Search is not available for this dataset
text
string
meta
dict
-- Andreas, May-July 2016, implementing postfix projections {-# OPTIONS --postfix-projections #-} open import Common.Product open import Common.Bool pair : ∀{A : Set}(a : A) → A × A pair a = {!!} -- C-c C-c here outputs postfix projections record BoolFun : Set where field out : Bool → Bool open BoolFun neg : BoolFun neg .out x = {!x!} -- splitting here should preserve postfix proj neg2 : BoolFun out neg2 x = {!x!} -- splitting here should preserve prefix proj module ExtendedLambda where neg3 : BoolFun neg3 = λ{ .out → {!!} } pair2 : ∀{A : Set}(a : A) → A × A pair2 = λ{ a → {!!} } neg4 : BoolFun neg4 = λ{ .out b → {!b!} } -- DOES NOT WORK DUE TO ISSUE #2020 -- module LambdaWhere where -- neg3 : BoolFun -- neg3 = λ where -- .out → {!!} -- splitting on result here crashes -- pair2 : ∀{A : Set}(a : A) → A × A -- pair2 = λ where -- a → {!!} -- extlam-where : Bool → Bool -- extlam-where = λ where -- b → {!b!} -- -- extlam : Bool → Bool -- -- extlam = λ -- -- { b → {!b!} -- -- }
{ "alphanum_fraction": 0.571291866, "avg_line_length": 20.0961538462, "ext": "agda", "hexsha": "1d54600bc516cda28d1b494c3b69e2879a406bae", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue1963.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue1963.agda", "max_line_length": 65, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue1963.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 345, "size": 1045 }
module _ where open import Issue1278.A Set open import Agda.Builtin.Equality test : (c : D) -> (c ≡ c) test d = {!!} -- goal ".#A-60005532.d ≡ .#A-60005532.d"
{ "alphanum_fraction": 0.6234567901, "avg_line_length": 18, "ext": "agda", "hexsha": "87fc798790d74fb9872401a38dc5d99fe9f554e1", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue1278.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue1278.agda", "max_line_length": 55, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue1278.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 62, "size": 162 }
------------------------------------------------------------------------ -- Eliminators and initiality ------------------------------------------------------------------------ {-# OPTIONS --erased-cubical --safe #-} module Partiality-algebra.Eliminators where open import Equality.Propositional.Cubical open import Logical-equivalence using (_⇔_) open import Prelude hiding (T) open import Bijection equality-with-J using (_↔_) import Equivalence equality-with-J as Eq open import Function-universe equality-with-J hiding (id; _∘_) open import H-level equality-with-J open import H-level.Closure equality-with-J open import Surjection equality-with-J using (_↠_) open import Partiality-algebra as PA hiding (id; _∘_) ------------------------------------------------------------------------ -- Eliminators -- I (NAD) have tried to follow the spirit of the rules for HITs -- specified in the HoTT-Agda library -- (https://github.com/HoTT/HoTT-Agda/blob/master/core/lib/types/HIT_README.txt). -- However, at the time of writing those rules don't apply to indexed -- types. -- A specification of a given partiality algebra's eliminator -- arguments (for given motive sizes). record Arguments {a p′ q′} {A : Type a} p q (PA : Partiality-algebra p′ q′ A) : Type (a ⊔ lsuc (p ⊔ q) ⊔ p′ ⊔ q′) where open Partiality-algebra PA -- Predicate transformer related to increasing sequences. Inc : (P : T → Type p) (Q : ∀ {x y} → P x → P y → x ⊑ y → Type q) → Increasing-sequence → Type (p ⊔ q) Inc P Q s = ∃ λ (p : ∀ n → P (s [ n ])) → ∀ n → Q (p n) (p (suc n)) (increasing s n) field P : T → Type p Q : ∀ {x y} → P x → P y → x ⊑ y → Type q pe : P never po : ∀ x → P (now x) pl : ∀ s (pq : Inc P Q s) → P (⨆ s) pa : ∀ {x y} (x⊑y : x ⊑ y) (x⊒y : x ⊒ y) (p-x : P x) (p-y : P y) (q-x⊑y : Q p-x p-y x⊑y) (q-x⊒y : Q p-y p-x x⊒y) → subst P (antisymmetry x⊑y x⊒y) p-x ≡ p-y pp : ∀ {x} → Is-set (P x) qr : ∀ x (p : P x) → Q p p (⊑-refl x) qt : ∀ {x y z} (x⊑y : x ⊑ y) (y⊑z : y ⊑ z) → (px : P x) (py : P y) (pz : P z) → Q px py x⊑y → Q py pz y⊑z → Q px pz (⊑-trans x⊑y y⊑z) qe : ∀ x (p : P x) → Q pe p (never⊑ x) qu : ∀ s (pq : Inc P Q s) n → Q (proj₁ pq n) (pl s pq) (upper-bound s n) ql : ∀ s ub is-ub (pq : Inc P Q s) (pu : P ub) (qu : ∀ n → Q (proj₁ pq n) pu (is-ub n)) → Q (pl s pq) pu (least-upper-bound s ub is-ub) qp : ∀ {x y} (p-x : P x) (p-y : P y) (x⊑y : x ⊑ y) → Is-proposition (Q p-x p-y x⊑y) -- A specification of a given partiality algebra's eliminators. record Eliminators {a p q p′ q′} {A : Type a} {PA : Partiality-algebra p′ q′ A} (args : Arguments p q PA) : Type (a ⊔ p ⊔ q ⊔ p′ ⊔ q′) where open Partiality-algebra PA open Arguments args field ⊥-rec : (x : T) → P x ⊑-rec : ∀ {x y} (x⊑y : x ⊑ y) → Q (⊥-rec x) (⊥-rec y) x⊑y inc-rec : (s : Increasing-sequence) → Inc P Q s inc-rec = λ { (s , inc) → ( (λ n → ⊥-rec (s n)) , (λ n → ⊑-rec (inc n)) ) } field -- Some "computation" rules. ⊥-rec-never : ⊥-rec never ≡ pe ⊥-rec-now : ∀ x → ⊥-rec (now x) ≡ po x ⊥-rec-⨆ : ∀ s → ⊥-rec (⨆ s) ≡ pl s (inc-rec s) -- A specification of the elimination principle for a given partiality -- algebra (for motives of certain sizes). Elimination-principle : ∀ {a p′ q′} {A : Type a} → ∀ p q → Partiality-algebra p′ q′ A → Type (a ⊔ lsuc (p ⊔ q) ⊔ p′ ⊔ q′) Elimination-principle p q P = (args : Arguments p q P) → Eliminators args ------------------------------------------------------------------------ -- Initiality -- The statement that a given partiality algebra is homotopy-initial. Initial : ∀ {a p q} p′ q′ {A : Type a} → Partiality-algebra p q A → Type (a ⊔ p ⊔ q ⊔ lsuc (p′ ⊔ q′)) Initial p′ q′ {A} P = (P′ : Partiality-algebra p′ q′ A) → Contractible (Morphism P P′) -- If a partiality algebra is initial at certain sizes, then it is -- also initial at smaller sizes. lower-initiality : ∀ {a p q p₁ q₁} p₂ q₂ {A : Type a} (P : Partiality-algebra p q A) (initial : Initial (p₁ ⊔ p₂) (q₁ ⊔ q₂) P) → Initial p₁ q₁ P lower-initiality {p₁ = p₁} {q₁} p₂ q₂ {A} P initial P′ = Σ-map lower-morphism lemma (initial P″) where open Partiality-algebra P′ P″ : Partiality-algebra (p₁ ⊔ p₂) (q₁ ⊔ q₂) A P″ = record { T = ↑ p₂ T ; partiality-algebra-with = record { _⊑_ = λ x y → ↑ q₂ (lower x ⊑ lower y) ; never = lift never ; now = lift ∘ now ; ⨆ = lift ∘ ⨆ ∘ Σ-map (lower ∘_) (lower ∘_) ; antisymmetry = λ x⊑y y⊑x → cong lift (antisymmetry (lower x⊑y) (lower y⊑x)) ; T-is-set-unused = λ _ _ → ↑-closure 2 T-is-set _ _ ; ⊑-refl = lift ∘ ⊑-refl ∘ lower ; ⊑-trans = λ x⊑y y⊑z → lift (⊑-trans (lower x⊑y) (lower y⊑z)) ; never⊑ = lift ∘ never⊑ ∘ lower ; upper-bound = λ _ → lift ∘ upper-bound _ ; least-upper-bound = λ _ _ → lift ∘ least-upper-bound _ _ ∘ (lower ∘_) ; ⊑-propositional = ↑-closure 1 ⊑-propositional } } lower-morphism : Morphism P P″ → Morphism P P′ lower-morphism m = record { function = lower ∘ function ; monotone = lower ∘ monotone ; strict = cong lower strict ; now-to-now = cong lower ∘ now-to-now ; ω-continuous = cong lower ∘ ω-continuous } where open Morphism m lift-morphism : Morphism P P′ → Morphism P P″ lift-morphism m = record { function = lift ∘ function ; monotone = lift ∘ monotone ; strict = cong lift strict ; now-to-now = cong lift ∘ now-to-now ; ω-continuous = cong lift ∘ ω-continuous } where open Morphism m lemma : {m : Morphism P P″} → (∀ m′ → m ≡ m′) → (∀ m′ → lower-morphism m ≡ m′) lemma {m} hyp m′ = _↔_.to equality-characterisation-Morphism (lower ∘ Morphism.function m ≡⟨ cong ((lower ∘_) ∘ Morphism.function) (hyp (lift-morphism m′)) ⟩∎ Morphism.function m′ ∎) ------------------------------------------------------------------------ -- Specifying the partiality monad using eliminators is logically -- equivalent (at the meta-level) to specifying it using initiality -- Any partiality algebra with eliminators (at certain sizes) is -- initial (at the same sizes). eliminators→initiality : ∀ {a p q p′ q′} {A : Type a} → (P : Partiality-algebra p′ q′ A) → Elimination-principle p q P → Initial p q P eliminators→initiality {p = p} {q} P elims P′ = morphism , unique where module P = Partiality-algebra P module P′ = Partiality-algebra P′ args : Arguments p q P args = record { P = λ _ → P′.T ; Q = λ x y _ → x P′.⊑ y ; pe = P′.never ; po = P′.now ; pl = λ _ → P′.⨆ ; pa = λ x⊑y y⊑x u v u⊑v v⊑u → let eq = Partiality-algebra.antisymmetry P x⊑y y⊑x in subst (const P′.T) eq u ≡⟨ subst-const eq ⟩ u ≡⟨ P′.antisymmetry u⊑v v⊑u ⟩∎ v ∎ ; pp = P′.T-is-set ; qr = λ _ → P′.⊑-refl ; qt = λ _ _ _ _ _ → P′.⊑-trans ; qe = λ _ → P′.never⊑ ; qu = λ _ → P′.upper-bound ; ql = λ _ _ _ → P′.least-upper-bound ; qp = λ _ _ _ → P′.⊑-propositional } module E = Eliminators (elims args) morphism : Morphism P P′ morphism = record { function = E.⊥-rec ; monotone = E.⊑-rec ; strict = E.⊥-rec-never ; now-to-now = E.⊥-rec-now ; ω-continuous = E.⊥-rec-⨆ } open Morphism function-unique : (f : Morphism P P′) → E.⊥-rec ≡ function f function-unique f = sym $ ⟨ext⟩ $ Eliminators.⊥-rec (elims (record { Q = λ _ _ _ → ↑ _ ⊤ ; pe = function f P.never ≡⟨ strict f ⟩ P′.never ≡⟨ sym $ E.⊥-rec-never ⟩∎ E.⊥-rec P.never ∎ ; po = λ x → function f (P.now x) ≡⟨ now-to-now f x ⟩ P′.now x ≡⟨ sym $ E.⊥-rec-now x ⟩∎ E.⊥-rec (P.now x) ∎ ; pl = λ s hyp → function f (P.⨆ s) ≡⟨ ω-continuous f s ⟩ P′.⨆ (sequence-function f s) ≡⟨ cong P′.⨆ $ _↔_.to P′.equality-characterisation-increasing (proj₁ hyp) ⟩ P′.⨆ (E.inc-rec s) ≡⟨ sym $ E.⊥-rec-⨆ s ⟩ E.⊥-rec (P.⨆ s) ∎ ; pa = λ _ _ _ _ _ _ → P′.T-is-set _ _ ; pp = λ _ _ → mono₁ 1 P′.T-is-set _ _ ; qp = λ _ _ _ _ _ → refl })) unique : ∀ f → morphism ≡ f unique f = _↔_.to equality-characterisation-Morphism (function-unique f) -- Any partiality algebra with initiality (at certain sufficiently -- large sizes) has eliminators (at certain sizes). initiality→eliminators : ∀ {a p q p′ q′} {A : Type a} {P : Partiality-algebra p′ q′ A} (initial : Initial (p ⊔ p′) (q ⊔ q′) P) → Elimination-principle p q P initiality→eliminators {p = p} {q} {p′} {q′} {A} {PA} initial args = record { ⊥-rec = ⊥-rec ; ⊑-rec = ⊑-rec ; ⊥-rec-never = ⊥-rec-never ; ⊥-rec-now = ⊥-rec-now ; ⊥-rec-⨆ = ⊥-rec-⨆ } where open Partiality-algebra PA open Arguments args private -- A partiality algebra with ∃ P as the carrier type. ∃PA : Partiality-algebra (p ⊔ p′) (q ⊔ q′) A ∃PA = record { T = ∃ P ; partiality-algebra-with = record { _⊑_ = λ { (_ , p) (_ , q) → ∃ (Q p q) } ; never = never , pe ; now = λ x → now x , po x ; ⨆ = λ s → ⨆ (Σ-map (proj₁ ∘_) (proj₁ ∘_) s) , pl _ ( proj₂ ∘ proj₁ s , proj₂ ∘ proj₂ s ) ; antisymmetry = λ { {x = (x , p)} {y = (y , q)} (x⊑y , Qx⊑y) (y⊑x , Qy⊑x) → Σ-≡,≡→≡ (antisymmetry x⊑y y⊑x) (pa x⊑y y⊑x p q Qx⊑y Qy⊑x) } ; T-is-set-unused = Σ-closure 2 T-is-set (λ _ → pp) ; ⊑-refl = λ _ → _ , qr _ _ ; ⊑-trans = Σ-zip ⊑-trans (qt _ _ _ _ _) ; never⊑ = λ _ → _ , qe _ _ ; upper-bound = λ _ _ → upper-bound _ _ , qu _ _ _ ; least-upper-bound = λ _ _ ⊑qs → least-upper-bound _ _ (proj₁ ∘ ⊑qs) , ql _ _ _ _ _ (proj₂ ∘ ⊑qs) ; ⊑-propositional = Σ-closure 1 ⊑-propositional λ _ → qp _ _ _ } } -- Initiality gives us a morphism from PA to ∃PA. eliminator-morphism : Morphism PA ∃PA eliminator-morphism = proj₁ (initial ∃PA) open Morphism eliminator-morphism -- We can construct a morphism from ∃PA to PA directly. proj₁-morphism : Morphism ∃PA PA proj₁-morphism = record { function = proj₁ ; monotone = proj₁ ; strict = refl ; now-to-now = λ _ → refl ; ω-continuous = λ _ → refl } -- By composing the two morphisms we get an endomorphism on PA. id′ : Morphism PA PA id′ = proj₁-morphism PA.∘ eliminator-morphism -- Due to initiality this morphism must be equal to id. id′≡id : id′ ≡ PA.id id′≡id = let m , unique = lower-initiality p q PA initial PA in id′ ≡⟨ sym $ unique id′ ⟩ m ≡⟨ unique PA.id ⟩∎ PA.id ∎ abstract -- This provides us with a key lemma used to define the -- eliminators. lemma : ∀ x → proj₁ (function x) ≡ x lemma x = cong (λ m → Morphism.function m x) id′≡id -- As an aside this means that there is a split surjection from -- ∃ P to T. ↠T : ∃ P ↠ T ↠T = record { logical-equivalence = record { to = Morphism.function proj₁-morphism ; from = function } ; right-inverse-of = lemma } -- The eliminators. ⊥-rec : ∀ x → P x ⊥-rec x = $⟨ proj₂ (function x) ⟩ P (proj₁ (function x)) ↝⟨ subst P (lemma x) ⟩□ P x □ ⊑-rec : ∀ {x y} (x⊑y : x ⊑ y) → Q (⊥-rec x) (⊥-rec y) x⊑y ⊑-rec {x} {y} x⊑y = $⟨ proj₂ (monotone x⊑y) ⟩ Q (proj₂ (function x)) (proj₂ (function y)) (proj₁ (monotone x⊑y)) ↝⟨ subst Q′ $ Σ-≡,≡→≡ (cong₂ _,_ (lemma x) (lemma y)) ( subst (λ xy → P (proj₁ xy) × P (proj₂ xy) × proj₁ xy ⊑ proj₂ xy) (cong₂ _,_ (lemma x) (lemma y)) ( proj₂ (function x) , proj₂ (function y) , proj₁ (monotone x⊑y) ) ≡⟨ push-subst-, {y≡z = cong₂ _,_ (lemma x) (lemma y)} (λ xy → P (proj₁ xy)) (λ xy → P (proj₂ xy) × proj₁ xy ⊑ proj₂ xy) {p = ( proj₂ (function x) , proj₂ (function y) , proj₁ (monotone x⊑y) )} ⟩ ( subst (λ xy → P (proj₁ xy)) (cong₂ _,_ (lemma x) (lemma y)) (proj₂ (function x)) , subst (λ xy → P (proj₂ xy) × proj₁ xy ⊑ proj₂ xy) (cong₂ _,_ (lemma x) (lemma y)) ( proj₂ (function y) , proj₁ (monotone x⊑y) ) ) ≡⟨ cong₂ _,_ (subst-∘ P proj₁ (cong₂ _,_ (lemma x) (lemma y)) {p = proj₂ (function x)}) (push-subst-, {y≡z = cong₂ _,_ (lemma x) (lemma y)} (λ xy → P (proj₂ xy)) (λ xy → proj₁ xy ⊑ proj₂ xy) {p = ( proj₂ (function y) , proj₁ (monotone x⊑y) )}) ⟩ ( subst P (cong proj₁ $ cong₂ _,_ (lemma x) (lemma y)) (proj₂ (function x)) , subst (λ xy → P (proj₂ xy)) (cong₂ _,_ (lemma x) (lemma y)) (proj₂ (function y)) , subst (λ xy → proj₁ xy ⊑ proj₂ xy) (cong₂ _,_ (lemma x) (lemma y)) (proj₁ (monotone x⊑y)) ) ≡⟨ cong₂ _,_ (cong (λ p → subst P p (proj₂ (function x))) $ cong-proj₁-cong₂-, (lemma x) (lemma y)) (cong₂ _,_ (subst-∘ P proj₂ (cong₂ _,_ (lemma x) (lemma y)) {p = proj₂ (function y)}) (⊑-propositional _ _)) ⟩ ( subst P (lemma x) (proj₂ (function x)) , subst P (cong proj₂ $ cong₂ _,_ (lemma x) (lemma y)) (proj₂ (function y)) , x⊑y ) ≡⟨ cong (λ p → ⊥-rec x , subst P p (proj₂ (function y)) , x⊑y) $ cong-proj₂-cong₂-, (lemma x) (lemma y) ⟩∎ (⊥-rec x , ⊥-rec y , x⊑y) ∎) ⟩□ Q (⊥-rec x) (⊥-rec y) x⊑y □ where Q′ : (∃ λ xy → P (proj₁ xy) × P (proj₂ xy) × proj₁ xy ⊑ proj₂ xy) → Type q Q′ (_ , px , py , x⊑y) = Q px py x⊑y inc-rec : ∀ s → Inc P Q s inc-rec (s , inc) = ⊥-rec ∘ s , ⊑-rec ∘ inc -- "Computation" rules. private -- A lemma. ⊥-rec-lemma′ : ∀ {a b} {A : Type a} {B : A → Type b} {x y : Σ A B} → Is-set A → x ≡ y → (p : proj₁ x ≡ proj₁ y) → subst B p (proj₂ x) ≡ proj₂ y ⊥-rec-lemma′ {B = B} A-set = elim (λ {x y} _ → (p : proj₁ x ≡ proj₁ y) → subst B p (proj₂ x) ≡ proj₂ y) (λ { (_ , x₂) p → subst B p x₂ ≡⟨ cong (λ p → subst B p _) $ A-set p refl ⟩ subst B refl x₂ ≡⟨⟩ x₂ ∎ }) -- A specific instance of the lemma above. ⊥-rec-lemma : ∀ {x y} → function x ≡ (x , y) → ⊥-rec x ≡ y ⊥-rec-lemma {x} {y} eq = ⊥-rec x ≡⟨⟩ subst P (lemma x) (proj₂ (function x)) ≡⟨ ⊥-rec-lemma′ T-is-set eq (lemma x) ⟩∎ y ∎ ⊥-rec-never : ⊥-rec never ≡ pe ⊥-rec-never = ⊥-rec-lemma strict ⊥-rec-now : ∀ x → ⊥-rec (now x) ≡ po x ⊥-rec-now x = ⊥-rec-lemma (now-to-now x) ⊥-rec-⨆ : ∀ s → ⊥-rec (⨆ s) ≡ pl s (inc-rec s) ⊥-rec-⨆ s = ⊥-rec-lemma (function (⨆ s) ≡⟨ ω-continuous s ⟩ ⨆ (Σ-map (proj₁ ∘_) (proj₁ ∘_) (sequence-function s)) , pl _ ( proj₂ ∘ proj₁ (sequence-function s) , proj₂ ∘ proj₂ (sequence-function s) ) ≡⟨⟩ ⨆ ( proj₁ ∘ function ∘ proj₁ s , proj₁ ∘ monotone ∘ proj₂ s ) , pl _ ( proj₂ ∘ function ∘ proj₁ s , proj₂ ∘ monotone ∘ proj₂ s ) ≡⟨ Σ-≡,≡→≡ (cong ⨆ lemma₁) lemma₂ ⟩ ⨆ s , pl s ( ⊥-rec ∘ proj₁ s , ⊑-rec ∘ proj₂ s ) ≡⟨⟩ ⨆ s , pl s (inc-rec s) ∎) where lemma₁ = ( proj₁ ∘ function ∘ proj₁ s , proj₁ ∘ monotone ∘ proj₂ s ) ≡⟨ _↔_.to equality-characterisation-increasing (λ n → lemma (s [ n ])) ⟩∎ s ∎ lemma₂ = subst P (cong ⨆ lemma₁) (pl _ ( proj₂ ∘ function ∘ proj₁ s , proj₂ ∘ monotone ∘ proj₂ s )) ≡⟨ sym $ subst-∘ P ⨆ lemma₁ ⟩ subst (P ∘ ⨆) lemma₁ (pl _ ( proj₂ ∘ function ∘ proj₁ s , proj₂ ∘ monotone ∘ proj₂ s )) ≡⟨ elim (λ {s′ s} eq → ∀ {i′ i} → subst (λ s → ∀ n → P (s [ n ])) eq (proj₁ i′) ≡ proj₁ i → subst (P ∘ ⨆) eq (pl s′ i′) ≡ pl s i) (λ s {i′ i} eq → pl s i′ ≡⟨ cong (pl s) (Σ-≡,≡→≡ eq (⟨ext⟩ λ _ → qp _ _ _ _ _)) ⟩∎ pl s i ∎) lemma₁ (⟨ext⟩ λ n → let lemma₃ = cong _[ n ] lemma₁ ≡⟨ sym $ cong-∘ (_$ n) proj₁ lemma₁ ⟩ cong (_$ n) (cong proj₁ lemma₁) ≡⟨ cong (cong (_$ n)) $ proj₁-Σ-≡,≡→≡ (⟨ext⟩ (lemma ∘ proj₁ s)) _ ⟩ cong (_$ n) (⟨ext⟩ (lemma ∘ proj₁ s)) ≡⟨ cong-ext (lemma ∘ proj₁ s) ⟩∎ lemma (s [ n ]) ∎ in subst (λ s → ∀ n → P (s [ n ])) lemma₁ (proj₂ ∘ function ∘ proj₁ s) n ≡⟨ sym $ push-subst-application lemma₁ (λ s n → P (s [ n ])) ⟩ subst (λ s → P (s [ n ])) lemma₁ (proj₂ (function (s [ n ]))) ≡⟨ subst-∘ P _[ n ] lemma₁ ⟩ subst P (cong _[ n ] lemma₁) (proj₂ (function (s [ n ]))) ≡⟨ cong (λ eq → subst P eq (proj₂ (function (s [ n ])))) lemma₃ ⟩∎ subst P (lemma (s [ n ])) (proj₂ (function (s [ n ]))) ∎) ⟩ pl s ( (λ n → subst P (lemma (s [ n ])) (proj₂ (function (s [ n ])))) , ⊑-rec ∘ proj₂ s ) ≡⟨⟩ pl s ( ⊥-rec ∘ proj₁ s , ⊑-rec ∘ proj₂ s ) ∎ -- For any partiality algebra (with certain levels) initiality (at -- possibly larger levels) is logically equivalent to having -- eliminators (at the same possibly larger levels). initiality⇔eliminators : ∀ {a p q p′ q′} {A : Type a} → (P : Partiality-algebra p′ q′ A) → Initial (p ⊔ p′) (q ⊔ q′) P ⇔ Elimination-principle (p ⊔ p′) (q ⊔ q′) P initiality⇔eliminators P = record { to = initiality→eliminators ; from = eliminators→initiality P } -- For any partiality algebra initiality at all levels is logically -- equivalent (at the meta-level) to having eliminators at all levels. ∀initiality→∀eliminators : ∀ {a p q} {A : Type a} → (P : Partiality-algebra p q A) → (∀ p q → Initial p q P) → (∀ p q → Elimination-principle p q P) ∀initiality→∀eliminators {p = p′} {q = q′} P initial p q = initiality→eliminators (initial (p ⊔ p′) (q ⊔ q′)) ∀eliminators→∀initiality : ∀ {a p q} {A : Type a} → (P : Partiality-algebra p q A) → (∀ p q → Elimination-principle p q P) → (∀ p q → Initial p q P) ∀eliminators→∀initiality P elim p q = eliminators→initiality P (elim p q)
{ "alphanum_fraction": 0.39729313, "avg_line_length": 39.9794520548, "ext": "agda", "hexsha": "08f4518753f062f00f390b8c59e80df3f0952087", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/partiality-monad", "max_forks_repo_path": "src/Partiality-algebra/Eliminators.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/partiality-monad", "max_issues_repo_path": "src/Partiality-algebra/Eliminators.agda", "max_line_length": 144, "max_stars_count": 2, "max_stars_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/partiality-monad", "max_stars_repo_path": "src/Partiality-algebra/Eliminators.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:08.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:59:18.000Z", "num_tokens": 7327, "size": 23348 }
{-# OPTIONS --universe-polymorphism #-} module Categories.NaturalIsomorphism where open import Level open import Relation.Binary using (IsEquivalence) open import Categories.Support.PropositionalEquality open import Categories.Support.Equivalence open import Categories.Category open import Categories.Functor hiding (id) renaming (_∘_ to _∘F_; _≡_ to _≡F_; equiv to equivF) open import Categories.NaturalTransformation.Core hiding (_≡_; equiv; setoid) open import Categories.NaturalTransformation using (_∘ˡ_; _∘ʳ_) import Categories.Morphisms as Morphisms open import Categories.Functor.Properties using (module FunctorsAlways) record NaturalIsomorphism {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} (F G : Functor C D) : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) where private module C = Category C private module D = Category D private module F = Functor F private module G = Functor G open F open G renaming (F₀ to G₀; F₁ to G₁) field F⇒G : NaturalTransformation F G F⇐G : NaturalTransformation G F module ⇒ = NaturalTransformation F⇒G module ⇐ = NaturalTransformation F⇐G open Morphisms D field .iso : ∀ X → Iso (⇒.η X) (⇐.η X) equiv : ∀ {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} → IsEquivalence (NaturalIsomorphism {C = C} {D}) equiv {C = C} {D} = record { refl = record { F⇒G = id ; F⇐G = id ; iso = λ _ → record { isoˡ = D.identityˡ ; isoʳ = D.identityˡ } } ; sym = λ X → let module X Z = Morphisms.Iso (NaturalIsomorphism.iso X Z) in record { F⇒G = NaturalIsomorphism.F⇐G X ; F⇐G = NaturalIsomorphism.F⇒G X ; iso = λ Y → record { isoˡ = X.isoʳ Y ; isoʳ = X.isoˡ Y } } ; trans = trans′ } where module C = Category C module D = Category D open D hiding (id) trans′ : {x y z : Functor C D} → NaturalIsomorphism x y → NaturalIsomorphism y z → NaturalIsomorphism x z trans′ X Y = record { F⇒G = F⇒G′ ; F⇐G = F⇐G′ ; iso = iso′ } where F⇒G′ = NaturalIsomorphism.F⇒G Y ∘₁ NaturalIsomorphism.F⇒G X F⇐G′ = NaturalIsomorphism.F⇐G X ∘₁ NaturalIsomorphism.F⇐G Y .iso′ : (X : C.Obj) → _ iso′ Z = record { isoˡ = isoˡ′ ; isoʳ = isoʳ′ } where open NaturalIsomorphism open NaturalTransformation module Y Z = Morphisms.Iso (iso Y Z) module X Z = Morphisms.Iso (iso X Z) isoˡ′ : (η (F⇐G X) Z ∘ η (F⇐G Y) Z) ∘ (η (F⇒G Y) Z ∘ η (F⇒G X) Z) ≡ D.id isoˡ′ = begin (η (F⇐G X) Z ∘ η (F⇐G Y) Z) ∘ (η (F⇒G Y) Z ∘ η (F⇒G X) Z) ↓⟨ D.assoc ⟩ η (F⇐G X) Z ∘ (η (F⇐G Y) Z ∘ (η (F⇒G Y) Z ∘ η (F⇒G X) Z)) ↑⟨ D.∘-resp-≡ʳ D.assoc ⟩ η (F⇐G X) Z ∘ ((η (F⇐G Y) Z ∘ η (F⇒G Y) Z) ∘ η (F⇒G X) Z) ↓⟨ D.∘-resp-≡ʳ (D.∘-resp-≡ˡ (Y.isoˡ Z)) ⟩ η (F⇐G X) Z ∘ (D.id ∘ η (F⇒G X) Z) ↓⟨ D.∘-resp-≡ʳ D.identityˡ ⟩ η (F⇐G X) Z ∘ η (F⇒G X) Z ↓⟨ X.isoˡ Z ⟩ D.id ∎ where open D.HomReasoning isoʳ′ : (η (F⇒G Y) Z ∘ η (F⇒G X) Z) ∘ (η (F⇐G X) Z ∘ η (F⇐G Y) Z) ≡ D.id isoʳ′ = begin (η (F⇒G Y) Z ∘ η (F⇒G X) Z) ∘ (η (F⇐G X) Z ∘ η (F⇐G Y) Z) ↓⟨ D.assoc ⟩ η (F⇒G Y) Z ∘ (η (F⇒G X) Z ∘ (η (F⇐G X) Z ∘ η (F⇐G Y) Z)) ↑⟨ D.∘-resp-≡ʳ D.assoc ⟩ η (F⇒G Y) Z ∘ ((η (F⇒G X) Z ∘ η (F⇐G X) Z) ∘ η (F⇐G Y) Z) ↓⟨ D.∘-resp-≡ʳ (D.∘-resp-≡ˡ (X.isoʳ Z)) ⟩ η (F⇒G Y) Z ∘ (D.id ∘ η (F⇐G Y) Z) ↓⟨ D.∘-resp-≡ʳ D.identityˡ ⟩ η (F⇒G Y) Z ∘ η (F⇐G Y) Z ↓⟨ Y.isoʳ Z ⟩ D.id ∎ where open D.HomReasoning setoid : ∀ {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} → Setoid _ _ setoid {C = C} {D} = record { Carrier = Functor C D ; _≈_ = NaturalIsomorphism ; isEquivalence = equiv {C = C} {D} } _ⓘˡ_ : ∀ {o₀ ℓ₀ e₀ o₁ ℓ₁ e₁ o₂ ℓ₂ e₂} → {C : Category o₀ ℓ₀ e₀} {D : Category o₁ ℓ₁ e₁} {E : Category o₂ ℓ₂ e₂} → {F G : Functor C D} → (H : Functor D E) → (η : NaturalIsomorphism F G) → NaturalIsomorphism (H ∘F F) (H ∘F G) _ⓘˡ_ {C = C} {D} {E} {F} {G} H η = record { F⇒G = H ∘ˡ η.F⇒G ; F⇐G = H ∘ˡ η.F⇐G ; iso = λ X → FunctorsAlways.resp-Iso H (η.iso X) } where module η = NaturalIsomorphism η _ⓘʳ_ : ∀ {o₀ ℓ₀ e₀ o₁ ℓ₁ e₁ o₂ ℓ₂ e₂} → {C : Category o₀ ℓ₀ e₀} {D : Category o₁ ℓ₁ e₁} {E : Category o₂ ℓ₂ e₂} → {F G : Functor C D} → (η : NaturalIsomorphism F G) → (K : Functor E C) → NaturalIsomorphism (F ∘F K) (G ∘F K) η ⓘʳ K = record { F⇒G = η.F⇒G ∘ʳ K ; F⇐G = η.F⇐G ∘ʳ K ; iso = λ X → η.iso (K.F₀ X) } where module η = NaturalIsomorphism η module K = Functor K -- try ≡→iso again, but via first de-embedding some helpers, as that seems to make things -- go 'weird' in combination with irrelevance private _©_ : ∀ {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} {F G : Functor C D} → NaturalTransformation F G → (x : Category.Obj C) → D [ Functor.F₀ F x , Functor.F₀ G x ] _©_ = NaturalTransformation.η my-sym : ∀ {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} (F G : Functor C D) → F ≡F G → G ≡F F my-sym {D = D} _ _ F≡G X = Heterogeneous.sym D (F≡G X) oneway : ∀ {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} (F G : Functor C D) → F ≡F G → NaturalTransformation F G oneway {C = C} {D} F G F≡G = record { η = my-η ; commute = my-commute } where module C = Category C module D = Category D module F = Functor F module G = Functor G open Heterogeneous D same-Objs : ∀ A → F.F₀ A ≣ G.F₀ A same-Objs A = domain-≣ (F≡G (C.id {A})) my-η : ∀ X → D [ F.F₀ X , G.F₀ X ] my-η X = ≣-subst (λ x → D [ F.F₀ X , x ]) (same-Objs X) D.id .my-commute : ∀ {X Y} (f : C [ X , Y ]) → D [ D [ my-η Y ∘ F.F₁ f ] ≡ D [ G.F₁ f ∘ my-η X ] ] my-commute {X} {Y} f with helper₃ where helper₁ : D [ my-η Y ∘ F.F₁ f ] ∼ F.F₁ f helper₁ with F.F₀ Y | G.F₀ Y | same-Objs Y | F.F₁ f helper₁ | _ | ._ | ≣-refl | f′ = ≡⇒∼ D.identityˡ helper₂ : G.F₁ f ∼ D [ G.F₁ f ∘ my-η X ] helper₂ with F.F₀ X | G.F₀ X | same-Objs X | G.F₁ f helper₂ | _ | ._ | ≣-refl | f′ = ≡⇒∼ (D.Equiv.sym D.identityʳ) helper₃ : D [ my-η Y ∘ F.F₁ f ] ∼ D [ G.F₁ f ∘ my-η X ] helper₃ = trans helper₁ (trans (F≡G f) helper₂) my-commute f | Heterogeneous.≡⇒∼ pf = irr pf ≡→iso : ∀ {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} (F G : Functor C D) → F ≡F G → NaturalIsomorphism F G ≡→iso {C = C} {D} F G F≡G = record { F⇒G = oneway F G F≡G ; F⇐G = oneway G F (my-sym F G F≡G) ; iso = λ X → record { isoˡ = my-iso G F (my-sym F G F≡G) F≡G X ; isoʳ = my-iso F G F≡G (my-sym F G F≡G) X } } where module C = Category C module D = Category D open Heterogeneous D .my-iso : (F G : Functor C D) (F≡G : F ≡F G) (G≡F : G ≡F F) (x : C.Obj) → D [ D [ oneway F G F≡G © x ∘ oneway G F G≡F © x ] ≡ D.id ] my-iso F G F≡G G≡F x = func (F.F₀ x) (G.F₀ x) (domain-≣ (F≡G (C.id {x}))) (domain-≣ (G≡F (C.id {x}))) where module F = Functor F module G = Functor G -- hand-written function that "with" cannot properly abstract on its own, it gets itself all confused. func : (w z : D.Obj) (zz : w ≣ z ) (ww : z ≣ w) → ≣-subst (D._⇒_ w) zz (D.id {w}) D.∘ ≣-subst (D._⇒_ z) ww (D.id {z}) D.≡ D.id func w .w ≣-refl ≣-refl = D.identityʳ
{ "alphanum_fraction": 0.512797075, "avg_line_length": 35.2903225806, "ext": "agda", "hexsha": "f07a836bd6e3541a60b45ec649a9c64f06b2dc61", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/NaturalIsomorphism.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/NaturalIsomorphism.agda", "max_line_length": 134, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/NaturalIsomorphism.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 3456, "size": 7658 }
{-# OPTIONS --sized-types #-} module SizedTypesVarSwap where open import Common.Size renaming (↑_ to _^) data Nat : {size : Size} -> Set where zero : {size : Size} -> Nat {size ^} suc : {size : Size} -> Nat {size} -> Nat {size ^} bad : {i j : Size} -> Nat {i} -> Nat {j} -> Nat {∞} bad (suc x) y = bad (suc y) x bad zero y = y
{ "alphanum_fraction": 0.5625, "avg_line_length": 24, "ext": "agda", "hexsha": "743e875ea6b4ddd0b290ab57c3b6f39db87b86f2", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/SizedTypesVarSwap.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/SizedTypesVarSwap.agda", "max_line_length": 52, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/SizedTypesVarSwap.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 118, "size": 336 }
module Sessions.Semantics.Communication {E : Set} (delay : E) where open import Prelude open import Data.List.Relation.Ternary.Interleaving open import Data.List.Relation.Ternary.Interleaving.Propositional open import Data.List.Relation.Equality.Propositional open import Data.List.Properties import Data.List as L open import Relation.Unary hiding (Empty; _∈_) open import Relation.Unary.PredicateTransformer using (Pt) open import Relation.Ternary.Separation.Construct.Market open import Relation.Ternary.Separation.Construct.Product open import Relation.Ternary.Separation.Morphisms open import Relation.Ternary.Separation.Monad open import Relation.Ternary.Separation.Monad open import Relation.Ternary.Separation.Monad.Error open import Relation.Ternary.Separation.Monad.State open import Sessions.Syntax.Types open import Sessions.Syntax.Values open import Sessions.Syntax.Expr open import Sessions.Semantics.Commands open import Sessions.Semantics.Runtime delay {- A specification of the update we are performing -} _≔_ : ∀ {x} {ys} {zs} → [ endp x ] ⊎ ys ≣ zs → SType → RCtx _≔_ {zs = x ∷ zs} (to-right s) α = x ∷ s ≔ α _≔_ {zs = chan l r ∷ zs} (divide lr s) α = chan α r ∷ zs _≔_ {zs = chan l r ∷ zs} (divide rl s) α = chan l α ∷ zs _≔_ {zs = .(endp _) ∷ zs} (to-left s) α = endp α ∷ zs {- Type of actions on a link -} private Action : ∀ (from to : SType) → Pt RCtx 0ℓ Action from to P Φ = ∀ {τ} → (end : End from τ) → (Channel τ ─✴ Except E (P ✴ Channel (end ≔ₑ to))) Φ module _ where open ExceptMonad {A = RCtx} E open Monads.Monad except-monad open Monads using (str) {- Takes an endpointer and the channel list and updates it using a link action -} act : ∀ {P α xs ds} → (ptr : [ endp α ] ⊎ ds ≣ xs) → ∀[ Action α β P ⇒ Channels' xs ─✴ Except E (Empty ([ endp β ] ⊎ ds ≣ (ptr ≔ β)) ✴ P ✴ Channels' (ptr ≔ β)) ] -- the pointer points to a channel where one end is already closed app (act {xs = x ∷ xs} (to-left ptr) f) (ch :⟨ τ ⟩: chs) σ with ⊎-unassoc σ τ ... | _ , τ₁ , τ₂ = do px ×⟨ τ₄ ⟩ (ch' ×⟨ τ₅ ⟩ chs) ← mapM (app (f (-, to-left [])) ch τ₁ &⟨ τ₂ ⟩ chs) ✴-assocᵣ return (emp (to-left ptr) ×⟨ ⊎-idˡ ⟩ px ×⟨ τ₄ ⟩ cons (ch' ×⟨ τ₅ ⟩ chs)) -- the pointer points to the left side of a channel in the state app (act {xs = x ∷ xs} (divide lr ptr) f) (ch :⟨ τ ⟩: chs) σ with ⊎-unassoc σ τ ... | _ , τ₂ , τ₃ = do px ×⟨ τ₄ ⟩ chs ← mapM (app (f (ending lr)) ch τ₂ &⟨ τ₃ ⟩ chs) ✴-assocᵣ return (emp (divide lr ptr) ×⟨ ⊎-idˡ ⟩ px ×⟨ τ₄ ⟩ cons chs) -- the pointer points to the right side of a channel in the state app (act {xs = x ∷ xs} (divide rl ptr) f) (ch :⟨ τ ⟩: chs) σ with ⊎-unassoc σ τ ... | _ , τ₂ , τ₃ = do px ×⟨ τ₄ ⟩ (ch' ×⟨ τ₅ ⟩ chs) ← mapM (app (f (ending rl)) ch τ₂ &⟨ τ₃ ⟩ chs) ✴-assocᵣ return (emp (divide rl ptr) ×⟨ ⊎-idˡ ⟩ px ×⟨ τ₄ ⟩ cons (ch' ×⟨ τ₅ ⟩ chs)) -- the pointer points to some channel further down the list app (act {xs = x ∷ xs} (to-right ptr) f) (ch :⟨ τ ⟩: chs) σ with ⊎-unassoc σ (⊎-comm τ) ... | _ , τ₁ , τ₂ = do emp ptr ×⟨ τ₃ ⟩ rhs ← mapM (app (act ptr f) chs τ₁ &⟨ τ₂ ⟩ ch) ✴-assocᵣ let px ×⟨ τ₄ ⟩ chs' = ✴-assocᵣ rhs return (emp (to-right ptr) ×⟨ τ₃ ⟩ (px ×⟨ τ₄ ⟩ cons (✴-swap chs'))) module _ where open StateWithErr {C = RCtx} E open Monads.Monad {{...}} {- Updating a single link based on a pointer to one of its endpoints -} operate : ∀ {P} → ∀[ Action α β P ⇒ Endptr α ─✴ State? Channels (P ✴ Endptr β) ] app (app (operate f) refl σ₁) (lift chs k) (offerᵣ σ₂) with ⊎-assoc σ₂ k ... | _ , σ₃ , σ₄ with ⊎-assoc (⊎-comm σ₁) σ₃ ... | _ , σ₅ , σ₆ with ⊎-unassoc σ₆ (⊎-comm σ₄) ... | _ , σ₇ , σ₈ with app (act σ₅ f) chs σ₇ ... | error _ = error delay ... | partial (inj₂ (emp ptr' ×⟨ σ ⟩ (px ×⟨ τ ⟩ chs'))) with ⊎-id⁻ˡ σ ... | refl with ⊎-unassoc ptr' σ₈ ... | _ , τ₁ , τ₂ with ⊎-unassoc τ₁ τ ... | _ , τ₃ , τ₄ with ⊎-assoc (⊎-comm τ₄) τ₂ ... | _ , τ₅ , eureka = partial (inj₂ (inj (px ×⟨ ⊎-comm τ₃ ⟩ refl) ×⟨ offerᵣ eureka ⟩ lift chs' (⊎-comm τ₅))) {- Getting a value from a ready-to-receive endpoint -} receive? : ∀[ Endptr (a ¿ β) ⇒ State? Channels (Val a ✴ Endptr β) ] receive? ptr = app (operate (λ end → wandit (chan-receive end))) ptr ⊎-idˡ {- Putting a value in a ready-to-send endpoint -} send! : ∀[ Endptr (a ! β) ⇒ Val a ─✴ State? Channels (Endptr β) ] app (send! {a = a} ptr) v σ = do empty ×⟨ σ ⟩ ptr ← app (operate sender) ptr (⊎-comm σ) case ⊎-id⁻ˡ σ of λ where refl → return ptr where sender : Action (a ! γ) γ Emp _ app (sender e) ch σ = let ch' = app (chan-send e ch) v (⊎-comm σ) in ✓ (empty ×⟨ ⊎-idˡ ⟩ ch') newChan : ε[ State? Channels (Endptr α ✴ Endptr (α ⁻¹)) ] app newChan (lift chs k) σ with ⊎-id⁻ˡ σ ... | refl = ✓ ( (inj (refl ×⟨ divide lr ⊎-idˡ ⟩ refl)) ×⟨ offerᵣ ⊎-∙ ⟩ lift (cons (emptyChannel ×⟨ ⊎-idˡ ⟩ chs)) (⊎-∙ₗ k)) closeChan : ∀[ Endptr end ⇒ State? Channels Emp ] app (closeChan refl) (lift chs k) (offerᵣ σ) = let _ , σ₂ , σ₃ = ⊎-assoc σ k chs' = close'em σ₂ chs in ✓ (inj empty ×⟨ ⊎-idˡ ⟩ lift chs' σ₃) where -- This is really cool: -- The pointer, in the form of the splitting of the store, contains all the necessary information -- for the shape of the underlying buffer. -- Depending on the shape of the splitting, we know, just by dependent pattern matching, -- whether the channel is two- or onesided close'em : ∀ {ds xs} → (ptr : [ endp end ] ⊎ ds ≣ xs) → ∀[ Channels' xs ⇒ Channels' ds ] close'em (divide lr ptr) (twosided (link refl (emp ×⟨ τ ⟩ bᵣ)) :⟨ σ ⟩: chs) with ⊎-id⁻ˡ ptr | ⊎-id⁻ˡ τ ... | refl | refl = cons (onesided bᵣ ×⟨ σ ⟩ chs) close'em (divide rl ptr) (twosided (link eq (bₗ ×⟨ τ ⟩ emp)) :⟨ σ ⟩: chs) with ⊎-id⁻ˡ ptr | ⊎-id⁻ʳ τ ... | refl | refl with dual-end (sym eq) ... | refl = cons (onesided bₗ ×⟨ σ ⟩ chs) close'em (to-left ptr) (cons (onesided emp ×⟨ σ ⟩ chs)) with ⊎-id⁻ˡ ptr | ⊎-id⁻ˡ σ ... | refl | refl = chs close'em (to-right ptr) (ch :⟨ σ ⟩: chs) = let chs' = close'em ptr chs in cons (ch ×⟨ σ ⟩ chs')
{ "alphanum_fraction": 0.5870686875, "avg_line_length": 43.0694444444, "ext": "agda", "hexsha": "44d74907aef26a39043fe382e008b153a150f1dd", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2020-05-23T00:34:36.000Z", "max_forks_repo_forks_event_min_datetime": "2020-01-30T14:15:14.000Z", "max_forks_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "laMudri/linear.agda", "max_forks_repo_path": "src/Sessions/Semantics/Communication.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "laMudri/linear.agda", "max_issues_repo_path": "src/Sessions/Semantics/Communication.agda", "max_line_length": 108, "max_stars_count": 34, "max_stars_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "laMudri/linear.agda", "max_stars_repo_path": "src/Sessions/Semantics/Communication.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-03T15:22:33.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-20T13:57:50.000Z", "num_tokens": 2482, "size": 6202 }
-- MIT License -- Copyright (c) 2021 Luca Ciccone and Luca Padovani -- Permission is hereby granted, free of charge, to any person -- obtaining a copy of this software and associated documentation -- files (the "Software"), to deal in the Software without -- restriction, including without limitation the rights to use, -- copy, modify, merge, publish, distribute, sublicense, and/or sell -- copies of the Software, and to permit persons to whom the -- Software is furnished to do so, subject to the following -- conditions: -- The above copyright notice and this permission notice shall be -- included in all copies or substantial portions of the Software. -- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, -- EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES -- OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND -- NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT -- HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, -- WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING -- FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR -- OTHER DEALINGS IN THE SOFTWARE. {-# OPTIONS --guardedness #-} open import Data.Product open import Data.List using (List; []; _∷_; _∷ʳ_; _++_) open import Data.List.Properties using (∷-injective) open import Relation.Nullary open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl; cong) open import Common module Trace {ℙ : Set} (message : Message ℙ) where open import Action message public open import SessionType message Trace : Set Trace = List Action --| CO-TRACES |-- co-trace : Trace -> Trace co-trace = Data.List.map co-action co-trace-involution : (φ : Trace) -> co-trace (co-trace φ) ≡ φ co-trace-involution [] = refl co-trace-involution (α ∷ φ) rewrite co-action-involution α | co-trace-involution φ = refl co-trace-++ : (φ ψ : Trace) -> co-trace (φ ++ ψ) ≡ co-trace φ ++ co-trace ψ co-trace-++ [] _ = refl co-trace-++ (α ∷ φ) ψ = cong (co-action α ∷_) (co-trace-++ φ ψ) co-trace-injective : ∀{φ ψ} -> co-trace φ ≡ co-trace ψ -> φ ≡ ψ co-trace-injective {[]} {[]} eq = refl co-trace-injective {x ∷ φ} {x₁ ∷ ψ} eq with ∷-injective eq ... | eq1 , eq2 rewrite co-action-injective eq1 | co-trace-injective eq2 = refl --| PREFIX RELATION |-- data _⊑_ : Trace -> Trace -> Set where none : ∀{φ} -> [] ⊑ φ some : ∀{φ ψ α} -> φ ⊑ ψ -> (α ∷ φ) ⊑ (α ∷ ψ) ⊑-refl : (φ : Trace) -> φ ⊑ φ ⊑-refl [] = none ⊑-refl (_ ∷ φ) = some (⊑-refl φ) ⊑-tran : ∀{φ ψ χ} -> φ ⊑ ψ -> ψ ⊑ χ -> φ ⊑ χ ⊑-tran none _ = none ⊑-tran (some le1) (some le2) = some (⊑-tran le1 le2) ⊑-++ : ∀{φ χ} -> φ ⊑ (φ ++ χ) ⊑-++ {[]} = none ⊑-++ {_ ∷ φ} = some (⊑-++ {φ}) ⊑-precong-++ : ∀{φ ψ χ} -> ψ ⊑ χ -> (φ ++ ψ) ⊑ (φ ++ χ) ⊑-precong-++ {[]} le = le ⊑-precong-++ {_ ∷ _} le = some (⊑-precong-++ le) ⊑-co-trace : ∀{φ ψ} -> φ ⊑ ψ -> co-trace φ ⊑ co-trace ψ ⊑-co-trace none = none ⊑-co-trace (some le) = some (⊑-co-trace le) ⊑-trace : ∀{φ ψ} -> ψ ⊑ φ -> ∃[ φ' ] (φ ≡ ψ ++ φ') ⊑-trace {φ} none = φ , refl ⊑-trace {α ∷ φ} (some le) with ⊑-trace le ... | φ' , eq rewrite eq = φ' , refl absurd-++-≡ : ∀{φ ψ : Trace}{α} -> (φ ++ α ∷ ψ) ≢ [] absurd-++-≡ {[]} () absurd-++-≡ {_ ∷ _} () absurd-++-⊑ : ∀{φ α ψ} -> ¬ (φ ++ α ∷ ψ) ⊑ [] absurd-++-⊑ {[]} () absurd-++-⊑ {_ ∷ _} () --| STRICT PREFIX RELATION |-- data _⊏_ : Trace -> Trace -> Set where none : ∀{α φ} -> [] ⊏ (α ∷ φ) some : ∀{φ ψ α} -> φ ⊏ ψ -> (α ∷ φ) ⊏ (α ∷ ψ) ⊏-irreflexive : ∀{φ} -> ¬ φ ⊏ φ ⊏-irreflexive (some lt) = ⊏-irreflexive lt ⊏-++ : ∀{φ ψ α} -> φ ⊏ (φ ++ (ψ ∷ʳ α)) ⊏-++ {[]} {[]} = none ⊏-++ {[]} {_ ∷ _} = none ⊏-++ {_ ∷ φ} = some (⊏-++ {φ}) ⊏->≢ : ∀{φ ψ} -> φ ⊏ ψ -> φ ≢ ψ ⊏->≢ (some lt) refl = ⊏-irreflexive lt ⊏->⊑ : ∀{φ ψ} -> φ ⊏ ψ -> φ ⊑ ψ ⊏->⊑ none = none ⊏->⊑ (some lt) = some (⊏->⊑ lt)
{ "alphanum_fraction": 0.585462207, "avg_line_length": 30.8699186992, "ext": "agda", "hexsha": "fa43b1a686eee05614c2a388a855ba54ac6d5217", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "boystrange/FairSubtypingAgda", "max_forks_repo_path": "src/Trace.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "boystrange/FairSubtypingAgda", "max_issues_repo_path": "src/Trace.agda", "max_line_length": 89, "max_stars_count": 4, "max_stars_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "boystrange/FairSubtypingAgda", "max_stars_repo_path": "src/Trace.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-24T14:38:47.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-29T14:32:30.000Z", "num_tokens": 1506, "size": 3797 }
open import Level hiding ( suc ; zero ) open import Algebra module sym5a where open import Symmetric open import Data.Unit using (⊤ ; tt ) open import Function.Inverse as Inverse using (_↔_; Inverse; _InverseOf_) open import Function hiding (flip) open import Data.Nat hiding (_⊔_) -- using (ℕ; suc; zero) open import Data.Nat.Properties open import Relation.Nullary open import Data.Empty open import Data.Product open import Gutil open import Putil open import Solvable using (solvable) open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import Data.Fin hiding (_<_ ; _≤_ ; lift ) open import Data.Fin.Permutation hiding (_∘ₚ_) infixr 200 _∘ₚ_ _∘ₚ_ = Data.Fin.Permutation._∘ₚ_ open import Data.List hiding ( [_] ) open import nat open import fin open import logic open _∧_ ¬sym5solvable : ¬ ( solvable (Symmetric 5) ) ¬sym5solvable sol = counter-example (end5 (abc 0<3 0<4 ) (any3de (dervied-length sol) 3rot 0<3 0<4 ) ) where -- -- dba 1320 d → b → a → d -- (dba)⁻¹ 3021 a → b → d → a -- aec 21430 -- (aec)⁻¹ 41032 -- [ dba , aec ] = (abd)(cea)(dba)(aec) = abc -- so commutator always contains abc, dba and aec open ≡-Reasoning open solvable open Solvable ( Symmetric 5) end5 : (x : Permutation 5 5) → deriving (dervied-length sol) x → x =p= pid end5 x der = end sol x der 0<4 : 0 < 4 0<4 = s≤s z≤n 0<3 : 0 < 3 0<3 = s≤s z≤n --- 1 ∷ 2 ∷ 0 ∷ [] abc 3rot : Permutation 3 3 3rot = pid {3} ∘ₚ pins (n≤ 2) save2 : {i j : ℕ } → (i ≤ 3 ) → ( j ≤ 4 ) → Permutation 5 5 save2 i<3 j<4 = flip (pins (s≤s i<3)) ∘ₚ flip (pins j<4) -- Permutation 5 5 include any Permutation 3 3 any3 : {i j : ℕ } → Permutation 3 3 → (i ≤ 3 ) → ( j ≤ 4 ) → Permutation 5 5 any3 abc i<3 j<4 = (save2 i<3 j<4 ∘ₚ (pprep (pprep abc))) ∘ₚ flip (save2 i<3 j<4 ) any3cong : {i j : ℕ } → {x y : Permutation 3 3 } → {i<3 : i ≤ 3 } → {j<4 : j ≤ 4 } → x =p= y → any3 x i<3 j<4 =p= any3 y i<3 j<4 any3cong {i} {j} {x} {y} {i<3} {j<4} x=y = presp {5} {save2 i<3 j<4 ∘ₚ (pprep (pprep x))} {_} {flip (save2 i<3 j<4 )} (presp {5} {save2 i<3 j<4} prefl (pprep-cong (pprep-cong x=y)) ) prefl open _=p=_ -- derving n includes any Permutation 3 3, any3de : {i j : ℕ } → (n : ℕ) → (abc : Permutation 3 3) → (i<3 : i ≤ 3 ) → (j<4 : j ≤ 4 ) → deriving n (any3 abc i<3 j<4) any3de {i} {j} zero abc i<3 j<4 = Level.lift tt any3de {i} {j} (suc n) abc i<3 j<4 = ccong abc-from-comm (comm (any3de n (abc ∘ₚ abc) i<3 j0<4 ) (any3de n (abc ∘ₚ abc) i0<3 j<4 )) where i0 : ℕ i0 = ? j0 : ℕ j0 = ? i0<3 : i0 ≤ 3 i0<3 = {!!} j0<4 : j0 ≤ 4 j0<4 = {!!} abc-from-comm : [ any3 (abc ∘ₚ abc) i<3 j0<4 , any3 (abc ∘ₚ abc) i0<3 j<4 ] =p= any3 abc i<3 j<4 abc-from-comm = {!!} abc : {i j : ℕ } → (i ≤ 3 ) → ( j ≤ 4 ) → Permutation 5 5 abc i<3 j<4 = any3 3rot i<3 j<4 counter-example : ¬ (abc 0<3 0<4 =p= pid ) counter-example eq with ←pleq _ _ eq ... | ()
{ "alphanum_fraction": 0.5445042762, "avg_line_length": 33.2315789474, "ext": "agda", "hexsha": "7e6be8e9c4f9f27b10619e9ba7ab793000ae1f3b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bf000643c139f40d5783e962bb3b63353ba3d6e4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "shinji-kono/Galois", "max_forks_repo_path": "src/sym5a.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bf000643c139f40d5783e962bb3b63353ba3d6e4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "shinji-kono/Galois", "max_issues_repo_path": "src/sym5a.agda", "max_line_length": 145, "max_stars_count": 1, "max_stars_repo_head_hexsha": "bf000643c139f40d5783e962bb3b63353ba3d6e4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "shinji-kono/Galois", "max_stars_repo_path": "src/sym5a.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-16T03:37:05.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-16T03:37:05.000Z", "num_tokens": 1338, "size": 3157 }
-- Andreas, 2016-02-11, bug reported by sanzhiyan module Issue610-module-alias-with where import Common.Level open import Common.Equality data ⊥ : Set where record ⊤ : Set where data A : Set₁ where set : .Set → A module M .(x : Set) where .out : _ out = x .ack : A → Set ack (set x) = M.out x hah : set ⊤ ≡ set ⊥ hah = refl .moo : ⊥ moo with cong ack hah moo | q = subst (λ x → x) q _ -- Expected error: -- .(⊥) !=< ⊥ of type Set -- when checking that the expression subst (λ x → x) q _ has type ⊥ baa : .⊥ → ⊥ baa () yoink : ⊥ yoink = baa moo
{ "alphanum_fraction": 0.6085409253, "avg_line_length": 14.7894736842, "ext": "agda", "hexsha": "5ffddb4e71ecd27f6684857ed5e009f17c1c040c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Fail/Issue610-module-alias-with.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Fail/Issue610-module-alias-with.agda", "max_line_length": 67, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Fail/Issue610-module-alias-with.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 215, "size": 562 }
