Search is not available for this dataset
text
string
meta
dict
open import Nat open import Prelude open import core open import contexts open import progress open import preservation open import elaborability open import typed-elaboration module continuity where -- we take the sensibilty theorem as a postulate; for a proof, refer to -- the POPL17 mechanization. we also postulate some glue that allows us -- to use our theorems here on the shape of results from that work. postulate action : Set zexp : Set _◆ : zexp → hexp _⊢_=>_~_~>_=>_ : (Γ : tctx) → (e1 : zexp) → (t1 : htyp) → (α : action) → (e2 : zexp) → (t2 : htyp) → Set sensibility : {Γ : tctx} {e e' : zexp} {τ τ' : htyp} {α : action} → Γ ⊢ (e ◆) => τ → Γ ⊢ e => τ ~ α ~> e' => τ' → Γ ⊢ (e' ◆) => τ' binders-unique-h : hexp → Set binders-unique-z : zexp → Set binders-unique-cursor1 : ∀{e} → binders-unique-z e → binders-unique-h (e ◆) binders-unique-cursor2 : ∀{e} → binders-unique-h (e ◆) → binders-unique-z e binders-unique-sensibility : {Γ : tctx} {e e' : zexp} {τ τ' : htyp} {α : action} → binders-unique-z e → Γ ⊢ e => τ ~ α ~> e' => τ' → binders-unique-z e' expansion-unique : ∀{Γ e τ d Δ} → binders-unique-h e → Γ ⊢ e ⇒ τ ~> d ⊣ Δ → binders-unique d continuity : ∀{ e τ α e' τ' } → binders-unique-z e → ∅ ⊢ (e ◆) => τ → ∅ ⊢ e => τ ~ α ~> e' => τ' → Σ[ Δ ∈ hctx ] Σ[ d ∈ ihexp ] ( ∅ ⊢ (e' ◆) ⇒ τ' ~> d ⊣ Δ × Δ , ∅ ⊢ d :: τ' × ( (Σ[ d' ∈ ihexp ]( d ↦ d' × Δ , ∅ ⊢ d' :: τ' )) + d boxedval + d indet ) ) continuity bu wt action with sensibility wt action ... | sense with elaborability-synth sense ... | d , Δ , exp with typed-elaboration-synth exp ... | d::τ' with progress d::τ' ... | (S (d' , stp)) = Δ , d , exp , d::τ' , Inl (d' , stp , preservation (expansion-unique (binders-unique-cursor1 (binders-unique-sensibility bu action)) exp) d::τ' stp) ... | (I ind) = Δ , d , exp , d::τ' , Inr (Inr ind) ... | (BV boxed) = Δ , d , exp , d::τ' , Inr (Inl boxed)
{ "alphanum_fraction": 0.4737521515, "avg_line_length": 40.0689655172, "ext": "agda", "hexsha": "5e799f58d0519454009394fa94aedb9823cea24b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-09-13T18:20:02.000Z", "max_forks_repo_forks_event_min_datetime": "2019-09-13T18:20:02.000Z", "max_forks_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnut-dynamics-agda", "max_forks_repo_path": "continuity.agda", "max_issues_count": 54, "max_issues_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c", "max_issues_repo_issues_event_max_datetime": "2018-11-29T16:32:40.000Z", "max_issues_repo_issues_event_min_datetime": "2017-06-29T20:53:34.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazelnut-dynamics-agda", "max_issues_repo_path": "continuity.agda", "max_line_length": 174, "max_stars_count": 16, "max_stars_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazelnut-dynamics-agda", "max_stars_repo_path": "continuity.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-19T02:50:23.000Z", "max_stars_repo_stars_event_min_datetime": "2018-03-12T14:32:03.000Z", "num_tokens": 796, "size": 2324 }
record R : Set₁ where X = Set Set -- should get error here field A : Set
{ "alphanum_fraction": 0.625, "avg_line_length": 16, "ext": "agda", "hexsha": "75d5de6caa3cd8551adbfd7328fb1781dd6ef0a4", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue783b.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue783b.agda", "max_line_length": 40, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue783b.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 26, "size": 80 }
{-# OPTIONS --erased-cubical #-} module Erased-cubical-Open-public.Erased (_ : Set₁) where postulate A : Set
{ "alphanum_fraction": 0.6902654867, "avg_line_length": 16.1428571429, "ext": "agda", "hexsha": "e76e9e6f15f56b74fafe29c7312a4ab990e812ad", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "cagix/agda", "max_forks_repo_path": "test/Fail/Erased-cubical-Open-public/Erased.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "cagix/agda", "max_issues_repo_path": "test/Fail/Erased-cubical-Open-public/Erased.agda", "max_line_length": 57, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "cagix/agda", "max_stars_repo_path": "test/Fail/Erased-cubical-Open-public/Erased.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 36, "size": 113 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.types.Coproduct open import lib.types.Fin open import lib.types.Int open import lib.types.Nat open import lib.types.Pi module lib.types.Group where -- 1-approximation of groups without higher coherence conditions. record GroupStructure {i} (El : Type i) --(El-level : has-level 0 El) : Type i where constructor group-structure field ident : El inv : El → El comp : El → El → El unit-l : ∀ a → comp ident a == a assoc : ∀ a b c → comp (comp a b) c == comp a (comp b c) inv-l : ∀ a → (comp (inv a) a) == ident ⊙El : Ptd i ⊙El = ⊙[ El , ident ] private infix 80 _⊙_ _⊙_ = comp abstract inv-r : ∀ g → g ⊙ inv g == ident inv-r g = g ⊙ inv g =⟨ ! $ unit-l (g ⊙ inv g) ⟩ ident ⊙ (g ⊙ inv g) =⟨ ! $ inv-l (inv g) |in-ctx _⊙ (g ⊙ inv g) ⟩ (inv (inv g) ⊙ inv g) ⊙ (g ⊙ inv g) =⟨ assoc (inv (inv g)) (inv g) (g ⊙ inv g) ⟩ inv (inv g) ⊙ (inv g ⊙ (g ⊙ inv g)) =⟨ ! $ assoc (inv g) g (inv g) |in-ctx inv (inv g) ⊙_ ⟩ inv (inv g) ⊙ ((inv g ⊙ g) ⊙ inv g) =⟨ inv-l g |in-ctx (λ h → inv (inv g) ⊙ (h ⊙ inv g)) ⟩ inv (inv g) ⊙ (ident ⊙ inv g) =⟨ unit-l (inv g) |in-ctx inv (inv g) ⊙_ ⟩ inv (inv g) ⊙ inv g =⟨ inv-l (inv g) ⟩ ident =∎ unit-r : ∀ g → g ⊙ ident == g unit-r g = g ⊙ ident =⟨ ! (inv-l g) |in-ctx g ⊙_ ⟩ g ⊙ (inv g ⊙ g) =⟨ ! $ assoc g (inv g) g ⟩ (g ⊙ inv g) ⊙ g =⟨ inv-r g |in-ctx _⊙ g ⟩ ident ⊙ g =⟨ unit-l g ⟩ g =∎ inv-unique-l : (g h : El) → (g ⊙ h == ident) → inv h == g inv-unique-l g h p = inv h =⟨ ! (unit-l (inv h)) ⟩ ident ⊙ inv h =⟨ ! p |in-ctx (λ w → w ⊙ inv h) ⟩ (g ⊙ h) ⊙ inv h =⟨ assoc g h (inv h) ⟩ g ⊙ (h ⊙ inv h) =⟨ inv-r h |in-ctx (λ w → g ⊙ w) ⟩ g ⊙ ident =⟨ unit-r g ⟩ g =∎ inv-unique-r : (g h : El) → (g ⊙ h == ident) → inv g == h inv-unique-r g h p = inv g =⟨ ! (unit-r (inv g)) ⟩ inv g ⊙ ident =⟨ ! p |in-ctx (λ w → inv g ⊙ w) ⟩ inv g ⊙ (g ⊙ h) =⟨ ! (assoc (inv g) g h) ⟩ (inv g ⊙ g) ⊙ h =⟨ inv-l g |in-ctx (λ w → w ⊙ h) ⟩ ident ⊙ h =⟨ unit-l h ⟩ h =∎ inv-ident : inv ident == ident inv-ident = inv-unique-l ident ident (unit-l ident) inv-comp : (g₁ g₂ : El) → inv (g₁ ⊙ g₂) == inv g₂ ⊙ inv g₁ inv-comp g₁ g₂ = inv-unique-r (g₁ ⊙ g₂) (inv g₂ ⊙ inv g₁) $ (g₁ ⊙ g₂) ⊙ (inv g₂ ⊙ inv g₁) =⟨ assoc g₁ g₂ (inv g₂ ⊙ inv g₁) ⟩ g₁ ⊙ (g₂ ⊙ (inv g₂ ⊙ inv g₁)) =⟨ ! (assoc g₂ (inv g₂) (inv g₁)) |in-ctx (λ w → g₁ ⊙ w) ⟩ g₁ ⊙ ((g₂ ⊙ inv g₂) ⊙ inv g₁) =⟨ inv-r g₂ |in-ctx (λ w → g₁ ⊙ (w ⊙ inv g₁)) ⟩ g₁ ⊙ (ident ⊙ inv g₁) =⟨ unit-l (inv g₁) |in-ctx (λ w → g₁ ⊙ w) ⟩ g₁ ⊙ inv g₁ =⟨ inv-r g₁ ⟩ ident =∎ inv-inv : (g : El) → inv (inv g) == g inv-inv g = inv-unique-r (inv g) g (inv-l g) inv-is-inj : is-inj inv inv-is-inj g₁ g₂ p = ! (inv-inv g₁) ∙ ap inv p ∙ inv-inv g₂ cancel-l : (g : El) {h k : El} → g ⊙ h == g ⊙ k → h == k cancel-l g {h} {k} p = h =⟨ ! (unit-l h) ⟩ ident ⊙ h =⟨ ap (λ w → w ⊙ h) (! (inv-l g)) ⟩ (inv g ⊙ g) ⊙ h =⟨ assoc (inv g) g h ⟩ inv g ⊙ (g ⊙ h) =⟨ ap (λ w → inv g ⊙ w) p ⟩ inv g ⊙ (g ⊙ k) =⟨ ! (assoc (inv g) g k) ⟩ (inv g ⊙ g) ⊙ k =⟨ ap (λ w → w ⊙ k) (inv-l g) ⟩ ident ⊙ k =⟨ unit-l k ⟩ k =∎ cancel-r : (g : El) {h k : El} → h ⊙ g == k ⊙ g → h == k cancel-r g {h} {k} p = h =⟨ ! (unit-r h) ⟩ h ⊙ ident =⟨ ap (λ w → h ⊙ w) (! (inv-r g)) ⟩ h ⊙ (g ⊙ inv g) =⟨ ! (assoc h g (inv g)) ⟩ (h ⊙ g) ⊙ inv g =⟨ ap (λ w → w ⊙ inv g) p ⟩ (k ⊙ g) ⊙ inv g =⟨ assoc k g (inv g) ⟩ k ⊙ (g ⊙ inv g) =⟨ ap (λ w → k ⊙ w) (inv-r g) ⟩ k ⊙ ident =⟨ unit-r k ⟩ k =∎ conj : El → El → El conj g₁ g₂ = (g₁ ⊙ g₂) ⊙ inv g₁ abstract conj-ident-r : ∀ g → conj g ident == ident conj-ident-r g = ap (_⊙ inv g) (unit-r _) ∙ inv-r g {- NOT USED abstract conj-unit-l : ∀ g → conj ident g == g conj-unit-l g = ap2 _⊙_ (unit-l _) inv-ident ∙ unit-r _ conj-comp-l : ∀ g₁ g₂ g₃ → conj (g₁ ⊙ g₂) g₃ == conj g₁ (conj g₂ g₃) conj-comp-l g₁ g₂ g₃ = ((g₁ ⊙ g₂) ⊙ g₃) ⊙ inv (g₁ ⊙ g₂) =⟨ ap2 _⊙_ (assoc g₁ g₂ g₃) (inv-comp g₁ g₂) ⟩ (g₁ ⊙ (g₂ ⊙ g₃)) ⊙ (inv g₂ ⊙ inv g₁) =⟨ ! $ assoc (g₁ ⊙ (g₂ ⊙ g₃)) (inv g₂) (inv g₁) ⟩ ((g₁ ⊙ (g₂ ⊙ g₃)) ⊙ inv g₂) ⊙ inv g₁ =⟨ assoc g₁ (g₂ ⊙ g₃) (inv g₂) |in-ctx _⊙ inv g₁ ⟩ (g₁ ⊙ ((g₂ ⊙ g₃) ⊙ inv g₂)) ⊙ inv g₁ =∎ inv-conj : ∀ g₁ g₂ → inv (conj g₁ g₂) == conj g₁ (inv g₂) inv-conj g₁ g₂ = inv-comp (g₁ ⊙ g₂) (inv g₁) ∙ ap2 _⊙_ (inv-inv g₁) (inv-comp g₁ g₂) ∙ ! (assoc g₁ (inv g₂) (inv g₁)) -} exp : El → ℤ → El exp g (pos 0) = ident exp g (pos 1) = g exp g (pos (S (S n))) = comp g (exp g (pos (S n))) exp g (negsucc 0) = inv g exp g (negsucc (S n)) = comp (inv g) (exp g (negsucc n)) abstract exp-succ : ∀ g z → exp g (succ z) == comp g (exp g z) exp-succ g (pos 0) = ! (unit-r g) exp-succ g (pos 1) = idp exp-succ g (pos (S (S n))) = idp exp-succ g (negsucc 0) = ! (inv-r g) exp-succ g (negsucc (S n)) = ! (unit-l (exp g (negsucc n))) ∙ ap (λ h → comp h (exp g (negsucc n))) (! (inv-r g)) ∙ assoc g (inv g) (exp g (negsucc n)) exp-pred : ∀ g z → exp g (pred z) == comp (inv g) (exp g z) exp-pred g (pos 0) = ! (unit-r (inv g)) exp-pred g (pos 1) = ! (inv-l g) exp-pred g (pos (S (S n))) = ! (unit-l (exp g (pos (S n)))) ∙ ap (λ h → comp h (exp g (pos (S n)))) (! (inv-l g)) ∙ assoc (inv g) g (exp g (pos (S n))) exp-pred g (negsucc 0) = idp exp-pred g (negsucc (S n)) = idp exp-+ : ∀ g z₁ z₂ → exp g (z₁ ℤ+ z₂) == comp (exp g z₁) (exp g z₂) exp-+ g (pos 0) z₂ = ! (unit-l _) exp-+ g (pos 1) z₂ = exp-succ g z₂ exp-+ g (pos (S (S n))) z₂ = exp-succ g (pos (S n) ℤ+ z₂) ∙ ap (comp g) (exp-+ g (pos (S n)) z₂) ∙ ! (assoc g (exp g (pos (S n))) (exp g z₂)) exp-+ g (negsucc 0) z₂ = exp-pred g z₂ exp-+ g (negsucc (S n)) z₂ = exp-pred g (negsucc n ℤ+ z₂) ∙ ap (comp (inv g)) (exp-+ g (negsucc n) z₂) ∙ ! (assoc (inv g) (exp g (negsucc n)) (exp g z₂)) exp-ident : ∀ z → exp ident z == ident exp-ident (pos 0) = idp exp-ident (pos 1) = idp exp-ident (pos (S (S n))) = unit-l _ ∙ exp-ident (pos (S n)) exp-ident (negsucc 0) = inv-ident exp-ident (negsucc (S n)) = ap2 comp inv-ident (exp-ident (negsucc n)) ∙ unit-l _ diff : El → El → El diff g h = g ⊙ inv h abstract zero-diff-same : (g h : El) → diff g h == ident → g == h zero-diff-same g h p = inv-is-inj g h $ inv-unique-r g (inv h) p inv-diff : (g h : El) → inv (diff g h) == diff h g inv-diff g h = inv-comp g (inv h) ∙ ap (_⊙ inv g) (inv-inv h) sum : ∀ {I : ℕ} → (Fin I → El) → El sum {I = O} f = ident sum {I = S n} f = comp (sum (f ∘ Fin-S)) (f (n , ltS)) subsum-r : ∀ {j k} {I : ℕ} {A : Type j} {B : Type k} → (Fin I → Coprod A B) → (B → El) → El subsum-r p f = sum (λ x → ⊔-rec (λ _ → ident) f (p x)) record Group i : Type (lsucc i) where constructor group field El : Type i {{El-level}} : has-level 0 El group-struct : GroupStructure El open GroupStructure group-struct public Group₀ : Type (lsucc lzero) Group₀ = Group lzero is-abelian : ∀ {i} → Group i → Type i is-abelian G = (a b : Group.El G) → Group.comp G a b == Group.comp G b a AbGroup : ∀ i → Type (lsucc i) AbGroup i = Σ (Group i) is-abelian AbGroup₀ : Type (lsucc lzero) AbGroup₀ = AbGroup lzero module AbGroup {i} (G : AbGroup i) where grp = fst G comm = snd G open Group grp public abstract interchange : (g₁ g₂ g₃ g₄ : El) → comp (comp g₁ g₂) (comp g₃ g₄) == comp (comp g₁ g₃) (comp g₂ g₄) interchange g₁ g₂ g₃ g₄ = comp (comp g₁ g₂) (comp g₃ g₄) =⟨ assoc g₁ g₂ (comp g₃ g₄) ⟩ comp g₁ (comp g₂ (comp g₃ g₄)) =⟨ comm g₃ g₄ |in-ctx (λ g → (comp g₁ (comp g₂ g))) ⟩ comp g₁ (comp g₂ (comp g₄ g₃)) =⟨ ! (assoc g₂ g₄ g₃) |in-ctx comp g₁ ⟩ comp g₁ (comp (comp g₂ g₄) g₃) =⟨ comm (comp g₂ g₄) g₃ |in-ctx comp g₁ ⟩ comp g₁ (comp g₃ (comp g₂ g₄)) =⟨ ! (assoc g₁ g₃ (comp g₂ g₄)) ⟩ comp (comp g₁ g₃) (comp g₂ g₄) =∎ inv-comp' : ∀ g₁ g₂ → inv (comp g₁ g₂) == comp (inv g₁) (inv g₂) inv-comp' g₁ g₂ = inv-comp g₁ g₂ ∙ comm (inv g₂) (inv g₁) diff-comp : (g₁ g₂ g₃ g₄ : El) → diff (comp g₁ g₂) (comp g₃ g₄) == comp (diff g₁ g₃) (diff g₂ g₄) diff-comp g₁ g₂ g₃ g₄ = diff (comp g₁ g₂) (comp g₃ g₄) =⟨ ap (comp (comp g₁ g₂)) (inv-comp' g₃ g₄) ⟩ comp (comp g₁ g₂) (comp (inv g₃) (inv g₄)) =⟨ interchange g₁ g₂ (inv g₃) (inv g₄) ⟩ comp (diff g₁ g₃) (diff g₂ g₄) =∎ sum-comp : ∀ {I} (f g : Fin I → El) → sum (λ x → comp (f x) (g x)) == comp (sum f) (sum g) sum-comp {I = O} f g = ! (unit-l _) sum-comp {I = S I} f g = ap (λ x → comp x (comp (f (I , ltS)) (g (I , ltS)))) (sum-comp (f ∘ Fin-S) (g ∘ Fin-S)) ∙ interchange (sum (f ∘ Fin-S)) (sum (g ∘ Fin-S)) (f (I , ltS)) (g (I , ltS)) exp-comp : ∀ g₁ g₂ z → exp (comp g₁ g₂) z == comp (exp g₁ z) (exp g₂ z) exp-comp g₁ g₂ (pos O) = ! (unit-l _) exp-comp g₁ g₂ (pos (S O)) = idp exp-comp g₁ g₂ (pos (S (S n))) = ap (comp (comp g₁ g₂)) (exp-comp g₁ g₂ (pos (S n))) ∙ interchange g₁ g₂ (exp g₁ (pos (S n))) (exp g₂ (pos (S n))) exp-comp g₁ g₂ (negsucc O) = inv-comp' g₁ g₂ exp-comp g₁ g₂ (negsucc (S n)) = ap2 comp (inv-comp' g₁ g₂) (exp-comp g₁ g₂ (negsucc n)) ∙ interchange (inv g₁) (inv g₂) (exp g₁ (negsucc n)) (exp g₂ (negsucc n)) is-trivialᴳ : ∀ {i} (G : Group i) → Type i is-trivialᴳ G = ∀ g → g == Group.ident G contr-is-trivialᴳ : ∀ {i} (G : Group i) {{_ : is-contr (Group.El G)}} → is-trivialᴳ G contr-is-trivialᴳ G g = contr-has-all-paths _ _ {- group-structure= -} module _ where open GroupStructure abstract group-structure= : ∀ {i} {A : Type i} {{_ : is-set A}} {id₁ id₂ : A} {inv₁ inv₂ : A → A} {comp₁ comp₂ : A → A → A} → ∀ {unit-l₁ unit-l₂ assoc₁ assoc₂ inv-l₁ inv-l₂} → (id₁ == id₂) → (inv₁ == inv₂) → (comp₁ == comp₂) → Path {A = GroupStructure A} (group-structure id₁ inv₁ comp₁ unit-l₁ assoc₁ inv-l₁) (group-structure id₂ inv₂ comp₂ unit-l₂ assoc₂ inv-l₂) group-structure= {id₁ = id₁} {inv₁ = inv₁} {comp₁ = comp₁} idp idp idp = ap3 (group-structure id₁ inv₁ comp₁) (prop-has-all-paths _ _) (prop-has-all-paths _ _) (prop-has-all-paths _ _) ↓-group-structure= : ∀ {i} {A B : Type i} {{_ : has-level 0 A}} {GS : GroupStructure A} {HS : GroupStructure B} (p : A == B) → (ident GS == ident HS [ (λ C → C) ↓ p ]) → (inv GS == inv HS [ (λ C → C → C) ↓ p ]) → (comp GS == comp HS [ (λ C → C → C → C) ↓ p ]) → GS == HS [ GroupStructure ↓ p ] ↓-group-structure= idp = group-structure=
