Search is not available for this dataset
text
string | meta
dict |
---|---|
module Data.Fin.Subset.Cardinality where
open import Data.Fin.Subset
_∖_ : ∀ {n} → Subset n → Subset n → Subset n
_∖_ {n} a b = a ∩ ∁ b
| {
"alphanum_fraction": 0.6180555556,
"avg_line_length": 20.5714285714,
"ext": "agda",
"hexsha": "8fd27d365414e403aeba8325d7f090e07df63f07",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "abacd166f63582b7395d9cc10b6323c0f69649e5",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "tizmd/agda-finitary",
"max_forks_repo_path": "src/Data/Fin/Subset/Cardinality.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "abacd166f63582b7395d9cc10b6323c0f69649e5",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "tizmd/agda-finitary",
"max_issues_repo_path": "src/Data/Fin/Subset/Cardinality.agda",
"max_line_length": 46,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "abacd166f63582b7395d9cc10b6323c0f69649e5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "tizmd/agda-finitary",
"max_stars_repo_path": "src/Data/Fin/Subset/Cardinality.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 57,
"size": 144
} |
------------------------------------------------------------------------------
-- Properties related with lists
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Data.List.PropertiesATP where
open import FOTC.Base
open import FOTC.Base.List
open import FOTC.Data.Conat
open import FOTC.Data.List
open import FOTC.Data.Nat.Type
------------------------------------------------------------------------------
-- Congruence properties
postulate ++-leftCong : ∀ {xs ys zs} → xs ≡ ys → xs ++ zs ≡ ys ++ zs
{-# ATP prove ++-leftCong #-}
postulate mapCong₂ : ∀ {f xs ys} → xs ≡ ys → map f xs ≡ map f ys
{-# ATP prove mapCong₂ #-}
------------------------------------------------------------------------------
-- Totality properties
++-List : ∀ {xs ys} → List xs → List ys → List (xs ++ ys)
++-List {ys = ys} lnil Lys = prf
where postulate prf : List ([] ++ ys)
{-# ATP prove prf #-}
++-List {ys = ys} (lcons x {xs} Lxs) Lys = prf (++-List Lxs Lys)
where postulate prf : List (xs ++ ys) → List ((x ∷ xs) ++ ys)
{-# ATP prove prf #-}
map-List : ∀ f {xs} → List xs → List (map f xs)
map-List f lnil = prf
where postulate prf : List (map f [])
{-# ATP prove prf #-}
map-List f (lcons x {xs} Lxs) = prf (map-List f Lxs)
where postulate prf : List (map f xs) → List (map f (x ∷ xs))
{-# ATP prove prf #-}
rev-List : ∀ {xs ys} → List xs → List ys → List (rev xs ys)
rev-List {ys = ys} lnil Lys = prf
where postulate prf : List (rev [] ys)
{-# ATP prove prf #-}
rev-List {ys = ys} (lcons x {xs} Lxs) Lys = prf (rev-List Lxs (lcons x Lys))
where postulate prf : List (rev xs (x ∷ ys)) → List (rev (x ∷ xs) ys)
{-# ATP prove prf #-}
postulate reverse-List : ∀ {xs} → List xs → List (reverse xs)
{-# ATP prove reverse-List rev-List #-}
-- Length properties
length-replicate : ∀ x {n} → N n → length (replicate n x) ≡ n
length-replicate x nzero = prf
where postulate prf : length (replicate zero x) ≡ zero
{-# ATP prove prf #-}
length-replicate x (nsucc {n} Nn) = prf (length-replicate x Nn)
where postulate prf : length (replicate n x) ≡ n →
length (replicate (succ₁ n) x) ≡ succ₁ n
{-# ATP prove prf #-}
postulate lg-xs≡∞→lg-x∷xs≡∞ : ∀ x xs → length xs ≡ ∞ → length (x ∷ xs) ≡ ∞
{-# ATP prove lg-xs≡∞→lg-x∷xs≡∞ #-}
-- Append properties
++-leftIdentity : ∀ xs → [] ++ xs ≡ xs
++-leftIdentity = ++-[]
++-rightIdentity : ∀ {xs} → List xs → xs ++ [] ≡ xs
++-rightIdentity lnil = prf
where postulate prf : [] ++ [] ≡ []
{-# ATP prove prf #-}
++-rightIdentity (lcons x {xs} Lxs) = prf (++-rightIdentity Lxs)
where postulate prf : xs ++ [] ≡ xs → (x ∷ xs) ++ [] ≡ x ∷ xs
{-# ATP prove prf #-}
++-assoc : ∀ {xs} → List xs → ∀ ys zs → (xs ++ ys) ++ zs ≡ xs ++ (ys ++ zs)
++-assoc .{[]} lnil ys zs = prf
where postulate prf : ([] ++ ys) ++ zs ≡ [] ++ ys ++ zs
{-# ATP prove prf #-}
++-assoc .{x ∷ xs} (lcons x {xs} Lxs) ys zs = prf (++-assoc Lxs ys zs)
where postulate prf : (xs ++ ys) ++ zs ≡ xs ++ ys ++ zs →
((x ∷ xs) ++ ys) ++ zs ≡ (x ∷ xs) ++ ys ++ zs
{-# ATP prove prf #-}
-- Map properties
map-++ : ∀ f {xs} → List xs → ∀ ys → map f (xs ++ ys) ≡ map f xs ++ map f ys
map-++ f lnil ys = prf
where postulate prf : map f ([] ++ ys) ≡ map f [] ++ map f ys
{-# ATP prove prf #-}
map-++ f (lcons x {xs} Lxs) ys = prf (map-++ f Lxs ys)
where postulate prf : map f (xs ++ ys) ≡ map f xs ++ map f ys →
map f ((x ∷ xs) ++ ys) ≡ map f (x ∷ xs) ++ map f ys
{-# ATP prove prf #-}
-- Reverse properties
postulate reverse-[x]≡[x] : ∀ x → reverse (x ∷ []) ≡ x ∷ []
{-# ATP prove reverse-[x]≡[x] #-}
rev-++ : ∀ {xs} → List xs → ∀ ys → rev xs ys ≡ rev xs [] ++ ys
rev-++ lnil ys = prf
where postulate prf : rev [] ys ≡ rev [] [] ++ ys
{-# ATP prove prf #-}
rev-++ (lcons x {xs} Lxs) ys = prf (rev-++ Lxs (x ∷ ys)) (rev-++ Lxs (x ∷ []))
where postulate prf : rev xs (x ∷ ys) ≡ rev xs [] ++ x ∷ ys →
rev xs (x ∷ []) ≡ rev xs [] ++ x ∷ [] →
rev (x ∷ xs) ys ≡ rev (x ∷ xs) [] ++ ys
{-# ATP prove prf ++-assoc rev-List #-}
reverse-++ : ∀ {xs ys} → List xs → List ys →
reverse (xs ++ ys) ≡ reverse ys ++ reverse xs
reverse-++ {ys = ys} lnil Lys = prf
where postulate prf : reverse ([] ++ ys) ≡ reverse ys ++ reverse []
{-# ATP prove prf ++-rightIdentity reverse-List #-}
reverse-++ (lcons x {xs} Lxs) lnil = prf
where
postulate prf : reverse ((x ∷ xs) ++ []) ≡ reverse [] ++ reverse (x ∷ xs)
{-# ATP prove prf ++-rightIdentity #-}
reverse-++ (lcons x {xs} Lxs) (lcons y {ys} Lys) =
prf (reverse-++ Lxs (lcons y Lys))
where
postulate prf : reverse (xs ++ y ∷ ys) ≡ reverse (y ∷ ys) ++
reverse xs →
reverse ((x ∷ xs) ++ y ∷ ys) ≡ reverse (y ∷ ys) ++
reverse (x ∷ xs)
{-# ATP prove prf reverse-List ++-List rev-++ ++-assoc #-}
reverse-∷ : ∀ x {ys} → List ys →
reverse (x ∷ ys) ≡ reverse ys ++ (x ∷ [])
reverse-∷ x lnil = prf
where postulate prf : reverse (x ∷ []) ≡ reverse [] ++ x ∷ []
{-# ATP prove prf #-}
reverse-∷ x (lcons y {ys} Lys) = prf
where postulate prf : reverse (x ∷ y ∷ ys) ≡ reverse (y ∷ ys) ++ x ∷ []
{-# ATP prove prf reverse-[x]≡[x] reverse-++ #-}
reverse-involutive : ∀ {xs} → List xs → reverse (reverse xs) ≡ xs
reverse-involutive lnil = prf
where postulate prf : reverse (reverse []) ≡ []
{-# ATP prove prf #-}
reverse-involutive (lcons x {xs} Lxs) = prf (reverse-involutive Lxs)
where
postulate prf : reverse (reverse xs) ≡ xs →
reverse (reverse (x ∷ xs)) ≡ x ∷ xs
{-# ATP prove prf rev-List reverse-++ ++-List ++-rightIdentity #-}
| {
"alphanum_fraction": 0.4891681826,
"avg_line_length": 37.0981595092,
"ext": "agda",
"hexsha": "562c86d8191452126c2973401973875b76465dbf",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Data/List/PropertiesATP.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Data/List/PropertiesATP.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Data/List/PropertiesATP.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 2015,
"size": 6047
} |
module Issue3188.Issue3188a where
postulate String : Set
{-# BUILTIN STRING String #-}
| {
"alphanum_fraction": 0.7613636364,
"avg_line_length": 17.6,
"ext": "agda",
"hexsha": "33963200bfb5712ba4931b8a41344ce9716b1c6a",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue3188/Issue3188a.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue3188/Issue3188a.agda",
"max_line_length": 33,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue3188/Issue3188a.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 23,
"size": 88
} |
{-# OPTIONS --without-K --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Substitution.Reducibility {{eqrel : EqRelSet}} where
open EqRelSet {{...}}
open import Definition.Untyped
open import Definition.Untyped.Properties
open import Definition.Typed
open import Definition.LogicalRelation
open import Definition.LogicalRelation.Irrelevance
open import Definition.LogicalRelation.Substitution
open import Definition.LogicalRelation.Substitution.Properties
open import Tools.Product
-- Valid types are reducible.
reducibleᵛ : ∀ {A Γ l}
([Γ] : ⊩ᵛ Γ)
→ Γ ⊩ᵛ⟨ l ⟩ A / [Γ]
→ Γ ⊩⟨ l ⟩ A
reducibleᵛ [Γ] [A] =
let ⊢Γ = soundContext [Γ]
[id] = idSubstS [Γ]
in irrelevance′ (subst-id _) (proj₁ ([A] ⊢Γ [id]))
-- Valid type equality is reducible.
reducibleEqᵛ : ∀ {A B Γ l}
([Γ] : ⊩ᵛ Γ)
([A] : Γ ⊩ᵛ⟨ l ⟩ A / [Γ])
→ Γ ⊩ᵛ⟨ l ⟩ A ≡ B / [Γ] / [A]
→ Γ ⊩⟨ l ⟩ A ≡ B / reducibleᵛ [Γ] [A]
reducibleEqᵛ {A = A} [Γ] [A] [A≡B] =
let [σA] = reducibleᵛ {A = A} [Γ] [A]
⊢Γ = soundContext [Γ]
[id] = idSubstS [Γ]
in irrelevanceEq″ (subst-id _) (subst-id _)
(proj₁ ([A] ⊢Γ [id])) [σA] ([A≡B] ⊢Γ [id])
-- Valid terms are reducible.
reducibleTermᵛ : ∀ {t A Γ l}
([Γ] : ⊩ᵛ Γ)
([A] : Γ ⊩ᵛ⟨ l ⟩ A / [Γ])
→ Γ ⊩ᵛ⟨ l ⟩ t ∷ A / [Γ] / [A]
→ Γ ⊩⟨ l ⟩ t ∷ A / reducibleᵛ [Γ] [A]
reducibleTermᵛ {A = A} [Γ] [A] [t] =
let [σA] = reducibleᵛ {A = A} [Γ] [A]
⊢Γ = soundContext [Γ]
[id] = idSubstS [Γ]
in irrelevanceTerm″ (subst-id _) (subst-id _)
(proj₁ ([A] ⊢Γ [id])) [σA] (proj₁ ([t] ⊢Γ [id]))
-- Valid term equality is reducible.
reducibleEqTermᵛ : ∀ {t u A Γ l}
([Γ] : ⊩ᵛ Γ)
([A] : Γ ⊩ᵛ⟨ l ⟩ A / [Γ])
→ Γ ⊩ᵛ⟨ l ⟩ t ≡ u ∷ A / [Γ] / [A]
→ Γ ⊩⟨ l ⟩ t ≡ u ∷ A / reducibleᵛ [Γ] [A]
reducibleEqTermᵛ {A = A} [Γ] [A] [t≡u] =
let [σA] = reducibleᵛ {A = A} [Γ] [A]
⊢Γ = soundContext [Γ]
[id] = idSubstS [Γ]
in irrelevanceEqTerm″ (subst-id _) (subst-id _) (subst-id _)
(proj₁ ([A] ⊢Γ [id])) [σA] ([t≡u] ⊢Γ [id])
| {
"alphanum_fraction": 0.5006599208,
"avg_line_length": 33.9253731343,
"ext": "agda",
"hexsha": "a9c36a3cd8abe864094347be1a83df7672f1ab6d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Vtec234/logrel-mltt",
"max_forks_repo_path": "Definition/LogicalRelation/Substitution/Reducibility.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Vtec234/logrel-mltt",
"max_issues_repo_path": "Definition/LogicalRelation/Substitution/Reducibility.agda",
"max_line_length": 86,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Vtec234/logrel-mltt",
"max_stars_repo_path": "Definition/LogicalRelation/Substitution/Reducibility.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 943,
"size": 2273
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.HITs.DunceCap where
open import Cubical.HITs.DunceCap.Base public
open import Cubical.HITs.DunceCap.Properties public
| {
"alphanum_fraction": 0.7795698925,
"avg_line_length": 26.5714285714,
"ext": "agda",
"hexsha": "8efd882a7c00e8342321be846950a3e3b076da13",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/HITs/DunceCap.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/HITs/DunceCap.agda",
"max_line_length": 51,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/HITs/DunceCap.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 51,
"size": 186
} |
{-# OPTIONS --without-K --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Substitution.Introductions.Snd {{eqrel : EqRelSet}} where
open EqRelSet {{...}}
open import Definition.Untyped as U hiding (wk)
open import Definition.Untyped.Properties
open import Definition.Typed
open import Definition.Typed.Properties
open import Definition.Typed.Weakening as T hiding (wk; wkTerm; wkEqTerm)
open import Definition.Typed.RedSteps
open import Definition.LogicalRelation
open import Definition.LogicalRelation.ShapeView
open import Definition.LogicalRelation.Irrelevance
open import Definition.LogicalRelation.Weakening
open import Definition.LogicalRelation.Properties
open import Definition.LogicalRelation.Application
open import Definition.LogicalRelation.Substitution
open import Definition.LogicalRelation.Substitution.Properties
open import Definition.LogicalRelation.Substitution.Introductions.Pi
open import Definition.LogicalRelation.Substitution.Introductions.SingleSubst
open import Definition.LogicalRelation.Substitution.Introductions.Fst
open import Tools.Product
import Tools.PropositionalEquality as PE
snd-subst*′ : ∀ {Γ l l′ F G t t′}
([F] : Γ ⊩⟨ l ⟩ F)
([ΣFG] : Γ ⊩⟨ l′ ⟩B⟨ BΣ ⟩ Σ F ▹ G)
([t′] : Γ ⊩⟨ l′ ⟩ t′ ∷ Σ F ▹ G / B-intr BΣ [ΣFG])
→ Γ ⊢ t ⇒* t′ ∷ Σ F ▹ G
→ Γ ⊢ snd t ⇒* snd t′ ∷ G [ fst t ]
snd-subst*′ [F] (noemb (Bᵣ F G D ⊢F ⊢G A≡A [F]₁ [G] G-ext)) _ (id x) with
B-PE-injectivity BΣ (whnfRed* (red D) Σₙ)
... | PE.refl , PE.refl = id (sndⱼ ⊢F ⊢G x)
snd-subst*′ {Γ = Γ} {F = F} {G = G} {t = t} {t′ = t″} [F]
[ΣFG]₀@(noemb (Bᵣ F₁ G₁ D ⊢F ⊢G A≡A [F]₁ [G] G-ext))
[t″]
t⇒*t″@(_⇨_ {t′ = t′} t⇒t′ t′⇒*t″) with
B-PE-injectivity BΣ (whnfRed* (red D) Σₙ)
... | PE.refl , PE.refl =
let [ΣFG] = B-intr BΣ [ΣFG]₀
[t] , _ = redSubst*Term t⇒*t″ [ΣFG] [t″]
[t′] , _ = redSubst*Term t′⇒*t″ [ΣFG] [t″]
[t≡t′] : Γ ⊩⟨ _ ⟩ t ≡ t′ ∷ Σ F ▹ G / [ΣFG]
[t≡t′] = proj₂ (redSubstTerm t⇒t′ [ΣFG] [t′])
[fstt] : Γ ⊩⟨ _ ⟩ fst t ∷ F / [F]
[fstt] = fst″ [F] [ΣFG] [t]
[fstt′] : Γ ⊩⟨ _ ⟩ fst t′ ∷ F / [F]
[fstt′] = fst″ [F] [ΣFG] [t′]
[Gfstt] : Γ ⊩⟨ _ ⟩ G [ fst t ]
[Gfstt] = substSΠ₁ BΣ [ΣFG] [F] [fstt]
[Gfstt′] : Γ ⊩⟨ _ ⟩ G [ fst t′ ]
[Gfstt′] = substSΠ₁ BΣ [ΣFG] [F] [fstt′]
[fstt′≡fstt] : Γ ⊩⟨ _ ⟩ fst t′ ≡ fst t ∷ F / [F]
[fstt′≡fstt] = symEqTerm [F] (fst-cong″ [F] [ΣFG] [t≡t′])
[Gfstt′≡Gfstt] : Γ ⊩⟨ _ ⟩ G [ fst t′ ] ≡ G [ fst t ] / [Gfstt′]
[Gfstt′≡Gfstt] = substSΠ₂ BΣ [ΣFG] (reflEq [ΣFG]) [F] [F] [fstt′] [fstt] [fstt′≡fstt] [Gfstt′] [Gfstt]
in snd-subst ⊢F ⊢G t⇒t′ ⇨ conv* (snd-subst*′ [F] [ΣFG]₀ [t″] t′⇒*t″)
(≅-eq (escapeEq [Gfstt′] [Gfstt′≡Gfstt]))
snd-subst*′ [F] (emb 0<1 x) = snd-subst*′ [F] x
-- NOTE this has a horrible interface (and implementation)
snd-subst* : ∀ {Γ l l′ F G t t′}
([F] : Γ ⊩⟨ l ⟩ F)
([ΣFG] : Γ ⊩⟨ l′ ⟩ Σ F ▹ G)
([t′] : Γ ⊩⟨ l′ ⟩ t′ ∷ Σ F ▹ G / [ΣFG])
→ Γ ⊢ t ⇒* t′ ∷ Σ F ▹ G
→ Γ ⊢ snd t ⇒* snd t′ ∷ G [ fst t ]
snd-subst* [F] [ΣFG] [t′] t⇒*t′ =
let [t′]′ = irrelevanceTerm [ΣFG] (B-intr BΣ (B-elim BΣ [ΣFG])) [t′]
in snd-subst*′ [F] (B-elim BΣ [ΣFG]) [t′]′ t⇒*t′
snd′ : ∀ {F G t Γ l l′}
([ΣFG] : Γ ⊩⟨ l ⟩B⟨ BΣ ⟩ Σ F ▹ G)
([t] : Γ ⊩⟨ l ⟩ t ∷ Σ F ▹ G / B-intr BΣ [ΣFG])
([Gfst] : Γ ⊩⟨ l′ ⟩ G [ fst t ])
→ Γ ⊩⟨ l′ ⟩ snd t ∷ G [ fst t ] / [Gfst]
snd′ {F = F} {G = G} {t = t} {Γ = Γ} {l = l} {l′ = l′}
[ΣFG]@(noemb (Bᵣ F' G' D ⊢F ⊢G A≡A [F'] [G'] G-ext))
[t]@(Σₜ p d pProd p≅p [fstp] [sndp]) [Gfst] with
B-PE-injectivity BΣ (whnfRed* (red D) Σₙ)
... | PE.refl , PE.refl =
let ⊢Γ = wf ⊢F
[p] = Σₜ p (idRedTerm:*: (⊢u-redₜ d)) pProd p≅p [fstp] [sndp]
[fstt] , [fstt≡fstp] = redSubst*Term (PE.subst (λ x → Γ ⊢ fst t ⇒* fst p ∷ x)
(PE.sym (wk-id F))
(fst-subst* ⊢F ⊢G (redₜ d)))
([F'] id ⊢Γ) [fstp]
[Gfstt] = [G'] id ⊢Γ [fstt]
[Gfstp] = [G'] id ⊢Γ [fstp]
[Gfstt≡Gfstp] = G-ext id ⊢Γ [fstt] [fstp] [fstt≡fstp]
[sndp] = convTerm₂ [Gfstt] [Gfstp] [Gfstt≡Gfstp] [sndp]
[sndp] : Γ ⊩⟨ l′ ⟩ snd p ∷ G [ fst t ] / [Gfst]
[sndp] = irrelevanceTerm′ (PE.cong (λ x → x [ fst t ]) (wk-lift-id G))
[Gfstt] [Gfst] [sndp]
in proj₁ (redSubst*Term (snd-subst* (PE.subst (λ x → Γ ⊩⟨ l ⟩ x) (wk-id F) ([F'] id ⊢Γ))
(B-intr BΣ [ΣFG])
[p]
(redₜ d))
[Gfst]
[sndp])
snd′ (emb 0<1 x) = snd′ x
snd″ : ∀ {F G t Γ l l′}
([ΣFG] : Γ ⊩⟨ l ⟩ Σ F ▹ G)
([t] : Γ ⊩⟨ l ⟩ t ∷ Σ F ▹ G / [ΣFG])
([Gfst] : Γ ⊩⟨ l′ ⟩ G [ fst t ])
→ Γ ⊩⟨ l′ ⟩ snd t ∷ G [ fst t ] / [Gfst]
snd″ {t = t} {Γ = Γ} {l = l} [ΣFG] [t] [Gfst] =
let [t]′ = irrelevanceTerm [ΣFG] (B-intr BΣ (Σ-elim [ΣFG])) [t]
in snd′ (Σ-elim [ΣFG]) [t]′ [Gfst]
snd-cong′ : ∀ {F G t t′ Γ l l′}
([ΣFG] : Γ ⊩⟨ l ⟩B⟨ BΣ ⟩ Σ F ▹ G)
([t] : Γ ⊩⟨ l ⟩ t ∷ Σ F ▹ G / B-intr BΣ [ΣFG])
([t′] : Γ ⊩⟨ l ⟩ t′ ∷ Σ F ▹ G / B-intr BΣ [ΣFG])
([t≡t′] : Γ ⊩⟨ l ⟩ t ≡ t′ ∷ Σ F ▹ G / B-intr BΣ [ΣFG])
([Gfst] : Γ ⊩⟨ l′ ⟩ G [ fst t ])
→ Γ ⊩⟨ l′ ⟩ snd t ≡ snd t′ ∷ G [ fst t ] / [Gfst]
snd-cong′ {F} {G} {t} {t′} {Γ} {l} {l′}
[ΣFG]@(noemb (Bᵣ F' G' D ⊢F ⊢G A≡A [F] [G] G-ext))
[t]@(Σₜ p d pProd p≅p [fstp] [sndp])
[t′]@(Σₜ p′ d′ pProd′ p′≅p′ [fstp′] [sndp′])
[t≡t′]@(Σₜ₌ p₁ p′₁ d₁ d′₁ pProd₁ pProd′₁ p≅p′ [t]₁ [t′]₁ [fstp]₁ [fstp′]₁ [fst≡] [snd≡])
[Gfst] with
B-PE-injectivity BΣ (whnfRed* (red D) Σₙ)
| whrDet*Term (redₜ d , productWhnf pProd) (redₜ d₁ , productWhnf pProd₁)
| whrDet*Term (redₜ d′ , productWhnf pProd′) (redₜ d′₁ , productWhnf pProd′₁)
... | PE.refl , PE.refl | PE.refl | PE.refl =
let ⊢Γ = wf ⊢F
[p] : Γ ⊩⟨ l ⟩ p ∷ Σ F ▹ G / B-intr BΣ [ΣFG]
[p] = Σₜ p (idRedTerm:*: (⊢u-redₜ d)) pProd p≅p [fstp] [sndp]
[p′] : Γ ⊩⟨ l ⟩ p′ ∷ Σ F ▹ G / B-intr BΣ [ΣFG]
[p′] = Σₜ p′ (idRedTerm:*: (⊢u-redₜ d′)) pProd′ p′≅p′ [fstp′] [sndp′]
[F]′ = irrelevance′ (wk-id F) ([F] id ⊢Γ)
[fstt] , [fstt≡fstp] = redSubst*Term (PE.subst (λ x → Γ ⊢ fst t ⇒* fst p ∷ x)
(PE.sym (wk-id F))
(fst-subst* ⊢F ⊢G (redₜ d)))
([F] id ⊢Γ) [fstp]
[Gfstt≡Gfstp] = G-ext id ⊢Γ [fstt] [fstp] [fstt≡fstp]
[sndp]′ : Γ ⊩⟨ l ⟩ snd p ∷ U.wk (lift id) G [ fst t ] / [G] id ⊢Γ [fstt]
[sndp]′ = convTerm₂ ([G] id ⊢Γ [fstt]) ([G] id ⊢Γ [fstp]) [Gfstt≡Gfstp] [sndp]
sndt⇒*sndp = snd-subst* [F]′ (B-intr BΣ [ΣFG]) [p] (redₜ d)
[sndp]″ = irrelevanceTerm′ (PE.cong (λ x → x [ fst t ]) (wk-lift-id G))
([G] id ⊢Γ [fstt]) [Gfst]
[sndp]′
[sndt≡sndp] : Γ ⊩⟨ l′ ⟩ snd t ≡ snd p ∷ G [ fst t ] / [Gfst]
[sndt≡sndp] = proj₂ (redSubst*Term sndt⇒*sndp [Gfst] [sndp]″)
[snd≡]′ = convEqTerm₂ ([G] id ⊢Γ [fstt]) ([G] id ⊢Γ [fstp]₁) [Gfstt≡Gfstp] [snd≡]
[sndp≡sndp′] : Γ ⊩⟨ l′ ⟩ snd p ≡ snd p′ ∷ G [ fst t ] / [Gfst]
[sndp≡sndp′] = irrelevanceEqTerm′ (PE.cong (λ x → x [ fst t ]) (wk-lift-id G))
([G] id ⊢Γ [fstt]) [Gfst]
[snd≡]′
[fstt′] , [fstt′≡fstp′] = redSubst*Term (PE.subst (λ x → Γ ⊢ fst t′ ⇒* fst p′ ∷ x)
(PE.sym (wk-id F))
(fst-subst* ⊢F ⊢G (redₜ d′)))
([F] id ⊢Γ) [fstp′]
[fstt≡fstt′] = irrelevanceEqTerm′ (PE.sym (wk-id F))
[F]′ ([F] id ⊢Γ)
(fst-cong′ [F]′ [ΣFG] [t≡t′])
[fstt≡fstp′] = transEqTerm ([F] id ⊢Γ) [fstt≡fstt′] [fstt′≡fstp′]
[Gfstt≡Gfstp′] = G-ext id ⊢Γ [fstt] [fstp′] [fstt≡fstp′]
[sndp′]′ : Γ ⊩⟨ l ⟩ snd p′ ∷ U.wk (lift id) G [ fst t ] / [G] id ⊢Γ [fstt]
[sndp′]′ = convTerm₂ ([G] id ⊢Γ [fstt]) ([G] id ⊢Γ [fstp′]) [Gfstt≡Gfstp′] [sndp′]
[sndp′]″ = irrelevanceTerm′ (PE.cong (λ x → x [ fst t ]) (wk-lift-id G))
([G] id ⊢Γ [fstt]) [Gfst]
[sndp′]′
[Gfstt]′ = irrelevance′ (PE.cong (λ x → x [ fst t ]) (wk-lift-id G))
([G] id ⊢Γ [fstt])
[Gfstt≡Gfstt′] = irrelevanceEq″ (PE.cong (λ x → x [ fst t ]) (wk-lift-id G))
(PE.cong (λ x → x [ fst t′ ]) (wk-lift-id G))
([G] id ⊢Γ [fstt]) [Gfstt]′
(G-ext id ⊢Γ [fstt] [fstt′] [fstt≡fstt′])
sndt′⇒*sndp′ : Γ ⊢ snd t′ ⇒* snd p′ ∷ G [ fst t ]
sndt′⇒*sndp′ = conv* (snd-subst* [F]′ (B-intr BΣ [ΣFG]) [p′] (redₜ d′))
(≅-eq (≅-sym (escapeEq [Gfstt]′ [Gfstt≡Gfstt′])))
[sndt′≡sndp′] : Γ ⊩⟨ l′ ⟩ snd t′ ≡ snd p′ ∷ G [ fst t ] / [Gfst]
[sndt′≡sndp′] = proj₂ (redSubst*Term sndt′⇒*sndp′ [Gfst] [sndp′]″)
in transEqTerm [Gfst] [sndt≡sndp] (transEqTerm [Gfst] [sndp≡sndp′] (symEqTerm [Gfst] [sndt′≡sndp′]))
snd-cong′ {F} {G} (emb 0<1 x) = snd-cong′ x
snd-cong″ : ∀ {F G t t′ Γ l l′}
([ΣFG] : Γ ⊩⟨ l ⟩ Σ F ▹ G)
([t] : Γ ⊩⟨ l ⟩ t ∷ Σ F ▹ G / [ΣFG])
([t′] : Γ ⊩⟨ l ⟩ t′ ∷ Σ F ▹ G / [ΣFG])
([t≡t′] : Γ ⊩⟨ l ⟩ t ≡ t′ ∷ Σ F ▹ G / [ΣFG])
([Gfst] : Γ ⊩⟨ l′ ⟩ G [ fst t ])
→ Γ ⊩⟨ l′ ⟩ snd t ≡ snd t′ ∷ G [ fst t ] / [Gfst]
snd-cong″ {F} {G} [ΣFG] [t] [t′] [t≡t′] [Gfst] =
let [t] = irrelevanceTerm [ΣFG] (B-intr BΣ (Σ-elim [ΣFG])) [t]
[t′] = irrelevanceTerm [ΣFG] (B-intr BΣ (Σ-elim [ΣFG])) [t′]
[t≡t′] = irrelevanceEqTerm [ΣFG] (B-intr BΣ (Σ-elim [ΣFG])) [t≡t′]
in snd-cong′ (B-elim BΣ [ΣFG]) [t] [t′] [t≡t′] [Gfst]
snd-congᵛ : ∀ {F G t t′ Γ l}
([Γ] : ⊩ᵛ Γ)
([F] : Γ ⊩ᵛ⟨ l ⟩ F / [Γ])
([G] : Γ ∙ F ⊩ᵛ⟨ l ⟩ G / [Γ] ∙ [F])
([t] : Γ ⊩ᵛ⟨ l ⟩ t ∷ Σ F ▹ G / [Γ] / Σᵛ {F} {G} [Γ] [F] [G])
([t′] : Γ ⊩ᵛ⟨ l ⟩ t′ ∷ Σ F ▹ G / [Γ] / Σᵛ {F} {G} [Γ] [F] [G])
([t≡t′] : Γ ⊩ᵛ⟨ l ⟩ t ≡ t′ ∷ Σ F ▹ G / [Γ] / Σᵛ {F} {G} [Γ] [F] [G])
→ Γ ⊩ᵛ⟨ l ⟩ snd t ≡ snd t′ ∷ G [ fst t ] / [Γ] / substS {F} {G} [Γ] [F] [G] (fstᵛ {F} {G} {t} [Γ] [F] [G] [t])
snd-congᵛ {F} {G} {t} {t′} {Γ} {l} [Γ] [F] [G] [t] [t′] [t≡t′] {Δ} {σ} ⊢Δ [σ] =
let [ΣFG] = Σᵛ {F} {G} [Γ] [F] [G]
[fst] = fstᵛ {F} {G} {t} [Γ] [F] [G] [t]
[Gfst] = substS {F} {G} [Γ] [F] [G] [fst]
⊩σΣFG = proj₁ ([ΣFG] ⊢Δ [σ])
⊩σt = proj₁ ([t] ⊢Δ [σ])
⊩σt′ = proj₁ ([t′] ⊢Δ [σ])
σt≡σt′ = [t≡t′] ⊢Δ [σ]
⊩σGfst₁ = proj₁ ([Gfst] ⊢Δ [σ])
⊩σGfst = irrelevance′ (singleSubstLift G (fst t)) ⊩σGfst₁
σsnd≡₁ = snd-cong″ ⊩σΣFG ⊩σt ⊩σt′ σt≡σt′ ⊩σGfst
σsnd≡ = irrelevanceEqTerm′ (PE.sym (singleSubstLift G (fst t))) ⊩σGfst ⊩σGfst₁ σsnd≡₁
in σsnd≡
-- Validity of second projection
sndᵛ : ∀ {F G t Γ l}
([Γ] : ⊩ᵛ Γ)
([F] : Γ ⊩ᵛ⟨ l ⟩ F / [Γ])
([G] : Γ ∙ F ⊩ᵛ⟨ l ⟩ G / [Γ] ∙ [F])
([t] : Γ ⊩ᵛ⟨ l ⟩ t ∷ Σ F ▹ G / [Γ] / Σᵛ {F} {G} [Γ] [F] [G])
→ Γ ⊩ᵛ⟨ l ⟩ snd t ∷ G [ fst t ] / [Γ] / substS {F} {G} [Γ] [F] [G] (fstᵛ {F} {G} {t} [Γ] [F] [G] [t])
sndᵛ {F} {G} {t} {Γ} {l} [Γ] [F] [G] [t] {Δ = Δ} {σ = σ} ⊢Δ [σ] =
let [ΣFG] = Σᵛ {F} {G} [Γ] [F] [G]
[Gfst] : Γ ⊩ᵛ⟨ l ⟩ G [ fst t ] / [Γ]
[Gfst] = substS {F} {G} [Γ] [F] [G] (fstᵛ {F} {G} {t} [Γ] [F] [G] [t])
σsnd : ∀ {Δ σ} (⊢Δ : ⊢ Δ) ([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ)
→ Δ ⊩⟨ l ⟩ subst σ (snd t) ∷ subst σ (G [ fst t ]) / proj₁ ([Gfst] ⊢Δ [σ])
σsnd {Δ} {σ} ⊢Δ [σ] =
let ⊩σΣFG = proj₁ ([ΣFG] ⊢Δ [σ])
⊩σt = proj₁ ([t] ⊢Δ [σ])
⊩σGfstt = proj₁ ([Gfst] ⊢Δ [σ])
⊩σGfstt′ = PE.subst (λ x → Δ ⊩⟨ l ⟩ x) (singleSubstLift G (fst t)) ⊩σGfstt
⊩σsnd = snd″ ⊩σΣFG ⊩σt ⊩σGfstt′
in irrelevanceTerm′
(PE.sym (singleSubstLift G (fst t)))
⊩σGfstt′ ⊩σGfstt
⊩σsnd
in σsnd ⊢Δ [σ] ,
(λ {σ′} [σ′] [σ≡σ′] →
let [σF] = proj₁ ([F] ⊢Δ [σ])
[σΣFG] = proj₁ ([ΣFG] ⊢Δ [σ])
[σ′ΣFG] = proj₁ ([ΣFG] ⊢Δ [σ′])
[σΣFG≡σ′ΣFG] = proj₂ ([ΣFG] ⊢Δ [σ]) [σ′] [σ≡σ′]
[σt] = proj₁ ([t] ⊢Δ [σ])
[σ′t] = proj₁ ([t] ⊢Δ [σ′])
[σ′t] : Δ ⊩⟨ l ⟩ subst σ′ t ∷ subst σ (Σ F ▹ G) / [σΣFG]
[σ′t] = convTerm₂ [σΣFG] [σ′ΣFG] [σΣFG≡σ′ΣFG] [σ′t]
[σt≡σ′t] = proj₂ ([t] ⊢Δ [σ]) [σ′] [σ≡σ′]
[σGfstt] = proj₁ ([Gfst] ⊢Δ [σ])
[σGfstt]′ = PE.subst (λ x → _ ⊩⟨ l ⟩ x)
(singleSubstLift G (fst t))
[σGfstt]
[sndt≡sndt′] = snd-cong″ [σΣFG] [σt] [σ′t] [σt≡σ′t] [σGfstt]′
in irrelevanceEqTerm′ (PE.sym (singleSubstLift G (fst t)))
[σGfstt]′ [σGfstt]
[sndt≡sndt′])
| {
"alphanum_fraction": 0.4149855908,
"avg_line_length": 49.0326086957,
"ext": "agda",
"hexsha": "65d1cb5936f25692ab6cebcb257ff6f20d646a46",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Vtec234/logrel-mltt",
"max_forks_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Snd.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Vtec234/logrel-mltt",
"max_issues_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Snd.agda",
"max_line_length": 120,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Vtec234/logrel-mltt",
"max_stars_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Snd.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 6538,
"size": 13533
} |
{-# OPTIONS --universe-polymorphism #-}
module Issue333 where
open import Common.Level
data Σ a b (A : Set a) (B : A → Set b) : Set (a ⊔ b) where
_,_ : (x : A) → B x → Σ a b A B
P : ∀ a b (A : Set a) (B : Set b) → Set (a ⊔ b)
P a b A B = Σ a b A (λ _ → B)
postulate
A B : Set
foo : Σ lzero lzero A λ (y : A) → P lzero lzero A B
bar : Set₁
bar = helper foo
where
helper : (Σ _ _ A λ (y : A) → P _ _ _ _) → Set₁
helper (y , (x⇓ , fy⇑)) = Set
| {
"alphanum_fraction": 0.5240174672,
"avg_line_length": 20.8181818182,
"ext": "agda",
"hexsha": "dc59f927a824f6ace91198525199a1459ab1b264",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue333.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue333.agda",
"max_line_length": 58,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue333.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 201,
"size": 458
} |
{-# OPTIONS --rewriting #-}
open import Common.Prelude
open import Common.Equality
{-# BUILTIN REWRITE _≡_ #-}
postulate
f : Bool → Bool
boolTrivial : ∀ (b c : Bool) → f b ≡ c
{-# REWRITE boolTrivial #-}
-- Should trigger an error that c is not bound on the lhs.
| {
"alphanum_fraction": 0.6544117647,
"avg_line_length": 18.1333333333,
"ext": "agda",
"hexsha": "48501a2e4afd8739e2bfdecdb4a282ed1b9c9fe0",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/RewriteRuleUnboundVars.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/RewriteRuleUnboundVars.agda",
"max_line_length": 58,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/RewriteRuleUnboundVars.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 78,
"size": 272
} |
module L.Base.Nat where
-- Reexport definitions
open import L.Base.Nat.Core public
-- Functions on Nats
pred : Nat → Nat
pred = ind (λ _ → Nat) zero (λ x _ → x)
infixl 6 _+_
infixl 7 _*_
_+_ : Nat → Nat → Nat
zero + y = y
succ x + y = succ (x + y)
{-# BUILTIN NATPLUS _+_ #-}
_*_ : Nat → Nat → Nat
zero * y = zero
succ x * y = y + x * y
{-# BUILTIN NATTIMES _*_ #-}
| {
"alphanum_fraction": 0.5835543767,
"avg_line_length": 15.7083333333,
"ext": "agda",
"hexsha": "abd25bb12d24e2d1a8764649984bdba47e730053",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "borszag/smallib",
"max_forks_repo_path": "src/L/Base/Nat.agda",
"max_issues_count": 10,
"max_issues_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3",
"max_issues_repo_issues_event_max_datetime": "2020-11-09T16:40:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-10-19T10:13:16.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "borszag/smallib",
"max_issues_repo_path": "src/L/Base/Nat.agda",
"max_line_length": 39,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "borszag/smallib",
"max_stars_repo_path": "src/L/Base/Nat.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 137,
"size": 377
} |
{-# OPTIONS --without-K #-}
module sets.nat.solver where
open import decidable
open import equality
open import function.core
hiding (const)
open import sets.nat.core
open import sets.nat.properties
open import sets.nat.ordering
open import sets.fin.core
hiding (_≟_)
open import sets.vec.core
open import sets.vec.dependent
data Exp (n : ℕ) : Set where
var : Fin n → Exp n
const : ℕ → Exp n
_:+_ : Exp n → Exp n → Exp n
infixl 6 _:+_
eval : ∀ {n} → (Fin n → ℕ) → Exp n → ℕ
eval env (var i) = env i
eval env (const x) = x
eval env (e₁ :+ e₂) = eval env e₁ + eval env e₂
NF : ℕ → Set
NF n = Vec ℕ n
evalNF' : ∀ {n} → (Fin n → ℕ) → NF n → ℕ
evalNF' _ [] = 0
evalNF' env (x ∷ xs) = x * env zero + evalNF' (env ∘' suc) xs
evalNF : ∀ {n} → (Fin n → ℕ) → NF (suc n) → ℕ
evalNF env xs = evalNF' (1 ∷∷ env) xs
decNF : ∀ {n}(xs ys : NF n) → Dec (xs ≡ ys)
decNF [] [] = yes refl
decNF (x ∷ xs) (y ∷ ys) with x ≟ y | decNF xs ys
decNF (x ∷ xs) (y ∷ ys) | _ | no u = no λ p → u (ap tail p)
decNF (x ∷ xs) (y ∷ ys) | no u | _ = no λ p → u (ap head p)
decNF (x ∷ xs) (y ∷ ys) | yes p | yes q = yes (ap₂ _∷_ p q)
emptyNF : ∀ {n} → NF n
emptyNF {zero} = []
emptyNF {suc n} = 0 ∷ emptyNF
eval-emptyNF : ∀ {n}(env : Fin n → ℕ) → evalNF' env emptyNF ≡ 0
eval-emptyNF {zero} env = refl
eval-emptyNF {suc n} env = eval-emptyNF {n} (env ∘' suc)
δ : ∀ {n} → Fin n → ℕ → NF n
δ zero val = val ∷ emptyNF
δ (suc i) val = 0 ∷ δ i val
eval-δ : ∀ {n}(i : Fin n)(val : ℕ)
→ (env : Fin n → ℕ)
→ evalNF' env (δ i val) ≡ val * env i
eval-δ zero val env = ap (_+_ (val * env zero)) (eval-emptyNF env)
· +-right-unit _
eval-δ (suc i) val env = eval-δ i val (env ∘' suc)
_+NF_ : ∀ {n} → NF n → NF n → NF n
[] +NF [] = []
(x ∷ xs) +NF (y ∷ ys) = (x + y) ∷ (xs +NF ys)
eval+NF : ∀ {n}(xs ys : NF n)(env : Fin n → ℕ)
→ evalNF' env (xs +NF ys)
≡ evalNF' env xs + evalNF' env ys
eval+NF [] [] env = refl
eval+NF (x ∷ xs) (y ∷ ys) env
= ap₂ _+_ (right-distr x y (env zero)) (eval+NF xs ys (env ∘' suc))
· lem (x * env zero) (y * env zero) (evalNF' (env ∘' suc) xs) (evalNF' (env ∘' suc) ys)
where
lem : ∀ a b c d → (a + b) + (c + d) ≡ (a + c) + (b + d)
lem a b c d
= +-associativity a b (c + d)
· ap (_+_ a) (sym (+-associativity b c d))
· ap (λ z → a + (z + d)) (+-commutativity b c)
· ap (_+_ a) (+-associativity c b d)
· sym (+-associativity a c (b + d))
nf : ∀ {n} → Exp n → NF (suc n)
nf (var i) = δ (suc i) 1
nf (const k) = δ zero k
nf (e₁ :+ e₂) = nf e₁ +NF nf e₂
nf-sound : ∀ {n}(env : Fin n → ℕ)(e : Exp n)
→ evalNF env (nf e) ≡ eval env e
nf-sound env (var i) = eval-δ i 1 env · +-right-unit (env i)
nf-sound env (const x) = ap (_+_ (x * 1)) (eval-emptyNF env)
· +-right-unit (x * 1)
· *-right-unit x
nf-sound env (e₁ :+ e₂) = eval+NF (nf e₁) (nf e₂) (1 ∷∷ env)
· ap₂ _+_ (nf-sound env e₁) (nf-sound env e₂)
HOTerm : ℕ → ℕ → Set
HOTerm n zero = Exp n
HOTerm n (suc i) = Exp n → HOTerm n i
private
exp' : (n i : ℕ) → i ≤ n → HOTerm n i → (Fin i → Exp n) → Exp n
exp' _ zero _ e _ = e
exp' zero (suc i) () e f
exp' (suc n) (suc i) p e f = exp' (suc n) i (trans≤ suc≤ p) (e (f zero)) (f ∘' suc)
exp : ∀ {n} → HOTerm n n → Exp n
exp {n} e = exp' n n refl≤ e var
solve : ∀ n (e₁ e₂ : Exp n){t : True (decNF (nf e₁) (nf e₂))}
→ (env : Fin n → ℕ)
→ eval env e₁ ≡ eval env e₂
solve n e₁ e₂ {t} env = sym (nf-sound env e₁)
· ap (evalNF env) (witness t)
· nf-sound env e₂
| {
"alphanum_fraction": 0.5120934112,
"avg_line_length": 31.0086206897,
"ext": "agda",
"hexsha": "330252dc868d52c520a7b23322f0f6d21105b54b",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z",
"max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "pcapriotti/agda-base",
"max_forks_repo_path": "src/sets/nat/solver.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "pcapriotti/agda-base",
"max_issues_repo_path": "src/sets/nat/solver.agda",
"max_line_length": 89,
"max_stars_count": 20,
"max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "pcapriotti/agda-base",
"max_stars_repo_path": "src/sets/nat/solver.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z",
"num_tokens": 1482,
"size": 3597
} |
{-
This module defines the basic opens of the Zariski lattice and proves that they're a basis of the lattice.
It also contains the construction of the structure presheaf and a proof of the sheaf property on basic opens,
using the theory developed in the module PreSheafFromUniversalProp and its toSheaf.lemma.
Note that the structure sheaf is a functor into R-algebras and not just commutative rings.
-}
{-# OPTIONS --safe --experimental-lossy-unification #-}
module Cubical.Algebra.ZariskiLattice.StructureSheaf where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Transport
open import Cubical.Foundations.Powerset using (ℙ ; ⊆-refl-consequence)
renaming (_∈_ to _∈ₚ_ ; subst-∈ to subst-∈ₚ)
import Cubical.Data.Empty as ⊥
open import Cubical.Data.Bool
open import Cubical.Data.Nat renaming ( _+_ to _+ℕ_ ; _·_ to _·ℕ_ ; _^_ to _^ℕ_
; +-comm to +ℕ-comm ; +-assoc to +ℕ-assoc
; ·-assoc to ·ℕ-assoc ; ·-comm to ·ℕ-comm
; ·-identityʳ to ·ℕ-rid)
open import Cubical.Data.Sigma.Base
open import Cubical.Data.Sigma.Properties
open import Cubical.Data.FinData
open import Cubical.Data.Unit
open import Cubical.Relation.Nullary
open import Cubical.Relation.Binary
open import Cubical.Relation.Binary.Poset
open import Cubical.Algebra.Ring
open import Cubical.Algebra.Ring.Properties
open import Cubical.Algebra.Ring.BigOps
open import Cubical.Algebra.Algebra
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.CommRing.BinomialThm
open import Cubical.Algebra.CommRing.Ideal
open import Cubical.Algebra.CommRing.FGIdeal
open import Cubical.Algebra.CommRing.RadicalIdeal
open import Cubical.Algebra.CommRing.Localisation.Base
open import Cubical.Algebra.CommRing.Localisation.UniversalProperty
open import Cubical.Algebra.CommRing.Localisation.InvertingElements
open import Cubical.Algebra.CommRing.Localisation.PullbackSquare
open import Cubical.Algebra.CommAlgebra.Base
open import Cubical.Algebra.CommAlgebra.Properties
open import Cubical.Algebra.CommAlgebra.Localisation
open import Cubical.Algebra.CommAlgebra.Instances.Unit
open import Cubical.Algebra.RingSolver.Reflection
open import Cubical.Algebra.Semilattice
open import Cubical.Algebra.Lattice
open import Cubical.Algebra.DistLattice
open import Cubical.Algebra.DistLattice.Basis
open import Cubical.Algebra.DistLattice.BigOps
open import Cubical.Algebra.ZariskiLattice.Base
open import Cubical.Algebra.ZariskiLattice.UniversalProperty
open import Cubical.Categories.Category.Base hiding (_[_,_])
open import Cubical.Categories.Functor
open import Cubical.Categories.Limits.Pullback
open import Cubical.Categories.Instances.CommAlgebras
open import Cubical.Categories.Instances.DistLattice
open import Cubical.Categories.Instances.Semilattice
open import Cubical.Categories.DistLatticeSheaf
open import Cubical.HITs.SetQuotients as SQ
open import Cubical.HITs.PropositionalTruncation as PT
open Iso
open BinaryRelation
open isEquivRel
private
variable
ℓ ℓ' : Level
module _ (R' : CommRing ℓ) where
open CommRingStr ⦃...⦄
open RingTheory (CommRing→Ring R')
open CommIdeal R'
open isCommIdeal
open ZarLat R'
open ZarLatUniversalProp R'
open IsZarMap
open Join ZariskiLattice
open JoinSemilattice (Lattice→JoinSemilattice (DistLattice→Lattice ZariskiLattice))
open IsBasis
private
R = fst R'
instance
_ = snd R'
⟨_⟩ : R → CommIdeal
⟨ f ⟩ = ⟨ replicateFinVec 1 f ⟩[ R' ]
⟨_⟩ₚ : R × R → CommIdeal -- p is for pair
⟨ f , g ⟩ₚ = ⟨ replicateFinVec 1 f ++Fin replicateFinVec 1 g ⟩[ R' ]
BasicOpens : ℙ ZL
BasicOpens 𝔞 = (∃[ f ∈ R ] (D f ≡ 𝔞)) , isPropPropTrunc
BO : Type (ℓ-suc ℓ)
BO = Σ[ 𝔞 ∈ ZL ] (𝔞 ∈ₚ BasicOpens)
basicOpensAreBasis : IsBasis ZariskiLattice BasicOpens
contains1 basicOpensAreBasis = ∣ 1r , isZarMapD .pres1 ∣
∧lClosed basicOpensAreBasis 𝔞 𝔟 = map2
λ (f , Df≡𝔞) (g , Dg≡𝔟) → (f · g) , isZarMapD .·≡∧ f g ∙ cong₂ (_∧z_) Df≡𝔞 Dg≡𝔟
⋁Basis basicOpensAreBasis = elimProp (λ _ → isPropPropTrunc) Σhelper
where
Σhelper : (a : Σ[ n ∈ ℕ ] FinVec R n)
→ ∃[ n ∈ ℕ ] Σ[ α ∈ FinVec ZL n ] (∀ i → α i ∈ₚ BasicOpens) × (⋁ α ≡ [ a ])
Σhelper (n , α) = ∣ n , (D ∘ α) , (λ i → ∣ α i , refl ∣) , path ∣
where
path : ⋁ (D ∘ α) ≡ [ n , α ]
path = funExt⁻ (cong fst ZLUniversalPropCorollary) _
-- The structure presheaf on BO
ZariskiCat = DistLatticeCategory ZariskiLattice
BOCat : Category (ℓ-suc ℓ) (ℓ-suc ℓ)
BOCat = ΣPropCat ZariskiCat BasicOpens
private
P : ZL → Type _
P 𝔞 = Σ[ f ∈ R ] (D f ≡ 𝔞) -- the untruncated defining property
𝓕 : Σ ZL P → CommAlgebra R' _
𝓕 (_ , f , _) = R[1/ f ]AsCommAlgebra -- D(f) ↦ R[1/f]
uniqueHom : ∀ (x y : Σ ZL P) → (fst x) ≤ (fst y) → isContr (CommAlgebraHom (𝓕 y) (𝓕 x))
uniqueHom (𝔞 , f , p) (𝔟 , g , q) = contrHoms 𝔞 𝔟 f g p q
where
open InvertingElementsBase R'
contrHoms : (𝔞 𝔟 : ZL) (f g : R) (p : D f ≡ 𝔞) (q : D g ≡ 𝔟)
→ 𝔞 ≤ 𝔟 → isContr (CommAlgebraHom R[1/ g ]AsCommAlgebra R[1/ f ]AsCommAlgebra)
contrHoms 𝔞 𝔟 f g p q 𝔞≤𝔟 = R[1/g]HasAlgUniversalProp R[1/ f ]AsCommAlgebra
λ s s∈[gⁿ|n≥0] → subst-∈ₚ (R[1/ f ]AsCommRing ˣ)
(sym (·Rid (s /1))) --can't apply the lemma directly as we get mult with 1 somewhere
(RadicalLemma.toUnit R' f g f∈√⟨g⟩ s s∈[gⁿ|n≥0])
where
open AlgLoc R' [ g ⁿ|n≥0] (powersFormMultClosedSubset g)
renaming (S⁻¹RHasAlgUniversalProp to R[1/g]HasAlgUniversalProp)
open S⁻¹RUniversalProp R' [ f ⁿ|n≥0] (powersFormMultClosedSubset f) using (_/1)
open RadicalIdeal R'
private
instance
_ = snd R[1/ f ]AsCommRing
Df≤Dg : D f ≤ D g
Df≤Dg = subst2 _≤_ (sym p) (sym q) 𝔞≤𝔟
radicalHelper : √ ⟨ f , g ⟩ₚ ≡ √ ⟨ g ⟩
radicalHelper =
isEquivRel→effectiveIso (λ _ _ → isSetCommIdeal _ _) ∼EquivRel _ _ .fun Df≤Dg
f∈√⟨g⟩ : f ∈ √ ⟨ g ⟩
f∈√⟨g⟩ = subst (f ∈_) radicalHelper (∈→∈√ _ _ (indInIdeal _ _ zero))
open PreSheafFromUniversalProp ZariskiCat P 𝓕 uniqueHom
BasisStructurePShf : Functor (BOCat ^op) (CommAlgebrasCategory R')
BasisStructurePShf = universalPShf
-- now prove the sheaf properties
open SheafOnBasis ZariskiLattice (CommAlgebrasCategory R' {ℓ' = ℓ})
(TerminalCommAlgebra R') BasicOpens basicOpensAreBasis
isSheafBasisStructurePShf : isDLBasisSheaf BasisStructurePShf
fst isSheafBasisStructurePShf 0∈BO =
transport (λ i → F-ob (0z , canonical0∈BO≡0∈BO i) ≡ UnitCommAlgebra R') R[1/0]≡0
where
open Functor ⦃...⦄
instance
_ = BasisStructurePShf
canonical0∈BO : 0z ∈ₚ BasicOpens
canonical0∈BO = ∣ 0r , isZarMapD .pres0 ∣
canonical0∈BO≡0∈BO : canonical0∈BO ≡ 0∈BO
canonical0∈BO≡0∈BO = BasicOpens 0z .snd _ _
R[1/0]≡0 : R[1/ 0r ]AsCommAlgebra ≡ UnitCommAlgebra R'
R[1/0]≡0 = uaCommAlgebra (e , eIsRHom)
where
open InvertingElementsBase R' using (isContrR[1/0])
open IsAlgebraHom
e : R[1/ 0r ]AsCommAlgebra .fst ≃ UnitCommAlgebra R' .fst
e = isContr→Equiv isContrR[1/0] isContrUnit*
eIsRHom : IsCommAlgebraEquiv (R[1/ 0r ]AsCommAlgebra .snd) e (UnitCommAlgebra R' .snd)
pres0 eIsRHom = refl
pres1 eIsRHom = refl
pres+ eIsRHom _ _ = refl
pres· eIsRHom _ _ = refl
pres- eIsRHom _ = refl
pres⋆ eIsRHom _ _ = refl
snd isSheafBasisStructurePShf (𝔞 , 𝔞∈BO) (𝔟 , 𝔟∈BO) 𝔞∨𝔟∈BO = curriedHelper 𝔞 𝔟 𝔞∈BO 𝔟∈BO 𝔞∨𝔟∈BO
where
open condSquare
{-
here:
BFsq (𝔞 , 𝔞∈BO) (𝔟 , 𝔟∈BO) 𝔞∨𝔟∈BO BasisStructurePShf =
𝓞 (𝔞∨𝔟) → 𝓞 (𝔞)
↓ ↓
𝓞 (𝔟) → 𝓞 (𝔞∧𝔟)
-}
curriedHelper : (𝔞 𝔟 : ZL) (𝔞∈BO : 𝔞 ∈ₚ BasicOpens) (𝔟∈BO : 𝔟 ∈ₚ BasicOpens)
(𝔞∨𝔟∈BO : 𝔞 ∨z 𝔟 ∈ₚ BasicOpens)
→ isPullback (CommAlgebrasCategory R') _ _ _
(BFsq (𝔞 , 𝔞∈BO) (𝔟 , 𝔟∈BO) 𝔞∨𝔟∈BO BasisStructurePShf)
curriedHelper 𝔞 𝔟 = elim3 (λ 𝔞∈BO 𝔟∈BO 𝔞∨𝔟∈BO → isPropIsPullback _ _ _ _
(BFsq (𝔞 , 𝔞∈BO) (𝔟 , 𝔟∈BO) 𝔞∨𝔟∈BO BasisStructurePShf))
Σhelper
where
-- write everything explicitly so things can type-check
thePShfCospan : (a : Σ[ f ∈ R ] D f ≡ 𝔞) (b : Σ[ g ∈ R ] D g ≡ 𝔟)
→ Cospan (CommAlgebrasCategory R')
Cospan.l (thePShfCospan (f , Df≡𝔞) (g , Dg≡𝔟)) = BasisStructurePShf .Functor.F-ob (𝔟 , ∣ g , Dg≡𝔟 ∣)
Cospan.m (thePShfCospan (f , Df≡𝔞) (g , Dg≡𝔟)) = BasisStructurePShf .Functor.F-ob
(𝔞 ∧z 𝔟 , basicOpensAreBasis .∧lClosed 𝔞 𝔟 ∣ f , Df≡𝔞 ∣ ∣ g , Dg≡𝔟 ∣)
Cospan.r (thePShfCospan (f , Df≡𝔞) (g , Dg≡𝔟)) = BasisStructurePShf .Functor.F-ob (𝔞 , ∣ f , Df≡𝔞 ∣)
Cospan.s₁ (thePShfCospan (f , Df≡𝔞) (g , Dg≡𝔟)) = BasisStructurePShf .Functor.F-hom
{x = (𝔟 , ∣ g , Dg≡𝔟 ∣)}
{y = (𝔞 ∧z 𝔟 , basicOpensAreBasis .∧lClosed 𝔞 𝔟 ∣ f , Df≡𝔞 ∣ ∣ g , Dg≡𝔟 ∣)}
(hom-∧₂ ZariskiLattice (CommAlgebrasCategory R' {ℓ' = ℓ}) (TerminalCommAlgebra R') 𝔞 𝔟)
Cospan.s₂ (thePShfCospan (f , Df≡𝔞) (g , Dg≡𝔟)) = BasisStructurePShf .Functor.F-hom
{x = (𝔞 , ∣ f , Df≡𝔞 ∣)}
{y = (𝔞 ∧z 𝔟 , basicOpensAreBasis .∧lClosed 𝔞 𝔟 ∣ f , Df≡𝔞 ∣ ∣ g , Dg≡𝔟 ∣)}
(hom-∧₁ ZariskiLattice (CommAlgebrasCategory R' {ℓ' = ℓ}) (TerminalCommAlgebra R') 𝔞 𝔟)
Σhelper : (a : Σ[ f ∈ R ] D f ≡ 𝔞) (b : Σ[ g ∈ R ] D g ≡ 𝔟) (c : Σ[ h ∈ R ] D h ≡ 𝔞 ∨z 𝔟)
→ isPullback (CommAlgebrasCategory R') (thePShfCospan a b) _ _
(BFsq (𝔞 , ∣ a ∣) (𝔟 , ∣ b ∣) ∣ c ∣ BasisStructurePShf)
Σhelper (f , Df≡𝔞) (g , Dg≡𝔟) (h , Dh≡𝔞∨𝔟) = toSheaf.lemma
(𝔞 ∨z 𝔟 , ∣ h , Dh≡𝔞∨𝔟 ∣)
(𝔞 , ∣ f , Df≡𝔞 ∣)
(𝔟 , ∣ g , Dg≡𝔟 ∣)
(𝔞 ∧z 𝔟 , basicOpensAreBasis .∧lClosed 𝔞 𝔟 ∣ f , Df≡𝔞 ∣ ∣ g , Dg≡𝔟 ∣)
(Bsq (𝔞 , ∣ f , Df≡𝔞 ∣) (𝔟 , ∣ g , Dg≡𝔟 ∣) ∣ h , Dh≡𝔞∨𝔟 ∣)
theAlgebraCospan theAlgebraPullback refl gPath fPath fgPath
where
open Exponentiation R'
open RadicalIdeal R'
open InvertingElementsBase R'
open DoubleLoc R' h
open S⁻¹RUniversalProp R' [ h ⁿ|n≥0] (powersFormMultClosedSubset h)
open CommIdeal R[1/ h ]AsCommRing using () renaming (CommIdeal to CommIdealₕ ; _∈_ to _∈ₕ_)
instance
_ = snd R[1/ h ]AsCommRing
⟨_⟩ₕ : R[1/ h ] × R[1/ h ] → CommIdealₕ
⟨ x , y ⟩ₕ = ⟨ replicateFinVec 1 x ++Fin replicateFinVec 1 y ⟩[ R[1/ h ]AsCommRing ]
-- the crucial algebraic fact:
radicalPath : √ ⟨ h ⟩ ≡ √ ⟨ f , g ⟩ₚ
radicalPath = isEquivRel→effectiveIso (λ _ _ → isSetCommIdeal _ _) ∼EquivRel _ _ .fun DHelper
where
DHelper : D h ≡ D f ∨z D g
DHelper = Dh≡𝔞∨𝔟 ∙ cong₂ (_∨z_) (sym Df≡𝔞) (sym Dg≡𝔟)
f∈√⟨h⟩ : f ∈ √ ⟨ h ⟩
f∈√⟨h⟩ = subst (f ∈_) (sym radicalPath) (∈→∈√ _ _ (indInIdeal _ _ zero))
g∈√⟨h⟩ : g ∈ √ ⟨ h ⟩
g∈√⟨h⟩ = subst (g ∈_) (sym radicalPath) (∈→∈√ _ _ (indInIdeal _ _ (suc zero)))
fg∈√⟨h⟩ : (f · g) ∈ √ ⟨ h ⟩
fg∈√⟨h⟩ = √ ⟨ h ⟩ .snd .·Closed f g∈√⟨h⟩
1∈fgIdeal : 1r ∈ₕ ⟨ (f /1) , (g /1) ⟩ₕ
1∈fgIdeal = helper1 (subst (h ∈_) radicalPath (∈→∈√ _ _ (indInIdeal _ _ zero)))
where
helper1 : h ∈ √ ⟨ f , g ⟩ₚ
→ 1r ∈ₕ ⟨ (f /1) , (g /1) ⟩ₕ
helper1 = PT.rec isPropPropTrunc (uncurry helper2)
where
helper2 : (n : ℕ)
→ h ^ n ∈ ⟨ f , g ⟩ₚ
→ 1r ∈ₕ ⟨ (f /1) , (g /1) ⟩ₕ
helper2 n = map helper3
where
helper3 : Σ[ α ∈ FinVec R 2 ]
h ^ n ≡ linearCombination R' α (λ { zero → f ; (suc zero) → g })
→ Σ[ β ∈ FinVec R[1/ h ] 2 ]
1r ≡ linearCombination R[1/ h ]AsCommRing β
λ { zero → f /1 ; (suc zero) → g /1 }
helper3 (α , p) = β , path
where
β : FinVec R[1/ h ] 2
β zero = [ α zero , h ^ n , ∣ n , refl ∣ ]
β (suc zero) = [ α (suc zero) , h ^ n , ∣ n , refl ∣ ]
path : 1r ≡ linearCombination R[1/ h ]AsCommRing β
λ { zero → f /1 ; (suc zero) → g /1 }
path = eq/ _ _ ((1r , ∣ 0 , refl ∣) , bigPath)
∙ cong (β zero · (f /1) +_) (sym (+Rid (β (suc zero) · (g /1))))
where
useSolver1 : ∀ hn → 1r · 1r · ((hn · 1r) · (hn · 1r)) ≡ hn · hn
useSolver1 = solve R'
useSolver2 : ∀ az f hn as g → hn · (az · f + (as · g + 0r))
≡ 1r · (az · f · (hn · 1r) + as · g · (hn · 1r)) · 1r
useSolver2 = solve R'
bigPath : 1r · 1r · ((h ^ n · 1r) · (h ^ n · 1r))
≡ 1r · (α zero · f · (h ^ n · 1r) + α (suc zero) · g · (h ^ n · 1r)) · 1r
bigPath = useSolver1 (h ^ n) ∙ cong (h ^ n ·_) p ∙ useSolver2 _ _ _ _ _
{-
We get the following pullback square in CommRings
R[1/h] → R[1/h][1/f]
⌟
↓ ↓
R[1/h][1/g] → R[1/h][1/fg]
this lifts to a pullback in R-Algebras using PullbackFromCommRing
as all for rings have canonical morphisms coming from R
and all the triangles commute.
Then using toSheaf.lemma we get the desired square
R[1/h] → R[1/f]
⌟
↓ ↓
R[1/g] → R[1/fg]
by only providing paths between the corresponding vertices of the square.
These paths are constructed using S⁻¹RAlgCharEquiv, which gives
an equivalent characterization of the universal property of localization
that can be found in e.g. Cor 3.2 of Atiyah-MacDonald
-}
theRingCospan = fgCospan R[1/ h ]AsCommRing (f /1) (g /1)
theRingPullback = fgPullback R[1/ h ]AsCommRing (f /1) (g /1) 1∈fgIdeal
R[1/h][1/f] = InvertingElementsBase.R[1/_] R[1/ h ]AsCommRing (f /1)
R[1/h][1/f]AsCommRing = InvertingElementsBase.R[1/_]AsCommRing R[1/ h ]AsCommRing (f /1)
R[1/h][1/g] = InvertingElementsBase.R[1/_] R[1/ h ]AsCommRing (g /1)
R[1/h][1/g]AsCommRing = InvertingElementsBase.R[1/_]AsCommRing R[1/ h ]AsCommRing (g /1)
R[1/h][1/fg] = InvertingElementsBase.R[1/_] R[1/ h ]AsCommRing ((f /1) · (g /1))
R[1/h][1/fg]AsCommRing = InvertingElementsBase.R[1/_]AsCommRing
R[1/ h ]AsCommRing ((f /1) · (g /1))
open IsRingHom
/1/1AsCommRingHomFG : CommRingHom R' R[1/h][1/fg]AsCommRing
fst /1/1AsCommRingHomFG r = [ [ r , 1r , ∣ 0 , refl ∣ ] , 1r , ∣ 0 , refl ∣ ]
pres0 (snd /1/1AsCommRingHomFG) = refl
pres1 (snd /1/1AsCommRingHomFG) = refl
pres+ (snd /1/1AsCommRingHomFG) x y = cong [_] (≡-× (cong [_] (≡-×
(cong₂ _+_ (useSolver x) (useSolver y))
(Σ≡Prop (λ _ → isPropPropTrunc) (useSolver 1r))))
(Σ≡Prop (λ _ → isPropPropTrunc) (sym (·Rid 1r))))
where
useSolver : ∀ a → a ≡ a · 1r · (1r · 1r)
useSolver = solve R'
pres· (snd /1/1AsCommRingHomFG) x y = cong [_] (≡-× (cong [_] (≡-× refl
(Σ≡Prop (λ _ → isPropPropTrunc) (sym (·Rid 1r)))))
(Σ≡Prop (λ _ → isPropPropTrunc) (sym (·Rid 1r))))
pres- (snd /1/1AsCommRingHomFG) x = refl
open Cospan
open Pullback
open RingHoms
isRHomR[1/h]→R[1/h][1/f] : theRingPullback .pbPr₂ ∘r /1AsCommRingHom ≡ /1/1AsCommRingHom f
isRHomR[1/h]→R[1/h][1/f] = RingHom≡ (funExt (λ x → refl))
isRHomR[1/h]→R[1/h][1/g] : theRingPullback .pbPr₁ ∘r /1AsCommRingHom ≡ /1/1AsCommRingHom g
isRHomR[1/h]→R[1/h][1/g] = RingHom≡ (funExt (λ x → refl))
isRHomR[1/h][1/f]→R[1/h][1/fg] : theRingCospan .s₂ ∘r /1/1AsCommRingHom f ≡ /1/1AsCommRingHomFG
isRHomR[1/h][1/f]→R[1/h][1/fg] = RingHom≡ (funExt
(λ x → cong [_] (≡-× (cong [_] (≡-× (cong (x ·_) (transportRefl 1r) ∙ ·Rid x)
(Σ≡Prop (λ _ → isPropPropTrunc) (cong (1r ·_) (transportRefl 1r) ∙ ·Rid 1r))))
(Σ≡Prop (λ _ → isPropPropTrunc) (cong (1r ·_) (transportRefl 1r) ∙ ·Rid 1r)))))
isRHomR[1/h][1/g]→R[1/h][1/fg] : theRingCospan .s₁ ∘r /1/1AsCommRingHom g ≡ /1/1AsCommRingHomFG
isRHomR[1/h][1/g]→R[1/h][1/fg] = RingHom≡ (funExt
(λ x → cong [_] (≡-× (cong [_] (≡-× (cong (x ·_) (transportRefl 1r) ∙ ·Rid x)
(Σ≡Prop (λ _ → isPropPropTrunc) (cong (1r ·_) (transportRefl 1r) ∙ ·Rid 1r))))
(Σ≡Prop (λ _ → isPropPropTrunc) (cong (1r ·_) (transportRefl 1r) ∙ ·Rid 1r)))))
open PullbackFromCommRing R' theRingCospan theRingPullback
/1AsCommRingHom (/1/1AsCommRingHom f) (/1/1AsCommRingHom g) /1/1AsCommRingHomFG
theAlgebraCospan = algCospan isRHomR[1/h]→R[1/h][1/f]
isRHomR[1/h]→R[1/h][1/g]
isRHomR[1/h][1/f]→R[1/h][1/fg]
isRHomR[1/h][1/g]→R[1/h][1/fg]
theAlgebraPullback = algPullback isRHomR[1/h]→R[1/h][1/f]
isRHomR[1/h]→R[1/h][1/g]
isRHomR[1/h][1/f]→R[1/h][1/fg]
isRHomR[1/h][1/g]→R[1/h][1/fg]
--and the three remaining paths
fPath : theAlgebraCospan .r ≡ R[1/ f ]AsCommAlgebra
fPath = doubleLocCancel f∈√⟨h⟩
where
open DoubleAlgLoc R' h f
gPath : theAlgebraCospan .l ≡ R[1/ g ]AsCommAlgebra
gPath = doubleLocCancel g∈√⟨h⟩
where
open DoubleAlgLoc R' h g
fgPath : theAlgebraCospan .m ≡ R[1/ (f · g) ]AsCommAlgebra
fgPath = path ∙ doubleLocCancel fg∈√⟨h⟩
where
open DoubleAlgLoc R' h (f · g)
open CommAlgChar R'
R[1/h][1/fg]AsCommRing' = InvertingElementsBase.R[1/_]AsCommRing R[1/ h ]AsCommRing ((f · g) /1)
path : toCommAlg (R[1/h][1/fg]AsCommRing , /1/1AsCommRingHomFG)
≡ toCommAlg (R[1/h][1/fg]AsCommRing' , /1/1AsCommRingHom (f · g))
path = cong toCommAlg (ΣPathP (p , q))
where
eqInR[1/h] : (f /1) · (g /1) ≡ (f · g) /1
eqInR[1/h] = sym (/1AsCommRingHom .snd .pres· f g)
p : R[1/h][1/fg]AsCommRing ≡ R[1/h][1/fg]AsCommRing'
p i = InvertingElementsBase.R[1/_]AsCommRing R[1/ h ]AsCommRing (eqInR[1/h] i)
q : PathP (λ i → CommRingHom R' (p i)) /1/1AsCommRingHomFG (/1/1AsCommRingHom (f · g))
q = toPathP (RingHom≡ (funExt (
λ x → cong [_] (≡-× (cong [_] (≡-× (transportRefl _ ∙ transportRefl x)
(Σ≡Prop (λ _ → isPropPropTrunc) (transportRefl 1r))))
(Σ≡Prop (λ _ → isPropPropTrunc) (transportRefl 1r))))))
| {
"alphanum_fraction": 0.5867431758,
"avg_line_length": 40.8925438596,
"ext": "agda",
"hexsha": "93df73cade1af8fc31aa2bc4f4a6ce77efa00674",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "howsiyu/cubical",
"max_forks_repo_path": "Cubical/Algebra/ZariskiLattice/StructureSheaf.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "howsiyu/cubical",
"max_issues_repo_path": "Cubical/Algebra/ZariskiLattice/StructureSheaf.agda",
"max_line_length": 112,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "howsiyu/cubical",
"max_stars_repo_path": "Cubical/Algebra/ZariskiLattice/StructureSheaf.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 7603,
"size": 18647
} |
{-# OPTIONS --erased-cubical #-}
open import Agda.Builtin.Cubical.Path
-- Higher constructors must be erased when --erased-cubical is used.
data ∥_∥ (A : Set) : Set where
∣_∣ : A → ∥ A ∥
trivial : (x y : ∥ A ∥) → x ≡ y
| {
"alphanum_fraction": 0.5956521739,
"avg_line_length": 23,
"ext": "agda",
"hexsha": "fd00f8150e5f6ad2a145714a5efc7e9049219010",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-04-18T13:34:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-18T13:34:07.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Erased-cubical-Higher-constructor.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Erased-cubical-Higher-constructor.agda",
"max_line_length": 68,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Erased-cubical-Higher-constructor.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 86,
"size": 230
} |
------------------------------------------------------------------------
-- Lemmas related to application of substitutions
------------------------------------------------------------------------
-- The record below allows the application operation to be
-- "heterogeneous", applying substitutions containing one kind of term
-- to another kind of term. TODO: This results in some extra
-- complication—is it worth it?
open import Data.Universe.Indexed
module deBruijn.Substitution.Data.Application.Application21
{i u e} {Uni : IndexedUniverse i u e} where
import deBruijn.Context; open deBruijn.Context Uni
open import deBruijn.Substitution.Data.Application.Application
open import deBruijn.Substitution.Data.Basics
open import deBruijn.Substitution.Data.Map
open import deBruijn.Substitution.Data.Simple
open import Function using (_$_)
open import Level using (_⊔_)
import Relation.Binary.PropositionalEquality as P
open P.≡-Reasoning
-- Lemmas and definitions related to application.
record Application₂₁
{t₁} {T₁ : Term-like t₁}
{t₂} {T₂ : Term-like t₂}
-- Simple substitutions for the first kind of terms.
(simple₁ : Simple T₁)
-- Simple substitutions for the second kind of terms.
(simple₂ : Simple T₂)
-- A translation from the first to the second kind of terms.
(trans : [ T₁ ⟶⁼ T₂ ])
: Set (i ⊔ u ⊔ e ⊔ t₁ ⊔ t₂) where
open Term-like T₁ using () renaming (_⊢_ to _⊢₁_; _≅-⊢_ to _≅-⊢₁_)
open Term-like T₂ using ([_]) renaming (_⊢_ to _⊢₂_; _≅-⊢_ to _≅-⊢₂_)
open Simple simple₁
using ()
renaming ( id to id₁; sub to sub₁; var to var₁
; weaken[_] to weaken₁[_]; wk to wk₁
; wk-subst to wk-subst₁; wk-subst[_] to wk-subst₁[_]
; _↑ to _↑₁; _↑_ to _↑₁_; _↑⁺_ to _↑⁺₁_; _↑₊_ to _↑₊₁_
; _↑⋆_ to _↑⋆₁_; _↑⁺⋆_ to _↑⁺⋆₁_; _↑₊⋆_ to _↑₊⋆₁_
)
open Simple simple₂
using ()
renaming ( id to id₂; id[_] to id₂[_]; var to var₂
; weaken to weaken₂; weaken[_] to weaken₂[_]; wk to wk₂
; wk-subst to wk-subst₂; wk-subst[_] to wk-subst₂[_]
; _↑ to _↑₂; _↑_ to _↑₂_
)
field
application : Application T₁ T₂
open Application application
field
-- The two weakening functions coincide.
trans-weaken : ∀ {Γ σ τ} (t : Γ ⊢₁ τ) →
trans · (weaken₁[ σ ] · t) ≅-⊢₂
weaken₂[ σ ] · (trans · t)
-- The two variable inclusion functions coincide.
trans-var : ∀ {Γ σ} (x : Γ ∋ σ) → trans · (var₁ · x) ≅-⊢₂ var₂ · x
-- _/⊢_ and _/∋₁_ coincide for variables.
var-/⊢ : ∀ {Γ Δ σ} {ρ̂ : Γ ⇨̂ Δ} (x : Γ ∋ σ) (ρ : Sub T₁ ρ̂) →
var₂ · x /⊢ ρ ≅-⊢₂ trans · (x /∋ ρ)
-- Application of multiple substitutions to variables.
--
-- TODO: Remove?
app∋⋆ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} → Subs T₁ ρ̂ → [ Var ⟶ T₂ ] ρ̂
app∋⋆ ε = var₂
app∋⋆ (ε ▻ ρ) = trans [∘] app∋ ρ
app∋⋆ (ρs ▻ ρ) = app ρ [∘] app∋⋆ ρs
infixl 8 _/∋⋆_
_/∋⋆_ : ∀ {Γ Δ σ} {ρ̂ : Γ ⇨̂ Δ} → Γ ∋ σ → Subs T₁ ρ̂ → Δ ⊢₂ σ /̂ ρ̂
x /∋⋆ ρs = app∋⋆ ρs · x
-- Composition of multiple substitutions.
--
-- TODO: Remove?