{- Agda Implementors' Meeting VI Göteborg May 24 - 30, 2007 Hello Agda! Ulf Norell -} -- Something which is rather useful is the ability to pattern match -- on intermediate computations. That's where the with-construct comes -- in. module TestWith where -- open import Nat open import PreludeNat hiding(_==_; even; odd) open import PreludeShow {- Basic idea -} -- The basic principle is that you can add argument to your -- function on the fly. For instance, data Maybe (A : Set) : Set where nothing : Maybe A just : A -> Maybe A data _==_ {A : Set}(x : A) : A -> Set where refl : x == x compare : (n m : Nat) -> Maybe (n == m) compare zero zero = just refl compare (suc _) zero = nothing compare zero (suc _) = nothing compare (suc n)(suc m) with compare n m compare (suc n)(suc .n) | just refl = just refl compare (suc n)(suc m) | nothing = nothing -- To add more than one argument separate by | silly : Nat -> Nat silly zero = zero silly (suc n) with n | n silly (suc n) | zero | suc m = m -- the values of the extra argument are -- not taken into consideration silly (suc n) | _ | _ = n {- The parity example -} -- This is a cute example of what you can do with with. data Parity : Nat -> Set where even : (k : Nat) -> Parity (k * 2) odd : (k : Nat) -> Parity (1 + k * 2) parity : (n : Nat) -> Parity n parity zero = even 0 parity (suc n) with parity n parity (suc .( k * 2)) | even k = odd k parity (suc .(1 + k * 2)) | odd k = even (suc k) half : Nat -> Nat half n with parity n half .( k * 2) | even k = k half .(1 + k * 2) | odd k = k mainS = showNat (half 44) {- What's next? -} -- Move on to: Modules.agda
{ "alphanum_fraction": 0.5848636617, "avg_line_length": 20.4204545455, "ext": "agda", "hexsha": "e5bf67f0383f30ed85bf1248ff36554a3f4c7cfa", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/Alonzo/TestWith.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/Alonzo/TestWith.agda", "max_line_length": 73, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "examples/outdated-and-incorrect/Alonzo/TestWith.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 570, "size": 1797 }
{-# OPTIONS --safe #-} module Cubical.Categories.Abelian where open import Cubical.Categories.Abelian.Base public
{ "alphanum_fraction": 0.775862069, "avg_line_length": 19.3333333333, "ext": "agda", "hexsha": "4fea6bb322e048942c556e1b02736b5cda925132", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Categories/Abelian.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Categories/Abelian.agda", "max_line_length": 50, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Categories/Abelian.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 25, "size": 116 }
{-# OPTIONS --cubical --safe #-} module Categories.Product where open import Prelude hiding (_×_) open import Categories module _ {ℓ₁ ℓ₂} (C : Category ℓ₁ ℓ₂) where open Category C module _ (X Y : Ob) where record Product : Type (ℓ₁ ℓ⊔ ℓ₂) where field obj : Ob proj₁ : C [ obj , X ] proj₂ : C [ obj , Y ] ump : (f : C [ Z , X ]) (g : C [ Z , Y ]) → ∃![ f×g ] ((C [ proj₁ ∘ f×g ] ≡ f) Prelude.× (C [ proj₂ ∘ f×g ] ≡ g)) _P[_×_] : ∀ {Z} → (π₁ : C [ Z , X ]) (π₂ : C [ Z , Y ]) → C [ Z , obj ] _P[_×_] π₁ π₂ = fst (ump π₁ π₂) record HasProducts : Type (ℓ₁ ℓ⊔ ℓ₂) where field product : (X Y : Ob) → Product X Y _×_ : Ob → Ob → Ob A × B = Product.obj (product A B) module _ {A A′ B B′ : Ob} where open Product using (_P[_×_]) open Product (product A B) hiding (_P[_×_]) _|×|_ : C [ A , A′ ] → C [ B , B′ ] → C [ Product.obj (product A B) , Product.obj (product A′ B′) ] f |×| g = product A′ B′ P[ C [ f ∘ proj₁ ] × C [ g ∘ proj₂ ] ]
{ "alphanum_fraction": 0.4765478424, "avg_line_length": 30.4571428571, "ext": "agda", "hexsha": "15860a0c393258eb3d92e4b1b51453316822bbd1", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/combinatorics-paper", "max_forks_repo_path": "agda/Categories/Product.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/combinatorics-paper", "max_issues_repo_path": "agda/Categories/Product.agda", "max_line_length": 105, "max_stars_count": 4, "max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/combinatorics-paper", "max_stars_repo_path": "agda/Categories/Product.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-05T15:32:14.000Z", "max_stars_repo_stars_event_min_datetime": "2021-01-05T14:07:44.000Z", "num_tokens": 409, "size": 1066 }
{- This file contains: - Definition of groupoid quotients -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.GroupoidQuotients.Base where open import Cubical.Foundations.Prelude open import Cubical.Relation.Binary.Base -- Groupoid quotients as a higher inductive type: -- For the definition, only transitivity is needed data _//_ {ℓ ℓ'} (A : Type ℓ) {R : A → A → Type ℓ'} (Rt : BinaryRelation.isTrans R) : Type (ℓ-max ℓ ℓ') where [_] : (a : A) → A // Rt eq// : {a b : A} → (r : R a b) → [ a ] ≡ [ b ] comp// : {a b c : A} → (r : R a b) → (s : R b c) → PathP (λ j → [ a ] ≡ eq// s j) (eq// r) (eq// (Rt a b c r s)) squash// : ∀ (x y : A // Rt) (p q : x ≡ y) (r s : p ≡ q) → r ≡ s {- The comp// constructor fills the square: eq// (Rt a b c r s) [a]— — — >[c] ‖ ^ ‖ | eq// s ^ ‖ | j | [a]— — — >[b] ∙ — > eq// r i We use this to give another constructor-like construction: -} comp'// : {ℓ ℓ' : Level} (A : Type ℓ) {R : A → A → Type ℓ'} (Rt : BinaryRelation.isTrans R) {a b c : A} → (r : R a b) → (s : R b c) → eq// {Rt = Rt} (Rt a b c r s) ≡ eq// r ∙ eq// s comp'// A Rt r s i = compPath-unique refl (eq// r) (eq// s) (eq// {Rt = Rt} (Rt _ _ _ r s) , comp// r s) (eq// r ∙ eq// s , compPath-filler (eq// r) (eq// s)) i .fst
{ "alphanum_fraction": 0.4786324786, "avg_line_length": 31.9090909091, "ext": "agda", "hexsha": "0e141fea7a1792714762e3c127daed21cf34e9ca", "lang": "Agda", "max_forks_count": 134, "max_forks_repo_forks_event_max_datetime": "2022-03-23T16:22:13.000Z", "max_forks_repo_forks_event_min_datetime": "2018-11-16T06:11:03.000Z", "max_forks_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "marcinjangrzybowski/cubical", "max_forks_repo_path": "Cubical/HITs/GroupoidQuotients/Base.agda", "max_issues_count": 584, "max_issues_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_issues_repo_issues_event_max_datetime": "2022-03-30T12:09:17.000Z", "max_issues_repo_issues_event_min_datetime": "2018-10-15T09:49:02.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "marcinjangrzybowski/cubical", "max_issues_repo_path": "Cubical/HITs/GroupoidQuotients/Base.agda", "max_line_length": 73, "max_stars_count": 301, "max_stars_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "marcinjangrzybowski/cubical", "max_stars_repo_path": "Cubical/HITs/GroupoidQuotients/Base.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-24T02:10:47.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-17T18:00:24.000Z", "num_tokens": 543, "size": 1404 }
module Bee2.Crypto.Belt where open import Data.ByteString open import Data.ByteVec open import Data.Nat using (ℕ) open import Data.Product using (_,_) open import Agda.Builtin.TrustMe using (primTrustMe) import Bee2.Crypto.Defs open Bee2.Crypto.Defs open Bee2.Crypto.Defs using (Hash) public {-# FOREIGN GHC import qualified Bee2.Crypto.Belt #-} {-# FOREIGN GHC import qualified Data.ByteString #-} Password = ByteString Strict Salt = ByteString Strict Key = ByteVec {Strict} 32 Header = ByteVec {Strict} 16 Kek = ByteVec {Strict} 32 {-# FOREIGN GHC import qualified Bee2.Crypto.Belt #-} postulate primBeltPBKDF : ByteString Strict → SizeT → ByteString Strict → ByteString Strict primBeltHash : ByteString Strict → ByteString Strict {-# COMPILE GHC primBeltPBKDF = ( Bee2.Crypto.Belt.beltPBKDF'bs ) #-} {-# COMPILE GHC primBeltHash = ( Bee2.Crypto.Belt.beltHash'bs ) #-} beltPBKDF : Password → ℕ → Salt → Kek beltPBKDF p n s = (primBeltPBKDF p (SizeFromℕ n) s) , primTrustMe beltHash : ByteString Strict → Hash beltHash bs = primBeltHash bs , primTrustMe
{ "alphanum_fraction": 0.7407749077, "avg_line_length": 29.2972972973, "ext": "agda", "hexsha": "7cb6e7a2ec4050300c66c3eac10aff42573f9ad5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "22682afc8d488e3812307e104785d2b8dc8b9d4a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "semenov-vladyslav/bee2-agda", "max_forks_repo_path": "src/Bee2/Crypto/Belt.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "22682afc8d488e3812307e104785d2b8dc8b9d4a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "semenov-vladyslav/bee2-agda", "max_issues_repo_path": "src/Bee2/Crypto/Belt.agda", "max_line_length": 83, "max_stars_count": null, "max_stars_repo_head_hexsha": "22682afc8d488e3812307e104785d2b8dc8b9d4a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "semenov-vladyslav/bee2-agda", "max_stars_repo_path": "src/Bee2/Crypto/Belt.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 311, "size": 1084 }
module Structure.Sets.Operator where open import Data.Boolean open import Data.Boolean.Stmt open import Functional import Lvl open import Logic open import Logic.Propositional open import Logic.Predicate open import Structure.Function open import Structure.Relator open import Structure.Setoid using (Equiv) renaming (_≡_ to _≡ₛ_ ; _≢_ to _≢ₛ_) import Structure.Sets.Names as Names open import Structure.Sets.Relator using (SubsetRelation) open import Type private variable ℓ ℓₗ ℓₗ₁ ℓₗ₂ ℓᵣ ℓᵣₑₗ ℓₒ ℓₛ : Lvl.Level private variable A B C S S₁ S₂ Sₒ Sᵢ Sₗ Sᵣ E E₁ E₂ Eₗ Eᵣ I O : Type{ℓ} private variable _∈_ _∈ₒ_ _∈ᵢ_ : E → S → Stmt{ℓₗ} private variable _∈ₗ_ : E → Sₗ → Stmt{ℓₗ} private variable _∈ᵣ_ : E → Sᵣ → Stmt{ℓᵣ} private variable _⊆_ : Sₗ → Sᵣ → Stmt{ℓᵣ} private variable ⦃ equiv-I ⦄ : Equiv{ℓₗ}(I) private variable ⦃ equiv-E ⦄ : Equiv{ℓₗ}(E) private variable ⦃ equiv-Eₗ ⦄ : Equiv{ℓₗ}(Eₗ) private variable ⦃ equiv-Eᵣ ⦄ : Equiv{ℓₗ}(Eᵣ) private variable ⦃ equiv-O ⦄ : Equiv{ℓₗ}(O) private variable ⦃ sub ⦄ : SubsetRelation(_∈ₗ_)(_∈ᵣ_)(_⊆_) module _ (_∈_ : E → S → Stmt{ℓₗ}) where record EmptySet(∅ : S) : Type{Lvl.of(E) Lvl.⊔ ℓₗ} where constructor intro field membership : Names.EmptyMembership(_∈_)(∅) record UniversalSet(𝐔 : S) : Type{Lvl.of(E) Lvl.⊔ ℓₗ} where constructor intro field membership : Names.UniversalMembership(_∈_)(𝐔) module _ ⦃ equiv-I : Equiv{ℓₗ₁}(I) ⦄ ⦃ equiv-E : Equiv{ℓₗ₂}(E) ⦄ where record ImageFunction(⊶ : (f : I → E) → ⦃ func : Function(f) ⦄ → S) : Type{Lvl.of(E) Lvl.⊔ Lvl.of(I) Lvl.⊔ ℓₗ Lvl.⊔ ℓₗ₁ Lvl.⊔ ℓₗ₂} where constructor intro field membership : Names.ImageMembership(_∈_)(⊶) module _ ⦃ equiv-E : Equiv{ℓₗ₁}(E) ⦄ {O : Type{ℓ}} ⦃ equiv-O : Equiv{ℓₗ₂}(O) ⦄ where record FiberFunction(fiber : (f : E → O) → ⦃ func : Function(f) ⦄ → (O → S)) : Type{Lvl.of(E) Lvl.⊔ ℓ Lvl.⊔ ℓₗ Lvl.⊔ ℓₗ₁ Lvl.⊔ ℓₗ₂} where constructor intro field membership : Names.FiberMembership(_∈_)(fiber) module _ ⦃ equiv-E : Equiv{ℓₗ}(E) ⦄ where record SingletonFunction(singleton : E → S) : Type{Lvl.of(E) Lvl.⊔ ℓₗ} where constructor intro field membership : Names.SingletonMembership(_∈_)(singleton) record PairFunction(pair : E → E → S) : Type{Lvl.of(E) Lvl.⊔ ℓₗ} where constructor intro field membership : Names.PairMembership(_∈_)(pair) record ComprehensionFunction(comp : (P : E → Stmt{ℓ}) ⦃ unaryRelator : UnaryRelator(P) ⦄ → S) : Type{Lvl.of(E) Lvl.⊔ ℓₗ Lvl.⊔ Lvl.𝐒(ℓ)} where constructor intro field membership : Names.ComprehensionMembership(_∈_)(comp) module _ (_∈ₗ_ : E → Sₗ → Stmt{ℓₗ}) (_∈ᵣ_ : E → Sᵣ → Stmt{ℓᵣ}) where record ComplementOperator(∁ : Sₗ → Sᵣ) : Type{Lvl.of(E) Lvl.⊔ Lvl.of(Sₗ) Lvl.⊔ ℓₗ Lvl.⊔ ℓᵣ} where constructor intro field membership : Names.ComplementMembership(_∈ₗ_)(_∈ᵣ_)(∁) module _ ⦃ equiv-E : Equiv{ℓₗ}(E) ⦄ where record AddOperator(add : E → Sₗ → Sᵣ) : Type{Lvl.of(E) Lvl.⊔ Lvl.of(Sₗ) Lvl.⊔ ℓₗ Lvl.⊔ ℓᵣ} where constructor intro field membership : Names.AddMembership(_∈ₗ_)(_∈ᵣ_)(add) record RemoveOperator(remove : E → Sₗ → Sᵣ) : Type{Lvl.of(E) Lvl.⊔ Lvl.of(Sₗ) Lvl.⊔ ℓₗ Lvl.⊔ ℓᵣ} where constructor intro field membership : Names.RemoveMembership(_∈ₗ_)(_∈ᵣ_)(remove) record FilterFunction(filter : (P : E → Stmt{ℓ}) ⦃ unaryRelator : UnaryRelator(P) ⦄ → (Sₗ → Sᵣ)) : Type{Lvl.of(E) Lvl.⊔ Lvl.of(Sₗ) Lvl.⊔ ℓₗ Lvl.⊔ ℓᵣ Lvl.⊔ Lvl.𝐒(ℓ)} where constructor intro field membership : Names.FilterMembership(_∈ₗ_)(_∈ᵣ_)(filter) record BooleanFilterFunction(boolFilter : (E → Bool) → (Sₗ → Sᵣ)) : Type{Lvl.of(E) Lvl.⊔ Lvl.of(Sₗ) Lvl.⊔ ℓₗ Lvl.⊔ ℓᵣ} where constructor intro field membership : Names.BooleanFilterMembership(_∈ₗ_)(_∈ᵣ_)(boolFilter) record IndexedBigUnionOperator(⋃ᵢ : (I → Sₗ) → Sᵣ) : Type{Lvl.of(E) Lvl.⊔ Lvl.of(Sₗ) Lvl.⊔ ℓₗ Lvl.⊔ ℓᵣ Lvl.⊔ Lvl.of(I)} where constructor intro field membership : Names.IndexedBigUnionMembership(_∈ₗ_)(_∈ᵣ_)(⋃ᵢ) record IndexedBigIntersectionOperator(⋂ᵢ : (I → Sₗ) → Sᵣ) : Type{Lvl.of(E) Lvl.⊔ Lvl.of(Sₗ) Lvl.⊔ ℓₗ Lvl.⊔ ℓᵣ Lvl.⊔ Lvl.of(I)} where constructor intro field membership : Names.IndexedBigIntersectionMembership(_∈ₗ_)(_∈ᵣ_)(⋂ᵢ) module _ (_∈ₗ_ : Eₗ → Sₗ → Stmt{ℓₗ}) (_∈ᵣ_ : Eᵣ → Sᵣ → Stmt{ℓᵣ}) where module _ ⦃ equiv-Eₗ : Equiv{ℓₗ₁}(Eₗ) ⦄ ⦃ equiv-Eᵣ : Equiv{ℓₗ₂}(Eᵣ) ⦄ where record MapFunction(map : (f : Eₗ → Eᵣ) ⦃ func : Function(f) ⦄ → (Sₗ → Sᵣ)) : Type{Lvl.of(Eₗ) Lvl.⊔ Lvl.of(Eᵣ) Lvl.⊔ Lvl.of(Sₗ) Lvl.⊔ ℓₗ Lvl.⊔ ℓᵣ Lvl.⊔ ℓₗ₁ Lvl.⊔ ℓₗ₂} where constructor intro field membership : Names.MapMembership(_∈ₗ_)(_∈ᵣ_)(map) record UnmapFunction(unmap : (f : Eₗ → Eᵣ) ⦃ func : Function(f) ⦄ → (Sᵣ → Sₗ)) : Type{Lvl.of(Eₗ) Lvl.⊔ Lvl.of(Eᵣ) Lvl.⊔ Lvl.of(Sᵣ) Lvl.⊔ ℓₗ Lvl.⊔ ℓᵣ Lvl.⊔ ℓₗ₁ Lvl.⊔ ℓₗ₂} where constructor intro field membership : Names.UnmapMembership(_∈ₗ_)(_∈ᵣ_)(unmap) module _ (_∈ₗ_ : E → Sₗ → Stmt{ℓₗ}) (_∈ᵣ_ : E → Sᵣ → Stmt{ℓᵣ}) (_∈ₒ_ : E → Sₒ → Stmt{ℓₒ}) where record UnionOperator(_∪_ : Sₗ → Sᵣ → Sₒ) : Type{Lvl.of(E) Lvl.⊔ Lvl.of(Sₗ) Lvl.⊔ Lvl.of(Sᵣ) Lvl.⊔ ℓₗ Lvl.⊔ ℓᵣ Lvl.⊔ ℓₒ} where constructor intro field membership : Names.UnionMembership(_∈ₗ_)(_∈ᵣ_)(_∈ₒ_)(_∪_) record IntersectionOperator(_∩_ : Sₗ → Sᵣ → Sₒ) : Type{Lvl.of(E) Lvl.⊔ Lvl.of(Sₗ) Lvl.⊔ Lvl.of(Sᵣ) Lvl.⊔ ℓₗ Lvl.⊔ ℓᵣ Lvl.⊔ ℓₒ} where constructor intro field membership : Names.IntersectMembership(_∈ₗ_)(_∈ᵣ_)(_∈ₒ_)(_∩_) record WithoutOperator(_∖_ : Sₗ → Sᵣ → Sₒ) : Type{Lvl.of(E) Lvl.⊔ Lvl.of(Sₗ) Lvl.⊔ Lvl.of(Sᵣ) Lvl.⊔ ℓₗ Lvl.⊔ ℓᵣ Lvl.⊔ ℓₒ} where constructor intro field membership : Names.WithoutMembership(_∈ₗ_)(_∈ᵣ_)(_∈ₒ_)(_∖_) module _ (_∈ₗ_ : E → Sₗ → Stmt{ℓₗ}) (_∈ᵣ_ : E → Sᵣ → Stmt{ℓᵣ}) (_∈ₒ_ : Sₗ → Sₒ → Stmt{ℓₒ}) {_⊆_ : Sₗ → Sᵣ → Stmt{ℓₛ}} ⦃ sub : SubsetRelation(_∈ₗ_)(_∈ᵣ_)(_⊆_) ⦄ where record PowerFunction(℘ : Sᵣ → Sₒ) : Type{Lvl.of(Sₗ) Lvl.⊔ Lvl.of(Sᵣ) Lvl.⊔ ℓₛ Lvl.⊔ ℓₒ} where constructor intro field membership : Names.PowerMembership(_∈ₒ_)(_⊆_)(℘) module _ (_∈ₗ_ : E → Sₗ → Stmt{ℓₗ}) (_∈ᵣ_ : Sₗ → Sᵣ → Stmt{ℓᵣ}) (_∈ₒ_ : E → Sₒ → Stmt{ℓₒ}) where record BigUnionOperator(⋃ : Sᵣ → Sₒ) : Type{Lvl.of(E) Lvl.⊔ Lvl.of(Sₗ) Lvl.⊔ Lvl.of(Sᵣ) Lvl.⊔ ℓₗ Lvl.⊔ ℓᵣ Lvl.⊔ ℓₒ} where constructor intro field membership : Names.BigUnionMembership(_∈ₗ_)(_∈ᵣ_)(_∈ₒ_)(⋃) record BigIntersectionOperator(⋂ : Sᵣ → Sₒ) : Type{Lvl.of(E) Lvl.⊔ Lvl.of(Sₗ) Lvl.⊔ Lvl.of(Sᵣ) Lvl.⊔ ℓₗ Lvl.⊔ ℓᵣ Lvl.⊔ ℓₒ} where constructor intro field membership : Names.BigIntersectionMembership(_∈ₗ_)(_∈ᵣ_)(_∈ₒ_)(⋂) module _ ⦃ p : ∃(EmptySet(_∈_)) ⦄ where open ∃(p) using () renaming (witness to ∅) public open EmptySet([∃]-proof p) using () renaming (membership to [∅]-membership) public module _ ⦃ p : ∃(UniversalSet(_∈_)) ⦄ where open ∃(p) using () renaming (witness to 𝐔) public open UniversalSet([∃]-proof p) using () renaming (membership to [𝐔]-membership) public module _ ⦃ p : ∃(ImageFunction(_∈_) ⦃ equiv-I ⦄ ⦃ equiv-E ⦄) ⦄ where open ∃(p) using () renaming (witness to ⊶) public open ImageFunction([∃]-proof p) using () renaming (membership to [⊶]-membership) public module _ ⦃ p : ∃(FiberFunction(_∈_) ⦃ equiv-E ⦄ ⦃ equiv-O ⦄) ⦄ where open ∃(p) using () renaming (witness to fiber) public open FiberFunction([∃]-proof p) using () renaming (membership to Fiber-membership) public module _ ⦃ p : ∃(SingletonFunction(_∈_) ⦃ equiv-E ⦄) ⦄ where open ∃(p) using () renaming (witness to singleton) public open SingletonFunction([∃]-proof p) using () renaming (membership to Singleton-membership) public module _ ⦃ p : ∃(PairFunction(_∈_) ⦃ equiv-E ⦄) ⦄ where open ∃(p) using () renaming (witness to pair) public open PairFunction([∃]-proof p) using () renaming (membership to Pair-membership) public module _ ⦃ p : ∃(ComplementOperator(_∈ₗ_)(_∈ᵣ_)) ⦄ where open ∃(p) using () renaming (witness to ∁) public open ComplementOperator([∃]-proof p) using () renaming (membership to [∁]-membership) public module _ ⦃ p : ∃(AddOperator(_∈ₗ_)(_∈ᵣ_) ⦃ equiv-E ⦄) ⦄ where open ∃(p) using () renaming (witness to add) public open AddOperator([∃]-proof p) using () renaming (membership to Add-membership) public module _ ⦃ p : ∃(RemoveOperator(_∈ₗ_)(_∈ᵣ_) ⦃ equiv-E ⦄) ⦄ where open ∃(p) using () renaming (witness to remove) public open RemoveOperator([∃]-proof p) using () renaming (membership to Remove-membership) public module _ ⦃ p : ∃(FilterFunction(_∈ₗ_)(_∈ᵣ_) ⦃ equiv-E ⦄ {ℓ}) ⦄ where open ∃(p) using () renaming (witness to filter) public open FilterFunction([∃]-proof p) using () renaming (membership to Filter-membership) public module _ ⦃ p : ∃(BooleanFilterFunction(_∈ₗ_)(_∈ᵣ_)) ⦄ where open ∃(p) using () renaming (witness to boolFilter) public open BooleanFilterFunction([∃]-proof p) using () renaming (membership to BooleanFilter-membership) public module _ ⦃ p : ∃(IndexedBigUnionOperator(_∈ₗ_)(_∈ᵣ_) {I = I}) ⦄ where open ∃(p) using () renaming (witness to ⋃ᵢ) public open IndexedBigUnionOperator([∃]-proof p) using () renaming (membership to [⋃ᵢ]-membership) public module _ ⦃ p : ∃(IndexedBigIntersectionOperator(_∈ₗ_)(_∈ᵣ_) {I = I}) ⦄ where open ∃(p) using () renaming (witness to ⋂ᵢ) public open IndexedBigIntersectionOperator([∃]-proof p) using () renaming (membership to [⋂ᵢ]-membership) public module _ ⦃ p : ∃(MapFunction(_∈ₗ_)(_∈ᵣ_) ⦃ equiv-Eₗ ⦄ ⦃ equiv-Eᵣ ⦄) ⦄ where open ∃(p) using () renaming (witness to map) public open MapFunction([∃]-proof p) using () renaming (membership to Map-membership) public module _ ⦃ p : ∃(UnmapFunction(_∈ₗ_)(_∈ᵣ_) ⦃ equiv-Eₗ ⦄ ⦃ equiv-Eᵣ ⦄) ⦄ where open ∃(p) using () renaming (witness to unmap) public open UnmapFunction([∃]-proof p) using () renaming (membership to Unmap-membership) public module _ ⦃ p : ∃(UnionOperator(_∈ₗ_)(_∈ᵣ_)(_∈ₒ_)) ⦄ where open ∃(p) using () renaming (witness to _∪_) public open UnionOperator([∃]-proof p) using () renaming (membership to [∪]-membership) public module _ ⦃ p : ∃(IntersectionOperator(_∈ₗ_)(_∈ᵣ_)(_∈ₒ_)) ⦄ where open ∃(p) using () renaming (witness to _∩_) public open IntersectionOperator([∃]-proof p) using () renaming (membership to [∩]-membership) public module _ ⦃ p : ∃(WithoutOperator(_∈ₗ_)(_∈ᵣ_)(_∈ₒ_)) ⦄ where open ∃(p) using () renaming (witness to _∖_) public open WithoutOperator([∃]-proof p) using () renaming (membership to [∖]-membership) public module _ ⦃ p : ∃(PowerFunction(_∈ₗ_)(_∈ᵣ_)(_∈ₒ_) ⦃ sub ⦄) ⦄ where open ∃(p) using () renaming (witness to ℘) public open PowerFunction([∃]-proof p) using () renaming (membership to [℘]-membership) public module _ ⦃ p : ∃(BigUnionOperator(_∈ₗ_)(_∈ᵣ_)(_∈ₒ_)) ⦄ where open ∃(p) using () renaming (witness to ⋃) public open BigUnionOperator([∃]-proof p) using () renaming (membership to [⋃]-membership) public module _ ⦃ p : ∃(BigIntersectionOperator(_∈ₗ_)(_∈ᵣ_)(_∈ₒ_)) ⦄ where open ∃(p) using () renaming (witness to ⋂) public open BigIntersectionOperator([∃]-proof p) using () renaming (membership to [⋂]-membership) public
{ "alphanum_fraction": 0.657546657, "avg_line_length": 51.8215962441, "ext": "agda", "hexsha": "2bc23e48c3efa2fcee2f6843cee2078f9032868b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Sets/Operator.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Sets/Operator.agda", "max_line_length": 179, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Sets/Operator.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 4994, "size": 11038 }
module Base.Change.Sums where open import Data.Sum open import Data.Product open import Relation.Binary.PropositionalEquality open import Level open import Base.Ascription open import Base.Change.Algebra open import Base.Change.Equivalence open import Base.Change.Equivalence.Realizers open import Postulate.Extensionality module SumChanges ℓ {X Y : Set ℓ} {{CX : ChangeAlgebra X}} {{CY : ChangeAlgebra Y}} where open ≡-Reasoning -- This is an indexed datatype, so it has two constructors per argument. But -- erasure would probably not be smart enough to notice. -- Should we rewrite this as two separate datatypes? data SumChange : X ⊎ Y → Set ℓ where ch₁ : ∀ {x} → (dx : Δ x) → SumChange (inj₁ x) rp₁₂ : ∀ {x} → (y : Y) → SumChange (inj₁ x) ch₂ : ∀ {y} → (dy : Δ y) → SumChange (inj₂ y) rp₂₁ : ∀ {y} → (x : X) → SumChange (inj₂ y) _⊕_ : (v : X ⊎ Y) → SumChange v → X ⊎ Y inj₁ x ⊕ ch₁ dx = inj₁ (x ⊞ dx) inj₂ y ⊕ ch₂ dy = inj₂ (y ⊞ dy) inj₁ x ⊕ rp₁₂ y = inj₂ y inj₂ y ⊕ rp₂₁ x = inj₁ x _⊝_ : ∀ (v₂ v₁ : X ⊎ Y) → SumChange v₁ inj₁ x₂ ⊝ inj₁ x₁ = ch₁ (x₂ ⊟ x₁) inj₂ y₂ ⊝ inj₂ y₁ = ch₂ (y₂ ⊟ y₁) inj₂ y₂ ⊝ inj₁ x₁ = rp₁₂ y₂ inj₁ x₂ ⊝ inj₂ y₁ = rp₂₁ x₂ s-nil : (v : X ⊎ Y) → SumChange v s-nil (inj₁ x) = ch₁ (nil x) s-nil (inj₂ y) = ch₂ (nil y) s-update-diff : ∀ (u v : X ⊎ Y) → v ⊕ (u ⊝ v) ≡ u s-update-diff (inj₁ x₂) (inj₁ x₁) = cong inj₁ (update-diff x₂ x₁) s-update-diff (inj₂ y₂) (inj₂ y₁) = cong inj₂ (update-diff y₂ y₁) s-update-diff (inj₁ x₂) (inj₂ y₁) = refl s-update-diff (inj₂ y₂) (inj₁ x₁) = refl s-update-nil : ∀ v → v ⊕ (s-nil v) ≡ v s-update-nil (inj₁ x) = cong inj₁ (update-nil x) s-update-nil (inj₂ y) = cong inj₂ (update-nil y) instance changeAlgebraSums : ChangeAlgebra (X ⊎ Y) changeAlgebraSums = record { Change = SumChange ; update = _⊕_ ; diff = _⊝_ ; nil = s-nil ; isChangeAlgebra = record { update-diff = s-update-diff ; update-nil = s-update-nil } } inj₁′ : Δ (inj₁ as (X → (X ⊎ Y))) inj₁′ = nil inj₁ inj₁′-realizer : RawChange (inj₁ as (X → (X ⊎ Y))) inj₁′-realizer x dx = ch₁ dx inj₁′Derivative : IsDerivative (inj₁ as (X → (X ⊎ Y))) inj₁′-realizer inj₁′Derivative x dx = refl inj₁′-realizer-correct : ∀ a da → apply inj₁′ a da ≙₍ inj₁ a as (X ⊎ Y) ₎ inj₁′-realizer a da inj₁′-realizer-correct a da = diff-update inj₁′-faster-w-proof : equiv-raw-change-to-change-ResType inj₁ inj₁′-realizer inj₁′-faster-w-proof = equiv-raw-change-to-change inj₁ inj₁′ inj₁′-realizer inj₁′-realizer-correct inj₁′-faster : Δ inj₁ inj₁′-faster = proj₁ inj₁′-faster-w-proof inj₂′ : Δ (inj₂ as (Y → (X ⊎ Y))) inj₂′ = nil inj₂ inj₂′-realizer : RawChange (inj₂ as (Y → (X ⊎ Y))) inj₂′-realizer y dy = ch₂ dy inj₂′Derivative : IsDerivative (inj₂ as (Y → (X ⊎ Y))) inj₂′-realizer inj₂′Derivative y dy = refl inj₂′-realizer-correct : ∀ b db → apply inj₂′ b db ≙₍ inj₂ b as (X ⊎ Y) ₎ inj₂′-realizer b db inj₂′-realizer-correct b db = diff-update inj₂′-faster-w-proof : equiv-raw-change-to-change-ResType inj₂ inj₂′-realizer inj₂′-faster-w-proof = equiv-raw-change-to-change inj₂ inj₂′ inj₂′-realizer inj₂′-realizer-correct inj₂′-faster : Δ inj₂ inj₂′-faster = proj₁ inj₂′-faster-w-proof module _ {Z : Set ℓ} {{CZ : ChangeAlgebra Z}} where -- Elimination form for sums. This is a less dependently-typed version of -- [_,_]. match : (X → Z) → (Y → Z) → X ⊎ Y → Z match f g (inj₁ x) = f x match f g (inj₂ y) = g y match′ : Δ match match′ = nil match match′-realizer : (f : X → Z) → Δ f → (g : Y → Z) → Δ g → (s : X ⊎ Y) → Δ s → Δ (match f g s) match′-realizer f df g dg (inj₁ x) (ch₁ dx) = apply df x dx match′-realizer f df g dg (inj₁ x) (rp₁₂ y) = ((g ⊞ dg) y) ⊟ (f x) match′-realizer f df g dg (inj₂ y) (rp₂₁ x) = ((f ⊞ df) x) ⊟ (g y) match′-realizer f df g dg (inj₂ y) (ch₂ dy) = apply dg y dy match′-realizer-correct : (f : X → Z) → (df : Δ f) → (g : Y → Z) → (dg : Δ g) → (s : X ⊎ Y) → (ds : Δ s) → apply (apply (apply match′ f df) g dg) s ds ≙₍ match f g s ₎ match′-realizer f df g dg s ds match′-realizer-correct f df g dg (inj₁ x) (ch₁ dx) = ≙-incrementalization f df x dx match′-realizer-correct f df g dg (inj₁ x) (rp₁₂ y) = ≙-refl match′-realizer-correct f df g dg (inj₂ y) (ch₂ dy) = ≙-incrementalization g dg y dy match′-realizer-correct f df g dg (inj₂ y) (rp₂₁ x) = ≙-refl -- We need a ternary variant of the lemma here. match′-faster-w-proof : equiv-raw-change-to-change-ternary-ResType match match′-realizer match′-faster-w-proof = equiv-raw-change-to-change-ternary match match′ match′-realizer match′-realizer-correct match′-faster : Δ match match′-faster = proj₁ match′-faster-w-proof
{ "alphanum_fraction": 0.6136599543, "avg_line_length": 37.0538461538, "ext": "agda", "hexsha": "1e46aa46ad9c37c4b4f6d2112404ff1785b3e888", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "inc-lc/ilc-agda", "max_forks_repo_path": "Base/Change/Sums.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z", "max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "inc-lc/ilc-agda", "max_issues_repo_path": "Base/Change/Sums.agda", "max_line_length": 115, "max_stars_count": 10, "max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "inc-lc/ilc-agda", "max_stars_repo_path": "Base/Change/Sums.agda", "max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z", "num_tokens": 1941, "size": 4817 }
------------------------------------------------------------------------ -- The Agda standard library -- -- This module is DEPRECATED. Please use -- Data.Product.Relation.Binary.Lex.Strict directly. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Product.Relation.Lex.Strict where open import Data.Product.Relation.Binary.Lex.Strict public
{ "alphanum_fraction": 0.4891566265, "avg_line_length": 31.9230769231, "ext": "agda", "hexsha": "dbc5a5ade954b73cb895c3f0d97940ad9838ab4a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/Relation/Lex/Strict.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/Relation/Lex/Strict.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/Relation/Lex/Strict.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 63, "size": 415 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category module Categories.Functor.Hom.Properties.Covariant {o ℓ e} (C : Category o ℓ e) where open import Level open import Function.Equality using (Π) open import Relation.Binary using (Setoid) open import Categories.Category.Construction.Cones open import Categories.Category.Instance.Setoids open import Categories.Diagram.Cone.Properties open import Categories.Diagram.Limit open import Categories.Functor open import Categories.Functor.Limits open import Categories.Functor.Hom import Categories.Morphism.Reasoning as MR private variable o′ ℓ′ e′ : Level J : Category o′ ℓ′ e′ module C = Category C open Category C open Hom C open Π -- Hom functor preserves limits in C module _ (W : Obj) {F : Functor J C} (lim : Limit F) where private module F = Functor F module lim = Limit lim open lim HomF : Functor J (Setoids ℓ e) HomF = Hom[ W ,-] ∘F F open HomReasoning open MR C ⊤ : Cone HomF ⊤ = F-map-Coneˡ Hom[ W ,-] limit module _ (K : Cone HomF) where private module K = Cone _ K KW : Setoid.Carrier (Cone.N K) → Cone F KW x = record { N = W ; apex = record { ψ = λ X → K.ψ X ⟨$⟩ x ; commute = λ f → ⟺ (∘-resp-≈ʳ identityʳ) ○ K.commute f (Setoid.refl K.N) } } ! : Cones HomF [ K , ⊤ ] ! = record { arr = record { _⟨$⟩_ = λ x → rep (KW x) ; cong = λ {x y} eq → ψ-≈⇒rep-≈ F W (Cone.apex (KW x)) (Cone.apex (KW y)) lim (λ A → cong (K.ψ A) eq) } ; commute = λ {X} {x y} eq → begin proj X ∘ rep (KW x) ∘ C.id ≈⟨ refl⟩∘⟨ C.identityʳ ⟩ proj X ∘ rep (KW x) ≈⟨ lim.commute ⟩ K.ψ X ⟨$⟩ x ≈⟨ cong (K.ψ X) eq ⟩ K.ψ X ⟨$⟩ y ∎ } !-unique : ∀ {K : Cone HomF} (f : Cones HomF [ K , ⊤ ]) → Cones HomF [ ! K ≈ f ] !-unique {K} f {x} {y} x≈y = begin rep (KW K x) ≈⟨ terminal.!-unique f′ ⟩ f.arr ⟨$⟩ x ≈⟨ cong f.arr x≈y ⟩ f.arr ⟨$⟩ y ∎ where module K = Cone _ K module f = Cone⇒ _ f f′ : Cones F [ KW K x , limit ] f′ = record { arr = f.arr ⟨$⟩ x ; commute = ⟺ (∘-resp-≈ʳ C.identityʳ) ○ f.commute (Setoid.refl K.N) } hom-resp-limit : Limit HomF hom-resp-limit = record { terminal = record { ⊤ = ⊤ ; ⊤-is-terminal = record { ! = ! _ ; !-unique = !-unique } } } Hom-Continuous : ∀ X o′ ℓ′ e′ → Continuous o′ ℓ′ e′ Hom[ X ,-] Hom-Continuous X _ _ _ L = terminal.⊤-is-terminal where open Limit (hom-resp-limit X L)
{ "alphanum_fraction": 0.513397642, "avg_line_length": 27.99, "ext": "agda", "hexsha": "0fb807ccd7231ef28588997ec70dd2010d517e48", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Functor/Hom/Properties/Covariant.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Functor/Hom/Properties/Covariant.agda", "max_line_length": 88, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Functor/Hom/Properties/Covariant.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 953, "size": 2799 }
module Issue947 where A : Set₁ A = Set where B : Set₁ B = Set module _ where C : Set₁ C = Set module M where
{ "alphanum_fraction": 0.6302521008, "avg_line_length": 7.9333333333, "ext": "agda", "hexsha": "80ab82387b3432b2ddbba8ca8d1ff1d48dd5c4b2", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue947.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Succeed/Issue947.agda", "max_line_length": 21, "max_stars_count": 3, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Succeed/Issue947.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 46, "size": 119 }
{-# OPTIONS --safe #-} module Cubical.Algebra.Module.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.SIP open import Cubical.Data.Sigma open import Cubical.Displayed.Base open import Cubical.Displayed.Auto open import Cubical.Displayed.Record open import Cubical.Displayed.Universe open import Cubical.Reflection.RecordEquiv open import Cubical.Algebra.Ring open import Cubical.Algebra.AbGroup open import Cubical.Algebra.Group open Iso private variable ℓ ℓ' : Level record IsLeftModule (R : Ring ℓ) {M : Type ℓ'} (0m : M) (_+_ : M → M → M) (-_ : M → M) (_⋆_ : ⟨ R ⟩ → M → M) : Type (ℓ-max ℓ ℓ') where open RingStr (snd R) using (_·_; 1r) renaming (_+_ to _+r_) field +IsAbGroup : IsAbGroup 0m _+_ -_ ⋆Assoc : (r s : ⟨ R ⟩) (x : M) → (r · s) ⋆ x ≡ r ⋆ (s ⋆ x) ⋆DistR+ : (r : ⟨ R ⟩) (x y : M) → r ⋆ (x + y) ≡ (r ⋆ x) + (r ⋆ y) ⋆DistL+ : (r s : ⟨ R ⟩) (x : M) → (r +r s) ⋆ x ≡ (r ⋆ x) + (s ⋆ x) ⋆IdL : (x : M) → 1r ⋆ x ≡ x open IsAbGroup +IsAbGroup public renaming ( isSemigroup to +IsSemigroup ; isMonoid to +IsMonoid ; isGroup to +IsGroup ) unquoteDecl IsLeftModuleIsoΣ = declareRecordIsoΣ IsLeftModuleIsoΣ (quote IsLeftModule) record LeftModuleStr (R : Ring ℓ) (A : Type ℓ') : Type (ℓ-max ℓ ℓ') where field 0m : A _+_ : A → A → A -_ : A → A _⋆_ : ⟨ R ⟩ → A → A isLeftModule : IsLeftModule R 0m _+_ -_ _⋆_ open IsLeftModule isLeftModule public LeftModule : (R : Ring ℓ) → ∀ ℓ' → Type (ℓ-max ℓ (ℓ-suc ℓ')) LeftModule R ℓ' = Σ[ A ∈ Type ℓ' ] LeftModuleStr R A module _ {R : Ring ℓ} where module _ (M : LeftModule R ℓ') where LeftModule→AbGroup : AbGroup ℓ' LeftModule→AbGroup .fst = M .fst LeftModule→AbGroup .snd .AbGroupStr.0g = _ LeftModule→AbGroup .snd .AbGroupStr._+_ = _ LeftModule→AbGroup .snd .AbGroupStr.-_ = _ LeftModule→AbGroup .snd .AbGroupStr.isAbGroup = IsLeftModule.+IsAbGroup (M .snd .LeftModuleStr.isLeftModule) isSetLeftModule : (M : LeftModule R ℓ') → isSet ⟨ M ⟩ isSetLeftModule M = isSetAbGroup (LeftModule→AbGroup M) open RingStr (snd R) using (1r) renaming (_+_ to _+r_; _·_ to _·s_) module _ {M : Type ℓ'} {0m : M} {_+_ : M → M → M} { -_ : M → M} {_⋆_ : ⟨ R ⟩ → M → M} (isSet-M : isSet M) (+Assoc : (x y z : M) → x + (y + z) ≡ (x + y) + z) (+IdR : (x : M) → x + 0m ≡ x) (+InvR : (x : M) → x + (- x) ≡ 0m) (+Comm : (x y : M) → x + y ≡ y + x) (⋆Assoc : (r s : ⟨ R ⟩) (x : M) → (r ·s s) ⋆ x ≡ r ⋆ (s ⋆ x)) (⋆DistR+ : (r : ⟨ R ⟩) (x y : M) → r ⋆ (x + y) ≡ (r ⋆ x) + (r ⋆ y)) (⋆DistL+ : (r s : ⟨ R ⟩) (x : M) → (r +r s) ⋆ x ≡ (r ⋆ x) + (s ⋆ x)) (⋆IdL : (x : M) → 1r ⋆ x ≡ x) where makeIsLeftModule : IsLeftModule R 0m _+_ -_ _⋆_ makeIsLeftModule .IsLeftModule.+IsAbGroup = makeIsAbGroup isSet-M +Assoc +IdR +InvR +Comm makeIsLeftModule .IsLeftModule.⋆Assoc = ⋆Assoc makeIsLeftModule .IsLeftModule.⋆DistR+ = ⋆DistR+ makeIsLeftModule .IsLeftModule.⋆DistL+ = ⋆DistL+ makeIsLeftModule .IsLeftModule.⋆IdL = ⋆IdL record IsLeftModuleHom {R : Ring ℓ} {A B : Type ℓ'} (M : LeftModuleStr R A) (f : A → B) (N : LeftModuleStr R B) : Type (ℓ-max ℓ ℓ') where -- Shorter qualified names private module M = LeftModuleStr M module N = LeftModuleStr N field pres0 : f M.0m ≡ N.0m pres+ : (x y : A) → f (x M.+ y) ≡ f x N.+ f y pres- : (x : A) → f (M.- x) ≡ N.- (f x) pres⋆ : (r : ⟨ R ⟩) (y : A) → f (r M.⋆ y) ≡ r N.⋆ f y LeftModuleHom : {R : Ring ℓ} (M N : LeftModule R ℓ') → Type (ℓ-max ℓ ℓ') LeftModuleHom M N = Σ[ f ∈ (⟨ M ⟩ → ⟨ N ⟩) ] IsLeftModuleHom (M .snd) f (N .snd) IsLeftModuleEquiv : {R : Ring ℓ} {A B : Type ℓ'} (M : LeftModuleStr R A) (e : A ≃ B) (N : LeftModuleStr R B) → Type (ℓ-max ℓ ℓ') IsLeftModuleEquiv M e N = IsLeftModuleHom M (e .fst) N LeftModuleEquiv : {R : Ring ℓ} (M N : LeftModule R ℓ') → Type (ℓ-max ℓ ℓ') LeftModuleEquiv M N = Σ[ e ∈ ⟨ M ⟩ ≃ ⟨ N ⟩ ] IsLeftModuleEquiv (M .snd) e (N .snd) isPropIsLeftModule : (R : Ring ℓ) {M : Type ℓ'} (0m : M) (_+_ : M → M → M) (-_ : M → M) (_⋆_ : ⟨ R ⟩ → M → M) → isProp (IsLeftModule R 0m _+_ -_ _⋆_) isPropIsLeftModule R _ _ _ _ = isOfHLevelRetractFromIso 1 IsLeftModuleIsoΣ (isPropΣ (isPropIsAbGroup _ _ _) (λ ab → isProp× (isPropΠ3 λ _ _ _ → ab .is-set _ _) (isProp× (isPropΠ3 λ _ _ _ → ab .is-set _ _) (isProp× (isPropΠ3 λ _ _ _ → ab .is-set _ _) (isPropΠ λ _ → ab .is-set _ _))))) where open IsAbGroup 𝒮ᴰ-LeftModule : (R : Ring ℓ) → DUARel (𝒮-Univ ℓ') (LeftModuleStr R) (ℓ-max ℓ ℓ') 𝒮ᴰ-LeftModule R = 𝒮ᴰ-Record (𝒮-Univ _) (IsLeftModuleEquiv {R = R}) (fields: data[ 0m ∣ autoDUARel _ _ ∣ pres0 ] data[ _+_ ∣ autoDUARel _ _ ∣ pres+ ] data[ -_ ∣ autoDUARel _ _ ∣ pres- ] data[ _⋆_ ∣ autoDUARel _ _ ∣ pres⋆ ] prop[ isLeftModule ∣ (λ _ _ → isPropIsLeftModule _ _ _ _ _) ]) where open LeftModuleStr open IsLeftModuleHom LeftModulePath : {R : Ring ℓ} (M N : LeftModule R ℓ') → (LeftModuleEquiv M N) ≃ (M ≡ N) LeftModulePath {R = R} = ∫ (𝒮ᴰ-LeftModule R) .UARel.ua
{ "alphanum_fraction": 0.5604933793, "avg_line_length": 33.8220858896, "ext": "agda", "hexsha": "7eba63f89467f4db5ac804be6609d428acea056a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/Module/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/Module/Base.agda", "max_line_length": 93, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/Module/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2301, "size": 5513 }
{-# OPTIONS --without-K --safe #-} open import Level using (Level) open import Relation.Binary.PropositionalEquality using (_≡_; _≢_) open import Data.Nat using (ℕ; suc; zero) open import Data.Empty using (⊥) open import Data.Vec using (Vec) renaming ([] to []ⱽ; _∷_ to _∷ⱽ_) module FLA.Data.Vec+.Base where private variable ℓ : Level A : Set ℓ n : ℕ -- TODO: Can this be replaced with something like the List⁺ definition so that -- the proofs from Vec can be transferred? This definition is convenient because -- the size is correct (it is not n - 1). data Vec⁺ (A : Set ℓ) : ℕ → Set ℓ where [_] : A → Vec⁺ A 1 _∷_ : ∀ {n} (x : A) (xs : Vec⁺ A n) → Vec⁺ A (suc n) infixr 5 _∷_ -- Want to prove that is it not possible to construct an empty vector emptyVecImpossible : Vec⁺ A 0 → ⊥ emptyVecImpossible = λ () Vec⁺→Vec : Vec⁺ A n → Vec A n Vec⁺→Vec [ v ] = v ∷ⱽ []ⱽ Vec⁺→Vec (v ∷ vs⁺) = v ∷ⱽ Vec⁺→Vec vs⁺ Vec⁺→n≢0 : Vec⁺ A n → n ≢ 0 Vec⁺→n≢0 {ℓ} {A} {suc n} v = suc≢0 where suc≢0 : {n : ℕ} → suc n ≢ 0 suc≢0 {zero} () suc≢0 {suc n} = λ () -- Closer maybe but still buggered -- Vec→Vec⁺ : ∀ {ℓ} → {A : Set ℓ} {n : ℕ} → (n ≢ 0) → Vec A n → Vec⁺ A n -- Vec→Vec⁺ {ℓ} {A} {0} p []ⱽ = ⊥-elim (p refl) -- Vec→Vec⁺ {ℓ} {A} {1} p (x ∷ⱽ []ⱽ) = [ x ] -- Vec→Vec⁺ {ℓ} {A} {suc n} p (x ∷ⱽ xs) = x ∷ (Vec→Vec⁺ {!!} xs)
{ "alphanum_fraction": 0.5655677656, "avg_line_length": 29.0425531915, "ext": "agda", "hexsha": "ee7b9bddcc276ff08b5650cf0f56d28d2c6b7cf2", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-09-07T19:55:59.000Z", "max_forks_repo_forks_event_min_datetime": "2021-04-12T20:34:17.000Z", "max_forks_repo_head_hexsha": "375475a2daa57b5995ceb78b4bffcbfcbb5d8898", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "turion/functional-linear-algebra", "max_forks_repo_path": "src/FLA/Data/Vec+/Base.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "375475a2daa57b5995ceb78b4bffcbfcbb5d8898", "max_issues_repo_issues_event_max_datetime": "2022-01-07T05:27:53.000Z", "max_issues_repo_issues_event_min_datetime": "2020-09-01T01:42:12.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "turion/functional-linear-algebra", "max_issues_repo_path": "src/FLA/Data/Vec+/Base.agda", "max_line_length": 80, "max_stars_count": 21, "max_stars_repo_head_hexsha": "375475a2daa57b5995ceb78b4bffcbfcbb5d8898", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "turion/functional-linear-algebra", "max_stars_repo_path": "src/FLA/Data/Vec+/Base.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-07T05:28:00.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-22T20:49:34.000Z", "num_tokens": 593, "size": 1365 }
{- This file contains: - The inductive construction of James. -} {-# OPTIONS --safe #-} module Cubical.HITs.James.Inductive.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Data.Nat open import Cubical.HITs.SequentialColimit private variable ℓ : Level module _ (X∙@(X , x₀) : Pointed ℓ) where -- The family 𝕁ames n is equivalence to Brunerie's J n data 𝕁ames : ℕ → Type ℓ where [] : 𝕁ames 0 _∷_ : {n : ℕ} → X → 𝕁ames n → 𝕁ames (1 + n) incl : {n : ℕ} → 𝕁ames n → 𝕁ames (1 + n) incl∷ : {n : ℕ} → (x : X)(xs : 𝕁ames n) → incl (x ∷ xs) ≡ x ∷ incl xs unit : {n : ℕ} → (xs : 𝕁ames n) → incl xs ≡ x₀ ∷ xs coh : {n : ℕ} → (xs : 𝕁ames n) → PathP (λ i → incl (unit xs i) ≡ x₀ ∷ incl xs) (unit (incl xs)) (incl∷ x₀ xs) -- The direct system defined by 𝕁ames open Sequence 𝕁amesSeq : Sequence ℓ 𝕁amesSeq .space = 𝕁ames 𝕁amesSeq .map = incl -- The 𝕁ames∞ wanted is the direct colimit of 𝕁ames n 𝕁ames∞ : Type ℓ 𝕁ames∞ = Lim→ 𝕁amesSeq
{ "alphanum_fraction": 0.6312554873, "avg_line_length": 24.2340425532, "ext": "agda", "hexsha": "fafcd8c6305f0d36ee1bbb337493742e968e39d7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/HITs/James/Inductive/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/HITs/James/Inductive/Base.agda", "max_line_length": 115, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/HITs/James/Inductive/Base.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 453, "size": 1139 }
{-# OPTIONS --erased-cubical --safe #-} module Note where open import Data.Integer using (ℤ) open import Data.Nat using (ℕ; _+_; _*_; ⌊_/2⌋) open import Function using (_∘_) open import Pitch using (Pitch; transposePitch) open import Interval using (Upi; Opi; transposePitchInterval) Duration : Set Duration = ℕ data Note : Set where tone : Duration → Pitch → Note rest : Duration → Note noteDuration : Note → ℕ noteDuration (tone d _) = d noteDuration (rest d) = d liftPitch : (Pitch → Pitch) → Note → Note liftPitch f (tone d p) = tone d (f p) liftPitch f (rest d) = rest d transposeNote : ℤ → Note → Note transposeNote = liftPitch ∘ transposePitch transposeNoteInterval : Opi → Note → Note transposeNoteInterval = liftPitch ∘ transposePitchInterval -- rounds down doubleSpeed : Note → Note doubleSpeed (tone d p) = tone (⌊_/2⌋ d) p doubleSpeed (rest d) = rest (⌊_/2⌋ d) slowDown : ℕ → Note → Note slowDown k (tone d p) = tone (d * k) p slowDown k (rest d) = rest (d * k) -- duration in 16th notes -- assume duration of a 16th note is 1 16th 8th d8th qtr dqtr half whole : Duration 16th = 1 8th = 2 d8th = 3 qtr = 4 dqtr = 6 half = 8 dhalf = 12 whole = 16 dwhole = 24
{ "alphanum_fraction": 0.6604688763, "avg_line_length": 22.9074074074, "ext": "agda", "hexsha": "90a7be20ee039d7f87c0461e60370e9570b89e32", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2020-11-10T04:04:40.000Z", "max_forks_repo_forks_event_min_datetime": "2019-01-12T17:02:36.000Z", "max_forks_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "halfaya/MusicTools", "max_forks_repo_path": "agda/Note.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_issues_repo_issues_event_max_datetime": "2020-11-17T00:58:55.000Z", "max_issues_repo_issues_event_min_datetime": "2020-11-13T01:26:20.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "halfaya/MusicTools", "max_issues_repo_path": "agda/Note.agda", "max_line_length": 65, "max_stars_count": 28, "max_stars_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "halfaya/MusicTools", "max_stars_repo_path": "agda/Note.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-04T18:04:07.000Z", "max_stars_repo_stars_event_min_datetime": "2017-04-21T09:08:52.000Z", "num_tokens": 420, "size": 1237 }
------------------------------------------------------------------------ -- A solution to a problem posed by Venanzio Capretta ------------------------------------------------------------------------ module VenanziosProblem where open import Codata.Musical.Notation open import Codata.Musical.Stream as Stream using (Stream; _⋎_; evens; odds; _≈_) open Stream.Stream; open Stream._≈_ open import Data.Nat open import Relation.Binary import Relation.Binary.PropositionalEquality as P private module S {A : Set} = Setoid (Stream.setoid A) ------------------------------------------------------------------------ -- Problem formulation -- The problem concerns functions satisfying a certain equation: rhs : {A : Set} → (Stream A → Stream A) → Stream A → Stream A rhs φ s = s ⋎ φ (evens (φ s)) SatisfiesEquation : {A : Set} → (Stream A → Stream A) → Set SatisfiesEquation φ = ∀ s → φ s ≈ rhs φ s -- The statement of the problem: Statement : Set₁ Statement = {A : Set} {φ₁ φ₂ : Stream A → Stream A} → SatisfiesEquation φ₁ → SatisfiesEquation φ₂ → ∀ s → φ₁ s ≈ φ₂ s ------------------------------------------------------------------------ -- Solution module Solution {A : Set} where infixr 5 _∷_ infix 4 _∣_∣_≈P_ _∣_∣_≈W_ infix 3 _∎ infixr 2 _≈⟨_⟩_ -- Let us first define a small language of equality proofs. -- -- m ∣ n ∣ xs ≈P ys means that xs and ys, which are streams -- generated in chunks of size 1 + m, where the outer chunk has size -- n, are equal. mutual -- Weak head normal forms of programs. data _∣_∣_≈W_ : ℕ → ℕ → Stream A → Stream A → Set where reset : ∀ {xs₁ xs₂ m} (xs₁≈xs₂ : ∞ (m ∣ suc m ∣ xs₁ ≈P xs₂)) → m ∣ 0 ∣ xs₁ ≈W xs₂ _∷_ : ∀ x {xs₁ xs₂ m n} (xs₁≈xs₂ : m ∣ n ∣ ♭ xs₁ ≈W ♭ xs₂) → m ∣ suc n ∣ x ∷ xs₁ ≈W x ∷ xs₂ -- Programs. data _∣_∣_≈P_ : ℕ → ℕ → Stream A → Stream A → Set where -- WHNFs are programs. ↑ : ∀ {m n xs₁ xs₂} (xs₁≈xs₂ : m ∣ n ∣ xs₁ ≈W xs₂) → m ∣ n ∣ xs₁ ≈P xs₂ -- Various congruences. _∷_ : ∀ x {xs₁ xs₂ m n} (xs₁≈xs₂ : m ∣ n ∣ ♭ xs₁ ≈P ♭ xs₂) → m ∣ suc n ∣ x ∷ xs₁ ≈P x ∷ xs₂ _⋎-cong_ : ∀ {xs₁ xs₂ ys₁ ys₂} (xs₁≈xs₂ : 1 ∣ 1 ∣ xs₁ ≈P xs₂) (ys₁≈ys₂ : 0 ∣ 1 ∣ ys₁ ≈P ys₂) → 1 ∣ 2 ∣ xs₁ ⋎ ys₁ ≈P xs₂ ⋎ ys₂ evens-cong : ∀ {xs₁ xs₂} (xs₁≈xs₂ : 1 ∣ 1 ∣ xs₁ ≈P xs₂) → 0 ∣ 1 ∣ evens xs₁ ≈P evens xs₂ odds-cong : ∀ {xs₁ xs₂} (xs₁≈xs₂ : 1 ∣ 2 ∣ xs₁ ≈P xs₂) → 0 ∣ 1 ∣ odds xs₁ ≈P odds xs₂ -- Equational reasoning. _≈⟨_⟩_ : ∀ xs₁ {xs₂ xs₃ m n} (xs₁≈xs₂ : m ∣ n ∣ xs₁ ≈P xs₂) (xs₂≈xs₃ : m ∣ n ∣ xs₂ ≈P xs₃) → m ∣ n ∣ xs₁ ≈P xs₃ _∎ : ∀ {n m} xs → m ∣ n ∣ xs ≈P xs -- If we have already produced 1 + n elements of the last chunk, -- then it is safe to pretend that we have only produced n -- elements. shift : ∀ {n m xs₁ xs₂} (xs₁≈xs₂ : m ∣ suc n ∣ xs₁ ≈P xs₂) → m ∣ n ∣ xs₁ ≈P xs₂ -- A variation of the statement we want to prove. goal′ : ∀ {φ₁ φ₂ xs₁ xs₂} (s₁ : SatisfiesEquation φ₁) (s₂ : SatisfiesEquation φ₂) (xs₁≈xs₂ : 0 ∣ 1 ∣ xs₁ ≈P xs₂) → 1 ∣ 1 ∣ rhs φ₁ xs₁ ≈P rhs φ₂ xs₂ -- The equality language is complete. completeW : ∀ {n m xs ys} → xs ≈ ys → m ∣ n ∣ xs ≈W ys completeW {zero} xs≈ys = reset (♯ ↑ (completeW xs≈ys)) completeW {suc n} (P.refl ∷ xs≈ys) = _ ∷ completeW (♭ xs≈ys) -- If we can prove that the equality language is sound, then the -- following lemma implies the intended result. goal : ∀ {φ₁ φ₂ xs₁ xs₂} (s₁ : SatisfiesEquation φ₁) (s₂ : SatisfiesEquation φ₂) → 0 ∣ 1 ∣ xs₁ ≈P xs₂ → 1 ∣ 1 ∣ φ₁ xs₁ ≈P φ₂ xs₂ goal {φ₁} {φ₂} {xs₁} {xs₂} s₁ s₂ xs₁≈xs₂ = φ₁ xs₁ ≈⟨ ↑ (completeW (s₁ xs₁)) ⟩ rhs φ₁ xs₁ ≈⟨ goal′ s₁ s₂ xs₁≈xs₂ ⟩ rhs φ₂ xs₂ ≈⟨ ↑ (completeW (S.sym (s₂ xs₂))) ⟩ φ₂ xs₂ ∎ -- Some lemmas about weak head normal forms. evens-congW : {xs₁ xs₂ : Stream A} → 1 ∣ 1 ∣ xs₁ ≈W xs₂ → 0 ∣ 1 ∣ evens xs₁ ≈W evens xs₂ evens-congW (x ∷ reset xs₁≈xs₂) = x ∷ reset (♯ odds-cong (♭ xs₁≈xs₂)) reflW : ∀ xs {m} n → m ∣ n ∣ xs ≈W xs reflW xs zero = reset (♯ (xs ∎)) reflW (x ∷ xs) (suc n) = x ∷ reflW (♭ xs) n transW : ∀ {xs ys zs m n} → m ∣ n ∣ xs ≈W ys → m ∣ n ∣ ys ≈W zs → m ∣ n ∣ xs ≈W zs transW (x ∷ xs≈ys) (.x ∷ ys≈zs) = x ∷ transW xs≈ys ys≈zs transW (reset xs≈ys) (reset ys≈zs) = reset (♯ (_ ≈⟨ ♭ xs≈ys ⟩ ♭ ys≈zs)) shiftW : ∀ n {m xs₁ xs₂} → m ∣ suc n ∣ xs₁ ≈W xs₂ → m ∣ n ∣ xs₁ ≈W xs₂ shiftW zero (x ∷ reset xs₁≈xs₂) = reset (♯ (x ∷ shift (♭ xs₁≈xs₂))) shiftW (suc n) (x ∷ xs₁≈xs₂) = x ∷ shiftW n xs₁≈xs₂ -- Every program can be transformed into WHNF. whnf : ∀ {xs ys m n} → m ∣ n ∣ xs ≈P ys → m ∣ n ∣ xs ≈W ys whnf (↑ xs≈ys) = xs≈ys whnf (x ∷ xs₁≈xs₂) = x ∷ whnf xs₁≈xs₂ whnf (xs₁≈xs₂ ⋎-cong ys₁≈ys₂) with whnf xs₁≈xs₂ | whnf ys₁≈ys₂ ... | x ∷ reset xs₁≈xs₂′ | y ∷ reset ys₁≈ys₂′ = x ∷ y ∷ reset (♯ (shift (♭ xs₁≈xs₂′) ⋎-cong ♭ ys₁≈ys₂′)) whnf (evens-cong xs₁≈xs₂) = evens-congW (whnf xs₁≈xs₂) whnf (odds-cong xs₁≈xs₂) with whnf xs₁≈xs₂ ... | x ∷ xs₁≈xs₂′ = evens-congW xs₁≈xs₂′ whnf (xs₁ ≈⟨ xs₁≈xs₂ ⟩ xs₂≈xs₃) = transW (whnf xs₁≈xs₂) (whnf xs₂≈xs₃) whnf (xs ∎) = reflW xs _ whnf (shift xs₁≈xs₂) = shiftW _ (whnf xs₁≈xs₂) whnf (goal′ s₁ s₂ xs₁≈xs₂) with whnf xs₁≈xs₂ ... | (x ∷ reset xs₁≈xs₂′) = x ∷ reset (♯ (goal s₁ s₂ (evens-cong (goal s₁ s₂ xs₁≈xs₂)) ⋎-cong ♭ xs₁≈xs₂′)) -- Soundness follows by a corecursive repetition of the whnf -- procedure. ⟦_⟧W : ∀ {xs ys m n} → m ∣ n ∣ xs ≈W ys → xs ≈ ys ⟦ reset ys≈zs ⟧W with whnf (♭ ys≈zs) ... | x ∷ ys≈zs′ = P.refl ∷ ♯ ⟦ ys≈zs′ ⟧W ⟦ x ∷ ys≈zs ⟧W = P.refl ∷ ♯ ⟦ ys≈zs ⟧W ⟦_⟧P : ∀ {xs ys m n} → m ∣ n ∣ xs ≈P ys → xs ≈ ys ⟦ xs≈ys ⟧P = ⟦ whnf xs≈ys ⟧W -- Wrapping up. solution : Statement solution s₁ s₂ s = ⟦ goal s₁ s₂ (s ∎) ⟧P where open Solution
