Search is not available for this dataset
text
string | meta
dict |
---|---|
module sn-calculus-compatconf.split where
open import sn-calculus-compatconf.base
open import sn-calculus
open import utility renaming (_U̬_ to _∪_)
open import context-properties
using (unwrap-rho ; wrap-rho ; ->E-view ; plugc ; unplugc)
open import Esterel.Lang
open import Esterel.Lang.Properties
open import Esterel.Lang.Binding
open import Esterel.Lang.CanFunction
using (Can ; Canₛ ; Canₛₕ ; Canₖ ; module CodeSet)
open import Esterel.Environment as Env
using (Env ; Θ ; _←_ ; Dom ; module SigMap ; module ShrMap ; module VarMap)
open import Esterel.Context
using (EvaluationContext ; EvaluationContext1 ; _⟦_⟧e ; _≐_⟦_⟧e ;
Context ; Context1 ; _⟦_⟧c ; _≐_⟦_⟧c)
open import Esterel.CompletionCode as Code
using () renaming (CompletionCode to Code)
open import Esterel.Variable.Signal as Signal
using (Signal ; _ₛ)
open import Esterel.Variable.Shared as SharedVar
using (SharedVar ; _ₛₕ)
open import Esterel.Variable.Sequential as SeqVar
using (SeqVar ; _ᵥ)
open import Relation.Nullary
using (¬_ ; Dec ; yes ; no)
open import Relation.Binary.PropositionalEquality
using (_≡_ ; refl ; sym ; cong ; trans ; subst ; module ≡-Reasoning)
open import Data.Bool
using (Bool ; if_then_else_)
open import Data.Empty
using (⊥ ; ⊥-elim)
open import Data.List
using (List ; _∷_ ; [] ; _++_)
open import Data.List.Any
using (Any ; any ; here ; there)
open import Data.List.Any.Properties
using ()
renaming (++⁺ˡ to ++ˡ ; ++⁺ʳ to ++ʳ)
open import Data.Maybe
using (Maybe ; just ; nothing)
open import Data.Nat
using (ℕ ; zero ; suc ; _+_) renaming (_⊔_ to _⊔ℕ_)
open import Data.Product
using (Σ-syntax ; Σ ; _,_ ; _,′_ ; proj₁ ; proj₂ ; _×_ ; ∃)
open import Data.Sum
using (_⊎_ ; inj₁ ; inj₂ ; map)
open import Function using (_∘_ ; id ; _∋_)
open import Data.OrderedListMap Signal Signal.unwrap Signal.Status as SigM
open import Data.OrderedListMap SharedVar SharedVar.unwrap (Σ SharedVar.Status (λ _ → ℕ)) as ShrM
open import Data.OrderedListMap SeqVar SeqVar.unwrap ℕ as SeqM
open ->E-view
open EvaluationContext1
open _≐_⟦_⟧e
open Context1
open _≐_⟦_⟧c
open ListSet Data.Nat._≟_
{-
Base case where (E, C) = ([], _∷_).
Simply switch the reductions. Note that since E = [], the rmerge rule
at LHS is actually ρθ.ρθ'.qin sn⟶₁ ρ(θ←θ').qin. Since C = _∷_, the
reduction at RHS must go inside ρθ' so it's easy to handle.
p
ρθ. E⟦ qin ⟧ -- sn⟶₁ -> ρθq. E⟦ qo ⟧
(ρθ) E⟦C⟦rin⟧⟧ -- sn⟶₁ -> (ρθ) E⟦C⟦ro⟧⟧
-}
1-steplρ-E-view-ecsplit : ∀{E C p qin q qo rin r ro θ θq BV FV A Aq} →
{ρθ·psn⟶₁ρθq·q : ρ⟨ θ , A ⟩· p sn⟶₁ ρ⟨ θq , Aq ⟩· q} →
CorrectBinding p BV FV →
two-roads-diverged E C →
(p≐E⟦qin⟧ : p ≐ E ⟦ qin ⟧e) →
(q≐E⟦qo⟧ : q ≐ E ⟦ qo ⟧e) →
->E-view ρθ·psn⟶₁ρθq·q p≐E⟦qin⟧ q≐E⟦qo⟧ →
(p≐E⟦rin⟧ : p ≐ C ⟦ rin ⟧c) →
(r≐E⟦ro⟧ : r ≐ C ⟦ ro ⟧c) →
(rinsn⟶₁ro : rin sn⟶₁ ro) →
∃ λ po →
-- LHS: 0 or 1 step (ρθ) C⟦qo⟧ sn⟶* (ρθ) C⟦poq⟧ reduction inside ρθ [ ]
(q ≡ po ⊎ q sn⟶ po)
×
-- RHS: ρθ. E'⟦ro'⟧ sn⟶₁ ρθq. E'⟦por⟧
Σ (EvaluationContext × Term × Term) λ { (E' , ro' , por) →
Σ[ r≐E'⟦ro'⟧ ∈ r ≐ E' ⟦ ro' ⟧e ]
Σ[ po≐E'⟦por⟧ ∈ po ≐ E' ⟦ por ⟧e ]
Σ[ ρθ·rsn⟶₁ρθq·po ∈ ρ⟨ θ , A ⟩· r sn⟶₁ ρ⟨ θq , Aq ⟩· po ]
->E-view ρθ·rsn⟶₁ρθq·po r≐E'⟦ro'⟧ po≐E'⟦por⟧
}
1-steplρ-E-view-ecsplit cb divout-disjoint dehole dehole
vemit () r≐C⟦ro⟧ rinsn⟶₁ro
1-steplρ-E-view-ecsplit cb divout-disjoint dehole dehole
vset-shared-value-old () r≐C⟦ro⟧ rinsn⟶₁ro
1-steplρ-E-view-ecsplit cb divout-disjoint dehole dehole
vset-shared-value-new () r≐C⟦ro⟧ rinsn⟶₁ro
1-steplρ-E-view-ecsplit cb divout-disjoint dehole dehole
vset-var () r≐C⟦ro⟧ rinsn⟶₁ro
1-steplρ-E-view-ecsplit {ρθ·psn⟶₁ρθq·q = ρθ·psn⟶₁ρθq·q} cb
divout-disjoint dehole dehole vmerge
ρθp≐C⟦rin⟧ ρθr≐C⟦ro⟧ rinsn⟶₁ro
with ρθp≐C⟦rin⟧ | ρθr≐C⟦ro⟧
... | dcenv p≐C⟦rin⟧ | dcenv r≐C⟦ro⟧ with sym (unplugc r≐C⟦ro⟧)
... | refl
= _ , inj₂ (rcontext _ p≐C⟦rin⟧ rinsn⟶₁ro) ,′
_ , dehole , dehole , rmerge dehole , vmerge
1-steplρ-E-view-ecsplit {ρθ·psn⟶₁ρθq·q = ris-present {_} {S} S∈ θS≡present dehole} cb
divout-disjoint dehole dehole vis-present
(dcpresent₁ p≐C⟦rin⟧) (dcpresent₁ r≐C⟦ro⟧) rinsn⟶₁ro with sym (unplugc r≐C⟦ro⟧)
... | refl
= _ , inj₂ (rcontext _ p≐C⟦rin⟧ rinsn⟶₁ro) ,′
_ , dehole , dehole , ris-present {_} {S} S∈ θS≡present dehole , vis-present
1-steplρ-E-view-ecsplit {ρθ·psn⟶₁ρθq·q = ris-present {_} {S} S∈ θS≡present dehole} cb
divout-disjoint dehole dehole vis-present
(dcpresent₂ p≐C⟦rin⟧) (dcpresent₂ r≐C⟦ro⟧) rinsn⟶₁ro =
_ , inj₁ refl ,′
_ , dehole , dehole , ris-present {_} {S} S∈ θS≡present dehole , vis-present
1-steplρ-E-view-ecsplit {ρθ·psn⟶₁ρθq·q = ris-absent {_} {S} S∈ θS≡absent dehole} cb
divout-disjoint dehole dehole vis-absent
(dcpresent₁ p≐C⟦rin⟧) (dcpresent₁ r≐C⟦ro⟧) rinsn⟶₁ro =
_ , inj₁ refl ,′
_ , dehole , dehole , ris-absent {_} {S} S∈ θS≡absent dehole , vis-absent
1-steplρ-E-view-ecsplit {ρθ·psn⟶₁ρθq·q = ris-absent {_} {S} S∈ θS≡absent dehole} cb
divout-disjoint dehole dehole vis-absent
(dcpresent₂ p≐C⟦rin⟧) (dcpresent₂ r≐C⟦ro⟧) rinsn⟶₁ro with sym (unplugc r≐C⟦ro⟧)
... | refl
= _ , inj₂ (rcontext _ p≐C⟦rin⟧ rinsn⟶₁ro) ,′
_ , dehole , dehole , ris-absent {_} {S} S∈ θS≡absent dehole , vis-absent
1-steplρ-E-view-ecsplit {ρθ·psn⟶₁ρθq·q = rraise-shared {_} {_} {s} _ _} cb
divout-disjoint dehole dehole vraise-shared
(dcshared p≐C⟦rin⟧) (dcshared r≐C⟦ro⟧) rinsn⟶₁ro with sym (unplugc r≐C⟦ro⟧)
... | refl
= _ , inj₂ (rcontext _ (dcenv p≐C⟦rin⟧) rinsn⟶₁ro) ,′
_ , dehole , dehole , rraise-shared {_} {_} {s} _ _ , vraise-shared
1-steplρ-E-view-ecsplit {ρθ·psn⟶₁ρθq·q = rraise-var {_} {_} {x} _ _} cb
divout-disjoint dehole dehole vraise-var
(dcvar p≐C⟦rin⟧) (dcvar r≐C⟦ro⟧) rinsn⟶₁ro with sym (unplugc r≐C⟦ro⟧)
... | refl
= _ , inj₂ (rcontext _ (dcenv p≐C⟦rin⟧) rinsn⟶₁ro) ,′
_ , dehole , dehole , rraise-var {_} {_} {x} _ _ , vraise-var
1-steplρ-E-view-ecsplit {ρθ·psn⟶₁ρθq·q = rif-false {x = x} x∈ θx≡zero dehole} cb
divout-disjoint dehole dehole vif-false
(dcif₁ p≐C⟦rin⟧) (dcif₁ r≐C⟦ro⟧) rinsn⟶₁ro =
_ , inj₁ refl ,′
_ , dehole , dehole , rif-false {x = x} x∈ θx≡zero dehole , vif-false
1-steplρ-E-view-ecsplit {ρθ·psn⟶₁ρθq·q = rif-false {x = x} x∈ θx≡zero dehole} cb
divout-disjoint dehole dehole vif-false
(dcif₂ p≐C⟦rin⟧) (dcif₂ r≐C⟦ro⟧) rinsn⟶₁ro with sym (unplugc r≐C⟦ro⟧)
... | refl
= _ , inj₂ (rcontext _ p≐C⟦rin⟧ rinsn⟶₁ro) ,′
_ , dehole , dehole , rif-false {x = x} x∈ θx≡zero dehole , vif-false
1-steplρ-E-view-ecsplit {ρθ·psn⟶₁ρθq·q = rif-true {θ} {x = x} x∈ θx≡suc dehole} cb
divout-disjoint dehole dehole vif-true
(dcif₁ p≐C⟦rin⟧) (dcif₁ r≐C⟦ro⟧) rinsn⟶₁ro with sym (unplugc r≐C⟦ro⟧)
... | refl
= _ , inj₂ (rcontext _ p≐C⟦rin⟧ rinsn⟶₁ro) ,′
_ , dehole , dehole , rif-true {x = x} x∈ θx≡suc dehole , vif-true
1-steplρ-E-view-ecsplit {ρθ·psn⟶₁ρθq·q = rif-true {x = x} x∈ θx≡suc dehole} cb
divout-disjoint dehole dehole vif-true
(dcif₂ p≐C⟦rin⟧) (dcif₂ r≐C⟦ro⟧) rinsn⟶₁ro =
_ , inj₁ refl ,′
_ , dehole , dehole , rif-true {x = x} x∈ θx≡suc dehole , vif-true
1-steplρ-E-view-ecsplit cb divpar-split₁
(depar₁ p₁≐E⟦qin⟧) (depar₁ q≐E⟦qo⟧) e-view
(dcpar₂ p≐C⟦rin⟧) (dcpar₂ r≐C⟦ro⟧) rinsn⟶₁ro
with unwrap-rho _ _ _ p₁≐E⟦qin⟧ q≐E⟦qo⟧ e-view
... | ρθ·p₁sn⟶₁ρθq·q , e-view' with sym (unplugc r≐C⟦ro⟧)
... | refl
= _ , inj₂ (rcontext _ (dcpar₂ p≐C⟦rin⟧) rinsn⟶₁ro) ,′
_ , _ , _ , wrap-rho ρθ·p₁sn⟶₁ρθq·q _ _ e-view' _ (depar₁ p₁≐E⟦qin⟧) (depar₁ q≐E⟦qo⟧)
1-steplρ-E-view-ecsplit cb divpar-split₂
(depar₂ p₂≐E⟦qin⟧) (depar₂ q≐E⟦qo⟧) e-view
(dcpar₁ p≐C⟦rin⟧) (dcpar₁ r≐C⟦ro⟧) rinsn⟶₁ro
with unwrap-rho _ _ _ p₂≐E⟦qin⟧ q≐E⟦qo⟧ e-view
... | ρθ·p₂sn⟶₁ρθq·q , e-view' with sym (unplugc r≐C⟦ro⟧)
... | refl
= _ , inj₂ (rcontext _ (dcpar₁ p≐C⟦rin⟧) rinsn⟶₁ro) ,′
_ , _ , _ , wrap-rho ρθ·p₂sn⟶₁ρθq·q _ _ e-view' _ (depar₂ p₂≐E⟦qin⟧) (depar₂ q≐E⟦qo⟧)
1-steplρ-E-view-ecsplit cb divseq-split
(deseq p₁≐E⟦qin⟧) (deseq q≐E⟦qo⟧) e-view
(dcseq₂ p≐C⟦rin⟧) (dcseq₂ r≐C⟦ro⟧) rinsn⟶₁ro
with unwrap-rho _ _ _ p₁≐E⟦qin⟧ q≐E⟦qo⟧ e-view
... | ρθ·p₁sn⟶₁ρθq·q , e-view' with sym (unplugc r≐C⟦ro⟧)
... | refl
= _ , inj₂ (rcontext _ (dcseq₂ p≐C⟦rin⟧) rinsn⟶₁ro) ,′
_ , _ , _ , wrap-rho ρθ·p₁sn⟶₁ρθq·q _ _ e-view' _ (deseq p₁≐E⟦qin⟧) (deseq q≐E⟦qo⟧)
1-steplρ-E-view-ecsplit cb divloopˢ-split
(deloopˢ p₁≐E⟦qin⟧) (deloopˢ q≐E⟦qo⟧) e-view
(dcloopˢ₂ p≐C⟦rin⟧) (dcloopˢ₂ r≐C⟦ro⟧) rinsn⟶₁ro
with unwrap-rho _ _ _ p₁≐E⟦qin⟧ q≐E⟦qo⟧ e-view
... | ρθ·p₁sn⟶₁ρθq·q , e-view' with sym (unplugc r≐C⟦ro⟧)
... | refl
= _ , inj₂ (rcontext _ (dcloopˢ₂ p≐C⟦rin⟧) rinsn⟶₁ro) ,′
_ , _ , _ , wrap-rho ρθ·p₁sn⟶₁ρθq·q _ _ e-view' _ (deloopˢ p₁≐E⟦qin⟧) (deloopˢ q≐E⟦qo⟧)
1-steplρ-E-view-ecsplit {ρθ·psn⟶₁ρθq·q = ρθ·E₁⟦p⟧sn⟶₁ρθq·E₁⟦q⟧}
cb@(CBpar cbp cbq _ _ _ _) (divin div)
(depar₁ p≐E⟦qin⟧) (depar₁ q≐E⟦qo⟧) e-view-E₁
(dcpar₁ p≐C⟦rin⟧) (dcpar₁ r≐C⟦ro⟧) rinsn⟶₁ro
with unwrap-rho ρθ·E₁⟦p⟧sn⟶₁ρθq·E₁⟦q⟧ (depar₁ p≐E⟦qin⟧) (depar₁ q≐E⟦qo⟧) p≐E⟦qin⟧ q≐E⟦qo⟧ e-view-E₁
... | (ρθ·psn⟶₁ρθq·q , e-view)
with 1-steplρ-E-view-ecsplit cbp div p≐E⟦qin⟧ q≐E⟦qo⟧ e-view p≐C⟦rin⟧ r≐C⟦ro⟧ rinsn⟶₁ro
... | _ , qsn⟶po? , _ , r≐E'⟦qin⟧ , po≐E'⟦qo⟧ , _ , e-view' =
_ , map (cong _) (Context1-sn⟶ (ceval (epar₁ _))) qsn⟶po? ,′
_ , depar₁ r≐E'⟦qin⟧ , depar₁ po≐E'⟦qo⟧ , wrap-rho _ _ _ e-view' _ _ _
1-steplρ-E-view-ecsplit {ρθ·psn⟶₁ρθq·q = ρθ·E₁⟦p⟧sn⟶₁ρθq·E₁⟦q⟧}
cb@(CBpar cbp cbq _ _ _ _) (divin div)
(depar₂ p≐E⟦qin⟧) (depar₂ q≐E⟦qo⟧) e-view-E₁
(dcpar₂ p≐C⟦rin⟧) (dcpar₂ r≐C⟦ro⟧) rinsn⟶₁ro
with unwrap-rho ρθ·E₁⟦p⟧sn⟶₁ρθq·E₁⟦q⟧ (depar₂ p≐E⟦qin⟧) (depar₂ q≐E⟦qo⟧) p≐E⟦qin⟧ q≐E⟦qo⟧ e-view-E₁
... | (ρθ·psn⟶₁ρθq·q , e-view)
with 1-steplρ-E-view-ecsplit cbq div p≐E⟦qin⟧ q≐E⟦qo⟧ e-view p≐C⟦rin⟧ r≐C⟦ro⟧ rinsn⟶₁ro
... | _ , qsn⟶po? , _ , r≐E'⟦qin⟧ , po≐E'⟦qo⟧ , _ , e-view' =
_ , map (cong _) (Context1-sn⟶ (ceval (epar₂ _))) qsn⟶po? ,′
_ , depar₂ r≐E'⟦qin⟧ , depar₂ po≐E'⟦qo⟧ , wrap-rho _ _ _ e-view' _ _ _
1-steplρ-E-view-ecsplit {ρθ·psn⟶₁ρθq·q = ρθ·E₁⟦p⟧sn⟶₁ρθq·E₁⟦q⟧}
cb@(CBseq cbp cbq _) (divin div)
(deseq p≐E⟦qin⟧) (deseq q≐E⟦qo⟧) e-view-E₁
(dcseq₁ p≐C⟦rin⟧) (dcseq₁ r≐C⟦ro⟧) rinsn⟶₁ro
with unwrap-rho ρθ·E₁⟦p⟧sn⟶₁ρθq·E₁⟦q⟧ (deseq p≐E⟦qin⟧) (deseq q≐E⟦qo⟧) p≐E⟦qin⟧ q≐E⟦qo⟧ e-view-E₁
... | (ρθ·psn⟶₁ρθq·q , e-view)
with 1-steplρ-E-view-ecsplit cbp div p≐E⟦qin⟧ q≐E⟦qo⟧ e-view p≐C⟦rin⟧ r≐C⟦ro⟧ rinsn⟶₁ro
... | _ , qsn⟶po? , _ , r≐E'⟦qin⟧ , po≐E'⟦qo⟧ , _ , e-view' =
_ , map (cong _) (Context1-sn⟶ (ceval (eseq _))) qsn⟶po? ,′
_ , deseq r≐E'⟦qin⟧ , deseq po≐E'⟦qo⟧ , wrap-rho _ _ _ e-view' _ _ _
1-steplρ-E-view-ecsplit {ρθ·psn⟶₁ρθq·q = ρθ·E₁⟦p⟧sn⟶₁ρθq·E₁⟦q⟧}
cb@(CBloopˢ cbp cbq _ _) (divin div)
(deloopˢ p≐E⟦qin⟧) (deloopˢ q≐E⟦qo⟧) e-view-E₁
(dcloopˢ₁ p≐C⟦rin⟧) (dcloopˢ₁ r≐C⟦ro⟧) rinsn⟶₁ro
with unwrap-rho ρθ·E₁⟦p⟧sn⟶₁ρθq·E₁⟦q⟧ (deloopˢ p≐E⟦qin⟧) (deloopˢ q≐E⟦qo⟧) p≐E⟦qin⟧ q≐E⟦qo⟧ e-view-E₁
... | (ρθ·psn⟶₁ρθq·q , e-view)
with 1-steplρ-E-view-ecsplit cbp div p≐E⟦qin⟧ q≐E⟦qo⟧ e-view p≐C⟦rin⟧ r≐C⟦ro⟧ rinsn⟶₁ro
... | _ , qsn⟶po? , _ , r≐E'⟦qin⟧ , po≐E'⟦qo⟧ , _ , e-view' =
_ , map (cong _) (Context1-sn⟶ (ceval (eloopˢ _))) qsn⟶po? ,′
_ , deloopˢ r≐E'⟦qin⟧ , deloopˢ po≐E'⟦qo⟧ , wrap-rho _ _ _ e-view' _ _ _
1-steplρ-E-view-ecsplit {ρθ·psn⟶₁ρθq·q = ρθ·E₁⟦p⟧sn⟶₁ρθq·E₁⟦q⟧}
cb@(CBsusp cb' _) (divin div)
(desuspend p≐E⟦qin⟧) (desuspend q≐E⟦qo⟧) e-view-E₁
(dcsuspend p≐C⟦rin⟧) (dcsuspend r≐C⟦ro⟧) rinsn⟶₁ro
with unwrap-rho ρθ·E₁⟦p⟧sn⟶₁ρθq·E₁⟦q⟧ (desuspend p≐E⟦qin⟧) (desuspend q≐E⟦qo⟧) p≐E⟦qin⟧ q≐E⟦qo⟧ e-view-E₁
... | (ρθ·psn⟶₁ρθq·q , e-view)
with 1-steplρ-E-view-ecsplit cb' div p≐E⟦qin⟧ q≐E⟦qo⟧ e-view p≐C⟦rin⟧ r≐C⟦ro⟧ rinsn⟶₁ro
... | _ , qsn⟶po? , _ , r≐E'⟦qin⟧ , po≐E'⟦qo⟧ , _ , e-view' =
_ , map (cong _) (Context1-sn⟶ (ceval (esuspend _))) qsn⟶po? ,′
_ , desuspend r≐E'⟦qin⟧ , desuspend po≐E'⟦qo⟧ , wrap-rho _ _ _ e-view' _ _ _
1-steplρ-E-view-ecsplit {ρθ·psn⟶₁ρθq·q = ρθ·E₁⟦p⟧sn⟶₁ρθq·E₁⟦q⟧}
cb@(CBtrap cb') (divin div)
(detrap p≐E⟦qin⟧) (detrap q≐E⟦qo⟧) e-view-E₁
(dctrap p≐C⟦rin⟧) (dctrap r≐C⟦ro⟧) rinsn⟶₁ro
with unwrap-rho ρθ·E₁⟦p⟧sn⟶₁ρθq·E₁⟦q⟧ (detrap p≐E⟦qin⟧) (detrap q≐E⟦qo⟧) p≐E⟦qin⟧ q≐E⟦qo⟧ e-view-E₁
... | (ρθ·psn⟶₁ρθq·q , e-view)
with 1-steplρ-E-view-ecsplit cb' div p≐E⟦qin⟧ q≐E⟦qo⟧ e-view p≐C⟦rin⟧ r≐C⟦ro⟧ rinsn⟶₁ro
... | _ , qsn⟶po? , _ , r≐E'⟦qin⟧ , po≐E'⟦qo⟧ , _ , e-view' =
_ , map (cong _) (Context1-sn⟶ (ceval etrap)) qsn⟶po? ,′
_ , detrap r≐E'⟦qin⟧ , detrap po≐E'⟦qo⟧ , wrap-rho _ _ _ e-view' _ _ _
| {
"alphanum_fraction": 0.6205983797,
"avg_line_length": 40.2161290323,
"ext": "agda",
"hexsha": "9dac96078cd71e1f5222160f040f694937f00fac",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z",
"max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "florence/esterel-calculus",
"max_forks_repo_path": "agda/sn-calculus-compatconf/split.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "florence/esterel-calculus",
"max_issues_repo_path": "agda/sn-calculus-compatconf/split.agda",
"max_line_length": 107,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "florence/esterel-calculus",
"max_stars_repo_path": "agda/sn-calculus-compatconf/split.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z",
"num_tokens": 6954,
"size": 12467
} |
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import homotopy.PtdMapSequence
open import homotopy.CofiberSequence
open import groups.Exactness
open import groups.ExactSequence
open import groups.HomSequence
open import cohomology.Theory
module cohomology.Sigma {i} (CT : CohomologyTheory i)
(n : ℤ) (X : Ptd i) (Y : de⊙ X → Ptd i) where
open CohomologyTheory CT
open import cohomology.PtdMapSequence CT
{- Cⁿ(Σx:X.Y) = Cⁿ(⋁x:X.Y) × Cⁿ(X). The proof is by constructing a
- splitting exact sequence
0 → Cⁿ(⋁x:X.Y) → Cⁿ(Σx:X.Y) → Cⁿ(X)
- by observing that the map [select : x ↦ (x, pt Yₓ)] has a left inverse
- and satisfies [Cofiber select == ⋁x:X.Y. -}
⊙select : X ⊙→ ⊙Σ X Y
⊙select = (bigwedge-f Y , idp)
⊙Σbwin : ⊙Σ X Y ⊙→ ⊙BigWedge Y
⊙Σbwin = ⊙cfcod' ⊙select
private
abstract
cst-C-Σbwin-is-exact : is-exact (cst-hom {G = C n (⊙Susp X)}) (C-fmap n ⊙Σbwin)
cst-C-Σbwin-is-exact = equiv-preserves-exact
{φ₁ = cst-hom {G = C n (⊙Susp X)}}
{ξG = C-fmap n (⊙Susp-to-⊙Cof² ⊙select)} {ξH = idhom _} {ξK = idhom _}
(comm-sqrᴳ λ x →
CEl-fmap n (⊙cfcod²' ⊙select) x
=⟨ ! $ CEl-fmap-idf n $ CEl-fmap n (⊙cfcod²' ⊙select) x ⟩
CEl-fmap n (⊙idf _) (CEl-fmap n (⊙cfcod²' ⊙select) x)
=⟨ C-comm-square n (extract-glue-cod²-comm-sqr ⊙select) □$ᴳ x ⟩
CEl-fmap n ⊙extract-glue (CEl-fmap n (⊙Susp-to-⊙Cof² ⊙select) x)
=⟨ CEl-fmap-const n (extract-glue-from-BigWedge-is-const Y) _ ⟩
Cident n _
=∎)
(comm-sqrᴳ λ _ → idp)
(C-isemap n (⊙Susp-to-⊙Cof² ⊙select) (snd (Cof²-equiv-Susp ⊙select ⁻¹)))
(idf-is-equiv _)
(idf-is-equiv _)
(C-exact n ⊙Σbwin)
χ : C n X →ᴳ C n (⊙Σ X Y)
χ = C-fmap n (⊙fstᵈ Y)
abstract
select-χ-is-idf : ∀ s → CEl-fmap n ⊙select (GroupHom.f χ s) == s
select-χ-is-idf = CEl-fmap-inverse n ⊙select (⊙fstᵈ Y) λ _ → idp
C-Σ : C n (⊙Σ X Y) ≃ᴳ C n (⊙BigWedge Y) ×ᴳ C n X
C-Σ = Exact.φ-inj-and-ψ-has-rinv-split
(C-exact n ⊙select) (C-is-abelian n _)
(Exact.φ-const-implies-ψ-is-inj cst-C-Σbwin-is-exact (λ _ → idp))
χ select-χ-is-idf
{-
⊙Σbwin-over : CF-hom n ⊙Σbwin == ×ᴳ-inl
[ (λ G → GroupHom (C n (⊙BigWedge Y)) G) ↓ path ]
⊙Σbwin-over = SER.φ-over-iso
⊙select-over : CF-hom n ⊙select == ×ᴳ-snd {G = C n (⊙BigWedge Y)}
[ (λ G → GroupHom G (C n X)) ↓ path ]
⊙select-over = SER.ψ-over-iso
open CofSelect public using (select; ⊙select; ⊙Σbwin)
-}
| {
"alphanum_fraction": 0.5897332255,
"avg_line_length": 32.5526315789,
"ext": "agda",
"hexsha": "65dcd106269cd877ab6c65f96d32c54c279cec6b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "theorems/cohomology/Sigma.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "theorems/cohomology/Sigma.agda",
"max_line_length": 83,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "theorems/cohomology/Sigma.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1124,
"size": 2474
} |
module _ where
open import Agda.Builtin.Unit
open import Agda.Builtin.Reflection
data D (B : Set) {{b : B}} : Set where
c : D B
postulate
B : Set
instance b : B
T : D B → Set
macro
this : Term → Term → TC ⊤
this thing hole = unify hole thing
test₁ : _
test₁ = c {_} {{b}}
test₂ : D B
test₂ = c {_} {{b}}
test₃ : D B
test₃ = this (c {{b}})
| {
"alphanum_fraction": 0.5905292479,
"avg_line_length": 13.2962962963,
"ext": "agda",
"hexsha": "6e32356150a87128bed1aba5092d19086dad12cc",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue1989.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue1989.agda",
"max_line_length": 38,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue1989.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 132,
"size": 359
} |
-- {-# OPTIONS -v tc:10 -v tc.inj:100 #-}
-- 2013-02-18 reported by rotsor
module Issue796o where
data U : Set where
a b : U
data A : Set where
data B : Set where
abstract
A' B' : Set
A' = A
B' = B -- fails if changed to A. Should always fail.
[_] : U → Set
[_] a = A'
[_] b = B'
f : ∀ u → [ u ] → U
f u _ = u
postulate x : A'
zzz = f _ x
| {
"alphanum_fraction": 0.5391061453,
"avg_line_length": 12.7857142857,
"ext": "agda",
"hexsha": "ba53afa8676d47beaa6e42162e742c7b728e38a6",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue796o.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue796o.agda",
"max_line_length": 56,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue796o.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 144,
"size": 358
} |
{-# OPTIONS --without-K --safe #-}
module Categories.Functor.Instance.01-Truncation where
-- (0,1)-trucation of categories as a functor from Cats to Posets.
--
-- This is the right-adjoint of the inclusion functor from Posets to
-- Cats (see Categories.Functor.Adjoint.Instance.01-Truncation)
open import Level using (_⊔_)
open import Function using (flip)
open import Data.Product as Prod using (_,_; _×_)
open import Relation.Binary.OrderMorphism using (_⇒-Poset_)
open import Relation.Binary using (Poset)
open import Categories.Category using (Category; _[_≈_])
open import Categories.Functor hiding (id)
open import Categories.Category using (Category)
open import Categories.Category.Instance.Cats using (Cats)
open import Categories.Category.Instance.Posets using (Posets)
import Categories.Morphism as Morphism
open import Categories.NaturalTransformation.NaturalIsomorphism
using (NaturalIsomorphism; _≃_)
Trunc : ∀ {o ℓ e} → Functor (Cats o ℓ e) (Posets o ℓ ℓ)
Trunc {o} {ℓ} {e} = record
{ F₀ = Trunc₀
; F₁ = Trunc₁
; identity = λ {C} → id C , id C
; homomorphism = λ {_ _ C} → id C , id C
; F-resp-≈ = TruncRespNI
}
where
open Functor
-- The choice of _≈_ below may seem a bit arbitrary. The
-- rationale is as follows:
--
-- Since we are defining an Agda stdlib-style poset, we have to
-- pick an equality on the carrier set, i.e. on objects. But
-- objects do not come with an equality in this library (that's
-- considered evil), so we pick isomorphism. In a poset, any
-- pair of morphisms f : X ⇒ Y and g : Y ⇒ X constitute an
-- isomorphism between X and Y. Hence the definition of _≈_.
Trunc₀ : Category o ℓ e → Poset o ℓ ℓ
Trunc₀ C = record
{ Carrier = Obj
; _≈_ = λ x y → x ⇒ y × y ⇒ x
; _≤_ = _⇒_
; isPartialOrder = record
{ isPreorder = record
{ isEquivalence = record
{ refl = id , id
; sym = Prod.swap
; trans = Prod.zip (flip _∘_) _∘_
}
; reflexive = Prod.proj₁
; trans = flip _∘_
}
; antisym = _,_
}
}
where open Category C
Trunc₁ : ∀ {C D} → Functor C D → Trunc₀ C ⇒-Poset Trunc₀ D
Trunc₁ F = record { fun = F₀ F ; monotone = F₁ F }
TruncRespNI : ∀ {C D : Category o ℓ e} {F G : Functor C D} →
F ≃ G → Posets o ℓ ℓ [ Trunc₁ F ≈ Trunc₁ G ]
TruncRespNI μ {X} = ⇒.η X , ⇐.η X
where open NaturalIsomorphism μ
open Category
| {
"alphanum_fraction": 0.5905011219,
"avg_line_length": 35.6533333333,
"ext": "agda",
"hexsha": "2e4ce3f711a092e43e091916c9e26d5df2610cea",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bblfish/agda-categories",
"max_forks_repo_path": "src/Categories/Functor/Instance/01-Truncation.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bblfish/agda-categories",
"max_issues_repo_path": "src/Categories/Functor/Instance/01-Truncation.agda",
"max_line_length": 68,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bblfish/agda-categories",
"max_stars_repo_path": "src/Categories/Functor/Instance/01-Truncation.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 787,
"size": 2674
} |
module Oscar.Level where
open import Agda.Primitive public
using ()
renaming (Level to Ł̂; lzero to Ø̂; lsuc to ↑̂_; _⊔_ to _+̂_)
open import Agda.Primitive public
using ()
renaming (Level to Ł̂; lzero to lzero; lsuc to lsuc; _⊔_ to _⊔_)
𝑶 : ∀ a → Set (lsuc a)
𝑶 a = Set a
open import Agda.Primitive public
using ()
renaming ( Level to Ł
; lzero to ∅̂
; lsuc to ↑̂_
; _⊔_ to _∙̂_ )
infix 0 Ø_
Ø_ : ∀ 𝔬 → Set (↑̂ 𝔬)
Ø_ 𝔬 = Set 𝔬
Ø₀ = Ø ∅̂
| {
"alphanum_fraction": 0.5734693878,
"avg_line_length": 18.1481481481,
"ext": "agda",
"hexsha": "bae9b7d4f051c7dd962a1b5df1a281b9ff04b8ef",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-2/Oscar/Level.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-2/Oscar/Level.agda",
"max_line_length": 66,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-2/Oscar/Level.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 218,
"size": 490
} |
module pushdown where
open import Level renaming ( suc to succ ; zero to Zero )
open import Data.Nat
open import Data.List
open import Data.Maybe
-- open import Data.Bool using ( Bool ; true ; false )
open import Relation.Binary.PropositionalEquality hiding ( [_] )
open import Relation.Nullary using (¬_; Dec; yes; no)
open import Level renaming ( suc to succ ; zero to Zero )
-- open import Data.Product
open import logic
open import automaton
data PushDown ( Γ : Set ) : Set where
pop : PushDown Γ
push : Γ → PushDown Γ
none : PushDown Γ
record PushDownAutomaton ( Q : Set ) ( Σ : Set ) ( Γ : Set )
: Set where
field
pδ : Q → Σ → Γ → Q ∧ ( PushDown Γ )
pok : Q → Bool
pempty : Γ
pmoves : Q → List Γ → Σ → ( Q ∧ List Γ )
pmoves q [] i with pδ q i pempty
pmoves q [] i | ⟪ qn , pop ⟫ = ⟪ qn , [] ⟫
pmoves q [] i | ⟪ qn , push x ⟫ = ⟪ qn , ( x ∷ [] ) ⟫
pmoves q [] i | ⟪ qn , none ⟫ = ⟪ qn , [] ⟫
pmoves q ( H ∷ T ) i with pδ q i H
pmoves q (H ∷ T) i | ⟪ qn , pop ⟫ = ⟪ qn , T ⟫
pmoves q (H ∷ T) i | ⟪ qn , none ⟫ = ⟪ qn , (H ∷ T) ⟫
pmoves q (H ∷ T) i | ⟪ qn , push x ⟫ = ⟪ qn , x ∷ H ∷ T ⟫
paccept : (q : Q ) ( In : List Σ ) ( sp : List Γ ) → Bool
paccept q [] [] = pok q
paccept q ( H ∷ T) [] with pδ q H pempty
paccept q (H ∷ T) [] | ⟪ qn , pop ⟫ = paccept qn T []
paccept q (H ∷ T) [] | ⟪ qn , none ⟫ = paccept qn T []
paccept q (H ∷ T) [] | ⟪ qn , push x ⟫ = paccept qn T (x ∷ [] )
paccept q [] (_ ∷ _ ) = false
paccept q ( H ∷ T ) ( SH ∷ ST ) with pδ q H SH
... | ⟪ nq , pop ⟫ = paccept nq T ST
... | ⟪ nq , none ⟫ = paccept nq T (SH ∷ ST)
... | ⟪ nq , push ns ⟫ = paccept nq T ( ns ∷ SH ∷ ST )
record PDA ( Q : Set ) ( Σ : Set ) ( Γ : Set )
: Set where
field
automaton : Automaton Q Σ
pδ : Q → PushDown Γ
open Automaton
paccept : (q : Q ) ( In : List Σ ) ( sp : List Γ ) → Bool
paccept q [] [] = aend automaton q
paccept q (H ∷ T) [] with pδ (δ automaton q H)
paccept q (H ∷ T) [] | pop = paccept (δ automaton q H) T []
paccept q (H ∷ T) [] | none = paccept (δ automaton q H) T []
paccept q (H ∷ T) [] | push x = paccept (δ automaton q H) T (x ∷ [] )
paccept q [] (_ ∷ _ ) = false
paccept q ( H ∷ T ) ( SH ∷ ST ) with pδ (δ automaton q H)
... | pop = paccept (δ automaton q H) T ST
... | none = paccept (δ automaton q H) T (SH ∷ ST)
... | push ns = paccept (δ automaton q H) T ( ns ∷ SH ∷ ST )
data States0 : Set where
sr : States0
data In2 : Set where
i0 : In2
i1 : In2
pnn : PushDownAutomaton States0 In2 States0
pnn = record {
pδ = pδ
; pempty = sr
; pok = λ q → true
} where
pδ : States0 → In2 → States0 → States0 ∧ PushDown States0
pδ sr i0 _ = ⟪ sr , push sr ⟫
pδ sr i1 _ = ⟪ sr , pop ⟫
data States2 : Set where
ph1 : States2
ph2 : States2
phf : States2
pnnp : PDA States2 In2 States2
pnnp = record {
automaton = record { aend = aend ; δ = δ }
; pδ = pδ
} where
δ : States2 → In2 → States2
δ ph1 i0 = ph1
δ ph1 i1 = ph2
δ ph2 i1 = ph2
δ _ _ = phf
aend : States2 → Bool
aend ph2 = true
aend _ = false
pδ : States2 → PushDown States2
pδ ph1 = push ph1
pδ ph2 = pop
pδ phf = none
data States1 : Set where
ss : States1
st : States1
pn1 : PushDownAutomaton States1 In2 States1
pn1 = record {
pδ = pδ
; pempty = ss
; pok = pok1
} where
pok1 : States1 → Bool
pok1 ss = false
pok1 st = true
pδ : States1 → In2 → States1 → States1 ∧ PushDown States1
pδ ss i0 _ = ⟪ ss , push ss ⟫
pδ ss i1 _ = ⟪ st , pop ⟫
pδ st i0 _ = ⟪ st , push ss ⟫
pδ st i1 _ = ⟪ st , pop ⟫
test1 = PushDownAutomaton.paccept pnn sr ( i0 ∷ i0 ∷ i1 ∷ i1 ∷ [] ) []
test2 = PushDownAutomaton.paccept pnn sr ( i0 ∷ i0 ∷ i1 ∷ i0 ∷ [] ) []
test3 = PushDownAutomaton.pmoves pnn sr [] i0
test4 = PushDownAutomaton.paccept pnn sr ( i0 ∷ i0 ∷ i1 ∷ i1 ∷ i0 ∷ i1 ∷ [] ) []
test5 = PushDownAutomaton.paccept pn1 ss ( i0 ∷ i0 ∷ i1 ∷ i1 ∷ [] ) []
test6 = PushDownAutomaton.paccept pn1 ss ( i0 ∷ i0 ∷ i1 ∷ i1 ∷ i0 ∷ i1 ∷ [] ) []
| {
"alphanum_fraction": 0.5033967391,
"avg_line_length": 32.9552238806,
"ext": "agda",
"hexsha": "2a0f807b61e516436d2c122d1645e2846643dc81",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "shinji-kono/automaton-in-agda",
"max_forks_repo_path": "src/pushdown.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "shinji-kono/automaton-in-agda",
"max_issues_repo_path": "src/pushdown.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "shinji-kono/automaton-in-agda",
"max_stars_repo_path": "src/pushdown.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1751,
"size": 4416
} |
-- Compiled things must have a Haskell type given by a COMPILED_TYPE pragma
module CompiledMustHaveHaskellType where
postulate
N : Set
foo : N
-- It is necessary add something like
-- {-# COMPILED_TYPE N Int #-}
{-# COMPILED foo bar #-}
| {
"alphanum_fraction": 0.7183673469,
"avg_line_length": 18.8461538462,
"ext": "agda",
"hexsha": "ecdd2baa76ca58c28f22809db4f6a7635d7433c5",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/CompiledMustHaveHaskellType.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/CompiledMustHaveHaskellType.agda",
"max_line_length": 75,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Fail/CompiledMustHaveHaskellType.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 64,
"size": 245
} |
module FFI.IO where
open import Agda.Builtin.IO using (IO)
open import Agda.Builtin.Unit using (⊤)
open import Agda.Builtin.String using (String)
open import FFI.Data.HaskellString using (HaskellString; pack ; unpack)
infixl 1 _>>=_
infixl 1 _>>_
postulate
return : ∀ {a} {A : Set a} → A → IO A
_>>=_ : ∀ {a b} {A : Set a} {B : Set b} → IO A → (A → IO B) → IO B
fmap : ∀ {a b} {A : Set a} {B : Set b} → (A → B) → IO A → IO B
{-# COMPILE GHC return = \_ _ -> return #-}
{-# COMPILE GHC _>>=_ = \_ _ _ _ -> (>>=) #-}
{-# COMPILE GHC fmap = \_ _ _ _ -> fmap #-}
postulate getHContents : IO HaskellString
{-# COMPILE GHC getHContents = getContents #-}
postulate putHStrLn : HaskellString → IO ⊤
{-# COMPILE GHC putHStrLn = putStrLn #-}
getContents : IO String
getContents = fmap pack getHContents
putStrLn : String → IO ⊤
putStrLn txt = putHStrLn (unpack txt)
_>>_ : ∀ {a} {A : Set a} → IO ⊤ → IO A → IO A
a >> b = a >>= (λ _ → b )
| {
"alphanum_fraction": 0.6010526316,
"avg_line_length": 27.1428571429,
"ext": "agda",
"hexsha": "825a788f861707fd246883475caf76cd331b75a6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "XanderYZZ/luau",
"max_forks_repo_path": "prototyping/FFI/IO.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "XanderYZZ/luau",
"max_issues_repo_path": "prototyping/FFI/IO.agda",
"max_line_length": 71,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "72d8d443431875607fd457a13fe36ea62804d327",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "TheGreatSageEqualToHeaven/luau",
"max_stars_repo_path": "prototyping/FFI/IO.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-05T21:53:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-12-05T21:53:03.000Z",
"num_tokens": 332,
"size": 950
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties satisfied by posets
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary
module Relation.Binary.Properties.Poset
{p₁ p₂ p₃} (P : Poset p₁ p₂ p₃) where
open Relation.Binary.Poset P hiding (trans)
open import Relation.Binary.Construct.NonStrictToStrict _≈_ _≤_
open import Relation.Binary.Properties.Preorder preorder
open import Function using (flip)
-- The inverse relation is also a poset.
invIsPartialOrder : IsPartialOrder _≈_ (flip _≤_)
invIsPartialOrder = record
{ isPreorder = invIsPreorder
; antisym = flip antisym
}
invPoset : Poset p₁ p₂ p₃
invPoset = record { isPartialOrder = invIsPartialOrder }
------------------------------------------------------------------------
-- Posets can be turned into strict partial orders
strictPartialOrder : StrictPartialOrder _ _ _
strictPartialOrder = record
{ isStrictPartialOrder = <-isStrictPartialOrder isPartialOrder
}
open StrictPartialOrder strictPartialOrder
| {
"alphanum_fraction": 0.6168549088,
"avg_line_length": 29.5128205128,
"ext": "agda",
"hexsha": "37d43470a0ea791917cfb8da8d4d86a3745d12f0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Properties/Poset.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Properties/Poset.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Properties/Poset.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 251,
"size": 1151
} |
------------------------------------------------------------------------------
-- The division result is correct
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Program.Division.ResultI where
open import Common.FOL.Relation.Binary.EqReasoning
open import FOTC.Base
open import FOTC.Data.Nat
open import FOTC.Data.Nat.Inequalities
open import FOTC.Data.Nat.PropertiesI
open import FOTC.Program.Division.ConversionRulesI
open import FOTC.Program.Division.Division
open import FOTC.Program.Division.Specification
------------------------------------------------------------------------------
-- The division result is correct when the dividend is less than
-- the divisor.
div-x<y-helper : ∀ {i j} → N i → N j → i < j → i ≡ j * div i j + i
div-x<y-helper {i} {j} Ni Nj i<j = sym prf
where
prf : j * div i j + i ≡ i
prf = j * div i j + i ≡⟨ +-leftCong (*-rightCong (div-x<y i<j)) ⟩
j * zero + i ≡⟨ +-leftCong (*-rightZero Nj) ⟩
zero + i ≡⟨ +-leftIdentity i ⟩
i ∎
div-x<y-resultCorrect : ∀ {i j} → N i → N j → i < j →
∃[ r ] N r ∧ r < j ∧ i ≡ j * div i j + r
div-x<y-resultCorrect Ni Nj i<j = _ , Ni , i<j , div-x<y-helper Ni Nj i<j
-- The division result is correct when the dividend is greater or equal
-- than the divisor.
-- Using the inductive hypothesis ih we know that
--
-- i ∸ j = j * (div (i ∸ j) j) + r.
-- From that we get
--
-- i = j * (succ (div (i ∸ j) j)) + r and we know
--
-- div i j = succ (div (i ∸ j) j) therefore we get
--
-- i = j * div i j + r.
postulate helper : ∀ {i j r} → N i → N j → N r →
i ∸ j ≡ j * div (i ∸ j) j + r →
i ≡ j * succ₁ (div (i ∸ j) j) + r
div-x≮y-helper : ∀ {i j r} → N i → N j → N r →
i ≮ j →
i ∸ j ≡ j * div (i ∸ j) j + r →
i ≡ j * div i j + r
div-x≮y-helper {i} {j} {r} Ni Nj Nr i≮j helperH =
i ≡⟨ helper Ni Nj Nr helperH ⟩
j * succ₁ (div (i ∸ j) j) + r ≡⟨ prf ⟩
j * div i j + r ∎
where
prf : j * succ₁ (div (i ∸ j) j) + r ≡ j * div i j + r
prf = subst (λ x → j * x + r ≡ j * div i j + r)
(div-x≮y i≮j)
refl
-- 2012-02-29: We are using the existential witness only for
-- documenting the types in the where clause. They could be removed.
div-x≮y-resultCorrect : ∀ {i j} → N i → N j →
(divSpec (i ∸ j) j (div (i ∸ j) j)) →
i ≮ j →
∃[ r ] N r ∧ r < j ∧ i ≡ j * div i j + r
div-x≮y-resultCorrect {i} {j} Ni Nj (h₁ , r , r-correct) i≮j =
r , Nr , r<j , div-x≮y-helper Ni Nj Nr i≮j helperH
where
Nr : N r
Nr = ∧-proj₁ r-correct
r<j : r < j
r<j = ∧-proj₁ (∧-proj₂ r-correct)
helperH : i ∸ j ≡ j * div (i ∸ j) j + r
helperH = ∧-proj₂ (∧-proj₂ r-correct)
| {
"alphanum_fraction": 0.4680851064,
"avg_line_length": 35.1149425287,
"ext": "agda",
"hexsha": "e3a2f9f81adbb40af148d9de12fa5f52fbd9d718",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Program/Division/ResultI.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Program/Division/ResultI.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Program/Division/ResultI.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 1026,
"size": 3055
} |
{-# OPTIONS --safe --warning=error --without-K #-}
open import Setoids.Setoids
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Groups.Definition
module Groups.Abelian.Definition where
record AbelianGroup {a} {b} {A : Set a} {S : Setoid {a} {b} A} {_·_ : A → A → A} (G : Group S _·_) : Set (lsuc a ⊔ b) where
open Setoid S
field
commutative : {a b : A} → (a · b) ∼ (b · a)
| {
"alphanum_fraction": 0.6305418719,
"avg_line_length": 31.2307692308,
"ext": "agda",
"hexsha": "fd8657e7bdf36f4b0607b6baacbaad737b5300f7",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Groups/Abelian/Definition.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Groups/Abelian/Definition.agda",
"max_line_length": 123,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Groups/Abelian/Definition.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 147,
"size": 406
} |
{-# OPTIONS --allow-unsolved-metas #-}
-- The option is supplied to force a real error to pass the regression test.
