-calculus-compatconf.agda", "max_line_length": 97, "max_stars_count": 3, "max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "florence/esterel-calculus", "max_stars_repo_path": "agda/sn-calculus-compatconf.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z", "num_tokens": 7100, "size": 14760 }
------------------------------------------------------------------------ -- The Agda standard library -- -- An example of how Data.Fin.Substitution can be used: a definition -- of substitution for the untyped λ-calculus, along with some lemmas ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Fin.Substitution.Example where open import Data.Fin.Substitution open import Data.Fin.Substitution.Lemmas open import Data.Nat open import Data.Fin using (Fin) open import Data.Vec open import Relation.Binary.PropositionalEquality as PropEq using (_≡_; refl; sym; cong; cong₂) open PropEq.≡-Reasoning open import Relation.Binary.Construct.Closure.ReflexiveTransitive using (Star; ε; _◅_) -- A representation of the untyped λ-calculus. Uses de Bruijn indices. infixl 9 _·_ data Tm (n : ℕ) : Set where var : (x : Fin n) → Tm n ƛ : (t : Tm (suc n)) → Tm n _·_ : (t₁ t₂ : Tm n) → Tm n -- Code for applying substitutions. module TmApp {ℓ} {T : ℕ → Set ℓ} (l : Lift T Tm) where open Lift l hiding (var) -- Applies a substitution to a term. infix 8 _/_ _/_ : ∀ {m n} → Tm m → Sub T m n → Tm n var x / ρ = lift (lookup ρ x) ƛ t / ρ = ƛ (t / ρ ↑) t₁ · t₂ / ρ = (t₁ / ρ) · (t₂ / ρ) open Application (record { _/_ = _/_ }) using (_/✶_) -- Some lemmas about _/_. ƛ-/✶-↑✶ : ∀ k {m n t} (ρs : Subs T m n) → ƛ t /✶ ρs ↑✶ k ≡ ƛ (t /✶ ρs ↑✶ suc k) ƛ-/✶-↑✶ k ε = refl ƛ-/✶-↑✶ k (ρ ◅ ρs) = cong₂ _/_ (ƛ-/✶-↑✶ k ρs) refl ·-/✶-↑✶ : ∀ k {m n t₁ t₂} (ρs : Subs T m n) → t₁ · t₂ /✶ ρs ↑✶ k ≡ (t₁ /✶ ρs ↑✶ k) · (t₂ /✶ ρs ↑✶ k) ·-/✶-↑✶ k ε = refl ·-/✶-↑✶ k (ρ ◅ ρs) = cong₂ _/_ (·-/✶-↑✶ k ρs) refl tmSubst : TermSubst Tm tmSubst = record { var = var; app = TmApp._/_ } open TermSubst tmSubst hiding (var) -- Substitution lemmas. tmLemmas : TermLemmas Tm tmLemmas = record { termSubst = tmSubst ; app-var = refl ; /✶-↑✶ = Lemma./✶-↑✶ } where module Lemma {T₁ T₂} {lift₁ : Lift T₁ Tm} {lift₂ : Lift T₂ Tm} where open Lifted lift₁ using () renaming (_↑✶_ to _↑✶₁_; _/✶_ to _/✶₁_) open Lifted lift₂ using () renaming (_↑✶_ to _↑✶₂_; _/✶_ to _/✶₂_) /✶-↑✶ : ∀ {m n} (ρs₁ : Subs T₁ m n) (ρs₂ : Subs T₂ m n) → (∀ k x → var x /✶₁ ρs₁ ↑✶₁ k ≡ var x /✶₂ ρs₂ ↑✶₂ k) → ∀ k t → t /✶₁ ρs₁ ↑✶₁ k ≡ t /✶₂ ρs₂ ↑✶₂ k /✶-↑✶ ρs₁ ρs₂ hyp k (var x) = hyp k x /✶-↑✶ ρs₁ ρs₂ hyp k (ƛ t) = begin ƛ t /✶₁ ρs₁ ↑✶₁ k ≡⟨ TmApp.ƛ-/✶-↑✶ _ k ρs₁ ⟩ ƛ (t /✶₁ ρs₁ ↑✶₁ suc k) ≡⟨ cong ƛ (/✶-↑✶ ρs₁ ρs₂ hyp (suc k) t) ⟩ ƛ (t /✶₂ ρs₂ ↑✶₂ suc k) ≡⟨ sym (TmApp.ƛ-/✶-↑✶ _ k ρs₂) ⟩ ƛ t /✶₂ ρs₂ ↑✶₂ k ∎ /✶-↑✶ ρs₁ ρs₂ hyp k (t₁ · t₂) = begin t₁ · t₂ /✶₁ ρs₁ ↑✶₁ k ≡⟨ TmApp.·-/✶-↑✶ _ k ρs₁ ⟩ (t₁ /✶₁ ρs₁ ↑✶₁ k) · (t₂ /✶₁ ρs₁ ↑✶₁ k) ≡⟨ cong₂ _·_ (/✶-↑✶ ρs₁ ρs₂ hyp k t₁) (/✶-↑✶ ρs₁ ρs₂ hyp k t₂) ⟩ (t₁ /✶₂ ρs₂ ↑✶₂ k) · (t₂ /✶₂ ρs₂ ↑✶₂ k) ≡⟨ sym (TmApp.·-/✶-↑✶ _ k ρs₂) ⟩ t₁ · t₂ /✶₂ ρs₂ ↑✶₂ k ∎ open TermLemmas tmLemmas public hiding (var)
{ "alphanum_fraction": 0.486631016, "avg_line_length": 33.1145833333, "ext": "agda", "hexsha": "edb7c3a874e290d0a3bdfe6732ef5cbb59def3a8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Fin/Substitution/Example.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Fin/Substitution/Example.agda", "max_line_length": 86, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Fin/Substitution/Example.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1503, "size": 3179 }
open import Agda.Builtin.Nat interleaved mutual plus : Nat → Nat → Nat mult : Nat → Nat → Nat -- base case mult 0 n = 0 plus 0 n = n -- inductive case. The fun clauses with an ellipsis belong to mult mult (suc m) n with mult m n ... | p with plus p n ... | q = q plus (suc m) n = suc (plus m n) open import Agda.Builtin.Equality proof : ∀ m n → mult (suc m) n ≡ plus (mult m n) n proof m n with mult m n ... | p with plus p n ... | q = refl
{ "alphanum_fraction": 0.5995717345, "avg_line_length": 19.4583333333, "ext": "agda", "hexsha": "50cc4fb1407599a4a1d7aff5802a222c66bc8207", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue2858-with.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue2858-with.agda", "max_line_length": 68, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue2858-with.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 169, "size": 467 }
------------------------------------------------------------------------------ -- Testing some inductive predicates for inequalities ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOT.FOTC.Data.Nat.Inequalities.InductivePredicates where open import FOTC.Base open import FOTC.Data.Nat.Type open import FOTC.Data.Nat.UnaryNumbers ------------------------------------------------------------------------------ module m₁ where data _≤_ : D → D → Set where z≤n : ∀ n → zero ≤ n s≤s : ∀ {m n} → m ≤ n → succ₁ m ≤ succ₁ n _<_ : D → D → Set m < n = succ₁ m ≤ n _≥_ : D → D → Set m ≥ n = n ≤ m _>_ : D → D → Set m > n = n < m x≤y→x≤Sy : ∀ {m n} → m ≤ n → m ≤ succ₁ n x≤y→x≤Sy {.zero} {n} (z≤n .n) = z≤n (succ₁ n) x≤y→x≤Sy (s≤s m≤n) = s≤s (x≤y→x≤Sy m≤n) module m₂ where data _≤_ : D → D → Set where z≤n : ∀ {n} → N n → zero ≤ n s≤s : ∀ {m n} → N m → N n → m ≤ n → succ₁ m ≤ succ₁ n _<_ : D → D → Set m < n = succ₁ m ≤ n _≥_ : D → D → Set m ≥ n = n ≤ m _>_ : D → D → Set m > n = n < m x≤y→x≤Sy : ∀ {m n} → m ≤ n → m ≤ succ₁ n x≤y→x≤Sy (z≤n Nn) = z≤n (nsucc Nn) x≤y→x≤Sy (s≤s Nm Nn m≤n) = s≤s Nm (nsucc Nn) (x≤y→x≤Sy m≤n) postulate lt : D → D → D lt-00 : lt zero zero ≡ false lt-0S : ∀ n → lt zero (succ₁ n) ≡ true lt-S0 : ∀ n → lt (succ₁ n) zero ≡ false lt-SS : ∀ m n → lt (succ₁ m) (succ₁ n) ≡ lt m n le : D → D → D le m n = lt m (succ₁ n) ≤→le : ∀ {m n} → m ≤ n → le m n ≡ true ≤→le {n = n} (z≤n Nn) = lt-0S n ≤→le (s≤s nzero nzero h) = trans (lt-SS zero 1') (≤→le h) ≤→le (s≤s nzero (nsucc {n} Nn) h) = trans (lt-SS zero (succ₁ (succ₁ n))) (≤→le h) ≤→le (s≤s (nsucc {m} Nm) nzero h) = trans (lt-SS (succ₁ m) 1') (≤→le h) ≤→le (s≤s (nsucc {m} Nm) (nsucc {n} Nn) h) = trans (lt-SS (succ₁ m) (succ₁ (succ₁ n))) (≤→le h) le→≤ : ∀ {m n} → N m → N n → le m n ≡ true → m ≤ n le→≤ nzero Nn h = z≤n Nn le→≤ (nsucc nzero) nzero h = ⊥-elim (t≢f (trans (sym h) (trans (lt-SS zero zero) lt-00))) le→≤ (nsucc (nsucc {m} Nm)) nzero h = ⊥-elim (t≢f (trans (sym h) (trans (lt-SS (succ₁ m) zero) (lt-S0 m)))) {-# CATCHALL #-} le→≤ (nsucc {m} Nm) (nsucc {n} Nn) h = s≤s Nm Nn (le→≤ Nm Nn (trans (sym (lt-SS m (succ₁ n))) h)) module m₃ where data _≤_ : ∀ {m n} → N m → N n → Set where z≤n : ∀ {n} → (Nn : N n) → nzero ≤ Nn s≤s : ∀ {m n} → (Nm : N m) → (Nn : N n) → Nm ≤ Nn → nsucc Nm ≤ nsucc Nn _<_ : ∀ {m n} → N m → N n → Set Nm < Nn = nsucc Nm ≤ Nn _≥_ : ∀ {m n} → N m → N n → Set Nm ≥ Nn = Nn ≤ Nm _>_ : ∀ {m n} → N m → N n → Set Nm > Nn = Nn < Nm x≤y→x≤Sy : ∀ {m n} → (Nm : N m) → (Nn : N n) → Nm ≤ Nn → Nm ≤ nsucc Nn x≤y→x≤Sy .nzero Nn (z≤n .Nn) = z≤n (nsucc Nn) x≤y→x≤Sy .(nsucc Nm) .(nsucc Nn) (s≤s Nm Nn Nm≤Nn) = s≤s Nm (nsucc Nn) (x≤y→x≤Sy Nm Nn Nm≤Nn)
{ "alphanum_fraction": 0.42496, "avg_line_length": 31.25, "ext": "agda", "hexsha": "b86068ac59016de3250a0912f49da560af7b1e6b", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/FOT/FOTC/Data/Nat/Inequalities/InductivePredicates.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/FOT/FOTC/Data/Nat/Inequalities/InductivePredicates.agda", "max_line_length": 83, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/FOT/FOTC/Data/Nat/Inequalities/InductivePredicates.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 1454, "size": 3125 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Relation.Binary.Reasoning.Equality where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude private variable ℓ : Level A : Type ℓ infixr 1 _≡⟨⟩_ _≡⟨_⟩_ _≡˘⟨_⟩_ infix 2 _∎ -- Step with a non-trivial propositional equality _≡⟨_⟩_ : ∀ x {y z : A} → x ≡ y → y ≡ z → x ≡ z _≡⟨_⟩_ x = _∙_ -- Step with a flipped non-trivial propositional equality _≡˘⟨_⟩_ : ∀ x {y z : A} → y ≡ x → y ≡ z → x ≡ z x ≡˘⟨ y≡x ⟩ y≡z = x ≡⟨ sym y≡x ⟩ y≡z -- Step with a trivial propositional equality _≡⟨⟩_ : ∀ x {y : A} → x ≡ y → x ≡ y _ ≡⟨⟩ x≡y = x≡y -- Syntax for path definition ≡⟨⟩-syntax : ∀ x {y z : A} → x ≡ y → y ≡ z → x ≡ z ≡⟨⟩-syntax = _≡⟨_⟩_ infixr 1 ≡⟨⟩-syntax syntax ≡⟨⟩-syntax x (λ i → B) y = x ≡[ i ]⟨ B ⟩ y ≡˘⟨⟩-syntax : ∀ x {y z : A} → y ≡ x → y ≡ z → x ≡ z ≡˘⟨⟩-syntax = _≡˘⟨_⟩_ infixr 1 ≡˘⟨⟩-syntax syntax ≡˘⟨⟩-syntax x (λ i → B) y = x ≡˘[ i ]⟨ B ⟩ y -- Termination step _∎ : ∀ (x : A) → x ≡ x x ∎ = refl
{ "alphanum_fraction": 0.5380811078, "avg_line_length": 21.9782608696, "ext": "agda", "hexsha": "20d9d5020a7a0746d95c4cd010733b58f0f77283", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bijan2005/univalent-foundations", "max_forks_repo_path": "Cubical/Relation/Binary/Reasoning/Equality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bijan2005/univalent-foundations", "max_issues_repo_path": "Cubical/Relation/Binary/Reasoning/Equality.agda", "max_line_length": 57, "max_stars_count": null, "max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bijan2005/univalent-foundations", "max_stars_repo_path": "Cubical/Relation/Binary/Reasoning/Equality.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 520, "size": 1011 }
module Numeral.Natural.Relation where open import Data.Boolean.Stmt open import Numeral.Natural open import Numeral.Natural.Oper.Comparisons open import Logic.Propositional open import Logic import Lvl open import Relator.Equals open import Type Positive : ℕ → Stmt Positive(n) = IsTrue(positive? n) zero-not-positive : ¬ Positive(𝟎) zero-not-positive () positive-not-zero : ∀{n} → ⦃ _ : Positive(n) ⦄ → (n ≢ 𝟎) positive-not-zero {𝟎} ⦃ pos ⦄ _ = pos non-zero-positive : ∀{n} → (n ≢ 𝟎) → Positive(n) non-zero-positive {𝟎} p = p [≡]-intro non-zero-positive {𝐒 n} p = [⊤]-intro
{ "alphanum_fraction": 0.6984667802, "avg_line_length": 24.4583333333, "ext": "agda", "hexsha": "921027508c716cd596f94e5d4bc869e53889cbe5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Natural/Relation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Natural/Relation.agda", "max_line_length": 56, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Natural/Relation.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 200, "size": 587 }
{-# OPTIONS --without-K --safe #-} module Algebra.Linear.Structures.Bundles where open import Algebra open import Level using (Level; suc; _⊔_) open import Relation.Binary using (Rel; IsEquivalence) open import Algebra.FunctionProperties open import Algebra.Structures.Field open import Algebra.Structures.Bundles.Field open import Algebra.Linear.Structures.VectorSpace record RawVectorSpace {k ℓᵏ} (K : Field k ℓᵏ) (c ℓ : Level) : Set (suc (c ⊔ k ⊔ ℓ)) where infix 20 _≈_ infixl 25 _+_ infixr 30 _∙_ field Carrier : Set c _≈_ : Rel Carrier ℓ _+_ : Carrier -> Carrier -> Carrier _∙_ : Field.Carrier K -> Carrier -> Carrier -_ : Carrier -> Carrier 0# : Carrier rawGroup : RawGroup c ℓ rawGroup = record { _≈_ = _≈_; _∙_ = _+_; ε = 0#; _⁻¹ = -_ } open RawGroup rawGroup public using (rawMagma; rawMonoid) record VectorSpace {k ℓᵏ} (K : Field k ℓᵏ) (c ℓ : Level) : Set (suc (c ⊔ k ⊔ ℓ ⊔ ℓᵏ)) where infix 20 _≈_ infixl 25 _+_ infixr 30 _∙_ field Carrier : Set c _≈_ : Rel Carrier ℓ _+_ : Carrier -> Carrier -> Carrier _∙_ : Field.Carrier K -> Carrier -> Carrier -_ : Carrier -> Carrier 0# : Carrier isVectorSpace : IsVectorSpace K _≈_ _+_ _∙_ -_ 0# open IsVectorSpace isVectorSpace public rawVectorSpace : RawVectorSpace K c ℓ rawVectorSpace = record { _≈_ = _≈_; _+_ = _+_; _∙_ = _∙_; -_ = -_; 0# = 0# } abelianGroup : AbelianGroup c ℓ abelianGroup = record { isAbelianGroup = isAbelianGroup } open AbelianGroup abelianGroup public using (rawMagma; magma; rawMonoid; monoid; rawGroup; group)
{ "alphanum_fraction": 0.6146682189, "avg_line_length": 29.6206896552, "ext": "agda", "hexsha": "cd552e34c0b1a00772c73950f69b73b8542bb216", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "felko/linear-algebra", "max_forks_repo_path": "src/Algebra/Linear/Structures/Bundles.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "felko/linear-algebra", "max_issues_repo_path": "src/Algebra/Linear/Structures/Bundles.agda", "max_line_length": 91, "max_stars_count": 15, "max_stars_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "felko/linear-algebra", "max_stars_repo_path": "src/Algebra/Linear/Structures/Bundles.agda", "max_stars_repo_stars_event_max_datetime": "2020-12-30T06:18:08.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-02T14:11:00.000Z", "num_tokens": 581, "size": 1718 }
{-# OPTIONS --safe --warning=error --without-K #-} open import Numbers.ClassicalReals.RealField open import LogicalFormulae open import Setoids.Subset open import Setoids.Setoids open import Setoids.Orders.Partial.Definition open import Sets.EquivalenceRelations open import Rings.Orders.Partial.Definition open import Rings.Definition open import Fields.Fields open import Groups.Definition open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order open import Functions.Definition module Numbers.Intervals.Definition {a b c : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} {_<_ : Rel {_} {c} A} {R : Ring S _+_ _*_} {pOrder : SetoidPartialOrder S _<_} (pRing : PartiallyOrderedRing R pOrder) where record OpenInterval : Set a where field minBound : A maxBound : A isInInterval : A → OpenInterval → Set c isInInterval a record { minBound = min ; maxBound = max } = (min < a) && (a < max)
{ "alphanum_fraction": 0.738990333, "avg_line_length": 35.8076923077, "ext": "agda", "hexsha": "d659c28dfb6925dce7f08a5177c34f5ad81d574c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Numbers/Intervals/Definition.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Numbers/Intervals/Definition.agda", "max_line_length": 229, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Numbers/Intervals/Definition.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 263, "size": 931 }
open import Prelude module Implicits.Resolution.Finite.Algorithm where open import Induction.WellFounded open import Induction.Nat open import Data.Fin.Substitution open import Data.Nat.Base using (_<′_) open import Data.List.Any open Membership-≡ open import Implicits.Syntax open import Implicits.Syntax.Type.Unification open import Implicits.Syntax.Type.Unification.Lemmas open import Implicits.Substitutions open import Implicits.Substitutions.Lemmas open import Implicits.Resolution.Finite.Resolution open import Implicits.Resolution.Termination open import Function.Inverse as Inv using (_↔_; module Inverse) open import Function.Equality hiding (cong; flip; const) open import Data.List.Any.Properties using (Any↔) open import Data.Nat hiding (_<_) open import Data.Nat.Properties open import Relation.Binary using (module DecTotalOrder) open DecTotalOrder decTotalOrder using () renaming (refl to ≤-refl; trans to ≤-trans) open Lexicographic using (left; right) module M = MetaTypeMetaSubst module Lemmas where postulate lem₄ : ∀ {m ν} (a : MetaType m (suc ν)) u us → from-meta ((M.open-meta a) M./ (us M.↑) M./ (M.sub u)) ≡ (from-meta (a M./ (us M.↑tp))) tp[/tp from-meta u ] m<-Acc : ∀ {m ν} → MetaType m ν → Set m<-Acc {m} {ν} r = Acc _m<_ (m , ν , r) ρ<-Acc : ∀ {ν} → Type ν → Set ρ<-Acc {ν} r = Acc _ρ<_ (ν , r) module Arg<-well-founded where open Lexicographic (_N<_) (const _ρ<_) open import Induction.Nat open import Data.Nat.Properties module image = Subrelation {A = ℕ} {_N<_} {_<′_} ≤⇒≤′ arg<-well-founded : Well-founded _<_ arg<-well-founded = well-founded (image.well-founded <-well-founded) ρ<-well-founded _arg<_ = _<_ -- Accessibility of the 'goal' type during resolution. -- Either the *head* of the goal shrinks (Oliveira's termination condition) -- Or the head size remains equal and the goal shrinks in an absolute sense. Arg<-Acc : ∀ {ν} → Type ν → Set Arg<-Acc a = Acc _arg<_ (h|| a || , (, a)) open Arg<-well-founded using (Arg<-Acc; arg<-well-founded) public lem₆ : ∀ {ν μ} (a : Type ν) (b : Type (suc μ)) c → (, a) hρ< (, b) → (, a) hρ< (, b tp[/tp c ]) lem₆ a b c p = ≤-trans p (h||a/s|| b (TypeSubst.sub c)) where open SubstSizeLemmas lem₅ : ∀ {ν μ} {Δ : ICtx ν} {b τ} (a : Type μ) → Δ ⊢ b ↓ τ → (, a) hρ< (, b) → (, a) hρ< (, simpl τ) lem₅ {τ = τ} a (i-simp .τ) q = q lem₅ a (i-iabs _ _ p) q = lem₅ a p q lem₅ a (i-tabs {ρ = b} c p) q = lem₅ a p (lem₆ a b c q) open Lemmas mutual match' : ∀ {m ν ρ} (Δ : ICtx ν) (r∈Δ : ρ List.∈ Δ) τ → (r : MetaType m ν) → Arg<-Acc (simpl τ) → m<-Acc r → Maybe (∃ λ u → Δ ⊢ from-meta (r M./ u) ↓ τ) match' Δ r∈Δ τ (simpl x) f g with mgu (simpl x) τ | sound (simpl x) τ match' Δ r∈Δ τ (simpl x) f g | just u | just u-unifies = just (u , subst (λ a → Δ ⊢ a ↓ τ) (sym u-unifies) (i-simp τ)) match' Δ r∈Δ τ (simpl x) f g | nothing | _ = nothing match' Δ r∈Δ τ (a ⇒ b) (acc f) (acc g) with match' Δ r∈Δ τ b (acc f) (g _ (b-m<-a⇒b a b)) match' Δ r∈Δ τ (a ⇒ b) (acc f) (acc g) | nothing = nothing match' Δ r∈Δ τ (a ⇒ b) (acc f) (acc g) | just (u , b/u↓τ) with (from-meta (a M./ u)) hρ<? (from-meta (b M./ u)) match' Δ r∈Δ τ (a ⇒ b) (acc f) (acc g) | just (u , b/u↓τ) | yes ρ₁< with resolve' Δ (from-meta (a M./ u)) (f _ (left (lem₅ (from-meta (a M./ u)) b/u↓τ ρ₁<))) match' Δ r∈Δ τ (a ⇒ b) (acc f) (acc g) | just (u , b/u↓τ) | yes ρ₁< | just ⊢ᵣa = just (u , i-iabs ρ₁< ⊢ᵣa b/u↓τ) match' Δ r∈Δ τ (a ⇒ b) (acc f) (acc g) | just (u , b/u↓τ) | yes _ | nothing = nothing match' Δ r∈Δ τ (a ⇒ b) (acc f) (acc g) | just (u , b/u↓τ) | no p = nothing match' Δ r∈Δ τ (∀' a) f (acc g) with match' Δ r∈Δ τ (open-meta a) f (g _ (open-meta-a-m<-∀'a a)) match' Δ r∈Δ τ (∀' a) f (acc g) | just p = just $ lem p where lem : (∃ λ u → Δ ⊢ (from-meta ((open-meta a) M./ u)) ↓ τ) → ∃ λ u' → Δ ⊢ (from-meta (∀' a M./ u')) ↓ τ lem (u ∷ us , p) = us , (i-tabs (from-meta u) (subst (λ v → Δ ⊢ v ↓ τ) (begin from-meta (M._/_ (open-meta a) (u ∷ us)) ≡⟨ cong (λ v → from-meta (M._/_ (open-meta a) v)) (sym $ us↑-⊙-sub-u≡u∷us u us) ⟩ from-meta ((open-meta a) M./ (us M.↑ M.⊙ (M.sub u))) ≡⟨ cong from-meta (/-⊙ (open-meta a)) ⟩ from-meta ((open-meta a) M./ us M.↑ M./ (M.sub u)) ≡⟨ lem₄ a u us ⟩ from-meta (M._/_ a (us M.↑tp)) tp[/tp from-meta u ] ∎) p)) where open MetaTypeMetaLemmas hiding (subst) match' Δ r∈Δ τ (∀' r) f (acc g) | nothing = nothing -- match defers to match', which concerns itself with MetaTypes. -- If match' finds a match, we can use the fact that we have zero unification variables open here -- to show that we found the right thing. match : ∀ {ν ρ} (Δ : ICtx ν) (r∈Δ : ρ List.∈ Δ) r τ → Arg<-Acc (simpl τ) → Maybe (Δ ⊢ r ↓ τ) match Δ r∈Δ a τ f with match' Δ r∈Δ τ (to-meta {zero} a) f (m<-well-founded _) match Δ r∈Δ a τ f | just x = just (lem x) where eq : ∀ {ν} {a : Type ν} {s} → from-meta (to-meta {zero} a M./ s) ≡ a eq {a = a} {s = []} = begin from-meta (M._/_ (to-meta {zero} a) []) ≡⟨ cong (λ q → from-meta q) (MetaTypeMetaLemmas.id-vanishes (to-meta {zero} a)) ⟩ from-meta (to-meta {zero} a) ≡⟨ to-meta-zero-vanishes ⟩ a ∎ lem : ∃ (λ u → Δ ⊢ from-meta (to-meta {zero} a M./ u) ↓ τ) → Δ ⊢ a ↓ τ lem ([] , proj₂) = subst (λ u → Δ ⊢ u ↓ τ) eq proj₂ match Δ r∈Δ a τ f | nothing = nothing match1st : ∀ {ν} (Δ : ICtx ν) τ → Arg<-Acc (simpl τ) → Maybe (∃₂ λ r (r∈Δ : r List.∈ Δ) → Δ ⊢ r ↓ τ) match1st {ν = ν} Δ τ f = match1st' Δ Prelude.id where match1st' : ∀ (ρs : ICtx ν) → ρs ⊆ Δ → Maybe (∃₂ λ r (r∈Δ : r List.∈ Δ) → Δ ⊢ r ↓ τ) match1st' List.[] sub = nothing match1st' (x List.∷ xs) sub with match Δ (sub (here refl)) x τ f match1st' (x List.∷ xs) sub | just px = just (x , ((sub (here refl)) , px)) match1st' (x List.∷ xs) sub | nothing with match1st' xs (λ r∈xs → sub (there r∈xs)) match1st' (x List.∷ xs) sub | nothing | just p = just p match1st' (x List.∷ xs) sub | nothing | nothing = nothing resolve' : ∀ {ν} (Δ : ICtx ν) r → Arg<-Acc r → (Maybe (Δ ⊢ᵣ r)) resolve' Δ (simpl x) f with match1st Δ x f resolve' Δ (simpl x) f | just (_ , r∈Δ , r↓x) = just (r-simp r∈Δ r↓x) resolve' Δ (simpl x) f | nothing = nothing resolve' Δ (a ⇒ b) (acc f) with resolve' (a List.∷ Δ) b (f _ (right (b-ρ<-a⇒b a b))) resolve' Δ (a ⇒ b) (acc f) | just p = just (r-iabs p) resolve' Δ (a ⇒ b) (acc f) | nothing = nothing resolve' Δ (∀' r) (acc f) with resolve' (ictx-weaken Δ) r (f _ (right (a-ρ<-∀a r))) resolve' Δ (∀' r) (acc f) | just p = just (r-tabs p) resolve' Δ (∀' r) (acc f) | nothing = nothing resolve : ∀ {ν} (Δ : ICtx ν) r → (Maybe (Δ ⊢ᵣ r)) resolve Δ r = resolve' Δ r (arg<-well-founded _)
{ "alphanum_fraction": 0.5604948928, "avg_line_length": 45.7302631579, "ext": "agda", "hexsha": "eb2ebe54e1a4889688d5baebd562534f42116c15", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/Implicits/Resolution/Finite/Algorithm.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/Implicits/Resolution/Finite/Algorithm.agda", "max_line_length": 167, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/Implicits/Resolution/Finite/Algorithm.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 2774, "size": 6951 }
-- Check that unquoted functions are termination checked. module _ where open import Common.Prelude hiding (_>>=_) open import Common.Reflection `⊥ : Type `⊥ = def (quote ⊥) [] data Box : Set where box : ⊥ → Box unbox : Box → ⊥ unbox (box x) = x `Box : Type `Box = def (quote Box) [] {- Generate aux : Box aux = box (unbox aux) -} makeLoop : TC ⊤ makeLoop = freshName "aux" >>= λ aux → declareDef (iArg aux) `Box >>= λ _ → defineFun aux (clause [] (con (quote box) (vArg (def (quote unbox) (vArg (def aux []) ∷ [])) ∷ [])) ∷ []) unquoteDecl = makeLoop it : ∀ {a} {A : Set a} {{_ : A}} → A it {{x}} = x loop : ⊥ loop = unbox it
{ "alphanum_fraction": 0.5817901235, "avg_line_length": 17.5135135135, "ext": "agda", "hexsha": "93950aae2367ffd2a6e7644d629febb73e7e9c77", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Fail/TerminationCheckUnquoteDeclUnnamed.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Fail/TerminationCheckUnquoteDeclUnnamed.agda", "max_line_length": 107, "max_stars_count": null, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Fail/TerminationCheckUnquoteDeclUnnamed.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 235, "size": 648 }
{-# OPTIONS --cubical --safe #-} module Issue3577 where open import Agda.Primitive.Cubical renaming (primTransp to transp; primHComp to hcomp) open import Agda.Builtin.Cubical.Path open import Agda.Builtin.Sigma open import Agda.Builtin.Cubical.Sub renaming (primSubOut to ouc; Sub to _[_↦_]) refl : ∀ {l} {A : Set l} {x : A} → x ≡ x refl {x = x} = \ _ → x ptType : Set₁ ptType = Σ Set (λ A → A) data Susp' (A : ptType) : Set where susp* : Susp' A -- Non-computation of transp on non-HIT's hcomp testTr : {A' : ptType} (ψ : I) (A : I → ptType [ ψ ↦ (\ _ → A') ]) {φ : I} (u : ∀ i → Partial φ (Susp' (ouc (A i0)))) (u0 : Susp' (ouc (A i0)) [ φ ↦ u i0 ]) → transp (\ i -> Susp' (ouc (A i))) ψ (hcomp u (ouc u0)) ≡ hcomp (λ j .o → transp (λ i → Susp' (ouc (A i))) ψ (u j o)) (transp (λ i → Susp' (ouc (A i))) ψ (ouc u0)) testTr ψ A u u0 = refl
{ "alphanum_fraction": 0.5608938547, "avg_line_length": 33.1481481481, "ext": "agda", "hexsha": "cb8b43a1f4cda6c5779b06097abeea695bd04f7b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue3577.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue3577.agda", "max_line_length": 116, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue3577.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 358, "size": 895 }
postulate D : Set ∃ : (A : D → Set) → Set vx : D Q₂ : D → D → Set postulate foo : (∃ λ x → Q₂ vx x) → (∃ λ x → Q₂ vx x) {-# ATP prove foo #-} -- $ apia Bug.agda -- An internal error has occurred. Please report this as a bug. -- Location of the error: src/Apia/Utils/AgdaAPI/DeBruijn.hs:68
{ "alphanum_fraction": 0.5789473684, "avg_line_length": 20.2666666667, "ext": "agda", "hexsha": "0db770dad7b449278dcf4b3e09dc135756884698", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z", "max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/apia", "max_forks_repo_path": "test/Succeed/fol-theorems/Issue28.agda", "max_issues_count": 121, "max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/apia", "max_issues_repo_path": "test/Succeed/fol-theorems/Issue28.agda", "max_line_length": 63, "max_stars_count": 10, "max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/apia", "max_stars_repo_path": "test/Succeed/fol-theorems/Issue28.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z", "num_tokens": 119, "size": 304 }
-- Internal hom in families module SOAS.Abstract.Hom {T : Set} where open import SOAS.Common open import SOAS.Construction.Structure open import SOAS.Context open import SOAS.Variable open import SOAS.Families.Core {T} open import SOAS.Families.Isomorphism open import SOAS.Families.BCCC open import SOAS.Construction.Skew.SkewClosed open import Categories.Functor.Bifunctor open import Categories.NaturalTransformation.Dinatural using (dtHelper) -- Heterogeneous action of a sorted family on a family ⟨_,_⟩ : Familyₛ → Family → Family ⟨ 𝒳 , Y ⟩ Γ = (Γ ~[ 𝒳 ]↝_) ⇾ Y ⟨-,-⟩F : Bifunctor 𝔽amₛ.op 𝔽amilies 𝔽amilies ⟨-,-⟩F = record { F₀ = λ{ (𝒳 , Y) → ⟨ 𝒳 , Y ⟩ } ; F₁ = λ{ (f , g) o {Δ} σ → g (o (f ∘ σ)) } ; identity = refl ; homomorphism = refl ; F-resp-≈ = λ{ {f = f , g} (p , p′) {Γ} {o} → dext′ (trans (cong (g ∘ o) (dext′ p)) p′) } } -- Arrow mapping ⟨_,_⟩₁ : {𝒳 𝒳′ : Familyₛ} {Y Y′ : Family} → 𝒳′ ⇾̣ 𝒳 → Y ⇾ Y′ → (⟨ 𝒳 , Y ⟩ ⇾ ⟨ 𝒳′ , Y′ ⟩) ⟨ f , g ⟩₁ = Functor.₁ ⟨-,-⟩F (f , g) -- Internal hom of sorted families 〖_,_〗 : Familyₛ → Familyₛ → Familyₛ 〖 X , Y 〗 τ = ⟨ X , Y τ ⟩ 〖-,-〗F : Bifunctor 𝔽amₛ.op 𝔽amiliesₛ 𝔽amiliesₛ 〖-,-〗F = record { F₀ = λ{ (X , Y) → 〖 X , Y 〗 } ; F₁ = λ{ (f , g) o {Δ} σ → g (o (f ∘ σ)) } ; identity = refl ; homomorphism = refl ; F-resp-≈ = λ{ {f = f , g} (p , p′) {x = h} → dext′ (trans (cong (g ∘ h) (dext′ p)) p′) } } -- Arrow mapping 〖_,_〗₁ : {𝒳 𝒳′ 𝒴 𝒴′ : Familyₛ} → 𝒳′ ⇾̣ 𝒳 → 𝒴 ⇾̣ 𝒴′ → (〖 𝒳 , 𝒴 〗 ⇾̣ 〖 𝒳′ , 𝒴′ 〗) 〖 f , g 〗₁ h σ = g (h (f ∘ σ)) 〖_,_〗ₗ : {𝒳 𝒳′ : Familyₛ} → 𝒳′ ⇾̣ 𝒳 → (𝒴 : Familyₛ) → (〖 𝒳 , 𝒴 〗 ⇾̣ 〖 𝒳′ , 𝒴 〗) 〖 f , Z 〗ₗ h σ = h (f ∘ σ) 〖_,_〗ᵣ : {𝒴 𝒴′ : Familyₛ} → (𝒳 : Familyₛ) → 𝒴 ⇾̣ 𝒴′ → (〖 𝒳 , 𝒴 〗 ⇾̣ 〖 𝒳 , 𝒴′ 〗) 〖 X , g 〗ᵣ h σ = g (h σ) -- | Structure morphisms i : (𝒳 : Familyₛ) → 〖 ℐ , 𝒳 〗 ⇾̣ 𝒳 i 𝒳 o = o id i′ : (X : Family) → ⟨ ℐ , X ⟩ ⇾ X i′ X o = o id j : (𝒳 : Familyₛ) → ℐ ⇾̣ 〖 𝒳 , 𝒳 〗 j 𝒳 v σ = σ v L : (𝒳 𝒴 𝒵 : Familyₛ) → 〖 𝒴 , 𝒵 〗 ⇾̣ 〖 〖 𝒳 , 𝒴 〗 , 〖 𝒳 , 𝒵 〗 〗 L 𝒳 Y Z o ς σ = o (λ v → ς v σ) L′ : (𝒳 𝒴 : Familyₛ)(Z : Family) → ⟨ 𝒴 , Z ⟩ ⇾ ⟨ 〖 𝒳 , 𝒴 〗 , ⟨ 𝒳 , Z ⟩ ⟩ L′ 𝒳 𝒴 Z o ς σ = o (λ v → ς v σ) -- Category of sorted families is skew-closed under the internal hom 𝔽amₛ:SkewClosed : SkewClosed 𝔽amiliesₛ 𝔽amₛ:SkewClosed = record { [-,-] = 〖-,-〗F ; unit = ℐ ; identity = ntHelper record { η = i ; commute = λ f → refl } ; diagonal = dtHelper record { α = j ; commute = λ f → refl } ; L = L ; L-commute = refl ; Lj≈j = refl ; ijL≈id = refl ; iL≈i = refl ; ij≈id = refl ; pentagon = refl } private variable 𝒳 𝒴 𝒵 : Familyₛ Y Z : Family -- ⟨X,-⟩ distributes over and factors out of products ⟨𝒳,Y×Z⟩≅⟨𝒳,Y⟩×⟨𝒳,Z⟩ : ⟨ 𝒳 , (Y ×ₘ Z) ⟩ ≅ₘ ⟨ 𝒳 , Y ⟩ ×ₘ ⟨ 𝒳 , Z ⟩ ⟨𝒳,Y×Z⟩≅⟨𝒳,Y⟩×⟨𝒳,Z⟩ = record { from = λ h → (λ ρ → proj₁ (h ρ)) , λ ϱ → proj₂ (h ϱ) ; to = λ{ (bx , by) ρ → bx ρ , by ρ} ; iso = record { isoˡ = refl ; isoʳ = refl } } -- ⟨X,-⟩ factors out of coproducts ⟨𝒳,Y⟩+⟨𝒳,Z⟩⇾⟨𝒳,Y+Z⟩ : ⟨ 𝒳 , Y ⟩ +ₘ ⟨ 𝒳 , Z ⟩ ⇾ ⟨ 𝒳 , (Y +ₘ Z) ⟩ ⟨𝒳,Y⟩+⟨𝒳,Z⟩⇾⟨𝒳,Y+Z⟩ (inj₁ ox) σ = inj₁ (ox σ) ⟨𝒳,Y⟩+⟨𝒳,Z⟩⇾⟨𝒳,Y+Z⟩ (inj₂ oy) ς = inj₂ (oy ς) -- Same properties for the hom 〖𝒳,𝒴×̣𝒵〗≅̣〖𝒳,𝒴〗×̣〖𝒳,𝒵〗 : 〖 𝒳 , 𝒴 ×̣ₘ 𝒵 〗 ≅̣ₘ 〖 𝒳 , 𝒴 〗 ×̣ₘ 〖 𝒳 , 𝒵 〗 〖𝒳,𝒴×̣𝒵〗≅̣〖𝒳,𝒴〗×̣〖𝒳,𝒵〗 = ≅ₘ→≅̣ₘ ⟨𝒳,Y×Z⟩≅⟨𝒳,Y⟩×⟨𝒳,Z⟩ 〖𝒳,𝒴〗+̣〖𝒳,𝒵〗⇾̣〖𝒳,𝒴+̣𝒵〗 : 〖 𝒳 , 𝒴 〗 +̣ₘ 〖 𝒳 , 𝒵 〗 ⇾̣ 〖 𝒳 , (𝒴 +̣ₘ 𝒵) 〗 〖𝒳,𝒴〗+̣〖𝒳,𝒵〗⇾̣〖𝒳,𝒴+̣𝒵〗 = ⟨𝒳,Y⟩+⟨𝒳,Z⟩⇾⟨𝒳,Y+Z⟩
{ "alphanum_fraction": 0.4851929405, "avg_line_length": 27.8583333333, "ext": "agda", "hexsha": "2bc9f2675dc71821adc483355ac4a31744b78017", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z", "max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JoeyEremondi/agda-soas", "max_forks_repo_path": "SOAS/Abstract/Hom.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JoeyEremondi/agda-soas", "max_issues_repo_path": "SOAS/Abstract/Hom.agda", "max_line_length": 92, "max_stars_count": 39, "max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JoeyEremondi/agda-soas", "max_stars_repo_path": "SOAS/Abstract/Hom.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z", "num_tokens": 2147, "size": 3343 }
module Data.Num where open import Data.Num.Core renaming ( carry to carry' ; carry-lower-bound to carry-lower-bound' ; carry-upper-bound to carry-upper-bound' ) open import Data.Num.Maximum open import Data.Num.Bounded open import Data.Num.Next open import Data.Num.Increment open import Data.Num.Continuous open import Data.Nat open import Data.Nat.Properties open import Data.Nat.Properties.Simple open import Data.Nat.Properties.Extra open import Data.Nat.DM open import Data.Fin as Fin using (Fin; fromℕ≤; inject≤) renaming (zero to z; suc to s) open import Data.Fin.Properties using (toℕ-fromℕ≤; bounded) open import Data.Product open import Data.Empty using (⊥) open import Data.Unit using (⊤; tt) open import Function open import Relation.Nullary.Decidable open import Relation.Nullary open import Relation.Nullary.Negation open import Relation.Binary open import Relation.Binary.PropositionalEquality open ≡-Reasoning open ≤-Reasoning renaming (begin_ to start_; _∎ to _□; _≡⟨_⟩_ to _≈⟨_⟩_) open DecTotalOrder decTotalOrder using (reflexive) renaming (refl to ≤-refl) infix 4 _≋_ _≋_ : ∀ {b d o} → (xs ys : Numeral b d o) → Set xs ≋ ys = ⟦ xs ⟧ ≡ ⟦ ys ⟧ fromℕ : ∀ {b d o} → {cont : True (Continuous? b (suc d) o)} → (n : ℕ) → n ≥ o → Numeral b (suc d) o fromℕ {o = o} n p with o ≟ n fromℕ n n≥o | yes eq = z ∙ fromℕ {o = o} zero n≥o | no ¬eq = contradiction (≤0⇒≡0 o n≥o) ¬eq fromℕ {cont = cont} (suc n) n≥o | no ¬eq = 1+ {cont = cont} (fromℕ {cont = cont} n (≤-pred $ ≤∧≢⇒< n≥o ¬eq)) fromℕ-toℕ : ∀ {b d o} → (cont : True (Continuous? b (suc d) o)) → (n : ℕ) → (n≥o : n ≥ o) → ⟦ fromℕ {cont = cont} n n≥o ⟧ ≡ n fromℕ-toℕ {o = o} cont n n≥o with o ≟ n fromℕ-toℕ cont n n≥o | yes eq = eq fromℕ-toℕ {o = o} cont zero n≥o | no ¬eq = contradiction (≤0⇒≡0 o n≥o) ¬eq fromℕ-toℕ cont (suc n) n≥o | no ¬eq = let n≥o' = ≤-pred (≤∧≢⇒< n≥o ¬eq) in begin ⟦ 1+ {cont = cont} (fromℕ {cont = cont} n n≥o') ⟧ ≡⟨ 1+-toℕ {cont = cont} (fromℕ {cont = cont} n n≥o') ⟩ suc ⟦ fromℕ {cont = cont} n n≥o' ⟧ ≡⟨ cong suc (fromℕ-toℕ cont n n≥o') ⟩ suc n ∎ -- toℕ-fromℕ : ∀ {b d o} -- → (cont : True (Continuous? b (suc d) o)) -- → (xs : Numeral b (suc d) o) -- → fromℕ {cont = cont} ⟦ xs ⟧ (Num-lower-bound xs) ≋ xs -- toℕ-fromℕ cont xs = fromℕ-toℕ cont ⟦ xs ⟧ (Num-lower-bound xs) sum : ∀ {d} → (o : ℕ) → (x y : Digit (suc d)) → ℕ sum o x y = Digit-toℕ x o + Digit-toℕ y o sum≥o : ∀ {d} o → (x y : Digit (suc d)) → sum o x y ≥ o sum≥o o x y = start o ≤⟨ n≤m+n (Fin.toℕ x) o ⟩ Digit-toℕ x o ≤⟨ m≤m+n (Digit-toℕ x o) (Digit-toℕ y o) ⟩ sum o x y □ sum-upper-bound : ∀ {d} o → (x y : Digit (suc d)) → sum o x y ≤ (d + o) + (d + o) sum-upper-bound {d} o x y = start Digit-toℕ x o + Digit-toℕ y o ≤⟨ ≤-pred (Digit-upper-bound o x) +-mono ≤-pred (Digit-upper-bound o y) ⟩ d + o + (d + o) □ -- 0 o d+o d+o+(1⊔o)×b ----|---|-----------------|----------------| -- o d (1⊔o)×b -- [----------------] "buffer capacity" data Sum : (b d o : ℕ) (x y : Digit (suc d)) → Set where NoCarry : ∀ {b d o x y} → (leftover : Digit (suc d)) → (property : Digit-toℕ leftover o ≡ sum o x y) → Sum b d o x y Fixed : ∀ {b d o x y} → (leftover carry : Digit (suc d)) → (property : Digit-toℕ leftover o + (Digit-toℕ carry o) * suc b ≡ sum o x y) → Sum b d o x y Floating : ∀ {b d o x y} → (leftover carry : Digit (suc d)) → (property : Digit-toℕ leftover o + (Digit-toℕ carry o) * suc b ≡ sum o x y) → Sum b d o x y sumView : ∀ b d o → (¬gapped : ¬ (Gapped#0 b d o)) → (proper : 2 ≤ suc d + o) → (x y : Digit (suc d)) → Sum b d o x y sumView b d o ¬gapped proper x y with (sum o x y) ≤? d + o sumView b d o ¬gapped proper x y | yes below = NoCarry (Digit-fromℕ leftover o leftover-upper-bound) property where leftover : ℕ leftover = sum o x y leftover-upper-bound : leftover ≤ d + o leftover-upper-bound = below property : Digit-toℕ (Digit-fromℕ leftover o leftover-upper-bound) o ≡ sum o x y property = begin Digit-toℕ (Digit-fromℕ (sum o x y) o below) o ≡⟨ Digit-fromℕ-toℕ (sum o x y) (sum≥o o x y) below ⟩ sum o x y ∎ sumView b d o ¬gapped proper x y | no ¬below with (sum o x y) ≤? d + o + (1 ⊔ o) * (suc b) sumView b d o ¬gapped proper x y | no ¬below | yes within = Fixed (Digit-fromℕ leftover o leftover-upper-bound) (Digit-fromℕ carry o carry-upper-bound) property where base : ℕ base = suc b carry : ℕ carry = carry' o sum≥carry*base : sum o x y ≥ carry * base sum≥carry*base = start carry * base ≤⟨ m≤m+n (carry * base) o ⟩ carry * base + o ≤⟨ +n-mono o (≤-pred (≰⇒> ¬gapped)) ⟩ suc (d + o) ≤⟨ ≰⇒> ¬below ⟩ sum o x y □ leftover : ℕ leftover = sum o x y ∸ carry * base leftover-lower-bound : leftover ≥ o leftover-lower-bound = start o ≈⟨ sym (m+n∸n≡m o (carry * base)) ⟩ o + carry * base ∸ carry * base ≈⟨ cong (λ w → w ∸ carry * base) (+-comm o (carry * base)) ⟩ carry * base + o ∸ carry * base ≤⟨ ∸n-mono (carry * base) (+n-mono o (≤-pred (≰⇒> ¬gapped))) ⟩ suc d + o ∸ carry * base ≤⟨ ∸n-mono (carry * base) (≰⇒> ¬below) ⟩ leftover □ leftover-upper-bound : leftover ≤ d + o leftover-upper-bound = +n-mono-inverse (carry * base) $ start leftover + carry * base ≈⟨ refl ⟩ sum o x y ∸ carry * base + carry * base ≈⟨ m∸n+n≡m sum≥carry*base ⟩ sum o x y ≤⟨ within ⟩ d + o + carry * base □ carry-lower-bound : carry ≥ o carry-lower-bound = carry-lower-bound' carry-upper-bound : carry ≤ d + o carry-upper-bound = carry-upper-bound' {d} {o} proper property : Digit-toℕ (Digit-fromℕ leftover o leftover-upper-bound) o + Digit-toℕ (Digit-fromℕ carry o carry-upper-bound) o * base ≡ sum o x y property = begin Digit-toℕ (Digit-fromℕ leftover o leftover-upper-bound) o + Digit-toℕ (Digit-fromℕ carry o carry-upper-bound) o * base ≡⟨ cong₂ (λ l c → l + c * base) (Digit-fromℕ-toℕ leftover leftover-lower-bound leftover-upper-bound) (Digit-fromℕ-toℕ carry carry-lower-bound carry-upper-bound) ⟩ leftover + carry * base ≡⟨ refl ⟩ sum o x y ∸ carry * base + carry * base ≡⟨ m∸n+n≡m sum≥carry*base ⟩ sum o x y ∎ sumView b d o ¬gapped proper x y | no ¬below | no ¬within with (sum o x y ∸ ((d + o) + (1 ⊔ o) * (suc b))) divMod (suc b) sumView b d o ¬gapped proper x y | no ¬below | no ¬within | result quotient remainder divModProp _ _ = Floating (Digit-fromℕ leftover o leftover-upper-bound) (Digit-fromℕ carry o carry-upper-bound) property where base : ℕ base = suc b carry : ℕ carry = (1 ⊓ Fin.toℕ remainder) + quotient + (1 ⊔ o) divModProp' : sum o x y ≡ Fin.toℕ remainder + quotient * base + (d + o + (1 ⊔ o) * base) divModProp' = begin sum o x y ≡⟨ sym (m∸n+n≡m (<⇒≤ (≰⇒> ¬within))) ⟩ sum o x y ∸ (d + o + (1 ⊔ o) * base) + (d + o + (1 ⊔ o) * base) ≡⟨ cong (λ w → w + ((d + o) + (1 ⊔ o) * base)) divModProp ⟩ Fin.toℕ remainder + quotient * base + ((d + o) + (1 ⊔ o) * base) ∎ leftover : ℕ leftover = sum o x y ∸ carry * base leftover-lower-bound-lemma : (remainder : Fin base) → (prop : sum o x y ∸ (d + o + (1 ⊔ o) * base) ≡ Fin.toℕ remainder + quotient * base) → sum o x y ≥ o + ((1 ⊓ Fin.toℕ remainder) + quotient + (1 ⊔ o)) * base leftover-lower-bound-lemma z prop = start o + (quotient + (1 ⊔ o)) * base ≤⟨ +n-mono ((quotient + (1 ⊔ o)) * base) (n≤m+n d o) ⟩ d + o + (quotient + (1 ⊔ o)) * base ≈⟨ cong (λ w → d + o + w) (distribʳ-*-+ base quotient (1 ⊔ o)) ⟩ d + o + (quotient * base + (1 ⊔ o) * base) ≈⟨ a+[b+c]≡b+[a+c] (d + o) (quotient * base) ((1 ⊔ o) * base) ⟩ quotient * base + ((d + o) + (1 ⊔ o) * base) ≈⟨ cong (λ w → w + ((d + o) + (1 ⊔ o) * base)) (sym prop) ⟩ (sum o x y ∸ ((d + o) + (1 ⊔ o) * base)) + ((d + o) + (1 ⊔ o) * base) ≈⟨ m∸n+n≡m (<⇒≤ (≰⇒> ¬within)) ⟩ sum o x y □ leftover-lower-bound-lemma (s r) prop = start o + ((1 ⊓ (Fin.toℕ (s r))) + quotient + (1 ⊔ o)) * base ≈⟨ refl ⟩ o + (1 + (quotient + (1 ⊔ o))) * base ≈⟨ cong (λ w → o + w) (distribʳ-*-+ base 1 (quotient + (1 ⊔ o))) ⟩ o + (1 * base + (quotient + (1 ⊔ o)) * base) ≈⟨ cong (λ w → o + (1 * base + w)) (distribʳ-*-+ base quotient (1 ⊔ o)) ⟩ o + (1 * base + (quotient * base + (1 ⊔ o) * base)) ≤⟨ n+-mono o (n+-mono (1 * base) (+n-mono ((1 ⊔ o) * base) (n≤m+n (Fin.toℕ r) (quotient * base)))) ⟩ o + (1 * base + (Fin.toℕ r + quotient * base + (1 ⊔ o) * base)) ≈⟨ a+[b+c]≡b+[a+c] o (1 * base) (Fin.toℕ r + quotient * base + (1 ⊔ o) * base) ⟩ 1 * base + (o + (Fin.toℕ r + quotient * base + (1 ⊔ o) * base)) ≤⟨ +n-mono (o + (Fin.toℕ r + quotient * base + (1 ⊔ o) * base)) (*n-mono base (m≤m⊔n 1 o)) ⟩ (1 ⊔ o) * base + (o + (Fin.toℕ r + quotient * base + (1 ⊔ o) * base)) ≤⟨ +n-mono (o + ((Fin.toℕ r) + quotient * base + (1 ⊔ o) * base)) (≤-pred (≰⇒> ¬gapped)) ⟩ suc d + (o + ((Fin.toℕ r) + quotient * base + (1 ⊔ o) * base)) ≈⟨ cong suc (sym (+-assoc d o ((Fin.toℕ r) + quotient * base + (1 ⊔ o) * base))) ⟩ suc (d + o + ((Fin.toℕ r) + quotient * base + (1 ⊔ o) * base)) ≈⟨ sym (+-suc (d + o) ((Fin.toℕ r) + quotient * base + (1 ⊔ o) * base)) ⟩ d + o + suc ((Fin.toℕ r) + quotient * base + (1 ⊔ o) * base) ≈⟨ a+[b+c]≡b+[a+c] (d + o) (suc (Fin.toℕ r) + quotient * base) ((1 ⊔ o) * base) ⟩ suc (Fin.toℕ r) + quotient * base + ((d + o) + (1 ⊔ o) * base) ≈⟨ cong (λ w → w + ((d + o) + (1 ⊔ o) * base)) (sym prop) ⟩ (sum o x y ∸ ((d + o) + (1 ⊔ o) * base)) + ((d + o) + (1 ⊔ o) * base) ≈⟨ m∸n+n≡m (<⇒≤ (≰⇒> ¬within)) ⟩ sum o x y □ leftover-lower-bound : leftover ≥ o leftover-lower-bound = start o ≈⟨ sym (m+n∸n≡m o (carry * base)) ⟩ o + carry * base ∸ carry * base ≤⟨ ∸n-mono (carry * base) (leftover-lower-bound-lemma remainder divModProp) ⟩ sum o x y ∸ carry * base ≈⟨ refl ⟩ leftover □ leftover-upper-bound-lemma : (remainder : Fin base) → (prop : sum o x y ∸ (d + o + (1 ⊔ o) * base) ≡ Fin.toℕ remainder + quotient * base) → sum o x y ≤ d + o + ((1 ⊓ Fin.toℕ remainder) + quotient + (1 ⊔ o)) * base leftover-upper-bound-lemma z prop = start sum o x y ≈⟨ sym (m∸n+n≡m (<⇒≤ (≰⇒> ¬within))) ⟩ (sum o x y ∸ ((d + o) + (1 ⊔ o) * base)) + ((d + o) + (1 ⊔ o) * base) ≈⟨ cong (λ w → w + ((d + o) + (1 ⊔ o) * base)) prop ⟩ quotient * base + ((d + o) + (1 ⊔ o) * base) ≈⟨ a+[b+c]≡b+[a+c] (quotient * base) (d + o) ((1 ⊔ o) * base) ⟩ d + o + (quotient * base + (1 ⊔ o) * base) ≈⟨ cong (λ w → d + o + w) (sym (distribʳ-*-+ base quotient (1 ⊔ o))) ⟩ d + o + (quotient + (1 ⊔ o)) * base □ leftover-upper-bound-lemma (s r) prop = start sum o x y ≈⟨ sym (m∸n+n≡m (<⇒≤ (≰⇒> ¬within))) ⟩ (sum o x y ∸ ((d + o) + (1 ⊔ o) * base)) + ((d + o) + (1 ⊔ o) * base) ≈⟨ cong (λ w → w + ((d + o) + (1 ⊔ o) * base)) prop ⟩ suc (Fin.toℕ r) + quotient * base + ((d + o) + (1 ⊔ o) * base) ≈⟨ a+[b+c]≡b+[a+c] (suc (Fin.toℕ r) + quotient * base) (d + o) ((1 ⊔ o) * base) ⟩ d + o + (suc (Fin.toℕ r) + quotient * base + (1 ⊔ o) * base) ≤⟨ n+-mono (d + o) (+n-mono ((1 ⊔ o) * base) (+n-mono (quotient * base) (≤-step (bounded r)))) ⟩ d + o + (suc quotient * base + (1 ⊔ o) * base) ≈⟨ cong (λ w → d + o + w) (sym (distribʳ-*-+ base (suc quotient) (1 ⊔ o))) ⟩ d + o + (1 + (quotient + (1 ⊔ o))) * base ≈⟨ refl ⟩ d + o + ((1 ⊓ (Fin.toℕ (s r))) + quotient + (1 ⊔ o)) * base □ leftover-upper-bound : leftover ≤ d + o leftover-upper-bound = start leftover ≈⟨ refl ⟩ sum o x y ∸ carry * base ≤⟨ ∸n-mono (carry * base) (leftover-upper-bound-lemma remainder divModProp) ⟩ d + o + carry * base ∸ carry * base ≈⟨ m+n∸n≡m (d + o) (carry * base) ⟩ d + o □ carry-lower-bound : carry ≥ o carry-lower-bound = start o ≤⟨ m≤n⊔m o 1 ⟩ 1 ⊔ o ≤⟨ n≤m+n (1 ⊓ Fin.toℕ remainder + quotient) (1 ⊔ o) ⟩ 1 ⊓ Fin.toℕ remainder + quotient + (1 ⊔ o) □ carry-upper-bound : carry ≤ d + o carry-upper-bound = +n-mono-inverse (d + o) $ start 1 ⊓ Fin.toℕ remainder + quotient + (1 ⊔ o) + (d + o) ≤⟨ +n-mono (d + o) (+n-mono (1 ⊔ o) (+n-mono quotient (m⊓n≤n 1 (Fin.toℕ remainder)))) ⟩ Fin.toℕ remainder + quotient + (1 ⊔ o) + (d + o) ≈⟨ +-assoc (Fin.toℕ remainder + quotient) (1 ⊔ o) (d + o) ⟩ Fin.toℕ remainder + quotient + (1 ⊔ o + (d + o)) ≈⟨ cong (λ w → Fin.toℕ remainder + quotient + w) (+-comm (1 ⊔ o) (d + o)) ⟩ Fin.toℕ remainder + quotient + (d + o + (1 ⊔ o)) ≤⟨ +n-mono (d + o + (1 ⊔ o)) (n+-mono (Fin.toℕ remainder) (m≤m*1+n quotient b)) ⟩ Fin.toℕ remainder + quotient * base + (d + o + (1 ⊔ o)) ≤⟨ n+-mono (Fin.toℕ remainder + quotient * base) (n+-mono (d + o) (m≤m*1+n (1 ⊔ o) b)) ⟩ Fin.toℕ remainder + quotient * base + (d + o + (1 ⊔ o) * base) ≈⟨ cong (λ w → w + (d + o + (1 ⊔ o) * base)) (sym divModProp) ⟩ sum o x y ∸ (d + o + (1 ⊔ o) * base) + (d + o + (1 ⊔ o) * base) ≈⟨ m∸n+n≡m (<⇒≤ (≰⇒> ¬within)) ⟩ sum o x y ≤⟨ sum-upper-bound o x y ⟩ d + o + (d + o) □ property : Digit-toℕ (Digit-fromℕ leftover o leftover-upper-bound) o + Digit-toℕ (Digit-fromℕ carry o carry-upper-bound) o * base ≡ sum o x y property = begin Digit-toℕ (Digit-fromℕ leftover o leftover-upper-bound) o + Digit-toℕ (Digit-fromℕ carry o carry-upper-bound) o * base ≡⟨ cong₂ (λ l c → l + c * base) (Digit-fromℕ-toℕ leftover leftover-lower-bound leftover-upper-bound) (Digit-fromℕ-toℕ carry carry-lower-bound carry-upper-bound) ⟩ leftover + carry * base ≡⟨ refl ⟩ sum o x y ∸ carry * base + carry * base ≡⟨ m∸n+n≡m $ start carry * base ≤⟨ n≤m+n o (carry * base) ⟩ o + carry * base ≤⟨ leftover-lower-bound-lemma remainder divModProp ⟩ sum o x y □ ⟩ sum o x y ∎ n+-Proper : ∀ {b d o} → (¬gapped : ¬ (Gapped#0 b d o)) → (proper : suc d + o ≥ 2) → (x : Digit (suc d)) → (xs : Numeral (suc b) (suc d) o) → Numeral (suc b) (suc d) o n+-Proper {b} {d} {o} ¬gapped proper x xs with sumView b d o ¬gapped proper x (lsd xs) n+-Proper ¬gapped proper x (_ ∙) | NoCarry leftover property = leftover ∙ n+-Proper ¬gapped proper x (_ ∷ xs) | NoCarry leftover property = leftover ∷ xs n+-Proper ¬gapped proper x (_ ∙) | Fixed leftover carry property = leftover ∷ carry ∙ n+-Proper ¬gapped proper x (_ ∷ xs) | Fixed leftover carry property = leftover ∷ n+-Proper ¬gapped proper carry xs n+-Proper ¬gapped proper x (_ ∙) | Floating leftover carry property = leftover ∷ carry ∙ n+-Proper ¬gapped proper x (_ ∷ xs) | Floating leftover carry property = leftover ∷ n+-Proper ¬gapped proper carry xs n+-Proper-toℕ : ∀ {b d o} → (¬gapped : ¬ (Gapped#0 b d o)) → (proper : suc d + o ≥ 2) → (x : Digit (suc d)) → (xs : Numeral (suc b) (suc d) o) → ⟦ n+-Proper ¬gapped proper x xs ⟧ ≡ Digit-toℕ x o + ⟦ xs ⟧ n+-Proper-toℕ {b} {d} {o} ¬gapped proper x xs with sumView b d o ¬gapped proper x (lsd xs) n+-Proper-toℕ {b} {d} {o} ¬gapped proper x (_ ∙) | NoCarry leftover property = property n+-Proper-toℕ {b} {d} {o} ¬gapped proper x (x' ∷ xs) | NoCarry leftover property = begin ⟦ leftover ∷ xs ⟧ ≡⟨ refl ⟩ Digit-toℕ leftover o + ⟦ xs ⟧ * suc b ≡⟨ cong (λ w → w + ⟦ xs ⟧ * suc b) property ⟩ Digit-toℕ x o + Digit-toℕ x' o + ⟦ xs ⟧ * suc b ≡⟨ +-assoc (Digit-toℕ x o) (Digit-toℕ x' o) (⟦ xs ⟧ * suc b) ⟩ Digit-toℕ x o + ⟦ x' ∷ xs ⟧ ∎ n+-Proper-toℕ {b} {d} {o} ¬gapped proper x (_ ∙) | Fixed leftover carry property = property n+-Proper-toℕ {b} {d} {o} ¬gapped proper x (x' ∷ xs) | Fixed leftover carry property = begin ⟦ leftover ∷ n+-Proper ¬gapped proper carry xs ⟧ ≡⟨ refl ⟩ Digit-toℕ leftover o + ⟦ n+-Proper ¬gapped proper carry xs ⟧ * suc b ≡⟨ cong (λ w → Digit-toℕ leftover o + w * suc b) (n+-Proper-toℕ ¬gapped proper carry xs) ⟩ Digit-toℕ leftover o + (Digit-toℕ carry o + ⟦ xs ⟧) * suc b ≡⟨ cong (λ w → Digit-toℕ leftover o + w) (distribʳ-*-+ (suc b) (Digit-toℕ carry o) ⟦ xs ⟧) ⟩ Digit-toℕ leftover o + ((Digit-toℕ carry o) * suc b + ⟦ xs ⟧ * suc b) ≡⟨ sym (+-assoc (Digit-toℕ leftover o) ((Digit-toℕ carry o) * suc b) (⟦ xs ⟧ * suc b)) ⟩ Digit-toℕ leftover o + (Digit-toℕ carry o) * suc b + ⟦ xs ⟧ * suc b ≡⟨ cong (λ w → w + ⟦ xs ⟧ * suc b) property ⟩ Digit-toℕ x o + Digit-toℕ x' o + ⟦ xs ⟧ * suc b ≡⟨ +-assoc (Digit-toℕ x o) (Digit-toℕ x' o) (⟦ xs ⟧ * suc b) ⟩ Digit-toℕ x o + (Digit-toℕ x' o + ⟦ xs ⟧ * suc b) ∎ n+-Proper-toℕ {b} {d} {o} ¬gapped proper x (_ ∙) | Floating leftover carry property = property n+-Proper-toℕ {b} {d} {o} ¬gapped proper x (x' ∷ xs) | Floating leftover carry property = begin ⟦ leftover ∷ n+-Proper ¬gapped proper carry xs ⟧ ≡⟨ refl ⟩ Digit-toℕ leftover o + ⟦ n+-Proper ¬gapped proper carry xs ⟧ * suc b ≡⟨ cong (λ w → Digit-toℕ leftover o + w * suc b) (n+-Proper-toℕ ¬gapped proper carry xs) ⟩ Digit-toℕ leftover o + (Digit-toℕ carry o + ⟦ xs ⟧) * suc b ≡⟨ cong (λ w → Digit-toℕ leftover o + w) (distribʳ-*-+ (suc b) (Digit-toℕ carry o) ⟦ xs ⟧) ⟩ Digit-toℕ leftover o + ((Digit-toℕ carry o) * suc b + ⟦ xs ⟧ * suc b) ≡⟨ sym (+-assoc (Digit-toℕ leftover o) ((Digit-toℕ carry o) * suc b) (⟦ xs ⟧ * suc b)) ⟩ Digit-toℕ leftover o + (Digit-toℕ carry o) * suc b + ⟦ xs ⟧ * suc b ≡⟨ cong (λ w → w + ⟦ xs ⟧ * suc b) property ⟩ Digit-toℕ x o + Digit-toℕ x' o + ⟦ xs ⟧ * suc b ≡⟨ +-assoc (Digit-toℕ x o) (Digit-toℕ x' o) (⟦ xs ⟧ * suc b) ⟩ Digit-toℕ x o + (Digit-toℕ x' o + ⟦ xs ⟧ * suc b) ∎ -- -- data N+Closed : (b d o : ℕ) → Set where -- -- IsContinuous : ∀ {b d o} → (cont : True (Continuous? b d o)) → N+Closed b d o -- -- ℤₙ : ∀ {o} → N+Closed 1 1 o -- -- -- -- n+-ℤₙ : ∀ {o} -- -- → (n : Digit 1) -- -- → (xs : Numeral 1 1 (o)) -- -- → Numeral 1 1 o -- -- n+-ℤₙ n xs = n ∷ xs -- -- -- -- n+-ℤₙ-toℕ : ∀ {o} -- -- → (n : Digit 1) -- -- → (xs : Numeral 1 1 o) -- -- → ⟦ n+-ℤₙ n xs ⟧ ≡ Digit-toℕ n o + ⟦ xs ⟧ -- -- n+-ℤₙ-toℕ {o} n xs = -- -- begin -- -- Fin.toℕ n + o + ⟦ xs ⟧ * suc zero -- -- ≡⟨ cong (λ w → Fin.toℕ n + o + w) (*-right-identity ⟦ xs ⟧) ⟩ -- -- Fin.toℕ n + o + ⟦ xs ⟧ -- -- ∎ -- n+ : ∀ {b d o} → {cont : True (Continuous? b d o)} → (n : Digit d) → (xs : Numeral b d o) → Numeral b d o n+ {b} {d} {o} n xs with numView b d o n+ {_} {_} {_} {()} n xs | NullBase d o n+ {_} {_} {_} n xs | NoDigits b o = NoDigits-explode xs n+ {_} {_} {_} {()} n xs | AllZeros b n+ {_} {_} {_} n xs | Proper b d o proper with Gapped#0? b d o n+ {_} {_} {_} {()} n xs | Proper b d o proper | yes gapped#0 n+ {_} {_} {_} n xs | Proper b d o proper | no ¬gapped#0 = n+-Proper ¬gapped#0 proper n xs n+-toℕ : ∀ {b d o} → {cont : True (Continuous? b d o)} → (n : Digit d) → (xs : Numeral b d o) → ⟦ n+ {cont = cont} n xs ⟧ ≡ Digit-toℕ n o + ⟦ xs ⟧ n+-toℕ {b} {d} {o} n xs with numView b d o n+-toℕ {_} {_} {_} {()} n xs | NullBase d o n+-toℕ {_} {_} {_} n xs | NoDigits b o = NoDigits-explode xs n+-toℕ {_} {_} {_} {()} n xs | AllZeros b n+-toℕ {_} {_} {_} n xs | Proper b d o proper with Gapped#0? b d o n+-toℕ {_} {_} {_} {()} n xs | Proper b d o proper | yes gapped#0 n+-toℕ {_} {_} {_} n xs | Proper b d o proper | no ¬gapped#0 = n+-Proper-toℕ ¬gapped#0 proper n xs ⊹-Proper : ∀ {b d o} → (¬gapped : ¬ (Gapped#0 b d o)) → (proper : suc d + o ≥ 2) → (xs ys : Numeral (suc b) (suc d) o) → Numeral (suc b) (suc d) o ⊹-Proper ¬gapped proper (x ∙) ys = n+-Proper ¬gapped proper x ys ⊹-Proper ¬gapped proper (x ∷ xs) (y ∙) = n+-Proper ¬gapped proper y (x ∷ xs) ⊹-Proper {b} {d} {o} ¬gapped proper (x ∷ xs) (y ∷ ys) with sumView b d o ¬gapped proper x y ⊹-Proper ¬gapped proper (x ∷ xs) (y ∷ ys) | NoCarry leftover property = leftover ∷ ⊹-Proper ¬gapped proper xs ys ⊹-Proper ¬gapped proper (x ∷ xs) (y ∷ ys) | Fixed leftover carry property = leftover ∷ n+-Proper ¬gapped proper carry (⊹-Proper ¬gapped proper xs ys) ⊹-Proper ¬gapped proper (x ∷ xs) (y ∷ ys) | Floating leftover carry property = leftover ∷ n+-Proper ¬gapped proper carry (⊹-Proper ¬gapped proper xs ys) _⊹_ : ∀ {b d o} → {cont : True (Continuous? b d o)} → (xs ys : Numeral b d o) → Numeral b d o _⊹_ {b} {d} {o} xs ys with numView b d o _⊹_ {cont = ()} xs ys | NullBase d o _⊹_ {cont = cont} xs ys | NoDigits b o = NoDigits-explode xs _⊹_ {cont = ()} xs ys | AllZeros b _⊹_ {cont = cont} xs ys | Proper b d o proper with Gapped#0? b d o _⊹_ {cont = ()} xs ys | Proper b d o proper | yes ¬gapped#0 _⊹_ {cont = cont} xs ys | Proper b d o proper | no ¬gapped#0 = ⊹-Proper ¬gapped#0 proper xs ys
{ "alphanum_fraction": 0.4624154347, "avg_line_length": 40.9333333333, "ext": "agda", "hexsha": "0c4fb2edd5f9d5acb4e211d42adcc68d7e277c3b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_forks_event_min_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/numeral", "max_forks_repo_path": "Data/Num.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/numeral", "max_issues_repo_path": "Data/Num.agda", "max_line_length": 152, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/numeral", "max_stars_repo_path": "Data/Num.agda", "max_stars_repo_stars_event_max_datetime": "2015-04-23T15:58:28.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-23T15:58:28.000Z", "num_tokens": 8991, "size": 23946 }
module Prelude.List where open import Prelude.Nat open import Prelude.Bool open import Prelude.Maybe open import Prelude.Product open import Prelude.Empty open import Prelude.Function open import Prelude.Functor open import Prelude.Applicative open import Prelude.Monad open import Prelude.Decidable open import Prelude.Equality open import Prelude.Ord open import Prelude.Semiring open import Prelude.Strict open import Agda.Builtin.List public infixr 5 _++_ pattern [_] x = x ∷ [] singleton : ∀ {a} {A : Set a} → A → List A singleton x = x ∷ [] map : ∀ {a b} {A : Set a} {B : Set b} → (A → B) → List A → List B map f [] = [] map f (x ∷ xs) = f x ∷ map f xs _++_ : ∀ {a} {A : Set a} → List A → List A → List A [] ++ ys = ys (x ∷ xs) ++ ys = x ∷ xs ++ ys length : ∀ {a} {A : Set a} → List A → Nat length [] = 0 length (x ∷ xs) = 1 + length xs foldr : ∀ {a b} {A : Set a} {B : Set b} → (A → B → B) → B → List A → B foldr f z [] = z foldr f z (x ∷ xs) = f x (foldr f z xs) foldl : ∀ {a b} {A : Set a} {B : Set b} → (B → A → B) → B → List A → B foldl f z [] = z foldl f z (x ∷ xs) = foldl f (f z x) xs foldl! : ∀ {a b} {A : Set a} {B : Set b} → (B → A → B) → B → List A → B foldl! f z [] = z foldl! f z (x ∷ xs) = force (f z x) λ z′ → foldl! f z′ xs reverse : ∀ {a} {A : Set a} → List A → List A reverse xs = foldl (flip _∷_) [] xs concat : ∀ {a} {A : Set a} → List (List A) → List A concat = foldr _++_ [] concatMap : ∀ {a b} {A : Set a} {B : Set b} → (A → List B) → List A → List B concatMap f = concat ∘ map f filter : ∀ {a} {A : Set a} → (A → Bool) → List A → List A filter p [] = [] filter p (x ∷ xs) = if p x then x ∷ filter p xs else filter p xs catMaybes : ∀ {a} {A : Set a} → List (Maybe A) → List A catMaybes [] = [] catMaybes (x ∷ xs) = maybe (catMaybes xs) (_∷ catMaybes xs) x all? : ∀ {a} {A : Set a} → (A → Bool) → List A → Bool all? p [] = true all? p (x ∷ xs) = p x && all? p xs any? : ∀ {a} {A : Set a} → (A → Bool) → List A → Bool any? p [] = false any? p (x ∷ xs) = p x || any? p xs take : ∀ {a} {A : Set a} → Nat → List A → List A take zero _ = [] take (suc n) [] = [] take (suc n) (x ∷ xs) = x ∷ take n xs drop : ∀ {a} {A : Set a} → Nat → List A → List A drop zero xs = xs drop (suc n) [] = [] drop (suc n) (x ∷ xs) = drop n xs splitAt : ∀ {a} {A : Set a} → Nat → List A → List A × List A splitAt zero xs = [] , xs splitAt (suc n) [] = [] , [] splitAt (suc n) (x ∷ xs) = first (x ∷_) (splitAt n xs) null : ∀ {a} {A : Set a} → List A → Bool null [] = true null (_ ∷ _) = false elem : ∀ {a} {A : Set a} {{EqA : Eq A}} → A → List A → Bool elem x xs = not (null (filter (isYes ∘ _==_ x) xs)) lookup : ∀ {a b} {A : Set a} {B : Set b} {{EqA : Eq A}} → List (A × B) → A → Maybe B lookup [] _ = nothing lookup ((x₁ , v) ∷ xs) x = ifYes (x == x₁) then just v else lookup xs x index : ∀ {a} {A : Set a} → List A → Nat → Maybe A index [] _ = nothing index (x ∷ xs) 0 = just x index (x ∷ xs) (suc i) = index xs i replicate : ∀ {a} {A : Set a} → Nat → A → List A replicate zero x = [] replicate (suc n) x = x ∷ replicate n x zipWith : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} → (A → B → C) → List A → List B → List C zipWith f [] _ = [] zipWith f _ [] = [] zipWith f (x ∷ xs) (y ∷ ys) = f x y ∷ zipWith f xs ys zip : ∀ {a b} {A : Set a} {B : Set b} → List A → List B → List (A × B) zip = zipWith _,_ punctuate : ∀ {a} {A : Set a} → A → List A → List A punctuate z [] = [] punctuate z [ x ] = [ x ] punctuate z (x ∷ xs) = x ∷ z ∷ punctuate z xs module _ {a b} {F : Set a → Set b} {{_ : Applicative F}} {A : Set a} where replicateA : Nat → F A → F (List A) replicateA zero _ = pure [] replicateA (suc n) x = pure _∷_ <*> x <*> replicateA n x module _ {a} {A : Set a} {{_ : Semiring A}} where sum : List A → A sum = foldl! _+_ zro product : List A → A product = foldl! _*_ one sumR : List A → A sumR = foldr _+_ zro productR : List A → A productR = foldr _*_ one module _ {a} {A : Set a} {{_ : Ord A}} where insert : A → List A → List A insert x [] = x ∷ [] insert x (y ∷ xs) = if x <? y then x ∷ y ∷ xs else y ∷ insert x xs sort : List A → List A sort [] = [] sort (x ∷ xs) = insert x (sort xs) infix 10 from_for_ from_to_ from_for_step_ from-to-step from_for_ : Nat → Nat → List Nat from 0 for 0 = [] -- make strict from a for 0 = [] from a for suc d = a ∷ from suc a for d from_for_step_ : Nat → Nat → Nat → List Nat from 0 for 0 step _ = [] -- make strict from a for 0 step _ = [] from a for suc c step d = a ∷ from a + d for c step d from_to_ : Nat → Nat → List Nat from a to b = from a for (suc b - a) syntax from-to-step d a b = from a to b step d from-to-step : (d : Nat) {{_ : NonZero d}} → Nat → Nat → List Nat from-to-step d a b = from a for 1 + (b - a) div d step d --- Equality --- cons-inj-tail : ∀ {a} {A : Set a} {x : A} {xs : List A} {y : A} {ys : List A} → x ∷ xs ≡ y ∷ ys → xs ≡ ys cons-inj-tail refl = refl cons-inj-head : ∀ {a} {A : Set a} {x : A} {xs : List A} {y : A} {ys : List A} → x ∷ xs ≡ y ∷ ys → x ≡ y cons-inj-head refl = refl private dec-∷ : ∀ {a} {A : Set a} {x : A} {xs : List A} {y : A} {ys : List A} → Dec (x ≡ y) → Dec (xs ≡ ys) → Dec (x ∷ xs ≡ y ∷ ys) dec-∷ (yes refl) (yes refl) = yes refl dec-∷ _ (no neq) = no λ eq → neq (cons-inj-tail eq) dec-∷ (no neq) _ = no λ eq → neq (cons-inj-head eq) eqList : ∀ {a} {A : Set a} {{EqA : Eq A}} (xs ys : List A) → Dec (xs ≡ ys) eqList [] [] = yes refl eqList [] (_ ∷ _) = no (λ ()) eqList (_ ∷ _) [] = no (λ ()) eqList (x ∷ xs) (y ∷ ys) = dec-∷ (x == y) (eqList xs ys) instance EqList : ∀ {a} {A : Set a} {{EqA : Eq A}} → Eq (List A) _==_ {{EqList}} = eqList --- Ord --- data LessList {a} {A : Set a} (_<_ : A → A → Set a) : List A → List A → Set a where nil<cons : ∀ {x xs} → LessList _<_ [] (x ∷ xs) head< : ∀ {x y xs ys} → x < y → LessList _<_ (x ∷ xs) (y ∷ ys) tail< : ∀ {x xs ys} → LessList _<_ xs ys → LessList _<_ (x ∷ xs) (x ∷ ys) compareCons : ∀ {a} {A : Set a} {_<_ : A → A → Set a} {x : A} {xs : List A} {y : A} {ys : List A} → Comparison _<_ x y → Comparison (LessList _<_) xs ys → Comparison (LessList _<_) (x ∷ xs) (y ∷ ys) compareCons (less lt) _ = less (head< lt) compareCons (greater gt) _ = greater (head< gt) compareCons (equal refl) (less lt) = less (tail< lt) compareCons (equal refl) (greater gt) = greater (tail< gt) compareCons (equal refl) (equal refl) = equal refl compareList : ∀ {a} {A : Set a} {_<_ : A → A → Set a} (cmp : ∀ x y → Comparison _<_ x y) (xs ys : List A) → Comparison (LessList _<_) xs ys compareList cmp [] [] = equal refl compareList cmp [] (x ∷ ys) = less nil<cons compareList cmp (x ∷ xs) [] = greater nil<cons compareList cmp (x ∷ xs) (y ∷ ys) = compareCons (cmp x y) (compareList cmp xs ys) instance OrdList : ∀ {a} {A : Set a} {{OrdA : Ord A}} → Ord (List A) OrdList = defaultOrd (compareList compare) OrdListLaws : ∀ {a} {A : Set a} {{OrdA : Ord/Laws A}} → Ord/Laws (List A) Ord/Laws.super OrdListLaws = it less-antirefl {{OrdListLaws {A = A}}} (head< hd) = less-antirefl {A = A} hd less-antirefl {{OrdListLaws {A = A}}} (tail< tl) = less-antirefl {A = List A} tl less-trans {{OrdListLaws}} nil<cons (head< hd) = nil<cons less-trans {{OrdListLaws}} nil<cons (tail< tl) = nil<cons less-trans {{OrdListLaws {A = A}}} (head< hd) (head< hd₁) = head< (less-trans {A = A} hd hd₁) less-trans {{OrdListLaws {A = A}}} (head< hd) (tail< tl) = head< hd less-trans {{OrdListLaws {A = A}}} (tail< tl) (head< hd) = head< hd less-trans {{OrdListLaws {A = A}}} (tail< tl) (tail< tl₁) = tail< (less-trans {A = List A} tl tl₁) --- Functor --- instance FunctorList : ∀ {a} → Functor (List {a}) fmap {{FunctorList}} = map FunctorList′ : ∀ {a b} → Functor′ {a} {b} List fmap′ {{FunctorList′}} = map ApplicativeList : ∀ {a} → Applicative (List {a}) pure {{ApplicativeList}} x = x ∷ [] _<*>_ {{ApplicativeList}} = monadAp (flip concatMap) ApplicativeList′ : ∀ {a b} → Applicative′ {a} {b} List _<*>′_ {{ApplicativeList′}} = monadAp′ (flip concatMap) MonadList : ∀ {a} → Monad (List {a}) _>>=_ {{MonadList}} xs f = concatMap f xs MonadList′ : ∀ {a b} → Monad′ {a} {b} List _>>=′_ {{MonadList′}} xs f = concatMap f xs