{ "alphanum_fraction": 0.4902736043, "avg_line_length": 33.8128342246, "ext": "agda", "hexsha": "73392a83b9e40892770cf89adc9208c0057a781e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/codata", "max_forks_repo_path": "VenanziosProblem.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/codata", "max_issues_repo_path": "VenanziosProblem.agda", "max_line_length": 73, "max_stars_count": 1, "max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/codata", "max_stars_repo_path": "VenanziosProblem.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z", "num_tokens": 2705, "size": 6323 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import groups.KernelImage module groups.KernelImageEmap where module _ {i₀ i₁ j₀ j₁ k₀ k₁} {G₀ : Group i₀} {H₀ : Group j₀} {K₀ : Group k₀} {G₁ : Group i₁} {H₁ : Group j₁} {K₁ : Group k₁} {ψ₀ : H₀ →ᴳ K₀} {φ₀ : G₀ →ᴳ H₀} (H₀-ab : is-abelian H₀) {ψ₁ : H₁ →ᴳ K₁} {φ₁ : G₁ →ᴳ H₁} (H₁-ab : is-abelian H₁) {ξG : G₀ →ᴳ G₁} {ξH : H₀ →ᴳ H₁} {ξK : K₀ →ᴳ K₁} (ψ₀∼ψ₁ : CommSquareᴳ ψ₀ ψ₁ ξH ξK) (φ₀∼φ₁ : CommSquareᴳ φ₀ φ₁ ξG ξH) where module ξG = GroupHom ξG module ξH = GroupHom ξH module ξK = GroupHom ξK module ψ₀ = GroupHom ψ₀ module ψ₁ = GroupHom ψ₁ module φ₀ = GroupHom φ₀ module φ₁ = GroupHom φ₁ private f : Ker/Im.El ψ₀ φ₀ H₀-ab → Ker/Im.El ψ₁ φ₁ H₁-ab f = SetQuot-rec to pres-rel where abstract ξh-in-Ker : ∀ h (ψ₀h=0 : ψ₀.f h == Group.ident K₀) → ψ₁.f (ξH.f h) == Group.ident K₁ ξh-in-Ker h ψ₀h=0 = (! $ ψ₀∼ψ₁ □$ᴳ h) ∙ ap ξK.f ψ₀h=0 ∙ ξK.pres-ident to : Ker.El ψ₀ → Ker/Im.El ψ₁ φ₁ H₁-ab to (h , ψ₀h=0) = q[ ξH.f h , ξh-in-Ker h ψ₀h=0 ] abstract pres-rel : ∀ {h h'} → ker/im-rel ψ₀ φ₀ H₀-ab h h' → to h == to h' pres-rel {(h , _)} {(h' , _)} = Trunc-rec λ{(g , φg=h-h') → quot-rel [ ξG.f g , (! $ φ₀∼φ₁ □$ᴳ g) ∙ ap ξH.f φg=h-h' ∙ ξH.pres-diff h h' ]} abstract f-is-hom : preserves-comp (Ker/Im.comp ψ₀ φ₀ H₀-ab) (Ker/Im.comp ψ₁ φ₁ H₁-ab) f f-is-hom = SetQuot-elim (λ{(h , _) → SetQuot-elim (λ{(h' , _) → ap q[_] (Ker.El=-out ψ₁ (ξH.pres-comp h h'))}) (λ _ → prop-has-all-paths-↓)}) (λ _ → prop-has-all-paths-↓) Ker/Im-fmap : Ker/Im ψ₀ φ₀ H₀-ab →ᴳ Ker/Im ψ₁ φ₁ H₁-ab Ker/Im-fmap = group-hom f f-is-hom module _ {i₀ i₁ j₀ j₁ k₀ k₁} {G₀ : Group i₀} {H₀ : Group j₀} {K₀ : Group k₀} {G₁ : Group i₁} {H₁ : Group j₁} {K₁ : Group k₁} {ψ₀ : H₀ →ᴳ K₀} {φ₀ : G₀ →ᴳ H₀} (H₀-ab : is-abelian H₀) {ψ₁ : H₁ →ᴳ K₁} {φ₁ : G₁ →ᴳ H₁} (H₁-ab : is-abelian H₁) {ξG : G₀ →ᴳ G₁} {ξH : H₀ →ᴳ H₁} {ξK : K₀ →ᴳ K₁} (ψ₀∼ψ₁ : CommSquareᴳ ψ₀ ψ₁ ξH ξK) (φ₀∼φ₁ : CommSquareᴳ φ₀ φ₁ ξG ξH) (ξG-ise : is-equiv (GroupHom.f ξG)) (ξH-ise : is-equiv (GroupHom.f ξH)) (ξK-ise : is-equiv (GroupHom.f ξK)) where private to : Ker/Im.El ψ₀ φ₀ H₀-ab → Ker/Im.El ψ₁ φ₁ H₁-ab to = GroupHom.f (Ker/Im-fmap H₀-ab H₁-ab ψ₀∼ψ₁ φ₀∼φ₁) from : Ker/Im.El ψ₁ φ₁ H₁-ab → Ker/Im.El ψ₀ φ₀ H₀-ab from = GroupHom.f (Ker/Im-fmap H₁-ab H₀-ab (CommSquareᴳ-inverse-v ψ₀∼ψ₁ ξH-ise ξK-ise) (CommSquareᴳ-inverse-v φ₀∼φ₁ ξG-ise ξH-ise)) abstract to-from : ∀ x → to (from x) == x to-from = SetQuot-elim {{=-preserves-level ⟨⟩}} (λ{(h , _) → ap q[_] $ Ker.El=-out ψ₁ $ is-equiv.f-g ξH-ise h}) (λ {h} {h'} _ → prop-has-all-paths-↓ {{has-level-apply SetQuot-is-set (to (from q[ h' ])) q[ h' ]}}) from-to : ∀ x → from (to x) == x from-to = SetQuot-elim {{=-preserves-level ⟨⟩}} (λ{(h , _) → ap q[_] $ Ker.El=-out ψ₀ $ is-equiv.g-f ξH-ise h}) (λ {h} {h'} _ → prop-has-all-paths-↓ {{has-level-apply SetQuot-is-set (from (to q[ h' ])) q[ h' ]}}) Ker/Im-emap : Ker/Im ψ₀ φ₀ H₀-ab ≃ᴳ Ker/Im ψ₁ φ₁ H₁-ab Ker/Im-emap = Ker/Im-fmap H₀-ab H₁-ab ψ₀∼ψ₁ φ₀∼φ₁ , is-eq to from to-from from-to
{ "alphanum_fraction": 0.535426009, "avg_line_length": 35.9677419355, "ext": "agda", "hexsha": "be5aed9548777c351a19aa777b0a5c17d2d5fdf1", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/groups/KernelImageEmap.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/groups/KernelImageEmap.agda", "max_line_length": 135, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/groups/KernelImageEmap.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 1634, "size": 3345 }
module WErrorOverride where postulate IO : Set → Set {-# COMPILED_TYPE IO IO #-} {-# BUILTIN IO IO #-} infixl 1 _>>=_ postulate return : {A : Set} → A → IO A _>>=_ : {A : Set} {B : Set} → IO A → (A → IO B) → IO B {-# COMPILED return (\_ -> return) #-} {-# COMPILED _>>=_ (\_ _ -> (>>=)) #-} ------------------------------------------------------------------------ -- An error should be raised if one tries to do something like this: data PartialBool : Set where true : PartialBool {-# COMPILED_DATA PartialBool Bool True #-} -- However one can override such behaviour by passing the flag -- --ghc-flag=-Wwarn to Agda upon compilation. main = return true
{ "alphanum_fraction": 0.5508100147, "avg_line_length": 21.21875, "ext": "agda", "hexsha": "9255cbf07c664863055d2822e797005a77e6daf8", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/WErrorOverride.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/WErrorOverride.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Succeed/WErrorOverride.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 186, "size": 679 }
------------------------------------------------------------------------ -- The Agda standard library -- -- This module is DEPRECATED. Please use -- Data.Vec.Relation.Unary.All.Properties directly. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Vec.All.Properties where open import Data.Vec.Relation.Unary.All.Properties public
{ "alphanum_fraction": 0.4777227723, "avg_line_length": 31.0769230769, "ext": "agda", "hexsha": "41016caf5a662e986166cce8b41908617ff86398", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/All/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/All/Properties.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/All/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 63, "size": 404 }
{-# OPTIONS --prop --rewriting #-} module Examples where -- Sequential import Examples.Id import Examples.Gcd import Examples.Queue -- Parallel import Examples.TreeSum import Examples.Exp2 -- Hybrid import Examples.Sorting
{ "alphanum_fraction": 0.7709251101, "avg_line_length": 14.1875, "ext": "agda", "hexsha": "c78d0ad387191768e768f7ae77c7e2be35f4d4c7", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-01-29T08:12:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-10-06T10:28:24.000Z", "max_forks_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "jonsterling/agda-calf", "max_forks_repo_path": "src/Examples.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "jonsterling/agda-calf", "max_issues_repo_path": "src/Examples.agda", "max_line_length": 34, "max_stars_count": 29, "max_stars_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "jonsterling/agda-calf", "max_stars_repo_path": "src/Examples.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T20:35:11.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-14T03:18:28.000Z", "num_tokens": 49, "size": 227 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT import homotopy.ConstantToSetExtendsToProp as ConstExt open import homotopy.RibbonCover module homotopy.GroupSetsRepresentCovers {i} (X : Ptd i) {{_ : is-connected 0 (de⊙ X)}} where open Cover private A : Type i A = de⊙ X a₁ : A a₁ = pt X -- A covering space constructed from a G-set. grpset-to-cover : ∀ {j} → GroupSet (πS 0 X) j → Cover A (lmax i j) grpset-to-cover gs = Ribbon-cover X gs -- Covering spaces to G-sets. cover-to-grpset-struct : ∀ {j} (cov : Cover A j) → GroupSetStructure (πS 0 X) (Fiber cov a₁) cover-to-grpset-struct cov = record { act = cover-trace cov ; unit-r = cover-trace-idp₀ cov ; assoc = cover-paste cov } cover-to-grpset : ∀ {j} → Cover A j → GroupSet (πS 0 X) j cover-to-grpset cov = record { El = Fiber cov a₁ ; grpset-struct = cover-to-grpset-struct cov } -- This is derivable from connectedness condition. module _ where abstract [base-path] : ∀ {a₂ : A} → Trunc -1 (a₁ == a₂) [base-path] {a₂} = –> (Trunc=-equiv [ a₁ ] [ a₂ ]) (contr-has-all-paths [ a₁ ] [ a₂ ]) -- Part 1: Show that the synthesized cover (ribbon) is fiberwisely -- equivalent to the original fiber. private module _ {j} (cov : Cover A j) where -- Suppose that we get the path, we can compute the ribbon easily. fiber+path-to-ribbon : ∀ {a₂} (a↑ : Fiber cov a₂) (p : a₁ == a₂) → Ribbon X (cover-to-grpset cov) a₂ fiber+path-to-ribbon {a₂} a↑ p = trace (cover-trace cov a↑ [ ! p ]) [ p ] abstract -- Our construction is "constant" with respect to paths. fiber+path-to-ribbon-is-path-irrelevant : ∀ {a₂} (a↑ : Fiber cov a₂) (p₁ p₂ : a₁ == a₂) → fiber+path-to-ribbon a↑ p₁ == fiber+path-to-ribbon a↑ p₂ fiber+path-to-ribbon-is-path-irrelevant a↑ p idp = trace (cover-trace cov a↑ [ ! p ]) [ p ] =⟨ paste a↑ [ ! p ] [ p ] ⟩ trace a↑ [ ! p ∙ p ] =⟨ !₀-inv-l [ p ] |in-ctx trace a↑ ⟩ trace a↑ idp₀ ∎ module FiberAndPathToRibbon {a₂} (a↑ : Fiber cov a₂) = ConstExt (fiber+path-to-ribbon a↑) (fiber+path-to-ribbon-is-path-irrelevant a↑) fiber+path₋₁-to-ribbon : ∀ {a₂} (a↑ : Cover.Fiber cov a₂) → Trunc -1 (a₁ == a₂) → Ribbon X (cover-to-grpset cov) a₂ fiber+path₋₁-to-ribbon a↑ = FiberAndPathToRibbon.ext a↑ -- So the conversion from fiber to ribbon is done. fiber-to-ribbon : ∀ {j} (cov : Cover A j) → {a₂ : A} (a↑ : Cover.Fiber cov a₂) → Ribbon X (cover-to-grpset cov) a₂ fiber-to-ribbon cov a↑ = fiber+path₋₁-to-ribbon cov a↑ [base-path] -- The other direction is easy. ribbon-to-fiber : ∀ {j} (cov : Cover A j) {a₂} → Ribbon X (cover-to-grpset cov) a₂ → Cover.Fiber cov a₂ ribbon-to-fiber cov {a₂} r = Ribbon-rec (cover-trace cov) (cover-paste cov) r private -- Some routine computations. abstract ribbon-to-fiber-to-ribbon : ∀ {j} (cov : Cover A j) {a₂} → (r : Ribbon X (cover-to-grpset cov) a₂) → fiber-to-ribbon cov (ribbon-to-fiber cov r) == r ribbon-to-fiber-to-ribbon cov {a₂} = Ribbon-elim {P = λ r → fiber-to-ribbon cov (ribbon-to-fiber cov r) == r} (λ a↑ p → Trunc-elim -- All ugly things will go away when bp = proj bp′ {{λ bp → has-level-apply Ribbon-is-set (fiber+path₋₁-to-ribbon cov (cover-trace cov a↑ p) bp) (trace a↑ p)}} (lemma a↑ p) [base-path]) (λ _ _ _ → prop-has-all-paths-↓) where abstract lemma : ∀ {a₂} (a↑ : Cover.Fiber cov a₁) (p : a₁ =₀ a₂) (bp : a₁ == a₂) → trace {X = X} {gs = cover-to-grpset cov} (cover-trace cov (cover-trace cov a↑ p) [ ! bp ]) [ bp ] == trace {X = X} {gs = cover-to-grpset cov} a↑ p lemma a↑ p idp = trace (cover-trace cov a↑ p) idp₀ =⟨ paste a↑ p idp₀ ⟩ trace a↑ (p ∙₀ idp₀) =⟨ ap (trace a↑) $ ∙₀-unit-r p ⟩ trace a↑ p ∎ fiber-to-ribbon-to-fiber : ∀ {j} (cov : Cover A j) {a₂} → (a↑ : Cover.Fiber cov a₂) → ribbon-to-fiber cov (fiber-to-ribbon cov {a₂} a↑) == a↑ fiber-to-ribbon-to-fiber cov {a₂} a↑ = Trunc-elim -- All ugly things will go away when bp = proj bp′ {{λ bp → has-level-apply (Cover.Fiber-is-set cov) (ribbon-to-fiber cov (fiber+path₋₁-to-ribbon cov a↑ bp)) a↑}} (lemma a↑) [base-path] where abstract lemma : ∀ {a₂} (a↑ : Cover.Fiber cov a₂) (bp : a₁ == a₂) → cover-trace cov (cover-trace cov a↑ [ ! bp ]) [ bp ] == a↑ lemma a↑ idp = idp cover-to-grpset-to-cover : ∀ {j} (cov : Cover A (lmax i j)) → grpset-to-cover (cover-to-grpset cov) == cov cover-to-grpset-to-cover cov = cover= λ _ → ribbon-to-fiber cov , is-eq (ribbon-to-fiber cov) (fiber-to-ribbon cov) (fiber-to-ribbon-to-fiber cov) (ribbon-to-fiber-to-ribbon cov) -- The second direction : grpset -> covering -> grpset -- Part 2.1: The fiber over the point a is the carrier. ribbon-a₁-to-El : ∀ {j} {gs : GroupSet (πS 0 X) j} → Ribbon X gs a₁ → GroupSet.El gs ribbon-a₁-to-El {j} {gs} = let open GroupSet gs in Ribbon-rec act assoc ribbon-a₁-to-El-equiv : ∀ {j} {gs : GroupSet (πS 0 X) j} → Ribbon X gs a₁ ≃ GroupSet.El gs ribbon-a₁-to-El-equiv {j} {gs} = let open GroupSet gs in ribbon-a₁-to-El , is-eq _ (λ r → trace r idp₀) (λ a↑ → unit-r a↑) (Ribbon-elim {P = λ r → trace (ribbon-a₁-to-El r) idp₀ == r} (λ y p → trace (act y p) idp₀ =⟨ paste y p idp₀ ⟩ trace y (p ∙₀ idp₀) =⟨ ap (trace y) $ ∙₀-unit-r p ⟩ trace y p ∎) (λ _ _ _ → prop-has-all-paths-↓)) grpset-to-cover-to-grpset : ∀ {j} (gs : GroupSet (πS 0 X) (lmax i j)) → cover-to-grpset (grpset-to-cover gs) == gs grpset-to-cover-to-grpset gs = groupset= ribbon-a₁-to-El-equiv (λ {x₁}{x₂} x= → Trunc-elim λ g → ribbon-a₁-to-El (transport (Ribbon X gs) g x₁) =⟨ ap (λ x → ribbon-a₁-to-El (transport (Ribbon X gs) g x)) $ ! $ <–-inv-l ribbon-a₁-to-El-equiv x₁ ⟩ ribbon-a₁-to-El (transport (Ribbon X gs) g (trace (ribbon-a₁-to-El x₁) idp₀)) =⟨ ap (λ x → ribbon-a₁-to-El (transport (Ribbon X gs) g (trace x idp₀))) x= ⟩ ribbon-a₁-to-El (transport (Ribbon X gs) g (trace x₂ idp₀)) =⟨ ap ribbon-a₁-to-El $ transp-trace g x₂ idp₀ ⟩ GroupSet.act gs x₂ [ g ] ∎) -- Finally... grpset-equiv-cover : ∀ {j} → GroupSet (πS 0 X) (lmax i j) ≃ Cover A (lmax i j) grpset-equiv-cover {j} = grpset-to-cover , is-eq _ (λ c → cover-to-grpset c) (λ c → cover-to-grpset-to-cover {lmax i j} c) (grpset-to-cover-to-grpset {lmax i j}) -- The path-set cover is represented by the fundamental group itself path-set-repr-by-π1 : cover-to-grpset (path-set-cover X) == group-to-group-set (πS 0 X) path-set-repr-by-π1 = groupset= (ide _) (λ {x₁} p g → (transp₀-cst=₀idf g x₁ ∙ ∙₀'=∙₀ x₁ g) ∙' ap (_∙₀ g) p)
{ "alphanum_fraction": 0.5399326599, "avg_line_length": 36.7574257426, "ext": "agda", "hexsha": "1a3a529da175482e23887e8a99faaacc992689e8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/homotopy/GroupSetsRepresentCovers.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/homotopy/GroupSetsRepresentCovers.agda", "max_line_length": 87, "max_stars_count": null, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/homotopy/GroupSetsRepresentCovers.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2564, "size": 7425 }
{-# OPTIONS --sized-types #-} open import Relation.Binary.Core module Quicksort.Correctness.Order {A : Set} (_≤_ : A → A → Set) (tot≤ : Total _≤_) (trans≤ : Transitive _≤_) where open import Data.List open import Function using (_∘_) open import List.Sorted _≤_ open import Quicksort _≤_ tot≤ open import SBList _≤_ open import Size open import SOList.Total _≤_ open import SOList.Total.Properties _≤_ trans≤ theorem-quickSort-sorted : (xs : List A) → Sorted (forget (quickSort (bound xs))) theorem-quickSort-sorted = lemma-solist-sorted ∘ quickSort ∘ bound
{ "alphanum_fraction": 0.6672077922, "avg_line_length": 30.8, "ext": "agda", "hexsha": "42cfa525b7173a288cab7ed85298efae71ace757", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/Quicksort/Correctness/Order.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/Quicksort/Correctness/Order.agda", "max_line_length": 81, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/Quicksort/Correctness/Order.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 178, "size": 616 }
------------------------------------------------------------------------ -- Adjunctions and monads (for 1-categories) ------------------------------------------------------------------------ -- The code is based on the presentation in the HoTT book (but might -- not follow it exactly). {-# OPTIONS --without-K --safe #-} open import Equality module Adjunction {reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where open import Prelude hiding (id) open import Category eq open Derived-definitions-and-properties eq open import Functor eq ------------------------------------------------------------------------ -- Adjunctions private -- Is-left-adjoint-of ext F G means that F is a left adjoint of G. -- This definition tries to follow the HoTT book closely. Is-left-adjoint-of : ∀ {ℓ₁ ℓ₂} {C : Precategory ℓ₁ ℓ₂} {ℓ₃ ℓ₄} {D : Precategory ℓ₃ ℓ₄} → Extensionality (ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃ ⊔ ℓ₄) (ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃ ⊔ ℓ₄) → C ⇨ D → D ⇨ C → Type _ Is-left-adjoint-of {ℓ₁} {ℓ₂} {C} {ℓ₃} {ℓ₄} {D} ext F G = ∃ λ (η : id⇨ ⇾ G ∙⇨ F) → ∃ λ (ε : F ∙⇨ G ⇾ id⇨) → subst ((F ∙⇨ G) ∙⇨ F ⇾_) (id⇨∙⇨ ext₁) (ε ⇾∙⇨ F) ∙⇾ subst (_⇾ (F ∙⇨ G) ∙⇨ F) (∙⇨id⇨ ext₁) (subst (F ∙⇨ id⇨ ⇾_) (∙⇨-assoc ext₁ F G) (F ⇨∙⇾ η)) ≡ id⇾ F × subst (G ∙⇨ F ∙⇨ G ⇾_) (∙⇨id⇨ ext₂) (G ⇨∙⇾ ε) ∙⇾ subst (_⇾ G ∙⇨ F ∙⇨ G) (id⇨∙⇨ ext₂) (subst (id⇨ ∙⇨ G ⇾_) (sym $ ∙⇨-assoc ext₂ G F) (η ⇾∙⇨ G)) ≡ id⇾ G where ext₁ : Extensionality (ℓ₁ ⊔ ℓ₂) (ℓ₁ ⊔ ℓ₂ ⊔ ℓ₄) ext₁ = lower-extensionality (ℓ₃ ⊔ ℓ₄) ℓ₃ ext ext₂ : Extensionality (ℓ₃ ⊔ ℓ₄) (ℓ₂ ⊔ ℓ₃ ⊔ ℓ₄) ext₂ = lower-extensionality (ℓ₁ ⊔ ℓ₂) ℓ₁ ext -- F ⊣ G means that F is a left adjoint of G. -- -- This definition avoids the use of subst in the previous definition -- by making use of the equality characterisation for natural -- transformations (equality-characterisation⇾). I (NAD) took the idea -- for this definition from the HoTT-Agda library -- (https://github.com/HoTT/HoTT-Agda/blob/2871c6f6dbe90b47b3b2770e57abc4732cd1c295/theorems/homotopy/PtdAdjoint.agda). -- -- TODO: Prove that the two definitions are equivalent. _⊣_ : ∀ {ℓ₁ ℓ₂} {C : Precategory ℓ₁ ℓ₂} {ℓ₃ ℓ₄} {D : Precategory ℓ₃ ℓ₄} → C ⇨ D → D ⇨ C → Type _ _⊣_ {ℓ₁} {ℓ₂} {C} {ℓ₃} {ℓ₄} {D} F G = ∃ λ (η : id⇨ ⇾ G ∙⇨ F) → ∃ λ (ε : F ∙⇨ G ⇾ id⇨) → (∀ {X} → transformation ε D.∙ (F ⊙ transformation η {X = X}) ≡ D.id) × (∀ {X} → (G ⊙ transformation ε {X = X}) C.∙ transformation η ≡ C.id) where open _⇾_ module C = Precategory C module D = Precategory D -- Adjunctions. Adjunction : ∀ {ℓ₁ ℓ₂ ℓ₃ ℓ₄} → Precategory ℓ₁ ℓ₂ → Precategory ℓ₃ ℓ₄ → Type _ Adjunction C D = ∃ λ (F : C ⇨ D) → ∃ λ (G : D ⇨ C) → F ⊣ G ------------------------------------------------------------------------ -- Monads -- A monad on a precategory. -- -- This definition is taken from Wikipedia -- (https://en.wikipedia.org/wiki/Monad_%28category_theory%29). Monad : ∀ {ℓ₁ ℓ₂} (C : Precategory ℓ₁ ℓ₂) → Type (ℓ₁ ⊔ ℓ₂) Monad C = ∃ λ (F : C ⇨ C) → ∃ λ (η : id⇨ ⇾ F) → ∃ λ (μ : F ∙⇨ F ⇾ F) → (∀ {X} → transformation μ ∙ (F ⊙ transformation μ {X = X}) ≡ transformation μ ∙ transformation μ {X = F ⊚ X}) × (∀ {X} → transformation μ ∙ (F ⊙ transformation η {X = X}) ≡ id) × (∀ {X} → transformation μ ∙ transformation η {X = F ⊚ X} ≡ id) where open _⇾_ open Precategory C -- Adjunctions give rise to monads. -- -- This definition is taken from Wikipedia -- (https://en.wikipedia.org/wiki/Monad_%28category_theory%29). adjunction→monad : ∀ {ℓ₁ ℓ₂} {C : Precategory ℓ₁ ℓ₂} {ℓ₃ ℓ₄} {D : Precategory ℓ₃ ℓ₄} → Adjunction C D → Monad C adjunction→monad {C = C} {D = D} (F , G , η , ε , εFFη≡1 , GεηG≡1) = G ∙⇨ F , η , GεF , lemma₁ , lemma₂ , lemma₃ where open _⇾_ module C = Precategory C module D = Precategory D -- This natural transformation is defined directly, rather than by -- using composition, to avoid the use of casts. GεF : (G ∙⇨ F) ∙⇨ (G ∙⇨ F) ⇾ G ∙⇨ F natural-transformation GεF = G ⊙ transformation ε , nat where abstract nat : ∀ {X Y} {f : C.Hom X Y} → ((G ∙⇨ F) ⊙ f) C.∙ (G ⊙ transformation ε) ≡ (G ⊙ transformation ε) C.∙ (((G ∙⇨ F) ∙⇨ (G ∙⇨ F)) ⊙ f) nat {f = f} = ((G ∙⇨ F) ⊙ f) C.∙ (G ⊙ transformation ε) ≡⟨⟩ (G ⊙ F ⊙ f) C.∙ (G ⊙ transformation ε) ≡⟨ sym (⊙-∙ G) ⟩ G ⊙ ((F ⊙ f) D.∙ transformation ε) ≡⟨ cong (G ⊙_) (natural ε) ⟩ G ⊙ (transformation ε D.∙ (F ⊙ G ⊙ F ⊙ f)) ≡⟨ ⊙-∙ G ⟩ (G ⊙ transformation ε) C.∙ (G ⊙ F ⊙ G ⊙ F ⊙ f) ≡⟨⟩ (G ⊙ transformation ε) C.∙ (((G ∙⇨ F) ∙⇨ (G ∙⇨ F)) ⊙ f) ∎ abstract lemma₁ : ∀ {X} → transformation GεF {X = X} C.∙ ((G ∙⇨ F) ⊙ transformation GεF) ≡ transformation GεF C.∙ transformation GεF lemma₁ = (G ⊙ transformation ε) C.∙ (G ⊙ F ⊙ G ⊙ transformation ε) ≡⟨ sym (⊙-∙ G) ⟩ G ⊙ (transformation ε D.∙ (F ⊙ G ⊙ transformation ε)) ≡⟨ cong (G ⊙_) (sym $ natural ε) ⟩ G ⊙ (transformation ε D.∙ transformation ε) ≡⟨ ⊙-∙ G ⟩∎ (G ⊙ transformation ε) C.∙ (G ⊙ transformation ε) ∎ lemma₂ : ∀ {X} → transformation GεF {X = X} C.∙ ((G ∙⇨ F) ⊙ transformation η) ≡ C.id lemma₂ = (G ⊙ transformation ε) C.∙ (G ⊙ F ⊙ transformation η) ≡⟨ sym (⊙-∙ G) ⟩ G ⊙ (transformation ε D.∙ (F ⊙ transformation η)) ≡⟨ cong (G ⊙_) εFFη≡1 ⟩ G ⊙ D.id ≡⟨ ⊙-id G ⟩∎ C.id ∎ lemma₃ : ∀ {X} → transformation GεF {X = X} C.∙ transformation η ≡ C.id lemma₃ = (G ⊙ transformation ε) C.∙ transformation η ≡⟨ GεηG≡1 ⟩∎ C.id ∎
{ "alphanum_fraction": 0.4922920549, "avg_line_length": 32.6132596685, "ext": "agda", "hexsha": "088e9296c93aa4a99879f4021c81e487c3e2bc17", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Adjunction.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Adjunction.agda", "max_line_length": 119, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Adjunction.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 2516, "size": 5903 }
open import Common.Equality data Bool : Set where true false : Bool data IsTrue : Bool → Set where itis : IsTrue true module M (u : Bool) where foo bar : (p : IsTrue u) → Bool foo = \ { itis → true } bar = \ { itis → false } test : ∀ u → M.foo u ≡ M.bar u test u = refl -- Trigger printing of the extended lambdas. -- Ideally, this would not show the internal names, like in -- -- .Issue2047a.M..extendedlambda0 u p != -- .Issue2047a.M..extendedlambda1 u p of type Bool -- when checking that the expression refl has type M.foo u ≡ M.bar u -- -- but rather show -- -- (\ { itis → true }) .p != (\ { itis → false }) .p
{ "alphanum_fraction": 0.6205287714, "avg_line_length": 22.9642857143, "ext": "agda", "hexsha": "e9725c691194882f2a97c07ca71c2207da6b6a35", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue2047a.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue2047a.agda", "max_line_length": 70, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue2047a.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 204, "size": 643 }
module MultipleFixityDecl where infixl 40 _+_ infixr 60 _+_ _+_ : Set -> Set -> Set A + B = A
{ "alphanum_fraction": 0.6428571429, "avg_line_length": 9.8, "ext": "agda", "hexsha": "903b41a7764f5599e38a50903cf120cdb3489449", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/MultipleFixityDecl.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/MultipleFixityDecl.agda", "max_line_length": 31, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/MultipleFixityDecl.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 39, "size": 98 }
module Tactic.Reflection.Meta where open import Prelude open import Builtin.Reflection open import Tactic.Reflection.DeBruijn ensureNoMetas : Term → TC ⊤ noMetaArg : Arg Term → TC ⊤ noMetaArg (arg _ v) = ensureNoMetas v noMetaArgs : List (Arg Term) → TC ⊤ noMetaArgs [] = pure _ noMetaArgs (v ∷ vs) = noMetaArg v *> noMetaArgs vs noMetaClause : Clause → TC ⊤ noMetaClause (clause ps t) = ensureNoMetas t noMetaClause (absurd-clause ps) = pure _ noMetaClauses : List Clause → TC ⊤ noMetaClauses [] = pure _ noMetaClauses (c ∷ cs) = noMetaClause c *> noMetaClauses cs noMetaAbs : Abs Term → TC ⊤ noMetaAbs (abs _ v) = ensureNoMetas v noMetaSort : Sort → TC ⊤ noMetaSort (set t) = ensureNoMetas t noMetaSort (lit n) = pure _ noMetaSort unknown = pure _ ensureNoMetas (var x args) = noMetaArgs args ensureNoMetas (con c args) = noMetaArgs args ensureNoMetas (def f args) = noMetaArgs args ensureNoMetas (lam v (abs _ t)) = ensureNoMetas t ensureNoMetas (pat-lam cs args) = noMetaClauses cs *> noMetaArgs args ensureNoMetas (pi a b) = noMetaArg a *> noMetaAbs b ensureNoMetas (agda-sort s) = noMetaSort s ensureNoMetas (lit l) = pure _ ensureNoMetas (meta x x₁) = blockOnMeta x ensureNoMetas unknown = pure _ normaliseNoMetas : Term → TC Term normaliseNoMetas a = do a ← normalise a stripBoundNames a <$ ensureNoMetas a
{ "alphanum_fraction": 0.7266666667, "avg_line_length": 28.7234042553, "ext": "agda", "hexsha": "33fc0a5d74c00d6c14da9b60380f68d0af8bbf24", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "lclem/agda-prelude", "max_forks_repo_path": "src/Tactic/Reflection/Meta.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "lclem/agda-prelude", "max_issues_repo_path": "src/Tactic/Reflection/Meta.agda", "max_line_length": 69, "max_stars_count": null, "max_stars_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "lclem/agda-prelude", "max_stars_repo_path": "src/Tactic/Reflection/Meta.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 448, "size": 1350 }
-------------------------------------------------------------------------------- -- This file provides the generateCFG function that turns a list of strings of -- the current syntax for grammars into a grammar as defined in Parser.agda -------------------------------------------------------------------------------- {-# OPTIONS --type-in-type #-} module Parse.Generate where open import Class.Monad.Except open import Data.Fin.Map import Data.List.NonEmpty as NE open NE using (List⁺; _∷_) open import Data.String using (toList; fromChar; uncons) renaming (fromList to fromListS) open import Data.Vec using (Vec; lookup; fromList; []; _∷_; _[_]%=_) open import Data.Vec.Exts open import Parse.LL1 open import Parse.MarkedString open import Parse.MultiChar open import Parse.Escape open import Prelude open import Prelude.Strings -- Grammar with show functions for rules and non-terminals Grammar = ∃[ n ] Σ[ G ∈ CFG (Fin (suc n)) MultiChar ] (CFG.Rule G → String) × (Fin (suc n) → String) NonTerminal : Grammar → Set NonTerminal (n , _) = Fin (suc n) initNT : (G : Grammar) → NonTerminal G initNT (_ , G , _) = CFG.S G findNT : (G : Grammar) → String → Maybe (NonTerminal G) findNT (n , _ , _ , showNT) NT = findIndex (NT ≟_) (Data.Vec.tabulate showNT) checkRuleName : String → String × List MarkedString → Set checkRuleName s r = s ≡ proj₁ r checkRuleNameDec : ∀ s → Decidable (checkRuleName s) checkRuleNameDec s (s' , _) = s ≟ s' module _ {M} {{_ : Monad M}} {{_ : MonadExcept M String}} where -- Read until the closing marker bracketHelper : Marker → MarkedString → M (List⁺ String × MarkedString) bracketHelper m [] = throwError "Unexpected end of string! Expected a marker!" bracketHelper m (inj₁ x ∷ s) = do (head ∷ tail , rest) ← bracketHelper m s return (fromChar x + head ∷ tail , rest) bracketHelper m (inj₂ x ∷ s) = if x ≣ m then return (NE.[ "" ] , s) else if x ≣ WildcardSeparator then if (m ≣ WildcardBracket true) ∨ (m ≣ WildcardBracket false) then (do (res , rest) ← bracketHelper m s return ("" NE.∷⁺ res , rest)) else throwError "Found a wildcard separator outside of a wildcard bracket!" else throwError "Found unexpected marker!" preParseCFG : List MarkedString → M (∃[ n ] Vec (String × List MarkedString) n) preParseCFG [] = return $ zero , [] preParseCFG (x ∷ l) with break (_≟ inj₂ NameDivider) x ... | name , rule' = if null name then throwError $ "Parsing rule has no/empty name! Rule: " + markedStringToString x else do _ , rules ← preParseCFG l let rule = dropHeadIfAny rule' return $ case findIndex (checkRuleNameDec $ markedStringToString name) rules of λ { (just x) → -, rules [ x ]%= map₂ (rule ∷_) ; nothing → -, (markedStringToString name , [ rule ]) ∷ rules} {-# TERMINATING #-} generateCFG' : ∀ {n} → String → Vec (String × List MarkedString) (suc n) → M Grammar generateCFG' {n} start rules = do ruleTable ← parseRuleTable case findIndex (checkRuleNameDec start) rules of λ where (just i) → return $ (-, record { S = i ; R = Fin ∘ numOfRules ; AllRules = allFin ∘ numOfRules ; Rstring'' = λ {v} → ruleTable v } , (λ where (NT , rule) → let (NT' , rules') = lookup rules NT in NT' + "$" + markedStringToString (lookup (fromList rules') rule)) , proj₁ ∘ lookup rules) nothing → throwError $ "No non-terminal named " + start + " found!" where numOfRules : Fin (suc n) → ℕ numOfRules = length ∘ proj₂ ∘ lookup rules RuleTable : Set → Set RuleTable T = DepFinMap (suc n) (λ v → FinMap (numOfRules v) T) RuleString : Set RuleString = List ((Fin (suc n) × Bool) ⊎ MultiChar ⊎ String) sequenceRuleTable : ∀ {A} → RuleTable (M A) → M (RuleTable A) sequenceRuleTable f = sequenceDepFinMap (sequenceDepFinMap ∘ f) addCharToRuleString : Char → RuleString → RuleString addCharToRuleString c [] = [ inj₂ (inj₂ $ fromChar c) ] addCharToRuleString c s@(inj₁ _ ∷ _) = inj₂ (inj₂ $ fromChar c) ∷ s addCharToRuleString c s@(inj₂ (inj₁ _) ∷ _) = inj₂ (inj₂ $ fromChar c) ∷ s addCharToRuleString c (inj₂ (inj₂ y) ∷ s) = inj₂ (inj₂ (fromChar c + y)) ∷ s markedStringToRule : MarkedString → M RuleString markedStringToRule [] = return [] markedStringToRule (inj₁ x ∷ s) = do res ← markedStringToRule s return (addCharToRuleString x res) -- this terminates because 'rest' is shorter than 's' markedStringToRule (inj₂ (NonTerminalBracket b) ∷ s) = do (nonTerm ∷ _ , rest) ← bracketHelper (NonTerminalBracket b) s res ← markedStringToRule rest nonTerm' ← maybeToError (findIndex (checkRuleNameDec nonTerm) rules) ("Couldn't find a non-terminal named '" + nonTerm + "'") return (inj₁ (nonTerm' , b) ∷ res) markedStringToRule (inj₂ NameDivider ∷ s) = throwError "The rule cannot contain a name divider!" markedStringToRule (inj₂ (WildcardBracket b) ∷ s) = do (multiChar , rest) ← bracketHelper (WildcardBracket b) s inj₂ (inj₁ $ parseMultiCharNE b multiChar) ∷_ <$> markedStringToRule rest markedStringToRule (inj₂ WildcardSeparator ∷ s) = throwError "Wildcard separator outside of a wildcard!" parseRuleTable : M (RuleTable RuleString) parseRuleTable = sequenceRuleTable λ v x → let y = lookup (fromList $ proj₂ (lookup rules v)) x in appendIfError (markedStringToRule y) (" In: " + show y) -- The first parameter describes the non-terminal the grammar should start with generateCFGNonEscaped : String → List String → M Grammar generateCFGNonEscaped start l = do (suc k , y) ← preParseCFG $ map convertToMarked l where _ → throwError "The grammar is empty!" generateCFG' start y -- The first parameter describes the non-terminal the grammar should start with generateCFG : String → List String → M Grammar generateCFG start l = maybe (generateCFGNonEscaped start) (throwError "Error while un-escaping parsing rules!") (sequence $ ((_<$>_ fromListS) ∘ translate ∘ toList) <$> l)
{ "alphanum_fraction": 0.6251184834, "avg_line_length": 41.9205298013, "ext": "agda", "hexsha": "79098cbcb1648e76baf4e63795a1360c7f9fb814", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-10-20T10:46:20.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-27T23:12:48.000Z", "max_forks_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "WhatisRT/meta-cedille", "max_forks_repo_path": "src/Parse/Generate.agda", "max_issues_count": 10, "max_issues_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_issues_repo_issues_event_max_datetime": "2020-04-25T15:29:17.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-13T17:44:43.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "WhatisRT/meta-cedille", "max_issues_repo_path": "src/Parse/Generate.agda", "max_line_length": 103, "max_stars_count": 35, "max_stars_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "WhatisRT/meta-cedille", "max_stars_repo_path": "src/Parse/Generate.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-12T22:59:10.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-13T07:44:50.000Z", "num_tokens": 1787, "size": 6330 }
-- 2010-10-05 Andreas module TerminationRecordPatternLie where data Empty : Set where record Unit : Set where data Bool : Set where true false : Bool T : Bool -> Set T true = Unit T false = Empty -- Thorsten suggests on the Agda list thread "Coinductive families" -- to encode lists as records record List (A : Set) : Set where inductive constructor list field isCons : Bool head : T isCons -> A tail : T isCons -> List A open List public -- However, we have to be careful to preserve termination -- in the presence of a lie postulate lie : {b : Bool} -> T b -- this function is rejected f : {A : Set} -> List A -> Empty f (list b h t) = f (t lie) -- since its internal representation is g : {A : Set} -> List A -> Empty g l = g (tail l lie) -- however could record constructors still count as structural increase -- if they cannot be translated away -- should we accept this? -- f (list true h t) = f (t _)
{ "alphanum_fraction": 0.6684210526, "avg_line_length": 20.2127659574, "ext": "agda", "hexsha": "540f33c52b5369b393960969d76f180fa0737310", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "hborum/agda", "max_forks_repo_path": "test/Fail/TerminationRecordPatternLie.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Fail/TerminationRecordPatternLie.agda", "max_line_length": 71, "max_stars_count": 3, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Fail/TerminationRecordPatternLie.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 271, "size": 950 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Lexicographic products of binary relations ------------------------------------------------------------------------ -- The definition of lexicographic product used here is suitable if -- the left-hand relation is a (non-strict) partial order. module Relation.Binary.Product.NonStrictLex where open import Data.Product open import Data.Sum open import Level open import Relation.Binary open import Relation.Binary.Consequences import Relation.Binary.NonStrictToStrict as Conv open import Relation.Binary.Product.Pointwise as Pointwise using (_×-Rel_) import Relation.Binary.Product.StrictLex as Strict module _ {a₁ a₂ ℓ₁ ℓ₂} {A₁ : Set a₁} {A₂ : Set a₂} where ×-Lex : (_≈₁_ _≤₁_ : Rel A₁ ℓ₁) → (_≤₂_ : Rel A₂ ℓ₂) → Rel (A₁ × A₂) _ ×-Lex _≈₁_ _≤₁_ _≤₂_ = Strict.×-Lex _≈₁_ (Conv._<_ _≈₁_ _≤₁_) _≤₂_ -- Some properties which are preserved by ×-Lex (under certain -- assumptions). ×-reflexive : ∀ _≈₁_ _≤₁_ {_≈₂_} _≤₂_ → _≈₂_ ⇒ _≤₂_ → (_≈₁_ ×-Rel _≈₂_) ⇒ (×-Lex _≈₁_ _≤₁_ _≤₂_) ×-reflexive _≈₁_ _≤₁_ _≤₂_ refl₂ {x} {y} = Strict.×-reflexive _≈₁_ (Conv._<_ _≈₁_ _≤₁_) _≤₂_ refl₂ {x} {y} ×-transitive : ∀ {_≈₁_ _≤₁_} → IsPartialOrder _≈₁_ _≤₁_ → ∀ {_≤₂_} → Transitive _≤₂_ → Transitive (×-Lex _≈₁_ _≤₁_ _≤₂_) ×-transitive {_≈₁_ = _≈₁_} {_≤₁_ = _≤₁_} po₁ {_≤₂_ = _≤₂_} trans₂ {x} {y} {z} = Strict.×-transitive {_<₁_ = Conv._<_ _≈₁_ _≤₁_} isEquivalence (Conv.<-resp-≈ _ _ isEquivalence ≤-resp-≈) (Conv.trans _ _ po₁) {_≤₂_ = _≤₂_} trans₂ {x} {y} {z} where open IsPartialOrder po₁ ×-antisymmetric : ∀ {_≈₁_ _≤₁_} → IsPartialOrder _≈₁_ _≤₁_ → ∀ {_≈₂_ _≤₂_} → Antisymmetric _≈₂_ _≤₂_ → Antisymmetric (_≈₁_ ×-Rel _≈₂_) (×-Lex _≈₁_ _≤₁_ _≤₂_) ×-antisymmetric {_≈₁_ = _≈₁_} {_≤₁_ = _≤₁_} po₁ {_≤₂_ = _≤₂_} antisym₂ {x} {y} = Strict.×-antisymmetric {_<₁_ = Conv._<_ _≈₁_ _≤₁_} ≈-sym₁ irrefl₁ asym₁ {_≤₂_ = _≤₂_} antisym₂ {x} {y} where open IsPartialOrder po₁ open Eq renaming (refl to ≈-refl₁; sym to ≈-sym₁) irrefl₁ : Irreflexive _≈₁_ (Conv._<_ _≈₁_ _≤₁_) irrefl₁ = Conv.irrefl _≈₁_ _≤₁_ asym₁ : Asymmetric (Conv._<_ _≈₁_ _≤₁_) asym₁ = trans∧irr⟶asym {_≈_ = _≈₁_} ≈-refl₁ (Conv.trans _ _ po₁) irrefl₁ ×-≈-respects₂ : ∀ {_≈₁_ _≤₁_} → IsEquivalence _≈₁_ → _≤₁_ Respects₂ _≈₁_ → ∀ {_≈₂_ _≤₂_ : Rel A₂ ℓ₂} → _≤₂_ Respects₂ _≈₂_ → (×-Lex _≈₁_ _≤₁_ _≤₂_) Respects₂ (_≈₁_ ×-Rel _≈₂_) ×-≈-respects₂ eq₁ resp₁ resp₂ = Strict.×-≈-respects₂ eq₁ (Conv.<-resp-≈ _ _ eq₁ resp₁) resp₂ ×-decidable : ∀ {_≈₁_ _≤₁_} → Decidable _≈₁_ → Decidable _≤₁_ → ∀ {_≤₂_} → Decidable _≤₂_ → Decidable (×-Lex _≈₁_ _≤₁_ _≤₂_) ×-decidable dec-≈₁ dec-≤₁ dec-≤₂ = Strict.×-decidable dec-≈₁ (Conv.decidable _ _ dec-≈₁ dec-≤₁) dec-≤₂ ×-total : ∀ {_≈₁_ _≤₁_} → Symmetric _≈₁_ → Decidable _≈₁_ → Antisymmetric _≈₁_ _≤₁_ → Total _≤₁_ → ∀ {_≤₂_} → Total _≤₂_ → Total (×-Lex _≈₁_ _≤₁_ _≤₂_) ×-total {_≈₁_ = _≈₁_} {_≤₁_ = _≤₁_} sym₁ dec₁ antisym₁ total₁ {_≤₂_ = _≤₂_} total₂ = total where tri₁ : Trichotomous _≈₁_ (Conv._<_ _≈₁_ _≤₁_) tri₁ = Conv.trichotomous _ _ sym₁ dec₁ antisym₁ total₁ total : Total (×-Lex _≈₁_ _≤₁_ _≤₂_) total x y with tri₁ (proj₁ x) (proj₁ y) ... | tri< x₁<y₁ x₁≉y₁ x₁≯y₁ = inj₁ (inj₁ x₁<y₁) ... | tri> x₁≮y₁ x₁≉y₁ x₁>y₁ = inj₂ (inj₁ x₁>y₁) ... | tri≈ x₁≮y₁ x₁≈y₁ x₁≯y₁ with total₂ (proj₂ x) (proj₂ y) ... | inj₁ x₂≤y₂ = inj₁ (inj₂ (x₁≈y₁ , x₂≤y₂)) ... | inj₂ x₂≥y₂ = inj₂ (inj₂ (sym₁ x₁≈y₁ , x₂≥y₂)) -- Some collections of properties which are preserved by ×-Lex -- (under certain assumptions). _×-isPartialOrder_ : ∀ {_≈₁_ _≤₁_} → IsPartialOrder _≈₁_ _≤₁_ → ∀ {_≈₂_ _≤₂_} → IsPartialOrder _≈₂_ _≤₂_ → IsPartialOrder (_≈₁_ ×-Rel _≈₂_) (×-Lex _≈₁_ _≤₁_ _≤₂_) _×-isPartialOrder_ {_≈₁_ = _≈₁_} {_≤₁_ = _≤₁_} po₁ {_≤₂_ = _≤₂_} po₂ = record { isPreorder = record { isEquivalence = Pointwise._×-isEquivalence_ (isEquivalence po₁) (isEquivalence po₂) ; reflexive = λ {x y} → ×-reflexive _≈₁_ _≤₁_ _≤₂_ (reflexive po₂) {x} {y} ; trans = λ {x y z} → ×-transitive po₁ {_≤₂_ = _≤₂_} (trans po₂) {x} {y} {z} } ; antisym = λ {x y} → ×-antisymmetric {_≤₁_ = _≤₁_} po₁ {_≤₂_ = _≤₂_} (antisym po₂) {x} {y} } where open IsPartialOrder ×-isTotalOrder : ∀ {_≈₁_ _≤₁_} → Decidable _≈₁_ → IsTotalOrder _≈₁_ _≤₁_ → ∀ {_≈₂_ _≤₂_} → IsTotalOrder _≈₂_ _≤₂_ → IsTotalOrder (_≈₁_ ×-Rel _≈₂_) (×-Lex _≈₁_ _≤₁_ _≤₂_) ×-isTotalOrder {_≤₁_ = _≤₁_} ≈₁-dec to₁ {_≤₂_ = _≤₂_} to₂ = record { isPartialOrder = isPartialOrder to₁ ×-isPartialOrder isPartialOrder to₂ ; total = ×-total {_≤₁_ = _≤₁_} (Eq.sym to₁) ≈₁-dec (antisym to₁) (total to₁) {_≤₂_ = _≤₂_} (total to₂) } where open IsTotalOrder _×-isDecTotalOrder_ : ∀ {_≈₁_ _≤₁_} → IsDecTotalOrder _≈₁_ _≤₁_ → ∀ {_≈₂_ _≤₂_} → IsDecTotalOrder _≈₂_ _≤₂_ → IsDecTotalOrder (_≈₁_ ×-Rel _≈₂_) (×-Lex _≈₁_ _≤₁_ _≤₂_) _×-isDecTotalOrder_ {_≤₁_ = _≤₁_} to₁ {_≤₂_ = _≤₂_} to₂ = record { isTotalOrder = ×-isTotalOrder (_≟_ to₁) (isTotalOrder to₁) (isTotalOrder to₂) ; _≟_ = Pointwise._×-decidable_ (_≟_ to₁) (_≟_ to₂) ; _≤?_ = ×-decidable (_≟_ to₁) (_≤?_ to₁) (_≤?_ to₂) } where open IsDecTotalOrder -- "Packages" (e.g. posets) can also be combined. _×-poset_ : ∀ {p₁ p₂ p₃ p₄} → Poset p₁ p₂ _ → Poset p₃ p₄ _ → Poset _ _ _ p₁ ×-poset p₂ = record { isPartialOrder = isPartialOrder p₁ ×-isPartialOrder isPartialOrder p₂ } where open Poset _×-totalOrder_ : ∀ {d₁ d₂ t₃ t₄} → DecTotalOrder d₁ d₂ _ → TotalOrder t₃ t₄ _ → TotalOrder _ _ _ t₁ ×-totalOrder t₂ = record { isTotalOrder = ×-isTotalOrder T₁._≟_ T₁.isTotalOrder T₂.isTotalOrder } where module T₁ = DecTotalOrder t₁ module T₂ = TotalOrder t₂ _×-decTotalOrder_ : ∀ {d₁ d₂ d₃ d₄} → DecTotalOrder d₁ d₂ _ → DecTotalOrder d₃ d₄ _ → DecTotalOrder _ _ _ t₁ ×-decTotalOrder t₂ = record { isDecTotalOrder = isDecTotalOrder t₁ ×-isDecTotalOrder isDecTotalOrder t₂ } where open DecTotalOrder
{ "alphanum_fraction": 0.534512761, "avg_line_length": 38.7415730337, "ext": "agda", "hexsha": "4f89cdcb1121f4647925d6e50b03c2bc3b27d9fd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Relation/Binary/Product/NonStrictLex.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Relation/Binary/Product/NonStrictLex.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Relation/Binary/Product/NonStrictLex.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 2922, "size": 6896 }
{- Verified Koopa Troopa Movement Toon Nolten -} module koopa where open import Data.Nat open import Data.Fin renaming (_+_ to _F+_; _<_ to _F<_; suc to fsuc; zero to fzero) open import Data.Vec renaming (map to vmap; lookup to vlookup; replicate to vreplicate) open import Data.Unit open import Data.Empty module Matrix where data Matrix (A : Set) : ℕ → ℕ → Set where Mat : {w h : ℕ} → Vec (Vec A w) h → Matrix A w h lookup : ∀ {w h} {A : Set} → Fin h → Fin w → Matrix A w h → A lookup row column (Mat rows) = vlookup column (vlookup row rows) open Matrix data Color : Set where Green : Color Red : Color data KoopaTroopa : Color → Set where _KT : (c : Color) → KoopaTroopa c data Material : Set where gas : Material -- liquid : Material solid : Material data Clearance : Set where Low : Clearance High : Clearance God : Clearance record Position : Set where constructor pos field x : ℕ y : ℕ mat : Material clr : Clearance data _c>_ : Color → Clearance → Set where <red> : ∀ {c} → c c> Low <green> : Green c> High data _follows_⟨_⟩ : Position → Position → Color → Set where stay : ∀ {c x y} → pos x y gas Low follows pos x y gas Low ⟨ c ⟩ next : ∀ {c cl x y}{{_ : c c> cl}} → pos (suc x) y gas cl follows pos x y gas Low ⟨ c ⟩ back : ∀ {c cl x y}{{_ : c c> cl}} → pos x y gas cl follows pos (suc x) y gas Low ⟨ c ⟩ -- jump : ∀ {c x y} → pos x (suc y) gas High follows pos x y gas Low ⟨ c ⟩ fall : ∀ {c cl x y} → pos x y gas cl follows pos x (suc y) gas High ⟨ c ⟩ infixr 5 _↠⟨_⟩_ data Path {c : Color} (Koopa : KoopaTroopa c) : Position → Position → Set where [] : ∀ {p} → Path Koopa p p _↠⟨_⟩_ : {q r : Position} → (p : Position) → q follows p ⟨ c ⟩ → (qs : Path Koopa q r) → Path Koopa p r ex_path : Path (Red KT) (pos 0 0 gas Low) (pos 0 0 gas Low) ex_path = pos 0 0 gas Low ↠⟨ next ⟩ pos 1 0 gas Low ↠⟨ back ⟩ pos 0 0 gas Low ↠⟨ stay ⟩ [] matToPosVec : {n : ℕ} → Vec Material n → Vec Material n → ℕ → ℕ → Vec Position n matToPosVec [] [] _ _ = [] matToPosVec (mat ∷ mats) (under ∷ unders) x y = pos x y mat cl ∷ matToPosVec mats unders (x + 1) y where clearance : Material → Material → Clearance clearance gas gas = High clearance gas solid = Low clearance solid _ = God cl = clearance mat under matToPosVecs : {w h : ℕ} → Vec (Vec Material w) h → Vec (Vec Position w) h matToPosVecs [] = [] matToPosVecs (_∷_ {y} mats matss) = matToPosVec mats (unders matss gas) 0 y ∷ matToPosVecs matss where unders : ∀ {m n ℓ}{A : Set ℓ} → Vec (Vec A m) n → A → Vec A m unders [] fallback = vreplicate fallback unders (us ∷ _) _ = us matsToMat : {w h : ℕ} → Vec (Vec Material w) h → Matrix Position w h matsToMat matss = Mat (reverse (matToPosVecs matss)) □ : Material □ = gas ■ : Material ■ = solid example_level : Matrix Position 10 7 example_level = matsToMat ( (□ ∷ □ ∷ □ ∷ □ ∷ □ ∷ □ ∷ □ ∷ □ ∷ □ ∷ □ ∷ []) ∷ (□ ∷ □ ∷ □ ∷ □ ∷ □ ∷ □ ∷ ■ ∷ ■ ∷ ■ ∷ □ ∷ []) ∷ (□ ∷ □ ∷ □ ∷ □ ∷ □ ∷ □ ∷ □ ∷ □ ∷ □ ∷ □ ∷ []) ∷ (□ ∷ □ ∷ □ ∷ ■ ∷ ■ ∷ ■ ∷ □ ∷ □ ∷ □ ∷ □ ∷ []) ∷ (□ ∷ □ ∷ □ ∷ □ ∷ □ ∷ □ ∷ □ ∷ □ ∷ □ ∷ □ ∷ []) ∷ (■ ∷ □ ∷ □ ∷ □ ∷ □ ∷ □ ∷ □ ∷ □ ∷ □ ∷ ■ ∷ []) ∷ (■ ∷ ■ ∷ ■ ∷ ■ ∷ ■ ∷ □ ∷ □ ∷ ■ ∷ ■ ∷ ■ ∷ []) ∷ []) _<'_ : ℕ → ℕ → Set m <' zero = ⊥ zero <' suc n = ⊤ suc m <' suc n = m <' n fromNat : ∀ {n}(k : ℕ){_ : k <' n} → Fin n fromNat {zero} k {} fromNat {suc n} zero = fzero fromNat {suc n} (suc k) {p} = fsuc (fromNat k {p}) f : ∀ {n}(k : ℕ){_ : k <' n} → Fin n f = fromNat p : (x : Fin 10) → (y : Fin 7) → Position p x y = lookup y x example_level red_path_one : Path (Red KT) (p (f 7) (f 6)) (p (f 8) (f 6)) red_path_one = p (f 7) (f 6) ↠⟨ back ⟩ p (f 6) (f 6) ↠⟨ next ⟩ p (f 7) (f 6) ↠⟨ next ⟩ p (f 8) (f 6) ↠⟨ stay ⟩ [] red_path_two : Path (Red KT) (p (f 2) (f 1)) (p (f 3) (f 1)) red_path_two = p (f 2) (f 1) ↠⟨ back ⟩ p (f 1) (f 1) ↠⟨ next ⟩ p (f 2) (f 1) ↠⟨ next ⟩ p (f 3) (f 1) ↠⟨ next ⟩ p (f 4) (f 1) ↠⟨ back ⟩ p (f 3) (f 1) ↠⟨ stay ⟩ [] -- -- Type error shows up 'late' because 'cons' is right associative -- red_nopath_one : Path (Red KT) (p (f 1) (f 1)) (p (f 0) (f 1)) -- red_nopath_one = p (f 1) (f 1) ↠⟨ back ⟩ -- p (f 0) (f 1) ↠⟨ stay ⟩ -- [] -- -- Red KoopaTroopa can't step into a wall -- red_nopath_two : Path (Red KT) (p (f 1) (f 1)) (p (f 0) (f 1)) -- red_nopath_two = p (f 1) (f 1) ↠⟨ back ⟩ [] -- -- Red KoopaTroopa can't step into air -- red_nopath_three : Path (Red KT) (p (f 4) (f 1)) (p (f 5) (f 1)) -- red_nopath_three = p (f 4) (f 1) ↠⟨ next ⟩ [] -- Any path that is valid for red KoopaTroopas, is also valid for green -- KoopaTroopas because we did not constrain KoopaTroopas to only turn -- When there is an obstacle green_path_one : Path (Green KT) (p (f 7) (f 6)) (p (f 8) (f 6)) green_path_one = p (f 7) (f 6) ↠⟨ back ⟩ p (f 6) (f 6) ↠⟨ next ⟩ p (f 7) (f 6) ↠⟨ next ⟩ p (f 8) (f 6) ↠⟨ stay ⟩ [] green_path_two : Path (Green KT) (p (f 7) (f 6)) (p (f 5) (f 0)) green_path_two = p (f 7) (f 6) ↠⟨ back ⟩ p (f 6) (f 6) ↠⟨ back ⟩ p (f 5) (f 6) ↠⟨ fall ⟩ p (f 5) (f 5) ↠⟨ fall ⟩ p (f 5) (f 4) ↠⟨ back ⟩ p (f 4) (f 4) ↠⟨ back ⟩ p (f 3) (f 4) ↠⟨ back ⟩ p (f 2) (f 4) ↠⟨ fall ⟩ p (f 2) (f 3) ↠⟨ fall ⟩ p (f 2) (f 2) ↠⟨ fall ⟩ p (f 2) (f 1) ↠⟨ back ⟩ p (f 1) (f 1) ↠⟨ next ⟩ p (f 2) (f 1) ↠⟨ next ⟩ p (f 3) (f 1) ↠⟨ next ⟩ p (f 4) (f 1) ↠⟨ next ⟩ p (f 5) (f 1) ↠⟨ fall ⟩ [] -- -- Green KoopaTroopa can't step into a wall -- green_nopath_one : Path (Green KT) (p (f 1) (f 1)) (p (f 0) (f 1)) -- green_nopath_one = p (f 1) (f 1) ↠⟨ back ⟩ []