module StronglyRigidOccurrence where
data Nat : Set where
zero : Nat
suc : Nat -> Nat
data _≡_ {A : Set}(a : A) : A -> Set where
refl : a ≡ a
test : let X : Nat; X = _ in X ≡ suc X
test = refl
-- this gives an error in the occurs checker
| {
"alphanum_fraction": 0.6538461538,
"avg_line_length": 24.2666666667,
"ext": "agda",
"hexsha": "5846283d41d3cf63c68d7d0a34476ac0f28ea132",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4383a3d20328a6c43689161496cee8eb479aca08",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dagit/agda",
"max_forks_repo_path": "test/fail/StronglyRigidOccurrence.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4383a3d20328a6c43689161496cee8eb479aca08",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dagit/agda",
"max_issues_repo_path": "test/fail/StronglyRigidOccurrence.agda",
"max_line_length": 76,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "4383a3d20328a6c43689161496cee8eb479aca08",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dagit/agda",
"max_stars_repo_path": "test/fail/StronglyRigidOccurrence.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T07:26:06.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T07:26:06.000Z",
"num_tokens": 113,
"size": 364
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Universal lifting of predicates over Vectors
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Vec.Functional.Relation.Unary.All where
open import Data.Fin.Base
open import Data.Fin.Properties
open import Data.Nat.Base
open import Data.Product using (_,_)
open import Data.Vec.Functional as VF hiding (map)
open import Level using (Level)
open import Relation.Unary
private
variable
a p q ℓ : Level
A : Set a
------------------------------------------------------------------------
-- Definition
All : Pred A ℓ → ∀ {n} → Vector A n → Set ℓ
All P xs = ∀ i → P (xs i)
------------------------------------------------------------------------
-- Operations
module _ {P : Pred A p} {Q : Pred A q} where
map : P ⊆ Q → ∀ {n} → All P {n = n} ⊆ All Q
map p⊆q ps i = p⊆q (ps i)
------------------------------------------------------------------------
-- Properties of predicates preserved by All
module _ {P : Pred A p} where
all : Decidable P → ∀ {n} → Decidable (All P {n = n})
all p? xs = all? λ i → p? (xs i)
universal : Universal P → ∀ {n} → Universal (All P {n = n})
universal uni xs i = uni (xs i)
satisfiable : Satisfiable P → ∀ {n} → Satisfiable (All P {n = n})
satisfiable (x , px) = (λ _ → x) , (λ _ → px)
| {
"alphanum_fraction": 0.4652631579,
"avg_line_length": 27.9411764706,
"ext": "agda",
"hexsha": "7c6e418a6dd9374fffb258ceeb590f1b94dd0446",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/Vec/Functional/Relation/Unary/All.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/Vec/Functional/Relation/Unary/All.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/Vec/Functional/Relation/Unary/All.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 359,
"size": 1425
} |
{-# OPTIONS --prop --rewriting #-}
open import Calf.CostMonoid
open import Data.Nat using (ℕ)
open import Examples.Sorting.Comparable
module Examples.Sorting.Core
(costMonoid : CostMonoid) (fromℕ : ℕ → CostMonoid.ℂ costMonoid)
(M : Comparable costMonoid fromℕ)
where
open Comparable M
open import Calf costMonoid
open import Calf.Types.List
open import Relation.Nullary
open import Relation.Nullary.Negation
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; module ≡-Reasoning)
open import Data.Product using (_×_; _,_; ∃; proj₁; proj₂)
open import Data.Sum using (inj₁; inj₂)
open import Data.Nat as Nat using (ℕ; zero; suc; z≤n; s≤s; _+_; _*_; _^_; ⌊_/2⌋; ⌈_/2⌉)
import Data.Nat.Properties as N
open import Data.List.Properties using (++-assoc; length-++) public
open import Data.List.Relation.Binary.Permutation.Propositional public
open import Data.List.Relation.Binary.Permutation.Propositional.Properties
using (↭-length; ¬x∷xs↭[]; All-resp-↭; Any-resp-↭; drop-∷; ++-identityʳ)
renaming (++-comm to ++-comm-↭; ++⁺ˡ to ++⁺ˡ-↭; ++⁺ʳ to ++⁺ʳ-↭; ++⁺ to ++⁺-↭) public
open import Data.List.Relation.Unary.All using (All; []; _∷_; map; lookup) public
open import Data.List.Relation.Unary.All.Properties as AllP using () renaming (++⁺ to ++⁺-All) public
open import Data.List.Relation.Unary.Any using (Any; here; there)
_≥_ : val A → val A → Set
x ≥ y = y ≤ x
_≰_ : val A → val A → Set
x ≰ y = ¬ x ≤ y
≰⇒≥ : _≰_ ⇒ _≥_
≰⇒≥ {x} {y} h with ≤-total x y
... | inj₁ h₁ = contradiction h₁ h
... | inj₂ h₂ = h₂
_≤*_ : val A → val (list A) → Set
_≤*_ x = All (x ≤_)
≤-≤* : ∀ {x₁ x₂ l} → x₁ ≤ x₂ → x₂ ≤* l → x₁ ≤* l
≤-≤* x₁≤x₂ = map (≤-trans x₁≤x₂)
data Sorted : val (list A) → Set where
[] : Sorted []
_∷_ : ∀ {y ys} → y ≤* ys → Sorted ys → Sorted (y ∷ ys)
short-sorted : {l : val (list A)} → length l Nat.≤ 1 → Sorted l
short-sorted {[]} _ = []
short-sorted {_ ∷ []} _ = [] ∷ []
short-sorted {_ ∷ _ ∷ _} (s≤s ())
unique-sorted : ∀ {l'₁ l'₂} → Sorted l'₁ → Sorted l'₂ → l'₁ ↭ l'₂ → l'₁ ≡ l'₂
unique-sorted [] [] ↭ = refl
unique-sorted [] (h₂ ∷ sorted₂) ↭ = contradiction (↭-sym ↭) ¬x∷xs↭[]
unique-sorted (h₁ ∷ sorted₁) [] ↭ = contradiction (↭) ¬x∷xs↭[]
unique-sorted (h₁ ∷ sorted₁) (h₂ ∷ sorted₂) ↭ with
≤-antisym
(lookup (≤-refl ∷ h₁) (Any-resp-↭ (↭-sym ↭) (here refl)))
(lookup (≤-refl ∷ h₂) (Any-resp-↭ (↭) (here refl)))
... | refl = Eq.cong (_ ∷_) (unique-sorted sorted₁ sorted₂ (drop-∷ ↭))
join-sorted : ∀ {l₁ mid l₂} → Sorted l₁ → Sorted l₂ → All (_≤ mid) l₁ → All (mid ≤_) l₂ → Sorted (l₁ ++ [ mid ] ++ l₂)
join-sorted [] sorted₂ all₁ all₂ = all₂ ∷ sorted₂
join-sorted (h ∷ sorted₁) sorted₂ (h' ∷ all₁) all₂ =
++⁺-All h (h' ∷ ≤-≤* h' all₂) ∷ (join-sorted sorted₁ sorted₂ all₁ all₂)
++⁻ˡ : ∀ xs {ys} → Sorted (xs ++ ys) → Sorted xs
++⁻ˡ [] sorted = []
++⁻ˡ (x ∷ xs) (h ∷ sorted) = AllP.++⁻ˡ xs h ∷ (++⁻ˡ xs sorted)
++⁻ʳ : ∀ xs {ys} → Sorted (xs ++ ys) → Sorted ys
++⁻ʳ [] sorted = sorted
++⁻ʳ (x ∷ xs) (h ∷ sorted) = ++⁻ʳ xs sorted
split-sorted₁ : ∀ xs {x} → Sorted (xs ∷ʳ x) → All (_≤ x) xs
split-sorted₁ [] sorted = []
split-sorted₁ (x ∷ xs) (h ∷ sorted) = proj₂ (AllP.∷ʳ⁻ h) ∷ split-sorted₁ xs sorted
uncons₁ : ∀ {x xs} → Sorted (x ∷ xs) → x ≤* xs
uncons₁ (h ∷ sorted) = h
uncons₂ : ∀ {x xs} → Sorted (x ∷ xs) → Sorted xs
uncons₂ (h ∷ sorted) = sorted
SortedOf : val (list A) → val (list A) → Set
SortedOf l l' = l ↭ l' × Sorted l'
SortResult : cmp (Π (list A) λ _ → F (list A)) → val (list A) → Set
SortResult sort l = ◯ (∃ λ l' → sort l ≡ ret l' × SortedOf l l')
IsSort : cmp (Π (list A) λ _ → F (list A)) → Set
IsSort sort = ∀ l → SortResult sort l
IsSort⇒≡ : ∀ sort₁ → IsSort sort₁ → ∀ sort₂ → IsSort sort₂ → ◯ (sort₁ ≡ sort₂)
IsSort⇒≡ sort₁ correct₁ sort₂ correct₂ u =
funext λ l →
let (l'₁ , ≡₁ , ↭₁ , sorted₁) = correct₁ l u in
let (l'₂ , ≡₂ , ↭₂ , sorted₂) = correct₂ l u in
begin
sort₁ l
≡⟨ ≡₁ ⟩
ret l'₁
≡⟨ Eq.cong ret (unique-sorted sorted₁ sorted₂ (trans (↭-sym ↭₁) ↭₂)) ⟩
ret l'₂
≡˘⟨ ≡₂ ⟩
sort₂ l
∎
where open ≡-Reasoning
| {
"alphanum_fraction": 0.5797619048,
"avg_line_length": 34.7107438017,
"ext": "agda",
"hexsha": "b073858fa7aefb0a897527af816969e93edd42ef",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-01-29T08:12:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-10-06T10:28:24.000Z",
"max_forks_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "jonsterling/agda-calf",
"max_forks_repo_path": "src/Examples/Sorting/Core.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "jonsterling/agda-calf",
"max_issues_repo_path": "src/Examples/Sorting/Core.agda",
"max_line_length": 118,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "jonsterling/agda-calf",
"max_stars_repo_path": "src/Examples/Sorting/Core.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T20:35:11.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-07-14T03:18:28.000Z",
"num_tokens": 1721,
"size": 4200
} |
{-# OPTIONS --safe #-}
module Definition.Typed.Consequences.Canonicity where
open import Definition.Untyped
open import Definition.Typed
open import Definition.Typed.Weakening
open import Definition.Typed.Properties
open import Definition.Typed.EqRelInstance
open import Definition.LogicalRelation
open import Definition.LogicalRelation.Irrelevance
open import Definition.LogicalRelation.ShapeView
open import Definition.LogicalRelation.Fundamental.Reducibility
open import Tools.Empty
open import Tools.Nat
open import Tools.Product
-- Turns a natural number into its term representation
sucᵏ : Nat → Term
sucᵏ 0 = zero
sucᵏ (1+ n) = suc (sucᵏ n)
-- No neutral terms are well-formed in an empty context
-- we need to postulate consistency
-- as we have several uninhabited propositions, we build an predicate
-- to characterize them
-- Note that we could also have defined reductions to Empty of other
-- forms of unihabited types
data isFalse : Term → Set where
isEmpty : ∀ {lEmpty} → isFalse (Empty lEmpty)
isIdℕΠ : ∀ {r A rA B} → isFalse (Id (Univ r ⁰) ℕ (Π A ^ rA ° ⁰ ▹ B ° ⁰ ° ⁰))
isIdΠℕ : ∀ {r A rA B} → isFalse (Id (Univ r ⁰) (Π A ^ rA ° ⁰ ▹ B ° ⁰ ° ⁰) ℕ)
isIdΠΠ%! : ∀ {r A B A' B'} → isFalse (Id (Univ r ⁰) (Π A ^ % ° ⁰ ▹ B ° ⁰ ° ⁰) (Π A' ^ ! ° ⁰ ▹ B' ° ⁰ ° ⁰))
isIdΠΠ!% : ∀ {r A B A' B'} → isFalse (Id (Univ r ⁰) (Π A ^ ! ° ⁰ ▹ B ° ⁰ ° ⁰) (Π A' ^ % ° ⁰ ▹ B' ° ⁰ ° ⁰))
consistency = ∀ {t A l} → isFalse A → ε ⊢ t ∷ A ^ [ % , l ] → ⊥
noNe : ∀ {t A r} → consistency → ε ⊢ t ∷ A ^ r → Neutral t → ⊥
-- impossible cases thanks to consistency
noNe consistency (Emptyrecⱼ A ⊢e) Emptyrecₙ = consistency isEmpty ⊢e
noNe consistency (castⱼ [A] [A]₁ [A]₂ [A]₃) castℕΠₙ = consistency isIdℕΠ [A]₂
noNe consistency (castⱼ [A] [A]₁ [A]₂ [A]₃) castΠℕₙ = consistency isIdΠℕ [A]₂
noNe consistency (castⱼ [A] [A]₁ [A]₂ [A]₃) castΠΠ%!ₙ = consistency isIdΠΠ%! [A]₂
noNe consistency (castⱼ [A] [A]₁ [A]₂ [A]₃) castΠΠ!%ₙ = consistency isIdΠΠ!% [A]₂
-- possible cases proven by induction
noNe consistency (⊢t ∘ⱼ ⊢t₁) (∘ₙ neT) = noNe consistency ⊢t neT
noNe consistency (natrecⱼ x ⊢t ⊢t₁ ⊢t₂) (natrecₙ neT) = noNe consistency ⊢t₂ neT
noNe consistency (var x₁ ()) (var x)
noNe consistency (Idⱼ [A] [A]₁ [A]₂) (Idₙ neT) = noNe consistency [A] neT
noNe consistency (Idⱼ [A] [A]₁ [A]₂) (Idℕₙ neT) = noNe consistency [A]₁ neT
noNe consistency (Idⱼ [A] [A]₁ [A]₂) (Idℕ0ₙ neT) = noNe consistency [A]₂ neT
noNe consistency (Idⱼ [A] [A]₁ [A]₂) (IdℕSₙ neT) = noNe consistency [A]₂ neT
noNe consistency (Idⱼ [A] [A]₁ [A]₂) (IdUₙ neT) = noNe consistency [A]₁ neT
noNe consistency (Idⱼ [A] [A]₁ [A]₂) (IdUℕₙ neT) = noNe consistency [A]₂ neT
noNe consistency (Idⱼ [A] [A]₁ [A]₂) (IdUΠₙ neT) = noNe consistency [A]₂ neT
noNe consistency (castⱼ [A] [A]₁ [A]₂ [A]₃) (castₙ neT) = noNe consistency [A] neT
noNe consistency (castⱼ [A] [A]₁ [A]₂ [A]₃) (castℕₙ neT) = noNe consistency [A]₁ neT
noNe consistency (castⱼ [A] [A]₁ [A]₂ [A]₃) (castΠₙ neT) = noNe consistency [A]₁ neT
noNe consistency (castⱼ [A] [A]₁ [A]₂ [A]₃) (castℕℕₙ neT) = noNe consistency [A]₃ neT
noNe consistency (conv ⊢t x) (var n) = noNe consistency ⊢t (var n)
noNe consistency (conv ⊢t x) (∘ₙ neT) = noNe consistency ⊢t (∘ₙ neT)
noNe consistency (conv ⊢t x) (natrecₙ neT) = noNe consistency ⊢t (natrecₙ neT)
noNe consistency (conv ⊢t x) (Idₙ neT) = noNe consistency ⊢t (Idₙ neT)
noNe consistency (conv ⊢t x) (Idℕₙ neT) = noNe consistency ⊢t (Idℕₙ neT)
noNe consistency (conv ⊢t x) (Idℕ0ₙ neT) = noNe consistency ⊢t (Idℕ0ₙ neT)
noNe consistency (conv ⊢t x) (IdℕSₙ neT) = noNe consistency ⊢t (IdℕSₙ neT)
noNe consistency (conv ⊢t x) (IdUₙ neT) = noNe consistency ⊢t (IdUₙ neT)
noNe consistency (conv ⊢t x) (IdUℕₙ neT) = noNe consistency ⊢t (IdUℕₙ neT)
noNe consistency (conv ⊢t x) (IdUΠₙ neT) = noNe consistency ⊢t (IdUΠₙ neT)
noNe consistency (conv ⊢t x) (castₙ neT) = noNe consistency ⊢t (castₙ neT)
noNe consistency (conv ⊢t x) (castℕₙ neT) = noNe consistency ⊢t (castℕₙ neT)
noNe consistency (conv ⊢t x) (castΠₙ neT) = noNe consistency ⊢t (castΠₙ neT)
noNe consistency (conv ⊢t x) (castℕℕₙ neT) = noNe consistency ⊢t (castℕℕₙ neT)
noNe consistency (conv ⊢t x) castℕΠₙ = noNe consistency ⊢t castℕΠₙ
noNe consistency (conv ⊢t x) castΠℕₙ = noNe consistency ⊢t castΠℕₙ
noNe consistency (conv ⊢t x) castΠΠ%!ₙ = noNe consistency ⊢t castΠΠ%!ₙ
noNe consistency (conv ⊢t x) castΠΠ!%ₙ = noNe consistency ⊢t castΠΠ!%ₙ
noNe consistency (conv ⊢t x) Emptyrecₙ = noNe consistency ⊢t Emptyrecₙ
-- Helper function for canonicity for reducible natural properties
canonicity″ : ∀ {t}
→ consistency
→ Natural-prop ε t
→ ∃ λ k → ε ⊢ t ≡ sucᵏ k ∷ ℕ ^ [ ! , ι ⁰ ]
canonicity″ consistency (sucᵣ (ℕₜ n₁ d n≡n prop)) =
let a , b = canonicity″ consistency prop
in 1+ a , suc-cong (trans (subset*Term (redₜ d)) b)
canonicity″ consistency zeroᵣ = 0 , refl (zeroⱼ ε)
canonicity″ consistency (ne (neNfₜ neK ⊢k k≡k)) = ⊥-elim (noNe consistency ⊢k neK)
-- Helper function for canonicity for specific reducible natural numbers
canonicity′ : ∀ {t l}
→ consistency
→ ([ℕ] : ε ⊩⟨ l ⟩ℕ ℕ)
→ ε ⊩⟨ l ⟩ t ∷ ℕ ^ [ ! , ι ⁰ ] / ℕ-intr [ℕ]
→ ∃ λ k → ε ⊢ t ≡ sucᵏ k ∷ ℕ ^ [ ! , ι ⁰ ]
canonicity′ consistency (noemb [ℕ]) (ℕₜ n d n≡n prop) = let a , b = canonicity″ consistency prop
in a , trans (subset*Term (redₜ d)) b
canonicity′ consistency (emb emb< [ℕ]) [t] = canonicity′ consistency [ℕ] [t]
canonicity′ consistency (emb ∞< [ℕ]) [t] = canonicity′ consistency [ℕ] [t]
-- Canonicity of natural numbers
canonicity : ∀ {t} →
consistency →
ε ⊢ t ∷ ℕ ^ [ ! , ι ⁰ ] →
∃ λ k → ε ⊢ t ≡ sucᵏ k ∷ ℕ ^ [ ! , ι ⁰ ]
canonicity consistency ⊢t with reducibleTerm ⊢t
canonicity consistency ⊢t | [ℕ] , [t] =
canonicity′ consistency (ℕ-elim [ℕ]) (irrelevanceTerm [ℕ] (ℕ-intr (ℕ-elim [ℕ])) [t])
| {
"alphanum_fraction": 0.6488783141,
"avg_line_length": 49.4453781513,
"ext": "agda",
"hexsha": "2c50f32f42156781b4be9a3c743621713b4310b4",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z",
"max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "CoqHott/logrel-mltt",
"max_forks_repo_path": "Definition/Typed/Consequences/Canonicity.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "CoqHott/logrel-mltt",
"max_issues_repo_path": "Definition/Typed/Consequences/Canonicity.agda",
"max_line_length": 108,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "CoqHott/logrel-mltt",
"max_stars_repo_path": "Definition/Typed/Consequences/Canonicity.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z",
"num_tokens": 2537,
"size": 5884
} |
{-# OPTIONS --cubical --safe #-}
module Data.Binary.PerformanceTests.Addition where
open import Prelude
open import Data.Binary.Definition
open import Data.Binary.Addition using (_+_)
sum-r : 𝔹 → ℕ → 𝔹
sum-r′ : 𝔹 → ℕ → 𝔹
sum-r′ x zero = x
sum-r′ x (suc n) = x + sum-r (2ᵇ x) n
sum-r x zero = x
sum-r x (suc n) = x + sum-r′ (1ᵇ x) n
sum-l : 𝔹 → ℕ → 𝔹
sum-l′ : 𝔹 → ℕ → 𝔹
sum-l′ x zero = x
sum-l′ x (suc n) = sum-l (2ᵇ x) n + x
sum-l x zero = x
sum-l x (suc n) = sum-l′ (1ᵇ x) n + x
one-thousand : 𝔹
one-thousand = 2ᵇ 1ᵇ 1ᵇ 2ᵇ 1ᵇ 2ᵇ 2ᵇ 2ᵇ 2ᵇ 0ᵇ
f : 𝔹
f = one-thousand
n : ℕ
n = 1000
-- The actual performance test (uncomment and time how long it takes to type-check)
-- _ : sum-l one-thousand n ≡ sum-r one-thousand n
-- _ = refl
| {
"alphanum_fraction": 0.6018641811,
"avg_line_length": 19.2564102564,
"ext": "agda",
"hexsha": "57fcbe3f103e275f9ee8be49c174fd3aba8becb6",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Data/Binary/PerformanceTests/Addition.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Data/Binary/PerformanceTests/Addition.agda",
"max_line_length": 83,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Data/Binary/PerformanceTests/Addition.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 346,
"size": 751
} |
module Issue2469 where
open import Agda.Builtin.Nat
open import Agda.Builtin.Unit
open import Agda.Builtin.IO renaming (IO to BIO)
open import Agda.Builtin.String
open import Agda.Builtin.IO
open import Common.IO
open import Common.Prelude
open import Common.Sum
open import Common.Product
data F : Nat → Set where
[] : F zero
_∷1 : ∀ {n} → F n → F (suc n)
_∷2 : ∀ {n} → F n → F (suc (suc n))
f : ∀ k → F (suc k) → F k ⊎ Maybe ⊥
f zero a = inj₂ nothing
f k (xs ∷1) = inj₂ nothing
-- to (suc k) xs = inj₂ nothing -- This is fine
f (suc k) = λ xs → inj₂ nothing -- This segfaults
myshow : F 1 ⊎ Maybe ⊥ → String
-- myshow (inj₁ b) = "" -- This is fine
myshow (inj₁ (b ∷1)) = "bla" -- This segfaults
myshow _ = "blub"
main : IO ⊤
main = putStrLn (myshow (f 1 ([] ∷2)))
| {
"alphanum_fraction": 0.6279949559,
"avg_line_length": 24.78125,
"ext": "agda",
"hexsha": "1bd3eeda7decb54c99cbbd619e4ec44aa961abc4",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Compiler/simple/Issue2469.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Compiler/simple/Issue2469.agda",
"max_line_length": 51,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Compiler/simple/Issue2469.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 293,
"size": 793
} |
{-# OPTIONS --type-in-type #-} -- enables cheating
-- 2:10 : why
-- https://www.youtube.com/watch?v=2LxtHeZlaVw
module HC-Lec3 where
open import HC-Lec1
open import HC-Lec2
postulate
-- equal inputs go to equal outputs
-- (whereas structural equality would require equal implementations)
extensionality : {S : Set} {T : S -> Set}
-- 24:00 : make f and g implicit : https://www.youtube.com/watch?v=RCRddhYegzI
-> {f g : (x : S) -> T x}
-> ((x : S) -> f x == g x)
-> f == g
-- 2:45
record Category : Set where
field
-- things
Obj : Set
_~>_ : Obj -> Obj -> Set
-- operations
id~> : {T : Obj} -> T ~> T
_>~>_ : {R S T : Obj} -> R ~> S -> S ~> T -> R ~> T
-- laws
law-id~>>~> : {S T : Obj} -> (f : S ~> T) -> (id~> >~> f) == f
law->~>id~> : {S T : Obj} -> (f : S ~> T) -> (f >~> id~>) == f
law->~>>~> : {Q R S T : Obj}
-> (f : Q ~> R) -> (g : R ~> S) -> (h : S ~> T)
-> ((f >~> g) >~> h) == (f >~> (g >~> h))
-- 7:50
SET : Category
SET = record
{ Obj = Set
; _~>_ = λ S T -> S -> T
; id~> = id
; _>~>_ = _>>_
; law-id~>>~> = refl
; law->~>id~> = refl
; law->~>>~> = λ f g h → refl (λ x → h (g (f x)))
}
-- 11:50
-- A PREORDER is a category where there is at most one arrow between any two objects.
-- Therefore arrows are unique.
-- all proofs of '>=' are equivalent
unique->= : (m n : Nat) (p q : m >= n) -> p == q
unique->= m zero p q = refl <>
unique->= (suc m) (suc n) p q = unique->= m n p q
NAT->= : Category
NAT->= = record
{ Obj = Nat
; _~>_ = _>=_
; id~> = λ {n : Nat} → refl->= n
; _>~>_ = λ {r s t : Nat} r>=s s>=t → trans->= r s t r>=s s>=t
; law-id~>>~> = λ {m n : Nat} f → unique->= m n (trans->= m m n (refl->= m) f) f
; law->~>id~> = λ {m n : Nat} f → unique->= m n (trans->= m n n f (refl->= n)) f
; law->~>>~> = λ {q r s t : Nat} q>=r r>=s s>=t →
unique->= q t
(trans->= q s t (trans->= q r s q>=r r>=s) s>=t)
(trans->= q r t q>=r (trans->= r s t r>=s s>=t))
}
-- 22:07
-- A MONOID is a category with Obj = One.
-- The values in the monoid are the *arrows*.
-- Only one object, so arrows are the ways to get from Nat to Nat.
ONE-Nat : Category
ONE-Nat = record
{ Obj = One
; _~>_ = λ _ _ -> Nat
; id~> = zero
; _>~>_ = _+N_
; law-id~>>~> = refl
; law->~>id~> = +N-zero
; law->~>>~> = assocLR-+N
}
-- 26:05
-- Note : this is controversial : because this notion of equality is structural.
-- But equality could be defined by isomorphism instead.
-- - In this case, there could be multiple ways for something to be equal to itself.
-- - equality on Bool : True to True and False to False
-- or True to False and False to True
-- structural equality is unique
eqUnique : {X : Set} {x y : X} -> (p q : x == y) -> p == q
eqUnique (refl x) (refl _) = refl (refl x)
eqUnique' : {X : Set} {x y : X} -> (p q : x == y) -> p == q
eqUnique' {_} {_} {y} p q rewrite q | p = refl (refl y)
DISCRETE : (X : Set) -> Category
DISCRETE X = record
{ Obj = X
; _~>_ = _==_
; id~> = λ {x} -> refl x
; _>~>_ = λ {(refl x) (refl .x) → refl x}
; law-id~>>~> = λ f → eqUnique _ f
; law->~>id~> = λ f → eqUnique _ f
; law->~>>~> = λ f g h → eqUnique _ _
}
-- 40:50
module FUNCTOR where
open Category
record _=>_ (C D : Category) : Set where -- functor from C to D
field
-- operations
F-Obj : Obj C -> Obj D
F-map : {S T : Obj C} -> _~>_ C S T -> _~>_ D (F-Obj S) (F-Obj T)
-- laws
F-map-id~> : {T : Obj C} -> F-map (id~> C {T}) == id~> D {F-Obj T}
F-map->~> : {R S T : Obj C} (f : _~>_ C R S) (g : _~>_ C S T)
-> F-map (_>~>_ C f g) == _>~>_ D (F-map f) (F-map g)
open FUNCTOR
-- https://www.youtube.com/watch?v=RCRddhYegzI
-- 4:10
vMap : {n : Nat} {S T : Set} -> (S -> T) -> Vec S n -> Vec T n
vMap f [] = []
vMap f (x :: xs) = f x :: vMap f xs
vMap-id : {n : Nat} {X : Set} (xs : Vec X n) -> vMap id xs == id xs
vMap-id [] = refl []
vMap-id (x :: xs)
rewrite vMap-id xs
= refl (x :: xs)
vMapCp : {n : Nat} {R S T : Set} {r->s : R -> S} {s->t : S -> T}
-> (xs : Vec R n)
-> vMap (r->s >> s->t) xs == vMap s->t (vMap r->s xs)
vMapCp [] = refl []
vMapCp {r->s = r->s} {s->t = s->t} (r :: rs)
with vMapCp {r->s = r->s} {s->t = s->t} rs
...| xxx
rewrite xxx
= refl (s->t (r->s r) :: vMap s->t (vMap r->s rs))
-- vector as a functor
VEC : Nat -> SET => SET
VEC n = record
{ F-Obj = λ X -> Vec X n
; F-map = vMap
; F-map-id~> = extensionality vMap-id
; F-map->~> = λ {R S T : Set} (r->s : R → S) (s->t : S → T)
→ extensionality vMapCp
}
-- 15:20
vTakeCp : {X : Set} {m n p : Nat}
-> (m>=n : m >= n) -> (n>=p : n >= p) -> (xs : Vec X m)
-> vTake m p (trans->= m n p m>=n n>=p) xs
== vTake n p n>=p (vTake m n m>=n xs)
vTakeCp {_} {m} {n} {zero} m>=n n>=p _ = refl []
vTakeCp {_} {suc m} {suc n} {suc p} m>=n n>=p (x :: xs)
rewrite vTakeCp {_} {m} {n} {p} m>=n n>=p xs
= refl (x :: vTake n p n>=p (vTake m n m>=n xs))
-- another way to think of vector as a functor
VTAKE : Set -> NAT->= => SET
VTAKE X = record
{ F-Obj = Vec X -- something that turns a number into a SET
; F-map = λ {m} {n} m>=n xs -> vTake m n m>=n xs
; F-map-id~> = extensionality (vTakeIdFact _)
; F-map->~> = λ r>=s s>=t → extensionality (vTakeCp r>=s s>=t)
}
-- 24:53
ADD : Nat -> NAT->= => NAT->=
ADD d = record
{ F-Obj = (d +N_) -- function that adds d to another number
; F-map = λ {s} {t} -> f-map' d s t
-- two proofs of >= are equal to each other
; F-map-id~> = λ {T : Nat} -> unique->= (d +N T)
(d +N T)
(f-map' d T T (refl->= T))
(refl->= (d +N T))
; F-map->~> = λ {R} {S} {T}f g →
unique->= (d +N R)
(d +N T)
(f-map' d R T (trans->= R S T f g))
(trans->= (d +N R) (d +N S) (d +N T)
(f-map' d R S f)
(f-map' d S T g))
}
where
f-map' : ∀ d s t
→ (NAT->= Category.~> s) t
→ (NAT->= Category.~> (d +N s)) (d +N t)
f-map' zero s t s>=t = s>=t
f-map' (suc d) s t s>=t = f-map' d s t s>=t
-- 41:00
CATEGORY : Category
CATEGORY = record
{ Obj = Category
; _~>_ = _=>_
; id~> = λ {T} -> record
{ F-Obj = id
; F-map = id
; F-map-id~> = refl (Category.id~> T)
; F-map->~> = λ f g → refl ((T Category.>~> f) g)
}
; _>~>_ = λ r=>s s=>t → record
{ F-Obj = F-Obj r=>s >> F-Obj s=>t
; F-map = F-map r=>s >> F-map s=>t
; F-map-id~> = {!!}
; F-map->~> = λ f g → {!!}
}
; law-id~>>~> = {!!}
; law->~>id~> = {!!}
; law->~>>~> = {!!}
}
where open _=>_
-- 45:35
-- Category where Obj are FUNCTORS
| {
"alphanum_fraction": 0.3687315634,
"avg_line_length": 34.8765432099,
"ext": "agda",
"hexsha": "fa099dcf6133e2ac5aeab17ce35a6dfe33bee938",
"lang": "Agda",
"max_forks_count": 8,
"max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z",
"max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_forks_repo_path": "agda/course/2017-conor_mcbride_cs410/HC-Lec3.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_issues_repo_path": "agda/course/2017-conor_mcbride_cs410/HC-Lec3.agda",
"max_line_length": 94,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_stars_repo_path": "agda/course/2017-conor_mcbride_cs410/HC-Lec3.agda",
"max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z",
"num_tokens": 2836,
"size": 8475
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020, 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Prelude
open import LibraBFT.Lemmas
open import LibraBFT.Base.ByteString
open import LibraBFT.Base.Encode
open import LibraBFT.Base.KVMap
open import LibraBFT.Base.PKCS
open import LibraBFT.Hash
open import LibraBFT.Impl.Base.Types
open import LibraBFT.Impl.Consensus.Types
open import LibraBFT.Impl.Util.Util
-- This module provides some scaffolding to define the handlers for our fake/simple
-- "implementation" and connect them to the interface of the SystemModel.
module LibraBFT.Impl.Handle
(hash : BitString → Hash)
(hash-cr : ∀{x y} → hash x ≡ hash y → Collision hash x y ⊎ x ≡ y)
where
open import LibraBFT.Impl.Consensus.ChainedBFT.EventProcessor hash hash-cr
open RWST-do
-- This represents an uninitialised EventProcessor, about which we know nothing, which we use as
-- the initial EventProcessor for every peer until it is initialised.
postulate
fakeEP : EventProcessor
-- Eventually, the initialization should establish some properties we care about, but for now we
-- just initialise again to fakeEP, which means we cannot prove the base case for various
-- properties, e.g., in Impl.Properties.VotesOnce
initialEventProcessorAndMessages
: (a : Author) → EpochConfig → EventProcessor
→ EventProcessor × List NetworkMsg
initialEventProcessorAndMessages a _ _ = fakeEP , []
handle : NodeId → NetworkMsg → Instant → LBFT Unit
handle _self msg now
with msg
...| P p = processProposalMsg now p
...| V v = processVote now v
...| C c = return unit -- We don't do anything with commit messages, they are just for defining Correctness.
-- For now, the SystemModel supports only one kind of action: to send a Message. Later it might
-- include things like logging, crashes, assertion failures, etc. At that point, definitions like
-- the following might become part of the SystemModel, but they are included here to enable the
-- temporary scaffolding below.
data Action (Msg : Set) : Set where
send : Msg → Action Msg
action-send-injective : ∀ {Msg}{m m' : Msg} → send m ≡ send m' → m ≡ m'
action-send-injective refl = refl
msgToSend : {Msg : Set} → Action Msg → Msg
msgToSend (send m) = m
msgToSend≡ : ∀ {Msg x}{m : Msg} → m ≡ msgToSend x → send m ≡ x
msgToSend≡ {_} {send m} {m} refl = refl
-- Note: the SystemModel allows anyone to receive any message sent, so intended recipient is ignored;
-- it is included in the model only to facilitate future work on liveness properties, when we will need
-- assumptions about message delivery between honest peers.
outputToActions : EventProcessor → Output → List (Action NetworkMsg)
outputToActions ep (BroadcastProposal p) = List-map (const (Action.send (P p)))
(List-map proj₁
(kvm-toList (:vvAddressToValidatorInfo (₋epValidators (₋epEC ep)))))
outputToActions _ (LogErr x) = []
outputToActions _ (SendVote v toList) = List-map (const (Action.send (V v))) toList
outputsToActions : ∀ {State} → List Output → List (Action NetworkMsg)
outputsToActions {st} = concat ∘ List-map (outputToActions st)
runHandler : EventProcessor → LBFT Unit → EventProcessor × List (Action NetworkMsg)
runHandler st handler = ×-map₂ (outputsToActions {st}) (proj₂ (LBFT-run handler st))
-- And ultimately, the all-knowing system layer only cares about the
-- step function.
peerStep : NodeId → NetworkMsg → Instant → EventProcessor → EventProcessor × List (Action NetworkMsg)
peerStep nid msg ts st = runHandler st (handle nid msg ts)
-- This (temporary) wrapper bridges the gap between our (draft) concrete handler and
-- the form required by the new system model, which does not (yet) support actions other
-- than send.
peerStepWrapper : NodeId → NetworkMsg → EventProcessor → EventProcessor × List NetworkMsg
peerStepWrapper nid msg st = ×-map₂ (List-map msgToSend) (peerStep nid msg 0 st)
| {
"alphanum_fraction": 0.7179002128,
"avg_line_length": 46.9888888889,
"ext": "agda",
"hexsha": "0c46acddf18b2f39ff2d1518aaabe6aacc133613",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "34e4627855fb198665d0c98f377403a906ba75d7",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "haroldcarr/bft-consensus-agda",
"max_forks_repo_path": "LibraBFT/Impl/Handle.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "34e4627855fb198665d0c98f377403a906ba75d7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "haroldcarr/bft-consensus-agda",
"max_issues_repo_path": "LibraBFT/Impl/Handle.agda",
"max_line_length": 131,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "34e4627855fb198665d0c98f377403a906ba75d7",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "haroldcarr/bft-consensus-agda",
"max_stars_repo_path": "LibraBFT/Impl/Handle.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1062,
"size": 4229
} |
data ⊤ : Set where
tt : ⊤
f : ⊤ → ⊤
f tt = tt
foo : ⊤ → ⊤
foo t with f t
... | x with f t
... | y with f t
... | z = {!z!}
| {
"alphanum_fraction": 0.3858267717,
"avg_line_length": 10.5833333333,
"ext": "agda",
"hexsha": "bc3f7dee65cd7f9267b7239244ce712f753d6135",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "cagix/agda",
"max_forks_repo_path": "test/interaction/Issue5633.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "cagix/agda",
"max_issues_repo_path": "test/interaction/Issue5633.agda",
"max_line_length": 18,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "cagix/agda",
"max_stars_repo_path": "test/interaction/Issue5633.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 62,
"size": 127
} |
module InequalityReasoningExercise where
open import EqualityAux
infix 4 _≤_
data _≤_ : ℕ → ℕ → Set where
z≤n : ∀ {n : ℕ}
--------
→ zero ≤ n
s≤s : ∀ {m n : ℕ}
→ m ≤ n
-------------
→ suc m ≤ suc n
≤-refl : ∀ {n : ℕ}
-----
→ n ≤ n
≤-refl {zero} = z≤n
≤-refl {suc n} = s≤s ≤-refl
≤-trans : ∀ {m n p : ℕ}
→ m ≤ n
→ n ≤ p
-----
→ m ≤ p
≤-trans z≤n _ = z≤n
≤-trans (s≤s m≤n) (s≤s n≤p) = s≤s (≤-trans m≤n n≤p)
module ≤-Reasoning where
infix 1 ≤-begin_
infixr 2 _≤⟨⟩_ _≤⟨_⟩_ _≤-≡⟨_⟩_
infix 3 _≤-∎
≤-begin_ : ∀ {x y : ℕ}
→ x ≤ y
-----
→ x ≤ y
≤-begin x≤y = x≤y
_≤⟨⟩_ : ∀ (x : ℕ) {y : ℕ}
→ x ≤ y
-----
→ x ≤ y
x ≤⟨⟩ x≤y = x≤y
_≤⟨_⟩_ : ∀ (x : ℕ) {y z : ℕ}
→ x ≤ y
→ y ≤ z
-----
→ x ≤ z
x ≤⟨ x≤y ⟩ y≤z = ≤-trans x≤y y≤z
_≤-≡⟨_⟩_ : ∀ (x : ℕ) {y z : ℕ}
→ x ≡ y
→ y ≤ z
-----
→ x ≤ z
x ≤-≡⟨ refl ⟩ y≤z = ≤-trans ≤-refl y≤z
_≤-∎ : ∀ (x : ℕ)
-----
→ x ≤ x
x ≤-∎ = ≤-refl
open ≤-Reasoning
+-monoʳ-≤ : ∀ (n p q : ℕ)
→ p ≤ q
-------------
→ n + p ≤ n + q
+-monoʳ-≤ zero p q p≤q =
≤-begin
zero + p
≤⟨⟩
p
≤⟨ p≤q ⟩
q
≤⟨⟩
zero + q
≤-∎
+-monoʳ-≤ (suc n) p q p≤q =
≤-begin
(suc n) + p
≤⟨⟩
suc (n + p)
≤⟨ s≤s (+-monoʳ-≤ n p q p≤q) ⟩
suc (n + q)
≤⟨⟩
(suc n) + q
≤-∎
+-monoˡ-≤ : ∀ (m n p : ℕ)
→ m ≤ n
-------------
→ m + p ≤ n + p
+-monoˡ-≤ m n p m≤n =
≤-begin
m + p
≤-≡⟨ +-comm m p ⟩
p + m
≤⟨ +-monoʳ-≤ p m n m≤n ⟩
p + n
≤-≡⟨ +-comm p n ⟩
n + p
≤-∎
+-mono-≤ : ∀ (m n p q : ℕ)
→ m ≤ n
→ p ≤ q
-------------
→ m + p ≤ n + q
+-mono-≤ m n p q m≤n p≤q =
≤-begin
m + p
≤⟨ +-monoˡ-≤ m n p m≤n ⟩
n + p
≤⟨ +-monoʳ-≤ n p q p≤q ⟩
n + q
≤-∎
| {
"alphanum_fraction": 0.320066335,
"avg_line_length": 14.2440944882,
"ext": "agda",
"hexsha": "f11e62291cbeb2f22c0272e648fa915f263de5c6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "75bef9bb35643160e2d2ab4221a3057f22eb3324",
"max_forks_repo_licenses": [
"CC-BY-4.0"
],
"max_forks_repo_name": "abolotina/plfa.github.io",
"max_forks_repo_path": "src/plfa/part1/InequalityReasoningExercise.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "75bef9bb35643160e2d2ab4221a3057f22eb3324",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC-BY-4.0"
],
"max_issues_repo_name": "abolotina/plfa.github.io",
"max_issues_repo_path": "src/plfa/part1/InequalityReasoningExercise.agda",
"max_line_length": 51,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "75bef9bb35643160e2d2ab4221a3057f22eb3324",
"max_stars_repo_licenses": [
"CC-BY-4.0"
],
"max_stars_repo_name": "abolotina/plfa.github.io",
"max_stars_repo_path": "src/plfa/part1/InequalityReasoningExercise.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1023,
"size": 1809
} |
------------------------------------------------------------------------------
-- Terminating mirror function
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOT.FOTC.Program.Mirror.MirrorListTerminatingSL where
open import Data.List
------------------------------------------------------------------------------
-- The rose tree type.
data Tree (A : Set) : Set where
tree : A → List (Tree A) → Tree A
------------------------------------------------------------------------------
-- An alternative and terminating definition of mirror. Adapted from
-- http://stackoverflow.com/questions/9146928/termination-of-structural-induction
-- The mirror function.
mirror : {A : Set} → Tree A → Tree A
mirrorBranch : {A : Set} → List (Tree A) → List (Tree A)
mirror (tree a ts) = tree a (reverse (mirrorBranch ts))
mirrorBranch [] = []
mirrorBranch (t ∷ ts) = mirror t ∷ mirrorBranch ts
| {
"alphanum_fraction": 0.4576271186,
"avg_line_length": 37.3666666667,
"ext": "agda",
"hexsha": "65073adbf7abbff98760e25ac743949cdde05ef4",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/FOT/FOTC/Program/Mirror/MirrorListTerminatingSL.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/FOT/FOTC/Program/Mirror/MirrorListTerminatingSL.agda",
"max_line_length": 81,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/FOT/FOTC/Program/Mirror/MirrorListTerminatingSL.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 211,
"size": 1121
} |
{-# OPTIONS --without-K --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Application {{eqrel : EqRelSet}} where
open EqRelSet {{...}}
open import Definition.Untyped
open import Definition.Untyped.Properties
open import Definition.Typed
open import Definition.Typed.Weakening using (id)
open import Definition.Typed.Properties
open import Definition.Typed.RedSteps
open import Definition.LogicalRelation
open import Definition.LogicalRelation.ShapeView
open import Definition.LogicalRelation.Irrelevance
open import Definition.LogicalRelation.Properties
open import Tools.Embedding
open import Tools.Product
import Tools.PropositionalEquality as PE
-- Helper function for application of specific type derivations.
-- unsightly code duplication because of my hack for shapeview
-- can't be bothered to fix for now...
appTerm′ : ∀ {F G t u Γ l l′ l″}
([F] : Γ ⊩⟨ l″ ⟩ F)
([G[u]] : Γ ⊩⟨ l′ ⟩ G [ u ])
([ΠFG] : Γ ⊩⟨ l ⟩Π Π F ▹ G)
([t] : Γ ⊩⟨ l ⟩ t ∷ Π F ▹ G / Π-intr [ΠFG])
([u] : Γ ⊩⟨ l″ ⟩ u ∷ F / [F])
→ Γ ⊩⟨ l′ ⟩ t ∘ u ∷ G [ u ] / [G[u]]
appTerm′ {t = t} {Γ = Γ} [F] [G[u]] (noemb (Πᵣ F G D ⊢F ⊢G A≡A [F′] [G′] G-ext))
(Πₜ f d funcF f≡f [f] [f]₁) [u] =
let ΠFG≡ΠF′G′ = whnfRed* (red D) Πₙ
F≡F′ , G≡G′ = Π-PE-injectivity ΠFG≡ΠF′G′
F≡idF′ = PE.trans F≡F′ (PE.sym (wk-id _))
idG′ᵤ≡Gᵤ = PE.cong (λ x → x [ _ ]) (PE.trans (wk-lift-id _) (PE.sym G≡G′))
idf∘u≡f∘u = (PE.cong (λ x → x ∘ _) (wk-id _))
⊢Γ = wf ⊢F
[u]′ = irrelevanceTerm′ F≡idF′ [F] ([F′] id ⊢Γ) [u]
[f∘u] = irrelevanceTerm″ idG′ᵤ≡Gᵤ idf∘u≡f∘u
([G′] id ⊢Γ [u]′) [G[u]] ([f]₁ id ⊢Γ [u]′)
⊢u = escapeTerm [F] [u]
d′ = PE.subst (λ x → Γ ⊢ t ⇒* f ∷ x) (PE.sym ΠFG≡ΠF′G′) (redₜ d)
in proj₁ (redSubst*Term (app-subst* d′ ⊢u) [G[u]] [f∘u])
appTerm′ [F] [G[u]] (emb 0<1 x) (ιx [t]) [u] = appTerm′ [F] [G[u]] x [t] [u]
-- Application of reducible terms.
appTerm : ∀ {F G t u Γ l l′ l″}
([F] : Γ ⊩⟨ l″ ⟩ F)
([G[u]] : Γ ⊩⟨ l′ ⟩ G [ u ])
([ΠFG] : Γ ⊩⟨ l ⟩ Π F ▹ G)
([t] : Γ ⊩⟨ l ⟩ t ∷ Π F ▹ G / [ΠFG])
([u] : Γ ⊩⟨ l″ ⟩ u ∷ F / [F])
→ Γ ⊩⟨ l′ ⟩ t ∘ u ∷ G [ u ] / [G[u]]
appTerm [F] [G[u]] [ΠFG] [t] [u] =
let [t]′ = irrelevanceTerm [ΠFG] (Π-intr (Π-elim [ΠFG])) [t]
in appTerm′ [F] [G[u]] (Π-elim [ΠFG]) [t]′ [u]
-- Helper function for application congurence of specific type derivations.
app-congTerm′ : ∀ {F G t t′ u u′ Γ l l′}
([F] : Γ ⊩⟨ l′ ⟩ F)
([G[u]] : Γ ⊩⟨ l′ ⟩ G [ u ])
([ΠFG] : Γ ⊩⟨ l ⟩Π Π F ▹ G)
([t≡t′] : Γ ⊩⟨ l ⟩ t ≡ t′ ∷ Π F ▹ G / Π-intr [ΠFG])
([u] : Γ ⊩⟨ l′ ⟩ u ∷ F / [F])
([u′] : Γ ⊩⟨ l′ ⟩ u′ ∷ F / [F])
([u≡u′] : Γ ⊩⟨ l′ ⟩ u ≡ u′ ∷ F / [F])
→ Γ ⊩⟨ l′ ⟩ t ∘ u ≡ t′ ∘ u′ ∷ G [ u ] / [G[u]]
app-congTerm′ {F′} {G′} {t = t} {t′ = t′} {Γ = Γ}
[F] [G[u]] (noemb (Πᵣ F G D ⊢F ⊢G A≡A [F]₁ [G] G-ext))
(Πₜ₌ f g [ ⊢t , ⊢f , d ] [ ⊢t′ , ⊢g , d′ ] funcF funcG t≡u
(Πₜ f′ [ _ , ⊢f′ , d″ ] funcF′ f≡f [f] [f]₁)
(Πₜ g′ [ _ , ⊢g′ , d‴ ] funcG′ g≡g [g] [g]₁) [t≡u])
[a] [a′] [a≡a′] =
let [ΠFG] = Πᵣ′ F G D ⊢F ⊢G A≡A [F]₁ [G] G-ext
ΠFG≡ΠF′G′ = whnfRed* (red D) Πₙ
F≡F′ , G≡G′ = Π-PE-injectivity ΠFG≡ΠF′G′
f≡f′ = whrDet*Term (d , functionWhnf funcF) (d″ , functionWhnf funcF′)
g≡g′ = whrDet*Term (d′ , functionWhnf funcG) (d‴ , functionWhnf funcG′)
F≡wkidF′ = PE.trans F≡F′ (PE.sym (wk-id _))
t∘x≡wkidt∘x : {a b : Term} → wk id a ∘ b PE.≡ a ∘ b
t∘x≡wkidt∘x {a} {b} = PE.cong (λ x → x ∘ b) (wk-id a)
t∘x≡wkidt∘x′ : {a : Term} → wk id g′ ∘ a PE.≡ g ∘ a
t∘x≡wkidt∘x′ {a} = PE.cong (λ x → x ∘ a) (PE.trans (wk-id _) (PE.sym g≡g′))
wkidG₁[u]≡G[u] = PE.cong (λ x → x [ _ ])
(PE.trans (wk-lift-id _) (PE.sym G≡G′))
wkidG₁[u′]≡G[u′] = PE.cong (λ x → x [ _ ])
(PE.trans (wk-lift-id _) (PE.sym G≡G′))
⊢Γ = wf ⊢F
[u]′ = irrelevanceTerm′ F≡wkidF′ [F] ([F]₁ id ⊢Γ) [a]
[u′]′ = irrelevanceTerm′ F≡wkidF′ [F] ([F]₁ id ⊢Γ) [a′]
[u≡u′]′ = irrelevanceEqTerm′ F≡wkidF′ [F] ([F]₁ id ⊢Γ) [a≡a′]
[G[u′]] = irrelevance′ wkidG₁[u′]≡G[u′] ([G] id ⊢Γ [u′]′)
[G[u≡u′]] = irrelevanceEq″ wkidG₁[u]≡G[u] wkidG₁[u′]≡G[u′]
([G] id ⊢Γ [u]′) [G[u]]
(G-ext id ⊢Γ [u]′ [u′]′ [u≡u′]′)
[f′] : Γ ⊩⟨ _ ⟩ f′ ∷ Π F′ ▹ G′ / [ΠFG]
[f′] = Πₜ f′ (idRedTerm:*: ⊢f′) funcF′ f≡f [f] [f]₁
[g′] : Γ ⊩⟨ _ ⟩ g′ ∷ Π F′ ▹ G′ / [ΠFG]
[g′] = Πₜ g′ (idRedTerm:*: ⊢g′) funcG′ g≡g [g] [g]₁
[f∘u] = appTerm [F] [G[u]] [ΠFG]
(irrelevanceTerm″ PE.refl (PE.sym f≡f′) [ΠFG] [ΠFG] [f′])
[a]
[g∘u′] = appTerm [F] [G[u′]] [ΠFG]
(irrelevanceTerm″ PE.refl (PE.sym g≡g′) [ΠFG] [ΠFG] [g′])
[a′]
[tu≡t′u] = irrelevanceEqTerm″ t∘x≡wkidt∘x t∘x≡wkidt∘x wkidG₁[u]≡G[u]
([G] id ⊢Γ [u]′) [G[u]]
([t≡u] id ⊢Γ [u]′)
[t′u≡t′u′] = irrelevanceEqTerm″ t∘x≡wkidt∘x′ t∘x≡wkidt∘x′ wkidG₁[u]≡G[u]
([G] id ⊢Γ [u]′) [G[u]]
([g] id ⊢Γ [u]′ [u′]′ [u≡u′]′)
d₁ = PE.subst (λ x → Γ ⊢ t ⇒* f ∷ x) (PE.sym ΠFG≡ΠF′G′) d
d₂ = PE.subst (λ x → Γ ⊢ t′ ⇒* g ∷ x) (PE.sym ΠFG≡ΠF′G′) d′
[tu≡fu] = proj₂ (redSubst*Term (app-subst* d₁ (escapeTerm [F] [a]))
[G[u]] [f∘u])
[gu′≡t′u′] = convEqTerm₂ [G[u]] [G[u′]] [G[u≡u′]]
(symEqTerm [G[u′]]
(proj₂ (redSubst*Term (app-subst* d₂ (escapeTerm [F] [a′]))
[G[u′]] [g∘u′])))
in transEqTerm [G[u]] (transEqTerm [G[u]] [tu≡fu] [tu≡t′u])
(transEqTerm [G[u]] [t′u≡t′u′] [gu′≡t′u′])
app-congTerm′ [F] [G[u]] (emb 0<1 x) (ιx [t≡t′]) [u] [u′] [u≡u′] =
app-congTerm′ [F] [G[u]] x [t≡t′] [u] [u′] [u≡u′]
-- Application congurence of reducible terms.
app-congTerm : ∀ {F G t t′ u u′ Γ l l′}
([F] : Γ ⊩⟨ l′ ⟩ F)
([G[u]] : Γ ⊩⟨ l′ ⟩ G [ u ])
([ΠFG] : Γ ⊩⟨ l ⟩ Π F ▹ G)
([t≡t′] : Γ ⊩⟨ l ⟩ t ≡ t′ ∷ Π F ▹ G / [ΠFG])
([u] : Γ ⊩⟨ l′ ⟩ u ∷ F / [F])
([u′] : Γ ⊩⟨ l′ ⟩ u′ ∷ F / [F])
([u≡u′] : Γ ⊩⟨ l′ ⟩ u ≡ u′ ∷ F / [F])
→ Γ ⊩⟨ l′ ⟩ t ∘ u ≡ t′ ∘ u′ ∷ G [ u ] / [G[u]]
app-congTerm [F] [G[u]] [ΠFG] [t≡t′] =
let [t≡t′]′ = irrelevanceEqTerm [ΠFG] (Π-intr (Π-elim [ΠFG])) [t≡t′]
in app-congTerm′ [F] [G[u]] (Π-elim [ΠFG]) [t≡t′]′
| {
"alphanum_fraction": 0.4220817407,
"avg_line_length": 47.9014084507,
"ext": "agda",
"hexsha": "e836e4e8dda3c8f4bd704993a8c43bf2d779fa42",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "loic-p/logrel-mltt",
"max_forks_repo_path": "Definition/LogicalRelation/Application.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "loic-p/logrel-mltt",
"max_issues_repo_path": "Definition/LogicalRelation/Application.agda",
"max_line_length": 82,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "loic-p/logrel-mltt",
"max_stars_repo_path": "Definition/LogicalRelation/Application.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3293,
"size": 6802
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Base.Types
open import LibraBFT.Concrete.System.Parameters
open import LibraBFT.Impl.Consensus.BlockStorage.BlockStore
import LibraBFT.Impl.Consensus.BlockStorage.BlockTree as BlockTree
open import LibraBFT.Impl.Consensus.ConsensusTypes.Vote as Vote
import LibraBFT.Impl.Consensus.PersistentLivenessStorage as PersistentLivenessStorage
open import LibraBFT.Impl.OBM.Rust.RustTypes
open import LibraBFT.Impl.Properties.Util
open import LibraBFT.ImplShared.Base.Types
open import LibraBFT.ImplShared.Consensus.Types
open import LibraBFT.ImplShared.Consensus.Types.EpochDep
open import LibraBFT.ImplShared.Interface.Output
open import LibraBFT.ImplShared.Util.Crypto
open import LibraBFT.ImplShared.Util.Dijkstra.All
open import Optics.All
open import Util.ByteString
open import Util.Hash
open import Util.KVMap as Map
open import Util.PKCS
open import Util.Prelude
open import Yasm.System ℓ-RoundManager ℓ-VSFP ConcSysParms
open Invariants
open RoundManagerTransProps
open QCProps
module LibraBFT.Impl.Consensus.BlockStorage.Properties.BlockStore where
module new
(storage : PersistentLivenessStorage)
(initialData : RecoveryData)
(stateComp : StateComputer)
(maxPrunedBlocksInMem : Usize)
where
-- TODO-2: May require refinement (additional requirements and/or properties, particularly regarding ECinfo)
Contract : ECinfo → EitherD-Post ErrLog BlockStore
Contract _ (Left _) = ⊤
Contract eci (Right bs) = BlockStoreInv (bs , eci)
postulate
contract : ∀ {eci}
→ Contract eci (new-e-abs storage initialData stateComp maxPrunedBlocksInMem)
module executeBlockESpec (bs : BlockStore) (block : Block) where
Ok : Set
Ok = ∃[ eb ] (executeBlockE bs block ≡ Right eb)
record ContractOk (eb : ExecutedBlock) : Set where
constructor mkContractOk
field
ebBlock≡ : block ≡ eb ^∙ ebBlock
postulate -- TODO: prove
contract : (isOk : Ok) → ContractOk (proj₁ isOk)
module executeAndInsertBlockESpec (bs0 : BlockStore) (vblock : ValidBlock) where
block = vbBlock vblock
block-c = vbValid vblock
open executeAndInsertBlockE bs0 block
open import LibraBFT.Impl.Consensus.BlockStorage.Properties.BlockTree
blockId = block ^∙ bId
------ These are used only outside this module.
Ok : Set
Ok = ∃₂ λ bs' eb → executeAndInsertBlockE bs0 block ≡ Right (bs' , eb)
open Reqs block (bs0 ^∙ bsInner)
record ContractOk (bs' : BlockStore) (eb : ExecutedBlock) : Set where
constructor mkContractOk
field
ebBlock≈ : NoHC1 → eb ^∙ ebBlock ≈Block block
bsInv : ∀ {eci}
→ Preserves BlockStoreInv (bs0 , eci) (bs' , eci)
-- executeAndInsertBlockE does not modify BlockTree fields other than btIDToBlock
bs≡x : bs0 ≡ (bs' & (bsInner ∙ btIdToBlock) ∙~ (bs0 ^∙ bsInner ∙ btIdToBlock))
Contract : EitherD-Post ErrLog (BlockStore × ExecutedBlock)
Contract (Left x) = ⊤
Contract (Right (bs' , eb)) = ContractOk bs' eb
-- TUTORIAL: This proof has some additional commentary helping to understand the structure of the
-- proof, and showing an example of how using abstract variants of functions makes proofs more
-- resilient to change, as explained in
-- https://github.com/oracle/bft-consensus-agda/blob/main/docs/PeerHandlerContracts.org
contract' : EitherD-weakestPre step₀ Contract
-- step₀ is a maybeSD in context of EitherD. Therefore, via MonadMaybeD and EitherD-MonadMaybeD,
-- this translates to EitherD-maybe. We first deal with the easy case, applying the NoHC1
-- function provided to ebBlock≈ to evidence eb≡ that eb is in btIdToBlock.
proj₂ contract' eb eb≡ =
mkContractOk (λ nohc → nohc eb≡ block-c) id refl
proj₁ contract' getBlock≡nothing = contract₁
where
-- step₁ is again a maybeSD; if bs0 ^∙ bsRoot ≡ nothing, the Contract is trivial
contract₁ : EitherD-weakestPre step₁ Contract
proj₁ contract₁ _ = tt
-- otherwise, bs0 ^∙ bsRoot ≡ just bsr, and we have an ifD; in the true branch, step₁ returns a
-- Left, so again it is trivial
proj₁ (proj₂ contract₁ bsr bsr≡) _ = tt
-- in the else branch, we call step₂ bsr
proj₂ (proj₂ contract₁ bsr bsr≡) btr<br = contract₂
where
contract₃ : ∀ eb → block ≡ (eb ^∙ ebBlock)
→ EitherD-weakestPre (step₃ eb) Contract
module EB = executeBlockESpec bs0 block
open EB.ContractOk
contract₂ : EitherD-weakestPre (step₂ bsr) Contract
proj₂ contract₂ eb eb≡ ._ executeBlockE≡Right@refl = let con = (EB.contract (eb , eb≡))
in contract₃ eb
(EB.ContractOk.ebBlock≡ con)
proj₁ contract₂ (ErrCBlockNotFound _) executeBlockE≡Left = tt
proj₁ contract₂ (ErrVerify _) executeBlockE≡Left = tt
proj₁ contract₂ (ErrInfo _) executeBlockE≡Left = tt
-- if executeBlockE returns Left (ErrECCBlockNotFound parentBlockId), then we have two casesdue to
-- eitherSD (pathFromRoot parentBlockId bs0) LeftD λ blocksToReexecute →
-- in the first case, we have a Left, so it's easy
proj₁ (proj₁ contract₂ (ErrECCBlockNotFound parentBlockId) executeBlockE≡Left) _ _ = tt
-- in the second case, we have
-- case⊎D (forM) blocksToReexecute (executeBlockE bs0 ∘ (_^∙ ebBlock)) of λ where
-- and therefore two more cases; if the case⊎D returns Left, it's easy again
proj₁ (proj₂ (proj₁ contract₂ (ErrECCBlockNotFound parentBlockId) executeBlockE≡Left) blocksToReexecute btr≡) _ _ = tt
-- if the case⊎D returns a Right, we call executeBlockE₀ (the EitherD variant). We use executeBlockE≡ to handle case
-- analysis on the result of calling the abstract executeBlockE variant, ensuring we must use the contract for
-- executeBlockE because the proof cannot "look into" the implementation of executeBlockE, which makes the proof
-- more resilient in case of changes in its implementation.