{ "alphanum_fraction": 0.5268616711, "avg_line_length": 32.5037878788, "ext": "agda", "hexsha": "c6946124d68fbb40a35c65d37212a541f0320047", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "lclem/agda-prelude", "max_forks_repo_path": "src/Prelude/List.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "lclem/agda-prelude", "max_issues_repo_path": "src/Prelude/List.agda", "max_line_length": 107, "max_stars_count": null, "max_stars_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "lclem/agda-prelude", "max_stars_repo_path": "src/Prelude/List.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3338, "size": 8581 }
module Dave.Embedding where open import Dave.Functions open import Dave.Equality open import Dave.Isomorphism infix 0 _≲_ record _≲_ (A B : Set) : Set where field to : A → B from : B → A from∘to : ∀ (x : A) → from (to x) ≡ x open _≲_ ≲-refl : ∀ {A : Set} → A ≲ A ≲-refl = record { to = λ a → a ; from = λ b → b ; from∘to = λ a → refl } ≲-trans : ∀ {A B C : Set} → A ≲ B → B ≲ C → A ≲ C ≲-trans A≲B B≲C = record { to = λ a → to B≲C (to A≲B a) ; from = λ c → from A≲B (from B≲C c) ; from∘to = λ a → begin (from A≲B ∘ from B≲C) ((to B≲C ∘ to A≲B) a) ≡⟨⟩ from A≲B (from B≲C (to B≲C (to A≲B a))) ≡⟨ cong (from A≲B) (from∘to B≲C (to A≲B a)) ⟩ from A≲B (to A≲B a) ≡⟨ from∘to A≲B a ⟩ a ∎ } ≲-antisym : ∀ {A B : Set} → (A≲B : A ≲ B) → (B≲A : B ≲ A) → (to A≲B ≡ from B≲A) → (from A≲B ≡ to B≲A) → A ≃ B ≲-antisym A≲B B≲A to≡from from≡to = record { to = λ a → to A≲B a ; from = λ b → from A≲B b ; from∘to = from∘to A≲B; to∘from = λ b → begin to A≲B (from A≲B b) ≡⟨ cong (λ x → (to A≲B (x b))) from≡to ⟩ to A≲B (to B≲A b) ≡⟨ cong-app to≡from (to B≲A b) ⟩ from B≲A (to B≲A b) ≡⟨ from∘to B≲A b ⟩ b ∎ } module ≲-Reasoning where infix 1 ≲-begin_ infixr 2 _≲⟨_⟩_ infix 3 _≲-∎ ≲-begin_ : ∀ {A B : Set} → A ≲ B ----- → A ≲ B ≲-begin A≲B = A≲B _≲⟨_⟩_ : ∀ (A : Set) {B C : Set} → A ≲ B → B ≲ C ----- → A ≲ C A ≲⟨ A≲B ⟩ B≲C = ≲-trans A≲B B≲C _≲-∎ : ∀ (A : Set) ----- → A ≲ A A ≲-∎ = ≲-refl open ≲-Reasoning ≃-implies-≲ : ∀ {A B : Set} → A ≃ B → A ≲ B ≃-implies-≲ A≃B = record { to = _≃_.to A≃B; from = _≃_.from A≃B; from∘to = _≃_.from∘to A≃B }
{ "alphanum_fraction": 0.3385231317, "avg_line_length": 25.5454545455, "ext": "agda", "hexsha": "da3c65affb7f8d48f9574fc36080385b59947108", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "05213fb6ab1f51f770f9858b61526ba950e06232", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DavidStahl97/formal-proofs", "max_forks_repo_path": "Dave/Embedding.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "05213fb6ab1f51f770f9858b61526ba950e06232", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DavidStahl97/formal-proofs", "max_issues_repo_path": "Dave/Embedding.agda", "max_line_length": 101, "max_stars_count": null, "max_stars_repo_head_hexsha": "05213fb6ab1f51f770f9858b61526ba950e06232", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DavidStahl97/formal-proofs", "max_stars_repo_path": "Dave/Embedding.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 967, "size": 2248 }
{-# OPTIONS --prop --without-K --rewriting #-} -- The phase distinction for extension. module Calf.PhaseDistinction where open import Calf.Prelude open import Calf.Metalanguage open import Relation.Binary.PropositionalEquality as P -- Extensional phase. postulate ext : Ω -- Open/extensional modality. ◯ : □ → □ ◯ A = ext → A infix 10 ◯⁺_ infix 10 ◯⁻_ postulate ext/val : (ext → tp pos) → tp pos ext/val/decode : ∀ {A} → val (ext/val A) ≡ ∀ (u : ext) → (val (A u)) {-# REWRITE ext/val/decode #-} ext/cmp : (ext → tp neg) → tp neg ext/cmp/decode : ∀ {A} → val (U (ext/cmp A)) ≡ ∀ (u : ext) → (cmp (A u)) {-# REWRITE ext/cmp/decode #-} ◯⁺_ : tp pos → tp pos ◯⁺ A = ext/val (λ _ → A) ◯⁻_ : tp neg → tp neg ◯⁻ A = ext/cmp (λ _ → A) -- Closed/intensional modality. postulate ● : tp pos → tp pos η : ∀ {A} → val A → val (● A) ∗ : ∀ {A} → ext → val (● A) η≡∗ : ∀ {A} (a : val A) u → η {A} a ≡ ∗ u ●/ind : ∀ {A} (a : val (● A)) (X : val (● A) → tp neg) (x0 : (a : val A) → cmp (X (η a))) → (x1 : (u : ext) → cmp (X (∗ u))) → ((a : val A) → (u : ext) → P.subst (λ a → cmp (X a)) (η≡∗ a u) (x0 a) ≡ x1 u ) → cmp (X a) ●/ind/β₁ : ∀ {A} (a : val A) (X : val (● A) → tp neg) (x0 : (a : val A) → cmp (X (η a))) → (x1 : (u : ext) → cmp (X (∗ u))) → (h : (a : val A) → (u : ext) → P.subst (λ a → cmp (X a)) (η≡∗ a u) (x0 a) ≡ x1 u ) → ●/ind (η a) X x0 x1 h ≡ x0 a {-# REWRITE ●/ind/β₁ #-} ●/ind/β₂ : ∀ {A} (u : ext) (X : val (● A) → tp neg) (x0 : (a : val A) → cmp (X (η a))) → (x1 : (u : ext) → cmp (X (∗ u))) → (h : (a : val A) → (u : ext) → P.subst (λ a → cmp (X a)) (η≡∗ a u) (x0 a) ≡ x1 u ) → ●/ind (∗ u) X x0 x1 h ≡ x1 u {-# REWRITE ●/ind/β₂ #-}
{ "alphanum_fraction": 0.4659353349, "avg_line_length": 26.6461538462, "ext": "agda", "hexsha": "625030380e5084b16012b16ebdc984797ce31ff8", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-01-29T08:12:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-10-06T10:28:24.000Z", "max_forks_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "jonsterling/agda-calf", "max_forks_repo_path": "src/Calf/PhaseDistinction.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "jonsterling/agda-calf", "max_issues_repo_path": "src/Calf/PhaseDistinction.agda", "max_line_length": 88, "max_stars_count": 29, "max_stars_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "jonsterling/agda-calf", "max_stars_repo_path": "src/Calf/PhaseDistinction.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T20:35:11.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-14T03:18:28.000Z", "num_tokens": 805, "size": 1732 }
module Data.List.At where open import Data.Nat open import Data.List open import Data.List.Relation.Unary.All hiding (map; lookup; _[_]=_) open import Data.List.Relation.Unary.Any hiding (map; lookup) open import Data.List.Membership.Propositional open import Data.List.Relation.Binary.Pointwise hiding (refl; map) open import Data.Fin hiding (_<_) open import Data.Maybe hiding (map) open import Data.Product hiding (map) open import Relation.Binary.PropositionalEquality open import Relation.Nullary maybe-lookup : ∀ {a}{A : Set a} → ℕ → List A → Maybe A maybe-lookup n [] = nothing maybe-lookup zero (x ∷ μ) = just x maybe-lookup (suc n) (x ∷ μ) = maybe-lookup n μ maybe-write : ∀ {a}{A : Set a} → ℕ → A → List A → Maybe (List A) maybe-write n _ [] = nothing maybe-write zero v (x ∷ z) = just (v ∷ z) maybe-write (suc n) v (x ∷ z) = maybe-write n v z _[_]=_ : ∀ {a}{A : Set a} → List A → ℕ → A → Set _ l [ i ]= x = maybe-lookup i l ≡ just x []=-map : ∀ {a b}{A : Set a}{B : Set b}{x} i → (l : List A) → l [ i ]= x → ∀ (f : A → B) → (map f l) [ i ]= (f x) []=-map _ [] () []=-map zero (x ∷ l) refl = λ f → refl []=-map (suc i) (x ∷ l) p = []=-map i l p at-lookup : ∀ {a}{A : Set a} → (l : List A) → (i : Fin (length l)) → l [ toℕ i ]= (lookup l i) at-lookup [] () at-lookup (x ∷ l) zero = refl at-lookup (x ∷ l) (suc i) = at-lookup l i lookup-in : ∀ {a}{A : Set a} → (l : List A) → (i : Fin (length l)) → (lookup l i) ∈ l lookup-in [] () lookup-in (x ∷ l) zero = here refl lookup-in (x ∷ l) (suc i) = there (lookup-in l i) dec-lookup : ∀ {a} {A : Set a} → (i : ℕ) → (l : List A) → Dec (∃ λ x → l [ i ]= x) dec-lookup _ [] = no (λ{ (_ , ())}) dec-lookup zero (x ∷ l) = yes (x , refl) dec-lookup (suc i) (_ ∷ l) = dec-lookup i l all-lookup : ∀ {a} {A : Set a} {l : List A} {i x p P} → l [ i ]= x → All {p = p} P l → P x all-lookup {l = []} () q all-lookup {l = x ∷ l} {zero} refl (px ∷ q) = px all-lookup {l = x ∷ l} {suc i} p (px ∷ q) = all-lookup p q []=-length : ∀ {a} {A : Set a} (L : List A) {i x} → L [ i ]= x → i < length L []=-length [] () []=-length (x ∷ L) {zero} refl = s≤s z≤n []=-length (x ∷ L) {suc i} p = s≤s ([]=-length L p) ∷ʳ[length] : ∀ {a} {A : Set a} (l : List A) x → (l ∷ʳ x) [ length l ]= x ∷ʳ[length] [] y = refl ∷ʳ[length] (x ∷ Σ) y = ∷ʳ[length] Σ y pointwise-lookup : ∀ {a b ℓ A B P l m i x} → Pointwise {a} {b} {ℓ} {A} {B} P l m → l [ i ]= x → ∃ λ y → m [ i ]= y × P x y pointwise-lookup [] () pointwise-lookup {i = zero} (x∼y ∷ q) refl = _ , refl , x∼y pointwise-lookup {i = suc i} (x∼y ∷ q) p = pointwise-lookup q p pointwise-lookup′ : ∀ {a b ℓ A B P l m i x y} → Pointwise {a} {b} {ℓ} {A} {B} P l m → l [ i ]= x → m [ i ]= y → P x y pointwise-lookup′ [] () q pointwise-lookup′ {i = zero} (x∼y ∷ z) refl refl = x∼y pointwise-lookup′ {i = suc i} (x∼y ∷ z) p q = pointwise-lookup′ z p q
{ "alphanum_fraction": 0.5358503637, "avg_line_length": 39.0135135135, "ext": "agda", "hexsha": "dbf284f207b36955eaaffa22a88580fd756d790a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "metaborg/mj.agda", "max_forks_repo_path": "src/Data/List/At.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "metaborg/mj.agda", "max_issues_repo_path": "src/Data/List/At.agda", "max_line_length": 94, "max_stars_count": 10, "max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "metaborg/mj.agda", "max_stars_repo_path": "src/Data/List/At.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z", "num_tokens": 1192, "size": 2887 }
{-# OPTIONS --safe #-} module Cubical.Relation.Binary.Poset where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.Transport open import Cubical.Foundations.SIP open import Cubical.Data.Sigma open import Cubical.Reflection.RecordEquiv open import Cubical.Reflection.StrictEquiv open import Cubical.Displayed.Base open import Cubical.Displayed.Auto open import Cubical.Displayed.Record open import Cubical.Displayed.Universe open import Cubical.Relation.Binary.Base open Iso open BinaryRelation private variable ℓ ℓ' ℓ'' ℓ₀ ℓ₀' ℓ₁ ℓ₁' : Level record IsPoset {A : Type ℓ} (_≤_ : A → A → Type ℓ') : Type (ℓ-max ℓ ℓ') where no-eta-equality constructor isposet field is-set : isSet A is-prop-valued : isPropValued _≤_ is-refl : isRefl _≤_ is-trans : isTrans _≤_ is-antisym : isAntisym _≤_ unquoteDecl IsPosetIsoΣ = declareRecordIsoΣ IsPosetIsoΣ (quote IsPoset) record PosetStr (ℓ' : Level) (A : Type ℓ) : Type (ℓ-max ℓ (ℓ-suc ℓ')) where constructor posetstr field _≤_ : A → A → Type ℓ' isPoset : IsPoset _≤_ infixl 7 _≤_ open IsPoset isPoset public Poset : ∀ ℓ ℓ' → Type (ℓ-max (ℓ-suc ℓ) (ℓ-suc ℓ')) Poset ℓ ℓ' = TypeWithStr ℓ (PosetStr ℓ') poset : (A : Type ℓ) (_≤_ : A → A → Type ℓ') (h : IsPoset _≤_) → Poset ℓ ℓ' poset A _≤_ h = A , posetstr _≤_ h record IsPosetEquiv {A : Type ℓ₀} {B : Type ℓ₁} (M : PosetStr ℓ₀' A) (e : A ≃ B) (N : PosetStr ℓ₁' B) : Type (ℓ-max (ℓ-max ℓ₀ ℓ₀') ℓ₁') where constructor isposetequiv -- Shorter qualified names private module M = PosetStr M module N = PosetStr N field pres≤ : (x y : A) → x M.≤ y ≃ equivFun e x N.≤ equivFun e y PosetEquiv : (M : Poset ℓ₀ ℓ₀') (M : Poset ℓ₁ ℓ₁') → Type (ℓ-max (ℓ-max ℓ₀ ℓ₀') (ℓ-max ℓ₁ ℓ₁')) PosetEquiv M N = Σ[ e ∈ ⟨ M ⟩ ≃ ⟨ N ⟩ ] IsPosetEquiv (M .snd) e (N .snd) isPropIsPoset : {A : Type ℓ} (_≤_ : A → A → Type ℓ') → isProp (IsPoset _≤_) isPropIsPoset _≤_ = isOfHLevelRetractFromIso 1 IsPosetIsoΣ (isPropΣ isPropIsSet λ isSetA → isPropΣ (isPropΠ2 (λ _ _ → isPropIsProp)) λ isPropValued≤ → isProp×2 (isPropΠ (λ _ → isPropValued≤ _ _)) (isPropΠ5 λ _ _ _ _ _ → isPropValued≤ _ _) (isPropΠ4 λ _ _ _ _ → isSetA _ _)) 𝒮ᴰ-Poset : DUARel (𝒮-Univ ℓ) (PosetStr ℓ') (ℓ-max ℓ ℓ') 𝒮ᴰ-Poset = 𝒮ᴰ-Record (𝒮-Univ _) IsPosetEquiv (fields: data[ _≤_ ∣ autoDUARel _ _ ∣ pres≤ ] prop[ isPoset ∣ (λ _ _ → isPropIsPoset _) ]) where open PosetStr open IsPoset open IsPosetEquiv PosetPath : (M N : Poset ℓ ℓ') → PosetEquiv M N ≃ (M ≡ N) PosetPath = ∫ 𝒮ᴰ-Poset .UARel.ua -- an easier way of establishing an equivalence of posets module _ {P : Poset ℓ₀ ℓ₀'} {S : Poset ℓ₁ ℓ₁'} (e : ⟨ P ⟩ ≃ ⟨ S ⟩) where private module P = PosetStr (P .snd) module S = PosetStr (S .snd) module _ (isMon : ∀ x y → x P.≤ y → equivFun e x S.≤ equivFun e y) (isMonInv : ∀ x y → x S.≤ y → invEq e x P.≤ invEq e y) where open IsPosetEquiv open IsPoset makeIsPosetEquiv : IsPosetEquiv (P .snd) e (S .snd) pres≤ makeIsPosetEquiv x y = propBiimpl→Equiv (P.isPoset .is-prop-valued _ _) (S.isPoset .is-prop-valued _ _) (isMon _ _) (isMonInv' _ _) where isMonInv' : ∀ x y → equivFun e x S.≤ equivFun e y → x P.≤ y isMonInv' x y ex≤ey = transport (λ i → retEq e x i P.≤ retEq e y i) (isMonInv _ _ ex≤ey) module PosetReasoning (P' : Poset ℓ ℓ') where private P = fst P' open PosetStr (snd P') open IsPoset _≤⟨_⟩_ : (x : P) {y z : P} → x ≤ y → y ≤ z → x ≤ z x ≤⟨ p ⟩ q = isPoset .is-trans x _ _ p q _◾ : (x : P) → x ≤ x x ◾ = isPoset .is-refl x infixr 0 _≤⟨_⟩_ infix 1 _◾
{ "alphanum_fraction": 0.6157476403, "avg_line_length": 28.964028777, "ext": "agda", "hexsha": "57d7560484954e54589645ab285bd9fef9e68aa6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Seanpm2001-web/cubical", "max_forks_repo_path": "Cubical/Relation/Binary/Poset.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Seanpm2001-web/cubical", "max_issues_repo_path": "Cubical/Relation/Binary/Poset.agda", "max_line_length": 95, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "FernandoLarrain/cubical", "max_stars_repo_path": "Cubical/Relation/Binary/Poset.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-05T00:28:39.000Z", "max_stars_repo_stars_event_min_datetime": "2022-03-05T00:28:39.000Z", "num_tokens": 1617, "size": 4026 }
module Common where data PSet (A : Set) : Set where ⦃⦄ : PSet A _::_ : A -> PSet A -> PSet A data Pair (A : Set) : Set where <_,_> : A -> A -> Pair A data Bool : Set where true : Bool false : Bool neg : Bool -> Bool neg true = false neg false = true _&&_ : Bool -> Bool -> Bool true && true = true _ && _ = false _||_ : Bool -> Bool -> Bool false || false = false _ || _ = true -- data _≡_ {a} {A : Set a} (x : A) : A → Set a where -- instance refl : x ≡ x -- data _≡_ {a} {A : Set a} : A → A → Set where -- refl : (a : A) → a ≡ a -- sym : ∀ x y → x ≡ y → y ≡ x -- sym .a .a (refl a) = refl a -- isEq : ∀ x y -> x ≡ y -> Bool -- isEq .a .a (refl a) = true record Eq {a} (A : Set a) : Set a where field _==_ : A → A → Bool open Eq {{...}} public instance eqPair : {A : Set} {{_ : Eq A}} → Eq (Pair A) _==_ {{eqPair}} < x₁ , x₂ > < y₁ , y₂ > = (x₁ == y₁) && (x₂ == y₂)
{ "alphanum_fraction": 0.4872646733, "avg_line_length": 20.0666666667, "ext": "agda", "hexsha": "5b13d291b44bc37ba05e498a078b0b2a435fd74c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9f8bbff7248dbeb54919e03957daf9b35ec1ac23", "max_forks_repo_licenses": [ "Artistic-2.0" ], "max_forks_repo_name": "daherb/Agda-Montague", "max_forks_repo_path": "Common.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9f8bbff7248dbeb54919e03957daf9b35ec1ac23", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Artistic-2.0" ], "max_issues_repo_name": "daherb/Agda-Montague", "max_issues_repo_path": "Common.agda", "max_line_length": 68, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9f8bbff7248dbeb54919e03957daf9b35ec1ac23", "max_stars_repo_licenses": [ "Artistic-2.0" ], "max_stars_repo_name": "daherb/Agda-Montague", "max_stars_repo_path": "Common.agda", "max_stars_repo_stars_event_max_datetime": "2020-12-18T11:56:24.000Z", "max_stars_repo_stars_event_min_datetime": "2020-12-18T11:56:24.000Z", "num_tokens": 377, "size": 903 }
module Issue373 where data Nat : Set where zero : Nat suc : (n : Nat) → Nat {-# BUILTIN NATURAL Nat #-} {-# FOREIGN GHC data Nat = Zero | Suc Nat #-} {-# COMPILE GHC Nat = data Nat (Zero | Suc) #-} -- should fail when compiling
{ "alphanum_fraction": 0.6144067797, "avg_line_length": 21.4545454545, "ext": "agda", "hexsha": "5055488a510cda76c23416681e539a520e766b96", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue373.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue373.agda", "max_line_length": 77, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue373.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 67, "size": 236 }
{-# OPTIONS --safe #-} module Cubical.Data.Fin.Recursive where open import Cubical.Data.Fin.Recursive.Base public open import Cubical.Data.Fin.Recursive.Properties public
{ "alphanum_fraction": 0.7919075145, "avg_line_length": 24.7142857143, "ext": "agda", "hexsha": "bbba831b29e491ee6a59f2c6f96313a2c112fa59", "lang": "Agda", "max_forks_count": 134, "max_forks_repo_forks_event_max_datetime": "2022-03-23T16:22:13.000Z", "max_forks_repo_forks_event_min_datetime": "2018-11-16T06:11:03.000Z", "max_forks_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "marcinjangrzybowski/cubical", "max_forks_repo_path": "Cubical/Data/Fin/Recursive.agda", "max_issues_count": 584, "max_issues_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_issues_repo_issues_event_max_datetime": "2022-03-30T12:09:17.000Z", "max_issues_repo_issues_event_min_datetime": "2018-10-15T09:49:02.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "marcinjangrzybowski/cubical", "max_issues_repo_path": "Cubical/Data/Fin/Recursive.agda", "max_line_length": 56, "max_stars_count": 301, "max_stars_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "marcinjangrzybowski/cubical", "max_stars_repo_path": "Cubical/Data/Fin/Recursive.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-24T02:10:47.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-17T18:00:24.000Z", "num_tokens": 39, "size": 173 }
module Issue591 where import Issue591.M
{ "alphanum_fraction": 0.8292682927, "avg_line_length": 10.25, "ext": "agda", "hexsha": "6d3d64f91563751ff72a33a644cb24eb19778ee4", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue591.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue591.agda", "max_line_length": 21, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue591.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 10, "size": 41 }
------------------------------------------------------------------------ -- The Agda standard library -- -- A categorical view of List ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Categorical where open import Category.Functor open import Category.Applicative open import Category.Monad open import Data.Bool.Base using (false; true) open import Data.List open import Data.List.Properties open import Function open import Relation.Binary.PropositionalEquality as P using (_≡_; _≢_; _≗_; refl) open P.≡-Reasoning ------------------------------------------------------------------------ -- List applicative functor functor : ∀ {ℓ} → RawFunctor {ℓ} List functor = record { _<$>_ = map } applicative : ∀ {ℓ} → RawApplicative {ℓ} List applicative = record { pure = [_] ; _⊛_ = λ fs as → concatMap (λ f → map f as) fs } applicativeZero : ∀ {ℓ} → RawApplicativeZero {ℓ} List applicativeZero = record { applicative = applicative ; ∅ = [] } alternative : ∀ {ℓ} → RawAlternative {ℓ} List alternative = record { applicativeZero = applicativeZero ; _∣_ = _++_ } ------------------------------------------------------------------------ -- List monad monad : ∀ {ℓ} → RawMonad {ℓ} List monad = record { return = [_] ; _>>=_ = flip concatMap } monadZero : ∀ {ℓ} → RawMonadZero {ℓ} List monadZero = record { monad = monad ; applicativeZero = applicativeZero } monadPlus : ∀ {ℓ} → RawMonadPlus {ℓ} List monadPlus = record { monad = monad ; alternative = alternative } ------------------------------------------------------------------------ -- Get access to other monadic functions module _ {f F} (App : RawApplicative {f} F) where open RawApplicative App sequenceA : ∀ {A} → List (F A) → F (List A) sequenceA [] = pure [] sequenceA (x ∷ xs) = _∷_ <$> x ⊛ sequenceA xs mapA : ∀ {a} {A : Set a} {B} → (A → F B) → List A → F (List B) mapA f = sequenceA ∘ map f forA : ∀ {a} {A : Set a} {B} → List A → (A → F B) → F (List B) forA = flip mapA module _ {m M} (Mon : RawMonad {m} M) where private App = RawMonad.rawIApplicative Mon sequenceM = sequenceA App mapM = mapA App forM = forA App ------------------------------------------------------------------------ -- List monad transformer monadT : ∀ {ℓ} → RawMonadT {ℓ} (_∘′ List) monadT M = record { return = pure ∘′ [_] ; _>>=_ = λ mas f → mas >>= λ as → concat <$> mapM M f as } where open RawMonad M ------------------------------------------------------------------------ -- The list monad. private open module LMP {ℓ} = RawMonadPlus (monadPlus {ℓ = ℓ}) module MonadProperties where left-identity : ∀ {ℓ} {A B : Set ℓ} (x : A) (f : A → List B) → (return x >>= f) ≡ f x left-identity x f = ++-identityʳ (f x) right-identity : ∀ {ℓ} {A : Set ℓ} (xs : List A) → (xs >>= return) ≡ xs right-identity [] = refl right-identity (x ∷ xs) = P.cong (x ∷_) (right-identity xs) left-zero : ∀ {ℓ} {A B : Set ℓ} (f : A → List B) → (∅ >>= f) ≡ ∅ left-zero f = refl right-zero : ∀ {ℓ} {A B : Set ℓ} (xs : List A) → (xs >>= const ∅) ≡ ∅ {A = B} right-zero [] = refl right-zero (x ∷ xs) = right-zero xs private not-left-distributive : let xs = true ∷ false ∷ []; f = return; g = return in (xs >>= λ x → f x ∣ g x) ≢ ((xs >>= f) ∣ (xs >>= g)) not-left-distributive () right-distributive : ∀ {ℓ} {A B : Set ℓ} (xs ys : List A) (f : A → List B) → (xs ∣ ys >>= f) ≡ ((xs >>= f) ∣ (ys >>= f)) right-distributive [] ys f = refl right-distributive (x ∷ xs) ys f = begin f x ∣ (xs ∣ ys >>= f) ≡⟨ P.cong (f x ∣_) $ right-distributive xs ys f ⟩ f x ∣ ((xs >>= f) ∣ (ys >>= f)) ≡⟨ P.sym $ ++-assoc (f x) _ _ ⟩ ((f x ∣ (xs >>= f)) ∣ (ys >>= f)) ∎ associative : ∀ {ℓ} {A B C : Set ℓ} (xs : List A) (f : A → List B) (g : B → List C) → (xs >>= λ x → f x >>= g) ≡ (xs >>= f >>= g) associative [] f g = refl associative (x ∷ xs) f g = begin (f x >>= g) ∣ (xs >>= λ x → f x >>= g) ≡⟨ P.cong ((f x >>= g) ∣_) $ associative xs f g ⟩ (f x >>= g) ∣ (xs >>= f >>= g) ≡⟨ P.sym $ right-distributive (f x) (xs >>= f) g ⟩ (f x ∣ (xs >>= f) >>= g) ∎ cong : ∀ {ℓ} {A B : Set ℓ} {xs₁ xs₂} {f₁ f₂ : A → List B} → xs₁ ≡ xs₂ → f₁ ≗ f₂ → (xs₁ >>= f₁) ≡ (xs₂ >>= f₂) cong {xs₁ = xs} refl f₁≗f₂ = P.cong concat (map-cong f₁≗f₂ xs) ------------------------------------------------------------------------ -- The applicative functor derived from the list monad. -- Note that these proofs (almost) show that RawIMonad.rawIApplicative -- is correctly defined. The proofs can be reused if proof components -- are ever added to RawIMonad and RawIApplicative. module Applicative where private module MP = MonadProperties -- A variant of flip map. pam : ∀ {ℓ} {A B : Set ℓ} → List A → (A → B) → List B pam xs f = xs >>= return ∘ f -- ∅ is a left zero for _⊛_. left-zero : ∀ {ℓ} {A B : Set ℓ} (xs : List A) → (∅ ⊛ xs) ≡ ∅ {A = B} left-zero xs = begin ∅ ⊛ xs ≡⟨⟩ (∅ >>= pam xs) ≡⟨ MonadProperties.left-zero (pam xs) ⟩ ∅ ∎ -- ∅ is a right zero for _⊛_. right-zero : ∀ {ℓ} {A B : Set ℓ} (fs : List (A → B)) → (fs ⊛ ∅) ≡ ∅ right-zero {ℓ} fs = begin fs ⊛ ∅ ≡⟨⟩ (fs >>= pam ∅) ≡⟨ (MP.cong (refl {x = fs}) λ f → MP.left-zero (return ∘ f)) ⟩ (fs >>= λ _ → ∅) ≡⟨ MP.right-zero fs ⟩ ∅ ∎ -- _⊛_ distributes over _∣_ from the right. right-distributive : ∀ {ℓ} {A B : Set ℓ} (fs₁ fs₂ : List (A → B)) xs → ((fs₁ ∣ fs₂) ⊛ xs) ≡ (fs₁ ⊛ xs ∣ fs₂ ⊛ xs) right-distributive fs₁ fs₂ xs = begin (fs₁ ∣ fs₂) ⊛ xs ≡⟨⟩ (fs₁ ∣ fs₂ >>= pam xs) ≡⟨ MonadProperties.right-distributive fs₁ fs₂ (pam xs) ⟩ (fs₁ >>= pam xs) ∣ (fs₂ >>= pam xs) ≡⟨⟩ (fs₁ ⊛ xs ∣ fs₂ ⊛ xs) ∎ -- _⊛_ does not distribute over _∣_ from the left. private not-left-distributive : let fs = id ∷ id ∷ []; xs₁ = true ∷ []; xs₂ = true ∷ false ∷ [] in (fs ⊛ (xs₁ ∣ xs₂)) ≢ (fs ⊛ xs₁ ∣ fs ⊛ xs₂) not-left-distributive () -- Applicative functor laws. identity : ∀ {a} {A : Set a} (xs : List A) → (return id ⊛ xs) ≡ xs identity xs = begin return id ⊛ xs ≡⟨⟩ (return id >>= pam xs) ≡⟨ MonadProperties.left-identity id (pam xs) ⟩ (xs >>= return) ≡⟨ MonadProperties.right-identity xs ⟩ xs ∎ private pam-lemma : ∀ {ℓ} {A B C : Set ℓ} (xs : List A) (f : A → B) (fs : B → List C) → (pam xs f >>= fs) ≡ (xs >>= λ x → fs (f x)) pam-lemma xs f fs = begin (pam xs f >>= fs) ≡⟨ P.sym $ MP.associative xs (return ∘ f) fs ⟩ (xs >>= λ x → return (f x) >>= fs) ≡⟨ MP.cong (refl {x = xs}) (λ x → MP.left-identity (f x) fs) ⟩ (xs >>= λ x → fs (f x)) ∎ composition : ∀ {ℓ} {A B C : Set ℓ} (fs : List (B → C)) (gs : List (A → B)) xs → (return _∘′_ ⊛ fs ⊛ gs ⊛ xs) ≡ (fs ⊛ (gs ⊛ xs)) composition {ℓ} fs gs xs = begin return _∘′_ ⊛ fs ⊛ gs ⊛ xs ≡⟨⟩ (return _∘′_ >>= pam fs >>= pam gs >>= pam xs) ≡⟨ MP.cong (MP.cong (MP.left-identity _∘′_ (pam fs)) (λ f → refl {x = pam gs f})) (λ fg → refl {x = pam xs fg}) ⟩ (pam fs _∘′_ >>= pam gs >>= pam xs) ≡⟨ MP.cong (pam-lemma fs _∘′_ (pam gs)) (λ _ → refl) ⟩ ((fs >>= λ f → pam gs (f ∘′_)) >>= pam xs) ≡⟨ P.sym $ MP.associative fs (λ f → pam gs (_∘′_ f)) (pam xs) ⟩ (fs >>= λ f → pam gs (f ∘′_) >>= pam xs) ≡⟨ (MP.cong (refl {x = fs}) λ f → pam-lemma gs (f ∘′_) (pam xs)) ⟩ (fs >>= λ f → gs >>= λ g → pam xs (f ∘′ g)) ≡⟨ (MP.cong (refl {x = fs}) λ f → MP.cong (refl {x = gs}) λ g → P.sym $ pam-lemma xs g (return ∘ f)) ⟩ (fs >>= λ f → gs >>= λ g → pam (pam xs g) f) ≡⟨ (MP.cong (refl {x = fs}) λ f → MP.associative gs (pam xs) (return ∘ f)) ⟩ (fs >>= pam (gs >>= pam xs)) ≡⟨⟩ fs ⊛ (gs ⊛ xs) ∎ homomorphism : ∀ {ℓ} {A B : Set ℓ} (f : A → B) x → (return f ⊛ return x) ≡ return (f x) homomorphism f x = begin return f ⊛ return x ≡⟨⟩ (return f >>= pam (return x)) ≡⟨ MP.left-identity f (pam (return x)) ⟩ pam (return x) f ≡⟨ MP.left-identity x (return ∘ f) ⟩ return (f x) ∎ interchange : ∀ {ℓ} {A B : Set ℓ} (fs : List (A → B)) {x} → (fs ⊛ return x) ≡ (return (λ f → f x) ⊛ fs) interchange fs {x} = begin fs ⊛ return x ≡⟨⟩ (fs >>= pam (return x)) ≡⟨ (MP.cong (refl {x = fs}) λ f → MP.left-identity x (return ∘ f)) ⟩ (fs >>= λ f → return (f x)) ≡⟨⟩ (pam fs (λ f → f x)) ≡⟨ P.sym $ MP.left-identity (λ f → f x) (pam fs) ⟩ (return (λ f → f x) >>= pam fs) ≡⟨⟩ return (λ f → f x) ⊛ fs ∎
{ "alphanum_fraction": 0.4337738009, "avg_line_length": 35.9962546816, "ext": "agda", "hexsha": "725c052ef871fe817781cce083ec0c5b4d167ced", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Categorical.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Categorical.agda", "max_line_length": 115, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Categorical.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3356, "size": 9611 }
{-# OPTIONS --without-K --safe #-} module Categories.Category.Construction.Functors where -- the "Functor Category", often denoted [ C , D ] open import Level open import Data.Product using (_,_; proj₁; uncurry′) open import Categories.Category using (Category; _[_∘_]) open import Categories.Category.Equivalence using (StrongEquivalence) open import Categories.Category.Product using (_※ⁿ_) renaming (Product to _×_) open import Categories.Functor using (Functor; _∘F_) open import Categories.Functor.Bifunctor open import Categories.Functor.Construction.Constant using (constNat) open import Categories.NaturalTransformation using (NaturalTransformation; _∘ᵥ_; _∘ˡ_; _∘ₕ_) renaming (id to idN) open import Categories.NaturalTransformation.Equivalence using (_≃_; ≃-isEquivalence) open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism) import Categories.Morphism.Reasoning as MR private variable o ℓ e o′ ℓ′ e′ : Level C D C₁ C₂ : Category o ℓ e -- The reason the proofs below are so easy is that _∘ᵥ_ 'computes' all the way down into -- expressions in D, from which the properties follow. Functors : Category o ℓ e → Category o′ ℓ′ e′ → Category (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) (o ⊔ ℓ ⊔ ℓ′ ⊔ e′) (o ⊔ e′) Functors C D = record { Obj = Functor C D ; _⇒_ = NaturalTransformation ; _≈_ = _≃_ ; id = idN ; _∘_ = _∘ᵥ_ ; assoc = assoc ; sym-assoc = sym-assoc ; identityˡ = identityˡ ; identityʳ = identityʳ ; identity² = identity² ; equiv = ≃-isEquivalence ; ∘-resp-≈ = λ eq eq′ → ∘-resp-≈ eq eq′ } where module C = Category C module D = Category D open D -- Part of the proof that Cats is a CCC: eval : Bifunctor (Functors C D) C D eval {C = C} {D = D} = record { F₀ = uncurry′ Functor.F₀ ; F₁ = λ where {F , _} {_ , B} (α , f) → let open NaturalTransformation α open Functor F in η B ∘ F₁ f ; identity = λ where {F , _} → elimʳ (Functor.identity F) ; homomorphism = λ where {F , _} {G , B} {_ , C} {α , f} {β , g} → let open NaturalTransformation open Functor in begin (η β C ∘ η α C) ∘ F₁ F (g C.∘ f) ≈⟨ refl ⟩∘⟨ homomorphism F ⟩ (η β C ∘ η α C) ∘ F₁ F g ∘ F₁ F f ≈⟨ assoc ⟩ η β C ∘ η α C ∘ F₁ F g ∘ F₁ F f ≈⟨ refl ⟩∘⟨ pullˡ (commute α g) ⟩ η β C ∘ (F₁ G g ∘ η α B) ∘ F₁ F f ≈⟨ refl ⟩∘⟨ assoc ⟩ η β C ∘ F₁ G g ∘ η α B ∘ F₁ F f ≈˘⟨ assoc ⟩ (η β C ∘ F₁ G g) ∘ η α B ∘ F₁ F f ∎ ; F-resp-≈ = λ where {F , _} (comm , eq) → ∘-resp-≈ comm (Functor.F-resp-≈ F eq) } where module C = Category C module D = Category D open D open MR D open HomReasoning -- Currying induces a functor between functor categories -- another -- part of the proof that Cats is a catesian closed (bi)category. curry : Functor (Functors (C₁ × C₂) D) (Functors C₁ (Functors C₂ D)) curry {C₁ = C₁} {C₂ = C₂} {D = D} = record { F₀ = curry₀ ; F₁ = curry₁ ; identity = Equiv.refl D ; homomorphism = Equiv.refl D ; F-resp-≈ = λ F≈G {x₁} {x₂} → F≈G {x₁ , x₂} } where open Category curry₀ : Bifunctor C₁ C₂ D → Functor C₁ (Functors C₂ D) curry₀ F = record { F₀ = λ c → appˡ F c ; F₁ = λ f → F ∘ˡ (constNat f ※ⁿ idN) ; identity = identity ; homomorphism = λ {_} {_} {_} {f} {g} → begin F₁ (C₁ [ g ∘ f ] , id C₂) ≈˘⟨ F-resp-≈ (Equiv.refl C₁ , identityˡ C₂) ⟩ F₁ (C₁ [ g ∘ f ] , C₂ [ id C₂ ∘ id C₂ ]) ≈⟨ homomorphism ⟩ D [ F₁ (g , id C₂) ∘ F₁ (f , id C₂) ] ∎ ; F-resp-≈ = λ f≈g → F-resp-≈ (f≈g , Equiv.refl C₂) } where open Functor F open HomReasoning D curry₁ : {F G : Bifunctor C₁ C₂ D} → NaturalTransformation F G → NaturalTransformation (curry₀ F) (curry₀ G) curry₁ α = record { η = λ c → record { η = λ a → η α (c , a) ; commute = λ f → commute α (id C₁ , f) ; sym-commute = λ f → sym-commute α (id C₁ , f) } ; commute = λ f → commute α (f , id C₂) ; sym-commute = λ f → sym-commute α (f , id C₂) } where open NaturalTransformation module curry {o₁ e₁ ℓ₁} {C₁ : Category o₁ e₁ ℓ₁} {o₂ e₂ ℓ₂} {C₂ : Category o₂ e₂ ℓ₂} {o′ e′ ℓ′} {D : Category o′ e′ ℓ′} where open Functor (curry {C₁ = C₁} {C₂ = C₂} {D = D}) public open Category open NaturalIsomorphism -- Currying preserves natural isos. -- This makes |curry.F₀| a map between the hom-setoids of Cats. resp-NI : {F G : Bifunctor C₁ C₂ D} → NaturalIsomorphism F G → NaturalIsomorphism (F₀ F) (F₀ G) resp-NI α = record { F⇒G = F₁ (F⇒G α) ; F⇐G = F₁ (F⇐G α) ; iso = λ x → record { isoˡ = iso.isoˡ α (x , _) ; isoʳ = iso.isoʳ α (x , _) } } -- Godement product ? product : {A B C : Category o ℓ e} → Bifunctor (Functors B C) (Functors A B) (Functors A C) product {A = A} {B = B} {C = C} = record { F₀ = uncurry′ _∘F_ ; F₁ = uncurry′ _∘ₕ_ ; identity = λ {f} → identityʳ ○ identity {D = C} (proj₁ f) ; homomorphism = λ { {_ , F₂} {G₁ , G₂} {H₁ , _} {f₁ , f₂} {g₁ , g₂} {x} → begin F₁ H₁ (η g₂ x B.∘ η f₂ x) ∘ η g₁ (F₀ F₂ x) ∘ η f₁ (F₀ F₂ x) ≈⟨ ∘-resp-≈ˡ (homomorphism H₁) ○ assoc ○ ∘-resp-≈ʳ (⟺ assoc) ⟩ F₁ H₁ (η g₂ x) ∘ (F₁ H₁ (η f₂ x) ∘ η g₁ (F₀ F₂ x)) ∘ η f₁ (F₀ F₂ x) ≈⟨ ⟺ ( refl⟩∘⟨ ( commute g₁ (η f₂ x) ⟩∘⟨refl) ) ⟩ F₁ H₁ (η g₂ x) ∘ (η g₁ (F₀ G₂ x) ∘ F₁ G₁ (η f₂ x)) ∘ η f₁ (F₀ F₂ x) ≈⟨ ∘-resp-≈ʳ assoc ○ ⟺ assoc ⟩ (F₁ H₁ (η g₂ x) ∘ η g₁ (F₀ G₂ x)) ∘ F₁ G₁ (η f₂ x) ∘ η f₁ (F₀ F₂ x) ∎ } ; F-resp-≈ = λ { {_} {g₁ , _} (≈₁ , ≈₂) → ∘-resp-≈ (F-resp-≈ g₁ ≈₂) ≈₁ } } where open Category C open HomReasoning open Functor module B = Category B open NaturalTransformation -- op induces a Functor on the Functors category. -- This is an instance where the proof-irrelevant version is simpler because (op op C) is -- just C. Here we rather need to be more explicit. opF⇒ : {A : Category o ℓ e} {B : Category o′ ℓ′ e′} → Functor (Category.op (Functors (Category.op A) (Category.op B))) (Functors A B) opF⇒ {A = A} {B} = record { F₀ = Functor.op ; F₁ = NaturalTransformation.op ; identity = Equiv.refl ; homomorphism = Equiv.refl ; F-resp-≈ = λ eq → eq } where open Category B opF⇐ : {A : Category o ℓ e} {B : Category o′ ℓ′ e′} → Functor (Functors A B) (Category.op (Functors (Category.op A) (Category.op B))) opF⇐ {A = A} {B} = record { F₀ = Functor.op ; F₁ = NaturalTransformation.op ; identity = Equiv.refl ; homomorphism = Equiv.refl ; F-resp-≈ = λ eq → eq } where open Category B Functorsᵒᵖ-equiv : {A : Category o ℓ e} {B : Category o′ ℓ′ e′} → StrongEquivalence (Category.op (Functors (Category.op A) (Category.op B))) (Functors A B) Functorsᵒᵖ-equiv {B = B} = record { F = opF⇒ ; G = opF⇐ ; weak-inverse = record { F∘G≈id = record { F⇒G = record { η = λ _ → idN ; commute = λ _ → id-comm-sym ; sym-commute = λ _ → id-comm } ; F⇐G = record { η = λ _ → idN ; commute = λ _ → id-comm-sym ; sym-commute = λ _ → id-comm } ; iso = λ _ → record { isoˡ = identityˡ ; isoʳ = identityˡ } } ; G∘F≈id = record { F⇒G = record { η = λ _ → idN ; commute = λ _ → id-comm-sym ; sym-commute = λ _ → id-comm } ; F⇐G = record { η = λ _ → idN ; commute = λ _ → id-comm-sym ; sym-commute = λ _ → id-comm } ; iso = λ _ → record { isoˡ = identityˡ ; isoʳ = identityˡ } } } } where open Category B open HomReasoning open MR B
{ "alphanum_fraction": 0.5355674598, "avg_line_length": 33.7268907563, "ext": "agda", "hexsha": "d0a1950b8a839432ab7b8c50695684f14ab1e2b8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Taneb/agda-categories", "max_forks_repo_path": "Categories/Category/Construction/Functors.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Taneb/agda-categories", "max_issues_repo_path": "Categories/Category/Construction/Functors.agda", "max_line_length": 110, "max_stars_count": null, "max_stars_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Taneb/agda-categories", "max_stars_repo_path": "Categories/Category/Construction/Functors.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3138, "size": 8027 }
{-# OPTIONS --without-K #-} data D : Set → Set₁ where c : (@0 A : Set) → D A
{ "alphanum_fraction": 0.5, "avg_line_length": 16, "ext": "agda", "hexsha": "bc8d305e820cc4b7bebaa912d959f7613d1f642e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "cagix/agda", "max_forks_repo_path": "test/Fail/Issue5434-1.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "cagix/agda", "max_issues_repo_path": "test/Fail/Issue5434-1.agda", "max_line_length": 27, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "cagix/agda", "max_stars_repo_path": "test/Fail/Issue5434-1.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 28, "size": 80 }
-- Laws for weakenings and substitutions. {-# OPTIONS --without-K --safe #-} module Definition.Untyped.Properties where open import Definition.Untyped open import Tools.Nat open import Tools.List open import Tools.PropositionalEquality hiding (subst) -- Weakening properties -- Two weakenings ρ and ρ′ are extensionally equal if they agree on -- all arguments when interpreted as functions mapping variables to -- variables. Formally, they are considered equal iff -- -- (∀ x → wkVar ρ x ≡ wkVar ρ′ x) -- -- Intensional (propositional) equality would be too fine. For -- instance, -- -- lift id : Γ∙A ≤ Γ∙A -- -- is extensionally equal to -- -- id : Γ∙A ≤ Γ∙A -- -- but syntactically different. -- "lift" preserves equality of weakenings. Or: -- If two weakenings are equal under wkVar, then they are equal when lifted. wkVar-lift : ∀ {ρ ρ′} → (∀ x → wkVar ρ x ≡ wkVar ρ′ x) → (∀ x → wkVar (lift ρ) x ≡ wkVar (lift ρ′) x) wkVar-lift eq 0 = refl wkVar-lift eq (1+ x) = cong 1+ (eq x) wkVar-lifts : ∀ {ρ ρ′} → (∀ x → wkVar ρ x ≡ wkVar ρ′ x) → (∀ n x → wkVar (repeat lift ρ n) x ≡ wkVar (repeat lift ρ′ n) x) wkVar-lifts eq 0 x = eq x wkVar-lifts eq (1+ n) x = wkVar-lift (wkVar-lifts eq n) x -- Extensionally equal weakenings, if applied to a term, -- yield the same weakened term. Or: -- If two weakenings are equal under wkVar, then they are equal under wk. mutual wkVar-to-wk : ∀ {ρ ρ′} → (∀ x → wkVar ρ x ≡ wkVar ρ′ x) → ∀ t → wk ρ t ≡ wk ρ′ t wkVar-to-wk eq (var x) = cong var (eq x) wkVar-to-wk eq (gen x c) = cong (gen x) (wkVar-to-wkGen eq c) wkVar-to-wkGen : ∀ {ρ ρ′} → (∀ x → wkVar ρ x ≡ wkVar ρ′ x) → ∀ t → wkGen ρ t ≡ wkGen ρ′ t wkVar-to-wkGen eq [] = refl wkVar-to-wkGen eq (⟦ l , t ⟧ ∷ g) = cong₂ _∷_ (cong (⟦_,_⟧ l) (wkVar-to-wk (wkVar-lifts eq l) t)) (wkVar-to-wkGen eq g) -- lift id is extensionally equal to id. wkVar-lift-id : (x : Nat) → wkVar (lift id) x ≡ wkVar id x wkVar-lift-id 0 = refl wkVar-lift-id (1+ x) = refl wkVar-lifts-id : (n x : Nat) → wkVar (repeat lift id n) x ≡ wkVar id x wkVar-lifts-id 0 x = refl wkVar-lifts-id (1+ n) 0 = refl wkVar-lifts-id (1+ n) (1+ x) = cong 1+ (wkVar-lifts-id n x) -- id is the identity renaming. wkVar-id : (x : Nat) → wkVar id x ≡ x wkVar-id x = refl mutual wk-id : (t : Term) → wk id t ≡ t wk-id (var x) = refl wk-id (gen x c) = cong (gen x) (wkGen-id c) wkGen-id : ∀ x → wkGen id x ≡ x wkGen-id [] = refl wkGen-id (⟦ l , t ⟧ ∷ g) = cong₂ _∷_ (cong (⟦_,_⟧ l) (trans (wkVar-to-wk (wkVar-lifts-id l) t) (wk-id t))) (wkGen-id g) -- lift id is also the identity renaming. wk-lift-id : (t : Term) → wk (lift id) t ≡ t wk-lift-id t = trans (wkVar-to-wk wkVar-lift-id t) (wk-id t) -- The composition of weakenings is correct... -- -- ...as action on variables. wkVar-comp : ∀ ρ ρ′ x → wkVar ρ (wkVar ρ′ x) ≡ wkVar (ρ • ρ′) x wkVar-comp id ρ′ x = refl wkVar-comp (step ρ) ρ′ x = cong 1+ (wkVar-comp ρ ρ′ x) wkVar-comp (lift ρ) id x = refl wkVar-comp (lift ρ) (step ρ′) x = cong 1+ (wkVar-comp ρ ρ′ x) wkVar-comp (lift ρ) (lift ρ′) 0 = refl wkVar-comp (lift ρ) (lift ρ′) (1+ x) = cong 1+ (wkVar-comp ρ ρ′ x) wkVar-comps : ∀ n ρ ρ′ x → wkVar (repeat lift ρ n • repeat lift ρ′ n) x ≡ wkVar (repeat lift (ρ • ρ′) n) x wkVar-comps 0 ρ ρ′ x = refl wkVar-comps (1+ n) ρ ρ′ 0 = refl wkVar-comps (1+ n) ρ ρ′ (1+ x) = cong 1+ (wkVar-comps n ρ ρ′ x) -- ... as action on terms. mutual wk-comp : ∀ ρ ρ′ t → wk ρ (wk ρ′ t) ≡ wk (ρ • ρ′) t wk-comp ρ ρ′ (var x) = cong var (wkVar-comp ρ ρ′ x) wk-comp ρ ρ′ (gen x c) = cong (gen x) (wkGen-comp ρ ρ′ c) wkGen-comp : ∀ ρ ρ′ g → wkGen ρ (wkGen ρ′ g) ≡ wkGen (ρ • ρ′) g wkGen-comp ρ ρ′ [] = refl wkGen-comp ρ ρ′ (⟦ l , t ⟧ ∷ g) = cong₂ _∷_ (cong (⟦_,_⟧ l) (trans (wk-comp (repeat lift ρ l) (repeat lift ρ′ l) t) (wkVar-to-wk (wkVar-comps l ρ ρ′) t))) (wkGen-comp ρ ρ′ g) -- The following lemmata are variations on the equality -- -- wk1 ∘ ρ = lift ρ ∘ wk1. -- -- Typing: Γ∙A ≤ Γ ≤ Δ <==> Γ∙A ≤ Δ∙A ≤ Δ. lift-step-comp : (ρ : Wk) → step id • ρ ≡ lift ρ • step id lift-step-comp id = refl lift-step-comp (step ρ) = cong step (lift-step-comp ρ) lift-step-comp (lift ρ) = refl wk1-wk : ∀ ρ t → wk1 (wk ρ t) ≡ wk (step ρ) t wk1-wk ρ t = wk-comp (step id) ρ t lift-wk1 : ∀ ρ t → wk (lift ρ) (wk1 t) ≡ wk (step ρ) t lift-wk1 pr A = trans (wk-comp (lift pr) (step id) A) (sym (cong (λ x → wk x A) (lift-step-comp pr))) wk1-wk≡lift-wk1 : ∀ ρ t → wk1 (wk ρ t) ≡ wk (lift ρ) (wk1 t) wk1-wk≡lift-wk1 ρ t = trans (wk1-wk ρ t) (sym (lift-wk1 ρ t)) -- Substitution properties. -- Two substitutions σ and σ′ are equal if they are pointwise equal, -- i.e., agree on all variables. -- -- ∀ x → σ x ≡ σ′ x -- If σ = σ′ then lift σ = lift σ′. substVar-lift : ∀ {σ σ′} → (∀ x → σ x ≡ σ′ x) → ∀ x → liftSubst σ x ≡ liftSubst σ′ x substVar-lift eq 0 = refl substVar-lift eq (1+ x) = cong wk1 (eq x) substVar-lifts : ∀ {σ σ′} → (∀ x → σ x ≡ σ′ x) → ∀ n x → repeat liftSubst σ n x ≡ repeat liftSubst σ′ n x substVar-lifts eq 0 x = eq x substVar-lifts eq (1+ n) 0 = refl substVar-lifts eq (1+ n) (1+ x) = cong wk1 (substVar-lifts eq n x) -- If σ = σ′ then subst σ t = subst σ′ t. mutual substVar-to-subst : ∀ {σ σ′} → ((x : Nat) → σ x ≡ σ′ x) → (t : Term) → subst σ t ≡ subst σ′ t substVar-to-subst eq (var x) = eq x substVar-to-subst eq (gen x c) = cong (gen x) (substVar-to-substGen eq c) substVar-to-substGen : ∀ {σ σ′} → ((x : Nat) → σ x ≡ σ′ x) → ∀ g → substGen σ g ≡ substGen σ′ g substVar-to-substGen eq [] = refl substVar-to-substGen eq (⟦ l , t ⟧ ∷ g) = cong₂ _∷_ (cong (⟦_,_⟧ l) (substVar-to-subst (substVar-lifts eq l) t)) (substVar-to-substGen eq g) -- lift id = id (as substitutions) subst-lift-id : (x : Nat) → (liftSubst idSubst) x ≡ idSubst x subst-lift-id 0 = refl subst-lift-id (1+ x) = refl subst-lifts-id : (n x : Nat) → (repeat liftSubst idSubst n) x ≡ idSubst x subst-lifts-id 0 x = refl subst-lifts-id (1+ n) 0 = refl subst-lifts-id (1+ n) (1+ x) = cong wk1 (subst-lifts-id n x) -- Identity substitution. mutual subst-id : (t : Term) → subst idSubst t ≡ t subst-id (var x) = refl subst-id (gen x c) = cong (gen x) (substGen-id c) substGen-id : ∀ g → substGen idSubst g ≡ g substGen-id [] = refl substGen-id (⟦ l , t ⟧ ∷ g) = cong₂ _∷_ (cong (⟦_,_⟧ l) (trans (substVar-to-subst (subst-lifts-id l) t) (subst-id t))) (substGen-id g) -- Correctness of composition of weakening and substitution. -- Composition of liftings is lifting of the composition. -- lift ρ •ₛ lift σ = lift (ρ •ₛ σ) subst-lift-•ₛ : ∀ {ρ σ} t → subst (lift ρ •ₛ liftSubst σ) t ≡ subst (liftSubst (ρ •ₛ σ)) t subst-lift-•ₛ = substVar-to-subst (λ { 0 → refl ; (1+ x) → sym (wk1-wk≡lift-wk1 _ _)}) helper1 : ∀ {ρ σ} (n x : Nat) → (lift (repeat lift ρ n) •ₛ liftSubst (repeat liftSubst σ n)) x ≡ liftSubst (repeat liftSubst (ρ •ₛ σ) n) x helper1 0 0 = refl helper1 0 (1+ x) = sym (wk1-wk≡lift-wk1 _ _) helper1 (1+ n) 0 = refl helper1 (1+ n) (1+ x) = trans (sym (wk1-wk≡lift-wk1 _ _)) (cong wk1 (helper1 n x)) subst-lifts-•ₛ : ∀ {ρ σ} n t → subst (repeat lift ρ n •ₛ repeat liftSubst σ n) t ≡ subst (repeat liftSubst (ρ •ₛ σ) n) t subst-lifts-•ₛ 0 t = refl subst-lifts-•ₛ (1+ n) t = substVar-to-subst (helper1 n) t -- lift σ ₛ• lift ρ = lift (σ ₛ• ρ) subst-lift-ₛ• : ∀ {ρ σ} t → subst (liftSubst σ ₛ• lift ρ) t ≡ subst (liftSubst (σ ₛ• ρ)) t subst-lift-ₛ• = substVar-to-subst (λ { 0 → refl ; (1+ x) → refl}) helper2 : ∀ {ρ σ} (n x : Nat) → liftSubst (repeat liftSubst σ n) (wkVar (lift (repeat lift ρ n)) x) ≡ liftSubst (repeat liftSubst (λ x₁ → σ (wkVar ρ x₁)) n) x helper2 0 0 = refl helper2 0 (1+ x) = refl helper2 (1+ n) 0 = refl helper2 (1+ n) (1+ x) = cong wk1 (helper2 n x) subst-lifts-ₛ• : ∀ {ρ σ} n t → subst (repeat liftSubst σ n ₛ• repeat lift ρ n) t ≡ subst (repeat liftSubst (σ ₛ• ρ) n) t subst-lifts-ₛ• 0 t = refl subst-lifts-ₛ• (1+ n) t = substVar-to-subst (helper2 n) t -- wk ρ ∘ subst σ = subst (ρ •ₛ σ) mutual wk-subst : ∀ {ρ σ} t → wk ρ (subst σ t) ≡ subst (ρ •ₛ σ) t wk-subst (var x) = refl wk-subst (gen x c) = cong (gen x) (wkGen-substGen c) wkGen-substGen : ∀ {ρ σ} t → wkGen ρ (substGen σ t) ≡ substGen (ρ •ₛ σ) t wkGen-substGen [] = refl wkGen-substGen (⟦ l , t ⟧ ∷ c) = cong₂ _∷_ (cong (⟦_,_⟧ l) (trans (wk-subst t) (subst-lifts-•ₛ l t))) (wkGen-substGen c) -- subst σ ∘ wk ρ = subst (σ •ₛ ρ) mutual subst-wk : ∀ {ρ σ} t → subst σ (wk ρ t) ≡ subst (σ ₛ• ρ) t subst-wk (var x) = refl subst-wk (gen x c) = cong (gen x) (substGen-wkGen c) substGen-wkGen : ∀ {ρ σ} t → substGen σ (wkGen ρ t) ≡ substGen (σ ₛ• ρ) t substGen-wkGen [] = refl substGen-wkGen (⟦ l , t ⟧ ∷ c) = cong₂ _∷_ (cong (⟦_,_⟧ l) (trans (subst-wk t) (subst-lifts-ₛ• l t))) (substGen-wkGen c) -- Composition of liftings is lifting of the composition. wk-subst-lift : ∀ {ρ σ} G → wk (lift ρ) (subst (liftSubst σ) G) ≡ subst (liftSubst (ρ •ₛ σ)) G wk-subst-lift G = trans (wk-subst G) (subst-lift-•ₛ G) -- Renaming with ρ is the same as substituting with ρ turned into a substitution. wk≡subst : ∀ ρ t → wk ρ t ≡ subst (toSubst ρ) t wk≡subst ρ t = trans (cong (wk ρ) (sym (subst-id t))) (wk-subst t) -- Composition of substitutions. -- Composition of liftings is lifting of the composition. substCompLift : ∀ {σ σ′} x → (liftSubst σ ₛ•ₛ liftSubst σ′) x ≡ (liftSubst (σ ₛ•ₛ σ′)) x substCompLift 0 = refl substCompLift {σ} {σ′} (1+ x) = trans (subst-wk (σ′ x)) (sym (wk-subst (σ′ x))) substCompLifts : ∀ {σ σ′} n x → (repeat liftSubst σ n ₛ•ₛ repeat liftSubst σ′ n) x ≡ (repeat liftSubst (σ ₛ•ₛ σ′) n) x substCompLifts 0 x = refl substCompLifts (1+ n) 0 = refl substCompLifts {σ} {σ′} (1+ n) (1+ x) = trans (substCompLift {repeat liftSubst σ n} {repeat liftSubst σ′ n} (1+ x)) (cong wk1 (substCompLifts n x)) -- Soundness of the composition of substitutions. mutual substCompEq : ∀ {σ σ′} (t : Term) → subst σ (subst σ′ t) ≡ subst (σ ₛ•ₛ σ′) t substCompEq (var x) = refl substCompEq (gen x c) = cong (gen x) (substGenCompEq c) substGenCompEq : ∀ {σ σ′} t → substGen σ (substGen σ′ t) ≡ substGen (σ ₛ•ₛ σ′) t substGenCompEq [] = refl substGenCompEq (⟦ l , t ⟧ ∷ c) = cong₂ _∷_ (cong (⟦_,_⟧ l) (trans (substCompEq t) (substVar-to-subst (substCompLifts l) t))) (substGenCompEq c) -- Weakening single substitutions. -- Pulling apart a weakening composition in specific context _[a]. wk-comp-subst : ∀ {a} ρ ρ′ G → wk (lift (ρ • ρ′)) G [ a ] ≡ wk (lift ρ) (wk (lift ρ′) G) [ a ] wk-comp-subst {a} ρ ρ′ G = cong (λ x → x [ a ]) (sym (wk-comp (lift ρ) (lift ρ′) G)) -- Pushing a weakening into a single substitution. -- ρ (t[a]) = ((lift ρ) t)[ρ a] wk-β : ∀ {ρ a} t → wk ρ (t [ a ]) ≡ wk (lift ρ) t [ wk ρ a ] wk-β t = trans (wk-subst t) (sym (trans (subst-wk t) (substVar-to-subst (λ { 0 → refl ; (1+ x) → refl}) t))) -- Pushing a weakening into a single shifting substitution. -- If ρ′ = lift ρ then ρ′(t[a]↑) = ρ′(t) [ρ′(a)]↑ wk-β↑ : ∀ {ρ a} t → wk (lift ρ) (t [ a ]↑) ≡ wk (lift ρ) t [ wk (lift ρ) a ]↑ wk-β↑ t = trans (wk-subst t) (sym (trans (subst-wk t) (substVar-to-subst (λ { 0 → refl ; (1+ x) → refl}) t))) -- A specific equation on weakenings used for the reduction of natrec. wk-β-natrec : ∀ ρ G → Π ℕ ▹ (Π wk (lift ρ) G ▹ wk (lift (lift ρ)) (wk1 (G [ suc (var 0) ]↑))) ≡ Π ℕ ▹ (wk (lift ρ) G ▹▹ wk (lift ρ) G [ suc (var 0) ]↑) wk-β-natrec ρ G = cong₂ Π_▹_ refl (cong₂ Π_▹_ refl (trans (wk-comp (lift (lift ρ)) (step id) (subst (consSubst (wk1Subst var) (suc (var 0))) G)) (trans (wk-subst G) (sym (trans (wk-subst (wk (lift ρ) G)) (trans (subst-wk G) (substVar-to-subst (λ { 0 → refl ; (1+ x) → refl}) G))))))) -- Composing a singleton substitution and a lifted substitution. -- sg u ∘ lift σ = cons id u ∘ lift σ = cons σ u substVarSingletonComp : ∀ {u σ} (x : Nat) → (sgSubst u ₛ•ₛ liftSubst σ) x ≡ (consSubst σ u) x substVarSingletonComp 0 = refl substVarSingletonComp {σ = σ} (1+ x) = trans (subst-wk (σ x)) (subst-id (σ x)) -- The same again, as action on a term t. substSingletonComp : ∀ {a σ} t → subst (sgSubst a ₛ•ₛ liftSubst σ) t ≡ subst (consSubst σ a) t substSingletonComp = substVar-to-subst substVarSingletonComp -- A single substitution after a lifted substitution. -- ((lift σ) G)[t] = (cons σ t)(G) singleSubstComp : ∀ t σ G → (subst (liftSubst σ) G) [ t ] ≡ subst (consSubst σ t) G singleSubstComp t σ G = trans (substCompEq G) (substSingletonComp G) -- A single substitution after a lifted substitution (with weakening). -- ((lift (ρ ∘ σ)) G)[t] = (cons (ρ ∘ σ) t)(G) singleSubstWkComp : ∀ {ρ} t σ G → wk (lift ρ) (subst (liftSubst σ) G) [ t ] ≡ subst (consSubst (ρ •ₛ σ) t) G singleSubstWkComp t σ G = trans (cong (subst (consSubst var t)) (trans (wk-subst G) (subst-lift-•ₛ G))) (trans (substCompEq G) (substSingletonComp G)) -- Pushing a substitution into a single substitution. singleSubstLift : ∀ {σ} G t → subst σ (G [ t ]) ≡ subst (liftSubst σ) G [ subst σ t ] singleSubstLift G t = trans (substCompEq G) (trans (trans (substVar-to-subst (λ { 0 → refl ; (1+ x) → refl}) G) (sym (substSingletonComp G))) (sym (substCompEq G))) -- More specific laws. idWkLiftSubstLemma : ∀ σ G → wk (lift (step id)) (subst (liftSubst σ) G) [ var 0 ] ≡ subst (liftSubst σ) G idWkLiftSubstLemma σ G = trans (singleSubstWkComp (var 0) σ G) (substVar-to-subst (λ { 0 → refl ; (1+ x) → refl}) G) substVarComp↑ : ∀ {t} σ x → (consSubst (wk1Subst idSubst) (subst (liftSubst σ) t) ₛ•ₛ liftSubst σ) x ≡ (liftSubst σ ₛ•ₛ consSubst (wk1Subst idSubst) t) x substVarComp↑ σ 0 = refl substVarComp↑ σ (1+ x) = trans (subst-wk (σ x)) (sym (wk≡subst (step id) (σ x))) singleSubstLift↑ : ∀ σ G t → subst (liftSubst σ) (G [ t ]↑) ≡ subst (liftSubst σ) G [ subst (liftSubst σ) t ]↑ singleSubstLift↑ σ G t = trans (substCompEq G) (sym (trans (substCompEq G) (substVar-to-subst (substVarComp↑ σ) G))) substConsComp : ∀ {σ t G} → subst (consSubst (λ x → σ (1+ x)) (subst (tail σ) t)) G ≡ subst σ (subst (consSubst (λ x → var (1+ x)) (wk1 t)) G) substConsComp {t = t} {G = G} = trans (substVar-to-subst (λ { 0 → sym (subst-wk t) ; (1+ x) → refl }) G) (sym (substCompEq G)) wkSingleSubstId : ∀ F → (wk (lift (step id)) F) [ var 0 ] ≡ F wkSingleSubstId F = trans (subst-wk F) (trans (substVar-to-subst (λ { 0 → refl ; (1+ x) → refl}) F) (subst-id F)) cons-wk-subst : ∀ ρ σ a t → subst (sgSubst a ₛ• lift ρ ₛ•ₛ liftSubst σ) t ≡ subst (consSubst (ρ •ₛ σ) a) t cons-wk-subst ρ σ a = substVar-to-subst (λ { 0 → refl ; (1+ x) → trans (subst-wk (σ x)) (sym (wk≡subst ρ (σ x))) }) natrecSucCaseLemma : ∀ {σ} (x : Nat) → (step id •ₛ consSubst (wk1Subst idSubst) (suc (var 0)) ₛ•ₛ liftSubst σ) x ≡ (liftSubst (liftSubst σ) ₛ• step id ₛ•ₛ consSubst (wk1Subst idSubst) (suc (var 0))) x natrecSucCaseLemma 0 = refl natrecSucCaseLemma {σ} (1+ x) = trans (subst-wk (σ x)) (sym (trans (wk1-wk (step id) _) (wk≡subst (step (step id)) (σ x)))) natrecSucCase : ∀ σ F → Π ℕ ▹ (Π subst (liftSubst σ) F ▹ subst (liftSubst (liftSubst σ)) (wk1 (F [ suc (var 0) ]↑))) ≡ Π ℕ ▹ (subst (liftSubst σ) F ▹▹ subst (liftSubst σ) F [ suc (var 0) ]↑) natrecSucCase σ F = cong₂ Π_▹_ refl (cong₂ Π_▹_ refl (trans (trans (subst-wk (F [ suc (var 0) ]↑)) (substCompEq F)) (sym (trans (wk-subst (subst (liftSubst σ) F)) (trans (substCompEq F) (substVar-to-subst natrecSucCaseLemma F)))))) natrecIrrelevantSubstLemma : ∀ F z s m σ (x : Nat) → (sgSubst (natrec (subst (liftSubst σ) F) (subst σ z) (subst σ s) m) ₛ•ₛ liftSubst (sgSubst m) ₛ•ₛ liftSubst (liftSubst σ) ₛ• step id ₛ•ₛ consSubst (tail idSubst) (suc (var 0))) x ≡ (consSubst σ (suc m)) x natrecIrrelevantSubstLemma F z s m σ 0 = cong suc (trans (subst-wk m) (subst-id m)) natrecIrrelevantSubstLemma F z s m σ (1+ x) = trans (subst-wk (wk (step id) (σ x))) (trans (subst-wk (σ x)) (subst-id (σ x))) natrecIrrelevantSubst : ∀ F z s m σ → subst (consSubst σ (suc m)) F ≡ subst (liftSubst (sgSubst m)) (subst (liftSubst (liftSubst σ)) (wk1 (F [ suc (var 0) ]↑))) [ natrec (subst (liftSubst σ) F) (subst σ z) (subst σ s) m ] natrecIrrelevantSubst F z s m σ = sym (trans (substCompEq (subst (liftSubst (liftSubst σ)) (wk (step id) (subst (consSubst (tail idSubst) (suc (var 0))) F)))) (trans (substCompEq (wk (step id) (subst (consSubst (tail idSubst) (suc (var 0))) F))) (trans (subst-wk (subst (consSubst (tail idSubst) (suc (var 0))) F)) (trans (substCompEq F) (substVar-to-subst (natrecIrrelevantSubstLemma F z s m σ) F))))) natrecIrrelevantSubstLemma′ : ∀ F z s n (x : Nat) → (sgSubst (natrec F z s n) ₛ•ₛ liftSubst (sgSubst n) ₛ• step id ₛ•ₛ consSubst (tail idSubst) (suc (var 0))) x ≡ (consSubst var (suc n)) x natrecIrrelevantSubstLemma′ F z s n 0 = cong suc (trans (subst-wk n) (subst-id n)) natrecIrrelevantSubstLemma′ F z s n (1+ x) = refl natrecIrrelevantSubst′ : ∀ F z s n → subst (liftSubst (sgSubst n)) (wk1 (F [ suc (var 0) ]↑)) [ natrec F z s n ] ≡ F [ suc n ] natrecIrrelevantSubst′ F z s n = trans (substCompEq (wk (step id) (subst (consSubst (tail idSubst) (suc (var 0))) F))) (trans (subst-wk (subst (consSubst (tail idSubst) (suc (var 0))) F)) (trans (substCompEq F) (substVar-to-subst (natrecIrrelevantSubstLemma′ F z s n) F))) cons0wkLift1-id : ∀ σ G → subst (sgSubst (var 0)) (wk (lift (step id)) (subst (liftSubst σ) G)) ≡ subst (liftSubst σ) G cons0wkLift1-id σ G = trans (subst-wk (subst (liftSubst σ) G)) (trans (substVar-to-subst (λ { 0 → refl ; (1+ x) → refl }) (subst (liftSubst σ) G)) (subst-id (subst (liftSubst σ) G))) substConsId : ∀ {σ t} G → subst (consSubst σ (subst σ t)) G ≡ subst σ (subst (sgSubst t) G) substConsId G = sym (trans (substCompEq G) (substVar-to-subst (λ { 0 → refl ; (1+ x) → refl}) G)) substConsTailId : ∀ {G t σ} → subst (consSubst (tail σ) (subst σ t)) G ≡ subst σ (subst (consSubst (tail idSubst) t) G) substConsTailId {G} {t} {σ} = trans (substVar-to-subst (λ { 0 → refl ; (1+ x) → refl }) G) (sym (substCompEq G)) substConcatSingleton′ : ∀ {a σ} t → subst (σ ₛ•ₛ sgSubst a) t ≡ subst (consSubst σ (subst σ a)) t substConcatSingleton′ t = substVar-to-subst (λ { 0 → refl ; (1+ x) → refl}) t wk1-tailId : ∀ t → wk1 t ≡ subst (tail idSubst) t wk1-tailId t = trans (sym (subst-id (wk1 t))) (subst-wk t)
{ "alphanum_fraction": 0.5594704787, "avg_line_length": 34.7933450088, "ext": "agda", "hexsha": "c7268b46e91fa4db313656f69ddbb7e1352f6d15", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "loic-p/logrel-mltt", "max_forks_repo_path": "Definition/Untyped/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "loic-p/logrel-mltt", "max_issues_repo_path": "Definition/Untyped/Properties.agda", "max_line_length": 90, "max_stars_count": null, "max_stars_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "loic-p/logrel-mltt", "max_stars_repo_path": "Definition/Untyped/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 7861, "size": 19867 }
module index where -- For a brief presentation of every single module, head over to import Everything -- Otherwise, here is an exhaustive, stern list of all the available modules.
