Search is not available for this dataset
text
string | meta
dict |
---|---|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Bounded vectors
------------------------------------------------------------------------
-- Vectors of a specified maximum length.
{-# OPTIONS --without-K --safe #-}
module Data.BoundedVec where
open import Data.Nat
open import Data.List.Base as List using (List)
open import Data.Vec as Vec using (Vec)
import Data.BoundedVec.Inefficient as Ineff
open import Relation.Binary.PropositionalEquality
open import Data.Nat.Solver
open +-*-Solver
------------------------------------------------------------------------
-- The type
abstract
data BoundedVec {a} (A : Set a) : ℕ → Set a where
bVec : ∀ {m n} (xs : Vec A n) → BoundedVec A (n + m)
[] : ∀ {a n} {A : Set a} → BoundedVec A n
[] = bVec Vec.[]
infixr 5 _∷_
_∷_ : ∀ {a n} {A : Set a} →
A → BoundedVec A n → BoundedVec A (suc n)
x ∷ bVec xs = bVec (Vec._∷_ x xs)
------------------------------------------------------------------------
-- Pattern matching
infixr 5 _∷v_
data View {a} (A : Set a) : ℕ → Set a where
[]v : ∀ {n} → View A n
_∷v_ : ∀ {n} (x : A) (xs : BoundedVec A n) → View A (suc n)
abstract
view : ∀ {a n} {A : Set a} → BoundedVec A n → View A n
view (bVec Vec.[]) = []v
view (bVec (Vec._∷_ x xs)) = x ∷v bVec xs
------------------------------------------------------------------------
-- Increasing the bound
abstract
↑ : ∀ {a n} {A : Set a} → BoundedVec A n → BoundedVec A (suc n)
↑ {A = A} (bVec {m = m} {n = n} xs) =
subst (BoundedVec A) lemma
(bVec {m = suc m} xs)
where
lemma : n + (1 + m) ≡ 1 + (n + m)
lemma = solve 2 (λ m n → n :+ (con 1 :+ m) := con 1 :+ (n :+ m))
refl m n
------------------------------------------------------------------------
-- Conversions
module _ {a} {A : Set a} where
abstract
fromList : (xs : List A) → BoundedVec A (List.length xs)
fromList xs =
subst (BoundedVec A) lemma
(bVec {m = zero} (Vec.fromList xs))
where
lemma : List.length xs + 0 ≡ List.length xs
lemma = solve 1 (λ m → m :+ con 0 := m) refl _
toList : ∀ {n} → BoundedVec A n → List A
toList (bVec xs) = Vec.toList xs
toInefficient : ∀ {n} → BoundedVec A n → Ineff.BoundedVec A n
toInefficient xs with view xs
... | []v = Ineff.[]
... | y ∷v ys = y Ineff.∷ toInefficient ys
fromInefficient : ∀ {n} → Ineff.BoundedVec A n → BoundedVec A n
fromInefficient Ineff.[] = []
fromInefficient (x Ineff.∷ xs) = x ∷ fromInefficient xs
| {
"alphanum_fraction": 0.4738675958,
"avg_line_length": 27.7741935484,
"ext": "agda",
"hexsha": "388ba72f60f4ef9fb0a00202415e8c0833769ada",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/BoundedVec.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/BoundedVec.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/BoundedVec.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 808,
"size": 2583
} |
primitive
data D : Set where
-- Bad error message WAS:
-- A postulate block can only contain type signatures or instance blocks
| {
"alphanum_fraction": 0.7557251908,
"avg_line_length": 21.8333333333,
"ext": "agda",
"hexsha": "97da45ec6fbadda77d1af8f599cef322ee025e0f",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue1698-primitive.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue1698-primitive.agda",
"max_line_length": 72,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue1698-primitive.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 29,
"size": 131
} |
-- Andreas, 2016-07-29 issue #707, comment of 2012-10-31
open import Common.Nat
data Vec (A : Set) : Nat → Set where
[] : Vec A zero
_∷_ : ∀ {n} (x : A) (xs : Vec A n) → Vec A (suc n)
v0 v1 v2 : Vec Nat _
v0 = []
v1 = 0 ∷ v0
v2 = 1 ∷ v1
-- Works, but maybe questionable.
-- The _ is triplicated into three different internal metas.
| {
"alphanum_fraction": 0.6070381232,
"avg_line_length": 21.3125,
"ext": "agda",
"hexsha": "07a68b2f0fdf19f45af2a0de868faf6d907727a3",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue707-Vec.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue707-Vec.agda",
"max_line_length": 60,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue707-Vec.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 135,
"size": 341
} |
{-# OPTIONS --without-K --safe --no-universe-polymorphism
--no-sized-types --no-guardedness --no-subtyping #-}
module Agda.Builtin.Unit where
record ⊤ : Set where
instance constructor tt
{-# BUILTIN UNIT ⊤ #-}
{-# COMPILE GHC ⊤ = data () (()) #-}
| {
"alphanum_fraction": 0.6174242424,
"avg_line_length": 24,
"ext": "agda",
"hexsha": "08a07104f8762175efc3f31a61ee7055d2db8ecf",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-04-18T13:34:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-18T13:34:07.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "src/data/lib/prim/Agda/Builtin/Unit.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2015-09-15T15:49:15.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-09-15T15:49:15.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "src/data/lib/prim/Agda/Builtin/Unit.agda",
"max_line_length": 64,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "src/data/lib/prim/Agda/Builtin/Unit.agda",
"max_stars_repo_stars_event_max_datetime": "2016-05-20T13:58:52.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-05-20T13:58:52.000Z",
"num_tokens": 69,
"size": 264
} |
{- The trivial resource -}
module Relation.Ternary.Separation.Construct.Unit where
open import Data.Unit
open import Data.Product
open import Relation.Unary
open import Relation.Binary hiding (_⇒_)
open import Relation.Binary.PropositionalEquality as P
open import Relation.Ternary.Separation
open RawSep
instance unit-raw-sep : RawSep ⊤
_⊎_≣_ unit-raw-sep = λ _ _ _ → ⊤
instance unit-has-sep : IsSep unit-raw-sep
unit-has-sep = record
{ ⊎-comm = λ _ → tt
; ⊎-assoc = λ _ _ → tt , tt , tt
}
instance unit-is-unital : IsUnitalSep _ _
unit-is-unital = record
{ isSep = unit-has-sep
; ⊎-idˡ = tt
; ⊎-id⁻ˡ = λ where tt → refl }
instance unit-sep : Separation _
unit-sep = record
{ isSep = unit-has-sep }
| {
"alphanum_fraction": 0.6998616874,
"avg_line_length": 23.3225806452,
"ext": "agda",
"hexsha": "09d02c6ff6ce04fccadb85913e09b82286018ce1",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2020-05-23T00:34:36.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-01-30T14:15:14.000Z",
"max_forks_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "laMudri/linear.agda",
"max_forks_repo_path": "src/Relation/Ternary/Separation/Construct/Unit.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "laMudri/linear.agda",
"max_issues_repo_path": "src/Relation/Ternary/Separation/Construct/Unit.agda",
"max_line_length": 55,
"max_stars_count": 34,
"max_stars_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "laMudri/linear.agda",
"max_stars_repo_path": "src/Relation/Ternary/Separation/Construct/Unit.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-03T15:22:33.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-20T13:57:50.000Z",
"num_tokens": 239,
"size": 723
} |
{-# OPTIONS --with-K #-}
open import Axiom.Extensionality.Propositional using (Extensionality)
open import Relation.Nullary.Negation using (contradiction)
open import Relation.Binary using (Irrelevant)
open import Relation.Binary.PropositionalEquality using (_≡_; _≢_)
open import Relation.Binary.PropositionalEquality.WithK using (≡-erase)
-- acursed and unmentionable
-- turn back traveller
module AKS.Unsafe where
open import Relation.Binary.PropositionalEquality.TrustMe using (trustMe) public
postulate
TODO : ∀ {a} {A : Set a} → A
BOTTOM : ∀ {a} {A : Set a} → A
.irrelevance : ∀ {a} {A : Set a} -> .A -> A
≡-recomp : ∀ {a} {A : Set a} {x y : A} → .(x ≡ y) → x ≡ y
fun-ext : ∀ {ℓ₁ ℓ₂} → Extensionality ℓ₁ ℓ₂
≡-recomputable : ∀ {a} {A : Set a} {x y : A} → .(x ≡ y) → x ≡ y
≡-recomputable x≡y = ≡-erase (≡-recomp x≡y)
≢-irrelevant : ∀ {a} {A : Set a} → Irrelevant {A = A} _≢_
≢-irrelevant {x} {y} [x≉y]₁ [x≉y]₂ = trustMe
| {
"alphanum_fraction": 0.6521276596,
"avg_line_length": 34.8148148148,
"ext": "agda",
"hexsha": "c51e0156c7be482697f590c2a0db2d98b37f0ae6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mckeankylej/thesis",
"max_forks_repo_path": "proofs/AKS/Unsafe.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mckeankylej/thesis",
"max_issues_repo_path": "proofs/AKS/Unsafe.agda",
"max_line_length": 80,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mckeankylej/thesis",
"max_stars_repo_path": "proofs/AKS/Unsafe.agda",
"max_stars_repo_stars_event_max_datetime": "2020-12-01T22:38:27.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-12-01T22:38:27.000Z",
"num_tokens": 353,
"size": 940
} |
module _ where
module A where
postulate
!_ : Set₂ → Set₃
infix 1 !_
module B where
postulate
!_ : Set₀ → Set₁
infix 3 !_
open A
open B
postulate
#_ : Set₁ → Set₂
infix 2 #_
ok₁ : Set₁ → Set₃
ok₁ X = ! # X
ok₂ : Set₀ → Set₂
ok₂ X = # ! X
| {
"alphanum_fraction": 0.4526627219,
"avg_line_length": 11.2666666667,
"ext": "agda",
"hexsha": "c351d9a89b7bd6ccb6ba53a32e7cf942e02b248e",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue1436-14.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue1436-14.agda",
"max_line_length": 24,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue1436-14.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 121,
"size": 338
} |
module foldl where
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; sym; trans; cong)
open Eq.≡-Reasoning
open import lists using (List; []; _∷_; [_,_,_])
foldl : ∀ {A B : Set} → (B → A → B) → B → List A → B
foldl _⊗_ e [] = e
foldl _⊗_ e (x ∷ xs) = foldl _⊗_ (e ⊗ x) xs
test-foldl : ∀ {A B : Set} → (_⊗_ : B → A → B) → (e : B) → (x y z : A)
→ foldl _⊗_ e [ x , y , z ] ≡ ((e ⊗ x) ⊗ y) ⊗ z
test-foldl _⊗_ e x y z = refl
| {
"alphanum_fraction": 0.5304347826,
"avg_line_length": 28.75,
"ext": "agda",
"hexsha": "62658bed86df99bfffa5a1b82a5a5e8a2bea0d1b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "akiomik/plfa-solutions",
"max_forks_repo_path": "part1/lists/foldl.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "akiomik/plfa-solutions",
"max_issues_repo_path": "part1/lists/foldl.agda",
"max_line_length": 70,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "akiomik/plfa-solutions",
"max_stars_repo_path": "part1/lists/foldl.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-07T09:42:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-07T09:42:22.000Z",
"num_tokens": 211,
"size": 460
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- The extensional sublist relation over setoid equality.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary
module Data.List.Relation.Binary.Subset.Setoid
{c ℓ} (S : Setoid c ℓ) where
open import Data.List using (List)
open import Data.List.Membership.Setoid S using (_∈_)
open import Level using (_⊔_)
open import Relation.Nullary using (¬_)
open Setoid S renaming (Carrier to A)
------------------------------------------------------------------------
-- Definitions
infix 4 _⊆_ _⊈_
_⊆_ : Rel (List A) (c ⊔ ℓ)
xs ⊆ ys = ∀ {x} → x ∈ xs → x ∈ ys
_⊈_ : Rel (List A) (c ⊔ ℓ)
xs ⊈ ys = ¬ xs ⊆ ys
| {
"alphanum_fraction": 0.4817610063,
"avg_line_length": 25.6451612903,
"ext": "agda",
"hexsha": "9e2b5c2cd3ece4d6f50d9102723e61aae610a6a0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Subset/Setoid.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Subset/Setoid.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Subset/Setoid.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 199,
"size": 795
} |
open import MJ.Types
import MJ.Classtable.Core as Core
import MJ.Classtable.Code as Code
import MJ.Syntax as Syntax
module MJ.Semantics.Objects.Flat {c}(Ct : Core.Classtable c)(ℂ : Code.Code Ct) where
open import Prelude
open import Level renaming (suc to lsuc; zero to lzero)
open import Data.Vec hiding (_++_; lookup; drop)
open import Data.Star
open import Data.List
open import Data.List.First.Properties
open import Data.List.Membership.Propositional
open import Data.List.Any.Properties
open import Data.List.All as All
open import Data.List.All.Properties.Extra
open import Data.List.Prefix
open import Data.List.Properties.Extra
open import Data.Maybe as Maybe
open import Data.Maybe.Relation.Unary.All as MayAll using ()
open import Data.String using (String)
open import Relation.Binary.PropositionalEquality
open import MJ.Semantics.Values Ct
open import MJ.Semantics.Objects Ct
open import MJ.Syntax Ct
open Code Ct
open Core c
open Classtable Ct
open import MJ.Classtable.Membership Ct
private
collect : ∀ {cid}(chain : Σ ⊢ cid <: Object) ns → List (String × typing ns)
collect (super {cid} ◅ ch) ns = Class.decls (Σ (cls cid)) ns ++ collect ch ns
collect ε ns = Class.decls (Σ Object) ns
{-
We define collect members by delegation to collection of members over a particular
inheritance chain.
This makes the definition structurally recursive and is sound by the fact that
inheritance chains are unique.
-}
collect-members : ∀ cid ns → List (String × typing ns)
collect-members cid ns = collect (rooted cid) ns
{-
An Object is then simply represented by a list of values for all it's members.
-}
Obj : (World c) → (cid : _) → Set
Obj W cid = All (λ d → Val W (proj₂ d)) (collect-members cid FIELD)
weaken-obj : ∀ {W W'} cid → W' ⊒ W → Obj W cid → Obj W' cid
weaken-obj cid ext O = All.map (weaken-val ext) O
{-
We can relate the flat Object structure with the hierarchical notion of membership
through the definition of `collect`.
This allows us to get and set members on Objects.
-}
{-# TERMINATING #-}
getter : ∀ {W n a} cid → Obj W cid → IsMember cid FIELD n a → Val W a
getter cid O q with rooted cid
getter .Object O (.Object , ε , def) | ε = ∈-all (proj₁ (first⟶∈ def)) O
getter .Object O (_ , () ◅ _ , _) | ε
getter ._ O (._ , ε , def) | super {cid} ◅ z
with split-++ (Class.decls (Σ (cls _)) FIELD) _ O
... | own , inherited = ∈-all (proj₁ (first⟶∈ def)) own
getter ._ O (pid , super {cid} ◅ s , def) | super ◅ z
with split-++ (Class.decls (Σ (cls _)) FIELD) _ O
... | own , inherited rewrite <:-unique z (rooted (Class.parent (Σ (cls cid)))) =
getter _ inherited (pid , s , def)
{-# TERMINATING #-}
setter : ∀ {W f a} cid → Obj W cid → IsMember cid FIELD f a → Val W a → Obj W cid
setter (cls cid) O q v with rooted (cls cid)
setter (cls cid) O (._ , ε , def) v | super ◅ z with split-++ (Class.decls (Σ (cls _)) FIELD) _ O
... | own , inherited =
(own All.[ proj₁ (first⟶∈ def) ]≔ v) ++-all inherited
setter (cls cid) O (._ , super ◅ s , def) v | super ◅ z with split-++ (Class.decls (Σ (cls _)) FIELD) _ O
... | own , inherited rewrite <:-unique z (rooted (Class.parent (Σ (cls cid)))) =
own ++-all setter _ inherited (_ , s , def) v
setter Object O mem v = ⊥-elim (∉Object mem)
{-
A default object instance can be created for every class simply by tabulating `default`
over the types of all fields of a class.
-}
defaultObject' : ∀ {W cid} → (ch : Σ ⊢ cid <: Object) → All (λ d → Val W (proj₂ d)) (collect ch FIELD)
defaultObject' ε rewrite Σ-Object = []
defaultObject' {cid = Object} (() ◅ _)
defaultObject' {cid = cls x} (super ◅ z) =
All.tabulate {xs = Class.decls (Σ (cls x)) FIELD} (λ{ {_ , ty} _ → default ty})
++-all
defaultObject' z
{-
We collect these definitions under the abstract ObjEncoding interface for usage in the semantics
-}
encoding : ObjEncoding
encoding = record {
Obj = Obj ;
weaken-obj = λ cid ext O → weaken-obj cid ext O ;
getter = getter ;
setter = setter ;
defaultObject = λ cid → defaultObject' (rooted cid)
}
| {
"alphanum_fraction": 0.6661012842,
"avg_line_length": 37.5181818182,
"ext": "agda",
"hexsha": "ee0594d534a86911997ca83507399be422f6737a",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z",
"max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "metaborg/mj.agda",
"max_forks_repo_path": "src/MJ/Semantics/Objects/Flat.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z",
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "metaborg/mj.agda",
"max_issues_repo_path": "src/MJ/Semantics/Objects/Flat.agda",
"max_line_length": 107,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "metaborg/mj.agda",
"max_stars_repo_path": "src/MJ/Semantics/Objects/Flat.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z",
"num_tokens": 1232,
"size": 4127
} |
-- Andreas, 2020-05-01, issue #4631
--
-- We should not allow @-patterns to shadow constructors!
open import Agda.Builtin.Bool
test : Set → Set
test true@_ = true
-- WAS: succees
-- EXPECTED:
--
-- Bool !=< Set
-- when checking that the expression true has type Set
--
-- ———— Warning(s) ————————————————————————————————————————————
-- Name bound in @-pattern ignored because it shadows constructor
-- when scope checking the left-hand side test true@A in the
-- definition of test
| {
"alphanum_fraction": 0.6296296296,
"avg_line_length": 23.1428571429,
"ext": "agda",
"hexsha": "9a3f4af52680adc29da1e16dcbf780108b74bcda",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "shlevy/agda",
"max_forks_repo_path": "test/Fail/Issue4631AsPatternShadowsConstructor.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue4631AsPatternShadowsConstructor.agda",
"max_line_length": 65,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue4631AsPatternShadowsConstructor.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 127,
"size": 486
} |
------------------------------------------------------------------------------
-- Propositional equality on inductive PA
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- This file contains some definitions which are reexported by
-- PA.Inductive.Base.
module PA.Inductive.Relation.Binary.PropositionalEquality where
open import Common.FOL.FOL using ( ¬_ )
open import PA.Inductive.Base.Core
infix 4 _≡_ _≢_
------------------------------------------------------------------------------
-- The identity type on PA.
data _≡_ (x : ℕ) : ℕ → Set where
refl : x ≡ x
-- Inequality.
_≢_ : ℕ → ℕ → Set
x ≢ y = ¬ x ≡ y
{-# ATP definition _≢_ #-}
-- Identity properties
sym : ∀ {x y} → x ≡ y → y ≡ x
sym refl = refl
trans : ∀ {x y z} → x ≡ y → y ≡ z → x ≡ z
trans refl h = h
subst : (A : ℕ → Set) → ∀ {x y} → x ≡ y → A x → A y
subst A refl Ax = Ax
cong : (f : ℕ → ℕ) → ∀ {x y} → x ≡ y → f x ≡ f y
cong f refl = refl
cong₂ : (f : ℕ → ℕ → ℕ) → ∀ {x x' y y'} → x ≡ y → x' ≡ y' → f x x' ≡ f y y'
cong₂ f refl refl = refl
| {
"alphanum_fraction": 0.4453507341,
"avg_line_length": 26.652173913,
"ext": "agda",
"hexsha": "39529018339db884ed4bb6615840b16f8a3642a8",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/PA/Inductive/Relation/Binary/PropositionalEquality.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/PA/Inductive/Relation/Binary/PropositionalEquality.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/PA/Inductive/Relation/Binary/PropositionalEquality.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 360,
"size": 1226
} |
{-# OPTIONS --without-K #-}
open import lib.Basics
module lib.types.Sigma where
-- Cartesian product
_×_ : ∀ {i j} (A : Type i) (B : Type j) → Type (lmax i j)
A × B = Σ A (λ _ → B)
infixr 5 _×_
module _ {i j} {A : Type i} {B : A → Type j} where
pair : (a : A) (b : B a) → Σ A B
pair a b = (a , b)
-- pair= has already been defined
fst= : {ab a'b' : Σ A B} (p : ab == a'b') → (fst ab == fst a'b')
fst= = ap fst
snd= : {ab a'b' : Σ A B} (p : ab == a'b')
→ (snd ab == snd a'b' [ B ↓ fst= p ])
snd= {._} {_} idp = idp
fst=-β : {a a' : A} (p : a == a')
{b : B a} {b' : B a'} (q : b == b' [ B ↓ p ])
→ fst= (pair= p q) == p
fst=-β idp idp = idp
snd=-β : {a a' : A} (p : a == a')
{b : B a} {b' : B a'} (q : b == b' [ B ↓ p ])
→ snd= (pair= p q) == q [ (λ v → b == b' [ B ↓ v ]) ↓ fst=-β p q ]
snd=-β idp idp = idp
pair=-η : {ab a'b' : Σ A B} (p : ab == a'b')
→ p == pair= (fst= p) (snd= p)
pair=-η {._} {_} idp = idp
pair== : {a a' : A} {p p' : a == a'} (α : p == p')
{b : B a} {b' : B a'} {q : b == b' [ B ↓ p ]} {q' : b == b' [ B ↓ p' ]}
(β : q == q' [ (λ u → b == b' [ B ↓ u ]) ↓ α ])
→ pair= p q == pair= p' q'
pair== idp idp = idp
module _ {i j} {A : Type i} {B : Type j} where
fst×= : {ab a'b' : A × B} (p : ab == a'b') → (fst ab == fst a'b')
fst×= = ap fst
snd×= : {ab a'b' : A × B} (p : ab == a'b')
→ (snd ab == snd a'b')
snd×= = ap snd
fst×=-β : {a a' : A} (p : a == a')
{b b' : B} (q : b == b')
→ fst×= (pair×= p q) == p
fst×=-β idp idp = idp
snd×=-β : {a a' : A} (p : a == a')
{b b' : B} (q : b == b')
→ snd×= (pair×= p q) == q
snd×=-β idp idp = idp
pair×=-η : {ab a'b' : A × B} (p : ab == a'b')
→ p == pair×= (fst×= p) (snd×= p)
pair×=-η {._} {_} idp = idp
module _ {i j} {A : Type i} {B : A → Type j} where
=Σ : (x y : Σ A B) → Type (lmax i j)
=Σ (a , b) (a' , b') = Σ (a == a') (λ p → b == b' [ B ↓ p ])
=Σ-eqv : (x y : Σ A B) → (=Σ x y) ≃ (x == y)
=Σ-eqv x y =
equiv (λ pq → pair= (fst pq) (snd pq)) (λ p → fst= p , snd= p)
(λ p → ! (pair=-η p))
(λ pq → pair= (fst=-β (fst pq) (snd pq)) (snd=-β (fst pq) (snd pq)))
=Σ-path : (x y : Σ A B) → (=Σ x y) == (x == y)
=Σ-path x y = ua (=Σ-eqv x y)
Σ= : ∀ {i j} {A A' : Type i} (p : A == A') {B : A → Type j} {B' : A' → Type j}
(q : B == B' [ (λ X → (X → Type j)) ↓ p ]) → Σ A B == Σ A' B'
Σ= idp idp = idp
abstract
Σ-level : ∀ {i j} {n : ℕ₋₂} {A : Type i} {P : A → Type j}
→ (has-level n A → ((x : A) → has-level n (P x))
→ has-level n (Σ A P))
Σ-level {n = ⟨-2⟩} p q =
((fst p , (fst (q (fst p)))) ,
(λ y → pair= (snd p _) (from-transp! _ _ (snd (q _) _))))
Σ-level {n = S n} p q = λ x y → equiv-preserves-level (=Σ-eqv x y)
(Σ-level (p _ _)
(λ _ → equiv-preserves-level ((to-transp-equiv _ _)⁻¹) (q _ _ _)))
×-level : ∀ {i j} {n : ℕ₋₂} {A : Type i} {B : Type j}
→ (has-level n A → has-level n B → has-level n (A × B))
×-level pA pB = Σ-level pA (λ x → pB)
-- Equivalences in a Σ-type
equiv-Σ-fst : ∀ {i j k} {A : Type i} {B : Type j} (P : B → Type k) {h : A → B}
→ is-equiv h → (Σ A (P ∘ h)) ≃ (Σ B P)
equiv-Σ-fst {A = A} {B = B} P {h = h} e = equiv f g f-g g-f
where f : Σ A (P ∘ h) → Σ B P
f (a , r) = (h a , r)
g : Σ B P → Σ A (P ∘ h)
g (b , s) = (is-equiv.g e b , transport P (! (is-equiv.f-g e b)) s)
f-g : ∀ y → f (g y) == y
f-g (b , s) = pair= (is-equiv.f-g e b) (trans-↓ P (is-equiv.f-g e b) s)
g-f : ∀ x → g (f x) == x
g-f (a , r) =
pair= (is-equiv.g-f e a)
(transport (λ q → transport P (! q) r == r [ P ∘ h ↓ is-equiv.g-f e a ])
(is-equiv.adj e a)
(trans-ap-↓ P h (is-equiv.g-f e a) r) )
equiv-Σ-snd : ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k}
→ (∀ x → B x ≃ C x) → Σ A B ≃ Σ A C
equiv-Σ-snd {A = A} {B = B} {C = C} k = equiv f g f-g g-f
where f : Σ A B → Σ A C
f (a , b) = (a , fst (k a) b)
g : Σ A C → Σ A B
g (a , c) = (a , is-equiv.g (snd (k a)) c)
f-g : ∀ p → f (g p) == p
f-g (a , c) = pair= idp (is-equiv.f-g (snd (k a)) c)
g-f : ∀ p → g (f p) == p
g-f (a , b) = pair= idp (is-equiv.g-f (snd (k a)) b)
-- Two ways of simultaneously applying equivalences in each component.
module _ {i₀ i₁ j₀ j₁} {A₀ : Type i₀} {A₁ : Type i₁}
{B₀ : A₀ → Type j₀} {B₁ : A₁ → Type j₁} where
equiv-Σ : (u : A₀ ≃ A₁) (v : ∀ a → B₀ (<– u a) ≃ B₁ a) → Σ A₀ B₀ ≃ Σ A₁ B₁
equiv-Σ u v = Σ A₀ B₀ ≃⟨ equiv-Σ-fst _ (snd (u ⁻¹)) ⁻¹ ⟩
Σ A₁ (B₀ ∘ <– u) ≃⟨ equiv-Σ-snd v ⟩
Σ A₁ B₁ ≃∎
equiv-Σ' : (u : A₀ ≃ A₁) (v : ∀ a → B₀ a ≃ B₁ (–> u a)) → Σ A₀ B₀ ≃ Σ A₁ B₁
equiv-Σ' u v = Σ A₀ B₀ ≃⟨ equiv-Σ-snd v ⟩
Σ A₀ (B₁ ∘ –> u) ≃⟨ equiv-Σ-fst _ (snd u) ⟩
Σ A₁ B₁ ≃∎
-- Implementation of [_∙'_] on Σ
Σ-∙' : ∀ {i j} {A : Type i} {B : A → Type j}
{x y z : A} {p : x == y} {p' : y == z}
{u : B x} {v : B y} {w : B z}
(q : u == v [ B ↓ p ]) (r : v == w [ B ↓ p' ])
→ (pair= p q ∙' pair= p' r) == pair= (p ∙' p') (q ∙'ᵈ r)
Σ-∙' {p = idp} {p' = idp} q idp = idp
-- Implementation of [_∙_] on Σ
Σ-∙ : ∀ {i j} {A : Type i} {B : A → Type j}
{x y z : A} {p : x == y} {p' : y == z}
{u : B x} {v : B y} {w : B z}
(q : u == v [ B ↓ p ]) (r : v == w [ B ↓ p' ])
→ (pair= p q ∙ pair= p' r) == pair= (p ∙ p') (q ∙ᵈ r)
Σ-∙ {p = idp} {p' = idp} idp r = idp
-- Implementation of [!] on Σ
Σ-! : ∀ {i j} {A : Type i} {B : A → Type j}
{x y : A} {p : x == y}
{u : B x} {v : B y}
(q : u == v [ B ↓ p ])
→ ! (pair= p q) == pair= (! p) (!ᵈ q)
Σ-! {p = idp} idp = idp
-- Implementation of [_∙'_] on ×
×-∙' : ∀ {i j} {A : Type i} {B : Type j}
{x y z : A} (p : x == y) (p' : y == z)
{u v w : B} (q : u == v) (q' : v == w)
→ (pair×= p q ∙' pair×= p' q') == pair×= (p ∙' p') (q ∙' q')
×-∙' idp idp q idp = idp
-- Implementation of [_∙_] on ×
×-∙ : ∀ {i j} {A : Type i} {B : Type j}
{x y z : A} (p : x == y) (p' : y == z)
{u v w : B} (q : u == v) (q' : v == w)
→ (pair×= p q ∙ pair×= p' q') == pair×= (p ∙ p') (q ∙ q')
×-∙ idp idp idp r = idp
-- Implementation of [!] on ×
×-! : ∀ {i j} {A : Type i} {B : Type j}
{x y : A} (p : x == y) {u v : B} (q : u == v)
→ ! (pair×= p q) == pair×= (! p) (! q)
×-! idp idp = idp
-- Special case of [ap-,]
ap-cst,id : ∀ {i j} {A : Type i} (B : A → Type j)
{a : A} {x y : B a} (p : x == y)
→ ap (λ x → _,_ {B = B} a x) p == pair= idp p
ap-cst,id B idp = idp
-- hfiber fst == B
module _ {i j} {A : Type i} {B : A → Type j} where
private
to : ∀ a → hfiber (fst :> (Σ A B → A)) a → B a
to a ((.a , b) , idp) = b
from : ∀ (a : A) → B a → hfiber (fst :> (Σ A B → A)) a
from a b = (a , b) , idp
to-from : ∀ (a : A) (b : B a) → to a (from a b) == b
to-from a b = idp
from-to : ∀ a b′ → from a (to a b′) == b′
from-to a ((.a , b) , idp) = idp
hfiber-fst : ∀ a → hfiber (fst :> (Σ A B → A)) a ≃ B a
hfiber-fst a = to a , is-eq (to a) (from a) (to-from a) (from-to a)
{- Dependent paths in a Σ-type -}
module _ {i j k} {A : Type i} {B : A → Type j} {C : (a : A) → B a → Type k}
where
↓-Σ-in : {x x' : A} {p : x == x'} {r : B x} {r' : B x'}
{s : C x r} {s' : C x' r'}
(q : r == r' [ B ↓ p ])
→ s == s' [ uncurry C ↓ pair= p q ]
→ (r , s) == (r' , s') [ (λ x → Σ (B x) (C x)) ↓ p ]
↓-Σ-in {p = idp} idp t = pair= idp t
↓-Σ-fst : {x x' : A} {p : x == x'} {r : B x} {r' : B x'}
{s : C x r} {s' : C x' r'}
→ (r , s) == (r' , s') [ (λ x → Σ (B x) (C x)) ↓ p ]
→ r == r' [ B ↓ p ]
↓-Σ-fst {p = idp} u = fst= u
↓-Σ-snd : {x x' : A} {p : x == x'} {r : B x} {r' : B x'}
{s : C x r} {s' : C x' r'}
→ (u : (r , s) == (r' , s') [ (λ x → Σ (B x) (C x)) ↓ p ])
→ s == s' [ uncurry C ↓ pair= p (↓-Σ-fst u) ]
↓-Σ-snd {p = idp} idp = idp
↓-Σ-β-fst : {x x' : A} {p : x == x'} {r : B x} {r' : B x'}
{s : C x r} {s' : C x' r'}
(q : r == r' [ B ↓ p ])
(t : s == s' [ uncurry C ↓ pair= p q ])
→ ↓-Σ-fst (↓-Σ-in q t) == q
↓-Σ-β-fst {p = idp} idp idp = idp
↓-Σ-β-snd : {x x' : A} {p : x == x'} {r : B x} {r' : B x'}
{s : C x r} {s' : C x' r'}
(q : r == r' [ B ↓ p ])
(t : s == s' [ uncurry C ↓ pair= p q ])
→ ↓-Σ-snd (↓-Σ-in q t) == t
[ (λ q' → s == s' [ uncurry C ↓ pair= p q' ]) ↓ ↓-Σ-β-fst q t ]
↓-Σ-β-snd {p = idp} idp idp = idp
↓-Σ-η : {x x' : A} {p : x == x'} {r : B x} {r' : B x'}
{s : C x r} {s' : C x' r'}
(u : (r , s) == (r' , s') [ (λ x → Σ (B x) (C x)) ↓ p ])
→ ↓-Σ-in (↓-Σ-fst u) (↓-Σ-snd u) == u
↓-Σ-η {p = idp} idp = idp
{- Dependent paths in a ×-type -}
module _ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k}
where
↓-×-in : {x x' : A} {p : x == x'} {r : B x} {r' : B x'}
{s : C x} {s' : C x'}
→ r == r' [ B ↓ p ]
→ s == s' [ C ↓ p ]
→ (r , s) == (r' , s') [ (λ x → B x × C x) ↓ p ]
↓-×-in {p = idp} q t = pair×= q t
module _ where
-- An orphan lemma.
↓-cst×app-in : ∀ {i j k} {A : Type i}
{B : Type j} {C : A → B → Type k}
{a₁ a₂ : A} (p : a₁ == a₂)
{b₁ b₂ : B} (q : b₁ == b₂)
{c₁ : C a₁ b₁}{c₂ : C a₂ b₂}
→ c₁ == c₂ [ uncurry C ↓ pair×= p q ]
→ (b₁ , c₁) == (b₂ , c₂) [ (λ x → Σ B (C x)) ↓ p ]
↓-cst×app-in idp idp idp = idp
{- pair= and pair×= where one argument is reflexivity -}
pair=-idp-l : ∀ {i j} {A : Type i} {B : A → Type j} (a : A) {b₁ b₂ : B a}
(q : b₁ == b₂) → pair= {B = B} idp q == ap (λ y → (a , y)) q
pair=-idp-l _ idp = idp
pair×=-idp-l : ∀ {i j} {A : Type i} {B : Type j} (a : A) {b₁ b₂ : B}
(q : b₁ == b₂) → pair×= idp q == ap (λ y → (a , y)) q
pair×=-idp-l _ idp = idp
pair×=-idp-r : ∀ {i j} {A : Type i} {B : Type j} {a₁ a₂ : A} (p : a₁ == a₂)
(b : B) → pair×= p idp == ap (λ x → (x , b)) p
pair×=-idp-r idp _ = idp
pair×=-split-l : ∀ {i j} {A : Type i} {B : Type j} {a₁ a₂ : A} (p : a₁ == a₂)
{b₁ b₂ : B} (q : b₁ == b₂)
→ pair×= p q == ap (λ a → (a , b₁)) p ∙ ap (λ b → (a₂ , b)) q
pair×=-split-l idp idp = idp
pair×=-split-r : ∀ {i j} {A : Type i} {B : Type j} {a₁ a₂ : A} (p : a₁ == a₂)
{b₁ b₂ : B} (q : b₁ == b₂)
→ pair×= p q == ap (λ b → (a₁ , b)) q ∙ ap (λ a → (a , b₂)) p
pair×=-split-r idp idp = idp
-- Commutativity of products and derivatives.
module _ {i j} {A : Type i} {B : Type j} where
×-comm : Σ A (λ _ → B) ≃ Σ B (λ _ → A)
×-comm = equiv (λ {(a , b) → (b , a)}) (λ {(b , a) → (a , b)}) (λ _ → idp) (λ _ → idp)
module _ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k} where
Σ₂-×-comm : Σ (Σ A B) (λ ab → C (fst ab)) ≃ Σ (Σ A C) (λ ac → B (fst ac))
Σ₂-×-comm = Σ-assoc ⁻¹ ∘e equiv-Σ-snd (λ a → ×-comm) ∘e Σ-assoc
module _ {i j k} {A : Type i} {B : Type j} {C : A → B → Type k} where
Σ₁-×-comm : Σ A (λ a → Σ B (λ b → C a b)) ≃ Σ B (λ b → Σ A (λ a → C a b))
Σ₁-×-comm = Σ-assoc ∘e equiv-Σ-fst _ (snd ×-comm) ∘e Σ-assoc ⁻¹
| {
"alphanum_fraction": 0.3865041833,
"avg_line_length": 33.9382716049,
"ext": "agda",
"hexsha": "54d715be3fe2f8c2e2f058ada8a4737c9a0e0e34",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "danbornside/HoTT-Agda",
"max_forks_repo_path": "lib/types/Sigma.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "danbornside/HoTT-Agda",
"max_issues_repo_path": "lib/types/Sigma.agda",
"max_line_length": 88,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "danbornside/HoTT-Agda",
"max_stars_repo_path": "lib/types/Sigma.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 5430,
"size": 10996
} |
{-# OPTIONS --without-K --exact-split --safe #-}
module 06-universes where
import 05-identity-types
open 05-identity-types public
--------------------------------------------------------------------------------
-- Section 6.3 Observational equality on the natural numbers
-- Definition 6.3.1
Eq-ℕ : ℕ → ℕ → UU lzero
Eq-ℕ zero-ℕ zero-ℕ = 𝟙
Eq-ℕ zero-ℕ (succ-ℕ n) = 𝟘
Eq-ℕ (succ-ℕ m) zero-ℕ = 𝟘
Eq-ℕ (succ-ℕ m) (succ-ℕ n) = Eq-ℕ m n
-- Lemma 6.3.2
refl-Eq-ℕ : (n : ℕ) → Eq-ℕ n n
refl-Eq-ℕ zero-ℕ = star
refl-Eq-ℕ (succ-ℕ n) = refl-Eq-ℕ n
-- Proposition 6.3.3
Eq-ℕ-eq : {x y : ℕ} → Id x y → Eq-ℕ x y
Eq-ℕ-eq {x} {.x} refl = refl-Eq-ℕ x
eq-Eq-ℕ : (x y : ℕ) → Eq-ℕ x y → Id x y
eq-Eq-ℕ zero-ℕ zero-ℕ e = refl
eq-Eq-ℕ (succ-ℕ x) (succ-ℕ y) e = ap succ-ℕ (eq-Eq-ℕ x y e)
--------------------------------------------------------------------------------
-- Section 6.4 Peano's seventh and eighth axioms
-- Theorem 6.4.1
is-injective-succ-ℕ : (x y : ℕ) → Id (succ-ℕ x) (succ-ℕ y) → Id x y
is-injective-succ-ℕ x y e = eq-Eq-ℕ x y (Eq-ℕ-eq e)
Peano-7 :
(x y : ℕ) →
((Id x y) → (Id (succ-ℕ x) (succ-ℕ y))) ×
((Id (succ-ℕ x) (succ-ℕ y)) → (Id x y))
Peano-7 x y = pair (ap succ-ℕ) (is-injective-succ-ℕ x y)
-- Theorem 6.4.2
Peano-8 :
(x : ℕ) → ¬ (Id zero-ℕ (succ-ℕ x))
Peano-8 x p = Eq-ℕ-eq p
--------------------------------------------------------------------------------
-- Exercises
-- Exercise 6.1
-- Exercise 6.1 (a)
is-injective-add-ℕ :
(k m n : ℕ) → Id (add-ℕ m k) (add-ℕ n k) → Id m n
is-injective-add-ℕ zero-ℕ m n = id
is-injective-add-ℕ (succ-ℕ k) m n p =
is-injective-add-ℕ k m n (is-injective-succ-ℕ (add-ℕ m k) (add-ℕ n k) p)
-- Exercise 6.1 (b)
is-injective-mul-ℕ :
(k m n : ℕ) → Id (mul-ℕ m (succ-ℕ k)) (mul-ℕ n (succ-ℕ k)) → Id m n
is-injective-mul-ℕ k zero-ℕ zero-ℕ p = refl
is-injective-mul-ℕ k (succ-ℕ m) (succ-ℕ n) p =
ap succ-ℕ
( is-injective-mul-ℕ k m n
( is-injective-add-ℕ
( succ-ℕ k)
( mul-ℕ m (succ-ℕ k))
( mul-ℕ n (succ-ℕ k))
( ( inv (left-successor-law-mul-ℕ m (succ-ℕ k))) ∙
( ( p) ∙
( left-successor-law-mul-ℕ n (succ-ℕ k))))))
-- Exercise 6.1 (c)
neq-add-ℕ :
(m n : ℕ) → ¬ (Id m (add-ℕ m (succ-ℕ n)))
neq-add-ℕ (succ-ℕ m) n p =
neq-add-ℕ m n
( ( is-injective-succ-ℕ m (add-ℕ (succ-ℕ m) n) p) ∙
( left-successor-law-add-ℕ m n))
-- Exercise 6.1 (d)
neq-mul-ℕ :
(m n : ℕ) → ¬ (Id (succ-ℕ m) (mul-ℕ (succ-ℕ m) (succ-ℕ (succ-ℕ n))))
neq-mul-ℕ m n p =
neq-add-ℕ
( succ-ℕ m)
( add-ℕ (mul-ℕ m (succ-ℕ n)) n)
( ( p) ∙
( ( right-successor-law-mul-ℕ (succ-ℕ m) (succ-ℕ n)) ∙
( ap (add-ℕ (succ-ℕ m)) (left-successor-law-mul-ℕ m (succ-ℕ n)))))
-- Exercise 6.2
-- Exercise 6.2 (a)
Eq-𝟚 : bool → bool → UU lzero
Eq-𝟚 true true = unit
Eq-𝟚 true false = empty
Eq-𝟚 false true = empty
Eq-𝟚 false false = unit
-- Exercise 6.2 (b)
reflexive-Eq-𝟚 : (x : bool) → Eq-𝟚 x x
reflexive-Eq-𝟚 true = star
reflexive-Eq-𝟚 false = star
Eq-eq-𝟚 :
{x y : bool} → Id x y → Eq-𝟚 x y
Eq-eq-𝟚 {x = x} refl = reflexive-Eq-𝟚 x
eq-Eq-𝟚 :
{x y : bool} → Eq-𝟚 x y → Id x y
eq-Eq-𝟚 {true} {true} star = refl
eq-Eq-𝟚 {false} {false} star = refl
-- Exercise 6.2 (c)
neq-neg-𝟚 : (b : bool) → ¬ (Id b (neg-𝟚 b))
neq-neg-𝟚 true = Eq-eq-𝟚
neq-neg-𝟚 false = Eq-eq-𝟚
neq-false-true-𝟚 :
¬ (Id false true)
neq-false-true-𝟚 = Eq-eq-𝟚
-- Exercise 6.3
-- Exercise 6.3 (a)
leq-ℕ : ℕ → ℕ → UU lzero
leq-ℕ zero-ℕ m = unit
leq-ℕ (succ-ℕ n) zero-ℕ = empty
leq-ℕ (succ-ℕ n) (succ-ℕ m) = leq-ℕ n m
_≤_ = leq-ℕ
-- Some trivialities that will be useful later
leq-zero-ℕ :
(n : ℕ) → leq-ℕ zero-ℕ n
leq-zero-ℕ n = star
eq-leq-zero-ℕ :
(x : ℕ) → leq-ℕ x zero-ℕ → Id zero-ℕ x
eq-leq-zero-ℕ zero-ℕ star = refl
succ-leq-ℕ : (n : ℕ) → leq-ℕ n (succ-ℕ n)
succ-leq-ℕ zero-ℕ = star
succ-leq-ℕ (succ-ℕ n) = succ-leq-ℕ n
concatenate-eq-leq-eq-ℕ :
{x1 x2 x3 x4 : ℕ} → Id x1 x2 → leq-ℕ x2 x3 → Id x3 x4 → leq-ℕ x1 x4
concatenate-eq-leq-eq-ℕ refl H refl = H
concatenate-leq-eq-ℕ :
(m : ℕ) {n n' : ℕ} → leq-ℕ m n → Id n n' → leq-ℕ m n'
concatenate-leq-eq-ℕ m H refl = H
concatenate-eq-leq-ℕ :
{m m' : ℕ} (n : ℕ) → Id m' m → leq-ℕ m n → leq-ℕ m' n
concatenate-eq-leq-ℕ n refl H = H
-- Exercise 6.3 (b)
reflexive-leq-ℕ : (n : ℕ) → leq-ℕ n n
reflexive-leq-ℕ zero-ℕ = star
reflexive-leq-ℕ (succ-ℕ n) = reflexive-leq-ℕ n
leq-eq-ℕ : (m n : ℕ) → Id m n → leq-ℕ m n
leq-eq-ℕ m .m refl = reflexive-leq-ℕ m
transitive-leq-ℕ :
(n m l : ℕ) → (n ≤ m) → (m ≤ l) → (n ≤ l)
transitive-leq-ℕ zero-ℕ m l p q = star
transitive-leq-ℕ (succ-ℕ n) (succ-ℕ m) (succ-ℕ l) p q =
transitive-leq-ℕ n m l p q
preserves-leq-succ-ℕ :
(m n : ℕ) → leq-ℕ m n → leq-ℕ m (succ-ℕ n)
preserves-leq-succ-ℕ m n p = transitive-leq-ℕ m n (succ-ℕ n) p (succ-leq-ℕ n)
anti-symmetric-leq-ℕ : (m n : ℕ) → leq-ℕ m n → leq-ℕ n m → Id m n
anti-symmetric-leq-ℕ zero-ℕ zero-ℕ p q = refl
anti-symmetric-leq-ℕ (succ-ℕ m) (succ-ℕ n) p q =
ap succ-ℕ (anti-symmetric-leq-ℕ m n p q)
-- Exercise 6.3 (c)
decide-leq-ℕ :
(m n : ℕ) → coprod (leq-ℕ m n) (leq-ℕ n m)
decide-leq-ℕ zero-ℕ zero-ℕ = inl star
decide-leq-ℕ zero-ℕ (succ-ℕ n) = inl star
decide-leq-ℕ (succ-ℕ m) zero-ℕ = inr star
decide-leq-ℕ (succ-ℕ m) (succ-ℕ n) = decide-leq-ℕ m n
-- Exercise 6.3 (d)
preserves-order-add-ℕ :
(k m n : ℕ) → leq-ℕ m n → leq-ℕ (add-ℕ m k) (add-ℕ n k)
preserves-order-add-ℕ zero-ℕ m n = id
preserves-order-add-ℕ (succ-ℕ k) m n = preserves-order-add-ℕ k m n
reflects-order-add-ℕ :
(k m n : ℕ) → leq-ℕ (add-ℕ m k) (add-ℕ n k) → leq-ℕ m n
reflects-order-add-ℕ zero-ℕ m n = id
reflects-order-add-ℕ (succ-ℕ k) m n = reflects-order-add-ℕ k m n
-- Exercise 6.3 (e)
preserves-order-mul-ℕ :
(k m n : ℕ) → leq-ℕ m n → leq-ℕ (mul-ℕ m k) (mul-ℕ n k)
preserves-order-mul-ℕ k zero-ℕ n p = star
preserves-order-mul-ℕ k (succ-ℕ m) (succ-ℕ n) p =
preserves-order-add-ℕ k
( mul-ℕ m k)
( mul-ℕ n k)
( preserves-order-mul-ℕ k m n p)
reflects-order-mul-ℕ :
(k m n : ℕ) → leq-ℕ (mul-ℕ m (succ-ℕ k)) (mul-ℕ n (succ-ℕ k)) → leq-ℕ m n
reflects-order-mul-ℕ k zero-ℕ n p = star
reflects-order-mul-ℕ k (succ-ℕ m) (succ-ℕ n) p =
reflects-order-mul-ℕ k m n
( reflects-order-add-ℕ
( succ-ℕ k)
( mul-ℕ m (succ-ℕ k))
( mul-ℕ n (succ-ℕ k))
( p))
-- Exercise 6.3 (f)
leq-min-ℕ :
(k m n : ℕ) → leq-ℕ k m → leq-ℕ k n → leq-ℕ k (min-ℕ m n)
leq-min-ℕ zero-ℕ zero-ℕ zero-ℕ H K = star
leq-min-ℕ zero-ℕ zero-ℕ (succ-ℕ n) H K = star
leq-min-ℕ zero-ℕ (succ-ℕ m) zero-ℕ H K = star
leq-min-ℕ zero-ℕ (succ-ℕ m) (succ-ℕ n) H K = star
leq-min-ℕ (succ-ℕ k) (succ-ℕ m) (succ-ℕ n) H K = leq-min-ℕ k m n H K
leq-left-leq-min-ℕ :
(k m n : ℕ) → leq-ℕ k (min-ℕ m n) → leq-ℕ k m
leq-left-leq-min-ℕ zero-ℕ zero-ℕ zero-ℕ H = star
leq-left-leq-min-ℕ zero-ℕ zero-ℕ (succ-ℕ n) H = star
leq-left-leq-min-ℕ zero-ℕ (succ-ℕ m) zero-ℕ H = star
leq-left-leq-min-ℕ zero-ℕ (succ-ℕ m) (succ-ℕ n) H = star
leq-left-leq-min-ℕ (succ-ℕ k) (succ-ℕ m) (succ-ℕ n) H =
leq-left-leq-min-ℕ k m n H
leq-right-leq-min-ℕ :
(k m n : ℕ) → leq-ℕ k (min-ℕ m n) → leq-ℕ k n
leq-right-leq-min-ℕ zero-ℕ zero-ℕ zero-ℕ H = star
leq-right-leq-min-ℕ zero-ℕ zero-ℕ (succ-ℕ n) H = star
leq-right-leq-min-ℕ zero-ℕ (succ-ℕ m) zero-ℕ H = star
leq-right-leq-min-ℕ zero-ℕ (succ-ℕ m) (succ-ℕ n) H = star
leq-right-leq-min-ℕ (succ-ℕ k) (succ-ℕ m) (succ-ℕ n) H =
leq-right-leq-min-ℕ k m n H
leq-max-ℕ :
(k m n : ℕ) → leq-ℕ m k → leq-ℕ n k → leq-ℕ (max-ℕ m n) k
leq-max-ℕ zero-ℕ zero-ℕ zero-ℕ H K = star
leq-max-ℕ (succ-ℕ k) zero-ℕ zero-ℕ H K = star
leq-max-ℕ (succ-ℕ k) zero-ℕ (succ-ℕ n) H K = K
leq-max-ℕ (succ-ℕ k) (succ-ℕ m) zero-ℕ H K = H
leq-max-ℕ (succ-ℕ k) (succ-ℕ m) (succ-ℕ n) H K = leq-max-ℕ k m n H K
leq-left-leq-max-ℕ :
(k m n : ℕ) → leq-ℕ (max-ℕ m n) k → leq-ℕ m k
leq-left-leq-max-ℕ k zero-ℕ zero-ℕ H = star
leq-left-leq-max-ℕ k zero-ℕ (succ-ℕ n) H = star
leq-left-leq-max-ℕ k (succ-ℕ m) zero-ℕ H = H
leq-left-leq-max-ℕ (succ-ℕ k) (succ-ℕ m) (succ-ℕ n) H =
leq-left-leq-max-ℕ k m n H
leq-right-leq-max-ℕ :
(k m n : ℕ) → leq-ℕ (max-ℕ m n) k → leq-ℕ n k
leq-right-leq-max-ℕ k zero-ℕ zero-ℕ H = star
leq-right-leq-max-ℕ k zero-ℕ (succ-ℕ n) H = H
leq-right-leq-max-ℕ k (succ-ℕ m) zero-ℕ H = star
leq-right-leq-max-ℕ (succ-ℕ k) (succ-ℕ m) (succ-ℕ n) H =
leq-right-leq-max-ℕ k m n H
-- Exercise 6.4
-- Exercise 6.4 (a)
-- We define a distance function on ℕ --
dist-ℕ : ℕ → ℕ → ℕ
dist-ℕ zero-ℕ n = n
dist-ℕ (succ-ℕ m) zero-ℕ = succ-ℕ m
dist-ℕ (succ-ℕ m) (succ-ℕ n) = dist-ℕ m n
dist-ℕ' : ℕ → ℕ → ℕ
dist-ℕ' m n = dist-ℕ n m
ap-dist-ℕ :
{m n m' n' : ℕ} → Id m m' → Id n n' → Id (dist-ℕ m n) (dist-ℕ m' n')
ap-dist-ℕ refl refl = refl
{- We show that two natural numbers are equal if and only if their distance is
zero. -}
eq-dist-ℕ :
(m n : ℕ) → Id zero-ℕ (dist-ℕ m n) → Id m n
eq-dist-ℕ zero-ℕ zero-ℕ p = refl
eq-dist-ℕ (succ-ℕ m) (succ-ℕ n) p = ap succ-ℕ (eq-dist-ℕ m n p)
dist-eq-ℕ' :
(n : ℕ) → Id zero-ℕ (dist-ℕ n n)
dist-eq-ℕ' zero-ℕ = refl
dist-eq-ℕ' (succ-ℕ n) = dist-eq-ℕ' n
dist-eq-ℕ :
(m n : ℕ) → Id m n → Id zero-ℕ (dist-ℕ m n)
dist-eq-ℕ m .m refl = dist-eq-ℕ' m
-- The distance function is symmetric --
symmetric-dist-ℕ :
(m n : ℕ) → Id (dist-ℕ m n) (dist-ℕ n m)
symmetric-dist-ℕ zero-ℕ zero-ℕ = refl
symmetric-dist-ℕ zero-ℕ (succ-ℕ n) = refl
symmetric-dist-ℕ (succ-ℕ m) zero-ℕ = refl
symmetric-dist-ℕ (succ-ℕ m) (succ-ℕ n) = symmetric-dist-ℕ m n
-- We compute the distance from zero --
left-zero-law-dist-ℕ :
(n : ℕ) → Id (dist-ℕ zero-ℕ n) n
left-zero-law-dist-ℕ zero-ℕ = refl
left-zero-law-dist-ℕ (succ-ℕ n) = refl
right-zero-law-dist-ℕ :
(n : ℕ) → Id (dist-ℕ n zero-ℕ) n
right-zero-law-dist-ℕ zero-ℕ = refl
right-zero-law-dist-ℕ (succ-ℕ n) = refl
-- We prove the triangle inequality --
ap-add-ℕ :
{m n m' n' : ℕ} → Id m m' → Id n n' → Id (add-ℕ m n) (add-ℕ m' n')
ap-add-ℕ refl refl = refl
triangle-inequality-dist-ℕ :
(m n k : ℕ) → leq-ℕ (dist-ℕ m n) (add-ℕ (dist-ℕ m k) (dist-ℕ k n))
triangle-inequality-dist-ℕ zero-ℕ zero-ℕ zero-ℕ = star
triangle-inequality-dist-ℕ zero-ℕ zero-ℕ (succ-ℕ k) = star
triangle-inequality-dist-ℕ zero-ℕ (succ-ℕ n) zero-ℕ =
tr ( leq-ℕ (succ-ℕ n))
( inv (left-unit-law-add-ℕ (succ-ℕ n)))
( reflexive-leq-ℕ (succ-ℕ n))
triangle-inequality-dist-ℕ zero-ℕ (succ-ℕ n) (succ-ℕ k) =
concatenate-eq-leq-eq-ℕ
( inv (ap succ-ℕ (left-zero-law-dist-ℕ n)))
( triangle-inequality-dist-ℕ zero-ℕ n k)
( ( ap (succ-ℕ ∘ (add-ℕ' (dist-ℕ k n))) (left-zero-law-dist-ℕ k)) ∙
( inv (left-successor-law-add-ℕ k (dist-ℕ k n))))
triangle-inequality-dist-ℕ (succ-ℕ m) zero-ℕ zero-ℕ = reflexive-leq-ℕ (succ-ℕ m)
triangle-inequality-dist-ℕ (succ-ℕ m) zero-ℕ (succ-ℕ k) =
concatenate-eq-leq-eq-ℕ
( inv (ap succ-ℕ (right-zero-law-dist-ℕ m)))
( triangle-inequality-dist-ℕ m zero-ℕ k)
( ap (succ-ℕ ∘ (add-ℕ (dist-ℕ m k))) (right-zero-law-dist-ℕ k))
triangle-inequality-dist-ℕ (succ-ℕ m) (succ-ℕ n) zero-ℕ =
concatenate-leq-eq-ℕ
( dist-ℕ m n)
( transitive-leq-ℕ
( dist-ℕ m n)
( succ-ℕ (add-ℕ (dist-ℕ m zero-ℕ) (dist-ℕ zero-ℕ n)))
( succ-ℕ (succ-ℕ (add-ℕ (dist-ℕ m zero-ℕ) (dist-ℕ zero-ℕ n))))
( transitive-leq-ℕ
( dist-ℕ m n)
( add-ℕ (dist-ℕ m zero-ℕ) (dist-ℕ zero-ℕ n))
( succ-ℕ (add-ℕ (dist-ℕ m zero-ℕ) (dist-ℕ zero-ℕ n)))
( triangle-inequality-dist-ℕ m n zero-ℕ)
( succ-leq-ℕ (add-ℕ (dist-ℕ m zero-ℕ) (dist-ℕ zero-ℕ n))))
( succ-leq-ℕ (succ-ℕ (add-ℕ (dist-ℕ m zero-ℕ) (dist-ℕ zero-ℕ n)))))
( ( ap (succ-ℕ ∘ succ-ℕ)
( ap-add-ℕ (right-zero-law-dist-ℕ m) (left-zero-law-dist-ℕ n))) ∙
( inv (left-successor-law-add-ℕ m (succ-ℕ n))))
triangle-inequality-dist-ℕ (succ-ℕ m) (succ-ℕ n) (succ-ℕ k) =
triangle-inequality-dist-ℕ m n k
-- We show that dist-ℕ x y is a solution to a simple equation.
leq-dist-ℕ :
(x y : ℕ) → leq-ℕ x y → Id (add-ℕ x (dist-ℕ x y)) y
leq-dist-ℕ zero-ℕ zero-ℕ H = refl
leq-dist-ℕ zero-ℕ (succ-ℕ y) star = left-unit-law-add-ℕ (succ-ℕ y)
leq-dist-ℕ (succ-ℕ x) (succ-ℕ y) H =
( left-successor-law-add-ℕ x (dist-ℕ x y)) ∙
( ap succ-ℕ (leq-dist-ℕ x y H))
rewrite-left-add-dist-ℕ :
(x y z : ℕ) → Id (add-ℕ x y) z → Id x (dist-ℕ y z)
rewrite-left-add-dist-ℕ zero-ℕ zero-ℕ .zero-ℕ refl = refl
rewrite-left-add-dist-ℕ zero-ℕ (succ-ℕ y) .(succ-ℕ (add-ℕ zero-ℕ y)) refl =
( dist-eq-ℕ' y) ∙
( inv (ap (dist-ℕ (succ-ℕ y)) (left-unit-law-add-ℕ (succ-ℕ y))))
rewrite-left-add-dist-ℕ (succ-ℕ x) zero-ℕ .(succ-ℕ x) refl = refl
rewrite-left-add-dist-ℕ
(succ-ℕ x) (succ-ℕ y) .(succ-ℕ (add-ℕ (succ-ℕ x) y)) refl =
rewrite-left-add-dist-ℕ (succ-ℕ x) y (add-ℕ (succ-ℕ x) y) refl
rewrite-left-dist-add-ℕ :
(x y z : ℕ) → leq-ℕ y z → Id x (dist-ℕ y z) → Id (add-ℕ x y) z
rewrite-left-dist-add-ℕ .(dist-ℕ y z) y z H refl =
( commutative-add-ℕ (dist-ℕ y z) y) ∙
( leq-dist-ℕ y z H)
rewrite-right-add-dist-ℕ :
(x y z : ℕ) → Id (add-ℕ x y) z → Id y (dist-ℕ x z)
rewrite-right-add-dist-ℕ x y z p =
rewrite-left-add-dist-ℕ y x z (commutative-add-ℕ y x ∙ p)
rewrite-right-dist-add-ℕ :
(x y z : ℕ) → leq-ℕ x z → Id y (dist-ℕ x z) → Id (add-ℕ x y) z
rewrite-right-dist-add-ℕ x .(dist-ℕ x z) z H refl =
leq-dist-ℕ x z H
-- We show that dist-ℕ is translation invariant
translation-invariant-dist-ℕ :
(k m n : ℕ) → Id (dist-ℕ (add-ℕ k m) (add-ℕ k n)) (dist-ℕ m n)
translation-invariant-dist-ℕ zero-ℕ m n =
ap-dist-ℕ (left-unit-law-add-ℕ m) (left-unit-law-add-ℕ n)
translation-invariant-dist-ℕ (succ-ℕ k) m n =
( ap-dist-ℕ (left-successor-law-add-ℕ k m) (left-successor-law-add-ℕ k n)) ∙
( translation-invariant-dist-ℕ k m n)
-- We show that dist-ℕ is linear with respect to scalar multiplication
linear-dist-ℕ :
(m n k : ℕ) → Id (dist-ℕ (mul-ℕ k m) (mul-ℕ k n)) (mul-ℕ k (dist-ℕ m n))
linear-dist-ℕ zero-ℕ zero-ℕ zero-ℕ = refl
linear-dist-ℕ zero-ℕ zero-ℕ (succ-ℕ k) = linear-dist-ℕ zero-ℕ zero-ℕ k
linear-dist-ℕ zero-ℕ (succ-ℕ n) zero-ℕ = refl
linear-dist-ℕ zero-ℕ (succ-ℕ n) (succ-ℕ k) =
ap (dist-ℕ' (mul-ℕ (succ-ℕ k) (succ-ℕ n))) (right-zero-law-mul-ℕ (succ-ℕ k))
linear-dist-ℕ (succ-ℕ m) zero-ℕ zero-ℕ = refl
linear-dist-ℕ (succ-ℕ m) zero-ℕ (succ-ℕ k) =
ap (dist-ℕ (mul-ℕ (succ-ℕ k) (succ-ℕ m))) (right-zero-law-mul-ℕ (succ-ℕ k))
linear-dist-ℕ (succ-ℕ m) (succ-ℕ n) zero-ℕ = refl
linear-dist-ℕ (succ-ℕ m) (succ-ℕ n) (succ-ℕ k) =
( ap-dist-ℕ
( right-successor-law-mul-ℕ (succ-ℕ k) m)
( right-successor-law-mul-ℕ (succ-ℕ k) n)) ∙
( ( translation-invariant-dist-ℕ
( succ-ℕ k)
( mul-ℕ (succ-ℕ k) m)
( mul-ℕ (succ-ℕ k) n)) ∙
( linear-dist-ℕ m n (succ-ℕ k)))
-- Exercise 6.6
{- In this exercise we were asked to define the relations ≤ and < on the
integers. As a criterion of correctness, we were then also asked to show
that the type of all integers l satisfying k ≤ l satisfy the induction
principle of the natural numbers. -}
diff-ℤ : ℤ → ℤ → ℤ
diff-ℤ k l = add-ℤ (neg-ℤ k) l
is-non-negative-ℤ : ℤ → UU lzero
is-non-negative-ℤ (inl x) = empty
is-non-negative-ℤ (inr k) = unit
leq-ℤ : ℤ → ℤ → UU lzero
leq-ℤ k l = is-non-negative-ℤ (diff-ℤ k l)
reflexive-leq-ℤ : (k : ℤ) → leq-ℤ k k
reflexive-leq-ℤ k =
tr is-non-negative-ℤ (inv (left-inverse-law-add-ℤ k)) star
is-non-negative-succ-ℤ :
(k : ℤ) → is-non-negative-ℤ k → is-non-negative-ℤ (succ-ℤ k)
is-non-negative-succ-ℤ (inr (inl star)) p = star
is-non-negative-succ-ℤ (inr (inr x)) p = star
is-non-negative-add-ℤ :
(k l : ℤ) →
is-non-negative-ℤ k → is-non-negative-ℤ l → is-non-negative-ℤ (add-ℤ k l)
is-non-negative-add-ℤ (inr (inl star)) (inr (inl star)) p q = star
is-non-negative-add-ℤ (inr (inl star)) (inr (inr n)) p q = star
is-non-negative-add-ℤ (inr (inr zero-ℕ)) (inr (inl star)) p q = star
is-non-negative-add-ℤ (inr (inr (succ-ℕ n))) (inr (inl star)) star star =
is-non-negative-succ-ℤ
( add-ℤ (inr (inr n)) (inr (inl star)))
( is-non-negative-add-ℤ (inr (inr n)) (inr (inl star)) star star)
is-non-negative-add-ℤ (inr (inr zero-ℕ)) (inr (inr m)) star star = star
is-non-negative-add-ℤ (inr (inr (succ-ℕ n))) (inr (inr m)) star star =
is-non-negative-succ-ℤ
( add-ℤ (inr (inr n)) (inr (inr m)))
( is-non-negative-add-ℤ (inr (inr n)) (inr (inr m)) star star)
triangle-diff-ℤ :
(k l m : ℤ) → Id (add-ℤ (diff-ℤ k l) (diff-ℤ l m)) (diff-ℤ k m)
triangle-diff-ℤ k l m =
( associative-add-ℤ (neg-ℤ k) l (diff-ℤ l m)) ∙
( ap
( add-ℤ (neg-ℤ k))
( ( inv (associative-add-ℤ l (neg-ℤ l) m)) ∙
( ( ap (λ x → add-ℤ x m) (right-inverse-law-add-ℤ l)) ∙
( left-unit-law-add-ℤ m))))
transitive-leq-ℤ : (k l m : ℤ) → leq-ℤ k l → leq-ℤ l m → leq-ℤ k m
transitive-leq-ℤ k l m p q =
tr is-non-negative-ℤ
( triangle-diff-ℤ k l m)
( is-non-negative-add-ℤ
( add-ℤ (neg-ℤ k) l)
( add-ℤ (neg-ℤ l) m)
( p)
( q))
succ-leq-ℤ : (k : ℤ) → leq-ℤ k (succ-ℤ k)
succ-leq-ℤ k =
tr is-non-negative-ℤ
( inv
( ( right-successor-law-add-ℤ (neg-ℤ k) k) ∙
( ap succ-ℤ (left-inverse-law-add-ℤ k))))
( star)
leq-ℤ-succ-leq-ℤ : (k l : ℤ) → leq-ℤ k l → leq-ℤ k (succ-ℤ l)
leq-ℤ-succ-leq-ℤ k l p = transitive-leq-ℤ k l (succ-ℤ l) p (succ-leq-ℤ l)
is-positive-ℤ : ℤ → UU lzero
is-positive-ℤ k = is-non-negative-ℤ (pred-ℤ k)
le-ℤ : ℤ → ℤ → UU lzero
le-ℤ (inl zero-ℕ) (inl x) = empty
le-ℤ (inl zero-ℕ) (inr y) = unit
le-ℤ (inl (succ-ℕ x)) (inl zero-ℕ) = unit
le-ℤ (inl (succ-ℕ x)) (inl (succ-ℕ y)) = le-ℤ (inl x) (inl y)
le-ℤ (inl (succ-ℕ x)) (inr y) = unit
le-ℤ (inr x) (inl y) = empty
le-ℤ (inr (inl star)) (inr (inl star)) = empty
le-ℤ (inr (inl star)) (inr (inr x)) = unit
le-ℤ (inr (inr x)) (inr (inl star)) = empty
le-ℤ (inr (inr zero-ℕ)) (inr (inr zero-ℕ)) = empty
le-ℤ (inr (inr zero-ℕ)) (inr (inr (succ-ℕ y))) = unit
le-ℤ (inr (inr (succ-ℕ x))) (inr (inr zero-ℕ)) = empty
le-ℤ (inr (inr (succ-ℕ x))) (inr (inr (succ-ℕ y))) =
le-ℤ (inr (inr x)) (inr (inr y))
-- Extra material
-- We show that ℕ is an ordered semi-ring
left-law-leq-add-ℕ : (k m n : ℕ) → leq-ℕ m n → leq-ℕ (add-ℕ m k) (add-ℕ n k)
left-law-leq-add-ℕ zero-ℕ m n = id
left-law-leq-add-ℕ (succ-ℕ k) m n H = left-law-leq-add-ℕ k m n H
right-law-leq-add-ℕ : (k m n : ℕ) → leq-ℕ m n → leq-ℕ (add-ℕ k m) (add-ℕ k n)
right-law-leq-add-ℕ k m n H =
concatenate-eq-leq-eq-ℕ
( commutative-add-ℕ k m)
( left-law-leq-add-ℕ k m n H)
( commutative-add-ℕ n k)
preserves-leq-add-ℕ :
{m m' n n' : ℕ} → leq-ℕ m m' → leq-ℕ n n' → leq-ℕ (add-ℕ m n) (add-ℕ m' n')
preserves-leq-add-ℕ {m} {m'} {n} {n'} H K =
transitive-leq-ℕ
( add-ℕ m n)
( add-ℕ m' n)
( add-ℕ m' n')
( left-law-leq-add-ℕ n m m' H)
( right-law-leq-add-ℕ m' n n' K)
{-
right-law-leq-mul-ℕ : (k m n : ℕ) → leq-ℕ m n → leq-ℕ (mul-ℕ k m) (mul-ℕ k n)
right-law-leq-mul-ℕ zero-ℕ m n H = star
right-law-leq-mul-ℕ (succ-ℕ k) m n H = {!!}
-}
{-
preserves-leq-add-ℕ
{ m = mul-ℕ k m}
{ m' = mul-ℕ k n}
( right-law-leq-mul-ℕ k m n H) H
left-law-leq-mul-ℕ : (k m n : ℕ) → leq-ℕ m n → leq-ℕ (mul-ℕ m k) (mul-ℕ n k)
left-law-leq-mul-ℕ k m n H =
concatenate-eq-leq-eq-ℕ
( commutative-mul-ℕ k m)
( commutative-mul-ℕ k n)
( right-law-leq-mul-ℕ k m n H)
-}
-- We show that ℤ is an ordered ring
{-
leq-add-ℤ : (m k l : ℤ) → leq-ℤ k l → leq-ℤ (add-ℤ m k) (add-ℤ m l)
leq-add-ℤ (inl zero-ℕ) k l H = {!!}
leq-add-ℤ (inl (succ-ℕ x)) k l H = {!!}
leq-add-ℤ (inr m) k l H = {!!}
-}
-- Section 5.5 Identity systems
succ-fam-Eq-ℕ :
{i : Level} (R : (m n : ℕ) → Eq-ℕ m n → UU i) →
(m n : ℕ) → Eq-ℕ m n → UU i
succ-fam-Eq-ℕ R m n e = R (succ-ℕ m) (succ-ℕ n) e
succ-refl-fam-Eq-ℕ :
{i : Level} (R : (m n : ℕ) → Eq-ℕ m n → UU i)
(ρ : (n : ℕ) → R n n (refl-Eq-ℕ n)) →
(n : ℕ) → (succ-fam-Eq-ℕ R n n (refl-Eq-ℕ n))
succ-refl-fam-Eq-ℕ R ρ n = ρ (succ-ℕ n)
path-ind-Eq-ℕ :
{i : Level} (R : (m n : ℕ) → Eq-ℕ m n → UU i)
( ρ : (n : ℕ) → R n n (refl-Eq-ℕ n)) →
( m n : ℕ) (e : Eq-ℕ m n) → R m n e
path-ind-Eq-ℕ R ρ zero-ℕ zero-ℕ star = ρ zero-ℕ
path-ind-Eq-ℕ R ρ zero-ℕ (succ-ℕ n) ()
path-ind-Eq-ℕ R ρ (succ-ℕ m) zero-ℕ ()
path-ind-Eq-ℕ R ρ (succ-ℕ m) (succ-ℕ n) e =
path-ind-Eq-ℕ
( λ m n e → R (succ-ℕ m) (succ-ℕ n) e)
( λ n → ρ (succ-ℕ n)) m n e
comp-path-ind-Eq-ℕ :
{i : Level} (R : (m n : ℕ) → Eq-ℕ m n → UU i)
( ρ : (n : ℕ) → R n n (refl-Eq-ℕ n)) →
( n : ℕ) → Id (path-ind-Eq-ℕ R ρ n n (refl-Eq-ℕ n)) (ρ n)
comp-path-ind-Eq-ℕ R ρ zero-ℕ = refl
comp-path-ind-Eq-ℕ R ρ (succ-ℕ n) =
comp-path-ind-Eq-ℕ
( λ m n e → R (succ-ℕ m) (succ-ℕ n) e)
( λ n → ρ (succ-ℕ n)) n
{-
-- Graphs
Gph : (i : Level) → UU (lsuc i)
Gph i = Σ (UU i) (λ X → (X → X → (UU i)))
-- Reflexive graphs
rGph : (i : Level) → UU (lsuc i)
rGph i = Σ (UU i) (λ X → Σ (X → X → (UU i)) (λ R → (x : X) → R x x))
-}
-- Exercise 3.7
{- With the construction of the divisibility relation we open the door to basic
number theory. -}
divides : (d n : ℕ) → UU lzero
divides d n = Σ ℕ (λ m → Eq-ℕ (mul-ℕ d m) n)
-- We prove some lemmas about inequalities --
leq-add-ℕ :
(m n : ℕ) → leq-ℕ m (add-ℕ m n)
leq-add-ℕ m zero-ℕ = reflexive-leq-ℕ m
leq-add-ℕ m (succ-ℕ n) =
transitive-leq-ℕ m (add-ℕ m n) (succ-ℕ (add-ℕ m n))
( leq-add-ℕ m n)
( succ-leq-ℕ (add-ℕ m n))
leq-add-ℕ' :
(m n : ℕ) → leq-ℕ m (add-ℕ n m)
leq-add-ℕ' m n =
concatenate-leq-eq-ℕ m (leq-add-ℕ m n) (commutative-add-ℕ m n)
leq-leq-add-ℕ :
(m n x : ℕ) → leq-ℕ (add-ℕ m x) (add-ℕ n x) → leq-ℕ m n
leq-leq-add-ℕ m n zero-ℕ H = H
leq-leq-add-ℕ m n (succ-ℕ x) H = leq-leq-add-ℕ m n x H
leq-leq-add-ℕ' :
(m n x : ℕ) → leq-ℕ (add-ℕ x m) (add-ℕ x n) → leq-ℕ m n
leq-leq-add-ℕ' m n x H =
leq-leq-add-ℕ m n x
( concatenate-eq-leq-eq-ℕ
( commutative-add-ℕ m x)
( H)
( commutative-add-ℕ x n))
leq-leq-mul-ℕ :
(m n x : ℕ) → leq-ℕ (mul-ℕ (succ-ℕ x) m) (mul-ℕ (succ-ℕ x) n) → leq-ℕ m n
leq-leq-mul-ℕ zero-ℕ zero-ℕ x H = star
leq-leq-mul-ℕ zero-ℕ (succ-ℕ n) x H = star
leq-leq-mul-ℕ (succ-ℕ m) zero-ℕ x H =
ex-falso
( concatenate-leq-eq-ℕ
( mul-ℕ (succ-ℕ x) (succ-ℕ m))
( H)
( right-zero-law-mul-ℕ (succ-ℕ x)))
leq-leq-mul-ℕ (succ-ℕ m) (succ-ℕ n) x H =
leq-leq-mul-ℕ m n x
( leq-leq-add-ℕ' (mul-ℕ (succ-ℕ x) m) (mul-ℕ (succ-ℕ x) n) (succ-ℕ x)
( concatenate-eq-leq-eq-ℕ
( inv (right-successor-law-mul-ℕ (succ-ℕ x) m))
( H)
( right-successor-law-mul-ℕ (succ-ℕ x) n)))
leq-leq-mul-ℕ' :
(m n x : ℕ) → leq-ℕ (mul-ℕ m (succ-ℕ x)) (mul-ℕ n (succ-ℕ x)) → leq-ℕ m n
leq-leq-mul-ℕ' m n x H =
leq-leq-mul-ℕ m n x
( concatenate-eq-leq-eq-ℕ
( commutative-mul-ℕ (succ-ℕ x) m)
( H)
( commutative-mul-ℕ n (succ-ℕ x)))
{-
succ-relation-ℕ :
{i : Level} (R : ℕ → ℕ → UU i) → ℕ → ℕ → UU i
succ-relation-ℕ R m n = R (succ-ℕ m) (succ-ℕ n)
succ-reflexivity-ℕ :
{i : Level} (R : ℕ → ℕ → UU i) (ρ : (n : ℕ) → R n n) →
(n : ℕ) → succ-relation-ℕ R n n
succ-reflexivity-ℕ R ρ n = ρ (succ-ℕ n)
{- In the book we suggest that first the order of the variables should be
swapped, in order to make the inductive hypothesis stronger. Agda's pattern
matching mechanism allows us to bypass this step and give a more direct
construction. -}
least-reflexive-Eq-ℕ :
{i : Level} (R : ℕ → ℕ → UU i) (ρ : (n : ℕ) → R n n) →
(m n : ℕ) → Eq-ℕ m n → R m n
least-reflexive-Eq-ℕ R ρ zero-ℕ zero-ℕ star = ρ zero-ℕ
least-reflexive-Eq-ℕ R ρ zero-ℕ (succ-ℕ n) ()
least-reflexive-Eq-ℕ R ρ (succ-ℕ m) zero-ℕ ()
least-reflexive-Eq-ℕ R ρ (succ-ℕ m) (succ-ℕ n) e =
least-reflexive-Eq-ℕ (succ-relation-ℕ R) (succ-reflexivity-ℕ R ρ) m n e
-}
-- The definition of <
le-ℕ : ℕ → ℕ → UU lzero
le-ℕ m zero-ℕ = empty
le-ℕ zero-ℕ (succ-ℕ m) = unit
le-ℕ (succ-ℕ n) (succ-ℕ m) = le-ℕ n m
_<_ = le-ℕ
anti-reflexive-le-ℕ : (n : ℕ) → ¬ (n < n)
anti-reflexive-le-ℕ zero-ℕ = ind-empty
anti-reflexive-le-ℕ (succ-ℕ n) = anti-reflexive-le-ℕ n
transitive-le-ℕ : (n m l : ℕ) → (le-ℕ n m) → (le-ℕ m l) → (le-ℕ n l)
transitive-le-ℕ zero-ℕ (succ-ℕ m) (succ-ℕ l) p q = star
transitive-le-ℕ (succ-ℕ n) (succ-ℕ m) (succ-ℕ l) p q =
transitive-le-ℕ n m l p q
succ-le-ℕ : (n : ℕ) → le-ℕ n (succ-ℕ n)
succ-le-ℕ zero-ℕ = star
succ-le-ℕ (succ-ℕ n) = succ-le-ℕ n
anti-symmetric-le-ℕ : (m n : ℕ) → le-ℕ m n → le-ℕ n m → Id m n
anti-symmetric-le-ℕ (succ-ℕ m) (succ-ℕ n) p q =
ap succ-ℕ (anti-symmetric-le-ℕ m n p q)
{-
--------------------------------------------------------------------------------
data Fin-Tree : UU lzero where
constr : (n : ℕ) → (Fin n → Fin-Tree) → Fin-Tree
root-Fin-Tree : Fin-Tree
root-Fin-Tree = constr zero-ℕ ex-falso
succ-Fin-Tree : Fin-Tree → Fin-Tree
succ-Fin-Tree t = constr one-ℕ (λ i → t)
map-assoc-coprod :
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} →
coprod (coprod A B) C → coprod A (coprod B C)
map-assoc-coprod (inl (inl x)) = inl x
map-assoc-coprod (inl (inr x)) = inr (inl x)
map-assoc-coprod (inr x) = inr (inr x)
map-coprod-Fin :
(m n : ℕ) → Fin (add-ℕ m n) → coprod (Fin m) (Fin n)
map-coprod-Fin m zero-ℕ = inl
map-coprod-Fin m (succ-ℕ n) =
map-assoc-coprod ∘ (functor-coprod (map-coprod-Fin m n) (id {A = unit}))
add-Fin-Tree : Fin-Tree → Fin-Tree → Fin-Tree
add-Fin-Tree (constr n x) (constr m y) =
constr (add-ℕ n m) ((ind-coprod (λ i → Fin-Tree) x y) ∘ (map-coprod-Fin n m))
--------------------------------------------------------------------------------
data labeled-Bin-Tree {l1 : Level} (A : UU l1) : UU l1 where
leaf : A → labeled-Bin-Tree A
constr : (bool → labeled-Bin-Tree A) → labeled-Bin-Tree A
mul-leaves-labeled-Bin-Tree :
{l1 : Level} {A : UU l1} (μ : A → (A → A)) →
labeled-Bin-Tree A → A
mul-leaves-labeled-Bin-Tree μ (leaf x) = x
mul-leaves-labeled-Bin-Tree μ (constr f) =
μ ( mul-leaves-labeled-Bin-Tree μ (f false))
( mul-leaves-labeled-Bin-Tree μ (f true))
pick-list : {l1 : Level} {A : UU l1} → ℕ → list A → coprod A unit
pick-list zero-ℕ nil = inr star
pick-list zero-ℕ (cons a x) = inl a
pick-list (succ-ℕ n) nil = inr star
pick-list (succ-ℕ n) (cons a x) = pick-list n x
-}
| {
"alphanum_fraction": 0.5687461204,
"avg_line_length": 31.205811138,
"ext": "agda",
"hexsha": "738d12e5cce3f7f297099bf4486a08514a9af6fa",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1e1f8def50f9359928e52ebb2ee53ed1166487d9",
"max_forks_repo_licenses": [
"CC-BY-4.0"
],
"max_forks_repo_name": "UlrikBuchholtz/HoTT-Intro",
"max_forks_repo_path": "Agda/06-universes.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1e1f8def50f9359928e52ebb2ee53ed1166487d9",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC-BY-4.0"
],
"max_issues_repo_name": "UlrikBuchholtz/HoTT-Intro",
"max_issues_repo_path": "Agda/06-universes.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1e1f8def50f9359928e52ebb2ee53ed1166487d9",
"max_stars_repo_licenses": [
"CC-BY-4.0"
],
"max_stars_repo_name": "UlrikBuchholtz/HoTT-Intro",
"max_stars_repo_path": "Agda/06-universes.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 12543,
"size": 25776
} |
{-# OPTIONS --cubical --no-import-sorts --allow-unsolved-metas #-}
module Number.Instances.QuoQ.Definitions where
open import Agda.Primitive renaming (_⊔_ to ℓ-max; lsuc to ℓ-suc; lzero to ℓ-zero)
open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc)
open import Cubical.Foundations.Logic renaming (inl to inlᵖ; inr to inrᵖ)
open import Cubical.Relation.Nullary.Base renaming (¬_ to ¬ᵗ_)
open import Cubical.Relation.Binary.Base
open import Cubical.Data.Sum.Base renaming (_⊎_ to infixr 4 _⊎_)
open import Cubical.Data.Sigma.Base renaming (_×_ to infixr 4 _×_)
open import Cubical.Data.Sigma
open import Cubical.Data.Bool as Bool using (Bool; not; true; false)
open import Cubical.Data.Empty renaming (elim to ⊥-elim; ⊥ to ⊥⊥) -- `⊥` and `elim`
open import Cubical.Foundations.Logic renaming (¬_ to ¬ᵖ_; inl to inlᵖ; inr to inrᵖ)
open import Function.Base using (it; _∋_; _$_)
open import Cubical.Foundations.Isomorphism
open import Cubical.HITs.PropositionalTruncation --.Properties
open import Utils using (!_; !!_)
open import MoreLogic.Reasoning
open import MoreLogic.Definitions
open import MoreLogic.Properties
open import MorePropAlgebra.Definitions hiding (_≤''_)
open import MorePropAlgebra.Structures
open import MorePropAlgebra.Bundles
open import MorePropAlgebra.Consequences
open import Number.Structures2
open import Number.Bundles2
open import Cubical.Data.NatPlusOne using (HasFromNat; 1+_; ℕ₊₁; ℕ₊₁→ℕ)
open import Cubical.HITs.SetQuotients as SetQuotient using () renaming (_/_ to _//_)
open import Cubical.Data.Nat.Literals
open import Cubical.Data.Bool
open import Number.Prelude.Nat
open import Number.Prelude.QuoInt
open import Cubical.HITs.Ints.QuoInt using (HasFromNat)
open import Cubical.HITs.Rationals.QuoQ using
( ℚ
; onCommonDenom
; onCommonDenomSym
; eq/
; _//_
; _∼_
)
renaming
( [_] to [_]ᶠ
; ℕ₊₁→ℤ to [1+_ⁿ]ᶻ
)
abstract
private
lemma1 : ∀ a b₁ b₂ c → (a ·ᶻ b₁) ·ᶻ (b₂ ·ᶻ c) ≡ (a ·ᶻ c) ·ᶻ (b₂ ·ᶻ b₁)
lemma1 a b₁ b₂ c =
(a ·ᶻ b₁) ·ᶻ (b₂ ·ᶻ c) ≡⟨ sym $ ·ᶻ-assoc a b₁ (b₂ ·ᶻ c) ⟩
a ·ᶻ (b₁ ·ᶻ (b₂ ·ᶻ c)) ≡⟨ (λ i → a ·ᶻ ·ᶻ-assoc b₁ b₂ c i) ⟩
a ·ᶻ ((b₁ ·ᶻ b₂) ·ᶻ c) ≡⟨ (λ i → a ·ᶻ ·ᶻ-comm (b₁ ·ᶻ b₂) c i) ⟩
a ·ᶻ (c ·ᶻ (b₁ ·ᶻ b₂)) ≡⟨ ·ᶻ-assoc a c (b₁ ·ᶻ b₂) ⟩
(a ·ᶻ c) ·ᶻ (b₁ ·ᶻ b₂) ≡⟨ (λ i → (a ·ᶻ c) ·ᶻ ·ᶻ-comm b₁ b₂ i) ⟩
(a ·ᶻ c) ·ᶻ (b₂ ·ᶻ b₁) ∎
·ᶻ-commʳ : ∀ a b c → (a ·ᶻ b) ·ᶻ c ≡ (a ·ᶻ c) ·ᶻ b
·ᶻ-commʳ a b c = (a ·ᶻ b) ·ᶻ c ≡⟨ sym $ ·ᶻ-assoc a b c ⟩
a ·ᶻ (b ·ᶻ c) ≡⟨ (λ i → a ·ᶻ ·ᶻ-comm b c i) ⟩
a ·ᶻ (c ·ᶻ b) ≡⟨ ·ᶻ-assoc a c b ⟩
(a ·ᶻ c) ·ᶻ b ∎
∼-preserves-<ᶻ : ∀ aᶻ aⁿ bᶻ bⁿ → (aᶻ , aⁿ) ∼ (bᶻ , bⁿ) → [ ((aᶻ <ᶻ 0) ⇒ (bᶻ <ᶻ 0)) ⊓ ((0 <ᶻ aᶻ) ⇒ (0 <ᶻ bᶻ)) ]
∼-preserves-<ᶻ aᶻ aⁿ bᶻ bⁿ r = γ where
aⁿᶻ = [1+ aⁿ ⁿ]ᶻ
bⁿᶻ = [1+ bⁿ ⁿ]ᶻ
0<aⁿᶻ : [ 0 <ᶻ aⁿᶻ ]
0<aⁿᶻ = ℕ₊₁.n aⁿ , +ⁿ-comm (ℕ₊₁.n aⁿ) 1