-- TODO-2: clean this up by writing a general version of the contract for executeBlockE
proj₂ (proj₂ (proj₁ contract₂ (ErrECCBlockNotFound parentBlockId) executeBlockE≡Left) blocksToReexecute btr≡) _ _
with executeBlockE bs0 block | inspect
(executeBlockE bs0) block
... | Left x | [ R ] rewrite executeBlockE≡ R = tt
... | Right y | [ R ] rewrite executeBlockE≡ R =
λ where c refl ._ refl →
let con = EB.contract (c , R) in
contract₃ c
(ebBlock≡ con)
_ refl
contract₃ eb refl _ _ = contract₄
where
contract₄ : EitherD-weakestPre (step₄ eb) Contract
contract₄
with insertBlockESpec.contract eb (bs0 ^∙ bsInner)
...| con
with BlockTree.insertBlockE.E eb (bs0 ^∙ bsInner)
...| Left _ = tt
...| Right (bt' , eb') =
λ where ._ refl → mkContractOk IBE.blocks≈ btP bss≡x
where
module IBE = insertBlockESpec.ContractOk con
open BlockStoreInv
btP : ∀ {eci} → Preserves BlockStoreInv (bs0 , eci) ((bs0 & bsInner ∙~ bt') , eci)
btP (mkBlockStoreInv bti) = mkBlockStoreInv (IBE.btiPres bti)
bss≡x : bs0 ≡ (bs0 & bsInner ∙~ bt' & bsInner ∙ btIdToBlock ∙~ (bs0 ^∙ (bsInner ∙ btIdToBlock)))
bss≡x rewrite sym IBE.bt≡x = refl
contract : Contract (executeAndInsertBlockE bs0 block)
contract = EitherD-contract (executeAndInsertBlockE.step₀ bs0 block) Contract contract'
module executeAndInsertBlockMSpec (vb : ValidBlock) where
b = vbBlock vb
-- NOTE: This function returns any errors, rather than producing them as output.
module _ (pre : RoundManager) where
bs = pre ^∙ lBlockStore
contract
: ∀ Post
→ (∀ e → {- At the moment we do not need to know why it failed -} Post (Left e) pre [])
→ ((isOk : executeAndInsertBlockESpec.Ok bs vb) → let (bs' , eb , _) = isOk in
executeAndInsertBlockESpec.ContractOk bs vb bs' eb
→ Post (Right eb) (pre & rmBlockStore ∙~ bs') [])
→ LBFT-weakestPre (executeAndInsertBlockM b) Post pre
proj₁ (contract Post pfBail pfOk ._ refl) e ≡left = pfBail e
proj₂ (contract Post pfBail pfOk ._ refl) (bs' , eb) ≡right ._ refl unit refl
with executeAndInsertBlockESpec.contract bs vb
...| con rewrite ≡right = pfOk (bs' , eb , refl) con
module insertSingleQuorumCertMSpec
(qc : QuorumCert) where
module _ (pre : RoundManager) where
record Contract (r : Either ErrLog Unit) (post : RoundManager) (outs : List Output) : Set where
constructor mkContract
field
-- General invariants / properties
rmInv : Preserves RoundManagerInv pre post
noEpochChange : NoEpochChange pre post
noMsgOuts : OutputProps.NoMsgs outs
-- Voting
noVote : VoteNotGenerated pre post true
-- Signatures
qcPost : ∈Post⇒∈PreOr (_≡ qc) pre post
postulate -- TODO-2: prove
contract' : LBFT-weakestPre (insertSingleQuorumCertM qc) Contract pre
contract : ∀ Q → RWS-Post-⇒ Contract Q → LBFT-weakestPre (insertSingleQuorumCertM qc) Q pre
contract Q pf = LBFT-⇒ (insertSingleQuorumCertM qc) pre contract' pf
module syncInfoMSpec where
syncInfo : RoundManager → SyncInfo
syncInfo pre =
SyncInfo∙new (pre ^∙ lBlockStore ∙ bsHighestQuorumCert)
(pre ^∙ lBlockStore ∙ bsHighestCommitCert)
(pre ^∙ lBlockStore ∙ bsHighestTimeoutCert)
contract : ∀ pre Post → (Post (syncInfo pre) pre []) → LBFT-weakestPre syncInfoM Post pre
contract pre Post pf ._ refl ._ refl ._ refl ._ refl ._ refl ._ refl = pf
| {
"alphanum_fraction": 0.6720599842,
"avg_line_length": 44.8495575221,
"ext": "agda",
"hexsha": "7348f674adf728b4ee2e736ff8d039f43a4b7904",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_forks_repo_path": "src/LibraBFT/Impl/Consensus/BlockStorage/Properties/BlockStore.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_issues_repo_path": "src/LibraBFT/Impl/Consensus/BlockStorage/Properties/BlockStore.agda",
"max_line_length": 124,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_stars_repo_path": "src/LibraBFT/Impl/Consensus/BlockStorage/Properties/BlockStore.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2868,
"size": 10136
} |
open import Data.Product using ( _×_ ; _,_ ; proj₁ ; proj₂ )
open import FRP.LTL.RSet.Core using ( RSet ; ⟦_⟧ )
open import FRP.LTL.RSet.Globally using ( [_] )
open import FRP.LTL.RSet.Causal using ( _⊵_ ; arr )
open import FRP.LTL.RSet.Stateless using ( _⇒_ )
module FRP.LTL.RSet.Product where
infixr 2 _∧_
-- Conjunction of LTL formulae
_∧_ : RSet → RSet → RSet
(A ∧ B) t = A t × B t
-- Product structure
fst : ∀ {A B} → ⟦ (A ∧ B) ⊵ A ⟧
fst {A} {B} = arr [ (λ {u} (ab : A u × B u) → proj₁ ab) ]
snd : ∀ {A B} → ⟦ (A ∧ B) ⊵ B ⟧
snd {A} {B} = arr [ (λ {u} (ab : A u × B u) → proj₂ ab) ]
_&&&_ : ∀ {A B C} → ⟦ (A ⊵ B) ⇒ (A ⊵ C) ⇒ (A ⊵ (B ∧ C)) ⟧
(f &&& g) s≤t σ = (f s≤t σ , g s≤t σ) | {
"alphanum_fraction": 0.5282199711,
"avg_line_length": 27.64,
"ext": "agda",
"hexsha": "d896e0ab82f7b6fd5b9ed12c63a27e85b090dbe5",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:04.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-03-01T07:33:00.000Z",
"max_forks_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/agda-frp-ltl",
"max_forks_repo_path": "src/FRP/LTL/RSet/Product.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5",
"max_issues_repo_issues_event_max_datetime": "2015-03-02T15:23:53.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-01T07:01:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/agda-frp-ltl",
"max_issues_repo_path": "src/FRP/LTL/RSet/Product.agda",
"max_line_length": 60,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/agda-frp-ltl",
"max_stars_repo_path": "src/FRP/LTL/RSet/Product.agda",
"max_stars_repo_stars_event_max_datetime": "2020-06-15T02:51:13.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-07-02T20:25:05.000Z",
"num_tokens": 319,
"size": 691
} |
{-# OPTIONS --without-K #-}
open import HoTT.Base
open import HoTT.Identity.Sigma
module HoTT.Pi.Transport where
transport-→ : ∀ {i j k} {X : 𝒰 i} (A : X → 𝒰 j) (B : X → 𝒰 k)
{x₁ x₂ : X} (p : x₁ == x₂) (f : A x₁ → B x₁) →
transport (λ x → A x → B x) p f == transport B p ∘ f ∘ transport A (p ⁻¹)
transport-→ A B refl f = refl
module _ {i j k} {X : 𝒰 i} (A : X → 𝒰 j) (B : {x : X} → A x → 𝒰 k)
{x₁ x₂ : X} (p : x₁ == x₂) (f : Π[ a ∶ A x₁ ] B a) (a : A x₂)
where
private
B̂ : Σ[ x ∶ X ] A x → 𝒰 k
B̂ w = B (pr₂ w)
transport-Π : transport (λ x → Π[ a ∶ A x ] B a) p f a ==
transport {x = x₁ , transport _ (p ⁻¹) a} {y = x₂ , a}
B̂ (pair⁼ (p ⁻¹ , refl) ⁻¹) (f (transport A (p ⁻¹) a))
transport-Π rewrite p = refl
| {
"alphanum_fraction": 0.4593241552,
"avg_line_length": 36.3181818182,
"ext": "agda",
"hexsha": "2a3d921552444f63759389c1c19e1595ad21ec22",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508",
"max_forks_repo_licenses": [
"0BSD"
],
"max_forks_repo_name": "michaelforney/hott",
"max_forks_repo_path": "HoTT/Pi/Transport.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"0BSD"
],
"max_issues_repo_name": "michaelforney/hott",
"max_issues_repo_path": "HoTT/Pi/Transport.agda",
"max_line_length": 87,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508",
"max_stars_repo_licenses": [
"0BSD"
],
"max_stars_repo_name": "michaelforney/hott",
"max_stars_repo_path": "HoTT/Pi/Transport.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 356,
"size": 799
} |
{-# OPTIONS --no-unicode #-} -- turn off automatic unicode insertion
module 02-agda-start where
-------------------------------------------------------------------------------------------------------
-- ADDITIONAL RESOURCES |
-------------------------
-- допълнителни ресурси:
-- https://github.com/pigworker/CS410-17 - курс (има и домашни) с видео лекции, добър лектор
-- ^ има още много repo-та които си струват разглеждане
-- един от хората измислили Applicative бтв, както и with-abstraction, което ще видим по-късно
-- https://plfa.github.io/ - книга с подробни обяснения и описания, има и упражнения, втората част се занимава с имплементиране на ламбда смятане
-------------------------------------------------------------------------------------------------------
-- CHEATSHEETS |
----------------
-- SPACEMACS CHEATSHEET:
-- <SPC> h <SPC> -- search for help, including agda's help
-- <SPC> <TAB> - go to previous buffer -- helpful to go back after looking at help
-- <SPC> z x -/= - decrease/increase font size
-- normal emacs agda bindings:
-- https://agda.readthedocs.io/en/v2.6.1/tools/emacs-mode.html#keybindings
-- spacemacs agda layer bindings (but also can open them with <SPC> h <SPC> inside spacemacs):
-- https://github.com/syl20bnr/spacemacs/tree/master/layers/%2Blang/agda#key-bindings
-- AGDA CHEATSHEET (descending importance):
-- <SPC> m l - reload file
-- <SPC> m , - (in goal) show context and goal
-- <SPC> m . - (in goal) show type of expression in goal. if goal is empty agda will ask for an expression to type
-- <SPC> m c - case split on goal contents
-- if goal is empty, will ask for what to split on
-- <SPC> m r - introduce constructor (if non-ambiguous)
-- can also introduce constructors, lambdas, record constructors
-- if there's a function in the goal it will "introduce" it with its arguments as new goals
-- <SPC> m <SPC> - when in a goal, replace the goal with the expression currently in the goal
-- if the goal is empty, agda will ask for an expression to insert
-- obviously only works if types match
-- <SPC> m a - (invoke "agsy") agda try your best to figure this out!
-- you can add names to a goal to give hints to agda, e.g. if you want to use a function "f"
-- <SPC> m x r - restart agda
-- <SPC> u <SPC> u <other-command> - kindly ask agda to evaluate and desugar everything as much as it can when executing <other-command>
-- <SPC> m f - go to next goal
-- <SPC> m n - compute an expression
-- <SPC> m h - when in a hole, compute what the type of a helper function you need here would be
-------------------------------------------------------------------------------------------------------
-- EXERCISE |
-------------
-- a haskell type declaration
--data List a
-- = Nil
-- | Cons a (List a)
--
-- same thing but in agda
--data List (A : Set) : Set where
-- Nil : List A
-- Cons : A -> List A -> List A
-- X : Y - "X is of type Y"
-- Set is the "kind" of types
-- it's safe to just read it as "Type" instead
-- identity function, with an explicit type as an argument
-- in agda we don't have (and don't need) "implicit polymorphic types"
-- like how in haskell when we write a -> a we actually mean "for all a (a -> a)"
-- so instead we "simulate" it by taking a type as an argument
id' : (A : Set) -> A -> A
id' _ x = x
-- we can also have it implicitly inferred, by using {} to specify the argument
-- agda doesn't have global type inference (because it's not decidable in general) - you always need to write top level signatures
id : {A : Set} -> A -> A
id x = x
-- a data type definition
-- it has no constructors
-- therefore it cannot be constructed!
-- this is an encoding of "falsity" exactly because you can't make values (proofs) of it
-- called Zero because it contains 0 values
data Zero : Set where -- ⊥
-- therefore if you are handed something of Zero
-- you can try to inspect it, to show that it's not possible for it to exist!
-- this is "efq"
naughtE : {A : Set} -> Zero -> A
naughtE ()
-- ^ this bit is special syntax for "impossible case" - not the same thing as () in haskell
-- a record type - "dual" in some sense to a data type
-- very similar to a struct in C:
-- in order to construct a record type, you need to give values for all its fields
-- this record has *no* fields, therefore to construct it you need to give *no values*
-- and it is therefore very easy to construct
-- it encodes "trivial truth" in logic, exactly because you don't need any assumptions to create it
-- the "constructor <>" syntax introduces a convenient way to create values from this type, instead of using record syntax
-- called One because it contains one value
record One : Set where -- unit/top/⊤
constructor <>
-- an example value from One
one : One
one = <>
-- an example value constructed with record syntax
one' : One
one' = record {} -- no values to give!
-- example of a record type with some actual fields!
--record Student : Set where
-- field
-- fn : Number -- these types don't actually exist yet, but let's assume they do
-- name : String
--
--georgi : Student
--georgi =
-- record
-- { fn = {!81248!}
-- ; name = {!"Georgi"!}
-- }
-- boolean values - to construct a Two we either use the ff or the tt constructor
-- called Two because it has two values
data Two : Set where
ff : Two
tt : Two
-- an example of "mixfix" syntax
-- we can define a function with three arguments
-- the _s are where we would place arguments
if_then_else_ : {A : Set} -> Two -> A -> A -> A
if ff then t else e = e
if tt then t else e = t
-- we can write ordinary functions that return types, based on some value!
-- this function "promotes" the boolean *values* to their "corresponding" *logical types*
-- e.g. we convert the boolean "false" to our encoding of falsity - the type Zero
IsTrue : Two -> Set
IsTrue ff = Zero
IsTrue tt = One
_ : IsTrue tt
_ = <>
-- a sum type - it's either the left thing or the right thing
-- Either in haskell
-- as a logical construction it's a proof of either a or either b
data _+_ (A B : Set) : Set where -- A || B
inl : A -> A + B
inr : B -> A + B
_ : Zero + One
_ = inr <>
-- two-tuples defined as a record
-- a logical encoding for proof of *both* a *and* b
-- (a, b) in haskell
-- we will instead get this as a special case from our next construction
--record _*_ (A B : Set) : Set where -- A && B
-- constructor _,_
-- field
-- fst : A
-- snd : B
-- a **dependent two-tuple** - called a sigma type in books
-- **the type of the second field can depend on the value of the first**
-- this is an encoding of "exists" quantifiers-
-- to prove (constructively) ∃x.P(x), you must give me a x₀, and then prove that P(x₀)
-- which is effectively a two-tuple of a value x, and a proof P x
record _><_ (A : Set) (P : A -> Set) : Set where
constructor _,_
field
fst : A
snd : P fst
infixr 15 _><_
open _><_
-- an example of a dependent tuple
-- we give a value, and then show proof that the value satisfies our predicate "IsTrue"
-- ofcourse, if we give the value ff, we would not be able to construct this, because we cannot prove Zero
_ : Two >< IsTrue
_ = tt , <>
-- another example of construction of a sigma type
--data Nat : Set where
-- zero : Nat
-- suc : Nat -> Nat
--
--three : Nat
--three = suc (suc (suc zero))
--
--Even : Nat -> Set
--Even zero = One
--Even (suc zero) = Zero
--Even (suc (suc x)) = Even x
--
--twoIsEven : Nat >< Even
--twoIsEven = (suc (suc zero)) , <>
-- and now we can get our regular 2-tuples for free as a special case of sigma types
-- in which the second argument doesn't depend on the first (notice how our lambda ignores its argument)
_*_ : (A B : Set) -> Set
A * B = A >< \_ -> B
infixr 15 _*_
-- we can encode Either using a sigma type with Two as our left type!
-- to construct an Either
-- you must either use tt (the "left" constructor) in which case our if then else will compute to A, therefore we must give an A
-- or you must either use ff (the "right" constructor) in which case our if then else will compute to B, therefore we must give a B
Either : (A B : Set) -> Set
Either A B = Two >< \b -> if b then A else' B
where
-- note: I used another version of if_then_else, because our original one had arguments that are **values of some type**, i.e. (x : A), for some A : Set,
-- but here we're actually using the **A itself** as an argument, and our original function handle this
-- this one is **polymorphic over levels** (similar to kind polymorphism in haskell) - it works for both (x : A) and for (A : Set) and for a lot of other stuff
if_then_else'_ : forall {l} -> {A : Set l} -> Two -> A -> A -> A
if ff then t else' e = e
if tt then t else' e = t
-- an example of a function using _*_
-- and a theorem at the same time
-- if you know that A * B is true, then you can also prove B * A (so some kind of symmetry/commutativity)
*-theorem1 : {A B : Set} -> A * B -> B * A
*-theorem1 (x , y) = y , x
-- peano-encoded natural numbers
data Nat : Set where
zero : Nat
suc : Nat -> Nat -- a recursive case in a constructor
{-# BUILTIN NATURAL Nat #-} -- pragma allows us to write literals, e.g. 2 to mean (suc (suc zero)), and also to compile these to Integer, if we compile to haskell
-- traditional left-recursive peano nat addition
-- how you define your functions has great repercussions!
-- because all your proofs will now have to look at the left argument of n +N m in order to proceed!
_+N_ : Nat -> Nat -> Nat
zero +N m = m
suc n +N m = suc (n +N m)
infixr 30 _+N_
-- an equality type
-- to show that x == y for some values x and y
-- you can do only one thing: show that x and y are actually the same value (by using the refl constructor)
-- this "syntactic equality" is internal to agda, but you can think of it as basically "the same structure" (when you look at e.g. constructors)
data _==_ {A : Set} : A -> A -> Set where
refl : {x : A} -> x == x
infix 20 _==_
{-# BUILTIN EQUALITY _==_ #-} -- allows us to use rewrites for this equality type
-- a proof that 2 is equal to 2
-- since 2 is the same syntactic object (suc (suc zero)) as itself, we can use refl
twoIsTwo : 2 == 2
twoIsTwo = refl
-- similarly, in this case 1 +N 1 is not immediately the same thing as 2
-- but agda automatically applies (beta-reduces) the definition of +N as much as possible,
-- and can calculate that they are actually the same!
onePlusOneIsTwo : (1 +N 1) == 2
onePlusOneIsTwo = refl
-- another way to define == where the x is a parameter instead
--data _=='_ {A : Set} (x : A) -> A -> Set where
-- refl : x == x
-- a proof demonstrating how to use ==
-- this states that if you have two proofs of x and y being equal
-- then the proofs themselves are equal to one another!
==-unique : {A : Set} {x y : A} (p1 p2 : x == y) -> p1 == p2
==-unique refl refl = refl
-- note that this is not always true, and it is an active area of research (homotopy type theory),
-- which might provide solutions to problems in constructive mathematics
-- in it, you cannot prove this theorem, and indeed, there are p1 and p2 there, which *are not* equal to each other
-- ap allows us to "apply a function to both sides of an equality"
-- i.e. on a piece of paper we automatically assume this, because f is a function
ap : {A B : Set} {x y : A} (f : A -> B) -> x == y -> f x == f y
ap f refl = refl
-- this proof doesn't need to look at n at all, because we have a case for 0 +N _ in the definition of +N
-- and agda can automatically compute it
+N-left-zero : (n : Nat) -> 0 +N n == n
+N-left-zero n = refl
-- but it is not the same in this case!
-- and thus we use recursion to prove this
+N-right-zero : (n : Nat) -> n +N 0 == n
+N-right-zero zero = refl
+N-right-zero (suc n') = ap suc (+N-right-zero n')
-- another alternative to the last case would be to use "rewrite"
-- the rewrite declaration allows us to "rewrite" our goal by using an equality provided by us
-- i.e. if we have a goal that has some x's in it, and we have a proof (p : x == y)
-- then rewrite p will change all the x's into y's in our goal
+N-assoc : (n m k : Nat) -> (n +N m) +N k == n +N (m +N k)
+N-assoc zero m k = refl
+N-assoc (suc n) m k rewrite +N-assoc n m k = refl
---- EXERCISES ==
--
---- EXERCISE: == is symmetric
--==-symm : {A : Set} {x y : A} -> x == y -> y == x
--==-symm = ?
--
---- EXERCISE: == is transitive
--==-trans : {A : Set} {x y z : A} -> x == y -> y == z -> x == z
--==-trans = ?
--
---- EXERCISES Nats
--
---- EXERCISE: suc is injective
--suc-inj : {n m : Nat} -> suc n == suc m -> n == m
--suc-inj = ?
data _<=_ : Nat -> Nat -> Set where
ozero : {n : Nat} -> zero <= n
osuc : {n m : Nat} -> n <= m -> suc n <= suc m
-- TODO: show some inequalities
---- EXERCISE: <=-refl
--<=-refl : (n : Nat) -> n <= n
--<=-refl n = ?
--
---- EXERCISE: <=-trans
--<=-trans : {n m k : Nat} -> n <= m -> m <= k -> n <= k
--<=-trans = ?
--
---- EXERCISE: suc n is not less than or equal to n
--suc-suc-not-<= : {n : Nat} -> suc n <= n -> Zero
--suc-suc-not-<= = ?
--
---- EXERCISE: <= proofs are unique
---- use ap or rewrite!
--<=-unique : {n m : Nat} -> (p1 p2 : n <= m) -> p1 == p2
--<=-unique = ?
--
---- lists
--
--data List (A : Set) : Set where
-- [] : List A
-- _,-_ : A -> List A -> List A
--
--infixr 50 _,-_
--
---- EXERCISE:
---- Define list appending
---- HINT: look at +N if you haven't done this before
--_+L_ : {A : Set} -> List A -> List A -> List A
--xs +L ys = ?
--
--infixr 30 _+L_
--
---- EXERCISE:
---- +L is a monoid - with what left and right unit?
---- i.e. for what x is it true that for any xs:
---- x +L xs == xs and xs +L x == xs
---- TODO: delete []
--+L-left-id : {A : Set} (xs : List A) -> [] +L xs == xs
--+L-left-id = ?
--
--+L-right-id : {A : Set} (xs : List A) -> xs +L [] == xs
--+L-right-id = ?
--
---- EXERCISE:
---- +L is associative
---- HINT: look at +N-assoc
--+L-assoc : {A : Set} (xs ys zs : List A) -> (xs +L ys) +L zs == xs +L (ys +L zs)
--+L-assoc = ?
--
---- EXERCISE: list map
---- define map for lists - apply a function to every argument
--map : {A B : Set} -> (A -> B) -> List A -> List B
--map = ?
--
---- EXERICSE: mapping id is the same as just id
--map-id-is-id : {A : Set} -> (xs : List A) -> map id xs == xs
--map-id-is-id = ?
---- Note: we apply the argument to avoid extensionality issues
--
---- left-to-right composition
--_<<_ : {A B C : Set} -> (B -> C) -> (A -> B) -> A -> C
--(f << g) x = ?
--
---- EXERCISE: mapping a composition is the same as composing mappings
---- <SPC> u <SPC> u <other-command>
---- might be useful here
--map-compose : {A B C : Set} (f : B -> C) (g : A -> B) (xs : List A) -> map (f << g) xs == (map f << map g) xs
--map-compose = ?
--
---- EXERCISE: mapping after appending is the same as first mapping and then appending
--map-distrib-+L : {A B : Set} (f : A -> B) (xs ys : List A) -> map f (xs +L ys) == map f xs +L map f ys
--map-distrib-+L = ?
--
---- EXERCISE: length-indexed lists - vectors
---- "lists that know their length"
--
--data Vector (A : Set) : Nat -> Set where
-- [] : Vector A zero -- the empty vector has a length of 0
-- _,-_ : {n : Nat} -> A -> Vector A n -> Vector A (suc n) -- if we cons an element to a vector of length n, we get a vector of length (suc n)
--
---- EXERCISE: We can now define a safe head and tail - you can't call them with []
---- Compare this to the default ones in haskell, that can throw exceptions
--vhead : {A : Set} {n : Nat} -> Vector A (suc n) -> A
--vhead = ?
--
--vtail : {A : Set} {n : Nat} -> Vector A (suc n) -> Vector A n
--vtail = ?
--
---- EXERCISE: We can also define "safe" take, that does not "overshoot"
---- Note how we don't need to pass n explicitly, because n <= m holds this information already
--vtake : {A : Set} {n m : Nat} -> n <= m -> Vector A m -> Vector A n
--vtake = ?
--
---- EXERCISE: Our zip is also "safe" in that we don't lose any information from either vector
--vzip : {A B : Set} {n : Nat} -> Vector A n -> Vector B n -> Vector (A * B) n
--vzip = ?
--
---- EXERCISE: Append vectors
---- What type should this function have?
---- _+V_ : ?
--
---- EXERCISE: We can split a vector if we know its size is a sum of two numbers
---- N.B.! you need to pattern match on the left number here, because otherwise agda doesn't know
---- what cases could be possible for the vector
--vsplit : {A : Set} (n m : Nat) -> Vector A (n +N m) -> Vector A n * Vector A m
--vsplit = ?
--
---- EXERCISE: Appending two vectors and then splitting them should yield the original two vectors!
---- What type should this have?
---- vsplit-+V-id : ?
--
---- EXERCISE: you can also suc on the right in +N
--+N-right-suc : (n m : Nat) -> suc (n +N m) == n +N suc m
--+N-right-suc = ?
--
---- EXERCISE: +N is commutative
---- prove lemmas if something seems too hard!
---- you'll need to prove a lemma for the recursive case
---- HINT:
---- use ==-symm and +N-right-zero in the base case
---- and +N-right-suc in the recursive case (+ rewrite or ap + ==-trans)
--+N-commut : (n m : Nat) -> n +N m == m +N n
--+N-commut = ?
--
---- EXERCISE: multiplication
---- use addition
--_*N_ : Nat -> Nat -> Nat
--n *N m = ?
--infixr 40 _*N_
--
---- EXERCISE: multiplication right identity
--*N-right-id : (n : Nat) -> n *N 1 == n
--*N-right-id = ?
--
---- EXERCISE: multiplication distributes over addition
---- HINT: use rewrite and ==-symm + +N-assoc in the recursive case
--*N-distrib-+N : (n m k : Nat) -> (n +N m) *N k == n *N k +N m *N k
--*N-distrib-+N = ?
--
---- EXERCISE: multiplication is associative
---- HINT: user *N-+N-distrib and rewrite
--*N-assoc : (n m k : Nat) -> (n *N m) *N k == n *N (m *N k)
--*N-assoc = ?
| {
"alphanum_fraction": 0.6202939514,
"avg_line_length": 36.4742268041,
"ext": "agda",
"hexsha": "e13f991bfb21ca15c77babcf013b0b828015f168",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9044b382dc9ca3e7e57b4852b3678f1ff3ff5583",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "triffon/lcpt-2019-20",
"max_forks_repo_path": "exercises/02-agda-start.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9044b382dc9ca3e7e57b4852b3678f1ff3ff5583",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "triffon/lcpt-2019-20",
"max_issues_repo_path": "exercises/02-agda-start.agda",
"max_line_length": 162,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "9044b382dc9ca3e7e57b4852b3678f1ff3ff5583",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "triffon/lcpt-2019-20",
"max_stars_repo_path": "exercises/02-agda-start.agda",
"max_stars_repo_stars_event_max_datetime": "2020-06-13T22:22:20.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-02-25T13:16:34.000Z",
"num_tokens": 5411,
"size": 17690
} |
{-# OPTIONS --without-K --rewriting #-}
open import Prelude
module Syntax where
data Con : (n : ℕ) → Set
Ctx : Set
Ctx = Σ ℕ Con
data Ty : Ctx → Set
data Tm : {Γ : Ctx} (A : Ty Γ) → Set
data Sub : Ctx → Ctx → Set
𝔻 : (n : ℕ) → Con n
dangling : {n : ℕ} (Γ : Con n) → Sub (n , Γ) (n , 𝔻 n)
_[_]T : ∀ {Γ Δ} (A : Ty Γ) (σ : Sub Δ Γ) → Ty Δ
_[_]tm : ∀ {Γ Δ} {A : Ty Γ} (t : Tm A) (σ : Sub Δ Γ) → Tm (A [ σ ]T)
_≃_ : ∀ (Γ Δ : Ctx) {γ : Sub Δ Γ} {δ : Sub Γ Δ} → Set
-- Type theory for globular sets
data Con where
Start : Con (O)
Ext : ∀ {n : ℕ} (Γ : Con (n)) → Con (S n)
Drop : ∀ {n : ℕ} (Γ : Con (S n)) → Con n
Ext' : Ctx → Ctx
Ext' Γ = (S (fst Γ) , Ext (snd Γ))
data Ty where
⇒/_ : ∀ {n} {Δ} (σ : Sub Δ (n , 𝔻 n)) → Ty Δ
data Sub where
id : ∀ {Γ} → Sub Γ Γ
_∘_ : ∀ {Γ Δ Θ} (δ : Sub Θ Δ) (γ : Sub Δ Γ) → Sub Θ Γ
Drop : ∀ {n} (Γ : Con (S n)) → Sub (S n , Γ) (n , Drop Γ)
Drop- : ∀ {n} (Γ : Con (S n)) → Sub (n , Drop Γ) (S n , Γ)
π₁ : ∀ (Γ : Ctx) → Sub (Ext' Γ) Γ
_,_ : ∀ {Γ Δ} (γ : Sub Δ Γ) (a : Tm ((⇒/ (dangling (snd Γ))) [ γ ]T)) → Sub Δ (Ext' Γ)
data Tm where
-- π₂ : ∀ {Γ} (A : Ty Γ) → Tm {Γ , A} (A [ π₁ ]T)
postulate
-- category structure
idl : ∀ {Γ Δ} {γ : Sub Δ Γ} → (γ ∘ id) == γ
idr : ∀ {Γ Δ} {γ : Sub Δ Γ} → (id ∘ γ) == γ
assoc : ∀ {Γ Δ Θ Φ} {γ : Sub Δ Γ} {δ : Sub Θ Δ} {θ : Sub Φ Θ} → (θ ∘ (δ ∘ γ)) == ((θ ∘ δ) ∘ γ)
-- skeleton
iso : ∀ {n} {Γ : Con (S n)} → ((S n , Γ) ≃ (n , (Drop Γ))) {Drop- Γ} {Drop Γ}
𝔻 O = Start
𝔻 (S n) = Ext (𝔻 n)
dangling Start = id
dangling (Ext Γ) = {!!}
dangling (Drop Γ) = {!!}
_≃_ Γ Δ {γ} {δ} = {!((γ ∘ δ) == id) ^ ((δ ∘ γ) == id)!}
_[_]T {Γ} {Δ} (⇒/ σ₁) σ = ⇒/ (σ ∘ σ₁)
_[_]tm = {!!}
| {
"alphanum_fraction": 0.403567447,
"avg_line_length": 25.6285714286,
"ext": "agda",
"hexsha": "fa494f1e6994bed9fc0eae055c58b89458475623",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b1734c0ab6f56403d47855829dcf1808b9c53575",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thibautbenjamin/catt",
"max_forks_repo_path": "agda/Syntax.agda",
"max_issues_count": 9,
"max_issues_repo_head_hexsha": "b1734c0ab6f56403d47855829dcf1808b9c53575",
"max_issues_repo_issues_event_max_datetime": "2018-07-12T16:44:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-14T09:31:04.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thibautbenjamin/catt",
"max_issues_repo_path": "agda/Syntax.agda",
"max_line_length": 99,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "b1734c0ab6f56403d47855829dcf1808b9c53575",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ThiBen/catt",
"max_stars_repo_path": "agda/Syntax.agda",
"max_stars_repo_stars_event_max_datetime": "2020-05-21T00:44:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-05-31T10:06:17.000Z",
"num_tokens": 859,
"size": 1794
} |
{-# OPTIONS --cubical --safe #-}
module Algebra.Construct.Dyck where
open import Prelude
open import Algebra
open import Data.Nat using (_+_)
import Data.Nat.Properties as ℕ
open import Agda.Builtin.Nat using (_-_)
record Bal : Type₀ where
constructor _⟩⟨_
field
left : ℕ
right : ℕ
open Bal public
infix 4.5 _⟩-⟨_ _⟩⟨_ _+⟨_⟩+_ _+⟨⟩+_
_⟩-⟨_ : ℕ → ℕ → Bal
zero ⟩-⟨ m = zero ⟩⟨ m
suc n ⟩-⟨ zero = suc n ⟩⟨ zero
suc n ⟩-⟨ suc m = n ⟩-⟨ m
_+⟨_⟩+_ : ℕ → Bal → ℕ → Bal
x +⟨ z ⟩+ y = right z + x ⟩⟨ left z + y
_+⟨⟩+_ : Bal → Bal → Bal
x +⟨⟩+ y = left x +⟨ right x ⟩-⟨ left y ⟩+ right y
mempty : Bal
mempty = 0 ⟩⟨ 0
diff-zeroʳ : ∀ n → n ⟩-⟨ zero ≡ n ⟩⟨ zero
diff-zeroʳ zero = refl
diff-zeroʳ (suc n) = refl
invert : Bal → Bal
invert (x ⟩⟨ y) = y ⟩⟨ x
diff-inv : ∀ x y → invert (x ⟩-⟨ y) ≡ y ⟩-⟨ x
diff-inv zero zero = refl
diff-inv zero (suc y) = refl
diff-inv (suc x) zero = refl
diff-inv (suc x) (suc y) = diff-inv x y
open import Path.Reasoning
add-inv : ∀ x y → (x +⟨⟩+ y) ≡ invert (invert y +⟨⟩+ invert x)
add-inv (xl ⟩⟨ xr) (yl ⟩⟨ yr) = cong₂ _⟩⟨_ (cong (_+ xl) (cong left (diff-inv xr yl))) (cong (_+ yr) (cong right (diff-inv xr yl)))
0+⟨⟩ : ∀ x → mempty +⟨⟩+ x ≡ x
0+⟨⟩ (zero ⟩⟨ xr) i = zero ⟩⟨ xr
0+⟨⟩ (suc xl ⟩⟨ xr) i = suc (ℕ.+-idʳ xl i) ⟩⟨ xr
⟨⟩+0 : ∀ x → x +⟨⟩+ mempty ≡ x
⟨⟩+0 (xl ⟩⟨ zero ) i = xl ⟩⟨ zero
⟨⟩+0 (xl ⟩⟨ suc xr) i = xl ⟩⟨ suc (ℕ.+-idʳ xr i)
diff-sub : ∀ x y → left (x ⟩-⟨ y) ≡ x - y
diff-sub zero zero = refl
diff-sub zero (suc y) = refl
diff-sub (suc x) zero = refl
diff-sub (suc x) (suc y) = diff-sub x y
diff-subʳ : ∀ x y → right (x ⟩-⟨ y) ≡ y - x
diff-subʳ zero zero = refl
diff-subʳ zero (suc y) = refl
diff-subʳ (suc x) zero = refl
diff-subʳ (suc x) (suc y) = diff-subʳ x y
minus-plus : ∀ x y z → x - y - z ≡ x - (y + z)
minus-plus x zero z = refl
minus-plus zero (suc y) zero = refl
minus-plus zero (suc y) (suc z) = refl
minus-plus (suc x) (suc y) z = minus-plus x y z
lhs″ : ∀ zl xr yl yr → (zl - ((xr - yl) + yr)) + (yl - xr) ≡ ((zl - yr) + yl) - xr
lhs″ zl zero zero yr = refl
lhs″ zl zero (suc yl) yr = refl
lhs″ zl (suc xr) zero yr = ℕ.+-idʳ _ ; (cong (zl -_) (ℕ.+-comm (suc xr) yr) ; sym (minus-plus zl yr (suc xr))) ; sym (cong (_- suc xr) (ℕ.+-idʳ (zl - yr)))
lhs″ zero (suc xr) (suc yl) zero = lhs″ zero xr yl zero
lhs″ zero (suc xr) (suc yl) (suc yr) = lhs″ zero xr yl (suc yr)
lhs″ (suc zl) (suc xr) (suc yl) zero = lhs″ (suc zl) xr yl zero ; cong (_- xr) (sym (ℕ.+-suc zl yl))
lhs″ (suc zl) (suc xr) (suc yl) (suc yr) = cong (_+ (yl - xr)) (cong (suc zl -_) (ℕ.+-suc (xr - yl) yr)) ; lhs″ zl (suc xr) (suc yl) yr
rhs‴ : ∀ x y z → x + y - z ≡ x - (z - y) + (y - z)
rhs‴ zero zero zero = refl
rhs‴ zero zero (suc z) = refl
rhs‴ zero (suc y) zero = refl
rhs‴ (suc x) zero zero = refl
rhs‴ (suc x) (suc y) zero = refl
rhs‴ zero (suc y) (suc z) = rhs‴ zero y z
rhs‴ (suc x) zero (suc z) = cong (_- z) (ℕ.+-idʳ x) ; sym (ℕ.+-idʳ (x - z))
rhs‴ (suc x) (suc y) (suc z) = cong (_- z) (ℕ.+-suc x y) ; rhs‴ (suc x) y z
rhs″ : ∀ xr yl yr zl → ((xr - yl) + yr) - zl ≡ xr - (zl - yr + yl) + (yr - zl)
rhs″ (suc xr) (suc yl) yr zl = rhs″ xr yl yr zl ; cong (λ zy → suc xr - zy + (yr - zl)) (sym (ℕ.+-suc (zl - yr) yl))
rhs″ zero zero zero zero = refl
rhs″ zero zero zero (suc zl) = refl
rhs″ zero zero (suc yr) zero = refl
rhs″ zero zero (suc yr) (suc zl) = rhs″ zero zero yr zl
rhs″ zero (suc yl) zero zero = refl
rhs″ zero (suc yl) zero (suc zl) = refl
rhs″ zero (suc yl) (suc yr) zero = refl
rhs″ zero (suc yl) (suc yr) (suc zl) = rhs″ zero (suc yl) yr zl
rhs″ (suc xr) zero zero zero = refl
rhs″ (suc xr) zero (suc yr) zero = refl
rhs″ (suc xr) zero zero (suc zl) = cong (_- zl) (ℕ.+-idʳ xr) ; cong (xr -_) (sym (ℕ.+-idʳ zl)) ; sym (ℕ.+-idʳ (xr - (zl + zero)))
rhs″ (suc xr) zero (suc yr) (suc zl) = cong (_- zl) (ℕ.+-suc xr yr) ; rhs‴ (suc xr) yr zl ; sym (cong (λ zy → suc xr - zy + (yr - zl)) (ℕ.+-idʳ (zl - yr)))
⟨⟩-assoc : Associative _+⟨⟩+_
⟨⟩-assoc (xl ⟩⟨ xr ) (yl ⟩⟨ yr ) (zl ⟩⟨ zr) = cong₂ _⟩⟨_ lhs rhs
where
lhs′ : ∀ xr yl yr zl → right (left (xr ⟩-⟨ yl) + yr ⟩-⟨ zl) + right (xr ⟩-⟨ yl) ≡ right (xr ⟩-⟨ right (yr ⟩-⟨ zl) + yl)
lhs′ xr yl yr zl =
right (left (xr ⟩-⟨ yl) + yr ⟩-⟨ zl) + right (xr ⟩-⟨ yl) ≡⟨ cong₂ _+_ (diff-subʳ (left (xr ⟩-⟨ yl) + yr) zl) (diff-subʳ xr yl) ⟩
(zl - (left (xr ⟩-⟨ yl) + yr)) + (yl - xr) ≡⟨ cong (λ xy → (zl - (xy + yr)) + (yl - xr)) (diff-sub xr yl) ⟩
(zl - ((xr - yl) + yr)) + (yl - xr) ≡⟨ lhs″ zl xr yl yr ⟩
((zl - yr) + yl) - xr ≡˘⟨ cong (λ yz → (yz + yl) - xr) (diff-subʳ yr zl) ⟩
(right (yr ⟩-⟨ zl) + yl) - xr ≡˘⟨ diff-subʳ xr _ ⟩
right (xr ⟩-⟨ right (yr ⟩-⟨ zl) + yl) ∎
lhs : right (left (xr ⟩-⟨ yl) + yr ⟩-⟨ zl) + (right (xr ⟩-⟨ yl) + xl) ≡ right (xr ⟩-⟨ right (yr ⟩-⟨ zl) + yl) + xl
lhs = sym (ℕ.+-assoc _ (right (xr ⟩-⟨ yl)) xl) ; cong (_+ xl) (lhs′ xr yl yr zl)
rhs′ : ∀ xr yl yr zl → left (left (xr ⟩-⟨ yl) + yr ⟩-⟨ zl) ≡ left (xr ⟩-⟨ right (yr ⟩-⟨ zl) + yl) + left (yr ⟩-⟨ zl)
rhs′ xr yl yr zl =
left (left (xr ⟩-⟨ yl) + yr ⟩-⟨ zl) ≡⟨ diff-sub _ zl ⟩
left (xr ⟩-⟨ yl) + yr - zl ≡⟨ cong (_- zl) (cong (_+ yr) (diff-sub xr yl)) ⟩
(xr - yl) + yr - zl ≡⟨ rhs″ xr yl yr zl ⟩
(xr - ((zl - yr) + yl)) + (yr - zl) ≡˘⟨ cong (λ yz → (xr - (yz + yl)) + (yr - zl)) (diff-subʳ yr zl) ⟩
(xr - (right (yr ⟩-⟨ zl) + yl)) + (yr - zl) ≡˘⟨ cong₂ _+_ (diff-sub xr _) (diff-sub yr zl) ⟩
left (xr ⟩-⟨ right (yr ⟩-⟨ zl) + yl) + left (yr ⟩-⟨ zl) ∎
rhs : left (left (xr ⟩-⟨ yl) + yr ⟩-⟨ zl) + zr ≡ left (xr ⟩-⟨ right (yr ⟩-⟨ zl) + yl) + (left (yr ⟩-⟨ zl) + zr)
rhs = cong (_+ zr) (rhs′ xr yl yr zl) ; ℕ.+-assoc (left (xr ⟩-⟨ right (yr ⟩-⟨ zl) + yl)) (left (yr ⟩-⟨ zl)) zr
semigroupBal : Semigroup _
semigroupBal .Semigroup.𝑆 = Bal
semigroupBal .Semigroup._∙_ = _+⟨⟩+_
semigroupBal .Semigroup.assoc = ⟨⟩-assoc
monoidBal : Monoid _
Monoid.𝑆 monoidBal = Bal
Monoid._∙_ monoidBal = _+⟨⟩+_
Monoid.ε monoidBal = mempty
Monoid.assoc monoidBal = ⟨⟩-assoc
Monoid.ε∙ monoidBal = 0+⟨⟩
Monoid.∙ε monoidBal = ⟨⟩+0
| {
"alphanum_fraction": 0.5257266956,
"avg_line_length": 39.3815789474,
"ext": "agda",
"hexsha": "d8916e2d48f93890913d7d9ce4c7674bb1c6bbf6",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z",
"max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/combinatorics-paper",
"max_forks_repo_path": "agda/Algebra/Construct/Dyck.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/combinatorics-paper",
"max_issues_repo_path": "agda/Algebra/Construct/Dyck.agda",
"max_line_length": 156,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/combinatorics-paper",
"max_stars_repo_path": "agda/Algebra/Construct/Dyck.agda",
"max_stars_repo_stars_event_max_datetime": "2021-01-05T15:32:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-01-05T14:07:44.000Z",
"num_tokens": 3055,
"size": 5986
} |
module Structure.Operator.Monoid.Invertible where
open import Functional
import Lvl
open import Logic.Propositional
open import Logic.Predicate
open import Structure.Setoid
open import Type
private variable ℓ ℓₗ ℓₑ : Lvl.Level
private variable T : Type{ℓ}
private variable _⨞_ : T → T → Type{ℓₗ}
module _ ⦃ equiv : Equiv{ℓₑ}(T) ⦄ (_▫_ : T → T → T) where
-- Generalizes the following examples in ℕ:
-- • Lesser than or equal: (5+? = 8) ⇔ (5 ≤ 8)
-- • Divides : (5*? = 10) ⇔ (5 ∣ 10)
record InverseRelationᵣ(_⨞_ : T → T → Type{ℓₗ}) : Type{Lvl.of(T) Lvl.⊔ ℓₑ Lvl.⊔ ℓₗ} where
constructor intro
field proof : ∀{x y} → (x ⨞ y) ↔ ∃(z ↦ x ▫ z ≡ y)
module _ ⦃ invRel : InverseRelationᵣ{ℓₗ}(_⨞_) ⦄ where
record InverseOperatorᵣ (_⋄_ : (x : T) → (y : T) → . ⦃ inv : (y ⨞ x) ⦄ → T) : Type{Lvl.of(T) Lvl.⊔ ℓₑ Lvl.⊔ ℓₗ} where
constructor intro
field proof : ∀{x y} ⦃ inv : (y ⨞ x) ⦄ → (x ⋄ y ≡ [∃]-witness([↔]-to-[→] (InverseRelationᵣ.proof invRel) inv))
{-
module _ ⦃ equiv : Equiv{ℓₑ}(T) ⦄ (_▫_ : T → T → T) where
InverseRelationₗ = InverseRelationᵣ(swap(_▫_))
module _ ⦃ invRel : InverseRelationₗ{ℓₗ}(_⨞_) ⦄ where
InverseOperatorₗ = InverseOperatorᵣ -- TODO: Is this correct?
-}
| {
"alphanum_fraction": 0.6102106969,
"avg_line_length": 36.2941176471,
"ext": "agda",
"hexsha": "69a829a4c90a00441d13803cdf9df9d86916275d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Operator/Monoid/Invertible.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Operator/Monoid/Invertible.agda",
"max_line_length": 121,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Operator/Monoid/Invertible.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 548,
"size": 1234
} |
module map-compose where
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; cong)
open Eq.≡-Reasoning
open import Function using (_∘_)
open import lists using (List; []; _∷_; map)
postulate
-- 外延性の公理
extensionality : ∀ {A B : Set} {f g : A → B}
→ (∀ (x : A) → f x ≡ g x)
-----------------------
→ f ≡ g
-- 外延性の公理を用いた証明のための補助定理
lemma : ∀ {A B C : Set} → (f : A → B) → (g : B → C) → (x : List A)
→ map (g ∘ f) x ≡ (map g ∘ map f) x
lemma f g [] = refl
lemma f g (x ∷ xs) =
begin
map (g ∘ f) (x ∷ xs)
≡⟨⟩
(g ∘ f) x ∷ map (g ∘ f) xs
≡⟨ cong ((g ∘ f) x ∷_) (lemma f g xs) ⟩
(g ∘ f) x ∷ (map g ∘ map f) xs
≡⟨⟩
(map g ∘ map f) (x ∷ xs)
∎
-- mapの分配法則の証明
map-compose : ∀ {A B C : Set} → (f : A → B) → (g : B → C)
→ map (g ∘ f) ≡ map g ∘ map f
map-compose f g = extensionality (lemma f g)
| {
"alphanum_fraction": 0.4913093859,
"avg_line_length": 24.6571428571,
"ext": "agda",
"hexsha": "0b9e1c7cd0cfa68166517c4b05dbad6e50bd2a9f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "akiomik/plfa-solutions",
"max_forks_repo_path": "part1/lists/map-compose.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "akiomik/plfa-solutions",
"max_issues_repo_path": "part1/lists/map-compose.agda",
"max_line_length": 66,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "akiomik/plfa-solutions",
"max_stars_repo_path": "part1/lists/map-compose.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-07T09:42:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-07T09:42:22.000Z",
"num_tokens": 401,
"size": 863
} |
{-# OPTIONS --guardedness #-}
module induction-ex where
open import Relation.Binary.PropositionalEquality
open import Size
open import Data.Bool
data List (A : Set ) : Set where
[] : List A
_∷_ : A → List A → List A
data Nat : Set where
zero : Nat
suc : Nat → Nat
add : Nat → Nat → Nat
add zero x = x
add (suc x) y = suc ( add x y )
_++_ : {A : Set} → List A → List A → List A
[] ++ y = y
(x ∷ t) ++ y = x ∷ ( t ++ y )
test1 = (zero ∷ []) ++ (zero ∷ [])
length : {A : Set } → List A → Nat
length [] = zero
length (_ ∷ t) = suc ( length t )
lemma1 : {A : Set} → (x y : List A ) → length ( x ++ y ) ≡ add (length x) (length y)
lemma1 [] y = refl
lemma1 (x ∷ t) y = cong ( λ k → suc k ) lemma2 where
lemma2 : length (t ++ y) ≡ add (length t) (length y)
lemma2 = lemma1 t y
-- record List1 ( A : Set ) : Set where
-- inductive
-- field
-- nil : List1 A
-- cons : A → List1 A → List1 A
--
-- record List2 ( A : Set ) : Set where
-- coinductive
-- field
-- nil : List2 A
-- cons : A → List2 A → List2 A
data SList (i : Size) (A : Set) : Set where
[]' : SList i A
_∷'_ : {j : Size< i} (x : A) (xs : SList j A) → SList i A
map : ∀{i A B} → (A → B) → SList i A → SList i B
map f []' = []'
map f ( x ∷' xs)= f x ∷' map f xs
foldr : ∀{i} {A B : Set} → (A → B → B) → B → SList i A → B
foldr c n []' = n
foldr c n (x ∷' xs) = c x (foldr c n xs)
any : ∀{i A} → (A → Bool) → SList i A → Bool
any p xs = foldr _∨_ false (map p xs)
-- Sappend : {A : Set } {i j : Size } → SList i A → SList j A → SList {!!} A
-- Sappend []' y = y
-- Sappend (x ∷' x₁) y = _∷'_ {?} x (Sappend x₁ y)
language : { Σ : Set } → Set
language {Σ} = List Σ → Bool
record Lang (i : Size) (A : Set) : Set where
coinductive
field
ν : Bool
δ : ∀{j : Size< i} → A → Lang j A
open Lang
∅ : ∀ {i A} → Lang i A
ν ∅ = false
δ ∅ _ = ∅
∅' : {i : Size } { A : Set } → Lang i A
∅' {i} {A} = record { ν = false ; δ = lemma3 } where
lemma3 : {j : Size< i} → A → Lang j A
lemma3 {j} _ = {!!}
∅l : {A : Set } → language {A}
∅l _ = false
ε : ∀ {i A} → Lang i A
ν ε = true
δ ε _ = ∅
εl : {A : Set } → language {A}
εl [] = true
εl (_ ∷ _) = false
_+_ : ∀ {i A} → Lang i A → Lang i A → Lang i A
ν (a + b) = ν a ∨ ν b
δ (a + b) x = δ a x + δ b x
Union : {Σ : Set} → ( A B : language {Σ} ) → language {Σ}
Union {Σ} A B x = (A x ) ∨ (B x)
_·_ : ∀ {i A} → Lang i A → Lang i A → Lang i A
ν (a · b) = ν a ∧ ν b
δ (a · b) x = if (ν a) then ((δ a x · b ) + (δ b x )) else ( δ a x · b )
split : {Σ : Set} → (List Σ → Bool)
→ ( List Σ → Bool) → List Σ → Bool
split x y [] = x [] ∨ y []
split x y (h ∷ t) = (x [] ∧ y (h ∷ t)) ∨
split (λ t1 → x ( h ∷ t1 )) (λ t2 → y t2 ) t
Concat : {Σ : Set} → ( A B : language {Σ} ) → language {Σ}
Concat {Σ} A B = split A B
| {
"alphanum_fraction": 0.4756871036,
"avg_line_length": 23.8487394958,
"ext": "agda",
"hexsha": "642cb2e4fd7d09c03cde983f883b92b86b6cc24d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "shinji-kono/automaton-in-agda",
"max_forks_repo_path": "src/induction-ex.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "shinji-kono/automaton-in-agda",
"max_issues_repo_path": "src/induction-ex.agda",
"max_line_length": 84,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "shinji-kono/automaton-in-agda",
"max_stars_repo_path": "src/induction-ex.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1210,
"size": 2838
} |
-- An ATP hint must be used with functions.
-- This error is detected by Syntax.Translation.ConcreteToAbstract.
module ATPBadHint1 where
data Bool : Set where
false true : Bool
{-# ATP hint false #-}
| {
"alphanum_fraction": 0.7330097087,
"avg_line_length": 18.7272727273,
"ext": "agda",
"hexsha": "4a981f17bae682b8c200a5dccd1671de008fe0f9",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "asr/eagda",
"max_forks_repo_path": "test/fail/ATPBadHint1.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "asr/eagda",
"max_issues_repo_path": "test/fail/ATPBadHint1.agda",
"max_line_length": 67,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "asr/eagda",
"max_stars_repo_path": "test/fail/ATPBadHint1.agda",
"max_stars_repo_stars_event_max_datetime": "2016-03-17T01:45:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-03-17T01:45:59.000Z",
"num_tokens": 48,
"size": 206
} |
{-
Given a type A with a UARel and a family B over A,
a SubstRel on B is a family of functions a ≅ a' → B a ≃ B a' path-equal to transport in that family.
Any SubstRel gives rise to a DUARel in which b and b' are related over p when the transport of b along p is
equial to b'.
-}
{-# OPTIONS --safe #-}
module Cubical.Displayed.Subst where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Path
open import Cubical.Foundations.Transport
open import Cubical.Foundations.Univalence
open import Cubical.Displayed.Base
private
variable
ℓA ℓ≅A ℓB : Level
record SubstRel {A : Type ℓA} {ℓ≅A : Level} (𝒮-A : UARel A ℓ≅A) (B : A → Type ℓB)
: Type (ℓ-max (ℓ-max ℓA ℓB) ℓ≅A)
where
no-eta-equality
constructor substrel
open UARel 𝒮-A
field
act : {a a' : A} → a ≅ a' → B a ≃ B a'
uaˢ : {a a' : A} (p : a ≅ a') (b : B a) → subst B (≅→≡ p) b ≡ equivFun (act p) b
uaˢ⁻ : {a a' : A} (p : a ≅ a') (b : B a') → subst B (sym (≅→≡ p)) b ≡ invEq (act p) b
uaˢ⁻ p b =
subst B (sym (≅→≡ p)) b
≡⟨ cong (subst B (sym (≅→≡ p))) (sym (retEq (act p) b)) ⟩
subst B (sym (≅→≡ p)) (equivFun (act p) (invEq (act p) b))
≡⟨ cong (subst B (sym (≅→≡ p))) (sym (uaˢ p (invEq (act p) b))) ⟩
subst B (sym (≅→≡ p)) (subst B (≅→≡ p) (invEq (act p) b))
≡⟨ pathToIso (cong B (≅→≡ p)) .Iso.leftInv (invEq (act p) b) ⟩
invEq (act p) b
∎
Subst→DUA : {A : Type ℓA} {ℓ≅A : Level} {𝒮-A : UARel A ℓ≅A} {B : A → Type ℓB}
→ SubstRel 𝒮-A B → DUARel 𝒮-A B ℓB
DUARel._≅ᴰ⟨_⟩_ (Subst→DUA 𝒮ˢ-B) b p b' =
equivFun (SubstRel.act 𝒮ˢ-B p) b ≡ b'
DUARel.uaᴰ (Subst→DUA {𝒮-A = 𝒮-A} {B = B} 𝒮ˢ-B) b p b' =
equivFun (SubstRel.act 𝒮ˢ-B p) b ≡ b'
≃⟨ invEquiv (compPathlEquiv (sym (SubstRel.uaˢ 𝒮ˢ-B p b))) ⟩
subst B (≅→≡ p) b ≡ b'
≃⟨ invEquiv (PathP≃Path (λ i → B (≅→≡ p i)) b b') ⟩
PathP (λ i → B (UARel.≅→≡ 𝒮-A p i)) b b'
■
where
open UARel 𝒮-A
| {
"alphanum_fraction": 0.5815353738,
"avg_line_length": 32.6721311475,
"ext": "agda",
"hexsha": "df13e37661abe85b7f6fd33121a789f47279c4fa",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "94b474af2909727d04706d562d949928c19faf7b",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "jespercockx/cubical",
"max_forks_repo_path": "Cubical/Displayed/Subst.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "94b474af2909727d04706d562d949928c19faf7b",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "jespercockx/cubical",
"max_issues_repo_path": "Cubical/Displayed/Subst.agda",
"max_line_length": 109,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "94b474af2909727d04706d562d949928c19faf7b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "jespercockx/cubical",
"max_stars_repo_path": "Cubical/Displayed/Subst.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 938,
"size": 1993
} |
-- Andreas, 2018-10-15, issue #3262 reported by Guillaume Brunerie
--
-- Missing with clauses should be reported close to problem location
-- not just at the type signature of the function which has this problem.
data T : Set where
a b c : T
f : T → Set
f a = ?
f b = ?
f c with c | c
... | _ = ?