{ "alphanum_fraction": 0.4698091836, "avg_line_length": 35.9780564263, "ext": "agda", "hexsha": "4367aa22bfa8b042b8e76ea90f8208854d950733", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "core/lib/types/Group.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "core/lib/types/Group.agda", "max_line_length": 97, "max_stars_count": null, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "core/lib/types/Group.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4947, "size": 11477 }
module Cats.Category.Mon where open import Data.Unit using (⊤) open import Relation.Binary using (Setoid ; _Preserves₂_⟶_⟶_ ; IsEquivalence) open import Level open import Cats.Category open import Cats.Category.Setoids using (Setoids) open import Cats.Util.Conv import Cats.Util.Function as Fun record Monoid l l≈ : Set (suc (l ⊔ l≈)) where infixr 9 _⊕_ field Universe : Setoid l l≈ open Setoid Universe public field _⊕_ : Carrier → Carrier → Carrier unit : Carrier ⊕-resp : _⊕_ Preserves₂ _≈_ ⟶ _≈_ ⟶ _≈_ assoc : ∀ {a b c} → (a ⊕ b) ⊕ c ≈ a ⊕ (b ⊕ c) id-l : ∀ {a} → unit ⊕ a ≈ a id-r : ∀ {a} → a ⊕ unit ≈ a module ≈ = IsEquivalence isEquivalence module _ (l l≈ : Level) where infixr 9 _∘_ infixr 4 _≈_ module Setoids = Category (Setoids l l≈) Obj : Set (suc (l ⊔ l≈)) Obj = Monoid l l≈ record _⇒_ (M N : Obj) : Set (l ⊔ l≈) where private module M = Monoid M module N = Monoid N field arr : M.Universe Setoids.⇒ N.Universe unit : (arr ⃗) M.unit N.≈ N.unit commute : ∀ {n m} → (arr ⃗) (n M.⊕ m) N.≈ (arr ⃗) n N.⊕ (arr ⃗) m open Cats.Category.Setoids._⇒_ arr public using (resp) open _⇒_ using (unit ; commute ; resp) instance HasArrow-⇒ : ∀ M N → HasArrow (M ⇒ N) _ _ _ HasArrow-⇒ M N = record { Cat = Setoids l l≈ ; _⃗ = _⇒_.arr } id : ∀ {M} → M ⇒ M id {M} = record { arr = Setoids.id ; unit = refl ; commute = refl } where open Monoid M using (refl) _≈_ : ∀ {M N} (f g : M ⇒ N) → Set (l≈ ⊔ l) _≈_ = Setoids._≈_ Fun.on _⃗ _∘_ : ∀ {M N O} → (N ⇒ O) → (M ⇒ N) → (M ⇒ O) _∘_ {M} {N} {O} f g = record { arr = f ⃗ Setoids.∘ g ⃗ ; unit = trans (resp f (unit g)) (unit f) ; commute = trans (resp f (commute g)) (commute f) } where open Monoid O using (trans) Mon : Category (suc (l≈ ⊔ l)) (l≈ ⊔ l) (l≈ ⊔ l) Mon = record { Obj = Obj ; _⇒_ = _⇒_ ; _≈_ = _≈_ ; id = id ; _∘_ = _∘_ ; equiv = Fun.on-isEquivalence _⃗ Setoids.equiv ; ∘-resp = Setoids.∘-resp ; id-r = Setoids.id-r ; id-l = Setoids.id-l ; assoc = λ { {f = f} {g} {h} → Setoids.assoc {f = f ⃗} {g ⃗} {h ⃗} } } monoidAsCategory : ∀ {l l≈} → Monoid l l≈ → Category zero l l≈ monoidAsCategory M = record { Obj = ⊤ ; _⇒_ = λ _ _ → M.Carrier ; _≈_ = M._≈_ ; id = M.unit ; _∘_ = M._⊕_ ; equiv = M.isEquivalence ; ∘-resp = M.⊕-resp ; id-r = M.id-r ; id-l = M.id-l ; assoc = M.assoc } where module M = Monoid M
{ "alphanum_fraction": 0.5185185185, "avg_line_length": 21.4214876033, "ext": "agda", "hexsha": "822b26ef57992d9d5d2f882d1160219f0d767303", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "alessio-b-zak/cats", "max_forks_repo_path": "Cats/Category/Mon.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "alessio-b-zak/cats", "max_issues_repo_path": "Cats/Category/Mon.agda", "max_line_length": 77, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "alessio-b-zak/cats", "max_stars_repo_path": "Cats/Category/Mon.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1094, "size": 2592 }
module Prelude.Semiring where open import Agda.Builtin.Nat using (Nat; zero; suc) open import Prelude.Function record Semiring {a} (A : Set a) : Set a where infixl 6 _+_ infixl 7 _*_ field zro one : A _+_ _*_ : A → A → A open Semiring {{...}} public {-# DISPLAY Semiring.zro _ = zro #-} {-# DISPLAY Semiring.one _ = one #-} {-# DISPLAY Semiring._+_ _ a b = a + b #-} {-# DISPLAY Semiring._*_ _ a b = a * b #-} infixr 8 _^_ _^_ : ∀ {a} {A : Set a} {{_ : Semiring A}} → A → Nat → A n ^ zero = one n ^ suc m = n ^ m * n record Subtractive {a} (A : Set a) : Set a where infixl 6 _-_ field _-_ : A → A → A negate : A → A open Subtractive {{...}} public {-# DISPLAY Subtractive._-_ _ a b = a - b #-} {-# DISPLAY Subtractive.negate _ = negate #-}
{ "alphanum_fraction": 0.5725288832, "avg_line_length": 22.9117647059, "ext": "agda", "hexsha": "d990fb42e13a36dcff1e70bf96f37e2b3d95ab0c", "lang": "Agda", "max_forks_count": 24, "max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z", "max_forks_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "t-more/agda-prelude", "max_forks_repo_path": "src/Prelude/Semiring.agda", "max_issues_count": 59, "max_issues_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3", "max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z", "max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "t-more/agda-prelude", "max_issues_repo_path": "src/Prelude/Semiring.agda", "max_line_length": 56, "max_stars_count": 111, "max_stars_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "t-more/agda-prelude", "max_stars_repo_path": "src/Prelude/Semiring.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z", "num_tokens": 267, "size": 779 }
-- There are no level literals in the concrete syntax. This file tests -- if type errors use level literals. {-# OPTIONS --universe-polymorphism #-} module LevelLiterals where open import Imports.Level data ⊥ : Set₁ where DoubleNegated : ∀ {ℓ} → Set ℓ → Set DoubleNegated A = (A → ⊥) → ⊥
{ "alphanum_fraction": 0.6996587031, "avg_line_length": 20.9285714286, "ext": "agda", "hexsha": "35388afa46b9a0644d931dddc907996ce6922d30", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "np/agda-git-experiment", "max_forks_repo_path": "test/fail/LevelLiterals.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "np/agda-git-experiment", "max_issues_repo_path": "test/fail/LevelLiterals.agda", "max_line_length": 70, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/fail/LevelLiterals.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 82, "size": 293 }