∘⋆ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} → Subs T₁ ρ̂ → Sub T₂ ρ̂
∘⋆ ε = id₂
∘⋆ (ρs ▻ ρ) = ∘⋆ ρs ∘ ρ
-- Some congruence lemmas.
trans-cong : ∀ {Γ₁ σ₁} {t₁ : Γ₁ ⊢₁ σ₁}
{Γ₂ σ₂} {t₂ : Γ₂ ⊢₁ σ₂} →
t₁ ≅-⊢₁ t₂ → trans · t₁ ≅-⊢₂ trans · t₂
trans-cong P.refl = P.refl
app∋⋆-cong : ∀ {Γ₁ Δ₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} {ρs₁ : Subs T₁ ρ̂₁}
{Γ₂ Δ₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} {ρs₂ : Subs T₁ ρ̂₂} →
ρs₁ ≅-⇨⋆ ρs₂ → app∋⋆ ρs₁ ≅-⟶ app∋⋆ ρs₂
app∋⋆-cong P.refl = [ P.refl ]
/∋⋆-cong :
∀ {Γ₁ Δ₁ σ₁} {x₁ : Γ₁ ∋ σ₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} {ρs₁ : Subs T₁ ρ̂₁}
{Γ₂ Δ₂ σ₂} {x₂ : Γ₂ ∋ σ₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} {ρs₂ : Subs T₁ ρ̂₂} →
x₁ ≅-∋ x₂ → ρs₁ ≅-⇨⋆ ρs₂ → x₁ /∋⋆ ρs₁ ≅-⊢₂ x₂ /∋⋆ ρs₂
/∋⋆-cong P.refl P.refl = P.refl
∘⋆-cong : ∀ {Γ₁ Δ₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} {ρs₁ : Subs T₁ ρ̂₁}
{Γ₂ Δ₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} {ρs₂ : Subs T₁ ρ̂₂} →
ρs₁ ≅-⇨⋆ ρs₂ → ∘⋆ ρs₁ ≅-⇨ ∘⋆ ρs₂
∘⋆-cong P.refl = P.refl
abstract
-- Applying a composed substitution to a variable is equivalent to
-- applying all the substitutions one after another.
--
-- TODO: Remove this lemma?
/∋-∘⋆ : ∀ {Γ Δ σ} {ρ̂ : Γ ⇨̂ Δ} (x : Γ ∋ σ) (ρs : Subs T₁ ρ̂) →
x /∋ ∘⋆ ρs ≅-⊢₂ var₂ · x /⊢⋆ ρs
/∋-∘⋆ x ε = begin
[ x /∋ id₂ ] ≡⟨ Simple./∋-id simple₂ x ⟩
[ var₂ · x ] ∎
/∋-∘⋆ x (ρs ▻ ρ) = begin
[ x /∋ ∘⋆ ρs ∘ ρ ] ≡⟨ /∋-∘ x (∘⋆ ρs) ρ ⟩
[ x /∋ ∘⋆ ρs /⊢ ρ ] ≡⟨ /⊢-cong (/∋-∘⋆ x ρs) P.refl ⟩
[ var₂ · x /⊢⋆ ρs /⊢ ρ ] ∎
-- x /∋⋆ ρs is synonymous with var₂ · x /⊢⋆ ρs.
--
-- TODO: Remove?
var-/⊢⋆ : ∀ {Γ Δ σ} {ρ̂ : Γ ⇨̂ Δ} (x : Γ ∋ σ) (ρs : Subs T₁ ρ̂) →
var₂ · x /⊢⋆ ρs ≅-⊢₂ x /∋⋆ ρs
var-/⊢⋆ x ε = P.refl
var-/⊢⋆ x (ε ▻ ρ) = begin
[ var₂ · x /⊢ ρ ] ≡⟨ var-/⊢ x ρ ⟩
[ trans · (x /∋ ρ) ] ∎
var-/⊢⋆ x (ρs ▻ ρ₁ ▻ ρ₂) = begin
[ var₂ · x /⊢⋆ (ρs ▻ ρ₁) /⊢ ρ₂ ] ≡⟨ /⊢-cong (var-/⊢⋆ x (ρs ▻ ρ₁)) P.refl ⟩
[ x /∋⋆ (ρs ▻ ρ₁) /⊢ ρ₂ ] ∎
-- A helper lemma.
/∋-≅-⊢-var : ∀ {Γ Δ σ} {ρ̂ : Γ ⇨̂ Δ}
(x : Γ ∋ σ) (ρ : Sub T₁ ρ̂) {y : Δ ∋ σ / ρ} →
x /∋ ρ ≅-⊢₁ var₁ · y →
var₂ · x /⊢ ρ ≅-⊢₂ var₂ · y
/∋-≅-⊢-var x ρ {y} hyp = begin
[ var₂ · x /⊢ ρ ] ≡⟨ var-/⊢ x ρ ⟩
[ trans · (x /∋ ρ) ] ≡⟨ trans-cong hyp ⟩
[ trans · (var₁ · y) ] ≡⟨ trans-var y ⟩
[ var₂ · y ] ∎
-- A variant of /∋-id.
var-/⊢-id : ∀ {Γ σ} (x : Γ ∋ σ) → var₂ · x /⊢ id₁ ≅-⊢₂ var₂ · x
var-/⊢-id x = /∋-≅-⊢-var x id₁ (Simple./∋-id simple₁ x)
-- A variant of /∋-wk-↑⁺.
var-/⊢-wk-↑⁺ : ∀ {Γ σ} Γ⁺ {τ} (x : Γ ++⁺ Γ⁺ ∋ τ) →
var₂ · x /⊢ wk₁ {σ = σ} ↑⁺₁ Γ⁺ ≅-⊢₂
var₂ · (lift weaken∋[ σ ] Γ⁺ · x)
var-/⊢-wk-↑⁺ Γ⁺ x =
/∋-≅-⊢-var x (wk₁ ↑⁺₁ Γ⁺) (Simple./∋-wk-↑⁺ simple₁ Γ⁺ x)
-- A variant of /∋-wk-↑⁺-↑⁺.
var-/⊢-wk-↑⁺-↑⁺ : ∀ {Γ σ} Γ⁺ Γ⁺⁺ {τ} (x : Γ ++⁺ Γ⁺ ++⁺ Γ⁺⁺ ∋ τ) →
var₂ · x /⊢ wk₁ {σ = σ} ↑⁺₁ Γ⁺ ↑⁺₁ Γ⁺⁺ ≅-⊢₂
var₂ · (lift (lift weaken∋[ σ ] Γ⁺) Γ⁺⁺ · x)
var-/⊢-wk-↑⁺-↑⁺ Γ⁺ Γ⁺⁺ x =
/∋-≅-⊢-var x (wk₁ ↑⁺₁ Γ⁺ ↑⁺₁ Γ⁺⁺)
(Simple./∋-wk-↑⁺-↑⁺ simple₁ Γ⁺ Γ⁺⁺ x)
-- Variants of zero-/∋-↑.
zero-/⊢-↑ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} σ (ρ : Sub T₁ ρ̂) →
var₂ · zero /⊢ ρ ↑₁ σ ≅-⊢₂ var₂ · zero[ σ / ρ ]
zero-/⊢-↑ σ ρ =
/∋-≅-⊢-var zero (ρ ↑₁ σ) (Simple.zero-/∋-↑ simple₁ σ ρ)
zero-/⊢⋆-↑⋆ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} σ (ρs : Subs T₁ ρ̂) →
var₂ · zero /⊢⋆ ρs ↑⋆₁ σ ≅-⊢₂
var₂ · zero[ σ /⋆ ρs ]
zero-/⊢⋆-↑⋆ σ ε = P.refl
zero-/⊢⋆-↑⋆ σ (ρs ▻ ρ) = begin
[ var₂ · zero /⊢⋆ ρs ↑⋆₁ σ /⊢ ρ ↑₁ ] ≡⟨ /⊢-cong (zero-/⊢⋆-↑⋆ σ ρs) (P.refl {x = [ ρ ↑₁ (σ /⋆ ρs) ]}) ⟩
[ var₂ · zero /⊢ ρ ↑₁ (σ /⋆ ρs) ] ≡⟨ zero-/⊢-↑ (σ /⋆ ρs) ρ ⟩
[ var₂ · zero ] ∎
-- Corollaries of ε-↑⁺⋆ and ε-↑₊⋆.
/⊢⋆-ε-↑⁺⋆ : ∀ {Γ} Γ⁺ {σ} (t : Γ ++⁺ Γ⁺ ⊢₂ σ) →
t /⊢⋆ ε ↑⁺⋆₁ Γ⁺ ≅-⊢₂ t
/⊢⋆-ε-↑⁺⋆ Γ⁺ t = begin
[ t /⊢⋆ ε ↑⁺⋆₁ Γ⁺ ] ≡⟨ /⊢⋆-cong (P.refl {x = [ t ]}) (Simple.ε-↑⁺⋆ simple₁ Γ⁺) ⟩
[ t /⊢⋆ ε ] ≡⟨ P.refl ⟩
[ t ] ∎
/⊢⋆-ε-↑₊⋆ : ∀ {Γ} Γ₊ {σ} (t : Γ ++₊ Γ₊ ⊢₂ σ) →
t /⊢⋆ ε ↑₊⋆₁ Γ₊ ≅-⊢₂ t
/⊢⋆-ε-↑₊⋆ Γ₊ t = begin
[ t /⊢⋆ ε ↑₊⋆₁ Γ₊ ] ≡⟨ /⊢⋆-cong (P.refl {x = [ t ]}) (Simple.ε-↑₊⋆ simple₁ Γ₊) ⟩
[ t /⊢⋆ ε ] ≡⟨ P.refl ⟩
[ t ] ∎
-- Corollaries of ▻-↑⁺⋆ and ▻-↑₊⋆.
/⊢⋆-▻-↑⁺⋆ :
∀ {Γ Δ Ε} {ρ̂₁ : Γ ⇨̂ Δ} {ρ̂₂ : Δ ⇨̂ Ε} Γ⁺ {σ}
(t : Γ ++⁺ Γ⁺ ⊢₂ σ) (ρs : Subs T₁ ρ̂₁) (ρ : Sub T₁ ρ̂₂) →
t /⊢⋆ (ρs ▻ ρ) ↑⁺⋆₁ Γ⁺ ≅-⊢₂ t /⊢⋆ ρs ↑⁺⋆₁ Γ⁺ /⊢ ρ ↑⁺₁ (Γ⁺ /⁺⋆ ρs)
/⊢⋆-▻-↑⁺⋆ Γ⁺ t ρs ρ =
/⊢⋆-cong (P.refl {x = [ t ]}) (Simple.▻-↑⁺⋆ simple₁ ρs ρ Γ⁺)
/⊢⋆-▻-↑₊⋆ :
∀ {Γ Δ Ε} {ρ̂₁ : Γ ⇨̂ Δ} {ρ̂₂ : Δ ⇨̂ Ε} Γ₊ {σ}
(t : Γ ++₊ Γ₊ ⊢₂ σ) (ρs : Subs T₁ ρ̂₁) (ρ : Sub T₁ ρ̂₂) →
t /⊢⋆ (ρs ▻ ρ) ↑₊⋆₁ Γ₊ ≅-⊢₂ t /⊢⋆ ρs ↑₊⋆₁ Γ₊ /⊢ ρ ↑₊₁ (Γ₊ /₊⋆ ρs)
/⊢⋆-▻-↑₊⋆ Γ₊ t ρs ρ =
/⊢⋆-cong (P.refl {x = [ t ]}) (Simple.▻-↑₊⋆ simple₁ ρs ρ Γ₊)
-- Corollaries of ε-↑⁺⋆/ε-↑₊⋆ and ▻-↑⁺⋆/▻-↑₊⋆.
/⊢⋆-ε-▻-↑⁺⋆ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} Γ⁺ {σ}
(t : Γ ++⁺ Γ⁺ ⊢₂ σ) (ρ : Sub T₁ ρ̂) →
t /⊢⋆ (ε ▻ ρ) ↑⁺⋆₁ Γ⁺ ≅-⊢₂ t /⊢ ρ ↑⁺₁ Γ⁺
/⊢⋆-ε-▻-↑⁺⋆ Γ⁺ t ρ = begin
[ t /⊢⋆ (ε ▻ ρ) ↑⁺⋆₁ Γ⁺ ] ≡⟨ /⊢⋆-cong (P.refl {x = [ t ]}) (Simple.▻-↑⁺⋆ simple₁ ε ρ Γ⁺) ⟩
[ t /⊢⋆ ε ↑⁺⋆₁ Γ⁺ /⊢ ρ ↑⁺₁ (Γ⁺ /̂⁺ îd) ] ≡⟨ /⊢-cong (/⊢⋆-ε-↑⁺⋆ Γ⁺ t) (Simple.↑⁺-cong simple₁ P.refl (/̂⁺-îd Γ⁺)) ⟩
[ t /⊢ ρ ↑⁺₁ Γ⁺ ] ∎
/⊢⋆-ε-▻-▻-↑⁺⋆ :
∀ {Γ Δ Ε} {ρ̂₁ : Γ ⇨̂ Δ} {ρ̂₂ : Δ ⇨̂ Ε} Γ⁺ {σ}
(t : Γ ++⁺ Γ⁺ ⊢₂ σ) (ρ₁ : Sub T₁ ρ̂₁) (ρ₂ : Sub T₁ ρ̂₂) →
t /⊢⋆ (ε ▻ ρ₁ ▻ ρ₂) ↑⁺⋆₁ Γ⁺ ≅-⊢₂
t /⊢ ρ₁ ↑⁺₁ Γ⁺ /⊢ ρ₂ ↑⁺₁ (Γ⁺ /⁺ ρ₁)
/⊢⋆-ε-▻-▻-↑⁺⋆ Γ⁺ t ρ₁ ρ₂ = begin
[ t /⊢⋆ (ε ▻ ρ₁ ▻ ρ₂) ↑⁺⋆₁ Γ⁺ ] ≡⟨ /⊢⋆-cong (P.refl {x = [ t ]}) (Simple.▻-↑⁺⋆ simple₁ (ε ▻ ρ₁) ρ₂ Γ⁺) ⟩
[ t /⊢⋆ (ε ▻ ρ₁) ↑⁺⋆₁ Γ⁺ /⊢ ρ₂ ↑⁺₁ (Γ⁺ /⁺ ρ₁) ] ≡⟨ /⊢-cong (/⊢⋆-ε-▻-↑⁺⋆ Γ⁺ t ρ₁) P.refl ⟩
[ t /⊢ ρ₁ ↑⁺₁ Γ⁺ /⊢ ρ₂ ↑⁺₁ (Γ⁺ /⁺ ρ₁) ] ∎
/⊢⋆-ε-▻-↑₊⋆ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} Γ₊ {σ}
(t : Γ ++₊ Γ₊ ⊢₂ σ) (ρ : Sub T₁ ρ̂) →
t /⊢⋆ (ε ▻ ρ) ↑₊⋆₁ Γ₊ ≅-⊢₂ t /⊢ ρ ↑₊₁ Γ₊
/⊢⋆-ε-▻-↑₊⋆ Γ₊ t ρ = begin
[ t /⊢⋆ (ε ▻ ρ) ↑₊⋆₁ Γ₊ ] ≡⟨ /⊢⋆-cong (P.refl {x = [ t ]}) (Simple.▻-↑₊⋆ simple₁ ε ρ Γ₊) ⟩
[ t /⊢⋆ ε ↑₊⋆₁ Γ₊ /⊢ ρ ↑₊₁ (Γ₊ /̂₊ îd) ] ≡⟨ /⊢-cong (/⊢⋆-ε-↑₊⋆ Γ₊ t) (Simple.↑₊-cong simple₁ P.refl (/̂₊-îd Γ₊)) ⟩
[ t /⊢ ρ ↑₊₁ Γ₊ ] ∎
/⊢⋆-ε-▻-▻-↑₊⋆ :
∀ {Γ Δ Ε} {ρ̂₁ : Γ ⇨̂ Δ} {ρ̂₂ : Δ ⇨̂ Ε} Γ₊ {σ}
(t : Γ ++₊ Γ₊ ⊢₂ σ) (ρ₁ : Sub T₁ ρ̂₁) (ρ₂ : Sub T₁ ρ̂₂) →
t /⊢⋆ (ε ▻ ρ₁ ▻ ρ₂) ↑₊⋆₁ Γ₊ ≅-⊢₂
t /⊢ ρ₁ ↑₊₁ Γ₊ /⊢ ρ₂ ↑₊₁ (Γ₊ /₊ ρ₁)
/⊢⋆-ε-▻-▻-↑₊⋆ Γ₊ t ρ₁ ρ₂ = begin
[ t /⊢⋆ (ε ▻ ρ₁ ▻ ρ₂) ↑₊⋆₁ Γ₊ ] ≡⟨ /⊢⋆-cong (P.refl {x = [ t ]}) (Simple.▻-↑₊⋆ simple₁ (ε ▻ ρ₁) ρ₂ Γ₊) ⟩
[ t /⊢⋆ (ε ▻ ρ₁) ↑₊⋆₁ Γ₊ /⊢ ρ₂ ↑₊₁ (Γ₊ /₊ ρ₁) ] ≡⟨ /⊢-cong (/⊢⋆-ε-▻-↑₊⋆ Γ₊ t ρ₁) P.refl ⟩
[ t /⊢ ρ₁ ↑₊₁ Γ₊ /⊢ ρ₂ ↑₊₁ (Γ₊ /₊ ρ₁) ] ∎
-- Application of sub cancels one occurrence of suc.
suc-/⊢-sub : ∀ {Γ σ τ} (x : Γ ∋ σ) (t : Γ ⊢₁ τ) →
var₂ · suc x /⊢ sub₁ t ≅-⊢₂ var₂ · x
suc-/⊢-sub x t = begin
[ var₂ · suc x /⊢ sub₁ t ] ≡⟨ var-/⊢ (suc x) (sub₁ t) ⟩
[ trans · (suc x /∋ sub₁ t) ] ≡⟨ P.refl ⟩
[ trans · (x /∋ id₁) ] ≡⟨ trans-cong (Simple./∋-id simple₁ x) ⟩
[ trans · (var₁ · x) ] ≡⟨ trans-var x ⟩
[ var₂ · x ] ∎
-- First weakening and then substituting something for the first
-- variable is equivalent to doing nothing.
wk-∘-sub : ∀ {Γ σ} (t : Γ ⊢₁ σ) → wk₂ ∘ sub₁ t ≅-⇨ id₂[ Γ ]
wk-∘-sub t = extensionality P.refl λ x → begin
[ x /∋ wk₂ ∘ sub₁ t ] ≡⟨ /∋-∘ x wk₂ (sub₁ t) ⟩
[ x /∋ wk₂ /⊢ sub₁ t ] ≡⟨ /⊢-cong (Simple./∋-wk simple₂ x) P.refl ⟩
[ var₂ · suc x /⊢ sub₁ t ] ≡⟨ suc-/⊢-sub x t ⟩
[ var₂ · x ] ≡⟨ P.sym $ Simple./∋-id simple₂ x ⟩
[ x /∋ id₂ ] ∎
-- id is a left identity of _∘_ (more or less).
id-∘ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} (ρ : Sub T₁ ρ̂) → id₂ ∘ ρ ≅-⇨ map trans ρ
id-∘ ρ = extensionality P.refl λ x → begin
[ x /∋ id₂ ∘ ρ ] ≡⟨ /∋-∘ x id₂ ρ ⟩
[ x /∋ id₂ /⊢ ρ ] ≡⟨ /⊢-cong (Simple./∋-id simple₂ x) (P.refl {x = [ ρ ]}) ⟩
[ var₂ · x /⊢ ρ ] ≡⟨ var-/⊢ x ρ ⟩
[ trans · (x /∋ ρ) ] ≡⟨ P.sym $ /∋-map x trans ρ ⟩
[ x /∋ map trans ρ ] ∎
-- One can translate a substitution either before or after
-- weakening it.
map-trans-wk-subst : ∀ {Γ Δ σ} {ρ̂ : Γ ⇨̂ Δ} (ρ : Sub T₁ ρ̂) →
map trans (wk-subst₁[ σ ] ρ) ≅-⇨
wk-subst₂[ σ ] (map trans ρ)
map-trans-wk-subst {σ = σ} ρ = begin
[ map trans (wk-subst₁[ σ ] ρ) ] ≡⟨ P.sym $ map-[∘] trans weaken₁[ σ ] ρ ⟩
[ map (trans [∘] weaken₁[ σ ]) ρ ] ≡⟨ map-cong-ext₁ P.refl trans-weaken (P.refl {x = [ ρ ]}) ⟩
[ map (weaken₂ [∘] trans) ρ ] ≡⟨ map-[∘] weaken₂ trans ρ ⟩
[ wk-subst₂ (map trans ρ) ] ∎
-- One can translate a substitution either before or after lifting
-- it.
map-trans-↑ : ∀ {Γ Δ σ} {ρ̂ : Γ ⇨̂ Δ} (ρ : Sub T₁ ρ̂) →
map trans (ρ ↑₁ σ) ≅-⇨ map trans ρ ↑₂ σ
map-trans-↑ {σ = σ} ρ = begin
[ map trans (ρ ↑₁ σ) ] ≡⟨ map-cong (trans ∎-⟶) (Simple.unfold-↑ simple₁ ρ) ⟩
[ map trans (wk-subst₁[ σ / ρ ] ρ ▻ var₁ · zero) ] ≡⟨ map-▻ trans (wk-subst₁ ρ) _ ⟩
[ map trans (wk-subst₁[ σ / ρ ] ρ) ▻ trans · (var₁ · zero) ] ≡⟨ ▻⇨-cong P.refl (map-trans-wk-subst ρ) (trans-var zero) ⟩
[ wk-subst₂ (map trans ρ) ▻ var₂ · zero ] ≡⟨ P.sym $ Simple.unfold-↑ simple₂ (map trans ρ) ⟩
[ map trans ρ ↑₂ ] ∎
open Application application public
| {
"alphanum_fraction": 0.3970966279,
"avg_line_length": 39.9577039275,
"ext": "agda",
"hexsha": "411320c8e95a335abf466a9d4bc5ea54ad79d20b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/dependently-typed-syntax",
"max_forks_repo_path": "deBruijn/Substitution/Data/Application/Application21.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/dependently-typed-syntax",
"max_issues_repo_path": "deBruijn/Substitution/Data/Application/Application21.agda",
"max_line_length": 127,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/dependently-typed-syntax",
"max_stars_repo_path": "deBruijn/Substitution/Data/Application/Application21.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-08T22:51:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-16T12:14:44.000Z",
"num_tokens": 7551,
"size": 13226
} |
module Abstract where
data Bool : Set where
true false : Bool
not : Bool → Bool
not true = false
not false = true
abstract
Answer : Set
Answer = Bool
yes : Answer
yes = true
no : Answer
no = false
contradict : Answer → Answer
contradict x = not x
counter-contradict : Answer → Answer
counter-contradict x = contradict (contradict x)
no-way : Answer
no-way = contradict yes
data Answers : Set where
one-answer : Answer → Answers
more-answers : Answer → Answers → Answers
yes-or-no : Answers
yes-or-no = more-answers yes (one-answer no)
| {
"alphanum_fraction": 0.6882661996,
"avg_line_length": 15.8611111111,
"ext": "agda",
"hexsha": "1ffc265ef4ad255db51db3f99cc56cee129d81ec",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4383a3d20328a6c43689161496cee8eb479aca08",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dagit/agda",
"max_forks_repo_path": "test/succeed/Abstract.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4383a3d20328a6c43689161496cee8eb479aca08",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dagit/agda",
"max_issues_repo_path": "test/succeed/Abstract.agda",
"max_line_length": 48,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "4383a3d20328a6c43689161496cee8eb479aca08",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dagit/agda",
"max_stars_repo_path": "test/succeed/Abstract.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T07:26:06.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T07:26:06.000Z",
"num_tokens": 160,
"size": 571
} |
------------------------------------------------------------------------
-- Excluded middle
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Equality
module Excluded-middle
{e⁺} (eq : ∀ {a p} → Equality-with-J a p e⁺) where
open Derived-definitions-and-properties eq
open import Prelude
open import H-level.Closure eq
-- Excluded middle (roughly as stated in the HoTT book).
Excluded-middle : (ℓ : Level) → Type (lsuc ℓ)
Excluded-middle p = {P : Type p} → Is-proposition P → Dec P
-- Excluded middle is pointwise propositional (assuming
-- extensionality).
Excluded-middle-propositional :
∀ {ℓ} →
Extensionality (lsuc ℓ) ℓ →
Is-proposition (Excluded-middle ℓ)
Excluded-middle-propositional ext =
implicit-Π-closure ext 1 λ _ →
Π-closure (lower-extensionality _ lzero ext) 1 λ P-prop →
Dec-closure-propositional (lower-extensionality _ _ ext) P-prop
| {
"alphanum_fraction": 0.6027542373,
"avg_line_length": 27.7647058824,
"ext": "agda",
"hexsha": "0d166e0f0ddb588e9b399d8d17ede26c6cd81472",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Excluded-middle.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Excluded-middle.agda",
"max_line_length": 72,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Excluded-middle.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 241,
"size": 944
} |
------------------------------------------------------------------------------
-- Lists examples
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOT.FOTC.Data.List.Examples where
open import FOTC.Base
open import FOTC.Base.List
open import FOTC.Data.Nat.UnaryNumbers
open import FOTC.Data.List.Type
------------------------------------------------------------------------------
l₁ : List (true ∷ false ∷ [])
l₁ = lcons true (lcons false lnil)
l₂ : List (zero ∷ 1' ∷ 2' ∷ [])
l₂ = lcons zero (lcons 1' (lcons 2' lnil))
| {
"alphanum_fraction": 0.4155313351,
"avg_line_length": 30.5833333333,
"ext": "agda",
"hexsha": "790fcc3121ec15315e7f0de68914869eaa4d569f",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/FOT/FOTC/Data/List/Examples.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/FOT/FOTC/Data/List/Examples.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/FOT/FOTC/Data/List/Examples.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 155,
"size": 734
} |
{-# OPTIONS --cubical --no-import-sorts #-}
open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc)
import Cubical.Algebra.Semigroup as Std
open import MorePropAlgebra.Bundles
module MorePropAlgebra.Properties.Semigroup {ℓ} (assumptions : Semigroup {ℓ}) where
open Semigroup assumptions renaming (Carrier to G)
stdIsSemigroup : Std.IsSemigroup _·_
stdIsSemigroup .Std.IsSemigroup.is-set = is-set
stdIsSemigroup .Std.IsSemigroup.assoc = is-assoc
stdSemigroup : Std.Semigroup {ℓ}
stdSemigroup = record { Semigroup assumptions ; isSemigroup = stdIsSemigroup }
| {
"alphanum_fraction": 0.7807757167,
"avg_line_length": 37.0625,
"ext": "agda",
"hexsha": "bcfa66c769259c2745556546a8b8c2b17694ec92",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mchristianl/synthetic-reals",
"max_forks_repo_path": "agda/MorePropAlgebra/Properties/Semigroup.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mchristianl/synthetic-reals",
"max_issues_repo_path": "agda/MorePropAlgebra/Properties/Semigroup.agda",
"max_line_length": 83,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mchristianl/synthetic-reals",
"max_stars_repo_path": "agda/MorePropAlgebra/Properties/Semigroup.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z",
"num_tokens": 177,
"size": 593
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Lexicographic ordering of lists
------------------------------------------------------------------------
-- The definition of lexicographic ordering used here is suitable if
-- the argument order is a (non-strict) partial order. The
-- lexicographic ordering itself can be either strict or non-strict,
-- depending on the value of a parameter.
module Relation.Binary.List.NonStrictLex where
open import Data.Empty
open import Function
open import Data.Unit using (⊤; tt)
open import Data.Product
open import Data.List
open import Level
open import Relation.Nullary
open import Relation.Binary
import Relation.Binary.NonStrictToStrict as Conv
import Relation.Binary.List.StrictLex as Strict
open import Relation.Binary.List.Pointwise as Pointwise using ([])
module _ {A : Set} where
Lex : (P : Set) → (_≈_ _≤_ : Rel A zero) → Rel (List A) zero
Lex P _≈_ _≤_ = Strict.Lex P _≈_ (Conv._<_ _≈_ _≤_)
-- Strict lexicographic ordering.
Lex-< : (_≈_ _≤_ : Rel A zero) → Rel (List A) zero
Lex-< = Lex ⊥
-- Non-strict lexicographic ordering.
Lex-≤ : (_≈_ _≤_ : Rel A zero) → Rel (List A) zero
Lex-≤ = Lex ⊤
------------------------------------------------------------------------
-- Properties
≤-reflexive : ∀ _≈_ _≤_ → Pointwise.Rel _≈_ ⇒ Lex-≤ _≈_ _≤_
≤-reflexive _≈_ _≤_ = Strict.≤-reflexive _≈_ (Conv._<_ _≈_ _≤_)
<-irreflexive : ∀ {_≈_ _≤_} →
Irreflexive (Pointwise.Rel _≈_) (Lex-< _≈_ _≤_)
<-irreflexive {_≈_} {_≤_} =
Strict.<-irreflexive {_<_ = Conv._<_ _≈_ _≤_} (Conv.irrefl _≈_ _≤_)
transitive : ∀ {P _≈_ _≤_} →
IsPartialOrder _≈_ _≤_ → Transitive (Lex P _≈_ _≤_)
transitive po =
Strict.transitive
isEquivalence
(Conv.<-resp-≈ _ _ isEquivalence ≤-resp-≈)
(Conv.trans _ _ po)
where open IsPartialOrder po
antisymmetric : ∀ {P _≈_ _≤_} →
Symmetric _≈_ → Antisymmetric _≈_ _≤_ →
Antisymmetric (Pointwise.Rel _≈_) (Lex P _≈_ _≤_)
antisymmetric {_≈_ = _≈_} {_≤_} sym antisym =
Strict.antisymmetric sym (Conv.irrefl _≈_ _≤_)
(Conv.antisym⟶asym _≈_ _ antisym)
<-asymmetric : ∀ {_≈_ _≤_} →
IsEquivalence _≈_ → _≤_ Respects₂ _≈_ →
Antisymmetric _≈_ _≤_ → Asymmetric (Lex-< _≈_ _≤_)
<-asymmetric {_≈_} eq resp antisym =
Strict.<-asymmetric sym (Conv.<-resp-≈ _ _ eq resp)
(Conv.antisym⟶asym _≈_ _ antisym)
where open IsEquivalence eq
respects₂ : ∀ {P _≈_ _≤_} →
IsEquivalence _≈_ → _≤_ Respects₂ _≈_ →
Lex P _≈_ _≤_ Respects₂ Pointwise.Rel _≈_
respects₂ eq resp = Strict.respects₂ eq (Conv.<-resp-≈ _ _ eq resp)
decidable : ∀ {P _≈_ _≤_} →
Dec P → Decidable _≈_ → Decidable _≤_ →
Decidable (Lex P _≈_ _≤_)
decidable dec-P dec-≈ dec-≤ =
Strict.decidable dec-P dec-≈ (Conv.decidable _ _ dec-≈ dec-≤)
<-decidable :
∀ {_≈_ _≤_} →
Decidable _≈_ → Decidable _≤_ → Decidable (Lex-< _≈_ _≤_)
<-decidable = decidable (no id)
≤-decidable :
∀ {_≈_ _≤_} →
Decidable _≈_ → Decidable _≤_ → Decidable (Lex-≤ _≈_ _≤_)
≤-decidable = decidable (yes tt)
≤-total : ∀ {_≈_ _≤_} → Symmetric _≈_ → Decidable _≈_ →
Antisymmetric _≈_ _≤_ → Total _≤_ →
Total (Lex-≤ _≈_ _≤_)
≤-total sym dec-≈ antisym tot =
Strict.≤-total sym (Conv.trichotomous _ _ sym dec-≈ antisym tot)
<-compare : ∀ {_≈_ _≤_} → Symmetric _≈_ → Decidable _≈_ →
Antisymmetric _≈_ _≤_ → Total _≤_ →
Trichotomous (Pointwise.Rel _≈_) (Lex-< _≈_ _≤_)
<-compare sym dec-≈ antisym tot =
Strict.<-compare sym (Conv.trichotomous _ _ sym dec-≈ antisym tot)
-- Some collections of properties which are preserved by Lex-≤ or
-- Lex-<.
≤-isPreorder : ∀ {_≈_ _≤_} →
IsPartialOrder _≈_ _≤_ →
IsPreorder (Pointwise.Rel _≈_) (Lex-≤ _≈_ _≤_)
≤-isPreorder po =
Strict.≤-isPreorder
isEquivalence (Conv.trans _ _ po)
(Conv.<-resp-≈ _ _ isEquivalence ≤-resp-≈)
where open IsPartialOrder po
≤-isPartialOrder : ∀ {_≈_ _≤_} →
IsPartialOrder _≈_ _≤_ →
IsPartialOrder (Pointwise.Rel _≈_) (Lex-≤ _≈_ _≤_)
≤-isPartialOrder po =
Strict.≤-isPartialOrder
(Conv.isPartialOrder⟶isStrictPartialOrder _ _ po)
≤-isTotalOrder : ∀ {_≈_ _≤_} →
Decidable _≈_ → IsTotalOrder _≈_ _≤_ →
IsTotalOrder (Pointwise.Rel _≈_) (Lex-≤ _≈_ _≤_)
≤-isTotalOrder dec tot =
Strict.≤-isTotalOrder
(Conv.isTotalOrder⟶isStrictTotalOrder _ _ dec tot)
≤-isDecTotalOrder :
∀ {_≈_ _≤_} →
IsDecTotalOrder _≈_ _≤_ →
IsDecTotalOrder (Pointwise.Rel _≈_) (Lex-≤ _≈_ _≤_)
≤-isDecTotalOrder dtot =
Strict.≤-isDecTotalOrder
(Conv.isDecTotalOrder⟶isStrictTotalOrder _ _ dtot)
<-isStrictPartialOrder : ∀ {_≈_ _≤_} →
IsPartialOrder _≈_ _≤_ →
IsStrictPartialOrder (Pointwise.Rel _≈_) (Lex-< _≈_ _≤_)
<-isStrictPartialOrder po =
Strict.<-isStrictPartialOrder
(Conv.isPartialOrder⟶isStrictPartialOrder _ _ po)
<-isStrictTotalOrder : ∀ {_≈_ _≤_} →
Decidable _≈_ → IsTotalOrder _≈_ _≤_ →
IsStrictTotalOrder (Pointwise.Rel _≈_) (Lex-< _≈_ _≤_)
<-isStrictTotalOrder dec tot =
Strict.<-isStrictTotalOrder
(Conv.isTotalOrder⟶isStrictTotalOrder _ _ dec tot)
-- "Packages" (e.g. preorders) can also be handled.
≤-preorder : Poset _ _ _ → Preorder _ _ _
≤-preorder po = record
{ isPreorder = ≤-isPreorder isPartialOrder
} where open Poset po
≤-partialOrder : Poset _ _ _ → Poset _ _ _
≤-partialOrder po = record
{ isPartialOrder = ≤-isPartialOrder isPartialOrder
} where open Poset po
≤-decTotalOrder : DecTotalOrder _ _ _ → DecTotalOrder _ _ _
≤-decTotalOrder dtot = record
{ isDecTotalOrder = ≤-isDecTotalOrder isDecTotalOrder
} where open DecTotalOrder dtot
<-strictPartialOrder : Poset _ _ _ → StrictPartialOrder _ _ _
<-strictPartialOrder po = record
{ isStrictPartialOrder = <-isStrictPartialOrder isPartialOrder
} where open Poset po
<-strictTotalOrder : DecTotalOrder _ _ _ → StrictTotalOrder _ _ _
<-strictTotalOrder dtot = record
{ isStrictTotalOrder = <-isStrictTotalOrder _≟_ isTotalOrder
} where open IsDecTotalOrder (DecTotalOrder.isDecTotalOrder dtot)
| {
"alphanum_fraction": 0.6077942323,
"avg_line_length": 34.6756756757,
"ext": "agda",
"hexsha": "7e76485f30a69c24062f76f8be70a6cf6c1c2b2d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "qwe2/try-agda",
"max_forks_repo_path": "agda-stdlib-0.9/src/Relation/Binary/List/NonStrictLex.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "qwe2/try-agda",
"max_issues_repo_path": "agda-stdlib-0.9/src/Relation/Binary/List/NonStrictLex.agda",
"max_line_length": 74,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "qwe2/try-agda",
"max_stars_repo_path": "agda-stdlib-0.9/src/Relation/Binary/List/NonStrictLex.agda",
"max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z",
"num_tokens": 2272,
"size": 6415
} |
------------------------------------------------------------------------
-- Some definitions related to and properties of the Maybe type
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Equality
module Maybe
{reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where
open import Prelude
open import Bijection eq using (_↔_)
open Derived-definitions-and-properties eq
open import Monad eq
-- A dependent eliminator.
maybe : ∀ {a b} {A : Type a} {B : Maybe A → Type b} →
((x : A) → B (just x)) → B nothing → (x : Maybe A) → B x
maybe j n (just x) = j x
maybe j n nothing = n
-- Is the value just something?
is-just : ∀ {a} {A : Type a} → Maybe A → Bool
is-just = maybe (const true) false
-- Is the value nothing?
is-nothing : ∀ {a} {A : Type a} → Maybe A → Bool
is-nothing = not ∘ is-just
-- Is-just x is a proposition that is inhabited iff x is
-- just something.
Is-just : ∀ {a} {A : Type a} → Maybe A → Type
Is-just = T ∘ is-just
-- Is-nothing x is a proposition that is inhabited iff x is nothing.
Is-nothing : ∀ {a} {A : Type a} → Maybe A → Type
Is-nothing = T ∘ is-nothing
-- Is-just and Is-nothing are mutually exclusive.
not-both-just-and-nothing :
∀ {a} {A : Type a} (x : Maybe A) →
Is-just x → Is-nothing x → ⊥₀
not-both-just-and-nothing (just _) _ ()
not-both-just-and-nothing nothing () _
-- A universe-polymorphic variant of bind.
infixl 5 _>>=′_
_>>=′_ : ∀ {a b} {A : Type a} {B : Type b} →
Maybe A → (A → Maybe B) → Maybe B
x >>=′ f = maybe f nothing x
instance
-- The maybe monad.
raw-monad : ∀ {ℓ} → Raw-monad (Maybe {a = ℓ})
Raw-monad.return raw-monad x = just x
Raw-monad._>>=_ raw-monad = _>>=′_
monad : ∀ {ℓ} → Monad (Maybe {a = ℓ})
Monad.raw-monad monad = raw-monad
Monad.left-identity monad x f = refl (f x)
Monad.right-identity monad nothing = refl nothing
Monad.right-identity monad (just x) = refl (just x)
Monad.associativity monad nothing f g = refl nothing
Monad.associativity monad (just x) f g = refl (f x >>= g)
-- The maybe monad transformer.
record MaybeT {d c} (M : Type d → Type c) (A : Type d) : Type c where
constructor wrap
field
run : M (Maybe A)
open MaybeT public
-- Failure.
fail : ∀ {d c} {M : Type d → Type c} ⦃ is-monad : Raw-monad M ⦄ {A} →
MaybeT M A
run fail = return nothing
-- MaybeT id is pointwise isomorphic to Maybe.
MaybeT-id↔Maybe : ∀ {a} {A : Type a} → MaybeT id A ↔ Maybe A
MaybeT-id↔Maybe = record
{ surjection = record
{ logical-equivalence = record { to = run; from = wrap }
; right-inverse-of = refl
}
; left-inverse-of = refl
}
instance
-- MaybeT is a "raw monad" transformer.
raw-monad-transformer :
∀ {d c} → Raw-monad-transformer (MaybeT {d = d} {c = c})
run (Raw-monad.return (Raw-monad-transformer.transform
raw-monad-transformer) x) =
return (just x)
run (Raw-monad._>>=_ (Raw-monad-transformer.transform
raw-monad-transformer) x f) =
run x >>= maybe (run ∘ f) (return nothing)
run (Raw-monad-transformer.liftʳ raw-monad-transformer m) =
map just m
transform :
∀ {d c} {M : Type d → Type c} ⦃ is-raw-monad : Raw-monad M ⦄ →
Raw-monad (MaybeT M)
transform = Raw-monad-transformer.transform raw-monad-transformer
-- MaybeT is a monad transformer (assuming extensionality).
monad-transformer :
∀ {d c} →
Extensionality d c →
Monad-transformer (MaybeT {d = d} {c = c})
Monad.raw-monad (Monad-transformer.transform (monad-transformer _)) =
Raw-monad-transformer.transform raw-monad-transformer
Monad.left-identity
(Monad-transformer.transform (monad-transformer _)) x f = cong wrap (
return (just x) >>= maybe (run ∘ f) (return nothing) ≡⟨ left-identity (just x) (maybe (run ∘ f) (return nothing)) ⟩∎
run (f x) ∎)
Monad.right-identity
(Monad-transformer.transform (monad-transformer ext)) x = cong wrap (
run x >>= maybe (return ∘ just) (return nothing) ≡⟨ cong (run x >>=_) (apply-ext ext (maybe (λ _ → refl _) (refl _))) ⟩
run x >>= return ≡⟨ right-identity _ ⟩∎
run x ∎)
Monad.associativity
(Monad-transformer.transform (monad-transformer ext)) x f g = cong wrap (
run x >>=
(maybe (λ x → run (f x) >>= maybe (run ∘ g) (return nothing))
(return nothing)) ≡⟨ cong (run x >>=_) (apply-ext ext (maybe (λ _ → refl _) (
return nothing ≡⟨ sym $ left-identity _ _ ⟩∎
return nothing >>= maybe (run ∘ g) (return nothing) ∎))) ⟩
run x >>= (λ x → maybe (run ∘ f) (return nothing) x >>=
maybe (run ∘ g) (return nothing)) ≡⟨ associativity _ _ _ ⟩∎
(run x >>= maybe (run ∘ f) (return nothing)) >>=
maybe (run ∘ g) (return nothing) ∎)
Monad-transformer.liftᵐ (monad-transformer _) = liftʳ
Monad-transformer.lift-return (monad-transformer _) x = cong wrap (
map just (return x) ≡⟨ map-return just x ⟩∎
return (just x) ∎)
Monad-transformer.lift->>= (monad-transformer ext) x f = cong wrap (
map just (x >>= f) ≡⟨ map->>= _ _ _ ⟩
x >>= map just ∘ f ≡⟨ sym $ >>=-map ext _ _ _ ⟩∎
map just x >>= maybe (map just ∘ f) (return nothing) ∎)
| {
"alphanum_fraction": 0.556231003,
"avg_line_length": 32.3294797688,
"ext": "agda",
"hexsha": "72a18c1ac19ff37992932d860afb45d17bcc30f0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Maybe.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Maybe.agda",
"max_line_length": 128,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Maybe.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 1683,
"size": 5593
} |
{-# OPTIONS --without-K --safe #-}
open import Level
module Categories.Category.Instance.SimplicialSet.Properties (o ℓ : Level) where
open import Function using (_$_)
open import Data.Empty.Polymorphic using (⊥; ⊥-elim)
open import Data.Nat using (ℕ)
open import Data.Fin using (Fin)
open import Data.Product using (proj₁)
import Relation.Binary.PropositionalEquality as Eq
open import Categories.Category using (Category; _[_,_]; _[_∘_]; _[_≈_])
open import Categories.Category.Instance.SimplicialSet using (SimplicialSet)
open import Categories.Category.Instance.Simplex using (Δ; face; degeneracy)
open import Categories.Functor using (Functor; _∘F_)
open import Categories.Functor.Construction.Constant using (const)
open import Categories.Functor.Construction.LiftSetoids using (LiftSetoids)
open import Categories.NaturalTransformation using (ntHelper)
open import Categories.Yoneda
private
module Y = Functor (Yoneda.embed Δ)
-- Some useful notation for a simplicial set
ΔSet : Set (suc o ⊔ suc ℓ)
ΔSet = Category.Obj (SimplicialSet o ℓ )
-- The standard n-simplex.
Δ[_] : ℕ → ΔSet
Δ[_] n = LiftSetoids o ℓ ∘F Y.F₀ n
--------------------------------------------------------------------------------
-- Boundaries of the Standard Simplicies
--
-- The basic idea here is that we will build up boundary of 'Δ[ n ]' by considering
-- all of the morphisms 'Δ[ m , n ]' that factor through some face map 'face i : Δ[ n - 1 , n ]'
-- The indexing here is a bit tricky, but this is the price we pay to avoid 'pred'
-- A 'Boundary m n' represents some set of maps into 'Δ[ ℕ.suc n ]' that factor through
-- a face map. To make this indexing more obvious, we use the suggestively named variable 'n-1'.
record Boundary (m n-1 : ℕ) : Set where
-- To avoid the (somewhat confusion) pattern of 'ℕ.suc n-1', let's define
-- a bit of helpful local notation.
private
n : ℕ
n = ℕ.suc n-1
field
hom : Δ [ m , n ]
factor : Δ [ m , n-1 ]
factor-dim : Fin n
factor-face : Δ [ hom ≈ Δ [ face factor-dim ∘ factor ] ]
-- Lift morphisms in Δ to maps between boundary sets on 'Δ[ n ]'
boundary-map : ∀ {x y n} → Δ [ x , y ] → Boundary y n → Boundary x n
boundary-map {n = n} f b = record
{ hom = hom b ∘ f
; factor = factor b ∘ f
; factor-dim = factor-dim b
; factor-face = λ x → factor-face b (proj₁ f x)
}
where
open Category Δ
open Boundary
-- The boundary of an n-simplex
∂Δ[_] : ℕ → ΔSet
∂Δ[_] ℕ.zero = const record
{ Carrier = ⊥
; _≈_ = λ ()
; isEquivalence = record
{ refl = λ { {()} }
; sym = λ { {()} }
; trans = λ { {()} }
}
}
∂Δ[_] (ℕ.suc n) = record
{ F₀ = λ m → record
{ Carrier = Lift o (Boundary m n)
-- Unwinding the equality by hand here leads to less unsolved metavariables down the line
; _≈_ = λ (lift b) (lift b′) → ∀ x → Lift ℓ (proj₁ (hom b) x ≡ proj₁ (hom b′) x)
; isEquivalence = record
{ refl = λ x → lift refl
; sym = λ eq x → lift (sym (lower (eq x)))
; trans = λ eq₁ eq₂ x → lift (trans (lower (eq₁ x)) (lower (eq₂ x)))
}
}
; F₁ = λ f → record
{ _⟨$⟩_ = λ (lift b) → lift (boundary-map f b)
; cong = λ eq x → eq (proj₁ f x)
}
; identity = λ eq → eq
; homomorphism = λ {_} {_} {_} {f} {g} eq x → eq (proj₁ f (proj₁ g x))
; F-resp-≈ = λ {_} {_} {f} {g} f≈g {b} {b′} eq x → lift $ begin
proj₁ (hom (lower b)) (proj₁ f x) ≡⟨ lower (eq (proj₁ f x)) ⟩
proj₁ (hom (lower b′)) (proj₁ f x) ≡⟨ cong (proj₁ (hom (lower b′))) (f≈g x) ⟩
proj₁ (hom (lower b′)) (proj₁ g x) ∎
}
where
open Boundary
open Eq
open ≡-Reasoning
--------------------------------------------------------------------------------
-- Horns
--
-- The idea here is essentially the same as the boundaries, but we exclude the kth
-- face map as a possible factor.
record Horn (m n-1 : ℕ) (k : Fin (ℕ.suc n-1)) : Set where
field
horn : Boundary m n-1
open Boundary horn public
field
is-horn : factor-dim Eq.≢ k
Λ[_,_] : (n : ℕ) → Fin n → ΔSet
Λ[ ℕ.suc n , k ] = record
{ F₀ = λ m → record
{ Carrier = Lift o (Horn m n k)
; _≈_ = λ (lift b) (lift b′) → ∀ x → Lift ℓ (proj₁ (hom b) x ≡ proj₁ (hom b′) x)
; isEquivalence = record
{ refl = λ x → lift refl
; sym = λ eq x → lift (sym (lower (eq x)))
; trans = λ eq₁ eq₂ x → lift (trans (lower (eq₁ x)) (lower (eq₂ x)))
}
}
; F₁ = λ f → record
{ _⟨$⟩_ = λ (lift h) → lift $ record
{ horn = boundary-map f (horn h)
; is-horn = is-horn h
}
; cong = λ eq x → eq (proj₁ f x)
}
; identity = λ eq → eq
; homomorphism = λ {_} {_} {_} {f} {g} eq x → eq (proj₁ f (proj₁ g x))
; F-resp-≈ = λ {_} {_} {f} {g} f≈g {b} {b′} eq x → lift $ begin
proj₁ (hom (lower b)) (proj₁ f x) ≡⟨ lower (eq (proj₁ f x)) ⟩
proj₁ (hom (lower b′)) (proj₁ f x) ≡⟨ cong (proj₁ (hom (lower b′))) (f≈g x) ⟩
proj₁ (hom (lower b′)) (proj₁ g x) ∎
}
where
open Horn
open Eq
open ≡-Reasoning
--------------------------------------------------------------------------------
-- Morphims between simplicial sets
module _ where
open Category (SimplicialSet o ℓ)
-- Inclusion of boundaries
∂Δ-inj : ∀ {n} → ∂Δ[ n ] ⇒ Δ[ n ]
∂Δ-inj {ℕ.zero} = ntHelper record
{ η = λ X → record
{ _⟨$⟩_ = ⊥-elim
; cong = λ { {()} }
}
; commute = λ { _ {()} _ }
}
∂Δ-inj {ℕ.suc n} = ntHelper record
{ η = λ X → record
{ _⟨$⟩_ = λ (lift b) → lift (hom b)
; cong = λ eq → lift (λ x → lower (eq x))
}
; commute = λ f eq → lift (λ x → lower (eq (proj₁ f x)))
}
where
open Boundary
-- Inclusion of n-horns into n-simplicies
Λ-inj : ∀ {n} → (k : Fin n) → Λ[ n , k ] ⇒ Δ[ n ]
Λ-inj {n = ℕ.suc n} k = ntHelper record
{ η = λ X → record
{ _⟨$⟩_ = λ (lift h) → lift (hom h)
; cong = λ eq → lift (λ x → lower (eq x))
}
; commute = λ f eq → lift (λ x → lower (eq (proj₁ f x)))
}
where
open Horn
| {
"alphanum_fraction": 0.5531950485,
"avg_line_length": 30.9740932642,
"ext": "agda",
"hexsha": "ba5127780c0645192fad5623ae0f3abf47f12227",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a4053cf700bcefdf73b857c3352f1eae29382a60",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "jaykru/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Instance/SimplicialSet/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a4053cf700bcefdf73b857c3352f1eae29382a60",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "jaykru/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Instance/SimplicialSet/Properties.agda",
"max_line_length": 96,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a4053cf700bcefdf73b857c3352f1eae29382a60",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "jaykru/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Instance/SimplicialSet/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2088,
"size": 5978
} |
module PLRTree.Equality.Correctness {A : Set} where
open import BTree.Equality {A}
open import PLRTree {A}
open import PLRTree.Equality {A} renaming (_≃_ to _≃'_)
lemma-≃'-≃ : {l r : PLRTree} → l ≃' r → forget l ≃ forget r
lemma-≃'-≃ ≃lf = ≃lf
lemma-≃'-≃ (≃nd x x' l≃'r l'≃'r' l≃'l') = ≃nd x x' (lemma-≃'-≃ l≃'r) (lemma-≃'-≃ l≃'l') (lemma-≃'-≃ l'≃'r')
| {
"alphanum_fraction": 0.5690140845,
"avg_line_length": 35.5,
"ext": "agda",
"hexsha": "67fc9cbffbad4be918fb6019ad0038cae8c9a270",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/PLRTree/Equality/Correctness.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/PLRTree/Equality/Correctness.agda",
"max_line_length": 107,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/PLRTree/Equality/Correctness.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 182,
"size": 355
} |
-- Andreas, 2019-07-15, issue #3901, requested by msuperdock
--
-- Allow function spaces {A} → B and {{A}} → B.
postulate
A B : Set
foo : {{A}} → B
bar : {A} → B
-- Original feature request:
open import Agda.Builtin.Unit using (⊤; tt)
data ⊥ : Set where
data Nat : Set where
zero : Nat
suc : Nat → Nat
_≤_ : Nat → Nat → Set
zero ≤ _ = ⊤
suc m ≤ zero = ⊥
suc m ≤ suc n = m ≤ n
data SList (bound : Nat) : Set where
[] : SList bound
scons : (head : Nat)
→ {head ≤ bound} -- here: anonymous binding
→ (tail : SList head)
→ SList bound
xs : SList zero
xs = scons zero []
| {
"alphanum_fraction": 0.5499207607,
"avg_line_length": 18.5588235294,
"ext": "agda",
"hexsha": "24ce98700ee5257f9dec3229083b29ad6bd96f4a",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue3901.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue3901.agda",
"max_line_length": 60,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue3901.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 225,
"size": 631
} |
-- Jesper, 2018-11-23: Unsolved metas are turned into postulates
-- when --allow-unsolved-metas is enabled, but there was no internal
-- representation of postulated sorts.
module Issue3256 where
open import Issue3256.B
-- WAS:
-- An internal error has occurred. Please report this as a bug.
-- Location of the error: src/full/Agda/TypeChecking/Reduce.hs:149
| {
"alphanum_fraction": 0.7624309392,
"avg_line_length": 30.1666666667,
"ext": "agda",
"hexsha": "ca97d042c76a59dd304d9f6d3a0054b7ed37d574",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue3256.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue3256.agda",
"max_line_length": 68,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue3256.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 97,
"size": 362
} |
{-# OPTIONS --universe-polymorphism #-}
module Categories.Graphs where
open import Categories.Category
hiding (module Heterogeneous)
open import Data.Product
open import Level
open import Relation.Binary
renaming (_⇒_ to _⊆_)
open import Relation.Binary.PropositionalEquality
using ()
renaming (_≡_ to _≣_; refl to ≣-refl)
open import Graphs.Graph
open import Graphs.GraphMorphism
Graphs : ∀ o ℓ e → Category (suc (o ⊔ ℓ ⊔ e)) (o ⊔ ℓ ⊔ e) (o ⊔ ℓ ⊔ e)
Graphs o ℓ e = record
{ Obj = Obj
; _⇒_ = _⇒_
; _≡_ = _≈_
; id = id
; _∘_ = _∘_
; equiv = isEquivalence
; assoc = λ {A}{B}{C}{D}{f}{g}{h} → assoc {A}{B}{C}{D}{f}{g}{h}
; identityˡ = λ {A}{B}{f : A ⇒ B} → IsEquivalence.refl (isEquivalence {A = A}{B}) {x = f}
; identityʳ = λ {A}{B}{f : A ⇒ B} → IsEquivalence.refl (isEquivalence {A = A}{B}) {x = f}
; ∘-resp-≡ = λ {_}{_}{_}{f}{h}{g}{i} → ∘-resp-≈ {F = f}{h}{g}{i}
}
where
Obj : Set (suc (o ⊔ ℓ ⊔ e))
Obj = Graph o ℓ e
_⇒_ : Obj → Obj → Set _
_⇒_ = GraphMorphism
.assoc : ∀ {A B C D} {f : A ⇒ B} {g : B ⇒ C} {h : C ⇒ D} → ((h ∘ g) ∘ f) ≈ (h ∘ (g ∘ f))
assoc {f = f}{g}{h} = (λ x → ≣-refl) , (λ f → refl)
where open Heterogeneous _
| {
"alphanum_fraction": 0.5285140562,
"avg_line_length": 31.125,
"ext": "agda",
"hexsha": "2ddbefe20db34b71c3ac3ae6951b0bf4f06c3ed7",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Graphs.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Graphs.agda",
"max_line_length": 92,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Graphs.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 522,
"size": 1245
} |
{-# OPTIONS --cubical-compatible #-}
module WithoutK1 where
-- Equality defined with one index.
data _≡_ {A : Set} (x : A) : A → Set where
refl : x ≡ x
K : {A : Set} (P : {x : A} → x ≡ x → Set) →
(∀ x → P (refl {x = x})) →
∀ {x} (x≡x : x ≡ x) → P x≡x
K P p refl = p _
| {
"alphanum_fraction": 0.4822695035,
"avg_line_length": 20.1428571429,
"ext": "agda",
"hexsha": "f04d31a8574a91f1fb3fffa78090d2f42c501e02",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Fail/WithoutK1.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Fail/WithoutK1.agda",
"max_line_length": 43,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Fail/WithoutK1.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 121,
"size": 282
} |
postulate
U V W X Y Z : Set
u : U
v : V
w : W
x : X
y : Y
z : Z
module Top (u : U) where
module A (v : V) where
module M (w : W) where
module O (x : X) where
postulate O : X
postulate O : X
module B (y : Y) where
open A public
module Test0 where
module C = Top.B u y
module D = C.M.O v w x
O₁ : X
O₁ = C.M.O v w
O₂ : X
O₂ = C.O v
module Test1 where
module C (i g n o r i n g m e : Z) = Top.B u y
module D = C.M.O z z z z z z z z z z v w x
O : X
O = C.M.O z z z z z z z z z z v w
module Test2 where
module C (y : Y) = Top.B u y
module D = C.M.O y v w x
O : X
O = C.M.O y v w
module Test3 where
module C (z : Z) = Top.B u y
module D = C.M.O z v w x
| {
"alphanum_fraction": 0.5158184319,
"avg_line_length": 16.9069767442,
"ext": "agda",
"hexsha": "425a65592fee4edb4fd0d986025ae7c9f5a61d65",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue1726.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue1726.agda",
"max_line_length": 48,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue1726.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 317,
"size": 727
} |
-- WARNING: This file was generated automatically by Vehicle
-- and should not be modified manually!
-- Metadata
-- - Agda version: 2.6.2
-- - AISEC version: 0.1.0.1
-- - Time generated: ???
{-# OPTIONS --allow-exec #-}
open import Vehicle
open import Vehicle.Data.Tensor
open import Data.Rational as ℚ using (ℚ)
open import Data.List
open import Relation.Binary.PropositionalEquality
module autoencoderError-temp-output where
postulate encode : Tensor ℚ (5 ∷ []) → Tensor ℚ (2 ∷ [])
postulate decode : Tensor ℚ (2 ∷ []) → Tensor ℚ (5 ∷ [])
abstract
identity : ∀ (x : Tensor ℚ (5 ∷ [])) → decode (encode x) ≡ x
identity = checkSpecification record
{ proofCache = "/home/matthew/Code/AISEC/vehicle/proofcache.vclp"
} | {
"alphanum_fraction": 0.6842818428,
"avg_line_length": 28.3846153846,
"ext": "agda",
"hexsha": "d2572d721719354278bbd8d0e3bf12d022391ad7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "vehicle-lang/vehicle",
"max_forks_repo_path": "test/Test/Compile/Golden/autoencoderError/autoencoderError-output.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T20:49:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-07T14:09:13.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "vehicle-lang/vehicle",
"max_issues_repo_path": "test/Test/Compile/Golden/autoencoderError/autoencoderError-output.agda",
"max_line_length": 71,
"max_stars_count": 9,
"max_stars_repo_head_hexsha": "25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "vehicle-lang/vehicle",
"max_stars_repo_path": "test/Test/Compile/Golden/autoencoderError/autoencoderError-output.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-17T18:51:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-02-10T12:56:42.000Z",
"num_tokens": 215,
"size": 738
} |
module Data.List.Kleene.Relation.Unary.All where
open import Data.List.Kleene.Base
open import Relation.Unary
open import Relation.Nullary
open import Level using (_⊔_)
open import Function
mutual
record All⁺ {a p} {A : Set a} (P : Pred A p) (xs : A ⁺) : Set (a ⊔ p) where
constructor P⟨_&_⟩
inductive
field
P⟨head⟩ : P (head xs)
P⟨tail⟩ : All⋆ P (tail xs)
data All⋆ {a p} {A : Set a} (P : Pred A p) : Pred (A ⋆) (a ⊔ p) where
P⟨[]⟩ : All⋆ P []
P⟨∹_⟩ : ∀ {xs} → All⁺ P xs → All⋆ P (∹ xs)
open All⁺ public
module _ {a p} {A : Set a} {P : Pred A p} where
mutual
all⋆ : Decidable P → Decidable (All⋆ P)
all⋆ p? [] = yes P⟨[]⟩
all⋆ p? (∹ xs) with all⁺ p? xs
all⋆ p? (∹ xs) | yes p = yes P⟨∹ p ⟩
all⋆ p? (∹ xs) | no ¬p = no λ { P⟨∹ x ⟩ → ¬p x }
all⁺ : Decidable P → Decidable (All⁺ P)
all⁺ p? xs with p? (head xs) | all⋆ p? (tail xs)
all⁺ p? xs | no ¬p | ys = no (¬p ∘ P⟨head⟩)
all⁺ p? xs | yes p | yes ps = yes P⟨ p & ps ⟩
all⁺ p? xs | yes p | no ¬p = no (¬p ∘ P⟨tail⟩)
| {
"alphanum_fraction": 0.5223596575,
"avg_line_length": 28.4054054054,
"ext": "agda",
"hexsha": "18e96ad59586e3e8040cd85b580ac8a3e4a0ed28",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a7e99bc288e12e83440c891dbd3e5077d9b1657e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-kleene-lists",
"max_forks_repo_path": "Data/List/Kleene/Relation/Unary/All.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a7e99bc288e12e83440c891dbd3e5077d9b1657e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-kleene-lists",
"max_issues_repo_path": "Data/List/Kleene/Relation/Unary/All.agda",
"max_line_length": 77,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a7e99bc288e12e83440c891dbd3e5077d9b1657e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-kleene-lists",
"max_stars_repo_path": "Data/List/Kleene/Relation/Unary/All.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 475,
"size": 1051
} |
open import Data.List using (List; _∷_; [])
open import Data.Product using (_×_; _,_; Σ)
open import Data.Unit using (⊤; tt)
open import Relation.Binary.PropositionalEquality using (_≡_)
module SystemT where
{- de Bruijn indices are represented as proofs that
an element is in a list -}
data _∈_ {A : Set} : (x : A) (l : List A) → Set where -- type \in
i0 : {x : A} {xs : List A} → x ∈ (x ∷ xs)
iS : {x y : A} {xs : List A} → x ∈ xs → x ∈ (y ∷ xs)
{- types of the STLC -}
data TType : Set where
b : TType -- uninterpreted base type
_⇒_ : TType → TType → TType -- type \=>
{- contexts are lists of TType's -}
Ctx = List
_,,_ : ∀ {A} → Ctx A → TType → Ctx A
Γ ,, τ = τ ∷ Γ
infixr 10 _⇒_
infixr 9 _,,_
infixr 8 _⊢_ -- type \entails
{- Γ ⊢ τ represents a term of type τ in context Γ -}
data _⊢_ (Γ : Ctx) : TType → Set where
c : Γ ⊢ b -- some constant of the base type
v : {τ : TType} → τ ∈ Γ → Γ ⊢ τ
lam : {τ1 τ2 : TType} → Γ ,, τ1 ⊢ τ2 → Γ ⊢ τ1 ⇒ τ2
app : {τ1 τ2 : TType} → Γ ⊢ τ1 ⇒ τ2 → Γ ⊢ τ1 → Γ ⊢ τ2
module Examples where
i : [] ⊢ b ⇒ b
i = lam (v i0) -- \ x -> x
k : [] ⊢ b ⇒ b ⇒ b
k = lam (lam (v (iS i0))) -- \ x -> \ y -> x
{- TASK 1: Define a term representing \ x -> \ y -> y -}
k' : [] ⊢ b ⇒ b ⇒ b
k' = {!!}
{- The following proof is like a "0-ary" logical relation.
It gives a semantics of the STLC in Agda.
This shows that the STLC is sound, relative to Agda.
-}
module Semantics (B : Set) (elB : B) where
-- works for any interpretation of the base type b
-- function mapping STLC types to Agda types
⟦_⟧t : TType → Set -- type \(0 and \)0
⟦ b ⟧t = B
⟦ τ1 ⇒ τ2 ⟧t = ⟦ τ1 ⟧t → ⟦ τ2 ⟧t
-- function mapping STLC contexts to Agda types
⟦_⟧c : Ctx → Set
⟦ [] ⟧c = ⊤
⟦ τ ∷ Γ ⟧c = ⟦ Γ ⟧c × ⟦ τ ⟧t
{- TASK 2 : Define the interpretation of terms -}
⟦_⟧ : {Γ : Ctx} {τ : TType} → Γ ⊢ τ → ⟦ Γ ⟧c → ⟦ τ ⟧t
⟦ e ⟧ γ = {!!}
{- the following test should pass
test : ⟦ Examples.k ⟧ == \ γ x y → x
test = Refl
-}
{- you can ignore the implementation of this module.
the interface for the components you need is listed below
-}
module RenamingAndSubstitution where
-- renamings = variable for variable substitutions
infix 9 _⊇_
_⊇_ : Ctx → Ctx → Set -- type \sup=
Γ' ⊇ [] = ⊤
Γ' ⊇ (τ ∷ Γ) = (Γ' ⊇ Γ) × (τ ∈ Γ')
extend⊇ : {Γ : Ctx} (Γ' : Ctx) {τ : TType} → Γ ⊇ Γ' → (Γ ,, τ) ⊇ Γ'
extend⊇ [] ren = tt
extend⊇ (τ ∷ Γ') (ρ , x) = extend⊇ Γ' ρ , iS x
open import Data.List using (_++_)
extend⊇* : {Γ : Ctx} (Γ' : Ctx) (Γ'' : Ctx) → Γ ⊇ Γ' → (Γ'' ++ Γ) ⊇ Γ'
extend⊇* Γ' [] ρ = ρ
extend⊇* Γ' (x ∷ Γ'') ρ = extend⊇ _ (extend⊇* Γ' Γ'' ρ)
shift : {Γ : Ctx} {τ : TType} (Γ' : Ctx) (i : τ ∈ Γ) → τ ∈ (Γ' ++ Γ)
shift [] i = i
shift (τ ∷ Γ) i = iS (shift Γ i)
⊇-id : (Γ : Ctx) → Γ ⊇ Γ
⊇-id [] = tt
⊇-id (τ ∷ Γ) = extend⊇ Γ (⊇-id Γ) , i0
⊇-single : {Γ : Ctx} {τ : TType} → (Γ ,, (τ ⊇ Γ))
⊇-single = extend⊇ _ (⊇-id _)
-- you can rename a term
rename : {Γ Γ' : Ctx} {τ : TType} → Γ' ⊇ Γ → Γ ⊢ τ → Γ' ⊢ τ
rename ρ c = c
rename (_ , x') (v i0) = v x'
rename (ρ , _) (v (iS x)) = rename ρ (v x)
rename ρ (lam e) = lam (rename (extend⊇ _ ρ , i0) e)
rename ρ (app e e') = app (rename ρ e) (rename ρ e')
-- expression-for-variable substitutions
_⊢c_ : Ctx → Ctx → Set
Γ' ⊢c [] = tt
Γ' ⊢c (τ ∷ Γ) = (Γ' ⊢c Γ) × (Γ' ⊢ τ)
rename-subst : {Γ1 Γ2 Γ3 : Ctx} → Γ1 ⊇ Γ2 → Γ2 ⊢c Γ3 → Γ1 ⊢c Γ3
rename-subst {Γ1} {Γ2} {[]} ρ θ = tt
rename-subst {Γ1} {Γ2} {τ3 ∷ Γ3} ρ (θ , e) = rename-subst ρ θ , rename ρ e
addvar : {Γ Γ' : Ctx} {τ : TType} → Γ ⊢c Γ' → (Γ ,, τ) ⊢c (Γ' ,, τ)
addvar θ = rename-subst ⊇-single θ , v i0
id-subst : {Γ : Ctx} → Γ ⊢c Γ
id-subst {[]} = tt
id-subst {τ ∷ Γ} = rename-subst ⊇-single (id-subst {Γ}) , v i0
subst : {Γ Γ' : Ctx}{τ : TType} → Γ ⊢c Γ' → Γ' ⊢ τ → Γ ⊢ τ
subst θ c = c
subst (θ , e) (v i0) = e
subst (θ , e) (v (iS x)) = subst θ (v x)
subst θ (lam e) = lam (subst (addvar θ) e)
subst θ (app e e') = app (subst θ e) (subst θ e')
subst1 : {τ τ0 : TType} → [] ⊢ τ0 → ([] ,, τ0) ⊢ τ → [] ⊢ τ
subst1 e0 e = subst (tt , e0) e
-- these are not tasks (unless you really want); I didn't get to prove them; sorry!
compose : {τ1 τ2 : TType} {Γ : Ctx} (θ : [] ⊢c Γ) (e' : [] ⊢ τ1) (e : Γ ,, τ1 ⊢ τ2)
→ subst (θ , e') e ≡ subst1 e' (subst (addvar θ) e)
compose = {!!}
ident : {Γ : Ctx} {τ : TType} {e : Γ ⊢ τ} → e ≡ subst (id-subst) e
ident = {!!}
open RenamingAndSubstitution using (subst1 ; _⊢c_ ; subst ; ident ; compose)
{- θ : Γ ⊢c Γ' means θ is a substitution for Γ' in terms of Γ. It is defined as follows:
_⊢c_ : Ctx → Ctx → Set
Γ' ⊢c [] = Unit
Γ' ⊢c (τ ∷ Γ) = (Γ' ⊢c Γ) × (Γ' ⊢ τ)
-- apply a substitution to a term
subst : {Γ Γ' : Ctx}{τ : TType} → Γ ⊢c Γ' → Γ' ⊢ τ → Γ ⊢ τ
-- substitution for a single variable
subst1 : {τ τ0 : TType} → [] ⊢ τ0 → ([] ,, τ0) ⊢ τ → [] ⊢ τ
-- you will need these two properties:
compose : {τ1 τ2 : TType} {Γ : Ctx} (θ : [] ⊢c Γ) (e' : [] ⊢ τ1) (e : Γ ,, τ1 ⊢ τ2)
→ subst (θ , e') e == subst1 e' (subst (addvar θ) e)
ident : {Γ : Ctx} {τ : TType} {e : Γ ⊢ τ} → e == subst (id-subst) e
-}
module OpSem where
-- step relation
data _↦_ : {τ : TType} → [] ⊢ τ → [] ⊢ τ → Set where
Step/app :{τ1 τ2 : TType} {e e' : [] ⊢ τ1 ⇒ τ2} {e1 : [] ⊢ τ1}
→ e ↦ e'
→ (app e e1) ↦ (app e' e1)
Step/β : {τ1 τ2 : TType} {e : [] ,, τ1 ⊢ τ2} {e1 : [] ⊢ τ1}
→ (app (lam e) e1) ↦ subst1 e1 e
-- reflexive/transitive closure
data _↦*_ : {τ : TType} → [] ⊢ τ → [] ⊢ τ → Set where
Done : {τ : TType} {e : [] ⊢ τ} → e ↦* e
Step : {τ : TType} {e1 e2 e3 : [] ⊢ τ}
→ e1 ↦ e2 → e2 ↦* e3
→ e1 ↦* e3
open OpSem
{- Next, you will prove "very weak normalization". The theorem is
that any closed term *of base type b* evaluates to the constant c.
No claims are made about terms of function type.
-}
module VeryWeakNormalization where
WN : (τ : TType) → [] ⊢ τ → Set
-- WN_τ(e) iff e ↦* c
WN b e = e ↦* c
-- WN_τ(e) iff for all e1 : τ1, if WN_τ1(e1) then WN_τ2(e e1)
WN (τ1 ⇒ τ2) e = (e1 : [] ⊢ τ1) → WN τ1 e1 → WN τ2 (app e e1)
-- extend WN to contexts and substitutions
WNc : (Γ : Ctx) → [] ⊢c Γ → Set
WNc [] θ = tt
WNc (τ ∷ Γ) (θ , e) = WNc Γ θ × WN τ e
{- TASK 3 : show that the relation is closed under head expansion: -}
head-expand : (τ : TType) {e e' : [] ⊢ τ} → e ↦ e' → WN τ e' → WN τ e
head-expand = {!!}
{- TASK 4 : prove the fundamental theorem
Hint: you may find it helpful to use
transport : {A : Set} (B : A → Set) {a1 a2 : A} → a1 == a2 → (B a1 → B a2)
to coerce by a propositional equality.
-}
fund : {Γ : Ctx} {τ : TType} {θ : [] ⊢c Γ}
→ (e : Γ ⊢ τ)
→ WNc Γ θ
→ WN τ (subst θ e)
fund = {!!}
{- TASK 5 : conclude weak normalization at base type -}
corollary : (e : [] ⊢ b) → e ↦* c
corollary = {!!}
{- TASK 6 : change the definition of the logical relation so that you also can conclude normalization
at function type.
-}
module WeakNormalization where
open RenamingAndSubstitution using (addvar)
--- you will want to use
-- addvar : {Γ Γ' : Ctx} {τ : TType} → Γ ⊢c Γ' → (Γ ,, τ) ⊢c (Γ' ,, τ)
-- Hint: you will need a couple of lemmas about ↦* that we didn't need above
-- (I used three of them)
{- TASK 6a -}
corollary1 : (e : [] ⊢ b) → e ↦* c
corollary1 e = {!!}
{- TASK 6b -}
corollary2 : {τ1 τ2 : TType} (e : [] ⊢ τ1 ⇒ τ2) → Σ \(e' : _) → e ↦* (lam e')
corollary2 e = {!!}
| {
"alphanum_fraction": 0.4865171371,
"avg_line_length": 32,
"ext": "agda",
"hexsha": "26efbd3e203e7bcb6784114f0f06b1fb8615b8fd",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "785c3d1f93ce2dac7801504b806abfd59f3875f6",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "ayberkt/system-t-normalization",
"max_forks_repo_path": "SystemT-original.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "785c3d1f93ce2dac7801504b806abfd59f3875f6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "ayberkt/system-t-normalization",
"max_issues_repo_path": "SystemT-original.agda",
"max_line_length": 103,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "785c3d1f93ce2dac7801504b806abfd59f3875f6",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "ayberkt/system-t-normalization",
"max_stars_repo_path": "SystemT-original.agda",
"max_stars_repo_stars_event_max_datetime": "2016-06-25T03:40:58.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-24T14:36:42.000Z",
"num_tokens": 3350,
"size": 7936
} |
{-# OPTIONS --universe-polymorphism #-}
open import Categories.Category
open import Categories.Object.BinaryProducts
open import Categories.Object.Exponentiating
module Categories.Object.Exponentiating.Functor {o ℓ e}
(C : Category o ℓ e)
(binary : BinaryProducts C)
(Σ : Category.Obj C)
(exponentiating : Exponentiating C binary Σ) where
open Category C
open BinaryProducts binary
open Exponentiating exponentiating
open Equiv
open HomReasoning
import Categories.Object.Product.Morphisms
open Categories.Object.Product.Morphisms C
open import Categories.Functor
using (Functor; Contravariant)
renaming (_∘_ to _∘F_)
Σ↑-Functor : Contravariant C C
Σ↑-Functor = record
{ F₀ = Σ↑_
; F₁ = [Σ↑_]
; identity = identity
; homomorphism = homomorphism
; F-resp-≡ = F-resp-≡
}
where
.identity : ∀ {A} → [Σ↑ id {A} ] ≡ id
identity {A} =
begin
λ-abs A (eval ∘ second id)
↓⟨ λ-cong (∘-resp-≡ refl (id⁂id product)) ⟩
λ-abs A (eval ∘ id)
↓⟨ λ-cong identityʳ ⟩
λ-abs A eval
↓⟨ λ-η-id ⟩
id
∎
.homomorphism : ∀ {X Y Z}
{f : X ⇒ Y} {g : Y ⇒ Z}
→ [Σ↑ (g ∘ f) ] ≡ [Σ↑ f ] ∘ [Σ↑ g ]
homomorphism {X}{Y}{Z}{f}{g} =
begin
λ-abs X (eval ∘ second (g ∘ f))
↑⟨ λ-cong (refl ⟩∘⟨ second∘second) ⟩
λ-abs X (eval ∘ second g ∘ second f)
↑⟨ λ-cong assoc ⟩
λ-abs X ((eval ∘ second g) ∘ second f)
↓⟨ λ-distrib ⟩
λ-abs X (eval ∘ second f)
∘
λ-abs Y (eval ∘ second g)
∎
.F-resp-≡ : ∀ {A B}{f g : A ⇒ B }
→ f ≡ g → [Σ↑ f ] ≡ [Σ↑ g ]
F-resp-≡ {A}{B}{f}{g} f≡g =
begin
λ-abs A (eval ∘ second f)
↓⟨ λ-cong (refl ⟩∘⟨ ⟨⟩-cong₂ refl (f≡g ⟩∘⟨ refl)) ⟩
λ-abs A (eval ∘ second g)
∎
Σ²-Functor : Functor C C
Σ²-Functor = Σ↑-Functor ∘F Functor.op Σ↑-Functor
| {
"alphanum_fraction": 0.4825986079,
"avg_line_length": 29.1216216216,
"ext": "agda",
"hexsha": "822b26e09155a31eab2ff87d62b1d7dd7146dc22",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Object/Exponentiating/Functor.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Object/Exponentiating/Functor.agda",
"max_line_length": 63,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Object/Exponentiating/Functor.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 727,
"size": 2155
} |
-- Module shadowing using generated modules for records and datatypes
module Issue260c where
record R : Set where
module R where
| {
"alphanum_fraction": 0.8076923077,
"avg_line_length": 21.6666666667,
"ext": "agda",
"hexsha": "421592933c4dbfff688ac8af389c9db06edcf61d",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue260c.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue260c.agda",
"max_line_length": 69,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue260c.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 29,
"size": 130
} |
open import Structure.Setoid
open import Structure.Category
open import Type
module Structure.Category.Monad.ExtensionSystem
{ℓₒ ℓₘ ℓₑ}
{cat : CategoryObject{ℓₒ}{ℓₘ}{ℓₑ}}
where
import Data.Tuple as Tuple
import Function.Equals
open Function.Equals.Dependent
open import Functional.Dependent using () renaming (_∘_ to _∘ᶠⁿ_)
import Lvl
open import Logic.Predicate
open import Structure.Category.Functor
open import Structure.Category.Functor.Functors as Functors
open import Structure.Category.Monad{cat = cat}
open import Structure.Category.NaturalTransformation
open import Structure.Category.NaturalTransformation.NaturalTransformations as NaturalTransformations
open import Structure.Category.Proofs
open import Structure.Categorical.Properties
open import Structure.Function
open import Structure.Operator
open import Structure.Relator.Equivalence
open import Structure.Relator.Properties
open import Syntax.Transitivity
open CategoryObject(cat)
open Category.ArrowNotation(category)
open Category(category)
open NaturalTransformations.Raw(cat)(cat)
private open module MorphismEquiv {x}{y} = Equivalence (Equiv-equivalence ⦃ morphism-equiv{x}{y} ⦄) using ()
record ExtensionSystem (T : Object → Object) : Type{Lvl.of(Type.of(cat))} where
field
η : (x : Object) → (x ⟶ T(x))
ext : ∀{x y} → (x ⟶ T(y)) → (T(x) ⟶ T(y))
μ : (x : Object) → (T(T(x)) ⟶ T(x))
μ(x) = ext(id{x = T(x)})
field
⦃ ext-function ⦄ : ∀{x y} → Function(ext{x}{y})
ext-inverse : ∀{x} → (ext(η(x)) ≡ id) -- ext ∘ᶠⁿ η ⊜ idᴺᵀ
ext-identity : ∀{x y}{f : x ⟶ T(y)} → (ext(f) ∘ η(x) ≡ f)
ext-distribute : ∀{x y z}{f : y ⟶ T(z)}{g : x ⟶ T(y)} → (ext(ext(f) ∘ g) ≡ ext(f) ∘ ext(g))
functor : Functor(category)(category)(T)
Functor.map functor {x} {y} f = ext(η(y) ∘ f)
Function.congruence (Functor.map-function functor) xy = congruence₁(ext) (congruence₂ᵣ(_∘_)(_) xy)
Functor.op-preserving functor {x} {y} {z} {f} {g} =
ext(η(z) ∘ f ∘ g) 🝖-[ congruence₁(ext) (Morphism.associativity(_∘_)) ]-sym
ext((η(z) ∘ f) ∘ g) 🝖-[ congruence₁(ext) (congruence₂ₗ(_∘_)(g) (symmetry(_≡_) ext-identity)) ]
ext((ext(η(z) ∘ f) ∘ η(y)) ∘ g) 🝖-[ congruence₁(ext) (Morphism.associativity(_∘_)) ]
ext(ext(η(z) ∘ f) ∘ (η(y) ∘ g)) 🝖-[ ext-distribute ]
ext(η(z) ∘ f) ∘ ext(η(y) ∘ g) 🝖-end
Functor.id-preserving functor {x} =
ext(η(x) ∘ id) 🝖-[ congruence₁(ext) (Morphism.identityᵣ(_∘_)(id)) ]
ext(η(x)) 🝖-[ ext-inverse ]
id 🝖-end
open Functor(functor)
monad : Monad(T) ⦃ functor ⦄
∃.witness (Monad.Η monad) = η
NaturalTransformation.natural (∃.proof (Monad.Η monad)) = symmetry(_≡_) ext-identity
∃.witness (Monad.Μ monad) = μ
NaturalTransformation.natural (∃.proof (Monad.Μ monad)) {x} {y} {f} =
μ(y) ∘ ext(η(T(y)) ∘ ext(η(y) ∘ f)) 🝖[ _≡_ ]-[]
ext(id) ∘ ext(η(T(y)) ∘ ext(η(y) ∘ f)) 🝖-[ ext-distribute ]-sym
ext(ext(id) ∘ (η(T(y)) ∘ ext(η(y) ∘ f))) 🝖-[ congruence₁(ext) (symmetry(_≡_) (Morphism.associativity(_∘_))) ]
ext((ext(id) ∘ η(T(y))) ∘ ext(η(y) ∘ f)) 🝖-[ congruence₁(ext) (congruence₂ₗ(_∘_)(_) ext-identity) ]
ext(id ∘ ext(η(y) ∘ f)) 🝖-[ congruence₁(ext) (Morphism.identityₗ(_∘_)(id)) ]
ext(ext(η(y) ∘ f)) 🝖-[ congruence₁(ext) (Morphism.identityᵣ(_∘_)(id)) ]-sym
ext(ext(η(y) ∘ f) ∘ id) 🝖-[ ext-distribute ]
ext(η(y) ∘ f) ∘ ext(id) 🝖[ _≡_ ]-[]
ext(η(y) ∘ f) ∘ μ(x) 🝖-end
_⊜_.proof (Monad.μ-functor-[∘]-commutativity monad) {x} = -- TODO: Same as above?