-- Should trigger the "missing with clauses" error
-- at the lhs with the "with".
| {
"alphanum_fraction": 0.6692708333,
"avg_line_length": 22.5882352941,
"ext": "agda",
"hexsha": "9c7e91aaf1e70e032c82e4fda53e2f1e1a1021cd",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue3262.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue3262.agda",
"max_line_length": 73,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue3262.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 109,
"size": 384
} |
{-# OPTIONS --allow-unsolved-metas #-}
postulate
Nat : Set
Fin : Nat → Set
Foo : (n : Nat) → Fin n → Set
Bar : ∀ {n m} → Foo n m → Set
variable
n : Nat
m : Fin _
k : Foo _ m
l : Foo n m
open import Agda.Builtin.Equality
postulate
goal-type-error : Bar k
foo : Bar _
foo = goal-type-error _ _
| {
"alphanum_fraction": 0.5873015873,
"avg_line_length": 14.3181818182,
"ext": "agda",
"hexsha": "651dec7e6c5f0bff8fac0b2aa7a73bedb86c63b2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Succeed/Issue3109.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Succeed/Issue3109.agda",
"max_line_length": 38,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Succeed/Issue3109.agda",
"max_stars_repo_stars_event_max_datetime": "2021-07-07T10:49:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-07-07T10:49:57.000Z",
"num_tokens": 111,
"size": 315
} |
-- Andreas, 2017-07-11, issue #2639 reported by nad
--
-- Unsolvable size constraints were added to the constraint set
-- each time the size solver ran. This lead to exponentially
-- many size constraints.
-- {-# OPTIONS -v tc.size.solve:40 #-}
module Issue2639 (A : Set) where
open import Agda.Builtin.Nat
open import Agda.Builtin.Size
open import Issue2639.DR A
postulate
P : {i : Size} → D i → Set
F : Set₁
F = Set
where
-- This postulate creates an unsolved size constraint.
postulate
unused : P a
G : Nat → Set → Set₁
G zero = λ { _ → Set }
G (suc zero) = λ { _ → Set }
G (suc (suc zero)) = λ { _ → Set }
G (suc (suc (suc zero))) = λ { _ → Set }
G (suc (suc (suc (suc zero)))) = λ { _ → Set }
G _ = λ { _ → Set }
| {
"alphanum_fraction": 0.6162018592,
"avg_line_length": 22.1470588235,
"ext": "agda",
"hexsha": "7ae6d2754ea0f7a7c4e5ac4727866142a6307b45",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue2639.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue2639.agda",
"max_line_length": 63,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue2639.agda",
"max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z",
"num_tokens": 256,
"size": 753
} |
-- Andreas, 2012-04-18
module Issue611 where
data Nat : Set where
zero : Nat
suc : Nat -> Nat
data Bool : Set where
true false : Bool
T : Bool -> Set
T true = {x : Bool} -> Nat
T false = {x : Bool} -> Bool
data D (b : Bool) : Set where
c : T b -> D b
d : D false
d = c {_} true
| {
"alphanum_fraction": 0.5699658703,
"avg_line_length": 14.65,
"ext": "agda",
"hexsha": "10e83154aa11cc8089b50c3dbcd06c356926c33b",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue611.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue611.agda",
"max_line_length": 29,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue611.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 108,
"size": 293
} |
module Data.Finitary.Permutation where
open import Data.Nat
open import Data.Fin
open import Relation.Binary.PropositionalEquality as P using (_≡_; _≢_)
open import Function.Inverse as Inv using (Inverse)
import Function.Equality as F
open import Function.LeftInverse using (_LeftInverseOf_)
open import Data.Finitary
open import Data.Vec as Vec using (Vec)
open import Data.Vec.Distinct as Distinct using (Distinct)
open import Data.Product hiding (swap)
Permutation : ℕ → Set
Permutation n = Finitary (P.setoid (Fin n)) n
identity : ∀ {n} → Permutation n
identity = Inv.id
swap : ∀ {n} → Fin n → Fin n → Permutation n
swap {n} i j = record {
to = P.→-to-⟶ swap′
; from = P.→-to-⟶ swap′
; inverse-of = record {
left-inverse-of = swap′-involutive
; right-inverse-of = swap′-involutive
}
}
where
open import Data.Fin.Properties as FinP
open import Relation.Nullary
open import Data.Empty using (⊥-elim)
swap′ : Fin n → Fin n
swap′ k with k FinP.≟ i
swap′ k | yes k≡i = j
swap′ k | no ¬p with k FinP.≟ j
swap′ k | no ¬p | yes k≡j = i
swap′ k | no ¬p | no ¬p₁ = k
swap′-involutive : ∀ k → swap′ (swap′ k) ≡ k
swap′-involutive k with k FinP.≟ i
swap′-involutive k | yes k≡i with k≡i | j FinP.≟ i
swap′-involutive _ | yes k≡i | P.refl | yes j≡i = j≡i
swap′-involutive _ | yes k≡i | P.refl | no j≢i with j FinP.≟ j
swap′-involutive _ | yes k≡i | P.refl | no j≢i | yes j≡j = P.refl
swap′-involutive _ | yes k≡i | P.refl | no j≢i | no j≢j = ⊥-elim (j≢j P.refl)
swap′-involutive k | no k≢i with k FinP.≟ j
swap′-involutive k | no k≢i | yes k≡j with k≡j | i FinP.≟ i
swap′-involutive k | no k≢i | yes k≡j | P.refl | yes P.refl = P.refl
swap′-involutive k | no k≢i | yes k≡j | P.refl | no i≢i = ⊥-elim (i≢i P.refl)
swap′-involutive k | no k≢i | no k≢j = lemma k≢i k≢j
where
open P.≡-Reasoning
lemma : ∀ {k} → k ≢ i → k ≢ j → swap′ k ≡ k
lemma {k} k≢i k≢j with k FinP.≟ i
lemma k≢i k≢j | yes k≡i = ⊥-elim (k≢i k≡i)
lemma {k} k≢i k≢j | no ¬k≡i with k FinP.≟ j
lemma {k} k≢i k≢j | no ¬k≡i | yes k≡j = ⊥-elim (k≢j k≡j)
lemma {k} k≢i k≢j | no ¬k≡i | no ¬p = P.refl
shift : ∀ {n} → Permutation n → Permutation (ℕ.suc n)
shift {n} p = record {
to = P.→-to-⟶ (shift′ Perm.to)
; from = P.→-to-⟶ (shift′ Perm.from)
; inverse-of = record {
left-inverse-of = shift′-inverse-of Perm.left-inverse-of
; right-inverse-of = shift′-inverse-of Perm.right-inverse-of
}
}
where
module Perm = Inverse p
shift′ : P.setoid (Fin n) F.⟶ P.setoid (Fin n) → Fin (ℕ.suc n) → Fin (ℕ.suc n)
shift′ f Fin.zero = Fin.zero
shift′ f (Fin.suc i) = Fin.suc (f F.⟨$⟩ i)
shift′-inverse-of : ∀ {from : P.setoid (Fin n) F.⟶ P.setoid (Fin n)}{to : P.setoid (Fin n) F.⟶ P.setoid (Fin n)} → from LeftInverseOf to → (P.→-to-⟶ (shift′ from)) LeftInverseOf (P.→-to-⟶ (shift′ to))
shift′-inverse-of inv Fin.zero = P.refl
shift′-inverse-of inv (Fin.suc i) = P.cong Fin.suc (inv i)
Perm→Distinct : ∀ {n} → Permutation n → ∃ λ (xs : Vec (Fin n) n) → Distinct xs
Perm→Distinct {n} p = , xs-distinct
where
open Inverse p renaming (to to f)
open import Data.Vec.Properties
xs-distinct : Distinct (Vec.tabulate (f F.⟨$⟩_))
xs-distinct = P.subst Distinct (P.sym (tabulate-allFin _))
(Distinct.map injection (Distinct.allFin n))
| {
"alphanum_fraction": 0.5456,
"avg_line_length": 41.6666666667,
"ext": "agda",
"hexsha": "36b8802cc2e0436d5cb67c5b0083ed861b9286e6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "abacd166f63582b7395d9cc10b6323c0f69649e5",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "tizmd/agda-finitary",
"max_forks_repo_path": "src/Data/Finitude/Permutation.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "abacd166f63582b7395d9cc10b6323c0f69649e5",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "tizmd/agda-finitary",
"max_issues_repo_path": "src/Data/Finitude/Permutation.agda",
"max_line_length": 206,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "abacd166f63582b7395d9cc10b6323c0f69649e5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "tizmd/agda-finitary",
"max_stars_repo_path": "src/Data/Finitude/Permutation.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1364,
"size": 3750
} |
{-
This second-order signature was created from the following second-order syntax description:
syntax STLC | Λ
type
N : 0-ary
_↣_ : 2-ary | r30
term
app : α ↣ β α -> β | _$_ l20
lam : α.β -> α ↣ β | ƛ_ r10
theory
(ƛβ) b : α.β a : α |> app (lam(x.b[x]), a) = b[a]
(ƛη) f : α ↣ β |> lam (x. app(f, x)) = f
-}
module STLC.Signature where
open import SOAS.Context
-- Type declaration
data ΛT : Set where
N : ΛT
_↣_ : ΛT → ΛT → ΛT
infixr 30 _↣_
open import SOAS.Syntax.Signature ΛT public
open import SOAS.Syntax.Build ΛT public
-- Operator symbols
data Λₒ : Set where
appₒ lamₒ : {α β : ΛT} → Λₒ
-- Term signature
Λ:Sig : Signature Λₒ
Λ:Sig = sig λ
{ (appₒ {α}{β}) → (⊢₀ α ↣ β) , (⊢₀ α) ⟼₂ β
; (lamₒ {α}{β}) → (α ⊢₁ β) ⟼₁ α ↣ β
}
open Signature Λ:Sig public
| {
"alphanum_fraction": 0.5786864932,
"avg_line_length": 17.9333333333,
"ext": "agda",
"hexsha": "c23fac95f99721d2968ebd2a2a63d35701e5d422",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z",
"max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JoeyEremondi/agda-soas",
"max_forks_repo_path": "out/STLC/Signature.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JoeyEremondi/agda-soas",
"max_issues_repo_path": "out/STLC/Signature.agda",
"max_line_length": 91,
"max_stars_count": 39,
"max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JoeyEremondi/agda-soas",
"max_stars_repo_path": "out/STLC/Signature.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z",
"num_tokens": 364,
"size": 807
} |
f : {A B : Set} → (@0 A → B) → A → B
f g x = g x
| {
"alphanum_fraction": 0.3265306122,
"avg_line_length": 16.3333333333,
"ext": "agda",
"hexsha": "33aa2e3adce8fdeb4aff8c74432a717bf28b3d4e",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "cagix/agda",
"max_forks_repo_path": "test/Succeed/Erasure-subtyping.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "cagix/agda",
"max_issues_repo_path": "test/Succeed/Erasure-subtyping.agda",
"max_line_length": 36,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "cagix/agda",
"max_stars_repo_path": "test/Succeed/Erasure-subtyping.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 27,
"size": 49
} |
-- Andreas, 2017-04-13, issue #2494, reported by identicalsnowflake
-- Consecutive hidden record fields confused the implicit argument insertion
-- due to lack of names in NamedArg.
-- {-# OPTIONS -v tc.lhs:30 #-}
-- {-# OPTIONS -v tc.term.args:100 #-}
postulate
Red Blue : Set
record Colors : Set where
field
{{red}} : Red
{{blue}} : Blue
f : Colors → Red
f record { blue = blue } = blue
| {
"alphanum_fraction": 0.6551724138,
"avg_line_length": 22.5555555556,
"ext": "agda",
"hexsha": "b00d5c38b78682380839816e3e6bacd19b8b4e4b",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue2494-pattern-instance.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue2494-pattern-instance.agda",
"max_line_length": 76,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue2494-pattern-instance.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 117,
"size": 406
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Metavariables used in the reflection machinery
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Reflection.Meta where
import Data.Nat.Properties as ℕₚ
open import Function
open import Relation.Nullary.Decidable using (map′)
open import Relation.Binary
import Relation.Binary.Construct.On as On
open import Relation.Binary.PropositionalEquality
open import Agda.Builtin.Reflection public
using (Meta) renaming (primMetaToNat to toℕ)
open import Agda.Builtin.Reflection.Properties public
renaming (primMetaToNatInjective to toℕ-injective)
-- Equality of metas is decidable.
_≈_ : Rel Meta _
_≈_ = _≡_ on toℕ
_≈?_ : Decidable _≈_
_≈?_ = On.decidable toℕ _≡_ ℕₚ._≟_
infix 4 _≟_
_≟_ : DecidableEquality Meta
m ≟ n = map′ (toℕ-injective _ _) (cong toℕ) (m ≈? n)
| {
"alphanum_fraction": 0.6362672322,
"avg_line_length": 26.9428571429,
"ext": "agda",
"hexsha": "46fe960e290f9c8afaeaa35f7c4c22dd2b0b0d4b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Reflection/Meta.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Reflection/Meta.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Reflection/Meta.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 250,
"size": 943
} |
module Thesis.SIRelBigStep.SemEquiv where
open import Data.Nat
open import Data.Product
open import Relation.Binary.PropositionalEquality
open import Thesis.SIRelBigStep.Syntax public
open import Thesis.SIRelBigStep.OpSem
open import Thesis.SIRelBigStep.DenSem
⟦_⟧Val : ∀ {τ} → Val τ → ⟦ τ ⟧Type
⟦_⟧Env : ∀ {Γ} → ⟦ Γ ⟧Context → Den.⟦ Γ ⟧Context
⟦ ∅ ⟧Env = ∅
⟦ v • ρ ⟧Env = ⟦ v ⟧Val • ⟦ ρ ⟧Env
⟦ closure t ρ ⟧Val = λ v → (⟦ t ⟧Term) (v • ⟦ ρ ⟧Env)
⟦ natV n ⟧Val = n
⟦ pairV v1 v2 ⟧Val = ⟦ v1 ⟧Val , ⟦ v2 ⟧Val
↦-sound : ∀ {Γ τ} ρ (x : Var Γ τ) →
Den.⟦ x ⟧Var ⟦ ρ ⟧Env ≡ ⟦ ⟦ x ⟧Var ρ ⟧Val
↦-sound (px • ρ) this = refl
↦-sound (px • ρ) (that x) = ↦-sound ρ x
eval-const-sound : ∀ {τ} (c : Const τ) → ⟦ c ⟧Const ≡ ⟦ eval-const c ⟧Val
eval-const-sound (lit n) = refl
eval-primitive-sound : ∀ {σ τ} (p : Primitive (σ ⇒ τ)) v → ⟦ p ⟧Primitive ⟦ v ⟧Val ≡ ⟦ eval-primitive p v ⟧Val
eval-primitive-sound succ (natV n) = refl
eval-primitive-sound add (pairV (natV n1) (natV n2)) = refl
eval-sound : ∀ {Γ τ} ρ (sv : SVal Γ τ) →
⟦ sv ⟧SVal ⟦ ρ ⟧Env ≡ ⟦ eval sv ρ ⟧Val
eval-sound ρ (var x) = ↦-sound ρ x
eval-sound ρ (abs t) = refl
eval-sound ρ (cons sv1 sv2) rewrite eval-sound ρ sv1 | eval-sound ρ sv2 = refl
eval-sound ρ (const c) = eval-const-sound c
-- Check it's fine to use i 0 in the derivations for app
↓-sv-1-step : ∀ {Γ τ ρ v} {n} {sv : SVal Γ τ} →
ρ ⊢ val sv ↓[ i' n ] v →
n ≡ 0
↓-sv-1-step (val sv) = refl
↓-sound : ∀ {Γ τ ρ v hasIdx} {n : Idx hasIdx} {t : Term Γ τ} →
ρ ⊢ t ↓[ n ] v →
⟦ t ⟧Term ⟦ ρ ⟧Env ≡ ⟦ v ⟧Val
↓-sound (val sv) = eval-sound _ sv
↓-sound (app _ _ ↓₁ ↓₂ ↓′) rewrite ↓-sound ↓₁ | ↓-sound ↓₂ | ↓-sound ↓′ = refl
↓-sound (lett n1 n2 vsv s t ↓ ↓₁) rewrite ↓-sound ↓ | ↓-sound ↓₁ = refl
↓-sound {ρ = ρ} (primapp p sv) rewrite eval-sound ρ sv = eval-primitive-sound p (eval sv ρ)
| {
"alphanum_fraction": 0.5919603524,
"avg_line_length": 34.2641509434,
"ext": "agda",
"hexsha": "064149d637e90631ddec02d70989c01173305b56",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "inc-lc/ilc-agda",
"max_forks_repo_path": "Thesis/SIRelBigStep/SemEquiv.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "inc-lc/ilc-agda",
"max_issues_repo_path": "Thesis/SIRelBigStep/SemEquiv.agda",
"max_line_length": 110,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "inc-lc/ilc-agda",
"max_stars_repo_path": "Thesis/SIRelBigStep/SemEquiv.agda",
"max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z",
"num_tokens": 841,
"size": 1816
} |
------------------------------------------------------------------------
-- Applicative functors
------------------------------------------------------------------------
-- Note that currently the applicative functor laws are not included
-- here.
module Category.Applicative where
open import Data.Unit
open import Category.Applicative.Indexed
RawApplicative : (Set → Set) → Set₁
RawApplicative F = RawIApplicative {I = ⊤} (λ _ _ → F)
module RawApplicative {F : Set → Set} (app : RawApplicative F) where
open RawIApplicative app public
| {
"alphanum_fraction": 0.5514705882,
"avg_line_length": 30.2222222222,
"ext": "agda",
"hexsha": "2cb19715484833b3c53bbeedcb7cd5ed04c0fd19",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z",
"max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "isabella232/Lemmachine",
"max_forks_repo_path": "vendor/stdlib/src/Category/Applicative.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/Lemmachine",
"max_issues_repo_path": "vendor/stdlib/src/Category/Applicative.agda",
"max_line_length": 72,
"max_stars_count": 56,
"max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "isabella232/Lemmachine",
"max_stars_repo_path": "vendor/stdlib/src/Category/Applicative.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z",
"num_tokens": 110,
"size": 544
} |
{-# OPTIONS --safe #-}
module Cubical.Algebra.CommAlgebra.FreeCommAlgebra where
open import Cubical.Algebra.CommAlgebra.FreeCommAlgebra.Base public
open import Cubical.Algebra.CommAlgebra.FreeCommAlgebra.Properties public
| {
"alphanum_fraction": 0.8392857143,
"avg_line_length": 32,
"ext": "agda",
"hexsha": "ac7f45ffea21d057651bc613d40a1025911ab7a5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Algebra/CommAlgebra/FreeCommAlgebra.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Algebra/CommAlgebra/FreeCommAlgebra.agda",
"max_line_length": 73,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Algebra/CommAlgebra/FreeCommAlgebra.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 51,
"size": 224
} |
{-# OPTIONS --cubical --safe #-}
module Cubical.Data.Prod.Properties where
open import Cubical.Core.Everything
open import Cubical.Data.Prod.Base
open import Cubical.Data.Sigma
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
private
variable
ℓ ℓ' : Level
A B : Type ℓ
-- Swapping is an equivalence
swap : A × B → B × A
swap (x , y) = (y , x)
swap-invol : (xy : A × B) → swap (swap xy) ≡ xy
swap-invol (_ , _) = refl
isEquivSwap : (A : Type ℓ) (B : Type ℓ') → isEquiv (λ (xy : A × B) → swap xy)
isEquivSwap A B = isoToIsEquiv (iso swap swap swap-invol swap-invol)
swapEquiv : (A : Type ℓ) (B : Type ℓ') → A × B ≃ B × A
swapEquiv A B = (swap , isEquivSwap A B)
swapEq : (A : Type ℓ) (B : Type ℓ') → A × B ≡ B × A
swapEq A B = ua (swapEquiv A B)
private
open import Cubical.Data.Nat
-- As × is defined as a datatype this computes as expected
-- (i.e. "C-c C-n test1" reduces to (2 , 1)). If × is implemented
-- using Sigma this would be "transp (λ i → swapEq ℕ ℕ i) i0 (1 , 2)"
test : ℕ × ℕ
test = transp (λ i → swapEq ℕ ℕ i) i0 (1 , 2)
testrefl : test ≡ (2 , 1)
testrefl = refl
-- equivalence between the sigma-based definition and the inductive one
A×B≡A×ΣB : A × B ≡ A ×Σ B
A×B≡A×ΣB = isoToPath (iso (λ { (a , b) → (a , b)})
(λ { (a , b) → (a , b)})
(λ _ → refl)
(λ { (a , b) → refl }))
-- truncation for products
hLevelProd : (n : ℕ) → isOfHLevel n A → isOfHLevel n B → isOfHLevel n (A × B)
hLevelProd {A = A} {B = B} n h1 h2 =
let h : isOfHLevel n (A ×Σ B)
h = isOfHLevelΣ n h1 (λ _ → h2)
in transport (λ i → isOfHLevel n (A×B≡A×ΣB {A = A} {B = B} (~ i))) h
| {
"alphanum_fraction": 0.5955603682,
"avg_line_length": 29.7903225806,
"ext": "agda",
"hexsha": "e49d01ec6b269e7abc560680ab6b00ddb30435fb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "limemloh/cubical",
"max_forks_repo_path": "Cubical/Data/Prod/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "limemloh/cubical",
"max_issues_repo_path": "Cubical/Data/Prod/Properties.agda",
"max_line_length": 77,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "limemloh/cubical",
"max_stars_repo_path": "Cubical/Data/Prod/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 683,
"size": 1847
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Example use case for a trie: a wee generic lexer
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe --sized-types #-}
module README.Data.Trie.NonDependent where
------------------------------------------------------------------------
-- Introduction
-- A Trie is a tree of values indexed by words in a finite language. It
-- allows users to quickly compute the Brzozowski derivative of that
-- little mapping from words to values.
-- In the most general case, values can depend upon the list of characters
-- that constitutes the path leading to them. Here however we consider a
-- non-dependent case (cf. README.Trie.Dependent for a dependent use case).
-- We can recognize keywords by storing the list of characters they
-- correspond to as paths in a Trie and the constructor they are decoded
-- to as the tree's values.
-- E.g.
-- [ . ] is a root
-- [ -- m --> ] is an m-labeled edge and is followed when reading 'm'
-- [ (X) ] is a value leaf storing constructor X
-- --> -- m --> -- m --> -- a --> (LEMMA)
-- /
-- -- l --> -- e --> -- t --> (LET)
-- /
-- / -- u --> -- t --> -- u --> -- a --> -- l --> (MUTUAL)
-- / /
-- .< -- m --> -- o --> -- d --> -- u --> -- l --> -- e --> (MODULE)
-- \
-- -- w --> -- h --> -- e --> -- r --> -- e --> (WHERE)
-- \
-- --> -- n --> (WHEN)
-- after reading 'w', we get the derivative:
-- . -- h --> -- e --> -- r --> -- e --> (WHERE)
-- \
-- --> -- n --> (WHEN)
open import Level
open import Data.Unit
open import Data.Bool
open import Data.Char as Char
import Data.Char.Properties as Char
open import Data.List as List using (List; []; _∷_)
open import Data.List.Fresh as List# using (List#; []; _∷#_)
open import Data.Maybe as Maybe
open import Data.Product as Prod
open import Data.String as String using (String)
open import Data.These as These
open import Function using (case_of_; _$_; _∘′_; id; _on_)
open import Relation.Nary
open import Relation.Binary using (Rel)
open import Relation.Nullary.Negation using (¬?)
open import Data.Trie Char.<-strictTotalOrder-≈
open import Data.AVL.Value
------------------------------------------------------------------------
-- Generic lexer
record Lexer t : Set (suc t) where
field
-- Our lexer is parametrised over the type of tokens
Tok : Set t
-- Keywords are distinguished strings associated to tokens
Keyword : Set t
Keyword = String × Tok
-- Two keywords are considered distinct if the strings are not equal
Distinct : Rel Keyword 0ℓ
Distinct a b = ⌊ ¬? ((proj₁ a) String.≟ (proj₁ b)) ⌋
field
-- We ask users to provide us with a fresh list of keywords to guarantee
-- that no two keywords share the same string representation
keywords : List# Keyword Distinct
-- Some characters are special: they are separators, breaking a string
-- into a list of tokens. Some are associated to a token value
-- (e.g. parentheses) others are not (e.g. space)
breaking : Char → ∃ λ b → if b then Maybe Tok else Lift _ ⊤
-- Finally, strings which are not decoded as keywords are coerced
-- using a function to token values.
default : String → Tok
module _ {t} (L : Lexer t) where
open Lexer L
tokenize : String → List Tok
tokenize = start ∘′ String.toList where
mutual
-- A Trie is defined for an alphabet of strictly ordered letters (here
-- we have picked Char for letters and decided to use the strict total
-- order induced by their injection into ℕ as witnessed by the statement
-- open import Data.Trie Char.strictTotalOrder earlier in this file).
-- It is parametrised by a set of Values indexed over list of letters.
-- Because we focus on the non-dependent case, we pick the constant
-- family of Value uniformly equal to Tok. It is trivially compatible
-- with the notion of equality underlying the strict total order on Chars.
Keywords : Set _
Keywords = Trie (const _ Tok) _
-- We build a trie from the association list so that we may easily
-- compute the successive derivatives obtained by eating the
-- characters one by one
init : Keywords
init = fromList $ List.map (Prod.map₁ String.toList) $ proj₁ $ List#.toList keywords
-- Kickstart the tokeniser with an empty accumulator and the initial
-- trie.
start : List Char → List Tok
start = loop [] init
-- The main loop
loop : (acc : List Char) → -- chars read so far in this token
(toks : Keywords) → -- keyword candidates left at this point
(input : List Char) → -- list of chars to tokenize
List Tok
-- Empty input: finish up, check whether we have a non-empty accumulator
loop acc toks [] = push acc []
-- At least one character
loop acc toks (c ∷ cs) = case breaking c of λ where
-- if we are supposed to break on this character, we do
(true , m) → push acc $ maybe′ _∷_ id m $ start cs
-- otherwise we see whether it leads to a recognized keyword
(false , _) → case lookupValue (c ∷ []) toks of λ where
-- if so we can forget about the current accumulator and
-- restart the tokenizer on the rest of the input
(just tok) → tok ∷ start cs
-- otherwise we record the character we read in the accumulator,
-- compute the derivative of the map of keyword candidates and
-- keep going with the rest of the input
nothing → loop (c ∷ acc) (lookupTrie c toks) cs
-- Grab the accumulator and, unless it is empty, push it on top of
-- the decoded list of tokens
push : List Char → List Tok → List Tok
push [] ts = ts
push cs ts = default (String.fromList (List.reverse cs)) ∷ ts
------------------------------------------------------------------------
-- Concrete instance
-- A small set of keywords for a language with expressions of the form
-- `let x = e in b`.
module LetIn where
data TOK : Set where
LET EQ IN : TOK
LPAR RPAR : TOK
ID : String → TOK
keywords : List# (String × TOK) (λ a b → ⌊ ¬? ((proj₁ a) String.≟ (proj₁ b)) ⌋)
keywords = ("let" , LET)
∷# ("=" , EQ)
∷# ("in" , IN)
∷# []
-- Breaking characters: spaces (thrown away) and parentheses (kept)
breaking : Char → ∃ (λ b → if b then Maybe TOK else Lift 0ℓ ⊤)
breaking c = if isSpace c then true , nothing else parens c where
parens : Char → _
parens '(' = true , just LPAR
parens ')' = true , just RPAR
parens _ = false , _
default : String → TOK
default = ID
letIn : Lexer 0ℓ
letIn = record { LetIn }
open import Agda.Builtin.Equality
-- A test case:
open LetIn
_ : tokenize letIn "fix f x = let b = fix f in (f b) x"
≡ ID "fix"
∷ ID "f"
∷ ID "x"
∷ EQ
∷ LET
∷ ID "b"
∷ EQ
∷ ID "fix"
∷ ID "f"
∷ IN
∷ LPAR
∷ ID "f"
∷ ID "b"
∷ RPAR
∷ ID "x"
∷ []
_ = refl
| {
"alphanum_fraction": 0.5812404607,
"avg_line_length": 32.6108597285,
"ext": "agda",
"hexsha": "66f1a24e9db3e4c364b401f77687a337e789200d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/README/Data/Trie/NonDependent.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/README/Data/Trie/NonDependent.agda",
"max_line_length": 88,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/README/Data/Trie/NonDependent.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 1867,
"size": 7207
} |
{-# OPTIONS --without-K --exact-split --safe #-}
open import Fragment.Equational.Theory
module Fragment.Equational.FreeExtension.Properties (Θ : Theory) where
open import Fragment.Algebra.Algebra (Σ Θ) using (Algebra)
open import Fragment.Algebra.Homomorphism (Σ Θ)
open import Fragment.Algebra.Free (Σ Θ)
open import Fragment.Equational.Model Θ
open import Fragment.Equational.Coproduct Θ
open import Fragment.Equational.FreeExtension.Base Θ
open import Fragment.Equational.FreeExtension.Synthetic Θ using (SynFrex)
open import Level using (Level)
open import Data.Nat using (ℕ)
open import Data.Vec using (Vec)
open import Relation.Binary using (Setoid)
import Relation.Binary.Reasoning.Setoid as Reasoning
private
variable
a ℓ₁ : Level
module _
(X : FreeExtension)
(Y : FreeExtension)
(A : Model {a} {ℓ₁})
(n : ℕ)
where
open FreeExtension X renaming (_[_] to _[_]₁; _[_]-isFrex to _[_]₁-isFrex)
open FreeExtension Y renaming (_[_] to _[_]₂; _[_]-isFrex to _[_]₂-isFrex)
open IsCoproduct (A [ n ]₁-isFrex)
renaming (inl to inl₁; inr to inr₁; _[_,_] to _[_,_]₁; commute₁ to commute₁₁; commute₂ to commute₂₁)
open IsCoproduct (A [ n ]₂-isFrex)
renaming (inl to inl₂; inr to inr₂; _[_,_] to _[_,_]₂; commute₁ to commute₁₂; commute₂ to commute₂₂)
using ()
to : ∥ A [ n ]₂ ∥ₐ ⟿ ∥ A [ n ]₁ ∥ₐ
to = (A [ n ]₁) [ inl₁ , inr₁ ]₂
from : ∥ A [ n ]₁ ∥ₐ ⟿ ∥ A [ n ]₂ ∥ₐ
from = (A [ n ]₂) [ inl₂ , inr₂ ]₁
inv : to ⊙ from ≗ id
inv = begin
to ⊙ from
≈⟨ ≗-sym {f = (A [ n ]₁) [ inl₁ , inr₁ ]₁} {g = to ⊙ from} (universal {h = to ⊙ from} c₁ c₂) ⟩
(A [ n ]₁) [ inl₁ , inr₁ ]₁
≈⟨ universal {h = id} (id-unitˡ {f = inl₁}) (id-unitˡ {f = inr₁}) ⟩
id
∎
where c₁ : (to ⊙ from) ⊙ inl₁ ≗ inl₁
c₁ = begin
(to ⊙ from) ⊙ inl₁
≈⟨ ⊙-assoc to from inl₁ ⟩
to ⊙ (from ⊙ inl₁)
≈⟨ ⊙-congˡ to (from ⊙ inl₁) inl₂ (commute₁₁ {f = inl₂} {g = inr₂}) ⟩
to ⊙ inl₂
≈⟨ commute₁₂ {X = A [ n ]₁} {f = inl₁} {g = inr₁} ⟩
inl₁
∎
where open Reasoning (∥ A ∥ₐ ⟿ ∥ A [ n ]₁ ∥ₐ /≗)
c₂ : (to ⊙ from) ⊙ inr₁ ≗ inr₁
c₂ = begin
(to ⊙ from) ⊙ inr₁
≈⟨ ⊙-assoc to from inr₁ ⟩
to ⊙ (from ⊙ inr₁)
≈⟨ ⊙-congˡ to (from ⊙ inr₁) inr₂ (commute₂₁ {f = inl₂} {g = inr₂}) ⟩
to ⊙ inr₂
≈⟨ commute₂₂ {X = A [ n ]₁} {f = inl₁} {g = inr₁} ⟩
inr₁
∎
where open Reasoning (∥ J n ∥ₐ ⟿ ∥ A [ n ]₁ ∥ₐ /≗)
open Reasoning (∥ A [ n ]₁ ∥ₐ ⟿ ∥ A [ n ]₁ ∥ₐ /≗)
module _
(X : FreeExtension)
(Y : FreeExtension)
(A : Model {a} {ℓ₁})
(n : ℕ)
where
open FreeExtension X renaming (_[_] to _[_]₁)
open FreeExtension Y renaming (_[_] to _[_]₂)
iso : ∥ A [ n ]₁ ∥ₐ ≃ ∥ A [ n ]₂ ∥ₐ
iso = record { _⃗ = to Y X A n
; _⃖ = from Y X A n
; invˡ = inv Y X A n
; invʳ = inv X Y A n
}
module _
(X : FreeExtension)
(A : Model {a} {ℓ₁})
{n : ℕ}
where
open FreeExtension X
open FreeExtension SynFrex renaming (_[_] to _[_]ₛ; _[_]-isFrex to _[_]ₛ-isFrex)
open IsCoproduct (A [ n ]-isFrex)
open IsCoproduct (A [ n ]ₛ-isFrex) renaming (_[_,_] to _[_,_]ₛ) using ()
open Setoid ∥ A [ n ] ∥/≈ renaming (_≈_ to _≋_)
open Setoid ∥ A ∥/≈ using (_≈_)
norm = to X SynFrex A n
syn = from X SynFrex A n
reduce : (θ : Env ∥ A ∥ₐ n) → ∥ A [ n ]ₛ ∥ₐ ⟿ ∥ A ∥ₐ
reduce θ = A [ id , interp A θ ]ₛ
module _ (Γ : Vec ∥ A ∥ n) where
private
θ : Env ∥ A ∥ₐ n
θ = env {A = ∥ A ∥ₐ} Γ
frexify : ∀ {lhs rhs : Term (BT ∥ A ∥ n)}
→ ∣ norm ∣ lhs ≋ ∣ norm ∣ rhs
→ ∣ reduce θ ∣ lhs ≈ ∣ reduce θ ∣ rhs
frexify {lhs = lhs} {rhs = rhs} p = begin
∣ reduce θ ∣ lhs
≈⟨ Setoid.sym ∥ A ∥/≈ (∣ reduce θ ∣-cong (inv SynFrex X A n {x = lhs})) ⟩
∣ reduce θ ∣ (∣ syn ∣ (∣ norm ∣ lhs))
≈⟨ ∣ reduce θ ∣-cong (∣ syn ∣-cong p) ⟩
∣ reduce θ ∣ (∣ syn ∣ (∣ norm ∣ rhs))
≈⟨ ∣ reduce θ ∣-cong (inv SynFrex X A n {x = rhs}) ⟩
∣ reduce θ ∣ rhs
∎
where open Reasoning ∥ A ∥/≈
| {
"alphanum_fraction": 0.5220379147,
"avg_line_length": 30.3597122302,
"ext": "agda",
"hexsha": "191befb735309b0da163eeddb581260db0f6a5bc",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2021-06-16T08:04:31.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-06-15T15:34:50.000Z",
"max_forks_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "yallop/agda-fragment",
"max_forks_repo_path": "src/Fragment/Equational/FreeExtension/Properties.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_issues_repo_issues_event_max_datetime": "2021-06-16T10:24:15.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-06-16T09:44:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "yallop/agda-fragment",
"max_issues_repo_path": "src/Fragment/Equational/FreeExtension/Properties.agda",
"max_line_length": 104,
"max_stars_count": 18,
"max_stars_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "yallop/agda-fragment",
"max_stars_repo_path": "src/Fragment/Equational/FreeExtension/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T17:26:09.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-06-15T15:45:39.000Z",
"num_tokens": 1775,
"size": 4220
} |
{-# OPTIONS --rewriting #-}
postulate
_↦_ : {A : Set} → A → A → Set
idr : {A : Set} {a : A} → a ↦ a
{-# BUILTIN REWRITE _↦_ #-}
record _×_ (A B : Set) : Set where
constructor _,_
field
fst : A
snd : B
postulate
A B C : Set
g : A → B → C
f : A × B → C
f (x , y) = g x y
postulate
D : Set
P : (A → B → C) → D
res : D
rew : P (λ x y → g x y) ↦ res
{-# REWRITE rew #-}
test : P (λ x y → f (x , y)) ↦ res
test = idr
| {
"alphanum_fraction": 0.4565701559,
"avg_line_length": 14.03125,
"ext": "agda",
"hexsha": "55b15b775473d0b0595359be33047a8417887550",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Succeed/Issue1660.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Succeed/Issue1660.agda",
"max_line_length": 34,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Succeed/Issue1660.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 199,
"size": 449
} |
{-# OPTIONS --universe-polymorphism #-}
open import Categories.Category
module Categories.Object.Coproduct {o ℓ e} (C : Category o ℓ e) where
open Category C
open import Level
open import Categories.Opposite
import Categories.Object.Product as ProductObject
module Op× = ProductObject op
-- Borrowed from Dan Doel's definition of coproducts
record Coproduct (A B : Obj) : Set (o ⊔ ℓ ⊔ e) where
field
A+B : Obj
i₁ : A ⇒ A+B
i₂ : B ⇒ A+B
[_,_] : ∀ {C} → (A ⇒ C) → (B ⇒ C) → (A+B ⇒ C)
.commute₁ : ∀ {C} {f : A ⇒ C} {g : B ⇒ C} → [ f , g ] ∘ i₁ ≡ f
.commute₂ : ∀ {C} {f : A ⇒ C} {g : B ⇒ C} → [ f , g ] ∘ i₂ ≡ g
.universal : ∀ {C} {f : A ⇒ C} {g : B ⇒ C} {h : A+B ⇒ C}
→ h ∘ i₁ ≡ f
→ h ∘ i₂ ≡ g
→ [ f , g ] ≡ h
.g-η : ∀ {C} {f : A+B ⇒ C} → [ f ∘ i₁ , f ∘ i₂ ] ≡ f
g-η = universal Equiv.refl Equiv.refl
.η : [ i₁ , i₂ ] ≡ id
η = universal identityˡ identityˡ
.[]-cong₂ : ∀ {C} → {f f′ : A ⇒ C} {g g′ : B ⇒ C} → f ≡ f′ → g ≡ g′ → [ f , g ] ≡ [ f′ , g′ ]
[]-cong₂ f≡f′ g≡g′ =
universal (trans commute₁ (sym f≡f′)) (trans commute₂ (sym g≡g′))
where open Equiv
record BinCoproducts : Set (suc o ⊔ ℓ ⊔ e) where
field
_+_ : (A B : Obj) -> Obj
i₁ : {A B : Obj} -> A ⇒ (A + B)
i₂ : {A B : Obj} -> B ⇒ (A + B)
[_,_] : {A B : Obj} -> ∀ {C} → (A ⇒ C) → (B ⇒ C) → ((A + B) ⇒ C)
.commute₁ : {A B : Obj} -> ∀ {C} {f : A ⇒ C} {g : B ⇒ C} → [ f , g ] ∘ i₁ ≡ f
.commute₂ : {A B : Obj} -> ∀ {C} {f : A ⇒ C} {g : B ⇒ C} → [ f , g ] ∘ i₂ ≡ g
.universal : {A B : Obj} -> ∀ {C} {f : A ⇒ C} {g : B ⇒ C} {h : (A + B) ⇒ C}
→ h ∘ i₁ ≡ f
→ h ∘ i₂ ≡ g
→ [ f , g ] ≡ h
coproduct→product : ∀ {A B} → Coproduct A B → Op×.Product A B
coproduct→product A+B = record
{ A×B = A+B.A+B
; π₁ = A+B.i₁
; π₂ = A+B.i₂
; ⟨_,_⟩ = A+B.[_,_]
; commute₁ = A+B.commute₁
; commute₂ = A+B.commute₂
; universal = A+B.universal
}
where
module A+B = Coproduct A+B
product→coproduct : ∀ {A B} → Op×.Product A B → Coproduct A B
product→coproduct A×B = record
{ A+B = A×B.A×B
; i₁ = A×B.π₁
; i₂ = A×B.π₂
; [_,_] = A×B.⟨_,_⟩
; commute₁ = A×B.commute₁
; commute₂ = A×B.commute₂
; universal = A×B.universal
}
where
module A×B = Op×.Product A×B
open import Categories.Morphisms
Commutative : ∀ {A B} → (p₁ : Coproduct A B) (p₂ : Coproduct B A) → _≅_ C (Coproduct.A+B p₁) (Coproduct.A+B p₂)
Commutative p₁ p₂ = opⁱ (Op×.Commutative (coproduct→product p₂) (coproduct→product p₁))
Associative : ∀ {X Y Z} (p₁ : Coproduct X Y) (p₂ : Coproduct Y Z) (p₃ : Coproduct X (Coproduct.A+B p₂)) (p₄ : Coproduct (Coproduct.A+B p₁) Z) → _≅_ C (Coproduct.A+B p₃) (Coproduct.A+B p₄)
Associative p₁ p₂ p₃ p₄ = reverseⁱ C (opⁱ (Op×.Associative (coproduct→product p₁) (coproduct→product p₂) (coproduct→product p₃) (coproduct→product p₄)))
| {
"alphanum_fraction": 0.5116198404,
"avg_line_length": 32.7613636364,
"ext": "agda",
"hexsha": "a9789ee687fc392c2052d1346d9dffa21400250e",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Object/Coproduct.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Object/Coproduct.agda",
"max_line_length": 187,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Object/Coproduct.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 1282,
"size": 2883
} |
open import Agda.Builtin.Equality
open import Agda.Builtin.Nat
record NoEta : Set where
no-eta-equality
constructor _,_
field fst : Nat
snd : Nat
open NoEta
data ⊥ : Set where
soft-fail : (a : NoEta) (x : Nat) → (fst a , x) ≡ a → ⊥
soft-fail a x () -- Should be yellow (not sure if empty)
loop : ⊥
loop = soft-fail (0 , 0) 0 refl
| {
"alphanum_fraction": 0.6296296296,
"avg_line_length": 17.55,
"ext": "agda",
"hexsha": "415d45d36f74e528ddeb205985bc1ca2626cd259",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue4484b.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue4484b.agda",
"max_line_length": 57,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue4484b.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 125,
"size": 351
} |
module NotStrictlyPositive where
data False : Set where
data Not (A : Set) : Set where
not : (A -> False) -> Not A
data Neg (A : Set) : Set where
neg : Not A -> Neg A
data Bad : Set where
bad : Neg Bad -> Bad
| {
"alphanum_fraction": 0.6153846154,
"avg_line_length": 14.7333333333,
"ext": "agda",
"hexsha": "414684629c5acb4cf8d942d5eba8253fe8da358c",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/NotStrictlyPositive.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/NotStrictlyPositive.agda",
"max_line_length": 32,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/NotStrictlyPositive.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 71,
"size": 221
} |
------------------------------------------------------------------------
-- Some properties that hold for Erased do not hold for every
-- topological modality
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Equality
module Erased.Counterexamples
{e⁺} (eq : ∀ {a p} → Equality-with-J a p e⁺) where
open Derived-definitions-and-properties eq
open import Prelude
open import Bijection eq using (_↔_)
open import Equality.Decision-procedures eq
open import Equivalence.Path-split eq
open import Function-universe eq hiding (_∘_)
open import Erased.Stability eq
open import H-level eq
open import H-level.Closure eq
private
variable
a b ℓ ℓ′ p : Level
A : Type a
-- The zero modality.
--
-- This modality is taken from "Modalities in Homotopy Type Theory" by
-- Rijke, Shulman and Spitters.
Zero : Type ℓ → Type ℓ
Zero _ = ↑ _ ⊤
-- A type A is Zero-stable if Zero A implies A.
Zero-stable : Type ℓ → Type ℓ
Zero-stable A = Zero A → A
-- A type is Zero-modal if it is contractible.
--
-- This definition is based on "Modalities in Homotopy Type Theory" by
-- Rijke, Shulman and Spitters.
Zero-modal : Type ℓ → Type ℓ
Zero-modal = Contractible
-- Zero-modal types are Zero-stable.
Zero-modal→Zero-stable : Zero-modal A → Zero-stable A
Zero-modal→Zero-stable m _ = proj₁ m
-- A type A has Zero-stable equality if x ≡ y is Zero-stable for all
-- values x and y of type A.
Zero-stable-≡ : Type a → Type a
Zero-stable-≡ = For-iterated-equality 1 Zero-stable
-- A type A has Zero-modal equality if x ≡ y is Zero-modal for all
-- values x and y of type A.
Zero-modal-≡ : Type a → Type a
Zero-modal-≡ = For-iterated-equality 1 Zero-modal
-- The zero modality is a Σ-closed reflective subuniverse.
--
-- This proof is based on "Modalities in Homotopy Type Theory" by
-- Rijke, Shulman and Spitters.
Zero-modality : Σ-closed-reflective-subuniverse ℓ
Zero-modality {ℓ = ℓ} = λ where
.◯ → Zero
.η → return
.Is-modal → Zero-modal
.Is-modal-propositional → λ ext → H-level-propositional ext 0
.Is-modal-◯ → ↑-closure 0 ⊤-contractible
.Is-modal-respects-≃ → H-level-cong _ 0
.extendable-along-η → extendable
.Σ-closed → Σ-closure 0
where
open Σ-closed-reflective-subuniverse
return : A → Zero A
return = _
extendable :
{A B : Type ℓ} →
Zero-modal B →
Is-∞-extendable-along-[ return {A = A} ] (λ (_ : Zero A) → B)
extendable cB zero = _
extendable cB (suc n) =
(λ g → (λ _ → proj₁ cB) , (λ x → proj₂ cB (g x)))
, (λ _ _ → extendable (⇒≡ 0 cB) n)
-- The zero modality is topological (for all universe levels).
--
-- This result is based on "Modalities in Homotopy Type Theory" by
-- Rijke, Shulman and Spitters.
Zero-topological : Topological ℓ′ (Zero-modality {ℓ = ℓ})
Zero-topological {ℓ′ = ℓ′} {ℓ = ℓ} =
↑ ℓ′ ⊤
, (λ _ → ⊥)
, (λ _ → ⊥-propositional)
, (λ _ → record { to = to; from = from })
where
open Σ-closed-reflective-subuniverse Zero-modality
to :
Zero-modal A →
↑ ℓ′ ⊤ → Is-∞-extendable-along-[ η ] (λ _ → A)
to cA _ zero = _
to cA _ (suc n) =
(λ _ → (λ _ → proj₁ cA) , (λ ()))
, (λ _ _ → to (⇒≡ 0 cA) _ n)
from :
(↑ ℓ′ ⊤ → Is-∞-extendable-along-[ η ] (λ _ → A)) →
Zero-modal A
from {A = A} ext =
inh
, (λ x →
ext _ 2 .proj₂ (const inh) (const x) .proj₁ ⊥-elim .proj₁ _)
where
inh : A
inh = ext _ 1 .proj₁ ⊥-elim .proj₁ _
-- It is not the case that Zero ⊥ is isomorphic to ⊥.
--
-- Compare with Erased.Level-1.Erased-⊥↔⊥.
¬[Zero-⊥↔⊥] : ¬ (Zero (⊥ {ℓ = ℓ}) ↔ ⊥ {ℓ = ℓ})
¬[Zero-⊥↔⊥] hyp =
$⟨ _ ⟩
↑ _ ⊤ ↝⟨ hyp ⟩
⊥ ↝⟨ ⊥↔⊥ ⟩□
⊥₀ □
-- It is not the case that Zero A implies ¬ ¬ A for all types A.
--
-- Compare with Erased.Stability.Erased→¬¬.
¬[Zero→¬¬] : ¬ ({A : Type a} → Zero A → ¬ ¬ A)
¬[Zero→¬¬] hyp =
$⟨ _ ⟩
Zero ⊥ ↝⟨ hyp ⟩
¬ ¬ ⊥ ↝⟨ ⊥-elim ∘ (_$ ⊥-elim) ⟩□
⊥ □
-- It is not the case that, for all types A, if A is stable for
-- double-negation, then A is Zero-stable.
--
-- Compare with Erased.Stability.¬¬-stable→Stable.
¬[¬¬-stable→Zero-stable] :
¬ ({A : Type a} → (¬ ¬ A → A) → Zero-stable A)
¬[¬¬-stable→Zero-stable] hyp =
$⟨ ⊥-elim ∘ (_$ ⊥-elim) ⟩
(¬ ¬ ⊥ → ⊥) ↝⟨ hyp ⟩
(Zero ⊥ → ⊥) ↝⟨ _$ _ ⟩
⊥ ↔⟨ ⊥↔⊥ ⟩□
⊥₀ □
-- It is not the case that, for all types A, if A is decided, then A
-- is Zero-stable.
--
-- Compare with Erased.Stability.Dec→Stable.
¬[Dec→Zero-stable] : ¬ ({A : Type a} → Dec A → Zero-stable A)
¬[Dec→Zero-stable] hyp =
$⟨ inj₂ ⊥-elim ⟩
Dec ⊥ ↝⟨ hyp ⟩
(Zero ⊥ → ⊥) ↝⟨ _$ _ ⟩
⊥ ↔⟨ ⊥↔⊥ ⟩□
⊥₀ □
-- It is not the case that, for all types A, if equality is decidable
-- for A, then equality for A is Zero-stable.
¬[Decidable-equality→Zero-stable-≡] :
¬ ({A : Type a} → Decidable-equality A → Zero-stable-≡ A)
¬[Decidable-equality→Zero-stable-≡] {a = a} hyp =
$⟨ ↑.Dec._≟_ Bool._≟_ ⟩
Decidable-equality (↑ a Bool) ↝⟨ (λ dec → hyp dec _ _) ⟩
(Zero (lift true ≡ lift false) → lift true ≡ lift false) ↝⟨ _$ _ ⟩
lift true ≡ lift false ↝⟨ Bool.true≢false ∘ cong lower ⟩□
⊥₀ □
-- It is not the case that, for all types A, if equality is decidable
-- for A, then equality for A is Zero-modal.
--
-- Compare with
-- Erased.Stability.[]-cong₁.Decidable-equality→Very-stable-≡.
¬[Decidable-equality→Zero-modal-≡] :
¬ ({A : Type a} → Decidable-equality A → Zero-modal-≡ A)
¬[Decidable-equality→Zero-modal-≡] {a = a} =
({A : Type a} →
Decidable-equality A → Zero-modal-≡ A) ↝⟨ (implicit-∀-cong _ $ ∀-cong _ λ _ → ∀-cong _ λ _ → ∀-cong _ λ _ →
Zero-modal→Zero-stable) ⟩
({A : Type a} →
Decidable-equality A → Zero-stable-≡ A) ↝⟨ ¬[Decidable-equality→Zero-stable-≡] ⟩□
⊥ □
-- It is not the case that the empty types are Zero-modal.
--
-- Compare with Erased.Stability.Very-stable-⊥.
¬[Zero-modal-⊥] : ¬ Zero-modal (⊥ {ℓ = ℓ})
¬[Zero-modal-⊥] =
Contractible ⊥ ↝⟨ proj₁ ⟩
⊥ ↔⟨ ⊥↔⊥ ⟩□
⊥₀ □
-- It is not the case that, for any type A and type family P over A,
-- if A is Zero-modal, then W A P is Zero-modal.
--
-- Compare with Erased.Stability.[]-cong₂-⊔₁.Very-stable-W, which is
-- proved under the assumption of function extensionality.
¬[Zero-modal-W] :
¬ ({A : Type a} {P : A → Type p} → Zero-modal A → Zero-modal (W A P))
¬[Zero-modal-W] hyp = $⟨ ↑-closure 0 ⊤-contractible ⟩
Zero-modal (↑ _ ⊤) ↝⟨ hyp ⟩
Zero-modal (W (↑ _ ⊤) (λ _ → ↑ _ ⊤)) ↝⟨ proj₁ ⟩
W (↑ _ ⊤) (λ _ → ↑ _ ⊤) ↝⟨ inhabited⇒W-empty _ ⟩□
⊥ □
-- It is not the case that, for all types A and B, if equality is
-- Zero-stable for A and B, then equality is Zero-stable for A ⊎ B.
--
-- Compare with Erased.Stability.Stable-≡-⊎.
¬[Zero-stable-≡-⊎] :
¬ ({A : Type a} {B : Type b} →
Zero-stable-≡ A →
Zero-stable-≡ B →
Zero-stable-≡ (A ⊎ B))
¬[Zero-stable-≡-⊎] hyp = $⟨ (λ _ _ _ → refl _)
, (λ _ _ _ → refl _)
⟩
Zero-stable-≡ (↑ _ ⊤) × Zero-stable-≡ (↑ _ ⊤) ↝⟨ uncurry hyp ⟩
Zero-stable-≡ (↑ _ ⊤ ⊎ ↑ _ ⊤) ↝⟨ (_$ _) ∘ (_$ _) ∘ (_$ _) ⟩
inj₁ _ ≡ inj₂ _ ↝⟨ ⊎.inj₁≢inj₂ ⟩□
⊥ □
-- It is not the case that, for all types A and B, if equality is
-- Zero-modal for A and B, then equality is Zero-modal for A ⊎ B.
--
-- Compare with Erased.Stability.[]-cong₂-⊔₂.Very-stable-≡-⊎.
¬[Zero-modal-≡-⊎] :
¬ ({A : Type a} {B : Type b} →
Zero-modal-≡ A →
Zero-modal-≡ B →
Zero-modal-≡ (A ⊎ B))
¬[Zero-modal-≡-⊎] hyp = $⟨ (λ _ _ → +⇒≡ (mono₁ 0 (↑-closure 0 ⊤-contractible)))
, (λ _ _ → +⇒≡ (mono₁ 0 (↑-closure 0 ⊤-contractible)))
⟩
Zero-modal-≡ (↑ _ ⊤) × Zero-modal-≡ (↑ _ ⊤) ↝⟨ uncurry hyp ⟩
Zero-modal-≡ (↑ _ ⊤ ⊎ ↑ _ ⊤) ↝⟨ proj₁ ∘ (_$ _) ∘ (_$ _) ⟩
inj₁ _ ≡ inj₂ _ ↝⟨ ⊎.inj₁≢inj₂ ⟩□
⊥ □
-- It is not the case that, for all types A, if equality is
-- Zero-stable for A, then equality is Zero-stable for List A.
--
-- Compare with Erased.Stability.Stable-≡-List.
¬[Zero-stable-≡-List] :
¬ ({A : Type a} → Zero-stable-≡ A → Zero-stable-≡ (List A))
¬[Zero-stable-≡-List] hyp = $⟨ (λ _ _ _ → refl _) ⟩
Zero-stable-≡ (↑ _ ⊤) ↝⟨ hyp ⟩
Zero-stable-≡ (List (↑ _ ⊤)) ↝⟨ (_$ _) ∘ (_$ _) ∘ (_$ _) ⟩
[] ≡ _ ∷ [] ↝⟨ List.[]≢∷ ⟩□
⊥ □
-- It is not the case that, for all types A, if equality is Zero-modal
-- for A, then equality is Zero-modal for List A.
--
-- Compare with Erased.Stability.[]-cong₁.Very-stable-≡-List.