------------------------------------------------------------------------------ -- All the FOTC modules ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Everything where open import FOTC.Base open import FOTC.Base.Consistency.Axioms open import FOTC.Base.Consistency.IfInjective open import FOTC.Base.List open import FOTC.Base.List.Consistency.Axioms open import FOTC.Base.List.PropertiesATP open import FOTC.Base.List.PropertiesI open import FOTC.Base.Loop open import FOTC.Base.PropertiesATP open import FOTC.Base.PropertiesI open import FOTC.Data.Bool open import FOTC.Data.Bool.PropertiesATP open import FOTC.Data.Bool.PropertiesI open import FOTC.Data.Bool.Type open import FOTC.Data.Colist open import FOTC.Data.Colist.PropertiesATP open import FOTC.Data.Colist.PropertiesI open import FOTC.Data.Colist.Type open import FOTC.Data.Colist.Type.Consistency.Axioms open import FOTC.Data.Conat open import FOTC.Data.Conat.Equality.Consistency.Axioms open import FOTC.Data.Conat.Equality.PropertiesATP open import FOTC.Data.Conat.Equality.PropertiesI open import FOTC.Data.Conat.Equality.Type open import FOTC.Data.Conat.PropertiesATP open import FOTC.Data.Conat.PropertiesI open import FOTC.Data.Conat.Type open import FOTC.Data.Conat.Type.Consistency.Axioms open import FOTC.Data.List open import FOTC.Data.List.Consistency.Axioms open import FOTC.Data.List.PropertiesATP open import FOTC.Data.List.PropertiesByInductionI open import FOTC.Data.List.PropertiesByInductionATP open import FOTC.Data.List.PropertiesI open import FOTC.Data.List.Type open import FOTC.Data.List.WF-Relation.LT-Cons open import FOTC.Data.List.WF-Relation.LT-Cons.Induction.Acc.WF-I open import FOTC.Data.List.WF-Relation.LT-Cons.PropertiesI open import FOTC.Data.List.WF-Relation.LT-Length open import FOTC.Data.List.WF-Relation.LT-Length.Induction.Acc.WF-I open import FOTC.Data.List.WF-Relation.LT-Length.PropertiesI open import FOTC.Data.Nat open import FOTC.Data.Nat.Consistency.Axioms open import FOTC.Data.Nat.Divisibility.By0 open import FOTC.Data.Nat.Divisibility.By0.PropertiesATP open import FOTC.Data.Nat.Divisibility.By0.PropertiesI open import FOTC.Data.Nat.Divisibility.NotBy0 open import FOTC.Data.Nat.Divisibility.NotBy0.PropertiesATP open import FOTC.Data.Nat.Divisibility.NotBy0.PropertiesI open import FOTC.Data.Nat.Induction.Acc.WF-ATP open import FOTC.Data.Nat.Induction.Acc.WF-I open import FOTC.Data.Nat.Induction.NonAcc.LexicographicATP open import FOTC.Data.Nat.Induction.NonAcc.LexicographicI open import FOTC.Data.Nat.Induction.NonAcc.WF-ATP open import FOTC.Data.Nat.Induction.NonAcc.WF-I open import FOTC.Data.Nat.Inequalities open import FOTC.Data.Nat.Inequalities.Consistency.Axioms open import FOTC.Data.Nat.Inequalities.EliminationPropertiesATP open import FOTC.Data.Nat.Inequalities.EliminationPropertiesI open import FOTC.Data.Nat.Inequalities.PropertiesATP open import FOTC.Data.Nat.Inequalities.PropertiesI open import FOTC.Data.Nat.List open import FOTC.Data.Nat.List.PropertiesATP open import FOTC.Data.Nat.List.PropertiesI open import FOTC.Data.Nat.List.Type open import FOTC.Data.Nat.PropertiesATP open import FOTC.Data.Nat.PropertiesByInductionATP open import FOTC.Data.Nat.PropertiesByInductionI open import FOTC.Data.Nat.PropertiesI open import FOTC.Data.Nat.Type open import FOTC.Data.Nat.UnaryNumbers open import FOTC.Data.Nat.UnaryNumbers.Inequalities.PropertiesATP open import FOTC.Data.Nat.UnaryNumbers.TotalityATP open import FOTC.Data.Nat.UnaryNumbers.TotalityI open import FOTC.Data.Stream open import FOTC.Data.Stream.Equality.PropertiesATP open import FOTC.Data.Stream.Equality.PropertiesI open import FOTC.Data.Stream.PropertiesATP open import FOTC.Data.Stream.PropertiesI open import FOTC.Data.Stream.Type open import FOTC.Data.Stream.Type.Consistency.Axioms open import FOTC.Induction.WF open import FOTC.Program.ABP.ABP open import FOTC.Program.ABP.ABP.Consistency.Axioms open import FOTC.Program.ABP.CorrectnessProofATP open import FOTC.Program.ABP.CorrectnessProofI open import FOTC.Program.ABP.Fair.Type open import FOTC.Program.ABP.Fair.Consistency.Axioms open import FOTC.Program.ABP.Fair.PropertiesATP open import FOTC.Program.ABP.Fair.PropertiesI open import FOTC.Program.ABP.Lemma1ATP open import FOTC.Program.ABP.Lemma1I open import FOTC.Program.ABP.Lemma2ATP open import FOTC.Program.ABP.Lemma2I open import FOTC.Program.ABP.PropertiesI open import FOTC.Program.ABP.Terms open import FOTC.Program.Collatz.Collatz open import FOTC.Program.Collatz.Collatz.Consistency.Axioms open import FOTC.Program.Collatz.Data.Nat open import FOTC.Program.Collatz.Data.Nat.Consistency.Axioms open import FOTC.Program.Collatz.Data.Nat.PropertiesATP open import FOTC.Program.Collatz.Data.Nat.PropertiesI open import FOTC.Program.Collatz.PropertiesI open import FOTC.Program.Collatz.PropertiesATP open import FOTC.Program.Division.ConversionRulesATP open import FOTC.Program.Division.ConversionRulesI open import FOTC.Program.Division.CorrectnessProofATP open import FOTC.Program.Division.CorrectnessProofI open import FOTC.Program.Division.Division open import FOTC.Program.Division.ResultATP open import FOTC.Program.Division.ResultI open import FOTC.Program.Division.Specification open import FOTC.Program.Division.TotalityATP open import FOTC.Program.Division.TotalityI open import FOTC.Program.GCD.Partial.CommonDivisorATP open import FOTC.Program.GCD.Partial.CommonDivisorI open import FOTC.Program.GCD.Partial.ConversionRulesATP open import FOTC.Program.GCD.Partial.ConversionRulesI open import FOTC.Program.GCD.Partial.CorrectnessProofATP open import FOTC.Program.GCD.Partial.CorrectnessProofI open import FOTC.Program.GCD.Partial.Definitions open import FOTC.Program.GCD.Partial.DivisibleATP open import FOTC.Program.GCD.Partial.DivisibleI open import FOTC.Program.GCD.Partial.GCD open import FOTC.Program.GCD.Partial.GCD.Consistency.Axioms open import FOTC.Program.GCD.Partial.GreatestAnyCommonDivisor open import FOTC.Program.GCD.Partial.TotalityATP open import FOTC.Program.GCD.Partial.TotalityI open import FOTC.Program.GCD.Total.CommonDivisorATP open import FOTC.Program.GCD.Total.CommonDivisorI open import FOTC.Program.GCD.Total.ConversionRulesATP open import FOTC.Program.GCD.Total.ConversionRulesI open import FOTC.Program.GCD.Total.CorrectnessProofATP open import FOTC.Program.GCD.Total.CorrectnessProofI open import FOTC.Program.GCD.Total.Definitions open import FOTC.Program.GCD.Total.DivisibleATP open import FOTC.Program.GCD.Total.DivisibleI open import FOTC.Program.GCD.Total.GCD open import FOTC.Program.GCD.Total.GCD.Consistency.Axioms open import FOTC.Program.GCD.Total.TotalityATP open import