μ(x) ∘ map(μ(x)) 🝖[ _≡_ ]-[]
ext(id) ∘ map(ext(id)) 🝖[ _≡_ ]-[]
ext(id) ∘ ext(η(T(x)) ∘ ext(id)) 🝖-[ ext-distribute ]-sym
ext(ext(id) ∘ (η(T(x)) ∘ ext(id))) 🝖-[ congruence₁(ext) (symmetry(_≡_) (Morphism.associativity(_∘_))) ]
ext((ext(id) ∘ η(T(x))) ∘ ext(id)) 🝖-[ congruence₁(ext) (congruence₂ₗ(_∘_)(_) ext-identity) ]
ext(id ∘ ext(id)) 🝖-[ congruence₁(ext) (Morphism.identityₗ(_∘_)(id)) ]
ext(ext(id)) 🝖-[ congruence₁(ext) (Morphism.identityᵣ(_∘_)(id)) ]-sym
ext(ext(id) ∘ id) 🝖-[ ext-distribute ]
ext(id) ∘ ext(id) 🝖[ _≡_ ]-[]
μ(x) ∘ μ(T(x)) 🝖-end
_⊜_.proof (Monad.μ-functor-[∘]-identityₗ monad) {x} =
μ(x) ∘ ext(η(T(x)) ∘ η(x)) 🝖[ _≡_ ]-[]
ext(id) ∘ ext(η(T(x)) ∘ η(x)) 🝖[ _≡_ ]-[ ext-distribute ]-sym
ext(ext(id) ∘ (η(T(x)) ∘ η(x))) 🝖[ _≡_ ]-[ congruence₁(ext) (symmetry(_≡_) (Morphism.associativity(_∘_))) ]
ext((ext(id) ∘ η(T(x))) ∘ η(x)) 🝖[ _≡_ ]-[ congruence₁(ext) (congruence₂ₗ(_∘_)(_) ext-identity) ]
ext(id ∘ η(x)) 🝖[ _≡_ ]-[ congruence₁(ext) (Morphism.identityₗ(_∘_)(id)) ]
ext(η(x)) 🝖[ _≡_ ]-[ ext-inverse ]
id 🝖[ _≡_ ]-end
_⊜_.proof (Monad.μ-functor-[∘]-identityᵣ monad) {x} =
μ(x) ∘ η(T(x)) 🝖[ _≡_ ]-[]
ext(id) ∘ η(T(x)) 🝖[ _≡_ ]-[ ext-identity ]
id 🝖[ _≡_ ]-end
-- Also called: Kleisli composition.
_∘ₑₓₜ_ : ∀{x y z} → (y ⟶ T(z)) → (x ⟶ T(y)) → (x ⟶ T(z))
f ∘ₑₓₜ g = ext(f) ∘ g
idₑₓₜ : ∀{x} → (x ⟶ T(x))
idₑₓₜ{x} = η(x)
module FunctionalNames where
-- Name sources:
-- https://wiki.haskell.org/Lifting
-- Also called: unit.
lift : ∀{x} → (x ⟶ T(x))
lift{x} = η(x)
-- Name sources:
-- Javascript: Array.prototype.flat
-- Scala: scala.collection.IterableOnceOps.flatten
flatten : ∀{x} → (T(T(x)) ⟶ T(x))
flatten{x} = μ(x)
-- Name sources:
-- Javascript: Array.prototype.flatMap
-- Java: Stream.flatMap
-- Scala: scala.collection.IterableOnceOps.flatMap
flatMap : ∀{x y} → (x ⟶ T(y)) → (T(x) ⟶ T(y))
flatMap = ext
module HaskellNames where
return = FunctionalNames.lift
join = FunctionalNames.flatten
bind = FunctionalNames.flatMap
module _ where
open Functor ⦃ … ⦄
open Monad ⦃ … ⦄
monad-to-extensionSystem : ∀{T : Object → Object} → ⦃ functor : Functor(category)(category)(T) ⦄ → ⦃ monad : Monad(T) ⦄ → ExtensionSystem(T)
ExtensionSystem.η (monad-to-extensionSystem ⦃ functor ⦄ ⦃ monad ⦄) = η
ExtensionSystem.ext (monad-to-extensionSystem ⦃ functor ⦄ ⦃ monad ⦄) = ext
Function.congruence (ExtensionSystem.ext-function monad-to-extensionSystem {x} {y}) {f} {g} fg =
((μ(y) ∘_) ∘ᶠⁿ map) f 🝖[ _≡_ ]-[]
μ(y) ∘ map f 🝖[ _≡_ ]-[ congruence₂ᵣ(_∘_) _ (congruence₁(map) fg) ]
μ(y) ∘ map g 🝖[ _≡_ ]-[]
((μ(y) ∘_) ∘ᶠⁿ map) g 🝖[ _≡_ ]-end
ExtensionSystem.ext-inverse monad-to-extensionSystem {x} =
((μ(x) ∘_) ∘ᶠⁿ map)(η(x)) 🝖[ _≡_ ]-[]
μ(x) ∘ map(η(x)) 🝖[ _≡_ ]-[ _⊜_.proof μ-functor-[∘]-identityₗ ]
id 🝖[ _≡_ ]-end
ExtensionSystem.ext-identity (monad-to-extensionSystem {T = T}) {x} {y} {f} =
((μ(y) ∘_) ∘ᶠⁿ map)(f) ∘ η(x) 🝖[ _≡_ ]-[]
(μ(y) ∘ (map f)) ∘ η(x) 🝖[ _≡_ ]-[ Morphism.associativity(_∘_) ]
μ(y) ∘ ((map f) ∘ η(x)) 🝖[ _≡_ ]-[ congruence₂ᵣ(_∘_) _ η-natural ]-sym
μ(y) ∘ (η(T(y)) ∘ f) 🝖[ _≡_ ]-[ Morphism.associativity(_∘_) ]-sym
(μ(y) ∘ η(T(y))) ∘ f 🝖[ _≡_ ]-[ congruence₂ₗ(_∘_) _ (_⊜_.proof μ-functor-[∘]-identityᵣ) ]
id ∘ f 🝖[ _≡_ ]-[ Morphism.identityₗ(_∘_)(id) ]
f 🝖[ _≡_ ]-end
ExtensionSystem.ext-distribute (monad-to-extensionSystem {T = T}) {x} {y} {z} {f} {g} =
((μ(z) ∘_) ∘ᶠⁿ map)(((μ(z) ∘_) ∘ᶠⁿ map)(f) ∘ g) 🝖[ _≡_ ]-[]
μ(z) ∘ map((μ(z) ∘ (map f)) ∘ g) 🝖[ _≡_ ]-[ congruence₂ᵣ(_∘_) _ op-preserving ]
μ(z) ∘ (map(μ(z) ∘ (map f)) ∘ (map g)) 🝖[ _≡_ ]-[ congruence₂ᵣ(_∘_) _ (congruence₂ₗ(_∘_) _ op-preserving) ]
μ(z) ∘ ((map(μ(z)) ∘ map(map f)) ∘ (map g)) 🝖[ _≡_ ]-[ associate4-231-121 category ]
(μ(z) ∘ map(μ(z))) ∘ (map(map f) ∘ (map g)) 🝖[ _≡_ ]-[ congruence₂ₗ(_∘_) _ (_⊜_.proof μ-functor-[∘]-commutativity) ]
(μ(z) ∘ μ(T(z))) ∘ (map(map f) ∘ (map g)) 🝖[ _≡_ ]-[ associate4-213-121 category ]-sym
(μ(z) ∘ (μ(T(z)) ∘ map(map f))) ∘ (map g) 🝖[ _≡_ ]-[ congruence₂ₗ(_∘_) _ (congruence₂ᵣ(_∘_) _ μ-natural) ]
(μ(z) ∘ ((map f) ∘ μ(y))) ∘ (map g) 🝖[ _≡_ ]-[ associate4-213-121 category ]
(μ(z) ∘ (map f)) ∘ (μ(y) ∘ (map g)) 🝖[ _≡_ ]-[]
((μ(z) ∘_) ∘ᶠⁿ map)(f) ∘ ((μ(y) ∘_) ∘ᶠⁿ map)(g) 🝖[ _≡_ ]-end
| {
"alphanum_fraction": 0.5346803734,
"avg_line_length": 50.0769230769,
"ext": "agda",
"hexsha": "7ecf1db84546053f3afa63104c753758eaac47d1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Category/Monad/ExtensionSystem.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Category/Monad/ExtensionSystem.agda",
"max_line_length": 142,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Category/Monad/ExtensionSystem.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 3542,
"size": 8463
} |
{-# OPTIONS --without-K --safe #-}
open import Level
open import Categories.Category
open import Categories.Monad
module Categories.Monad.Idempotent {o ℓ e} {C : Category o ℓ e} (M : Monad C) where
open import Categories.NaturalTransformation
open import Categories.NaturalTransformation.Equivalence
open import Categories.Functor
private
module M = Monad M
open NaturalTransformation
record Idempotent : Set (o ⊔ ℓ ⊔ e) where
field
Fη≡ηF : ∀ X → C [ η (M.F ∘ˡ M.η) X ≈ η (M.η ∘ʳ M.F) X ]
| {
"alphanum_fraction": 0.7196819085,
"avg_line_length": 23.9523809524,
"ext": "agda",
"hexsha": "a3425405e6325b53442e9d52132ea8493fb9b307",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Monad/Idempotent.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Monad/Idempotent.agda",
"max_line_length": 83,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Monad/Idempotent.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 153,
"size": 503
} |
{- Formal verification of authenticated append-only skiplists in Agda, version 1.0.
Copyright (c) 2021 Victor C Miraldo and Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import Data.Unit.NonEta
open import Data.Empty
open import Data.Sum
open import Data.Product
open import Data.Product.Properties
open import Data.Fin hiding (_<_; _≤_)
open import Data.Fin.Properties using () renaming (_≟_ to _≟Fin_)
open import Data.Nat renaming (_≟_ to _≟ℕ_; _≤?_ to _≤?ℕ_)
open import Data.Nat.Properties
open import Data.List renaming (map to List-map)
open import Data.List.Properties using (∷-injective; length-map)
open import Data.List.Relation.Unary.Any renaming (map to Any-map)
open import Data.List.Relation.Unary.All renaming (lookup to All-lookup; map to All-map)
open import Data.List.Relation.Unary.All.Properties hiding (All-map)
open import Data.List.Relation.Unary.Any.Properties renaming (map⁺ to Any-map⁺)
open import Data.List.Relation.Binary.Pointwise using (decidable-≡)
open import Data.Bool hiding (_<_; _≤_)
open import Data.Maybe renaming (map to Maybe-map)
open import Function
open import Relation.Binary.PropositionalEquality
open import Relation.Binary.Definitions
open import Relation.Nullary
open import AAOSL.Lemmas
open import AAOSL.Abstract.Hash
open import AAOSL.Abstract.DepRel
module AAOSL.Abstract.EvoCR
-- A Hash function maps a bytestring into a hash.
(hash : ByteString → Hash)
-- And is collision resistant
(hash-cr : ∀{x y} → hash x ≡ hash y → Collision hash x y ⊎ x ≡ y)
-- Indexes can be encoded in an injective way
(encodeI : ℕ → ByteString)
(encodeI-inj : (m n : ℕ) → encodeI m ≡ encodeI n → m ≡ n)
(dep : DepRel)
where
open WithCryptoHash hash hash-cr
open import AAOSL.Abstract.Advancement hash hash-cr encodeI encodeI-inj dep
open DepRel dep
-- Returns the last element on path a that is smaller than k
last-bef : ∀{j i k}(a : AdvPath j i)(i<k : i < k)(k≤j : k ≤′ j) → ℕ
last-bef {j} a i<k ≤′-refl = j
-- TODO-1 : The same or similar proof is repeated numerous times below; refactor for clarity
last-bef AdvDone i<k (≤′-step k≤j) = ⊥-elim (1+n≰n (≤-unstep (≤-trans i<k (≤′⇒≤ k≤j))))
last-bef {k = k} (AdvThere d h a) i<k (≤′-step k≤j)
with hop-tgt h ≤?ℕ k
...| yes th≤k = hop-tgt h
...| no th>k = last-bef a i<k (≤⇒≤′ (≰⇒≥ th>k))
last-bef-correct : ∀{j i k}(a : AdvPath j i)(i<k : i < k)(k≤j : k ≤′ j)
→ last-bef a i<k k≤j ∈AP a
last-bef-correct {j} a i<k ≤′-refl = ∈AP-src
last-bef-correct AdvDone i<k (≤′-step k≤j) = ⊥-elim (1+n≰n (≤-unstep (≤-trans i<k (≤′⇒≤ k≤j))))
last-bef-correct {k = k} (AdvThere d h a) i<k (≤′-step k≤j)
with hop-tgt h ≤?ℕ k
...| yes th≤k = step (<⇒≢ (hop-< h)) ∈AP-src
...| no th>k
with last-bef-correct a i<k (≤⇒≤′ (≰⇒≥ th>k))
...| ind = step (<⇒≢ (≤-trans (s≤s (∈AP-≤ ind)) (hop-< h))) ind
lemma5-hop : ∀{j i}(a : AdvPath j i)
→ ∀{k} → j < k
→ (h : HopFrom k) → hop-tgt h ≤ j → i ≤ hop-tgt h → hop-tgt h ∈AP a
lemma5-hop {j} a j<k h th≤j i≤th
with hop-tgt h ≟ℕ j
...| yes th≡j rewrite th≡j = ∈AP-src
...| no th≢j
with a
...| AdvDone rewrite ≤-antisym th≤j i≤th = hereTgtDone
...| (AdvThere x h' a')
with hop-tgt h' ≟ℕ hop-tgt h
...| yes th'≡th rewrite sym th'≡th = step (<⇒≢ (hop-< h')) ∈AP-src
...| no th'≢th
with hop-tgt h' ≤?ℕ hop-tgt h
...| yes th'≤th = ⊥-elim (1+n≰n (≤-trans j<k (hops-nested-or-nonoverlapping (≤∧≢⇒< th'≤th th'≢th) (≤∧≢⇒< th≤j th≢j))))
...| no th'>th = step th≢j (lemma5-hop a' (≤-trans (hop-< h') (≤-unstep j<k)) h (≰⇒≥ th'>th) i≤th)
lemma5 : ∀{j i k}(a : AdvPath j i)(i<k : i < k)(k≤j : k ≤′ j)
→ ∀{i₀}(b : AdvPath k i₀) → i₀ ≤ i
→ last-bef a i<k k≤j ∈AP b
lemma5 a i<k ≤′-refl b i₀≤i = ∈AP-src
lemma5 AdvDone i<k (≤′-step k≤j) b i₀≤i = ⊥-elim (1+n≰n (≤-unstep (≤-trans i<k (≤′⇒≤ k≤j))))
lemma5 {k = k} (AdvThere d h a) i<k (≤′-step k≤j) b i₀≤i
with hop-tgt h ≤?ℕ k
...| yes th≤k = lemma5-hop b (s≤s (≤′⇒≤ k≤j)) h th≤k (≤-trans i₀≤i (lemma1 a))
...| no th>k = lemma5 a i<k (≤⇒≤′ (≰⇒≥ th>k)) b i₀≤i
-- returns the first element on path a that is greather than k
first-aft : ∀{j i k}(a : AdvPath j i)(i≤k : i ≤′ k)(k<j : k < j) → ℕ
first-aft {i = i} a ≤′-refl k<j = i
first-aft AdvDone (≤′-step i≤k) k<j = ⊥-elim (1+n≰n (≤-unstep (≤-trans k<j (≤′⇒≤ i≤k))))
first-aft {j} {i} {k} (AdvThere d h a) (≤′-step i≤k) k<j
with hop-tgt h ≟ℕ k
...| yes _ = k
...| no th≢k
with hop-tgt h ≤?ℕ k
...| yes th≤k = j
...| no th≥k = first-aft a (≤′-step i≤k) (≰⇒> th≥k)
first-aft-correct : ∀{j i k}(a : AdvPath j i)(i≤k : i ≤′ k)(k<j : k < j)
→ first-aft a i≤k k<j ∈AP a
first-aft-correct a ≤′-refl k<j = ∈AP-tgt
first-aft-correct AdvDone (≤′-step i≤k) k<j = ⊥-elim (1+n≰n (≤-unstep (≤-trans k<j (≤′⇒≤ i≤k))))
first-aft-correct {j} {i} {k} (AdvThere d h a) (≤′-step i≤k) k<j
with hop-tgt h ≟ℕ k
...| yes th≡k rewrite sym th≡k = step (<⇒≢ k<j) ∈AP-src
...| no th≢k
with hop-tgt h ≤?ℕ k
...| yes th≤k = ∈AP-src
...| no th≥k
with first-aft-correct a (≤′-step i≤k) (≰⇒> th≥k)
...| ind = step (<⇒≢ (≤-trans (s≤s (∈AP-≤ ind)) (hop-< h))) ind
lemma5'-hop
: ∀{j j₁ k}(h : HopFrom j)
→ hop-tgt h < k → k < j → (b : AdvPath j₁ k) → j ≤ j₁ → j ∈AP b
lemma5'-hop {j} {j₁} h th<k k≤j b j≤j₁
with j ≟ℕ j₁
...| yes refl = ∈AP-src
...| no j≢j₁
with b
...| AdvDone = ⊥-elim (1+n≰n (≤-trans k≤j j≤j₁))
...| (AdvThere x hb b')
with hop-tgt hb ≟ℕ j
...| yes refl = step (<⇒≢ (hop-< hb)) ∈AP-src
...| no tb≢j
with hop-tgt hb ≤?ℕ j
...| no tb≰j = step j≢j₁ (lemma5'-hop h th<k k≤j b' (≰⇒≥ tb≰j))
...| yes tb≤j
with hops-nested-or-nonoverlapping (≤-trans th<k (lemma1 b')) (≤∧≢⇒< tb≤j tb≢j)
...| j₁≤j rewrite ≤-antisym j≤j₁ j₁≤j = ∈AP-src
lemma5' : ∀{j i k}(a : AdvPath j i)(i≤k : i ≤′ k)(k<j : k < j)
→ ∀{j₁}(b : AdvPath j₁ k) → j ≤ j₁
→ first-aft a i≤k k<j ∈AP b
lemma5' a ≤′-refl k<j b j≤j₁ = ∈AP-tgt
lemma5' AdvDone (≤′-step i≤k) k<j b j≤j₁ = ⊥-elim (1+n≰n (≤-unstep (≤-trans k<j (≤′⇒≤ i≤k))))
lemma5' {j} {i} {k} (AdvThere d h a) (≤′-step i≤k) k<j b j≤j₁
with hop-tgt h ≟ℕ k
...| yes _ = ∈AP-tgt
...| no th≢k
with hop-tgt h ≤?ℕ k
...| yes th≤k = lemma5'-hop h (≤∧≢⇒< th≤k th≢k) k<j b j≤j₁
...| no th≥k = lemma5' a (≤′-step i≤k) (≰⇒> th≥k) b (≤-unstep (≤-trans (hop-< h) j≤j₁))
∈AP-⊕-intro-l : ∀{j k i m}
→ {a₂ : AdvPath j k}{a₁ : AdvPath k i}
→ m ∈AP a₂
→ m ∈AP (a₂ ⊕ a₁)
∈AP-⊕-intro-l hereTgtThere = hereTgtThere
∈AP-⊕-intro-l (step prog m∈a) = step prog (∈AP-⊕-intro-l m∈a)
∈AP-⊕-intro-l {a₁ = AdvDone} hereTgtDone = hereTgtDone
∈AP-⊕-intro-l {a₁ = AdvThere d h a} hereTgtDone = hereTgtThere
∈AP-⊕-intro-r : ∀{j k i m}
→ {a₂ : AdvPath j k}{a₁ : AdvPath k i}
→ m ∈AP a₁
→ m ∈AP (a₂ ⊕ a₁)
∈AP-⊕-intro-r {a₂ = AdvDone} hyp = hyp
∈AP-⊕-intro-r {k = k} {a₂ = AdvThere d h a} hyp =
step (<⇒≢ (≤-trans (s≤s (∈AP-≤ hyp)) (≤-trans (s≤s (lemma1 a)) (hop-< h))))
(∈AP-⊕-intro-r {a₂ = a} hyp)
∈AP-⊕-≤-r : ∀{j k i m}{a₂ : AdvPath j k}{a₁ : AdvPath k i}
→ m ∈AP (a₂ ⊕ a₁)
→ m ≤ k
→ m ∈AP a₁
∈AP-⊕-≤-r {a₂ = AdvDone} m∈a12 m≤k = m∈a12
∈AP-⊕-≤-r {a₂ = AdvThere d h a₂} hereTgtThere m≤k = ⊥-elim (1+n≰n (≤-trans (≤-trans (s≤s (lemma1 a₂)) (hop-< h)) m≤k))
∈AP-⊕-≤-r {a₂ = AdvThere d h a₂} (step x m∈a12) m≤k
= ∈AP-⊕-≤-r m∈a12 m≤k
findM : ∀ {j i₂ s₁ s₂ tgt}
→ (a₁₁ : AdvPath j s₁)
→ (a₂₁ : AdvPath j s₂)
→ (a₂₂ : AdvPath s₂ i₂)
→ (m₂ : MembershipProof s₂ tgt)
→ i₂ ≤ s₁
→ tgt ≤ s₁
→ s₁ ≤ s₂
→ ∃[ M ] (M ∈AP a₂₂ × M ∈AP mbr-proof m₂ × M ∈AP a₁₁)
findM {s₁ = s₁} {s₂} a₁₁ a₂₁ a₂₂ m₂ i₂≤s₁ t≤s₁ s₁≤s₂
with <-cmp s₁ s₂
...| tri> _ _ s₂<s₁ = ⊥-elim (<⇒≢ s₂<s₁ (sym (≤-antisym s₁≤s₂ (≤-unstep s₂<s₁))))
...| tri≈ _ refl _ = s₁ , ∈AP-src , ∈AP-src , ∈AP-tgt
...| tri< s₁<s₂ _ _ = last-bef a₁₁ s₁<s₂ (≤⇒≤′ (lemma1 a₂₁))
, lemma5 a₁₁ s₁<s₂ (≤⇒≤′ (lemma1 a₂₁)) a₂₂ i₂≤s₁
, lemma5 a₁₁ s₁<s₂ (≤⇒≤′ (lemma1 a₂₁)) (mbr-proof m₂) t≤s₁
, last-bef-correct a₁₁ s₁<s₂ (≤⇒≤′ (lemma1 a₂₁))
findR : ∀{j i₁ s₁ s₂ tgt}
→ (a₁₁ : AdvPath j s₁)
→ (a₁₂ : AdvPath s₁ i₁)
→ (a₂₁ : AdvPath j s₂)
→ (m₁ : MembershipProof s₁ tgt)(m₂ : MembershipProof s₂ tgt)
→ i₁ ≤ tgt
→ tgt ≤ s₁
→ s₁ ≤ s₂ -- wlog
→ ∃[ R ] (R ∈AP mbr-proof m₁ × R ∈AP mbr-proof m₂ × R ∈AP a₁₂)
findR {s₁ = s₁} {tgt = tgt} a₁₁ a₁₂ a₂₁ m₁ m₂ i₁≤t t≤s₁ s₁≤s₂
with <-cmp tgt s₁
...| tri> _ _ s₁<t = ⊥-elim (<⇒≢ s₁<t (sym (≤-antisym t≤s₁ (≤-unstep s₁<t))))
...| tri≈ _ refl _ = s₁ , ∈AP-src , ∈AP-tgt , ∈AP-src
...| tri< t<s₁ _ _ = first-aft a₁₂ (≤⇒≤′ i₁≤t) t<s₁
, lemma5' a₁₂ (≤⇒≤′ i₁≤t) t<s₁ (mbr-proof m₁) ≤-refl
, lemma5' a₁₂ (≤⇒≤′ i₁≤t) t<s₁ (mbr-proof m₂) s₁≤s₂
, first-aft-correct a₁₂ (≤⇒≤′ i₁≤t) t<s₁
-- check Figure 4 (page 12) in: https://arxiv.org/pdf/cs/0302010.pdf
--
-- a₁ is dashed black line
-- a₂ is dashed gray line
-- m₁ is thick black line
-- m₂ is thick gray line
-- s₁ is j
-- s₂ is k
-- j is n
-- tgt is i
evo-cr : ∀{j i₁ i₂}{t₁ t₂ : View}
→ (a₁ : AdvPath j i₁)
→ (a₂ : AdvPath j i₂)
→ rebuild a₁ t₁ j ≡ rebuild a₂ t₂ j
→ ∀{s₁ s₂ tgt}{u₁ u₂ : View}
→ (m₁ : MembershipProof s₁ tgt)(m₂ : MembershipProof s₂ tgt)
→ s₁ ∈AP a₁ → s₂ ∈AP a₂
→ s₁ ≤ s₂ -- wlog
→ i₁ ≤ tgt
→ i₂ ≤ tgt
→ rebuildMP m₁ u₁ s₁ ≡ rebuild a₁ t₁ s₁
→ rebuildMP m₂ u₂ s₂ ≡ rebuild a₂ t₂ s₂
→ HashBroke ⊎ (mbr-datum m₁ ≡ mbr-datum m₂)
evo-cr {t₁ = t₁} {t₂} a₁ a₂ hyp {s₁} {s₂} {tgt} {u₁} {u₂}
m₁ m₂ s₁∈a₁ s₂∈a₂ s₁≤s₂ i₁≤t i₂≤t c₁ c₂
with ∈AP-cut a₁ s₁∈a₁ | ∈AP-cut a₂ s₂∈a₂
...| ((a₁₁ , a₁₂) , refl) | ((a₂₁ , a₂₂) , refl)
with lemma1 (mbr-proof m₁)
...| t≤s₁
-- The first part of the proof is find some points common to three
-- of the provided proofs. This is given in Figure 4 of Maniatis and Baker,
-- and they are called M and R too, to help make it at least a little clear.
-- First we find a point that belongs in a₂, m₁ and a₁.
with findM a₁₁ a₂₁ a₂₂ m₂ (≤-trans i₂≤t t≤s₁) t≤s₁ s₁≤s₂
...| M , M∈a₂₂ , M∈m₂ , M∈a₁₁
-- Next, we find a point that belongs in m₁, m₂ and a₁.
with findR a₁₁ a₁₂ a₂₁ m₁ m₂ i₁≤t t≤s₁ s₁≤s₂
...| R , R∈m₁ , R∈m₂ , R∈a₁₂
-- Now, since a₁ and a₂ rebuild to the same hash and M belongs
-- to both these proofs, the hash for M is the same.
with AgreeOnCommon a₁ a₂ hyp (∈AP-⊕-intro-l M∈a₁₁) (∈AP-⊕-intro-r M∈a₂₂)
...| inj₁ hb = inj₁ hb
...| inj₂ M-a1a2
-- Similarly, for a₂₂ and m₂
with AgreeOnCommon a₂₂ (mbr-proof m₂) (trans (sym (rebuild-⊕ a₂₁ a₂₂ ∈AP-src)) (sym c₂)) M∈a₂₂ M∈m₂
...| inj₁ hb = inj₁ hb
...| inj₂ M-a22m2
-- Which brings us to: rebuild a1 M == rebuild m2 M
with trans (trans M-a1a2 (rebuild-⊕ a₂₁ a₂₂ M∈a₂₂)) M-a22m2
...| M-a1m2
-- If a1 and m2 agree on one point, they agree on all points. In particular, they
-- agree on R!
with ∈AP-cut (mbr-proof m₂) M∈m₂
...| ((m₂₁ , m₂₂) , refl)
with trans M-a1m2 (rebuild-⊕ m₂₁ m₂₂ ∈AP-src)
...| M-a1m22
with AgreeOnCommon-∈ a₁ m₂₂ (∈AP-⊕-intro-l M∈a₁₁) M-a1m22
(∈AP-⊕-intro-r R∈a₁₂) (∈AP-⊕-≤-r R∈m₂ (≤-trans (∈AP-≤ R∈a₁₂) (∈AP-≥ M∈a₁₁)))
...| inj₁ hb = inj₁ hb
...| inj₂ R-a1m22
with AgreeOnCommon a₁₂ (mbr-proof m₁) (trans (sym (rebuild-⊕ a₁₁ a₁₂ ∈AP-src)) (sym c₁)) R∈a₁₂ R∈m₁
...| inj₁ hb = inj₁ hb
...| inj₂ R-a12m1
-- Which finally lets us argue that m1 and m2 also agree on R. Similarly, if they agree
-- on one point they agree on all points.
with ∈AP-cut (mbr-proof m₁) R∈m₁
...| ((m₁₁ , m₁₂) , refl)
with trans (trans (trans (sym R-a1m22) (rebuild-⊕ a₁₁ a₁₂ R∈a₁₂)) R-a12m1) (rebuild-⊕ m₁₁ m₁₂ ∈AP-src)
...| R-m22m12
with AgreeOnCommon-∈ m₂₂ m₁₂ (∈AP-⊕-≤-r R∈m₂ (≤-trans (∈AP-≤ R∈a₁₂) (∈AP-≥ M∈a₁₁))) R-m22m12 ∈AP-tgt ∈AP-tgt
...| inj₁ hb = inj₁ hb
...| inj₂ tgt-m22m12
with trans (rebuild-⊕ m₂₁ m₂₂ ∈AP-tgt) (trans tgt-m22m12 (sym (rebuild-⊕ m₁₁ m₁₂ ∈AP-tgt)))
...| tgt-m1m2 with rebuild-tgt-lemma (mbr-proof m₁)
{u₁ ∪₁ (tgt , auth tgt (mbr-datum m₁) u₁) }
| rebuild-tgt-lemma (mbr-proof m₂)
{u₂ ∪₁ (tgt , auth tgt (mbr-datum m₂) u₂) }
...| l1 | l2
with trans (sym l1) (trans (sym tgt-m1m2) l2)
...| auths≡
rewrite ≟ℕ-refl tgt = auth-inj-1 {tgt} {mbr-datum m₁} {mbr-datum m₂} (mbr-not-init m₁) auths≡
| {
"alphanum_fraction": 0.5411637264,
"avg_line_length": 42.6534653465,
"ext": "agda",
"hexsha": "d7ea480a5df721e1faeee7a788164c66ba49fc61",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "356489da3a99c66807606eca8dd235dc6140649c",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "cwjnkins/aaosl-agda",
"max_forks_repo_path": "AAOSL/Abstract/EvoCR.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "356489da3a99c66807606eca8dd235dc6140649c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "cwjnkins/aaosl-agda",
"max_issues_repo_path": "AAOSL/Abstract/EvoCR.agda",
"max_line_length": 120,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "356489da3a99c66807606eca8dd235dc6140649c",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "cwjnkins/aaosl-agda",
"max_stars_repo_path": "AAOSL/Abstract/EvoCR.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 5987,
"size": 12924
} |
-- | Examples for SDE.
module SDE-Example where
open import Size
import Level
open import Function
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as P hiding ([_])
open ≡-Reasoning
open import Data.Product as Prod renaming (Σ to ⨿)
open import Data.Nat as Nat
open import Data.Sum as Sum
open import Data.Fin hiding (_+_)
open import Streams
open import SDE
-- Example: Basic operations over streams over naturals
[_] : ∀{i} → ℕ → Stream {i} ℕ
hd [ n ] = n
tl [ n ] = [ 0 ]
_⊕_ : ∀ {i} → Stream {i} ℕ → Stream {i} ℕ → Stream {i} ℕ
hd (x ⊕ y) = hd x + hd y
tl (x ⊕ y) = tl x ⊕ tl y
_⊗_ : ∀{i} → Stream {i} ℕ → Stream {i} ℕ → Stream {i} ℕ
hd (x ⊗ y) = hd x * hd y
tl (_⊗_ {i} x y) {j} = (tl x ⊗ y) ⊕ ([ hd x ] ⊗ (tl y))
_•_ : ∀{i} → Stream {i} ℕ → Stream {i} ℕ → Stream {i} ℕ
hd (x • y) = hd x
tl (x • y) = tl y ⊗ (tl x • y)
--------- Example for syntactic SDE.
-- We define symbols iₙ (n ∈ ℕ), p and c through SDEs for streams
-- over natural numbers. Here, iₙ is the injection of the number n into streams
-- and corresponds to [n], p is stream addition, and c is the convolution
-- product. The SDEs are the usual ones:
-- (iₙ)(0) = n
-- (iₙ)' = i₀
-- (p s t)(0) = s(0) + t(0)
-- (p s t)' = p s' t'
-- (c s t)(0) = s(0) * t(0)
-- (c s t)' = p (c s' t) (c i_{s(0)} t')
-- First, we define the signature, which has ℕ-many symbols for the iₙ of
-- arity 0 and two symbols (p and c) of arity 2.
Σ : Sig
Σ = record { ∥_∥ = ℕ ⊎ Fin 2 ; ar = ar-Σ }
where
ar-Σ : ℕ ⊎ Fin 2 → Set
ar-Σ (inj₁ _) = Fin 0
ar-Σ (inj₂ zero) = Fin 2
ar-Σ (inj₂ (suc _)) = Fin 2
-- Short-hand notations for the symbols.
-- | Injections iₙ
i : ℕ → ∥ Σ ∥
i n = inj₁ n
-- | Plus
p : ∥ Σ ∥
p = inj₂ (# 0)
-- | Convolution product
c : ∥ Σ ∥
c = inj₂ (# 1)
-- | We are going to define the SDEs by means of two variabls, later called x
-- and y.
X : Set
X = Fin 2
open Terms Σ public
open SDE-Impl Σ X public
-- | Short-hand names for variables and the variables denoting the corresponding
-- derivatives.
x y x' y' : V
x = inj₁ (# 0)
y = inj₁ (# 1)
x' = inj₂ (# 0)
y' = inj₂ (# 1)
-- Term constructors
i₁ : ℕ → T V
i₁ n = sup (inj₁ (i n , (λ ())))
p₁ : T V → T V → T V
p₁ t s = sup (inj₁ (p , α))
where
α : Fin 2 → T V
α zero = t
α (suc _) = s
c₁ : T V → T V → T V
c₁ t s = sup (inj₁ (c , α))
where
α : Fin 2 → T V
α zero = t
α (suc _) = s
-- | SDEs describing iₙ, ⊕ and ⊗
E : SDE ℕ
E (inj₁ n) = (λ _ → n) , (λ _ → sup (inj₁ (i 0 , (λ ()))))
E (inj₂ zero) = out , step
where
out : (Fin 2 → ℕ) → ℕ
out r = r (# 0) + r (# 1)
step : (Fin 2 → ℕ) → T V
step _ = p₁ (η x') (η y')
E (inj₂ (suc _)) = out , step
where
out : (Fin 2 → ℕ) → ℕ
out r = r (# 0) * r (# 1)
step : (Fin 2 → ℕ) → T V
step o = p₁
(c₁ (η x') (η y))
(c₁ (i₁ (o (# 0))) (η y'))
-- | Assignment of variables to positions of the symbols of our SDEs
vars : (f : ∥ Σ ∥) → ar Σ f → X
vars (inj₁ x) ()
vars (inj₂ zero) x = x
vars (inj₂ (suc _)) x = x
-- | Standard variable assignment.
put : ∀ {i} → Stream {i} ℕ → Stream {i} ℕ → (X → Stream {i} ℕ)
put s t zero = s
put s t (suc _) = t
-- | Dummy stream for unused variables
dummy : Stream ℕ
hd dummy = 0
tl dummy = dummy
-- | Define injection [_] from SDE
[_]' : ℕ → Stream ℕ
[ n ]' = ⟦ E ⟧ vars (i n) (put dummy dummy)
-- | The addition of the streams s and t can be given by the interpretation
-- of the symbol p of the SDE above with variable assignment (x ↦ s, y ↦ t).
_⊕'_ : ∀ {i} → Stream {i} ℕ → Stream {i} ℕ → Stream {i} ℕ
s ⊕' t = ⟦ E ⟧ vars p (put s t)
_⊗'_ : ∀ {i} → Stream {i} ℕ → Stream {i} ℕ → Stream {i} ℕ
s ⊗' t = ⟦ E ⟧ vars c (put s t)
------ Correctness for the examples
-- We cheat a bit for now
postulate
ext : Extensionality Level.zero Level.zero
-- | The interpretation of the SDE for stream addition has indeed the
-- same behaviour as the direct implemenentation.
correct-⊕ : ∀ {s t} → (s ⊕ t) ~ (s ⊕' t)
correct-⊕ = ex-bisimulation→bisim is-bisim rel
where
-- Bisimulation relating s ⊕ t and the interpretation of p with
-- variable assignment (x ↦ s, y ↦ t).
_R_ : Rel (Stream ℕ) _
x R y = ∃ λ s →
∃ λ t →
x ≡ s ⊕ t ×
y ≡ ⟦ E ⟧ vars p (put s t)
-- Recall that we have s ⊕' t = ⟦ E ⟧ vars p (put s t), which allows
-- us to prove the following.
rel : ∀{s t} → (s ⊕ t) R (s ⊕' t)
rel {s} {t} = (s , t , refl , refl)
lem : ∀{x y} (z : X) → tl (put x y z) ≡ put (tl x) (tl y) z
lem zero = refl
lem (suc z) = refl
is-bisim : Is-Bisim _R_
is-bisim x y (s , t , x=⊕ , y=E) = hd-≡ , tl-R
where
hd-≡ : hd x ≡ hd y
hd-≡ =
begin
hd x
≡⟨ cong hd x=⊕ ⟩
hd (s ⊕ t)
≡⟨ refl ⟩
hd (⟦ E ⟧ vars p (put s t))
≡⟨ cong hd (sym y=E) ⟩
hd y
∎
tl-R : (tl x) R (tl y)
tl-R = (tl s , tl t , u' , v)
where
u' : tl x ≡ tl s ⊕ tl t
u' =
begin
tl x
≡⟨ cong (λ x → tl x {∞}) x=⊕ ⟩
tl (s ⊕ t)
≡⟨ refl ⟩
tl s ⊕ tl t
∎
-- This uses, for now, extensionality
v : tl y ≡ ⟦ E ⟧ vars p (put (tl s) (tl t))
v =
begin
tl y
≡⟨ cong (λ x₁ → tl x₁ {∞}) y=E ⟩
tl (⟦ E ⟧ vars p (put s t))
≡⟨ refl ⟩
⟦ E ⟧₁ vars (p₁ (sup (inj₂ x')) (sup (inj₂ y'))) (put s t)
≡⟨ refl ⟩
⟦ E ⟧ vars p (λ x → tl ((put s t) x))
≡⟨ cong (⟦ E ⟧ vars p) (ext lem) ⟩
⟦ E ⟧ vars p (put (tl s) (tl t))
∎
-- Conjecture.
correct-⊗ : ∀ {s t} → (s ⊗ t) ~ (s ⊗' t)
correct-⊗ = {!!}
| {
"alphanum_fraction": 0.4849770837,
"avg_line_length": 25.7248908297,
"ext": "agda",
"hexsha": "9007d8330e47152c049f9e9e35103ec71c7125a7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hbasold/Sandbox",
"max_forks_repo_path": "Streams/SDE-Example.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hbasold/Sandbox",
"max_issues_repo_path": "Streams/SDE-Example.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hbasold/Sandbox",
"max_stars_repo_path": "Streams/SDE-Example.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2326,
"size": 5891
} |
-- Basic intuitionistic modal logic S4, without ∨, ⊥, or ◇.
-- Tarski-style semantics with contexts as concrete worlds, and glueing for α, ▻, and □.
-- Gentzen-style syntax.
module BasicIS4.Semantics.TarskiOvergluedGentzen where
open import BasicIS4.Syntax.Common public
open import Common.Semantics public
-- Intuitionistic Tarski models.
record Model : Set₁ where
infix 3 _⊩ᵅ_ _[⊢]_ _[⊢⋆]_
field
-- Forcing for atomic propositions; monotonic.
_⊩ᵅ_ : Cx Ty → Atom → Set
mono⊩ᵅ : ∀ {P Γ Γ′} → Γ ⊆ Γ′ → Γ ⊩ᵅ P → Γ′ ⊩ᵅ P
-- Gentzen-style syntax representation; monotonic.
_[⊢]_ : Cx Ty → Ty → Set
_[⊢⋆]_ : Cx Ty → Cx Ty → Set
mono[⊢] : ∀ {A Γ Γ′} → Γ ⊆ Γ′ → Γ [⊢] A → Γ′ [⊢] A
[var] : ∀ {A Γ} → A ∈ Γ → Γ [⊢] A
[lam] : ∀ {A B Γ} → Γ , A [⊢] B → Γ [⊢] A ▻ B
[app] : ∀ {A B Γ} → Γ [⊢] A ▻ B → Γ [⊢] A → Γ [⊢] B
[multibox] : ∀ {A Δ Γ} → Γ [⊢⋆] □⋆ Δ → □⋆ Δ [⊢] A → Γ [⊢] □ A
[down] : ∀ {A Γ} → Γ [⊢] □ A → Γ [⊢] A
[pair] : ∀ {A B Γ} → Γ [⊢] A → Γ [⊢] B → Γ [⊢] A ∧ B
[fst] : ∀ {A B Γ} → Γ [⊢] A ∧ B → Γ [⊢] A
[snd] : ∀ {A B Γ} → Γ [⊢] A ∧ B → Γ [⊢] B
[unit] : ∀ {Γ} → Γ [⊢] ⊤
-- TODO: Workarounds for Agda bug #2143.
top[⊢⋆] : ∀ {Γ} → (Γ [⊢⋆] ∅) ≡ 𝟙
pop[⊢⋆] : ∀ {Ξ A Γ} → (Γ [⊢⋆] Ξ , A) ≡ (Γ [⊢⋆] Ξ × Γ [⊢] A)
infix 3 _[⊢]⋆_
_[⊢]⋆_ : Cx Ty → Cx Ty → Set
Γ [⊢]⋆ ∅ = 𝟙
Γ [⊢]⋆ Ξ , A = Γ [⊢]⋆ Ξ × Γ [⊢] A
[⊢⋆]→[⊢]⋆ : ∀ {Ξ Γ} → Γ [⊢⋆] Ξ → Γ [⊢]⋆ Ξ
[⊢⋆]→[⊢]⋆ {∅} {Γ} ts = ∙
[⊢⋆]→[⊢]⋆ {Ξ , A} {Γ} ts rewrite pop[⊢⋆] {Ξ} {A} {Γ} = [⊢⋆]→[⊢]⋆ (π₁ ts) , π₂ ts
[⊢]⋆→[⊢⋆] : ∀ {Ξ Γ} → Γ [⊢]⋆ Ξ → Γ [⊢⋆] Ξ
[⊢]⋆→[⊢⋆] {∅} {Γ} ∙ rewrite top[⊢⋆] {Γ} = ∙
[⊢]⋆→[⊢⋆] {Ξ , A} {Γ} (ts , t) rewrite pop[⊢⋆] {Ξ} {A} {Γ} = [⊢]⋆→[⊢⋆] ts , t
open Model {{…}} public
-- Forcing in a particular model.
module _ {{_ : Model}} where
infix 3 _⊩_
_⊩_ : Cx Ty → Ty → Set
Γ ⊩ α P = Glue (Γ [⊢] α P) (Γ ⊩ᵅ P)
Γ ⊩ A ▻ B = ∀ {Γ′} → Γ ⊆ Γ′ → Glue (Γ′ [⊢] A ▻ B) (Γ′ ⊩ A → Γ′ ⊩ B)
Γ ⊩ □ A = ∀ {Γ′} → Γ ⊆ Γ′ → Glue (Γ′ [⊢] □ A) (Γ′ ⊩ A)
Γ ⊩ A ∧ B = Γ ⊩ A × Γ ⊩ B
Γ ⊩ ⊤ = 𝟙
infix 3 _⊩⋆_
_⊩⋆_ : Cx Ty → Cx Ty → Set
Γ ⊩⋆ ∅ = 𝟙
Γ ⊩⋆ Ξ , A = Γ ⊩⋆ Ξ × Γ ⊩ A
-- Monotonicity with respect to context inclusion.
module _ {{_ : Model}} where
mono⊩ : ∀ {A Γ Γ′} → Γ ⊆ Γ′ → Γ ⊩ A → Γ′ ⊩ A
mono⊩ {α P} η s = mono[⊢] η (syn s) ⅋ mono⊩ᵅ η (sem s)
mono⊩ {A ▻ B} η s = λ η′ → s (trans⊆ η η′)
mono⊩ {□ A} η s = λ η′ → s (trans⊆ η η′)
mono⊩ {A ∧ B} η s = mono⊩ {A} η (π₁ s) , mono⊩ {B} η (π₂ s)
mono⊩ {⊤} η s = ∙
mono⊩⋆ : ∀ {Ξ Γ Γ′} → Γ ⊆ Γ′ → Γ ⊩⋆ Ξ → Γ′ ⊩⋆ Ξ
mono⊩⋆ {∅} η ∙ = ∙
mono⊩⋆ {Ξ , A} η (ts , t) = mono⊩⋆ {Ξ} η ts , mono⊩ {A} η t
-- Extraction of syntax representation in a particular model.
module _ {{_ : Model}} where
reifyʳ : ∀ {A Γ} → Γ ⊩ A → Γ [⊢] A
reifyʳ {α P} s = syn s
reifyʳ {A ▻ B} s = syn (s refl⊆)
reifyʳ {□ A} s = syn (s refl⊆)
reifyʳ {A ∧ B} s = [pair] (reifyʳ {A} (π₁ s)) (reifyʳ {B} (π₂ s))
reifyʳ {⊤} s = [unit]
reifyʳ⋆ : ∀ {Ξ Γ} → Γ ⊩⋆ Ξ → Γ [⊢]⋆ Ξ
reifyʳ⋆ {∅} ∙ = ∙
reifyʳ⋆ {Ξ , A} (ts , t) = reifyʳ⋆ ts , reifyʳ t
-- Shorthand for variables.
module _ {{_ : Model}} where
[v₀] : ∀ {A Γ} → Γ , A [⊢] A
[v₀] = [var] i₀
[v₁] : ∀ {A B Γ} → Γ , A , B [⊢] A
[v₁] = [var] i₁
[v₂] : ∀ {A B C Γ} → Γ , A , B , C [⊢] A
[v₂] = [var] i₂
-- Useful theorems in functional form.
module _ {{_ : Model}} where
[multicut] : ∀ {Ξ A Γ} → Γ [⊢]⋆ Ξ → Ξ [⊢] A → Γ [⊢] A
[multicut] {∅} ∙ u = mono[⊢] bot⊆ u
[multicut] {Ξ , B} (ts , t) u = [app] ([multicut] ts ([lam] u)) t
[dist] : ∀ {A B Γ} → Γ [⊢] □ (A ▻ B) → Γ [⊢] □ A → Γ [⊢] □ B
[dist] t u = [multibox] ([⊢]⋆→[⊢⋆] ((∙ , t) , u)) ([app] ([down] [v₁]) ([down] [v₀]))
[up] : ∀ {A Γ} → Γ [⊢] □ A → Γ [⊢] □ □ A
[up] t = [multibox] ([⊢]⋆→[⊢⋆] ((∙ , t))) [v₀]
-- Useful theorems in combinatory form.
module _ {{_ : Model}} where
[ci] : ∀ {A Γ} → Γ [⊢] A ▻ A
[ci] = [lam] [v₀]
[ck] : ∀ {A B Γ} → Γ [⊢] A ▻ B ▻ A
[ck] = [lam] ([lam] [v₁])
[cs] : ∀ {A B C Γ} → Γ [⊢] (A ▻ B ▻ C) ▻ (A ▻ B) ▻ A ▻ C
[cs] = [lam] ([lam] ([lam] ([app] ([app] [v₂] [v₀]) ([app] [v₁] [v₀]))))
[cdist] : ∀ {A B Γ} → Γ [⊢] □ (A ▻ B) ▻ □ A ▻ □ B
[cdist] = [lam] ([lam] ([dist] [v₁] [v₀]))
[cup] : ∀ {A Γ} → Γ [⊢] □ A ▻ □ □ A
[cup] = [lam] ([up] [v₀])
[cdown] : ∀ {A Γ} → Γ [⊢] □ A ▻ A
[cdown] = [lam] ([down] [v₀])
[box] : ∀ {A Γ} → ∅ [⊢] A → Γ [⊢] □ A
[box] t = [multibox] ([⊢]⋆→[⊢⋆] ∙) t
[cpair] : ∀ {A B Γ} → Γ [⊢] A ▻ B ▻ A ∧ B
[cpair] = [lam] ([lam] ([pair] [v₁] [v₀]))
[cfst] : ∀ {A B Γ} → Γ [⊢] A ∧ B ▻ A
[cfst] = [lam] ([fst] [v₀])
[csnd] : ∀ {A B Γ} → Γ [⊢] A ∧ B ▻ B
[csnd] = [lam] ([snd] [v₀])
-- Additional useful equipment.
module _ {{_ : Model}} where
_⟪$⟫_ : ∀ {A B Γ} → Γ ⊩ A ▻ B → Γ ⊩ A → Γ ⊩ B
s ⟪$⟫ a = sem (s refl⊆) a
⟪K⟫ : ∀ {A B Γ} → Γ ⊩ A → Γ ⊩ B ▻ A
⟪K⟫ {A} a η = let a′ = mono⊩ {A} η a
in [app] [ck] (reifyʳ a′) ⅋ K a′
⟪S⟫ : ∀ {A B C Γ} → Γ ⊩ A ▻ B ▻ C → Γ ⊩ A ▻ B → Γ ⊩ A → Γ ⊩ C
⟪S⟫ s₁ s₂ a = (s₁ ⟪$⟫ a) ⟪$⟫ (s₂ ⟪$⟫ a)
⟪S⟫′ : ∀ {A B C Γ} → Γ ⊩ A ▻ B ▻ C → Γ ⊩ (A ▻ B) ▻ A ▻ C
⟪S⟫′ {A} {B} {C} s₁ η = let s₁′ = mono⊩ {A ▻ B ▻ C} η s₁
t = syn (s₁′ refl⊆)
in [app] [cs] t ⅋ λ s₂ η′ →
let s₁″ = mono⊩ {A ▻ B ▻ C} (trans⊆ η η′) s₁
s₂′ = mono⊩ {A ▻ B} η′ s₂
t′ = syn (s₁″ refl⊆)
u = syn (s₂′ refl⊆)
in [app] ([app] [cs] t′) u ⅋ ⟪S⟫ s₁″ s₂′
_⟪D⟫_ : ∀ {A B Γ} → Γ ⊩ □ (A ▻ B) → Γ ⊩ □ A → Γ ⊩ □ B
(s₁ ⟪D⟫ s₂) η = let t ⅋ s₁′ = s₁ η
u ⅋ a = s₂ η
in [app] ([app] [cdist] t) u ⅋ s₁′ ⟪$⟫ a
_⟪D⟫′_ : ∀ {A B Γ} → Γ ⊩ □ (A ▻ B) → Γ ⊩ □ A ▻ □ B
_⟪D⟫′_ {A} {B} s₁ η = let s₁′ = mono⊩ {□ (A ▻ B)} η s₁
in [app] [cdist] (reifyʳ (λ {_} η′ → s₁′ η′ )) ⅋ _⟪D⟫_ s₁′
⟪↑⟫ : ∀ {A Γ} → Γ ⊩ □ A → Γ ⊩ □ □ A
⟪↑⟫ s η = [app] [cup] (syn (s η)) ⅋ λ η′ → s (trans⊆ η η′)
⟪↓⟫ : ∀ {A Γ} → Γ ⊩ □ A → Γ ⊩ A
⟪↓⟫ s = sem (s refl⊆)
_⟪,⟫′_ : ∀ {A B Γ} → Γ ⊩ A → Γ ⊩ B ▻ A ∧ B
_⟪,⟫′_ {A} a η = let a′ = mono⊩ {A} η a
in [app] [cpair] (reifyʳ a′) ⅋ _,_ a′
-- Forcing in a particular world of a particular model, for sequents.
module _ {{_ : Model}} where
infix 3 _⊩_⇒_
_⊩_⇒_ : Cx Ty → Cx Ty → Ty → Set
w ⊩ Γ ⇒ A = w ⊩⋆ Γ → w ⊩ A
infix 3 _⊩_⇒⋆_
_⊩_⇒⋆_ : Cx Ty → Cx Ty → Cx Ty → Set
w ⊩ Γ ⇒⋆ Ξ = w ⊩⋆ Γ → w ⊩⋆ Ξ
-- Entailment, or forcing in all worlds of all models, for sequents.
infix 3 _⊨_
_⊨_ : Cx Ty → Ty → Set₁
Γ ⊨ A = ∀ {{_ : Model}} {w : Cx Ty} → w ⊩ Γ ⇒ A
infix 3 _⊨⋆_
_⊨⋆_ : Cx Ty → Cx Ty → Set₁
Γ ⊨⋆ Ξ = ∀ {{_ : Model}} {w : Cx Ty} → w ⊩ Γ ⇒⋆ Ξ
-- Additional useful equipment, for sequents.
module _ {{_ : Model}} where
lookup : ∀ {A Γ w} → A ∈ Γ → w ⊩ Γ ⇒ A
lookup top (γ , a) = a
lookup (pop i) (γ , b) = lookup i γ
_⟦$⟧_ : ∀ {A B Γ w} → w ⊩ Γ ⇒ A ▻ B → w ⊩ Γ ⇒ A → w ⊩ Γ ⇒ B
(s₁ ⟦$⟧ s₂) γ = s₁ γ ⟪$⟫ s₂ γ
⟦K⟧ : ∀ {A B Γ w} → w ⊩ Γ ⇒ A → w ⊩ Γ ⇒ B ▻ A
⟦K⟧ {A} {B} a γ = ⟪K⟫ {A} {B} (a γ)
⟦S⟧ : ∀ {A B C Γ w} → w ⊩ Γ ⇒ A ▻ B ▻ C → w ⊩ Γ ⇒ A ▻ B → w ⊩ Γ ⇒ A → w ⊩ Γ ⇒ C
⟦S⟧ s₁ s₂ a γ = ⟪S⟫ (s₁ γ) (s₂ γ) (a γ)
_⟦D⟧_ : ∀ {A B Γ w} → w ⊩ Γ ⇒ □ (A ▻ B) → w ⊩ Γ ⇒ □ A → w ⊩ Γ ⇒ □ B
(s₁ ⟦D⟧ s₂) γ = (s₁ γ) ⟪D⟫ (s₂ γ)
⟦↑⟧ : ∀ {A Γ w} → w ⊩ Γ ⇒ □ A → w ⊩ Γ ⇒ □ □ A
⟦↑⟧ s γ = ⟪↑⟫ (s γ)
⟦↓⟧ : ∀ {A Γ w} → w ⊩ Γ ⇒ □ A → w ⊩ Γ ⇒ A
⟦↓⟧ s γ = ⟪↓⟫ (s γ)
_⟦,⟧_ : ∀ {A B Γ w} → w ⊩ Γ ⇒ A → w ⊩ Γ ⇒ B → w ⊩ Γ ⇒ A ∧ B
(a ⟦,⟧ b) γ = a γ , b γ
⟦π₁⟧ : ∀ {A B Γ w} → w ⊩ Γ ⇒ A ∧ B → w ⊩ Γ ⇒ A
⟦π₁⟧ s γ = π₁ (s γ)
⟦π₂⟧ : ∀ {A B Γ w} → w ⊩ Γ ⇒ A ∧ B → w ⊩ Γ ⇒ B
⟦π₂⟧ s γ = π₂ (s γ)
| {
"alphanum_fraction": 0.3656281662,
"avg_line_length": 30.2528735632,
"ext": "agda",
"hexsha": "18292a25e75ea67dc06ee6bd4f88251132ab9b26",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/hilbert-gentzen",
"max_forks_repo_path": "BasicIS4/Semantics/TarskiOvergluedGentzen.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/hilbert-gentzen",
"max_issues_repo_path": "BasicIS4/Semantics/TarskiOvergluedGentzen.agda",
"max_line_length": 88,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/hilbert-gentzen",
"max_stars_repo_path": "BasicIS4/Semantics/TarskiOvergluedGentzen.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z",
"num_tokens": 4755,
"size": 7896
} |
{-# OPTIONS --cubical --without-K --safe #-}
module Cubical.Relation.Binary.Converse where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Data.Prod hiding (map)
open import Cubical.HITs.PropositionalTruncation
open import Cubical.Relation.Binary
------------------------------------------------------------------------
-- Properties
module _ {a ℓ} {A : Type a} (∼ : Rel A ℓ) where
reflexive : Reflexive ∼ → Reflexive (flip ∼)
reflexive r = r
irrefl : Irreflexive ∼ → Irreflexive (flip ∼)
irrefl i = i
symmetric : Symmetric ∼ → Symmetric (flip ∼)
symmetric s = s
transitive : Transitive ∼ → Transitive (flip ∼)
transitive t = flip t
asym : Asymmetric ∼ → Asymmetric (flip ∼)
asym a = a
rawtotal : RawTotal ∼ → RawTotal (flip ∼)
rawtotal t x y = t y x
total : Total ∼ → Total (flip ∼)
total t x y = t y x
resp : ∀ {p} (P : A → hProp p) → Symmetric ∼ →
P Respects ∼ → P Respects (flip ∼)
resp _ sym resp ∼ = resp (sym ∼)
max : ∀ {⊥} → Minimum ∼ ⊥ → Maximum (flip ∼) ⊥
max min = min
min : ∀ {⊤} → Maximum ∼ ⊤ → Minimum (flip ∼) ⊤
min max = max
fromEq : FromEq ∼ → FromEq (flip ∼)
fromEq impl = impl ∘ map sym
toNotEq : ToNotEq ∼ → ToNotEq (flip ∼)
toNotEq tne y∼x x≡y = tne y∼x (map sym x≡y)
antisym : Antisymmetric ∼ → Antisymmetric (flip ∼)
antisym ans = flip ans
compare : Trichotomous ∼ → Trichotomous (flip ∼)
compare cmp x y with cmp x y
... | tri< x<y x≡y y≮x = tri> y≮x x≡y x<y
... | tri≡ x≮y x≡y y≮x = tri≡ y≮x x≡y x≮y
... | tri> x≮y x≡y y<x = tri< y<x x≡y x≮y
module _ {a ℓ₁ ℓ₂} {A : Type a} (∼₁ : Rel A ℓ₁) (∼₂ : Rel A ℓ₂) where
resp₂ : ∼₁ Respects₂ ∼₂ → (flip ∼₁) Respects₂ ∼₂
resp₂ (resp₁ , resp₂) = resp₂ , resp₁
module _ {a b ℓ} {A : Type a} {B : Type b} (∼ : REL A B ℓ) where
dec : Decidable ∼ → Decidable (flip ∼)
dec dec = flip dec
------------------------------------------------------------------------
-- Structures
module _ {a ℓ} {A : Type a} {≈ : Rel A ℓ} where
isPartialEquivalence : IsPartialEquivalence ≈ → IsPartialEquivalence (flip ≈)
isPartialEquivalence eq = record
{ symmetric = symmetric ≈ Eq.symmetric
; transitive = transitive ≈ Eq.transitive
}
where module Eq = IsPartialEquivalence eq
isEquivalence : IsEquivalence ≈ → IsEquivalence (flip ≈)
isEquivalence eq = record
{ isPartialEquivalence = isPartialEquivalence Eq.isPartialEquivalence
; reflexive = reflexive ≈ Eq.reflexive
}
where module Eq = IsEquivalence eq
isDecEquivalence : IsDecEquivalence ≈ → IsDecEquivalence (flip ≈)
isDecEquivalence eq = record
{ isEquivalence = isEquivalence Dec.isEquivalence
; _≟_ = dec ≈ Dec._≟_
}
where module Dec = IsDecEquivalence eq
module _ {a ℓ} {A : Set a} {∼ : Rel A ℓ} where
isPreorder : IsPreorder ∼ → IsPreorder (flip ∼)
isPreorder O = record
{ reflexive = reflexive ∼ O.reflexive
; transitive = transitive ∼ O.transitive
}
where module O = IsPreorder O
isPartialOrder : IsPartialOrder ∼ → IsPartialOrder (flip ∼)
isPartialOrder O = record
{ isPreorder = isPreorder O.isPreorder
; antisym = antisym ∼ O.antisym
}
where module O = IsPartialOrder O
isTotalOrder : IsTotalOrder ∼ → IsTotalOrder (flip ∼)
isTotalOrder O = record
{ isPartialOrder = isPartialOrder O.isPartialOrder
; total = total ∼ O.total
}
where module O = IsTotalOrder O
isDecTotalOrder : IsDecTotalOrder ∼ → IsDecTotalOrder (flip ∼)
isDecTotalOrder O = record
{ isTotalOrder = isTotalOrder O.isTotalOrder
; _≤?_ = dec ∼ O._≤?_
}
where module O = IsDecTotalOrder O
isStrictPartialOrder : IsStrictPartialOrder ∼ →
IsStrictPartialOrder (flip ∼)
isStrictPartialOrder O = record
{ irrefl = irrefl ∼ O.irrefl
; transitive = transitive ∼ O.transitive
}
where module O = IsStrictPartialOrder O
isStrictTotalOrder : IsStrictTotalOrder ∼ →
IsStrictTotalOrder (flip ∼)
isStrictTotalOrder O = record
{ transitive = transitive ∼ O.transitive
; compare = compare ∼ O.compare
}
where module O = IsStrictTotalOrder O
module _ {a ℓ} {A : Type a} where
equivalence : Equivalence A ℓ → Equivalence A ℓ
equivalence S = record
{ isEquivalence = isEquivalence S.isEquivalence
}
where module S = Equivalence S
decEquivalence : DecEquivalence A ℓ → DecEquivalence A ℓ
decEquivalence S = record
{ isDecEquivalence = isDecEquivalence S.isDecEquivalence
}
where module S = DecEquivalence S
module _ {a ℓ} {A : Type a} where
preorder : Preorder A ℓ → Preorder A ℓ
preorder O = record
{ isPreorder = isPreorder O.isPreorder
}
where module O = Preorder O
partialOrder : PartialOrder A ℓ → PartialOrder A ℓ
partialOrder O = record
{ isPartialOrder = isPartialOrder O.isPartialOrder
}
where module O = PartialOrder O
totalOrder : TotalOrder A ℓ → TotalOrder A ℓ
totalOrder O = record
{ isTotalOrder = isTotalOrder O.isTotalOrder
}
where module O = TotalOrder O
decTotalOrder : DecTotalOrder A ℓ → DecTotalOrder A ℓ
decTotalOrder O = record
{ isDecTotalOrder = isDecTotalOrder O.isDecTotalOrder
}
where module O = DecTotalOrder O
strictPartialOrder : StrictPartialOrder A ℓ →
StrictPartialOrder A ℓ
strictPartialOrder O = record
{ isStrictPartialOrder = isStrictPartialOrder O.isStrictPartialOrder
}
where module O = StrictPartialOrder O
strictTotalOrder : StrictTotalOrder A ℓ →
StrictTotalOrder A ℓ
strictTotalOrder O = record
{ isStrictTotalOrder = isStrictTotalOrder O.isStrictTotalOrder
}
where module O = StrictTotalOrder O
| {
"alphanum_fraction": 0.6384103701,
"avg_line_length": 29.6111111111,
"ext": "agda",
"hexsha": "011d781c7eabf7d092c18853cbad8d2185c0a097",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bijan2005/univalent-foundations",
"max_forks_repo_path": "Cubical/Relation/Binary/Converse.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bijan2005/univalent-foundations",
"max_issues_repo_path": "Cubical/Relation/Binary/Converse.agda",
"max_line_length": 79,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bijan2005/univalent-foundations",
"max_stars_repo_path": "Cubical/Relation/Binary/Converse.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1889,
"size": 5863
} |
module 4-the-natural-numbers where
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; cong; sym)
open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; step-≡; _∎)
open import Data.Nat using (ℕ; zero; suc; _+_; _*_; ⌊_/2⌋)
-- 4)
--sum-to-n : ℕ → ℕ
--sum-to-n n = sum (upTo (suc n))
open import Data.Nat.Properties using (*-comm; *-distribʳ-+; +-suc; +-comm; *-distribˡ-+)
1+⋯+n : ℕ → ℕ
1+⋯+n zero = zero
1+⋯+n (suc n) = suc n + 1+⋯+n n
n≡[n*2]/2 : ∀ (n : ℕ) → n ≡ ⌊ n * 2 /2⌋
n≡[n*2]/2 zero = refl
n≡[n*2]/2 (suc n) =
begin
suc n
≡⟨ cong suc (n≡[n*2]/2 n) ⟩
suc ⌊ n * 2 /2⌋
≡⟨⟩
1 + ⌊ n * 2 /2⌋
≡⟨⟩
⌊ 2 + n * 2 /2⌋
≡⟨⟩
⌊ suc n * 2 /2⌋
∎
data IsEven : ℕ → Set where
even : (k : ℕ) → IsEven (k * 2)
rearrange-lemma : ∀ n → suc (suc n) * suc n ≡ suc n * 2 + suc n * n
rearrange-lemma n =
begin
suc (suc n) * suc n
≡⟨⟩
suc (1 + n) * (1 + n)
≡⟨⟩
(2 + n) * (1 + n)
≡⟨ *-distribʳ-+ (1 + n) 2 n ⟩
2 * (1 + n) + n * (1 + n)
≡⟨ cong (2 * (1 + n) +_) (*-comm n (1 + n)) ⟩
2 * (1 + n) + (1 + n) * n
≡⟨⟩
2 * suc n + suc n * n
≡⟨ cong (_+ suc n * n) (*-comm 2 (suc n)) ⟩
suc n * 2 + suc n * n
∎
even+even≡even : ∀ {m n : ℕ} → IsEven m → IsEven n → IsEven (m + n)
even+even≡even (even k) (even i) rewrite (sym (*-distribʳ-+ 2 k i)) = even (k + i)
[1+n]*n≡even : ∀ (n : ℕ) → IsEven (suc n * n)
[1+n]*n≡even zero = even 0
[1+n]*n≡even (suc n) rewrite rearrange-lemma n = even+even≡even (even (suc n)) ([1+n]*n≡even n)
even/2+even/2≡[even+even]/2 : ∀ {m n : ℕ} → IsEven m → IsEven n → ⌊ m /2⌋ + ⌊ n /2⌋ ≡ ⌊ m + n /2⌋
even/2+even/2≡[even+even]/2 (even k) (even i) =
begin
⌊ k * 2 /2⌋ + ⌊ i * 2 /2⌋
≡⟨ cong (_+ ⌊ i * 2 /2⌋) (sym (n≡[n*2]/2 k)) ⟩
k + ⌊ i * 2 /2⌋
≡⟨ cong (k +_) (sym (n≡[n*2]/2 i)) ⟩
k + i
≡⟨ n≡[n*2]/2 (k + i) ⟩
⌊ (k + i) * 2 /2⌋
≡⟨ cong ⌊_/2⌋ (*-distribʳ-+ 2 k i) ⟩
⌊ k * 2 + i * 2 /2⌋
∎
gaussian-sum : ∀ (n : ℕ) → 1+⋯+n n ≡ ⌊ n * (n + 1) /2⌋
gaussian-sum zero = refl
gaussian-sum (suc n) =
begin
1+⋯+n (suc n)
≡⟨⟩
suc n + 1+⋯+n n
≡⟨ cong (suc n +_) (gaussian-sum n)⟩
suc n + ⌊ n * (n + 1) /2⌋
≡⟨ cong (_+ ⌊ n * (n + 1) /2⌋) (n≡[n*2]/2 (suc n)) ⟩
⌊ suc n * 2 /2⌋ + ⌊ n * (n + 1) /2⌋
≡⟨ cong (λ {term → ⌊ suc n * 2 /2⌋ + ⌊ n * term /2⌋}) (+-comm n 1) ⟩
⌊ suc n * 2 /2⌋ + ⌊ n * (1 + n) /2⌋
≡⟨⟩
⌊ suc n * 2 /2⌋ + ⌊ n * suc n /2⌋
≡⟨ cong (λ {term → ⌊ suc n * 2 /2⌋ + ⌊ term /2⌋}) (*-comm n (suc n)) ⟩
⌊ suc n * 2 /2⌋ + ⌊ suc n * n /2⌋
≡⟨ even/2+even/2≡[even+even]/2 (even (suc n)) ([1+n]*n≡even n) ⟩
⌊ suc n * 2 + suc n * n /2⌋
≡⟨ cong (⌊_/2⌋) (sym (*-distribˡ-+ (1 + n) 2 n)) ⟩
⌊ suc n * (2 + n) /2⌋
≡⟨ cong (λ {term → ⌊ suc n * term /2⌋}) (+-comm 2 n) ⟩
⌊ suc n * (n + 2) /2⌋
≡⟨ cong (λ {term → ⌊ suc n * term /2⌋}) (+-suc n 1) ⟩
⌊ suc n * (suc n + 1) /2⌋
∎
| {
"alphanum_fraction": 0.4291695743,
"avg_line_length": 28.66,
"ext": "agda",
"hexsha": "9b276b8075b006d417158ae81780b45aebad533e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "64a00f1f97f053d246d5b9deab090e75d923fe8f",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "aronerben/agda-playground",
"max_forks_repo_path": "algebra/4-the-natural-numbers.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "64a00f1f97f053d246d5b9deab090e75d923fe8f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "aronerben/agda-playground",
"max_issues_repo_path": "algebra/4-the-natural-numbers.agda",
"max_line_length": 97,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "64a00f1f97f053d246d5b9deab090e75d923fe8f",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "aronerben/agda-playground",
"max_stars_repo_path": "algebra/4-the-natural-numbers.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1723,
"size": 2866
} |
-- Source: https://raw.githubusercontent.com/gallais/potpourri/master/agda/poc/dimensions/dimensions.agda
-- Author: Original by gallais, modified for test suite by P. Hausmann
-- (Later edited by others.)
{-# OPTIONS --guardedness #-}
module dimensions where
open import Data.Nat as ℕ using (ℕ; NonZero)
open import Data.Nat.LCM
open import Data.Nat.DivMod hiding (_/_)
open import Data.Integer as ℤ using (ℤ ; +_)
open import Data.Unit.Polymorphic using (⊤)
open import Function
open import Relation.Nullary.Decidable
------------------------------------------------
-- DIMENSIONS
-- record { kilogram = x ; meter = y ; second = z }
-- corresponds to the dimension: kg^x * m^y * s^z
module Dimension where
record dimension : Set where
field
kilogram : ℤ
meter : ℤ
second : ℤ
open dimension public
_*_ : (d e : dimension) → dimension
d * e = record { kilogram = kilogram d ℤ.+ kilogram e
; meter = meter d ℤ.+ meter e
; second = second d ℤ.+ second e }
_/_ : (d e : dimension) → dimension
d / e = record { kilogram = kilogram d ℤ.- kilogram e
; meter = meter d ℤ.- meter e
; second = second d ℤ.- second e }
open Dimension using (dimension ; kilogram ; meter ; second)
kgram met sec : dimension
kgram = record { kilogram = + 1
; meter = + 0
; second = + 0 }
met = record { kilogram = + 0
; meter = + 1
; second = + 0 }
sec = record { kilogram = + 0
; meter = + 0
; second = + 1 }
≠0-mult :
(m n : ℕ) (hm : NonZero m) (hn : NonZero n) → NonZero (m ℕ.* n)
≠0-mult ℕ.zero n () hn
≠0-mult m 0 hm ()
≠0-mult (ℕ.suc m) (ℕ.suc n) hm hn = _
------------------------------------------------
-- UNITS
-- A unit is a dimension together with a coefficient
-- 60 , _ # sec represents a minute (60 seconds)
module Unit where
infix 1 _,_#_
data unit : Set where
_,_#_ : (n : ℕ) (hn : NonZero n) (d : dimension) → unit
coeff : (u : unit) → ℕ
coeff (k , _ # _) = k
coeff≠0 : (u : unit) → NonZero (coeff u)
coeff≠0 (k , hk # _) = hk
_*_ : (u v : unit) → unit
(k , hk # d) * (l , hl # e) =
( k ℕ.* l ) , (≠0-mult k l hk hl) # (d Dimension.* e)
_/_ : (u v : unit)
⦃ ≠0 : NonZero (((coeff u) div (coeff v)) ⦃ coeff≠0 v ⦄) ⦄ →
unit
_/_ (k , hk # d) (l , hl # e) ⦃ ≠0 ⦄ =
(k div l) ⦃ hl ⦄ , ≠0 # (d Dimension./ e)
open Unit using (unit ; _,_#_ ; coeff ; coeff≠0)
------------------------------------------------
-- VALUES
-- Finally, values are natural numbers repackaged
-- with a unit
module Values where
data [_] : (d : unit) → Set where
⟨_∶_⟩ : (value : ℕ) (d : unit) → [ d ]
val : ∀ {d} → [ d ] → ℕ
val ⟨ m ∶ _ ⟩ = m
infix 3 _+_
infix 4 _*_ _/_
_+_ : ∀ {k hk l hl m hm} {d : dimension} (v₁ : [ k , hk # d ])
(v₂ : [ l , hl # d ]) → [ m , hm # d ]
_+_ {k} {hk} {l} {hl} {m} {hm} ⟨ v₁ ∶ ._ ⟩ ⟨ v₂ ∶ ._ ⟩ =
⟨ ((k ℕ.* v₁ ℕ.+ l ℕ.* v₂) div m) ⦃ hm ⦄ ∶ _ ⟩
_:+_ : ∀ {k hk l hl} {d : dimension} (v₁ : [ k , hk # d ])
(v₂ : [ l , hl # d ]) → [ 1 , _ # d ]
_:+_ = _+_
_*_ : ∀ {k hk l hl m hm} {d e : dimension}
(vd : [ k , hk # d ]) (ve : [ l , hl # e ]) →
[ m , hm # (d Dimension.* e) ]
_*_ {k} {hk} {l} {hl} {m} {hm} ⟨ vd ∶ ._ ⟩ ⟨ ve ∶ ._ ⟩ =
⟨ ((k ℕ.* vd ℕ.* l ℕ.* ve) div m) ⦃ hm ⦄ ∶ _ ⟩
_:*_ : ∀ {k hk l hl} {d e : dimension}
(vd : [ k , hk # d ]) (ve : [ l , hl # e ]) →
[ 1 , _ # (d Dimension.* e) ]
_:*_ = _*_
_/_ : ∀ {k hk l hl m hm} {d e : dimension}
(vd : [ k , hk # d ]) (ve : [ l , hl # e ])
{≠0 : NonZero (val ve)} → [ m , hm # (d Dimension./ e) ]
_/_ {k} {hk} {l} {hl} {m} {hm} ⟨ vd ∶ ._ ⟩ ⟨ ve ∶ ._ ⟩ {≠0} =
⟨ ((k ℕ.* vd) div (l ℕ.* ve ℕ.* m))
⦃ ≠0-mult _ _ (≠0-mult _ _ hl ≠0) hm ⦄ ∶ _ ⟩
↑ : ∀ {k hk l hl d} → [ k , hk # d ] → [ l , hl # d ]
↑ {k} {hk} {l} {hl} ⟨ v ∶ ._ ⟩ = ⟨ ((k ℕ.* v) div l) ⦃ hl ⦄ ∶ _ ⟩
open Values
------------------------------------------------
-- SI PREFIXES
-- They are simply unit-modifying functions.
infix 5 _**_
_**_ : (k : ℕ) {hk : NonZero k} (d : dimension) → unit
_**_ k {hk} d = k , hk # d
centi : (u : unit) {≠0 : NonZero (coeff u div 100)} → unit
centi (k , hk # d) {≠0} = _ , ≠0 # d
deci : (u : unit) {≠0 : NonZero (coeff u div 10)} → unit
deci (k , hk # d) {≠0} = _ , ≠0 # d
deca hecto kilo : unit → unit
deca (k , hk # d) = 10 ℕ.* k , ≠0-mult 10 k _ hk # d
hecto (k , hk # d) = 100 ℕ.* k , ≠0-mult 100 k _ hk # d
kilo (k , hk # d) = 1000 ℕ.* k , ≠0-mult 1000 k _ hk # d
cst : unit
cst =
let dcst = record { kilogram = + 0
; meter = + 0
; second = + 0 }
in 1 , _ # dcst
infix 3 κ_
κ_ : (n : ℕ) → [ cst ]
κ n = ⟨ n ∶ cst ⟩
------------------------------------------------
-- EXAMPLES
s min hr : unit
s = 1 ** sec
min = 60 ** sec
hr = 60 ℕ.* 60 ** sec
m : unit
m = 1 ** met
1s : [ s ]
1s = ⟨ 1 ∶ s ⟩
1min : [ min ]
1min = ⟨ 1 ∶ min ⟩
1hr 2hr : [ min ]
1hr = ⟨ 60 ∶ min ⟩
2hr = 1hr + 1hr
1min² : [ s Unit.* s ]
1min² = 1min * 1min
60km : [ kilo m ]
60km = ⟨ 60 ∶ kilo m ⟩
60hm : [ hecto m ]
60hm = ⟨ 60 ∶ hecto m ⟩
60hm/min : [ deca m Unit./ s ]
60hm/min = ⟨ 60 ∶ hecto m ⟩ / ⟨ 1 ∶ min ⟩
acc : unit
acc = m Unit./ (s Unit.* s)
spd : unit
spd = m Unit./ s
------------------------------------------------
-- APPLICATION:
-- free fall of a ball with an initial horizontal speed.
record point : Set where
field
accx accy : [ acc ]
vx vy : [ spd ]
x y : [ m ]
open point public
g : [ acc ]
g = ⟨ 10 ∶ _ ⟩
newton : ∀ (dt : [ s ]) (p : point) → point
newton dt p =
record { accx = accx p
; accy = accy p + g
; vx = vx p + (accx p :* dt)
; vy = vy p + (accy p :* dt)
; x = x p + (vx p :* dt)
; y = y p + (vy p :* dt) }
------------------------------------------------
-- TRACING
-- the initial condition a point is in
base : point
base = record
{ accx = ⟨ 0 ∶ _ ⟩
; accy = ⟨ 0 ∶ _ ⟩
; vx = ⟨ 45 ∶ _ ⟩
; vy = ⟨ 0 ∶ _ ⟩
; x = ⟨ 0 ∶ _ ⟩
; y = ⟨ 0 ∶ _ ⟩ }
-- the consecutive steps of its fall
open import Data.Vec as V using (Vec)
throw : (n : ℕ) (dt : [ s ]) → point → Vec point (ℕ.suc n)
throw ℕ.zero dt p = p V.∷ V.[]
throw (ℕ.suc n) dt p = p V.∷ throw n dt (newton dt p)
-- the display function generating the output
open import Data.String renaming (_++_ to _+s+_)
open import IO
import IO.Primitive
open import Codata.Musical.Colist
open import Data.Nat.Show as Nat
open import Level using (0ℓ)
printPoint : point → IO {0ℓ} ⊤
printPoint p = putStrLn ((Nat.show (val (x p))) +s+ ";" +s+ Nat.show (val (y p)))
main : IO.Primitive.IO ⊤
main = run (Colist.mapM printPoint (Codata.Musical.Colist.fromList trace) >> return _)
where trace = V.toList $ throw 15 ⟨ 1 ∶ s ⟩ base
| {
"alphanum_fraction": 0.4593944539,
"avg_line_length": 26.2750929368,
"ext": "agda",
"hexsha": "d2f7ac410aa10fea3446f37fa0178e5a09fd1fed",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Compiler/with-stdlib/dimensions.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Compiler/with-stdlib/dimensions.agda",
"max_line_length": 105,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Compiler/with-stdlib/dimensions.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2656,
"size": 7068
} |
{-# OPTIONS --experimental-irrelevance #-}
-- {-# OPTIONS -v tc.univ:100 -v tc.meta:100 #-}
-- {-# OPTIONS -v tc.rec:100 #-}
-- Andreas, 2011-04-27 universe levels can be made irrelevant
-- Ulf 2011-10-03. No they can't. How is that even consistent?