0<bⁿᶻ : [ 0 <ᶻ bⁿᶻ ]
0<bⁿᶻ = ℕ₊₁.n bⁿ , +ⁿ-comm (ℕ₊₁.n bⁿ) 1
γ : [ ((aᶻ <ᶻ 0) ⇒ (bᶻ <ᶻ 0)) ⊓ ((0 <ᶻ aᶻ) ⇒ (0 <ᶻ bᶻ)) ]
γ .fst aᶻ<0 = (
aᶻ <ᶻ 0 ⇒ᵖ⟨ ·ᶻ-preserves-<ᶻ aᶻ 0 bⁿᶻ 0<bⁿᶻ ⟩
aᶻ ·ᶻ bⁿᶻ <ᶻ 0 ·ᶻ bⁿᶻ ⇒ᵖ⟨ (subst (λ p → [ aᶻ ·ᶻ bⁿᶻ <ᶻ p ]) $ ·ᶻ-nullifiesˡ bⁿᶻ) ⟩
aᶻ ·ᶻ bⁿᶻ <ᶻ 0 ⇒ᵖ⟨ subst (λ p → [ p <ᶻ 0 ]) r ⟩
bᶻ ·ᶻ aⁿᶻ <ᶻ 0 ⇒ᵖ⟨ subst (λ p → [ bᶻ ·ᶻ aⁿᶻ <ᶻ p ]) (sym (·ᶻ-nullifiesˡ aⁿᶻ)) ⟩
bᶻ ·ᶻ aⁿᶻ <ᶻ 0 ·ᶻ aⁿᶻ ⇒ᵖ⟨ ·ᶻ-reflects-<ᶻ bᶻ 0 aⁿᶻ 0<aⁿᶻ ⟩
bᶻ <ᶻ 0 ◼ᵖ) .snd aᶻ<0
γ .snd 0<aᶻ = (
0 <ᶻ aᶻ ⇒ᵖ⟨ ·ᶻ-preserves-<ᶻ 0 aᶻ bⁿᶻ 0<bⁿᶻ ⟩
0 ·ᶻ bⁿᶻ <ᶻ aᶻ ·ᶻ bⁿᶻ ⇒ᵖ⟨ (subst (λ p → [ p <ᶻ aᶻ ·ᶻ bⁿᶻ ]) $ ·ᶻ-nullifiesˡ bⁿᶻ) ⟩
0 <ᶻ aᶻ ·ᶻ bⁿᶻ ⇒ᵖ⟨ subst (λ p → [ 0 <ᶻ p ]) r ⟩
0 <ᶻ bᶻ ·ᶻ aⁿᶻ ⇒ᵖ⟨ subst (λ p → [ p <ᶻ bᶻ ·ᶻ aⁿᶻ ]) (sym (·ᶻ-nullifiesˡ aⁿᶻ)) ⟩
0 ·ᶻ aⁿᶻ <ᶻ bᶻ ·ᶻ aⁿᶻ ⇒ᵖ⟨ ·ᶻ-reflects-<ᶻ 0 bᶻ aⁿᶻ 0<aⁿᶻ ⟩
0 <ᶻ bᶻ ◼ᵖ) .snd 0<aᶻ
-- < on ℤ × ℕ₊₁ in terms of < on ℤ
_<'_ : ℤ × ℕ₊₁ → ℤ × ℕ₊₁ → hProp ℓ-zero
(aᶻ , aⁿ) <' (bᶻ , bⁿ) =
let aⁿᶻ = [1+ aⁿ ⁿ]ᶻ
bⁿᶻ = [1+ bⁿ ⁿ]ᶻ
in (aᶻ ·ᶻ bⁿᶻ) <ᶻ (bᶻ ·ᶻ aⁿᶻ)
private
lem1 : ∀ x y z → [ 0 <ᶻ y ] → [ 0 <ᶻ z ] → (0 <ᶻ (x ·ᶻ y)) ≡ (0 <ᶻ (x ·ᶻ z))
lem1 x y z p q =
0 <ᶻ (x ·ᶻ y) ≡⟨ (λ i → ·ᶻ-nullifiesˡ y (~ i) <ᶻ x ·ᶻ y) ⟩
(0 ·ᶻ y) <ᶻ (x ·ᶻ y) ≡⟨ sym $ ·ᶻ-creates-<ᶻ-≡ 0 x y p ⟩
0 <ᶻ x ≡⟨ ·ᶻ-creates-<ᶻ-≡ 0 x z q ⟩
(0 ·ᶻ z) <ᶻ (x ·ᶻ z) ≡⟨ (λ i → ·ᶻ-nullifiesˡ z i <ᶻ x ·ᶻ z) ⟩
0 <ᶻ (x ·ᶻ z) ∎
<'-respects-∼ˡ : ∀ a b x → a ∼ b → a <' x ≡ b <' x
<'-respects-∼ˡ a@(aᶻ , aⁿ) b@(bᶻ , bⁿ) x@(xᶻ , xⁿ) a~b = γ where
aⁿᶻ = [1+ aⁿ ⁿ]ᶻ; 0<aⁿᶻ : [ 0 <ᶻ aⁿᶻ ]; 0<aⁿᶻ = 0<ᶻpos[suc] _
bⁿᶻ = [1+ bⁿ ⁿ]ᶻ; 0<bⁿᶻ : [ 0 <ᶻ bⁿᶻ ]; 0<bⁿᶻ = 0<ᶻpos[suc] _
xⁿᶻ = [1+ xⁿ ⁿ]ᶻ
p : aᶻ ·ᶻ bⁿᶻ ≡ bᶻ ·ᶻ aⁿᶻ
p = a~b
γ : ((aᶻ ·ᶻ xⁿᶻ) <ᶻ (xᶻ ·ᶻ aⁿᶻ)) ≡ ((bᶻ ·ᶻ xⁿᶻ) <ᶻ (xᶻ ·ᶻ bⁿᶻ))
γ = aᶻ ·ᶻ xⁿᶻ <ᶻ xᶻ ·ᶻ aⁿᶻ ≡⟨ ·ᶻ-creates-<ᶻ-≡ (aᶻ ·ᶻ xⁿᶻ) (xᶻ ·ᶻ aⁿᶻ) bⁿᶻ 0<bⁿᶻ ⟩
aᶻ ·ᶻ xⁿᶻ ·ᶻ bⁿᶻ <ᶻ xᶻ ·ᶻ aⁿᶻ ·ᶻ bⁿᶻ ≡⟨ (λ i → ·ᶻ-commʳ aᶻ xⁿᶻ bⁿᶻ i <ᶻ xᶻ ·ᶻ aⁿᶻ ·ᶻ bⁿᶻ) ⟩
aᶻ ·ᶻ bⁿᶻ ·ᶻ xⁿᶻ <ᶻ xᶻ ·ᶻ aⁿᶻ ·ᶻ bⁿᶻ ≡⟨ (λ i → p i ·ᶻ xⁿᶻ <ᶻ xᶻ ·ᶻ aⁿᶻ ·ᶻ bⁿᶻ) ⟩
bᶻ ·ᶻ aⁿᶻ ·ᶻ xⁿᶻ <ᶻ xᶻ ·ᶻ aⁿᶻ ·ᶻ bⁿᶻ ≡⟨ (λ i → ·ᶻ-commʳ bᶻ aⁿᶻ xⁿᶻ i <ᶻ ·ᶻ-commʳ xᶻ aⁿᶻ bⁿᶻ i) ⟩
bᶻ ·ᶻ xⁿᶻ ·ᶻ aⁿᶻ <ᶻ xᶻ ·ᶻ bⁿᶻ ·ᶻ aⁿᶻ ≡⟨ sym $ ·ᶻ-creates-<ᶻ-≡ (bᶻ ·ᶻ xⁿᶻ) (xᶻ ·ᶻ bⁿᶻ) aⁿᶻ 0<aⁿᶻ ⟩
bᶻ ·ᶻ xⁿᶻ <ᶻ xᶻ ·ᶻ bⁿᶻ ∎
<'-respects-∼ʳ : ∀ x a b → a ∼ b → x <' a ≡ x <' b
<'-respects-∼ʳ x@(xᶻ , xⁿ) a@(aᶻ , aⁿ) b@(bᶻ , bⁿ) a~b =
let aⁿᶻ = [1+ aⁿ ⁿ]ᶻ; 0<aⁿᶻ : [ 0 <ᶻ aⁿᶻ ]; 0<aⁿᶻ = 0<ᶻpos[suc] _
bⁿᶻ = [1+ bⁿ ⁿ]ᶻ; 0<bⁿᶻ : [ 0 <ᶻ bⁿᶻ ]; 0<bⁿᶻ = 0<ᶻpos[suc] _
xⁿᶻ = [1+ xⁿ ⁿ]ᶻ
p : aᶻ ·ᶻ bⁿᶻ ≡ bᶻ ·ᶻ aⁿᶻ
p = a~b
in xᶻ ·ᶻ aⁿᶻ <ᶻ aᶻ ·ᶻ xⁿᶻ ≡⟨ (λ i → xᶻ ·ᶻ aⁿᶻ <ᶻ ·ᶻ-comm aᶻ xⁿᶻ i) ⟩
xᶻ ·ᶻ aⁿᶻ <ᶻ xⁿᶻ ·ᶻ aᶻ ≡⟨ ·ᶻ-creates-<ᶻ-≡ (xᶻ ·ᶻ aⁿᶻ) (xⁿᶻ ·ᶻ aᶻ) bⁿᶻ 0<bⁿᶻ ⟩
xᶻ ·ᶻ aⁿᶻ ·ᶻ bⁿᶻ <ᶻ xⁿᶻ ·ᶻ aᶻ ·ᶻ bⁿᶻ ≡⟨ (λ i → xᶻ ·ᶻ aⁿᶻ ·ᶻ bⁿᶻ <ᶻ ·ᶻ-assoc xⁿᶻ aᶻ bⁿᶻ (~ i)) ⟩
xᶻ ·ᶻ aⁿᶻ ·ᶻ bⁿᶻ <ᶻ xⁿᶻ ·ᶻ (aᶻ ·ᶻ bⁿᶻ) ≡⟨ (λ i → xᶻ ·ᶻ aⁿᶻ ·ᶻ bⁿᶻ <ᶻ xⁿᶻ ·ᶻ (p i)) ⟩
xᶻ ·ᶻ aⁿᶻ ·ᶻ bⁿᶻ <ᶻ xⁿᶻ ·ᶻ (bᶻ ·ᶻ aⁿᶻ) ≡⟨ (λ i → ·ᶻ-commʳ xᶻ aⁿᶻ bⁿᶻ i <ᶻ ·ᶻ-assoc xⁿᶻ bᶻ aⁿᶻ i) ⟩
xᶻ ·ᶻ bⁿᶻ ·ᶻ aⁿᶻ <ᶻ xⁿᶻ ·ᶻ bᶻ ·ᶻ aⁿᶻ ≡⟨ sym $ ·ᶻ-creates-<ᶻ-≡ (xᶻ ·ᶻ bⁿᶻ) (xⁿᶻ ·ᶻ bᶻ) aⁿᶻ 0<aⁿᶻ ⟩
xᶻ ·ᶻ bⁿᶻ <ᶻ xⁿᶻ ·ᶻ bᶻ ≡⟨ (λ i → xᶻ ·ᶻ bⁿᶻ <ᶻ ·ᶻ-comm xⁿᶻ bᶻ i) ⟩
xᶻ ·ᶻ bⁿᶻ <ᶻ bᶻ ·ᶻ xⁿᶻ ∎
infixl 4 _<_
_<_ : hPropRel ℚ ℚ ℓ-zero
a < b = SetQuotient.rec2 {R = _∼_} {B = hProp ℓ-zero} isSetHProp _<'_ <'-respects-∼ˡ <'-respects-∼ʳ a b
_≤_ : hPropRel ℚ ℚ ℓ-zero
x ≤ y = ¬ᵖ (y < x)
min' : ℤ × ℕ₊₁ → ℤ × ℕ₊₁ → ℤ
min' (aᶻ , aⁿ) (bᶻ , bⁿ) =
let aⁿᶻ = [1+ aⁿ ⁿ]ᶻ
bⁿᶻ = [1+ bⁿ ⁿ]ᶻ
in minᶻ (aᶻ ·ᶻ bⁿᶻ) (bᶻ ·ᶻ aⁿᶻ)
max' : ℤ × ℕ₊₁ → ℤ × ℕ₊₁ → ℤ
max' (aᶻ , aⁿ) (bᶻ , bⁿ) =
let aⁿᶻ = [1+ aⁿ ⁿ]ᶻ
bⁿᶻ = [1+ bⁿ ⁿ]ᶻ
in maxᶻ (aᶻ ·ᶻ bⁿᶻ) (bᶻ ·ᶻ aⁿᶻ)
min'-sym : ∀ x y → min' x y ≡ min' y x
min'-sym (aᶻ , aⁿ) (bᶻ , bⁿ) = minᶻ-comm (aᶻ ·ᶻ [1+ bⁿ ⁿ]ᶻ) (bᶻ ·ᶻ [1+ aⁿ ⁿ]ᶻ)
max'-sym : ∀ x y → max' x y ≡ max' y x
max'-sym (aᶻ , aⁿ) (bᶻ , bⁿ) = maxᶻ-comm (aᶻ ·ᶻ [1+ bⁿ ⁿ]ᶻ) (bᶻ ·ᶻ [1+ aⁿ ⁿ]ᶻ)
min'-respects-∼ : (a@(aᶻ , aⁿ) b@(bᶻ , bⁿ) x@(xᶻ , xⁿ) : ℤ × ℕ₊₁)
→ a ∼ b
→ [1+ bⁿ ⁿ]ᶻ ·ᶻ min' a x ≡ [1+ aⁿ ⁿ]ᶻ ·ᶻ min' b x
min'-respects-∼ a@(aᶻ , aⁿ) b@(bᶻ , bⁿ) x@(xᶻ , xⁿ) a~b =
bⁿᶻ ·ᶻ minᶻ (aᶻ ·ᶻ xⁿᶻ) (xᶻ ·ᶻ aⁿᶻ) ≡⟨ ·ᶻ-minᶻ-distribˡ (aᶻ ·ᶻ xⁿᶻ) (xᶻ ·ᶻ aⁿᶻ) bⁿᶻ 0≤bⁿᶻ ⟩
minᶻ (bⁿᶻ ·ᶻ (aᶻ ·ᶻ xⁿᶻ)) (bⁿᶻ ·ᶻ (xᶻ ·ᶻ aⁿᶻ)) ≡⟨ (λ i → minᶻ (·ᶻ-assoc bⁿᶻ aᶻ xⁿᶻ i) (bⁿᶻ ·ᶻ (xᶻ ·ᶻ aⁿᶻ))) ⟩
minᶻ ((bⁿᶻ ·ᶻ aᶻ) ·ᶻ xⁿᶻ) (bⁿᶻ ·ᶻ (xᶻ ·ᶻ aⁿᶻ)) ≡⟨ (λ i → minᶻ ((·ᶻ-comm bⁿᶻ aᶻ i) ·ᶻ xⁿᶻ) (bⁿᶻ ·ᶻ (xᶻ ·ᶻ aⁿᶻ))) ⟩
minᶻ ((aᶻ ·ᶻ bⁿᶻ) ·ᶻ xⁿᶻ) (bⁿᶻ ·ᶻ (xᶻ ·ᶻ aⁿᶻ)) ≡⟨ (λ i → minᶻ (p i ·ᶻ xⁿᶻ) (bⁿᶻ ·ᶻ (xᶻ ·ᶻ aⁿᶻ))) ⟩
minᶻ ((bᶻ ·ᶻ aⁿᶻ) ·ᶻ xⁿᶻ) (bⁿᶻ ·ᶻ (xᶻ ·ᶻ aⁿᶻ)) ≡⟨ (λ i → minᶻ (·ᶻ-comm bᶻ aⁿᶻ i ·ᶻ xⁿᶻ) (·ᶻ-assoc bⁿᶻ xᶻ aⁿᶻ i)) ⟩
minᶻ ((aⁿᶻ ·ᶻ bᶻ) ·ᶻ xⁿᶻ) ((bⁿᶻ ·ᶻ xᶻ) ·ᶻ aⁿᶻ) ≡⟨ (λ i → minᶻ (·ᶻ-assoc aⁿᶻ bᶻ xⁿᶻ (~ i)) (·ᶻ-comm (bⁿᶻ ·ᶻ xᶻ) aⁿᶻ i)) ⟩
minᶻ (aⁿᶻ ·ᶻ (bᶻ ·ᶻ xⁿᶻ)) (aⁿᶻ ·ᶻ (bⁿᶻ ·ᶻ xᶻ)) ≡⟨ sym $ ·ᶻ-minᶻ-distribˡ (bᶻ ·ᶻ xⁿᶻ) (bⁿᶻ ·ᶻ xᶻ) aⁿᶻ 0≤aⁿᶻ ⟩
aⁿᶻ ·ᶻ minᶻ (bᶻ ·ᶻ xⁿᶻ) (bⁿᶻ ·ᶻ xᶻ) ≡⟨ (λ i → aⁿᶻ ·ᶻ minᶻ (bᶻ ·ᶻ xⁿᶻ) (·ᶻ-comm bⁿᶻ xᶻ i)) ⟩
aⁿᶻ ·ᶻ minᶻ (bᶻ ·ᶻ xⁿᶻ) (xᶻ ·ᶻ bⁿᶻ) ∎
where
aⁿᶻ = [1+ aⁿ ⁿ]ᶻ
bⁿᶻ = [1+ bⁿ ⁿ]ᶻ
xⁿᶻ = [1+ xⁿ ⁿ]ᶻ
p : aᶻ ·ᶻ bⁿᶻ ≡ bᶻ ·ᶻ aⁿᶻ
p = a~b
0≤aⁿᶻ : [ 0 ≤ᶻ aⁿᶻ ]
0≤aⁿᶻ (k , p) = snotzⁿ $ sym (+ⁿ-suc k _) ∙ p
0≤bⁿᶻ : [ 0 ≤ᶻ bⁿᶻ ]
0≤bⁿᶻ (k , p) = snotzⁿ $ sym (+ⁿ-suc k _) ∙ p
-- same proof as for min
max'-respects-∼ : (a@(aᶻ , aⁿ) b@(bᶻ , bⁿ) x@(xᶻ , xⁿ) : ℤ × ℕ₊₁)
→ a ∼ b
→ [1+ bⁿ ⁿ]ᶻ ·ᶻ max' a x ≡ [1+ aⁿ ⁿ]ᶻ ·ᶻ max' b x
max'-respects-∼ a@(aᶻ , aⁿ) b@(bᶻ , bⁿ) x@(xᶻ , xⁿ) a~b =
bⁿᶻ ·ᶻ maxᶻ (aᶻ ·ᶻ xⁿᶻ) (xᶻ ·ᶻ aⁿᶻ) ≡⟨ ·ᶻ-maxᶻ-distribˡ (aᶻ ·ᶻ xⁿᶻ) (xᶻ ·ᶻ aⁿᶻ) bⁿᶻ 0≤bⁿᶻ ⟩
maxᶻ (bⁿᶻ ·ᶻ (aᶻ ·ᶻ xⁿᶻ)) (bⁿᶻ ·ᶻ (xᶻ ·ᶻ aⁿᶻ)) ≡⟨ (λ i → maxᶻ (·ᶻ-assoc bⁿᶻ aᶻ xⁿᶻ i) (bⁿᶻ ·ᶻ (xᶻ ·ᶻ aⁿᶻ))) ⟩
maxᶻ ((bⁿᶻ ·ᶻ aᶻ) ·ᶻ xⁿᶻ) (bⁿᶻ ·ᶻ (xᶻ ·ᶻ aⁿᶻ)) ≡⟨ (λ i → maxᶻ ((·ᶻ-comm bⁿᶻ aᶻ i) ·ᶻ xⁿᶻ) (bⁿᶻ ·ᶻ (xᶻ ·ᶻ aⁿᶻ))) ⟩
maxᶻ ((aᶻ ·ᶻ bⁿᶻ) ·ᶻ xⁿᶻ) (bⁿᶻ ·ᶻ (xᶻ ·ᶻ aⁿᶻ)) ≡⟨ (λ i → maxᶻ (p i ·ᶻ xⁿᶻ) (bⁿᶻ ·ᶻ (xᶻ ·ᶻ aⁿᶻ))) ⟩
maxᶻ ((bᶻ ·ᶻ aⁿᶻ) ·ᶻ xⁿᶻ) (bⁿᶻ ·ᶻ (xᶻ ·ᶻ aⁿᶻ)) ≡⟨ (λ i → maxᶻ (·ᶻ-comm bᶻ aⁿᶻ i ·ᶻ xⁿᶻ) (·ᶻ-assoc bⁿᶻ xᶻ aⁿᶻ i)) ⟩
maxᶻ ((aⁿᶻ ·ᶻ bᶻ) ·ᶻ xⁿᶻ) ((bⁿᶻ ·ᶻ xᶻ) ·ᶻ aⁿᶻ) ≡⟨ (λ i → maxᶻ (·ᶻ-assoc aⁿᶻ bᶻ xⁿᶻ (~ i)) (·ᶻ-comm (bⁿᶻ ·ᶻ xᶻ) aⁿᶻ i)) ⟩
maxᶻ (aⁿᶻ ·ᶻ (bᶻ ·ᶻ xⁿᶻ)) (aⁿᶻ ·ᶻ (bⁿᶻ ·ᶻ xᶻ)) ≡⟨ sym $ ·ᶻ-maxᶻ-distribˡ (bᶻ ·ᶻ xⁿᶻ) (bⁿᶻ ·ᶻ xᶻ) aⁿᶻ 0≤aⁿᶻ ⟩
aⁿᶻ ·ᶻ maxᶻ (bᶻ ·ᶻ xⁿᶻ) (bⁿᶻ ·ᶻ xᶻ) ≡⟨ (λ i → aⁿᶻ ·ᶻ maxᶻ (bᶻ ·ᶻ xⁿᶻ) (·ᶻ-comm bⁿᶻ xᶻ i)) ⟩
aⁿᶻ ·ᶻ maxᶻ (bᶻ ·ᶻ xⁿᶻ) (xᶻ ·ᶻ bⁿᶻ) ∎
where
aⁿᶻ = [1+ aⁿ ⁿ]ᶻ
bⁿᶻ = [1+ bⁿ ⁿ]ᶻ
xⁿᶻ = [1+ xⁿ ⁿ]ᶻ
p : aᶻ ·ᶻ bⁿᶻ ≡ bᶻ ·ᶻ aⁿᶻ
p = a~b
0≤aⁿᶻ : [ 0 ≤ᶻ aⁿᶻ ]
0≤aⁿᶻ (k , p) = snotzⁿ $ sym (+ⁿ-suc k _) ∙ p
0≤bⁿᶻ : [ 0 ≤ᶻ bⁿᶻ ]
0≤bⁿᶻ (k , p) = snotzⁿ $ sym (+ⁿ-suc k _) ∙ p
min : ℚ → ℚ → ℚ
min a b = onCommonDenomSym min' min'-sym min'-respects-∼ a b
max : ℚ → ℚ → ℚ
max a b = onCommonDenomSym max' max'-sym max'-respects-∼ a b
-- injᶻⁿ⁺¹ : ∀ x → [ 0 <ᶻ x ] → Σ[ y ∈ ℕ₊₁ ] x ≡ [1+ y ⁿ]ᶻ
-- injᶻⁿ⁺¹ (signed spos zero) p = ⊥-elim {A = λ _ → Σ[ y ∈ ℕ₊₁ ] ℤ.posneg i0 ≡ [1+ y ⁿ]ᶻ} (¬-<ⁿ-zero p)
-- injᶻⁿ⁺¹ (signed sneg zero) p = ⊥-elim {A = λ _ → Σ[ y ∈ ℕ₊₁ ] ℤ.posneg i1 ≡ [1+ y ⁿ]ᶻ} (¬-<ⁿ-zero p)
-- injᶻⁿ⁺¹ (ℤ.posneg i) p = ⊥-elim {A = λ _ → Σ[ y ∈ ℕ₊₁ ] ℤ.posneg i ≡ [1+ y ⁿ]ᶻ} (¬-<ⁿ-zero p)
-- injᶻⁿ⁺¹ (signed spos (suc n)) p = 1+ n , refl
absᶻ⁺¹ : ℤ → ℕ₊₁
absᶻ⁺¹ (pos zero) = 1+ 0
absᶻ⁺¹ (neg zero) = 1+ 0
absᶻ⁺¹ (posneg i) = 1+ 0
absᶻ⁺¹ (pos (suc n)) = 1+ n
absᶻ⁺¹ (neg (suc n)) = 1+ n
-- absᶻ⁺¹-identity⁺ : ∀ x → [ 0 <ⁿ x ] → [1+ absᶻ⁺¹ (pos x) ⁿ]ᶻ ≡ pos x
-- absᶻ⁺¹-identity⁺ zero p = ⊥-elim {A = λ _ → [1+ absᶻ⁺¹ (pos zero) ⁿ]ᶻ ≡ pos zero} (<ⁿ-irrefl 0 p)
-- absᶻ⁺¹-identity⁺ (suc x) p = refl
--
-- absᶻ⁺¹-identity⁻ : ∀ x → [ 0 <ⁿ x ] → [1+ absᶻ⁺¹ (neg x) ⁿ]ᶻ ≡ pos x
-- absᶻ⁺¹-identity⁻ zero p = ⊥-elim {A = λ _ → [1+ absᶻ⁺¹ (neg zero) ⁿ]ᶻ ≡ pos zero} (<ⁿ-irrefl 0 p)
-- absᶻ⁺¹-identity⁻ (suc x) p = refl
absᶻ⁺¹-identity : ∀ x → [ x #ᶻ 0 ] → [1+ absᶻ⁺¹ x ⁿ]ᶻ ≡ pos (absᶻ x)
absᶻ⁺¹-identity (pos zero) p = ⊥-elim {A = λ _ → pos 1 ≡ pos 0} $ #ᶻ⇒≢ (posneg i0) p refl
absᶻ⁺¹-identity (neg zero) p = ⊥-elim {A = λ _ → pos 1 ≡ pos 0} $ #ᶻ⇒≢ (posneg i1) p posneg
absᶻ⁺¹-identity (posneg i) p = ⊥-elim {A = λ _ → pos 1 ≡ pos 0} $ #ᶻ⇒≢ (posneg i ) p (λ j → posneg (i ∧ j))
absᶻ⁺¹-identity (pos (suc n)) p = refl
absᶻ⁺¹-identity (neg (suc n)) p = refl
absᶻ⁺¹-identityⁿ : ∀ x → [ x #ᶻ 0 ] → suc (ℕ₊₁.n (absᶻ⁺¹ x)) ≡ absᶻ x
absᶻ⁺¹-identityⁿ x p i = absᶻ (absᶻ⁺¹-identity x p i)
sign' : ℤ × ℕ₊₁ → Sign
sign' (z , n) = signᶻ z
sign'-preserves-∼ : (a b : ℤ × ℕ₊₁) → a ∼ b → sign' a ≡ sign' b
sign'-preserves-∼ a@(aᶻ , aⁿ) b@(bᶻ , bⁿ) p = sym (lem aᶻ bⁿ) ∙ ψ ∙ lem bᶻ aⁿ where
a' = absᶻ aᶻ ·ⁿ suc (ℕ₊₁.n bⁿ)
b' = absᶻ bᶻ ·ⁿ suc (ℕ₊₁.n aⁿ)
γ : signed (signᶻ aᶻ ⊕ spos) a' ≡ signed (signᶻ bᶻ ⊕ spos) b'
γ = p
ψ : signᶻ (signed (signᶻ aᶻ ⊕ spos) a') ≡ signᶻ (signed (signᶻ bᶻ ⊕ spos) b')
ψ i = signᶻ (γ i)
lem : ∀ x y → signᶻ (signed (signᶻ x ⊕ spos) (absᶻ x ·ⁿ suc (ℕ₊₁.n y))) ≡ signᶻ x
lem (pos zero) y = refl
lem (neg zero) y = refl
lem (posneg i) y = refl
lem (pos (suc n)) y = refl
lem (neg (suc n)) y = refl
sign : ℚ → Sign
sign = SetQuotient.rec {R = _∼_} {B = Sign} Bool.isSetBool sign' sign'-preserves-∼
sign-signᶻ-identity : ∀ z n → sign [ z , n ]ᶠ ≡ signᶻ z
sign-signᶻ-identity z n = refl
| {
"alphanum_fraction": 0.505274093,
"avg_line_length": 45.3405797101,
"ext": "agda",
"hexsha": "82ba5091f8cbd8d3190a2fae885185ba24f5de58",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mchristianl/synthetic-reals",
"max_forks_repo_path": "agda/Number/Instances/QuoQ/Definitions.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mchristianl/synthetic-reals",
"max_issues_repo_path": "agda/Number/Instances/QuoQ/Definitions.agda",
"max_line_length": 122,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mchristianl/synthetic-reals",
"max_stars_repo_path": "agda/Number/Instances/QuoQ/Definitions.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z",
"num_tokens": 9567,
"size": 12514
} |
-- TODO: Generalize and move to Structure.Categorical.Proofs
module Structure.Category.Proofs where
import Lvl
open import Data
open import Data.Tuple as Tuple using (_,_)
open import Functional using (const ; swap ; _$_)
open import Lang.Instance
open import Logic
open import Logic.Propositional
open import Logic.Predicate
open import Structure.Category
open import Structure.Categorical.Names
open import Structure.Categorical.Properties
import Structure.Operator.Properties as Properties
open import Structure.Operator
open import Structure.Relator.Equivalence
open import Structure.Relator.Properties
open import Structure.Setoid
open import Syntax.Function
open import Syntax.Transitivity
open import Type
module _
{ℓₒ ℓₘ ℓₑ : Lvl.Level}
{Obj : Type{ℓₒ}}
{Morphism : Obj → Obj → Type{ℓₘ}}
⦃ morphism-equiv : ∀{x y} → Equiv{ℓₑ}(Morphism x y) ⦄
(cat : Category(Morphism))
where
open Category(cat)
open Category.ArrowNotation(cat)
open Morphism.OperModule(\{x} → _∘_ {x})
open Morphism.IdModule(\{x} → _∘_ {x})(id)
private open module [≡]-Equivalence {x}{y} = Equivalence (Equiv-equivalence ⦃ morphism-equiv{x}{y} ⦄) using ()
private variable x y z : Obj
private variable f g h i : x ⟶ y
associate4-123-321 : (((f ∘ g) ∘ h) ∘ i ≡ f ∘ (g ∘ (h ∘ i)))
associate4-123-321 = Morphism.associativity(_∘_) 🝖 Morphism.associativity(_∘_)
associate4-123-213 : (((f ∘ g) ∘ h) ∘ i ≡ (f ∘ (g ∘ h)) ∘ i)
associate4-123-213 = congruence₂ₗ(_∘_)(_) (Morphism.associativity(_∘_))
associate4-321-231 : (f ∘ (g ∘ (h ∘ i)) ≡ f ∘ ((g ∘ h) ∘ i))
associate4-321-231 = congruence₂ᵣ(_∘_)(_) (symmetry(_≡_) (Morphism.associativity(_∘_)))
associate4-213-121 : ((f ∘ (g ∘ h)) ∘ i ≡ (f ∘ g) ∘ (h ∘ i))
associate4-213-121 = symmetry(_≡_) (congruence₂ₗ(_∘_)(_) (Morphism.associativity(_∘_))) 🝖 Morphism.associativity(_∘_)
associate4-231-213 : f ∘ ((g ∘ h) ∘ i) ≡ (f ∘ (g ∘ h)) ∘ i
associate4-231-213 = symmetry(_≡_) (Morphism.associativity(_∘_))
associate4-231-123 : f ∘ ((g ∘ h) ∘ i) ≡ ((f ∘ g) ∘ h) ∘ i
associate4-231-123 = associate4-231-213 🝖 symmetry(_≡_) associate4-123-213
associate4-231-121 : (f ∘ ((g ∘ h) ∘ i) ≡ (f ∘ g) ∘ (h ∘ i))
associate4-231-121 = congruence₂ᵣ(_∘_)(_) (Morphism.associativity(_∘_)) 🝖 symmetry(_≡_) (Morphism.associativity(_∘_))
id-automorphism : Automorphism(id{x})
∃.witness id-automorphism = id
∃.proof id-automorphism = intro(Morphism.identityₗ(_∘_)(id)) , intro(Morphism.identityᵣ(_∘_)(id))
inverse-isomorphism : (f : x ⟶ y) → ⦃ _ : Isomorphism(f) ⦄ → Isomorphism(inv f)
∃.witness (inverse-isomorphism f) = f
∃.proof (inverse-isomorphism f) = intro (inverseᵣ(f)(inv f)) , intro (inverseₗ(f)(inv f)) where
open Isomorphism(f)
module _ ⦃ op : ∀{x y z} → BinaryOperator(_∘_ {x}{y}{z}) ⦄ where
op-closed-under-isomorphism : ∀{A B C : Obj} → (f : B ⟶ C) → (g : A ⟶ B) → ⦃ _ : Isomorphism(f) ⦄ → ⦃ _ : Isomorphism(g) ⦄ → Isomorphism(f ∘ g)
∃.witness (op-closed-under-isomorphism f g) = inv g ∘ inv f
Tuple.left (∃.proof (op-closed-under-isomorphism f g)) = intro $
(inv g ∘ inv f) ∘ (f ∘ g) 🝖-[ associate4-213-121 ]-sym
(inv g ∘ (inv f ∘ f)) ∘ g 🝖-[ congruence₂ₗ(_∘_) ⦃ op ⦄ (g) (congruence₂ᵣ(_∘_) ⦃ op ⦄ (inv g) (Morphism.inverseₗ(_∘_)(id) (f)(inv f))) ]
(inv g ∘ id) ∘ g 🝖-[ congruence₂ₗ(_∘_) ⦃ op ⦄ (g) (Morphism.identityᵣ(_∘_)(id)) ]
inv g ∘ g 🝖-[ Morphism.inverseₗ(_∘_)(id) (g)(inv g) ]
id 🝖-end
where
open Isomorphism(f)
open Isomorphism(g)
Tuple.right (∃.proof (op-closed-under-isomorphism f g)) = intro $
(f ∘ g) ∘ (inv g ∘ inv f) 🝖-[ associate4-213-121 ]-sym
(f ∘ (g ∘ inv g)) ∘ inv f 🝖-[ congruence₂ₗ(_∘_) ⦃ op ⦄ (_) (congruence₂ᵣ(_∘_) ⦃ op ⦄ (_) (Morphism.inverseᵣ(_∘_)(id) (_)(_))) ]
(f ∘ id) ∘ inv f 🝖-[ congruence₂ₗ(_∘_) ⦃ op ⦄ (_) (Morphism.identityᵣ(_∘_)(id)) ]
f ∘ inv f 🝖-[ Morphism.inverseᵣ(_∘_)(id) (_)(_) ]
id 🝖-end
where
open Isomorphism(f)
open Isomorphism(g)
instance
Isomorphic-reflexivity : Reflexivity(Isomorphic)
∃.witness (Reflexivity.proof Isomorphic-reflexivity) = id
∃.proof (Reflexivity.proof Isomorphic-reflexivity) = id-automorphism
instance
Isomorphic-symmetry : Symmetry(Isomorphic)
∃.witness (Symmetry.proof Isomorphic-symmetry iso-xy) = inv(∃.witness iso-xy)
∃.proof (Symmetry.proof Isomorphic-symmetry iso-xy) = inverse-isomorphism(∃.witness iso-xy)
module _ ⦃ op : ∀{x y z} → BinaryOperator(_∘_ {x}{y}{z}) ⦄ where
instance
Isomorphic-transitivity : Transitivity(Isomorphic)
∃.witness (Transitivity.proof Isomorphic-transitivity ([∃]-intro xy) ([∃]-intro yz)) = yz ∘ xy
∃.proof (Transitivity.proof Isomorphic-transitivity ([∃]-intro xy) ([∃]-intro yz)) = op-closed-under-isomorphism ⦃ op ⦄ yz xy
instance
Isomorphic-equivalence : Equivalence(Isomorphic)
Isomorphic-equivalence = record{}
| {
"alphanum_fraction": 0.6258462764,
"avg_line_length": 44.8392857143,
"ext": "agda",
"hexsha": "e1732defcce2283399030afa6a3549832a2a8809",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Category/Proofs.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Category/Proofs.agda",
"max_line_length": 147,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Category/Proofs.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1922,
"size": 5022
} |
module OscarEverything where
open import OscarPrelude
open import HasSubstantiveDischarge
| {
"alphanum_fraction": 0.8901098901,
"avg_line_length": 18.2,
"ext": "agda",
"hexsha": "5e61e05a5b929dc0c4483ab96736888cffe2ff46",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-1/OscarEverything.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-1/OscarEverything.agda",
"max_line_length": 35,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-1/OscarEverything.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 20,
"size": 91
} |
{-# OPTIONS --cubical --safe #-}
module Cardinality.Finite.SplitEnumerable.Instances where
open import Cardinality.Finite.SplitEnumerable
open import Cardinality.Finite.SplitEnumerable.Inductive
open import Cardinality.Finite.ManifestBishop using (_|Π|_)
open import Data.Fin
open import Prelude
open import Data.List.Membership
open import Data.Tuple
import Data.Unit.UniversePolymorphic as Poly
private
infixr 4 _?×_
data _?×_ (A : Type a) (B : Type b) : Type (a ℓ⊔ b) where
pair : A → B → A ?× B
instance
poly-inst : ∀ {a} → Poly.⊤ {a}
poly-inst = Poly.tt
module _ {a b} {A : Type a} (B : A → Type b) where
Im-Type : (xs : List A) → Type (a ℓ⊔ b)
Im-Type = foldr (λ x xs → ℰ! (B x) ?× xs) Poly.⊤
Tup-Im-Lookup : ∀ x (xs : List A) → x ∈ xs → Im-Type xs → ℰ! (B x)
Tup-Im-Lookup x (y ∷ xs) (f0 , y≡x ) (pair ℰ!⟨Bx⟩ _) = subst (ℰ! ∘ B) y≡x ℰ!⟨Bx⟩
Tup-Im-Lookup x (y ∷ xs) (fs n , x∈ys) (pair _ tup) = Tup-Im-Lookup x xs (n , x∈ys) tup
Tup-Im-Pi : (xs : ℰ! A) → Im-Type (xs .fst) → ∀ x → ℰ! (B x)
Tup-Im-Pi xs tup x = Tup-Im-Lookup x (xs .fst) (xs .snd x) tup
instance
inst-pair : ⦃ lhs : A ⦄ ⦃ rhs : B ⦄ → A ?× B
inst-pair ⦃ lhs ⦄ ⦃ rhs ⦄ = pair lhs rhs
instance
fin-sigma : ⦃ lhs : ℰ! A ⦄ {B : A → Type b} → ⦃ rhs : Im-Type B (lhs .fst) ⦄ → ℰ! (Σ A B)
fin-sigma ⦃ lhs ⦄ ⦃ rhs ⦄ = lhs |Σ| Tup-Im-Pi _ lhs rhs
instance
fin-pi : ⦃ lhs : ℰ! A ⦄ {B : A → Type b} → ⦃ rhs : Im-Type B (lhs .fst) ⦄ → (ℰ! ((x : A) → B x))
fin-pi ⦃ lhs ⦄ ⦃ rhs ⦄ = lhs |Π| Tup-Im-Pi _ lhs rhs
-- instance
-- fin-prod : ⦃ lhs : ℰ! A ⦄ ⦃ rhs : ℰ! B ⦄ → ℰ! (A × B)
-- fin-prod ⦃ lhs ⦄ ⦃ rhs ⦄ = lhs |×| rhs
-- instance
-- fin-fun : {A B : Type₀} ⦃ lhs : ℰ! A ⦄ ⦃ rhs : ℰ! B ⦄ → ℰ! (A → B)
-- fin-fun ⦃ lhs ⦄ ⦃ rhs ⦄ = lhs |Π| λ _ → rhs
instance
fin-sum : ⦃ lhs : ℰ! A ⦄ ⦃ rhs : ℰ! B ⦄ → ℰ! (A ⊎ B)
fin-sum ⦃ lhs ⦄ ⦃ rhs ⦄ = lhs |⊎| rhs
instance
fin-bool : ℰ! Bool
fin-bool = ℰ!⟨2⟩
instance
fin-top : ℰ! ⊤
fin-top = ℰ!⟨⊤⟩
instance
fin-bot : ℰ! ⊥
fin-bot = ℰ!⟨⊥⟩
instance
fin-fin : ∀ {n} → ℰ! (Fin n)
fin-fin = ℰ!⟨Fin⟩
| {
"alphanum_fraction": 0.5464612422,
"avg_line_length": 27.6933333333,
"ext": "agda",
"hexsha": "6a7f2197c3641caff8c2f4e1292da38cbd0978f2",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z",
"max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/combinatorics-paper",
"max_forks_repo_path": "agda/Cardinality/Finite/SplitEnumerable/Instances.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/combinatorics-paper",
"max_issues_repo_path": "agda/Cardinality/Finite/SplitEnumerable/Instances.agda",
"max_line_length": 98,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/combinatorics-paper",
"max_stars_repo_path": "agda/Cardinality/Finite/SplitEnumerable/Instances.agda",
"max_stars_repo_stars_event_max_datetime": "2021-01-05T15:32:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-01-05T14:07:44.000Z",
"num_tokens": 996,
"size": 2077
} |
-- 2012-03-08 Andreas
module _ where
{-# TERMINATING #-}
-- error: misplaced pragma
| {
"alphanum_fraction": 0.6744186047,
"avg_line_length": 12.2857142857,
"ext": "agda",
"hexsha": "e532db62b7ff029fc3ec5c7b7911a48144db0f3f",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/NoTerminationCheck5.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/NoTerminationCheck5.agda",
"max_line_length": 26,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/NoTerminationCheck5.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 24,
"size": 86
} |
-- Andreas, 2014-01-16, issue 1406
-- Agda with K again is inconsistent with classical logic
-- {-# OPTIONS --cubical-compatible #-}
open import Common.Level
open import Common.Prelude
open import Common.Equality
cast : {A B : Set} (p : A ≡ B) (a : A) → B
cast refl a = a
data HEq {α} {A : Set α} (a : A) : {B : Set α} (b : B) → Set (lsuc α) where
refl : HEq a a
mkHet : {A B : Set} (eq : A ≡ B) (a : A) → HEq a (cast eq a)
mkHet refl a = refl
-- Type with a big forced index. (Allowed unless --cubical-compatible.)
-- This definition is allowed in Agda master since 2014-10-17
-- https://github.com/agda/agda/commit/9a4ebdd372dc0510e2d77e726fb0f4e6f56781e8
-- However, probably the consequences of this new feature have not
-- been grasped fully yet.
data SING : (F : Set → Set) → Set where
sing : (F : Set → Set) → SING F
-- The following theorem is the culprit.
-- It needs K.
-- It allows us to unify forced indices, which I think is wrong.
thm : ∀{F G : Set → Set} (a : SING F) (b : SING G) (p : HEq a b) → F ≡ G
thm (sing F) (sing .F) refl = refl
-- Note that a direct matching fails, as it generates heterogeneous constraints.
-- thm a .a refl = refl
-- However, by matching on the constructor sing, the forced index
-- is exposed to unification.
-- As a consequence of thm,
-- SING is injective which it clearly should not be.
SING-inj : ∀ (F G : Set → Set) (p : SING F ≡ SING G) → F ≡ G
SING-inj F G p = thm (sing F) _ (mkHet p (sing F))
-- The rest is an adaption of Chung-Kil Hur's proof (2010)
data Either {α} (A B : Set α) : Set α where
inl : A → Either A B
inr : B → Either A B
data Inv (A : Set) : Set1 where
inv : (F : Set → Set) (eq : SING F ≡ A) → Inv A
¬ : ∀{α} → Set α → Set α
¬ A = A → ⊥
-- Classical logic
postulate em : ∀{α} (A : Set α) → Either A (¬ A)
Cantor' : (A : Set) → Either (Inv A) (¬ (Inv A)) → Set
Cantor' A (inl (inv F eq)) = ¬ (F A)
Cantor' A (inr _) = ⊤
Cantor : Set → Set
Cantor A = Cantor' A (em (Inv A))
C : Set
C = SING Cantor
ic : Inv C
ic = inv Cantor refl
cast' : ∀{F G} → SING F ≡ SING G → ¬ (F C) → ¬ (G C)
cast' eq = subst (λ F → ¬ (F C)) (SING-inj _ _ eq)
-- Self application 1
diag : ¬ (Cantor C)
diag c with em (Inv C) | c
diag c | inl (inv F eq) | c' = cast' eq c' c
diag _ | inr f | _ = f ic
-- Self application 2
diag' : Cantor C
diag' with em (Inv C)
diag' | inl (inv F eq) = cast' (sym eq) diag
diag' | inr _ = _
absurd : ⊥
absurd = diag diag'
| {
"alphanum_fraction": 0.603406326,
"avg_line_length": 26.8043478261,
"ext": "agda",
"hexsha": "cb886a6dc1374a026311ba866745cfbf825dee33",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Fail/Issue1406.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Fail/Issue1406.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Fail/Issue1406.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 908,
"size": 2466
} |
{-# OPTIONS --cubical-compatible #-}
------------------------------------------------------------------------
-- Universe levels
------------------------------------------------------------------------
module Common.Level where
open import Agda.Primitive public using (Level; lzero; lsuc; _⊔_)
-- Lifting.
record Lift {a ℓ} (A : Set a) : Set (a ⊔ ℓ) where
constructor lift
field lower : A
open Lift public
| {
"alphanum_fraction": 0.443373494,
"avg_line_length": 24.4117647059,
"ext": "agda",
"hexsha": "28d2d09fb071791e5abf05d09813abd0eca530ca",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Common/Level.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Common/Level.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Common/Level.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 86,
"size": 415
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
{-# OPTIONS --allow-unsolved-metas #-}
-- This module provides some scaffolding to define the handlers for our fake/simple "implementation"
-- and connect them to the interface of the SystemModel.
open import Optics.All
open import LibraBFT.Prelude
open import LibraBFT.Lemmas
open import LibraBFT.Base.ByteString
open import LibraBFT.Base.Encode
open import LibraBFT.Base.KVMap
open import LibraBFT.Base.PKCS
open import LibraBFT.Hash
open import LibraBFT.Impl.Base.Types
open import LibraBFT.Impl.Consensus.Types
open import LibraBFT.Impl.Util.Util
open import LibraBFT.Impl.Properties.Aux -- TODO-1: maybe Aux properties should be in this file?
open import LibraBFT.Concrete.System impl-sps-avp
open import LibraBFT.Concrete.System.Parameters
open EpochConfig
open import LibraBFT.Yasm.Yasm (ℓ+1 0ℓ) EpochConfig epochId authorsN ConcSysParms NodeId-PK-OK
open Structural impl-sps-avp
module LibraBFT.Impl.Handle.Properties
(hash : BitString → Hash)
(hash-cr : ∀{x y} → hash x ≡ hash y → Collision hash x y ⊎ x ≡ y)
where
open import LibraBFT.Impl.Consensus.ChainedBFT.EventProcessor hash hash-cr
open import LibraBFT.Impl.Handle hash hash-cr
----- Properties that bridge the system model gap to the handler -----
msgsToSendWereSent1 : ∀ {pid ts pm vm} {st : EventProcessor}
→ send (V vm) ∈ proj₂ (peerStep pid (P pm) ts st)
→ ∃[ αs ] (SendVote vm αs ∈ LBFT-outs (handle pid (P pm) ts) st)
msgsToSendWereSent1 {pid} {ts} {pm} {vm} {st} send∈acts
with send∈acts
-- The fake handler sends only to node 0 (fakeAuthor), so this doesn't
-- need to be very general yet.
-- TODO-1: generalize this proof so it will work when the set of recipients is
-- not hard coded.
-- The system model allows any message sent to be received by any peer (so the list of
-- recipients it essentially ignored), meaning that our safety proofs will be for a slightly
-- stronger model. Progress proofs will require knowledge of recipients, though, so we will
-- keep the implementation model faithful to the implementation.
...| here refl = fakeAuthor ∷ [] , here refl
msgsToSendWereSent : ∀ {pid ts nm m} {st : EventProcessor}
→ m ∈ proj₂ (peerStepWrapper pid nm st)
→ ∃[ vm ] (m ≡ V vm × send (V vm) ∈ proj₂ (peerStep pid nm ts st))
msgsToSendWereSent {pid} {nm = nm} {m} {st} m∈outs
with nm
...| C _ = ⊥-elim (¬Any[] m∈outs)
...| V _ = ⊥-elim (¬Any[] m∈outs)
...| P pm
with m∈outs
...| here v∈outs
with m
...| P _ = ⊥-elim (P≢V v∈outs)
...| C _ = ⊥-elim (C≢V v∈outs)
...| V vm rewrite sym v∈outs = vm , refl , here refl
----- Properties that relate handler to system state -----
postulate -- TODO-2: this will be proved for the implementation, confirming that honest
-- participants only store QCs comprising votes that have actually been sent.
-- Votes stored in highesQuorumCert and highestCommitCert were sent before.
-- Note that some implementations might not ensure this, but LibraBFT does
-- because even the leader of the next round sends its own vote to itself,
-- as opposed to using it to construct a QC using its own unsent vote.
qcVotesSentB4 : ∀{e pid ps vs pk q vm}{st : SystemState e}
→ ReachableSystemState st
→ initialised st pid ≡ initd
→ ps ≡ peerStates st pid
→ q QC∈VoteMsg vm
→ vm ^∙ vmSyncInfo ≡ mkSyncInfo (ps ^∙ epHighestQC) (ps ^∙ epHighestCommitQC)
→ vs ∈ qcVotes q
→ MsgWithSig∈ pk (proj₂ vs) (msgPool st)
| {
"alphanum_fraction": 0.6690482266,
"avg_line_length": 45.5697674419,
"ext": "agda",
"hexsha": "a651ec4114ab928bd47e99a7e666806bc2be8265",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "34e4627855fb198665d0c98f377403a906ba75d7",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "haroldcarr/bft-consensus-agda",
"max_forks_repo_path": "LibraBFT/Impl/Handle/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "34e4627855fb198665d0c98f377403a906ba75d7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "haroldcarr/bft-consensus-agda",
"max_issues_repo_path": "LibraBFT/Impl/Handle/Properties.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "34e4627855fb198665d0c98f377403a906ba75d7",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "haroldcarr/bft-consensus-agda",
"max_stars_repo_path": "LibraBFT/Impl/Handle/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1107,
"size": 3919
} |
module utm where
open import turing
open import Data.Product
-- open import Data.Bool
open import Data.List
open import Data.Nat
open import logic
data utmStates : Set where
reads : utmStates
read0 : utmStates
read1 : utmStates
read2 : utmStates
read3 : utmStates
read4 : utmStates
read5 : utmStates
read6 : utmStates
loc0 : utmStates
loc1 : utmStates
loc2 : utmStates
loc3 : utmStates
loc4 : utmStates
loc5 : utmStates
loc6 : utmStates
fetch0 : utmStates
fetch1 : utmStates
fetch2 : utmStates
fetch3 : utmStates
fetch4 : utmStates
fetch5 : utmStates
fetch6 : utmStates
fetch7 : utmStates
print0 : utmStates
print1 : utmStates
print2 : utmStates
print3 : utmStates
print4 : utmStates
print5 : utmStates
print6 : utmStates
print7 : utmStates
mov0 : utmStates
mov1 : utmStates
mov2 : utmStates
mov3 : utmStates
mov4 : utmStates
mov5 : utmStates
mov6 : utmStates
tidy0 : utmStates
tidy1 : utmStates
halt : utmStates
data utmΣ : Set where
0 : utmΣ
1 : utmΣ
B : utmΣ
* : utmΣ
$ : utmΣ
^ : utmΣ
X : utmΣ
Y : utmΣ
Z : utmΣ
@ : utmΣ
b : utmΣ
utmδ : utmStates → utmΣ → utmStates × (Write utmΣ) × Move
utmδ reads x = read0 , wnone , mnone
utmδ read0 * = read1 , write * , left
utmδ read0 x = read0 , write x , right
utmδ read1 x = read2 , write @ , right
utmδ read2 ^ = read3 , write ^ , right
utmδ read2 x = read2 , write x , right
utmδ read3 0 = read4 , write 0 , left
utmδ read3 1 = read5 , write 1 , left
utmδ read3 b = read6 , write b , left
utmδ read4 @ = loc0 , write 0 , right
utmδ read4 x = read4 , write x , left
utmδ read5 @ = loc0 , write 1 , right
utmδ read5 x = read5 , write x , left
utmδ read6 @ = loc0 , write B , right
utmδ read6 x = read6 , write x , left
utmδ loc0 0 = loc0 , write X , left
utmδ loc0 1 = loc0 , write Y , left
utmδ loc0 B = loc0 , write Z , left
utmδ loc0 $ = loc1 , write $ , right
utmδ loc0 x = loc0 , write x , left
utmδ loc1 X = loc2 , write 0 , right
utmδ loc1 Y = loc3 , write 1 , right
utmδ loc1 Z = loc4 , write B , right
utmδ loc1 * = fetch0 , write * , right
utmδ loc1 x = loc1 , write x , right
utmδ loc2 0 = loc5 , write X , right
utmδ loc2 1 = loc6 , write Y , right
utmδ loc2 B = loc6 , write Z , right
utmδ loc2 x = loc2 , write x , right
utmδ loc3 1 = loc5 , write Y , right
utmδ loc3 0 = loc6 , write X , right
utmδ loc3 B = loc6 , write Z , right
utmδ loc3 x = loc3 , write x , right
utmδ loc4 B = loc5 , write Z , right
utmδ loc4 0 = loc6 , write X , right
utmδ loc4 1 = loc6 , write Y , right
utmδ loc4 x = loc4 , write x , right
utmδ loc5 $ = loc1 , write $ , right
utmδ loc5 x = loc5 , write x , left
utmδ loc6 $ = halt , write $ , right
utmδ loc6 * = loc0 , write * , left
utmδ loc6 x = loc6 , write x , right
utmδ fetch0 0 = fetch1 , write X , left
utmδ fetch0 1 = fetch2 , write Y , left
utmδ fetch0 B = fetch3 , write Z , left
utmδ fetch0 x = fetch0 , write x , right
utmδ fetch1 $ = fetch4 , write $ , right
utmδ fetch1 x = fetch1 , write x , left
utmδ fetch2 $ = fetch5 , write $ , right
utmδ fetch2 x = fetch2 , write x , left
utmδ fetch3 $ = fetch6 , write $ , right
utmδ fetch3 x = fetch3 , write x , left
utmδ fetch4 0 = fetch7 , write X , right
utmδ fetch4 1 = fetch7 , write X , right
utmδ fetch4 B = fetch7 , write X , right
utmδ fetch4 * = print0 , write * , left
utmδ fetch4 x = fetch4 , write x , right
utmδ fetch5 0 = fetch7 , write Y , right
utmδ fetch5 1 = fetch7 , write Y , right
utmδ fetch5 B = fetch7 , write Y , right
utmδ fetch5 * = print0 , write * , left
utmδ fetch5 x = fetch5 , write x , right
utmδ fetch6 0 = fetch7 , write Z , right
utmδ fetch6 1 = fetch7 , write Z , right
utmδ fetch6 B = fetch7 , write Z , right
utmδ fetch6 * = print0 , write * , left
utmδ fetch6 x = fetch6 , write x , right
utmδ fetch7 * = fetch0 , write * , right
utmδ fetch7 x = fetch7 , write x , right
utmδ print0 X = print1 , write X , right
utmδ print0 Y = print2 , write Y , right
utmδ print0 Z = print3 , write Z , right
utmδ print1 ^ = print4 , write ^ , right
utmδ print1 x = print1 , write x , right
utmδ print2 ^ = print5 , write ^ , right
utmδ print2 x = print2 , write x , right
utmδ print3 ^ = print6 , write ^ , right
utmδ print3 x = print3 , write x , right
utmδ print4 x = print7 , write 0 , left
utmδ print5 x = print7 , write 1 , left
utmδ print6 x = print7 , write B , left
utmδ print7 X = mov0 , write X , right
utmδ print7 Y = mov1 , write Y , right
utmδ print7 x = print7 , write x , left
utmδ mov0 ^ = mov2 , write ^ , left
utmδ mov0 x = mov0 , write x , right
utmδ mov1 ^ = mov3 , write ^ , right
utmδ mov1 x = mov1 , write x , right
utmδ mov2 0 = mov4 , write ^ , right
utmδ mov2 1 = mov5 , write ^ , right
utmδ mov2 B = mov6 , write ^ , right
utmδ mov3 0 = mov4 , write ^ , left
utmδ mov3 1 = mov5 , write ^ , left
utmδ mov3 B = mov6 , write ^ , left
utmδ mov4 ^ = tidy0 , write 0 , left
utmδ mov5 ^ = tidy0 , write 1 , left
utmδ mov6 ^ = tidy0 , write B , left
utmδ tidy0 $ = tidy1 , write $ , left
utmδ tidy0 x = tidy0 , write x , left
utmδ tidy1 X = tidy1 , write 0 , left
utmδ tidy1 Y = tidy1 , write 1 , left
utmδ tidy1 Z = tidy1 , write B , left
utmδ tidy1 $ = reads , write $ , right
utmδ tidy1 x = tidy1 , write x , left
utmδ _ x = halt , write x , mnone
U-TM : Turing utmStates utmΣ
U-TM = record {
tδ = utmδ
; tstart = read0
; tend = tend
; tnone = b
} where
tend : utmStates → Bool
tend halt = true
tend _ = false
-- Copyδ : CopyStates → ℕ → CopyStates × ( Write ℕ ) × Move
-- Copyδ s1 0 = H , wnone , mnone
-- Copyδ s1 1 = s2 , write 0 , right
-- Copyδ s2 0 = s3 , write 0 , right
-- Copyδ s2 1 = s2 , write 1 , right
-- Copyδ s3 0 = s4 , write 1 , left
-- Copyδ s3 1 = s3 , write 1 , right
-- Copyδ s4 0 = s5 , write 0 , left
-- Copyδ s4 1 = s4 , write 1 , left
-- Copyδ s5 0 = s1 , write 1 , right
-- Copyδ s5 1 = s5 , write 1 , left
-- Copyδ H _ = H , wnone , mnone
-- Copyδ _ (suc (suc _)) = H , wnone , mnone
Copyδ-encode : List utmΣ
Copyδ-encode =
0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ -- s1 0 = H , wnone , mnone
* ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ -- s1 1 = s2 , write 0 , right
* ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ -- s2 0 = s3 , write 0 , right
* ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ -- s2 1 = s2 , write 1 , right
* ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ -- s3 0 = s4 , write 1 , left
* ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ -- s3 1 = s3 , write 1 , right
* ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ -- s4 0 = s5 , write 0 , left
* ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ -- s4 1 = s4 , write 1 , left
* ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ -- s5 0 = s1 , write 1 , right
* ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ -- s5 1 = s5 , write 1 , left
[]
input-encode : List utmΣ
input-encode = 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ []
input+Copyδ : List utmΣ
input+Copyδ = ( $ ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ * ∷ [] ) -- start state
++ Copyδ-encode
++ ( $ ∷ ^ ∷ input-encode )
short-input : List utmΣ
short-input = $ ∷ 0 ∷ 0 ∷ 0 ∷ * ∷
0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ * ∷
0 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ * ∷
0 ∷ 1 ∷ B ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ * ∷
1 ∷ 0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ $ ∷
^ ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ []
utm-test1 : List utmΣ → utmStates × ( List utmΣ ) × ( List utmΣ )
utm-test1 inp = Turing.taccept U-TM inp
{-# TERMINATING #-}
utm-test2 : ℕ → List utmΣ → utmStates × ( List utmΣ ) × ( List utmΣ )
utm-test2 n inp = loop n (Turing.tstart U-TM) inp []
where
loop : ℕ → utmStates → ( List utmΣ ) → ( List utmΣ ) → utmStates × ( List utmΣ ) × ( List utmΣ )
loop zero q L R = ( q , L , R )
loop (suc n) q L R with move {utmStates} {utmΣ} {0} {utmδ} q L R | q
... | nq , nL , nR | reads = loop n nq nL nR
... | nq , nL , nR | _ = loop (suc n) nq nL nR
t1 = utm-test2 20 short-input
t : (n : ℕ) → utmStates × ( List utmΣ ) × ( List utmΣ )
-- t n = utm-test2 n input+Copyδ
t n = utm-test2 n short-input
| {
"alphanum_fraction": 0.5519511048,
"avg_line_length": 33.7619047619,
"ext": "agda",
"hexsha": "d1cf16a614597a513781f4326b4dfffef1ec84f2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "shinji-kono/automaton-in-agda",
"max_forks_repo_path": "src/utm.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "shinji-kono/automaton-in-agda",
"max_issues_repo_path": "src/utm.agda",
"max_line_length": 109,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "shinji-kono/automaton-in-agda",
"max_stars_repo_path": "src/utm.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3806,
"size": 8508
} |
{-# OPTIONS --safe #-}
module Cubical.HITs.TypeQuotients where
open import Cubical.HITs.TypeQuotients.Base public
open import Cubical.HITs.TypeQuotients.Properties public
| {
"alphanum_fraction": 0.8139534884,
"avg_line_length": 28.6666666667,
"ext": "agda",
"hexsha": "0059b89aad88427f7905daf7ada60c4f391a7c57",
"lang": "Agda",
"max_forks_count": 134,
"max_forks_repo_forks_event_max_datetime": "2022-03-23T16:22:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-11-16T06:11:03.000Z",
"max_forks_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "marcinjangrzybowski/cubical",
"max_forks_repo_path": "Cubical/HITs/TypeQuotients.agda",
"max_issues_count": 584,
"max_issues_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_issues_repo_issues_event_max_datetime": "2022-03-30T12:09:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-10-15T09:49:02.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "marcinjangrzybowski/cubical",
"max_issues_repo_path": "Cubical/HITs/TypeQuotients.agda",
"max_line_length": 56,
"max_stars_count": 301,
"max_stars_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "marcinjangrzybowski/cubical",
"max_stars_repo_path": "Cubical/HITs/TypeQuotients.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-24T02:10:47.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-17T18:00:24.000Z",
"num_tokens": 45,
"size": 172
} |
data _≡_ {A : Set} (x : A) : A → Set where
refl : x ≡ x
cong : ∀ {A B : Set} (f : A → B) {x y : A} → x ≡ y → f x ≡ f y
cong f refl = refl
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
data Fin : ℕ → Set where
zero : {n : ℕ} → Fin (suc n)
suc : {n : ℕ} (i : Fin n) → Fin (suc n)
data _≤_ : ℕ → ℕ → Set where
zero : ∀ {n} → zero ≤ n
suc : ∀ {m n} (le : m ≤ n) → suc m ≤ suc n
_<_ : ℕ → ℕ → Set
m < n = suc m ≤ n
toℕ : ∀ {n} → Fin n → ℕ
toℕ zero = zero
toℕ (suc i) = suc (toℕ i)
fromℕ≤ : ∀ {m n} → m < n → Fin n
fromℕ≤ (suc zero) = zero
fromℕ≤ (suc (suc m≤n)) = suc (fromℕ≤ (suc m≤n))
-- If we treat constructors as inert this fails to solve. Not entirely sure why.
fromℕ≤-toℕ : ∀ {m} (i : Fin m) (i<m : toℕ i < m) → fromℕ≤ i<m ≡ i
fromℕ≤-toℕ zero (suc zero) = refl
fromℕ≤-toℕ (suc i) (suc (suc m≤n)) = cong suc (fromℕ≤-toℕ i (suc m≤n))
| {
"alphanum_fraction": 0.4853603604,
"avg_line_length": 25.3714285714,
"ext": "agda",
"hexsha": "b798db037c86a1163f28d76558c877f934d6cbbc",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/InertFailure.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/InertFailure.agda",
"max_line_length": 80,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/InertFailure.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 435,
"size": 888
} |
{-# OPTIONS --no-positivity-check #-}
module IIRDg where
import LF
import DefinitionalEquality
import IIRD
open LF
open DefinitionalEquality
open IIRD
mutual
data Ug {I : Set}{D : I -> Set1}(γ : OPg I D) : I -> Set where
introg : (a : Gu γ (Ug γ) (Tg γ)) -> Ug γ (Gi γ (Ug γ) (Tg γ) a)
Tg : {I : Set}{D : I -> Set1}(γ : OPg I D)(i : I) -> Ug γ i -> D i
Tg γ .(Gi γ (Ug γ) (Tg γ) a) (introg a) = Gt γ (Ug γ) (Tg γ) a
Arg : {I : Set}{D : I -> Set1}(γ : OPg I D) -> Set
Arg γ = Gu γ (Ug γ) (Tg γ)
index : {I : Set}{D : I -> Set1}(γ : OPg I D) -> Arg γ -> I
index γ a = Gi γ (Ug γ) (Tg γ) a
IH : {I : Set}{D : I -> Set1}(γ : OPg I D)(F : (i : I) -> Ug γ i -> Set1) -> Arg γ -> Set1
IH γ = KIH γ (Ug γ) (Tg γ)
-- Elimination rule
Rg : {I : Set}{D : I -> Set1}(γ : OPg I D)(F : (i : I) -> Ug γ i -> Set1) ->
(h : (a : Arg γ) -> IH γ F a -> F (index γ a) (introg a)) ->
(i : I)(u : Ug γ i) -> F i u
Rg γ F h .(index γ a) (introg a) = h a (Kmap γ (Ug γ) (Tg γ) F (Rg γ F h) a)
{-
-- We don't have general IIRDs so we have to postulate Ug/Tg
postulate
Ug : {I : Set}{D : I -> Set1} -> OPg I D -> I -> Set
Tg : {I : Set}{D : I -> Set1}(γ : OPg I D)(i : I) -> Ug γ i -> D i
introg : {I : Set}{D : I -> Set1}(γ : OPg I D)(a : Gu γ (Ug γ) (Tg γ)) ->
Ug γ (Gi γ (Ug γ) (Tg γ) a)
Tg-equality : {I : Set}{D : I -> Set1}(γ : OPg I D)(a : Gu γ (Ug γ) (Tg γ)) ->
Tg γ (Gi γ (Ug γ) (Tg γ) a) (introg γ a) ≡₁ Gt γ (Ug γ) (Tg γ) a
Rg : {I : Set}{D : I -> Set1}(γ : OPg I D)(F : (i : I) -> Ug γ i -> Set1)
(h : (a : Gu γ (Ug γ) (Tg γ)) -> KIH γ (Ug γ) (Tg γ) F a -> F (Gi γ (Ug γ) (Tg γ) a) (introg γ a))
(i : I)(u : Ug γ i) -> F i u
Rg-equality : {I : Set}{D : I -> Set1}(γ : OPg I D)(F : (i : I) -> Ug γ i -> Set1)
(h : (a : Gu γ (Ug γ) (Tg γ)) -> KIH γ (Ug γ) (Tg γ) F a -> F (Gi γ (Ug γ) (Tg γ) a) (introg γ a))
(a : Gu γ (Ug γ) (Tg γ)) ->
Rg γ F h (Gi γ (Ug γ) (Tg γ) a) (introg γ a)
≡₁ h a (Kmap γ (Ug γ) (Tg γ) F (Rg γ F h) a)
-- Helpers
ι★g : {I : Set}(i : I) -> OPg I (\_ -> One')
ι★g i = ι < i | ★' >'
-- Examples
module Martin-Löf-Identity where
IdOP : {A : Set} -> OPg (A * A) (\_ -> One')
IdOP {A} = σ A \a -> ι★g < a | a >
_==_ : {A : Set}(x y : A) -> Set
x == y = Ug IdOP < x | y >
refl : {A : Set}(x : A) -> x == x
refl x = introg IdOP < x | ★ >
-- We have to work slightly harder than desired since we don't have η for × and One.
private
-- F C is just uncurry C but dependent and at high universes.
F : {A : Set}(C : (x y : A) -> x == y -> Set1)(i : A * A) -> Ug IdOP i -> Set1
F C < x | y > p = C x y p
h' : {A : Set}(C : (x y : A) -> x == y -> Set1)
(h : (x : A) -> C x x (refl x))
(a : Gu IdOP (Ug IdOP) (Tg IdOP)) -> KIH IdOP (Ug IdOP) (Tg IdOP) (F C) a ->
F C (Gi IdOP (Ug IdOP) (Tg IdOP) a) (introg IdOP a)
h' C h < x | ★ > _ = h x
J : {A : Set}(C : (x y : A) -> x == y -> Set1)
(h : (x : A) -> C x x (refl x))
(x y : A)(p : x == y) -> C x y p
J {A} C h x y p = Rg IdOP (F C) (h' C h) < x | y > p
J-equality : {A : Set}(C : (x y : A) -> x == y -> Set1)
(h : (x : A) -> C x x (refl x))(x : A) ->
J C h x x (refl x) ≡₁ h x
J-equality {A} C h x = Rg-equality IdOP (F C) (h' C h) < x | ★ >
module Christine-Identity where
IdOP : {A : Set}(a : A) -> OPg A (\_ -> One')
IdOP {A} a = ι★g a
_==_ : {A : Set}(x y : A) -> Set
x == y = Ug (IdOP x) y
refl : {A : Set}(x : A) -> x == x
refl x = introg (IdOP x) ★
private
h' : {A : Set}(x : A)(C : (y : A) -> x == y -> Set1)
(h : C x (refl x))(a : Gu (IdOP x) (Ug (IdOP x)) (Tg (IdOP x))) ->
KIH (IdOP x) (Ug (IdOP x)) (Tg (IdOP x)) C a ->
C (Gi (IdOP x) (Ug (IdOP x)) (Tg (IdOP x)) a) (introg (IdOP x) a)
h' x C h ★ _ = h
H : {A : Set}(x : A)(C : (y : A) -> x == y -> Set1)
(h : C x (refl x))
(y : A)(p : x == y) -> C y p
H x C h y p = Rg (IdOP x) C (h' x C h) y p
H-equality : {A : Set}(x : A)(C : (y : A) -> x == y -> Set1)
(h : C x (refl x)) ->
H x C h x (refl x) ≡₁ h
H-equality x C h = Rg-equality (IdOP x) C (h' x C h) ★
open Christine-Identity
-}
| {
"alphanum_fraction": 0.4285380117,
"avg_line_length": 33.3984375,
"ext": "agda",
"hexsha": "0c37d688e7716190419f7dac82fcb639976046bc",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/iird/IIRDg.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/iird/IIRDg.agda",
"max_line_length": 114,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "examples/outdated-and-incorrect/iird/IIRDg.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 1955,
"size": 4275
} |
module Oscar.Category.Setoid where
open import Oscar.Builtin.Objectevel
open import Oscar.Property
record IsSetoid {𝔬} {𝔒 : Ø 𝔬} {𝔮} (_≋_ : 𝑴 1 𝔒 𝔮) : Ø 𝔬 ∙̂ 𝔮 where
field
reflexivity : ∀ x → x ≋ x
symmetry : ∀ {x y} → x ≋ y → y ≋ x
transitivity : ∀ {x y} → x ≋ y → ∀ {z} → y ≋ z → x ≋ z
open IsSetoid ⦃ … ⦄ public
record Setoid 𝔬 𝔮 : Ø ↑̂ (𝔬 ∙̂ 𝔮) where
constructor ↑_
infix 4 _≋_
field
{⋆} : Set 𝔬
_≋_ : ⋆ → ⋆ → Set 𝔮
⦃ isSetoid ⦄ : IsSetoid _≋_
open IsSetoid isSetoid public
| {
"alphanum_fraction": 0.5628626692,
"avg_line_length": 22.4782608696,
"ext": "agda",
"hexsha": "e043e266dc74927ea8a92e02027261277b78f1ec",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-2/Oscar/Category/Setoid.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-2/Oscar/Category/Setoid.agda",
"max_line_length": 66,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-2/Oscar/Category/Setoid.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 255,
"size": 517
} |
module _ where
data Flat (A : Set) : Set where
flat : @♭ A → Flat A
-- the lambda cohesion annotation must match the domain.
into : {A : Set} → A → Flat A
into = λ (@♭ a) → flat a
| {
"alphanum_fraction": 0.6086956522,
"avg_line_length": 20.4444444444,
"ext": "agda",
"hexsha": "3d042242579ded224959de5edee318512b4d9230",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-09-15T14:36:15.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-09-15T14:36:15.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue3945.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue3945.agda",
"max_line_length": 56,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue3945.agda",
"max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z",
"num_tokens": 61,
"size": 184
} |
{-# OPTIONS --cubical --safe #-}
module Data.String where
open import Agda.Builtin.String using (String) public
open import Agda.Builtin.String
open import Agda.Builtin.String.Properties
open import Agda.Builtin.Char using (Char) public
open import Agda.Builtin.Char
open import Agda.Builtin.Char.Properties
open import Relation.Binary
open import Relation.Binary.Construct.On
import Data.Nat.Order as ℕ
open import Function.Injective
open import Function
open import Path
open import Data.List
open import Data.List.Relation.Binary.Lexicographic
unpack : String → List Char
unpack = primStringToList
pack : List Char → String
pack = primStringFromList
charOrd : TotalOrder Char _ _
charOrd = on-ord primCharToNat lemma ℕ.totalOrder
where
lemma : Injective primCharToNat
lemma x y p = builtin-eq-to-path (primCharToNatInjective x y (path-to-builtin-eq p ))
listCharOrd : TotalOrder (List Char) _ _
listCharOrd = listOrd charOrd
stringOrd : TotalOrder String _ _
stringOrd = on-ord primStringToList lemma listCharOrd
where
lemma : Injective primStringToList
lemma x y p = builtin-eq-to-path (primStringToListInjective x y (path-to-builtin-eq p))
| {
"alphanum_fraction": 0.7903780069,
"avg_line_length": 29.1,
"ext": "agda",
"hexsha": "ca19bd1bf3a12c54595f97bcbc5a64822caf9c90",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Data/String.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Data/String.agda",
"max_line_length": 89,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Data/String.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 301,
"size": 1164
} |
-- Example usage of solver
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
module Experiment.Categories.Solver.Category.Example
{o ℓ e} (𝒞 : Category o ℓ e) where
open import Experiment.Categories.Solver.Category 𝒞
open Category 𝒞
open HomReasoning
private
variable
A B C D E : Obj
module _ (f : D ⇒ E) (g : C ⇒ D) (h : B ⇒ C) (i : A ⇒ B) where
_ : (f ∘ id ∘ g) ∘ id ∘ h ∘ i ≈ f ∘ (g ∘ h) ∘ i
_ = solve ((∥-∥ :∘ :id :∘ ∥-∥) :∘ :id :∘ ∥-∥ :∘ ∥-∥)
(∥-∥ :∘ (∥-∥ :∘ ∥-∥) :∘ ∥-∥)
refl
| {
"alphanum_fraction": 0.520295203,
"avg_line_length": 22.5833333333,
"ext": "agda",
"hexsha": "9c8b3dde0bdb253437cded53f67a86d1532a8c35",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rei1024/agda-misc",
"max_forks_repo_path": "Experiment/Categories/Solver/Category/Example.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rei1024/agda-misc",
"max_issues_repo_path": "Experiment/Categories/Solver/Category/Example.agda",
"max_line_length": 62,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rei1024/agda-misc",
"max_stars_repo_path": "Experiment/Categories/Solver/Category/Example.agda",
"max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z",
"num_tokens": 233,
"size": 542
} |
----------------------------------------------------------------
-- This file contains the definition of isomorphisms. --
----------------------------------------------------------------
module Category.Iso where
open import Category.Category
record Iso {l : Level}{ℂ : Cat {l}}{A B : Obj ℂ} (f : el (Hom ℂ A B)) : Set l where
field
inv : el (Hom ℂ B A)
left-inv-ax : ⟨ Hom ℂ A A ⟩[ f ○[ comp ℂ ] inv ≡ id ℂ ]
right-inv-ax : ⟨ Hom ℂ B B ⟩[ inv ○[ comp ℂ ] f ≡ id ℂ ]
open Iso public
| {
"alphanum_fraction": 0.4294117647,
"avg_line_length": 31.875,
"ext": "agda",
"hexsha": "4f1e29bce2d669af342a71530e1ffb2db3ec0213",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "heades/AUGL",
"max_forks_repo_path": "setoid-cats/Category/Iso.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "heades/AUGL",
"max_issues_repo_path": "setoid-cats/Category/Iso.agda",
"max_line_length": 83,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "heades/AUGL",
"max_stars_repo_path": "setoid-cats/Category/Iso.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 146,
"size": 510
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- The Cowriter type and some operations
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe --sized-types #-}
module Codata.Cowriter where
open import Size
import Level as L
open import Codata.Thunk using (Thunk; force)
open import Codata.Conat
open import Codata.Delay using (Delay; later; now)
open import Codata.Stream as Stream using (Stream; _∷_)
open import Data.Unit
open import Data.List using (List; []; _∷_)
open import Data.List.NonEmpty using (List⁺; _∷_)
open import Data.Nat.Base as Nat using (ℕ; zero; suc)
open import Data.Product as Prod using (_×_; _,_)
open import Data.Sum as Sum using (_⊎_; inj₁; inj₂)
open import Data.Vec using (Vec; []; _∷_)
open import Data.BoundedVec as BVec using (BoundedVec)
open import Function
data Cowriter {w a} (W : Set w) (A : Set a) (i : Size) : Set (a L.⊔ w) where
[_] : A → Cowriter W A i
_∷_ : W → Thunk (Cowriter W A) i → Cowriter W A i
------------------------------------------------------------------------
-- Relationship to Delay.
module _ {a} {A : Set a} where
fromDelay : ∀ {i} → Delay A i → Cowriter ⊤ A i
fromDelay (now a) = [ a ]
fromDelay (later da) = _ ∷ λ where .force → fromDelay (da .force)
module _ {w a} {W : Set w} {A : Set a} where
toDelay : ∀ {i} → Cowriter W A i → Delay A i
toDelay [ a ] = now a
toDelay (_ ∷ ca) = later λ where .force → toDelay (ca .force)
------------------------------------------------------------------------
-- Basic functions.
fromStream : ∀ {i} → Stream W i → Cowriter W A i
fromStream (w ∷ ws) = w ∷ λ where .force → fromStream (ws .force)
repeat : W → Cowriter W A ∞
repeat = fromStream ∘′ Stream.repeat
length : ∀ {i} → Cowriter W A i → Conat i
length [ _ ] = zero
length (w ∷ cw) = suc λ where .force → length (cw .force)
splitAt : ∀ (n : ℕ) → Cowriter W A ∞ → (Vec W n × Cowriter W A ∞) ⊎ (BoundedVec W n × A)
splitAt zero cw = inj₁ ([] , cw)
splitAt (suc n) [ a ] = inj₂ (BVec.[] , a)
splitAt (suc n) (w ∷ cw) = Sum.map (Prod.map₁ (w ∷_)) (Prod.map₁ (w BVec.∷_))
$ splitAt n (cw .force)
take : ∀ (n : ℕ) → Cowriter W A ∞ → Vec W n ⊎ (BoundedVec W n × A)
take n = Sum.map₁ Prod.proj₁ ∘′ splitAt n
infixr 5 _++_ _⁺++_
_++_ : ∀ {i} → List W → Cowriter W A i → Cowriter W A i
[] ++ ca = ca
(w ∷ ws) ++ ca = w ∷ λ where .force → ws ++ ca
_⁺++_ : ∀ {i} → List⁺ W → Thunk (Cowriter W A) i → Cowriter W A i
(w ∷ ws) ⁺++ ca = w ∷ λ where .force → ws ++ ca .force
concat : ∀ {i} → Cowriter (List⁺ W) A i → Cowriter W A i
concat [ a ] = [ a ]
concat (w ∷ ca) = w ⁺++ λ where .force → concat (ca .force)
module _ {w x a b} {W : Set w} {X : Set x} {A : Set a} {B : Set b} where
------------------------------------------------------------------------
-- Functor, Applicative and Monad
map : ∀ {i} → (W → X) → (A → B) → Cowriter W A i → Cowriter X B i
map f g [ a ] = [ g a ]
map f g (w ∷ cw) = f w ∷ λ where .force → map f g (cw .force)
module _ {w a r} {W : Set w} {A : Set a} {R : Set r} where
map₁ : ∀ {i} → (W → R) → Cowriter W A i → Cowriter R A i
map₁ f = map f id
map₂ : ∀ {i} → (A → R) → Cowriter W A i → Cowriter W R i
map₂ = map id
ap : ∀ {i} → Cowriter W (A → R) i → Cowriter W A i → Cowriter W R i
ap [ f ] ca = map₂ f ca
ap (w ∷ cf) ca = w ∷ λ where .force → ap (cf .force) ca
_>>=_ : ∀ {i} → Cowriter W A i → (A → Cowriter W R i) → Cowriter W R i
[ a ] >>= f = f a
(w ∷ ca) >>= f = w ∷ λ where .force → ca .force >>= f
------------------------------------------------------------------------
-- Construction.
module _ {w s a} {W : Set w} {S : Set s} {A : Set a} where
unfold : ∀ {i} → (S → (W × S) ⊎ A) → S → Cowriter W A i
unfold next seed with next seed
... | inj₁ (w , seed') = w ∷ λ where .force → unfold next seed'
... | inj₂ a = [ a ]
| {
"alphanum_fraction": 0.4982543641,
"avg_line_length": 34.8695652174,
"ext": "agda",
"hexsha": "873faee7a2b82da992bf3302427e1858356df70f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Codata/Cowriter.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Codata/Cowriter.agda",
"max_line_length": 90,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Codata/Cowriter.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1368,
"size": 4010
} |
module Dave.Algebra.Naturals.Bin where
open import Dave.Algebra.Naturals.Definition
open import Dave.Algebra.Naturals.Addition
open import Dave.Algebra.Naturals.Multiplication
open import Dave.Embedding
data Bin : Set where
⟨⟩ : Bin
_t : Bin → Bin
_f : Bin → Bin
inc : Bin → Bin
inc ⟨⟩ = ⟨⟩ t
inc (b t) = (inc b) f
inc (b f) = b t
to : ℕ → Bin
to zero = ⟨⟩ f
to (suc n) = inc (to n)
from : Bin → ℕ
from ⟨⟩ = zero
from (b t) = 1 + 2 * (from b)
from (b f) = 2 * (from b)
from6 = from (⟨⟩ t t f)
from23 = from (⟨⟩ t f t t t)
from23WithZeros = from (⟨⟩ f f f t f t t t)
Bin-ℕ-Suc-Homomorph : ∀ (b : Bin) → from (inc b) ≡ suc (from b)
Bin-ℕ-Suc-Homomorph ⟨⟩ = refl
Bin-ℕ-Suc-Homomorph (b t) = begin
from (inc (b t)) ≡⟨⟩
from ((inc b) f) ≡⟨⟩
2 * (from (inc b)) ≡⟨ cong (λ a → 2 * a) (Bin-ℕ-Suc-Homomorph b) ⟩
2 * suc (from b) ≡⟨⟩
2 * (1 + (from b)) ≡⟨ *-distrib1ₗ-+ₗ 2 (from b) ⟩
2 + 2 * (from b) ≡⟨⟩
suc (1 + 2 * (from b)) ≡⟨⟩
suc (from (b t)) ∎
Bin-ℕ-Suc-Homomorph (b f) = begin
from (inc (b f)) ≡⟨⟩
from (b t) ≡⟨⟩
1 + 2 * (from b) ≡⟨⟩
suc (2 * from b) ≡⟨⟩
suc (from (b f)) ∎
to-inverse-from : ∀ (n : ℕ) → from (to n) ≡ n
to-inverse-from zero = refl
to-inverse-from (suc n) = begin
from (to (suc n)) ≡⟨⟩
from (inc (to n)) ≡⟨ Bin-ℕ-Suc-Homomorph (to n) ⟩
suc (from (to n)) ≡⟨ cong (λ a → suc a) (to-inverse-from n) ⟩
suc n ∎
ℕ≲Bin : ℕ ≲ Bin
ℕ≲Bin = record
{
to = to;
from = from;
from∘to = to-inverse-from
} | {
"alphanum_fraction": 0.5082278481,
"avg_line_length": 25.4838709677,
"ext": "agda",
"hexsha": "a99553e83823367de27c7bb40db9d43090c0f6fb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "05213fb6ab1f51f770f9858b61526ba950e06232",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DavidStahl97/formal-proofs",
"max_forks_repo_path": "Dave/Algebra/Naturals/Bin.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "05213fb6ab1f51f770f9858b61526ba950e06232",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DavidStahl97/formal-proofs",
"max_issues_repo_path": "Dave/Algebra/Naturals/Bin.agda",
"max_line_length": 70,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "05213fb6ab1f51f770f9858b61526ba950e06232",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DavidStahl97/formal-proofs",
"max_stars_repo_path": "Dave/Algebra/Naturals/Bin.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 724,
"size": 1580
} |
open import ExtractSac as ES using ()
open import Extract (ES.kompile-fun)
open import Data.Nat as N using (ℕ; zero; suc; _≤_; _≥_; _<_; _>_; s≤s; z≤n; _∸_)
import Data.Nat.DivMod as N
open import Data.Nat.Properties as N
open import Data.List as L using (List; []; _∷_)
open import Data.Vec as V using (Vec; []; _∷_)
import Data.Vec.Properties as V
open import Data.Fin as F using (Fin; zero; suc; #_)
import Data.Fin.Properties as F
open import Data.Product as Prod using (Σ; _,_; curry; uncurry) renaming (_×_ to _×ₜ_)
open import Data.String
open import Relation.Binary.PropositionalEquality
open import Structures
open import Function
open import Array.Base
open import Array.Properties
open import APL2
open import Agda.Builtin.Float
open import Reflection
open import ReflHelper
pattern I0 = (zero ∷ [])
pattern I1 = (suc zero ∷ [])
pattern I2 = (suc (suc zero) ∷ [])
pattern I3 = (suc (suc (suc zero)) ∷ [])
-- backin←{(d w in)←⍵⋄⊃+/,w{(⍴in)↑(-⍵+⍴d)↑⍺×d}¨⍳⍴w}
backin : ∀ {n s s₁} → (inp : Ar Float n s)
→ (w : Ar Float n s₁)
→ {≥ : ▴ s ≥a ▴ s₁}
→ (d : Ar Float n $ ▾ ((s - s₁){≥} + 1))
→ Ar Float n s
backin {n}{s}{s₁} inp w d = let
ixs = ι ρ w
use-ixs i,pf = let
i , pf = i,pf
iv = a→ix i (ρ w) pf
wᵢ = sel w (subst-ix (λ i → V.lookup∘tabulate _ i) iv)
--x = pre-pad i 0.0 (d ×ᵣ wᵢ)
x = (i + ρ d) -↑⟨ 0.0 ⟩ (d ×ᵣ wᵢ)
y = (ρ inp) ↑⟨ 0.0 ⟩ x
in y
s = reduce-1d _+ᵣ_ (cst 0.0) (, use-ixs ̈ ixs)
in subst-ar (λ i → V.lookup∘tabulate _ i) s
kbin = kompile backin (quote _≥a_ ∷ quote reduce-1d ∷ quote _↑⟨_⟩_ ∷ quote _-↑⟨_⟩_ ∷ quote a→ix ∷ []) []
rkbin = frefl backin (quote _≥a_ ∷ quote reduce-1d ∷ quote _↑⟨_⟩_ ∷ quote _-↑⟨_⟩_ ∷ quote a→ix ∷ [])
fin-id : ∀ {n} → Fin n → Fin n
fin-id x = x
s-w+1≤s : ∀ {s w} → s ≥ w → s > 0 → w > 0 → s N.∸ w N.+ 1 ≤ s
s-w+1≤s {suc s} {suc w} (s≤s s≥w) s>0 w>0 rewrite (+-comm (s ∸ w) 1) = s≤s (m∸n≤m s w)
helper : ∀ {n} {sI sw : Vec ℕ n}
→ s→a sI ≥a s→a sw
→ (cst 0) <a s→a sI
→ (cst 0) <a s→a sw
→ (iv : Ix 1 (n ∷ []))
→ V.lookup sI (ix-lookup iv zero) ≥
V.lookup (V.tabulate (λ i → V.lookup sI i ∸ V.lookup sw i N.+ 1))
(ix-lookup iv zero)
helper {sI = sI} {sw} sI≥sw sI>0 sw>0 (x ∷ [])
rewrite (V.lookup∘tabulate (λ i → V.lookup sI i ∸ V.lookup sw i N.+ 1) x) =
s-w+1≤s (sI≥sw (x ∷ [])) (sI>0 (x ∷ [])) (sw>0 (x ∷ []))
a≤b⇒b≡c⇒a≤c : ∀ {a b c} → a ≤ b → b ≡ c → a ≤ c
a≤b⇒b≡c⇒a≤c a≤b refl = a≤b
-- sI - (sI - sw + 1) + 1 = sw
shape-same : ∀ {n} {sI sw : Vec ℕ n}
→ s→a sI ≥a s→a sw
→ (cst 0) <a s→a sI
→ (cst 0) <a s→a sw
→ (i : Fin n)
→ V.lookup
(V.tabulate
(λ i₁ →
V.lookup sI i₁ ∸
V.lookup (V.tabulate (λ i₂ → V.lookup sI i₂ ∸ V.lookup sw i₂ N.+ 1)) i₁
N.+ 1))
i
≡ V.lookup sw i
shape-same {suc n} {x ∷ sI} {y ∷ sw} I≥w I>0 w>0 zero =
begin
x ∸ (x ∸ y N.+ 1) N.+ 1 ≡⟨ sym $ +-∸-comm {m = x} 1 {o = (x ∸ y N.+ 1)} (s-w+1≤s (I≥w I0) (I>0 I0) (w>0 I0)) ⟩
x N.+ 1 ∸ (x ∸ y N.+ 1) ≡⟨ cong (x N.+ 1 ∸_) (sym $ +-∸-comm {m = x} 1 {o = y} (I≥w I0)) ⟩
x N.+ 1 ∸ (x N.+ 1 ∸ y) ≡⟨ m∸[m∸n]≡n {m = x N.+ 1} {n = y} (a≤b⇒b≡c⇒a≤c (≤-step $ I≥w I0) (+-comm 1 x)) ⟩
y
∎
where open ≡-Reasoning
shape-same {suc n} {x ∷ sI} {x₁ ∷ sw} I≥w I>0 w>0 (suc i) =
shape-same {sI = sI} {sw = sw} (λ { (i ∷ []) → I≥w (suc i ∷ []) })
(λ { (i ∷ []) → I>0 (suc i ∷ []) })
(λ { (i ∷ []) → w>0 (suc i ∷ []) }) i
{-backmulticonv ← {
(d_out weights in bias) ← ⍵
d_in ← +⌿d_out {backin ⍺ ⍵ in} ⍤((⍴⍴in), (⍴⍴in)) ⊢ weights
d_w ← {⍵ conv in} ⍤(⍴⍴in) ⊢ d_out
d_bias ← backbias ⍤(⍴⍴in) ⊢ d_out
d_in d_w d_bias
}-}
backmulticonv : ∀ {n m}{sI sw so}
→ (W : Ar (Ar Float n sw) m so)
→ (I : Ar Float n sI)
→ (B : Ar Float m so)
-- We can get rid of these two expressions if we rewrite
-- the convolution to accept s+1 ≥ w, and not s ≥ w.