FOTC.Program.GCD.Total.TotalityI open import FOTC.Program.Iter0.Iter0 open import FOTC.Program.Iter0.PropertiesATP open import FOTC.Program.Iter0.PropertiesI open import FOTC.Program.MapIterate.MapIterateATP open import FOTC.Program.MapIterate.MapIterateI open import FOTC.Program.McCarthy91.ArithmeticATP open import FOTC.Program.McCarthy91.AuxiliaryPropertiesATP open import FOTC.Program.McCarthy91.McCarthy91.Consistency.Axioms open import FOTC.Program.McCarthy91.McCarthy91 open import FOTC.Program.McCarthy91.PropertiesATP open import FOTC.Program.McCarthy91.WF-Relation open import FOTC.Program.McCarthy91.WF-Relation.LT2WF-RelationATP open import FOTC.Program.McCarthy91.WF-Relation.PropertiesATP open import FOTC.Program.McCarthy91.WF-Relation.Induction.Acc.WF-ATP open import FOTC.Program.Mirror.Example open import FOTC.Program.Mirror.Forest.PropertiesATP open import FOTC.Program.Mirror.Forest.PropertiesI open import FOTC.Program.Mirror.Forest.TotalityATP open import FOTC.Program.Mirror.Forest.TotalityI open import FOTC.Program.Mirror.Mirror.Consistency.Axioms open import FOTC.Program.Mirror.Mirror open import FOTC.Program.Mirror.PropertiesATP open import FOTC.Program.Mirror.PropertiesI open import FOTC.Program.Mirror.Tree.TotalityATP open import FOTC.Program.Mirror.Tree.TotalityI open import FOTC.Program.Mirror.Type open import FOTC.Program.Nest.Nest open import FOTC.Program.Nest.Nest.Consistency.Axioms open import FOTC.Program.Nest.PropertiesATP open import FOTC.Program.SortList.CorrectnessProofATP open import FOTC.Program.SortList.CorrectnessProofI open import FOTC.Program.SortList.Properties.MiscellaneousATP open import FOTC.Program.SortList.Properties.MiscellaneousI open import FOTC.Program.SortList.Properties.Totality.BoolATP open import FOTC.Program.SortList.Properties.Totality.BoolI open import FOTC.Program.SortList.Properties.Totality.ListN-ATP open import FOTC.Program.SortList.Properties.Totality.ListN-I open import FOTC.Program.SortList.Properties.Totality.OrdList.FlattenI open import FOTC.Program.SortList.Properties.Totality.OrdList.FlattenATP open import FOTC.Program.SortList.Properties.Totality.OrdListATP open import FOTC.Program.SortList.Properties.Totality.OrdListI open import FOTC.Program.SortList.Properties.Totality.OrdTreeATP open import FOTC.Program.SortList.Properties.Totality.OrdTreeI open import FOTC.Program.SortList.Properties.Totality.TreeATP open import FOTC.Program.SortList.Properties.Totality.TreeI open import FOTC.Program.SortList.PropertiesI open import FOTC.Program.SortList.PropertiesATP open import FOTC.Program.SortList.SortList open import FOTC.Program.SortList.SortList.Consistency.Axioms open import FOTC.Relation.Binary.Bisimilarity.Bisimulation open import FOTC.Relation.Binary.Bisimilarity.Consistency.Axioms open import FOTC.Relation.Binary.Bisimilarity.PropertiesATP open import FOTC.Relation.Binary.Bisimilarity.PropertiesI open import FOTC.Relation.Binary.Bisimilarity.Type
{ "alphanum_fraction": 0.8342137343, "avg_line_length": 43.5575221239, "ext": "agda", "hexsha": "3f24a1b9dc5d6f5fa432fb2abea66d2f9230f7bf", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Everything.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Everything.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Everything.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 2756, "size": 9844 }
{-# OPTIONS --safe #-} module Data.Nat.AbsoluteDifference where open import Data.Nat.Base open import Path open import Prelude open import Algebra ∣_-_∣ : ℕ → ℕ → ℕ ∣ 0 - m ∣ = m ∣ n@(suc _) - 0 ∣ = n ∣ suc n - suc m ∣ = ∣ n - m ∣ _ : ∣ 5 - 3 ∣ ≡ 2 _ = refl _ : ∣ 3 - 5 ∣ ≡ 2 _ = refl ∣-∣‿comm : Commutative ∣_-_∣ ∣-∣‿comm zero zero = refl ∣-∣‿comm zero (suc y) = refl ∣-∣‿comm (suc x) zero = refl ∣-∣‿comm (suc x) (suc y) = ∣-∣‿comm x y
{ "alphanum_fraction": 0.5084033613, "avg_line_length": 18.3076923077, "ext": "agda", "hexsha": "ab6bf8cfe03e0c84c93e88815db05d0e2c94206e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/Nat/AbsoluteDifference.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/Nat/AbsoluteDifference.agda", "max_line_length": 40, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/Nat/AbsoluteDifference.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 231, "size": 476 }
open import Agda.Primitive using (lzero; lsuc; _⊔_) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; cong; cong₂; subst; setoid) open import Data.Product using (_×_; Σ; _,_; proj₁; proj₂; zip; map; <_,_>; swap) import Function.Equality open import Relation.Binary using (Setoid) import Relation.Binary.Reasoning.Setoid as SetoidR import SecondOrder.Arity import SecondOrder.Signature import SecondOrder.Metavariable import SecondOrder.VRenaming import SecondOrder.MRenaming import SecondOrder.Term import SecondOrder.Substitution import SecondOrder.RelativeMonadMorphism import SecondOrder.Instantiation import SecondOrder.IndexedCategory import SecondOrder.RelativeKleisli import SecondOrder.Mslot import SecondOrder.MRelativeMonad import SecondOrder.VRelativeMonad module SecondOrder.MRelMonMorphism {ℓ} {𝔸 : SecondOrder.Arity.Arity} (Σ : SecondOrder.Signature.Signature ℓ 𝔸) where open SecondOrder.Signature.Signature Σ open SecondOrder.Metavariable Σ open SecondOrder.Term Σ open SecondOrder.VRenaming Σ open SecondOrder.MRenaming Σ open SecondOrder.Mslot Σ open SecondOrder.Substitution Σ open SecondOrder.Instantiation Σ open SecondOrder.MRelativeMonad Σ open SecondOrder.VRelativeMonad Σ open SecondOrder.RelativeMonadMorphism module MRelMonMorph {Γ Γ′ : VContext} where open MTerm {Γ} renaming (MMonad to M_Γ) open MTerm {Γ′} renaming (MMonad to M_Γ′) Fᴹ : ∀ (ρ : Γ ⇒ᵛ Γ′) → RMonadMorph (M_Γ) (M_Γ′) Fᴹ ρ = record { morph = λ Γᴹ Aᴹ → record { _⟨$⟩_ = [ ⇑ᵛ ρ ]ᵛ_ ; cong = λ M≈N → []ᵛ-resp-≈ M≈N } ; law-unit = λ Γᴹ Aᴹ M≡N → ≈-≡ (I-resp-≡ {I = λ M → tm-meta M λ i → tm-var (var-inr i) } M≡N) ; law-extend = λ {Θ} {Ω} {k} Γᴹ Aᴹ {s} {t} s≈t → ≈-trans ([ᵛ∘ⁱ] s) (≈-trans ([]ⁱ-resp-≈ (⇑ᵛ ρ ᵛ∘ⁱ ⇑ⁱ (λ {Λ} {B} → Function.Equality._⟨$⟩_ (k Λ B))) ([]ᵛ-resp-≈ s≈t)) ([]ⁱ-resp-≈ⁱ ([ (⇑ᵛ ρ) ]ᵛ t) λ M → (≈-trans (≈-sym [∘ᵛ]) (≈-trans ([]ᵛ-resp-≡ᵛ extend-aux) [∘ᵛ])))) } where extend-aux : ∀ {Ξ Λ} → ⇑ᵛ {Ξ = Ξ} (⇑ᵛ {Ξ = Λ} ρ) ∘ᵛ (⇑ᵛ var-inl) ≡ᵛ ⇑ᵛ var-inl ∘ᵛ (⇑ᵛ ρ) extend-aux (var-inl x) = refl extend-aux (var-inr x) = refl -- Attempt with substitutions instead of renamings : not sure it works -- hat : (f : (Θ : MContext) → Θ ⊕ Γ ⇒ˢ Γ') → RMonadMorph M_Γ M_Γ' -- hat f = -- let open Function.Equality using (_⟨$⟩_) renaming (cong to func-cong) in -- record -- { morph = λ {Θ} Δ A → record { _⟨$⟩_ = λ t → [ ⇑ˢ (f Θ) ]ˢ t ; cong = []ˢ-resp-≈ (⇑ˢ (f Θ))} -- ; law-unit = λ Δ A {t} {s} t≡s → ≈-≡ (cong tm-meta-generic t≡s) -- ; law-extend = λ {Θ} {Ψ} {I} Δ A {t} {s} t≈s → -- let open SetoidR (Term-setoid Ψ (Γ' ,, Δ) A) in -- begin -- ([ ⇑ˢ (f Ψ) ]ˢ ([ ⇑ⁱ (λ {Λ} {B} M → (I Λ B ⟨$⟩ M) ) ]ⁱ t) ) -- ≈⟨ {!!} ⟩ -- this is the crucial step -- ([ ⇑ⁱ (λ {Λ} {B} M → [ ⇑ˢ (f Ψ) ]ˢ (I Λ B ⟨$⟩ M)) ]ⁱ ([ ⇑ˢ (f Θ) ]ˢ t)) -- ≈⟨ []ⁱ-resp-≈ (⇑ⁱ (λ {Λ} {B} M → [ ⇑ˢ (f Ψ) ]ˢ (I Λ B ⟨$⟩ M))) ([]ˢ-resp-≈ (⇑ˢ (f Θ)) t≈s) ⟩ -- ([ ⇑ⁱ (λ {Λ} {B} M → [ ⇑ˢ (f Ψ) ]ˢ (I Λ B ⟨$⟩ M)) ]ⁱ ([ ⇑ˢ (f Θ) ]ˢ s)) -- ∎ -- }