-- Andreas, 2011-10-03. Yes, they can!
-- .(i : Level)(A : Set i) does not mean that Set i = Set j for all i,j
-- but nl i A = nl j A for all i,j.
module IrrelevantLevel where
open import Common.Level
postulate
Lst : .(i : Level)(A : Set i) -> Set i
nl : .(i : Level)(A : Set i) -> Lst i A
cns : .(i : Level)(A : Set i) -> A -> Lst i A -> Lst i A
data List .(i : Level)(A : Set i) : Set i where
nil : List i A
cons : A -> List i A -> List i A
singleton : .{i : Level}{A : Set i}(a : A) -> List i A
singleton a = cons a nil
record Wrap .(i : Level)(A : Set i) : Set i where
field
wrap : A
module M .(i : Level)(A : Set i) where
data Li : Set i where
ni : Li
co : A -> Li -> Li
| {
"alphanum_fraction": 0.5754132231,
"avg_line_length": 26.8888888889,
"ext": "agda",
"hexsha": "d4c399bdc4c4461a980c9d41df3a008d4aa7c122",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/succeed/IrrelevantLevel.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/succeed/IrrelevantLevel.agda",
"max_line_length": 75,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Succeed/IrrelevantLevel.agda",
"max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z",
"num_tokens": 349,
"size": 968
} |
{-# OPTIONS --copatterns --sized-types #-}
open import Level as Level using (zero)
open import Size
open import Function
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as P
open ≡-Reasoning
open import Data.List using (List; module List; []; _∷_; _++_; length)
open import Data.Nat using (ℕ; zero; suc)
open import Data.Product renaming (map to pmap)
open import Relations
-- Sized streams via head/tail.
record Stream {i : Size} (A : Set) : Set where
coinductive
constructor _∷_
field
hd : A
tl : ∀ {j : Size< i} → Stream {j} A
open Stream public
-- Shorthand
Str = Stream
tl' : ∀ {A} → Str A → Str A
tl' s = tl s {∞}
-- Constructor
scons : ∀{A} → A → Str A → Str A
hd (scons a s) = a
tl (scons a s) = s
-- | Corecursion
corec : ∀ {X A : Set} → (X → A) → (X → X) → (X → Str A)
hd (corec h s x) = h x
tl (corec h s x) = corec h s (s x)
-- Functoriality.
map : ∀ {i A B} (f : A → B) (s : Stream {i} A) → Stream {i} B
hd (map f s) = f (hd s)
tl (map {i} f s) {j} = map {j} f (tl s {j})
-- Derivative
δ : ∀{A} → ℕ → Stream A → Stream A
δ 0 s = s
δ (suc n) s = δ n (tl s)
-- Indexing
_at_ : ∀{A} → Stream A → ℕ → A
s at n = hd (δ n s)
fromStr = _at_
-- | Inverse for at
toStr : ∀ {A} → (ℕ → A) → Str A
hd (toStr f) = f 0
tl (toStr f) = toStr (λ n → f (suc n))
module Bisim (S : Setoid Level.zero Level.zero) where
infix 2 _∼_
open Setoid S renaming (Carrier to A; isEquivalence to S-equiv)
module SE = IsEquivalence S-equiv
-- Stream equality is bisimilarity
record _∼_ {i : Size} (s t : Stream A) : Set where
coinductive
field
hd≈ : hd s ≈ hd t
tl∼ : ∀ {j : Size< i} → _∼_ {j} (tl s) (tl t)
open _∼_ public
_∼[_]_ : Stream A → Size → Stream A → Set
s ∼[ i ] t = _∼_ {i} s t
s-bisim-refl : ∀ {i} {s : Stream A} → s ∼[ i ] s
hd≈ s-bisim-refl = SE.refl
tl∼ (s-bisim-refl {_} {s}) {j} = s-bisim-refl {j} {tl s}
s-bisim-sym : ∀ {i} {s t : Stream A} → s ∼[ i ] t → t ∼[ i ] s
hd≈ (s-bisim-sym p) = SE.sym (hd≈ p)
tl∼ (s-bisim-sym {_} {s} {t} p) {j} =
s-bisim-sym {j} {tl s} {tl t} (tl∼ p)
s-bisim-trans : ∀ {i} {r s t : Stream A} →
r ∼[ i ] s → s ∼[ i ] t → r ∼[ i ] t
hd≈ (s-bisim-trans p q) = SE.trans (hd≈ p) (hd≈ q)
tl∼ (s-bisim-trans {_} {r} {s} {t} p q) {j} =
s-bisim-trans {j} {tl r} {tl s} {tl t} (tl∼ p) (tl∼ q)
stream-setoid : Setoid _ _
stream-setoid = record
{ Carrier = Stream A
; _≈_ = _∼_
; isEquivalence = record
{ refl = s-bisim-refl
; sym = s-bisim-sym
; trans = s-bisim-trans
}
}
import Relation.Binary.EqReasoning as EqR
module ∼-Reasoning where
module _ where
open EqR (stream-setoid) public
hiding (_≡⟨_⟩_) renaming (_≈⟨_⟩_ to _∼⟨_⟩_; begin_ to begin_; _∎ to _∎)
-- | As usual, bisimilarity implies equality at every index.
bisim→ext-≡ : ∀ {s t : Stream A} → s ∼ t → ∀ {n} → s at n ≈ t at n
bisim→ext-≡ p {zero} = hd≈ p
bisim→ext-≡ p {suc n} = bisim→ext-≡ (tl∼ p) {n}
-- | Definition of bisimulation
isBisim : Rel (Str A) Level.zero → Set
isBisim R =
(s t : Str A) → R s t → (hd s ≈ hd t) × R (tl s) (tl t)
-- | Bisimulation proof principle
∃-bisim→∼ : ∀ {R} → isBisim R → (s t : Str A) → R s t → s ∼ t
hd≈ (∃-bisim→∼ R-isBisim s t q) = proj₁ (R-isBisim s t q)
tl∼ (∃-bisim→∼ R-isBisim s t q) =
∃-bisim→∼ R-isBisim (tl s) (tl t) (proj₂ (R-isBisim s t q))
StrRel : Set₁
StrRel = Rel (Str A) Level.zero
-- | Relation transformer that characterises bisimulations
Φ : Rel (Str A) Level.zero → Rel (Str A) Level.zero
Φ R s t = (hd s ≈ hd t) × R (tl s) (tl t)
isBisim' : Rel (Str A) Level.zero → Set
isBisim' R = R ⇒ Φ R
isBisim'→isBisim : ∀ {R} → isBisim' R → isBisim R
isBisim'→isBisim p s t q = p q
Φ-compat : RelTrans (Str A) → Set₁
Φ-compat F = Monotone F × (∀ {R} → F (Φ R) ⇒ Φ (F R))
isBisim-upto : RelTrans (Str A) → Rel (Str A) Level.zero → Set
isBisim-upto F R = R ⇒ Φ (F R)
Φ-compat-pres-upto : {F : RelTrans (Str A)} (P : Φ-compat F) {R : StrRel} →
isBisim-upto F R → isBisim-upto F (F R)
Φ-compat-pres-upto (M , P) p = P ∘ (M p)
iterTrans : RelTrans (Str A) → ℕ → StrRel → StrRel
iterTrans F zero R = R
iterTrans F (suc n) R = iterTrans F n (F R)
-- Closure of up-to technique, which will be the the bisimulation we generate from it
bisimCls : RelTrans (Str A) → StrRel → StrRel
bisimCls F R s t = ∃ λ n → iterTrans F n R s t
clsIsBisim : {F : RelTrans (Str A)} (P : Φ-compat F) {R : StrRel} →
isBisim-upto F R → isBisim' (bisimCls F R)
clsIsBisim P p {s} {t} (zero , sRt) =
(proj₁ (p sRt) , 1 , proj₂ (p sRt))
clsIsBisim {F} (M , P) {R} p {s} {t} (suc n , inFIter) =
let
foo = clsIsBisim (M , P) {F R} (Φ-compat-pres-upto (M , P) p) (n , inFIter)
in (proj₁ foo , (pmap suc id) (proj₂ foo))
-- Compatible up-to techniques are sound
compat-sound : {F : RelTrans (Str A)} (P : Φ-compat F) {R : StrRel} →
isBisim-upto F R → (s t : Str A) → R s t → s ∼ t
compat-sound {F} P {R} p s t sRt =
∃-bisim→∼ (isBisim'→isBisim {bisimCls F R} (clsIsBisim P p))
s t (0 , sRt)
-- | Useful general up-to technique: the equivalence closure is Φ-compatible.
equivCls-compat : Φ-compat EquivCls
equivCls-compat = equivCls-monotone , compat
where
compat : {R : StrRel} → EquivCls (Φ R) ⇒ Φ (EquivCls R)
compat (cls-incl (h≈ , tR)) = (h≈ , cls-incl tR)
compat cls-refl = (SE.refl , cls-refl)
compat {R} (cls-sym p) =
let (h≈ , tR) = compat {R} p
in (SE.sym h≈ , cls-sym tR)
compat {R} (cls-trans p q) =
let (hx≈hy , txRty) = compat {R} p
(hy≈hz , tyRtz) = compat {R} q
in (SE.trans hx≈hy hy≈hz , cls-trans txRty tyRtz)
-- | Element repetition
repeat : ∀{A} → A → Stream A
hd (repeat a) = a
tl (repeat a) = repeat a
-- Streams and lists.
-- Prepending a list to a stream.
_++ˢ_ : ∀ {A} → List A → Stream A → Stream A
[] ++ˢ s = s
(a ∷ as) ++ˢ s = a ∷ (as ++ˢ s)
-- Taking an initial segment of a stream.
takeˢ : ∀ {A} (n : ℕ) (s : Stream A) → List A
takeˢ 0 s = []
takeˢ (suc n) s = hd s ∷ takeˢ n (tl s)
_↓_ : ∀ {A} (s : Stream A) (n : ℕ) → List A
s ↓ n = takeˢ n s
| {
"alphanum_fraction": 0.5460702473,
"avg_line_length": 29.6682242991,
"ext": "agda",
"hexsha": "0e905285b1628b873b394f7585c4df4e70aaaff8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hbasold/Sandbox",
"max_forks_repo_path": "Languages/Stream.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hbasold/Sandbox",
"max_issues_repo_path": "Languages/Stream.agda",
"max_line_length": 87,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hbasold/Sandbox",
"max_stars_repo_path": "Languages/Stream.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2654,
"size": 6349
} |
module instances where
open import lib public renaming (return to returnᵢₒ; _>>_ to _>>ᵢₒ_; _>>=_ to _>>=ᵢₒ_)
open import functions public
record functor {ℓ ℓ'} (F : Set ℓ → Set ℓ') : Set (lsuc (ℓ ⊔ ℓ')) where
infixl 2 _<$>_ _<$_
field
fmap : ∀ {A B : Set ℓ} → (A → B) → F A → F B
{-functor-identity-law :
∀ {A} (fa : F A) →
fmap id fa ≡ fa
functor-composition-law :
∀ {A B C} (f : B → C) (g : A → B) (fa : F A) →
fmap (f ∘ g) fa ≡ fmap f (fmap g fa)-}
_<$>_ = fmap
_<$_ : ∀ {A B : Set ℓ} → A → F B → F A
a <$ fb = (λ _ → a) <$> fb
open functor ⦃...⦄ public
record applicative {ℓ ℓ'} (F : Set ℓ → Set ℓ') : Set (lsuc (ℓ ⊔ ℓ')) where
infixl 2 _<*>_ _<*_ _*>_
field
pure : ∀ {A : Set ℓ} → A → F A
_<*>_ : ∀ {A B : Set ℓ} → F (A → B) → F A → F B
⦃ functorF ⦄ : functor F
{-applicative-identity-law :
∀ {A} (v : F A) →
pure id <*> v ≡ v
applicative-composition-law :
∀ {A B C} (u : F (B → C)) (v : F (A → B)) (w : F A) →
pure _∘_ <*> u <*> v <*> w ≡ u <*> (v <*> w)
applicative-homomorphism-law :
∀ {A B} (f : A → B) (x : A) →
pure f <*> pure x ≡ pure (f x)
applicative-interchange-law :
∀ {A B} (u : F (A → B)) (y : A) →
u <*> pure y ≡ pure (_$ y) <*> u-}
_<*_ : ∀ {A B : Set ℓ} → F A → F B → F A
fa <* fb = (λ a b → a) <$> fa <*> fb
_*>_ : ∀ {A B : Set ℓ} → F A → F B → F B
fa *> fb = (λ a b → b) <$> fa <*> fb
liftA : ∀ {A B : Set ℓ} → (A → B) → F A → F B
liftA g fa = pure g <*> fa
liftA2 : ∀ {A B C : Set ℓ} → (A → B → C) → F A → F B → F C
liftA2 g fa fb = pure g <*> fa <*> fb
sequenceA : ∀ {A : Set ℓ} → 𝕃 (F A) → F (𝕃 A)
sequenceA = foldr (liftA2 _::_) (pure [])
open applicative ⦃...⦄ public
record monad {ℓ ℓ'} (F : Set ℓ → Set ℓ') : Set (lsuc (ℓ ⊔ ℓ')) where
infixr 2 _>>_ _>>=_ _=<<_ _>=>_ _>>=c_ _>>c_ _>>=?_ _>>=m_ _>>=s_ _>>=e_ _>>≠_ _>≯_ _>>=r_ _>>r_
field
return : ∀{A : Set ℓ} → A → F A
_>>=_ : ∀{A B : Set ℓ} → F A → (A → F B) → F B
{-monad-left-identity-law :
∀ {A B} (a : A) (k : A → F B) →
return a >>= k ≡ k a
monad-right-identity-law :
∀ {A} (m : F A) →
m >>= return ≡ m
monad-associativity-law :
∀ {A B C} (m : F A) (k : A → F B) (h : B → F C) →
m >>= (λ x → k x >>= h) ≡ (m >>= k) >>= h-}
_>>_ : ∀ {A B : Set ℓ} → F A → F B → F B
fa >> fb = fa >>= λ _ → fb
_=<<_ : ∀ {A B : Set ℓ} → (A → F B) → F A → F B
fab =<< fa = fa >>= fab
_>=>_ : ∀ {A B C : Set ℓ} → (A → F B) → (B → F C) → (A → F C)
fab >=> fbc = λ a → fab a >>= fbc
_>>=c_ : ∀ {A B C : Set ℓ} → F (A × B) → (A → B → F C) → F C
p >>=c f = p >>= λ {(a , b) → f a b}
_>>c_ : ∀ {A B : Set ℓ} → F A → F B → F (A × B)
fa >>c fb = fa >>= λ a → fb >>= λ b → return (a , b)
_>>=?_ : ∀ {A B : Set ℓ} → maybe (F A) → (maybe A → F B) → F B
nothing >>=? f = f nothing
(just a) >>=? f = a >>= (f ∘ just)
_>>=s_ : ∀ {A B E : Set ℓ} → F (E ⊎ A) → (A → F (E ⊎ B)) → F (E ⊎ B)
s >>=s f = s >>= λ {(inj₁ e) → return (inj₁ e); (inj₂ a) → f a}
_>>=e_ : ∀ {A B : Set ℓ} → F (error-t A) → (A → F (error-t B)) → F (error-t B)
fe? >>=e f = fe? >>= λ {(no-error a) → f a; (yes-error e) → return (yes-error e)}
_>>=m_ : ∀{A B : Set ℓ} → F (maybe A) → (A → F (maybe B)) → F (maybe B)
m >>=m f = m >>= λ {(just a) → f a; nothing → return nothing}
_>>≠_ : ∀{A B : Set ℓ} → F A → (A → F B) → F A
(f₁ >>≠ f₂) = f₁ >>= λ result → f₂ result >> return result
_>≯_ : ∀{A B : Set ℓ} → F A → F B → F A
(f₁ >≯ f₂) = f₁ >>= λ result → f₂ >> return result
_>>=r_ : ∀{A B : Set ℓ} → F A → (A → B) → F B
a >>=r f = a >>= (return ∘ f)
_>>r_ : ∀{A B : Set ℓ} → F A → B → F B
a >>r b = a >> return b
_on-fail_>>=m_ : ∀ {A B : Set ℓ} → F (maybe A) → F B → (A → F B) → F B
fa? on-fail fb >>=m fab = fa? >>= λ {(just a) → fab a; nothing → fb}
_on-fail_>>=s_ : ∀ {A B E : Set ℓ} → F (E ⊎ A) → (E → F B) → (A → F B) → F B
fa+e on-fail feb >>=s fab = fa+e >>= λ {(inj₁ e) → feb e; (inj₂ a) → fab a}
return2 : ∀ {A B : Set ℓ} → A → B → F (A × B)
return2 a b = return (a , b)
foldrM : ∀ {A B} → (A → F B → F B) → F B → 𝕃 (F A) → F B
foldrM c n [] = n
foldrM c n (fa :: fas) = fa >>= λ a → c a (foldrM c n fas)
foldlM : ∀ {A B} → (A → F B → F B) → F B → 𝕃 (F A) → F B
foldlM c n [] = n
foldlM c n (fa :: fas) = fa >>= λ a → foldlM c (c a n) fas
forM_init_use_ : ∀ {A B} → 𝕃 (F A) → F B → (A → F B → F B) → F B
forM as init b use f = foldrM f b as
open monad ⦃...⦄ public
join : ∀ {ℓ}{F : Set ℓ → Set ℓ}{A : Set ℓ} ⦃ _ : monad F ⦄ → F (F A) → F A
join ffa = ffa >>= id
infixr 2 _>>∘_
_>>∘_ : ∀{ℓ}{F : Set ℓ → Set ℓ}{A B : Set ℓ} ⦃ _ : monad F ⦄ → F A → F (A → F B) → F B
a >>∘ f = a >>= λ a → f >>= λ f → f a
--========== Id ==========--
-- Using "id" itself causes Agda to hang when resolving instances, I suspect due
-- to something like endlessly embedding (id (id (id (...)))). So instead we must
-- use a "newtype" for id.
record Id (A : Set) : Set where
constructor id-in
field id-out : A
open Id public
instance
id-functor : functor Id
id-applicative : applicative Id
id-monad : monad Id
fmap ⦃ id-functor ⦄ f = id-in ∘ (f ∘ id-out)
pure ⦃ id-applicative ⦄ = id-in
_<*>_ ⦃ id-applicative ⦄ fab fa = id-in (id-out fab (id-out fa))
return ⦃ id-monad ⦄ = id-in
_>>=_ ⦃ id-monad ⦄ a f = f (id-out a)
--========== IO ==========--
instance
IO-functor : functor IO
IO-applicative : applicative IO
IO-monad : monad IO
{-
postulate
IO-functor-identity-law :
∀ {A} →
fmap ⦃ IO-functor ⦄ {A} id ≡ id
IO-functor-composition-law :
∀ {A B C} (f : B → C) (g : A → B) →
fmap (f ∘ g) ≡ fmap f ∘ fmap g
IO-applicative-identity-law :
∀ {A} (v : IO A) →
pure ⦃ IO-applicative ⦄ id <*> v ≡ v
IO-applicative-composition-law :
∀ {A B C} (u : IO (B → C)) (v : IO (A → B)) (w : IO A) →
pure ⦃ IO-applicative ⦄ _∘_ <*> u <*> v <*> w ≡ u <*> (v <*> w)
IO-applicative-homomorphism-law :
∀ {A B} (f : A → B) (x : A) →
pure ⦃ IO-applicative ⦄ f <*> pure x ≡ pure (f x)
IO-applicative-interchange-law :
∀ {A B} (u : IO (A → B)) (y : A) →
u <*> pure y ≡ pure ⦃ IO-applicative ⦄ (_$ y) <*> u
IO-monad-left-identity-law :
∀ {A B} (a : A) (k : A → IO B) →
(return a >>= k) ≡ k a
IO-monad-right-identity-law :
∀ {A} (m : IO A) →
(m >>= return) ≡ m
IO-monad-associativity-law :
∀ {A B C} (m : IO A) (k : A → IO B) (h : B → IO C) →
(m >>= (λ x → k x >>= h)) ≡ ((m >>= k) >>= h)
-}
fmap ⦃ IO-functor ⦄ g fa = fa >>=ᵢₒ λ a → returnᵢₒ (g a)
pure ⦃ IO-applicative ⦄ = returnᵢₒ
_<*>_ ⦃ IO-applicative ⦄ fab fa = fab >>=ᵢₒ λ ab → fa >>=ᵢₒ λ a → returnᵢₒ (ab a)
return ⦃ IO-monad ⦄ = returnᵢₒ
_>>=_ ⦃ IO-monad ⦄ = _>>=ᵢₒ_
--========== ⊎ ==========--
instance
sum-functor : ∀ {ℓ ℓ'} {E : Set ℓ} → functor {ℓ'} {ℓ ⊔ ℓ'} (E ⊎_)
sum-applicative : ∀ {ℓ ℓ'} {E : Set ℓ} → applicative {ℓ'} {ℓ ⊔ ℓ'} (E ⊎_)
sum-monad : ∀ {ℓ ℓ'} {E : Set ℓ} → monad {ℓ'} {ℓ ⊔ ℓ'} (E ⊎_)
fmap ⦃ sum-functor ⦄ f (inj₁ e) = inj₁ e
fmap ⦃ sum-functor ⦄ f (inj₂ a) = inj₂ (f a)
pure ⦃ sum-applicative ⦄ = inj₂
_<*>_ ⦃ sum-applicative ⦄ sf sa =
sf >>= λ f →
sa >>= λ a →
return (f a)
return ⦃ sum-monad ⦄ = inj₂
_>>=_ ⦃ sum-monad ⦄ (inj₁ e) f = inj₁ e
_>>=_ ⦃ sum-monad ⦄ (inj₂ a) f = f a
--========== maybe ==========--
instance
maybe-functor : ∀ {ℓ} → functor {ℓ} maybe
maybe-applicative : ∀ {ℓ} → applicative {ℓ} maybe
maybe-monad : ∀ {ℓ} → monad {ℓ} maybe
fmap ⦃ maybe-functor ⦄ = maybe-map
pure ⦃ maybe-applicative ⦄ = just
_<*>_ ⦃ maybe-applicative ⦄ f? a? =
f? ≫=maybe λ f → a? ≫=maybe (just ∘ f)
return ⦃ maybe-monad ⦄ = just
_>>=_ ⦃ maybe-monad ⦄ = _≫=maybe_
--========== 𝕃 ==========--
instance
list-functor : ∀ {ℓ} → functor {ℓ} 𝕃
list-applicative : ∀ {ℓ} → applicative {ℓ} 𝕃
list-monad : ∀ {ℓ} → monad {ℓ} 𝕃
fmap ⦃ list-functor ⦄ = map
pure ⦃ list-applicative ⦄ = [_]
_<*>_ ⦃ list-applicative ⦄ fs as = map (λ {(f , a) → f a}) (zip fs as)
return ⦃ list-monad ⦄ = [_]
_>>=_ ⦃ list-monad ⦄ as f = concat (map f as)
| {
"alphanum_fraction": 0.452195122,
"avg_line_length": 29.7101449275,
"ext": "agda",
"hexsha": "26c16a04f46f50783cd32051ae309b17e8a2e0ce",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9df4b85b55b57f97466242fdbb499adbd3bca893",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "zmthy/cedille",
"max_forks_repo_path": "src/instances.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9df4b85b55b57f97466242fdbb499adbd3bca893",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "zmthy/cedille",
"max_issues_repo_path": "src/instances.agda",
"max_line_length": 98,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "9df4b85b55b57f97466242fdbb499adbd3bca893",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "zmthy/cedille",
"max_stars_repo_path": "src/instances.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3751,
"size": 8200
} |
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary using (Rel; Setoid; IsEquivalence)
module Structures
{a ℓ} {A : Set a} -- The underlying set
(_≈_ : Rel A ℓ) -- The underlying equality relation
where
open import Algebra.Core
open import Level using (_⊔_)
open import Data.Product using (_,_; proj₁; proj₂)
open import Algebra.Definitions _≈_
open import Algebra.Structures _≈_
open import Definitions _≈_
record IsInverseSemigroup (∙ : Op₂ A) : Set (a ⊔ ℓ) where
field
isSemigroup : IsSemigroup ∙
pseudoInverse : PseudoInverse ∙
open IsSemigroup isSemigroup public
record IsRng (+ * : Op₂ A) (-_ : Op₁ A) (0# : A) : Set (a ⊔ ℓ) where
field
+-isAbelianGroup : IsAbelianGroup + 0# -_
*-isSemigroup : IsSemigroup *
distrib : * DistributesOver +
zero : Zero 0# *
open IsAbelianGroup +-isAbelianGroup public
renaming
( assoc to +-assoc
; ∙-cong to +-cong
; ∙-congˡ to +-congˡ
; ∙-congʳ to +-congʳ
; identity to +-identity
; identityˡ to +-identityˡ
; identityʳ to +-identityʳ
; inverse to -‿inverse
; inverseˡ to -‿inverseˡ
; inverseʳ to -‿inverseʳ
; ⁻¹-cong to -‿cong
; comm to +-comm
; isMagma to +-isMagma
; isSemigroup to +-isSemigroup
; isMonoid to +-isMonoid
; isUnitalMagma to +-isUnitalMagma
; isCommutativeMagma to +-isCommutativeMagma
; isCommutativeMonoid to +-isCommutativeMonoid
; isCommutativeSemigroup to +-isCommutativeSemigroup
; isInvertibleMagma to +-isInvertibleMagma
; isInvertibleUnitalMagma to +-isInvertibleUnitalMagma
; isGroup to +-isGroup
)
open IsSemigroup *-isSemigroup public
using ()
renaming
( assoc to *-assoc
; ∙-cong to *-cong
; ∙-congˡ to *-congˡ
; ∙-congʳ to *-congʳ
; isMagma to *-isMagma
)
record IsNonAssociativeRing (+ * : Op₂ A) (-_ : Op₁ A) (0# 1# : A) : Set (a ⊔ ℓ) where
field
+-isAbelianGroup : IsAbelianGroup + 0# -_
*-isUnitalMagma : IsUnitalMagma * 1#
distrib : * DistributesOver +
zero : Zero 0# *
open IsAbelianGroup +-isAbelianGroup public
renaming
( assoc to +-assoc
; ∙-cong to +-cong
; ∙-congˡ to +-congˡ
; ∙-congʳ to +-congʳ
; identity to +-identity
; identityˡ to +-identityˡ
; identityʳ to +-identityʳ
; inverse to -‿inverse
; inverseˡ to -‿inverseˡ
; inverseʳ to -‿inverseʳ
; ⁻¹-cong to -‿cong
; comm to +-comm
; isMagma to +-isMagma
; isSemigroup to +-isSemigroup
; isMonoid to +-isMonoid
; isUnitalMagma to +-isUnitalMagma
; isCommutativeMagma to +-isCommutativeMagma
; isCommutativeMonoid to +-isCommutativeMonoid
; isCommutativeSemigroup to +-isCommutativeSemigroup
; isInvertibleMagma to +-isInvertibleMagma
; isInvertibleUnitalMagma to +-isInvertibleUnitalMagma
; isGroup to +-isGroup
)
open IsUnitalMagma *-isUnitalMagma public
using ()
renaming
( ∙-cong to *-cong
; ∙-congˡ to *-congˡ
; ∙-congʳ to *-congʳ
; isMagma to *-isMagma
)
| {
"alphanum_fraction": 0.5393043002,
"avg_line_length": 34.4433962264,
"ext": "agda",
"hexsha": "028035c812d37bce9544bbcfe492ac7e86eef750",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "443e831e536b756acbd1afd0d6bae7bc0d288048",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Akshobhya1234/agda-NonAssociativeAlgebra",
"max_forks_repo_path": "src/Structures.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "443e831e536b756acbd1afd0d6bae7bc0d288048",
"max_issues_repo_issues_event_max_datetime": "2021-10-09T08:24:56.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-04T05:30:30.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Akshobhya1234/agda-NonAssociativeAlgebra",
"max_issues_repo_path": "src/Structures.agda",
"max_line_length": 86,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "443e831e536b756acbd1afd0d6bae7bc0d288048",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Akshobhya1234/agda-NonAssociativeAlgebra",
"max_stars_repo_path": "src/Structures.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-17T09:14:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-08-15T06:16:13.000Z",
"num_tokens": 1177,
"size": 3651
} |
------------------------------------------------------------------------
-- Code related to the paper "Logical properties of a modality for
-- erasure"
--
-- Nils Anders Danielsson
------------------------------------------------------------------------
-- Note that the code does not follow the paper exactly. For instance,
-- some definitions use bijections (functions with quasi-inverses)
-- instead of equivalences. Some other differences are mentioned
-- below.
-- This file is not checked using --safe, because some parts use
-- --cubical, and some parts use --with-K. However, all files
-- imported below use --safe.
{-# OPTIONS --cubical --with-K #-}
module README.Erased where
import Agda.Builtin.Equality
import Agda.Builtin.Cubical.Id
import Agda.Builtin.Cubical.Path
import Embedding
import Equality
import Equality.Id
import Equality.Instances-related
import Equality.Path
import Equality.Propositional
import Equivalence
import Erased
import Erased.Cubical
import Erased.With-K
import Function-universe
import H-level
import Nat.Wrapper
import Nat.Wrapper.Cubical
import Prelude
import Queue.Truncated
import Quotient
------------------------------------------------------------------------
-- 3: Erased
-- Erased.
Erased = Erased.Erased
------------------------------------------------------------------------
-- 3.1: Erased is a monad
-- Bind.
bind = Erased._>>=′_
-- Erased is a monad.
erased-monad = Erased.monad
-- Lemma 3.
Lemma-3 = Erased.Erased-Erased↔Erased
------------------------------------------------------------------------
-- 3.2: The relationship between @0 and Erased
-- Lemma 4 and Lemma 5.
Lemmas-4-and-5 = Erased.Π-Erased≃Π0[]
-- The equality type family, defined as an inductive family.
Equality-defined-as-an-inductive-family = Agda.Builtin.Equality._≡_
-- Cubical Agda paths.
Path = Agda.Builtin.Cubical.Path._≡_
-- The Cubical Agda identity type family.
Id = Agda.Builtin.Cubical.Id.Id
-- The code uses an axiomatisation of "equality with J". The
-- axiomatisation is a little convoluted in order to support using
-- equality at all universe levels. Furthermore the axiomatisation
-- supports choosing specific definitions for other functions, like
-- cong, to make the code more usable when it is instantiated with
-- Cubical Agda paths (for which the canonical definition of cong
-- computes in a different way than typical definitions obtained
-- using J).
-- Equality and reflexivity.
≡-refl = Equality.Reflexive-relation
-- The J rule and its computation rule.
J-J-refl = Equality.Equality-with-J₀
-- Extended variants of the two definitions above.
Equivalence-relation⁺ = Equality.Equivalence-relation⁺
Equality-with-J = Equality.Equality-with-J
-- To see how the code is axiomatised, see the module header of, say,
-- Erased.
module See-the-module-header-of = Erased
-- The equality type family defined as an inductive family, Cubical
-- Agda paths and the Cubical Agda identity type family can all be
-- used to instantiate the axioms.
Equality-with-J-for-equality-defined-as-an-inductive-family =
Equality.Propositional.equality-with-J
Equality-with-J-for-Path = Equality.Path.equality-with-J
Equality-with-J-for-Id = Equality.Id.equality-with-J
-- Lemma 7 in Cubical Agda.
Lemma-7-cubical = Erased.Cubical.Π-Erased≃Π0[]
-- Lemma 7 in traditional Agda.
Lemma-7-traditional = Erased.With-K.Π-Erased≃Π0[]
------------------------------------------------------------------------
-- 3.3: Erased commutes
-- Some lemmas.
Lemma-8 = Erased.Erased-⊤↔⊤
Lemma-9 = Erased.Erased-⊥↔⊥
Lemma-10 = Erased.Erased-Π↔Π
Lemma-11 = Erased.Erased-Π↔Π-Erased
Lemma-12 = Erased.Erased-Σ↔Σ
-- W-types.
W = Prelude.W
-- Lemma 14 (Erased commutes with W-types up to logical equivalence).
Lemma-14 = Erased.Erased-W⇔W
-- Erased commutes with W-types, assuming extensionality for functions
-- and []-cong.
--
-- The code uses a universe of "function formers" which makes it
-- possible to prove a single statement that can be instantiated both
-- as a logical equivalence that does not rely on extensionality, as
-- well as an equivalence that does rely on extensionality (and in
-- other ways). This lemma, and several others, are stated in that
-- way.
Lemma-14′ = Erased.Erased-W↔W
------------------------------------------------------------------------
-- 3.4: The []-cong property
-- []-cong, proved in traditional Agda.
[]-cong-traditional = Erased.With-K.[]-cong
-- []-cong, proved in Cubical Agda for paths.
[]-cong-cubical-paths = Erased.Cubical.[]-cong-Path
-- Every family of equality types satisfying the axiomatisation
-- discussed above is in pointwise bijective correspondence with every
-- other, with the bijections mapping reflexivity to reflexivity.
Families-equivalent =
Equality.Instances-related.all-equality-types-isomorphic
-- []-cong, proved in Cubical Agda for an arbitrary equality type
-- family satisfying the axiomatisation discussed above.
[]-cong-cubical = Erased.Cubical.[]-cong
-- Lemmas 17 and 18 in traditional Agda.
Lemma-17-traditional = Erased.With-K.[]-cong-equivalence
Lemma-18-traditional = Erased.With-K.[]-cong-[refl]
-- Lemmas 17 and 18 in Cubical Agda, with paths.
Lemma-17-cubical-paths = Erased.Cubical.[]-cong-Path-equivalence
Lemma-18-cubical-paths = Erased.Cubical.[]-cong-Path-[refl]
-- Lemmas 17 and 18 in Cubical Agda, with an arbitrary family of
-- equality types satisfying the axiomatisation discussed above.
Lemma-17-cubical = Erased.Cubical.[]-cong-equivalence
Lemma-18-cubical = Erased.Cubical.[]-cong-[refl]
------------------------------------------------------------------------
-- 3.5: H-levels
-- H-level, For-iterated-equality and Contractible.
H-level = H-level.H-level′
For-iterated-equality = H-level.For-iterated-equality
Contractible = Equality.Reflexive-relation′.Contractible
-- Sometimes the code uses the following definition of h-levels
-- instead of the one used in the paper.
Other-definition-of-h-levels = H-level.H-level
-- The two definitions are pointwise logically equivalent, and
-- pointwise equivalent if equality is extensional for functions.
H-level≃H-level′ = Function-universe.H-level↔H-level′
-- There is a single statement for Lemmas 22 and 23.
Lemmas-22-and-23 = Erased.Erased-H-level′↔H-level′
------------------------------------------------------------------------
-- 3.6: Erased is a modality
-- Some lemmas.
Lemma-24 = Erased.uniquely-eliminating-modality
Lemma-25 = Erased.lex-modality
-- The map function.
map = Erased.map
-- Erased is a Σ-closed reflective subuniverse.
Σ-closed-reflective-subuniverse =
Erased.Erased-Σ-closed-reflective-subuniverse
-- Another lemma.
Lemma-27 = Erased.Erased-connected↔Erased-Is-equivalence
------------------------------------------------------------------------
-- 3.7: Is [_] an embedding?
-- The function cong is unique up to pointwise equality if it is
-- required to map the canonical proof of reflexivity to the canonical
-- proof of reflexivity.
cong-canonical =
Equality.Derived-definitions-and-properties.cong-canonical
-- Is-embedding.
Is-embedding = Embedding.Is-embedding
-- Embeddings are injective.
embeddings-are-injective = Embedding.injective
-- Some lemmas.
Lemma-29 = Erased.Is-proposition→Is-embedding-[]
Lemma-30 = Erased.With-K.Injective-[]
Lemma-31 = Erased.With-K.Is-embedding-[]
Lemma-32 = Erased.With-K.Is-proposition-Erased→Is-proposition
------------------------------------------------------------------------
-- 3.8: More commutation properties
-- There is a single statement for Lemmas 33–38 (and more).
Lemmas-33-to-38 = Erased.Erased-↝↔↝
-- There is also a single statement for the variants of Lemmas 33–38,
-- stated as logical equivalences instead of equivalences, that can be
-- proved without using extensionality.
Lemmas-33-to-38-with-⇔ = Erased.Erased-↝↝↝
-- Some lemmas.
Lemma-39 = Erased.Erased-cong-≃
Lemma-40 = Erased.Erased-Is-equivalence↔Is-equivalence
-- A generalisation of Lemma 41.
Lemma-41 = Function-universe.Σ-cong
-- More lemmas.
Lemma-42 = Erased.Erased-Split-surjective↔Split-surjective
Lemma-43 = Erased.Erased-Has-quasi-inverse↔Has-quasi-inverse
Lemma-44 = Erased.Erased-Injective↔Injective
Lemma-45 = Erased.Erased-Is-embedding↔Is-embedding
Lemma-46 = Erased.map-cong≡cong-map
-- There is a single statement for Lemmas 47–52 (and more).
Lemmas-47-to-52 = Erased.Erased-cong
-- The map function is functorial.
map-id = Erased.map-id
map-∘ = Erased.map-∘
-- All preservation lemmas (47–52) map identity to identity (assuming
-- extensionality, except for logical equivalences).
Erased-cong-id = Erased.Erased-cong-id
-- All preservation lemmas (47–52) commute with composition (assuming
-- extensionality, except for logical equivalences).
Erased-cong-∘ = Erased.Erased-cong-∘
------------------------------------------------------------------------
-- 4.1: Stable types
-- Stable.
Stable = Erased.Stable
-- Some lemmas.
Lemma-54 = Erased.¬¬-stable→Stable
Lemma-55 = Erased.Erased→¬¬
Lemma-56 = Erased.Dec→Stable
------------------------------------------------------------------------
-- 4.2: Very stable types
-- Very-stable.
Very-stable = Erased.Very-stable
-- A generalisation of Very-stable′.
Very-stable′ = Erased.Stable-[_]
-- Very stable types are stable (and Very-stable A implies
-- Very-stable′ A, and more).
Very-stable→Stable = Erased.Very-stable→Stable
-- [_] is an embedding for very stable types.
Very-stable→Is-embedding-[] = Erased.Very-stable→Is-embedding-[]
-- Some lemmas.
Lemma-59 = Erased.Stable→Left-inverse→Very-stable
Lemma-60 = Erased.Stable-proposition→Very-stable
Lemma-61 = Erased.Very-stable-Erased
-- It is not the case that every very stable type is a proposition.
¬-Very-stable→Is-proposition = Erased.¬-Very-stable→Is-proposition
-- More lemmas.
Lemma-62 = Erased.Very-stable-∃-Very-stable
Lemma-63 = Erased.Stable-∃-Very-stable
------------------------------------------------------------------------
-- 4.3: Stability for equality types
-- Stable-≡ and Very-stable-≡.
Stable-≡ = Erased.Stable-≡
Very-stable-≡ = Erased.Very-stable-≡
-- Some lemmas.
Lemma-66 = Erased.Stable→H-level-suc→Very-stable
Lemma-67 = Erased.Decidable-equality→Very-stable-≡
Lemma-68 = Erased.H-level→Very-stable
-- Lemmas 69 and 70, stated both as logical equivalences, and as
-- equivalences depending on extensionality.
Lemma-69 = Erased.Stable-≡↔Injective-[]
Lemma-70 = Erased.Very-stable-≡↔Is-embedding-[]
-- Equality is always very stable in traditional Agda.
Very-stable-≡-trivial = Erased.With-K.Very-stable-≡-trivial
------------------------------------------------------------------------
-- 4.4: Map-like functions
-- Lemma 71.
Lemma-71 = Erased.Stable-map-⇔
-- There is a single statement for Lemmas 72 and 73.
Lemmas-72-and-73 = Erased.Very-stable-cong
-- Lemma 74.
Lemma-74 = Erased.Very-stable-Erased↝Erased
-- Lemma 74, with Stable instead of Very-stable, and no assumption of
-- extensionality.
Lemma-74-Stable = Erased.Stable-Erased↝Erased
------------------------------------------------------------------------
-- 4.5: Closure properties
-- Lots of lemmas.
Lemmas-75-and-76 = Erased.Very-stable→Very-stable-≡
Lemma-77 = Erased.Very-stable-⊤
Lemma-78 = Erased.Very-stable-⊥
Lemma-79 = Erased.Stable-Π
Lemma-80 = Erased.Very-stable-Π
Lemma-81 = Erased.Very-stable-Stable-Σ
Lemma-82 = Erased.Very-stable-Σ
Lemma-83 = Erased.Stable-×
Lemma-84 = Erased.Very-stable-×
Lemma-85 = Erased.Very-stable-W
Lemmas-86-and-87 = Erased.Stable-H-level′
Lemmas-88-and-89 = Erased.Very-stable-H-level′
Lemma-90 = Erased.Stable-≡-⊎
Lemma-91 = Erased.Very-stable-≡-⊎
Lemma-92 = Erased.Stable-≡-List
Lemma-93 = Erased.Very-stable-≡-List
Lemma-94 = Quotient.Very-stable-≡-/
------------------------------------------------------------------------
-- 4.6: []‐cong can be proved using extensionality
-- The proof has been changed. Lemmas 95 and 97 have been removed.
-- A lemma.
Lemma-96 = Equivalence.≃-≡
-- []-cong, proved using extensionality, along with proofs showing
-- that it is an equivalence and that it satisfies the computation
-- rule of []-cong.
Extensionality→[]-cong = Erased.Extensionality→[]-cong-axiomatisation
------------------------------------------------------------------------
-- 5.1: Singleton types with erased equality proofs
-- Some lemmas.
Lemma-99 = Erased.erased-singleton-contractible
Lemma-100 = Erased.erased-singleton-with-erased-center-propositional
-- The generalisation of Lemma 82 used in the proof of Lemma 100.
Lemma-82-generalised = Erased.Very-stable-Σⁿ
-- Another lemma.
Lemma-101 = Erased.Σ-Erased-Erased-singleton↔
------------------------------------------------------------------------
-- 5.2: Efficient natural numbers
-- An implementation of natural numbers as lists of bits with the
-- least significant bit first and an erased invariant that ensures
-- that there are no trailing zeros.
import Nat.Binary
-- Nat-[_].
Nat-[_] = Nat.Wrapper.Nat-[_]
-- A lemma.
Lemma-103 = Nat.Wrapper.[]-cong.Nat-[]-propositional
-- Nat.
Nat = Nat.Wrapper.Nat
-- ⌊_⌋.
@0 ⌊_⌋ : _
⌊_⌋ = Nat.Wrapper.⌊_⌋
-- Another lemma.
Lemma-106 = Nat.Wrapper.[]-cong.≡-for-indices↔≡
------------------------------------------------------------------------
-- 5.2.1: Arithmetic
-- The functions unary-[] and unary.
unary-[] = Nat.Wrapper.unary-[]
unary = Nat.Wrapper.unary
-- Similar functions for arbitrary arities.
n-ary-[] = Nat.Wrapper.n-ary-[]
n-ary = Nat.Wrapper.n-ary
------------------------------------------------------------------------
-- 5.2.2: Converting Nat to ℕ
-- Some lemmas.
Lemma-109 = Nat.Wrapper.Nat-[]↔Σℕ
Lemma-110 = Nat.Wrapper.[]-cong.Nat↔ℕ
-- The function Nat→ℕ.
Nat→ℕ = Nat.Wrapper.Nat→ℕ
-- Some lemmas.
@0 Lemma-111 : _
Lemma-111 = Nat.Wrapper.≡⌊⌋
Lemma-112 = Nat.Wrapper.unary-correct
-- A variant of Lemma 112 for n-ary.
Lemma-112-for-n-ary = Nat.Wrapper.n-ary-correct
------------------------------------------------------------------------
-- 5.2.3: Decidable equality
-- Some lemmas.
Lemma-113 = Nat.Wrapper.Operations-for-Nat._≟_
Lemma-114 = Nat.Wrapper.Operations-for-Nat-[]._≟_
------------------------------------------------------------------------
-- 5.3: Queues
-- The implementation of queues (parametrised by an underlying queue
-- implementation).
module Queue = Queue.Truncated
-- The functions enqueue and dequeue.
enqueue = Queue.Truncated.Non-indexed.enqueue
dequeue = Queue.Truncated.Non-indexed.dequeue
------------------------------------------------------------------------
-- 6: Discussion and related work
-- Nat-[_]′.
Nat-[_]′ = Nat.Wrapper.Cubical.Nat-[_]′
-- An alternative implementation of Nat.
Alternative-Nat = Nat.Wrapper.Cubical.Nat-with-∥∥
-- The alternative implementation of Nat is isomorphic to the unit
-- type.
Alternative-Nat-isomorphic-to-⊤ = Nat.Wrapper.Cubical.Nat-with-∥∥↔⊤
-- The alternative implementation of Nat is not isomorphic to the
-- natural numbers.
Alternative-Nat-not-isomorphic-to-ℕ =
Nat.Wrapper.Cubical.¬-Nat-with-∥∥↔ℕ
| {
"alphanum_fraction": 0.6443072071,
"avg_line_length": 26.7504393673,
"ext": "agda",
"hexsha": "55aa1eaa97d7cc2e771ea1fb5c2c7eb88ebc2b65",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "README/Erased.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "README/Erased.agda",
"max_line_length": 72,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "README/Erased.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 4206,
"size": 15221
} |
module Prelude.Nat where
open import Prelude.Bool
data Nat : Set where
Z : Nat
S : Nat -> Nat
{-# BUILTIN NATURAL Nat #-}
infixl 30 _+_
_+_ : Nat -> Nat -> Nat
Z + m = m
S n + m = S (n + m)
{-# BUILTIN NATPLUS _+_ #-}
_*_ : Nat -> Nat -> Nat
Z * m = Z
S n * m = (n * m) + m
{-# BUILTIN NATTIMES _*_ #-}
_-_ : Nat -> Nat -> Nat
n - Z = n
(S n) - (S m) = n - m
Z - _ = Z
{-# BUILTIN NATMINUS _-_ #-}
_<_ : Nat -> Nat -> Bool
_ < Z = false
Z < S _ = true
S n < S m = n < m
-- {-# BUILTIN NATLESS _<_ #-}
Nid : Nat -> Bool -> Bool
Nid Z true = true
Nid Z false = false
Nid (S n) m = (Nid n ( m))
-- {-# BUILTIN NATEQUALS __ #-}
| {
"alphanum_fraction": 0.4765395894,
"avg_line_length": 15.1555555556,
"ext": "agda",
"hexsha": "943ae290a83b17a53b60723a9caeb04ca91bbbbb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "test/epic/Prelude/Nat.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "test/epic/Prelude/Nat.agda",
"max_line_length": 31,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/epic/Prelude/Nat.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 262,
"size": 682
} |
{-# OPTIONS --warning=error --safe --without-K #-}
open import LogicalFormulae
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Functions.Definition
open import Setoids.Setoids
open import Setoids.Subset
open import Graphs.Definition
open import Sets.FinSet.Definition
open import Sets.FinSet.Lemmas
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.Order
open import Sets.EquivalenceRelations
open import Graphs.PathGraph
module Graphs.CycleGraph where
CycleGraph : (n : ℕ) → .(2 <N n) → Graph _ (reflSetoid (FinSet n))
Graph._<->_ (CycleGraph n _) x y = ((toNat x ≡ succ (toNat y)) || (toNat y ≡ succ (toNat x))) || (((toNat x ≡ 0) && (toNat y ≡ n)) || ((toNat y ≡ 0) && (toNat x ≡ n)))
Graph.noSelfRelation (CycleGraph n _) y (inl (inl x)) = nNotSucc x
Graph.noSelfRelation (CycleGraph n _) y (inl (inr x)) = nNotSucc x
Graph.noSelfRelation (CycleGraph (succ n) _) y (inr (inl (fst ,, snd))) = naughtE (transitivity (equalityCommutative fst) snd)
Graph.noSelfRelation (CycleGraph (succ n) _) y (inr (inr (fst ,, snd))) = naughtE (transitivity (equalityCommutative fst) snd)
Graph.symmetric (CycleGraph n _) (inl (inl x)) = inl (inr x)
Graph.symmetric (CycleGraph n _) (inl (inr x)) = inl (inl x)
Graph.symmetric (CycleGraph n _) (inr (inl x)) = inr (inr x)
Graph.symmetric (CycleGraph n _) (inr (inr x)) = inr (inl x)
Graph.wellDefined (CycleGraph n _) refl refl i = i
| {
"alphanum_fraction": 0.7100424328,
"avg_line_length": 48.7586206897,
"ext": "agda",
"hexsha": "ab6bb90441421228a1089b1a7ec059e882402852",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Graphs/CycleGraph.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Graphs/CycleGraph.agda",
"max_line_length": 167,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Graphs/CycleGraph.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 467,
"size": 1414
} |
{-# OPTIONS --without-K --safe #-}
module Data.Fin.Indexed where
open import Data.Fin.Indexed.Base public
| {
"alphanum_fraction": 0.7222222222,
"avg_line_length": 18,
"ext": "agda",
"hexsha": "f1a52ed81e59378f4d84835b88f19007217f5ab6",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Data/Fin/Indexed.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Data/Fin/Indexed.agda",
"max_line_length": 40,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Data/Fin/Indexed.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 26,
"size": 108
} |
{-# OPTIONS --copatterns #-}
open import Common.Nat
open import Common.IO
open import Common.Unit
record Test : Set where
field
a b c : Nat
f : Test -> Nat
f r = a + b + c
where open Test r
open Test
r1 : Test
a r1 = 100
b r1 = 120
c r1 = 140
r2 : Test
c r2 = 400
a r2 = 200
b r2 = 300
g : Nat
g = f r1 + a m + b m + c m
where m = r2
main : IO Unit
main = printNat g
-- Expected Output: 1260
| {
"alphanum_fraction": 0.6058394161,
"avg_line_length": 11.7428571429,
"ext": "agda",
"hexsha": "f7c5477214332af6d2e09298c85efdc030ae344d",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Compiler/simple/CopatternRecord.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Compiler/simple/CopatternRecord.agda",
"max_line_length": 28,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Compiler/simple/CopatternRecord.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 160,
"size": 411
} |
------------------------------------------------------------------------
-- Lists parameterised on things in Set₁
------------------------------------------------------------------------
-- I want universe polymorphism.
module Data.List1 where
open import Data.List as List using (List; []; _∷_)
open import Data.Nat
infixr 5 _∷_ _++_
data List₁ (a : Set₁) : Set₁ where
[] : List₁ a
_∷_ : (x : a) (xs : List₁ a) → List₁ a
_++_ : ∀ {a} → List₁ a → List₁ a → List₁ a
[] ++ bs = bs
(a ∷ as) ++ bs = a ∷ (as ++ bs)
map₀₁ : ∀ {a b} → (a → b) → List a → List₁ b
map₀₁ f [] = []
map₀₁ f (x ∷ xs) = f x ∷ map₀₁ f xs
map₁₁ : ∀ {a b} → (a → b) → List₁ a → List₁ b
map₁₁ f [] = []
map₁₁ f (x ∷ xs) = f x ∷ map₁₁ f xs
replicate : ∀ {a} → (n : ℕ) → a → List₁ a
replicate zero x = []
replicate (suc n) x = x ∷ replicate n x
foldr₁₀ : {a : Set₁} {b : Set} → (a → b → b) → b → List₁ a → b
foldr₁₀ c n [] = n
foldr₁₀ c n (x ∷ xs) = c x (foldr₁₀ c n xs)
foldr₁₁ : {a b : Set₁} → (a → b → b) → b → List₁ a → b
foldr₁₁ c n [] = n
foldr₁₁ c n (x ∷ xs) = c x (foldr₁₁ c n xs)
length : ∀ {A} → List₁ A → ℕ
length [] = zero
length (x ∷ xs) = suc (length xs)
| {
"alphanum_fraction": 0.4512605042,
"avg_line_length": 26.4444444444,
"ext": "agda",
"hexsha": "fc9cc736987648593f784b068738d0d2a8bd6b3c",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z",
"max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "isabella232/Lemmachine",
"max_forks_repo_path": "vendor/stdlib/src/Data/List1.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/Lemmachine",
"max_issues_repo_path": "vendor/stdlib/src/Data/List1.agda",
"max_line_length": 72,
"max_stars_count": 56,
"max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "isabella232/Lemmachine",
"max_stars_repo_path": "vendor/stdlib/src/Data/List1.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z",
"num_tokens": 461,
"size": 1190
} |
{-# OPTIONS --without-K --safe #-}
module Categories.Category.Extensive where
-- https://ncatlab.org/nlab/show/extensive+category
open import Level
open import Categories.Category.Core
open import Categories.Diagram.Pullback
open import Categories.Category.Cocartesian
open import Categories.Object.Coproduct
open import Categories.Morphism
record Extensive {o ℓ e : Level} (𝒞 : Category o ℓ e) : Set (suc (o ⊔ ℓ ⊔ e)) where
open Category 𝒞
open Pullback
field
cocartesian : Cocartesian 𝒞
module CC = Cocartesian cocartesian
open CC using (_+_; i₁; i₂; ¡)
field
pullback₁ : {A B C : Obj} (f : A ⇒ B + C) → Pullback 𝒞 f i₁
pullback₂ : {A B C : Obj} (f : A ⇒ B + C) → Pullback 𝒞 f i₂
pullback-of-cp-is-cp : {A B C : Obj} (f : A ⇒ _+_ B C) → IsCoproduct 𝒞 (p₁ (pullback₁ f)) (p₁ (pullback₂ f))
pullback₁-is-mono : ∀ {A B : Obj} → Mono 𝒞 (i₁ {A = A}{B = B})
pullback₂-is-mono : ∀ {A B : Obj} → Mono 𝒞 (i₂ {A = A}{B = B})
disjoint : ∀ {A B : Obj} → IsPullback 𝒞 ¡ ¡ (i₁ {A = A}{B = B}) i₂
| {
"alphanum_fraction": 0.6244041945,
"avg_line_length": 23.3111111111,
"ext": "agda",
"hexsha": "d8c2c3eecf439e893d67a8c09f668ef3235ab517",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "e2d7596549e7840b521576f48746ac3c4560f126",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "sergey-goncharov/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Extensive.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e2d7596549e7840b521576f48746ac3c4560f126",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "sergey-goncharov/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Extensive.agda",
"max_line_length": 112,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e2d7596549e7840b521576f48746ac3c4560f126",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "sergey-goncharov/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Extensive.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 380,
"size": 1049
} |
{-# OPTIONS --without-K --exact-split --safe #-}
module Fragment.Equational.Structures where
import Fragment.Equational.Theory.Laws as L
open import Fragment.Equational.Theory
open import Fragment.Equational.Theory.Bundles
open import Fragment.Equational.Model
open import Fragment.Algebra.Algebra
open import Level using (Level)
open import Data.Fin using (Fin; #_; suc; zero)
open import Data.Vec using ([]; _∷_)
open import Data.Vec.Relation.Binary.Pointwise.Inductive using ([]; _∷_)
open import Relation.Binary using (Setoid; Rel)
open import Algebra.Core
private
variable
a ℓ : Level
module _ {A : Set a} {_≈_ : Rel A ℓ} where
open import Algebra.Definitions _≈_
open import Algebra.Structures _≈_
module _ {_•_ : Op₂ A} where
module _ (isMagma : IsMagma _•_) where
open IsMagma isMagma
magma→setoid : Setoid a ℓ
magma→setoid = record { Carrier = A
; _≈_ = _≈_
; isEquivalence = isEquivalence
}
private
magma→⟦⟧ : Interpretation Σ-magma magma→setoid
magma→⟦⟧ MagmaOp.• (x ∷ y ∷ []) = _•_ x y
magma→⟦⟧-cong : Congruent₂ _•_ → Congruence Σ-magma magma→setoid magma→⟦⟧
magma→⟦⟧-cong c MagmaOp.• (x₁≈x₂ ∷ y₁≈y₂ ∷ []) = c x₁≈x₂ y₁≈y₂
magma→isAlgebra : IsAlgebra Σ-magma magma→setoid
magma→isAlgebra = record { ⟦_⟧ = magma→⟦⟧
; ⟦⟧-cong = magma→⟦⟧-cong ∙-cong
}
magma→algebra : Algebra Σ-magma
magma→algebra = record { ∥_∥/≈ = magma→setoid
; ∥_∥/≈-isAlgebra = magma→isAlgebra
}
private
magma→models : Models Θ-magma magma→algebra
magma→models ()
magma→isModel : IsModel Θ-magma magma→setoid
magma→isModel = record { isAlgebra = magma→isAlgebra
; models = magma→models
}
magma→model : Model Θ-magma
magma→model = record { ∥_∥/≈ = magma→setoid
; isModel = magma→isModel
}
module _ (isSemigroup : IsSemigroup _•_) where
private
open IsSemigroup isSemigroup renaming (assoc to •-assoc)
semigroup→models : Models Θ-semigroup (magma→algebra isMagma)
semigroup→models assoc θ = •-assoc (θ (# 0)) (θ (# 1)) (θ (# 2))
semigroup→isModel : IsModel Θ-semigroup (magma→setoid isMagma)
semigroup→isModel = record { isAlgebra = magma→isAlgebra isMagma
; models = semigroup→models
}
semigroup→model : Model Θ-semigroup
semigroup→model = record { ∥_∥/≈ = magma→setoid isMagma
; isModel = semigroup→isModel
}
module _ (isCSemigroup : IsCommutativeSemigroup _•_) where
private
open IsCommutativeSemigroup isCSemigroup
renaming (comm to •-comm; assoc to •-assoc)
csemigroup→models : Models Θ-csemigroup (magma→algebra isMagma)
csemigroup→models comm θ = •-comm (θ (# 0)) (θ (# 1))
csemigroup→models assoc θ = •-assoc (θ (# 0)) (θ (# 1)) (θ (# 2))
csemigroup→isModel : IsModel Θ-csemigroup (magma→setoid isMagma)
csemigroup→isModel = record { isAlgebra = magma→isAlgebra isMagma
; models = csemigroup→models
}
csemigroup→model : Model Θ-csemigroup
csemigroup→model = record { ∥_∥/≈ = magma→setoid isMagma
; isModel = csemigroup→isModel
}
| {
"alphanum_fraction": 0.5453580902,
"avg_line_length": 33.3628318584,
"ext": "agda",
"hexsha": "64f3a1c66f0abcc31b4697f326f06fda8a9bd375",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2021-06-16T08:04:31.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-06-15T15:34:50.000Z",
"max_forks_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "yallop/agda-fragment",
"max_forks_repo_path": "src/Fragment/Equational/Structures.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_issues_repo_issues_event_max_datetime": "2021-06-16T10:24:15.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-06-16T09:44:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "yallop/agda-fragment",
"max_issues_repo_path": "src/Fragment/Equational/Structures.agda",
"max_line_length": 81,
"max_stars_count": 18,
"max_stars_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "yallop/agda-fragment",
"max_stars_repo_path": "src/Fragment/Equational/Structures.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T17:26:09.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-06-15T15:45:39.000Z",
"num_tokens": 1092,
"size": 3770
} |
{-# OPTIONS --without-K --safe #-}
module Util.HoTT.Equiv where
open import Util.HoTT.Equiv.Core public
open import Relation.Binary using (Setoid ; IsEquivalence)
open import Util.Data.Product using (map₂)
open import Util.HoTT.HLevel.Core using (IsContr ; IsProp)
open import Util.HoTT.Section
open import Util.HoTT.Singleton using (IsContr-Singleton)
open import Util.Prelude
open import Util.Relation.Binary.PropositionalEquality using
( Σ-≡⁻ ; Σ-≡⁺ ; trans-symʳ ; trans-unassoc )
private
variable
α β γ : Level
A B C : Set α
IsIso→HasSection-forth : {f : A → B} → IsIso f → HasSection f
IsIso→HasSection-forth i = record
{ section = i .IsIso.back
; isSection = i .IsIso.forth∘back
}
IsIso→HasSection-back : {f : A → B} → (i : IsIso f) → HasSection (i .IsIso.back)
IsIso→HasSection-back {f = f} i = record
{ section = f
; isSection = i .IsIso.back∘forth
}
IsIso→Injective : {f : A → B} → IsIso f → Injective f
IsIso→Injective f-iso fx≡fy
= trans (sym (f-iso .IsIso.back∘forth _))
(trans (cong (f-iso .IsIso.back) fx≡fy)
(f-iso .IsIso.back∘forth _))
IsEquiv→IsIso : {f : A → B} → IsEquiv f → IsIso f
IsEquiv→IsIso {A = A} {B = B} {forth} equiv = record
{ back = back′ ; back∘forth = back∘forth′ ; forth∘back = forth∘back′ }
where
back′ : B → A
back′ b with equiv b
... | (a , _) , _ = a
back∘forth′ : ∀ x → back′ (forth x) ≡ x
back∘forth′ a with equiv (forth a)
... | (a′ , fortha′≡fortha) , unique = proj₁ (Σ-≡⁻ (unique (a , refl)))
forth∘back′ : ∀ x → forth (back′ x) ≡ x
forth∘back′ b with equiv b
... | (a , fortha≡b) , _ = fortha≡b
IsEquiv→Injective : {f : A → B} → IsEquiv f → Injective f
IsEquiv→Injective = IsIso→Injective ∘ IsEquiv→IsIso
-- This proof follows Martin Escardó's lecture notes
-- (https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/HoTT-UF-Agda.html#fibersandequivalences).
IsIso→IsEquiv : {f : A → B} → IsIso f → IsEquiv f
IsIso→IsEquiv {A = A} {B = B} {forth} iso b
= ◁-pres-IsContr (◁-trans ii iii) IsContr-Singleton
where
module I = IsIso iso
A◁B : A ◁ B
A◁B = record
{ retraction = I.back
; hasSection = IsIso→HasSection-back iso
}
i : ∀ b′ → (forth (I.back b′) ≡ b) ◁ (b′ ≡ b)
i b′ = record
{ retraction = λ b′≡b → trans (I.forth∘back b′) b′≡b
; hasSection = record
{ section = λ eq → trans (sym (I.forth∘back b′)) eq
; isSection = λ x → let open ≡-Reasoning in
begin
trans (I.forth∘back b′) (trans (sym (I.forth∘back b′)) x)
≡⟨ trans-unassoc (I.forth∘back b′) ⟩
trans (trans (I.forth∘back b′) (sym (I.forth∘back b′))) x
≡⟨ cong (λ p → trans p x) (trans-symʳ (I.forth∘back b′)) ⟩
x
∎
}
}
ii : ∃[ a ] (forth a ≡ b) ◁ ∃[ b′ ] (forth (I.back b′) ≡ b)
ii = Σ-◁-reindexing A◁B
iii : ∃[ b′ ] (forth (I.back b′) ≡ b) ◁ ∃[ b′ ] (b′ ≡ b)
-- aka Singleton b
iii = Σ-◁ i
≅-refl : A ≅ A
≅-refl .forth x = x
≅-refl .isIso .IsIso.back x = x
≅-refl .isIso .IsIso.forth∘back x = refl
≅-refl .isIso .IsIso.back∘forth x = refl
≅-sym : A ≅ B → B ≅ A
≅-sym A≅B .forth = A≅B .back
≅-sym A≅B .isIso .IsIso.back = A≅B .forth
≅-sym A≅B .isIso .IsIso.back∘forth = A≅B .forth∘back
≅-sym A≅B .isIso .IsIso.forth∘back = A≅B .back∘forth
≅-trans : A ≅ B → B ≅ C → A ≅ C
≅-trans A≅B B≅C .forth = B≅C .forth ∘ A≅B .forth
≅-trans A≅B B≅C .isIso .IsIso.back = A≅B .back ∘ B≅C .back
≅-trans A≅B B≅C .isIso .IsIso.back∘forth x
= trans (cong (A≅B .back) (B≅C .back∘forth _)) (A≅B .back∘forth _)
≅-trans A≅B B≅C .isIso .IsIso.forth∘back x
= trans (cong (B≅C .forth) (A≅B .forth∘back _)) (B≅C .forth∘back _)
≅-isEquivalence : IsEquivalence (_≅_ {α})
≅-isEquivalence .IsEquivalence.refl = ≅-refl
≅-isEquivalence .IsEquivalence.sym = ≅-sym
≅-isEquivalence .IsEquivalence.trans = ≅-trans
≅-setoid : ∀ α → Setoid (lsuc α) α
≅-setoid α .Setoid.Carrier = Set α
≅-setoid α .Setoid._≈_ = _≅_
≅-setoid α .Setoid.isEquivalence = ≅-isEquivalence
≅-reflexive : A ≡ B → A ≅ B
≅-reflexive refl = ≅-refl
≡→≅ = ≅-reflexive
≅-Injective : (i : A ≅ B) → Injective (i .forth)
≅-Injective i = IsIso→Injective (i .isIso)
≅→◁ : A ≅ B → A ◁ B
≅→◁ A≅B = record
{ retraction = A≅B .back
; hasSection = IsIso→HasSection-back (A≅B .isIso)
}
≅→▷ : A ≅ B → B ◁ A
≅→▷ A≅B = record
{ retraction = A≅B .forth
; hasSection = IsIso→HasSection-forth (A≅B .isIso)
}
≃→≅ : A ≃ B → A ≅ B
≃→≅ A≃B .forth = A≃B .forth
≃→≅ A≃B .isIso = IsEquiv→IsIso (A≃B .isEquiv)
≅→≃ : A ≅ B → A ≃ B
≅→≃ A≅B .forth = A≅B .forth
≅→≃ A≅B .isEquiv = IsIso→IsEquiv (A≅B .isIso)
id-IsEquiv : IsEquiv (id {A = A})
id-IsEquiv a = (a , refl) , λ { (b , refl) → refl }
≃-refl : A ≃ A
≃-refl = record { forth = id ; isEquiv = id-IsEquiv }
≃-reflexive : A ≡ B → A ≃ B
≃-reflexive refl = ≃-refl
≡→≃ = ≃-reflexive
≃-sym : A ≃ B → B ≃ A
≃-sym = ≅→≃ ∘ ≅-sym ∘ ≃→≅
≃-trans : A ≃ B → B ≃ C → A ≃ C
≃-trans A≃B B≃C = ≅→≃ (≅-trans (≃→≅ A≃B) (≃→≅ B≃C))
≃-isEquivalence : IsEquivalence (_≃_ {α})
≃-isEquivalence .IsEquivalence.refl = ≃-refl
≃-isEquivalence .IsEquivalence.sym = ≃-sym
≃-isEquivalence .IsEquivalence.trans = ≃-trans
≃-setoid : ∀ α → Setoid (lsuc α) α
≃-setoid α .Setoid.Carrier = Set α
≃-setoid α .Setoid._≈_ = _≃_
≃-setoid α .Setoid.isEquivalence = ≃-isEquivalence
≃-Injective : (e : A ≃ B) → Injective (e .forth)
≃-Injective = ≅-Injective ∘ ≃→≅
≃→◁ : A ≃ B → A ◁ B
≃→◁ = ≅→◁ ∘ ≃→≅
≃→▷ : A ≃ B → B ◁ A
≃→▷ = ≅→▷ ∘ ≃→≅
-- Special cases of ≃-pres-IsOfHLevel (in Util.HoTT.HLevel), but proven
-- directly. This means that A and B can be at different levels.
≅-pres-IsContr : A ≅ B → IsContr A → IsContr B
≅-pres-IsContr A≅B (a , canon) = A≅B .forth a , λ a′
→ trans (cong (A≅B .forth) (canon (A≅B .back a′))) (A≅B .forth∘back _)
≃-pres-IsContr : A ≃ B → IsContr A → IsContr B
≃-pres-IsContr A≃B = ≅-pres-IsContr (≃→≅ A≃B)
≅-pres-IsProp : A ≅ B → IsProp A → IsProp B
≅-pres-IsProp A≅B A-prop x y
= trans (sym (A≅B .forth∘back x))
(sym (trans (sym (A≅B .forth∘back y)) (cong (A≅B .forth) (A-prop _ _))))
≃-pres-IsProp : A ≃ B → IsProp A → IsProp B
≃-pres-IsProp A≃B = ≅-pres-IsProp (≃→≅ A≃B)
Σ-≅⁺ : {A : Set α} {B : A → Set β} {C : A → Set γ}
→ (∀ a → B a ≅ C a)
→ Σ A B ≅ Σ A C
Σ-≅⁺ eq = record
{ forth = λ { (a , b) → a , eq a .forth b }
; isIso = record
{ back = λ { (a , c) → a , eq a .back c }
; back∘forth = λ { (a , b) → Σ-≡⁺ (refl , eq a .back∘forth b) }
; forth∘back = λ { (a , c) → Σ-≡⁺ (refl , eq a .forth∘back c) }
}
}
Σ-≃⁺ : {A : Set α} {B : A → Set β} {C : A → Set γ}
→ (∀ a → B a ≃ C a)
→ Σ A B ≃ Σ A C
Σ-≃⁺ eq = ≅→≃ (Σ-≅⁺ λ a → ≃→≅ (eq a))
map₂-fiber-≃ : {A : Set α} {B : A → Set β} {C : A → Set γ}
→ (f : ∀ a → B a → C a)
→ ∀ a (c : C a)
→ ∃[ b ] (f a b ≡ c) ≃ ∃[ p ] (map₂ f p ≡ (a , c))
map₂-fiber-≃ f a c = ≅→≃ record
{ forth = λ { (b , refl) → (a , b) , refl }
; isIso = record
{ back = λ { ((.a , b) , refl) → b , refl }
; back∘forth = λ { (b , refl) → refl }
; forth∘back = λ { ((.a , b) , refl) → refl }
}
}
IsEquiv-map₂-f→IsEquiv-f : {A : Set α} {B : A → Set β} {C : A → Set γ}
→ (f : ∀ a → B a → C a)
→ IsEquiv (map₂ f)
→ ∀ a → IsEquiv (f a)
IsEquiv-map₂-f→IsEquiv-f {A = A} {B} {C} f equiv a c
= ≃-pres-IsContr (≃-sym (map₂-fiber-≃ f a c)) (equiv (a , c))
sym-≅ : {x y : A} → (x ≡ y) ≅ (y ≡ x)
sym-≅ = record
{ forth = sym
; isIso = record
{ back = sym
; back∘forth = λ { refl → refl }
; forth∘back = λ { refl → refl }
}
}
sym-≃ : {x y : A} → (x ≡ y) ≃ (y ≡ x)
sym-≃ = ≅→≃ sym-≅
IsContr→IsIso : IsContr A → IsContr B → (f : A → B) → IsIso f
IsContr→IsIso (a , a-uniq) (b , b-uniq) f = record
{ back = λ _ → a
; back∘forth = λ _ → a-uniq _
; forth∘back = λ b′ → trans (sym (b-uniq (f a))) (b-uniq b′)
}
IsContr→IsEquiv : IsContr A → IsContr B → (f : A → B) → IsEquiv f
IsContr→IsEquiv A-contr B-contr f
= IsIso→IsEquiv (IsContr→IsIso A-contr B-contr f)
proj₁-IsIso : {A : Set α} {B : A → Set β}
→ (∀ a → IsContr (B a))
→ IsIso (proj₁ {A = A} {B})
proj₁-IsIso B-contr = record
{ back = λ a → (a , B-contr a .proj₁)
; back∘forth = λ { (a , b) → Σ-≡⁺ (refl , (B-contr a .proj₂ b)) }
; forth∘back = λ _ → refl
}
proj₁-IsEquiv : {A : Set α} {B : A → Set β}
→ (∀ a → IsContr (B a))
→ IsEquiv (proj₁ {A = A} {B})
proj₁-IsEquiv B-contr = IsIso→IsEquiv (proj₁-IsIso B-contr)
Π-distr-Σ-≅ : (A : Set α) (B : A → Set β) (C : ∀ a → B a → Set γ)
→ (∀ a → Σ[ b ∈ B a ] (C a b))
≅ (Σ[ f ∈ (∀ a → B a) ] (∀ a → C a (f a)))
Π-distr-Σ-≅ A B C = record
{ forth = λ f → (λ a → f a .proj₁) , (λ a → f a .proj₂)
; isIso = record
{ back = λ { (f , g) → λ a → f a , g a }
; back∘forth = λ _ → refl
; forth∘back = λ _ → refl
}
}
| {
"alphanum_fraction": 0.5352560463,
"avg_line_length": 25.9793510324,
"ext": "agda",
"hexsha": "c8544899496a5115bfc1693fd941bf5df61a6299",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JLimperg/msc-thesis-code",
"max_forks_repo_path": "src/Util/HoTT/Equiv.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JLimperg/msc-thesis-code",
"max_issues_repo_path": "src/Util/HoTT/Equiv.agda",
"max_line_length": 106,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JLimperg/msc-thesis-code",
"max_stars_repo_path": "src/Util/HoTT/Equiv.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-26T06:37:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-04-13T21:31:17.000Z",
"num_tokens": 4115,
"size": 8807
} |
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Postulate extensionality of functions.
--
-- Justification on Agda mailing list:
-- http://permalink.gmane.org/gmane.comp.lang.agda/2343
------------------------------------------------------------------------
module Postulate.Extensionality where
open import Relation.Binary.PropositionalEquality
postulate ext : ∀ {a b} → Extensionality a b
-- Convenience of using extensionality 3 times in a row
-- (using it twice in a row is moderately tolerable)
ext³ : ∀
{A : Set}
{B : A → Set}
{C : (a : A) → B a → Set }
{D : (a : A) → (b : B a) → C a b → Set}
{f g : (a : A) → (b : B a) → (c : C a b) → D a b c} →
((a : A) (b : B a) (c : C a b) → f a b c ≡ g a b c) → f ≡ g
ext³ fabc=gabc = ext (λ a → ext (λ b → ext (λ c → fabc=gabc a b c)))
| {
"alphanum_fraction": 0.493006993,
"avg_line_length": 30.6428571429,
"ext": "agda",
"hexsha": "56069262c6c6cc86afd689294d1cd50213f696e5",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "inc-lc/ilc-agda",
"max_forks_repo_path": "Postulate/Extensionality.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "inc-lc/ilc-agda",
"max_issues_repo_path": "Postulate/Extensionality.agda",
"max_line_length": 72,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "inc-lc/ilc-agda",
"max_stars_repo_path": "Postulate/Extensionality.agda",
"max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z",
"num_tokens": 267,
"size": 858
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
open import Cubical.Core.Everything
open import Cubical.Algebra.Group
module Cubical.Algebra.Group.Construct.Opposite {ℓ} (G : Group ℓ) where
open import Cubical.Foundations.Prelude
open import Cubical.Data.Prod using (_,_)
open Group G
import Cubical.Algebra.Monoid.Construct.Opposite monoid as OpMonoid
open OpMonoid public hiding (Op-isMonoid; Mᵒᵖ)
•ᵒᵖ-inverseˡ : LeftInverse ε _⁻¹ _•ᵒᵖ_
•ᵒᵖ-inverseˡ _ = inverseʳ _
•ᵒᵖ-inverseʳ : RightInverse ε _⁻¹ _•ᵒᵖ_
•ᵒᵖ-inverseʳ _ = inverseˡ _
•ᵒᵖ-inverse : Inverse ε _⁻¹ _•ᵒᵖ_
•ᵒᵖ-inverse = •ᵒᵖ-inverseˡ , •ᵒᵖ-inverseʳ
Op-isGroup : IsGroup Carrier _•ᵒᵖ_ ε _⁻¹
Op-isGroup = record
{ isMonoid = OpMonoid.Op-isMonoid
; inverse = •ᵒᵖ-inverse
}
Gᵒᵖ : Group ℓ
Gᵒᵖ = record { isGroup = Op-isGroup }
| {
"alphanum_fraction": 0.7316770186,
"avg_line_length": 23.6764705882,
"ext": "agda",
"hexsha": "39a83afcba2dcdff06467b325c8b02fd87f4f6f7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bijan2005/univalent-foundations",
"max_forks_repo_path": "Cubical/Algebra/Group/Construct/Opposite.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bijan2005/univalent-foundations",
"max_issues_repo_path": "Cubical/Algebra/Group/Construct/Opposite.agda",
"max_line_length": 71,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bijan2005/univalent-foundations",
"max_stars_repo_path": "Cubical/Algebra/Group/Construct/Opposite.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 348,
"size": 805
} |
module Issue2224 where
-- This is a placeholder to ensure that the test case is run.