{ "alphanum_fraction": 0.7802197802, "avg_line_length": 26, "ext": "agda", "hexsha": "bfbc733c2fe4589c1ad3c83e82bb512bb4995c68", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "travis/index.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "travis/index.agda", "max_line_length": 77, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "travis/index.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 37, "size": 182 }
------------------------------------------------------------------------ -- The Agda standard library -- -- The empty binary relation ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Relation.Binary.Construct.Never where open import Relation.Binary open import Relation.Binary.Construct.Constant open import Data.Empty using (⊥) open import Level using (Lift; lift) ------------------------------------------------------------------------ -- Definition Never : ∀ {a ℓ} {A : Set a} → Rel A ℓ Never = Const (Lift _ ⊥)
{ "alphanum_fraction": 0.4446337308, "avg_line_length": 27.9523809524, "ext": "agda", "hexsha": "17a8689bc5176260648e3cb6ec5044269a62449d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Never.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Never.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Never.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 102, "size": 587 }
module Section6 where open import Section5 public -- 6. Application to terms -- ======================= -- -- In practice we may not want to work with proof trees but rather well-typed terms. As an -- application of the results above we show how to give semantics to a formulation of Martin- -- Löf’s substitution calculus [13, 20] in the simply typed setting. In this calculus we have a -- set of untyped terms, `𝕋`, and we define when a term in `𝕋` is well-typed and when two terms -- of a given type are convertible with each other. -- -- In order to give semantics to untyped terms, we first define an erasure function that -- translates a proof tree `M` to an untyped term, denoted `M ⁻`. The main theorem is then to prove -- that if two proof trees `M, N` erase to the same term, `M ⁻ ≡ N ⁻`, then `M ≅ N`; it follows that -- `M` and `N` have the same semantics. For this we first prove that `nf M ⁻ ≡ nf N ⁻` implies -- `M ≅ N`. We also define a reduction on the untyped terms `Γ ⊢ t₁ ⇓ t₂ ∷ A` that is deterministic -- (i.e., if `Γ ⊢ t ⇓ t₁ ∷ A` and `Γ ⊢ t ⇓ t₂ ∷ A`, then `t₁ ≡ t₂`) such that `Γ ⊢ M ⁻ ⇓ nf M ⁻ ∷ A`. -- We then prove that if a proof tree `M` erases to a well-typed term `t`, then `t ⇓ nf M ⁻`. Now, -- if two proof trees `M` and `N` erase to the same well-typed term `t`, then `t ⇓ nf M ⁻` and -- `t ⇓ nf N ⁻`. Since the reduction is deterministic we have that `nf M ⁻` and `nf N ⁻` are the -- same, and hence `M ≅ N`. The idea of this proof comes from Streicher [19] (chapter IV). -- 6.1. Definition of terms -- ------------------------ -- -- We mutually define the set of terms, `𝕋 : Set`, and substitutions, `𝕊 : Set`. (…) mutual data 𝕋 : Set where ν : Name → 𝕋 ƛ : Name → 𝕋 → 𝕋 _∙_ : 𝕋 → 𝕋 → 𝕋 _▶_ : 𝕋 → 𝕊 → 𝕋 data 𝕊 : Set where [] : 𝕊 [_,_≔_] : 𝕊 → Name → 𝕋 → 𝕊 _●_ : 𝕊 → 𝕊 → 𝕊 -- 6.2. Typing rules -- ----------------- -- -- We give the typing rules for terms and substitutions mutually inductively. (…) mutual infix 3 _⊢_∷_ data _⊢_∷_ : 𝒞 → 𝕋 → 𝒯 → Set where ↑⟨_⟩⊢∷ : ∀ {Γ Δ A t} → Γ ⊇ Δ → Δ ⊢ t ∷ A → Γ ⊢ t ∷ A ν : ∀ {Γ A} → (x : Name) → Γ ∋ x ∷ A → Γ ⊢ ν x ∷ A ƛ : ∀ {Γ A B t} → (x : Name) {{_ : T (fresh x Γ)}} → [ Γ , x ∷ A ] ⊢ t ∷ B → Γ ⊢ ƛ x t ∷ A ⊃ B _∙_ : ∀ {Γ A B t₁ t₂} → Γ ⊢ t₁ ∷ A ⊃ B → Γ ⊢ t₂ ∷ A → Γ ⊢ t₁ ∙ t₂ ∷ B _▶_ : ∀ {Γ Δ A s t} → Δ ⊢ t ∷ A → Γ ⋙ s ∷ Δ → Γ ⊢ t ▶ s ∷ A infix 3 _⋙_∷_ data _⋙_∷_ : 𝒞 → 𝕊 → 𝒞 → Set where ↑⟨_⟩⋙∷ : ∀ {Γ Δ Θ s} → Θ ⊇ Γ → Γ ⋙ s ∷ Δ → Θ ⋙ s ∷ Δ ↓⟨_⟩⋙∷ : ∀ {Γ Δ Θ s} → Δ ⊇ Θ → Γ ⋙ s ∷ Δ → Γ ⋙ s ∷ Θ refl⋙∷ : ∀ {Γ} → Γ ⋙ [] ∷ Γ [_,_≔_] : ∀ {Γ Δ A s t} → Γ ⋙ s ∷ Δ → (x : Name) {{_ : T (fresh x Δ)}} → Γ ⊢ t ∷ A → Γ ⋙ [ s , x ≔ t ] ∷ [ Δ , x ∷ A ] _●_ : ∀ {Γ Δ Θ s₁ s₂} → Δ ⋙ s₂ ∷ Θ → Γ ⋙ s₁ ∷ Δ → Γ ⋙ s₂ ● s₁ ∷ Θ module _ where instance raise⊢∷ : ∀ {A t} → Raiseable (_⊢ t ∷ A) raise⊢∷ = record { ↑⟨_⟩ = ↑⟨_⟩⊢∷ } raise⋙∷ : ∀ {Γ s} → Raiseable (_⋙ s ∷ Γ) raise⋙∷ = record { ↑⟨_⟩ = ↑⟨_⟩⋙∷ } lower⋙∷ : ∀ {Δ s} → Lowerable (Δ ⋙ s ∷_) lower⋙∷ = record { ↓⟨_⟩ = ↓⟨_⟩⋙∷ } -- 6.3. Convertibility of terms -- ---------------------------- -- -- We mutually inductively define when two terms are convertible with each other together -- with the definition of convertibility between substitutions. (…) mutual infix 3 _⊢_≊_∷_ data _⊢_≊_∷_ : 𝒞 → 𝕋 → 𝕋 → 𝒯 → Set where refl≊ : ∀ {Γ A t} → Γ ⊢ t ≊ t ∷ A sym≊ : ∀ {Γ A t t′} → Γ ⊢ t ≊ t′ ∷ A → Γ ⊢ t′ ≊ t ∷ A trans≊ : ∀ {Γ A t t′ t″} → Γ ⊢ t ≊ t′ ∷ A → Γ ⊢ t′ ≊ t″ ∷ A → Γ ⊢ t ≊ t″ ∷ A congƛ≊ : ∀ {Γ A B t t′ x} {{_ : T (fresh x Γ)}} → [ Γ , x ∷ A ] ⊢ t ≊ t′ ∷ B → Γ ⊢ ƛ x t ≊ ƛ x t′ ∷ A ⊃ B cong∙≊ : ∀ {Γ A B t t′ u u′} → Γ ⊢ t ≊ t′ ∷ A ⊃ B → Γ ⊢ u ≊ u′ ∷ A → Γ ⊢ t ∙ u ≊ t′ ∙ u′ ∷ B cong▶≊ : ∀ {Γ Δ A t t′ s s′} → Γ ⊢ t ≊ t′ ∷ A → Δ ⋙ s ≊ₛ s′ ∷ Γ → Γ ⊢ t ▶ s ≊ t′ ▶ s′ ∷ A conv₁≊ : ∀ {Γ A t} → Γ ⊢ t ∷ A → Γ ⊢ t ≊ t ∷ A conv₂≊ : ∀ {Γ Δ A B s t₁ t₂ x} {{_ : T (fresh x Δ)}} → Γ ⋙ s ∷ Δ → [ Δ , x ∷ A ] ⊢ t₁ ∷ B → Γ ⊢ t₂ ∷ A → Γ ⊢ (ƛ x t₁ ▶ s) ∙ t₂ ≊ t₁ ▶ [ s , x ≔ t₂ ] ∷ B conv₃≊ : ∀ {Γ A B t x} {{_ : T (fresh x Γ)}} → Γ ⊢ t ∷ A ⊃ B → Γ ⊢ t ≊ ƛ x (t ∙ ν x) ∷ A ⊃ B conv₄≊ : ∀ {Γ Δ A t₁ t₂} → Γ ⊇ Δ → Δ ⊢ t₁ ≊ t₂ ∷ A → Γ ⊢ t₁ ≊ t₂ ∷ A conv₅≊ : ∀ {Γ Δ A s t x} {{_ : T (fresh x Δ)}} → Γ ⋙ s ∷ Δ → Γ ⊢ t ∷ A → Γ ⊢ ν x ▶ [ s , x ≔ t ] ≊ t ∷ A conv₆≊ : ∀ {Γ A t} → Γ ⊢ t ∷ A → Γ ⊢ t ▶ [] ≊ t ∷ A conv₇≊ : ∀ {Γ Δ A B s t₁ t₂} → Δ ⊢ t₁ ∷ A ⊃ B → Δ ⊢ t₂ ∷ A → Γ ⋙ s ∷ Δ → Γ ⊢ (t₁ ∙ t₂) ▶ s ≊ (t₁ ▶ s) ∙ (t₂ ▶ s) ∷ B conv₈≊ : ∀ {Γ₁ Γ₂ Γ₃ A s₁ s₂ t} → Γ₂ ⋙ s₁ ∷ Γ₃ → Γ₁ ⋙ s₂ ∷ Γ₂ → Γ₃ ⊢ t ∷ A → Γ₁ ⊢ (t ▶ s₁) ▶ s₂ ≊ t ▶ (s₁ ● s₂) ∷ A data _⋙_≊ₛ_∷_ : 𝒞 → 𝕊 → 𝕊 → 𝒞 → Set where refl≊ₛ : ∀ {Γ Δ s} → Δ ⋙ s ≊ₛ s ∷ Γ sym≊ₛ : ∀ {Γ Δ s s′} → Δ ⋙ s ≊ₛ s′ ∷ Γ → Δ ⋙ s′ ≊ₛ s ∷ Γ trans≊ₛ : ∀ {Γ Δ s s′ s″} → Δ ⋙ s ≊ₛ s′ ∷ Γ → Δ ⋙ s′ ≊ₛ s″ ∷ Γ → Δ ⋙ s ≊ₛ s″ ∷ Γ cong≔≊ₛ : ∀ {Γ Δ A s s′ t t′ x} {{_ : T (fresh x Δ)}} → Γ ⋙ s ≊ₛ s′ ∷ Δ → Γ ⊢ t ≊ t′ ∷ A → Γ ⋙ [ s , x ≔ t ] ≊ₛ [ s′ , x ≔ t′ ] ∷ [ Δ , x ∷ A ] cong●≊ₛ : ∀ {Γ Δ Θ s₁ s₁′ s₂ s₂′} → Δ ⋙ s₂ ≊ₛ s₂′ ∷ Θ → Γ ⋙ s₁ ≊ₛ s₁′ ∷ Δ → Γ ⋙ s₂ ● s₁ ≊ₛ s₂′ ● s₁′ ∷ Θ conv₁≊ₛ : ∀ {Γ₁ Γ₂ Δ s₁ s₂} → Γ₁ ⊇ Γ₂ → Γ₂ ⋙ s₁ ≊ₛ s₂ ∷ Δ → Γ₁ ⋙ s₁ ≊ₛ s₂ ∷ Δ conv₂≊ₛ : ∀ {Γ Δ₁ Δ₂ s₁ s₂} → Δ₁ ⊇ Δ₂ → Γ ⋙ s₁ ≊ₛ s₂ ∷ Δ₁ → Γ ⋙ s₁ ≊ₛ s₂ ∷ Δ₂ conv₃≊ₛ : ∀ {Γ Δ s} → Γ ⋙ s ∷ Δ → Γ ⋙ s ● [] ≊ₛ s ∷ Δ conv₄≊ₛ : ∀ {Γ₁ Γ₂ Γ₃ Δ s₁ s₂ s₃} → Γ₁ ⋙ s₃ ∷ Γ₂ → Γ₂ ⋙ s₂ ∷ Γ₃ → Γ₃ ⋙ s₁ ∷ Δ → Γ₃ ⋙ (s₁ ● s₂) ● s₃ ≊ₛ s₁ ● (s₂ ● s₃) ∷ Δ conv₅≊ₛ : ∀ {Γ₁ Γ₂ Δ A s₁ s₂ t x} {{_ : T (fresh x Δ)}} → Γ₁ ⋙ s₂ ∷ Γ₂ → Γ₂ ⋙ s₁ ∷ Δ → Γ₂ ⊢ t ∷ A → Γ₁ ⋙ [ s₁ , x ≔ t ] ● s₂ ≊ₛ [ s₁ ● s₂ , x ≔ t ▶ s₂ ] ∷ [ Δ , x ∷ A ] conv₆≊ₛ : ∀ {Γ s} → Γ ⋙ s ∷ [] → Γ ⋙ s ≊ₛ [] ∷ [] conv₇≊ₛ : ∀ {Γ Δ A s x} {{_ : T (fresh x Δ)}} → Γ ⋙ s ∷ [ Δ , x ∷ A ] → Γ ⋙ s ≊ₛ [ s , x ≔ ν x ▶ s ] ∷ [ Δ , x ∷ A ] conv₈≊ₛ : ∀ {Γ Δ A s t x} {{_ : T (fresh x Δ)}} → Γ ⋙ s ∷ Δ → Δ ⊢ t ∷ A → Γ ⋙ [ s , x ≔ t ] ≊ₛ s ∷ Δ conv₉≊ₛ : ∀ {Γ Δ s} → Γ ⋙ s ∷ Δ → Γ ⋙ [] ● s ≊ₛ s ∷ Δ -- It is straightforward to prove that if two terms (substitutions) are convertible with each -- other, then they are also well-typed. -- TODO: What to do about the above paragraph?
{ "alphanum_fraction": 0.375289155, "avg_line_length": 36.745, "ext": "agda", "hexsha": "2fb28ffbdb36790a362f71cf3256beef70af1922", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7c000654c4f97024d2939c412702f64dc821d4ec", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/coquand", "max_forks_repo_path": "src/Section6.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7c000654c4f97024d2939c412702f64dc821d4ec", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/coquand", "max_issues_repo_path": "src/Section6.agda", "max_line_length": 101, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7c000654c4f97024d2939c412702f64dc821d4ec", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/coquand", "max_stars_repo_path": "src/Section6.agda", "max_stars_repo_stars_event_max_datetime": "2017-09-07T12:44:40.000Z", "max_stars_repo_stars_event_min_datetime": "2017-03-27T01:29:58.000Z", "num_tokens": 3520, "size": 7349 }
{-# OPTIONS --cubical #-} module _ where module _ where import Agda.Primitive open import Agda.Primitive.Cubical public open import Agda.Builtin.Cubical.Path public refl : ∀ {a} {A : Set a} {x : A} → x ≡ x refl {x = x} = \ _ → x testPath : ∀ {A : Set} {b a : A} (let H : b ≡ b; H = _) → ∀ i → H i ≡ b testPath i = refl
{ "alphanum_fraction": 0.5795795796, "avg_line_length": 22.2, "ext": "agda", "hexsha": "56a38e16217f0fd27e51b605c07a87d28b087edf", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue2650.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue2650.agda", "max_line_length": 71, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue2650.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 127, "size": 333 }
{-# OPTIONS --cubical #-} module Type.Cubical where import Lvl open import Type open import Agda.Primitive public using (SSet) open import Agda.Primitive.Cubical public using () renaming (I to Interval) -- _ : SSet(Lvl.𝟎). Inhabitants can be seen as points on a closed unit interval. module Interval where open Agda.Primitive.Cubical public using ( Partial ; -- _ : ∀{ℓ} → Interval → Type{ℓ} → SSet(ℓ) PartialP -- _ : ∀{ℓ} → (i : Interval) → (.(Is-𝟏 i) → Type{ℓ}) → SSet(ℓ) ) renaming ( i0 to 𝟎 ; -- _ : Interval. 0 (the initial point) in the interval. i1 to 𝟏 ; -- _ : Interval. 1 (the terminal point) in the interval. primIMin to min ; -- _ : Interval → Interval → Interval. Chooses the point nearest 𝟎. Also called: _∧_ (from lattice structure). primIMax to max ; -- _ : Interval → Interval → Interval. Chooses the point nearest 𝟏. Also called: _∨_ (from lattice structure). primINeg to flip ; -- _ : Interval → Interval. Flips a point in the interval around the point of symmetry (the middle). Essentially (p ↦ 𝟏 − p). IsOne to Is-𝟏 ; -- _ : Interval → SSet(Lvl.𝟎). The predicate stating that a point is 𝟏. itIsOne to 𝟏-is-𝟏 ; -- _ : Is-𝟏(𝟏). Proof of 𝟏 being 𝟏. primComp to comp ; -- _ : ∀{ℓ : Interval → Lvl.Level} → (P : (i : Interval) → Type{ℓ(i)}) → ∀{i : Interval} → ((j : Interval) → .(Is-𝟏 i) → P(j)) → (P(𝟎) → P(𝟏)) primHComp to hComp ; -- _ : ∀{ℓ}{A : Type{ℓ}}{i : Interval} → (Interval → .(Is-𝟏 i) → A) → (A → A) primTransp to transp -- _ : ∀{ℓ : Interval → Lvl.Level}(A : (i : Interval) → Type{ℓ(i)}) → Interval → A(𝟎)→ A(𝟏). ) -- The distance to the nearest boundary. nearBound : Interval → Interval nearBound x = min x (flip x) -- The distance to the furthest boundary. farBound : Interval → Interval farBound x = max x (flip x) -- Proof of maximum of 𝟏 being 𝟏. maxₗ-is-𝟏 : ∀{x y} → Is-𝟏(x) → Is-𝟏(max x y) maxₗ-is-𝟏 {x}{y} = Agda.Primitive.Cubical.IsOne1 x y -- Proof of maximum of 𝟏 being 𝟏. maxᵣ-is-𝟏 : ∀{x y} → Is-𝟏(y) → Is-𝟏(max x y) maxᵣ-is-𝟏 {x}{y} = Agda.Primitive.Cubical.IsOne2 x y -- The predicate stating that a point is 𝟎. Is-𝟎 : Interval → SSet(Lvl.𝟎) Is-𝟎 i = Is-𝟏(flip i) -- Proof of 𝟎 being 𝟎. 𝟎-is-𝟎 : Is-𝟎(𝟎) 𝟎-is-𝟎 = 𝟏-is-𝟏 -- Proof of minimum of 𝟎 being 𝟎. minₗ-is-𝟎 : ∀{x y} → Is-𝟎(x) → Is-𝟎(min x y) minₗ-is-𝟎 {x}{y} = maxₗ-is-𝟏 {flip x} {flip y} -- Proof of minimum of 𝟎 being 𝟎. minᵣ-is-𝟎 : ∀{x y} → Is-𝟎(y) → Is-𝟎(min x y) minᵣ-is-𝟎 {x}{y} = maxᵣ-is-𝟏 {flip x} {flip y}
{ "alphanum_fraction": 0.5956538611, "avg_line_length": 39.6461538462, "ext": "agda", "hexsha": "73343828fd85fd51d3d988887800e0fb074fa060", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Type/Cubical.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Type/Cubical.agda", "max_line_length": 167, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Type/Cubical.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1079, "size": 2577 }
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Incrementalization as term-to-term transformation (Fig. 4g). ------------------------------------------------------------------------ import Parametric.Syntax.Type as Type import Parametric.Syntax.Term as Term import Parametric.Change.Type as ChangeType module Parametric.Change.Derive {Base : Type.Structure} (Const : Term.Structure Base) (ΔBase : ChangeType.Structure Base) where open Type.Structure Base open Term.Structure Base Const open ChangeType.Structure Base ΔBase -- Extension point: Incrementalization of primitives. Structure : Set Structure = ∀ {τ} → Const τ → Term ∅ (ΔType τ) module Structure (derive-const : Structure) where fit : ∀ {τ Γ} → Term Γ τ → Term (ΔContext Γ) τ fit = weaken Γ≼ΔΓ -- In the paper, we transform "x" to "dx". Here, we work with -- de Bruijn indices, so we have to manipulate the indices to -- account for a bigger context after transformation. deriveVar : ∀ {τ Γ} → Var Γ τ → Var (ΔContext Γ) (ΔType τ) deriveVar this = this deriveVar (that x) = that (that (deriveVar x)) -- We provide: Incrementalization of arbitrary terms. derive : ∀ {τ Γ} → Term Γ τ → Term (ΔContext Γ) (ΔType τ) derive (var x) = var (deriveVar x) derive (app s t) = app (app (derive s) (fit t)) (derive t) derive (abs t) = abs (abs (derive t)) derive {Γ = Γ} (const c) = weaken (∅≼Γ {ΔContext Γ}) (derive-const c)
{ "alphanum_fraction": 0.6202020202, "avg_line_length": 33.75, "ext": "agda", "hexsha": "734759d2f968b4a5979b2afdf98a9a67c83b3c33", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "inc-lc/ilc-agda", "max_forks_repo_path": "Parametric/Change/Derive.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z", "max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "inc-lc/ilc-agda", "max_issues_repo_path": "Parametric/Change/Derive.agda", "max_line_length": 72, "max_stars_count": 10, "max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "inc-lc/ilc-agda", "max_stars_repo_path": "Parametric/Change/Derive.agda", "max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z", "num_tokens": 419, "size": 1485 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Impl.OBM.Rust.RustTypes open import Util.ByteString module LibraBFT.Impl.OBM.ConfigHardCoded where ------------------------------------------------------------------------------ postulate -- TODO-1 ePOCHCHANGE ePOCHCHANGE : ByteString --ePOCHCHANGE = "EPOCHCHANGE" ------------------------------------------------------------------------------ maxPrunedBlocksInMem : Usize maxPrunedBlocksInMem = 10 roundInitialTimeoutMS : U64 roundInitialTimeoutMS = 3000 ------------------------------------------------------------------------------
{ "alphanum_fraction": 0.5594059406, "avg_line_length": 29.9259259259, "ext": "agda", "hexsha": "78ea5ae0fb6f9353ae623965821fa56d9265fb02", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/Impl/OBM/ConfigHardCoded.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/Impl/OBM/ConfigHardCoded.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/Impl/OBM/ConfigHardCoded.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 168, "size": 808 }
{- Auxiliary functions for temporal operators. -} module TemporalOps.Common where open import TemporalOps.Common.Rewriting public open import TemporalOps.Common.Compare public open import TemporalOps.Common.Other public
{ "alphanum_fraction": 0.8378378378, "avg_line_length": 27.75, "ext": "agda", "hexsha": "9e0c8007bc055d6c83a64e074f1db453bcb7c911", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DimaSamoz/temporal-type-systems", "max_forks_repo_path": "src/TemporalOps/Common.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DimaSamoz/temporal-type-systems", "max_issues_repo_path": "src/TemporalOps/Common.agda", "max_line_length": 49, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DimaSamoz/temporal-type-systems", "max_stars_repo_path": "src/TemporalOps/Common.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-04T09:33:48.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-31T20:37:04.000Z", "num_tokens": 46, "size": 222 }
open import Level open import Relation.Binary.PropositionalEquality open import Relation.Binary using (Setoid) import Function.Equality import Relation.Binary.Reasoning.Setoid as SetoidR import Categories.Category import Categories.Functor import Categories.NaturalTransformation import Categories.Category.Instance.Setoids import Categories.Category.Cocartesian import SecondOrder.Arity import SecondOrder.Signature import SecondOrder.Metavariable import SecondOrder.Term import SecondOrder.VRenaming module SecondOrder.MRenaming {ℓ} {𝔸 : SecondOrder.Arity.Arity} (Σ : SecondOrder.Signature.Signature ℓ 𝔸) where open SecondOrder.Signature.Signature Σ open SecondOrder.Metavariable Σ open SecondOrder.Term Σ open SecondOrder.VRenaming Σ -- a metarenaming maps metavariables between contexts in an arity-preserving way _⇒ᵐ_ : ∀ (Θ ψ : MContext) → Set ℓ Θ ⇒ᵐ ψ = ∀ {Δ A} → [ Δ , A ]∈ Θ → [ Δ , A ]∈ ψ infix 4 _⇒ᵐ_ -- equality of metarenamings _≡ᵐ_ : ∀ {Θ ψ} (ι μ : Θ ⇒ᵐ ψ) → Set ℓ _≡ᵐ_ {Θ} ι μ = ∀ {Δ A} (M : [ Δ , A ]∈ Θ) → ι M ≡ μ M infixl 3 _≡ᵐ_ ≡ᵐ-refl : ∀ {Θ ψ} {ι : Θ ⇒ᵐ ψ} → ι ≡ᵐ ι ≡ᵐ-refl = λ M → refl ≡ᵐ-sym : ∀ {Θ ψ} {ι μ : Θ ⇒ᵐ ψ} → ι ≡ᵐ μ → μ ≡ᵐ ι ≡ᵐ-sym eq M = sym (eq M) ≡ᵐ-trans : ∀ {Θ ψ} {ι μ δ : Θ ⇒ᵐ ψ} → ι ≡ᵐ μ → μ ≡ᵐ δ → ι ≡ᵐ δ ≡ᵐ-trans eq1 eq2 M = trans (eq1 M) (eq2 M) -- meta-variable renamings form a setoid Mrenaming-setoid : ∀ (Θ ψ : MContext) → Setoid ℓ ℓ Mrenaming-setoid Θ ψ = record { Carrier = Θ ⇒ᵐ ψ ; _≈_ = λ ι μ → ι ≡ᵐ μ ; isEquivalence = record { refl = λ {ι} M → ≡ᵐ-refl {Θ} {ψ} {ι} M ; sym = ≡ᵐ-sym ; trans = ≡ᵐ-trans } } -- the identity renaming idᵐ : ∀ {Θ : MContext} → Θ ⇒ᵐ Θ idᵐ M = M -- equal metavariable renaming act the same on metavariables -- composition of renamings _∘ᵐ_ : ∀ {Θ ψ Ω} → ψ ⇒ᵐ Ω → Θ ⇒ᵐ ψ → Θ ⇒ᵐ Ω (ι ∘ᵐ μ) M = ι (μ M) infix 7 _∘ᵐ_ -- composition respects equality ∘ᵐ-resp-≡ᵐ : ∀ {Γ Δ Ξ} {τ₁ τ₂ : Δ ⇒ᵐ Ξ} {σ₁ σ₂ : Γ ⇒ᵐ Δ} → τ₁ ≡ᵐ τ₂ → σ₁ ≡ᵐ σ₂ → τ₁ ∘ᵐ σ₁ ≡ᵐ τ₂ ∘ᵐ σ₂ ∘ᵐ-resp-≡ᵐ {τ₁ = τ₁} {σ₂ = σ₂} ζ ξ x = trans (cong τ₁ (ξ x)) (ζ (σ₂ x)) -- the identity is the unit identity-leftᵐ : ∀ {Γ Δ} {ρ : Γ ⇒ᵐ Δ} → idᵐ ∘ᵐ ρ ≡ᵐ ρ identity-leftᵐ ρ = refl identity-rightᵐ : ∀ {Γ Δ} {ρ : Γ ⇒ᵐ Δ} → ρ ∘ᵐ idᵐ ≡ᵐ ρ identity-rightᵐ ρ = refl -- composition is associative assocᵐ : ∀ {Γ Δ Ξ Ψ} {τ : Γ ⇒ᵐ Δ} {ρ : Δ ⇒ᵐ Ξ} {σ : Ξ ⇒ᵐ Ψ} → (σ ∘ᵐ ρ) ∘ᵐ τ ≡ᵐ σ ∘ᵐ (ρ ∘ᵐ τ) assocᵐ x = refl sym-assocᵐ : ∀ {Γ Δ Ξ Ψ} {τ : Γ ⇒ᵐ Δ} {ρ : Δ ⇒ᵐ Ξ} {σ : Ξ ⇒ᵐ Ψ} → σ ∘ᵐ (ρ ∘ᵐ τ) ≡ᵐ (σ ∘ᵐ ρ) ∘ᵐ τ sym-assocᵐ x = refl -- contexts and renamings form a category module _ where open Categories.Category MContexts : Category ℓ ℓ ℓ MContexts = record { Obj = MContext ; _⇒_ = _⇒ᵐ_ ; _≈_ = _≡ᵐ_ ; id = idᵐ ; _∘_ = _∘ᵐ_ ; assoc = λ {_} {_} {_} {_} {f} {g} {h} {_} → assocᵐ {τ = f} {ρ = g} {σ = h} ; sym-assoc = λ {_} {_} {_} {_} {f} {g} {h} {_} → sym-assocᵐ {τ = f} {ρ = g} {σ = h} ; identityˡ = λ x → refl ; identityʳ = λ x → refl ; identity² = λ x → refl ; equiv = record { refl = λ {ι} {_} → ≡ᵐ-refl {ι = ι} ; sym = ≡ᵐ-sym ; trans = ≡ᵐ-trans } ; ∘-resp-≈ = ∘ᵐ-resp-≡ᵐ } -- the coproduct structure of the category module _ where infixl 7 [_,_]ᵐ [_,_]ᵐ : ∀ {Γ Δ Ξ} → Γ ⇒ᵐ Ξ → Δ ⇒ᵐ Ξ → Γ ,, Δ ⇒ᵐ Ξ [ σ , τ ]ᵐ (var-inl x) = σ x [ σ , τ ]ᵐ (var-inr y) = τ y inlᵐ : ∀ {Γ Δ} → Γ ⇒ᵐ Γ ,, Δ inlᵐ = var-inl inrᵐ : ∀ {Γ Δ} → Δ ⇒ᵐ Γ ,, Δ inrᵐ = var-inr uniqueᵐ : ∀ {Γ Δ Ξ} {τ : Γ ,, Δ ⇒ᵐ Ξ} {ρ : Γ ⇒ᵐ Ξ} {σ : Δ ⇒ᵐ Ξ} → τ ∘ᵐ inlᵐ ≡ᵐ ρ → τ ∘ᵐ inrᵐ ≡ᵐ σ → [ ρ , σ ]ᵐ ≡ᵐ τ uniqueᵐ ξ ζ (var-inl x) = sym (ξ x) uniqueᵐ ξ ζ (var-inr y) = sym (ζ y) MContext-+ : Categories.Category.Cocartesian.BinaryCoproducts MContexts MContext-+ = record { coproduct = λ {Γ Δ} → record { A+B = Γ ,, Δ ; i₁ = inlᵐ ; i₂ = inrᵐ ; [_,_] = [_,_]ᵐ ; inject₁ = λ x → refl ; inject₂ = λ x → refl ; unique = uniqueᵐ } } open Categories.Category.Cocartesian.BinaryCoproducts MContext-+ -- the renaming from the empty context inᵐ : ∀ {Γ} → ctx-empty ⇒ᵐ Γ inᵐ () -- extension of a renaming is summing with identity ⇑ᵐ : ∀ {Θ Ψ Ω} → Θ ⇒ᵐ Ψ → Θ ,, Ω ⇒ᵐ Ψ ,, Ω ⇑ᵐ ρ = ρ +₁ idᵐ -- a renaming can also be extended on the right ᵐ⇑ᵐ : ∀ {Θ Ψ} → Θ ⇒ᵐ Ψ → ∀ {Ω} → Ω ,, Θ ⇒ᵐ Ω ,, Ψ ᵐ⇑ᵐ ρ = idᵐ +₁ ρ -- the action of a metavariable renaming on terms infix 6 [_]ᵐ_ [_]ᵐ_ : ∀ {Θ Ψ Γ A} → Θ ⇒ᵐ Ψ → Term Θ Γ A → Term Ψ Γ A [ ι ]ᵐ (tm-var x) = tm-var x [ ι ]ᵐ (tm-meta M ts) = tm-meta (ι M) (λ i → [ ι ]ᵐ ts i) [ ι ]ᵐ (tm-oper f es) = tm-oper f (λ i → [ ι ]ᵐ es i) -- The sum of identities is an identity idᵐ+idᵐ : ∀ {Θ Ψ} → idᵐ {Θ = Θ} +₁ idᵐ {Θ = Ψ} ≡ᵐ idᵐ {Θ = Θ ,, Ψ} idᵐ+idᵐ (var-inl x) = refl idᵐ+idᵐ (var-inr y) = refl -- The action of a renaming respects equality of terms []ᵐ-resp-≈ : ∀ {Θ Ψ Γ A} {s t : Term Θ Γ A} {ι : Θ ⇒ᵐ Ψ} → s ≈ t → [ ι ]ᵐ s ≈ [ ι ]ᵐ t []ᵐ-resp-≈ (≈-≡ refl) = ≈-≡ refl []ᵐ-resp-≈ (≈-meta ξ) = ≈-meta (λ i → []ᵐ-resp-≈ (ξ i)) []ᵐ-resp-≈ (≈-oper ξ) = ≈-oper (λ i → []ᵐ-resp-≈ (ξ i)) -- The action of a renaming respects equality of renamings []ᵐ-resp-≡ᵐ : ∀ {Θ Ψ Γ A} {ι μ : Θ ⇒ᵐ Ψ} {t : Term Θ Γ A} → ι ≡ᵐ μ → [ ι ]ᵐ t ≈ [ μ ]ᵐ t []ᵐ-resp-≡ᵐ {t = tm-var x} ξ = ≈-≡ refl []ᵐ-resp-≡ᵐ {Θ} {Ψ} {Γ} {A} {ι = ι} {μ = μ} {t = tm-meta M ts} ξ = let open SetoidR (Term-setoid Ψ Γ A) in begin tm-meta (ι M) (λ i → [ ι ]ᵐ ts i) ≈⟨ ≈-meta (λ i → []ᵐ-resp-≡ᵐ ξ) ⟩ tm-meta (ι M) (λ i → [ μ ]ᵐ ts i) ≈⟨ ≈-≡ ((cong λ N → tm-meta N (λ i → [ μ ]ᵐ ts i)) (ξ M)) ⟩ tm-meta (μ M) (λ i → [ μ ]ᵐ ts i) ≈⟨ ≈-≡ refl ⟩ tm-meta (μ M) (λ i → [ μ ]ᵐ ts i) ∎ []ᵐ-resp-≡ᵐ {t = tm-oper f es} ξ = ≈-oper λ i → []ᵐ-resp-≡ᵐ ξ -- The action of the identity is trival [idᵐ] : ∀ {Θ Γ A} {t : Term Θ Γ A} → [ idᵐ ]ᵐ t ≈ t [idᵐ] {t = tm-var x} = ≈-refl [idᵐ] {t = tm-meta M ts} = ≈-meta λ i → [idᵐ] [idᵐ] {t = tm-oper f es} = ≈-oper λ i → [idᵐ] -- Extension respects composition ⇑ᵐ-resp-∘ᵐ : ∀ {Γ Δ Ξ Ψ} {ρ : Γ ⇒ᵐ Δ} {τ : Δ ⇒ᵐ Ξ} → ⇑ᵐ {Ω = Ψ} (τ ∘ᵐ ρ) ≡ᵐ (⇑ᵐ τ) ∘ᵐ (⇑ᵐ ρ) ⇑ᵐ-resp-∘ᵐ (var-inl x) = refl ⇑ᵐ-resp-∘ᵐ (var-inr y) = refl ᵐ⇑ᵐ-resp-∘ᵐ : ∀ {Θ Ψ Ω Ξ} {ρ : Θ ⇒ᵐ Ψ} {τ : Ψ ⇒ᵐ Ω} → ᵐ⇑ᵐ {Θ} {Ω} (τ ∘ᵐ ρ) {Ξ} ≡ᵐ (ᵐ⇑ᵐ τ) ∘ᵐ (ᵐ⇑ᵐ ρ) ᵐ⇑ᵐ-resp-∘ᵐ (var-inl M) = refl ᵐ⇑ᵐ-resp-∘ᵐ (var-inr N) = refl -- Extension of the identity renaming is the identity ⇑ᵐ-resp-idᵐ : ∀ {Θ Ψ} → (⇑ᵐ {Θ} {Θ} {Ψ}) (idᵐ {Θ}) ≡ᵐ idᵐ ⇑ᵐ-resp-idᵐ (var-inl M) = refl ⇑ᵐ-resp-idᵐ (var-inr N) = refl ᵐ⇑ᵐ-resp-idᵐ : ∀ {Θ Ψ} → (ᵐ⇑ᵐ {Θ} {Θ}) (idᵐ {Θ}) {Ψ} ≡ᵐ idᵐ ᵐ⇑ᵐ-resp-idᵐ (var-inl M) = refl ᵐ⇑ᵐ-resp-idᵐ (var-inr N) = refl -- Extension preserves equality of metavariable renamings ᵐ⇑ᵐ-resp-≡ᵐ : ∀ {Θ Ψ Ω} {ι μ : Θ ⇒ᵐ Ψ} → ι ≡ᵐ μ → ᵐ⇑ᵐ ι {Ω} ≡ᵐ ᵐ⇑ᵐ μ ᵐ⇑ᵐ-resp-≡ᵐ ι≡μ (var-inl M) = refl ᵐ⇑ᵐ-resp-≡ᵐ {ι = ι} ι≡μ (var-inr N) = cong (inrᵐ) (ι≡μ N) ⇑ᵐ-resp-≡ᵐ : ∀ {Θ Ψ Ω} {ι μ : Θ ⇒ᵐ Ψ} → ι ≡ᵐ μ → ⇑ᵐ {Ω = Ω} ι ≡ᵐ ⇑ᵐ μ ⇑ᵐ-resp-≡ᵐ ι≡μ (var-inl M) = cong var-inl (ι≡μ M) ⇑ᵐ-resp-≡ᵐ {ι = ι} ι≡μ (var-inr N) = refl -- The action of a renaming is functorial [∘ᵐ] : ∀ {Θ Ψ Ω Γ} {ι : Θ ⇒ᵐ Ψ} {μ : Ψ ⇒ᵐ Ω} {A} {t : Term Θ Γ A} → [ μ ∘ᵐ ι ]ᵐ t ≈ [ μ ]ᵐ ([ ι ]ᵐ t) [∘ᵐ] {t = tm-var x} = ≈-refl [∘ᵐ] {t = tm-meta M ts} = ≈-meta (λ i → [∘ᵐ]) [∘ᵐ] {t = tm-oper f es} = ≈-oper (λ i → [∘ᵐ]) ᵐ∘ᵛ≈ᵛ∘ᵐ : ∀ {Θ Ψ Γ Δ A} {ρ : Γ ⇒ᵛ Δ} {ι : Θ ⇒ᵐ Ψ} {t : Term Θ Γ A} → [ ι ]ᵐ ([ ρ ]ᵛ t) ≈ [ ρ ]ᵛ ([ ι ]ᵐ t) ᵐ∘ᵛ≈ᵛ∘ᵐ {t = tm-var x} = ≈-refl ᵐ∘ᵛ≈ᵛ∘ᵐ {t = tm-meta M ts} = ≈-meta (λ i → ᵐ∘ᵛ≈ᵛ∘ᵐ {t = ts i}) ᵐ∘ᵛ≈ᵛ∘ᵐ {t = tm-oper f es} = ≈-oper (λ i → ᵐ∘ᵛ≈ᵛ∘ᵐ {t = es i}) split-sum : ∀ {Θ Ψ Ξ Ω} {ι : Θ ⇒ᵐ Ψ} {μ : Ξ ⇒ᵐ Ω} → (μ +₁ ι) ≡ᵐ (⇑ᵐ μ) ∘ᵐ (ᵐ⇑ᵐ ι) split-sum (var-inl M) = refl split-sum (var-inr N) = refl split-sum2 : ∀ {Θ Ψ Ξ Ω} {ι : Θ ⇒ᵐ Ψ} {μ : Ξ ⇒ᵐ Ω} → (μ +₁ ι) ≡ᵐ (ᵐ⇑ᵐ ι) ∘ᵐ (⇑ᵐ μ) split-sum2 (var-inl M) = refl split-sum2 (var-inr N) = refl ⇑-resp-+ : ∀ {Θ Ψ Ξ Ω Γ A} {ι : Θ ⇒ᵐ Ψ} {μ : Ξ ⇒ᵐ Ω} {t : Term (Ξ + Θ) Γ A} → [ (⇑ᵐ μ) ]ᵐ ([ (ᵐ⇑ᵐ ι) ]ᵐ t) ≈ [ (ᵐ⇑ᵐ ι) ]ᵐ ([ (⇑ᵐ μ) ]ᵐ t) ⇑-resp-+ {Θ} {Ψ} {Ξ} {Ω} {Γ} {A} {ι} {μ} {t = t} = let open SetoidR (Term-setoid (Ω ,, Ψ) Γ A) in begin [ ⇑ᵐ μ ]ᵐ ([ ᵐ⇑ᵐ ι ]ᵐ t) ≈⟨ ≈-sym [∘ᵐ] ⟩ [ (⇑ᵐ μ) ∘ᵐ (ᵐ⇑ᵐ ι) ]ᵐ t ≈⟨ ≈-sym ([]ᵐ-resp-≡ᵐ split-sum) ⟩ [ (μ +₁ ι) ]ᵐ t ≈⟨ []ᵐ-resp-≡ᵐ split-sum2 ⟩ [(ᵐ⇑ᵐ ι) ∘ᵐ (⇑ᵐ μ) ]ᵐ t ≈⟨ [∘ᵐ] ⟩ [ ᵐ⇑ᵐ ι ]ᵐ ([ ⇑ᵐ μ ]ᵐ t) ∎ ∘ᵐ-resp-⇑ : ∀ {Θ Ψ Ξ Ω} {ι : Θ ⇒ᵐ Ψ} {μ : Ψ ⇒ᵐ Ω} → ⇑ᵐ {Ω = Ξ} (μ ∘ᵐ ι) ≡ᵐ ⇑ᵐ μ ∘ᵐ ⇑ᵐ ι ∘ᵐ-resp-⇑ (var-inl M) = refl ∘ᵐ-resp-⇑ (var-inr N) = refl ∘ᵐ-resp-⇑-term : ∀ {Θ Ψ Ξ Ω Γ A} {ι : Θ ⇒ᵐ Ψ} {μ : Ψ ⇒ᵐ Ω} {t : Term (Θ ,, Ξ) Γ A} → [ ⇑ᵐ {Ω = Ξ} (μ ∘ᵐ ι) ]ᵐ t ≈ [ ⇑ᵐ μ ]ᵐ ([ ⇑ᵐ ι ]ᵐ t) ∘ᵐ-resp-⇑-term {Θ} {Ψ} {Ξ} {Ω} {Γ} {A} {ι} {μ} {t = t} = let open SetoidR (Term-setoid (Ω ,, Ξ) Γ A) in begin [ ⇑ᵐ {Ω = Ξ} (μ ∘ᵐ ι) ]ᵐ t ≈⟨ []ᵐ-resp-≡ᵐ ∘ᵐ-resp-⇑ ⟩ [ ⇑ᵐ μ ∘ᵐ ⇑ᵐ ι ]ᵐ t ≈⟨ [∘ᵐ] ⟩ [ ⇑ᵐ μ ]ᵐ ([ ⇑ᵐ ι ]ᵐ t) ∎ ∘ᵐ-resp-ᵐ⇑ : ∀ {Θ Ψ Ξ Ω} {ι : Θ ⇒ᵐ Ψ} {μ : Ψ ⇒ᵐ Ω} → ᵐ⇑ᵐ (μ ∘ᵐ ι) {Ω = Ξ} ≡ᵐ ᵐ⇑ᵐ μ ∘ᵐ ᵐ⇑ᵐ ι ∘ᵐ-resp-ᵐ⇑ (var-inl M) = refl ∘ᵐ-resp-ᵐ⇑ (var-inr N) = refl ∘ᵐ-resp-ᵐ⇑-term : ∀ {Θ Ψ Ξ Ω Γ A} {ι : Θ ⇒ᵐ Ψ} {μ : Ψ ⇒ᵐ Ω} {t : Term (Ξ ,, Θ) Γ A} → [ ᵐ⇑ᵐ (μ ∘ᵐ ι) {Ω = Ξ} ]ᵐ t ≈ [ ᵐ⇑ᵐ μ ]ᵐ ([ ᵐ⇑ᵐ ι ]ᵐ t) ∘ᵐ-resp-ᵐ⇑-term {Θ} {Ψ} {Ξ} {Ω} {Γ} {A} {ι} {μ} {t = t} = let open SetoidR (Term-setoid (Ξ ,, Ω) Γ A) in begin [ ᵐ⇑ᵐ (μ ∘ᵐ ι) {Ω = Ξ} ]ᵐ t ≈⟨ []ᵐ-resp-≡ᵐ ∘ᵐ-resp-ᵐ⇑ ⟩ [ ᵐ⇑ᵐ μ ∘ᵐ ᵐ⇑ᵐ ι ]ᵐ t ≈⟨ [∘ᵐ] ⟩ [ ᵐ⇑ᵐ μ ]ᵐ ([ ᵐ⇑ᵐ ι ]ᵐ t) ∎ vr-comm-mr : ∀ {Θ Ψ Γ Δ A} {ρ : Γ ⇒ᵛ Δ} {ι : Θ ⇒ᵐ Ψ} {t : Term Θ Γ A} → [ ι ]ᵐ ([ ρ ]ᵛ t) ≈ [ ρ ]ᵛ ([ ι ]ᵐ t) vr-comm-mr {t = tm-var x} = ≈-refl vr-comm-mr {t = tm-meta M ts} = ≈-meta (λ i → vr-comm-mr) vr-comm-mr {t = tm-oper f es} = ≈-oper (λ i → vr-comm-mr) mr-comm-vr : ∀ {Θ Ψ Γ Δ A} {ρ : Γ ⇒ᵛ Δ} {ι : Θ ⇒ᵐ Ψ} {t : Term Θ Γ A} → [ ρ ]ᵛ ([ ι ]ᵐ t) ≈ [ ι ]ᵐ ([ ρ ]ᵛ t) mr-comm-vr {t = tm-var x} = ≈-refl mr-comm-vr {t = tm-meta M ts} = ≈-meta (λ i → mr-comm-vr) mr-comm-vr {t = tm-oper f es} = ≈-oper (λ i → mr-comm-vr) module _ {Θ Ψ : MContext} {A : sort} where open Categories.Category open Categories.Category.Instance.Setoids open Categories.Functor open Categories.NaturalTransformation MRenaming-NT : ∀ (ι : Θ ⇒ᵐ Ψ) → NaturalTransformation (Term-Functor {Θ} {A}) (Term-Functor {Ψ} {A}) MRenaming-NT ι = record { η = λ Γ → record { _⟨$⟩_ = [ ι ]ᵐ_ ; cong = []ᵐ-resp-≈ } ; commute = λ ρ t≈s → ≈-trans ([]ᵐ-resp-≈ ([]ᵛ-resp-≈ t≈s)) (ᵐ∘ᵛ≈ᵛ∘ᵐ) ; sym-commute = λ ρ t≈s → ≈-trans (≈-sym ᵐ∘ᵛ≈ᵛ∘ᵐ) ([]ᵐ-resp-≈ ([]ᵛ-resp-≈ t≈s)) }
{ "alphanum_fraction": 0.4670201294, "avg_line_length": 32.3488372093, "ext": "agda", "hexsha": "409a3b9a2473e396481529aaf0915edea8a3e7c8", "lang": "Agda", "max_forks_count": 6, "max_forks_repo_forks_event_max_datetime": "2021-05-24T02:51:43.000Z", "max_forks_repo_forks_event_min_datetime": "2021-02-16T13:43:07.000Z", "max_forks_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andrejbauer/formaltt", "max_forks_repo_path": "src/SecondOrder/MRenaming.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4", "max_issues_repo_issues_event_max_datetime": "2021-05-14T16:15:17.000Z", "max_issues_repo_issues_event_min_datetime": "2021-04-30T14:18:25.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andrejbauer/formaltt", "max_issues_repo_path": "src/SecondOrder/MRenaming.agda", "max_line_length": 103, "max_stars_count": 21, "max_stars_repo_head_hexsha": "0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cilinder/formaltt", "max_stars_repo_path": "src/SecondOrder/MRenaming.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-19T15:50:08.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-16T14:07:06.000Z", "num_tokens": 6801, "size": 11128 }
module UntypingPairs where open import Relation.Binary.PropositionalEquality open import Function using (id) open import Data.Empty open import Data.Unit open import Relation.Nullary open import Data.Nat open import Data.Fin open import Data.Vec open import Data.Sum open import Data.Product open import Data.List open import Data.Maybe -- Rather tedious --- stuff grows quadratically. Get this to go -- through and then see if we can generalize to codes for constructors -- or something like that. ------------------------------------------------------------ -- Types ------------------------------------------------------------ -- A universe of types for STLC + natural numbers + pairs. data Type : Set where Nat : Type _⇒_ : Type → Type → Type _⊗_ : Type → Type → Type infixr 80 _⇒_ infixr 90 _⊗_ -- The function type constructor is injective. ⇒-inj : ∀ {τ₁ τ₂ τ₃ τ₄} → (τ₁ ⇒ τ₂ ≡ τ₃ ⇒ τ₄) → (τ₁ ≡ τ₃) × (τ₂ ≡ τ₄) ⇒-inj refl = refl , refl ⊗-inj : ∀ {τ₁ τ₂ τ₃ τ₄} → (τ₁ ⊗ τ₂ ≡ τ₃ ⊗ τ₄) → (τ₁ ≡ τ₃) × (τ₂ ≡ τ₄) ⊗-inj refl = refl , refl -- Equality of types is decidable. _≡?_ : (τ₁ τ₂ : Type) → (τ₁ ≡ τ₂) ⊎ (τ₁ ≢ τ₂) Nat ≡? Nat = inj₁ refl Nat ≡? (_ ⇒ _) = inj₂ (λ ()) Nat ≡? (_ ⊗ _) = inj₂ (λ ()) (_ ⇒ _) ≡? Nat = inj₂ (λ ()) (_ ⇒ _) ≡? (_ ⊗ _) = inj₂ (λ ()) (_ ⊗ _) ≡? Nat = inj₂ (λ ()) (_ ⊗ _) ≡? (_ ⇒ _) = inj₂ (λ ()) (τ₁ ⇒ τ₂) ≡? (τ₃ ⇒ τ₄) with τ₁ ≡? τ₃ | τ₂ ≡? τ₄ (τ₁ ⇒ τ₂) ≡? (.τ₁ ⇒ .τ₂) | inj₁ refl | inj₁ refl = inj₁ refl (τ₁ ⇒ τ₂) ≡? (τ₃ ⇒ τ₄) | inj₂ τ₁≢τ₃ | _ = inj₂ (λ eq → τ₁≢τ₃ (proj₁ (⇒-inj eq))) (τ₁ ⇒ τ₂) ≡? (τ₃ ⇒ τ₄) | _ | inj₂ τ₂≢τ₄ = inj₂ (λ eq → τ₂≢τ₄ (proj₂ (⇒-inj eq))) (τ₁ ⊗ τ₂) ≡? (τ₃ ⊗ τ₄) with τ₁ ≡? τ₃ | τ₂ ≡? τ₄ (τ₁ ⊗ τ₂) ≡? (.τ₁ ⊗ .τ₂) | inj₁ refl | inj₁ refl = inj₁ refl (τ₁ ⊗ τ₂) ≡? (τ₃ ⊗ τ₄) | inj₂ τ₁≢τ₃ | _ = inj₂ (λ x → τ₁≢τ₃ (proj₁ (⊗-inj x))) (τ₁ ⊗ τ₂) ≡? (τ₃ ⊗ τ₄) | _ | inj₂ τ₂≢τ₄ = inj₂ (λ eq → τ₂≢τ₄ (proj₂ (⊗-inj eq))) ≢-cong-⇒ : ∀ {τ₁ τ₂ τ₃ τ₄} → (τ₁ ⇒ τ₂ ≢ τ₃ ⇒ τ₄) → (τ₁ ≢ τ₃) ⊎ (τ₂ ≢ τ₄) ≢-cong-⇒ {τ₁} {τ₂} {τ₃} {τ₄} neq with τ₁ ≡? τ₃ | τ₂ ≡? τ₄ ≢-cong-⇒ neq | inj₂ τ₁≢τ₃ | _ = inj₁ τ₁≢τ₃ ≢-cong-⇒ neq | _ | inj₂ τ₂≢τ₄ = inj₂ τ₂≢τ₄ ≢-cong-⇒ neq | inj₁ refl | inj₁ refl = ⊥-elim (neq refl) ≢-cong-⊗ : ∀ {τ₁ τ₂ τ₃ τ₄} → (τ₁ ⊗ τ₂ ≢ τ₃ ⊗ τ₄) → (τ₁ ≢ τ₃) ⊎ (τ₂ ≢ τ₄) ≢-cong-⊗ {τ₁} {τ₂} {τ₃} {τ₄} neq with τ₁ ≡? τ₃ | τ₂ ≡? τ₄ ≢-cong-⊗ neq | inj₂ τ₁≢τ₃ | _ = inj₁ τ₁≢τ₃ ≢-cong-⊗ neq | _ | inj₂ τ₂≢τ₄ = inj₂ τ₂≢τ₄ ≢-cong-⊗ neq | inj₁ refl | inj₁ refl = ⊥-elim (neq refl) -- A type of explicit evidence explaining *why* two types are unequal. data _≁_ : Type → Type → Set where Nat≁⇒ : ∀ {τ₁ τ₂} → Nat ≁ (τ₁ ⇒ τ₂) Nat≁⊗ : ∀ {τ₁ τ₂} → Nat ≁ (τ₁ ⊗ τ₂) ⇒≁⊗ : ∀ {τ₁ τ₂ τ₃ τ₄} → (τ₁ ⇒ τ₂) ≁ (τ₃ ⊗ τ₄) ⇒ˡ-≁ : ∀ {τ₁ τ₂ τ₃ τ₄} → τ₁ ≁ τ₂ → (τ₁ ⇒ τ₃) ≁ (τ₂ ⇒ τ₄) ⇒ʳ-≁ : ∀ {τ₁ τ₂ τ₃ τ₄} → τ₃ ≁ τ₄ → (τ₁ ⇒ τ₃) ≁ (τ₂ ⇒ τ₄) ⊗ˡ-≁ : ∀ {τ₁ τ₂ τ₃ τ₄} → τ₁ ≁ τ₂ → (τ₁ ⊗ τ₃) ≁ (τ₂ ⊗ τ₄) ⊗ʳ-≁ : ∀ {τ₁ τ₂ τ₃ τ₄} → τ₃ ≁ τ₄ → (τ₁ ⊗ τ₃) ≁ (τ₂ ⊗ τ₄) ≁-sym : ∀ {τ₁ τ₂} → τ₁ ≁ τ₂ → τ₂ ≁ τ₁ -- Given such a proof we can show the types are unequal. ≁-≢ : ∀ {τ₁ τ₂} → (τ₁ ≁ τ₂) → (τ₁ ≢ τ₂) ≁-≢ Nat≁⇒ = λ () ≁-≢ Nat≁⊗ = λ () ≁-≢ ⇒≁⊗ = λ () ≁-≢ (⇒ˡ-≁ τ₁≁τ₂) refl = ≁-≢ τ₁≁τ₂ refl ≁-≢ (⇒ʳ-≁ τ₃≁τ₄) refl = ≁-≢ τ₃≁τ₄ refl ≁-≢ (⊗ˡ-≁ τ₁≁τ₂) refl = ≁-≢ τ₁≁τ₂ refl ≁-≢ (⊗ʳ-≁ τ₃≁τ₄) refl = ≁-≢ τ₃≁τ₄ refl ≁-≢ (≁-sym τ₂≁τ₁) refl = ≁-≢ τ₂≁τ₁ refl -- Since our universe of types is closed, we can actually go the other -- way too. That is, ≢ is equivalent to ≁ ; the point is that the -- latter is more immediately informative (by pattern-matching etc.) -- which can be used to produce error messages and so on. -- -- Note, however, that there might be *multiple* terms of type τ₁ ≁ -- τ₂: each corresponds to a different explanation of why the types -- are not equal. We might actually care which one we have. -- Round-tripping through (τ₁ ≢ τ₂) is not the identity. ≢-≁ : ∀ {τ₁ τ₂} → (τ₁ ≢ τ₂) → (τ₁ ≁ τ₂) ≢-≁ {Nat} {Nat} τ₁≢τ₂ with τ₁≢τ₂ refl ... | () ≢-≁ {Nat} {τ₂ ⇒ τ₃} _ = Nat≁⇒ ≢-≁ {Nat} {τ₂ ⊗ τ₃} _ = Nat≁⊗ ≢-≁ {τ₁ ⇒ τ₂} {Nat} _ = ≁-sym Nat≁⇒ ≢-≁ {τ₁ ⇒ τ₂} {τ₃ ⊗ τ₄} _ = ⇒≁⊗ ≢-≁ {τ₁ ⊗ τ₂} {Nat} _ = ≁-sym Nat≁⊗ ≢-≁ {τ₁ ⊗ τ₂} {τ₃ ⇒ τ₄} _ = ≁-sym ⇒≁⊗ ≢-≁ {τ₁ ⇒ τ₂} {τ₃ ⇒ τ₄} τ₁⇒τ₂≢τ₃⇒τ₄ with ≢-cong-⇒ τ₁⇒τ₂≢τ₃⇒τ₄ ≢-≁ {τ₁ ⇒ τ₂} {τ₃ ⇒ τ₄} τ₁⇒τ₂≢τ₃⇒τ₄ | inj₁ τ₁≢τ₃ = ⇒ˡ-≁ (≢-≁ τ₁≢τ₃) ≢-≁ {τ₁ ⇒ τ₂} {τ₃ ⇒ τ₄} τ₁⇒τ₂≢τ₃⇒τ₄ | inj₂ τ₂≢τ₄ = ⇒ʳ-≁ (≢-≁ τ₂≢τ₄) ≢-≁ {τ₁ ⊗ τ₂} {τ₃ ⊗ τ₄} τ₁⊗τ₂≢τ₃⊗τ₄ with ≢-cong-⊗ τ₁⊗τ₂≢τ₃⊗τ₄ ≢-≁ {τ₁ ⊗ τ₂} {τ₃ ⊗ τ₄} τ₁⊗τ₂≢τ₃⊗τ₄ | inj₁ τ₁≢τ₃ = ⊗ˡ-≁ (≢-≁ τ₁≢τ₃) ≢-≁ {τ₁ ⊗ τ₂} {τ₃ ⊗ τ₄} τ₁⊗τ₂≢τ₃⊗τ₄ | inj₂ τ₂≢τ₄ = ⊗ʳ-≁ (≢-≁ τ₂≢τ₄) -- Sometimes it's convenient to decide equality of types using ≁ in place of ≢. _∼?_ : (τ₁ τ₂ : Type) → (τ₁ ≡ τ₂) ⊎ (τ₁ ≁ τ₂) τ₁ ∼? τ₂ = Data.Sum.map id ≢-≁ (τ₁ ≡? τ₂) -- Evidence that a type is not an arrow type. data not⇒_ : Type → Set where not⇒Nat : not⇒ Nat not⇒⊗ : ∀ {τ₁ τ₂} → not⇒ (τ₁ ⊗ τ₂) data not⊗_ : Type → Set where not⊗Nat : not⊗ Nat not⊗⇒ : ∀ {τ₁ τ₂} → not⊗ (τ₁ ⇒ τ₂) ⇒? : (τ : Type) → (Σ[ τ₁ ∈ Type ] Σ[ τ₂ ∈ Type ] τ ≡ τ₁ ⇒ τ₂) ⊎ (not⇒ τ) ⇒? Nat = inj₂ not⇒Nat ⇒? (_ ⊗ _) = inj₂ not⇒⊗ ⇒? (τ₁ ⇒ τ₂) = inj₁ (τ₁ , τ₂ , refl) ------------------------------------------------------------ -- Expressions ------------------------------------------------------------ -- (Untyped) expressions of STLC + arithmetic + pairs. data Expr (n : ℕ) : Set where lit : ℕ → Expr n _⊕_ : Expr n → Expr n → Expr n ⟨_,_⟩ : Expr n → Expr n → Expr n π₁ : Expr n π₂ : Expr n var : Fin n → Expr n ƛ : Type → Expr (suc n) → Expr n _·_ : Expr n → Expr n → Expr n Ctx : ℕ → Set Ctx n = Vec Type n ------------------------------------------------------------ -- Typing ------------------------------------------------------------ -- Typing derivations. data _⊢_∶_ : ∀ {n} → Ctx n → Expr n → Type → Set where lit : ∀ {n} {Γ : Ctx n} {m} → Γ ⊢ lit m ∶ Nat _⊕_ : ∀ {n} {Γ : Ctx n} {t₁ t₂} → Γ ⊢ t₁ ∶ Nat → Γ ⊢ t₂ ∶ Nat → Γ ⊢ (t₁ ⊕ t₂) ∶ Nat ⟨_,_⟩ : ∀ {n} {Γ : Ctx n} {t₁ t₂} {τ₁ τ₂} → Γ ⊢ t₁ ∶ τ₁ → Γ ⊢ t₂ ∶ τ₂ → Γ ⊢ ⟨ t₁ , t₂ ⟩ ∶ τ₁ ⊗ τ₂ π₁ : ∀ {n} {Γ : Ctx n} {τ₁ τ₂} → Γ ⊢ π₁ ∶ (τ₁ ⊗ τ₂) ⇒ τ₁ π₂ : ∀ {n} {Γ : Ctx n} {τ₁ τ₂} → Γ ⊢ π₂ ∶ (τ₁ ⊗ τ₂) ⇒ τ₂ var : ∀ {n} {Γ : Ctx n} {i} → Γ ⊢ var i ∶ lookup i Γ ƛ : ∀ {n} {Γ : Ctx n} {t} {τ₁ τ₂} → (τ₁ ∷ Γ) ⊢ t ∶ τ₂ → Γ ⊢ ƛ τ₁ t ∶ (τ₁ ⇒ τ₂) _·_ : ∀ {n} {Γ : Ctx n} {t₁ t₂} {τ₁ τ₂} → Γ ⊢ t₁ ∶ τ₁ ⇒ τ₂ → Γ ⊢ t₂ ∶ τ₁ → Γ ⊢ t₁ · t₂ ∶ τ₂ -- Explicit, constructive evidence for the *untypability* of a term. data _⊬_∶_ : ∀ {n} → Ctx n → Expr n → Type → Set where -- Explicitly build in uniqueness of typing as an axiom. t is not -- typeable at type τ₂ if t is typeable at some different type. mismatch : ∀ {n} {Γ : Ctx n} {t} {τ₁ τ₂} → Γ ⊢ t ∶ τ₁ → τ₁ ≁ τ₂ → Γ ⊬ t ∶ τ₂ -- There are three ways for a + term to fail to have a given type τ: -- either the left or right sides do not have type Nat, or the type -- τ itself is not Nat. ⊕ˡ : ∀ {n} {Γ : Ctx n} {t₁ t₂} {τ} → Γ ⊬ t₁ ∶ Nat → Γ ⊬ (t₁ ⊕ t₂) ∶ τ ⊕ʳ : ∀ {n} {Γ : Ctx n} {t₁ t₂} {τ} → Γ ⊬ t₂ ∶ Nat → Γ ⊬ (t₁ ⊕ t₂) ∶ τ ⊕≁Nat : ∀ {n} {Γ : Ctx n} {t₁ t₂} {τ} → τ ≁ Nat → Γ ⊬ (t₁ ⊕ t₂) ∶ τ ⟨⟩-ty : ∀ {n} {Γ : Ctx n} {t₁ t₂} {τ} → not⊗ τ → Γ ⊬ ⟨ t₁ , t₂ ⟩ ∶ τ ⟨⟩ˡ : ∀ {n} {Γ : Ctx n} {t₁ t₂} {τ₁ τ₂} → Γ ⊬ t₁ ∶ τ₁ → Γ ⊬ ⟨ t₁ , t₂ ⟩ ∶ τ₁ ⊗ τ₂ ⟨⟩ʳ : ∀ {n} {Γ : Ctx n} {t₁ t₂} {τ₁ τ₂} → Γ ⊬ t₂ ∶ τ₂ → Γ ⊬ ⟨ t₁ , t₂ ⟩ ∶ τ₁ ⊗ τ₂ π₁-⇒ : ∀ {n} {Γ : Ctx n} {τ} → not⇒ τ → Γ ⊬ π₁ ∶ τ π₁-⊗ : ∀ {n} {Γ : Ctx n} {τ₁ τ₂} → not⊗ τ₁ → Γ ⊬ π₁ ∶ τ₁ ⇒ τ₂ π₁-∼ : ∀ {n} {Γ : Ctx n} {τ₁ τ₂ τ₃} → τ₁ ≁ τ₃ → Γ ⊬ π₁ ∶ (τ₁ ⊗ τ₂) ⇒ τ₃ π₂-⇒ : ∀ {n} {Γ : Ctx n} {τ} → not⇒ τ → Γ ⊬ π₂ ∶ τ π₂-⊗ : ∀ {n} {Γ : Ctx n} {τ₁ τ₂} → not⊗ τ₁ → Γ ⊬ π₂ ∶ τ₁ ⇒ τ₂ π₂-∼ : ∀ {n} {Γ : Ctx n} {τ₁ τ₂ τ₃} → τ₂ ≁ τ₃ → Γ ⊬ π₂ ∶ (τ₁ ⊗ τ₂) ⇒ τ₃ -- ƛ-funty holds if τ is not a function type at all, or if it is a -- function type whose input type is not τ₁. ƛ-funty : ∀ {n} {Γ : Ctx n} {t} {τ₁ τ} → (∀ {τ₂} → τ ≁ τ₁ ⇒ τ₂) → Γ ⊬ ƛ τ₁ t ∶ τ -- Otherwise, τ is of the form (τ₁ ⇒ τ₂) but the body t does not -- have type τ₂. Note this could be either because t is not typable -- at all, or because it has some type other than τ₂. ƛ : ∀ {n} {Γ : Ctx n} {t} {τ₁ τ₂} → (τ₁ ∷ Γ) ⊬ t ∶ τ₂ → Γ ⊬ ƛ τ₁ t ∶ (τ₁ ⇒ τ₂) -- Had this ƛ-resty constructor, but it turns out we don't need it: -- it is not used in inference or checking, and isn't needed to -- prove equivalence of ⊬ and ¬ ⊢ . It handles *only* the case -- where t is typable but has a type different than the output type -- of the whole expression; but the ƛ constructor handles this case -- as well as the case where t is not typeable at all. -- ƛ-resty : ∀ {n} {Γ : Ctx n} {t} {τ₁ τ₂ τ₃} -- → (τ₁ ∷ Γ) ⊢ t ∶ τ₂ -- → τ₂ ≁ τ₃ -- → Γ ⊬ ƛ τ₁ t ∶ τ₁ ⇒ τ₃ -- Finally, there are two cases when an application is not typeable. -- Either the function does not have an appropriate function type, -- or the argument does not have a type that matches the function's -- input type. ·-fun : ∀ {n} {Γ : Ctx n} {t₁ t₂} {τ₂} → (∀ {τ₁} → Γ ⊬ t₁ ∶ τ₁ ⇒ τ₂) → Γ ⊬ t₁ · t₂ ∶ τ₂ ·-arg : ∀ {n} {Γ : Ctx n} {t₁ t₂} {τ₁ τ₂} → Γ ⊢ t₁ ∶ τ₁ ⇒ τ₂ → Γ ⊬ t₂ ∶ τ₁ → Γ ⊬ t₁ · t₂ ∶ τ₂ -- ------------------------------------------------------------ -- -- Type inference and checking -- ------------------------------------------------------------ -- -- Type inference for a term in a given context returns either a type -- -- and a valid typing derivation, or a constructive proof that the -- -- term has no type. Note that in this system, ALL terms can be -- -- inferred. In a bidirectional system we would have to restrict this -- -- to only take inferrable terms as inputs. -- infer : ∀ {n} → (Γ : Ctx n) → (t : Expr n) → (∃ λ τ → Γ ⊢ t ∶ τ) ⊎ (∀ τ → Γ ⊬ t ∶ τ) -- infer Γ (lit n) = inj₁ (Nat , lit) -- infer Γ (t₁ ⊕ t₂) with infer Γ t₁ | infer Γ t₂ -- infer Γ (t₁ ⊕ t₂) | inj₁ (Nat , Γ⊢t₁∶Nat) | inj₁ (Nat , Γ⊢t₂∶Nat) = inj₁ (Nat , (Γ⊢t₁∶Nat ⊕ Γ⊢t₂∶Nat)) -- infer Γ (t₁ ⊕ t₂) | inj₁ (τ₁ ⇒ τ₂ , Γ⊢t₁∶τ₁⇒τ₂) | inj₁ _ = inj₂ (λ _ → ⊕ˡ (mismatch Γ⊢t₁∶τ₁⇒τ₂ (≁-sym Nat≁⇒))) -- infer Γ (t₁ ⊕ t₂) | inj₁ _ | inj₁ (τ₃ ⇒ τ₄ , Γ⊢t₂∶τ₃⇒τ₄) = inj₂ (λ _ → ⊕ʳ (mismatch Γ⊢t₂∶τ₃⇒τ₄ (≁-sym Nat≁⇒))) -- infer Γ (t₁ ⊕ t₂) | inj₂ Γ⊬t₁∶ | _ = inj₂ (λ _ → ⊕ˡ (Γ⊬t₁∶ Nat)) -- infer Γ (t₁ ⊕ t₂) | _ | inj₂ Γ⊬t₂∶ = inj₂ (λ _ → ⊕ʳ (Γ⊬t₂∶ Nat)) -- infer Γ (var i) = inj₁ (lookup i Γ , var) -- infer Γ (ƛ τ₁ t) with infer (τ₁ ∷ Γ) t -- infer Γ (ƛ τ₁ t) | inj₁ (τ₂ , τ₁∷Γ⊢t∶τ₂) = inj₁ (τ₁ ⇒ τ₂ , ƛ τ₁∷Γ⊢t∶τ₂) -- infer Γ (ƛ τ₁ t) | inj₂ τ₁∷Γ⊬t∶ = inj₂ lemma -- where -- lemma : (τ : Type) → Γ ⊬ ƛ τ₁ t ∶ τ -- lemma Nat = ƛ-funty Nat≁⇒ -- lemma (τ₁′ ⇒ τ₂) with τ₁′ ∼? τ₁ -- lemma (.τ₁ ⇒ τ₂) | inj₁ refl = ƛ (τ₁∷Γ⊬t∶ τ₂) -- lemma (τ₁′ ⇒ τ₂) | inj₂ τ₁′≁τ₁ = ƛ-funty (λ {τ₃} → ⇒ˡ-≁ τ₁′≁τ₁) -- infer Γ (t₁ · t₂) with infer Γ t₁ | infer Γ t₂ -- infer Γ (t₁ · t₂) | inj₁ (Nat , Γ⊢t₁∶Nat) | _ = inj₂ (λ _ → ·-fun (mismatch Γ⊢t₁∶Nat Nat≁⇒)) -- infer Γ (t₁ · t₂) | inj₁ (τ₁ ⇒ τ₂ , Γ⊢t₁∶τ₁⇒τ₂) | inj₁ (τ₁′ , Γ⊢t₂∶τ₁′) with τ₁ ∼? τ₁′ -- infer Γ (t₁ · t₂) | inj₁ (τ₁ ⇒ τ₂ , Γ⊢t₁∶τ₁⇒τ₂) | inj₁ (.τ₁ , Γ⊢t₂∶τ₁ ) | inj₁ refl = inj₁ (τ₂ , (Γ⊢t₁∶τ₁⇒τ₂ · Γ⊢t₂∶τ₁)) -- infer Γ (t₁ · t₂) | inj₁ (τ₁ ⇒ τ₂ , Γ⊢t₁∶τ₁⇒τ₂) | inj₁ (τ₁′ , Γ⊢t₂∶τ₁′) | inj₂ τ₁≁τ₁′ = inj₂ lemma2 -- where -- lemma2 : ∀ τ → Γ ⊬ t₁ · t₂ ∶ τ -- lemma2 τ with τ ∼? τ₂ -- lemma2 τ | inj₁ τ≡τ₂ rewrite τ≡τ₂ = ·-arg Γ⊢t₁∶τ₁⇒τ₂ (mismatch Γ⊢t₂∶τ₁′ (≁-sym τ₁≁τ₁′)) -- lemma2 τ | inj₂ τ≁τ₂ = ·-fun (mismatch Γ⊢t₁∶τ₁⇒τ₂ (⇒ʳ-≁ (≁-sym τ≁τ₂))) -- infer Γ (t₁ · t₂) | inj₁ (τ₁ ⇒ τ₂ , Γ⊢t₁∶τ₁⇒τ₂) | inj₂ Γ⊬t₂ = inj₂ lemma3 -- where -- lemma3 : ∀ τ → Γ ⊬ t₁ · t₂ ∶ τ -- lemma3 τ with τ ∼? τ₂ -- lemma3 τ | inj₁ τ≡τ₂ rewrite τ≡τ₂ = ·-arg Γ⊢t₁∶τ₁⇒τ₂ (Γ⊬t₂ τ₁) -- lemma3 τ | inj₂ τ≁τ₂ = ·-fun (mismatch Γ⊢t₁∶τ₁⇒τ₂ (⇒ʳ-≁ (≁-sym τ≁τ₂))) -- infer Γ (t₁ · t₂) | inj₂ Γ⊬t₁∶ | _ = inj₂ (λ τ₂ → ·-fun (λ {τ₁} → Γ⊬t₁∶ (τ₁ ⇒ τ₂))) -- -- Check whether a given term has a *given* type. -- check : ∀ {n} → (Γ : Ctx n) → (t : Expr n) → (τ : Type) → (Γ ⊢ t ∶ τ) ⊎ (Γ ⊬ t ∶ τ) -- check Γ (lit _) (τ ⇒ τ₁) = inj₂ (mismatch lit Nat≁⇒) -- check Γ (lit _) Nat = inj₁ lit -- check Γ (_ ⊕ _ ) (τ ⇒ τ₁) = inj₂ (⊕≁Nat (≁-sym Nat≁⇒)) -- check Γ (t₁ ⊕ t₂) Nat with check Γ t₁ Nat | check Γ t₂ Nat -- check Γ (t₁ ⊕ t₂) Nat | inj₁ Γ⊢t₁∶Nat | inj₁ Γ⊢t₂∶Nat = inj₁ (Γ⊢t₁∶Nat ⊕ Γ⊢t₂∶Nat) -- check Γ (t₁ ⊕ t₂) Nat | inj₂ Γ⊬t₁∶Nat | _ = inj₂ (⊕ˡ Γ⊬t₁∶Nat) -- check Γ (t₁ ⊕ t₂) Nat | _ | inj₂ Γ⊬t₂∶Nat = inj₂ (⊕ʳ Γ⊬t₂∶Nat) -- check Γ (var i) τ with τ ∼? lookup i Γ -- check Γ (var i) τ | inj₁ τ≡iΓ rewrite τ≡iΓ = inj₁ var -- check Γ (var i) τ | inj₂ τ≁iΓ = inj₂ (mismatch var (≁-sym τ≁iΓ)) -- check Γ (ƛ τ₁ t) Nat = inj₂ (ƛ-funty Nat≁⇒) -- check Γ (ƛ τ₁ t) (τ ⇒ τ₂) with τ ∼? τ₁ | check (τ₁ ∷ Γ) t τ₂ -- check Γ (ƛ τ₁ t) (τ ⇒ τ₂) | inj₂ τ≁τ₁ | _ = inj₂ (ƛ-funty (⇒ˡ-≁ τ≁τ₁)) -- check Γ (ƛ τ₁ t) (.τ₁ ⇒ τ₂) | inj₁ refl | inj₂ τ₁∷Γ⊬t∶τ₂ = inj₂ (ƛ τ₁∷Γ⊬t∶τ₂) -- check Γ (ƛ τ₁ t) (.τ₁ ⇒ τ₂) | inj₁ refl | inj₁ τ₁∷Γ⊢t∶τ₂ = inj₁ (ƛ τ₁∷Γ⊢t∶τ₂) -- --- Note that in order to check an application we have to use type inference on t₁. -- check Γ (t₁ · t₂) τ with infer Γ t₁ -- check Γ (t₁ · t₂) τ | inj₂ Γ⊬t₁∶ = inj₂ (·-fun (λ {τ₁} → Γ⊬t₁∶ (τ₁ ⇒ τ))) -- check Γ (t₁ · t₂) τ | inj₁ (Nat , Γ⊢t₁∶τ₁) = inj₂ (·-fun (mismatch Γ⊢t₁∶τ₁ Nat≁⇒)) -- check Γ (t₁ · t₂) τ | inj₁ (τ₁ ⇒ τ₂ , Γ⊢t₁∶τ₁) with τ ∼? τ₂ -- check Γ (t₁ · t₂) τ | inj₁ (τ₁ ⇒ τ₂ , Γ⊢t₁∶τ₁) | inj₂ τ≁τ₂ = inj₂ (·-fun (mismatch Γ⊢t₁∶τ₁ (⇒ʳ-≁ (≁-sym τ≁τ₂)))) -- check Γ (t₁ · t₂) τ | inj₁ (τ₁ ⇒ τ₂ , Γ⊢t₁∶τ₁) | inj₁ τ≡τ₂ rewrite τ≡τ₂ with check Γ t₂ τ₁ -- check Γ (t₁ · t₂) τ | inj₁ (τ₁ ⇒ τ₂ , Γ⊢t₁∶τ₁) | inj₁ τ≡τ₂ | inj₂ Γ⊬t₂∶τ₁ = inj₂ (·-arg Γ⊢t₁∶τ₁ Γ⊬t₂∶τ₁) -- check Γ (t₁ · t₂) τ | inj₁ (τ₁ ⇒ τ₂ , Γ⊢t₁∶τ₁) | inj₁ τ≡τ₂ | inj₁ Γ⊢t₂∶τ₁ = inj₁ (Γ⊢t₁∶τ₁ · Γ⊢t₂∶τ₁) -- ------------------------------------------------------------ -- -- Correctness -- ------------------------------------------------------------ -- -- The whole idea is that ⊬ is a more explicit/constructive, yet -- -- equivalent, way to represent the negation of ⊢ . We can actually -- -- prove the equivalence. -- -- First, straightforward induction on typing derivations shows that -- -- we really do have unique types, as assumed by the 'mismatch' -- -- constructor. -- ⊢-unique : ∀ {n} {Γ : Ctx n} {t : Expr n} {τ₁ τ₂ : Type} → (Γ ⊢ t ∶ τ₁) → (Γ ⊢ t ∶ τ₂) → (τ₁ ≡ τ₂) -- ⊢-unique lit lit = refl -- ⊢-unique (_ ⊕ _) (_ ⊕ _) = refl -- ⊢-unique var var = refl -- ⊢-unique (ƛ Γ⊢t∶τ₁) (ƛ Γ⊢t∶τ₂) rewrite ⊢-unique Γ⊢t∶τ₁ Γ⊢t∶τ₂ = refl -- ⊢-unique (Γ⊢t∶τ₁ · _) (Γ⊢t∶τ₂ · _) = proj₂ (⇒-inj (⊢-unique Γ⊢t∶τ₁ Γ⊢t∶τ₂)) -- -- Now we can do one direction of the equivalence. This direction is -- -- just induction over derivations, making use of uniqueness of -- -- typing. -- ⊬-¬⊢ : ∀ {n} {Γ : Ctx n} {t : Expr n} {τ : Type} → (Γ ⊬ t ∶ τ) → (¬ (Γ ⊢ t ∶ τ)) -- ⊬-¬⊢ (mismatch Γ⊢t∶τ₁ τ₁≁τ) Γ⊢t∶τ = ≁-≢ τ₁≁τ (⊢-unique Γ⊢t∶τ₁ Γ⊢t∶τ) -- ⊬-¬⊢ (⊕ˡ Γ⊬t₁∶N) (Γ⊢t₁∶N ⊕ _ ) = ⊬-¬⊢ Γ⊬t₁∶N Γ⊢t₁∶N -- ⊬-¬⊢ (⊕ʳ Γ⊬t₂∶N) (_ ⊕ Γ⊢t₂∶N) = ⊬-¬⊢ Γ⊬t₂∶N Γ⊢t₂∶N -- ⊬-¬⊢ (⊕≁Nat τ≁N) (_ ⊕ _ ) = ≁-≢ τ≁N refl -- ⊬-¬⊢ (ƛ-funty τ≁τ₁⇒) (ƛ _) = ≁-≢ τ≁τ₁⇒ refl -- ⊬-¬⊢ (ƛ Γ⊬t∶τ₂) (ƛ Γ⊢t∶τ₂) = ⊬-¬⊢ Γ⊬t∶τ₂ Γ⊢t∶τ₂ -- ⊬-¬⊢ (·-fun Γ⊬t₁) (Γ⊢t₁ · _) = ⊬-¬⊢ Γ⊬t₁ Γ⊢t₁ -- ⊬-¬⊢ (·-arg Γ⊢t₁∶τ₁⇒τ Γ⊬t₂∶τ) (Γ⊢t₁∶τ₂⇒τ · Γ⊢t₂) -- rewrite proj₁ (⇒-inj (⊢-unique Γ⊢t₁∶τ₁⇒τ Γ⊢t₁∶τ₂⇒τ)) = ⊬-¬⊢ Γ⊬t₂∶τ Γ⊢t₂ -- -- The other direction follows straightforwardly from type checking. -- ¬⊢-⊬ : ∀ {n} {Γ : Ctx n} {t : Expr n} {τ : Type} → (¬ (Γ ⊢ t ∶ τ)) → (Γ ⊬ t ∶ τ) -- ¬⊢-⊬ {_} {Γ} {t} {τ} ¬Γ⊢t∶τ with check Γ t τ -- ¬⊢-⊬ ¬Γ⊢t∶τ | inj₁ Γ⊢t∶τ = ⊥-elim (¬Γ⊢t∶τ Γ⊢t∶τ) -- ¬⊢-⊬ ¬Γ⊢t∶τ | inj₂ Γ⊬t∶τ = Γ⊬t∶τ -- ------------------------------------------------------------ -- -- Take 2 -- ------------------------------------------------------------ -- -- XXX these need to be dependent somehow? e.g. consider the ƛ case -- -- below. If τ is not an arrow type the whole thing fails; but if it -- -- does, we need to know what τ₁ and τ₂ are in order to refer to them -- -- in the rest of the conditions. -- data many : List (Set × Set) → Set where -- empty : many [] -- here : ∀ {Tₗ Tᵣ Ts} → Tₗ → many Ts → many ((Tₗ , Tᵣ) ∷ Ts) -- there : ∀ {Tₗ Tᵣ Ts} → Tᵣ → many Ts → many ((Tₗ , Tᵣ) ∷ Ts) -- data some : List (Set × Set) → Set where -- here : ∀ {Tₗ Tᵣ Ts} → Tₗ → many Ts → some ((Tₗ , Tᵣ) ∷ Ts) -- there : ∀ {Tₗ Tᵣ Ts} → Tᵣ → some Ts → some ((Tₗ , Tᵣ) ∷ Ts) -- -- Unique untypability; gives *every* possible reason that something -- -- is not typeable. There is no 'mismatch' constructor. -- {-# NO_POSITIVITY_CHECK #-} -- data _⊬₂_∶_ : ∀ {n} → Ctx n → Expr n → Type → Set where -- lit : ∀ {n} {Γ : Ctx n} {m} {τ} → τ ≁ Nat → Γ ⊬₂ lit m ∶ τ -- -- For t₁ ⊕ t₂ to be untypeable, at least one of three things must be wrong: -- ⊕ : ∀ {n} {Γ : Ctx n} {t₁ t₂ τ} -- → some -- ( (Γ ⊬₂ t₁ ∶ Nat , Γ ⊢ t₁ ∶ Nat) -- Either t₁ is well-typed or not -- ∷ (Γ ⊬₂ t₂ ∶ Nat , Γ ⊢ t₂ ∶ Nat) -- Either t₂ is well-typed or not -- ∷ ((τ ≁ Nat) , (τ ≡ Nat)) -- τ is Nat or not -- ∷ [] -- ) -- → Γ ⊬₂ t₁ ⊕ t₂ ∶ τ -- var : ∀ {n} {Γ : Ctx n} {i τ} -- → τ ≁ lookup i Γ -- → Γ ⊬₂ var i ∶ τ -- -- ƛ τ₁ t does not have type τ if -- -- - τ is not an arrow type -- -- ƛ : ∀ {n} {Γ : Ctx n} {t} {τ₁ τ₂ τ} -- -- → some -- -- ( (τ ≁
{ "alphanum_fraction": 0.4710358234, "avg_line_length": 41.1073059361, "ext": "agda", "hexsha": "df8d448e16aa68f9d8460e7ae34349b3d2b6712f", "lang": "Agda", "max_forks_count": 20, "max_forks_repo_forks_event_max_datetime": "2021-07-30T05:37:45.000Z", "max_forks_repo_forks_event_min_datetime": "2017-02-18T20:36:05.000Z", "max_forks_repo_head_hexsha": "6c7561bcc9877c6df9107f12f7e843f4e880189a", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "enlambdment/disco", "max_forks_repo_path": "explore/typecheck/UntypingPairs.agda", "max_issues_count": 282, "max_issues_repo_head_hexsha": "6c7561bcc9877c6df9107f12f7e843f4e880189a", "max_issues_repo_issues_event_max_datetime": "2022-03-28T21:43:15.000Z", "max_issues_repo_issues_event_min_datetime": "2016-11-19T18:05:42.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "enlambdment/disco", "max_issues_repo_path": "explore/typecheck/UntypingPairs.agda", "max_line_length": 123, "max_stars_count": 138, "max_stars_repo_head_hexsha": "6c7561bcc9877c6df9107f12f7e843f4e880189a", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "enlambdment/disco", "max_stars_repo_path": "explore/typecheck/UntypingPairs.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-22T22:56:45.000Z", "max_stars_repo_stars_event_min_datetime": "2016-12-10T08:10:03.000Z", "num_tokens": 9478, "size": 18005 }
module UniDB.Morph.Reg where open import UniDB.Spec open import UniDB.Morph.WeakenPrime open import UniDB.Morph.ShiftsPrime -------------------------------------------------------------------------------- data Reg (T : STX) : MOR where baseR : {γ₁ γ₂ : Dom} (ξ : Weaken` γ₁ γ₂) → Reg T γ₁ γ₂ snocR : {γ₁ γ₂ : Dom} (ξ : Reg T γ₁ γ₂) (t : T γ₂) → Reg T (suc γ₁) γ₂ module _ {T : STX} where instance iIdmReg : Idm (Reg T) idm {{iIdmReg}} γ = baseR baseW iWkmReg : Wkm (Reg T) wkm {{iWkmReg}} δ = baseR (wkm {Weaken`} δ) iBetaReg : Beta T (Reg T) beta {{iBetaReg}} t = snocR (idm {_} _) t module _ {{vrT : Vr T}} {{wkT : Wk T}} where instance iWkReg : {γ₁ : Dom} → Wk (Reg T γ₁) wk₁ {{iWkReg}} (baseR ξ) = baseR (wk₁ ξ) wk₁ {{iWkReg}} (snocR ξ t) = snocR (wk₁ ξ) (wk₁ t) wk {{iWkReg}} zero ξ = ξ wk {{iWkReg}} (suc δ) ξ = wk₁ (wk δ ξ) wk-zero {{iWkReg}} x = refl wk-suc {{iWkReg}} δ x = refl iUpReg : Up (Reg T) _↑₁ {{iUpReg}} ξ = snocR (wk₁ ξ) (vr {T} zero) _↑_ {{iUpReg}} ξ 0 = ξ _↑_ {{iUpReg}} ξ (suc δ⁺) = ξ ↑ δ⁺ ↑₁ ↑-zero {{iUpReg}} ξ = refl ↑-suc {{iUpReg}} ξ δ⁺ = refl -- iUpIdmReg : {{wkT : Wk T}} → UpIdm (Reg T) -- idm-↑₁ {{iUpIdmReg}} = ?refl instance iHCompWeakenReg : HComp Weaken` (Reg T) (Reg T) _⊡_ {{iHCompWeakenReg}} ξ (baseR ζ) = baseR (ξ ⊙ ζ) _⊡_ {{iHCompWeakenReg}} baseW ζ = ζ _⊡_ {{iHCompWeakenReg}} (stepW ξ) (snocR ζ t) = ξ ⊡ ζ iHCompIdmLeftWeakenReg : HCompIdmLeft Weaken` (Reg T) idm-⊡ {{iHCompIdmLeftWeakenReg}} (baseR ξ) rewrite idm-⊙ {Weaken`} ξ = refl idm-⊡ {{iHCompIdmLeftWeakenReg}} (snocR ξ₂ t) = refl ⊡-⊡-assoc : {γ₁ γ₂ γ₃ γ₄ : Dom} (ξ₁ : Weaken` γ₁ γ₂) (ξ₂ : Weaken` γ₂ γ₃) (ξ₃ : Reg T γ₃ γ₄) → _⊡_ {Weaken`} {Reg T} {Reg T} ξ₁ (ξ₂ ⊡ ξ₃) ≡ (ξ₁ ⊙ ξ₂) ⊡ ξ₃ ⊡-⊡-assoc ξ₁ ξ₂ (baseR ξ₃) = cong baseR (⊙-assoc {Weaken`} ξ₁ ξ₂ ξ₃) ⊡-⊡-assoc ξ₁ baseW ξ₃ rewrite idm-⊡ {Weaken`} {Reg T} ξ₃ = refl ⊡-⊡-assoc ξ₁ (stepW ξ₂) (snocR ξ₃ t) = ⊡-⊡-assoc ξ₁ ξ₂ ξ₃ module _ {T : STX} {{vrT : Vr T}} where instance iLkReg : Lk T (Reg T) lk {{iLkReg}} (baseR ξ) i = lk {T} {Weaken`} ξ i lk {{iLkReg}} (snocR ξ t) zero = t lk {{iLkReg}} (snocR ξ t) (suc i) = lk {T} {Reg T} ξ i iLkIdmReg : LkIdm T (Reg T) lk-idm {{iLkIdmReg}} i = refl iLkWkmReg : {{wkT : Wk T}} → LkWkm T (Reg T) lk-wkm {{iLkWkmReg}} = lk-wkm {T} {Weaken`} iLkUpReg : {{wkT : Wk T}} {{wkVrT : WkVr T}} → LkUp T (Reg T) lk-↑₁-zero {{iLkUpReg}} ξ = refl lk-↑₁-suc {{iLkUpReg}} (baseR ξ) i = sym (wk₁-vr {T} (lk {Ix} {Weaken`} ξ i)) lk-↑₁-suc {{iLkUpReg}} (snocR ξ t) zero = refl lk-↑₁-suc {{iLkUpReg}} (snocR ξ t) (suc i) = lk-↑₁-suc {T} {Reg T} ξ i --------------------------------------------------------------------------------