→ {>I : (cst 0) <a s→a sI}
→ {>w : (cst 0) <a s→a sw}
→ {≥ : s→a sI ≥a s→a sw}
→ (δo : Ar (Ar Float n (a→s $ (s→a sI - s→a sw) {≥} + 1)) m so)
→ {- (typeOf W) ×ₜ-} (typeOf I) --×ₜ (typeOf B)
backmulticonv {n} {sI = sI} {sw} {so} W I B {sI>0} {sw>0} {sI≥sw} δo = let
δI = reduce-1d _+ᵣ_ (cst 0.0) (, (W ̈⟨ (λ x y → backin I x {sI≥sw} y) ⟩ δo))
{-
δW = (λ x → (x conv I) {≥ = λ { iv@(i ∷ []) → subst₂ _≤_ (sym $ V.lookup∘tabulate _ i) refl
$ s-w+1≤s (sI≥sw iv) (sI>0 iv) (sw>0 iv) } }) ̈ δo
δB = backbias ̈ δo
-}
in --(imap (λ iv → subst-ar (shape-same {sI = sI} {sw = sw} sI≥sw sI>0 sw>0) (sel δW iv)) ,
δI {-,
imap (λ iv → ▾ (sel δB iv))) -}
where open import Example-04
open import Example-03
kbckmconv = kompile backmulticonv (quote _≥a_ ∷ quote _<a_ ∷ quote reduce-1d ∷ quote _↑⟨_⟩_ ∷ quote _-↑⟨_⟩_ ∷ quote a→ix ∷ quote _conv_ ∷ []) []
where open import Example-04
conv-fns : List (String ×ₜ Name)
conv-fns = ("blog" , quote blog)
∷ ("backbias" , quote backbias)
∷ ("logistic" , quote logistic)
∷ ("meansqerr" , quote meansqerr)
∷ ("backavgpool" , quote backavgpool)
∷ ("avgpool" , quote avgpool)
∷ ("conv" , quote _conv_)
∷ ("multiconv" , quote multiconv)
∷ ("backin", quote backin)
∷ ("backmulticonv" , quote backmulticonv)
∷ []
where open import Example-03
open import Example-04
-- * test-zhang
-- * train-zhang
| {
"alphanum_fraction": 0.4711934156,
"avg_line_length": 35.3454545455,
"ext": "agda",
"hexsha": "b82f5faddd9f361239aa1d43dad9e20231c4d7da",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c8954c8acd8089ced82af9e05084fbbc7fedb36c",
"max_forks_repo_licenses": [
"0BSD"
],
"max_forks_repo_name": "ashinkarov/agda-extractor",
"max_forks_repo_path": "Example-05.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c8954c8acd8089ced82af9e05084fbbc7fedb36c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"0BSD"
],
"max_issues_repo_name": "ashinkarov/agda-extractor",
"max_issues_repo_path": "Example-05.agda",
"max_line_length": 144,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "c8954c8acd8089ced82af9e05084fbbc7fedb36c",
"max_stars_repo_licenses": [
"0BSD"
],
"max_stars_repo_name": "ashinkarov/agda-extractor",
"max_stars_repo_path": "Example-05.agda",
"max_stars_repo_stars_event_max_datetime": "2021-01-11T14:52:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-01-11T14:52:59.000Z",
"num_tokens": 2596,
"size": 5832
} |
module Properties.Base where
open import Data.Maybe hiding (All)
open import Data.List
open import Data.List.All
open import Data.Product
open import Data.Sum
open import Relation.Nullary
open import Relation.Binary.PropositionalEquality
open import Typing
open import Global
open import Values
open import Session
open import Schedule
one-step : ∀ {G} → (∃ λ G' → ThreadPool (G' ++ G)) → Event × (∃ λ G → ThreadPool G)
one-step{G} (G1 , tp)
with ssplit-refl-left-inactive (G1 ++ G)
... | G' , ina-G' , ss-GG'
with Alternative.step ss-GG' tp (tnil ina-G')
... | ev , tp' = ev , ( _ , tp')
restart : ∀ {G} → Command G → Command G
restart (Ready ss v κ) = apply-cont ss κ v
restart cmd = cmd
-- auxiliary lemmas
lift-unrestricted :
∀ {t G} (unrt : Unr t) (v : Val G t)
→ unrestricted-val unrt (lift-val v) ≡ ::-inactive (unrestricted-val unrt v)
lift-unrestricted-venv :
∀ {Φ G} (unrt : All Unr Φ) (ϱ : VEnv G Φ)
→ unrestricted-venv unrt (lift-venv ϱ) ≡ ::-inactive (unrestricted-venv unrt ϱ)
lift-unrestricted UUnit (VUnit inaG) = refl
lift-unrestricted UInt (VInt i inaG) = refl
lift-unrestricted (UPair unrt unrt₁) (VPair ss-GG₁G₂ v v₁)
rewrite lift-unrestricted unrt v | lift-unrestricted unrt₁ v₁
= refl
lift-unrestricted UFun (VFun (inj₁ ()) ϱ e)
lift-unrestricted UFun (VFun (inj₂ y) ϱ e) = lift-unrestricted-venv y ϱ
lift-unrestricted-venv [] (vnil ina) = refl
lift-unrestricted-venv (px ∷ unrt) (vcons ssp v ϱ)
rewrite lift-unrestricted px v | lift-unrestricted-venv unrt ϱ
= refl
unrestricted-empty : ∀ {t} → (unrt : Unr t) (v : Val [] t) → unrestricted-val unrt v ≡ []-inactive
unrestricted-empty-venv : ∀ {t} → (unrt : All Unr t) (v : VEnv [] t) → unrestricted-venv unrt v ≡ []-inactive
unrestricted-empty UUnit (VUnit []-inactive) = refl
unrestricted-empty UInt (VInt i []-inactive) = refl
unrestricted-empty (UPair unrt unrt₁) (VPair ss-[] v v₁)
rewrite unrestricted-empty unrt v | unrestricted-empty unrt₁ v₁
= refl
unrestricted-empty UFun (VFun (inj₁ ()) ϱ e)
unrestricted-empty UFun (VFun (inj₂ y) ϱ e) = unrestricted-empty-venv y ϱ
unrestricted-empty-venv [] (vnil []-inactive) = refl
unrestricted-empty-venv (px ∷ unrt) (vcons ss-[] v v₁)
rewrite unrestricted-empty px v | unrestricted-empty-venv unrt v₁
= refl
split-env-lemma :
∀ { Φ Φ₁ Φ₂ }
(sp : Split Φ Φ₁ Φ₂)
(ϱ : VEnv [] Φ)
→ ∃ λ ϱ₁ → ∃ λ ϱ₂ →
split-env sp (lift-venv ϱ) ≡
(((nothing ∷ []) , (nothing ∷ [])) , (ss-both ss-[]) , lift-venv ϱ₁ , lift-venv ϱ₂)
split-env-lemma [] (vnil []-inactive) =
(vnil []-inactive) , ((vnil []-inactive) , refl)
split-env-lemma (dupl unrt sp) (vcons ss-[] v ϱ)
with split-env-lemma sp ϱ | unrestricted-val unrt v
... | ϱ₁ , ϱ₂ , spe== | unr-v
rewrite inactive-left-ssplit ss-[] unr-v | lift-unrestricted unrt v | unrestricted-empty unrt v | spe==
with ssplit-compose3 (ss-both ss-[]) (ss-both ss-[])
... | ssc3
= (vcons ss-[] v ϱ₁)
, (vcons ss-[] v ϱ₂)
, refl
split-env-lemma (Split.drop unrt sp) (vcons ss-[] v ϱ)
with split-env-lemma sp ϱ | unrestricted-val unrt v
... | ϱ₁ , ϱ₂ , spe== | unr-v
rewrite lift-unrestricted unrt v | unrestricted-empty unrt v
= ϱ₁ , ϱ₂ , spe==
split-env-lemma (left sp) (vcons ss-[] v ϱ)
with split-env-lemma sp ϱ
... | ϱ₁ , ϱ₂ , spe==
rewrite spe==
with ssplit-compose3 (ss-both ss-[]) (ss-both ss-[])
... | ssc3
= (vcons ss-[] v ϱ₁) , (ϱ₂ , refl)
split-env-lemma (rght sp) (vcons ss-[] v ϱ)
with split-env-lemma sp ϱ
... | ϱ₁ , ϱ₂ , spe==
rewrite spe==
with ssplit-compose4 (ss-both ss-[]) (ss-both ss-[])
... | ssc4
= ϱ₁ , (vcons ss-[] v ϱ₂) , refl
split-env-right-lemma :
∀ {Φ} (ϱ : VEnv [] Φ) →
split-env (split-all-right Φ) (lift-venv ϱ)
≡
(((nothing ∷ []) , (nothing ∷ [])) , (ss-both ss-[]) , vnil (::-inactive []-inactive) , lift-venv ϱ)
split-env-right-lemma (vnil []-inactive) = refl
split-env-right-lemma (vcons ss-[] v ϱ)
with split-env-right-lemma ϱ
... | sperl
rewrite sperl
with ssplit-compose4 (ss-both ss-[]) (ss-both ss-[])
... | ssc4
= refl
split-env-right-lemma0 :
∀ {Φ} (ϱ : VEnv [] Φ) →
split-env (split-all-right Φ) ϱ
≡
(([] , []) , ss-[] , vnil []-inactive , ϱ)
split-env-right-lemma0 (vnil []-inactive) = refl
split-env-right-lemma0 (vcons ss-[] v ϱ)
rewrite split-env-right-lemma0 ϱ
= refl
split-env-left-lemma0 :
∀ {Φ} (ϱ : VEnv [] Φ) →
split-env (split-all-left Φ) ϱ
≡
(([] , []) , ss-[] , ϱ , vnil []-inactive)
split-env-left-lemma0 (vnil []-inactive) = refl
split-env-left-lemma0 (vcons ss-[] v ϱ)
rewrite split-env-left-lemma0 ϱ
= refl
split-env-lemma-2T : Set
split-env-lemma-2T =
∀ { Φ Φ₁ Φ₂ }
(sp : Split Φ Φ₁ Φ₂)
(ϱ : VEnv [] Φ)
→ ∃ λ ϱ₁ → ∃ λ ϱ₂ →
split-env sp (lift-venv ϱ) ≡
(_ , (ss-both ss-[]) , lift-venv ϱ₁ , lift-venv ϱ₂)
×
split-env sp ϱ ≡
(_ , ss-[] , ϱ₁ , ϱ₂)
split-env-lemma-2 : split-env-lemma-2T
split-env-lemma-2 [] (vnil []-inactive)
= (vnil []-inactive) , ((vnil []-inactive) , (refl , refl))
split-env-lemma-2 (dupl unrt sp) (vcons ss-[] v ϱ)
with split-env-lemma-2 sp ϱ
... | ϱ₁ , ϱ₂ , selift-ind , se-ind
rewrite se-ind | lift-unrestricted unrt v
with unrestricted-val unrt v
... | []-inactive
rewrite selift-ind
with ssplit-compose3 (ss-both ss-[]) (ss-both ss-[])
... | ssc3
= (vcons ss-[] v ϱ₁) , (vcons ss-[] v ϱ₂) , refl , refl
split-env-lemma-2 (Split.drop unrt sp) (vcons ss-[] v ϱ)
with split-env-lemma-2 sp ϱ
... | ϱ₁ , ϱ₂ , selift-ind , se-ind
rewrite se-ind | lift-unrestricted unrt v
with unrestricted-val unrt v
... | []-inactive
= ϱ₁ , ϱ₂ , selift-ind , se-ind
split-env-lemma-2 (left sp) (vcons ss-[] v ϱ)
with split-env-lemma-2 sp ϱ
... | ϱ₁ , ϱ₂ , selift-ind , se-ind
rewrite se-ind | selift-ind
with ssplit-compose3 (ss-both ss-[]) (ss-both ss-[])
... | ssc3
= (vcons ss-[] v ϱ₁) , ϱ₂ , refl , refl
split-env-lemma-2 (rght sp) (vcons ss-[] v ϱ)
with split-env-lemma-2 sp ϱ
... | ϱ₁ , ϱ₂ , selift-ind , se-ind
rewrite se-ind | selift-ind
with ssplit-compose4 (ss-both ss-[]) (ss-both ss-[])
... | ssc4
= ϱ₁ , (vcons ss-[] v ϱ₂) , refl , refl
split-rotate-lemma : ∀ {Φ} →
split-rotate (split-all-left Φ) (split-all-right Φ)
≡
(Φ , split-all-right Φ , split-all-left Φ)
split-rotate-lemma {[]} = refl
split-rotate-lemma {x ∷ Φ}
rewrite split-rotate-lemma {Φ}
= refl
split-rotate-lemma' : ∀ {Φ Φ₁ Φ₂}
(sp : Split Φ Φ₁ Φ₂) →
split-rotate (split-all-left Φ) sp
≡
(Φ₂ , sp , split-all-left Φ₂)
split-rotate-lemma' {[]} [] = refl
split-rotate-lemma' {x ∷ Φ} (dupl un-x sp)
rewrite split-rotate-lemma' {Φ} sp
= refl
split-rotate-lemma' {x ∷ Φ} {Φ₁} {Φ₂} (Split.drop un-x sp)
rewrite split-rotate-lemma' {Φ} sp
= refl
split-rotate-lemma' {x ∷ Φ} (left sp)
rewrite split-rotate-lemma' {Φ} sp
= refl
split-rotate-lemma' {x ∷ Φ} (rght sp)
rewrite split-rotate-lemma' {Φ} sp
= refl
ssplit-compose-lemma : ∀ ss →
ssplit-compose ss-[] ss ≡ ([] , ss-[] , ss-[])
ssplit-compose-lemma ss-[] = refl
| {
"alphanum_fraction": 0.6162724423,
"avg_line_length": 31.4708520179,
"ext": "agda",
"hexsha": "8d1aa34bf53fa0a2c1c1f6011294c0d063f1e27b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "peterthiemann/definitional-session",
"max_forks_repo_path": "src/Properties/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "peterthiemann/definitional-session",
"max_issues_repo_path": "src/Properties/Base.agda",
"max_line_length": 109,
"max_stars_count": 9,
"max_stars_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "peterthiemann/definitional-session",
"max_stars_repo_path": "src/Properties/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2021-01-18T08:10:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-01-19T16:33:27.000Z",
"num_tokens": 2704,
"size": 7018
} |
open import Oscar.Prelude
open import Oscar.Class.IsFunctor
open import Oscar.Class.Reflexivity
open import Oscar.Class.Smap
open import Oscar.Class.Surjection
open import Oscar.Class.Transitivity
module Oscar.Class.Functor where
record Functor 𝔬₁ 𝔯₁ ℓ₁ 𝔬₂ 𝔯₂ ℓ₂ : Ø ↑̂ (𝔬₁ ∙̂ 𝔯₁ ∙̂ ℓ₁ ∙̂ 𝔬₂ ∙̂ 𝔯₂ ∙̂ ℓ₂) where
constructor ∁
field
{𝔒₁} : Ø 𝔬₁
_∼₁_ : 𝔒₁ → 𝔒₁ → Ø 𝔯₁
_∼̇₁_ : ∀ {x y} → x ∼₁ y → x ∼₁ y → Ø ℓ₁
ε₁ : Reflexivity.type _∼₁_
_↦₁_ : Transitivity.type _∼₁_
{𝔒₂} : Ø 𝔬₂
_∼₂_ : 𝔒₂ → 𝔒₂ → Ø 𝔯₂
_∼̇₂_ : ∀ {x y} → x ∼₂ y → x ∼₂ y → Ø ℓ₂
ε₂ : Reflexivity.type _∼₂_
_↦₂_ : Transitivity.type _∼₂_
{μ} : Surjection.type 𝔒₁ 𝔒₂
functor-smap : Smap.type _∼₁_ _∼₂_ μ μ -- FIXME cannot name this § or smap b/c of namespace conflict
⦃ `IsFunctor ⦄ : IsFunctor _∼₁_ _∼̇₁_ ε₁ _↦₁_ _∼₂_ _∼̇₂_ ε₂ _↦₂_ functor-smap
| {
"alphanum_fraction": 0.6271777003,
"avg_line_length": 31.8888888889,
"ext": "agda",
"hexsha": "849311fad2c0ff32908140c2f8880129f3d9bab1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Oscar/Class/Functor.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Oscar/Class/Functor.agda",
"max_line_length": 104,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Oscar/Class/Functor.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 437,
"size": 861
} |
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Overloading ⟦_⟧ notation
--
-- This module defines a general mechanism for overloading the
-- ⟦_⟧ notation, using Agda’s instance arguments.
------------------------------------------------------------------------
module Base.Denotation.Notation where
open import Level
record Meaning (Syntax : Set) {ℓ : Level} : Set (suc ℓ) where
constructor
meaning
field
{Semantics} : Set ℓ
⟨_⟩⟦_⟧ : Syntax → Semantics
open Meaning {{...}} public
renaming (⟨_⟩⟦_⟧ to ⟦_⟧)
open Meaning public
using (⟨_⟩⟦_⟧)
| {
"alphanum_fraction": 0.516025641,
"avg_line_length": 24,
"ext": "agda",
"hexsha": "20e8a7f9eba112b5bfc7bc9aeb7f1a919879c47e",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "inc-lc/ilc-agda",
"max_forks_repo_path": "Base/Denotation/Notation.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "inc-lc/ilc-agda",
"max_issues_repo_path": "Base/Denotation/Notation.agda",
"max_line_length": 72,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "inc-lc/ilc-agda",
"max_stars_repo_path": "Base/Denotation/Notation.agda",
"max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z",
"num_tokens": 167,
"size": 624
} |
{-# OPTIONS --allow-unsolved-metas #-}
module IsLiteralProblem where
open import OscarPrelude
open import IsLiteralSequent
open import Problem
record IsLiteralProblem (𝔓 : Problem) : Set
where
constructor _¶_
field
{problem} : Problem
isLiteralInferences : All IsLiteralSequent (inferences 𝔓)
isLiteralInterest : IsLiteralSequent (interest 𝔓)
open IsLiteralProblem public
instance EqIsLiteralProblem : ∀ {𝔓} → Eq (IsLiteralProblem 𝔓)
EqIsLiteralProblem = {!!}
| {
"alphanum_fraction": 0.7650727651,
"avg_line_length": 24.05,
"ext": "agda",
"hexsha": "9906c3f218318c619777f1740de143852cc7d24d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-1/IsLiteralProblem.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-1/IsLiteralProblem.agda",
"max_line_length": 61,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-1/IsLiteralProblem.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 132,
"size": 481
} |
module Pi-.Invariants where
open import Data.Empty
open import Data.Unit
open import Data.Sum
open import Data.Product
open import Relation.Binary.Core
open import Relation.Binary
open import Relation.Nullary
open import Relation.Binary.PropositionalEquality
open import Data.Nat
open import Data.Nat.Properties
open import Function using (_∘_)
open import Pi-.Syntax
open import Pi-.Opsem
open import Pi-.NoRepeat
open import Pi-.Dir
-- Direction of values
dir𝕍 : ∀ {t} → ⟦ t ⟧ → Dir
dir𝕍 {𝟘} ()
dir𝕍 {𝟙} v = ▷
dir𝕍 {_ +ᵤ _} (inj₁ x) = dir𝕍 x
dir𝕍 {_ +ᵤ _} (inj₂ y) = dir𝕍 y
dir𝕍 {_ ×ᵤ _} (x , y) = dir𝕍 x ×ᵈⁱʳ dir𝕍 y
dir𝕍 { - _} (- v) = -ᵈⁱʳ (dir𝕍 v)
-- Execution direction of states
dirState : State → Dir
dirState ⟨ _ ∣ _ ∣ _ ⟩▷ = ▷
dirState [ _ ∣ _ ∣ _ ]▷ = ▷
dirState ⟨ _ ∣ _ ∣ _ ⟩◁ = ◁
dirState [ _ ∣ _ ∣ _ ]◁ = ◁
dirCtx : ∀ {A B} → Context {A} {B} → Dir
dirCtx ☐ = ▷
dirCtx (☐⨾ c₂ • κ) = dirCtx κ
dirCtx (c₁ ⨾☐• κ) = dirCtx κ
dirCtx (☐⊕ c₂ • κ) = dirCtx κ
dirCtx (c₁ ⊕☐• κ) = dirCtx κ
dirCtx (☐⊗[ c₂ , x ]• κ) = dir𝕍 x ×ᵈⁱʳ dirCtx κ
dirCtx ([ c₁ , x ]⊗☐• κ) = dir𝕍 x ×ᵈⁱʳ dirCtx κ
dirState𝕍 : State → Dir
dirState𝕍 ⟨ _ ∣ v ∣ κ ⟩▷ = dir𝕍 v ×ᵈⁱʳ dirCtx κ
dirState𝕍 [ _ ∣ v ∣ κ ]▷ = dir𝕍 v ×ᵈⁱʳ dirCtx κ
dirState𝕍 ⟨ _ ∣ v ∣ κ ⟩◁ = dir𝕍 v ×ᵈⁱʳ dirCtx κ
dirState𝕍 [ _ ∣ v ∣ κ ]◁ = dir𝕍 v ×ᵈⁱʳ dirCtx κ
δdir : ∀ {A B} (c : A ↔ B) {b : base c} → (v : ⟦ A ⟧) → dir𝕍 v ≡ dir𝕍 (δ c {b} v)
δdir unite₊l (inj₂ v) = refl
δdir uniti₊l v = refl
δdir swap₊ (inj₁ x) = refl
δdir swap₊ (inj₂ y) = refl
δdir assocl₊ (inj₁ v) = refl
δdir assocl₊ (inj₂ (inj₁ v)) = refl
δdir assocl₊ (inj₂ (inj₂ v)) = refl
δdir assocr₊ (inj₁ (inj₁ v)) = refl
δdir assocr₊ (inj₁ (inj₂ v)) = refl
δdir assocr₊ (inj₂ v) = refl
δdir unite⋆l (tt , v) = identˡᵈⁱʳ (dir𝕍 v)
δdir uniti⋆l v = sym (identˡᵈⁱʳ (dir𝕍 v))
δdir swap⋆ (x , y) = commᵈⁱʳ _ _
δdir assocl⋆ (v₁ , (v₂ , v₃)) = assoclᵈⁱʳ _ _ _
δdir assocr⋆ ((v₁ , v₂) , v₃) = sym (assoclᵈⁱʳ _ _ _)
δdir dist (inj₁ v₁ , v₃) = refl
δdir dist (inj₂ v₂ , v₃) = refl
δdir factor (inj₁ (v₁ , v₃)) = refl
δdir factor (inj₂ (v₂ , v₃)) = refl
-- Invariant of directions
dirInvariant : ∀ {st st'} → st ↦ st' → dirState st ×ᵈⁱʳ dirState𝕍 st ≡ dirState st' ×ᵈⁱʳ dirState𝕍 st'
dirInvariant {⟨ c ∣ v ∣ κ ⟩▷} (↦⃗₁ {b = b}) rewrite δdir c {b} v = refl
dirInvariant ↦⃗₂ = refl
dirInvariant ↦⃗₃ = refl
dirInvariant ↦⃗₄ = refl
dirInvariant ↦⃗₅ = refl
dirInvariant {⟨ c₁ ⊗ c₂ ∣ (x , y) ∣ κ ⟩▷} ↦⃗₆ rewrite assoclᵈⁱʳ (dir𝕍 x) (dir𝕍 y) (dirCtx κ) = refl
dirInvariant ↦⃗₇ = refl
dirInvariant {[ c₁ ∣ x ∣ ☐⊗[ c₂ , y ]• κ ]▷} ↦⃗₈ rewrite assoc-commᵈⁱʳ (dir𝕍 x) (dir𝕍 y) (dirCtx κ) = refl
dirInvariant {[ c₂ ∣ y ∣ [ c₁ , x ]⊗☐• κ ]▷} ↦⃗₉ rewrite assocl-commᵈⁱʳ (dir𝕍 y) (dir𝕍 x) (dirCtx κ) = refl
dirInvariant ↦⃗₁₀ = refl
dirInvariant ↦⃗₁₁ = refl
dirInvariant ↦⃗₁₂ = refl
dirInvariant {_} {⟨ c ∣ v ∣ κ ⟩◁} (↦⃖₁ {b = b}) rewrite δdir c {b} v = refl
dirInvariant ↦⃖₂ = refl
dirInvariant ↦⃖₃ = refl
dirInvariant ↦⃖₄ = refl
dirInvariant ↦⃖₅ = refl
dirInvariant {⟨ c₁ ∣ x ∣ ☐⊗[ c₂ , y ]• κ ⟩◁} ↦⃖₆ rewrite assoclᵈⁱʳ (dir𝕍 x) (dir𝕍 y) (dirCtx κ) = refl
dirInvariant ↦⃖₇ = refl
dirInvariant {⟨ c₂ ∣ y ∣ [ c₁ , x ]⊗☐• κ ⟩◁} ↦⃖₈ rewrite assoc-commᵈⁱʳ (dir𝕍 y) (dir𝕍 x) (dirCtx κ) = refl
dirInvariant {[ c₁ ⊗ c₂ ∣ (x , y) ∣ κ ]◁ } ↦⃖₉ rewrite assoclᵈⁱʳ (dir𝕍 y) (dir𝕍 x) (dirCtx κ) | commᵈⁱʳ (dir𝕍 y) (dir𝕍 x) = refl
dirInvariant ↦⃖₁₀ = refl
dirInvariant ↦⃖₁₁ = refl
dirInvariant ↦⃖₁₂ = refl
dirInvariant {[ η₊ ∣ inj₁ v ∣ κ ]◁} ↦η₁ with dir𝕍 v
... | ◁ with dirCtx κ
... | ◁ = refl
... | ▷ = refl
dirInvariant {[ η₊ ∣ inj₁ v ∣ κ ]◁} ↦η₁ | ▷ with dirCtx κ
... | ◁ = refl
... | ▷ = refl
dirInvariant {[ η₊ ∣ inj₂ (- v) ∣ κ ]◁} ↦η₂ with dir𝕍 v
... | ◁ with dirCtx κ
... | ◁ = refl
... | ▷ = refl
dirInvariant {[ η₊ ∣ inj₂ (- v) ∣ κ ]◁} ↦η₂ | ▷ with dirCtx κ
... | ◁ = refl
... | ▷ = refl
dirInvariant {⟨ ε₊ ∣ inj₁ v ∣ κ ⟩▷} ↦ε₁ with dir𝕍 v
... | ◁ with dirCtx κ
... | ◁ = refl
... | ▷ = refl
dirInvariant {⟨ ε₊ ∣ inj₁ v ∣ κ ⟩▷} ↦ε₁ | ▷ with dirCtx κ
... | ◁ = refl
... | ▷ = refl
dirInvariant {⟨ ε₊ ∣ inj₂ (- v) ∣ κ ⟩▷} ↦ε₂ with dir𝕍 v
... | ◁ with dirCtx κ
... | ◁ = refl
... | ▷ = refl
dirInvariant {⟨ ε₊ ∣ inj₂ (- v) ∣ κ ⟩▷} ↦ε₂ | ▷ with dirCtx κ
... | ◁ = refl
... | ▷ = refl
-- Reconstruct the whole combinator from context
getℂκ : ∀ {A B} → A ↔ B → Context {A} {B} → ∃[ C ] ∃[ D ] (C ↔ D)
getℂκ c ☐ = _ , _ , c
getℂκ c (☐⨾ c₂ • κ) = getℂκ (c ⨾ c₂) κ
getℂκ c (c₁ ⨾☐• κ) = getℂκ (c₁ ⨾ c) κ
getℂκ c (☐⊕ c₂ • κ) = getℂκ (c ⊕ c₂) κ
getℂκ c (c₁ ⊕☐• κ) = getℂκ (c₁ ⊕ c) κ
getℂκ c (☐⊗[ c₂ , x ]• κ) = getℂκ (c ⊗ c₂) κ
getℂκ c ([ c₁ , x ]⊗☐• κ) = getℂκ (c₁ ⊗ c) κ
getℂ : State → ∃[ A ] ∃[ B ] (A ↔ B)
getℂ ⟨ c ∣ _ ∣ κ ⟩▷ = getℂκ c κ
getℂ [ c ∣ _ ∣ κ ]▷ = getℂκ c κ
getℂ ⟨ c ∣ _ ∣ κ ⟩◁ = getℂκ c κ
getℂ [ c ∣ _ ∣ κ ]◁ = getℂκ c κ
-- The reconstructed combinator stays the same
ℂInvariant : ∀ {st st'} → st ↦ st' → getℂ st ≡ getℂ st'
ℂInvariant ↦⃗₁ = refl
ℂInvariant ↦⃗₂ = refl
ℂInvariant ↦⃗₃ = refl
ℂInvariant ↦⃗₄ = refl
ℂInvariant ↦⃗₅ = refl
ℂInvariant ↦⃗₆ = refl
ℂInvariant ↦⃗₇ = refl
ℂInvariant ↦⃗₈ = refl
ℂInvariant ↦⃗₉ = refl
ℂInvariant ↦⃗₁₀ = refl
ℂInvariant ↦⃗₁₁ = refl
ℂInvariant ↦⃗₁₂ = refl
ℂInvariant ↦⃖₁ = refl
ℂInvariant ↦⃖₂ = refl
ℂInvariant ↦⃖₃ = refl
ℂInvariant ↦⃖₄ = refl
ℂInvariant ↦⃖₅ = refl
ℂInvariant ↦⃖₆ = refl
ℂInvariant ↦⃖₇ = refl
ℂInvariant ↦⃖₈ = refl
ℂInvariant ↦⃖₉ = refl
ℂInvariant ↦⃖₁₀ = refl
ℂInvariant ↦⃖₁₁ = refl
ℂInvariant ↦⃖₁₂ = refl
ℂInvariant ↦η₁ = refl
ℂInvariant ↦η₂ = refl
ℂInvariant ↦ε₁ = refl
ℂInvariant ↦ε₂ = refl
ℂInvariant* : ∀ {st st'} → st ↦* st' → getℂ st ≡ getℂ st'
ℂInvariant* ◾ = refl
ℂInvariant* (r ∷ rs) = trans (ℂInvariant r) (ℂInvariant* rs)
-- Get the type of the deepest context
get𝕌 : ∀ {A B} → Context {A} {B} → 𝕌 × 𝕌
get𝕌 {A} {B} ☐ = A , B
get𝕌 (☐⨾ c₂ • κ) = get𝕌 κ
get𝕌 (c₁ ⨾☐• κ) = get𝕌 κ
get𝕌 (☐⊕ c₂ • κ) = get𝕌 κ
get𝕌 (c₁ ⊕☐• κ) = get𝕌 κ
get𝕌 (☐⊗[ c₂ , x ]• κ) = get𝕌 κ
get𝕌 ([ c₁ , x ]⊗☐• κ) = get𝕌 κ
get𝕌State : State → 𝕌 × 𝕌
get𝕌State ⟨ c ∣ v ∣ κ ⟩▷ = get𝕌 κ
get𝕌State [ c ∣ v ∣ κ ]▷ = get𝕌 κ
get𝕌State ⟨ c ∣ v ∣ κ ⟩◁ = get𝕌 κ
get𝕌State [ c ∣ v ∣ κ ]◁ = get𝕌 κ
-- Append a context to another context
appendκ : ∀ {A B} → (ctx : Context {A} {B}) → let (C , D) = get𝕌 ctx
in Context {C} {D} → Context {A} {B}
appendκ ☐ ctx = ctx
appendκ (☐⨾ c₂ • κ) ctx = ☐⨾ c₂ • appendκ κ ctx
appendκ (c₁ ⨾☐• κ) ctx = c₁ ⨾☐• appendκ κ ctx
appendκ (☐⊕ c₂ • κ) ctx = ☐⊕ c₂ • appendκ κ ctx
appendκ (c₁ ⊕☐• κ) ctx = c₁ ⊕☐• appendκ κ ctx
appendκ (☐⊗[ c₂ , x ]• κ) ctx = ☐⊗[ c₂ , x ]• appendκ κ ctx
appendκ ([ c₁ , x ]⊗☐• κ) ctx = [ c₁ , x ]⊗☐• appendκ κ ctx
appendκState : ∀ st → let (A , B) = get𝕌State st
in Context {A} {B} → State
appendκState ⟨ c ∣ v ∣ κ ⟩▷ ctx = ⟨ c ∣ v ∣ appendκ κ ctx ⟩▷
appendκState [ c ∣ v ∣ κ ]▷ ctx = [ c ∣ v ∣ appendκ κ ctx ]▷
appendκState ⟨ c ∣ v ∣ κ ⟩◁ ctx = ⟨ c ∣ v ∣ appendκ κ ctx ⟩◁
appendκState [ c ∣ v ∣ κ ]◁ ctx = [ c ∣ v ∣ appendκ κ ctx ]◁
-- The type of context does not change during execution
𝕌Invariant : ∀ {st st'} → st ↦ st' → get𝕌State st ≡ get𝕌State st'
𝕌Invariant ↦⃗₁ = refl
𝕌Invariant ↦⃗₂ = refl
𝕌Invariant ↦⃗₃ = refl
𝕌Invariant ↦⃗₄ = refl
𝕌Invariant ↦⃗₅ = refl
𝕌Invariant ↦⃗₆ = refl
𝕌Invariant ↦⃗₇ = refl
𝕌Invariant ↦⃗₈ = refl
𝕌Invariant ↦⃗₉ = refl
𝕌Invariant ↦⃗₁₀ = refl
𝕌Invariant ↦⃗₁₁ = refl
𝕌Invariant ↦⃗₁₂ = refl
𝕌Invariant ↦⃖₁ = refl
𝕌Invariant ↦⃖₂ = refl
𝕌Invariant ↦⃖₃ = refl
𝕌Invariant ↦⃖₄ = refl
𝕌Invariant ↦⃖₅ = refl
𝕌Invariant ↦⃖₆ = refl
𝕌Invariant ↦⃖₇ = refl
𝕌Invariant ↦⃖₈ = refl
𝕌Invariant ↦⃖₉ = refl
𝕌Invariant ↦⃖₁₀ = refl
𝕌Invariant ↦⃖₁₁ = refl
𝕌Invariant ↦⃖₁₂ = refl
𝕌Invariant ↦η₁ = refl
𝕌Invariant ↦η₂ = refl
𝕌Invariant ↦ε₁ = refl
𝕌Invariant ↦ε₂ = refl
𝕌Invariant* : ∀ {st st'} → st ↦* st' → get𝕌State st ≡ get𝕌State st'
𝕌Invariant* ◾ = refl
𝕌Invariant* (r ∷ rs) = trans (𝕌Invariant r) (𝕌Invariant* rs)
-- Appending context does not affect reductions
appendκ↦ : ∀ {st st'} → (r : st ↦ st') (eq : get𝕌State st ≡ get𝕌State st')
→ (κ : Context {proj₁ (get𝕌State st)} {proj₂ (get𝕌State st)})
→ appendκState st κ ↦ appendκState st' (subst (λ {(A , B) → Context {A} {B}}) eq κ)
appendκ↦ ↦⃗₁ refl ctx = ↦⃗₁
appendκ↦ ↦⃗₂ refl ctx = ↦⃗₂
appendκ↦ ↦⃗₃ refl ctx = ↦⃗₃
appendκ↦ ↦⃗₄ refl ctx = ↦⃗₄
appendκ↦ ↦⃗₅ refl ctx = ↦⃗₅
appendκ↦ ↦⃗₆ refl ctx = ↦⃗₆
appendκ↦ ↦⃗₇ refl ctx = ↦⃗₇
appendκ↦ ↦⃗₈ refl ctx = ↦⃗₈
appendκ↦ ↦⃗₉ refl ctx = ↦⃗₉
appendκ↦ ↦⃗₁₀ refl ctx = ↦⃗₁₀
appendκ↦ ↦⃗₁₁ refl ctx = ↦⃗₁₁
appendκ↦ ↦⃗₁₂ refl ctx = ↦⃗₁₂
appendκ↦ ↦⃖₁ refl ctx = ↦⃖₁
appendκ↦ ↦⃖₂ refl ctx = ↦⃖₂
appendκ↦ ↦⃖₃ refl ctx = ↦⃖₃
appendκ↦ ↦⃖₄ refl ctx = ↦⃖₄
appendκ↦ ↦⃖₅ refl ctx = ↦⃖₅
appendκ↦ ↦⃖₆ refl ctx = ↦⃖₆
appendκ↦ ↦⃖₇ refl ctx = ↦⃖₇
appendκ↦ ↦⃖₈ refl ctx = ↦⃖₈
appendκ↦ ↦⃖₉ refl ctx = ↦⃖₉
appendκ↦ ↦⃖₁₀ refl ctx = ↦⃖₁₀
appendκ↦ ↦⃖₁₁ refl ctx = ↦⃖₁₁
appendκ↦ ↦⃖₁₂ refl ctx = ↦⃖₁₂
appendκ↦ ↦η₁ refl ctx = ↦η₁
appendκ↦ ↦η₂ refl ctx = ↦η₂
appendκ↦ ↦ε₁ refl ctx = ↦ε₁
appendκ↦ ↦ε₂ refl ctx = ↦ε₂
appendκ↦* : ∀ {st st'} → (r : st ↦* st') (eq : get𝕌State st ≡ get𝕌State st')
→ (κ : Context {proj₁ (get𝕌State st)} {proj₂ (get𝕌State st)})
→ appendκState st κ ↦* appendκState st' (subst (λ {(A , B) → Context {A} {B}}) eq κ)
appendκ↦* ◾ refl ctx = ◾
appendκ↦* (↦⃗₁ {b = b} {v} {κ} ∷ rs) eq ctx = appendκ↦ (↦⃗₁ {b = b} {v} {κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦⃗₂ {v = v} {κ} ∷ rs) eq ctx = appendκ↦ (↦⃗₂ {v = v} {κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦⃗₃ {v = v} {κ} ∷ rs) eq ctx = appendκ↦ (↦⃗₃ {v = v} {κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦⃗₄ {x = x} {κ} ∷ rs) eq ctx = appendκ↦ (↦⃗₄ {x = x} {κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦⃗₅ {y = y} {κ} ∷ rs) eq ctx = appendκ↦ (↦⃗₅ {y = y} {κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦⃗₆ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦⃗₆ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦⃗₇ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦⃗₇ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦⃗₈ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦⃗₈ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦⃗₉ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦⃗₉ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦⃗₁₀ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦⃗₁₀ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦⃗₁₁ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦⃗₁₁ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦⃗₁₂ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦⃗₁₂ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦⃖₁ {b = b} {v} {κ} ∷ rs) eq ctx = appendκ↦ (↦⃖₁ {b = b} {v} {κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦⃖₂ {v = v} {κ} ∷ rs) eq ctx = appendκ↦ (↦⃖₂ {v = v} {κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦⃖₃ {v = v} {κ} ∷ rs) eq ctx = appendκ↦ (↦⃖₃ {v = v} {κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦⃖₄ {x = x} {κ} ∷ rs) eq ctx = appendκ↦ (↦⃖₄ {x = x} {κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦⃖₅ {y = y} {κ} ∷ rs) eq ctx = appendκ↦ (↦⃖₅ {y = y} {κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦⃖₆ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦⃖₆ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦⃖₇ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦⃖₇ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦⃖₈ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦⃖₈ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦⃖₉ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦⃖₉ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦⃖₁₀ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦⃖₁₀ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦⃖₁₁ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦⃖₁₁ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦⃖₁₂ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦⃖₁₂ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦η₁ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦η₁ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦η₂ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦η₂ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦ε₁ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦ε₁ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx
appendκ↦* (↦ε₂ {κ = κ} ∷ rs) eq ctx = appendκ↦ (↦ε₂ {κ = κ}) refl ctx ∷ appendκ↦* rs eq ctx
| {
"alphanum_fraction": 0.5646839834,
"avg_line_length": 38.1258064516,
"ext": "agda",
"hexsha": "541052c433b05f97e144af68f8a772ce938c3f09",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "Pi-/Invariants.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "Pi-/Invariants.agda",
"max_line_length": 128,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "Pi-/Invariants.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 6624,
"size": 11819
} |
------------------------------------------------------------------------
-- Two logically equivalent axiomatisations of equality
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Equality where
open import Logical-equivalence hiding (id; _∘_)
open import Prelude
private
variable
ℓ : Level
A B C D : Type ℓ
P : A → Type ℓ
a a₁ a₂ a₃ b c p u v x x₁ x₂ y y₁ y₂ z : A
f g : (x : A) → P x
------------------------------------------------------------------------
-- Reflexive relations
record Reflexive-relation a : Type (lsuc a) where
no-eta-equality
infix 4 _≡_
field
-- "Equality".
_≡_ : {A : Type a} → A → A → Type a
-- Reflexivity.
refl : (x : A) → x ≡ x
-- Some definitions.
module Reflexive-relation′
(reflexive : ∀ ℓ → Reflexive-relation ℓ) where
private
open module R {ℓ} = Reflexive-relation (reflexive ℓ) public
-- Non-equality.
infix 4 _≢_
_≢_ : {A : Type a} → A → A → Type a
x ≢ y = ¬ (x ≡ y)
-- The property of having decidable equality.
Decidable-equality : Type ℓ → Type ℓ
Decidable-equality A = Decidable (_≡_ {A = A})
-- A type is contractible if it is inhabited and all elements are
-- equal.
Contractible : Type ℓ → Type ℓ
Contractible A = ∃ λ (x : A) → ∀ y → x ≡ y
-- The property of being a proposition.
Is-proposition : Type ℓ → Type ℓ
Is-proposition A = (x y : A) → x ≡ y
-- The property of being a set.
Is-set : Type ℓ → Type ℓ
Is-set A = {x y : A} → Is-proposition (x ≡ y)
-- Uniqueness of identity proofs (for a specific universe level).
Uniqueness-of-identity-proofs : ∀ ℓ → Type (lsuc ℓ)
Uniqueness-of-identity-proofs ℓ = {A : Type ℓ} → Is-set A
-- The K rule (without computational content).
K-rule : ∀ a p → Type (lsuc (a ⊔ p))
K-rule a p = {A : Type a} (P : {x : A} → x ≡ x → Type p) →
(∀ x → P (refl x)) →
∀ {x} (x≡x : x ≡ x) → P x≡x
-- Singleton x is a set which contains all elements which are equal
-- to x.
Singleton : {A : Type a} → A → Type a
Singleton x = ∃ λ y → y ≡ x
-- A variant of Singleton.
Other-singleton : {A : Type a} → A → Type a
Other-singleton x = ∃ λ y → x ≡ y
-- The inspect idiom.
inspect : (x : A) → Other-singleton x
inspect x = x , refl x
-- Extensionality for functions of a certain type.
Extensionality′ : (A : Type a) → (A → Type b) → Type (a ⊔ b)
Extensionality′ A B =
{f g : (x : A) → B x} → (∀ x → f x ≡ g x) → f ≡ g
-- Extensionality for functions at certain levels.
--
-- The definition is wrapped in a record type in order to avoid
-- certain problems related to Agda's handling of implicit
-- arguments.
record Extensionality (a b : Level) : Type (lsuc (a ⊔ b)) where
no-eta-equality
field
apply-ext : {A : Type a} {B : A → Type b} → Extensionality′ A B
open Extensionality public
-- Proofs of extensionality which behave well when applied to
-- reflexivity.
Well-behaved-extensionality :
(A : Type a) → (A → Type b) → Type (a ⊔ b)
Well-behaved-extensionality A B =
∃ λ (ext : Extensionality′ A B) →
∀ f → ext (λ x → refl (f x)) ≡ refl f
------------------------------------------------------------------------
-- Abstract definition of equality based on the J rule
-- Parametrised by a reflexive relation.
record Equality-with-J₀
a p (reflexive : ∀ ℓ → Reflexive-relation ℓ) :
Type (lsuc (a ⊔ p)) where
open Reflexive-relation′ reflexive
field
-- The J rule.
elim : ∀ {A : Type a} {x y}
(P : {x y : A} → x ≡ y → Type p) →
(∀ x → P (refl x)) →
(x≡y : x ≡ y) → P x≡y
-- The usual computational behaviour of the J rule.
elim-refl : ∀ {A : Type a} {x}
(P : {x y : A} → x ≡ y → Type p)
(r : ∀ x → P (refl x)) →
elim P r (refl x) ≡ r x
-- Extended variants of Reflexive-relation and Equality-with-J₀ with
-- some extra fields. These fields can be derived from
-- Equality-with-J₀ (see J₀⇒Equivalence-relation⁺ and J₀⇒J below), but
-- those derived definitions may not have the intended computational
-- behaviour (in particular, not when the paths of Cubical Agda are
-- used).
-- A variant of Reflexive-relation: equivalence relations with some
-- extra structure.
record Equivalence-relation⁺ a : Type (lsuc a) where
no-eta-equality
field
reflexive-relation : Reflexive-relation a
open Reflexive-relation reflexive-relation
field
-- Symmetry.
sym : {A : Type a} {x y : A} → x ≡ y → y ≡ x
sym-refl : {A : Type a} {x : A} → sym (refl x) ≡ refl x
-- Transitivity.
trans : {A : Type a} {x y z : A} → x ≡ y → y ≡ z → x ≡ z
trans-refl-refl : {A : Type a} {x : A} →
trans (refl x) (refl x) ≡ refl x
-- A variant of Equality-with-J₀.
record Equality-with-J
a b (e⁺ : ∀ ℓ → Equivalence-relation⁺ ℓ) :
Type (lsuc (a ⊔ b)) where
no-eta-equality
private
open module R {ℓ} = Equivalence-relation⁺ (e⁺ ℓ)
open module R₀ {ℓ} = Reflexive-relation (reflexive-relation {ℓ})
field
equality-with-J₀ : Equality-with-J₀ a b (λ _ → reflexive-relation)
open Equality-with-J₀ equality-with-J₀
field
-- Congruence.
cong : {A : Type a} {B : Type b} {x y : A}
(f : A → B) → x ≡ y → f x ≡ f y
cong-refl : {A : Type a} {B : Type b} {x : A} (f : A → B) →
cong f (refl x) ≡ refl (f x)
-- Substitutivity.
subst : {A : Type a} {x y : A} (P : A → Type b) →
x ≡ y → P x → P y
subst-refl : ∀ {A : Type a} {x} (P : A → Type b) p →
subst P (refl x) p ≡ p
-- A dependent variant of cong.
dcong :
∀ {A : Type a} {P : A → Type b} {x y}
(f : (x : A) → P x) (x≡y : x ≡ y) →
subst P x≡y (f x) ≡ f y
dcong-refl :
∀ {A : Type a} {P : A → Type b} {x} (f : (x : A) → P x) →
dcong f (refl x) ≡ subst-refl _ _
-- Equivalence-relation⁺ can be derived from Equality-with-J₀.
J₀⇒Equivalence-relation⁺ :
∀ {ℓ reflexive} →
Equality-with-J₀ ℓ ℓ reflexive →
Equivalence-relation⁺ ℓ
J₀⇒Equivalence-relation⁺ {ℓ} {r} eq = record
{ reflexive-relation = r ℓ
; sym = sym
; sym-refl = sym-refl
; trans = trans
; trans-refl-refl = trans-refl-refl
}
where
open Reflexive-relation (r ℓ)
open Equality-with-J₀ eq
cong : (f : A → B) → x ≡ y → f x ≡ f y
cong f = elim (λ {u v} _ → f u ≡ f v) (λ x → refl (f x))
subst : (P : A → Type ℓ) → x ≡ y → P x → P y
subst P = elim (λ {u v} _ → P u → P v) (λ _ p → p)
subst-refl : (P : A → Type ℓ) (p : P x) → subst P (refl x) p ≡ p
subst-refl P p = cong (_$ p) $ elim-refl (λ {u} _ → P u → _) _
sym : x ≡ y → y ≡ x
sym {x = x} x≡y = subst (λ z → x ≡ z → z ≡ x) x≡y id x≡y
abstract
sym-refl : sym (refl x) ≡ refl x
sym-refl = cong (_$ _) $ subst-refl (λ z → _ ≡ z → z ≡ _) _
trans : x ≡ y → y ≡ z → x ≡ z
trans {x = x} = flip (subst (x ≡_))
abstract
trans-refl-refl : trans (refl x) (refl x) ≡ refl x
trans-refl-refl = subst-refl _ _
-- Equality-with-J (for arbitrary universe levels) can be derived from
-- Equality-with-J₀ (for arbitrary universe levels).
J₀⇒J :
∀ {reflexive} →
(eq : ∀ {a p} → Equality-with-J₀ a p reflexive) →
∀ {a p} → Equality-with-J a p (λ _ → J₀⇒Equivalence-relation⁺ eq)
J₀⇒J {r} eq {a} {b} = record
{ equality-with-J₀ = eq
; cong = cong
; cong-refl = cong-refl
; subst = subst
; subst-refl = subst-refl
; dcong = dcong
; dcong-refl = dcong-refl
}
where
open module R {ℓ} = Reflexive-relation (r ℓ)
open module E {a} {b} = Equality-with-J₀ (eq {a} {b})
cong : (f : A → B) → x ≡ y → f x ≡ f y
cong f = elim (λ {u v} _ → f u ≡ f v) (λ x → refl (f x))
abstract
cong-refl : (f : A → B) → cong f (refl x) ≡ refl (f x)
cong-refl _ = elim-refl _ _
subst : (P : A → Type b) → x ≡ y → P x → P y
subst P = elim (λ {u v} _ → P u → P v) (λ _ p → p)
subst-refl≡id : (P : A → Type b) → subst P (refl x) ≡ id
subst-refl≡id P = elim-refl (λ {u v} _ → P u → P v) (λ _ p → p)
subst-refl : ∀ (P : A → Type b) p → subst P (refl x) p ≡ p
subst-refl P p = cong (_$ p) (subst-refl≡id P)
dcong : (f : (x : A) → P x) (x≡y : x ≡ y) →
subst P x≡y (f x) ≡ f y
dcong {A = A} {P = P} f x≡y = elim
(λ {x y} (x≡y : x ≡ y) → (f : (x : A) → P x) →
subst P x≡y (f x) ≡ f y)
(λ _ _ → subst-refl _ _)
x≡y
f
abstract
dcong-refl : (f : (x : A) → P x) →
dcong f (refl x) ≡ subst-refl _ _
dcong-refl {P = P} f =
cong (_$ f) $ elim-refl (λ _ → (_ : ∀ x → P x) → _) _
-- Some derived properties.
module Equality-with-J′
{e⁺ : ∀ ℓ → Equivalence-relation⁺ ℓ}
(eq : ∀ {a p} → Equality-with-J a p e⁺)
where
private
open module E⁺ {ℓ} = Equivalence-relation⁺ (e⁺ ℓ) public
open module E {a b} = Equality-with-J (eq {a} {b}) public
hiding (subst; subst-refl)
open module E₀ {a p} = Equality-with-J₀ (equality-with-J₀ {a} {p})
public
open Reflexive-relation′ (λ ℓ → reflexive-relation {ℓ}) public
-- Substitutivity.
subst : (P : A → Type p) → x ≡ y → P x → P y
subst = E.subst
subst-refl : (P : A → Type p) (p : P x) → subst P (refl x) p ≡ p
subst-refl = E.subst-refl
-- Singleton types are contractible.
private
irr : (p : Singleton x) → (x , refl x) ≡ p
irr p =
elim (λ {u v} u≡v → (v , refl v) ≡ (u , u≡v))
(λ _ → refl _)
(proj₂ p)
singleton-contractible : (x : A) → Contractible (Singleton x)
singleton-contractible x = ((x , refl x) , irr)
abstract
-- "Evaluation rule" for singleton-contractible.
singleton-contractible-refl :
(x : A) →
proj₂ (singleton-contractible x) (x , refl x) ≡ refl (x , refl x)
singleton-contractible-refl _ = elim-refl _ _
------------------------------------------------------------------------
-- Abstract definition of equality based on substitutivity and
-- contractibility of singleton types
record Equality-with-substitutivity-and-contractibility
a p (reflexive : ∀ ℓ → Reflexive-relation ℓ) :
Type (lsuc (a ⊔ p)) where
no-eta-equality
open Reflexive-relation′ reflexive
field
-- Substitutivity.
subst : {A : Type a} {x y : A} (P : A → Type p) → x ≡ y → P x → P y
-- The usual computational behaviour of substitutivity.
subst-refl : {A : Type a} {x : A} (P : A → Type p) (p : P x) →
subst P (refl x) p ≡ p
-- Singleton types are contractible.
singleton-contractible :
{A : Type a} (x : A) → Contractible (Singleton x)
-- Some derived properties.
module Equality-with-substitutivity-and-contractibility′
{reflexive : ∀ ℓ → Reflexive-relation ℓ}
(eq : ∀ {a p} → Equality-with-substitutivity-and-contractibility
a p reflexive)
where
private
open Reflexive-relation′ reflexive public
open module E {a p} =
Equality-with-substitutivity-and-contractibility (eq {a} {p}) public
hiding (singleton-contractible)
open module E′ {a} =
Equality-with-substitutivity-and-contractibility (eq {a} {a}) public
using (singleton-contractible)
abstract
-- Congruence.
cong : (f : A → B) → x ≡ y → f x ≡ f y
cong {x = x} f x≡y =
subst (λ y → x ≡ y → f x ≡ f y) x≡y (λ _ → refl (f x)) x≡y
-- Symmetry.
sym : x ≡ y → y ≡ x
sym {x = x} x≡y = subst (λ z → x ≡ z → z ≡ x) x≡y id x≡y
abstract
-- "Evaluation rule" for sym.
sym-refl : sym (refl x) ≡ refl x
sym-refl {x = x} =
cong (λ f → f (refl x)) $
subst-refl (λ z → x ≡ z → z ≡ x) _
-- Transitivity.
trans : x ≡ y → y ≡ z → x ≡ z
trans {x = x} = flip (subst (_≡_ x))
abstract
-- "Evaluation rule" for trans.
trans-refl-refl : trans (refl x) (refl x) ≡ refl x
trans-refl-refl = subst-refl _ _
abstract
-- The J rule.
elim : (P : {x y : A} → x ≡ y → Type p) →
(∀ x → P (refl x)) →
(x≡y : x ≡ y) → P x≡y
elim {x = x} {y = y} P p x≡y =
let lemma = proj₂ (singleton-contractible y) in
subst (P ∘ proj₂)
(trans (sym (lemma (y , refl y))) (lemma (x , x≡y)))
(p y)
-- Transitivity and symmetry sometimes cancel each other out.
trans-sym : (x≡y : x ≡ y) → trans (sym x≡y) x≡y ≡ refl y
trans-sym =
elim (λ {x y} (x≡y : x ≡ y) → trans (sym x≡y) x≡y ≡ refl y)
(λ _ → trans (cong (λ p → trans p _) sym-refl)
trans-refl-refl)
-- "Evaluation rule" for elim.
elim-refl : (P : {x y : A} → x ≡ y → Type p)
(p : ∀ x → P (refl x)) →
elim P p (refl x) ≡ p x
elim-refl {x = x} _ _ =
let lemma = proj₂ (singleton-contractible x) (x , refl x) in
trans (cong (λ q → subst _ q _) (trans-sym lemma))
(subst-refl _ _)
------------------------------------------------------------------------
-- The two abstract definitions are logically equivalent
J⇒subst+contr :
∀ {reflexive} →
(∀ {a p} → Equality-with-J₀ a p reflexive) →
∀ {a p} → Equality-with-substitutivity-and-contractibility
a p reflexive
J⇒subst+contr eq = record
{ subst = subst
; subst-refl = subst-refl
; singleton-contractible = singleton-contractible
}
where open Equality-with-J′ (J₀⇒J eq)
subst+contr⇒J :
∀ {reflexive} →
(∀ {a p} → Equality-with-substitutivity-and-contractibility
a p reflexive) →
∀ {a p} → Equality-with-J₀ a p reflexive
subst+contr⇒J eq = record
{ elim = elim
; elim-refl = elim-refl
}
where open Equality-with-substitutivity-and-contractibility′ eq
------------------------------------------------------------------------
-- Some derived definitions and properties
module Derived-definitions-and-properties
{e⁺}
(equality-with-J : ∀ {a p} → Equality-with-J a p e⁺)
where
-- This module reexports most of the definitions and properties
-- introduced above.
open Equality-with-J′ equality-with-J public
private
variable
eq u≡v v≡w x≡y y≡z x₁≡x₂ : x ≡ y
-- Equational reasoning combinators.
infix -1 finally _∎
infixr -2 step-≡ _≡⟨⟩_
_∎ : (x : A) → x ≡ x
x ∎ = refl x
-- It can be easier for Agda to type-check typical equational
-- reasoning chains if the transitivity proof gets the equality
-- arguments in the opposite order, because then the y argument is
-- (perhaps more) known once the proof of x ≡ y is type-checked.
--
-- The idea behind this optimisation came up in discussions with Ulf
-- Norell.
step-≡ : ∀ x → y ≡ z → x ≡ y → x ≡ z
step-≡ _ = flip trans
syntax step-≡ x y≡z x≡y = x ≡⟨ x≡y ⟩ y≡z
_≡⟨⟩_ : ∀ x → x ≡ y → x ≡ y
_ ≡⟨⟩ x≡y = x≡y
finally : (x y : A) → x ≡ y → x ≡ y
finally _ _ x≡y = x≡y
syntax finally x y x≡y = x ≡⟨ x≡y ⟩∎ y ∎
-- A minor variant of Christine Paulin-Mohring's version of the J
-- rule.
--
-- This definition is based on Martin Hofmann's (see the addendum
-- to Thomas Streicher's Habilitation thesis). Note that it is
-- also very similar to the definition of
-- Equality-with-substitutivity-and-contractibility.elim.
elim₁ : (P : ∀ {x} → x ≡ y → Type p) →
P (refl y) →
(x≡y : x ≡ y) → P x≡y
elim₁ {y = y} {x = x} P p x≡y =
subst (P ∘ proj₂)
(proj₂ (singleton-contractible y) (x , x≡y))
p
abstract
-- "Evaluation rule" for elim₁.
elim₁-refl : (P : ∀ {x} → x ≡ y → Type p) (p : P (refl y)) →
elim₁ P p (refl y) ≡ p
elim₁-refl {y = y} P p =
subst (P ∘ proj₂)
(proj₂ (singleton-contractible y) (y , refl y))
p ≡⟨ cong (λ q → subst (P ∘ proj₂) q _) (singleton-contractible-refl _) ⟩
subst (P ∘ proj₂) (refl (y , refl y)) p ≡⟨ subst-refl _ _ ⟩∎
p ∎
-- A variant of singleton-contractible.
private
irr : (p : Other-singleton x) → (x , refl x) ≡ p
irr p =
elim (λ {u v} u≡v → (u , refl u) ≡ (v , u≡v))
(λ _ → refl _)
(proj₂ p)
other-singleton-contractible :
(x : A) → Contractible (Other-singleton x)
other-singleton-contractible x = ((x , refl x) , irr)
abstract
-- "Evaluation rule" for other-singleton-contractible.
other-singleton-contractible-refl :
(x : A) →
proj₂ (other-singleton-contractible x) (x , refl x) ≡
refl (x , refl x)
other-singleton-contractible-refl _ = elim-refl _ _
-- Christine Paulin-Mohring's version of the J rule.
elim¹ : (P : ∀ {y} → x ≡ y → Type p) →
P (refl x) →
(x≡y : x ≡ y) → P x≡y
elim¹ {x = x} {y = y} P p x≡y =
subst (P ∘ proj₂)
(proj₂ (other-singleton-contractible x) (y , x≡y))
p
abstract
-- "Evaluation rule" for elim¹.
elim¹-refl : (P : ∀ {y} → x ≡ y → Type p) (p : P (refl x)) →
elim¹ P p (refl x) ≡ p
elim¹-refl {x = x} P p =
subst (P ∘ proj₂)
(proj₂ (other-singleton-contractible x) (x , refl x)) p ≡⟨ cong (λ q → subst (P ∘ proj₂) q _)
(other-singleton-contractible-refl _) ⟩
subst (P ∘ proj₂) (refl (x , refl x)) p ≡⟨ subst-refl _ _ ⟩∎
p ∎
-- Every conceivable alternative implementation of cong (for two
-- specific types) is pointwise equal to cong.
monomorphic-cong-canonical :
(cong′ : {x y : A} (f : A → B) → x ≡ y → f x ≡ f y) →
({x : A} (f : A → B) → cong′ f (refl x) ≡ refl (f x)) →
cong′ f x≡y ≡ cong f x≡y
monomorphic-cong-canonical {f = f} cong′ cong′-refl = elim
(λ x≡y → cong′ f x≡y ≡ cong f x≡y)
(λ x →
cong′ f (refl x) ≡⟨ cong′-refl _ ⟩
refl (f x) ≡⟨ sym $ cong-refl _ ⟩∎
cong f (refl x) ∎)
_
-- Every conceivable alternative implementation of cong (for
-- arbitrary types) is pointwise equal to cong.
cong-canonical :
(cong′ :
∀ {a b} {A : Type a} {B : Type b} {x y : A}
(f : A → B) → x ≡ y → f x ≡ f y) →
(∀ {a b} {A : Type a} {B : Type b} {x : A}
(f : A → B) → cong′ f (refl x) ≡ refl (f x)) →
cong′ f x≡y ≡ cong f x≡y
cong-canonical cong′ cong′-refl =
monomorphic-cong-canonical cong′ cong′-refl
-- A generalisation of dcong.
dcong′ :
(f : (x : A) → x ≡ y → P x) (x≡y : x ≡ y) →
subst P x≡y (f x x≡y) ≡ f y (refl y)
dcong′ {y = y} {P = P} f x≡y = elim₁
(λ {x} (x≡y : x ≡ y) →
(f : ∀ x → x ≡ y → P x) →
subst P x≡y (f x x≡y) ≡ f y (refl y))
(λ f → subst P (refl y) (f y (refl y)) ≡⟨ subst-refl _ _ ⟩∎
f y (refl y) ∎)
x≡y f
abstract
-- "Evaluation rule" for dcong′.
dcong′-refl :
(f : (x : A) → x ≡ y → P x) →
dcong′ f (refl y) ≡ subst-refl _ _
dcong′-refl {y = y} {P = P} f =
cong (_$ f) $ elim₁-refl (λ _ → (f : ∀ x → x ≡ y → P x) → _) _
-- Binary congruence.
cong₂ : (f : A → B → C) → x ≡ y → u ≡ v → f x u ≡ f y v
cong₂ {x = x} {y = y} {u = u} {v = v} f x≡y u≡v =
f x u ≡⟨ cong (flip f u) x≡y ⟩
f y u ≡⟨ cong (f y) u≡v ⟩∎
f y v ∎
abstract
-- "Evaluation rule" for cong₂.
cong₂-refl : (f : A → B → C) →
cong₂ f (refl x) (refl y) ≡ refl (f x y)
cong₂-refl {x = x} {y = y} f =
trans (cong (flip f y) (refl x)) (cong (f x) (refl y)) ≡⟨ cong₂ trans (cong-refl _) (cong-refl _) ⟩
trans (refl (f x y)) (refl (f x y)) ≡⟨ trans-refl-refl ⟩∎
refl (f x y) ∎
-- The K rule is logically equivalent to uniqueness of identity
-- proofs (at least for certain combinations of levels).
K⇔UIP : K-rule ℓ ℓ ⇔ Uniqueness-of-identity-proofs ℓ
K⇔UIP = record
{ from = λ UIP P r {x} x≡x → subst P (UIP (refl x) x≡x) (r x)
; to = λ K →
elim (λ p → ∀ q → p ≡ q)
(λ x → K (λ {x} p → refl x ≡ p) (λ x → refl (refl x)))
}
abstract
-- Extensionality at given levels works at lower levels as well.
lower-extensionality :
∀ â b̂ → Extensionality (a ⊔ â) (b ⊔ b̂) → Extensionality a b
apply-ext (lower-extensionality â b̂ ext) f≡g =
cong (λ h → lower ∘ h ∘ lift) $
apply-ext ext
{A = ↑ â _} {B = ↑ b̂ ∘ _} (cong lift ∘ f≡g ∘ lower)
-- Extensionality for explicit function types works for implicit
-- function types as well.
implicit-extensionality :
Extensionality a b →
{A : Type a} {B : A → Type b} {f g : {x : A} → B x} →
(∀ x → f {x} ≡ g {x}) → (λ {x} → f {x}) ≡ g
implicit-extensionality ext f≡g =
cong (λ f {x} → f x) $ apply-ext ext f≡g
-- A bunch of lemmas that can be used to rearrange equalities.
abstract
trans-reflʳ : (x≡y : x ≡ y) → trans x≡y (refl y) ≡ x≡y
trans-reflʳ =
elim (λ {u v} u≡v → trans u≡v (refl v) ≡ u≡v)
(λ _ → trans-refl-refl)
trans-reflˡ : (x≡y : x ≡ y) → trans (refl x) x≡y ≡ x≡y
trans-reflˡ =
elim (λ {u v} u≡v → trans (refl u) u≡v ≡ u≡v)
(λ _ → trans-refl-refl)
trans-assoc : (x≡y : x ≡ y) (y≡z : y ≡ z) (z≡u : z ≡ u) →
trans (trans x≡y y≡z) z≡u ≡ trans x≡y (trans y≡z z≡u)
trans-assoc =
elim (λ x≡y → ∀ y≡z z≡u → trans (trans x≡y y≡z) z≡u ≡
trans x≡y (trans y≡z z≡u))
(λ y y≡z z≡u →
trans (trans (refl y) y≡z) z≡u ≡⟨ cong₂ trans (trans-reflˡ _) (refl _) ⟩
trans y≡z z≡u ≡⟨ sym $ trans-reflˡ _ ⟩∎
trans (refl y) (trans y≡z z≡u) ∎)
sym-sym : (x≡y : x ≡ y) → sym (sym x≡y) ≡ x≡y
sym-sym = elim (λ {u v} u≡v → sym (sym u≡v) ≡ u≡v)
(λ x → sym (sym (refl x)) ≡⟨ cong sym sym-refl ⟩
sym (refl x) ≡⟨ sym-refl ⟩∎
refl x ∎)
sym-trans : (x≡y : x ≡ y) (y≡z : y ≡ z) →
sym (trans x≡y y≡z) ≡ trans (sym y≡z) (sym x≡y)
sym-trans =
elim (λ x≡y → ∀ y≡z → sym (trans x≡y y≡z) ≡ trans (sym y≡z) (sym x≡y))
(λ y y≡z → sym (trans (refl y) y≡z) ≡⟨ cong sym (trans-reflˡ _) ⟩
sym y≡z ≡⟨ sym $ trans-reflʳ _ ⟩
trans (sym y≡z) (refl y) ≡⟨ cong (trans (sym y≡z)) (sym sym-refl) ⟩∎
trans (sym y≡z) (sym (refl y)) ∎)
trans-symˡ : (p : x ≡ y) → trans (sym p) p ≡ refl y
trans-symˡ =
elim (λ p → trans (sym p) p ≡ refl _)
(λ x → trans (sym (refl x)) (refl x) ≡⟨ trans-reflʳ _ ⟩
sym (refl x) ≡⟨ sym-refl ⟩∎
refl x ∎)
trans-symʳ : (p : x ≡ y) → trans p (sym p) ≡ refl _
trans-symʳ =
elim (λ p → trans p (sym p) ≡ refl _)
(λ x → trans (refl x) (sym (refl x)) ≡⟨ trans-reflˡ _ ⟩
sym (refl x) ≡⟨ sym-refl ⟩∎
refl x ∎)
cong-trans : (f : A → B) (x≡y : x ≡ y) (y≡z : y ≡ z) →
cong f (trans x≡y y≡z) ≡ trans (cong f x≡y) (cong f y≡z)
cong-trans f =
elim (λ x≡y → ∀ y≡z → cong f (trans x≡y y≡z) ≡
trans (cong f x≡y) (cong f y≡z))
(λ y y≡z → cong f (trans (refl y) y≡z) ≡⟨ cong (cong f) (trans-reflˡ _) ⟩
cong f y≡z ≡⟨ sym $ trans-reflˡ _ ⟩
trans (refl (f y)) (cong f y≡z) ≡⟨ cong₂ trans (sym (cong-refl _)) (refl _) ⟩∎
trans (cong f (refl y)) (cong f y≡z) ∎)
cong-id : (x≡y : x ≡ y) → x≡y ≡ cong id x≡y
cong-id = elim (λ u≡v → u≡v ≡ cong id u≡v)
(λ x → refl x ≡⟨ sym (cong-refl _) ⟩∎
cong id (refl x) ∎)
cong-const : (x≡y : x ≡ y) → cong (const z) x≡y ≡ refl z
cong-const {z = z} =
elim (λ u≡v → cong (const z) u≡v ≡ refl z)
(λ x → cong (const z) (refl x) ≡⟨ cong-refl _ ⟩∎
refl z ∎)
cong-∘ : (f : B → C) (g : A → B) (x≡y : x ≡ y) →
cong f (cong g x≡y) ≡ cong (f ∘ g) x≡y
cong-∘ f g = elim (λ x≡y → cong f (cong g x≡y) ≡ cong (f ∘ g) x≡y)
(λ x → cong f (cong g (refl x)) ≡⟨ cong (cong f) (cong-refl _) ⟩
cong f (refl (g x)) ≡⟨ cong-refl _ ⟩
refl (f (g x)) ≡⟨ sym (cong-refl _) ⟩∎
cong (f ∘ g) (refl x) ∎)
cong-uncurry-cong₂-, :
{x≡y : x ≡ y} {u≡v : u ≡ v} →
cong (uncurry f) (cong₂ _,_ x≡y u≡v) ≡ cong₂ f x≡y u≡v
cong-uncurry-cong₂-, {y = y} {u = u} {f = f} {x≡y = x≡y} {u≡v} =
cong (uncurry f)
(trans (cong (flip _,_ u) x≡y) (cong (_,_ y) u≡v)) ≡⟨ cong-trans _ _ _ ⟩
trans (cong (uncurry f) (cong (flip _,_ u) x≡y))
(cong (uncurry f) (cong (_,_ y) u≡v)) ≡⟨ cong₂ trans (cong-∘ _ _ _) (cong-∘ _ _ _) ⟩∎
trans (cong (flip f u) x≡y) (cong (f y) u≡v) ∎
cong-proj₁-cong₂-, :
(x≡y : x ≡ y) (u≡v : u ≡ v) →
cong proj₁ (cong₂ _,_ x≡y u≡v) ≡ x≡y
cong-proj₁-cong₂-, {y = y} x≡y u≡v =
cong proj₁ (cong₂ _,_ x≡y u≡v) ≡⟨ cong-uncurry-cong₂-, ⟩
cong₂ const x≡y u≡v ≡⟨⟩
trans (cong id x≡y) (cong (const y) u≡v) ≡⟨ cong₂ trans (sym $ cong-id _) (cong-const _) ⟩
trans x≡y (refl y) ≡⟨ trans-reflʳ _ ⟩∎
x≡y ∎
cong-proj₂-cong₂-, :
(x≡y : x ≡ y) (u≡v : u ≡ v) →
cong proj₂ (cong₂ _,_ x≡y u≡v) ≡ u≡v
cong-proj₂-cong₂-, {u = u} x≡y u≡v =
cong proj₂ (cong₂ _,_ x≡y u≡v) ≡⟨ cong-uncurry-cong₂-, ⟩
cong₂ (const id) x≡y u≡v ≡⟨⟩
trans (cong (const u) x≡y) (cong id u≡v) ≡⟨ cong₂ trans (cong-const _) (sym $ cong-id _) ⟩
trans (refl u) u≡v ≡⟨ trans-reflˡ _ ⟩∎
u≡v ∎
cong₂-reflˡ : {u≡v : u ≡ v}
(f : A → B → C) →
cong₂ f (refl x) u≡v ≡ cong (f x) u≡v
cong₂-reflˡ {u = u} {x = x} {u≡v = u≡v} f =
trans (cong (flip f u) (refl x)) (cong (f x) u≡v) ≡⟨ cong₂ trans (cong-refl _) (refl _) ⟩
trans (refl (f x u)) (cong (f x) u≡v) ≡⟨ trans-reflˡ _ ⟩∎
cong (f x) u≡v ∎
cong₂-reflʳ : (f : A → B → C) {x≡y : x ≡ y} →
cong₂ f x≡y (refl u) ≡ cong (flip f u) x≡y
cong₂-reflʳ {y = y} {u = u} f {x≡y} =
trans (cong (flip f u) x≡y) (cong (f y) (refl u)) ≡⟨ cong (trans _) (cong-refl _) ⟩
trans (cong (flip f u) x≡y) (refl (f y u)) ≡⟨ trans-reflʳ _ ⟩∎
cong (flip f u) x≡y ∎
cong-sym : (f : A → B) (x≡y : x ≡ y) →
cong f (sym x≡y) ≡ sym (cong f x≡y)
cong-sym f = elim (λ x≡y → cong f (sym x≡y) ≡ sym (cong f x≡y))
(λ x → cong f (sym (refl x)) ≡⟨ cong (cong f) sym-refl ⟩
cong f (refl x) ≡⟨ cong-refl _ ⟩
refl (f x) ≡⟨ sym sym-refl ⟩
sym (refl (f x)) ≡⟨ cong sym $ sym (cong-refl _) ⟩∎
sym (cong f (refl x)) ∎)
cong₂-sym :
cong₂ f (sym x≡y) (sym u≡v) ≡ sym (cong₂ f x≡y u≡v)
cong₂-sym {f = f} {x≡y = x≡y} {u≡v = u≡v} = elim¹
(λ u≡v → cong₂ f (sym x≡y) (sym u≡v) ≡ sym (cong₂ f x≡y u≡v))
(cong₂ f (sym x≡y) (sym (refl _)) ≡⟨ cong (cong₂ _ _) sym-refl ⟩
cong₂ f (sym x≡y) (refl _) ≡⟨ cong₂-reflʳ _ ⟩
cong (flip f _) (sym x≡y) ≡⟨ cong-sym _ _ ⟩
sym (cong (flip f _) x≡y) ≡⟨ cong sym $ sym $ cong₂-reflʳ _ ⟩∎
sym (cong₂ f x≡y (refl _)) ∎)
u≡v
cong₂-trans :
{f : A → B → C} →
cong₂ f (trans x≡y y≡z) (trans u≡v v≡w) ≡
trans (cong₂ f x≡y u≡v) (cong₂ f y≡z v≡w)
cong₂-trans
{x≡y = x≡y} {y≡z = y≡z} {u≡v = u≡v} {v≡w = v≡w} {f = f} =
elim₁
(λ x≡y →
cong₂ f (trans x≡y y≡z) (trans u≡v v≡w) ≡
trans (cong₂ f x≡y u≡v) (cong₂ f y≡z v≡w))
(elim₁
(λ u≡v →
cong₂ f (trans (refl _) y≡z) (trans u≡v v≡w) ≡
trans (cong₂ f (refl _) u≡v) (cong₂ f y≡z v≡w))
(cong₂ f (trans (refl _) y≡z) (trans (refl _) v≡w) ≡⟨ cong₂ (cong₂ f) (trans-reflˡ _) (trans-reflˡ _) ⟩
cong₂ f y≡z v≡w ≡⟨ sym $
trans (cong (flip trans _) $ cong₂-refl _) $
trans-reflˡ _ ⟩∎
trans (cong₂ f (refl _) (refl _)) (cong₂ f y≡z v≡w) ∎)
u≡v)
x≡y
cong₂-∘ˡ :
{f : B → C → D} {g : A → B} {x≡y : x ≡ y} {u≡v : u ≡ v} →
cong₂ (f ∘ g) x≡y u≡v ≡ cong₂ f (cong g x≡y) u≡v
cong₂-∘ˡ {y = y} {u = u} {f = f} {g = g} {x≡y = x≡y} {u≡v} =
trans (cong (flip (f ∘ g) u) x≡y) (cong (f (g y)) u≡v) ≡⟨ cong (flip trans _) $ sym $ cong-∘ _ _ _ ⟩∎
trans (cong (flip f u) (cong g x≡y)) (cong (f (g y)) u≡v) ∎
cong₂-∘ʳ :
{x≡y : x ≡ y} {u≡v : u ≡ v} →
cong₂ (λ x → f x ∘ g) x≡y u≡v ≡ cong₂ f x≡y (cong g u≡v)
cong₂-∘ʳ {y = y} {u = u} {f = f} {g = g} {x≡y = x≡y} {u≡v} =
trans (cong (flip f (g u)) x≡y) (cong (f y ∘ g) u≡v) ≡⟨ cong (trans _) $ sym $ cong-∘ _ _ _ ⟩∎
trans (cong (flip f (g u)) x≡y) (cong (f y) (cong g u≡v)) ∎
cong₂-cong-cong :
(f : A → B) (g : A → C) (h : B → C → D) →
cong₂ h (cong f eq) (cong g eq) ≡
cong (λ x → h (f x) (g x)) eq
cong₂-cong-cong f g h = elim¹
(λ eq → cong₂ h (cong f eq) (cong g eq) ≡
cong (λ x → h (f x) (g x)) eq)
(cong₂ h (cong f (refl _)) (cong g (refl _)) ≡⟨ cong₂ (cong₂ h) (cong-refl _) (cong-refl _) ⟩
cong₂ h (refl _) (refl _) ≡⟨ cong₂-refl h ⟩
refl _ ≡⟨ sym $ cong-refl _ ⟩∎
cong (λ x → h (f x) (g x)) (refl _) ∎)
_
cong-≡id :
{f : A → A}
(f≡id : f ≡ id) →
cong (λ g → g (f x)) f≡id ≡
cong (λ g → f (g x)) f≡id
cong-≡id = elim₁
(λ {f} p → cong (λ g → g (f _)) p ≡ cong (λ g → f (g _)) p)
(refl _)
cong-≡id-≡-≡id :
(f≡id : ∀ x → f x ≡ x) →
cong f (f≡id x) ≡ f≡id (f x)
cong-≡id-≡-≡id {f = f} {x = x} f≡id =
cong f (f≡id x) ≡⟨ elim¹
(λ {y} (p : f x ≡ y) →
cong f p ≡ trans (f≡id (f x)) (trans p (sym (f≡id y)))) (
cong f (refl _) ≡⟨ cong-refl _ ⟩
refl _ ≡⟨ sym $ trans-symʳ _ ⟩
trans (f≡id (f x)) (sym (f≡id (f x))) ≡⟨ cong (trans (f≡id (f x))) $ sym $ trans-reflˡ _ ⟩∎
trans (f≡id (f x)) (trans (refl _) (sym (f≡id (f x)))) ∎)
(f≡id x)⟩
trans (f≡id (f x)) (trans (f≡id x) (sym (f≡id x))) ≡⟨ cong (trans (f≡id (f x))) $ trans-symʳ _ ⟩
trans (f≡id (f x)) (refl _) ≡⟨ trans-reflʳ _ ⟩
f≡id (f x) ∎
elim-∘ :
(P Q : ∀ {x y} → x ≡ y → Type p)
(f : ∀ {x y} {x≡y : x ≡ y} → P x≡y → Q x≡y)
(r : ∀ x → P (refl x)) {x≡y : x ≡ y} →
f (elim P r x≡y) ≡ elim Q (f ∘ r) x≡y
elim-∘ {x = x} P Q f r {x≡y} = elim¹
(λ x≡y → f (elim P r x≡y) ≡
elim Q (f ∘ r) x≡y)
(f (elim P r (refl x)) ≡⟨ cong f $ elim-refl _ _ ⟩
f (r x) ≡⟨ sym $ elim-refl _ _ ⟩∎
elim Q (f ∘ r) (refl x) ∎)
x≡y
elim-cong :
(P : B → B → Type p) (f : A → B)
(r : ∀ x → P x x) {x≡y : x ≡ y} →
elim (λ {x y} _ → P x y) r (cong f x≡y) ≡
elim (λ {x y} _ → P (f x) (f y)) (r ∘ f) x≡y
elim-cong {x = x} P f r {x≡y} = elim¹
(λ x≡y → elim (λ {x y} _ → P x y) r (cong f x≡y) ≡
elim (λ {x y} _ → P (f x) (f y)) (r ∘ f) x≡y)
(elim (λ {x y} _ → P x y) r (cong f (refl x)) ≡⟨ cong (elim (λ {x y} _ → P x y) _) $ cong-refl _ ⟩
elim (λ {x y} _ → P x y) r (refl (f x)) ≡⟨ elim-refl _ _ ⟩
r (f x) ≡⟨ sym $ elim-refl _ _ ⟩∎
elim (λ {x y} _ → P (f x) (f y)) (r ∘ f) (refl x) ∎)
x≡y
subst-const : ∀ (x₁≡x₂ : x₁ ≡ x₂) {b} →
subst (const B) x₁≡x₂ b ≡ b
subst-const {B = B} x₁≡x₂ {b} =
elim¹ (λ x₁≡x₂ → subst (const B) x₁≡x₂ b ≡ b)
(subst-refl _ _)
x₁≡x₂
abstract
-- One can express sym in terms of subst.
sym-subst : sym x≡y ≡ subst (λ z → x ≡ z → z ≡ x) x≡y id x≡y
sym-subst = elim
(λ {x} x≡y → sym x≡y ≡ subst (λ z → x ≡ z → z ≡ x) x≡y id x≡y)
(λ x →
sym (refl x) ≡⟨ sym-refl ⟩
refl x ≡⟨ cong (_$ refl x) $ sym $ subst-refl (λ z → x ≡ z → _) _ ⟩∎
subst (λ z → x ≡ z → z ≡ x) (refl x) id (refl x) ∎)
_
-- One can express trans in terms of subst (in several ways).
trans-subst :
{x≡y : x ≡ y} {y≡z : y ≡ z} →
trans x≡y y≡z ≡ subst (x ≡_) y≡z x≡y
trans-subst {z = z} = elim
(λ {x y} x≡y → (y≡z : y ≡ z) → trans x≡y y≡z ≡ subst (x ≡_) y≡z x≡y)
(λ y → elim
(λ {y} y≡z → trans (refl y) y≡z ≡ subst (y ≡_) y≡z (refl y))
(λ x →
trans (refl x) (refl x) ≡⟨ trans-refl-refl ⟩
refl x ≡⟨ sym $ subst-refl _ _ ⟩∎
subst (x ≡_) (refl x) (refl x) ∎))
_
_
subst-trans :
(x≡y : x ≡ y) {y≡z : y ≡ z} →
subst (_≡ z) (sym x≡y) y≡z ≡ trans x≡y y≡z
subst-trans {y = y} {z} x≡y {y≡z} =
elim₁ (λ x≡y → subst (λ x → x ≡ z) (sym x≡y) y≡z ≡
trans x≡y y≡z)
(subst (λ x → x ≡ z) (sym (refl y)) y≡z ≡⟨ cong (λ eq → subst (λ x → x ≡ z) eq _) sym-refl ⟩
subst (λ x → x ≡ z) (refl y) y≡z ≡⟨ subst-refl _ _ ⟩
y≡z ≡⟨ sym $ trans-reflˡ _ ⟩∎
trans (refl y) y≡z ∎)
x≡y
subst-trans-sym :
{y≡x : y ≡ x} {y≡z : y ≡ z} →
subst (_≡ z) y≡x y≡z ≡ trans (sym y≡x) y≡z
subst-trans-sym {z = z} {y≡x = y≡x} {y≡z = y≡z} =
subst (_≡ z) y≡x y≡z ≡⟨ cong (flip (subst (_≡ z)) _) $ sym $ sym-sym _ ⟩
subst (_≡ z) (sym (sym y≡x)) y≡z ≡⟨ subst-trans _ ⟩∎
trans (sym y≡x) y≡z ∎
-- One can express subst in terms of elim.
subst-elim :
subst P x≡y p ≡ elim (λ {u v} _ → P u → P v) (λ _ → id) x≡y p
subst-elim {P = P} = elim
(λ x≡y → ∀ p →
subst P x≡y p ≡ elim (λ {u v} _ → P u → P v) (λ _ → id) x≡y p)
(λ x p →
subst P (refl x) p ≡⟨ subst-refl _ _ ⟩
p ≡⟨ cong (_$ p) $ sym $ elim-refl (λ {u} _ → P u → _) _ ⟩∎
elim (λ {u v} _ → P u → P v) (λ _ → id) (refl x) p ∎)
_
_
subst-∘ : (P : B → Type p) (f : A → B) (x≡y : x ≡ y) {p : P (f x)} →
subst (P ∘ f) x≡y p ≡ subst P (cong f x≡y) p
subst-∘ P f _ {p} = elim¹
(λ x≡y → subst (P ∘ f) x≡y p ≡ subst P (cong f x≡y) p)
(subst (P ∘ f) (refl _) p ≡⟨ subst-refl _ _ ⟩
p ≡⟨ sym $ subst-refl _ _ ⟩
subst P (refl _) p ≡⟨ cong (flip (subst _) _) $ sym $ cong-refl _ ⟩∎
subst P (cong f (refl _)) p ∎)
_
subst-↑ : (P : A → Type p) {p : ↑ ℓ (P x)} →
subst (↑ ℓ ∘ P) x≡y p ≡ lift (subst P x≡y (lower p))
subst-↑ {ℓ = ℓ} P {p} = elim¹
(λ x≡y → subst (↑ ℓ ∘ P) x≡y p ≡ lift (subst P x≡y (lower p)))
(subst (↑ ℓ ∘ P) (refl _) p ≡⟨ subst-refl _ _ ⟩
p ≡⟨ cong lift $ sym $ subst-refl _ _ ⟩∎
lift (subst P (refl _) (lower p)) ∎)
_
-- A fusion law for subst.
subst-subst :
(P : A → Type p) (x≡y : x ≡ y) (y≡z : y ≡ z) (p : P x) →
subst P y≡z (subst P x≡y p) ≡ subst P (trans x≡y y≡z) p
subst-subst P x≡y y≡z p =
elim (λ {x y} x≡y → ∀ {z} (y≡z : y ≡ z) p →
subst P y≡z (subst P x≡y p) ≡ subst P (trans x≡y y≡z) p)
(λ x y≡z p →
subst P y≡z (subst P (refl x) p) ≡⟨ cong (subst P _) $ subst-refl _ _ ⟩
subst P y≡z p ≡⟨ cong (λ q → subst P q _) (sym $ trans-reflˡ _) ⟩∎
subst P (trans (refl x) y≡z) p ∎)
x≡y y≡z p
-- "Computation rules" for subst-subst.
subst-subst-reflˡ :
∀ (P : A → Type p) {p} →
subst-subst P (refl x) x≡y p ≡
cong₂ (flip (subst P)) (subst-refl _ _) (sym $ trans-reflˡ x≡y)
subst-subst-reflˡ P =
cong (λ f → f _ _) $
elim-refl (λ {x y} x≡y → ∀ {z} (y≡z : y ≡ z) p →
subst P y≡z (subst P x≡y p) ≡ _)
_
subst-subst-refl-refl :
∀ (P : A → Type p) {p} →
subst-subst P (refl x) (refl x) p ≡
cong₂ (flip (subst P)) (subst-refl _ _) (sym trans-refl-refl)
subst-subst-refl-refl {x = x} P {p} =
subst-subst P (refl x) (refl x) p ≡⟨ subst-subst-reflˡ _ ⟩
cong₂ (flip (subst P)) (subst-refl _ _)
(sym $ trans-reflˡ (refl x)) ≡⟨ cong (cong₂ (flip (subst P)) (subst-refl _ _) ∘ sym) $
elim-refl _ _ ⟩∎
cong₂ (flip (subst P)) (subst-refl _ _) (sym trans-refl-refl) ∎
-- Substitutivity and symmetry sometimes cancel each other out.
subst-subst-sym :
(P : A → Type p) (x≡y : x ≡ y) (p : P y) →
subst P x≡y (subst P (sym x≡y) p) ≡ p
subst-subst-sym P =
elim¹
(λ x≡y → ∀ p → subst P x≡y (subst P (sym x≡y) p) ≡ p)
(λ p →
subst P (refl _) (subst P (sym (refl _)) p) ≡⟨ subst-refl _ _ ⟩
subst P (sym (refl _)) p ≡⟨ cong (flip (subst P) _) sym-refl ⟩
subst P (refl _) p ≡⟨ subst-refl _ _ ⟩∎
p ∎)
subst-sym-subst :
(P : A → Type p) {x≡y : x ≡ y} {p : P x} →
subst P (sym x≡y) (subst P x≡y p) ≡ p
subst-sym-subst P {x≡y = x≡y} {p = p} =
elim¹
(λ x≡y → ∀ p → subst P (sym x≡y) (subst P x≡y p) ≡ p)
(λ p →
subst P (sym (refl _)) (subst P (refl _) p) ≡⟨ cong (flip (subst P) _) sym-refl ⟩
subst P (refl _) (subst P (refl _) p) ≡⟨ subst-refl _ _ ⟩
subst P (refl _) p ≡⟨ subst-refl _ _ ⟩∎
p ∎)
x≡y p
-- Some "computation rules".
subst-subst-sym-refl :
(P : A → Type p) {p : P x} →
subst-subst-sym P (refl x) p ≡
trans (subst-refl _ _)
(trans (cong (flip (subst P) _) sym-refl)
(subst-refl _ _))
subst-subst-sym-refl P {p = p} =
cong (_$ _) $
elim¹-refl
(λ x≡y → ∀ p → subst P x≡y (subst P (sym x≡y) p) ≡ p)
_
subst-sym-subst-refl :
(P : A → Type p) {p : P x} →
subst-sym-subst P {x≡y = refl x} {p = p} ≡
trans (cong (flip (subst P) _) sym-refl)
(trans (subst-refl _ _) (subst-refl _ _))
subst-sym-subst-refl P =
cong (_$ _) $
elim¹-refl
(λ x≡y → ∀ p → subst P (sym x≡y) (subst P x≡y p) ≡ p)
_
-- Some corollaries and variants.
trans-[trans-sym]- : (a≡b : a ≡ b) (c≡b : c ≡ b) →
trans (trans a≡b (sym c≡b)) c≡b ≡ a≡b
trans-[trans-sym]- a≡b c≡b =
trans (trans a≡b (sym c≡b)) c≡b ≡⟨ trans-subst ⟩
subst (_ ≡_) c≡b (trans a≡b (sym c≡b)) ≡⟨ cong (subst _ _) trans-subst ⟩
subst (_ ≡_) c≡b (subst (_ ≡_) (sym c≡b) a≡b) ≡⟨ subst-subst-sym _ _ _ ⟩∎
a≡b ∎
trans-[trans]-sym : (a≡b : a ≡ b) (b≡c : b ≡ c) →
trans (trans a≡b b≡c) (sym b≡c) ≡ a≡b
trans-[trans]-sym a≡b b≡c =
trans (trans a≡b b≡c) (sym b≡c) ≡⟨ sym $ cong (λ eq → trans (trans _ eq) (sym b≡c)) $ sym-sym _ ⟩
trans (trans a≡b (sym (sym b≡c))) (sym b≡c) ≡⟨ trans-[trans-sym]- _ _ ⟩∎
a≡b ∎
trans--[trans-sym] : (b≡a : b ≡ a) (b≡c : b ≡ c) →
trans b≡a (trans (sym b≡a) b≡c) ≡ b≡c
trans--[trans-sym] b≡a b≡c =
trans b≡a (trans (sym b≡a) b≡c) ≡⟨ sym $ trans-assoc _ _ _ ⟩
trans (trans b≡a (sym b≡a)) b≡c ≡⟨ cong (flip trans _) $ trans-symʳ _ ⟩
trans (refl _) b≡c ≡⟨ trans-reflˡ _ ⟩∎
b≡c ∎
trans-sym-[trans] : (a≡b : a ≡ b) (b≡c : b ≡ c) →
trans (sym a≡b) (trans a≡b b≡c) ≡ b≡c
trans-sym-[trans] a≡b b≡c =
trans (sym a≡b) (trans a≡b b≡c) ≡⟨ cong (λ p → trans (sym _) (trans p _)) $ sym $ sym-sym _ ⟩
trans (sym a≡b) (trans (sym (sym a≡b)) b≡c) ≡⟨ trans--[trans-sym] _ _ ⟩∎
b≡c ∎
-- The lemmas subst-refl and subst-const can cancel each other
-- out.
subst-refl-subst-const :
trans (sym $ subst-refl (λ _ → B) b) (subst-const (refl x)) ≡
refl b
subst-refl-subst-const {b = b} {x = x} =
trans (sym $ subst-refl _ _)
(elim¹ (λ eq → subst (λ _ → _) eq b ≡ b)
(subst-refl _ _)
(refl _)) ≡⟨ cong (trans _) (elim¹-refl _ _) ⟩
trans (sym $ subst-refl _ _) (subst-refl _ _) ≡⟨ trans-symˡ _ ⟩∎
refl _ ∎
-- In non-dependent cases one can express dcong using subst-const
-- and cong.