¬[Zero-modal-≡-List] :
¬ ({A : Type a} → Zero-modal-≡ A → Zero-modal-≡ (List A))
¬[Zero-modal-≡-List] hyp = $⟨ (λ _ _ → +⇒≡ (mono₁ 0 (↑-closure 0 ⊤-contractible))) ⟩
Zero-modal-≡ (↑ _ ⊤) ↝⟨ hyp ⟩
Zero-modal-≡ (List (↑ _ ⊤)) ↝⟨ proj₁ ∘ (_$ _) ∘ (_$ _) ⟩
[] ≡ _ ∷ [] ↝⟨ List.[]≢∷ ⟩□
⊥ □
| {
"alphanum_fraction": 0.5046382189,
"avg_line_length": 33,
"ext": "agda",
"hexsha": "9d8afd8bf4825284dd54108b0532232e7f9d9fc4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Erased/Counterexamples.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Erased/Counterexamples.agda",
"max_line_length": 112,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Erased/Counterexamples.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 3572,
"size": 9702
} |
module Base.Prelude.Bool where
open import Data.Bool using (Bool; true; false; if_then_else_) renaming (_∧_ to _∧ᵖ_; _∨_ to _∨ᵖ_; not to notᵖ)
open import Base.Free using (Free; pure; _>>=_)
𝔹 : (Shape : Set) → (Shape → Set) → Set
𝔹 _ _ = Bool
True : ∀ {S P} → Free S P (𝔹 S P)
True = pure true
False : ∀ {S P} → Free S P (𝔹 S P)
False = pure false
_∧_ : ∀ {S P} → Free S P (𝔹 S P) → Free S P (𝔹 S P) → Free S P (𝔹 S P)
mx ∧ my = mx >>= λ x → if x then my else False
_∨_ : ∀ {S P} → Free S P (𝔹 S P) → Free S P (𝔹 S P) → Free S P (𝔹 S P)
mx ∨ my = mx >>= λ x → if x then True else my
not : ∀ {S P} → Free S P (𝔹 S P) → Free S P (𝔹 S P)
not mb = mb >>= λ b → pure (notᵖ b)
| {
"alphanum_fraction": 0.5552282769,
"avg_line_length": 29.5217391304,
"ext": "agda",
"hexsha": "919909b9210aa214a2a14eb23fc703ca87ec6f47",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2021-05-14T07:48:41.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-04-08T11:23:46.000Z",
"max_forks_repo_head_hexsha": "6931b9ca652a185a92dd824373f092823aea4ea9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "FreeProving/free-compiler",
"max_forks_repo_path": "base/agda/Base/Prelude/Bool.agda",
"max_issues_count": 120,
"max_issues_repo_head_hexsha": "6931b9ca652a185a92dd824373f092823aea4ea9",
"max_issues_repo_issues_event_max_datetime": "2020-12-08T07:46:01.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-04-09T09:40:39.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "FreeProving/free-compiler",
"max_issues_repo_path": "base/agda/Base/Prelude/Bool.agda",
"max_line_length": 111,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "6931b9ca652a185a92dd824373f092823aea4ea9",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "FreeProving/free-compiler",
"max_stars_repo_path": "base/agda/Base/Prelude/Bool.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-21T13:38:23.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-02-06T11:03:34.000Z",
"num_tokens": 305,
"size": 679
} |
data D (A : Set) : Set where
c₁ : D A
_ : (@0 A : Set) → D A
_ = λ A → c₁ {A = A}
_ : (@0 A : Set) → D A
_ = λ A → D.c₁ {A = A}
record R (A : Set) : Set where
constructor c₂
field
f : A → A
g : A → A
g x = f (f x)
open R public
_ : (@0 A : Set) → (A → A) → R A
_ = λ A → c₂ {A = A}
_ : (@0 A : Set) → R A → A → A
_ = λ A → f {A = A}
_ : (@0 A : Set) → R A → A → A
_ = λ A → R.f {A = A}
_ : (A : Set) → R A → A → A
_ = λ A → g {A = A}
_ : (A : Set) → R A → A → A
_ = λ A → R.g {A = A}
open module R′ (A : Set) (r : R A) = R {A = A} r
renaming (f to f′; g to g′)
_ : (A : Set) → R A → A → A
_ = λ A → f′ {A = A}
_ : (A : Set) → R A → A → A
_ = λ A → R′.f {A = A}
_ : (A : Set) → R A → A → A
_ = λ A → g′ A
_ : (A : Set) → R A → A → A
_ = λ A → R′.g A
| {
"alphanum_fraction": 0.3717948718,
"avg_line_length": 15.9183673469,
"ext": "agda",
"hexsha": "e64b9837aca90d454b7fb7e0e2c60bb4e56eefd1",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "cagix/agda",
"max_forks_repo_path": "test/Succeed/Issue4786.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "cagix/agda",
"max_issues_repo_path": "test/Succeed/Issue4786.agda",
"max_line_length": 48,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "cagix/agda",
"max_stars_repo_path": "test/Succeed/Issue4786.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 394,
"size": 780
} |
{-# OPTIONS --without-K #-}
module function.isomorphism.lift where
open import level
open import equality
open import function.isomorphism.core
-- lifting is an isomorphism
lift-iso : ∀ {i} j (X : Set i) → X ≅ ↑ j X
lift-iso j X = iso lift lower (λ _ → refl) (λ _ → refl)
| {
"alphanum_fraction": 0.6824817518,
"avg_line_length": 24.9090909091,
"ext": "agda",
"hexsha": "6d43eab330d76b4058c0375cc009292014b757f0",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z",
"max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "pcapriotti/agda-base",
"max_forks_repo_path": "src/function/isomorphism/lift.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "pcapriotti/agda-base",
"max_issues_repo_path": "src/function/isomorphism/lift.agda",
"max_line_length": 55,
"max_stars_count": 27,
"max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "HoTT/M-types",
"max_stars_repo_path": "function/isomorphism/lift.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z",
"num_tokens": 82,
"size": 274
} |
{-
Inductive eliminators to establish properties of all finite sets directly
-}
{-# OPTIONS --safe #-}
module Cubical.Data.FinSet.Induction where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Equiv renaming (_∙ₑ_ to _⋆_)
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.HITs.PropositionalTruncation as Prop
open import Cubical.HITs.SetTruncation as Set
open import Cubical.Data.Nat
renaming (_+_ to _+ℕ_) hiding (elim)
open import Cubical.Data.Unit
open import Cubical.Data.Empty as Empty
open import Cubical.Data.Sum
open import Cubical.Data.Fin renaming (Fin to Finℕ)
open import Cubical.Data.SumFin
open import Cubical.Data.FinSet.Base
open import Cubical.Data.FinSet.Properties
open import Cubical.Data.FinSet.Constructors
private
variable
ℓ ℓ' : Level
-- definitions mimicking that of natural numbers
module _
{ℓ : Level} where
𝟘 : FinSet ℓ
𝟘 = ⊥* , 0 , ∣ uninhabEquiv Empty.rec* Empty.rec ∣
𝟙 : FinSet ℓ
𝟙 = Unit* , isContr→isFinSet (isContrUnit*)
_+_ : FinSet ℓ → FinSet ℓ → FinSet ℓ
X + Y = X .fst ⊎ Y .fst , isFinSet⊎ X Y
-- 𝔽in can be seen as a universe polymorphic version of SumFin
𝔽in : ℕ → FinSet ℓ
𝔽in 0 = 𝟘
𝔽in (suc n) = 𝟙 + 𝔽in n
-- useful properties
𝟘≃Empty : 𝟘 .fst ≃ ⊥
𝟘≃Empty = uninhabEquiv rec* (λ x → x)
𝟙≃Unit : 𝟙 .fst ≃ Unit
𝟙≃Unit = isContr→≃Unit (isContrUnit*)
* : {n : ℕ} → 𝔽in (suc n) .fst
* = inl tt*
𝔽in≃Fin : (n : ℕ) → 𝔽in n .fst ≃ Fin n
𝔽in≃Fin 0 = 𝟘≃Empty
𝔽in≃Fin (suc n) = ⊎-equiv 𝟙≃Unit (𝔽in≃Fin n)
𝔽in≃Finℕ : (n : ℕ) → 𝔽in n .fst ≃ Finℕ n
𝔽in≃Finℕ n = 𝔽in≃Fin n ⋆ SumFin≃Fin n
-- 𝔽in preserves addition
𝟘+X≡X : {X : FinSet ℓ} → 𝟘 + X ≡ X
𝟘+X≡X {X = X} i .fst = ua (⊎-swap-≃ ⋆ ⊎-equiv (idEquiv (X .fst)) 𝟘≃Empty ⋆ ⊎-⊥-≃) i
𝟘+X≡X {X = X} i .snd =
isProp→PathP {B = λ i → isFinSet (𝟘+X≡X {X = X} i .fst)}
(λ _ → isPropIsFinSet) ((𝟘 + X) .snd) (X .snd) i
𝔽in1≡𝟙 : 𝔽in 1 ≡ 𝟙
𝔽in1≡𝟙 i .fst = ua (⊎-equiv (idEquiv (𝟙 .fst)) 𝟘≃Empty ⋆ ⊎-⊥-≃) i
𝔽in1≡𝟙 i .snd =
isProp→PathP {B = λ i → isFinSet (𝔽in1≡𝟙 i .fst)}
(λ _ → isPropIsFinSet) (𝔽in 1 .snd) (𝟙 .snd) i
𝔽in+ : (m n : ℕ) → 𝔽in m + 𝔽in n ≡ 𝔽in (m +ℕ n)
𝔽in+ 0 n = 𝟘+X≡X
𝔽in+ (suc m) n i .fst = (ua (⊎-assoc-≃) ∙ (λ i → (𝟙 + 𝔽in+ m n i) .fst)) i
𝔽in+ (suc m) n i .snd =
isProp→PathP {B = λ i → isFinSet (𝔽in+ (suc m) n i .fst)}
(λ _ → isPropIsFinSet) ((𝔽in (suc m) + 𝔽in n) .snd) (𝔽in (suc m +ℕ n) .snd) i
-- every finite sets are merely equal to some 𝔽in
∣≡𝔽in∣ : (X : FinSet ℓ) → ∥ Σ[ n ∈ ℕ ] X ≡ 𝔽in n ∥
∣≡𝔽in∣ X = Prop.map (λ (n , p) → n , path X (n , p)) (isFinSet→isFinSet' (X .snd))
where
path : (X : FinSet ℓ) → ((n , _) : isFinOrd (X .fst)) → X ≡ 𝔽in n
path X (n , p) i .fst = ua (p ⋆ invEquiv (𝔽in≃Fin n)) i
path X (n , p) i .snd =
isProp→PathP {B = λ i → isFinSet (path X (n , p) i .fst)}
(λ _ → isPropIsFinSet) (X .snd) (𝔽in n .snd) i
-- the eliminators
module _
(P : FinSet ℓ → Type ℓ')
(h : (X : FinSet ℓ) → isProp (P X)) where
module _
(p : (n : ℕ) → P (𝔽in n)) where
elimProp : (X : FinSet ℓ) → P X
elimProp X = Prop.rec (h X) (λ (n , q) → transport (λ i → P (q (~ i))) (p n)) (∣≡𝔽in∣ X)
module _
(p0 : P 𝟘)
(p1 : {X : FinSet ℓ} → P X → P (𝟙 + X)) where
elimProp𝔽in : (n : ℕ) → P (𝔽in n)
elimProp𝔽in 0 = p0
elimProp𝔽in (suc n) = p1 (elimProp𝔽in n)
elimProp𝟙+ : (X : FinSet ℓ) → P X
elimProp𝟙+ = elimProp elimProp𝔽in
module _
(p0 : P 𝟘)(p1 : P 𝟙)
(p+ : {X Y : FinSet ℓ} → P X → P Y → P (X + Y)) where
elimProp+ : (X : FinSet ℓ) → P X
elimProp+ = elimProp𝟙+ p0 (λ p → p+ p1 p)
| {
"alphanum_fraction": 0.5779014308,
"avg_line_length": 28.3759398496,
"ext": "agda",
"hexsha": "e240fad93c95fd7a5d9b5c4780b2ce63b21b37b0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "howsiyu/cubical",
"max_forks_repo_path": "Cubical/Data/FinSet/Induction.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "howsiyu/cubical",
"max_issues_repo_path": "Cubical/Data/FinSet/Induction.agda",
"max_line_length": 94,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "howsiyu/cubical",
"max_stars_repo_path": "Cubical/Data/FinSet/Induction.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1833,
"size": 3774
} |
module Data.List.Combinatorics where
import Lvl
open import Data
open import Data.List
open import Data.List.Functions
open Data.List.Functions.LongOper
open import Data.Tuple as Tuple using (_⨯_ ; _,_)
open import Data.Tuple.Raiseᵣ as Tuple₊ using (_^_)
import Data.Tuple.Raiseᵣ.Functions as Tuple₊
open import Functional
open import Numeral.Natural
open import Type
private variable ℓ : Lvl.Level
private variable T : Type{ℓ}
-- A list of all non-empty sublists of the specified list.
-- The corresponding counting function is `(2 ^ n) − 1` where `n` is the length of the list.
-- Note:
-- In the inductive case, all of these are permutations of each other:
-- • `foldᵣ (prev ↦ rest ↦ (prev ⊰ (x ⊰ prev) ⊰ rest)) ∅ (sublists₊ l)` (This is used because of its "natural" order)
-- • `foldᵣ (prev ↦ rest ↦ ((x ⊰ prev) ⊰ prev ⊰ rest)) ∅ (sublists₊ l)`
-- • `(map (x ⊰_) (sublists₊ l)) ++ (sublists₊ l)`
-- • `(sublists₊ l) ++ (map (x ⊰_) (sublists₊ l))`
-- Examples:
-- sublists₊ [] = []
-- sublists₊ [1] = [[1]]
-- sublists₊ [1,2] = [[1],[2],[1,2]]
-- sublists₊ [1,2,3] = [[1],[2],[1,2],[3],[1,3],[2,3],[1,2,3]]
-- sublists₊ [1,2,3,4] = [[1],[2],[1,2],[3],[1,3],[2,3],[1,2,3],[4],[1,4],[2,4],[1,2,4],[3,4],[1,3,4],[2,3,4],[1,2,3,4]]
sublists₊ : List(T) → List(List(T))
sublists₊ ∅ = ∅
sublists₊ (x ⊰ l) = singleton(x) ⊰ concatMap(y ↦ (y ⊰ (x ⊰ y) ⊰ ∅)) (sublists₊ l)
-- A list of all sublists of the specified list.
-- This is also the list of all subsets when the given list is a set (distinct elements).
-- The corresponding counting function is `2 ^ n` where `n` is the length of the list.
-- Examples:
-- sublists [] = [[]]
-- sublists [1] = [[],[1]]
-- sublists [1,2] = [[],[1],[2],[1,2]]
-- sublists [1,2,3] = [[],[1],[2],[1,2],[3],[1,3],[2,3],[1,2,3]]
-- sublists [1,2,3,4] = [[],[1],[2],[1,2],[3],[1,3],[2,3],[1,2,3],[4],[1,4],[2,4],[1,2,4],[3,4],[1,3,4],[2,3,4],[1,2,3,4]]
sublists : List(T) → List(List(T))
sublists(l) = ∅ ⊰ sublists₊(l)
-- A list of all combinations of the specified size of the specified list.
-- The corresponding counting function is `𝑐𝐶(n,k)` where `n` is the length of the specified "multiset".
-- All subsets of size `n` from the set `l`.
-- Every unique subset of size n up to set equality.
-- This is also a list of all sublists of the specified size of the specified list.
-- Alternative definition that does not pass the termination checker:
-- combinations : ℕ → List(T) → List(List(T))
-- combinations 0 _ = ∅
-- combinations _ ∅ = ∅
-- combinations 1 l = map singleton l
-- combinations (𝐒(𝐒(n))) l = concat(map f(tails l)) where
-- f : List(T) → List(List(T))
-- f ∅ = ∅
-- f(x ⊰ l) = map (x ⊰_) (combinations (𝐒(n)) l)
-- Examples:
-- combinations _ [] = []
-- combinations 0 [a,b,c,...] = [[]] when the list is non-empty
-- combinations 1 [a,b,c,...] = [[a],[b],[c],...] when the list is non-empty
-- combinations n l = [] when (n ≥ length(l))
-- combinations n l = [l] when (n = length(l))
-- combinations 2 [a,b,c] = [[a,b],[a,c],[b,c]]
-- combinations 2 [a,b,c,d] = [[a,b],[a,c],[a,d],[b,c],[b,d],[c,d]]
-- combinations 2 [a,b,c,d,e] = [[a,b],[a,c],[a,d],[a,e],[b,c],[b,d],[b,e],[c,d],[c,e],[d,e]]
-- combinations 3 [a,b,c,d] = [[a,b,c],[a,b,d],[a,c,d],[b,c,d]]
-- combinations 3 [a,b,c,d,e] = [[a,b,c],[a,b,d],[a,b,e],[a,c,d],[a,c,e],[a,d,e],[b,c,d],[b,c,e],[b,d,e],[c,d,e]]
-- combinations 4 [a,b,c,d,e] = [[a,b,c,d],[a,b,c,e],[a,b,d,e],[a,c,d,e],[b,c,d,e]]
combinations : (k : ℕ) → List(T) → List(T ^ k)
combinations 0 _ = singleton(<>)
combinations (𝐒(_)) ∅ = ∅
combinations 1 l@(_ ⊰ _) = l
combinations (𝐒(𝐒(k))) (x ⊰ l) = (map(x ,_) (combinations (𝐒(k)) l)) ++ (combinations(𝐒(𝐒(k))) l)
-- The corresponding counting function is `𝑐𝐶(n + k − 1 , k)` where `n` is the length of the specified "multiset".
-- Examples:
-- repeatableCombinations _ [] = []
-- repeatableCombinations 0 [a,b,c,...] = [[]] when the list is non-empty
-- repeatableCombinations 1 [a,b,c,...] = [[a],[b],[c],...] when the list is non-empty
-- repeatableCombinations n [a] = [repeat n a]
-- repeatableCombinations 2 [a,b] = [[a,a],[a,b],[b,b]]
-- repeatableCombinations 2 [a,b,c] = [[a,a],[a,b],[a,c],[b,b],[b,c],[c,c]]
-- repeatableCombinations 3 [a,b] = [[a,a,a],[a,a,b],[a,b,b],[b,b,b]]
-- repeatableCombinations 3 [a,b,c] = [[a,a,a],[a,a,b],[a,a,c],[a,b,b],[a,b,c],[a,c,c],[b,b,b],[b,b,c],[b,c,c],[c,c,c]]
-- repeatableCombinations 4 [a,b] = [[a,a,a,a],[a,a,a,b],[a,a,b,b],[a,b,b,b],[b,b,b,b]]
-- repeatableCombinations 4 [a,b,c] = [[a,a,a,a],[a,a,a,b],[a,a,a,c],[a,a,b,b],[a,a,b,c],[a,a,c,c],[a,b,b,b],[a,b,b,c],[a,b,c,c],[a,c,c,c],[b,b,b,b],[b,b,b,c],[b,b,c,c],[b,c,c,c],[c,c,c,c]]
repeatableCombinations : (k : ℕ) → List(T) → List(T ^ k)
repeatableCombinations 0 _ = singleton(<>)
repeatableCombinations (𝐒(_)) ∅ = ∅
repeatableCombinations 1 l@(_ ⊰ _) = l
repeatableCombinations (𝐒(𝐒(k))) (x ⊰ l) = (map (x ,_) (repeatableCombinations (𝐒(k)) (x ⊰ l))) ++ (repeatableCombinations (𝐒(𝐒(k))) l)
-- A list of all tuples of length `n` from the "multiset" `l`.
-- Every tuple combination of length `n`.
-- The corresponding counting function is `k ^ n` where `k` is the length of the list.
-- Examples:
-- tuples 0 [a] = [()]
-- tuples 1 [a] = [a]
-- tuples 2 [a] = [(a,a)]
-- tuples 0 [a,b] = [()]
-- tuples 1 [a,b] = [a,b]
-- tuples 2 [a,b] = [(a,a) , (a,b) , (b,a) , (b,b)]
-- tuples 0 [a,b,c] = [()]
-- tuples 1 [a,b,c] = [a,b,c]
-- tuples 2 [a,b,c] = [(a,a) , (a,b) , (a,c) , (b,a) , (b,b) , (b,c) , (c,a) , (c,b), (c,c)]
tuples : (n : ℕ) → List(T) → List(T ^ n)
tuples 0 = const(singleton(<>))
tuples 1 = id
tuples (𝐒(𝐒(n))) l = concatMap(x ↦ map (Tuple₊.prepend x) (tuples (𝐒(n)) l)) l
-- A list of all rotations of a list.
-- Examples:
-- rotations [] = []
-- rotations [a] = [[a]]
-- rotations [a,b] = [[a,b] , [b,a]]
-- rotations [a,b,c] = [[a,b,c] , [b,c,a] , [c,a,b]]
-- rotations [a,b,c,d] = [[a,b,c,d] , [b,c,d,a] , [c,d,a,b] , [d,a,b,c]]
rotations : List(T) → List(List(T))
rotations l = accumulateIterate₀(length l) (rotateₗ(1)) l
-- Accumulated `insertAt` for every position of the given list.
-- Examples:
-- insertedEverywhere i [] = [[i]]
-- insertedEverywhere i [a] = [[i,a],[a,i]]
-- insertedEverywhere i [a,b] = [[i,a,b],[a,i,b],[a,b,i]]
-- insertedEverywhere i [a,b,c] = [[i,a,b,c],[a,i,b,c],[a,b,i,c],[a,b,c,i]]
-- insertedEverywhere i [a,b,c,d] = [[i,a,b,c,d],[a,i,b,c,d],[a,b,i,c,d],[a,b,c,i,d],[a,b,c,d,i]
insertedEverywhere : T → List(T) → List(List(T))
insertedEverywhere i ∅ = singleton(singleton i)
insertedEverywhere i (x ⊰ l) = (i ⊰ x ⊰ l) ⊰ (map (prepend x) (insertedEverywhere i l))
-- Every reordering of the list's elements.
-- Examples:
-- permutations [] = [[]]
-- permutations [a] = [[a]]
-- permutations [a,b] = [[a,b],[b,a]]
-- permutations [a,b,c] = [[a,b,c],[b,a,c],[b,c,a],[a,c,b],[c,a,b],[c,b,a]]
-- permutations [a,b,c,d] = [[a,b,c,d],[b,a,c,d],[b,c,a,d],[b,c,d,a],[a,c,b,d],[c,a,b,d],[c,b,a,d],[c,b,d,a],[a,c,d,b],[c,a,d,b],[c,d,a,b],[c,d,b,a],[a,b,d,c],[b,a,d,c],[b,d,a,c],[b,d,c,a],[a,d,b,c],[d,a,b,c],[d,b,a,c],[d,b,c,a],[a,d,c,b],[d,a,c,b],[d,c,a,b],[d,c,b,a]]
permutations : List(T) → List(List(T))
permutations ∅ = singleton(∅)
permutations (x ⊰ ∅) = singleton(singleton x)
permutations (x ⊰ l@(_ ⊰ _)) = concatMap (insertedEverywhere x) (permutations l)
| {
"alphanum_fraction": 0.526336074,
"avg_line_length": 52.5945945946,
"ext": "agda",
"hexsha": "9477d58d0657829d43fb0218570075f54eb2b980",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Data/List/Combinatorics.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Data/List/Combinatorics.agda",
"max_line_length": 271,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Data/List/Combinatorics.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 2930,
"size": 7784
} |
{-# OPTIONS --rewriting #-}
module _ where
open import Agda.Builtin.Bool
open import Agda.Builtin.Equality
open import Agda.Builtin.Equality.Rewrite
data D (A : Set) : Set₁ where
c₁ : D A
c₂ : Set → D A
f : {A : Set} → D A → Set
f c₁ = Bool
f (c₂ X) = X
postulate
rew : (A : Set) → c₁ {A} ≡ c₂ A
-- This rewrite rule is rejected because the A on the lhs of the rule
-- only appears in a parameter position, but parameters are erased.
-- Reconstructing the parameter would only be possible if we had
-- access to the type during reduction, but we don't.
{-# REWRITE rew #-}
boom : f {Bool} c₁ ≡ Bool
boom = refl
| {
"alphanum_fraction": 0.6757624398,
"avg_line_length": 23.0740740741,
"ext": "agda",
"hexsha": "e884dc3fdee84a5fe7ac2ffa204bc93ce689025b",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "cagix/agda",
"max_forks_repo_path": "test/Fail/Issue5238-unbound-parameter.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "cagix/agda",
"max_issues_repo_path": "test/Fail/Issue5238-unbound-parameter.agda",
"max_line_length": 69,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "cagix/agda",
"max_stars_repo_path": "test/Fail/Issue5238-unbound-parameter.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 195,
"size": 623
} |
module Tactic.Reflection.Quote where
open import Prelude
open import Builtin.Reflection
open import Builtin.Float
open import Tactic.Reflection.Quote.Class public
open import Tactic.Deriving.Quotable
open import Container.Traversable
--- Instances ---
private
QuoteLit : {A : Set} → (A → Literal) → Quotable A
` {{QuoteLit f}} x = lit (f x)
-- Primitive types --
instance
QuotableNat = QuoteLit nat
QuotableWord64 = QuoteLit word64
QuotableFloat = QuoteLit float
QuotableString = QuoteLit string
QuotableChar = QuoteLit char
QuotableName = QuoteLit name
-- Standard data types --
unquoteDecl QuotableBool = deriveQuotable QuotableBool (quote Bool)
unquoteDecl QuotableList = deriveQuotable QuotableList (quote List)
unquoteDecl QuotableMaybe = deriveQuotable QuotableMaybe (quote Maybe)
unquoteDecl QuotableEither = deriveQuotable QuotableEither (quote Either)
instance
QuotableΣ : ∀ {a b} {A : Set a} {B : A → Set b} {{_ : Quotable A}} {{_ : {x : A} → Quotable (B x)}} → Quotable (Σ A λ a → B a)
QuotableΣ = record { ` = λ { (x , y) → con (quote _,_) ((vArg (` x)) ∷ vArg (` y) ∷ [])} }
unquoteDecl Quotable⊤ = deriveQuotable Quotable⊤ (quote ⊤)
unquoteDecl Quotable⊥ = deriveQuotable Quotable⊥ (quote ⊥)
unquoteDecl Quotable≡ = deriveQuotable Quotable≡ (quote _≡_)
unquoteDecl QuotableComparison = deriveQuotable QuotableComparison (quote Comparison)
unquoteDecl QuotableLessNat = deriveQuotable QuotableLessNat (quote LessNat)
unquoteDecl QuotableInt = deriveQuotable QuotableInt (quote Int)
-- The reflection machinery can't deal with computational irrelevance (..)
-- unquoteDecl QuotableFin = deriveQuotable QuotableFin (quote Fin)
-- unquoteDecl QuotableVec = deriveQuotable QuotableVec (quote Vec)
instance
QuotableFin : ∀ {n} → Quotable (Fin n)
` {{QuotableFin}} zero = con (quote Fin.zero) []
` {{QuotableFin}} (suc i) = con (quote Fin.suc) (vArg (` i) ∷ [])
QuotableVec : ∀ {a} {A : Set a} {n} {{_ : Quotable A}} → Quotable (Vec A n)
` {{QuotableVec}} [] = con (quote Vec.[]) []
` {{QuotableVec}} (x ∷ xs) = con (quote Vec._∷_) (vArg (` x) ∷ vArg (` xs) ∷ [])
-- Reflection types --
instance
QuotableMeta : Quotable Meta
` {{QuotableMeta}} x = lit (meta x)
private
deriveQuotableTermTypes : Vec Name _ → TC ⊤
deriveQuotableTermTypes is = do
let ts : Vec Name _
ts = quote Term ∷ quote Clause ∷ quote Sort ∷ []
its = ⦇ is , ts ⦈
traverse (uncurry declareQuotableInstance) its
traverse (uncurry defineQuotableInstance) its
pure _
unquoteDecl QuotableVisibility QuotableRelevance QuotableArgInfo
QuotableArg QuotableAbs QuotableLiteral = do
deriveQuotable QuotableVisibility (quote Visibility)
deriveQuotable QuotableRelevance (quote Relevance)
deriveQuotable QuotableArgInfo (quote ArgInfo)
deriveQuotable QuotableArg (quote Arg)
deriveQuotable QuotableAbs (quote Abs)
deriveQuotable QuotableLiteral (quote Literal)
{-# TERMINATING #-}
unquoteDecl QuotablePattern QuotableTerm QuotableClause QuotableSort = do
deriveQuotable QuotablePattern (quote Pattern)
deriveQuotableTermTypes (QuotableTerm ∷ QuotableClause ∷ QuotableSort ∷ [])
quoteList : List Term → Term
quoteList = foldr (λ x xs → con (quote List._∷_) (vArg x ∷ vArg xs ∷ [])) (con (quote List.[]) [])
| {
"alphanum_fraction": 0.6823156682,
"avg_line_length": 38.5777777778,
"ext": "agda",
"hexsha": "45f08e4f99a4d2a3214a0b5cc2b560bbc98ef869",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "lclem/agda-prelude",
"max_forks_repo_path": "src/Tactic/Reflection/Quote.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "lclem/agda-prelude",
"max_issues_repo_path": "src/Tactic/Reflection/Quote.agda",
"max_line_length": 128,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "lclem/agda-prelude",
"max_stars_repo_path": "src/Tactic/Reflection/Quote.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1095,
"size": 3472
} |
-- This combination should not be allowed:
{-# OPTIONS --safe --guardedness --sized-types #-}
-- note that `--safe` turns off `--guardedness` and `--sized-types`,
-- hence `--guardedness --sized-types --safe` works, but does not
-- mean the above combination
| {
"alphanum_fraction": 0.6781609195,
"avg_line_length": 32.625,
"ext": "agda",
"hexsha": "e5aaa41652df202f5f427aa977e180a51af81435",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue1209-3.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue1209-3.agda",
"max_line_length": 68,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue1209-3.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 66,
"size": 261
} |
open import Data.Product using ( ∃ ; _×_ )
open import FRP.LTL.RSet.Core using ( RSet ; _[_,_⟩ )
open import FRP.LTL.Time using ( _≤_ )
module FRP.LTL.RSet.Until where
infixr 2 _U_
_U_ : RSet → RSet → RSet
(A U B) t = ∃ λ u → (t ≤ u) × (A [ t , u ⟩) × B u
| {
"alphanum_fraction": 0.5961538462,
"avg_line_length": 21.6666666667,
"ext": "agda",
"hexsha": "2e07aa388942b496fb4f19d56850f4e3228f1c7c",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:04.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-03-01T07:33:00.000Z",
"max_forks_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/agda-frp-ltl",
"max_forks_repo_path": "src/FRP/LTL/RSet/Until.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5",
"max_issues_repo_issues_event_max_datetime": "2015-03-02T15:23:53.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-01T07:01:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/agda-frp-ltl",
"max_issues_repo_path": "src/FRP/LTL/RSet/Until.agda",
"max_line_length": 53,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/agda-frp-ltl",
"max_stars_repo_path": "src/FRP/LTL/RSet/Until.agda",
"max_stars_repo_stars_event_max_datetime": "2020-06-15T02:51:13.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-07-02T20:25:05.000Z",
"num_tokens": 109,
"size": 260
} |
open import Data.Product using ( proj₁ ; proj₂ )
open import Data.Sum using ( _⊎_ ; inj₁ ; inj₂ )
open import Relation.Binary.PropositionalEquality using ( refl )
open import Web.Semantic.DL.ABox.Interp using ( ⌊_⌋ ; ind ; _*_ )
open import Web.Semantic.DL.ABox.Interp.Morphism using ( _,_ )
open import Web.Semantic.DL.ABox.Model using
( _⊨a_ ; on-bnode ; bnodes ; _,_ ; ⊨a-resp-≲ )
open import Web.Semantic.DL.Category.Composition using ( _∙_ )
open import Web.Semantic.DL.Category.Properties.Composition.Lemmas using
( compose-left ; compose-right ; compose-resp-⊨a )
open import Web.Semantic.DL.Category.Properties.Tensor.Lemmas using
( tensor-up ; tensor-down ; tensor-resp-⊨a )
open import Web.Semantic.DL.Category.Object using ( Object ; IN ; fin )
open import Web.Semantic.DL.Category.Morphism using
( _⇒_ ; BN ; impl ; _⊑_ ; _≣_ ; _,_ )
open import Web.Semantic.DL.Category.Tensor using ( _⊗_ ; _⟨⊗⟩_ )
open import Web.Semantic.DL.Category.Unit using ( I )
open import Web.Semantic.DL.Category.Wiring using
( wires-≈ ; wires-≈⁻¹ ; assoc )
open import Web.Semantic.DL.Signature using ( Signature )
open import Web.Semantic.DL.TBox using ( TBox )
open import Web.Semantic.DL.TBox.Interp using
( Δ ; _⊨_≈_ ; ≈-refl ; ≈-refl′ ; ≈-sym )
open import Web.Semantic.DL.TBox.Interp.Morphism using ( ≲-refl )
open import Web.Semantic.Util using
( _∘_ ; False ; ⊎-assoc ; ⊎-assoc⁻¹
; _⊕_⊕_ ; inode ; bnode ; enode ; left ; right ; up ; down )
module Web.Semantic.DL.Category.Properties.Tensor.AssocNatural
{Σ : Signature} {S T : TBox Σ} where
assoc-natural : ∀ {A₁ A₂ A₃ B₁ B₂ B₃ : Object S T}
(F₁ : A₁ ⇒ B₁) (F₂ : A₂ ⇒ B₂) (F₃ : A₃ ⇒ B₃) →
(((F₁ ⟨⊗⟩ F₂) ⟨⊗⟩ F₃) ∙ assoc B₁ B₂ B₃ ≣
assoc A₁ A₂ A₃ ∙ (F₁ ⟨⊗⟩ (F₂ ⟨⊗⟩ F₃)))
assoc-natural {A₁} {A₂} {A₃} {B₁} {B₂} {B₃} F₁ F₂ F₃ = (LHS⊑RHS , RHS⊑LHS) where
LHS⊑RHS : ((F₁ ⟨⊗⟩ F₂) ⟨⊗⟩ F₃) ∙ assoc B₁ B₂ B₃ ⊑
assoc A₁ A₂ A₃ ∙ (F₁ ⟨⊗⟩ (F₂ ⟨⊗⟩ F₃))
LHS⊑RHS J J⊨STA J⊨LHS = (f , J⊨RHS) where
f : (False ⊕ (IN A₁ ⊎ (IN A₂ ⊎ IN A₃)) ⊕ (BN F₁ ⊎ (BN F₂ ⊎ BN F₃))) → Δ ⌊ J ⌋
f (inode ())
f (bnode x) = ind J (inode (⊎-assoc⁻¹ x))
f (enode v) = ind J (bnode (inode (⊎-assoc⁻¹ v)))
lemma₁ : ∀ x →
⌊ J ⌋ ⊨ ind J (left (up (up x))) ≈
on-bnode f (ind J) (right (up x))
lemma₁ (inode x) = ≈-refl ⌊ J ⌋
lemma₁ (bnode v) = ≈-refl ⌊ J ⌋
lemma₁ (enode y) = wires-≈ ⊎-assoc⁻¹
(proj₂ (fin (B₁ ⊗ (B₂ ⊗ B₃))) (inj₁ y))
(compose-right ((F₁ ⟨⊗⟩ F₂) ⟨⊗⟩ F₃) (assoc B₁ B₂ B₃) J J⊨LHS)
lemma₂ : ∀ x →
⌊ J ⌋ ⊨ ind J (left (up (down x))) ≈
on-bnode f (ind J) (right (down (up x)))
lemma₂ (inode x) = ≈-refl ⌊ J ⌋
lemma₂ (bnode v) = ≈-refl ⌊ J ⌋
lemma₂ (enode y) = wires-≈ ⊎-assoc⁻¹
(proj₂ (fin (B₁ ⊗ (B₂ ⊗ B₃))) (inj₂ (inj₁ y)))
(compose-right ((F₁ ⟨⊗⟩ F₂) ⟨⊗⟩ F₃) (assoc B₁ B₂ B₃) J J⊨LHS)
lemma₃ : ∀ x →
⌊ J ⌋ ⊨ ind J (left (down x)) ≈
on-bnode f (ind J) (right (down (down x)))
lemma₃ (inode x) = ≈-refl ⌊ J ⌋
lemma₃ (bnode v) = ≈-refl ⌊ J ⌋
lemma₃ (enode y) = wires-≈ ⊎-assoc⁻¹
(proj₂ (fin (B₁ ⊗ (B₂ ⊗ B₃))) (inj₂ (inj₂ y)))
(compose-right ((F₁ ⟨⊗⟩ F₂) ⟨⊗⟩ F₃) (assoc B₁ B₂ B₃) J J⊨LHS)
J⊨RHS : bnodes J f ⊨a impl (assoc A₁ A₂ A₃ ∙ (F₁ ⟨⊗⟩ (F₂ ⟨⊗⟩ F₃)))
J⊨RHS = compose-resp-⊨a (assoc A₁ A₂ A₃) (F₁ ⟨⊗⟩ (F₂ ⟨⊗⟩ F₃)) (bnodes J f)
(wires-≈⁻¹ ⊎-assoc⁻¹ (λ x → ≈-refl ⌊ J ⌋) (proj₁ (fin (A₁ ⊗ (A₂ ⊗ A₃)))))
(tensor-resp-⊨a F₁ (F₂ ⟨⊗⟩ F₃) (right * bnodes J f)
(⊨a-resp-≲ (≲-refl ⌊ J ⌋ , lemma₁) (impl F₁)
(tensor-up F₁ F₂ (up * left * J)
(tensor-up (F₁ ⟨⊗⟩ F₂) F₃ (left * J)
(compose-left ((F₁ ⟨⊗⟩ F₂) ⟨⊗⟩ F₃) (assoc B₁ B₂ B₃) J J⊨LHS))))
(tensor-resp-⊨a F₂ F₃ (down * right * bnodes J f)
(⊨a-resp-≲ (≲-refl ⌊ J ⌋ , lemma₂) (impl F₂)
(tensor-down F₁ F₂ (up * left * J)
(tensor-up (F₁ ⟨⊗⟩ F₂) F₃ (left * J)
(compose-left ((F₁ ⟨⊗⟩ F₂) ⟨⊗⟩ F₃) (assoc B₁ B₂ B₃) J J⊨LHS))))
(⊨a-resp-≲ (≲-refl ⌊ J ⌋ , lemma₃) (impl F₃)
(tensor-down (F₁ ⟨⊗⟩ F₂) F₃ (left * J)
(compose-left ((F₁ ⟨⊗⟩ F₂) ⟨⊗⟩ F₃) (assoc B₁ B₂ B₃) J J⊨LHS)))))
RHS⊑LHS : assoc A₁ A₂ A₃ ∙ (F₁ ⟨⊗⟩ (F₂ ⟨⊗⟩ F₃)) ⊑
((F₁ ⟨⊗⟩ F₂) ⟨⊗⟩ F₃) ∙ assoc B₁ B₂ B₃
RHS⊑LHS J J⊨STA J⊨RHS = (f , J⊨LHS) where
f : (((BN F₁ ⊎ BN F₂) ⊎ BN F₃) ⊕ ((IN B₁ ⊎ IN B₂) ⊎ IN B₃) ⊕ False) → Δ ⌊ J ⌋
f (inode v) = ind J (bnode (enode (⊎-assoc v)))
f (bnode y) = ind J (enode (⊎-assoc y))
f (enode ())
lemma₀ : ∀ x →
⌊ J ⌋ ⊨ ind J (enode (⊎-assoc (⊎-assoc⁻¹ x))) ≈ ind J (enode x)
lemma₀ (inj₁ x) = ≈-refl ⌊ J ⌋
lemma₀ (inj₂ (inj₁ x)) = ≈-refl ⌊ J ⌋
lemma₀ (inj₂ (inj₂ y)) = ≈-refl ⌊ J ⌋
lemma₁ : ∀ x → ⌊ J ⌋ ⊨ ind J (right (up x)) ≈
on-bnode f (ind J) (left (up (up x)))
lemma₁ (inode x) = ≈-sym ⌊ J ⌋ (wires-≈ ⊎-assoc⁻¹
(proj₂ (fin (A₁ ⊗ (A₂ ⊗ A₃))) (inj₁ x))
(compose-left (assoc A₁ A₂ A₃) (F₁ ⟨⊗⟩ (F₂ ⟨⊗⟩ F₃)) J J⊨RHS))
lemma₁ (bnode v) = ≈-refl ⌊ J ⌋
lemma₁ (enode y) = ≈-refl ⌊ J ⌋
lemma₂ : ∀ x → ⌊ J ⌋ ⊨ ind J (right (down (up x))) ≈
on-bnode f (ind J) (left (up (down x)))
lemma₂ (inode x) = ≈-sym ⌊ J ⌋ (wires-≈ ⊎-assoc⁻¹
(proj₂ (fin (A₁ ⊗ (A₂ ⊗ A₃))) (inj₂ (inj₁ x)))
(compose-left (assoc A₁ A₂ A₃) (F₁ ⟨⊗⟩ (F₂ ⟨⊗⟩ F₃)) J J⊨RHS))
lemma₂ (bnode v) = ≈-refl ⌊ J ⌋
lemma₂ (enode y) = ≈-refl ⌊ J ⌋
lemma₃ : ∀ x → ⌊ J ⌋ ⊨ ind J (right (down (down x))) ≈
on-bnode f (ind J) (left (down x))
lemma₃ (inode x) = ≈-sym ⌊ J ⌋ (wires-≈ ⊎-assoc⁻¹
(proj₂ (fin (A₁ ⊗ (A₂ ⊗ A₃))) (inj₂ (inj₂ x)))
(compose-left (assoc A₁ A₂ A₃) (F₁ ⟨⊗⟩ (F₂ ⟨⊗⟩ F₃)) J J⊨RHS))
lemma₃ (bnode v) = ≈-refl ⌊ J ⌋
lemma₃ (enode y) = ≈-refl ⌊ J ⌋
J⊨LHS : bnodes J f ⊨a impl (((F₁ ⟨⊗⟩ F₂) ⟨⊗⟩ F₃) ∙ assoc B₁ B₂ B₃)
J⊨LHS = compose-resp-⊨a ((F₁ ⟨⊗⟩ F₂) ⟨⊗⟩ F₃) (assoc B₁ B₂ B₃) (bnodes J f)
(tensor-resp-⊨a (F₁ ⟨⊗⟩ F₂) F₃ (left * bnodes J f)
(tensor-resp-⊨a F₁ F₂ (up * left * bnodes J f)
(⊨a-resp-≲ (≲-refl ⌊ J ⌋ , lemma₁) (impl F₁)
(tensor-up F₁ (F₂ ⟨⊗⟩ F₃) (right * J)
(compose-right (assoc A₁ A₂ A₃) (F₁ ⟨⊗⟩ (F₂ ⟨⊗⟩ F₃)) J J⊨RHS)))
(⊨a-resp-≲ (≲-refl ⌊ J ⌋ , lemma₂) (impl F₂)
(tensor-up F₂ F₃ (down * right * J)
(tensor-down F₁ (F₂ ⟨⊗⟩ F₃) (right * J)
(compose-right (assoc A₁ A₂ A₃) (F₁ ⟨⊗⟩ (F₂ ⟨⊗⟩ F₃)) J J⊨RHS)))))
(⊨a-resp-≲ (≲-refl ⌊ J ⌋ , lemma₃) (impl F₃)
(tensor-down F₂ F₃ (down * right * J)
(tensor-down F₁ (F₂ ⟨⊗⟩ F₃) (right * J)
(compose-right (assoc A₁ A₂ A₃) (F₁ ⟨⊗⟩ (F₂ ⟨⊗⟩ F₃)) J J⊨RHS)))))
(wires-≈⁻¹ ⊎-assoc⁻¹ lemma₀ (proj₁ (fin (B₁ ⊗ (B₂ ⊗ B₃)))))
| {
"alphanum_fraction": 0.5134615385,
"avg_line_length": 46.301369863,
"ext": "agda",
"hexsha": "23eab2a3262d9a65b242eabef28b2b667eeea423",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:03.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-12-03T14:52:09.000Z",
"max_forks_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/agda-web-semantic",
"max_forks_repo_path": "src/Web/Semantic/DL/Category/Properties/Tensor/AssocNatural.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab",
"max_issues_repo_issues_event_max_datetime": "2021-01-04T20:57:19.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T02:32:28.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/agda-web-semantic",
"max_issues_repo_path": "src/Web/Semantic/DL/Category/Properties/Tensor/AssocNatural.agda",
"max_line_length": 82,
"max_stars_count": 9,
"max_stars_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/agda-web-semantic",
"max_stars_repo_path": "src/Web/Semantic/DL/Category/Properties/Tensor/AssocNatural.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-14T14:21:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-13T17:46:41.000Z",
"num_tokens": 3463,
"size": 6760
} |
{-# OPTIONS --allow-unsolved-metas #-}
module ExtractDependent where
open import Agda.Builtin.Nat
open import Agda.Builtin.Bool
open import Agda.Builtin.String
apply : (A : Set) -> (B : A -> Set) ->
((x : A) -> B x) -> (a : A) -> B a
apply A B f a = f a
applySameName : (A : Set) -> (A : Set) -> (B : A -> Set) ->
(h : Set) -> (h : (x : A) -> B x) -> (a : A) -> B a
applySameName C A B g f a = f a
-- TODO : Try same test with {A} {B} once the parser can handle that.
applyImp : {A : Set} -> {B : A -> Set} ->
((x : A) -> B x) -> (y : A) -> B y
applyImp f a = f a
applyImpSameName : {A : Set} -> {A : Set} -> {B : A -> Set} ->
(h : Set) -> (h : (x : A) -> B x) -> (a : A) -> B a
applyImpSameName A B h = B h
| {
"alphanum_fraction": 0.4823066841,
"avg_line_length": 31.7916666667,
"ext": "agda",
"hexsha": "0dbc17d8be3077d445ac130cd7e0b82ea1b23fb5",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-01-31T08:40:41.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-01-31T08:40:41.000Z",
"max_forks_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "omega12345/RefactorAgda",
"max_forks_repo_path": "RefactorAgdaEngine/Test/Tests/input/ExtractDependent.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b",
"max_issues_repo_issues_event_max_datetime": "2019-02-05T12:53:36.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-31T08:03:07.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "omega12345/RefactorAgda",
"max_issues_repo_path": "RefactorAgdaEngine/Test/Tests/input/ExtractDependent.agda",
"max_line_length": 69,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "omega12345/RefactorAgda",
"max_stars_repo_path": "RefactorAgdaEngine/Test/Tests/input/ExtractDependent.agda",
"max_stars_repo_stars_event_max_datetime": "2019-05-03T10:03:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-01-31T14:10:18.000Z",
"num_tokens": 282,
"size": 763
} |
module FizzBuzz where
{-# IMPORT Data.Word #-}
{-# IMPORT FizzBuzz #-}
open import Data.Nat
open import IO.Primitive
open import Foreign.Haskell
postulate
ℕ′ : Set
zero′ : ℕ′
suc′ : ℕ′ → ℕ′
{-# COMPILED_TYPE ℕ′ Data.Word.Word32 #-}
{-# COMPILED zero′ 0 #-}
{-# COMPILED suc′ succ #-}
fromℕ : ℕ → ℕ′
fromℕ zero = zero′
fromℕ (suc n) = suc′ (fromℕ n)
postulate FizzBuzz : ℕ′ → IO Unit
{-# COMPILED FizzBuzz FizzBuzz.fizzBuzz #-}
main : IO Unit
main = FizzBuzz (fromℕ 10000)
| {
"alphanum_fraction": 0.646090535,
"avg_line_length": 16.7586206897,
"ext": "agda",
"hexsha": "b214c48136d8e17c5d31b07d42fd7cfde5054bd1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "49de45be6a59c63402aac09e23c84a581f70e393",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Taneb/AgdaCBuzz",
"max_forks_repo_path": "agdabits/FizzBuzz.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "49de45be6a59c63402aac09e23c84a581f70e393",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Taneb/AgdaCBuzz",
"max_issues_repo_path": "agdabits/FizzBuzz.agda",
"max_line_length": 43,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "49de45be6a59c63402aac09e23c84a581f70e393",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Taneb/AgdaCBuzz",
"max_stars_repo_path": "agdabits/FizzBuzz.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 169,
"size": 486
} |
--
-- Inspired by a blog post written by Arnaud Bailly
-- https://abailly.github.io/posts/dependently-typed-date.html
--
{-# OPTIONS --without-K #-}
module Date where
open import Data.Nat using (ℕ; zero; suc; _≡ᵇ_; _<_; _≤_; z≤n; s≤s; _≤?_; _<?_)
open import Data.Nat.DivMod using (_%_)
open import Data.Bool using (Bool; true; false; _∧_; _∨_; not)
open import Data.Maybe using (Maybe; just; nothing)
open import Relation.Nullary using (yes; no)
open import Relation.Nullary.Decidable using (True; toWitness)
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; _≢_; refl; cong)
open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _≡⟨_⟩_; _∎; step-≡)
module Day where
data t : Set where
Day : (n : ℕ) → {True (1 ≤? n)} → t -- Capture a day which should not be zero
make : (n : ℕ) → {True (1 ≤? n)} → t
make = Day
value : t → ℕ
value (Day n) = n
module Year where
t : Set
t = ℕ
isLeap : t → Bool
isLeap y = (check4 ∧ not check100) ∨ check400
where check4 = y % 4 ≡ᵇ 0
check100 = y % 100 ≡ᵇ 0
check400 = y % 400 ≡ᵇ 0
module Month where
data t : Set where
January : t
February : t
March : t
April : t
May : t
June : t
July : t
August : t
September : t
October : t
November : t
December : t
toNat : t → ℕ
toNat January = 1
toNat February = 2
toNat March = 3
toNat April = 4
toNat May = 5
toNat June = 6
toNat July = 7
toNat August = 8
toNat September = 9
toNat October = 10
toNat November = 11
toNat December = 12
next : t → t
next January = February
next February = March
next March = April
next April = May
next May = June
next June = July
next July = August
next August = September
next September = October
next October = November
next November = December
next December = January
duration : t → Year.t → Day.t
duration January _ = Day.make 31
duration February year with Year.isLeap year
... | true = Day.make 29
... | false = Day.make 28
duration March _ = Day.make 31
duration April _ = Day.make 30
duration May _ = Day.make 31
duration June _ = Day.make 30
duration July _ = Day.make 31
duration August _ = Day.make 31
duration September _ = Day.make 30
duration October _ = Day.make 31
duration November _ = Day.make 30
duration December _ = Day.make 31
{-
module Date where
data t : Set where
Valid : (year : Year.t) → (month : Month.t) → (day : ℕ)
→ {≤max : True (day ≤? Day.value (Month.duration month year))}
→ {min≤ : True (1 ≤? day)}
--------------------------------------------------------------
→ t
make = Valid
changeMonth : (year : Year.t) → (month : Month.t) -> t
changeMonth year Month.December = make (suc year) Month.January 1
changeMonth year month = make year (Month.next month) 1
addOneDay : t → t
addOneDay (Valid year month day) with (suc day) ≤? Day.value (Month.duration month year)
... | yes proof = Valid year month (suc day) {proof} {s≤s z≤n}
... | no _ = changeMonth year month
addOneDay d = d
-}
module Date where
data t : Set where
Valid : (year : Year.t) → (month : Month.t) → (day : ℕ)
→ {≤max : day ≤ Day.value (Month.duration month year)}
→ {min≤ : 1 ≤ day}
--------------------------------------------------------------
→ t
Invalid : t
1≤month : ∀ {month year} -> 1 ≤ Day.value (Month.duration month year)
1≤month {Month.January} {year} =
begin
1 ≤ Day.value (Month.duration month year)
{-
make : (year : Year.t) → (month : Month.t) → (day : ℕ) → t
make year month day with day ≤? Day.value (Month.duration month year) | 1 ≤? day
... | yes p1 | yes p2 = Valid year month day {p1} {p2}
... | _ | _ = Invalid
changeMonth : (year : Year.t) → (month : Month.t) -> t
changeMonth year Month.December = Valid (suc year) Month.January 1 {1≤month} {s≤s z≤n}
changeMonth year month = Valid year (Month.next month) 1 {1≤month} {s≤s z≤n}
addOneDay : t → t
addOneDay (Valid year month day) with (suc day) ≤? Day.value (Month.duration month year)
... | yes proof = Valid year month (suc day) {proof} {s≤s z≤n}
... | no _ = changeMonth year month
addOneDay d = d
-- addDays : t → ℕ → t
-} | {
"alphanum_fraction": 0.5305909376,
"avg_line_length": 31.0974025974,
"ext": "agda",
"hexsha": "82f0a57744c402218811e80dfd7ca389c2ab678a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a81447af3ab2ba898bb7d57be71369abbba12d81",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "d-plaindoux/colca",
"max_forks_repo_path": "src/exercices/Date.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a81447af3ab2ba898bb7d57be71369abbba12d81",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "d-plaindoux/colca",
"max_issues_repo_path": "src/exercices/Date.agda",
"max_line_length": 92,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "a81447af3ab2ba898bb7d57be71369abbba12d81",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "d-plaindoux/colca",
"max_stars_repo_path": "src/exercices/Date.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-04T09:35:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-03-12T18:31:14.000Z",
"num_tokens": 1471,
"size": 4789
} |
{-# OPTIONS --cubical --no-import-sorts --no-exact-split --safe #-}
module Cubical.Data.InfNat.Base where
open import Cubical.Data.Nat as ℕ using (ℕ)
open import Cubical.Core.Primitives
data ℕ+∞ : Type₀ where
∞ : ℕ+∞
fin : ℕ → ℕ+∞
suc : ℕ+∞ → ℕ+∞
suc ∞ = ∞
suc (fin n) = fin (ℕ.suc n)
zero : ℕ+∞
zero = fin ℕ.zero
caseInfNat : ∀ {ℓ} → {A : Type ℓ} → (aF aI : A) → ℕ+∞ → A
caseInfNat aF aI (fin n) = aF
caseInfNat aF aI ∞ = aI
infixl 6 _+_
_+_ : ℕ+∞ → ℕ+∞ → ℕ+∞
∞ + m = ∞
fin n + ∞ = ∞
fin n + fin m = fin (n ℕ.+ m)
infixl 7 _·_
_·_ : ℕ+∞ → ℕ+∞ → ℕ+∞
fin m · fin n = fin (m ℕ.· n)
∞ · fin ℕ.zero = zero
fin ℕ.zero · ∞ = zero
∞ · ∞ = ∞
∞ · fin (ℕ.suc _) = ∞
fin (ℕ.suc _) · ∞ = ∞
| {
"alphanum_fraction": 0.4501246883,
"avg_line_length": 21.6756756757,
"ext": "agda",
"hexsha": "e152f6f8a2c6c2aabe1a040afe6302e7a820a943",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Data/InfNat/Base.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Data/InfNat/Base.agda",
"max_line_length": 67,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Data/InfNat/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 356,
"size": 802
} |
module MissingTypeSignatureInMutual where
data Nat : Set where
zero : Nat
suc : Nat -> Nat
mutual
pred zero = zero
pred (suc n) = n
| {
"alphanum_fraction": 0.6554054054,
"avg_line_length": 12.3333333333,
"ext": "agda",
"hexsha": "0207caca9915b226a5bb425dad0be424c2d4c55a",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/MissingTypeSignatureInMutual.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/MissingTypeSignatureInMutual.agda",
"max_line_length": 41,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/MissingTypeSignatureInMutual.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 49,
"size": 148
} |
------------------------------------------------------------------------
-- "Basic" infinite grammars
------------------------------------------------------------------------
-- For a larger and possibly more convenient, but equivalent, grammar
-- interface, see Grammar.Infinite.