{ "alphanum_fraction": 0.499316473, "avg_line_length": 33.25, "ext": "agda", "hexsha": "6f47f1b620ff51ee90036d43f1c9899959abc35d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "skeuchel/unidb-agda", "max_forks_repo_path": "UniDB/Morph/Reg.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "skeuchel/unidb-agda", "max_issues_repo_path": "UniDB/Morph/Reg.agda", "max_line_length": 89, "max_stars_count": null, "max_stars_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "skeuchel/unidb-agda", "max_stars_repo_path": "UniDB/Morph/Reg.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1408, "size": 2926 }
------------------------------------------------------------------------ -- Not ------------------------------------------------------------------------ module TotalParserCombinators.Not where open import Axiom.Extensionality.Propositional open import Data.Bool open import Data.Empty open import Data.List open import Data.List.Membership.Propositional using (_∈_) open import Data.List.Relation.Binary.BagAndSetEquality using () renaming (_∼[_]_ to _List-∼[_]_) open import Data.List.Relation.Unary.Any using (here; there) open import Data.Product import Data.Product.Function.Dependent.Propositional as Σ open import Data.Unit open import Function.Base open import Function.Equality using (_⟨$⟩_) open import Function.Equivalence using (module Equivalence) open import Function.Inverse as Inv using (_↔_) open import Function.Related import Function.Related.TypeIsomorphisms as Iso open import Level open import Relation.Binary.PropositionalEquality as P using (_≡_) open import TotalParserCombinators.Congruence as C using (_∼[_]P_; _≅P_) open import TotalParserCombinators.Derivative using (D) open import TotalParserCombinators.Parser import TotalParserCombinators.Pointwise as Pointwise open import TotalParserCombinators.Semantics using (_∈_·_; parser) ------------------------------------------------------------------------ -- An initial bag operator -- not-index xs is non-empty iff xs is empty. not-index : {R : Set} → List R → List ⊤ not-index xs = if null xs then [ tt ] else [] -- not-index preserves equality. not-index-cong : ∀ {k R} {xs xs′ : List R} → xs List-∼[ ⌊ k ⌋⇔ ] xs′ → not-index xs List-∼[ ⌊ k ⌋⇔ ] not-index xs′ not-index-cong {xs = [] } {xs′ = [] } eq = ↔⇒ Inv.id not-index-cong {xs = _ ∷ _} {xs′ = _ ∷ _} eq = ↔⇒ Inv.id not-index-cong {xs = [] } {xs′ = _ ∷ _} eq with Equivalence.from (⇒⇔ eq) ⟨$⟩ here P.refl ... | () not-index-cong {xs = _ ∷ _} {xs′ = [] } eq with Equivalence.to (⇒⇔ eq) ⟨$⟩ here P.refl ... | () -- not-index is correct, assuming that propositional equality is -- extensional. not-index-correct : Extensionality zero zero → ∀ {R} (xs : List R) → tt ∈ not-index xs ↔ ∄ λ x → x ∈ xs not-index-correct ext [] = record { to = P.→-to-⟶ to ; from = P.→-to-⟶ from ; inverse-of = record { left-inverse-of = from∘to ; right-inverse-of = to∘from } } where to : tt ∈ [ tt ] → ∄ λ x → x ∈ [] to _ (_ , ()) from : (∄ λ x → x ∈ []) → tt ∈ [ tt ] from _ = here P.refl to∘from : (p : ∄ λ x → x ∈ []) → to (from p) ≡ p to∘from p = ext helper where helper : (∈[] : ∃ λ x → x ∈ []) → to (from p) ∈[] ≡ p ∈[] helper (_ , ()) from∘to : (p : tt ∈ [ tt ]) → from (to p) ≡ p from∘to (here P.refl) = P.refl from∘to (there ()) not-index-correct ext (x ∷ xs) = record { to = P.→-to-⟶ to ; from = P.→-to-⟶ from ; inverse-of = record { left-inverse-of = λ () ; right-inverse-of = to∘from } } where ys = x ∷ xs to : tt ∈ [] → ∄ λ y → y ∈ ys to () from : (∄ λ y → y ∈ ys) → tt ∈ [] from y∉∷ with y∉∷ (-, here P.refl) ... | () to∘from : (p : ∄ λ y → y ∈ ys) → to (from p) ≡ p to∘from y∉∷ with y∉∷ (-, here P.refl) ... | () ------------------------------------------------------------------------ -- Not -- ¬_ is defined as a pointwise lifting of not-index. Note that ¬_ -- preserves parser and language equality, but not the -- sub-/superparser and sub-/superlanguage relations. private module Not {R : Set} = Pointwise ⊥ R ⌊_⌋⇔ (const not-index) (const not-index-cong) infix 60 ¬_ ¬-cong_ -- ¬ p returns a result if p doesn't. ¬_ : ∀ {Tok R xs} → Parser Tok R xs → Parser Tok ⊤ (not-index xs) ¬_ = Not.lift fail -- D distributes over ¬_. D-¬ : ∀ {Tok R xs t} (p : Parser Tok R xs) → D t (¬ p) ≅P ¬ D t p D-¬ = Not.D-lift fail -- ¬_ preserves equality. ¬-cong_ : ∀ {k Tok R xs xs′} {p : Parser Tok R xs} {p′ : Parser Tok R xs′} → p ∼[ ⌊ k ⌋⇔ ]P p′ → ¬ p ∼[ ⌊ k ⌋⇔ ]P ¬ p′ ¬-cong_ = Not.lift-cong C.fail -- ¬_ is correct (assuming that propositional equality is -- extensional). correct : (∀ {ℓ} → Extensionality ℓ zero) → ∀ {Tok R xs s} (p : Parser Tok R xs) → tt ∈ ¬ p · s ↔ ∄ λ x → x ∈ p · s correct ext = Not.lift-property (λ _ G H → H tt ↔ ∄ G) (λ _ G↔G′ H↔H′ → Iso.Related-cong (H↔H′ tt) (Iso.→-cong ext ext (Σ.cong Inv.id λ {x} → G↔G′ x) Inv.id)) (not-index-correct ext _) fail
{ "alphanum_fraction": 0.5490326885, "avg_line_length": 29.3921568627, "ext": "agda", "hexsha": "a88e26b465942420f758e22fd15f7bc6fd082232", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "TotalParserCombinators/Not.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "TotalParserCombinators/Not.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/parser-combinators", "max_stars_repo_path": "TotalParserCombinators/Not.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z", "num_tokens": 1517, "size": 4497 }
module Issue1039 where open import Common.Level Test : ∀ {a b} → Set a → Set (a ⊔ b) → Set a Test X Y = X test : Set (lsuc lzero) test = Test Set (Set (lsuc lzero)) test₂ : ∀ {l} → Set (lsuc l) test₂ {l} = Test (Set l) (Set (lsuc l))
{ "alphanum_fraction": 0.5966386555, "avg_line_length": 18.3076923077, "ext": "agda", "hexsha": "49642ba2b1386c611da65ddda94fd639e690bcd1", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1039.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1039.agda", "max_line_length": 44, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1039.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 92, "size": 238 }
module Numeral.Natural.Function.Coprimalize where open import Data.Tuple open import Numeral.Natural open import Numeral.Natural.Function.GreatestCommonDivisor open import Numeral.Natural.Oper.FlooredDivision coprimalize : (ℕ ⨯ ℕ) → (ℕ ⨯ ℕ) coprimalize(x , y) = ((x ⌊/⌋₀ gcd(x)(y)) , (y ⌊/⌋₀ gcd(x)(y))) {- TODO: Maybe prove something like (b ∣ a) → ((d ∣ (a / b)) ↔ ((d ∣ a) ∧ (d ∤ b))) if it holds? open import Numeral.Natural.Coprime open import Relator.Equals Coprime-coprimalize : ∀{xy} → uncurry Coprime(coprimalize xy) Coprime.proof Coprime-coprimalize nx ny = {!!} where n ∣ (x ⌊/⌋₀ gcd(x)(y)) (n ∣ x) ∧ (n ∤ gcd(x)(y)) -}
{ "alphanum_fraction": 0.6698113208, "avg_line_length": 30.2857142857, "ext": "agda", "hexsha": "e19a4f30507d65b8cb0e19a6bb4c61c694e2b86a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Natural/Function/Coprimalize.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Natural/Function/Coprimalize.agda", "max_line_length": 96, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Natural/Function/Coprimalize.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 249, "size": 636 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of n-ary products ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Vec.Recursive.Properties where open import Level using (Level) open import Data.Nat.Base hiding (_^_) open import Data.Product open import Data.Vec.Recursive open import Data.Vec.Base using (Vec; _∷_) open import Function.Inverse using (_↔_; inverse) open import Relation.Binary.PropositionalEquality as P open ≡-Reasoning private variable a : Level A : Set a ------------------------------------------------------------------------ -- Basic proofs cons-head-tail-identity : ∀ n (as : A ^ suc n) → cons n (head n as) (tail n as) ≡ as cons-head-tail-identity 0 as = P.refl cons-head-tail-identity (suc n) as = P.refl head-cons-identity : ∀ n a (as : A ^ n) → head n (cons n a as) ≡ a head-cons-identity 0 a as = P.refl head-cons-identity (suc n) a as = P.refl tail-cons-identity : ∀ n a (as : A ^ n) → tail n (cons n a as) ≡ as tail-cons-identity 0 a as = P.refl tail-cons-identity (suc n) a as = P.refl append-cons-commute : ∀ m n a (xs : A ^ m) ys → append (suc m) n (cons m a xs) ys ≡ cons (m + n) a (append m n xs ys) append-cons-commute 0 n a xs ys = P.refl append-cons-commute (suc m) n a xs ys = P.refl append-splitAt-identity : ∀ m n (as : A ^ (m + n)) → uncurry (append m n) (splitAt m n as) ≡ as append-splitAt-identity 0 n as = P.refl append-splitAt-identity (suc m) n as = begin let x = head (m + n) as in let (xs , ys) = splitAt m n (tail (m + n) as) in append (suc m) n (cons m (head (m + n) as) xs) ys ≡⟨ append-cons-commute m n x xs ys ⟩ cons (m + n) x (append m n xs ys) ≡⟨ P.cong (cons (m + n) x) (append-splitAt-identity m n (tail (m + n) as)) ⟩ cons (m + n) x (tail (m + n) as) ≡⟨ cons-head-tail-identity (m + n) as ⟩ as ∎ ------------------------------------------------------------------------ -- Conversion to and from Vec fromVec∘toVec : ∀ n (xs : A ^ n) → fromVec (toVec n xs) ≡ xs fromVec∘toVec 0 _ = P.refl fromVec∘toVec (suc n) xs = begin cons n (head n xs) (fromVec (toVec n (tail n xs))) ≡⟨ P.cong (cons n (head n xs)) (fromVec∘toVec n (tail n xs)) ⟩ cons n (head n xs) (tail n xs) ≡⟨ cons-head-tail-identity n xs ⟩ xs ∎ toVec∘fromVec : ∀ {n} (xs : Vec A n) → toVec n (fromVec xs) ≡ xs toVec∘fromVec Vec.[] = P.refl toVec∘fromVec {n = suc n} (x Vec.∷ xs) = begin head n (cons n x (fromVec xs)) Vec.∷ toVec n (tail n (cons n x (fromVec xs))) ≡⟨ P.cong₂ (λ x xs → x Vec.∷ toVec n xs) hd-prf tl-prf ⟩ x Vec.∷ toVec n (fromVec xs) ≡⟨ P.cong (x Vec.∷_) (toVec∘fromVec xs) ⟩ x Vec.∷ xs ∎ where hd-prf = head-cons-identity _ x (fromVec xs) tl-prf = tail-cons-identity _ x (fromVec xs) ↔Vec : ∀ n → A ^ n ↔ Vec A n ↔Vec n = inverse (toVec n) fromVec (fromVec∘toVec n) toVec∘fromVec
{ "alphanum_fraction": 0.5487723955, "avg_line_length": 35.0465116279, "ext": "agda", "hexsha": "f97c91ef43d6affb25e2a0e6d16cb6daa2a3b5e9", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/Vec/Recursive/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/Vec/Recursive/Properties.agda", "max_line_length": 95, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/Vec/Recursive/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 1061, "size": 3014 }
-- This is mostly based on the ``Dependently-typed Functional Programming'' -- lecture from Pierre-Evariste Dagand (17--18, MPRI). -- ref: https://gitlab.inria.fr/fpottier/mpri-2.4-public/ module lambda.stlc where open import Relation.Binary.PropositionalEquality open import Function hiding (id) open import Data.Product open import Agda.Builtin.Unit open import lambda.stack infixr 50 _⇒_ data type : Set where unit : type _⇒_ : type → type → type context : Set context = stack type data _⊢_ (Γ : context) : type → Set where lam : ∀ {A B} → Γ ▸ A ⊢ B → Γ ⊢ A ⇒ B var : ∀ {A} → A ∈ Γ → Γ ⊢ A app : ∀ {A B} → Γ ⊢ A ⇒ B → Γ ⊢ A → Γ ⊢ B tt : Γ ⊢ unit module norm where infix 30 _⊢ⁿ_ infix 30 _⊢ᵉ_ infix 40 _⟶_ infix 45 _⟦⇒⟧_ infix 50 _⟦×⟧_ data _⊢ᵉ_ (Γ : context) : type → Set data _⊢ⁿ_ (Γ : context) : type → Set data _⊢ⁿ_ (Γ : context) where lam : ∀ {A B} → Γ ▸ A ⊢ⁿ B → Γ ⊢ⁿ A ⇒ B tt : Γ ⊢ⁿ unit ground : Γ ⊢ᵉ unit → Γ ⊢ⁿ unit data _⊢ᵉ_ (Γ : context) where var : ∀ {A} → A ∈ Γ → Γ ⊢ᵉ A app : ∀ {A B} → Γ ⊢ᵉ A ⇒ B → Γ ⊢ⁿ A → Γ ⊢ᵉ B ⌊_⌋ⁿ : ∀ {Γ A} → Γ ⊢ⁿ A → Γ ⊢ A ⌊_⌋ᵉ : ∀ {Γ A} → Γ ⊢ᵉ A → Γ ⊢ A ⌊ lam x ⌋ⁿ = lam ⌊ x ⌋ⁿ ⌊ tt ⌋ⁿ = tt ⌊ ground x ⌋ⁿ = ⌊ x ⌋ᵉ ⌊ var x ⌋ᵉ = var x ⌊ app x y ⌋ᵉ = app ⌊ x ⌋ᵉ ⌊ y ⌋ⁿ record sem : Set₁ where field _⊢ : context → Set ren : ∀ {Γ Δ} → Γ ⊇ Δ → Δ ⊢ → Γ ⊢ _⟶_ : (A B : sem) → Set A ⟶ B = ∀ {Γ} → Γ ⊢A → Γ ⊢B where open sem A renaming (_⊢ to _⊢A) open sem B renaming (_⊢ to _⊢B) renameⁿ : ∀ {Γ Δ T} → Γ ⊇ Δ → Δ ⊢ⁿ T → Γ ⊢ⁿ T renameᵉ : ∀ {Γ Δ T} → Γ ⊇ Δ → Δ ⊢ᵉ T → Γ ⊢ᵉ T renameⁿ wk (lam b) = lam (renameⁿ (keep wk) b) renameⁿ wk (ground grnd) = ground (renameᵉ wk grnd) renameⁿ wk tt = tt renameᵉ wk (var v) = var (shift wk v) renameᵉ wk (app f s) = app (renameᵉ wk f) (renameⁿ wk s) renameⁿ-id : ∀ {Γ T} → (x : Γ ⊢ⁿ T) → renameⁿ id x ≡ x renameᵉ-id : ∀ {Γ T} → (x : Γ ⊢ᵉ T) → renameᵉ id x ≡ x renameⁿ-id (lam x) = cong lam (renameⁿ-id x) renameⁿ-id tt = refl renameⁿ-id (ground x) = cong ground (renameᵉ-id x) renameᵉ-id (var x) = cong var (shift-id x) renameᵉ-id (app x y) = cong₂ app (renameᵉ-id x) (renameⁿ-id y) semⁿ : type → sem semⁿ T = record { _⊢ = λ Γ → Γ ⊢ⁿ T ; ren = renameⁿ } semᵉ : type → sem semᵉ T = record { _⊢ = λ Γ → Γ ⊢ᵉ T ; ren = renameᵉ } ⟦unit⟧ : sem ⟦unit⟧ = semⁿ unit ⟦tt⟧ : ∀ {P} → P ⟶ ⟦unit⟧ ⟦tt⟧ ρ = tt _⟦⇒⟧_ : sem → sem → sem P ⟦⇒⟧ Q = record { _⊢ = λ Γ → ∀ {Δ} → Δ ⊇ Γ → Δ ⊢P → Δ ⊢Q ; ren = λ wk₁ k wk₂ → k (wk₂ ∘⊇ wk₁) } where open sem P renaming (_⊢ to _⊢P) open sem Q renaming (_⊢ to _⊢Q) _⟦×⟧_ : sem → sem → sem P ⟦×⟧ Q = record { _⊢ = λ Γ → (Γ ⊢P) × (Γ ⊢Q) ; ren = λ { wk (x , y) → ( ren-P wk x , ren-Q wk y ) } } where open sem P renaming (_⊢ to _⊢P ; ren to ren-P) open sem Q renaming (_⊢ to _⊢Q ; ren to ren-Q) ⟦lam⟧ : ∀ {P Q R} → P ⟦×⟧ Q ⟶ R → P ⟶ Q ⟦⇒⟧ R ⟦lam⟧ {P} η p = λ wk q → η (ren-P wk p , q) where open sem P renaming (ren to ren-P) ⟦app⟧ : ∀ {P Q R} → P ⟶ Q ⟦⇒⟧ R → P ⟶ Q → P ⟶ R ⟦app⟧ η μ = λ px → η px id (μ px) ⟦_⟧ : type → sem ⟦ unit ⟧ = ⟦unit⟧ ⟦ S ⇒ T ⟧ = ⟦ S ⟧ ⟦⇒⟧ ⟦ T ⟧ ⊤̂ : sem ⊤̂ = record { _⊢ = λ _ → ⊤ ; ren = λ _ _ → tt } ⟦_⟧c : (Γ : context) → sem ⟦ ε ⟧c = ⊤̂ ⟦ Γ ▸ T ⟧c = ⟦ Γ ⟧c ⟦×⟧ ⟦ T ⟧ _⟦⊢⟧_ : context → type → Set Γ ⟦⊢⟧ T = ⟦ Γ ⟧c ⟶ ⟦ T ⟧ lookup : ∀ {Γ T} → T ∈ Γ → Γ ⟦⊢⟧ T lookup here (_ , v) = v lookup (there x) (γ , _) = lookup x γ eval : ∀ {Γ T} → Γ ⊢ T → Γ ⟦⊢⟧ T eval {Γ} {A ⇒ B} (lam x) = ⟦lam⟧ {⟦ Γ ⟧c} {⟦ A ⟧} {⟦ B ⟧} (eval x) eval (var x) = lookup x eval {Γ} {B} (app {A} x y) = ⟦app⟧ {⟦ Γ ⟧c} {⟦ A ⟧} {⟦ B ⟧} (eval x) (eval y) eval {Γ} tt = ⟦tt⟧ {⟦ Γ ⟧c} [_]⊢_ : context → type → Set [ Γ ]⊢ T = Γ ⊢⟦T⟧ where open sem ⟦ T ⟧ renaming (_⊢ to _⊢⟦T⟧) [_]⊢c_ : context → context → Set [ Γ ]⊢c Δ = Γ ⊢⟦Δ⟧c where open sem ⟦ Δ ⟧c renaming (_⊢ to _⊢⟦Δ⟧c) reify : ∀ {T Γ} → [ Γ ]⊢ T → Γ ⊢ⁿ T reflect : ∀ {Γ} → (T : type) → Γ ⊢ᵉ T → [ Γ ]⊢ T reify {unit} v = v reify {A ⇒ B} x = lam (reify (x (skip id) (reflect A (var here)))) reflect unit x = ground x reflect (A ⇒ B) x = λ w s → reflect B (app (ren w x) (reify s)) where open sem (semᵉ (A ⇒ B)) reify-id : ∀ {Γ T} → Γ ⟦⊢⟧ T → Γ ⊢ⁿ T reify-id {Γ} x = reify (x (id-c Γ)) where open sem id-c : ∀ Γ → [ Γ ]⊢c Γ id-c ε = tt id-c (Γ ▸ T) = ren ⟦ Γ ⟧c (skip id) (id-c Γ) , reflect T (var here) norm : ∀ {Γ T} → Γ ⊢ T → Γ ⊢ⁿ T norm = reify-id ∘ eval
{ "alphanum_fraction": 0.4724919094, "avg_line_length": 25.0540540541, "ext": "agda", "hexsha": "b04210264d5275597a4b2ab07e4001c304e3d7d1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "09a231d9b3057d57b864070188ed9fe14a07eda2", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "Lapin0t/lambda", "max_forks_repo_path": "lambda/stlc.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "09a231d9b3057d57b864070188ed9fe14a07eda2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "Lapin0t/lambda", "max_issues_repo_path": "lambda/stlc.agda", "max_line_length": 79, "max_stars_count": null, "max_stars_repo_head_hexsha": "09a231d9b3057d57b864070188ed9fe14a07eda2", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "Lapin0t/lambda", "max_stars_repo_path": "lambda/stlc.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2404, "size": 4635 }
{-# OPTIONS --without-K --safe #-} module Categories.Bicategory.Bigroupoid where open import Level open import Function using (_$_) open import Data.Product using (Σ; _,_) open import Categories.Category open import Categories.Category.Equivalence using (WeakInverse) open import Categories.Category.Product open import Categories.Category.Groupoid using (IsGroupoid) open import Categories.Bicategory open import Categories.Functor renaming (id to idF) open import Categories.Functor.Properties open import Categories.Functor.Bifunctor.Properties open import Categories.Functor.Construction.Constant open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper) open import Categories.NaturalTransformation.NaturalIsomorphism using (_≃_; NaturalIsomorphism) import Categories.Morphism as Mor import Categories.Morphism.Properties as MP import Categories.Morphism.Reasoning as MR -- https://link.springer.com/article/10.1023/A:1011270417127 record IsBigroupoid {o ℓ e t} (C : Bicategory o ℓ e t) : Set (o ⊔ ℓ ⊔ e ⊔ t) where open Bicategory C public field hom-isGroupoid : ∀ A B → IsGroupoid (hom A B) hom[_,_]⁻¹ : ∀ A B → Functor (hom A B) (hom B A) cancel : ∀ A B → ⊚ ∘F (hom[ A , B ]⁻¹ ※ idF) ≃ const id₁ cancel′ : ∀ A B → ⊚ ∘F (idF ※ hom[ A , B ]⁻¹) ≃ const id₁ module hom⁻¹ {A B} = Functor (hom[ A , B ]⁻¹) module cancel {A B} = NaturalIsomorphism (cancel A B) module cancel′ {A B} = NaturalIsomorphism (cancel′ A B) infix 13 _⁻¹ _⁻¹′ _⁻¹ : ∀ {A B} → A ⇒₁ B → B ⇒₁ A _⁻¹ = hom⁻¹.F₀ _⁻¹′ : ∀ {A B} {f g : A ⇒₁ B} → f ⇒₂ g → f ⁻¹ ⇒₂ g ⁻¹ _⁻¹′ = hom⁻¹.F₁ open hom.Commutation field pentagon₁ : ∀ {A B} {f : A ⇒₁ B} → [ (f ∘ₕ f ⁻¹) ∘ₕ f ⇒ f ]⟨ associator.from ⇒⟨ f ∘ₕ f ⁻¹ ∘ₕ f ⟩ f ▷ cancel.⇒.η f ⇒⟨ f ∘ₕ id₁ ⟩ unitorʳ.from ≈ cancel′.⇒.η f ◁ f ⇒⟨ id₁ ∘ₕ f ⟩ unitorˡ.from ⟩ pentagon₂ : ∀ {A B} {f : A ⇒₁ B} → [ (f ⁻¹ ∘ₕ f) ∘ₕ f ⁻¹ ⇒ f ⁻¹ ]⟨ associator.from ⇒⟨ f ⁻¹ ∘ₕ f ∘ₕ f ⁻¹ ⟩ f ⁻¹ ▷ cancel′.⇒.η f ⇒⟨ f ⁻¹ ∘ₕ id₁ ⟩ unitorʳ.from ≈ cancel.⇒.η f ◁ f ⁻¹ ⇒⟨ id₁ ∘ₕ f ⁻¹ ⟩ unitorˡ.from ⟩ private variable A B : Obj f g : A ⇒₁ B α β : f ⇒₂ g open hom.HomReasoning module MR′ {A B} where open MR (hom A B) public open Mor (hom A B) public open MP (hom A B) public open MR′ module ℱ = Functor cancel-comm : ∀ {α : f ⇒₂ g} → cancel.⇒.η g ∘ᵥ (α ⁻¹′ ⊚₁ α) ≈ cancel.⇒.η f cancel-comm {α = α} = cancel.⇒.commute α ○ identity₂ˡ cancel⁻¹-comm : ∀ {α : f ⇒₂ g} → (α ⁻¹′ ⊚₁ α) ∘ᵥ cancel.⇐.η f ≈ cancel.⇐.η g cancel⁻¹-comm {α = α} = ⟺ (cancel.⇐.commute α) ○ identity₂ʳ cancel′-comm : ∀ {α : f ⇒₂ g} → cancel′.⇒.η g ∘ᵥ (α ⊚₁ α ⁻¹′) ≈ cancel′.⇒.η f cancel′-comm {α = α} = cancel′.⇒.commute α ○ identity₂ˡ cancel′⁻¹-comm : ∀ {α : f ⇒₂ g} → (α ⊚₁ α ⁻¹′) ∘ᵥ cancel′.⇐.η f ≈ cancel′.⇐.η g cancel′⁻¹-comm {α = α} = ⟺ (cancel′.⇐.commute α) ○ identity₂ʳ hom⁻¹⁻¹≃id : ∀ {A B} → hom[ B , A ]⁻¹ ∘F hom[ A , B ]⁻¹ ≃ idF hom⁻¹⁻¹≃id {A} {B} = record { F⇒G = ntHelper record { η = λ f → (((unitorˡ.from ∘ᵥ cancel.⇒.η (f ⁻¹) ◁ f) ∘ᵥ associator.to) ∘ᵥ f ⁻¹ ⁻¹ ▷ cancel.⇐.η f) ∘ᵥ unitorʳ.to ; commute = λ {f g} α → begin ((((unitorˡ.from ∘ᵥ cancel.⇒.η (g ⁻¹) ◁ g) ∘ᵥ associator.to) ∘ᵥ g ⁻¹ ⁻¹ ▷ cancel.⇐.η g) ∘ᵥ unitorʳ.to) ∘ᵥ α ⁻¹′ ⁻¹′ ≈˘⟨ pushʳ ◁-∘ᵥ-λ⁻¹ ⟩ (((unitorˡ.from ∘ᵥ cancel.⇒.η (g ⁻¹) ◁ g) ∘ᵥ associator.to) ∘ᵥ g ⁻¹ ⁻¹ ▷ cancel.⇐.η g) ∘ᵥ ((α ⁻¹′ ⁻¹′ ◁ id₁) ∘ᵥ unitorʳ.to) ≈⟨ center ◁-▷-exchg ⟩ ((unitorˡ.from ∘ᵥ cancel.⇒.η (g ⁻¹) ◁ g) ∘ᵥ associator.to) ∘ᵥ (α ⁻¹′ ⁻¹′ ◁ (g ⁻¹ ∘ₕ g) ∘ᵥ f ⁻¹ ⁻¹ ▷ cancel.⇐.η g) ∘ᵥ unitorʳ.to ≈⟨ center (⟺ assoc₂ ○ hom.∘-resp-≈ assoc⁻¹-◁-∘ₕ (ℱ.F-resp-≈ ((f ⁻¹ ⁻¹) ⊚-) (⟺ cancel⁻¹-comm))) ⟩ (unitorˡ.from ∘ᵥ cancel.⇒.η (g ⁻¹) ◁ g) ∘ᵥ ((α ⁻¹′ ⁻¹′ ◁ g ⁻¹ ◁ g ∘ᵥ associator.to) ∘ᵥ f ⁻¹ ⁻¹ ▷ ((α ⁻¹′ ⊚₁ α) ∘ᵥ cancel.⇐.η f)) ∘ᵥ unitorʳ.to ≈⟨ refl ⟩∘⟨ (hom.∘-resp-≈ʳ (ℱ.homomorphism ((f ⁻¹ ⁻¹) ⊚-)) ○ center (⊚-assoc.⇐.commute _) ○ center⁻¹ ([ ⊚ ]-merge (⟺ [ ⊚ ]-decompose₁) identity₂ˡ) refl) ⟩∘⟨ refl ⟩ (unitorˡ.from ∘ᵥ cancel.⇒.η (g ⁻¹) ◁ g) ∘ᵥ (((α ⁻¹′ ⁻¹′ ⊚₁ α ⁻¹′) ⊚₁ α) ∘ᵥ associator.to ∘ᵥ f ⁻¹ ⁻¹ ▷ cancel.⇐.η f) ∘ᵥ unitorʳ.to ≈˘⟨ assoc₂ ⟩ ((unitorˡ.from ∘ᵥ cancel.⇒.η (g ⁻¹) ◁ g) ∘ᵥ (((α ⁻¹′ ⁻¹′ ⊚₁ α ⁻¹′) ⊚₁ α) ∘ᵥ associator.to ∘ᵥ f ⁻¹ ⁻¹ ▷ cancel.⇐.η f)) ∘ᵥ unitorʳ.to ≈⟨ center ([ ⊚ ]-merge cancel-comm identity₂ˡ) ⟩∘⟨refl ⟩ (unitorˡ.from ∘ᵥ cancel.⇒.η (f ⁻¹) ⊚₁ α ∘ᵥ associator.to ∘ᵥ f ⁻¹ ⁻¹ ▷ cancel.⇐.η f) ∘ᵥ unitorʳ.to ≈˘⟨ (assoc₂ ○ assoc₂) ⟩∘⟨refl ⟩ (((unitorˡ.from ∘ᵥ cancel.⇒.η (f ⁻¹) ⊚₁ α) ∘ᵥ associator.to) ∘ᵥ f ⁻¹ ⁻¹ ▷ cancel.⇐.η f) ∘ᵥ unitorʳ.to ≈⟨ (hom.∘-resp-≈ʳ [ ⊚ ]-decompose₂) ⟩∘⟨refl ⟩∘⟨refl ⟩∘⟨refl ⟩ (((unitorˡ.from ∘ᵥ id₁ ▷ α ∘ᵥ cancel.⇒.η (f ⁻¹) ◁ f) ∘ᵥ associator.to) ∘ᵥ f ⁻¹ ⁻¹ ▷ cancel.⇐.η f) ∘ᵥ unitorʳ.to ≈⟨ pullˡ ρ-∘ᵥ-▷ ⟩∘⟨refl ⟩∘⟨refl ⟩∘⟨refl ⟩ ((((α ∘ᵥ unitorˡ.from) ∘ᵥ cancel.⇒.η (f ⁻¹) ◁ f) ∘ᵥ associator.to) ∘ᵥ f ⁻¹ ⁻¹ ▷ cancel.⇐.η f) ∘ᵥ unitorʳ.to ≈⟨ (assoc₂ ○ assoc₂ ○ assoc₂ ○ assoc₂) ⟩ α ∘ᵥ unitorˡ.from ∘ᵥ cancel.⇒.η (f ⁻¹) ◁ f ∘ᵥ associator.to ∘ᵥ f ⁻¹ ⁻¹ ▷ cancel.⇐.η f ∘ᵥ unitorʳ.to ≈˘⟨ refl⟩∘⟨ (assoc₂ ○ assoc₂ ○ assoc₂) ⟩ α ∘ᵥ (((unitorˡ.from ∘ᵥ cancel.⇒.η (f ⁻¹) ◁ f) ∘ᵥ associator.to) ∘ᵥ f ⁻¹ ⁻¹ ▷ cancel.⇐.η f) ∘ᵥ unitorʳ.to ∎ } ; F⇐G = ntHelper record { η = λ f → unitorʳ.from ∘ᵥ f ⁻¹ ⁻¹ ▷ cancel.⇒.η f ∘ᵥ associator.from ∘ᵥ cancel.⇐.η (f ⁻¹) ◁ f ∘ᵥ unitorˡ.to ; commute = λ {f g} α → begin (unitorʳ.from ∘ᵥ g ⁻¹ ⁻¹ ▷ cancel.⇒.η g ∘ᵥ associator.from ∘ᵥ cancel.⇐.η (g ⁻¹) ◁ g ∘ᵥ unitorˡ.to) ∘ᵥ α ≈⟨ assoc₂ ○ hom.∘-resp-≈ʳ (assoc₂ ○ hom.∘-resp-≈ʳ (assoc₂ ○ hom.∘-resp-≈ʳ assoc₂)) ⟩ unitorʳ.from ∘ᵥ g ⁻¹ ⁻¹ ▷ cancel.⇒.η g ∘ᵥ associator.from ∘ᵥ cancel.⇐.η (g ⁻¹) ◁ g ∘ᵥ unitorˡ.to ∘ᵥ α ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ ⟺ ▷-∘ᵥ-ρ⁻¹ ⟩ unitorʳ.from ∘ᵥ g ⁻¹ ⁻¹ ▷ cancel.⇒.η g ∘ᵥ associator.from ∘ᵥ cancel.⇐.η (g ⁻¹) ◁ g ∘ᵥ id₁ ▷ α ∘ᵥ unitorˡ.to ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ pullˡ (⟺ [ ⊚ ]-decompose₁ ○ ⊚.F-resp-≈ (⟺ cancel⁻¹-comm , refl)) ⟩ unitorʳ.from ∘ᵥ g ⁻¹ ⁻¹ ▷ cancel.⇒.η g ∘ᵥ associator.from ∘ᵥ (α ⁻¹′ ⁻¹′ ⊚₁ α ⁻¹′ ∘ᵥ cancel.⇐.η (f ⁻¹)) ⊚₁ α ∘ᵥ unitorˡ.to ≈˘⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ hom.∘-resp-≈ˡ ([ ⊚ ]-merge refl identity₂ʳ) ⟩ unitorʳ.from ∘ᵥ g ⁻¹ ⁻¹ ▷ cancel.⇒.η g ∘ᵥ associator.from ∘ᵥ ((α ⁻¹′ ⁻¹′ ⊚₁ α ⁻¹′) ⊚₁ α ∘ᵥ cancel.⇐.η (f ⁻¹) ◁ f) ∘ᵥ unitorˡ.to ≈⟨ refl⟩∘⟨ refl⟩∘⟨ center⁻¹ (⊚-assoc.⇒.commute _) refl ⟩ unitorʳ.from ∘ᵥ g ⁻¹ ⁻¹ ▷ cancel.⇒.η g ∘ᵥ (α ⁻¹′ ⁻¹′ ⊚₁ α ⁻¹′ ⊚₁ α ∘ᵥ associator.from) ∘ᵥ cancel.⇐.η (f ⁻¹) ◁ f ∘ᵥ unitorˡ.to ≈⟨ refl⟩∘⟨ (hom.∘-resp-≈ʳ assoc₂ ○ pullˡ ([ ⊚ ]-merge identity₂ˡ cancel-comm)) ⟩ unitorʳ.from ∘ᵥ (α ⁻¹′ ⁻¹′) ⊚₁ (cancel.⇒.η f) ∘ᵥ associator.from ∘ᵥ cancel.⇐.η (f ⁻¹) ◁ f ∘ᵥ unitorˡ.to ≈⟨ refl⟩∘⟨ (hom.∘-resp-≈ˡ [ ⊚ ]-decompose₁ ○ assoc₂) ⟩ unitorʳ.from ∘ᵥ (α ⁻¹′ ⁻¹′) ◁ id₁ ∘ᵥ f ⁻¹ ⁻¹ ▷ cancel.⇒.η f ∘ᵥ associator.from ∘ᵥ cancel.⇐.η (f ⁻¹) ◁ f ∘ᵥ unitorˡ.to ≈⟨ (pullˡ λ-∘ᵥ-◁) ○ assoc₂ ⟩ α ⁻¹′ ⁻¹′ ∘ᵥ unitorʳ.from ∘ᵥ f ⁻¹ ⁻¹ ▷ cancel.⇒.η f ∘ᵥ associator.from ∘ᵥ cancel.⇐.η (f ⁻¹) ◁ f ∘ᵥ unitorˡ.to ∎ } ; iso = λ f → Iso-∘ (Iso-swap (unitʳ.iso _)) $ Iso-∘ ([ (f ⁻¹ ⁻¹) ⊚- ]-resp-Iso (Iso-swap (cancel.iso f))) $ Iso-∘ (Iso-swap associator.iso) $ Iso-∘ ([ -⊚ f ]-resp-Iso (cancel.iso _)) (unitˡ.iso _) } hom⁻¹-weakInverse : ∀ {A B} → WeakInverse hom[ A , B ]⁻¹ hom[ B , A ]⁻¹ hom⁻¹-weakInverse = record { F∘G≈id = hom⁻¹⁻¹≃id ; G∘F≈id = hom⁻¹⁻¹≃id } module hom⁻¹-weakInverse {A B} = WeakInverse (hom⁻¹-weakInverse {A} {B}) open hom⁻¹-weakInverse using () renaming (F⊣G to hom⁻¹-⊣Equivalence) public -- A bigroupoid is a bicategory that has a bigroupoid structure record Bigroupoid (o ℓ e t : Level) : Set (suc (o ⊔ ℓ ⊔ e ⊔ t)) where field bicategory : Bicategory o ℓ e t isBigroupoid : IsBigroupoid bicategory open IsBigroupoid isBigroupoid public
{ "alphanum_fraction": 0.51940545, "avg_line_length": 50.7604790419, "ext": "agda", "hexsha": "680ac4c0eabc30f07bc9c6bb250017a9be5b02d0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Taneb/agda-categories", "max_forks_repo_path": "Categories/Bicategory/Bigroupoid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Taneb/agda-categories", "max_issues_repo_path": "Categories/Bicategory/Bigroupoid.agda", "max_line_length": 173, "max_stars_count": null, "max_stars_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Taneb/agda-categories", "max_stars_repo_path": "Categories/Bicategory/Bigroupoid.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4490, "size": 8477 }
{-# OPTIONS --guardedness #-} module Cubical.Codata.Stream where open import Cubical.Codata.Stream.Base public open import Cubical.Codata.Stream.Properties public
{ "alphanum_fraction": 0.7951807229, "avg_line_length": 20.75, "ext": "agda", "hexsha": "45011fd3125f5b8bec593dfc80b88b312060888f", "lang": "Agda", "max_forks_count": 134, "max_forks_repo_forks_event_max_datetime": "2022-03-23T16:22:13.000Z", "max_forks_repo_forks_event_min_datetime": "2018-11-16T06:11:03.000Z", "max_forks_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "marcinjangrzybowski/cubical", "max_forks_repo_path": "Cubical/Codata/Stream.agda", "max_issues_count": 584, "max_issues_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_issues_repo_issues_event_max_datetime": "2022-03-30T12:09:17.000Z", "max_issues_repo_issues_event_min_datetime": "2018-10-15T09:49:02.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "marcinjangrzybowski/cubical", "max_issues_repo_path": "Cubical/Codata/Stream.agda", "max_line_length": 51, "max_stars_count": 301, "max_stars_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "marcinjangrzybowski/cubical", "max_stars_repo_path": "Cubical/Codata/Stream.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-24T02:10:47.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-17T18:00:24.000Z", "num_tokens": 34, "size": 166 }
module Issue217 where record A : Set where ⊥ : Set ⊥ = ⊥
{ "alphanum_fraction": 0.5873015873, "avg_line_length": 9, "ext": "agda", "hexsha": "98cc557ff0c42ef26b6efd903365b6271238cef0", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue217.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue217.agda", "max_line_length": 21, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue217.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 25, "size": 63 }
{-# OPTIONS --without-K --safe #-} module Categories.Adjoint.Instance.01-Truncation where -- The adjunction between (0,1)-truncation and the inclusion functor -- from Posets to Categories. open import Data.Product using (_,_) import Function open import Relation.Binary using (Poset) open import Relation.Binary.OrderMorphism using (_⇒-Poset_) open import Categories.Adjoint using (_⊣_) open import Categories.Category.Construction.Thin using (Thin) open import Categories.Category using (Category) open import Categories.Category.Instance.Cats using (Cats) open import Categories.Category.Instance.Posets using (Posets) open import Categories.Functor renaming (id to idF) open import Categories.Functor.Instance.01-Truncation using (Trunc) open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper) open import Categories.NaturalTransformation.NaturalIsomorphism using (refl) open _⇒-Poset_ -- The inclusion functor from Posets to Categories Inclusion : ∀ {c ℓ₁ ℓ₂} e → Functor (Posets c ℓ₁ ℓ₂) (Cats c ℓ₂ e) Inclusion {c} {ℓ₁} e = record { F₀ = Thin e ; F₁ = λ f → record { F₀ = fun f ; F₁ = monotone f } ; identity = refl ; homomorphism = refl ; F-resp-≈ = λ {A B f g} f≗g → let open Poset B in record { F⇒G = record { η = λ _ → reflexive f≗g } ; F⇐G = record { η = λ _ → reflexive (Eq.sym f≗g) } } } -- Trunc is left-adjoint to the inclusion functor from Setoids to Groupoids TruncAdj : ∀ {o ℓ e} → Trunc ⊣ Inclusion {o} {ℓ} e TruncAdj {o} {ℓ} {e} = record { unit = unit ; counit = counit ; zig = λ {C} → id C , id C ; zag = refl } where open Category unit : NaturalTransformation idF (Inclusion e ∘F Trunc) unit = record { η = λ _ → record { F₀ = Function.id ; F₁ = Function.id } ; commute = λ _ → refl ; sym-commute = λ _ → refl } counit : NaturalTransformation (Trunc ∘F Inclusion e) idF counit = ntHelper record { η = λ _ → record { fun = Function.id ; monotone = Function.id } ; commute = λ {_ D} _ → Poset.Eq.refl D }
{ "alphanum_fraction": 0.6557530402, "avg_line_length": 32.3939393939, "ext": "agda", "hexsha": "b0b1bf1f6ef849ac42e48537a8163a2872c19b12", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bblfish/agda-categories", "max_forks_repo_path": "src/Categories/Adjoint/Instance/01-Truncation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bblfish/agda-categories", "max_issues_repo_path": "src/Categories/Adjoint/Instance/01-Truncation.agda", "max_line_length": 77, "max_stars_count": 5, "max_stars_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bblfish/agda-categories", "max_stars_repo_path": "src/Categories/Adjoint/Instance/01-Truncation.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 651, "size": 2138 }
module SystemF.BigStep.Extrinsic.Welltyped where open import Prelude open import SystemF.BigStep.Types open import SystemF.BigStep.Extrinsic.Terms open import Data.List open import Extensions.List -- welltyped terms data _⊢_∶_ {n}(Γ : Ctx n) : Term → Type n → Set where unit : ------------------- Γ ⊢ unit ∶ Unit ƛ : ∀ {b t} a → (a ∷ Γ) ⊢ t ∶ b → ------------------- Γ ⊢ ƛ t ∶ (a ⇒ b) var : ∀ {a i} → Γ [ i ]= a → ------------- Γ ⊢ var i ∶ a _·_ : ∀ {f e a b} → Γ ⊢ f ∶ (a ⇒ b) → Γ ⊢ e ∶ a → --------------- Γ ⊢ f · e ∶ b Λ : ∀ {a t} → (Γ ctx/ wk) ⊢ t ∶ a → --------------------- Γ ⊢ Λ t ∶ ∀' a _[_] : ∀ {f a} → Γ ⊢ f ∶ (∀' a) → (b : Type n) → --------------------------- Γ ⊢ f [-] ∶ (a / (sub b))
{ "alphanum_fraction": 0.3679131484, "avg_line_length": 20.2195121951, "ext": "agda", "hexsha": "75963b43999e77142e6d0d363f7914e91ccdf264", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/SystemF/BigStep/Extrinsic/Welltyped.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/SystemF/BigStep/Extrinsic/Welltyped.agda", "max_line_length": 53, "max_stars_count": null, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/SystemF/BigStep/Extrinsic/Welltyped.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 320, "size": 829 }
module AocVec where open import Data.Vec as Vec open import Data.Nat addToBack : {A : Set} → {N : ℕ} → A → Vec A N → Vec A (suc N) addToBack v [] = v ∷ [] addToBack v (x ∷ vs) = x ∷ addToBack v vs dupFrontToBack : {A : Set} → {N : ℕ} → Vec A (suc N) → Vec A (suc (suc N)) dupFrontToBack (x ∷ vs) = addToBack x (x ∷ vs) dupFirstNToBack : {A : Set} → {M : ℕ} → (N : ℕ) → Vec A (suc M) → Vec A (N + (suc M)) dupFirstNToBack zero vs = vs dupFirstNToBack (suc N) (x ∷ vs) = x ∷ dupFirstNToBack N (addToBack x vs)
{ "alphanum_fraction": 0.5980392157, "avg_line_length": 36.4285714286, "ext": "agda", "hexsha": "c274b720a47c75b50b51ab6a1a36deff54a147ef", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "37956e581dc51bf78008d7dd902bb18d2ee481f6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Zalastax/adventofcode2017", "max_forks_repo_path": "lib/AocVec.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "37956e581dc51bf78008d7dd902bb18d2ee481f6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Zalastax/adventofcode2017", "max_issues_repo_path": "lib/AocVec.agda", "max_line_length": 85, "max_stars_count": null, "max_stars_repo_head_hexsha": "37956e581dc51bf78008d7dd902bb18d2ee481f6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Zalastax/adventofcode2017", "max_stars_repo_path": "lib/AocVec.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 214, "size": 510 }
module _ where open import Agda.Primitive open import Agda.Builtin.Equality data Wrap {a} (A : Set a) : Set a where wrap : A → Wrap A data Unit (A : Set) : Set where unit : Unit A record Functor {a b} (F : Set a → Set b) : Set (lsuc (a ⊔ b)) where field fmap : ∀ {A B} → (A → B) → F A → F B open Functor ⦃ ... ⦄ instance FunWrap : ∀ {a} → Functor {a} Wrap FunWrap .fmap f (wrap x) = wrap (f x) FunUnit : Functor Unit FunUnit .fmap f unit = unit _=$=_ : ∀ {a b} {A B : Set a} {F : Set a → Set b} {{_ : Functor F}} {x y : F A} (f : A → B) → x ≡ y → fmap f x ≡ fmap f y f =$= refl = refl postulate A : Set wrap-refl : (x : A) → wrap x ≡ wrap x wrap-refl x = refl prf : (x : Wrap A) → wrap x ≡ wrap x prf (wrap x) = wrap =$= wrap-refl x -- Incomplete pattern matching when applying FunUnit -- (Internal error at Reduce.Fast:1347)
{ "alphanum_fraction": 0.5750577367, "avg_line_length": 22.2051282051, "ext": "agda", "hexsha": "5d91c2dff8990e3c50d97eafe129443eb204e36a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue3870.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue3870.agda", "max_line_length": 79, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue3870.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 327, "size": 866 }
module _ {A : Set} where postulate B : Set postulate H : {A : Set} → Set test-H : Set test-H = H {A = B} record R {A : Set} : Set where constructor rc field f : A test-R : Set test-R = R {A = B} test-f : ∀ B → R {A = B} → B test-f B = R.f {A = B} module N {A : Set} where module test-N = N {A = B}
{ "alphanum_fraction": 0.5335463259, "avg_line_length": 12.52, "ext": "agda", "hexsha": "eb13af962a345c3fb3410f985904c27da5d8403a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue2018b.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue2018b.agda", "max_line_length": 30, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue2018b.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 124, "size": 313 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties related to Any ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Relation.Unary.Any.Properties where open import Category.Monad open import Data.Bool.Base using (Bool; false; true; T) open import Data.Bool.Properties open import Data.Empty using (⊥) open import Data.Fin using (Fin) renaming (zero to fzero; suc to fsuc) open import Data.List as List open import Data.List.Categorical using (monad) open import Data.List.Relation.Unary.Any as Any using (Any; here; there) open import Data.List.Membership.Propositional open import Data.List.Membership.Propositional.Properties.Core using (Any↔; find∘map; map∘find; lose∘find) open import Data.List.Relation.Binary.Pointwise using (Pointwise; []; _∷_) open import Data.Nat using (zero; suc; _<_; z≤n; s≤s) open import Data.Maybe using (Maybe; just; nothing) open import Data.Maybe.Relation.Unary.Any as MAny using (just) open import Data.Product as Prod using (_×_; _,_; ∃; ∃₂; proj₁; proj₂; uncurry′) open import Data.Product.Properties open import Data.Product.Function.NonDependent.Propositional using (_×-cong_) import Data.Product.Function.Dependent.Propositional as Σ open import Data.Sum as Sum using (_⊎_; inj₁; inj₂; [_,_]′) open import Data.Sum.Function.Propositional using (_⊎-cong_) open import Function open import Function.Equality using (_⟨$⟩_) open import Function.Equivalence using (_⇔_; equivalence; Equivalence) open import Function.Inverse as Inv using (_↔_; inverse; Inverse) open import Function.Related as Related using (Related; SK-sym) open import Relation.Binary open import Relation.Binary.PropositionalEquality as P using (_≡_; refl; inspect) open import Relation.Unary using (Pred; _⟨×⟩_; _⟨→⟩_) renaming (_⊆_ to _⋐_) open import Relation.Nullary using (¬_) open Related.EquationalReasoning private open module ListMonad {ℓ} = RawMonad (monad {ℓ = ℓ}) ------------------------------------------------------------------------ -- Equality properties module _ {a p ℓ} {A : Set a} {P : A → Set p} {_≈_ : Rel A ℓ} where lift-resp : P Respects _≈_ → (Any P) Respects (Pointwise _≈_) lift-resp resp [] () lift-resp resp (x≈y ∷ xs≈ys) (here px) = here (resp x≈y px) lift-resp resp (x≈y ∷ xs≈ys) (there pxs) = there (lift-resp resp xs≈ys pxs) module _ {a p} {A : Set a} {P : A → Set p} where here-injective : ∀ {x xs} {p q : P x} → here {P = P} {xs = xs} p ≡ here q → p ≡ q here-injective refl = refl there-injective : ∀ {x xs} {p q : Any P xs} → there {x = x} p ≡ there q → p ≡ q there-injective refl = refl ------------------------------------------------------------------------ -- Misc module _ {a p} {A : Set a} {P : A → Set p} where ¬Any[] : ¬ Any P [] ¬Any[] () ------------------------------------------------------------------------ -- Any is a congruence module _ {a k p q} {A : Set a} {P : Pred A p} {Q : Pred A q} where Any-cong : ∀ {xs ys : List A} → (∀ x → Related k (P x) (Q x)) → Preorder._∼_ (Related.InducedPreorder₂ k {A = A} _∈_) xs ys → Related k (Any P xs) (Any Q ys) Any-cong {xs} {ys} P↔Q xs≈ys = Any P xs ↔⟨ SK-sym Any↔ ⟩ (∃ λ x → x ∈ xs × P x) ∼⟨ Σ.cong Inv.id (xs≈ys ×-cong P↔Q _) ⟩ (∃ λ x → x ∈ ys × Q x) ↔⟨ Any↔ ⟩ Any Q ys ∎ ------------------------------------------------------------------------ -- map map-id : ∀ {a p} {A : Set a} {P : A → Set p} (f : P ⋐ P) {xs} → (∀ {x} (p : P x) → f p ≡ p) → (p : Any P xs) → Any.map f p ≡ p map-id f hyp (here p) = P.cong here (hyp p) map-id f hyp (there p) = P.cong there $ map-id f hyp p map-∘ : ∀ {a p q r} {A : Set a} {P : A → Set p} {Q : A → Set q} {R : A → Set r} (f : Q ⋐ R) (g : P ⋐ Q) {xs} (p : Any P xs) → Any.map (f ∘ g) p ≡ Any.map f (Any.map g p) map-∘ f g (here p) = refl map-∘ f g (there p) = P.cong there $ map-∘ f g p ------------------------------------------------------------------------ -- Swapping -- Nested occurrences of Any can sometimes be swapped. See also ×↔. swap : ∀ {a b ℓ} {A : Set a} {B : Set b} {P : A → B → Set ℓ} {xs ys} → Any (λ x → Any (P x) ys) xs → Any (λ y → Any (flip P y) xs) ys swap (here pys) = Any.map here pys swap (there pxys) = Any.map there (swap pxys) swap-there : ∀ {a b ℓ} {A : Set a} {B : Set b} {P : A → B → Set ℓ} {x xs ys} → (any : Any (λ x → Any (P x) ys) xs) → swap (Any.map (there {x = x}) any) ≡ there (swap any) swap-there (here pys) = refl swap-there (there pxys) = P.cong (Any.map there) (swap-there pxys) swap-invol : ∀ {a b ℓ} {A : Set a} {B : Set b} {P : A → B → Set ℓ} {xs ys} → (any : Any (λ x → Any (P x) ys) xs) → swap (swap any) ≡ any swap-invol (here (here px)) = refl swap-invol (here (there pys)) = P.cong (Any.map there) (swap-invol (here pys)) swap-invol (there pxys) = P.trans (swap-there (swap pxys)) (P.cong there (swap-invol pxys)) swap↔ : ∀ {ℓ} {A B : Set ℓ} {P : A → B → Set ℓ} {xs ys} → Any (λ x → Any (P x) ys) xs ↔ Any (λ y → Any (flip P y) xs) ys swap↔ {P = P} = inverse swap swap swap-invol swap-invol ------------------------------------------------------------------------ -- Lemmas relating Any to ⊥ ⊥↔Any⊥ : ∀ {a} {A : Set a} {xs : List A} → ⊥ ↔ Any (const ⊥) xs ⊥↔Any⊥ {A = A} = inverse (λ()) (λ p → from p) (λ()) (λ p → from p) where from : {xs : List A} → Any (const ⊥) xs → ∀ {b} {B : Set b} → B from (here ()) from (there p) = from p ⊥↔Any[] : ∀ {a p} {A : Set a} {P : A → Set p} → ⊥ ↔ Any P [] ⊥↔Any[] = inverse (λ()) (λ()) (λ()) (λ()) ------------------------------------------------------------------------ -- Lemmas relating Any to ⊤ -- These introduction and elimination rules are not inverses, though. module _ {a} {A : Set a} where any⁺ : ∀ (p : A → Bool) {xs} → Any (T ∘ p) xs → T (any p xs) any⁺ p (here px) = Equivalence.from T-∨ ⟨$⟩ inj₁ px any⁺ p (there {x = x} pxs) with p x ... | true = _ ... | false = any⁺ p pxs any⁻ : ∀ (p : A → Bool) xs → T (any p xs) → Any (T ∘ p) xs any⁻ p [] () any⁻ p (x ∷ xs) px∷xs with p x | inspect p x any⁻ p (x ∷ xs) px∷xs | true | P.[ eq ] = here (Equivalence.from T-≡ ⟨$⟩ eq) any⁻ p (x ∷ xs) px∷xs | false | _ = there (any⁻ p xs px∷xs) any⇔ : ∀ {p : A → Bool} {xs} → Any (T ∘ p) xs ⇔ T (any p xs) any⇔ = equivalence (any⁺ _) (any⁻ _ _) ------------------------------------------------------------------------ -- Sums commute with Any module _ {a p q} {A : Set a} {P : A → Set p} {Q : A → Set q} where Any-⊎⁺ : ∀ {xs} → Any P xs ⊎ Any Q xs → Any (λ x → P x ⊎ Q x) xs Any-⊎⁺ = [ Any.map inj₁ , Any.map inj₂ ]′ Any-⊎⁻ : ∀ {xs} → Any (λ x → P x ⊎ Q x) xs → Any P xs ⊎ Any Q xs Any-⊎⁻ (here (inj₁ p)) = inj₁ (here p) Any-⊎⁻ (here (inj₂ q)) = inj₂ (here q) Any-⊎⁻ (there p) = Sum.map there there (Any-⊎⁻ p) ⊎↔ : ∀ {xs} → (Any P xs ⊎ Any Q xs) ↔ Any (λ x → P x ⊎ Q x) xs ⊎↔ = inverse Any-⊎⁺ Any-⊎⁻ from∘to to∘from where from∘to : ∀ {xs} (p : Any P xs ⊎ Any Q xs) → Any-⊎⁻ (Any-⊎⁺ p) ≡ p from∘to (inj₁ (here p)) = refl from∘to (inj₁ (there p)) rewrite from∘to (inj₁ p) = refl from∘to (inj₂ (here q)) = refl from∘to (inj₂ (there q)) rewrite from∘to (inj₂ q) = refl to∘from : ∀ {xs} (p : Any (λ x → P x ⊎ Q x) xs) → Any-⊎⁺ (Any-⊎⁻ p) ≡ p to∘from (here (inj₁ p)) = refl to∘from (here (inj₂ q)) = refl to∘from (there p) with Any-⊎⁻ p | to∘from p to∘from (there .(Any.map inj₁ p)) | inj₁ p | refl = refl to∘from (there .(Any.map inj₂ q)) | inj₂ q | refl = refl ------------------------------------------------------------------------ -- Products "commute" with Any. module _ {a b p q} {A : Set a} {B : Set b} {P : Pred A p} {Q : Pred B q} where Any-×⁺ : ∀ {xs ys} → Any P xs × Any Q ys → Any (λ x → Any (λ y → P x × Q y) ys) xs Any-×⁺ (p , q) = Any.map (λ p → Any.map (λ q → (p , q)) q) p Any-×⁻ : ∀ {xs ys} → Any (λ x → Any (λ y → P x × Q y) ys) xs → Any P xs × Any Q ys Any-×⁻ pq with Prod.map id (Prod.map id find) (find pq) ... | (x , x∈xs , y , y∈ys , p , q) = (lose x∈xs p , lose y∈ys q) ×↔ : ∀ {xs ys} → (Any P xs × Any Q ys) ↔ Any (λ x → Any (λ y → P x × Q y) ys) xs ×↔ {xs} {ys} = inverse Any-×⁺ Any-×⁻ from∘to to∘from where from∘to : ∀ pq → Any-×⁻ (Any-×⁺ pq) ≡ pq from∘to (p , q) rewrite find∘map p (λ p → Any.map (λ q → (p , q)) q) | find∘map q (λ q → proj₂ (proj₂ (find p)) , q) | lose∘find p | lose∘find q = refl to∘from : ∀ pq → Any-×⁺ (Any-×⁻ pq) ≡ pq to∘from pq with find pq | (λ (f : (proj₁ (find pq) ≡_) ⋐ _) → map∘find pq {f}) ... | (x , x∈xs , pq′) | lem₁ with find pq′ | (λ (f : (proj₁ (find pq′) ≡_) ⋐ _) → map∘find pq′ {f}) ... | (y , y∈ys , p , q) | lem₂ rewrite P.sym $ map-∘ {R = λ x → Any (λ y → P x × Q y) ys} (λ p → Any.map (λ q → p , q) (lose y∈ys q)) (λ y → P.subst P y p) x∈xs = lem₁ _ helper where helper : Any.map (λ q → p , q) (lose y∈ys q) ≡ pq′ helper rewrite P.sym $ map-∘ (λ q → p , q) (λ y → P.subst Q y q) y∈ys = lem₂ _ refl ------------------------------------------------------------------------ -- Invertible introduction (⁺) and elimination (⁻) rules for various -- list functions ------------------------------------------------------------------------ -- map module _ {a p} {A : Set a} {P : Pred A p} where singleton⁺ : ∀ {x} → P x → Any P [ x ] singleton⁺ Px = here Px singleton⁻ : ∀ {x} → Any P [ x ] → P x singleton⁻ (here Px) = Px singleton⁻ (there ()) ------------------------------------------------------------------------ -- map module _ {a b} {A : Set a} {B : Set b} {f : A → B} where map⁺ : ∀ {p} {P : B → Set p} {xs} → Any (P ∘ f) xs → Any P (List.map f xs) map⁺ (here p) = here p map⁺ (there p) = there $ map⁺ p map⁻ : ∀ {p} {P : B → Set p} {xs} → Any P (List.map f xs) → Any (P ∘ f) xs map⁻ {xs = []} () map⁻ {xs = x ∷ xs} (here p) = here p map⁻ {xs = x ∷ xs} (there p) = there $ map⁻ p map⁺∘map⁻ : ∀ {p} {P : B → Set p} {xs} → (p : Any P (List.map f xs)) → map⁺ (map⁻ p) ≡ p map⁺∘map⁻ {xs = []} () map⁺∘map⁻ {xs = x ∷ xs} (here p) = refl map⁺∘map⁻ {xs = x ∷ xs} (there p) = P.cong there (map⁺∘map⁻ p) map⁻∘map⁺ : ∀ {p} (P : B → Set p) {xs} → (p : Any (P ∘ f) xs) → map⁻ {P = P} (map⁺ p) ≡ p map⁻∘map⁺ P (here p) = refl map⁻∘map⁺ P (there p) = P.cong there (map⁻∘map⁺ P p) map↔ : ∀ {p} {P : B → Set p} {xs} → Any (P ∘ f) xs ↔ Any P (List.map f xs) map↔ = inverse map⁺ map⁻ (map⁻∘map⁺ _) map⁺∘map⁻ ------------------------------------------------------------------------ -- mapMaybe module _ {a b p} {A : Set a} {B : Set b} {P : B → Set p} (f : A → Maybe B) where mapMaybe⁺ : ∀ xs → Any (MAny.Any P) (map f xs) → Any P (mapMaybe f xs) mapMaybe⁺ [] () mapMaybe⁺ (x ∷ xs) ps with f x | ps ... | nothing | here () ... | nothing | there pxs = mapMaybe⁺ xs pxs ... | just _ | here (just py) = here py ... | just _ | there pxs = there (mapMaybe⁺ xs pxs) ------------------------------------------------------------------------ -- _++_ module _ {a p} {A : Set a} {P : A → Set p} where ++⁺ˡ : ∀ {xs ys} → Any P xs → Any P (xs ++ ys) ++⁺ˡ (here p) = here p ++⁺ˡ (there p) = there (++⁺ˡ p) ++⁺ʳ : ∀ xs {ys} → Any P ys → Any P (xs ++ ys) ++⁺ʳ [] p = p ++⁺ʳ (x ∷ xs) p = there (++⁺ʳ xs p) ++⁻ : ∀ xs {ys} → Any P (xs ++ ys) → Any P xs ⊎ Any P ys ++⁻ [] p = inj₂ p ++⁻ (x ∷ xs) (here p) = inj₁ (here p) ++⁻ (x ∷ xs) (there p) = Sum.map there id (++⁻ xs p) ++⁺∘++⁻ : ∀ xs {ys} (p : Any P (xs ++ ys)) → [ ++⁺ˡ , ++⁺ʳ xs ]′ (++⁻ xs p) ≡ p ++⁺∘++⁻ [] p = refl ++⁺∘++⁻ (x ∷ xs) (here p) = refl ++⁺∘++⁻ (x ∷ xs) (there p) with ++⁻ xs p | ++⁺∘++⁻ xs p ++⁺∘++⁻ (x ∷ xs) (there p) | inj₁ p′ | ih = P.cong there ih ++⁺∘++⁻ (x ∷ xs) (there p) | inj₂ p′ | ih = P.cong there ih ++⁻∘++⁺ : ∀ xs {ys} (p : Any P xs ⊎ Any P ys) → ++⁻ xs ([ ++⁺ˡ , ++⁺ʳ xs ]′ p) ≡ p ++⁻∘++⁺ [] (inj₁ ()) ++⁻∘++⁺ [] (inj₂ p) = refl ++⁻∘++⁺ (x ∷ xs) (inj₁ (here p)) = refl ++⁻∘++⁺ (x ∷ xs) {ys} (inj₁ (there p)) rewrite ++⁻∘++⁺ xs {ys} (inj₁ p) = refl ++⁻∘++⁺ (x ∷ xs) (inj₂ p) rewrite ++⁻∘++⁺ xs (inj₂ p) = refl ++↔ : ∀ {xs ys} → (Any P xs ⊎ Any P ys) ↔ Any P (xs ++ ys) ++↔ {xs = xs} = inverse [ ++⁺ˡ , ++⁺ʳ xs ]′ (++⁻ xs) (++⁻∘++⁺ xs) (++⁺∘++⁻ xs) ++-comm : ∀ xs ys → Any P (xs ++ ys) → Any P (ys ++ xs) ++-comm xs ys = [ ++⁺ʳ ys , ++⁺ˡ ]′ ∘ ++⁻ xs ++-comm∘++-comm : ∀ xs {ys} (p : Any P (xs ++ ys)) → ++-comm ys xs (++-comm xs ys p) ≡ p ++-comm∘++-comm [] {ys} p rewrite ++⁻∘++⁺ ys {ys = []} (inj₁ p) = refl ++-comm∘++-comm (x ∷ xs) {ys} (here p) rewrite ++⁻∘++⁺ ys {ys = x ∷ xs} (inj₂ (here p)) = refl ++-comm∘++-comm (x ∷ xs) (there p) with ++⁻ xs p | ++-comm∘++-comm xs p ++-comm∘++-comm (x ∷ xs) {ys} (there .([ ++⁺ʳ xs , ++⁺ˡ ]′ (++⁻ ys (++⁺ʳ ys p)))) | inj₁ p | refl rewrite ++⁻∘++⁺ ys (inj₂ p) | ++⁻∘++⁺ ys (inj₂ $ there {x = x} p) = refl ++-comm∘++-comm (x ∷ xs) {ys} (there .([ ++⁺ʳ xs , ++⁺ˡ ]′ (++⁻ ys (++⁺ˡ p)))) | inj₂ p | refl rewrite ++⁻∘++⁺ ys {ys = xs} (inj₁ p) | ++⁻∘++⁺ ys {ys = x ∷ xs} (inj₁ p) = refl ++↔++ : ∀ xs ys → Any P (xs ++ ys) ↔ Any P (ys ++ xs) ++↔++ xs ys = inverse (++-comm xs ys) (++-comm ys xs) (++-comm∘++-comm xs) (++-comm∘++-comm ys) ++-insert : ∀ xs {ys x} → P x → Any P (xs ++ [ x ] ++ ys) ++-insert xs Px = ++⁺ʳ xs (++⁺ˡ (singleton⁺ Px)) ------------------------------------------------------------------------ -- concat module _ {a p} {A : Set a} {P : A → Set p} where concat⁺ : ∀ {xss} → Any (Any P) xss → Any P (concat xss) concat⁺ (here p) = ++⁺ˡ p concat⁺ (there {x = xs} p) = ++⁺ʳ xs (concat⁺ p) concat⁻ : ∀ xss → Any P (concat xss) → Any (Any P) xss concat⁻ [] () concat⁻ ([] ∷ xss) p = there $ concat⁻ xss p concat⁻ ((x ∷ xs) ∷ xss) (here p) = here (here p) concat⁻ ((x ∷ xs) ∷ xss) (there p) with concat⁻ (xs ∷ xss) p ... | here p′ = here (there p′) ... | there p′ = there p′ concat⁻∘++⁺ˡ : ∀ {xs} xss (p : Any P xs) → concat⁻ (xs ∷ xss) (++⁺ˡ p) ≡ here p concat⁻∘++⁺ˡ xss (here p) = refl concat⁻∘++⁺ˡ xss (there p) rewrite concat⁻∘++⁺ˡ xss p = refl concat⁻∘++⁺ʳ : ∀ xs xss (p : Any P (concat xss)) → concat⁻ (xs ∷ xss) (++⁺ʳ xs p) ≡ there (concat⁻ xss p) concat⁻∘++⁺ʳ [] xss p = refl concat⁻∘++⁺ʳ (x ∷ xs) xss p rewrite concat⁻∘++⁺ʳ xs xss p = refl concat⁺∘concat⁻ : ∀ xss (p : Any P (concat xss)) → concat⁺ (concat⁻ xss p) ≡ p concat⁺∘concat⁻ [] () concat⁺∘concat⁻ ([] ∷ xss) p = concat⁺∘concat⁻ xss p concat⁺∘concat⁻ ((x ∷ xs) ∷ xss) (here p) = refl concat⁺∘concat⁻ ((x ∷ xs) ∷ xss) (there p) with concat⁻ (xs ∷ xss) p | concat⁺∘concat⁻ (xs ∷ xss) p concat⁺∘concat⁻ ((x ∷ xs) ∷ xss) (there .(++⁺ˡ p′)) | here p′ | refl = refl concat⁺∘concat⁻ ((x ∷ xs) ∷ xss) (there .(++⁺ʳ xs (concat⁺ p′))) | there p′ | refl = refl concat⁻∘concat⁺ : ∀ {xss} (p : Any (Any P) xss) → concat⁻ xss (concat⁺ p) ≡ p concat⁻∘concat⁺ (here p) = concat⁻∘++⁺ˡ _ p concat⁻∘concat⁺ (there {x = xs} {xs = xss} p) rewrite concat⁻∘++⁺ʳ xs xss (concat⁺ p) = P.cong there $ concat⁻∘concat⁺ p concat↔ : ∀ {xss} → Any (Any P) xss ↔ Any P (concat xss) concat↔ {xss} = inverse concat⁺ (concat⁻ xss) concat⁻∘concat⁺ (concat⁺∘concat⁻ xss) ------------------------------------------------------------------------ -- applyUpTo module _ {a p} {A : Set a} {P : A → Set p} where applyUpTo⁺ : ∀ f {i n} → P (f i) → i < n → Any P (applyUpTo f n) applyUpTo⁺ _ p (s≤s z≤n) = here p applyUpTo⁺ f p (s≤s (s≤s i<n)) = there (applyUpTo⁺ (f ∘ suc) p (s≤s i<n)) applyUpTo⁻ : ∀ f {n} → Any P (applyUpTo f n) → ∃ λ i → i < n × P (f i) applyUpTo⁻ f {zero} () applyUpTo⁻ f {suc n} (here p) = zero , s≤s z≤n , p applyUpTo⁻ f {suc n} (there p) with applyUpTo⁻ (f ∘ suc) p ... | i , i<n , q = suc i , s≤s i<n , q ------------------------------------------------------------------------ -- tabulate module _ {a p} {A : Set a} {P : A → Set p} where tabulate⁺ : ∀ {n} {f : Fin n → A} i → P (f i) → Any P (tabulate f) tabulate⁺ fzero p = here p tabulate⁺ (fsuc i) p = there (tabulate⁺ i p) tabulate⁻ : ∀ {n} {f : Fin n → A} → Any P (tabulate f) → ∃ λ i → P (f i) tabulate⁻ {zero} () tabulate⁻ {suc n} (here p) = fzero , p tabulate⁻ {suc n} (there p) = Prod.map fsuc id (tabulate⁻ p) ------------------------------------------------------------------------ -- map-with-∈. module _ {a b p} {A : Set a} {B : Set b} {P : B → Set p} where map-with-∈⁺ : ∀ {xs : List A} (f : ∀ {x} → x ∈ xs → B) → (∃₂ λ x (x∈xs : x ∈ xs) → P (f x∈xs)) → Any P (map-with-∈ xs f) map-with-∈⁺ f (_ , here refl , p) = here p map-with-∈⁺ f (_ , there x∈xs , p) = there $ map-with-∈⁺ (f ∘ there) (_ , x∈xs , p) map-with-∈⁻ : ∀ (xs : List A) (f : ∀ {x} → x ∈ xs → B) → Any P (map-with-∈ xs f) → ∃₂ λ x (x∈xs : x ∈ xs) → P (f x∈xs) map-with-∈⁻ [] f () map-with-∈⁻ (y ∷ xs) f (here p) = (y , here refl , p) map-with-∈⁻ (y ∷ xs) f (there p) = Prod.map id (Prod.map there id) $ map-with-∈⁻ xs (f ∘ there) p map-with-∈↔ : ∀ {xs : List A} {f : ∀ {x} → x ∈ xs → B} → (∃₂ λ x (x∈xs : x ∈ xs) → P (f x∈xs)) ↔ Any P (map-with-∈ xs f) map-with-∈↔ = inverse (map-with-∈⁺ _) (map-with-∈⁻ _ _) (from∘to _) (to∘from _ _) where from∘to : ∀ {xs : List A} (f : ∀ {x} → x ∈ xs → B) (p : ∃₂ λ x (x∈xs : x ∈ xs) → P (f x∈xs)) → map-with-∈⁻ xs f (map-with-∈⁺ f p) ≡ p from∘to f (_ , here refl , p) = refl from∘to f (_ , there x∈xs , p) rewrite from∘to (f ∘ there) (_ , x∈xs , p) = refl to∘from : ∀ (xs : List A) (f : ∀ {x} → x ∈ xs → B) (p : Any P (map-with-∈ xs f)) → map-with-∈⁺ f (map-with-∈⁻ xs f p) ≡ p to∘from [] f () to∘from (y ∷ xs) f (here p) = refl to∘from (y ∷ xs) f (there p) = P.cong there $ to∘from xs (f ∘ there) p ------------------------------------------------------------------------ -- return module _ {a p} {A : Set a} {P : A → Set p} where return⁺ : ∀ {x} → P x → Any P (return x) return⁺ = here return⁻ : ∀ {x} → Any P (return x) → P x return⁻ (here p) = p return⁻ (there ()) return⁺∘return⁻ : ∀ {x} (p : Any P (return x)) → return⁺ (return⁻ p) ≡ p return⁺∘return⁻ (here p) = refl return⁺∘return⁻ (there ()) return⁻∘return⁺ : ∀ {x} (p : P x) → return⁻ (return⁺ p) ≡ p return⁻∘return⁺ p = refl return↔ : ∀ {x} → P x ↔ Any P (return x) return↔ = inverse return⁺ return⁻ return⁻∘return⁺ return⁺∘return⁻ ------------------------------------------------------------------------ -- _∷_ module _ {a p} {A : Set a} where ∷↔ : ∀ (P : Pred A p) {x xs} → (P x ⊎ Any P xs) ↔ Any P (x ∷ xs) ∷↔ P {x} {xs} = (P x ⊎ Any P xs) ↔⟨ return↔ {P = P} ⊎-cong (Any P xs ∎) ⟩ (Any P [ x ] ⊎ Any P xs) ↔⟨ ++↔ {P = P} {xs = [ x ]} ⟩ Any P (x ∷ xs) ∎ ------------------------------------------------------------------------ -- _>>=_ module _ {ℓ p} {A B : Set ℓ} {P : B → Set p} {f : A → List B} where >>=↔ : ∀ {xs} → Any (Any P ∘ f) xs ↔ Any P (xs >>= f) >>=↔ {xs} = Any (Any P ∘ f) xs ↔⟨ map↔ ⟩ Any (Any P) (List.map f xs) ↔⟨ concat↔ ⟩ Any P (xs >>= f) ∎ ------------------------------------------------------------------------ -- _⊛_ module _ {ℓ} {A B : Set ℓ} where ⊛↔ : ∀ {P : B → Set ℓ} {fs : List (A → B)} {xs : List A} → Any (λ f → Any (P ∘ f) xs) fs ↔ Any P (fs ⊛ xs) ⊛↔ {P = P} {fs} {xs} = Any (λ f → Any (P ∘ f) xs) fs ↔⟨ Any-cong (λ _ → Any-cong (λ _ → return↔) (_ ∎)) (_ ∎) ⟩ Any (λ f → Any (Any P ∘ return ∘ f) xs) fs ↔⟨ Any-cong (λ _ → >>=↔ ) (_ ∎) ⟩ Any (λ f → Any P (xs >>= return ∘ f)) fs ↔⟨ >>=↔ ⟩ Any P (fs ⊛ xs) ∎ -- An alternative introduction rule for _⊛_ ⊛⁺′ : ∀ {P : A → Set ℓ} {Q : B → Set ℓ} {fs : List (A → B)} {xs} → Any (P ⟨→⟩ Q) fs → Any P xs → Any Q (fs ⊛ xs) ⊛⁺′ pq p = Inverse.to ⊛↔ ⟨$⟩ Any.map (λ pq → Any.map (λ {x} → pq {x}) p) pq ------------------------------------------------------------------------ -- _⊗_ module _ {ℓ} {A B : Set ℓ} where ⊗↔ : {P : A × B → Set ℓ} {xs : List A} {ys : List B} → Any (λ x → Any (λ y → P (x , y)) ys) xs ↔ Any P (xs ⊗ ys) ⊗↔ {P} {xs} {ys} = Any (λ x → Any (λ y → P (x , y)) ys) xs ↔⟨ return↔ ⟩ Any (λ _,_ → Any (λ x → Any (λ y → P (x , y)) ys) xs) (return _,_) ↔⟨ ⊛↔ ⟩ Any (λ x, → Any (P ∘ x,) ys) (_,_ <$> xs) ↔⟨ ⊛↔ ⟩ Any P (xs ⊗ ys) ∎ ⊗↔′ : {P : A → Set ℓ} {Q : B → Set ℓ} {xs : List A} {ys : List B} → (Any P xs × Any Q ys) ↔ Any (P ⟨×⟩ Q) (xs ⊗ ys) ⊗↔′ {P} {Q} {xs} {ys} = (Any P xs × Any Q ys) ↔⟨ ×↔ ⟩ Any (λ x → Any (λ y → P x × Q y) ys) xs ↔⟨ ⊗↔ ⟩ Any (P ⟨×⟩ Q) (xs ⊗ ys) ∎