--
-- This is (similar to) Lemma 2.3.8 in the HoTT book.
dcong-subst-const-cong :
(f : A → B) (x≡y : x ≡ y) →
dcong f x≡y ≡
(subst (const B) x≡y (f x) ≡⟨ subst-const _ ⟩
f x ≡⟨ cong f x≡y ⟩∎
f y ∎)
dcong-subst-const-cong f = elim
(λ {x y} x≡y → dcong f x≡y ≡
trans (subst-const x≡y) (cong f x≡y))
(λ x →
dcong f (refl x) ≡⟨ dcong-refl _ ⟩
subst-refl _ _ ≡⟨ sym $ trans-reflʳ _ ⟩
trans (subst-refl _ _) (refl (f x)) ≡⟨ cong₂ trans
(sym $ elim¹-refl _ _)
(sym $ cong-refl _) ⟩∎
trans (subst-const _) (cong f (refl x)) ∎)
-- A corollary.
dcong≡→cong≡ :
{x≡y : x ≡ y} {fx≡fy : f x ≡ f y} →
dcong f x≡y ≡ trans (subst-const _) fx≡fy →
cong f x≡y ≡ fx≡fy
dcong≡→cong≡ {f = f} {x≡y = x≡y} {fx≡fy} hyp =
cong f x≡y ≡⟨ sym $ trans-sym-[trans] _ _ ⟩
trans (sym $ subst-const _) (trans (subst-const _) $ cong f x≡y) ≡⟨ cong (trans (sym $ subst-const _)) $ sym $
dcong-subst-const-cong _ _ ⟩
trans (sym $ subst-const _) (dcong f x≡y) ≡⟨ cong (trans (sym $ subst-const _)) hyp ⟩
trans (sym $ subst-const _) (trans (subst-const _) fx≡fy) ≡⟨ trans-sym-[trans] _ _ ⟩∎
fx≡fy ∎
-- A kind of symmetry for "dependent paths".
dsym :
{x≡y : x ≡ y} {P : A → Type p} {p : P x} {q : P y} →
subst P x≡y p ≡ q → subst P (sym x≡y) q ≡ p
dsym {x≡y = x≡y} {P = P} p≡q = elim
(λ {x y} x≡y →
∀ {p : P x} {q : P y} →
subst P x≡y p ≡ q →
subst P (sym x≡y) q ≡ p)
(λ _ {p q} p≡q →
subst P (sym (refl _)) q ≡⟨ cong (flip (subst P) _) sym-refl ⟩
subst P (refl _) q ≡⟨ subst-refl _ _ ⟩
q ≡⟨ sym p≡q ⟩
subst P (refl _) p ≡⟨ subst-refl _ _ ⟩∎
p ∎)
x≡y
p≡q
-- A "computation rule" for dsym.
dsym-subst-refl :
{P : A → Type p} {p : P x} →
dsym (subst-refl P p) ≡
trans (cong (flip (subst P) _) sym-refl) (subst-refl _ _)
dsym-subst-refl {P = P} =
dsym (subst-refl _ _) ≡⟨ cong (λ f → f (subst-refl _ _)) $
elim-refl
(λ {x y} x≡y →
∀ {p : P x} {q : P y} →
subst P x≡y p ≡ q →
subst P (sym x≡y) q ≡ p)
_ ⟩
trans (cong (flip (subst P) _) sym-refl)
(trans (subst-refl _ _)
(trans (sym (subst-refl P _)) (subst-refl _ _))) ≡⟨ cong (trans (cong (flip (subst P) _) sym-refl)) $ trans--[trans-sym] _ _ ⟩∎
trans (cong (flip (subst P) _) sym-refl) (subst-refl _ _) ∎
-- A kind of transitivity for "dependent paths".
--
-- This lemma is suggested in the HoTT book (first edition,
-- Exercise 6.1).
dtrans :
{x≡y : x ≡ y} {y≡z : y ≡ z}
(P : A → Type p) {p : P x} {q : P y} {r : P z} →
subst P x≡y p ≡ q →
subst P y≡z q ≡ r →
subst P (trans x≡y y≡z) p ≡ r
dtrans {x≡y = x≡y} {y≡z = y≡z} P {p = p} {q = q} {r = r} p≡q q≡r =
subst P (trans x≡y y≡z) p ≡⟨ sym $ subst-subst _ _ _ _ ⟩
subst P y≡z (subst P x≡y p) ≡⟨ cong (subst P y≡z) p≡q ⟩
subst P y≡z q ≡⟨ q≡r ⟩∎
r ∎
-- "Computation rules" for dtrans.
dtrans-reflˡ :
{x≡y : x ≡ y} {y≡z : y ≡ z}
{P : A → Type p} {p : P x} {r : P z}
{p≡r : subst P y≡z (subst P x≡y p) ≡ r} →
dtrans P (refl _) p≡r ≡
trans (sym $ subst-subst _ _ _ _) p≡r
dtrans-reflˡ {y≡z = y≡z} {P = P} {p≡r = p≡r} =
trans (sym $ subst-subst _ _ _ _)
(trans (cong (subst P y≡z) (refl _)) p≡r) ≡⟨ cong (trans (sym $ subst-subst _ _ _ _) ∘ flip trans _) $ cong-refl _ ⟩
trans (sym $ subst-subst _ _ _ _) (trans (refl _) p≡r) ≡⟨ cong (trans (sym $ subst-subst _ _ _ _)) $ trans-reflˡ _ ⟩∎
trans (sym $ subst-subst _ _ _ _) p≡r ∎
dtrans-reflʳ :
{x≡y : x ≡ y} {y≡z : y ≡ z}
{P : A → Type p} {p : P x} {q : P y}
{p≡q : subst P x≡y p ≡ q} →
dtrans P p≡q (refl (subst P y≡z q)) ≡
trans (sym $ subst-subst _ _ _ _) (cong (subst P y≡z) p≡q)
dtrans-reflʳ {x≡y = x≡y} {y≡z = y≡z} {P = P} {p≡q = p≡q} =
trans (sym $ subst-subst _ _ _ _)
(trans (cong (subst P y≡z) p≡q) (refl _)) ≡⟨ cong (trans _) $ trans-reflʳ _ ⟩∎
trans (sym $ subst-subst _ _ _ _) (cong (subst P y≡z) p≡q) ∎
dtrans-subst-reflˡ :
{x≡y : x ≡ y} {P : A → Type p} {p : P x} {q : P y}
{p≡q : subst P x≡y p ≡ q} →
dtrans P (subst-refl _ _) p≡q ≡
trans (cong (flip (subst P) _) (trans-reflˡ _)) p≡q
dtrans-subst-reflˡ {x≡y = x≡y} {P = P} {p≡q = p≡q} =
trans (sym $ subst-subst _ _ _ _)
(trans (cong (subst P x≡y) (subst-refl _ _)) p≡q) ≡⟨ cong (λ eq → trans (sym eq)
(trans (cong (subst P x≡y) (subst-refl _ _)) _)) $
subst-subst-reflˡ _ ⟩
trans (sym $ trans (cong (subst P _) (subst-refl _ _))
(cong (flip (subst P) _) (sym $ trans-reflˡ _)))
(trans (cong (subst P _) (subst-refl _ _)) p≡q) ≡⟨ cong (flip trans _) $ sym-trans _ _ ⟩
trans (trans
(sym $ cong (flip (subst P) _) (sym $ trans-reflˡ _))
(sym $ cong (subst P _) (subst-refl _ _)))
(trans (cong (subst P _) (subst-refl _ _)) p≡q) ≡⟨ trans-assoc _ _ _ ⟩
trans (sym $ cong (flip (subst P) _) (sym $ trans-reflˡ _))
(trans (sym $ cong (subst P _) (subst-refl _ _))
(trans (cong (subst P _) (subst-refl _ _)) p≡q)) ≡⟨ cong (trans _) $ trans-sym-[trans] _ _ ⟩
trans (sym $ cong (flip (subst P) _) (sym $ trans-reflˡ _)) p≡q ≡⟨ cong (flip trans _ ∘ sym) $ cong-sym _ _ ⟩
trans (sym $ sym $ cong (flip (subst P) _) (trans-reflˡ _)) p≡q ≡⟨ cong (flip trans _) $ sym-sym _ ⟩∎
trans (cong (flip (subst P) _) (trans-reflˡ _)) p≡q ∎
dtrans-subst-reflʳ :
{x≡y : x ≡ y} {P : A → Type p} {p : P x} {q : P y}
{p≡q : subst P x≡y p ≡ q} →
dtrans P p≡q (subst-refl _ _) ≡
trans (cong (flip (subst P) _) (trans-reflʳ _)) p≡q
dtrans-subst-reflʳ {x≡y = x≡y} {P = P} {p = p} {p≡q = p≡q} = elim¹
(λ x≡y → ∀ {q} (p≡q : subst P x≡y p ≡ q) →
dtrans P p≡q (subst-refl _ _) ≡
trans (cong (flip (subst P) _) (trans-reflʳ _)) p≡q)
(λ p≡q →
trans (sym $ subst-subst _ _ _ _)
(trans (cong (subst P (refl _)) p≡q) (subst-refl _ _)) ≡⟨ cong (λ eq → trans (sym eq) (trans (cong (subst P (refl _)) _)
(subst-refl _ _))) $
subst-subst-refl-refl _ ⟩
trans (sym $ cong₂ (flip (subst P)) (subst-refl _ _) $
sym trans-refl-refl)
(trans (cong (subst P (refl _)) p≡q) (subst-refl _ _)) ≡⟨⟩
trans (sym $ trans (cong (subst P _) (subst-refl _ _))
(cong (flip (subst P) _) (sym trans-refl-refl)))
(trans (cong (subst P (refl _)) p≡q) (subst-refl _ _)) ≡⟨ cong (flip trans _) $ sym-trans _ _ ⟩
trans (trans (sym $ cong (flip (subst P) _)
(sym trans-refl-refl))
(sym $ cong (subst P _) (subst-refl _ _)))
(trans (cong (subst P (refl _)) p≡q) (subst-refl _ _)) ≡⟨ lemma₁ p≡q ⟩
trans (cong (flip (subst P) _) trans-refl-refl) p≡q ≡⟨ cong (λ eq → trans (cong (flip (subst P) _) eq) _) $ sym $
elim-refl _ _ ⟩∎
trans (cong (flip (subst P) _) (trans-reflʳ _)) p≡q ∎)
x≡y
p≡q
where
lemma₂ :
cong (subst P (refl _)) (subst-refl P p) ≡
cong id (subst-refl P (subst P (refl _) p))
lemma₂ =
cong (subst P (refl _)) (subst-refl P p) ≡⟨ cong-≡id-≡-≡id (subst-refl P) ⟩
subst-refl P (subst P (refl _) p) ≡⟨ cong-id _ ⟩∎
cong id (subst-refl P (subst P (refl _) p)) ∎
lemma₁ :
∀ {q} (p≡q : subst P (refl _) p ≡ q) →
trans (trans (sym $ cong (flip (subst P) _)
(sym trans-refl-refl))
(sym $ cong (subst P (refl _)) (subst-refl _ _)))
(trans (cong (subst P (refl _)) p≡q) (subst-refl _ _)) ≡
trans (cong (flip (subst P) _) trans-refl-refl) p≡q
lemma₁ = elim¹
(λ p≡q →
trans (trans (sym $ cong (flip (subst P) _)
(sym trans-refl-refl))
(sym $ cong (subst P (refl _)) (subst-refl _ _)))
(trans (cong (subst P (refl _)) p≡q) (subst-refl _ _)) ≡
trans (cong (flip (subst P) _) trans-refl-refl) p≡q)
(trans (trans (sym $ cong (flip (subst P) _)
(sym trans-refl-refl))
(sym $ cong (subst P (refl _)) (subst-refl _ _)))
(trans (cong (subst P (refl _)) (refl _)) (subst-refl _ _)) ≡⟨ cong (λ eq → trans (trans (sym $ cong (flip (subst P) _)
(sym trans-refl-refl))
(sym $ cong (subst P _) (subst-refl _ _)))
(trans eq (subst-refl _ _))) $
cong-refl (subst P (refl _)) ⟩
trans (trans (sym $ cong (flip (subst P) _)
(sym trans-refl-refl))
(sym $ cong (subst P (refl _)) (subst-refl _ _)))
(trans (refl _) (subst-refl _ _)) ≡⟨ cong (trans _) $ trans-reflˡ _ ⟩
trans (trans (sym $ cong (flip (subst P) _)
(sym trans-refl-refl))
(sym $ cong (subst P (refl _)) (subst-refl _ _)))
(subst-refl _ _) ≡⟨ cong (λ eq → trans (trans (sym $ cong (flip (subst P) _) _) (sym eq))
(subst-refl _ _))
lemma₂ ⟩
trans (trans (sym $ cong (flip (subst P) _)
(sym trans-refl-refl))
(sym $ cong id (subst-refl _ _)))
(subst-refl _ _) ≡⟨ cong (λ eq → trans (trans (sym $ cong (flip (subst P) _)
(sym trans-refl-refl)) (sym eq))
(subst-refl _ _)) $ sym $
cong-id _ ⟩
trans (trans (sym $ cong (flip (subst P) _)
(sym trans-refl-refl))
(sym $ subst-refl _ _))
(subst-refl _ _) ≡⟨ trans-[trans-sym]- _ _ ⟩
sym (cong (flip (subst P) _) (sym trans-refl-refl)) ≡⟨ cong sym $ cong-sym _ _ ⟩
sym (sym (cong (flip (subst P) _) trans-refl-refl)) ≡⟨ sym-sym _ ⟩
cong (flip (subst P) _) trans-refl-refl ≡⟨ sym $ trans-reflʳ _ ⟩∎
trans (cong (flip (subst P) _) trans-refl-refl) (refl _) ∎)
-- A lemma relating dcong, trans and dtrans.
--
-- This lemma is suggested in the HoTT book (first edition,
-- Exercise 6.1).
dcong-trans :
{f : (x : A) → P x} {x≡y : x ≡ y} {y≡z : y ≡ z} →
dcong f (trans x≡y y≡z) ≡ dtrans P (dcong f x≡y) (dcong f y≡z)
dcong-trans {P = P} {f = f} {x≡y = x≡y} {y≡z = y≡z} = elim₁
(λ x≡y → dcong f (trans x≡y y≡z) ≡ dtrans P (dcong f x≡y) (dcong f y≡z))
(dcong f (trans (refl _) y≡z) ≡⟨ elim₁ (λ {p} eq → dcong f p ≡
trans (cong (flip (subst P) _) eq) (dcong f y≡z)) (
dcong f y≡z ≡⟨ sym $ trans-reflˡ _ ⟩
trans (refl _) (dcong f y≡z) ≡⟨ cong (flip trans _) $ sym $ cong-refl _ ⟩∎
trans (cong (flip (subst P) _) (refl _)) (dcong f y≡z) ∎)
(trans-reflˡ _) ⟩
trans (cong (flip (subst P) _) (trans-reflˡ _)) (dcong f y≡z) ≡⟨ sym dtrans-subst-reflˡ ⟩
dtrans P (subst-refl _ _) (dcong f y≡z) ≡⟨ cong (λ eq → dtrans P eq (dcong f y≡z)) $ sym $ dcong-refl f ⟩∎
dtrans P (dcong f (refl _)) (dcong f y≡z) ∎)
x≡y
-- An equality between pairs can be proved using a pair of
-- equalities.
Σ-≡,≡→≡ : {B : A → Type b} {p₁ p₂ : Σ A B} →
(p : proj₁ p₁ ≡ proj₁ p₂) →
subst B p (proj₂ p₁) ≡ proj₂ p₂ →
p₁ ≡ p₂
Σ-≡,≡→≡ {B = B} p q = elim
(λ {x₁ y₁} (p : x₁ ≡ y₁) → ∀ {x₂ y₂} →
subst B p x₂ ≡ y₂ → (x₁ , x₂) ≡ (y₁ , y₂))
(λ z₁ {x₂} {y₂} x₂≡y₂ → cong (_,_ z₁) (
x₂ ≡⟨ sym $ subst-refl _ _ ⟩
subst B (refl z₁) x₂ ≡⟨ x₂≡y₂ ⟩∎
y₂ ∎))
p q
-- The uncurried form of Σ-≡,≡→≡ has an inverse, Σ-≡,≡←≡. (For a
-- proof, see Bijection.Σ-≡,≡↔≡.)
Σ-≡,≡←≡ : {B : A → Type b} {p₁ p₂ : Σ A B} →
p₁ ≡ p₂ →
∃ λ (p : proj₁ p₁ ≡ proj₁ p₂) →
subst B p (proj₂ p₁) ≡ proj₂ p₂
Σ-≡,≡←≡ {A = A} {B = B} = elim
(λ {p₁ p₂ : Σ A B} _ →
∃ λ (p : proj₁ p₁ ≡ proj₁ p₂) → subst B p (proj₂ p₁) ≡ proj₂ p₂)
(λ p → refl _ , subst-refl _ _)
abstract
-- "Evaluation rules" for Σ-≡,≡→≡.
Σ-≡,≡→≡-reflˡ :
∀ {B : A → Type b} {y₁ y₂} →
(y₁≡y₂ : subst B (refl x) y₁ ≡ y₂) →
Σ-≡,≡→≡ (refl x) y₁≡y₂ ≡
cong (x ,_) (trans (sym $ subst-refl _ _) y₁≡y₂)
Σ-≡,≡→≡-reflˡ {B = B} y₁≡y₂ =
cong (λ f → f y₁≡y₂) $
elim-refl (λ {x₁ y₁} (p : x₁ ≡ y₁) → ∀ {x₂ y₂} →
subst B p x₂ ≡ y₂ → (x₁ , x₂) ≡ (y₁ , y₂))
_
Σ-≡,≡→≡-refl-refl :
∀ {B : A → Type b} {y} →
Σ-≡,≡→≡ (refl x) (refl (subst B (refl x) y)) ≡
cong (x ,_) (sym (subst-refl _ _))
Σ-≡,≡→≡-refl-refl {x = x} =
Σ-≡,≡→≡ (refl x) (refl _) ≡⟨ Σ-≡,≡→≡-reflˡ (refl _) ⟩
cong (x ,_) (trans (sym $ subst-refl _ _) (refl _)) ≡⟨ cong (cong (x ,_)) (trans-reflʳ _) ⟩∎
cong (x ,_) (sym (subst-refl _ _)) ∎
Σ-≡,≡→≡-refl-subst-refl :
{B : A → Type b} {p : Σ A B} →
Σ-≡,≡→≡ (refl _) (subst-refl _ _) ≡ refl p
Σ-≡,≡→≡-refl-subst-refl {B = B} =
Σ-≡,≡→≡ (refl _) (subst-refl B _) ≡⟨ Σ-≡,≡→≡-reflˡ _ ⟩
cong (_ ,_) (trans (sym $ subst-refl _ _) (subst-refl _ _)) ≡⟨ cong (cong _) (trans-symˡ _) ⟩
cong (_ ,_) (refl _) ≡⟨ cong-refl _ ⟩∎
refl _ ∎
Σ-≡,≡→≡-refl-subst-const :
{p : A × B} →
Σ-≡,≡→≡ (refl _) (subst-const _) ≡ refl p
Σ-≡,≡→≡-refl-subst-const =
Σ-≡,≡→≡ (refl _) (subst-const _) ≡⟨ Σ-≡,≡→≡-reflˡ _ ⟩
cong (_ ,_) (trans (sym $ subst-refl _ _) (subst-const _)) ≡⟨ cong (cong _) subst-refl-subst-const ⟩
cong (_ ,_) (refl _) ≡⟨ cong-refl _ ⟩∎
refl _ ∎
-- "Evaluation rule" for Σ-≡,≡←≡.
Σ-≡,≡←≡-refl :
{B : A → Type b} {p : Σ A B} →
Σ-≡,≡←≡ (refl p) ≡ (refl _ , subst-refl _ _)
Σ-≡,≡←≡-refl = elim-refl _ _
-- Proof transformation rules for Σ-≡,≡→≡.
proj₁-Σ-≡,≡→≡ :
∀ {B : A → Type b} {y₁ y₂}
(x₁≡x₂ : x₁ ≡ x₂) (y₁≡y₂ : subst B x₁≡x₂ y₁ ≡ y₂) →
cong proj₁ (Σ-≡,≡→≡ x₁≡x₂ y₁≡y₂) ≡ x₁≡x₂
proj₁-Σ-≡,≡→≡ {B = B} {y₁ = y₁} x₁≡x₂ y₁≡y₂ = elim¹
(λ x₁≡x₂ → ∀ {y₂} (y₁≡y₂ : subst B x₁≡x₂ y₁ ≡ y₂) →
cong proj₁ (Σ-≡,≡→≡ x₁≡x₂ y₁≡y₂) ≡ x₁≡x₂)
(λ y₁≡y₂ →
cong proj₁ (Σ-≡,≡→≡ (refl _) y₁≡y₂) ≡⟨ cong (cong proj₁) $ Σ-≡,≡→≡-reflˡ _ ⟩
cong proj₁ (cong (_,_ _) (trans (sym $ subst-refl _ _) y₁≡y₂)) ≡⟨ cong-∘ _ (_,_ _) _ ⟩
cong (const _) (trans (sym $ subst-refl _ _) y₁≡y₂) ≡⟨ cong-const _ ⟩∎
refl _ ∎)
x₁≡x₂ y₁≡y₂
Σ-≡,≡→≡-cong :
{B : A → Type b} {p₁ p₂ : Σ A B}
{q₁ q₂ : proj₁ p₁ ≡ proj₁ p₂}
(q₁≡q₂ : q₁ ≡ q₂)
{r₁ : subst B q₁ (proj₂ p₁) ≡ proj₂ p₂}
{r₂ : subst B q₂ (proj₂ p₁) ≡ proj₂ p₂}
(r₁≡r₂ : (subst B q₂ (proj₂ p₁) ≡⟨ cong (flip (subst B) _) (sym q₁≡q₂) ⟩
subst B q₁ (proj₂ p₁) ≡⟨ r₁ ⟩∎
proj₂ p₂ ∎)
≡
r₂) →
Σ-≡,≡→≡ q₁ r₁ ≡ Σ-≡,≡→≡ q₂ r₂
Σ-≡,≡→≡-cong {B = B} = elim
(λ {q₁ q₂} q₁≡q₂ →
∀ {r₁ r₂}
(r₁≡r₂ : trans (cong (flip (subst B) _) (sym q₁≡q₂)) r₁ ≡ r₂) →
Σ-≡,≡→≡ q₁ r₁ ≡ Σ-≡,≡→≡ q₂ r₂)
(λ q {r₁ r₂} r₁≡r₂ → cong (Σ-≡,≡→≡ q) (
r₁ ≡⟨ sym $ trans-reflˡ _ ⟩
trans (refl (subst B q _)) r₁ ≡⟨ cong (flip trans _) $ sym $ cong-refl _ ⟩
trans (cong (flip (subst B) _) (refl q)) r₁ ≡⟨ cong (λ e → trans (cong (flip (subst B) _) e) _) $ sym sym-refl ⟩
trans (cong (flip (subst B) _) (sym (refl q))) r₁ ≡⟨ r₁≡r₂ ⟩∎
r₂ ∎))
trans-Σ-≡,≡→≡ :
{B : A → Type b} {p₁ p₂ p₃ : Σ A B} →
(q₁₂ : proj₁ p₁ ≡ proj₁ p₂) (q₂₃ : proj₁ p₂ ≡ proj₁ p₃)
(r₁₂ : subst B q₁₂ (proj₂ p₁) ≡ proj₂ p₂)
(r₂₃ : subst B q₂₃ (proj₂ p₂) ≡ proj₂ p₃) →
trans (Σ-≡,≡→≡ q₁₂ r₁₂) (Σ-≡,≡→≡ q₂₃ r₂₃) ≡
Σ-≡,≡→≡ (trans q₁₂ q₂₃)
(subst B (trans q₁₂ q₂₃) (proj₂ p₁) ≡⟨ sym $ subst-subst _ _ _ _ ⟩
subst B q₂₃ (subst B q₁₂ (proj₂ p₁)) ≡⟨ cong (subst _ _) r₁₂ ⟩
subst B q₂₃ (proj₂ p₂) ≡⟨ r₂₃ ⟩∎
proj₂ p₃ ∎)
trans-Σ-≡,≡→≡ {B = B} q₁₂ q₂₃ r₁₂ r₂₃ = elim
(λ {p₂₁ p₃₁} q₂₃ → ∀ {p₁₁} (q₁₂ : p₁₁ ≡ p₂₁)
{p₁₂ p₂₂} (r₁₂ : subst B q₁₂ p₁₂ ≡ p₂₂)
{p₃₂} (r₂₃ : subst B q₂₃ p₂₂ ≡ p₃₂) →
trans (Σ-≡,≡→≡ q₁₂ r₁₂) (Σ-≡,≡→≡ q₂₃ r₂₃) ≡
Σ-≡,≡→≡ (trans q₁₂ q₂₃)
(trans (sym $ subst-subst _ _ _ _)
(trans (cong (subst _ _) r₁₂) r₂₃)))
(λ x → elim₁
(λ q₁₂ →
∀ {p₁₂ p₂₂} (r₁₂ : subst B q₁₂ p₁₂ ≡ p₂₂)
{p₃₂} (r₂₃ : subst B (refl _) p₂₂ ≡ p₃₂) →
trans (Σ-≡,≡→≡ q₁₂ r₁₂) (Σ-≡,≡→≡ (refl _) r₂₃) ≡
Σ-≡,≡→≡ (trans q₁₂ (refl _))
(trans (sym $ subst-subst _ _ _ _)
(trans (cong (subst _ _) r₁₂) r₂₃)))
(λ {y} → elim¹
(λ {p₂₂} r₁₂ →
∀ {p₃₂} (r₂₃ : subst B (refl _) p₂₂ ≡ p₃₂) →
trans (Σ-≡,≡→≡ (refl _) r₁₂) (Σ-≡,≡→≡ (refl _) r₂₃) ≡
Σ-≡,≡→≡ (trans (refl _) (refl _))
(trans (sym $ subst-subst _ _ _ _)
(trans (cong (subst _ _) r₁₂) r₂₃)))
(elim¹
(λ r₂₃ →
trans (Σ-≡,≡→≡ (refl _) (refl _))
(Σ-≡,≡→≡ (refl _) r₂₃) ≡
Σ-≡,≡→≡ (trans (refl _) (refl _))
(trans (sym $ subst-subst _ _ _ _)
(trans (cong (subst _ _) (refl _))
r₂₃)))
(let lemma₁ =
sym (cong (subst B _) (subst-refl _ _)) ≡⟨ sym $ trans-sym-[trans] _ _ ⟩
trans (sym $ cong (flip (subst B) _)
trans-refl-refl)
(trans (cong (flip (subst B) _)
trans-refl-refl)
(sym (cong (subst B _)
(subst-refl _ _)))) ≡⟨ cong (flip trans _) $ sym $ cong-sym _ _ ⟩∎
trans (cong (flip (subst B) _)
(sym trans-refl-refl))
(trans (cong (flip (subst B) _)
trans-refl-refl)
(sym (cong (subst B _)
(subst-refl _ _)))) ∎
lemma₂ =
trans (cong (flip (subst B) _) trans-refl-refl)
(sym (cong (subst B _) (subst-refl _ _))) ≡⟨ cong (λ e → trans (cong (flip (subst B) _) e)
(sym $ cong (subst B _) (subst-refl _ _))) $
sym $ sym-sym _ ⟩
trans (cong (flip (subst B) _)
(sym $ sym trans-refl-refl))
(sym (cong (subst B _) (subst-refl _ _))) ≡⟨ cong (flip trans _) $ cong-sym _ _ ⟩
trans (sym (cong (flip (subst B) _)
(sym trans-refl-refl)))
(sym (cong (subst B _) (subst-refl _ _))) ≡⟨ sym $ sym-trans _ _ ⟩
sym (trans (cong (subst B _) (subst-refl _ _))
(cong (flip (subst B) _)
(sym trans-refl-refl))) ≡⟨⟩
sym (cong₂ (flip (subst B)) (subst-refl _ _)
(sym trans-refl-refl)) ≡⟨ cong sym $ sym $ subst-subst-refl-refl _ ⟩
sym (subst-subst _ _ _ _) ≡⟨ sym $ trans-reflʳ _ ⟩
trans (sym $ subst-subst _ _ _ _) (refl _) ≡⟨ cong (trans (sym $ subst-subst _ _ _ _)) $ sym trans-refl-refl ⟩
trans (sym $ subst-subst _ _ _ _)
(trans (refl _) (refl _)) ≡⟨ cong (λ x → trans (sym $ subst-subst _ _ _ _) (trans x (refl _))) $
sym $ cong-refl _ ⟩∎
trans (sym $ subst-subst _ _ _ _)
(trans (cong (subst _ _) (refl _)) (refl _)) ∎
in
trans (Σ-≡,≡→≡ (refl _) (refl _))
(Σ-≡,≡→≡ (refl _) (refl _)) ≡⟨ cong₂ trans Σ-≡,≡→≡-refl-refl Σ-≡,≡→≡-refl-refl ⟩
trans (cong (_ ,_) (sym (subst-refl _ _)))
(cong (_ ,_) (sym (subst-refl B _))) ≡⟨ sym $ cong-trans _ _ _ ⟩
cong (_ ,_) (trans (sym (subst-refl _ _))
(sym (subst-refl _ _))) ≡⟨ cong (cong (_ ,_) ∘ trans (sym (subst-refl _ _)) ∘ sym) $ sym $
cong-≡id-≡-≡id (subst-refl B) ⟩
cong (_ ,_)
(trans (sym (subst-refl _ _))
(sym (cong (subst B _) (subst-refl _ _)))) ≡⟨ sym $ Σ-≡,≡→≡-reflˡ _ ⟩
Σ-≡,≡→≡ (refl _)
(sym (cong (subst B _) (subst-refl _ _))) ≡⟨ cong (Σ-≡,≡→≡ _) lemma₁ ⟩
Σ-≡,≡→≡ (refl _)
(trans (cong (flip (subst B) _) (sym trans-refl-refl))
(trans (cong (flip (subst B) _) trans-refl-refl)
(sym (cong (subst B _) (subst-refl _ _))))) ≡⟨ sym $ Σ-≡,≡→≡-cong _ (refl _) ⟩
Σ-≡,≡→≡ (trans (refl _) (refl _))
(trans (cong (flip (subst B) _) trans-refl-refl)
(sym (cong (subst B _) (subst-refl _ _)))) ≡⟨ cong (Σ-≡,≡→≡ (trans (refl _) (refl _))) lemma₂ ⟩∎
Σ-≡,≡→≡ (trans (refl _) (refl _))
(trans (sym $ subst-subst _ _ _ _)
(trans (cong (subst _ _) (refl _))
(refl _))) ∎))))
q₂₃ q₁₂ r₁₂ r₂₃
Σ-≡,≡→≡-subst-const :
{p₁ p₂ : A × B} →
(p : proj₁ p₁ ≡ proj₁ p₂) (q : proj₂ p₁ ≡ proj₂ p₂) →
Σ-≡,≡→≡ p (trans (subst-const _) q) ≡ cong₂ _,_ p q
Σ-≡,≡→≡-subst-const p q = elim
(λ {x₁ y₁} (p : x₁ ≡ y₁) →
Σ-≡,≡→≡ p (trans (subst-const _) q) ≡ cong₂ _,_ p q)
(λ x →
let lemma =
trans (sym $ subst-refl _ _) (trans (subst-const _) q) ≡⟨ sym $ trans-assoc _ _ _ ⟩
trans (trans (sym $ subst-refl _ _) (subst-const _)) q ≡⟨ cong₂ trans subst-refl-subst-const (refl _) ⟩
trans (refl _) q ≡⟨ trans-reflˡ _ ⟩∎
q ∎ in
Σ-≡,≡→≡ (refl x) (trans (subst-const _) q) ≡⟨ Σ-≡,≡→≡-reflˡ _ ⟩
cong (x ,_) (trans (sym $ subst-refl _ _)
(trans (subst-const _) q)) ≡⟨ cong (cong (x ,_)) lemma ⟩
cong (x ,_) q ≡⟨ sym $ cong₂-reflˡ _,_ ⟩∎
cong₂ _,_ (refl x) q ∎)
p
Σ-≡,≡→≡-subst-const-refl :
Σ-≡,≡→≡ x₁≡x₂ (subst-const _) ≡ cong₂ _,_ x₁≡x₂ (refl y)
Σ-≡,≡→≡-subst-const-refl {x₁≡x₂ = x₁≡x₂} {y = y} =
Σ-≡,≡→≡ x₁≡x₂ (subst-const _) ≡⟨ cong (Σ-≡,≡→≡ x₁≡x₂) $ sym $ trans-reflʳ _ ⟩
Σ-≡,≡→≡ x₁≡x₂ (trans (subst-const _) (refl _)) ≡⟨ Σ-≡,≡→≡-subst-const _ _ ⟩∎
cong₂ _,_ x₁≡x₂ (refl y) ∎
-- Proof simplification rule for Σ-≡,≡←≡.
proj₁-Σ-≡,≡←≡ :
{B : A → Type b} {p₁ p₂ : Σ A B}
(p₁≡p₂ : p₁ ≡ p₂) →
proj₁ (Σ-≡,≡←≡ p₁≡p₂) ≡ cong proj₁ p₁≡p₂
proj₁-Σ-≡,≡←≡ = elim
(λ p₁≡p₂ → proj₁ (Σ-≡,≡←≡ p₁≡p₂) ≡ cong proj₁ p₁≡p₂)
(λ p →
proj₁ (Σ-≡,≡←≡ (refl p)) ≡⟨ cong proj₁ $ Σ-≡,≡←≡-refl ⟩
refl (proj₁ p) ≡⟨ sym $ cong-refl _ ⟩∎
cong proj₁ (refl p) ∎)
-- A binary variant of subst.
subst₂ : ∀ {B : A → Type b} (P : Σ A B → Type p) {x₁ x₂ y₁ y₂} →
(x₁≡x₂ : x₁ ≡ x₂) → subst B x₁≡x₂ y₁ ≡ y₂ →
P (x₁ , y₁) → P (x₂ , y₂)
subst₂ P x₁≡x₂ y₁≡y₂ = subst P (Σ-≡,≡→≡ x₁≡x₂ y₁≡y₂)
abstract
-- "Evaluation rule" for subst₂.
subst₂-refl-refl :
∀ {B : A → Type b} (P : Σ A B → Type p) {y p} →
subst₂ P (refl _) (refl _) p ≡
subst (curry P x) (sym $ subst-refl B y) p
subst₂-refl-refl {x = x} P {p = p} =
subst P (Σ-≡,≡→≡ (refl _) (refl _)) p ≡⟨ cong (λ eq₁ → subst P eq₁ _) Σ-≡,≡→≡-refl-refl ⟩
subst P (cong (x ,_) (sym (subst-refl _ _))) p ≡⟨ sym $ subst-∘ _ _ _ ⟩∎
subst (curry P x) (sym $ subst-refl _ _) p ∎
-- The subst function can be "pushed" inside pairs.
push-subst-pair :
∀ (B : A → Type b) (C : Σ A B → Type c) {p} →
subst (λ x → Σ (B x) (curry C x)) y≡z p ≡
(subst B y≡z (proj₁ p) , subst₂ C y≡z (refl _) (proj₂ p))
push-subst-pair {y≡z = y≡z} B C {p} = elim¹
(λ y≡z →
subst (λ x → Σ (B x) (curry C x)) y≡z p ≡
(subst B y≡z (proj₁ p) , subst₂ C y≡z (refl _) (proj₂ p)))
(subst (λ x → Σ (B x) (curry C x)) (refl _) p ≡⟨ subst-refl _ _ ⟩
p ≡⟨ Σ-≡,≡→≡ (sym (subst-refl _ _)) (sym (subst₂-refl-refl _)) ⟩∎
(subst B (refl _) (proj₁ p) ,
subst₂ C (refl _) (refl _) (proj₂ p)) ∎)
y≡z
-- A proof transformation rule for push-subst-pair.
proj₁-push-subst-pair-refl :
∀ {A : Type a} {y : A} (B : A → Type b) (C : Σ A B → Type c) {p} →
cong proj₁ (push-subst-pair {y≡z = refl y} B C {p = p}) ≡
trans (cong proj₁ (subst-refl (λ _ → Σ _ _) _))
(sym $ subst-refl _ _)
proj₁-push-subst-pair-refl B C =
cong proj₁ (push-subst-pair _ _) ≡⟨ cong (cong proj₁) $
elim¹-refl
(λ y≡z →
subst (λ x → Σ (B x) (curry C x)) y≡z _ ≡
(subst B y≡z _ , subst₂ C y≡z (refl _) _))
_ ⟩
cong proj₁
(trans (subst-refl (λ _ → Σ _ _) _)
(Σ-≡,≡→≡ (sym $ subst-refl B _) (sym (subst₂-refl-refl _)))) ≡⟨ cong-trans _ _ _ ⟩
trans (cong proj₁ (subst-refl _ _))
(cong proj₁
(Σ-≡,≡→≡ (sym $ subst-refl _ _) (sym (subst₂-refl-refl _)))) ≡⟨ cong (trans _) $
proj₁-Σ-≡,≡→≡ _ _ ⟩∎
trans (cong proj₁ (subst-refl _ _)) (sym $ subst-refl _ _) ∎
-- Corollaries of push-subst-pair.
push-subst-pair′ :
∀ (B : A → Type b) (C : Σ A B → Type c) {p p₁} →
(p₁≡p₁ : subst B y≡z (proj₁ p) ≡ p₁) →
subst (λ x → Σ (B x) (curry C x)) y≡z p ≡
(p₁ , subst₂ C y≡z p₁≡p₁ (proj₂ p))
push-subst-pair′ {y≡z = y≡z} B C {p} =
elim¹ (λ {p₁} p₁≡p₁ →
subst (λ x → Σ (B x) (curry C x)) y≡z p ≡
(p₁ , subst₂ C y≡z p₁≡p₁ (proj₂ p)))
(push-subst-pair _ _)
push-subst-pair-× :
∀ {y≡z : y ≡ z} (B : Type b) (C : A × B → Type c) {p} →
subst (λ x → Σ B (curry C x)) y≡z p ≡
(proj₁ p , subst (λ x → C (x , proj₁ p)) y≡z (proj₂ p))
push-subst-pair-× {y≡z = y≡z} B C {p} =
subst (λ x → Σ B (curry C x)) y≡z p ≡⟨ push-subst-pair′ _ C (subst-const _) ⟩
(proj₁ p , subst₂ C y≡z (subst-const _) (proj₂ p)) ≡⟨ cong (_ ,_) $
elim¹
(λ y≡z → subst₂ C y≡z (subst-const y≡z) (proj₂ p) ≡
subst (λ x → C (x , proj₁ p)) y≡z (proj₂ p))
(
subst₂ C (refl _) (subst-const _) (proj₂ p) ≡⟨⟩
subst C (Σ-≡,≡→≡ (refl _) (subst-const _)) (proj₂ p) ≡⟨ cong (λ eq → subst C eq _) Σ-≡,≡→≡-refl-subst-const ⟩
subst C (refl _) (proj₂ p) ≡⟨ subst-refl _ _ ⟩
proj₂ p ≡⟨ sym $ subst-refl _ _ ⟩∎
subst (λ x → C (x , _)) (refl _) (proj₂ p) ∎)
y≡z ⟩
(proj₁ p , subst (λ x → C (x , _)) y≡z (proj₂ p)) ∎
-- A proof simplification rule for subst₂.
subst₂-proj₁ :
∀ {B : A → Type b} {y₁ y₂}
{x₁≡x₂ : x₁ ≡ x₂} {y₁≡y₂ : subst B x₁≡x₂ y₁ ≡ y₂}
(P : A → Type p) {p} →
subst₂ {B = B} (P ∘ proj₁) x₁≡x₂ y₁≡y₂ p ≡ subst P x₁≡x₂ p
subst₂-proj₁ {x₁≡x₂ = x₁≡x₂} {y₁≡y₂} P {p} =
subst₂ (P ∘ proj₁) x₁≡x₂ y₁≡y₂ p ≡⟨ subst-∘ _ _ _ ⟩
subst P (cong proj₁ (Σ-≡,≡→≡ x₁≡x₂ y₁≡y₂)) p ≡⟨ cong (λ eq → subst P eq _) (proj₁-Σ-≡,≡→≡ _ _) ⟩∎
subst P x₁≡x₂ p ∎
-- The subst function can be "pushed" inside non-dependent pairs.
push-subst-, :
∀ (B : A → Type b) (C : A → Type c) {p} →
subst (λ x → B x × C x) y≡z p ≡
(subst B y≡z (proj₁ p) , subst C y≡z (proj₂ p))
push-subst-, {y≡z = y≡z} B C {x , y} =
subst (λ x → B x × C x) y≡z (x , y) ≡⟨ push-subst-pair _ _ ⟩
(subst B y≡z x , subst (C ∘ proj₁) (Σ-≡,≡→≡ y≡z (refl _)) y) ≡⟨ cong (_,_ _) $ subst₂-proj₁ _ ⟩∎
(subst B y≡z x , subst C y≡z y) ∎
-- A proof transformation rule for push-subst-,.
proj₁-push-subst-,-refl :
∀ {A : Type a} {y : A} (B : A → Type b) (C : A → Type c) {p} →
cong proj₁ (push-subst-, {y≡z = refl y} B C {p = p}) ≡
trans (cong proj₁ (subst-refl (λ _ → _ × _) _))
(sym $ subst-refl _ _)
proj₁-push-subst-,-refl _ _ =
cong proj₁ (trans (push-subst-pair _ _)
(cong (_,_ _) $ subst₂-proj₁ _)) ≡⟨ cong-trans _ _ _ ⟩
trans (cong proj₁ (push-subst-pair _ _))
(cong proj₁ (cong (_,_ _) $ subst₂-proj₁ _)) ≡⟨ cong (trans _) $
cong-∘ _ _ _ ⟩
trans (cong proj₁ (push-subst-pair _ _))
(cong (const _) $ subst₂-proj₁ _) ≡⟨ trans (cong (trans _) (cong-const _)) $
trans-reflʳ _ ⟩
cong proj₁ (push-subst-pair _ _) ≡⟨ proj₁-push-subst-pair-refl _ _ ⟩∎
trans (cong proj₁ (subst-refl _ _)) (sym $ subst-refl _ _) ∎
-- The subst function can be "pushed" inside inj₁ and inj₂.
push-subst-inj₁ :
∀ (B : A → Type b) (C : A → Type c) {x} →
subst (λ x → B x ⊎ C x) y≡z (inj₁ x) ≡ inj₁ (subst B y≡z x)
push-subst-inj₁ {y≡z = y≡z} B C {x} = elim¹
(λ y≡z → subst (λ x → B x ⊎ C x) y≡z (inj₁ x) ≡
inj₁ (subst B y≡z x))
(subst (λ x → B x ⊎ C x) (refl _) (inj₁ x) ≡⟨ subst-refl _ _ ⟩
inj₁ x ≡⟨ cong inj₁ $ sym $ subst-refl _ _ ⟩∎
inj₁ (subst B (refl _) x) ∎)
y≡z
push-subst-inj₂ :
∀ (B : A → Type b) (C : A → Type c) {x} →
subst (λ x → B x ⊎ C x) y≡z (inj₂ x) ≡ inj₂ (subst C y≡z x)
push-subst-inj₂ {y≡z = y≡z} B C {x} = elim¹
(λ y≡z → subst (λ x → B x ⊎ C x) y≡z (inj₂ x) ≡
inj₂ (subst C y≡z x))
(subst (λ x → B x ⊎ C x) (refl _) (inj₂ x) ≡⟨ subst-refl _ _ ⟩
inj₂ x ≡⟨ cong inj₂ $ sym $ subst-refl _ _ ⟩∎
inj₂ (subst C (refl _) x) ∎)
y≡z
-- The subst function can be "pushed" inside applications.
push-subst-application :
{B : A → Type b}
(x₁≡x₂ : x₁ ≡ x₂) (C : (x : A) → B x → Type c)
{f : (x : A) → B x} {g : (y : B x₁) → C x₁ y} →
subst (λ x → C x (f x)) x₁≡x₂ (g (f x₁)) ≡
subst (λ x → (y : B x) → C x y) x₁≡x₂ g (f x₂)
push-subst-application {x₁ = x₁} x₁≡x₂ C {f} {g} = elim¹
(λ {x₂} x₁≡x₂ →
subst (λ x → C x (f x)) x₁≡x₂ (g (f x₁)) ≡
subst (λ x → ∀ y → C x y) x₁≡x₂ g (f x₂))
(subst (λ x → C x (f x)) (refl _) (g (f x₁)) ≡⟨ subst-refl _ _ ⟩
g (f x₁) ≡⟨ cong (_$ f x₁) $ sym $ subst-refl (λ x → ∀ y → C x y) _ ⟩∎
subst (λ x → ∀ y → C x y) (refl _) g (f x₁) ∎)
x₁≡x₂
push-subst-implicit-application :
{B : A → Type b}
(x₁≡x₂ : x₁ ≡ x₂) (C : (x : A) → B x → Type c)
{f : (x : A) → B x} {g : {y : B x₁} → C x₁ y} →
subst (λ x → C x (f x)) x₁≡x₂ (g {y = f x₁}) ≡
subst (λ x → {y : B x} → C x y) x₁≡x₂ g {y = f x₂}
push-subst-implicit-application {x₁ = x₁} x₁≡x₂ C {f} {g} = elim¹
(λ {x₂} x₁≡x₂ →
subst (λ x → C x (f x)) x₁≡x₂ (g {y = f x₁}) ≡
subst (λ x → ∀ {y} → C x y) x₁≡x₂ g {y = f x₂})
(subst (λ x → C x (f x)) (refl _) (g {y = f x₁}) ≡⟨ subst-refl _ _ ⟩
g {y = f x₁} ≡⟨ cong (λ g → g {y = f x₁}) $ sym $ subst-refl (λ x → ∀ {y} → C x y) _ ⟩∎
subst (λ x → ∀ {y} → C x y) (refl _) g {y = f x₁} ∎)
x₁≡x₂
subst-∀-sym :
∀ {B : A → Type b} {y : B x₁}
{C : (x : A) → B x → Type c} {f : (y : B x₂) → C x₂ y}
{x₁≡x₂ : x₁ ≡ x₂} →
subst (λ x → (y : B x) → C x y) (sym x₁≡x₂) f y ≡
subst (uncurry C) (sym $ Σ-≡,≡→≡ x₁≡x₂ (refl _))
(f (subst B x₁≡x₂ y))
subst-∀-sym {B = B} {C = C} {x₁≡x₂ = x₁≡x₂} = elim
(λ {x₁ x₂} x₁≡x₂ →
{y : B x₁} (f : (y : B x₂) → C x₂ y) →
subst (λ x → (y : B x) → C x y) (sym x₁≡x₂) f y ≡
subst (uncurry C) (sym $ Σ-≡,≡→≡ x₁≡x₂ (refl _))
(f (subst B x₁≡x₂ y)))
(λ x {y} f →
let lemma =
cong (x ,_) (subst-refl B y) ≡⟨ cong (cong (x ,_)) $ sym $ sym-sym _ ⟩
cong (x ,_) (sym $ sym $ subst-refl B y) ≡⟨ cong-sym _ _ ⟩
sym $ cong (x ,_) (sym $ subst-refl B y) ≡⟨ cong sym $ sym Σ-≡,≡→≡-refl-refl ⟩∎
sym $ Σ-≡,≡→≡ (refl x) (refl _) ∎
in
subst (λ x → (y : B x) → C x y) (sym (refl x)) f y ≡⟨ cong (λ eq → subst (λ x → (y : B x) → C x y) eq _ _) sym-refl ⟩
subst (λ x → (y : B x) → C x y) (refl x) f y ≡⟨ cong (_$ y) $ subst-refl (λ x → (_ : B x) → _) _ ⟩
f y ≡⟨ sym $ dcong f _ ⟩
subst (C x) (subst-refl B _) (f (subst B (refl x) y)) ≡⟨ subst-∘ _ _ _ ⟩
subst (uncurry C) (cong (x ,_) (subst-refl B y))
(f (subst B (refl x) y)) ≡⟨ cong (λ eq → subst (uncurry C) eq (f (subst B (refl x) y))) lemma ⟩∎
subst (uncurry C) (sym $ Σ-≡,≡→≡ (refl x) (refl _))
(f (subst B (refl x) y)) ∎)
x₁≡x₂ _
subst-∀ :
∀ {B : A → Type b} {y : B x₂}
{C : (x : A) → B x → Type c} {f : (y : B x₁) → C x₁ y}
{x₁≡x₂ : x₁ ≡ x₂} →
subst (λ x → (y : B x) → C x y) x₁≡x₂ f y ≡
subst (uncurry C) (sym $ Σ-≡,≡→≡ (sym x₁≡x₂) (refl _))
(f (subst B (sym x₁≡x₂) y))
subst-∀ {B = B} {y = y} {C = C} {f = f} {x₁≡x₂ = x₁≡x₂} =
subst (λ x → (y : B x) → C x y) x₁≡x₂ f y ≡⟨ cong (λ eq → subst (λ x → (y : B x) → C x y) eq _ _) $ sym $ sym-sym _ ⟩
subst (λ x → (y : B x) → C x y) (sym (sym x₁≡x₂)) f y ≡⟨ subst-∀-sym ⟩∎
subst (uncurry C) (sym $ Σ-≡,≡→≡ (sym x₁≡x₂) (refl _))
(f (subst B (sym x₁≡x₂) y)) ∎
subst-→ :
{B : A → Type b} {y : B x₂} {C : A → Type c} {f : B x₁ → C x₁} →
subst (λ x → B x → C x) x₁≡x₂ f y ≡
subst C x₁≡x₂ (f (subst B (sym x₁≡x₂) y))
subst-→ {x₁≡x₂ = x₁≡x₂} {B = B} {y = y} {C} {f} =
subst (λ x → B x → C x) x₁≡x₂ f y ≡⟨ cong (λ eq → subst (λ x → B x → C x) eq f y) $ sym $
sym-sym _ ⟩
subst (λ x → B x → C x) (sym $ sym x₁≡x₂) f y ≡⟨ subst-∀-sym ⟩
subst (C ∘ proj₁) (sym $ Σ-≡,≡→≡ (sym x₁≡x₂) (refl _))
(f (subst B (sym x₁≡x₂) y)) ≡⟨ subst-∘ _ _ _ ⟩
subst C (cong proj₁ $ sym $ Σ-≡,≡→≡ (sym x₁≡x₂) (refl _))
(f (subst B (sym x₁≡x₂) y)) ≡⟨ cong (λ eq → subst C eq (f (subst B (sym x₁≡x₂) y))) $
cong-sym _ _ ⟩
subst C (sym $ cong proj₁ $ Σ-≡,≡→≡ (sym x₁≡x₂) (refl _))
(f (subst B (sym x₁≡x₂) y)) ≡⟨ cong (λ eq → subst C (sym eq) (f (subst B (sym x₁≡x₂) y))) $
proj₁-Σ-≡,≡→≡ _ _ ⟩
subst C (sym $ sym x₁≡x₂) (f (subst B (sym x₁≡x₂) y)) ≡⟨ cong (λ eq → subst C eq (f (subst B (sym x₁≡x₂) y))) $
sym-sym _ ⟩∎
subst C x₁≡x₂ (f (subst B (sym x₁≡x₂) y)) ∎
subst-→-domain :
(B : A → Type b) {f : B x → C} (x≡y : x ≡ y) {u : B y} →
subst (λ x → B x → C) x≡y f u ≡ f (subst B (sym x≡y) u)
subst-→-domain {C = C} B x≡y {u = u} = elim₁
(λ {x} x≡y → (f : B x → C) →
subst (λ x → B x → C) x≡y f u ≡
f (subst B (sym x≡y) u))
(λ f →
subst (λ x → B x → C) (refl _) f u ≡⟨ cong (_$ u) $ subst-refl (λ x → B x → _) _ ⟩
f u ≡⟨ cong f $ sym $ subst-refl _ _ ⟩
f (subst B (refl _) u) ≡⟨ cong (λ p → f (subst B p u)) $ sym sym-refl ⟩∎
f (subst B (sym (refl _)) u) ∎)
x≡y _
-- A "computation rule".
subst-→-domain-refl :
{B : A → Type b} {f : B x → C} {u : B x} →
subst-→-domain B {f = f} (refl x) {u = u} ≡
trans (cong (_$ u) (subst-refl (λ x → B x → _) _))
(trans (cong f (sym (subst-refl _ _)))
(cong (f ∘ flip (subst B) u) (sym sym-refl)))
subst-→-domain-refl {C = C} {B = B} {u = u} =
cong (_$ _) $
elim₁-refl
(λ {x} x≡y → (f : B x → C) →
subst (λ x → B x → C) x≡y f u ≡
f (subst B (sym x≡y) u))
_
-- The following lemma is Proposition 2 from "Generalizations of
-- Hedberg's Theorem" by Kraus, Escardó, Coquand and Altenkirch.
subst-in-terms-of-trans-and-cong :
{x≡y : x ≡ y} {fx≡gx : f x ≡ g x} →
subst (λ z → f z ≡ g z) x≡y fx≡gx ≡
trans (sym (cong f x≡y)) (trans fx≡gx (cong g x≡y))
subst-in-terms-of-trans-and-cong {f = f} {g = g} = elim
(λ {x y} x≡y →
(fx≡gx : f x ≡ g x) →
subst (λ z → f z ≡ g z) x≡y fx≡gx ≡
trans (sym (cong f x≡y)) (trans fx≡gx (cong g x≡y)))
(λ x fx≡gx →
subst (λ z → f z ≡ g z) (refl x) fx≡gx ≡⟨ subst-refl _ _ ⟩
fx≡gx ≡⟨ sym $ trans-reflˡ _ ⟩
trans (refl (f x)) fx≡gx ≡⟨ sym $ cong₂ trans sym-refl (trans-reflʳ _) ⟩
trans (sym (refl (f x))) (trans fx≡gx (refl (g x))) ≡⟨ sym $ cong₂ (λ p q → trans (sym p) (trans _ q))
(cong-refl _) (cong-refl _) ⟩∎
trans (sym (cong f (refl x))) (trans fx≡gx (cong g (refl x))) ∎ )
_
_
-- A variant of subst-in-terms-of-trans-and-cong that works for
-- dependent functions.
subst-in-terms-of-trans-and-dcong :
{f g : (x : A) → P x} {x≡y : x ≡ y} {fx≡gx : f x ≡ g x} →
subst (λ z → f z ≡ g z) x≡y fx≡gx ≡
trans (sym (dcong f x≡y))
(trans (cong (subst P x≡y) fx≡gx) (dcong g x≡y))
subst-in-terms-of-trans-and-dcong {P = P} {f = f} {g = g} = elim
(λ {x y} x≡y →
(fx≡gx : f x ≡ g x) →
subst (λ z → f z ≡ g z) x≡y fx≡gx ≡
trans (sym (dcong f x≡y))
(trans (cong (subst P x≡y) fx≡gx) (dcong g x≡y)))
(λ x fx≡gx →
subst (λ z → f z ≡ g z) (refl x) fx≡gx ≡⟨ subst-refl _ _ ⟩
fx≡gx ≡⟨ elim¹
(λ {gx} eq →
eq ≡
trans (sym (subst-refl P (f x)))
(trans (cong (subst P (refl x)) eq)
(subst-refl P gx)))
(
refl (f x) ≡⟨ sym $ trans-symˡ _ ⟩
trans (sym (subst-refl P (f x)))
(subst-refl P (f x)) ≡⟨ cong (trans _) $
trans (sym $ trans-reflˡ _) $
cong (flip trans _) $
sym $ cong-refl _ ⟩∎
trans (sym (subst-refl P (f x)))
(trans (cong (subst P (refl x)) (refl (f x)))
(subst-refl P (f x))) ∎)
fx≡gx ⟩
trans (sym (subst-refl P (f x)))
(trans (cong (subst P (refl x)) fx≡gx)
(subst-refl P (g x))) ≡⟨ sym $
cong₂ (λ p q → trans (sym p) (trans (cong (subst P (refl x)) fx≡gx) q))
(dcong-refl _)
(dcong-refl _) ⟩∎
trans (sym (dcong f (refl x)))
(trans (cong (subst P (refl x)) fx≡gx)
(dcong g (refl x))) ∎)
_
_
-- Sometimes cong can be "pushed" inside subst. The following
-- lemma provides one example.
cong-subst :
{B : A → Type b} {C : A → Type c}
{f : ∀ {x} → B x → C x} {g h : (x : A) → B x}
(eq₁ : x ≡ y) (eq₂ : g x ≡ h x) →
cong f (subst (λ x → g x ≡ h x) eq₁ eq₂) ≡
subst (λ x → f (g x) ≡ f (h x)) eq₁ (cong f eq₂)
cong-subst {f = f} {g} {h} = elim₁
(λ eq₁ → ∀ eq₂ →
cong f (subst (λ x → g x ≡ h x) eq₁ eq₂) ≡
subst (λ x → f (g x) ≡ f (h x)) eq₁ (cong f eq₂))
(λ eq₂ →
cong f (subst (λ x → g x ≡ h x) (refl _) eq₂) ≡⟨ cong (cong f) $ subst-refl _ _ ⟩
cong f eq₂ ≡⟨ sym $ subst-refl _ _ ⟩∎
subst (λ x → f (g x) ≡ f (h x)) (refl _) (cong f eq₂) ∎)
-- Some rearrangement lemmas for equalities between equalities.
[trans≡]≡[≡trans-symʳ] :
(p₁₂ : a₁ ≡ a₂) (p₁₃ : a₁ ≡ a₃) (p₂₃ : a₂ ≡ a₃) →
(trans p₁₂ p₂₃ ≡ p₁₃)
≡
(p₁₂ ≡ trans p₁₃ (sym p₂₃))
[trans≡]≡[≡trans-symʳ] p₁₂ p₁₃ p₂₃ = elim
(λ {a₂ a₃} p₂₃ →
∀ {a₁} (p₁₂ : a₁ ≡ a₂) (p₁₃ : a₁ ≡ a₃) →
(trans p₁₂ p₂₃ ≡ p₁₃)
≡
(p₁₂ ≡ trans p₁₃ (sym p₂₃)))
(λ a₂₃ p₁₂ p₁₃ →
trans p₁₂ (refl a₂₃) ≡ p₁₃ ≡⟨ cong₂ _≡_ (trans-reflʳ _) (sym $ trans-reflʳ _) ⟩
p₁₂ ≡ trans p₁₃ (refl a₂₃) ≡⟨ cong ((_ ≡_) ∘ trans _) (sym sym-refl) ⟩∎
p₁₂ ≡ trans p₁₃ (sym (refl a₂₃)) ∎)
p₂₃ p₁₂ p₁₃
[trans≡]≡[≡trans-symˡ] :
(p₁₂ : a₁ ≡ a₂) (p₁₃ : a₁ ≡ a₃) (p₂₃ : a₂ ≡ a₃) →
(trans p₁₂ p₂₃ ≡ p₁₃)
≡
(p₂₃ ≡ trans (sym p₁₂) p₁₃)
[trans≡]≡[≡trans-symˡ] p₁₂ = elim
(λ {a₁ a₂} p₁₂ →
∀ {a₃} (p₁₃ : a₁ ≡ a₃) (p₂₃ : a₂ ≡ a₃) →
(trans p₁₂ p₂₃ ≡ p₁₃)
≡
(p₂₃ ≡ trans (sym p₁₂) p₁₃))
(λ a₁₂ p₁₃ p₂₃ →
trans (refl a₁₂) p₂₃ ≡ p₁₃ ≡⟨ cong₂ _≡_ (trans-reflˡ _) (sym $ trans-reflˡ _) ⟩
p₂₃ ≡ trans (refl a₁₂) p₁₃ ≡⟨ cong ((_ ≡_) ∘ flip trans _) (sym sym-refl) ⟩∎
p₂₃ ≡ trans (sym (refl a₁₂)) p₁₃ ∎)
p₁₂
-- The following lemma is basically Theorem 2.11.5 from the HoTT
-- book (the book's lemma gives an equivalence between equality
-- types, rather than an equality between equality types).
[subst≡]≡[trans≡trans] :
{p : x ≡ y} {q : x ≡ x} {r : y ≡ y} →
(subst (λ z → z ≡ z) p q ≡ r)
≡
(trans q p ≡ trans p r)
[subst≡]≡[trans≡trans] {p = p} {q} {r} = elim
(λ {x y} p → {q : x ≡ x} {r : y ≡ y} →
(subst (λ z → z ≡ z) p q ≡ r)
≡
(trans q p ≡ trans p r))
(λ x {q r} →
subst (λ z → z ≡ z) (refl x) q ≡ r ≡⟨ cong (_≡ _) (subst-refl _ _) ⟩
q ≡ r ≡⟨ sym $ cong₂ _≡_ (trans-reflʳ _) (trans-reflˡ _) ⟩∎
trans q (refl x) ≡ trans (refl x) r ∎)
p
-- "Evaluation rule" for [subst≡]≡[trans≡trans].
[subst≡]≡[trans≡trans]-refl :
{q r : x ≡ x} →
[subst≡]≡[trans≡trans] {p = refl x} ≡
trans (cong (_≡ r) (subst-refl (λ z → z ≡ z) q))
(sym $ cong₂ _≡_ (trans-reflʳ q) (trans-reflˡ r))
[subst≡]≡[trans≡trans]-refl {q = q} {r = r} =
cong (λ f → f {q = q} {r = r}) $
elim-refl
(λ {x y} p → {q : x ≡ x} {r : y ≡ y} → _ ≡ (trans _ p ≡ _))
_
-- The proof trans is commutative when one of the arguments is f x for
-- a function f : (x : A) → x ≡ x.
trans-sometimes-commutative :
{p : x ≡ x} (f : (x : A) → x ≡ x) →
trans (f x) p ≡ trans p (f x)
trans-sometimes-commutative {x = x} {p = p} f =
let lemma =
subst (λ z → z ≡ z) p (f x) ≡⟨ dcong f p ⟩∎
f x ∎
in
trans (f x) p ≡⟨ subst id [subst≡]≡[trans≡trans] lemma ⟩∎
trans p (f x) ∎
-- Sometimes one can turn two ("modified") copies of a proof into
-- one.
trans-cong-cong :
(f : A → A → B) (p : x ≡ y) →
trans (cong (λ z → f z x) p)
(cong (λ z → f y z) p) ≡
cong (λ z → f z z) p
trans-cong-cong f = elim
(λ {x y} p → trans (cong (λ z → f z x) p)
(cong (λ z → f y z) p) ≡
cong (λ z → f z z) p)
(λ x → trans (cong (λ z → f z x) (refl x))
(cong (λ z → f x z) (refl x)) ≡⟨ cong₂ trans (cong-refl _) (cong-refl _) ⟩
trans (refl (f x x)) (refl (f x x)) ≡⟨ trans-refl-refl ⟩
refl (f x x) ≡⟨ sym $ cong-refl _ ⟩∎
cong (λ z → f z z) (refl x) ∎)
-- If f and g agree on a decidable subset of their common domain, then
-- cong f eq is equal to (modulo some uses of transitivity) cong g eq
-- for proofs eq between elements in this subset.
cong-respects-relevant-equality :
{f g : A → B}
(p : A → Bool) (f≡g : ∀ x → T (p x) → f x ≡ g x)
{px : T (p x)} {py : T (p y)} →
trans (cong f x≡y) (f≡g y py) ≡ trans (f≡g x px) (cong g x≡y)
cong-respects-relevant-equality {f = f} {g} p f≡g = elim
(λ {x y} x≡y →
{px : T (p x)} {py : T (p y)} →
trans (cong f x≡y) (f≡g y py) ≡ trans (f≡g x px) (cong g x≡y))
(λ x {px px′} →
trans (cong f (refl x)) (f≡g x px′) ≡⟨ cong (flip trans _) (cong-refl _) ⟩
trans (refl (f x)) (f≡g x px′) ≡⟨ trans-reflˡ _ ⟩
f≡g x px′ ≡⟨ cong (f≡g x) (T-irr (p x) px′ px) ⟩
f≡g x px ≡⟨ sym $ trans-reflʳ _ ⟩
trans (f≡g x px) (refl (g x)) ≡⟨ cong (trans _) (sym $ cong-refl _) ⟩∎
trans (f≡g x px) (cong g (refl x)) ∎)
_
where
T-irr : (b : Bool) → Is-proposition (T b)
T-irr true _ _ = refl _
T-irr false ()
-- A special case of cong-respects-relevant-equality.
--
-- The statement of this lemma is very similar to that of
-- Lemma 2.4.3 from the HoTT book.
naturality :
{x≡y : x ≡ y}
(f≡g : ∀ x → f x ≡ g x) →
trans (cong f x≡y) (f≡g y) ≡ trans (f≡g x) (cong g x≡y)
naturality f≡g =
cong-respects-relevant-equality (λ _ → true) (λ x _ → f≡g x)
-- If f z evaluates to z for a decidable set of values which
-- includes x and y, do we have
--
-- cong f x≡y ≡ x≡y
--
-- for any x≡y : x ≡ y? The equation above is not well-typed if f
-- is a variable, but the approximation below can be proved.
cong-roughly-id :
(f : A → A) (p : A → Bool)
(x≡y : x ≡ y) (px : T (p x)) (py : T (p y))
(f≡id : ∀ z → T (p z) → f z ≡ z) →
cong f x≡y ≡
trans (f≡id x px) (trans x≡y $ sym (f≡id y py))
cong-roughly-id {x = x} {y = y} f p x≡y px py f≡id =
let lemma =
trans (cong id x≡y) (sym (f≡id y py)) ≡⟨ cong-respects-relevant-equality p (λ x → sym ∘ f≡id x) ⟩∎
trans (sym (f≡id x px)) (cong f x≡y) ∎
in
cong f x≡y ≡⟨ sym $ subst (λ eq → eq → trans (f≡id x px)
(trans (cong id x≡y) (sym (f≡id y py))) ≡
cong f x≡y)
([trans≡]≡[≡trans-symˡ] _ _ _) id lemma ⟩
trans (f≡id x px) (trans (cong id x≡y) $ sym (f≡id y py)) ≡⟨ cong (λ eq → trans _ (trans eq _)) (sym $ cong-id _) ⟩∎
trans (f≡id x px) (trans x≡y $ sym (f≡id y py)) ∎
| {
"alphanum_fraction": 0.4084751184,
"avg_line_length": 42.2857766143,
"ext": "agda",
"hexsha": "8ab1a4008940c0a58c8a82c77997531e6a727f75",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Equality.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Equality.agda",
"max_line_length": 144,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Equality.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 37616,
"size": 96919
} |
{-# OPTIONS -v tc.conv.irr:50 #-}
-- {-# OPTIONS -v tc.lhs.unify:50 #-}
module IndexInference where
data Nat : Set where
zero : Nat
suc : Nat -> Nat
data Vec (A : Set) : Nat -> Set where
[] : Vec A zero
_::_ : {n : Nat} -> A -> Vec A n -> Vec A (suc n)
infixr 40 _::_
-- The length of the vector can be inferred from the pattern.
foo : Vec Nat _ -> Nat
foo (a :: b :: c :: []) = c
-- Andreas, 2012-09-13 an example with irrelevant components in index
pred : Nat → Nat
pred (zero ) = zero
pred (suc n) = n
data ⊥ : Set where
record ⊤ : Set where
NonZero : Nat → Set
NonZero zero = ⊥
NonZero (suc n) = ⊤
data Fin (n : Nat) : Set where
zero : .(NonZero n) → Fin n
suc : .(NonZero n) → Fin (pred n) → Fin n
data SubVec (A : Set)(n : Nat) : Fin n → Set where
[] : .{p : NonZero n} → SubVec A n (zero p)
_::_ : .{p : NonZero n}{k : Fin (pred n)} → A → SubVec A (pred n) k → SubVec A n (suc p k)
-- The length of the vector can be inferred from the pattern.
bar : {A : Set} → SubVec A (suc (suc (suc zero))) _ → A
bar (a :: []) = a
| {
"alphanum_fraction": 0.5721017908,
"avg_line_length": 24.6744186047,
"ext": "agda",
"hexsha": "8f73deee95dee0a162c59845fe34cea6750c0770",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/succeed/IndexInference.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/succeed/IndexInference.agda",
"max_line_length": 92,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Succeed/IndexInference.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 387,
"size": 1061
} |
{-# OPTIONS --safe #-}
module Definition.Typed.Properties where
open import Definition.Untyped
open import Definition.Untyped.Properties
open import Definition.Typed
open import Definition.Typed.RedSteps
import Definition.Typed.Weakening as Twk
open import Tools.Empty using (⊥; ⊥-elim)
open import Tools.Product
open import Tools.Sum hiding (id ; sym)
import Tools.PropositionalEquality as PE
import Data.Fin as Fin
import Data.Nat as Nat
-- Escape context extraction
wfTerm : ∀ {Γ A t r} → Γ ⊢ t ∷ A ^ r → ⊢ Γ
wfTerm (univ <l ⊢Γ) = ⊢Γ
wfTerm (ℕⱼ ⊢Γ) = ⊢Γ
wfTerm (Emptyⱼ ⊢Γ) = ⊢Γ
wfTerm (Πⱼ <l ▹ <l' ▹ F ▹ G) = wfTerm F
wfTerm (∃ⱼ F ▹ G) = wfTerm F
wfTerm (var ⊢Γ x₁) = ⊢Γ
wfTerm (lamⱼ _ _ F t) with wfTerm t
wfTerm (lamⱼ _ _ F t) | ⊢Γ ∙ F′ = ⊢Γ
wfTerm (g ∘ⱼ a) = wfTerm a
wfTerm (⦅ F , G , t , u ⦆ⱼ) = wfTerm t
wfTerm (fstⱼ A B t) = wfTerm t
wfTerm (sndⱼ A B t) = wfTerm t
wfTerm (zeroⱼ ⊢Γ) = ⊢Γ
wfTerm (sucⱼ n) = wfTerm n
wfTerm (natrecⱼ F z s n) = wfTerm z
wfTerm (Emptyrecⱼ A e) = wfTerm e
wfTerm (Idⱼ A t u) = wfTerm t
wfTerm (Idreflⱼ t) = wfTerm t
wfTerm (transpⱼ A P t s u e) = wfTerm t
wfTerm (castⱼ A B e t) = wfTerm t
wfTerm (castreflⱼ A t) = wfTerm t
wfTerm (conv t A≡B) = wfTerm t
wf : ∀ {Γ A r} → Γ ⊢ A ^ r → ⊢ Γ
wf (Uⱼ ⊢Γ) = ⊢Γ
wf (univ A) = wfTerm A
mutual
wfEqTerm : ∀ {Γ A t u r} → Γ ⊢ t ≡ u ∷ A ^ r → ⊢ Γ
wfEqTerm (refl t) = wfTerm t
wfEqTerm (sym t≡u) = wfEqTerm t≡u
wfEqTerm (trans t≡u u≡r) = wfEqTerm t≡u
wfEqTerm (conv t≡u A≡B) = wfEqTerm t≡u
wfEqTerm (Π-cong _ _ F F≡H G≡E) = wfEqTerm F≡H
wfEqTerm (∃-cong F F≡H G≡E) = wfEqTerm F≡H
wfEqTerm (app-cong f≡g a≡b) = wfEqTerm f≡g
wfEqTerm (β-red _ _ F t a) = wfTerm a
wfEqTerm (η-eq _ _ F f g f0≡g0) = wfTerm f
wfEqTerm (suc-cong n) = wfEqTerm n
wfEqTerm (natrec-cong F≡F′ z≡z′ s≡s′ n≡n′) = wfEqTerm z≡z′
wfEqTerm (natrec-zero F z s) = wfTerm z
wfEqTerm (natrec-suc n F z s) = wfTerm n
wfEqTerm (Emptyrec-cong A≡A' _ _) = wfEq A≡A'
wfEqTerm (proof-irrelevance t u) = wfTerm t
wfEqTerm (Id-cong A t u) = wfEqTerm u
wfEqTerm (Id-Π _ _ A B t u) = wfTerm t
wfEqTerm (Id-ℕ-00 ⊢Γ) = ⊢Γ
wfEqTerm (Id-ℕ-SS m n) = wfTerm n
wfEqTerm (Id-U-ΠΠ A B A' B') = wfTerm A
wfEqTerm (Id-U-ℕℕ ⊢Γ) = ⊢Γ
wfEqTerm (Id-SProp A B) = wfTerm A
wfEqTerm (Id-ℕ-0S n) = wfTerm n
wfEqTerm (Id-ℕ-S0 n) = wfTerm n
wfEqTerm (Id-U-ℕΠ A B) = wfTerm A
wfEqTerm (Id-U-Πℕ A B) = wfTerm A
wfEqTerm (Id-U-ΠΠ!% eq A B A' B') = wfTerm A
wfEqTerm (cast-cong A B t _ _) = wfEqTerm t
wfEqTerm (cast-Π A B A' B' e f) = wfTerm f
wfEqTerm (cast-ℕ-0 e) = wfTerm e
wfEqTerm (cast-ℕ-S e n) = wfTerm n
wfEq : ∀ {Γ A B r} → Γ ⊢ A ≡ B ^ r → ⊢ Γ
wfEq (univ A≡B) = wfEqTerm A≡B
wfEq (refl A) = wf A
wfEq (sym A≡B) = wfEq A≡B
wfEq (trans A≡B B≡C) = wfEq A≡B
-- Reduction is a subset of conversion
subsetTerm : ∀ {Γ A t u l} → Γ ⊢ t ⇒ u ∷ A ^ l → Γ ⊢ t ≡ u ∷ A ^ [ ! , l ]
subset : ∀ {Γ A B r} → Γ ⊢ A ⇒ B ^ r → Γ ⊢ A ≡ B ^ r
subsetTerm (natrec-subst F z s n⇒n′) =
natrec-cong (refl F) (refl z) (refl s) (subsetTerm n⇒n′)
subsetTerm (natrec-zero F z s) = natrec-zero F z s
subsetTerm (natrec-suc n F z s) = natrec-suc n F z s
subsetTerm (app-subst {rA = !} t⇒u a) = app-cong (subsetTerm t⇒u) (refl a)
subsetTerm (app-subst {rA = %} t⇒u a) = app-cong (subsetTerm t⇒u) (proof-irrelevance a a)
subsetTerm (β-red l< l<' A t a) = β-red l< l<' A t a
subsetTerm (conv t⇒u A≡B) = conv (subsetTerm t⇒u) A≡B
subsetTerm (Id-subst A t u) = Id-cong (subsetTerm A) (refl t) (refl u)
subsetTerm (Id-ℕ-subst m n) = Id-cong (refl (ℕⱼ (wfTerm n))) (subsetTerm m) (refl n)
subsetTerm (Id-ℕ-0-subst n) = let ⊢Γ = wfEqTerm (subsetTerm n) in Id-cong (refl (ℕⱼ ⊢Γ)) (refl (zeroⱼ ⊢Γ)) (subsetTerm n)
subsetTerm (Id-ℕ-S-subst m n) = Id-cong (refl (ℕⱼ (wfTerm m))) (refl (sucⱼ m)) (subsetTerm n)
subsetTerm (Id-U-subst A B) = Id-cong (refl (univ 0<1 (wfTerm B))) (subsetTerm A) (refl B)
subsetTerm (Id-U-ℕ-subst B) = let ⊢Γ = wfEqTerm (subsetTerm B) in Id-cong (refl (univ 0<1 ⊢Γ)) (refl (ℕⱼ ⊢Γ)) (subsetTerm B)
subsetTerm (Id-U-Π-subst A P B) = Id-cong (refl (univ 0<1 (wfTerm A))) (refl (Πⱼ (≡is≤ PE.refl) ▹ (≡is≤ PE.refl) ▹ A ▹ P)) (subsetTerm B)
subsetTerm (Id-Π <l <l' A B t u) = Id-Π <l <l' A B t u
subsetTerm (Id-ℕ-00 ⊢Γ) = Id-ℕ-00 ⊢Γ
subsetTerm (Id-ℕ-SS m n) = Id-ℕ-SS m n
subsetTerm (Id-U-ΠΠ A B A' B') = Id-U-ΠΠ A B A' B'
subsetTerm (Id-U-ℕℕ ⊢Γ) = Id-U-ℕℕ ⊢Γ
subsetTerm (Id-SProp A B) = Id-SProp A B
subsetTerm (Id-ℕ-0S n) = Id-ℕ-0S n
subsetTerm (Id-ℕ-S0 n) = Id-ℕ-S0 n
subsetTerm (Id-U-ℕΠ A B) = Id-U-ℕΠ A B
subsetTerm (Id-U-Πℕ A B) = Id-U-Πℕ A B
subsetTerm (Id-U-ΠΠ!% eq A B A' B') = Id-U-ΠΠ!% eq A B A' B'
subsetTerm (cast-subst A B e t) = let ⊢Γ = wfEqTerm (subsetTerm A)
in cast-cong (subsetTerm A) (refl B) (refl t) e (conv e (univ (Id-cong (refl (univ 0<1 ⊢Γ)) (subsetTerm A) (refl B))))
subsetTerm (cast-ℕ-subst B e t) = let ⊢Γ = wfEqTerm (subsetTerm B)
in cast-cong (refl (ℕⱼ (wfTerm t))) (subsetTerm B) (refl t) e (conv e (univ (Id-cong (refl (univ 0<1 ⊢Γ)) (refl (ℕⱼ ⊢Γ)) (subsetTerm B))))
subsetTerm (cast-Π-subst A P B e t) = let ⊢Γ = wfTerm A
in cast-cong (refl (Πⱼ (≡is≤ PE.refl) ▹ (≡is≤ PE.refl) ▹ A ▹ P)) (subsetTerm B) (refl t) e
(conv e (univ (Id-cong (refl (univ 0<1 ⊢Γ)) (refl (Πⱼ ≡is≤ PE.refl ▹ ≡is≤ PE.refl ▹ A ▹ P)) (subsetTerm B) )))
subsetTerm (cast-Π A B A' B' e f) = cast-Π A B A' B' e f
subsetTerm (cast-ℕ-0 e) = cast-ℕ-0 e
subsetTerm (cast-ℕ-S e n) = cast-ℕ-S e n
subsetTerm (cast-ℕ-cong e n) = let ⊢Γ = wfTerm e
⊢ℕ = ℕⱼ ⊢Γ
in cast-cong (refl ⊢ℕ) (refl ⊢ℕ) (subsetTerm n) e e
subset (univ A⇒B) = univ (subsetTerm A⇒B)
subset*Term : ∀ {Γ A t u l } → Γ ⊢ t ⇒* u ∷ A ^ l → Γ ⊢ t ≡ u ∷ A ^ [ ! , l ]
subset*Term (id t) = refl t
subset*Term (t⇒t′ ⇨ t⇒*u) = trans (subsetTerm t⇒t′) (subset*Term t⇒*u)
subset* : ∀ {Γ A B r} → Γ ⊢ A ⇒* B ^ r → Γ ⊢ A ≡ B ^ r
subset* (id A) = refl A
subset* (A⇒A′ ⇨ A′⇒*B) = trans (subset A⇒A′) (subset* A′⇒*B)
-- Transitivity of reduction
transTerm⇒* : ∀ {Γ A t u v l } → Γ ⊢ t ⇒* u ∷ A ^ l → Γ ⊢ u ⇒* v ∷ A ^ l → Γ ⊢ t ⇒* v ∷ A ^ l
transTerm⇒* (id x) y = y
transTerm⇒* (x ⇨ x₁) y = x ⇨ transTerm⇒* x₁ y
trans⇒* : ∀ {Γ A B C r} → Γ ⊢ A ⇒* B ^ r → Γ ⊢ B ⇒* C ^ r → Γ ⊢ A ⇒* C ^ r
trans⇒* (id x) y = y
trans⇒* (x ⇨ x₁) y = x ⇨ trans⇒* x₁ y
transTerm:⇒:* : ∀ {Γ A t u v l } → Γ ⊢ t :⇒*: u ∷ A ^ l → Γ ⊢ u :⇒*: v ∷ A ^ l → Γ ⊢ t :⇒*: v ∷ A ^ l
transTerm:⇒:* [[ ⊢t , ⊢u , d ]] [[ ⊢t₁ , ⊢u₁ , d₁ ]] = [[ ⊢t , ⊢u₁ , (transTerm⇒* d d₁) ]]
conv⇒* : ∀ {Γ A B l t u} → Γ ⊢ t ⇒* u ∷ A ^ l → Γ ⊢ A ≡ B ^ [ ! , l ] → Γ ⊢ t ⇒* u ∷ B ^ l
conv⇒* (id x) e = id (conv x e)
conv⇒* (x ⇨ D) e = conv x e ⇨ conv⇒* D e
conv:⇒*: : ∀ {Γ A B l t u} → Γ ⊢ t :⇒*: u ∷ A ^ l → Γ ⊢ A ≡ B ^ [ ! , l ] → Γ ⊢ t :⇒*: u ∷ B ^ l
conv:⇒*: [[ ⊢t , ⊢u , d ]] e = [[ (conv ⊢t e) , (conv ⊢u e) , (conv⇒* d e) ]]
-- Can extract left-part of a reduction
redFirstTerm : ∀ {Γ t u A l } → Γ ⊢ t ⇒ u ∷ A ^ l → Γ ⊢ t ∷ A ^ [ ! , l ]
redFirst : ∀ {Γ A B r} → Γ ⊢ A ⇒ B ^ r → Γ ⊢ A ^ r
redFirstTerm (conv t⇒u A≡B) = conv (redFirstTerm t⇒u) A≡B
redFirstTerm (app-subst t⇒u a) = (redFirstTerm t⇒u) ∘ⱼ a
redFirstTerm (β-red {lA = lA} {lB = lB} lA< lB< ⊢A ⊢t ⊢a) = (lamⱼ lA< lB< ⊢A ⊢t) ∘ⱼ ⊢a
redFirstTerm (natrec-subst F z s n⇒n′) = natrecⱼ F z s (redFirstTerm n⇒n′)
redFirstTerm (natrec-zero F z s) = natrecⱼ F z s (zeroⱼ (wfTerm z))
redFirstTerm (natrec-suc n F z s) = natrecⱼ F z s (sucⱼ n)
redFirstTerm (Id-subst A t u) = Idⱼ (redFirstTerm A) t u
redFirstTerm (Id-ℕ-subst m n) = Idⱼ (ℕⱼ (wfTerm n)) (redFirstTerm m) n
redFirstTerm (Id-ℕ-0-subst n) = Idⱼ (ℕⱼ (wfEqTerm (subsetTerm n))) (zeroⱼ (wfEqTerm (subsetTerm n))) (redFirstTerm n)
redFirstTerm (Id-ℕ-S-subst m n) = Idⱼ (ℕⱼ (wfTerm m)) (sucⱼ m) (redFirstTerm n)
redFirstTerm (Id-U-subst A B) = Idⱼ (univ 0<1 (wfTerm B)) (redFirstTerm A) B
redFirstTerm (Id-U-ℕ-subst B) = let ⊢Γ = (wfEqTerm (subsetTerm B)) in Idⱼ (univ 0<1 ⊢Γ) (ℕⱼ ⊢Γ) (redFirstTerm B)
redFirstTerm (Id-U-Π-subst A P B) = Idⱼ (univ 0<1 (wfTerm A)) (Πⱼ (≡is≤ PE.refl) ▹ (≡is≤ PE.refl) ▹ A ▹ P) (redFirstTerm B)
redFirstTerm (Id-Π {rA = rA} <l <l' A B t u) = Idⱼ (Πⱼ <l ▹ <l' ▹ A ▹ B) t u
redFirstTerm (Id-ℕ-00 ⊢Γ) = Idⱼ (ℕⱼ ⊢Γ) (zeroⱼ ⊢Γ) (zeroⱼ ⊢Γ)
redFirstTerm (Id-ℕ-SS m n) = Idⱼ (ℕⱼ (wfTerm m)) (sucⱼ m) (sucⱼ n)
redFirstTerm (Id-U-ΠΠ A B A' B') = Idⱼ (univ 0<1 (wfTerm A)) (Πⱼ (≡is≤ PE.refl) ▹ (≡is≤ PE.refl) ▹ A ▹ B) (Πⱼ (≡is≤ PE.refl) ▹ (≡is≤ PE.refl) ▹ A' ▹ B')
redFirstTerm (Id-U-ℕℕ ⊢Γ) = Idⱼ (univ 0<1 ⊢Γ) (ℕⱼ ⊢Γ) (ℕⱼ ⊢Γ)
redFirstTerm (Id-SProp A B) = Idⱼ (univ 0<1 (wfTerm A)) A B
redFirstTerm (Id-ℕ-0S n) = Idⱼ (ℕⱼ (wfTerm n)) (zeroⱼ (wfTerm n)) (sucⱼ n)
redFirstTerm (Id-ℕ-S0 n) = Idⱼ (ℕⱼ (wfTerm n)) (sucⱼ n) (zeroⱼ (wfTerm n))
redFirstTerm (Id-U-ℕΠ A B) = Idⱼ (univ 0<1 (wfTerm A)) (ℕⱼ (wfTerm A)) (Πⱼ (≡is≤ PE.refl) ▹ (≡is≤ PE.refl) ▹ A ▹ B)
redFirstTerm (Id-U-Πℕ A B) = Idⱼ (univ 0<1 (wfTerm A)) (Πⱼ (≡is≤ PE.refl) ▹ (≡is≤ PE.refl) ▹ A ▹ B) (ℕⱼ (wfTerm A))
redFirstTerm (Id-U-ΠΠ!% eq A B A' B') = Idⱼ (univ 0<1 (wfTerm A)) (Πⱼ (≡is≤ PE.refl) ▹ (≡is≤ PE.refl) ▹ A ▹ B) (Πⱼ (≡is≤ PE.refl) ▹ (≡is≤ PE.refl) ▹ A' ▹ B')
redFirstTerm (cast-subst A B e t) = castⱼ (redFirstTerm A) B e t
redFirstTerm (cast-ℕ-subst B e t) = castⱼ (ℕⱼ (wfTerm t)) (redFirstTerm B) e t
redFirstTerm (cast-Π-subst A P B e t) = castⱼ (Πⱼ (≡is≤ PE.refl) ▹ (≡is≤ PE.refl) ▹ A ▹ P) (redFirstTerm B) e t
redFirstTerm (cast-Π A B A' B' e f) = castⱼ (Πⱼ (≡is≤ PE.refl) ▹ (≡is≤ PE.refl) ▹ A ▹ B) (Πⱼ (≡is≤ PE.refl) ▹ (≡is≤ PE.refl) ▹ A' ▹ B') e f
redFirstTerm (cast-ℕ-0 e) = castⱼ (ℕⱼ (wfTerm e)) (ℕⱼ (wfTerm e)) e (zeroⱼ (wfTerm e))
redFirstTerm (cast-ℕ-S e n) = castⱼ (ℕⱼ (wfTerm e)) (ℕⱼ (wfTerm e)) e (sucⱼ n)
redFirstTerm (cast-ℕ-cong e n) = castⱼ (ℕⱼ (wfTerm e)) (ℕⱼ (wfTerm e)) e (redFirstTerm n)
redFirst (univ A⇒B) = univ (redFirstTerm A⇒B)
redFirst*Term : ∀ {Γ t u A l} → Γ ⊢ t ⇒* u ∷ A ^ l → Γ ⊢ t ∷ A ^ [ ! , l ]
redFirst*Term (id t) = t
redFirst*Term (t⇒t′ ⇨ t′⇒*u) = redFirstTerm t⇒t′
redFirst* : ∀ {Γ A B r} → Γ ⊢ A ⇒* B ^ r → Γ ⊢ A ^ r
redFirst* (id A) = A
redFirst* (A⇒A′ ⇨ A′⇒*B) = redFirst A⇒A′
-- Neutral types are always small
-- tyNe : ∀ {Γ t r} → Γ ⊢ t ^ r → Neutral t → Γ ⊢ t ∷ (Univ r) ^ !