-- The file of interest is `Issue2224.sh`, and the associated file
-- Issue2224WrongExtension.agda.tex
| {
"alphanum_fraction": 0.7765957447,
"avg_line_length": 37.6,
"ext": "agda",
"hexsha": "46c7bb293296600151b19ac80231808c0e1408fd",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue2224.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue2224.agda",
"max_line_length": 66,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue2224.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 47,
"size": 188
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Algebra.RingSolver.IntAsRawRing where
open import Cubical.Data.Nat hiding (_+_; _·_)
open import Cubical.Data.Int
open import Cubical.Data.Int.Base renaming (Int to ℤ) public
open import Cubical.Foundations.Prelude
open import Cubical.Algebra.RingSolver.RawRing
ℤAsRawRing : RawRing {ℓ-zero}
ℤAsRawRing = rawring ℤ (pos zero) (pos (suc zero)) _+_ _·_ (λ k → - k)
+Ridℤ : (k : ℤ) → (pos zero) + k ≡ k
+Ridℤ k = sym (pos0+ k)
| {
"alphanum_fraction": 0.7125506073,
"avg_line_length": 30.875,
"ext": "agda",
"hexsha": "92d5c91c25161f0216c9d47df3e532b42e57e2db",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Algebra/RingSolver/IntAsRawRing.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Algebra/RingSolver/IntAsRawRing.agda",
"max_line_length": 70,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Algebra/RingSolver/IntAsRawRing.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 170,
"size": 494
} |
open import Type
-- The relation (_⟶_) should be interpreted as "a term reduces/rewritten to another term".
-- Also called: Abstract reduction system, abstract rewriting system, rewriting system.
module ReductionSystem {ℓ₁ ℓ₂} {Term : Type{ℓ₁}} (_⟶_ : Term → Term → Type{ℓ₂}) where
open import Functional
open import Graph.Properties
open import Graph.Walk
open import Graph.Walk.Proofs
open import Lang.Instance
import Lvl
open import Logic
open import Logic.Propositional
open import Logic.Predicate
open import Relator.Converse
open import Relator.Equals
open import Relator.Equals.Proofs.Equiv
open import Relator.ReflexiveTransitiveClosure
open import Structure.Setoid.Uniqueness
open import Structure.Relator.Equivalence
open import Structure.Relator.Ordering
open import Structure.Relator.Properties
open import Syntax.Function
open import Syntax.Transitivity
open Graph.Properties using (intro) public
-- The relation (_⟶_) is a function on the left argument.
-- In terms of paths, it means that there are no forks on any paths.
Deterministic = ∀{a} → Unique(a ⟶_)
-- A term is reducible when there is a term it can reduce to.
-- In terms of paths, it means that one can go somewhere else from this point.
Reducible : Term → Stmt
Reducible(a) = ∃(a ⟶_)
-- A term is in normal form when it is irreducible (cannot be reduced any further).
-- Also called: Irreducible term
-- In terms of paths, it means that this point is a dead-end.
NormalForm : Term → Stmt
NormalForm = FinalVertex(_⟶_)
module NormalForm = FinalVertex
-- "a normalizes to b" means that "a" reduces to the normal form "b".
-- In terms of paths, this means that the dead end of one path from "a" is "b".
record _normalizes-to_ (a : Term) (b : Term) : Stmt{ℓ₁ Lvl.⊔ ℓ₂} where
constructor intro
field
reduction : Walk(_⟶_) a b
⦃ normalForm ⦄ : NormalForm(b)
-- In terms of paths, this means that there is a path which leads to a dead-end.
WeaklyNormalizes : Term → Stmt
WeaklyNormalizes a = ∃(a normalizes-to_)
-- A reduction system is weakly normalizing when all terms in the language have a normal form.
-- In terms of paths, this means that all points have a path whch eventually lead to a dead-end.
WeaklyNormalizing = ∀ₗ(WeaklyNormalizes)
StronglyNormalizes : Term → Stmt
StronglyNormalizes = Strict.Properties.Accessibleₗ(Converse(_⟶_))
-- Every term reduces to a normal form.
-- Also called: Terminating.
StronglyNormalizing : Stmt
StronglyNormalizing = Strict.Properties.WellFounded(Converse(_⟶_))
-- Both a and b reduce to c in zero or more steps.
-- Also called: _⟶*_*⟵_
CommonReduct : Term → Term → Term → Stmt
CommonReduct c a b = (Walk(_⟶_) a c) ∧ (Walk(_⟶_) b c)
-- Both a and b reduce to the same term in zero or more steps.
-- In terms of paths, this means that paths starting from the two points are able to eventually meet.
-- Also called: Joinable, _⟶*_*⟵_ _↓_.
Joinable : Term → Term → Stmt
Joinable a b = ∃(c ↦ CommonReduct c a b)
module Names where
import Structure.Relator.Names as Names
EverywhereCommonReduct = Names.Subrelation (Walk(_⟶_)) Joinable
module _ (a : Term) where
Confluent = ∀{b c} → (Walk(_⟶_) a b) → (Walk(_⟶_) a c) → Joinable b c
Semiconfluent = ∀{b c} → (a ⟶ b) → (Walk(_⟶_) a c) → Joinable b c
LocallyConfluent = ∀{b c} → (a ⟶ b) → (a ⟶ c) → Joinable b c
StronglyConfluent = ∀{b c} → (a ⟶ b) → (a ⟶ c) → ∃(d ↦ (ReflexiveClosure(_⟶_) b d) ∧ (Walk(_⟶_) c d))
DiamondProperty = ∀{b c} → (a ⟶ b) → (a ⟶ c) → ∃(d ↦ (b ⟶ d) ∧ (c ⟶ d))
Confluence = ∀ₗ(Confluent)
-- Also called: The Church-Rosser property
EverywhereCommonReduct = (Walk(_⟶_)) ⊆₂ Joinable
module _ (a : Term) where
-- A term is confluent when all its reducts have a common reduct.
-- In terms of paths, this means that paths starting from this point will always eventually meet.
record Confluent : Stmt{ℓ₁ Lvl.⊔ ℓ₂} where
constructor intro
field proof : Names.Confluent(a)
confluent = inst-fn Confluent.proof
record Semiconfluent : Stmt{ℓ₁ Lvl.⊔ ℓ₂} where
constructor intro
field proof : Names.Semiconfluent(a)
semiconfluent = inst-fn Semiconfluent.proof
record LocallyConfluent : Stmt{ℓ₁ Lvl.⊔ ℓ₂} where
constructor intro
field proof : Names.LocallyConfluent(a)
locally-confluent = inst-fn LocallyConfluent.proof
record StronglyConfluent : Stmt{ℓ₁ Lvl.⊔ ℓ₂} where
constructor intro
field proof : Names.StronglyConfluent(a)
strongly-confluent = inst-fn StronglyConfluent.proof
record DiamondProperty : Stmt{ℓ₁ Lvl.⊔ ℓ₂} where
constructor intro
field proof : Names.DiamondProperty(a)
diamond-property = inst-fn DiamondProperty.proof
-- All terms are confluent.
-- In terms of paths, this means that parts starting from the same point can always eventually meet.
Confluence = ∀ₗ(Confluent)
Semiconfluence = ∀ₗ(Semiconfluent)
LocalConfluence = ∀ₗ(LocallyConfluent)
StrongConfluence = ∀ₗ(StronglyConfluent)
record Convergent : Stmt{ℓ₁ Lvl.⊔ ℓ₂} where
constructor intro
field
⦃ confluence ⦄ : Confluence
⦃ strongly-normalizing ⦄ : StronglyNormalizing
-- Evaluable = ∃(f ↦ )
-- All paths from a dead-end results in going nowhere.
Normal-unique-Path : ∀{a} → ⦃ _ : NormalForm(a) ⦄ → ∀{b} → Walk(_⟶_) a b → (a ≡ b)
Normal-unique-Path at = [≡]-intro
Normal-unique-Path ⦃ intro na ⦄ (prepend ab1 sb1b) = [⊥]-elim(na ab1)
instance
-- A term reduces to itself in zero steps.
-- In terms of paths, this means that two paths starting from the same point can reach this same point.
Joinable-reflexivity : Reflexivity(Joinable)
∃.witness (Reflexivity.proof Joinable-reflexivity {x}) = x
∃.proof (Reflexivity.proof Joinable-reflexivity {x}) = [∧]-intro Walk.at Walk.at
instance
-- When one reduces to the same term as the other, the other also reduces to the same term as the first one.
Joinable-symmetry : Symmetry(Joinable)
∃.witness (Symmetry.proof Joinable-symmetry {x} {y} xy) = [∃]-witness xy
∃.proof (Symmetry.proof Joinable-symmetry {x} {y} xy) = [∧]-intro ([∧]-elimᵣ(∃.proof xy)) (([∧]-elimₗ(∃.proof xy)))
instance
-- When one reduces to the same term as the other, the other also reduces to the same term as the first one.
Walk-Joinable-subrelation : Walk(_⟶_) ⊆₂ Joinable
∃.witness (_⊆₂_.proof Walk-Joinable-subrelation {y = y} ab) = y
∃.proof (_⊆₂_.proof Walk-Joinable-subrelation ab) = [∧]-intro ab (reflexivity(Walk(_⟶_)))
module _ ⦃ confl : Confluence ⦄ where
import Structure.Relator.Names as Names
instance
Confluence-to-Joinable-transitivity : Transitivity(Joinable)
Confluence-to-Joinable-transitivity = intro proof where
proof : Names.Transitivity(Joinable)
proof {x}{y}{z} ([∃]-intro obj-xy ⦃ [∧]-intro pxxy pyxy ⦄) ([∃]-intro obj-yz ⦃ [∧]-intro pyyz pzyz ⦄) = [∃]-intro obj ⦃ [∧]-intro l r ⦄ where
objxy-objyz-common-reduct : Joinable obj-xy obj-yz
objxy-objyz-common-reduct = confluent(y) pyxy pyyz
obj : Term
obj = [∃]-witness objxy-objyz-common-reduct
l : Walk(_⟶_) x obj
l = transitivity(Walk(_⟶_)) pxxy ([∧]-elimₗ ([∃]-proof objxy-objyz-common-reduct))
r : Walk(_⟶_) z obj
r = transitivity(Walk(_⟶_)) pzyz ([∧]-elimᵣ ([∃]-proof objxy-objyz-common-reduct))
instance
Confluence-to-Joinable-equivalence : Equivalence(Joinable)
Confluence-to-Joinable-equivalence = intro
module _ (det : Deterministic) where
-- Frege thing
deterministic-dichotomy : ∀{a b c} → (Walk(_⟶_) a b) → (Walk(_⟶_) a c) → (Walk(_⟶_) b c) ∨ (Walk(_⟶_) c b)
deterministic-dichotomy at ac = [∨]-introₗ ac
deterministic-dichotomy (ab @ (prepend _ _)) at = [∨]-introᵣ ab
deterministic-dichotomy (prepend ab2 b) (prepend ab3 ac) with det ab2 ab3
... | [≡]-intro = deterministic-dichotomy b ac
deterministic-step : ∀{a b c} → (a ⟶ b) → (Walk(_⟶_) a c) → ((a ≡ c) ∨ (Walk(_⟶_) b c))
deterministic-step ab at = [∨]-introₗ [≡]-intro
deterministic-step ab (prepend ab₁ ac) rewrite det ab ab₁ = [∨]-introᵣ ac
instance
deterministic-confluence : Confluence
deterministic-confluence = intro proof where
proof : Names.Confluence
proof {c = c} at ac = [∃]-intro c ⦃ [∧]-intro ac at ⦄
{-# CATCHALL #-}
proof {b = b} ab at = [∃]-intro b ⦃ [∧]-intro at ab ⦄
proof (prepend ab1 ab) (prepend ab2 ac) rewrite det ab1 ab2 = proof ab ac
deterministic-unique-normalizes-to : ∀{a} → Unique(a normalizes-to_)
deterministic-unique-normalizes-to (intro ax) (intro ay) = proof ax ay where
proof : ∀{a b c} → ⦃ _ : NormalForm(b) ⦄ → ⦃ _ : NormalForm(c) ⦄ → Walk(_⟶_) a b → Walk(_⟶_) a c → (b ≡ c)
proof at at = [≡]-intro
proof ⦃ intro normal-x ⦄ ⦃ _ ⦄ at (prepend ab by) = [⊥]-elim(normal-x ab)
proof ⦃ _ ⦄ ⦃ intro normal-y ⦄ (prepend ab bx) at = [⊥]-elim(normal-y ab)
proof (prepend ab₁ b₁x) (prepend ab₂ b₂y) rewrite det ab₁ ab₂ = proof b₁x b₂y
confluence-semiconfluence : Confluence ↔ Semiconfluence
confluence-semiconfluence = [↔]-intro (semiconfl ↦ intro(l(semiconfl))) r where
l : Names.Confluence ← Semiconfluence
l semiconfl at xc = sub₂(Walk(_⟶_))(Joinable) xc
l semiconfl (prepend xb₁ b₁b) xc with Semiconfluent.proof semiconfl xb₁ xc
... | [∃]-intro d ⦃ [∧]-intro b₁d c₁d ⦄ with l semiconfl b₁b b₁d
... | [∃]-intro e ⦃ [∧]-intro be de ⦄ = [∃]-intro e ⦃ [∧]-intro be (transitivity(Walk(_⟶_)) c₁d de) ⦄
r : Confluence → Semiconfluence
Semiconfluent.proof (r confl) xb xc = Confluent.proof confl (sub₂(_⟶_)(Walk(_⟶_)) xb) xc
-- TODO: Not sure, but maybe?
{-# TERMINATING #-}
strong-confluence-confluence : StrongConfluence → Confluence
strong-confluence-confluence strconfl = intro(proof strconfl) where
proof : StrongConfluence → Names.Confluence
proof strconfl {x} at at = reflexivity(Joinable)
proof strconfl {x} at (prepend xb bc) = sub₂(Walk(_⟶_))(Joinable) (prepend xb bc)
proof strconfl {x} (prepend xb₁ b₁b) at = symmetry(Joinable) (sub₂(Walk(_⟶_))(Joinable) (prepend xb₁ b₁b))
proof strconfl {x} {b}{c} (prepend xb₁ b₁b) (prepend xb₂ b₂c) with StronglyConfluent.proof strconfl xb₁ xb₂
proof strconfl {x} {b}{c} (prepend xd db) (prepend xb₁ b₁c) | [∃]-intro d ⦃ [∧]-intro refl b₁d ⦄ with proof strconfl b₁c b₁d
... | [∃]-intro e ⦃ [∧]-intro ce de ⦄ with proof strconfl db de
... | [∃]-intro f ⦃ [∧]-intro bf ef ⦄ = [∃]-intro f ⦃ [∧]-intro bf (transitivity(Walk(_⟶_)) ce ef) ⦄
proof strconfl {x} {b}{c} (prepend xb₁ b₁b) (prepend xb₂ b₂c) | [∃]-intro d ⦃ [∧]-intro (super b₁d) b₂d ⦄ with proof strconfl b₁b (sub₂(_⟶_)(Walk(_⟶_)) b₁d)
... | [∃]-intro e ⦃ [∧]-intro be de ⦄ with proof strconfl b₂c b₂d
... | [∃]-intro f ⦃ [∧]-intro cf df ⦄ with proof strconfl de df
... | [∃]-intro g ⦃ [∧]-intro eg fg ⦄ = [∃]-intro g ⦃ [∧]-intro (transitivity(Walk(_⟶_)) be eg) (transitivity(Walk(_⟶_)) cf fg) ⦄
semiconfluence-everywhere-common-reduct : ⦃ _ : Semiconfluence ⦄ → EverywhereCommonReduct
semiconfluence-everywhere-common-reduct ⦃ semiconfl ⦄ = intro proof where
instance
confl : Confluence
confl = [↔]-to-[←] confluence-semiconfluence semiconfl
proof : Names.EverywhereCommonReduct
proof at = reflexivity(Joinable)
proof {a}{c} (prepend {b = b} ab bc) = transitivity(Joinable) (sub₂(Walk(_⟶_))(Joinable) (sub₂(_⟶_)(Walk(_⟶_)) ab)) (proof bc)
diamond-property-locally-confluent : ⦃ _ : ∀ₗ(DiamondProperty) ⦄ → LocalConfluence
LocallyConfluent.proof (diamond-property-locally-confluent {x}) xb xc = [∃]-map-proof ([∧]-map (sub₂(_⟶_)(Walk(_⟶_))) (sub₂(_⟶_)(Walk(_⟶_)))) (diamond-property _ xb xc)
-- locally-confluent-diamond-property : ⦃ LocalConfluence ⦄ → ∀ₗ(DiamondProperty)
-- DiamondProperty.proof locally-confluent-diamond-property xb xc = {!locally-confluent _ xb xc!}
-- Terminating ↔ LocalConfluence (TODO: See Newman's lemma)
-- Convergent → ∀{a} → Unique(a normalizes-to_)
-- Confluence → (Walk(_⟶_) x y) → NormalForm(y) → (ReflexiveClosure(_⟶_) x y)
-- Confluence → (Walk(_⟶_) x y) → Unique(NormalForm)
-- Confluence → ∀{a} → Unique(a normalizes-to_)
| {
"alphanum_fraction": 0.6741674909,
"avg_line_length": 44.6029411765,
"ext": "agda",
"hexsha": "6c609177f06d66f8efc3ae60ea294457d23b4c94",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "ReductionSystem.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "ReductionSystem.agda",
"max_line_length": 168,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "ReductionSystem.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 4133,
"size": 12132
} |
-- Andreas, 2016-07-01 issue #2078
-- Holes in postponed type-checking problems cannot be worked on.
-- {-# OPTIONS -v interaction:30 #-}
-- {-# OPTIONS -v tc.term.exlam:30 -v tc:5 #-}
test : Set → Set
test A = (λ{ B → {!B!}}) A
-- splitting on B gives
-- No type nor action available for hole ?0
| {
"alphanum_fraction": 0.6333333333,
"avg_line_length": 25,
"ext": "agda",
"hexsha": "ffc996c8e2785fa1cbb4fef1568a9acad16f41ac",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue2078.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue2078.agda",
"max_line_length": 65,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue2078.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 95,
"size": 300
} |
module Issue475 where
data Box (A : Set) : Set where
box : A → Box A
postulate
T : {A : Set} → A → Set
unbox : {A : Set} → Box A → A
data BoxT {A : Set}(b : Box A) : Set where
boxT : T (unbox b) → BoxT b
-- Can't be projection-like since we've already used it in BoxT
unbox (box x) = x
postulate
A : Set
b : Box A
unboxT : BoxT b → T (unbox b)
unboxT (boxT p) = p
| {
"alphanum_fraction": 0.5890052356,
"avg_line_length": 15.9166666667,
"ext": "agda",
"hexsha": "73721c7fe576b506cda6a0777ebdb06a88e7202f",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue475.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue475.agda",
"max_line_length": 63,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue475.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 151,
"size": 382
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import Haskell.Modules.RWS
open import LibraBFT.ImplShared.Consensus.Types
open import LibraBFT.ImplShared.Interface.Output
open import LibraBFT.ImplShared.Util.Dijkstra.All
open import Util.Prelude
------------------------------------------------------------------------------
open import Data.String using (String)
module LibraBFT.Impl.OBM.Logging.Logging where
-- NOTE: Logging operations change the structure of the program, and proofs about peer
-- operations are sensitive to this structure. Therefore, we add a "skeleton" of
-- logging operations so that future refinements do not break existing proofs.
-- In the future, we may wish to model and reason about errors and logging in more detail.
postulate -- TODO-1 : errText : Note, the existing Agda ErrLog constructors do not contain text.
errText : ErrLog → List String
errText' : ErrLog → String
logErr : ErrLog → LBFT Unit
logErr x = tell (LogErr x ∷ [])
logInfo : InfoLog → LBFT Unit
logInfo x = tell (LogInfo x ∷ [])
logEE : ∀ {A} → List String → LBFT A → LBFT A
logEE _ f = logInfo fakeInfo >> f >>= λ r → logInfo fakeInfo >> pure r
withErrCtx : List String → ErrLog → ErrLog
withErrCtx _ = id
withErrCtx' : ∀ {A} → List String → Either ErrLog A → Either ErrLog A
withErrCtx' ctx = λ where
(Left e) → Left (withErrCtx ctx e)
(Right b) → pure b
withErrCtxD'
: ∀ {ℓ} {E : Set → Set → Set ℓ} ⦃ _ : EitherLike E ⦄
→ ∀ {A : Set} → List String → E ErrLog A → EitherD ErrLog A
withErrCtxD' ctx e = case toEither e of λ where
(Left e) → fromEither $ Left (withErrCtx ctx e)
(Right b) → fromEither $ Right b
lcheck : ∀ {ℓ} {B : Set ℓ} ⦃ _ : ToBool B ⦄ → B → List String → Either ErrLog Unit
lcheck b t = case check (toBool b) t of λ where
(Left e) → Left fakeErr -- (ErrL [e])
(Right r) → Right r
lcheckInfo : ∀ {ℓ} {B : Set ℓ} ⦃ _ : ToBool B ⦄ → B → List String → Either ErrLog Unit
lcheckInfo b t = case check (toBool b) t of λ where
(Left _) → Left (ErrInfo fakeInfo {-InfoL [e]-})
(Right r) → Right r
| {
"alphanum_fraction": 0.6624343257,
"avg_line_length": 38.0666666667,
"ext": "agda",
"hexsha": "0bf316a6aa6d83c6f0357c1cafd373325ebb80a0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_forks_repo_path": "src/LibraBFT/Impl/OBM/Logging/Logging.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_issues_repo_path": "src/LibraBFT/Impl/OBM/Logging/Logging.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_stars_repo_path": "src/LibraBFT/Impl/OBM/Logging/Logging.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 688,
"size": 2284
} |
{-# OPTIONS --without-K --safe #-}
-- The category of Cats is Monoidal
module Categories.Category.Monoidal.Instance.StrictCats where
open import Level
open import Data.Product using (Σ; _×_; _,_; proj₁; proj₂; uncurry)
open import Relation.Binary.PropositionalEquality as ≡
using (_≡_; refl; cong₂; sym; module ≡-Reasoning; subst₂; cong)
open import Function using (_$_)
open import Data.Unit using (⊤; tt)
open import Categories.Category
open import Categories.Functor using (Functor; _∘F_) renaming (id to idF)
open import Categories.Category.Instance.StrictCats
open import Categories.Category.Instance.One using (One)
open import Categories.Category.Monoidal
open import Categories.Functor.Bifunctor
open import Categories.Functor.Construction.Constant
open import Categories.Functor.Equivalence
open import Categories.Category.Product
open import Categories.Category.Product.Properties
import Categories.Category.Cartesian as Cartesian
import Categories.Morphism.HeterogeneousIdentity as HId
import Categories.Morphism.HeterogeneousIdentity.Properties as HIdProps
import Categories.Morphism.Reasoning as MR
open import Categories.Object.Terminal
open import Categories.Utils.Product using (zipWith)
open import Categories.Utils.EqReasoning
-- (Strict) Cats is a (strict) Monoidal Category with Product as Bifunctor
module Product {o ℓ e : Level} where
private
C = Cats o ℓ e
open Cartesian C
open _≡F_
Cats-has-all : BinaryProducts
Cats-has-all = record { product = λ {A} {B} → record
{ A×B = Product A B
; π₁ = πˡ
; π₂ = πʳ
; ⟨_,_⟩ = _※_
; project₁ = record { eq₀ = λ _ → ≡.refl ; eq₁ = λ _ → MR.id-comm-sym A }
; project₂ = record { eq₀ = λ _ → ≡.refl ; eq₁ = λ _ → MR.id-comm-sym B }
; unique = λ {hA} {h} {i} {j} left right →
let unique-eq₀ X = cong₂ _,_ (≡.sym $ eq₀ left X) (≡.sym $ eq₀ right X)
in record
{ eq₀ = unique-eq₀
; eq₁ = λ {a} {b} f →
let module A = Category A
module B = Category B
module C = Category C
module A×B = Category (Product A B)
open A×B.HomReasoning
open HId
open HIdProps
open Functor
leq a = ≡.sym $ eq₀ left a
req a = ≡.sym $ eq₀ right a
in begin
hid (Product A B) (unique-eq₀ b) A×B.∘ F₁ (i ※ j) f
≈˘⟨ A×B.∘-resp-≈ˡ (×-hid A B (leq b) (req b)) ⟩
(hid A (leq b) A.∘ F₁ i f , hid B (req b) B.∘ F₁ j f)
≈⟨ eq₁⁻¹ left f , eq₁⁻¹ right f ⟩
F₁ (πˡ C.∘ h) f A.∘ hid A (leq a) ,
F₁ (πʳ C.∘ h) f B.∘ hid B (req a)
≈⟨ A×B.∘-resp-≈ʳ (×-hid A B (leq a) (req a)) ⟩
(F₁ h f) A×B.∘ (hid (Product A B) (unique-eq₀ a))
∎
}
} }
private
unique-One : {l : Level} (x : Lift l ⊤) → lift tt ≡ x
unique-One (lift tt) = refl
One-⊤ : Terminal C
One-⊤ = record
{ ⊤ = One
; ! = const (lift tt)
; !-unique = λ f → record { eq₀ = λ _ → unique-One _ ; eq₁ = λ _ → lift tt }
}
Cats-is : Cartesian
Cats-is = record { terminal = One-⊤ ; products = Cats-has-all }
private
module Cart = Cartesian.Cartesian Cats-is
Cats-Monoidal : Monoidal C
Cats-Monoidal = Cart.monoidal
| {
"alphanum_fraction": 0.6078787879,
"avg_line_length": 35.1063829787,
"ext": "agda",
"hexsha": "367511754563ec9c403a496b57ef44096870a8b5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "MirceaS/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Monoidal/Instance/StrictCats.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "MirceaS/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Monoidal/Instance/StrictCats.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "MirceaS/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Monoidal/Instance/StrictCats.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1054,
"size": 3300
} |
module Inductive.Examples.List where
open import Inductive
open import Tuple hiding (_++_)
open import Data.Fin
open import Data.Product hiding (map)
open import Data.List hiding (List; map; foldr; _++_)
open import Data.Vec hiding (map; foldr; _++_)
List : Set → Set
List A = Inductive (([] , []) ∷ (((A ∷ []) , ([] ∷ [])) ∷ []))
nil : {A : Set} → List A
nil = construct zero [] []
cons : {A : Set} → A → List A → List A
cons x xs = construct (suc zero) (x ∷ []) ((λ _ → xs) ∷ [])
map : {A B : Set} → (A → B) → List A → List B
map f = rec (nil ∷ ((λ a as ras → cons (f a) ras) ∷ []))
foldr : {A B : Set} → (A → B → B) → B → List A → B
foldr f b = rec (b ∷ (λ a as ras → f a ras) ∷ [])
_++_ : {A : Set} → List A → List A → List A
xs ++ ys = rec (ys ∷ (λ a as ras → cons a ras) ∷ []) xs
| {
"alphanum_fraction": 0.5390428212,
"avg_line_length": 28.3571428571,
"ext": "agda",
"hexsha": "6df063436cdecda97b1a4fa91484753c5b33d1d1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "dc157acda597a2c758e82b5637e4fd6717ccec3f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mr-ohman/general-induction",
"max_forks_repo_path": "Inductive/Examples/List.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "dc157acda597a2c758e82b5637e4fd6717ccec3f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mr-ohman/general-induction",
"max_issues_repo_path": "Inductive/Examples/List.agda",
"max_line_length": 62,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "dc157acda597a2c758e82b5637e4fd6717ccec3f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mr-ohman/general-induction",
"max_stars_repo_path": "Inductive/Examples/List.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 293,
"size": 794
} |
{-# OPTIONS --without-K #-}
module function.isomorphism.remove where
open import sum
open import equality
open import function.isomorphism.core
open import function.isomorphism.utils
open import function.isomorphism.properties
open import function.overloading
open import sets.empty
_minus_ : ∀ {i}(A : Set i) → A → Set i
A minus x = Σ A λ x' → ¬ (x' ≡ x)
iso-remove : ∀ {i j}{A : Set i}{B : Set j}
→ (isom : A ≅ B)
→ (x : A)
→ (A minus x)
≅ (B minus (apply isom x))
iso-remove {A = A}{B} isom x =
Σ-ap-iso isom λ a
→ Π-ap-iso (iso≡ isom) λ _
→ refl≅
| {
"alphanum_fraction": 0.6046128501,
"avg_line_length": 25.2916666667,
"ext": "agda",
"hexsha": "c97647aa98cc953177d791b80bff8b1ceaeedcf9",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z",
"max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "pcapriotti/agda-base",
"max_forks_repo_path": "src/function/isomorphism/remove.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "pcapriotti/agda-base",
"max_issues_repo_path": "src/function/isomorphism/remove.agda",
"max_line_length": 43,
"max_stars_count": 27,
"max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "HoTT/M-types",
"max_stars_repo_path": "function/isomorphism/remove.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z",
"num_tokens": 196,
"size": 607
} |
{-# OPTIONS --without-K #-}
module container.w where
open import container.w.core public
open import container.w.algebra public
open import container.w.fibration public
| {
"alphanum_fraction": 0.783625731,
"avg_line_length": 24.4285714286,
"ext": "agda",
"hexsha": "4a0e322637153a8f4f828d2ae40e289bd109572d",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z",
"max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "pcapriotti/agda-base",
"max_forks_repo_path": "src/container/w.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "pcapriotti/agda-base",
"max_issues_repo_path": "src/container/w.agda",
"max_line_length": 40,
"max_stars_count": 20,
"max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "pcapriotti/agda-base",
"max_stars_repo_path": "src/container/w.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z",
"num_tokens": 35,
"size": 171
} |
module Issue604 where
f : (y : Set1) → (x : Set) → Set1
f x = ?
| {
"alphanum_fraction": 0.5384615385,
"avg_line_length": 13,
"ext": "agda",
"hexsha": "cb3fb57e1ea5451fd77b8e545d923fe2595aaa45",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue604.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue604.agda",
"max_line_length": 33,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue604.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 27,
"size": 65
} |
open import Nat
open import Prelude
open import contexts
open import dynamics-core
open import lemmas-matching
open import synth-unicity
module elaboration-unicity where
mutual
elaboration-unicity-synth : {Γ : tctx} {e : hexp} {τ1 τ2 : htyp} {d1 d2 : ihexp} {Δ1 Δ2 : hctx} →
Γ ⊢ e ⇒ τ1 ~> d1 ⊣ Δ1 →
Γ ⊢ e ⇒ τ2 ~> d2 ⊣ Δ2 →
τ1 == τ2 × d1 == d2 × Δ1 == Δ2
elaboration-unicity-synth ESNum ESNum = refl , refl , refl
elaboration-unicity-synth (ESPlus apt1 dis1 x₁ x₂) (ESPlus apt2 dis2 x₃ x₄)
with elaboration-unicity-ana x₁ x₃ | elaboration-unicity-ana x₂ x₄
... | refl , refl , refl | refl , refl , refl = refl , refl , refl
elaboration-unicity-synth (ESAsc x) (ESAsc x₁)
with elaboration-unicity-ana x x₁
... | refl , refl , refl = refl , refl , refl
elaboration-unicity-synth (ESVar {Γ = Γ} x₁) (ESVar x₂) = ctxunicity {Γ = Γ} x₁ x₂ , refl , refl
elaboration-unicity-synth (ESLam apt1 d1) (ESLam apt2 d2)
with elaboration-unicity-synth d1 d2
... | ih1 , ih2 , ih3 = ap1 _ ih1 , ap1 _ ih2 , ih3
elaboration-unicity-synth (ESAp _ _ x x₁ x₂ x₃) (ESAp _ _ x₄ x₅ x₆ x₇)
with synthunicity x x₄
... | refl with ▸arr-unicity x₁ x₅
... | refl with elaboration-unicity-ana x₂ x₆
... | refl , refl , refl with elaboration-unicity-ana x₃ x₇
... | refl , refl , refl = refl , refl , refl
elaboration-unicity-synth ESEHole ESEHole = refl , refl , refl
elaboration-unicity-synth (ESNEHole _ d1) (ESNEHole _ d2)
with elaboration-unicity-synth d1 d2
... | ih1 , ih2 , ih3 = refl , ap1 _ ih2 , ap1 _ ih3
elaboration-unicity-synth (ESPair x x₁ wt1 wt2) (ESPair x₂ x₃ wt3 wt4)
with elaboration-unicity-synth wt1 wt3 | elaboration-unicity-synth wt2 wt4
... | refl , refl , refl | refl , refl , refl = refl , refl , refl
elaboration-unicity-synth (ESFst wt1 x₁ d1) (ESFst wt2 x₄ d2)
with synthunicity wt1 wt2
... | refl with ▸prod-unicity x₁ x₄
... | refl with elaboration-unicity-ana d1 d2
... | refl , refl , refl = refl , refl , refl
elaboration-unicity-synth (ESSnd wt1 x₁ d1) (ESSnd wt2 x₄ d2)
with synthunicity wt1 wt2
... | refl with ▸prod-unicity x₁ x₄
... | refl with elaboration-unicity-ana d1 d2
... | refl , refl , refl = refl , refl , refl
elaboration-unicity-ana : {Γ : tctx} {e : hexp} {τ τ1 τ2 : htyp} {d1 d2 : ihexp} {Δ1 Δ2 : hctx} →
Γ ⊢ e ⇐ τ ~> d1 :: τ1 ⊣ Δ1 →
Γ ⊢ e ⇐ τ ~> d2 :: τ2 ⊣ Δ2 →
d1 == d2 × τ1 == τ2 × Δ1 == Δ2
elaboration-unicity-ana (EALam x₁ m D1) (EALam x₂ m2 D2)
with ▸arr-unicity m m2
... | refl with elaboration-unicity-ana D1 D2
... | refl , refl , refl = refl , refl , refl
elaboration-unicity-ana (EALam x₁ m D1) (EASubsume x₂ x₃ () x₅)
elaboration-unicity-ana (EASubsume x₁ x₂ () x₄) (EALam x₅ m D2)
elaboration-unicity-ana (EASubsume x x₁ x₂ x₃) (EASubsume x₄ x₅ x₆ x₇)
with elaboration-unicity-synth x₂ x₆
... | refl , refl , refl = refl , refl , refl
elaboration-unicity-ana (EASubsume x x₁ () x₃) (EAInl x₄ wt2)
elaboration-unicity-ana (EASubsume x x₁ () x₃) (EAInr x₄ wt2)
elaboration-unicity-ana (EASubsume x x₁ () x₃) (EACase x₄ x₅ x₆ x₇ x₈ x₉ x₁₀ x₁₁ x₁₂ x₁₃ wt2 wt3)
elaboration-unicity-ana (EASubsume x x₁ x₂ x₃) EAEHole = abort (x _ refl)
elaboration-unicity-ana (EASubsume x x₁ x₂ x₃) (EANEHole _ x₄) = abort (x₁ _ _ refl)
elaboration-unicity-ana (EAInl x x₁) (EAInl y y₁)
with ▸sum-unicity x y
... | refl with elaboration-unicity-ana x₁ y₁
... | refl , refl , refl = refl , refl , refl
elaboration-unicity-ana (EAInl x wt1) (EASubsume x₁ x₂ () x₄)
elaboration-unicity-ana (EAInr x x₁) (EAInr y y₁)
with ▸sum-unicity x y
... | refl with elaboration-unicity-ana x₁ y₁
... | refl , refl , refl = refl , refl , refl
elaboration-unicity-ana (EAInr x wt1) (EASubsume x₁ x₂ () x₄)
elaboration-unicity-ana (EACase x x₁ x₂ x₃ x₄ x₅ x₆ x₇ x₈ x₉ wt1 wt2) (EASubsume x₁₀ x₁₁ () x₁₃)
elaboration-unicity-ana (EACase x x₁ x₂ x₃ x₄ x₅ x₆ x₇ x₈ x₉ x₁₀ x₁₁) (EACase y y₁ y₂ y₃ y₄ y₅ y₆ y₇ y₈ y₉ y₁₀ y₁₁)
with elaboration-unicity-synth x₈ y₈
... | refl , refl , refl with ▸sum-unicity x₉ y₉
... | refl with elaboration-unicity-ana x₁₀ y₁₀
... | refl , refl , refl with elaboration-unicity-ana x₁₁ y₁₁
... | refl , refl , refl = refl , refl , refl
elaboration-unicity-ana EAEHole (EASubsume x x₁ x₂ x₃) = abort (x _ refl)
elaboration-unicity-ana EAEHole EAEHole = refl , refl , refl
elaboration-unicity-ana (EANEHole _ x) (EASubsume x₁ x₂ x₃ x₄) = abort (x₂ _ _ refl)
elaboration-unicity-ana (EANEHole _ x) (EANEHole _ x₁)
with elaboration-unicity-synth x x₁
... | refl , refl , refl = refl , refl , refl
| {
"alphanum_fraction": 0.6192221543,
"avg_line_length": 54.5666666667,
"ext": "agda",
"hexsha": "98d3c91e3b85986163cd296a59c2abcb2dc1a3a6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnut-agda",
"max_forks_repo_path": "elaboration-unicity.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazelnut-agda",
"max_issues_repo_path": "elaboration-unicity.agda",
"max_line_length": 119,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazelnut-agda",
"max_stars_repo_path": "elaboration-unicity.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1978,
"size": 4911
} |
-- Should fail with S i != i
module Issue216 where
open import Common.Level
Foo : {i : Level} → Set i
Foo {i} = (R : Set i) → R
| {
"alphanum_fraction": 0.6106870229,
"avg_line_length": 14.5555555556,
"ext": "agda",
"hexsha": "df43bde3501cf4582ae0edb2d98581adf0873da0",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue216.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue216.agda",
"max_line_length": 28,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue216.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 45,
"size": 131
} |
module relations where
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; cong)
open import Data.Nat using (ℕ; zero; suc; _+_)
open import Data.Nat.Properties using (+-comm; +-identityʳ)
data _≤_ : ℕ → ℕ → Set where
z≤n : ∀ {n : ℕ} → zero ≤ n
s≤s : ∀ {m n : ℕ} → m ≤ n → suc m ≤ suc n
infix 4 _≤_
foo : 2 ≤ 4
foo = s≤s (s≤s z≤n)
inv-s≤s : ∀ {m n : ℕ} → suc m ≤ suc n → m ≤ n
inv-s≤s (s≤s m≤n) = m≤n
bar : 1 ≤ 3
bar = inv-s≤s foo
| {
"alphanum_fraction": 0.5806451613,
"avg_line_length": 21.1363636364,
"ext": "agda",
"hexsha": "99c017d4ec32c8b881ed28606522a50595fc16df",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "64a00f1f97f053d246d5b9deab090e75d923fe8f",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "aronerben/agda-playground",
"max_forks_repo_path": "plfa/relations.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "64a00f1f97f053d246d5b9deab090e75d923fe8f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "aronerben/agda-playground",
"max_issues_repo_path": "plfa/relations.agda",
"max_line_length": 59,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "64a00f1f97f053d246d5b9deab090e75d923fe8f",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "aronerben/agda-playground",
"max_stars_repo_path": "plfa/relations.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 206,
"size": 465
} |
module Crash where
data N : Set where
zero : N
suc : N -> N
data B : Set where
true : B
false : B
F : B -> Set
F true = N
F false = B
not : B -> B
not true = false
not false = true
h : ((x : F _) -> F (not x)) -> N
h g = g zero
| {
"alphanum_fraction": 0.5162601626,
"avg_line_length": 10.6956521739,
"ext": "agda",
"hexsha": "f41b8f2144fabf509520244da080ef3f720a6b20",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Crash.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Crash.agda",
"max_line_length": 33,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Crash.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 96,
"size": 246
} |
{-# OPTIONS --without-K #-}
open import HoTT
open import lib.cubical.elims.SuspSmash
module homotopy.SuspProduct where
module SuspProduct {i} {j} (X : Ptd i) (Y : Ptd j) where
private
{- into -}
into-glue : fst (X ⊙× Y) → winl (north _) == winr (winr (north _))
into-glue (x , y) =
ap winl (σloop X x) ∙ wglue
∙ ap (winr ∘ winl) (σloop (⊙Smash X Y) (cfcod _ (x , y)))
∙ ap winr wglue ∙ ap (winr ∘ winr) (σloop Y y)
into-glue-x : (x : fst X) →
into-glue (x , snd Y) == ap winl (σloop X x) ∙ wglue ∙ ap winr wglue
into-glue-x x =
ap (λ p → ap winl (σloop X x) ∙ wglue ∙ p
∙ ap winr wglue ∙ ap (winr ∘ winr) (σloop Y (snd Y)))
(ap (ap (winr ∘ winl) ∘ σloop (⊙Smash X Y)) (! (cfglue _ (winl x)))
∙ ap (ap (winr ∘ winl)) σloop-pt)
∙
ap (λ q → ap winl (σloop X x) ∙ wglue ∙ ap winr wglue
∙ ap (winr ∘ winr) q)
σloop-pt
∙
ap (λ q → ap winl (σloop X x) ∙ wglue ∙ q) (∙-unit-r _)
into-glue-y : (y : fst Y) →
into-glue (snd X , y)
== wglue ∙ ap winr wglue ∙ ap (winr ∘ winr) (σloop Y y)
into-glue-y y =
ap (λ p → ap winl (σloop X (snd X)) ∙ wglue ∙ p
∙ ap winr wglue ∙ ap (winr ∘ winr) (σloop Y y))
(ap (ap (winr ∘ winl) ∘ σloop (⊙Smash X Y)) (! (cfglue _ (winr y)))
∙ ap (ap (winr ∘ winl)) σloop-pt)
∙
ap (λ q → ap winl q ∙ wglue ∙ ap winr wglue
∙ ap (winr ∘ winr) (σloop Y y))
σloop-pt
into-glue-0 : into-glue (snd X , snd Y) == wglue ∙ ap winr wglue
into-glue-0 = into-glue-x (snd X)
∙ ap (λ p → ap winl p ∙ wglue ∙ ap winr wglue) σloop-pt
module Into = SuspensionRec (fst (X ⊙× Y))
{C = fst (⊙Susp X ⊙∨ (⊙Susp (X ⊙∧ Y) ⊙∨ ⊙Susp Y))}
(winl (north _))
(winr (winr (north _)))
into-glue
into = Into.f
{- out -}
out-× : fst X × fst Y → north _ == north _
out-× (x , y) = merid _ (snd X , snd Y) ∙ ! (merid _ (x , snd Y))
∙ merid _ (x , y) ∙ ! (merid _ (snd X , y))
expand₁ : ∀ {i} {A : Type i} {x y z : A} (p : x == y) (q : z == y)
→ idp == p ∙ ! q ∙ q ∙ ! p
expand₁ idp idp = idp
expand₂ : ∀ {i} {A : Type i} {x y z : A} (p : x == y) (q : x == z)
→ idp == p ∙ ! p ∙ q ∙ ! q
expand₂ idp idp = idp
shift : ∀ {i} {A : Type i} {a₀₀ a₀₁ a₁₀ a₁₁ : A}
{p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀}
{p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁}
→ Square p₀₋ p₋₀ p₋₁ p₁₋
→ Square p₀₋ idp p₋₁ (p₋₀ ∙ p₁₋)
shift ids = ids
fill : Σ (idp == idp) (λ p →
Square (expand₁ (merid _ (snd X , snd Y)) (merid _ (snd X , snd Y))) p
(ap (λ w → out-× (∨-in-× X Y w)) wglue)
(expand₂ (merid _ (snd X , snd Y)) (merid _ (snd X , snd Y))))
fill = fill-square-top _ _ _
module OutSmash = SuspensionRec (Smash X Y)
(north (fst (X ⊙× Y)))
(north _)
(CofiberRec.f _
idp
out-×
(Wedge-elim
(λ x → expand₁ (merid _ (snd X , snd Y)) (merid _ (x , snd Y)))
(λ y → fst fill
∙ expand₂ (merid _ (snd X , snd Y)) (merid _ (snd X , y)))
(↓-cst=app-from-square $ shift (snd fill))))
module OutWinr = WedgeRec {X = ⊙Susp (X ⊙∧ Y)} {Y = ⊙Susp Y}
{C = fst (⊙Susp (X ⊙× Y))}
OutSmash.f
(susp-fmap (λ y → (snd X , y)))
idp
module Out = WedgeRec {X = ⊙Susp X}
{Y = ⊙Susp (X ⊙∧ Y) ⊙∨ ⊙Susp Y}
{C = fst (⊙Susp (X ⊙× Y))}
(susp-fmap (λ x → (x , snd Y)))
OutWinr.f
idp
out = Out.f
{- into-out -}
into-out-x : ∀ σx → into (out (winl σx)) == winl σx
into-out-x = Suspension-elim _
idp
(! (ap winl (! (merid _ (snd X))) ∙ wglue ∙ ap winr wglue))
(λ x → ↓-='-from-square $
(ap-∘ into (out ∘ winl) (merid _ x)
∙ ap (ap into) (SuspFmap.glue-β (λ x → (x , snd Y)) x)
∙ Into.glue-β (x , snd Y) ∙ into-glue-x x
∙ ap (λ p → p ∙ wglue ∙ ap winr wglue)
(ap-∙ winl (merid _ x) (! (merid _ (snd X))))
∙ ∙-assoc (ap winl (merid _ x)) (ap winl (! (merid _ (snd X))))
(wglue ∙ ap winr wglue))
∙v⊡ (vid-square {p = ap winl (merid _ x)} ⊡h
tr-square (ap winl (! (merid _ (snd X))) ∙ wglue ∙ ap winr wglue))
⊡v∙ ∙-unit-r _)
into-out-y : ∀ σy → into (out (winr (winr σy))) == winr (winr σy)
into-out-y = Suspension-elim _
(wglue ∙ ap winr wglue)
(ap (winr ∘ winr) (merid _ (snd Y)))
(λ y → ↓-='-from-square $
(ap-∘ into (out ∘ winr ∘ winr) (merid _ y)
∙ ap (ap into) (SuspFmap.glue-β (λ y → (snd X , y)) y)
∙ Into.glue-β (snd X , y) ∙ into-glue-y y
∙ ap (λ p → wglue ∙ ap winr wglue ∙ p)
(ap-∙ (winr ∘ winr) (merid _ y) (! (merid _ (snd Y)))
∙ ap (λ q → ap (winr ∘ winr) (merid _ y) ∙ q)
(ap-! (winr ∘ winr) (merid _ (snd Y)))))
∙v⊡ lemma wglue (ap winr wglue) (ap (winr ∘ winr) (merid _ y))
(ap (winr ∘ winr) (merid _ (snd Y))))
where
lemma : ∀ {i} {A : Type i} {a₁ a₂ a₃ a₄ : A}
(p : a₁ == a₂) (q : a₂ == a₃) (r : a₃ == a₄) (s : a₃ == a₄)
→ Square (p ∙ q) (p ∙ q ∙ r ∙ ! s) r s
lemma idp idp idp s = disc-to-square (! (!-inv-l s))
into-out-s : ∀ σs → into (out (winr (winl σs))) == winr (winl σs)
into-out-s = susp-smash-path-elim _ _
wglue
(wglue ∙ ap (winr ∘ winl) (merid _ (cfbase _)))
(λ {(x , y) →
(ap-∘ into (out ∘ winr ∘ winl) (merid _ (cfcod _ (x , y)))
∙ ap (ap into) (OutSmash.glue-β (cfcod _ (x , y)))
∙ lemma₁ into
(Into.glue-β (snd X , snd Y) ∙ into-glue-0)
(Into.glue-β (x , snd Y) ∙ into-glue-x x)
(Into.glue-β (x , y))
(Into.glue-β (snd X , y) ∙ into-glue-y y))
∙v⊡ lemma₂ wglue (ap winr wglue) (ap winl (σloop X x))
(ap (winr ∘ winl) (σloop (⊙Smash X Y) (cfcod _ (x , y))))
(ap (winr ∘ winr) (σloop Y y))
(ap (winr ∘ winl) (merid _ (cfcod _ (x , y))))
(ap (winr ∘ winl) (merid _ (cfbase _)))
(ap-∙ (winr ∘ winl) (merid _ (cfcod _ (x , y)))
(! (merid _ (cfbase _)))
∙ ap (λ p → ap (winr ∘ winl) (merid _ (cfcod _ (x , y)))
∙ p)
(ap-! (winr ∘ winl) (merid _ (cfbase _))))})
where
{- Let's not do these by hand -}
lemma₁ : ∀ {i j} {A : Type i} {B : Type j} (f : A → B)
{a₀ a₁ a₂ a₃ a₄ : A}
{p : a₀ == a₁} {q : a₂ == a₁} {r : a₂ == a₃} {s : a₄ == a₃}
{p' : f a₀ == f a₁} {q' : f a₂ == f a₁}
{r' : f a₂ == f a₃} {s' : f a₄ == f a₃}
(α : ap f p == p') (β : ap f q == q')
(γ : ap f r == r') (δ : ap f s == s')
→ ap f (p ∙ ! q ∙ r ∙ ! s) == p' ∙ ! q' ∙ r' ∙ ! s'
lemma₁ f {p = idp} {q = idp} {r = idp} {s = idp} idp idp idp idp = idp
lemma₂ : ∀ {i} {A : Type i} {a₀ a₁ a₂ a₃ a₄ a₅ : A}
(p : a₀ == a₁) (q : a₁ == a₂) (r : a₃ == a₀) (s : a₁ == a₁)
(t : a₂ == a₄) (u : a₁ == a₅) (v : a₁ == a₅)
→ s == u ∙ ! v
→ Square p ((p ∙ q) ∙ ! (r ∙ p ∙ q) ∙ (r ∙ p ∙ s ∙ q ∙ t)
∙ ! (p ∙ q ∙ t))
u (p ∙ v)
lemma₂ idp idp idp ._ idp idp v idp = disc-to-square $
! (ap (λ w → w ∙ v) (∙-unit-r _ ∙ ∙-unit-r (! v)) ∙ !-inv-l v)
into-out-winr : ∀ r → into (out (winr r)) == winr r
into-out-winr = Wedge-elim
into-out-s
into-out-y
(↓-='-from-square $
(ap-∘ into (out ∘ winr) wglue
∙ ap (ap into) OutWinr.glue-β)
∙v⊡ disc-to-square idp)
into-out : ∀ w → into (out w) == w
into-out = Wedge-elim
into-out-x
into-out-winr
(↓-∘=idf-from-square into out $
ap (ap into) Out.glue-β ∙v⊡ connection)
out-into-merid : (s : fst (X ⊙× Y))
→ idp == merid _ (snd X , snd Y) [ (λ σ → out (into σ) == σ) ↓ merid _ s ]
out-into-merid (x , y) = ↓-∘=idf-from-square out into $
(ap (ap out) (Into.glue-β (x , y))
∙ lemma₁ out
(∘-ap out winl (σloop X x)
∙ ap-∙ (out ∘ winl) (merid _ x) (! (merid _ (snd X)))
∙ SuspFmap.glue-β (λ x → (x , snd Y)) x
∙2 (ap-! (out ∘ winl) (merid _ (snd X))
∙ ap ! (SuspFmap.glue-β (λ x → (x , snd Y)) (snd X))))
Out.glue-β
(∘-ap out (winr ∘ winl) (σloop _ (cfcod _ (x , y)))
∙ ap-∙ OutSmash.f (merid _ (cfcod _ (x , y)))
(! (merid _ (cfbase _)))
∙ OutSmash.glue-β (cfcod _ (x , y))
∙2 (ap-! OutSmash.f (merid _ (cfbase _))
∙ ap ! (OutSmash.glue-β (cfbase _))))
(∘-ap out winr wglue ∙ OutWinr.glue-β)
(∘-ap out (winr ∘ winr) (σloop Y y)
∙ ap-∙ (out ∘ winr ∘ winr) (merid _ y) (! (merid _ (snd Y)))
∙ SuspFmap.glue-β (λ y → (snd X , y)) y
∙2 (ap-! (out ∘ winr ∘ winr) (merid _ (snd Y))
∙ ap ! (SuspFmap.glue-β (λ y → (snd X , y)) (snd Y)))))
∙v⊡ lemma₂ (merid _ (x , snd Y)) (merid _ (snd X , snd Y))
(merid _ (x , y)) (merid _ (snd X , y))
(merid _ (snd X , snd Y))
where
lemma₁ : ∀ {i j} {A : Type i} {B : Type j} (f : A → B)
{a₀ a₁ a₂ a₃ a₄ a₅ : A}
{p : a₀ == a₁} {q : a₁ == a₂} {r : a₂ == a₃}
{s : a₃ == a₄} {t : a₄ == a₅}
{p' : f a₀ == f a₁} {q' : f a₁ == f a₂} {r' : f a₂ == f a₃}
{s' : f a₃ == f a₄} {t' : f a₄ == f a₅}
(α : ap f p == p') (β : ap f q == q') (γ : ap f r == r')
(δ : ap f s == s') (ε : ap f t == t')
→ ap f (p ∙ q ∙ r ∙ s ∙ t) == p' ∙ q' ∙ r' ∙ s' ∙ t'
lemma₁ f {p = idp} {q = idp} {r = idp} {s = idp} {t = idp}
idp idp idp idp idp = idp
lemma₂ : ∀ {i} {A : Type i} {a₀ a₁ a₂ a₃ a₄ a₅ : A}
(p : a₀ == a₁) (q : a₂ == a₁) (r : a₀ == a₃)
(s : a₄ == a₃) (t : a₅ == a₃)
→ Square idp ((p ∙ ! q) ∙ ((q ∙ ! p ∙ r ∙ ! s) ∙ idp) ∙ (s ∙ ! t)) r t
lemma₂ idp idp idp idp idp = ids
out-into : ∀ σ → out (into σ) == σ
out-into = Suspension-elim _
idp
(merid _ (snd X , snd Y))
out-into-merid
abstract
eq : fst (⊙Susp (X ⊙× Y)) ≃ fst (⊙Susp X ⊙∨ (⊙Susp (X ⊙∧ Y) ⊙∨ ⊙Susp Y))
eq = equiv into out into-out out-into
⊙path : ⊙Susp (X ⊙× Y) == ⊙Susp X ⊙∨ (⊙Susp (X ⊙∧ Y) ⊙∨ ⊙Susp Y)
⊙path = ⊙ua eq idp
| {
"alphanum_fraction": 0.422548466,
"avg_line_length": 39.5018587361,
"ext": "agda",
"hexsha": "a2fe040b83e432f0bb30b382ca7f2f085e1c5f81",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "danbornside/HoTT-Agda",
"max_forks_repo_path": "homotopy/SuspProduct.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "danbornside/HoTT-Agda",
"max_issues_repo_path": "homotopy/SuspProduct.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "danbornside/HoTT-Agda",
"max_stars_repo_path": "homotopy/SuspProduct.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4584,
"size": 10626
} |
-- Adapted from an example reported by John Leon
-- It seems that the change reported in the issue was caused by the
-- commit 344296cf06cedd13736e50bb53e63217d9f19ecf.
-- Using `C-c C-,` in the first goal, master and 2.4.2.5 have different
-- behaviours. In master, the type of `a` is not normalised
-- Goal: n ≡ n + zero
-- ————————————————————————————————————————————————————————————
-- a : flip _≡_ (n + zero) n
-- n : ℕ
-- but in 2.4.2.5, the type of `a` is full normalised
-- Goal: n ≡ n + zero
-- ————————————————————————————————————————————————————————————
-- a : n ≡ n + 0
-- n : ℕ
infix 4 _≡_
data _≡_ {A : Set} (x : A) : A → Set where
refl : x ≡ x
cong : ∀ {A B : Set} (f : A → B) {x y} → x ≡ y → f x ≡ f y
cong f refl = refl
REL : Set → Set → Set₁
REL A B = A → B → Set
flip : {A B : Set} {C : A → B → Set₁} →
((x : A) (y : B) → C x y) → ((y : B) (x : A) → C x y)
flip f = λ y x → f x y
infixr 4 _⇒_
_⇒_ : {A B : Set} → REL A B → REL A B → Set
P ⇒ Q = ∀ {i j} → P i j → Q i j
Sym : {A B : Set} → REL A B → REL B A → Set
Sym P Q = P ⇒ flip Q
Symmetric : {A : Set} → REL A A → Set
Symmetric _∼_ = Sym _∼_ _∼_
sym : {A : Set} → Symmetric (_≡_ {A = A})
sym refl = refl
data ℕ : Set where
zero : ℕ
suc : (n : ℕ) → ℕ
infixl 6 _+_
_+_ : ℕ → ℕ → ℕ
zero + m = m
suc n + m = suc (n + m)
n+0=n : (n : ℕ) → n + zero ≡ n
n+0=n zero = refl
n+0=n (suc n) = cong suc (n+0=n (n))
m+Sn : (m n : ℕ) → m + suc n ≡ suc (m + n)
m+Sn zero n = refl
m+Sn (suc m) n = cong suc (m+Sn m n)
+comm : (m n : ℕ) → m + n ≡ n + m
+comm zero n =
let a = sym (n+0=n n)
in {!!}
+comm (suc m) n =
let a = cong suc (+comm m n)
b = sym (m+Sn n m)
in {!!}
| {
"alphanum_fraction": 0.468211527,
"avg_line_length": 23.0547945205,
"ext": "agda",
"hexsha": "def55c08e107c886623f05820186bc7799d76f4a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "test/interaction/Issue1851.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "test/interaction/Issue1851.agda",
"max_line_length": 71,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/interaction/Issue1851.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 718,
"size": 1683
} |
{-
Interactive Programming with Dependent Types
Ulf Norell
ICFP 2013, Boston
-}
module ICFP where
open import ICFPPrelude
data Type : Set where
nat : Type
_⇒_ : (a b : Type) → Type
infixr 7 _⇒_
data Raw : Set where
var : (n : Nat) → Raw
app : (e₁ e₂ : Raw) → Raw
lam : (a : Type) (e : Raw) → Raw
data Cxt : Set where
[] : Cxt
_,_ : (Γ : Cxt) (a : Type) → Cxt
data Var : Cxt → Type → Set where
zero : ∀ {Γ a} → Var (Γ , a) a
suc : ∀ {Γ a b} → Var Γ a → Var (Γ , b) a
data Term : Cxt → Type → Set where
var : ∀ {Γ a} → Var Γ a → Term Γ a
app : ∀ {Γ a b} (u : Term Γ (a ⇒ b)) (v : Term Γ a) →
Term Γ b
lam : ∀ {Γ} a {b} (u : Term (Γ , a) b) → Term Γ (a ⇒ b)
eraseVar : ∀ {Γ a} → Var Γ a → Nat
eraseVar zero = zero
eraseVar (suc x) = suc (eraseVar x)
erase : ∀ {Γ a} → Term Γ a → Raw
erase (var x) = var (eraseVar x)
erase (app v v₁) = app (erase v) (erase v₁)
erase (lam a v) = lam a (erase v)
data _≠_ : Type → Type → Set where
nat≠fun : ∀ {a b} → nat ≠ a ⇒ b
fun≠nat : ∀ {a b} → a ⇒ b ≠ nat
src≠ : ∀ {a a′ b c} → a ≠ a′ → a ⇒ b ≠ a′ ⇒ c
tgt≠ : ∀ {a b c c′} → c ≠ c′ → a ⇒ c ≠ b ⇒ c′
sound : ∀ a → a ≠ a → ⊥
sound nat ()
sound (a ⇒ b) (src≠ x) = sound a x
sound (a ⇒ b) (tgt≠ x) = sound b x
infix 4 _≠_ _≟_
data _≟_ : Type → Type → Set where
equal : ∀ {a} → a ≟ a
not-equal : ∀ {a b} → a ≠ b → a ≟ b
compareFun : ∀ {a b c d} → a ≟ b → c ≟ d → a ⇒ c ≟ b ⇒ d
compareFun equal equal = equal
compareFun equal (not-equal x) = not-equal (tgt≠ x)
compareFun (not-equal x) q = not-equal (src≠ x)
compare : ∀ a b → a ≟ b
compare nat nat = equal
compare nat (a ⇒ b) = not-equal nat≠fun
compare (a ⇒ b) nat = not-equal fun≠nat
compare (a ⇒ b) (a₁ ⇒ b₁) = compareFun (compare a a₁) (compare b b₁)
data OutOfScope : Cxt → Nat → Set where
oops : ∀ {n} → OutOfScope [] n
suc : ∀ {Γ a n} → OutOfScope Γ n → OutOfScope (Γ , a) (suc n)
data WellScoped? : Cxt → Nat → Set where
yes : ∀ {Γ} a (x : Var Γ a) → WellScoped? Γ (eraseVar x)
no : ∀ {Γ n} → OutOfScope Γ n → WellScoped? Γ n
data TypeError : Cxt → Raw → Set where
arg-mismatch : ∀ {a a′ Γ b} {u : Term Γ (a ⇒ b)} {u₁ : Term Γ a′} →
a ≠ a′ → TypeError Γ (app (erase u) (erase u₁))
not-fun : ∀ {Γ} {u : Term Γ nat} {a₁} {u₁ : Term Γ a₁} →
TypeError Γ (app (erase u) (erase u₁))
bad-arg : ∀ {Γ e₂ e₁} → TypeError Γ e₂ → TypeError Γ (app e₁ e₂)
bad-fun : ∀ {Γ e₁ e₂} → TypeError Γ e₁ → TypeError Γ (app e₁ e₂)
out-of-scope : ∀ {Γ n} → OutOfScope Γ n → TypeError Γ (var n)
lam : ∀ {Γ e} a → TypeError (Γ , a) e → TypeError Γ (lam a e)
data WellTyped? : Cxt → Raw → Set where
yes : ∀ {Γ} a (u : Term Γ a) → WellTyped? Γ (erase u)
no : ∀ {Γ e} (err : TypeError Γ e) → WellTyped? Γ e
checkApp : ∀ {Γ e₁ e₂} → WellTyped? Γ e₁ → WellTyped? Γ e₂ →
WellTyped? Γ (app e₁ e₂)
checkApp (yes nat u) (yes a₁ u₁) = no not-fun
checkApp (yes (a ⇒ b) u) (yes a′ u₁) with compare a a′
checkApp (yes (a ⇒ b) u) (yes .a u₁) | equal = yes b (app u u₁)
checkApp (yes (a ⇒ b) u) (yes a′ u₁) | not-equal err = no (arg-mismatch err)
checkApp (yes a u) (no err) = no (bad-arg err)
checkApp (no err) (yes a u) = no (bad-fun err)
checkApp (no err) (no err₁) = no (bad-arg err₁)
lookupSuc : ∀ {Γ a n} →
WellScoped? Γ n → WellScoped? (Γ , a) (suc n)
lookupSuc (yes a₁ x) = yes a₁ (suc x)
lookupSuc (no x) = no (suc x)
lookupVar : ∀ Γ n → WellScoped? Γ n
lookupVar [] n = no oops
lookupVar (Γ , a) zero = yes a zero
lookupVar (Γ , a) (suc n) = lookupSuc (lookupVar Γ n)
checkVar : ∀ {Γ n} → WellScoped? Γ n → WellTyped? Γ (var n)
checkVar (yes a x) = yes a (var x)
checkVar (no x) = no (out-of-scope x)
checkLam : ∀ {Γ e} a → WellTyped? (Γ , a) e → WellTyped? Γ (lam a e)
checkLam a (yes a₁ u) = yes (a ⇒ a₁) (lam a u)
checkLam a (no err) = no (lam a err)
check : ∀ Γ e → WellTyped? Γ e
check Γ (var n) = checkVar (lookupVar Γ n)
check Γ (app e₁ e₂) = checkApp (check Γ e₁) (check Γ e₂)
check Γ (lam a e) = checkLam a (check (Γ , a) e)
| {
"alphanum_fraction": 0.5460152973,
"avg_line_length": 30.9389312977,
"ext": "agda",
"hexsha": "5d4db149a686a11cded68740dc03c2e212201365",
"lang": "Agda",
"max_forks_count": 20,
"max_forks_repo_forks_event_max_datetime": "2021-07-30T05:37:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-02-18T20:36:05.000Z",
"max_forks_repo_head_hexsha": "6c7561bcc9877c6df9107f12f7e843f4e880189a",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "enlambdment/disco",
"max_forks_repo_path": "explore/typecheck/ICFP.agda",
"max_issues_count": 282,
"max_issues_repo_head_hexsha": "6c7561bcc9877c6df9107f12f7e843f4e880189a",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T21:43:15.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-11-19T18:05:42.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "enlambdment/disco",
"max_issues_repo_path": "explore/typecheck/ICFP.agda",
"max_line_length": 76,
"max_stars_count": 138,
"max_stars_repo_head_hexsha": "6c7561bcc9877c6df9107f12f7e843f4e880189a",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "enlambdment/disco",
"max_stars_repo_path": "explore/typecheck/ICFP.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-22T22:56:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-12-10T08:10:03.000Z",
"num_tokens": 1693,
"size": 4053
} |
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Simply-typed changes with the Nehemiah plugin.
------------------------------------------------------------------------
module Nehemiah.Change.Type where
open import Nehemiah.Syntax.Type
import Parametric.Change.Type Base as ChangeType
ΔBase : ChangeType.Structure
ΔBase base-int = base base-int
ΔBase base-bag = base base-bag
open ChangeType.Structure ΔBase public
| {
"alphanum_fraction": 0.5504201681,
"avg_line_length": 26.4444444444,
"ext": "agda",
"hexsha": "84d79480bde8a579c38d9d46d2143166380f7d62",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "inc-lc/ilc-agda",
"max_forks_repo_path": "Nehemiah/Change/Type.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "inc-lc/ilc-agda",
"max_issues_repo_path": "Nehemiah/Change/Type.agda",
"max_line_length": 72,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "inc-lc/ilc-agda",
"max_stars_repo_path": "Nehemiah/Change/Type.agda",
"max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z",
"num_tokens": 91,
"size": 476
} |
module Class.Functor where
open import Category.Functor using () renaming (RawFunctor to Functor) public
open Functor {{...}} public
| {
"alphanum_fraction": 0.762962963,
"avg_line_length": 22.5,
"ext": "agda",
"hexsha": "577ec28f2c92044f77b32d467385ef9be88304c8",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2021-10-20T10:46:20.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-27T23:12:48.000Z",
"max_forks_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "WhatisRT/meta-cedille",
"max_forks_repo_path": "stdlib-exts/Class/Functor.agda",
"max_issues_count": 10,
"max_issues_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_issues_repo_issues_event_max_datetime": "2020-04-25T15:29:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-13T17:44:43.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "WhatisRT/meta-cedille",
"max_issues_repo_path": "stdlib-exts/Class/Functor.agda",
"max_line_length": 77,
"max_stars_count": 35,
"max_stars_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "WhatisRT/meta-cedille",
"max_stars_repo_path": "stdlib-exts/Class/Functor.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-12T22:59:10.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-13T07:44:50.000Z",
"num_tokens": 32,
"size": 135
} |
-- Andreas, 2019-06-18, LAIM 2019, issue #3855:
-- Successful tests for the erasure (@0) modality.
module _ where
open import Agda.Builtin.Bool
open import Agda.Builtin.Nat
open import Agda.Builtin.Equality
open import Agda.Builtin.Coinduction
open import Common.IO
module WhereInErasedDeclaration where
@0 n : Nat
n = 4711
@0 m : Nat
m = n'
where
n' = n
module ErasedDeclarationInWhere where
F : (G : @0 Set → Set) (@0 A : Set) → Set
F G A = G B
where
@0 B : Set
B = A
module FlatErasure where
@0 resurrect-λ : (A : Set) (@0 x : A) → A
resurrect-λ A = λ x → x
@0 resurrect-λ-where : (A : Set) (@0 x : A) → A
resurrect-λ-where A = λ where x → x
@0 resurrect-app : (A : Set) (@0 x : A) → A
resurrect-app A x = x
module ErasedEquality where
-- Should maybe not work --without-K
-- should definitely not work in --cubical
cast : ∀{A B : Set} → @0 A ≡ B → A → B
cast refl x = x
J : ∀{A : Set} {a : A} (P : (x : A) → a ≡ x → Set) {b : A}
(@0 eq : a ≡ b) → P a refl → P b eq
J P refl p = p
module ParametersAreErased where
test : (@0 A : Set) → A ≡ A
test A = refl {x = _} -- TODO: A instead of _
module Records where
record R (A : Set) : Set where
field
el : A
Par : Set
Par = A -- record module parameters are NOT erased, so, this should be accepted
proj : (A : Set) → R A → A -- TODO: @0 A instead of A
proj A r = R.el {A = _} r
MyPar : (A : Set) → R A → Set
MyPar A = R.Par {A = A}
record RB (b : Bool) : Set where
bPar : Bool
bPar = b
myBPar : (b : Bool) → RB b → Bool
myBPar b r = RB.bPar {b = b} r
module CoinductionWithErasure (A : Set) where
data Stream : Set where
cons : (x : A) (xs : ∞ Stream) → Stream
@0 repeat : (@0 a : A) → Stream
repeat a = cons a (♯ (repeat a))
main = putStrLn "Hello, world!"
| {
"alphanum_fraction": 0.5718113612,
"avg_line_length": 20.9662921348,
"ext": "agda",
"hexsha": "a19764406c331675c9e58b0335dbcfb8042fedb3",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-04-01T18:30:09.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-01T18:30:09.000Z",
"max_forks_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "hborum/agda",
"max_forks_repo_path": "test/Succeed/Erasure-succeed-Issue3855.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "hborum/agda",
"max_issues_repo_path": "test/Succeed/Erasure-succeed-Issue3855.agda",
"max_line_length": 86,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "hborum/agda",
"max_stars_repo_path": "test/Succeed/Erasure-succeed-Issue3855.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 682,
"size": 1866
} |
module PiQ.Interp where
open import Data.Empty
open import Data.Unit hiding (_≟_)
open import Data.Sum
open import Data.Product
open import Data.Maybe
open import Data.Nat hiding (_≟_)
open import Data.List as L hiding (_∷_)
open import Relation.Binary.Core
open import Relation.Binary
open import Relation.Nullary
open import Relation.Binary.PropositionalEquality
open import Function using (_∘_)
open import PiQ.Syntax
open import PiQ.Opsem
open import PiQ.Eval
{-# TERMINATING #-}
mutual
interp : {A B : 𝕌} → (A ↔ B) → Val A B → Maybe (Val B A)
-- Forward
interp unite₊l (inj₂ y ⃗) = just (y ⃗)
interp uniti₊l (v ⃗) = just (inj₂ v ⃗)
interp swap₊ (inj₁ x ⃗) = just (inj₂ x ⃗)
interp swap₊ (inj₂ y ⃗) = just (inj₁ y ⃗)
interp assocl₊ (inj₁ x ⃗) = just (inj₁ (inj₁ x) ⃗)
interp assocl₊ (inj₂ (inj₁ y) ⃗) = just (inj₁ (inj₂ y) ⃗)
interp assocl₊ (inj₂ (inj₂ z) ⃗) = just (inj₂ z ⃗)
interp assocr₊ (inj₁ (inj₁ x) ⃗) = just (inj₁ x ⃗)
interp assocr₊ (inj₁ (inj₂ y) ⃗) = just (inj₂ (inj₁ y) ⃗)
interp assocr₊ (inj₂ z ⃗) = just (inj₂ (inj₂ z) ⃗)
interp unite⋆l ((tt , v) ⃗) = just (v ⃗)
interp uniti⋆l (v ⃗) = just ((tt , v) ⃗)
interp swap⋆ ((x , y) ⃗) = just ((y , x) ⃗)
interp assocl⋆ ((x , (y , z)) ⃗) = just (((x , y) , z) ⃗)
interp assocr⋆ (((x , y) , z) ⃗) = just ((x , y , z) ⃗)
interp dist ((inj₁ x , z) ⃗) = just (inj₁ (x , z) ⃗)
interp dist ((inj₂ y , z) ⃗) = just (inj₂ (y , z) ⃗)
interp factor (inj₁ (x , z) ⃗) = just ((inj₁ x , z) ⃗)
interp factor (inj₂ (y , z) ⃗) = just ((inj₂ y , z) ⃗)
interp id↔ (v ⃗) = just (v ⃗)
interp (c₁ ⨾ c₂) (v ⃗) = interp c₁ (v ⃗) >>=
λ {(v' ⃖) → just (v' ⃖) ;
(v' ⃗) → c₁ ⨾[ v' ⃗]⨾ c₂}
interp (c₁ ⊕ c₂) (inj₁ x ⃗) = interp c₁ (x ⃗) >>=
λ {(x' ⃗) → just (inj₁ x' ⃗) ;
(x' ⃖) → just (inj₁ x' ⃖)}
interp (c₁ ⊕ c₂) (inj₂ y ⃗) = interp c₂ (y ⃗) >>=
λ {(y' ⃗) → just (inj₂ y' ⃗) ;
(y' ⃖) → just (inj₂ y' ⃖)}
interp (c₁ ⊗ c₂) ((x , y) ⃗) = interp c₁ (x ⃗) >>=
λ {(x' ⃖) → just ((x' , y) ⃖) ;
(x' ⃗) → interp c₂ (y ⃗) >>=
λ {(y' ⃗) → just ((x' , y') ⃗) ;
(y' ⃖) → just ((x , y') ⃖)}}
interp ε₊ (inj₁ v ⃗) = just (inj₂ (- v) ⃖)
interp ε₊ (inj₂ (- v) ⃗) = just (inj₁ v ⃖)
interp (ηₓ v) (tt ⃗) = just ((v , ↻) ⃗)
interp (εₓ v) ((v' , ↻) ⃗) with v ≟ v'
... | yes _ = just (tt ⃗)
... | no _ = nothing
-- Backward
interp unite₊l (v ⃖) = just (inj₂ v ⃖)
interp uniti₊l (inj₂ v ⃖) = just (v ⃖)
interp swap₊ (inj₁ x ⃖) = just (inj₂ x ⃖)
interp swap₊ (inj₂ y ⃖) = just (inj₁ y ⃖)
interp assocl₊ (inj₁ (inj₁ x) ⃖) = just (inj₁ x ⃖)
interp assocl₊ (inj₁ (inj₂ y) ⃖) = just (inj₂ (inj₁ y) ⃖)
interp assocl₊ (inj₂ z ⃖) = just (inj₂ (inj₂ z) ⃖)
interp assocr₊ (inj₁ x ⃖) = just (inj₁ (inj₁ x) ⃖)
interp assocr₊ (inj₂ (inj₁ y) ⃖) = just (inj₁ (inj₂ y) ⃖)
interp assocr₊ (inj₂ (inj₂ z) ⃖) = just (inj₂ z ⃖)
interp unite⋆l (v ⃖) = just ((tt , v) ⃖)
interp uniti⋆l ((tt , v) ⃖) = just (v ⃖)
interp swap⋆ ((x , y) ⃖) = just ((y , x) ⃖)
interp assocl⋆ (((x , y) , z) ⃖) = just ((x , (y , z)) ⃖)
interp assocr⋆ ((x , (y , z)) ⃖) = just (((x , y) , z) ⃖)
interp dist (inj₁ (x , z) ⃖) = just ((inj₁ x , z) ⃖)
interp dist (inj₂ (y , z) ⃖) = just ((inj₂ y , z) ⃖)
interp factor ((inj₁ x , z) ⃖) = just (inj₁ (x , z) ⃖)
interp factor ((inj₂ y , z) ⃖) = just (inj₂ (y , z) ⃖)
interp id↔ (v ⃖) = just (v ⃖)
interp (c₁ ⨾ c₂) (v ⃖) = interp c₂ (v ⃖) >>=
λ {(v' ⃗) → just (v' ⃗) ;
(v' ⃖) → c₁ ⨾[ v' ⃖]⨾ c₂}
interp (c₁ ⊕ c₂) (inj₁ x ⃖) = interp c₁ (x ⃖) >>=
λ {(x' ⃖) → just (inj₁ x' ⃖) ;
(x' ⃗) → just (inj₁ x' ⃗)}
interp (c₁ ⊕ c₂) (inj₂ y ⃖) = interp c₂ (y ⃖) >>=
λ {(y' ⃖) → just (inj₂ y' ⃖) ;
(y' ⃗) → just (inj₂ y' ⃗)}
interp (c₁ ⊗ c₂) ((x , y) ⃖) = interp c₂ (y ⃖) >>=
λ {(y' ⃗) → just ((x , y') ⃗) ;
(y' ⃖) → interp c₁ (x ⃖) >>=
λ {(x' ⃖) → just ((x' , y') ⃖) ;
(x' ⃗) → just ((x' , y) ⃗)}}
interp η₊ (inj₁ v ⃖) = just (inj₂ (- v) ⃗)
interp η₊ (inj₂ (- v) ⃖) = just (inj₁ v ⃗)
interp (εₓ v) (tt ⃖) = just ((v , ↻) ⃖)
interp (ηₓ v) ((v' , ↻) ⃖) with v ≟ v'
... | yes _ = just (tt ⃖)
... | no _ = nothing
_⨾[_⃗]⨾_ : ∀ {A B C} → (A ↔ B) → ⟦ B ⟧ → (B ↔ C) → Maybe (Val C A)
c₁ ⨾[ b ⃗]⨾ c₂ = interp c₂ (b ⃗) >>=
λ {(c ⃗) → just (c ⃗) ;
(b' ⃖) → c₁ ⨾[ b' ⃖]⨾ c₂}
_⨾[_⃖]⨾_ : ∀ {A B C} → (A ↔ B) → ⟦ B ⟧ → (B ↔ C) → Maybe (Val C A)
c₁ ⨾[ b ⃖]⨾ c₂ = interp c₁ (b ⃖) >>=
λ {(a ⃖) → just (a ⃖) ;
(b' ⃗) → c₁ ⨾[ b' ⃗]⨾ c₂}
| {
"alphanum_fraction": 0.3874511264,
"avg_line_length": 47.5309734513,
"ext": "agda",
"hexsha": "ca2bc2be07b7de04ed22b447c5aa4452e8823538",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "PiQ/Interp.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "PiQ/Interp.agda",
"max_line_length": 76,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "PiQ/Interp.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 2519,
"size": 5371
} |
import cedille-options
module interactive-cmds (options : cedille-options.options) where
open import functions
open import cedille-types
open import conversion
open import constants
open import ctxt
open import general-util
open import spans options {Id}
open import subst
open import syntax-util
open import type-util
open import to-string options
open import toplevel-state options {IO}
open import untyped-spans options {Id}
open import parser
open import resugar
open import rewriting
open import rename
open import classify options {Id} (λ _ → return triv)
import spans options {IO} as io-spans
open import datatype-util
open import free-vars
open import json
private
elab-typed-err : ∀ {ed} → ctxt → ⟦ ed ⟧' → ⟦ ed ⟧ × 𝔹
elab-typed-err {TERM} Γ t =
map-snd spans-have-error $ map-fst fst $ id-out $ check-term Γ t nothing empty-spans
elab-typed-err {TYPE} Γ T =
map-snd spans-have-error $ map-fst fst $ id-out $ check-type Γ T nothing empty-spans
elab-typed-err {KIND} Γ k =
map-snd spans-have-error $ id-out $ check-kind Γ k empty-spans
elab-typed : ∀ {ed} → ctxt → ⟦ ed ⟧' → ⟦ ed ⟧
elab-typed Γ = fst ∘ elab-typed-err Γ
elab-untyped : ∀ {ed} → ctxt → ⟦ ed ⟧' → ⟦ ed ⟧
elab-untyped {TERM} Γ t = fst $ id-out $ untyped-term Γ t empty-spans
elab-untyped {TYPE} Γ T = fst $ id-out $ untyped-type Γ T empty-spans
elab-untyped {KIND} Γ k = fst $ id-out $ untyped-kind Γ k empty-spans
elab-untyped-no-params : ∀ {ed} → ctxt → ⟦ ed ⟧' → ⟦ ed ⟧
elab-untyped-no-params Γ =
elab-untyped (record Γ {qual = trie-map (map-snd λ _ → []) (ctxt.qual Γ)})
{- Parsing -}
ll-ind : ∀ {X : exprd → Set} → X TERM → X TYPE → X KIND → (ll : exprd) → X ll
ll-ind t T k TERM = t
ll-ind t T k TYPE = T
ll-ind t T k KIND = k
ll-ind' : ∀ {X : Σ exprd ⟦_⟧ → Set} → (s : Σ exprd ⟦_⟧) → ((t : term) → X (TERM , t)) → ((T : type) → X (TYPE , T)) → ((k : kind) → X (KIND , k)) → X s
ll-ind' (TERM , t) tf Tf kf = tf t
ll-ind' (TYPE , T) tf Tf kf = Tf T
ll-ind' (KIND , k) tf Tf kf = kf k
ll-disambiguate : ctxt → ex-tm → maybe ex-tp
ll-disambiguate Γ (ExVar pi x) = ctxt-lookup-type-var Γ x >>= λ _ → just (ExTpVar pi x)
ll-disambiguate Γ (ExApp t NotErased t') = ll-disambiguate Γ t >>= λ T →
just (ExTpAppt T t')
ll-disambiguate Γ (ExAppTp t T') = ll-disambiguate Γ t >>= λ T → just (ExTpApp T T')
ll-disambiguate Γ (ExLam pi ff pi' x (just atk) t) =
ll-disambiguate (ctxt-tk-decl pi' x (case atk of λ {(ExTkt _) → Tkt (TpHole pi'); (ExTkk _) → Tkk KdStar}) Γ) t >>= λ T →
just (ExTpLam pi pi' x atk T)
ll-disambiguate Γ (ExParens pi t pi') = ll-disambiguate Γ t
ll-disambiguate Γ (ExLet pi _ d t) =
ll-disambiguate (Γ' d) t >>= λ T → just (ExTpLet pi d T)
where
Γ' : ex-def → ctxt
Γ' (ExDefTerm pi' x T? t) = ctxt-term-def pi' localScope opacity-open x (just (Hole pi')) (TpHole pi') Γ
Γ' (ExDefType pi' x k T) = ctxt-type-def pi' localScope opacity-open x (just (TpHole pi')) KdStar Γ
ll-disambiguate Γ t = nothing
parse-string : (ll : exprd) → string → maybe ⟦ ll ⟧'
parse-string ll s = case ll-ind {λ ll → string → Either string ⟦ ll ⟧'}
parseTerm parseType parseKind ll s of λ {(Left e) → nothing; (Right e) → just e}
ttk = "term, type, or kind"
parse-err-msg : (failed-to-parse : string) → (as-a : string) → string
parse-err-msg failed-to-parse "" =
"Failed to parse \\\\\"" ^ failed-to-parse ^ "\\\\\""
parse-err-msg failed-to-parse as-a =
"Failed to parse \\\\\"" ^ failed-to-parse ^ "\\\\\" as a " ^ as-a
infixr 7 _>>nothing_ _-_!_>>parse_ _!_>>error_
_>>nothing_ : ∀{ℓ}{A : Set ℓ} → maybe A → maybe A → maybe A
(nothing >>nothing m₂) = m₂
(m₁ >>nothing m₂) = m₁
_-_!_>>parse_ : ∀{A B : Set} → (string → maybe A) → string →
(error-msg : string) → (A → string ⊎ B) → string ⊎ B
(f - s ! e >>parse f') = maybe-else (inj₁ (parse-err-msg s e)) f' (f s)
_!_>>error_ : ∀{E A B : Set} → maybe A → E → (A → E ⊎ B) → E ⊎ B
(just a ! e >>error f) = f a
(nothing ! e >>error f) = inj₁ e
parse-try : ∀ {X : Set} → ctxt → string → maybe
(((ll : exprd) → ⟦ ll ⟧' → X) → X)
parse-try Γ s =
maybe-map (λ t f → maybe-else (f TERM t) (f TYPE) (ll-disambiguate Γ t))
(parse-string TERM s) >>nothing
maybe-map (λ T f → f TYPE T) (parse-string TYPE s) >>nothing
maybe-map (λ k f → f KIND k) (parse-string KIND s)
string-to-𝔹 : string → maybe 𝔹
string-to-𝔹 "tt" = just tt
string-to-𝔹 "ff" = just ff
string-to-𝔹 _ = nothing
parse-ll : string → maybe exprd
parse-ll "term" = just TERM
parse-ll "type" = just TYPE
parse-ll "kind" = just KIND
parse-ll _ = nothing
{- Local Context -}
record lci : Set where
constructor mk-lci
field ll : string; x : var; t : string; T : string; fn : string; pi : posinfo
data 𝕃ₛ {ℓ} (A : Set ℓ) : Set ℓ where
[_]ₛ : A → 𝕃ₛ A
_::ₛ_ : A → 𝕃ₛ A → 𝕃ₛ A
headₛ : ∀ {ℓ} {A : Set ℓ} → 𝕃ₛ A → A
headₛ [ a ]ₛ = a
headₛ (a ::ₛ as) = a
𝕃ₛ-to-𝕃 : ∀ {ℓ} {A : Set ℓ} → 𝕃ₛ A → 𝕃 A
𝕃ₛ-to-𝕃 [ a ]ₛ = [ a ]
𝕃ₛ-to-𝕃 (a ::ₛ as) = a :: 𝕃ₛ-to-𝕃 as
merge-lcis-ctxt-tvs : ctxt → 𝕃 string → ctxt × 𝕃 tagged-val
merge-lcis-ctxt-tvs c =
foldl merge-lcis-ctxt' (c , [])
∘ (sort-lcis ∘ strings-to-lcis)
where
strings-to-lcis : 𝕃 string → 𝕃 lci
strings-to-lcis ss = strings-to-lcis-h ss [] where
strings-to-lcis-h : 𝕃 string → 𝕃 lci → 𝕃 lci
strings-to-lcis-h (ll :: x :: t :: T :: fn :: pi :: tl) items =
strings-to-lcis-h tl (mk-lci ll x t T fn pi :: items)
strings-to-lcis-h _ items = items
-- TODO: Local context information does not pass Δ information!