{ "alphanum_fraction": 0.4266175936, "avg_line_length": 37.8795180723, "ext": "agda", "hexsha": "192cd7b539b072c279aefb626b126b3676c9ef26", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Unary/Any/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Unary/Any/Properties.agda", "max_line_length": 106, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Unary/Any/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 8942, "size": 22008 }
{-# OPTIONS --cumulativity --postfix-projections #-} open import Agda.Primitive open import Agda.Builtin.Nat open import Agda.Builtin.Equality variable ℓ ℓ₁ ℓ₂ ℓ₃ : Level A B C : Set ℓ x y z : A k l m n : Nat record Σ {ℓ} (A : Set ℓ) (B : A → Set ℓ) : Set ℓ where constructor _,_ field fst : A snd : B fst open Σ public record Category ℓ : Set (lsuc ℓ) where field Carrier : Set ℓ _~>_ : Carrier → Carrier → Set ℓ id : ∀ {X} → X ~> X _∘_ : ∀ {X Y Z} → X ~> Y → Y ~> Z → X ~> Z open Category public SetCat : ∀ ℓ → Category (lsuc ℓ) SetCat ℓ .Carrier = Set ℓ SetCat ℓ ._~>_ A B = A → B SetCat ℓ .id = λ x → x SetCat ℓ ._∘_ f g = λ x → g (f x) record Functor (c : Category ℓ₁) (c′ : Category ℓ₂) : Set (ℓ₁ ⊔ ℓ₂) where private module c = Category c module c′ = Category c′ field F : c.Carrier → c′.Carrier fmap : {A B : c.Carrier} → A c.~> B → F A c′.~> F B open Functor public idFunctor : {c : Category ℓ} → Functor c c idFunctor .F X = X idFunctor .fmap f = f compFunctor : {c₁ : Category ℓ₁} {c₂ : Category ℓ₂} {c₃ : Category ℓ₃} → Functor c₁ c₂ → Functor c₂ c₃ → Functor c₁ c₃ compFunctor F₁ F₂ .F X = F₂ .F (F₁ .F X) compFunctor F₁ F₂ .fmap f = F₂ .fmap (F₁ .fmap f) Cat : ∀ ℓ → Category (lsuc ℓ) Cat ℓ .Carrier = Category ℓ Cat ℓ ._~>_ c₁ c₂ = Functor c₁ c₂ Cat ℓ .id = idFunctor Cat ℓ ._∘_ = compFunctor NatTrans : {c₁ : Category ℓ₁} {c₂ : Category ℓ₂} → (F G : Functor c₁ c₂) → Set (ℓ₁ ⊔ ℓ₂) NatTrans {c₁ = c₁} {c₂ = c₂} F G = let module c₁ = Category c₁ module c₂ = Category c₂ module F = Functor F module G = Functor G in ∀ X → F.F X c₂.~> G.F X FunctorCat : (c₁ : Category ℓ₁) (c₂ : Category ℓ₂) → Category (ℓ₁ ⊔ ℓ₂) FunctorCat c₁ c₂ .Carrier = Functor c₁ c₂ FunctorCat c₁ c₂ ._~>_ = NatTrans FunctorCat c₁ c₂ .id X = c₂ .id FunctorCat c₁ c₂ ._∘_ α β X = let module c₁ = Category c₁ module c₂ = Category c₂ in α X c₂.∘ β X record Setoid ℓ : Set (lsuc ℓ) where field Carrier : Set ℓ _~_ : Carrier → Carrier → Set ℓ rfl : ∀ {x} → x ~ x sym : ∀ {x y} → x ~ y → y ~ x trans : ∀ {x y z} → x ~ y → y ~ z → x ~ z open Setoid public DiscreteSetoid : Set ℓ → Setoid ℓ DiscreteSetoid A .Carrier = A DiscreteSetoid A ._~_ = _≡_ DiscreteSetoid A .rfl = refl DiscreteSetoid A .sym refl = refl DiscreteSetoid A .trans refl refl = refl SetoidCat : ∀ ℓ → Category (lsuc ℓ) SetoidCat ℓ .Carrier = Setoid ℓ SetoidCat ℓ ._~>_ A B = let module A = Setoid A module B = Setoid B in Σ {ℓ} (A.Carrier → B.Carrier) λ f → ∀ {x y} → x A.~ y → f x B.~ f y SetoidCat ℓ .id = (λ x → x) , λ x= → x= SetoidCat ℓ ._∘_ (f , f=) (g , g=) = (λ x → g (f x)) , λ x= → g= (f= x=) DiscreteSetoidFunctor : ∀ {ℓ} → Functor (SetCat ℓ) (SetoidCat ℓ) DiscreteSetoidFunctor .F = DiscreteSetoid DiscreteSetoidFunctor .fmap f .fst = f DiscreteSetoidFunctor .fmap f .snd refl = refl Op : Category ℓ → Category ℓ Op c .Carrier = c .Carrier Op c ._~>_ A B = c ._~>_ B A Op c .id = c .id Op c ._∘_ = let module c = Category c in λ f g → g c.∘ f Yoneda : {c : Category ℓ} (X : c .Carrier) → Functor c (Op (SetCat ℓ)) Yoneda {c = c} X .F Y = let module c = Category c in Y c.~> X Yoneda {c = c} X .fmap = c ._∘_ test : Functor (SetCat (lsuc lzero)) (Op (SetCat (lsuc (lsuc lzero)))) test = Yoneda {c = SetCat (lsuc lzero)} Set
{ "alphanum_fraction": 0.5856093979, "avg_line_length": 28.1404958678, "ext": "agda", "hexsha": "943240622c7bde0ce261a1af718663b1e753d1e3", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/CumulCat.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/CumulCat.agda", "max_line_length": 88, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/CumulCat.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 1428, "size": 3405 }
module Issue4435-2 where record ⊤ : Set where data Foo (a : Set) : Set where Bar : {a : Set} → Foo a → Set -- Here, the error message does NOT include -- "Perhaps you meant to write 'data Foo a where'" -- because Foo is defined above (rather than declared - note the "where" -- compared to Issue4435-1.agda). data Foo a : Set where c1 : Foo a c2 : (x : Foo a) (y : Bar x → Foo a) → Foo a Bar c1 = ⊤ Bar (c2 a b) = (x : Bar a) → Bar (b x)
{ "alphanum_fraction": 0.6233183857, "avg_line_length": 24.7777777778, "ext": "agda", "hexsha": "d4d4b225244261fe37ce11b49f99acaa5e7b5955", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/Fail/Issue4435-2.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue4435-2.agda", "max_line_length": 72, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue4435-2.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 153, "size": 446 }
module PushArgument where open import Agda.Builtin.Nat data List (A : Set) : Nat -> Set where nil : List A 0 cons : {n : Nat} -> A -> List A n -> List A (suc n) newFunc : {A : Set} -> {B : Set} -> (f : A -> B) -> (x : A) -> B newFunc f x = f x map : {n : Nat} -> {A : Set} -> {B : Set} -> (A -> B) -> List A n -> List B n map f nil = nil map f (cons x xs) = cons (newFunc f x) (map f xs)
{ "alphanum_fraction": 0.5062034739, "avg_line_length": 22.3888888889, "ext": "agda", "hexsha": "c1183276522a468b082ce4896b59882330c3b9a9", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-01-31T08:40:41.000Z", "max_forks_repo_forks_event_min_datetime": "2019-01-31T08:40:41.000Z", "max_forks_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "omega12345/RefactorAgda", "max_forks_repo_path": "RefactorAgdaEngine/Test/Tests/ManualTestFiles/PushArgument.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b", "max_issues_repo_issues_event_max_datetime": "2019-02-05T12:53:36.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-31T08:03:07.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "omega12345/RefactorAgda", "max_issues_repo_path": "RefactorAgdaEngine/Test/Tests/ManualTestFiles/PushArgument.agda", "max_line_length": 77, "max_stars_count": 5, "max_stars_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "omega12345/RefactorAgda", "max_stars_repo_path": "RefactorAgdaEngine/Test/Tests/ManualTestFiles/PushArgument.agda", "max_stars_repo_stars_event_max_datetime": "2019-05-03T10:03:36.000Z", "max_stars_repo_stars_event_min_datetime": "2019-01-31T14:10:18.000Z", "num_tokens": 156, "size": 403 }
-- Andreas, 2016-07-28, issue #779 record R : Set1 where data Bla : Set where field F : Set -- WAS: -- Not a valid let-definition -- Expected: -- Success, or error outlawing pattern matching definition before last field.
{ "alphanum_fraction": 0.6973684211, "avg_line_length": 19, "ext": "agda", "hexsha": "c31198a3d2db8a068e4d355de240ead081b8c6bc", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue779data.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue779data.agda", "max_line_length": 77, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue779data.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 63, "size": 228 }
------------------------------------------------------------------------ -- Examples related to Univalence-axiom.Isomorphism-is-equality.More ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} -- Note that this module uses ordinary propositional equality, with a -- computing J rule. -- This module has been developed in collaboration with Thierry -- Coquand. module Univalence-axiom.Isomorphism-is-equality.More.Examples where open import Equality.Propositional renaming (equality-with-J to eq) open import Equivalence eq hiding (id) open import Function-universe eq hiding (id) open import H-level.Closure eq open import Prelude hiding (id) open import Univalence-axiom.Isomorphism-is-equality.More ------------------------------------------------------------------------ -- Magmas magma : Code magma = ε ▻ A-type ▻ N-ary [0] 2 Magma : Type₁ Magma = ⟦ magma ⟧ private -- An unfolding of Magma. Magma-unfolded : Magma ≡ Σ (Σ (↑ _ ⊤) λ _ → Type ) λ { (_ , A) → ↑ _ A → ↑ _ A → ↑ _ A } Magma-unfolded = refl -- An unfolding of Isomorphic magma. Isomorphic-magma-unfolded : ∀ {ass A₁ f₁ A₂ f₂} → Isomorphic ass magma ((_ , A₁) , f₁) ((_ , A₂) , f₂) ≡ Σ (Σ (↑ _ ⊤) λ _ → ↑ _ (A₁ ≃ A₂) ) λ { (_ , lift A₁≃A₂) → let open _≃_ (↑-cong A₁≃A₂) in ∀ x y → to (f₁ x y) ≡ f₂ (to x) (to y) } Isomorphic-magma-unfolded = refl ------------------------------------------------------------------------ -- Semigroups -- Note that one axiom states that the underlying type is a set. This -- assumption is used to prove that the other axiom is propositional. semigroup : Code semigroup = ε ▻ A-type ▻ Is-a-set [0] ▻ N-ary (1+ [0]) 2 ▻ Proposition (λ { (_ , _∙_) → ∀ x y z → (x ∙ (y ∙ z)) ≡ ((x ∙ y) ∙ z) }) assoc-prop where assoc-prop = λ { ass ((_ , A-set) , _) → let open Assumptions ass in Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → A-set } Semigroup : Type₁ Semigroup = ⟦ semigroup ⟧ private -- An unfolding of Semigroup. Semigroup-unfolded : Semigroup ≡ Σ (Σ (Σ (Σ (↑ _ ⊤) λ _ → Type ) λ { (_ , A) → Is-set (↑ _ A) }) λ { ((_ , A) , _) → ↑ _ A → ↑ _ A → ↑ _ A }) λ { (_ , _∙_) → ∀ x y z → (x ∙ (y ∙ z)) ≡ ((x ∙ y) ∙ z) } Semigroup-unfolded = refl -- An unfolding of Isomorphic semigroup. Isomorphic-semigroup-unfolded : ∀ {ass A₁} {is₁ : Is-set (↑ _ A₁)} {_∙₁_ assoc₁} {A₂} {is₂ : Is-set (↑ _ A₂)} {_∙₂_ assoc₂} → Isomorphic ass semigroup ((((_ , A₁) , is₁) , _∙₁_) , assoc₁) ((((_ , A₂) , is₂) , _∙₂_) , assoc₂) ≡ Σ (Σ (Σ (Σ (↑ _ ⊤) λ _ → ↑ _ (A₁ ≃ A₂) ) λ { _ → ↑ _ ⊤ }) λ { ((_ , lift A₁≃A₂) , _) → let open _≃_ (↑-cong A₁≃A₂) in ∀ x y → to (x ∙₁ y) ≡ (to x ∙₂ to y) }) λ { _ → ↑ _ ⊤ } Isomorphic-semigroup-unfolded = refl ------------------------------------------------------------------------ -- Sets with fixed-point operators set-with-fixed-point-operator : Code set-with-fixed-point-operator = ε ▻ A-type ▻ Is-a-set [0] ▻ Simple ((base (1+ [0]) ⟶ base (1+ [0])) ⟶ base (1+ [0])) ▻ Proposition (λ { (_ , fix) → ∀ f → fix f ≡ f (fix f) }) fix-point-prop where fix-point-prop = λ { ass ((_ , A-set) , _) → let open Assumptions ass in Π-closure ext₁ 1 λ _ → A-set } Set-with-fixed-point-operator : Type₁ Set-with-fixed-point-operator = ⟦ set-with-fixed-point-operator ⟧ private -- An unfolding of Set-with-fixed-point-operator. Set-with-fixed-point-operator-unfolded : Set-with-fixed-point-operator ≡ Σ (Σ (Σ (Σ (↑ _ ⊤) λ _ → Type ) λ { (_ , A) → Is-set (↑ _ A) }) λ { ((_ , A) , _) → (↑ _ A → ↑ _ A) → ↑ _ A }) λ { (_ , fix) → ∀ f → fix f ≡ f (fix f) } Set-with-fixed-point-operator-unfolded = refl -- An unfolding of Isomorphic set-with-fixed-point-operator. Isomorphic-set-with-fixed-point-operator-unfolded : ∀ {ass A₁} {is₁ : Is-set (↑ _ A₁)} {fix₁ fixed-point₁} {A₂} {is₂ : Is-set (↑ _ A₂)} {fix₂ fixed-point₂} → Isomorphic ass set-with-fixed-point-operator ((((_ , A₁) , is₁) , fix₁) , fixed-point₁) ((((_ , A₂) , is₂) , fix₂) , fixed-point₂) ≡ Σ (Σ (Σ (Σ (↑ _ ⊤) λ _ → ↑ _ (A₁ ≃ A₂) ) λ { _ → ↑ _ ⊤ }) λ { ((_ , lift A₁≃A₂) , _) → let open _≃_ (↑-cong A₁≃A₂) in ∀ f g → (∀ x y → to x ≡ y → to (f x) ≡ g y) → to (fix₁ f) ≡ fix₂ g }) λ { _ → ↑ _ ⊤ } Isomorphic-set-with-fixed-point-operator-unfolded = refl ------------------------------------------------------------------------ -- Abelian groups abelian-group : Code abelian-group = ε -- The underlying type. ▻ A-type -- The underlying type is a set. ▻ Is-a-set [0] -- The binary group operation. ▻ N-ary (1+ [0]) 2 -- Commutativity. ▻ Comm -- Associativity. ▻ Assoc -- Identity. ▻ N-ary (1+ 1+ 1+ 1+ [0]) 0 -- Left identity. ▻ Left-identity -- Right identity. ▻ Right-identity -- Inverse. ▻ N-ary (1+ 1+ 1+ 1+ 1+ 1+ 1+ [0]) 1 -- Left inverse. ▻ Left-inverse -- Right inverse. ▻ Right-inverse where Comm = Proposition (λ { (_ , _∙_) → ∀ x y → (x ∙ y) ≡ (y ∙ x) }) (λ { ass ((_ , A-set) , _) → let open Assumptions ass in Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → A-set }) Assoc = Proposition (λ { ((_ , _∙_) , _) → ∀ x y z → (x ∙ (y ∙ z)) ≡ ((x ∙ y) ∙ z) }) (λ { ass (((_ , A-set) , _) , _) → let open Assumptions ass in Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → A-set }) Left-identity = Proposition (λ { ((((_ , _∙_) , _) , _) , e) → ∀ x → (e ∙ x) ≡ x }) (λ { ass (((((_ , A-set) , _) , _) , _) , _) → let open Assumptions ass in Π-closure ext₁ 1 λ _ → A-set }) Right-identity = Proposition (λ { (((((_ , _∙_) , _) , _) , e) , _) → ∀ x → (x ∙ e) ≡ x }) (λ { ass ((((((_ , A-set) , _) , _) , _) , _) , _) → let open Assumptions ass in Π-closure ext₁ 1 λ _ → A-set }) Left-inverse = Proposition (λ { (((((((_ , _∙_) , _) , _) , e) , _) , _) , _⁻¹) → ∀ x → ((x ⁻¹) ∙ x) ≡ e }) (λ { ass ((((((((_ , A-set) , _) , _) , _) , _) , _) , _) , _) → let open Assumptions ass in Π-closure ext₁ 1 λ _ → A-set }) Right-inverse = Proposition (λ { ((((((((_ , _∙_) , _) , _) , e) , _) , _) , _⁻¹) , _) → ∀ x → (x ∙ (x ⁻¹)) ≡ e }) (λ { ass (((((((((_ , A-set) , _) , _) , _) , _) , _) , _) , _) , _) → let open Assumptions ass in Π-closure ext₁ 1 λ _ → A-set }) Abelian-group : Type₁ Abelian-group = ⟦ abelian-group ⟧ private -- An unfolding of Abelian-group. Note that the inner structure is -- left-nested. Abelian-group-unfolded : Abelian-group ≡ Σ (Σ (Σ (Σ (Σ (Σ (Σ (Σ (Σ (Σ (Σ (↑ _ ⊤) λ _ → Type ) λ { (_ , A) → Is-set (↑ _ A) }) λ { ((_ , A) , _) → ↑ _ A → ↑ _ A → ↑ _ A }) λ { (_ , _∙_) → ∀ x y → (x ∙ y) ≡ (y ∙ x) }) λ { ((_ , _∙_) , _) → ∀ x y z → (x ∙ (y ∙ z)) ≡ ((x ∙ y) ∙ z) }) λ { (((((_ , A) , _) , _ ) , _) , _) → ↑ _ A }) λ { ((((_ , _∙_) , _) , _) , e) → ∀ x → (e ∙ x) ≡ x }) λ { (((((_ , _∙_) , _) , _) , e) , _) → ∀ x → (x ∙ e) ≡ x }) λ { ((((((((_ , A) , _) , _ ) , _) , _) , _) , _) , _) → ↑ _ A → ↑ _ A }) λ { (((((((_ , _∙_) , _) , _) , e) , _) , _) , _⁻¹) → ∀ x → ((x ⁻¹) ∙ x) ≡ e }) λ { ((((((((_ , _∙_) , _) , _) , e) , _) , _) , _⁻¹) , _) → ∀ x → (x ∙ (x ⁻¹)) ≡ e } Abelian-group-unfolded = refl -- An unfolding of Isomorphic abelian-group. Isomorphic-abelian-group-unfolded : ∀ {ass A₁} {is₁ : Is-set (↑ _ A₁)} {_∙₁_ comm₁ assoc₁ e₁ lid₁ rid₁ _⁻¹₁ linv₁ rinv₁} {A₂} {is₂ : Is-set (↑ _ A₂)} {_∙₂_ comm₂ assoc₂ e₂ lid₂ rid₂ _⁻¹₂ linv₂ rinv₂} → Isomorphic ass abelian-group (((((((((((_ , A₁) , is₁) , _∙₁_) , comm₁) , assoc₁) , e₁) , lid₁) , rid₁) , _⁻¹₁) , linv₁) , rinv₁) (((((((((((_ , A₂) , is₂) , _∙₂_) , comm₂) , assoc₂) , e₂) , lid₂) , rid₂) , _⁻¹₂) , linv₂) , rinv₂) ≡ Σ (Σ (Σ (Σ (Σ (Σ (Σ (Σ (Σ (Σ (Σ (↑ _ ⊤) λ _ → ↑ _ (A₁ ≃ A₂) ) λ { _ → ↑ _ ⊤ }) λ { ((_ , lift A₁≃A₂) , _) → let open _≃_ (↑-cong A₁≃A₂) in ∀ x y → to (x ∙₁ y) ≡ (to x ∙₂ to y) }) λ { _ → ↑ _ ⊤ }) λ { _ → ↑ _ ⊤ }) λ { (((((_ , lift A₁≃A₂) , _) , _) , _) , _) → let open _≃_ (↑-cong A₁≃A₂) in to e₁ ≡ e₂ }) λ { _ → ↑ _ ⊤ }) λ { _ → ↑ _ ⊤ }) λ { ((((((((_ , lift A₁≃A₂) , _) , _) , _) , _) , _) , _) , _) → let open _≃_ (↑-cong A₁≃A₂) in ∀ x → to (x ⁻¹₁) ≡ (to x ⁻¹₂) }) λ { _ → ↑ _ ⊤ }) λ { _ → ↑ _ ⊤ } Isomorphic-abelian-group-unfolded = refl ------------------------------------------------------------------------ -- Church-encoded natural numbers for which we can do induction -- Church-encoded natural numbers. Nat : Type₁ Nat = (A : Type) → ↑ (# 1) A → (↑ (# 1) A → ↑ (# 1) A) → ↑ (# 1) A -- Zero and successor. Zero : Nat Zero = λ A z s → z Suc : Nat → Nat Suc = λ n A z s → s (n A z s) -- The code. inductive-natural-numbers : Code inductive-natural-numbers = ε ▻ Dep (Π set (Π (base ⟨0⟩) (Π (Π (base (1+ ⟨0⟩)) (base (1+ 1+ ⟨0⟩))) (base (1+ 1+ ⟨0⟩))))) ▻ Proposition (λ { (_ , n) → (P : Nat → Type) → Is-proposition (P n) → P Zero → (∀ m → P m → P (Suc m)) → P n }) (λ ass _ → let open Assumptions ass in Π-closure ext₁ 1 λ _ → Π-closure (lower-extensionality (# 1) (# 0) ext₁) 1 λ Pn-prop → Π-closure (lower-extensionality (# 1) (# 0) ext₁) 1 λ _ → Π-closure (lower-extensionality (# 0) (# 1) ext₁) 1 λ _ → Pn-prop) where open Dependent private -- The usual unfolding lemmas. ⟦inductive-natural-numbers⟧ : ⟦ inductive-natural-numbers ⟧ ≡ Σ (Σ (↑ _ ⊤) λ _ → Nat ) λ { (_ , n) → (P : Nat → Type) → Is-proposition (P n) → P Zero → (∀ m → P m → P (Suc m)) → P n } ⟦inductive-natural-numbers⟧ = refl Isomorphic-inductive-natural-numbers : ∀ {ass : Assumptions} {n₁ n₂ : Nat} {prop₁ : (P : Nat → Type) → Is-proposition (P n₁) → P Zero → (∀ m → P m → P (Suc m)) → P n₁} {prop₂ : (P : Nat → Type) → Is-proposition (P n₂) → P Zero → (∀ m → P m → P (Suc m)) → P n₂} → Isomorphic ass inductive-natural-numbers ((_ , n₁) , prop₁) ((_ , n₂) , prop₂) ≡ Σ (Σ (↑ (# 1) ⊤) λ _ → ((A₁ A₂ : Type) → (A₁≃A₂ : ↑ (# 1) (A₁ ≃ A₂)) → let cast = _≃_.from (↑-cong (lower A₁≃A₂)) in (z₁ : ↑ (# 1) A₁) (z₂ : ↑ (# 1) A₂) → z₁ ≡ cast z₂ → (s₁ : ↑ (# 1) A₁ → ↑ (# 1) A₁) (s₂ : ↑ (# 1) A₂ → ↑ (# 1) A₂) → (∀ n₁ n₂ → n₁ ≡ cast n₂ → s₁ n₁ ≡ cast (s₂ n₂)) → n₁ A₁ z₁ s₁ ≡ cast (n₂ A₂ z₂ s₂))) λ _ → ↑ (# 1) ⊤ Isomorphic-inductive-natural-numbers = refl
{ "alphanum_fraction": 0.4068999266, "avg_line_length": 30.1253071253, "ext": "agda", "hexsha": "35ecf410ca0f2bd1fa64816ceb2394828e56fdad", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Univalence-axiom/Isomorphism-is-equality/More/Examples.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Univalence-axiom/Isomorphism-is-equality/More/Examples.agda", "max_line_length": 118, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Univalence-axiom/Isomorphism-is-equality/More/Examples.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 4381, "size": 12261 }
{-# OPTIONS --rewriting --prop #-} open import common open import syntx open import derivability {- Helper functions to compute the arity of a rule given the arity of the symbol. -} SStoJS : SyntaxSort → JudgmentSort SStoJS Ty = Ty SStoJS Tm = Tm TArityArgs : SyntaxArityArgs → JudgmentArityArgs TArityArgs [] = [] TArityArgs (ar , (n , k)) = TArityArgs ar , (n , SStoJS k) TArity : SyntaxArity → JudgmentArity TArity ar = (TArityArgs (args ar) , SStoJS (sort ar)) SStoJS= : SyntaxSort → JudgmentSort SStoJS= Ty = Ty= SStoJS= Tm = Tm= CArityArgs : SyntaxArityArgs → JudgmentArityArgs CArityArgs [] = [] CArityArgs (ar , (n , k)) = CArityArgs ar , (n , SStoJS= k) CArity : SyntaxArity → JudgmentArity CArity ar = (CArityArgs (args ar) , SStoJS= (sort ar)) {- [↑DerivationRule r] extends the derivation rule [r] to an extended signature. This is easy because derivation rules were designed to be extendable. -} ↑DerivationRule : {Σ : Signature} {sar : SyntaxArity} {jar : JudgmentArity} → DerivationRule Σ jar → DerivationRule (ExtSig Σ sar) jar rule (↑DerivationRule r) ↑ Γ = rule r (Ext→ ↑) Γ {- Record combining the typing and congruence rules for a new symbol. -} record DerivationRules {Σ : Signature} (E : DerivabilityStructure Σ) (ar : SyntaxArity) : Set₁ where field typingdrule : DerivationRule (ExtSig Σ ar) (TArity ar) congruencedrule : DerivationRule (ExtSig Σ ar) (CArity ar) open DerivationRules public {- [extend E tc] extends the derivability structure [E] to an extended signature, where [tc] is the typing/congruence rules of a new symbol. We also use a custom data type in order to add the two new rules, in order to get something readable. -} data ExtT (A : JudgmentArity → Set) (sar : SyntaxArity) : JudgmentArity → Set where typingrule : ExtT A sar (TArity sar) prev : {jar : JudgmentArity} → A jar → ExtT A sar jar data ExtC (A : JudgmentArity → Set) (sar : SyntaxArity) : JudgmentArity → Set where congruencerule : ExtC A sar (CArity sar) prev : {jar : JudgmentArity} → A jar → ExtC A sar jar extend : {Σ : Signature} (E : DerivabilityStructure Σ) {ar : SyntaxArity} (tc : DerivationRules E ar) → DerivabilityStructure (ExtSig Σ ar) Rules (extend E {ar} tc) S = Rules E S Rules (extend E {ar} tc) T = ExtT (Rules E T) ar Rules (extend E {ar} tc) C = ExtC (Rules E C) ar Rules (extend E {ar} tc) Eq = Rules E Eq derivationRule (extend E tc) {t = S} r = ↑DerivationRule (derivationRule E r) derivationRule (extend E tc) {t = T} (prev r) = ↑DerivationRule (derivationRule E r) derivationRule (extend E tc) {t = T} typingrule = typingdrule tc derivationRule (extend E tc) {t = C} (prev r) = ↑DerivationRule (derivationRule E r) derivationRule (extend E tc) {t = C} congruencerule = congruencedrule tc derivationRule (extend E tc) {t = Eq} r = ↑DerivationRule (derivationRule E r) -- data Ext (A : Tag → JudgmentArity → Set) (sar : SyntaxArity) : Tag → JudgmentArity → Set where -- typingrule : Ext A sar T (TArity sar) -- congruencerule : Ext A sar C (CArity sar) -- prev : {t : Tag} {jar : JudgmentArity} → A t jar → Ext A sar t jar -- extend : {Σ : Signature} (E : DerivabilityStructure Σ) -- {ar : SyntaxArity} -- (tc : DerivationRules E ar 0) -- → DerivabilityStructure (ExtSig Σ ar) -- Rules (extend E {ar} tc) = Ext (Rules E) ar -- derivationRule (extend E tc) typingrule = typingdrule tc -- derivationRule (extend E tc) congruencerule = congruencedrule tc -- derivationRule (extend E tc) (prev r) = ↑DerivationRule (derivationRule E r) {- Typing rules for basic metavariables (simply a derivable type in the empty context) -} record BMTypingRule {Σ : Signature} (E : DerivabilityStructure Σ) : Set where constructor _/_ field type : TyExpr Σ 0 der : Derivable E {Γ = ◇} (◇ ⊢ type) open BMTypingRule public {- The derivation rules corresponding to a basic metavariable (on the extended signature). -} BMRules : {Σ : Signature} {E : DerivabilityStructure Σ} (t : BMTypingRule E) → DerivationRules E ([] , Tm) rule (typingdrule (BMRules t)) ↑ Γ [] = return (◇ ⊢ (↑ $ new) [] :> ↑Expr (Ext→ ↑) (weaken0 (type t))) rule (congruencedrule (BMRules t)) ↑ Γ [] = return (◇ ⊢ (↑ $ new) [] == (↑ $ new) [] :> ↑Expr (Ext→ ↑) (weaken0 (type t))) -- -------------- ----------------- -- Γ ⊢ s : A Γ ⊢ s = s : A {- The premises of a typing rule for a metavariables form essentially a list of typing rules for basic metavariables in increasingly extended signatures. There are two different ways to order the premises: - either we have the first premise, and then the rest in an extended signature, - or we have all but the last premises, and then the last one in a signature extended by all the previous ones. The first option looks simpler, but we use the second option because we will need to talk about multiple substitution later anyway, and also it allows us to keep typing rules in the empty context. The type [MTypingRulePremises E n] represents a list of length [n] of such premises. It is defined simultaneously with multiple substitution: [extend^BM E ts] represents the derivability structure [E] extended by all the basic metavariables of [ts]. -} data MTypingRulePremises : {Σ : Signature} (E : DerivabilityStructure Σ) (n : ℕ) → Set extend^BM : {Σ : Signature} (E : DerivabilityStructure Σ) {n : ℕ} (ts : MTypingRulePremises E n) → DerivabilityStructure (ExtSig^ Σ (MArityArgs n)) data MTypingRulePremises where [] : ∀ {Σ} {E : DerivabilityStructure Σ} → MTypingRulePremises E 0 _,_ : ∀ {Σ} {E : DerivabilityStructure Σ} {n : ℕ} → (ts : MTypingRulePremises E n) → (t : BMTypingRule (extend^BM E ts)) → MTypingRulePremises E (suc n) extend^BM E [] = E extend^BM E (ts , t) = extend (extend^BM E ts) (BMRules t) {- [MTypingRule E n k] represents typing rules in derivability structure [E] for a metavariable of arity (n , k). There are two cases depending on [k]: - if [k] is [Ty], then we simply need a list of premises, - if [k] is [Tm], then we need a list of premises and a type for the conclusion, in the correctly extended derivability structure. -} data MTypingRule {Σ : Signature} (E : DerivabilityStructure Σ) (n : ℕ) : (k : SyntaxSort) → Set where Ty : MTypingRulePremises E n → MTypingRule E n Ty Tm : (ts : MTypingRulePremises E n) → BMTypingRule (extend^BM E ts) → MTypingRule E n Tm {- Γ, n : ℕ, y : P n ⊢ dS : P (n + 1) ◇ ⊢ _n : ℕ ◇ ⊢ _y : P _n ---------------------------- ◇ ⊢ dS(_n , _y) : P (_n + 1) Γ ⊢ n = m : ℕ Γ ⊢ u = v : P n ----------- Γ ⊢ dS(n , u) = dS(m , v) : P (n + 1) Γ ⊢ 3 : ℕ Γ ⊢ u : P 3 ~~~> Γ ⊢ dS(3 , u) : P (3 + 1) (n : ℕ, y : P n) -} {- The derivation rules associated to a typing rule for a metavariable. -} MTypingRule-TArgs : {Σ Σ' : Signature} (E : DerivabilityStructure Σ) {n m : ℕ} (↑ : (Σ →Sig Σ') m) {Γ : Ctx Σ' m} (ts : MTypingRulePremises E n) (js : DerivationRulePremises Σ' Γ (TArityArgs (MArityArgs n))) → Partial (Args Σ' m (MArityArgs n)) MTypingRule-TArgs E ↑ [] [] = return [] MTypingRule-TArgs E ↑ (ts , t) (js , ◇ ⊢ a :> A) = do as ← MTypingRule-TArgs E ↑ ts js assume (A ≡ ↑Expr (SubstM ↑ as) (weaken0 (type t))) return (as , a) MTypingRule-TRule : {Σ : Signature} (E : DerivabilityStructure Σ) {n : ℕ} {k : SyntaxSort} (t : MTypingRule E n k) → DerivationRule (ExtSig Σ (MArity n k)) (TArity (MArity n k)) rule (MTypingRule-TRule E (Ty ts)) ↑ Γ js = do as ← MTypingRule-TArgs E (Ext→ ↑) ts js return (◇ ⊢ (↑ $ new) as) rule (MTypingRule-TRule E (Tm ts t)) ↑ Γ js = do as ← MTypingRule-TArgs E (Ext→ ↑) ts js return (◇ ⊢ (↑ $ new) as :> ↑Expr (SubstM (Ext→ ↑) as) (weaken0 (type t))) MTypingRule-CArgs : {Σ Σ' : Signature} (E : DerivabilityStructure Σ) {n m : ℕ} (↑ : (Σ →Sig Σ') m) {Γ : Ctx Σ' m} (ts : MTypingRulePremises E n) (js : DerivationRulePremises Σ' Γ (CArityArgs (MArityArgs n))) → Partial (Args Σ' m (MArityArgs n) × Args Σ' m (MArityArgs n)) MTypingRule-CArgs E ↑ [] [] = return ([] , []) MTypingRule-CArgs E ↑ (ts , t) (js , ◇ ⊢ a == a' :> A) = do (as , as') ← MTypingRule-CArgs E ↑ ts js assume (A ≡ ↑Expr (SubstM ↑ as) (weaken0 (type t))) return ((as , a) , (as' , a')) MTypingRule-CRule : {Σ : Signature} (E : DerivabilityStructure Σ) {n : ℕ} {k : SyntaxSort} (t : MTypingRule E n k) → DerivationRule (ExtSig Σ (MArity n k)) (CArity (MArity n k)) rule (MTypingRule-CRule E (Ty ts)) ↑ Γ js = do (as , as') ← MTypingRule-CArgs E (Ext→ ↑) ts js return (◇ ⊢ (↑ $ new) as == (↑ $ new) as') rule (MTypingRule-CRule E (Tm ts t)) ↑ Γ js = do (as , as') ← MTypingRule-CArgs E (Ext→ ↑) ts js return (◇ ⊢ (↑ $ new) as == (↑ $ new) as' :> ↑Expr (SubstM (Ext→ ↑) as) (weaken0 (type t))) MRules : {Σ : Signature} {E : DerivabilityStructure Σ} {n : ℕ} {k : SyntaxSort} (t : MTypingRule E n k) → DerivationRules E (MArity n k) typingdrule (MRules t) = MTypingRule-TRule _ t congruencedrule (MRules t) = MTypingRule-CRule _ t {- General typing rules are very similar to typing rules of metavariables, except that they are using [MTypingRule] instead of [BMTypingRule] for the premises. -} data TypingRulePremises : {Σ : Signature} (E : DerivabilityStructure Σ) (args : SyntaxArityArgs) → Set extend^M : {Σ : Signature} (E : DerivabilityStructure Σ) {args : SyntaxArityArgs} (ts : TypingRulePremises E args) → DerivabilityStructure (ExtSig^ Σ args) data TypingRulePremises where [] : ∀ {Σ} {E : DerivabilityStructure Σ} → TypingRulePremises E [] _,_ : ∀ {Σ} {E : DerivabilityStructure Σ} {args : SyntaxArityArgs} {m : ℕ} {k : SyntaxSort} → (ts : TypingRulePremises E args) → (t : MTypingRule (extend^M E ts) m k) → TypingRulePremises E (args , (m , k)) extend^M E [] = E extend^M E (ts , t) = extend (extend^M E ts) (MRules t) data TypingRule {Σ : Signature} (E : DerivabilityStructure Σ) (args : SyntaxArityArgs) : (k : SyntaxSort) → Set where Ty : TypingRulePremises E args → TypingRule E args Ty Tm : (ts : TypingRulePremises E args) → BMTypingRule (extend^M E ts) → TypingRule E args Tm {- The derivation rules associated to a typing rule. -} {- List of all the last [n] variables in scope [m + n] -} Vars : {Σ : Signature} {n : ℕ} (m : ℕ) → Args Σ (m + n) (MArityArgs n) Vars {n = zero} m = [] Vars {n = suc n} m = weakenA {{≤-+ {m + n} {1}}} last (Vars m) , var last {- [check-DepCtx ↑ as ts Δ] checks that the premises [ts] correspond to the dependent context [Δ], where [as] corresponds to the interpretations of the metavariables. -} check-DepCtx : {Σ Σ' : Signature} {m n : ℕ} {args : SyntaxArityArgs} {E : DerivabilityStructure (ExtSig^ Σ args)} → (Σ →Sig Σ') m → Args Σ' m args → MTypingRulePremises E n → DepCtx Σ' m n → Prop check-DepCtx ↑ as [] ◇ = ⊤ check-DepCtx {m = m} {n = suc n} ↑ as (ts , t) (Δ , A) = ΣP (check-DepCtx ↑ as ts Δ) (λ _ → A ≡ ↑Expr (SubstM (liftSig ↑) (weakenAL as)) (↑Expr (SubstM idSig (Vars m)) (weaken0 (type t)))) TypingRule-TArgs : {Σ Σ' : Signature} (E : DerivabilityStructure Σ) {args : SyntaxArityArgs} {m : ℕ} (↑ : (Σ →Sig Σ') m) {Γ : Ctx Σ' m} (ts : TypingRulePremises E args) (js : DerivationRulePremises Σ' Γ (TArityArgs args)) → Partial (Args Σ' m args) TypingRule-TArgs E ↑ [] [] = return [] TypingRule-TArgs E ↑ (ts , Ty t's) (js , Δ ⊢ A) = do as ← TypingRule-TArgs E ↑ ts js assume (check-DepCtx ↑ as t's Δ) return (as , A) TypingRule-TArgs E {m = m} ↑ (ts , Tm t's t) (_,_ {m = m'} js (Δ ⊢ u :> A)) = do as ← TypingRule-TArgs E ↑ ts js assume (check-DepCtx ↑ as t's Δ) assume (A ≡ ↑Expr (SubstM (liftSig ↑) (weakenAL as)) (↑Expr (SubstM idSig (Vars m)) (weaken0 (type t)))) return (as , u) TypingRule-TRule : {Σ : Signature} (E : DerivabilityStructure Σ) {args : SyntaxArityArgs} {k : SyntaxSort} (t : TypingRule E args k) → DerivationRule (ExtSig Σ (args , k)) (TArity (args , k)) rule (TypingRule-TRule E (Ty ts)) ↑ Γ js = do as ← TypingRule-TArgs E (Ext→ ↑) ts js return (◇ ⊢ (↑ $ new) as) rule (TypingRule-TRule E (Tm ts t)) ↑ Γ js = do as ← TypingRule-TArgs E (Ext→ ↑) ts js return (◇ ⊢ (↑ $ new) as :> ↑Expr (SubstM (Ext→ ↑) as) (weaken0 (type t))) TypingRule-CArgs : {Σ Σ' : Signature} (E : DerivabilityStructure Σ) {args : SyntaxArityArgs} {m : ℕ} (↑ : (Σ →Sig Σ') m) {Γ : Ctx Σ' m} (ts : TypingRulePremises E args) (js : DerivationRulePremises Σ' Γ (CArityArgs args)) → Partial (Args Σ' m args × Args Σ' m args) TypingRule-CArgs E ↑ [] [] = return ([] , []) TypingRule-CArgs E {args = args , (n , Ty)} {m} ↑ (ts , Ty t's) (js , Δ ⊢ A == A') = do (as , as') ← TypingRule-CArgs E ↑ ts js assume (check-DepCtx ↑ as t's Δ) return ((as , A) , (as' , A')) TypingRule-CArgs E {args = args , (n , Tm)} {m} ↑ (ts , Tm t's t) (js , Δ ⊢ u == u' :> A) = do (as , as') ← TypingRule-CArgs E ↑ ts js assume (check-DepCtx ↑ as t's Δ) assume (A ≡ ↑Expr (SubstM (liftSig ↑) (weakenAL as)) (↑Expr (SubstM idSig (Vars m)) (weaken0 (type t)))) return ((as , u) , (as' , u')) TypingRule-CRule : {Σ : Signature} (E : DerivabilityStructure Σ) {args : SyntaxArityArgs} {k : SyntaxSort} (t : TypingRule E args k) → DerivationRule (ExtSig Σ (args , k)) (CArity (args , k)) rule (TypingRule-CRule E (Ty ts)) ↑ Γ js = do (as , as') ← TypingRule-CArgs E (Ext→ ↑) ts js return (◇ ⊢ (↑ $ new) as == (↑ $ new) as') rule (TypingRule-CRule E (Tm ts t)) {n = n} ↑ Γ js = do (as , as') ← TypingRule-CArgs E (Ext→ ↑) ts js return (◇ ⊢ (↑ $ new) as == (↑ $ new) as' :> ↑Expr (SubstM (Ext→ ↑) as) (weaken0 (type t))) TRules : {Σ : Signature} {E : DerivabilityStructure Σ} {ar : SyntaxArity} (t : TypingRule E (args ar) (sort ar)) → DerivationRules E ar typingdrule (TRules t) = TypingRule-TRule _ t congruencedrule (TRules t) = TypingRule-CRule _ t {- Γ ⊢ A == A' Γ , x : A ⊢ B == B' -------------------- Γ ⊢ Π A B == Π A' B' -} {- Equality rules -} {- [extendE E tc] extends the derivability structure with one single (equality) rule -} data ExtE (A : JudgmentArity → Set) (nar : JudgmentArity) : JudgmentArity → Set where equalityrule : ExtE A nar nar prev : {jar : JudgmentArity} → A jar → ExtE A nar jar extendE : {Σ : Signature} (E : DerivabilityStructure Σ) {ar : JudgmentArity} (tc : DerivationRule Σ ar) → DerivabilityStructure Σ Rules (extendE E {ar} tc) S = Rules E S Rules (extendE E {ar} tc) T = Rules E T Rules (extendE E {ar} tc) C = Rules E C Rules (extendE E {ar} tc) Eq = ExtE (Rules E Eq) ar derivationRule (extendE E tc) {S} r = derivationRule E r derivationRule (extendE E tc) {T} r = derivationRule E r derivationRule (extendE E tc) {C} r = derivationRule E r derivationRule (extendE E tc) {Eq} (prev r) = derivationRule E r derivationRule (extendE E tc) {Eq} equalityrule = tc -- data ExtE (A : Tag → JudgmentArity → Set) (nar : JudgmentArity) : Tag → JudgmentArity → Set where -- equalityrule : ExtE A nar Eq nar -- prev : {t : Tag} {jar : JudgmentArity} → A t jar → ExtE A nar t jar -- extendE : {Σ : Signature} (E : DerivabilityStructure Σ) -- {ar : JudgmentArity} -- (tc : {n : ℕ} → DerivationRule Σ ar n) -- → DerivabilityStructure Σ -- Rules (extendE E {ar} tc) = ExtE (Rules E) ar -- derivationRule (extendE E tc) (prev r) = derivationRule E r -- derivationRule (extendE E tc) equalityrule = tc record TermEquality {Σ : Signature} (E : DerivabilityStructure Σ) : Set where constructor _<:_/_//_/_ field type : TyExpr Σ 0 term1 : TmExpr Σ 0 der1 : Derivable E {Γ = ◇} (◇ ⊢ term1 :> type) term2 : TmExpr Σ 0 der2 : Derivable E {Γ = ◇} (◇ ⊢ term2 :> type) open BMTypingRule public data EqualityRule {Σ : Signature} (E : DerivabilityStructure Σ) (args : SyntaxArityArgs) : (k : SyntaxSort) → Set where Ty= : (ts : TypingRulePremises E args) (A B : BMTypingRule (extend^M E ts)) → EqualityRule E args Ty Tm= : (ts : TypingRulePremises E args) (A : TermEquality (extend^M E ts)) → EqualityRule E args Tm ERule : {Σ : Signature} {E : DerivabilityStructure Σ} {args : SyntaxArityArgs} {k : SyntaxSort} → EqualityRule E args k → DerivationRule Σ (TArityArgs args , SStoJS= k) rule (ERule {E = E} (Ty= ts A B)) ↑ Γ js = do as ← TypingRule-TArgs E ↑ ts js return (◇ ⊢ (↑Expr (SubstM ↑ as) (weaken0 (A .type))) == (↑Expr (SubstM ↑ as) (weaken0 (B .type)))) rule (ERule {E = E} (Tm= ts (A <: u / _ // v / _))) ↑ Γ js = do as ← TypingRule-TArgs E ↑ ts js return (◇ ⊢ (↑Expr (SubstM ↑ as) (weaken0 u)) == (↑Expr (SubstM ↑ as) (weaken0 v)) :> ↑Expr (SubstM ↑ as) (weaken0 A))
{ "alphanum_fraction": 0.6176781934, "avg_line_length": 41.881773399, "ext": "agda", "hexsha": "43ab704adad8868163d5f15fb2218b7ee83c1366", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f9bfefd0a70ae5bdc3906829ee1165c731882bca", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "guillaumebrunerie/general-type-theories", "max_forks_repo_path": "typingrules.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f9bfefd0a70ae5bdc3906829ee1165c731882bca", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "guillaumebrunerie/general-type-theories", "max_issues_repo_path": "typingrules.agda", "max_line_length": 155, "max_stars_count": null, "max_stars_repo_head_hexsha": "f9bfefd0a70ae5bdc3906829ee1165c731882bca", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "guillaumebrunerie/general-type-theories", "max_stars_repo_path": "typingrules.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 6029, "size": 17004 }
compose : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} → (B → C) → (A → B) → A → C compose f g x = f (g x)
{ "alphanum_fraction": 0.3333333333, "avg_line_length": 22, "ext": "agda", "hexsha": "2b57eece9fdcd3426fcaf329884fef94e9ae5705", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9ad63ea473a958506c041077f1d810c0c7c8c18d", "max_forks_repo_licenses": [ "Info-ZIP" ], "max_forks_repo_name": "seanwallawalla-forks/RosettaCodeData", "max_forks_repo_path": "Task/Function-composition/Agda/function-composition.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9ad63ea473a958506c041077f1d810c0c7c8c18d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Info-ZIP" ], "max_issues_repo_name": "seanwallawalla-forks/RosettaCodeData", "max_issues_repo_path": "Task/Function-composition/Agda/function-composition.agda", "max_line_length": 55, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9ad63ea473a958506c041077f1d810c0c7c8c18d", "max_stars_repo_licenses": [ "Info-ZIP" ], "max_stars_repo_name": "LaudateCorpus1/RosettaCodeData", "max_stars_repo_path": "Task/Function-composition/Agda/function-composition.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T13:42:20.000Z", "max_stars_repo_stars_event_min_datetime": "2021-05-05T13:42:20.000Z", "num_tokens": 56, "size": 132 }
module Generic.Lib.Data.String where open import Data.String.Base using (String) renaming (toList to toListˢ; _++_ to _++ˢ_) public open import Generic.Lib.Decidable import Data.String as String instance StringEq : Eq String StringEq = viaBase String._≟_
{ "alphanum_fraction": 0.7709923664, "avg_line_length": 23.8181818182, "ext": "agda", "hexsha": "44de3e5704bee76d1532e8359b4ca87bf2226f8e", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2021-01-27T12:57:09.000Z", "max_forks_repo_forks_event_min_datetime": "2017-07-17T07:23:39.000Z", "max_forks_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "turion/Generic", "max_forks_repo_path": "src/Generic/Lib/Data/String.agda", "max_issues_count": 9, "max_issues_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_issues_repo_issues_event_max_datetime": "2022-01-04T15:43:14.000Z", "max_issues_repo_issues_event_min_datetime": "2017-04-06T18:58:09.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "turion/Generic", "max_issues_repo_path": "src/Generic/Lib/Data/String.agda", "max_line_length": 94, "max_stars_count": 30, "max_stars_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "turion/Generic", "max_stars_repo_path": "src/Generic/Lib/Data/String.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T10:19:38.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-19T21:10:54.000Z", "num_tokens": 69, "size": 262 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Orders.Total.Definition open import Orders.Partial.Definition open import Setoids.Setoids open import Functions.Definition open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) module Setoids.Orders.Total.Definition where open import Setoids.Orders.Partial.Definition record SetoidTotalOrder {a b c : _} {A : Set a} {S : Setoid {a} {b} A} {_<_ : Rel {a} {c} A} (P : SetoidPartialOrder S _<_) : Set (a ⊔ b ⊔ c) where open Setoid S field totality : (a b : A) → ((a < b) || (b < a)) || (a ∼ b) partial : SetoidPartialOrder S _<_ partial = P min : A → A → A min a b with totality a b min a b | inl (inl a<b) = a min a b | inl (inr b<a) = b min a b | inr a=b = a max : A → A → A max a b with totality a b max a b | inl (inl a<b) = b max a b | inl (inr b<a) = a max a b | inr a=b = b totalOrderToSetoidTotalOrder : {a b : _} {A : Set a} (T : TotalOrder {a} A {b}) → SetoidTotalOrder (partialOrderToSetoidPartialOrder (TotalOrder.order T)) SetoidTotalOrder.totality (totalOrderToSetoidTotalOrder T) = TotalOrder.totality T
{ "alphanum_fraction": 0.6617391304, "avg_line_length": 33.8235294118, "ext": "agda", "hexsha": "c16dc700a0f7ecb108fff182e3b5236df02530c3", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Setoids/Orders/Total/Definition.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Setoids/Orders/Total/Definition.agda", "max_line_length": 154, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Setoids/Orders/Total/Definition.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 408, "size": 1150 }
{-# OPTIONS --rewriting --confluence-check #-} open import Agda.Builtin.Equality open import Agda.Builtin.Equality.Rewrite postulate A : Set a : A record R : Set where constructor c field f : A open R postulate r : R rew₁ : ∀ x → c x ≡ r {-# REWRITE rew₁ #-} postulate g : A → A rew₂ : g (f r) ≡ a {-# REWRITE rew₂ #-} postulate rew₃ : f r ≡ a {-# REWRITE rew₃ #-}
{ "alphanum_fraction": 0.6071428571, "avg_line_length": 12.6451612903, "ext": "agda", "hexsha": "eba4f24c6586ea674a4998b31f6482d5181fc9c8", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue3848.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue3848.agda", "max_line_length": 46, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue3848.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 140, "size": 392 }
------------------------------------------------------------------------------ -- Theorems which require a non-empty domain ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOL.NonEmptyDomain.TheoremsI where -- The theorems below are valid on intuitionistic logic. open import FOL.Base hiding ( pem ) ------------------------------------------------------------------------------ -- We postulate some formulae and propositional functions. postulate A : Set A¹ : D → Set ∀→∃ : (∀ {x} → A¹ x) → ∃ A¹ ∀→∃ h = D≢∅ , h -- Let A be a formula. If x is not free in A then ⊢ (∃x)A ↔ A -- (Mendelson 1997, proposition 2.18 (b), p. 70). ∃-erase-add₁ : (∃[ _ ] A) ↔ A ∃-erase-add₁ = l→r , r→l where l→r : (∃[ _ ] A) → A l→r (_ , a) = a r→l : A → (∃[ _ ] A) r→l A = D≢∅ , A -- Quantification over a variable that does not occur can be erased or -- added. ∀-erase-add : ((x : D) → A) ↔ A ∀-erase-add = l→r , r→l where l→r : ((x : D) → A) → A l→r h = h D≢∅ r→l : A → (x : D) → A r→l a _ = a ∃-erase-add₂ : (∃[ x ] (A ∨ A¹ x)) ↔ A ∨ (∃[ x ] A¹ x) ∃-erase-add₂ = l→r , r→l where l→r : ∃[ x ] (A ∨ A¹ x) → A ∨ (∃[ x ] A¹ x) l→r (x , inj₁ a) = inj₁ a l→r (x , inj₂ A¹x) = inj₂ (x , A¹x) r→l : A ∨ (∃[ x ] A¹ x) → ∃[ x ] (A ∨ A¹ x) r→l (inj₁ a) = D≢∅ , inj₁ a r→l (inj₂ (x , A¹x)) = x , inj₂ A¹x ------------------------------------------------------------------------------ -- References -- -- Mendelson, Elliott (1997). Introduction to Mathematical Logic. 4th -- ed. Chapman & Hall.