{-# OPTIONS --guardedness #-}
module Grammar.Infinite.Basic where
open import Algebra
open import Category.Monad
open import Codata.Musical.Notation
open import Data.Bool hiding (_≤_)
open import Data.Char hiding (_≤_)
open import Data.Empty
open import Data.List as List
import Data.List.Categorical
open import Data.List.Membership.Propositional
import Data.List.Membership.Propositional.Properties as ∈
open import Data.List.Properties
import Data.List.Relation.Unary.Any as Any
open import Data.List.Relation.Unary.Any.Properties
open import Data.Nat
open import Data.Nat.Properties as NatP
open import Data.Product as Prod
import Data.Product.Function.Dependent.Propositional as Σ
open import Data.Product.Function.NonDependent.Propositional
open import Data.Sum
open import Data.Unit using (tt)
open import Function.Base
open import Function.Equality using (_⟨$⟩_)
open import Function.Inverse as Inv using (_↔_; module Inverse)
import Function.Related as Related
open import Function.Related.TypeIsomorphisms
import Level
open import Relation.Binary.PropositionalEquality as P using (_≡_; refl)
import Relation.Binary.PropositionalEquality.WithK as P
open import Relation.Nullary
private
module LMi {A : Set} = Monoid (++-monoid A)
module LMa = RawMonad (Data.List.Categorical.monad {ℓ = Level.zero})
open Any.Any
------------------------------------------------------------------------
-- Simple, potentially infinite grammars
-- These grammars are very general: they can represent every
-- recursively enumerable language (see Grammars.Infinite.expressive).
-- In practice one may want to restrict attention to languages that
-- can be parsed. I use general grammars to illustrate that this
-- approach to pretty-printing is not restricted to a small class of
-- languages.
infixl 15 _>>=_
infixl 10 _∣_
data Grammar : Set → Set₁ where
-- The empty string.
return : ∀ {A} → A → Grammar A
-- A single, arbitrary token.
token : Grammar Char
-- Monadic sequencing.
_>>=_ : ∀ {A B} → ∞ (Grammar A) → (A → ∞ (Grammar B)) → Grammar B
-- Symmetric choice.
_∣_ : ∀ {A} → ∞ (Grammar A) → ∞ (Grammar A) → Grammar A
-- Semantics of grammars (parse trees). Here x ∈ g · s means that the
-- value x and string s are generated by the grammar g.
infix 4 _∈_·_
data _∈_·_ : ∀ {A} → A → Grammar A → List Char → Set₁ where
return-sem : ∀ {A} {x : A} → x ∈ return x · []
token-sem : ∀ {t} → t ∈ token · [ t ]
>>=-sem : ∀ {A B x y s₁ s₂} {g₁ : ∞ (Grammar A)}
{g₂ : A → ∞ (Grammar B)} →
x ∈ ♭ g₁ · s₁ → y ∈ ♭ (g₂ x) · s₂ →
y ∈ g₁ >>= g₂ · s₁ ++ s₂
left-sem : ∀ {A} {g₁ g₂ : ∞ (Grammar A)} {x s} →
x ∈ ♭ g₁ · s → x ∈ g₁ ∣ g₂ · s
right-sem : ∀ {A} {g₁ g₂ : ∞ (Grammar A)} {x s} →
x ∈ ♭ g₂ · s → x ∈ g₁ ∣ g₂ · s
----------------------------------------------------------------------
-- Some grammar combinators
-- Failure.
fail : ∀ {A} → Grammar A
fail = ♯ fail ∣ ♯ fail
-- Map.
infixl 20 _<$>_ _<$_
_<$>_ : ∀ {A B} → (A → B) → Grammar A → Grammar B
f <$> g = ♯ g >>= λ x → ♯ return (f x)
_<$_ : ∀ {A B} → A → Grammar B → Grammar A
x <$ g = const x <$> g
-- The empty string if the argument is true, otherwise failure.
if-true : (b : Bool) → Grammar (T b)
if-true true = return tt
if-true false = fail
-- A token satisfying a given predicate.
sat : (p : Char → Bool) → Grammar (∃ λ t → T (p t))
sat p = ♯ token >>= λ t → ♯ (_,_ t <$> if-true (p t))
-- A specific token.
tok : Char → Grammar Char
tok t = t <$ sat (λ t′ → t == t′)
------------------------------------------------------------------------
-- Some semantics combinators
-- Cast lemma.
cast : ∀ {A} {g : Grammar A} {x s₁ s₂} →
s₁ ≡ s₂ → x ∈ g · s₁ → x ∈ g · s₂
cast refl = id
fail-sem⁻¹ : ∀ {A} {x : A} {s} → ¬ (x ∈ fail · s)
fail-sem⁻¹ (left-sem ∈fail) = fail-sem⁻¹ ∈fail
fail-sem⁻¹ (right-sem ∈fail) = fail-sem⁻¹ ∈fail
<$>-sem : ∀ {A B} {f : A → B} {g : Grammar A} {y s} →
y ∈ f <$> g · s ↔ ∃ λ x → x ∈ g · s × y ≡ f x
<$>-sem {A} {B} {f} {g} = record
{ to = P.→-to-⟶ to
; from = P.→-to-⟶ from
; inverse-of = record
{ left-inverse-of = from∘to
; right-inverse-of = to∘from
}
}
where
lemma : ∀ s → s ++ [] ≡ s
lemma s = proj₂ LMi.identity s
to : ∀ {s g y} → y ∈ f <$> g · s → ∃ λ x → x ∈ g · s × y ≡ f x
to (>>=-sem x∈ return-sem) =
_ , cast (P.sym $ lemma _) x∈ , refl
from : ∀ {s y g} → (∃ λ x → x ∈ g · s × y ≡ f x) → y ∈ f <$> g · s
from (x , x∈ , refl) = cast (lemma _) (>>=-sem x∈ return-sem)
>>=-cast : ∀ {x y s₁ s₂ s}
{g₁ : ∞ (Grammar A)} {g₂ : A → ∞ (Grammar B)}
(eq : s₁ ≡ s₂)
(x∈ : x ∈ ♭ g₁ · s₁) (y∈ : y ∈ ♭ (g₂ x) · s) →
>>=-sem {g₁ = g₁} {g₂ = g₂} (cast eq x∈) y∈ ≡
cast (P.cong (λ s′ → s′ ++ s) eq) (>>=-sem x∈ y∈)
>>=-cast refl _ _ = refl
cast-cast : ∀ {A g s₁ s₂} {z : A} {z∈ : z ∈ g · s₂}
(eq₁ : s₁ ≡ s₂) (eq₂ : s₂ ≡ s₁) →
cast eq₁ (cast eq₂ z∈) ≡ z∈
cast-cast refl refl = refl
from∘to : ∀ {s g y} (y∈ : y ∈ f <$> g · s) → from (to y∈) ≡ y∈
from∘to (>>=-sem {s₁ = s} x∈ return-sem) = begin
cast (lemma (s ++ []))
(>>=-sem (cast (P.sym $ lemma s) x∈) return-sem) ≡⟨ P.cong (cast (lemma (s ++ []))) $
>>=-cast (P.sym (lemma s)) x∈ return-sem ⟩
cast (lemma (s ++ []))
(cast (P.cong (λ s → s ++ []) (P.sym $ lemma s))
(>>=-sem x∈ return-sem)) ≡⟨ cast-cast (lemma (s ++ []))
(P.cong (λ s → s ++ []) (P.sym $ lemma s)) ⟩
>>=-sem x∈ return-sem ∎
where open P.≡-Reasoning
to-cast : ∀ {s₁ s₂ y g} (eq : s₁ ≡ s₂) (y∈ : y ∈ f <$> g · s₁) →
to (cast eq y∈) ≡
P.subst (λ s → ∃ λ x → x ∈ g · s × y ≡ f x) eq (to y∈)
to-cast refl y∈ = refl
to∘from : ∀ {s y g}
(x∈ : ∃ λ x → x ∈ g · s × y ≡ f x) → to (from x∈) ≡ x∈
to∘from {s} (x , x∈ , refl)
rewrite to-cast (lemma s) (>>=-sem x∈ return-sem)
| lemma s
= refl
if-true-sem : ∀ {b} x {s} → x ∈ if-true b · s ↔ s ≡ []
if-true-sem x = record
{ to = P.→-to-⟶ (to _)
; from = P.→-to-⟶ (from _ _)
; inverse-of = record
{ left-inverse-of = from∘to _
; right-inverse-of = to∘from _ x
}
}
where
to : ∀ b {x s} → x ∈ if-true b · s → s ≡ []
to true return-sem = refl
to false ∈fail = ⊥-elim $ fail-sem⁻¹ ∈fail
from : ∀ b x {s} → s ≡ [] → x ∈ if-true b · s
from true _ refl = return-sem
from false () refl
from∘to : ∀ b {x s} (x∈ : x ∈ if-true b · s) → from b x (to b x∈) ≡ x∈
from∘to true return-sem = refl
from∘to false ∈fail = ⊥-elim $ fail-sem⁻¹ ∈fail
to∘from : ∀ b x {s} (eq : s ≡ []) → to b (from b x eq) ≡ eq
to∘from true _ refl = refl
to∘from false () refl
sat-sem : ∀ {p : Char → Bool} {t pt s} →
(t , pt) ∈ sat p · s ↔ s ≡ [ t ]
sat-sem {p} {t} {pt} = record
{ to = P.→-to-⟶ to
; from = P.→-to-⟶ from
; inverse-of = record
{ left-inverse-of = from∘to
; right-inverse-of = to∘from
}
}
where
to : ∀ {s} → (t , pt) ∈ sat p · s → s ≡ [ t ]
to (>>=-sem token-sem (>>=-sem tt∈ return-sem)) =
P.cong (λ s → t ∷ s ++ []) (Inverse.to (if-true-sem pt) ⟨$⟩ tt∈)
from : ∀ {s} → s ≡ [ t ] → (t , pt) ∈ sat p · s
from refl =
>>=-sem token-sem
(>>=-sem (Inverse.from (if-true-sem pt) ⟨$⟩ refl)
return-sem)
from∘to : ∀ {s} (t∈ : (t , pt) ∈ sat p · s) → from (to t∈) ≡ t∈
from∘to (>>=-sem token-sem (>>=-sem tt∈ return-sem))
with Inverse.to (if-true-sem pt) ⟨$⟩ tt∈
| Inverse.left-inverse-of (if-true-sem pt) tt∈
from∘to (>>=-sem token-sem
(>>=-sem .(Inverse.from (if-true-sem pt) ⟨$⟩ refl)
return-sem))
| refl | refl = refl
to∘from : ∀ {s} (eq : s ≡ [ t ]) → to (from eq) ≡ eq
to∘from refl
rewrite Inverse.right-inverse-of (if-true-sem pt) refl
= refl
abstract
-- Grammar.Infinite requires a lot more memory to type-check if this
-- definition is made concrete (at the time of writing).
tok-sem : ∀ {t′ t s} → t′ ∈ tok t · s ↔ (t ≡ t′ × s ≡ [ t ])
tok-sem {t′} {t} {s} =
t′ ∈ tok t · s ↔⟨ <$>-sem ⟩
(∃ λ p → p ∈ sat (λ t′ → t == t′) · s × t′ ≡ t) ↔⟨ Σ.cong Inv.id (sat-sem ×-cong Inv.id) ⟩
(∃ λ p → s ≡ [ proj₁ p ] × t′ ≡ t) ↔⟨ Σ-assoc ⟩
(∃ λ t″ → T (t == t″) × s ≡ [ t″ ] × t′ ≡ t) ↔⟨ Σ.cong Inv.id (True↔ _ P.≡-irrelevant ×-cong Inv.id) ⟩
(∃ λ t″ → t ≡ t″ × s ≡ [ t″ ] × t′ ≡ t) ↔⟨ lemma ⟩
(t ≡ t′ × s ≡ [ t ]) ∎
where
open Related.EquationalReasoning
lemma : (∃ λ t″ → t ≡ t″ × s ≡ [ t″ ] × t′ ≡ t) ↔
(t ≡ t′ × s ≡ [ t ])
lemma = record
{ to = P.→-to-⟶ to
; from = P.→-to-⟶ from
; inverse-of = record
{ left-inverse-of = from∘to
; right-inverse-of = to∘from
}
}
where
to : ∀ {t′ t : Char} {s} →
(∃ λ t″ → t ≡ t″ × s ≡ [ t″ ] × t′ ≡ t) → t ≡ t′ × s ≡ [ t ]
to (_ , refl , refl , refl) = (refl , refl)
from : ∀ {t′ t : Char} {s} →
t ≡ t′ × s ≡ [ t ] → ∃ λ t″ → t ≡ t″ × s ≡ [ t″ ] × t′ ≡ t
from (refl , refl) = (_ , refl , refl , refl)
from∘to : ∀ {t′ t : Char} {s}
(eqs : ∃ λ t″ → t ≡ t″ × s ≡ [ t″ ] × t′ ≡ t) →
from (to eqs) ≡ eqs
from∘to (_ , refl , refl , refl) = refl
to∘from : ∀ {t′ t : Char} {s} (eqs : t ≡ t′ × s ≡ [ t ]) →
to (from eqs) ≡ eqs
to∘from (refl , refl) = refl
------------------------------------------------------------------------
-- An aside: An inductive version of the grammar type above wouldn't
-- be very useful (assuming that Char is finite)
module Aside (finite-number-of-tokens :
∃ λ (ts : List Char) → ∀ t → t ∈ ts) where
open ≤-Reasoning
infixl 15 _>>=_
infixl 10 _∣_
data GrammarI : Set → Set₁ where
return : ∀ {A} → A → GrammarI A
token : GrammarI Char
_>>=_ : ∀ {A B} → GrammarI A → (A → GrammarI B) → GrammarI B
_∣_ : ∀ {A} → GrammarI A → GrammarI A → GrammarI A
infix 4 _∈I_·_
data _∈I_·_ : ∀ {A} → A → GrammarI A → List Char → Set₁ where
return-sem : ∀ {A} {x : A} → x ∈I return x · []
token-sem : ∀ {t} → t ∈I token · [ t ]
>>=-sem : ∀ {A B x y s₁ s₂} {g₁ : GrammarI A}
{g₂ : A → GrammarI B} →
x ∈I g₁ · s₁ → y ∈I g₂ x · s₂ →
y ∈I g₁ >>= g₂ · s₁ ++ s₂
left-sem : ∀ {A} {g₁ g₂ : GrammarI A} {x s} →
x ∈I g₁ · s → x ∈I g₁ ∣ g₂ · s
right-sem : ∀ {A} {g₁ g₂ : GrammarI A} {x s} →
x ∈I g₂ · s → x ∈I g₁ ∣ g₂ · s
-- A kind of parser for the inductive grammars, used to prove
-- finite-number-of-results. Note that the "parser" is not quite
-- correct when seen as a parser: it sometimes returns too many
-- results. (The derivative of return x should be a failing
-- grammar.)
initial-bag : ∀ {A} (g : GrammarI A) →
∃ λ xs → ∀ {x} → x ∈I g · [] → x ∈ xs
derivative : ∀ {A} (g : GrammarI A) t →
∃ λ g′ → ∀ {x s} → x ∈I g · t ∷ s → x ∈I g′ · s
parse : ∀ {A} (g : GrammarI A) s →
∃ λ xs → ∀ {x} → x ∈I g · s → x ∈ xs
parse g [] = initial-bag g
parse g (t ∷ s) with derivative g t
... | g′ , ok₁ with parse g′ s
... | xs , ok₂ = xs , ok₂ ∘ ok₁
initial-bag (return x) = [ x ] , λ { .{x = x} return-sem → here refl }
initial-bag token = [] , λ ()
initial-bag (g₁ ∣ g₂) =
Prod.zip
_++_
(λ {xs} i₁ i₂ →
λ { (left-sem ∈g₁) → Inverse.to ++↔ ⟨$⟩ inj₁ (i₁ ∈g₁)
; (right-sem ∈g₂) → Inverse.to (++↔ {xs = xs}) ⟨$⟩ inj₂ (i₂ ∈g₂)
})
(initial-bag g₁)
(initial-bag g₂)
initial-bag (_>>=_ {A = A} {B = B} g₁ g₂) with initial-bag g₁
... | xs , xs-ok = ys xs , λ ∈g₁>>=g₂ → lemma₁ ∈g₁>>=g₂ refl
where
ys : List A → List B
ys xs = xs LMa.>>= λ x → proj₁ (initial-bag (g₂ x))
lemma₂ : ∀ {x y} xs → x ∈ xs → y ∈I g₂ x · [] → y ∈ ys xs
lemma₂ (x ∷ xs) (here refl) ∈g₂ =
Inverse.to ++↔ ⟨$⟩ inj₁ (proj₂ (initial-bag (g₂ x)) ∈g₂)
lemma₂ (z ∷ xs) (there x∈) ∈g₂ =
Inverse.to (++↔ {xs = proj₁ (initial-bag (g₂ z))}) ⟨$⟩
inj₂ (lemma₂ xs x∈ ∈g₂)
lemma₁ : ∀ {x s} → x ∈I g₁ >>= g₂ · s → s ≡ [] → x ∈ ys xs
lemma₁ (>>=-sem {s₁ = []} ∈g₁ ∈g₂) refl = lemma₂ xs (xs-ok ∈g₁) ∈g₂
lemma₁ (>>=-sem {s₁ = _ ∷ _} ∈g₁ ∈g₂) ()
derivative (return x) t = return x , λ ()
derivative token t = return t , λ { .{s = []} token-sem → return-sem }
derivative (g₁ ∣ g₂) t =
Prod.zip _∣_
(λ {g₁′ g₂′} ok₁ ok₂ →
λ { (left-sem ∈g₁) → left-sem (ok₁ ∈g₁)
; (right-sem ∈g₂) → right-sem (ok₂ ∈g₂)
})
(derivative g₁ t)
(derivative g₂ t)
derivative (_>>=_ {A = A} {B = B} g₁ g₂) t
with derivative g₁ t | initial-bag g₁
... | g₁′ , g₁′-ok | xs , xs-ok =
g′ xs , λ ∈g₁>>=g₂ → lemma₁ ∈g₁>>=g₂ refl
where
g′ : List A → GrammarI B
g′ [] = g₁′ >>= g₂
g′ (x ∷ xs) = return x >>= (λ x → proj₁ (derivative (g₂ x) t))
∣ g′ xs
lemma₂ : ∀ {x y s} xs →
x ∈ xs → y ∈I g₂ x · t ∷ s → y ∈I g′ xs · s
lemma₂ (x ∷ xs) (here refl) ∈g₂ = left-sem (>>=-sem return-sem
(proj₂ (derivative (g₂ x) t) ∈g₂))
lemma₂ (z ∷ xs) (there x∈) ∈g₂ = right-sem (lemma₂ xs x∈ ∈g₂)
lemma₃ : ∀ {x y s₁ s₂} xs →
x ∈I g₁′ · s₁ → y ∈I g₂ x · s₂ → y ∈I g′ xs · s₁ ++ s₂
lemma₃ [] ∈g₁′ ∈g₂ = >>=-sem ∈g₁′ ∈g₂
lemma₃ (x ∷ xs) ∈g₁′ ∈g₂ = right-sem (lemma₃ xs ∈g₁′ ∈g₂)
lemma₁ : ∀ {y s s′} →
y ∈I g₁ >>= g₂ · s → s ≡ t ∷ s′ → y ∈I g′ xs · s′
lemma₁ (>>=-sem {s₁ = []} ∈g₁ ∈g₂) refl = lemma₂ xs (xs-ok ∈g₁) ∈g₂
lemma₁ (>>=-sem {s₁ = .t ∷ _} ∈g₁ ∈g₂) refl = lemma₃ xs (g₁′-ok ∈g₁) ∈g₂
-- If strings are restricted to have a given maximum length, then an
-- inductive grammar generates a finite number of distinct results.
finite-number-of-results :
∀ {A} (g : GrammarI A) n →
∃ λ xs → ∀ {x s} → length s ≤ n → x ∈I g · s → x ∈ xs
finite-number-of-results g n =
(all-strings n LMa.>>= proj₁ ∘ parse g) ,
λ {_} {s} ≤n ∈g →
Inverse.to ∈.>>=-∈↔ ⟨$⟩
(_ , all-strings-ok s n ≤n , proj₂ (parse g s) ∈g)
where
all-strings : ℕ → List (List Char)
all-strings 0 = [ [] ]
all-strings (suc n) = all-strings n ++
(proj₁ finite-number-of-tokens LMa.>>= λ t →
List.map (_∷_ t) (all-strings n))
all-strings-ok : ∀ s n → length s ≤ n → s ∈ all-strings n
all-strings-ok [] zero z≤n = here refl
all-strings-ok [] (suc n) z≤n = Inverse.to ++↔ ⟨$⟩
inj₁ (all-strings-ok [] n z≤n)
all-strings-ok (t ∷ s) (suc n) (s≤s ≤n) =
Inverse.to (++↔ {xs = all-strings n}) ⟨$⟩
inj₂ (Inverse.to ∈.>>=-∈↔ ⟨$⟩
(_ , proj₂ finite-number-of-tokens t
, Inverse.to (∈.map-∈↔ _) ⟨$⟩
(_ , all-strings-ok s n ≤n , refl)))
-- No inductive grammar can generate strings of unbounded length.
bounded-length :
∀ {A} (g : GrammarI A) →
∃ λ n → ∀ {x s} → x ∈I g · s → length s ≤ n
bounded-length (return x) = 0 , λ { .{s = []} return-sem → z≤n }
bounded-length token = 1 , λ { .{s = [ _ ]} token-sem → s≤s z≤n }
bounded-length (g₁ ∣ g₂) =
Prod.zip _+_
(λ {n₁ n₂} b₁ b₂ →
λ { {s = s} (left-sem ∈g₁) → begin
length s ≤⟨ b₁ ∈g₁ ⟩
n₁ ≤⟨ m≤m+n _ _ ⟩
n₁ + n₂ ∎
; {s = s} (right-sem ∈g₂) → begin
length s ≤⟨ b₂ ∈g₂ ⟩
n₂ ≤⟨ m≤n+m _ n₁ ⟩
n₁ + n₂ ∎
})
(bounded-length g₁)
(bounded-length g₂)
bounded-length (_>>=_ {A = A} g₁ g₂) with bounded-length g₁
... | n₁ , b₁ with finite-number-of-results g₁ n₁
... | xs , xs-ok =
n₁ + n₂ xs ,
λ { .{s = _} (>>=-sem {s₁ = s₁} {s₂ = s₂} ∈g₁ ∈g₂) → begin
length (s₁ ++ s₂) ≡⟨ length-++ s₁ ⟩
length s₁ + length s₂ ≤⟨ +-mono-≤ (b₁ ∈g₁) (lemma xs (xs-ok (b₁ ∈g₁) ∈g₁) ∈g₂) ⟩
n₁ + n₂ xs ∎ }
where
n₂ : List A → ℕ
n₂ = foldr _⊔_ 0 ∘ List.map (λ x → proj₁ (bounded-length (g₂ x)))
lemma : ∀ {x y s} xs → x ∈ xs → y ∈I g₂ x · s → length s ≤ n₂ xs
lemma {s = s} (x ∷ xs) (here refl) y∈ = begin
length s ≤⟨ proj₂ (bounded-length (g₂ x)) y∈ ⟩
proj₁ (bounded-length (g₂ x)) ≤⟨ m≤m⊔n _ _ ⟩
proj₁ (bounded-length (g₂ x)) ⊔ n₂ xs ∎
lemma {s = s} (z ∷ xs) (there x∈) y∈ = begin
length s ≤⟨ lemma xs x∈ y∈ ⟩
n₂ xs ≤⟨ m≤m⊔n _ _ ⟩
n₂ xs ⊔ proj₁ (bounded-length (g₂ z)) ≡⟨ ∧-comm (n₂ xs) _ ⟩
proj₁ (bounded-length (g₂ z)) ⊔ n₂ xs ∎
where open DistributiveLattice NatP.⊓-⊔-distributiveLattice
| {
"alphanum_fraction": 0.4616383447,
"avg_line_length": 35.9290060852,
"ext": "agda",
"hexsha": "6c2c278965736a29a6569880c6314a4af1d77829",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b956803ba90b6c5f57bbbaab01bb18485d948492",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/pretty",
"max_forks_repo_path": "Grammar/Infinite/Basic.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b956803ba90b6c5f57bbbaab01bb18485d948492",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/pretty",
"max_issues_repo_path": "Grammar/Infinite/Basic.agda",
"max_line_length": 116,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b956803ba90b6c5f57bbbaab01bb18485d948492",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/pretty",
"max_stars_repo_path": "Grammar/Infinite/Basic.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 6613,
"size": 17713
} |
open import Mockingbird.Forest using (Forest)
-- The Forest Without a Name
module Mockingbird.Problems.Chapter16 {b ℓ} (forest : Forest {b} {ℓ}) where
open import Data.Product using (_×_; _,_; ∃-syntax)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Function using (_$_; _⇔_; Equivalence)
open import Relation.Binary using (_Respects_)
open import Relation.Nullary using (¬_)
open import Relation.Unary using (Pred)
open Forest forest
import Mockingbird.Problems.Chapter14 forest as Chapter₁₄
open import Mockingbird.Problems.Chapter15 forest using (⇔-¬)
module _ {s} (Sings : Pred Bird s)
(respects : Sings Respects _≈_)
(LEM : ∀ x → Sings x ⊎ ¬ Sings x)
(e : Bird)
(law₁ : ∀ {x y} → Sings (e ∙ x ∙ y) → Sings y)
(law₂ : ∀ {x y} → Sings (e ∙ x ∙ y) ⇔ (¬ Sings x))
(law₃ : ∀ {x y} → Sings (e ∙ x ∙ y) ⇔ (¬ Sings x × Sings y))
(law₄ : ∀ x → ∃[ y ] Sings y ⇔ Sings (e ∙ y ∙ x)) where
IsSilent : Pred Bird s
IsSilent x = ¬ Sings x
private
respects′ : IsSilent Respects _≈_
respects′ x≈y ¬x-sings y-sings = ¬x-sings $ respects (sym x≈y) y-sings
LEM′ : ∀ x → IsSilent x ⊎ ¬ IsSilent x
LEM′ x with LEM x
... | inj₁ x-sings = inj₂ λ ¬x-sings → ¬x-sings x-sings
... | inj₂ ¬x-sings = inj₁ ¬x-sings
law₁′ : ∀ {x y} → IsSilent y → IsSilent (e ∙ x ∙ y)
law₁′ ¬y-sings exy-sings = ¬y-sings $ law₁ exy-sings
law₂′ : ∀ {x y} → ¬ IsSilent x → IsSilent (e ∙ x ∙ y)
law₂′ = Equivalence.g $ ⇔-¬ law₂
law₃′ : ∀ {x y} → IsSilent x → IsSilent (e ∙ x ∙ y) → IsSilent y
law₃′ {x} {y} ¬x-sings ¬exy-sings y-sings = Equivalence.f (⇔-¬ law₃) ¬exy-sings (¬x-sings , y-sings)
law₄′ : ∀ x → ∃[ y ] IsSilent y ⇔ IsSilent (e ∙ y ∙ x)
law₄′ x =
let (y , y-sings⇔eyx-sings) = law₄ x
in (y , ⇔-¬ y-sings⇔eyx-sings)
problem : ∀ x → ¬ Sings x
problem = Chapter₁₄.problem₁ IsSilent respects′ LEM′ e law₁′ law₂′ law₃′ law₄′
| {
"alphanum_fraction": 0.5869676757,
"avg_line_length": 36.0925925926,
"ext": "agda",
"hexsha": "dcd747dceedd66ca4526fc84dc327dc7d89bcc3d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "splintah/combinatory-logic",
"max_forks_repo_path": "Mockingbird/Problems/Chapter16.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "splintah/combinatory-logic",
"max_issues_repo_path": "Mockingbird/Problems/Chapter16.agda",
"max_line_length": 104,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "splintah/combinatory-logic",
"max_stars_repo_path": "Mockingbird/Problems/Chapter16.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-28T23:44:42.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-02-28T23:44:42.000Z",
"num_tokens": 780,
"size": 1949
} |
module Effect where
open import Data.List
open import Data.List.All
open import Data.List.Any
open import Level
open import Relation.Binary.PropositionalEquality hiding ([_])
open import Function
open import Category.Monad
open import Data.Product
open import EffectUtil
open import Membership-equality hiding (_⊆_; set)
Effect : ∀ f → Set (suc f)
Effect f = (result : Set f) (i : Set f) (o : result → Set f) → Set f
record EFFECT (f : Level) : Set (suc f) where
constructor mkEff
field S : Set f
E : Effect f
updateResTy : ∀ {f A E i o} → (val : A) →
(es : List (EFFECT f)) →
(prf : (mkEff i E) ∈ es) →
(eff : E A i o) →
List (EFFECT f)
updateResTy {o = o} val (mkEff i e ∷ es) (here px) eff = mkEff (o val) e ∷ es
updateResTy val (e ∷ es) (there prf) eff = e ∷ updateResTy val es prf eff
updateWith : ∀ {f ys} (ys' : List (EFFECT f)) → (xs : List (EFFECT f)) →
(ys ⊆ xs) → List (EFFECT f)
updateWith [] xs inc = xs
updateWith (y' ∷ ys') xs [] = xs
updateWith (y' ∷ ys') (_ ∷ xs) (keep inc) = y' ∷ updateWith ys' xs inc
updateWith (y' ∷ ys') (x ∷ xs) (skip inc) = x ∷ updateWith (y' ∷ ys') xs inc
Handler : ∀ {f} → (Set f → Set f) → Effect f → Set (suc f)
Handler M e = ∀ {A a o res} → (r : res) → (eff : e A res o) →
(k : ((x : A) → o x → M a)) → M a
-- @ A The return type of the result
-- @ es The list of allowed side-effects
-- @ ce The function to compute a new list of allowed side-effects
data EffM {f : Level} (m : Set f → Set f) : (A : Set f) →
(es : List (EFFECT f)) →
(ce : A → List (EFFECT f)) → Set (suc f) where
return : ∀ {A ce} (val : A) → EffM m A (ce val) ce
_>>=_ : ∀ {A B es ce₁ ce₂} → EffM m A es ce₁ → (∀ x → EffM m B (ce₁ x) ce₂) → EffM m B es ce₂
effect : ∀ {A E i es o} (prf : (mkEff i E) ∈ es) →
(eff : E A i o) →
EffM m A es (λ v → updateResTy v es prf eff)
-- use to invoke sub-programs that use some or all of the available effects
lift : ∀ {A ys ys' xs} → (inc : ys ⊆ xs) →
EffM m A ys ys' →
EffM m A xs (λ v → updateWith (ys' v) xs inc)
new : ∀ {A es} →
(e : EFFECT f) →
(val : EFFECT.S e) →
Handler m (EFFECT.E e) →
EffM {f} m A (e ∷ es) (λ v → e ∷ es) →
EffM m A es (λ v → es)
pure : ∀ {l m A es} → A → EffM {l} m A es (λ v → es)
pure = return
_<*>_ : ∀ {l m A B es} → EffM {l} m (A → B) es (λ v → es) →
EffM {l} m A es (λ v → es) →
EffM {l} m B es (λ v → es)
_<*>_ prog v = prog >>= λ fn →
v >>= λ arg →
pure (fn arg)
_<$>_ : ∀ {l m A B es} → (f : A → B) → EffM {l} m A es (λ v → es) → EffM {l} m B es (λ v → es)
_<$>_ f m = pure f <*> m
data Env {f : Level} : (m : Set f → Set f) → List (EFFECT f) → Set (suc f) where
[] : ∀ {m} → Env m []
_∷_ : ∀ {m eff es a} → (el : Handler m eff × a) → Env m es → Env m (mkEff a eff ∷ es)
execEff : ∀ {f m A es E i} {o : A → Set f} {B} →
Env {f} m es →
(prf : (mkEff i E) ∈ es) →
(eff : E A i o) →
((v : A) → Env {f} m (updateResTy v es prf eff) → m B) → m B
execEff {m = m} {A = A} {o = o} {B = B} ((handle , val) ∷ env) (here refl) eff k = handle val eff cont
where
cont : (v : A) → o v → m B
cont v res = k v ((handle , res) ∷ env)
execEff (e ∷ env) (there prf) eff k = execEff env prf eff λ v → λ env' → k v (e ∷ env')
dropEnv : ∀ {f m ys xs} → Env {f} m ys → xs ⊆ ys → Env m xs
dropEnv [] [] = []
dropEnv (el ∷ env) [] = []
dropEnv (el ∷ env) (keep sub) = el ∷ (dropEnv env sub)
dropEnv (el ∷ env) (skip sub) = dropEnv env sub
rebuildEnv : ∀ {f m ys' ys xs} → Env {f} m ys' → (prf : ys ⊆ xs) →
Env m xs → Env m (updateWith ys' xs prf)
rebuildEnv [] [] env = env
rebuildEnv (_ ∷ _) [] env = env
rebuildEnv [] (keep prf) env = env
rebuildEnv (el ∷ els) (keep prf) (_ ∷ env) = el ∷ rebuildEnv els prf env
rebuildEnv [] (skip prf) env = env
rebuildEnv (el ∷ els) (skip prf) (en ∷ env) = en ∷ rebuildEnv (el ∷ els) prf env
eff : ∀ {f m es A B ce} → Env {f} m es → EffM m A es ce → ((v : A) → Env m (ce v) → m B) → m B
eff env (return val) k = k val env
eff env (effM >>= c) k = eff env effM λ p' → λ env' → eff env' ((c p')) k
eff env (effect prf effP) k = execEff env prf effP k
eff env (lift inc effM) k = eff env' effM λ p' → λ envk → k p' (rebuildEnv envk inc env)
where
env' = dropEnv env inc
eff {f} {m} {es} {A} {B} env (new e val handler effM) k = eff ((handler , val) ∷ env) effM cont
where
cont : (v : A) → Env {f} m (e ∷ es) → m B
cont v (val ∷ envk) = k v envk
run : ∀ {f a xs xs'} → ∀ m → (mon : RawMonad m) → (prog : EffM {f} m a xs xs') → Env m xs → m a
run m mon prog env = eff env prog λ r → λ env' → RawMonad.return mon r
| {
"alphanum_fraction": 0.5240697919,
"avg_line_length": 39.3140495868,
"ext": "agda",
"hexsha": "506683638b448eaa7db2639625f20acdf257c007",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Zalastax/singly-typed-actors",
"max_forks_repo_path": "unused/Effect.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Zalastax/singly-typed-actors",
"max_issues_repo_path": "unused/Effect.agda",
"max_line_length": 102,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Zalastax/thesis",
"max_stars_repo_path": "unused/Effect.agda",
"max_stars_repo_stars_event_max_datetime": "2018-02-02T16:44:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-02-02T16:44:43.000Z",
"num_tokens": 1866,
"size": 4757
} |
-- Andreas, 2021-05-07, issue #5358 reported by ecavallo
-- Do not expand clauses with tactics attached to the target type!
open import Agda.Builtin.Unit
open import Agda.Builtin.Bool
open import Agda.Builtin.Reflection renaming (bindTC to _>>=_)
defaultTo : {A : Set} (x : A) → Term → TC ⊤
defaultTo x goal = do
`x ← quoteTC x
unify goal `x
record Class : Set where
constructor con
field
x : Bool → Bool
@(tactic defaultTo x) {y} : Bool → Bool
open Class
{- Correctly succeeds -}
testA : Class
testA = con (λ b → b)
{-
WAS: Incorrectly fails with:
Bool → Bool !=< Bool
when checking that the inferred type of an application
Bool → Bool
matches the expected type
Bool
What is happening here?
- The coverage checker detects a missing clause
testB .y : @(tactic defaultTo x) {Bool → Bool}.
- It expands this to testB .y b : @(tactic defaultTo x) {Bool},
eliminating the function type.
- It then runs the tactic at the wrong type.
A fix is to not expand the clause if there is a tactic attached to the projections.
-}
testB : Class
testB .x = λ b → b
-- Should succeed
| {
"alphanum_fraction": 0.6850533808,
"avg_line_length": 22.9387755102,
"ext": "agda",
"hexsha": "87e12e49101e8a965038b59afb623ba9372375c1",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue5358.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue5358.agda",
"max_line_length": 83,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue5358.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 323,
"size": 1124
} |
-- Errors should precede warnings in info buffer
-- Reported by nad 2018-11-27
module Issue3416 where
A : Set
A = A
B : Set
B = Set
| {
"alphanum_fraction": 0.7014925373,
"avg_line_length": 13.4,
"ext": "agda",
"hexsha": "45386b4f27083b3c2a68979d3496b48711590969",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue3416.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue3416.agda",
"max_line_length": 48,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue3416.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 44,
"size": 134
} |
module ModuleMacro where
record ⊤
: Set
where
module M where
module N where
postulate
A
: Set
B
: Set
module O
= M
module P
= M
module Q
= P
module R
(x : ⊤)
= N
using (A)
module S
= N
renaming
( A
to A'
; B
to B'
)
y
: ⊤
y
= record {O}
C
: ⊤
→ Set
C
= R.A
D
: Set
D
= S.B'
| {
"alphanum_fraction": 0.4540389972,
"avg_line_length": 6.1896551724,
"ext": "agda",
"hexsha": "3b827bb55c0f1dff9c234869bfc33061f70373bb",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-01T16:38:14.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-01T16:38:14.000Z",
"max_forks_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "msuperdock/agda-unused",
"max_forks_repo_path": "data/declaration/ModuleMacro.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "msuperdock/agda-unused",
"max_issues_repo_path": "data/declaration/ModuleMacro.agda",
"max_line_length": 24,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "msuperdock/agda-unused",
"max_stars_repo_path": "data/declaration/ModuleMacro.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-01T16:38:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-29T09:38:43.000Z",
"num_tokens": 156,
"size": 359
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties of operations on the Colist type
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe --sized-types #-}
module Codata.Colist.Properties where
open import Level using (Level)
open import Size
open import Codata.Thunk as Thunk using (Thunk; force)
open import Codata.Colist
open import Codata.Colist.Bisimilarity
open import Codata.Conat
open import Codata.Conat.Bisimilarity as coℕᵇ using (zero; suc)
import Codata.Conat.Properties as coℕₚ
open import Codata.Cowriter as Cowriter using ([_]; _∷_)
open import Codata.Cowriter.Bisimilarity as coWriterᵇ using ([_]; _∷_)
open import Codata.Stream as Stream using (Stream; _∷_)
open import Data.Vec.Bounded as Vec≤ using (Vec≤)
open import Data.List.Base as List using (List; []; _∷_)
open import Data.List.NonEmpty as List⁺ using (List⁺; _∷_)
open import Data.List.Relation.Binary.Equality.Propositional using (≋-refl)
open import Data.Maybe.Base as Maybe using (Maybe; nothing; just)
import Data.Maybe.Properties as Maybeₚ
open import Data.Maybe.Relation.Unary.All using (All; nothing; just)
open import Data.Nat.Base as ℕ using (zero; suc; z≤n; s≤s)
open import Data.Product as Prod using (_×_; _,_; uncurry)
open import Data.These.Base as These using (These; this; that; these)
open import Data.Vec.Base as Vec using (Vec; []; _∷_)
open import Function.Base
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; [_])
private
variable
a b c d : Level
A : Set a
B : Set b
C : Set c
D : Set d
i : Size
------------------------------------------------------------------------
-- Functor laws
map-identity : ∀ (as : Colist A ∞) → i ⊢ map id as ≈ as
map-identity [] = []
map-identity (a ∷ as) = Eq.refl ∷ λ where .force → map-identity (as .force)
map-map-fusion : ∀ (f : A → B) (g : B → C) as {i} →
i ⊢ map g (map f as) ≈ map (g ∘ f) as
map-map-fusion f g [] = []
map-map-fusion f g (a ∷ as) =
Eq.refl ∷ λ where .force → map-map-fusion f g (as .force)
------------------------------------------------------------------------
-- Relation to Cowriter
fromCowriter∘toCowriter≗id : ∀ (as : Colist A ∞) →
i ⊢ fromCowriter (toCowriter as) ≈ as
fromCowriter∘toCowriter≗id [] = []
fromCowriter∘toCowriter≗id (a ∷ as) =
Eq.refl ∷ λ where .force → fromCowriter∘toCowriter≗id (as .force)
------------------------------------------------------------------------
-- Properties of length
length-∷ : ∀ (a : A) as → i coℕᵇ.⊢ length (a ∷ as) ≈ 1 ℕ+ length (as .force)
length-∷ a as = suc (λ where .force → coℕᵇ.refl)
length-replicate : ∀ n (a : A) → i coℕᵇ.⊢ length (replicate n a) ≈ n
length-replicate zero a = zero
length-replicate (suc n) a = suc λ where .force → length-replicate (n .force) a
length-++ : (as bs : Colist A ∞) →
i coℕᵇ.⊢ length (as ++ bs) ≈ length as + length bs
length-++ [] bs = coℕᵇ.refl
length-++ (a ∷ as) bs = suc λ where .force → length-++ (as .force) bs
length-map : ∀ (f : A → B) as → i coℕᵇ.⊢ length (map f as) ≈ length as
length-map f [] = zero
length-map f (a ∷ as) = suc λ where .force → length-map f (as .force)
------------------------------------------------------------------------
-- Properties of replicate
replicate-+ : ∀ m n (a : A) →
i ⊢ replicate (m + n) a ≈ replicate m a ++ replicate n a
replicate-+ zero n a = refl
replicate-+ (suc m) n a = Eq.refl ∷ λ where .force → replicate-+ (m .force) n a
map-replicate : ∀ (f : A → B) n a →
i ⊢ map f (replicate n a) ≈ replicate n (f a)
map-replicate f zero a = []
map-replicate f (suc n) a =
Eq.refl ∷ λ where .force → map-replicate f (n .force) a
lookup-replicate : ∀ k n (a : A) → All (a ≡_) (lookup k (replicate n a))
lookup-replicate k zero a = nothing
lookup-replicate zero (suc n) a = just Eq.refl
lookup-replicate (suc k) (suc n) a = lookup-replicate k (n .force) a
------------------------------------------------------------------------
-- Properties of unfold
map-unfold : ∀ (f : B → C) (alg : A → Maybe (A × B)) a →
i ⊢ map f (unfold alg a) ≈ unfold (Maybe.map (Prod.map₂ f) ∘ alg) a
map-unfold f alg a with alg a
... | nothing = []
... | just (a′ , b) = Eq.refl ∷ λ where .force → map-unfold f alg a′
module _ {alg : A → Maybe (A × B)} {a} where
unfold-nothing : alg a ≡ nothing → unfold alg a ≡ []
unfold-nothing eq with alg a
... | nothing = Eq.refl
unfold-just : ∀ {a′ b} → alg a ≡ just (a′ , b) →
i ⊢ unfold alg a ≈ b ∷ λ where .force → unfold alg a′
unfold-just eq with alg a
unfold-just Eq.refl | just (a′ , b) = Eq.refl ∷ λ where .force → refl
------------------------------------------------------------------------
-- Properties of scanl
length-scanl : ∀ (c : B → A → B) n as →
i coℕᵇ.⊢ length (scanl c n as) ≈ 1 ℕ+ length as
length-scanl c n [] = suc λ where .force → zero
length-scanl c n (a ∷ as) = suc λ { .force → begin
length (scanl c (c n a) (as .force))
≈⟨ length-scanl c (c n a) (as .force) ⟩
1 ℕ+ length (as .force)
≈˘⟨ length-∷ a as ⟩
length (a ∷ as) ∎ } where open coℕᵇ.≈-Reasoning
module _ (cons : C → B → C) (alg : A → Maybe (A × B)) where
private
alg′ : (A × C) → Maybe ((A × C) × C)
alg′ (a , c) = Maybe.map (uncurry step) (alg a) where
step = λ a′ b → let b′ = cons c b in (a′ , b′) , b′
scanl-unfold : ∀ nil a → i ⊢ scanl cons nil (unfold alg a)
≈ nil ∷ (λ where .force → unfold alg′ (a , nil))
scanl-unfold nil a with alg a | Eq.inspect alg a
... | nothing | [ eq ] = Eq.refl ∷ λ { .force →
sym (fromEq (unfold-nothing (Maybeₚ.map-nothing eq))) }
... | just (a′ , b) | [ eq ] = Eq.refl ∷ λ { .force → begin
scanl cons (cons nil b) (unfold alg a′)
≈⟨ scanl-unfold (cons nil b) a′ ⟩
(cons nil b ∷ _)
≈⟨ Eq.refl ∷ (λ where .force → refl) ⟩
(cons nil b ∷ _)
≈˘⟨ unfold-just (Maybeₚ.map-just eq) ⟩
unfold alg′ (a , nil) ∎ } where open ≈-Reasoning
------------------------------------------------------------------------
-- Properties of alignwith
map-alignWith : ∀ (f : C → D) (al : These A B → C) as bs →
i ⊢ map f (alignWith al as bs) ≈ alignWith (f ∘ al) as bs
map-alignWith f al [] bs = map-map-fusion (al ∘′ that) f bs
map-alignWith f al as@(_ ∷ _) [] = map-map-fusion (al ∘′ this) f as
map-alignWith f al (a ∷ as) (b ∷ bs) =
Eq.refl ∷ λ where .force → map-alignWith f al (as .force) (bs .force)
length-alignWith : ∀ (al : These A B → C) as bs →
i coℕᵇ.⊢ length (alignWith al as bs) ≈ length as ⊔ length bs
length-alignWith al [] bs = length-map (al ∘ that) bs
length-alignWith al as@(_ ∷ _) [] = length-map (al ∘ this) as
length-alignWith al (a ∷ as) (b ∷ bs) =
suc λ where .force → length-alignWith al (as .force) (bs .force)
------------------------------------------------------------------------
-- Properties of zipwith
map-zipWith : ∀ (f : C → D) (zp : A → B → C) as bs →
i ⊢ map f (zipWith zp as bs) ≈ zipWith (λ a → f ∘ zp a) as bs
map-zipWith f zp [] _ = []
map-zipWith f zp (_ ∷ _) [] = []
map-zipWith f zp (a ∷ as) (b ∷ bs) =
Eq.refl ∷ λ where .force → map-zipWith f zp (as .force) (bs .force)
length-zipWith : ∀ (zp : A → B → C) as bs →
i coℕᵇ.⊢ length (zipWith zp as bs) ≈ length as ⊓ length bs
length-zipWith zp [] bs = zero
length-zipWith zp as@(_ ∷ _) [] = zero
length-zipWith zp (a ∷ as) (b ∷ bs) =
suc λ where .force → length-zipWith zp (as .force) (bs .force)
------------------------------------------------------------------------
-- Properties of drop
drop-nil : ∀ m → i ⊢ drop {A = A} m [] ≈ []
drop-nil zero = []
drop-nil (suc m) = []
drop-drop-fusion : ∀ m n (as : Colist A ∞) →
i ⊢ drop n (drop m as) ≈ drop (m ℕ.+ n) as
drop-drop-fusion zero n as = refl
drop-drop-fusion (suc m) n [] = drop-nil n
drop-drop-fusion (suc m) n (a ∷ as) = drop-drop-fusion m n (as .force)
map-drop : ∀ (f : A → B) m as → i ⊢ map f (drop m as) ≈ drop m (map f as)
map-drop f zero as = refl
map-drop f (suc m) [] = []
map-drop f (suc m) (a ∷ as) = map-drop f m (as .force)
length-drop : ∀ m (as : Colist A ∞) → i coℕᵇ.⊢ length (drop m as) ≈ length as ∸ m
length-drop zero as = coℕᵇ.refl
length-drop (suc m) [] = coℕᵇ.sym (coℕₚ.0∸m≈0 m)
length-drop (suc m) (a ∷ as) = length-drop m (as .force)
drop-fromList-++-identity : ∀ (as : List A) bs →
drop (List.length as) (fromList as ++ bs) ≡ bs
drop-fromList-++-identity [] bs = Eq.refl
drop-fromList-++-identity (a ∷ as) bs = drop-fromList-++-identity as bs
drop-fromList-++-≤ : ∀ (as : List A) bs {m} → m ℕ.≤ List.length as →
drop m (fromList as ++ bs) ≡ fromList (List.drop m as) ++ bs
drop-fromList-++-≤ [] bs z≤n = Eq.refl
drop-fromList-++-≤ (a ∷ as) bs z≤n = Eq.refl
drop-fromList-++-≤ (a ∷ as) bs (s≤s p) = drop-fromList-++-≤ as bs p
drop-fromList-++-≥ : ∀ (as : List A) bs {m} → m ℕ.≥ List.length as →
drop m (fromList as ++ bs) ≡ drop (m ℕ.∸ List.length as) bs
drop-fromList-++-≥ [] bs z≤n = Eq.refl
drop-fromList-++-≥ (a ∷ as) bs (s≤s p) = drop-fromList-++-≥ as bs p
drop-⁺++-identity : ∀ (as : List⁺ A) bs →
drop (List⁺.length as) (as ⁺++ bs) ≡ bs .force
drop-⁺++-identity (a ∷ as) bs = drop-fromList-++-identity as (bs .force)
------------------------------------------------------------------------
-- Properties of cotake
length-cotake : ∀ n (as : Stream A ∞) → i coℕᵇ.⊢ length (cotake n as) ≈ n
length-cotake zero as = zero
length-cotake (suc n) (a ∷ as) =
suc λ where .force → length-cotake (n .force) (as .force)
map-cotake : ∀ (f : A → B) n as →
i ⊢ map f (cotake n as) ≈ cotake n (Stream.map f as)
map-cotake f zero as = []
map-cotake f (suc n) (a ∷ as) =
Eq.refl ∷ λ where .force → map-cotake f (n .force) (as .force)
------------------------------------------------------------------------
-- Properties of chunksOf
module Map-ChunksOf (f : A → B) n where
open ChunksOf n using (chunksOfAcc)
map-chunksOf : ∀ as →
i coWriterᵇ.⊢ Cowriter.map (Vec.map f) (Vec≤.map f) (chunksOf n as)
≈ chunksOf n (map f as)
map-chunksOfAcc : ∀ m as {k≤ k≡ k≤′ k≡′} →
(∀ vs → Vec≤.map f (k≤ vs) ≡ k≤′ (Vec≤.map f vs)) →
(∀ vs → Vec.map f (k≡ vs) ≡ k≡′ (Vec.map f vs)) →
i coWriterᵇ.⊢ Cowriter.map (Vec.map f) (Vec≤.map f)
(chunksOfAcc m k≤ k≡ as)
≈ chunksOfAcc m k≤′ k≡′ (map f as)
map-chunksOf as = map-chunksOfAcc n as (λ vs → Eq.refl) (λ vs → Eq.refl)
map-chunksOfAcc zero as eq-≤ eq-≡ =
eq-≡ [] ∷ λ where .force → map-chunksOf as
map-chunksOfAcc (suc m) [] eq-≤ eq-≡ = coWriterᵇ.[ eq-≤ Vec≤.[] ]
map-chunksOfAcc (suc m) (a ∷ as) eq-≤ eq-≡ =
map-chunksOfAcc m (as .force) (eq-≤ ∘ (a Vec≤.∷_)) (eq-≡ ∘ (a Vec.∷_))
open Map-ChunksOf using (map-chunksOf) public
------------------------------------------------------------------------
-- Properties of fromList
fromList-++ : (as bs : List A) →
i ⊢ fromList (as List.++ bs) ≈ fromList as ++ fromList bs
fromList-++ [] bs = refl
fromList-++ (a ∷ as) bs = Eq.refl ∷ λ where .force → fromList-++ as bs
fromList-scanl : ∀ (c : B → A → B) n as →
i ⊢ fromList (List.scanl c n as) ≈ scanl c n (fromList as)
fromList-scanl c n [] = Eq.refl ∷ λ where .force → refl
fromList-scanl c n (a ∷ as) =
Eq.refl ∷ λ where .force → fromList-scanl c (c n a) as
map-fromList : ∀ (f : A → B) as →
i ⊢ map f (fromList as) ≈ fromList (List.map f as)
map-fromList f [] = []
map-fromList f (a ∷ as) = Eq.refl ∷ λ where .force → map-fromList f as
length-fromList : (as : List A) →
i coℕᵇ.⊢ length (fromList as) ≈ fromℕ (List.length as)
length-fromList [] = zero
length-fromList (a ∷ as) = suc (λ where .force → length-fromList as)
------------------------------------------------------------------------
-- Properties of fromStream
fromStream-++ : ∀ (as : List A) bs →
i ⊢ fromStream (as Stream.++ bs) ≈ fromList as ++ fromStream bs
fromStream-++ [] bs = refl
fromStream-++ (a ∷ as) bs = Eq.refl ∷ λ where .force → fromStream-++ as bs
fromStream-⁺++ : ∀ (as : List⁺ A) bs →
i ⊢ fromStream (as Stream.⁺++ bs)
≈ fromList⁺ as ++ fromStream (bs .force)
fromStream-⁺++ (a ∷ as) bs =
Eq.refl ∷ λ where .force → fromStream-++ as (bs .force)
fromStream-concat : (ass : Stream (List⁺ A) ∞) →
i ⊢ concat (fromStream ass) ≈ fromStream (Stream.concat ass)
fromStream-concat (as@(a ∷ _) ∷ ass) = begin
concat (fromStream (as ∷ ass))
≈⟨ Eq.refl ∷ (λ { .force → ++⁺ ≋-refl (fromStream-concat (ass .force))}) ⟩
a ∷ _
≈⟨ sym (fromStream-⁺++ as _) ⟩
fromStream (Stream.concat (as ∷ ass)) ∎ where open ≈-Reasoning
fromStream-scanl : ∀ (c : B → A → B) n as →
i ⊢ scanl c n (fromStream as)
≈ fromStream (Stream.scanl c n as)
fromStream-scanl c n (a ∷ as) =
Eq.refl ∷ λ where .force → fromStream-scanl c (c n a) (as .force)
map-fromStream : ∀ (f : A → B) as →
i ⊢ map f (fromStream as) ≈ fromStream (Stream.map f as)
map-fromStream f (a ∷ as) =
Eq.refl ∷ λ where .force → map-fromStream f (as .force)
| {
"alphanum_fraction": 0.5186267348,
"avg_line_length": 40.9880239521,
"ext": "agda",
"hexsha": "f2c67525ee6ecda567b9b4fe7b4ce0415ce68d23",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Codata/Colist/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Codata/Colist/Properties.agda",
"max_line_length": 81,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Codata/Colist/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 4721,
"size": 13690
} |
module Cats.Category.Constructions.Epi where
open import Level
open import Cats.Category.Base
module Build {lo la l≈} (Cat : Category lo la l≈) where
private open module Cat = Category Cat
open Cat.≈-Reasoning
IsEpi : ∀ {A B} → A ⇒ B → Set (lo ⊔ la ⊔ l≈)
IsEpi {A} {B} f = ∀ {C} {g h : B ⇒ C} → g ∘ f ≈ h ∘ f → g ≈ h
| {
"alphanum_fraction": 0.6042296073,
"avg_line_length": 22.0666666667,
"ext": "agda",
"hexsha": "1ec8f02d230f320306ad828c4785110dfc2c0f9b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "alessio-b-zak/cats",
"max_forks_repo_path": "Cats/Category/Constructions/Epi.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "alessio-b-zak/cats",
"max_issues_repo_path": "Cats/Category/Constructions/Epi.agda",
"max_line_length": 63,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "alessio-b-zak/cats",
"max_stars_repo_path": "Cats/Category/Constructions/Epi.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 127,
"size": 331
} |
------------------------------------------------------------------------
-- A library for working with dependently typed syntax
-- Nils Anders Danielsson
------------------------------------------------------------------------
-- This library is leaning heavily on two of Conor McBride's papers:
--
-- * Type-Preserving Renaming and Substitution.
--
-- * Outrageous but Meaningful Coincidences: Dependent type-safe
-- syntax and evaluation.
-- This module gives a brief overview of the modules in the library.
module README where
------------------------------------------------------------------------
-- The library
-- Contexts, variables, context morphisms, context extensions, etc.
import deBruijn.Context
-- Parallel substitutions (defined using an inductive family).
import deBruijn.Substitution.Data.Basics
-- A map function for the substitutions.
import deBruijn.Substitution.Data.Map
-- Some simple substitution combinators. (Given a term type which
-- supports weakening and transformation of variables to terms various
-- substitutions are defined and various lemmas proved.)
import deBruijn.Substitution.Data.Simple
-- Given an operation which applies a substitution to a term,
-- satisfying some properties, more operations and lemmas are
-- defined/proved.