{ "alphanum_fraction": 0.4540132491, "avg_line_length": 34.1631578947, "ext": "agda", "hexsha": "901c2856687af8b46ef7f1dfd76bcfe2916a17e4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "153763f135ee71bbed2881323646190ceeccf49c", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "toonn/popartt", "max_forks_repo_path": "koopa.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "153763f135ee71bbed2881323646190ceeccf49c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "toonn/popartt", "max_issues_repo_path": "koopa.agda", "max_line_length": 79, "max_stars_count": null, "max_stars_repo_head_hexsha": "153763f135ee71bbed2881323646190ceeccf49c", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "toonn/popartt", "max_stars_repo_path": "koopa.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2713, "size": 6491 }
module Equality where open import Agda.Builtin.Equality public open import Relation.Nullary infix 4 _≅_ _≢_ infixr 2 _≡⟨_⟩_ infix 3 _QED data _≅_ {ℓ} {A : Set ℓ} (x : A) : {B : Set ℓ} → B → Set ℓ where refl : x ≅ x ≡→≅ : ∀ {ℓ} {A : Set ℓ} {a b : A} → a ≡ b → a ≅ b ≡→≅ refl = refl sym : ∀ {ℓ} {A : Set ℓ} {a b : A} → a ≡ b → b ≡ a sym refl = refl sym′ : ∀ {ℓ} {A B : Set ℓ} {a : A} {b : B} → a ≅ b → b ≅ a sym′ refl = refl subst₂ : ∀ {a b p} {A : Set a} {B : Set b} (P : A → B → Set p) {x₁ x₂ y₁ y₂} → x₁ ≡ x₂ → y₁ ≡ y₂ → P x₁ y₁ → P x₂ y₂ subst₂ P refl refl p = p cong : ∀ {a b} {A : Set a} {B : Set b} (f : A → B) {x y} → x ≡ y → f x ≡ f y cong f refl = refl cong-app : ∀ {a b} {A : Set a} {B : A → Set b} {f g : (x : A) → B x} → f ≡ g → (x : A) → f x ≡ g x cong-app refl x = refl cong₂ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} (f : A → B → C) {x y u v} → x ≡ y → u ≡ v → f x u ≡ f y v cong₂ f refl refl = refl _≢_ : ∀ {a} {A : Set a} → A → A → Set a x ≢ y = ¬ x ≡ y _≡⟨_⟩_ : ∀ {A : Set} (x : A) {y z : A} → x ≡ y → y ≡ z → x ≡ z x ≡⟨ refl ⟩ refl = refl _QED : ∀ {A : Set} (x : A) → x ≡ x x QED = refl
{ "alphanum_fraction": 0.4341880342, "avg_line_length": 24.8936170213, "ext": "agda", "hexsha": "efffca01a9f9db9982024096edd40e4ba9dc484f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "ice1k/Theorems", "max_forks_repo_path": "src/Equality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "ice1k/Theorems", "max_issues_repo_path": "src/Equality.agda", "max_line_length": 70, "max_stars_count": 1, "max_stars_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "ice1k/Theorems", "max_stars_repo_path": "src/Equality.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-15T15:28:03.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-15T15:28:03.000Z", "num_tokens": 605, "size": 1170 }
{-# OPTIONS --safe #-} module JVM.Model {ℓ} (T : Set ℓ) where open import Level hiding (Lift) open import Data.Product open import Data.Unit open import Data.List open import Relation.Binary.PropositionalEquality using (_≡_; refl) open import Relation.Ternary.Core open import Relation.Ternary.Structures open import Relation.Ternary.Construct.Empty T public open import Relation.Ternary.Construct.Duplicate T public open import Data.List.Relation.Binary.Permutation.Propositional using () renaming (_↭_ to _≈_) open import Data.List.Relation.Binary.Permutation.Propositional.Properties using (++-isMonoid) instance ++-monoid-instance = ++-isMonoid module Disjoint where open import Relation.Ternary.Construct.Bag empty-rel tt public open IsPartialSemigroup bags-isSemigroup public open IsPartialMonoid bags-isMonoid public open IsCommutative bags-isCommutative public module Overlap where open import Relation.Ternary.Construct.Bag duplicate tt public open IsPartialSemigroup bags-isSemigroup public open IsPartialMonoid bags-isMonoid public open IsCommutative bags-isCommutative public open IsTotal bags-isTotal public open Disjoint using (bag-emptiness) renaming ( empty-unique to empty-bag-unique ; singleton-unique to singleton-bag-unique) public open Rel₃ Disjoint.bags using () renaming (_∙_≣_ to _⊕_≣_; _✴_ to _⊕_; _─✴_ to _─⊕_; _∙⟨_⟩_ to _⊕⟨_⟩_) public open Rel₃ Overlap.bags using () renaming (_∙_≣_ to _⊗_≣_; _✴_ to _⊗_; _─✴_ to _─⊗_; _∙⟨_⟩_ to _⊗⟨_⟩_) public open import Relation.Ternary.Construct.Bag.Properties open import Data.List.Relation.Binary.Permutation.Propositional open CrossSplittable {{div₁ = duplicate}} {{empty-rel}} (λ _ ()) abstract private m₁ : IsPartialMonoid _↭_ Disjoint.bags [] m₁ = Disjoint.bags-isMonoid m₂ : IsPartialMonoid _↭_ Overlap.bags [] m₂ = Overlap.bags-isMonoid p₁ : IsPositiveWithZero 0ℓ _↭_ Disjoint.bags [] p₁ = Disjoint.bags-isPositive-w/0 p₂ : IsPositiveWithZero 0ℓ _↭_ Overlap.bags [] p₂ = Overlap.bags-isPositive-w/0 c₁ : IsCommutative Disjoint.bags c₁ = Disjoint.bags-isCommutative c₂ : IsCommutative Overlap.bags c₂ = Overlap.bags-isCommutative x : CrossSplit Overlap.bags Disjoint.bags x = xsplit ux : Uncross Disjoint.bags Overlap.bags ux = uncrossover (unxcross λ ()) open import Relation.Ternary.Construct.Exchange {A = List T} {{m₁}} {{m₂}} {{p₁}} {{p₂}} {{empty-bag-unique}} {{c₁}} {{c₂}} {{Disjoint.bags-isTotal}} {{Overlap.bags-isTotal}} {{++-isMonoid}} x ux public renaming (Account to Intf ; _≈_ to _≈intf≈_ ; exchange-rel to intf-rel ; exchange-emptiness to intf-emptiness ; exchange-isSemigroup to intf-isSemigroup ; exchange-isCommutative to intf-isCommutative ; exchange-isMonoid to intf-isMonoid ; exchange-isTotal to intf-isTotal) open DownIntuitive {{Overlap.bags-isContractive}} public module Syntax where open Rel₃ intf-rel public open Emptiness intf-emptiness public open IsPartialSemigroup intf-isSemigroup public open IsPartialMonoid intf-isMonoid public open IsCommutative intf-isCommutative public open CommutativeSemigroupOps {{intf-isSemigroup}} {{intf-isCommutative}} public -- module _ {P} where -- open IsIntuitionistic (intf-isIntuitive {P}) w public open Syntax
{ "alphanum_fraction": 0.7246036406, "avg_line_length": 31.247706422, "ext": "agda", "hexsha": "1d0da00332ca25a66879dae26a5f612419ac450b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:37:15.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:37:15.000Z", "max_forks_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "ajrouvoet/jvm.agda", "max_forks_repo_path": "src/JVM/Model.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "ajrouvoet/jvm.agda", "max_issues_repo_path": "src/JVM/Model.agda", "max_line_length": 81, "max_stars_count": 6, "max_stars_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "ajrouvoet/jvm.agda", "max_stars_repo_path": "src/JVM/Model.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-28T21:49:08.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T14:07:17.000Z", "num_tokens": 1063, "size": 3406 }
open import OutsideIn.Prelude open import OutsideIn.X module OutsideIn.Environments(x : X) where open import Data.Vec hiding (map) import OutsideIn.TypeSchema as TS import OutsideIn.Expressions as E open TS(x) open E(x) open X(x) private module TS-f {x} = Functor(type-schema-is-functor {x}) Environment : Set → Set → Set Environment ev tv = ∀ {x} → Name ev x → TypeSchema tv x ⟨_⟩,_ : ∀{ev}{tv} → TypeSchema tv Regular → (∀{x} → Name ev x → TypeSchema tv x) → ∀{x} → Name (Ⓢ ev) x → TypeSchema tv x (⟨ τ ⟩, Γ) (N zero) = τ (⟨ τ ⟩, Γ) (N (suc n)) = Γ (N n) (⟨ τ ⟩, Γ) (DC n) = Γ (DC n) _↑Γ : {ev tv : Set} → Environment ev tv → Environment ev (Ⓢ tv) Γ ↑Γ = TS-f.map suc ∘ Γ addAll : ∀{n}{ev}{tv} → Vec (Type tv) n → ( Environment ev tv) → Environment (ev ⨁ n) tv addAll [] Γ = Γ addAll (τ ∷ τs) Γ = addAll τs (⟨ ∀′ 0 · ε ⇒ τ ⟩, Γ )
{ "alphanum_fraction": 0.5704697987, "avg_line_length": 29.8, "ext": "agda", "hexsha": "c61c9de1e1195ccd701c541f93f5f58ceda0bdb4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fc1fc1bba2af95806d9075296f9ed1074afa4c24", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "liamoc/outside-in", "max_forks_repo_path": "OutsideIn/Environments.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fc1fc1bba2af95806d9075296f9ed1074afa4c24", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "liamoc/outside-in", "max_issues_repo_path": "OutsideIn/Environments.agda", "max_line_length": 90, "max_stars_count": 2, "max_stars_repo_head_hexsha": "fc1fc1bba2af95806d9075296f9ed1074afa4c24", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "liamoc/outside-in", "max_stars_repo_path": "OutsideIn/Environments.agda", "max_stars_repo_stars_event_max_datetime": "2020-11-19T14:30:07.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-14T05:22:15.000Z", "num_tokens": 348, "size": 894 }
------------------------------------------------------------------------ -- The Agda standard library -- -- An inductive definition of the sublist relation. This is commonly -- known as Order Preserving Embeddings (OPE). ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Relation.Binary.Sublist.Propositional {a} {A : Set a} where open import Data.List.Base using (List) open import Data.List.Relation.Binary.Equality.Propositional using (≋⇒≡) import Data.List.Relation.Binary.Sublist.Setoid as SetoidSublist open import Data.List.Relation.Unary.Any using (Any) open import Relation.Binary open import Relation.Binary.PropositionalEquality open import Relation.Unary using (Pred) ------------------------------------------------------------------------ -- Re-export definition and operations from setoid sublists open SetoidSublist (setoid A) public hiding (lookup; ⊆-reflexive; ⊆-antisym ; ⊆-isPreorder; ⊆-isPartialOrder ; ⊆-preorder; ⊆-poset ) ------------------------------------------------------------------------ -- Additional operations module _ {p} {P : Pred A p} where lookup : ∀ {xs ys} → xs ⊆ ys → Any P xs → Any P ys lookup = SetoidSublist.lookup (setoid A) (subst _) ------------------------------------------------------------------------ -- Relational properties ⊆-reflexive : _≡_ ⇒ _⊆_ ⊆-reflexive refl = ⊆-refl ⊆-antisym : Antisymmetric _≡_ _⊆_ ⊆-antisym xs⊆ys ys⊆xs = ≋⇒≡ (SetoidSublist.⊆-antisym (setoid A) xs⊆ys ys⊆xs) ⊆-isPreorder : IsPreorder _≡_ _⊆_ ⊆-isPreorder = record { isEquivalence = isEquivalence ; reflexive = ⊆-reflexive ; trans = ⊆-trans } ⊆-isPartialOrder : IsPartialOrder _≡_ _⊆_ ⊆-isPartialOrder = record { isPreorder = ⊆-isPreorder ; antisym = ⊆-antisym } ⊆-preorder : Preorder a a a ⊆-preorder = record { isPreorder = ⊆-isPreorder } ⊆-poset : Poset a a a ⊆-poset = record { isPartialOrder = ⊆-isPartialOrder } ------------------------------------------------------------------------ -- Separating two sublists -- -- Two possibly overlapping sublists τ : xs ⊆ zs and σ : ys ⊆ zs -- can be turned into disjoint lists τρ : xs ⊆ zs and τρ : ys ⊆ zs′ -- by duplicating all entries of zs that occur both in xs and ys, -- resulting in an extension ρ : zs ⊆ zs′ of zs. record Separation {xs ys zs} (τ₁ : xs ⊆ zs) (τ₂ : ys ⊆ zs) : Set a where field {inflation} : List A separator₁ : zs ⊆ inflation separator₂ : zs ⊆ inflation separated₁ = ⊆-trans τ₁ separator₁ separated₂ = ⊆-trans τ₂ separator₂ field disjoint : Disjoint separated₁ separated₂ infixr 5 _∷ₙ-Sep_ _∷ₗ-Sep_ _∷ᵣ-Sep_ -- Empty separation []-Sep : Separation [] [] []-Sep = record { separator₁ = [] ; separator₂ = [] ; disjoint = [] } -- Weaken a separation _∷ₙ-Sep_ : ∀ {xs ys zs} {τ₁ : xs ⊆ zs} {τ₂ : ys ⊆ zs} → ∀ z → Separation τ₁ τ₂ → Separation (z ∷ʳ τ₁) (z ∷ʳ τ₂) z ∷ₙ-Sep record{ separator₁ = ρ₁; separator₂ = ρ₂; disjoint = d } = record { separator₁ = refl ∷ ρ₁ ; separator₂ = refl ∷ ρ₂ ; disjoint = z ∷ₙ d } -- Extend a separation by an element of the first sublist. -- -- Note: this requires a category law from the underlying equality, -- trans x=z refl = x=z, thus, separation is not available for Sublist.Setoid. _∷ₗ-Sep_ : ∀ {xs ys zs} {τ₁ : xs ⊆ zs} {τ₂ : ys ⊆ zs} → ∀ {x z} (x≡z : x ≡ z) → Separation τ₁ τ₂ → Separation (x≡z ∷ τ₁) (z ∷ʳ τ₂) refl ∷ₗ-Sep record{ separator₁ = ρ₁; separator₂ = ρ₂; disjoint = d } = record { separator₁ = refl ∷ ρ₁ ; separator₂ = refl ∷ ρ₂ ; disjoint = refl ∷ₗ d } -- Extend a separation by an element of the second sublist. _∷ᵣ-Sep_ : ∀ {xs ys zs} {τ₁ : xs ⊆ zs} {τ₂ : ys ⊆ zs} → ∀ {y z} (y≡z : y ≡ z) → Separation τ₁ τ₂ → Separation (z ∷ʳ τ₁) (y≡z ∷ τ₂) refl ∷ᵣ-Sep record{ separator₁ = ρ₁; separator₂ = ρ₂; disjoint = d } = record { separator₁ = refl ∷ ρ₁ ; separator₂ = refl ∷ ρ₂ ; disjoint = refl ∷ᵣ d } -- Extend a separation by a common element of both sublists. -- -- Left-biased: the left separator gets the first copy -- of the common element. ∷-Sepˡ : ∀ {xs ys zs} {τ₁ : xs ⊆ zs} {τ₂ : ys ⊆ zs} → ∀ {x y z} (x≡z : x ≡ z) (y≡z : y ≡ z) → Separation τ₁ τ₂ → Separation (x≡z ∷ τ₁) (y≡z ∷ τ₂) ∷-Sepˡ refl refl record{ separator₁ = ρ₁; separator₂ = ρ₂; disjoint = d } = record { separator₁ = _ ∷ʳ refl ∷ ρ₁ ; separator₂ = refl ∷ _ ∷ʳ ρ₂ ; disjoint = refl ∷ᵣ (refl ∷ₗ d) } -- Left-biased separation of two sublists. Of common elements, -- the first sublist receives the first copy. separateˡ : ∀ {xs ys zs} (τ₁ : xs ⊆ zs) (τ₂ : ys ⊆ zs) → Separation τ₁ τ₂ separateˡ [] [] = []-Sep separateˡ (z ∷ʳ τ₁) (z ∷ʳ τ₂) = z ∷ₙ-Sep separateˡ τ₁ τ₂ separateˡ (z ∷ʳ τ₁) (y≡z ∷ τ₂) = y≡z ∷ᵣ-Sep separateˡ τ₁ τ₂ separateˡ (x≡z ∷ τ₁) (z ∷ʳ τ₂) = x≡z ∷ₗ-Sep separateˡ τ₁ τ₂ separateˡ (x≡z ∷ τ₁) (y≡z ∷ τ₂) = ∷-Sepˡ x≡z y≡z (separateˡ τ₁ τ₂)
{ "alphanum_fraction": 0.5794260307, "avg_line_length": 32.5526315789, "ext": "agda", "hexsha": "b50945f54a2afddd5da52b2dc5ede4aa0bdf9569", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/List/Relation/Binary/Sublist/Propositional.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/List/Relation/Binary/Sublist/Propositional.agda", "max_line_length": 84, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/List/Relation/Binary/Sublist/Propositional.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 1804, "size": 4948 }
module Verifier where open import Definitions open import DeMorgan using (deMorgan) check : {A B : Set} → ¬ A ∧ ¬ B → ¬ (A ∨ B) check = deMorgan
{ "alphanum_fraction": 0.6666666667, "avg_line_length": 18.375, "ext": "agda", "hexsha": "1930e7cb9ebc424d1c618f54f6029ed095a5d0e2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ece25bed081a24f02e9f85056d05933eae2afabf", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "danr/agder", "max_forks_repo_path": "problems/DeMorgan/Verifier.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ece25bed081a24f02e9f85056d05933eae2afabf", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "danr/agder", "max_issues_repo_path": "problems/DeMorgan/Verifier.agda", "max_line_length": 43, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ece25bed081a24f02e9f85056d05933eae2afabf", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "danr/agder", "max_stars_repo_path": "problems/DeMorgan/Verifier.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-17T12:07:03.000Z", "max_stars_repo_stars_event_min_datetime": "2021-05-17T12:07:03.000Z", "num_tokens": 48, "size": 147 }
-- Let's play with agda. -- Am i having fun doing this? @KMx404 module intro where --load the file with C-c - like that data Bool: Set where true : Bool false : Bool data Empty: Set Empty Empty : Empty -- I'm gonna leave this here. Moving to tests
{ "alphanum_fraction": 0.6704545455, "avg_line_length": 17.6, "ext": "agda", "hexsha": "296c825fabd87bd9dd909fc33bdeeab2016a36a3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b2cf336215025de01b3b3f4b2296f9afd7c2d295", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "KMx404/selfev.agda", "max_forks_repo_path": "intro/intro.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b2cf336215025de01b3b3f4b2296f9afd7c2d295", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "KMx404/selfev.agda", "max_issues_repo_path": "intro/intro.agda", "max_line_length": 62, "max_stars_count": 2, "max_stars_repo_head_hexsha": "b2cf336215025de01b3b3f4b2296f9afd7c2d295", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "KMx404/selfev.agda", "max_stars_repo_path": "intro/intro.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-12T15:57:18.000Z", "max_stars_repo_stars_event_min_datetime": "2020-08-18T11:22:21.000Z", "num_tokens": 74, "size": 264 }
module Issue2858-nbe where open import Agda.Builtin.List data Ty : Set where α : Ty _↝_ : Ty → Ty → Ty variable σ τ : Ty Γ Δ Θ : List Ty Scoped : Set₁ Scoped = Ty → List Ty → Set data Var : Scoped where z : Var σ (σ ∷ Γ) s : Var σ Γ → Var σ (τ ∷ Γ) record Ren (Γ Δ : List Ty) : Set where field lookup : ∀ {σ} → Var σ Γ → Var σ Δ open Ren public bind : Ren Γ Δ → Ren (σ ∷ Γ) (σ ∷ Δ) lookup (bind ρ) z = z lookup (bind ρ) (s v) = s (lookup ρ v) refl : Ren Γ Γ lookup refl v = v step : Ren Γ (σ ∷ Γ) lookup step v = s v _∘_ : Ren Δ Θ → Ren Γ Δ → Ren Γ Θ lookup (ρ′ ∘ ρ) v = lookup ρ′ (lookup ρ v) interleaved mutual data Syn : Scoped data Chk : Scoped th^Syn : Ren Γ Δ → Syn σ Γ → Syn σ Δ th^Chk : Ren Γ Δ → Chk σ Γ → Chk σ Δ -- variable rule constructor var : Var σ Γ → Syn σ Γ th^Syn ρ (var v) = var (lookup ρ v) -- change of direction rules constructor emb : Syn σ Γ → Chk σ Γ cut : Chk σ Γ → Syn σ Γ th^Chk ρ (emb t) = emb (th^Syn ρ t) th^Syn ρ (cut c) = cut (th^Chk ρ c) -- function introduction and elimination constructor app : Syn (σ ↝ τ) Γ → Chk σ Γ → Syn τ Γ lam : Chk τ (σ ∷ Γ) → Chk (σ ↝ τ) Γ th^Syn ρ (app f t) = app (th^Syn ρ f) (th^Chk ρ t) th^Chk ρ (lam b) = lam (th^Chk (bind ρ) b) -- Model construction Val : Scoped Val α Γ = Syn α Γ Val (σ ↝ τ) Γ = ∀ {Δ} → Ren Γ Δ → Val σ Δ → Val τ Δ th^Val : Ren Γ Δ → Val σ Γ → Val σ Δ th^Val {σ = α} ρ t = th^Syn ρ t th^Val {σ = σ ↝ τ} ρ t = λ ρ′ → t (ρ′ ∘ ρ) interleaved mutual reify : ∀ σ → Val σ Γ → Chk σ Γ reflect : ∀ σ → Syn σ Γ → Val σ Γ -- base case reify α t = emb t reflect α t = t -- arrow case reify (σ ↝ τ) t = lam (reify τ (t step (reflect σ (var z)))) reflect (σ ↝ τ) t = λ ρ v → reflect τ (app (th^Syn ρ t) (reify σ v)) record Env (Γ Δ : List Ty) : Set where field lookup : ∀ {σ} → Var σ Γ → Val σ Δ open Env public th^Env : Ren Δ Θ → Env Γ Δ → Env Γ Θ lookup (th^Env ρ vs) v = th^Val ρ (lookup vs v) placeholders : Env Γ Γ lookup placeholders v = reflect _ (var v) extend : Env Γ Δ → Val σ Δ → Env (σ ∷ Γ) Δ lookup (extend ρ t) z = t lookup (extend ρ t) (s v) = lookup ρ v interleaved mutual eval^Syn : Env Γ Δ → Syn σ Γ → Val σ Δ eval^Chk : Env Γ Δ → Chk σ Γ → Val σ Δ -- variable eval^Syn vs (var v) = lookup vs v -- change of direction eval^Syn vs (cut t) = eval^Chk vs t eval^Chk vs (emb t) = eval^Syn vs t -- function introduction & elimination eval^Syn vs (app f t) = eval^Syn vs f refl (eval^Chk vs t) eval^Chk vs (lam b) = λ ρ v → eval^Chk (extend (th^Env ρ vs) v) b interleaved mutual norm^Syn : Syn σ Γ → Chk σ Γ norm^Chk : Chk σ Γ → Chk σ Γ norm^Syn t = norm^Chk (emb t) norm^Chk t = reify _ (eval^Chk placeholders t)
{ "alphanum_fraction": 0.5706031058, "avg_line_length": 22.512195122, "ext": "agda", "hexsha": "9659368918d3e22b688ea0b8c611bceddff884ae", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/Succeed/Issue2858-nbe.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue2858-nbe.agda", "max_line_length": 70, "max_stars_count": null, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue2858-nbe.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1135, "size": 2769 }
{-# OPTIONS --without-K #-} -- Rending the Program Runner -- A proof of Lӧb′s theorem: quoted interpreters are inconsistent -- Jason Gross {- Title and some comments inspired by and drawn heavily from "Scooping the Loop Sniffer: A proof that the Halting Problem is undecidable", by Geoffrey K. Pullum (http://www.lel.ed.ac.uk/~gpullum/loopsnoop.html) -} open import common infixl 2 _▻_ infixl 3 _‘’_ infixr 1 _‘→’_ {- "Scooping the Loop Sniffer", with slight modifications for this code. No general procedure for type-checking will do. Now, I won’t just assert that, I’ll prove it to you. I will prove that although you might work till you drop, you cannot tell if computation will stop. For imagine we have a procedure called P that for specified input permits you to see what specified source code, with all of its faults, defines a routine that eventually halts. You feed in your program, with suitable data, and P gets to work, and a little while later (in finite compute time) correctly infers whether infinite looping behavior occurs. If there will be no looping, then P prints out ‘Good.’ That means work on this input will halt, as it should. But if it detects an unstoppable loop, then P reports ‘Bad!’ — which means you’re in the soup. Well, the truth is that P cannot possibly be, because if you wrote it and gave it to me, I could use it to set up a logical bind that would shatter your reason and scramble your mind. For a specified program, say ‶A″, one supplies, the first step of this program called Q I devise is to find out from P what’s the right thing to say of the looping behavior of A run on ‶A″. If P’s answer is ‘Bad!’, Q will suddenly stop. But otherwise, Q will go back to the top, and start off again, looping endlessly back, till the universe dies and turns frozen and black. And this program called Q wouldn’t stay on the shelf; I would ask it to forecast its run on itself. When it reads its own source code, just what will it do? What’s the looping behavior of Q run on Q? If P warns of infinite loops, Q will quit; yet P is supposed to speak truly of it! And if Q’s going to quit, then P should say ‘Good.’ Which makes Q start to loop! (P denied that it would.) No matter how P might perform, Q will scoop it: Q uses P’s output to make P look stupid. Whatever P says, it cannot predict Q: P is right when it’s wrong, and is false when it’s true! I’ve created a paradox, neat as can be — and simply by using your putative P. When you posited P you stepped into a snare; Your assumption has led you right into my lair. So where can this argument possibly go? I don’t have to tell you; I’m sure you must know. A reductio: There cannot possibly be a procedure that acts like the mythical P. You can never find general mechanical means for predicting the acts of computing machines; it’s something that cannot be done. So we users must find our own bugs. Our computers are losers! -} {- Our program will act much like this Q, except that instead of saying that Q will go back to the top, and start off again, looping endlessly back, till the universe dies and turns frozen and black. We would say something more like that Q will go back to the top, and ask for the output of A run on ‶A″, trusting P that execution will not run away. Further more, we combine the type-checker and the interpreter; we show there cannot be a well-typed quoted interpreter that interprets all well-typed quoted terms directly, rather than having a separate phase of type-checking. Morally, they should be equivalent. -} {- We start off by defining Contexts, Types, and Terms which are well-typed by construction. We will prove that assuming Lӧb′s theorem is consistent in a minimal representation, and doesn′t require anything fancy to support it in a model of the syntax. Thus any reasonable syntax, which has a model, will also have a model validating Lӧb′s theorem. This last part is informal; it′s certainly conceivable that something like internalized parametricity, which needs to do something special with each constructor of the language, won't be able to do anything with the quotation operator. There's a much longer formalization of Lӧb′s theorem in this repository which just assumes a quotation operator, and proves Lӧb′s theorem by constructing it (though to build a quine, we end up needing to decide equality of Contexts, which is fine); the quotation operator is, in principle, definable, by stuffing the constructors of the syntax into an initial context, and building up the quoted terms by structural recursion. This would be even more painful, though, unless there′s a nice way to give specific quoted terms. Now, down to business. -} mutual -- Contexts are utterly standard data Context : Set where ε : Context _▻_ : (Γ : Context) → Type Γ → Context -- Types have standard substituition and non-dependent function -- types. data Type : Context → Set where _‘’_ : ∀ {Γ A} → Type (Γ ▻ A) → Term {Γ} A → Type Γ _‘→’_ : ∀ {Γ} → Type Γ → Type Γ → Type Γ -- We also require that there be a quotation of ‶Type ε″ (called -- ‘Typeε’), and a quotation of ‶Term ε″ (called ‘□’) ‘Typeε’ : Type ε ‘□’ : Type (ε ▻ ‘Typeε’) -- We don′t really need quoted versions of ⊤ and ⊥, but they are -- useful stating a few things after the proof of Lӧb′s theorem ‘⊤’ : ∀ {Γ} → Type Γ ‘⊥’ : ∀ {Γ} → Type Γ -- Note that you can add whatever other constructors to this data -- type you would like; data Term : {Γ : Context} → Type Γ → Set where -- We require the existence of a function (in the ambient language) -- that takes a type in the empty context, and returns the quotation -- of that type. ⌜_⌝ : Type ε → Term {ε} ‘Typeε’ -- Finally, we assume Lӧb′s theorem; we will show that this syntax -- has a model. Lӧb : ∀ {X} → Term {ε} (‘□’ ‘’ ⌜ X ⌝ ‘→’ X) → Term {ε} X -- This is not strictly required, just useful for showing that some -- type is inhabited. ‘tt’ : ∀ {Γ} → Term {Γ} ‘⊤’ {- ‶□ T″ is read ‶T is provable″ or ‶T is inhabited″ or ‶the type of syntactic terms of the syntactic type T″ or ‶the type of quoted terms of the quoted type T″. -} □ : Type ε → Set _ □ = Term {ε} mutual {- Having an inhabitant of type ‶the interpretation of a given Context″ is having an inhabitant of the interpretation of every type in that Context. If we wanted to represent more universes, we could sprinkle lifts and lowers, and it would not cause us trouble. They are elided here for simplicity. -} Context⇓ : (Γ : Context) → Set Context⇓ ε = ⊤ Context⇓ (Γ ▻ T) = Σ (Context⇓ Γ) (Type⇓ {Γ} T) -- Substitution and function types are interpreted standardly. Type⇓ : {Γ : Context} → Type Γ → Context⇓ Γ → Set Type⇓ (T ‘’ x) Γ⇓ = Type⇓ T (Γ⇓ , Term⇓ x Γ⇓) Type⇓ (A ‘→’ B) Γ⇓ = Type⇓ A Γ⇓ → Type⇓ B Γ⇓ -- ‘Typeε’ is, unsurprisingly, interpreted as Type ε, the type of -- syntactic types in the empty context. Type⇓ ‘Typeε’ Γ⇓ = Type ε -- ‘□’ expects Term of Type ‘Typeε’ as the last element of the -- context, and represents the type of Terms of that Type. We take -- the (already-interpreted) last element of the Context, and feed -- it to Term {ε}, to get the Set of Terms of that Type. Type⇓ ‘□’ Γ⇓ = Term {ε} (Σ.proj₂ Γ⇓) -- The rest of the interpreter, for types not formally needed in -- Lӧb′s theorem. Type⇓ ‘⊤’ Γ⇓ = ⊤ Type⇓ ‘⊥’ Γ⇓ = ⊥ Term⇓ : ∀ {Γ : Context} {T : Type Γ} → Term T → (Γ⇓ : Context⇓ Γ) → Type⇓ T Γ⇓ -- Unsurprisingly, we interpret the quotation of a given source code -- as the source code itself. (Defining the interpretation of -- quotation is really trivial. Defining quotation itself is much -- tricker.) Note that it is, I believe, essential, that every Type -- be quotable. Otherwise Lӧb′s theorem cannot be internalized in -- our syntactic representation, and will require both being given -- both a type, and syntax which denotes to that type. Term⇓ ⌜ x ⌝ Γ⇓ = x -- Now, the interesting part. Given an interpreter (P in the poem, -- □‘X’→X in this code), we validate Lӧb′s theorem (Q run on Q) by -- running the interpreter on ... Q run on Q! It takes a bit of -- thinking to wrap your head around, but the types line up, and -- it′s beautifully simple. Term⇓ (Lӧb □‘X’→X) Γ⇓ = Term⇓ □‘X’→X Γ⇓ (Lӧb □‘X’→X) -- Inhabiting ⊤ Term⇓ ‘tt’ Γ⇓ = tt ⌞_⌟ : Type ε → Set _ ⌞ T ⌟ = Type⇓ T tt ‘¬’_ : ∀ {Γ} → Type Γ → Type Γ ‘¬’ T = T ‘→’ ‘⊥’ -- With our interpreter, we can chain Lӧb′s theorem with itself: if we -- can prove that ‶proving ‘X’ is sufficient to make ‘X’ true″, then -- we can already inhabit X. lӧb : ∀ {‘X’} → □ (‘□’ ‘’ ⌜ ‘X’ ⌝ ‘→’ ‘X’) → ⌞ ‘X’ ⌟ lӧb f = Term⇓ (Lӧb f) tt -- We can thus prove that it′s impossible to prove that contradictions -- are unprovable. incompleteness : ¬ □ (‘¬’ (‘□’ ‘’ ⌜ ‘⊥’ ⌝)) incompleteness = lӧb -- We can also prove that contradictions are, in fact, unprovable. soundness : ¬ □ ‘⊥’ soundness x = Term⇓ x tt -- And we can prove that some things are provable, namely, ‘⊤’ non-emptyness : Σ (Type ε) (λ T → □ T) non-emptyness = ‘⊤’ , ‘tt’
{ "alphanum_fraction": 0.6968271335, "avg_line_length": 38.7288135593, "ext": "agda", "hexsha": "78a4f63f8dd07a131d172de47be2de7f78541e2f", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-07-17T18:53:37.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-17T18:53:37.000Z", "max_forks_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JasonGross/lob", "max_forks_repo_path": "internal/mini-lob-poem.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3", "max_issues_repo_issues_event_max_datetime": "2015-07-17T20:20:43.000Z", "max_issues_repo_issues_event_min_datetime": "2015-07-17T20:20:43.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JasonGross/lob", "max_issues_repo_path": "internal/mini-lob-poem.agda", "max_line_length": 80, "max_stars_count": 19, "max_stars_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JasonGross/lob", "max_stars_repo_path": "internal/mini-lob-poem.agda", "max_stars_repo_stars_event_max_datetime": "2021-03-17T14:04:53.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-17T17:53:30.000Z", "num_tokens": 2824, "size": 9140 }
open import Data.Product using ( _,_ ; proj₁ ; proj₂ ) open import Data.Sum using ( _⊎_ ; inj₁ ; inj₂ ) open import Relation.Binary.PropositionalEquality using ( refl ) open import Relation.Unary using ( _∈_ ) open import Web.Semantic.DL.ABox using ( ABox ; _,_ ; ⟨ABox⟩ ) open import Web.Semantic.DL.ABox.Interp using ( Interp ; _,_ ; ⌊_⌋ ; ind ; _*_ ) open import Web.Semantic.DL.ABox.Interp.Morphism using ( _≲_ ; _,_ ; ≲⌊_⌋ ; ≲-resp-ind ; _**_ ; ≡³-impl-≈ ; ≡³-impl-≲ ) open import Web.Semantic.DL.ABox.Model using ( _⊨a_ ; _⊨b_ ; bnodes ; on-bnode ; _,_ ; ⟨ABox⟩-resp-⊨ ; ⊨a-resp-≲ ; *-resp-⟨ABox⟩ ) open import Web.Semantic.DL.Category.Morphism using ( _⇒_ ; _⇒_w/_ ; _,_ ; BN ; impl ; impl✓ ) open import Web.Semantic.DL.Category.Object using ( Object ; _,_ ; IN ; fin ; iface ) open import Web.Semantic.DL.Integrity using ( _⊕_⊨_ ; Unique ; Mediated ; Mediator ; Initial ; _,_ ; extension ; ext-init ; ext-⊨ ; ext✓ ; init-≲ ) open import Web.Semantic.DL.KB using ( _,_ ) open import Web.Semantic.DL.KB.Model using ( _⊨_ ) open import Web.Semantic.DL.Signature using ( Signature ) open import Web.Semantic.DL.TBox using ( TBox ; _,_ ) open import Web.Semantic.DL.TBox.Interp using ( Δ ; _⊨_≈_ ; ≈-refl ; ≈-sym ; ≈-trans ) open import Web.Semantic.DL.TBox.Model using ( _⊨t_ ) open import Web.Semantic.DL.TBox.Interp.Morphism using ( ≲-image ; ≲-resp-≈ ; ≲-trans ) renaming ( _≲_ to _≲′_ ) open import Web.Semantic.Util using ( _∘_ ; Finite ; ⊎-resp-Fin ; _⊕_⊕_ ; inode ; bnode ; enode ; up ; down ; vmerge ) module Web.Semantic.DL.Category.Tensor {Σ : Signature} where _&_ : ∀ {X₁ X₂} → ABox Σ X₁ → ABox Σ X₂ → ABox Σ (X₁ ⊎ X₂) A₁ & A₂ = (⟨ABox⟩ inj₁ A₁ , ⟨ABox⟩ inj₂ A₂) _⊗_ : ∀ {S T : TBox Σ} → Object S T → Object S T → Object S T A₁ ⊗ A₂ = ( (IN A₁ ⊎ IN A₂) , ⊎-resp-Fin (fin A₁) (fin A₂) , iface A₁ & iface A₂ ) _⟨&⟩_ : ∀ {V₁ V₂ X₁ X₂ Y₁ Y₂} → ABox Σ (X₁ ⊕ V₁ ⊕ Y₁) → ABox Σ (X₂ ⊕ V₂ ⊕ Y₂) → ABox Σ ((X₁ ⊎ X₂) ⊕ (V₁ ⊎ V₂) ⊕ (Y₁ ⊎ Y₂)) F₁ ⟨&⟩ F₂ = (⟨ABox⟩ up F₁ , ⟨ABox⟩ down F₂) ⊨a-intro-⟨&⟩ : ∀ {V₁ V₂ X₁ X₂ Y₁ Y₂} → (I : Interp Σ ((X₁ ⊎ X₂) ⊕ (V₁ ⊎ V₂) ⊕ (Y₁ ⊎ Y₂))) → (F₁ : ABox Σ (X₁ ⊕ V₁ ⊕ Y₁)) → (F₂ : ABox Σ (X₂ ⊕ V₂ ⊕ Y₂)) → (up * I ⊨a F₁) → (down * I ⊨a F₂) → (I ⊨a F₁ ⟨&⟩ F₂) ⊨a-intro-⟨&⟩ (I , i) F₁ F₂ I₁⊨F₁ I₂⊨F₂ = ( ⟨ABox⟩-resp-⊨ up (λ x → ≈-refl I) F₁ I₁⊨F₁ , ⟨ABox⟩-resp-⊨ down (λ x → ≈-refl I) F₂ I₂⊨F₂ ) ⊨b-intro-⟨&⟩ : ∀ {V₁ V₂ W₁ W₂ X₁ X₂ Y₁ Y₂} → (I : Interp Σ ((X₁ ⊎ X₂) ⊕ (W₁ ⊎ W₂) ⊕ (Y₁ ⊎ Y₂))) → (F₁ : ABox Σ (X₁ ⊕ V₁ ⊕ Y₁)) → (F₂ : ABox Σ (X₂ ⊕ V₂ ⊕ Y₂)) → (up * I ⊨b F₁) → (down * I ⊨b F₂) → (I ⊨b F₁ ⟨&⟩ F₂) ⊨b-intro-⟨&⟩ {V₁} {V₂} I F₁ F₂ (f₁ , I₁⊨F₁) (f₂ , I₂⊨F₂) = (f , I⊨F₁F₂) where f : (V₁ ⊎ V₂) → Δ ⌊ I ⌋ f (inj₁ v) = f₁ v f (inj₂ v) = f₂ v I⊨F₁F₂ : bnodes I f ⊨a F₁ ⟨&⟩ F₂ I⊨F₁F₂ = ( ⟨ABox⟩-resp-⊨ up (≡³-impl-≈ ⌊ I ⌋ (on-bnode f₁ (ind I ∘ up)) (on-bnode f (ind I) ∘ up) refl) F₁ I₁⊨F₁ , ⟨ABox⟩-resp-⊨ down (≡³-impl-≈ ⌊ I ⌋ (on-bnode f₂ (ind I ∘ down)) (on-bnode f (ind I) ∘ down) refl) F₂ I₂⊨F₂ ) go₂ : ∀ {V₁ X₁ X₂ Y₁} → (I : Interp Σ (X₁ ⊎ X₂)) → (J₁ : Interp Σ (X₁ ⊕ V₁ ⊕ Y₁)) → (⌊ I ⌋ ≲′ ⌊ J₁ ⌋) → Interp Σ X₂ go₂ I J₁ I≲J = (⌊ J₁ ⌋ , ≲-image I≲J ∘ ind I ∘ inj₂) go₂-≳ : ∀ {V₁ X₁ X₂ Y₁} → (I : Interp Σ (X₁ ⊎ X₂)) → (J₁ : Interp Σ (X₁ ⊕ V₁ ⊕ Y₁)) → (I≲J : ⌊ I ⌋ ≲′ ⌊ J₁ ⌋) → (inj₂ * I ≲ go₂ I J₁ I≲J) go₂-≳ I (J , j₁) I≲J = (I≲J , λ x → ≈-refl J) go₂-≲ : ∀ {V₁ V₂ X₁ X₂ Y₁ Y₂} → (I : Interp Σ (X₁ ⊎ X₂)) → (J₁ : Interp Σ (X₁ ⊕ V₁ ⊕ Y₁)) → (L : Interp Σ ((X₁ ⊎ X₂) ⊕ (V₁ ⊎ V₂) ⊕ (Y₁ ⊎ Y₂))) → (I₁≲J₁ : inj₁ * I ≲ inode * J₁) → (I≲L : I ≲ inode * L) → (Mediated (inj₁ * I) J₁ (up * L) I₁≲J₁ (inj₁ ** I≲L)) → (go₂ I J₁ ≲⌊ I₁≲J₁ ⌋ ≲ inode * (down * L)) go₂-≲ (I , i) (J , j₁) (L , l) (I≲J , i₁≲j₁) (I≲L , i≲l) ((J≲L , j₁≲l₁) , I≲L≋I≲J≲L , J₁≲L₁-uniq) = (J≲L , λ x → ≈-trans L (≈-sym L (I≲L≋I≲J≲L (i (inj₂ x)))) (i≲l (inj₂ x))) par : ∀ {V₁ V₂ X₁ X₂ Y₁ Y₂} → (J₁ : Interp Σ (X₁ ⊕ V₁ ⊕ Y₁)) → (K₂ : Interp Σ (X₂ ⊕ V₂ ⊕ Y₂)) → (⌊ J₁ ⌋ ≲′ ⌊ K₂ ⌋) → Interp Σ ((X₁ ⊎ X₂) ⊕ (V₁ ⊎ V₂) ⊕ (Y₁ ⊎ Y₂)) par J₁ K₂ J≲K = (⌊ K₂ ⌋ , vmerge (≲-image J≲K ∘ ind J₁) (ind K₂)) par-inj₁ : ∀ {V₁ V₂ X₁ X₂ Y₁ Y₂} → (J₁ : Interp Σ (X₁ ⊕ V₁ ⊕ Y₁)) → (K₂ : Interp Σ (X₂ ⊕ V₂ ⊕ Y₂)) → (J≲K : ⌊ J₁ ⌋ ≲′ ⌊ K₂ ⌋) → (J₁ ≲ up * par J₁ K₂ J≲K) par-inj₁ (J , j₁) (K , k₂) J≲K = ( J≲K , ≡³-impl-≈ K (≲-image J≲K ∘ j₁) (vmerge (≲-image J≲K ∘ j₁) k₂ ∘ up) refl ) par-inj₂ : ∀ {V₁ V₂ X₁ X₂ Y₁ Y₂} → (J₁ : Interp Σ (X₁ ⊕ V₁ ⊕ Y₁)) → (K₂ : Interp Σ (X₂ ⊕ V₂ ⊕ Y₂)) → (J≲K : ⌊ J₁ ⌋ ≲′ ⌊ K₂ ⌋) → (K₂ ≲ down * par J₁ K₂ J≲K) par-inj₂ (J , j₁) (K , k₂) J≲K = ≡³-impl-≲ (K , k₂) (vmerge (≲-image J≲K ∘ j₁) k₂ ∘ down) refl par-exp : ∀ {V₁ V₂ X₁ X₂ Y₁ Y₂} → (J₁ : Interp Σ (X₁ ⊕ V₁ ⊕ Y₁)) → (K₂ : Interp Σ (X₂ ⊕ V₂ ⊕ Y₂)) → (J≲K : ⌊ J₁ ⌋ ≲′ ⌊ K₂ ⌋) → (T : TBox Σ) → (B₁ : ABox Σ Y₁) → (B₂ : ABox Σ Y₂) → (enode * J₁ ⊨ T , B₁) → (enode * K₂ ⊨ T , B₂) → (enode * (par J₁ K₂ J≲K) ⊨ T , (B₁ & B₂)) par-exp J₁ K₂ J≲K T B₁ B₂ (J⊨T , J₁⊨B₁) (K⊨T , K₂⊨B₂) = ( K⊨T , ⟨ABox⟩-resp-⊨ inj₁ (λ y → ≈-refl ⌊ K₂ ⌋) B₁ (⊨a-resp-≲ (enode ** par-inj₁ J₁ K₂ J≲K) B₁ J₁⊨B₁) , ⟨ABox⟩-resp-⊨ inj₂ (λ y → ≈-refl ⌊ K₂ ⌋) B₂ K₂⊨B₂) par-≳ : ∀ {V₁ V₂ X₁ X₂ Y₁ Y₂} → (I : Interp Σ (X₁ ⊎ X₂)) → (J₁ : Interp Σ (X₁ ⊕ V₁ ⊕ Y₁)) → (K₂ : Interp Σ (X₂ ⊕ V₂ ⊕ Y₂)) → (I₁≲J₁ : inj₁ * I ≲ inode * J₁) → (J₂≲K₂ : go₂ I J₁ ≲⌊ I₁≲J₁ ⌋ ≲ inode * K₂) → (I ≲ inode * par J₁ K₂ ≲⌊ J₂≲K₂ ⌋) par-≳ I J₁ K₂ (I≲J , i₁≲j₁) (J≲K , j₂≲k₂) = ( ≲-trans I≲J J≲K , lemma ) where lemma : ∀ x → ⌊ K₂ ⌋ ⊨ ≲-image J≲K (≲-image I≲J (ind I x)) ≈ vmerge (≲-image J≲K ∘ ind J₁) (ind K₂) (inode x) lemma (inj₁ x) = ≲-resp-≈ J≲K (i₁≲j₁ x) lemma (inj₂ x) = j₂≲k₂ x par-impl : ∀ {V₁ V₂ X₁ X₂ Y₁ Y₂} → (J₁ : Interp Σ (X₁ ⊕ V₁ ⊕ Y₁)) → (K₂ : Interp Σ (X₂ ⊕ V₂ ⊕ Y₂)) → (J≲K : ⌊ J₁ ⌋ ≲′ ⌊ K₂ ⌋) → (F₁ : ABox Σ (X₁ ⊕ V₁ ⊕ Y₁)) → (F₂ : ABox Σ (X₂ ⊕ V₂ ⊕ Y₂)) → (J₁ ⊨a F₁) → (K₂ ⊨a F₂) → (par J₁ K₂ J≲K ⊨a F₁ ⟨&⟩ F₂) par-impl J₁ K₂ J≲K F₁ F₂ J₁⊨F₁ K₂⊨F₂ = ( ⟨ABox⟩-resp-⊨ up (λ x → ≈-refl ⌊ K₂ ⌋) F₁ (⊨a-resp-≲ (par-inj₁ J₁ K₂ J≲K) F₁ J₁⊨F₁) , ⟨ABox⟩-resp-⊨ down (λ x → ≈-refl ⌊ K₂ ⌋) F₂ (⊨a-resp-≲ (par-inj₂ J₁ K₂ J≲K) F₂ K₂⊨F₂) ) par-mediated : ∀ {V₁ V₂ X₁ X₂ Y₁ Y₂} → (I : Interp Σ (X₁ ⊎ X₂)) → (J₁ : Interp Σ (X₁ ⊕ V₁ ⊕ Y₁)) → (K₂ : Interp Σ (X₂ ⊕ V₂ ⊕ Y₂)) → (L : Interp Σ ((X₁ ⊎ X₂) ⊕ (V₁ ⊎ V₂) ⊕ (Y₁ ⊎ Y₂))) → (I₁≲J₁ : inj₁ * I ≲ inode * J₁) → (I≲L : I ≲ inode * L) → (J₂≲K₂ : go₂ I J₁ ≲⌊ I₁≲J₁ ⌋ ≲ inode * K₂) → (m : Mediated (inj₁ * I) J₁ (up * L) I₁≲J₁ (inj₁ ** I≲L)) → (Mediated (go₂ I J₁ ≲⌊ I₁≲J₁ ⌋) K₂ (down * L) J₂≲K₂ (go₂-≲ I J₁ L I₁≲J₁ I≲L m)) → (Mediated I (par J₁ K₂ ≲⌊ J₂≲K₂ ⌋) L (par-≳ I J₁ K₂ I₁≲J₁ J₂≲K₂) I≲L) par-mediated (I , i) (J , j₁) (K , k₂) (L , l) (I≲J , i₁≲j₁) (I≲L , i≲l) (J≲K , j₂≲k₂) ((J≲L , j₁≲l₁) , I≲L≋I≲J≲L , J₁≲L₁-uniq) ((K≲L , k₂≲l₂) , J≲L≋J≲K≲L , K₂≲L₂-uniq) = ((K≲L , k≲l) , I≲L≋I≲K≲L , K≲L-uniq) where k = vmerge (≲-image J≲K ∘ j₁) k₂ I≲K : I ≲′ K I≲K = ≲-trans I≲J J≲K i≲k : ∀ x → K ⊨ ≲-image I≲K (i x) ≈ k (inode x) i≲k = ≲-resp-ind (par-≳ (I , i) (J , j₁) (K , k₂) (I≲J , i₁≲j₁) (J≲K , j₂≲k₂)) k≲l : ∀ x → L ⊨ ≲-image K≲L (k x) ≈ l x k≲l (inode (inj₁ x)) = ≈-trans L (≈-sym L (J≲L≋J≲K≲L (j₁ (inode x)))) (j₁≲l₁ (inode x)) k≲l (inode (inj₂ x)) = k₂≲l₂ (inode x) k≲l (bnode (inj₁ v)) = ≈-trans L (≈-sym L (J≲L≋J≲K≲L (j₁ (bnode v)))) (j₁≲l₁ (bnode v)) k≲l (bnode (inj₂ v)) = k₂≲l₂ (bnode v) k≲l (enode (inj₁ y)) = ≈-trans L (≈-sym L (J≲L≋J≲K≲L (j₁ (enode y)))) (j₁≲l₁ (enode y)) k≲l (enode (inj₂ y)) = k₂≲l₂ (enode y) I≲L≋I≲K≲L : ∀ x → L ⊨ ≲-image I≲L x ≈ ≲-image K≲L (≲-image I≲K x) I≲L≋I≲K≲L x = ≈-trans L (I≲L≋I≲J≲L x) (J≲L≋J≲K≲L (≲-image I≲J x)) lemma₁ : ∀ (K≲L : (K , k) ≲ (L , l)) x → (L ⊨ ≲-image ≲⌊ K≲L ⌋ (≲-image J≲K (j₁ x)) ≈ l (up x)) lemma₁ (K≲L' , k≲l) (inode x) = k≲l (inode (inj₁ x)) lemma₁ (K≲L' , k≲l) (bnode v) = k≲l (bnode (inj₁ v)) lemma₁ (K≲L' , k≲l) (enode y) = k≲l (enode (inj₁ y)) lemma₂ : ∀ (K≲L : (K , k) ≲ (L , l)) x → (L ⊨ ≲-image ≲⌊ K≲L ⌋ (k₂ x) ≈ l (down x)) lemma₂ (K≲L , k≲l) (inode x) = k≲l (inode (inj₂ x)) lemma₂ (K≲L , k≲l) (bnode v) = k≲l (bnode (inj₂ v)) lemma₂ (K≲L , k≲l) (enode y) = k≲l (enode (inj₂ y)) K≲L-uniq : Unique (I , i) (K , k) (L , l) (I≲K , i≲k) (I≲L , i≲l) K≲L-uniq (K≲₁L , k≲₁l) (K≲₂L , k≲₂l) I≲L≋I≲K≲₁L I≲L≋I≲K≲₂L = K₂≲L₂-uniq (K≲₁L , lemma₂ (K≲₁L , k≲₁l)) (K≲₂L , lemma₂ (K≲₂L , k≲₂l)) (J₁≲L₁-uniq (J≲L , j₁≲l₁) (≲-trans J≲K K≲₁L , lemma₁ (K≲₁L , k≲₁l)) I≲L≋I≲J≲L I≲L≋I≲K≲₁L) (J₁≲L₁-uniq (J≲L , j₁≲l₁) (≲-trans J≲K K≲₂L , lemma₁ (K≲₂L , k≲₂l)) I≲L≋I≲J≲L I≲L≋I≲K≲₂L) par-mediator : ∀ {V₁ V₂ X₁ X₂ Y₁ Y₂} → (I : Interp Σ (X₁ ⊎ X₂)) → (J₁ : Interp Σ (X₁ ⊕ V₁ ⊕ Y₁)) → (K₂ : Interp Σ (X₂ ⊕ V₂ ⊕ Y₂)) → (I₁≲J₁ : inj₁ * I ≲ inode * J₁) → (J₂≲K₂ : go₂ I J₁ ≲⌊ I₁≲J₁ ⌋ ≲ inode * K₂) → (S : TBox Σ) → (F₁ : ABox Σ (X₁ ⊕ V₁ ⊕ Y₁)) → (F₂ : ABox Σ (X₂ ⊕ V₂ ⊕ Y₂)) → (Mediator (inj₁ * I) J₁ I₁≲J₁ (S , F₁)) → (Mediator (go₂ I J₁ ≲⌊ I₁≲J₁ ⌋) K₂ J₂≲K₂ (S , F₂)) → (Mediator I (par J₁ K₂ ≲⌊ J₂≲K₂ ⌋) (par-≳ I J₁ K₂ I₁≲J₁ J₂≲K₂) (S , (F₁ ⟨&⟩ F₂))) par-mediator I J₁ K₂ I₁≲J₁ J₂≲K₂ S F₁ F₂ J₁-med K₂-med L I≲L (L⊨S , L⊨F₁ , L⊨F₂) = par-mediated I J₁ K₂ L I₁≲J₁ I≲L J₂≲K₂ I₁≲J₁≲L₁-med J₂≲K₂≲L₂-med where I₁≲J₁≲L₁-med : Mediated (inj₁ * I) J₁ (up * L) I₁≲J₁ (inj₁ ** I≲L) I₁≲J₁≲L₁-med = J₁-med (up * L) (inj₁ ** I≲L) (L⊨S , *-resp-⟨ABox⟩ up L F₁ L⊨F₁) J₂≲K₂≲L₂-med : Mediated (go₂ I J₁ ≲⌊ I₁≲J₁ ⌋) K₂ (down * L) J₂≲K₂ (go₂-≲ I J₁ L I₁≲J₁ I≲L I₁≲J₁≲L₁-med) J₂≲K₂≲L₂-med = K₂-med (down * L) (go₂-≲ I J₁ L I₁≲J₁ I≲L I₁≲J₁≲L₁-med) (L⊨S , *-resp-⟨ABox⟩ down L F₂ L⊨F₂) par-init : ∀ {V₁ V₂ X₁ X₂ Y₁ Y₂} → (I : Interp Σ (X₁ ⊎ X₂)) → (J₁ : Interp Σ (X₁ ⊕ V₁ ⊕ Y₁)) → (K₂ : Interp Σ (X₂ ⊕ V₂ ⊕ Y₂)) → (S : TBox Σ) → (F₁ : ABox Σ (X₁ ⊕ V₁ ⊕ Y₁)) → (F₂ : ABox Σ (X₂ ⊕ V₂ ⊕ Y₂)) → (J₁-init : J₁ ∈ Initial (inj₁ * I) (S , F₁)) → (K₂-init : K₂ ∈ Initial (go₂ I J₁ ≲⌊ init-≲ J₁-init ⌋) (S , F₂)) → (par J₁ K₂ ≲⌊ init-≲ K₂-init ⌋ ∈ Initial I (S , (F₁ ⟨&⟩ F₂))) par-init I J₁ K₂ S F₁ F₂ (I₁≲J₁ , (J⊨S , J₁⊨F₁) , J₁-med) (J₂≲K₂ , (K⊨S , K₂⊨F₂) , K₂-med) = ( par-≳ I J₁ K₂ I₁≲J₁ J₂≲K₂ , (K⊨S , par-impl J₁ K₂ ≲⌊ J₂≲K₂ ⌋ F₁ F₂ J₁⊨F₁ K₂⊨F₂) , par-mediator I J₁ K₂ I₁≲J₁ J₂≲K₂ S F₁ F₂ J₁-med K₂-med ) tensor-⊨ : ∀ {V₁ V₂ X₁ X₂ Y₁ Y₂} → (S T : TBox Σ) → (A₁ : ABox Σ X₁) → (A₂ : ABox Σ X₂) → (B₁ : ABox Σ Y₁) → (B₂ : ABox Σ Y₂) → (F₁ : ABox Σ (X₁ ⊕ V₁ ⊕ Y₁)) (F₂ : ABox Σ (X₂ ⊕ V₂ ⊕ Y₂)) → (∀ I → (I ⊨ (S , T) , A₁) → (I ⊕ S , F₁ ⊨ T , B₁)) → (∀ I → (I ⊨ (S , T) , A₂) → (I ⊕ S , F₂ ⊨ T , B₂)) → (∀ I → (I ⊨ (S , T) , (A₁ & A₂)) → (I ⊕ S , F₁ ⟨&⟩ F₂ ⊨ T , (B₁ & B₂))) tensor-⊨ {V₁} {V₂} {X₁} {X₂} {Y₁} {Y₂} S T A₁ A₂ B₁ B₂ F₁ F₂ F₁✓ F₂✓ I (I⊨ST , (I⊨A₁ , I⊨A₂)) = ( par J₁ K₂ ≲⌊ J₂≲K₂ ⌋ , par-init I J₁ K₂ S F₁ F₂ J₁-init K₂-init , par-exp J₁ K₂ ≲⌊ J₂≲K₂ ⌋ T B₁ B₂ (ext-⊨ I₁⊕SF₁⊨TB₁) (ext-⊨ J₂⊕SF₂⊨TB₂) ) where I₁ : Interp Σ X₁ I₁ = inj₁ * I I₂ : Interp Σ X₂ I₂ = inj₂ * I I₁⊨A₁ : I₁ ⊨a A₁ I₁⊨A₁ = *-resp-⟨ABox⟩ inj₁ I A₁ I⊨A₁ I₂⊨A₂ : I₂ ⊨a A₂ I₂⊨A₂ = *-resp-⟨ABox⟩ inj₂ I A₂ I⊨A₂ I₁⊕SF₁⊨TB₁ : I₁ ⊕ S , F₁ ⊨ T , B₁ I₁⊕SF₁⊨TB₁ = F₁✓ I₁ (I⊨ST , I₁⊨A₁) J₁ : Interp Σ (X₁ ⊕ V₁ ⊕ Y₁) J₁ = extension I₁⊕SF₁⊨TB₁ J₁-init : J₁ ∈ Initial I₁ (S , F₁) J₁-init = ext-init I₁⊕SF₁⊨TB₁ I₁≲J₁ : I₁ ≲ inode * J₁ I₁≲J₁ = init-≲ J₁-init J₂ : Interp Σ X₂ J₂ = go₂ I J₁ ≲⌊ I₁≲J₁ ⌋ I₂≲J₂ : I₂ ≲ J₂ I₂≲J₂ = go₂-≳ I J₁ ≲⌊ I₁≲J₁ ⌋ J⊨ST : ⌊ J₂ ⌋ ⊨t (S , T) J⊨ST = proj₁ (ext✓ I₁⊕SF₁⊨TB₁) J₂⊨A₂ : J₂ ⊨a A₂ J₂⊨A₂ = ⊨a-resp-≲ I₂≲J₂ A₂ I₂⊨A₂ J₂⊕SF₂⊨TB₂ : J₂ ⊕ S , F₂ ⊨ T , B₂ J₂⊕SF₂⊨TB₂ = F₂✓ J₂ (J⊨ST , J₂⊨A₂) K₂ : Interp Σ (X₂ ⊕ V₂ ⊕ Y₂) K₂ = extension J₂⊕SF₂⊨TB₂ K₂-init : K₂ ∈ Initial J₂ (S , F₂) K₂-init = ext-init J₂⊕SF₂⊨TB₂ J₂≲K₂ : J₂ ≲ inode * K₂ J₂≲K₂ = init-≲ K₂-init _⟨⊗⟩′_ : ∀ {S T : TBox Σ} {A₁ A₂ B₁ B₂ : Object S T} → (F₁ : A₁ ⇒ B₁) → (F₂ : A₂ ⇒ B₂) → ((A₁ ⊗ A₂) ⇒ (B₁ ⊗ B₂) w/ (BN F₁ ⊎ BN F₂)) _⟨⊗⟩′_ {S} {T} {X₁ , X₁∈Fin , A₁} {X₂ , X₂∈Fin , A₂} {Y₁ , Y₁∈Fin , B₁} {Y₂ , Y₂∈Fin , B₂} (V₁ , F₁ , F₁✓) (V₂ , F₂ , F₂✓) = (F₁ ⟨&⟩ F₂ , tensor-⊨ S T A₁ A₂ B₁ B₂ F₁ F₂ F₁✓ F₂✓) _⟨⊗⟩_ : ∀ {S T : TBox Σ} {A₁ A₂ B₁ B₂ : Object S T} → (A₁ ⇒ B₁) → (A₂ ⇒ B₂) → ((A₁ ⊗ A₂) ⇒ (B₁ ⊗ B₂)) F₁ ⟨⊗⟩ F₂ = ( (BN F₁ ⊎ BN F₂) , F₁ ⟨⊗⟩′ F₂ )