{ "alphanum_fraction": 0.4195965418, "avg_line_length": 27.9838709677, "ext": "agda", "hexsha": "bf63315410ceac15927d145ec223cfd02e72e503", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOL/NonEmptyDomain/TheoremsI.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOL/NonEmptyDomain/TheoremsI.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOL/NonEmptyDomain/TheoremsI.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 620, "size": 1735 }
{-# OPTIONS --cubical --no-import-sorts #-} module Number.Prelude.Int where open import Cubical.Data.Int public using ( Int ; fromNatInt ; fromNegInt ; sucInt ; predInt ; sucInt+ ; predInt+ ; _+pos_ ; _+negsuc_ ) renaming ( isSetInt to isSetℤ ; _-_ to infix 7 _-ᶻ_ ; _+_ to infix 5 _+ᶻ_ ; pos to posᶻ ; negsuc to negsucᶻ ) open import Number.Instances.Int public using ( +negsuc-identityˡ ; negsuc+negsuc≡+ⁿ ; sneg ; spos ) renaming ( _·_ to _·ᶻ_ ; -_ to -ᶻ_ ; _<_ to _<ᶻ_ ; min to minᶻ ; max to maxᶻ ; is-min to is-minᶻ ; is-max to is-maxᶻ ; ·-reflects-< to ·ᶻ-reflects-<ᶻ ; is-LinearlyOrderedCommRing to is-LinearlyOrderedCommRingᶻ ) -- Int≅Builtin -- Int≡Builtin -- Sign -- spos -- sneg -- _·ˢ_ -- sign -- signed -- -_ -- -involutive -- _·_ -- _·'_ -- _·''_ -- ·''-nullifiesʳ -- _<_ -- min -- max -- <-irrefl -- <-trans -- <-asym -- <-cotrans -- +-identityʳ -- +-identityˡ -- -1·≡- -- negsuc≡-pos -- negsuc-reflects-≡ -- pos-reflects-≡ -- possuc+negsuc≡0 -- sucInt[negsuc+pos]≡0 -- +-inverseʳ -- +-inverseˡ -- +-inverse -- pos+pos≡+ⁿ -- negsuc+negsuc≡+ⁿ -- +negsuc-identityˡ -- pos+negsuc≡⊎ -- negsuc+pos≡⊎ -- pos+negsuc≡negsuc+pos -- predInt- -- pos+negsuc-swap -- negsuc+pos-swap -- +negsuc-assoc -- sucInt[negsuc+pos]≡pos -- +pos-inverse -- +pos-assoc -- Trichotomy -- _≟_ -- MinTrichtotomy -- MaxTrichtotomy -- min-trichotomy -- max-trichotomy -- is-min -- is-max -- sucInt-reflects-< -- predInt-reflects-< -- sucInt-preserves-< -- predInt-preserves-< -- +-preserves-< -- +-reflects-< -- +-reflects-<ˡ -- +-<-ext -- ·≡·' -- ·'-nullifiesʳ -- ·'-nullifiesˡ -- -distrˡ -- ·-comm -- -distrʳ -- ·'-assoc -- ·'-assoc≡ -- ·-assoc -- ·-nullifiesˡ -- ·-nullifiesʳ -- ·-identityˡ -- ·-identityʳ -- ·-preserves-< -- ·-reflects-< -- ·-sucInt -- ·-sucIntˡ -- ·-predInt -- ·-predIntˡ -- -distrib -- ·-distribˡ -- ·-distribʳ -- ·-Semigroup .IsSemigroup.is-assoc -- +-Monoid .IsMonoid.is-identity -- ·-Monoid .IsMonoid.is-identity -- is-Semiring .IsSemiring.is-dist -- <-StrictLinearOrder .IsStrictLinearOrder.is-tricho
{ "alphanum_fraction": 0.5896840149, "avg_line_length": 16.8125, "ext": "agda", "hexsha": "c7bb4b6f07d71ba1311d519f8375b5b1b183c435", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mchristianl/synthetic-reals", "max_forks_repo_path": "agda/Number/Prelude/Int.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mchristianl/synthetic-reals", "max_issues_repo_path": "agda/Number/Prelude/Int.agda", "max_line_length": 61, "max_stars_count": 3, "max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mchristianl/synthetic-reals", "max_stars_repo_path": "agda/Number/Prelude/Int.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z", "num_tokens": 951, "size": 2152 }
------------------------------------------------------------------------ -- A coinductive definition of weak similarity ------------------------------------------------------------------------ {-# OPTIONS --sized-types #-} open import Labelled-transition-system module Similarity.Weak {ℓ} (lts : LTS ℓ) where open import Equality.Propositional open import Prelude open import Prelude.Size open import Bisimilarity.Weak lts as WB using ([_]_≈_; [_]_≈′_) open import Expansion lts as E using ([_]_≳_; [_]_≳′_) open import Indexed-container hiding (⟨_⟩) open import Relation open import Similarity lts as S using ([_]_≤_; [_]_≤′_) import Similarity.General open LTS lts private module General = Similarity.General lts _[_]⇒̂_ ⟶→⇒̂ open General public using (module StepC; ⟨_⟩; challenge; force; [_]_≡_; [_]_≡′_; []≡↔; Extensionality; extensionality) renaming ( reflexive-≤ to reflexive-≼ ; reflexive-≤′ to reflexive-≼′ ; ≡⇒≤ to ≡⇒≼ ; ≤:_ to ≼:_ ; ≤′:_ to ≼′:_ ) -- StepC is given in the following way, rather than via open public, -- to make hyperlinks to it more informative. StepC : Container (Proc × Proc) (Proc × Proc) StepC = General.StepC -- The following definitions are given explicitly, in order to make -- the code easier to follow. Weak-similarity : Size → Rel₂ ℓ Proc Weak-similarity = ν StepC Weak-similarity′ : Size → Rel₂ ℓ Proc Weak-similarity′ = ν′ StepC infix 4 [_]_≼_ [_]_≼′_ _≼_ _≼′_ [_]_≼_ : Size → Proc → Proc → Type ℓ [ i ] p ≼ q = ν StepC i (p , q) [_]_≼′_ : Size → Proc → Proc → Type ℓ [ i ] p ≼′ q = ν′ StepC i (p , q) _≼_ : Proc → Proc → Type ℓ _≼_ = [ ∞ ]_≼_ _≼′_ : Proc → Proc → Type ℓ _≼′_ = [ ∞ ]_≼′_ private -- However, these definitions are definitionally equivalent to -- corresponding definitions in General. indirect-Weak-similarity : Weak-similarity ≡ General.Similarity indirect-Weak-similarity = refl indirect-Weak-similarity′ : Weak-similarity′ ≡ General.Similarity′ indirect-Weak-similarity′ = refl indirect-[]≼ : [_]_≼_ ≡ General.[_]_≤_ indirect-[]≼ = refl indirect-[]≼′ : [_]_≼′_ ≡ General.[_]_≤′_ indirect-[]≼′ = refl indirect-≼ : _≼_ ≡ General._≤_ indirect-≼ = refl indirect-≼′ : _≼′_ ≡ General._≤′_ indirect-≼′ = refl mutual -- Weak bisimilarity is contained in weak similarity. ≈⇒≼ : ∀ {i p q} → [ i ] p ≈ q → [ i ] p ≼ q ≈⇒≼ = λ p≈q → ⟨ (λ q⟶q′ → let p′ , p⇒̂p′ , p′≈′q′ = WB.left-to-right p≈q q⟶q′ in p′ , p⇒̂p′ , ≈⇒≼′ p′≈′q′) ⟩ ≈⇒≼′ : ∀ {i p q} → [ i ] p ≈′ q → [ i ] p ≼′ q force (≈⇒≼′ p≳′q) = ≈⇒≼ (S.force p≳′q) mutual -- Similarity is contained in weak similarity. ≤⇒≼ : ∀ {i p q} → [ i ] p ≤ q → [ i ] p ≼ q ≤⇒≼ = λ p≤q → ⟨ (λ q⟶q′ → let p′ , p⟶p′ , p′≤′q′ = S.challenge p≤q q⟶q′ in p′ , ⟶→⇒̂ p⟶p′ , ≤⇒≼′ p′≤′q′) ⟩ ≤⇒≼′ : ∀ {i p q} → [ i ] p ≤′ q → [ i ] p ≼′ q force (≤⇒≼′ p≳′q) = ≤⇒≼ (S.force p≳′q) -- Weak similarity is a weak simulation (of a certain kind). weak-is-weak⇒̂ : ∀ {p p′ q μ} → p ≼ q → p [ μ ]⇒̂ p′ → ∃ λ q′ → q [ μ ]⇒̂ q′ × p′ ≼ q′ weak-is-weak⇒̂ = is-weak⇒̂ challenge (λ p≼′q → force p≼′q) ⇒̂→⇒ id mutual -- Weak similarity is transitive. -- -- Note that the size of the second argument is not preserved. -- -- TODO: Can one prove that the size cannot be preserved? transitive-≼ : ∀ {i p q r} → [ i ] p ≼ q → q ≼ r → [ i ] p ≼ r transitive-≼ p≼q q≼r = ⟨ (λ p⟶p′ → let q′ , q⇒̂q′ , p′≼q′ = challenge p≼q p⟶p′ r′ , r⇒̂r′ , q′≼r′ = weak-is-weak⇒̂ q≼r q⇒̂q′ in r′ , r⇒̂r′ , transitive-≼′ p′≼q′ q′≼r′) ⟩ transitive-≼′ : ∀ {i p q r} → [ i ] p ≼′ q → q ≼ r → [ i ] p ≼′ r force (transitive-≼′ p≼q q≼r) = transitive-≼ (force p≼q) q≼r mutual -- A fully size-preserving transitivity-like lemma. -- -- Note that expansion could be replaced by a kind of one-sided -- expansion. transitive-≳≼ : ∀ {i p q r} → [ i ] p ≳ q → [ i ] q ≼ r → [ i ] p ≼ r transitive-≳≼ p≳q q≼r = ⟨ (λ p⟶p′ → case E.left-to-right p≳q p⟶p′ of λ where (_ , done s , p′≳q) → _ , silent s done , transitive-≳≼′ p′≳q (record { force = λ { {_} → q≼r } }) (q′ , step q⟶q′ , p′≳q′) → let r′ , r⇒̂r′ , q′≼r′ = challenge q≼r q⟶q′ in r′ , r⇒̂r′ , transitive-≳≼′ p′≳q′ q′≼r′) ⟩ transitive-≳≼′ : ∀ {i p q r} → [ i ] p ≳′ q → [ i ] q ≼′ r → [ i ] p ≼′ r force (transitive-≳≼′ p≼q q≼r) = transitive-≳≼ (force p≼q) (force q≼r)
{ "alphanum_fraction": 0.5061943056, "avg_line_length": 27.224852071, "ext": "agda", "hexsha": "1a746bd12b5fa645db3f6bf9770d2510e65a7105", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/up-to", "max_forks_repo_path": "src/Similarity/Weak.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/up-to", "max_issues_repo_path": "src/Similarity/Weak.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/up-to", "max_stars_repo_path": "src/Similarity/Weak.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1959, "size": 4601 }
module Implicits.Everything where -- common agda stdlib imports open import Prelude -- -- Oliveira's calculi in Agda -- -- We give a well-scoped version of Oliveira's ambiguous and deterministic -- resolution rules open import Implicits.Resolution.Ambiguous.Resolution open import Implicits.Resolution.Deterministic.Resolution -- and prove soundness of det. resolution w.r.t the ambiguous one open import Implicits.Resolution.Deterministic.Expressiveness -- we show that Oliveira's deterministic rules are incomplete w.r.t. -- the ambiguous resolution open import Implicits.Resolution.Deterministic.Incomplete -- and prove ambiguous resolution undecidable open import Implicits.Resolution.Ambiguous.SystemFEquiv open import Implicits.Resolution.Ambiguous.Undecidable -- -- Partial resolution -- -- We maintain the syntax-directedness of the rules and strenghten the hypothesis of r-simp -- to circumvent the weakness of Oliveira's deterministic rules. -- In order to maintain strict-positiveness of the rules, we drop determinacy. -- We will regain determinacy in the algorithmic description of resolution. open import Implicits.Resolution.Infinite.Resolution -- We first show that the rules are isomorphic to EBNF System F expressions -- and use it to prove that infinite resolution is complete w.r.t. ambiguous resolution. open import Implicits.Resolution.Infinite.NormalFormEquiv open import Implicits.Resolution.Infinite.Expressiveness -- Furthermore we give a partial algorithm for infinite resolution. -- We have soundness and develop partial completeness for this algorithm. open import Implicits.Resolution.Infinite.Algorithm open import Implicits.Resolution.Infinite.Algorithm.Soundness -- open import Implicits.Resolution.Infinite.Algorithm.Completeness -- We'd love to show that the existence of a finite resolution Δ ⊢ᵣ r guarantees -- termination of the partial resolution algorithm on input r; -- but this clearly isn't a theorem: it's easy to imagine an implicit context that both has -- a diverging 'trap' for the deterministic algorithm but also allows a finite 'shortcut' -- derivation (hiding behind the trap). -- In fact, the fact that infinite resolution is complete w.r.t. Ambiguous resolution, -- indirectly proves that it's undecidable. -- Instead we define a version of infinite resolution with a generic termination condition open import Implicits.Resolution.GenericFinite.TerminationCondition open import Implicits.Resolution.GenericFinite.Resolution open import Implicits.Resolution.GenericFinite.Expressiveness -- We give a total algorithm and prove it sound open import Implicits.Resolution.GenericFinite.Algorithm open import Implicits.Resolution.GenericFinite.Algorithm.Soundness -- and develop completeness; finished modulo 2 lemmas -- open import Implicits.Resolution.GenericFinite.Algorithm.Completeness -- We provide two examples of termination conditions -- A simple "maximum depth" condition like Coq's auto tactic has: open import Implicits.Resolution.GenericFinite.Examples.MaximumDepth -- And basically a termination condition inspired by Haskell's conditions on -- typeclasses, developed by Oliveira et al. -- Importantly we prove that the resulting calculus is more expressive than -- Oliveira's deterministic resolution open import Implicits.Resolution.GenericFinite.Examples.Haskell -- We define a denotation semantics for the entire calculus -- into System F. -- To this end we develop System F: open import SystemF.Syntax open import SystemF.WellTyped open import SystemF.SmallStep open import SystemF.NormalForm -- The actual semantics is implemented aa module that depends on -- the semantics for your favorite flavor of resolution. -- It includes a proof that the translation preserves the typing relation. open import Implicits.Semantics.Preservation open import Implicits.Semantics
{ "alphanum_fraction": 0.8179220779, "avg_line_length": 44.2528735632, "ext": "agda", "hexsha": "de5686b8f21fcb8c0d4121164601cf87eaabe8b0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/Implicits/Everything.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/Implicits/Everything.agda", "max_line_length": 91, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/Implicits/Everything.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 824, "size": 3850 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Operations on nullary relations (like negation and decidability) ------------------------------------------------------------------------ -- Some operations on/properties of nullary relations, i.e. sets. {-# OPTIONS --without-K --safe #-} module Relation.Nullary where open import Agda.Builtin.Equality open import Data.Bool.Base open import Data.Empty hiding (⊥-elim) open import Data.Empty.Irrelevant open import Level ------------------------------------------------------------------------ -- Negation. infix 3 ¬_ infix 2 _because_ ¬_ : ∀ {ℓ} → Set ℓ → Set ℓ ¬ P = P → ⊥ ------------------------------------------------------------------------ -- `Reflects` idiom. -- The truth value of P is reflected by a boolean value. data Reflects {p} (P : Set p) : Bool → Set p where ofʸ : ( p : P) → Reflects P true ofⁿ : (¬p : ¬ P) → Reflects P false ------------------------------------------------------------------------ -- Decidability. -- Decidability proofs have two parts: the `does` term which contains -- the boolean result and the `proof` term which contains a proof that -- reflects the boolean result. This definition allows the boolean -- part of the decision procedure to compute independently from the -- proof. This leads to better computational behaviour when we only care -- about the result and not the proof. See README.Decidability for -- further details. record Dec {p} (P : Set p) : Set p where constructor _because_ field does : Bool proof : Reflects P does open Dec public pattern yes p = true because ofʸ p pattern no ¬p = false because ofⁿ ¬p -- Given an irrelevant proof of a decidable type, a proof can -- be recomputed and subsequently used in relevant contexts. recompute : ∀ {a} {A : Set a} → Dec A → .A → A recompute (yes x) _ = x recompute (no ¬p) x = ⊥-elim (¬p x) ------------------------------------------------------------------------ -- Irrelevant types Irrelevant : ∀ {p} → Set p → Set p Irrelevant P = ∀ (p₁ p₂ : P) → p₁ ≡ p₂
{ "alphanum_fraction": 0.5492890995, "avg_line_length": 29.7183098592, "ext": "agda", "hexsha": "869a0ae406b2b89b858a0ddfb1d8ae15069faf9a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Relation/Nullary.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Relation/Nullary.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Relation/Nullary.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 500, "size": 2110 }
{-# OPTIONS --cubical --safe #-} module DTLC.Base where open import Cubical.Foundations.Prelude hiding (Σ; _,_) open import Cubical.Foundations.Function -------------------------------------------------------------------------- -- Adapted from: Type Theory in Type Theory using Quotient Inductive Types -- by Thorsten Altenkirch and Ambrus Kaposi -- See: http://www.cs.nott.ac.uk/~psztxa/publ/tt-in-tt.pdf -- -- Note: We have changed a number of names relative to this paper, in the -- interest of clarity. In particular, Tms is now _~>_, with the -- arguments reversed. Thus, _∘_ (which we call _∘*_) also is reversed -- with respect to [AK16]. Furthermore, we renamed π₁ to tail*, π₂ -- to head*, and app to unlam to make their functions more clear. -------------------------------------------------------------------------- infixl 6 _,_ infixl 6 _,*_ infixr 5 _∘*_ PathPSyntax = PathP syntax PathPSyntax A x y = x ≡[ A ]≡ y infix 2 PathPSyntax ----------------- -- Declarations ----------------- -- We will mutually inductively define: -- The type of contexts data Ctx : Type₀ -- The type of types data Typ : Ctx -> Type₀ -- The type of judgements x : τ ⊣ Γ ("x has type τ in context Γ") Term : (Γ : Ctx) -> Typ Γ -> Type₀ syntax Term Γ τ = τ ⊣ Γ -- The type of transformations / generalized subsitutions between contexts _~>_ : Ctx -> Ctx -> Type₀ -- ...in fact, we define terms and transformations together: data TmQV : Type₀ where TmV : TmQV TrV : TmQV TmQArg : TmQV -> Ctx -> Type₀ TmQArg TmV Γ = Typ Γ TmQArg TrV _ = Ctx data TmQ : (a : TmQV) -> (Γ : Ctx) -> TmQArg a Γ -> Type₀ Term = TmQ TmV _~>_ = TmQ TrV -- Some forward declarations: id* : ∀ {Γ} -> Γ ~> Γ _∘*_ : ∀ {Γ Δ Σ} -> (Δ ~> Σ) -> (Γ ~> Δ) -> Γ ~> Σ _[_]T : ∀ {Γ Δ} (τ : Typ Γ) (f : Γ ~> Δ) -> Typ Δ _[_] : ∀ {Γ Δ τ} (x : τ ⊣ Γ) (f : Γ ~> Δ) -> (τ [ f ]T) ⊣ Δ ---------------- -- Definitions ---------------- data Ctx where ∙ : Ctx _,_ : (Γ : Ctx) -> Typ Γ -> Ctx -- Unlike Altenkirch-Kaposi, we have a universe of types U: data Typ where U : ∀ {Γ} -> Typ Γ type : ∀ {Γ} (τ : U ⊣ Γ) -> Typ Γ -- Subsitution on types is defined in terms of substition on terms! U [ f ]T = U (type τ) [ f ]T = type (τ [ f ]) -- Substitution on types is a functor -- definitions are below [id]T : ∀ {Γ} (τ : Typ Γ) -> τ [ id* ]T ≡ τ [][]T : ∀ {Γ Δ Σ} (g : Δ ~> Σ) (f : Γ ~> Δ) (τ : Typ Γ) -> τ [ f ]T [ g ]T ≡ τ [ g ∘* f ]T -- Having these is quite useful for readibility: coeTm : ∀ {Γ} {x y : Typ Γ} -> x ≡ y -> Term Γ x -> Term Γ y coeTm p = transport (cong (Term _) p) coeTmTy : ∀ {Γ} {τ σ : Term Γ U} -> τ ≡ σ -> Term Γ (type τ) -> Term Γ (type σ) coeTmTy p = transport (cong (Term _ ∘ type) p) -- We define terms and transformations together data TmQ where -- Ctx and ~> form a category -- Note: these are the definitions of id* and ∘* -- see below id*C : ∀ {Γ} -> Γ ~> Γ _∘*C_ : ∀ {Γ Δ Σ} -> (Δ ~> Σ) -> (Γ ~> Δ) -> Γ ~> Σ id*-l : ∀ {Γ Δ} (f : Γ ~> Δ) -> id* ∘* f ≡ f id*-r : ∀ {Γ Δ} (f : Γ ~> Δ) -> f ∘* id* ≡ f assoc : ∀ {Γ Δ Σ P} (h : Σ ~> P) (g : Δ ~> Σ) (f : Γ ~> Δ) -> (h ∘* g) ∘* f ≡ h ∘* (g ∘* f) -- ~> has a list structure on its first argument ∙* : ∀ {Δ} -> ∙ ~> Δ _,*_ : ∀ {Γ Δ τ} (f : Γ ~> Δ) (x : Term Δ (τ [ f ]T)) -> (Γ , τ) ~> Δ tail* : ∀ {Γ Δ τ} (f : (Γ , τ) ~> Δ) -> Γ ~> Δ head* : ∀ {Γ Δ τ} (f : (Γ , τ) ~> Δ) -> (τ [ tail* f ]T) ⊣ Δ ,*-∘* : ∀ {Γ Δ Σ τ} (g : Δ ~> Σ) (f : Γ ~> Δ) (x : Term Δ (τ [ f ]T)) -> g ∘* (f ,* x) ≡ (g ∘* f) ,* coeTm ([][]T g f τ) (x [ g ]) -- Computation rules for tail* and head* tail*-β : ∀ {Γ Δ τ} (f : Γ ~> Δ) (x : Term Δ (τ [ f ]T)) -> tail* (f ,* x) ≡ f head*-β : ∀ {Γ Δ τ} (f : Γ ~> Δ) (x : Term Δ (τ [ f ]T)) -> head* (f ,* x) ≡[ (λ i → (τ [ tail*-β f x i ]T) ⊣ Δ) ]≡ x -- Uniqueness rules for ~> ∙*-η : ∀ {Δ} (f : ∙ ~> Δ) -> f ≡ ∙* ,*-η : ∀ {Γ Δ τ} (f : (Γ , τ) ~> Δ) -> (tail* f ,* head* f) ≡ f -- A useful combinator, defined in terms of the above _↑_ : ∀ {Γ Δ} (f : Γ ~> Δ) (τ : Typ Γ) -> (Γ , τ) ~> (Δ , τ [ f ]T) ↑-β : ∀ {Γ Δ} (f : Γ ~> Δ) (τ : Typ Γ) -> (Γ , τ) ~> (Δ , τ [ f ]T) -> f ↑ τ ≡ (tail* id* ∘* f) ,* coeTm ([][]T (tail* id*) f τ) (head* id*) -- The definition of substitution on terms _[_] _[_]C : ∀ {Γ Δ τ} (x : τ ⊣ Γ) (f : Γ ~> Δ) -> (τ [ f ]T) ⊣ Δ -- Substitution on terms is a functor [id] : ∀ {Γ τ} (x : τ ⊣ Γ) -> x [ id* ] ≡[ (λ i → ([id]T τ i) ⊣ Γ) ]≡ x [][] : ∀ {Γ Δ Σ τ} (g : Δ ~> Σ) (f : Γ ~> Δ) (x : τ ⊣ Γ) -> x [ f ] [ g ] ≡[ (λ i → ([][]T g f τ i) ⊣ Σ) ]≡ x [ g ∘* f ] -- Pi types and their computation rule for substition Π : ∀ {Γ} (τ : Typ Γ) (σ : Typ (Γ , τ)) -> U ⊣ Γ Π[] : ∀ {Γ Δ} (τ : Typ Γ) (σ : Typ (Γ , τ)) (f : Γ ~> Δ) -> (Π τ σ) [ f ] ≡ Π (τ [ f ]T) (σ [ f ↑ τ ]T) -- lambdas and their computation rule for substitition lam : ∀ {Γ τ σ} (y : σ ⊣ (Γ , τ)) -> type (Π τ σ) ⊣ Γ lam[] : ∀ {Γ Δ τ σ} (y : σ ⊣ (Γ , τ)) (f : Γ ~> Δ) -> lam y [ f ] ≡[ (λ i → type (Π[] τ σ f i) ⊣ Δ) ]≡ lam (y [ f ↑ τ ]) -- Pi type elim, whose computation rule for substition is derivable using Π-η -- (Note: application is defined in terms of this below) unlam : ∀ {Γ τ σ} (ℓ : type (Π τ σ) ⊣ Γ) -> σ ⊣ (Γ , τ) -- Computation and uniqueness for Pi types Π-β : ∀ {Γ τ σ} (y : σ ⊣ (Γ , τ)) -> unlam (lam y) ≡ y Π-η : ∀ {Γ τ σ} (ℓ : type (Π τ σ) ⊣ Γ) -> lam (unlam ℓ) ≡ ℓ -- The missing substitution computation rule for unlam, derivable because we have definitional η! unlam[] : ∀ {Γ Δ τ σ} (ℓ : type (Π τ σ) ⊣ Γ) (f : Γ ~> Δ) -> unlam ℓ [ f ↑ τ ] ≡ unlam (coeTmTy (Π[] τ σ f) (ℓ [ f ])) unlam[] {Γ} {Δ} {τ} {σ} ℓ f = (unlam ℓ) [ f ↑ τ ] ≡[ i ]⟨ Π-β ((unlam ℓ) [ f ↑ τ ]) (~ i) ⟩ unlam (lam ((unlam ℓ) [ f ↑ τ ])) ≡[ i ]⟨ unlam (fromPathP (lam[] (unlam ℓ) f) (~ i)) ⟩ unlam (coeTmTy (Π[] τ σ f) ((lam (unlam ℓ)) [ f ])) ≡[ i ]⟨ unlam (coeTmTy (Π[] τ σ f) ((Π-η ℓ i) [ f ])) ⟩ unlam (coeTmTy (Π[] τ σ f) (ℓ [ f ])) ∎ -- Missing definitions from above [id]T U = refl [id]T (type τ) = cong type ([id] τ) [][]T g f U = refl [][]T g f (type τ) = cong type ([][] g f τ) id* = id*C _∘*_ = _∘*C_ _[_] = _[_]C -------------------- -- Derived Notions -------------------- -- Weakening on contexts wkn : ∀ {Γ τ} -> Γ ~> (Γ , τ) wkn = tail* id* -- A single substition at the top of a context <_> : ∀ {Γ τ} (x : τ ⊣ Γ) -> (Γ , τ) ~> Γ < x > = id* ,* coeTm (sym ([id]T _)) x -- Using substition, we can now write the usual definition of application _$_ : ∀ {Γ τ σ} (ℓ : (type (Π τ σ)) ⊣ Γ) (x : τ ⊣ Γ) -> (σ [ < x > ]T) ⊣ Γ ℓ $ x = unlam ℓ [ < x > ] infixl 4 _$_ -- Variables (as de Bruijn indices) are also derived! var₀ : ∀ {Γ τ} -> (τ [ wkn ]T) ⊣ (Γ , τ) var₀ = head* id* var₊ : ∀ {Γ τ σ} -> τ ⊣ Γ -> (τ [ wkn ]T) ⊣ (Γ , σ) var₊ x = x [ wkn ] var₁ : ∀ {Γ τ σ} -> (τ [ wkn ]T [ wkn ]T) ⊣ ((Γ , τ) , σ) var₁ = var₊ var₀ var₂ : ∀ {Γ τ σ ρ} -> (τ [ wkn ]T [ wkn ]T [ wkn ]T) ⊣ (((Γ , τ) , σ) , ρ) var₂ = var₊ var₁ -- The other classical operations on contexts: ctr : ∀ {Γ τ} -> (Γ , τ , τ [ wkn ]T) ~> (Γ , τ) ctr {Γ} {τ} = id* ,* coeTm (sym p) var₀ where p : τ [ wkn ]T [ id* ]T ≡ τ [ tail* id* ]T p = τ [ wkn ]T [ id* ]T ≡⟨ [][]T id* wkn _ ⟩ τ [ id* ∘* wkn ]T ≡⟨ cong (τ [_]T) (id*-l wkn) ⟩ τ [ tail* id* ]T ∎ -- exg : ∀ {Γ τ σ} -> (Γ , τ , σ [ wkn ]T) ~> (Γ , σ , τ [ wkn ]T) -- exg {Γ} {τ} {σ} = wkn ∘* wkn ,* -- coeTm ([][]T wkn wkn τ) var₀ ,* -- coeTm (sym p) (coeTm ([][]T wkn wkn σ) var₁) -- where p : σ [ wkn ]T [ (wkn ∘* wkn) ,* coeTm ([][]T wkn wkn τ) var₀ ]T ≡ σ [ wkn ∘* wkn ]T -- p = begin -- σ [ wkn ]T [ (wkn ∘* wkn) ,* coeTm ([][]T wkn wkn τ) var₀ ]T ≡⟨ [][]T _ _ σ ⟩ -- σ [ ((wkn ∘* wkn) ,* coeTm ([][]T wkn wkn τ) var₀) ∘* wkn ]T ≡⟨ cong (σ [_]T) {!!} ⟩ -- σ [ wkn ∘* wkn ]T ∎ -- -- p' : (wkn ∘* wkn) ,* coeTm ([][]T wkn wkn τ) var₁ ≡ wkn -- -- p' = begin -- -- (wkn ∘* wkn) ,* coeTm ([][]T wkn wkn τ) var₁ ≡⟨ sym (,*-∘* wkn wkn var₀) ⟩ -- -- wkn ∘* (wkn ,* var₀) ≡⟨ cong (wkn ∘*_) (,*-η id*) ⟩ -- -- wkn ∘* id* ≡⟨ id*-r wkn ⟩ -- -- wkn ∎ -------------------------------------- -- Experimental: Encoding more types -------------------------------------- _⇒_ : ∀ {Γ} (τ : U ⊣ Γ) (σ : U ⊣ (Γ , type τ)) -> U ⊣ Γ x ⇒ y = Π (type x) (type y) infixr 4 _⇒_ -- The natural number type N : ∀ {Γ} -> U ⊣ Γ N = Π U (type (var₀ ⇒ (var₁ ⇒ var₂) ⇒ var₂)) -- N[] : ∀ {Γ Δ} (f : Γ ~> Δ) -> type N [ f ]T ≡ type N -- N[] f = cong type p -- where p : Π U (type (var₀ ⇒ (var₁ ⇒ var₂) ⇒ var₂)) [ f ] ≡ Π U (type (var₀ ⇒ (var₁ ⇒ var₂) ⇒ var₂)) -- p = begin -- Π U (type (var₀ ⇒ (var₁ ⇒ var₂) ⇒ var₂)) [ f ] ≡⟨ Π[] _ _ f ⟩ -- Π U (type ((var₀ ⇒ (var₁ ⇒ var₂) ⇒ var₂) [ f ↑ U ])) ≡⟨ {!!} ⟩ -- Π U (type (var₀ ⇒ (var₁ ⇒ var₂) ⇒ var₂)) ∎ z : ∀ {Γ} -> type N ⊣ Γ z = lam (lam (lam var₁)) -- s : ∀ {Γ} (n : type N ⊣ Γ) -> type N ⊣ Γ -- s {Γ} n = lam (lam (lam {!!})) -- var₀ $ (n' $ var₀ $ var₁ $ var₂) -- where n' : type N ⊣ (((Γ , U) , type var₀) , type (var₁ ⇒ var₂)) -- n' = coe (cong (Term _) {!!}) (var₊ (var₊ (var₊ n))) -- The dependent pair type -- Σ : ∀ {Γ} (τ : Typ Γ) (σ : Typ (Γ , τ)) -> U ⊣ Γ -- Σ τ σ = Π U (type ((Π (τ [ tail* id* ]T) (type (Π (σ [ tail* id* ↑ τ ]T) (type var₂)))) ⇒ var₀)) -- pair : ∀ {Γ τ σ} (x : τ ⊣ Γ) (y : σ ⊣ (Γ , τ)) -> (type (Σ τ σ)) ⊣ Γ -- pair x y = lam (lam {!!}) -- Σ : ∀ {Γ} (τ : Typ Γ) (σ : Typ (Γ , τ)) -> U ⊣ Γ -- Σ[] : ∀ {Γ Δ} (τ : Typ Γ) (σ : Typ (Γ , τ)) (f : Γ ~> Δ) -- -> (Σ τ σ) [ f ] ≡ Σ (τ [ f ]T) (σ [ f ↑ τ ]T) -- pair : ∀ {Γ τ σ} (x : τ ⊣ Γ) (y : σ ⊣ (Γ , τ)) -> (type (Σ τ σ)) ⊣ Γ -- pair[] : ∀ {Γ Δ τ σ} (x : τ ⊣ Γ) (y : σ ⊣ (Γ , τ)) (f : Γ ~> Δ) -- -> (pair x y) [ f ] ≡[ (λ i → type (Σ[] τ σ f i) ⊣ Δ) ]≡ pair (x [ f ]) (y [ f ↑ τ ]) -- Σ-ind : ∀ {Γ τ σ} (ρ : Typ (Γ , type (Σ τ σ))) -- (xy : (ρ [ {!!} ∘* ({!!} ↑ type (Σ τ σ)) ]T) ⊣ ((Γ , τ) , σ)) -- -> ρ ⊣ (Γ , type (Σ τ σ))
{ "alphanum_fraction": 0.4290752351, "avg_line_length": 33.8013245033, "ext": "agda", "hexsha": "ea772fd0dbf7a2b704f9e3284438f684b7ab22fe", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-01-06T19:34:26.000Z", "max_forks_repo_forks_event_min_datetime": "2019-11-13T12:44:41.000Z", "max_forks_repo_head_hexsha": "34e2980af98ff2ded500619edce3e0907a6e9050", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ajnavarro/language-dataset", "max_forks_repo_path": "data/github.com/m-yac/tt-in-cagda/d2c1c36cb3e09d8c3c73b8a043dbe36865765bce/src/DTLC/Base.agda", "max_issues_count": 91, "max_issues_repo_head_hexsha": "34e2980af98ff2ded500619edce3e0907a6e9050", "max_issues_repo_issues_event_max_datetime": "2022-03-21T04:17:18.000Z", "max_issues_repo_issues_event_min_datetime": "2019-11-11T15:41:26.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ajnavarro/language-dataset", "max_issues_repo_path": "data/github.com/m-yac/tt-in-cagda/d2c1c36cb3e09d8c3c73b8a043dbe36865765bce/src/DTLC/Base.agda", "max_line_length": 109, "max_stars_count": 9, "max_stars_repo_head_hexsha": "34e2980af98ff2ded500619edce3e0907a6e9050", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ajnavarro/language-dataset", "max_stars_repo_path": "data/github.com/m-yac/tt-in-cagda/d2c1c36cb3e09d8c3c73b8a043dbe36865765bce/src/DTLC/Base.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-11T09:48:45.000Z", "max_stars_repo_stars_event_min_datetime": "2018-08-07T11:54:33.000Z", "num_tokens": 4558, "size": 10208 }
module Metalogic.Linear.Syntax {ℓₚ} (Proposition : Set(ℓₚ)) where import Lvl -- https://en.wikipedia.org/wiki/Linear_logic -- https://plato.stanford.edu/entries/logic-linear/#ProSys data Formula : Set(ℓₚ) where •_ : Proposition → Formula -- Top ⊤ : Formula -- Bottom ⊥ : Formula -- Classical conjunction _∧_ : Formula → Formula → Formula -- Classical disjunction _∨_ : Formula → Formula → Formula -- Additive and _&_ : Formula → Formula → Formula -- Additive or _⊕_ : Formula → Formula → Formula -- Multiplicative and _⊗_ : Formula → Formula → Formula -- Multiplicative or _⅋_ : Formula → Formula → Formula -- Linear implication _⊸_ : Formula → Formula → Formula
{ "alphanum_fraction": 0.6574202497, "avg_line_length": 16.0222222222, "ext": "agda", "hexsha": "48d496aac85d86bd0cb5a0f1ff74170dac941e44", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "old/Metalogic/Linear/Syntax.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "old/Metalogic/Linear/Syntax.agda", "max_line_length": 65, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "old/Metalogic/Linear/Syntax.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 222, "size": 721 }
{-# OPTIONS --erased-cubical --safe --no-sized-types --no-guardedness --no-subtyping #-} module Agda.Builtin.Cubical.Id where open import Agda.Primitive.Cubical open import Agda.Builtin.Cubical.Path open import Agda.Builtin.Cubical.Sub renaming (primSubOut to ouc; Sub to _[_↦_]) {-# BUILTIN ID Id #-} {-# BUILTIN REFLID reflId #-} private module ConId where primitive primConId : ∀ {ℓ} {A : Set ℓ} {x y : A} → I → x ≡ y → Id x y open ConId public renaming (primConId to conid) -- Id x y is treated as a pair of I and x ≡ y, using "i" for the -- first component and "p" for the second. {-# COMPILE JS conid = _ => _ => _ => _ => i => p => { return { "i" : i, "p" : p } } #-} primitive primDepIMin : _ primIdFace : ∀ {ℓ} {A : Set ℓ} {x y : A} → Id x y → I primIdPath : ∀ {ℓ} {A : Set ℓ} {x y : A} → Id x y → x ≡ y primitive primIdJ : ∀ {ℓ ℓ'} {A : Set ℓ} {x : A} (P : ∀ y → Id x y → Set ℓ') → P x (conid i1 (λ i → x)) → ∀ {y} (p : Id x y) → P y p primitive primIdElim : ∀ {a c} {A : Set a} {x : A} (C : (y : A) → Id x y → Set c) → ((φ : I) (y : A [ φ ↦ (λ _ → x) ]) (w : (x ≡ ouc y) [ φ ↦ (λ { (φ = i1) → \ _ → x}) ]) → C (ouc y) (conid φ (ouc w))) → {y : A} (p : Id x y) → C y p
{ "alphanum_fraction": 0.4617563739, "avg_line_length": 32.8372093023, "ext": "agda", "hexsha": "6236b43f51f6f38ee6f9b8f608f179134bb196d4", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-04-18T13:34:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-04-18T13:34:07.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "src/data/lib/prim/Agda/Builtin/Cubical/Id.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "src/data/lib/prim/Agda/Builtin/Cubical/Id.agda", "max_line_length": 82, "max_stars_count": null, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "src/data/lib/prim/Agda/Builtin/Cubical/Id.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 534, "size": 1412 }
{-# OPTIONS --safe #-} open import Definition.Typed.EqualityRelation module Definition.LogicalRelation.Properties.Neutral {{eqrel : EqRelSet}} where open EqRelSet {{...}} open import Definition.Untyped as U open import Definition.Typed open import Definition.Typed.Properties open import Definition.Typed.Weakening open import Definition.LogicalRelation open import Definition.LogicalRelation.ShapeView open import Definition.LogicalRelation.Irrelevance open import Definition.LogicalRelation.Properties.Reflexivity open import Definition.LogicalRelation.Properties.Escape open import Definition.LogicalRelation.Properties.Symmetry import Definition.LogicalRelation.Weakening as W open import Tools.Product import Tools.PropositionalEquality as PE import Data.Fin as Fin import Data.Nat as Nat -- Neutral reflexive types are reducible. neu : ∀ {l Γ A r ll} (neA : Neutral A) → Γ ⊢ A ^ [ r , ι ll ] → Γ ⊢ A ~ A ∷ Univ r ll ^ [ ! , next ll ] → Γ ⊩⟨ l ⟩ A ^ [ r , ι ll ] neu neA A A~A = ne′ _ (idRed:*: A) neA A~A -- Helper function for reducible neutral equality of a specific type of derivation. neuEq′ : ∀ {l Γ A B r ll} ([A] : Γ ⊩⟨ l ⟩ne A ^[ r , ll ]) (neA : Neutral A) (neB : Neutral B) → Γ ⊢ A ^ [ r , ι ll ] → Γ ⊢ B ^ [ r , ι ll ] → Γ ⊢ A ~ B ∷ Univ r ll ^ [ ! , next ll ] → Γ ⊩⟨ l ⟩ A ≡ B ^ [ r , ι ll ] / ne-intr [A] neuEq′ (noemb (ne K [[ ⊢A , ⊢B , D ]] neK K≡K)) neA neB A B A~B = let A≡K = whnfRed* D (ne neA) in ne₌ _ (idRed:*: B) neB (PE.subst (λ x → _ ⊢ x ~ _ ∷ _ ^ _) A≡K A~B) neuEq′ {ι ¹} (emb emb< X) = neuEq′ X neuEq′ {∞} (emb ∞< X) = neuEq′ X -- Neutrally equal types are of reducible equality. neuEq : ∀ {l Γ A B r ll} ([A] : Γ ⊩⟨ l ⟩ A ^ [ r , ι ll ]) (neA : Neutral A) (neB : Neutral B) → Γ ⊢ A ^ [ r , ι ll ] → Γ ⊢ B ^ [ r , ι ll ] → Γ ⊢ A ~ B ∷ Univ r ll ^ [ ! , next ll ] → Γ ⊩⟨ l ⟩ A ≡ B ^ [ r , ι ll ] / [A] neuEq [A] neA neB A B A~B = irrelevanceEq (ne-intr (ne-elim neA [A])) [A] (neuEq′ (ne-elim neA [A]) neA neB A B A~B) mutual neuTerm⁰ : ∀ {Γ A r n} ([A] : Γ ⊩⟨ ι ⁰ ⟩ A ^ r) (neN : Neutral n) → Γ ⊢ n ∷ A ^ r → Γ ⊢ n ~ n ∷ A ^ r → Γ ⊩⟨ ι ⁰ ⟩ n ∷ A ^ r / [A] neuTerm⁰ (ℕᵣ [[ ⊢A , ⊢B , D ]]) neN n n~n = let A≡ℕ = subset* D n~n′ = ~-conv n~n A≡ℕ n≡n = ~-to-≅ₜ n~n′ in ℕₜ _ (idRedTerm:*: (conv n A≡ℕ)) n≡n (ne (neNfₜ neN (conv n A≡ℕ) n~n′)) neuTerm⁰ {r = [ ! , ll ]} (ne′ K [[ ⊢A , ⊢B , D ]] neK K≡K) neN n n~n = let A≡K = subset* D in neₜ _ (idRedTerm:*: (conv n A≡K)) (neNfₜ neN (conv n A≡K) (~-conv n~n A≡K)) neuTerm⁰ {r = [ ! , ll ]} (Πᵣ′ rF lF lG lF≤ lG≤ F G D ⊢F ⊢G A≡A [F] [G] G-ext) neN n n~n = let A≡ΠFG = subset* (red D) in Πₜ _ (idRedTerm:*: (conv n A≡ΠFG)) (ne neN) (~-to-≅ₜ (~-conv n~n A≡ΠFG)) (λ {ρ} [ρ] ⊢Δ [a] [b] [a≡b] → let A≡ΠFG = subset* (red D) ρA≡ρΠFG = wkEq [ρ] ⊢Δ (subset* (red D)) G[a]≡G[b] = escapeEq ([G] [ρ] ⊢Δ [b]) (symEq ([G] [ρ] ⊢Δ [a]) ([G] [ρ] ⊢Δ [b]) (G-ext [ρ] ⊢Δ [a] [b] [a≡b])) a = escapeTerm ([F] [ρ] ⊢Δ) [a] b = escapeTerm ([F] [ρ] ⊢Δ) [b] a≡b = escapeTermEq ([F] [ρ] ⊢Δ) [a≡b] ρn = conv (wkTerm [ρ] ⊢Δ n) ρA≡ρΠFG neN∘a = ∘ₙ (wkNeutral ρ neN) neN∘b = ∘ₙ (wkNeutral ρ neN) in neuEqTerm⁰ ([G] [ρ] ⊢Δ [a]) neN∘a neN∘b (ρn ∘ⱼ a) (conv (ρn ∘ⱼ b) (≅-eq G[a]≡G[b])) (~-app (~-wk [ρ] ⊢Δ (~-conv n~n A≡ΠFG)) a≡b)) (λ {ρ} [ρ] ⊢Δ [a] → let ρA≡ρΠFG = wkEq [ρ] ⊢Δ (subset* (red D)) a = escapeTerm ([F] [ρ] ⊢Δ) [a] a≡a = escapeTermEq ([F] [ρ] ⊢Δ) (reflEqTerm ([F] [ρ] ⊢Δ) [a]) in neuTerm⁰ ([G] [ρ] ⊢Δ [a]) (∘ₙ (wkNeutral ρ neN)) (conv (wkTerm [ρ] ⊢Δ n) ρA≡ρΠFG ∘ⱼ a) (~-app (~-wk [ρ] ⊢Δ (~-conv n~n A≡ΠFG)) a≡a)) neuTerm⁰ (Emptyᵣ [[ ⊢A , ⊢B , D ]]) neN n n~n = let A≡ℕ = subset* D in Emptyₜ (ne (conv n A≡ℕ)) neuTerm⁰ {r = [ % , ll ]} (ne′ K [[ ⊢A , ⊢B , D ]] neK K≡K) neN n n~n = let A≡K = subset* D in neₜ n neuTerm⁰ {r = [ % , ll ]} (Πᵣ′ rF lF lG lF≤ lG≤ F G D ⊢F ⊢G A≡A [F] [G] G-ext) neN n n~n = let A≡ΠFG = subset* (red D) in conv n A≡ΠFG neuTerm⁰ {r = [ % , ll ]} (∃ᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) neN n n~n = let A≡ΠFG = subset* (red D) in conv n A≡ΠFG neuEqTerm⁰ : ∀ {Γ A n n′ r} ([A] : Γ ⊩⟨ ι ⁰ ⟩ A ^ r) (neN : Neutral n) (neN′ : Neutral n′) → Γ ⊢ n ∷ A ^ r → Γ ⊢ n′ ∷ A ^ r → Γ ⊢ n ~ n′ ∷ A ^ r → Γ ⊩⟨ ι ⁰ ⟩ n ≡ n′ ∷ A ^ r / [A] neuEqTerm⁰ (ℕᵣ [[ ⊢A , ⊢B , D ]]) neN neN′ n n′ n~n′ = let A≡ℕ = subset* D n~n′₁ = ~-conv n~n′ A≡ℕ n≡n′ = ~-to-≅ₜ n~n′₁ in ℕₜ₌ _ _ (idRedTerm:*: (conv n A≡ℕ)) (idRedTerm:*: (conv n′ A≡ℕ)) n≡n′ (ne (neNfₜ₌ neN neN′ n~n′₁)) neuEqTerm⁰ (Emptyᵣ [[ ⊢A , ⊢B , D ]]) neN neN′ n n′ n~n′ = let A≡Empty = subset* D in Emptyₜ₌ (ne (conv n A≡Empty) (conv n′ A≡Empty)) neuEqTerm⁰ {r = [ ! , ll ]} (ne (ne K [[ ⊢A , ⊢B , D ]] neK K≡K)) neN neN′ n n′ n~n′ = let A≡K = subset* D in neₜ₌ _ _ (idRedTerm:*: (conv n A≡K)) (idRedTerm:*: (conv n′ A≡K)) (neNfₜ₌ neN neN′ (~-conv n~n′ A≡K)) neuEqTerm⁰ {r = [ % , ll ]} (ne (ne K [[ ⊢A , ⊢B , D ]] neK K≡K)) neN neN′ n n′ n~n′ = let A≡K = subset* D in neₜ₌ n n′ neuEqTerm⁰ {r = [ ! , ll ]} (Πᵣ′ rF lF lG lF≤ lG≤ F G [[ ⊢A , ⊢B , D ]] ⊢F ⊢G A≡A [F] [G] G-ext) neN neN′ n n′ n~n′ = let [ΠFG] = Πᵣ′ rF lF lG lF≤ lG≤ F G [[ ⊢A , ⊢B , D ]] ⊢F ⊢G A≡A [F] [G] G-ext A≡ΠFG = subset* D n~n′₁ = ~-conv n~n′ A≡ΠFG n≡n′ = ~-to-≅ₜ n~n′₁ n~n = ~-trans n~n′ (~-sym n~n′) n′~n′ = ~-trans (~-sym n~n′) n~n′ in Πₜ₌ _ _ (idRedTerm:*: (conv n A≡ΠFG)) (idRedTerm:*: (conv n′ A≡ΠFG)) (ne neN) (ne neN′) n≡n′ (neuTerm⁰ [ΠFG] neN n n~n) (neuTerm⁰ [ΠFG] neN′ n′ n′~n′) (λ {ρ} [ρ] ⊢Δ [a] → let ρA≡ρΠFG = wkEq [ρ] ⊢Δ A≡ΠFG ρn = wkTerm [ρ] ⊢Δ n ρn′ = wkTerm [ρ] ⊢Δ n′ a = escapeTerm ([F] [ρ] ⊢Δ) [a] a≡a = escapeTermEq ([F] [ρ] ⊢Δ) (reflEqTerm ([F] [ρ] ⊢Δ) [a]) neN∙a = ∘ₙ (wkNeutral ρ neN) neN′∙a′ = ∘ₙ (wkNeutral ρ neN′) in neuEqTerm⁰ ([G] [ρ] ⊢Δ [a]) neN∙a neN′∙a′ (conv ρn ρA≡ρΠFG ∘ⱼ a) (conv ρn′ ρA≡ρΠFG ∘ⱼ a) (~-app (~-wk [ρ] ⊢Δ n~n′₁) a≡a)) neuEqTerm⁰ {r = [ % , ll ]} (Πᵣ′ rF lF lG lF≤ lG≤ F G [[ ⊢A , ⊢B , D ]] ⊢F ⊢G A≡A [F] [G] G-ext) neN neN′ n n′ n~n′ = let A≡ΠFG = subset* D in conv n A≡ΠFG , conv n′ A≡ΠFG neuEqTerm⁰ {r = [ % , ll ]} (∃ᵣ′ F G [[ ⊢A , ⊢B , D ]] ⊢F ⊢G A≡A [F] [G] G-ext) neN neN′ n n′ n~n′ = let A≡ΠFG = subset* D in conv n A≡ΠFG , conv n′ A≡ΠFG mutual -- Neutral reflexive terms are reducible. neuTerm : ∀ {l Γ A r n} ([A] : Γ ⊩⟨ l ⟩ A ^ r) (neN : Neutral n) → Γ ⊢ n ∷ A ^ r → Γ ⊢ n ~ n ∷ A ^ r → Γ ⊩⟨ l ⟩ n ∷ A ^ r / [A] neuTerm {ι ¹} (Uᵣ′ A .(next ⁰) r ⁰ l< PE.refl [[ ⊢A , ⊢U , D ]]) neN n n~n = let n' = (conv n (subset* D)) n~n' = ~-conv n~n (subset* D) [n] = neu {l = ι ¹} neN (univ n') n~n' in Uₜ _ (idRedTerm:*: n') (ne neN) (~-to-≅ₜ n~n') (λ {ρ} [ρ] ⊢Δ → let n'ρ = wkTerm [ρ] ⊢Δ n' n~n'ρ = ~-wk [ρ] ⊢Δ n~n' [nρ] = neu (wkNeutral ρ neN) (univ n'ρ) n~n'ρ in [nρ]) neuTerm {∞} (Uᵣ′ A .(next ¹) r ¹ l< PE.refl [[ ⊢A , ⊢U , D ]]) neN n n~n = let n' = (conv n (subset* D)) n~n' = ~-conv n~n (subset* D) [n] = neu {l = ∞} neN (univ n') n~n' in Uₜ _ (idRedTerm:*: n') (ne neN) (~-to-≅ₜ n~n') (λ {ρ} [ρ] ⊢Δ → let n'ρ = wkTerm [ρ] ⊢Δ n' n~n'ρ = ~-wk [ρ] ⊢Δ n~n' [nρ] = neu (wkNeutral ρ neN) (univ n'ρ) n~n'ρ in [nρ]) neuTerm (ℕᵣ [[ ⊢A , ⊢B , D ]]) neN n n~n = let A≡ℕ = subset* D n~n′ = ~-conv n~n A≡ℕ n≡n = ~-to-≅ₜ n~n′ in ℕₜ _ (idRedTerm:*: (conv n A≡ℕ)) n≡n (ne (neNfₜ neN (conv n A≡ℕ) n~n′)) neuTerm {r = [ ! , ll ]} (ne′ K [[ ⊢A , ⊢B , D ]] neK K≡K) neN n n~n = let A≡K = subset* D in neₜ _ (idRedTerm:*: (conv n A≡K)) (neNfₜ neN (conv n A≡K) (~-conv n~n A≡K)) neuTerm {r = [ ! , ll ]} (Πᵣ′ rF lF lG lF≤ lG≤ F G D ⊢F ⊢G A≡A [F] [G] G-ext) neN n n~n = let A≡ΠFG = subset* (red D) in Πₜ _ (idRedTerm:*: (conv n A≡ΠFG)) (ne neN) (~-to-≅ₜ (~-conv n~n A≡ΠFG)) (λ {ρ} [ρ] ⊢Δ [a] [b] [a≡b] → let A≡ΠFG = subset* (red D) ρA≡ρΠFG = wkEq [ρ] ⊢Δ (subset* (red D)) G[a]≡G[b] = escapeEq ([G] [ρ] ⊢Δ [b]) (symEq ([G] [ρ] ⊢Δ [a]) ([G] [ρ] ⊢Δ [b]) (G-ext [ρ] ⊢Δ [a] [b] [a≡b])) a = escapeTerm ([F] [ρ] ⊢Δ) [a] b = escapeTerm ([F] [ρ] ⊢Δ) [b] a≡b = escapeTermEq ([F] [ρ] ⊢Δ) [a≡b] ρn = conv (wkTerm [ρ] ⊢Δ n) ρA≡ρΠFG neN∘a = ∘ₙ (wkNeutral ρ neN) neN∘b = ∘ₙ (wkNeutral ρ neN) in neuEqTerm ([G] [ρ] ⊢Δ [a]) neN∘a neN∘b (ρn ∘ⱼ a) (conv (ρn ∘ⱼ b) (≅-eq G[a]≡G[b])) (~-app (~-wk [ρ] ⊢Δ (~-conv n~n A≡ΠFG)) a≡b)) (λ {ρ} [ρ] ⊢Δ [a] → let ρA≡ρΠFG = wkEq [ρ] ⊢Δ (subset* (red D)) a = escapeTerm ([F] [ρ] ⊢Δ) [a] a≡a = escapeTermEq ([F] [ρ] ⊢Δ) (reflEqTerm ([F] [ρ] ⊢Δ) [a]) in neuTerm ([G] [ρ] ⊢Δ [a]) (∘ₙ (wkNeutral ρ neN)) (conv (wkTerm [ρ] ⊢Δ n) ρA≡ρΠFG ∘ⱼ a) (~-app (~-wk [ρ] ⊢Δ (~-conv n~n A≡ΠFG)) a≡a)) neuTerm (Emptyᵣ [[ ⊢A , ⊢B , D ]]) neN n n~n = let A≡ℕ = subset* D in Emptyₜ (ne (conv n A≡ℕ)) neuTerm {r = [ % , ll ]} (ne′ K [[ ⊢A , ⊢B , D ]] neK K≡K) neN n n~n = let A≡K = subset* D in neₜ n neuTerm {r = [ % , ll ]} (Πᵣ′ rF lF lG lF≤ lG≤ F G D ⊢F ⊢G A≡A [F] [G] G-ext) neN n n~n = let A≡ΠFG = subset* (red D) in conv n A≡ΠFG neuTerm {r = [ % , ll ]} (∃ᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) neN n n~n = let A≡ΠFG = subset* (red D) in conv n A≡ΠFG neuTerm {ι ¹} (emb l< X) neN n = neuTerm X neN n neuTerm {∞} (emb l< X) neN n = neuTerm X neN n -- Neutrally equal terms are of reducible equality. neuEqTerm : ∀ {l Γ A n n′ r} ([A] : Γ ⊩⟨ l ⟩ A ^ r) (neN : Neutral n) (neN′ : Neutral n′) → Γ ⊢ n ∷ A ^ r → Γ ⊢ n′ ∷ A ^ r → Γ ⊢ n ~ n′ ∷ A ^ r → Γ ⊩⟨ l ⟩ n ≡ n′ ∷ A ^ r / [A] neuEqTerm {ι ¹} (Uᵣ′ A _ r ⁰ l< PE.refl D) neN neN′ n n′ n~n' = let n~n = ~-trans n~n' (~-sym n~n') n'~n' = ~-trans (~-sym n~n') n~n' [[n]] = neuTerm (Uᵣ (Uᵣ r ⁰ l< PE.refl D)) neN n n~n [[n']] = neuTerm (Uᵣ (Uᵣ r ⁰ l< PE.refl D)) neN′ n′ n'~n' n' = conv n (subset* (red D)) n′' = conv n′ (subset* (red D)) n~n'U = ~-conv n~n' (subset* (red D)) [n] = neu {l = ι ¹} neN (univ n') (~-conv n~n (subset* (red D))) [n′] = neu {l = ι ¹} neN′ (univ n′') (~-conv n'~n' (subset* (red D))) in Uₜ₌ [[n]] [[n']] (~-to-≅ₜ n~n'U) (λ [ρ] ⊢Δ → W.wkEq [ρ] ⊢Δ [n] ((neuEq [n] neN neN′ (univ n') (univ n′') n~n'U))) neuEqTerm {∞} (Uᵣ′ A _ r ¹ l< PE.refl D) neN neN′ n n′ n~n' = let n~n = ~-trans n~n' (~-sym n~n') n'~n' = ~-trans (~-sym n~n') n~n' [[n]] = neuTerm (Uᵣ (Uᵣ r ¹ l< PE.refl D)) neN n n~n [[n']] = neuTerm (Uᵣ (Uᵣ r ¹ l< PE.refl D)) neN′ n′ n'~n' n' = conv n (subset* (red D)) n′' = conv n′ (subset* (red D)) n~n'U = ~-conv n~n' (subset* (red D)) [n] = neu {l = ∞} neN (univ n') (~-conv n~n (subset* (red D))) [n′] = neu {l = ∞} neN′ (univ n′') (~-conv n'~n' (subset* (red D))) in Uₜ₌ [[n]] [[n']] (~-to-≅ₜ n~n'U) (λ [ρ] ⊢Δ → W.wkEq [ρ] ⊢Δ [n] ((neuEq [n] neN neN′ (univ n') (univ n′') n~n'U))) neuEqTerm (ℕᵣ [[ ⊢A , ⊢B , D ]]) neN neN′ n n′ n~n′ = let A≡ℕ = subset* D n~n′₁ = ~-conv n~n′ A≡ℕ n≡n′ = ~-to-≅ₜ n~n′₁ in ℕₜ₌ _ _ (idRedTerm:*: (conv n A≡ℕ)) (idRedTerm:*: (conv n′ A≡ℕ)) n≡n′ (ne (neNfₜ₌ neN neN′ n~n′₁)) neuEqTerm (Emptyᵣ [[ ⊢A , ⊢B , D ]]) neN neN′ n n′ n~n′ = let A≡Empty = subset* D in Emptyₜ₌ (ne (conv n A≡Empty) (conv n′ A≡Empty)) neuEqTerm {r = [ ! , ll ]} (ne (ne K [[ ⊢A , ⊢B , D ]] neK K≡K)) neN neN′ n n′ n~n′ = let A≡K = subset* D in neₜ₌ _ _ (idRedTerm:*: (conv n A≡K)) (idRedTerm:*: (conv n′ A≡K)) (neNfₜ₌ neN neN′ (~-conv n~n′ A≡K)) neuEqTerm {r = [ % , ll ]} (ne (ne K [[ ⊢A , ⊢B , D ]] neK K≡K)) neN neN′ n n′ n~n′ = let A≡K = subset* D in neₜ₌ n n′ neuEqTerm {r = [ ! , ll ]} (Πᵣ′ rF lF lG lF≤ lG≤ F G [[ ⊢A , ⊢B , D ]] ⊢F ⊢G A≡A [F] [G] G-ext) neN neN′ n n′ n~n′ = let [ΠFG] = Πᵣ′ rF lF lG lF≤ lG≤ F G [[ ⊢A , ⊢B , D ]] ⊢F ⊢G A≡A [F] [G] G-ext A≡ΠFG = subset* D n~n′₁ = ~-conv n~n′ A≡ΠFG n≡n′ = ~-to-≅ₜ n~n′₁ n~n = ~-trans n~n′ (~-sym n~n′) n′~n′ = ~-trans (~-sym n~n′) n~n′ in Πₜ₌ _ _ (idRedTerm:*: (conv n A≡ΠFG)) (idRedTerm:*: (conv n′ A≡ΠFG)) (ne neN) (ne neN′) n≡n′ (neuTerm [ΠFG] neN n n~n) (neuTerm [ΠFG] neN′ n′ n′~n′) (λ {ρ} [ρ] ⊢Δ [a] → let ρA≡ρΠFG = wkEq [ρ] ⊢Δ A≡ΠFG ρn = wkTerm [ρ] ⊢Δ n ρn′ = wkTerm [ρ] ⊢Δ n′ a = escapeTerm ([F] [ρ] ⊢Δ) [a] a≡a = escapeTermEq ([F] [ρ] ⊢Δ) (reflEqTerm ([F] [ρ] ⊢Δ) [a]) neN∙a = ∘ₙ (wkNeutral ρ neN) neN′∙a′ = ∘ₙ (wkNeutral ρ neN′) in neuEqTerm ([G] [ρ] ⊢Δ [a]) neN∙a neN′∙a′ (conv ρn ρA≡ρΠFG ∘ⱼ a) (conv ρn′ ρA≡ρΠFG ∘ⱼ a) (~-app (~-wk [ρ] ⊢Δ n~n′₁) a≡a)) neuEqTerm {r = [ % , ll ]} (Πᵣ′ rF lF lG lF≤ lG≤ F G [[ ⊢A , ⊢B , D ]] ⊢F ⊢G A≡A [F] [G] G-ext) neN neN′ n n′ n~n′ = let A≡ΠFG = subset* D in conv n A≡ΠFG , conv n′ A≡ΠFG neuEqTerm {r = [ % , ll ]} (∃ᵣ′ F G [[ ⊢A , ⊢B , D ]] ⊢F ⊢G A≡A [F] [G] G-ext) neN neN′ n n′ n~n′ = let A≡ΠFG = subset* D in conv n A≡ΠFG , conv n′ A≡ΠFG neuEqTerm {ι ¹} (emb l< X) neN n neN′ n:≡:n′ = neuEqTerm X neN n neN′ n:≡:n′ neuEqTerm {∞} (emb l< X) neN n neN′ n:≡:n′ = neuEqTerm X neN n neN′ n:≡:n′ -- Neutral reflexive types are reducible. neu:⇒*: : ∀ {l Γ A K r ll} (neK : Neutral K) → Γ ⊢ A :⇒*: K ^ [ r , ι ll ] → Γ ⊢ K ~ K ∷ Univ r ll ^ [ ! , next ll ] → Γ ⊩⟨ l ⟩ A ^ [ r , ι ll ] neu:⇒*: neK D K~K = ne′ _ D neK K~K -- Helper function for reducible neutral equality of a specific type of derivation. neuEq:⇒*:′ : ∀ {l Γ A B K L r ll} ([A] : Γ ⊩⟨ l ⟩ne A ^[ r , ll ]) (neK : Neutral K) (neL : Neutral L) → Γ ⊢ A :⇒*: K ^ [ r , ι ll ] → Γ ⊢ B :⇒*: L ^ [ r , ι ll ] → Γ ⊢ K ~ L ∷ Univ r ll ^ [ ! , next ll ] → Γ ⊩⟨ l ⟩ A ≡ B ^ [ r , ι ll ] / ne-intr [A] neuEq:⇒*:′ (noemb (ne A' [[ ⊢A , ⊢B , D ]] neA A≡A)) neK neL [[ ⊢A' , ⊢K , D' ]] [B] A~B = let A≡K = whrDet* (D , ne neA) (D' , ne neK) -- (ne neA) in ne₌ _ [B] neL (PE.subst (λ x → _ ⊢ x ~ _ ∷ _ ^ _) (PE.sym A≡K) A~B) neuEq:⇒*:′ {ι ¹} (emb emb< X) = neuEq:⇒*:′ X neuEq:⇒*:′ {∞} (emb ∞< X) = neuEq:⇒*:′ X -- Neutrally equal types are of reducible equality. neuEq:⇒*: : ∀ {l Γ A B K L r ll} ([A] : Γ ⊩⟨ l ⟩ A ^ [ r , ι ll ]) (neK : Neutral K) (neL : Neutral L) → Γ ⊢ A :⇒*: K ^ [ r , ι ll ] → Γ ⊢ B :⇒*: L ^ [ r , ι ll ] → Γ ⊢ K ~ L ∷ Univ r ll ^ [ ! , next ll ] → Γ ⊩⟨ l ⟩ A ≡ B ^ [ r , ι ll ] / [A] neuEq:⇒*: [A] neK neL [[ ⊢A , ⊢K , D ]] B A~B = let ne-intrA = ne-elim′ D neK [A] PE.refl in irrelevanceEq (ne-intr ne-intrA) [A] (neuEq:⇒*:′ ne-intrA neK neL [[ ⊢A , ⊢K , D ]] B A~B) app:⇒*: : ∀ {Γ a t u A B rA lA lB l} (⊢a : Γ ⊢ a ∷ A ^ [ rA , ι lA ]) (D : Γ ⊢ t :⇒*: u ∷ (Π A ^ rA ° lA ▹ B ° lB ° l) ^ ι l) → Γ ⊢ t ∘ a ^ l :⇒*: u ∘ a ^ l ∷ B [ a ] ^ ι lB app:⇒*: ⊢a [[ ⊢t , ⊢u , D ]] = [[ ⊢t ∘ⱼ ⊢a , ⊢u ∘ⱼ ⊢a , appRed* ⊢a D ]] mutual neuTerm:⇒*:⁰ : ∀ {Γ A ll t n} ([A] : Γ ⊩⟨ ι ⁰ ⟩ A ^ [ ! , ll ]) (neN : Neutral n) → Γ ⊢ t :⇒*: n ∷ A ^ ll → Γ ⊢ n ~ n ∷ A ^ [ ! , ll ] → Γ ⊩⟨ ι ⁰ ⟩ t ∷ A ^ [ ! , ll ] / [A] neuTerm:⇒*:⁰ (ℕᵣ [[ ⊢A , ⊢B , D ]]) neN [[ ⊢t , n , D' ]] n~n = let A≡ℕ = subset* D n~n′ = ~-conv n~n A≡ℕ n≡n = ~-to-≅ₜ n~n′ in ℕₜ _ (conv:⇒*: [[ ⊢t , n , D' ]] A≡ℕ) n≡n (ne (neNfₜ neN (conv n A≡ℕ) n~n′)) neuTerm:⇒*:⁰ (ne′ K [[ ⊢A , ⊢B , D ]] neK K≡K) neN [[ ⊢t , n , D' ]] n~n = let A≡K = subset* D in neₜ _ (conv:⇒*: [[ ⊢t , n , D' ]] A≡K) (neNfₜ neN (conv n A≡K) (~-conv n~n A≡K)) neuTerm:⇒*:⁰ (Πᵣ′ rF lF lG lF≤ lG≤ F G D ⊢F ⊢G A≡A [F] [G] G-ext) neN [[ ⊢t , n , D' ]] n~n = let A≡ΠFG = subset* (red D) in Πₜ _ (conv:⇒*: [[ ⊢t , n , D' ]] A≡ΠFG) (ne neN) (~-to-≅ₜ (~-conv n~n A≡ΠFG)) (λ {ρ} [ρ] ⊢Δ [a] [b] [a≡b] → let A≡ΠFG = subset* (red D) ρA≡ρΠFG = wkEq [ρ] ⊢Δ (subset* (red D)) G[a]≡G[b] = escapeEq ([G] [ρ] ⊢Δ [b]) (symEq ([G] [ρ] ⊢Δ [a]) ([G] [ρ] ⊢Δ [b]) (G-ext [ρ] ⊢Δ [a] [b] [a≡b])) a = escapeTerm ([F] [ρ] ⊢Δ) [a] b = escapeTerm ([F] [ρ] ⊢Δ) [b] a≡b = escapeTermEq ([F] [ρ] ⊢Δ) [a≡b] ρn = conv (wkTerm [ρ] ⊢Δ n) ρA≡ρΠFG neN∘a = ∘ₙ (wkNeutral ρ neN) neN∘b = ∘ₙ (wkNeutral ρ neN) in neuEqTerm⁰ ([G] [ρ] ⊢Δ [a]) neN∘a neN∘b (ρn ∘ⱼ a) (conv (ρn ∘ⱼ b) (≅-eq G[a]≡G[b])) ((~-app (~-wk [ρ] ⊢Δ (~-conv n~n A≡ΠFG)) a≡b))) (λ {ρ} [ρ] ⊢Δ [a] → let ρA≡ρΠFG = wkEq [ρ] ⊢Δ (subset* (red D)) a = escapeTerm ([F] [ρ] ⊢Δ) [a] a≡a = escapeTermEq ([F] [ρ] ⊢Δ) (reflEqTerm ([F] [ρ] ⊢Δ) [a]) in neuTerm ([G] [ρ] ⊢Δ [a]) (∘ₙ (wkNeutral ρ neN)) (conv (wkTerm [ρ] ⊢Δ n) ρA≡ρΠFG ∘ⱼ a) (~-app (~-wk [ρ] ⊢Δ (~-conv n~n A≡ΠFG)) a≡a)) neuEqTerm:⇒*:⁰ : ∀ {Γ A n n′ t u ll} ([A] : Γ ⊩⟨ ι ⁰ ⟩ A ^ [ ! , ll ]) (neN : Neutral n) (neN′ : Neutral n′) → Γ ⊢ t :⇒*: n ∷ A ^ ll → Γ ⊢ u :⇒*: n′ ∷ A ^ ll → Γ ⊢ n ~ n′ ∷ A ^ [ ! , ll ] → Γ ⊩⟨ ι ⁰ ⟩ t ≡ u ∷ A ^ [ ! , ll ] / [A] neuEqTerm:⇒*:⁰ (ℕᵣ [[ ⊢A , ⊢B , D ]]) neN neN′ [[ ⊢t , n , D' ]] [[ ⊢u , n′ , D′ ]] n~n′ = let A≡ℕ = subset* D n~n′₁ = ~-conv n~n′ A≡ℕ n≡n′ = ~-to-≅ₜ n~n′₁ in ℕₜ₌ _ _ (conv:⇒*: [[ ⊢t , n , D' ]] A≡ℕ) (conv:⇒*: [[ ⊢u , n′ , D′ ]] A≡ℕ) n≡n′ (ne (neNfₜ₌ neN neN′ n~n′₁)) neuEqTerm:⇒*:⁰ (ne (ne K [[ ⊢A , ⊢B , D ]] neK K≡K)) neN neN′ [[ ⊢t , n , D' ]] [[ ⊢u , n′ , D′ ]] n~n′ = let A≡K = subset* D in neₜ₌ _ _ (conv:⇒*: [[ ⊢t , n , D' ]] A≡K) (conv:⇒*: [[ ⊢u , n′ , D′ ]] A≡K) (neNfₜ₌ neN neN′ (~-conv n~n′ A≡K)) neuEqTerm:⇒*:⁰ (Πᵣ′ rF lF lG lF≤ lG≤ F G [[ ⊢A , ⊢B , D ]] ⊢F ⊢G A≡A [F] [G] G-ext) neN neN′ [[ ⊢t , n , D' ]] [[ ⊢u , n′ , D′ ]] n~n′ = let [ΠFG] = Πᵣ′ rF lF lG lF≤ lG≤ F G [[ ⊢A , ⊢B , D ]] ⊢F ⊢G A≡A [F] [G] G-ext A≡ΠFG = subset* D n~n′₁ = ~-conv n~n′ A≡ΠFG n≡n′ = ~-to-≅ₜ n~n′₁ n~n = ~-trans n~n′ (~-sym n~n′) n′~n′ = ~-trans (~-sym n~n′) n~n′ in Πₜ₌ _ _ (conv:⇒*: [[ ⊢t , n , D' ]] A≡ΠFG) (conv:⇒*: [[ ⊢u , n′ , D′ ]] A≡ΠFG) (ne neN) (ne neN′) n≡n′ (neuTerm:⇒*:⁰ [ΠFG] neN [[ ⊢t , n , D' ]] n~n) (neuTerm:⇒*:⁰ [ΠFG] neN′ [[ ⊢u , n′ , D′ ]] n′~n′) (λ {ρ} [ρ] ⊢Δ [a] → let ρA≡ρΠFG = wkEq [ρ] ⊢Δ A≡ΠFG ρn = wkTerm [ρ] ⊢Δ n ρn′ = wkTerm [ρ] ⊢Δ n′ a = escapeTerm ([F] [ρ] ⊢Δ) [a] a≡a = escapeTermEq ([F] [ρ] ⊢Δ) (reflEqTerm ([F] [ρ] ⊢Δ) [a]) neN∙a = ∘ₙ (wkNeutral ρ neN) neN′∙a′ = ∘ₙ (wkNeutral ρ neN′) in neuEqTerm ([G] [ρ] ⊢Δ [a]) neN∙a neN′∙a′ (conv ρn ρA≡ρΠFG ∘ⱼ a) (conv ρn′ ρA≡ρΠFG ∘ⱼ a) (~-app (~-wk [ρ] ⊢Δ n~n′₁) a≡a) ) mutual -- Neutral reflexive terms are reducible. neuTerm:⇒*: : ∀ {l Γ A ll t n} ([A] : Γ ⊩⟨ l ⟩ A ^ [ ! , ll ]) (neN : Neutral n) → Γ ⊢ t :⇒*: n ∷ A ^ ll → Γ ⊢ n ~ n ∷ A ^ [ ! , ll ] → Γ ⊩⟨ l ⟩ t ∷ A ^ [ ! , ll ] / [A] neuTerm:⇒*: {ι ¹} (Uᵣ′ A .(next ⁰) r ⁰ l< PE.refl [[ ⊢A , ⊢U , D ]]) neN [[ ⊢t , n , D' ]] n~n = let D'' = conv:⇒*: [[ ⊢t , n , D' ]] (subset* D) n~n' = ~-conv n~n (subset* D) in Uₜ _ (conv:⇒*: [[ ⊢t , n , D' ]] (subset* D)) (ne neN) (~-to-≅ₜ n~n') (λ {ρ} [ρ] ⊢Δ → let ρD' = wkRed:*:Term [ρ] ⊢Δ D'' n~n'ρ = ~-wk [ρ] ⊢Δ n~n' in neu:⇒*: (wkNeutral ρ neN) (univ:⇒*: ρD') n~n'ρ) neuTerm:⇒*: {∞} (Uᵣ′ A .(next ¹) r ¹ l< PE.refl [[ ⊢A , ⊢U , D ]]) neN [[ ⊢t , n , D' ]] n~n = let D'' = conv:⇒*: [[ ⊢t , n , D' ]] (subset* D) n~n' = ~-conv n~n (subset* D) in Uₜ _ (conv:⇒*: [[ ⊢t , n , D' ]] (subset* D)) (ne neN) (~-to-≅ₜ n~n') (λ {ρ} [ρ] ⊢Δ → let ρD' = wkRed:*:Term [ρ] ⊢Δ D'' n~n'ρ = ~-wk [ρ] ⊢Δ n~n' in neu:⇒*: (wkNeutral ρ neN) (univ:⇒*: ρD') n~n'ρ) neuTerm:⇒*: (ℕᵣ [[ ⊢A , ⊢B , D ]]) neN [[ ⊢t , n , D' ]] n~n = let A≡ℕ = subset* D n~n′ = ~-conv n~n A≡ℕ n≡n = ~-to-≅ₜ n~n′ in ℕₜ _ (conv:⇒*: [[ ⊢t , n , D' ]] A≡ℕ) n≡n (ne (neNfₜ neN (conv n A≡ℕ) n~n′)) neuTerm:⇒*: (ne′ K [[ ⊢A , ⊢B , D ]] neK K≡K) neN [[ ⊢t , n , D' ]] n~n = let A≡K = subset* D in neₜ _ (conv:⇒*: [[ ⊢t , n , D' ]] A≡K) (neNfₜ neN (conv n A≡K) (~-conv n~n A≡K)) neuTerm:⇒*: (Πᵣ′ rF lF lG lF≤ lG≤ F G D ⊢F ⊢G A≡A [F] [G] G-ext) neN [[ ⊢t , n , D' ]] n~n = let A≡ΠFG = subset* (red D) in Πₜ _ (conv:⇒*: [[ ⊢t , n , D' ]] A≡ΠFG) (ne neN) (~-to-≅ₜ (~-conv n~n A≡ΠFG)) (λ {ρ} [ρ] ⊢Δ [a] [b] [a≡b] → let A≡ΠFG = subset* (red D) ρA≡ρΠFG = wkEq [ρ] ⊢Δ (subset* (red D)) G[a]≡G[b] = escapeEq ([G] [ρ] ⊢Δ [b]) (symEq ([G] [ρ] ⊢Δ [a]) ([G] [ρ] ⊢Δ [b]) (G-ext [ρ] ⊢Δ [a] [b] [a≡b])) a = escapeTerm ([F] [ρ] ⊢Δ) [a] b = escapeTerm ([F] [ρ] ⊢Δ) [b] a≡b = escapeTermEq ([F] [ρ] ⊢Δ) [a≡b] ρn = conv (wkTerm [ρ] ⊢Δ n) ρA≡ρΠFG neN∘a = ∘ₙ (wkNeutral ρ neN) neN∘b = ∘ₙ (wkNeutral ρ neN) in neuEqTerm ([G] [ρ] ⊢Δ [a]) neN∘a neN∘b (ρn ∘ⱼ a) (conv (ρn ∘ⱼ b) (≅-eq G[a]≡G[b])) ((~-app (~-wk [ρ] ⊢Δ (~-conv n~n A≡ΠFG)) a≡b))) (λ {ρ} [ρ] ⊢Δ [a] → let ρA≡ρΠFG = wkEq [ρ] ⊢Δ (subset* (red D)) a = escapeTerm ([F] [ρ] ⊢Δ) [a] a≡a = escapeTermEq ([F] [ρ] ⊢Δ) (reflEqTerm ([F] [ρ] ⊢Δ) [a]) in neuTerm ([G] [ρ] ⊢Δ [a]) (∘ₙ (wkNeutral ρ neN)) (conv (wkTerm [ρ] ⊢Δ n) ρA≡ρΠFG ∘ⱼ a) (~-app (~-wk [ρ] ⊢Δ (~-conv n~n A≡ΠFG)) a≡a)) neuTerm:⇒*: {ι ¹} (emb l< X) neN n n:≡:n′ = neuTerm:⇒*: X neN n n:≡:n′ neuTerm:⇒*: {∞} (emb l< X) neN n n:≡:n′ = neuTerm:⇒*: X neN n n:≡:n′ -- Neutrally equal terms are of reducible equality. neuEqTerm:⇒*: : ∀ {l Γ A t u n n′ ll} ([A] : Γ ⊩⟨ l ⟩ A ^ [ ! , ll ]) (neN : Neutral n) (neN′ : Neutral n′) → Γ ⊢ t :⇒*: n ∷ A ^ ll → Γ ⊢ u :⇒*: n′ ∷ A ^ ll → Γ ⊢ n ~ n′ ∷ A ^ [ ! , ll ] → Γ ⊩⟨ l ⟩ t ≡ u ∷ A ^ [ ! , ll ] / [A] neuEqTerm:⇒*: {ι ¹} (Uᵣ′ A _ r ⁰ l< PE.refl [[ ⊢A , ⊢U , D ]]) neN neN′ [[ ⊢t , n , D' ]] [[ ⊢u , n′ , D′ ]] n~n' = let n~n = ~-trans n~n' (~-sym n~n') n'~n' = ~-trans (~-sym n~n') n~n' n~n'U = ~-conv n~n' (subset* D) n~nU = ~-conv n~n (subset* D) [t] = neuTerm:⇒*: (Uᵣ′ A _ r ⁰ l< PE.refl [[ ⊢A , ⊢U , D ]]) neN [[ ⊢t , n , D' ]] n~n Uₜ _ _ _ _ [Δt] = [t] D'' = conv:⇒*: [[ ⊢t , n , D' ]] (subset* D) D′' = conv:⇒*: [[ ⊢u , n′ , D′ ]] (subset* D) in Uₜ₌ [t] (neuTerm:⇒*: (Uᵣ′ A _ r ⁰ l< PE.refl [[ ⊢A , ⊢U , D ]]) neN′ [[ ⊢u , n′ , D′ ]] n'~n') (~-to-≅ₜ n~n'U) λ {ρ} [ρ] ⊢Δ → let ρD' = wkRed:*:Term [ρ] ⊢Δ D'' ρD′ = wkRed:*:Term [ρ] ⊢Δ D′' n~nUρ = ~-wk [ρ] ⊢Δ n~nU n~n'Uρ = ~-wk [ρ] ⊢Δ n~n'U in neuEq:⇒*: {l = ι ¹} (neu:⇒*: (wkNeutral ρ neN) (univ:⇒*: ρD') n~nUρ) (wkNeutral ρ neN) (wkNeutral ρ neN′) (univ:⇒*: ρD') (univ:⇒*: ρD′) n~n'Uρ neuEqTerm:⇒*: {∞} (Uᵣ′ A _ r ¹ l< PE.refl [[ ⊢A , ⊢U , D ]]) neN neN′ [[ ⊢t , n , D' ]] [[ ⊢u , n′ , D′ ]] n~n' = let n~n = ~-trans n~n' (~-sym n~n') n'~n' = ~-trans (~-sym n~n') n~n' n~n'U = ~-conv n~n' (subset* D) n~nU = ~-conv n~n (subset* D) [t] = neuTerm:⇒*: (Uᵣ′ A _ r ¹ l< PE.refl [[ ⊢A , ⊢U , D ]]) neN [[ ⊢t , n , D' ]] n~n Uₜ _ _ _ _ [Δt] = [t] D'' = conv:⇒*: [[ ⊢t , n , D' ]] (subset* D) D′' = conv:⇒*: [[ ⊢u , n′ , D′ ]] (subset* D) in Uₜ₌ [t] (neuTerm:⇒*: (Uᵣ′ A _ r ¹ l< PE.refl [[ ⊢A , ⊢U , D ]]) neN′ [[ ⊢u , n′ , D′ ]] n'~n') (~-to-≅ₜ n~n'U) λ {ρ} [ρ] ⊢Δ → let ρD' = wkRed:*:Term [ρ] ⊢Δ D'' ρD′ = wkRed:*:Term [ρ] ⊢Δ D′' n~nUρ = ~-wk [ρ] ⊢Δ n~nU n~n'Uρ = ~-wk [ρ] ⊢Δ n~n'U in neuEq:⇒*: {l = ∞} (neu:⇒*: (wkNeutral ρ neN) (univ:⇒*: ρD') n~nUρ) (wkNeutral ρ neN) (wkNeutral ρ neN′) (univ:⇒*: ρD') (univ:⇒*: ρD′) n~n'Uρ neuEqTerm:⇒*: (ℕᵣ [[ ⊢A , ⊢B , D ]]) neN neN′ [[ ⊢t , n , D' ]] [[ ⊢u , n′ , D′ ]] n~n′ = let A≡ℕ = subset* D n~n′₁ = ~-conv n~n′ A≡ℕ n≡n′ = ~-to-≅ₜ n~n′₁ in ℕₜ₌ _ _ (conv:⇒*: [[ ⊢t , n , D' ]] A≡ℕ) (conv:⇒*: [[ ⊢u , n′ , D′ ]] A≡ℕ) n≡n′ (ne (neNfₜ₌ neN neN′ n~n′₁)) neuEqTerm:⇒*: (ne (ne K [[ ⊢A , ⊢B , D ]] neK K≡K)) neN neN′ [[ ⊢t , n , D' ]] [[ ⊢u , n′ , D′ ]] n~n′ = let A≡K = subset* D in neₜ₌ _ _ (conv:⇒*: [[ ⊢t , n , D' ]] A≡K) (conv:⇒*: [[ ⊢u , n′ , D′ ]] A≡K) (neNfₜ₌ neN neN′ (~-conv n~n′ A≡K)) neuEqTerm:⇒*: (Πᵣ′ rF lF lG lF≤ lG≤ F G [[ ⊢A , ⊢B , D ]] ⊢F ⊢G A≡A [F] [G] G-ext) neN neN′ [[ ⊢t , n , D' ]] [[ ⊢u , n′ , D′ ]] n~n′ = let [ΠFG] = Πᵣ′ rF lF lG lF≤ lG≤ F G [[ ⊢A , ⊢B , D ]] ⊢F ⊢G A≡A [F] [G] G-ext A≡ΠFG = subset* D n~n′₁ = ~-conv n~n′ A≡ΠFG n≡n′ = ~-to-≅ₜ n~n′₁ n~n = ~-trans n~n′ (~-sym n~n′) n′~n′ = ~-trans (~-sym n~n′) n~n′ in Πₜ₌ _ _ (conv:⇒*: [[ ⊢t , n , D' ]] A≡ΠFG) (conv:⇒*: [[ ⊢u , n′ , D′ ]] A≡ΠFG) (ne neN) (ne neN′) n≡n′ (neuTerm:⇒*: [ΠFG] neN [[ ⊢t , n , D' ]] n~n) (neuTerm:⇒*: [ΠFG] neN′ [[ ⊢u , n′ , D′ ]] n′~n′) (λ {ρ} [ρ] ⊢Δ [a] → let ρA≡ρΠFG = wkEq [ρ] ⊢Δ A≡ΠFG ρn = wkTerm [ρ] ⊢Δ n ρn′ = wkTerm [ρ] ⊢Δ n′ a = escapeTerm ([F] [ρ] ⊢Δ) [a] a≡a = escapeTermEq ([F] [ρ] ⊢Δ) (reflEqTerm ([F] [ρ] ⊢Δ) [a]) neN∙a = ∘ₙ (wkNeutral ρ neN) neN′∙a′ = ∘ₙ (wkNeutral ρ neN′) in neuEqTerm ([G] [ρ] ⊢Δ [a]) neN∙a neN′∙a′ (conv ρn ρA≡ρΠFG ∘ⱼ a) (conv ρn′ ρA≡ρΠFG ∘ⱼ a) (~-app (~-wk [ρ] ⊢Δ n~n′₁) a≡a) ) neuEqTerm:⇒*: {ι ¹} (emb l< X) neN n neN′ n:≡:n′ = neuEqTerm:⇒*: X neN n neN′ n:≡:n′ neuEqTerm:⇒*: {∞} (emb l< X) neN n neN′ n:≡:n′ = neuEqTerm:⇒*: X neN n neN′ n:≡:n′