{ "alphanum_fraction": 0.455126629, "avg_line_length": 35.3652173913, "ext": "agda", "hexsha": "ddebd1e1042b52800bc99ee07f96f86094dd346b", "lang": "Agda", "max_forks_count": 6, "max_forks_repo_forks_event_max_datetime": "2021-05-24T02:51:43.000Z", "max_forks_repo_forks_event_min_datetime": "2021-02-16T13:43:07.000Z", "max_forks_repo_head_hexsha": "0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cilinder/formaltt", "max_forks_repo_path": "src/SecondOrder/MRelMonMorphism.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb", "max_issues_repo_issues_event_max_datetime": "2021-05-14T16:15:17.000Z", "max_issues_repo_issues_event_min_datetime": "2021-04-30T14:18:25.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cilinder/formaltt", "max_issues_repo_path": "src/SecondOrder/MRelMonMorphism.agda", "max_line_length": 107, "max_stars_count": 21, "max_stars_repo_head_hexsha": "0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cilinder/formaltt", "max_stars_repo_path": "src/SecondOrder/MRelMonMorphism.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-19T15:50:08.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-16T14:07:06.000Z", "num_tokens": 1462, "size": 4067 }
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Algebra.CommRing.Instances.MultivariatePoly where open import Cubical.Foundations.Prelude open import Cubical.Data.Nat renaming(_+_ to _+n_; _·_ to _·n_) open import Cubical.Algebra.Ring open import Cubical.Algebra.CommRing open import Cubical.Algebra.CommRing.Instances.Int open import Cubical.Algebra.Polynomials.Multivariate.Base open import Cubical.Algebra.Polynomials.Multivariate.Properties private variable ℓ : Level ----------------------------------------------------------------------------- -- General Nth polynome module _ (A : CommRing ℓ) (n : ℕ) where open CommRingStr open RingTheory (CommRing→Ring A) open Nth-Poly-structure A n PolyCommRing : CommRing ℓ fst PolyCommRing = Poly A n 0r (snd PolyCommRing) = 0P 1r (snd PolyCommRing) = 1P _+_ (snd PolyCommRing) = _poly+_ _·_ (snd PolyCommRing) = _poly*_ - snd PolyCommRing = polyInv isCommRing (snd PolyCommRing) = makeIsCommRing trunc poly+Assoc poly+IdR poly+InvR poly+Comm poly*Assoc poly*IdR poly*DistR poly*Comm ----------------------------------------------------------------------------- -- Notation and syntax in the case 1,2,3 and ℤ module _ (Ar@(A , Astr) : CommRing ℓ) (n : ℕ) where A[X1,···,Xn] : CommRing ℓ A[X1,···,Xn] = PolyCommRing Ar n A[x1,···,xn] : Type ℓ A[x1,···,xn] = fst (A[X1,···,Xn])
{ "alphanum_fraction": 0.5231129315, "avg_line_length": 27.564516129, "ext": "agda", "hexsha": "212fc7ba5ed41946e952dedb5d481c8ffcd09c81", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ce3120d3f8d692847b2744162bcd7a01f0b687eb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "guilhermehas/cubical", "max_forks_repo_path": "Cubical/Algebra/CommRing/Instances/MultivariatePoly.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ce3120d3f8d692847b2744162bcd7a01f0b687eb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "guilhermehas/cubical", "max_issues_repo_path": "Cubical/Algebra/CommRing/Instances/MultivariatePoly.agda", "max_line_length": 77, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ce3120d3f8d692847b2744162bcd7a01f0b687eb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "guilhermehas/cubical", "max_stars_repo_path": "Cubical/Algebra/CommRing/Instances/MultivariatePoly.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 452, "size": 1709 }
-- 2013-02-18 reported by rotsor module Issue796 where data U : Set where a b : U data A : Set where data B : Set where module Abs where abstract A' B' : Set A' = A B' = B module Conc where open Abs -- Andreas, 2013-02-19 -- this function should not be injective, since here -- it is not known whether A' and B' are actually different [_] : U → Set [_] a = A' [_] b = B' f : ∀ u → [ u ] → U f u _ = u postulate x : A' zzz = f _ x
{ "alphanum_fraction": 0.5805084746, "avg_line_length": 13.4857142857, "ext": "agda", "hexsha": "60e5d505af6e71fbaa0e18b872296bccece1cd5c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue796.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue796.agda", "max_line_length": 61, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue796.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 174, "size": 472 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Functions.Involution where open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Prelude open import Cubical.Foundations.Univalence isInvolution : ∀{ℓ} {A : Type ℓ} → (A → A) → Type _ isInvolution f = ∀ x → f (f x) ≡ x module _ {ℓ} {A : Type ℓ} {f : A → A} (invol : isInvolution f) where open Iso involIso : Iso A A involIso .fun = f involIso .inv = f involIso .rightInv = invol involIso .leftInv = invol involIsEquiv : isEquiv f involIsEquiv = isoToIsEquiv involIso involEquiv : A ≃ A involEquiv = f , involIsEquiv involPath : A ≡ A involPath = ua involEquiv involEquivComp : compEquiv involEquiv involEquiv ≡ idEquiv A involEquivComp = equivEq (λ i x → invol x i) involPathComp : involPath ∙ involPath ≡ refl involPathComp = sym (uaCompEquiv involEquiv involEquiv) ∙∙ cong ua involEquivComp ∙∙ uaIdEquiv involPath² : Square involPath refl refl involPath involPath² = subst (λ s → Square involPath s refl involPath) involPathComp (compPath-filler involPath involPath)
{ "alphanum_fraction": 0.7117039587, "avg_line_length": 27.023255814, "ext": "agda", "hexsha": "b1240a11782e96ecf5e024d725f3b183dc9d6627", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Functions/Involution.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Functions/Involution.agda", "max_line_length": 84, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Functions/Involution.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 390, "size": 1162 }