{ "alphanum_fraction": 0.4724683544, "avg_line_length": 41.4426229508, "ext": "agda", "hexsha": "a37718126c0f7db84d920671deea48307923f0ef", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:03.000Z", "max_forks_repo_forks_event_min_datetime": "2017-12-03T14:52:09.000Z", "max_forks_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/agda-web-semantic", "max_forks_repo_path": "src/Web/Semantic/DL/Category/Tensor.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab", "max_issues_repo_issues_event_max_datetime": "2021-01-04T20:57:19.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T02:32:28.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/agda-web-semantic", "max_issues_repo_path": "src/Web/Semantic/DL/Category/Tensor.agda", "max_line_length": 109, "max_stars_count": 9, "max_stars_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/agda-web-semantic", "max_stars_repo_path": "src/Web/Semantic/DL/Category/Tensor.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-14T14:21:08.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-13T17:46:41.000Z", "num_tokens": 7982, "size": 12640 }
open import Relation.Ternary.Separation module Relation.Ternary.Separation.Monad.CompleteUpdate {a} {A : Set a} {{r : RawSep A}} {u} {{ s : IsUnitalSep r u }} where open import Function open import Level hiding (Lift) open import Data.Product open import Data.Unit using (⊤) open import Relation.Unary open import Relation.Unary.PredicateTransformer using (Pt) open import Relation.Binary hiding (_⇒_) open import Relation.Binary.PropositionalEquality as P open import Relation.Ternary.Separation.Morphisms open import Relation.Ternary.Separation.Monad open import Relation.Ternary.Separation.Construct.Product open import Relation.Ternary.Separation.Construct.Market open Monads {{ bs = record { Carrier = A × A } }} (id-morph (A × A)) open ⟰_ module Update where private bind' : ∀ {p q} {P : Pred (A × A) p} {Q : Pred (A × A) q} → ∀[ (P ─✴ ⟰ Q) ⇒ (⟰ P ─✴ ⟰ Q) ] updater (app (bind' f) c σ) fr with ⊎-assoc (⊎-comm σ) fr ... | xs , σ₂ , σ₃ with updater c σ₂ ... | ys , zs , σ₄ , px with ⊎-unassoc σ₄ σ₃ ... | _ , σ₅ , σ₆ = updater (app f px (⊎-comm σ₅)) σ₆ ⟰-monad : Monad ⊤ a (λ _ _ → ⟰_) updater (Monad.return ⟰-monad px) fr = -, -, fr , px Monad.bind ⟰-monad = bind' {- updates with failure -} module UpdateWithFailure where open import Relation.Ternary.Separation.Monad.Error open import Data.Sum ⟰? : Pt (A × A) a ⟰? P = ⟰ (Err P) instance ⟰?-monad : Monad ⊤ a (λ _ _ → ⟰?) Monad.return ⟰?-monad px = Monad.return Update.⟰-monad (return px) updater (app (Monad.bind ⟰?-monad f) m σ) fr with ⊎-assoc (⊎-comm σ) fr ... | _ , σ₂ , σ₃ with updater m σ₂ ... | _ , _ , τ₁ , error = -, -, fr , error ... | _ , _ , τ₁ , partial (inj₂ v) with ⊎-unassoc τ₁ σ₃ ... | _ , τ₃ , τ₄ = updater (app f v (⊎-comm τ₃)) τ₄ ⟰error : ∀ P → ∀[ ⟰? P ] updater (⟰error _) fr = -, -, fr , error
{ "alphanum_fraction": 0.6296296296, "avg_line_length": 33.3818181818, "ext": "agda", "hexsha": "19ec29e50eb88dc3aafb15ae01605473b8c23511", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2020-05-23T00:34:36.000Z", "max_forks_repo_forks_event_min_datetime": "2020-01-30T14:15:14.000Z", "max_forks_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "laMudri/linear.agda", "max_forks_repo_path": "src/Relation/Ternary/Separation/Monad/CompleteUpdate.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "laMudri/linear.agda", "max_issues_repo_path": "src/Relation/Ternary/Separation/Monad/CompleteUpdate.agda", "max_line_length": 100, "max_stars_count": 34, "max_stars_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "laMudri/linear.agda", "max_stars_repo_path": "src/Relation/Ternary/Separation/Monad/CompleteUpdate.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-03T15:22:33.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-20T13:57:50.000Z", "num_tokens": 674, "size": 1836 }
--{-# OPTIONS --verbose 10 #-} open import ExtractSac as ES using () open import Extract (ES.kompile-fun) open import Data.Nat as N using (ℕ; zero; suc; _≤_; _≥_; _<_; s≤s; z≤n) import Data.Nat.DivMod as N open import Data.Nat.Properties as N open import Data.List as L using (List; []; _∷_) open import Data.Vec as V using (Vec; []; _∷_) import Data.Vec.Properties as V open import Data.Fin as F using (Fin; zero; suc; #_) import Data.Fin.Properties as F open import Data.Product as Prod using (Σ; _,_; curry; uncurry) renaming (_×_ to _⊗_) open import Relation.Binary.PropositionalEquality open import Reflection open import Structures open import Function open import ReflHelper open import Array.Base open import Array.Properties open import APL2 open import Agda.Builtin.Float -- Verbose facts about transitivity of <, ≤, and ≡ a≤b⇒b≡c⇒a≤c : ∀ {a b c} → a ≤ b → b ≡ c → a ≤ c a≤b⇒b≡c⇒a≤c a≤b refl = a≤b a≤b⇒a≡c⇒b≡d⇒c≤d : ∀ {a b c d} → a ≤ b → a ≡ c → b ≡ d → c ≤ d a≤b⇒a≡c⇒b≡d⇒c≤d a≤b refl refl = a≤b a<b⇒0<b : ∀ {a b} → a < b → zero < b a<b⇒0<b {a} a<b = ≤-trans (s≤s z≤n) a<b a<b⇒c≤a⇒c<b : ∀ {a b c} → a < b → c ≤ a → c < b a<b⇒c≤a⇒c<b a<b z≤n = a<b⇒0<b a<b a<b⇒c≤a⇒c<b (s≤s a<b) (s≤s c≤a) = s≤s (a<b⇒c≤a⇒c<b a<b c≤a) a≤b⇒c≤a⇒c≤b : ∀ {a b c} → a ≤ b → c ≤ a → c ≤ b a≤b⇒c≤a⇒c≤b {a} {b} {c} a≤b c≤a = ≤-trans c≤a a≤b A<B⇒B≤C⇒A≤C : ∀ {n}{ix s s₁ : Ar ℕ 1 (n ∷ [])} → ix <a s → s₁ ≥a s → s₁ ≥a ix A<B⇒B≤C⇒A≤C {ix = imap x} {imap x₁} {imap x₂} ix<s ix≤s₁ iv = ≤-trans (<⇒≤ $ ix<s iv) (ix≤s₁ iv) A≥B⇒A≡C⇒C≥B : ∀ {d s}{A B C : Ar ℕ d s} → A ≥a B → A =a C → C ≥a B A≥B⇒A≡C⇒C≥B {A = imap x} {imap x₁} {imap x₂} A≥B A≡C iv rewrite (sym $ A≡C iv) = A≥B iv -- Something that could go in Stdlib. a≤a*b : ∀ {a b} → a ≤ a N.* suc b a≤a*b {a} {b = zero} rewrite (*-identityʳ a) = ≤-refl a≤a*b {a} {b = suc b} = ≤-trans a≤a*b (*-monoʳ-≤ a (≤-step ≤-refl)) a-s[b]+1≡a-b : ∀ {a b} → b < a → a N.∸ suc b N.+ 1 ≡ a N.∸ b a-s[b]+1≡a-b {a} {b} pf = begin a N.∸ suc (b) N.+ 1 ≡⟨ sym $ N.+-∸-comm 1 pf ⟩ a N.+ 1 N.∸ suc b ≡⟨ cong₂ N._∸_ (N.+-comm a 1) (refl {x = suc b}) ⟩ a N.∸ b ∎ where open ≡-Reasoning conv-ix-inb : ∀ {n}{ix s s₁ : Ar ℕ 1 (n ∷ [])} → (ix<s : ix <a s) → (s₁≥s : s₁ ≥a s) → (s₁ - ix) {≥ = A<B⇒B≤C⇒A≤C {s₁ = s₁} ix<s s₁≥s} ≥a ((s₁ - s) {≥ = s₁≥s} + ( 1)) conv-ix-inb {ix = imap ix} {imap s} {imap s₁} ix<s s₁≥s iv = let s₁-[1+ix]≥s₁-s = ∸-monoʳ-≤ (s₁ iv) (ix<s iv) s₁-[1+ix]+1≥s₁-s+1 = +-monoˡ-≤ 1 s₁-[1+ix]≥s₁-s in a≤b⇒b≡c⇒a≤c s₁-[1+ix]+1≥s₁-s+1 (a-s[b]+1≡a-b {a = s₁ iv} {b = ix iv} (≤-trans (ix<s iv) (s₁≥s iv))) undo-lkptab : ∀ {n s₁}{ix : Ar ℕ 1 (n ∷ [])} (iv : Ix 1 (n ∷ [])) → V.lookup s₁ (ix-lookup iv zero) N.∸ sel ix iv ≡ V.lookup (V.tabulate (λ i → V.lookup s₁ i N.∸ sel ix (i ∷ []))) (ix-lookup iv zero) undo-lkptab {s₁ = s₁}{ix} (i ∷ []) = sym (V.lookup∘tabulate _ i) -- conv ← {a←⍵ ⋄ w←⍺ ⋄ ⊃+/,w×{(1+(⍴a)-⍴w)↑⍵↓a}¨⍳⍴w} infixr 20 _conv_ _conv_ : ∀ {n wₛ aₛ} → Ar Float n wₛ → Ar Float n aₛ → {≥ : ▴ aₛ ≥a ▴ wₛ} → Ar Float n $ ▾ ((aₛ - wₛ){≥} + 1) _conv_ {n = n} {wₛ = s} {aₛ = s₁} w a {s₁≥s} = let sr = (s₁ - s) {≥ = s₁≥s} + 1 idxs = ι ρ w rots ix ix<s = let ~ix≥ρa = A<B⇒B≤C⇒A≤C ix<s s₁≥s ix↓a = (ix ↓ a) {pf = ~ix≥ρa} ~ix-inb = conv-ix-inb {s₁ = s→a s₁} ix<s s₁≥s ~ρix↓a≥sr = A≥B⇒A≡C⇒C≥B ~ix-inb (undo-lkptab {s₁ = s₁}{ix = ix}) in (sr ↑ ix↓a) {pf = ~ρix↓a≥sr } r = (uncurry rots) ̈ idxs mul = w ̈⟨ _×ᵣ_ ⟩ (subst-ar (a→s∘s→a s) r) res = reduce-1d _+ᵣ_ (cst 0.0) (, mul) in res --kconv : Prog kconv = kompile _conv_ (quote _≥a_ ∷ quote reduce-1d ∷ quote _↑_ ∷ quote _↓_ ∷ []) [] -- (quote reduce-1d ∷ []) --kconvr = frefl _conv_ (quote _≥a_ ∷ quote reduce-1d ∷ quote _↑_ ∷ quote _↓_ ∷ []) --kconvr = frefl _conv_ (quote _≥a_ ∷ quote reduce-1d ∷ []) --ktake : Term --ktake = frefl _↑_ (quote _≥a_ ∷ quote reduce-1d ∷ []) test-lw : ℕ → ℕ test-lw n = case n of λ where 1 → n N.+ 5 _ → n N.+ 6 --ktest-lw = frefl test-lw [] n≤sn-i : ∀ {i n} → i N.≤ 1 → n N.≤ suc n N.∸ i n≤sn-i z≤n = <⇒≤ N.≤-refl n≤sn-i (s≤s z≤n) = N.≤-refl --test-take : ∀ {n} → Ix 1 V.[ 2 ] → Ar ℕ 1 V.[ 1 N.+ n ] → Ar ℕ 1 V.[ n ] --test-take {n} ix@(i ∷ []) a = -- let ixₐ , ix<[2] = ix→a ix -- r' = (ixₐ ↓ a) {λ where jv@(zero ∷ []) → N.≤-trans (≤-pred $ ix<[2] jv) (s≤s z≤n)} -- r = (cst n ↑ r') {λ where jv@(zero ∷ []) → n≤sn-i (≤-pred $ F.toℕ<n i) } -- in r test-take : ∀ {n} → Ix 1 V.[ 2 ] → Ar ℕ 1 V.[ 1 N.+ n ] → Ar ℕ 1 V.[ n ] test-take {n} ix@(i ∷ []) a = r where ixₐ = Prod.proj₁ $ ix→a ix ix<[2] = Prod.proj₂ $ ix→a ix r' = (ixₐ ↓ a) {λ where jv@(zero ∷ []) → N.≤-trans (≤-pred $ ix<[2] jv) (s≤s z≤n)} r = (cst n ↑ r') {λ where jv@(zero ∷ []) → n≤sn-i (≤-pred $ F.toℕ<n i) } -- XXX These guys cause an impossible state. --ktestr = frefl test-take [] --ktest : Prog --ktest = kompile test-take (quote _≥a_ ∷ quote reduce-1d ∷ quote N._≟_ ∷ quote prod ∷ quote _↑_ ∷ quote _↓_ ∷ []) [] -- multiconv←{(a ws bs)←⍵⋄bs{⍺+⍵ conv a}⍤(0,(⍴⍴a))⊢ws} multiconv : ∀ {n m s sw so} → (a : Ar Float n s) → (ws : Ar (Ar Float n sw) m so) → (bs : Ar Float m so) → {≥ : ▴ s ≥a ▴ sw} → Ar (Ar Float n $ ▾ ((s - sw){≥} + 1)) m so multiconv a ws bs {≥} = bs ̈⟨ (λ α ω → α +ᵣ (ω conv a){≥}) ⟩ ws --kmconv = kompile multiconv (quote _≥a_ ∷ quote reduce-1d ∷ quote _↑_ ∷ quote _↓_ ∷ []) [] -- (quote reduce-1d ∷ []) {- takeN : ∀ {n s} → (sh : Ar ℕ 1 (n ∷ [])) → (a : Ar ℕ n s) → {pf : s→a s ≥a sh} → Ar ℕ n $ a→s sh takeN sh a {pf} = (sh ↑ a){pf} module _ where open import Relation.Nullary dec-test : ∀ {n} → (sh : Ar ℕ 1 V.[ n ]) → Ar ℕ n (▾ sh) dec-test a with (prod $ a→s a) N.≟ 0 ... | yes p = mkempty _ p ... | no ¬p = cst 2 open import Level as L bf : Names bf = (quote _≥a_ ∷ quote reduce-1d ∷ quote N._≟_ ∷ quote prod ∷ []) kdec-test = kompile dec-test bf ([]) kdec-testR = frefl dec-test bf --kdec-testR2 = frefln dec-test bf ("Example-04._.with-350" ∷ []) ktakeN : Prog ktakeN = kompile takeN bf [] ktakeNR = frefl takeN bf --ktakeNRW = ftyn takeN bf ("APL2.with-1366" ∷ []) -} {- --This moved into bug-nat-level-- poop : ∀ {d s} → Ar ℕ d s → Ix 1 V.[ prod s ] → ℕ poop a ix = sel a (off→idx _ ix) n≤sn-i : ∀ {i n} → i ≤ 1 → n ≤ suc n N.∸ i n≤sn-i z≤n = <⇒≤ ≤-refl n≤sn-i (s≤s z≤n) = ≤-refl test-take : ∀ {n} → Ix 1 V.[ 2 ] → Ar ℕ 1 V.[ 1 N.+ n ] → Ar ℕ 1 V.[ n ] test-take {n} ix@(i ∷ []) a = let ixₐ , ix<[2] = ix→a ix r' = (ixₐ ↓ a){λ where jv@(zero ∷ []) → ≤-trans (≤-pred $ ix<[2] jv) (s≤s z≤n)} r = (cst n ↑ r'){ λ where jv@(zero ∷ []) → n≤sn-i (≤-pred $ F.toℕ<n i) } in r ktest = kompile test-take [] [] -}
{ "alphanum_fraction": 0.4629194863, "avg_line_length": 30.9444444444, "ext": "agda", "hexsha": "eec68d19f362d3cde67d48a5dbcb4ccaf03382e6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c8954c8acd8089ced82af9e05084fbbc7fedb36c", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "ashinkarov/agda-extractor", "max_forks_repo_path": "Example-04.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c8954c8acd8089ced82af9e05084fbbc7fedb36c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "ashinkarov/agda-extractor", "max_issues_repo_path": "Example-04.agda", "max_line_length": 117, "max_stars_count": 1, "max_stars_repo_head_hexsha": "c8954c8acd8089ced82af9e05084fbbc7fedb36c", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "ashinkarov/agda-extractor", "max_stars_repo_path": "Example-04.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-11T14:52:59.000Z", "max_stars_repo_stars_event_min_datetime": "2021-01-11T14:52:59.000Z", "num_tokens": 3577, "size": 7241 }
module New.Unused where open import New.Changes module _ {ℓ₁} {ℓ₂} {A : Set ℓ₁} {B : Set ℓ₂} {{CA : ChAlg A}} {{CB : ChAlg B}} where open ≡-Reasoning open import Postulate.Extensionality module _ (f : A → B) where nil-is-derivative : IsDerivative f (nil f) nil-is-derivative a da v = begin f (a ⊕ da) ≡⟨ sym (cong (λ □ → □ (_⊕_ a da)) (update-nil f)) ⟩ (f ⊕ nil f) (a ⊕ da) ≡⟨ proj₂ (nil-valid f a da v) ⟩ f a ⊕ (nil f a da) ∎ derivative-is-nil : ∀ df → IsDerivative f df → f ⊕ df ≡ f derivative-is-nil df f-df = ext (λ v → begin f v ⊕ df v (nil v) ≡⟨ sym (f-df v (nil v) (nil-valid v)) ⟩ f (v ⊕ nil v) ≡⟨ cong f (update-nil v) ⟩ f v ∎) derivative-is-valid : ∀ df (IsDerivative-f-df : IsDerivative f df) → WellDefinedFunChange f df derivative-is-valid df IsDerivative-f-df a da ada rewrite sym (IsDerivative-f-df (a ⊕ da) (nil (a ⊕ da)) (nil-valid (a ⊕ da))) | update-nil (a ⊕ da) | IsDerivative-f-df a da ada = refl equal-future-expand-derivative : ∀ df → IsDerivative f df → ∀ v1 dv1 → valid v1 dv1 → ∀ v2 → v2 ≡ v1 ⊕ dv1 → f v2 ≡ f v1 ⊕ df v1 dv1 equal-future-expand-derivative df is-derivative-f-df v1 dv1 v1dv1 v2 eq-fut = begin f v2 ≡⟨ cong f eq-fut ⟩ f (v1 ⊕ dv1) ≡⟨ is-derivative-f-df v1 dv1 v1dv1 ⟩ f v1 ⊕ df v1 dv1 ∎ -- -- equal-future-expand-derivative df is-derivative-f-df v1 dv1 v1dv1 v2 dv2 v2dv2 eq-fut = -- -- begin -- -- (f ⊕ df) (v1 ⊕ dv1) -- -- ≡⟨ cong (f ⊕ df) eq-fut ⟩ -- -- (f ⊕ df) (v2 ⊕ dv2) -- -- ≡⟨ well-defined-f-df v2 dv2 v2dv2 ⟩ -- -- f v2 ⊕ df v2 dv2 -- -- ∎ -- -- equal-future-expand-base df (derivative-is-valid df is-derivative-f-df) equal-future-base : ∀ df → WellDefinedFunChange f df → ∀ v1 dv1 → valid v1 dv1 → ∀ v2 dv2 → valid v2 dv2 → v1 ⊕ dv1 ≡ v2 ⊕ dv2 → f v1 ⊕ df v1 dv1 ≡ f v2 ⊕ df v2 dv2 equal-future-base df well-defined-f-df v1 dv1 v1dv1 v2 dv2 v2dv2 eq-fut = begin f v1 ⊕ df v1 dv1 ≡⟨ sym (well-defined-f-df v1 dv1 v1dv1) ⟩ (f ⊕ df) (v1 ⊕ dv1) ≡⟨ cong (f ⊕ df) eq-fut ⟩ (f ⊕ df) (v2 ⊕ dv2) ≡⟨ well-defined-f-df v2 dv2 v2dv2 ⟩ f v2 ⊕ df v2 dv2 ∎ equal-future-change : ∀ df → valid f df → ∀ v1 dv1 → valid v1 dv1 → ∀ v2 dv2 → valid v2 dv2 → v1 ⊕ dv1 ≡ v2 ⊕ dv2 → f v1 ⊕ df v1 dv1 ≡ f v2 ⊕ df v2 dv2 equal-future-change df fdf = equal-future-base df (λ a da ada → proj₂ (fdf a da ada)) equal-future-derivative : ∀ df → IsDerivative f df → ∀ v1 dv1 → valid v1 dv1 → ∀ v2 dv2 → valid v2 dv2 → v1 ⊕ dv1 ≡ v2 ⊕ dv2 → f v1 ⊕ df v1 dv1 ≡ f v2 ⊕ df v2 dv2 equal-future-derivative df is-derivative-f-df = equal-future-base df (derivative-is-valid df is-derivative-f-df)
{ "alphanum_fraction": 0.5184079602, "avg_line_length": 31.7368421053, "ext": "agda", "hexsha": "d221a7bd75ccad9bcab310b856c48c63f0fe233d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "inc-lc/ilc-agda", "max_forks_repo_path": "New/Unused.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z", "max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "inc-lc/ilc-agda", "max_issues_repo_path": "New/Unused.agda", "max_line_length": 97, "max_stars_count": 10, "max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "inc-lc/ilc-agda", "max_stars_repo_path": "New/Unused.agda", "max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z", "num_tokens": 1232, "size": 3015 }
{-# OPTIONS --safe --without-K #-} open import Relation.Binary.PropositionalEquality using (refl) open import Relation.Nullary using (yes) open import Data.Unit using (⊤; tt) open import Data.Product using (_,_) open import Data.Sum using (inj₁) open import PiCalculus.LinearTypeSystem.Algebras module PiCalculus.LinearTypeSystem.Algebras.Shared where pattern ω = tt Shared : Algebra ⊤ Algebra.0∙ Shared = ω Algebra.1∙ Shared = ω Algebra._≔_∙_ Shared _ _ _ = ⊤ Algebra.∙-computeʳ Shared _ _ = yes (ω , tt) Algebra.∙-unique Shared _ _ = refl Algebra.∙-uniqueˡ Shared _ _ = refl Algebra.0∙-minˡ Shared _ = refl Algebra.∙-idˡ Shared = tt Algebra.∙-comm Shared _ = tt Algebra.∙-assoc Shared _ _ = ω , tt , tt
{ "alphanum_fraction": 0.7285513361, "avg_line_length": 26.3333333333, "ext": "agda", "hexsha": "ea60cde9ba9dfaefde64e6ee3e8ac64eb48230c6", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-14T16:24:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-01-25T13:57:13.000Z", "max_forks_repo_head_hexsha": "0fc3cf6bcc0cd07d4511dbe98149ac44e6a38b1a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "guilhermehas/typing-linear-pi", "max_forks_repo_path": "src/PiCalculus/LinearTypeSystem/Algebras/Shared.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0fc3cf6bcc0cd07d4511dbe98149ac44e6a38b1a", "max_issues_repo_issues_event_max_datetime": "2022-03-15T09:16:14.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-15T09:16:14.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "guilhermehas/typing-linear-pi", "max_issues_repo_path": "src/PiCalculus/LinearTypeSystem/Algebras/Shared.agda", "max_line_length": 62, "max_stars_count": 26, "max_stars_repo_head_hexsha": "0fc3cf6bcc0cd07d4511dbe98149ac44e6a38b1a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "guilhermehas/typing-linear-pi", "max_stars_repo_path": "src/PiCalculus/LinearTypeSystem/Algebras/Shared.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-14T15:18:23.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-02T23:32:11.000Z", "num_tokens": 241, "size": 711 }
{-# OPTIONS --without-K #-} open import container.core module container.w.fibration {li la lb}(c : Container li la lb) where open import sum open import equality open import function open import container.w.core open import container.w.algebra c open import hott.level open Container c AlgFib : ∀ ℓ → Set _ AlgFib ℓ = Σ ((i : I) → W c i → Set ℓ) λ P → (∀ i x → ((b : B (proj₁ x)) → P (r b) (proj₂ x b)) → P i (inW c i x)) AlgSection : ∀ {ℓ} (𝓟 : AlgFib ℓ) → Set _ AlgSection (P , θ) = Σ (∀ i x → P i x) λ f → _≡_ {A = ∀ i x → P i (inW c i x)} (λ i x → θ i x (λ b → f (r b) (proj₂ x b))) (λ i x → f i (inW c i x)) alg-total : ∀ {ℓ} → AlgFib ℓ → Alg _ alg-total (P , θ) = X , ψ where X : I → Set _ X i = Σ (W c i) (P i) ψ : F X →ⁱ X ψ i (a , u) = inW c i (a , λ b → proj₁ (u b)) , θ i (a , λ b → proj₁ (u b)) (λ b → proj₂ (u b)) module _ {ℓ} (𝓟 : AlgFib ℓ) where private 𝓧 = alg-total 𝓟 open Σ 𝓟 renaming (proj₁ to P ; proj₂ to θ) open Σ (alg-total 𝓟) renaming (proj₁ to X ; proj₂ to ψ) section : AlgSection 𝓟 section = f₀ , refl where f₀ : ∀ i x → P i x f₀ i (sup a u) = θ i (a , u) (λ b → f₀ (r b) (u b)) private split-lem : ∀ {ℓ'} (Y : I → Set ℓ') → (Y →ⁱ X) ≅ ( Σ (Y →ⁱ W c) λ g₀ → ∀ i x → P i (g₀ i x) ) split-lem Y = sym≅ (curry-iso (λ i _ → X i)) ·≅ ΠΣ-swap-iso ·≅ Σ-ap-iso (curry-iso (λ i _ → W c i)) (λ g₀ → curry-iso (λ i x → P i (g₀ (i , x)))) section-mor-iso : Mor 𝓦 𝓧 ≅ AlgSection 𝓟 section-mor-iso = begin ( Σ (W c →ⁱ X) λ f → ψ ∘ⁱ imap f ≡ f ∘ⁱ inW c ) ≅⟨ Σ-ap-iso (split-lem (W c)) (λ _ → refl≅) ⟩ ( Σ (Σ (W c →ⁱ W c) λ f₀ → ∀ i → (w : W c i) → P i (f₀ i w)) λ { (f₀ , f₁) → _≡_ {A = ∀ i (x : F (W c) i) → X i} (λ i x → let x' = imap f₀ i x in (inW c i x' , θ i x' (λ b → f₁ (r b) (proj₂ x b)))) (λ i x → (f₀ i (inW c i x) , f₁ i (inW c i x))) } ) ≅⟨ ( Σ-ap-iso refl≅ λ { (f₀ , f₁) → iso≡ (split-lem (F (W c))) ·≅ sym≅ Σ-split-iso } ) ⟩ ( Σ (Σ (W c →ⁱ W c) λ f₀ → ∀ i → (w : W c i) → P i (f₀ i w)) λ { (f₀ , f₁) → Σ ( _≡_ {A = ∀ i (x : F (W c) i) → W c i} (λ i x → inW c i (imap f₀ i x)) (λ i x → f₀ i (inW c i x)) ) λ eq → subst (λ g → ∀ i (x : F (W c) i) → P i (g i x)) eq (λ i x → θ i (imap f₀ i x) (λ b → f₁ (r b) (proj₂ x b))) ≡ (λ i x → f₁ i (inW c i x)) } ) ≅⟨ record { to = λ { ((f₀ , f₁) , (α₀ , α₁)) → ((f₀ , α₀) , (f₁ , α₁)) } ; from = λ { ((f₀ , α₀) , (f₁ , α₁)) → ((f₀ , f₁) , (α₀ , α₁)) } ; iso₁ = λ { ((f₀ , f₁) , (α₀ , α₁)) → refl } ; iso₂ = λ { ((f₀ , α₀) , (f₁ , α₁)) → refl } } ⟩ ( Σ ( Σ (∀ i → W c i → W c i) λ f₀ → ( _≡_ {A = ∀ i (x : F (W c) i) → W c i} (λ i x → inW c i (imap f₀ i x)) (λ i x → f₀ i (inW c i x)) ) ) λ { (f₀ , eq) → Σ (∀ i w → P i (f₀ i w)) λ f₁ → subst (λ g → ∀ i (x : F (W c) i) → P i (g i x)) eq (λ i x → θ i (imap f₀ i x) (λ b → f₁ (r b) (proj₂ x b))) ≡ (λ i x → f₁ i (inW c i x)) } ) ≅⟨ sym≅ ( Σ-ap-iso (sym≅ (contr-⊤-iso W-initial-W)) λ _ → refl≅ ) ·≅ ×-left-unit ⟩ ( Σ (∀ i w → P i w) λ f₁ → (λ i x → θ i x (λ b → f₁ (r b) (proj₂ x b))) ≡ (λ i x → f₁ i (inW c i x)) ) ∎ where open ≅-Reasoning W-section-contr : contr (AlgSection 𝓟) W-section-contr = iso-level section-mor-iso (W-initial 𝓧)
{ "alphanum_fraction": 0.4093922652, "avg_line_length": 36.5656565657, "ext": "agda", "hexsha": "8e40ab3f7a26ac24bce3894d9e0196c4f5fbc144", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-02-26T06:17:38.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-11T17:19:12.000Z", "max_forks_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "HoTT/M-types", "max_forks_repo_path": "container/w/fibration.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/container/w/fibration.agda", "max_line_length": 86, "max_stars_count": 27, "max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "HoTT/M-types", "max_stars_repo_path": "container/w/fibration.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z", "num_tokens": 1638, "size": 3620 }
open import FRP.JS.String using ( _≟_ ) open import FRP.JS.Bool using ( Bool ; true ; false ; if_then_else_ ; _∧_ ; _∨_ ; not ; _xor_ ) open import FRP.JS.QUnit using ( TestSuite ; ok ; test ; _,_ ) module FRP.JS.Test.Bool where tests : TestSuite tests = ( test "true" ( ok "true" true ) , test "false" ( ok "false" (not false) ) , test "if" ( ok "if true" (if true then "a" else "b" ≟ "a") , ok "if false" (if false then "a" else "b" ≟ "b") ) , test "∧" ( ok "true ∧ true" (true ∧ true) , ok "true ∧ false" (not (true ∧ false)) , ok "false ∧ true" (not (false ∧ true)) , ok "false ∧ false" (not (false ∧ false)) ) , test "∨" ( ok "true ∨ true" (true ∨ true) , ok "true ∨ false" (true ∨ false) , ok "false ∨ true" (false ∨ true) , ok "false ∨ false" (not (false ∨ false)) ) , test "xor" ( ok "true xor true" (not (true xor true)) , ok "true xor false" (true xor false) , ok "false xor true" (false xor true) , ok "false xor false" (not (false xor false)) ) )
{ "alphanum_fraction": 0.5473684211, "avg_line_length": 33.7096774194, "ext": "agda", "hexsha": "5f5b4e695dbbab1f57436b520414f35e42c828dc", "lang": "Agda", "max_forks_count": 7, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:38.000Z", "max_forks_repo_forks_event_min_datetime": "2016-11-07T21:50:58.000Z", "max_forks_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_forks_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_forks_repo_name": "agda/agda-frp-js", "max_forks_repo_path": "test/agda/FRP/JS/Test/Bool.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_issues_repo_name": "agda/agda-frp-js", "max_issues_repo_path": "test/agda/FRP/JS/Test/Bool.agda", "max_line_length": 95, "max_stars_count": 63, "max_stars_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_stars_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_stars_repo_name": "agda/agda-frp-js", "max_stars_repo_path": "test/agda/FRP/JS/Test/Bool.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-28T09:46:14.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-20T21:47:00.000Z", "num_tokens": 378, "size": 1045 }
{-# OPTIONS --without-K --exact-split #-} import 05-identity-types open 05-identity-types public -- Inversion is uninteresting and comes from: inversion-proof : {i : Level} {A : UU i} (x : A) → (y : A) → Id x y → Id y x inversion-proof x y = ind-Id x (λ y' p' → Id y' x) refl y lemma-2-2-2-i : {i j : Level} {A : UU i} {B : UU j} (x y z : A) (f : A → B) → (p : Id x y) → (q : Id y z) → Id (ap f (p ∙ q)) ((ap f p) ∙ (ap f q)) lemma-2-2-2-i x y z f refl q = refl -- We apparently don't need a second induction on q.. lemma-2-2-2-ii : {i j : Level} {A : UU i} {B : UU j} (x y : A) (f : A → B) → (p : Id x y) → Id (ap f (inv p)) (inv (ap f p)) lemma-2-2-2-ii x y f refl = refl lemma-2-2-2-iii : {i j k : Level} {A : UU i} {B : UU j} {C : UU k} (x y : A) (f : A → B) → (g : B → C) → (p : Id x y) → Id (ap g (ap f p)) (ap (g ∘ f) p) lemma-2-2-2-iii x y f g refl = refl lemma-2-2-2-iv : {i j k : Level} {A : UU i} {B : UU j} {C : UU k} (x y : A) → (p : Id x y) → Id (ap (λ x → x) p) p lemma-2-2-2-iv x y refl = refl -- Path lifting property lemma-2-3-2 : {i j : Level} {A : UU i} {P : A → UU j} (x y : A) (u : P x) → (p : Id x y) → Id (pair x u) (pair y (tr P p u)) lemma-2-3-2 x y u refl = refl lemma-2-3-9 : {i j : Level} {A : UU i} {P : A → UU j} (x y z : A) (u : P x) → (p : Id x y) → (q : Id y z) → Id (tr P q (tr P p u)) (tr P (p ∙ q) u) lemma-2-3-9 x y z u refl q = refl lemma-2-3-10 : {i j k : Level} {A : UU i} {B : UU j} {P : B → UU k} (x y : A) (f : A → B) (u : P (f x)) → (p : Id x y) → Id (tr (P ∘ f) p u) (tr P (ap f p) u) lemma-2-3-10 x y f u refl = refl lemma-2-3-11 : {i j k : Level} {A : UU i} {P : A → UU j} {Q : A → UU k} (x y : A) (f : (z : A) → P z → Q z) (u : P x) → (p : Id x y) → Id (tr Q p (f x u)) (f y (tr P p u)) lemma-2-3-11 x y f u refl = refl -- Eckert-Hamilton -- First, the loop loop-type : {i : Level} {A : UU i} (x : A) → UU i loop-type x = Id x x order-2-star : {i : Level} {A : UU i} (a b c : A) → (p q : Id a b) → (r s : Id b c) → (alpha : Id p q) → (beta : Id r s) → Id (concat p c r) (concat q c s) order-2-star a b c refl q refl s refl refl = refl left-whisker : {i : Level} {A : UU i} (a b c : A) → (p q : Id a b) → (r : Id b c) → (alpha : Id p q) → Id (concat p c r) (concat q c r) left-whisker a b c refl refl r refl = refl right-whisker : {i : Level} {A : UU i} (a b c : A) → (p : Id a b) → (r s : Id b c) → (beta : Id r s) → Id (concat p c r) (concat p c s) right-whisker a b c p refl refl refl = refl -- TODO: Eckmann Hilton -- 2.4: the equivalence of functions, quasi-inverses -- `Sim-By` might be poorly set up since it basically takes the witness of what it -- actually should just be. (../07- has the correct stuff.) data Homotopic-Fn {i j : Level} (A : UU i) (B : UU j) (f g : A → B) : UU (i ⊔ j) where Sim-By : ((x : A) → (Id (f x) (g x))) → Homotopic-Fn A B f g data Is-Equiv {i j : Level} {A : UU i} {B : UU j} (f : A → B) : UU (i ⊔ j) where With-Qinv : (g : B → A) → (Homotopic-Fn A A (g ∘ f) (λ x → x)) → (Homotopic-Fn B B (f ∘ g) (λ x → x)) → Is-Equiv f -- Relying on the book's lemma 2.4.12, we're just using the above for type equivalence data Equiv-Types {i j : Level} (A : UU i) (B : UU j) : UU (i ⊔ j) where Eq-By : (Σ (A → B) Is-Equiv) → Equiv-Types A B -- 2.6.1 product-functoriality : {i j : Level} {A : UU i} {B : UU j} (x y : prod A B) → (Id x y) → (prod (Id (pr1 x) (pr1 y)) (Id (pr2 x) (pr2 y))) product-functoriality x y refl = pair refl refl -- 2.6.2 pair= : {i j : Level} {A : UU i} {B : UU j} (a₁ a₂ : A) → (b₁ b₂ : B) → (prod (Id a₁ a₂) (Id b₁ b₂)) → (Id (pair a₁ b₁) (pair a₂ b₂)) pair= a₁ a₂ b₁ b₂ (pair refl refl) = refl -- This is a bit of laziness to exhibit both bits of the proof with the same a₁ etc. -- The point is to show that product-functoriality and pair= are quasi-inverses. functoriality-is-equiv-to-2-6-2 : {i j : Level} {A : UU i} {B : UU j} {a₁ a₂ : A} {b₁ b₂ : B} → -- First two bindings give us shorthands for the proper invocations of the above -- functions (currying away aₙ and bₙ). let functorial = (product-functoriality (pair a₁ b₁) (pair a₂ b₂)) 2-6-2 = (pair= a₁ a₂ b₁ b₂) thm-after-funct = (Homotopic-Fn (prod (Id a₁ a₂) (Id b₁ b₂)) (prod (Id a₁ a₂) (Id b₁ b₂)) (λ x → x) (functorial ∘ 2-6-2)) funct-after-thm = (Homotopic-Fn (Id (pair a₁ b₁) (pair a₂ b₂)) (Id (pair a₁ b₁) (pair a₂ b₂)) (2-6-2 ∘ functorial) (λ x → x)) in (prod thm-after-funct funct-after-thm) functoriality-is-equiv-to-2-6-2 = pair (Sim-By (λ {(pair refl refl) → refl})) (Sim-By (λ {refl → refl})) -- 2.6.4 pair-transport : {i j k : Level} {Z : UU k} {A : Z → UU i} {B : Z → UU j} (z w : Z) → (p : Id z w) → (x : prod (A z) (B z)) → (Id (tr (λ z → (prod (A z) (B z))) p x) (pair (tr A p (pr1 x)) (tr B p (pr2 x)))) pair-transport z w refl (pair az bz) = refl -- 2.6.5 ap-functorial : {i j k l : Level} {A : UU i} {A' : UU j} {B : UU k} {B' : UU l} (g : A → A') → (h : B → B') → (x y : prod A B) → (p : Id (pr1 x) (pr1 y)) → (q : Id (pr2 x) (pr2 y)) → let pf= = (pair= (pr1 x) (pr1 y) (pr2 x) (pr2 y)) pgh = (pair= (g (pr1 x)) (g (pr1 y)) (h (pr2 x)) (h (pr2 y))) f = (λ x → pair (g (pr1 x)) (h (pr2 x))) in Id (ap f (pf= (pair p q))) (pgh (pair (ap g p) (ap h q))) ap-functorial g h (pair aₓ bₓ) (pair ay by) refl refl = refl -- 2.9: Extensionality happly : {i j : Level} {A : UU i} {B : A → UU j} (f g : (x : A) → B(x)) → (Id f g) → ((x : A) → (Id (f x) (g x))) happly f g refl = λ x → refl postulate fn-ext : Is-Equiv happly dependent-fn-transport : {i j : Level} {X : UU i} (A : X → UU j) → (B : (x : X) → A x → UU (i ⊔ j)) (x₁ x₂ : X) → (Id x₁ x₂) → (f : (a : A x₁) → (B x₁ a)) → (A x₂) → ((a : A x₂) → (B x₂ a)) dependent-fn-transport A B x₁ x₂ refl f a = tr (B-hat B) (pair= x₁ x₂ (tr A refl a) a (pair refl refl)) (f (tr A refl a)) where B-hat : {i j : Level} {X : UU i} {A : X → UU j} (B : (x : X) → A x → UU (i ⊔ j)) → (Σ X (λ x → A x)) → UU (i ⊔ j) B-hat B w = B (pr1 w) (pr2 w)
{ "alphanum_fraction": 0.481768813, "avg_line_length": 41.3141025641, "ext": "agda", "hexsha": "f8ef409b6e0c8ad4a8b23abf3726894ed2331190", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "hemangandhi/HoTT-Intro", "max_forks_repo_path": "Agda/univalent-hott/2-homotopy-type-theory.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "hemangandhi/HoTT-Intro", "max_issues_repo_path": "Agda/univalent-hott/2-homotopy-type-theory.agda", "max_line_length": 117, "max_stars_count": null, "max_stars_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "hemangandhi/HoTT-Intro", "max_stars_repo_path": "Agda/univalent-hott/2-homotopy-type-theory.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2791, "size": 6445 }
module Semantics.Substitution where open import Semantics.Substitution.Kits public open import Semantics.Substitution.Traversal public open import Semantics.Substitution.Instances public open import Semantics.Substitution.Soundness public
{ "alphanum_fraction": 0.8755186722, "avg_line_length": 30.125, "ext": "agda", "hexsha": "93ef88cf003a5bb2257ca7cdabbc744793fb039d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DimaSamoz/temporal-type-systems", "max_forks_repo_path": "src/Semantics/Substitution.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DimaSamoz/temporal-type-systems", "max_issues_repo_path": "src/Semantics/Substitution.agda", "max_line_length": 51, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DimaSamoz/temporal-type-systems", "max_stars_repo_path": "src/Semantics/Substitution.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-04T09:33:48.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-31T20:37:04.000Z", "num_tokens": 48, "size": 241 }
{-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module Verification.CorruptFormalisations where open import FOTC.Base open import FOTC.Base.List open import FOTC.Base.Loop open import FOTC.Program.ABP.Terms ------------------------------------------------------------------------------ -- Corrupt as a constant. module Constant where postulate corrupt : D corrupt-T : ∀ os x xs → corrupt · (T ∷ os) · (x ∷ xs) ≡ ok x ∷ corrupt · os · xs corrupt-F : ∀ os x xs → corrupt · (F ∷ os) · (x ∷ xs) ≡ error ∷ corrupt · os · xs -- Corrupt as a binary function. module BinaryFunction where postulate corrupt : D → D → D corrupt-T : ∀ os x xs → corrupt (T ∷ os) (x ∷ xs) ≡ ok x ∷ corrupt os xs corrupt-F : ∀ os x xs → corrupt (F ∷ os) (x ∷ xs) ≡ error ∷ corrupt os xs
{ "alphanum_fraction": 0.5101832994, "avg_line_length": 30.6875, "ext": "agda", "hexsha": "10662b02868e1d6bc108be2d4eded6d818cf0c57", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/thesis/report/Verification/CorruptFormalisations.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/thesis/report/Verification/CorruptFormalisations.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/thesis/report/Verification/CorruptFormalisations.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 269, "size": 982 }
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.types.Span open import lib.types.Pointed open import lib.types.Pushout open import lib.types.PushoutFlattening open import lib.types.Unit open import lib.types.Paths open import lib.cubical.Square -- Suspension is defined as a particular case of pushout module lib.types.Suspension where module _ {i} (A : Type i) where suspension-span : Span suspension-span = span Unit Unit A (λ _ → tt) (λ _ → tt) Suspension : Type i Suspension = Pushout suspension-span north : Suspension north = left tt south : Suspension south = right tt merid : A → north == south merid x = glue x module SuspensionElim {j} {P : Suspension → Type j} (n : P north) (s : P south) (p : (x : A) → n == s [ P ↓ merid x ]) = PushoutElim (λ _ → n) (λ _ → s) p open SuspensionElim public using () renaming (f to Suspension-elim) module SuspensionRec {j} {C : Type j} (n s : C) (p : A → n == s) = PushoutRec {d = suspension-span} (λ _ → n) (λ _ → s) p module SuspensionRecType {j} (n s : Type j) (p : A → n ≃ s) = PushoutRecType {d = suspension-span} (λ _ → n) (λ _ → s) p suspension-⊙span : ∀ {i} → Ptd i → ⊙Span suspension-⊙span X = ⊙span ⊙Unit ⊙Unit X (⊙cst {X = X}) (⊙cst {X = X}) ⊙Susp : ∀ {i} → Ptd i → Ptd i ⊙Susp (A , _) = ⊙[ Suspension A , north A ] σloop : ∀ {i} (X : Ptd i) → fst X → north (fst X) == north (fst X) σloop (_ , x₀) x = merid _ x ∙ ! (merid _ x₀) σloop-pt : ∀ {i} {X : Ptd i} → σloop X (snd X) == idp σloop-pt {X = (_ , x₀)} = !-inv-r (merid _ x₀) module FlipSusp {i} {A : Type i} = SuspensionRec A (south A) (north A) (! ∘ merid A) flip-susp : ∀ {i} {A : Type i} → Suspension A → Suspension A flip-susp = FlipSusp.f ⊙flip-susp : ∀ {i} (X : Ptd i) → fst (⊙Susp X ⊙→ ⊙Susp X) ⊙flip-susp X = (flip-susp , ! (merid _ (snd X))) module _ {i j} where module SuspFmap {A : Type i} {B : Type j} (f : A → B) = SuspensionRec A (north B) (south B) (merid B ∘ f) susp-fmap : {A : Type i} {B : Type j} (f : A → B) → (Suspension A → Suspension B) susp-fmap = SuspFmap.f ⊙susp-fmap : {X : Ptd i} {Y : Ptd j} (f : fst (X ⊙→ Y)) → fst (⊙Susp X ⊙→ ⊙Susp Y) ⊙susp-fmap (f , fpt) = (susp-fmap f , idp) module _ {i} where susp-fmap-idf : (A : Type i) → ∀ a → susp-fmap (idf A) a == a susp-fmap-idf A = Suspension-elim _ idp idp $ λ a → ↓-='-in (ap-idf (merid _ a) ∙ ! (SuspFmap.glue-β (idf A) a)) ⊙susp-fmap-idf : (X : Ptd i) → ⊙susp-fmap (⊙idf X) == ⊙idf (⊙Susp X) ⊙susp-fmap-idf X = ⊙λ= (susp-fmap-idf (fst X)) idp module _ {i j} where susp-fmap-cst : {A : Type i} {B : Type j} (b : B) (a : Suspension A) → susp-fmap (cst b) a == north _ susp-fmap-cst b = Suspension-elim _ idp (! (merid _ b)) $ (λ a → ↓-app=cst-from-square $ SuspFmap.glue-β (cst b) a ∙v⊡ tr-square _) ⊙susp-fmap-cst : {X : Ptd i} {Y : Ptd j} → ⊙susp-fmap (⊙cst {X = X} {Y = Y}) == ⊙cst ⊙susp-fmap-cst = ⊙λ= (susp-fmap-cst _) idp module _ {i j k} where susp-fmap-∘ : {A : Type i} {B : Type j} {C : Type k} (g : B → C) (f : A → B) (σ : Suspension A) → susp-fmap (g ∘ f) σ == susp-fmap g (susp-fmap f σ) susp-fmap-∘ g f = Suspension-elim _ idp idp (λ a → ↓-='-in $ ap-∘ (susp-fmap g) (susp-fmap f) (merid _ a) ∙ ap (ap (susp-fmap g)) (SuspFmap.glue-β f a) ∙ SuspFmap.glue-β g (f a) ∙ ! (SuspFmap.glue-β (g ∘ f) a)) ⊙susp-fmap-∘ : {X : Ptd i} {Y : Ptd j} {Z : Ptd k} (g : fst (Y ⊙→ Z)) (f : fst (X ⊙→ Y)) → ⊙susp-fmap (g ⊙∘ f) == ⊙susp-fmap g ⊙∘ ⊙susp-fmap f ⊙susp-fmap-∘ g f = ⊙λ= (susp-fmap-∘ (fst g) (fst f)) idp {- Extract the 'glue component' of a pushout -} module _ {i j k} {s : Span {i} {j} {k}} where module ExtGlue = PushoutRec {d = s} {D = Suspension (Span.C s)} (λ _ → north _) (λ _ → south _) (merid _) ext-glue = ExtGlue.f module _ {i j k} {s : Span {i} {j} {k}} {x₀ : Span.A s} where ⊙ext-glue : fst ((Pushout s , left x₀) ⊙→ (Suspension (Span.C s) , north _)) ⊙ext-glue = (ext-glue , idp)
{ "alphanum_fraction": 0.5584802583, "avg_line_length": 29.8296296296, "ext": "agda", "hexsha": "2815ad54f26d8d64e26fa63c4bbeba23db75468d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "lib/types/Suspension.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "lib/types/Suspension.agda", "max_line_length": 78, "max_stars_count": 1, "max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda", "max_stars_repo_path": "lib/types/Suspension.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z", "num_tokens": 1691, "size": 4027 }
module BBHeap.Properties {A : Set}(_≤_ : A → A → Set) where open import BBHeap _≤_ open import BBHeap.Perfect _≤_ open import Bound.Lower A open import Bound.Lower.Order _≤_ open import Data.Empty sym≃ : {b b' : Bound}{h : BBHeap b}{h' : BBHeap b'} → h ≃ h' → h' ≃ h sym≃ ≃lf = ≃lf sym≃ (≃nd b≤x b'≤x' l⋘r l'⋘r' l≃r l'≃r' l≃l') = ≃nd b'≤x' b≤x l'⋘r' l⋘r l'≃r' l≃r (sym≃ l≃l') trans≃ : {b b' b'' : Bound}{h : BBHeap b}{h' : BBHeap b'}{h'' : BBHeap b''} → h ≃ h' → h' ≃ h'' → h ≃ h'' trans≃ ≃lf ≃lf = ≃lf trans≃ (≃nd b≤x b'≤x' l⋘r l'⋘r' l≃r _ l≃l') (≃nd .b'≤x' b''≤x'' .l'⋘r' l''⋘r'' _ l''≃r'' l'≃l'') = ≃nd b≤x b''≤x'' l⋘r l''⋘r'' l≃r l''≃r'' (trans≃ l≃l' l'≃l'') lemma≃ : {b b' : Bound}{h : BBHeap b}{h' : BBHeap b'} → h ≃ h' → h ⋘ h' lemma≃ ≃lf = lf⋘ lemma≃ (≃nd b≤x b'≤x' l⋘r l'⋘r' l≃r l'≃r' l≃l') = ll⋘ b≤x b'≤x' l⋘r l'⋘r' l'≃r' (trans≃ (sym≃ l≃r) l≃l') lemma⋗≃ : {b b' b'' : Bound}{h : BBHeap b}{h' : BBHeap b'}{h'' : BBHeap b''} → h ⋗ h' → h' ≃ h'' → h ⋗ h'' lemma⋗≃ (⋗lf b≤x) ≃lf = ⋗lf b≤x lemma⋗≃ (⋗nd b≤x b'≤x' l⋘r l'⋘r' l≃r _ l⋗l') (≃nd .b'≤x' b''≤x'' .l'⋘r' l''⋘r'' _ l''≃r'' l'≃l'') = ⋗nd b≤x b''≤x'' l⋘r l''⋘r'' l≃r l''≃r'' (lemma⋗≃ l⋗l' l'≃l'') lemma⋗ : {b b' : Bound}{h : BBHeap b}{h' : BBHeap b'} → h ⋗ h' → h ⋙ h' lemma⋗ (⋗lf b≤x) = ⋙lf b≤x lemma⋗ (⋗nd b≤x b'≤x' l⋘r l'⋘r' l≃r l'≃r' l⋗l') = ⋙rl b≤x b'≤x' l⋘r l≃r l'⋘r' (lemma⋗≃ l⋗l' l'≃r') lemma⋗⋗ : {b b' b'' : Bound}{h : BBHeap b}{h' : BBHeap b'}{h'' : BBHeap b''} → h ⋗ h' → h'' ⋗ h' → h ≃ h'' lemma⋗⋗ (⋗lf b≤x) (⋗lf b''≤x'') = ≃nd b≤x b''≤x'' lf⋘ lf⋘ ≃lf ≃lf ≃lf lemma⋗⋗ (⋗nd b≤x b'≤x' l⋘r l'⋘r' l≃r _ l⋗l') (⋗nd b''≤x'' .b'≤x' l''⋘r'' .l'⋘r' l''≃r'' _ l''⋗l') = ≃nd b≤x b''≤x'' l⋘r l''⋘r'' l≃r l''≃r'' (lemma⋗⋗ l⋗l' l''⋗l') lemma⋗⋗' : {b b' b'' : Bound}{h : BBHeap b}{h' : BBHeap b'}{h'' : BBHeap b''} → h ⋗ h' → h ⋗ h'' → h' ≃ h'' lemma⋗⋗' (⋗lf b≤x) (⋗nd .b≤x _ .lf⋘ _ _ _ ()) lemma⋗⋗' (⋗nd .b≤x _ .lf⋘ _ _ _ ()) (⋗lf b≤x) lemma⋗⋗' (⋗lf b≤x) (⋗lf .b≤x) = ≃lf lemma⋗⋗' (⋗nd b≤x b'≤x' l⋘r l'⋘r' _ l'≃r' l⋗l') (⋗nd .b≤x b''≤x'' .l⋘r l''⋘r'' _ l''≃r'' l⋗l'') = ≃nd b'≤x' b''≤x'' l'⋘r' l''⋘r'' l'≃r' l''≃r'' (lemma⋗⋗' l⋗l' l⋗l'') lemma≃⋗ : {b b' b'' : Bound}{h : BBHeap b}{h' : BBHeap b'}{h'' : BBHeap b''} → h ≃ h' → h' ⋗ h'' → h ⋗ h'' lemma≃⋗ (≃nd b≤x b'≤x' l⋘r l'⋘r' l≃r _ l≃l') (⋗nd .b'≤x' b''≤x'' .l'⋘r' l''⋘r'' _ l''≃r'' l'⋗l'') = ⋗nd b≤x b''≤x'' l⋘r l''⋘r'' l≃r l''≃r'' (lemma≃⋗ l≃l' l'⋗l'') lemma≃⋗ (≃nd b≤x b'≤x' lf⋘ lf⋘ ≃lf ≃lf ≃lf) (⋗lf .b'≤x') = ⋗lf b≤x lemma-⋘-≃ : {b b' b'' : Bound}{h : BBHeap b}{h' : BBHeap b'}{h'' : BBHeap b''} → h ⋘ h' → h' ≃ h'' → h ⋘ h'' lemma-⋘-≃ lf⋘ ≃lf = lf⋘ lemma-⋘-≃ (ll⋘ b≤x b'≤x' l⋘r l'⋘r' _ r≃l') (≃nd .b'≤x' b''≤x'' .l'⋘r' l''⋘r'' _ l''≃r'' l'≃l'') = ll⋘ b≤x b''≤x'' l⋘r l''⋘r'' l''≃r'' (trans≃ r≃l' l'≃l'') lemma-⋘-≃ (lr⋘ b≤x b'≤x' l⋙r l'⋘r' _ l⋗l') (≃nd .b'≤x' b''≤x'' .l'⋘r' l''⋘r'' _ l''≃r'' l'≃l'') = lr⋘ b≤x b''≤x'' l⋙r l''⋘r'' l''≃r'' (lemma⋗≃ l⋗l' l'≃l'') lemma-≃-⋙ : {b b' b'' : Bound}{h : BBHeap b}{h' : BBHeap b'}{h'' : BBHeap b''} → h ≃ h' → h' ⋙ h'' → h ⋙ h'' lemma-≃-⋙ (≃nd b≤x b'≤x' lf⋘ lf⋘ ≃lf ≃lf ≃lf) (⋙lf .b'≤x') = ⋙lf b≤x lemma-≃-⋙ (≃nd b≤x b'≤x' l⋘r l'⋘r' l≃r _ l≃l') (⋙rl .b'≤x' b''≤x'' .l'⋘r' _ l''⋘r'' l'⋗r'') = ⋙rl b≤x b''≤x'' l⋘r l≃r l''⋘r'' (lemma≃⋗ l≃l' l'⋗r'') lemma-≃-⋙ (≃nd b≤x b'≤x' l⋘r l'⋘r' l≃r _ l≃l') (⋙rr .b'≤x' b''≤x'' .l'⋘r' _ l''⋙r'' l'≃l'') = ⋙rr b≤x b''≤x'' l⋘r l≃r l''⋙r'' (trans≃ l≃l' l'≃l'') lemma-⋘-⋗ : {b b' b'' : Bound}{h : BBHeap b}{h' : BBHeap b'}{h'' : BBHeap b''} → h ⋘ h' → h'' ⋗ h' → h'' ⋙ h lemma-⋘-⋗ lf⋘ (⋗lf b≤x) = ⋙lf b≤x lemma-⋘-⋗ (ll⋘ b≤x b'≤x' l⋘r l'⋘r' _ r≃l') (⋗nd b''≤x'' .b'≤x' l''⋘r'' .l'⋘r' l''≃r'' _ l''⋗l') = ⋙rl b''≤x'' b≤x l''⋘r'' l''≃r'' l⋘r (lemma⋗≃ l''⋗l' (sym≃ r≃l')) lemma-⋘-⋗ (lr⋘ b≤x b'≤x' l⋙r l'⋘r' _ l⋗l') (⋗nd b''≤x'' .b'≤x' l''⋘r'' .l'⋘r' l''≃r'' _ l''⋗l') = ⋙rr b''≤x'' b≤x l''⋘r'' l''≃r'' l⋙r (lemma⋗⋗ l''⋗l' l⋗l') lemma-≃-⊥ : {b b' : Bound}{h : BBHeap b}{h' : BBHeap b'} → h ≃ h' → h ⋗ h' → ⊥ lemma-≃-⊥ () (⋗lf _) lemma-≃-⊥ (≃nd .b≤x .b'≤x' .l⋘r .l'⋘r' _ _ l≃l') (⋗nd b≤x b'≤x' l⋘r l'⋘r' l≃r l'≃r' l⋗l') with lemma-≃-⊥ l≃l' l⋗l' ... | () lemma-⋘-⊥ : {b b' : Bound}{x x' : A}{l r : BBHeap (val x)}{l' r' : BBHeap (val x')}(b≤x : LeB b (val x))(b'≤x' : LeB b' (val x'))(l⋙r : l ⋙ r)(l'⋘r' : l' ⋘ r') → l ≃ l' → right b≤x l⋙r ⋘ left b'≤x' l'⋘r' → ⊥ lemma-⋘-⊥ b≤x b'≤x' l⋙r l'⋘r' l≃l' (lr⋘ .b≤x .b'≤x' .l⋙r .l'⋘r' _ l⋗l') with lemma-≃-⊥ l≃l' l⋗l' ... | () lemma-perfect : {b b' : Bound}{h : BBHeap b}{h' : BBHeap b'} → h ⋘ h' → Perfect h' lemma-perfect lf⋘ = plf lemma-perfect (ll⋘ b≤x b'≤x' l⋘l l'⋘l' l'≃r' r≃l') = pnd b'≤x' l'⋘l' l'≃r' lemma-perfect (lr⋘ b≤x b'≤x' l⋙r l'⋘l' l'≃r' l⋗l') = pnd b'≤x' l'⋘l' l'≃r'
{ "alphanum_fraction": 0.407566638, "avg_line_length": 61.2105263158, "ext": "agda", "hexsha": "918d8e0c746a9b7df88588c63f60d8594c03ad2d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/BBHeap/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/BBHeap/Properties.agda", "max_line_length": 208, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/BBHeap/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 3536, "size": 4652 }
module IncompletePatternMatching where data Nat : Set where zero : Nat suc : Nat -> Nat data True : Set where tt : True data False : Set where _==_ : Nat -> Nat -> Set zero == zero = True suc n == suc m = n == m thm : zero == suc zero thm = tt
{ "alphanum_fraction": 0.6076923077, "avg_line_length": 13, "ext": "agda", "hexsha": "1892622cb195bd3a3580feeb13f37a2df7862add", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/IncompletePatternMatching.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/IncompletePatternMatching.agda", "max_line_length": 38, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/IncompletePatternMatching.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 86, "size": 260 }
-- Idiom bracket notation. module Syntax.Idiom where import Lvl open import Type private variable ℓ ℓ₁ ℓ₂ : Lvl.Level private variable A B : Type{ℓ} private variable F : Type{ℓ₁} → Type{ℓ₂} -- The notation `⦇ f x₁ x₂ x₃ ⦈` will automatically be translated to `((pure f <*> x₁) <*> x₂) <*> x₃`. record IdiomBrackets (F : Type{ℓ₁} → Type{ℓ₂}) : Type{Lvl.𝐒(ℓ₁) Lvl.⊔ ℓ₂} where constructor intro field pure : (A → F(A)) _<*>_ : F(A → B) → (F(A) → F(B)) open IdiomBrackets ⦃ … ⦄ using (pure ; _<*>_) public -- The notation `⦇⦈` will automatically be translated to `empty`. record IdiomBrackets₀ (F : Type{ℓ₁} → Type{ℓ₂}) : Type{Lvl.𝐒(ℓ₁) Lvl.⊔ ℓ₂} where constructor intro field empty : F(A) open IdiomBrackets₀ ⦃ … ⦄ using (empty) public -- The notation `⦇ f₁ x₁ x₂ x₃ | f₂ y₁ y₂ | f₃ z₁ ⦈` will automatically be translated to `(((pure f <*> x₁) <*> x₂) <*> x₃) <|> (((pure f₂ <*> y₁) <*> y₂) <|> (pure f₃ <*> z₁))`. record IdiomBrackets₊ (F : Type{ℓ₁} → Type{ℓ₂}) ⦃ _ : IdiomBrackets(F) ⦄ : Type{Lvl.𝐒(ℓ₁) Lvl.⊔ ℓ₂} where constructor intro field _<|>_ : F(A) → F(A) → F(A) open IdiomBrackets₊ ⦃ … ⦄ using (_<|>_) public
{ "alphanum_fraction": 0.6091854419, "avg_line_length": 36.0625, "ext": "agda", "hexsha": "d2024c63a39ce328836380caf19df8d96e00a078", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Syntax/Idiom.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Syntax/Idiom.agda", "max_line_length": 178, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Syntax/Idiom.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 498, "size": 1154 }