{ "alphanum_fraction": 0.3759528162, "avg_line_length": 50.3350694444, "ext": "agda", "hexsha": "51fb7d6c669d765b585037c9297963bb25a699d1", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z", "max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z", "max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "CoqHott/logrel-mltt", "max_forks_repo_path": "Definition/LogicalRelation/Properties/Neutral.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "CoqHott/logrel-mltt", "max_issues_repo_path": "Definition/LogicalRelation/Properties/Neutral.agda", "max_line_length": 138, "max_stars_count": 2, "max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "CoqHott/logrel-mltt", "max_stars_repo_path": "Definition/LogicalRelation/Properties/Neutral.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z", "max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z", "num_tokens": 14741, "size": 28993 }
-- Intuitionistic propositional logic, PHOAS approach, final encoding module Pf.Ip where -- Types infixl 2 _&&_ infixl 1 _||_ infixr 0 _=>_ data Ty : Set where UNIT : Ty _=>_ : Ty -> Ty -> Ty _&&_ : Ty -> Ty -> Ty _||_ : Ty -> Ty -> Ty FALSE : Ty infixr 0 _<=>_ _<=>_ : Ty -> Ty -> Ty a <=> b = (a => b) && (b => a) NOT : Ty -> Ty NOT a = a => FALSE TRUE : Ty TRUE = FALSE => FALSE -- Context and truth judgement Cx : Set1 Cx = Ty -> Set isTrue : Ty -> Cx -> Set isTrue a tc = tc a -- Terms TmRepr : Set1 TmRepr = Cx -> Ty -> Set module ArrMp where record Tm (tr : TmRepr) : Set1 where infixl 1 _$_ field var : forall {tc a} -> isTrue a tc -> tr tc a lam' : forall {tc a b} -> (isTrue a tc -> tr tc b) -> tr tc (a => b) _$_ : forall {tc a b} -> tr tc (a => b) -> tr tc a -> tr tc b lam'' : forall {tc a b} -> (tr tc a -> tr tc b) -> tr tc (a => b) lam'' f = lam' \x -> f (var x) syntax lam'' (\a -> b) = lam a => b open Tm {{...}} public module Mp where record Tm (tr : TmRepr) : Set1 where field pair' : forall {tc a b} -> tr tc a -> tr tc b -> tr tc (a && b) fst : forall {tc a b} -> tr tc (a && b) -> tr tc a snd : forall {tc a b} -> tr tc (a && b) -> tr tc b left : forall {tc a b} -> tr tc a -> tr tc (a || b) right : forall {tc a b} -> tr tc b -> tr tc (a || b) case' : forall {tc a b c} -> tr tc (a || b) -> (isTrue a tc -> tr tc c) -> (isTrue b tc -> tr tc c) -> tr tc c isArrMp : ArrMp.Tm tr open ArrMp.Tm isArrMp public case'' : forall {tc a b c} -> tr tc (a || b) -> (tr tc a -> tr tc c) -> (tr tc b -> tr tc c) -> tr tc c case'' xy f g = case' xy (\x -> f (var x)) (\y -> g (var y)) syntax pair' x y = [ x , y ] syntax case'' xy (\x -> z1) (\y -> z2) = case xy of x => z1 or y => z2 open Tm {{...}} public module Ip where record Tm (tr : TmRepr) : Set1 where field abort : forall {tc a} -> tr tc FALSE -> tr tc a isMp : Mp.Tm tr open Mp.Tm isMp public open Tm {{...}} public Thm : Ty -> Set1 Thm a = forall {tr tc} {{_ : Tm tr}} -> tr tc a open Ip public -- Example theorems t1 : forall {a b} -> Thm (a => NOT a => b) t1 = lam x => lam f => abort (f $ x) t2 : forall {a b} -> Thm (NOT a => a => b) t2 = lam f => lam x => abort (f $ x) t3 : forall {a} -> Thm (a => NOT (NOT a)) t3 = lam x => lam f => f $ x t4 : forall {a} -> Thm (NOT a <=> NOT (NOT (NOT a))) t4 = [ lam f => lam g => g $ f , lam g => lam x => g $ (lam f => f $ x) ]
{ "alphanum_fraction": 0.4626255113, "avg_line_length": 23.3826086957, "ext": "agda", "hexsha": "1c3cacb01ebe3bf43f85d17a1489ceae3d9a62b1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2dd761bfa96ccda089888e8defa6814776fa2922", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/formal-logic", "max_forks_repo_path": "src/Pf/Ip.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2dd761bfa96ccda089888e8defa6814776fa2922", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/formal-logic", "max_issues_repo_path": "src/Pf/Ip.agda", "max_line_length": 116, "max_stars_count": 26, "max_stars_repo_head_hexsha": "2dd761bfa96ccda089888e8defa6814776fa2922", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/formal-logic", "max_stars_repo_path": "src/Pf/Ip.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-13T12:37:44.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-31T09:49:52.000Z", "num_tokens": 1010, "size": 2689 }
-- Issue #2814 reported by tomjack on 2017-10-18 {-# OPTIONS --cubical --rewriting #-} -- prelude stolen from Saizan/cubical-demo open import Agda.Primitive.Cubical public postulate Path' : ∀ {ℓ} {A : Set ℓ} → A → A → Set ℓ PathP : ∀ {ℓ} (A : I → Set ℓ) → A i0 → A i1 → Set ℓ {-# BUILTIN PATHP PathP #-} infix 4 _≡_ _≡_ : ∀ {ℓ} {A : Set ℓ} → A → A → Set ℓ _≡_ {A = A} = PathP (λ _ → A) Path = _≡_ refl : ∀ {ℓ} {A : Set ℓ} {x : A} → x ≡ x refl {x = x} = λ _ → x postulate Rewrite : ∀ {ℓ} {A : Set ℓ} → A → A → Set {-# BUILTIN REWRITE Rewrite #-} module Good where postulate Unit : Set unit : Unit module UnitElim (P : Unit → Set) (unit* : P unit) where postulate Unit-elim : (x : Unit) → P x unit-β : Rewrite (Unit-elim unit) unit* open UnitElim public {-# REWRITE unit-β #-} test₁ : {C : Set} {c₀ : C} → Path {A = C} (Unit-elim (λ _ → C) c₀ unit) c₀ test₁ = refl test₂ : {C : Set} {c₀ : C} → Path {A = Path c₀ c₀} (λ j → Unit-elim (λ _ → C) c₀ unit) refl test₂ = refl -- same code, but with a dummy module parameter module Bad (Dummy : Set) where postulate Unit : Set unit : Unit module UnitElim (P : Unit → Set) (unit* : P unit) where postulate Unit-elim : (x : Unit) → P x unit-β : Rewrite (Unit-elim unit) unit* open UnitElim public {-# REWRITE unit-β #-} test₁ : {C : Set} {c₀ : C} → Path {A = C} (Unit-elim (λ _ → C) c₀ unit) c₀ test₁ = refl test₂ : {C : Set} {c₀ : C} → Path {A = Path c₀ c₀} (λ j → Unit-elim (λ _ → C) c₀ unit) refl test₂ = refl -- WAS: -- Unit-elim (λ _ → .C) .c₀ unit != .c₀ of type .C -- when checking that the expression refl has type -- Path (λ j → Unit-elim (λ _ → .C) .c₀ unit) refl -- SHOULD: succeed
{ "alphanum_fraction": 0.5539160045, "avg_line_length": 23.4933333333, "ext": "agda", "hexsha": "2dab48ecf836001a7bce9650c569059da7262f07", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Succeed/Issue2814.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Succeed/Issue2814.agda", "max_line_length": 93, "max_stars_count": null, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Succeed/Issue2814.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 697, "size": 1762 }
module LecIC where open import CS410-Prelude open import CS410-Nat _-:>_ : {I : Set}(S T : I -> Set) -> I -> Set (S -:> T) i = S i -> T i infixr 3 _-:>_ -- notation for indexed sets [_] : {I : Set}(X : I -> Set) -> Set [ X ] = forall {i} -> X i record MonadIx {W : Set}(F : (W -> Set) -> (W -> Set)) : Set1 where field retIx : forall {P} -> [ P -:> F P ] extendIx : forall {P Q} -> [ P -:> F Q ] -> [ F P -:> F Q ] _?>=_ : forall {P Q w} -> F P w -> (forall {v} -> P v -> F Q v) -> F Q w fp ?>= k = extendIx k fp IC : (W : Set) (C : W -> Set) (R : (w : W) -> C w -> Set) (n : (w : W)(c : C w)(r : R w c) -> W) -> (W -> Set) -> (W -> Set) IC W C R n G w = Sg (C w) \ c -> (r : R w c) -> G (n w c r) data FreeIx (W : Set) (C : W -> Set) (R : (w : W) -> C w -> Set) (n : (w : W)(c : C w)(r : R w c) -> W) (G : W -> Set) (w : W) : Set where ret : G w -> FreeIx W C R n G w do : IC W C R n (FreeIx W C R n G) w -> FreeIx W C R n G w postulate FileName : Set Char : Set foo : FileName blah : Char data WriteFileW : Set where opened closed : WriteFileW data WriteFileC : WriteFileW -> Set where write : Char -> WriteFileC opened openW : FileName -> WriteFileC closed closeW : WriteFileC opened WriteFileR : (w : WriteFileW)(c : WriteFileC w) -> Set WriteFileR .opened (write x) = One WriteFileR .closed (openW x) = WriteFileW WriteFileR .opened closeW = One WriteFileN : (w : WriteFileW)(c : WriteFileC w)(r : WriteFileR w c) -> WriteFileW WriteFileN .opened (write x) <> = opened WriteFileN .closed (openW x) r = r WriteFileN .opened closeW <> = closed WRITE : (WriteFileW -> Set) -> (WriteFileW -> Set) WRITE = FreeIx WriteFileW WriteFileC WriteFileR WriteFileN Goal : WriteFileW -> Set Goal opened = Zero Goal closed = One play : WRITE Goal closed play = do (openW foo , \ { opened -> do (write blah , (\ _ -> do (closeW , (\ _ -> ret <>)))) ; closed -> ret <> }) FreeMonadIx : (W : Set) (C : W -> Set) (R : (w : W) -> C w -> Set) (n : (w : W)(c : C w)(r : R w c) -> W) -> MonadIx (FreeIx W C R n) FreeMonadIx W C R n = record { retIx = ret ; extendIx = help } where help : {P Q : W → Set} -> [ P -:> FreeIx W C R n Q ] -> [ FreeIx W C R n P -:> FreeIx W C R n Q ] help k (ret p) = k p help k (do (c , j)) = do (c , \ r -> help k (j r)) data HType : Set where hTwo hNat : HType -- mapping names for types to real types. THVal : HType -> Set THVal hTwo = Two THVal hNat = Nat -- A syntax for types expressions, indexed by typed variables. Compare -- with the untyped HExp and fill in the missing expression formers, -- we have shown you the way with _+H_. think: what can be guaranteed? data THExp (X : HType -> Set) : HType -> Set where var : forall {T} -> X T -> THExp X T val : forall {T} -> THVal T -> THExp X T _+H_ : THExp X hNat -> THExp X hNat -> THExp X hNat -- ??? fill in the other two constructs, typed appropriately -- (remember that "if then else" can compute values at any type) THExpMonadIx : MonadIx THExp THExpMonadIx = record { retIx = var ; extendIx = help } where help : forall {P Q} -> [ P -:> THExp Q ] -> [ THExp P -:> THExp Q ] help f (var x) = f x help f (val v) = val v help f (e1 +H e2) = help f e1 +H help f e2 WH : Set WH = Nat * Nat data Tiling (X : WH -> Set)(wh : WH) : Set where ! : X wh -> Tiling X wh joinH : (wl wr : Nat)(wq : wl +N wr == fst wh) -> Tiling X (wl , snd wh) -> Tiling X (wr , snd wh) -> Tiling X wh joinV : (ht hb : Nat)(hq : ht +N hb == snd wh) -> Tiling X (fst wh , ht) -> Tiling X (fst wh , hb) -> Tiling X wh TilingMonadIx : MonadIx Tiling TilingMonadIx = record { retIx = ! ; extendIx = help } where help : {P Q : WH -> Set} -> [ P -:> Tiling Q ] -> [ Tiling P -:> Tiling Q ] help f (! p) = f p help f (joinH wl wr wq t-l t-r) = joinH wl wr wq (help f t-l) (help f t-r) help f (joinV ht hb hq t-t t-b) = joinV ht hb hq (help f t-t) (help f t-b) IsZero : Nat -> Set IsZero zero = One IsZero (suc n) = Zero CanCons : Set -> Nat -> Set CanCons X zero = Zero CanCons X (suc n) = X afterCons : {X : Set}(n : Nat) -> CanCons X n -> One -> Nat afterCons zero () <> afterCons (suc n) c <> = n VEC : Set -> Nat -> Set VEC X = FreeIx Nat (CanCons X) (\ _ _ -> One) afterCons IsZero
{ "alphanum_fraction": 0.5427801482, "avg_line_length": 28.0062893082, "ext": "agda", "hexsha": "87f9ae002871fa1f0fffdea74e3e05037711d13b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "clarkdm/CS410", "max_forks_repo_path": "LecIC.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "clarkdm/CS410", "max_issues_repo_path": "LecIC.agda", "max_line_length": 81, "max_stars_count": null, "max_stars_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "clarkdm/CS410", "max_stars_repo_path": "LecIC.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1623, "size": 4453 }
data Bool : Set where true : Bool false : Bool data Nat : Set where suc : Nat -> Nat zer : Nat {-# BUILTIN NATURAL Nat #-} data Vec (A : Set) : (n : Nat) -> Set where _,_ : ∀ {n} -> A -> Vec A n -> Vec A (suc n) [] : Vec A zer data Sig (A : Set) (B : A → Set) : Set where sig : (a : A) → B a → Sig A B Exists : ∀ {A : Set} → (A → Set) → Set Exists = Sig _ Pair : ∀ (A B : Set) → Set Pair A B = Sig A (λ x → B) -- variable -- m n : Nat -- b : Bool -- Γ Δ Ξ T I O : Vec Bool n -- A Linear term has an output and an output usage annotation -- For each variable (i.e. index in the Vec): -- * true: available -- * false: already consumed Linear : Set₁ Linear = ∀ n (Γa Γb : Vec Bool n) → Set data Var : Linear where z : ∀ {n Γ} → Var (suc n) (true , Γ) (false , Γ) s : ∀ {n Γa Γb x} → Var n Γa Γb → Var (suc n) (x , Γa) (x , Γb) data Lam : Linear where var : ∀ {n Γa Γb} → Var n Γa Γb → Lam n Γa Γb app : ∀ {n Γa Γb Γc} → Lam n Γa Γb → Lam n Γb Γc → Lam n Γa Γc lam : ∀ {n Γa Γb} → Lam (suc n) (true , Γa) (false , Γb) → Lam n Γa Γb -- Γi Γo: input and output usage of the env -- Γt: target usage covered by the content of the env data Env : ∀ n m → (Γi Γo : Vec Bool n) (Γt : Vec Bool m) → Set where -- empty environment [] : ∀ {n Γi Γo} → Env n zer Γi Γo [] -- 0th variable is available so we have a value for it _,_ : ∀ {n m Γi Γm Γo Γt} → Lam n Γi Γm → Env n m Γm Γo Γt → Env n (suc m) Γi Γo (true , Γt) -- -- 0th variable has already been consumed: we don't have a term for it anymore ─,_ : ∀ {n m Γi Γo Γt} → Env n m Γi Γo Γt → Env n (suc m) Γi Γo (false , Γt) -- -- When we go under binders, we need to be able to extend the input/output -- -- context to cope with the extended context [v]∷_ : ∀ {n m Γi Γo Γt} → Env n m Γi Γo Γt → Env (suc n) (suc m) (true , Γi) (false , Γo) (false , Γt) ]v[∷_ : ∀ {n m Γi Γo Γt} → Env n m Γi Γo Γt → Env (suc n) (suc m) (false , Γi) (false , Γo) (false , Γt) -- Input/output usage pairs that have the same consumption pattern data Equiv : ∀ n → (Γ0i Γ0o Γ1i Γ1o : Vec Bool n) → Set where -- Empty pairs have the same consumption pattern empty : Equiv zer [] [] [] [] -- If a resource is untouched in one side, then it must be untouched on the other skip : ∀ {n} Γ0i Γ0o Γ1i Γ1o A B → Equiv (suc n) (A , Γ0i) (A , Γ0o) (B , Γ1i) (B , Γ1o) -- If a resource is used in one side, then it must be used on the other consume : ∀ {n} Γ0i Γ0o Γ1i Γ1o → Equiv (suc n) (true , Γ0i) (false , Γ0o) (true , Γ1i) (false , Γ1o) -- R: target of the substitution -- V: output (e.g. substituting for vars yields terms) Subst : (R : Linear) (V : Linear) → Set Subst R V = ∀ {n m Γi Γo I O} -- environment targetting I → Env n m Γi Γo I -- R consuming resources in I, returning O leftovers → R m I O -- the result is a usage annotation, a value V consuming in the input, returning M leftovers, an environment of leftovers for whatever is still true in O → Exists (λ M → Pair (V n Γi M) (Env n m M Γo O)) -- substVar : Subst Var Lam -- substVar (t ∷ ρ) z = -, t , ─∷ ρ -- substVar (x ∷ ρ) (s v) = {!!} -- substVar (─∷ ρ) (s v) = {!!} -- substVar ([v]∷ ρ) (s v) = {!!} -- substVar (]v[∷ ρ) (s v) = {!!}
{ "alphanum_fraction": 0.567419158, "avg_line_length": 38.5647058824, "ext": "agda", "hexsha": "5a1027b18b01fdd5c44a5931a0a91a88fce1e507", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-03-19T23:03:08.000Z", "max_forks_repo_forks_event_min_datetime": "2020-12-31T09:27:14.000Z", "max_forks_repo_head_hexsha": "f2517e2e04cd9956a19ec3d7d3843856eb164e20", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "moonad/Elementary-Affine-Calculus", "max_forks_repo_path": "agda/Linear.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f2517e2e04cd9956a19ec3d7d3843856eb164e20", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "moonad/Elementary-Affine-Calculus", "max_issues_repo_path": "agda/Linear.agda", "max_line_length": 163, "max_stars_count": 9, "max_stars_repo_head_hexsha": "f2517e2e04cd9956a19ec3d7d3843856eb164e20", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MaiaVictor/Elementary-Affine-Core-legacy", "max_stars_repo_path": "agda/Linear.agda", "max_stars_repo_stars_event_max_datetime": "2019-05-16T21:09:11.000Z", "max_stars_repo_stars_event_min_datetime": "2019-03-28T00:06:32.000Z", "num_tokens": 1279, "size": 3278 }
open import Type open import Structure.Relator open import Structure.Setoid renaming (_≡_ to _≡ₑ_) module Structure.Sets.ZFC {ℓₛ ℓₗ ℓₑ} {S : Type{ℓₛ}} ⦃ equiv : Equiv{ℓₑ}(S) ⦄ (_∈_ : S → S → Type{ℓₗ}) ⦃ [∈]-binaryRelator : BinaryRelator(_∈_) ⦄ where open import Functional open import Function.Equals import Lvl open import Logic.Predicate open import Logic.Propositional open import Type.Properties.Inhabited open import Structure.Function open import Structure.Operator open import Structure.Relator.Proofs renaming ([≡]-binaryRelator to [≡ₑ]-binaryRelator) open import Structure.Setoid.Uniqueness import Structure.Sets.Names open import Syntax.Function open import Syntax.Implication private variable ℓ ℓ₁ ℓ₂ ℓₑ₁ : Lvl.Level private variable A B C D E a b c d e x y z As : S private variable f g h : S → S private variable P Q R : S → Type{ℓ} private variable ⦃ func ⦄ : Function ⦃ equiv ⦄ ⦃ equiv ⦄ (f) private variable ⦃ unaryRel ⦄ : UnaryRelator ⦃ equiv ⦄ (P) open Structure.Sets.Names.From-[∈] (_∈_) open Structure.Sets.Names.Relations (_∈_) open Structure.Sets.Names.One (_∈_) open Structure.Sets.Names.Two (_∈_)(_∈_) open Structure.Sets.Names.TwoDifferent (_∈_)(_∈_) open Structure.Sets.Names.TwoSame (_∈_)(_∈_) open Structure.Sets.Names.Three (_∈_)(_∈_)(_∈_) open Structure.Sets.Names.ThreeNestedTwoDifferent (_∈_) open Structure.Sets.Names.ThreeTwoNested (_∈_)(_∈_)(_∈_) open import Structure.Sets.Quantifiers(_∈_) open import Structure.Sets.Quantifiers.Proofs(_∈_) ⦃ [∈]-binaryRelator ⦄ {- -- The statement that the sets in ss are all pairwise disjoint PairwiseDisjoint : S → Type PairwiseDisjoint(ss) = ∀ₛ(ss)(s₁ ↦ ∀ₛ(ss)(s₂ ↦ ∀ₗ(x ↦ ((x ∈ s₁) → (x ∈ s₂) → (s₁ ≡ s₂))))) -- ∀ₛ(ss)(s₁ ↦ ∀ₛ(ss)(s₂ ↦ (s₁ ≢ s₂) → Disjoint(s₁)(s₂))) -- The statement that the relation predicate F can be interpreted as a partial function PartialFunction : (S → S → Type{ℓ}) → S → Type PartialFunction(F) (dom) = ∀ₛ(dom)(x ↦ Unique(y ↦ F(x)(y))) -- The statement that the relation predicate F can be interpreted as a total function TotalFunction : (S → S → Type{ℓ}) → S → Type TotalFunction(F) (dom) = ∀ₛ(dom)(x ↦ ∃!(y ↦ F(x)(y))) -- A binary relator modifier which makes the binary relator to a statement about all distinct pairs in a set. -- Note: This is specifically for irreflexive binary relations. DistinctivelyPairwise : (S → S → Type{ℓ}) → (S → Type) DistinctivelyPairwise Related (S) = ∀ₛ(S)(a ↦ ∀ₛ(S)(b ↦ ((a ≢ b) → Related(a)(b)))) -} record ZFC : Typeω where field -- Empty set -- The set consisting of no elements. ∅ : S -- Pair set. -- The set consisting of only two elements. pair : S → S → S -- Subset filtering. -- The subset of the specified set where all elements satisfy the specified formula. filter : (P : S → Type{ℓ}) ⦃ rel-P : UnaryRelator(P) ⦄ → (S → S) -- Union over arbitrary sets. -- Constructs a set which consists of elements which are in any of the specified sets. ⋃ : S → S -- Power set. -- The set of all subsets of the specified set. ℘ : S → S -- The map of a set. -- The set of values when a function is applied to every element of a set. -- Or: The image of the function on the set. -- Or: The image of the function. map : (f : S → S) ⦃ func-f : Function(f) ⦄ → (S → S) -- The set of all finite ordinals. -- A set which has the `Inductive`-property. Also infinite. ω₀ : S -- A choice function for non-empty sets in a family of sets. -- Chooses an arbitrary element in a non-empty set from a family of sets. -- Example: choose {ℕ,ℤ,ℚ,ℝ} ℝ ∈ ℝ. choose : S → S → S -- Singleton set. -- A set consisting of only a single element. singleton : S → S singleton(s) = pair(s)(s) -- Union operator. -- Constructs a set which consists of both elements from LHS and RHS. _∪_ : S → S → S a ∪ b = ⋃(pair a b) infixl 3000 _∪_ -- The zero constant expressed in the standard inductive set definition of ℕ in ZFC set theory. 𝟎 : S 𝟎 = ∅ -- The successor function expressed in the standard inductive set definition of ℕ in ZFC set theory. -- This definition implies that natural numbers are sets that contain all numbers lesser than themselves. -- Examples: -- • 0: {} -- • 1: 0∪{0} = {0} = {{},{{}}} -- • 2: 1∪{1} = {0}∪{1} = {0,1} = {{},{{},{{}}}} -- • 3: 2∪{2} = {0,1}∪{2} = {0,1,2} = {{{},{{},{{}}}},{{{},{{},{{}}}}}} -- • 4: 3∪{3} = {0,1,2}∪{3} = {0,1,2,3} = {{{{},{{},{{}}}},{{{},{{},{{}}}}}},{{{{},{{},{{}}}},{{{},{{},{{}}}}}}}} 𝐒 : S → S 𝐒(n) = n ∪ singleton(n) 𝟏 : S 𝟏 = 𝐒(𝟎) -- A set is ℕ-inductive when has zero and all its successors. -- In loose terms: Inductive(I) means (I ⊆ ℕ) Inductive : S → Type Inductive(I) = (𝟎 ∈ I) ∧ (∀ₗ(x ↦ ((x ∈ I) → (𝐒(x) ∈ I)))) field -- Set identity is extensionally determined. More specifically by its contents. set-extensionality : SetEqualityMembership(_≡ₑ_) -- `∅` is a set which is empty. -- • Allows a construction of an empty set. empty : EmptyMembership(∅) -- `pair` is the construction of a set with two elements. -- • Allows a construction of a set with two elements. pairing : PairMembership(pair) -- `filter` is the set which is the subset of a set where all elements satisfies a predicate. restricted-comprehension : FilterMembership{ℓ = ℓ}(filter) -- `⋃` is the construction of a set which contains all the elements of a collection of sets. -- • Allows a construction of a set that is the union of some sets. union : BigUnionMembership(⋃) -- `℘` is the construction of a set which contains all the subsets of a set. -- • Allows a construction of a set that is the powerset of a set. power : PowerMembership(_⊆_)(℘) -- `map` is the construction of the image of a function restricted to a set. -- • The `map`-function on a function is a function from sets to sets. replacement : MapMembership(map) -- `inductiveSet` is ℕ-inductive. -- • An inductive set is infinite, so this implies that an infinite set exists. -- • Makes it possible to construct the set of natural numbers (ℕ). infinity : Inductive(ω₀) -- A non-empty set contain sets that are disjoint to it. -- • Prevents sets from containing themselves. -- • Makes every set have an ordinal rank. regularity : ∀ₗ(s₁ ↦ (NonEmpty(s₁) → ∃(s₂ ↦ (s₂ ∈ s₁) ∧ Disjoint(s₁)(s₂)))) --choice : (∀{a} → (a ∈ A) → NonEmpty(a)) → PairwiseDisjoint(A) → ∃(b ↦ ∀{a} → (a ∈ A) → ∃!(_∈ (a ∩ b))) --choice : ∀{A B} ⦃ AB : A ⊇ B ⦄ ⦃ ne-B ⦄ → (choose(A)(B) ⦃ AB ⦄ ⦃ ne-B ⦄ ∈ B) -- The values of a choice function of a family of sets are all in the given sets. -- This states that a choice function actually chooses an element from the specified set. -- Note: A variant without the mentioning of `A` and a proof of `a ∈ A` would instead lead to the formulation of the axiom of global choice. The reason for not using global choice as an axiom is because unlike global choice, this variant makes every choice function expressable as a set. This variant should be interpreted as there being different choice functions for every family of sets. For example, when `A ≢ B`, `x ∈ A` and `x ∈ B` is satisfied, then `choose(A)(x) ≡ choose(B)(x)` should not neccesarily be satisfied while still (choose(A)(x) ∈ x) and (choose(B)(x) ∈ x). -- Examples: -- choose {ℕ,ℤ,ℚ,ℝ} ℝ ∈ ℝ -- choose {ℕ,ℤ,ℚ,ℝ} ℝ ≢ choose {ℤ,ℚ,ℝ} ℝ -- For example, it could be the case that (choose {ℕ,ℤ,ℚ,ℝ} ℝ = 0) but (choose {ℤ,ℚ,ℝ} ℝ = 1). -- Note: Without `choose-function`, `choice` would not be an actual choice function. choice : ∀{A a} → ⦃ ne : NonEmpty(a) ⦄ ⦃ aA : a ∈ A ⦄ → (choose A a ∈ a) ⦃ choose-function ⦄ : BinaryOperator(choose) 𝑇 = 𝟎 𝐹 = 𝟏 BoolSet = pair 𝑇 𝐹 instance Inductive-unaryRelator : UnaryRelator(Inductive) Inductive-unaryRelator = [∧]-unaryRelator ⦃ rel-P = binary-unaryRelatorₗ ⦄ ⦃ rel-Q = [∀]-unaryRelator ⦃ rel-P = [→]-unaryRelator ⦃ rel-P = binary-unaryRelatorₗ ⦄ ⦃ rel-Q = binary-unaryRelatorₗ ⦄ ⦄ ⦄ open import Logic.Predicate.Theorems open import Logic.Propositional.Theorems open import Structure.Relator.Properties open import Structure.Relator.Proofs renaming ([≡]-binaryRelator to [≡ₑ]-binaryRelator) instance [≡]-binaryRelator : BinaryRelator(_≡_) BinaryRelator.substitution [≡]-binaryRelator xy₁ xy₂ x₁x₂ = [↔]-to-[→] set-extensionality (BinaryRelator.substitution [≡ₑ]-binaryRelator xy₁ xy₂ ([↔]-to-[←] set-extensionality x₁x₂)) instance [⊆]-binaryRelator : BinaryRelator(_⊆_) BinaryRelator.substitution [⊆]-binaryRelator p1 p2 sub = [↔]-to-[→] ([↔]-to-[→] set-extensionality p2) ∘ sub ∘ [↔]-to-[←] ([↔]-to-[→] set-extensionality p1) instance pair-binaryOperator : BinaryOperator(pair) BinaryOperator.congruence pair-binaryOperator p1 p2 = [↔]-to-[←] set-extensionality (\{x} → [↔]-transitivity pairing ([↔]-transitivity ([∨]-map-[↔] (substitute₂ₗᵣ(_≡ₑ_) ⦃ [≡ₑ]-binaryRelator ⦄ (reflexivity(_≡ₑ_) {x}) p1) (substitute₂ₗᵣ(_≡ₑ_) ⦃ [≡ₑ]-binaryRelator ⦄ (reflexivity(_≡ₑ_) {x}) p2)) ([↔]-symmetry pairing))) instance ℘-function : Function(℘) Function.congruence ℘-function xy = [↔]-to-[←] set-extensionality \{x} → [↔]-transitivity power ([↔]-transitivity ([↔]-intro (substitute₂ᵣ(_⊆_) ⦃ [⊆]-binaryRelator ⦄ (symmetry(_≡ₑ_) xy)) (substitute₂ᵣ(_⊆_) ⦃ [⊆]-binaryRelator ⦄ xy)) ([↔]-symmetry power)) instance ⋃-function : Function(⋃) Function.congruence ⋃-function xy = [↔]-to-[←] set-extensionality \{x} → [↔]-transitivity union ([↔]-transitivity ([∃]-map-proof-[↔] ([∧]-map-[↔] ([↔]-to-[→] set-extensionality xy) [↔]-reflexivity)) ([↔]-symmetry union)) filter-function : ∀ ⦃ rel-P : UnaryRelator(P) ⦄ ⦃ rel-Q : UnaryRelator(Q) ⦄ → (∀{x} → P(x) ↔ Q(x)) → ∀{A B} → (A ≡ₑ B) → (filter P(A) ≡ₑ filter Q(B)) filter-function PQ AB = [↔]-to-[←] set-extensionality ([↔]-transitivity restricted-comprehension ([↔]-transitivity ([∧]-map-[↔] ([↔]-to-[→] set-extensionality AB) PQ) ([↔]-symmetry restricted-comprehension))) map-function : ∀{f} ⦃ func-f : Function(f) ⦄ {g} ⦃ func-g : Function(g) ⦄ → (f ⊜ g) → ∀{A B} → (A ≡ₑ B) → (map f(A) ≡ₑ map g(B)) map-function {f = f}{g = g} (intro fg) {A = A}{B = B} AB = [↔]-to-[←] set-extensionality $ \{y} → (y ∈ map f A) ⇔-[ replacement ] ∃ₛ(A)(x ↦ f(x) ≡ₑ y) ⇔-[ [∃]-map-proof-[↔] (\{x} → [∧]-map-[↔] ([↔]-to-[→] set-extensionality AB) (substitute₂ₗᵣ(_≡ₑ_) ⦃ [≡ₑ]-binaryRelator ⦄ (fg{x}) (reflexivity(_≡ₑ_)))) ] ∃ₛ(B)(x ↦ g(x) ≡ₑ y) ⇔-[ replacement ]-sym (y ∈ map g B) ⇔-end [∪]-inclusion : UnionMembership(_∪_) [∪]-inclusion {A = A}{B = B}{x = x} = (x ∈ ⋃ (pair A B)) ⇔-[ union ] ∃(y ↦ (y ∈ pair A B) ∧ (x ∈ y)) ⇔-[ [∃]-map-proof-[↔] (\{y} → (y ∈ pair A B) ∧ (x ∈ y) ⇔-[ [∧]-map-[↔] pairing [↔]-reflexivity ] ((y ≡ₑ A) ∨ (y ≡ₑ B)) ∧ (x ∈ y) ⇔-[ [∧][∨]-distributivityᵣ ] ((y ≡ₑ A) ∧ (x ∈ y)) ∨ ((y ≡ₑ B) ∧ (x ∈ y)) ⇔-end ) ] ∃(y ↦ ((y ≡ₑ A) ∧ (x ∈ y)) ∨ ((y ≡ₑ B) ∧ (x ∈ y))) ⇔-[ [∃][∨]-distributivity ] ∃(y ↦ (y ≡ₑ A) ∧ (x ∈ y)) ∨ ∃(y ↦ (y ≡ₑ B) ∧ (x ∈ y)) ⇔-[ [∨]-map-[↔] (p ⦃ rel = binary-unaryRelatorₗ ⦄) (p ⦃ rel = binary-unaryRelatorₗ ⦄) ] (x ∈ A) ∨ (x ∈ B) ⇔-end where -- TODO: Maybe move this somewhere else p : ∀{T : Type{ℓ₁}} ⦃ equiv : Equiv{ℓₑ₁}(T) ⦄ {P : T → Type{ℓ₂}} ⦃ rel : UnaryRelator(P) ⦄ {y} → ∃(x ↦ (x ≡ₑ y) ∧ P(x)) ↔ P(y) p {P = P} = [↔]-intro (py ↦ [∃]-intro _ ⦃ [∧]-intro (reflexivity(_≡ₑ_)) py ⦄) (\([∃]-intro x ⦃ [∧]-intro xy px ⦄) → substitute₁(P) xy px) BoolSet-inclusion : (x ∈ BoolSet) ↔ (x ≡ₑ 𝑇) ∨ (x ≡ₑ 𝐹) BoolSet-inclusion = pairing pair-contains-left : a ∈ pair a b pair-contains-left = [↔]-to-[←] pairing ([∨]-introₗ (reflexivity(_≡ₑ_))) pair-contains-right : b ∈ pair a b pair-contains-right = [↔]-to-[←] pairing ([∨]-introᵣ (reflexivity(_≡ₑ_))) 𝑇-in-BoolSet : 𝑇 ∈ BoolSet 𝑇-in-BoolSet = pair-contains-left 𝐹-in-BoolSet : 𝐹 ∈ BoolSet 𝐹-in-BoolSet = pair-contains-right ℘-self : (A ∈ ℘(A)) ℘-self = [↔]-to-[←] power id pair-superset : (x ∈ A) → (y ∈ A) → (pair x y ⊆ A) pair-superset pa pb p = [∨]-elim (eq ↦ substitute₂ₗ(_∈_) (symmetry(_≡ₑ_) eq) pa) (eq ↦ substitute₂ₗ(_∈_) (symmetry(_≡ₑ_) eq) pb) ([↔]-to-[→] pairing p) pair-superset-union : (a ∈ A) → (b ∈ B) → (pair a b ⊆ (A ∪ B)) pair-superset-union pa pb p = pair-superset (([↔]-to-[←] [∪]-inclusion ∘ [∨]-introₗ) pa) (([↔]-to-[←] [∪]-inclusion ∘ [∨]-introᵣ) pb) p instance postulate [≡][⊆]-sub : (_≡_) ⊆₂ (_⊆_) instance postulate [⊆]-transitivity : Transitivity(_⊆_) open import Data.Either as Either using () import Data.Tuple as Tuple open import Syntax.Transitivity open import Syntax.Implication [≡][≢]-semitransitivityₗ : (a ≡ₑ b) → (b ≢ c) → (a ≢ c) [≡][≢]-semitransitivityₗ ab nbc ac = nbc(symmetry(_≡ₑ_) ab 🝖 ac) [≡][≢]-semitransitivityᵣ : (a ≢ b) → (b ≡ₑ c) → (a ≢ c) [≡][≢]-semitransitivityᵣ nab bc ac = nab(ac 🝖 symmetry(_≡ₑ_) bc) nonEmpty-filter : NonEmpty(filter P ⦃ unaryRel ⦄ A) ↔ ∃ₛ(A) P nonEmpty-filter = [∃]-map-proof-[↔] restricted-comprehension open import Function.Proofs instance singleton-function : Function(singleton) singleton-function = [$₂]-function singleton-inclusion : SingletonMembership(singleton) singleton-inclusion {y = y}{x = x} = x ∈ pair y y ⇔-[ pairing ] (x ≡ₑ y) ∨ (x ≡ₑ y) ⇔-[ [∨]-redundancy ] x ≡ₑ y ⇔-end singleton-contains-element : a ∈ singleton a singleton-contains-element = [↔]-to-[←] singleton-inclusion (reflexivity(_≡ₑ_)) singleton-nonempty : NonEmpty(singleton x) singleton-nonempty{x = x} = [∃]-intro x ⦃ singleton-contains-element ⦄ singleton-superset : (a ∈ A) → (singleton a ⊆ A) singleton-superset pa p = substitute₂ₗ(_∈_) (symmetry(_≡ₑ_) ([↔]-to-[→] singleton-inclusion p)) pa zero-one-ineq : (𝟎 ≢ 𝟏) zero-one-ineq p = p ⇒ 𝟎 ≡ₑ 𝟏 ⇒-[ p ↦ [↔]-to-[→] set-extensionality p {𝟎} ] (𝟎 ∈ 𝟎) ↔ (𝟎 ∈ 𝟏) ⇒-[ [↔]-to-[←] ] (𝟎 ∈ 𝟎) ← (𝟎 ∈ 𝟏) ⇒-[ apply ([↔]-to-[←] [∪]-inclusion ([∨]-introᵣ ([↔]-to-[←] singleton-inclusion (reflexivity(_≡ₑ_))))) ] (𝟎 ∈ 𝟎) ⇒-[ empty ] ⊥ ⇒-end
{ "alphanum_fraction": 0.5930849232, "avg_line_length": 45.9462025316, "ext": "agda", "hexsha": "b8bce261464b014e254b315464a40c731854c0ee", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Sets/ZFC.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Sets/ZFC.agda", "max_line_length": 581, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Sets/ZFC.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 5460, "size": 14519 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of general interleavings ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Relation.Ternary.Interleaving.Properties where open import Data.Nat open import Data.Nat.Properties using (+-suc) open import Data.List.Base hiding (_∷ʳ_) open import Data.List.Properties using (reverse-involutive) open import Data.List.Relation.Ternary.Interleaving hiding (map) open import Function open import Relation.Binary open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; cong; module ≡-Reasoning) open ≡-Reasoning ------------------------------------------------------------------------ -- length module _ {a b c l r} {A : Set a} {B : Set b} {C : Set c} {L : REL A C l} {R : REL B C r} where interleave-length : ∀ {as l r} → Interleaving L R l r as → length as ≡ length l + length r interleave-length [] = refl interleave-length (l ∷ˡ sp) = cong suc (interleave-length sp) interleave-length {as} {l} {r ∷ rs} (_ ∷ʳ sp) = begin length as ≡⟨ cong suc (interleave-length sp) ⟩ suc (length l + length rs) ≡⟨ sym $ +-suc _ _ ⟩ length l + length (r ∷ rs) ∎ ------------------------------------------------------------------------ -- _++_ ++⁺ : ∀ {as₁ as₂ l₁ l₂ r₁ r₂} → Interleaving L R as₁ l₁ r₁ → Interleaving L R as₂ l₂ r₂ → Interleaving L R (as₁ ++ as₂) (l₁ ++ l₂) (r₁ ++ r₂) ++⁺ [] sp₂ = sp₂ ++⁺ (l ∷ˡ sp₁) sp₂ = l ∷ˡ (++⁺ sp₁ sp₂) ++⁺ (r ∷ʳ sp₁) sp₂ = r ∷ʳ (++⁺ sp₁ sp₂) ++-disjoint : ∀ {as₁ as₂ l₁ r₂} → Interleaving L R l₁ [] as₁ → Interleaving L R [] r₂ as₂ → Interleaving L R l₁ r₂ (as₁ ++ as₂) ++-disjoint [] sp₂ = sp₂ ++-disjoint (l ∷ˡ sp₁) sp₂ = l ∷ˡ ++-disjoint sp₁ sp₂ ------------------------------------------------------------------------ -- map module _ {a b c d e f l r} {A : Set a} {B : Set b} {C : Set c} {D : Set d} {E : Set e} {F : Set f} {L : REL A C l} {R : REL B C r} (f : E → A) (g : F → B) (h : D → C) where map⁺ : ∀ {as l r} → Interleaving (λ x z → L (f x) (h z)) (λ y z → R (g y) (h z)) l r as → Interleaving L R (map f l) (map g r) (map h as) map⁺ [] = [] map⁺ (l ∷ˡ sp) = l ∷ˡ map⁺ sp map⁺ (r ∷ʳ sp) = r ∷ʳ map⁺ sp map⁻ : ∀ {as l r} → Interleaving L R (map f l) (map g r) (map h as) → Interleaving (λ x z → L (f x) (h z)) (λ y z → R (g y) (h z)) l r as map⁻ {[]} {[]} {[]} [] = [] map⁻ {_ ∷ _} {[]} {_ ∷ _} (r ∷ʳ sp) = r ∷ʳ map⁻ sp map⁻ {_ ∷ _} {_ ∷ _} {[]} (l ∷ˡ sp) = l ∷ˡ map⁻ sp map⁻ {_ ∷ _} {_ ∷ _} {_ ∷ _} (l ∷ˡ sp) = l ∷ˡ map⁻ sp map⁻ {_ ∷ _} {_ ∷ _} {_ ∷ _} (r ∷ʳ sp) = r ∷ʳ map⁻ sp -- impossible cases needed until 2.6.0 map⁻ {[]} {_} {_ ∷ _} () map⁻ {[]} {_ ∷ _} {_} () map⁻ {_ ∷ _} {[]} {[]} () ------------------------------------------------------------------------ -- reverse module _ {a b c l r} {A : Set a} {B : Set b} {C : Set c} {L : REL A C l} {R : REL B C r} where reverseAcc⁺ : ∀ {as₁ as₂ l₁ l₂ r₁ r₂} → Interleaving L R l₁ r₁ as₁ → Interleaving L R l₂ r₂ as₂ → Interleaving L R (reverseAcc l₁ l₂) (reverseAcc r₁ r₂) (reverseAcc as₁ as₂) reverseAcc⁺ sp₁ [] = sp₁ reverseAcc⁺ sp₁ (l ∷ˡ sp₂) = reverseAcc⁺ (l ∷ˡ sp₁) sp₂ reverseAcc⁺ sp₁ (r ∷ʳ sp₂) = reverseAcc⁺ (r ∷ʳ sp₁) sp₂ reverse⁺ : ∀ {as l r} → Interleaving L R l r as → Interleaving L R (reverse l) (reverse r) (reverse as) reverse⁺ = reverseAcc⁺ [] reverse⁻ : ∀ {as l r} → Interleaving L R (reverse l) (reverse r) (reverse as) → Interleaving L R l r as reverse⁻ {as} {l} {r} sp with reverse⁺ sp ... | sp′ rewrite reverse-involutive as | reverse-involutive l | reverse-involutive r = sp′
{ "alphanum_fraction": 0.4586206897, "avg_line_length": 37.5925925926, "ext": "agda", "hexsha": "ad30a61510cc057c6092345f220267d2f802d706", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Ternary/Interleaving/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Ternary/Interleaving/Properties.agda", "max_line_length": 91, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Ternary/Interleaving/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1465, "size": 4060 }
{-# OPTIONS --cubical --safe #-} module Lens.Definition where open import Prelude record LensPart (A : Type a) (B : Type b) : Type (a ℓ⊔ b) where constructor lens-part eta-equality field get : B set : B → A open LensPart public map-lens-part : LensPart A C → (A → B) → LensPart B C get (map-lens-part xs f) = get xs set (map-lens-part xs f) x = f (set xs x) record LensLaws {A : Type a} {B : Type b} (into : A → LensPart A B) : Type (a ℓ⊔ b) where no-eta-equality field get-set : ∀ s v → into (into s .set v) .get ≡ v set-get : ∀ s → into s .set (into s .get) ≡ s set-set : ∀ s v₁ v₂ → into (into s .set v₁) .set v₂ ≡ into s .set v₂ open LensLaws public Lens : Type a → Type b → Type (a ℓ⊔ b) Lens A B = Σ (A → LensPart A B) LensLaws
{ "alphanum_fraction": 0.6038961039, "avg_line_length": 26.5517241379, "ext": "agda", "hexsha": "289ce81dde5cc4e481e0eb94e5deddb8be1dd091", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Lens/Definition.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Lens/Definition.agda", "max_line_length": 89, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Lens/Definition.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 295, "size": 770 }
{-# OPTIONS --without-K --safe #-} module Categories.Category.Instance.Posets where -- The category of partially ordered sets and order-preserving maps. open import Level open import Relation.Binary using (Poset; IsEquivalence; _Preserves_⟶_) open import Relation.Binary.Morphism using (IsOrderHomomorphism) import Relation.Binary.Morphism.Construct.Identity as Id import Relation.Binary.Morphism.Construct.Composition as Comp open import Categories.Category open Poset renaming (_≈_ to ₍_₎_≈_; _≤_ to ₍_₎_≤_) private variable a₁ a₂ a₃ b₁ b₂ b₃ : Level A B C : Poset a₁ a₂ a₃ record _⇒-Poset_ (A : Poset a₁ a₂ a₃) (B : Poset b₁ b₂ b₃) : Set (a₁ ⊔ a₂ ⊔ a₃ ⊔ b₁ ⊔ b₂ ⊔ b₃) where field fun : Carrier A → Carrier B isOrderHomomorphism : IsOrderHomomorphism ₍ A ₎_≈_ ₍ B ₎_≈_ ₍ A ₎_≤_ ₍ B ₎_≤_ fun open IsOrderHomomorphism isOrderHomomorphism public renaming (mono to monotone) open _⇒-Poset_ ⇒-Poset-id : A ⇒-Poset A ⇒-Poset-id = record { isOrderHomomorphism = Id.isOrderHomomorphism _ _ } ⇒-Poset-∘ : B ⇒-Poset C → A ⇒-Poset B → A ⇒-Poset C ⇒-Poset-∘ B⇒C A⇒B = record { isOrderHomomorphism = Comp.isOrderHomomorphism (isOrderHomomorphism A⇒B) (isOrderHomomorphism B⇒C) } module _ {A : Poset a₁ a₂ a₃} {B : Poset b₁ b₂ b₃} where infix 4 _≗_ -- Order morphisms preserve equality. mono⇒cong : ∀ {f} → f Preserves ₍ A ₎_≤_ ⟶ ₍ B ₎_≤_ → f Preserves ₍ A ₎_≈_ ⟶ ₍ B ₎_≈_ mono⇒cong {f} monotone x≈y = antisym B (monotone (reflexive A x≈y)) (monotone (reflexive A (Eq.sym A x≈y))) ⇒-Poset-helper : ∀ f → f Preserves ₍ A ₎_≤_ ⟶ ₍ B ₎_≤_ → A ⇒-Poset B ⇒-Poset-helper f mono = record { isOrderHomomorphism = record { cong = mono⇒cong mono ; mono = mono } } -- Pointwise equality (on order preserving maps). _≗_ : (f g : A ⇒-Poset B) → Set (a₁ ⊔ b₂) f ≗ g = ∀ {x} → ₍ B ₎ fun f x ≈ fun g x ≗-isEquivalence : IsEquivalence _≗_ ≗-isEquivalence = record { refl = Eq.refl B ; sym = λ f≈g → Eq.sym B f≈g ; trans = λ f≈g g≈h → Eq.trans B f≈g g≈h } module ≗ = IsEquivalence ≗-isEquivalence -- The category of posets and order-preserving maps. Posets : ∀ c ℓ₁ ℓ₂ → Category (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) (c ⊔ ℓ₁ ⊔ ℓ₂) (c ⊔ ℓ₁) Posets c ℓ₁ ℓ₂ = record { Obj = Poset c ℓ₁ ℓ₂ ; _⇒_ = _⇒-Poset_ ; _≈_ = _≗_ ; id = ⇒-Poset-id ; _∘_ = ⇒-Poset-∘ ; assoc = λ {_ _ _ D} → Eq.refl D ; sym-assoc = λ {_ _ _ D} → Eq.refl D ; identityˡ = λ {_ B} → Eq.refl B ; identityʳ = λ {_ B} → Eq.refl B ; identity² = λ {A} → Eq.refl A ; equiv = ≗-isEquivalence ; ∘-resp-≈ = λ {_ _ C _ h} f≈h g≈i → Eq.trans C f≈h (cong h g≈i) }
{ "alphanum_fraction": 0.6029574861, "avg_line_length": 30.0555555556, "ext": "agda", "hexsha": "7da18df9e43ed7c0419bfbdf0aea4c5412d42e1b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d07746023503cc8f49670e309a6170dc4b404b95", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andrejbauer/agda-categories", "max_forks_repo_path": "src/Categories/Category/Instance/Posets.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d07746023503cc8f49670e309a6170dc4b404b95", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andrejbauer/agda-categories", "max_issues_repo_path": "src/Categories/Category/Instance/Posets.agda", "max_line_length": 102, "max_stars_count": 1, "max_stars_repo_head_hexsha": "3ef03f73bce18f1efba2890df9ddf3d76ed2de32", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "FintanH/agda-categories", "max_stars_repo_path": "src/Categories/Category/Instance/Posets.agda", "max_stars_repo_stars_event_max_datetime": "2021-04-18T18:21:47.000Z", "max_stars_repo_stars_event_min_datetime": "2021-04-18T18:21:47.000Z", "num_tokens": 1176, "size": 2705 }
{- --- 3. Natural numbers --- -} {- 3.1 Definition -} data ℕ : Set where zero : ℕ suc : ℕ → ℕ {- 3.2 Addition -} _+_ : ℕ → ℕ → ℕ zero + n = n suc m + n = suc (m + n) {- 3.3 Multiplication -} _*_ : ℕ → ℕ → ℕ zero * b = zero suc a * b = b + (a * b) {- 3.4 Equality is a congruence for successor -} data _≡_ {A : Set} (x : A) : A → Set where refl : x ≡ x infix 4 _≡_ suc-≡ : {m n : ℕ} → (m ≡ n) → (suc m ≡ suc n) suc-≡ refl = refl {- 3.5 Some properties -} zeroL : (n : ℕ) → zero + n ≡ n zeroL n = refl zeroR : (n : ℕ) → n + zero ≡ n zeroR zero = refl zeroR (suc n) = suc-≡ (zeroR n) +-assoc : (m n p : ℕ) → ((m + n) + p) ≡ (m + (n + p)) +-assoc zero n p = refl +-assoc (suc m) n p = suc-≡ (+-assoc m n p) one : ℕ one = suc zero +-assoc1 : (m n : ℕ) → ((m + n) + one) ≡ (m + (n + one)) +-assoc1 m n = +-assoc m n one {- Falsity type, needed for the next property -} data ⊥ : Set where {- ¬ : Set → Set ¬ A = A → ⊥ -} open import Relation.Nullary suc-notzero : (n : ℕ) → ¬ (zero ≡ suc n) suc-notzero n () {- 3.6 The recurrence principle -} rec : (P : ℕ → Set) → (P zero) → ((n : ℕ) → (P n) → (P (suc n))) → ((n : ℕ) → P n) rec p z h zero = z rec p z h (suc n) = h n (rec p z h n) {- 3.7 Properties of equality -} sym : {A : Set} {x y : A} → x ≡ y → y ≡ x sym refl = refl trans : {A : Set} {x y z : A} → x ≡ y → y ≡ z → x ≡ z trans refl refl = refl cong : {A B : Set} {x y : A} (f : A → B) → x ≡ y → f x ≡ f y cong f refl = refl p : {m n : ℕ} → (e : m ≡ n) → suc-≡ e ≡ cong suc e p refl = refl subst : {A : Set} (P : A → Set) → {x y : A} → x ≡ y → P x → P y subst P refl p = p {- 3.8 Commutativity of addition -} +-suc : (m n : ℕ) → m + suc n ≡ suc (m + n) +-suc zero n = refl +-suc (suc m) n = suc-≡ (+-suc m n) +-commut : (m n : ℕ) → m + n ≡ n + m +-commut m zero = zeroR m +-commut m (suc n) = trans (+-suc m n) (suc-≡ (+-commut m n)) {- 3.9 Injectivity of successor -} suc-inj : {m n : ℕ} → suc m ≡ suc n → m ≡ n suc-inj refl = refl {- 3.10 Decidability of equality -} open import Data.Sum renaming (_⊎_ to _∨_ ; inj₁ to left ; inj₂ to right) ℕ-≡-dec : (m n : ℕ) → (m ≡ n) ∨ ¬ (m ≡ n) ℕ-≡-dec zero zero = left refl ℕ-≡-dec zero (suc n) = right (suc-notzero n) ℕ-≡-dec (suc m) zero = right λ () ℕ-≡-dec (suc m) (suc n) with ℕ-≡-dec m n ℕ-≡-dec (suc m) (suc n) | left e = left (suc-≡ e) ℕ-≡-dec (suc m) (suc n) | right e' = right λ x → e' (suc-inj x) {- 3.11 Recurrence for equality -} J : (A : Set) → (P : (x : A) → (y : A) → (p : x ≡ y) → Set) → (r : (x : A) → P x x refl) → (x : A) → (y : A) → (p : x ≡ y) → P x y p J A P r x .x refl = r x
{ "alphanum_fraction": 0.4918541505, "avg_line_length": 24.320754717, "ext": "agda", "hexsha": "2c99c243deac47fe056feaf393eece417915a64b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9a0d4a3f97103550a67e5e9ecbc8322bf0a8be23", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "erwinkn/program-eq-proof", "max_forks_repo_path": "TD6/Nat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9a0d4a3f97103550a67e5e9ecbc8322bf0a8be23", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "erwinkn/program-eq-proof", "max_issues_repo_path": "TD6/Nat.agda", "max_line_length": 132, "max_stars_count": null, "max_stars_repo_head_hexsha": "9a0d4a3f97103550a67e5e9ecbc8322bf0a8be23", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "erwinkn/program-eq-proof", "max_stars_repo_path": "TD6/Nat.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1194, "size": 2578 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Booleans ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Bool where open import Relation.Nullary open import Relation.Binary open import Relation.Binary.PropositionalEquality as PropEq using (_≡_; refl) ------------------------------------------------------------------------ -- The boolean type and some operations open import Data.Bool.Base public ------------------------------------------------------------------------ -- Publicly re-export queries open import Data.Bool.Properties public using (_≟_; _≤?_; _<?_) ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 1.1 decSetoid = Data.Bool.Properties.≡-decSetoid {-# WARNING_ON_USAGE decSetoid "Warning: decSetoid was deprecated in v1.1. Please use ≡-decSetoid from Data.Bool.Properties instead." #-}
{ "alphanum_fraction": 0.4648370497, "avg_line_length": 28.4390243902, "ext": "agda", "hexsha": "0c0c78b8bcafc13d1cdc954503d7a528c1a02b94", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/Bool.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/Bool.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/Bool.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 197, "size": 1166 }