-- When users are using BR-explorer to rewrite with the rec function,
-- if they call it upon "μ' [SUBTERM] {...}", it won't work unless they say
-- "μ'<rec/mu> [SUBTERM] {...}".
decl-lci : posinfo → var → ctxt → ctxt
decl-lci pi x Γ =
record Γ { qual = trie-insert (ctxt.qual Γ) x (pi % x , []) }
exprd-type-of : exprd → exprd
exprd-type-of TERM = TYPE
exprd-type-of _ = KIND
merge-lci-ctxt : lci → ctxt × 𝕃 tagged-val → ctxt × 𝕃 tagged-val
merge-lci-ctxt (mk-lci ll v t T fn pi) (Γ , tvs) =
maybe-else (Γ , tvs) (map-snd (λ tv → tvs ++ [ tv ]))
(parse-ll ll >>= λ ll →
parse-string (exprd-type-of ll) T >>=
h ll (parse-string ll t))
where
h : (ll : exprd) → maybe ⟦ ll ⟧' → ⟦ exprd-type-of ll ⟧' → maybe (ctxt × tagged-val)
h TERM (just t) T =
let t = elab-untyped Γ t
T = elab-typed Γ T in
return2 (ctxt-term-def pi localScope opacity-open v (just t) T Γ)
(binder-data Γ pi v (Tkt T) ff (just t) "0" "0")
h TYPE (just T) k =
let T = elab-untyped Γ T
k = elab-typed Γ k in
return2 (ctxt-type-def pi localScope opacity-open v (just T) k Γ)
(binder-data Γ pi v (Tkk k) ff (just T) "0" "0")
h TERM nothing T =
let T = elab-typed Γ T in
return2 (ctxt-term-decl pi v T Γ)
(binder-data Γ pi v (Tkt T) ff nothing "0" "0")
h TYPE nothing k =
let k = elab-typed Γ k in
return2 (ctxt-type-decl pi v k Γ)
(binder-data Γ pi v (Tkk k) ff nothing "0" "0")
h _ _ _ = nothing
merge-lcis-ctxt' : 𝕃ₛ lci → ctxt × 𝕃 tagged-val → ctxt × 𝕃 tagged-val
merge-lcis-ctxt' ls (Γ , tvs) =
let ls' = 𝕃ₛ-to-𝕃 ls in
foldr merge-lci-ctxt (foldr (λ l → decl-lci (lci.pi l) (lci.x l)) Γ ls' , tvs) ls'
sort-eq : ∀ {ℓ} {A : Set ℓ} → (A → A → compare-t) → 𝕃 A → 𝕃 (𝕃ₛ A)
sort-eq {_} {A} c = foldr insert [] where
insert : A → 𝕃 (𝕃ₛ A) → 𝕃 (𝕃ₛ A)
insert n [] = [ [ n ]ₛ ]
insert n (a :: as) with c (headₛ a) n
...| compare-eq = n ::ₛ a :: as
...| compare-gt = [ n ]ₛ :: a :: as
...| compare-lt = a :: insert n as
sort-lcis : 𝕃 lci → 𝕃 (𝕃ₛ lci)
sort-lcis = sort-eq λ l₁ l₂ →
compare (posinfo-to-ℕ $ lci.pi l₁) (posinfo-to-ℕ $ lci.pi l₂)
{-
sort-lcis = list-merge-sort.merge-sort lci λ l l' →
posinfo-to-ℕ (lci.pi l) > posinfo-to-ℕ (lci.pi l')
where import list-merge-sort
-}
merge-lcis-ctxt : ctxt → 𝕃 string → ctxt
merge-lcis-ctxt Γ ls = fst $ merge-lcis-ctxt-tvs Γ ls
get-local-ctxt-tvs : ctxt → (pos : ℕ) → (local-ctxt : 𝕃 string) → ctxt × 𝕃 tagged-val
get-local-ctxt-tvs Γ pi =
merge-lcis-ctxt-tvs (foldr (flip ctxt-clear-symbol ∘ fst) Γ
(flip filter (trie-mappings (ctxt.i Γ)) λ {(x , ci , fn' , pi') →
ctxt.fn Γ =string fn' && posinfo-to-ℕ pi' > pi}))
get-local-ctxt : ctxt → (pos : ℕ) → (local-ctxt : 𝕃 string) → ctxt
get-local-ctxt Γ pi ls = fst (get-local-ctxt-tvs Γ pi ls)
{- Helpers -}
step-reduce : ∀ {ed : exprd} → ctxt → ⟦ ed ⟧ → ⟦ ed ⟧
step-reduce Γ t =
let t' = erase t in maybe-else t' id (step-reduceh Γ t') where
step-reduceh : ∀ {ed : exprd} → ctxt → ⟦ ed ⟧ → maybe ⟦ ed ⟧
step-reduceh{TERM} Γ (Var x) = ctxt-lookup-term-var-def Γ x
step-reduceh{TYPE} Γ (TpVar x) = ctxt-lookup-type-var-def Γ x
step-reduceh{TERM} Γ (App (Lam ff x nothing t) t') = just (subst Γ t' x t)
step-reduceh{TYPE} Γ (TpApp (TpLam x (Tkk _) T) (Ttp T')) = just (subst Γ T' x T)
step-reduceh{TYPE} Γ (TpApp (TpLam x (Tkt _) T) (Ttm t)) = just (subst Γ t x T)
step-reduceh{TERM} Γ (App t t') = step-reduceh Γ t >>= λ t → just (App t t')
step-reduceh{TYPE} Γ (TpApp T tT) = step-reduceh Γ T >>= λ T → just (TpApp T tT)
step-reduceh{TERM} Γ (Lam ff x nothing t) = step-reduceh (ctxt-var-decl x Γ) t >>= λ t → just (Lam ff x nothing t)
step-reduceh{TYPE} Γ (TpLam x atk T) = step-reduceh (ctxt-var-decl x Γ) T >>= λ T → just (TpLam x atk T)
step-reduceh{TERM} Γ (LetTm ff x T t' t) = just (subst Γ t' x t)
step-reduceh{TERM} Γ t @ (Mu μ s Tₘ f~ ms) with
decompose-var-headed s >>=c λ sₕ sₐs → env-lookup Γ sₕ
...| just (ctr-def _ _ _ _ _ , _) = just (hnf Γ unfold-head-no-defs t)
...| _ = step-reduceh Γ s >>= λ s → just (Mu μ s Tₘ f~ ms)
step-reduceh Γ t = nothing
parse-norm : erased? → string → maybe (∀ {ed : exprd} → ctxt → ⟦ ed ⟧ → ⟦ ed ⟧)
parse-norm me "all" = just λ Γ → hnf Γ (record unfold-all {unfold-erase = me})
parse-norm me "head" = just λ Γ → hnf Γ (record unfold-head-elab {unfold-erase = me})
parse-norm me "once" = just λ Γ → step-reduce Γ ∘ erase
parse-norm _ _ = nothing
parse-norm-err = "normalization method (all, head, once)"
{- Command Executors -}
normalize-cmd : ctxt → (str ll pi norm : string) → 𝕃 string → string ⊎ tagged-val
normalize-cmd Γ str ll pi norm ls =
parse-ll - ll ! "language-level" >>parse λ ll' →
string-to-ℕ - pi ! "natural number" >>parse λ sp →
parse-norm tt - norm ! parse-norm-err >>parse λ norm →
parse-string ll' - str ! ll >>parse λ t →
let Γ' = get-local-ctxt Γ sp ls in
inj₂ (to-string-tag "" Γ' (norm Γ' (elab-untyped Γ' t)))
normalize-prompt : ctxt → (str norm : string) → 𝕃 string → string ⊎ tagged-val
normalize-prompt Γ str norm ls =
parse-norm tt - norm ! parse-norm-err >>parse λ norm →
let Γ' = merge-lcis-ctxt Γ ls in
parse-try Γ' - str ! ttk >>parse λ f → f λ ll t →
inj₂ (to-string-tag "" Γ' (norm Γ' (elab-untyped Γ' t)))
erase-cmd : ctxt → (str ll pi : string) → 𝕃 string → string ⊎ tagged-val
erase-cmd Γ str ll pi ls =
parse-ll - ll ! "language-level" >>parse λ ll' →
string-to-ℕ - pi ! "natural number" >>parse λ sp →
parse-string ll' - str ! ll >>parse λ t →
let Γ' = get-local-ctxt Γ sp ls in
inj₂ (to-string-tag "" Γ' (erase (elab-untyped Γ' t)))
erase-prompt : ctxt → (str : string) → 𝕃 string → string ⊎ tagged-val
erase-prompt Γ str ls =
let Γ' = merge-lcis-ctxt Γ ls in
parse-try Γ' - str ! ttk >>parse λ f → f λ ll t →
inj₂ (to-string-tag "" Γ' (erase (elab-untyped Γ' t)))
-- private
-- cmds-to-escaped-string : cmds → strM
-- cmds-to-escaped-string (c :: cs) = cmd-to-string c $ strAdd "\\n\\n" >>str cmds-to-escaped-string cs
-- cmds-to-escaped-string [] = strEmpty
-- data-cmd : ctxt → (encoding name ps is cs : string) → string ⊎ tagged-val
-- data-cmd Γ encodingₛ x psₛ isₛ csₛ =
-- string-to-𝔹 - encodingₛ ! "boolean" >>parse λ encoding →
-- parse-string KIND - psₛ ! "kind" >>parse λ psₖ →
-- parse-string KIND - isₛ ! "kind" >>parse λ isₖ →
-- parse-string KIND - csₛ ! "kind" >>parse λ csₖ →
-- let ps = map (λ {(Index x atk) → Decl posinfo-gen posinfo-gen Erased x atk posinfo-gen}) $ kind-to-indices Γ psₖ
-- cs = map (λ {(Index x (Tkt T)) → Ctr posinfo-gen x T; (Index x (Tkk k)) → Ctr posinfo-gen x $ mtpvar "ErrorExpectedTypeNotKind"}) $ kind-to-indices empty-ctxt csₖ
-- is = kind-to-indices (add-ctrs-to-ctxt cs $ add-params-to-ctxt ps Γ) isₖ
-- picked-encoding = if encoding then mendler-encoding else mendler-simple-encoding
-- defs = datatype-encoding.mk-defs picked-encoding Γ $ Data x ps is cs in
-- inj₂ $ strRunTag "" Γ $ cmds-to-escaped-string $ fst defs
-- pretty-cmd : filepath → filepath → IO string
-- pretty-cmd src-fn dest-fn =
-- readFiniteFile src-fn >>= λ src →
-- case parseStart src of λ where
-- (Left (Left p)) → return ("Lexical error at position " ^ p)
-- (Left (Right p)) → return ("Parse error at position " ^ p)
-- (Right file) → writeFile dest-fn "" >> writeRopeToFile dest-fn (to-string.strRun empty-ctxt (to-string.file-to-string file)) >> return "Finished"
-- where import to-string (record options {pretty-print = tt}) as to-string
{- Commands -}
tv-to-json : string ⊎ tagged-val → json
tv-to-json (inj₁ s) = json-object [ "error" , json-string s ] -- [[ "{\"error\":\"" ]] ⊹⊹ [[ s ]] ⊹⊹ [[ "\"}" ]]
tv-to-json (inj₂ (_ , v , ts)) = tagged-vals-to-json [ "value" , v , ts ]
interactive-cmd-h : ctxt → 𝕃 string → string ⊎ tagged-val
interactive-cmd-h Γ ("normalize" :: input :: ll :: sp :: norm :: lc) =
normalize-cmd Γ input ll sp norm lc
interactive-cmd-h Γ ("erase" :: input :: ll :: sp :: lc) =
erase-cmd Γ input ll sp lc
interactive-cmd-h Γ ("normalizePrompt" :: input :: norm :: lc) =
normalize-prompt Γ input norm lc
interactive-cmd-h Γ ("erasePrompt" :: input :: lc) =
erase-prompt Γ input lc
-- interactive-cmd-h Γ ("data" :: encoding :: x :: ps :: is :: cs :: []) =
-- data-cmd Γ encoding x ps is cs
interactive-cmd-h Γ cs =
inj₁ ("Unknown interactive cmd: " ^ 𝕃-to-string (λ s → s) ", " cs)
record br-history : Set where
inductive
constructor mk-br-history
field
Γ : ctxt
t : term
Tₗₗ : exprd
T : ⟦ Tₗₗ ⟧
Tᵤ : string
f : term → 𝕃 (ctr × term) → term
Γₗ : 𝕃 tagged-val
undo : 𝕃 br-history
redo : 𝕃 br-history
data br-history2 : Set where
br-node : br-history → 𝕃 (ctr × br-history2) → br-history2
br-get-h : br-history2 → br-history
br-get-h (br-node h hs) = h
br-lookup : 𝕃 ℕ → br-history2 → maybe br-history
br-lookup xs h = maybe-map br-get-h $
foldl (λ x h? → h? >>= λ {(br-node h hs) → maybe-map snd $ head2 (nthTail x hs)}) (just h) xs
{-# TERMINATING #-}
br-cmd2 : ctxt → string → string → string → 𝕃 string → IO ⊤
br-cmd2 Γ Tₛ tₛ sp ls =
(string-to-ℕ - sp ! "natural number" >>parse inj₂) >>parseIO λ sp →
elim-pair (get-local-ctxt-tvs Γ sp ls) λ Γ Γₗ →
(parse-try Γ - Tₛ ! ttk >>parse inj₂) >>parseIO λ Tf → Tf λ Tₗₗ T →
(parse-string TERM - tₛ ! "term" >>parse inj₂) >>parseIO λ t →
let T = elab-untyped Γ T
Tₑ = erase T
t = elab-typed Γ t in -- TODO: Probably should switch back to ex-tm so if this doesn't currently check it won't elaborate to a hole!
putJson (tv-to-json $ inj₂ $ ts-tag Γ Tₑ) >>
await (br-node (mk-br-history Γ t Tₗₗ T (rope-to-string $ ts2.to-string Γ Tₑ) const Γₗ [] []) [])
where
import to-string (record options {erase-types = ff}) as ts2
import to-string (record options {erase-types = ff; pretty-print = tt}) as pretty2s
ts-tag : ∀ {ed} → ctxt → ⟦ ed ⟧ → tagged-val
ts-tag = ts2.to-string-tag ""
infixr 6 _>>parseIO_
_>>parseIO_ : ∀ {A : Set} → string ⊎ A → (A → IO ⊤) → IO ⊤
inj₁ e >>parseIO f = putJson $ tv-to-json $ inj₁ e
inj₂ a >>parseIO f = f a
replace-substring : string → string → ℕ → ℕ → string × string
replace-substring sₒ sᵣ fm to with string-to-𝕃char sₒ | string-to-𝕃char sᵣ
...| csₒ | csᵣ =
𝕃char-to-string (take fm csₒ ++ csᵣ ++ drop to csₒ) ,
𝕃char-to-string (take (to ∸ fm) $ drop fm csₒ)
replace : string → string → ℕ → ℕ → string
replace sₒ sᵣ fm to = fst $ replace-substring sₒ sᵣ fm to
substring : string → ℕ → ℕ → string
substring s fm to = snd $ replace-substring s "" fm to
escape-rope : rope → rope
escape-rope [[ s ]] = [[ escape-string s ]]
escape-rope (r₁ ⊹⊹ r₂) = escape-rope r₁ ⊹⊹ escape-rope r₂
parse-path : string → maybe (𝕃 ℕ)
parse-path "" = just []
parse-path s with string-split s ' ' | foldr (λ n ns → ns >>= λ ns → string-to-ℕ n >>= λ n → just (n :: ns)) (just [])
...| "" :: ss | f = f ss
...| path | f = f path
write-history : 𝕃 ℕ → br-history → br-history2 → br-history2
write-history [] h (br-node _ hs) = br-node h hs
write-history (n :: ns) h (br-node hₒ hs) = br-node hₒ $ writeh n hs where
writeh : ℕ → 𝕃 (ctr × br-history2) → 𝕃 (ctr × br-history2)
writeh _ [] = []
writeh zero ((c , h') :: hs) = (c , write-history ns h h') :: hs
writeh (suc n) (h' :: hs) = h' :: writeh n hs
write-children : 𝕃 ℕ → 𝕃 (ctr × br-history) → br-history2 → br-history2
write-children [] hs (br-node h _) = br-node h (map (uncurry λ c h → c , br-node h []) hs)
write-children (n :: ns) hs (br-node h hsₒ) = br-node h $ writeh n hsₒ where
writeh : ℕ → 𝕃 (ctr × br-history2) → 𝕃 (ctr × br-history2)
writeh _ [] = []
writeh zero ((c , h') :: hs') = (c , write-children ns hs h') :: hs'
writeh (suc n) (h' :: hs) = h' :: writeh n hs
outline : br-history2 → term
-- outline (br-node (mk-br-history Γ t TYPE T Tₛ f Γₗ undo redo) []) =
-- elim-pair (id-out $ check-term Γ t (just T) empty-spans) λ t~ ss → f t~ []
-- outline (br-node (mk-br-history Γ t Tₗₗ T Tₛ f Γₗ undo redo) []) = f (elab-untyped-no-params Γ t) []
-- outline (br-node (mk-br-history Γ t Tₗₗ T Tₛ f Γₗ undo redo) hs) =
-- f (elab-typed Γ t) (map (uncurry λ c h → c , outline h) hs)
outline (br-node (mk-br-history Γ t Tₗₗ T Tₛ f Γₗ undo redo) hs) =
f t (map-snd outline <$> hs)
make-case : ctxt → params → term → case-args × term
make-case = h [] where
h : params → ctxt → params → term → case-args × term
h acc Γ (Param me x atk :: ps) (Lam me' x' oc' t') =
h (Param me x' atk :: acc) (ctxt-var-decl x' Γ) (substh-params Γ (renamectxt-single x x') empty-trie ps) t'
h acc Γ ps (Hole pi) = params-to-case-args (reverse acc ++ ps) , Hole pi
h acc Γ ps t = params-to-case-args (reverse acc ++ ps) , params-to-apps ps t
await : br-history2 → IO ⊤
awaith : br-history2 → 𝕃 string → IO ⊤
await his =
getLine >>= λ input →
let input = undo-escape-string input
as = string-split input delimiter in
awaith his as
awaith his as =
let put = putJson ∘ tv-to-json
err = (_>> await his) ∘' put ∘' inj₁ in
case as of λ where -- TODO: for these commands, do not add TYPES/KINDS of local decls to context, as they are probably just bound by foralls/pis/lambdas, not _really_ in scope!
("br" :: path :: as) →
maybe-else' (parse-path path) (err ("Could not parse " ^ path ^ " as a list of space-delimited natural numbers")) λ path →
let await-with = await ∘ flip (write-history path) his in
maybe-else' (br-lookup path his) (err "Beta-reduction pointer does not exist") λ where
this @ (mk-br-history Γ t Tₗₗ T Tᵤ f Γₗ undo redo) → case as of λ where
("undo" :: []) → case undo of λ where
[] → err "No undo history"
(u :: us) →
put (inj₂ $ "" , [[ "Undo" ]] , []) >>
await-with (record u {undo = us; redo = this :: redo})
--u (await Γ t Tₗₗ T Tᵤ f undo redo :: redo)
("redo" :: []) → case redo of λ where
[] → err "No redo history"
(r :: rs) →
put (inj₂ $ "" , [[ "Redo" ]] , []) >>
await-with (record r {undo = this :: undo; redo = rs})
--r
("get" :: []) →
put (inj₂ $ "" , [[ Tᵤ ]] , []) >>
await his
("parse" :: []) →
(_>> await his) $
maybe-else' (parse-string Tₗₗ Tᵤ)
(putJson $ spans-to-json $ global-error "Parse error" nothing)
λ T → putJson $ spans-to-json $ snd $ id-out $ ll-ind {λ ll → ctxt → ⟦ ll ⟧' → spanM ⟦ ll ⟧}
untyped-term untyped-type untyped-kind Tₗₗ (record Γ { fn = "missing" }) T empty-spans
("context" :: []) →
putJson (json-object [ "value" , json-array [ tagged-vals-to-json Γₗ ] ]) >> await his
("check" :: t?) →
let await-set = maybe-else (await his) λ t → await-with $ record this
{t = t; undo = this :: undo; redo = []} in
(λ e → either-else' e
(uncurry λ t? e → put (inj₁ e) >> await-set t?)
(uncurry λ t? m → put (inj₂ $ "value" , [[ m ]] , []) >> await-set t?)) $
ll-ind' {λ T → (maybe term × string) ⊎ (maybe term × string)} (Tₗₗ , T)
(λ _ → inj₁ $ nothing , "Expression must be a type, not a term!")
(λ T →
(case t? of λ where
[] → inj₂ nothing
(t :: []) → maybe-else' (parse-string TERM t)
(inj₁ $ nothing , parse-err-msg t "term")
(inj₂ ∘ just)
_ → inj₁ $ nothing ,
"To many arguments given to beta-reduction command 'check'")
>>= λ t? →
elim-pair (maybe-else' t? (elim-pair (id-out (check-term (qualified-ctxt Γ) (resugar t) (just T) empty-spans)) λ t~ ss → nothing , spans-have-error ss)
λ t → elim-pair (id-out (check-term Γ t (just T) empty-spans))
λ t~ ss → just t~ , spans-have-error ss) λ t~? e? →
let fail = inj₁ (just (maybe-else' t~? t id) , "Type error")
try-β = elim-pair (id-out (check-term Γ (ExBeta pi-gen nothing nothing) (just T) empty-spans)) λ β~ ss → if spans-have-error ss then inj₁ (nothing , "Type error") else inj₂ (just β~ , "Equal by beta") in
if e?
then if isJust t? then fail else try-β
else inj₂ (t~? , "Type inhabited"))
(λ _ → inj₁ $ nothing , "Expression must be a type, not a kind!")
("rewrite" :: fm :: to :: eq :: ρ+? :: lc) →
let Γ' = merge-lcis-ctxt Γ lc in
either-else'
(parse-string TERM - eq ! "term" >>parse λ eqₒ →
string-to-𝔹 - ρ+? ! "boolean" >>parse λ ρ+? →
string-to-ℕ - fm ! "natural number" >>parse λ fm →
string-to-ℕ - to ! "natural number" >>parse λ to →
parse-try Γ' - substring Tᵤ fm to ! ttk >>parse λ Tf → Tf λ ll Tₗ →
elim-pair (id-out (check-term Γ' eqₒ nothing empty-spans)) $ uncurry λ eq Tₑ ss →
is-eq-tp? Tₑ ! "Synthesized a non-equational type from the proof"
>>error uncurry λ t₁ t₂ →
err⊎-guard (spans-have-error ss) "Proof does not type check" >>
let Tₑ = TpEq t₁ t₂
x = fresh-var Γ' "x"
Tₗ = elab-untyped-no-params Γ' Tₗ in
elim-pair (map-snd snd $ rewrite-exprd Tₗ Γ' ρ+? nothing (just eq) t₁ x 0) λ Tᵣ n →
err⊎-guard (iszero n) "No rewrites could be performed" >>
parse-string Tₗₗ - replace Tᵤ
(rope-to-string $ [[ "(" ]] ⊹⊹ ts2.to-string Γ' Tᵣ ⊹⊹ [[ ")" ]]) fm to
! ll-ind "term" "type" "kind" Tₗₗ >>parse λ Tᵤ →
let Tᵤ = elab-untyped-no-params (ctxt-var-decl x Γ) Tᵤ in
ll-ind' {λ {(ll , T) → ⟦ ll ⟧ → string ⊎ ⟦ ll ⟧ × (term → term)}}
(Tₗₗ , Tᵤ)
(λ t T → inj₂ $ rewrite-mk-phi x eq T (subst Γ t₂ x t) , id)
(λ Tᵤ _ → inj₂ $ post-rewrite (ctxt-var-decl x Γ) x eq t₂ Tᵤ ,
Rho eq x Tᵤ)
(λ k _ → inj₂ $ subst Γ t₂ x k , id)
T) err $ uncurry λ T' fₜ →
put (inj₂ $ ts-tag Γ $ erase T') >>
await-with (record this {T = T'; Tᵤ = rope-to-string $ ts2.to-string Γ $ erase T'; f = f ∘ fₜ; undo = this :: undo; redo = []})
("normalize" :: fm :: to :: norm :: lc) →
either-else'
(let Γ' = merge-lcis-ctxt Γ lc in
string-to-ℕ - fm ! "natural number" >>parse λ fm →
string-to-ℕ - to ! "natural number" >>parse λ to →
let tₛ = substring Tᵤ fm to in
parse-try Γ' - tₛ ! ttk >>parse λ t → t λ ll t →
parse-norm ff - norm ! parse-norm-err >>parse λ norm →
let s = norm Γ' $ elab-untyped-no-params Γ' t
rs = rope-to-string $ [[ "(" ]] ⊹⊹ ts2.to-string Γ' s ⊹⊹ [[ ")" ]]
Tᵤ' = replace Tᵤ rs fm to in
parse-string Tₗₗ - Tᵤ' ! ll-ind "term" "type" "kind" Tₗₗ >>parse λ Tᵤ' →
let Tᵤ' = elab-untyped-no-params Γ' Tᵤ' in
inj₂ Tᵤ')
err λ Tᵤ' →
put (inj₂ $ ts-tag Γ Tᵤ') >>
await-with (record this {T = Tᵤ' {-Checks?-}; Tᵤ = rope-to-string $ ts2.to-string Γ $ erase Tᵤ'; undo = this :: undo; redo = []})
("conv" :: ll :: fm :: to :: t' :: ls) →
let Γ' = merge-lcis-ctxt Γ ls in
either-else'
(parse-ll - ll ! "language level" >>parse λ ll →
string-to-ℕ - fm ! "natural number" >>parse λ fm →
string-to-ℕ - to ! "natural number" >>parse λ to →
let t = substring Tᵤ fm to in
parse-string ll - t ! ll-ind "term" "type" "kind" ll >>parse λ t →
parse-string ll - t' ! ll-ind "term" "type" "kind" ll >>parse λ t' →
let t = elab-untyped-no-params Γ' t; t' = elab-untyped-no-params Γ' t' in
err⊎-guard (~ ll-ind {λ ll → ctxt → ⟦ ll ⟧ → ⟦ ll ⟧ → 𝔹}
conv-term conv-type conv-kind ll Γ' t t') "Inconvertible" >>
let rs = [[ "(" ]] ⊹⊹ ts2.to-string Γ' (erase t') ⊹⊹ [[ ")" ]]
Tᵤ = replace Tᵤ (rope-to-string rs) fm to in
parse-string Tₗₗ - Tᵤ ! ll-ind "term" "type" "kind" Tₗₗ >>parse λ Tᵤ →
inj₂ (elab-untyped-no-params Γ Tᵤ)) err λ Tᵤ' →
put (inj₂ $ ts-tag Γ $ erase Tᵤ') >>
await-with (record this {Tᵤ = rope-to-string $ ts2.to-string Γ $ erase Tᵤ'; undo = this :: undo; redo = []})
("bind" :: xᵤ :: []) →
let Γₚᵢ = ℕ-to-string (length Γₗ) in
either-else'
(ll-ind' {λ {(ll , _) → string ⊎ ctxt × erased? × tpkd × ⟦ ll ⟧ × (term → term)}} (Tₗₗ , T)
(λ t' →
let R = string ⊎ ctxt × erased? × tpkd × term × (term → term) in
(case_of_ {B = (erased? → var → maybe tpkd → term → R) → R}
(t' , hnf Γ unfold-head t') $ uncurry λ where
(Lam me x oc body) _ f → f me x oc body
_ (Lam me x oc body) f → f me x oc body
_ _ _ → inj₁ "Not a term abstraction") λ me x oc body →
inj₂ $ ctxt-var-decl-loc Γₚᵢ xᵤ Γ ,
me ,
maybe-else' oc (Tkt $ TpHole pi-gen) id ,
rename-var (ctxt-var-decl-loc Γₚᵢ xᵤ Γ) x xᵤ body ,
Lam me xᵤ oc)
(λ T → Γ ⊢ T =β= λ where
(TpAbs me x dom cod) →
let Γ' = ctxt-tk-decl Γₚᵢ xᵤ dom Γ in
inj₂ $ Γ' ,
me ,
dom ,
rename-var Γ' x (Γₚᵢ % xᵤ) cod ,
Lam me xᵤ (just dom)
_ → inj₁ "Not a type abstraction")
(λ k → inj₁ "Expression must be a term or a type"))
err λ where
(Γ' , me , dom , cod , fₜ) →
let tv = binder-data Γ' Γₚᵢ xᵤ dom me nothing "0" "0" in
-- putJson (json-object [ "value" , json-array (json-array (json-rope (fst (snd tv)) :: json-rope (to-string Γ' $ erase cod) :: []) :: []) ]) >>
putJson (json-object [ "value" , json-array [ json-rope (to-string Γ' $ erase cod) ] ]) >>
await-with (record this
{Γ = Γ' ;
T = cod;
Tᵤ = rope-to-string $ ts2.to-string Γ' $ erase cod;
f = f ∘ fₜ;
Γₗ = Γₗ ++ [ tv ];
undo = this :: undo;
redo = []})
("case" :: scrutinee :: rec :: motive?) → -- TODO: Motive?
let Γₚᵢ = ℕ-to-string (length Γₗ) in
either-else'
(parse-string TERM - scrutinee ! "term" >>parse λ scrutinee →
elim-pair (id-out (check-term Γ scrutinee nothing empty-spans)) $ uncurry λ tₛ Tₛ ss →
if (spans-have-error ss) then inj₁ "Error synthesizing a type from the input term"
else
let Tₛ = hnf Γ unfold-no-defs Tₛ in
case decompose-ctr-type Γ Tₛ of λ where
(TpVar Xₛ , [] , as) →
ll-ind' {λ T → string ⊎ (term × term × 𝕃 (ctr × type) × type × ctxt × 𝕃 tagged-val × datatype-info)} (Tₗₗ , T)
(λ t → inj₁ "Expression must be a type to case split")
(λ T → maybe-else' (data-lookup Γ Xₛ as)
(inj₁ "The synthesized type of the input term is not a datatype")
λ d → let mk-data-info X _ asₚ asᵢ ps kᵢ k cs csₚₛ _ _ = d
is' = kind-to-indices (add-params-to-ctxt ps Γ) kᵢ
is = drop-last 1 is'
Tₘ = refine-motive Γ is' (asᵢ ++ [ Ttm tₛ ]) T
sM' = ctxt-mu-decls Γ tₛ is Tₘ d Γₚᵢ "0" "0" rec
σ = λ y → inst-ctrs Γ ps asₚ (map-snd (rename-var {TYPE} Γ X y) <$> cs)
sM = if rec =string ""
then (σ X , const spanMok , Γ , [] , empty-renamectxt , (λ Γ t T → t) , (λ Γ T k → T))
else (σ (Γₚᵢ % mu-Type/ rec) , sM')
mu = sigma-build-evidence Xₛ d in
case sM of λ where
(σ-cs , _ , Γ' , ts , ρ , tf , Tf) →
if spans-have-error (snd $ id-out $
check-type (qualified-ctxt Γ) (resugar Tₘ) (just kᵢ) empty-spans)
then inj₁ "Computed an ill-typed motive"
else inj₂ (
tₛ ,
mu ,
map (λ {(Ctr x T) →
let T' = hnf Γ' unfold-head-elab T in
Ctr x T ,
(case decompose-ctr-type Γ' T' of λ {(Tₕ , ps' , as) →
params-to-alls ps' $ hnf Γ' unfold-head-no-defs (TpApp
(recompose-tpapps (drop (length ps) as) Tₘ)
(Ttm (recompose-apps (params-to-args ps') $
recompose-apps asₚ (Var x))))})})
σ-cs ,
Tₘ ,
Γ' ,
ts ,
d))
(λ k → inj₁ "Expression must be a type to case split")
(Tₕ , [] , as) → inj₁ "Synthesized a non-datatype from the input term"
(Tₕ , ps , as) →
inj₁ "Case splitting is currently restricted to datatypes")
err $ λ where
(scrutinee , mu , cs , Tₘ , Γ , ts , d) →
let json = json-object [ "value" , json-array
[ json-object (map
(λ {(Ctr x _ , T) → unqual-all (ctxt.qual Γ) x ,
json-rope (to-string Γ (erase T))})
cs) ] ] in -- ) ] ] in
putJson json >>
let shallow = iszero (string-length rec)
mk-cs = map λ where
(Ctr x T , t) →
let T' = hnf Γ unfold-head-elab T in
case decompose-ctr-type Γ T' of λ where
(Tₕ , ps , as) →
elim-pair (make-case Γ ps t) λ cas t → Case x cas t []
f'' = λ t cs → (if shallow then Mu rec else Sigma (just mu)) t (just Tₘ) d (mk-cs cs)
f' = λ t cs → f (f'' t cs) cs
mk-hs = map $ map-snd λ T'' →
mk-br-history Γ t TYPE T''
(rope-to-string $ to-string Γ $ erase T'')
(λ t cs → t) (Γₗ ++ ts) [] [] in
await (write-children path (mk-hs cs) $
write-history path (record this
{f = f';
Γ = Γ;
t = scrutinee;
Γₗ = Γₗ ++ ts;-- TODO: Should we really do this?
undo = this :: undo;
redo = []})
his)
("print" :: tab :: []) →
either-else' (string-to-ℕ - tab ! "natural number" >>parse inj₂) err λ tab →
putRopeLn (escape-rope (json-to-rope (tv-to-json (inj₂ $ pretty2s.strRunTag "" Γ $ pretty2s.strNest (suc {-left paren-} tab) (pretty2s.to-stringh $ outline his))))) >> await his
("quit" :: []) → put $ inj₂ $ strRunTag "" Γ $ strAdd "Quitting beta-reduction mode..."
_ → err $ foldl (λ a s → s ^ char-to-string delimiter ^ a)
"Unknown beta-reduction command: " as
_ → err "A beta-reduction buffer is still open"
interactive-cmd : 𝕃 string → toplevel-state → IO ⊤
interactive-cmd ("br2" :: T :: t :: sp :: lc) ts = br-cmd2 (toplevel-state.Γ ts) T t sp lc
--interactive-cmd ("pretty" :: src :: dest :: []) ts = pretty-cmd src dest >>= putStrLn
interactive-cmd ls ts = putRopeLn (json-to-rope (tv-to-json (interactive-cmd-h (toplevel-state.Γ ts) ls)))
interactive-not-br-cmd-msg = tv-to-json $ inj₁ "Beta-reduction mode has been terminated"
| {
"alphanum_fraction": 0.4951240282,
"avg_line_length": 50.0729023384,
"ext": "agda",
"hexsha": "aba190da8c349bf0e1574380f16defa3f1070dab",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bf62d3d338809a30bc21a1affed07936b1ac60ac",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ice1k/cedille",
"max_forks_repo_path": "src/interactive-cmds.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bf62d3d338809a30bc21a1affed07936b1ac60ac",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ice1k/cedille",
"max_issues_repo_path": "src/interactive-cmds.agda",
"max_line_length": 227,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bf62d3d338809a30bc21a1affed07936b1ac60ac",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ice1k/cedille",
"max_stars_repo_path": "src/interactive-cmds.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 11610,
"size": 36403
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- This module is DEPRECATED. Please use
-- Data.List.Relation.Binary.Permutation.Propositional directly.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.List.Relation.Binary.Permutation.Inductive where
{-# WARNING_ON_IMPORT
"Data.List.Relation.Binary.Permutation.Inductive was deprecated in v1.1.
Use Data.List.Relation.Binary.Permutation.Propositional instead."
#-}
open import Data.List.Relation.Binary.Permutation.Propositional public
| {
"alphanum_fraction": 0.6032258065,
"avg_line_length": 34.4444444444,
"ext": "agda",
"hexsha": "2d559b8973be856e207a3fad708eba4470e85abe",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/List/Relation/Binary/Permutation/Inductive.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/List/Relation/Binary/Permutation/Inductive.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/List/Relation/Binary/Permutation/Inductive.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 115,
"size": 620
} |
open import Agda.Primitive
open import Agda.Builtin.Equality renaming (_≡_ to _==_) --(( If I want to rename the built-in equality ))
module AlgebraFormalization where
-- Here is an attempt to translate (part of) the Coq formalization. I did not translate the definition of the free algebra, the proof, and the part concerning the groups yet. I hope I did not do too weird things with the levels.
-- ** Formalization of single-sorted algebraic theories **
-- Function extensionality
postulate
funext : ∀ {X : Set} {Y : X → Set} {f g : ∀ (x : X) → (Y x)} → (∀ (x : X) → ((f x) == (g x))) → (f == g)
-- Operation Signature
record OpSignature {l : Level} : Set (lsuc l) where
field
operation : Set l
arity : operation → Set l
-- I used the things with the levels of the hierachy of types because Agda was unhappy with what I was doing (and I did not want to define it only with Set₀ and Set₁ beacause I wanted to avoid weird things if we then want to define an OpSignature with an operation OpSignature)
-- Here is a attempt (partial for the moment) to add context and terms, based on the same principles as in the file "ManySortedAlgebra.agda"
-- Contexts
record Context {l : Level} (Σ : OpSignature {l}) : Set (lsuc l) where
field
var : Set l
open Context
-- Terms on an operation signature
data Term {l : Level} {Σ : OpSignature {l}} (Γ : Context Σ) : Set l where
tm-var : ∀ (x : var Γ) → Term Γ
tm-op : ∀ (f : OpSignature.operation Σ) → (OpSignature.arity Σ f → Term Γ) → Term Γ
substitution : ∀ {l : Level} {Σ : OpSignature {l}} (Γ Δ : Context Σ) → Set l
substitution Γ Δ = ∀ (x : var Γ) → Term Δ
-- the action of a substitution on a term
_·_ : ∀ {l : Level} {Σ : OpSignature {l}} {Γ Δ : Context Σ} → substitution Γ Δ → Term Γ → Term Δ
σ · (tm-var x) = σ x
σ · (tm-op f x) = tm-op f (λ i → σ · x i)
infixr 6 _·_
-- composition of substitutions
_○_ : ∀ {l : Level} {Σ : OpSignature {l}} {Γ Δ Θ : Context Σ} → substitution Δ Θ → substitution Γ Δ → substitution Γ Θ
(σ ○ τ) x = σ · τ x
infixl 7 _○_
-- End of the attempt
-- Operation Algebra
record OpAlgebra {l : Level} (S : OpSignature {l}) : Set (lsuc l) where
field
carrier : Set l
op : ∀ (o : OpSignature.operation S) (f : OpSignature.arity S o → carrier) → carrier
-- Homomorphisms
record Hom {l : Level} {S : OpSignature {l}} (A : OpAlgebra {l} S) (B : OpAlgebra {l} S) : Set (lsuc l) where
field
map : (OpAlgebra.carrier A) → (OpAlgebra.carrier B)
op-commute : ∀ (o : OpSignature.operation S) (args : OpSignature.arity S o → OpAlgebra.carrier A) → (map (OpAlgebra.op A o args) == OpAlgebra.op B o (λ x → map (args x) ))
-- For the moment I skip the translation of the part concerning the free algebra
-- Attempt to formalize the Equational theories diffenrently, based on what is done in the file "ManySortedAglebra.agda"
-- Equational Theory (equations are seen as "in a context" and not with arities anymore)
record EquationalTheory {l : Level} (Σ : OpSignature {l}) : Set (lsuc l) where
field
eq : Set l
eq-ctx : ∀ (ε : eq) → Context {l} Σ
eq-lhs : ∀ (ε : eq) → Term (eq-ctx ε)
eq-rhs : ∀ (ε : eq) → Term (eq-ctx ε)
open EquationalTheory
-- Equality of terms
infix 4 _≡_
data _≡_ {l : Level} {Σ : OpSignature {l}} {T : EquationalTheory {l} Σ } : {Γ : Context Σ} → Term Γ → Term Γ → Set (lsuc l) where
-- general rules
eq-refl : ∀ {Γ} {t : Term Γ } → t ≡ t
eq-symm : ∀ {Γ} {s t : Term {l} {Σ} Γ } → _≡_ {T = T} s t → t ≡ s
eq-tran : ∀ {Γ} {s t u : Term Γ } → _≡_ {T = T} s t → _≡_ {T = T} t u → s ≡ u
-- congruence rule
eq-congr : ∀ {Γ} {f : OpSignature.operation Σ} (x y : ∀ (i : OpSignature.arity Σ f) → Term Γ) → (∀ i → _≡_ {_} {_} {T} (x i) (y i)) → ((tm-op f x) ≡ (tm-op f y))
-- equational axiom
eq-axiom : ∀ (ε : eq T) {Δ : Context {l} Σ} (σ : substitution (eq-ctx T ε) Δ) →
((σ · eq-lhs T ε) ≡ (σ · eq-rhs T ε))
-- composition is functorial
subst-○ : ∀ {l : Level} {Σ : OpSignature {l}} {T : EquationalTheory Σ} {Γ Δ Θ : Context Σ}
(σ : substitution Δ Θ) (τ : substitution Γ Δ) →
∀ (t : Term Γ ) → _≡_ {T = T} (σ · τ · t) (σ ○ τ · t)
subst-○ σ τ (tm-var x) = eq-refl
subst-○ σ τ (tm-op f x) = eq-congr (λ i → σ · τ · x i) (λ i → σ ○ τ · x i) λ i → subst-○ σ τ (x i)
-- substitution preserves equality
eq-subst : ∀ {l : Level} {Σ : OpSignature {l}} {T : EquationalTheory Σ} {Γ Δ : Context Σ} (σ : substitution Γ Δ)
{s t : Term Γ} → _≡_ {T = T} s t → _≡_ {T = T} (σ · s) (σ · t)
eq-subst σ eq-refl = eq-refl
eq-subst σ (eq-symm ξ) = eq-symm (eq-subst σ ξ)
eq-subst σ (eq-tran ζ ξ) = eq-tran (eq-subst σ ζ) (eq-subst σ ξ)
eq-subst σ (eq-congr x y ξ) = eq-congr (λ i → σ · x i) (λ i → σ · y i) λ i → eq-subst σ (ξ i)
eq-subst {T = T} σ (eq-axiom ε τ) =
eq-tran (subst-○ σ τ (eq-lhs T ε))
(eq-tran (eq-axiom ε (σ ○ τ)) (eq-symm (subst-○ σ τ (eq-rhs T ε))))
-- End of the attempt
-- Equation Signature
record EqSignature {l : Level} (S : OpSignature {l}) : Set (lsuc l) where
field
eq : Set l
eq-arity : eq → Set l
-- the two sides of the equation
lhs : ∀ {A : OpAlgebra {l} S} {e : eq} → ((eq-arity e) → (OpAlgebra.carrier A)) → (OpAlgebra.carrier A)
rhs : ∀ {A : OpAlgebra {l} S} {e : eq} → ((eq-arity e) → (OpAlgebra.carrier A)) → (OpAlgebra.carrier A)
-- naturality / commutation
lhs-natural : ∀ (A B : OpAlgebra {l} S) (f : Hom A B) (e : eq) (args : eq-arity e → OpAlgebra.carrier A) → ( (Hom.map f) (lhs {A} {e} args) == lhs {B} {e} (λ i → (Hom.map f) (args i)))
rhs-natural : ∀ (A B : OpAlgebra {l} S) (f : Hom A B) (e : eq) (args : eq-arity e → OpAlgebra.carrier A) → ( (Hom.map f) (rhs {A} {e} args) == rhs {B} {e} (λ i → (Hom.map f) (args i)))
-- Algebra
record Algebra {l : Level} (S : OpSignature {l}) (E : EqSignature {l} S) : Set (lsuc l) where
field
alg : OpAlgebra S
equations : ∀ (e : EqSignature.eq E) (args : EqSignature.eq-arity E e → OpAlgebra.carrier alg) → (EqSignature.rhs E {alg} {e} args == EqSignature.lhs E {alg} {e} args)
-- For the moment, I think that we did not talk about terms in contexts, did we ? Should we generalize the things we did in Lambda.agda (using De Bruijn indices for the variables) ? -> I tried things
-- ** Other things **
-- Useful arities
data nullary : Set where
data unary : Set where
only : unary
data binary : Set where
fst : binary
snd : binary
-- Definition of groups
data GroupOperation : Set where
one : GroupOperation
mul : GroupOperation
inv : GroupOperation
GroupArity : (o : GroupOperation) → Set
GroupArity one = nullary
GroupArity mul = binary
GroupArity inv = unary
GroupOp : OpSignature
GroupOp = record { operation = GroupOperation ; arity = GroupArity}
| {
"alphanum_fraction": 0.5912869017,
"avg_line_length": 37.7189189189,
"ext": "agda",
"hexsha": "072e502468e44918a54b125abf6d7354f620e59b",
"lang": "Agda",
"max_forks_count": 6,
"max_forks_repo_forks_event_max_datetime": "2021-05-24T02:51:43.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-02-16T13:43:07.000Z",
"max_forks_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andrejbauer/formaltt",
"max_forks_repo_path": "src/Experimental/AlgebraFormalization.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_issues_repo_issues_event_max_datetime": "2021-05-14T16:15:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-04-30T14:18:25.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andrejbauer/formaltt",
"max_issues_repo_path": "src/Experimental/AlgebraFormalization.agda",
"max_line_length": 279,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cilinder/formaltt",
"max_stars_repo_path": "src/Experimental/AlgebraFormalization.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-19T15:50:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-16T14:07:06.000Z",
"num_tokens": 2471,
"size": 6978
} |
module 100-natural where
open import 010-false-true
open import 020-equivalence
record Natural
{N : Set}
(zero : N)
(suc : N -> N)
(_==_ : N -> N -> Set)
: Set1 where
-- axioms
field
equiv : Equivalence _==_
sucn!=zero : ∀ {r} -> suc r == zero -> False
sucinjective : ∀ {r s} -> suc r == suc s -> r == s
cong : ∀ {r s} -> r == s -> suc r == suc s
induction : (p : N -> Set) -> p zero -> (∀ n -> p n -> p (suc n)) -> (∀ n -> p n)
open Equivalence equiv public
| {
"alphanum_fraction": 0.5150300601,
"avg_line_length": 22.6818181818,
"ext": "agda",
"hexsha": "5cd1349b216d6f83e1ce26ac5874b4f8768495f9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "76fe404b25210258810641cc6807feecf0ff8d6c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mcmtroffaes/agda-proofs",
"max_forks_repo_path": "100-natural.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "76fe404b25210258810641cc6807feecf0ff8d6c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mcmtroffaes/agda-proofs",
"max_issues_repo_path": "100-natural.agda",
"max_line_length": 85,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "76fe404b25210258810641cc6807feecf0ff8d6c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mcmtroffaes/agda-proofs",
"max_stars_repo_path": "100-natural.agda",
"max_stars_repo_stars_event_max_datetime": "2016-08-17T16:15:42.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-09T22:51:55.000Z",
"num_tokens": 180,
"size": 499
} |
module Formalization.LambdaCalculus.Semantics.Reduction where
import Lvl
open import Data
open import Formalization.LambdaCalculus
open import Formalization.LambdaCalculus.SyntaxTransformation
open import Numeral.Natural
open import Numeral.Finite
open import Relator.ReflexiveTransitiveClosure
open import Syntax.Number
open import Type
private variable d d₁ d₂ : ℕ
private variable f g x y : Term(d)
-- β-reduction (beta) with its compatible closure over `Apply`.
-- Reduces a term of form `f(x)` to `f[0 ≔ x]`.
data _β⇴_ : Term(d₁) → Term(d₂) → Type{1} where
β : {f : Term(𝐒(d))}{x : Term(d)} → (Apply(Abstract(f))(x) β⇴ substituteVar0(x)(f))
cong-applyₗ : (f β⇴ g) → (Apply f(x) β⇴ Apply g(x)) -- TODO: cong-applyₗ and cong-applyᵣ can be applied in any order, but many evaluation strategies have a fixed order. How should this be represented?
cong-applyᵣ : (x β⇴ y) → (Apply f(x) β⇴ Apply f(y))
cong-abstract : (x β⇴ y) → (Abstract x β⇴ Abstract y) -- TODO: Sometimes this is not included, specifically for the call by value evaluation strategy? But it seems to be required for the encoding of ℕ?
-- η-reduction (eta). (TODO: May require more introductions like β have)
-- Reduces a term of form `x ↦ f(x)` to `f`.
data _η⇴_ : Term(d₁) → Term(d₂) → Type{1} where
η : (Abstract(Apply(f)(Var(maximum))) η⇴ f)
-- Reduction of expressions (TODO: May require more introductions like β have)
data _⇴_ : Term(d₁) → Term(d₂) → Type{1} where
β : (Apply(Abstract(f))(x) ⇴ substituteVar0(x)(f))
η : (Abstract(Apply(f)(Var(maximum))) ⇴ f)
_β⇴*_ : Term(d) → Term(d) → Type
_β⇴*_ = ReflexiveTransitiveClosure(_β⇴_)
_β⥈_ : Term(d) → Term(d) → Type
_β⥈_ = SymmetricClosure(_β⇴_)
_β⥈*_ : Term(d) → Term(d) → Type
_β⥈*_ = ReflexiveTransitiveClosure(_β⥈_)
| {
"alphanum_fraction": 0.6968325792,
"avg_line_length": 42.0952380952,
"ext": "agda",
"hexsha": "cd714a7f756de2219e5b6de7b847d8af13d7ed54",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Formalization/LambdaCalculus/Semantics/Reduction.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Formalization/LambdaCalculus/Semantics/Reduction.agda",
"max_line_length": 203,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Formalization/LambdaCalculus/Semantics/Reduction.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 609,
"size": 1768
} |
{-# OPTIONS --cubical --no-import-sorts --no-exact-split --safe #-}
module Cubical.Data.Queue.Base where
open import Cubical.Data.Queue.1List public
open import Cubical.Data.Queue.Truncated2List public
open import Cubical.Data.Queue.Untruncated2List public
| {
"alphanum_fraction": 0.7945736434,
"avg_line_length": 36.8571428571,
"ext": "agda",
"hexsha": "946da9559ae96d21272068e349bd63c76bc2dbad",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Data/Queue/Base.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Data/Queue/Base.agda",
"max_line_length": 67,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Data/Queue/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 63,
"size": 258
} |
module dynamic where
open import LSsyntax
open import static
open import Relation.Nullary
open import Data.Nat using (ℕ ; _+_)
open import Data.Fin using (Fin; toℕ)
open import Data.Vec using (Vec ; lookup; _∷_; [])
open import Data.Product
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary
open import Data.Bool using (Bool; true ; false)
data _⊓ˡ_ : (ℓ₁ ℓ₂ : Label) → Set where
ℓ⊓✭ : ∀ ℓ → ℓ ⊓ˡ ✭
✭⊓ℓ : ∀ ℓ → ✭ ⊓ˡ ℓ
idℓ : ∀ ℓ → ℓ ⊓ˡ ℓ
_⊓ᵣ_ : ∀ (ℓ₁ ℓ₂ : Label) → Dec (ℓ₁ ⊓ˡ ℓ₂)
⊤ ⊓ᵣ ⊤ = yes (idℓ ⊤)
⊤ ⊓ᵣ ⊥ = no (λ ())
⊤ ⊓ᵣ ✭ = yes (ℓ⊓✭ ⊤)
⊥ ⊓ᵣ ⊤ = no (λ ())
⊥ ⊓ᵣ ⊥ = yes (idℓ ⊥)
⊥ ⊓ᵣ ✭ = yes (ℓ⊓✭ ⊥)
✭ ⊓ᵣ ⊤ = yes (✭⊓ℓ ⊤)
✭ ⊓ᵣ ⊥ = yes (✭⊓ℓ ⊥)
✭ ⊓ᵣ ✭ = yes (ℓ⊓✭ ✭)
-- note that this is not actually correct. The meet of ⊤ and bottom for example should be undefined,
-- but that isn't easy to model directly in Agda. However, if we only call this after induction over
-- the proof of _⊓ᵣ_ it (should) be impossible to call one of the incorrect cases.
recMeet : ∀ (ℓ₁ ℓ₂ : Label) → Label
recMeet ⊤ ⊤ = ⊤
recMeet ⊤ ✭ = ⊤
recMeet ⊥ ⊥ = ⊥
recMeet ⊥ ✭ = ⊥
recMeet ✭ ⊤ = ⊤
recMeet ✭ ⊥ = ⊥
recMeet ✭ ✭ = ✭
recMeet _ _ = ✭ -- fake case
_⊓_ : ∀ (t₁ t₂ : GType) → GType
bool x ⊓ bool x₁ with x ⊓ᵣ x₁
bool x ⊓ bool x₁ | yes p = bool (recMeet x x₁)
bool x ⊓ bool x₁ | no ¬p = err
bool x ⊓ _ = err
(t₁ ⇒ x) t₂ ⊓ (t₃ ⇒ x₁) t₄ with x ⊓ᵣ x₁
(t₁ ⇒ x) t₂ ⊓ (t₃ ⇒ x₁) t₄ | yes p with (t₁ ⊓ t₃) | (t₂ ⊓ t₄)
(t₁ ⇒ x₂) t₂ ⊓ (t₃ ⇒ x₃) t₄ | yes p | (bool x) | (bool x₁) = ((bool x) ⇒ (recMeet x₂ x₃)) (bool x)
-- this is probably not correct, but it keeps things simple.
(t₁ ⇒ x₂) t₂ ⊓ (t₃ ⇒ x₃) t₄ | yes p | (bool x) | ((d ⇒ x₁) d₁) = err
(t₁ ⇒ x₂) t₂ ⊓ (t₃ ⇒ x₃) t₄ | yes p | ((c ⇒ x) c₁) | (bool x₁) = err
(t₁ ⇒ x₂) t₂ ⊓ (t₃ ⇒ x₃) t₄ | yes p | ((c ⇒ x) c₁) | ((d ⇒ x₁) d₁) = err
(t₁ ⇒ x₁) t₂ ⊓ (t₃ ⇒ x₂) t₄ | yes p | (bool x) | err = err
(t₁ ⇒ x₁) t₂ ⊓ (t₃ ⇒ x₂) t₄ | yes p | ((c ⇒ x) c₁) | err = err
(t₁ ⇒ x₁) t₂ ⊓ (t₃ ⇒ x₂) t₄ | yes p | err | (bool x) = err
(t₁ ⇒ x₁) t₂ ⊓ (t₃ ⇒ x₂) t₄ | yes p | err | ((d ⇒ x) d₁) = err
(t₁ ⇒ x) t₂ ⊓ (t₃ ⇒ x₁) t₄ | yes p | err | err = err
(t₁ ⇒ x) t₂ ⊓ (t₃ ⇒ x₁) t₄ | no ¬p = err
_ ⊓ _ = err
I≼ : ∀ (ℓ₁ ℓ₂ : Label) → (Label × Label)
I≼ ⊤ ✭ = ⊤ , ⊤
I≼ ✭ ⊤ = ✭ , ⊤
I≼ ✭ ⊥ = ⊥ , ⊥
I≼ ⊥ ✭ = ⊥ , ✭
I≼ ℓ₁ ℓ₂ = ℓ₁ , ℓ₂
Δ≼ : ∀ (triple : Label × Label × Label) → (Label × Label)
Δ≼ (ℓ₁ , ⊤ , ⊤) = ℓ₁ , ⊤
Δ≼ (ℓ₁ , ⊤ , ✭) = ℓ₁ , ⊤
Δ≼ (⊥ , ⊥ , ℓ₃) = ⊥ , ℓ₃
Δ≼ (⊥ , ✭ , ℓ₃) = ⊥ , ℓ₃
Δ≼ (ℓ₁ , ✭ , ℓ₃) = ℓ₁ , ℓ₃
Δ≼ (ℓ₁ , ℓ₂ , ℓ₃) = ℓ₁ , ℓ₃
Δ< : ∀ (triple : GType × GType × GType) → (GType × GType)
Δ< (bool ℓ₁ , bool ℓ₂ , bool ℓ₃) =
let new = Δ≼ (ℓ₁ , ℓ₂ , ℓ₃) in
bool (proj₁ new) , bool (proj₂ new)
Δ< ((t₁ ⇒ ℓ₁) t′₁ , (t₂ ⇒ ℓ₂) t′₂ , (t₃ ⇒ ℓ₃) t′₃) =
let new = Δ≼ (ℓ₁ , ℓ₂ , ℓ₃) in
((t₁ ⇒ (proj₁ new)) t′₁) , ((t₃ ⇒ (proj₂ new)) t′₃)
Δ< (_ , _ , _) = err , err
interior : ∀ (t : GType) → (GType × GType)
interior (bool ℓ) = (bool ℓ) , (bool ℓ)
interior ((t ⇒ ℓ) t₁) =
let (ℓ₁ , ℓ₂) = I≼ (getLabel t) ℓ in
((setLabel t ℓ₁) ⇒ ℓ₂) t₁ , ((setLabel t ℓ₁) ⇒ ℓ₂) t₁
interior err = err , err
_∘<_ : ∀ (t₁ t₂ : (GType × GType)) → (GType × GType)
(s₁ , s₂₁) ∘< (s₂₂ , s₃) = Δ< (s₁ , (s₂₁ ⊓ s₂₂) , s₃)
dynamicCheck : ∀ {n} (Γ : Ctx n) (t : Term) → Check Γ t
-- variables
dynamicCheck {n} Γ (var v) with fromℕ n v
dynamicCheck {n} Γ (var .(toℕ m)) | yes m = yes (lookup m Γ) (Sx m refl)
dynamicCheck {n} Γ (var .(n + m)) | no m = no
-- literals
dynamicCheck Γ (litBool x ℓ) = yes (bool ℓ) (Sb x ℓ)
-- lambda abstraction
dynamicCheck Γ (lam x t x₁) with dynamicCheck (x ∷ Γ) t
dynamicCheck Γ (lam x .(erase t) ℓ) | yes τ t = yes ((x ⇒ ℓ) τ) (Sλ x ℓ t)
dynamicCheck Γ (lam x t x₁) | no = no
-- logical and
dynamicCheck Γ (t ∧ t₁) with dynamicCheck Γ t | dynamicCheck Γ t₁
dynamicCheck Γ (.(erase t) ∧ .(erase t₁)) | yes τ t | (yes τ₁ t₁) with (interior τ) ∘< (interior τ₁)
dynamicCheck Γ (.(erase t) ∧ .(erase t₁)) | yes τ t | (yes τ₁ t₁) | (bool x , bool x₁) = yes (bool (getLabel τ ~⋎~ getLabel τ₁)) (t S∧ t₁)
dynamicCheck Γ (.(erase t) ∧ .(erase t₁)) | yes τ t | (yes τ₁ t₁) | (_ , _) = no
dynamicCheck Γ (t ∧ t₁) | _ | _ = no
-- logical or
dynamicCheck Γ (t ∨ t₁) with dynamicCheck Γ t | dynamicCheck Γ t₁
dynamicCheck Γ (.(erase t) ∨ .(erase t₁)) | yes τ t | (yes τ₁ t₁) with (interior τ) ∘< (interior τ₁)
dynamicCheck Γ (.(erase t) ∨ .(erase t₁)) | yes τ t | (yes τ₁ t₁) | (bool x , bool x₁) = yes (bool (getLabel τ ~⋎~ getLabel τ₁)) (t S∨ t₁)
dynamicCheck Γ (.(erase t) ∨ .(erase t₁)) | yes τ t | (yes τ₁ t₁) | (_ , _) = no
dynamicCheck Γ (t ∨ t₁) | _ | _ = no
-- application
-- this needs to be doublechecked!
dynamicCheck Γ (t ∙ t₁) with dynamicCheck Γ t | dynamicCheck Γ t₁
dynamicCheck Γ (.(erase t) ∙ .(erase t₁)) | yes ((τ ⇒ ℓ₁) τ₁) t | yes τ₂ t₁ with (interior ((τ ⇒ ℓ₁) τ₁)) ∘< (interior τ₂)
dynamicCheck Γ (.(erase t) ∙ .(erase t₁)) | yes ((τ ⇒ ℓ₁) τ₁) t | (yes τ₂ t₁) | (bool x , bool x₁) = yes (bool (getLabel τ₁ ~⋎~ ℓ₁)) (S∙ t t₁ (yes τ₂ τ))
dynamicCheck Γ (.(erase t) ∙ .(erase t₁)) | yes ((τ ⇒ ℓ₁) τ₁) t | (yes τ₂ t₁) | (bool x , (proj₄ ⇒ x₁) proj₅) = no
dynamicCheck Γ (.(erase t) ∙ .(erase t₁)) | yes ((τ ⇒ ℓ₁) τ₁) t | (yes τ₂ t₁) | ((proj₃ ⇒ x) proj₄ , bool x₁) = no
dynamicCheck Γ (.(erase t) ∙ .(erase t₁)) | yes ((τ ⇒ ℓ₁) τ₁) t | (yes τ₂ t₁) | ((proj₃ ⇒ x) proj₄ , (proj₅ ⇒ x₁) proj₆) = no
dynamicCheck Γ (.(erase t) ∙ .(erase t₁)) | yes ((τ ⇒ ℓ₁) τ₁) t | (yes τ₂ t₁) | (_ , _) = no
dynamicCheck Γ (.(erase t) ∙ .(erase t₁)) | yes _ t | (yes _ t₁) = no
dynamicCheck Γ (.(erase t) ∙ t₁) | yes τ t | no = no
dynamicCheck Γ (t₁ ∙ .(erase t)) | no | yes τ t = no
dynamicCheck Γ (t ∙ t₁) | no | no = no
-- if then else
dynamicCheck Γ (if b then t₁ else t₂) with dynamicCheck Γ b
dynamicCheck Γ (if .(erase b) then t₁ else t₂) | yes τ b with dynamicCheck Γ t₁ | dynamicCheck Γ t₂
dynamicCheck Γ (if .(erase b) then .(erase t₁) else .(erase t₂)) | yes τ b | (yes τ₁ t₁) | (yes τ₂ t₂) with (interior τ₁) ∘< (interior τ₂)
dynamicCheck Γ (if .(erase b) then .(erase t₁) else .(erase t₂)) | yes τ b | (yes τ₁ t₁) | (yes τ₂ t₂) | (bool ℓ , bool ℓ₁) = yes (bool (getLabel (τ₁ :∨: τ₂) ~⋎~ getLabel τ)) (Sif b t₁ t₂)
dynamicCheck Γ (if .(erase b) then .(erase t₁) else .(erase t₂)) | yes τ b | (yes τ₁ t₁) | (yes τ₂ t₂) | (_ , _) = no
dynamicCheck Γ (if .(erase b) then t₁ else t₂) | yes τ b | _ | _ = no
dynamicCheck Γ (if b then t₁ else t₂) | no = no
-- error
dynamicCheck Γ error = no
| {
"alphanum_fraction": 0.547544573,
"avg_line_length": 42.6266666667,
"ext": "agda",
"hexsha": "cbe41c3079c861fae9c1b24233f3916940c34ee6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "acf5a153e14a7bdc0c9332fa602fa369fe7add46",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "kellino/TypeSystems",
"max_forks_repo_path": "Agda/Gradual Security/dynamic.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "acf5a153e14a7bdc0c9332fa602fa369fe7add46",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "kellino/TypeSystems",
"max_issues_repo_path": "Agda/Gradual Security/dynamic.agda",
"max_line_length": 188,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "acf5a153e14a7bdc0c9332fa602fa369fe7add46",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "kellino/TypeSystems",
"max_stars_repo_path": "Agda/Gradual Security/dynamic.agda",
"max_stars_repo_stars_event_max_datetime": "2017-05-26T23:06:17.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-27T08:05:40.000Z",
"num_tokens": 3133,
"size": 6394
} |
module Numeral.Natural.Sequence where
import Lvl
open import Data
open import Data.Either as Either using (_‖_)
open import Data.Tuple as Tuple using (_⨯_ ; _,_)
import Data.Tuple.Raise as Tuple
open import Functional
open import Numeral.Natural
open import Numeral.Natural.Oper
open import Numeral.Natural.Oper.FlooredDivision
open import Type
private variable ℓ ℓ₁ ℓ₂ : Lvl.Level
private variable n : ℕ
private variable A : Type{ℓ}
private variable B : Type{ℓ}
-- Alternates between the two sides, starting with the left.
-- A countable bijection for the Either type.
-- Examples:
-- alternate₂(0) = Left(0)
-- alternate₂(2) = Left(1)
-- alternate₂(4) = Left(2)
-- alternate₂(6) = Left(3)
-- alternate₂(1) = Right(0)
-- alternate₂(3) = Right(1)
-- alternate₂(5) = Right(2)
-- alternate₂(7) = Right(3)
alternate₂ : ℕ → (ℕ ‖ ℕ)
alternate₂(0) = Either.Left 0
alternate₂(1) = Either.Right 0
alternate₂(𝐒(𝐒(n))) = Either.map 𝐒 𝐒 (alternate₂ n)
-- The inverse of `alternate₂`.
unalternate₂ : (ℕ ‖ ℕ) → ℕ
unalternate₂(Either.Left n) = n ⋅ 2
unalternate₂(Either.Right n) = 𝐒(n ⋅ 2)
-- Maps two natural numbers to a single one without overlaps by following the inverse diagonals downwards.
-- A countable bijection for the tuple pairing type.
-- Alternative forms:
-- pairIndexing a b = a + (∑(𝕟(a + b)) (i ↦ 𝕟-to-ℕ(i)))
-- pairIndexing a b = a + ((a + b) * (a + b + 1) / 2)
-- Example:
-- Horizontal axis is `a` starting from 0.
-- Vertical axis is `b` starting from 0.
-- Cells are `pairIndexing a b`.
-- 0, 1, 3, 6,10,15
-- 2, 4, 7,11,16,..
-- 5, 8,12,17, ..
-- 9,13,18, ..
-- 14,19, ..
-- 20,.. .. .. .. ..
-- Termination:
-- Decreases `a` until 0 while at the same time increases `b` (So `b` is at most `a`).
-- Then the arguments is swapped, but using the predecessor of `b`.
-- This means that `b` will eventually reach 0.
{-# TERMINATING #-}
pairIndexing : ℕ → ℕ → ℕ
pairIndexing 𝟎 𝟎 = 𝟎
pairIndexing (𝐒 a) 𝟎 = 𝐒(pairIndexing 𝟎 a)
{-# CATCHALL #-}
pairIndexing a (𝐒 b) = 𝐒(pairIndexing (𝐒 a) b)
-- A sequence which fills a discrete two dimensional grid (a space bounded in two directions and infinite in the other two).
-- It is the inverse of an uncurried `pairIndexing`.