--
-- (This module reexports various other modules.)
import deBruijn.Substitution.Data.Application
-- A module which repackages (and reexports) the development under
-- deBruijn.Substitution.Data.
import deBruijn.Substitution.Data
-- Some modules mirroring the development under
-- deBruijn.Substitution.Data, but using substitutions defined as
-- functions rather than data.
--
-- The functional version of substitutions is in some respects easier
-- to work with than the one based on data, but in other respects more
-- awkward. I maintain both developments so that they can be compared.
import deBruijn.Substitution.Function.Basics
import deBruijn.Substitution.Function.Map
import deBruijn.Substitution.Function.Simple
-- The two definitions of substitutions are isomorphic (assuming
-- extensionality).
import deBruijn.Substitution.Isomorphic
------------------------------------------------------------------------
-- An example showing how the library can be used
-- A well-typed representation of a dependently typed language.
import README.DependentlyTyped.Term
-- Normal and neutral terms.
import README.DependentlyTyped.NormalForm
-- Instantiation of deBruijn.Substitution.Data for terms.
import README.DependentlyTyped.Term.Substitution
-- Instantiation of deBruijn.Substitution.Data for normal and neutral
-- terms.
import README.DependentlyTyped.NormalForm.Substitution
-- Normalisation by evaluation.
import README.DependentlyTyped.NBE
-- Various equality checkers (some complete, all sound).
import README.DependentlyTyped.Equality-checker
-- Raw terms.
import README.DependentlyTyped.Raw-term
-- A type-checker (sound).
import README.DependentlyTyped.Type-checker
-- A definability result: A "closed value" is the semantics of a
-- closed term if and only if it satisfies all "Kripke predicates".
import README.DependentlyTyped.Definability
-- An observation: There is a term without a corresponding syntactic
-- type (given some assumptions).
import README.DependentlyTyped.Term-without-type
-- Another observation: If the "Outrageous but Meaningful
-- Coincidences" approach is used to formalise a language, then you
-- can end up with an extensional type theory (with equality
-- reflection).
import README.DependentlyTyped.Extensional-type-theory
-- Inductively defined beta-eta-equality.
import README.DependentlyTyped.Beta-Eta
-- TODO: Add an untyped example.
| {
"alphanum_fraction": 0.7296056186,
"avg_line_length": 29.380952381,
"ext": "agda",
"hexsha": "1ab7ef005ad76d30967e51bf2afc5d0b7ba32ca6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/dependently-typed-syntax",
"max_forks_repo_path": "README.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/dependently-typed-syntax",
"max_issues_repo_path": "README.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/dependently-typed-syntax",
"max_stars_repo_path": "README.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-08T22:51:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-16T12:14:44.000Z",
"num_tokens": 757,
"size": 3702
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties that are related to pointwise lifting of binary
-- relations to sigma types and make use of heterogeneous equality
------------------------------------------------------------------------
{-# OPTIONS --with-K --safe #-}
module Data.Product.Relation.Binary.Pointwise.Dependent.WithK where
open import Data.Product
open import Data.Product.Relation.Binary.Pointwise.Dependent
open import Function
open import Function.Inverse using (Inverse)
open import Relation.Binary using (_⇒_)
open import Relation.Binary.HeterogeneousEquality as H using (_≅_)
open import Relation.Binary.Indexed.Heterogeneous using (IndexedSetoid)
open import Relation.Binary.PropositionalEquality as P using (_≡_)
------------------------------------------------------------------------
-- The propositional equality setoid over sigma types can be
-- decomposed using Pointwise
module _ {a b} {A : Set a} {B : A → Set b} where
Pointwise-≡⇒≡ : Pointwise B _≡_ (λ x y → x ≅ y) ⇒ _≡_
Pointwise-≡⇒≡ (P.refl , H.refl) = P.refl
≡⇒Pointwise-≡ : _≡_ ⇒ Pointwise B _≡_ (λ x y → x ≅ y)
≡⇒Pointwise-≡ P.refl = (P.refl , H.refl)
Pointwise-≡↔≡ : Inverse (setoid (P.setoid A) (H.indexedSetoid B))
(P.setoid (Σ A B))
Pointwise-≡↔≡ = record
{ to = record { _⟨$⟩_ = id; cong = Pointwise-≡⇒≡ }
; from = record { _⟨$⟩_ = id; cong = ≡⇒Pointwise-≡ }
; inverse-of = record
{ left-inverse-of = uncurry (λ _ _ → (P.refl , H.refl))
; right-inverse-of = λ _ → P.refl
}
}
| {
"alphanum_fraction": 0.5705483672,
"avg_line_length": 37.7441860465,
"ext": "agda",
"hexsha": "4e29b027677b5dc8bab1aa81f9239654bd5b83c7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/Relation/Binary/Pointwise/Dependent/WithK.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/Relation/Binary/Pointwise/Dependent/WithK.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/Relation/Binary/Pointwise/Dependent/WithK.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 467,
"size": 1623
} |
{-# OPTIONS --rewriting --confluence-check #-}
open import Agda.Builtin.Bool
open import Agda.Builtin.Equality
open import Agda.Builtin.Equality.Rewrite
variable A : Set
postulate
f : (A → A) → Bool
f-id : f {A} (λ x → x) ≡ true
f-const : (c : A) → f (λ x → c) ≡ false
{-# REWRITE f-id #-}
{-# REWRITE f-const #-}
| {
"alphanum_fraction": 0.5843023256,
"avg_line_length": 21.5,
"ext": "agda",
"hexsha": "33530c19c903f7f07fcafc28f8acd4ce6dea6c08",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/NonConfluentBecauseOfEta.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/NonConfluentBecauseOfEta.agda",
"max_line_length": 46,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/NonConfluentBecauseOfEta.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 115,
"size": 344
} |
module ShouldBePi where
data One : Set where
one : One
err1 : One
err1 = \x -> x
err2 : One
err2 = one one
err3 : One
err3 x = x
| {
"alphanum_fraction": 0.6204379562,
"avg_line_length": 8.5625,
"ext": "agda",
"hexsha": "bda49c9947ffe2233a40c6e38802f87817769e53",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/ShouldBePi.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/ShouldBePi.agda",
"max_line_length": 23,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/ShouldBePi.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 53,
"size": 137
} |
module Numeral.Natural.Oper.Modulo.Proofs.Algorithm where
import Lvl
open import Logic
open import Numeral.Natural
open import Numeral.Natural.Oper
open import Numeral.Natural.Oper.Modulo
open import Numeral.Natural.Oper.Proofs
open import Numeral.Natural.Oper.Proofs.Order
open import Numeral.Natural.Relation
open import Numeral.Natural.Relation.Order
open import Numeral.Natural.Relation.Order.Proofs
open import Relator.Equals
open import Relator.Equals.Proofs
open import Structure.Function
open import Structure.Operator.Properties
open import Structure.Relator.Properties
open import Syntax.Function
open import Syntax.Transitivity
open import Type
-- The many steps variant of: `[ r , b ] 𝐒(a') mod' 𝐒(b') = [ 𝐒(r) , b ] a' mod' b'` from the definition.
mod'-ind-step : ∀{r b' a b c} → [ r , b' ] (a + c) mod' (b + c) ≡ [ (r + c) , b' ] a mod' b
mod'-ind-step {_}{_} {_}{_}{𝟎} = [≡]-intro
mod'-ind-step {r}{b'}{a}{b}{𝐒 c} = mod'-ind-step {𝐒 r}{b'}{a}{b}{c = c}
-- The many steps variant of: `[ r , b ] 𝐒(a') mod' 𝐒(b') = [ 𝐒(r) , b ] a' mod' b'` from the definition when the dividend is greater than the modulus.
mod'-ind-step-modulo : ∀{r m' a m} → [ r , m' ] (a + m) mod' m ≡ [ (r + m) , m' ] a mod' 𝟎
mod'-ind-step-modulo {r}{m'}{a}{𝟎} =
[ r , m' ] (a + 𝟎) mod' 𝟎 🝖[ _≡_ ]-[]
[ (r + 𝟎) , m' ] a mod' 𝟎 🝖-end
mod'-ind-step-modulo {r}{m'}{a}{𝐒 m} =
[ r , m' ] (a + 𝐒(m)) mod' 𝐒(m) 🝖[ _≡_ ]-[]
[ r , m' ] 𝐒(a + m) mod' 𝐒(m) 🝖[ _≡_ ]-[]
[ 𝐒(r) , m' ] (a + m) mod' m 🝖[ _≡_ ]-[ mod'-ind-step-modulo {𝐒 r}{m'}{a}{m} ]
[ 𝐒(r + m) , m' ] a mod' 𝟎 🝖[ _≡_ ]-[]
[ (r + 𝐒(m)) , m' ] a mod' 𝟎 🝖-end
-- When states and modulus is zero, the result is zero.
mod'-zero-all-except-dividend : ∀{a} → ([ 0 , 0 ] a mod' 0 ≡ 0)
mod'-zero-all-except-dividend {𝟎} = [≡]-intro
mod'-zero-all-except-dividend {𝐒(a)} = mod'-zero-all-except-dividend {a}
mod'-greater-dividend : ∀{r b' a b} → (a > b) → ([ r , b' ] a mod' b ≡ [ 𝟎 , b' ] (a −₀ 𝐒(b)) mod' b')
mod'-greater-dividend {r} {b'} {.(𝐒 _)} {𝟎} (succ ab) = [≡]-intro
mod'-greater-dividend {r} {b'} {.(𝐒 _)} {𝐒 b} (succ ab) = mod'-greater-dividend ab
mod'-zero-modulo-greater-dividend : ∀{r a b} → (a > b) → ([ r , 𝟎 ] a mod' b ≡ 𝟎)
mod'-zero-modulo-greater-dividend {r} {.𝟏} {𝟎} (succ {y = 𝟎} ab) = [≡]-intro
mod'-zero-modulo-greater-dividend {r} {.(𝐒 (𝐒 a))} {𝟎} (succ {y = 𝐒 a} ab) = mod'-zero-all-except-dividend {a}
mod'-zero-modulo-greater-dividend {r} {.(𝐒 _)} {𝐒 b} (succ ab) = mod'-zero-modulo-greater-dividend ab
mod'-lesser-dividend : ∀{r b' a b} → (a ≤ b) → ([ r , b' ] a mod' b ≡ r + a)
mod'-lesser-dividend {r} {b'} min = [≡]-intro
mod'-lesser-dividend {r} {b'} (succ ab) = mod'-lesser-dividend {𝐒 r} {b'} ab
-- When the number is the temporary modulus, the result is zero.
mod'-equal-dividend : ∀{r b' b} → ([ r , b' ] 𝐒(b) mod' b) ≡ 𝟎
mod'-equal-dividend {r}{b'}{b} = mod'-greater-dividend {r}{b'} (reflexivity(_≤_) {𝐒 b})
mod'-sumᵣ-modulo : ∀{r b' a b} → ([ r , b' ] (a + 𝐒(b)) mod' b) ≡ ([ 𝟎 , b' ] a mod' b')
mod'-sumᵣ-modulo {r}{b'}{a}{b} = mod'-greater-dividend {r}{b'}{a + 𝐒(b)}{b} (succ([≤]-of-[+]ᵣ {a}{b})) 🝖 congruence₁(a ↦ [ 𝟎 , b' ] a mod' b') (inverseOperᵣ(_+_)(_−₀_) {a}{b})
-- When the
mod'-sumₗ-modulo : ∀{r b' a b} → ([ r , b' ] (𝐒(b) + a) mod' b) ≡ ([ 𝟎 , b' ] a mod' b')
mod'-sumₗ-modulo {r}{b'}{a}{b} = congruence₁(a ↦ [ r , b' ] a mod' b) (commutativity(_+_) {𝐒(b)}{a}) 🝖 mod'-sumᵣ-modulo {r}{b'}{a}{b}
mod'-maxᵣ : ∀{r b a b'} → ⦃ _ : (b' ≤ b) ⦄ → (([ r , r + b ] a mod' b') ≤ r + b)
mod'-maxᵣ {r} {b} {𝟎} {b'} ⦃ b'b ⦄ = [≤]-of-[+]ₗ
mod'-maxᵣ {r} {𝟎} {𝐒 a} {.0} ⦃ min ⦄ = mod'-maxᵣ {𝟎} {r} {a} {r} ⦃ reflexivity(_≤_) ⦄
mod'-maxᵣ {r} {𝐒 b} {𝐒 a} {.0} ⦃ min ⦄ = mod'-maxᵣ {𝟎} {𝐒(r + b)} {a} {𝐒(r + b)} ⦃ reflexivity(_≤_) ⦄
mod'-maxᵣ {r} {𝐒 b} {𝐒 a} {𝐒 b'} ⦃ succ {b'} p ⦄ = mod'-maxᵣ {𝐒 r} {b} {a} {b'} ⦃ p ⦄
mod'-maxₗ : ∀{r b a b'} → (([ r , b ] a mod' b') ≤ r + a)
mod'-maxₗ {𝟎} {_} {𝟎} {_} = min
mod'-maxₗ {𝐒 r}{b} {𝟎} {𝐒 b'} = mod'-maxₗ {𝐒 r}{𝟎}{𝟎}{b'}
mod'-maxₗ {𝐒 r}{𝐒 b}{𝟎} {b'} = mod'-maxₗ {𝐒 r}{b}{𝟎}{b'}
mod'-maxₗ {𝐒 r}{b} {𝐒 a}{𝟎} = mod'-maxₗ {𝟎} {b} {a} {b} 🝖 [≤]-successor ([≤]-successor ([≤]-of-[+]ᵣ {r}))
mod'-maxₗ {r} {b} {𝐒 a}{𝐒 b'} = mod'-maxₗ {𝐒 r} {b} {a} {b'}
mod'-maxₗ {𝟎} {𝟎} {𝐒 a}{𝟎} = [≤]-successor(mod'-maxₗ {𝟎} {𝟎} {a} {𝟎})
mod'-maxₗ {𝟎} {𝐒 b}{𝐒 a}{𝟎} = [≤]-successor(mod'-maxₗ {0} {𝐒 b} {a} {𝐒 b})
mod'-maxₗ {𝐒 r}{𝟎} {𝟎} {𝟎} = succ(mod'-maxₗ {r}{𝟎}{𝟎}{𝟎})
| {
"alphanum_fraction": 0.5196989819,
"avg_line_length": 54.4337349398,
"ext": "agda",
"hexsha": "0dbb6bb5aefee298f23f4b438814dc9404f7e283",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Numeral/Natural/Oper/Modulo/Proofs/Algorithm.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Numeral/Natural/Oper/Modulo/Proofs/Algorithm.agda",
"max_line_length": 175,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Numeral/Natural/Oper/Modulo/Proofs/Algorithm.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 2280,
"size": 4518
} |
{-# OPTIONS --without-K --safe #-}
module Categories.Adjoint.Relative where
-- Relative Adjoints, in their biased, level-restricted version
-- In other words, this uses the Hom-Setoid equivalent variant
-- of the adjoint formulation because relative adjoints don't
-- have a natural unit/counit formulation.
-- We use the Altenkirch-Chapman-Uustalu formulation, which means
-- that what is adjoint is a Functor and a Category.
open import Level
open import Data.Product using (_,_; _×_)
open import Function using (_$_) renaming (_∘_ to _∙_)
open import Function.Equality using (Π; _⟶_; _⟨$⟩_)
open import Relation.Binary using (Setoid)
-- be explicit in imports to 'see' where the information comes from
open import Categories.Adjoint
open import Categories.Category.Core using (Category)
open import Categories.Category.Product using (Product; _⁂_)
open import Categories.Category.Instance.Setoids
open import Categories.Functor using (Functor; _∘F_) renaming (id to idF)
open import Categories.Functor.Bifunctor using (Bifunctor)
open import Categories.Functor.Hom using (Hom[_][-,-])
open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper)
open import Categories.NaturalTransformation.NaturalIsomorphism
using (NaturalIsomorphism)
import Categories.Morphism.Reasoning as MR
open import Categories.Monad.Relative renaming (Monad to RMonad)
private
variable
o o′ ℓ ℓ′ e e′ : Level
E : Category o ℓ e
record RelativeAdjoint {C : Category o ℓ e} (D : Category o ℓ e) (J : Functor E C) : Set (levelOfTerm D ⊔ levelOfTerm J) where
field
L : Functor E D
R : Functor D C
private
module C = Category C
module D = Category D
module E = Category E
module L = Functor L
module R = Functor R
module J = Functor J
Hom[L-,-] : Bifunctor E.op D (Setoids _ _)
Hom[L-,-] = Hom[ D ][-,-] ∘F (L.op ⁂ idF)
Hom[J-,R-] : Bifunctor E.op D (Setoids _ _)
Hom[J-,R-] = Hom[ C ][-,-] ∘F (J.op ⁂ R)
module Hom[L-,-] = Functor Hom[L-,-]
module Hom[J-,R-] = Functor Hom[J-,R-]
field
Hom-NI : NaturalIsomorphism Hom[J-,R-] Hom[L-,-]
RA⇒RMonad : {C D : Category o ℓ e} {E : Category o′ ℓ′ e′} {J : Functor E C} → RelativeAdjoint D J → RMonad J
RA⇒RMonad {C = C} {D} {E} {J} RA = record
{ F₀ = F₀ (R ∘F L)
; unit = λ {c} → ⇐.η (c , F₀ L c) ⟨$⟩ D.id {F₀ L c}
; extend = λ {X} {Y} k → F₁ R (⇒.η (X , F₀ L Y) ⟨$⟩ k)
; identityʳ = idʳ
; identityˡ = R.F-resp-≈ (iso.isoʳ _ D.Equiv.refl) ○ R.identity
; assoc = a
; extend-≈ = λ k≈h → F-resp-≈ R (Π.cong (⇒.η _) k≈h)
}
where
open RelativeAdjoint RA
open Functor
open NaturalIsomorphism Hom-NI
module D = Category D
module E = Category E
module J = Functor J
module L = Functor L
module R = Functor R
open Category C
open HomReasoning
open MR C
idʳ : {x y : E.Obj} {k : J.₀ x ⇒ F₀ (R ∘F L) y} → R.₁ (⇒.η (x , L.₀ y) ⟨$⟩ k) ∘ (⇐.η (x , L.₀ x) ⟨$⟩ D.id) ≈ k
idʳ {x} {y} {k} = begin
R.₁ (⇒.η (x , L.₀ y) ⟨$⟩ k) ∘ (⇐.η (x , L.₀ x) ⟨$⟩ D.id) ≈⟨ introʳ J.identity ⟩
(R.₁ (⇒.η (x , L.₀ y) ⟨$⟩ k) ∘ (⇐.η (x , L.₀ x) ⟨$⟩ D.id)) ∘ J.₁ E.id ≈⟨ assoc ⟩
R.₁ (⇒.η (x , L.₀ y) ⟨$⟩ k) ∘ (⇐.η (x , L.₀ x) ⟨$⟩ D.id) ∘ J.₁ E.id ≈⟨ ⇐.sym-commute (E.id , ⇒.η (x , L.₀ y) ⟨$⟩ k) (D.Equiv.refl) ⟩
⇐.η (x , L.₀ y) ⟨$⟩ ((⇒.η (x , L.₀ y) ⟨$⟩ k) D.∘ D.id D.∘ L.F₁ E.id) ≈⟨ Π.cong (⇐.η _) (MR.elimʳ D (MR.elimʳ D L.identity)) ⟩
⇐.η (x , L.₀ y) ⟨$⟩ (⇒.η (x , L.₀ y) ⟨$⟩ k) ≈⟨ iso.isoˡ (x , _) Equiv.refl ⟩
k ∎
a : {x y z : E.Obj} {k : J.₀ x ⇒ R.₀ (L.₀ y)} {l : J.₀ y ⇒ R.₀ (L.₀ z)} →
R.₁ (⇒.η (x , L.₀ z) ⟨$⟩ R.₁ (⇒.η (y , L.₀ z) ⟨$⟩ l) ∘ k) ≈
R.₁ (⇒.η (y , L.₀ z) ⟨$⟩ l) ∘ R.₁ (⇒.η (x , L.₀ y) ⟨$⟩ k)
a {x} {y} {z} {k} {l} = begin
R.₁ (⇒.η (x , L.₀ z) ⟨$⟩ (R.₁ (⇒.η (y , L.₀ z) ⟨$⟩ l) ∘ k)) ≈⟨ R.F-resp-≈ lemma ⟩
R.₁ ((⇒.η (y , L.₀ z) ⟨$⟩ l) D.∘ (⇒.η (x , L.₀ y) ⟨$⟩ k)) ≈⟨ R.homomorphism ⟩
R.₁ (⇒.η (y , L.₀ z) ⟨$⟩ l) ∘ R.₁ (⇒.η (x , L.₀ y) ⟨$⟩ k) ∎
where
xz = (x , L.₀ z)
yz = (y , L.₀ z)
xy = (x , L.₀ y)
module DR = D.HomReasoning
lemma : ⇒.η xz ⟨$⟩ R.₁ (⇒.η yz ⟨$⟩ l) ∘ k D.≈ (⇒.η yz ⟨$⟩ l) D.∘ (⇒.η xy ⟨$⟩ k)
lemma = DR.begin
⇒.η xz ⟨$⟩ R.₁ (⇒.η yz ⟨$⟩ l) ∘ k DR.≈⟨ Π.cong (⇒.η xz) (refl⟩∘⟨ introʳ J.identity ) ⟩
⇒.η xz ⟨$⟩ R.₁ (⇒.η yz ⟨$⟩ l) ∘ (k ∘ J.₁ E.id) DR.≈⟨ ⇒.commute (E.id , ⇒.η yz ⟨$⟩ l) Equiv.refl ⟩
(⇒.η yz ⟨$⟩ l) D.∘ (⇒.η xy ⟨$⟩ k) D.∘ L.₁ E.id DR.≈⟨ D.sym-assoc ⟩
((⇒.η yz ⟨$⟩ l) D.∘ (⇒.η xy ⟨$⟩ k)) D.∘ L.₁ E.id DR.≈⟨ MR.elimʳ D L.identity ⟩
(⇒.η yz ⟨$⟩ l) D.∘ (⇒.η xy ⟨$⟩ k) DR.∎
⊣⇒RAdjoint : {C D : Category o ℓ e} {E : Category o′ ℓ′ e′} (L : Functor C D) (R : Functor D C) (J : Functor E C) → L ⊣ R → RelativeAdjoint D J
⊣⇒RAdjoint {C = C} {D} L R J A = record
{ L = L ∘F J
; R = R
; Hom-NI = record
{ F⇒G = ntHelper record
{ η = λ _ → record { _⟨$⟩_ = Radjunct ; cong = ∘-resp-≈ʳ ∙ L.F-resp-≈ }
; commute = λ _ x≈y → Radjunct-comm x≈y
}
; F⇐G = ntHelper record
{ η = λ _ → record { _⟨$⟩_ = Ladjunct ; cong = C.∘-resp-≈ˡ ∙ R.F-resp-≈ }
; commute = λ _ x≈y → Ladjunct-comm x≈y
}
; iso = λ X → record
{ isoˡ = λ eq → LRadjunct≈id ○ eq
; isoʳ = Equiv.trans RLadjunct≈id
}
}
}
where
open Adjoint A
open Category D
module C = Category C
module L = Functor L
module R = Functor R
module J = Functor J
open C.HomReasoning
| {
"alphanum_fraction": 0.5387568556,
"avg_line_length": 39.0714285714,
"ext": "agda",
"hexsha": "ab924da1e3b24c115ed8d89b9f41534d9325c27b",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Adjoint/Relative.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Adjoint/Relative.agda",
"max_line_length": 143,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Adjoint/Relative.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 2474,
"size": 5470
} |
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Setoids.Setoids
open import Functions.Definition
open import Sets.EquivalenceRelations
open import Rings.Definition
module Rings.Divisible.Definition {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} (R : Ring S _+_ _*_) where
open Setoid S
open Equivalence eq
open Ring R
_∣_ : Rel A
a ∣ b = Sg A (λ c → (a * c) ∼ b)
divisibleWellDefined : {x y a b : A} → (x ∼ y) → (a ∼ b) → x ∣ a → y ∣ b
divisibleWellDefined x=y a=b (c , xc=a) = c , transitive (*WellDefined (symmetric x=y) reflexive) (transitive xc=a a=b)
| {
"alphanum_fraction": 0.6554487179,
"avg_line_length": 31.2,
"ext": "agda",
"hexsha": "3447436857ce4dbfc13a814955593c1da6b90190",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Rings/Divisible/Definition.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Rings/Divisible/Definition.agda",
"max_line_length": 127,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Rings/Divisible/Definition.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 219,
"size": 624
} |
module Scratch.Subset where
open import Level renaming (zero to lzero; suc to lsuc)
open import Relation.Unary using (Pred; Satisfiable) renaming (Decidable to Dec₁)
open import Relation.Binary renaming (Decidable to Dec₂)
open import Relation.Binary.PropositionalEquality as Eq using (_≡_ ; _≢_; refl; cong; sym; trans; subst₂)
open Eq.≡-Reasoning
open import Data.Empty using (⊥-elim)
open import Data.Nat.Base as ℕ using (ℕ;_+_;_∸_;suc;zero; _<_)
open import Data.Bool using (not; Bool)
open import Data.Bool.Properties hiding (_≟_)
open import Data.Product
open import Data.Sum renaming ([_,_] to _⊞_)
open import Data.Vec hiding (allFin)
open import Data.Vec.Properties
open import Data.Fin.Properties using (∃-toSum)
open import Data.Fin hiding (fold; _+_; _<_)
renaming (zero to fzero ; suc to fsuc)
hiding (_≟_)
open import Relation.Nullary.Negation using (contradiction)
open import Data.Fin.Properties using (suc-injective)
open import Data.Fin.Subset
open import Data.Fin.Subset.Properties
open import Data.Maybe
open import Data.List.Base renaming (tabulate to tab ;
foldr to fold;
[] to <>;
[_] to <_>;
map to lmap;
lookup to llookup)
hiding (tail; any)
open import Data.List.Properties
open import Data.List.Membership.Propositional
renaming (_∈_ to _∈ℓ_)
open import Data.List.Membership.Propositional.Properties
open import Data.List.Relation.Unary.Any as Any hiding (tail)
open import Data.List.Relation.Unary.Any.Properties
open import Data.List.Relation.Unary.All as All
open import Data.List.Relation.Unary.AllPairs as AllPairs
open import Data.List.Relation.Unary.AllPairs.Properties
open import Function.Base
open import Relation.Nullary
open import Data.Nat.Properties
using (_≟_; m+n∸m≡n; +-∸-assoc; +-∸-comm; +-comm; +-identityʳ; 0∸n≡0; n≤0⇒n≡0; n≢0⇒n>0; +-0-commutativeMonoid)
open import Algebra.Core
import Algebra.Properties.BooleanAlgebra
_\\_ : ∀ {n} → Op₂ (Subset n)
S \\ T = S ∩ (∁ T)
s\\⊥≡s : ∀ {n : ℕ} → (S : Subset n) → (S \\ ⊥) ≡ S
s\\⊥≡s {n} S = begin
S ∩ (∁ ⊥) ≡⟨ cong (S ∩_) ⊥≉⊤ ⟩
S ∩ ⊤ ≡⟨ ∩-identityʳ _ ⟩
S ∎ where open Algebra.Properties.BooleanAlgebra (∪-∩-booleanAlgebra n)
Disj : ∀ {n} → Subset n → Subset n → Set
Disj S T = S ∩ T ≡ ⊥
Disj-sym : ∀ {n} → Symmetric (Disj {n = n})
Disj-sym {n} {S} {T} S∩T≡⊥ = begin T ∩ S ≡⟨ ∩-comm T S ⟩ S ∩ T ≡⟨ S∩T≡⊥ ⟩ ⊥ ∎
∩-⊆-stable : ∀ {n} → ∀ {p q} → (r : Subset n) → p ⊆ q → (p ∩ r) ⊆ (q ∩ r)
∩-⊆-stable {_} {p} {q} r p⊆q x∈p∩r = let
x∈p = proj₁ (x∈p∩q⁻ p r x∈p∩r)
x∈r = proj₂ (x∈p∩q⁻ p r x∈p∩r)
in x∈p∩q⁺ ( p⊆q x∈p , x∈r )
idʳ⇒⊆ : ∀ {n} → (S T : Subset n) → (S ∪ T) ≡ T → S ⊆ T
idʳ⇒⊆ {n} S T sut≡t = subst₂ _⊆_ refl sut≡t (p⊆p∪q T)
p∩∁p≡⊥ : ∀ {n} → (p : Subset n) → p ∩ ∁ p ≡ ⊥
p∩∁p≡⊥ [] = refl
p∩∁p≡⊥ (outside ∷ p) = cong (outside ∷_) (p∩∁p≡⊥ p)
p∩∁p≡⊥ (inside ∷ p) = cong (outside ∷_) (p∩∁p≡⊥ p)
p⊆q⇒p∩∁q≡⊥ : ∀ {n} → {S T : Subset n} → S ⊆ T → S ∩ (∁ T) ≡ ⊥
p⊆q⇒p∩∁q≡⊥ {_} {S} {T} s⊆t = let
a = p∩∁p≡⊥ _
b : S ∩ (∁ T) ⊆ T ∩ (∁ T)
b = ∩-⊆-stable (∁ T) s⊆t
c = subst₂ _⊆_ refl a b
in ⊆-antisym c (⊆-min _)
p⊆q⇒p∩q≡p : ∀ {n} → (S T : Subset n) → S ⊆ T → S ∩ T ≡ S
p⊆q⇒p∩q≡p S T s⊆t = sym (begin
S ≡˘⟨ ∩-identityʳ _ ⟩
S ∩ ⊤ ≡˘⟨ cong (_ ∩_) (p∪∁p≡⊤ _) ⟩
S ∩ (T ∪ (∁ T)) ≡⟨ ∩-distribˡ-∪ _ _ _ ⟩
(S ∩ T) ∪ (S ∩ (∁ T)) ≡⟨ cong ((S ∩ T) ∪_) (p⊆q⇒p∩∁q≡⊥ s⊆t) ⟩
(S ∩ T) ∪ ⊥ ≡⟨ ∪-identityʳ _ ⟩
S ∩ T ∎)
disj⇒⊆∁ : ∀ {n} → {S T : Subset n} → Disj S T → S ⊆ (∁ T)
disj⇒⊆∁ {n} {S} {T} dst = let ct≡suct = begin
∁ T ≡˘⟨ ∪-identityˡ _ ⟩
⊥ ∪ (∁ T) ≡˘⟨ cong (_∪ (∁ T)) dst ⟩
(S ∩ T) ∪ (∁ T) ≡⟨ ∪-distribʳ-∩ _ _ _ ⟩
(S ∪ (∁ T)) ∩ (T ∪ (∁ T)) ≡⟨ cong ((S ∪ (∁ T)) ∩_) (p∪∁p≡⊤ T) ⟩
(S ∪ (∁ T)) ∩ ⊤ ≡⟨ ∩-identityʳ _ ⟩
S ∪ (∁ T) ∎
in idʳ⇒⊆ S (∁ T) (sym ct≡suct)
⊆∁⇒disj : ∀ {n} → {S T : Subset n} → S ⊆ (∁ T) → Disj S T
⊆∁⇒disj {n} {S} {T} s⊆∁t = begin
S ∩ T ≡˘⟨ cong (S ∩_) (¬-involutive T ) ⟩
S ∩ (∁ (∁ T)) ≡⟨ p⊆q⇒p∩∁q≡⊥ s⊆∁t ⟩
⊥ ∎ where open Algebra.Properties.BooleanAlgebra (∪-∩-booleanAlgebra n)
p⊆r×q⊆r⇒p∪q⊆r : ∀ {n} → { p q r : Subset n} → (p ⊆ r) × (q ⊆ r) → (p ∪ q) ⊆ r
p⊆r×q⊆r⇒p∪q⊆r {n} {p} {q} {r} (p⊆r , q⊆r) x∈p∪q = let
y = x∈p∪q⁻ {n} p q x∈p∪q
in (p⊆r ⊞ q⊆r) y
pᵢ⊆q⇒⋃pᵢ⊆q : ∀ {n m} → (S : Subset n) → (ϕ : Fin m → Subset n) →
(∀ i → (ϕ i) ⊆ S) → (⋃ (tab ϕ) ⊆ S)
pᵢ⊆q⇒⋃pᵢ⊆q {_} {zero} S _ _ = ⊆-min S
pᵢ⊆q⇒⋃pᵢ⊆q {n} {suc m} S ϕ Δ = let
y : ((ϕ fzero) ∪ (⋃(tab (ϕ ∘ fsuc)))) ⊆ S
y = p⊆r×q⊆r⇒p∪q⊆r ( Δ fzero , pᵢ⊆q⇒⋃pᵢ⊆q S (λ z → ϕ (fsuc z)) (λ i → Δ (fsuc i)) )
in subst₂ _⊆_ refl refl y
pᵢ⊆q⇒⋃pᵢ⊆q-list : ∀ {n} → ∀ S → ∀ (L : List (Subset n)) →
All (_⊆ S) L → (⋃ L) ⊆ S
pᵢ⊆q⇒⋃pᵢ⊆q-list S <> _ = ⊆-min S
pᵢ⊆q⇒⋃pᵢ⊆q-list S (x ∷ xs) (h ∷ t) = subst₂ _⊆_ refl refl (p⊆r×q⊆r⇒p∪q⊆r ( h , pᵢ⊆q⇒⋃pᵢ⊆q-list S xs t ))
-- obvious but exposes S for computation later
drop-outside : ∀ {n} → (S : Subset n) → ∣ outside ∷ S ∣ ≡ ∣ S ∣
drop-outside S = refl
drop-disj : ∀ {n} → {x y : Side} → {p q : Subset n} → Disj (x ∷ p) (y ∷ q) → Disj p q
drop-disj {zero} {_} {_} {[]} {[]} _ = refl
drop-disj d = cong Data.Vec.tail d
∣p⊍q∣≡∣p∣+∣q∣ : ∀ {n} → ∀ (p q : Subset n) → Disj p q → ∣ p ∪ q ∣ ≡ ∣ p ∣ + ∣ q ∣
∣p⊍q∣≡∣p∣+∣q∣ {zero} [] [] d = refl
∣p⊍q∣≡∣p∣+∣q∣ {suc n} (outside ∷ p) (outside ∷ q) d = begin
-- ∣ (outside ∷ p) ∪ (outside ∷ q) ∣ ≡⟨⟩
∣ p ∪ q ∣ ≡⟨ ∣p⊍q∣≡∣p∣+∣q∣ {_} p q (drop-disj {n} {outside} {outside} d) ⟩
-- ∣ p ∣ + ∣ q ∣ ≡⟨⟩
∣ (outside ∷ p) ∣ + ∣ (outside ∷ q) ∣ ∎
∣p⊍q∣≡∣p∣+∣q∣ {suc n} (inside ∷ p) (outside ∷ q) d = begin -- {! !} -- begin
∣ (inside ∷ p) ∪ (outside ∷ q) ∣ ≡⟨ refl ⟩ -- cong suc refl ⟩
-- suc ∣ (inside ∷ p) ∪ (outside ∷ q) ∣ ≡⟨ cong suc {! !} ⟩ -- cong suc refl ⟩
suc ∣ p ∪ q ∣ ≡⟨ cong suc (∣p⊍q∣≡∣p∣+∣q∣ {_} p q (drop-disj {n} {inside} {outside} d)) ⟩
suc (∣ p ∣ + ∣ q ∣) ≡⟨⟩
(suc ∣ p ∣) + ∣ q ∣ ≡⟨⟩
∣ (inside ∷ p) ∣ + ∣ (outside ∷ q) ∣ ∎
∣p⊍q∣≡∣p∣+∣q∣ {suc n} (outside ∷ p) (inside ∷ q) d = begin
∣ (outside ∷ p) ∪ (inside ∷ q) ∣ ≡⟨ refl ⟩
suc ∣ p ∪ q ∣ ≡⟨ cong suc (∣p⊍q∣≡∣p∣+∣q∣ {_} p q (drop-disj {n} {outside} {inside} d)) ⟩
suc (∣ p ∣ + ∣ q ∣) ≡⟨ cong suc (+-comm ∣ p ∣ ∣ q ∣) ⟩
suc (∣ q ∣ + ∣ p ∣) ≡⟨ refl ⟩
(suc ∣ q ∣) + ∣ p ∣ ≡⟨⟩
∣ (inside ∷ q) ∣ + ∣ (outside ∷ p) ∣ ≡⟨ +-comm ∣ (inside ∷ q) ∣ ∣ (outside ∷ p) ∣ ⟩
∣ (outside ∷ p) ∣ + ∣ (inside ∷ q) ∣ ∎
-- why can't we use fold fusion here?
∣⋃ᵢpᵢ∣≡Σᵢ∣pᵢ∣ : ∀ {n m} → (ϕ : Fin m → Subset n) →
(∀ i j → (i ≢ j) → Disj (ϕ i) (ϕ j)) →
∣ ⋃ (tab ϕ) ∣ ≡ fold _+_ 0 (tab (∣_∣ ∘ ϕ))
∣⋃ᵢpᵢ∣≡Σᵢ∣pᵢ∣ {n} {zero} ϕ _ = begin
∣ ⋃ {n} <> ∣ ≡⟨⟩
-- ∣ fold (_∪_ {n}) ⊥ <> ∣ ≡⟨⟩
∣ ⊥ {n} ∣ ≡⟨ ∣⊥∣≡0 n ⟩
0 ≡⟨⟩
fold _+_ 0 <> ∎
∣⋃ᵢpᵢ∣≡Σᵢ∣pᵢ∣ {n} {suc m} ϕ Δ = begin
∣ ⋃ (tab ϕ) ∣ ≡⟨⟩
∣ (ϕ fzero) ∪ (⋃ (tab (ϕ ∘ fsuc))) ∣ ≡⟨ ∣p⊍q∣≡∣p∣+∣q∣ (ϕ fzero) (⋃ (tab (ϕ ∘ fsuc))) d ⟩
∣ (ϕ fzero) ∣ + ∣ ⋃ (tab (ϕ ∘ fsuc)) ∣ ≡⟨ cong (∣ (ϕ fzero) ∣ +_) (∣⋃ᵢpᵢ∣≡Σᵢ∣pᵢ∣ {_} {m} (ϕ ∘ fsuc) λ i j i≢j → Δ (fsuc i) (fsuc j) (i≢j ∘ suc-injective) ) ⟩
∣ (ϕ fzero) ∣ + (fold _+_ 0 (tab (∣_∣ ∘ (ϕ ∘ fsuc)))) ≡⟨⟩
fold _+_ 0 (tab (∣_∣ ∘ ϕ)) ∎
where
a : ∀ (i : Fin m) → Disj (ϕ (fsuc i)) (ϕ fzero)
a = λ i → Δ (fsuc i) fzero (λ ())
b : ∀ (i : Fin m) → (ϕ (fsuc i) ⊆ ∁ (ϕ fzero))
b = disj⇒⊆∁ ∘ a
c : ⋃ (tab (ϕ ∘ fsuc)) ⊆ ∁ (ϕ fzero)
c = pᵢ⊆q⇒⋃pᵢ⊆q (∁ (ϕ fzero)) (ϕ ∘ fsuc) b
e : Disj (⋃ (tab (ϕ ∘ fsuc))) (ϕ fzero)
e = ⊆∁⇒disj c
d : Disj (ϕ fzero) (⋃ (tab (ϕ ∘ fsuc)))
d = begin
(ϕ fzero) ∩ (⋃ (tab (ϕ ∘ fsuc))) ≡⟨ ∩-comm _ _ ⟩
(⋃ (tab (ϕ ∘ fsuc))) ∩ (ϕ fzero) ≡⟨ e ⟩
⊥ ∎
∣⋃ᵢpᵢ∣≡Σᵢ∣pᵢ∣-list : ∀ {n} (C : List (Subset n)) →
AllPairs Disj C →
∣ ⋃ C ∣ ≡ fold _+_ 0 (lmap ∣_∣ C)
∣⋃ᵢpᵢ∣≡Σᵢ∣pᵢ∣-list {n} <> Δℓ = begin
∣ ⋃ {n} <> ∣ ≡⟨⟩
-- ∣ fold (_∪_ {n}) ⊥ <> ∣ ≡⟨⟩
∣ ⊥ {n} ∣ ≡⟨ ∣⊥∣≡0 n ⟩
0 ≡⟨⟩
fold _+_ 0 <> ∎
∣⋃ᵢpᵢ∣≡Σᵢ∣pᵢ∣-list {n} (s ∷ C) (h ∷ t) = begin
∣ ⋃ (s ∷ C) ∣ ≡⟨⟩
∣ s ∪ (⋃ C) ∣ ≡⟨ ∣p⊍q∣≡∣p∣+∣q∣ s (⋃ C) DisjsUC ⟩
∣ s ∣ + ∣ ⋃ C ∣ ≡⟨ cong (∣ s ∣ +_) (∣⋃ᵢpᵢ∣≡Σᵢ∣pᵢ∣-list {n} C t ) ⟩
∣ s ∣ + (fold _+_ 0 (lmap ∣_∣ C)) ≡⟨⟩
fold _+_ 0 (lmap ∣_∣ (s ∷ C)) ∎
where
a : All (λ x → x ⊆ ∁ s) C
a = All.map (disj⇒⊆∁ ∘ Disj-sym) h
c : ⋃ C ⊆ ∁ s
c = pᵢ⊆q⇒⋃pᵢ⊆q-list (∁ s) C a
e : Disj (⋃ C) s
e = ⊆∁⇒disj c
DisjsUC : Disj s (⋃ C)
DisjsUC = Disj-sym e
⋃-remove : ∀ {n} {L : List (Subset n)} →
∀ s → (s∈L : s ∈ℓ L) →
(⋃ L) ≡ s ∪ ⋃ (L Any.─ s∈L)
⋃-remove {n} {<>} _ = λ ()
⋃-remove {n} {x ∷ xs} s (here px) = begin
⋃ (x ∷ xs) ≡⟨ refl ⟩
x ∪ (⋃ xs) ≡˘⟨ cong (_∪ _) px ⟩
s ∪ (⋃ xs) ≡⟨ cong (_ ∪_) refl ⟩
s ∪ ⋃ ((x ∷ xs) Data.List.Base.─ fzero ) ≡⟨ cong (_ ∪_) refl ⟩
s ∪ ⋃ ((x ∷ xs) Any.─ (here {P = P} px)) ∎
where
P : Pred (Subset n) lzero
P = s ≡_
⋃-remove {n} {x ∷ xs} s (there s∈L) = begin
x ∪ (⋃ xs) ≡⟨ cong (x ∪_) (⋃-remove {L = xs} s s∈L) ⟩
x ∪ (s ∪ ⋃ (xs Any.─ s∈L)) ≡˘⟨ ∪-assoc _ _ _ ⟩ -- TODO: -- use solver
(x ∪ s) ∪ ⋃ (xs Any.─ s∈L) ≡⟨ cong (_∪ _) (∪-comm x s) ⟩
(s ∪ x) ∪ ⋃ (xs Any.─ s∈L) ≡⟨ ∪-assoc _ _ _ ⟩
s ∪ (x ∪ ⋃ (xs Any.─ s∈L)) ≡⟨ refl ⟩
s ∪ ⋃ ((x ∷ xs) Any.─ (there s∈L)) ∎
cover-⊤ : ∀ {n} → (L : List (Subset n)) →
(∀ (x : Fin n) → Any (x ∈_) L ) →
⊤ {n} ≡ ⋃ L
cover-⊤ {n} L ∃lx∈l = ⊆-antisym ⊤⊆⋃L (⊆-max (⋃ L)) where
⊤⊆⋃L : ⊤ ⊆ (⋃ L)
⊤⊆⋃L {x} _ = let
(l , l∈ℓL , x∈l) = find {P = x ∈_} (∃lx∈l x)
l⊆l∪* = p⊆p∪q {p = l} (⋃ (L Any.─ l∈ℓL))
x∈l∪* = l⊆l∪* {x} x∈l
in subst₂ _∈_ refl (sym (⋃-remove l l∈ℓL)) x∈l∪*
-- 👇 not essential
|s\\t| : ∀ {n : ℕ} → ∀ {S T : Subset n} → T ⊆ S → ∣ S \\ T ∣ ≡ ∣ S ∣ ∸ ∣ T ∣
|s\\t| {.0} {[]} {T} t⊆s = begin
∣ [] \\ T ∣ ≡⟨ n≤0⇒n≡0 (∣p∩q∣≤∣p∣ [] (∁ T)) ⟩
0 ≡˘⟨ 0∸n≡0 ∣ T ∣ ⟩
∣ [] ∣ ∸ ∣ T ∣
∎
|s\\t| {.(suc _)} {inside ∷ S} {inside ∷ T} t⊆s = |s\\t| {_} {S} {T} (drop-∷-⊆ t⊆s)
|s\\t| {.(suc _)} {outside ∷ S} {outside ∷ T} t⊆s = |s\\t| {_} {S} {T} (drop-∷-⊆ t⊆s)
|s\\t| {.(suc _)} {outside ∷ S} {inside ∷ T} t⊆s = let z = (t⊆s here)
y = []=⇒lookup z
w = not-¬ y
in ⊥-elim (w refl)
|s\\t| {(suc n)} {inside ∷ S} {outside ∷ T} t⊆s = sym (begin
∣ inside ∷ S ∣ ∸ ∣ outside ∷ T ∣ ≡⟨ refl ⟩
(suc ∣ S ∣) ∸ ∣ outside ∷ T ∣ ≡⟨ cong ((suc ∣ S ∣) ∸_) (drop-outside T) ⟩
(1 + ∣ S ∣) ∸ ∣ T ∣ ≡⟨ cong (_∸ ∣ T ∣) (Data.Nat.Properties.+-comm _ ∣ S ∣)⟩
(∣ S ∣ + 1) ∸ ∣ T ∣ ≡⟨ +-∸-comm 1 (p⊆q⇒∣p∣≤∣q∣ (drop-∷-⊆ {n} {_} {_} {T} {S} t⊆s)) ⟩
(∣ S ∣ ∸ ∣ T ∣) + 1 ≡⟨ Data.Nat.Properties.+-comm (∣ S ∣ ∸ ∣ T ∣) _ ⟩
(suc (∣ S ∣ ∸ ∣ T ∣)) ≡˘⟨ cong suc (|s\\t| {n} {S} {T} (drop-∷-⊆ {n} t⊆s))⟩
(suc ∣ S \\ T ∣) ≡⟨ refl ⟩
∣ (inside ∷ S) \\ (outside ∷ T) ∣ ∎)
fst : ∀ {n} → (s : Subset n) → Nonempty s → Fin n
fst {suc n} (x ∷ rest) ne with (∃-toSum ne)
... | inj₁ _ = fzero
... | inj₂ b = let w = drop-there (proj₂ b)
z = (proj₁ b , w)
in fsuc (fst rest z)
record Partition (n : ℕ) : Set where
field
Carrier : Subset n
size : ℕ
-- try parts as Data.Vec.Functional
-- or try parts as List (Subset n) for ease of updates
parts : Fin size → Subset n
-- nne : 0 ℕ.< m
nnd : ∀ i → Nonempty (parts i)
all-⊆ : ∀ i → (parts i) ⊆ Carrier
disj : ∀ i j → i ≢ j → Disj (parts i) (parts j)
cover : Carrier ≡ ⋃ (tab parts)
traversal : Vec (Fin n) size
traversal = Data.Vec.tabulate λ i → fst (parts i) (nnd i)
_P∈ : (j : Fin n) → Dec ( j ∈ Carrier )
j P∈ = (j ∈? Carrier)
-- open import Data.Vec.Relation.Unary.Any {0ℓ} {Fin n}
-- anyRel : {_≈_ : Rel (Fin n) 0ℓ } → Dec₂ _≈_ → (j : Fin n) → Dec (Any (j ≈_) traversal)
-- anyRel _≈?_ j = any (j ≈?_) traversal
-- do I need this for counting arguments?
respects : Rel (Fin n) 0ℓ → Set _
respects _≈_ = ∀ x y → x ≈ y → ∃ λ i → (x ∈ parts i) × (y ∈ parts i)
-- proj i = index (proof anyRel ≈ j)
-- ∀ i → tabulate (i ≈?_) ≡ proj i
⊥P : ∀ {n} → Partition n
⊥P {n} = record { Carrier = ⊥ {n} ;
size = 0 ;
parts = λ () ;
all-⊆ = λ () ;
nnd = λ () ;
disj = λ i () ;
cover = refl }
------ has holes
-- add : ∀ {n} {≈ : Rel (Fin n) 0ℓ } → Partition n → (Dec₂ ≈) → Fin n → Partition n
-- add P ≈ j with (j P∈) where open Partition P
-- ... | yes _ = P
-- ... | no j∉P with (anyRel ≈ j) where open Partition P
-- ... | yes p = {! !}
-- ... | no ¬p = record { Carrier = Carrier ∪ ⁅ j ⁆ ;
-- size = suc size ;
-- parts = λ { fzero → ⁅ j ⁆ ;
-- (fsuc k) → parts k } ;
-- nnd = {! !} ;
-- all-⊆ = {! !} ;
-- disj = {! !} ;
-- cover = {! !}
-- } where open Partition P
----junk👇--------------------------------------------------------
-- ↓ : ∀ {n m : ℕ} → ∀ {S : Subset n} → ( 0 < m ) →
-- (P : Partition S (suc m)) → Partition (S \\ Partition.p P fzero) m
-- ↓ {_} {m} {S} 0<m P = record { p = p∘fsuc;
-- nne = 0<m ;
-- nnd = λ i → Partition.nnd P (fsuc i) ;
-- all-⊆ = all-⊆' ;
-- disj = disj' ;
-- cover = c } where
-- open Partition P
-- p∘fsuc : _
-- p∘fsuc = p ∘ fsuc
--
-- all-⊆' : ∀ (i : Fin m) → (p (fsuc i)) ⊆ (S \\ (p fzero))
-- all-⊆' i x∈pfsuci = let
-- x : _
-- x = all-⊆ (fsuc i)
-- y : Disj (p (fsuc i)) (p fzero)
-- y = disj (fsuc i) fzero λ ()
-- -- x ∈ (S \\ p fzero)
-- r : _
-- r = disj⇒⊆∁ {_} {p (fsuc i)} {p fzero} y
-- s : _
-- s = Partition.all-⊆ P (fsuc i) x∈pfsuci
-- t : _
-- t = r x∈pfsuci
-- in x∈p∩q⁺ ( s , t )
--
-- disj' : _
-- disj' i j i≢j = disj (fsuc i) (fsuc j) (i≢j ∘ suc-injective)
--
-- c : _
-- c = let
-- a : _
-- a = cover
-- b : _
-- b = S ≡ (p fzero) ∪ (⋃ (tab p∘fsuc))
-- S₀ = (p fzero)
-- d = begin
-- S \\ S₀ ≡⟨ cong (_\\ S₀) (Partition.cover P) ⟩
-- (⋃ (S₀ ∷ (tab p∘fsuc))) \\ S₀ ≡⟨ cong (_\\ S₀) refl ⟩
-- (S₀ ∪ (⋃ (tab p∘fsuc))) \\ S₀ ≡⟨ refl ⟩
-- (S₀ ∪ (⋃ (tab p∘fsuc))) ∩ (∁ S₀) ≡⟨ ∩-distribʳ-∪ _ _ _ ⟩
-- (S₀ ∩ (∁ S₀)) ∪ ((⋃ (tab p∘fsuc)) ∩ (∁ S₀)) ≡⟨ cong (_∪ ((⋃ (tab p∘fsuc)) ∩ (∁ S₀))) (p∩∁p≡⊥ _) ⟩
-- ⊥ ∪ ((⋃ (tab p∘fsuc)) ∩ (∁ S₀)) ≡⟨ ∪-identityˡ _ ⟩
-- (⋃ (tab p∘fsuc)) ∩ (∁ S₀) ≡⟨ {! !} ⟩
-- (⋃ (tab p∘fsuc)) -- ≡⟨ ? ⟩
-- ∎
-- t = {! !}
-- in t
--
-- this seems pretty obvious but helps rule out case with a single set below
-- tab0 : ∀ {m : ℕ} → ∀ {B : Set} → {ϕ : Fin (suc m) → B} → (m ≡ ℕ.zero) → (tab ϕ) ≡ < ϕ fzero >
-- tab0 {zero} m≡0 = refl
--
-- would follow trivially from a kind of guarded (dependent)
-- fold fusion with h = ∣_∣ f = _∪_ and g = _+c_
-- cc : ∀ {n m : ℕ} → {S : Subset n} →
-- ∀ (P : Partition S m) → (card P) ≡ ∣ S ∣
-- cc {n} {m = suc m'} {S} P with m' ≟ 0
-- ... | yes m'≡0 = begin
-- (card P) ≡⟨ refl ⟩
-- fold _+c_ 0 (tab p) ≡⟨ cong (fold _+c_ 0) (tab0 {m'} {Subset n} {p} m'≡0) ⟩
-- fold _+c_ 0 < p fzero > ≡⟨ refl ⟩
-- (p fzero) +c 0 ≡⟨ refl ⟩
-- -- (p fzero) +c (fold _+c_ 0 <>) ≡⟨ refl ⟩
-- -- fold _+c_ 0 ((p fzero) ∷ <>) ≡⟨ refl ⟩
-- ∣ (p fzero) ∣ + 0 ≡⟨ +-identityʳ _ ⟩
-- ∣ (p fzero) ∣ ≡˘⟨ cong ∣_∣ (∪-identityʳ (p fzero)) ⟩
-- ∣ (p fzero) ∪ ⊥ ∣ ≡˘⟨ refl ⟩
-- ∣ ⋃ < (p fzero) > ∣ ≡˘⟨ cong ∣_∣ (cong ⋃ (tab0 {m'} {Subset n} {p} m'≡0)) ⟩
-- ∣ ⋃ (tab p) ∣ ≡˘⟨ cong ∣_∣ cover ⟩
-- ∣ S ∣ ∎ where
-- open Partition P
--
-- ... | no ¬m'≡0 = begin
-- (card P) ≡⟨⟩
-- fold _+c_ 0 ((p fzero) ∷ tab (p ∘ fsuc)) ≡⟨⟩
-- (p fzero) +c (fold _+c_ 0 (tab (p ∘ fsuc))) ≡⟨⟩
-- ∣ (p fzero) ∣ + (fold _+c_ 0 (tab (p ∘ fsuc))) ≡˘⟨ cong (∣ (p fzero) ∣ +_) refl ⟩
-- ∣ (p fzero) ∣ + card (↓ r P) ≡⟨ cong (_ +_) (cc (↓ r P)) ⟩
-- ∣ (p fzero) ∣ + ∣ S \\ (p fzero) ∣ ≡⟨ cong (_ +_) (|s\\t| (all-⊆ fzero)) ⟩
-- ∣ (p fzero) ∣ + ( ∣ S ∣ ∸ ∣ (p fzero) ∣ ) ≡˘⟨ +-∸-assoc ∣ (p fzero) ∣ (p⊆q⇒∣p∣≤∣q∣ (all-⊆ fzero)) ⟩
-- (∣ (p fzero) ∣ + ∣ S ∣) ∸ ∣ (p fzero) ∣ ≡⟨ m+n∸m≡n ∣ (p fzero) ∣ ∣ S ∣ ⟩
-- ∣ S ∣ ∎ where
-- open Partition P
-- r = (n≢0⇒n>0 ¬m'≡0)
| {
"alphanum_fraction": 0.3130289933,
"avg_line_length": 50.9449541284,
"ext": "agda",
"hexsha": "a804d9a866b0628521dd94d1eb4d8fc3fb033864",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "e2d6b5f9bea15dd67817bf67e273f6b9a14335af",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "zampino/ggt",
"max_forks_repo_path": "src/scratch/Subset.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e2d6b5f9bea15dd67817bf67e273f6b9a14335af",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "zampino/ggt",
"max_issues_repo_path": "src/scratch/Subset.agda",
"max_line_length": 191,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "e2d6b5f9bea15dd67817bf67e273f6b9a14335af",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "zampino/ggt",
"max_stars_repo_path": "src/scratch/Subset.agda",
"max_stars_repo_stars_event_max_datetime": "2020-11-28T05:48:39.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-17T11:10:00.000Z",
"num_tokens": 9023,
"size": 22212
} |
{-# OPTIONS --without-K --safe #-}
module Definition.Typed.Consequences.Inversion where
open import Definition.Untyped
open import Definition.Typed
open import Definition.Typed.Properties
open import Definition.Typed.Consequences.Syntactic
open import Definition.Typed.Consequences.Substitution
open import Tools.Product
-- Inversion of natural number type.