{-# OPTIONS --copatterns #-} module TestsInstances where open import Function open import Data.Product open import Relation.Nullary using (Dec; yes; no; ¬_) open import Relation.Binary.PropositionalEquality as P open ≡-Reasoning open import Data.Empty renaming (⊥ to Empty) open import Data.Unit renaming (⊤ to One) hiding (_≟_) open import Data.Bool hiding (_≟_) open import Data.Bool.Properties using (¬-not; T-not-≡) open import Data.Nat hiding (_⊔_) open import Isomorphisms open import Tests -- | Functions are testable if their codomain is FunTestable : {A B : Set} → Testable B → Testable (A → B) FunTestable {A} {B} TB = record { index = A ; parts = λ _ → B ; kind = coind ; obs = λ f → record { app = f } ; partsTestable = λ _ → TB } FunIsoTestable : {A B : Set} → IsoTestable B → IsoTestable (A → B) FunIsoTestable T = record { testable = FunTestable (testable T) ; obsIso = (record { inv = app ; isLeftInv = λ a → refl ; isRightInv = λ b → refl }) } -- | We get extensionality for functions under observational equivalence. ext : {A B : Set} → (T : Testable B) → (f : A → B) → (g : A → B) → ((a : A) → f a ≃⟨ T ⟩ g a) → f ≃⟨ FunTestable T ⟩ g ext {A} {B} TB f g p = record { eqProof = q } where q : (φ : Test (FunTestable TB)) → f ⊨ φ ≡ g ⊨ φ q ⊤ = refl q ⊥ = refl q (nonTriv (i , ψ)) = eqProof (p i) ψ -- | Make unit type testable ⊤-testable : Testable One index ⊤-testable = One parts ⊤-testable = λ _ → One kind ⊤-testable = coind obs ⊤-testable = λ { tt → record { app = λ x → x } } partsTestable ⊤-testable = λ i → ⊤-testable ⊤-IsoTestable : IsoTestable One ⊤-IsoTestable = record { testable = ⊤-testable ; obsIso = record { inv = λ f → app f tt ; isLeftInv = λ a → refl ; isRightInv = λ b → refl } } -- | Obs. equiv. is a congruence on ⊤. ≃-cong-⊤ : {A : Set} → {T : Testable A} → {x y : One} → (f : One → A) → x ≃⟨ ⊤-testable ⟩ y → f x ≃⟨ T ⟩ f y ≃-cong-⊤ f p = record { eqProof = λ φ → refl } Parts-ℕ : Bool → Set Parts-ℕ true = One Parts-ℕ false = ℕ rep-ℕ : ℕ → Σ Bool Parts-ℕ rep-ℕ ℕ.zero = (true , tt) rep-ℕ (ℕ.suc n) = (false , n) unrep-ℕ : Σ Bool Parts-ℕ → ℕ unrep-ℕ (true , tt) = ℕ.zero unrep-ℕ (false , n) = ℕ.suc n -- | Make naturals testable ℕ-testable : Testable ℕ index ℕ-testable = Bool parts ℕ-testable = Parts-ℕ kind ℕ-testable = ind obs ℕ-testable = rep-ℕ partsTestable ℕ-testable = λ { true → ⊤-testable ; false → ℕ-testable } ℕ-IsoTestable : IsoTestable ℕ ℕ-IsoTestable = record { testable = ℕ-testable ; obsIso = record { inv = unrep-ℕ ; isLeftInv = li ; isRightInv = ri } } where li : (n : ℕ) → unrep-ℕ (rep-ℕ n) ≡ n li ℕ.zero = refl li (ℕ.suc a) = refl ri : (x : Σ Bool Parts-ℕ) → rep-ℕ (unrep-ℕ x) ≡ x ri (true , tt) = refl ri (false , n) = refl ¬zero→suc : (n : ℕ) → n ≢ zero → ∃ (λ m → n ≡ suc m) ¬zero→suc n p with n ≟ zero ¬zero→suc zero p | yes n=z = ⊥-elim (p n=z) ¬zero→suc (suc m) p | yes sm=z = ⊥-elim (p sm=z) ¬zero→suc zero p | no ¬n=z = ⊥-elim (p refl) ¬zero→suc (suc n) p | no ¬n=z = n , refl lem-tt≢ff : (a : Bool) → a ≡ true → a ≢ false lem-tt≢ff true _ () lem-tt≢ff false () _ -- | If a number is observationally equivalent to 0, then it is -- actually 0. lem-≃→≡-ℕ-zero : {n : ℕ} → n ≃⟨ ℕ-testable ⟩ zero → n ≡ zero lem-≃→≡-ℕ-zero {n} p = q where -- Test to distinguish zero ψs : SubTests ℕ-testable ind ψs = record { app = λ { true → ⊤ ; false → ⊥ } } φ : Test ℕ-testable φ = nonTriv ψs -- n fulfils test, ... u : n ⊨ φ ≡ true u = eqProof p φ -- ... hence is 0. q : n ≡ zero q with n ≟ zero q | yes n=z = n=z q | no ¬n=z = ⊥-elim (lem (¬zero→suc n ¬n=z)) where -- If n ≡ suc n, then we get a contradiction to u lem : (∃ (λ m → n ≡ suc m)) → Empty lem (m , q) with (n ≟ suc m) ... | yes n=sm = lem-tt≢ff (n ⊨ φ) u contradict where contradict : n ⊨ φ ≡ false contradict = begin n ⊨ φ ≡⟨ refl ⟩ cotuple (λ i y → y ⊨ app ψs i) (rep-ℕ n) ≡⟨ cong (λ u → cotuple (λ i y → y ⊨ app ψs i) (rep-ℕ u)) n=sm ⟩ cotuple (λ i y → y ⊨ app ψs i) (false , n) ≡⟨ refl ⟩ false ∎ ... | no ¬n=sm = ¬n=sm q -- | If a number is observationally equivalent to a successor, then it is -- actually a succesor. lem-≃→≡-ℕ-suc : (n m : ℕ) → n ≃⟨ ℕ-testable ⟩ suc m → ∃ λ n' → (n ≡ suc n') × (n' ≃⟨ ℕ-testable ⟩ m) lem-≃→≡-ℕ-suc = {!!} -- | Observational equivalence for natural numbers implies equivalence. ≃→≡-ℕ : {n m : ℕ} → n ≃⟨ ℕ-testable ⟩ m → n ≡ m ≃→≡-ℕ {n} {zero} p = lem-≃→≡-ℕ-zero p ≃→≡-ℕ {n} {(suc m)} p with lem-≃→≡-ℕ-suc n m p ... | n' , q , p' = begin n ≡⟨ q ⟩ suc n' ≡⟨ cong suc (≃→≡-ℕ {n'} {m} p') ⟩ suc m ∎ -- | Obs. equiv. is a congruence for natural numbers. ≃-cong-ℕ : {A : Set} → {T : Testable A} → {x y : ℕ} → (f : ℕ → A) → x ≃⟨ ℕ-testable ⟩ y → f x ≃⟨ T ⟩ f y ≃-cong-ℕ {A} {T} {x} {y} f p = record { eqProof = q } where q : (φ : Test T) → f x ⊨ φ ≡ f y ⊨ φ q φ = cong (λ u → f u ⊨ φ) (≃→≡-ℕ p)
{ "alphanum_fraction": 0.52, "avg_line_length": 27.5773195876, "ext": "agda", "hexsha": "103e0eb49ecfce74bcf33771b142bdb923df86ea", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hbasold/Sandbox", "max_forks_repo_path": "OTTTests/TestsInstances.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hbasold/Sandbox", "max_issues_repo_path": "OTTTests/TestsInstances.agda", "max_line_length": 77, "max_stars_count": null, "max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hbasold/Sandbox", "max_stars_repo_path": "OTTTests/TestsInstances.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2176, "size": 5350 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Decidable vector equality over propositional equality ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary open import Relation.Binary.PropositionalEquality module Data.Vec.Relation.Binary.Equality.DecPropositional {a} {A : Set a} (_≟_ : Decidable {A = A} _≡_) where import Data.Vec.Relation.Binary.Equality.Propositional as PEq import Data.Vec.Relation.Binary.Equality.DecSetoid as DSEq ------------------------------------------------------------------------ -- Publicly re-export everything from decSetoid and propositional -- equality open PEq public open DSEq (decSetoid _≟_) public using (_≋?_; ≋-isDecEquivalence; ≋-decSetoid)
{ "alphanum_fraction": 0.5640718563, "avg_line_length": 33.4, "ext": "agda", "hexsha": "77d67d040f401a165bf2ec383851cc58487ceb91", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Relation/Binary/Equality/DecPropositional.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Relation/Binary/Equality/DecPropositional.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Relation/Binary/Equality/DecPropositional.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 179, "size": 835 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Numbers.Naturals.Semiring open import Numbers.Integers.Definition module Numbers.Integers.Multiplication where infix 25 _*Z_ _*Z_ : ℤ → ℤ → ℤ nonneg x *Z nonneg y = nonneg (x *N y) nonneg zero *Z negSucc y = nonneg zero nonneg (succ x) *Z negSucc y = negSucc ((succ x) *N y +N x) negSucc x *Z nonneg zero = nonneg zero negSucc x *Z nonneg (succ y) = negSucc ((succ y) *N x +N y) negSucc x *Z negSucc y = nonneg ((succ x) *N (succ y)) *ZInherits : (a b : ℕ) → nonneg (a *N b) ≡ (nonneg a) *Z (nonneg b) *ZInherits a b = refl
{ "alphanum_fraction": 0.6768982229, "avg_line_length": 30.95, "ext": "agda", "hexsha": "6f0ebd50db4b4f813d6c85eaaf8ff489a9775e3e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Numbers/Integers/Multiplication.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Numbers/Integers/Multiplication.agda", "max_line_length": 67, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Numbers/Integers/Multiplication.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 231, "size": 619 }
{-# OPTIONS --cubical --safe #-} open import Prelude open import Relation.Binary module Relation.Binary.Construct.Decision {a ℓ₁ ℓ₂} {A : Type a} (ord : TotalOrder A ℓ₁ ℓ₂) where open TotalOrder ord renaming (refl to ≤-refl) _<′_ : A → A → Type x <′ y = T (does (x <? y)) _≤′_ : A → A → Type x ≤′ y = T (not (does (y <? x))) witness-< : ∀ {x y} → x <′ y → x < y witness-< {x} {y} p with x <? y witness-< {x} {y} p | yes q = q witness-≤ : ∀ {x y} → x ≤′ y → x ≤ y witness-≤ {x} {y} p with y <? x witness-≤ {x} {y} p | no q = ≮⇒≥ q compute-< : ∀ {x y} → x < y → x <′ y compute-< {x} {y} p with x <? y compute-< {x} {y} p | yes q = tt compute-< {x} {y} p | no ¬p = ⊥-elim (¬p p) compute-≤ : ∀ {x y} → x ≤ y → x ≤′ y compute-≤ {x} {y} ¬p with y <? x compute-≤ {x} {y} ¬p | yes p = ⊥-elim (<⇒≱ p ¬p) compute-≤ {x} {y} ¬p | no _ = tt ≰⇒>′ : ∀ {x y} → ¬ (x ≤′ y) → y <′ x ≰⇒>′ {x} {y} p with y <? x ≰⇒>′ {x} {y} p | no _ = p tt ≰⇒>′ {x} {y} p | yes _ = tt ≮⇒≥′ : ∀ {x y} → ¬ (x <′ y) → y ≤′ x ≮⇒≥′ {x} {y} p with x <? y ≮⇒≥′ {x} {y} p | no _ = tt ≮⇒≥′ {x} {y} p | yes _ = p tt dec-ord : TotalOrder A ℓzero ℓzero StrictPreorder._<_ (StrictPartialOrder.strictPreorder (TotalOrder.strictPartialOrder dec-ord)) = _<′_ StrictPreorder.trans (StrictPartialOrder.strictPreorder (TotalOrder.strictPartialOrder dec-ord)) p q = compute-< (<-trans (witness-< p) (witness-< q)) StrictPreorder.irrefl (StrictPartialOrder.strictPreorder (TotalOrder.strictPartialOrder dec-ord)) p = irrefl (witness-< p) StrictPartialOrder.conn (TotalOrder.strictPartialOrder dec-ord) p q = conn (p ∘ compute-<) (q ∘ compute-<) Preorder._≤_ (PartialOrder.preorder (TotalOrder.partialOrder dec-ord)) = _≤′_ Preorder.refl (PartialOrder.preorder (TotalOrder.partialOrder dec-ord)) = compute-≤ ≤-refl PartialOrder.antisym (TotalOrder.partialOrder dec-ord) p q = antisym (witness-≤ p) (witness-≤ q) Preorder.trans (PartialOrder.preorder (TotalOrder.partialOrder dec-ord)) p q = compute-≤ (≤-trans (witness-≤ p) (witness-≤ q)) TotalOrder._<?_ dec-ord x y = iff-dec (compute-< iff witness-<) (x <? y) TotalOrder.≰⇒> dec-ord = ≰⇒>′ TotalOrder.≮⇒≥ dec-ord = ≮⇒≥′
{ "alphanum_fraction": 0.5877684407, "avg_line_length": 35.1147540984, "ext": "agda", "hexsha": "c23babad83f885446f02442818983667a0bf97dc", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Relation/Binary/Construct/Decision.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Relation/Binary/Construct/Decision.agda", "max_line_length": 151, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Relation/Binary/Construct/Decision.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 942, "size": 2142 }
{-# OPTIONS --without-K #-} open import HoTT open import cohomology.Exactness open import cohomology.FunctionOver {- Splitting Lemma - Left Split Assume an exact sequence: φ ψ G → H → K → 0 where H is abelian. If φ has a left inverse χ, then H == G × K. Over this path φ becomes the natural injection and ψ the natural projection. The only non-private terms are [iso], [φ-over-iso], and [ψ-over-iso]. -} module cohomology.SplitExactLeft {i} {G H K L : Group i} (H-abelian : is-abelian H) (φ : G →ᴳ H) (ψ : H →ᴳ K) where private module G = Group G module H = Group H module K = Group K module φ = GroupHom φ module ψ = GroupHom ψ module SplitExactLeft (ex : is-exact-seq (G ⟨ φ ⟩→ H ⟨ ψ ⟩→ K ⟨ cst-hom ⟩→ L ⊣|)) (χ : H →ᴳ G) (χ-linv : (g : G.El) → GroupHom.f χ (φ.f g) == g) where private module χ = GroupHom χ {- H == Im φ ×G Ker χ -} im-part : H →ᴳ Im φ im-part = im-in-hom φ ∘ᴳ χ im-part-imφ : (h : H.El) (s : Trunc -1 (Σ G.El (λ g → φ.f g == h))) → GroupHom.f im-part h == (h , s) im-part-imφ h s = pair= (Trunc-rec (Group.El-level H _ _) (λ {(g , p) → φ.f (χ.f h) =⟨ ap (φ.f ∘ χ.f) (! p) ⟩ φ.f (χ.f (φ.f g)) =⟨ ap φ.f (χ-linv g) ⟩ φ.f g =⟨ p ⟩ h ∎}) s) (prop-has-all-paths-↓ Trunc-level) im-part-kerχ : (h : H.El) (p : χ.f h == G.ident) → GroupHom.f im-part h == Group.ident (Im φ) im-part-kerχ h p = pair= (ap φ.f p ∙ φ.pres-ident) (prop-has-all-paths-↓ Trunc-level) ker-part : H →ᴳ Ker χ ker-part = ker-hom χ (comp-hom H-abelian (idhom H) (inv-hom H H-abelian ∘ᴳ (φ ∘ᴳ χ))) (λ h → χ.f (H.comp h (H.inv (φ.f (χ.f h)))) =⟨ χ.pres-comp h (H.inv (φ.f (χ.f h))) ⟩ G.comp (χ.f h) (χ.f (H.inv (φ.f (χ.f h)))) =⟨ ! (φ.pres-inv (χ.f h)) |in-ctx (λ w → G.comp (χ.f h) (χ.f w)) ⟩ G.comp (χ.f h) (χ.f (φ.f (G.inv (χ.f h)))) =⟨ χ-linv (G.inv (χ.f h)) |in-ctx (λ w → G.comp (χ.f h) w) ⟩ G.comp (χ.f h) (G.inv (χ.f h)) =⟨ G.invr (χ.f h) ⟩ G.ident ∎) ker-part-imφ : (h : H.El) → Trunc -1 (Σ G.El (λ g → φ.f g == h)) → GroupHom.f ker-part h == Group.ident (Ker χ) ker-part-imφ h = Trunc-rec (Group.El-level (Ker χ) _ _) $ λ {(g , p) → pair= (H.comp h (H.inv (φ.f (χ.f h))) =⟨ ! p |in-ctx (λ w → H.comp w (H.inv (φ.f (χ.f w)))) ⟩ H.comp (φ.f g) (H.inv (φ.f (χ.f (φ.f g)))) =⟨ χ-linv g |in-ctx (λ w → H.comp (φ.f g) (H.inv (φ.f w))) ⟩ H.comp (φ.f g) (H.inv (φ.f g)) =⟨ H.invr (φ.f g) ⟩ H.ident ∎) (prop-has-all-paths-↓ (Group.El-level G _ _))} ker-part-kerχ : (h : H.El) (p : χ.f h == G.ident) → GroupHom.f ker-part h == (h , p) ker-part-kerχ h p = pair= (H.comp h (H.inv (φ.f (χ.f h))) =⟨ p |in-ctx (λ w → H.comp h (H.inv (φ.f w))) ⟩ H.comp h (H.inv (φ.f G.ident)) =⟨ φ.pres-ident |in-ctx (λ w → H.comp h (H.inv w)) ⟩ H.comp h (H.inv H.ident) =⟨ group-inv-ident H |in-ctx H.comp h ⟩ H.comp h H.ident =⟨ H.unitr h ⟩ h ∎) (prop-has-all-paths-↓ (Group.El-level G _ _)) decomp : H →ᴳ Im φ ×ᴳ Ker χ decomp = ×ᴳ-hom-in im-part ker-part decomp-is-equiv : is-equiv (GroupHom.f decomp) decomp-is-equiv = is-eq _ dinv decomp-dinv dinv-decomp where dinv : Group.El (Im φ ×ᴳ Ker χ) → H.El dinv ((h₁ , _) , (h₂ , _)) = H.comp h₁ h₂ decomp-dinv : ∀ s → GroupHom.f decomp (dinv s) == s decomp-dinv ((h₁ , im) , (h₂ , kr)) = pair×= (GroupHom.f im-part (H.comp h₁ h₂) =⟨ GroupHom.pres-comp im-part h₁ h₂ ⟩ Group.comp (Im φ) (GroupHom.f im-part h₁) (GroupHom.f im-part h₂) =⟨ im-part-imφ h₁ im |in-ctx (λ w → Group.comp (Im φ) w (GroupHom.f im-part h₂)) ⟩ Group.comp (Im φ) (h₁ , im) (GroupHom.f im-part h₂) =⟨ im-part-kerχ h₂ kr |in-ctx (λ w → Group.comp (Im φ) (h₁ , im) w) ⟩ Group.comp (Im φ) (h₁ , im) (Group.ident (Im φ)) =⟨ Group.unitr (Im φ) (h₁ , im) ⟩ (h₁ , im) ∎) (GroupHom.f ker-part (H.comp h₁ h₂) =⟨ GroupHom.pres-comp ker-part h₁ h₂ ⟩ Group.comp (Ker χ) (GroupHom.f ker-part h₁) (GroupHom.f ker-part h₂) =⟨ ker-part-imφ h₁ im |in-ctx (λ w → Group.comp (Ker χ) w (GroupHom.f ker-part h₂)) ⟩ Group.comp (Ker χ) (Group.ident (Ker χ)) (GroupHom.f ker-part h₂) =⟨ ker-part-kerχ h₂ kr |in-ctx (λ w → Group.comp (Ker χ) (Group.ident (Ker χ)) w) ⟩ Group.comp (Ker χ) (Group.ident (Ker χ)) (h₂ , kr) =⟨ Group.unitl (Ker χ) (h₂ , kr) ⟩ (h₂ , kr) ∎) dinv-decomp : ∀ h → dinv (GroupHom.f decomp h) == h dinv-decomp h = H.comp (φ.f (χ.f h)) (H.comp h (H.inv (φ.f (χ.f h)))) =⟨ H-abelian (φ.f (χ.f h)) (H.comp h (H.inv (φ.f (χ.f h)))) ⟩ H.comp (H.comp h (H.inv (φ.f (χ.f h)))) (φ.f (χ.f h)) =⟨ H.assoc h (H.inv (φ.f (χ.f h))) (φ.f (χ.f h)) ⟩ H.comp h (H.comp (H.inv (φ.f (χ.f h))) (φ.f (χ.f h))) =⟨ H.invl (φ.f (χ.f h)) |in-ctx (λ w → H.comp h w) ⟩ H.comp h H.ident =⟨ H.unitr h ⟩ h ∎ decomp-equiv : H.El ≃ Group.El (Im φ ×ᴳ Ker χ) decomp-equiv = (_ , decomp-is-equiv) decomp-iso : H == Im φ ×ᴳ Ker χ decomp-iso = group-ua (decomp , decomp-is-equiv) {- K == Ker χ -} ψ|kerχ-inj : (h : Group.El (Ker χ)) → ψ.f (GroupHom.f (ker-inj χ) h) == K.ident → h == Group.ident (Ker χ) ψ|kerχ-inj (h , p) q = pair= (Trunc-rec (H.El-level _ _) (λ {(g , r) → ! r ∙ ap φ.f (! (χ-linv g) ∙ ap χ.f r ∙ p) ∙ φ.pres-ident}) (ktoi (exact-get ex 0) h q)) (prop-has-all-paths-↓ (G.El-level _ _)) ψ|kerχ-surj : (k : K.El) → Trunc -1 (Σ (Group.El (Ker χ)) (λ h → ψ.f (GroupHom.f (ker-inj χ) h) == k)) ψ|kerχ-surj k = Trunc-fmap (λ {(h , p) → (GroupHom.f ker-part h , ψ.f (H.comp h (H.inv (φ.f (χ.f h)))) =⟨ ψ.pres-comp h (H.inv (φ.f (χ.f h))) ⟩ K.comp (ψ.f h) (ψ.f (H.inv (φ.f (χ.f h)))) =⟨ ψ.pres-inv (φ.f (χ.f h)) |in-ctx (λ k → K.comp (ψ.f h) k) ⟩ K.comp (ψ.f h) (K.inv (ψ.f (φ.f (χ.f h)))) =⟨ itok (exact-get ex 0) (φ.f (χ.f h)) [ χ.f h , idp ] |in-ctx (λ k → K.comp (ψ.f h) (K.inv k)) ⟩ K.comp (ψ.f h) (K.inv K.ident) =⟨ group-inv-ident K |in-ctx (λ k → K.comp (ψ.f h) k) ⟩ K.comp (ψ.f h) K.ident =⟨ K.unitr (ψ.f h) ⟩ ψ.f h =⟨ p ⟩ k ∎)}) (ktoi (exact-get ex 1) k idp) ψ|kerχ-is-equiv : is-equiv (GroupHom.f (ψ ∘ᴳ ker-inj χ)) ψ|kerχ-is-equiv = surj-inj-is-equiv (ψ ∘ᴳ ker-inj χ) (zero-kernel-injective (ψ ∘ᴳ ker-inj χ) ψ|kerχ-inj) ψ|kerχ-surj Kerχ-iso-K : Ker χ == K Kerχ-iso-K = group-ua (ψ ∘ᴳ ker-inj χ , ψ|kerχ-is-equiv) {- G == Im φ -} im-in-φ-is-equiv : is-equiv (GroupHom.f (im-in-hom φ)) im-in-φ-is-equiv = surj-inj-is-equiv (im-in-hom φ) inj (im-in-surj φ) where inj = zero-kernel-injective (im-in-hom φ) (λ g p → ! (χ-linv g) ∙ ap (χ.f ∘ fst) p ∙ χ.pres-ident) G-iso-Imφ : G == Im φ G-iso-Imφ = group-ua (im-in-hom φ , im-in-φ-is-equiv) {- H == G ×ᴳ K -} iso : H == G ×ᴳ K iso = decomp-iso ∙ ap2 _×ᴳ_ (! G-iso-Imφ) Kerχ-iso-K private decomp-φ = ×ᴳ-hom-in (im-in-hom φ) (cst-hom {G = G} {H = Ker χ}) φ-over-decomp : φ == decomp-φ [ (λ J → G →ᴳ J) ↓ decomp-iso ] φ-over-decomp = codomain-over-iso $ codomain-over-equiv φ.f _ ▹ lemma where lemma : GroupHom.f decomp ∘ φ.f == GroupHom.f decomp-φ lemma = λ= $ λ g → pair×= (im-part-imφ (φ.f g) [ g , idp ]) (ker-part-imφ (φ.f g) [ g , idp ]) ψ-dinv : Im φ ×ᴳ Ker χ →ᴳ K ψ-dinv = ψ ∘ᴳ ×ᴳ-sum-hom H-abelian (im-inj φ) (ker-inj χ) ψ-over-decomp : ψ == ψ-dinv [ (λ J → J →ᴳ K) ↓ decomp-iso ] ψ-over-decomp = domain-over-iso $ domain!-over-equiv ψ.f _ id-over-G-iso : idhom _ == im-in-hom φ [ (λ J → G →ᴳ J) ↓ G-iso-Imφ ] id-over-G-iso = codomain-over-iso $ codomain-over-equiv (idf _) _ φ-over-G-iso : φ == im-inj φ [ (λ J → J →ᴳ H) ↓ G-iso-Imφ ] φ-over-G-iso = domain-over-iso $ domain-over-equiv (GroupHom.f (im-inj φ)) _ ψ|kerχ-over-K-iso : ψ ∘ᴳ ker-inj χ == idhom K [ (λ J → J →ᴳ K) ↓ Kerχ-iso-K ] ψ|kerχ-over-K-iso = domain-over-iso $ domain-over-equiv (idf _) _ φ-over-G-K-isos : decomp-φ == ×ᴳ-inl [ (λ J → G →ᴳ J) ↓ ap2 _×ᴳ_ (! G-iso-Imφ) Kerχ-iso-K ] φ-over-G-K-isos = ↓-ap2-in _ _×ᴳ_ $ transport (λ q → decomp-φ == ×ᴳ-inl [ (λ {(J₁ , J₂) → G →ᴳ J₁ ×ᴳ J₂}) ↓ q ]) (! (pair×=-split-l (! G-iso-Imφ) (Kerχ-iso-K))) (l ∙ᵈ r) where l : decomp-φ == ×ᴳ-hom-in (idhom G) (cst-hom {G = G} {H = Ker χ}) [ (λ {(J₁ , J₂) → G →ᴳ J₁ ×ᴳ J₂}) ↓ ap (λ J → J , Ker χ) (! G-iso-Imφ) ] l = ↓-ap-in _ (λ J → J , Ker χ) (ap↓ (λ θ → ×ᴳ-hom-in θ (cst-hom {G = G} {H = Ker χ})) (!ᵈ id-over-G-iso)) r : ×ᴳ-hom-in (idhom G) (cst-hom {G = G} {H = Ker χ}) == ×ᴳ-inl [ (λ {(J₁ , J₂) → G →ᴳ J₁ ×ᴳ J₂}) ↓ ap (λ J → G , J) Kerχ-iso-K ] r = ↓-ap-in _ (λ J → G , J) (apd (λ J → ×ᴳ-hom-in (idhom G) (cst-hom {G = G} {H = J})) Kerχ-iso-K) ψ-over-G-K-isos : ψ-dinv == ×ᴳ-snd {G = G} [ (λ J → J →ᴳ K) ↓ ap2 _×ᴳ_ (! G-iso-Imφ) Kerχ-iso-K ] ψ-over-G-K-isos = ↓-ap2-in _ _×ᴳ_ $ transport (λ q → ψ-dinv == ×ᴳ-snd {G = G} [ (λ {(J₁ , J₂) → J₁ ×ᴳ J₂ →ᴳ K}) ↓ q ]) (! (pair×=-split-l (! G-iso-Imφ) (Kerχ-iso-K))) (l ∙ᵈ (m ◃ r)) where l : ψ-dinv == ψ ∘ᴳ ×ᴳ-sum-hom H-abelian φ (ker-inj χ) [ (λ {(J₁ , J₂) → J₁ ×ᴳ J₂ →ᴳ K}) ↓ ap (λ J → J , Ker χ) (! G-iso-Imφ) ] l = ↓-ap-in _ (λ J → J , Ker χ) (ap↓ (λ θ → ψ ∘ᴳ ×ᴳ-sum-hom H-abelian θ (ker-inj χ)) (!ᵈ φ-over-G-iso)) m : ψ ∘ᴳ ×ᴳ-sum-hom H-abelian φ (ker-inj χ) == (ψ ∘ᴳ ker-inj χ) ∘ᴳ ×ᴳ-snd {G = G} m = hom= _ _ (λ= (λ {(g , (h , _)) → ψ.f (H.comp (φ.f g) h) =⟨ ψ.pres-comp (φ.f g) h ⟩ K.comp (ψ.f (φ.f g)) (ψ.f h) =⟨ itok (exact-get ex 0) (φ.f g) [ g , idp ] |in-ctx (λ k → K.comp k (ψ.f h)) ⟩ K.comp K.ident (ψ.f h) =⟨ K.unitl (ψ.f h) ⟩ ψ.f h ∎})) r : (ψ ∘ᴳ ker-inj χ) ∘ᴳ ×ᴳ-snd {G = G} == ×ᴳ-snd {G = G} [ (λ {(J₁ , J₂) → J₁ ×ᴳ J₂ →ᴳ K}) ↓ (ap (λ J → G , J) Kerχ-iso-K) ] r = ↓-ap-in _ (λ J → G , J) (ap↓ (λ θ → θ ∘ᴳ ×ᴳ-snd {G = G}) ψ|kerχ-over-K-iso) φ-over-iso : φ == ×ᴳ-inl [ (λ J → G →ᴳ J) ↓ iso ] φ-over-iso = φ-over-decomp ∙ᵈ φ-over-G-K-isos ψ-over-iso : ψ == (×ᴳ-snd {G = G}) [ (λ J → J →ᴳ K) ↓ iso ] ψ-over-iso = ψ-over-decomp ∙ᵈ ψ-over-G-K-isos
{ "alphanum_fraction": 0.4611826592, "avg_line_length": 36.8762541806, "ext": "agda", "hexsha": "279ed8ccfbace842f919e6e06377546d6bcea7e8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cmknapp/HoTT-Agda", "max_forks_repo_path": "theorems/cohomology/SplitExactLeft.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cmknapp/HoTT-Agda", "max_issues_repo_path": "theorems/cohomology/SplitExactLeft.agda", "max_line_length": 77, "max_stars_count": null, "max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cmknapp/HoTT-Agda", "max_stars_repo_path": "theorems/cohomology/SplitExactLeft.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4786, "size": 11026 }
module Data.Real.Gauge where import Data.Rational open Data.Rational using (Rational) Gauge = Rational
{ "alphanum_fraction": 0.785046729, "avg_line_length": 11.8888888889, "ext": "agda", "hexsha": "2d549f96549711416db3dfc4ab3a06596a7f0836", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Data/Real/Gauge.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Data/Real/Gauge.agda", "max_line_length": 35, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Data/Real/Gauge.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 27, "size": 107 }
{-# OPTIONS --without-K --safe #-} open import Relation.Binary using (Rel; Setoid; IsEquivalence) module Quasigroup.Structures {a ℓ} {A : Set a} -- The underlying set (_≈_ : Rel A ℓ) -- The underlying equality relation where open import Algebra.Core open import Level using (_⊔_) open import Data.Product using (_,_; proj₁; proj₂) open import Algebra.Definitions _≈_ open import Algebra.Structures _≈_ open import Quasigroup.Definitions _≈_ record IsPique (∙ \\ // : Op₂ A) (ε : A) : Set (a ⊔ ℓ) where field isQuasigroup : IsQuasigroup ∙ \\ // idem : Idempotent ∙ open IsQuasigroup isQuasigroup public
{ "alphanum_fraction": 0.6902515723, "avg_line_length": 28.9090909091, "ext": "agda", "hexsha": "275cd796b4c9fe20dcd769dd966a088b915c302a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "443e831e536b756acbd1afd0d6bae7bc0d288048", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Akshobhya1234/agda-NonAssociativeAlgebra", "max_forks_repo_path": "src/Quasigroup/Structures.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "443e831e536b756acbd1afd0d6bae7bc0d288048", "max_issues_repo_issues_event_max_datetime": "2021-10-09T08:24:56.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-04T05:30:30.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Akshobhya1234/agda-NonAssociativeAlgebra", "max_issues_repo_path": "src/Quasigroup/Structures.agda", "max_line_length": 62, "max_stars_count": 2, "max_stars_repo_head_hexsha": "443e831e536b756acbd1afd0d6bae7bc0d288048", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Akshobhya1234/agda-NonAssociativeAlgebra", "max_stars_repo_path": "src/Quasigroup/Structures.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-17T09:14:03.000Z", "max_stars_repo_stars_event_min_datetime": "2021-08-15T06:16:13.000Z", "num_tokens": 197, "size": 636 }
{-# OPTIONS --without-K #-} open import HoTT open import homotopy.Freudenthal module homotopy.IterSuspensionStable where {- π (S k) (Ptd-Susp^ (S n) X) == π k (Ptd-Susp^ n X), where k = S k' Susp^Stable below assumes k ≠ O instead of taking k' as the argument -} module Susp^StableSucc {i} (X : Ptd i) (cX : is-connected ⟨0⟩ (fst X)) (n : ℕ) (k' : ℕ) (kle : S k' ≤ n *2) where {- need k,n ≥ 1 -} k : ℕ k = S k' {- some numeric computations -} private kle' : ⟨ k ⟩ ≤T S ((n -2) +2+ S (n -2)) kle' = ≤T-trans (⟨⟩-monotone-≤ kle) (inl (lemma n)) where lemma : (n : ℕ) → ⟨ n *2 ⟩ == S ((n -2) +2+ S (n -2)) lemma O = idp lemma (S n') = ap S (ap S (lemma n') ∙ ! (+2+-βr (S n' -2) (S n' -2))) nlemma₁ : (n : ℕ) → (n -2) +2+ ⟨0⟩ == S (S (n -2)) nlemma₁ n = +2+-comm (n -2) ⟨0⟩ nlemma₂ : (k : ℕ) → (k -2) +2+ ⟨0⟩ == ⟨ k ⟩ nlemma₂ O = idp nlemma₂ (S k) = ap S (nlemma₂ k) private module F = FreudenthalIso (n -2) k (ℕ-S≠O _) kle' (⊙Susp^ n X) (transport (λ t → is-connected t (fst (⊙Susp^ n X))) (nlemma₁ n) (⊙Susp^-conn n cX)) stable : (tk : k ≠ 0) (tsk : S k ≠ 0) → π (S k) tsk (⊙Susp^ (S n) X) == π k tk (⊙Susp^ n X) stable tk tsk = π (S k) tsk (⊙Susp^ (S n) X) =⟨ π-inner-iso k tk tsk (⊙Susp^ (S n) X) ⟩ π k tk (⊙Ω (⊙Susp^ (S n) X)) =⟨ ! (π-Trunc-shift-iso k tk (⊙Ω (⊙Susp^ (S n) X))) ⟩ Ω^-Group k tk (⊙Trunc ⟨ k ⟩ (⊙Ω (⊙Susp^ (S n) X))) Trunc-level =⟨ ! (group-ua F.iso) ⟩ Ω^-Group k tk (⊙Trunc ⟨ k ⟩ (⊙Susp^ n X)) Trunc-level =⟨ π-Trunc-shift-iso k tk (⊙Susp^ n X) ⟩ π k tk (⊙Susp^ n X) ∎ {- π (S k) (⊙Susp^ (S n) X) == π k (⊙Susp^ n X), where k > 0 -} module Susp^Stable {i} (X : Ptd i) (cX : is-connected ⟨0⟩ (fst X)) (n : ℕ) (k : ℕ) (tk : k ≠ 0) (tsk : S k ≠ 0) (kle : k ≤ n *2) where private lemma : ∀ {i} (C : (n : ℕ) → n ≠ 0 → S n ≠ 0 → Type i) → ((n : ℕ) (tsn : S n ≠ 0) (tssn : S (S n) ≠ 0) → C (S n) tsn tssn) → ((n : ℕ) (tn : n ≠ 0) (tsn : S n ≠ 0) → C n tn tsn) lemma C f O tn _ = ⊥-rec (tn idp) lemma C f (S n) tsn tssn = f n tsn tssn abstract stable : π (S k) tsk (⊙Susp^ (S n) X) == π k tk (⊙Susp^ n X) stable = lemma (λ r tr tsr → (r ≤ n *2) → π (S r) tsr (⊙Susp^ (S n) X) == π r tr (⊙Susp^ n X)) (λ r' tsr' tssr' → λ rle → Susp^StableSucc.stable X cX n r' rle tsr' tssr') k tk tsk kle
{ "alphanum_fraction": 0.4512390088, "avg_line_length": 33.8108108108, "ext": "agda", "hexsha": "8037cba0a161b226e3a77818260f117c71661e76", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "homotopy/IterSuspensionStable.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "homotopy/IterSuspensionStable.agda", "max_line_length": 74, "max_stars_count": 1, "max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda", "max_stars_repo_path": "homotopy/IterSuspensionStable.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z", "num_tokens": 1170, "size": 2502 }
module RecordUpdatePreservesType where data ⊤ : Set where tt : ⊤ record R : Set where field a : ⊤ record Q : Set where field a : ⊤ old : R old = record { a = tt } new : Q new = record old { a = tt }
{ "alphanum_fraction": 0.5825688073, "avg_line_length": 11.4736842105, "ext": "agda", "hexsha": "d2d400401fc8c6d06d2200746ea950c9e97de50f", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/RecordUpdatePreservesType.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/RecordUpdatePreservesType.agda", "max_line_length": 38, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/RecordUpdatePreservesType.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 76, "size": 218 }
module Dave.Algebra.Naturals.Ordering where open import Dave.Algebra.Naturals.Definition public open import Dave.Algebra.Naturals.Addition public open import Dave.Algebra.Naturals.Multiplication public -- TO-DO: define relation data _≤_ : ℕ → ℕ → Set where z≤n : ∀ {n : ℕ} → zero ≤ n s≤s : ∀ {m n : ℕ} → m ≤ n → suc m ≤ suc n infix 4 _≤_ inv-s≤s : ∀ {m n : ℕ} → suc m ≤ suc n → m ≤ n inv-s≤s (s≤s m≤n) = m≤n inv-z≤n : ∀ {m : ℕ} → m ≤ zero → m ≡ zero inv-z≤n z≤n = refl -- TO-DO: define relation properties in general ≤-refl : ∀ {n : ℕ} → n ≤ n ≤-refl {zero} = z≤n ≤-refl {suc n} = s≤s ≤-refl ≤-trans : ∀ {m n p : ℕ} → m ≤ n → n ≤ p → m ≤ p ≤-trans z≤n n≤p = z≤n ≤-trans (s≤s m≤n) (s≤s n≤p) = s≤s (≤-trans m≤n n≤p) ≤-trans´ : ∀ (m n p : ℕ) → m ≤ n → n ≤ p → m ≤ p ≤-trans´ zero n p z≤n n≤p = z≤n ≤-trans´ (suc m) (suc n) (suc p) (s≤s m≤n) (s≤s n≤p) = s≤s (≤-trans´ m n p m≤n n≤p) ≤-antisym : ∀ {m n : ℕ} → m ≤ n → n ≤ m → m ≡ n ≤-antisym z≤n z≤n = refl ≤-antisym (s≤s m≤n) (s≤s n≤m) = cong suc (≤-antisym m≤n n≤m) data Total (m n : ℕ) : Set where forward : m ≤ n → Total m n flipped : n ≤ m → Total m n data Total´ : ℕ → ℕ → Set where forward´ : ∀ {m n : ℕ} → m ≤ n → Total´ m n flipped´ : ∀ {m n : ℕ} → n ≤ m → Total´ m n ≤-total : ∀ (m n : ℕ) → Total m n ≤-total zero n = forward z≤n ≤-total (suc m) zero = flipped z≤n ≤-total (suc m) (suc n) with ≤-total m n ... | forward m≤n = forward (s≤s m≤n) ... | flipped n≤m = flipped (s≤s n≤m) ≤-total´ : ∀ (m n : ℕ) → Total m n ≤-total´ zero n = forward z≤n ≤-total´ (suc m) zero = flipped z≤n ≤-total´ (suc m) (suc n) = helper (≤-total´ m n) where helper : Total m n → Total (suc m) (suc n) helper (forward m≤n) = forward (s≤s m≤n) helper (flipped n≤m) = flipped (s≤s n≤m) +-monoᵣ-≤ : ∀ (n p q : ℕ) → p ≤ q → n + p ≤ n + q +-monoᵣ-≤ zero p q p≤q = p≤q +-monoᵣ-≤ (suc n) p q p≤q = s≤s (+-monoᵣ-≤ n p q p≤q) +-monoₗ-≤ : ∀ (m n p : ℕ) → m ≤ n → m + p ≤ n + p +-monoₗ-≤ m n p m≤n rewrite +-comm m p | +-comm n p = +-monoᵣ-≤ p m n m≤n +-mono-≤ : ∀ (m n p q : ℕ) → m ≤ n → p ≤ q → m + p ≤ n + q +-mono-≤ m n p q m≤n p≤q = ≤-trans (+-monoₗ-≤ m n p m≤n) (+-monoᵣ-≤ n p q p≤q) *-monoᵣ-≤ : ∀ (n p q : ℕ) → p ≤ q → n * p ≤ n * q *-monoᵣ-≤ zero p q p≤q = z≤n *-monoᵣ-≤ (suc n) p q p≤q = +-mono-≤ (n * p) (n * q) p q (*-monoᵣ-≤ n p q p≤q) p≤q *-monoₗ-≤ : ∀ (m n p : ℕ) → m ≤ n → m * p ≤ n * p *-monoₗ-≤ m n p m≤n rewrite ℕ-*-comm m p | ℕ-*-comm n p = *-monoᵣ-≤ p m n m≤n *-mono-≤ : ∀ (m n p q : ℕ) → m ≤ n → p ≤ q → m * p ≤ n * q *-mono-≤ m n p q m≤n p≤q = ≤-trans (*-monoₗ-≤ m n p m≤n) (*-monoᵣ-≤ n p q p≤q) {- Strict inequality -} infix 4 _<_ _>_ data _<_ : ℕ → ℕ → Set where z<s : ∀ {n : ℕ} → zero < suc n s<s : ∀ {m n : ℕ} → m < n → suc m < suc n <-trans : ∀ {m n p : ℕ} → m < n → n < p → m < p <-trans z<s (s<s n<p) = z<s <-trans (s<s m<n) (s<s n<p) = s<s (<-trans m<n n<p) +-monoᵣ-< : ∀ (n p q : ℕ) → p < q → n + p < n + q +-monoᵣ-< zero p q p<q = p<q +-monoᵣ-< (suc n) p q p<q = s<s (+-monoᵣ-< n p q p<q) +-monoₗ-< : ∀ (m n p : ℕ) → m < n → m + p < n + p +-monoₗ-< m n p m<n rewrite +-comm m p | +-comm n p = +-monoᵣ-< p m n m<n +-mono-< : ∀ (m n p q : ℕ) → m < n → p < q → m + p < n + q +-mono-< m n p q m<n p<q = <-trans (+-monoₗ-< m n p m<n) (+-monoᵣ-< n p q p<q) suc-≤→< : ∀ (m n : ℕ) → suc m ≤ n → m < n suc-≤→< zero (suc n) leq = z<s suc-≤→< (suc m) (suc n) (s≤s leq) = s<s (suc-≤→< m n leq) <→suc-≤ : ∀ (m n : ℕ) → m < n → suc m ≤ n <→suc-≤ zero (suc n) le = s≤s z≤n <→suc-≤ (suc m) (suc n) (s<s le) = s≤s (<→suc-≤ m n le) data _>_ : ℕ → ℕ → Set where co-m>n : ∀ {m n : ℕ} → n < m → m > n ℕ-suc-> : ∀ {m n : ℕ} → m > n → suc m > suc n ℕ-suc-> (co-m>n x) = co-m>n (s<s x) {- Trichotomy -} data Trichotomy (m n : ℕ) : Set where t-m>n : m > n → Trichotomy m n t-m≡n : m ≡ n → Trichotomy m n t-m<n : m < n → Trichotomy m n ℕ-suc-Trichotomy : ∀ {m n : ℕ} → Trichotomy m n → Trichotomy (suc m) (suc n) ℕ-suc-Trichotomy (t-m>n x) = t-m>n (ℕ-suc-> x) ℕ-suc-Trichotomy (t-m≡n refl) = t-m≡n refl ℕ-suc-Trichotomy (t-m<n x) = t-m<n (s<s x) ℕ-is-Trichotomy : ∀ (m n : ℕ) → Trichotomy m n ℕ-is-Trichotomy zero zero = t-m≡n refl ℕ-is-Trichotomy zero (suc n) = t-m<n z<s ℕ-is-Trichotomy (suc m) zero = t-m>n (co-m>n z<s) ℕ-is-Trichotomy (suc m) (suc n) = ℕ-suc-Trichotomy (ℕ-is-Trichotomy m n)
{ "alphanum_fraction": 0.4405010438, "avg_line_length": 36.5648854962, "ext": "agda", "hexsha": "6750d721525820ea475d0fbf88428be7d85d22bb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "05213fb6ab1f51f770f9858b61526ba950e06232", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DavidStahl97/formal-proofs", "max_forks_repo_path": "Dave/Algebra/Naturals/Ordering.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "05213fb6ab1f51f770f9858b61526ba950e06232", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DavidStahl97/formal-proofs", "max_issues_repo_path": "Dave/Algebra/Naturals/Ordering.agda", "max_line_length": 87, "max_stars_count": null, "max_stars_repo_head_hexsha": "05213fb6ab1f51f770f9858b61526ba950e06232", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DavidStahl97/formal-proofs", "max_stars_repo_path": "Dave/Algebra/Naturals/Ordering.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2334, "size": 4790 }
{-# OPTIONS --type-in-type #-} open import Agda.Primitive using (Setω) -- No panic should be triggered data A : Setω where record B' : Set where field theA : A data B : Set where b : A → B data C : Set where c : Setω → C data C' : Setω where c : Setω → C' record C'' : Setω where field theSet : Setω thefield : theSet
{ "alphanum_fraction": 0.6057142857, "avg_line_length": 12.5, "ext": "agda", "hexsha": "317bbc577520ce07cadcc8a87f31f3d3c60bad68", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue3697.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue3697.agda", "max_line_length": 39, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue3697.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 116, "size": 350 }
module Issue160 where data Bool : Set where true : Bool false : Bool data _≡_ {A : Set}(x : A) : A → Set where refl : x ≡ x inj : ∀ {A} (f : A -> A) {a b : A} → f a ≡ f b -> a ≡ b inj f refl = refl absurd : true ≡ false absurd = inj (λ _ → true) refl
{ "alphanum_fraction": 0.5241635688, "avg_line_length": 15.8235294118, "ext": "agda", "hexsha": "1266f37bd941eeab36ad9258c30015c6a73f5f15", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue160.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue160.agda", "max_line_length": 41, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue160.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 113, "size": 269 }
-- Shrunk version of examples/TT.agda -- Bug introduced by fix of issue 1560 {-# OPTIONS --allow-unsolved-metas #-} -- {-# OPTIONS --no-termination-check #-} -- {-# OPTIONS --no-positivity-check #-} -- {-# OPTIONS -v tc.pos:10 #-} -- {-# OPTIONS -v tc.polarity:30 #-} data True : Set where tt : True data ⊥ : Set where infix 3 _/\_ data _/\_ (P Q : Set) : Set where andI : P -> Q -> P /\ Q data Nat : Set where zero : Nat suc : Nat -> Nat -- Finite sets ------------------------------------------------------------ data Suc (A : Set) : Set where fzero' : Suc A fsuc' : A -> Suc A mutual data Fin (n : Nat) : Set where finI : Fin' n -> Fin n Fin' : Nat -> Set Fin' zero = ⊥ Fin' (suc n) = Suc (Fin n) fsuc : {n : Nat} -> Fin n -> Fin (suc n) fsuc i = finI (fsuc' i) module FinEq where infix 5 _==_ _==_ : {n : Nat} -> Fin n -> Fin n -> Set _==_ {suc _} (finI fzero' ) (finI fzero' ) = True _==_ {suc _} (finI (fsuc' i)) (finI (fsuc' j)) = i == j _==_ _ _ = ⊥ -- Needed rewriteEq : {n : Nat}(C : Fin n -> Set){i j : Fin n} -> i == j -> C j -> C i rewriteEq {suc _} C {finI fzero' } {finI fzero' } eq x = x rewriteEq {suc _} C {finI (fsuc' i)} {finI (fsuc' j)} eq x = rewriteEq (\z -> C (fsuc z)) eq x rewriteEq {suc _} C {finI (fsuc' _)} {finI fzero' } () _ rewriteEq {suc _} C {finI fzero' } {finI (fsuc' _)} () _ rewriteEq {zero} C {finI ()} {_} _ _ data Expr (n : Nat) : Set where eVar : Fin n -> Expr n eApp : Expr n -> Expr n -> Expr n module ExprEq where infix 5 _==_ _==_ : {n : Nat} -> Expr n -> Expr n -> Set eVar i == eVar j = FinEq._==_ i j eApp e1 e2 == eApp e3 e4 = e1 == e3 /\ e2 == e4 _ == _ = ⊥ rewriteEq : {n : Nat}(C : Expr n -> Set){r s : Expr n} -> r == s -> C s -> C r rewriteEq C {eVar i } {eVar j } eq x = FinEq.rewriteEq (\z -> C (eVar z)) eq x rewriteEq C {eApp e1 e2} {eApp e3 e4} (andI eq13 eq24) x = rewriteEq (\z -> C (eApp z e2)) eq13 ( rewriteEq (\z -> C (eApp e3 z)) eq24 x ) rewriteEq C {eVar _} {eApp _ _} () _ rewriteEq C {eApp _ _} {eVar _ } () _ -- checking args of rewriteEq -- args of rewriteEq = -- [Mixed, Unused, Mixed, Mixed, Unused, StrictPos] -- Computing polarity of Polarity.ExprEq.rewriteEq -- Polarity of Polarity.ExprEq.rewriteEq from positivity: -- [Invariant,Nonvariant,Invariant,Invariant,Nonvariant,Covariant] -- Refining polarity with type {n : Nat} (C : Expr n → Set) -- {r s : Expr n} → -- r == s → C s → C r -- Polarity of Polarity.ExprEq.rewriteEq: [Invariant,Invariant,Invariant,Invariant,Nonvariant,Covariant] -- An internal error has occurred. Please report this as a bug. -- Location of the error: src/full/Agda/TypeChecking/Polarity.hs:235 -- -} -- -}
{ "alphanum_fraction": 0.5310559006, "avg_line_length": 29.5714285714, "ext": "agda", "hexsha": "9d7c7fbc7bb1e4db59c4c137b2d220a72470e47a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1560a.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1560a.agda", "max_line_length": 104, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1560a.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 1040, "size": 2898 }
{-# OPTIONS --safe #-} open import Definition.Typed.EqualityRelation module Definition.LogicalRelation.Substitution.Introductions.Emptyrec {{eqrel : EqRelSet}} where open EqRelSet {{...}} open import Definition.Untyped as U hiding (wk) open import Definition.Untyped.Properties open import Definition.Typed import Definition.Typed.Weakening as T open import Definition.Typed.Properties open import Definition.Typed.RedSteps open import Definition.LogicalRelation open import Definition.LogicalRelation.ShapeView open import Definition.LogicalRelation.Irrelevance open import Definition.LogicalRelation.Properties open import Definition.LogicalRelation.Application open import Definition.LogicalRelation.Substitution open import Definition.LogicalRelation.Substitution.Properties import Definition.LogicalRelation.Substitution.Irrelevance as S open import Definition.LogicalRelation.Substitution.Reflexivity open import Definition.LogicalRelation.Substitution.Weakening open import Definition.LogicalRelation.Substitution.Introductions.Empty open import Definition.LogicalRelation.Substitution.Introductions.Pi open import Definition.LogicalRelation.Substitution.Introductions.SingleSubst open import Tools.Product open import Tools.Unit open import Tools.Empty open import Tools.Nat import Tools.PropositionalEquality as PE -- Reducibility of natural recursion under a valid substitution. EmptyrecTerm : ∀ {F rF lF lEmpty n Γ Δ σ l} ([Γ] : ⊩ᵛ Γ) ([F] : Γ ⊩ᵛ⟨ l ⟩ F ^ [ rF , ι lF ] / [Γ]) (⊢Δ : ⊢ Δ) ([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ) ([σn] : Δ ⊩⟨ l ⟩ n ∷ Empty lEmpty ^ [ % , ι lEmpty ] / Emptyᵣ (idRed:*: (univ (Emptyⱼ ⊢Δ)))) → Δ ⊩⟨ l ⟩ Emptyrec lF lEmpty (subst σ F) n ∷ subst σ F ^ [ rF , ι lF ] / proj₁ ([F] ⊢Δ [σ]) EmptyrecTerm {F} {rF = !} {lF} {lEmpty} {n} {Γ} {Δ} {σ} {l} [Γ] [F] ⊢Δ [σ] (Emptyₜ (ne d)) = let [Empty] = Emptyᵛ {ll = lEmpty} {l = l} [Γ] [σEmpty] = proj₁ ([Empty] ⊢Δ [σ]) [σF] = proj₁ ([F] ⊢Δ [σ]) ⊢F = escape [σF] ⊢F≡F = escapeEq [σF] (reflEq [σF]) in neuTerm [σF] (Emptyrecₙ) (Emptyrecⱼ ⊢F d) (~-Emptyrec ⊢F≡F d d) EmptyrecTerm {F} {rF = %} {lF} {lEmpty} {n} {Γ} {Δ} {σ} {l} [Γ] [F] ⊢Δ [σ] (Emptyₜ (ne d)) = let [Empty] = Emptyᵛ {ll = lEmpty} {l = l} [Γ] [σEmpty] = proj₁ ([Empty] ⊢Δ [σ]) [σF] = proj₁ ([F] ⊢Δ [σ]) ⊢F = escape [σF] ⊢F≡F = escapeEq [σF] (reflEq [σF]) in logRelIrr [σF] (Emptyrecⱼ ⊢F d) -- Reducibility of natural recursion congurence under a valid substitution equality. Emptyrec-congTerm : ∀ {F F′ rF lF lEmpty n m Γ Δ σ σ′ l} ([Γ] : ⊩ᵛ Γ) ([F] : Γ ⊩ᵛ⟨ l ⟩ F ^ [ rF , ι lF ] / [Γ]) ([F′] : Γ ⊩ᵛ⟨ l ⟩ F′ ^ [ rF , ι lF ] / [Γ]) ([F≡F′] : Γ ⊩ᵛ⟨ l ⟩ F ≡ F′ ^ [ rF , ι lF ] / [Γ] / [F]) (⊢Δ : ⊢ Δ) ([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ) ([σ′] : Δ ⊩ˢ σ′ ∷ Γ / [Γ] / ⊢Δ) ([σ≡σ′] : Δ ⊩ˢ σ ≡ σ′ ∷ Γ / [Γ] / ⊢Δ / [σ]) ([σn] : Δ ⊩⟨ l ⟩ n ∷ Empty lEmpty ^ [ % , ι lEmpty ] / Emptyᵣ (idRed:*: (univ (Emptyⱼ ⊢Δ)))) ([σm] : Δ ⊩⟨ l ⟩ m ∷ Empty lEmpty ^ [ % , ι lEmpty ] / Emptyᵣ (idRed:*: (univ (Emptyⱼ ⊢Δ)))) → Δ ⊩⟨ l ⟩ Emptyrec lF lEmpty (subst σ F) n ≡ Emptyrec lF lEmpty (subst σ′ F′) m ∷ subst σ F ^ [ rF , ι lF ] / proj₁ ([F] ⊢Δ [σ]) Emptyrec-congTerm {F} {F′} {rF = !} {lF} {lEmpty} {n} {m} {Γ} {Δ} {σ} {σ′} {l} [Γ] [F] [F′] [F≡F′] ⊢Δ [σ] [σ′] [σ≡σ′] (Emptyₜ (ne ⊢n′)) (Emptyₜ (ne ⊢m′)) = let [Empty] = Emptyᵛ {ll = lEmpty} {l = l} [Γ] [σEmpty] = proj₁ ([Empty] ⊢Δ [σ]) [σ′Empty] = proj₁ ([Empty] ⊢Δ [σ′]) [σF] = proj₁ ([F] ⊢Δ [σ]) [σ′F] = proj₁ ([F] ⊢Δ [σ′]) [σ′F′] = proj₁ ([F′] ⊢Δ [σ′]) ⊢F = escape [σF] ⊢F≡F = escapeEq [σF] (reflEq [σF]) ⊢F′ = escape [σ′F′] ⊢F′≡F′ = escapeEq [σ′F′] (reflEq [σ′F′]) ⊢σF≡σ′F = escapeEq [σF] (proj₂ ([F] ⊢Δ [σ]) [σ′] [σ≡σ′]) ⊢σ′F≡σ′F′ = escapeEq [σ′F] ([F≡F′] ⊢Δ [σ′]) ⊢F≡F′ = ≅-trans ⊢σF≡σ′F ⊢σ′F≡σ′F′ [σF≡σ′F] = proj₂ ([F] ⊢Δ [σ]) [σ′] [σ≡σ′] [σ′F≡σ′F′] = [F≡F′] ⊢Δ [σ′] [σF≡σ′F′] = transEq [σF] [σ′F] [σ′F′] [σF≡σ′F] [σ′F≡σ′F′] EmptyrecN = neuTerm [σF] (Emptyrecₙ) (Emptyrecⱼ ⊢F ⊢n′) (~-Emptyrec ⊢F≡F ⊢n′ ⊢n′) EmptyrecM = neuTerm [σ′F′] (Emptyrecₙ) (Emptyrecⱼ ⊢F′ ⊢m′) (~-Emptyrec ⊢F′≡F′ ⊢m′ ⊢m′) EmptyrecN≡M = neuEqTerm [σF] Emptyrecₙ Emptyrecₙ (Emptyrecⱼ ⊢F ⊢n′) (conv (Emptyrecⱼ ⊢F′ ⊢m′) (sym (≅-eq (escapeEq [σF] (transEq [σF] [σ′F] [σ′F′] [σF≡σ′F] [σ′F≡σ′F′]))))) (~-Emptyrec ⊢F≡F′ ⊢n′ ⊢m′) in EmptyrecN≡M Emptyrec-congTerm {F} {F′} {rF = %} {lF} {lEmpty} {n} {m} {Γ} {Δ} {σ} {σ′} {l} [Γ] [F] [F′] [F≡F′] ⊢Δ [σ] [σ′] [σ≡σ′] (Emptyₜ (ne ⊢n′)) (Emptyₜ (ne ⊢m′)) = let [Empty] = Emptyᵛ {ll = lEmpty} {l = l} [Γ] [σEmpty] = proj₁ ([Empty] ⊢Δ [σ]) [σ′Empty] = proj₁ ([Empty] ⊢Δ [σ′]) [σF] = proj₁ ([F] ⊢Δ [σ]) [σ′F] = proj₁ ([F] ⊢Δ [σ′]) [σ′F′] = proj₁ ([F′] ⊢Δ [σ′]) ⊢F = escape [σF] ⊢F≡F = escapeEq [σF] (reflEq [σF]) ⊢F′ = escape [σ′F′] ⊢F′≡F′ = escapeEq [σ′F′] (reflEq [σ′F′]) ⊢σF≡σ′F = escapeEq [σF] (proj₂ ([F] ⊢Δ [σ]) [σ′] [σ≡σ′]) ⊢σ′F≡σ′F′ = escapeEq [σ′F] ([F≡F′] ⊢Δ [σ′]) ⊢F≡F′ = ≅-trans ⊢σF≡σ′F ⊢σ′F≡σ′F′ [σF≡σ′F] = proj₂ ([F] ⊢Δ [σ]) [σ′] [σ≡σ′] [σ′F≡σ′F′] = [F≡F′] ⊢Δ [σ′] [σF≡σ′F′] = transEq [σF] [σ′F] [σ′F′] [σF≡σ′F] [σ′F≡σ′F′] in logRelIrrEq [σF] (Emptyrecⱼ ⊢F ⊢n′) (conv (Emptyrecⱼ ⊢F′ ⊢m′) (sym (≅-eq (escapeEq [σF] (transEq [σF] [σ′F] [σ′F′] [σF≡σ′F] [σ′F≡σ′F′]))))) -- Validity of empty recursion. Emptyrecᵛ : ∀ {F rF lF lEmpty n Γ l} ([Γ] : ⊩ᵛ Γ) ([Empty] : Γ ⊩ᵛ⟨ l ⟩ Empty lEmpty ^ [ % , ι lEmpty ] / [Γ]) ([F] : Γ ⊩ᵛ⟨ l ⟩ F ^ [ rF , ι lF ] / [Γ]) → ([n] : Γ ⊩ᵛ⟨ l ⟩ n ∷ Empty lEmpty ^ [ % , ι lEmpty ] / [Γ] / [Empty]) → Γ ⊩ᵛ⟨ l ⟩ Emptyrec lF lEmpty F n ∷ F ^ [ rF , ι lF ] / [Γ] / [F] Emptyrecᵛ {F} {rF} {lF} {lEmpty} {n} {l = l} [Γ] [Empty] [F] [n] {Δ = Δ} {σ = σ} ⊢Δ [σ] = let [σn] = irrelevanceTerm {l′ = l} (proj₁ ([Empty] ⊢Δ [σ])) (Emptyᵣ (idRed:*: (univ (Emptyⱼ ⊢Δ)))) (proj₁ ([n] ⊢Δ [σ])) in EmptyrecTerm {F = F} [Γ] [F] ⊢Δ [σ] [σn] , λ {σ'} [σ′] [σ≡σ′] → let [σ′n] = irrelevanceTerm {l′ = l} (proj₁ ([Empty] ⊢Δ [σ′])) (Emptyᵣ (idRed:*: (univ (Emptyⱼ ⊢Δ)))) (proj₁ ([n] ⊢Δ [σ′])) [σn≡σ′n] = irrelevanceEqTerm {l′ = l} (proj₁ ([Empty] ⊢Δ [σ])) (Emptyᵣ (idRed:*: (univ (Emptyⱼ ⊢Δ)))) (proj₂ ([n] ⊢Δ [σ]) [σ′] [σ≡σ′]) congTerm = Emptyrec-congTerm {F = F} {F′ = F} [Γ] [F] [F] (reflᵛ {F} {l = l} [Γ] [F]) ⊢Δ [σ] [σ′] [σ≡σ′] [σn] [σ′n] in congTerm -- Validity of natural recursion congurence. Emptyrec-congᵛ : ∀ {F F′ rF lF lEmpty n n′ Γ l} ([Γ] : ⊩ᵛ Γ) ([Empty] : Γ ⊩ᵛ⟨ l ⟩ Empty lEmpty ^ [ % , ι lEmpty ] / [Γ]) ([F] : Γ ⊩ᵛ⟨ l ⟩ F ^ [ rF , ι lF ] / [Γ]) ([F′] : Γ ⊩ᵛ⟨ l ⟩ F′ ^ [ rF , ι lF ] / [Γ]) ([F≡F′] : Γ ⊩ᵛ⟨ l ⟩ F ≡ F′ ^ [ rF , ι lF ] / [Γ] / [F]) ([n] : Γ ⊩ᵛ⟨ l ⟩ n ∷ Empty lEmpty ^ [ % , ι lEmpty ] / [Γ] / [Empty]) ([n′] : Γ ⊩ᵛ⟨ l ⟩ n′ ∷ Empty lEmpty ^ [ % , ι lEmpty ] / [Γ] / [Empty]) → Γ ⊩ᵛ⟨ l ⟩ Emptyrec lF lEmpty F n ≡ Emptyrec lF lEmpty F′ n′ ∷ F ^ [ rF , ι lF ] / [Γ] / [F] Emptyrec-congᵛ {F} {F′} {rF} {lF} {lEmpty} {n} {n′} {l = l} [Γ] [Empty] [F] [F′] [F≡F′] [n] [n′] {Δ = Δ} {σ = σ} ⊢Δ [σ] = let [σn] = irrelevanceTerm {l′ = l} (proj₁ ([Empty] ⊢Δ [σ])) (Emptyᵣ (idRed:*: (univ (Emptyⱼ ⊢Δ)))) (proj₁ ([n] ⊢Δ [σ])) [σn′] = irrelevanceTerm {l′ = l} (proj₁ ([Empty] ⊢Δ [σ])) (Emptyᵣ (idRed:*: (univ (Emptyⱼ ⊢Δ)))) (proj₁ ([n′] ⊢Δ [σ])) congTerm = Emptyrec-congTerm {F} {F′} [Γ] [F] [F′] [F≡F′] ⊢Δ [σ] [σ] (reflSubst [Γ] ⊢Δ [σ]) [σn] [σn′] in congTerm
{ "alphanum_fraction": 0.4478200371, "avg_line_length": 47.6464088398, "ext": "agda", "hexsha": "0684d8389484929a7e3124ff6b7bf90e0a799311", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z", "max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z", "max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "CoqHott/logrel-mltt", "max_forks_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Emptyrec.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "CoqHott/logrel-mltt", "max_issues_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Emptyrec.agda", "max_line_length": 115, "max_stars_count": 2, "max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "CoqHott/logrel-mltt", "max_stars_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Emptyrec.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z", "max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z", "num_tokens": 3935, "size": 8624 }
-- Non-deterministic insert and permutation with choose oracle -- The module abstracts over the choice structure by importing it. open import bool module perm-keep-length (Choice : Set) (choose : Choice → 𝔹) (lchoice : Choice → Choice) (rchoice : Choice → Choice) where open import eq open import bool-thms open import nat open import nat-thms open import list ---------------------------------------------------------------------- -- Non-deterministic insert: ndinsert : {a : Set} → Choice → a → 𝕃 a → 𝕃 a ndinsert _ n [] = n :: [] ndinsert ch n (x :: xs) = if choose ch then n :: x :: xs else x :: ndinsert (lchoice ch) n xs perm : {a : Set} → Choice → 𝕃 a → 𝕃 a perm _ [] = [] perm ch (x :: xs) = ndinsert (lchoice ch) x (perm (rchoice ch) xs) ---------------------------------------------------------------------- -- Non-deterministic insertion increases the list length by one: insert-inc-length : ∀ {a : Set} → (ch : Choice) (x : a) (xs : 𝕃 a) → length (ndinsert ch x xs) ≡ suc (length xs) insert-inc-length ch x [] = refl insert-inc-length ch x (y :: ys) with choose ch ... | tt = refl ... | ff rewrite insert-inc-length (lchoice ch) x ys = refl -- The length of a permuted list is identical to the length of the list: perm-length : ∀ {a : Set} → (ch : Choice) (xs : 𝕃 a) → length (perm ch xs) =ℕ length xs ≡ tt perm-length ch [] = refl perm-length ch (x :: xs) rewrite insert-inc-length (lchoice ch) x (perm (rchoice ch) xs) | perm-length (rchoice ch) xs = refl ----------------------------------------------------------------------
{ "alphanum_fraction": 0.5388379205, "avg_line_length": 31.4423076923, "ext": "agda", "hexsha": "6945ac43942ce3849b9c5640d4a54234de24acee", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b7cfdda11cdadeba882b6b72d75448acd8b0a294", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "mihanus/curry-agda", "max_forks_repo_path": "choices/perm-keep-length.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b7cfdda11cdadeba882b6b72d75448acd8b0a294", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "mihanus/curry-agda", "max_issues_repo_path": "choices/perm-keep-length.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "b7cfdda11cdadeba882b6b72d75448acd8b0a294", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "mihanus/curry-agda", "max_stars_repo_path": "choices/perm-keep-length.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 442, "size": 1635 }
{-# OPTIONS --rewriting --allow-unsolved-metas #-} postulate C : Set D : Set → Set d₁ : (A : Set) → D A d₂ : (A : Set) → (C → D A) → D A E : (A : Set) → A → A → Set e₁ : (A : Set) (j₁ j₂ : C → D A) → ((c : C) → E (D A) (j₁ c) (j₂ c)) → (y : D A) → E (D A) (d₂ A j₁) y f : (A B : Set) → D A → D B f₁ : (A B : Set) → E (D B) (f A B (d₁ A)) (d₁ B) f₂ : (A B : Set) (j : C → D A) → E (D B) (f A B (d₂ A j)) (d₂ B (λ c → f A B (j c))) g : (A : Set) (Q : D A → Set) → Q (d₁ A) → ((j : C → D A) → ((c : C) → Q (j c)) → Q (d₂ A j)) → (c : D A) → Q c {-# BUILTIN REWRITE E #-} {-# REWRITE f₁ #-} {-# REWRITE f₂ #-} h : (A B : Set) (i : D A → D B) → E (D B) (d₁ B) (i (d₁ A)) → (d : D A) → E (D B) (f A B d) (i d) h A B i e₂ = g A (λ (d : D A) → E (D B) {!f A B d!} (i d)) e₂ (λ j q → e₁ B (λ c → f A B (j c)) (λ c → i (j c)) q (i (d₂ A j)))
{ "alphanum_fraction": 0.3442449842, "avg_line_length": 24.2820512821, "ext": "agda", "hexsha": "eec538e761c2f6f28014dcc3cc364fd393a17bc9", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Succeed/Issue1931.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Succeed/Issue1931.agda", "max_line_length": 67, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Succeed/Issue1931.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 481, "size": 947 }
-- Andreas, 2017-11-14, issue #2849, reported by laMudri -- Internal error, regression introduced by new pattern Internal.AbsurdP {-# OPTIONS --allow-unsolved-metas #-} -- {-# OPTIONS -v tc.with.strip:30 #-} open import Agda.Builtin.Equality data ⊥ : Set where data Bool : Set where true false : Bool data P : Bool → Set where pt : P true postulate b : Bool eq : b ≡ false works : P b → ⊥ works p with b | eq works () | .false | refl test : P b → ⊥ test () rewrite eq -- WAS (2.5.3): Internal error -- OK error: -- Failed to solve the following constraints: -- Is empty: P b -- This could also succeed, but somehow the rewrite does not -- apply to the IsEmpty constraint generated by the absurd pattern. -- The rewrite should be happening before the absurd pattern split.
{ "alphanum_fraction": 0.6817610063, "avg_line_length": 20.3846153846, "ext": "agda", "hexsha": "77a3185e6ee75a321913a557164a0f82bc1a2a32", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue2849.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue2849.agda", "max_line_length": 72, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue2849.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 223, "size": 795 }
module Proj where open import AlonzoPrelude showTrue : True -> String showTrue _ = "tt" -- data True : Set where -- tt : True data T4 : Set where C : True -> True -> True -> True -> T4 g : True -> True -> True g x y = tt f14 : T4 -> True -> True f14 (C x y z t) = \w -> g x t mainS : String mainS = showTrue $ (id ○ f14) (C tt tt tt tt) tt
{ "alphanum_fraction": 0.5873925501, "avg_line_length": 17.45, "ext": "agda", "hexsha": "f698c87fb285672474339b1f36aa69cd28fa5c1b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/Alonzo/Proj.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/Alonzo/Proj.agda", "max_line_length": 48, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "examples/outdated-and-incorrect/Alonzo/Proj.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 127, "size": 349 }
-- {-# OPTIONS -v tc.polarity:10 -v tc.pos.args:10 #-} module UnsolvableLevelConstraintsInDataDef where open import Common.Equality data D : Set1 where abs : ∀ E → D ≡ E → (E → D) → D
{ "alphanum_fraction": 0.664893617, "avg_line_length": 23.5, "ext": "agda", "hexsha": "71b0f15242a90e931a9db8cc2219824d7eadb3ba", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/UnsolvableLevelConstraintsInDataDef.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/UnsolvableLevelConstraintsInDataDef.agda", "max_line_length": 54, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/UnsolvableLevelConstraintsInDataDef.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 62, "size": 188 }