-- tyNe (univ x) tn = x
-- tyNe (Idⱼ A x y) tn = Idⱼ A x y
-- Neutrals do not weak head reduce
neRedTerm : ∀ {Γ t u l A} (d : Γ ⊢ t ⇒ u ∷ A ^ l) (n : Neutral t) → ⊥
neRed : ∀ {Γ t u r} (d : Γ ⊢ t ⇒ u ^ r) (n : Neutral t) → ⊥
whnfRedTerm : ∀ {Γ t u A l} (d : Γ ⊢ t ⇒ u ∷ A ^ l) (w : Whnf t) → ⊥
whnfRed : ∀ {Γ A B r} (d : Γ ⊢ A ⇒ B ^ r) (w : Whnf A) → ⊥
neRedTerm (conv d x) n = neRedTerm d n
neRedTerm (app-subst d x) (∘ₙ n) = neRedTerm d n
neRedTerm (β-red _ _ x x₁ x₂) (∘ₙ ())
neRedTerm (natrec-zero x x₁ x₂) (natrecₙ ())
neRedTerm (natrec-suc x x₁ x₂ x₃) (natrecₙ ())
neRedTerm (natrec-subst x x₁ x₂ tr) (natrecₙ tn) = neRedTerm tr tn
neRedTerm (Id-subst tr x y) (Idₙ tn) = neRedTerm tr tn
neRedTerm (Id-ℕ-subst tr x) (Idℕₙ tn) = neRedTerm tr tn
neRedTerm (Id-ℕ-0-subst tr) (Idℕ0ₙ tn) = neRedTerm tr tn
neRedTerm (Id-ℕ-S-subst x tr) (IdℕSₙ tn) = neRedTerm tr tn
neRedTerm (Id-U-subst tr x) (IdUₙ tn) = neRedTerm tr tn
neRedTerm (Id-U-ℕ-subst tr) (IdUℕₙ tn) = neRedTerm tr tn
neRedTerm (Id-U-Π-subst A B tr) (IdUΠₙ tn) = neRedTerm tr tn
neRedTerm (Id-subst tr x y) (Idℕₙ tn) = whnfRedTerm tr ℕₙ
neRedTerm (Id-subst tr x y) (Idℕ0ₙ tn) = whnfRedTerm tr ℕₙ
neRedTerm (Id-subst tr x y) (IdℕSₙ tn) = whnfRedTerm tr ℕₙ
neRedTerm (Id-subst tr x y) (IdUₙ tn) = whnfRedTerm tr Uₙ
neRedTerm (Id-subst tr x y) (IdUℕₙ tn) = whnfRedTerm tr Uₙ
neRedTerm (Id-subst tr x y) (IdUΠₙ tn) = whnfRedTerm tr Uₙ
neRedTerm (Id-ℕ-subst tr x) (Idℕ0ₙ tn) = whnfRedTerm tr zeroₙ
neRedTerm (Id-ℕ-subst tr x) (IdℕSₙ tn) = whnfRedTerm tr sucₙ
neRedTerm (Id-U-subst tr x) (IdUℕₙ tn) = whnfRedTerm tr ℕₙ
neRedTerm (Id-U-subst tr x) (IdUΠₙ tn) = whnfRedTerm tr Πₙ
neRedTerm (Id-Π _ _ A B t u) (Idₙ ())
neRedTerm (Id-ℕ-00 tr) (Idₙ ())
neRedTerm (Id-ℕ-00 tr) (Idℕₙ ())
neRedTerm (Id-ℕ-00 tr) (Idℕ0ₙ ())
neRedTerm (Id-ℕ-SS x tr) (Idₙ ())
neRedTerm (Id-ℕ-SS x tr) (Idℕₙ ())
neRedTerm (Id-U-ΠΠ A B A' B') (Idₙ ())
neRedTerm (Id-U-ΠΠ A B A' B') (IdUₙ ())
neRedTerm (Id-U-ΠΠ A B A' B') (IdUΠₙ ())
neRedTerm (Id-U-ℕℕ x) (Idₙ ())
neRedTerm (Id-U-ℕℕ x) (IdUₙ ())
neRedTerm (Id-U-ℕℕ x) (IdUℕₙ ())
neRedTerm (Id-SProp A B) (Idₙ ())
neRedTerm (Id-ℕ-0S x) (Idₙ ())
neRedTerm (Id-ℕ-S0 x) (Idₙ ())
neRedTerm (Id-U-ℕΠ A B) (Idₙ ())
neRedTerm (Id-U-Πℕ A B) (Idₙ ())
neRedTerm (Id-U-ΠΠ!% eq A B A' B') (Idₙ ())
neRedTerm (cast-subst tr B e x) (castₙ tn) = neRedTerm tr tn
neRedTerm (cast-ℕ-subst tr e x) (castℕₙ tn) = neRedTerm tr tn
neRedTerm (cast-Π-subst A B tr e x) (castΠₙ tn) = neRedTerm tr tn
neRedTerm (cast-Π-subst A B tr e x) (castΠℕₙ) = whnfRedTerm tr ℕₙ
neRedTerm (cast-subst tr x x₁ x₂) (castℕₙ tn) = whnfRedTerm tr ℕₙ
neRedTerm (cast-subst tr x x₁ x₂) (castΠₙ tn) = whnfRedTerm tr Πₙ
neRedTerm (cast-subst tr x x₁ x₂) (castℕℕₙ tn) = whnfRedTerm tr ℕₙ
neRedTerm (cast-subst tr x x₁ x₂) (castℕΠₙ) = whnfRedTerm tr ℕₙ
neRedTerm (cast-subst tr x x₁ x₂) (castΠℕₙ) = whnfRedTerm tr Πₙ
neRedTerm (cast-ℕ-subst tr x x₁) (castℕℕₙ tn) = whnfRedTerm tr ℕₙ
neRedTerm (cast-ℕ-subst tr x x₁) (castℕΠₙ) = whnfRedTerm tr Πₙ
neRedTerm (cast-Π A B A' B' e f) (castₙ ())
neRedTerm (cast-Π A B A' B' e f) (castΠₙ ())
neRedTerm (cast-ℕ-0 x) (castₙ ())
neRedTerm (cast-ℕ-0 x) (castℕₙ ())
neRedTerm (cast-ℕ-0 x) (castℕℕₙ ())
neRedTerm (cast-ℕ-S x x₁) (castₙ ())
neRedTerm (cast-ℕ-S x x₁) (castℕₙ ())
neRedTerm (cast-ℕ-S x x₁) (castℕℕₙ ())
neRedTerm (cast-ℕ-cong x x₁) (castₙ ())
neRedTerm (cast-ℕ-cong x x₁) (castℕₙ ())
neRedTerm (cast-ℕ-cong x x₁) (castℕℕₙ t) = neRedTerm x₁ t
neRedTerm (cast-subst d x x₁ x₂) castΠΠ%!ₙ = whnfRedTerm d Πₙ
neRedTerm (cast-subst d x x₁ x₂) castΠΠ!%ₙ = whnfRedTerm d Πₙ
neRedTerm (cast-Π-subst x x₁ d x₂ x₃) castΠΠ%!ₙ = whnfRedTerm d Πₙ
neRedTerm (cast-Π-subst x x₁ d x₂ x₃) castΠΠ!%ₙ = whnfRedTerm d Πₙ
neRed (univ x) N = neRedTerm x N
whnfRedTerm (conv d x) w = whnfRedTerm d w
whnfRedTerm (app-subst d x) (ne (∘ₙ x₁)) = neRedTerm d x₁
whnfRedTerm (β-red _ _ x x₁ x₂) (ne (∘ₙ ()))
whnfRedTerm (natrec-subst x x₁ x₂ d) (ne (natrecₙ x₃)) = neRedTerm d x₃
whnfRedTerm (natrec-zero x x₁ x₂) (ne (natrecₙ ()))
whnfRedTerm (natrec-suc x x₁ x₂ x₃) (ne (natrecₙ ()))
whnfRedTerm (Id-subst d x x₁) (ne (Idₙ x₂)) = neRedTerm d x₂
whnfRedTerm (Id-subst d x x₁) (ne (Idℕₙ x₂)) = whnfRedTerm d ℕₙ
whnfRedTerm (Id-subst d x x₁) (ne (Idℕ0ₙ x₂)) = whnfRedTerm d ℕₙ
whnfRedTerm (Id-subst d x x₁) (ne (IdℕSₙ x₂)) = whnfRedTerm d ℕₙ
whnfRedTerm (Id-subst d x x₁) (ne (IdUₙ x₂)) = whnfRedTerm d Uₙ
whnfRedTerm (Id-subst d x x₁) (ne (IdUℕₙ x₂)) = whnfRedTerm d Uₙ
whnfRedTerm (Id-subst d x x₁) (ne (IdUΠₙ x₂)) = whnfRedTerm d Uₙ
whnfRedTerm (Id-ℕ-subst d x) (ne (Idℕₙ x₁)) = neRedTerm d x₁
whnfRedTerm (Id-ℕ-subst d x) (ne (Idℕ0ₙ x₁)) = whnfRedTerm d zeroₙ
whnfRedTerm (Id-ℕ-subst d x) (ne (IdℕSₙ x₁)) = whnfRedTerm d sucₙ
whnfRedTerm (Id-ℕ-0-subst d) (ne (Idℕ0ₙ x)) = neRedTerm d x
whnfRedTerm (Id-ℕ-S-subst x d) (ne (IdℕSₙ x₁)) = neRedTerm d x₁
whnfRedTerm (Id-U-subst d x) (ne (IdUₙ x₁)) = neRedTerm d x₁
whnfRedTerm (Id-U-subst d x) (ne (IdUℕₙ x₁)) = whnfRedTerm d ℕₙ
whnfRedTerm (Id-U-subst d x) (ne (IdUΠₙ x₁)) = whnfRedTerm d Πₙ
whnfRedTerm (Id-U-ℕ-subst d) (ne (IdUℕₙ x)) = neRedTerm d x
whnfRedTerm (Id-U-Π-subst x x₁ d) (ne (IdUΠₙ x₂)) = neRedTerm d x₂
whnfRedTerm (Id-Π _ _ x x₁ x₂ x₃) (ne (Idₙ ()))
whnfRedTerm (Id-ℕ-00 x) (ne (Idₙ ()))
whnfRedTerm (Id-ℕ-00 x) (ne (Idℕₙ ()))
whnfRedTerm (Id-ℕ-00 x) (ne (Idℕ0ₙ ()))
whnfRedTerm (Id-ℕ-SS x x₁) (ne (Idₙ ()))
whnfRedTerm (Id-ℕ-SS x x₁) (ne (Idℕₙ ()))
whnfRedTerm (Id-ℕ-SS x x₁) (ne (IdℕSₙ ()))
whnfRedTerm (Id-U-ΠΠ x x₁ x₂ x₃) (ne (Idₙ ()))
whnfRedTerm (Id-U-ΠΠ x x₁ x₂ x₃) (ne (IdUₙ ()))
whnfRedTerm (Id-U-ΠΠ x x₁ x₂ x₃) (ne (IdUΠₙ ()))
whnfRedTerm (Id-U-ℕℕ x) (ne (Idₙ ()))
whnfRedTerm (Id-U-ℕℕ x) (ne (IdUₙ ()))
whnfRedTerm (Id-U-ℕℕ x) (ne (IdUℕₙ ()))
whnfRedTerm (Id-SProp x x₁) (ne (Idₙ ()))
whnfRedTerm (Id-ℕ-0S x) (ne (Idₙ ()))
whnfRedTerm (Id-ℕ-S0 x) (ne (Idₙ ()))
whnfRedTerm (Id-U-ℕΠ A B) (ne (Idₙ ()))
whnfRedTerm (Id-U-Πℕ A B) (ne (Idₙ ()))
whnfRedTerm (Id-U-ΠΠ!% eq A B A' B') (ne (Idₙ ()))
whnfRedTerm (cast-subst d x x₁ x₂) (ne (castₙ x₃)) = neRedTerm d x₃
whnfRedTerm (cast-subst d x x₁ x₂) (ne (castℕₙ x₃)) = whnfRedTerm d ℕₙ
whnfRedTerm (cast-subst d x x₁ x₂) (ne (castΠₙ x₃)) = whnfRedTerm d Πₙ
whnfRedTerm (cast-subst d x x₁ x₂) (ne (castℕℕₙ x₃)) = whnfRedTerm d ℕₙ
whnfRedTerm (cast-subst d x x₁ x₂) (ne castℕΠₙ) = whnfRedTerm d ℕₙ
whnfRedTerm (cast-subst d x x₁ x₂) (ne castΠℕₙ) = whnfRedTerm d Πₙ
whnfRedTerm (cast-ℕ-subst d x x₁) (ne (castℕₙ x₂)) = neRedTerm d x₂
whnfRedTerm (cast-ℕ-subst d x x₁) (ne (castℕℕₙ x₂)) = whnfRedTerm d ℕₙ
whnfRedTerm (cast-ℕ-subst d x x₁) (ne castℕΠₙ) = whnfRedTerm d Πₙ
whnfRedTerm (cast-Π-subst x x₁ d x₂ x₃) (ne (castΠₙ x₄)) = neRedTerm d x₄
whnfRedTerm (cast-Π-subst x x₁ d x₂ x₃) (ne castΠℕₙ) = whnfRedTerm d ℕₙ
whnfRedTerm (cast-Π x x₁ x₂ x₃ x₄ x₅) (ne (castₙ ()))
whnfRedTerm (cast-Π x x₁ x₂ x₃ x₄ x₅) (ne (castΠₙ ()))
whnfRedTerm (cast-ℕ-0 x) (ne (castₙ ()))
whnfRedTerm (cast-ℕ-0 x) (ne (castℕₙ ()))
whnfRedTerm (cast-ℕ-0 x) (ne (castℕℕₙ ()))
whnfRedTerm (cast-ℕ-S x x₁) (ne (castₙ ()))
whnfRedTerm (cast-ℕ-S x x₁) (ne (castℕₙ ()))
whnfRedTerm (cast-ℕ-S x x₁) (ne (castℕℕₙ ()))
whnfRedTerm (cast-ℕ-cong x x₁) (ne (castₙ ()))
whnfRedTerm (cast-ℕ-cong x x₁) (ne (castℕₙ ()))
whnfRedTerm (cast-ℕ-cong x x₁) (ne (castℕℕₙ t)) = neRedTerm x₁ t
whnfRedTerm (cast-subst d x x₁ x₂) (ne castΠΠ%!ₙ) = whnfRedTerm d Πₙ
whnfRedTerm (cast-subst d x x₁ x₂) (ne castΠΠ!%ₙ) = whnfRedTerm d Πₙ
whnfRedTerm (cast-Π-subst x x₁ d x₂ x₃) (ne castΠΠ%!ₙ) = whnfRedTerm d Πₙ
whnfRedTerm (cast-Π-subst x x₁ d x₂ x₃) (ne castΠΠ!%ₙ) = whnfRedTerm d Πₙ
whnfRed (univ x) w = whnfRedTerm x w
whnfRed*Term : ∀ {Γ t u A l} (d : Γ ⊢ t ⇒* u ∷ A ^ l) (w : Whnf t) → t PE.≡ u
whnfRed*Term (id x) Uₙ = PE.refl
whnfRed*Term (id x) Πₙ = PE.refl
whnfRed*Term (id x) ∃ₙ = PE.refl
whnfRed*Term (id x) ℕₙ = PE.refl
whnfRed*Term (id x) Emptyₙ = PE.refl
whnfRed*Term (id x) lamₙ = PE.refl
whnfRed*Term (id x) zeroₙ = PE.refl
whnfRed*Term (id x) sucₙ = PE.refl
whnfRed*Term (id x) (ne x₁) = PE.refl
whnfRed*Term (conv x x₁ ⇨ d) w = ⊥-elim (whnfRedTerm x w)
whnfRed*Term (x ⇨ d) (ne x₁) = ⊥-elim (neRedTerm x x₁)
whnfRed* : ∀ {Γ A B r} (d : Γ ⊢ A ⇒* B ^ r) (w : Whnf A) → A PE.≡ B
whnfRed* (id x) w = PE.refl
whnfRed* (x ⇨ d) w = ⊥-elim (whnfRed x w)
-- Whr is deterministic
-- somehow the cases (cast-Π, cast-Π) and (Id-U-ΠΠ, Id-U-ΠΠ) fail if
-- we do not introduce a dummy relevance rA'. This is why we need the two
-- auxiliary functions.
whrDetTerm-aux1 : ∀{Γ t u F lF A A' rA lA lB rA' l B B' e f}
→ (d : t PE.≡ cast l (Π A ^ rA ° lA ▹ B ° lB ° l) (Π A' ^ rA' ° lA ▹ B' ° lB ° l) e f)
→ (d′ : Γ ⊢ t ⇒ u ∷ F ^ lF)
→ (lam A' ▹ (let a = cast l (wk1 A') (wk1 A) (Idsym (Univ rA l) (wk1 A) (wk1 A') (fst (wk1 e))) (var 0) in cast l (B [ a ]↑) B' ((snd (wk1 e)) ∘ (var 0) ^ ¹) ((wk1 f) ∘ a ^ l)) ^ l) PE.≡ u
whrDetTerm-aux1 d (conv d' x) = whrDetTerm-aux1 d d'
whrDetTerm-aux1 PE.refl (cast-subst d' x x₁ x₂) = ⊥-elim (whnfRedTerm d' Πₙ)
whrDetTerm-aux1 PE.refl (cast-Π-subst x x₁ d' x₂ x₃) = ⊥-elim (whnfRedTerm d' Πₙ)
whrDetTerm-aux1 PE.refl (cast-Π x x₁ x₂ x₃ x₄ x₅) = PE.refl
whrDetTerm-aux2 : ∀{Γ t u F lF A rA B A' rA' B'}
→ (rA≡rA' : rA PE.≡ rA')
→ (d : t PE.≡ Id (U ⁰) (Π A ^ rA ° ⁰ ▹ B ° ⁰ ° ⁰) (Π A' ^ rA' ° ⁰ ▹ B' ° ⁰ ° ⁰))
→ (d' : Γ ⊢ t ⇒ u ∷ F ^ lF)
→ (∃ (Id (Univ rA ⁰) A A') ▹ (Π (wk1 A') ^ rA ° ⁰ ▹ Id (U ⁰) ((wk (lift (step id)) B) [ cast ⁰ (wk1 (wk1 A')) (wk1 (wk1 A)) (Idsym (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) (var 1)) (var 0) ]↑) (wk (lift (step id)) B') ° ¹ ° ¹ ) ) PE.≡ u
whrDetTerm-aux2 eq d (conv d' x) = whrDetTerm-aux2 eq d d'
whrDetTerm-aux2 _ PE.refl (Id-subst d' x x₁) = ⊥-elim (whnfRedTerm d' Uₙ)
whrDetTerm-aux2 _ PE.refl (Id-U-subst d' x) = ⊥-elim (whnfRedTerm d' Πₙ)
whrDetTerm-aux2 _ PE.refl (Id-U-Π-subst x x₁ d') = ⊥-elim (whnfRedTerm d' Πₙ)
whrDetTerm-aux2 _ PE.refl (Id-U-ΠΠ x x₁ x₂ x₃) = PE.refl
whrDetTerm-aux2 PE.refl PE.refl (Id-U-ΠΠ!% eq A B A' B') = ⊥-elim (eq PE.refl)
whrDetTerm : ∀{Γ t u A l u′ A′ l′} (d : Γ ⊢ t ⇒ u ∷ A ^ l) (d′ : Γ ⊢ t ⇒ u′ ∷ A′ ^ l′) → u PE.≡ u′
whrDet : ∀{Γ A B B′ r r'} (d : Γ ⊢ A ⇒ B ^ r) (d′ : Γ ⊢ A ⇒ B′ ^ r') → B PE.≡ B′
whrDetTerm (conv d x) d′ = whrDetTerm d d′
whrDetTerm (app-subst d x) (app-subst d′ x₁) rewrite whrDetTerm d d′ = PE.refl
whrDetTerm (app-subst d x) (β-red _ _ x₁ x₂ x₃) = ⊥-elim (whnfRedTerm d lamₙ)
whrDetTerm (β-red _ _ x x₁ x₂) (app-subst d' x₃) = ⊥-elim (whnfRedTerm d' lamₙ)
whrDetTerm (β-red _ _ x x₁ x₂) (β-red _ _ x₃ x₄ x₅) = PE.refl
whrDetTerm (natrec-subst x x₁ x₂ d) (natrec-subst x₃ x₄ x₅ d') rewrite whrDetTerm d d' = PE.refl
whrDetTerm (natrec-subst x x₁ x₂ d) (natrec-zero x₃ x₄ x₅) = ⊥-elim (whnfRedTerm d zeroₙ)
whrDetTerm (natrec-subst x x₁ x₂ d) (natrec-suc x₃ x₄ x₅ x₆) = ⊥-elim (whnfRedTerm d sucₙ)
whrDetTerm (natrec-zero x x₁ x₂) (natrec-subst x₃ x₄ x₅ d') = ⊥-elim (whnfRedTerm d' zeroₙ)
whrDetTerm (natrec-zero x x₁ x₂) (natrec-zero x₃ x₄ x₅) = PE.refl
whrDetTerm (natrec-suc x x₁ x₂ x₃) (natrec-subst x₄ x₅ x₆ d') = ⊥-elim (whnfRedTerm d' sucₙ)
whrDetTerm (natrec-suc x x₁ x₂ x₃) (natrec-suc x₄ x₅ x₆ x₇) = PE.refl
whrDetTerm (Id-subst d x x₁) (Id-subst d' x₂ x₃) rewrite whrDetTerm d d' = PE.refl
whrDetTerm (Id-subst d x x₁) (Id-ℕ-subst d' x₂) = ⊥-elim (whnfRedTerm d ℕₙ)
whrDetTerm (Id-subst d x x₁) (Id-ℕ-0-subst d') = ⊥-elim (whnfRedTerm d ℕₙ)
whrDetTerm (Id-subst d x x₁) (Id-ℕ-S-subst x₂ d') = ⊥-elim (whnfRedTerm d ℕₙ)
whrDetTerm (Id-subst d x x₁) (Id-U-subst d' x₂) = ⊥-elim (whnfRedTerm d Uₙ)
whrDetTerm (Id-subst d x x₁) (Id-U-ℕ-subst d') = ⊥-elim (whnfRedTerm d Uₙ)
whrDetTerm (Id-subst d x x₁) (Id-U-Π-subst x₂ x₃ d') = ⊥-elim (whnfRedTerm d Uₙ)
whrDetTerm (Id-subst d x x₁) (Id-Π _ _ x₂ x₃ x₄ x₅) = ⊥-elim (whnfRedTerm d Πₙ)
whrDetTerm (Id-subst d x x₁) (Id-ℕ-00 x₂) = ⊥-elim (whnfRedTerm d ℕₙ)
whrDetTerm (Id-subst d x x₁) (Id-ℕ-SS x₂ x₃) = ⊥-elim (whnfRedTerm d ℕₙ)
whrDetTerm (Id-subst d x x₁) (Id-U-ΠΠ x₂ x₃ x₄ x₅) = ⊥-elim (whnfRedTerm d Uₙ)
whrDetTerm (Id-subst d x x₁) (Id-U-ℕℕ x₂) = ⊥-elim (whnfRedTerm d Uₙ)
whrDetTerm (Id-subst d x x₁) (Id-SProp x₂ x₃) = ⊥-elim (whnfRedTerm d Uₙ)
whrDetTerm (Id-subst d x x₁) (Id-ℕ-0S x₂) = ⊥-elim (whnfRedTerm d ℕₙ)
whrDetTerm (Id-subst d x x₁) (Id-ℕ-S0 x₂) = ⊥-elim (whnfRedTerm d ℕₙ)
whrDetTerm (Id-subst d x x₁) (Id-U-ℕΠ x₂ x₃) = ⊥-elim (whnfRedTerm d Uₙ)
whrDetTerm (Id-subst d x x₁) (Id-U-Πℕ x₂ x₃) = ⊥-elim (whnfRedTerm d Uₙ)
whrDetTerm (Id-subst d x x₁) (Id-U-ΠΠ!% x₂ x₃ x₄ x₅ x₆) = ⊥-elim (whnfRedTerm d Uₙ)
whrDetTerm (Id-ℕ-subst d x) (Id-subst d' x₁ x₂) = ⊥-elim (whnfRedTerm d' ℕₙ)
whrDetTerm (Id-ℕ-subst d x) (Id-ℕ-subst d' x₁) rewrite whrDetTerm d d' = PE.refl
whrDetTerm (Id-ℕ-subst d x) (Id-ℕ-0-subst d') = ⊥-elim (whnfRedTerm d zeroₙ)
whrDetTerm (Id-ℕ-subst d x) (Id-ℕ-S-subst x₁ d') = ⊥-elim (whnfRedTerm d sucₙ)
whrDetTerm (Id-ℕ-subst d x) (Id-ℕ-00 x₁) = ⊥-elim (whnfRedTerm d zeroₙ)
whrDetTerm (Id-ℕ-subst d x) (Id-ℕ-SS x₁ x₂) = ⊥-elim (whnfRedTerm d sucₙ)
whrDetTerm (Id-ℕ-subst d x) (Id-ℕ-0S x₁) = ⊥-elim (whnfRedTerm d zeroₙ)
whrDetTerm (Id-ℕ-subst d x) (Id-ℕ-S0 x₁) = ⊥-elim (whnfRedTerm d sucₙ)
whrDetTerm (Id-ℕ-0-subst d) (Id-subst d' x x₁) = ⊥-elim (whnfRedTerm d' ℕₙ)
whrDetTerm (Id-ℕ-0-subst d) (Id-ℕ-subst d' x) = ⊥-elim (whnfRedTerm d' zeroₙ)
whrDetTerm (Id-ℕ-0-subst d) (Id-ℕ-0-subst d') rewrite whrDetTerm d d' = PE.refl
whrDetTerm (Id-ℕ-0-subst d) (Id-ℕ-00 x) = ⊥-elim (whnfRedTerm d zeroₙ)
whrDetTerm (Id-ℕ-0-subst d) (Id-ℕ-0S x) = ⊥-elim (whnfRedTerm d sucₙ)
whrDetTerm (Id-ℕ-S-subst x d) (Id-subst d' x₁ x₂) = ⊥-elim (whnfRedTerm d' ℕₙ)
whrDetTerm (Id-ℕ-S-subst x d) (Id-ℕ-subst d' x₁) = ⊥-elim (whnfRedTerm d' sucₙ)
whrDetTerm (Id-ℕ-S-subst x d) (Id-ℕ-S-subst x₁ d') rewrite whrDetTerm d d' = PE.refl
whrDetTerm (Id-ℕ-S-subst x d) (Id-ℕ-SS x₁ x₂) = ⊥-elim (whnfRedTerm d sucₙ)
whrDetTerm (Id-ℕ-S-subst x d) (Id-ℕ-S0 x₁) = ⊥-elim (whnfRedTerm d zeroₙ)
whrDetTerm (Id-U-subst d x) (Id-subst d' x₁ x₂) = ⊥-elim (whnfRedTerm d' Uₙ)
whrDetTerm (Id-U-subst d x) (Id-U-subst d' x₁) rewrite whrDetTerm d d' = PE.refl
whrDetTerm (Id-U-subst d x) (Id-U-ℕ-subst d') = ⊥-elim (whnfRedTerm d ℕₙ)
whrDetTerm (Id-U-subst d x) (Id-U-Π-subst x₁ x₂ d') = ⊥-elim (whnfRedTerm d Πₙ)
whrDetTerm (Id-U-subst d x) (Id-U-ΠΠ x₁ x₂ x₃ x₄) = ⊥-elim (whnfRedTerm d Πₙ)
whrDetTerm (Id-U-subst d x) (Id-U-ℕℕ x₁) = ⊥-elim (whnfRedTerm d ℕₙ)
whrDetTerm (Id-U-subst d x) (Id-U-ℕΠ x₁ x₂) = ⊥-elim (whnfRedTerm d ℕₙ)
whrDetTerm (Id-U-subst d x) (Id-U-Πℕ x₁ x₂) = ⊥-elim (whnfRedTerm d Πₙ)
whrDetTerm (Id-U-subst d x) (Id-U-ΠΠ!% x₁ x₂ x₃ x₄ x₅) = ⊥-elim (whnfRedTerm d Πₙ)
whrDetTerm (Id-U-ℕ-subst d) (Id-subst d' x x₁) = ⊥-elim (whnfRedTerm d' Uₙ)
whrDetTerm (Id-U-ℕ-subst d) (Id-U-subst d' x) = ⊥-elim (whnfRedTerm d' ℕₙ)
whrDetTerm (Id-U-ℕ-subst d) (Id-U-ℕ-subst d') rewrite whrDetTerm d d' = PE.refl
whrDetTerm (Id-U-ℕ-subst d) (Id-U-ℕℕ x) = ⊥-elim (whnfRedTerm d ℕₙ)
whrDetTerm (Id-U-ℕ-subst d) (Id-U-ℕΠ x x₁) = ⊥-elim (whnfRedTerm d Πₙ)
whrDetTerm (Id-U-Π-subst x x₁ d) (Id-subst d' x₂ x₃) = ⊥-elim (whnfRedTerm d' Uₙ)
whrDetTerm (Id-U-Π-subst x x₁ d) (Id-U-subst d' x₂) = ⊥-elim (whnfRedTerm d' Πₙ)
whrDetTerm (Id-U-Π-subst x x₁ d) (Id-U-Π-subst x₂ x₃ d') rewrite whrDetTerm d d' = PE.refl
whrDetTerm (Id-U-Π-subst x x₁ d) (Id-U-ΠΠ x₂ x₃ x₄ x₅) = ⊥-elim (whnfRedTerm d Πₙ)
whrDetTerm (Id-U-Π-subst x x₁ d) (Id-U-Πℕ x₂ x₃) = ⊥-elim (whnfRedTerm d ℕₙ)
whrDetTerm (Id-U-Π-subst x x₁ d) (Id-U-ΠΠ!% x₂ x₃ x₄ x₅ x₆) = ⊥-elim (whnfRedTerm d Πₙ)
whrDetTerm (Id-Π _ _ x x₁ x₂ x₃) (Id-subst d' x₄ x₅) = ⊥-elim (whnfRedTerm d' Πₙ)
whrDetTerm (Id-Π _ _ x x₁ x₂ x₃) (Id-Π _ _ x₄ x₅ x₆ x₇) = PE.refl
whrDetTerm (Id-ℕ-00 x) (Id-subst d' x₁ x₂) = ⊥-elim (whnfRedTerm d' ℕₙ)
whrDetTerm (Id-ℕ-00 x) (Id-ℕ-subst d' x₁) = ⊥-elim (whnfRedTerm d' zeroₙ)
whrDetTerm (Id-ℕ-00 x) (Id-ℕ-0-subst d') = ⊥-elim (whnfRedTerm d' zeroₙ)
whrDetTerm (Id-ℕ-00 x) (Id-ℕ-00 x₁) = PE.refl
whrDetTerm (Id-ℕ-SS x x₁) (Id-subst d' x₂ x₃) = ⊥-elim (whnfRedTerm d' ℕₙ)
whrDetTerm (Id-ℕ-SS x x₁) (Id-ℕ-subst d' x₂) = ⊥-elim (whnfRedTerm d' sucₙ)
whrDetTerm (Id-ℕ-SS x x₁) (Id-ℕ-S-subst x₂ d') = ⊥-elim (whnfRedTerm d' sucₙ)
whrDetTerm (Id-ℕ-SS x x₁) (Id-ℕ-SS x₂ x₃) = PE.refl
whrDetTerm (Id-U-ΠΠ x x₁ x₂ x₃) d' = whrDetTerm-aux2 PE.refl PE.refl d'
whrDetTerm (Id-U-ℕℕ x) (Id-subst d' x₁ x₂) = ⊥-elim (whnfRedTerm d' Uₙ)
whrDetTerm (Id-U-ℕℕ x) (Id-U-subst d' x₁) = ⊥-elim (whnfRedTerm d' ℕₙ)
whrDetTerm (Id-U-ℕℕ x) (Id-U-ℕ-subst d') = ⊥-elim (whnfRedTerm d' ℕₙ)
whrDetTerm (Id-U-ℕℕ x) (Id-U-ℕℕ x₁) = PE.refl
whrDetTerm (Id-SProp x x₁) (Id-subst d' x₂ x₃) = ⊥-elim (whnfRedTerm d' Uₙ)
whrDetTerm (Id-SProp x x₁) (Id-SProp x₂ x₃) = PE.refl
whrDetTerm (Id-ℕ-0S x) (Id-subst d' x₁ x₂) = ⊥-elim (whnfRedTerm d' ℕₙ)
whrDetTerm (Id-ℕ-0S x) (Id-ℕ-subst d' x₁) = ⊥-elim (whnfRedTerm d' zeroₙ)
whrDetTerm (Id-ℕ-0S x) (Id-ℕ-0-subst d') = ⊥-elim (whnfRedTerm d' sucₙ)
whrDetTerm (Id-ℕ-0S x) (Id-ℕ-0S x₁) = PE.refl
whrDetTerm (Id-ℕ-S0 x) (Id-subst d' x₁ x₂) = ⊥-elim (whnfRedTerm d' ℕₙ)
whrDetTerm (Id-ℕ-S0 x) (Id-ℕ-subst d' x₁) = ⊥-elim (whnfRedTerm d' sucₙ)
whrDetTerm (Id-ℕ-S0 x) (Id-ℕ-S-subst x₁ d') = ⊥-elim (whnfRedTerm d' zeroₙ)
whrDetTerm (Id-ℕ-S0 x) (Id-ℕ-S0 x₁) = PE.refl
whrDetTerm (Id-U-ℕΠ x x₁) (Id-subst d' x₂ x₃) = ⊥-elim (whnfRedTerm d' Uₙ)
whrDetTerm (Id-U-ℕΠ x x₁) (Id-U-subst d' x₂) = ⊥-elim (whnfRedTerm d' ℕₙ)
whrDetTerm (Id-U-ℕΠ x x₁) (Id-U-ℕ-subst d') = ⊥-elim (whnfRedTerm d' Πₙ)
whrDetTerm (Id-U-ℕΠ x x₁) (Id-U-ℕΠ x₂ x₃) = PE.refl
whrDetTerm (Id-U-Πℕ x x₁) (Id-subst d' x₂ x₃) = ⊥-elim (whnfRedTerm d' Uₙ)
whrDetTerm (Id-U-Πℕ x x₁) (Id-U-subst d' x₂) = ⊥-elim (whnfRedTerm d' Πₙ)
whrDetTerm (Id-U-Πℕ x x₁) (Id-U-Π-subst x₂ x₃ d') = ⊥-elim (whnfRedTerm d' ℕₙ)
whrDetTerm (Id-U-Πℕ x x₁) (Id-U-Πℕ x₂ x₃) = PE.refl
whrDetTerm (Id-U-ΠΠ!% eq A B A' B') (Id-subst d' x x₁) = ⊥-elim (whnfRedTerm d' Uₙ)
whrDetTerm (Id-U-ΠΠ!% eq A B A' B') (Id-U-subst d' x) = ⊥-elim (whnfRedTerm d' Πₙ)
whrDetTerm (Id-U-ΠΠ!% eq A B A' B') (Id-U-Π-subst x x₁ d') = ⊥-elim (whnfRedTerm d' Πₙ)
whrDetTerm (Id-U-ΠΠ!% eq A B A' B') (Id-U-ΠΠ x x₁ x₂ x₃) = ⊥-elim (eq PE.refl)
whrDetTerm (Id-U-ΠΠ!% eq A B A' B') (Id-U-ΠΠ!% x x₁ x₂ x₃ x₄) = PE.refl
whrDetTerm (cast-subst d x x₁ x₂) (cast-subst d' x₃ x₄ x₅) rewrite whrDetTerm d d' = PE.refl
whrDetTerm (cast-subst d x x₁ x₂) (cast-ℕ-subst d' x₃ x₄) = ⊥-elim (whnfRedTerm d ℕₙ)
whrDetTerm (cast-subst d x x₁ x₂) (cast-Π-subst x₃ x₄ d' x₅ x₆) = ⊥-elim (whnfRedTerm d Πₙ)
whrDetTerm (cast-subst d x x₁ x₂) (cast-Π x₃ x₄ x₅ x₆ x₇ x₈) = ⊥-elim (whnfRedTerm d Πₙ)
whrDetTerm (cast-subst d x x₁ x₂) (cast-ℕ-0 x₃) = ⊥-elim (whnfRedTerm d ℕₙ)
whrDetTerm (cast-subst d x x₁ x₂) (cast-ℕ-S x₃ x₄) = ⊥-elim (whnfRedTerm d ℕₙ)
whrDetTerm (cast-ℕ-subst d x x₁) (cast-subst d' x₂ x₃ x₄) = ⊥-elim (whnfRedTerm d' ℕₙ)
whrDetTerm (cast-ℕ-subst d x x₁) (cast-ℕ-subst d' x₂ x₃) rewrite whrDetTerm d d' = PE.refl
whrDetTerm (cast-ℕ-subst d x x₁) (cast-ℕ-0 x₂) = ⊥-elim (whnfRedTerm d ℕₙ)
whrDetTerm (cast-ℕ-subst d x x₁) (cast-ℕ-S x₂ x₃) = ⊥-elim (whnfRedTerm d ℕₙ)
whrDetTerm (cast-Π-subst x x₁ d x₂ x₃) (cast-subst d' x₄ x₅ x₆) = ⊥-elim (whnfRedTerm d' Πₙ)
whrDetTerm (cast-Π-subst x x₁ d x₂ x₃) (cast-Π-subst x₄ x₅ d' x₆ x₇) rewrite whrDetTerm d d' = PE.refl
whrDetTerm (cast-Π-subst x x₁ d x₂ x₃) (cast-Π x₄ x₅ x₆ x₇ x₈ x₉) = ⊥-elim (whnfRedTerm d Πₙ)
whrDetTerm (cast-Π x x₁ x₂ x₃ x₄ x₅) d' = whrDetTerm-aux1 (PE.refl) d'
whrDetTerm (cast-ℕ-0 x) (cast-subst d' x₁ x₂ x₃) = ⊥-elim (whnfRedTerm d' ℕₙ)
whrDetTerm (cast-ℕ-0 x) (cast-ℕ-subst d' x₁ x₂) = ⊥-elim (whnfRedTerm d' ℕₙ)
whrDetTerm (cast-ℕ-0 x) (cast-ℕ-0 x₁) = PE.refl
whrDetTerm (cast-ℕ-S x x₁) (cast-subst d' x₂ x₃ x₄) = ⊥-elim (whnfRedTerm d' ℕₙ)
whrDetTerm (cast-ℕ-S x x₁) (cast-ℕ-subst d' x₂ x₃) = ⊥-elim (whnfRedTerm d' ℕₙ)
whrDetTerm (cast-ℕ-S x x₁) (cast-ℕ-S x₂ x₃) = PE.refl
whrDetTerm (cast-ℕ-cong x x₁) (cast-subst d' x₂ x₃ x₄) = ⊥-elim (whnfRedTerm d' ℕₙ)
whrDetTerm (cast-ℕ-cong x x₁) (cast-ℕ-subst d' x₂ x₃) = ⊥-elim (whnfRedTerm d' ℕₙ)
whrDetTerm (cast-ℕ-cong x x₁) (cast-ℕ-cong x₂ x₃) rewrite whrDetTerm x₁ x₃ = PE.refl --
whrDetTerm (cast-subst d x x₁ x₂) (cast-ℕ-cong x₃ d′) = ⊥-elim (whnfRedTerm d ℕₙ)
whrDetTerm (cast-ℕ-subst d x x₁) (cast-ℕ-cong x₂ d′) = ⊥-elim (whnfRedTerm d ℕₙ)
whrDetTerm (cast-ℕ-0 x) (cast-ℕ-cong x₁ d′) = ⊥-elim (whnfRedTerm d′ zeroₙ)
whrDetTerm (cast-ℕ-S x x₁) (cast-ℕ-cong x₂ d′) = ⊥-elim (whnfRedTerm d′ sucₙ)
whrDetTerm (cast-ℕ-cong x d) (cast-ℕ-0 x₁) = ⊥-elim (whnfRedTerm d zeroₙ)
whrDetTerm (cast-ℕ-cong x d) (cast-ℕ-S x₁ x₂) = ⊥-elim (whnfRedTerm d sucₙ)
{-# CATCHALL #-}
whrDetTerm d (conv d′ x₁) = whrDetTerm d d′
whrDet (univ x) (univ x₁) = whrDetTerm x x₁
whrDet↘Term : ∀{Γ t u A l u′} (d : Γ ⊢ t ↘ u ∷ A ^ l) (d′ : Γ ⊢ t ⇒* u′ ∷ A ^ l)
→ Γ ⊢ u′ ⇒* u ∷ A ^ l
whrDet↘Term (proj₁ , proj₂) (id x) = proj₁
whrDet↘Term (id x , proj₂) (x₁ ⇨ d′) = ⊥-elim (whnfRedTerm x₁ proj₂)
whrDet↘Term (x ⇨ proj₁ , proj₂) (x₁ ⇨ d′) =
whrDet↘Term (PE.subst (λ x₂ → _ ⊢ x₂ ↘ _ ∷ _ ^ _) (whrDetTerm x x₁) (proj₁ , proj₂)) d′
whrDet*Term : ∀{Γ t u A A' l u′ } (d : Γ ⊢ t ↘ u ∷ A ^ l) (d′ : Γ ⊢ t ↘ u′ ∷ A' ^ l) → u PE.≡ u′
whrDet*Term (id x , proj₂) (id x₁ , proj₄) = PE.refl
whrDet*Term (id x , proj₂) (x₁ ⇨ proj₃ , proj₄) = ⊥-elim (whnfRedTerm x₁ proj₂)
whrDet*Term (x ⇨ proj₁ , proj₂) (id x₁ , proj₄) = ⊥-elim (whnfRedTerm x proj₄)
whrDet*Term (x ⇨ proj₁ , proj₂) (x₁ ⇨ proj₃ , proj₄) =
whrDet*Term (proj₁ , proj₂) (PE.subst (λ x₂ → _ ⊢ x₂ ↘ _ ∷ _ ^ _)
(whrDetTerm x₁ x) (proj₃ , proj₄))
whrDet* : ∀{Γ A B B′ r r'} (d : Γ ⊢ A ↘ B ^ r) (d′ : Γ ⊢ A ↘ B′ ^ r') → B PE.≡ B′
whrDet* (id x , proj₂) (id x₁ , proj₄) = PE.refl
whrDet* (id x , proj₂) (x₁ ⇨ proj₃ , proj₄) = ⊥-elim (whnfRed x₁ proj₂)
whrDet* (x ⇨ proj₁ , proj₂) (id x₁ , proj₄) = ⊥-elim (whnfRed x proj₄)
whrDet* (A⇒A′ ⇨ A′⇒*B , whnfB) (A⇒A″ ⇨ A″⇒*B′ , whnfB′) =
whrDet* (A′⇒*B , whnfB) (PE.subst (λ x → _ ⊢ x ↘ _ ^ _ )
(whrDet A⇒A″ A⇒A′)
(A″⇒*B′ , whnfB′))
-- Identity of syntactic reduction
idRed:*: : ∀ {Γ A r} → Γ ⊢ A ^ r → Γ ⊢ A :⇒*: A ^ r
idRed:*: A = [[ A , A , id A ]]
idRedTerm:*: : ∀ {Γ A l t} → Γ ⊢ t ∷ A ^ [ ! , l ] → Γ ⊢ t :⇒*: t ∷ A ^ l
idRedTerm:*: t = [[ t , t , id t ]]
-- U cannot be a term
UnotInA : ∀ {A Γ r r'} → Γ ⊢ (Univ r ¹) ∷ A ^ r' → ⊥
UnotInA (conv U∷U x) = UnotInA U∷U
UnotInA[t] : ∀ {A B t a Γ r r' r'' r'''}
→ t [ a ] PE.≡ (Univ r ¹)
→ Γ ⊢ a ∷ A ^ r'
→ Γ ∙ A ^ r'' ⊢ t ∷ B ^ r'''
→ ⊥
UnotInA[t] () x₁ (univ 0<1 x₂)
UnotInA[t] () x₁ (ℕⱼ x₂)
UnotInA[t] () x₁ (Emptyⱼ x₂)
UnotInA[t] () x₁ (Πⱼ _ ▹ _ ▹ x₂ ▹ x₃)
UnotInA[t] x₁ x₂ (var x₃ here) rewrite x₁ = UnotInA x₂
UnotInA[t] () x₂ (var x₃ (there x₄))
UnotInA[t] () x₁ (lamⱼ _ _ x₂ x₃)
UnotInA[t] () x₁ (x₂ ∘ⱼ x₃)
UnotInA[t] () x₁ (zeroⱼ x₂)
UnotInA[t] () x₁ (sucⱼ x₂)
UnotInA[t] () x₁ (natrecⱼ x₂ x₃ x₄ x₅)
UnotInA[t] () x₁ (Emptyrecⱼ x₂ x₃)
UnotInA[t] x x₁ (conv x₂ x₃) = UnotInA[t] x x₁ x₂
redU*Term′ : ∀ {A B U′ l Γ r} → U′ PE.≡ (Univ r ¹) → Γ ⊢ A ⇒ U′ ∷ B ^ l → ⊥
redU*Term′ U′≡U (conv A⇒U x) = redU*Term′ U′≡U A⇒U
redU*Term′ () (app-subst A⇒U x)
redU*Term′ U′≡U (β-red _ _ x x₁ x₂) = UnotInA[t] U′≡U x₂ x₁
redU*Term′ () (natrec-subst x x₁ x₂ A⇒U)
redU*Term′ U′≡U (natrec-zero x x₁ x₂) rewrite U′≡U = UnotInA x₁
redU*Term′ () (natrec-suc x x₁ x₂ x₃)
redU*Term : ∀ {A B l Γ r} → Γ ⊢ A ⇒* (Univ r ¹) ∷ B ^ l → ⊥
redU*Term (id x) = UnotInA x
redU*Term (x ⇨ A⇒*U) = redU*Term A⇒*U
-- Nothing reduces to U
redU : ∀ {A Γ r l } → Γ ⊢ A ⇒ (Univ r ¹) ^ [ ! , l ] → ⊥
redU (univ x) = redU*Term′ PE.refl x
redU* : ∀ {A Γ r l } → Γ ⊢ A ⇒* (Univ r ¹) ^ [ ! , l ] → A PE.≡ (Univ r ¹)
redU* (id x) = PE.refl
redU* (x ⇨ A⇒*U) rewrite redU* A⇒*U = ⊥-elim (redU x)
-- convertibility for irrelevant terms implies typing
typeInversion : ∀ {t u A l Γ} → Γ ⊢ t ≡ u ∷ A ^ [ % , l ] → Γ ⊢ t ∷ A ^ [ % , l ]
typeInversion (conv X x) = let d = typeInversion X in conv d x
typeInversion (proof-irrelevance x x₁) = x
-- general version of reflexivity, symmetry and transitivity
genRefl : ∀ {A Γ t r l } → Γ ⊢ t ∷ A ^ [ r , l ] → Γ ⊢ t ≡ t ∷ A ^ [ r , l ]
genRefl {r = !} d = refl d
genRefl {r = %} d = proof-irrelevance d d
-- Judgmental instance of the equality relation
genSym : ∀ {k l A Γ r lA } → Γ ⊢ k ≡ l ∷ A ^ [ r , lA ] → Γ ⊢ l ≡ k ∷ A ^ [ r , lA ]
genSym {r = !} = sym
genSym {r = %} (proof-irrelevance x x₁) = proof-irrelevance x₁ x
genSym {r = %} (conv x x₁) = conv (genSym x) x₁
genTrans : ∀ {k l m A r Γ lA } → Γ ⊢ k ≡ l ∷ A ^ [ r , lA ] → Γ ⊢ l ≡ m ∷ A ^ [ r , lA ] → Γ ⊢ k ≡ m ∷ A ^ [ r , lA ]
genTrans {r = !} = trans
genTrans {r = %} (conv X x) (conv Y x₁) = conv (genTrans X (conv Y (trans x₁ (sym x)))) x
genTrans {r = %} (conv X x) (proof-irrelevance x₁ x₂) = proof-irrelevance (conv (typeInversion X) x) x₂
genTrans {r = %} (proof-irrelevance x x₁) (conv Y x₂) = proof-irrelevance x (conv (typeInversion (genSym Y)) x₂)
genTrans {r = %} (proof-irrelevance x x₁) (proof-irrelevance x₂ x₃) = proof-irrelevance x x₃
genVar : ∀ {x A Γ r l } → Γ ⊢ var x ∷ A ^ [ r , l ] → Γ ⊢ var x ≡ var x ∷ A ^ [ r , l ]
genVar {r = !} = refl
genVar {r = %} d = proof-irrelevance d d
toLevelInj : ∀ {l₁ l₁′ : TypeLevel} {l<₁ : l₁′ <∞ l₁} {l₂ l₂′ : TypeLevel} {l<₂ : l₂′ <∞ l₂} →
toLevel l₁′ PE.≡ toLevel l₂′ → l₁′ PE.≡ l₂′
toLevelInj {.(ι ¹)} {.(ι ⁰)} {emb<} {.(ι ¹)} {.(ι ⁰)} {emb<} e = PE.refl
toLevelInj {.∞} {.(ι ¹)} {∞<} {.(ι ¹)} {.(ι ⁰)} {emb<} ()
toLevelInj {.∞} {.(ι ¹)} {∞<} {.∞} {.(ι ¹)} {∞<} e = PE.refl
redSProp′ : ∀ {Γ A B l}
(D : Γ ⊢ A ⇒* B ∷ SProp l ^ next l )
→ Γ ⊢ A ⇒* B ^ [ % , ι l ]
redSProp′ (id x) = id (univ x)
redSProp′ (x ⇨ D) = univ x ⇨ redSProp′ D
redSProp : ∀ {Γ A B l}
(D : Γ ⊢ A :⇒*: B ∷ SProp l ^ next l )
→ Γ ⊢ A :⇒*: B ^ [ % , ι l ]
redSProp [[ ⊢t , ⊢u , d ]] = [[ (univ ⊢t) , (univ ⊢u) , redSProp′ d ]]
un-univ : ∀ {A r Γ l} → Γ ⊢ A ^ [ r , ι l ] → Γ ⊢ A ∷ Univ r l ^ [ ! , next l ]
un-univ (univ x) = x
un-univ≡ : ∀ {A B r Γ l} → Γ ⊢ A ≡ B ^ [ r , ι l ] → Γ ⊢ A ≡ B ∷ Univ r l ^ [ ! , next l ]
un-univ≡ (univ x) = x
un-univ≡ (refl x) = refl (un-univ x)
un-univ≡ (sym X) = sym (un-univ≡ X)
un-univ≡ (trans X Y) = trans (un-univ≡ X) (un-univ≡ Y)
univ-gen : ∀ {r Γ l} → (⊢Γ : ⊢ Γ) → Γ ⊢ Univ r l ^ [ ! , next l ]
univ-gen {l = ⁰} ⊢Γ = univ (univ 0<1 ⊢Γ )
univ-gen {l = ¹} ⊢Γ = Uⱼ ⊢Γ
un-univ⇒ : ∀ {l Γ A B r} → Γ ⊢ A ⇒ B ^ [ r , ι l ] → Γ ⊢ A ⇒ B ∷ Univ r l ^ next l
un-univ⇒ (univ x) = x
univ⇒* : ∀ {l Γ A B r} → Γ ⊢ A ⇒* B ∷ Univ r l ^ next l → Γ ⊢ A ⇒* B ^ [ r , ι l ]
univ⇒* (id x) = id (univ x)
univ⇒* (x ⇨ D) = univ x ⇨ univ⇒* D
un-univ⇒* : ∀ {l Γ A B r} → Γ ⊢ A ⇒* B ^ [ r , ι l ] → Γ ⊢ A ⇒* B ∷ Univ r l ^ next l
un-univ⇒* (id x) = id (un-univ x)
un-univ⇒* (x ⇨ D) = un-univ⇒ x ⇨ un-univ⇒* D
univ:⇒*: : ∀ {l Γ A B r} → Γ ⊢ A :⇒*: B ∷ Univ r l ^ next l → Γ ⊢ A :⇒*: B ^ [ r , ι l ]
univ:⇒*: [[ ⊢A , ⊢B , D ]] = [[ (univ ⊢A) , (univ ⊢B) , (univ⇒* D) ]]
un-univ:⇒*: : ∀ {l Γ A B r} → Γ ⊢ A :⇒*: B ^ [ r , ι l ] → Γ ⊢ A :⇒*: B ∷ Univ r l ^ next l
un-univ:⇒*: [[ ⊢A , ⊢B , D ]] = [[ (un-univ ⊢A) , (un-univ ⊢B) , (un-univ⇒* D) ]]
IdRed*Term′ : ∀ {Γ A B t u l}
(⊢t : Γ ⊢ t ∷ A ^ [ ! , ι l ])
(⊢u : Γ ⊢ u ∷ A ^ [ ! , ι l ])
(D : Γ ⊢ A ⇒* B ^ [ ! , ι l ])
→ Γ ⊢ Id A t u ⇒* Id B t u ∷ SProp l ^ next l
IdRed*Term′ ⊢t ⊢u (id (univ ⊢A)) = id (Idⱼ ⊢A ⊢t ⊢u)
IdRed*Term′ ⊢t ⊢u (univ d ⇨ D) = Id-subst d ⊢t ⊢u ⇨ IdRed*Term′ (conv ⊢t (subset (univ d))) (conv ⊢u (subset (univ d))) D
IdRed*Term : ∀ {Γ A B t u l}
(⊢t : Γ ⊢ t ∷ A ^ [ ! , ι l ])
(⊢u : Γ ⊢ u ∷ A ^ [ ! , ι l ])
(D : Γ ⊢ A :⇒*: B ^ [ ! , ι l ])
→ Γ ⊢ Id A t u :⇒*: Id B t u ∷ SProp l ^ next l
IdRed*Term {Γ} {A} {B} ⊢t ⊢u [[ univ ⊢A , univ ⊢B , D ]] =
[[ Idⱼ ⊢A ⊢t ⊢u , Idⱼ ⊢B (conv ⊢t (subset* D)) (conv ⊢u (subset* D)) ,
IdRed*Term′ ⊢t ⊢u D ]]
IdRed* : ∀ {Γ A B t u l}
(⊢t : Γ ⊢ t ∷ A ^ [ ! , ι l ])
(⊢u : Γ ⊢ u ∷ A ^ [ ! , ι l ])
(D : Γ ⊢ A ⇒* B ^ [ ! , ι l ])
→ Γ ⊢ Id A t u ⇒* Id B t u ^ [ % , ι l ]
IdRed* ⊢t ⊢u (id ⊢A) = id (univ (Idⱼ (un-univ ⊢A) ⊢t ⊢u))
IdRed* ⊢t ⊢u (d ⇨ D) = univ (Id-subst (un-univ⇒ d) ⊢t ⊢u) ⇨ IdRed* (conv ⊢t (subset d)) (conv ⊢u (subset d)) D
CastRed*Term′ : ∀ {Γ A B X e t}
(⊢X : Γ ⊢ X ^ [ ! , ι ⁰ ])
(⊢e : Γ ⊢ e ∷ Id (U ⁰) A X ^ [ % , next ⁰ ])
(⊢t : Γ ⊢ t ∷ A ^ [ ! , ι ⁰ ])
(D : Γ ⊢ A ⇒* B ^ [ ! , ι ⁰ ])
→ Γ ⊢ cast ⁰ A X e t ⇒* cast ⁰ B X e t ∷ X ^ ι ⁰
CastRed*Term′ (univ ⊢X) ⊢e ⊢t (id (univ ⊢A)) = id (castⱼ ⊢A ⊢X ⊢e ⊢t)
CastRed*Term′ (univ ⊢X) ⊢e ⊢t (univ d ⇨ D) = cast-subst d ⊢X ⊢e ⊢t ⇨
CastRed*Term′ (univ ⊢X) (conv ⊢e (univ (Id-cong (refl (univ 0<1 (wfTerm ⊢t))) (subsetTerm d) (refl ⊢X)) )) (conv ⊢t (subset (univ d))) D
CastRed*Term : ∀ {Γ A B X t e}
(⊢X : Γ ⊢ X ^ [ ! , ι ⁰ ])
(⊢e : Γ ⊢ e ∷ Id (U ⁰) A X ^ [ % , next ⁰ ])
(⊢t : Γ ⊢ t ∷ A ^ [ ! , ι ⁰ ])
(D : Γ ⊢ A :⇒*: B ∷ U ⁰ ^ next ⁰)
→ Γ ⊢ cast ⁰ A X e t :⇒*: cast ⁰ B X e t ∷ X ^ ι ⁰
CastRed*Term {Γ} {A} {B} (univ ⊢X) ⊢e ⊢t [[ ⊢A , ⊢B , D ]] =
[[ castⱼ ⊢A ⊢X ⊢e ⊢t , castⱼ ⊢B ⊢X (conv ⊢e (univ (Id-cong (refl (univ 0<1 (wfTerm ⊢t))) (subset*Term D) (refl ⊢X)) )) (conv ⊢t (univ (subset*Term D))) ,
CastRed*Term′ (univ ⊢X) ⊢e ⊢t (univ* D) ]]
CastRed*Termℕ′ : ∀ {Γ A B e t}
(⊢e : Γ ⊢ e ∷ Id (U ⁰) ℕ A ^ [ % , next ⁰ ])
(⊢t : Γ ⊢ t ∷ ℕ ^ [ ! , ι ⁰ ])
(D : Γ ⊢ A ⇒* B ^ [ ! , ι ⁰ ])
→ Γ ⊢ cast ⁰ ℕ A e t ⇒* cast ⁰ ℕ B e t ∷ A ^ ι ⁰
CastRed*Termℕ′ ⊢e ⊢t (id (univ ⊢A)) = id (castⱼ (ℕⱼ (wfTerm ⊢A)) ⊢A ⊢e ⊢t)
CastRed*Termℕ′ ⊢e ⊢t (univ d ⇨ D) = cast-ℕ-subst d ⊢e ⊢t ⇨
conv* (CastRed*Termℕ′ (conv ⊢e (univ (Id-cong (refl (univ 0<1 (wfTerm ⊢e))) (refl (ℕⱼ (wfTerm ⊢e))) (subsetTerm d))) ) ⊢t D)
(sym (subset (univ d)))
CastRed*Termℕ : ∀ {Γ A B e t}
(⊢e : Γ ⊢ e ∷ Id (U ⁰) ℕ A ^ [ % , next ⁰ ])
(⊢t : Γ ⊢ t ∷ ℕ ^ [ ! , ι ⁰ ])
(D : Γ ⊢ A :⇒*: B ^ [ ! , ι ⁰ ])
→ Γ ⊢ cast ⁰ ℕ A e t :⇒*: cast ⁰ ℕ B e t ∷ A ^ ι ⁰
CastRed*Termℕ ⊢e ⊢t [[ ⊢A , ⊢B , D ]] =
[[ castⱼ (ℕⱼ (wfTerm ⊢e)) (un-univ ⊢A) ⊢e ⊢t ,
conv (castⱼ (ℕⱼ (wfTerm ⊢e)) (un-univ ⊢B) (conv ⊢e (univ (Id-cong (refl (univ 0<1 (wfTerm ⊢e))) (refl (ℕⱼ (wfTerm ⊢e))) (subset*Term (un-univ⇒* D))))) ⊢t) (sym (subset* D)) ,
CastRed*Termℕ′ ⊢e ⊢t D ]]
CastRed*Termℕℕ′ : ∀ {Γ e t u}
(⊢e : Γ ⊢ e ∷ Id (U ⁰) ℕ ℕ ^ [ % , next ⁰ ])
(⊢t : Γ ⊢ t ⇒* u ∷ ℕ ^ ι ⁰ )
→ Γ ⊢ cast ⁰ ℕ ℕ e t ⇒* cast ⁰ ℕ ℕ e u ∷ ℕ ^ ι ⁰
CastRed*Termℕℕ′ ⊢e (id ⊢t) = id (castⱼ (ℕⱼ (wfTerm ⊢e)) (ℕⱼ (wfTerm ⊢e)) ⊢e ⊢t)
CastRed*Termℕℕ′ ⊢e (d ⇨ D) = cast-ℕ-cong ⊢e d ⇨ CastRed*Termℕℕ′ ⊢e D
CastRed*Termℕℕ : ∀ {Γ e t u}
(⊢e : Γ ⊢ e ∷ Id (U ⁰) ℕ ℕ ^ [ % , next ⁰ ])
(⊢t : Γ ⊢ t :⇒*: u ∷ ℕ ^ ι ⁰ )
→ Γ ⊢ cast ⁰ ℕ ℕ e t :⇒*: cast ⁰ ℕ ℕ e u ∷ ℕ ^ ι ⁰
CastRed*Termℕℕ ⊢e [[ ⊢t , ⊢u , D ]] =
[[ castⱼ (ℕⱼ (wfTerm ⊢e)) (ℕⱼ (wfTerm ⊢e)) ⊢e ⊢t ,
castⱼ (ℕⱼ (wfTerm ⊢e)) (ℕⱼ (wfTerm ⊢e)) ⊢e ⊢u ,
CastRed*Termℕℕ′ ⊢e D ]]
CastRed*Termℕsuc : ∀ {Γ e n}
(⊢e : Γ ⊢ e ∷ Id (U ⁰) ℕ ℕ ^ [ % , next ⁰ ])
(⊢n : Γ ⊢ n ∷ ℕ ^ [ ! , ι ⁰ ])
→ Γ ⊢ cast ⁰ ℕ ℕ e (suc n) :⇒*: suc (cast ⁰ ℕ ℕ e n) ∷ ℕ ^ ι ⁰
CastRed*Termℕsuc ⊢e ⊢n =
[[ castⱼ (ℕⱼ (wfTerm ⊢e)) (ℕⱼ (wfTerm ⊢e)) ⊢e (sucⱼ ⊢n) ,
sucⱼ (castⱼ (ℕⱼ (wfTerm ⊢e)) (ℕⱼ (wfTerm ⊢e)) ⊢e ⊢n) ,
cast-ℕ-S ⊢e ⊢n ⇨ id (sucⱼ (castⱼ (ℕⱼ (wfTerm ⊢e)) (ℕⱼ (wfTerm ⊢e)) ⊢e ⊢n)) ]]
CastRed*Termℕzero : ∀ {Γ e}
(⊢e : Γ ⊢ e ∷ Id (U ⁰) ℕ ℕ ^ [ % , next ⁰ ])
→ Γ ⊢ cast ⁰ ℕ ℕ e zero :⇒*: zero ∷ ℕ ^ ι ⁰
CastRed*Termℕzero ⊢e =
[[ castⱼ (ℕⱼ (wfTerm ⊢e)) (ℕⱼ (wfTerm ⊢e)) ⊢e (zeroⱼ (wfTerm ⊢e)) ,
zeroⱼ (wfTerm ⊢e) ,
cast-ℕ-0 ⊢e ⇨ id (zeroⱼ (wfTerm ⊢e)) ]]
CastRed*TermΠ′ : ∀ {Γ F rF G A B e t}
(⊢F : Γ ⊢ F ∷ (Univ rF ⁰) ^ [ ! , next ⁰ ])
(⊢G : Γ ∙ F ^ [ rF , ι ⁰ ] ⊢ G ∷ U ⁰ ^ [ ! , next ⁰ ])
(⊢e : Γ ⊢ e ∷ Id (U ⁰) (Π F ^ rF ° ⁰ ▹ G ° ⁰ ° ⁰) A ^ [ % , next ⁰ ])
(⊢t : Γ ⊢ t ∷ (Π F ^ rF ° ⁰ ▹ G ° ⁰ ° ⁰) ^ [ ! , ι ⁰ ])
(D : Γ ⊢ A ⇒* B ^ [ ! , ι ⁰ ])
→ Γ ⊢ cast ⁰ (Π F ^ rF ° ⁰ ▹ G ° ⁰ ° ⁰) A e t ⇒* cast ⁰ (Π F ^ rF ° ⁰ ▹ G ° ⁰ ° ⁰) B e t ∷ A ^ ι ⁰
CastRed*TermΠ′ ⊢F ⊢G ⊢e ⊢t (id (univ ⊢A)) = id (castⱼ (Πⱼ ≡is≤ PE.refl ▹ ≡is≤ PE.refl ▹ ⊢F ▹ ⊢G) ⊢A ⊢e ⊢t)
CastRed*TermΠ′ ⊢F ⊢G ⊢e ⊢t (univ d ⇨ D) = cast-Π-subst ⊢F ⊢G d ⊢e ⊢t ⇨
conv* (CastRed*TermΠ′ ⊢F ⊢G (conv ⊢e (univ (Id-cong (refl (univ 0<1 (wfTerm ⊢e))) (refl (Πⱼ ≡is≤ PE.refl ▹ ≡is≤ PE.refl ▹ ⊢F ▹ ⊢G)) (subsetTerm d))) ) ⊢t D)
(sym (subset (univ d)))
CastRed*TermΠ : ∀ {Γ F rF G A B e t}
(⊢F : Γ ⊢ F ∷ (Univ rF ⁰) ^ [ ! , next ⁰ ])
(⊢G : Γ ∙ F ^ [ rF , ι ⁰ ] ⊢ G ∷ U ⁰ ^ [ ! , next ⁰ ])
(⊢e : Γ ⊢ e ∷ Id (U ⁰) (Π F ^ rF ° ⁰ ▹ G ° ⁰ ° ⁰) A ^ [ % , next ⁰ ])
(⊢t : Γ ⊢ t ∷ (Π F ^ rF ° ⁰ ▹ G ° ⁰ ° ⁰) ^ [ ! , ι ⁰ ])
(D : Γ ⊢ A :⇒*: B ^ [ ! , ι ⁰ ])
→ Γ ⊢ cast ⁰ (Π F ^ rF ° ⁰ ▹ G ° ⁰ ° ⁰) A e t :⇒*: cast ⁰ (Π F ^ rF ° ⁰ ▹ G ° ⁰ ° ⁰) B e t ∷ A ^ ι ⁰
CastRed*TermΠ ⊢F ⊢G ⊢e ⊢t [[ ⊢A , ⊢B , D ]] =
let [Π] = Πⱼ ≡is≤ PE.refl ▹ ≡is≤ PE.refl ▹ ⊢F ▹ ⊢G
in [[ castⱼ [Π] (un-univ ⊢A) ⊢e ⊢t ,
conv (castⱼ [Π] (un-univ ⊢B) (conv ⊢e (univ (Id-cong (refl (univ 0<1 (wfTerm ⊢e))) (refl [Π]) (subset*Term (un-univ⇒* D))))) ⊢t) (sym (subset* D)) ,
CastRed*TermΠ′ ⊢F ⊢G ⊢e ⊢t D ]]
IdURed*Term′ : ∀ {Γ t t′ u}
(⊢t : Γ ⊢ t ∷ U ⁰ ^ [ ! , ι ¹ ])
(⊢t′ : Γ ⊢ t′ ∷ U ⁰ ^ [ ! , ι ¹ ])
(d : Γ ⊢ t ⇒* t′ ∷ U ⁰ ^ ι ¹)
(⊢u : Γ ⊢ u ∷ U ⁰ ^ [ ! , ι ¹ ])
→ Γ ⊢ Id (U ⁰) t u ⇒* Id (U ⁰) t′ u ∷ SProp ¹ ^ ∞
IdURed*Term′ ⊢t ⊢t′ (id x) ⊢u = id (Idⱼ (univ 0<1 (wfTerm ⊢t)) ⊢t ⊢u)
IdURed*Term′ ⊢t ⊢t′ (x ⇨ d) ⊢u = _⇨_ (Id-U-subst x ⊢u) (IdURed*Term′ (redFirst*Term d) ⊢t′ d ⊢u)
IdURed*Term : ∀ {Γ t t′ u}
(d : Γ ⊢ t :⇒*: t′ ∷ U ⁰ ^ ι ¹)
(⊢u : Γ ⊢ u ∷ U ⁰ ^ [ ! , ι ¹ ])
→ Γ ⊢ Id (U ⁰) t u :⇒*: Id (U ⁰) t′ u ∷ SProp ¹ ^ ∞
IdURed*Term [[ ⊢t , ⊢t′ , d ]] ⊢u = [[ Idⱼ (univ 0<1 (wfTerm ⊢u)) ⊢t ⊢u , Idⱼ (univ 0<1 (wfTerm ⊢u)) ⊢t′ ⊢u , IdURed*Term′ ⊢t ⊢t′ d ⊢u ]]
IdUΠRed*Term′ : ∀ {Γ F rF G t t′}
(⊢F : Γ ⊢ F ∷ Univ rF ⁰ ^ [ ! , ι ¹ ])
(⊢G : Γ ∙ F ^ [ rF , ι ⁰ ] ⊢ G ∷ U ⁰ ^ [ ! , ι ¹ ])
(⊢t : Γ ⊢ t ∷ U ⁰ ^ [ ! , ι ¹ ])
(⊢t′ : Γ ⊢ t′ ∷ U ⁰ ^ [ ! , ι ¹ ])
(d : Γ ⊢ t ⇒* t′ ∷ U ⁰ ^ ι ¹)
→ Γ ⊢ Id (U ⁰) (Π F ^ rF ° ⁰ ▹ G ° ⁰ ° ⁰) t ⇒* Id (U ⁰) (Π F ^ rF ° ⁰ ▹ G ° ⁰ ° ⁰) t′ ∷ SProp ¹ ^ ∞
IdUΠRed*Term′ ⊢F ⊢G ⊢t ⊢t′ (id x) = id (Idⱼ (univ 0<1 (wfTerm ⊢t)) (Πⱼ ≡is≤ PE.refl ▹ ≡is≤ PE.refl ▹ ⊢F ▹ ⊢G) ⊢t)
IdUΠRed*Term′ ⊢F ⊢G ⊢t ⊢t′ (x ⇨ d) = _⇨_ (Id-U-Π-subst ⊢F ⊢G x) (IdUΠRed*Term′ ⊢F ⊢G (redFirst*Term d) ⊢t′ d)
IdUΠRed*Term : ∀ {Γ F rF G t t′}
(⊢F : Γ ⊢ F ∷ Univ rF ⁰ ^ [ ! , ι ¹ ])
(⊢G : Γ ∙ F ^ [ rF , ι ⁰ ] ⊢ G ∷ U ⁰ ^ [ ! , ι ¹ ])
(d : Γ ⊢ t :⇒*: t′ ∷ U ⁰ ^ ι ¹)
→ Γ ⊢ Id (U ⁰) (Π F ^ rF ° ⁰ ▹ G ° ⁰ ° ⁰) t :⇒*: Id (U ⁰) (Π F ^ rF ° ⁰ ▹ G ° ⁰ ° ⁰) t′ ∷ SProp ¹ ^ ∞
IdUΠRed*Term ⊢F ⊢G [[ ⊢t , ⊢t′ , d ]] = [[ Idⱼ (univ 0<1 (wfTerm ⊢t)) (Πⱼ ≡is≤ PE.refl ▹ ≡is≤ PE.refl ▹ ⊢F ▹ ⊢G) ⊢t ,
Idⱼ (univ 0<1 (wfTerm ⊢t)) (Πⱼ ≡is≤ PE.refl ▹ ≡is≤ PE.refl ▹ ⊢F ▹ ⊢G) ⊢t′ ,
IdUΠRed*Term′ ⊢F ⊢G ⊢t ⊢t′ d ]]
IdℕRed*Term′ : ∀ {Γ t t′ u}
(⊢t : Γ ⊢ t ∷ ℕ ^ [ ! , ι ⁰ ])
(⊢t′ : Γ ⊢ t′ ∷ ℕ ^ [ ! , ι ⁰ ])
(d : Γ ⊢ t ⇒* t′ ∷ ℕ ^ ι ⁰)
(⊢u : Γ ⊢ u ∷ ℕ ^ [ ! , ι ⁰ ])
→ Γ ⊢ Id ℕ t u ⇒* Id ℕ t′ u ∷ SProp ⁰ ^ next ⁰
IdℕRed*Term′ ⊢t ⊢t′ (id x) ⊢u = id (Idⱼ (ℕⱼ (wfTerm ⊢u)) ⊢t ⊢u)
IdℕRed*Term′ ⊢t ⊢t′ (x ⇨ d) ⊢u = _⇨_ (Id-ℕ-subst x ⊢u) (IdℕRed*Term′ (redFirst*Term d) ⊢t′ d ⊢u)
Idℕ0Red*Term′ : ∀ {Γ t t′}
(⊢t : Γ ⊢ t ∷ ℕ ^ [ ! , ι ⁰ ])
(⊢t′ : Γ ⊢ t′ ∷ ℕ ^ [ ! , ι ⁰ ])
(d : Γ ⊢ t ⇒* t′ ∷ ℕ ^ ι ⁰)
→ Γ ⊢ Id ℕ zero t ⇒* Id ℕ zero t′ ∷ SProp ⁰ ^ next ⁰
Idℕ0Red*Term′ ⊢t ⊢t′ (id x) = id (Idⱼ (ℕⱼ (wfTerm ⊢t)) (zeroⱼ (wfTerm ⊢t)) ⊢t)
Idℕ0Red*Term′ ⊢t ⊢t′ (x ⇨ d) = Id-ℕ-0-subst x ⇨ Idℕ0Red*Term′ (redFirst*Term d) ⊢t′ d
IdℕSRed*Term′ : ∀ {Γ t u u′}
(⊢t : Γ ⊢ t ∷ ℕ ^ [ ! , ι ⁰ ])
(⊢u : Γ ⊢ u ∷ ℕ ^ [ ! , ι ⁰ ])
(⊢u′ : Γ ⊢ u′ ∷ ℕ ^ [ ! , ι ⁰ ])
(d : Γ ⊢ u ⇒* u′ ∷ ℕ ^ ι ⁰)
→ Γ ⊢ Id ℕ (suc t) u ⇒* Id ℕ (suc t) u′ ∷ SProp ⁰ ^ next ⁰
IdℕSRed*Term′ ⊢t ⊢u ⊢u′ (id x) = id (Idⱼ (ℕⱼ (wfTerm ⊢t)) (sucⱼ ⊢t) ⊢u)
IdℕSRed*Term′ ⊢t ⊢u ⊢u′ (x ⇨ d) = Id-ℕ-S-subst ⊢t x ⇨ IdℕSRed*Term′ ⊢t (redFirst*Term d) ⊢u′ d
IdUℕRed*Term′ : ∀ {Γ t t′}
(⊢t : Γ ⊢ t ∷ U ⁰ ^ [ ! , ι ¹ ])
(⊢t′ : Γ ⊢ t′ ∷ U ⁰ ^ [ ! , ι ¹ ])
(d : Γ ⊢ t ⇒* t′ ∷ U ⁰ ^ ι ¹)
→ Γ ⊢ Id (U ⁰) ℕ t ⇒* Id (U ⁰) ℕ t′ ∷ SProp ¹ ^ ∞
IdUℕRed*Term′ ⊢t ⊢t′ (id x) = id (Idⱼ (univ 0<1 (wfTerm ⊢t)) (ℕⱼ (wfTerm ⊢t) ) ⊢t)
IdUℕRed*Term′ ⊢t ⊢t′ (x ⇨ d) = _⇨_ (Id-U-ℕ-subst x) (IdUℕRed*Term′ (redFirst*Term d) ⊢t′ d)
IdUℕRed*Term : ∀ {Γ t t′}
(d : Γ ⊢ t :⇒*: t′ ∷ U ⁰ ^ ι ¹)
→ Γ ⊢ Id (U ⁰) ℕ t :⇒*: Id (U ⁰) ℕ t′ ∷ SProp ¹ ^ ∞
IdUℕRed*Term [[ ⊢t , ⊢t′ , d ]] = [[ Idⱼ (univ 0<1 (wfTerm ⊢t)) (ℕⱼ (wfTerm ⊢t) ) ⊢t ,
Idⱼ (univ 0<1 (wfTerm ⊢t)) (ℕⱼ (wfTerm ⊢t) ) ⊢t′ ,
IdUℕRed*Term′ ⊢t ⊢t′ d ]]
appRed* : ∀ {Γ a t u A B rA lA lB l}
(⊢a : Γ ⊢ a ∷ A ^ [ rA , ι lA ])
(D : Γ ⊢ t ⇒* u ∷ (Π A ^ rA ° lA ▹ B ° lB ° l) ^ ι l)
→ Γ ⊢ t ∘ a ^ l ⇒* u ∘ a ^ l ∷ B [ a ] ^ ι lB
appRed* ⊢a (id x) = id (x ∘ⱼ ⊢a)
appRed* ⊢a (x ⇨ D) = app-subst x ⊢a ⇨ appRed* ⊢a D
castΠRed* : ∀ {Γ F rF G A B e t}
(⊢F : Γ ⊢ F ^ [ rF , ι ⁰ ])
(⊢G : Γ ∙ F ^ [ rF , ι ⁰ ] ⊢ G ^ [ ! , ι ⁰ ])
(⊢e : Γ ⊢ e ∷ Id (U ⁰) (Π F ^ rF ° ⁰ ▹ G ° ⁰ ° ⁰) A ^ [ % , next ⁰ ])
(⊢t : Γ ⊢ t ∷ Π F ^ rF ° ⁰ ▹ G ° ⁰ ° ⁰ ^ [ ! , ι ⁰ ])
(D : Γ ⊢ A ⇒* B ^ [ ! , ι ⁰ ])
→ Γ ⊢ cast ⁰ (Π F ^ rF ° ⁰ ▹ G ° ⁰ ° ⁰) A e t ⇒* cast ⁰ (Π F ^ rF ° ⁰ ▹ G ° ⁰ ° ⁰) B e t ∷ A ^ ι ⁰
castΠRed* ⊢F ⊢G ⊢e ⊢t (id (univ ⊢A)) = id (castⱼ (Πⱼ ≡is≤ PE.refl ▹ ≡is≤ PE.refl ▹ un-univ ⊢F ▹ un-univ ⊢G) ⊢A ⊢e ⊢t)
castΠRed* ⊢F ⊢G ⊢e ⊢t ((univ d) ⇨ D) = cast-Π-subst (un-univ ⊢F) (un-univ ⊢G) d ⊢e ⊢t ⇨ conv* (castΠRed* ⊢F ⊢G (conv ⊢e (univ (Id-cong (refl (univ 0<1 (wf ⊢F))) (refl (Πⱼ ≡is≤ PE.refl ▹ ≡is≤ PE.refl ▹ un-univ ⊢F ▹ un-univ ⊢G)) (subsetTerm d)))) ⊢t D) (sym (subset (univ d)))
notredUterm* : ∀ {Γ r l l' A B} → Γ ⊢ Univ r l ⇒ A ∷ B ^ l' → ⊥
notredUterm* (conv D x) = notredUterm* D
notredU* : ∀ {Γ r l l' A} → Γ ⊢ Univ r l ⇒ A ^ [ ! , l' ] → ⊥
notredU* (univ x) = notredUterm* x
redU*gen : ∀ {Γ r l r' l' l''} → Γ ⊢ Univ r l ⇒* Univ r' l' ^ [ ! , l'' ] → Univ r l PE.≡ Univ r' l'
redU*gen (id x) = PE.refl
redU*gen (univ (conv x x₁) ⇨ D) = ⊥-elim (notredUterm* x)
-- Typing of Idsym
Idsymⱼ : ∀ {Γ A l x y e}
→ Γ ⊢ A ∷ U l ^ [ ! , next l ]
→ Γ ⊢ x ∷ A ^ [ ! , ι l ]
→ Γ ⊢ y ∷ A ^ [ ! , ι l ]
→ Γ ⊢ e ∷ Id A x y ^ [ % , ι l ]
→ Γ ⊢ Idsym A x y e ∷ Id A y x ^ [ % , ι l ]
Idsymⱼ {Γ} {A} {l} {x} {y} {e} ⊢A ⊢x ⊢y ⊢e =
let
⊢Γ = wfTerm ⊢A
⊢A = univ ⊢A
⊢P : Γ ∙ A ^ [ ! , ι l ] ⊢ Id (wk1 A) (var 0) (wk1 x) ^ [ % , ι l ]
⊢P = univ (Idⱼ (Twk.wkTerm (Twk.step Twk.id) (⊢Γ ∙ ⊢A) (un-univ ⊢A))
(var (⊢Γ ∙ ⊢A) here)
(Twk.wkTerm (Twk.step Twk.id) (⊢Γ ∙ ⊢A) ⊢x))
⊢refl : Γ ⊢ Idrefl A x ∷ Id (wk1 A) (var 0) (wk1 x) [ x ] ^ [ % , ι l ]
⊢refl = PE.subst₂ (λ X Y → Γ ⊢ Idrefl A x ∷ Id X x Y ^ [ % , ι l ])
(PE.sym (wk1-singleSubst A x)) (PE.sym (wk1-singleSubst x x))
(Idreflⱼ ⊢x)
in PE.subst₂ (λ X Y → Γ ⊢ Idsym A x y e ∷ Id X y Y ^ [ % , ι l ])
(wk1-singleSubst A y) (wk1-singleSubst x y)
(transpⱼ ⊢A ⊢P ⊢x ⊢refl ⊢y ⊢e)
▹▹ⱼ_▹_▹_▹_ : ∀ {Γ F rF lF G lG r l}
→ lF ≤ l
→ lG ≤ l
→ Γ ⊢ F ∷ (Univ rF lF) ^ [ ! , next lF ]
→ Γ ⊢ G ∷ (Univ r lG) ^ [ ! , next lG ]
→ Γ ⊢ F ^ rF ° lF ▹▹ G ° lG ° l ∷ (Univ r l) ^ [ ! , next l ]
▹▹ⱼ lF≤ ▹ lG≤ ▹ F ▹ G = Πⱼ lF≤ ▹ lG≤ ▹ F ▹ un-univ (Twk.wk (Twk.step Twk.id) ((wf (univ F)) ∙ (univ F)) (univ G))
××ⱼ_▹_ : ∀ {Γ F G l}
→ Γ ⊢ F ∷ SProp l ^ [ ! , next l ]
→ Γ ⊢ G ∷ SProp l ^ [ ! , next l ]
→ Γ ⊢ F ×× G ∷ SProp l ^ [ ! , next l ]
××ⱼ F ▹ G = ∃ⱼ F ▹ un-univ (Twk.wk (Twk.step Twk.id) ((wf (univ F)) ∙ (univ F)) (univ G))
| {
"alphanum_fraction": 0.5354363371,
"avg_line_length": 51.9241025641,
"ext": "agda",
"hexsha": "eeb89c57be3ffa5a777055bfafcaea9f8a76daae",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z",
"max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "CoqHott/logrel-mltt",
"max_forks_repo_path": "Definition/Typed/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "CoqHott/logrel-mltt",
"max_issues_repo_path": "Definition/Typed/Properties.agda",
"max_line_length": 274,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "CoqHott/logrel-mltt",
"max_stars_repo_path": "Definition/Typed/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z",
"num_tokens": 27829,
"size": 50626
} |
{-# OPTIONS --cubical --safe #-}
module Data.Nat.Properties where
open import Data.Nat.Base
open import Agda.Builtin.Nat using () renaming (_<_ to _<ᴮ_; _==_ to _≡ᴮ_) public
open import Prelude
open import Cubical.Data.Nat using (caseNat; injSuc) public
open import Data.Nat.DivMod
mutual
_-1⊔_ : ℕ → ℕ → ℕ
zero -1⊔ n = n
suc m -1⊔ n = n ⊔ m
_⊔_ : ℕ → ℕ → ℕ
zero ⊔ m = m
suc n ⊔ m = suc (m -1⊔ n)
znots : ∀ {n} → zero ≢ suc n
znots z≡s = subst (caseNat ⊤ ⊥) z≡s tt
snotz : ∀ {n} → suc n ≢ zero
snotz s≡z = subst (caseNat ⊥ ⊤) s≡z tt
pred : ℕ → ℕ
pred (suc n) = n
pred zero = zero
sound-== : ∀ n m → T (n ≡ᴮ m) → n ≡ m
sound-== zero zero p i = zero
sound-== (suc n) (suc m) p i = suc (sound-== n m p i)
complete-== : ∀ n → T (n ≡ᴮ n)
complete-== zero = tt
complete-== (suc n) = complete-== n
open import Relation.Nullary.Discrete.FromBoolean
discreteℕ : Discrete ℕ
discreteℕ = from-bool-eq _≡ᴮ_ sound-== complete-==
isSetℕ : isSet ℕ
isSetℕ = Discrete→isSet discreteℕ
+-suc : ∀ x y → x + suc y ≡ suc (x + y)
+-suc zero y = refl
+-suc (suc x) y = cong suc (+-suc x y)
+-idʳ : ∀ x → x + 0 ≡ x
+-idʳ zero = refl
+-idʳ (suc x) = cong suc (+-idʳ x)
+-comm : ∀ x y → x + y ≡ y + x
+-comm x zero = +-idʳ x
+-comm x (suc y) = +-suc x y ; cong suc (+-comm x y)
infix 4 _<_
_<_ : ℕ → ℕ → Type
n < m = T (n <ᴮ m)
infix 4 _≤ᴮ_
_≤ᴮ_ : ℕ → ℕ → Bool
n ≤ᴮ m = not (m <ᴮ n)
infix 4 _≤_
_≤_ : ℕ → ℕ → Type
n ≤ m = T (n ≤ᴮ m)
infix 4 _≥ᴮ_
_≥ᴮ_ : ℕ → ℕ → Bool
_≥ᴮ_ = flip _≤ᴮ_
+-assoc : ∀ x y z → (x + y) + z ≡ x + (y + z)
+-assoc zero y z i = y + z
+-assoc (suc x) y z i = suc (+-assoc x y z i)
+-*-distrib : ∀ x y z → (x + y) * z ≡ x * z + y * z
+-*-distrib zero y z = refl
+-*-distrib (suc x) y z = cong (z +_) (+-*-distrib x y z) ; sym (+-assoc z (x * z) (y * z))
*-zeroʳ : ∀ x → x * zero ≡ zero
*-zeroʳ zero = refl
*-zeroʳ (suc x) = *-zeroʳ x
*-suc : ∀ x y → x + x * y ≡ x * suc y
*-suc zero y = refl
*-suc (suc x) y = cong suc (sym (+-assoc x y (x * y)) ; cong (_+ x * y) (+-comm x y) ; +-assoc y x (x * y) ; cong (y +_) (*-suc x y))
*-comm : ∀ x y → x * y ≡ y * x
*-comm zero y = sym (*-zeroʳ y)
*-comm (suc x) y = cong (y +_) (*-comm x y) ; *-suc y x
*-assoc : ∀ x y z → (x * y) * z ≡ x * (y * z)
*-assoc zero y z = refl
*-assoc (suc x) y z = +-*-distrib y (x * y) z ; cong (y * z +_) (*-assoc x y z)
open import Data.Nat.DivMod
open import Agda.Builtin.Nat using (div-helper)
div-helper′ : (m n j : ℕ) → ℕ
div-helper′ m zero j = zero
div-helper′ m (suc n) zero = suc (div-helper′ m n m)
div-helper′ m (suc n) (suc j) = div-helper′ m n j
div-helper-lemma : ∀ k m n j → div-helper k m n j ≡ k + div-helper′ m n j
div-helper-lemma k m zero j = sym (+-idʳ k)
div-helper-lemma k m (suc n) zero = div-helper-lemma (suc k) m n m ; sym (+-suc k (div-helper′ m n m))
div-helper-lemma k m (suc n) (suc j) = div-helper-lemma k m n j
Even : ℕ → Type
Even n = T (even n)
odd : ℕ → Bool
odd n = not (rem n 2 ≡ᴮ 0)
Odd : ℕ → Type
Odd n = T (odd n)
s≤s : ∀ n m → n ≤ m → suc n ≤ suc m
s≤s zero m p = tt
s≤s (suc n) m p = p
n≤s : ∀ n m → n ≤ m → n ≤ suc m
n≤s zero m p = tt
n≤s (suc zero) m p = tt
n≤s (suc (suc n)) zero p = p
n≤s (suc (suc n₁)) (suc n) p = n≤s (suc n₁) n p
div-≤ : ∀ n m → n ÷ suc m ≤ n
div-≤ n m = subst (_≤ n) (sym (div-helper-lemma 0 m n m)) (go m n m)
where
go : ∀ m n j → div-helper′ m n j ≤ n
go m zero j = tt
go m (suc n) zero = s≤s (div-helper′ m n m) n (go m n m)
go m (suc n) (suc j) = n≤s (div-helper′ m n j) n (go m n j)
≤-trans : ∀ x y z → x ≤ y → y ≤ z → x ≤ z
≤-trans zero y z p q = tt
≤-trans (suc n) zero zero p q = p
≤-trans (suc zero) zero (suc n) p q = tt
≤-trans (suc (suc n₁)) zero (suc n) p q = ≤-trans (suc n₁) zero n p tt
≤-trans (suc n) (suc zero) zero p q = q
≤-trans (suc zero) (suc zero) (suc n) p q = tt
≤-trans (suc (suc n₁)) (suc zero) (suc n) p q = ≤-trans (suc n₁) zero n p tt
≤-trans (suc n₁) (suc (suc n)) zero p q = q
≤-trans (suc zero) (suc (suc n₁)) (suc n) p q = tt
≤-trans (suc (suc n₁)) (suc (suc n₂)) (suc n) p q = ≤-trans (suc n₁) (suc n₂) n p q
p≤n : ∀ n m → suc n ≤ m → n ≤ m
p≤n zero m p = tt
p≤n (suc n) zero p = p
p≤n (suc zero) (suc n) p = tt
p≤n (suc (suc n₁)) (suc n) p = p≤n (suc n₁) n p
p≤p : ∀ n m → suc n ≤ suc m → n ≤ m
p≤p zero m p = tt
p≤p (suc n) m p = p
≤-refl : ∀ n → n ≤ n
≤-refl zero = tt
≤-refl (suc zero) = tt
≤-refl (suc (suc n)) = ≤-refl (suc n)
linearise : ∀ n m → n ≡ m → n ≡ m
linearise n m n≡m with discreteℕ n m
... | yes p = p
... | no ¬p = ⊥-elim (¬p n≡m)
| {
"alphanum_fraction": 0.526362428,
"avg_line_length": 26.7100591716,
"ext": "agda",
"hexsha": "ae0c435a0ee9203e7c736708cc2505b597b8c6b6",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Data/Nat/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Data/Nat/Properties.agda",
"max_line_length": 133,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Data/Nat/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 2192,
"size": 4514
} |
------------------------------------------------------------------------
-- Paths and extensionality
------------------------------------------------------------------------
{-# OPTIONS --erased-cubical --safe #-}
module Equality.Path where
import Bijection
open import Equality hiding (module Derived-definitions-and-properties)
open import Equality.Instances-related
import Equivalence
import Equivalence.Contractible-preimages
import Equivalence.Half-adjoint
import Function-universe
import H-level
import H-level.Closure
open import Logical-equivalence using (_⇔_)
import Preimage
open import Prelude
import Univalence-axiom
------------------------------------------------------------------------
-- The interval
open import Agda.Primitive.Cubical public
using (I; Partial; PartialP)
renaming (i0 to 0̲; i1 to 1̲;
IsOne to Is-one; itIsOne to is-one;
primINeg to -_; primIMin to min; primIMax to max;
primComp to comp; primHComp to hcomp;
primTransp to transport)
open import Agda.Builtin.Cubical.Sub public
renaming (Sub to _[_↦_]; inc to inˢ; primSubOut to outˢ)
------------------------------------------------------------------------
-- Some local generalisable variables
private
variable
a b c p q ℓ : Level
A : Type a
B : A → Type b
P : I → Type p
u v w x y z : A
f g h : (x : A) → B x
i j : I
n : ℕ
------------------------------------------------------------------------
-- Equality
-- Homogeneous and heterogeneous equality.
open import Agda.Builtin.Cubical.Path public
using (_≡_)
renaming (PathP to infix 4 [_]_≡_)
------------------------------------------------------------------------
-- Filling
-- The code in this section is based on code in the cubical library
-- written by Anders Mörtberg.