inversion-ℕ : ∀ {Γ C} → Γ ⊢ ℕ ∷ C → Γ ⊢ C ≡ U
inversion-ℕ (ℕⱼ x) = refl (Uⱼ x)
inversion-ℕ (conv x x₁) = trans (sym x₁) (inversion-ℕ x)
-- Inversion of Π-types.
inversion-Π : ∀ {F G Γ C}
→ Γ ⊢ Π F ▹ G ∷ C → Γ ⊢ F ∷ U × Γ ∙ F ⊢ G ∷ U × Γ ⊢ C ≡ U
inversion-Π (Πⱼ x ▹ x₁) = x , x₁ , refl (Uⱼ (wfTerm x))
inversion-Π (conv x x₁) = let a , b , c = inversion-Π x
in a , b , trans (sym x₁) c
-- Inversion of zero.
inversion-zero : ∀ {Γ C} → Γ ⊢ zero ∷ C → Γ ⊢ C ≡ ℕ
inversion-zero (zeroⱼ x) = refl (ℕⱼ x)
inversion-zero (conv x x₁) = trans (sym x₁) (inversion-zero x)
-- Inversion of successor.
inversion-suc : ∀ {Γ t C} → Γ ⊢ suc t ∷ C → Γ ⊢ t ∷ ℕ × Γ ⊢ C ≡ ℕ
inversion-suc (sucⱼ x) = x , refl (ℕⱼ (wfTerm x))
inversion-suc (conv x x₁) =
let a , b = inversion-suc x
in a , trans (sym x₁) b
-- Inversion of natural recursion.
inversion-natrec : ∀ {Γ c g n A C} → Γ ⊢ natrec C c g n ∷ A
→ (Γ ∙ ℕ ⊢ C)
× Γ ⊢ c ∷ C [ zero ]
× Γ ⊢ g ∷ Π ℕ ▹ (C ▹▹ C [ suc (var 0) ]↑)
× Γ ⊢ n ∷ ℕ
× Γ ⊢ A ≡ C [ n ]
inversion-natrec (natrecⱼ x d d₁ n) = x , d , d₁ , n , refl (substType x n)
inversion-natrec (conv d x) = let a , b , c , d , e = inversion-natrec d
in a , b , c , d , trans (sym x) e
-- Inversion of application.
inversion-app : ∀ {Γ f a A} → Γ ⊢ (f ∘ a) ∷ A →
∃₂ λ F G → Γ ⊢ f ∷ Π F ▹ G × Γ ⊢ a ∷ F × Γ ⊢ A ≡ G [ a ]
inversion-app (d ∘ⱼ d₁) = _ , _ , d , d₁ , refl (substTypeΠ (syntacticTerm d) d₁)
inversion-app (conv d x) = let a , b , c , d , e = inversion-app d
in a , b , c , d , trans (sym x) e
-- Inversion of lambda.
inversion-lam : ∀ {t A Γ} → Γ ⊢ lam t ∷ A →
∃₂ λ F G → Γ ⊢ F × (Γ ∙ F ⊢ t ∷ G × Γ ⊢ A ≡ Π F ▹ G)
inversion-lam (lamⱼ x x₁) = _ , _ , x , x₁ , refl (Πⱼ x ▹ (syntacticTerm x₁))
inversion-lam (conv x x₁) = let a , b , c , d , e = inversion-lam x
in a , b , c , d , trans (sym x₁) e
| {
"alphanum_fraction": 0.5441941075,
"avg_line_length": 36.6349206349,
"ext": "agda",
"hexsha": "b4cbcaa7f7e6c9498ce5256d7d4c29cfe655797b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "loic-p/logrel-mltt",
"max_forks_repo_path": "Definition/Typed/Consequences/Inversion.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "loic-p/logrel-mltt",
"max_issues_repo_path": "Definition/Typed/Consequences/Inversion.agda",
"max_line_length": 81,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "loic-p/logrel-mltt",
"max_stars_repo_path": "Definition/Typed/Consequences/Inversion.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 964,
"size": 2308
} |
------------------------------------------------------------------------------
-- Totality properties for Tree
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Program.Mirror.Tree.TotalityATP where
open import FOTC.Base
open import FOTC.Base.List
open import FOTC.Data.List
open import FOTC.Program.Mirror.Forest.TotalityATP
open import FOTC.Program.Mirror.Mirror
open import FOTC.Program.Mirror.Type
------------------------------------------------------------------------------
mirror-Tree : ∀ {t} → Tree t → Tree (mirror · t)
mirror-Tree = Tree-mutual-ind {A} {B} hA B[] hB
where
A : D → Set
A t = Tree (mirror · t)
{-# ATP definition A #-}
B : D → Set
B ts = Forest (map mirror ts)
{-# ATP definition B #-}
postulate
hA : ∀ d {ts} → Forest ts → B ts → A (node d ts)
B[] : B []
hB : ∀ {t ts} → Tree t → A t → Forest ts → B ts → B (t ∷ ts)
{-# ATP prove hA reverse-Forest #-}
{-# ATP prove B[] #-}
{-# ATP prove hB #-}
| {
"alphanum_fraction": 0.4711375212,
"avg_line_length": 30.2051282051,
"ext": "agda",
"hexsha": "2a8b360553313e49672d3773307419a397b7dc0c",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Program/Mirror/Tree/TotalityATP.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Program/Mirror/Tree/TotalityATP.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Program/Mirror/Tree/TotalityATP.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 299,
"size": 1178
} |
------------------------------------------------------------------------
-- A universe for stream programs
------------------------------------------------------------------------
module Stream.Programs where
open import Codata.Musical.Notation renaming (∞ to ∞_)
import Stream as S
open S using (Stream; _≈_; _≺_; head; tail)
open import Relation.Binary.PropositionalEquality
open import Data.Vec using (Vec; []; _∷_)
------------------------------------------------------------------------
-- Stream programs
infix 8 _∞
infixr 7 _·_
infix 6 _⟨_⟩_
infixr 5 _≺_ _⋎_ _≺≺_
data Prog (A : Set) : Set1 where
_≺_ : (x : A) (xs : ∞ (Prog A)) → Prog A
_∞ : (x : A) → Prog A
_·_ : ∀ {B} (f : B → A) (xs : Prog B) → Prog A
_⟨_⟩_ : ∀ {B C} (xs : Prog B) (_∙_ : B → C → A) (ys : Prog C) →
Prog A
_⋎_ : (xs ys : Prog A) → Prog A
iterate : (f : A → A) (x : A) → Prog A
_≺≺_ : ∀ {n} (xs : Vec A n) (ys : Prog A) → Prog A
data WHNF A : Set1 where
_≺_ : (x : A) (xs : Prog A) → WHNF A
------------------------------------------------------------------------
-- Conversion
whnf : ∀ {A} → Prog A → WHNF A
whnf (x ≺ xs) = x ≺ ♭ xs
whnf (x ∞) = x ≺ x ∞
whnf (f · xs) with whnf xs
whnf (f · xs) | x ≺ xs′ = f x ≺ f · xs′
whnf (xs ⟨ _∙_ ⟩ ys) with whnf xs | whnf ys
whnf (xs ⟨ _∙_ ⟩ ys) | x ≺ xs′ | y ≺ ys′ = (x ∙ y) ≺ xs′ ⟨ _∙_ ⟩ ys′
whnf (xs ⋎ ys) with whnf xs
whnf (xs ⋎ ys) | x ≺ xs′ = x ≺ ys ⋎ xs′
whnf (iterate f x) = x ≺ iterate f (f x)
whnf ([] ≺≺ ys) = whnf ys
whnf ((x ∷ xs) ≺≺ ys) = x ≺ xs ≺≺ ys
mutual
value : ∀ {A} → WHNF A → Stream A
value (x ≺ xs) = x ≺ ♯ ⟦ xs ⟧
⟦_⟧ : ∀ {A} → Prog A → Stream A
⟦ xs ⟧ = value (whnf xs)
fromStream : ∀ {A} → Stream A → Prog A
fromStream (x ≺ xs) = x ≺ ♯ fromStream (♭ xs)
lift : ∀ {A} → (Prog A → Prog A) → Stream A → Stream A
lift f xs = ⟦ f (fromStream xs) ⟧
------------------------------------------------------------------------
-- Some abbreviations
infixr 5 _≺♯_
_≺♯_ : ∀ {A} → A → Prog A → Prog A
x ≺♯ xs = x ≺ ♯ xs
headP : ∀ {A} → Prog A → A
headP xs = head ⟦ xs ⟧
tailP : ∀ {A} → Prog A → Prog A
tailP xs with whnf xs
tailP xs | x ≺ xs′ = xs′
| {
"alphanum_fraction": 0.4172304917,
"avg_line_length": 28.4230769231,
"ext": "agda",
"hexsha": "56f304b28f53403ae724d5af6cc5cd09dbd842a6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/codata",
"max_forks_repo_path": "Stream/Programs.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/codata",
"max_issues_repo_path": "Stream/Programs.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/codata",
"max_stars_repo_path": "Stream/Programs.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z",
"num_tokens": 889,
"size": 2217
} |
{- Examples by Twan van Laarhoven -}
{-# OPTIONS --rewriting #-}
module _ where
open import Agda.Builtin.Equality
{-# BUILTIN REWRITE _≡_ #-}
const : ∀ {a b} {A : Set a} {B : Set b} → A → B → A
const x _ = x
_∘_ : ∀ {a b c} {A : Set a} {B : A → Set b} {C : {x : A} → B x → Set c}
→ (f : ∀ {x} (y : B x) → C y) (g : (x : A) → B x)
→ (x : A) → C (g x)
(f ∘ g) x = f (g x)
postulate M : Set → Set
postulate pure : ∀ {A} → A → M A
postulate _>>=_ : ∀ {A B} → M A → (A → M B) → M B
postulate bind-assoc : ∀ {A B C mx} {my : A → M B} {mz : B → M C} → (mx >>= my) >>= mz ≡ mx >>= \x → my x >>= mz
{-# REWRITE bind-assoc #-}
_<*>_ : ∀ {A B} → M (A → B) → M A → M B
mf <*> mx = mf >>= \f → mx >>= (pure ∘ f)
-- Agda was comparing inferred relevances here, causing the rewrite rule
-- to fail.
shouldWork : ∀ {A B} (mx : M A) (my : M B)
→ (mx >>= (pure ∘ const)) <*> my
≡ (mx >>= (pure ∘ const)) >>= (\f → my >>= (pure ∘ f))
shouldWork mx my = refl
shouldAlsoWork : ∀ {A B} (mx : M A) (my : M B)
→ (mx >>= (pure ∘ const)) <*> my
≡ (mx >>= (pure ∘ \x _ → x)) >>= (\f → my >>= (pure ∘ f))
shouldAlsoWork mx my = refl
shouldAlsoWork2 : ∀ {A B} (mx : M A) (my : M B)
→ (mx >>= (pure ∘ const)) >>= (\f → my >>= (pure ∘ f))
≡ (mx >>= (pure ∘ \x _ → x)) >>= (\f → my >>= (pure ∘ f))
shouldAlsoWork2 mx my = refl
| {
"alphanum_fraction": 0.4600903614,
"avg_line_length": 31.619047619,
"ext": "agda",
"hexsha": "2ee549468110be39c995b1a121777a1bbda0d23d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Succeed/Issue2328.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Succeed/Issue2328.agda",
"max_line_length": 114,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Succeed/Issue2328.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 554,
"size": 1328
} |
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import homotopy.PtdAdjoint
module homotopy.SuspAdjointLoopLadder where
import homotopy.SuspAdjointLoop as A
step : ∀ {i} {X Y Z : Ptd i} (f : Y ⊙→ Z)
→ CommSquareEquiv
((f ⊙∘_) :> ((⊙Susp X ⊙→ Y) → (⊙Susp X ⊙→ Z)))
(⊙Ω-fmap f ⊙∘_)
(–> (A.eq X Y))
(–> (A.eq X Z))
step f = comm-sqr (! ∘ A.nat-cod _ f) ,
snd (A.eq _ _) , snd (A.eq _ _)
rail : ∀ {i} {X Y : Ptd i} n
→ (⊙Susp^ n X ⊙→ Y) → (X ⊙→ ⊙Ω^' n Y)
rail O = idf _
rail (S n) = rail n ∘ –> (A.eq _ _)
ladder : ∀ {i} {X Y Z : Ptd i} n (f : Y ⊙→ Z)
→ CommSquareEquiv
((f ⊙∘_) :> ((⊙Susp^ n X ⊙→ Y) → (⊙Susp^ n X ⊙→ Z)))
(⊙Ω^'-fmap n f ⊙∘_)
(rail n)
(rail n)
ladder O _ = (comm-sqr λ _ → idp) , idf-is-equiv _ , idf-is-equiv _
ladder (S n) f = CommSquareEquiv-∘v (ladder n (⊙Ω-fmap f)) (step f)
| {
"alphanum_fraction": 0.4791208791,
"avg_line_length": 28.4375,
"ext": "agda",
"hexsha": "711c1a7981d648d01192866e5ddb973358741d3c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "theorems/homotopy/SuspAdjointLoopLadder.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "theorems/homotopy/SuspAdjointLoopLadder.agda",
"max_line_length": 69,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "theorems/homotopy/SuspAdjointLoopLadder.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 416,
"size": 910
} |
{-# OPTIONS --rewriting --without-K #-}
open import Agda.Primitive
open import Prelude
open import GSeTT.Syntax
open import GSeTT.Rules
open import GSeTT.CwF-structure
open import GSeTT.Uniqueness-Derivations
{- Typed syntax for type theory for globular sets -}
module GSeTT.Typed-Syntax where
Ctx : Set₁
Ctx = Σ Pre-Ctx (λ Γ → Γ ⊢C)
Ty : Ctx → Set₁
Ty (Γ , _) = Σ Pre-Ty (λ A → Γ ⊢T A)
Tm : ∀ (Γ : Ctx) → Ty Γ → Set₁
Tm (Γ , _) (A , _) = Σ Pre-Tm (λ t → Γ ⊢t t # A)
Sub : ∀ (Δ : Ctx) (Γ : Ctx) → Set₁
Sub (Δ , _) (Γ , _) = Σ Pre-Sub (λ γ → Δ ⊢S γ > Γ)
eqC : ∀ (Γ Δ : Ctx) → fst Γ == fst Δ → Γ == Δ
eqC (Γ , Γ⊢) (.Γ , Γ⊢') idp = Σ= idp (has-all-paths-⊢C _ _)
eqT : ∀ {Γ} (A B : Ty Γ) → fst A == fst B → A == B
eqT (A , Γ⊢A) (.A , Γ⊢'A) idp = Σ= idp (has-all-paths-⊢T _ _)
eqt : ∀ {Γ A} (t u : Tm Γ A) → fst t == fst u → t == u
eqt (t , Γ⊢t:A) (.t , Γ⊢':A) idp = Σ= idp (has-all-paths-⊢t _ _)
eqS : ∀ {Γ Δ} (γ δ : Sub Γ Δ) → fst γ == fst δ → γ == δ
eqS (γ , Γ⊢γ:Δ) (.γ , Γ⊢'γ:Δ) idp = Σ= idp (has-all-paths-⊢S _ _)
trS : ∀ {Γ Δ Θ : Ctx} → (p : Δ == Θ) → {γ : Sub Γ Δ} → {δ : Sub Γ Θ} → fst γ == fst δ → transport p γ == δ
trS {Γ} {Δ} {Θ} idp {γ} {δ} x = eqS {Γ} {Θ} γ δ x
eqdec-Ty : ∀ Γ → eqdec (Ty Γ)
eqdec-Ty Γ (A , Γ⊢A) (B , Γ⊢B) with eqdec-PreTy A B
... | inl idp = inl (eqT {Γ} (A , Γ⊢A) (B , Γ⊢B) idp)
... | inr A≠B = inr λ p → A≠B (fst-is-inj p)
is-set-Ty : ∀ Γ → is-set (Ty Γ)
is-set-Ty Γ = eqdec-is-set (eqdec-Ty Γ)
| {
"alphanum_fraction": 0.4993261456,
"avg_line_length": 32.2608695652,
"ext": "agda",
"hexsha": "067a652df04367267bc7303c5c5d3faa62df2f68",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thibautbenjamin/catt-formalization",
"max_forks_repo_path": "GSeTT/Typed-Syntax.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thibautbenjamin/catt-formalization",
"max_issues_repo_path": "GSeTT/Typed-Syntax.agda",
"max_line_length": 108,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thibautbenjamin/catt-formalization",
"max_stars_repo_path": "GSeTT/Typed-Syntax.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 764,
"size": 1484
} |
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module Issue15 where
infix 7 _≡_
infixr 5 _∧_
infix 5 ∃
infixr 4 _∨_
data _∨_ (A B : Set) : Set where
inj₁ : A → A ∨ B
inj₂ : B → A ∨ B
data _∧_ (A B : Set) : Set where
_,_ : A → B → A ∧ B
postulate
D : Set
_·_ : D → D → D
succ : D → D
zero : D
data ∃ (A : D → Set) : Set where
_,_ : (t : D) → A t → ∃ A
syntax ∃ (λ x → e) = ∃[ x ] e
data _≡_ (x : D) : D → Set where
refl : x ≡ x
postulate Conat : D → Set
postulate
Conat-out : ∀ {n} → Conat n → n ≡ zero ∨ (∃[ n' ] n ≡ succ n' ∧ Conat n')
{-# ATP axiom Conat-out #-}
postulate
Conat-coind :
(A : D → Set) →
-- A is post-fixed point of NatF.
(∀ {n} → A n → n ≡ zero ∨ (∃[ n' ] n ≡ succ n' ∧ A n')) →
-- Conat is greater than A.
∀ {n} → A n → Conat n
-- See Issue #81.
A : D → Set
A n = n ≡ zero ∨ (∃[ n' ] n ≡ succ n' ∧ Conat n')
{-# ATP definition A #-}
Conat-in : ∀ {n} →
n ≡ zero ∨ (∃[ n' ] n ≡ succ n' ∧ Conat n') →
Conat n
Conat-in h = Conat-coind A h' h
where
postulate h' : ∀ {n} → A n → n ≡ zero ∨ (∃[ n' ] n ≡ succ n' ∧ A n')
{-# ATP prove h' #-}
| {
"alphanum_fraction": 0.4625098658,
"avg_line_length": 21.1166666667,
"ext": "agda",
"hexsha": "17b82cac96d153aa452bd030caba0d3afbf7a868",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z",
"max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/apia",
"max_forks_repo_path": "test/Succeed/fol-theorems/Issue15.agda",
"max_issues_count": 121,
"max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/apia",
"max_issues_repo_path": "test/Succeed/fol-theorems/Issue15.agda",
"max_line_length": 75,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/apia",
"max_stars_repo_path": "test/Succeed/fol-theorems/Issue15.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z",
"num_tokens": 528,
"size": 1267
} |
module Category.Comma where
open import Level
open import Data.Product
open import Category.Core
open import Relation.Binary as B using ()
open import Relation.Binary.Indexed
open import Relation.Binary.Indexed.Extra
open import Relation.Binary.PropositionalEquality as PropEq using (_≡_; refl)
_/_ : ∀ {𝒸 ℓ} → (C : Category 𝒸 ℓ) → (b : Category.Object C) → Category 𝒸 ℓ
_/_ {𝒸} {ℓ} C b = record
{ Objects = SliceObjectSetoid
; Morphisms = SliceMorphismStructure
}
where
open Category C
module ObjEq = B.IsEquivalence (B.Setoid.isEquivalence Objects)
module MorphEq = IsEquivalence (MorphismStructure.isEquivalence Morphisms)
SliceObject-≈ : B.Rel hom[-, b ] ℓ
SliceObject-≈ (x , x→b) (y , y→b) = Σ[ x≈y ∈ x ≈o y ] x→b ≈ y→b
SliceObject-≈-Symmetric : B.Symmetric SliceObject-≈
SliceObject-≈-Symmetric (≈src , f≈g) = (ObjEq.sym ≈src) , MorphEq.sym f≈g
SliceObject-≈-Transitive : B.Transitive SliceObject-≈
SliceObject-≈-Transitive (≈src₁ , f≈g) (≈src₂ , g≈h) =
(ObjEq.trans ≈src₁ ≈src₂) , (MorphEq.trans f≈g g≈h)
SliceObject-≈-IsEquivalence : B.IsEquivalence SliceObject-≈
SliceObject-≈-IsEquivalence = record
{ refl = ObjEq.refl , MorphEq.refl
; sym = SliceObject-≈-Symmetric
; trans = SliceObject-≈-Transitive
}
SliceObjectSetoid : B.Setoid 𝒸 ℓ
SliceObjectSetoid = record
{ Carrier = hom[-, b ]
; _≈_ = SliceObject-≈
; isEquivalence = SliceObject-≈-IsEquivalence
}
record SliceMorphism (src tar : hom[-, b ]) : Set 𝒸 where
source : Object
source = proj₁ src
target : Object
target = proj₁ tar
field
morphism : source ⇒ target
SliceMorphism-≈ : Rel (uncurry SliceMorphism) ℓ
SliceMorphism-≈ {f-src , f-tar} {g-src , g-tar} f g =
Σ[ source-≈ ∈ SliceObject-≈ f-src g-src ]
Σ[ target-≈ ∈ SliceObject-≈ f-tar g-tar ]
morphism f ≈ morphism g
where
open SliceMorphism
module SliceObjectEq = B.IsEquivalence SliceObject-≈-IsEquivalence
SliceMorphism-≈-Symmetric : Symmetric (uncurry SliceMorphism) SliceMorphism-≈ -- Symmetric SliceMorphism-≈ ?
SliceMorphism-≈-Symmetric (≈src₁ , ≈src₂ , f≈g) =
SliceObjectEq.sym ≈src₁ , SliceObjectEq.sym ≈src₂ , MorphEq.sym f≈g
SliceMorphism-≈-Transitive : Transitive (uncurry SliceMorphism) SliceMorphism-≈ -- Symmetric SliceMorphism-≈ ?
SliceMorphism-≈-Transitive (≈src₁ , ≈src₂ , f≈g) (≈src₃ , ≈src₄ , g≈h) =
SliceObjectEq.trans ≈src₁ ≈src₃ ,
SliceObjectEq.trans ≈src₂ ≈src₄ ,
MorphEq.trans f≈g g≈h
SliceMorphism-≈-IsEquivalence : IsEquivalence (uncurry SliceMorphism) SliceMorphism-≈
SliceMorphism-≈-IsEquivalence = record
{ refl = SliceObjectEq.refl , SliceObjectEq.refl , MorphEq.refl
; sym = λ {i} {j} {f} {g} → SliceMorphism-≈-Symmetric {i} {j} {f} {g}
; trans = λ {i} {j} {k} {f} {g} {h} → SliceMorphism-≈-Transitive {i} {j} {k} {f} {g} {h} --
}
Slice-∘ : ∀ {a b c}
→ SliceMorphism b c
→ SliceMorphism a b
→ SliceMorphism a c
Slice-∘ f g = record { morphism = morphism f ∘ morphism g }
where open SliceMorphism
Slice-id : ∀ a → SliceMorphism a a
Slice-id (a , _) = record { morphism = id a }
SliceMorphismIsMorphism : IsMorphism SliceMorphism-≈ Slice-∘ Slice-id
SliceMorphismIsMorphism = record
{ assoc = λ f g h → SliceObjectEq.refl , SliceObjectEq.refl , assoc (morphism f) (morphism g) (morphism h)
; left-identity = λ f → SliceObjectEq.refl , SliceObjectEq.refl , left-identity (morphism f)
; right-identity = λ f → SliceObjectEq.refl , SliceObjectEq.refl , right-identity (morphism f)
; cong = λ {x} {y} {u} {v} x≈y u≈v → proj₁ u≈v , proj₁ (proj₂ x≈y) , cong (proj₂ (proj₂ x≈y)) (proj₂ (proj₂ u≈v))
}
where
open IsMorphism isMorphism
open SliceMorphism
open import Relation.Binary.Indexed.SetoidReasoning
SliceMorphismStructure : MorphismStructure 𝒸 ℓ hom[-, b ]
SliceMorphismStructure = record
{ Carrier = uncurry SliceMorphism
; _≈_ = SliceMorphism-≈
; isEquivalence = SliceMorphism-≈-IsEquivalence
; _∘_ = Slice-∘
; id = Slice-id
; isMorphism = SliceMorphismIsMorphism
}
module Comma
{𝒸₀ ℓ₀ 𝒸₁ ℓ₁ 𝒸₂ ℓ₂ : Level}
{C : Category 𝒸₀ ℓ₀} {D : Category 𝒸₁ ℓ₁} {E : Category 𝒸₂ ℓ₂}
(S : Functor C E) (T : Functor D E)
where
module C = Category C
module D = Category D
module S = Functor S
module T = Functor T
open Category E
module ObjEq = B.IsEquivalence (B.Setoid.isEquivalence Objects)
module MorphEq = IsEquivalence (MorphismStructure.isEquivalence Morphisms)
record CommaObject : Set (𝒸₀ ⊔ 𝒸₁ ⊔ 𝒸₂ ⊔ ℓ₂) where
field
source : C.Object
target : D.Object
morphism : S.mapObject source ⇒ T.mapObject target
open CommaObject
CommaObject-≈ : B.Rel CommaObject ℓ₂
CommaObject-≈ f g =
Σ[ source-≈ ∈ S.mapObject (source f) ≈o S.mapObject (source g) ]
Σ[ target-≈ ∈ T.mapObject (target f) ≈o T.mapObject (target g) ]
morphism f ≈ morphism g
CommaObject-≈-Symmetric : B.Symmetric CommaObject-≈
CommaObject-≈-Symmetric (source-≈ , target-≈ , f≈g) =
(ObjEq.sym source-≈) , (ObjEq.sym target-≈) , (MorphEq.sym f≈g)
CommaObject-≈-Transitive : B.Transitive CommaObject-≈
CommaObject-≈-Transitive (source-≈₁ , target-≈₁ , f≈g) (source-≈₂ , target-≈₂ , g≈h)
= (ObjEq.trans source-≈₁ source-≈₂) ,
(ObjEq.trans target-≈₁ target-≈₂) ,
(MorphEq.trans f≈g g≈h)
CommaObject-≈-IsEquivalence : B.IsEquivalence CommaObject-≈
CommaObject-≈-IsEquivalence = record
{ refl = ObjEq.refl , ObjEq.refl , MorphEq.refl
; sym = λ {i} {f} → CommaObject-≈-Symmetric {i} {f}
; trans = λ {f} {g} {h} → CommaObject-≈-Transitive {f} {g} {h}
}
CommaObjects : B.Setoid (𝒸₀ ⊔ 𝒸₁ ⊔ 𝒸₂ ⊔ ℓ₂) ℓ₂
CommaObjects = record
{ Carrier = CommaObject
; _≈_ = CommaObject-≈
; isEquivalence = CommaObject-≈-IsEquivalence
}
record CommaMorphism (src : CommaObject) (tar : CommaObject) : Set (𝒸₀ ⊔ 𝒸₁ ⊔ 𝒸₂ ⊔ ℓ₂) where
module SRC = CommaObject src
module TAR = CommaObject tar
field
morphismBetweenSources : S.mapObject SRC.source ⇒ S.mapObject TAR.source
morphismBetweenTargets : T.mapObject SRC.target ⇒ T.mapObject TAR.target
commutes : TAR.morphism ∘ morphismBetweenSources ≈ morphismBetweenTargets ∘ SRC.morphism
open CommaMorphism public
CommaMorphism-≈ : Rel (uncurry CommaMorphism) ℓ₂
CommaMorphism-≈ f g =
(morphismBetweenSources f ≈ morphismBetweenSources g) ×
(morphismBetweenTargets f ≈ morphismBetweenTargets g)
CommaMorphism-≈-Symmetric : Symmetric (uncurry CommaMorphism) CommaMorphism-≈
CommaMorphism-≈-Symmetric (source-≈ , target-≈) = (MorphEq.sym source-≈) , (MorphEq.sym target-≈)
CommaMorphism-≈-Transitive : Transitive (uncurry CommaMorphism) CommaMorphism-≈
CommaMorphism-≈-Transitive (source₁-≈ , target₁-≈) (source₂-≈ , target₂-≈) =
(MorphEq.trans source₁-≈ source₂-≈) , (MorphEq.trans target₁-≈ target₂-≈)
CommaMorphism-≈-IsEquivalence : IsEquivalence (uncurry CommaMorphism) CommaMorphism-≈
CommaMorphism-≈-IsEquivalence = record
{ refl = MorphEq.refl , MorphEq.refl
; sym = λ {i} {j} {f} {g} → CommaMorphism-≈-Symmetric {i} {j} {f} {g}
; trans = λ {i} {j} {k} {f} {g} {h} → CommaMorphism-≈-Transitive {i} {j} {k} {f} {g} {h}
}
Comma-∘ : ∀ {a b c}
→ CommaMorphism b c
→ CommaMorphism a b
→ CommaMorphism a c
Comma-∘ {a} {b} {c} f g = record
{ morphismBetweenSources = morphismBetweenSources f ∘ morphismBetweenSources g
; morphismBetweenTargets = morphismBetweenTargets f ∘ morphismBetweenTargets g
; commutes =
begin⟨ setoid ⟩
morphism c ∘ (morphismBetweenSources f ∘ morphismBetweenSources g)
≈⟨ sym (assoc (morphismBetweenSources g) (morphismBetweenSources f) (morphism c)) ⟩
(morphism c ∘ morphismBetweenSources f) ∘ morphismBetweenSources g
≈⟨ cong (commutes f) MorphEq.refl ⟩
(morphismBetweenTargets f ∘ morphism b) ∘ morphismBetweenSources g
≈⟨ assoc (morphismBetweenSources g) (morphism b) (morphismBetweenTargets f) ⟩
morphismBetweenTargets f ∘ (morphism b ∘ morphismBetweenSources g)
≈⟨ cong MorphEq.refl (commutes g) ⟩
morphismBetweenTargets f ∘ (morphismBetweenTargets g ∘ morphism a)
≈⟨ sym (assoc (morphism a) (morphismBetweenTargets g) (morphismBetweenTargets f)) ⟩
(morphismBetweenTargets f ∘ morphismBetweenTargets g) ∘ morphism a
∎
}
where
open CommaMorphism
open import Relation.Binary.Indexed.SetoidReasoning
open IsMorphism isMorphism
open IsEquivalence (MorphismStructure.isEquivalence Morphisms)
Comma-id : ∀ a → CommaMorphism a a
Comma-id a = record
{ morphismBetweenSources = id (S.mapObject (source a))
; morphismBetweenTargets = id (T.mapObject (target a))
; commutes =
begin⟨ setoid ⟩
morphism a ∘ id (S.mapObject (source a))
≈⟨ right-identity (morphism a) ⟩
morphism a
≈⟨ sym (left-identity (morphism a)) ⟩
id (T.mapObject (target a)) ∘ morphism a
∎
}
where
open IsMorphism isMorphism
open import Relation.Binary.Indexed.SetoidReasoning
open IsEquivalence (MorphismStructure.isEquivalence Morphisms)
CommaMorphismIsMorphism : IsMorphism CommaMorphism-≈ Comma-∘ Comma-id
CommaMorphismIsMorphism = record
{ assoc = λ f g h →
assoc (morphismBetweenSources f) (morphismBetweenSources g) (morphismBetweenSources h) ,
assoc (morphismBetweenTargets f) (morphismBetweenTargets g) (morphismBetweenTargets h)
; left-identity = λ f → (left-identity (morphismBetweenSources f)) , (left-identity (morphismBetweenTargets f))
; right-identity = λ f → (right-identity (morphismBetweenSources f)) , (right-identity (morphismBetweenTargets f))
; cong = λ x≈y u≈v → (cong (proj₁ x≈y) (proj₁ u≈v)) , (cong (proj₂ x≈y) (proj₂ u≈v))
}
where open IsMorphism isMorphism
CommaMorphisms : MorphismStructure (𝒸₀ ⊔ 𝒸₁ ⊔ 𝒸₂ ⊔ ℓ₂) ℓ₂ CommaObject
CommaMorphisms = record
{ Carrier = uncurry CommaMorphism
; _≈_ = CommaMorphism-≈
; isEquivalence = CommaMorphism-≈-IsEquivalence
; _∘_ = Comma-∘
; id = Comma-id
; isMorphism = CommaMorphismIsMorphism
}
-- S T
-- C --> E <-- D
--
_↓_ : {𝒸₀ ℓ₀ 𝒸₁ ℓ₁ 𝒸₂ ℓ₂ : Level}
{C : Category 𝒸₀ ℓ₀} {D : Category 𝒸₁ ℓ₁} {E : Category 𝒸₂ ℓ₂}
→ (S : Functor C E) → (T : Functor D E)
→ Category (𝒸₀ ⊔ 𝒸₁ ⊔ 𝒸₂ ⊔ ℓ₂) ℓ₂
S ↓ T = record
{ Objects = Comma'.CommaObjects
; Morphisms = Comma'.CommaMorphisms
}
where
module Comma' = Comma S T
| {
"alphanum_fraction": 0.6021772673,
"avg_line_length": 41.964028777,
"ext": "agda",
"hexsha": "6ebd03b637f27e8728ccd7a114d7aa5ecd64cdd9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9f6d933b227aecab338ecaef1d86566a54fdac68",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "banacorn/categories",
"max_forks_repo_path": "src/Category/Comma.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9f6d933b227aecab338ecaef1d86566a54fdac68",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "banacorn/categories",
"max_issues_repo_path": "src/Category/Comma.agda",
"max_line_length": 125,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9f6d933b227aecab338ecaef1d86566a54fdac68",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "banacorn/categories",
"max_stars_repo_path": "src/Category/Comma.agda",
"max_stars_repo_stars_event_max_datetime": "2018-01-04T23:19:30.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-01-04T23:19:30.000Z",
"num_tokens": 3865,
"size": 11666
} |
{-# OPTIONS --cubical --no-import-sorts #-}
module Utils where -- thing that currently do not belong anywhere and do not have many dependencies
open import Agda.Primitive renaming (_⊔_ to ℓ-max; lsuc to ℓ-suc; lzero to ℓ-zero)
private
variable
ℓ ℓ' ℓ'' : Level
open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc)
open import Cubical.Relation.Nullary.Base -- ¬_
open import Cubical.Relation.Binary.Base
open import Cubical.Data.Sum.Base renaming (_⊎_ to infixr 4 _⊎_)
open import Cubical.Data.Sigma.Base renaming (_×_ to infixr 4 _×_)
open import Cubical.Data.Empty renaming (elim to ⊥-elim) -- `⊥` and `elim`
⊎-swap : ∀{x : Type ℓ} {y : Type ℓ'} → x ⊎ y → y ⊎ x
⊎-swap (inl x) = inr x
⊎-swap (inr x) = inl x
swap : ∀{x : Type ℓ} {y : Type ℓ'} → x × y → y × x
swap (x , y) = (y , x)
curry : ∀{ℓ ℓ' ℓ''} {A : Type ℓ} {B : A → Type ℓ'} {C : (a : A) → (b : B a) → Type ℓ''}
→ ((p : Σ A B) → C (fst p) (snd p))
→ ((x : A) → (y : B x) → C x y)
curry f x y = f (x , y)
-- NOTE: this is non-hProp logic
-- contraposition : {P : Type ℓ} {Q : Type ℓ'} → (P → Q) → ¬ Q → ¬ P
-- contraposition f ¬q p = ⊥-elim (¬q (f p))
deMorgan₂' : {P : Type ℓ} {Q : Type ℓ'} → ¬(P ⊎ Q) → (¬ P) × (¬ Q)
deMorgan₂' {P = P} {Q = Q} ¬[p⊎q] = (λ p → ⊥-elim (¬[p⊎q] (inl p))) , λ q → ⊥-elim (¬[p⊎q] (inr q))
deMorgan₂-back' : {P : Type ℓ} {Q : Type ℓ'} → (¬ P) × (¬ Q) → ¬(P ⊎ Q)
deMorgan₂-back' (¬p , ¬q) (inl p) = ¬p p
deMorgan₂-back' (¬p , ¬q) (inr q) = ¬q q
-- hPropRel : ∀ {ℓ} (A B : Type ℓ) (ℓ' : Level) → Type (ℓ-max ℓ (ℓ-suc ℓ'))
-- hPropRel A B ℓ' = A → B → hProp ℓ'
{- NOTE: there is also `Relation.Binary.PropositionalEquality` where they write:
-- Inspect can be used when you want to pattern match on the result r
-- of some expression e, and you also need to "remember" that r ≡ e.
-- See README.Inspect for an explanation of how/why to use this.
record Reveal_·_is_ {A : Set a} {B : A → Set b}
(f : (x : A) → B x) (x : A) (y : B x) :
Set (a ⊔ b) where
constructor [_]
field eq : f x ≡ y
inspect : ∀ {A : Set a} {B : A → Set b}
(f : (x : A) → B x) (x : A) → Reveal f · x is f x
inspect f x = [ refl ]
-}
{- NOTE: an example is
plus-eq-with : ∀ m n → Plus-eq m n (m + n)
plus-eq-with m n with m + n | inspect (m +_) n
... | zero | [ m+n≡0 ] = m+n≡0⇒m≡0 m m+n≡0 , m+n≡0⇒n≡0 m m+n≡0
... | suc p | [ m+n≡1+p ] = m+n≡1+p
-} -- so this looks like a mechanism for "@-pattern-disribution over `with` cases"
record !_ {ℓ} (X : Type ℓ) : Type ℓ where
inductive
constructor !!_ -- map "into" `!!_ : X → ! X`
field !!!_ : X -- map "out of" `!!!_ : ! X → X`
infix 1 !!!_
open !_ public -- brings !!!_ into scope
infix 1 !!_
infix 1 !_
!-iso : ∀{ℓ} {X : Type ℓ} → Iso (! X) X
Iso.fun !-iso = !!!_
Iso.inv !-iso = !!_
Iso.rightInv !-iso = λ x → refl
Iso.leftInv !-iso = λ{ (!! x) → refl }
!-≡ : ∀{ℓ} {X : Type ℓ} → (! X) ≡ X
!-≡ {X = X} = isoToPath !-iso
!-equiv : ∀{ℓ} {X : Type ℓ} → (! X) ≃ X
!-equiv = !!!_ , λ where .equiv-proof x → ((!! x) , refl) , λ{ ((!! y) , p) → λ i → (!! p (~ i)) , (λ j → p (~ i ∨ j)) }
-- `A unfold refl to B` checks `A` and `B` to be definitionally equal (with `refl`) and then uses `B`
-- this allows for a nicer Goal/Have at the very beginning of implementing and when using something
unfold' : ∀{ℓ A} → (x y : A) → _≡_ {ℓ} x y → _
unfold' x y p = y
infix -8 unfold'
syntax unfold' x y p = x unfold p to y
{-# DISPLAY unfold' x y p = p #-}
| {
"alphanum_fraction": 0.5353276353,
"avg_line_length": 34.4117647059,
"ext": "agda",
"hexsha": "04fac9552d42599d28b21558390cccad1403351d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mchristianl/synthetic-reals",
"max_forks_repo_path": "agda/Utils.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mchristianl/synthetic-reals",
"max_issues_repo_path": "agda/Utils.agda",
"max_line_length": 120,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mchristianl/synthetic-reals",
"max_stars_repo_path": "agda/Utils.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z",
"num_tokens": 1453,
"size": 3510
} |
{-# OPTIONS --allow-unsolved-metas #-}
module _ where
open import Agda.Builtin.Nat
open import Agda.Builtin.List
open import Agda.Builtin.Unit
open import Agda.Builtin.Sigma
_×_ : Set → Set → Set
A × B = Σ A λ _ → B
data Vec (A : Set) : Nat → Set where
[] : Vec A 0
_∷_ : ∀ {n} → A → Vec A n → Vec A (suc n)
data All {A : Set} (P : A → Set) : List A → Set where
[] : All P []
_∷_ : ∀ {x xs} → P x → All P xs → All P (x ∷ xs)
data Ty : Set where
module Code where
Schema : List Nat → Set
Schema = All (λ k → Vec Ty k × Ty)
data Binder : Set where
bound unbound : Binder
Shape : Nat → Set
Shape n = List (Vec Binder n)
data Code : Set₁ where
sg : (A : Set) → (A → Code) → Code
node : (n : Nat) (shape : Shape n) (wt : Vec Ty n → All (λ _ → Ty) shape → Ty → Set) → Code
module Ctx where
infixr 4 _,_
data Ctx : Set where
∅ : Ctx
_,_ : Ctx → Ty → Ctx
_<><_ : Ctx → List Ty → Ctx
Γ <>< [] = Γ
Γ <>< (t ∷ ts) = (Γ , t) <>< ts
module Typed (code : Code.Code) where
open Code
open Ctx
visible : ∀ {n} → Vec Binder n → Vec Ty n → List Ty
visible [] [] = []
visible (bound ∷ bs) (t ∷ ts) = t ∷ visible bs ts
visible (unbound ∷ bs) (_ ∷ ts) = visible bs ts
mutual
data Tm (Γ : Ctx) : Ty → Set where
data Con (Γ : Ctx) (t : Ty) : Code → Set where
sg : ∀ {A c} x → Con Γ t (c x) → Con Γ t (sg A c)
node : ∀ {n shape wt} (ts₀ : Vec Ty n) {ts : All (λ _ → Ty) shape} (es : Children Γ ts₀ ts) →
{{_ : wt ts₀ ts t}} → Con Γ t (node n shape wt)
data Children (Γ : Ctx) {n : Nat} (ts₀ : Vec Ty n) : {sh : Shape n} → All (λ _ → Ty) sh → Set where
[] : Children Γ ts₀ []
_∷_ : ∀ {bs sh t ts} → Tm (Γ <>< visible bs ts₀) t → Children Γ ts₀ {sh} ts → Children Γ ts₀ {bs ∷ sh} (t ∷ ts)
module Sem₀ (P : Ctx → Ty → Set) where
children : ∀ {n} (Γ : Ctx) (ts₀ : Vec Ty n) (shape : List (Vec Binder n)) (ts : All (λ _ → Ty) shape) → Set
children Γ ts₀ [] [] = ⊤
children Γ ts₀ (bs ∷ bss) (t ∷ ts) = P (Γ <>< visible bs ts₀ ) t × children Γ ts₀ bss ts
aux : Code → Set
aux (sg A k) = (x : A) → aux (k x)
aux (node n shape wt) = ∀ {Γ t} {ts₀ ts} → children Γ ts₀ shape ts → wt ts₀ ts t → P Γ t
Sem : (P : Ctx → Ty → Set) → Set
Sem P = Sem₀.aux P code
open Code
data Phase : Set where
input : Phase
data `STLC : Phase → Set where
`let : `STLC input
STLC : Phase → Code
STLC p = sg (`STLC p) aux
where
aux : `STLC p → Code
aux `let = node 1 ((bound ∷ []) ∷ []) λ { (t₀ ∷ _) (t₁ ∷ _) t → ⊤ }
open Ctx
open Typed (STLC input) using (Sem)
ap : Sem λ Γ t → Nat
ap = λ where `let → {!!}
| {
"alphanum_fraction": 0.5271493213,
"avg_line_length": 26.2574257426,
"ext": "agda",
"hexsha": "945e574caf43c6f4e75042d7cdca1d8b6feaffb4",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue2883.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue2883.agda",
"max_line_length": 117,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue2883.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 1035,
"size": 2652
} |
postulate
A : Set
record R : Set where
field
a : A
b : A
b = a
open R
test : A
test = b
| {
"alphanum_fraction": 0.5294117647,
"avg_line_length": 7.8461538462,
"ext": "agda",
"hexsha": "f068ff656d78817cd0ab5e2985d0ecd8a610dfb7",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue3566-2.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue3566-2.agda",
"max_line_length": 20,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue3566-2.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 43,
"size": 102
} |
module IsFormula where
open import Formula
data IsFormula : Formula → Set
where
⟨_⟩ : (φ : Formula) → IsFormula φ
| {
"alphanum_fraction": 0.7,
"avg_line_length": 13.3333333333,
"ext": "agda",
"hexsha": "c79a2641e82bcc87f26ecec553b3a629d36939fe",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-1/IsFormula.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-1/IsFormula.agda",
"max_line_length": 35,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-1/IsFormula.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 35,
"size": 120
} |
module LC.Parallel where
open import LC.Base
open import LC.Subst
open import LC.Reduction
open import Data.Nat
open import Relation.Binary.Construct.Closure.ReflexiveTransitive
-- parallel β-reduction
infix 3 _β⇒_
data _β⇒_ : Term → Term → Set where
β-var : {n : ℕ} → var n β⇒ var n
β-ƛ : ∀ {M M'} → (M⇒M' : M β⇒ M') → ƛ M β⇒ ƛ M'
β-∙ : ∀ {M M' N N'} → (M⇒M' : M β⇒ M') → (N⇒N' : N β⇒ N') → M ∙ N β⇒ M' ∙ N'
β-ƛ-∙ : ∀ {M M' N N'} → (M⇒M' : M β⇒ M') → (N⇒N' : N β⇒ N') → (ƛ M) ∙ N β⇒ M' [ N' ]
-- properties
β⇒identity : ∀ {M} → M β⇒ M
β⇒identity {var x} = β-var
β⇒identity {ƛ M} = β-ƛ β⇒identity
β⇒identity {M ∙ N} = β-∙ β⇒identity β⇒identity
to-parallel : ∀ {M N} → M β→ N → M β⇒ N
to-parallel β-ƛ-∙ = β-ƛ-∙ β⇒identity β⇒identity
to-parallel (β-ƛ M→N) = β-ƛ (to-parallel M→N)
to-parallel (β-∙-l M→N) = β-∙ (to-parallel M→N) β⇒identity
to-parallel (β-∙-r M→N) = β-∙ β⇒identity (to-parallel M→N)
from-parallel : ∀ {M N} → M β⇒ N → M β→* N
from-parallel β-var = ε
from-parallel (β-ƛ M⇒N) = cong-ƛ (from-parallel M⇒N)
from-parallel (β-∙ M⇒M' N⇒N') = cong-∙ (from-parallel M⇒M') (from-parallel N⇒N')
from-parallel (β-ƛ-∙ M⇒M' N⇒N') = return β-ƛ-∙ ◅◅ cong-[] (from-parallel M⇒M') (from-parallel N⇒N')
open import Relation.Binary.PropositionalEquality hiding ([_]; preorder)
≡⇒β⇒ : ∀ {M N} → M ≡ N → M β⇒ N
≡⇒β⇒ refl = β⇒identity
module Cong where
open import LC.Subst.Term
open import LC.Subst.Var
β⇒cong-lift-ƛ : ∀ {n i M M' N N'} → M β⇒ M' → N β⇒ N' → (ƛ lift (suc n) i M) ∙ lift n i N β⇒ lift n i (M' [ N' ])
β⇒cong-lift-ƛ β-var N→N' = {! !}
β⇒cong-lift-ƛ (β-ƛ M→M') N→N' = {! !}
β⇒cong-lift-ƛ (β-∙ M→M' M→M'') N→N' = {! !}
β⇒cong-lift-ƛ (β-ƛ-∙ M→M' M→M'') N→N' = {! !}
β⇒cong-lift : ∀ {n i M N} → M β⇒ N → lift n i M β⇒ lift n i N
β⇒cong-lift β-var = β-var
β⇒cong-lift (β-ƛ M→N) = β-ƛ (β⇒cong-lift M→N)
β⇒cong-lift (β-∙ M→M' N→N') = β-∙ (β⇒cong-lift M→M') (β⇒cong-lift N→N')
β⇒cong-lift (β-ƛ-∙ M→M' N→N') = β⇒cong-lift-ƛ M→M' N→N'
β⇒cong-subst-var-match : ∀ {n i M N} → M β⇒ N → subst-var (match n i) M β⇒ subst-var (match n i) N
β⇒cong-subst-var-match {n} {i} M→N with match n i
... | Under n<i = β-var
... | Exact n≡i = β⇒cong-lift M→N
... | Above v v≥i = β-var
open import Relation.Binary.PropositionalEquality hiding ([_]; preorder)
module Temp where
lemma-1 : ∀ i m n o → (ƛ subst-var (match m (suc i)) (var n)) ∙ subst-var (match o i) (var n) ≡ (var m) [ var o ] [ var n / i ]
lemma-1 i m n o with match m (suc i)
... | Under m<i+1 = {! !}
... | Exact m≡i+1 = {! !}
... | Above v v≥i+1 = {! !}
lemma-1-1 : ∀ i m n → subst-var (match m (suc i)) (var n) β⇒ {! !}
lemma-1-1 i m n = {! !}
β⇒cong-[]-ƛ-∙ : ∀ {i M M' N N' O O'} → M β⇒ M' → N β⇒ N' → O β⇒ O' → (ƛ M [ O / suc i ]) ∙ N [ O / i ] β⇒ (M' [ N' ]) [ O' / i ]
β⇒cong-[]-ƛ-∙ {zero} (β-var {n}) (β-var {m}) (β-var {o}) = {! !}
β⇒cong-[]-ƛ-∙ {suc i} (β-var {n}) (β-var {m}) (β-var {o}) = {! !}
β⇒cong-[]-ƛ-∙ β-var β-var (β-ƛ O→O') = {! !}
β⇒cong-[]-ƛ-∙ β-var β-var (β-∙ O→O' O→O'') = {! !}
β⇒cong-[]-ƛ-∙ β-var β-var (β-ƛ-∙ O→O' O→O'') = {! !}
β⇒cong-[]-ƛ-∙ β-var (β-ƛ N→N') β-var = {! !}
β⇒cong-[]-ƛ-∙ β-var (β-ƛ N→N') (β-ƛ O→O') = {! !}
β⇒cong-[]-ƛ-∙ β-var (β-ƛ N→N') (β-∙ O→O' O→O'') = {! !}
β⇒cong-[]-ƛ-∙ β-var (β-ƛ N→N') (β-ƛ-∙ O→O' O→O'') = {! !}
β⇒cong-[]-ƛ-∙ β-var (β-∙ N→N' N→N'') β-var = {! !}
β⇒cong-[]-ƛ-∙ β-var (β-∙ N→N' N→N'') (β-ƛ O→O') = {! !}
β⇒cong-[]-ƛ-∙ β-var (β-∙ N→N' N→N'') (β-∙ O→O' O→O'') = {! !}
β⇒cong-[]-ƛ-∙ β-var (β-∙ N→N' N→N'') (β-ƛ-∙ O→O' O→O'') = {! !}
β⇒cong-[]-ƛ-∙ β-var (β-ƛ-∙ N→N' N→N'') β-var = {! !}
β⇒cong-[]-ƛ-∙ β-var (β-ƛ-∙ N→N' N→N'') (β-ƛ O→O') = {! !}
β⇒cong-[]-ƛ-∙ β-var (β-ƛ-∙ N→N' N→N'') (β-∙ O→O' O→O'') = {! !}
β⇒cong-[]-ƛ-∙ β-var (β-ƛ-∙ N→N' N→N'') (β-ƛ-∙ O→O' O→O'') = {! !}
β⇒cong-[]-ƛ-∙ (β-ƛ M→M') N→N' O→O' = {! !}
β⇒cong-[]-ƛ-∙ (β-∙ M→M' M→M'') N→N' O→O' = {! !}
β⇒cong-[]-ƛ-∙ (β-ƛ-∙ M→M' M→M'') N→N' O→O' = {! !}
β⇒cong-[] : ∀ {i M M' N N'} → M β⇒ M' → N β⇒ N' → M [ N / i ] β⇒ M' [ N' / i ]
β⇒cong-[] {i} (β-var {n}) N→N' = β⇒cong-subst-var-match {n} {i} N→N'
β⇒cong-[] (β-ƛ M→M') N→N' = β-ƛ (β⇒cong-[] M→M' N→N')
β⇒cong-[] (β-∙ M→M' M→M'') N→N' = β-∙ (β⇒cong-[] M→M' N→N') (β⇒cong-[] M→M'' N→N')
β⇒cong-[] (β-ƛ-∙ M→M' M→M'') N→N' = {! !}
-- β⇒cong-[]-ƛ-∙ M→M' M→M'' N→N'
-- β-∙ {! !} {! !}
-- (ƛ M [ N₁ / suc i ]) ∙ N [ N₁ / i ] β⇒ M' [ N' ] [ N'' / i ]
-- ((ƛ M) ∙ N) → M' [ N' ]
-- ((ƛ M) ∙ N) [ N₁ / i ] β⇒ M' [ N' ] [ N'' / i ]
-- M→M' N→N' !} (β⇒cong-[] M→M'' N→N')
-- β⇒cong-[] {i} {var x} {.(var x)} {var y} {.(var y)} β-var β-var with match x i
-- ... | Under x<i = β-var
-- ... | Exact x≡i = β-var
-- ... | Above v v≥i = β-var
-- β⇒cong-[] {i} {var x} {.(var x)} {ƛ N} {.(ƛ _)} β-var (β-ƛ N→N') with match x i
-- ... | Under x<i = β-var
-- ... | Exact x≡i = β-ƛ (β⇒cong-lift N→N')
-- ... | Above v v≥i = β-var
-- β⇒cong-[] {i} {var x} {.(var x)} {N ∙ O} {N'} β-var N→N' with match x i
-- ... | Under x<i = β-var
-- ... | Exact x≡i = {! !}
-- ... | Above v v≥i = β-var
-- β⇒cong-[] {i} {ƛ M} {M'} {N} {N'} M→M' N→N' = {! !}
-- β⇒cong-[] {i} {M ∙ K} {M'} {N} {N'} M→M' N→N' = {! !}
β⇒cong-[] : ∀ {M M' N N'} → M β⇒ M' → N β⇒ N' → M [ N ] β⇒ M' [ N' ]
β⇒cong-[] = Cong.β⇒cong-[] | {
"alphanum_fraction": 0.4322878229,
"avg_line_length": 39.8529411765,
"ext": "agda",
"hexsha": "85a5c1ca43c0c411d67b949faa9c974fc68ccb20",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0c9a6e79c23192b28ddb07315b200a94ee900ca6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "banacorn/bidirectional",
"max_forks_repo_path": "LC/Parallel.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0c9a6e79c23192b28ddb07315b200a94ee900ca6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "banacorn/bidirectional",
"max_issues_repo_path": "LC/Parallel.agda",
"max_line_length": 131,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "0c9a6e79c23192b28ddb07315b200a94ee900ca6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "banacorn/bidirectional",
"max_stars_repo_path": "LC/Parallel.agda",
"max_stars_repo_stars_event_max_datetime": "2020-08-25T14:05:01.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-08-25T07:34:40.000Z",
"num_tokens": 3194,
"size": 5420
} |
------------------------------------------------------------------------------
-- Conversion functions i, j and k.
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOT.FOTC.IJK where
open import FOTC.Base
open import FOTC.Data.Nat.Type
------------------------------------------------------------------------------
data ℕ : Set where
z : ℕ
s : ℕ → ℕ
-- Conversion functions from/to ℕ and N.
i : ℕ → D
i z = zero
i (s n) = succ₁ (i n)
j : (n : ℕ) → N (i n)
j z = nzero
j (s n) = nsucc (j n)
k : {n : D} → N n → ℕ
k nzero = z
k (nsucc Nn) = s (k Nn)
_+_ : ℕ → ℕ → ℕ
z + n = n
s m + n = s (m + n)
| {
"alphanum_fraction": 0.3586040915,
"avg_line_length": 22.4594594595,
"ext": "agda",
"hexsha": "a236e49035f2c0b2adbc159511b989ee167c106d",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/FOT/FOTC/IJK.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/FOT/FOTC/IJK.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/FOT/FOTC/IJK.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 218,
"size": 831
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.