-- Example:
-- •-→-• ↗→• ↗→•
-- ↙ ↗ ↙ ↗ ↙
-- •→↗ • ↗ • •
-- ↙ ↗ ↙
-- •→↗ • • •
diagonalFilling : ℕ → (ℕ ⨯ ℕ)
diagonalFilling 𝟎 = (𝟎 , 𝟎)
diagonalFilling (𝐒(n)) with diagonalFilling n
... | (𝟎 , b) = (𝐒(b) , 0)
... | (𝐒(a) , b) = (a , 𝐒(b))
tupleIndexing : (ℕ Tuple.^ n) → ℕ
tupleIndexing {𝟎} <> = 𝟎
tupleIndexing {𝐒(𝟎)} x = x
tupleIndexing {𝐒(𝐒(n))} (x , y) = pairIndexing x (tupleIndexing {𝐒(n)} y)
spaceFilling : ℕ → (ℕ Tuple.^ n)
spaceFilling {𝟎} _ = <>
spaceFilling {𝐒(𝟎)} i = i
spaceFilling {𝐒(𝐒(n))} i = Tuple.mapRight (spaceFilling {𝐒(n)}) (diagonalFilling i)
-- Interleaves two sequences into one, alternating between the elements from each sequence.
interleave : (ℕ → A) → (ℕ → B) → (ℕ → (A ‖ B))
interleave af bf = Either.map af bf ∘ alternate₂
pair : (ℕ → A) → (ℕ → B) → (ℕ → (A ⨯ B))
pair af bf = Tuple.map af bf ∘ diagonalFilling
| {
"alphanum_fraction": 0.6111979981,
"avg_line_length": 32.6224489796,
"ext": "agda",
"hexsha": "0d80a72c3e331c3d1ecefcfb36b263056abfbb00",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Numeral/Natural/Sequence.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Numeral/Natural/Sequence.agda",
"max_line_length": 124,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Numeral/Natural/Sequence.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1206,
"size": 3197
} |
module Utils.Exception where
{-# IMPORT Utils.Exception #-}
open import Utils.HaskellTypes
data Either (A : Set) (B : Set) : Set where
Left : A → Either A B
Right : B → Either A B
{-# COMPILED_DATA Either Either Left Right #-}
right : ∀{X A : Set} → A → Either X A
right x = Right x
error : ∀{X A : Set} → X → Either X A
error e = Left e
_>>=E_ : ∀{X A B : Set} → Either X A → (A → Either X B) → Either X B
_>>=E_ (Left x) f = Left x
_>>=E_ (Right x) f = f x
commExpTriple : {X A B C : Set} → Triple (Either X A) B C → Either X (Triple A B C)
commExpTriple (triple (Left e) b c) = error e
commExpTriple (triple (Right a) b c) = right (triple a b c)
commExpList : {X A : Set} → List (Either X A) → Either X (List A)
commExpList [] = right []
commExpList (Left e :: xs) = Left e
commExpList (Right y :: xs) = (commExpList xs) >>=E (λ ys → right (y :: ys))
data Exception : Set where
IllformedLetPattern : Exception
IllformedPromote : Exception
VarNotInCtx : Exception
Nonlinearity : Exception
NonlocallyClosed : Exception
NonEmptyCtx : Exception
TypeErrorLetNotTop : Exception
TypeErrorLetNotTensor : Exception
TypeErrorPromoteNotBang : Exception
TypeErrorTypesNotEqual : Exception
TypeErrorAppNotImp : Exception
NonLinearCtx : Exception
TypeErrorDuplicatedFreeVar : Exception
{-# COMPILED_DATA Exception Utils.Exception.Exception Utils.Exception.IllformedLetPattern
Utils.Exception.IllformedPromote
Utils.Exception.VarNotInCtx
Utils.Exception.Nonlinearity
Utils.Exception.NonlocallyClosed
Utils.Exception.NonEmptyCtx
Utils.Exception.TypeErrorLetNotTop
Utils.Exception.TypeErrorLetNotTensor
Utils.Exception.TypeErrorPromoteNotBang
Utils.Exception.TypeErrorTypesNotEqual
Utils.Exception.TypeErrorAppNotImp
Utils.Exception.NonLinearCtx
Utils.Exception.TypeErrorDuplicatedFreeVar #-}
| {
"alphanum_fraction": 0.5426262626,
"avg_line_length": 41.9491525424,
"ext": "agda",
"hexsha": "3b875765450adb0794e47fb5e268b3758fc4a8b1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c83f5d8201362b26a749138f6dbff2dd509f85b1",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "heades/Agda-LLS",
"max_forks_repo_path": "Source/ALL/Utils/Exception.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "c83f5d8201362b26a749138f6dbff2dd509f85b1",
"max_issues_repo_issues_event_max_datetime": "2017-04-05T17:30:16.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-03-27T14:52:46.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "heades/Agda-LLS",
"max_issues_repo_path": "Source/ALL/Utils/Exception.agda",
"max_line_length": 100,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "c83f5d8201362b26a749138f6dbff2dd509f85b1",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "heades/Agda-LLS",
"max_stars_repo_path": "Source/ALL/Utils/Exception.agda",
"max_stars_repo_stars_event_max_datetime": "2019-08-02T23:41:23.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-04-09T20:53:53.000Z",
"num_tokens": 533,
"size": 2475
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Categories.Category.Base where
open import Cubical.Core.Glue
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Equiv
private
variable
ℓ ℓ' : Level
-- Precategories
record Precategory ℓ ℓ' : Type (ℓ-suc (ℓ-max ℓ ℓ')) where
-- no-eta-equality ; NOTE: need eta equality for `opop`
field
ob : Type ℓ
Hom[_,_] : ob → ob → Type ℓ'
id : ∀ x → Hom[ x , x ]
_⋆_ : ∀ {x y z} (f : Hom[ x , y ]) (g : Hom[ y , z ]) → Hom[ x , z ]
-- TODO: change these to implicit argument
⋆IdL : ∀ {x y : ob} (f : Hom[ x , y ]) → (id x) ⋆ f ≡ f
⋆IdR : ∀ {x y} (f : Hom[ x , y ]) → f ⋆ (id y) ≡ f
⋆Assoc : ∀ {u v w x} (f : Hom[ u , v ]) (g : Hom[ v , w ]) (h : Hom[ w , x ]) → (f ⋆ g) ⋆ h ≡ f ⋆ (g ⋆ h)
-- composition: alternative to diagramatic order
_∘_ : ∀ {x y z} (g : Hom[ y , z ]) (f : Hom[ x , y ]) → Hom[ x , z ]
g ∘ f = f ⋆ g
open Precategory
-- Helpful syntax/notation
_[_,_] : (C : Precategory ℓ ℓ') → (x y : C .ob) → Type ℓ'
_[_,_] = Hom[_,_]
-- needed to define this in order to be able to make the subsequence syntax declaration
seq' : ∀ (C : Precategory ℓ ℓ') {x y z} (f : C [ x , y ]) (g : C [ y , z ]) → C [ x , z ]
seq' = _⋆_
infixl 15 seq'
syntax seq' C f g = f ⋆⟨ C ⟩ g
-- composition
comp' : ∀ (C : Precategory ℓ ℓ') {x y z} (g : C [ y , z ]) (f : C [ x , y ]) → C [ x , z ]
comp' = _∘_
infixr 16 comp'
syntax comp' C g f = g ∘⟨ C ⟩ f
-- Categories
record isCategory (C : Precategory ℓ ℓ') : Type (ℓ-max ℓ ℓ') where
field
isSetHom : ∀ {x y} → isSet (C [ x , y ])
-- Isomorphisms and paths in precategories
record CatIso {C : Precategory ℓ ℓ'} (x y : C .Precategory.ob) : Type ℓ' where
constructor catiso
field
mor : C [ x , y ]
inv : C [ y , x ]
sec : inv ⋆⟨ C ⟩ mor ≡ C .id y
ret : mor ⋆⟨ C ⟩ inv ≡ C .id x
pathToIso : {C : Precategory ℓ ℓ'} (x y : C .ob) (p : x ≡ y) → CatIso {C = C} x y
pathToIso {C = C} x y p = J (λ z _ → CatIso x z) (catiso (C .id x) idx (C .⋆IdL idx) (C .⋆IdL idx)) p
where
idx = C .id x
-- Univalent Categories
record isUnivalent (C : Precategory ℓ ℓ') : Type (ℓ-max ℓ ℓ') where
field
univ : (x y : C .ob) → isEquiv (pathToIso {C = C} x y)
-- package up the univalence equivalence
univEquiv : ∀ (x y : C .ob) → (x ≡ y) ≃ (CatIso x y)
univEquiv x y = (pathToIso {C = C} x y) , (univ x y)
open isUnivalent public
-- Opposite Categories
_^op : Precategory ℓ ℓ' → Precategory ℓ ℓ'
(C ^op) .ob = C .ob
(C ^op) .Hom[_,_] x y = C .Hom[_,_] y x
(C ^op) .id = C .id
(C ^op) ._⋆_ f g = C ._⋆_ g f
(C ^op) .⋆IdL = C .⋆IdR
(C ^op) .⋆IdR = C .⋆IdL
(C ^op) .⋆Assoc f g h = sym (C .⋆Assoc _ _ _)
open isCategory public
| {
"alphanum_fraction": 0.5451263538,
"avg_line_length": 27.1568627451,
"ext": "agda",
"hexsha": "2c0716503b0566234eb8567dce98c6634ff11a93",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Categories/Category/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Categories/Category/Base.agda",
"max_line_length": 109,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Categories/Category/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1180,
"size": 2770
} |
-- Partly based on code due to Andrea Vezzosi.
open import Common.Prelude
data D : Set where
run-time : Bool → D
@0 compile-time : Bool → D
f : D → @0 D → Bool
f (run-time x) _ = x
f (compile-time x) (run-time y) = x
f (compile-time x) (compile-time y) = y
main : IO Unit
main =
putStrLn (if f (run-time true) (compile-time false)
then "ok" else "bad")
| {
"alphanum_fraction": 0.5728395062,
"avg_line_length": 22.5,
"ext": "agda",
"hexsha": "101e4eb4864a0eb2ce871bbddf11a1d3c40f4460",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "cb645fcad38f76a9bf37507583867595b5ce87a1",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "guilhermehas/agda",
"max_forks_repo_path": "test/Compiler/simple/Erased-constructors.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "cb645fcad38f76a9bf37507583867595b5ce87a1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "guilhermehas/agda",
"max_issues_repo_path": "test/Compiler/simple/Erased-constructors.agda",
"max_line_length": 53,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "cb645fcad38f76a9bf37507583867595b5ce87a1",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "guilhermehas/agda",
"max_stars_repo_path": "test/Compiler/simple/Erased-constructors.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 127,
"size": 405
} |
module Structure.Type.Identity where
import Lvl
open import Lang.Instance
open import Logic.Propositional
open import Logic
open import Structure.Relator.Properties
open import Structure.Setoid
open import Type
open import Type.Properties.MereProposition
open import Type.Size
module _ {ℓ ℓₑ ℓₚ} {T : Type{ℓ}} (_≡_ : T → T → Stmt{ℓₑ}) where
-- When a binary relation is the smallest reflexive relation (in the sense of cardinality of the relation set).
-- This is one of many characterizations of equality.
MinimalReflexiveRelation : Stmt
MinimalReflexiveRelation = ∀{_▫_ : T → T → Stmt{ℓₚ}} → ⦃ refl : Reflexivity(_▫_) ⦄ → ((_≡_) ⊆₂ (_▫_))
-- When a binary relation is able to substitute every unary relation and is satisfied when every unary relation .
-- This is one of many characterizations of equality.
GlobalSubstitution : Stmt
GlobalSubstitution = ∀{x y : T} → ((x ≡ y) ↔ (∀{P : T → Type{ℓₚ}} → P(x) → P(y)))
module _ {ℓ ℓₑ ℓₘₑ} (T : Type{ℓ}) ⦃ equiv-T : Equiv{ℓₑ}(T) ⦄ ⦃ equiv-eq : ∀{x y : T} → Equiv{ℓₘₑ}(x ≡ y) ⦄ where
-- A proof of identity is unique (there is only one inhabitant of the identity type).
-- This is interpreted as saying that all proofs of an identity are equal to each other.
-- Also called: Uniqueness of identity proofs (UIP).
-- There is an axiom called "axiom UIP" which is a construction of the following type:
-- • ∀{T} → UniqueIdentityProofs(T)
UniqueIdentityProofs : Stmt
UniqueIdentityProofs = ∀{x y : T} → MereProposition(x ≡ y)
module Names where
module _ {ℓ ℓₑ ℓₚ} {T : Type{ℓ}} (Id : T → T → Stmt{ℓₑ}) ⦃ refl : Reflexivity(Id) ⦄ where
-- Elimination rule for identity types.
-- Also called J.
-- Explanation:
-- P{x}{y} (eq-proof) is an arbitrary predicate with possible mentions of an identity proof.
-- A value of type (∀{x : T} → P(reflexivity(_≡_) {x})) means:
-- reflexivity(_≡_) satisfies P for every pair of equal objects.
-- The conclusion of the type (∀{x y : T} → (eq : (x ≡ y)) → P{x}{y}(eq)) means:
-- Every identity proof satisfies P for every pair there is.
-- In other words, to prove a proposition that depends on an identity proof, one only need to prove it for reflexivity.
-- When this is joined by reflexivity, they become another characterization of equality.
-- More information:
-- • https://homotopytypetheory.org/2011/04/10/just-kidding-understanding-identity-elimination-in-homotopy-type-theory/
-- • https://stackoverflow.com/questions/22580842/non-trivial-negation-in-agda
IdentityEliminator : Stmt
IdentityEliminator = (P : ∀{x y : T} → (Id x y) → Stmt{ℓₚ}) → (∀{x : T} → P(reflexivity(Id) {x})) → (∀{x y : T} → (eq : (Id x y)) → P(eq))
-- Usage of the trivial equality reflexivity proof can be substituted by any proof of the same type.
-- There is an axiom called "axiom K" which is a construction of the following type:
-- • ∀{T} → IntroProofSubstitution(T)
IntroProofSubstitution : Stmt
IntroProofSubstitution = ∀{x : T}{P : (Id x x) → Type{ℓₚ}} → P(reflexivity(Id)) → (∀{eq : (Id x x)} → P(eq))
module _ {ℓ ℓₑ ℓₚ} {T : Type{ℓ}} (Id : T → T → Stmt{ℓₑ}) ⦃ refl : Reflexivity(Id) ⦄ where
record IdentityEliminator : Stmt{ℓ Lvl.⊔ ℓₑ Lvl.⊔ Lvl.𝐒(ℓₚ)} where
constructor intro
field elim : Names.IdentityEliminator{ℓₚ = ℓₚ}(Id)
idElim = inst-fn IdentityEliminator.elim
module _
{ℓ ℓₘ ℓₑ ℓₘₑ}
{T : Type{ℓ}}
(Id : T → T → Type{ℓₑ}) ⦃ refl-T : Reflexivity(Id) ⦄ ⦃ identElim-T : IdentityEliminator(Id) ⦄
(_≡_ : ∀{T : Type{ℓₘ}} → T → T → Type{ℓₘₑ})
where
open Reflexivity (refl-T) using () renaming (proof to refl)
-- Reflexivity is an identity element for the identity elimination operation.
record IdentityEliminationOfIntro : Stmt{ℓ Lvl.⊔ Lvl.𝐒 ℓₘ Lvl.⊔ ℓₑ Lvl.⊔ ℓₘₑ} where
constructor intro
field proof : (P : ∀{x y : T} → (Id x y) → Stmt{ℓₘ}) → (p : ∀{x} → P{x}{x}(refl)) → (∀{x : T} → (idElim(Id)(P) p refl ≡ p{x}))
idElimOfIntro = inst-fn IdentityEliminationOfIntro.proof
module _ {ℓₑ : Lvl.Level → Lvl.Level} (Id : ∀{ℓ}{T : Type{ℓ}} → T → T → Stmt{ℓₑ(ℓ)}) where
record IdentityType : Stmtω where
constructor intro
field
⦃ identity-intro ⦄ : ∀{ℓₒ}{T : Type{ℓₒ}} → Reflexivity(Id{T = T})
⦃ identity-elim ⦄ : ∀{ℓₒ ℓₚ}{T : Type{ℓₒ}} → IdentityEliminator{ℓₚ = ℓₚ}(Id{T = T})
⦃ refl-elim-inverses ⦄ : ∀{ℓ ℓₘ}{T : Type{ℓ}} → IdentityEliminationOfIntro{ℓₘ = ℓₘ}(Id{T = T})(Id)
| {
"alphanum_fraction": 0.6524568095,
"avg_line_length": 52.4352941176,
"ext": "agda",
"hexsha": "28150225c8508885240b2007b894874ff77670e6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Type/Identity.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Type/Identity.agda",
"max_line_length": 142,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Type/Identity.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1581,
"size": 4457
} |
module PLRTree.Complete.Correctness.Base {A : Set} where
open import BTree.Complete.Base {A}
open import BTree.Complete.Alternative.Correctness {A} renaming (lemma-complete'-complete to lemma-complete''-complete)
open import Function using (_∘_)
open import PLRTree {A}
open import PLRTree.Complete {A} renaming (Complete to Complete' ; _⋗_ to _⋗'_ ; _⋘_ to _⋘'_ ; _⋙_ to _⋙'_)
open import PLRTree.Complete.Correctness.Alternative {A} renaming (lemma-complete'-complete to lemma-complete'-complete'')
open import PLRTree.Equality.Correctness {A}
lemma-complete'-complete : {t : PLRTree} → Complete' t → Complete (forget t)
lemma-complete'-complete = lemma-complete''-complete ∘ lemma-complete'-complete''
| {
"alphanum_fraction": 0.7316076294,
"avg_line_length": 52.4285714286,
"ext": "agda",
"hexsha": "cb00f04e827e78a43534a84b9f16a48412cbf8fa",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/PLRTree/Complete/Correctness/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/PLRTree/Complete/Correctness/Base.agda",
"max_line_length": 122,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/PLRTree/Complete/Correctness/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 202,
"size": 734
} |
module Example where
open import Logic.Identity
open import Base
open import Category
open import Product
open import Terminal
open import Unique
import Iso
infixr 30 _─→_
infixr 90 _∘_
data Name : Set where
Zero : Name
One : Name
Half : Name
data Obj : Set1 where
obj : Name -> Obj
mutual
_─→'_ : Name -> Name -> Set
x ─→' y = obj x ─→ obj y
data _─→_ : Obj -> Obj -> Set where
Idle : {A : Name} -> A ─→' A
All : Zero ─→' One
Start : Zero ─→' Half
Turn : Half ─→' Half
Back : One ─→' Half
End : Half ─→' One
id : {A : Obj} -> A ─→ A
id {obj x} = Idle
_∘_ : {A B C : Obj} -> B ─→ C -> A ─→ B -> A ─→ C
f ∘ Idle = f
Idle ∘ All = All
Idle ∘ Start = Start
Turn ∘ Start = Start
End ∘ Start = All
Idle ∘ Turn = Turn
Turn ∘ Turn = Turn
End ∘ Turn = End
Idle ∘ Back = Back
Turn ∘ Back = Back
End ∘ Back = Idle
Idle ∘ End = End
idL : {A B : Obj}{f : A ─→ B} -> id ∘ f ≡ f
idL {f = Idle } = refl
idL {f = All } = refl
idL {f = Start } = refl
idL {f = Turn } = refl
idL {f = Back } = refl
idL {f = End } = refl
idR : {A B : Obj}{f : A ─→ B} -> f ∘ id ≡ f
idR {obj _} = refl
assoc : {A B C D : Obj}{f : C ─→ D}{g : B ─→ C}{h : A ─→ B} ->
(f ∘ g) ∘ h ≡ f ∘ (g ∘ h)
assoc {f = _ }{g = _ }{h = Idle } = refl
assoc {f = _ }{g = Idle}{h = All } = refl
assoc {f = _ }{g = Idle}{h = Start} = refl
assoc {f = Idle}{g = Turn}{h = Start} = refl
assoc {f = Turn}{g = Turn}{h = Start} = refl
assoc {f = End }{g = Turn}{h = Start} = refl
assoc {f = Idle}{g = End }{h = Start} = refl
assoc {f = _ }{g = Idle}{h = Turn } = refl
assoc {f = Idle}{g = Turn}{h = Turn } = refl
assoc {f = Turn}{g = Turn}{h = Turn } = refl
assoc {f = End }{g = Turn}{h = Turn } = refl
assoc {f = Idle}{g = End }{h = Turn } = refl
assoc {f = _ }{g = Idle}{h = Back } = refl
assoc {f = Idle}{g = Turn}{h = Back } = refl
assoc {f = Turn}{g = Turn}{h = Back } = refl
assoc {f = End }{g = Turn}{h = Back } = refl
assoc {f = Idle}{g = End }{h = Back } = refl
assoc {f = _ }{g = Idle}{h = End } = refl
ℂ : Cat
ℂ = cat Obj _─→_ id _∘_
(\{_}{_} -> Equiv)
(\{_}{_}{_} -> cong2 _∘_)
idL idR assoc
open module T = Term ℂ
open module I = Init ℂ
open module S = Sum ℂ
term : Terminal (obj One)
term (obj Zero) = ?
init : Initial (obj Zero)
init = ?
| {
"alphanum_fraction": 0.514483355,
"avg_line_length": 23.13,
"ext": "agda",
"hexsha": "6041b5e93060977d6d4bcf80e4b4633eeceb14b8",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "larrytheliquid/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/cat/Example.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/cat/Example.agda",
"max_line_length": 62,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/agda",
"max_stars_repo_path": "examples/outdated-and-incorrect/cat/Example.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 967,
"size": 2313
} |
{-# OPTIONS --experimental-irrelevance #-}
module ShapeIrrelevantParameterNoBecauseOfRecursion where
data ⊥ : Set where
record ⊤ : Set where
data Bool : Set where
true false : Bool
True : Bool → Set
True false = ⊥
True true = ⊤
data D ..(b : Bool) : Set where
c : True b → D b -- should fail
fromD : {b : Bool} → D b → True b
fromD (c p) = p
cast : .(a b : Bool) → D a → D b
cast _ _ x = x
bot : ⊥
bot = fromD (cast true false (c _))
| {
"alphanum_fraction": 0.6183035714,
"avg_line_length": 17.2307692308,
"ext": "agda",
"hexsha": "5336f9f3cffa8e312e6af3044afe7665ac098a15",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/ShapeIrrelevantParameterNoBecauseOfRecursion.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/ShapeIrrelevantParameterNoBecauseOfRecursion.agda",
"max_line_length": 57,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Fail/ShapeIrrelevantParameterNoBecauseOfRecursion.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 155,
"size": 448
} |
{-# OPTIONS --allow-unsolved-metas #-}
module Thesis.ANormalUntyped where
open import Agda.Primitive
open import Data.Empty
open import Data.Unit using (⊤)
open import Data.Product
open import Data.Nat
import Data.Integer.Base as I
open I using (ℤ)
open import Data.Integer.Base using (ℤ)
open import Relation.Binary.PropositionalEquality
{- Typed deBruijn indexes for untyped languages. -}
-- Using a record gives an eta rule saying that all types are equal.
record Type : Set where
constructor Uni
record DType : Set where
constructor DUni
open import Base.Syntax.Context Type public
import Base.Syntax.Context DType as DC
data Term (Γ : Context) : Set where
var : (x : Var Γ Uni) →
Term Γ
lett : (f : Var Γ Uni) → (x : Var Γ Uni) → Term (Uni • Γ) → Term Γ
ΔΔ : Context → DC.Context
ΔΔ ∅ = ∅
ΔΔ (τ • Γ) = DUni • ΔΔ Γ
derive-dvar : ∀ {Δ} → (x : Var Δ Uni) → DC.Var (ΔΔ Δ) DUni
derive-dvar this = DC.this
derive-dvar (that x) = DC.that (derive-dvar x)
data DTerm : (Δ : Context) → Set where
dvar : ∀ {Δ} (x : DC.Var (ΔΔ Δ) DUni) →
DTerm Δ
dlett : ∀ {Δ} →
(f : Var Δ Uni) →
(x : Var Δ Uni) →
(t : Term (Uni • Δ)) →
(df : DC.Var (ΔΔ Δ) DUni) →
(dx : DC.Var (ΔΔ Δ) DUni) →
(dt : DTerm (Uni • Δ)) →
DTerm Δ
derive-dterm : ∀ {Δ} → (t : Term Δ) → DTerm Δ
derive-dterm (var x) = dvar (derive-dvar x)
derive-dterm (lett f x t) =
dlett f x t (derive-dvar f) (derive-dvar x) (derive-dterm t)
{-
deriveC Δ (lett f x t) = dlett df x dx
-}
-- data ΔCTerm (Γ : Context) (τ : Type) (Δ : Context) : Set where
-- data ΔCTerm (Γ : Context) (τ : Type) (Δ : Context) : Set where
-- cvar : (x : Var Γ τ) Δ →
-- ΔCTerm Γ τ Δ
-- clett : ∀ {σ τ₁ κ} → (f : Var Γ (σ ⇒ τ₁)) → (x : Var Γ σ) →
-- ΔCTerm (τ₁ • Γ) τ (? • Δ) →
-- ΔCTerm Γ τ Δ
weaken-term : ∀ {Γ₁ Γ₂} →
(Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) →
Term Γ₁ →
Term Γ₂
weaken-term Γ₁≼Γ₂ (var x) = var (weaken-var Γ₁≼Γ₂ x)
weaken-term Γ₁≼Γ₂ (lett f x t) = lett (weaken-var Γ₁≼Γ₂ f) (weaken-var Γ₁≼Γ₂ x) (weaken-term (keep _ • Γ₁≼Γ₂) t)
-- I don't necessarily recommend having a separate syntactic category for
-- functions, but we should prove a fundamental lemma for them too, somehow.
-- I'll probably end up with some ANF allowing lambdas to do the semantics.
data Fun (Γ : Context) : Set where
term : Term Γ → Fun Γ
abs : ∀ {σ} → Fun (σ • Γ) → Fun Γ
data DFun (Δ : Context) : Set where
dterm : DTerm Δ → DFun Δ
dabs : DFun (Uni • Δ) → DFun Δ
derive-dfun : ∀ {Δ} → (t : Fun Δ) → DFun Δ
derive-dfun (term t) = dterm (derive-dterm t)
derive-dfun (abs f) = dabs (derive-dfun f)
weaken-fun : ∀ {Γ₁ Γ₂} →
(Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) →
Fun Γ₁ →
Fun Γ₂
weaken-fun Γ₁≼Γ₂ (term x) = term (weaken-term Γ₁≼Γ₂ x)
weaken-fun Γ₁≼Γ₂ (abs f) = abs (weaken-fun (keep _ • Γ₁≼Γ₂) f)
data Val : Type → Set
data DVal : DType → Set
-- data Val (τ : Type) : Set
open import Base.Denotation.Environment Type Val public
open import Base.Data.DependentList public
import Base.Denotation.Environment DType DVal as D
-- data Val (τ : Type) where
data Val where
closure : ∀ {Γ} → (t : Fun (Uni • Γ)) → (ρ : ⟦ Γ ⟧Context) → Val Uni
intV : ∀ (n : ℕ) → Val Uni
data DVal where
dclosure : ∀ {Γ} → (dt : DFun (Uni • Γ)) → (ρ : ⟦ Γ ⟧Context) → (dρ : D.⟦ ΔΔ Γ ⟧Context) → DVal DUni
dintV : ∀ (n : ℤ) → DVal DUni
ChΔ : ∀ (Δ : Context) → Set
ChΔ Δ = D.⟦ ΔΔ Δ ⟧Context
-- ⟦_⟧Term : ∀ {Γ τ} → Term Γ τ → ⟦ Γ ⟧Context → ⟦ τ ⟧Type
-- ⟦ var x ⟧Term ρ = ⟦ x ⟧Var ρ
-- ⟦ lett f x t ⟧Term ρ = ⟦ t ⟧Term (⟦ f ⟧Var ρ (⟦ x ⟧Var ρ) • ρ)
-- XXX separate syntax is a bit dangerous. Also, do I want to be so accurate relative to the original model?
data _⊢_↓[_]_ {Γ} (ρ : ⟦ Γ ⟧Context) : Term Γ → ℕ → Val Uni → Set
data _F⊢_↓[_]_ {Γ} (ρ : ⟦ Γ ⟧Context) : Fun Γ → ℕ → Val Uni → Set where
abs : ∀ {t : Fun (Uni • Γ)} →
ρ F⊢ abs t ↓[ 0 ] closure t ρ
term : ∀ {v} n (t : Term Γ) →
ρ ⊢ t ↓[ n ] v →
ρ F⊢ term t ↓[ n ] v
data _⊢_↓[_]_ {Γ} (ρ : ⟦ Γ ⟧Context) where
var : ∀ (x : Var Γ Uni) →
ρ ⊢ var x ↓[ 0 ] (⟦ x ⟧Var ρ)
lett : ∀ n1 n2 {Γ' ρ′ v1 v2 v3} {f x t t'} →
ρ ⊢ var f ↓[ 0 ] closure {Γ'} t' ρ′ →
ρ ⊢ var x ↓[ 0 ] v1 →
(v1 • ρ′) F⊢ t' ↓[ n1 ] v2 →
(v2 • ρ) ⊢ t ↓[ n2 ] v3 →
ρ ⊢ lett f x t ↓[ suc (suc (n1 + n2)) ] v3
-- lit : ∀ n →
-- ρ ⊢ const (lit n) ↓[ 0 ] intV n
-- data _D_⊢_↓[_]_ {Γ} (ρ : ⟦ Γ ⟧Context) (dρ : D.⟦ ΔΔ Γ ⟧Context) : DTerm Γ → ℕ → DVal DUni → Set where
-- dvar : ∀ (x : DC.Var (ΔΔ Γ) DUni) →
-- ρ D dρ ⊢ dvar x ↓[ 0 ] (D.⟦ x ⟧Var dρ)
-- dlett : ∀ n1 n2 n3 n4 {Γ' ρ′ ρ'' dρ' v1 v2 v3 dv1 dv2 dv3} {f x t df dx dt t' dt'} →
-- ρ ⊢ var f ↓[ 0 ] closure {Γ'} t' ρ′ →
-- ρ ⊢ var x ↓[ 0 ] v1 →
-- (v1 • ρ′) F⊢ t' ↓[ n1 ] v2 →
-- (v2 • ρ) ⊢ t ↓[ n2 ] v3 →
-- -- With a valid input ρ' and ρ'' coincide? Varies among plausible validity
-- -- definitions.
-- ρ D dρ ⊢ dvar df ↓[ 0 ] dclosure {Γ'} dt' ρ'' dρ' →
-- ρ D dρ ⊢ dvar dx ↓[ 0 ] dv1 →
-- (v1 • ρ'') D (dv1 • dρ') F⊢ dt' ↓[ n3 ] dv2 →
-- (v2 • ρ) D (dv2 • dρ) ⊢ dt ↓[ n4 ] dv3 →
-- ρ D dρ ⊢ dlett f x t df dx dt ↓[ suc (suc (n1 + n2)) ] dv3
-- Do I need to damn count steps here? No.
data _D_⊢_↓_ {Γ} (ρ : ⟦ Γ ⟧Context) (dρ : ChΔ Γ) : DTerm Γ → DVal DUni → Set
data _D_F⊢_↓_ {Γ} (ρ : ⟦ Γ ⟧Context) (dρ : ChΔ Γ) : DFun Γ → DVal DUni → Set where
dabs : ∀ {dt : DFun (Uni • Γ)} →
ρ D dρ F⊢ dabs dt ↓ dclosure dt ρ dρ
dterm : ∀ {dv} (dt : DTerm Γ) →
ρ D dρ ⊢ dt ↓ dv →
ρ D dρ F⊢ dterm dt ↓ dv
data _D_⊢_↓_ {Γ} (ρ : ⟦ Γ ⟧Context) (dρ : ChΔ Γ) where
dvar : ∀ (x : DC.Var (ΔΔ Γ) DUni) →
ρ D dρ ⊢ dvar x ↓ (D.⟦ x ⟧Var dρ)
dlett : ∀ n1 n2 {Γ' ρ′ ρ'' dρ' v1 v2 v3 dv1 dv2 dv3} {f x t df dx dt t' dt'} →
ρ ⊢ var f ↓[ 0 ] closure {Γ'} t' ρ′ →
ρ ⊢ var x ↓[ 0 ] v1 →
(v1 • ρ′) F⊢ t' ↓[ n1 ] v2 →
(v2 • ρ) ⊢ t ↓[ n2 ] v3 →
-- With a valid input ρ' and ρ'' coincide? Varies among plausible validity
-- definitions.
ρ D dρ ⊢ dvar df ↓ dclosure {Γ'} dt' ρ'' dρ' →
ρ D dρ ⊢ dvar dx ↓ dv1 →
(v1 • ρ'') D (dv1 • dρ') F⊢ dt' ↓ dv2 →
(v2 • ρ) D (dv2 • dρ) ⊢ dt ↓ dv3 →
ρ D dρ ⊢ dlett f x t df dx dt ↓ dv3
open import Data.Nat.Properties
open import Data.Nat.Properties.Simple
open import Relation.Binary hiding (_⇒_)
suc∸ : ∀ m n → n ≤ m → suc (m ∸ n) ≡ suc m ∸ n
suc∸ m zero z≤n = refl
suc∸ (suc m) (suc n) (s≤s n≤m) = suc∸ m n n≤m
suc∸suc : ∀ m n → n < m → suc (m ∸ suc n) ≡ m ∸ n
suc∸suc (suc m) zero (s≤s n<m) = refl
suc∸suc (suc m) (suc n) (s≤s n<m) = suc∸suc m n n<m
lemlt : ∀ j k → suc j < k → k ∸ suc j < k
lemlt j (suc k) (s≤s j<k) = s≤s (∸-mono {k} {k} {j} {0} ≤-refl z≤n)
lemlt′ : ∀ j k → suc j <′ k → k ∸ suc j <′ k
lemlt′ j k j<′k = ≤⇒≤′ (lemlt j k (≤′⇒≤ j<′k))
open import Induction.WellFounded
open import Induction.Nat
rrelT3-Type : ℕ → Set₁
rrelT3-Type n =
∀ {Γ} → (t1 : Fun Γ) (dt : DFun Γ) (t2 : Fun Γ)
(ρ1 : ⟦ Γ ⟧Context) (dρ : ChΔ Γ) (ρ2 : ⟦ Γ ⟧Context) → Set
rrelV3-Type : ℕ → Set₁
rrelV3-Type n = ∀ (v1 : Val Uni) (dv : DVal DUni) (v2 : Val Uni) → Set
rrelTV3-Type : ℕ → Set₁
rrelTV3-Type n = rrelT3-Type n × rrelV3-Type n
-- The type of the function availalbe for recursive calls.
rrelTV3-recSubCallsT : ℕ → Set₁
rrelTV3-recSubCallsT n = (k : ℕ) → k < n → rrelTV3-Type k
mutual
-- Assemble together
rrelTV3-step : ∀ n → rrelTV3-recSubCallsT n → rrelTV3-Type n
rrelTV3-step n rec-rrelTV3 =
let rrelV3-n = rrelV3-step n rec-rrelTV3
in rrelT3-step n rec-rrelTV3 rrelV3-n , rrelV3-n
rrelTV3 = <-rec rrelTV3-Type rrelTV3-step
rrelT3 : ∀ n → rrelT3-Type n
rrelT3 n = proj₁ (rrelTV3 n)
rrelV3 : ∀ n → rrelV3-Type n
rrelV3 n = proj₂ (rrelTV3 n)
s-rrelV3 :
∀ k → rrelTV3-recSubCallsT k → rrelV3-Type k →
∀ j → j < k → rrelV3-Type (k ∸ j)
s-rrelV3 k rec-rrelTV3 rrelV3-k 0 _ = rrelV3-k
s-rrelV3 k rec-rrelTV3 rrelV3-k (suc j) sucj<k = proj₂ (rec-rrelTV3 (k ∸ suc j) (lemlt j k sucj<k))
-- Have the same context for t1, dt and t2? Yeah, good, that's what we want in the end...
-- Though we might want more flexibility till when we have replacement
-- changes.
rrelT3-step : ∀ k → rrelTV3-recSubCallsT k →
rrelV3-Type k →
-- rrelV3-Type n
∀ {Γ} → (t1 : Fun Γ) (dt : DFun Γ) (t2 : Fun Γ)
(ρ1 : ⟦ Γ ⟧Context) (dρ : ChΔ Γ) (ρ2 : ⟦ Γ ⟧Context) → Set
rrelT3-step k rec-rrelTV3 rrelV3-k =
λ t1 dt t2 ρ1 dρ ρ2 →
∀ j (j<k : j < k) n2 →
(v1 v2 : Val Uni) →
(ρ1⊢t1↓[j]v1 : ρ1 F⊢ t1 ↓[ j ] v1) →
(ρ2⊢t2↓[n2]v2 : ρ2 F⊢ t2 ↓[ n2 ] v2) →
Σ[ dv ∈ DVal DUni ] Σ[ dn ∈ ℕ ]
ρ1 D dρ F⊢ dt ↓ dv ×
s-rrelV3 k rec-rrelTV3 rrelV3-k j j<k v1 dv v2
-- where
-- s-rrelV3 : ∀ j → j <′ k → rrelV3-Type (k ∸ j)
-- -- If j = 0, we can't do a recursive call on (k - j) because that's not
-- -- well-founded. Luckily, we don't need to, just use relV as defined at
-- -- the same level.
-- -- Yet, this will be a pain in proofs.
-- s-rrelV3 0 _ = rrelV3-k
-- s-rrelV3 (suc j) sucj<′k = proj₂ (rec-rrelTV3 (k ∸ suc j) (lemlt′ j k sucj<′k))
rrelV3-step : ∀ n → rrelTV3-recSubCallsT n →
-- rrelV3-Type n
∀ (v1 : Val Uni) (dv : DVal DUni) (v2 : Val Uni) → Set
rrelV3-step n rec-rrelTV3 (intV v1) (dintV dv) (intV v2) = dv I.+ (I.+ v1) ≡ (I.+ v2)
rrelV3-step n rec-rrelTV3 (intV v1) (dintV n₁) (closure t ρ) = ⊥
rrelV3-step n rec-rrelTV3 (intV v1) (dclosure dt ρ dρ) c = ⊥
rrelV3-step n rec-rrelTV3 (closure {Γ1} t1 ρ1) (dclosure {ΔΓ} dt ρ' dρ) (closure {Γ2} t2 ρ2) =
-- Require a proof that the two contexts match:
Σ ((Γ1 ≡ Γ2) × (Γ1 ≡ ΔΓ)) λ { (refl , refl) →
∀ (k : ℕ) (k<n : k < n) v1 dv v2 →
proj₂ (rec-rrelTV3 k k<n) v1 dv v2 →
proj₁ (rec-rrelTV3 k k<n)
t1
dt
t2
(v1 • ρ1)
(dv • dρ)
(v2 • ρ2)
}
rrelV3-step n rec-rrelTV3 (closure t ρ) (dclosure dt ρ₁ dρ) (intV n₁) = ⊥
rrelV3-step n rec-rrelTV3 (closure t ρ) (dintV n₁) c = ⊥
open import Postulate.Extensionality
mutual
rrelT3-equiv : ∀ k {Γ} {t1 : Fun Γ} {dt t2 ρ1 dρ ρ2} →
rrelT3 k t1 dt t2 ρ1 dρ ρ2 ≡
∀ j (j<k : j < k) n2 →
∀ (v1 v2 : Val Uni) →
(ρ1⊢t1↓[j]v1 : ρ1 F⊢ t1 ↓[ j ] v1) →
(ρ2⊢t2↓[n2]v2 : ρ2 F⊢ t2 ↓[ n2 ] v2) →
Σ[ dv ∈ DVal DUni ] Σ[ dn ∈ ℕ ]
ρ1 D dρ F⊢ dt ↓ dv ×
rrelV3 j v1 dv v2
rrelT3-equiv k {Γ} {t1} {dt} {t2} {ρ1} {dρ} {ρ2} =
cong (λ □ → ∀ j → □ j) (ext
λ {
zero -> cong {lsuc lzero} {lsuc lzero} {{!!}} {{!!}} {!!} {{!!}} {{! !}} {!cong!}
-- cong {{!!}} {{!!}}
-- (λ (□ : zero < k → ∀ (n2 : ℕ) (v1 v2 : Val Uni) (ρ1⊢t1↓[j]v1 : ρ1 F⊢ t1 ↓[ zero ] v1) → {!(ρ2⊢t2↓[n2]v2 : ρ2 F⊢ t2 ↓[ n2 ] v2) → ? !})→
-- ∀ (j<k : zero < k) n2 →
-- (v1 v2 : Val Uni) →
-- (ρ1⊢t1↓[j]v1 : ρ1 F⊢ t1 ↓[ zero ] v1) →
-- (ρ2⊢t2↓[n2]v2 : ρ2 F⊢ t2 ↓[ n2 ] v2) →
-- Σ-syntax (DVal DUni)
-- λ dv → Σ-syntax ℕ λ dn → (ρ1 D dρ F⊢ dt ↓ dv) × □ j<k n2 v1 v2 ρ1⊢t1↓[j]v1 ρ2⊢t2↓[n2]v2)
-- {!!}
;
(suc j') -> {!!}})
-- cong (λ □ →
-- (j : ℕ) (j<k : j < k) (n2 : ℕ)
-- (v1 v2 : Val Uni) →
-- (ρ1⊢t1↓[j]v1 : ρ1 F⊢ t1 ↓[ j ] v1) →
-- -- (ρ2⊢t2↓[n2]v2 : ρ2 F⊢ t2 ↓[ n2 ] v2) →
-- □ j j<k n2 v1 v2 ρ1⊢t1↓[j]v1
-- -- □ j<k n2 v1 v2 ρ1⊢t1↓[j]v1 ρ2⊢t2↓[n2]v2
-- ) (ext³ λ j j<k n2 → {!ext³!})
rrelV3-equiv : ∀ n {Γ1 Γ2 ΔΓ t1 dt t2 ρ1 ρ' dρ ρ2} →
rrelV3 n (closure {Γ1} t1 ρ1) (dclosure {ΔΓ} dt ρ' dρ) (closure {Γ2} t2 ρ2) ≡ Σ ((Γ1 ≡ Γ2) × (Γ1 ≡ ΔΓ)) λ { (refl , refl) →
∀ (k : ℕ) (k<n : k <′ n) v1 dv v2 →
rrelV3 k v1 dv v2 →
rrelT3 k
t1
dt
t2
(v1 • ρ1)
(dv • dρ)
(v2 • ρ2)
}
rrelV3-equiv n = cong (λ □ → Σ (_ ≡ _ × _ ≡ _) □) (ext (λ { (eq1 , eq2) →
cong
(λ □ →
(λ { (refl , refl)
→ ∀ (k : ℕ) (k<n : k <′ n) v1 dv v2 → □ k k<n v1 dv v2
})
eq1 eq2)
(ext (λ x → ext {!!}))}))
--
-- cong (λ □ → ∀ k → (k<n : k <′ n) → □ k k<n)
-- rrelV3-equiv k
rrelρ3 : ℕ → ∀ Γ (ρ1 : ⟦ Γ ⟧Context) (dρ : ChΔ Γ) (ρ2 : ⟦ Γ ⟧Context) → Set
rrelρ3 n ∅ ∅ ∅ ∅ = ⊤
rrelρ3 n (Uni • Γ) (v1 • ρ1) (dv • dρ) (v2 • ρ2) = rrelV3 n v1 dv v2 × rrelρ3 n Γ ρ1 dρ ρ2
--
rfundamental3 : ∀ {Γ} (t : Fun Γ) → ∀ k ρ1 dρ ρ2 → (ρρ : rrelρ3 k Γ ρ1 dρ ρ2) → rrelT3 k t (derive-dfun t) t ρ1 dρ ρ2
rfundamental3 (term x) k ρ1 dρ ρ2 ρρ j j<k n2 v1 v2 ρ1⊢t1↓[j]v1 ρ2⊢t2↓[n2]v2 = {!!}
rfundamental3 {Γ} (abs t) k ρ1 dρ ρ2 ρρ .0 j<k .0 (closure .t .ρ1) (closure .t .ρ2) abs abs = dclosure (derive-dfun t) ρ1 dρ , 0 , dabs , (refl , refl) , {!body !}
where
body1 : ∀ k₁ (k₁<k : k₁ <′ k) → (v1 : Val Uni) (dv : DVal DUni) (v2 : Val Uni) → rrelV3 k₁ v1 dv v2 → rrelT3 k₁ t (derive-dfun t) t (v1 • ρ1) (dv • dρ) (v2 • ρ2)
body1 = λ k₁ k₁<k v1 dv v2 x v3 v4 j n2 j<k₁ ρ1⊢t1↓[j]v1 ρ2⊢t2↓[n2]v2 → {!
rfundamental3 {Uni • Γ} t k₁ (v1 • ρ1) (dv • dρ) (v2 • ρ2) ({!vv!} , {!ρρ!}) v3 v4 0 n2 {!j<k₁ !} {! ρ1⊢t1↓[j]v1 !} ρ2⊢t2↓[n2]v2
!}
-- λ
-- { k₁ k<n v1 dv v2 vv v3 v4 0 n2 j<k₁ ρ1⊢t1↓[j]v1 ρ2⊢t2↓[n2]v2 → {!
-- rfundamental3 {Uni • Γ} t k₁ (v1 • ρ1) (dv • dρ) (v2 • ρ2) ({!vv!} , {!ρρ!}) v3 v4 0 n2 {!j<k₁ !} {! ρ1⊢t1↓[j]v1 !} ρ2⊢t2↓[n2]v2
-- !}
-- -- (Some.wfRec-builder rrelTV3-Type rrelTV3-step k₁
-- -- (<-well-founded′ k k₁ k<n))
-- -- All.wfRec-builder <-well-founded _ rrelTV3-Type rrelTV3-step k k₁ k<n : rrelTV3-Type k₁
-- --
-- ; k₁ k<n v1 dv v2 vv v3 v4 (suc j) n2 j<k₁ ρ1⊢t1↓[j]v1 ρ2⊢t2↓[n2]v2 → {!
-- !}
-- -- rfundamental3 t k₁ (v1 • ρ1) (dv • dρ) (v2 • ρ2) ({!vv!} , {!ρρ!}) v3 v4 {!suc j !} n2 {!j<k₁ !} {! ρ1⊢t1↓[j]v1 !} ρ2⊢t2↓[n2]v2
-- }
-- -- ∀ k → rrelTV3-recSubCallsT k → rrelV3-Type k →
-- -- ∀ j → j <′ k → rrelV3-Type (k ∸ j)
-- foo : s-rrelV3 k
-- (All.wfRec-builder <-well-founded _ rrelTV3-Type rrelTV3-step k)
-- (rrelV3-step k (All.wfRec-builder <-well-founded _ rrelTV3-Type rrelTV3-step k))
-- j j<k v1 (dclosure (derive-dfun t) ρ1 dρ) v2
-- foo with j
-- ... | s = {!!}
| {
"alphanum_fraction": 0.5151429179,
"avg_line_length": 36.9083769634,
"ext": "agda",
"hexsha": "ae0b754df96b180ca5fbdc5ef21fa56f8937f3a4",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "inc-lc/ilc-agda",
"max_forks_repo_path": "Thesis/ANormalUntyped.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "inc-lc/ilc-agda",
"max_issues_repo_path": "Thesis/ANormalUntyped.agda",
"max_line_length": 165,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "inc-lc/ilc-agda",
"max_stars_repo_path": "Thesis/ANormalUntyped.agda",
"max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z",
"num_tokens": 6904,
"size": 14099
} |
-----------------------------------------------------------------------------
-- Existential elimination
-----------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOT.Common.FOL.Existential.Elimination where
-----------------------------------------------------------------------------
postulate D : Set
module ∃₁ where
-- Type theoretical version
-- We add 3 to the fixities of the Agda standard library 0.8.1 (see
-- Data/Product.agda).
infixr 7 _,_
-- The existential quantifier type on D.
data ∃ (A : D → Set) : Set where
_,_ : (x : D) → A x → ∃ A
-- Sugar syntax for the existential quantifier.
syntax ∃ (λ x → e) = ∃[ x ] e
-- The existential proyections.
∃-proj₁ : ∀ {A} → ∃ A → D
∃-proj₁ (x , _) = x
∃-proj₂ : ∀ {A} → (h : ∃ A) → A (∃-proj₁ h)
∃-proj₂ (_ , Ax) = Ax
-- Some examples
-- The order of quantifiers of the same sort is irrelevant.
∃-ord : {A² : D → D → Set} → (∃[ x ] ∃[ y ] A² x y) → (∃[ y ] ∃[ x ] A² x y)
∃-ord (x , y , h) = y , x , h
-----------------------------------------------------------------------------
module ∃₂ where
-- First-order logic version
-- We add 3 to the fixities of the Agda standard library 0.8.1 (see
-- Data/Product.agda).
infixr 7 _,_
-- The existential quantifier type on D.
data ∃ (A : D → Set) : Set where
_,_ : (x : D) → A x → ∃ A
-- Sugar syntax for the existential quantifier.
syntax ∃ (λ x → e) = ∃[ x ] e
-- Existential elimination
-- ∃x.A(x) A(x) → B
-- ------------------------
-- B
-- NB. We do not use the usual type theory elimination with two
-- projections because we are working in first-order logic where we
-- do need extract a witness from an existence proof.
∃-elim : {A : D → Set}{B : Set} → ∃ A → ((x : D) → A x → B) → B
∃-elim (x , Ax) h = h x Ax
-- Some examples
-- The order of quantifiers of the same sort is irrelevant.
∃-ord : {A² : D → D → Set} → (∃[ x ] ∃[ y ] A² x y) → (∃[ y ] ∃[ x ] A² x y)
∃-ord h = ∃-elim h (λ x h₁ → ∃-elim h₁ (λ y prf → y , x , prf))
-- A proof non-FOL valid
non-FOL : {A : D → Set} → ∃ A → D
non-FOL h = ∃-elim h (λ x _ → x)
-----------------------------------------------------------------------------
module ∃₃ where
-- First-order logic version
-- A different version from the existential introduction
-- A(x)
-- ------------
-- ∃x.A(x)
-- The existential quantifier type on D.
data ∃ (A : D → Set) : Set where
∃-intro : ((x : D) → A x) → ∃ A
-- Sugar syntax for the existential quantifier.
syntax ∃ (λ x → e) = ∃[ x ] e
postulate d : D
-- Existential elimination.
-- NB. It is neccesary that D ≢ ∅.
∃-elim : {A : D → Set}{B : Set} → ∃ A → ((x : D) → A x → B) → B
∃-elim (∃-intro h₁) h₂ = h₂ d (h₁ d)
-- Some examples
-- Impossible
-- thm : {A : D → Set} → ∃[ x ] A x → ∃[ y ] A y
-- thm h = ∃-elim h (λ x prf → {!!})
| {
"alphanum_fraction": 0.4593900482,
"avg_line_length": 28.5779816514,
"ext": "agda",
"hexsha": "032d4de150f454c79483c1ccc5d9d3941476805c",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/FOT/Common/FOL/Existential/Elimination.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/FOT/Common/FOL/Existential/Elimination.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/FOT/Common/FOL/Existential/Elimination.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 1015,
"size": 3115
} |
{-# OPTIONS --show-implicit #-}
module _ where
postulate
R : Set
module ModuleB where
module NotRecordB (r : R) where
postulate notfieldB : Set
open module NotRecBI {{r : R}} = NotRecordB r public
record RecordB : Set₁ where
field
fieldB : Set
open module RecBI {{r : RecordB}} = RecordB r public
open module ModBA = ModuleB
postulate
myRecB : RecordB
myR : R
test₀ : fieldB {{myRecB}}
test₀ = {!!}
test₁ : ModuleB.RecordB.fieldB myRecB
test₁ = {!!}
test₂ : notfieldB {{myR}}
test₂ = {!!}
test₃ : ModuleB.NotRecordB.notfieldB myR
test₃ = {!!}
| {
"alphanum_fraction": 0.6524701874,
"avg_line_length": 15.4473684211,
"ext": "agda",
"hexsha": "9145c5c39e94a61ce2ea233c62e324ef6bdf46e7",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "cagix/agda",
"max_forks_repo_path": "test/interaction/Issue4857.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "cagix/agda",
"max_issues_repo_path": "test/interaction/Issue4857.agda",
"max_line_length": 54,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "cagix/agda",
"max_stars_repo_path": "test/interaction/Issue4857.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 193,
"size": 587
} |
{-# OPTIONS --without-K --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Substitution.Reduction {{eqrel : EqRelSet}} where
open EqRelSet {{...}}
open import Definition.LogicalRelation.Properties
open import Definition.LogicalRelation.Substitution
open import Definition.Untyped using (Con ; Term)
open import Tools.Nat
open import Tools.Product
private
variable
n : Nat
Γ : Con Term n
-- Weak head expansion of valid terms.
redSubstTermᵛ : ∀ {A t u l}
→ ([Γ] : ⊩ᵛ Γ)
→ Γ ⊩ᵛ t ⇒ u ∷ A / [Γ]
→ ([A] : Γ ⊩ᵛ⟨ l ⟩ A / [Γ])
→ Γ ⊩ᵛ⟨ l ⟩ u ∷ A / [Γ] / [A]
→ Γ ⊩ᵛ⟨ l ⟩ t ∷ A / [Γ] / [A]
× Γ ⊩ᵛ⟨ l ⟩ t ≡ u ∷ A / [Γ] / [A]
redSubstTermᵛ [Γ] t⇒u [A] [u] =
(λ ⊢Δ [σ] →
let [σA] = proj₁ ([A] ⊢Δ [σ])
[σt] , [σt≡σu] = redSubstTerm (t⇒u ⊢Δ [σ])
(proj₁ ([A] ⊢Δ [σ]))
(proj₁ ([u] ⊢Δ [σ]))
in [σt]
, (λ [σ′] [σ≡σ′] →
let [σ′A] = proj₁ ([A] ⊢Δ [σ′])
[σA≡σ′A] = proj₂ ([A] ⊢Δ [σ]) [σ′] [σ≡σ′]
[σ′t] , [σ′t≡σ′u] = redSubstTerm (t⇒u ⊢Δ [σ′])
(proj₁ ([A] ⊢Δ [σ′]))
(proj₁ ([u] ⊢Δ [σ′]))
in transEqTerm [σA] [σt≡σu]
(transEqTerm [σA] ((proj₂ ([u] ⊢Δ [σ])) [σ′] [σ≡σ′])
(convEqTerm₂ [σA] [σ′A] [σA≡σ′A]
(symEqTerm [σ′A] [σ′t≡σ′u])))))
, (λ ⊢Δ [σ] → proj₂ (redSubstTerm (t⇒u ⊢Δ [σ])
(proj₁ ([A] ⊢Δ [σ]))
(proj₁ ([u] ⊢Δ [σ]))))
| {
"alphanum_fraction": 0.3814547474,
"avg_line_length": 37.5208333333,
"ext": "agda",
"hexsha": "37a13111faf1d338e7616a0c89196be4f8597ccc",
"lang": "Agda",
"max_forks_count": 8,
"max_forks_repo_forks_event_max_datetime": "2021-11-27T15:58:33.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-10-18T14:18:20.000Z",
"max_forks_repo_head_hexsha": "ea83fc4f618d1527d64ecac82d7d17e2f18ac391",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "fhlkfy/logrel-mltt",
"max_forks_repo_path": "Definition/LogicalRelation/Substitution/Reduction.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "ea83fc4f618d1527d64ecac82d7d17e2f18ac391",
"max_issues_repo_issues_event_max_datetime": "2021-02-22T10:37:24.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-06-22T12:49:23.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "fhlkfy/logrel-mltt",
"max_issues_repo_path": "Definition/LogicalRelation/Substitution/Reduction.agda",
"max_line_length": 85,
"max_stars_count": 30,
"max_stars_repo_head_hexsha": "ea83fc4f618d1527d64ecac82d7d17e2f18ac391",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "fhlkfy/logrel-mltt",
"max_stars_repo_path": "Definition/LogicalRelation/Substitution/Reduction.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:01:07.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-05-20T03:05:21.000Z",
"num_tokens": 676,
"size": 1801
} |
{-# OPTIONS --no-termination-check #-}
module PragmasApplyOnlyToCurrentModule where
import Imports.NonTerminating
| {
"alphanum_fraction": 0.8103448276,
"avg_line_length": 19.3333333333,
"ext": "agda",
"hexsha": "94c05e2d585beaba717a1becb9b31fd2da58c074",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/PragmasApplyOnlyToCurrentModule.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/PragmasApplyOnlyToCurrentModule.agda",
"max_line_length": 44,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/PragmasApplyOnlyToCurrentModule.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 25,
"size": 116
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.HITs.2GroupoidTruncation where
open import Cubical.HITs.2GroupoidTruncation.Base public
open import Cubical.HITs.2GroupoidTruncation.Properties public
| {
"alphanum_fraction": 0.8165137615,
"avg_line_length": 36.3333333333,
"ext": "agda",
"hexsha": "b7d6fcfb081159bf4bb5bff2c94c13235c5e17ed",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/HITs/2GroupoidTruncation.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/HITs/2GroupoidTruncation.agda",
"max_line_length": 62,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/HITs/2GroupoidTruncation.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 63,
"size": 218
} |
{-# OPTIONS --cubical --no-import-sorts --no-exact-split --safe #-}
module Cubical.Structures.Queue where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Functions.FunExtEquiv
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.SIP
open import Cubical.Structures.Axioms
open import Cubical.Structures.Macro
open import Cubical.Structures.Auto
open import Cubical.Data.Unit
open import Cubical.Data.Maybe as Maybe
open import Cubical.Data.Sigma
open import Cubical.Data.List
-- Developing Queues as a standard notion of structure, see
-- https://github.com/ecavallo/cubical/blob/queue/Cubical/Experiments/Queue.agda
-- for the original development
private
variable
ℓ ℓ' : Level
-- We start fixing a set A on which we define what it means for a type Q to have
-- a Queue structure (wrt. A)
module Queues-on (A : Type ℓ) (Aset : isSet A) where
-- A Queue structure has three components, the empty Queue, an enqueue function and a dequeue function
-- We first deal with enq and deq as separate structures
-- deq as a structure
-- First, a few preliminary results that we will need later
deqMap : {X Y : Type ℓ} → (X → Y) → Maybe (X × A) → Maybe (Y × A)
deqMap = map-Maybe ∘ map-fst
deqMapId : {X : Type ℓ} → ∀ r → deqMap (idfun X) r ≡ r
deqMapId = map-Maybe-id
deqMap-∘ :{B C D : Type ℓ}
(g : C → D) (f : B → C)
→ ∀ r → deqMap {X = C} g (deqMap f r) ≡ deqMap (λ b → g (f b)) r
deqMap-∘ g f nothing = refl
deqMap-∘ g f (just (b , a)) = refl
-- Now we can do Queues:
rawQueueDesc =
autoDesc (λ (X : Type ℓ) → X × (A → X → X) × (X → Transp[ Maybe (X × A) ]))
open Macro ℓ rawQueueDesc public renaming
( structure to RawQueueStructure
; equiv to RawQueueEquivStr
; univalent to rawQueueUnivalentStr
)
RawQueue : Type (ℓ-suc ℓ)
RawQueue = TypeWithStr ℓ RawQueueStructure
returnOrEnq : {Q : Type ℓ}
→ RawQueueStructure Q → A → Maybe (Q × A) → Q × A
returnOrEnq (emp , enq , _) a qr =
Maybe.rec (emp , a) (λ {(q , b) → enq a q , b}) qr
QueueAxioms : (Q : Type ℓ) → RawQueueStructure Q → Type ℓ
QueueAxioms Q S@(emp , enq , deq) =
(isSet Q)
× (deq emp ≡ nothing)
× (∀ a q → deq (enq a q) ≡ just (returnOrEnq S a (deq q)))
× (∀ a a' q q' → enq a q ≡ enq a' q' → (a ≡ a') × (q ≡ q'))
× (∀ q q' → deq q ≡ deq q' → q ≡ q')
isPropQueueAxioms : ∀ Q S → isProp (QueueAxioms Q S)
isPropQueueAxioms Q S =
isPropΣ isPropIsSet
(λ Qset → isProp×3 (isOfHLevelDeq Qset _ _)
(isPropΠ2 λ _ _ → isOfHLevelDeq Qset _ _)
(isPropΠ3 λ _ _ _ → isPropΠ2 λ _ _ → isProp× (Aset _ _) (Qset _ _))
(isPropΠ3 λ _ _ _ → Qset _ _))
where
isOfHLevelDeq : isSet Q → isOfHLevel 2 (Maybe (Q × A))
isOfHLevelDeq Qset = isOfHLevelMaybe 0 (isSet× Qset Aset)
QueueStructure : Type ℓ → Type ℓ
QueueStructure = AxiomsStructure RawQueueStructure QueueAxioms
Queue : Type (ℓ-suc ℓ)
Queue = TypeWithStr ℓ QueueStructure
QueueEquivStr : StrEquiv QueueStructure ℓ
QueueEquivStr = AxiomsEquivStr RawQueueEquivStr QueueAxioms
queueUnivalentStr : UnivalentStr QueueStructure QueueEquivStr
queueUnivalentStr = axiomsUnivalentStr RawQueueEquivStr isPropQueueAxioms rawQueueUnivalentStr
FiniteQueueAxioms : (Q : Type ℓ) → QueueStructure Q → Type ℓ
FiniteQueueAxioms Q ((emp , enq , _) , _) = isEquiv (foldr enq emp)
isPropFiniteQueueAxioms : ∀ Q S → isProp (FiniteQueueAxioms Q S)
isPropFiniteQueueAxioms Q S = isPropIsEquiv _
FiniteQueueStructure : Type ℓ → Type ℓ
FiniteQueueStructure = AxiomsStructure QueueStructure FiniteQueueAxioms
FiniteQueue : Type (ℓ-suc ℓ)
FiniteQueue = TypeWithStr ℓ FiniteQueueStructure
FiniteQueueEquivStr : StrEquiv FiniteQueueStructure ℓ
FiniteQueueEquivStr = AxiomsEquivStr QueueEquivStr FiniteQueueAxioms
finiteQueueUnivalentStr : UnivalentStr FiniteQueueStructure FiniteQueueEquivStr
finiteQueueUnivalentStr = axiomsUnivalentStr QueueEquivStr isPropFiniteQueueAxioms queueUnivalentStr
| {
"alphanum_fraction": 0.6965550941,
"avg_line_length": 35.2844827586,
"ext": "agda",
"hexsha": "6d788420b95edd6c8e80174107fce6f98b841455",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Structures/Queue.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Structures/Queue.agda",
"max_line_length": 103,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Structures/Queue.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1355,
"size": 4093
} |
{-# OPTIONS --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Substitution.Introductions.Castlemmas {{eqrel : EqRelSet}} where
open EqRelSet {{...}}
open import Definition.Untyped
open import Definition.Untyped.Properties
open import Definition.Typed
open import Definition.Typed.Properties
import Definition.Typed.Weakening as Twk
open import Definition.Typed.EqualityRelation
open import Definition.Typed.RedSteps
open import Definition.LogicalRelation
open import Definition.LogicalRelation.Irrelevance
open import Definition.LogicalRelation.Properties
open import Definition.LogicalRelation.Application
open import Definition.LogicalRelation.Substitution
import Definition.LogicalRelation.Weakening as Lwk
open import Definition.LogicalRelation.Substitution.Properties
import Definition.LogicalRelation.Substitution.Irrelevance as S
open import Definition.LogicalRelation.Substitution.Reflexivity
open import Definition.LogicalRelation.Substitution.Weakening
-- open import Definition.LogicalRelation.Substitution.Introductions.Nat
open import Definition.LogicalRelation.Substitution.Introductions.Empty
-- open import Definition.LogicalRelation.Substitution.Introductions.Pi
-- open import Definition.LogicalRelation.Substitution.Introductions.SingleSubst
open import Definition.LogicalRelation.Substitution.Introductions.Universe
open import Definition.LogicalRelation.Substitution.MaybeEmbed
open import Tools.Product
open import Tools.Empty
import Tools.Unit as TU
import Tools.PropositionalEquality as PE
import Data.Nat as Nat
module cast-ΠΠ-lemmas
{Γ rF F F₁}
(⊢Γ : ⊢ Γ)
(⊢F : Γ ⊢ F ^ [ rF , ι ⁰ ])
([F] : ∀ {ρ} {Δ} ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → Δ ⊩⟨ ι ⁰ ⟩ wk ρ F ^ [ rF , ι ⁰ ])
(⊢F₁ : Γ ⊢ F₁ ^ [ rF , ι ⁰ ])
([F₁] : ∀ {ρ} {Δ} ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → Δ ⊩⟨ ι ⁰ ⟩ wk ρ F₁ ^ [ rF , ι ⁰ ])
(recursor : ∀ {x e ρ Δ}
([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
([x] : Δ ⊩⟨ ι ⁰ ⟩ x ∷ wk ρ F₁ ^ [ rF , ι ⁰ ] / [F₁] [ρ] ⊢Δ)
(⊢e : Δ ⊢ e ∷ Id (Univ rF ⁰) (wk ρ F₁) (wk ρ F) ^ [ % , ι ¹ ])
→ Δ ⊩⟨ ι ⁰ ⟩ cast ⁰ (wk ρ F₁) (wk ρ F) e x ∷ wk ρ F ^ [ rF , ι ⁰ ] / [F] [ρ] ⊢Δ)
(extrecursor : ∀ {ρ Δ x y e e′}
→ ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ ([x] : Δ ⊩⟨ ι ⁰ ⟩ x ∷ wk ρ F₁ ^ [ rF , ι ⁰ ] / [F₁] [ρ] ⊢Δ)
→ ([y] : Δ ⊩⟨ ι ⁰ ⟩ y ∷ wk ρ F₁ ^ [ rF , ι ⁰ ] / [F₁] [ρ] ⊢Δ)
→ ([x≡y] : Δ ⊩⟨ ι ⁰ ⟩ x ≡ y ∷ wk ρ F₁ ^ [ rF , ι ⁰ ] / [F₁] [ρ] ⊢Δ)
→ (⊢e : Δ ⊢ e ∷ Id (Univ rF ⁰) (wk ρ F₁) (wk ρ F) ^ [ % , ι ¹ ])
→ (⊢e′ : Δ ⊢ e′ ∷ Id (Univ rF ⁰) (wk ρ F₁) (wk ρ F) ^ [ % , ι ¹ ])
→ Δ ⊩⟨ ι ⁰ ⟩ cast ⁰ (wk ρ F₁) (wk ρ F) e x ≡ cast ⁰ (wk ρ F₁) (wk ρ F) e′ y ∷ wk ρ F ^ [ rF , ι ⁰ ] / [F] [ρ] ⊢Δ)
where
b = λ ρ e x → cast ⁰ (wk ρ F₁) (wk ρ F) (Idsym (Univ rF ⁰) (wk ρ F) (wk ρ F₁) e) x
[b] : ∀ {ρ Δ e x} → ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ (Δ ⊢ e ∷ Id (Univ rF ⁰) (wk ρ F) (wk ρ F₁) ^ [ % , ι ¹ ])
→ (Δ ⊩⟨ ι ⁰ ⟩ x ∷ wk ρ F₁ ^ [ rF , ι ⁰ ] / [F₁] [ρ] ⊢Δ)
→ Δ ⊩⟨ ι ⁰ ⟩ b ρ e x ∷ wk ρ F ^ [ rF , ι ⁰ ] / [F] [ρ] ⊢Δ
[b] [ρ] ⊢Δ ⊢e [x] =
let
⊢e′ = Idsymⱼ (univ 0<1 ⊢Δ) (un-univ (escape ([F] [ρ] ⊢Δ)))
(un-univ (escape ([F₁] [ρ] ⊢Δ))) ⊢e
in recursor [ρ] ⊢Δ [x] ⊢e′
[bext] : ∀ {ρ Δ e e′ x y} → ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ (Δ ⊢ e ∷ Id (Univ rF ⁰) (wk ρ F) (wk ρ F₁) ^ [ % , ι ¹ ])
→ (Δ ⊢ e′ ∷ Id (Univ rF ⁰) (wk ρ F) (wk ρ F₁) ^ [ % , ι ¹ ])
→ (Δ ⊩⟨ ι ⁰ ⟩ x ∷ wk ρ F₁ ^ [ rF , ι ⁰ ] / [F₁] [ρ] ⊢Δ)
→ (Δ ⊩⟨ ι ⁰ ⟩ y ∷ wk ρ F₁ ^ [ rF , ι ⁰ ] / [F₁] [ρ] ⊢Δ)
→ (Δ ⊩⟨ ι ⁰ ⟩ x ≡ y ∷ wk ρ F₁ ^ [ rF , ι ⁰ ] / [F₁] [ρ] ⊢Δ)
→ Δ ⊩⟨ ι ⁰ ⟩ b ρ e x ≡ b ρ e′ y ∷ wk ρ F ^ [ rF , ι ⁰ ] / [F] [ρ] ⊢Δ
[bext] [ρ] ⊢Δ ⊢e ⊢e′ [x] [y] [x≡y] =
let
⊢syme = Idsymⱼ (univ 0<1 ⊢Δ) (un-univ (escape ([F] [ρ] ⊢Δ)))
(un-univ (escape ([F₁] [ρ] ⊢Δ))) ⊢e
⊢syme′ = Idsymⱼ (univ 0<1 ⊢Δ) (un-univ (escape ([F] [ρ] ⊢Δ)))
(un-univ (escape ([F₁] [ρ] ⊢Δ))) ⊢e′
in extrecursor [ρ] ⊢Δ [x] [y] [x≡y] ⊢syme ⊢syme′
module cast-ΠΠ-lemmas-2
{t e f Γ A B F rF G F₁ G₁}
(⊢Γ : ⊢ Γ)
(⊢A : Γ ⊢ A ^ [ ! , ι ⁰ ])
(⊢ΠFG : Γ ⊢ Π F ^ rF ° ⁰ ▹ G ° ⁰ ° ⁰ ^ [ ! , ι ⁰ ])
(D : Γ ⊢ A ⇒* Π F ^ rF ° ⁰ ▹ G ° ⁰ ° ⁰ ^ [ ! , ι ⁰ ])
(⊢F : Γ ⊢ F ^ [ rF , ι ⁰ ])
(⊢G : (Γ ∙ F ^ [ rF , ι ⁰ ]) ⊢ G ^ [ ! , ι ⁰ ])
(A≡A : Γ ⊢ (Π F ^ rF ° ⁰ ▹ G ° ⁰ ° ⁰) ≅ (Π F ^ rF ° ⁰ ▹ G ° ⁰ ° ⁰) ^ [ ! , ι ⁰ ])
([F] : ∀ {ρ} {Δ} ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → Δ ⊩⟨ ι ⁰ ⟩ wk ρ F ^ [ rF , ι ⁰ ])
([G] : ∀ {ρ} {Δ} {a} ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
([a] : Δ ⊩⟨ ι ⁰ ⟩ a ∷ wk ρ F ^ [ rF , ι ⁰ ] / ([F] [ρ] ⊢Δ))
→ (Δ ⊩⟨ ι ⁰ ⟩ wk (lift ρ) G [ a ] ^ [ ! , ι ⁰ ]))
(G-ext : ∀ {ρ} {Δ} {a} {b} ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
([a] : Δ ⊩⟨ ι ⁰ ⟩ a ∷ wk ρ F ^ [ rF , ι ⁰ ] / ([F] [ρ] ⊢Δ))
([b] : Δ ⊩⟨ ι ⁰ ⟩ b ∷ wk ρ F ^ [ rF , ι ⁰ ] / ([F] [ρ] ⊢Δ))
([a≡b] : Δ ⊩⟨ ι ⁰ ⟩ a ≡ b ∷ wk ρ F ^ [ rF , ι ⁰ ] / ([F] [ρ] ⊢Δ))
→ (Δ ⊩⟨ ι ⁰ ⟩ wk (lift ρ) G [ a ] ≡ wk (lift ρ) G [ b ] ^ [ ! , ι ⁰ ] / ([G] [ρ] ⊢Δ [a])))
(⊢B : Γ ⊢ B ^ [ ! , ι ⁰ ])
(⊢ΠF₁G₁ : Γ ⊢ Π F₁ ^ rF ° ⁰ ▹ G₁ ° ⁰ ° ⁰ ^ [ ! , ι ⁰ ])
(D₁ : Γ ⊢ B ⇒* Π F₁ ^ rF ° ⁰ ▹ G₁ ° ⁰ ° ⁰ ^ [ ! , ι ⁰ ])
(⊢F₁ : Γ ⊢ F₁ ^ [ rF , ι ⁰ ])
(⊢G₁ : (Γ ∙ F₁ ^ [ rF , ι ⁰ ]) ⊢ G₁ ^ [ ! , ι ⁰ ])
(A₁≡A₁ : Γ ⊢ (Π F₁ ^ rF ° ⁰ ▹ G₁ ° ⁰ ° ⁰) ≅ (Π F₁ ^ rF ° ⁰ ▹ G₁ ° ⁰ ° ⁰) ^ [ ! , ι ⁰ ])
([F₁] : ∀ {ρ} {Δ} ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → Δ ⊩⟨ ι ⁰ ⟩ wk ρ F₁ ^ [ rF , ι ⁰ ])
([G₁] : ∀ {ρ} {Δ} {a} ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
([a] : Δ ⊩⟨ ι ⁰ ⟩ a ∷ wk ρ F₁ ^ [ rF , ι ⁰ ] / ([F₁] [ρ] ⊢Δ))
→ (Δ ⊩⟨ ι ⁰ ⟩ wk (lift ρ) G₁ [ a ] ^ [ ! , ι ⁰ ]))
(G₁-ext : ∀ {ρ} {Δ} {a} {b} ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
([a] : Δ ⊩⟨ ι ⁰ ⟩ a ∷ wk ρ F₁ ^ [ rF , ι ⁰ ] / ([F₁] [ρ] ⊢Δ))
([b] : Δ ⊩⟨ ι ⁰ ⟩ b ∷ wk ρ F₁ ^ [ rF , ι ⁰ ] / ([F₁] [ρ] ⊢Δ))
([a≡b] : Δ ⊩⟨ ι ⁰ ⟩ a ≡ b ∷ wk ρ F₁ ^ [ rF , ι ⁰ ] / ([F₁] [ρ] ⊢Δ))
→ (Δ ⊩⟨ ι ⁰ ⟩ wk (lift ρ) G₁ [ a ] ≡ wk (lift ρ) G₁ [ b ] ^ [ ! , ι ⁰ ] / ([G₁] [ρ] ⊢Δ [a])))
(⊢e : Γ ⊢ e ∷ Id (U ⁰) A B ^ [ % , ι ¹ ])
(recursor : ∀ {ρ Δ x y t e}
([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
([x] : Δ ⊩⟨ ι ⁰ ⟩ x ∷ wk ρ F ^ [ rF , ι ⁰ ] / [F] [ρ] ⊢Δ)
([y] : Δ ⊩⟨ ι ⁰ ⟩ y ∷ wk ρ F₁ ^ [ rF , ι ⁰ ] / [F₁] [ρ] ⊢Δ)
([t] : Δ ⊩⟨ ι ⁰ ⟩ t ∷ wk (lift ρ) G [ x ] ^ [ ! , ι ⁰ ] / [G] [ρ] ⊢Δ [x])
(⊢e : Δ ⊢ e ∷ Id (U ⁰) (wk (lift ρ) G [ x ]) (wk (lift ρ) G₁ [ y ]) ^ [ % , ι ¹ ])
→ Δ ⊩⟨ ι ⁰ ⟩ cast ⁰ (wk (lift ρ) G [ x ]) (wk (lift ρ) G₁ [ y ]) e t ∷ wk (lift ρ) G₁ [ y ] ^ [ ! , ι ⁰ ] / [G₁] [ρ] ⊢Δ [y])
(extrecursor : ∀ {ρ Δ x x′ y y′ t t′ e e′}
→ ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ ([x] : Δ ⊩⟨ ι ⁰ ⟩ x ∷ wk ρ F ^ [ rF , ι ⁰ ] / [F] [ρ] ⊢Δ)
→ ([x′] : Δ ⊩⟨ ι ⁰ ⟩ x′ ∷ wk ρ F ^ [ rF , ι ⁰ ] / [F] [ρ] ⊢Δ)
→ ([x≡x′] : Δ ⊩⟨ ι ⁰ ⟩ x ≡ x′ ∷ wk ρ F ^ [ rF , ι ⁰ ] / [F] [ρ] ⊢Δ)
→ ([y] : Δ ⊩⟨ ι ⁰ ⟩ y ∷ wk ρ F₁ ^ [ rF , ι ⁰ ] / [F₁] [ρ] ⊢Δ)
→ ([y′] : Δ ⊩⟨ ι ⁰ ⟩ y′ ∷ wk ρ F₁ ^ [ rF , ι ⁰ ] / [F₁] [ρ] ⊢Δ)
→ ([y≡y′] : Δ ⊩⟨ ι ⁰ ⟩ y ≡ y′ ∷ wk ρ F₁ ^ [ rF , ι ⁰ ] / [F₁] [ρ] ⊢Δ)
→ ([t] : Δ ⊩⟨ ι ⁰ ⟩ t ∷ wk (lift ρ) G [ x ] ^ [ ! , ι ⁰ ] / [G] [ρ] ⊢Δ [x])
→ ([t′] : Δ ⊩⟨ ι ⁰ ⟩ t′ ∷ wk (lift ρ) G [ x′ ] ^ [ ! , ι ⁰ ] / [G] [ρ] ⊢Δ [x′])
→ ([t≡t′] : Δ ⊩⟨ ι ⁰ ⟩ t ≡ t′ ∷ wk (lift ρ) G [ x ] ^ [ ! , ι ⁰ ] / [G] [ρ] ⊢Δ [x])
→ (⊢e : Δ ⊢ e ∷ Id (U ⁰) (wk (lift ρ) G [ x ]) (wk (lift ρ) G₁ [ y ]) ^ [ % , ι ¹ ])
→ (⊢e′ : Δ ⊢ e′ ∷ Id (U ⁰) (wk (lift ρ) G [ x′ ]) (wk (lift ρ) G₁ [ y′ ]) ^ [ % , ι ¹ ])
→ Δ ⊩⟨ ι ⁰ ⟩ cast ⁰ (wk (lift ρ) G [ x ]) (wk (lift ρ) G₁ [ y ]) e t ≡ cast ⁰ (wk (lift ρ) G [ x′ ]) (wk (lift ρ) G₁ [ y′ ]) e′ t′ ∷ wk (lift ρ) G₁ [ y ] ^ [ ! , ι ⁰ ] / [G₁] [ρ] ⊢Δ [y])
(⊢t : Γ ⊢ t ∷ Π F ^ rF ° ⁰ ▹ G ° ⁰ ° ⁰ ^ [ ! , ι ⁰ ])
(Df : Γ ⊢ t ⇒* f ∷ Π F ^ rF ° ⁰ ▹ G ° ⁰ ° ⁰ ^ ι ⁰)
([fext] : ∀ {ρ Δ a b} →
([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
([a] : Δ ⊩⟨ ι ⁰ ⟩ a ∷ wk ρ F ^ [ rF , ι ⁰ ] / [F] [ρ] ⊢Δ)
([b] : Δ ⊩⟨ ι ⁰ ⟩ b ∷ wk ρ F ^ [ rF , ι ⁰ ] / [F] [ρ] ⊢Δ)
([a≡b] : Δ ⊩⟨ ι ⁰ ⟩ a ≡ b ∷ wk ρ F ^ [ rF , ι ⁰ ] / [F] [ρ] ⊢Δ)
→ Δ ⊩⟨ ι ⁰ ⟩ wk ρ f ∘ a ^ ⁰ ≡ wk ρ f ∘ b ^ ⁰ ∷ wk (lift ρ) G [ a ] ^ [ ! , ι ⁰ ] / [G] [ρ] ⊢Δ [a])
([f] : ∀ {ρ Δ a}
→ ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ ([a] : Δ ⊩⟨ ι ⁰ ⟩ a ∷ wk ρ F ^ [ rF , ι ⁰ ] / [F] [ρ] ⊢Δ)
→ Δ ⊩⟨ ι ⁰ ⟩ wk ρ f ∘ a ^ ⁰ ∷ wk (lift ρ) G [ a ] ^ [ ! , ι ⁰ ] / [G] [ρ] ⊢Δ [a])
([b] : ∀ {ρ Δ e x}
([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
(⊢e : Δ ⊢ e ∷ Id (Univ rF ⁰) (wk ρ F) (wk ρ F₁) ^ [ % , ι ¹ ])
([x] : Δ ⊩⟨ ι ⁰ ⟩ x ∷ wk ρ F₁ ^ [ rF , ι ⁰ ] / [F₁] [ρ] ⊢Δ)
→ Δ ⊩⟨ ι ⁰ ⟩ cast ⁰ (wk ρ F₁) (wk ρ F) (Idsym (Univ rF ⁰) (wk ρ F) (wk ρ F₁) e) x ∷ wk ρ F ^ [ rF , ι ⁰ ] / [F] [ρ] ⊢Δ)
([bext] : ∀ {ρ Δ e e′ x y} → ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ (Δ ⊢ e ∷ Id (Univ rF ⁰) (wk ρ F) (wk ρ F₁) ^ [ % , ι ¹ ])
→ (Δ ⊢ e′ ∷ Id (Univ rF ⁰) (wk ρ F) (wk ρ F₁) ^ [ % , ι ¹ ])
→ (Δ ⊩⟨ ι ⁰ ⟩ x ∷ wk ρ F₁ ^ [ rF , ι ⁰ ] / [F₁] [ρ] ⊢Δ)
→ (Δ ⊩⟨ ι ⁰ ⟩ y ∷ wk ρ F₁ ^ [ rF , ι ⁰ ] / [F₁] [ρ] ⊢Δ)
→ (Δ ⊩⟨ ι ⁰ ⟩ x ≡ y ∷ wk ρ F₁ ^ [ rF , ι ⁰ ] / [F₁] [ρ] ⊢Δ)
→ Δ ⊩⟨ ι ⁰ ⟩ cast ⁰ (wk ρ F₁) (wk ρ F) (Idsym (Univ rF ⁰) (wk ρ F) (wk ρ F₁) e) x
≡ cast ⁰ (wk ρ F₁) (wk ρ F) (Idsym (Univ rF ⁰) (wk ρ F) (wk ρ F₁) e′) y ∷ wk ρ F ^ [ rF , ι ⁰ ] / [F] [ρ] ⊢Δ)
where
b = λ ρ e x → cast ⁰ (wk ρ F₁) (wk ρ F) (Idsym (Univ rF ⁰) (wk ρ F) (wk ρ F₁) e) x
⊢IdFF₁ : Γ ⊢ Id (Univ rF ⁰) F F₁ ^ [ % , ι ¹ ]
⊢IdFF₁ = univ (Idⱼ (univ 0<1 ⊢Γ) (un-univ ⊢F) (un-univ ⊢F₁))
Δ₀ = Γ ∙ Id (Univ rF ⁰) F F₁ ^ [ % , ι ¹ ] ∙ wk1 F₁ ^ [ rF , ι ⁰ ]
ρ₀ = (step (step id))
⊢IdG₁G : Γ ∙ Id (Univ rF ⁰) F F₁ ^ [ % , ι ¹ ] ⊢ Π (wk1 F₁) ^ rF ° ⁰ ▹ Id (U ⁰) ((wk1d G) [ b ρ₀ (var 1) (var 0) ]↑) (wk1d G₁) ° ¹ ° ¹ ^ [ % , ι ¹ ]
⊢IdG₁G =
let
⊢Δ₀ : ⊢ Δ₀
⊢Δ₀ = ⊢Γ ∙ ⊢IdFF₁ ∙ univ (Twk.wkTerm (Twk.step Twk.id) (⊢Γ ∙ ⊢IdFF₁) (un-univ ⊢F₁))
[ρ₀] : ρ₀ Twk.∷ Δ₀ ⊆ Γ
[ρ₀] = Twk.step (Twk.step Twk.id)
[0] : Δ₀ ⊩⟨ ι ⁰ ⟩ var 0 ∷ wk ρ₀ F₁ ^ [ rF , ι ⁰ ] / [F₁] [ρ₀] ⊢Δ₀
[0] = let x = (var ⊢Δ₀ (PE.subst (λ X → 0 ∷ X ^ [ rF , ι ⁰ ] ∈ Δ₀) (wk1-wk (step id) F₁) here)) in
neuTerm ([F₁] [ρ₀] ⊢Δ₀) (var 0) x (~-var x)
⊢1 : Δ₀ ⊢ (var 1) ∷ Id (Univ rF ⁰) (wk ρ₀ F) (wk ρ₀ F₁) ^ [ % , ι ¹ ]
⊢1 = var ⊢Δ₀ (PE.subst₂ (λ X Y → 1 ∷ Id (Univ rF ⁰) X Y ^ [ % , ι ¹ ] ∈ Δ₀)
(wk1-wk (step id) F) (wk1-wk (step id) F₁) (there here))
⊢G₀ : Δ₀ ⊢ wk (lift ρ₀) G [ b ρ₀ (var 1) (var 0) ] ^ [ ! , ι ⁰ ]
⊢G₀ = escape ([G] [ρ₀] ⊢Δ₀ ([b] [ρ₀] ⊢Δ₀ ⊢1 [0]))
⊢G₀′ = PE.subst (λ X → Δ₀ ⊢ X ^ [ ! , ι ⁰ ]) (PE.sym (cast-subst-lemma2 G (b ρ₀ (var 1) (var 0)))) ⊢G₀
x₀ : Δ₀ ⊢ Id (U ⁰) ((wk1d G) [ b ρ₀ (var 1) (var 0) ]↑) (wk1d G₁) ∷ SProp ¹ ^ [ ! , ∞ ]
x₀ = Idⱼ (univ 0<1 ⊢Δ₀) (un-univ ⊢G₀′)
(un-univ (Twk.wk (Twk.lift (Twk.step Twk.id)) ⊢Δ₀ ⊢G₁))
x₁ = Πⱼ <is≤ 0<1 ▹ ≡is≤ PE.refl ▹ Twk.wkTerm (Twk.step Twk.id) (⊢Γ ∙ ⊢IdFF₁) (un-univ ⊢F₁) ▹ x₀
in univ x₁
⊢e′ : Γ ⊢ e ∷ ∃ (Id (Univ rF ⁰) F F₁) ▹ (Π (wk1 F₁) ^ rF ° ⁰ ▹ Id (U ⁰) ((wk1d G) [ b ρ₀ (var 1) (var 0) ]↑) (wk1d G₁) ° ¹ ° ¹) ^ [ % , ι ¹ ]
⊢e′ =
let
b₀ = cast ⁰ (wk1 (wk1 F₁)) (wk1 (wk1 F)) (Idsym (Univ rF ⁰) (wk1 (wk1 F)) (wk1 (wk1 F₁)) (var 1)) (var 0)
b≡b₀ : b ρ₀ (var 1) (var 0) PE.≡ b₀
b≡b₀ = PE.cong₂ (λ X Y → cast ⁰ Y X (Idsym (Univ rF ⁰) X Y (var 1)) (var 0))
(PE.sym (wk1-wk (step id) F)) (PE.sym (wk1-wk (step id) F₁))
x₀ = conv ⊢e (univ (Id-cong (refl (univ 0<1 ⊢Γ)) (un-univ≡ (subset* D)) (un-univ≡ (subset* D₁))))
x₁ = conv x₀ (univ (Id-U-ΠΠ (un-univ ⊢F) (un-univ ⊢G) (un-univ ⊢F₁) (un-univ ⊢G₁)))
x₂ = PE.subst (λ X → Γ ⊢ e ∷ ∃ (Id (Univ rF ⁰) F F₁) ▹ (Π (wk1 F₁) ^ rF ° ⁰ ▹ Id (U ⁰) ((wk1d G) [ X ]↑) (wk1d G₁) ° ¹ ° ¹) ^ [ % , ι ¹ ]) (PE.sym b≡b₀) x₁
in x₂
⊢fste : Γ ⊢ fst e ∷ Id (Univ rF ⁰) F F₁ ^ [ % , ι ¹ ]
⊢fste = fstⱼ (un-univ ⊢IdFF₁) (un-univ ⊢IdG₁G) ⊢e′
⊢snde : Γ ⊢ snd e ∷ Π F₁ ^ rF ° ⁰ ▹ Id (U ⁰) (wk1d G [ b (step id) (fst (wk1 e)) (var 0) ]) G₁ ° ¹ ° ¹ ^ [ % , ι ¹ ]
⊢snde =
let
x₀ = sndⱼ (un-univ ⊢IdFF₁) (un-univ ⊢IdG₁G) ⊢e′
x₁ = PE.subst₂ (λ X Y → Γ ⊢ snd e ∷ (Π X ^ rF ° ⁰ ▹ subst _ (Id (U ⁰) Y (wk1d G₁)) ° ¹ ° ¹) ^ [ % , ι ¹ ])
(wk1-singleSubst F₁ (fst e)) (cast-subst-lemma2 G (b ρ₀ (var 1) (var 0))) x₀
x₂ = PE.subst₂ (λ X Y → Γ ⊢ snd e ∷ Π F₁ ^ rF ° ⁰ ▹ Id (U ⁰) X Y ° ¹ ° ¹ ^ [ % , ι ¹ ])
(singleSubstLift (wk (lift ρ₀) G) (b ρ₀ (var 1) (var 0))) (wk1d-singleSubst G₁ (fst e)) x₁
σ = liftSubst (sgSubst (fst e))
b≡b : subst σ (b ρ₀ (var 1) (var 0)) PE.≡ b (step id) (fst (wk1 e)) (var 0)
b≡b = PE.trans (PE.cong (λ X → cast ⁰ (subst σ (wk ρ₀ F₁)) (subst σ (wk ρ₀ F)) X (var 0)) (subst-Idsym σ (Univ rF ⁰) (wk ρ₀ F) (wk ρ₀ F₁) (var 1)))
(PE.cong₂ (λ X Y → cast ⁰ Y X (Idsym (Univ rF ⁰) X Y (fst (wk1 e))) (var 0)) (cast-subst-lemma5 F (fst e)) (cast-subst-lemma5 F₁ (fst e)))
x₃ = PE.subst₂ (λ X Y → Γ ⊢ snd e ∷ Π F₁ ^ rF ° ⁰ ▹ Id (U ⁰) (X [ Y ]) G₁ ° ¹ ° ¹ ^ [ % , ι ¹ ])
(cast-subst-lemma3 G (fst e)) b≡b x₂
in x₃
⊢snde′ : ∀ {ρ Δ x} → ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ (⊢x : Δ ⊢ x ∷ wk ρ F₁ ^ [ rF , ι ⁰ ])
→ Δ ⊢ snd (wk ρ e) ∘ x ^ ¹ ∷ Id (U ⁰) (wk (lift ρ) G [ b ρ (fst (wk ρ e)) x ])
(wk (lift ρ) G₁ [ x ]) ^ [ % , ι ¹ ]
⊢snde′ {ρ} {Δ} {x} [ρ] ⊢Δ ⊢x =
let
-- I should probably make some generic lemma about pushing weakening and subst in b
y₀ = PE.trans (PE.cong (λ X → X [ x ]) (wk-Idsym (lift ρ) (Univ rF ⁰) (wk1 F) (wk1 F₁) (fst (wk1 e))))
(PE.trans (subst-Idsym (sgSubst x) (Univ rF ⁰) (wk (lift ρ) (wk1 F)) (wk (lift ρ) (wk1 F₁)) (fst (wk (lift ρ) (wk1 e))))
(PE.cong₃ (λ X Y Z → Idsym (Univ rF ⁰) X Y (fst Z)) (irrelevant-subst′ ρ F x) (irrelevant-subst′ ρ F₁ x) (irrelevant-subst′ ρ e x)))
y₁ : wk (lift ρ) (b (step id) (fst (wk1 e)) (var 0)) [ x ] PE.≡ b ρ (fst (wk ρ e)) x
y₁ = PE.cong₃ (λ X Y Z → cast ⁰ X Y Z x) (irrelevant-subst′ ρ F₁ x) (irrelevant-subst′ ρ F x) y₀
x₀ : Δ ⊢ (wk ρ (snd e)) ∘ x ^ ¹ ∷ Id (U ⁰) (wk (lift ρ) (wk1d G [ b (step id) (fst (wk1 e)) (var 0) ]) [ x ]) (wk (lift ρ) G₁ [ x ]) ^ [ % , ι ¹ ]
x₀ = Twk.wkTerm [ρ] ⊢Δ ⊢snde ∘ⱼ ⊢x
x₁ = PE.cong₂ (λ X Y → X [ Y ]) (cast-subst-lemma4 ρ x G) y₁
x₂ = PE.trans (singleSubstLift (wk (lift (lift ρ)) (wk1d G))
(wk (lift ρ) (b (step id) (fst (wk1 e)) (var 0)))) x₁
x₃ = PE.trans (PE.cong (λ X → X [ x ]) (wk-β {a = b (step id) (fst (wk1 e)) (var 0)} (wk1d G))) x₂
x₄ = PE.subst (λ X → Δ ⊢ snd (wk ρ e) ∘ x ^ ¹ ∷ Id (U ⁰) X (wk (lift ρ) G₁ [ x ]) ^ [ % , ι ¹ ]) x₃ x₀
in x₄
g = λ ρ x → cast ⁰ (wk (lift ρ) G [ b ρ (fst (wk ρ e)) x ]) (wk (lift ρ) G₁ [ x ])
((snd (wk ρ e)) ∘ x ^ ¹) ((wk ρ t) ∘ (b ρ (fst (wk ρ e)) x) ^ ⁰)
[g] : ∀ {ρ Δ x} → ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ ([x] : Δ ⊩⟨ ι ⁰ ⟩ x ∷ wk ρ F₁ ^ [ rF , ι ⁰ ] / [F₁] [ρ] ⊢Δ)
→ Δ ⊩⟨ ι ⁰ ⟩ g ρ x ∷ wk (lift ρ) G₁ [ x ] ^ [ ! , ι ⁰ ] / [G₁] [ρ] ⊢Δ [x]
[g] {ρ} {Δ} {x} [ρ] ⊢Δ [x] =
let
[b]′ = [b] [ρ] ⊢Δ (Twk.wkTerm [ρ] ⊢Δ ⊢fste) [x]
[t] = proj₁ (redSubst*Term (appRed* (escapeTerm ([F] [ρ] ⊢Δ) [b]′) (Twk.wkRed*Term [ρ] ⊢Δ Df))
([G] [ρ] ⊢Δ [b]′) ([f] [ρ] ⊢Δ [b]′))
in recursor [ρ] ⊢Δ [b]′ [x] [t] (⊢snde′ [ρ] ⊢Δ (escapeTerm ([F₁] [ρ] ⊢Δ) [x]))
[gext] : ∀ {ρ Δ x y} → ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ ([x] : Δ ⊩⟨ ι ⁰ ⟩ x ∷ wk ρ F₁ ^ [ rF , ι ⁰ ] / [F₁] [ρ] ⊢Δ)
→ ([y] : Δ ⊩⟨ ι ⁰ ⟩ y ∷ wk ρ F₁ ^ [ rF , ι ⁰ ] / [F₁] [ρ] ⊢Δ)
→ ([x≡y] : Δ ⊩⟨ ι ⁰ ⟩ x ≡ y ∷ wk ρ F₁ ^ [ rF , ι ⁰ ] / [F₁] [ρ] ⊢Δ)
→ Δ ⊩⟨ ι ⁰ ⟩ g ρ x ≡ g ρ y ∷ wk (lift ρ) G₁ [ x ] ^ [ ! , ι ⁰ ] / [G₁] [ρ] ⊢Δ [x]
[gext] {ρ} {Δ} {x} {y} [ρ] ⊢Δ [x] [y] [x≡y] =
let
[b₁] = [b] [ρ] ⊢Δ (Twk.wkTerm [ρ] ⊢Δ ⊢fste) [x]
[b₂] = [b] [ρ] ⊢Δ (Twk.wkTerm [ρ] ⊢Δ ⊢fste) [y]
[b₁≡b₂] = [bext] [ρ] ⊢Δ (Twk.wkTerm [ρ] ⊢Δ ⊢fste) (Twk.wkTerm [ρ] ⊢Δ ⊢fste) [x] [y] [x≡y]
D₁ = (appRed* (escapeTerm ([F] [ρ] ⊢Δ) [b₁]) (Twk.wkRed*Term [ρ] ⊢Δ Df))
D₂ = (appRed* (escapeTerm ([F] [ρ] ⊢Δ) [b₂]) (Twk.wkRed*Term [ρ] ⊢Δ Df))
[t₁] = proj₁ (redSubst*Term D₁ ([G] [ρ] ⊢Δ [b₁]) ([f] [ρ] ⊢Δ [b₁]))
[t₂] = proj₁ (redSubst*Term D₂ ([G] [ρ] ⊢Δ [b₂]) ([f] [ρ] ⊢Δ [b₂]))
[t₁≡t₂] = redSubst*EqTerm D₁ D₂ ([G] [ρ] ⊢Δ [b₁]) ([G] [ρ] ⊢Δ [b₂]) (G-ext [ρ] ⊢Δ [b₁] [b₂] [b₁≡b₂])
([f] [ρ] ⊢Δ [b₁]) ([f] [ρ] ⊢Δ [b₂]) ([fext] [ρ] ⊢Δ [b₁] [b₂] [b₁≡b₂])
in extrecursor [ρ] ⊢Δ [b₁] [b₂] [b₁≡b₂] [x] [y] [x≡y] [t₁] [t₂] [t₁≡t₂] (⊢snde′ [ρ] ⊢Δ (escapeTerm ([F₁] [ρ] ⊢Δ) [x])) (⊢snde′ [ρ] ⊢Δ (escapeTerm ([F₁] [ρ] ⊢Δ) [y]))
Δ₁ = Γ ∙ F₁ ^ [ rF , ι ⁰ ]
⊢Δ₁ : ⊢ Δ₁
⊢Δ₁ = ⊢Γ ∙ ⊢F₁
ρ₁ = (step id)
[ρ₁] : ρ₁ Twk.∷ Δ₁ ⊆ Γ
[ρ₁] = Twk.step Twk.id
[0] : Δ₁ ⊩⟨ ι ⁰ ⟩ var 0 ∷ wk ρ₁ F₁ ^ [ rF , ι ⁰ ] / [F₁] [ρ₁] ⊢Δ₁
[0] = neuTerm ([F₁] [ρ₁] ⊢Δ₁) (var 0) (var ⊢Δ₁ here) (~-var (var ⊢Δ₁ here))
⊢g0 = PE.subst (λ X → Δ₁ ⊢ g (step id) (var 0) ∷ X ^ [ ! , ι ⁰ ]) (wkSingleSubstId G₁) (escapeTerm ([G₁] [ρ₁] ⊢Δ₁ [0]) ([g] [ρ₁] ⊢Δ₁ [0]))
⊢λg : Γ ⊢ lam F₁ ▹ g (step id) (var 0) ^ ⁰ ∷ Π F₁ ^ rF ° ⁰ ▹ G₁ ° ⁰ ° ⁰ ^ [ ! , ι ⁰ ]
⊢λg = lamⱼ (≡is≤ PE.refl) (≡is≤ PE.refl) ⊢F₁ ⊢g0
Dg : Γ ⊢ cast ⁰ A B e t :⇒*: (lam F₁ ▹ g (step id) (var 0) ^ ⁰) ∷ Π F₁ ^ rF ° ⁰ ▹ G₁ ° ⁰ ° ⁰ ^ ι ⁰
Dg =
let
g0 = lam F₁ ▹ cast ⁰ (G [ b (step id) (fst (wk1 e)) (var 0) ]↑) G₁
((snd (wk1 e)) ∘ (var 0) ^ ¹) ((wk1 t) ∘ (b (step id) (fst (wk1 e)) (var 0)) ^ ⁰) ^ ⁰
g≡g : g0 PE.≡ lam F₁ ▹ g (step id) (var 0) ^ ⁰
g≡g = PE.cong₂ (λ X Y → lam F₁ ▹ cast ⁰ X Y ((snd (wk1 e)) ∘ (var 0) ^ ¹) ((wk1 t) ∘ (b (step id) (fst (wk1 e)) (var 0)) ^ ⁰) ^ ⁰)
(wk1d[]-[]↑ G (b (step id) (fst (wk1 e)) (var 0))) (PE.sym (wkSingleSubstId G₁))
⊢e′ = conv ⊢e (univ (Id-cong (refl (univ 0<1 ⊢Γ))
(un-univ≡ (subset* D)) (refl (un-univ ⊢B))))
⊢e″ = conv ⊢e (univ (Id-cong (refl (univ 0<1 ⊢Γ))
(un-univ≡ (subset* D)) (un-univ≡ (subset* D₁))))
in [[ conv (castⱼ (un-univ ⊢A) (un-univ ⊢B) ⊢e (conv ⊢t (sym (subset* D)))) (subset* D₁)
, ⊢λg
, (conv* (CastRed*Term′ ⊢B ⊢e (conv ⊢t (sym (subset* D))) D
⇨∷* castΠRed* ⊢F ⊢G ⊢e′ ⊢t D₁) (subset* D₁))
⇨∷* (PE.subst (λ X → Γ ⊢ cast ⁰ (Π F ^ rF ° ⁰ ▹ G ° ⁰ ° ⁰) (Π F₁ ^ rF ° ⁰ ▹ G₁ ° ⁰ ° ⁰) e t ⇒ X ∷ Π F₁ ^ rF ° ⁰ ▹ G₁ ° ⁰ ° ⁰ ^ ι ⁰) g≡g
(cast-Π (un-univ ⊢F) (un-univ ⊢G) (un-univ ⊢F₁) (un-univ ⊢G₁) ⊢e″ ⊢t) ⇨ (id ⊢λg)) ]]
g≡g : Γ ⊢ (lam F₁ ▹ g (step id) (var 0) ^ ⁰) ≅ (lam F₁ ▹ g (step id) (var 0) ^ ⁰) ∷ Π F₁ ^ rF ° ⁰ ▹ G₁ ° ⁰ ° ⁰ ^ [ ! , ι ⁰ ]
g≡g =
let
⊢F₁′ = Twk.wk (Twk.step Twk.id) ⊢Δ₁ ⊢F₁
⊢g0 = escapeTerm ([G₁] [ρ₁] ⊢Δ₁ [0]) ([g] [ρ₁] ⊢Δ₁ [0])
⊢g0′ = (PE.subst (λ X → Δ₁ ⊢ g (step id) (var 0) ∷ X ^ [ ! , ι ⁰ ]) (wkSingleSubstId G₁) ⊢g0)
⊢g0″ = Twk.wkTerm (Twk.lift (Twk.step Twk.id)) (⊢Δ₁ ∙ ⊢F₁′) ⊢g0′
D : Δ₁ ⊢ (lam (wk1 F₁) ▹ wk1d (g (step id) (var 0)) ^ ⁰) ∘ (var 0) ^ ⁰ ⇒* g (step id) (var 0) ∷ wk1d G₁ [ var 0 ] ^ ι ⁰
D = PE.subst (λ X → Δ₁ ⊢ (lam (wk1 F₁) ▹ wk1d (g (step id) (var 0)) ^ ⁰) ∘ (var 0) ^ ⁰ ⇒ X ∷ wk1d G₁ [ var 0 ] ^ ι ⁰) (wkSingleSubstId (g (step id) (var 0)))
(β-red (≡is≤ PE.refl) (≡is≤ PE.refl) ⊢F₁′ ⊢g0″ (var ⊢Δ₁ here))
⇨ id ⊢g0
[g0] : Δ₁ ⊩⟨ ι ⁰ ⟩ (lam (wk1 F₁) ▹ wk1d (g (step id) (var 0)) ^ ⁰) ∘ (var 0) ^ ⁰ ∷ wk1d G₁ [ var 0 ] ^ [ ! , ι ⁰ ] / [G₁] [ρ₁] ⊢Δ₁ [0]
[g0] = proj₁ (redSubst*Term D ([G₁] [ρ₁] ⊢Δ₁ [0]) ([g] [ρ₁] ⊢Δ₁ [0]))
x₀ = escapeEqReflTerm ([G₁] [ρ₁] ⊢Δ₁ [0]) [g0]
x₁ = PE.subst (λ X → Δ₁ ⊢ (lam (wk1 F₁) ▹ wk1d (g (step id) (var 0)) ^ ⁰) ∘ (var 0) ^ ⁰ ≅ (lam (wk1 F₁) ▹ wk1d (g (step id) (var 0)) ^ ⁰) ∘ (var 0) ^ ⁰ ∷ X ^ [ ! , ι ⁰ ]) (wkSingleSubstId G₁) x₀
in ≅-η-eq (≡is≤ PE.refl) (≡is≤ PE.refl) ⊢F₁ ⊢λg ⊢λg lamₙ lamₙ x₁
g∘a≡ga : ∀ {ρ Δ a}
→ ([ρ] : ρ Twk.∷ Δ ⊆ Γ)
→ (⊢Δ : ⊢ Δ)
→ ([a] : Δ ⊩⟨ ι ⁰ ⟩ a ∷ wk ρ F₁ ^ [ rF , ι ⁰ ] / [F₁] [ρ] ⊢Δ)
→ Δ ⊢ wk ρ (lam F₁ ▹ g (step id) (var 0) ^ ⁰) ∘ a ^ ⁰ ⇒* g ρ a ∷ wk (lift ρ) G₁ [ a ] ^ ι ⁰
g∘a≡ga {ρ} {Δ} {a} [ρ] ⊢Δ [a] =
let
⊢F₁′ = (Twk.wk [ρ] ⊢Δ ⊢F₁)
-- this lemma is already in ⊢snde′. maybe refactor?