open import Prelude open import Nat open import dynamics-core open import contexts open import lemmas-disjointness module exchange where -- exchanging just two disequal elements produces the same context swap-little : {A : Set} {x y : Nat} {τ1 τ2 : A} → (x ≠ y) → ((■ (x , τ1)) ,, (y , τ2)) == ((■ (y , τ2)) ,, (x , τ1)) swap-little {A} {x} {y} {τ1} {τ2} neq = ∪comm (■ (y , τ2)) (■ (x , τ1)) (disjoint-singles (flip neq)) -- really the dynamics-core of all the exchange arguments: contexts with two -- disequal elements exchanged are the same. we reassociate the unions, -- swap as above, and then associate them back. -- -- note that this is generic in the contents of the context. the proofs -- below show the exchange properties that we actually need in the -- various other proofs; the remaning exchange properties for both Δ and -- Γ positions for all the other hypothetical judgements are exactly in -- this pattern. swap : {A : Set} {x y : Nat} {τ1 τ2 : A} (Γ : A ctx) (x≠y : x == y → ⊥) → ((Γ ,, (x , τ1)) ,, (y , τ2)) == ((Γ ,, (y , τ2)) ,, (x , τ1)) swap {A} {x} {y} {τ1} {τ2} Γ neq = funext eq where eq : (z : Nat) → ((Γ ,, (x , τ1)) ,, (y , τ2)) z == ((Γ ,, (y , τ2)) ,, (x , τ1)) z eq z with natEQ y z ... | Inr y≠z with natEQ x z ... | Inl refl = refl ... | Inr x≠z with natEQ y z ... | Inl refl = abort (y≠z refl) ... | Inr y≠z' = refl eq z | Inl refl with natEQ x z ... | Inl refl = abort (neq refl) ... | Inr x≠z with natEQ z z ... | Inl refl = refl ... | Inr z≠z = abort (z≠z refl) -- (∪assoc Γ (■ (x , τ1)) (■ (y , τ2)) (disjoint-singles neq)) · -- (ap1 (λ qq → Γ ∪ qq) (swap-little neq) · -- the above exchange principle used via transport in the judgements we needed exchange-subst-Γ : ∀{Δ Γ x y τ1 τ2 σ Γ'} → x ≠ y → Δ , (Γ ,, (x , τ1) ,, (y , τ2)) ⊢ σ :s: Γ' → Δ , (Γ ,, (y , τ2) ,, (x , τ1)) ⊢ σ :s: Γ' exchange-subst-Γ {Δ} {Γ} {x} {y} {τ1} {τ2} {σ} {Γ'} x≠y = tr (λ qq → Δ , qq ⊢ σ :s: Γ') (swap Γ x≠y) exchange-synth : ∀{Γ x y τ τ1 τ2 e} → x ≠ y → (Γ ,, (x , τ1) ,, (y , τ2)) ⊢ e => τ → (Γ ,, (y , τ2) ,, (x , τ1)) ⊢ e => τ exchange-synth {Γ} {x} {y} {τ} {τ1} {τ2} {e} neq = tr (λ qq → qq ⊢ e => τ) (swap Γ neq) exchange-ana : ∀{Γ x y τ τ1 τ2 e} → x ≠ y → (Γ ,, (x , τ1) ,, (y , τ2)) ⊢ e <= τ → (Γ ,, (y , τ2) ,, (x , τ1)) ⊢ e <= τ exchange-ana {Γ} {x} {y} {τ} {τ1} {τ2} {e} neq = tr (λ qq → qq ⊢ e <= τ) (swap Γ neq) exchange-elab-synth : ∀{Γ x y τ1 τ2 e τ d Δ} → x ≠ y → (Γ ,, (x , τ1) ,, (y , τ2)) ⊢ e ⇒ τ ~> d ⊣ Δ → (Γ ,, (y , τ2) ,, (x , τ1)) ⊢ e ⇒ τ ~> d ⊣ Δ exchange-elab-synth {Γ = Γ} {e = e} {τ = τ} {d = d } {Δ = Δ} neq = tr (λ qq → qq ⊢ e ⇒ τ ~> d ⊣ Δ) (swap Γ neq) exchange-elab-ana : ∀ {Γ x y τ1 τ2 τ τ' d e Δ} → x ≠ y → (Γ ,, (x , τ1) ,, (y , τ2)) ⊢ e ⇐ τ ~> d :: τ' ⊣ Δ → (Γ ,, (y , τ2) ,, (x , τ1)) ⊢ e ⇐ τ ~> d :: τ' ⊣ Δ exchange-elab-ana {Γ = Γ} {τ = τ} {τ' = τ'} {d = d} {e = e} {Δ = Δ} neq = tr (λ qq → qq ⊢ e ⇐ τ ~> d :: τ' ⊣ Δ) (swap Γ neq) exchange-ta-Γ : ∀{Γ x y τ1 τ2 d τ Δ } → x ≠ y → Δ , (Γ ,, (x , τ1) ,, (y , τ2)) ⊢ d :: τ → Δ , (Γ ,, (y , τ2) ,, (x , τ1)) ⊢ d :: τ exchange-ta-Γ {Γ = Γ} {d = d} {τ = τ} {Δ = Δ} neq = tr (λ qq → Δ , qq ⊢ d :: τ) (swap Γ neq)
{ "alphanum_fraction": 0.4069072968, "avg_line_length": 44.2643678161, "ext": "agda", "hexsha": "2a28bd68fcc11649b22689e5659b3bdb47155bc7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnut-agda", "max_forks_repo_path": "exchange.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazelnut-agda", "max_issues_repo_path": "exchange.agda", "max_line_length": 90, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazelnut-agda", "max_stars_repo_path": "exchange.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1508, "size": 3851 }
{-# OPTIONS --safe #-} module Cubical.Relation.Nullary where open import Cubical.Relation.Nullary.Base public open import Cubical.Relation.Nullary.Properties public
{ "alphanum_fraction": 0.8072289157, "avg_line_length": 27.6666666667, "ext": "agda", "hexsha": "ac3c57818837cd85fb6cf6ad05716642feb2be7e", "lang": "Agda", "max_forks_count": 134, "max_forks_repo_forks_event_max_datetime": "2022-03-23T16:22:13.000Z", "max_forks_repo_forks_event_min_datetime": "2018-11-16T06:11:03.000Z", "max_forks_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "marcinjangrzybowski/cubical", "max_forks_repo_path": "Cubical/Relation/Nullary.agda", "max_issues_count": 584, "max_issues_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_issues_repo_issues_event_max_datetime": "2022-03-30T12:09:17.000Z", "max_issues_repo_issues_event_min_datetime": "2018-10-15T09:49:02.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "marcinjangrzybowski/cubical", "max_issues_repo_path": "Cubical/Relation/Nullary.agda", "max_line_length": 54, "max_stars_count": 301, "max_stars_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "marcinjangrzybowski/cubical", "max_stars_repo_path": "Cubical/Relation/Nullary.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-24T02:10:47.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-17T18:00:24.000Z", "num_tokens": 36, "size": 166 }
-- Andreas, 2018-10-16, erased lambda-arguments open import Agda.Builtin.List open import Common.Prelude sum : List Nat → Nat sum (x ∷ xs) = x + sum xs sum [] = 0 zipWith : {A B C : Set} (f : A → B → C) → List A → List B → List C zipWith f (x ∷ xs) (y ∷ ys) = f x y ∷ zipWith f xs ys zipWith _ _ _ = [] -- Shorten the first list to the length of the second. restrict : {A : Set} (xs ys : List A) → List A restrict = zipWith (λ x (@0 _) → x) -- It does not matter that we annotated the second argument as erased, -- since the compiler does not actually erase function arguments, only -- their content to the empty tuple. Thus, this is no type error. main : IO Unit main = printNat (sum (restrict (13 ∷ 14 ∷ 15 ∷ 16 ∷ []) (1 ∷ 2 ∷ 3 ∷ []))) -- Expected output: 42
{ "alphanum_fraction": 0.6368352789, "avg_line_length": 28.5555555556, "ext": "agda", "hexsha": "75cf9ab15731f5a36cfdd1c9d8bca58e37ac68cb", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-09-15T14:36:15.000Z", "max_forks_repo_forks_event_min_datetime": "2015-09-15T14:36:15.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Compiler/simple/ErasureSubtyping.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Compiler/simple/ErasureSubtyping.agda", "max_line_length": 74, "max_stars_count": 2, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Compiler/simple/ErasureSubtyping.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z", "num_tokens": 258, "size": 771 }
-- Andreas, 2014-09-23 syntax bla (λ x → e) = blub e -- Should trigger error: -- malformed syntax declaration: syntax must use binding holes exactly once
{ "alphanum_fraction": 0.7179487179, "avg_line_length": 22.2857142857, "ext": "agda", "hexsha": "0cafe1d40c696dc6722aa53e1be4b5ab0a2f82b1", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/NotationDoesNotUseAllBinders.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/NotationDoesNotUseAllBinders.agda", "max_line_length": 75, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/NotationDoesNotUseAllBinders.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 42, "size": 156 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Some unit types ------------------------------------------------------------------------ -- The definitions in this file are reexported by Data.Unit. module Data.Unit.Core where open import Level ------------------------------------------------------------------------ -- A unit type defined as a data-type -- The ⊤ type (see Data.Unit) comes with η-equality, which is often -- nice to have, but sometimes it is convenient to be able to stop -- unfolding (see "Hidden types" below). data Unit : Set where unit : Unit ------------------------------------------------------------------------ -- Hidden types -- "Hidden" values. Hidden : ∀ {a} → Set a → Set a Hidden A = Unit → A -- The hide function can be used to hide function applications. Note -- that the type-checker doesn't see that "hide f x" contains the -- application "f x". hide : ∀ {a b} {A : Set a} {B : A → Set b} → ((x : A) → B x) → ((x : A) → Hidden (B x)) hide f x unit = f x -- Reveals a hidden value. reveal : ∀ {a} {A : Set a} → Hidden A → A reveal f = f unit
{ "alphanum_fraction": 0.4797238999, "avg_line_length": 26.9534883721, "ext": "agda", "hexsha": "a4ddcd537c78189c3a0d433627b0771637f1faab", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Data/Unit/Core.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Data/Unit/Core.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Data/Unit/Core.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 266, "size": 1159 }
{-# OPTIONS --warning=error #-} module UselessAbstractPrimitive where postulate Int : Set {-# BUILTIN INTEGER Int #-} abstract primitive primIntegerPlus : Int -> Int -> Int
{ "alphanum_fraction": 0.693989071, "avg_line_length": 15.25, "ext": "agda", "hexsha": "96ed34f2f5e8d9694f7b618ee5fc7433a9686928", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/UselessAbstractPrimitive.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/UselessAbstractPrimitive.agda", "max_line_length": 39, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/UselessAbstractPrimitive.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 42, "size": 183 }
------------------------------------------------------------------------------ -- Distributive laws properties ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module DistributiveLaws.PropertiesI where open import DistributiveLaws.Base ------------------------------------------------------------------------------ -- Congruence properties -- The propositional equality is compatible with the binary operation. ·-leftCong : ∀ {a b c} → a ≡ b → a · c ≡ b · c ·-leftCong refl = refl ·-rightCong : ∀ {a b c} → b ≡ c → a · b ≡ a · c ·-rightCong refl = refl
{ "alphanum_fraction": 0.4199475066, "avg_line_length": 31.75, "ext": "agda", "hexsha": "3d827cad97a62eca72cfda603f242aeab0a6e966", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/DistributiveLaws/PropertiesI.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/DistributiveLaws/PropertiesI.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/DistributiveLaws/PropertiesI.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 147, "size": 762 }
module Data.Vec.All.Properties.Extra {a p}{A : Set a}{P : A → Set p} where open import Data.List using (List) import Data.List.Relation.Unary.All as All open import Data.Vec hiding (_[_]≔_) open import Data.Vec.Relation.Unary.All hiding (lookup) open import Data.Fin all-fromList : ∀ {xs : List A} → All.All P xs → All P (fromList xs) all-fromList All.[] = [] all-fromList (px All.∷ p) = px ∷ all-fromList p _[_]≔_ : ∀ {n}{l : Vec A n} → All P l → (i : Fin n) → P (lookup l i)→ All P l [] [ () ]≔ px (px ∷ l) [ zero ]≔ px₁ = px₁ ∷ l (px ∷ l) [ suc i ]≔ px₁ = px ∷ (l [ i ]≔ px₁)
{ "alphanum_fraction": 0.6048109966, "avg_line_length": 34.2352941176, "ext": "agda", "hexsha": "ea4222c76d4f6c7f2083249991a4bd512788ad8b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "metaborg/mj.agda", "max_forks_repo_path": "src/Data/Vec/All/Properties/Extra.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "metaborg/mj.agda", "max_issues_repo_path": "src/Data/Vec/All/Properties/Extra.agda", "max_line_length": 77, "max_stars_count": 10, "max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "metaborg/mj.agda", "max_stars_repo_path": "src/Data/Vec/All/Properties/Extra.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z", "num_tokens": 222, "size": 582 }
open import Relation.Unary using ( ∅ ; _∪_ ) open import Web.Semantic.DL.Concept using ( Concept ) open import Web.Semantic.DL.Role using ( Role ) open import Web.Semantic.DL.Signature using ( Signature ) open import Web.Semantic.Util using ( Subset ; ⁅_⁆ ) module Web.Semantic.DL.TBox where infixl 5 _⊑₁_ _⊑₂_ infixr 4 _,_ {- a Terminology Box on a Signature (Concept and Role Names) is constructed by specifying - ε the empty TBox - Combination of TBoxes (_,_) - ie. a Union - subsumption relations ⊑ between roles and between concepts - properties of Roles (Reflexivity, Irreflexivity, Transitivity) - disjointness relation between Roles -} data TBox (Σ : Signature) : Set where ε : TBox Σ _,_ : (T U : TBox Σ) → TBox Σ _⊑₁_ : (C D : Concept Σ) → TBox Σ _⊑₂_ : (Q R : Role Σ) → TBox Σ Ref : (R : Role Σ) → TBox Σ Irr : (R : Role Σ) → TBox Σ Tra : (R : Role Σ) → TBox Σ Dis : (Q R : Role Σ) → TBox Σ Axioms : ∀ {Σ} → TBox Σ → Subset (TBox Σ) Axioms ε = ∅ Axioms (T , U) = (Axioms T) ∪ (Axioms U) Axioms (C ⊑₁ D) = ⁅ C ⊑₁ D ⁆ Axioms (Q ⊑₂ R) = ⁅ Q ⊑₂ R ⁆ Axioms (Ref R) = ⁅ Ref R ⁆ Axioms (Irr R) = ⁅ Irr R ⁆ Axioms (Tra R) = ⁅ Tra R ⁆ Axioms (Dis Q R) = ⁅ Dis Q R ⁆
{ "alphanum_fraction": 0.61908646, "avg_line_length": 31.4358974359, "ext": "agda", "hexsha": "b9373c77ac4b82521543ea466cdfbe9cf645ba5f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bblfish/agda-web-semantic", "max_forks_repo_path": "src/Web/Semantic/DL/TBox.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bblfish/agda-web-semantic", "max_issues_repo_path": "src/Web/Semantic/DL/TBox.agda", "max_line_length": 67, "max_stars_count": 1, "max_stars_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bblfish/agda-web-semantic", "max_stars_repo_path": "src/Web/Semantic/DL/TBox.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-22T09:43:23.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-22T09:43:23.000Z", "num_tokens": 505, "size": 1226 }
---------------------------------------------------------------------------------- -- Types for parse trees ---------------------------------------------------------------------------------- module cws-types where open import lib open import parse-tree posinfo = string {-# FOREIGN GHC import qualified CedilleCommentsLexer #-} data entity : Set where EntityComment : posinfo → posinfo → entity EntityNonws : entity EntityWs : posinfo → posinfo → entity {-# COMPILE GHC entity = data CedilleCommentsLexer.Entity (CedilleCommentsLexer.EntityComment | CedilleCommentsLexer.EntityNonws | CedilleCommentsLexer.EntityWs) #-} data entities : Set where EndEntity : entities Entity : entity → entities → entities {-# COMPILE GHC entities = data CedilleCommentsLexer.Entities (CedilleCommentsLexer.EndEntity | CedilleCommentsLexer.Entity) #-} data start : Set where File : entities → start {-# COMPILE GHC start = data CedilleCommentsLexer.Start (CedilleCommentsLexer.File) #-} postulate scanComments : string → start {-# COMPILE GHC scanComments = CedilleCommentsLexer.scanComments #-} -- embedded types: data ParseTreeT : Set where parsed-entities : entities → ParseTreeT parsed-entity : entity → ParseTreeT parsed-start : start → ParseTreeT parsed-posinfo : posinfo → ParseTreeT parsed-alpha : ParseTreeT parsed-alpha-bar-3 : ParseTreeT parsed-alpha-range-1 : ParseTreeT parsed-alpha-range-2 : ParseTreeT parsed-anychar : ParseTreeT parsed-anychar-bar-59 : ParseTreeT parsed-anychar-bar-60 : ParseTreeT parsed-anychar-bar-61 : ParseTreeT parsed-anychar-bar-62 : ParseTreeT parsed-anychar-bar-63 : ParseTreeT parsed-anynonwschar : ParseTreeT parsed-anynonwschar-bar-68 : ParseTreeT parsed-anynonwschar-bar-69 : ParseTreeT parsed-aws : ParseTreeT parsed-aws-bar-65 : ParseTreeT parsed-aws-bar-66 : ParseTreeT parsed-comment : ParseTreeT parsed-comment-star-64 : ParseTreeT parsed-nonws : ParseTreeT parsed-nonws-plus-70 : ParseTreeT parsed-num : ParseTreeT parsed-num-plus-5 : ParseTreeT parsed-numone : ParseTreeT parsed-numone-range-4 : ParseTreeT parsed-numpunct : ParseTreeT parsed-numpunct-bar-10 : ParseTreeT parsed-numpunct-bar-11 : ParseTreeT parsed-numpunct-bar-6 : ParseTreeT parsed-numpunct-bar-7 : ParseTreeT parsed-numpunct-bar-8 : ParseTreeT parsed-numpunct-bar-9 : ParseTreeT parsed-otherpunct : ParseTreeT parsed-otherpunct-bar-12 : ParseTreeT parsed-otherpunct-bar-13 : ParseTreeT parsed-otherpunct-bar-14 : ParseTreeT parsed-otherpunct-bar-15 : ParseTreeT parsed-otherpunct-bar-16 : ParseTreeT parsed-otherpunct-bar-17 : ParseTreeT parsed-otherpunct-bar-18 : ParseTreeT parsed-otherpunct-bar-19 : ParseTreeT parsed-otherpunct-bar-20 : ParseTreeT parsed-otherpunct-bar-21 : ParseTreeT parsed-otherpunct-bar-22 : ParseTreeT parsed-otherpunct-bar-23 : ParseTreeT parsed-otherpunct-bar-24 : ParseTreeT parsed-otherpunct-bar-25 : ParseTreeT parsed-otherpunct-bar-26 : ParseTreeT parsed-otherpunct-bar-27 : ParseTreeT parsed-otherpunct-bar-28 : ParseTreeT parsed-otherpunct-bar-29 : ParseTreeT parsed-otherpunct-bar-30 : ParseTreeT parsed-otherpunct-bar-31 : ParseTreeT parsed-otherpunct-bar-32 : ParseTreeT parsed-otherpunct-bar-33 : ParseTreeT parsed-otherpunct-bar-34 : ParseTreeT parsed-otherpunct-bar-35 : ParseTreeT parsed-otherpunct-bar-36 : ParseTreeT parsed-otherpunct-bar-37 : ParseTreeT parsed-otherpunct-bar-38 : ParseTreeT parsed-otherpunct-bar-39 : ParseTreeT parsed-otherpunct-bar-40 : ParseTreeT parsed-otherpunct-bar-41 : ParseTreeT parsed-otherpunct-bar-42 : ParseTreeT parsed-otherpunct-bar-43 : ParseTreeT parsed-otherpunct-bar-44 : ParseTreeT parsed-otherpunct-bar-45 : ParseTreeT parsed-otherpunct-bar-46 : ParseTreeT parsed-otherpunct-bar-47 : ParseTreeT parsed-otherpunct-bar-48 : ParseTreeT parsed-otherpunct-bar-49 : ParseTreeT parsed-otherpunct-bar-50 : ParseTreeT parsed-otherpunct-bar-51 : ParseTreeT parsed-otherpunct-bar-52 : ParseTreeT parsed-otherpunct-bar-53 : ParseTreeT parsed-otherpunct-bar-54 : ParseTreeT parsed-otherpunct-bar-55 : ParseTreeT parsed-otherpunct-bar-56 : ParseTreeT parsed-otherpunct-bar-57 : ParseTreeT parsed-otherpunct-bar-58 : ParseTreeT parsed-ws : ParseTreeT parsed-ws-plus-67 : ParseTreeT ------------------------------------------ -- Parse tree printing functions ------------------------------------------ posinfoToString : posinfo → string posinfoToString x = "(posinfo " ^ x ^ ")" mutual entitiesToString : entities → string entitiesToString (EndEntity) = "EndEntity" ^ "" entitiesToString (Entity x0 x1) = "(Entity" ^ " " ^ (entityToString x0) ^ " " ^ (entitiesToString x1) ^ ")" entityToString : entity → string entityToString (EntityComment x0 x1) = "(EntityComment" ^ " " ^ (posinfoToString x0) ^ " " ^ (posinfoToString x1) ^ ")" entityToString (EntityNonws) = "EntityNonws" ^ "" entityToString (EntityWs x0 x1) = "(EntityWs" ^ " " ^ (posinfoToString x0) ^ " " ^ (posinfoToString x1) ^ ")" startToString : start → string startToString (File x0) = "(File" ^ " " ^ (entitiesToString x0) ^ ")" ParseTreeToString : ParseTreeT → string ParseTreeToString (parsed-entities t) = entitiesToString t ParseTreeToString (parsed-entity t) = entityToString t ParseTreeToString (parsed-start t) = startToString t ParseTreeToString (parsed-posinfo t) = posinfoToString t ParseTreeToString parsed-alpha = "[alpha]" ParseTreeToString parsed-alpha-bar-3 = "[alpha-bar-3]" ParseTreeToString parsed-alpha-range-1 = "[alpha-range-1]" ParseTreeToString parsed-alpha-range-2 = "[alpha-range-2]" ParseTreeToString parsed-anychar = "[anychar]" ParseTreeToString parsed-anychar-bar-59 = "[anychar-bar-59]" ParseTreeToString parsed-anychar-bar-60 = "[anychar-bar-60]" ParseTreeToString parsed-anychar-bar-61 = "[anychar-bar-61]" ParseTreeToString parsed-anychar-bar-62 = "[anychar-bar-62]" ParseTreeToString parsed-anychar-bar-63 = "[anychar-bar-63]" ParseTreeToString parsed-anynonwschar = "[anynonwschar]" ParseTreeToString parsed-anynonwschar-bar-68 = "[anynonwschar-bar-68]" ParseTreeToString parsed-anynonwschar-bar-69 = "[anynonwschar-bar-69]" ParseTreeToString parsed-aws = "[aws]" ParseTreeToString parsed-aws-bar-65 = "[aws-bar-65]" ParseTreeToString parsed-aws-bar-66 = "[aws-bar-66]" ParseTreeToString parsed-comment = "[comment]" ParseTreeToString parsed-comment-star-64 = "[comment-star-64]" ParseTreeToString parsed-nonws = "[nonws]" ParseTreeToString parsed-nonws-plus-70 = "[nonws-plus-70]" ParseTreeToString parsed-num = "[num]" ParseTreeToString parsed-num-plus-5 = "[num-plus-5]" ParseTreeToString parsed-numone = "[numone]" ParseTreeToString parsed-numone-range-4 = "[numone-range-4]" ParseTreeToString parsed-numpunct = "[numpunct]" ParseTreeToString parsed-numpunct-bar-10 = "[numpunct-bar-10]" ParseTreeToString parsed-numpunct-bar-11 = "[numpunct-bar-11]" ParseTreeToString parsed-numpunct-bar-6 = "[numpunct-bar-6]" ParseTreeToString parsed-numpunct-bar-7 = "[numpunct-bar-7]" ParseTreeToString parsed-numpunct-bar-8 = "[numpunct-bar-8]" ParseTreeToString parsed-numpunct-bar-9 = "[numpunct-bar-9]" ParseTreeToString parsed-otherpunct = "[otherpunct]" ParseTreeToString parsed-otherpunct-bar-12 = "[otherpunct-bar-12]" ParseTreeToString parsed-otherpunct-bar-13 = "[otherpunct-bar-13]" ParseTreeToString parsed-otherpunct-bar-14 = "[otherpunct-bar-14]" ParseTreeToString parsed-otherpunct-bar-15 = "[otherpunct-bar-15]" ParseTreeToString parsed-otherpunct-bar-16 = "[otherpunct-bar-16]" ParseTreeToString parsed-otherpunct-bar-17 = "[otherpunct-bar-17]" ParseTreeToString parsed-otherpunct-bar-18 = "[otherpunct-bar-18]" ParseTreeToString parsed-otherpunct-bar-19 = "[otherpunct-bar-19]" ParseTreeToString parsed-otherpunct-bar-20 = "[otherpunct-bar-20]" ParseTreeToString parsed-otherpunct-bar-21 = "[otherpunct-bar-21]" ParseTreeToString parsed-otherpunct-bar-22 = "[otherpunct-bar-22]" ParseTreeToString parsed-otherpunct-bar-23 = "[otherpunct-bar-23]" ParseTreeToString parsed-otherpunct-bar-24 = "[otherpunct-bar-24]" ParseTreeToString parsed-otherpunct-bar-25 = "[otherpunct-bar-25]" ParseTreeToString parsed-otherpunct-bar-26 = "[otherpunct-bar-26]" ParseTreeToString parsed-otherpunct-bar-27 = "[otherpunct-bar-27]" ParseTreeToString parsed-otherpunct-bar-28 = "[otherpunct-bar-28]" ParseTreeToString parsed-otherpunct-bar-29 = "[otherpunct-bar-29]" ParseTreeToString parsed-otherpunct-bar-30 = "[otherpunct-bar-30]" ParseTreeToString parsed-otherpunct-bar-31 = "[otherpunct-bar-31]" ParseTreeToString parsed-otherpunct-bar-32 = "[otherpunct-bar-32]" ParseTreeToString parsed-otherpunct-bar-33 = "[otherpunct-bar-33]" ParseTreeToString parsed-otherpunct-bar-34 = "[otherpunct-bar-34]" ParseTreeToString parsed-otherpunct-bar-35 = "[otherpunct-bar-35]" ParseTreeToString parsed-otherpunct-bar-36 = "[otherpunct-bar-36]" ParseTreeToString parsed-otherpunct-bar-37 = "[otherpunct-bar-37]" ParseTreeToString parsed-otherpunct-bar-38 = "[otherpunct-bar-38]" ParseTreeToString parsed-otherpunct-bar-39 = "[otherpunct-bar-39]" ParseTreeToString parsed-otherpunct-bar-40 = "[otherpunct-bar-40]" ParseTreeToString parsed-otherpunct-bar-41 = "[otherpunct-bar-41]" ParseTreeToString parsed-otherpunct-bar-42 = "[otherpunct-bar-42]" ParseTreeToString parsed-otherpunct-bar-43 = "[otherpunct-bar-43]" ParseTreeToString parsed-otherpunct-bar-44 = "[otherpunct-bar-44]" ParseTreeToString parsed-otherpunct-bar-45 = "[otherpunct-bar-45]" ParseTreeToString parsed-otherpunct-bar-46 = "[otherpunct-bar-46]" ParseTreeToString parsed-otherpunct-bar-47 = "[otherpunct-bar-47]" ParseTreeToString parsed-otherpunct-bar-48 = "[otherpunct-bar-48]" ParseTreeToString parsed-otherpunct-bar-49 = "[otherpunct-bar-49]" ParseTreeToString parsed-otherpunct-bar-50 = "[otherpunct-bar-50]" ParseTreeToString parsed-otherpunct-bar-51 = "[otherpunct-bar-51]" ParseTreeToString parsed-otherpunct-bar-52 = "[otherpunct-bar-52]" ParseTreeToString parsed-otherpunct-bar-53 = "[otherpunct-bar-53]" ParseTreeToString parsed-otherpunct-bar-54 = "[otherpunct-bar-54]" ParseTreeToString parsed-otherpunct-bar-55 = "[otherpunct-bar-55]" ParseTreeToString parsed-otherpunct-bar-56 = "[otherpunct-bar-56]" ParseTreeToString parsed-otherpunct-bar-57 = "[otherpunct-bar-57]" ParseTreeToString parsed-otherpunct-bar-58 = "[otherpunct-bar-58]" ParseTreeToString parsed-ws = "[ws]" ParseTreeToString parsed-ws-plus-67 = "[ws-plus-67]" ------------------------------------------ -- Reorganizing rules ------------------------------------------ mutual {-# TERMINATING #-} norm-start : (x : start) → start norm-start x = x {-# TERMINATING #-} norm-posinfo : (x : posinfo) → posinfo norm-posinfo x = x {-# TERMINATING #-} norm-entity : (x : entity) → entity norm-entity x = x {-# TERMINATING #-} norm-entities : (x : entities) → entities norm-entities x = x isParseTree : ParseTreeT → 𝕃 char → string → Set isParseTree p l s = ⊤ {- this will be ignored since we are using simply typed runs -} ptr : ParseTreeRec ptr = record { ParseTreeT = ParseTreeT ; isParseTree = isParseTree ; ParseTreeToString = ParseTreeToString }
{ "alphanum_fraction": 0.7371331728, "avg_line_length": 43.4534883721, "ext": "agda", "hexsha": "547fcb00b53f21865960426f8a16e6470b3fcfb1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "xoltar/cedille", "max_forks_repo_path": "src/cws-types.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "xoltar/cedille", "max_issues_repo_path": "src/cws-types.agda", "max_line_length": 165, "max_stars_count": null, "max_stars_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "xoltar/cedille", "max_stars_repo_path": "src/cws-types.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3183, "size": 11211 }
module Cats.Profunctor where open import Data.Product using (_,_) open import Level using (suc ; _⊔_) open import Cats.Category open import Cats.Category.Op using (_ᵒᵖ) open import Cats.Category.Product.Binary using (_×_) open import Cats.Category.Setoids using (Setoids) open import Cats.Functor import Cats.Category.Cat as Cat import Cats.Category.Cat.Facts.Product as Cat -- The usual definition inverts C and D, so -- -- Profunctor C D E = Functor (Dᵒᵖ × C) E -- -- but that's just confusing. Profunctor : ∀ {lo la l≈ lo′ la′ l≈′ lo″ la″ l≈″} → Category lo la l≈ → Category lo′ la′ l≈′ → Category lo″ la″ l≈″ → Set (lo ⊔ la ⊔ l≈ ⊔ lo′ ⊔ la′ ⊔ l≈′ ⊔ lo″ ⊔ la″ ⊔ l≈″) Profunctor C D E = Functor ((C ᵒᵖ) × D) E module Profunctor {lo la l≈ lo′ la′ l≈′ lo″ la″ l≈″} {C : Category lo la l≈} {D : Category lo′ la′ l≈′} {E : Category lo″ la″ l≈″} (F : Profunctor C D E) where private module C = Category C module D = Category D module E = Category E pobj : C.Obj → D.Obj → E.Obj pobj c d = fobj F (c , d) pmap : ∀ {c c′} (f : c′ C.⇒ c) {d d′} (g : d D.⇒ d′) → pobj c d E.⇒ pobj c′ d′ pmap f g = fmap F (f , g) pmap₁ : ∀ {c c′ d} (f : c′ C.⇒ c) → pobj c d E.⇒ pobj c′ d pmap₁ f = pmap f D.id pmap₂ : ∀ {c d d′} (g : d D.⇒ d′) → pobj c d E.⇒ pobj c d′ pmap₂ g = pmap C.id g open Profunctor public Functor→Profunctor₁ : ∀ {lo la l≈ lo′ la′ l≈′ lo″ la″ l≈″} → {C : Category lo la l≈} {D : Category lo′ la′ l≈′} {X : Category lo″ la″ l≈″} → Functor (C ᵒᵖ) D → Profunctor C X D Functor→Profunctor₁ F = F Cat.∘ Cat.proj₁ Functor→Profunctor₂ : ∀ {lo la l≈ lo′ la′ l≈′ lo″ la″ l≈″} → {C : Category lo la l≈} {D : Category lo′ la′ l≈′} {X : Category lo″ la″ l≈″} → Functor C D → Profunctor X C D Functor→Profunctor₂ F = F Cat.∘ Cat.proj₂
{ "alphanum_fraction": 0.5818681319, "avg_line_length": 23.9473684211, "ext": "agda", "hexsha": "f2f4a76a001b0baef227f95f15f935312d931c03", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "alessio-b-zak/cats", "max_forks_repo_path": "Cats/Profunctor.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "alessio-b-zak/cats", "max_issues_repo_path": "Cats/Profunctor.agda", "max_line_length": 81, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "alessio-b-zak/cats", "max_stars_repo_path": "Cats/Profunctor.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 791, "size": 1820 }
-- There was a rare bug in display form generation for with functions -- in local blocks. module WithInWhere where data Nat : Set where zero : Nat suc : Nat -> Nat data Z? : Nat -> Set where yes : Z? zero no : forall {n} -> Z? (suc n) z? : (n : Nat) -> Z? n z? zero = yes z? (suc n) = no bug : Nat -> Nat bug n = ans where ans : Nat ans with z? (suc n) ... | no with zero ... | _ = zero
{ "alphanum_fraction": 0.5516431925, "avg_line_length": 16.3846153846, "ext": "agda", "hexsha": "60d6d030374535ef2c38e44617ea5459ae014180", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/WithInWhere.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/WithInWhere.agda", "max_line_length": 69, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/WithInWhere.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 151, "size": 426 }
module Cats.Category.Preorder.Facts.PreorderAsCategory where open import Data.Bool using (true ; false) open import Relation.Binary using (Preorder) import Level open import Cats.Category open import Cats.Category.Preorder using (preorderAsCategory) open import Cats.Util.Logic.Constructive module _ {lc l≈ l≤} (P : Preorder lc l≈ l≤) where C : Category _ _ _ C = preorderAsCategory P open module P = Preorder P using (_∼_) renaming (_≈_ to _≋_) open Category C _≈_⊔_ : Obj → Obj → Obj → Set l≤ lub ≈ x ⊔ y = x ∼ lub ∧ y ∼ lub ∧ (lub ∼ x ∨ lub ∼ y) _≈_⊓_ : Obj → Obj → Obj → Set l≤ glb ≈ x ⊓ y = glb ∼ x ∧ glb ∼ y ∧ (x ∼ glb ∨ y ∼ glb) IsMinimum : Obj → Set (lc Level.⊔ l≤) IsMinimum m = ∀ x → m ∼ x IsMaximum : Obj → Set (lc Level.⊔ l≤) IsMaximum m = ∀ x → x ∼ m initial : ∀ {x} → IsMinimum x → IsInitial x initial min y = ∃!-intro (min y) _ _ terminal : ∀ {x} → IsMaximum x → IsTerminal x terminal max y = ∃!-intro (max y) _ _ ⊓-isBinaryProduct : ∀ {glb x y} → (pl : glb ∼ x) → (pr : glb ∼ y) → (x ∼ glb ∨ y ∼ glb) → IsBinaryProduct glb pl pr ⊓-isBinaryProduct pl pr (∨-introl x∼glb) xl xr = ∃!-intro (x∼glb ∘ xl) _ _ ⊓-isBinaryProduct pl pr (∨-intror y∼glb) xl xr = ∃!-intro (y∼glb ∘ xr) _ _ ⊓-to-BinaryProduct : ∀ {glb x y} → glb ≈ x ⊓ y → BinaryProduct x y ⊓-to-BinaryProduct {glb} (pl , pr , maximal) = mkBinaryProduct pl pr (⊓-isBinaryProduct pl pr maximal) mono : ∀ {x y} (f : x ⇒ y) → IsMono f mono = _ epi : ∀ {x y} (f : x ⇒ y) → IsEpi f epi = _ unique : ∀ {x y} (f : x ⇒ y) → IsUnique f unique = _
{ "alphanum_fraction": 0.5832817337, "avg_line_length": 22.7464788732, "ext": "agda", "hexsha": "ca1bb1fec4989afd2348c0d57a07fd7af4f900be", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "alessio-b-zak/cats", "max_forks_repo_path": "Cats/Category/Preorder/Facts/PreorderAsCategory.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "alessio-b-zak/cats", "max_issues_repo_path": "Cats/Category/Preorder/Facts/PreorderAsCategory.agda", "max_line_length": 76, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "alessio-b-zak/cats", "max_stars_repo_path": "Cats/Category/Preorder/Facts/PreorderAsCategory.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 659, "size": 1615 }
{-# OPTIONS --safe #-} module Cubical.Data.FinType where open import Cubical.Data.FinType.Base public open import Cubical.Data.FinType.Properties public
{ "alphanum_fraction": 0.7870967742, "avg_line_length": 22.1428571429, "ext": "agda", "hexsha": "f92d28a66d552aee381573b6fff45dbeb3536244", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Data/FinType.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Data/FinType.agda", "max_line_length": 50, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Data/FinType.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 36, "size": 155 }
{-# OPTIONS --cubical --safe --postfix-projections #-} open import Prelude open import Relation.Binary module Data.List.Mapping {kℓ} {K : Type kℓ} {r₁ r₂} (totalOrder : TotalOrder K r₁ r₂) where open import Relation.Binary.Construct.Decision totalOrder open import Relation.Binary.Construct.LowerBound dec-ord open import Data.Nat using (_+_) open TotalOrder lb-ord using (<-trans) renaming (refl to <-refl) import Data.Unit.UniversePolymorphic as Poly open import Data.Maybe.Properties using (IsJust) open TotalOrder dec-ord using (_<?_; _<_; total⇒isSet; irrefl; compare) instance top-inst : Poly.⊤ {ℓzero} top-inst = Poly.tt private variable n m : ℕ v : Level Val : K → Type v infixr 5 _︓_,_ data MapFrom (lb : ⌊∙⌋) {v} (Val : K → Type v) : Type (kℓ ℓ⊔ r₁ ℓ⊔ v) where ∅ : MapFrom lb Val _︓_,_ : (k : K) → ⦃ inBounds : lb <⌊ k ⌋ ⦄ → (v : Val k) → MapFrom ⌊ k ⌋ Val → MapFrom lb Val private variable lb : ⌊∙⌋ weaken : ∀ {x} → ⦃ _ : lb <⌊ x ⌋ ⦄ → MapFrom ⌊ x ⌋ Val → MapFrom lb Val weaken ∅ = ∅ weaken {lb = lb} {x = x} (k ︓ val , xs) = k ︓ val , xs where instance _ : lb <⌊ k ⌋ _ = <-trans {x = lb} {y = ⌊ x ⌋} {z = ⌊ k ⌋} it it -- module _ {v} {Val : K → Type v} where -- _[_]? : MapFrom lb Val → (k : K) ⦃ inBounds : lb <⌊ k ⌋ ⦄ → Maybe (Val k) -- ∅ [ k ]? = nothing -- k₂ ︓ v , xs [ k₁ ]? = case compare k₁ k₂ of -- λ { (lt _) → nothing ; -- (eq _) → just (subst Val (sym it) v) ; -- (gt _) → xs [ k₁ ]? } -- infixl 4 _[_]? -- -- _[_]︓_ : MapFrom lb Val → (k : K) ⦃ inBounds : lb <⌊ k ⌋ ⦄ → (val : Val k) → MapFrom lb Val -- -- ∅ [ k₁ ]︓ v₁ = k₁ ︓ v₁ , ∅ -- -- (k₂ ︓ v₂ , xs) [ k₁ ]︓ v₁ = -- -- comparing k₁ ∙ k₂ -- -- |< k₁ ︓ v₁ , k₂ ︓ v₂ , xs -- -- |≡ k₂ ︓ subst Val it v₁ , xs -- -- |> k₂ ︓ v₂ , (xs [ k₁ ]︓ v₁) -- -- infixl 4 _[_]︓_ -- -- _[_]︓∅ : MapFrom lb Val → (k : K) ⦃ inBounds : lb <⌊ k ⌋ ⦄ → MapFrom lb Val -- -- ∅ [ k₁ ]︓∅ = ∅ -- -- (k₂ ︓ v₂ , xs) [ k₁ ]︓∅ = comparing k₁ ∙ k₂ -- -- |< k₂ ︓ v₂ , xs -- -- |≡ weaken xs -- -- |> k₂ ︓ v₂ , (xs [ k₁ ]︓∅) -- -- infixl 4 _[_]︓∅ -- -- infixr 0 Map -- -- Map : ∀ {v} (Val : K → Type v) → Type _ -- -- Map = MapFrom ⌊⊥⌋ -- -- syntax Map (λ s → e) = s ↦ e -- -- Map′ : ∀ {v} (Val : Type v) → Type _ -- -- Map′ V = Map (const V) -- -- infixr 5 _≔_,_ -- -- data RecordFrom (lb : ⌊∙⌋) : MapFrom lb (const Type) → Type (kℓ ℓ⊔ r₁ ℓ⊔ ℓsuc ℓzero) where -- -- ∅ : RecordFrom lb ∅ -- -- _≔_,_ : (k : K) → ⦃ inBounds : lb <⌊ k ⌋ ⦄ → {xs : MapFrom ⌊ k ⌋ (const Type)} {t : Type} → (v : t) → RecordFrom ⌊ k ⌋ xs → RecordFrom lb (k ︓ t , xs) -- -- Record : Map′ Type → Type _ -- -- Record = RecordFrom ⌊⊥⌋ -- -- infixr 5 _∈_ -- -- _∈_ : (k : K) → ⦃ inBounds : lb <⌊ k ⌋ ⦄ → MapFrom lb Val → Type -- -- k ∈ xs = IsJust (xs [ k ]?) -- -- _[_]! : (xs : MapFrom lb Val) → (k : K) → ⦃ inBounds : lb <⌊ k ⌋ ⦄ → ⦃ k∈xs : k ∈ xs ⦄ → Val k -- -- xs [ k ]! with xs [ k ]? | inspect (_[_]? xs) k -- -- xs [ k ]! | just x | _ = x -- -- xs [ k ]! | nothing | _ = ⊥-elim it -- -- infixl 4 _[_] -- -- _[_] : {xs : MapFrom lb (const Type)} → RecordFrom lb xs → (k : K) ⦃ inBounds : lb <⌊ k ⌋ ⦄ ⦃ k∈xs : k ∈ xs ⦄ → xs [ k ]! -- -- _[_] {xs = xs} (k₂ ≔ v , r) k₁ with xs [ k₁ ]? | compare′ k₁ k₂ -- -- (k₂ ≔ v , r) [ k₁ ] | _ | lt′ = ⊥-elim it -- -- (k₂ ≔ v , r) [ k₁ ] | _ | eq′ = v -- -- (k₂ ≔ v , r) [ k₁ ] | _ | gt′ = r [ k₁ ] -- -- infixl 4 _[_]≔_ -- -- _[_]≔_ : {xs : MapFrom lb (const Type)} → RecordFrom lb xs → (k : K) ⦃ inBounds : lb <⌊ k ⌋ ⦄ → A → RecordFrom lb (xs [ k ]︓ A) -- -- ∅ [ k ]≔ x = k ≔ x , ∅ -- -- (k₂ ≔ v₁ , rs) [ k₁ ]≔ x with compare′ k₁ k₂ -- -- (k₂ ≔ v₁ , rs) [ k₁ ]≔ x | lt′ = k₁ ≔ x , k₂ ≔ v₁ , rs -- -- (k₂ ≔ v₁ , rs) [ k₁ ]≔ x | eq′ = k₂ ≔ x , rs -- -- (k₂ ≔ v₁ , rs) [ k₁ ]≔ x | gt′ = k₂ ≔ v₁ , (rs [ k₁ ]≔ x)
{ "alphanum_fraction": 0.4682352941, "avg_line_length": 35.0917431193, "ext": "agda", "hexsha": "a3f156433b01f401c953e13db3519000f2be19ba", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/List/Mapping.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/List/Mapping.agda", "max_line_length": 158, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/List/Mapping.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 1833, "size": 3825 }
{-# OPTIONS --rewriting #-} module Interpreter where open import Agda.Builtin.IO using (IO) open import Agda.Builtin.Int using (pos) open import Agda.Builtin.Unit using (⊤) open import FFI.IO using (getContents; putStrLn; _>>=_; _>>_) open import FFI.Data.Aeson using (Value; eitherDecode) open import FFI.Data.Either using (Left; Right) open import FFI.Data.Maybe using (just; nothing) open import FFI.Data.String using (String; _++_) open import FFI.Data.Text.Encoding using (encodeUtf8) open import FFI.System.Exit using (exitWith; ExitFailure) open import Luau.StrictMode.ToString using (warningToStringᴮ) open import Luau.Syntax using (Block; yes; maybe; isAnnotatedᴮ) open import Luau.Syntax.FromJSON using (blockFromJSON) open import Luau.Syntax.ToString using (blockToString; valueToString) open import Luau.Run using (run; return; done; error) open import Luau.RuntimeError.ToString using (errToStringᴮ) open import Properties.StrictMode using (wellTypedProgramsDontGoWrong) runBlock′ : ∀ a → Block a → IO ⊤ runBlock′ a block with run block runBlock′ a block | return V D = putStrLn ("\nRAN WITH RESULT: " ++ valueToString V) runBlock′ a block | done D = putStrLn ("\nRAN") runBlock′ maybe block | error E D = putStrLn ("\nRUNTIME ERROR:\n" ++ errToStringᴮ _ E) runBlock′ yes block | error E D with wellTypedProgramsDontGoWrong _ block _ D E runBlock′ yes block | error E D | W = putStrLn ("\nRUNTIME ERROR:\n" ++ errToStringᴮ _ E ++ "\n\nTYPE ERROR:\n" ++ warningToStringᴮ _ W) runBlock : Block maybe → IO ⊤ runBlock B with isAnnotatedᴮ B runBlock B | nothing = putStrLn ("UNANNOTATED PROGRAM:\n" ++ blockToString B) >> runBlock′ maybe B runBlock B | just B′ = putStrLn ("ANNOTATED PROGRAM:\n" ++ blockToString B) >> runBlock′ yes B′ runJSON : Value → IO ⊤ runJSON value with blockFromJSON(value) runJSON value | (Left err) = putStrLn ("LUAU ERROR: " ++ err) >> exitWith (ExitFailure (pos 1)) runJSON value | (Right block) = runBlock block runString : String → IO ⊤ runString txt with eitherDecode (encodeUtf8 txt) runString txt | (Left err) = putStrLn ("JSON ERROR: " ++ err) >> exitWith (ExitFailure (pos 1)) runString txt | (Right value) = runJSON value main : IO ⊤ main = getContents >>= runString
{ "alphanum_fraction": 0.7376237624, "avg_line_length": 43.568627451, "ext": "agda", "hexsha": "d8036740c546d8e5d27efdd8f393a83d8805274e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "XanderYZZ/luau", "max_forks_repo_path": "prototyping/Interpreter.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "XanderYZZ/luau", "max_issues_repo_path": "prototyping/Interpreter.agda", "max_line_length": 136, "max_stars_count": 1, "max_stars_repo_head_hexsha": "72d8d443431875607fd457a13fe36ea62804d327", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "TheGreatSageEqualToHeaven/luau", "max_stars_repo_path": "prototyping/Interpreter.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-05T21:53:03.000Z", "max_stars_repo_stars_event_min_datetime": "2021-12-05T21:53:03.000Z", "num_tokens": 629, "size": 2222 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import homotopy.PtdMapSequence module homotopy.CofiberSequence {i} where {- Useful abbreviations -} module _ {X Y : Ptd i} (f : X ⊙→ Y) where ⊙Cofiber² = ⊙Cofiber (⊙cfcod' f) ⊙cfcod²' = ⊙cfcod' (⊙cfcod' f) ⊙Cofiber³ = ⊙Cofiber ⊙cfcod²' ⊙cfcod³' = ⊙cfcod' ⊙cfcod²' module _ {A B : Type i} (f : A → B) where Cofiber² = Cofiber (cfcod' f) cfcod²' = cfcod' (cfcod' f) Cofiber³ = Cofiber cfcod²' cfcod³' = cfcod' cfcod²' {- For [f : X → Y], the cofiber space [Cofiber(cfcod f)] is equivalent to - [Susp X]. This is essentially an application of the two pushouts - lemma: - - f - X ––––> Y ––––––––––––––> ∙ - | | | - | |cfcod f | - v v v - ∙ ––> Cofiber f ––––––––––> Cofiber² f - cfcod² f - - The map [cfcod² f : Cofiber f → Cofiber² f] becomes [extract-glue : Cofiber f → ΣX], - and the map [cfcod³ f : Cofiber² f → Cofiber³ f] becomes [Susp-fmap f : ΣX → ΣY]. -} private {- the equivalences between [Cofiber² f] and [ΣX] (and so [Cofiber³ f] and [ΣY]) -} module Equiv {X Y : Ptd i} (f : X ⊙→ Y) where module Into = CofiberRec {f = cfcod' (fst f)} {C = Susp (de⊙ X)} south extract-glue (λ _ → idp) into : Cofiber² (fst f) → Susp (de⊙ X) into = Into.f ⊙into : ⊙Cofiber² f ⊙→ ⊙Susp X ⊙into = into , ! (merid (pt X)) module Out = SuspRec {C = de⊙ (⊙Cofiber² f)} (cfcod cfbase) cfbase (λ x → ap cfcod (cfglue x) ∙ ! (cfglue (fst f x))) out : Susp (de⊙ X) → Cofiber² (fst f) out = Out.f abstract into-out : ∀ σ → into (out σ) == σ into-out = Susp-elim idp idp (λ x → ↓-∘=idf-in' into out $ ap (ap into) (Out.merid-β x) ∙ ap-∙ into (ap cfcod (cfglue x)) (! (cfglue (fst f x))) ∙ ap (λ w → ap into (ap cfcod (cfglue x)) ∙ w) (ap-! into (cfglue (fst f x)) ∙ ap ! (Into.glue-β (fst f x))) ∙ ∙-unit-r _ ∙ ∘-ap into cfcod (cfglue x) ∙ ExtractGlue.glue-β x) out-into : ∀ κ → out (into κ) == κ out-into = Cofiber-elim {f = cfcod' (fst f)} idp (Cofiber-elim {f = fst f} idp cfglue (λ x → ↓-='-from-square $ (ap-∘ out extract-glue (cfglue x) ∙ ap (ap out) (ExtractGlue.glue-β x) ∙ Out.merid-β x) ∙v⊡ (vid-square {p = ap cfcod (cfglue x)} ⊡h rt-square (cfglue (fst f x))) ⊡v∙ ∙-unit-r _)) (λ y → ↓-∘=idf-from-square out into $ ap (ap out) (Into.glue-β y) ∙v⊡ connection) eqv : Cofiber² (fst f) ≃ Susp (de⊙ X) eqv = equiv into out into-out out-into ⊙eqv : ⊙Cofiber² f ⊙≃ ⊙Susp X ⊙eqv = ≃-to-⊙≃ eqv (! (merid (pt X))) module _ {X Y : Ptd i} (f : X ⊙→ Y) where ⊙Cof²-to-⊙Susp : ⊙Cofiber² f ⊙→ ⊙Susp X ⊙Cof²-to-⊙Susp = Equiv.⊙into f Cof²-to-Susp = fst ⊙Cof²-to-⊙Susp ⊙Susp-to-⊙Cof² : ⊙Susp X ⊙→ ⊙Cofiber² f ⊙Susp-to-⊙Cof² = ⊙<– (Equiv.⊙eqv f) Susp-to-Cof² = fst ⊙Susp-to-⊙Cof² Cof²-equiv-Susp : Cofiber² (fst f) ≃ Susp (de⊙ X) Cof²-equiv-Susp = Equiv.eqv f cod²-extract-glue-comm-sqr : CommSquare (cfcod²' (fst f)) extract-glue (idf _) Cof²-to-Susp cod²-extract-glue-comm-sqr = comm-sqr λ _ → idp extract-glue-cod²-comm-sqr : CommSquare extract-glue (cfcod²' (fst f)) (idf _) Susp-to-Cof² extract-glue-cod²-comm-sqr = CommSquare-inverse-v cod²-extract-glue-comm-sqr (idf-is-equiv _) (snd Cof²-equiv-Susp) abstract cod³-Susp-fmap-comm-sqr : CommSquare (cfcod³' (fst f)) (Susp-fmap (fst f)) Cof²-to-Susp (Susp-flip ∘ Equiv.into (⊙cfcod' f)) cod³-Susp-fmap-comm-sqr = comm-sqr $ Cofiber-elim {f = cfcod' (fst f)} idp (Cofiber-elim {f = fst f} idp (λ y → merid y) (λ x → ↓-cst=app-in $ ap (idp ∙'_) ( ap-∘ (Susp-fmap (fst f)) extract-glue (cfglue x) ∙ ap (ap (Susp-fmap (fst f))) (ExtractGlue.glue-β x) ∙ SuspFmap.merid-β (fst f) x) ∙ ∙'-unit-l (merid (fst f x)))) (λ y → ↓-='-in' $ ap (Susp-fmap (fst f) ∘ Cof²-to-Susp) (cfglue y) =⟨ ap-∘ (Susp-fmap (fst f)) Cof²-to-Susp (cfglue y) ⟩ ap (Susp-fmap (fst f)) (ap Cof²-to-Susp (cfglue y)) =⟨ Equiv.Into.glue-β f y |in-ctx ap (Susp-fmap (fst f)) ⟩ idp =⟨ ! $ !-inv'-l (merid y) ⟩ ! (merid y) ∙' merid y =⟨ ! $ SuspFlip.merid-β y |in-ctx _∙' merid y ⟩ ap Susp-flip (merid y) ∙' merid y =⟨ ! $ ExtractGlue.glue-β y |in-ctx (λ p → ap Susp-flip p ∙' merid y) ⟩ ap Susp-flip (ap extract-glue (cfglue y)) ∙' merid y =⟨ ! $ ap-∘ Susp-flip extract-glue (cfglue y) |in-ctx _∙' merid y ⟩ ap (Susp-flip ∘ extract-glue) (cfglue y) ∙' merid y =∎) iterated-cofiber-seq : PtdMapSequence X (⊙Cofiber³ f) iterated-cofiber-seq = X ⊙→⟨ f ⟩ Y ⊙→⟨ ⊙cfcod' f ⟩ ⊙Cofiber f ⊙→⟨ ⊙cfcod²' f ⟩ ⊙Cofiber² f ⊙→⟨ ⊙cfcod³' f ⟩ ⊙Cofiber³ f ⊙⊣| cyclic-cofiber-seq : PtdMapSequence X (⊙Susp Y) cyclic-cofiber-seq = X ⊙→⟨ f ⟩ Y ⊙→⟨ ⊙cfcod' f ⟩ ⊙Cofiber f ⊙→⟨ ⊙extract-glue ⟩ ⊙Susp X ⊙→⟨ ⊙Susp-fmap f ⟩ ⊙Susp Y ⊙⊣| iterated-to-cyclic : PtdMapSeqMap iterated-cofiber-seq cyclic-cofiber-seq (⊙idf X) (⊙Susp-flip Y ⊙∘ Equiv.⊙into (⊙cfcod' f)) iterated-to-cyclic = ⊙idf X ⊙↓⟨ comm-sqr (λ _ → idp) ⟩ ⊙idf Y ⊙↓⟨ comm-sqr (λ _ → idp) ⟩ ⊙idf (⊙Cofiber f) ⊙↓⟨ cod²-extract-glue-comm-sqr ⟩ ⊙Cof²-to-⊙Susp ⊙↓⟨ cod³-Susp-fmap-comm-sqr ⟩ ⊙Susp-flip Y ⊙∘ Equiv.⊙into (⊙cfcod' f) ⊙↓| iterated-to-cyclic-is-equiv : is-⊙seq-equiv iterated-to-cyclic iterated-to-cyclic-is-equiv = idf-is-equiv _ , idf-is-equiv _ , idf-is-equiv _ , snd (Equiv.eqv f) , snd (Susp-flip-equiv ∘e (Equiv.eqv (⊙cfcod' f))) iterated-equiv-cyclic : PtdMapSeqEquiv iterated-cofiber-seq cyclic-cofiber-seq (⊙idf X) (⊙Susp-flip Y ⊙∘ Equiv.⊙into (⊙cfcod' f)) iterated-equiv-cyclic = iterated-to-cyclic , iterated-to-cyclic-is-equiv
{ "alphanum_fraction": 0.5274138768, "avg_line_length": 36.5857988166, "ext": "agda", "hexsha": "2b1075e117efcf678a042668176511b043bb8742", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/homotopy/CofiberSequence.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/homotopy/CofiberSequence.agda", "max_line_length": 104, "max_stars_count": null, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/homotopy/CofiberSequence.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2639, "size": 6183 }