open import Agda.Builtin.List foldr : {A B : Set} → (A → B → B) → B → List A → B foldr _⊕_ ε [] = ε foldr _⊕_ ε (x ∷ xs) = x ⊕ foldr _⊕_ ε xs infixr 5 _++_ _++_ : {A : Set} → List A → List A → List A xs ++ ys = foldr _∷_ ys xs record R (F : Set → Set) : Set₁ where field f : {A : Set} → A → F A → F A open R ⦃ … ⦄ public postulate D : {A : Set} → List A → Set easy : {A : Set} {@0 xs : List A} → D xs record Q (A : Set) : Set where field @0 index : List A d : D index g : {A : Set} → A → Q A → Q A g x q .Q.index = q .Q.index ++ x ∷ [] g x q .Q.d = easy record _×_ (A B : Set) : Set where constructor _,_ field proj₁ : A proj₂ : B data Maybe (A : Set) : Set where nothing : Maybe A just : A → Maybe A postulate m₁ : {A : Set} {B : Maybe A → Set} → ((x : A) → B (just x)) → (x : Maybe A) → B x m₂ : {A B : Set} → (A → Maybe B) → Maybe A → Maybe B m₂ f x = m₁ f x postulate P : {A : Set} → A → Set p : {A : Set} (x : A) → P x A : Set x : Maybe (A × Q A) instance _ : R Q _ = record { f = g } _ : P (m₂ (λ { (x , q) → just (f x q) }) x) _ = p (m₁ (λ { (x , q) → just (f x q) }) x)
{ "alphanum_fraction": 0.4693356048, "avg_line_length": 19.2459016393, "ext": "agda", "hexsha": "6ed34526b6025c220aef420bbedb0e9cad0b5a19", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue4137.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue4137.agda", "max_line_length": 52, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue4137.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 518, "size": 1174 }
{-# OPTIONS --without-K #-} -- The core types behind exploration functions module Explore.Core where open import Level.NP open import Algebra open import Type hiding (★) open import Function using (id; _∘_; _∘′_) open import Data.Nat.NP using (ℕ) open import Data.Two using (𝟚) open import Data.Maybe.NP using (_→?_) open import Relation.Unary.Logical open import Relation.Binary.Logical module _ {a} where BigOp : ∀ {ℓ} → ★ ℓ → ★ a → ★ (a ⊔ ℓ) BigOp M A = (A → M) → M Explore : ∀ ℓ → ★_ a → ★ (a ⊔ ₛ ℓ) Explore ℓ A = ∀ {M : ★ ℓ} (ε : M) (_∙_ : M → M → M) → BigOp M A BigOpMon : ∀ {c ℓ} → Monoid c ℓ → ★ a → ★ _ BigOpMon M A = BigOp (Monoid.Carrier M) A ExploreMon : ∀ c ℓ → ★ a → ★ _ ExploreMon c ℓ A = (M : Monoid c ℓ) → BigOpMon M A Explore₀ : ★ a → ★(a ⊔ ₁) Explore₀ = Explore ₀ Explore₁ : ★ a → ★(a ⊔ ₂) Explore₁ = Explore ₁ Sum : ★ a → ★ a Sum = BigOp ℕ Product : ★ a → ★ a Product = BigOp ℕ Count : ★ a → ★ a Count A = (A → 𝟚) → ℕ Find? : ∀ {b} → ★ a → ★(ₛ b ⊔ a) Find? {b} A = ∀ {B : ★ b} → (A →? B) →? B FindKey : ★ a → ★ a FindKey A = (A → 𝟚) →? A -- These three basic combinators are defined here -- since they are used to define ExploreInd module _ {ℓ} {A : ★ a} where merge-explore : Explore ℓ A → Explore ℓ A → Explore ℓ A merge-explore e₀ e₁ ε _∙_ f = e₀ ε _∙_ f ∙ e₁ ε _∙_ f empty-explore : Explore ℓ A empty-explore ε _ _ = ε point-explore : A → Explore ℓ A point-explore x _ _ f = f x [Explore] : ∀ {a aₚ} → ([★₀] [→] [★] (ₛ (a ⊔ aₚ))) (Explore a) [Explore] {a} {aₚ} Aₚ = ∀⟨ Mₚ ∶ [★] (a ⊔ aₚ)⟩[→] Mₚ [→] [Op₂] {_} {aₚ} Mₚ [→] (Aₚ [→] Mₚ) [→] Mₚ module _ {ℓ₁ ℓ₂} ℓᵣ {a₁ a₂ aᵣ} where ⟦Explore⟧ : (⟦★⟧ {a₁} {a₂} aᵣ ⟦→⟧ ⟦★⟧ (a₁ ⊔ a₂ ⊔ aᵣ ⊔ ₛ (ℓ₁ ⊔ ℓ₂ ⊔ ℓᵣ))) (Explore ℓ₁) (Explore ℓ₂) ⟦Explore⟧ Aᵣ = ∀⟨ Mᵣ ∶ ⟦★⟧ (ℓ₁ ⊔ ℓ₂ ⊔ ℓᵣ) ⟩⟦→⟧ Mᵣ ⟦→⟧ ⟦Op₂⟧ {_} {_} {ℓᵣ} Mᵣ ⟦→⟧ (Aᵣ ⟦→⟧ Mᵣ) ⟦→⟧ Mᵣ ⟦Explore⟧₀ : (⟦★₀⟧ ⟦→⟧ ⟦★₁⟧) (Explore _) (Explore _) ⟦Explore⟧₀ = ⟦Explore⟧ _ -- -} -- -} -- -} -- -}
{ "alphanum_fraction": 0.5055636188, "avg_line_length": 27.56, "ext": "agda", "hexsha": "f79d9da0632eea0c8e3f22e2948f21a343558b4d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "crypto-agda/explore", "max_forks_repo_path": "lib/Explore/Core.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_issues_repo_issues_event_max_datetime": "2019-03-16T14:24:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-03-16T14:24:04.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "crypto-agda/explore", "max_issues_repo_path": "lib/Explore/Core.agda", "max_line_length": 102, "max_stars_count": 2, "max_stars_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "crypto-agda/explore", "max_stars_repo_path": "lib/Explore/Core.agda", "max_stars_repo_stars_event_max_datetime": "2017-06-28T19:19:29.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-05T09:25:32.000Z", "num_tokens": 985, "size": 2067 }
module L.Base.Nat.Core where -- Introducing Nat type with constructors zero and succ data Nat : Set where zero : Nat succ : Nat → Nat -- Enabling the usage of numerals in code. {-# BUILTIN NATURAL Nat #-} ind : ∀{c} (C : Nat → Set c) → C zero → ((x : Nat) → C x → C (succ x)) → (n : Nat) → C n ind C cₒ cₛ zero = cₒ ind C cₒ cₛ (succ n) = cₛ n (ind C cₒ cₛ n)
{ "alphanum_fraction": 0.5946666667, "avg_line_length": 23.4375, "ext": "agda", "hexsha": "b05fbeb156a9e06a7d321a2f255dc1ad33674df9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "borszag/smallib", "max_forks_repo_path": "src/L/Base/Nat/Core.agda", "max_issues_count": 10, "max_issues_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3", "max_issues_repo_issues_event_max_datetime": "2020-11-09T16:40:39.000Z", "max_issues_repo_issues_event_min_datetime": "2020-10-19T10:13:16.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "borszag/smallib", "max_issues_repo_path": "src/L/Base/Nat/Core.agda", "max_line_length": 55, "max_stars_count": null, "max_stars_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "borszag/smallib", "max_stars_repo_path": "src/L/Base/Nat/Core.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 143, "size": 375 }
module Load where data Bool : Set where tt : Bool ff : Bool
{ "alphanum_fraction": 0.6615384615, "avg_line_length": 10.8333333333, "ext": "agda", "hexsha": "69ebbaf8a6775352b196f0600e8573b4f021cbce", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Interactive/Load.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Interactive/Load.agda", "max_line_length": 21, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Interactive/Load.