-- Filling for homogenous composition.
hfill :
{φ : I} (u : I → Partial φ A) (u₀ : A [ φ ↦ u 0̲ ]) →
outˢ u₀ ≡ hcomp u (outˢ u₀)
hfill {φ = φ} u u₀ = λ i →
hcomp (λ j → λ { (φ = 1̲) → u (min i j) is-one
; (i = 0̲) → outˢ u₀
})
(outˢ u₀)
-- Filling for heterogeneous composition.
--
-- Note that if p had been a constant level, then the final line of
-- the type signature could have been replaced by
-- [ P ] outˢ u₀ ≡ comp P u u₀.
fill :
{p : I → Level}
(P : ∀ i → Type (p i)) {φ : I}
(u : ∀ i → Partial φ (P i))
(u₀ : P 0̲ [ φ ↦ u 0̲ ]) →
∀ i → P i
fill P {φ} u u₀ i =
comp (λ j → P (min i j))
(λ j → λ { (φ = 1̲) → u (min i j) is-one
; (i = 0̲) → outˢ u₀
})
(outˢ u₀)
-- Filling for transport.
transport-fill :
(A : Type ℓ)
(φ : I)
(P : (i : I) → Type ℓ [ φ ↦ (λ _ → A) ])
(u₀ : outˢ (P 0̲)) →
[ (λ i → outˢ (P i)) ]
u₀ ≡ transport (λ i → outˢ (P i)) φ u₀
transport-fill _ φ P u₀ i =
transport (λ j → outˢ (P (min i j))) (max (- i) φ) u₀
------------------------------------------------------------------------
-- Path equality satisfies the axioms of Equality-with-J
-- Reflexivity.
refl : {@0 A : Type a} {x : A} → x ≡ x
refl {x = x} = λ _ → x
-- A family of instantiations of Reflexive-relation.
reflexive-relation : ∀ ℓ → Reflexive-relation ℓ
Reflexive-relation._≡_ (reflexive-relation _) = _≡_
Reflexive-relation.refl (reflexive-relation _) = λ _ → refl
-- Symmetry.
hsym : [ P ] x ≡ y → [ (λ i → P (- i)) ] y ≡ x
hsym x≡y = λ i → x≡y (- i)
-- Transitivity.
--
-- The proof htransʳ-reflʳ is based on code in Agda's reference manual
-- written by Anders Mörtberg.
--
-- The proof htrans is suggested in the HoTT book (first version,
-- Exercise 6.1).
htransʳ : [ P ] x ≡ y → y ≡ z → [ P ] x ≡ z
htransʳ {x = x} x≡y y≡z = λ i →
hcomp (λ { _ (i = 0̲) → x
; j (i = 1̲) → y≡z j
})
(x≡y i)
htransˡ : x ≡ y → [ P ] y ≡ z → [ P ] x ≡ z
htransˡ x≡y y≡z = hsym (htransʳ (hsym y≡z) (hsym x≡y))
htransʳ-reflʳ : (x≡y : [ P ] x ≡ y) → htransʳ x≡y refl ≡ x≡y
htransʳ-reflʳ {x = x} {y = y} x≡y = λ i j →
hfill (λ { _ (j = 0̲) → x
; _ (j = 1̲) → y
})
(inˢ (x≡y j))
(- i)
htransˡ-reflˡ : (x≡y : [ P ] x ≡ y) → htransˡ refl x≡y ≡ x≡y
htransˡ-reflˡ = htransʳ-reflʳ
htrans :
{x≡y : x ≡ y} {y≡z : y ≡ z}
(P : A → Type p) {p : P x} {q : P y} {r : P z} →
[ (λ i → P (x≡y i)) ] p ≡ q →
[ (λ i → P (y≡z i)) ] q ≡ r →
[ (λ i → P (htransˡ x≡y y≡z i)) ] p ≡ r
htrans {z = z} {x≡y = x≡y} {y≡z = y≡z} P {r = r} p≡q q≡r = λ i →
comp (λ j → P (eq j i))
(λ { j (i = 0̲) → p≡q (- j)
; j (i = 1̲) → r
})
(q≡r i)
where
eq : [ (λ i → x≡y (- i) ≡ z) ] y≡z ≡ htransˡ x≡y y≡z
eq = λ i j →
hfill (λ { i (j = 0̲) → x≡y (- i)
; _ (j = 1̲) → z
})
(inˢ (y≡z j))
i
-- Some equational reasoning combinators.
infix -1 finally finally-h
infixr -2 step-≡ step-≡h step-≡hh _≡⟨⟩_
step-≡ : ∀ x → [ P ] y ≡ z → x ≡ y → [ P ] x ≡ z
step-≡ _ = flip htransˡ
syntax step-≡ x y≡z x≡y = x ≡⟨ x≡y ⟩ y≡z
step-≡h : ∀ x → y ≡ z → [ P ] x ≡ y → [ P ] x ≡ z
step-≡h _ = flip htransʳ
syntax step-≡h x y≡z x≡y = x ≡⟨ x≡y ⟩h y≡z
step-≡hh :
{x≡y : x ≡ y} {y≡z : y ≡ z}
(P : A → Type p) (p : P x) {q : P y} {r : P z} →
[ (λ i → P (y≡z i)) ] q ≡ r →
[ (λ i → P (x≡y i)) ] p ≡ q →
[ (λ i → P (htransˡ x≡y y≡z i)) ] p ≡ r
step-≡hh P _ = flip (htrans P)
syntax step-≡hh P p q≡r p≡q = p ≡⟨ p≡q ⟩[ P ] q≡r
_≡⟨⟩_ : ∀ x → [ P ] x ≡ y → [ P ] x ≡ y
_ ≡⟨⟩ x≡y = x≡y
finally : (x y : A) → x ≡ y → x ≡ y
finally _ _ x≡y = x≡y
syntax finally x y x≡y = x ≡⟨ x≡y ⟩∎ y ∎
finally-h : ∀ x y → [ P ] x ≡ y → [ P ] x ≡ y
finally-h _ _ x≡y = x≡y
syntax finally-h x y x≡y = x ≡⟨ x≡y ⟩∎h y ∎
-- The J rule.
elim :
(P : {x y : A} → x ≡ y → Type p) →
(∀ x → P (refl {x = x})) →
(x≡y : x ≡ y) → P x≡y
elim {x = x} P p x≡y =
transport (λ i → P (λ j → x≡y (min i j))) 0̲ (p x)
-- Substitutivity.
hsubst :
∀ (Q : ∀ {i} → P i → Type q) →
[ P ] x ≡ y → Q x → Q y
hsubst Q x≡y p = transport (λ i → Q (x≡y i)) 0̲ p
subst : (P : A → Type p) → x ≡ y → P x → P y
subst P = hsubst P
-- Congruence.
--
-- The heterogeneous variant is based on code in the cubical library
-- written by Anders Mörtberg.
hcong :
(f : (x : A) → B x) (x≡y : x ≡ y) →
[ (λ i → B (x≡y i)) ] f x ≡ f y
hcong f x≡y = λ i → f (x≡y i)
cong : {B : Type b} (f : A → B) → x ≡ y → f x ≡ f y
cong f = hcong f
dcong :
(f : (x : A) → B x) (x≡y : x ≡ y) →
subst B x≡y (f x) ≡ f y
dcong {B = B} f x≡y = λ i →
transport (λ j → B (x≡y (max i j))) i (f (x≡y i))
-- Transporting along reflexivity amounts to doing nothing.
--
-- This definition is based on code in Agda's reference manual written
-- by Anders Mörtberg.
transport-refl : ∀ i → transport (λ i → refl {x = A} i) i ≡ id
transport-refl {A = A} i = λ j → transport (λ _ → A) (max i j)
-- A family of instantiations of Equivalence-relation⁺.
--
-- Note that htransˡ is used to implement trans. The reason htransˡ is
-- used, rather than htransʳ, is that htransˡ is also used to
-- implement the commonly used equational reasoning combinator step-≡,
-- and I'd like this combinator to match trans.
equivalence-relation⁺ : ∀ ℓ → Equivalence-relation⁺ ℓ
equivalence-relation⁺ _ = λ where
.Equivalence-relation⁺.reflexive-relation → reflexive-relation _
.Equivalence-relation⁺.sym → hsym
.Equivalence-relation⁺.sym-refl → refl
.Equivalence-relation⁺.trans → htransˡ
.Equivalence-relation⁺.trans-refl-refl → htransˡ-reflˡ _
-- A family of instantiations of Equality-with-J₀.
equality-with-J₀ : Equality-with-J₀ a p reflexive-relation
Equality-with-J₀.elim equality-with-J₀ = elim
Equality-with-J₀.elim-refl equality-with-J₀ = λ _ r →
cong (_$ r _) $ transport-refl 0̲
private
module Temporarily-local where
-- A family of instantiations of Equality-with-J.
equality-with-J : Equality-with-J a p equivalence-relation⁺
equality-with-J = λ where
.Equality-with-J.equality-with-J₀ → equality-with-J₀
.Equality-with-J.cong → cong
.Equality-with-J.cong-refl → λ _ → refl
.Equality-with-J.subst → subst
.Equality-with-J.subst-refl → λ _ p →
cong (_$ p) $ transport-refl 0̲
.Equality-with-J.dcong → dcong
.Equality-with-J.dcong-refl → λ _ → refl
-- Various derived definitions and properties.
open Equality.Derived-definitions-and-properties
Temporarily-local.equality-with-J public
hiding (_≡_; refl; elim; subst; cong; dcong;
step-≡; _≡⟨⟩_; finally;
reflexive-relation; equality-with-J₀)
------------------------------------------------------------------------
-- An extended variant of Equality-with-J
-- The following variant of Equality-with-J includes functions mapping
-- equalities to and from paths. The purpose of this definition is to
-- make it possible to instantiate these functions with identity
-- functions when paths are used as equalities (see
-- equality-with-paths below).
record Equality-with-paths
a b (e⁺ : ∀ ℓ → Equivalence-relation⁺ ℓ) :
Type (lsuc (a ⊔ b)) where
field
equality-with-J : Equality-with-J a b e⁺
private
module R =
Reflexive-relation
(Equivalence-relation⁺.reflexive-relation (e⁺ a))
field
-- A bijection between equality at level a and paths.
to-path : x R.≡ y → x ≡ y
from-path : x ≡ y → x R.≡ y
to-path∘from-path : (x≡y : x ≡ y) → to-path (from-path x≡y) R.≡ x≡y
from-path∘to-path :
(x≡y : x R.≡ y) → from-path (to-path x≡y) R.≡ x≡y
-- The bijection maps reflexivity to reflexivity.
to-path-refl : to-path (R.refl x) R.≡ refl
from-path-refl : from-path refl R.≡ R.refl x
-- A family of instantiations of Equality-with-paths.
equality-with-paths :
Equality-with-paths a p equivalence-relation⁺
equality-with-paths = λ where
.E.equality-with-J → Temporarily-local.equality-with-J
.E.to-path → id
.E.from-path → id
.E.to-path∘from-path → λ _ → refl
.E.from-path∘to-path → λ _ → refl
.E.to-path-refl → refl
.E.from-path-refl → refl
where
module E = Equality-with-paths
-- Equality-with-paths (for arbitrary universe levels) can be derived
-- from Equality-with-J (for arbitrary universe levels).
Equality-with-J⇒Equality-with-paths :
∀ {e⁺} →
(∀ {a p} → Equality-with-J a p e⁺) →
(∀ {a p} → Equality-with-paths a p e⁺)
Equality-with-J⇒Equality-with-paths eq = λ where
.E.equality-with-J → eq
.E.to-path → B._↔_.to (proj₁ ≡↔≡′)
.E.from-path → B._↔_.from (proj₁ ≡↔≡′)
.E.to-path∘from-path → B._↔_.right-inverse-of (proj₁ ≡↔≡′)
.E.from-path∘to-path → B._↔_.left-inverse-of (proj₁ ≡↔≡′)
.E.to-path-refl → B._↔_.from (proj₁ ≡↔≡′) (proj₁ (proj₂ ≡↔≡′))
.E.from-path-refl → proj₂ (proj₂ ≡↔≡′)
where
module E = Equality-with-paths
module B = Bijection eq
≡↔≡′ =
all-equality-types-isomorphic eq Temporarily-local.equality-with-J
-- Equality-with-paths (for arbitrary universe levels) can be derived
-- from Equality-with-J₀ (for arbitrary universe levels).
Equality-with-J₀⇒Equality-with-paths :
∀ {reflexive} →
(eq : ∀ {a p} → Equality-with-J₀ a p reflexive) →
∀ {a p} → Equality-with-paths a p (λ _ → J₀⇒Equivalence-relation⁺ eq)
Equality-with-J₀⇒Equality-with-paths eq =
Equality-with-J⇒Equality-with-paths (J₀⇒J eq)
module Derived-definitions-and-properties
{e⁺}
(equality-with-paths : ∀ {a p} → Equality-with-paths a p e⁺)
where
private
module EP {a} {p} =
Equality-with-paths (equality-with-paths {a = a} {p = p})
open EP public using (equality-with-J)
private
module E =
Equality.Derived-definitions-and-properties
equality-with-J
open Bijection equality-with-J
≡↔≡ : {A : Type a} {x y : A} → x E.≡ y ↔ x ≡ y
≡↔≡ {a = a} = record
{ surjection = record
{ logical-equivalence = record
{ to = EP.to-path {p = a}
; from = EP.from-path
}
; right-inverse-of = EP.to-path∘from-path
}
; left-inverse-of = EP.from-path∘to-path
}
-- The isomorphism maps reflexivity to reflexivity.
to-≡↔≡-refl : _↔_.to ≡↔≡ (E.refl x) E.≡ refl
to-≡↔≡-refl = EP.to-path-refl
from-≡↔≡-refl : _↔_.from ≡↔≡ refl E.≡ E.refl x
from-≡↔≡-refl = EP.from-path-refl
open E public
open Temporarily-local public
------------------------------------------------------------------------
-- Extensionality
open Equivalence equality-with-J using (Is-equivalence)
open H-level.Closure equality-with-J using (ext⁻¹)
-- Extensionality.
ext : Extensionality a b
apply-ext ext f≡g = λ i x → f≡g x i
⟨ext⟩ : Extensionality′ A B
⟨ext⟩ = apply-ext ext
-- The function ⟨ext⟩ is an equivalence.
ext-is-equivalence : Is-equivalence {A = ∀ x → f x ≡ g x} ⟨ext⟩
ext-is-equivalence =
ext⁻¹
, (λ _ → refl)
, (λ _ → refl)
, (λ _ → refl)
private
-- Equality rearrangement lemmas for ⟨ext⟩. All of these lemmas hold
-- definitionally.
ext-refl : ⟨ext⟩ (λ x → refl {x = f x}) ≡ refl
ext-refl = refl
ext-const :
(x≡y : x ≡ y) →
⟨ext⟩ (const {B = A} x≡y) ≡ cong const x≡y
ext-const _ = refl
cong-ext :
(f≡g : ∀ x → f x ≡ g x) →
cong (_$ x) (⟨ext⟩ f≡g) ≡ f≡g x
cong-ext _ = refl
subst-ext :
∀ {p} (f≡g : ∀ x → f x ≡ g x) →
subst (λ f → B (f x)) (⟨ext⟩ f≡g) p ≡ subst B (f≡g x) p
subst-ext _ = refl
elim-ext :
{f g : (x : A) → B x}
(P : B x → B x → Type p)
(p : (y : B x) → P y y)
(f≡g : ∀ x → f x ≡ g x) →
elim (λ {f g} _ → P (f x) (g x)) (p ∘ (_$ x)) (⟨ext⟩ f≡g) ≡
elim (λ {x y} _ → P x y) p (f≡g x)
elim-ext _ _ _ = refl
-- I based the statements of the following three lemmas on code in
-- the Lean Homotopy Type Theory Library with Jakob von Raumer and
-- Floris van Doorn listed as authors. The file was claimed to have
-- been ported from the Coq HoTT library. (The third lemma has later
-- been generalised.)
ext-sym :
(f≡g : ∀ x → f x ≡ g x) →
⟨ext⟩ (sym ∘ f≡g) ≡ sym (⟨ext⟩ f≡g)
ext-sym _ = refl
ext-trans :
(f≡g : ∀ x → f x ≡ g x) (g≡h : ∀ x → g x ≡ h x) →
⟨ext⟩ (λ x → trans (f≡g x) (g≡h x)) ≡
trans (⟨ext⟩ f≡g) (⟨ext⟩ g≡h)
ext-trans _ _ = refl
cong-post-∘-ext :
{B : A → Type b} {C : A → Type c} {f g : (x : A) → B x}
{h : ∀ {x} → B x → C x}
(f≡g : ∀ x → f x ≡ g x) →
cong (h ∘_) (⟨ext⟩ f≡g) ≡ ⟨ext⟩ (cong h ∘ f≡g)
cong-post-∘-ext _ = refl
cong-pre-∘-ext :
{B : Type b} {C : B → Type c} {f g : (x : B) → C x} {h : A → B}
(f≡g : ∀ x → f x ≡ g x) →
cong (_∘ h) (⟨ext⟩ f≡g) ≡ ⟨ext⟩ (f≡g ∘ h)
cong-pre-∘-ext _ = refl
------------------------------------------------------------------------
-- Some properties
open Bijection equality-with-J using (_↔_)
open Function-universe equality-with-J hiding (id; _∘_)
open H-level equality-with-J
open Univalence-axiom equality-with-J
-- There is a dependent path from reflexivity for x to any dependent
-- path starting in x.
refl≡ :
(x≡y : [ P ] x ≡ y) →
[ (λ i → [ (λ j → P (min i j)) ] x ≡ x≡y i) ] refl {x = x} ≡ x≡y
refl≡ x≡y = λ i j → x≡y (min i j)
-- Transporting in one direction and then back amounts to doing
-- nothing.
transport∘transport :
∀ {p : I → Level} (P : ∀ i → Type (p i)) {p} →
transport (λ i → P (- i)) 0̲ (transport P 0̲ p) ≡ p
transport∘transport P {p} = hsym λ i →
comp (λ j → P (min i (- j)))
(λ j → λ { (i = 0̲) → p
; (i = 1̲) → transport (λ k → P (- min j k)) (- j)
(transport P 0̲ p)
})
(transport (λ j → P (min i j)) (- i) p)
-- One form of transporting can be expressed using trans and sym.
transport-≡ :
{p : x ≡ y} {q : u ≡ v} (r : x ≡ u) →
transport (λ i → p i ≡ q i) 0̲ r ≡
trans (sym p) (trans r q)
transport-≡ {x = x} {p = p} {q = q} r = elim¹
(λ p → transport (λ i → p i ≡ q i) 0̲ r ≡
trans (sym p) (trans r q))
(transport (λ i → x ≡ q i) 0̲ r ≡⟨⟩
subst (x ≡_) q r ≡⟨ sym trans-subst ⟩
trans r q ≡⟨ sym $ trans-reflˡ _ ⟩
trans refl (trans r q) ≡⟨⟩
trans (sym refl) (trans r q) ∎)
p
-- The function htrans {x≡y = x≡y} {y≡z = y≡z} (const A) is pointwise
-- equal to trans.
--
-- Andrea Vezzosi helped me with this proof.
htrans-const :
(x≡y : x ≡ y) (y≡z : y ≡ z) (p : u ≡ v) {q : v ≡ w} →
htrans {x≡y = x≡y} {y≡z = y≡z} (const A) p q ≡ trans p q
htrans-const {A = A} {w = w} _ _ p {q = q} =
(λ i → comp (λ _ → A) (s i) (q i)) ≡⟨⟩
(λ i →
hcomp (λ j x → transport (λ _ → A) j (s i j x))
(transport (λ _ → A) 0̲ (q i))) ≡⟨ (λ k i → hcomp (λ j x → cong (_$ s i j x) (transport-refl j) k)
(cong (_$ q i) (transport-refl 0̲) k)) ⟩∎
(λ i → hcomp (s i) (q i)) ∎
where
s : ∀ i j → Partial (max i (- i)) A
s i = λ where
j (i = 0̲) → p (- j)
_ (i = 1̲) → w
-- The following two lemmas are due to Anders Mörtberg.
--
-- Previously Andrea Vezzosi and I had each proved the second lemma in
-- much more convoluted ways (starting from a logical equivalence
-- proved by Anders; I had also gotten some useful hints from Andrea
-- for my proof).
-- Heterogeneous equality can be expressed in terms of homogeneous
-- equality.
heterogeneous≡homogeneous :
{P : I → Type p} {p : P 0̲} {q : P 1̲} →
([ P ] p ≡ q) ≡ (transport P 0̲ p ≡ q)
heterogeneous≡homogeneous {P = P} {p = p} {q = q} = λ i →
[ (λ j → P (max i j)) ] transport (λ j → P (min i j)) (- i) p ≡ q
-- A variant of the previous lemma.
heterogeneous↔homogeneous :
(P : I → Type p) {p : P 0̲} {q : P 1̲} →
([ P ] p ≡ q) ↔ transport P 0̲ p ≡ q
heterogeneous↔homogeneous P =
subst
([ P ] _ ≡ _ ↔_)
heterogeneous≡homogeneous
(Bijection.id equality-with-J)
-- The function dcong is pointwise equal to an expression involving
-- hcong.
dcong≡hcong :
{B : A → Type b} {x≡y : x ≡ y} (f : (x : A) → B x) →
dcong f x≡y ≡
_↔_.to (heterogeneous↔homogeneous (λ i → B (x≡y i))) (hcong f x≡y)
dcong≡hcong {B = B} {x≡y = x≡y} f = elim
(λ x≡y →
dcong f x≡y ≡
_↔_.to (heterogeneous↔homogeneous (λ i → B (x≡y i))) (hcong f x≡y))
(λ x →
dcong f (refl {x = x}) ≡⟨⟩
(λ i → transport (λ _ → B x) i (f x)) ≡⟨ (λ i → comp
(λ j → transport (λ _ → B x) (- j) (f x) ≡ f x)
(λ { j (i = 0̲) → (λ k → transport (λ _ → B x) (max k (- j)) (f x))
; j (i = 1̲) → transport
(λ k → transport (λ _ → B x) (- min k j) (f x) ≡ f x)
0̲ refl
})
(transport (λ _ → f x ≡ f x) (- i) refl)) ⟩
transport (λ i → transport (λ _ → B x) (- i) (f x) ≡ f x) 0̲ refl ≡⟨ cong (transport (λ i → transport (λ _ → B x) (- i) (f x) ≡ f x) 0̲ ∘
(_$ refl)) $ sym $
transport-refl 0̲ ⟩
transport (λ i → transport (λ _ → B x) (- i) (f x) ≡ f x) 0̲
(transport (λ _ → f x ≡ f x) 0̲ refl) ≡⟨⟩
_↔_.to (heterogeneous↔homogeneous (λ i → B (refl {x = x} i)))
(hcong f (refl {x = x})) ∎)
x≡y
-- A "computation" rule.
from-heterogeneous↔homogeneous-const-refl :
(B : A → Type b) {x : A} {y : B x} →
_↔_.from (heterogeneous↔homogeneous λ _ → B x) refl ≡
sym (subst-refl B y)
from-heterogeneous↔homogeneous-const-refl B {x = x} {y = y} =
transport (λ _ → y ≡ transport (λ _ → B x) 0̲ y) 0̲
(transport
(λ i → transport (λ _ → B x) i y ≡ transport (λ _ → B x) 0̲ y) 0̲
(λ _ → transport (λ _ → B x) 0̲ y)) ≡⟨ cong (_$ transport
(λ i → transport (λ _ → B x) i y ≡
transport (λ _ → B x) 0̲ y) 0̲
(λ _ → transport (λ _ → B x) 0̲ y)) $
transport-refl 0̲ ⟩
transport
(λ i → transport (λ _ → B x) i y ≡ transport (λ _ → B x) 0̲ y) 0̲
(λ _ → transport (λ _ → B x) 0̲ y) ≡⟨ transport-≡ (λ _ → transport (λ _ → B x) 0̲ y) ⟩
trans (λ i → transport (λ _ → B x) (- i) y)
(trans (λ _ → transport (λ _ → B x) 0̲ y)
(λ _ → transport (λ _ → B x) 0̲ y)) ≡⟨ cong (trans (λ i → transport (λ _ → B x) (- i) y)) $
trans-symʳ (λ _ → transport (λ _ → B x) 0̲ y) ⟩
trans (λ i → transport (λ _ → B x) (- i) y) refl ≡⟨ trans-reflʳ _ ⟩∎
(λ i → transport (λ _ → B x) (- i) y) ∎
-- A direct proof of something with the same type as Σ-≡,≡→≡.
Σ-≡,≡→≡′ :
{p₁ p₂ : Σ A B} →
(p : proj₁ p₁ ≡ proj₁ p₂) →
subst B p (proj₂ p₁) ≡ proj₂ p₂ →
p₁ ≡ p₂
Σ-≡,≡→≡′ {B = B} {p₁ = _ , y₁} {p₂ = _ , y₂} p q i =
p i , lemma i
where
lemma : [ (λ i → B (p i)) ] y₁ ≡ y₂
lemma = _↔_.from (heterogeneous↔homogeneous _) q
-- Σ-≡,≡→≡ is pointwise equal to Σ-≡,≡→≡′.
Σ-≡,≡→≡≡Σ-≡,≡→≡′ :
{B : A → Type b}
{p₁ p₂ : Σ A B}
{p : proj₁ p₁ ≡ proj₁ p₂}
{q : subst B p (proj₂ p₁) ≡ proj₂ p₂} →
Σ-≡,≡→≡ {B = B} p q ≡ Σ-≡,≡→≡′ p q
Σ-≡,≡→≡≡Σ-≡,≡→≡′ {B = B} {p₁ = p₁} {p₂ = p₂} {p = p} {q = q} =
elim₁
(λ p →
∀ {p₁₂} (q : subst B p p₁₂ ≡ proj₂ p₂) →
Σ-≡,≡→≡ p q ≡ Σ-≡,≡→≡′ p q)
(λ q →
Σ-≡,≡→≡ refl q ≡⟨ Σ-≡,≡→≡-reflˡ q ⟩
cong (_ ,_) (trans (sym $ subst-refl B _) q) ≡⟨ cong (cong (_ ,_)) $
elim¹
(λ q →
trans (sym $ subst-refl B _) q ≡
_↔_.from (heterogeneous↔homogeneous _) q)
(
trans (sym $ subst-refl B _) refl ≡⟨ trans-reflʳ _ ⟩
sym (subst-refl B _) ≡⟨ sym $ from-heterogeneous↔homogeneous-const-refl B ⟩∎
_↔_.from (heterogeneous↔homogeneous _) refl ∎)
q ⟩
cong (_ ,_) (_↔_.from (heterogeneous↔homogeneous _) q) ≡⟨⟩
Σ-≡,≡→≡′ refl q ∎)
p q
-- All instances of an interval-indexed family are equal.
index-irrelevant : (P : I → Type p) → P i ≡ P j
index-irrelevant {i = i} {j = j} P =
λ k → P (max (min i (- k)) (min j k))
-- Positive h-levels of P i can be expressed in terms of the h-levels
-- of dependent paths over P.
H-level-suc↔H-level[]≡ :
{P : I → Type p} →
H-level (suc n) (P i) ↔ (∀ x y → H-level n ([ P ] x ≡ y))
H-level-suc↔H-level[]≡ {n = n} {i = i} {P = P} =
H-level (suc n) (P i) ↝⟨ H-level-cong ext _ (≡⇒≃ $ index-irrelevant P) ⟩
H-level (suc n) (P 1̲) ↝⟨ inverse $ ≡↔+ _ ext ⟩
((x y : P 1̲) → H-level n (x ≡ y)) ↝⟨ (Π-cong ext (≡⇒≃ $ index-irrelevant P) λ x → ∀-cong ext λ _ →
≡⇒↝ _ $ cong (λ x → H-level _ (x ≡ _)) (
x ≡⟨ sym $ transport∘transport (λ i → P (- i)) ⟩
transport P 0̲ (transport (λ i → P (- i)) 0̲ x) ≡⟨ cong (λ f → transport P 0̲ (transport (λ i → P (- i)) 0̲ (f x))) $ sym $
transport-refl 0̲ ⟩∎
transport P 0̲
(transport (λ i → P (- i)) 0̲ (transport (λ _ → P 1̲) 0̲ x)) ∎)) ⟩
((x : P 0̲) (y : P 1̲) → H-level n (transport P 0̲ x ≡ y)) ↝⟨ (∀-cong ext λ x → ∀-cong ext λ y → H-level-cong ext n $ inverse $
heterogeneous↔homogeneous P) ⟩□
((x : P 0̲) (y : P 1̲) → H-level n ([ P ] x ≡ y)) □
private
-- A simple lemma used below.
H-level-suc→H-level[]≡ :
∀ n → H-level (1 + n) (P 0̲) → H-level n ([ P ] x ≡ y)
H-level-suc→H-level[]≡ {P = P} {x = x} {y = y} n =
H-level (1 + n) (P 0̲) ↔⟨ H-level-suc↔H-level[]≡ ⟩
(∀ x y → H-level n ([ P ] x ≡ y)) ↝⟨ (λ f → f _ _) ⟩□
H-level n ([ P ] x ≡ y) □
-- A form of proof irrelevance for paths that are propositional at one
-- end-point.
heterogeneous-irrelevance₀ :
Is-proposition (P 0̲) → [ P ] x ≡ y
heterogeneous-irrelevance₀ {P = P} {x = x} {y = y} =
Is-proposition (P 0̲) ↝⟨ H-level-suc→H-level[]≡ _ ⟩
Contractible ([ P ] x ≡ y) ↝⟨ proj₁ ⟩□
[ P ] x ≡ y □
-- A form of UIP for squares that are sets on one corner.
heterogeneous-UIP₀₀ :
{P : I → I → Type p}
{x : ∀ i → P i 0̲} {y : ∀ i → P i 1̲}
{p : [ (λ j → P 0̲ j) ] x 0̲ ≡ y 0̲}
{q : [ (λ j → P 1̲ j) ] x 1̲ ≡ y 1̲} →
Is-set (P 0̲ 0̲) →
[ (λ i → [ (λ j → P i j) ] x i ≡ y i) ] p ≡ q
heterogeneous-UIP₀₀ {P = P} {x = x} {y = y} {p = p} {q = q} =
Is-set (P 0̲ 0̲) ↝⟨ H-level-suc→H-level[]≡ 1 ⟩
Is-proposition ([ (λ j → P 0̲ j) ] x 0̲ ≡ y 0̲) ↝⟨ H-level-suc→H-level[]≡ _ ⟩
Contractible ([ (λ i → [ (λ j → P i j) ] x i ≡ y i) ] p ≡ q) ↝⟨ proj₁ ⟩□
[ (λ i → [ (λ j → P i j) ] x i ≡ y i) ] p ≡ q □
-- A variant of heterogeneous-UIP₀₀, "one level up".
heterogeneous-UIP₃₀₀ :
{P : I → I → I → Type p}
{x : ∀ i j → P i j 0̲} {y : ∀ i j → P i j 1̲}
{p : ∀ i → [ (λ k → P i 0̲ k) ] x i 0̲ ≡ y i 0̲}
{q : ∀ i → [ (λ k → P i 1̲ k) ] x i 1̲ ≡ y i 1̲}
{r : [ (λ j → [ (λ k → P 0̲ j k) ] x 0̲ j ≡ y 0̲ j) ] p 0̲ ≡ q 0̲}
{s : [ (λ j → [ (λ k → P 1̲ j k) ] x 1̲ j ≡ y 1̲ j) ] p 1̲ ≡ q 1̲} →
H-level 3 (P 0̲ 0̲ 0̲) →
[ (λ i → [ (λ j → [ (λ k → P i j k) ] x i j ≡ y i j) ] p i ≡ q i) ]
r ≡ s
heterogeneous-UIP₃₀₀
{P = P} {x = x} {y = y} {p = p} {q = q} {r = r} {s = s} =
H-level 3 (P 0̲ 0̲ 0̲) ↝⟨ H-level-suc→H-level[]≡ 2 ⟩
Is-set ([ (λ k → P 0̲ 0̲ k) ] x 0̲ 0̲ ≡ y 0̲ 0̲) ↝⟨ H-level-suc→H-level[]≡ 1 ⟩
Is-proposition
([ (λ j → [ (λ k → P 0̲ j k) ] x 0̲ j ≡ y 0̲ j) ] p 0̲ ≡ q 0̲) ↝⟨ H-level-suc→H-level[]≡ _ ⟩
Contractible
([ (λ i → [ (λ j → [ (λ k → P i j k) ] x i j ≡ y i j) ] p i ≡ q i) ]
r ≡ s) ↝⟨ proj₁ ⟩□
[ (λ i → [ (λ j → [ (λ k → P i j k) ] x i j ≡ y i j) ] p i ≡ q i) ]
r ≡ s □
-- The following three lemmas can be used to implement the truncation
-- cases of (at least some) eliminators for (at least some) HITs. For
-- some examples, see H-level.Truncation.Propositional, Quotient and
-- Eilenberg-MacLane-space.
-- A variant of heterogeneous-irrelevance₀.
heterogeneous-irrelevance :
{P : A → Type p} →
(∀ x → Is-proposition (P x)) →
{x≡y : x ≡ y} {p₁ : P x} {p₂ : P y} →
[ (λ i → P (x≡y i)) ] p₁ ≡ p₂
heterogeneous-irrelevance {x = x} {P = P} P-prop {x≡y} {p₁} {p₂} =
$⟨ P-prop ⟩
(∀ x → Is-proposition (P x)) ↝⟨ _$ _ ⟩
Is-proposition (P x) ↝⟨ heterogeneous-irrelevance₀ ⟩□
[ (λ i → P (x≡y i)) ] p₁ ≡ p₂ □
-- A variant of heterogeneous-UIP₀₀.
--
-- The cubical library contains (or used to contain) a lemma with
-- basically the same type, but with a seemingly rather different
-- proof, implemented by Zesen Qian.
heterogeneous-UIP :
{P : A → Type p} →
(∀ x → Is-set (P x)) →
{eq₁ eq₂ : x ≡ y} (eq₃ : eq₁ ≡ eq₂) {p₁ : P x} {p₂ : P y}
(eq₄ : [ (λ j → P (eq₁ j)) ] p₁ ≡ p₂)
(eq₅ : [ (λ j → P (eq₂ j)) ] p₁ ≡ p₂) →
[ (λ i → [ (λ j → P (eq₃ i j)) ] p₁ ≡ p₂) ] eq₄ ≡ eq₅
heterogeneous-UIP {x = x} {P = P} P-set eq₃ {p₁} {p₂} eq₄ eq₅ =
$⟨ P-set ⟩
(∀ x → Is-set (P x)) ↝⟨ _$ _ ⟩
Is-set (P x) ↝⟨ heterogeneous-UIP₀₀ ⟩□
[ (λ i → [ (λ j → P (eq₃ i j)) ] p₁ ≡ p₂) ] eq₄ ≡ eq₅ □
-- A variant of heterogeneous-UIP, "one level up".
heterogeneous-UIP₃ :
{P : A → Type p} →
(∀ x → H-level 3 (P x)) →
{eq₁ eq₂ : x ≡ y} {eq₃ eq₄ : eq₁ ≡ eq₂}
(eq₅ : eq₃ ≡ eq₄)
{p₁ : P x} {p₂ : P y}
{eq₆ : [ (λ k → P (eq₁ k)) ] p₁ ≡ p₂}
{eq₇ : [ (λ k → P (eq₂ k)) ] p₁ ≡ p₂}
(eq₈ : [ (λ j → [ (λ k → P (eq₃ j k)) ] p₁ ≡ p₂) ] eq₆ ≡ eq₇)
(eq₉ : [ (λ j → [ (λ k → P (eq₄ j k)) ] p₁ ≡ p₂) ] eq₆ ≡ eq₇) →
[ (λ i → [ (λ j → [ (λ k → P (eq₅ i j k)) ] p₁ ≡ p₂) ] eq₆ ≡ eq₇) ]
eq₈ ≡ eq₉
heterogeneous-UIP₃
{x = x} {P = P}
P-groupoid eq₅ {p₁ = p₁} {p₂ = p₂} {eq₆ = eq₆} {eq₇ = eq₇} eq₈ eq₉ =
$⟨ P-groupoid ⟩
(∀ x → H-level 3 (P x)) ↝⟨ _$ _ ⟩
H-level 3 (P x) ↝⟨ heterogeneous-UIP₃₀₀ ⟩□
[ (λ i → [ (λ j → [ (λ k → P (eq₅ i j k)) ] p₁ ≡ p₂) ] eq₆ ≡ eq₇) ]
eq₈ ≡ eq₉ □
| {
"alphanum_fraction": 0.4574029486,
"avg_line_length": 34.8094144661,
"ext": "agda",
"hexsha": "e9b9593f45ecbf1a4c263a665bee22940a4517b4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Equality/Path.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Equality/Path.agda",
"max_line_length": 150,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Equality/Path.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 11649,
"size": 30319
} |
-- Andreas, 2017-07-26
-- Better error message when constructor not fully applied.
open import Agda.Builtin.Nat
test : (Nat → Nat) → Nat
test suc = suc zero
-- WAS: Type mismatch
-- NOW: Cannot pattern match on functions
-- when checking that the pattern suc has type Nat → Nat
| {
"alphanum_fraction": 0.7224199288,
"avg_line_length": 23.4166666667,
"ext": "agda",
"hexsha": "2a0e06efbb6ea8fb3fd89a493d1eab774bf4a144",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/MatchOnFunctions.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/MatchOnFunctions.agda",
"max_line_length": 59,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/MatchOnFunctions.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 74,
"size": 281
} |
-- Andreas, 2018-10-17, re #2757
--
-- Don't project from erased matches.
open import Agda.Builtin.List
open import Common.Prelude
data IsCons {A : Set} : List A → Set where
isCons : ∀{@0 x : A} {@0 xs : List A} → IsCons (x ∷ xs)
headOfErased : ∀{A} (@0 xs : List A) → IsCons xs → A
headOfErased (x ∷ xs) isCons = x
-- Should fail with error:
--
-- Variable x is declared erased, so it cannot be used here
main = printNat (headOfErased (1 ∷ 2 ∷ []) isCons)
-- Otherwise, main segfaults.
| {
"alphanum_fraction": 0.6464646465,
"avg_line_length": 23.5714285714,
"ext": "agda",
"hexsha": "afa36e27f957b558ff7b2b2ac04f35c8d02d5dee",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Erasure-No-Project-Erased-Match.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Erasure-No-Project-Erased-Match.agda",
"max_line_length": 59,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Erasure-No-Project-Erased-Match.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 169,
"size": 495
} |
------------------------------------------------------------------------------
-- Well-founded induction on the lexicographic order on natural numbers
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Data.Nat.Induction.NonAcc.LexicographicI where
open import FOTC.Base
open import FOTC.Data.Nat.Inequalities
open import FOTC.Data.Nat.Inequalities.EliminationPropertiesI
open import FOTC.Data.Nat.Inequalities.PropertiesI
open import FOTC.Data.Nat.Type
------------------------------------------------------------------------------
Lexi-wfind :
(A : D → D → Set) →
(∀ {m₁ n₁} → N m₁ → N n₁ →
(∀ {m₂ n₂} → N m₂ → N n₂ → Lexi m₂ n₂ m₁ n₁ → A m₂ n₂) → A m₁ n₁) →
∀ {m n} → N m → N n → A m n
Lexi-wfind A h Nm Nn = h Nm Nn (helper₂ Nm Nn)
where
helper₁ : ∀ {m n o} → N m → N n → N o → m < o → o < succ₁ n → m < n
helper₁ {m} {n} {o} Nm Nn No m<o o<Sn =
Sx≤y→x<y Nm Nn (≤-trans (nsucc Nm) No Nn
(x<y→Sx≤y Nm No m<o)
(Sx≤Sy→x≤y {o} {n} (x<y→Sx≤y No (nsucc Nn) o<Sn)))
helper₂ : ∀ {m₁ n₁ m₂ n₂} → N m₁ → N n₁ → N m₂ → N n₂ →
Lexi m₂ n₂ m₁ n₁ → A m₂ n₂
helper₂ Nm₁ Nn₂ nzero nzero 00<00 =
h nzero nzero (λ Nm' Nn' m'n'<00 → ⊥-elim (xy<00→⊥ Nm' Nn' m'n'<00))
helper₂ nzero nzero (nsucc Nm₂) nzero Sm₂0<00 = ⊥-elim (Sxy<0y'→⊥ Sm₂0<00)
helper₂ (nsucc Nm₁) nzero (nsucc Nm₂) nzero Sm₂0<Sm₁0 =
h (nsucc Nm₂) nzero (λ Nm' Nn' m'n'<Sm₂0 →
helper₂ Nm₁ nzero Nm' Nn'
(inj₁ (helper₁ Nm' Nm₁ (nsucc Nm₂)
(xy<x'0→x<x' Nn' m'n'<Sm₂0)
(xy<x'0→x<x' nzero Sm₂0<Sm₁0))))
helper₂ nzero (nsucc Nn₁) (nsucc Nm₂) nzero Sm₂0<0Sn₁ =
⊥-elim (Sxy<0y'→⊥ Sm₂0<0Sn₁)
helper₂ (nsucc Nm₁) (nsucc Nn₁) (nsucc Nm₂) nzero Sm₂0<Sm₁Sn₁ =
h (nsucc Nm₂) nzero (λ Nm' Nn' m'n'<Sm₂0 →
helper₂ (nsucc Nm₁) Nn₁ Nm' Nn'
(inj₁ (case (λ Sm₂<Sm₁ → x<y→x<Sy Nm' Nm₁
(helper₁ Nm' Nm₁ (nsucc Nm₂)
(xy<x'0→x<x' Nn' m'n'<Sm₂0)
Sm₂<Sm₁))
(λ Sm₂≡Sm₁∧0<Sn₁ → x<y→y≡z→x<z (xy<x'0→x<x' Nn' m'n'<Sm₂0)
(∧-proj₁ Sm₂≡Sm₁∧0<Sn₁))
Sm₂0<Sm₁Sn₁)))
helper₂ nzero nzero nzero (nsucc Nn₂) 0Sn₂<00 = ⊥-elim (0Sx<00→⊥ 0Sn₂<00)
helper₂ (nsucc {m₁} Nm₁) nzero nzero (nsucc Nn₂) 0Sn₂<Sm₁0 =
h nzero (nsucc Nn₂) (λ Nm' Nn' m'n'<0Nn₂ →
helper₂ Nm₁ (nsucc Nn₂) Nm' Nn'
(case (λ m'<0 → ⊥-elim (x<0→⊥ Nm' m'<0))
(λ m'≡0∧n'<Sn₂ →
case (λ 0<m₁ → inj₁ (x≡y→y<z→x<z (∧-proj₁ m'≡0∧n'<Sn₂) 0<m₁))
(λ 0≡m₁ → inj₂ ((trans (∧-proj₁ m'≡0∧n'<Sn₂) 0≡m₁)
, (∧-proj₂ m'≡0∧n'<Sn₂)))
(x<Sy→x<y∨x≡y nzero Nm₁ 0<Sm₁))
m'n'<0Nn₂))
where
0<Sm₁ : zero < succ₁ m₁
0<Sm₁ = xy<x'0→x<x' (nsucc Nn₂) 0Sn₂<Sm₁0
helper₂ nzero (nsucc Nn₁) nzero (nsucc Nn₂) 0Sn₂<0Sn₁ =
case (λ 0<0 → ⊥-elim (0<0→⊥ 0<0))
(λ 0≡0∧Sn₂<Sn₁ →
h nzero (nsucc Nn₂) (λ Nm' Nn' m'n'<0Sn₂ →
case (λ m'<0 → ⊥-elim (x<0→⊥ Nm' m'<0))
(λ m'≡0∧n'<Sn₂ →
helper₂ nzero Nn₁ Nm' Nn'
(inj₂ (∧-proj₁ m'≡0∧n'<Sn₂
, helper₁ Nn' Nn₁ (nsucc Nn₂)
(∧-proj₂ m'≡0∧n'<Sn₂)
(∧-proj₂ 0≡0∧Sn₂<Sn₁))))
m'n'<0Sn₂))
0Sn₂<0Sn₁
helper₂ (nsucc Nm₁) (nsucc Nn₁) nzero (nsucc Nn₂) 0Sn₂<Sm₁Sn₁ =
h nzero (nsucc Nn₂) (λ Nm' Nn' m'n'<0Sn₂ →
helper₂ (nsucc Nm₁) Nn₁ Nm' Nn'
(case (λ m'<0 → ⊥-elim (x<0→⊥ Nm' m'<0))
(λ m'≡0∧n'<Sn₂ →
case (λ 0<Sm₁ → inj₁ (x≡y→y<z→x<z (∧-proj₁ m'≡0∧n'<Sn₂) 0<Sm₁))
(λ 0≡Sn₂∧Sn₂<Sn₁ → ⊥-elim (0≢S (∧-proj₁ 0≡Sn₂∧Sn₂<Sn₁)))
0Sn₂<Sm₁Sn₁)
m'n'<0Sn₂))
helper₂ nzero nzero (nsucc Nm₂) (nsucc Nn₂) Sm₂Sn₂<00 =
⊥-elim (xy<00→⊥ (nsucc Nm₂) (nsucc Nn₂) Sm₂Sn₂<00)
helper₂ (nsucc {m₁} Nm₁) nzero (nsucc {m₂} Nm₂) (nsucc Nn₂) Sm₂Sn₂<Sm₁0 =
h (nsucc Nm₂) (nsucc Nn₂) (λ Nm' Nn' m'n'<Sm₂Sn₂ →
helper₂ Nm₁ (nsucc Nn₂) Nm' Nn'
(case (λ m'<Sm₂ → inj₁ (helper₁ Nm' Nm₁ (nsucc Nm₂) m'<Sm₂ Sm₂<Sm₁))
(λ m'≡Sm₂∧n'<Sn₂ →
case (λ m'<m₁ → inj₁ m'<m₁)
(λ m'≡m₁ → inj₂ (m'≡m₁ , ∧-proj₂ m'≡Sm₂∧n'<Sn₂))
(x<Sy→x<y∨x≡y Nm' Nm₁
(x≡y→y<z→x<z (∧-proj₁ m'≡Sm₂∧n'<Sn₂) Sm₂<Sm₁)))
m'n'<Sm₂Sn₂))
where
Sm₂<Sm₁ : succ₁ m₂ < succ₁ m₁
Sm₂<Sm₁ = xy<x'0→x<x' (nsucc Nn₂) Sm₂Sn₂<Sm₁0
helper₂ nzero (nsucc Nn₁) (nsucc Nm₂) (nsucc Nn₂) Sm₂Sn₂<0Sn₁
= ⊥-elim (Sxy<0y'→⊥ Sm₂Sn₂<0Sn₁)
helper₂ (nsucc Nm₁) (nsucc Nn₁) (nsucc Nm₂) (nsucc Nn₂) Sm₂Sn₂<Sm₁Sn₁ =
h (nsucc Nm₂) (nsucc Nn₂) (λ Nm' Nn' m'n'<Sm₂Sn₂ →
helper₂ (nsucc Nm₁) Nn₁ Nm' Nn'
(case (λ Sm₂<Sm₁ →
case (λ m'<Sm₂ → inj₁ (x<y→x<Sy Nm' Nm₁ (helper₁ Nm' Nm₁ (nsucc Nm₂) m'<Sm₂ Sm₂<Sm₁)))
(λ m'≡Sm₂∧n'<Sn₂ → inj₁ (x≡y→y<z→x<z (∧-proj₁ m'≡Sm₂∧n'<Sn₂) Sm₂<Sm₁))
m'n'<Sm₂Sn₂)
(λ Sm₂≡Sm₁∧Sn₂<Sn₁ →
case (λ m'<Sm₂ → inj₁ (x<y→y≡z→x<z m'<Sm₂ (∧-proj₁ Sm₂≡Sm₁∧Sn₂<Sn₁)))
(λ m'≡Sm₂∧n'<Sn₂ → inj₂
(trans (∧-proj₁ m'≡Sm₂∧n'<Sn₂) (∧-proj₁ Sm₂≡Sm₁∧Sn₂<Sn₁)
, helper₁ Nn' Nn₁ (nsucc Nn₂) (∧-proj₂ m'≡Sm₂∧n'<Sn₂) (∧-proj₂ Sm₂≡Sm₁∧Sn₂<Sn₁)))
m'n'<Sm₂Sn₂)
Sm₂Sn₂<Sm₁Sn₁))
| {
"alphanum_fraction": 0.4442598438,
"avg_line_length": 43.3021582734,
"ext": "agda",
"hexsha": "e9d27529b8ef205b75f53b1efab9e8351454a434",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Data/Nat/Induction/NonAcc/LexicographicI.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Data/Nat/Induction/NonAcc/LexicographicI.agda",
"max_line_length": 104,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Data/Nat/Induction/NonAcc/LexicographicI.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 2667,
"size": 6019
} |
module Numeral.Natural.Oper.Divisibility where
import Lvl
open import Data
open import Data.Boolean
open import Numeral.Natural
open import Numeral.Natural.Oper.Comparisons
open import Numeral.Natural.Oper.Modulo
-- Divisibility check
_∣?_ : ℕ → ℕ → Bool
𝟎 ∣? _ = 𝐹
𝐒(y) ∣? x = zero?(x mod 𝐒(y))
-- Divisibility check
_∣₀?_ : ℕ → ℕ → Bool
𝟎 ∣₀? 𝟎 = 𝑇
𝟎 ∣₀? 𝐒(_) = 𝐹
𝐒(y) ∣₀? x = zero?(x mod 𝐒(y))
{-
open import Numeral.Natural.Oper
open import Numeral.Natural.UnclosedOper
open import Data.Option as Option using (Option)
{-# TERMINATING #-}
_∣?_ : ℕ → ℕ → Bool
_ ∣? 𝟎 = 𝑇
𝟎 ∣? 𝐒(_) = 𝐹
𝐒(x) ∣? 𝐒(y) with (x −? y)
... | Option.Some(xy) = xy ∣? 𝐒(y)
... | Option.None = 𝐹
-}
| {
"alphanum_fraction": 0.6221590909,
"avg_line_length": 20.7058823529,
"ext": "agda",
"hexsha": "5455e184559b589382a73c2ec75af51a1b8438cf",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Numeral/Natural/Oper/Divisibility.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Numeral/Natural/Oper/Divisibility.agda",
"max_line_length": 48,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Numeral/Natural/Oper/Divisibility.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 305,
"size": 704
} |
record R (A : Set) : Set where field giveA : A
open R ⦃ … ⦄
record WrapR (A : Set) : Set where field instance ⦃ wrappedR ⦄ : R A
open WrapR ⦃ … ⦄
postulate
instance R-instance : ∀ {X} → WrapR X
data D : Set where
works : D
works = giveA ⦃ WrapR.wrappedR (R-instance {D}) ⦄
fails : D
fails = giveA ⦃ {!!} ⦄
-- No instance of type R D was found in scope.
-- open import Agda.Primitive
-- {-
-- record IsBottom₀ (⊥ : Set) : Set (lsuc lzero) where
-- field
-- ⊥₀-elim : ⊥ → {A : Set lzero} → A
-- open IsBottom₀ ⦃ … ⦄ public
-- record Bottom₀ : Set (lsuc lzero) where
-- field
-- ⊥₀ : Set
-- ⦃ isBottom ⦄ : IsBottom₀ ⊥₀
-- open Bottom₀ ⦃ … ⦄ public
-- test : ⦃ bottom : ∀ {l : Set} → Bottom₀ ⦄ {fake : ⊥₀ ⦃ bottom {Level} ⦄} {real : Set} → real
-- test ⦃ bottom ⦄ {fake} {real} = ⊥₀-elim {⊥₀ ⦃ bottom ⦄} ⦃ Bottom₀.isBottom (bottom {Level}) ⦄ fake
-- -}
-- record IsBottom₀ (⊥ : Set) a : Set (lsuc a) where
-- field
-- ⊥₀-elim : ⊥ → {A : Set a} → A
-- open IsBottom₀ ⦃ … ⦄ public
-- record Bottom₀ a : Set (lsuc a) where
-- field
-- ⊥₀ : Set
-- ⦃ isBottom ⦄ : IsBottom₀ ⊥₀ a
-- open Bottom₀ ⦃ … ⦄ public
-- postulate
-- instance Bi : ∀ {a} → Bottom₀ a
-- --test : ⦃ bottom : ∀ {a} → Bottom₀ a ⦄ {fake : ⊥₀ {lzero}} {real : Set} → real
-- --test ⦃ bottom ⦄ {fake} {real} = let instance b = Bottom₀.isBottom (bottom {lzero}) in ⊥₀-elim {⊥₀ {lzero} ⦃ bottom ⦄} {lzero} ⦃ {!Bottom₀.isBottom bottom!} ⦄ fake
-- test : {fake : ⊥₀ {lzero}} {real : Set} → real
-- test {fake} {real} = ⊥₀-elim {⊥₀ {lzero} ⦃ Bi ⦄} {lzero} ⦃ Bottom₀.isBottom Bi ⦄ fake
-- -- record Bottom₀ a : Set (lsuc a) where
-- -- field
-- -- ⊥₀ : Set
-- -- ⊥₀-elim : ⊥₀ → {A : Set a} → A
-- -- open Bottom₀ ⦃ … ⦄ public
-- -- test : ⦃ bottom : ∀ {a} → Bottom₀ a ⦄ {fake : ⊥₀ {lzero}} {real : Set} → real
-- -- test ⦃ bottom ⦄ {fake} {real} = ⊥₀-elim fake -- ⊥₀-elim {⊥₀ {lzero} ⦃ bottom ⦄} {lzero} ⦃ bottom ⦄ fake
-- -- postulate
-- -- B : Set
-- -- record IsB (r : Set) a : Set (lsuc a) where
-- -- field
-- -- gotB : B
-- -- xx : r
-- -- open IsB ⦃ … ⦄ public
-- -- record RB a : Set (lsuc a) where
-- -- field
-- -- r : Set
-- -- ⦃ isB ⦄ : IsB r a
-- -- open RB ⦃ … ⦄ public
-- -- testB : ⦃ bottom : ∀ {a} → RB a ⦄ → B
-- -- testB ⦃ bottom ⦄ = gotB ⦃ {!isB bottom {lzero}!} ⦄
| {
"alphanum_fraction": 0.5209760274,
"avg_line_length": 24.5894736842,
"ext": "agda",
"hexsha": "48c345049a8047835c14881570290ba13c43e806",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-1/BottomUp2.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-1/BottomUp2.agda",
"max_line_length": 167,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-1/BottomUp2.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1024,
"size": 2336
} |
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Setoids.Setoids
open import Functions.Definition
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Numbers.Naturals.Naturals
open import Numbers.Integers.Integers
open import Groups.Definition
open import Groups.Homomorphisms.Definition
open import Groups.Homomorphisms.Lemmas
open import Groups.Isomorphisms.Definition
open import Groups.Abelian.Definition
open import Groups.Subgroups.Definition
open import Groups.Lemmas
open import Groups.Groups
open import Rings.Definition
open import Rings.Lemmas
open import Fields.Fields
open import Sets.EquivalenceRelations
module Groups.Examples.ExampleSheet1 where
{-
Question 1: e is the unique solution of x^2 = x
-}
question1 : {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} → (G : Group S _+_) → (x : A) → Setoid._∼_ S (x + x) x → Setoid._∼_ S x (Group.0G G)
question1 {S = S} {_+_ = _+_} G x x+x=x = transitive (symmetric identRight) (transitive (+WellDefined reflexive (symmetric invRight)) (transitive +Associative (transitive (+WellDefined x+x=x reflexive) invRight)))
where
open Group G
open Setoid S
open Equivalence eq
question1' : {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} → (G : Group S _+_) → Setoid._∼_ S ((Group.0G G) + (Group.0G G)) (Group.0G G)
question1' G = Group.identRight G
{-
Question 3. We can't talk about ℝ yet, so we'll just work in an arbitrary integral domain.
Show that the collection of linear functions over a ring forms a group; is it abelian?
-}
record LinearFunction {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+_ _*_} (F : Field R) : Set (a ⊔ b) where
field
xCoeff : A
xCoeffNonzero : (Setoid._∼_ S xCoeff (Ring.0R R) → False)
constant : A
interpretLinearFunction : {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+_ _*_} {F : Field R} (f : LinearFunction F) → A → A
interpretLinearFunction {_+_ = _+_} {_*_ = _*_} record { xCoeff = xCoeff ; xCoeffNonzero = xCoeffNonzero ; constant = constant } a = (xCoeff * a) + constant
composeLinearFunctions : {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+_ _*_} {F : Field R} (f1 : LinearFunction F) (f2 : LinearFunction F) → LinearFunction F
LinearFunction.xCoeff (composeLinearFunctions {_+_ = _+_} {_*_ = _*_} record { xCoeff = xCoeff1 ; xCoeffNonzero = xCoeffNonzero1 ; constant = constant1 } record { xCoeff = xCoeff2 ; xCoeffNonzero = xCoeffNonzero2 ; constant = constant2 }) = xCoeff1 * xCoeff2
LinearFunction.xCoeffNonzero (composeLinearFunctions {S = S} {R = R} {F = F} record { xCoeff = xCoeff1 ; xCoeffNonzero = xCoeffNonzero1 ; constant = constant1 } record { xCoeff = xCoeff2 ; xCoeffNonzero = xCoeffNonzero2 ; constant = constant2 }) pr = xCoeffNonzero2 bad
where
open Setoid S
open Ring R
open Equivalence eq
bad : Setoid._∼_ S xCoeff2 0R
bad with Field.allInvertible F xCoeff1 xCoeffNonzero1
... | xinv , pr' = transitive (symmetric identIsIdent) (transitive (*WellDefined (symmetric pr') reflexive) (transitive (symmetric *Associative) (transitive (*WellDefined reflexive pr) (Ring.timesZero R))))
LinearFunction.constant (composeLinearFunctions {_+_ = _+_} {_*_ = _*_} record { xCoeff = xCoeff1 ; xCoeffNonzero = xCoeffNonzero1 ; constant = constant1 } record { xCoeff = xCoeff2 ; xCoeffNonzero = xCoeffNonzero2 ; constant = constant2 }) = (xCoeff1 * constant2) + constant1
compositionIsCorrect : {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+_ _*_} {F : Field R} (f1 : LinearFunction F) (f2 : LinearFunction F) → {r : A} → Setoid._∼_ S (interpretLinearFunction (composeLinearFunctions f1 f2) r) (((interpretLinearFunction f1) ∘ (interpretLinearFunction f2)) r)
compositionIsCorrect {S = S} {_+_ = _+_} {_*_ = _*_} {R = R} record { xCoeff = xCoeff ; xCoeffNonzero = xCoeffNonzero ; constant = constant } record { xCoeff = xCoeff' ; xCoeffNonzero = xCoeffNonzero' ; constant = constant' } {r} = ans
where
open Setoid S
open Ring R
open Equivalence eq
ans : (((xCoeff * xCoeff') * r) + ((xCoeff * constant') + constant)) ∼ (xCoeff * ((xCoeff' * r) + constant')) + constant
ans = transitive (Group.+Associative additiveGroup) (Group.+WellDefined additiveGroup (transitive (Group.+WellDefined additiveGroup (symmetric (Ring.*Associative R)) reflexive) (symmetric (Ring.*DistributesOver+ R))) (reflexive {constant}))
linearFunctionsSetoid : {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+_ _*_} (I : Field R) → Setoid (LinearFunction I)
Setoid._∼_ (linearFunctionsSetoid {S = S} I) f1 f2 = ((LinearFunction.xCoeff f1) ∼ (LinearFunction.xCoeff f2)) && ((LinearFunction.constant f1) ∼ (LinearFunction.constant f2))
where
open Setoid S
Equivalence.reflexive (Setoid.eq (linearFunctionsSetoid {S = S} I)) = Equivalence.reflexive (Setoid.eq S) ,, Equivalence.reflexive (Setoid.eq S)
Equivalence.symmetric (Setoid.eq (linearFunctionsSetoid {S = S} I)) (fst ,, snd) = Equivalence.symmetric (Setoid.eq S) fst ,, Equivalence.symmetric (Setoid.eq S) snd
Equivalence.transitive (Setoid.eq (linearFunctionsSetoid {S = S} I)) (fst1 ,, snd1) (fst2 ,, snd2) = Equivalence.transitive (Setoid.eq S) fst1 fst2 ,, Equivalence.transitive (Setoid.eq S) snd1 snd2
linearFunctionsGroup : {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+_ _*_} (F : Field R) → Group (linearFunctionsSetoid F) (composeLinearFunctions)
Group.+WellDefined (linearFunctionsGroup {R = R} F) {record { xCoeff = xCoeffM ; xCoeffNonzero = xCoeffNonzeroM ; constant = constantM }} {record { xCoeff = xCoeffN ; xCoeffNonzero = xCoeffNonzeroN ; constant = constantN }} {record { xCoeff = xCoeffX ; xCoeffNonzero = xCoeffNonzeroX ; constant = constantX }} {record { xCoeff = xCoeff ; xCoeffNonzero = xCoeffNonzero ; constant = constant }} (fst1 ,, snd1) (fst2 ,, snd2) = *WellDefined fst1 fst2 ,, Group.+WellDefined additiveGroup (*WellDefined fst1 snd2) snd1
where
open Ring R
Group.0G (linearFunctionsGroup {S = S} {R = R} F) = record { xCoeff = Ring.1R R ; constant = Ring.0R R ; xCoeffNonzero = λ p → Field.nontrivial F (Equivalence.symmetric (Setoid.eq S) p) }
Group.inverse (linearFunctionsGroup {S = S} {_*_ = _*_} {R = R} F) record { xCoeff = xCoeff ; constant = c ; xCoeffNonzero = pr } with Field.allInvertible F xCoeff pr
... | (inv , pr') = record { xCoeff = inv ; constant = inv * (Group.inverse (Ring.additiveGroup R) c) ; xCoeffNonzero = λ p → Field.nontrivial F (transitive (symmetric (transitive (Ring.*WellDefined R p reflexive) (transitive (Ring.*Commutative R) (Ring.timesZero R)))) pr') }
where
open Setoid S
open Equivalence eq
Group.+Associative (linearFunctionsGroup {S = S} {_+_ = _+_} {_*_ = _*_} {R = R} F) {record { xCoeff = xA ; xCoeffNonzero = xANonzero ; constant = cA }} {record { xCoeff = xB ; xCoeffNonzero = xBNonzero ; constant = cB }} {record { xCoeff = xC ; xCoeffNonzero = xCNonzero ; constant = cC }} = Ring.*Associative R ,, transitive (Group.+WellDefined additiveGroup (transitive *DistributesOver+ (Group.+WellDefined additiveGroup *Associative reflexive)) reflexive) (symmetric (Group.+Associative additiveGroup))
where
open Setoid S
open Equivalence eq
open Ring R
Group.identRight (linearFunctionsGroup {S = S} {_+_ = _+_} {_*_ = _*_} {R = R} F) {record { xCoeff = xCoeff ; xCoeffNonzero = xCoeffNonzero ; constant = constant }} = transitive (Ring.*Commutative R) (Ring.identIsIdent R) ,, transitive (Group.+WellDefined additiveGroup (Ring.timesZero R) reflexive) (Group.identLeft additiveGroup)
where
open Ring R
open Setoid S
open Equivalence eq
Group.identLeft (linearFunctionsGroup {S = S} {R = R} F) {record { xCoeff = xCoeff ; xCoeffNonzero = xCoeffNonzero ; constant = constant }} = identIsIdent ,, transitive (Group.identRight additiveGroup) identIsIdent
where
open Setoid S
open Ring R
open Equivalence eq
Group.invLeft (linearFunctionsGroup F) {record { xCoeff = xCoeff ; xCoeffNonzero = xCoeffNonzero ; constant = constant }} with Field.allInvertible F xCoeff xCoeffNonzero
Group.invLeft (linearFunctionsGroup {S = S} {R = R} F) {record { xCoeff = xCoeff ; xCoeffNonzero = xCoeffNonzero ; constant = constant }} | inv , prInv = prInv ,, transitive (symmetric *DistributesOver+) (transitive (*WellDefined reflexive (Group.invRight additiveGroup)) (Ring.timesZero R))
where
open Setoid S
open Ring R
open Equivalence eq
Group.invRight (linearFunctionsGroup {S = S} {R = R} F) {record { xCoeff = xCoeff ; xCoeffNonzero = xCoeffNonzero ; constant = constant }} with Field.allInvertible F xCoeff xCoeffNonzero
... | inv , pr = transitive *Commutative pr ,, transitive (Group.+WellDefined additiveGroup *Associative reflexive) (transitive (Group.+WellDefined additiveGroup (*WellDefined (transitive *Commutative pr) reflexive) reflexive) (transitive (Group.+WellDefined additiveGroup identIsIdent reflexive) (Group.invLeft additiveGroup)))
where
open Setoid S
open Ring R
open Equivalence eq
{-
Question 3, part 2: prove that linearFunctionsGroup is not abelian
-}
-- We'll assume the field doesn't have characteristic 2.
linearFunctionsGroupNotAbelian : {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+_ _*_} {F : Field R} → (nonChar2 : Setoid._∼_ S ((Ring.1R R) + (Ring.1R R)) (Ring.0R R) → False) → AbelianGroup (linearFunctionsGroup F) → False
linearFunctionsGroupNotAbelian {S = S} {_+_ = _+_} {_*_ = _*_} {R = R} {F = F} pr record { commutative = commutative } = ans
where
open Ring R
open Group additiveGroup
open Equivalence (Setoid.eq S) renaming (symmetric to symmetricS ; transitive to transitiveS ; reflexive to reflexiveS)
f : LinearFunction F
f = record { xCoeff = 1R ; xCoeffNonzero = λ p → Field.nontrivial F (symmetricS p) ; constant = 1R }
g : LinearFunction F
g = record { xCoeff = 1R + 1R ; xCoeffNonzero = pr ; constant = 0R }
gf : LinearFunction F
gf = record { xCoeff = 1R + 1R ; xCoeffNonzero = pr ; constant = 1R + 1R }
fg : LinearFunction F
fg = record { xCoeff = 1R + 1R ; xCoeffNonzero = pr ; constant = 1R }
oneWay : Setoid._∼_ (linearFunctionsSetoid F) gf (composeLinearFunctions g f)
oneWay = symmetricS (transitiveS *Commutative identIsIdent) ,, transitiveS (symmetricS (transitiveS *Commutative identIsIdent)) (symmetricS (Group.identRight additiveGroup))
otherWay : Setoid._∼_ (linearFunctionsSetoid F) fg (composeLinearFunctions f g)
otherWay = symmetricS identIsIdent ,, transitiveS (symmetricS (Group.identLeft additiveGroup)) (Group.+WellDefined additiveGroup (symmetricS identIsIdent) (reflexiveS {1R}))
open Equivalence (Setoid.eq (linearFunctionsSetoid F))
bad : Setoid._∼_ (linearFunctionsSetoid F) gf fg
bad = transitive {gf} {composeLinearFunctions g f} {fg} oneWay (transitive {composeLinearFunctions g f} {composeLinearFunctions f g} {fg} (commutative {g} {f}) (symmetric {fg} {composeLinearFunctions f g} otherWay))
ans : False
ans with bad
ans | _ ,, contr = Field.nontrivial F (symmetricS (transitiveS {1R} {1R + (1R + Group.inverse additiveGroup 1R)} (transitiveS (symmetricS (Group.identRight additiveGroup)) (Group.+WellDefined additiveGroup reflexiveS (symmetricS (Group.invRight additiveGroup)))) (transitiveS (Group.+Associative additiveGroup) (transitiveS (Group.+WellDefined additiveGroup contr reflexiveS) (Group.invRight additiveGroup)))))
| {
"alphanum_fraction": 0.6831558648,
"avg_line_length": 77.4480519481,
"ext": "agda",
"hexsha": "d0c3c7276059d96ef7b60d7a2b98b32c02e1bc6b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Groups/Examples/ExampleSheet1.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Groups/Examples/ExampleSheet1.agda",
"max_line_length": 515,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Groups/Examples/ExampleSheet1.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 3761,
"size": 11927
} |
------------------------------------------------------------------------
-- The partiality monad's monad instance, defined via an adjunction
------------------------------------------------------------------------
{-# OPTIONS --cubical --safe #-}
module Partiality-monad.Inductive.Monad.Adjunction where
open import Equality.Propositional.Cubical
open import Logical-equivalence using (_⇔_)
open import Prelude hiding (T; ⊥)
open import Adjunction equality-with-J
open import Bijection equality-with-J using (_↔_)
open import Category equality-with-J
open import Function-universe equality-with-J hiding (id; _∘_)
open import Functor equality-with-J
open import H-level equality-with-J
open import H-level.Closure equality-with-J
open import Partiality-algebra as PA hiding (id; _∘_)
open import Partiality-algebra.Category as PAC
import Partiality-algebra.Properties as PAP
open import Partiality-monad.Inductive as PI
using (_⊥; partiality-algebra; initial)
open import Partiality-monad.Inductive.Eliminators
import Partiality-monad.Inductive.Monad as PM
import Partiality-monad.Inductive.Omega-continuous as PO
-- A forgetful functor from partiality algebras to sets.
Forget : ∀ {a p q} {A : Type a} →
PAC.precategory p q A ⇨ precategory-Set p ext
functor Forget =
(λ P → T P , T-is-set P)
, Morphism.function
, refl
, refl
where
open Partiality-algebra
-- The precategory of pointed ω-cpos.
ω-CPPO : ∀ p q → Precategory (lsuc (p ⊔ q)) (p ⊔ q)
ω-CPPO p q = PAC.precategory p q ⊥₀
-- Pointed ω-cpos.
ω-cppo : ∀ p q → Type (lsuc (p ⊔ q))
ω-cppo p q = Partiality-algebra p q ⊥₀
-- If there is a function from B to the carrier of P, then P
-- can be converted to a partiality algebra over B.
convert : ∀ {a b p q} {A : Type a} {B : Type b} →
(P : Partiality-algebra p q A) →
(B → Partiality-algebra.T P) →
Partiality-algebra p q B
convert P f = record
{ T = T
; partiality-algebra-with = record
{ _⊑_ = _⊑_
; never = never
; now = f
; ⨆ = ⨆
; antisymmetry = antisymmetry
; T-is-set-unused = T-is-set-unused
; ⊑-refl = ⊑-refl
; ⊑-trans = ⊑-trans
; never⊑ = never⊑
; upper-bound = upper-bound
; least-upper-bound = least-upper-bound
; ⊑-propositional = ⊑-propositional
}
}
where
open Partiality-algebra P
-- A lemma that removes convert from certain types.
drop-convert :
∀ {a p q p′ q′} {A : Type a} {X : ω-cppo p q} {Y : ω-cppo p′ q′}
{f : A → _} {g : A → _} →
Morphism (convert X f) (convert Y g) → Morphism X Y
drop-convert m = record
{ function = function
; monotone = monotone
; strict = strict
; now-to-now = λ x → ⊥-elim x
; ω-continuous = ω-continuous
}
where
open Morphism m
-- Converts partiality algebras to ω-cppos.
drop-now : ∀ {a p q} {A : Type a} →
Partiality-algebra p q A → ω-cppo p q
drop-now P = convert P ⊥-elim
-- The function drop-now does not modify ω-cppos.
drop-now-constant :
∀ {p q} {P : ω-cppo p q} →
drop-now P ≡ P
drop-now-constant =
cong (λ now → record { partiality-algebra-with =
record { now = now } })
(⟨ext⟩ λ x → ⊥-elim x)
-- Converts types to ω-cppos.
Partial⊚ : ∀ {ℓ} → Type ℓ → ω-cppo ℓ ℓ
Partial⊚ = drop-now ∘ partiality-algebra
private
-- A lemma.
Partial⊙′ :
let open Partiality-algebra; open Morphism in
∀ {a b p q} {A : Type a} {B : Type b}
(P : Partiality-algebra p q B) →
(f : A → T P) →
∃ λ (m : Morphism (Partial⊚ A) (drop-now P)) →
(∀ x → function m (PI.now x) ≡ now (convert P f) x)
×
(∀ m′ → (∀ x → function m′ (PI.now x) ≡ now (convert P f) x) →
m ≡ m′)
Partial⊙′ {A = A} P f = m′ , PI.⊥-rec-now _ , lemma
where
P′ : Partiality-algebra _ _ A
P′ = convert P f
m : Morphism (partiality-algebra A) P′
m = proj₁ (initial P′)
m′ : Morphism (Partial⊚ A) (drop-now P)
m′ = drop-convert m
abstract
lemma :
∀ m″ →
(∀ x → Morphism.function m″ (PI.now x) ≡
Partiality-algebra.now P′ x) →
m′ ≡ m″
lemma m″ hyp = _↔_.to equality-characterisation-Morphism (
function m′ ≡⟨⟩
function m ≡⟨ cong function (proj₂ (initial P′) record
{ function = function m″
; monotone = monotone m″
; strict = strict m″
; now-to-now = hyp
; ω-continuous =
ω-continuous m″
}) ⟩∎
function m″ ∎)
where
open Morphism
-- Lifts functions between types to morphisms between the
-- corresponding ω-cppos.
Partial⊙ :
∀ {a b} {A : Type a} {B : Type b} →
(A → B) → Morphism (Partial⊚ A) (Partial⊚ B)
Partial⊙ f = proj₁ (Partial⊙′ (partiality-algebra _) (PI.now ∘ f))
-- Partial⊙ f is the unique morphism (of the given type) mapping
-- PI.now x to PI.now (f x) (for all x).
Partial⊙-now :
∀ {a b} {A : Type a} {B : Type b} {f : A → B} {x} →
Morphism.function (Partial⊙ f) (PI.now x) ≡ PI.now (f x)
Partial⊙-now = proj₁ (proj₂ (Partial⊙′ (partiality-algebra _) _)) _
Partial⊙-unique :
∀ {a b} {A : Type a} {B : Type b} {f : A → B} {m} →
(∀ x → Morphism.function m (PI.now x) ≡ PI.now (f x)) →
Partial⊙ f ≡ m
Partial⊙-unique = proj₂ (proj₂ (Partial⊙′ (partiality-algebra _) _)) _
-- A functor that maps a set A to A ⊥.
Partial : ∀ {ℓ} → precategory-Set ℓ ext ⇨ ω-CPPO ℓ ℓ
_⇨_.functor (Partial {ℓ}) =
Partial⊚ ∘ proj₁
, Partial⊙
, L.lemma₁
, L.lemma₂
where
open Morphism
module L where
abstract
lemma₁ : {A : Type ℓ} → Partial⊙ (id {A = A}) ≡ PA.id
lemma₁ = Partial⊙-unique λ _ → refl
lemma₂ : {A B C : Type ℓ} {f : A → B} {g : B → C} →
Partial⊙ (g ∘ f) ≡ Partial⊙ g PA.∘ Partial⊙ f
lemma₂ {f = f} {g} = Partial⊙-unique λ x →
function (Partial⊙ g PA.∘ Partial⊙ f) (PI.now x) ≡⟨ cong (function (Partial⊙ g)) Partial⊙-now ⟩
function (Partial⊙ g) (PI.now (f x)) ≡⟨ Partial⊙-now ⟩∎
PI.now (g (f x)) ∎
-- Partial is a left adjoint of Forget.
Partial⊣Forget : ∀ {ℓ} → Partial {ℓ = ℓ} ⊣ Forget
Partial⊣Forget {ℓ} =
η
, ε
, (λ {X} →
let P = Partial⊚ (proj₁ X) in
_↔_.to equality-characterisation-Morphism $ ⟨ext⟩ $
⊥-rec-⊥ record
{ pe = fun P (function (Partial⊙ PI.now) PI.never) ≡⟨ cong (fun P) $ strict (Partial⊙ PI.now) ⟩
fun P PI.never ≡⟨ strict (m P) ⟩∎
PI.never ∎
; po = λ x →
fun P (function (Partial⊙ PI.now) (PI.now x)) ≡⟨ cong (fun P) Partial⊙-now ⟩
fun P (PI.now (PI.now x)) ≡⟨ fun-now P ⟩∎
PI.now x ∎
; pl = λ s hyp →
fun P (function (Partial⊙ PI.now) (PI.⨆ s)) ≡⟨ cong (fun P) $ ω-continuous (Partial⊙ PI.now) _ ⟩
fun P (PI.⨆ _) ≡⟨ ω-continuous (m P) _ ⟩
PI.⨆ _ ≡⟨ cong PI.⨆ $ _↔_.to PI.equality-characterisation-increasing hyp ⟩∎
PI.⨆ s ∎
; pp = λ _ → PI.⊥-is-set
})
, (λ {X} → ⟨ext⟩ λ x →
fun X (PI.now x) ≡⟨ fun-now X ⟩∎
x ∎)
where
open Morphism {q₂ = ℓ}
open PAP
open Partiality-algebra
η : id⇨ ⇾ Forget ∙⇨ Partial
_⇾_.natural-transformation η =
PI.now
, (λ {X Y f} → ⟨ext⟩ λ x →
function (Partial⊙ f) (PI.now x) ≡⟨ Partial⊙-now ⟩∎
PI.now (f x) ∎)
m : (X : ω-cppo ℓ ℓ) → Morphism (Partial⊚ (T X)) X
m X = $⟨ id ⟩
(T X → T X) ↝⟨ proj₁ ∘ Partial⊙′ X ⟩
Morphism (Partial⊚ (T X)) (drop-now X) ↝⟨ drop-convert ⟩□
Morphism (Partial⊚ (T X)) X □
fun : (X : ω-cppo ℓ ℓ) → T X ⊥ → T X
fun X = function (m X)
fun-now : ∀ (X : ω-cppo ℓ ℓ) {x} → fun X (PI.now x) ≡ x
fun-now X = proj₁ (proj₂ (Partial⊙′ X _)) _
fun-unique :
(X : ω-cppo ℓ ℓ) (m′ : Morphism (Partial⊚ (T X)) X) →
(∀ x → function m′ (PI.now x) ≡ x) →
fun X ≡ function m′
fun-unique X m′ hyp =
cong function $ proj₂ (proj₂ (Partial⊙′ X _)) (drop-convert m′) hyp
ε : Partial ∙⇨ Forget ⇾ id⇨
_⇾_.natural-transformation ε =
(λ {X} → m X)
, (λ {X Y f} →
let m′ = (Partial ∙⇨ Forget) ⊙ f in
_↔_.to equality-characterisation-Morphism $ ⟨ext⟩ $
⊥-rec-⊥ record
{ pe = function f (fun X PI.never) ≡⟨ cong (function f) (strict (m X)) ⟩
function f (never X) ≡⟨ strict f ⟩
never Y ≡⟨ sym $ strict (m Y) ⟩
fun Y PI.never ≡⟨ cong (fun Y) $ sym $ strict m′ ⟩∎
fun Y (function m′ PI.never) ∎
; po = λ x →
function f (fun X (PI.now x)) ≡⟨ cong (function f) (fun-now X) ⟩
function f x ≡⟨ sym $ fun-now Y ⟩
fun Y (PI.now (function f x)) ≡⟨ cong (fun Y) $ sym Partial⊙-now ⟩∎
fun Y (function m′ (PI.now x)) ∎
; pl = λ s hyp →
function f (fun X (PI.⨆ s)) ≡⟨ cong (function f) (ω-continuous (m X) _) ⟩
function f (⨆ X _) ≡⟨ ω-continuous f _ ⟩
⨆ Y _ ≡⟨ cong (⨆ Y) $ _↔_.to (equality-characterisation-increasing Y) hyp ⟩
⨆ Y _ ≡⟨ sym $ ω-continuous (m Y) _ ⟩
fun Y (PI.⨆ _) ≡⟨ cong (fun Y) $ sym $ ω-continuous m′ _ ⟩∎
fun Y (function m′ (PI.⨆ s)) ∎
; pp = λ _ → T-is-set Y
})
-- Thus we get that the partiality monad is a monad.
Partiality-monad : ∀ {ℓ} → Monad (precategory-Set ℓ ext)
Partiality-monad = adjunction→monad (Partial , Forget , Partial⊣Forget)
private
-- The object part of the monad's functor really does correspond to
-- the partiality monad.
object-part-of-functor-correct :
∀ {a} {A : Set a} →
proj₁ (proj₁ Partiality-monad ⊚ A) ≡ proj₁ A ⊥
object-part-of-functor-correct = refl
-- The definition of "map" obtained here matches the explicit
-- definition in Partiality-monad.Inductive.Monad.
map-correct :
∀ {ℓ} {A B : Set ℓ} {f : proj₁ A → proj₁ B} →
_⊙_ (proj₁ Partiality-monad) {X = A} {Y = B} f ≡
PO.[_⊥→_⊥].function (PM.map f)
map-correct = refl
-- The definition of "return" is the expected one.
return-correct :
∀ {a} {A : Set a} →
_⇾_.transformation (proj₁ (proj₂ Partiality-monad)) {X = A} ≡ PI.now
return-correct = refl
-- The definition of "join" obtained here matches the explicit
-- definition in Partiality-monad.Inductive.Monad.
join-correct :
∀ {a} {A : Set a} →
_⇾_.transformation
(proj₁ (proj₂ (proj₂ Partiality-monad))) {X = A} ≡
PM.join
join-correct = refl
| {
"alphanum_fraction": 0.5035889356,
"avg_line_length": 34.2035928144,
"ext": "agda",
"hexsha": "4a9ed4420ae32b8fb1aabdba410c31bc3acafe0b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/partiality-monad",
"max_forks_repo_path": "src/Partiality-monad/Inductive/Monad/Adjunction.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/partiality-monad",
"max_issues_repo_path": "src/Partiality-monad/Inductive/Monad/Adjunction.agda",
"max_line_length": 131,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/partiality-monad",
"max_stars_repo_path": "src/Partiality-monad/Inductive/Monad/Adjunction.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:59:18.000Z",
"num_tokens": 3892,
"size": 11424
} |
------------------------------------------------------------------------------
-- The group commutator
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module GroupTheory.Commutator where
open import GroupTheory.Base
------------------------------------------------------------------------------
-- The group commutator
--
-- There are two definitions for the group commutator:
--
-- [a,b] = aba⁻¹b⁻¹ (Mac Lane and Garret 1999, p. 418), or
--
-- [a,b] = a⁻¹b⁻¹ab (Kurosh 1960, p. 99).
--
-- We use Kurosh's definition, because this is the definition used by
-- the TPTP 6.4.0 problem GRP/GRP024-5.p. Actually the problem uses
-- the definition
--
-- [a,b] = a⁻¹(b⁻¹(ab)).
[_,_] : G → G → G
[ a , b ] = a ⁻¹ · b ⁻¹ · a · b
{-# ATP definition [_,_] #-}
commutatorAssoc : G → G → G → Set
commutatorAssoc a b c = [ [ a , b ] , c ] ≡ [ a , [ b , c ] ]
{-# ATP definition commutatorAssoc #-}
------------------------------------------------------------------------------
-- References
--
-- Mac Lane, S. and Birkhof, G. (1999). Algebra. 3rd ed. AMS Chelsea
-- Publishing.