open import FRP.JS.Behaviour using ( Beh ; [_] ; hold ) open import FRP.JS.Event using ( tag ) open import FRP.JS.DOM using ( DOM ; text ; element ; listen ; click ; _++_ ) open import FRP.JS.RSet using ( ⟦_⟧ ) module FRP.JS.Demo.Button where main : ∀ {w} → ⟦ Beh (DOM w) ⟧ main = text lab ++ but where but = element "button" (text ["OK"]) lab = hold "Press me: " (tag "Pressed: " (listen click but))
{ "alphanum_fraction": 0.6314496314, "avg_line_length": 33.9166666667, "ext": "agda", "hexsha": "4999ebcb6d38dd4767b8517288296e65c8e4e909", "lang": "Agda", "max_forks_count": 7, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:38.000Z", "max_forks_repo_forks_event_min_datetime": "2016-11-07T21:50:58.000Z", "max_forks_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_forks_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_forks_repo_name": "agda/agda-frp-js", "max_forks_repo_path": "demo/agda/FRP/JS/Demo/Button.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_issues_repo_name": "agda/agda-frp-js", "max_issues_repo_path": "demo/agda/FRP/JS/Demo/Button.agda", "max_line_length": 77, "max_stars_count": 63, "max_stars_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_stars_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_stars_repo_name": "agda/agda-frp-js", "max_stars_repo_path": "demo/agda/FRP/JS/Demo/Button.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-28T09:46:14.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-20T21:47:00.000Z", "num_tokens": 135, "size": 407 }
module _ where module A where infixr 5 _∷_ data D : Set₂ where [] : D _∷_ : Set₁ → D → D module B where infix 5 _∷_ data D : Set₂ where _∷_ : Set₁ → Set₁ → D open A open B foo : A.D foo = Set ∷ [] bar : B.D bar = Set ∷ Set
{ "alphanum_fraction": 0.5375494071, "avg_line_length": 9.7307692308, "ext": "agda", "hexsha": "9bb2dede9eef5dc6b908d9ceb6747570ce081156", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1436-16.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1436-16.agda", "max_line_length": 25, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1436-16.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 107, "size": 253 }
{-# OPTIONS --without-K --exact-split --safe #-} module Basic_Types where -- Already in the builtin's of agda, there are Π types, which is ∀, and lambda -- abstraction, which is λ{ } and function types, which is →. -- ------------------------------------ -- Some operations for function types -- The curly brackts ∀{} should be viewed as contexts. -- identity function id : ∀ {A : Set} → A → A id = λ{ x → x } -- function composition comp : ∀ {A B C : Set} → (B → C) → (A → B) → A → C comp {A} {B} {C} = λ (f : B → C) (g : A → B) (x : A) → f (g x) -- The judgemental equality of association of functions is builtin in agda, -- i.e., all the rules of derivation in the basic language of type theory, -- e.g., the β-, η- reduction is automatic in agda. -- swapping the argument swap : ∀ {A B : Set} {C : A → B → Set} → (∀ (a : A) (b : B) → C a b) → (∀ (b : B) (a : A) → C a b) swap {A} {B} {C} = λ { p → λ (b : B) (a : A) → p a b } -- ------------------------------------ -- the unit type data 𝟙 : Set where ⋆ : 𝟙 𝟙-ind : ∀ {A : 𝟙 → Set} → ∀ (a : A ⋆) → ∀ (x : 𝟙) → A x 𝟙-ind {A} a = 𝟙-indhelper where 𝟙-indhelper : ∀ (x : 𝟙) → A x 𝟙-indhelper ⋆ = a -- ------------------------------------ -- the empty type data 𝟘 : Set where 𝟘-ind : ∀ {A : 𝟘 → Set} → ∀ (x : 𝟘) → A x 𝟘-ind {A} () -- define negation ¬_ : ∀ (A : Set) → Set ¬ A = A → 𝟘 -- ------------------------------------ -- the boolean type data 𝟚 : Set where tt ff : 𝟚 𝟚-ind : ∀ {A : 𝟚 → Set} → A ff → A tt → ∀ (x : 𝟚) → A x 𝟚-ind Aff _ ff = Aff 𝟚-ind _ Att tt = Att -- ------------------------------------ -- natural numbers data ℕ : Set where zero : ℕ succ : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} -- ℕ induction ℕ-ind : ∀ {A : ℕ → Set} → ∀ (a : A 0) → (∀ (n : ℕ) → A n → A (succ n)) → ∀ (m : ℕ) → A m ℕ-ind {A} a p = ℕ-indhelper where ℕ-indhelper : ∀ (m : ℕ) → A m ℕ-indhelper 0 = a ℕ-indhelper (succ n) = p n (ℕ-indhelper n) -- From this exercise, we can actually see that the idea of induction is -- builtin in agda, since we essentially use the induction builtin in agda -- to prove ℕ-ind. -- ℕ recursion, which is a special case for ℕ induction, where the type is not -- dependent on ℕ ℕ-rec : ∀ {A : Set} → ∀ (a : A) → (∀ (n : ℕ) → A → A) → ∀ (m : ℕ) → A ℕ-rec {A} = ℕ-ind {λ { n → A }} -- for example, we can use ℕ-rec to define addition add : ℕ → ℕ → ℕ add = ℕ-rec {ℕ → ℕ} (id {ℕ}) (λ (n : ℕ) (p : ℕ → ℕ) → comp succ p) -- ------------------------------------ -- the sum type record Σ (A : Set) (B : A → Set) : Set where constructor _,_ field a : A b : B a -- the two projections π₁ : ∀ {A : Set} {B : A → Set} → Σ A B → A π₁ (x , y) = x π₂ : ∀ {A : Set} {B : A → Set} → ∀ (z : Σ A B) → B (π₁ z) π₂ (x , y) = y syntax Σ A (λ a → b) = Σ a ∶ A , b -- Σ induction Σ-ind : ∀ {A : Set} {B : A → Set} {P : Σ A B → Set} → (∀ (a : A) (b : B a) → P (a , b)) → ∀ (z : Σ A B) → P z Σ-ind {A} {B} {P} = λ (f : ∀ (a : A) (b : B a) → P (a , b)) → λ (z : Σ A B) → f (π₁ z) (π₂ z) -- cartesion product type _×_ : Set → Set → Set A × B = Σ a ∶ A , B ×-ind : ∀ {A : Set} {B : Set} {P : A × B → Set} → (∀ (a : A) (b : B) → P (a , b)) → ∀ (z : A × B) → P z ×-ind {A} {B} {P} = Σ-ind {A} {λ (a : A) → B} {P} -- ------------------------------------ -- the coproduct type data _⊎_ (A : Set) (B : Set) : Set where inl : A → A ⊎ B inr : B → A ⊎ B ⊎-ind : ∀ {A : Set} {B : Set} {P : A ⊎ B → Set} → (∀ (a : A) → P (inl a)) → (∀ (b : B) → P (inr b)) → ∀ (u : A ⊎ B) → P u ⊎-ind f _ (inl x) = f x ⊎-ind _ g (inr y) = g y
{ "alphanum_fraction": 0.4439523941, "avg_line_length": 27.1654135338, "ext": "agda", "hexsha": "3915693ceb51f001de8ce12b4ac883debedc76a5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76b9ef64626b6d3bbb7ace4f1a16aeb447c54328", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andyfreeyy/agda_and_math", "max_forks_repo_path": "HoTT/Basic_Types.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "76b9ef64626b6d3bbb7ace4f1a16aeb447c54328", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andyfreeyy/agda_and_math", "max_issues_repo_path": "HoTT/Basic_Types.agda", "max_line_length": 78, "max_stars_count": 2, "max_stars_repo_head_hexsha": "76b9ef64626b6d3bbb7ace4f1a16aeb447c54328", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "andyfreeyy/agda_and_math", "max_stars_repo_path": "HoTT/Basic_Types.agda", "max_stars_repo_stars_event_max_datetime": "2020-05-24T10:56:36.000Z", "max_stars_repo_stars_event_min_datetime": "2020-03-23T09:01:42.000Z", "num_tokens": 1474, "size": 3613 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of products ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Product.Properties where open import Data.Product open import Function using (_∘_) open import Relation.Binary using (Decidable) open import Relation.Binary.PropositionalEquality open import Relation.Nullary.Product import Relation.Nullary.Decidable as Dec ------------------------------------------------------------------------ -- Equality (dependent) module _ {a b} {A : Set a} {B : A → Set b} where ,-injectiveˡ : ∀ {a c} {b : B a} {d : B c} → (a , b) ≡ (c , d) → a ≡ c ,-injectiveˡ refl = refl -- See also Data.Product.Properties.WithK.,-injectiveʳ. ------------------------------------------------------------------------ -- Equality (non-dependent) module _ {a b} {A : Set a} {B : Set b} where ,-injectiveʳ : ∀ {a c : A} {b d : B} → (a , b) ≡ (c , d) → b ≡ d ,-injectiveʳ refl = refl ,-injective : ∀ {a c : A} {b d : B} → (a , b) ≡ (c , d) → a ≡ c × b ≡ d ,-injective refl = refl , refl ≡-dec : Decidable {A = A} _≡_ → Decidable {A = B} _≡_ → Decidable {A = A × B} _≡_ ≡-dec dec₁ dec₂ (a , b) (c , d) = Dec.map′ (uncurry (cong₂ _,_)) ,-injective (dec₁ a c ×-dec dec₂ b d)
{ "alphanum_fraction": 0.4701601164, "avg_line_length": 31.9534883721, "ext": "agda", "hexsha": "34e345c3fa464373d0e926d91f1d956d031e314b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/Product/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/Product/Properties.agda", "max_line_length": 73, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/Product/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 400, "size": 1374 }
module Options-in-right-order where data Unit : Set where unit : Unit postulate IO : Set → Set {-# COMPILE GHC IO = type IO #-} {-# BUILTIN IO IO #-} postulate return : {A : Set} → A → IO A {-# COMPILE GHC return = \_ -> return #-} main = return unit
{ "alphanum_fraction": 0.608365019, "avg_line_length": 14.6111111111, "ext": "agda", "hexsha": "17b9f004b29efa5cd3145b461e86b9fc6ab95ba7", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Options-in-right-order.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Options-in-right-order.agda", "max_line_length": 41, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Options-in-right-order.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 76, "size": 263 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category module Categories.Object.Subobject {o ℓ e} (𝒞 : Category o ℓ e) where open import Level open import Data.Product open import Data.Unit open import Relation.Binary using (Poset) open import Categories.Functor open import Categories.Category.Slice open import Categories.Category.SubCategory open import Categories.Category.Construction.Thin import Categories.Morphism as Mor import Categories.Morphism.Reasoning as MR open import Categories.Morphism.Notation private module 𝒞 = Category 𝒞 -- The Full Subcategory of the over category 𝒞/c on monomorphisms slice-mono : 𝒞.Obj → Category _ _ _ slice-mono c = FullSubCategory (Slice 𝒞 c) {I = Σ[ α ∈ 𝒞.Obj ](α ↣ c)} λ (_ , i) → sliceobj (mor i) where open Mor 𝒞 open _↣_ -- Poset of subobjects for some c ∈ 𝒞 Subobjects : 𝒞.Obj → Poset _ _ _ Subobjects c = record { Carrier = 𝒞ᶜ.Obj ; _≈_ = 𝒞ᶜ [_≅_] ; _≤_ = 𝒞ᶜ [_,_] ; isPartialOrder = record { isPreorder = record { isEquivalence = Mor.≅-isEquivalence 𝒞ᶜ ; reflexive = λ iso → Mor._≅_.from iso ; trans = λ {(α , f) (β , g) (γ , h)} i j → slicearr (chase f g h i j) } ; antisym = λ {(α , f) (β , g)} h i → record { from = h ; to = i ; iso = record { isoˡ = mono f _ _ (chase f g f h i ○ ⟺ 𝒞.identityʳ) ; isoʳ = mono g _ _ (chase g f g i h ○ ⟺ 𝒞.identityʳ) } } } } where 𝒞ᶜ : Category _ _ _ 𝒞ᶜ = slice-mono c module 𝒞ᶜ = Category 𝒞ᶜ open Mor 𝒞 using (_↣_) open MR 𝒞 open 𝒞.HomReasoning open _↣_ chase : ∀ {α β γ : 𝒞.Obj} (f : 𝒞 [ α ↣ c ]) (g : 𝒞 [ β ↣ c ]) (h : 𝒞 [ γ ↣ c ]) → (i : 𝒞ᶜ [ (α , f) , (β , g) ]) → (j : 𝒞ᶜ [ (β , g) , (γ , h) ]) → 𝒞 [ 𝒞 [ mor h ∘ 𝒞 [ Slice⇒.h j ∘ Slice⇒.h i ] ] ≈ mor f ] chase f g h i j = begin 𝒞 [ mor h ∘ 𝒞 [ Slice⇒.h j ∘ Slice⇒.h i ] ] ≈⟨ pullˡ (Slice⇒.△ j) ⟩ 𝒞 [ mor g ∘ Slice⇒.h i ] ≈⟨ Slice⇒.△ i ⟩ mor f ∎
{ "alphanum_fraction": 0.5648514851, "avg_line_length": 28.8571428571, "ext": "agda", "hexsha": "8c78188e17e049330fce5ddcdc1d96913ef253df", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Object/Subobject.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Object/Subobject.agda", "max_line_length": 99, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Object/Subobject.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 812, "size": 2020 }
{-# OPTIONS --cubical --save-metas #-} -- The code in this module should not be compiled. However, the -- following re-exported code should be compiled. open import Agda.Builtin.Bool public postulate easy : {A : Set} → A data Not-compiled : Set where
{ "alphanum_fraction": 0.7081712062, "avg_line_length": 21.4166666667, "ext": "agda", "hexsha": "3cdb19a1717fe253fb454dd0fbb492717f602c34", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b5b3b1657556f720a7310cb7744edb1fac71eaf4", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "Seanpm2001-Agda-lang/agda", "max_forks_repo_path": "test/Compiler/simple/Erased-cubical-Cubical.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "b5b3b1657556f720a7310cb7744edb1fac71eaf4", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "Seanpm2001-Agda-lang/agda", "max_issues_repo_path": "test/Compiler/simple/Erased-cubical-Cubical.agda", "max_line_length": 63, "max_stars_count": 1, "max_stars_repo_head_hexsha": "6b13364d36eeb60d8ec15eaf8effe23c73401900", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "sseefried/agda", "max_stars_repo_path": "test/Compiler/simple/Erased-cubical-Cubical.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-05T00:25:14.000Z", "max_stars_repo_stars_event_min_datetime": "2022-03-05T00:25:14.000Z", "num_tokens": 67, "size": 257 }
module Bee2.Crypto.Defs where open import Data.ByteString open import Data.ByteVec open import Agda.Builtin.Nat renaming (Nat to ℕ) {-# FOREIGN GHC import qualified Bee2.Defs #-} postulate SizeT : Set SizeFromℕ : ℕ → SizeT {-# COMPILE GHC SizeT = type (Bee2.Defs.Size) #-} {-# COMPILE GHC SizeFromℕ = ( Prelude.fromIntegral ) #-} Hash = ByteVec {Strict} 32 data SecurityLevel : Set where l128 l192 l256 : SecurityLevel
{ "alphanum_fraction": 0.7133027523, "avg_line_length": 22.9473684211, "ext": "agda", "hexsha": "b986ce08d76cd1049d8d4853a5bf4e7849f5de2a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "22682afc8d488e3812307e104785d2b8dc8b9d4a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "semenov-vladyslav/bee2-agda", "max_forks_repo_path": "src/Bee2/Crypto/Defs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "22682afc8d488e3812307e104785d2b8dc8b9d4a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "semenov-vladyslav/bee2-agda", "max_issues_repo_path": "src/Bee2/Crypto/Defs.agda", "max_line_length": 49, "max_stars_count": null, "max_stars_repo_head_hexsha": "22682afc8d488e3812307e104785d2b8dc8b9d4a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "semenov-vladyslav/bee2-agda", "max_stars_repo_path": "src/Bee2/Crypto/Defs.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 126, "size": 436 }
module std-reduction.Properties where open import std-reduction open import sn-calculus open import Relation.Binary.PropositionalEquality using (_≡_) open _≡_ {- std-redution-deterministic : ∀{p q r} → p ⇁ q → p ⇁ r → q ≡ r std-redution-deterministic = ? std=>calc : ∀{p q} → p ⇁ q → p sn⟶₁ q std=>calc = ? -}
{ "alphanum_fraction": 0.5311720698, "avg_line_length": 21.1052631579, "ext": "agda", "hexsha": "8f1517550b5fcdbe9291f608f3cab632c8ae6211", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "florence/esterel-calculus", "max_forks_repo_path": "agda/std-reduction/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "florence/esterel-calculus", "max_issues_repo_path": "agda/std-reduction/Properties.agda", "max_line_length": 61, "max_stars_count": 3, "max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "florence/esterel-calculus", "max_stars_repo_path": "agda/std-reduction/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z", "num_tokens": 111, "size": 401 }
open import Agda.Builtin.Size record R (A : Size → Set) (i : Size) : Set where field force : (j : Size< i) → A j data D (A : Size → Set) (i : Size) : Set where c : R A i → D A i postulate P : (A : Size → Set) → D A ∞ → D A ∞ → Set F : (Size → Set) → Set F A = (x : A ∞) (y : D A ∞) → P _ (c (record { force = λ j → x })) y -- WAS: -- x != ∞ of type Size -- when checking that the expression y has type D (λ _ → A ∞) ∞ -- SHOULD BE: -- x₁ != ∞ of type Size -- when checking that the expression y has type D (λ _ → A ∞) ∞
{ "alphanum_fraction": 0.5184501845, "avg_line_length": 22.5833333333, "ext": "agda", "hexsha": "1b6ff6c9cac36a58d83a7496f01bd0e9f17c4deb", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-06-14T11:07:38.000Z", "max_forks_repo_forks_event_min_datetime": "2021-06-14T11:07:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue2522.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue2522.agda", "max_line_length": 63, "max_stars_count": 2, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue2522.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z", "num_tokens": 213, "size": 542 }
module Screen where import Data.Nat import Data.Bool import Data.List import Logic.Base open Data.Bool open Data.List open Data.Nat open Logic.Base -- Ranges ----------------------------------------------------------------- data Range : Set where range : Nat -> Nat -> Range inRange : Range -> Nat -> Bool inRange (range lo hi) x = lo ≤ x && x ≤ hi low : Range -> Nat low (range lo _) = lo high : Range -> Nat high (range _ hi) = hi size : Range -> Nat size (range lo hi) = suc hi - lo enumerate : Range -> List Nat enumerate (range lo hi) = enum lo hi where list : Nat -> Nat -> List Nat list _ 0 = [] list k (suc n) = k :: list (suc k) n enum : Nat -> Nat -> List Nat enum lo hi = map (_+_ lo) (list 0 (suc hi - lo)) -- The screen example ----------------------------------------------------- xRange : Range xRange = range 0 79 yRange : Range yRange = range 0 24 screenRange : Range screenRange = range 0xb8000 0xb87ff -- Converting (x,y) to addr plot : Nat -> Nat -> Nat plot x y = low screenRange + x + size xRange * y -- The property forAll : Range -> (Nat -> Bool) -> Bool forAll r p = foldr (\n b -> p n && b) true (enumerate r) prop : Bool prop = forAll xRange \x -> forAll yRange \y -> inRange screenRange (plot x y) proof : IsTrue prop proof = tt
{ "alphanum_fraction": 0.5638699924, "avg_line_length": 18.9, "ext": "agda", "hexsha": "98058b84023e9d51c1c8ed205ddb37d652eeaaff", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/Screen.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/Screen.agda", "max_line_length": 75, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "examples/outdated-and-incorrect/Screen.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 388, "size": 1323 }
{-# OPTIONS --without-K #-} -- Approx. 15-20 min are required to typecheck this file (for Agda 2.6.1) on -- my MacBook 13-inch 2017 with 3.5 GHz Core i7 CPU and 16 GB memory. -- -- Since most of the time was spent for termination analysis, please -- uncomment {-# TERMINATING #-} before evalR and eval to remove the -- termination checks. module Definitional where open import Syntax open import Data.Nat open import Data.Fin using (Fin ; suc; zero) open import Data.List using (length ; [] ; _∷_ ) open import Data.List.Properties using (length-++) open import Data.Vec using ([] ; _∷_) open import Data.Vec.Relation.Unary.All using (All ; [] ; _∷_) open import Data.Product open import Relation.Binary.PropositionalEquality open import Level renaming (zero to lzero ; suc to lsuc) open ≡-Reasoning open import Function using () renaming (case_of_ to CASE_OF_) open import Value open import Size open import Codata.Thunk module Interpreter where open import Codata.Delay renaming (length to dlength ; map to dmap ) open import PInj open _⊢_⇔_ -- A variant of the Delay monad in which the bind operator is -- frozen. While we cannot restrict levels in general, using Set is -- enough for enough for our purpose. data DELAY : (A : Set) -> (i : Size) -> Set₁ where Now : ∀ {A i} -> A -> DELAY A i Later : ∀ {A i} -> Thunk (DELAY A) i -> DELAY A i Bind : ∀ {A B i} -> (m : DELAY A i) -> (f : A -> DELAY B i) -> DELAY B i Never : ∀ {A i} -> DELAY A i Never = Later λ where .force -> Never Dmap : ∀ {A B i} -> (A -> B) -> DELAY A i -> DELAY B i Dmap f d = Bind d (λ x -> Now (f x)) -- The function runD thaws the frozen operations. runD : ∀ {A : Set} {i : Size} -> DELAY A i -> Delay A i runD (Now x) = now x runD (Later x) = later λ where .force -> runD (force x) runD (Bind d f) = bind (runD d) (λ x -> runD (f x)) -- The frozen version of _⊢_⇔_ record _⊢F_⇔_ (i : Size) (A B : Set) : Set₁ where field Forward : A -> DELAY B i Backward : B -> DELAY A i open _⊢F_⇔_ forwardF : ∀ {A B i} -> i ⊢F A ⇔ B -> A -> Delay B i forwardF h a = runD (Forward h a) backwardF : ∀ {A B i} -> i ⊢F A ⇔ B -> B -> Delay A i backwardF h b = runD (Backward h b) -- Similarly to runD, runD⇔ thawas the frozen operations in -- _⊢F_⇔_. runD⇔ : ∀ {A B i} -> i ⊢F A ⇔ B -> i ⊢ A ⇔ B forward (runD⇔ f) = forwardF f backward (runD⇔ f) = backwardF f -- Environments handled by the forward and backward evaluations, -- which correponds to μ in the paper. data RValEnv : (Θ : TyEnv) (Ξ : MultEnv (length Θ)) -> Set where [] : RValEnv [] [] skip : ∀ {Θ Ξ A} -> RValEnv Θ Ξ -> RValEnv (A ∷ Θ) (zero ∷ Ξ) _∷_ : ∀ {Θ Ξ A} -> Value [] ∅ A -> RValEnv Θ Ξ -> RValEnv (A ∷ Θ) (one ∷ Ξ) emptyRValEnv : ∀ {Θ} -> RValEnv Θ ∅ emptyRValEnv {[]} = [] emptyRValEnv {_ ∷ _} = skip emptyRValEnv splitRValEnv : ∀ {Θ Ξ₁ Ξ₂} -> RValEnv Θ (Ξ₁ +ₘ Ξ₂) -> RValEnv Θ Ξ₁ × RValEnv Θ Ξ₂ splitRValEnv {[]} {[]} {[]} [] = [] , [] splitRValEnv {_ ∷ Θ} {zero ∷ Ξ₁} {zero ∷ Ξ₂} (skip ρ) with splitRValEnv ρ ... | ρ₁ , ρ₂ = skip ρ₁ , skip ρ₂ splitRValEnv {_ ∷ Θ} {zero ∷ Ξ₁} {one ∷ Ξ₂} (x ∷ ρ) with splitRValEnv ρ ... | ρ₁ , ρ₂ = skip ρ₁ , x ∷ ρ₂ splitRValEnv {_ ∷ Θ} {one ∷ Ξ₁} {zero ∷ Ξ₂} (x ∷ ρ) with splitRValEnv ρ ... | ρ₁ , ρ₂ = x ∷ ρ₁ , skip ρ₂ -- An inverse of splitRValEnv. mergeRValEnv : ∀ {Θ Ξ₁ Ξ₂} -> all-no-omega (Ξ₁ +ₘ Ξ₂) -> RValEnv Θ Ξ₁ -> RValEnv Θ Ξ₂ -> RValEnv Θ (Ξ₁ +ₘ Ξ₂) mergeRValEnv {.[]} {.[]} {.[]} _ [] [] = [] mergeRValEnv {.(_ ∷ _)} {.(zero ∷ _)} {.(zero ∷ _)} (_ ∷ ano) (skip ρ₁) (skip ρ₂) = skip (mergeRValEnv ano ρ₁ ρ₂) mergeRValEnv {.(_ ∷ _)} {.(zero ∷ _)} {.(one ∷ _)} (_ ∷ ano) (skip ρ₁) (x ∷ ρ₂) = x ∷ (mergeRValEnv ano ρ₁ ρ₂) mergeRValEnv {.(_ ∷ _)} {.(one ∷ _)} {.(zero ∷ _)} (_ ∷ ano) (x ∷ ρ₁) (skip ρ₂) = x ∷ mergeRValEnv ano ρ₁ ρ₂ mergeRValEnv {.(_ ∷ _)} {.(one ∷ _)} {.(one ∷ _)} (() ∷ ano) (x ∷ ρ₁) (x₁ ∷ ρ₂) -- Construction of the empty value environment. from-all-zero : ∀ {Θ Ξ} -> all-zero Ξ -> RValEnv Θ Ξ from-all-zero {[]} {[]} [] = [] from-all-zero {_ ∷ Θ} {.(zero ∷ _)} (refl ∷ az) = skip (from-all-zero az) -- Value environments conforms to an empty invertible environment must be empty. all-zero-canon : ∀ {Θ Ξ} -> (az : all-zero Ξ) -> (θ : RValEnv Θ Ξ) -> θ ≡ (from-all-zero az) all-zero-canon {[]} {[]} [] [] = refl all-zero-canon {_ ∷ Θ} {_ ∷ Ξ} (refl ∷ az) (skip θ) = cong skip (all-zero-canon az θ) -- Looking-up function for RValEnv lkup : ∀ {Θ A} {x : Θ ∋ A} {Ξ} -> varOk● Θ x Ξ -> RValEnv Θ Ξ -> Value [] ∅ A lkup (there ok) (skip ρ) = lkup ok ρ lkup (here ad) (x ∷ ρ) = x -- ad asserts ρ consists only of skip and [] -- An inverse of lkup; the linearity matters here. unlkup : ∀ {Θ A} {x : Θ ∋ A} {Ξ} -> varOk● Θ x Ξ -> Value [] ∅ A -> RValEnv Θ Ξ unlkup (there ok) v = skip (unlkup ok v) unlkup (here ad) v = v ∷ from-all-zero ad -- Some utility functions. var●₀ : ∀ {A Θ} -> Residual (A ∷ Θ) (one ∷ ∅) (A ●) var●₀ = var● vz (here all-zero-∅) BindR : ∀ {i Θ Ξ A} {r : Set} -> DELAY (Value Θ Ξ (A ●)) i -> (Residual Θ Ξ (A ●) -> DELAY r i) -> DELAY r i BindR x f = Bind x λ { (red r) -> f r } -- For the do trick for the pattern matching -- See https://github.com/agda/agda/issues/2298 _>>=_ : ∀ {a b : Level} {A : Set a} {B : A -> Set b} -> ∀ (x : A) -> (∀ x -> B x) -> B x x >>= f = f x -- Function application. apply : ∀ {Θ Ξ₁ Ξ₂ A m B} i -> all-no-omega (Ξ₁ +ₘ m ×ₘ Ξ₂) -> Value Θ Ξ₁ (A # m ~> B) -> Value Θ Ξ₂ A -> DELAY (Value Θ (Ξ₁ +ₘ m ×ₘ Ξ₂) B) i -- Forward, backward and unidirectional evalautions are given as -- mutually recursive functions. Notice that, the existence of these -- functions essentially proves the type safety (i.e., the -- preservation and progree prperty). Thus, in a sense, they are -- generalizations of Lemma 3.1 and Lemma 3.2 in the paper. -- Forward and backward evaluation. -- {-# TERMINATING #-} evalR : ∀ {Θ Ξ A} i -> all-no-omega Ξ -> Residual Θ Ξ (A ●) -> i ⊢F (RValEnv Θ Ξ) ⇔ Value [] ∅ A -- Unidirectional evaluation. Also, an important thing is that this function keeps -- the invariant all-no-omega (Ξₑ +ₘ Ξ) for recursive calls, which essentially supports -- the claim in Section 3.4: "This assumption is actually an invariant in our system ...". -- {-# TERMINATING #-} eval : ∀ {Θ Ξₑ Γ Δ Ξ A} i -> all-no-omega (Ξₑ +ₘ Ξ) -> ValEnv Γ Δ Θ Ξₑ -> Term Γ Δ Θ Ξ A -> DELAY (Value Θ (Ξₑ +ₘ Ξ) A) i apply {Θ} {Ξ₁} {Ξ₂} i ano (clo {Ξ' = Ξ'} {Ξₜ = Ξₜ} m refl θ t) v with all-no-omega-dist _ _ ano ... | ano-'t , ano-m2 = Later λ { .force {j} -> let T = eval j (subst all-no-omega lemma ano) (tup _ _ refl (value-to-multM ano-m2 v) θ) t in subst (λ x -> DELAY (Value Θ x _) j) (sym lemma) T } where lemma : Ξ' +ₘ Ξₜ +ₘ m ×ₘ Ξ₂ ≡ m ×ₘ Ξ₂ +ₘ Ξ' +ₘ Ξₜ lemma = trans (+ₘ-comm _ _) (sym (+ₘ-assoc (m ×ₘ Ξ₂) Ξ' _)) -- evalR is defined so that evalR ∞ ano r actually defines a -- bijection. See Invertiblity.agda for its proof. Forward (evalR i ano unit●) _ = Now (unit refl) Backward (evalR i ano unit●) _ = Now emptyRValEnv Forward (evalR i ano (letunit● r₁ r₂)) ρ = do ano₁ , ano₂ <- all-no-omega-dist _ _ ano ρ₁ , ρ₂ <- splitRValEnv ρ Bind (Forward (evalR i ano₁ r₁) ρ₁) λ { (unit eq) -> Forward (evalR i ano₂ r₂) ρ₂ } Backward (evalR i ano (letunit● r₁ r₂)) v = do ano₁ , ano₂ <- all-no-omega-dist _ _ ano Bind (Backward (evalR i ano₂ r₂) v) λ ρ₂ -> Bind (Backward (evalR i ano₁ r₁) (unit refl)) λ ρ₁ -> Now (mergeRValEnv ano ρ₁ ρ₂) Forward (evalR i ano (pair● r₁ r₂)) ρ = do ano₁ , ano₂ <- all-no-omega-dist _ _ ano ρ₁ , ρ₂ <- splitRValEnv ρ Bind (Forward (evalR i ano₁ r₁) ρ₁) λ v₁ -> Bind (Forward (evalR i ano₂ r₂) ρ₂) λ v₂ -> Now (pair refl v₁ v₂) Backward (evalR i ano (pair● {A = A} {B} r₁ r₂)) (pair {Ξ₁ = []} {[]} spΞ v₁ v₂) = do ano₁ , ano₂ <- all-no-omega-dist _ _ ano Bind (Backward (evalR i ano₁ r₁) v₁) λ ρ₁ -> Bind (Backward (evalR i ano₂ r₂) v₂) λ ρ₂ -> Now (mergeRValEnv ano ρ₁ ρ₂) Forward (evalR i ano (letpair● r₁ r₂)) ρ = do ano₁ , ano₂ <- all-no-omega-dist _ _ ano ρ₁ , ρ₂ <- splitRValEnv ρ Bind (Forward (evalR i ano₁ r₁) ρ₁) λ { (pair {Ξ₁ = []} {[]} spΞ v₁ v₂ ) -> Forward (evalR i (one ∷ one ∷ ano₂) r₂) (v₁ ∷ v₂ ∷ ρ₂) } Backward (evalR i ano (letpair● r₁ r₂)) v = do ano₁ , ano₂ <- all-no-omega-dist _ _ ano Bind (Backward (evalR i (one ∷ one ∷ ano₂) r₂) v) λ { (v₁ ∷ v₂ ∷ ρ₂) -> Bind (Backward (evalR i ano₁ r₁) (pair refl v₁ v₂)) λ ρ₁ -> Now (mergeRValEnv ano ρ₁ ρ₂) } Forward (evalR i ano (inl● r)) ρ = Bind (Forward (evalR i ano r) ρ) λ x -> Now (inl x) Backward (evalR i ano (inl● r)) v = CASE v OF λ { (inl v₁) -> Backward (evalR i ano r) v₁ ; (inr v₂) -> Never } Forward (evalR i ano (inr● r)) ρ = Bind (Forward (evalR i ano r) ρ) λ x -> Now (inr x) Backward (evalR i ano (inr● r)) v = CASE v OF λ { (inl v₁) -> Never ; (inr v₂) -> Backward (evalR i ano r) v₂ } Forward (evalR i ano (case● {Γ₁ = Γ₁} {Γ₂} r refl θ₁ t₁ θ₂ t₂ f)) ρ = do ano₀ , ano- <- all-no-omega-dist _ _ ano ρ₀ , ρ- <- splitRValEnv ρ Bind (Forward (evalR i ano₀ r) ρ₀) λ { (inl v₁) -> Bind (eval i (one ∷ ano-) (weakenΘ-valEnv Γ₁ (compat-ext-here ext-id) θ₁) t₁) λ { (red r₁) -> Later λ { .force {j} -> Bind (Forward (evalR j (one ∷ ano-) r₁) (v₁ ∷ ρ-)) λ v -> Bind (apply j [] f v) λ { (inl _) -> Now v ; (inr _) -> Never } } } ; (inr v₂) -> Bind (eval i (one ∷ ano-) (weakenΘ-valEnv Γ₂ (compat-ext-here ext-id) θ₂) t₂) λ { (red r₂) -> Later λ { .force {j} -> Bind (Forward (evalR j (one ∷ ano-) r₂) (v₂ ∷ ρ-)) λ v -> Bind (apply j [] f v) λ { (inl _) -> Never ; (inr _) -> Now v } } } } Backward (evalR i ano (case● {Γ₁ = Γ₁} {Γ₂} r refl θ₁ t₁ θ₂ t₂ f)) v = do ano₀ , ano- <- all-no-omega-dist _ _ ano Bind (apply i [] f v) λ { (inl _) -> Bind (eval i (one ∷ ano-) (weakenΘ-valEnv Γ₁ (compat-ext-here ext-id) θ₁) t₁) λ { (red r₁) -> Later λ { .force {j} -> Bind (Backward (evalR j (one ∷ ano-) r₁) v) λ { (v₁ ∷ ρ-) -> Bind (Backward (evalR j ano₀ r) (inl v₁)) λ ρ₀ -> Now (mergeRValEnv ano ρ₀ ρ-) } } } ; (inr _) -> Bind (eval i (one ∷ ano-) (weakenΘ-valEnv Γ₂ (compat-ext-here ext-id) θ₂) t₂) λ { (red r₂) -> Later λ where .force {j} -> Bind (Backward (evalR j (one ∷ ano-) r₂) v) λ { (v₂ ∷ ρ-) -> Bind (Backward (evalR j ano₀ r) (inr v₂)) λ ρ₀ -> Now (mergeRValEnv ano ρ₀ ρ-) } } } Forward (evalR i ano (var● x ok)) ρ = Now (lkup ok ρ) Backward (evalR i ano (var● x ok)) v = Now (unlkup ok v) Forward (evalR i ano (pin r f)) ρ = do ano₁ , ano₂ <- all-no-omega-dist _ _ ano ρ₁ , ρ₂ <- splitRValEnv ρ Bind (Forward (evalR i ano₁ r) ρ₁) λ v₁ -> CASE f OF λ { (clo .omega refl θ t) → Later λ { .force {j} -> Bind (eval j ano₂ (tup ∅ _ (∅-lid _) (mult-omega (weakenΘ-value extendΘ v₁) refl) θ) t) λ { (red r₂) -> -- maybe another delaying would be needed here Bind (Forward (evalR j ano₂ r₂) ρ₂) λ v₂ -> Now (pair refl v₁ v₂) } } } Backward (evalR i ano (pin r (clo .omega refl θ t))) (pair {Ξ₁ = []} {[]} refl v₁ v₂) = do ano₁ , ano₂ <- all-no-omega-dist _ _ ano Later λ { .force {j} -> BindR (eval j ano₂ (tup ∅ _ (∅-lid _) (mult-omega (weakenΘ-value extendΘ v₁) refl) θ) t) λ r₂ -> Bind (Backward (evalR j ano₂ r₂) v₂) λ ρ₂ -> Bind (Backward (evalR j ano₁ r) v₁) λ ρ₁ -> Now (mergeRValEnv ano ρ₁ ρ₂) } -- The unidirectional evaluation, of which definition would be -- routine except for rather tedious manipulation of value -- environments. eval {Θ} _ ano θ (var x ok) = Now (subst (λ x -> Value Θ x _) (sym (∅-rid _)) (lookupVar θ ok)) eval _ ano θ (abs m t) = Now (clo m refl θ t) eval {Θ} {Γ = Γ} i ano θ (app {Δ₁ = Δ₁} {Δ₂} {Ξ₁ = Ξ₁} {Ξ₂} {m = m} t₁ t₂) with separateEnv {Γ} Δ₁ (m ×ₘ Δ₂) θ ... | tup Ξₑ₁ Ξₑ₂ refl θ₁ θ₂ with eval i (proj₁ lemma) θ₁ t₁ | proj₂ lemma | un×ₘ-valEnv Γ θ₂ where lemma' : Ξₑ₁ +ₘ Ξₑ₂ +ₘ (Ξ₁ +ₘ m ×ₘ Ξ₂) ≡ (Ξₑ₁ +ₘ Ξ₁) +ₘ (Ξₑ₂ +ₘ m ×ₘ Ξ₂) lemma' = +ₘ-transpose Ξₑ₁ Ξₑ₂ Ξ₁ (m ×ₘ Ξ₂) lemma : all-no-omega (Ξₑ₁ +ₘ Ξ₁) × all-no-omega (Ξₑ₂ +ₘ m ×ₘ Ξ₂) lemma = all-no-omega-dist (Ξₑ₁ +ₘ Ξ₁) _ (subst all-no-omega lemma' ano) ... | T₁ | ano-e2m2 | Ξₑ₂' , θ₂' , refl with (subst all-no-omega (sym (×ₘ-dist m Ξₑ₂' _)) ano-e2m2) ... | ano-m[e2'2] with eval i (all-no-omega-dist-×ₘ m (Ξₑ₂' +ₘ Ξ₂) ano-m[e2'2]) θ₂' t₂ ... | T₂ = Bind T₁ (λ { (clo {Ξ' = Ξ'} {Ξₜ = Ξₜ} m spΞ θf t) → Bind T₂ λ v₂ -> Later λ { .force -> let lemma : m ×ₘ (Ξₑ₂' +ₘ Ξ₂) +ₘ Ξ' +ₘ Ξₜ ≡ Ξₑ₁ +ₘ m ×ₘ Ξₑ₂' +ₘ (Ξ₁ +ₘ m ×ₘ Ξ₂) lemma = begin m ×ₘ (Ξₑ₂' +ₘ Ξ₂) +ₘ Ξ' +ₘ Ξₜ ≡⟨ +ₘ-assoc (m ×ₘ (Ξₑ₂' +ₘ Ξ₂)) Ξ' _ ⟩ m ×ₘ (Ξₑ₂' +ₘ Ξ₂) +ₘ (Ξ' +ₘ Ξₜ) ≡⟨ cong (_ +ₘ_) spΞ ⟩ m ×ₘ (Ξₑ₂' +ₘ Ξ₂) +ₘ (Ξₑ₁ +ₘ Ξ₁) ≡⟨ cong (_+ₘ _) (×ₘ-dist m Ξₑ₂' Ξ₂) ⟩ m ×ₘ Ξₑ₂' +ₘ m ×ₘ Ξ₂ +ₘ (Ξₑ₁ +ₘ Ξ₁) ≡⟨ +ₘ-transpose (m ×ₘ Ξₑ₂') (m ×ₘ Ξ₂) Ξₑ₁ _ ⟩ m ×ₘ Ξₑ₂' +ₘ Ξₑ₁ +ₘ (m ×ₘ Ξ₂ +ₘ Ξ₁) ≡⟨ cong₂ (_+ₘ_) (+ₘ-comm _ _) (+ₘ-comm _ _) ⟩ Ξₑ₁ +ₘ m ×ₘ Ξₑ₂' +ₘ (Ξ₁ +ₘ m ×ₘ Ξ₂) ∎ lemma-ano : all-no-omega (m ×ₘ (Ξₑ₂' +ₘ Ξ₂) +ₘ Ξ' +ₘ Ξₜ) lemma-ano = subst all-no-omega (sym lemma) ano in (Bind (eval _ lemma-ano (tup (m ×ₘ (Ξₑ₂' +ₘ Ξ₂)) Ξ' refl (value-to-multM ano-m[e2'2] v₂) θf) t) λ v -> Now (subst (λ Ξ -> Value Θ Ξ _) lemma v) )} }) eval {Γ = Γ} _ ano θ (unit ad) with discardable-has-no-resources {Γ} θ ad ... | refl = Now (substV (sym (∅-lid _)) (unit refl)) eval {Θ} {Ξₑ} {Γ} i ano θ (letunit {Δ₀ = Δ₀} {Δ} {Ξ₀ = Ξ₀} {Ξ} m t₀ t) with separateEnv {Γ} (m ×ₘ Δ₀) Δ θ ... | tup Ξₑ₁ Ξₑ₂ refl θ₁ θ₂ with un×ₘ-valEnv Γ θ₁ ... | Ξₑ₁' , θ₁' , refl with subst all-no-omega (+ₘ-transpose (m ×ₘ Ξₑ₁') Ξₑ₂ (m ×ₘ Ξ₀) _) ano ... | ano' with all-no-omega-dist (m ×ₘ Ξₑ₁' +ₘ m ×ₘ Ξ₀) _ ano' ... | ano-me1'm0 , ano-e2 with eval i (all-no-omega-dist-×ₘ m (Ξₑ₁' +ₘ Ξ₀) (subst all-no-omega (sym (×ₘ-dist m Ξₑ₁' Ξ₀)) ano-me1'm0)) θ₁' t₀ ... | T₀ = Bind T₀ λ { (unit emp-e1'0) → let lemma : Ξₑ₂ +ₘ Ξ ≡ (m ×ₘ Ξₑ₁' +ₘ Ξₑ₂) +ₘ ((m ×ₘ Ξ₀) +ₘ Ξ) lemma = begin Ξₑ₂ +ₘ Ξ ≡⟨ sym (∅-lid _) ⟩ ∅ +ₘ (Ξₑ₂ +ₘ Ξ) ≡⟨ cong (_+ₘ (Ξₑ₂ +ₘ Ξ)) (sym (×ₘ∅ m)) ⟩ m ×ₘ ∅ +ₘ (Ξₑ₂ +ₘ Ξ) ≡⟨ cong (λ h -> m ×ₘ h +ₘ (Ξₑ₂ +ₘ Ξ)) (emp-e1'0) ⟩ m ×ₘ (Ξₑ₁' +ₘ Ξ₀) +ₘ (Ξₑ₂ +ₘ Ξ) ≡⟨ cong (_+ₘ _) (×ₘ-dist m Ξₑ₁' Ξ₀) ⟩ m ×ₘ Ξₑ₁' +ₘ m ×ₘ Ξ₀ +ₘ (Ξₑ₂ +ₘ Ξ) ≡⟨ +ₘ-transpose (m ×ₘ Ξₑ₁') (m ×ₘ Ξ₀) Ξₑ₂ Ξ ⟩ (m ×ₘ Ξₑ₁' +ₘ Ξₑ₂) +ₘ ((m ×ₘ Ξ₀) +ₘ Ξ) ∎ in Dmap (substV lemma) (eval i ano-e2 θ₂ t) } eval {Θ} {Ξₑ} {Γ} i ano θ (pair {Δ₁ = Δ₁} {Δ₂} {Ξ₁ = Ξ₁} {Ξ₂} t₁ t₂) with separateEnv {Γ} Δ₁ Δ₂ θ ... | tup Ξₑ₁ Ξₑ₂ refl θ₁ θ₂ with subst all-no-omega (+ₘ-transpose Ξₑ₁ Ξₑ₂ Ξ₁ _) ano ... | ano' with all-no-omega-dist (Ξₑ₁ +ₘ Ξ₁) _ ano' ... | ano-e11 , ano-e22 with eval i ano-e11 θ₁ t₁ | eval i ano-e22 θ₂ t₂ ... | T₁ | T₂ = Bind T₁ λ v₁ -> Bind T₂ λ v₂ -> Now (pair (+ₘ-transpose Ξₑ₁ Ξ₁ Ξₑ₂ _) v₁ v₂) eval {Θ} {Ξₑ} {Γ} i ano θ (letpair {Δ₀ = Δ₀} {Δ} {Ξ₀ = Ξ₀} {Ξ} m t₀ t) with separateEnv {Γ} (m ×ₘ Δ₀) Δ θ ... | tup Ξₑ₁ Ξₑ₂ refl θ₁ θ₂ with un×ₘ-valEnv Γ θ₁ ... | Ξₑ₁' , θ₁' , refl with subst all-no-omega (+ₘ-transpose (m ×ₘ Ξₑ₁') Ξₑ₂ (m ×ₘ Ξ₀) Ξ) ano ... | ano' with all-no-omega-dist (m ×ₘ Ξₑ₁' +ₘ m ×ₘ Ξ₀) _ ano' ... | ano-me1'm0 , ano-e2- with subst all-no-omega (sym (×ₘ-dist m Ξₑ₁' _)) ano-me1'm0 ... | ano-m[e1'0] with all-no-omega-dist-×ₘ m _ ano-m[e1'0] ... | ano-e1'0 with eval i ano-e1'0 θ₁' t₀ ... | T₀ = Bind T₀ λ { (pair {Ξ₁ = Ξ₁} {Ξ₂} spΞ v₁ v₂) → let ano-m[12] : all-no-omega (m ×ₘ (Ξ₁ +ₘ Ξ₂)) ano-m[12] = subst all-no-omega (cong (m ×ₘ_) (sym spΞ)) ano-m[e1'0] ano-m1m2 : all-no-omega (m ×ₘ Ξ₁ +ₘ m ×ₘ Ξ₂) ano-m1m2 = subst all-no-omega (×ₘ-dist m Ξ₁ Ξ₂) ano-m[12] an : all-no-omega (m ×ₘ Ξ₁) × all-no-omega (m ×ₘ Ξ₂) an = all-no-omega-dist (m ×ₘ Ξ₁) _ ano-m1m2 eq : m ×ₘ Ξ₁ +ₘ (m ×ₘ Ξ₂ +ₘ Ξₑ₂) ≡ m ×ₘ Ξₑ₁' +ₘ m ×ₘ Ξ₀ +ₘ Ξₑ₂ eq = begin m ×ₘ Ξ₁ +ₘ (m ×ₘ Ξ₂ +ₘ Ξₑ₂) ≡⟨ sym (+ₘ-assoc (m ×ₘ Ξ₁) (m ×ₘ Ξ₂) _) ⟩ m ×ₘ Ξ₁ +ₘ m ×ₘ Ξ₂ +ₘ Ξₑ₂ ≡⟨ cong (_+ₘ Ξₑ₂) (sym (×ₘ-dist m Ξ₁ Ξ₂)) ⟩ m ×ₘ (Ξ₁ +ₘ Ξ₂) +ₘ Ξₑ₂ ≡⟨ cong (_+ₘ Ξₑ₂) (cong (m ×ₘ_) spΞ) ⟩ m ×ₘ (Ξₑ₁' +ₘ Ξ₀) +ₘ Ξₑ₂ ≡⟨ cong (_+ₘ Ξₑ₂) (×ₘ-dist m _ _) ⟩ m ×ₘ Ξₑ₁' +ₘ m ×ₘ Ξ₀ +ₘ Ξₑ₂ ∎ θ' : ValEnv (_ ∷ _ ∷ Γ) (M→M₀ m ∷ M→M₀ m ∷ Δ) Θ (m ×ₘ Ξₑ₁' +ₘ m ×ₘ Ξ₀ +ₘ Ξₑ₂) θ' = tup (m ×ₘ Ξ₁) _ eq (value-to-multM (proj₁ an) v₁) (tup (m ×ₘ Ξ₂) Ξₑ₂ refl (value-to-multM (proj₂ an) v₂) θ₂) eq' : m ×ₘ Ξₑ₁' +ₘ m ×ₘ Ξ₀ +ₘ Ξₑ₂ +ₘ Ξ ≡ (m ×ₘ Ξₑ₁' +ₘ Ξₑ₂) +ₘ (m ×ₘ Ξ₀ +ₘ Ξ) eq' = begin m ×ₘ Ξₑ₁' +ₘ m ×ₘ Ξ₀ +ₘ Ξₑ₂ +ₘ Ξ ≡⟨ +ₘ-assoc (m ×ₘ Ξₑ₁' +ₘ m ×ₘ Ξ₀) Ξₑ₂ _ ⟩ m ×ₘ Ξₑ₁' +ₘ m ×ₘ Ξ₀ +ₘ (Ξₑ₂ +ₘ Ξ) ≡⟨ +ₘ-transpose (m ×ₘ Ξₑ₁') (m ×ₘ Ξ₀) Ξₑ₂ _ ⟩ (m ×ₘ Ξₑ₁' +ₘ Ξₑ₂) +ₘ (m ×ₘ Ξ₀ +ₘ Ξ) ∎ -- solve 4 (λ a b c d -> -- ((a ⊞ b) ⊞ c) ⊞ d ⊜ -- (a ⊞ c) ⊞ (b ⊞ d)) refl (m ×ₘ Ξₑ₁') (m ×ₘ Ξ₀) Ξₑ₂ Ξ in Dmap (substV eq') (eval i (subst all-no-omega (sym eq') ano) θ' t) } eval {Θ} {Ξₑ} {Γ} i ano θ (many m t) = do (Ξₑ' , θ' , refl) <- un×ₘ-valEnv Γ θ ano-m[e'-] <- subst all-no-omega (sym (×ₘ-dist m Ξₑ' _)) ano ano-e'- <- all-no-omega-dist-×ₘ m _ ano-m[e'-] Bind (eval i ano-e'- θ' t) λ v -> Now (many m (×ₘ-dist m Ξₑ' _) v) eval {Θ} {Ξₑ} {Γ} i ano θ (unmany {Δ₀ = Δ₀} {Δ} {Ξ₀ = Ξ₀} {Ξ} {m₀ = m₀} {A} m t₀ t) = do tup Ξₑ₁ Ξₑ₂ refl θ₁ θ₂ <- separateEnv {Γ} (m ×ₘ Δ₀) Δ θ Ξₑ₁' , θ₁' , refl <- un×ₘ-valEnv Γ θ₁ ano' <- subst all-no-omega (+ₘ-transpose (m ×ₘ Ξₑ₁') Ξₑ₂ (m ×ₘ Ξ₀) Ξ) ano ano-me1'm0 , ano-e2 <- all-no-omega-dist (m ×ₘ Ξₑ₁' +ₘ m ×ₘ Ξ₀) _ ano' ano-m[e1'0] <- subst all-no-omega (sym (×ₘ-dist m Ξₑ₁' _)) ano-me1'm0 ano-e1'0 <- all-no-omega-dist-×ₘ m _ ano-m[e1'0] Bind (eval i ano-e1'0 θ₁' t₀ ) λ where (many {Ξ₀ = Ξ''} .m₀ sp v₀) -> do let ano-mm₀[e1'0] : all-no-omega (m ×ₘ m₀ ×ₘ Ξ'') ano-mm₀[e1'0] = subst all-no-omega (cong (m ×ₘ_) (sym sp)) ano-m[e1'0] ano-mul[e1'0] : all-no-omega (mul m m₀ ×ₘ Ξ'') ano-mul[e1'0] = subst all-no-omega (sym (mul-×ₘ m m₀ Ξ'')) ano-mm₀[e1'0] eq : m ×ₘ Ξₑ₁' +ₘ m ×ₘ Ξ₀ +ₘ (Ξₑ₂ +ₘ Ξ) ≡ mul m m₀ ×ₘ Ξ'' +ₘ Ξₑ₂ +ₘ Ξ eq = begin m ×ₘ Ξₑ₁' +ₘ m ×ₘ Ξ₀ +ₘ (Ξₑ₂ +ₘ Ξ) ≡⟨ cong (_+ₘ _) (sym (×ₘ-dist m Ξₑ₁' _)) ⟩ m ×ₘ (Ξₑ₁' +ₘ Ξ₀) +ₘ (Ξₑ₂ +ₘ Ξ) ≡⟨ cong (λ e -> m ×ₘ e +ₘ _) (sym sp) ⟩ m ×ₘ m₀ ×ₘ Ξ'' +ₘ (Ξₑ₂ +ₘ Ξ) ≡⟨ cong (_+ₘ _) (sym (mul-×ₘ m m₀ Ξ'')) ⟩ mul m m₀ ×ₘ Ξ'' +ₘ (Ξₑ₂ +ₘ Ξ) ≡⟨ sym (+ₘ-assoc _ _ _) ⟩ mul m m₀ ×ₘ Ξ'' +ₘ Ξₑ₂ +ₘ Ξ ∎ ano'' : all-no-omega (mul m m₀ ×ₘ Ξ'' +ₘ Ξₑ₂ +ₘ Ξ) ano'' = subst all-no-omega eq ano' θ' : ValEnv (A ∷ Γ) (M→M₀ (mul m m₀) ∷ Δ) Θ (mul m m₀ ×ₘ Ξ'' +ₘ Ξₑ₂) θ' = tup _ Ξₑ₂ refl (value-to-multM ano-mul[e1'0] v₀) θ₂ Bind (eval i ano'' θ' t) λ v -> Now (substV (trans (sym eq) (sym (+ₘ-transpose (m ×ₘ Ξₑ₁') Ξₑ₂ (m ×ₘ Ξ₀) Ξ))) v) eval i ano θ (inl t) = Dmap inl (eval i ano θ t) eval i ano θ (inr t) = Dmap inr (eval i ano θ t) eval {Θ} {Ξₑ = Ξₑ} {Γ} i ano θ (case {Δ₀ = Δ₀} {Δ} {Ξ₀ = Ξ₀} {Ξ} m t₀ t₁ t₂) with separateEnv {Γ} (m ×ₘ Δ₀) Δ θ ... | tup Ξₑ₁ Ξₑ₂ refl θ₁ θ₂ with un×ₘ-valEnv Γ θ₁ ... | Ξₑ₁' , θ₁' , refl with subst all-no-omega (+ₘ-transpose (m ×ₘ Ξₑ₁') Ξₑ₂ (m ×ₘ Ξ₀) Ξ) ano ... | ano' with all-no-omega-dist (m ×ₘ Ξₑ₁' +ₘ m ×ₘ Ξ₀) _ ano' ... | ano-me1'm0 , ano-e2- with subst all-no-omega (sym (×ₘ-dist m Ξₑ₁' _)) ano-me1'm0 ... | ano-m[e1'0] with all-no-omega-dist-×ₘ m _ ano-m[e1'0] ... | ano-e1'0 with eval i ano-e1'0 θ₁' t₀ ... | T₀ = Bind T₀ λ { (inl v) → let θ' : ValEnv (_ ∷ Γ) (M→M₀ m ∷ Δ) Θ (m ×ₘ (Ξₑ₁' +ₘ Ξ₀) +ₘ Ξₑ₂) θ' = tup (m ×ₘ (Ξₑ₁' +ₘ Ξ₀)) Ξₑ₂ refl (value-to-multM ano-m[e1'0] v) θ₂ in Dmap (substV lemma) (eval i (subst all-no-omega (sym lemma) ano) θ' t₁) ; (inr v) → let θ' : ValEnv (_ ∷ Γ) (M→M₀ m ∷ Δ) Θ (m ×ₘ (Ξₑ₁' +ₘ Ξ₀) +ₘ Ξₑ₂) θ' = tup (m ×ₘ (Ξₑ₁' +ₘ Ξ₀)) Ξₑ₂ refl (value-to-multM ano-m[e1'0] v) θ₂ in Dmap (substV lemma) (eval i (subst all-no-omega (sym lemma) ano) θ' t₂) } where lemma : m ×ₘ (Ξₑ₁' +ₘ Ξ₀) +ₘ Ξₑ₂ +ₘ Ξ ≡ (m ×ₘ Ξₑ₁' +ₘ Ξₑ₂) +ₘ (m ×ₘ Ξ₀ +ₘ Ξ) lemma = begin m ×ₘ (Ξₑ₁' +ₘ Ξ₀) +ₘ Ξₑ₂ +ₘ Ξ ≡⟨ cong (λ x -> x +ₘ Ξₑ₂ +ₘ Ξ) (×ₘ-dist m Ξₑ₁' _) ⟩ m ×ₘ Ξₑ₁' +ₘ m ×ₘ Ξ₀ +ₘ Ξₑ₂ +ₘ Ξ ≡⟨ +ₘ-assoc (m ×ₘ Ξₑ₁' +ₘ m ×ₘ Ξ₀) Ξₑ₂ _ ⟩ m ×ₘ Ξₑ₁' +ₘ m ×ₘ Ξ₀ +ₘ (Ξₑ₂ +ₘ Ξ) ≡⟨ +ₘ-transpose _ _ _ _ ⟩ (m ×ₘ Ξₑ₁' +ₘ Ξₑ₂) +ₘ (m ×ₘ Ξ₀ +ₘ Ξ) ∎ eval i ano θ (roll t) = Dmap roll (eval i ano θ t) eval i ano θ (unroll t) = Bind (eval i ano θ t) λ { (roll v) → Later λ where .force -> Now v } eval {Γ = Γ} i ano θ (unit● ad) with discardable-has-no-resources {Γ} θ ad ... | refl = Now (red (substR (sym (∅-lid _)) unit●)) eval {Θ} {Ξₑ} {Γ} i ano θ (letunit● {Δ₀ = Δ₀} {Δ} {Ξ₀ = Ξ₀} {Ξ} t₀ t) = do tup Ξₑ₁ Ξₑ₂ refl θ₁ θ₂ <- separateEnv {Γ} Δ₀ Δ θ let lemma : Ξₑ₁ +ₘ Ξₑ₂ +ₘ (Ξ₀ +ₘ Ξ) ≡ Ξₑ₁ +ₘ Ξ₀ +ₘ (Ξₑ₂ +ₘ Ξ) lemma = +ₘ-transpose _ _ _ _ let ano' = subst all-no-omega lemma ano ano-e10 , ano-e2- <- all-no-omega-dist (Ξₑ₁ +ₘ Ξ₀) _ ano' BindR (eval i ano-e10 θ₁ t₀) λ E₀ -> BindR (eval i ano-e2- θ₂ t) λ E -> Now (red (substR (sym lemma) (letunit● E₀ E))) eval {Θ} {Ξₑ} {Γ} i ano θ (pair● {Δ₁ = Δ₁} {Δ₂} {Ξ₁ = Ξ₁} {Ξ₂} t₁ t₂) = do tup Ξₑ₁ Ξₑ₂ refl θ₁ θ₂ <- separateEnv {Γ} Δ₁ Δ₂ θ let lemma : Ξₑ₁ +ₘ Ξₑ₂ +ₘ (Ξ₁ +ₘ Ξ₂) ≡ Ξₑ₁ +ₘ Ξ₁ +ₘ (Ξₑ₂ +ₘ Ξ₂) lemma = +ₘ-transpose _ _ _ _ let ano' = subst all-no-omega lemma ano ano-e11 , ano-e22 <- all-no-omega-dist (Ξₑ₁ +ₘ Ξ₁) _ ano' BindR (eval i ano-e11 θ₁ t₁) λ E₁ -> BindR (eval i ano-e22 θ₂ t₂) λ E₂ -> Now (red (substR (sym lemma) (pair● E₁ E₂))) eval {Θ} {Ξₑ} {Γ} i ano θ (letpair● {Δ₀ = Δ₀} {Δ} {Ξ₀ = Ξ₀} {Ξ} t₀ t) with separateEnv {Γ} Δ₀ Δ θ ... | tup Ξₑ₁ Ξₑ₂ refl θ₁ θ₂ with subst all-no-omega (+ₘ-transpose Ξₑ₁ Ξₑ₂ Ξ₀ _) ano ... | ano' with all-no-omega-dist (Ξₑ₁ +ₘ Ξ₀) _ ano' ... | ano-e10 , ano-e2- with eval i ano-e10 θ₁ t₀ | eval i (one ∷ one ∷ ano-e2-) (weakenΘ-valEnv Γ (compat-ext-here (compat-ext-here ext-id)) θ₂) t ... | T₁ | T = Bind T₁ λ { (red E₁) -> Bind T λ { (red E ) -> Now (red (substR (+ₘ-transpose Ξₑ₁ Ξ₀ _ _) (letpair● E₁ E))) }} eval i ano θ (inl● t) = BindR (eval i ano θ t) λ E -> Now (red (inl● E)) eval i ano θ (inr● t) = BindR (eval i ano θ t) λ E -> Now (red (inr● E)) eval {Θ} {Ξₑ} {Γ} i ano θ (case● {Δ₀ = Δ₀} {Δ} {Δ'} {Ξ₀ = Ξ₀} {Ξ} {Ξ'} t t₁ t₂ t₃) with separateEnv {Γ} (Δ₀ +ₘ Δ) _ θ ... | tup Ξₑ₁₂ Ξₑ₃ refl θ' θ₃ with discardable-has-no-resources {Γ} θ₃ (omega×ₘ-discardable Δ') ... | refl with un×ₘ-valEnv Γ θ₃ ... | Ξₑ₃' , θ₃' , eq with omega×ₘ∅-inv Ξₑ₃' eq ... | refl with separateEnv {Γ} Δ₀ Δ θ' ... | tup Ξₑ₁ Ξₑ₂ refl θ₁ θ₂ with subst all-no-omega lemma ano | lemma where open import Algebra.Solver.CommutativeMonoid (+ₘ-commutativeMonoid (length Θ)) renaming (_⊕_ to _⊞_) lemma : Ξₑ₁ +ₘ Ξₑ₂ +ₘ ∅ +ₘ (Ξ₀ +ₘ Ξ +ₘ omega ×ₘ Ξ') ≡ (Ξₑ₁ +ₘ Ξ₀) +ₘ (Ξₑ₂ +ₘ Ξ) +ₘ omega ×ₘ Ξ' lemma = solve 5 (\a b c d e -> ((a ⊞ b) ⊞ id) ⊞ ((c ⊞ d) ⊞ e) ⊜ ((a ⊞ c) ⊞ (b ⊞ d)) ⊞ e) refl Ξₑ₁ Ξₑ₂ Ξ₀ Ξ (omega ×ₘ Ξ') ... | ano' | lemma with all-no-omega-dist ((Ξₑ₁ +ₘ Ξ₀) +ₘ (Ξₑ₂ +ₘ Ξ)) _ ano' ... | ano'' , ano₃ with all-no-omega-dist (Ξₑ₁ +ₘ Ξ₀) _ ano'' ... | ano-e10 , ano-e2- with all-no-omega-omega×ₘ Ξ' ano₃ ... | refl with eval i ano-e10 θ₁ t | eval i (subst all-no-omega (sym (∅-lid _)) all-no-omega-∅) θ₃' t₃ ... | T | T₃ = Bind T λ { (red r) -> Bind T₃ λ { f -> Now (red (substR (trans lemma' (sym lemma)) let f' = weakenΘ-value smashΘ (subst (λ x -> Value Θ x _) (∅-lid ∅) f) in (case● r refl θ₂ t₁ θ₂ t₂ f'))) } } where lemma' : Ξₑ₁ +ₘ Ξ₀ +ₘ (Ξₑ₂ +ₘ Ξ) ≡ Ξₑ₁ +ₘ Ξ₀ +ₘ (Ξₑ₂ +ₘ Ξ) +ₘ omega ×ₘ ∅ lemma' = sym (trans (cong (λ x -> Ξₑ₁ +ₘ Ξ₀ +ₘ (Ξₑ₂ +ₘ Ξ) +ₘ x) (×ₘ∅ omega)) (∅-rid (Ξₑ₁ +ₘ Ξ₀ +ₘ (Ξₑ₂ +ₘ Ξ) ))) eval {Θ} {Ξₑ} {Γ} i ano θ (var● x ad ok) with discardable-has-no-resources {Γ} θ ad ... | refl = Now (red (substR (sym (∅-lid _)) (var● x ok))) eval {Θ} {Ξₑ} {Γ} i ano θ (pin {Δ₁ = Δ₁} {Δ₂} {Ξ₁ = Ξ₁} {Ξ₂} t₁ t₂) = do tup Ξₑ₁ Ξₑ₂ refl θ₁ θ₂ <- separateEnv {Γ} Δ₁ Δ₂ θ let ano' = subst all-no-omega (+ₘ-transpose Ξₑ₁ Ξₑ₂ Ξ₁ _) ano ano-e11 , ano-e22 <- all-no-omega-dist (Ξₑ₁ +ₘ Ξ₁) _ ano' BindR (eval i ano-e11 θ₁ t₁) λ r -> Bind (eval i ano-e22 θ₂ t₂) λ v -> Now (red (substR (+ₘ-transpose _ _ _ _) (pin r v))) eval {Γ = Γ} i ano θ (unlift e) = do Ξ' , θ' , refl <- un×ₘ-valEnv Γ θ ano₁ , ano₂ <- all-no-omega-dist _ _ ano refl <- all-no-omega-omega×ₘ _ ano₁ refl <- all-no-omega-omega×ₘ _ ano₂ Bind (eval i (subst all-no-omega (sym (∅-lid ∅)) all-no-omega-∅ ) θ' e) λ v -> BindR (apply i (one ∷ subst all-no-omega (sym lemma₁) all-no-omega-∅) (weakenΘ-value (compat-ext-here ext-id) v) (red var●₀)) λ r -> Now (substV (sym lemma₂) (inj refl (weakenΘ-residual (compat-skip smashΘ) (substR (cong (one ∷_) lemma₁) r) ))) where open import Data.Vec.Properties using (map-id) lemma₁ : ∀ {n} -> ∅ +ₘ ∅ +ₘ Data.Vec.map (λ y -> y) ∅ ≡ ∅ {n} lemma₁ {n} rewrite map-id (∅ {n}) | ∅-rid {n} ∅ = ∅-lid ∅ lemma₂ : ∀ {n} -> omega ×ₘ ∅ +ₘ omega ×ₘ ∅ ≡ ∅ {n} lemma₂ {n} rewrite ×ₘ∅ {n} omega | ∅-lid {n} ∅ = refl eval {Γ = Γ} i ano θ (fapp e₁ e₂) = do anoₑ , ano' <- all-no-omega-dist _ _ ano ano₁ , ano'' <- all-no-omega-dist _ _ ano' refl <- all-no-omega-omega×ₘ _ ano'' tup Ξₑ₁ Ξₑ₂ refl θ₁ θ₂ <- separateEnv {Γ} _ _ θ Ξₑ₂' , θ₂' , refl <- un×ₘ-valEnv Γ θ₂ ano₁' , _ <- all-no-omega-dist _ _ (subst all-no-omega lemma' ano) Bind (eval i ano₁' θ₁ e₁) λ { (inj spΞ r) → do refl , refl <- ∅+ₘ∅-inv _ _ (sym spΞ) refl <- all-no-omega-omega×ₘ _ (subst all-no-omega (∅-lid _) anoₑ) Bind (eval i (subst all-no-omega (sym (∅-lid ∅)) all-no-omega-∅) θ₂' e₂) λ v -> Later λ { .force {j} -> Bind (Forward (evalR j (one ∷ all-no-omega-∅) r) (weakenΘ-value smashΘ (substV (∅-lid ∅) v) ∷ [])) λ v' -> Now (substV (sym lemma) (weakenΘ-value extendΘ v')) } } where lemma' : ∀ {n} {Ξₑ₁ Ξ₁ X Y : MultEnv n} -> Ξₑ₁ +ₘ X +ₘ (Ξ₁ +ₘ Y) ≡ Ξₑ₁ +ₘ Ξ₁ +ₘ (X +ₘ Y) lemma' {n} {A} {B} {C} {D} = +ₘ-transpose A C B D lemma : ∀ {n} -> ∅ +ₘ omega ×ₘ ∅ +ₘ (∅ +ₘ omega ×ₘ ∅) ≡ ∅ {n} lemma {n} rewrite ×ₘ∅ {n} omega | ∅-lid {n} ∅ = ∅-lid ∅ eval {Γ = Γ} i ano θ (bapp e₁ e₂) = do anoₑ , ano' <- all-no-omega-dist _ _ ano ano₁ , ano'' <- all-no-omega-dist _ _ ano' refl <- all-no-omega-omega×ₘ _ ano'' tup Ξₑ₁ Ξₑ₂ refl θ₁ θ₂ <- separateEnv {Γ} _ _ θ Ξₑ₂' , θ₂' , refl <- un×ₘ-valEnv Γ θ₂ ano₁' , _ <- all-no-omega-dist _ _ (subst all-no-omega lemma' ano) Bind (eval i ano₁' θ₁ e₁) λ { (inj spΞ r) → do refl , refl <- ∅+ₘ∅-inv _ _ (sym spΞ) refl <- all-no-omega-omega×ₘ _ (subst all-no-omega (∅-lid _) anoₑ) Bind (eval i (subst all-no-omega (sym (∅-lid ∅)) all-no-omega-∅) θ₂' e₂) λ v -> Later λ { .force {j} -> Bind (Backward (evalR j (one ∷ all-no-omega-∅) r) (weakenΘ-value smashΘ (substV (∅-lid ∅) v))) λ { (v' ∷ []) -> Now (substV (sym lemma) (weakenΘ-value extendΘ v')) } } } where lemma' : ∀ {n} {Ξₑ₁ Ξ₁ X Y : MultEnv n} -> Ξₑ₁ +ₘ X +ₘ (Ξ₁ +ₘ Y) ≡ Ξₑ₁ +ₘ Ξ₁ +ₘ (X +ₘ Y) lemma' {n} {A} {B} {C} {D} = +ₘ-transpose A C B D lemma : ∀ {n} -> ∅ +ₘ omega ×ₘ ∅ +ₘ (∅ +ₘ omega ×ₘ ∅) ≡ ∅ {n} lemma {n} rewrite ×ₘ∅ {n} omega | ∅-lid {n} ∅ = ∅-lid ∅ open Interpreter public