x₀ : wk (lift ρ) (b (step id) (fst (wk1 e)) (var 0)) [ a ] PE.≡ b ρ (fst (wk ρ e)) a
x₀ = PE.trans
(PE.cong (λ X → cast ⁰ (wk (lift ρ) (wk1 F₁) [ a ]) (wk (lift ρ) (wk1 F) [ a ]) X a)
(PE.trans (PE.cong (λ X → X [ a ]) (wk-Idsym (lift ρ) (Univ rF ⁰) (wk1 F) (wk1 F₁) (fst (wk1 e))))
(subst-Idsym (sgSubst a) (Univ rF ⁰) (wk (lift ρ) (wk1 F)) (wk (lift ρ) (wk1 F₁)) (fst (wk (lift ρ) (wk1 e))))))
(PE.cong₃ (λ X Y Z → cast ⁰ Y X (Idsym (Univ rF ⁰) X Y (fst Z)) a) (irrelevant-subst′ ρ F a) (irrelevant-subst′ ρ F₁ a) (irrelevant-subst′ ρ e a))
x₁ : wk (lift ρ) (g (step id) (var 0)) [ a ] PE.≡ g ρ a
x₁ = PE.cong₄ (λ X Y Z T → cast ⁰ X Y Z T)
(PE.trans (cast-subst-lemma6 ρ G _ a) (PE.cong (λ X → wk (lift ρ) G [ X ]) x₀))
(PE.cong (λ X → wk (lift ρ) X [ a ]) (wkSingleSubstId G₁))
(PE.cong (λ X → snd X ∘ a ^ ¹) (irrelevant-subst′ ρ e a))
(PE.cong₂ (λ X Y → X ∘ Y ^ ⁰) (irrelevant-subst′ ρ t a) x₀)
x₂ : Δ ∙ (wk ρ F₁) ^ [ rF , ι ⁰ ] ⊢ wk (lift ρ) (g (step id) (var 0)) ∷ wk (lift ρ) G₁ ^ [ ! , ι ⁰ ]
x₂ = Twk.wkTerm (Twk.lift [ρ]) (⊢Δ ∙ ⊢F₁′) ⊢g0
in PE.subst (λ X → Δ ⊢ wk ρ (lam F₁ ▹ g (step id) (var 0) ^ ⁰) ∘ a ^ ⁰ ⇒ X ∷ wk (lift ρ) G₁ [ a ] ^ ι ⁰) x₁
(β-red (≡is≤ PE.refl) (≡is≤ PE.refl) ⊢F₁′ x₂ (escapeTerm ([F₁] [ρ] ⊢Δ) [a]))
⇨ id (escapeTerm ([G₁] [ρ] ⊢Δ [a]) ([g] [ρ] ⊢Δ [a]))
[castΠΠ] : Γ ⊩⟨ ι ⁰ ⟩ cast ⁰ A B e t ∷ B ^ [ ! , ι ⁰ ] / (Πᵣ′ rF ⁰ ⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₁ G₁ [[ ⊢B , ⊢ΠF₁G₁ , D₁ ]] ⊢F₁ ⊢G₁ A₁≡A₁ [F₁] [G₁] G₁-ext)
[castΠΠ] = ((lam F₁ ▹ g (step id) (var 0) ^ ⁰) , Dg , lamₙ , g≡g
, (λ [ρ] ⊢Δ [a] [a′] [a≡a′] → redSubst*EqTerm (g∘a≡ga [ρ] ⊢Δ [a]) (g∘a≡ga [ρ] ⊢Δ [a′])
([G₁] [ρ] ⊢Δ [a]) ([G₁] [ρ] ⊢Δ [a′]) (G₁-ext [ρ] ⊢Δ [a] [a′] [a≡a′])
([g] [ρ] ⊢Δ [a]) ([g] [ρ] ⊢Δ [a′]) ([gext] [ρ] ⊢Δ [a] [a′] [a≡a′]))
, (λ [ρ] ⊢Δ [a] → proj₁ (redSubst*Term (g∘a≡ga [ρ] ⊢Δ [a]) ([G₁] [ρ] ⊢Δ [a]) ([g] [ρ] ⊢Δ [a]))))
module cast-ΠΠ-lemmas-3
{Γ A₁ A₂ A₃ A₄ F₁ F₂ F₃ F₄ rF G₁ G₂ G₃ G₄ e₁₃ e₂₄ t₁ f₁ t₂ f₂}
(⊢Γ : ⊢ Γ)
(⊢A₁ : Γ ⊢ A₁ ^ [ ! , ι ⁰ ])
(⊢ΠF₁G₁ : Γ ⊢ Π F₁ ^ rF ° ⁰ ▹ G₁ ° ⁰ ° ⁰ ^ [ ! , ι ⁰ ])
(D₁ : Γ ⊢ A₁ ⇒* Π F₁ ^ rF ° ⁰ ▹ G₁ ° ⁰ ° ⁰ ^ [ ! , ι ⁰ ])
(⊢F₁ : Γ ⊢ F₁ ^ [ rF , ι ⁰ ])
(⊢G₁ : (Γ ∙ F₁ ^ [ rF , ι ⁰ ]) ⊢ G₁ ^ [ ! , ι ⁰ ])
(A₁≡A₁ : Γ ⊢ (Π F₁ ^ rF ° ⁰ ▹ G₁ ° ⁰ ° ⁰) ≅ (Π F₁ ^ rF ° ⁰ ▹ G₁ ° ⁰ ° ⁰) ^ [ ! , ι ⁰ ])
([F₁] : ∀ {ρ} {Δ} ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → Δ ⊩⟨ ι ⁰ ⟩ wk ρ F₁ ^ [ rF , ι ⁰ ])
([G₁] : ∀ {ρ} {Δ} {a} ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
([a] : Δ ⊩⟨ ι ⁰ ⟩ a ∷ wk ρ F₁ ^ [ rF , ι ⁰ ] / ([F₁] [ρ] ⊢Δ))
→ (Δ ⊩⟨ ι ⁰ ⟩ wk (lift ρ) G₁ [ a ] ^ [ ! , ι ⁰ ]))
(G₁-ext : ∀ {ρ} {Δ} {a} {b} ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
([a] : Δ ⊩⟨ ι ⁰ ⟩ a ∷ wk ρ F₁ ^ [ rF , ι ⁰ ] / ([F₁] [ρ] ⊢Δ))
([b] : Δ ⊩⟨ ι ⁰ ⟩ b ∷ wk ρ F₁ ^ [ rF , ι ⁰ ] / ([F₁] [ρ] ⊢Δ))
([a≡b] : Δ ⊩⟨ ι ⁰ ⟩ a ≡ b ∷ wk ρ F₁ ^ [ rF , ι ⁰ ] / ([F₁] [ρ] ⊢Δ))
→ (Δ ⊩⟨ ι ⁰ ⟩ wk (lift ρ) G₁ [ a ] ≡ wk (lift ρ) G₁ [ b ] ^ [ ! , ι ⁰ ] / ([G₁] [ρ] ⊢Δ [a])))
(⊢A₂ : Γ ⊢ A₂ ^ [ ! , ι ⁰ ])
(⊢ΠF₂G₂ : Γ ⊢ Π F₂ ^ rF ° ⁰ ▹ G₂ ° ⁰ ° ⁰ ^ [ ! , ι ⁰ ])
(D₂ : Γ ⊢ A₂ ⇒* Π F₂ ^ rF ° ⁰ ▹ G₂ ° ⁰ ° ⁰ ^ [ ! , ι ⁰ ])
(⊢F₂ : Γ ⊢ F₂ ^ [ rF , ι ⁰ ])
(⊢G₂ : (Γ ∙ F₂ ^ [ rF , ι ⁰ ]) ⊢ G₂ ^ [ ! , ι ⁰ ])
(A₂≡A₂ : Γ ⊢ (Π F₂ ^ rF ° ⁰ ▹ G₂ ° ⁰ ° ⁰) ≅ (Π F₂ ^ rF ° ⁰ ▹ G₂ ° ⁰ ° ⁰) ^ [ ! , ι ⁰ ])
([F₂] : ∀ {ρ} {Δ} ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → Δ ⊩⟨ ι ⁰ ⟩ wk ρ F₂ ^ [ rF , ι ⁰ ])
([G₂] : ∀ {ρ} {Δ} {a} ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
([a] : Δ ⊩⟨ ι ⁰ ⟩ a ∷ wk ρ F₂ ^ [ rF , ι ⁰ ] / ([F₂] [ρ] ⊢Δ))
→ (Δ ⊩⟨ ι ⁰ ⟩ wk (lift ρ) G₂ [ a ] ^ [ ! , ι ⁰ ]))
(G₂-ext : ∀ {ρ} {Δ} {a} {b} ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
([a] : Δ ⊩⟨ ι ⁰ ⟩ a ∷ wk ρ F₂ ^ [ rF , ι ⁰ ] / ([F₂] [ρ] ⊢Δ))
([b] : Δ ⊩⟨ ι ⁰ ⟩ b ∷ wk ρ F₂ ^ [ rF , ι ⁰ ] / ([F₂] [ρ] ⊢Δ))
([a≡b] : Δ ⊩⟨ ι ⁰ ⟩ a ≡ b ∷ wk ρ F₂ ^ [ rF , ι ⁰ ] / ([F₂] [ρ] ⊢Δ))
→ (Δ ⊩⟨ ι ⁰ ⟩ wk (lift ρ) G₂ [ a ] ≡ wk (lift ρ) G₂ [ b ] ^ [ ! , ι ⁰ ] / ([G₂] [ρ] ⊢Δ [a])))
(⊢A₃ : Γ ⊢ A₃ ^ [ ! , ι ⁰ ])
(⊢ΠF₃G₃ : Γ ⊢ Π F₃ ^ rF ° ⁰ ▹ G₃ ° ⁰ ° ⁰ ^ [ ! , ι ⁰ ])
(D₃ : Γ ⊢ A₃ ⇒* Π F₃ ^ rF ° ⁰ ▹ G₃ ° ⁰ ° ⁰ ^ [ ! , ι ⁰ ])
(⊢F₃ : Γ ⊢ F₃ ^ [ rF , ι ⁰ ])
(⊢G₃ : (Γ ∙ F₃ ^ [ rF , ι ⁰ ]) ⊢ G₃ ^ [ ! , ι ⁰ ])
(A₃≡A₃ : Γ ⊢ (Π F₃ ^ rF ° ⁰ ▹ G₃ ° ⁰ ° ⁰) ≅ (Π F₃ ^ rF ° ⁰ ▹ G₃ ° ⁰ ° ⁰) ^ [ ! , ι ⁰ ])
([F₃] : ∀ {ρ} {Δ} ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → Δ ⊩⟨ ι ⁰ ⟩ wk ρ F₃ ^ [ rF , ι ⁰ ])
([G₃] : ∀ {ρ} {Δ} {a} ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
([a] : Δ ⊩⟨ ι ⁰ ⟩ a ∷ wk ρ F₃ ^ [ rF , ι ⁰ ] / ([F₃] [ρ] ⊢Δ))
→ (Δ ⊩⟨ ι ⁰ ⟩ wk (lift ρ) G₃ [ a ] ^ [ ! , ι ⁰ ]))
(G₃-ext : ∀ {ρ} {Δ} {a} {b} ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
([a] : Δ ⊩⟨ ι ⁰ ⟩ a ∷ wk ρ F₃ ^ [ rF , ι ⁰ ] / ([F₃] [ρ] ⊢Δ))
([b] : Δ ⊩⟨ ι ⁰ ⟩ b ∷ wk ρ F₃ ^ [ rF , ι ⁰ ] / ([F₃] [ρ] ⊢Δ))
([a≡b] : Δ ⊩⟨ ι ⁰ ⟩ a ≡ b ∷ wk ρ F₃ ^ [ rF , ι ⁰ ] / ([F₃] [ρ] ⊢Δ))
→ (Δ ⊩⟨ ι ⁰ ⟩ wk (lift ρ) G₃ [ a ] ≡ wk (lift ρ) G₃ [ b ] ^ [ ! , ι ⁰ ] / ([G₃] [ρ] ⊢Δ [a])))
(⊢A₄ : Γ ⊢ A₄ ^ [ ! , ι ⁰ ])
(⊢ΠF₄G₄ : Γ ⊢ Π F₄ ^ rF ° ⁰ ▹ G₄ ° ⁰ ° ⁰ ^ [ ! , ι ⁰ ])
(D₄ : Γ ⊢ A₄ ⇒* Π F₄ ^ rF ° ⁰ ▹ G₄ ° ⁰ ° ⁰ ^ [ ! , ι ⁰ ])
(⊢F₄ : Γ ⊢ F₄ ^ [ rF , ι ⁰ ])
(⊢G₄ : (Γ ∙ F₄ ^ [ rF , ι ⁰ ]) ⊢ G₄ ^ [ ! , ι ⁰ ])
(A₄≡A₄ : Γ ⊢ (Π F₄ ^ rF ° ⁰ ▹ G₄ ° ⁰ ° ⁰) ≅ (Π F₄ ^ rF ° ⁰ ▹ G₄ ° ⁰ ° ⁰) ^ [ ! , ι ⁰ ])
([F₄] : ∀ {ρ} {Δ} ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → Δ ⊩⟨ ι ⁰ ⟩ wk ρ F₄ ^ [ rF , ι ⁰ ])
([G₄] : ∀ {ρ} {Δ} {a} ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
([a] : Δ ⊩⟨ ι ⁰ ⟩ a ∷ wk ρ F₄ ^ [ rF , ι ⁰ ] / ([F₄] [ρ] ⊢Δ))
→ (Δ ⊩⟨ ι ⁰ ⟩ wk (lift ρ) G₄ [ a ] ^ [ ! , ι ⁰ ]))
(G₄-ext : ∀ {ρ} {Δ} {a} {b} ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
([a] : Δ ⊩⟨ ι ⁰ ⟩ a ∷ wk ρ F₄ ^ [ rF , ι ⁰ ] / ([F₄] [ρ] ⊢Δ))
([b] : Δ ⊩⟨ ι ⁰ ⟩ b ∷ wk ρ F₄ ^ [ rF , ι ⁰ ] / ([F₄] [ρ] ⊢Δ))
([a≡b] : Δ ⊩⟨ ι ⁰ ⟩ a ≡ b ∷ wk ρ F₄ ^ [ rF , ι ⁰ ] / ([F₄] [ρ] ⊢Δ))
→ (Δ ⊩⟨ ι ⁰ ⟩ wk (lift ρ) G₄ [ a ] ≡ wk (lift ρ) G₄ [ b ] ^ [ ! , ι ⁰ ] / ([G₄] [ρ] ⊢Δ [a])))
(A₁≡A₂ : Γ ⊢ Π F₁ ^ rF ° ⁰ ▹ G₁ ° ⁰ ° ⁰ ≅ Π F₂ ^ rF ° ⁰ ▹ G₂ ° ⁰ ° ⁰ ^ [ ! , ι ⁰ ])
(A₃≡A₄ : Γ ⊢ Π F₃ ^ rF ° ⁰ ▹ G₃ ° ⁰ ° ⁰ ≅ Π F₄ ^ rF ° ⁰ ▹ G₄ ° ⁰ ° ⁰ ^ [ ! , ι ⁰ ])
([F₁≡F₂] : ∀ {ρ Δ} → ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → Δ ⊩⟨ ι ⁰ ⟩ wk ρ F₁ ≡ wk ρ F₂ ^ [ rF , ι ⁰ ] / [F₁] [ρ] ⊢Δ)
([F₃≡F₄] : ∀ {ρ Δ} → ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → Δ ⊩⟨ ι ⁰ ⟩ wk ρ F₃ ≡ wk ρ F₄ ^ [ rF , ι ⁰ ] / [F₃] [ρ] ⊢Δ)
([G₁≡G₂] : ∀ {ρ Δ a} → ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ ([a] : Δ ⊩⟨ ι ⁰ ⟩ a ∷ wk ρ F₁ ^ [ rF , ι ⁰ ] / [F₁] [ρ] ⊢Δ)
→ Δ ⊩⟨ ι ⁰ ⟩ wk (lift ρ) G₁ [ a ] ≡ wk (lift ρ) G₂ [ a ] ^ [ ! , ι ⁰ ] / [G₁] [ρ] ⊢Δ [a])
([G₃≡G₄] : ∀ {ρ Δ a} → ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ ([a] : Δ ⊩⟨ ι ⁰ ⟩ a ∷ wk ρ F₃ ^ [ rF , ι ⁰ ] / [F₃] [ρ] ⊢Δ)
→ Δ ⊩⟨ ι ⁰ ⟩ wk (lift ρ) G₃ [ a ] ≡ wk (lift ρ) G₄ [ a ] ^ [ ! , ι ⁰ ] / [G₃] [ρ] ⊢Δ [a])
(⊢e₁₃ : Γ ⊢ e₁₃ ∷ Id (U ⁰) A₁ A₃ ^ [ % , ι ¹ ])
(⊢e₂₄ : Γ ⊢ e₂₄ ∷ Id (U ⁰) A₂ A₄ ^ [ % , ι ¹ ])
(⊢t₁ : Γ ⊢ t₁ ∷ Π F₁ ^ rF ° ⁰ ▹ G₁ ° ⁰ ° ⁰ ^ [ ! , ι ⁰ ])
(Df₁ : Γ ⊢ t₁ ⇒* f₁ ∷ Π F₁ ^ rF ° ⁰ ▹ G₁ ° ⁰ ° ⁰ ^ ι ⁰)
([f₁ext] : ∀ {ρ Δ a b} →
([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
([a] : Δ ⊩⟨ ι ⁰ ⟩ a ∷ wk ρ F₁ ^ [ rF , ι ⁰ ] / [F₁] [ρ] ⊢Δ)
([b] : Δ ⊩⟨ ι ⁰ ⟩ b ∷ wk ρ F₁ ^ [ rF , ι ⁰ ] / [F₁] [ρ] ⊢Δ)
([a≡b] : Δ ⊩⟨ ι ⁰ ⟩ a ≡ b ∷ wk ρ F₁ ^ [ rF , ι ⁰ ] / [F₁] [ρ] ⊢Δ)
→ Δ ⊩⟨ ι ⁰ ⟩ wk ρ f₁ ∘ a ^ ⁰ ≡ wk ρ f₁ ∘ b ^ ⁰ ∷ wk (lift ρ) G₁ [ a ] ^ [ ! , ι ⁰ ] / [G₁] [ρ] ⊢Δ [a])
([f₁] : ∀ {ρ Δ a}
→ ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ ([a] : Δ ⊩⟨ ι ⁰ ⟩ a ∷ wk ρ F₁ ^ [ rF , ι ⁰ ] / [F₁] [ρ] ⊢Δ)
→ Δ ⊩⟨ ι ⁰ ⟩ wk ρ f₁ ∘ a ^ ⁰ ∷ wk (lift ρ) G₁ [ a ] ^ [ ! , ι ⁰ ] / [G₁] [ρ] ⊢Δ [a])
(⊢t₂ : Γ ⊢ t₂ ∷ Π F₂ ^ rF ° ⁰ ▹ G₂ ° ⁰ ° ⁰ ^ [ ! , ι ⁰ ])
(Df₂ : Γ ⊢ t₂ ⇒* f₂ ∷ Π F₂ ^ rF ° ⁰ ▹ G₂ ° ⁰ ° ⁰ ^ ι ⁰)
([f₂ext] : ∀ {ρ Δ a b} →
([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
([a] : Δ ⊩⟨ ι ⁰ ⟩ a ∷ wk ρ F₂ ^ [ rF , ι ⁰ ] / [F₂] [ρ] ⊢Δ)
([b] : Δ ⊩⟨ ι ⁰ ⟩ b ∷ wk ρ F₂ ^ [ rF , ι ⁰ ] / [F₂] [ρ] ⊢Δ)
([a≡b] : Δ ⊩⟨ ι ⁰ ⟩ a ≡ b ∷ wk ρ F₂ ^ [ rF , ι ⁰ ] / [F₂] [ρ] ⊢Δ)
→ Δ ⊩⟨ ι ⁰ ⟩ wk ρ f₂ ∘ a ^ ⁰ ≡ wk ρ f₂ ∘ b ^ ⁰ ∷ wk (lift ρ) G₂ [ a ] ^ [ ! , ι ⁰ ] / [G₂] [ρ] ⊢Δ [a])
([f₂] : ∀ {ρ Δ a}
→ ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ ([a] : Δ ⊩⟨ ι ⁰ ⟩ a ∷ wk ρ F₂ ^ [ rF , ι ⁰ ] / [F₂] [ρ] ⊢Δ)
→ Δ ⊩⟨ ι ⁰ ⟩ wk ρ f₂ ∘ a ^ ⁰ ∷ wk (lift ρ) G₂ [ a ] ^ [ ! , ι ⁰ ] / [G₂] [ρ] ⊢Δ [a])
([f₁≡f₂] : ∀ {ρ Δ a} → ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → ([a] : Δ ⊩⟨ ι ⁰ ⟩ a ∷ wk ρ F₁ ^ [ rF , ι ⁰ ] / [F₁] [ρ] ⊢Δ)
→ Δ ⊩⟨ ι ⁰ ⟩ wk ρ f₁ ∘ a ^ ⁰ ≡ wk ρ f₂ ∘ a ^ ⁰ ∷ wk (lift ρ) G₁ [ a ] ^ [ ! , ι ⁰ ] / [G₁] [ρ] ⊢Δ [a])
(recursor₁ : ∀ {ρ Δ x y t e}
([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
([x] : Δ ⊩⟨ ι ⁰ ⟩ x ∷ wk ρ F₁ ^ [ rF , ι ⁰ ] / [F₁] [ρ] ⊢Δ)
([y] : Δ ⊩⟨ ι ⁰ ⟩ y ∷ wk ρ F₃ ^ [ rF , ι ⁰ ] / [F₃] [ρ] ⊢Δ)
([t] : Δ ⊩⟨ ι ⁰ ⟩ t ∷ wk (lift ρ) G₁ [ x ] ^ [ ! , ι ⁰ ] / [G₁] [ρ] ⊢Δ [x])
(⊢e : Δ ⊢ e ∷ Id (U ⁰) (wk (lift ρ) G₁ [ x ]) (wk (lift ρ) G₃ [ y ]) ^ [ % , ι ¹ ])
→ Δ ⊩⟨ ι ⁰ ⟩ cast ⁰ (wk (lift ρ) G₁ [ x ]) (wk (lift ρ) G₃ [ y ]) e t ∷ wk (lift ρ) G₃ [ y ] ^ [ ! , ι ⁰ ] / [G₃] [ρ] ⊢Δ [y])
(recursor₂ : ∀ {ρ Δ x y t e}
([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
([x] : Δ ⊩⟨ ι ⁰ ⟩ x ∷ wk ρ F₂ ^ [ rF , ι ⁰ ] / [F₂] [ρ] ⊢Δ)
([y] : Δ ⊩⟨ ι ⁰ ⟩ y ∷ wk ρ F₄ ^ [ rF , ι ⁰ ] / [F₄] [ρ] ⊢Δ)
([t] : Δ ⊩⟨ ι ⁰ ⟩ t ∷ wk (lift ρ) G₂ [ x ] ^ [ ! , ι ⁰ ] / [G₂] [ρ] ⊢Δ [x])
(⊢e : Δ ⊢ e ∷ Id (U ⁰) (wk (lift ρ) G₂ [ x ]) (wk (lift ρ) G₄ [ y ]) ^ [ % , ι ¹ ])
→ Δ ⊩⟨ ι ⁰ ⟩ cast ⁰ (wk (lift ρ) G₂ [ x ]) (wk (lift ρ) G₄ [ y ]) e t ∷ wk (lift ρ) G₄ [ y ] ^ [ ! , ι ⁰ ] / [G₄] [ρ] ⊢Δ [y])
(extrecursor₁ : ∀ {ρ Δ x x′ y y′ t t′ e e′}
→ ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ ([x] : Δ ⊩⟨ ι ⁰ ⟩ x ∷ wk ρ F₁ ^ [ rF , ι ⁰ ] / [F₁] [ρ] ⊢Δ)
→ ([x′] : Δ ⊩⟨ ι ⁰ ⟩ x′ ∷ wk ρ F₁ ^ [ rF , ι ⁰ ] / [F₁] [ρ] ⊢Δ)
→ ([x≡x′] : Δ ⊩⟨ ι ⁰ ⟩ x ≡ x′ ∷ wk ρ F₁ ^ [ rF , ι ⁰ ] / [F₁] [ρ] ⊢Δ)
→ ([y] : Δ ⊩⟨ ι ⁰ ⟩ y ∷ wk ρ F₃ ^ [ rF , ι ⁰ ] / [F₃] [ρ] ⊢Δ)
→ ([y′] : Δ ⊩⟨ ι ⁰ ⟩ y′ ∷ wk ρ F₃ ^ [ rF , ι ⁰ ] / [F₃] [ρ] ⊢Δ)
→ ([y≡y′] : Δ ⊩⟨ ι ⁰ ⟩ y ≡ y′ ∷ wk ρ F₃ ^ [ rF , ι ⁰ ] / [F₃] [ρ] ⊢Δ)
→ ([t] : Δ ⊩⟨ ι ⁰ ⟩ t ∷ wk (lift ρ) G₁ [ x ] ^ [ ! , ι ⁰ ] / [G₁] [ρ] ⊢Δ [x])
→ ([t′] : Δ ⊩⟨ ι ⁰ ⟩ t′ ∷ wk (lift ρ) G₁ [ x′ ] ^ [ ! , ι ⁰ ] / [G₁] [ρ] ⊢Δ [x′])
→ ([t≡t′] : Δ ⊩⟨ ι ⁰ ⟩ t ≡ t′ ∷ wk (lift ρ) G₁ [ x ] ^ [ ! , ι ⁰ ] / [G₁] [ρ] ⊢Δ [x])
→ (⊢e : Δ ⊢ e ∷ Id (U ⁰) (wk (lift ρ) G₁ [ x ]) (wk (lift ρ) G₃ [ y ]) ^ [ % , ι ¹ ])
→ (⊢e′ : Δ ⊢ e′ ∷ Id (U ⁰) (wk (lift ρ) G₁ [ x′ ]) (wk (lift ρ) G₃ [ y′ ]) ^ [ % , ι ¹ ])
→ Δ ⊩⟨ ι ⁰ ⟩ cast ⁰ (wk (lift ρ) G₁ [ x ]) (wk (lift ρ) G₃ [ y ]) e t ≡ cast ⁰ (wk (lift ρ) G₁ [ x′ ]) (wk (lift ρ) G₃ [ y′ ]) e′ t′ ∷ wk (lift ρ) G₃ [ y ] ^ [ ! , ι ⁰ ] / [G₃] [ρ] ⊢Δ [y])
(extrecursor₂ : ∀ {ρ Δ x x′ y y′ t t′ e e′}
→ ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ ([x] : Δ ⊩⟨ ι ⁰ ⟩ x ∷ wk ρ F₂ ^ [ rF , ι ⁰ ] / [F₂] [ρ] ⊢Δ)
→ ([x′] : Δ ⊩⟨ ι ⁰ ⟩ x′ ∷ wk ρ F₂ ^ [ rF , ι ⁰ ] / [F₂] [ρ] ⊢Δ)
→ ([x≡x′] : Δ ⊩⟨ ι ⁰ ⟩ x ≡ x′ ∷ wk ρ F₂ ^ [ rF , ι ⁰ ] / [F₂] [ρ] ⊢Δ)
→ ([y] : Δ ⊩⟨ ι ⁰ ⟩ y ∷ wk ρ F₄ ^ [ rF , ι ⁰ ] / [F₄] [ρ] ⊢Δ)
→ ([y′] : Δ ⊩⟨ ι ⁰ ⟩ y′ ∷ wk ρ F₄ ^ [ rF , ι ⁰ ] / [F₄] [ρ] ⊢Δ)
→ ([y≡y′] : Δ ⊩⟨ ι ⁰ ⟩ y ≡ y′ ∷ wk ρ F₄ ^ [ rF , ι ⁰ ] / [F₄] [ρ] ⊢Δ)
→ ([t] : Δ ⊩⟨ ι ⁰ ⟩ t ∷ wk (lift ρ) G₂ [ x ] ^ [ ! , ι ⁰ ] / [G₂] [ρ] ⊢Δ [x])
→ ([t′] : Δ ⊩⟨ ι ⁰ ⟩ t′ ∷ wk (lift ρ) G₂ [ x′ ] ^ [ ! , ι ⁰ ] / [G₂] [ρ] ⊢Δ [x′])
→ ([t≡t′] : Δ ⊩⟨ ι ⁰ ⟩ t ≡ t′ ∷ wk (lift ρ) G₂ [ x ] ^ [ ! , ι ⁰ ] / [G₂] [ρ] ⊢Δ [x])
→ (⊢e : Δ ⊢ e ∷ Id (U ⁰) (wk (lift ρ) G₂ [ x ]) (wk (lift ρ) G₄ [ y ]) ^ [ % , ι ¹ ])
→ (⊢e′ : Δ ⊢ e′ ∷ Id (U ⁰) (wk (lift ρ) G₂ [ x′ ]) (wk (lift ρ) G₄ [ y′ ]) ^ [ % , ι ¹ ])
→ Δ ⊩⟨ ι ⁰ ⟩ cast ⁰ (wk (lift ρ) G₂ [ x ]) (wk (lift ρ) G₄ [ y ]) e t ≡ cast ⁰ (wk (lift ρ) G₂ [ x′ ]) (wk (lift ρ) G₄ [ y′ ]) e′ t′ ∷ wk (lift ρ) G₄ [ y ] ^ [ ! , ι ⁰ ] / [G₄] [ρ] ⊢Δ [y])
(eqrecursor : ∀ {ρ Δ x₁ x₂ x₃ x₄ t₁ t₂ e₁₃ e₂₄}
→ ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ ([x₁] : Δ ⊩⟨ ι ⁰ ⟩ x₁ ∷ wk ρ F₁ ^ [ rF , ι ⁰ ] / [F₁] [ρ] ⊢Δ)
→ ([x₂] : Δ ⊩⟨ ι ⁰ ⟩ x₂ ∷ wk ρ F₂ ^ [ rF , ι ⁰ ] / [F₂] [ρ] ⊢Δ)
→ ([G₁x₁≡G₂x₂] : Δ ⊩⟨ ι ⁰ ⟩ wk (lift ρ) G₁ [ x₁ ] ≡ wk (lift ρ) G₂ [ x₂ ] ^ [ ! , ι ⁰ ] / [G₁] [ρ] ⊢Δ [x₁])
→ ([x₃] : Δ ⊩⟨ ι ⁰ ⟩ x₃ ∷ wk ρ F₃ ^ [ rF , ι ⁰ ] / [F₃] [ρ] ⊢Δ)
→ ([x₄] : Δ ⊩⟨ ι ⁰ ⟩ x₄ ∷ wk ρ F₄ ^ [ rF , ι ⁰ ] / [F₄] [ρ] ⊢Δ)
→ ([G₃x₃≡G₄x₄] : Δ ⊩⟨ ι ⁰ ⟩ wk (lift ρ) G₃ [ x₃ ] ≡ wk (lift ρ) G₄ [ x₄ ] ^ [ ! , ι ⁰ ] / [G₃] [ρ] ⊢Δ [x₃])
→ ([t₁] : Δ ⊩⟨ ι ⁰ ⟩ t₁ ∷ wk (lift ρ) G₁ [ x₁ ] ^ [ ! , ι ⁰ ] / [G₁] [ρ] ⊢Δ [x₁])
→ ([t₂] : Δ ⊩⟨ ι ⁰ ⟩ t₂ ∷ wk (lift ρ) G₂ [ x₂ ] ^ [ ! , ι ⁰ ] / [G₂] [ρ] ⊢Δ [x₂])
→ ([t₁≡t₂] : Δ ⊩⟨ ι ⁰ ⟩ t₁ ≡ t₂ ∷ wk (lift ρ) G₁ [ x₁ ] ^ [ ! , ι ⁰ ] / [G₁] [ρ] ⊢Δ [x₁])
→ (⊢e₁₃ : Δ ⊢ e₁₃ ∷ Id (U ⁰) (wk (lift ρ) G₁ [ x₁ ]) (wk (lift ρ) G₃ [ x₃ ]) ^ [ % , ι ¹ ])
→ (⊢e₂₄ : Δ ⊢ e₂₄ ∷ Id (U ⁰) (wk (lift ρ) G₂ [ x₂ ]) (wk (lift ρ) G₄ [ x₄ ]) ^ [ % , ι ¹ ])
→ Δ ⊩⟨ ι ⁰ ⟩ cast ⁰ (wk (lift ρ) G₁ [ x₁ ]) (wk (lift ρ) G₃ [ x₃ ]) e₁₃ t₁ ≡ cast ⁰ (wk (lift ρ) G₂ [ x₂ ]) (wk (lift ρ) G₄ [ x₄ ]) e₂₄ t₂ ∷ wk (lift ρ) G₃ [ x₃ ] ^ [ ! , ι ⁰ ] / [G₃] [ρ] ⊢Δ [x₃])
([b₁] : ∀ {ρ Δ e x}
([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
(⊢e : Δ ⊢ e ∷ Id (Univ rF ⁰) (wk ρ F₁) (wk ρ F₃) ^ [ % , ι ¹ ])
([x] : Δ ⊩⟨ ι ⁰ ⟩ x ∷ wk ρ F₃ ^ [ rF , ι ⁰ ] / [F₃] [ρ] ⊢Δ)
→ Δ ⊩⟨ ι ⁰ ⟩ cast ⁰ (wk ρ F₃) (wk ρ F₁) (Idsym (Univ rF ⁰) (wk ρ F₁) (wk ρ F₃) e) x ∷ wk ρ F₁ ^ [ rF , ι ⁰ ] / [F₁] [ρ] ⊢Δ)
([bext₁] : ∀ {ρ Δ e e′ x y} → ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ (Δ ⊢ e ∷ Id (Univ rF ⁰) (wk ρ F₁) (wk ρ F₃) ^ [ % , ι ¹ ])
→ (Δ ⊢ e′ ∷ Id (Univ rF ⁰) (wk ρ F₁) (wk ρ F₃) ^ [ % , ι ¹ ])
→ (Δ ⊩⟨ ι ⁰ ⟩ x ∷ wk ρ F₃ ^ [ rF , ι ⁰ ] / [F₃] [ρ] ⊢Δ)
→ (Δ ⊩⟨ ι ⁰ ⟩ y ∷ wk ρ F₃ ^ [ rF , ι ⁰ ] / [F₃] [ρ] ⊢Δ)
→ (Δ ⊩⟨ ι ⁰ ⟩ x ≡ y ∷ wk ρ F₃ ^ [ rF , ι ⁰ ] / [F₃] [ρ] ⊢Δ)
→ Δ ⊩⟨ ι ⁰ ⟩ cast ⁰ (wk ρ F₃) (wk ρ F₁) (Idsym (Univ rF ⁰) (wk ρ F₁) (wk ρ F₃) e) x
≡ cast ⁰ (wk ρ F₃) (wk ρ F₁) (Idsym (Univ rF ⁰) (wk ρ F₁) (wk ρ F₃) e′) y ∷ wk ρ F₁ ^ [ rF , ι ⁰ ] / [F₁] [ρ] ⊢Δ)
([b₂] : ∀ {ρ Δ e x}
([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
(⊢e : Δ ⊢ e ∷ Id (Univ rF ⁰) (wk ρ F₂) (wk ρ F₄) ^ [ % , ι ¹ ])
([x] : Δ ⊩⟨ ι ⁰ ⟩ x ∷ wk ρ F₄ ^ [ rF , ι ⁰ ] / [F₄] [ρ] ⊢Δ)
→ Δ ⊩⟨ ι ⁰ ⟩ cast ⁰ (wk ρ F₄) (wk ρ F₂) (Idsym (Univ rF ⁰) (wk ρ F₂) (wk ρ F₄) e) x ∷ wk ρ F₂ ^ [ rF , ι ⁰ ] / [F₂] [ρ] ⊢Δ)
([bext₂] : ∀ {ρ Δ e e′ x y} → ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ (Δ ⊢ e ∷ Id (Univ rF ⁰) (wk ρ F₂) (wk ρ F₄) ^ [ % , ι ¹ ])
→ (Δ ⊢ e′ ∷ Id (Univ rF ⁰) (wk ρ F₂) (wk ρ F₄) ^ [ % , ι ¹ ])
→ (Δ ⊩⟨ ι ⁰ ⟩ x ∷ wk ρ F₄ ^ [ rF , ι ⁰ ] / [F₄] [ρ] ⊢Δ)
→ (Δ ⊩⟨ ι ⁰ ⟩ y ∷ wk ρ F₄ ^ [ rF , ι ⁰ ] / [F₄] [ρ] ⊢Δ)
→ (Δ ⊩⟨ ι ⁰ ⟩ x ≡ y ∷ wk ρ F₄ ^ [ rF , ι ⁰ ] / [F₄] [ρ] ⊢Δ)
→ Δ ⊩⟨ ι ⁰ ⟩ cast ⁰ (wk ρ F₄) (wk ρ F₂) (Idsym (Univ rF ⁰) (wk ρ F₂) (wk ρ F₄) e) x
≡ cast ⁰ (wk ρ F₄) (wk ρ F₂) (Idsym (Univ rF ⁰) (wk ρ F₂) (wk ρ F₄) e′) y ∷ wk ρ F₂ ^ [ rF , ι ⁰ ] / [F₂] [ρ] ⊢Δ)
([b₁≡b₂] : ∀ {ρ Δ e₁₃ e₂₄ x₃ x₄} → ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ (Δ ⊢ e₁₃ ∷ Id (Univ rF ⁰) (wk ρ F₁) (wk ρ F₃) ^ [ % , ι ¹ ])
→ (Δ ⊢ e₂₄ ∷ Id (Univ rF ⁰) (wk ρ F₂) (wk ρ F₄) ^ [ % , ι ¹ ])
→ (Δ ⊩⟨ ι ⁰ ⟩ x₃ ∷ wk ρ F₃ ^ [ rF , ι ⁰ ] / [F₃] [ρ] ⊢Δ)
→ (Δ ⊩⟨ ι ⁰ ⟩ x₄ ∷ wk ρ F₄ ^ [ rF , ι ⁰ ] / [F₄] [ρ] ⊢Δ)
→ (Δ ⊩⟨ ι ⁰ ⟩ x₃ ≡ x₄ ∷ wk ρ F₃ ^ [ rF , ι ⁰ ] / [F₃] [ρ] ⊢Δ)
→ Δ ⊩⟨ ι ⁰ ⟩ cast ⁰ (wk ρ F₃) (wk ρ F₁) (Idsym (Univ rF ⁰) (wk ρ F₁) (wk ρ F₃) e₁₃) x₃
≡ cast ⁰ (wk ρ F₄) (wk ρ F₂) (Idsym (Univ rF ⁰) (wk ρ F₂) (wk ρ F₄) e₂₄) x₄ ∷ wk ρ F₁ ^ [ rF , ι ⁰ ] / [F₁] [ρ] ⊢Δ)
where
module g₁ = cast-ΠΠ-lemmas-2 ⊢Γ ⊢A₁ ⊢ΠF₁G₁ D₁ ⊢F₁ ⊢G₁ A₁≡A₁ [F₁] [G₁] G₁-ext ⊢A₃ ⊢ΠF₃G₃ D₃ ⊢F₃ ⊢G₃ A₃≡A₃ [F₃] [G₃] G₃-ext ⊢e₁₃
recursor₁ extrecursor₁ ⊢t₁ Df₁ [f₁ext] [f₁] [b₁] [bext₁]
module g₂ = cast-ΠΠ-lemmas-2 ⊢Γ ⊢A₂ ⊢ΠF₂G₂ D₂ ⊢F₂ ⊢G₂ A₂≡A₂ [F₂] [G₂] G₂-ext ⊢A₄ ⊢ΠF₄G₄ D₄ ⊢F₄ ⊢G₄ A₄≡A₄ [F₄] [G₄] G₄-ext ⊢e₂₄
recursor₂ extrecursor₂ ⊢t₂ Df₂ [f₂ext] [f₂] [b₂] [bext₂]
[g₁≡g₂] : ∀ {ρ Δ x₃ x₄} → ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ ([x₃] : Δ ⊩⟨ ι ⁰ ⟩ x₃ ∷ wk ρ F₃ ^ [ rF , ι ⁰ ] / [F₃] [ρ] ⊢Δ)
→ ([x₄] : Δ ⊩⟨ ι ⁰ ⟩ x₄ ∷ wk ρ F₄ ^ [ rF , ι ⁰ ] / [F₄] [ρ] ⊢Δ)
→ ([x₃≡x₄] : Δ ⊩⟨ ι ⁰ ⟩ x₃ ≡ x₄ ∷ wk ρ F₃ ^ [ rF , ι ⁰ ] / [F₃] [ρ] ⊢Δ)
→ Δ ⊩⟨ ι ⁰ ⟩ g₁.g ρ x₃ ≡ g₂.g ρ x₄ ∷ wk (lift ρ) G₃ [ x₃ ] ^ [ ! , ι ⁰ ] / [G₃] [ρ] ⊢Δ [x₃]
[g₁≡g₂] {ρ} {Δ} {x₃} {x₄} [ρ] ⊢Δ [x₃] [x₄] [x₃≡x₄] =
let
[b₁] = [b₁] [ρ] ⊢Δ (Twk.wkTerm [ρ] ⊢Δ g₁.⊢fste) [x₃]
[b₂] = [b₂] [ρ] ⊢Δ (Twk.wkTerm [ρ] ⊢Δ g₂.⊢fste) [x₄]
[b₁≡b₂]′ = [b₁≡b₂] [ρ] ⊢Δ (Twk.wkTerm [ρ] ⊢Δ g₁.⊢fste) (Twk.wkTerm [ρ] ⊢Δ g₂.⊢fste) [x₃] [x₄] [x₃≡x₄]
[b₁:F₂] = convTerm₁ ([F₁] [ρ] ⊢Δ) ([F₂] [ρ] ⊢Δ) ([F₁≡F₂] [ρ] ⊢Δ) [b₁]
[b₁≡b₂:F₂] = convEqTerm₁ ([F₁] [ρ] ⊢Δ) ([F₂] [ρ] ⊢Δ) ([F₁≡F₂] [ρ] ⊢Δ) [b₁≡b₂]′
[G₁b₁≡G₂b₂] = transEq ([G₁] [ρ] ⊢Δ [b₁]) ([G₂] [ρ] ⊢Δ [b₁:F₂]) ([G₂] [ρ] ⊢Δ [b₂])
([G₁≡G₂] [ρ] ⊢Δ [b₁]) (G₂-ext [ρ] ⊢Δ [b₁:F₂] [b₂] [b₁≡b₂:F₂])
[x₃:F₄] = convTerm₁ ([F₃] [ρ] ⊢Δ) ([F₄] [ρ] ⊢Δ) ([F₃≡F₄] [ρ] ⊢Δ) [x₃]
[x₃≡x₄:F₄] = convEqTerm₁ ([F₃] [ρ] ⊢Δ) ([F₄] [ρ] ⊢Δ) ([F₃≡F₄] [ρ] ⊢Δ) [x₃≡x₄]
[G₃x₃≡G₄x₄] = transEq ([G₃] [ρ] ⊢Δ [x₃]) ([G₄] [ρ] ⊢Δ [x₃:F₄]) ([G₄] [ρ] ⊢Δ [x₄])
([G₃≡G₄] [ρ] ⊢Δ [x₃]) (G₄-ext [ρ] ⊢Δ [x₃:F₄] [x₄] [x₃≡x₄:F₄])
[t₁] , [t₁≡f₁b₁] = redSubst*Term (appRed* (escapeTerm ([F₁] [ρ] ⊢Δ) [b₁]) (Twk.wkRed*Term [ρ] ⊢Δ Df₁))
([G₁] [ρ] ⊢Δ [b₁]) ([f₁] [ρ] ⊢Δ [b₁])
[t₂] , [t₂≡f₂b₂] = redSubst*Term (appRed* (escapeTerm ([F₂] [ρ] ⊢Δ) [b₂]) (Twk.wkRed*Term [ρ] ⊢Δ Df₂))
([G₂] [ρ] ⊢Δ [b₂]) ([f₂] [ρ] ⊢Δ [b₂])
[t₁≡f₂b₁] = transEqTerm ([G₁] [ρ] ⊢Δ [b₁]) [t₁≡f₁b₁] ([f₁≡f₂] [ρ] ⊢Δ [b₁])
[f₂b₁≡t₂] = symEqTerm ([G₂] [ρ] ⊢Δ [b₂]) (transEqTerm ([G₂] [ρ] ⊢Δ [b₂]) [t₂≡f₂b₂] ([f₂ext] [ρ] ⊢Δ [b₂] [b₁:F₂] (symEqTerm ([F₂] [ρ] ⊢Δ) [b₁≡b₂:F₂])))
[t₁≡t₂] = transEqTerm ([G₁] [ρ] ⊢Δ [b₁]) [t₁≡f₂b₁] (convEqTerm₂ ([G₁] [ρ] ⊢Δ [b₁]) ([G₂] [ρ] ⊢Δ [b₂]) [G₁b₁≡G₂b₂] [f₂b₁≡t₂])
x = eqrecursor [ρ] ⊢Δ [b₁] [b₂] [G₁b₁≡G₂b₂] [x₃] [x₄] [G₃x₃≡G₄x₄] [t₁] [t₂] [t₁≡t₂]
(g₁.⊢snde′ [ρ] ⊢Δ (escapeTerm ([F₃] [ρ] ⊢Δ) [x₃])) (g₂.⊢snde′ [ρ] ⊢Δ (escapeTerm ([F₄] [ρ] ⊢Δ) [x₄]))
in x
g₁≡g₂ : Γ ⊢ (lam F₃ ▹ g₁.g (step id) (var 0) ^ ⁰) ≅ (lam F₄ ▹ g₂.g (step id) (var 0) ^ ⁰) ∷ Π F₃ ^ rF ° ⁰ ▹ G₃ ° ⁰ ° ⁰ ^ [ ! , ι ⁰ ]
g₁≡g₂ =
let
Δ₁ = g₁.Δ₁
⊢Δ₁ = g₁.⊢Δ₁
[ρ₁] = g₁.[ρ₁]
⊢F₃′ = Twk.wk (Twk.step Twk.id) ⊢Δ₁ ⊢F₃
⊢g₁0 = escapeTerm ([G₃] [ρ₁] ⊢Δ₁ g₁.[0]) (g₁.[g] [ρ₁] ⊢Δ₁ g₁.[0])
⊢g₁0′ = (PE.subst (λ X → Δ₁ ⊢ g₁.g (step id) (var 0) ∷ X ^ [ ! , ι ⁰ ]) (wkSingleSubstId G₃) ⊢g₁0)
⊢g₁0″ = Twk.wkTerm (Twk.lift (Twk.step Twk.id)) (⊢Δ₁ ∙ ⊢F₃′) ⊢g₁0′
⊢F₄′ = Twk.wk (Twk.step Twk.id) ⊢Δ₁ ⊢F₄
⊢g₂0 = escapeTerm ([G₄] g₂.[ρ₁] g₂.⊢Δ₁ g₂.[0]) (g₂.[g] g₂.[ρ₁] g₂.⊢Δ₁ g₂.[0])
⊢g₂0′ = (PE.subst (λ X → g₂.Δ₁ ⊢ g₂.g (step id) (var 0) ∷ X ^ [ ! , ι ⁰ ]) (wkSingleSubstId G₄) ⊢g₂0)
⊢g₂0″ = Twk.wkTerm (Twk.lift (Twk.step Twk.id)) (⊢Δ₁ ∙ ⊢F₄′) ⊢g₂0′
D₁ : Δ₁ ⊢ (lam (wk1 F₃) ▹ wk1d (g₁.g (step id) (var 0)) ^ ⁰) ∘ (var 0) ^ ⁰ ⇒* g₁.g (step id) (var 0) ∷ wk1d G₃ [ var 0 ] ^ ι ⁰
D₁ = PE.subst (λ X → Δ₁ ⊢ (lam (wk1 F₃) ▹ wk1d (g₁.g (step id) (var 0)) ^ ⁰) ∘ (var 0) ^ ⁰ ⇒ X ∷ wk1d G₃ [ var 0 ] ^ ι ⁰)
(wkSingleSubstId (g₁.g (step id) (var 0))) (β-red (≡is≤ PE.refl) (≡is≤ PE.refl) ⊢F₃′ ⊢g₁0″ (var ⊢Δ₁ here))
⇨ id ⊢g₁0
F₃≡F₄ = escapeEq ([F₃] [ρ₁] ⊢Δ₁) ([F₃≡F₄] [ρ₁] ⊢Δ₁)
[0:F₄] : Δ₁ ⊩⟨ ι ⁰ ⟩ var 0 ∷ wk (step id) F₄ ^ [ rF , ι ⁰ ] / [F₄] [ρ₁] ⊢Δ₁
[0:F₄] = neuTerm ([F₄] [ρ₁] ⊢Δ₁) (var 0) (conv (var ⊢Δ₁ here) (≅-eq F₃≡F₄)) (~-var (conv (var ⊢Δ₁ here) (≅-eq F₃≡F₄)))
D₂ : Δ₁ ⊢ (lam (wk1 F₄) ▹ wk1d (g₂.g (step id) (var 0)) ^ ⁰) ∘ (var 0) ^ ⁰ ⇒* g₂.g (step id) (var 0) ∷ wk1d G₄ [ var 0 ] ^ ι ⁰
D₂ = PE.subst (λ X → Δ₁ ⊢ (lam (wk1 F₄) ▹ wk1d (g₂.g (step id) (var 0)) ^ ⁰) ∘ (var 0) ^ ⁰ ⇒ X ∷ wk1d G₄ [ var 0 ] ^ ι ⁰)
(wkSingleSubstId (g₂.g (step id) (var 0))) (β-red (≡is≤ PE.refl) (≡is≤ PE.refl) ⊢F₄′ ⊢g₂0″ (conv (var ⊢Δ₁ here) (≅-eq F₃≡F₄)))
⇨ id (escapeTerm ([G₄] [ρ₁] ⊢Δ₁ [0:F₄]) (g₂.[g] [ρ₁] ⊢Δ₁ [0:F₄]))
[g₁0≡g₁] : Δ₁ ⊩⟨ ι ⁰ ⟩ (lam (wk1 F₃) ▹ wk1d (g₁.g (step id) (var 0)) ^ ⁰) ∘ (var 0) ^ ⁰ ≡ g₁.g (step id) (var 0) ∷ wk1d G₃ [ var 0 ] ^ [ ! , ι ⁰ ] / [G₃] [ρ₁] ⊢Δ₁ g₁.[0]
[g₁0≡g₁] = proj₂ (redSubst*Term D₁ ([G₃] [ρ₁] ⊢Δ₁ g₁.[0]) (g₁.[g] [ρ₁] ⊢Δ₁ g₁.[0]))
[g₂0≡g₂] : Δ₁ ⊩⟨ ι ⁰ ⟩ (lam (wk1 F₄) ▹ wk1d (g₂.g (step id) (var 0)) ^ ⁰) ∘ (var 0) ^ ⁰ ≡ g₂.g (step id) (var 0) ∷ wk1d G₄ [ var 0 ] ^ [ ! , ι ⁰ ] / [G₄] [ρ₁] ⊢Δ₁ [0:F₄]
[g₂0≡g₂] = proj₂ (redSubst*Term D₂ ([G₄] [ρ₁] ⊢Δ₁ [0:F₄]) (g₂.[g] [ρ₁] ⊢Δ₁ [0:F₄]))
[g₁≡g₂]′ : Δ₁ ⊩⟨ ι ⁰ ⟩ g₁.g (step id) (var 0) ≡ g₂.g (step id) (var 0) ∷ wk1d G₃ [ var 0 ] ^ [ ! , ι ⁰ ] / [G₃] [ρ₁] ⊢Δ₁ g₁.[0]
[g₁≡g₂]′ = [g₁≡g₂] [ρ₁] ⊢Δ₁ g₁.[0] (convTerm₁ ([F₃] [ρ₁] ⊢Δ₁) ([F₄] [ρ₁] ⊢Δ₁) ([F₃≡F₄] [ρ₁] ⊢Δ₁) g₁.[0]) (reflEqTerm ([F₃] [ρ₁] ⊢Δ₁) g₁.[0])
[g₁0≡g₂0] = transEqTerm ([G₃] [ρ₁] ⊢Δ₁ g₁.[0]) (transEqTerm ([G₃] [ρ₁] ⊢Δ₁ g₁.[0]) [g₁0≡g₁] [g₁≡g₂]′)
(convEqTerm₂ ([G₃] [ρ₁] ⊢Δ₁ g₁.[0]) ([G₄] [ρ₁] ⊢Δ₁ [0:F₄]) ([G₃≡G₄] [ρ₁] ⊢Δ₁ g₁.[0]) (symEqTerm ([G₄] [ρ₁] ⊢Δ₁ [0:F₄]) [g₂0≡g₂]))
x₀ = escapeTermEq ([G₃] [ρ₁] ⊢Δ₁ g₁.[0]) [g₁0≡g₂0]
x₁ = PE.subst (λ X → Δ₁ ⊢ (lam (wk1 F₃) ▹ wk1d (g₁.g (step id) (var 0)) ^ ⁰) ∘ (var 0) ^ ⁰ ≅ (lam (wk1 F₄) ▹ wk1d (g₂.g (step id) (var 0)) ^ ⁰) ∘ (var 0) ^ ⁰ ∷ X ^ [ ! , ι ⁰ ]) (wkSingleSubstId G₃) x₀
in ≅-η-eq (≡is≤ PE.refl) (≡is≤ PE.refl) ⊢F₃ g₁.⊢λg (conv g₂.⊢λg (sym (≅-eq A₃≡A₄))) lamₙ lamₙ x₁
[g₁a≡g₂a] : ∀ {ρ Δ a} → ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ ([a] : Δ ⊩⟨ ι ⁰ ⟩ a ∷ wk ρ F₃ ^ [ rF , ι ⁰ ] / [F₃] [ρ] ⊢Δ)
→ (Δ ⊩⟨ ι ⁰ ⟩ wk ρ (lam F₃ ▹ g₁.g (step id) (var 0) ^ ⁰) ∘ a ^ ⁰ ≡ wk ρ (lam F₄ ▹ g₂.g (step id) (var 0) ^ ⁰) ∘ a ^ ⁰
∷ wk (lift ρ) G₃ [ a ] ^ [ ! , ι ⁰ ] / [G₃] [ρ] ⊢Δ [a])
[g₁a≡g₂a] [ρ] ⊢Δ [a] =
let
[a]′ = convTerm₁ ([F₃] [ρ] ⊢Δ) ([F₄] [ρ] ⊢Δ) ([F₃≡F₄] [ρ] ⊢Δ) [a]
[a≡a] = reflEqTerm ([F₃] [ρ] ⊢Δ) [a]
in redSubst*EqTerm (g₁.g∘a≡ga [ρ] ⊢Δ [a]) (g₂.g∘a≡ga [ρ] ⊢Δ [a]′)
([G₃] [ρ] ⊢Δ [a]) ([G₄] [ρ] ⊢Δ [a]′) ([G₃≡G₄] [ρ] ⊢Δ [a])
(g₁.[g] [ρ] ⊢Δ [a]) (g₂.[g] [ρ] ⊢Δ [a]′) ([g₁≡g₂] [ρ] ⊢Δ [a] [a]′ [a≡a])
| {
"alphanum_fraction": 0.3688053197,
"avg_line_length": 68.3778801843,
"ext": "agda",
"hexsha": "978b5fe43714c1cf58d73296650fbce4f0ad753c",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z",
"max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "CoqHott/logrel-mltt",
"max_forks_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Castlemmas.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "CoqHott/logrel-mltt",
"max_issues_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Castlemmas.agda",
"max_line_length": 208,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "CoqHott/logrel-mltt",
"max_stars_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Castlemmas.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z",
"num_tokens": 28018,
"size": 44514
} |
------------------------------------------------------------------------
-- Universe levels
------------------------------------------------------------------------
module Imports.Level where
open import Agda.Primitive using (Level; _⊔_) renaming (lzero to zero; lsuc to suc)
| {
"alphanum_fraction": 0.3584229391,
"avg_line_length": 31,
"ext": "agda",
"hexsha": "f8c031d278568f6aad2bc3efc9fac02b675c5653",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Imports/Level.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Imports/Level.agda",
"max_line_length": 83,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Imports/Level.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 40,
"size": 279
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.