--
-- Kurosh, A. G. (1960). The Theory of Groups. 2nd
-- ed. Vol. 1. Translated and edited by K. A. Hirsch. Chelsea
-- Publising Company.
| {
"alphanum_fraction": 0.4614295824,
"avg_line_length": 30.7173913043,
"ext": "agda",
"hexsha": "19d5e57d3c5e578b065c7a953a72d8d2d6fce848",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/GroupTheory/Commutator.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/GroupTheory/Commutator.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/GroupTheory/Commutator.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 379,
"size": 1413
} |
module Categories.Congruence where
open import Level
open import Relation.Binary hiding (_⇒_; Setoid)
open import Categories.Support.PropositionalEquality
open import Categories.Support.Equivalence
open import Categories.Support.EqReasoning
open import Categories.Category hiding (module Heterogeneous; _[_∼_])
record Congruence {o ℓ e} (C : Category o ℓ e) q : Set (o ⊔ ℓ ⊔ e ⊔ suc q) where
open Category C
field
_≡₀_ : Rel Obj q
equiv₀ : IsEquivalence _≡₀_
module Equiv₀ = IsEquivalence equiv₀
field
coerce : ∀ {X₁ X₂ Y₁ Y₂} → X₁ ≡₀ X₂ → Y₁ ≡₀ Y₂ → X₁ ⇒ Y₁ → X₂ ⇒ Y₂
.coerce-resp-≡ : ∀ {X₁ X₂ Y₁ Y₂} (xpf : X₁ ≡₀ X₂) (ypf : Y₁ ≡₀ Y₂)
→ {f₁ f₂ : X₁ ⇒ Y₁} → f₁ ≡ f₂
→ coerce xpf ypf f₁ ≡ coerce xpf ypf f₂
.coerce-refl : ∀ {X Y} (f : X ⇒ Y) → coerce Equiv₀.refl Equiv₀.refl f ≡ f
.coerce-invariant : ∀ {X₁ X₂ Y₁ Y₂} (xpf₁ xpf₂ : X₁ ≡₀ X₂)
(ypf₁ ypf₂ : Y₁ ≡₀ Y₂)
→ (f : X₁ ⇒ Y₁)
→ coerce xpf₁ ypf₁ f ≡ coerce xpf₂ ypf₂ f
.coerce-trans : ∀ {X₁ X₂ X₃ Y₁ Y₂ Y₃} (xpf₁ : X₁ ≡₀ X₂) (xpf₂ : X₂ ≡₀ X₃)
(ypf₁ : Y₁ ≡₀ Y₂) (ypf₂ : Y₂ ≡₀ Y₃)
→ (f : X₁ ⇒ Y₁)
→ coerce (Equiv₀.trans xpf₁ xpf₂) (Equiv₀.trans ypf₁ ypf₂) f
≡ coerce xpf₂ ypf₂ (coerce xpf₁ ypf₁ f)
.coerce-∘ : ∀ {X₁ X₂ Y₁ Y₂ Z₁ Z₂}
→ (pfX : X₁ ≡₀ X₂) (pfY : Y₁ ≡₀ Y₂) (pfZ : Z₁ ≡₀ Z₂)
→ (g : Y₁ ⇒ Z₁) (f : X₁ ⇒ Y₁)
→ coerce pfX pfZ (g ∘ f) ≡ coerce pfY pfZ g ∘ coerce pfX pfY f
.coerce-local : ∀ {X Y} (xpf : X ≡₀ X) (ypf : Y ≡₀ Y) {f : X ⇒ Y} → coerce xpf ypf f ≡ f
coerce-local xpf ypf {f} =
begin
coerce xpf ypf f
↓⟨ coerce-invariant xpf Equiv₀.refl ypf Equiv₀.refl f ⟩
coerce Equiv₀.refl Equiv₀.refl f
↓⟨ coerce-refl f ⟩
f
∎
where open HomReasoning
.coerce-zigzag : ∀ {X₁ X₂ Y₁ Y₂} (pfX : X₁ ≡₀ X₂) (rfX : X₂ ≡₀ X₁)
(pfY : Y₁ ≡₀ Y₂) (rfY : Y₂ ≡₀ Y₁)
→ {f : X₁ ⇒ Y₁}
→ coerce rfX rfY (coerce pfX pfY f) ≡ f
coerce-zigzag pfX rfX pfY rfY {f} =
begin
coerce rfX rfY (coerce pfX pfY f)
↑⟨ coerce-trans _ _ _ _ _ ⟩
coerce (trans pfX rfX) (trans pfY rfY) f
↓⟨ coerce-local _ _ ⟩
f
∎
where
open HomReasoning
open Equiv₀
.coerce-uncong : ∀ {X₁ X₂ Y₁ Y₂} (pfX : X₁ ≡₀ X₂) (pfY : Y₁ ≡₀ Y₂) (f g : X₁ ⇒ Y₁) → coerce pfX pfY f ≡ coerce pfX pfY g → f ≡ g
coerce-uncong xpf ypf f g fg-pf =
begin
f
↑⟨ coerce-zigzag _ _ _ _ ⟩
coerce (sym xpf) (sym ypf) (coerce xpf ypf f)
↓⟨ coerce-resp-≡ _ _ fg-pf ⟩
coerce (sym xpf) (sym ypf) (coerce xpf ypf g)
↓⟨ coerce-zigzag _ _ _ _ ⟩
g
∎
where
open HomReasoning
open Equiv₀
.coerce-slide⇒ : ∀ {X₁ X₂ Y₁ Y₂} (pfX : X₁ ≡₀ X₂) (rfX : X₂ ≡₀ X₁)
(pfY : Y₁ ≡₀ Y₂) (rfY : Y₂ ≡₀ Y₁)
→ (f : X₁ ⇒ Y₁) (g : X₂ ⇒ Y₂)
→ coerce pfX pfY f ≡ g → f ≡ coerce rfX rfY g
coerce-slide⇒ pfX rfX pfY rfY f g eq =
begin
f
↑⟨ coerce-zigzag _ _ _ _ ⟩
coerce rfX rfY (coerce pfX pfY f)
↓⟨ coerce-resp-≡ _ _ eq ⟩
coerce rfX rfY g
∎
where open HomReasoning
.coerce-slide⇐ : ∀ {X₁ X₂ Y₁ Y₂} (pfX : X₁ ≡₀ X₂) (rfX : X₂ ≡₀ X₁)
(pfY : Y₁ ≡₀ Y₂) (rfY : Y₂ ≡₀ Y₁)
→ (f : X₁ ⇒ Y₁) (g : X₂ ⇒ Y₂)
→ f ≡ coerce rfX rfY g → coerce pfX pfY f ≡ g
coerce-slide⇐ pfX rfX pfY rfY f g eq =
begin
coerce pfX pfY f
↓⟨ coerce-resp-≡ _ _ eq ⟩
coerce pfX pfY (coerce rfX rfY g)
↓⟨ coerce-zigzag _ _ _ _ ⟩
g
∎
where open HomReasoning
.coerce-id : ∀ {X Y} (pf₁ pf₂ : X ≡₀ Y) → coerce pf₁ pf₂ id ≡ id
coerce-id pf₁ pf₂ =
begin
coerce pf₁ pf₂ id
↑⟨ identityˡ ⟩
id ∘ coerce pf₁ pf₂ id
↑⟨ ∘-resp-≡ˡ (coerce-local _ _) ⟩
coerce (trans (sym pf₂) pf₂) (trans (sym pf₂) pf₂) id ∘ coerce pf₁ pf₂ id
↓⟨ ∘-resp-≡ˡ (coerce-trans _ _ _ _ _) ⟩
coerce pf₂ pf₂ (coerce (sym pf₂) (sym pf₂) id) ∘ coerce pf₁ pf₂ id
↑⟨ coerce-∘ _ _ _ _ _ ⟩
coerce pf₁ pf₂ (coerce (sym pf₂) (sym pf₂) id ∘ id)
↓⟨ coerce-resp-≡ _ _ identityʳ ⟩
coerce pf₁ pf₂ (coerce (sym pf₂) (sym pf₂) id)
↑⟨ coerce-trans _ _ _ _ _ ⟩
coerce (trans (sym pf₂) pf₁) (trans (sym pf₂) pf₂) id
↓⟨ coerce-local _ _ ⟩
id
∎
where
open HomReasoning
open Equiv₀
module Heterogeneous {o ℓ e} {C : Category o ℓ e} {q} (Q : Congruence C q) where
open Category C
open Congruence Q
open Equiv renaming (refl to refl′; sym to sym′; trans to trans′; reflexive to reflexive′)
open Equiv₀ renaming (refl to refl₀; sym to sym₀; trans to trans₀; reflexive to reflexive₀)
infix 4 _∼_
data _∼_ {A B} (f : A ⇒ B) {X Y} (g : X ⇒ Y) : Set (o ⊔ ℓ ⊔ e ⊔ q) where
≡⇒∼ : (ax : A ≡₀ X) (by : B ≡₀ Y) → .(coerce ax by f ≡ g) → f ∼ g
refl : ∀ {A B} {f : A ⇒ B} → f ∼ f
refl = ≡⇒∼ refl₀ refl₀ (coerce-refl _)
sym : ∀ {A B} {f : A ⇒ B} {D E} {g : D ⇒ E} → f ∼ g → g ∼ f
sym (≡⇒∼ A≡D B≡E f≡g) = ≡⇒∼ (sym₀ A≡D) (sym₀ B≡E) (coerce-slide⇐ _ _ _ _ _ _ (sym′ f≡g))
trans : ∀ {A B} {f : A ⇒ B}
{D E} {g : D ⇒ E}
{F G} {h : F ⇒ G}
→ f ∼ g → g ∼ h → f ∼ h
trans (≡⇒∼ A≡D B≡E f≡g) (≡⇒∼ D≡F E≡G g≡h) = ≡⇒∼
(trans₀ A≡D D≡F)
(trans₀ B≡E E≡G)
(trans′ (trans′ (coerce-trans _ _ _ _ _) (coerce-resp-≡ _ _ f≡g)) g≡h)
reflexive : ∀ {A B} {f g : A ⇒ B} → f ≣ g → f ∼ g
reflexive f≣g = ≡⇒∼ refl₀ refl₀ (trans′ (coerce-refl _) (reflexive′ f≣g))
∘-resp-∼ : ∀ {A B C A′ B′ C′} {f : B ⇒ C} {h : B′ ⇒ C′} {g : A ⇒ B} {i : A′ ⇒ B′} → f ∼ h → g ∼ i → (f ∘ g) ∼ (h ∘ i)
∘-resp-∼ {f = f} {h} {g} {i} (≡⇒∼ B≡B′₁ C≡C′ f≡h) (≡⇒∼ A≡A′ B≡B′₂ g≡i) = ≡⇒∼
A≡A′
C≡C′
(begin
coerce A≡A′ C≡C′ (f ∘ g)
↓⟨ coerce-∘ _ _ _ _ _ ⟩
coerce B≡B′₁ C≡C′ f ∘ coerce A≡A′ B≡B′₁ g
↓⟨ ∘-resp-≡ʳ (coerce-invariant _ _ _ _ _) ⟩
coerce B≡B′₁ C≡C′ f ∘ coerce A≡A′ B≡B′₂ g
↓⟨ ∘-resp-≡ f≡h g≡i ⟩
h ∘ i
∎)
where open HomReasoning
∘-resp-∼ˡ : ∀ {A B C C′} {f : B ⇒ C} {h : B ⇒ C′} {g : A ⇒ B} → f ∼ h → (f ∘ g) ∼ (h ∘ g)
∘-resp-∼ˡ {f = f} {h} {g} (≡⇒∼ B≡B C≡C′ f≡h) = ≡⇒∼ refl₀ C≡C′
(begin
coerce refl₀ C≡C′ (f ∘ g)
↓⟨ coerce-∘ _ _ _ _ _ ⟩
coerce B≡B C≡C′ f ∘ coerce refl₀ B≡B g
↓⟨ ∘-resp-≡ʳ (coerce-local _ _) ⟩
coerce B≡B C≡C′ f ∘ g
↓⟨ ∘-resp-≡ˡ f≡h ⟩
h ∘ g
∎)
where open HomReasoning
∘-resp-∼ʳ : ∀ {A A′ B C} {f : A ⇒ B} {h : A′ ⇒ B} {g : B ⇒ C} → f ∼ h → (g ∘ f) ∼ (g ∘ h)
∘-resp-∼ʳ {f = f} {h} {g} (≡⇒∼ A≡A′ B≡B f≡h) = ≡⇒∼ A≡A′ refl₀
(begin
coerce A≡A′ refl₀ (g ∘ f)
↓⟨ coerce-∘ _ _ _ _ _ ⟩
coerce B≡B refl₀ g ∘ coerce A≡A′ B≡B f
↓⟨ ∘-resp-≡ˡ (coerce-local _ _) ⟩
g ∘ coerce A≡A′ B≡B f
↓⟨ ∘-resp-≡ʳ f≡h ⟩
g ∘ h
∎)
where open HomReasoning
.∼⇒≡ : ∀ {A B} {f g : A ⇒ B} → f ∼ g → f ≡ g
∼⇒≡ (≡⇒∼ A≡A B≡B f≡g) = trans′ (sym′ (coerce-local A≡A B≡B)) (irr f≡g)
domain-≣ : ∀ {A A′ B B′} {f : A ⇒ B} {f′ : A′ ⇒ B′} → f ∼ f′ → A ≡₀ A′
domain-≣ (≡⇒∼ eq _ _) = eq
codomain-≣ : ∀ {A A′ B B′} {f : A ⇒ B} {f′ : A′ ⇒ B′} → f ∼ f′ → B ≡₀ B′
codomain-≣ (≡⇒∼ _ eq _) = eq
∼-cong : ∀ {t : Level} {T : Set t} {dom cod : T → Obj} (f : (x : T) → dom x ⇒ cod x) → ∀ {i j} (eq : i ≣ j) → f i ∼ f j
∼-cong f ≣-refl = refl
-- henry ford versions
.∼⇒≡₂ : ∀ {A A′ B B′} {f : A ⇒ B} {f′ : A′ ⇒ B′} → f ∼ f′ → (A≡A′ : A ≡₀ A′) (B≡B′ : B ≡₀ B′) → coerce A≡A′ B≡B′ f ≡ f′
∼⇒≡₂ (≡⇒∼ pfA pfB pff) A≡A′ B≡B′ = trans′ (coerce-invariant _ _ _ _ _) (irr pff)
-- .∼⇒≡ˡ : ∀ {A B B′} {f : A ⇒ B} {f′ : A ⇒ B′} → f ∼ f′ → (B≣B′ : B ≣ B′) → floatˡ B≣B′ f ≡ f′
-- ∼⇒≡ˡ pf ≣-refl = ∼⇒≡ pf
-- .∼⇒≡ʳ : ∀ {A A′ B} {f : A ⇒ B} {f′ : A′ ⇒ B} → f ∼ f′ → (A≣A′ : A ≣ A′) → floatʳ A≣A′ f ≡ f′
-- ∼⇒≡ʳ pf ≣-refl = ∼⇒≡ pf
-- ≡⇒∼ʳ : ∀ {A A′ B} {f : A ⇒ B} {f′ : A′ ⇒ B} → (A≣A′ : A ≣ A′) → .(floatʳ A≣A′ f ≡ f′) → f ∼ f′
-- ≡⇒∼ʳ ≣-refl pf = ≡⇒∼ pf
coerce-resp-∼ : ∀ {A A′ B B′} (A≡A′ : A ≡₀ A′) (B≡B′ : B ≡₀ B′) {f : C [ A , B ]} → f ∼ coerce A≡A′ B≡B′ f
coerce-resp-∼ A≡A′ B≡B′ = ≡⇒∼ A≡A′ B≡B′ refl′
-- floatˡ-resp-∼ : ∀ {A B B′} (B≣B′ : B ≣ B′) {f : C [ A , B ]} → f ∼ floatˡ B≣B′ f
-- floatˡ-resp-∼ ≣-refl = refl
-- floatʳ-resp-∼ : ∀ {A A′ B} (A≣A′ : A ≣ A′) {f : C [ A , B ]} → f ∼ floatʳ A≣A′ f
-- floatʳ-resp-∼ ≣-refl = refl
infixr 4 ▹_
record -⇒- : Set (o ⊔ ℓ) where
constructor ▹_
field
{Dom} : Obj
{Cod} : Obj
morphism : Dom ⇒ Cod
∼-setoid : Setoid _ _
∼-setoid = record {
Carrier = -⇒-;
_≈_ = λ x y → -⇒-.morphism x ∼ -⇒-.morphism y;
isEquivalence = record { refl = refl; sym = sym; trans = trans } }
module HetReasoning where
open SetoidReasoning ∼-setoid public
_[_∼_] : ∀ {o ℓ e} {C : Category o ℓ e} {q} (Q : Congruence C q) {A B} (f : C [ A , B ]) {X Y} (g : C [ X , Y ]) → Set (q ⊔ o ⊔ ℓ ⊔ e)
Q [ f ∼ g ] = Heterogeneous._∼_ Q f g
TrivialCongruence : ∀ {o ℓ e} (C : Category o ℓ e) → Congruence C _
TrivialCongruence C = record
{ _≡₀_ = _≣_
; equiv₀ = ≣-isEquivalence
; coerce = ≣-subst₂ (_⇒_)
; coerce-resp-≡ = resp-≡
; coerce-refl = λ f → refl
; coerce-invariant = invariant
; coerce-trans = tranz
; coerce-∘ = compose
}
where
open Category C
open Equiv
-- XXX must this depend on proof irrelevance?
.resp-≡ : ∀ {X₁ X₂ Y₁ Y₂} (xpf : X₁ ≣ X₂) (ypf : Y₁ ≣ Y₂) {f₁ f₂ : X₁ ⇒ Y₁}
→ f₁ ≡ f₂ → ≣-subst₂ _⇒_ xpf ypf f₁ ≡ ≣-subst₂ _⇒_ xpf ypf f₂
resp-≡ ≣-refl ≣-refl eq = eq
.invariant : ∀ {X₁ X₂ Y₁ Y₂} (xpf₁ xpf₂ : X₁ ≣ X₂) (ypf₁ ypf₂ : Y₁ ≣ Y₂)
→ (f : X₁ ⇒ Y₁)
→ ≣-subst₂ _⇒_ xpf₁ ypf₁ f ≡ ≣-subst₂ _⇒_ xpf₂ ypf₂ f
invariant ≣-refl ≣-refl ≣-refl ≣-refl f = refl
.tranz : ∀ {X₁ X₂ X₃ Y₁ Y₂ Y₃} (xpf₁ : X₁ ≣ X₂) (xpf₂ : X₂ ≣ X₃)
(ypf₁ : Y₁ ≣ Y₂) (ypf₂ : Y₂ ≣ Y₃)
→ (f : X₁ ⇒ Y₁)
→ ≣-subst₂ _⇒_ (≣-trans xpf₁ xpf₂) (≣-trans ypf₁ ypf₂) f
≡ ≣-subst₂ _⇒_ xpf₂ ypf₂ (≣-subst₂ _⇒_ xpf₁ ypf₁ f)
tranz ≣-refl xpf₂ ≣-refl ypf₂ f = refl
.compose : ∀ {X₁ X₂ Y₁ Y₂ Z₁ Z₂} (pfX : X₁ ≣ X₂)(pfY : Y₁ ≣ Y₂)(pfZ : Z₁ ≣ Z₂)
→ (g : Y₁ ⇒ Z₁) (f : X₁ ⇒ Y₁)
→ ≣-subst₂ _⇒_ pfX pfZ (g ∘ f)
≡ ≣-subst₂ _⇒_ pfY pfZ g ∘ ≣-subst₂ _⇒_ pfX pfY f
compose ≣-refl ≣-refl ≣-refl g f = refl
| {
"alphanum_fraction": 0.469163829,
"avg_line_length": 35.595959596,
"ext": "agda",
"hexsha": "3d57b776c09a02da45f49eff768a1924a9cd81e1",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Congruence.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Congruence.agda",
"max_line_length": 134,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Congruence.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 5329,
"size": 10572
} |
--------------------------------------------------------------------------------
-- This is part of Agda Inference Systems
{-# OPTIONS --sized-types --guardedness #-}
open import Agda.Builtin.Equality
open import Data.Product
open import Data.Sum
open import Codata.Thunk
open import Size
open import Level
open import Relation.Unary using (_⊆_)
module is-lib.InfSys.Equivalence {𝓁} where
private
variable
U : Set 𝓁
open import is-lib.InfSys.Base {𝓁}
open import is-lib.InfSys.Coinduction {𝓁}
open import is-lib.InfSys.SCoinduction {𝓁}
open IS
{- Equivalence CoInd and SCoInd -}
coind-size : ∀{𝓁c 𝓁p 𝓁n}{is : IS {𝓁c} {𝓁p} {𝓁n} U} → CoInd⟦ is ⟧ ⊆ λ u → ∀ {i} → SCoInd⟦ is ⟧ u i
coind-size p-coind with CoInd⟦_⟧.unfold p-coind
... | rn , c , refl , pr = sfold (rn , c , refl , λ i → λ where .force → coind-size (pr i))
size-coind : ∀{𝓁c 𝓁p 𝓁n}{is : IS {𝓁c} {𝓁p} {𝓁n} U} → (λ u → ∀ {i} → SCoInd⟦ is ⟧ u i) ⊆ CoInd⟦ is ⟧
size-coind {is = is} p-scoind = coind[ is ] (λ u → ∀ {j} → SCoInd⟦ is ⟧ u j) scoind-postfix p-scoind | {
"alphanum_fraction": 0.5849056604,
"avg_line_length": 33.125,
"ext": "agda",
"hexsha": "488b6a320e49f6a5b0e55c30118911c21b9bb644",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "boystrange/FairSubtypingAgda",
"max_forks_repo_path": "src/is-lib/InfSys/Equivalence.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "boystrange/FairSubtypingAgda",
"max_issues_repo_path": "src/is-lib/InfSys/Equivalence.agda",
"max_line_length": 102,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "boystrange/FairSubtypingAgda",
"max_stars_repo_path": "src/is-lib/InfSys/Equivalence.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-24T14:38:47.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-07-29T14:32:30.000Z",
"num_tokens": 407,
"size": 1060
} |
module Data.Bin.Minus where
open import Data.Bin hiding (suc; fromℕ)
open Data.Bin using (2+_)
open import Data.Bin.Bijection using (fromℕ)
open import Data.Fin hiding (_-_; _+_; toℕ; _<_; fromℕ)
open import Data.List
open import Data.Digit
open import Relation.Binary.PropositionalEquality
open import Data.Nat using (ℕ; _∸_; suc; zero) renaming (_+_ to _ℕ+_)
infixl 6 _-?_
infixl 6 _-_
open import Function
pred' : Bin → Bin
pred' 0# = 0#
pred' ([] 1#) = 0#
pred' ((zero ∷ t) 1#) = case Data.Bin.pred t of
λ {
0# → [] 1# ;
(t' 1#) → (suc zero ∷ t') 1#
}
pred' ((suc zero ∷ t) 1#) = (zero ∷ t) 1#
pred' ((suc (suc ()) ∷ _) 1#)
open import Data.Sum
open import Data.Unit
import Data.Nat.Properties
data Greater (a b : Bin) : Set where
greater : ∀ (diff : Bin⁺) → b + diff 1# ≡ a → Greater a b
open import Data.Empty using (⊥; ⊥-elim)
import Data.Bin.Addition
open import Data.Bin.Props
greater-to-< : ∀ a b → Greater a b → b < a
greater-to-< ._ b (greater diff refl) =
let
zz = Data.Nat.Properties.+-mono-≤
{1} {toℕ (diff 1#)} {toℕ b} {toℕ b}
(case z<nz diff of λ { (Data.Bin.less p) → p })
Data.Nat.Properties.≤-refl
in
Data.Bin.less (Data.Nat.Properties.≤-trans zz (
Data.Nat.Properties.≤-reflexive (
trans
(sym (Data.Nat.Properties.+-comm (toℕ b) _))
(sym (Data.Bin.Addition.+-is-addition b (diff 1#)))
)))
open import Data.Product
data Difference (a b : Bin) : Set where
positive : Greater a b → Difference a b
negative : Greater b a → Difference a b
equal : a ≡ b → Difference a b
open import Relation.Nullary
open import Algebra.Structures
import Data.Bin.Addition
open IsCommutativeMonoid Data.Bin.Addition.is-commutativeMonoid
using (identity; identityˡ)
renaming (comm to +-comm; assoc to +-assoc)
open import Data.Product
identityʳ = proj₂ identity
∷-pred : Bit → Bin⁺ → Bin⁺
∷-pred zero [] = []
∷-pred zero (h ∷ t) = suc zero ∷ ∷-pred h t
∷-pred (suc zero) l = zero ∷ l
∷-pred (suc (suc ())) l
open Relation.Binary.PropositionalEquality.≡-Reasoning
open import Data.Bin.Multiplication using (∷1#-interpretation)
open import Function using (_⟨_⟩_)
seems-trivial : ∀ xs → (zero ∷ xs) 1# + [] 1# ≡ (suc zero ∷ xs) 1#
seems-trivial xs = cong (λ q → q + [] 1#) (∷1#-interpretation zero xs ⟨ trans ⟩ (identityˡ (xs 1# *2))) ⟨ trans ⟩ +-comm (xs 1# *2) ([] 1#) ⟨ trans ⟩ sym (∷1#-interpretation (suc zero) xs)
open import Data.Bin.Props
carry : ∀ t → [] 1# + (suc zero ∷ t) 1# ≡ ([] 1# + t 1#) *2
carry t =
begin
[] 1# + (suc zero ∷ t) 1#
≡⟨ cong (_+_ ([] 1#)) (∷1#-interpretation (suc zero) t) ⟩
[] 1# + ([] 1# + t 1# *2)
≡⟨ sym (+-assoc ([] 1#) ([] 1#) (t 1# *2)) ⟩
[] 1# *2 + (t 1# *2)
≡⟨ sym (*2-distrib ([] 1#) (t 1#)) ⟩
([] 1# + t 1#) *2
∎
1+∷-pred : ∀ h t → [] 1# + (∷-pred h t) 1# ≡ (h ∷ t) 1#
1+∷-pred zero [] = refl
1+∷-pred zero (x ∷ xs) =
begin
[] 1# + (suc zero ∷ ∷-pred x xs) 1#
≡⟨ carry (∷-pred x xs) ⟩
([] 1# + (∷-pred x xs) 1#) *2
≡⟨ cong _*2 (1+∷-pred x xs) ⟩
(x ∷ xs) 1# *2
≡⟨ refl ⟩
(zero ∷ x ∷ xs) 1#
∎
1+∷-pred (suc zero) t = +-comm ([] 1#) ((zero ∷ t) 1#) ⟨ trans ⟩ seems-trivial t
1+∷-pred (suc (suc ())) t
data Comparison (A : Set) : Set where
greater : A → Comparison A
equal : Comparison A
less : A → Comparison A
map-cmp : {A B : Set} → (A → B) → Comparison A → Comparison B
map-cmp f (greater a) = greater (f a)
map-cmp f (less a) = less (f a)
map-cmp f equal = equal
_%f_ : ∀ {b} → Fin (suc b) → Fin (suc b) → Comparison (Fin b)
zero %f zero = equal
zero %f suc b = less b
suc a %f zero = greater a
_%f_ {suc base} (suc a) (suc b) = map-cmp inject₁ (a %f b)
_%f_ {zero} (suc ()) (suc ())
_*2-1 : Bin⁺ → Bin⁺
[] *2-1 = []
(suc zero ∷ t) *2-1 = suc zero ∷ zero ∷ t
(zero ∷ t) *2-1 = suc zero ∷ (t *2-1)
(suc (suc ()) ∷ t) *2-1
_*2+1' : Bin⁺ → Bin⁺
l *2+1' = suc zero ∷ l
addBit : Bin⁺ → Comparison (Fin 1) → Bin⁺
addBit gt (greater zero) = gt *2+1'
addBit gt equal = zero ∷ gt
addBit gt (less zero) = gt *2-1
addBit gt (less (suc ()))
addBit gt (greater (suc ()))
open import Data.Bin.Utils
*2-1-lem : ∀ d → (d *2-1) 1# + [] 1# ≡ d 1# *2
*2-1-lem [] = refl
*2-1-lem (zero ∷ xs) =
begin
(zero ∷ xs) *2-1 1# + [] 1#
≡⟨ refl ⟩
(suc zero ∷ (xs *2-1)) 1# + [] 1#
≡⟨ +-comm ((suc zero ∷ xs *2-1) 1#) ([] 1#) ⟩
[] 1# + (suc zero ∷ (xs *2-1)) 1#
≡⟨ carry (xs *2-1) ⟩
([] 1# + (xs *2-1) 1#) *2
≡⟨ cong _*2 (+-comm ([] 1#) ((xs *2-1) 1#)) ⟩
((xs *2-1) 1# + [] 1#) *2
≡⟨ cong _*2 (*2-1-lem xs) ⟩
(xs 1# *2) *2
≡⟨ refl ⟩
(zero ∷ xs) 1# *2
∎
*2-1-lem (suc zero ∷ xs) =
begin
(suc zero ∷ zero ∷ xs) 1# + [] 1#
≡⟨ cong (λ q → q + [] 1#) (∷1#-interpretation (suc zero) (zero ∷ xs)) ⟩
[] 1# + (zero ∷ xs) 1# *2 + [] 1#
≡⟨ refl ⟩
[] 1# + xs 1# *2 *2 + [] 1#
≡⟨ +-comm ([] 1# + xs 1# *2 *2) ([] 1#) ⟩
[] 1# + ([] 1# + xs 1# *2 *2)
≡⟨ sym (+-assoc ([] 1#) ([] 1#) (xs 1# *2 *2)) ⟩
[] 1# *2 + xs 1# *2 *2
≡⟨ sym (*2-distrib ([] 1#) (xs 1# *2)) ⟩
([] 1# + xs 1# *2) *2
≡⟨ cong _*2 (sym (∷1#-interpretation (suc zero) xs)) ⟩
(suc zero ∷ xs) 1# *2
≡⟨ refl ⟩
(zero ∷ suc zero ∷ xs) 1#
∎
*2-1-lem (suc (suc ()) ∷ xs)
addBit-lem : ∀ x y d → addBit d (x %f y) 1# + bitToBin y ≡ d 1# *2 + bitToBin x
addBit-lem zero zero d = refl
addBit-lem (suc zero) zero d = refl
addBit-lem zero (suc zero) d = *2-1-lem d ⟨ trans ⟩ sym (identityʳ (d 1# *2))
addBit-lem (suc zero) (suc zero) d = refl
addBit-lem (suc (suc ())) _ d
addBit-lem _ (suc (suc ())) d
+-cong₁ : ∀ {z} {x y} → x ≡ y → x + z ≡ y + z
+-cong₁ {z} = cong (λ q → q + z)
+-cong₂ : ∀ {z} {x y} → x ≡ y → z + x ≡ z + y
+-cong₂ {z} = cong (λ q → z + q)
refineGt : ∀ xs ys (x y : Bit) → Greater (xs 1#) (ys 1#) → Greater ((x ∷ xs) 1#) ((y ∷ ys) 1#)
refineGt xs ys x y (greater d ys+d=xs) = greater (addBit d (x %f y)) good where
good : (y ∷ ys) 1# + addBit d (x %f y) 1# ≡ (x ∷ xs) 1#
good =
begin
(y ∷ ys) 1# + addBit d (x %f y) 1#
≡⟨ +-cong₁ {addBit d (x %f y) 1#} (∷1#-interpretation y ys) ⟩
bitToBin y + (ys 1#) *2 + addBit d (x %f y) 1#
≡⟨ +-comm (bitToBin y + (ys 1#) *2) (addBit d (x %f y) 1#) ⟩
addBit d (x %f y) 1# + (bitToBin y + (ys 1#) *2)
≡⟨ sym (+-assoc (addBit d (x %f y) 1#) (bitToBin y) ((ys 1#) *2)) ⟩
(addBit d (x %f y) 1# + bitToBin y) + (ys 1#) *2
≡⟨ +-cong₁ {(ys 1#) *2} (addBit-lem x y d) ⟩
(d 1# *2 + bitToBin x) + (ys 1#) *2
≡⟨ +-cong₁ {(ys 1#) *2} (+-comm (d 1# *2) (bitToBin x)) ⟩
(bitToBin x + d 1# *2 ) + (ys 1#) *2
≡⟨ +-assoc (bitToBin x) (d 1# *2) ((ys 1#) *2) ⟩
bitToBin x + (d 1# *2 + (ys 1#) *2)
≡⟨ +-cong₂ {bitToBin x} (+-comm (d 1# *2) ((ys 1#) *2)) ⟩
bitToBin x + ((ys 1#) *2 + d 1# *2)
≡⟨ +-cong₂ {bitToBin x} (sym (*2-distrib (ys 1#) (d 1#))) ⟩
bitToBin x + (ys 1# + d 1#) *2
≡⟨ +-cong₂ {bitToBin x} (cong _*2 ys+d=xs) ⟩
bitToBin x + xs 1# *2
≡⟨ sym (∷1#-interpretation x xs) ⟩
(x ∷ xs) 1#
∎
compare-bit : ∀ a b xs → Difference ((a ∷ xs) 1#) ((b ∷ xs) 1#)
compare-bit 0b 0b xs = equal refl
compare-bit 1b 0b xs = positive (greater [] (seems-trivial xs))
compare-bit 0b 1b xs = negative (greater [] (seems-trivial xs))
compare-bit 1b 1b xs = equal refl
compare-bit (2+ ()) _ xs
compare-bit _ (2+ ()) xs
_-⁺_ : ∀ a b → Difference (a 1#) (b 1#)
[] -⁺ [] = equal refl
[] -⁺ (x ∷ xs) = negative (greater (∷-pred x xs) (1+∷-pred x xs))
(x ∷ xs) -⁺ [] = positive (greater (∷-pred x xs) (1+∷-pred x xs))
(x ∷ xs) -⁺ (y ∷ ys) =
case xs -⁺ ys of
λ {
(positive gt) → positive (refineGt xs ys x y gt) ;
(negative lt) → negative (refineGt ys xs y x lt) ;
(equal refl) → compare-bit _ _ xs
}
_-?_ : ∀ a b → Difference a b
0# -? 0# = equal refl
a 1# -? 0# = positive (greater a (identityˡ (a 1#)))
0# -? a 1# = negative (greater a (identityˡ (a 1#)))
a 1# -? b 1# = a -⁺ b
_%⁺_ : Bin⁺ → Bin⁺ → Comparison Bin⁺
[] %⁺ [] = equal
(h ∷ t) %⁺ [] = greater (∷-pred h t)
[] %⁺ (h ∷ t) = less (∷-pred h t)
(x ∷ xs) %⁺ (y ∷ ys) with xs %⁺ ys
... | greater gt = greater (addBit gt (x %f y))
... | less lt = less (addBit lt (y %f x))
... | equal = map-cmp (λ _ → []) (x %f y)
succ : Bin⁺ → Bin⁺
succ [] = zero ∷ []
succ (zero ∷ t) = suc zero ∷ t
succ (suc zero ∷ t) = zero ∷ succ t
succ (suc (suc ()) ∷ t)
succpred-id : ∀ x xs → succ (∷-pred x xs) ≡ x ∷ xs
succpred-id zero [] = refl
succpred-id zero (x ∷ xs) = cong (λ z → zero ∷ z) (succpred-id x xs)
succpred-id (suc zero) xs = refl
succpred-id (suc (suc ())) xs
-- CR: difference-to-∸ : ∀ {a b} → Difference a b → Bin
-- difference-to-bin
_-_ : Bin → Bin → Bin
x - y with x -? y
... | positive (greater d _) = d 1#
... | equal _ = 0#
... | negative _ = 0#
open import Data.Bin.Bijection using (fromℕ-bijection; toℕ-inj; fromToℕ-inverse; fromℕ-inj)
open import Data.Bin.Addition using (+-is-addition)
suc-inj : ∀ {x y : ℕ} → Data.Nat.suc x ≡ suc y → x ≡ y
suc-inj {x} .{x} refl = refl
ℕ-+-inj₂ : ∀ z {a b} → Data.Nat._+_ z a ≡ Data.Nat._+_ z b → a ≡ b
ℕ-+-inj₂ zero refl = refl
ℕ-+-inj₂ (suc n) eq = ℕ-+-inj₂ n (suc-inj eq)
+-inj₂ : ∀ z {a b} → z + a ≡ z + b → a ≡ b
+-inj₂ z {a} {b} z+a≡z+b = toℕ-inj ( ℕ-+-inj₂ (toℕ z) (sym (+-is-addition z a) ⟨ trans ⟩ cong toℕ z+a≡z+b ⟨ trans ⟩ +-is-addition z b) )
nat-+zz : ∀ a b → Data.Nat._+_ a b ≡ 0 → a ≡ 0
nat-+zz zero b _ = refl
nat-+zz (suc _) b ()
+zz : ∀ a b → a + b ≡ 0# → a ≡ 0#
+zz a b eq = toℕ-inj (nat-+zz (toℕ a) (toℕ b) (sym (+-is-addition a b) ⟨ trans ⟩ cong toℕ eq))
minus-elim : ∀ x z → z + x - z ≡ x
minus-elim x z with (z + x -? z)
... | positive (greater d z+d=z+x) = +-inj₂ z z+d=z+x
... | equal z+x≡z = +-inj₂ z (identityʳ z ⟨ trans ⟩ sym z+x≡z)
... | negative (greater d z+x+d≡z) = sym (+zz x (d 1#) (+-inj₂ z
( sym (+-assoc z x (d 1#)) ⟨ trans ⟩ z+x+d≡z ⟨ trans ⟩ sym (identityʳ z))))
import Data.Bin.NatHelpers
x≮z→x≡z+y : ∀ {x z} → ¬ x < z → ∃ λ y → x ≡ z + y
x≮z→x≡z+y {x} {z} x≮z = case
Data.Bin.NatHelpers.x≮z→x≡z+y (λ toℕ-leq → x≮z (less toℕ-leq))
of λ { (y , eq) → fromℕ y , toℕ-inj (
begin
toℕ x
≡⟨ eq ⟩
toℕ z ℕ+ y
≡⟨ cong (λ q → toℕ z ℕ+ q) (fromℕ-inj (sym (fromToℕ-inverse (fromℕ y)))) ⟩
toℕ z ℕ+ toℕ (fromℕ y)
≡⟨ sym (+-is-addition z (fromℕ y)) ⟩
toℕ (z + fromℕ y)
∎) }
-+-elim' : ∀ {x z} → ¬ x < z → x - z + z ≡ x
-+-elim' {x} {z} x≮z = case x≮z→x≡z+y x≮z of
λ { (y , refl) →
begin
z + y - z + z
≡⟨ cong (λ q → q + z) (minus-elim y z)⟩
y + z
≡⟨ +-comm y z ⟩
z + y
∎ }
| {
"alphanum_fraction": 0.489693998,
"avg_line_length": 31.7377521614,
"ext": "agda",
"hexsha": "36055be3b3f59fbbdf035d13cf8338fa3fae2427",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "09cc5104421e88da82f9fead5a43f0028f77810d",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "Rotsor/BinDivMod",
"max_forks_repo_path": "Data/Bin/Minus.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "09cc5104421e88da82f9fead5a43f0028f77810d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "Rotsor/BinDivMod",
"max_issues_repo_path": "Data/Bin/Minus.agda",
"max_line_length": 190,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "09cc5104421e88da82f9fead5a43f0028f77810d",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "Rotsor/BinDivMod",
"max_stars_repo_path": "Data/Bin/Minus.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-18T13:58:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-18T13:58:14.000Z",
"num_tokens": 5125,
"size": 11013
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Homogeneously-indexed binary relations
------------------------------------------------------------------------
-- The contents of this module should be accessed via
-- `Relation.Binary.Indexed.Homogeneous`.
{-# OPTIONS --without-K --safe #-}
module Relation.Binary.Indexed.Homogeneous.Bundles where
open import Data.Product using (_,_)
open import Function using (_⟨_⟩_)
open import Level using (Level; _⊔_; suc)
open import Relation.Binary as B using (_⇒_)
open import Relation.Binary.PropositionalEquality as P using (_≡_)
open import Relation.Nullary using (¬_)
open import Relation.Binary.Indexed.Homogeneous.Core
open import Relation.Binary.Indexed.Homogeneous.Structures
-- Indexed structures are laid out in a similar manner as to those
-- in Relation.Binary. The main difference is each structure also
-- contains proofs for the lifted version of the relation.
------------------------------------------------------------------------
-- Equivalences
record IndexedSetoid {i} (I : Set i) c ℓ : Set (suc (i ⊔ c ⊔ ℓ)) where
infix 4 _≈ᵢ_ _≈_
field
Carrierᵢ : I → Set c
_≈ᵢ_ : IRel Carrierᵢ ℓ
isEquivalenceᵢ : IsIndexedEquivalence Carrierᵢ _≈ᵢ_
open IsIndexedEquivalence isEquivalenceᵢ public
Carrier : Set _
Carrier = ∀ i → Carrierᵢ i
_≈_ : B.Rel Carrier _
_≈_ = Lift Carrierᵢ _≈ᵢ_
_≉_ : B.Rel Carrier _
x ≉ y = ¬ (x ≈ y)
setoid : B.Setoid _ _
setoid = record
{ isEquivalence = isEquivalence
}
record IndexedDecSetoid {i} (I : Set i) c ℓ : Set (suc (i ⊔ c ⊔ ℓ)) where
infix 4 _≈ᵢ_
field
Carrierᵢ : I → Set c
_≈ᵢ_ : IRel Carrierᵢ ℓ
isDecEquivalenceᵢ : IsIndexedDecEquivalence Carrierᵢ _≈ᵢ_
open IsIndexedDecEquivalence isDecEquivalenceᵢ public
indexedSetoid : IndexedSetoid I c ℓ
indexedSetoid = record
{ isEquivalenceᵢ = isEquivalenceᵢ
}
open IndexedSetoid indexedSetoid public
using (Carrier; _≈_; _≉_; setoid)
------------------------------------------------------------------------
-- Preorders
record IndexedPreorder {i} (I : Set i) c ℓ₁ ℓ₂ :
Set (suc (i ⊔ c ⊔ ℓ₁ ⊔ ℓ₂)) where
infix 4 _≈ᵢ_ _∼ᵢ_ _≈_ _∼_
field
Carrierᵢ : I → Set c
_≈ᵢ_ : IRel Carrierᵢ ℓ₁
_∼ᵢ_ : IRel Carrierᵢ ℓ₂
isPreorderᵢ : IsIndexedPreorder Carrierᵢ _≈ᵢ_ _∼ᵢ_
open IsIndexedPreorder isPreorderᵢ public
Carrier : Set _
Carrier = ∀ i → Carrierᵢ i
_≈_ : B.Rel Carrier _
x ≈ y = ∀ i → x i ≈ᵢ y i
_∼_ : B.Rel Carrier _
x ∼ y = ∀ i → x i ∼ᵢ y i
preorder : B.Preorder _ _ _
preorder = record
{ isPreorder = isPreorder
}
------------------------------------------------------------------------
-- Partial orders
record IndexedPoset {i} (I : Set i) c ℓ₁ ℓ₂ :
Set (suc (i ⊔ c ⊔ ℓ₁ ⊔ ℓ₂)) where
field
Carrierᵢ : I → Set c
_≈ᵢ_ : IRel Carrierᵢ ℓ₁
_≤ᵢ_ : IRel Carrierᵢ ℓ₂
isPartialOrderᵢ : IsIndexedPartialOrder Carrierᵢ _≈ᵢ_ _≤ᵢ_
open IsIndexedPartialOrder isPartialOrderᵢ public
preorderᵢ : IndexedPreorder I c ℓ₁ ℓ₂
preorderᵢ = record
{ isPreorderᵢ = isPreorderᵢ
}
open IndexedPreorder preorderᵢ public
using (Carrier; _≈_; preorder) renaming (_∼_ to _≤_)
poset : B.Poset _ _ _
poset = record
{ isPartialOrder = isPartialOrder
}
| {
"alphanum_fraction": 0.5875509017,
"avg_line_length": 27.2857142857,
"ext": "agda",
"hexsha": "a0fc42d2bc54ca32f3e7af4e39714eb9af7bf125",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Relation/Binary/Indexed/Homogeneous/Bundles.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Relation/Binary/Indexed/Homogeneous/Bundles.agda",
"max_line_length": 73,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Relation/Binary/Indexed/Homogeneous/Bundles.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 1126,
"size": 3438
} |
------------------------------------------------------------------------------
-- FOTC combinators for lists, colists, streams, etc.
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Base.List where
open import FOTC.Base
infixr 5 _∷_
------------------------------------------------------------------------------
-- List constants.
postulate [] cons head tail null : D -- FOTC partial lists.
-- Definitions
abstract
_∷_ : D → D → D
x ∷ xs = cons · x · xs
-- {-# ATP definition _∷_ #-}
head₁ : D → D
head₁ xs = head · xs
-- {-# ATP definition head₁ #-}
tail₁ : D → D
tail₁ xs = tail · xs
-- {-# ATP definition tail₁ #-}
null₁ : D → D
null₁ xs = null · xs
-- {-# ATP definition null₁ #-}
------------------------------------------------------------------------------
-- Conversion rules
-- Conversion rules for null.
-- null-[] : null · [] ≡ true
-- null-∷ : ∀ x xs → null · (cons · x · xs) ≡ false
postulate
null-[] : null₁ [] ≡ true
null-∷ : ∀ x xs → null₁ (x ∷ xs) ≡ false
-- Conversion rule for head.
-- head-∷ : ∀ x xs → head · (cons · x · xs) ≡ x
postulate head-∷ : ∀ x xs → head₁ (x ∷ xs) ≡ x
{-# ATP axiom head-∷ #-}
-- Conversion rule for tail.
-- tail-∷ : ∀ x xs → tail · (cons · x · xs) ≡ xs
postulate tail-∷ : ∀ x xs → tail₁ (x ∷ xs) ≡ xs
{-# ATP axiom tail-∷ #-}
------------------------------------------------------------------------------
-- Discrimination rules
-- postulate []≢cons : ∀ {x xs} → [] ≢ cons · x · xs
postulate []≢cons : ∀ {x xs} → [] ≢ x ∷ xs
| {
"alphanum_fraction": 0.4062146893,
"avg_line_length": 28.0952380952,
"ext": "agda",
"hexsha": "c19218438b07a0ebbec1fc1b2de8cfda098a4d6c",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Base/List.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Base/List.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Base/List.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 478,
"size": 1770
} |
{-# OPTIONS --no-syntactic-equality #-}
open import Agda.Primitive
variable
a : Level
postulate
A : Set a
| {
"alphanum_fraction": 0.6814159292,
"avg_line_length": 11.3,
"ext": "agda",
"hexsha": "7426c716fac4fe45e8dd548cef85e29f4b67094a",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue4265.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue4265.agda",
"max_line_length": 39,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue4265.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 34,
"size": 113
} |
module MultipleIdentifiersOneSignature where
data Bool : Set where
false true : Bool
data Suit : Set where
♥ ♢ ♠ ♣ : Suit
record R : Set₁ where
field
A B C : Set
postulate
A Char : Set
B C : Set
{-# BUILTIN CHAR Char #-}
{-# BUILTIN BOOL Bool #-}
{-# BUILTIN TRUE true #-}
{-# BUILTIN FALSE false #-}
primitive
primIsDigit primIsSpace : Char → Bool
| {
"alphanum_fraction": 0.6342105263,
"avg_line_length": 15.8333333333,
"ext": "agda",
"hexsha": "d1a98d0061cbcc968300b5ab75e8acdce13d5c20",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/agda-kanso",
"max_forks_repo_path": "test/succeed/MultipleIdentifiersOneSignature.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/agda-kanso",
"max_issues_repo_path": "test/succeed/MultipleIdentifiersOneSignature.agda",
"max_line_length": 44,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/succeed/MultipleIdentifiersOneSignature.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 114,
"size": 380
} |
{-# OPTIONS --type-in-type #-}
module Spire.DarkwingDuck.Primitive where
----------------------------------------------------------------------
infixr 4 _,_
infixr 5 _∷_
----------------------------------------------------------------------
postulate String : Set
{-# BUILTIN STRING String #-}
----------------------------------------------------------------------
data ⊥ : Set where
elimBot : (P : ⊥ → Set)
(v : ⊥) → P v
elimBot P ()
----------------------------------------------------------------------
data ⊤ : Set where
tt : ⊤
elimUnit : (P : ⊤ → Set)
(ptt : P tt)
(u : ⊤) → P u
elimUnit P ptt tt = ptt
----------------------------------------------------------------------
data Σ (A : Set) (B : A → Set) : Set where
_,_ : (a : A) (b : B a) → Σ A B
elimPair : (A : Set) (B : A → Set)
(P : Σ A B → Set)
(ppair : (a : A) (b : B a) → P (a , b))
(ab : Σ A B) → P ab
elimPair A B P ppair (a , b) = ppair a b
----------------------------------------------------------------------
data _≡_ {A : Set} (x : A) : {B : Set} → B → Set where
refl : x ≡ x
elimEq : (A : Set) (x : A) (P : (y : A) → x ≡ y → Set)
(prefl : P x refl)
(y : A) (q : x ≡ y) → P y q
elimEq A .x P prefl x refl = prefl
----------------------------------------------------------------------
data Enum : Set where
[] : Enum
_∷_ : (x : String) (xs : Enum) → Enum
elimEnum : (P : Enum → Set)
(pnil : P [])
(pcons : (x : String) (xs : Enum) → P xs → P (x ∷ xs))
(xs : Enum) → P xs
elimEnum P pnil pcons [] = pnil
elimEnum P pnil pcons (x ∷ xs) = pcons x xs (elimEnum P pnil pcons xs)
----------------------------------------------------------------------
data Tag : Enum → Set where
here : ∀{x xs} → Tag (x ∷ xs)
there : ∀{x xs} → Tag xs → Tag (x ∷ xs)
Branches : (E : Enum) (P : Tag E → Set) → Set
Branches [] P = ⊤
Branches (l ∷ E) P = Σ (P here) (λ _ → Branches E (λ t → P (there t)))
case : (E : Enum) (P : Tag E → Set) (cs : Branches E P) (t : Tag E) → P t
case (ℓ ∷ E) P ccs here = elimPair (P here) (λ _ → Branches E (λ t → P (there t))) (λ _ → P here)
(λ c cs → c) ccs
case (ℓ ∷ E) P ccs (there t) = elimPair (P here) (λ _ → Branches E (λ t → P (there t))) (λ _ → P (there t))
(λ c cs → case E (λ t → P (there t)) cs t) ccs
----------------------------------------------------------------------
data Tel : Set₁ where
Emp : Tel
Ext : (A : Set) (B : A → Tel) → Tel
elimTel : (P : Tel → Set)
(pemp : P Emp)
(pext : (A : Set) (B : A → Tel) (pb : (a : A) → P (B a)) → P (Ext A B))
(T : Tel) → P T
elimTel P pemp pext Emp = pemp
elimTel P pemp pext (Ext A B) = pext A B (λ a → elimTel P pemp pext (B a))
----------------------------------------------------------------------
data Desc (I : Set) : Set₁ where
End : (i : I) → Desc I
Rec : (i : I) (D : Desc I) → Desc I
Arg : (A : Set) (B : A → Desc I) → Desc I
elimDesc : (I : Set) (P : Desc I → Set)
(pend : (i : I) → P (End i))
(prec : (i : I) (D : Desc I) (pd : P D) → P (Rec i D))
(parg : (A : Set) (B : A → Desc I) (pb : (a : A) → P (B a)) → P (Arg A B))
(D : Desc I) → P D
elimDesc I P pend prec parg (End i) = pend i
elimDesc I P pend prec parg (Rec i D) = prec i D (elimDesc I P pend prec parg D)
elimDesc I P pend prec parg (Arg A B) = parg A B (λ a → elimDesc I P pend prec parg (B a))
Func : (I : Set) (D : Desc I) → (I → Set) → I → Set
Func I (End j) X i = j ≡ i
Func I (Rec j D) X i = Σ (X j) (λ _ → Func I D X i)
Func I (Arg A B) X i = Σ A (λ a → Func I (B a) X i)
Hyps : (I : Set) (D : Desc I) (X : I → Set) (M : (i : I) → X i → Set) (i : I) (xs : Func I D X i) → Set
Hyps I (End j) X M i q = ⊤
Hyps I (Rec j D) X M i = elimPair (X j) (λ _ → Func I D X i) (λ _ → Set)
(λ x xs → Σ (M j x) (λ _ → Hyps I D X M i xs))
Hyps I (Arg A B) X M i = elimPair A (λ a → Func I (B a) X i) (λ _ → Set)
(λ a xs → Hyps I (B a) X M i xs)
----------------------------------------------------------------------
data μ (ℓ : String) (P I : Set) (D : Desc I) (p : P) (i : I) : Set where
init : Func I D (μ ℓ P I D p) i → μ ℓ P I D p i
prove : (I : Set) (D : Desc I) (X : I → Set) (M : (i : I) → X i → Set)
(m : (i : I) (x : X i) → M i x)
(i : I) (xs : Func I D X i)
→ Hyps I D X M i xs
prove I (End j) X M m i q = tt
prove I (Rec j D) X M m i = elimPair (X j) (λ _ → Func I D X i)
(λ xxs → Hyps I (Rec j D) X M i xxs)
(λ x xs → m j x , prove I D X M m i xs)
prove I (Arg A B) X M m i = elimPair A (λ a → Func I (B a) X i)
(λ axs → Hyps I (Arg A B) X M i axs)
(λ a xs → prove I (B a) X M m i xs)
{-# NO_TERMINATION_CHECK #-}
ind : (ℓ : String) (P I : Set) (D : Desc I) (p : P)
(M : (i : I) → μ ℓ P I D p i → Set)
(α : ∀ i (xs : Func I D (μ ℓ P I D p) i) (ihs : Hyps I D (μ ℓ P I D p) M i xs) → M i (init xs))
(i : I)
(x : μ ℓ P I D p i)
→ M i x
ind ℓ P I D p M α i (init xs) = α i xs (prove I D (μ ℓ P I D p) M (ind ℓ P I D p M α) i xs)
----------------------------------------------------------------------
| {
"alphanum_fraction": 0.408171521,
"avg_line_length": 32.96,
"ext": "agda",
"hexsha": "478ea94d4670b39bf0d9a7136597c6f852254bb2",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-08-17T21:00:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-08-17T21:00:07.000Z",
"max_forks_repo_head_hexsha": "3d67f137ee9423b7e6f8593634583998cd692353",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "spire/spire",
"max_forks_repo_path": "formalization/agda/Spire/DarkwingDuck/Primitive.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3d67f137ee9423b7e6f8593634583998cd692353",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "spire/spire",
"max_issues_repo_path": "formalization/agda/Spire/DarkwingDuck/Primitive.agda",
"max_line_length": 107,
"max_stars_count": 43,
"max_stars_repo_head_hexsha": "3d67f137ee9423b7e6f8593634583998cd692353",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "spire/spire",
"max_stars_repo_path": "formalization/agda/Spire/DarkwingDuck/Primitive.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T17:10:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-28T23:25:33.000Z",
"num_tokens": 1883,
"size": 4944
} |
{-# OPTIONS --safe #-}
module Cubical.Algebra.CommRing.Instances.Int where
open import Cubical.Foundations.Prelude
open import Cubical.Algebra.CommRing
open import Cubical.Data.Int as Int
renaming ( ℤ to ℤType ; _+_ to _+ℤ_; _·_ to _·ℤ_; -_ to -ℤ_)
open CommRingStr
ℤ : CommRing ℓ-zero
fst ℤ = ℤType
0r (snd ℤ) = 0
1r (snd ℤ) = 1
_+_ (snd ℤ) = _+ℤ_
_·_ (snd ℤ) = _·ℤ_
- snd ℤ = -ℤ_
isCommRing (snd ℤ) = isCommRingℤ
where
abstract
isCommRingℤ : IsCommRing 0 1 _+ℤ_ _·ℤ_ -ℤ_
isCommRingℤ = makeIsCommRing isSetℤ Int.+Assoc (λ _ → refl)
-Cancel Int.+Comm Int.·Assoc
Int.·Rid ·DistR+ Int.·Comm
| {
"alphanum_fraction": 0.6172106825,
"avg_line_length": 24.962962963,
"ext": "agda",
"hexsha": "2973970ade6dfc1cbc34ef4885b82121e01651be",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Seanpm2001-web/cubical",
"max_forks_repo_path": "Cubical/Algebra/CommRing/Instances/Int.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Seanpm2001-web/cubical",
"max_issues_repo_path": "Cubical/Algebra/CommRing/Instances/Int.agda",
"max_line_length": 63,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "FernandoLarrain/cubical",
"max_stars_repo_path": "Cubical/Algebra/CommRing/Instances/Int.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-05T00:28:39.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-03-05T00:28:39.000Z",
"num_tokens": 259,
"size": 674
} |
open import eq
open import bool
open import bool-relations using (transitive; total)
open import maybe
open import nat
open import nat-thms using (≤-trans; ≤-total)
open import product
module z05-01-hc-sorted-list-test where
open import bool-relations _≤_ hiding (transitive; total)
import z05-01-hc-sorted-list as SL
open SL nat _≤_ (λ {x} {y} {z} → ≤-trans {x} {y} {z})
(λ {x} {y} → ≤-total {x} {y})
empty : slist 10 10
empty = snil refl
_ : slist 9 10
_ = slist-insert 9 empty refl
--_ : slist-insert 9 empty refl ≡ scons 9 (snil {!!}) {!!}
--_ = refl
| {
"alphanum_fraction": 0.6434634975,
"avg_line_length": 22.6538461538,
"ext": "agda",
"hexsha": "b822c724601a7dd798b4e17a784296c760a7d171",
"lang": "Agda",
"max_forks_count": 8,
"max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z",
"max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_forks_repo_path": "agda/book/2015-Verified_Functional_programming_in_Agda-Stump/ial/z05-01-hc-sorted-list-test.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_issues_repo_path": "agda/book/2015-Verified_Functional_programming_in_Agda-Stump/ial/z05-01-hc-sorted-list-test.agda",
"max_line_length": 59,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_stars_repo_path": "agda/book/2015-Verified_Functional_programming_in_Agda-Stump/ial/z05-01-hc-sorted-list-test.agda",
"max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z",
"num_tokens": 205,
"size": 589
} |
-- A variant of code reported by Andreas Abel.
{-# OPTIONS --guardedness --sized-types #-}
open import Agda.Builtin.Size
data ⊥ : Set where
mutual
data D (i : Size) : Set where
inn : D' i → D i
record D' (i : Size) : Set where
coinductive
field ♭ : {j : Size< i} → D j
open D'
bla : ∀{i} → D' i
♭ bla = inn bla
-- Should be rejected by termination checker
iter : D ∞ → ⊥
iter (inn t) = iter (♭ t)
false : ⊥
false = iter (♭ bla)
| {
"alphanum_fraction": 0.5859030837,
"avg_line_length": 16.8148148148,
"ext": "agda",
"hexsha": "5ddb50db23094a2a7f0fbd97a90e6c4eca023347",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue1209-2.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue1209-2.agda",
"max_line_length": 46,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue1209-2.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 158,
"size": 454
} |
postulate
H I : Set → Set → Set
!_ : Set → Set
X : Set
infix 1 !_
infix 0 H
syntax H X Y = X , Y
syntax I X Y = Y , X
-- This parsed when default fixity was 'unrelated', but with
-- an actual default fixity (of any strength) in place it really
-- should not.
Foo : Set
Foo = ! X , X
| {
"alphanum_fraction": 0.6169491525,
"avg_line_length": 17.3529411765,
"ext": "agda",
"hexsha": "2a39c08d461c15399b79af6b421985c761b5319a",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue1436-11.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue1436-11.agda",
"max_line_length": 64,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue1436-11.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 103,
"size": 295
} |
open import Nat
open import Prelude
open import core
open import contexts
open import lemmas-consistency
open import type-assignment-unicity
open import lemmas-progress-checks
-- taken together, the theorems in this file argue that for any expression
-- d, at most one summand of the labeled sum that results from progress may
-- be true at any time: that boxed values, indeterminates, and expressions
-- that step are pairwise disjoint.
--
-- note that as a consequence of currying and comutativity of products,
-- this means that there are three theorems to prove. in addition to those,
-- we also prove several convenince forms that combine theorems about
-- indeterminate and boxed value forms into the same statement about final
-- forms, which mirrors the mutual definition of indeterminate and final
-- and saves some redundant argumentation.
module progress-checks where
-- boxed values are not indeterminates
boxedval-not-indet : ∀{d} → d boxedval → d indet → ⊥
boxedval-not-indet (BVVal VConst) ()
boxedval-not-indet (BVVal VLam) ()
boxedval-not-indet (BVArrCast x bv) (ICastArr x₁ ind) = boxedval-not-indet bv ind
boxedval-not-indet (BVHoleCast x bv) (ICastGroundHole x₁ ind) = boxedval-not-indet bv ind
boxedval-not-indet (BVHoleCast x bv) (ICastHoleGround x₁ ind x₂) = boxedval-not-indet bv ind
-- boxed values don't step
boxedval-not-step : ∀{d} → d boxedval → (Σ[ d' ∈ ihexp ] (d ↦ d')) → ⊥
boxedval-not-step (BVVal VConst) (d' , Step FHOuter () x₃)
boxedval-not-step (BVVal VLam) (d' , Step FHOuter () x₃)
boxedval-not-step (BVArrCast x bv) (d0' , Step FHOuter (ITCastID) FHOuter) = x refl
boxedval-not-step (BVArrCast x bv) (_ , Step (FHCast x₁) x₂ (FHCast x₃)) = boxedval-not-step bv (_ , Step x₁ x₂ x₃)
boxedval-not-step (BVHoleCast () bv) (d' , Step FHOuter (ITCastID) FHOuter)
boxedval-not-step (BVHoleCast x bv) (d' , Step FHOuter (ITCastSucceed ()) FHOuter)
boxedval-not-step (BVHoleCast GHole bv) (_ , Step FHOuter (ITGround (MGArr x)) FHOuter) = x refl
boxedval-not-step (BVHoleCast x bv) (_ , Step (FHCast x₁) x₂ (FHCast x₃)) = boxedval-not-step bv (_ , Step x₁ x₂ x₃)
boxedval-not-step (BVHoleCast x x₁) (_ , Step FHOuter (ITExpand ()) FHOuter)
boxedval-not-step (BVHoleCast x x₁) (_ , Step FHOuter (ITCastFail x₂ () x₄) FHOuter)
mutual
-- indeterminates don't step
indet-not-step : ∀{d} → d indet → (Σ[ d' ∈ ihexp ] (d ↦ d')) → ⊥
indet-not-step IEHole (d' , Step FHOuter () FHOuter)
indet-not-step (INEHole x) (d' , Step FHOuter () FHOuter)
indet-not-step (INEHole x) (_ , Step (FHNEHole x₁) x₂ (FHNEHole x₃)) = final-sub-not-trans x x₁ x₂
indet-not-step (IAp x₁ () x₂) (_ , Step FHOuter (ITLam) FHOuter)
indet-not-step (IAp x (ICastArr x₁ ind) x₂) (_ , Step FHOuter (ITApCast) FHOuter) = x _ _ _ _ _ refl
indet-not-step (IAp x ind _) (_ , Step (FHAp1 x₂) x₃ (FHAp1 x₄)) = indet-not-step ind (_ , Step x₂ x₃ x₄)
indet-not-step (IAp x ind f) (_ , Step (FHAp2 x₃) x₄ (FHAp2 x₆)) = final-not-step f (_ , Step x₃ x₄ x₆)
indet-not-step (ICastArr x ind) (d0' , Step FHOuter (ITCastID) FHOuter) = x refl
indet-not-step (ICastArr x ind) (_ , Step (FHCast x₁) x₂ (FHCast x₃)) = indet-not-step ind (_ , Step x₁ x₂ x₃)
indet-not-step (ICastGroundHole () ind) (d' , Step FHOuter (ITCastID) FHOuter)
indet-not-step (ICastGroundHole x ind) (d' , Step FHOuter (ITCastSucceed ()) FHOuter)
indet-not-step (ICastGroundHole GHole ind) (_ , Step FHOuter (ITGround (MGArr x₁)) FHOuter) = x₁ refl
indet-not-step (ICastGroundHole x ind) (_ , Step (FHCast x₁) x₂ (FHCast x₃)) = indet-not-step ind (_ , Step x₁ x₂ x₃)
indet-not-step (ICastHoleGround x ind ()) (d' , Step FHOuter (ITCastID ) FHOuter)
indet-not-step (ICastHoleGround x ind g) (d' , Step FHOuter (ITCastSucceed x₂) FHOuter) = x _ _ refl
indet-not-step (ICastHoleGround x ind GHole) (_ , Step FHOuter (ITExpand (MGArr x₂)) FHOuter) = x₂ refl
indet-not-step (ICastHoleGround x ind g) (_ , Step (FHCast x₁) x₂ (FHCast x₃)) = indet-not-step ind (_ , Step x₁ x₂ x₃)
indet-not-step (ICastGroundHole x x₁) (_ , Step FHOuter (ITExpand ()) FHOuter)
indet-not-step (ICastHoleGround x x₁ x₂) (_ , Step FHOuter (ITGround ()) FHOuter)
indet-not-step (ICastGroundHole x x₁) (_ , Step FHOuter (ITCastFail x₂ () x₄) FHOuter)
indet-not-step (ICastHoleGround x x₁ x₂) (_ , Step FHOuter (ITCastFail x₃ x₄ x₅) FHOuter) = x _ _ refl
indet-not-step (IFailedCast x x₁ x₂ x₃) (d' , Step FHOuter () FHOuter)
indet-not-step (IFailedCast x x₁ x₂ x₃) (_ , Step (FHFailedCast x₄) x₅ (FHFailedCast x₆)) = final-not-step x (_ , Step x₄ x₅ x₆)
-- final expressions don't step
final-not-step : ∀{d} → d final → Σ[ d' ∈ ihexp ] (d ↦ d') → ⊥
final-not-step (FBoxedVal x) stp = boxedval-not-step x stp
final-not-step (FIndet x) stp = indet-not-step x stp
| {
"alphanum_fraction": 0.6870874587,
"avg_line_length": 66.4109589041,
"ext": "agda",
"hexsha": "ba44d0c6f79c5b37ee6df00b08a3904d32167d70",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-09-13T18:20:02.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-09-13T18:20:02.000Z",
"max_forks_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnut-dynamics-agda",
"max_forks_repo_path": "progress-checks.agda",
"max_issues_count": 54,
"max_issues_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c",
"max_issues_repo_issues_event_max_datetime": "2018-11-29T16:32:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-06-29T20:53:34.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazelnut-dynamics-agda",
"max_issues_repo_path": "progress-checks.agda",
"max_line_length": 132,
"max_stars_count": 16,
"max_stars_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazelnut-dynamics-agda",
"max_stars_repo_path": "progress-checks.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-19T02:50:23.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-03-12T14:32:03.000Z",
"num_tokens": 1705,
"size": 4848
} |
-- Haskell-like do-notation.
module Syntax.Do where
open import Functional
import Lvl
open import Syntax.Idiom
open import Type
private variable ℓ ℓ₁ ℓ₂ : Lvl.Level
private variable A B : Type{ℓ}
private variable F : Type{ℓ₁} → Type{ℓ₂}
record DoNotation (F : Type{ℓ₁} → Type{ℓ₂}) : Type{Lvl.𝐒(ℓ₁) Lvl.⊔ ℓ₂} where
constructor intro
field
return : A → F(A)
_>>=_ : F(A) → (A → F(B)) → F(B)
module HaskellNames where
_=<<_ : ∀{A B} → (A → F(B)) → F(A) → F(B)
_=<<_ = swap(_>>=_)
_>>_ : ∀{A B} → F(A) → F(B) → F(B)
f >> g = f >>= const g
_>=>_ : ∀{A B C : Type} → (A → F(B)) → (B → F(C)) → (A → F(C))
(f >=> g)(A) = f(A) >>= g
_<=<_ : ∀{A B C : Type} → (B → F(C)) → (A → F(B)) → (A → F(C))
_<=<_ = swap(_>=>_)
idiomBrackets : IdiomBrackets(F)
IdiomBrackets.pure idiomBrackets = return
IdiomBrackets._<*>_ idiomBrackets Ff Fa = do
f <- Ff
a <- Fa
return(f(a))
open DoNotation ⦃ … ⦄ using (return ; _>>=_) public
| {
"alphanum_fraction": 0.5313765182,
"avg_line_length": 24.7,
"ext": "agda",
"hexsha": "754c2ac7a4372add1698f1e20a7fa728ca7f8db6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Syntax/Do.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Syntax/Do.agda",
"max_line_length": 76,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Syntax/Do.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 408,
"size": 988
} |
{-# OPTIONS --without-K #-}
module Model.Terminal where
open import Cats.Category
open import Model.Type.Core
open import Util.HoTT.HLevel
open import Util.Prelude hiding (⊤)
⊤ : ∀ {Δ} → ⟦Type⟧ Δ
⊤ = record
{ ObjHSet = λ _ → HLevel-suc ⊤-HProp
; eqHProp = λ _ _ _ → ⊤-HProp
}
instance
hasTerminal : ∀ {Δ} → HasTerminal (⟦Types⟧ Δ)
hasTerminal = record
{ ⊤ = ⊤
; isTerminal = λ T → record
{ arr = record {}
; unique = λ _ → ≈⁺ λ γ x → refl
}
}
private
open module HT {Δ} = HasTerminal (hasTerminal {Δ}) public using (! ; !-unique)
| {
"alphanum_fraction": 0.5896551724,
"avg_line_length": 18.7096774194,
"ext": "agda",
"hexsha": "87eaea839173b31a5f2e8e9dc6315306f8f0118a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JLimperg/msc-thesis-code",
"max_forks_repo_path": "src/Model/Terminal.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JLimperg/msc-thesis-code",
"max_issues_repo_path": "src/Model/Terminal.agda",
"max_line_length": 80,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JLimperg/msc-thesis-code",
"max_stars_repo_path": "src/Model/Terminal.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-26T06:37:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-04-13T21:31:17.000Z",
"num_tokens": 205,
"size": 580
} |
module tree-io-example where
open import io
open import list
open import maybe
open import string
open import tree
open import unit
open import nat-to-string
errmsg = "Run with a single (small) number as the command-line argument.\n"
processArgs : 𝕃 string → IO ⊤
processArgs (s :: []) with string-to-ℕ s
... | nothing = putStr errmsg
... | just n = putStr (𝕋-to-string ℕ-to-string (perfect-binary-tree n n)) >> putStr "\n"
processArgs _ = putStr errmsg
main : IO ⊤
main = getArgs >>= processArgs
| {
"alphanum_fraction": 0.7089108911,
"avg_line_length": 22.9545454545,
"ext": "agda",
"hexsha": "5af4fb096777ac61eacd3e76b81a35f77d8e9ca1",
"lang": "Agda",
"max_forks_count": 17,
"max_forks_repo_forks_event_max_datetime": "2021-11-28T20:13:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-03T22:38:15.000Z",
"max_forks_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rfindler/ial",
"max_forks_repo_path": "tree-io-example.agda",
"max_issues_count": 8,
"max_issues_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_issues_repo_issues_event_max_datetime": "2022-03-22T03:43:34.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-07-09T22:53:38.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rfindler/ial",
"max_issues_repo_path": "tree-io-example.agda",
"max_line_length": 88,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rfindler/ial",
"max_stars_repo_path": "tree-io-example.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-04T15:05:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-02-06T13:09:31.000Z",
"num_tokens": 140,
"size": 505
} |
module STLC.Syntax where
open import Prelude public
--------------------------------------------------------------------------------
-- Types
infixr 7 _⇒_
data 𝒯 : Set
where
⎵ : 𝒯
_⇒_ : (A B : 𝒯) → 𝒯
--------------------------------------------------------------------------------
-- Contexts
data 𝒞 : Set
where
∅ : 𝒞
_,_ : (Γ : 𝒞) (A : 𝒯) → 𝒞
length : 𝒞 → Nat
length ∅ = zero
length (Γ , x) = suc (length Γ)
lookup : (Γ : 𝒞) (i : Nat) {{_ : True (length Γ >? i)}} → 𝒯
lookup ∅ i {{()}}
lookup (Γ , A) zero {{yes}} = A
lookup (Γ , B) (suc i) {{p}} = lookup Γ i
-- Variables
infix 4 _∋_
data _∋_ : 𝒞 → 𝒯 → Set
where
zero : ∀ {Γ A} → Γ , A ∋ A
suc : ∀ {Γ A B} → (i : Γ ∋ A)
→ Γ , B ∋ A
Nat→∋ : ∀ {Γ} → (i : Nat) {{_ : True (length Γ >? i)}}
→ Γ ∋ lookup Γ i
Nat→∋ {Γ = ∅} i {{()}}
Nat→∋ {Γ = Γ , A} zero {{yes}} = zero
Nat→∋ {Γ = Γ , B} (suc i) {{p}} = suc (Nat→∋ i)
instance
num∋ : ∀ {Γ A} → Number (Γ ∋ A)
num∋ {Γ} {A} =
record
{ Constraint = λ i → Σ (True (length Γ >? i))
(λ p → lookup Γ i {{p}} ≡ A)
; fromNat = λ { i {{p , refl}} → Nat→∋ i }
}
--------------------------------------------------------------------------------
-- Terms
infix 3 _⊢_
data _⊢_ : 𝒞 → 𝒯 → Set
where
𝓋 : ∀ {Γ A} → (i : Γ ∋ A)
→ Γ ⊢ A
ƛ : ∀ {Γ A B} → (M : Γ , A ⊢ B)
→ Γ ⊢ A ⇒ B
_∙_ : ∀ {Γ A B} → (M : Γ ⊢ A ⇒ B) (N : Γ ⊢ A)
→ Γ ⊢ B
instance
num⊢ : ∀ {Γ A} → Number (Γ ⊢ A)
num⊢ {Γ} {A} =
record
{ Constraint = λ i → Σ (True (length Γ >? i))
(λ p → lookup Γ i {{p}} ≡ A)
; fromNat = λ { i {{p , refl}} → 𝓋 (Nat→∋ i) }
}
--------------------------------------------------------------------------------
-- Normal forms
mutual
infix 3 _⊢ⁿᶠ_
data _⊢ⁿᶠ_ : 𝒞 → 𝒯 → Set where
ƛ : ∀ {Γ A B} → (M : Γ , A ⊢ⁿᶠ B)
→ Γ ⊢ⁿᶠ A ⇒ B
ne : ∀ {Γ} → (M : Γ ⊢ⁿᵉ ⎵)
→ Γ ⊢ⁿᶠ ⎵
infix 3 _⊢ⁿᵉ_
data _⊢ⁿᵉ_ : 𝒞 → 𝒯 → Set where
𝓋 : ∀ {Γ A} → (i : Γ ∋ A)
→ Γ ⊢ⁿᵉ A
_∙_ : ∀ {Γ A B} → (M : Γ ⊢ⁿᵉ A ⇒ B) (N : Γ ⊢ⁿᶠ A)
→ Γ ⊢ⁿᵉ B
instance
num⊢ⁿᵉ : ∀ {Γ A} → Number (Γ ⊢ⁿᵉ A)
num⊢ⁿᵉ {Γ} {A} =
record
{ Constraint = λ i → Σ (True (length Γ >? i))
(λ p → lookup Γ i {{p}} ≡ A)
; fromNat = λ { i {{p , refl}} → 𝓋 (Nat→∋ i) }
}
--------------------------------------------------------------------------------
| {
"alphanum_fraction": 0.3009049774,
"avg_line_length": 21.216,
"ext": "agda",
"hexsha": "22b04c7254bdebee8979ffeef71878248687866c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/coquand-kovacs",
"max_forks_repo_path": "src/STLC/Syntax.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/coquand-kovacs",
"max_issues_repo_path": "src/STLC/Syntax.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/coquand-kovacs",
"max_stars_repo_path": "src/STLC/Syntax.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1095,
"size": 2652
} |
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
open import Data.Product
open import Level
module IndexedMap
{Index : Set} {Key : Index → Set} {_≈_ _<_ : Rel (∃ Key) zero}
(isOrderedKeySet : IsStrictTotalOrder _≈_ _<_)
-- Equal keys must have equal indices.
(indicesEqual : _≈_ =[ proj₁ ]⇒ _≡_)
(Value : Index → Set)
where
| {
"alphanum_fraction": 0.6348039216,
"avg_line_length": 31.3846153846,
"ext": "agda",
"hexsha": "2e93f26b4829e04d9ab459df5de4a694e1b58f86",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "benchmark/monad/IndexedMap.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "benchmark/monad/IndexedMap.agda",
"max_line_length": 71,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "benchmark/monad/IndexedMap.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 112,
"size": 408
} |
-- 2012-03-08 Andreas
module NoTerminationCheck1 where
{-# NO_TERMINATION_CHECK #-}
-- error: misplaced pragma
| {
"alphanum_fraction": 0.7522123894,
"avg_line_length": 16.1428571429,
"ext": "agda",
"hexsha": "72498ce93b22e000e786a162ff6c900dcdc08d0b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/NoTerminationCheck1.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/NoTerminationCheck1.agda",
"max_line_length": 32,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/fail/NoTerminationCheck1.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 30,
"size": 113
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Convenient syntax for "equational reasoning" using a partial order
------------------------------------------------------------------------
open import Relation.Binary
module Relation.Binary.PartialOrderReasoning
{p₁ p₂ p₃} (P : Poset p₁ p₂ p₃) where
open Poset P
import Relation.Binary.PreorderReasoning as PreR
open PreR preorder public renaming (_∼⟨_⟩_ to _≤⟨_⟩_)
| {
"alphanum_fraction": 0.5277207392,
"avg_line_length": 32.4666666667,
"ext": "agda",
"hexsha": "e337b0493a5a1a11deed55723751a2e2edd8e6f6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "qwe2/try-agda",
"max_forks_repo_path": "agda-stdlib-0.9/src/Relation/Binary/PartialOrderReasoning.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "qwe2/try-agda",
"max_issues_repo_path": "agda-stdlib-0.9/src/Relation/Binary/PartialOrderReasoning.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "qwe2/try-agda",
"max_stars_repo_path": "agda-stdlib-0.9/src/Relation/Binary/PartialOrderReasoning.agda",
"max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z",
"num_tokens": 104,
"size": 487
} |
open import Level
module Ordinals where
open import zf
open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ )
open import Data.Empty
open import Relation.Binary.PropositionalEquality
open import logic
open import nat
open import Data.Unit using ( ⊤ )
open import Relation.Nullary
open import Relation.Binary
open import Relation.Binary.Core
record Oprev {n : Level} (ord : Set n) (osuc : ord → ord ) (x : ord ) : Set (suc n) where
field
oprev : ord
oprev=x : osuc oprev ≡ x
record IsOrdinals {n : Level} (ord : Set n) (o∅ : ord ) (osuc : ord → ord ) (_o<_ : ord → ord → Set n) (next : ord → ord ) : Set (suc (suc n)) where
field
ordtrans : {x y z : ord } → x o< y → y o< z → x o< z
trio< : Trichotomous {n} _≡_ _o<_
¬x<0 : { x : ord } → ¬ ( x o< o∅ )
<-osuc : { x : ord } → x o< osuc x
osuc-≡< : { a x : ord } → x o< osuc a → (x ≡ a ) ∨ (x o< a)
Oprev-p : ( x : ord ) → Dec ( Oprev ord osuc x )
TransFinite : { ψ : ord → Set (suc n) }
→ ( (x : ord) → ( (y : ord ) → y o< x → ψ y ) → ψ x )
→ ∀ (x : ord) → ψ x
record IsNext {n : Level } (ord : Set n) (o∅ : ord ) (osuc : ord → ord ) (_o<_ : ord → ord → Set n) (next : ord → ord ) : Set (suc (suc n)) where
field
x<nx : { y : ord } → (y o< next y )
osuc<nx : { x y : ord } → x o< next y → osuc x o< next y
¬nx<nx : {x y : ord} → y o< x → x o< next y → ¬ ((z : ord) → ¬ (x ≡ osuc z))
record Ordinals {n : Level} : Set (suc (suc n)) where
field
Ordinal : Set n
o∅ : Ordinal
osuc : Ordinal → Ordinal
_o<_ : Ordinal → Ordinal → Set n
next : Ordinal → Ordinal
isOrdinal : IsOrdinals Ordinal o∅ osuc _o<_ next
isNext : IsNext Ordinal o∅ osuc _o<_ next
module inOrdinal {n : Level} (O : Ordinals {n} ) where
open Ordinals O
open IsOrdinals isOrdinal
open IsNext isNext
TransFinite0 : { ψ : Ordinal → Set n }
→ ( (x : Ordinal) → ( (y : Ordinal ) → y o< x → ψ y ) → ψ x )
→ ∀ (x : Ordinal) → ψ x
TransFinite0 {ψ} ind x = lower (TransFinite {λ y → Lift (suc n) ( ψ y)} ind1 x) where
ind1 : (z : Ordinal) → ((y : Ordinal) → y o< z → Lift (suc n) (ψ y)) → Lift (suc n) (ψ z)
ind1 z prev = lift (ind z (λ y y<z → lower (prev y y<z ) ))
| {
"alphanum_fraction": 0.5273738238,
"avg_line_length": 37.1111111111,
"ext": "agda",
"hexsha": "2d313e8c50510cf3aae57ba54d15ff877944d0be",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "shinji-kono/zf-in-agda",
"max_forks_repo_path": "src/Ordinals.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "shinji-kono/zf-in-agda",
"max_issues_repo_path": "src/Ordinals.agda",
"max_line_length": 150,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "shinji-kono/zf-in-agda",
"max_stars_repo_path": "src/Ordinals.agda",
"max_stars_repo_stars_event_max_datetime": "2021-01-10T13:27:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-10-02T13:46:23.000Z",
"num_tokens": 923,
"size": 2338
} |
module Fin where
data Nat : Set where
zero : Nat
succ : Nat -> Nat
data Fin : Nat -> Set where
fzero : {n : Nat} -> Fin (succ n)
fsucc : {n : Nat} -> Fin n -> Fin (succ n)
| {
"alphanum_fraction": 0.5483870968,
"avg_line_length": 18.6,
"ext": "agda",
"hexsha": "2476f46c256bd8855039d89a21454c0d67805cd6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andrejtokarcik/agda-semantics",
"max_forks_repo_path": "tests/covered/Fin.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andrejtokarcik/agda-semantics",
"max_issues_repo_path": "tests/covered/Fin.agda",
"max_line_length": 46,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "andrejtokarcik/agda-semantics",
"max_stars_repo_path": "tests/covered/Fin.agda",
"max_stars_repo_stars_event_max_datetime": "2018-12-06T17:24:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-10T15:33:56.000Z",
"num_tokens": 63,
"size": 186
} |
module sets.nat.ordering.leq.alternative where
open import equality.core
open import equality.calculus
open import function.isomorphism
open import hott.equivalence.logical
open import hott.level.core
open import hott.level.sets
open import sets.nat.core
open import sets.nat.properties
open import sets.nat.ordering.leq.core
open import sets.nat.ordering.leq.level
open import sum
Less : ℕ → ℕ → Set _
Less n m = Σ ℕ λ d → n + d ≡ m
Less-level : ∀ {n m} → h 1 (Less n m)
Less-level {n}{m} = prop⇒h1 λ { (d₁ , p₁) (d₂ , p₂)
→ unapΣ ( +-left-cancel n (p₁ · sym p₂)
, h1⇒prop (nat-set _ _) _ _) }
leq-sum : ∀ {n m}(p : n ≤ m) → Less n m
leq-sum {m = m} z≤n = m , refl
leq-sum (s≤s p) with leq-sum p
leq-sum (s≤s p) | d , q = d , ap suc q
diff : ∀ {n m} → n ≤ m → ℕ
diff p = proj₁ (leq-sum p)
sum-leq : ∀ n d → n ≤ (n + d)
sum-leq n 0 = ≡⇒≤ (sym (+-right-unit _))
sum-leq n (suc d) = trans≤ (sum-leq n d)
(trans≤ suc≤ (≡⇒≤ ( ap suc (+-commutativity n d)
· +-commutativity (suc d) n)))
leq-sum-iso : ∀ {n m} → (n ≤ m) ≅ Less n m
leq-sum-iso = ↔⇒≅ ≤-level Less-level
( leq-sum
, (λ { (d , refl) → sum-leq _ d }))
| {
"alphanum_fraction": 0.5786375105,
"avg_line_length": 29,
"ext": "agda",
"hexsha": "638ed437dbebebbc0a75bc6b436d3251ebd1565a",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z",
"max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "pcapriotti/agda-base",
"max_forks_repo_path": "src/sets/nat/ordering/leq/alternative.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "pcapriotti/agda-base",
"max_issues_repo_path": "src/sets/nat/ordering/leq/alternative.agda",
"max_line_length": 68,
"max_stars_count": 20,
"max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "pcapriotti/agda-base",
"max_stars_repo_path": "src/sets/nat/ordering/leq/alternative.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z",
"num_tokens": 458,
"size": 1189
} |
module Type.Properties.Empty.Proofs where
import Data.Tuple
open import Data
open import Functional
open import Logic.Propositional
import Lvl
open import Type.Properties.Inhabited
open import Type.Properties.Empty
open import Type
private variable ℓ : Lvl.Level
private variable A B T : Type{ℓ}
-- A type is never inhabited and empty at the same time.
notInhabitedAndEmpty : (◊ T) → IsEmpty(T) → ⊥
notInhabitedAndEmpty (intro ⦃ obj ⦄) (intro empty) with () ← empty{Empty} (obj)
-- A type being empty is equivalent to the existence of a function from the type to the empty type of any universe level.
empty-negation-eq : IsEmpty(T) ↔ (T → Empty{ℓ})
IsEmpty.empty (Data.Tuple.left empty-negation-eq nt) = empty ∘ nt
Data.Tuple.right empty-negation-eq (intro e) t with () ← e {Empty} t
empty-by-function : (f : A → B) → (IsEmpty{ℓ}(B) → IsEmpty{ℓ}(A))
empty-by-function f (intro empty-B) = intro(empty-B ∘ f)
| {
"alphanum_fraction": 0.7234273319,
"avg_line_length": 35.4615384615,
"ext": "agda",
"hexsha": "c0627d38c7412daec86c73528bef2732b1e56ef0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Type/Properties/Empty/Proofs.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Type/Properties/Empty/Proofs.agda",
"max_line_length": 121,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Type/Properties/Empty/Proofs.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 272,
"size": 922
} |
-- Andreas, 2011-05-30
-- {-# OPTIONS -v tc.lhs.unify:50 #-}
module Issue292 where
data Bool : Set where true false : Bool
data Bool2 : Set where true2 false2 : Bool2
data ⊥ : Set where
infix 3 ¬_
¬_ : Set → Set
¬ P = P → ⊥
infix 4 _≅_
data _≅_ {A : Set} (x : A) : ∀ {B : Set} → B → Set where
refl : x ≅ x
record Σ (A : Set) (B : A → Set) : Set where
constructor _,_
field
proj₁ : A
proj₂ : B proj₁
open Σ public
P : Set -> Set
P S = Σ S (\s → s ≅ true)
pbool : P Bool
pbool = true , refl
-- the following should fail:
¬pbool2 : ¬ P Bool2
¬pbool2 ( true2 , () )
¬pbool2 ( false2 , () )
{- using subst, one could now prove distinctness of types, which we don't want
tada : ¬ (Bool ≡ Bool2)
tada eq = ¬pbool2 (subst (\ S → P S) eq pbool )
-} | {
"alphanum_fraction": 0.5851755527,
"avg_line_length": 18.3095238095,
"ext": "agda",
"hexsha": "f27eb1343f1b5c9d9aaae9adb609888fb2530826",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/Issue292.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/Issue292.agda",
"max_line_length": 78,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/fail/Issue292.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 295,
"size": 769
} |
module Structure.Relator.Equivalence.Proofs where
import Lvl
open import Functional
open import Structure.Relator.Equivalence
open import Structure.Relator.Properties.Proofs
open import Type
private variable ℓ : Lvl.Level
private variable T A B : Type{ℓ}
private variable _▫_ : T → T → Type{ℓ}
private variable f : A → B
on₂-equivalence : ⦃ eq : Equivalence(_▫_) ⦄ → Equivalence((_▫_) on₂ f)
Equivalence.reflexivity (on₂-equivalence {_▫_ = _▫_}) = on₂-reflexivity
Equivalence.symmetry (on₂-equivalence {_▫_ = _▫_}) = on₂-symmetry
Equivalence.transitivity (on₂-equivalence {_▫_ = _▫_}) = on₂-transitivity
| {
"alphanum_fraction": 0.7439222042,
"avg_line_length": 34.2777777778,
"ext": "agda",
"hexsha": "8d9c736ab3649358c23d2ecf5dbeb73374e807d1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Relator/Equivalence/Proofs.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Relator/Equivalence/Proofs.agda",
"max_line_length": 73,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Relator/Equivalence/Proofs.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 196,
"size": 617
} |
{-# OPTIONS --universe-polymorphism #-}
module Categories.Category.Construction.F-Algebras where
open import Level
open import Data.Product using (proj₁; proj₂)
open import Categories.Category
open import Categories.Functor hiding (id)
open import Categories.Functor.Algebra
open import Categories.Object.Initial
import Categories.Morphism.Reasoning as MR
import Categories.Morphism as Mor using (_≅_)
private
variable
o ℓ e : Level
𝒞 : Category o ℓ e
F-Algebras : {𝒞 : Category o ℓ e} → Endofunctor 𝒞 → Category (ℓ ⊔ o) (e ⊔ ℓ) e
F-Algebras {𝒞 = 𝒞} F = record
{ Obj = F-Algebra F
; _⇒_ = F-Algebra-Morphism
; _≈_ = λ α₁ α₂ → f α₁ ≈ f α₂
; _∘_ = λ α₁ α₂ → record { f = f α₁ ∘ f α₂ ; commutes = commut α₁ α₂ }
; id = record { f = id ; commutes = identityˡ ○ ⟺ identityʳ ○ ⟺ (∘-resp-≈ʳ identity) }
; assoc = assoc
; sym-assoc = sym-assoc
; identityˡ = identityˡ
; identityʳ = identityʳ
; identity² = identity²
; equiv = record
{ refl = refl
; sym = sym
; trans = trans
}
; ∘-resp-≈ = ∘-resp-≈
}
where
open Category 𝒞
open Equiv
open HomReasoning using (⟺; _○_; begin_; _≈⟨_⟩_; _∎)
open Functor F
open F-Algebra-Morphism
open F-Algebra
commut : {A B C : F-Algebra F} (α₁ : F-Algebra-Morphism B C) (α₂ : F-Algebra-Morphism A B) →
(f α₁ ∘ f α₂) ∘ α A ≈ α C ∘ F₁ (f α₁ ∘ f α₂)
commut {A} {B} {C} α₁ α₂ = begin
(f α₁ ∘ f α₂) ∘ α A ≈⟨ assoc ○ ∘-resp-≈ʳ (commutes α₂) ⟩
f α₁ ∘ (α B ∘ F₁ (f α₂)) ≈⟨ ⟺ assoc ○ ∘-resp-≈ˡ (commutes α₁) ⟩
(α C ∘ F₁ (f α₁)) ∘ F₁ (f α₂) ≈⟨ assoc ○ ∘-resp-≈ʳ (⟺ homomorphism) ⟩
α C ∘ F₁ (f α₁ ∘ f α₂) ∎
module Lambek {𝒞 : Category o ℓ e} {F : Endofunctor 𝒞} (I : Initial (F-Algebras F)) where
open Category 𝒞
open Functor F
open F-Algebra using (α)
open MR 𝒞 using (glue)
open Mor 𝒞
open Initial I -- so ⊥ is an F-Algebra, which is initial
-- While an expert might be able to decipher the proof at the nLab
-- (https://ncatlab.org/nlab/show/initial+algebra+of+an+endofunctor)
-- I (JC) have found that the notes at
-- http://www.cs.ru.nl/~jrot/coalgebra/ak-algebras.pdf
-- are easier to follow, and lead to the full proof below.
private
module ⊥ = F-Algebra ⊥
A = ⊥.A
a : F₀ A ⇒ A
a = ⊥.α
-- The F-Algebra structure that will make things work
F⊥ : F-Algebra F
F⊥ = iterate ⊥
-- By initiality, we get the following morphism
f : F-Algebra-Morphism ⊥ F⊥
f = !
module FAM = F-Algebra-Morphism f
i : A ⇒ F₀ A
i = FAM.f
a∘f : F-Algebra-Morphism ⊥ ⊥
a∘f = record
{ f = a ∘ i
; commutes = glue triv FAM.commutes ○ ∘-resp-≈ʳ (⟺ homomorphism)
}
where
open HomReasoning using (_○_; ⟺)
triv : CommutativeSquare (α F⊥) (α F⊥) a a
triv = Equiv.refl
lambek : A ≅ F₀ A
lambek = record
{ from = i
; to = a
; iso = record
{ isoˡ = ⊥-id a∘f
; isoʳ = begin
i ∘ a ≈⟨ F-Algebra-Morphism.commutes f ⟩
F₁ a ∘ F₁ i ≈˘⟨ homomorphism ⟩
F₁ (a ∘ i) ≈⟨ F-resp-≈ (⊥-id a∘f) ⟩
F₁ id ≈⟨ identity ⟩
id ∎
}
}
where
open HomReasoning
| {
"alphanum_fraction": 0.5651771957,
"avg_line_length": 28.7168141593,
"ext": "agda",
"hexsha": "2f3beba717ddf80935dac0bf41e1380191d37dad",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Taneb/agda-categories",
"max_forks_repo_path": "Categories/Category/Construction/F-Algebras.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Taneb/agda-categories",
"max_issues_repo_path": "Categories/Category/Construction/F-Algebras.agda",
"max_line_length": 96,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Taneb/agda-categories",
"max_stars_repo_path": "Categories/Category/Construction/F-Algebras.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1306,
"size": 3245
} |
-- ----------------------------------------------------------------------
-- The Agda Descriptor Library
--
-- (Open) Descriptors
-- ----------------------------------------------------------------------
module Data.Desc where
open import Data.List using (List; []; _∷_)
open import Data.List.Relation.Unary.All using (All; []; _∷_)
open import Data.List.Relation.Unary.Any using (here; there)
open import Data.List.Membership.Propositional using (_∈_)
open import Data.Product using (Σ; _,_)
open import Data.Var using (_-Scoped[_]; Var; get; zero; suc; tabulate)
open import Data.Unit.Polymorphic using (⊤; tt)
open import Level using (Level; 0ℓ; _⊔_)
open import Relation.Unary using (IUniversal; _⇒_)
private
variable
A : Set
1ℓ : Level
1ℓ = Level.suc 0ℓ
-- ----------------------------------------------------------------------
-- Definition
--
-- An open description is a open dependent type theory.
-- Our theoretic model is described by:
--
-- Metatheoretic terms:
--
-- Agda sets A, B ∷= ...
-- Agda values x, y ∷= ...