{ "alphanum_fraction": 0.4819907049, "avg_line_length": 42.6776859504, "ext": "agda", "hexsha": "fb1f0a56381527397ac671970ed167d14590e804", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e2fb3a669e733a9020a51b24244d89abd8fcf725", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "kztk-m/sparcl-agda", "max_forks_repo_path": "Definitional.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e2fb3a669e733a9020a51b24244d89abd8fcf725", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "kztk-m/sparcl-agda", "max_issues_repo_path": "Definitional.agda", "max_line_length": 157, "max_stars_count": null, "max_stars_repo_head_hexsha": "e2fb3a669e733a9020a51b24244d89abd8fcf725", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "kztk-m/sparcl-agda", "max_stars_repo_path": "Definitional.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 14234, "size": 30984 }
module Oscar.Data.Equality.properties where -- open import Relation.Binary.PropositionalEquality public using (cong; cong₂; cong-app; subst; subst₂; sym; trans) -- open import Oscar.Data.Equality -- open import Oscar.Function -- open import Oscar.Level -- open import Oscar.Relation -- -- ≡̇-refl : ∀ {a} {A : Set a} {b} {B : A → Set b} (f : (x : A) → B x) → f ≡̇ f -- -- ≡̇-refl _ _ = refl -- -- ≡̇-sym : ∀ {a} {A : Set a} {b} {B : A → Set b} {f g : (x : A) → B x} → f ≡̇ g → g ≡̇ f -- -- ≡̇-sym f≡̇g = sym ∘ f≡̇g -- -- ≡̇-trans : ∀ {a} {A : Set a} {b} {B : A → Set b} {f g : (x : A) → B x} → f ≡̇ g → {h : (x : A) → B x} → g ⟨ _≡̇ h ⟩→ f -- -- ≡̇-trans f≡̇g g≡̇h x = trans (f≡̇g x) (g≡̇h x) -- -- -- open import Oscar.Category.Setoid -- -- -- instance -- -- -- IsEquivalencePropositionalEquality : ∀ {a} {A : Set a} → IsEquivalence (_≡_ {A = A}) -- -- -- IsEquivalence.reflexivity IsEquivalencePropositionalEquality _ = refl -- -- -- IsEquivalence.symmetry IsEquivalencePropositionalEquality = sym -- -- -- IsEquivalence.transitivity IsEquivalencePropositionalEquality = λ ‵ → trans ‵ -- -- -- IsEquivalenceIndexedPropositionalEquality : ∀ {a} {A : Set a} {b} {B : A → Set b} → IsEquivalence (_≡̇_ {B = B}) -- -- -- IsEquivalence.reflexivity IsEquivalenceIndexedPropositionalEquality = ≡̇-refl -- -- -- IsEquivalence.symmetry IsEquivalenceIndexedPropositionalEquality = ≡̇-sym -- -- -- IsEquivalence.transitivity IsEquivalenceIndexedPropositionalEquality = ≡̇-trans -- -- -- instance -- -- -- IsSetoidPropositionalEquality : ∀ {a} {A : Set a} → IsSetoid A a -- -- -- IsSetoid._≋_ IsSetoidPropositionalEquality = _≡_ -- -- -- IsSetoidIndexedPropositionalEquality : ∀ {a} {A : Set a} {b} {B : A → Set b} → IsSetoid ((x : A) → B x) (a ⊔ b) -- -- -- IsSetoid._≋_ IsSetoidIndexedPropositionalEquality = _≡̇_ -- -- -- setoidPropositionalEquality : ∀ {a} (A : Set a) → Setoid a a -- -- -- Setoid.⋆ (setoidPropositionalEquality A) = A -- -- -- setoidIndexedPropositionalEquality : ∀ {a} {A : Set a} {b} (B : A → Set b) → Setoid (a ⊔ b) (a ⊔ b) -- -- -- Setoid.⋆ (setoidIndexedPropositionalEquality {A = A} B) = (x : A) → B x -- -- -- Setoid.isSetoid (setoidIndexedPropositionalEquality B) = IsSetoidIndexedPropositionalEquality {B = B} -- -- -- open import Oscar.Category.Action -- -- -- actionΣ : ∀ {a} {A : Set a} {b} (B : A → Set b) → Action A b b -- -- -- Action.𝔄 (actionΣ B) x = setoidPropositionalEquality (B x) -- -- -- _⇒_ : ∀ {a} (A : Set a) {b} (B : Set b) → Setoid _ _ -- -- -- _⇒_ A B = setoidIndexedPropositionalEquality {A = A} λ _ → B -- -- -- open import Oscar.Category.Semigroupoid -- -- -- open import Oscar.Category.Morphism -- -- -- ⇧ : ∀ {a} {A : Set a} {b} (B : A → A → Set b) → Morphism A b b -- -- -- Morphism._⇒_ (⇧ B) x y = setoidPropositionalEquality (B x y) -- -- -- _⇨_ : ∀ {a} {A : Set a} {b} (B : A → Set b) {c} (C : A → Set c) → Morphism A (b ⊔ c) (b ⊔ c) -- -- -- Morphism._⇒_ (B ⇨ C) = λ m n → B m ⇒ C n -- -- -- IsSemigroupoid⋆ : ∀ {a} {A : Set a} {b} {B : A → Set b} {c} {C : A → Set c} -- -- -- (let _↦_ = λ m n → B m → C n) -- -- -- (_∙_ : ∀ {y z} → y ↦ z → ∀ {x} → x ↦ y → x ↦ z) → Set (lsuc (a ⊔ b ⊔ c)) -- -- -- IsSemigroupoid⋆ _∙_ = IsSemigroupoid (_ ⇨ _) _∙_ -- -- -- Semigroupoid⋆ : -- -- -- ∀ {a} {A : Set a} {b} {B : A → Set b} {c} {C : A → Set c} -- -- -- (let _↦_ = λ m n → B m → C n) -- -- -- (_∙_ : ∀ {y z} → y ↦ z → ∀ {x} → x ↦ y → x ↦ z) -- -- -- ⦃ _ : IsSemigroupoid⋆ _∙_ ⦄ -- -- -- → Semigroupoid _ _ _ -- -- -- Semigroupoid⋆ _∙_ = _ ⇨ _ , _∙_ -- -- -- open import Oscar.Category.Semigroupoid -- -- -- instance -- -- -- isSemigroupoidFunctions≡̇ : ∀ {a} {A : Set a} {b} {B : A → Set b} → IsSemigroupoid (B ⇨ B) (λ g f → g ∘ f) -- -- -- IsSemigroupoid.extensionality isSemigroupoidFunctions≡̇ {f₂ = f₂} f₁≡̇f₂ g₁≡̇g₂ x rewrite f₁≡̇f₂ x = g₁≡̇g₂ (f₂ x) -- -- -- IsSemigroupoid.associativity isSemigroupoidFunctions≡̇ _ _ _ _ = refl -- -- -- semigroupoidFunction : ∀ {a} {A : Set a} {b} (B : A → Set b) → Semigroupoid _ _ _ -- -- -- semigroupoidFunction B = B ⇨ B , (λ ‵ → _∘_ ‵) -- -- -- open import Oscar.Category.Category -- -- -- instance -- -- -- isCategoryFunctions≡̇ : ∀ {a} {A : Set a} {b} {B : A → Set b} → IsCategory (semigroupoidFunction B) id -- -- -- IsCategory.left-identity isCategoryFunctions≡̇ _ _ = refl -- -- -- IsCategory.right-identity isCategoryFunctions≡̇ _ _ = refl -- -- -- categoryFunction : ∀ {a} {A : Set a} {b} (B : A → Set b) → Category _ _ _ -- -- -- categoryFunction B = semigroupoidFunction B , id -- -- -- -- -- open import Oscar.Property.Reflexivity -- -- -- -- -- instance Reflexivity≡ : ∀ {a} {A : Set a} → Reflexivity (_≡_ {A = A}) -- -- -- -- -- Reflexivity.reflexivity Reflexivity≡ _ = refl -- -- -- -- -- instance Reflexivity≡̇ : ∀ {a} {A : Set a} {b} {B : A → Set b} → Reflexivity (_≡̇_ {B = B}) -- -- -- -- -- Reflexivity.reflexivity Reflexivity≡̇ _ _ = refl -- -- -- -- -- open import Oscar.Property.Symmetry -- -- -- -- -- instance Symmetry≡ : ∀ {a} {A : Set a} → Symmetry (_≡_ {A = A}) -- -- -- -- -- Symmetry.symmetry Symmetry≡ = sym -- -- -- -- -- instance Symmetry≡̇ : ∀ {a} {A : Set a} {b} {B : A → Set b} → Symmetry (_≡̇_ {B = B}) -- -- -- -- -- Symmetry.symmetry Symmetry≡̇ = ≡̇-sym -- -- -- -- -- open import Oscar.Property.Transitivity -- -- -- -- -- instance Transitivity≡ : ∀ {a} {A : Set a} → Transitivity (_≡_ {A = A}) -- -- -- -- -- Transitivity.transitivity Transitivity≡ x≡y = trans x≡y -- -- -- -- -- instance Transitivity≡̇ : ∀ {a} {A : Set a} {b} {B : A → Set b} → Transitivity (_≡̇_ {B = B}) -- -- -- -- -- Transitivity.transitivity Transitivity≡̇ = ≡̇-trans -- -- -- -- -- -- {- -- -- -- -- -- -- _∘₂_ : ∀ {a b c} -- -- -- -- -- -- {A : Set a} {B : A → Set b} {C : {x : A} → B x → Set c} → -- -- -- -- -- -- (∀ {x} (y : B x) → C y) → (g : (x : A) → B x) → -- -- -- -- -- -- ((x : A) → C (g x)) -- -- -- -- -- -- f ∘₂ g = λ x → f (g x) -- -- -- -- -- -- -} -- -- -- -- -- -- open import Oscar.Class.Equivalence -- -- -- -- -- -- instance ReflexivityPropositional : ∀ {a} {A : Set a} → Reflexivity (_≡_ {A = A}) -- -- -- -- -- -- Reflexivity.reflexivity ReflexivityPropositional = refl -- -- -- -- -- -- instance SymmetryPropositional : ∀ {a} {A : Set a} → Symmetry (_≡_ {A = A}) -- -- -- -- -- -- Symmetry.symmetry SymmetryPropositional = sym -- -- -- -- -- -- instance TransitivityPropositional : ∀ {a} {A : Set a} → Transitivity (_≡_ {A = A}) -- -- -- -- -- -- Transitivity.transitivity TransitivityPropositional = trans -- -- -- -- -- -- open import Prelude using (it) -- -- -- -- -- -- instance Equivalence⋆ : ∀ {a} {A : Set a} {ℓ} {_≋_ : A → A → Set ℓ} ⦃ _ : Reflexivity _≋_ ⦄ ⦃ _ : Symmetry _≋_ ⦄ ⦃ _ : Transitivity _≋_ ⦄ → Equivalence _≋_ -- -- -- -- -- -- Equivalence.reflexivityI Equivalence⋆ = it -- -- -- -- -- -- Equivalence.symmetryI Equivalence⋆ = it -- -- -- -- -- -- Equivalence.transitivityI Equivalence⋆ = it -- -- -- -- -- -- -- -- {- -- -- -- -- -- -- -- -- instance EquivalencePropositional : ∀ {a} {A : Set a} → Equivalence (_≡_ {A = A}) -- -- -- -- -- -- -- -- Equivalence.reflexivity EquivalencePropositional = refl -- -- -- -- -- -- -- -- Equivalence.symmetry EquivalencePropositional = sym -- -- -- -- -- -- -- -- Equivalence.transitivity EquivalencePropositional = trans -- -- -- -- -- -- -- -- instance EquivalencePointwise : ∀ {a} {A : Set a} {b} {B : A → Set b} → Equivalence (_≡̇_ {B = B}) -- -- -- -- -- -- -- -- Equivalence.reflexivity EquivalencePointwise x = refl -- -- -- -- -- -- -- -- Equivalence.symmetry EquivalencePointwise = ≡̇-sym -- -- -- -- -- -- -- -- Equivalence.transitivity EquivalencePointwise = ≡̇-trans -- -- -- -- -- -- -- -- -} -- -- -- -- -- -- instance CongruousEquivalencesPropositional : ∀ {a} {A : Set a} {b} {B : Set b} → CongruousEquivalences (_≡_ {A = A}) (_≡_ {A = B}) -- -- -- -- -- -- CongruousEquivalences.equivalence₁ CongruousEquivalencesPropositional = it -- -- -- -- -- -- CongruousEquivalences.equivalence₂ CongruousEquivalencesPropositional = it -- -- -- -- -- -- CongruousEquivalences.congruity CongruousEquivalencesPropositional = cong -- -- -- -- -- -- postulate -- -- -- -- -- -- FunctionName : Set -- -- -- -- -- -- open import Oscar.Data.Nat -- -- -- -- -- -- open import Oscar.Data.Fin -- -- -- -- -- -- open import Oscar.Data.Term FunctionName -- -- -- -- -- -- open import Oscar.Data.Term.Injectivity FunctionName -- -- -- -- -- -- instance InjectiveEquivalencesTermI : ∀ {m : Nat} → InjectiveEquivalences (_≡_ {A = Fin m}) (_≡_ {A = Term m}) Term.i Term.i -- -- -- -- -- -- InjectiveEquivalences.equivalence₁ InjectiveEquivalencesTermI = it -- -- -- -- -- -- InjectiveEquivalences.equivalence₂ InjectiveEquivalencesTermI = it -- -- -- -- -- -- InjectiveEquivalences.injectivity InjectiveEquivalencesTermI refl = reflexivity -- -- -- -- -- -- instance InjectiveEquivalencesTermLeft : ∀ {m : Nat} {r₁ r₂ : Term m} → InjectiveEquivalences _≡_ _≡_ (_fork r₁) (_fork r₂) -- -- -- -- -- -- InjectiveEquivalences.equivalence₁ InjectiveEquivalencesTermLeft = it -- -- -- -- -- -- InjectiveEquivalences.equivalence₂ InjectiveEquivalencesTermLeft = it -- -- -- -- -- -- InjectiveEquivalences.injectivity InjectiveEquivalencesTermLeft refl = reflexivity -- -- -- -- -- -- instance InjectiveEquivalencesTermRight : ∀ {m : Nat} {l₁ l₂ : Term m} → InjectiveEquivalences _≡_ _≡_ (l₁ fork_) (l₂ fork_) -- -- -- -- -- -- InjectiveEquivalences.equivalence₁ InjectiveEquivalencesTermRight = it -- -- -- -- -- -- InjectiveEquivalences.equivalence₂ InjectiveEquivalencesTermRight = it -- -- -- -- -- -- InjectiveEquivalences.injectivity InjectiveEquivalencesTermRight refl = reflexivity -- -- -- -- -- -- injectivity' : -- -- -- -- -- -- ∀ {a} {A : Set a} {ℓ₁} {_≋₁_ : A → A → Set ℓ₁} -- -- -- -- -- -- {b} {B : Set b} -- -- -- -- -- -- {f : A → B} -- -- -- -- -- -- {g : A → B} -- -- -- -- -- -- ⦃ _ : InjectiveEquivalences _≋₁_ _≡_ f g ⦄ → -- -- -- -- -- -- ∀ {x y} → f x ≡ g y → x ≋₁ y -- -- -- -- -- -- injectivity' x = injectivity {_≋₂_ = _≡_} x -- -- -- -- -- -- Term-forkLeft-inj' : ∀ {n} {l₁ r₁ l₂ r₂ : Term n} → l₁ fork r₁ ≡ l₂ fork r₂ → l₁ ≡ l₂ -- -- -- -- -- -- Term-forkLeft-inj' {n} {l₁} {r₁} {l₂} {r₂} x = injectivity' x -- -- -- -- -- -- --Term-forkLeft-inj' {n} {l₁} {r₁} {l₂} {r₂} x = injectivity {_≋₂_ = _≡_} x -- -- -- -- -- -- -- injectivity {_≋₁_ = {!_≡_!}} {_≋₂_ = {!_≡_!}} ⦃ InjectiveEquivalencesTermLeft ⦄ x -- -- -- -- -- -- Term-forkRight-inj' : ∀ {n} {l₁ r₁ l₂ r₂ : Term n} → l₁ fork r₁ ≡ l₂ fork r₂ → r₁ ≡ r₂ -- -- -- -- -- -- Term-forkRight-inj' {n} {l₁} {r₁} {l₂} {r₂} x = injectivity' x -- -- -- -- -- -- --Term-forkLeft-inj' {n} {l₁} {r₁} {l₂} {r₂} x = injectivity {_≋₂_ = _≡_} x -- -- -- -- -- -- -- injectivity {_≋₁_ = {!_≡_!}} {_≋₂_ = {!_≡_!}} ⦃ InjectiveEquivalencesTermLeft ⦄ x
{ "alphanum_fraction": 0.5373626374, "avg_line_length": 51.5094339623, "ext": "agda", "hexsha": "4e5ae00a0481150a83a58bb8c28f505c482ed5aa", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-2/Oscar/Data/Equality/properties.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-2/Oscar/Data/Equality/properties.agda", "max_line_length": 173, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-2/Oscar/Data/Equality/properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4123, "size": 10920 }
{-# OPTIONS --with-K #-} module Agda.Builtin.Equality.Erase where open import Agda.Builtin.Equality primitive primEraseEquality : ∀ {a} {A : Set a} {x y : A} → x ≡ y → x ≡ y
{ "alphanum_fraction": 0.6497175141, "avg_line_length": 22.125, "ext": "agda", "hexsha": "97704dce62357b00c5a07ba34f83d4180d80d95b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f77b563d328513138d6c88bf0a3e350a9b91f8ed", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "bennn/agda", "max_forks_repo_path": "src/data/lib/prim/Agda/Builtin/Equality/Erase.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f77b563d328513138d6c88bf0a3e350a9b91f8ed", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "bennn/agda", "max_issues_repo_path": "src/data/lib/prim/Agda/Builtin/Equality/Erase.agda", "max_line_length": 73, "max_stars_count": null, "max_stars_repo_head_hexsha": "f77b563d328513138d6c88bf0a3e350a9b91f8ed", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "bennn/agda", "max_stars_repo_path": "src/data/lib/prim/Agda/Builtin/Equality/Erase.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 59, "size": 177 }
module Data.Num.Bounded where open import Data.Num.Core open import Data.Num.Maximum open import Data.Nat open import Data.Nat.Properties open import Data.Nat.Properties.Simple open import Data.Nat.Properties.Extra open import Data.Fin as Fin using (Fin; fromℕ≤; inject≤) renaming (zero to z; suc to s) open import Data.Fin.Properties using (toℕ-fromℕ≤; bounded) open import Data.Product open import Function open import Relation.Nullary.Decidable open import Relation.Nullary open import Relation.Nullary.Negation open import Relation.Binary open import Relation.Binary.PropositionalEquality open ≡-Reasoning open ≤-Reasoning renaming (begin_ to start_; _∎ to _□; _≡⟨_⟩_ to _≈⟨_⟩_) open DecTotalOrder decTotalOrder using (reflexive) renaming (refl to ≤-refl) ------------------------------------------------------------------------ -- a system is bounded if there exists the greatest number Bounded : ∀ b d o → Set Bounded b d o = Σ[ xs ∈ Numeral b d o ] Maximum xs Bounded-NullBase : ∀ d o → Bounded 0 (suc d) o Bounded-NullBase d o = (greatest-digit d ∙) , (Maximum-NullBase-Greatest (greatest-digit d ∙) (greatest-digit-is-the-Greatest d)) Bounded-NoDigits : ∀ b o → ¬ (Bounded b 0 o) Bounded-NoDigits b o (xs , claim) = NoDigits-explode xs Bounded-AllZeros : ∀ b → Bounded (suc b) 1 0 Bounded-AllZeros b = (z ∙) , Maximum-AllZeros (z ∙) Bounded-Proper : ∀ b d o → 2 ≤ suc (d + o) → ¬ (Bounded (suc b) (suc d) o) Bounded-Proper b d o proper (xs , claim) = contradiction claim (Maximum-Proper xs proper) Bounded? : ∀ b d o → Dec (Bounded b d o) Bounded? b d o with numView b d o Bounded? _ _ _ | NullBase d o = yes (Bounded-NullBase d o) Bounded? _ _ _ | NoDigits b o = no (Bounded-NoDigits b o) Bounded? _ _ _ | AllZeros b = yes (Bounded-AllZeros b) Bounded? _ _ _ | Proper b d o proper = no (Bounded-Proper b d o proper) -------------------------------------------------------------------------------- -- Misc Maximum⇒Bounded : ∀ {b d o} → (xs : Numeral b d o) → Maximum xs → Bounded b d o Maximum⇒Bounded xs max = xs , max -- contraposition of Maximum⇒Bounded ¬Bounded⇒¬Maximum : ∀ {b d o} → (xs : Numeral b d o) → ¬ (Bounded b d o) → ¬ (Maximum xs) ¬Bounded⇒¬Maximum xs = contraposition (Maximum⇒Bounded xs) -- begin -- {! !} -- ≡⟨ {! !} ⟩ -- {! !} -- ≡⟨ {! !} ⟩ -- {! !} -- ≡⟨ {! !} ⟩ -- {! !} -- ≡⟨ {! !} ⟩ -- {! !} -- ∎ -- start -- {! !} -- ≤⟨ {! !} ⟩ -- {! !} -- ≤⟨ {! !} ⟩ -- {! !} -- ≤⟨ {! !} ⟩ -- {! !} -- □
{ "alphanum_fraction": 0.580078125, "avg_line_length": 26.6666666667, "ext": "agda", "hexsha": "debc6b11db7b9d0f13b4c75458a147bc3dd4f6df", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_forks_event_min_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/numeral", "max_forks_repo_path": "Data/Num/Bounded.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/numeral", "max_issues_repo_path": "Data/Num/Bounded.agda", "max_line_length": 129, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/numeral", "max_stars_repo_path": "Data/Num/Bounded.agda", "max_stars_repo_stars_event_max_datetime": "2015-04-23T15:58:28.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-23T15:58:28.000Z", "num_tokens": 872, "size": 2560 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Some derivable properties ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Algebra.Bundles module Algebra.Properties.DistributiveLattice {dl₁ dl₂} (DL : DistributiveLattice dl₁ dl₂) where open DistributiveLattice DL import Algebra.Properties.Lattice as LatticeProperties open import Algebra.Structures open import Algebra.Definitions _≈_ open import Relation.Binary open import Relation.Binary.Reasoning.Setoid setoid open import Function.Base open import Function.Equality using (_⟨$⟩_) open import Function.Equivalence using (_⇔_; module Equivalence) open import Data.Product using (_,_) ------------------------------------------------------------------------ -- Export properties of lattices open LatticeProperties lattice public hiding (replace-equality) ------------------------------------------------------------------------ -- Other properties ∨-distribˡ-∧ : _∨_ DistributesOverˡ _∧_ ∨-distribˡ-∧ x y z = begin x ∨ y ∧ z ≈⟨ ∨-comm _ _ ⟩ y ∧ z ∨ x ≈⟨ ∨-distribʳ-∧ _ _ _ ⟩ (y ∨ x) ∧ (z ∨ x) ≈⟨ ∨-comm _ _ ⟨ ∧-cong ⟩ ∨-comm _ _ ⟩ (x ∨ y) ∧ (x ∨ z) ∎ ∨-distrib-∧ : _∨_ DistributesOver _∧_ ∨-distrib-∧ = ∨-distribˡ-∧ , ∨-distribʳ-∧ ∧-distribˡ-∨ : _∧_ DistributesOverˡ _∨_ ∧-distribˡ-∨ x y z = begin x ∧ (y ∨ z) ≈⟨ ∧-congʳ $ sym (∧-absorbs-∨ _ _) ⟩ (x ∧ (x ∨ y)) ∧ (y ∨ z) ≈⟨ ∧-congʳ $ ∧-congˡ $ ∨-comm _ _ ⟩ (x ∧ (y ∨ x)) ∧ (y ∨ z) ≈⟨ ∧-assoc _ _ _ ⟩ x ∧ ((y ∨ x) ∧ (y ∨ z)) ≈⟨ ∧-congˡ $ sym (∨-distribˡ-∧ _ _ _) ⟩ x ∧ (y ∨ x ∧ z) ≈⟨ ∧-congʳ $ sym (∨-absorbs-∧ _ _) ⟩ (x ∨ x ∧ z) ∧ (y ∨ x ∧ z) ≈⟨ sym $ ∨-distribʳ-∧ _ _ _ ⟩ x ∧ y ∨ x ∧ z ∎ ∧-distribʳ-∨ : _∧_ DistributesOverʳ _∨_ ∧-distribʳ-∨ x y z = begin (y ∨ z) ∧ x ≈⟨ ∧-comm _ _ ⟩ x ∧ (y ∨ z) ≈⟨ ∧-distribˡ-∨ _ _ _ ⟩ x ∧ y ∨ x ∧ z ≈⟨ ∧-comm _ _ ⟨ ∨-cong ⟩ ∧-comm _ _ ⟩ y ∧ x ∨ z ∧ x ∎ ∧-distrib-∨ : _∧_ DistributesOver _∨_ ∧-distrib-∨ = ∧-distribˡ-∨ , ∧-distribʳ-∨ -- The dual construction is also a distributive lattice. ∧-∨-isDistributiveLattice : IsDistributiveLattice _≈_ _∧_ _∨_ ∧-∨-isDistributiveLattice = record { isLattice = ∧-∨-isLattice ; ∨-distribʳ-∧ = ∧-distribʳ-∨ } ∧-∨-distributiveLattice : DistributiveLattice _ _ ∧-∨-distributiveLattice = record { isDistributiveLattice = ∧-∨-isDistributiveLattice } -- One can replace the underlying equality with an equivalent one. replace-equality : {_≈′_ : Rel Carrier dl₂} → (∀ {x y} → x ≈ y ⇔ (x ≈′ y)) → DistributiveLattice _ _ replace-equality {_≈′_} ≈⇔≈′ = record { _≈_ = _≈′_ ; _∧_ = _∧_ ; _∨_ = _∨_ ; isDistributiveLattice = record { isLattice = Lattice.isLattice (LatticeProperties.replace-equality lattice ≈⇔≈′) ; ∨-distribʳ-∧ = λ x y z → to ⟨$⟩ ∨-distribʳ-∧ x y z } } where open module E {x y} = Equivalence (≈⇔≈′ {x} {y}) ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 1.1 ∨-∧-distribˡ = ∨-distribˡ-∧ {-# WARNING_ON_USAGE ∨-∧-distribˡ "Warning: ∨-∧-distribˡ was deprecated in v1.1. Please use ∨-distribˡ-∧ instead." #-} ∨-∧-distrib = ∨-distrib-∧ {-# WARNING_ON_USAGE ∨-∧-distrib "Warning: ∨-∧-distrib was deprecated in v1.1. Please use ∨-distrib-∧ instead." #-} ∧-∨-distribˡ = ∧-distribˡ-∨ {-# WARNING_ON_USAGE ∧-∨-distribˡ "Warning: ∧-∨-distribˡ was deprecated in v1.1. Please use ∧-distribˡ-∨ instead." #-} ∧-∨-distribʳ = ∧-distribʳ-∨ {-# WARNING_ON_USAGE ∧-∨-distribʳ "Warning: ∧-∨-distribʳ was deprecated in v1.1. Please use ∧-distribʳ-∨ instead." #-} ∧-∨-distrib = ∧-distrib-∨ {-# WARNING_ON_USAGE ∧-∨-distrib "Warning: ∧-∨-distrib was deprecated in v1.1. Please use ∧-distrib-∨ instead." #-}
{ "alphanum_fraction": 0.5277642474, "avg_line_length": 32.078125, "ext": "agda", "hexsha": "33f43353e9bb7d272774daaedeb2faf61f35ca21", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Algebra/Properties/DistributiveLattice.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Algebra/Properties/DistributiveLattice.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Algebra/Properties/DistributiveLattice.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 1615, "size": 4106 }
data ⊥ : Set where postulate M : Set → Set A : Set _>>=_ : ∀ {A B} → M A → (A → M B) → M B ma : M A f : A → M ⊥ pure : ∀ {A} → A → M A absurd-do : ∀ {A} → M A absurd-do = do x ← ma () ← f x atabsurd-do : ∀ {A} → M A atabsurd-do = do x ← ma (y@()) ← f x -- I don't know why you would do that but we can support it
{ "alphanum_fraction": 0.4606413994, "avg_line_length": 17.15, "ext": "agda", "hexsha": "5a4ea874412e952b344c06875eac67448b8ccb49", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/absurddo.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/absurddo.agda", "max_line_length": 74, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/absurddo.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 155, "size": 343 }
-- Andreas, 2017-03-27, issue #2183 -- Better error message for splitting on non-visible dot pattern. open import Agda.Builtin.Equality open import Agda.Builtin.Nat data Fin : Nat → Set where fzero : ∀ n → Fin (suc n) test : ∀ n (i : Fin n) → Set test n (fzero m) = {!n!} -- C-c C-c -- Current error: -- Cannot split on variable n, because it is bound to term suc m -- when checking that the expression ? has type Set -- Desired behavior: succeed.
{ "alphanum_fraction": 0.6768558952, "avg_line_length": 25.4444444444, "ext": "agda", "hexsha": "790da1c28cf6282ddbcbb8cee7765562bb808788", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue2183-no-module.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue2183-no-module.agda", "max_line_length": 65, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue2183-no-module.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 138, "size": 458 }
module Formalization.ClassicalPropositionalLogic.Place where open import Data.Boolean open import Data.Tuple as Tuple using (_,_ ; _⨯_) import Lvl open import Formalization.ClassicalPropositionalLogic.Syntax open import Functional as Fn using (_∘_ ; const) open import Sets.PredicateSet using (PredSet) open import Type private variable ℓₚ ℓᵢ ℓ : Lvl.Level private variable T A B I : Type{ℓ} private variable f : A → B module _ (P : Type{ℓₚ}) where private variable s e : Bool private variable p : P private variable φ ψ γ : Formula(P) record Index(I : Type{ℓ}) : Type{ℓ} where field id : I ∧ₗ : I → I ∧ᵣ : I → I ∨ₗ : I → I ∨ᵣ : I → I ⟶ₗ : I → I ⟶ᵣ : I → I ∧ₗ₀ : I → I ∧ᵣ₀ : I → I ∨ₗ₀ : I → I ∨ᵣ₀ : I → I ⟶ₗ₀ : I → I ⟶ᵣ₀ : I → I module _ (ind : Index(I)) where private variable i : I data Context : I → (Formula(P) → Formula(P)) → Type{Lvl.of(I) Lvl.⊔ ℓₚ} where identity : Context(Index.id ind) Fn.id conjunctionₗ : Context(Index.∧ₗ₀ ind i) f → Context(Index.∧ₗ ind i) ((φ ∧_) ∘ f) conjunctionᵣ : Context(Index.∧ᵣ₀ ind i) f → Context(Index.∧ᵣ ind i) ((_∧ φ) ∘ f) disjunctionₗ : Context(Index.∨ₗ₀ ind i) f → Context(Index.∨ₗ ind i) ((φ ∨_) ∘ f) disjunctionᵣ : Context(Index.∨ᵣ₀ ind i) f → Context(Index.∨ᵣ ind i) ((_∨ φ) ∘ f) implicationₗ : Context(Index.⟶ₗ₀ ind i) f → Context(Index.⟶ₗ ind i) ((φ ⟶_) ∘ f) implicationᵣ : Context(Index.⟶ᵣ₀ ind i) f → Context(Index.⟶ᵣ ind i) ((_⟶ φ) ∘ f) Place : Bool → Bool → (Formula(P) → Formula(P)) → Type Place s e = Context index (s , e) where index : Index(Bool ⨯ Bool) Index.id index = (𝑇 , e) Index.∧ₗ index = Fn.id Index.∧ᵣ index = Fn.id Index.∨ₗ index = Fn.id Index.∨ᵣ index = Fn.id Index.⟶ₗ index = Fn.id Index.⟶ᵣ index = Tuple.map Fn.id (const 𝑇) Index.∧ₗ₀ index = Fn.id Index.∧ᵣ₀ index = Fn.id Index.∨ₗ₀ index = Fn.id Index.∨ᵣ₀ index = Fn.id Index.⟶ₗ₀ index = Fn.id Index.⟶ᵣ₀ index = Tuple.map not (const 𝑇) {- -- (Place s e F φ) means that the formula F lies on a (strictly (e = 𝐹) / not strictly (e = 𝑇)) (positive (s = 𝑇) / negative (s = 𝐹)) position in the formula φ. -- Also called: Occurrence, part, (strictly) positive/negative subformula. data Place : Bool → Bool → Formula(P) → Formula(P) → Type{ℓₚ} where refl : Place 𝑇 e φ φ conjunctionₗ : Place s e γ φ → Place s e γ (φ ∧ ψ) conjunctionᵣ : Place s e γ ψ → Place s e γ (φ ∧ ψ) disjunctionₗ : Place s e γ φ → Place s e γ (φ ∨ ψ) disjunctionᵣ : Place s e γ ψ → Place s e γ (φ ∨ ψ) implicationₗ : Place (not s) e γ φ → Place s 𝑇 γ (φ ⟶ ψ) implicationᵣ : Place s e γ ψ → Place s e γ (φ ⟶ ψ) -} StrictlyPositive = Place 𝑇 𝐹 StrictlyNegative = Place 𝐹 𝐹 Positive = Place 𝑇 𝑇 Negative = Place 𝐹 𝑇 strictly-negative-to-strictly-positive : Place 𝐹 𝐹 f → Place 𝑇 𝐹 f strictly-negative-to-strictly-positive (conjunctionₗ p) = conjunctionₗ (strictly-negative-to-strictly-positive p) strictly-negative-to-strictly-positive (conjunctionᵣ p) = conjunctionᵣ (strictly-negative-to-strictly-positive p) strictly-negative-to-strictly-positive (disjunctionₗ p) = disjunctionₗ (strictly-negative-to-strictly-positive p) strictly-negative-to-strictly-positive (disjunctionᵣ p) = disjunctionᵣ (strictly-negative-to-strictly-positive p) strictly-negative-to-strictly-positive (implicationₗ p) = implicationₗ (strictly-negative-to-strictly-positive p) strictly-to-not-strictly : Place s 𝐹 f → Place s 𝑇 f strictly-to-not-strictly identity = identity strictly-to-not-strictly (conjunctionₗ p) = conjunctionₗ (strictly-to-not-strictly p) strictly-to-not-strictly (conjunctionᵣ p) = conjunctionᵣ (strictly-to-not-strictly p) strictly-to-not-strictly (disjunctionₗ p) = disjunctionₗ (strictly-to-not-strictly p) strictly-to-not-strictly (disjunctionᵣ p) = disjunctionᵣ (strictly-to-not-strictly p) strictly-to-not-strictly (implicationₗ p) = implicationₗ (strictly-to-not-strictly p)
{ "alphanum_fraction": 0.638700291, "avg_line_length": 42.5154639175, "ext": "agda", "hexsha": "88acfe5888df00ce82c165d88fb48c6c22685535", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Formalization/ClassicalPropositionalLogic/Place.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Formalization/ClassicalPropositionalLogic/Place.agda", "max_line_length": 162, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Formalization/ClassicalPropositionalLogic/Place.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1515, "size": 4124 }
--------------------------------------------------------------------------- -- Normalization by Evaluation for Intuitionistic Propositional Logic -- -- We employ a monadic interpreter for the soundness part, -- and a special class of monads, called cover monads, -- for the completeness part. -- -- Normalization is completeness after soundness. -- -- We give two instances of a cover monad: the free cover monad -- and the continuation monad with normal forms as answer type. --------------------------------------------------------------------------- {-# OPTIONS --postfix-projections #-} open import Library module NfModelMonad (Base : Set) where import Formulas ; open module Form = Formulas Base import Derivations; open module Der = Derivations Base --------------------------------------------------------------------------- -- Specification of a strong monad on presheaves. -- Devoid of monad laws. record Monad : Set₁ where -- Presheaf transformer. field C : (P : Cxt → Set) (Γ : Cxt) → Set monC : ∀{P} (monP : Mon P) → Mon (C P) -- Strong functor. field mapC' : ∀{P Q} → ⟨ P ⇒̂ Q ⊙ C P ⟩→̇ C Q -- Ordinary functor: an instance of mapC'. mapC : ∀{P Q} → (P →̇ Q) → (C P →̇ C Q) mapC f = mapC' λ τ → f -- Monad. field return : ∀{P} (monP : Mon P) → P →̇ C P joinC : ∀{P} → C (C P) →̇ C P -- Kleisli extension. extC : ∀{P Q} → (P →̇ C Q) → C P →̇ C Q extC f = joinC ∘ mapC f -- Strong bind. bindC' : ∀{P Q} (monP : Mon P) → C P →̇ (P ⇒̂ C Q) ⇒̂ C Q bindC' monP c τ k = joinC (mapC' k (monC monP τ c)) --------------------------------------------------------------------------- -- A model of IPL parametrized by a strong monad. module Soundness (monad : Monad) (open Monad monad) where -- The negative connectives True, ∧, and ⇒ are explained as usual by η-expansion -- and the meta-level connective. -- The positive connectives False and ∨ are inhabited by case trees. -- In case False, the tree has no leaves. -- In case A ∨ B, each leaf must be in the semantics of either A or B. T⟦_⟧ : (A : Form) (Γ : Cxt) → Set T⟦ Atom P ⟧ = C (Ne' (Atom P)) T⟦ False ⟧ = C λ Δ → ⊥ T⟦ A ∨ B ⟧ = C λ Δ → T⟦ A ⟧ Δ ⊎ T⟦ B ⟧ Δ T⟦ True ⟧ Γ = ⊤ T⟦ A ∧ B ⟧ Γ = T⟦ A ⟧ Γ × T⟦ B ⟧ Γ T⟦ A ⇒ B ⟧ Γ = ∀{Δ} (τ : Δ ≤ Γ) → T⟦ A ⟧ Δ → T⟦ B ⟧ Δ -- Monotonicity of the model is proven by induction on the proposition, -- using monotonicity of covers and the built-in monotonicity at implication. -- monT : ∀ A {Γ Δ} (τ : Δ ≤ Γ) → T⟦ A ⟧ Γ → T⟦ A ⟧ Δ monFalse : Mon (λ Γ → ⊥) monFalse τ () mutual monT : ∀ A → Mon T⟦ A ⟧ monT (Atom P) = monC monNe monT False = monC monFalse monT (A ∨ B) = monC (monOr A B) monT True = _ monT (A ∧ B) τ (a , b) = monT A τ a , monT B τ b monT (A ⇒ B) τ f σ = f (σ • τ) monOr : ∀ A B → Mon (λ Γ → T⟦ A ⟧ Γ ⊎ T⟦ B ⟧ Γ) monOr A B τ = map-⊎ (monT A τ) (monT B τ) returnOr : ∀ A B {Γ} → T⟦ A ⟧ Γ ⊎ T⟦ B ⟧ Γ → T⟦ A ∨ B ⟧ Γ returnOr A B = return (monOr A B) -- We can run computations of semantic values. -- This replaces the paste (weak sheaf condition) of Beth models. run : ∀ A → C T⟦ A ⟧ →̇ T⟦ A ⟧ run (Atom P) = joinC run False = joinC run (A ∨ B) = joinC run True = _ run (A ∧ B) = < run A ∘ mapC proj₁ , run B ∘ mapC proj₂ > run (A ⇒ B) c τ a = run B $ mapC' (λ δ f → f id≤ (monT A δ a)) $ monC (monT (A ⇒ B)) τ c -- Remark: A variant of run in the style of bind. run' : ∀ {P} (monP : Mon P) A → C P →̇ (P ⇒̂ T⟦ A ⟧) ⇒̂ T⟦ A ⟧ run' monP (Atom p) = bindC' monP run' monP False = bindC' monP run' monP (A ∨ B) = bindC' monP run' monP True = _ run' monP (A ∧ B) c τ k = run' monP A c τ (λ σ → proj₁ ∘ k σ) , run' monP B c τ (λ σ → proj₂ ∘ k σ) run' monP (A ⇒ B) c τ k σ a = run' monP B c (σ • τ) λ σ' p → k (σ' • σ) p id≤ (monT A σ' a) -- Fundamental theorem (interpretation / soundness). -- Pointwise extension of T⟦_⟧ to contexts. G⟦_⟧ : ∀ (Γ Δ : Cxt) → Set G⟦ ε ⟧ Δ = ⊤ G⟦ Γ ∙ A ⟧ Δ = G⟦ Γ ⟧ Δ × T⟦ A ⟧ Δ -- monG : ∀{Γ Δ Φ} (τ : Φ ≤ Δ) → G⟦ Γ ⟧ Δ → G⟦ Γ ⟧ Φ monG : ∀{Γ} → Mon G⟦ Γ ⟧ monG {ε} τ _ = _ monG {Γ ∙ A} τ (γ , a) = monG τ γ , monT A τ a -- Variable case. lookup : ∀{Γ A} (x : Hyp A Γ) → G⟦ Γ ⟧ →̇ T⟦ A ⟧ lookup top = proj₂ lookup (pop x) = lookup x ∘ proj₁ -- A lemma for the orE case. orElim : ∀ A B C → ⟨ T⟦ A ∨ B ⟧ ⊙ T⟦ A ⇒ C ⟧ ⊙ T⟦ B ⇒ C ⟧ ⟩→̇ T⟦ C ⟧ orElim A B C c g h = run C (mapC' (λ τ → [ g τ , h τ ]) c) orElim' : ∀ A B C → ⟨ T⟦ A ∨ B ⟧ ⊙ T⟦ A ⇒ C ⟧ ⊙ T⟦ B ⇒ C ⟧ ⟩→̇ T⟦ C ⟧ orElim' A B C c g h = run' (monOr A B) C c id≤ λ τ → [ g τ , h τ ] -- A lemma for the falseE case. -- Casts an empty cover into any semantic value (by contradiction). falseElim : ∀ C → T⟦ False ⟧ →̇ T⟦ C ⟧ falseElim C = run C ∘ mapC ⊥-elim -- The fundamental theorem eval : ∀{A Γ} (t : Γ ⊢ A) → G⟦ Γ ⟧ →̇ T⟦ A ⟧ eval (hyp x) = lookup x eval (impI t) γ τ a = eval t (monG τ γ , a) eval (impE t u) γ = eval t γ id≤ (eval u γ) eval (andI t u) γ = eval t γ , eval u γ eval (andE₁ t) = proj₁ ∘ eval t eval (andE₂ t) = proj₂ ∘ eval t eval (orI₁ {A} {B} t) γ = returnOr A B (inj₁ (eval t γ)) eval (orI₂ {A} {B} t) γ = returnOr A B (inj₂ (eval t γ)) eval (orE {A = A} {B} {C} t u v) γ = orElim A B C (eval t γ) (λ τ a → eval u (monG τ γ , a)) (λ τ b → eval v (monG τ γ , b)) eval {C} (falseE t) γ = falseElim C (eval t γ) eval trueI γ = _ --------------------------------------------------------------------------- -- A strong monad with services to provide a cover. -- Devoid of laws. record CoverMonad : Set₁ where field monad : Monad open Monad monad public renaming (C to Cover) -- Services for case distinction. field falseC : ∀{P} → Ne' False →̇ Cover P orC : ∀{P Γ C D} (t : Ne Γ (C ∨ D)) (c : Cover P (Γ ∙ C)) (d : Cover P (Γ ∙ D)) → Cover P Γ -- Service for reification of into case trees. field runNf : ∀{A} → Cover (Nf' A) →̇ Nf' A -- A continuation version of runNf. runNf' : ∀ {A P} (monP : Mon P) → Cover P →̇ (P ⇒̂ Nf' A) ⇒̂ Nf' A runNf' monP c τ k = runNf (mapC' k (monC monP τ c)) --------------------------------------------------------------------------- -- Completeness of IPL via a cover monad. module Completeness (covM : CoverMonad) (open CoverMonad covM) where open Soundness monad -- Reflection / reification, proven simultaneously by induction on the proposition. -- Reflection is η-expansion (and recursively reflection); -- at positive connections we build a case tree with a single scrutinee: the neutral -- we are reflecting. -- At implication, we need reification, which produces introductions -- and reifies the stored case trees. mutual fresh : ∀ {Γ} A → T⟦ A ⟧ (Γ ∙ A) fresh A = reflect A (hyp top) reflect : ∀ A → Ne' A →̇ T⟦ A ⟧ reflect (Atom P) t = return monNe t reflect False t = falseC t reflect (A ∨ B) t = orC t (returnOr A B (inj₁ (fresh A))) (returnOr A B (inj₂ (fresh B))) reflect True t = _ reflect (A ∧ B) t = reflect A (andE₁ t) , reflect B (andE₂ t) reflect (A ⇒ B) t τ a = reflect B (impE (monNe τ t) (reify A a)) reify : ∀ A → T⟦ A ⟧ →̇ Nf' A reify (Atom P) = runNf ∘ mapC ne reify False = runNf ∘ mapC ⊥-elim reify (A ∨ B) = runNf ∘ mapC [ orI₁ ∘ reify A , orI₂ ∘ reify B ] reify True _ = trueI reify (A ∧ B) (a , b) = andI (reify A a) (reify B b) reify (A ⇒ B) ⟦f⟧ = impI (reify B (⟦f⟧ (weak id≤) (fresh A))) --------------------------------------------------------------------------- -- Normalization is completeness (reification) after soundness (evaluation) module Normalization (covM : CoverMonad) (open CoverMonad covM) where open Soundness monad open Completeness covM -- Identity environment, constructed by reflection. freshG : ∀ Γ → G⟦ Γ ⟧ Γ freshG ε = _ freshG (Γ ∙ A) = monG (weak id≤) (freshG Γ) , fresh A -- A variant (no improvement). freshG' : ∀ Γ {Δ} (τ : Δ ≤ Γ) → G⟦ Γ ⟧ Δ freshG' ε τ = _ freshG' (Γ ∙ A) τ = freshG' Γ (τ • weak id≤) , monT A τ (fresh A) -- Normalization norm : ∀{A} → Tm A →̇ Nf' A norm t = reify _ (eval t (freshG _)) --------------------------------------------------------------------------- -- Case tree instance of cover monad module CaseTree where data Cover (P : Cxt → Set) (Γ : Cxt) : Set where returnC : (p : P Γ) → Cover P Γ falseC : (t : Ne Γ False) → Cover P Γ orC : ∀{C D} (t : Ne Γ (C ∨ D)) (c : Cover P (Γ ∙ C)) (d : Cover P (Γ ∙ D)) → Cover P Γ return : ∀{P} (monP : Mon P) → P →̇ Cover P return monP p = returnC p -- Syntactic paste. runNf : ∀{A} → Cover (Nf' A) →̇ Nf' A runNf (returnC p) = p runNf (falseC t) = falseE t runNf (orC t c d) = orE t (runNf c) (runNf d) -- Weakening covers: A case tree in Γ can be transported to a thinning Δ -- by weakening all the scrutinees. monC : ∀{P} → (monP : Mon P) → Mon (Cover P) monC monP τ (returnC p) = returnC (monP τ p) monC monP τ (falseC t) = falseC (monNe τ t) monC monP τ (orC t c d) = orC (monNe τ t) (monC monP (lift τ) c) (monC monP (lift τ) d) -- Monad. mapC : ∀{P Q} → (P →̇ Q) → (Cover P →̇ Cover Q) mapC f (returnC p) = returnC (f p) mapC f (falseC t) = falseC t mapC f (orC t c d) = orC t (mapC f c) (mapC f d) joinC : ∀{P} → Cover (Cover P) →̇ Cover P joinC (returnC p) = p joinC (falseC t) = falseC t joinC (orC t c d) = orC t (joinC c) (joinC d) -- Strong functoriality. mapC' : ∀{P Q Γ} → KFun P Q Γ → Cover P Γ → Cover Q Γ mapC' f (returnC p) = returnC (f id≤ p) mapC' f (falseC t) = falseC t mapC' f (orC t c d) = orC t (mapC' (λ τ → f (τ • weak id≤)) c) (mapC' (λ τ → f (τ • weak id≤)) d) caseTreeMonad : CoverMonad caseTreeMonad = record {monad = record{CaseTree}; CaseTree} -- A normalization function using case trees. open Normalization caseTreeMonad using () renaming (norm to normCaseTree) --------------------------------------------------------------------------- -- Continuation instance of cover monad module Continuation where record Cover (P : Cxt → Set) (Γ : Cxt) : Set where field runNf' : ∀ {A} → ((P ⇒̂ Nf' A) ⇒̂ Nf' A) Γ open Cover -- Services. runNf : ∀{A} → Cover (Nf' A) →̇ Nf' A runNf {A} {Γ} c = c .runNf' id≤ (λ τ → id) falseC : ∀{P} → Ne' False →̇ Cover P falseC t .runNf' τ k = falseE (monNe τ t) orC : ∀{P Γ C D} (t : Ne Γ (C ∨ D)) (c : Cover P (Γ ∙ C)) (d : Cover P (Γ ∙ D)) → Cover P Γ orC t c d .runNf' τ k = orE (monNe τ t) (c .runNf' (lift τ) (λ δ → k (δ • weak id≤))) (d .runNf' (lift τ) (λ δ → k (δ • weak id≤))) -- Monad infrastructure. monC : ∀{P} → (monP : Mon P) → Mon (Cover P) monC monP τ c .runNf' τ₁ k = c .runNf' (τ₁ • τ) k mapC' : ∀{P Q} → ⟨ P ⇒̂ Q ⊙ Cover P ⟩→̇ Cover Q mapC' k c .runNf' τ l = c .runNf' τ λ δ p → l δ (k (δ • τ) p) mapC : ∀{P Q} → (P →̇ Q) → (Cover P →̇ Cover Q) mapC f = mapC' λ τ → f return : ∀{P} (monP : Mon P) → P →̇ Cover P return monP p .runNf' τ k = k id≤ (monP τ p) joinC : ∀{P} → Cover (Cover P) →̇ Cover P joinC c .runNf' τ k = c .runNf' τ λ δ c' → c' .runNf' id≤ λ δ' → k (δ' • δ) extC : ∀{P Q} → (P →̇ Cover Q) → Cover P →̇ Cover Q extC f = joinC ∘ mapC f bindC' : ∀{P Q} → Cover P →̇ (P ⇒̂ Cover Q) ⇒̂ Cover Q bindC' c τ k .runNf' τ' k' = c .runNf' (τ' • τ) λ σ p → k (σ • τ') p .runNf' id≤ λ σ' → k' (σ' • σ) continuationMonad : CoverMonad continuationMonad = record{monad = record{Continuation}; Continuation} -- A normalization function using continuations. open Normalization continuationMonad using () renaming (norm to normContinuation) -- Q.E.D. -- -} -- -} -- -}
{ "alphanum_fraction": 0.5053550832, "avg_line_length": 31.8582677165, "ext": "agda", "hexsha": "f752154a0f2214f814702f857f950cc5ffe30d69", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-02-25T20:39:03.000Z", "max_forks_repo_forks_event_min_datetime": "2018-11-13T16:01:46.000Z", "max_forks_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "andreasabel/ipl", "max_forks_repo_path": "src/NfModelMonad.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "andreasabel/ipl", "max_issues_repo_path": "src/NfModelMonad.agda", "max_line_length": 105, "max_stars_count": 19, "max_stars_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "andreasabel/ipl", "max_stars_repo_path": "src/NfModelMonad.agda", "max_stars_repo_stars_event_max_datetime": "2021-04-27T19:10:49.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-16T08:08:51.000Z", "num_tokens": 4662, "size": 12138 }
module M where Foo : Set Foo = Set
{ "alphanum_fraction": 0.6666666667, "avg_line_length": 7.2, "ext": "agda", "hexsha": "38f9d4f96f9dd63458ff7aece3278612724ada64", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "np/agda-git-experiment", "max_forks_repo_path": "test/interaction/Error-in-imported-module/M.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "np/agda-git-experiment", "max_issues_repo_path": "test/interaction/Error-in-imported-module/M.agda", "max_line_length": 14, "max_stars_count": 1, "max_stars_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "np/agda-git-experiment", "max_stars_repo_path": "test/interaction/Error-in-imported-module/M.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 12, "size": 36 }
{-# OPTIONS --safe --without-K #-} module Data.List.Membership.Propositional.Distinct where open import Data.List using (List) import Relation.Binary.PropositionalEquality as P open import Data.List.Membership.Setoid.Distinct as D hiding (Distinct) public Distinct : ∀ {a} {A : Set a} → List A → Set a Distinct {A = A} = D.Distinct {S = P.setoid A}
{ "alphanum_fraction": 0.7231638418, "avg_line_length": 27.2307692308, "ext": "agda", "hexsha": "55f89750df0bc8b1b259185b33a0e39f1f0060a3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d4cd2a3442a9b58e6139499d16a2b31268f27f80", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "tizmd/agda-distinct-disjoint", "max_forks_repo_path": "src/Data/List/Membership/Propositional/Distinct.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d4cd2a3442a9b58e6139499d16a2b31268f27f80", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "tizmd/agda-distinct-disjoint", "max_issues_repo_path": "src/Data/List/Membership/Propositional/Distinct.agda", "max_line_length": 78, "max_stars_count": null, "max_stars_repo_head_hexsha": "d4cd2a3442a9b58e6139499d16a2b31268f27f80", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "tizmd/agda-distinct-disjoint", "max_stars_repo_path": "src/Data/List/Membership/Propositional/Distinct.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 96, "size": 354 }
module Inst (Gnd : Set)(U : Set)(El : U -> Set) where open import Basics open import Pr open import Nom import Kind open Kind Gnd U El import Cxt open Cxt Kind import Loc open Loc Kind import Term open Term Gnd U El import Shift open Shift Gnd U El mutual winst : {G : Cxt}{C : Kind}{L : Loc}{I : Kind} (x : L ! I) -> G [ L bar x / Term C ]- I -> {T : Kind}(t : L [ Term C ]- T) -> [| Good G t |] -> G [ L bar x / Term C ]- T winst x i [ s ] sg = G[ winsts x i s sg ] winst x i (fn A f) fg = Gfn A \ a -> winst x i (f a) (fg a) winst x i (\\ b) bg = G\\ (winst (pop x) (shift popH i) b bg) winst x i (h $ s) pg = wing x i h (fst pg) (winsts x i s (snd pg)) winsts : {G : Cxt}{C : Kind}{L : Loc}{Z : Gnd}{I : Kind} (x : L ! I) -> G [ L bar x / Term C ]- I -> {T : Kind}(s : L [ Args C Z ]- T) -> [| Good G s |] -> G [ L bar x / Args C Z ]- T winsts x i (a ^ s) sg = a G^ winsts x i s sg winsts x i (r & s) pg = winst x i r (fst pg) G& winsts x i s (snd pg) winsts x i nil _ = Gnil wing : {G : Cxt}{C : Kind}{L : Loc}{Z : Gnd}{I : Kind} (x : L ! I) -> G [ L bar x / Term C ]- I -> {T : Kind}(h : L [ Head ]- T) -> [| Good G h |] -> G [ L bar x / Args C Z ]- T -> G [ L bar x / Term C ]- Ty Z wing x i (` k) kg s = (` k -! kg) G$ s wing x i (# y) _ s with varQV x y wing x i (# .x) _ s | vSame = go i s wing x i (# .(x thin y)) _ s | vDiff y = (# y -! _) G$ s go : {G : Cxt}{C : Kind}{L : Loc}{Z : Gnd}{I : Kind} -> G [ L / Term C ]- I -> G [ L / Args C Z ]- I -> G [ L / Term C ]- Ty Z go (fn A f -! fg) ((a ^ s) -! sg) = go (f a -! fg a) (s -! sg) go (\\ b -! bg) ((r & s) -! pg) = go (winst top (r -! fst pg) b bg) (s -! snd pg) go t (nil -! _) = t inst : {G : Cxt}{C : Kind}{L : Loc}{I : Kind} (x : L ! I) -> G [ L bar x / Term C ]- I -> {T : Kind} -> G [ L / Term C ]- T -> G [ L bar x / Term C ]- T inst x i (t -! tg) = winst x i t tg _$$_ : {G : Cxt}{C S T : Kind}{L : Loc} -> G [! C !]- (S |> T) -> G [! C !]- S -> G [! C !]- T (\\ b -! bg) $$ sg = inst top sg (b -! bg)
{ "alphanum_fraction": 0.4298085688, "avg_line_length": 35.3870967742, "ext": "agda", "hexsha": "0104418c57da51f56ed00fca68b74699a88f9a08", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "benchmark/Syntacticosmos/Inst.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "benchmark/Syntacticosmos/Inst.agda", "max_line_length": 73, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "benchmark/Syntacticosmos/Inst.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 920, "size": 2194 }