--
-- Open object terms:
--
-- kinds κ ∷= Set | Π A κ
-- types T ∷= a | T x | Π A T | T ⟶ T
--
-- A descriptor is a set of well-kinded constructor types.
data Kind : Set₁ where
`Set₀ : Kind
`Π : (A : Set) → (A → Kind) → Kind
private
variable
κ κ′ : Kind
Γ : List Kind
B : A → Kind
infixr 6 _⟶_
data Type : Kind -Scoped[ 1ℓ ] where
`_ : ∀[ Var κ ⇒ Type κ ]
_·_ : Type (`Π A B) Γ → (a : A) → Type (B a) Γ
`Π : (A : Set) → (A → Type `Set₀ Γ) → Type `Set₀ Γ
_⟶_ : Type `Set₀ Γ → Type `Set₀ Γ → Type `Set₀ Γ
mutual
data Pos : Type κ Γ → Set where
`_ : ∀ (x : Var κ Γ)
-- ----------------
→ Pos (` x)
_·_ : ∀ {T : Type (`Π A B) Γ}
→ Pos T
→ (a : A)
-- ------------------------
→ Pos (T · a)
`Π : (A : Set) {T : A → Type `Set₀ Γ}
→ ((a : A) → Pos (T a))
-- --------------------------------
→ Pos (`Π A T)
_⟶_ : ∀ {T T′ : Type `Set₀ Γ}
→ Neg T
→ Pos T′
-- --------------------------
→ Pos (T ⟶ T′)
data Neg : Type κ Γ → Set where
_·_ : ∀ {T : Type (`Π A B) Γ}
→ Neg T
→ (a : A)
-- ------------------------
→ Neg (T · a)
`Π : (A : Set) {T : A → Type `Set₀ Γ}
→ ((a : A) → Neg (T a))
-- --------------------------------
→ Neg (`Π A T)
_⟶_ : ∀ {T T′ : Type `Set₀ Γ}
→ Pos T
→ Neg T′
-- --------------------------
→ Neg (T ⟶ T′)
data StrictPos : Type κ Γ → Set where
`_ : ∀ (x : Var κ Γ)
-- ----------------
→ StrictPos (` x)
_·_ : ∀ {T : Type (`Π A B) Γ}
→ StrictPos T
→ (a : A)
-- ------------------------
→ StrictPos (T · a)
`Π : (A : Set) {T : A → Type `Set₀ Γ}
→ ((a : A) → StrictPos (T a))
-- --------------------------------
→ StrictPos (`Π A T)
data Con : Type κ Γ → Set where
`_ : ∀ (x : Var κ Γ)
-- ----------------
→ Con (` x)
_·_ : ∀ {T : Type (`Π A B) Γ}
→ Con T
→ (a : A)
-- ------------------------
→ Con (T · a)
`Π : (A : Set) {T : A → Type `Set₀ Γ}
→ ((a : A) → Con (T a))
-- --------------------------------
→ Con (`Π A T)
_⟶_ : ∀ {T T′ : Type `Set₀ Γ}
→ StrictPos T
→ Con T′
-- --------------------------
→ Con (T ⟶ T′)
data Constr : Kind -Scoped[ 1ℓ ] where
! : {T : Type κ Γ} → Con T → Constr κ Γ
++⇒C : ∀{T : Type κ Γ} → StrictPos T → Con T
++⇒C (` x) = ` x
++⇒C (P · a) = ++⇒C P · a
++⇒C (`Π A P) = `Π A (λ a → ++⇒C (P a))
Desc : List Kind → Set₁
Desc Γ = List (Constr `Set₀ Γ)
-- ----------------------------------------------------------------------
-- Interpretation
lift⟦_⟧ᴷ : Kind → (ℓ : Level) → Set (Level.suc ℓ)
lift⟦ `Set₀ ⟧ᴷ ℓ = Set ℓ
lift⟦ `Π A κ ⟧ᴷ ℓ = (a : A) → lift⟦ κ a ⟧ᴷ ℓ
-- Lifting of lift⟦_⟧ᴷ to a context
lift⟪_⟫ᴷ : List Kind → (ℓ : Level) → Set (Level.suc ℓ)
lift⟪ Γ ⟫ᴷ ℓ = All (λ κ → lift⟦ κ ⟧ᴷ ℓ) Γ
⟦_⟧ᴷ : Kind → Set₁
⟦ `Set₀ ⟧ᴷ = Set
⟦ `Π A κ ⟧ᴷ = (a : A) → ⟦ κ a ⟧ᴷ
⟪_⟫ᴷ : List Kind → Set₁
⟪ Γ ⟫ᴷ = All ⟦_⟧ᴷ Γ
-- ----------------------------------------------------------------------
-- Fixpoint
--
-- To define the fixed point, we're looking for a fixpoint of the form:
-- μ : Desc Γ → ⟪ Γ ⟫ᴷ
--
-- To consider the interpretation of constructors and type formers,
-- we first describe the terms formed by constructors and
-- positive types:
--
-- constructor terms c ∷= Constrᵢ | c · a | c · p
private
variable
C : Constr `Set₀ Γ
D : Desc Γ
data Term : Constr `Set₀ Γ -Scoped[ 1ℓ ] where
`Constr : ∀[ Var C ⇒ Term C ]
_·_ : ∀ {A} {T : A → Type `Set₀ Γ} {C : (a : A) → Con (T a)}
→ Term (! (`Π A C)) D → (a : A) → Term (! (C a)) D
_•_ : ∀ {T T′ : Type `Set₀ Γ} {P : StrictPos T} {C : Con T′}
→ Term (! (P ⟶ C)) D → Term (! (++⇒C P)) D → Term (! C) D
μᵏ : Constr κ Γ → Desc Γ → lift⟦ κ ⟧ᴷ 1ℓ
μᵏ {κ = `Set₀} C D = Term C D
μᵏ {κ = `Π _ _} (! C) D = λ a → μᵏ (! (C · a)) D
μᴰ : Desc Γ → lift⟪ Γ ⟫ᴷ 1ℓ
μᴰ D = tabulate λ x → μᵏ (! (` x)) D
-- ----------------------------------------------------------------------
-- Examples
ℕᴰ : Desc (`Set₀ ∷ [])
ℕᴰ = ! (` zero) ∷ ! ((` zero) ⟶ (` zero)) ∷ []
`ℕ : Set₁
`ℕ = get zero (μᴰ ℕᴰ)
pattern `zero = `Constr zero
pattern `suc n = `Constr (suc zero) • n
_ : `ℕ
_ = `suc (`suc `zero)
| {
"alphanum_fraction": 0.4081860465,
"avg_line_length": 23.0686695279,
"ext": "agda",
"hexsha": "c1b0faa225c32422f3fb3219e97859ee3f4bdbff",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "27fd49914d5ce1cc90d319089686861b33e8f19f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "johnyob/agda-desc",
"max_forks_repo_path": "src/Data/Desc.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "27fd49914d5ce1cc90d319089686861b33e8f19f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "johnyob/agda-desc",
"max_issues_repo_path": "src/Data/Desc.agda",
"max_line_length": 73,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "27fd49914d5ce1cc90d319089686861b33e8f19f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "johnyob/agda-desc",
"max_stars_repo_path": "src/Data/Desc.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1991,
"size": 5375
} |
module _ where
module M where
F : Set → Set
F A = A
open M
infix 0 F
syntax F A = [ A ]
G : Set → Set
G A = [ A ]
| {
"alphanum_fraction": 0.5284552846,
"avg_line_length": 8.2,
"ext": "agda",
"hexsha": "4186dd6c9b453ffc3754eee42442f86c426f9f4c",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue2893.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue2893.agda",
"max_line_length": 18,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue2893.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 49,
"size": 123
} |
{-# OPTIONS --without-K --safe #-}
-- Composition of pseudofunctors
module Categories.Pseudofunctor.Composition where
open import Data.Product using (_,_)
open import Categories.Bicategory using (Bicategory)
import Categories.Bicategory.Extras as BicategoryExt
open import Categories.Category using (Category)
open import Categories.Category.Instance.One using (shift)
open import Categories.Category.Product using (_⁂_)
open import Categories.Functor using (Functor; _∘F_)
import Categories.Morphism.Reasoning as MorphismReasoning
open import Categories.NaturalTransformation using (NaturalTransformation)
open import Categories.NaturalTransformation.NaturalIsomorphism
using (NaturalIsomorphism; _≃_; niHelper; _ⓘˡ_; _ⓘʳ_)
open import Categories.Pseudofunctor using (Pseudofunctor)
open Category using (module HomReasoning)
open NaturalIsomorphism using (F⇒G; F⇐G)
infixr 9 _∘P_
-- Composition of pseudofunctors
_∘P_ : ∀ {o ℓ e t o′ ℓ′ e′ t′ o″ ℓ″ e″ t″}
{C : Bicategory o ℓ e t} {D : Bicategory o′ ℓ′ e′ t′}
{E : Bicategory o″ ℓ″ e″ t″} →
Pseudofunctor D E → Pseudofunctor C D → Pseudofunctor C E
_∘P_ {o″ = o″} {ℓ″ = ℓ″} {e″ = e″} {C = C} {D = D} {E = E} F G = record
{ P₀ = λ x → F₀ (G₀ x)
; P₁ = F₁ ∘F G₁
; P-identity = P-identity
; P-homomorphism = P-homomorphism
; unitaryˡ = unitaryˡ
; unitaryʳ = unitaryʳ
; assoc = assoc
}
where
module C = BicategoryExt C
module D = BicategoryExt D
module E = BicategoryExt E
module F = Pseudofunctor F
module G = Pseudofunctor G
open E
open F using () renaming (P₀ to F₀; P₁ to F₁)
open G using () renaming (P₀ to G₀; P₁ to G₁)
module F₁G₁ {x} {y} = Functor (F₁ {G₀ x} {G₀ y} ∘F G₁ {x} {y})
open NaturalIsomorphism
F∘G-id = λ {x} → F₁ ⓘˡ G.P-identity {x}
F-id = λ {x} → F.P-identity {G₀ x}
P-identity : ∀ {x} → E.id ∘F shift o″ ℓ″ e″ ≃ (F₁ ∘F G₁) ∘F (C.id {x})
P-identity {x} = niHelper (record
{ η = λ _ → ⇒.η F∘G-id _ ∘ᵥ ⇒.η F-id _
; η⁻¹ = λ _ → ⇐.η F-id _ ∘ᵥ ⇐.η F∘G-id _
; commute = λ _ → glue (⇒.commute F∘G-id _) (⇒.commute F-id _)
; iso = λ _ → record
{ isoˡ = begin
(⇐.η F-id _ ∘ᵥ ⇐.η F∘G-id _) ∘ᵥ ⇒.η F∘G-id _ ∘ᵥ ⇒.η F-id _
≈⟨ cancelInner (iso.isoˡ F∘G-id _) ⟩
⇐.η F-id _ ∘ᵥ ⇒.η F-id _
≈⟨ iso.isoˡ F-id _ ⟩
id₂
∎
; isoʳ = begin
(⇒.η F∘G-id _ ∘ᵥ ⇒.η F-id _) ∘ᵥ ⇐.η F-id _ ∘ᵥ ⇐.η F∘G-id _
≈⟨ cancelInner (iso.isoʳ F-id _) ⟩
⇒.η F∘G-id _ ∘ᵥ ⇐.η F∘G-id _
≈⟨ iso.isoʳ F∘G-id _ ⟩
id₂
∎
}
})
where
FGx = F₀ (G₀ x)
open HomReasoning (hom FGx FGx)
open MorphismReasoning (hom FGx FGx)
F∘G-h = λ {x y z} → F₁ ⓘˡ G.P-homomorphism {x} {y} {z}
F-h∘G = λ {x y z} → F.P-homomorphism {G₀ x} {G₀ y} {G₀ z} ⓘʳ (G₁ ⁂ G₁)
P-homomorphism : ∀ {x y z} →
E.⊚ ∘F (F₁ ∘F G₁ ⁂ F₁ ∘F G₁) ≃
(F₁ ∘F G₁) ∘F C.⊚ {x} {y} {z}
P-homomorphism {x} {y} {z} = niHelper (record
{ η = λ f,g → ⇒.η F∘G-h f,g ∘ᵥ ⇒.η F-h∘G f,g
; η⁻¹ = λ f,g → ⇐.η F-h∘G f,g ∘ᵥ ⇐.η F∘G-h f,g
; commute = λ α,β → glue (⇒.commute F∘G-h α,β) (⇒.commute F-h∘G α,β)
; iso = λ f,g → record
{ isoˡ = cancelInner (iso.isoˡ F∘G-h f,g) ○ iso.isoˡ F-h∘G f,g
; isoʳ = cancelInner (iso.isoʳ F-h∘G f,g) ○ iso.isoʳ F∘G-h f,g
}
})
where
FGx = F₀ (G₀ x)
FGz = F₀ (G₀ z)
open HomReasoning (hom FGx FGz)
open MorphismReasoning (hom FGx FGz)
Pid = λ {A} → NaturalTransformation.η (F⇒G (P-identity {A})) _
Phom = λ {x} {y} {z} f,g →
NaturalTransformation.η (F⇒G (P-homomorphism {x} {y} {z})) f,g
λ⇒ = unitorˡ.from
ρ⇒ = unitorʳ.from
α⇒ = associator.from
unitaryˡ : ∀ {x y} {f : x C.⇒₁ y} →
let open ComHom in
[ id₁ ⊚₀ F₁G₁.₀ f ⇒ F₁G₁.₀ f ]⟨
Pid ⊚₁ id₂ ⇒⟨ F₁G₁.₀ C.id₁ ⊚₀ F₁G₁.₀ f ⟩
Phom (C.id₁ , f) ⇒⟨ F₁G₁.₀ (C.id₁ C.⊚₀ f) ⟩
F₁G₁.₁ C.unitorˡ.from
≈ E.unitorˡ.from
⟩
unitaryˡ {x} {y} {f} = begin
F₁G₁.₁ C.unitorˡ.from ∘ᵥ Phom (C.id₁ , f) ∘ᵥ Pid ⊚₁ id₂
≡⟨⟩
F₁.₁ (G₁.₁ C.unitorˡ.from) ∘ᵥ
(⇒.η F∘G-h (C.id₁ , f) ∘ᵥ ⇒.η F-h∘G (C.id₁ , f)) ∘ᵥ
(⇒.η F∘G-id _ ∘ᵥ ⇒.η F-id _) ⊚₁ id₂
≈˘⟨ refl⟩∘⟨ refl⟩∘⟨ E.∘ᵥ-distr-◁ ⟩
F₁.₁ (G₁.₁ C.unitorˡ.from) ∘ᵥ
(⇒.η F∘G-h (C.id₁ , f) ∘ᵥ ⇒.η F-h∘G (C.id₁ , f)) ∘ᵥ
⇒.η F∘G-id _ ⊚₁ id₂ ∘ᵥ ⇒.η F-id _ ⊚₁ id₂
≈˘⟨ refl⟩∘⟨ refl⟩∘⟨ E.⊚.F-resp-≈ (hom.Equiv.refl , F₁.identity) ⟩∘⟨refl ⟩
F₁.₁ (G₁.₁ C.unitorˡ.from) ∘ᵥ
(⇒.η F∘G-h (C.id₁ , f) ∘ᵥ ⇒.η F-h∘G (C.id₁ , f)) ∘ᵥ
⇒.η F∘G-id _ ⊚₁ F₁.₁ D.id₂ ∘ᵥ ⇒.η F-id _ ⊚₁ id₂
≈⟨ refl⟩∘⟨ extend² (F.Hom.commute (G.unitˡ.η _ , D.id₂)) ⟩
F₁.₁ (G₁.₁ C.unitorˡ.from) ∘ᵥ
(⇒.η F∘G-h (C.id₁ , f) ∘ᵥ F₁.₁ (G.unitˡ.η _ D.⊚₁ D.id₂)) ∘ᵥ
F.Hom.η (D.id₁ , G₁.₀ f) ∘ᵥ ⇒.η F-id _ ⊚₁ id₂
≈˘⟨ pushˡ (F₁.homomorphism ○ hom.∘-resp-≈ʳ F₁.homomorphism) ⟩
F₁.₁ (G₁.₁ C.unitorˡ.from D.∘ᵥ
G.Hom.η (C.id₁ , f) D.∘ᵥ G.unitˡ.η _ D.⊚₁ D.id₂) ∘ᵥ
F.Hom.η (D.id₁ , G₁.₀ f) ∘ᵥ ⇒.η F-id _ ⊚₁ id₂
≈⟨ F₁.F-resp-≈ G.unitaryˡ ⟩∘⟨refl ⟩
F₁.₁ (D.unitorˡ.from) ∘ᵥ
F.Hom.η (D.id₁ , G₁.₀ f) ∘ᵥ ⇒.η F-id _ ⊚₁ id₂
≈⟨ F.unitaryˡ ⟩
E.unitorˡ.from
∎
where
FGx = F₀ (G₀ x)
FGy = F₀ (G₀ y)
open HomReasoning (hom FGx FGy)
open MorphismReasoning (hom FGx FGy)
unitaryʳ : ∀ {x y} {f : x C.⇒₁ y} →
let open ComHom in
[ F₁G₁.₀ f ⊚₀ id₁ ⇒ F₁G₁.₀ f ]⟨
id₂ ⊚₁ Pid ⇒⟨ F₁G₁.₀ f ⊚₀ F₁G₁.₀ C.id₁ ⟩
Phom (f , C.id₁) ⇒⟨ F₁G₁.₀ (f C.⊚₀ C.id₁) ⟩
F₁G₁.₁ C.unitorʳ.from
≈ E.unitorʳ.from
⟩
unitaryʳ {x} {y} {f} = begin
F₁G₁.₁ C.unitorʳ.from ∘ᵥ Phom (f , C.id₁) ∘ᵥ id₂ ⊚₁ Pid
≡⟨⟩
F₁.₁ (G₁.₁ C.unitorʳ.from) ∘ᵥ
(⇒.η F∘G-h (f , C.id₁) ∘ᵥ ⇒.η F-h∘G (f , C.id₁)) ∘ᵥ
id₂ ⊚₁ (⇒.η F∘G-id _ ∘ᵥ ⇒.η F-id _)
≈˘⟨ refl⟩∘⟨ refl⟩∘⟨ E.∘ᵥ-distr-▷ ⟩
F₁.₁ (G₁.₁ C.unitorʳ.from) ∘ᵥ
(⇒.η F∘G-h (f , C.id₁) ∘ᵥ ⇒.η F-h∘G (f , C.id₁)) ∘ᵥ
id₂ ⊚₁ ⇒.η F∘G-id _ ∘ᵥ id₂ ⊚₁ ⇒.η F-id _
≈˘⟨ refl⟩∘⟨ refl⟩∘⟨ E.⊚.F-resp-≈ (F₁.identity , hom.Equiv.refl) ⟩∘⟨refl ⟩
F₁.₁ (G₁.₁ C.unitorʳ.from) ∘ᵥ
(⇒.η F∘G-h (f , C.id₁) ∘ᵥ ⇒.η F-h∘G (f , C.id₁)) ∘ᵥ
F₁.₁ D.id₂ ⊚₁ ⇒.η F∘G-id _ ∘ᵥ id₂ ⊚₁ ⇒.η F-id _
≈⟨ refl⟩∘⟨ extend² (F.Hom.commute (D.id₂ , G.unitˡ.η _)) ⟩
F₁.₁ (G₁.₁ C.unitorʳ.from) ∘ᵥ
(⇒.η F∘G-h (f , C.id₁) ∘ᵥ F₁.₁ (D.id₂ D.⊚₁ G.unitˡ.η _)) ∘ᵥ
F.Hom.η (G₁.₀ f , D.id₁) ∘ᵥ id₂ ⊚₁ ⇒.η F-id _
≈˘⟨ pushˡ (F₁.homomorphism ○ hom.∘-resp-≈ʳ F₁.homomorphism) ⟩
F₁.₁ (G₁.₁ C.unitorʳ.from D.∘ᵥ
G.Hom.η (f , C.id₁) D.∘ᵥ D.id₂ D.⊚₁ G.unitˡ.η _) ∘ᵥ
F.Hom.η (G₁.₀ f , D.id₁) ∘ᵥ id₂ ⊚₁ ⇒.η F-id _
≈⟨ F₁.F-resp-≈ G.unitaryʳ ⟩∘⟨refl ⟩
F₁.₁ (D.unitorʳ.from) ∘ᵥ
F.Hom.η (G₁.₀ f , D.id₁) ∘ᵥ id₂ ⊚₁ ⇒.η F-id _
≈⟨ F.unitaryʳ ⟩
E.unitorʳ.from
∎
where
FGx = F₀ (G₀ x)
FGy = F₀ (G₀ y)
open HomReasoning (hom FGx FGy)
open MorphismReasoning (hom FGx FGy)
assoc : ∀ {x y z w} {f : x C.⇒₁ y} {g : y C.⇒₁ z} {h : z C.⇒₁ w} →
let open ComHom in
[ (F₁G₁.₀ h ⊚₀ F₁G₁.₀ g) ⊚₀ F₁G₁.₀ f ⇒ F₁G₁.₀ (h C.⊚₀ (g C.⊚₀ f)) ]⟨
Phom (h , g) ⊚₁ id₂ ⇒⟨ F₁G₁.₀ (h C.⊚₀ g) ⊚₀ F₁G₁.₀ f ⟩
Phom (_ , f) ⇒⟨ F₁G₁.₀ ((h C.⊚₀ g) C.⊚₀ f) ⟩
F₁G₁.₁ C.associator.from
≈ E.associator.from ⇒⟨ F₁G₁.₀ h ⊚₀ (F₁G₁.₀ g ⊚₀ F₁G₁.₀ f) ⟩
id₂ ⊚₁ Phom (g , f) ⇒⟨ F₁G₁.₀ h ⊚₀ F₁G₁.₀ (g C.⊚₀ f) ⟩
Phom (h , _)
⟩
assoc {x} {_} {_} {w} {f} {g} {h} = begin
F₁G₁.₁ C.associator.from ∘ᵥ Phom (_ , f) ∘ᵥ Phom (h , g) ⊚₁ id₂
≡⟨⟩
F₁.₁ (G₁.₁ C.associator.from) ∘ᵥ
(⇒.η F∘G-h (_ , f) ∘ᵥ ⇒.η F-h∘G (_ , f)) ∘ᵥ
(⇒.η F∘G-h (h , g) ∘ᵥ ⇒.η F-h∘G (h , g)) ⊚₁ id₂
≈˘⟨ refl⟩∘⟨ refl⟩∘⟨ E.∘ᵥ-distr-◁ ⟩
F₁.₁ (G₁.₁ C.associator.from) ∘ᵥ
(⇒.η F∘G-h (_ , f) ∘ᵥ ⇒.η F-h∘G (_ , f)) ∘ᵥ
⇒.η F∘G-h (h , g) ⊚₁ id₂ ∘ᵥ ⇒.η F-h∘G (h , g) ⊚₁ id₂
≈˘⟨ refl⟩∘⟨ refl⟩∘⟨ E.⊚.F-resp-≈ (hom.Equiv.refl , F₁.identity) ⟩∘⟨refl ⟩
F₁.₁ (G₁.₁ C.associator.from) ∘ᵥ
(⇒.η F∘G-h (_ , f) ∘ᵥ ⇒.η F-h∘G (_ , f)) ∘ᵥ
⇒.η F∘G-h (h , g) ⊚₁ F₁.₁ D.id₂ ∘ᵥ ⇒.η F-h∘G (h , g) ⊚₁ id₂
≈⟨ refl⟩∘⟨ extend² (F.Hom.commute (G.Hom.η (h , g) , D.id₂)) ⟩
F₁.₁ (G₁.₁ C.associator.from) ∘ᵥ
(⇒.η F∘G-h (_ , f) ∘ᵥ F₁.₁ (G.Hom.η (h , g) D.⊚₁ D.id₂)) ∘ᵥ
F.Hom.η (_ , G₁.₀ f) ∘ᵥ ⇒.η F-h∘G (h , g) ⊚₁ id₂
≈˘⟨ pushˡ (F₁.homomorphism ○ hom.∘-resp-≈ʳ F₁.homomorphism) ⟩
F₁.₁ (G₁.₁ C.associator.from D.∘ᵥ
G.Hom.η (_ , f) D.∘ᵥ G.Hom.η (h , g) D.⊚₁ D.id₂) ∘ᵥ
F.Hom.η (_ , G₁.₀ f) ∘ᵥ ⇒.η F-h∘G (h , g) ⊚₁ id₂
≈⟨ F₁.F-resp-≈ G.assoc ⟩∘⟨refl ⟩
F₁.₁ (G.Hom.η (h , _) D.∘ᵥ D.id₂ D.⊚₁ G.Hom.η (g , f) D.∘ᵥ
D.associator.from) ∘ᵥ
F.Hom.η (_ , G₁.₀ f) ∘ᵥ ⇒.η F-h∘G (h , g) ⊚₁ id₂
≈⟨ (F₁.homomorphism ○ pushʳ F₁.homomorphism) ⟩∘⟨refl ⟩
((⇒.η F∘G-h (h , _) ∘ᵥ F₁.₁ (D.id₂ D.⊚₁ G.Hom.η (g , f))) ∘ᵥ
F₁.₁ D.associator.from) ∘ᵥ
F.Hom.η (_ , G₁.₀ f) ∘ᵥ ⇒.η F-h∘G (h , g) ⊚₁ id₂
≈⟨ pullʳ F.assoc ⟩
(⇒.η F∘G-h (h , _) ∘ᵥ F₁.₁ (D.id₂ D.⊚₁ G.Hom.η (g , f))) ∘ᵥ
F.Hom.η (G₁.₀ h , _) ∘ᵥ id₂ ⊚₁ ⇒.η F-h∘G (g , f) ∘ᵥ
E.associator.from
≈˘⟨ extend² (F.Hom.commute (D.id₂ , G.Hom.η (g , f))) ⟩
(⇒.η F∘G-h (h , _) ∘ᵥ ⇒.η F-h∘G (h , _)) ∘ᵥ
F₁.₁ D.id₂ ⊚₁ ⇒.η F∘G-h (g , f) ∘ᵥ id₂ ⊚₁ ⇒.η F-h∘G (g , f) ∘ᵥ
E.associator.from
≈⟨ refl⟩∘⟨ pullˡ (E.⊚.F-resp-≈ (F₁.identity , hom.Equiv.refl) ⟩∘⟨refl) ⟩
(⇒.η F∘G-h (h , _) ∘ᵥ ⇒.η F-h∘G (h , _)) ∘ᵥ
(id₂ ⊚₁ ⇒.η F∘G-h (g , f) ∘ᵥ id₂ ⊚₁ ⇒.η F-h∘G (g , f)) ∘ᵥ
E.associator.from
≈⟨ refl⟩∘⟨ E.∘ᵥ-distr-▷ ⟩∘⟨refl ⟩
(⇒.η F∘G-h (h , _) ∘ᵥ ⇒.η F-h∘G (h , _)) ∘ᵥ
id₂ ⊚₁ (⇒.η F∘G-h (g , f) ∘ᵥ ⇒.η F-h∘G (g , f)) ∘ᵥ
E.associator.from
≡⟨⟩
Phom (h , _) ∘ᵥ id₂ ⊚₁ Phom (g , f) ∘ᵥ E.associator.from
∎
where
FGx = F₀ (G₀ x)
FGw = F₀ (G₀ w)
open HomReasoning (hom FGx FGw)
open MorphismReasoning (hom FGx FGw)
| {
"alphanum_fraction": 0.4634146341,
"avg_line_length": 41.3166023166,
"ext": "agda",
"hexsha": "ac42aa2812a4bb3f1ae9488bb0f29fe809df9bd8",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Pseudofunctor/Composition.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Pseudofunctor/Composition.agda",
"max_line_length": 80,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Pseudofunctor/Composition.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 5710,
"size": 10701
} |
-- notes-01-monday.agda
open import Data.Nat
open import Data.Bool
f : ℕ → ℕ
f x = x + 2
{-
f 3 =
= (x + 2)[x:=3] =
= 3 + 2 =
= 5
-}
n : ℕ
n = 3
f' : ℕ → ℕ
f' = λ x → x + 2 -- λ function (nameless function)
{-
f' 3 =
= (λ x → x + 2) 3 =
= (x + 2)[x := 3] = -- β-reduction
= 3 + 2 =
= 5
-}
g : ℕ → ℕ → ℕ -- currying
g = λ x → (λ y → x + y)
k : (ℕ → ℕ) → ℕ
k h = h 2 + h 3
{-
k f =
= f 2 + f 3 =
= (2 + 2) + (3 + 2) =
= 4 + 5 =
= 9
-}
variable
A B C : Set -- polymorphic: Set actually means "type"
id : A → A
id x = x
_∘_ : (B → C) → (A → B) → (A → C)
f ∘ g = λ x → f (g x)
{-
A combinator is a high-order function that uses only function application and
other combinators.
-}
K : A → B → A
K x y = x
S : (A → B → C) → (A → B) → A → C
S f g x = f x (g x)
-- in combinatory logic, every pure λ-term can be translated into S,K
-- λ x → f x = f -- η-equality
| {
"alphanum_fraction": 0.4516483516,
"avg_line_length": 14,
"ext": "agda",
"hexsha": "c67c336023212bb4794fb6565d935393e3915b29",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f328e596d98a7d052b34144447dd14de0f57e534",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "FoxySeta/mgs-2021",
"max_forks_repo_path": "Type Theory/notes-01-monday.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "f328e596d98a7d052b34144447dd14de0f57e534",
"max_issues_repo_issues_event_max_datetime": "2021-07-14T20:35:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-07-14T20:34:53.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "FoxySeta/mgs-2021",
"max_issues_repo_path": "Type Theory/notes-01-monday.agda",
"max_line_length": 79,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "f328e596d98a7d052b34144447dd14de0f57e534",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "FoxySeta/mgs-2021",
"max_stars_repo_path": "Type Theory/notes-01-monday.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 418,
"size": 910
} |
------------------------------------------------------------------------
-- Strict ω-continuous functions
------------------------------------------------------------------------
{-# OPTIONS --cubical --safe #-}
module Partiality-monad.Inductive.Strict-omega-continuous where
open import Equality.Propositional.Cubical
open import Prelude hiding (⊥)
open import Bijection equality-with-J using (_↔_)
open import Function-universe equality-with-J hiding (_∘_)
open import Monad equality-with-J
import Partiality-algebra.Strict-omega-continuous as S
open import Partiality-monad.Inductive
open import Partiality-monad.Inductive.Eliminators
open import Partiality-monad.Inductive.Monad
open import Partiality-monad.Inductive.Monotone
open import Partiality-monad.Inductive.Omega-continuous
-- Definition of strict ω-continuous functions.
[_⊥→_⊥]-strict : ∀ {a b} → Type a → Type b → Type (a ⊔ b)
[ A ⊥→ B ⊥]-strict = S.[ partiality-algebra A ⟶ partiality-algebra B ]⊥
module [_⊥→_⊥]-strict
{a b} {A : Type a} {B : Type b}
(f : [ A ⊥→ B ⊥]-strict) =
S.[_⟶_]⊥ f
open [_⊥→_⊥]-strict
-- Identity.
id-strict : ∀ {a} {A : Type a} → [ A ⊥→ A ⊥]-strict
id-strict = S.id⊥
-- Composition.
infixr 40 _∘-strict_
_∘-strict_ :
∀ {a b c} {A : Type a} {B : Type b} {C : Type c} →
[ B ⊥→ C ⊥]-strict → [ A ⊥→ B ⊥]-strict → [ A ⊥→ C ⊥]-strict
_∘-strict_ = S._∘⊥_
-- Equality characterisation lemma for strict ω-continuous functions.
equality-characterisation-strict :
∀ {a b} {A : Type a} {B : Type b} {f g : [ A ⊥→ B ⊥]-strict} →
(∀ x → function f x ≡ function g x) ↔ f ≡ g
equality-characterisation-strict =
S.equality-characterisation-strict
-- Composition is associative.
∘-strict-assoc :
∀ {a b c d} {A : Type a} {B : Type b} {C : Type c} {D : Type d}
(f : [ C ⊥→ D ⊥]-strict) (g : [ B ⊥→ C ⊥]-strict)
(h : [ A ⊥→ B ⊥]-strict) →
f ∘-strict (g ∘-strict h) ≡ (f ∘-strict g) ∘-strict h
∘-strict-assoc = S.∘⊥-assoc
-- Strict ω-continuous functions satisfy an extra monad law.
>>=-∘-return :
∀ {a b} {A : Type a} {B : Type b} →
(f : [ A ⊥→ B ⊥]-strict) →
∀ x → x >>=′ (function f ∘ return) ≡ function f x
>>=-∘-return fs = ⊥-rec-⊥
(record
{ P = λ x → x >>=′ (f ∘ return) ≡ f x
; pe = never >>=′ f ∘ return ≡⟨ never->>= ⟩
never ≡⟨ sym (strict fs) ⟩∎
f never ∎
; po = λ x →
now x >>=′ f ∘ return ≡⟨ now->>= ⟩∎
f (now x) ∎
; pl = λ s p →
⨆ s >>=′ (f ∘ return) ≡⟨ ⨆->>= ⟩
⨆ ((f ∘ return) ∗-inc s) ≡⟨ cong ⨆ (_↔_.to equality-characterisation-increasing λ n →
(f ∘ return) ∗-inc s [ n ] ≡⟨ p n ⟩∎
[ f⊑ $ s ]-inc [ n ] ∎) ⟩
⨆ [ f⊑ $ s ]-inc ≡⟨ sym $ ω-continuous fs s ⟩∎
f (⨆ s) ∎
; pp = λ _ → ⊥-is-set
})
where
f⊑ = monotone-function fs
f = function fs
-- Strict ω-continuous functions from A ⊥ to B ⊥ are isomorphic to
-- functions from A to B ⊥.
partial↔strict :
∀ {a b} {A : Type a} {B : Type b} →
(A → B ⊥) ↔ [ A ⊥→ B ⊥]-strict
partial↔strict {a} = record
{ surjection = record
{ logical-equivalence = record
{ to = λ f → record
{ ω-continuous-function = f ∗
; strict =
never >>=′ f ≡⟨ never->>= ⟩∎
never ∎
}
; from = λ f x → function f (return x)
}
; right-inverse-of = λ f →
_↔_.to equality-characterisation-strict λ x →
x >>=′ (function f ∘ return) ≡⟨ >>=-∘-return f x ⟩∎
function f x ∎
}
; left-inverse-of = λ f → ⟨ext⟩ λ x →
return x >>=′ f ≡⟨ Monad-laws.left-identity x f ⟩∎
f x ∎
}
| {
"alphanum_fraction": 0.4920593595,
"avg_line_length": 31.4836065574,
"ext": "agda",
"hexsha": "cb43cff4fb2a5980d0d5a65777bf5d39566a61d2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/partiality-monad",
"max_forks_repo_path": "src/Partiality-monad/Inductive/Strict-omega-continuous.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/partiality-monad",
"max_issues_repo_path": "src/Partiality-monad/Inductive/Strict-omega-continuous.agda",
"max_line_length": 100,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/partiality-monad",
"max_stars_repo_path": "src/Partiality-monad/Inductive/Strict-omega-continuous.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:59:18.000Z",
"num_tokens": 1361,
"size": 3841
} |
-- The positivity checker should not be run twice for the same mutual
-- block. (If we decide to turn Agda into a total program, then we may
-- want to revise this decision.)
{-# OPTIONS -vtc.pos.graph:5 #-}
module Positivity-once where
A : Set₁
module M where
B : Set₁
B = A
A = Set
| {
"alphanum_fraction": 0.6870748299,
"avg_line_length": 17.2941176471,
"ext": "agda",
"hexsha": "f63d5cd5429b7018cc0ee2f6b061e220d2c54ec5",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Positivity-once.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Positivity-once.agda",
"max_line_length": 70,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Positivity-once.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 82,
"size": 294
} |
-- This module introduces built-in types and primitive functions.
module Introduction.Built-in where
{- Agda supports four built-in types :
- integers,
- floating point numbers,
- characters, and
- strings.
Note that strings are not defined as lists of characters (as is the case in
Haskell).
To use the built-in types they first have to be bound to Agda types. The
reason for this is that there are no predefined names in Agda.
-}
-- To be able to use the built-in types we first introduce a new set for each
-- built-in type.
postulate
Int : Set
Float : Set
Char : Set
String : Set
-- We can then bind the built-in types to these new sets using the BUILTIN
-- pragma.
{-# BUILTIN INTEGER Int #-}
{-# BUILTIN FLOAT Float #-}
{-# BUILTIN CHAR Char #-}
{-# BUILTIN STRING String #-}
pi : Float
pi = 3.141593
forAll : Char
forAll = '∀'
hello : String
hello = "Hello World!"
-- There are no integer literals. Instead there are natural number literals. To
-- use these you have to tell the type checker which type to use for natural
-- numbers.
data Nat : Set where
zero : Nat
suc : Nat -> Nat
{-# BUILTIN NATURAL Nat #-}
-- Now we can define
fortyTwo : Nat
fortyTwo = 42
-- To anything interesting with values of the built-in types we need functions
-- to manipulate them. To this end Agda provides a set of primitive functions.
-- To gain access to a primitive function one simply declares it. For instance,
-- the function for floating point addition is called primFloatPlus. See below
-- for a complete list of primitive functions. At the moment the name that you
-- bring into scope is always the name of the primitive function. In the future
-- we might allow a primitive function to be introduced with any name.
module FloatPlus where -- We put it in a module to prevent it from clashing with
-- the plus function in the complete list of primitive
-- functions below.
primitive
primFloatPlus : Float -> Float -> Float
twoPi = primFloatPlus pi pi
-- Some primitive functions returns elements of non-primitive types. For
-- instance, the integer comparison functions return booleans. To be able to
-- use these functions we have to explain which type to use for booleans.
data Bool : Set where
false : Bool
true : Bool
{-# BUILTIN BOOL Bool #-}
{-# BUILTIN TRUE true #-}
{-# BUILTIN FALSE false #-}
module FloatLess where
primitive
primFloatLess : Float -> Float -> Bool
-- There are functions to convert a string to a list of characters, so we need
-- to say which list type to use.
data List (A : Set) : Set where
nil : List A
_::_ : A -> List A -> List A
{-# BUILTIN LIST List #-}
{-# BUILTIN NIL nil #-}
{-# BUILTIN CONS _::_ #-}
module StringToList where
primitive
primStringToList : String -> List Char
-- Below is a partial version of the complete list of primitive
-- functions.
primitive
-- Integer functions
primIntegerPlus : Int -> Int -> Int
primIntegerMinus : Int -> Int -> Int
primIntegerTimes : Int -> Int -> Int
primIntegerDiv : Int -> Int -> Int -- partial
primIntegerMod : Int -> Int -> Int -- partial
primIntegerEquality : Int -> Int -> Bool
primIntegerLess : Int -> Int -> Bool
primIntegerAbs : Int -> Nat
primNatToInteger : Nat -> Int
primShowInteger : Int -> String
-- Floating point functions
primIntegerToFloat : Int -> Float
primFloatPlus : Float -> Float -> Float
primFloatMinus : Float -> Float -> Float
primFloatTimes : Float -> Float -> Float
primFloatDiv : Float -> Float -> Float
primFloatLess : Float -> Float -> Bool
primRound : Float -> Int
primFloor : Float -> Int
primCeiling : Float -> Int
primExp : Float -> Float
primLog : Float -> Float -- partial
primSin : Float -> Float
primShowFloat : Float -> String
-- Character functions
primCharEquality : Char -> Char -> Bool
primIsLower : Char -> Bool
primIsDigit : Char -> Bool
primIsAlpha : Char -> Bool
primIsSpace : Char -> Bool
primIsAscii : Char -> Bool
primIsLatin1 : Char -> Bool
primIsPrint : Char -> Bool
primIsHexDigit : Char -> Bool
primToUpper : Char -> Char
primToLower : Char -> Char
primCharToNat : Char -> Nat
primNatToChar : Nat -> Char -- partial
primShowChar : Char -> String
-- String functions
primStringToList : String -> List Char
primStringFromList : List Char -> String
primStringAppend : String -> String -> String
primStringEquality : String -> String -> Bool
primShowString : String -> String
| {
"alphanum_fraction": 0.6552879581,
"avg_line_length": 29.6583850932,
"ext": "agda",
"hexsha": "c695faf6118b3e76eb2912fb65d885fa78efd05a",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "examples/Introduction/Built-in.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "examples/Introduction/Built-in.agda",
"max_line_length": 81,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "examples/Introduction/Built-in.agda",
"max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z",
"num_tokens": 1194,
"size": 4775
} |
{- Example by Andreas (2015-09-18) -}
{-# OPTIONS --rewriting --local-confluence-check #-}
open import Common.Prelude
open import Common.Equality
{-# BUILTIN REWRITE _≡_ #-}
module _ (A : Set) where
postulate
plus0p : ∀{x} → (x + zero) ≡ x
{-# REWRITE plus0p #-}
| {
"alphanum_fraction": 0.6258992806,
"avg_line_length": 17.375,
"ext": "agda",
"hexsha": "14c43ec6324f32324896b3dd088e9a0df53ff340",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "shlevy/agda",
"max_forks_repo_path": "test/Succeed/Issue1652-2.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue1652-2.agda",
"max_line_length": 52,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue1652-2.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 89,
"size": 278
} |
module <-trans where
open import Data.Nat using (ℕ)
open import Relations using (_<_; z<s; s<s)
<-trans : ∀ {m n p : ℕ}
→ m < n
→ n < p
-----
→ m < p
<-trans z<s (s<s _) = z<s
<-trans (s<s a) (s<s b) = s<s (<-trans a b)
| {
"alphanum_fraction": 0.4894514768,
"avg_line_length": 16.9285714286,
"ext": "agda",
"hexsha": "64289aa546915df19bb1bcfbf9adf0ed21fb2ffd",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "akiomik/plfa-solutions",
"max_forks_repo_path": "part1/relations/<-trans.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "akiomik/plfa-solutions",
"max_issues_repo_path": "part1/relations/<-trans.agda",
"max_line_length": 43,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "akiomik/plfa-solutions",
"max_stars_repo_path": "part1/relations/<-trans.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-07T09:42:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-07T09:42:22.000Z",
"num_tokens": 93,
"size": 237
} |
module BTree {A : Set} where
open import Data.List
data BTree : Set where
leaf : BTree
node : A → BTree → BTree → BTree
flatten : BTree → List A
flatten leaf = []
flatten (node x l r) = (flatten l) ++ (x ∷ flatten r)
| {
"alphanum_fraction": 0.6271929825,
"avg_line_length": 16.2857142857,
"ext": "agda",
"hexsha": "9aa398edc15b68eea2c29081300d3548dfbbf9c0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/BTree.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/BTree.agda",
"max_line_length": 54,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/BTree.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 75,
"size": 228
} |
module FunctorCat where
open import Categories
open import Functors
open import Naturals
FunctorCat : ∀{a b c d} → Cat {a}{b} → Cat {c}{d} → Cat
FunctorCat C D = record{
Obj = Fun C D;
Hom = NatT;
iden = idNat;
comp = compNat;
idl = idlNat;
idr = idrNat;
ass = λ{_}{_}{_}{_}{α}{β}{η} → assNat {α = α}{β}{η}}
| {
"alphanum_fraction": 0.5957446809,
"avg_line_length": 20.5625,
"ext": "agda",
"hexsha": "750a6da936b3774c151968248c956cdb7af5e85c",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z",
"max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "jmchapman/Relative-Monads",
"max_forks_repo_path": "FunctorCat.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "jmchapman/Relative-Monads",
"max_issues_repo_path": "FunctorCat.agda",
"max_line_length": 55,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "jmchapman/Relative-Monads",
"max_stars_repo_path": "FunctorCat.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z",
"num_tokens": 132,
"size": 329
} |
module agdaFunction where
addOne : N -> N
addOne Z = suc Z
addOne (suc a) = suc (suc a)
| {
"alphanum_fraction": 0.6555555556,
"avg_line_length": 12.8571428571,
"ext": "agda",
"hexsha": "86cdbba0d93f2b4106e1fd8c0f15917ab7728a46",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-11-27T16:25:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-11-27T16:25:18.000Z",
"max_forks_repo_head_hexsha": "a5f65e28cc9fdfefde49e7d8cf84486601b9e7b1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hjorthjort/IdrisToAgda",
"max_forks_repo_path": "agdaFunction.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "a5f65e28cc9fdfefde49e7d8cf84486601b9e7b1",
"max_issues_repo_issues_event_max_datetime": "2019-11-28T17:52:42.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-11-28T17:52:42.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hjorthjort/IdrisToAgda",
"max_issues_repo_path": "agdaFunction.agda",
"max_line_length": 28,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "a5f65e28cc9fdfefde49e7d8cf84486601b9e7b1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hjorthjort/IdrisToAgda",
"max_stars_repo_path": "agdaFunction.agda",
"max_stars_repo_stars_event_max_datetime": "2020-06-29T20:42:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-02-16T23:22:50.000Z",
"num_tokens": 34,
"size": 90
} |
{- modified from a bug report given to me by Ulf Norell, for a
previous, incorrect version of bt-remove-min. -}
module braun-tree-test where
open import nat
open import list
open import product
open import sum
open import eq
import braun-tree
open braun-tree nat _<_
test : braun-tree 4
test = bt-node 2
(bt-node 3 (bt-node 6 bt-empty bt-empty (inj₁ refl))
bt-empty (inj₂ refl))
(bt-node 4 bt-empty bt-empty (inj₁ refl))
(inj₂ refl)
{-
to-list : ∀ {n} → braun-tree n → list nat
to-list {zero} _ = []
to-list {suc _} t with bt-remove-min t
to-list {suc _} t | x , t′ = x :: to-list t′
t : braun-tree 5
t = bt-insert 5 (bt-insert 3 (bt-insert 4 (bt-insert 2 (bt-insert 1 bt-empty))))
oops : to-list t ≡ (1 :: 2 :: 3 :: 4 :: 5 :: [])
oops = refl
-}
| {
"alphanum_fraction": 0.609394314,
"avg_line_length": 17.5869565217,
"ext": "agda",
"hexsha": "8259d1f7fcea0e24e0e7227c2fb3255d0d18e192",
"lang": "Agda",
"max_forks_count": 17,
"max_forks_repo_forks_event_max_datetime": "2021-11-28T20:13:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-03T22:38:15.000Z",
"max_forks_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rfindler/ial",
"max_forks_repo_path": "braun-tree-test.agda",
"max_issues_count": 8,
"max_issues_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_issues_repo_issues_event_max_datetime": "2022-03-22T03:43:34.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-07-09T22:53:38.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rfindler/ial",
"max_issues_repo_path": "braun-tree-test.agda",
"max_line_length": 80,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rfindler/ial",
"max_stars_repo_path": "braun-tree-test.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-04T15:05:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-02-06T13:09:31.000Z",
"num_tokens": 269,
"size": 809
} |
{-# OPTIONS --allow-unsolved-metas #-}
module Control.Monad.Free where
open import Prelude
data Free (F : Type a → Type a) (A : Type a) : Type (ℓsuc a) where
lift : F A → Free F A
return : A → Free F A
_>>=_ : Free F B → (B → Free F A) → Free F A
>>=-idˡ : isSet A → (f : B → Free F A) (x : B) → (return x >>= f) ≡ f x
>>=-idʳ : isSet A → (x : Free F A) → (x >>= return) ≡ x
>>=-assoc : isSet A → (xs : Free F C) (f : C → Free F B) (g : B → Free F A) → ((xs >>= f) >>= g) ≡ (xs >>= (λ x → f x >>= g))
trunc : isSet A → isSet (Free F A)
data FreeF (F : Type a → Type a) (P : ∀ {T} → Free F T → Type b) (A : Type a) : Type (ℓsuc a ℓ⊔ b) where
liftF : F A → FreeF F P A
returnF : A → FreeF F P A
bindF : (xs : Free F B) (P⟨xs⟩ : P xs) (k : B → Free F A) (P⟨∘k⟩ : ∀ x → P (k x)) → FreeF F P A
private
variable
F : Type a → Type a
G : Type b → Type b
p : Level
P : ∀ {T} → Free F T → Type p
⟪_⟫ : FreeF F P A → Free F A
⟪ liftF x ⟫ = lift x
⟪ returnF x ⟫ = return x
⟪ bindF xs P⟨xs⟩ k P⟨∘k⟩ ⟫ = xs >>= k
Alg : (F : Type a → Type a) (P : ∀ {T} → Free F T → Type b) → Type _
Alg F P = ∀ {A} → (xs : FreeF F P A) → P ⟪ xs ⟫
record Coherent {a p} {F : Type a → Type a} {P : ∀ {T} → Free F T → Type p} (ψ : Alg F P) : Type (ℓsuc a ℓ⊔ p) where
field
c-set : ∀ {T} → isSet T → ∀ xs → isSet (P {T = T} xs) -- possibly needs to be isSet T → isSet (P {T = T} xs)
c->>=idˡ : ∀ (isb : isSet B) (f : A → Free F B) Pf x → ψ (bindF (return x) (ψ (returnF x)) f Pf) ≡[ i ≔ P (>>=-idˡ isb f x i) ]≡ Pf x
c->>=idʳ : ∀ (isa : isSet A) (x : Free F A) Px → ψ (bindF x Px return (λ y → ψ (returnF y))) ≡[ i ≔ P (>>=-idʳ isa x i) ]≡ Px
c->>=assoc : ∀ (isa : isSet A)
(xs : Free F C) Pxs
(f : C → Free F B) Pf
(g : B → Free F A) Pg →
ψ (bindF (xs >>= f) (ψ (bindF xs Pxs f Pf)) g Pg)
≡[ i ≔ P (>>=-assoc isa xs f g i) ]≡
ψ (bindF xs Pxs (λ x → f x >>= g) λ x → ψ (bindF (f x) (Pf x) g Pg))
open Coherent public
Ψ : (F : Type a → Type a) (P : ∀ {T} → Free F T → Type p) → Type _
Ψ F P = Σ (Alg F P) Coherent
infixr 1 Ψ
syntax Ψ F (λ v → e) = Ψ[ v ⦂ F * ] ⇒ e
Φ : (Type a → Type a) → Type b → Type _
Φ A B = Ψ A (λ _ → B)
⟦_⟧ : Ψ F P → (xs : Free F A) → P xs
⟦ alg ⟧ (lift x) = alg .fst (liftF x)
⟦ alg ⟧ (return x) = alg .fst (returnF x)
⟦ alg ⟧ (xs >>= k) = alg .fst (bindF xs (⟦ alg ⟧ xs) k (⟦ alg ⟧ ∘ k))
⟦ alg ⟧ (>>=-idˡ iss f k i) = alg .snd .c->>=idˡ iss f (⟦ alg ⟧ ∘ f) k i
⟦ alg ⟧ (>>=-idʳ iss xs i) = alg .snd .c->>=idʳ iss xs (⟦ alg ⟧ xs) i
⟦ alg ⟧ (>>=-assoc iss xs f g i) = alg .snd .c->>=assoc iss xs (⟦ alg ⟧ xs) f (⟦ alg ⟧ ∘ f) g (⟦ alg ⟧ ∘ g) i
⟦ alg ⟧ (trunc AIsSet xs ys p q i j) =
isOfHLevel→isOfHLevelDep 2
(alg .snd .c-set AIsSet)
(⟦ alg ⟧ xs) (⟦ alg ⟧ ys)
(cong ⟦ alg ⟧ p) (cong ⟦ alg ⟧ q)
(trunc AIsSet xs ys p q)
i j
prop-coh : {alg : Alg F P} → (∀ {T} → isSet T → ∀ xs → isProp (P {T} xs)) → Coherent alg
prop-coh P-isProp .c-set TIsSet xs = isProp→isSet (P-isProp TIsSet xs)
prop-coh {P = P} P-isProp .c->>=idˡ iss f Pf x =
toPathP (P-isProp iss (f x) (transp (λ i → P (>>=-idˡ iss f x i)) i0 _) _)
prop-coh {P = P} P-isProp .c->>=idʳ iss x Px =
toPathP (P-isProp iss x (transp (λ i → P (>>=-idʳ iss x i)) i0 _) _)
prop-coh {P = P} P-isProp .c->>=assoc iss xs Pxs f Pf g Pg =
toPathP (P-isProp iss (xs >>= (λ x → f x >>= g)) (transp (λ i → P (>>=-assoc iss xs f g i)) i0 _) _)
-- infix 4 _⊜_
-- record AnEquality (F : Type a → Type a) (A : Type a) : Type (ℓsuc a) where
-- constructor _⊜_
-- field lhs rhs : Free F A
-- open AnEquality public
-- EqualityProof-Alg : (F : Type a → Type a) (P : ∀ {A} → Free F A → AnEquality G A) → Type _
-- EqualityProof-Alg F P = Alg F (λ xs → let Pxs = P xs in lhs Pxs ≡ rhs Pxs)
-- eq-coh : {P : ∀ {A} → Free F A → AnEquality G A} {alg : EqualityProof-Alg F P} → Coherent alg
-- eq-coh {P = P} = prop-coh λ xs → let Pxs = P xs in trunc (lhs Pxs) (rhs Pxs)
open import Algebra
module _ {F : Type a → Type a} where
freeMonad : SetMonad a (ℓsuc a)
freeMonad .SetMonad.𝐹 = Free F
freeMonad .SetMonad.isSetMonad .IsSetMonad._>>=_ = _>>=_
freeMonad .SetMonad.isSetMonad .IsSetMonad.return = return
freeMonad .SetMonad.isSetMonad .IsSetMonad.>>=-idˡ = >>=-idˡ
freeMonad .SetMonad.isSetMonad .IsSetMonad.>>=-idʳ = >>=-idʳ
freeMonad .SetMonad.isSetMonad .IsSetMonad.>>=-assoc = >>=-assoc
freeMonad .SetMonad.isSetMonad .IsSetMonad.trunc = trunc
module _ {ℓ} (mon : SetMonad ℓ ℓ) where
module F = SetMonad mon
open F using (𝐹)
module _ {G : Type ℓ → Type ℓ} (h : ∀ {T} → G T → 𝐹 T) where
⟦_⟧′ : Free G A → 𝐹 A
⟦ lift x ⟧′ = h x
⟦ return x ⟧′ = F.return x
⟦ xs >>= k ⟧′ = ⟦ xs ⟧′ F.>>= λ x → ⟦ k x ⟧′
⟦ >>=-idˡ iss f x i ⟧′ = F.>>=-idˡ iss (⟦_⟧′ ∘ f) x i
⟦ >>=-idʳ iss xs i ⟧′ = F.>>=-idʳ iss ⟦ xs ⟧′ i
⟦ >>=-assoc iss xs f g i ⟧′ = F.>>=-assoc iss ⟦ xs ⟧′ (⟦_⟧′ ∘ f) (⟦_⟧′ ∘ g) i
⟦ trunc iss xs ys p q i j ⟧′ =
isOfHLevel→isOfHLevelDep 2
(λ xs → F.trunc iss)
⟦ xs ⟧′ ⟦ ys ⟧′
(cong ⟦_⟧′ p) (cong ⟦_⟧′ q)
(trunc iss xs ys p q)
i j
module _ (hom : SetMonadHomomorphism freeMonad {F = G} ⟶ mon) where
module Hom = SetMonadHomomorphism_⟶_ hom
open Hom using (f)
uniq-alg : (inv : ∀ {A : Type _} → (x : G A) → f (lift x) ≡ h x) → Ψ[ xs ⦂ G * ] ⇒ ⟦ xs ⟧′ ≡ f xs
uniq-alg inv .snd = prop-coh λ iss xs → F.trunc iss _ _
uniq-alg inv .fst (liftF x) = sym (inv x)
uniq-alg inv .fst (returnF x) = sym (Hom.return-homo x)
uniq-alg inv .fst (bindF xs P⟨xs⟩ k P⟨∘k⟩) = cong₂ F._>>=_ P⟨xs⟩ (funExt P⟨∘k⟩) ; Hom.>>=-homo xs k
uniq : (inv : ∀ {A : Type _} → (x : G A) → f (lift x) ≡ h x) → (xs : Free G A) → ⟦ xs ⟧′ ≡ f xs
uniq inv = ⟦ uniq-alg inv ⟧
open import Cubical.Foundations.HLevels using (isSetΠ)
module _ {ℓ} (fun : Functor ℓ ℓ) where
open Functor fun using (map; 𝐹)
module _ {B : Type ℓ} (BIsSet : isSet B) where
cata-alg : (𝐹 B → B) → Ψ 𝐹 λ {T} _ → (T → B) → B
cata-alg ϕ .fst (liftF x) h = ϕ (map h x)
cata-alg ϕ .fst (returnF x) h = h x
cata-alg ϕ .fst (bindF _ P⟨xs⟩ _ P⟨∘k⟩) h = P⟨xs⟩ (flip P⟨∘k⟩ h)
cata-alg ϕ .snd .c-set _ _ = isSetΠ λ _ → BIsSet
cata-alg ϕ .snd .c->>=idˡ isb f Pf x = refl
cata-alg ϕ .snd .c->>=idʳ isa x Px = refl
cata-alg ϕ .snd .c->>=assoc isa xs Pxs f Pf g Pg = refl
cata : (A → B) → (𝐹 B → B) → Free 𝐹 A → B
cata h ϕ xs = ⟦ cata-alg ϕ ⟧ xs h
_>>_ : Free F A → Free F B → Free F B
xs >> ys = xs >>= const ys
| {
"alphanum_fraction": 0.5154070213,
"avg_line_length": 39.2951807229,
"ext": "agda",
"hexsha": "0c1e676f60e7e10107cafcb51c5f9a1a35366321",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Control/Monad/Free.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Control/Monad/Free.agda",
"max_line_length": 137,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Control/Monad/Free.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 2948,
"size": 6523
} |
module 747Quantifiers where
-- Library
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl)
open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _≤_; z≤n; s≤s) -- added ≤
open import Relation.Nullary using (¬_)
open import Data.Product using (_×_; proj₁; proj₂) renaming (_,_ to ⟨_,_⟩) -- added proj₂
open import Data.Sum using (_⊎_; inj₁; inj₂ ) -- added inj₁, inj₂
open import Function using (_∘_) -- added
-- Copied from 747Isomorphism.
postulate
extensionality : ∀ {A B : Set} {f g : A → B}
→ (∀ (x : A) → f x ≡ g x)
-----------------------
→ f ≡ g
infix 0 _≃_
record _≃_ (A B : Set) : Set where
constructor mk-≃
field
to : A → B
from : B → A
from∘to : ∀ (x : A) → from (to x) ≡ x
to∘from : ∀ (y : B) → to (from y) ≡ y
open _≃_
record _⇔_ (A B : Set) : Set where
field
to : A → B
from : B → A
open _⇔_
-- Logical forall is, not surpringly, ∀.
-- Forall elimination is also function application.
∀-elim : ∀ {A : Set} {B : A → Set}
→ (L : ∀ (x : A) → B x)
→ (M : A)
-----------------
→ B M
∀-elim L M = L M
-- In fact, A → B is nicer syntax for ∀ (_ : A) → B.
-- 747/PLFA exercise: ForAllDistProd (1 point)
-- Show that ∀ distributes over ×.
-- (The special case of → distributes over × was shown in the Connectives chapter.)
∀-distrib-× : ∀ {A : Set} {B C : A → Set} →
(∀ (x : A) → B x × C x) ≃ (∀ (x : A) → B x) × (∀ (x : A) → C x)
∀-distrib-× = {!!}
-- 747/PLFA exercise: SumForAllImpForAllSum (1 point)
-- Show that a disjunction of foralls implies a forall of disjunctions.
⊎∀-implies-∀⊎ : ∀ {A : Set} {B C : A → Set} →
(∀ (x : A) → B x) ⊎ (∀ (x : A) → C x) → ∀ (x : A) → B x ⊎ C x
⊎∀-implies-∀⊎ ∀B⊎∀C = {!!}
-- Existential quantification can be defined as a pair:
-- a witness and a proof that the witness satisfies the property.
data Σ (A : Set) (B : A → Set) : Set where
⟨_,_⟩ : (x : A) → B x → Σ A B
-- Some convenient syntax.
Σ-syntax = Σ
infix 2 Σ-syntax
syntax Σ-syntax A (λ x → B) = Σ[ x ∈ A ] B
-- Unfortunately, we can use the RHS syntax in code,
-- but the LHS will show up in displays of goal and context.
-- This is equivalent to defining a dependent record type.
record Σ′ (A : Set) (B : A → Set) : Set where
field
proj₁′ : A
proj₂′ : B proj₁′
-- By convention, the library uses ∃ when the domain of the bound variable is implicit.
∃ : ∀ {A : Set} (B : A → Set) → Set
∃ {A} B = Σ A B
-- More special syntax.
∃-syntax = ∃
syntax ∃-syntax (λ x → B) = ∃[ x ] B
-- Above we saw two ways of constructing an existential.
-- We eliminate an existential with a function that consumes the
-- witness and proof and reaches a conclusion C.
∃-elim : ∀ {A : Set} {B : A → Set} {C : Set}
→ (∀ x → B x → C)
→ ∃[ x ] B x
---------------
→ C
∃-elim f ⟨ x , y ⟩ = f x y
-- This is a generalization of currying (from Connectives).
-- currying : ∀ {A B C : Set} → (A → B → C) ≃ (A × B → C)
∀∃-currying : ∀ {A : Set} {B : A → Set} {C : Set}
→ (∀ x → B x → C) ≃ (∃[ x ] B x → C)
_≃_.to ∀∃-currying f ⟨ x , x₁ ⟩ = f x x₁
_≃_.from ∀∃-currying e x x₁ = e ⟨ x , x₁ ⟩
_≃_.from∘to ∀∃-currying f = refl
_≃_.to∘from ∀∃-currying e = extensionality λ { ⟨ x , x₁ ⟩ → refl}
-- 747/PLFA exercise: ExistsDistSum (2 points)
-- Show that existentials distribute over disjunction.
∃-distrib-⊎ : ∀ {A : Set} {B C : A → Set} →
∃[ x ] (B x ⊎ C x) ≃ (∃[ x ] B x) ⊎ (∃[ x ] C x)
∃-distrib-⊎ = {!!}
-- 747/PLFA exercise: ExistsProdImpProdExists (1 point)
-- Show that existentials distribute over ×.
∃×-implies-×∃ : ∀ {A : Set} {B C : A → Set} →
∃[ x ] (B x × C x) → (∃[ x ] B x) × (∃[ x ] C x)
∃×-implies-×∃ = {!!}
-- An existential example: revisiting even/odd.
-- Recall the mutually-recursive definitions of even and odd.
data even : ℕ → Set
data odd : ℕ → Set
data even where
even-zero : even zero
even-suc : ∀ {n : ℕ}
→ odd n
------------
→ even (suc n)
data odd where
odd-suc : ∀ {n : ℕ}
→ even n
-----------
→ odd (suc n)
-- An number is even iff it is double some other number.
-- A number is odd iff is one plus double some other number.
-- Proofs below.
even-∃ : ∀ {n : ℕ} → even n → ∃[ m ] ( m * 2 ≡ n)
odd-∃ : ∀ {n : ℕ} → odd n → ∃[ m ] (1 + m * 2 ≡ n)
even-∃ even-zero = ⟨ zero , refl ⟩
even-∃ (even-suc x) with odd-∃ x
even-∃ (even-suc x) | ⟨ x₁ , refl ⟩ = ⟨ suc x₁ , refl ⟩
odd-∃ (odd-suc x) with even-∃ x
odd-∃ (odd-suc x) | ⟨ x₁ , refl ⟩ = ⟨ x₁ , refl ⟩
∃-even : ∀ {n : ℕ} → ∃[ m ] ( m * 2 ≡ n) → even n
∃-odd : ∀ {n : ℕ} → ∃[ m ] (1 + m * 2 ≡ n) → odd n
∃-even ⟨ zero , refl ⟩ = even-zero
∃-even ⟨ suc x , refl ⟩ = even-suc (∃-odd ⟨ x , refl ⟩)
∃-odd ⟨ x , refl ⟩ = odd-suc (∃-even ⟨ x , refl ⟩)
-- PLFA exercise: what if we write the arithmetic more "naturally"?
-- (Proof gets harder but is still doable).
-- 747/PLFA exercise: AltLE (3 points)
-- An alternate definition of y ≤ z.
-- (Optional exercise: Is this an isomorphism?)
∃-≤ : ∀ {y z : ℕ} → ( (y ≤ z) ⇔ ( ∃[ x ] (y + x ≡ z) ) )
∃-≤ = {!!}
-- The negation of an existential is isomorphic to a universal of a negation.
¬∃≃∀¬ : ∀ {A : Set} {B : A → Set}
→ (¬ ∃[ x ] B x) ≃ ∀ x → ¬ B x
¬∃≃∀¬ = {!!}
-- 747/PLFA exercise: ExistsNegImpNegForAll (1 point)
-- Existence of negation implies negation of universal.
∃¬-implies-¬∀ : ∀ {A : Set} {B : A → Set}
→ ∃[ x ] (¬ B x)
--------------
→ ¬ (∀ x → B x)
∃¬-implies-¬∀ ∃¬B = {!!}
-- The converse cannot be proved in intuitionistic logic.
-- PLFA exercise: isomorphism between naturals and existence of canonical binary.
-- This is essentially what we did at the end of 747Isomorphism.
| {
"alphanum_fraction": 0.5478865704,
"avg_line_length": 27.6206896552,
"ext": "agda",
"hexsha": "0255c852a815c935e0ed3f3d9bb27eb10e0e08c2",
"lang": "Agda",
"max_forks_count": 8,
"max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z",
"max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_forks_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x08-747Quantifiers-completed.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_issues_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x08-747Quantifiers-completed.agda",
"max_line_length": 89,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_stars_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x08-747Quantifiers-completed.agda",
"max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z",
"num_tokens": 2190,
"size": 5607
} |
-- Andreas, 2014-01-09, illegal double hiding info in typed bindings.
postulate
ok : ({A} : Set) → Set
bad : {{A} : Set} → Set
| {
"alphanum_fraction": 0.6090225564,
"avg_line_length": 22.1666666667,
"ext": "agda",
"hexsha": "e7e88f892609da962c02d0e5a9581607d5540210",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue1391b.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue1391b.agda",
"max_line_length": 69,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue1391b.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 47,
"size": 133
} |
{-# OPTIONS --without-K --safe #-}
-- Definitions for the types of a polynomial stored in sparse horner
-- normal form.
--
-- These definitions ensure that the polynomial is actually in fully
-- canonical form, with no trailing zeroes, etc.
open import Polynomial.Parameters
module Polynomial.NormalForm.Definition
{a ℓ}
(coeffs : RawCoeff a ℓ)
where
open import Polynomial.NormalForm.InjectionIndex
open import Relation.Nullary using (¬_)
open import Level using (_⊔_)
open import Data.Empty using (⊥)
open import Data.Unit using (⊤)
open import Data.Nat using (ℕ; suc; zero)
open import Data.Bool using (T)
open import Data.List.Kleene public
infixl 6 _Δ_
record PowInd {c} (C : Set c) : Set c where
inductive
constructor _Δ_
field
coeff : C
pow : ℕ
open PowInd public
open RawCoeff coeffs
mutual
-- A Polynomial is indexed by the number of variables it contains.
infixl 6 _Π_
record Poly (n : ℕ) : Set a where
inductive
constructor _Π_
field
{i} : ℕ
flat : FlatPoly i
i≤n : i ≤′ n
data FlatPoly : ℕ → Set a where
Κ : Carrier → FlatPoly zero
Σ : ∀ {n} → (xs : Coeff n +) → .{xn : Norm xs} → FlatPoly (suc n)
-- A list of coefficients, paired with the exponent *gap* from the
-- preceding coefficient. In other words, to represent the
-- polynomial:
--
-- 3 + 2x² + 4x⁵ + 2x⁷
--
-- We write:
--
-- [(3,0),(2,1),(4,2),(2,1)]
--
-- Which can be thought of as a representation of the expression:
--
-- x⁰ * (3 + x * x¹ * (2 + x * x² * (4 + x * x¹ * (2 + x * 0))))
--
-- This is sparse Horner normal form.
Coeff : ℕ → Set a
Coeff n = PowInd (NonZero n)
-- We disallow zeroes in the coefficient list. This condition alone
-- is enough to ensure a unique representation for any polynomial.
infixl 6 _≠0
record NonZero (i : ℕ) : Set a where
inductive
constructor _≠0
field
poly : Poly i
.{poly≠0} : ¬ Zero poly
-- This predicate is used (in its negation) to ensure that no
-- coefficient is zero, preventing any trailing zeroes.
Zero : ∀ {n} → Poly n → Set
Zero (Κ x Π _) = T (Zero-C x)
Zero (Σ _ Π _) = ⊥
-- This predicate is used to ensure that all polynomials are in
-- normal form: if a particular level is constant, than it can
-- be collapsed into the level below it.
Norm : ∀ {i} → Coeff i + → Set
Norm (_ Δ zero & []) = ⊥
Norm (_ Δ zero & ∹ _) = ⊤
Norm (_ Δ suc _ & _) = ⊤
open NonZero public
open Poly public
| {
"alphanum_fraction": 0.6253943218,
"avg_line_length": 26.4166666667,
"ext": "agda",
"hexsha": "95dfdbf1394d6f4aeca74f3b9f8aff753615ec07",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-20T07:07:11.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-04-16T02:23:16.000Z",
"max_forks_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mckeankylej/agda-ring-solver",
"max_forks_repo_path": "src/Polynomial/NormalForm/Definition.agda",
"max_issues_count": 5,
"max_issues_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T01:55:42.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-17T20:48:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mckeankylej/agda-ring-solver",
"max_issues_repo_path": "src/Polynomial/NormalForm/Definition.agda",
"max_line_length": 69,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mckeankylej/agda-ring-solver",
"max_stars_repo_path": "src/Polynomial/NormalForm/Definition.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-15T00:57:55.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-01-25T16:40:52.000Z",
"num_tokens": 796,
"size": 2536
} |
{-# OPTIONS --warning=error --safe --without-K --guardedness #-}
open import Sets.EquivalenceRelations
open import Functions.Definition
open import Functions.Lemmas
open import Sets.FinSet.Definition
open import Sets.FinSet.Lemmas
open import Sets.Cardinality.Finite.Definition
open import LogicalFormulae
open import Groups.Definition
open import Groups.Groups
open import Groups.FiniteGroups.Definition
open import Groups.Abelian.Definition
open import Setoids.Setoids
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.Order
open import Numbers.Integers.Integers
open import Numbers.Rationals.Definition
open import Numbers.Reals.Definition
open import Rings.Definition
open import Fields.FieldOfFractions.Setoid
open import Semirings.Definition
open import Numbers.Modulo.Definition
open import Numbers.Modulo.Group
open import Fields.Fields
open import Setoids.Subset
open import Rings.IntegralDomains.Definition
open import Fields.Lemmas
open import Rings.Examples.Examples
module LectureNotes.Groups.Lecture1 where
-- Examples
groupExample1 : Group (reflSetoid ℤ) (_+Z_)
groupExample1 = ℤGroup
groupExample2 : Group ℚSetoid (_+Q_)
groupExample2 = Ring.additiveGroup ℚRing
groupExample2' : Group ℝSetoid (_+R_)
groupExample2' = Ring.additiveGroup ℝRing
groupExample3 : Group (reflSetoid ℤ) (_-Z_) → False
groupExample3 record { +Associative = multAssoc } with multAssoc {nonneg 3} {nonneg 2} {nonneg 1}
groupExample3 record { +WellDefined = wellDefined } | ()
negSuccInjective : {a b : ℕ} → (negSucc a ≡ negSucc b) → a ≡ b
negSuccInjective {a} {.a} refl = refl
nonnegInjective : {a b : ℕ} → (nonneg a ≡ nonneg b) → a ≡ b
nonnegInjective {a} {.a} refl = refl
integersTimesNotGroup : Group (reflSetoid ℤ) (_*Z_) → False
integersTimesNotGroup = multiplicationNotGroup ℤRing λ ()
rationalsTimesNotGroup : Group ℚSetoid (_*Q_) → False
rationalsTimesNotGroup = multiplicationNotGroup ℚRing λ ()
QNonzeroGroup : Group _ _
QNonzeroGroup = fieldMultiplicativeGroup ℚField
-- TODO: {1, -1} is a group with *
ℤnIsGroup : (n : ℕ) → (0<n : 0 <N n) → _
ℤnIsGroup n pr = ℤnGroup n pr
-- Groups example 8.9 from lecture 1
data Weird : Set where
e : Weird
a : Weird
b : Weird
c : Weird
_+W_ : Weird → Weird → Weird
e +W t = t
a +W e = a
a +W a = e
a +W b = c
a +W c = b
b +W e = b
b +W a = c
b +W b = e
b +W c = a
c +W e = c
c +W a = b
c +W b = a
c +W c = e
+WAssoc : {x y z : Weird} → (x +W (y +W z)) ≡ (x +W y) +W z
+WAssoc {e} {y} {z} = refl
+WAssoc {a} {e} {z} = refl
+WAssoc {a} {a} {e} = refl
+WAssoc {a} {a} {a} = refl
+WAssoc {a} {a} {b} = refl
+WAssoc {a} {a} {c} = refl
+WAssoc {a} {b} {e} = refl
+WAssoc {a} {b} {a} = refl
+WAssoc {a} {b} {b} = refl
+WAssoc {a} {b} {c} = refl
+WAssoc {a} {c} {e} = refl
+WAssoc {a} {c} {a} = refl
+WAssoc {a} {c} {b} = refl
+WAssoc {a} {c} {c} = refl
+WAssoc {b} {e} {z} = refl
+WAssoc {b} {a} {e} = refl
+WAssoc {b} {a} {a} = refl
+WAssoc {b} {a} {b} = refl
+WAssoc {b} {a} {c} = refl
+WAssoc {b} {b} {e} = refl
+WAssoc {b} {b} {a} = refl
+WAssoc {b} {b} {b} = refl
+WAssoc {b} {b} {c} = refl
+WAssoc {b} {c} {e} = refl
+WAssoc {b} {c} {a} = refl
+WAssoc {b} {c} {b} = refl
+WAssoc {b} {c} {c} = refl
+WAssoc {c} {e} {z} = refl
+WAssoc {c} {a} {e} = refl
+WAssoc {c} {a} {a} = refl
+WAssoc {c} {a} {b} = refl
+WAssoc {c} {a} {c} = refl
+WAssoc {c} {b} {e} = refl
+WAssoc {c} {b} {a} = refl
+WAssoc {c} {b} {b} = refl
+WAssoc {c} {b} {c} = refl
+WAssoc {c} {c} {e} = refl
+WAssoc {c} {c} {a} = refl
+WAssoc {c} {c} {b} = refl
+WAssoc {c} {c} {c} = refl
weirdGroup : Group (reflSetoid Weird) _+W_
Group.+WellDefined weirdGroup = reflGroupWellDefined
Group.0G weirdGroup = e
Group.inverse weirdGroup t = t
Group.+Associative weirdGroup {r} {s} {t} = +WAssoc {r} {s} {t}
Group.identRight weirdGroup {e} = refl
Group.identRight weirdGroup {a} = refl
Group.identRight weirdGroup {b} = refl
Group.identRight weirdGroup {c} = refl
Group.identLeft weirdGroup {e} = refl
Group.identLeft weirdGroup {a} = refl
Group.identLeft weirdGroup {b} = refl
Group.identLeft weirdGroup {c} = refl
Group.invLeft weirdGroup {e} = refl
Group.invLeft weirdGroup {a} = refl
Group.invLeft weirdGroup {b} = refl
Group.invLeft weirdGroup {c} = refl
Group.invRight weirdGroup {e} = refl
Group.invRight weirdGroup {a} = refl
Group.invRight weirdGroup {b} = refl
Group.invRight weirdGroup {c} = refl
weirdAb : AbelianGroup weirdGroup
AbelianGroup.commutative weirdAb {e} {e} = refl
AbelianGroup.commutative weirdAb {e} {a} = refl
AbelianGroup.commutative weirdAb {e} {b} = refl
AbelianGroup.commutative weirdAb {e} {c} = refl
AbelianGroup.commutative weirdAb {a} {e} = refl
AbelianGroup.commutative weirdAb {a} {a} = refl
AbelianGroup.commutative weirdAb {a} {b} = refl
AbelianGroup.commutative weirdAb {a} {c} = refl
AbelianGroup.commutative weirdAb {b} {e} = refl
AbelianGroup.commutative weirdAb {b} {a} = refl
AbelianGroup.commutative weirdAb {b} {b} = refl
AbelianGroup.commutative weirdAb {b} {c} = refl
AbelianGroup.commutative weirdAb {c} {e} = refl
AbelianGroup.commutative weirdAb {c} {a} = refl
AbelianGroup.commutative weirdAb {c} {b} = refl
AbelianGroup.commutative weirdAb {c} {c} = refl
weirdProjection : Weird → FinSet 4
weirdProjection a = ofNat 0 (le 3 refl)
weirdProjection b = ofNat 1 (le 2 refl)
weirdProjection c = ofNat 2 (le 1 refl)
weirdProjection e = ofNat 3 (le zero refl)
weirdProjectionSurj : Surjection weirdProjection
weirdProjectionSurj fzero = a , refl
weirdProjectionSurj (fsucc fzero) = b , refl
weirdProjectionSurj (fsucc (fsucc fzero)) = c , refl
weirdProjectionSurj (fsucc (fsucc (fsucc fzero))) = e , refl
weirdProjectionSurj (fsucc (fsucc (fsucc (fsucc ()))))
weirdProjectionInj : (x y : Weird) → weirdProjection x ≡ weirdProjection y → Setoid._∼_ (reflSetoid Weird) x y
weirdProjectionInj e e fx=fy = refl
weirdProjectionInj e a ()
weirdProjectionInj e b ()
weirdProjectionInj e c ()
weirdProjectionInj a e ()
weirdProjectionInj a a fx=fy = refl
weirdProjectionInj a b ()
weirdProjectionInj a c ()
weirdProjectionInj b e ()
weirdProjectionInj b a ()
weirdProjectionInj b b fx=fy = refl
weirdProjectionInj b c ()
weirdProjectionInj c e ()
weirdProjectionInj c a ()
weirdProjectionInj c b ()
weirdProjectionInj c c fx=fy = refl
weirdFinite : FiniteGroup weirdGroup (FinSet 4)
SetoidToSet.project (FiniteGroup.toSet weirdFinite) = weirdProjection
SetoidToSet.wellDefined (FiniteGroup.toSet weirdFinite) x y = applyEquality weirdProjection
SetoidToSet.surj (FiniteGroup.toSet weirdFinite) = weirdProjectionSurj
SetoidToSet.inj (FiniteGroup.toSet weirdFinite) = weirdProjectionInj
FiniteSet.size (FiniteGroup.finite weirdFinite) = 4
FiniteSet.mapping (FiniteGroup.finite weirdFinite) = id
FiniteSet.bij (FiniteGroup.finite weirdFinite) = idIsBijective
weirdOrder : groupOrder weirdFinite ≡ 4
weirdOrder = refl
| {
"alphanum_fraction": 0.7132136551,
"avg_line_length": 31.7570093458,
"ext": "agda",
"hexsha": "8a660ddbf44ff24d8698f08ad60e7cfb434c9486",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "LectureNotes/Groups/Lecture1.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "LectureNotes/Groups/Lecture1.agda",
"max_line_length": 110,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "LectureNotes/Groups/Lecture1.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 2389,
"size": 6796
} |
open import Function using (_∘_)
open import Category.Functor
open import Category.Monad
open import Data.Fin as Fin using (Fin) renaming (suc to fs; zero to fz)
import Data.Fin.Properties as FinProps
open import Data.Maybe as Maybe using (Maybe; maybe; just; nothing)
open import Data.Nat as Nat using (ℕ; suc; zero; _+_; _⊔_)
open import Data.Product using (Σ; ∃; _,_; proj₁; proj₂) renaming (_×_ to _∧_)
open import Data.Sum using (_⊎_; inj₁; inj₂; [_,_])
open import Data.Vec as Vec using (Vec; []; _∷_; head; tail)
open import Data.Vec.Equality as VecEq
open import Relation.Nullary using (Dec; yes; no; ¬_)
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as PropEq using (_≡_; refl; cong; inspect; [_])
module Unification (Name : ℕ → Set) (decEqName : ∀ {k} (x y : Name k) → Dec (x ≡ y)) where
open RawFunctor {{...}}
open RawMonad {{...}} hiding (_<$>_)
open DecSetoid {{...}} using (_≟_)
instance MaybeFunctor = Maybe.functor
instance MaybeMonad = Maybe.monad
private natDecSetoid = PropEq.decSetoid Nat._≟_
private finDecSetoid : ∀ {n} → DecSetoid _ _
finDecSetoid {n} = FinProps.decSetoid n
private nameDecSetoid : ∀ {k} → DecSetoid _ _
nameDecSetoid {k} = PropEq.decSetoid (decEqName {k})
-- defining terms
data Term (n : ℕ) : Set where
var : Fin n → Term n
con : ∀ {k} (s : Name k) → (ts : Vec (Term n) k) → Term n
-- defining decidable equality on terms
mutual
decEqTerm : ∀ {n} → (t₁ t₂ : Term n) → Dec (t₁ ≡ t₂)
decEqTerm (var x₁) (var x₂) with x₁ FinProps.≟ x₂
decEqTerm (var .x₂) (var x₂) | yes refl = yes refl
decEqTerm (var x₁) (var x₂) | no x₁≢x₂ = no (x₁≢x₂ ∘ elim)
where
elim : ∀ {n} {x y : Fin n}
→ var x ≡ var y → x ≡ y
elim {n} {x} {.x} refl = refl
decEqTerm (var _) (con _ _) = no (λ ())
decEqTerm (con _ _) (var _) = no (λ ())
decEqTerm (con {k₁} s₁ ts₁) (con {k₂} s₂ ts₂) with k₁ Nat.≟ k₂
decEqTerm (con {k₁} s₁ ts₁) (con {k₂} s₂ ts₂) | no k₁≢k₂ = no (k₁≢k₂ ∘ elim)
where
elim : ∀ {n k₁ k₂ s₁ s₂} {ts₁ : Vec (Term n) k₁} {ts₂ : Vec (Term n) k₂}
→ con {n} {k₁} s₁ ts₁ ≡ con {n} {k₂} s₂ ts₂ → k₁ ≡ k₂
elim {n} {k} {.k} refl = refl
decEqTerm (con {.k} s₁ ts₁) (con { k} s₂ ts₂) | yes refl with decEqName s₁ s₂
decEqTerm (con s₁ ts₁) (con s₂ ts₂) | yes refl | no s₁≢s₂ = no (s₁≢s₂ ∘ elim)
where
elim : ∀ {n k s₁ s₂} {ts₁ ts₂ : Vec (Term n) k}
→ con s₁ ts₁ ≡ con s₂ ts₂ → s₁ ≡ s₂
elim {n} {k} {s} {.s} refl = refl
decEqTerm (con .s ts₁) (con s ts₂) | yes refl | yes refl with decEqVecTerm ts₁ ts₂
decEqTerm (con .s ts₁) (con s ts₂) | yes refl | yes refl | no ts₁≢ts₂ = no (ts₁≢ts₂ ∘ elim)
where
elim : ∀ {n k s} {ts₁ ts₂ : Vec (Term n) k}
→ con s ts₁ ≡ con s ts₂ → ts₁ ≡ ts₂
elim {n} {k} {s} {ts} {.ts} refl = refl
decEqTerm (con .s .ts) (con s ts) | yes refl | yes refl | yes refl = yes refl
decEqVecTerm : ∀ {n k} → (xs ys : Vec (Term n) k) → Dec (xs ≡ ys)
decEqVecTerm [] [] = yes refl
decEqVecTerm (x ∷ xs) ( y ∷ ys) with decEqTerm x y | decEqVecTerm xs ys
decEqVecTerm (x ∷ xs) (.x ∷ .xs) | yes refl | yes refl = yes refl
decEqVecTerm (x ∷ xs) ( y ∷ ys) | yes _ | no xs≢ys = no (xs≢ys ∘ cong tail)
decEqVecTerm (x ∷ xs) ( y ∷ ys) | no x≢y | _ = no (x≢y ∘ cong head)
termDecSetoid : ∀ {n} → DecSetoid _ _
termDecSetoid {n} = PropEq.decSetoid (decEqTerm {n})
-- defining replacement function (written _◂ in McBride, 2003)
mutual
replace : ∀ {n m} → (Fin n → Term m) → Term n → Term m
replace f (var i) = f i
replace f (con s ts) = con s (replaceChildren f ts)
replaceChildren : ∀ {n m k} → (Fin n → Term m) → Vec (Term n) k → Vec (Term m) k
replaceChildren f [] = []
replaceChildren f (x ∷ xs) = replace f x ∷ (replaceChildren f xs)
-- defining replacement composition
_◇_ : ∀ {m n l} (f : Fin m → Term n) (g : Fin l → Term m) → Fin l → Term n
_◇_ f g = replace f ∘ g
-- defining thick and thin
thin : {n : ℕ} -> Fin (suc n) -> Fin n -> Fin (suc n)
thin fz y = fs y
thin (fs x) fz = fz
thin (fs x) (fs y) = fs (thin x y)
thick : {n : ℕ} -> (x y : Fin (suc n)) -> Maybe (Fin n)
thick fz fz = nothing
thick fz (fs y) = just y
thick {Nat.zero} (fs ()) _
thick {Nat.suc n} (fs x) fz = just fz
thick {Nat.suc n} (fs x) (fs y) = fs <$> (thick x y)
-- | defining an occurs check (**check** in McBride, 2003)
mutual
check : ∀ {n} (x : Fin (suc n)) (t : Term (suc n)) → Maybe (Term n)
check x₁ (var x₂) = var <$> thick x₁ x₂
check x₁ (con s ts) = con s <$> checkChildren x₁ ts
checkChildren : ∀ {n k} (x : Fin (suc n)) (ts : Vec (Term (suc n)) k) → Maybe (Vec (Term n) k)
checkChildren x₁ [] = just []
checkChildren x₁ (t ∷ ts) = check x₁ t >>= λ t' →
checkChildren x₁ ts >>= λ ts' → return (t' ∷ ts')
-- | datatype for substitutions (AList in McBride, 2003)
data Subst : ℕ → ℕ → Set where
nil : ∀ {n} → Subst n n
snoc : ∀ {m n} → (s : Subst m n) → (t : Term m) → (x : Fin (suc m)) → Subst (suc m) n
-- | substitutes t for x (**for** in McBride, 2003)
_for_ : ∀ {n} (t : Term n) (x : Fin (suc n)) → Fin (suc n) → Term n
_for_ t x y with thick x y
_for_ t x y | just y' = var y'
_for_ t x y | nothing = t
-- | substitution application (**sub** in McBride, 2003)
apply : ∀ {m n} → Subst m n → Fin m → Term n
apply nil = var
apply (snoc s t x) = (apply s) ◇ (t for x)
-- | composes two substitutions
_⊕_ : ∀ {l m n} → Subst m n → Subst l m → Subst l n
s₁ ⊕ nil = s₁
s₁ ⊕ (snoc s₂ t x) = snoc (s₁ ⊕ s₂) t x
flexRigid : ∀ {n} → Fin n → Term n → Maybe (∃ (Subst n))
flexRigid {zero} () t
flexRigid {suc n} x t with check x t
flexRigid {suc n} x t | nothing = nothing
flexRigid {suc n} x t | just t' = just (n , snoc nil t' x)
flexFlex : ∀ {n} → (x y : Fin n) → ∃ (Subst n)
flexFlex {zero} () j
flexFlex {suc n} x y with thick x y
flexFlex {suc n} x y | nothing = (suc n , nil)
flexFlex {suc n} x y | just z = (n , snoc nil (var z) x)
mutual
unifyAcc : ∀ {m} → (t₁ t₂ : Term m) → ∃ (Subst m) → Maybe (∃ (Subst m))
unifyAcc (con {k₁} s₁ ts₁) (con {k₂} s₂ ts₂) acc with k₁ Nat.≟ k₂
unifyAcc (con {k₁} s₁ ts₁) (con {k₂} s₂ ts₂) acc | no k₁≢k₂ = nothing
unifyAcc (con { k} s₁ ts₁) (con {.k} s₂ ts₂) acc | yes refl with decEqName s₁ s₂
unifyAcc (con { k} s₁ ts₁) (con {.k} s₂ ts₂) acc | yes refl | no s₁≢s₂ = nothing
unifyAcc (con { k} .s ts₁) (con {.k} s ts₂) acc | yes refl | yes refl = unifyAccChildren ts₁ ts₂ acc
unifyAcc (var x₁) (var x₂) (n , nil) = just (flexFlex x₁ x₂)
unifyAcc (var x₁) t₂ (n , nil) = flexRigid x₁ t₂
unifyAcc t₁ (var x₂) (n , nil) = flexRigid x₂ t₁
unifyAcc t₁ t₂ (n , snoc s t' x) =
( λ s → proj₁ s , snoc (proj₂ s) t' x )
<$> unifyAcc (replace (t' for x) t₁) (replace (t' for x) t₂) (n , s)
unifyAccChildren : ∀ {n k} → (ts₁ ts₂ : Vec (Term n) k) → ∃ (Subst n) → Maybe (∃ (Subst n))
unifyAccChildren [] [] acc = just acc
unifyAccChildren (t₁ ∷ ts₁) (t₂ ∷ ts₂) acc = unifyAcc t₁ t₂ acc >>= unifyAccChildren ts₁ ts₂
unify : ∀ {m} → (t₁ t₂ : Term m) → Maybe (∃ (Subst m))
unify {m} t₁ t₂ = unifyAcc t₁ t₂ (m , nil)
| {
"alphanum_fraction": 0.5626099905,
"avg_line_length": 40.8121546961,
"ext": "agda",
"hexsha": "7b24a90ee4dc42241093fcb07f292f6c9f0cbea7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "5fc229e7eb6925dd3ea8e5d8e8bfbff4500c5614",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "wenkokke/FirstOrderUnificationInAgda",
"max_forks_repo_path": "Unification.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "5fc229e7eb6925dd3ea8e5d8e8bfbff4500c5614",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "wenkokke/FirstOrderUnificationInAgda",
"max_issues_repo_path": "Unification.agda",
"max_line_length": 105,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "5fc229e7eb6925dd3ea8e5d8e8bfbff4500c5614",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "wenkokke/FirstOrderUnificationInAgda",
"max_stars_repo_path": "Unification.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-06T21:58:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-07-27T22:15:32.000Z",
"num_tokens": 2932,
"size": 7387
} |
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module SL where
open import Data.Nat
open import Data.Product
open import Data.Sum
open import Relation.Binary.PropositionalEquality
-- Example from: Hofmann and Streicher. The groupoid model refutes
-- uniqueness of identity proofs.
thm₁ : ∀ n → n ≡ 0 ⊎ Σ ℕ (λ n' → n ≡ suc n')
thm₁ zero = inj₁ refl
thm₁ (suc n) = inj₂ (n , refl)
postulate indℕ : (P : ℕ → Set) → P 0 → (∀ n → P n → P (suc n)) → ∀ n → P n
thm₂ : ∀ n → n ≡ 0 ⊎ Σ ℕ λ n' → n ≡ suc n'
thm₂ = indℕ P P0 is
where
P : ℕ → Set
P m = m ≡ 0 ⊎ Σ ℕ λ m' → m ≡ suc m'
P0 : P 0
P0 = inj₁ refl
is : ∀ m → P m → P (suc m)
is m _ = inj₂ (m , refl)
| {
"alphanum_fraction": 0.5457920792,
"avg_line_length": 25.25,
"ext": "agda",
"hexsha": "a46d9efb64def5bcb16f802904a485a6a2536168",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/k-axiom/SL.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/k-axiom/SL.agda",
"max_line_length": 74,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/k-axiom/SL.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 292,
"size": 808
} |
module Irrelevant where
open import Common.IO
open import Common.Nat
open import Common.Unit
A : Set
A = Nat
record R : Set where
id : A → A
id x = x
postulate r : R
id2 : .A → A → A
id2 x y = y
open R
main : IO Unit
main = printNat (id2 10 20) ,,
printNat (id r 30) ,,
return unit
| {
"alphanum_fraction": 0.6363636364,
"avg_line_length": 11.88,
"ext": "agda",
"hexsha": "7d3c5da7a7397749c7ae9bd80092f8b41179d0a7",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Compiler/simple/Irrelevant.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Compiler/simple/Irrelevant.agda",
"max_line_length": 30,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Compiler/simple/Irrelevant.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 108,
"size": 297
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.