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 20, "size": 65 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.Group.MorphismProperties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.HLevels open import Cubical.Foundations.Transport open import Cubical.Foundations.Univalence open import Cubical.Foundations.SIP open import Cubical.Foundations.Function using (_∘_) open import Cubical.Foundations.GroupoidLaws open import Cubical.Functions.Embedding open import Cubical.Data.Sigma open import Cubical.Structures.Axioms open import Cubical.Structures.Pointed open import Cubical.Algebra.Semigroup open import Cubical.Algebra.Monoid open import Cubical.Algebra.Group.Base open import Cubical.Algebra.Group.Properties open import Cubical.Algebra.Group.Morphism open import Cubical.Reflection.StrictEquiv private variable ℓ ℓ' ℓ'' : Level open Iso open GroupStr open GroupHom isPropIsGroupHom : (G : Group {ℓ}) (H : Group {ℓ'}) {f : ⟨ G ⟩ → ⟨ H ⟩} → isProp (isGroupHom G H f) isPropIsGroupHom G H {f} = isPropΠ2 λ a b → GroupStr.is-set (snd H) _ _ isSetGroupHom : {G : Group {ℓ}} {H : Group {ℓ'}} → isSet (GroupHom G H) isSetGroupHom {G = G} {H = H} = isOfHLevelRespectEquiv 2 equiv (isSetΣ (isSetΠ λ _ → is-set (snd H)) λ _ → isProp→isSet (isPropIsGroupHom G H)) where equiv : (Σ[ g ∈ (⟨ G ⟩ → ⟨ H ⟩) ] (isGroupHom G H g)) ≃ (GroupHom G H) equiv = isoToEquiv (iso (λ (g , m) → grouphom g m) (λ hom → fun hom , isHom hom) (λ _ → refl) λ _ → refl) -- Morphism composition isGroupHomComp : {F : Group {ℓ}} {G : Group {ℓ'}} {H : Group {ℓ''}} → (f : GroupHom F G) → (g : GroupHom G H) → isGroupHom F H (fun g ∘ fun f) isGroupHomComp f g x y = cong (fun g) (isHom f _ _) ∙ isHom g _ _ compGroupHom : {F : Group {ℓ}} {G : Group {ℓ'}} {H : Group {ℓ''}} → GroupHom F G → GroupHom G H → GroupHom F H fun (compGroupHom f g) = fun g ∘ fun f isHom (compGroupHom f g) = isGroupHomComp f g open GroupEquiv compGroupEquiv : {F : Group {ℓ}} {G : Group {ℓ'}} {H : Group {ℓ''}} → GroupEquiv F G → GroupEquiv G H → GroupEquiv F H eq (compGroupEquiv f g) = compEquiv (eq f) (eq g) isHom (compGroupEquiv f g) = isHom (compGroupHom (hom f) (hom g)) idGroupEquiv : (G : Group {ℓ}) → GroupEquiv G G eq (idGroupEquiv G) = idEquiv ⟨ G ⟩ isHom (idGroupEquiv G) = λ _ _ → refl -- Isomorphism inversion isGroupHomInv : {G : Group {ℓ}} {H : Group {ℓ'}} (f : GroupEquiv G H) → isGroupHom H G (invEq (GroupEquiv.eq f)) isGroupHomInv {G = G} {H = H} f h h' = isInj-f _ _ ( f' (g (h ⋆² h')) ≡⟨ retEq (eq f) _ ⟩ (h ⋆² h') ≡⟨ sym (cong₂ _⋆²_ (retEq (eq f) h) (retEq (eq f) h')) ⟩ (f' (g h) ⋆² f' (g h')) ≡⟨ sym (isHom (hom f) _ _) ⟩ f' (g h ⋆¹ g h') ∎) where f' = fst (eq f) _⋆¹_ = _+_ (snd G) _⋆²_ = _+_ (snd H) g = invEq (eq f) isInj-f : (x y : ⟨ G ⟩) → f' x ≡ f' y → x ≡ y isInj-f x y = invEq (_ , isEquiv→isEmbedding (snd (eq f)) x y) invGroupEquiv : {G : Group {ℓ}} {H : Group {ℓ'}} → GroupEquiv G H → GroupEquiv H G eq (invGroupEquiv f) = invEquiv (eq f) isHom (invGroupEquiv f) = isGroupHomInv f dirProdEquiv : ∀ {ℓ ℓ' ℓ'' ℓ'''} {A : Group {ℓ}} {B : Group {ℓ'}} {C : Group {ℓ''}} {D : Group {ℓ'''}} → GroupEquiv A C → GroupEquiv B D → GroupEquiv (dirProd A B) (dirProd C D) eq (dirProdEquiv eq1 eq2) = ≃-× (eq eq1) (eq eq2) isHom (dirProdEquiv eq1 eq2) = isHom (×hom (GroupEquiv.hom eq1) (GroupEquiv.hom eq2)) groupHomEq : {G : Group {ℓ}} {H : Group {ℓ'}} {f g : GroupHom G H} → (fun f ≡ fun g) → f ≡ g fun (groupHomEq p i) = p i isHom (groupHomEq {G = G} {H = H} {f = f} {g = g} p i) = p-hom i where p-hom : PathP (λ i → isGroupHom G H (p i)) (isHom f) (isHom g) p-hom = toPathP (isPropIsGroupHom G H _ _) groupEquivEq : {G : Group {ℓ}} {H : Group {ℓ'}} {f g : GroupEquiv G H} → (eq f ≡ eq g) → f ≡ g eq (groupEquivEq {G = G} {H = H} {f} {g} p i) = p i isHom (groupEquivEq {G = G} {H = H} {f} {g} p i) = p-hom i where p-hom : PathP (λ i → isGroupHom G H (p i .fst)) (isHom f) (isHom g) p-hom = toPathP (isPropIsGroupHom G H _ _) module GroupΣTheory {ℓ} where RawGroupStructure : Type ℓ → Type ℓ RawGroupStructure = SemigroupΣTheory.RawSemigroupStructure RawGroupEquivStr : StrEquiv RawGroupStructure _ RawGroupEquivStr = SemigroupΣTheory.RawSemigroupEquivStr rawGroupUnivalentStr : UnivalentStr RawGroupStructure _ rawGroupUnivalentStr = SemigroupΣTheory.rawSemigroupUnivalentStr -- The neutral element and the inverse function will be derived from the -- axioms, instead of being defined in the RawGroupStructure in order -- to have that group equivalences are equivalences that preserves -- multiplication (so we don't have to show that they also preserve inversion -- and neutral element, although they will preserve them). GroupAxioms : (G : Type ℓ) → RawGroupStructure G → Type ℓ GroupAxioms G _·_ = IsSemigroup _·_ × (Σ[ e ∈ G ] ((x : G) → (x · e ≡ x) × (e · x ≡ x)) × ((x : G) → Σ[ x' ∈ G ] (x · x' ≡ e) × (x' · x ≡ e))) GroupStructure : Type ℓ → Type ℓ GroupStructure = AxiomsStructure RawGroupStructure GroupAxioms GroupΣ : Type (ℓ-suc ℓ) GroupΣ = TypeWithStr ℓ GroupStructure -- Structured equivalences for groups are those for monoids (but different axioms) GroupEquivStr : StrEquiv GroupStructure ℓ GroupEquivStr = AxiomsEquivStr RawGroupEquivStr GroupAxioms open MonoidTheory isSetGroupΣ : (G : GroupΣ) → isSet _ isSetGroupΣ (_ , _ , (isSemigroup-G , _ , _)) = IsSemigroup.is-set isSemigroup-G isPropGroupAxioms : (G : Type ℓ) → (s : RawGroupStructure G) → isProp (GroupAxioms G s) isPropGroupAxioms G _+_ = isPropΣ (isPropIsSemigroup _) γ where γ : (h : IsSemigroup _+_) → isProp (Σ[ e ∈ G ] ((x : G) → (x + e ≡ x) × (e + x ≡ x)) × ((x : G) → Σ[ x' ∈ G ] (x + x' ≡ e) × (x' + x ≡ e))) γ h (e , P , _) (e' , Q , _) = Σ≡Prop (λ x → isPropΣ (isPropΠ λ _ → isProp× ((IsSemigroup.is-set h) _ _) ((IsSemigroup.is-set h) _ _)) (β x)) (sym (fst (Q e)) ∙ snd (P e')) where β : (e : G) → ((x : G) → (x + e ≡ x) × (e + x ≡ x)) → isProp ((x : G) → Σ[ x' ∈ G ] (x + x' ≡ e) × (x' + x ≡ e)) β e He = isPropΠ λ { x (x' , _ , P) (x'' , Q , _) → Σ≡Prop (λ _ → isProp× ((IsSemigroup.is-set h) _ _) ((IsSemigroup.is-set h) _ _)) (inv-lemma ℳ x x' x'' P Q) } where ℳ : Monoid ℳ = makeMonoid e _+_ (IsSemigroup.is-set h) (IsSemigroup.assoc h) (λ x → He x .fst) (λ x → He x .snd) Group→GroupΣ : Group → GroupΣ Group→GroupΣ (G , GS) = _ , _ , (isSemigroup GS , _ , identity GS , λ x → (- GS) x , inverse GS x) GroupΣ→Group : GroupΣ → Group GroupΣ→Group (G , _ , SG , _ , H0g , invertible ) = group _ _ _ (λ x → invertible x .fst) (isgroup (ismonoid SG H0g) λ x → invertible x .snd) GroupIsoGroupΣ : Iso Group GroupΣ GroupIsoGroupΣ = iso Group→GroupΣ GroupΣ→Group (λ _ → refl) (λ _ → refl) groupUnivalentStr : UnivalentStr GroupStructure GroupEquivStr groupUnivalentStr = axiomsUnivalentStr _ isPropGroupAxioms rawGroupUnivalentStr GroupΣPath : (G H : GroupΣ) → (G ≃[ GroupEquivStr ] H) ≃ (G ≡ H) GroupΣPath = SIP groupUnivalentStr GroupEquivΣ : (G H : Group) → Type ℓ GroupEquivΣ G H = Group→GroupΣ G ≃[ GroupEquivStr ] Group→GroupΣ H GroupIsoΣPath : {G H : Group} → Iso (GroupEquiv G H) (GroupEquivΣ G H) fun GroupIsoΣPath f = (eq f) , isHom f inv GroupIsoΣPath (e , h) = groupequiv e h rightInv GroupIsoΣPath _ = refl leftInv GroupIsoΣPath _ = refl GroupPath : (G H : Group) → (GroupEquiv G H) ≃ (G ≡ H) GroupPath G H = GroupEquiv G H ≃⟨ strictIsoToEquiv GroupIsoΣPath ⟩ GroupEquivΣ G H ≃⟨ GroupΣPath _ _ ⟩ Group→GroupΣ G ≡ Group→GroupΣ H ≃⟨ isoToEquiv (invIso (congIso GroupIsoGroupΣ)) ⟩ G ≡ H ■ RawGroupΣ : Type (ℓ-suc ℓ) RawGroupΣ = TypeWithStr ℓ RawGroupStructure Group→RawGroupΣ : Group → RawGroupΣ Group→RawGroupΣ (G , GS) = G , _+_ GS InducedGroup : (G : Group) (H : RawGroupΣ) (e : ⟨ G ⟩ ≃ H .fst) → RawGroupEquivStr (Group→RawGroupΣ G) H e → Group InducedGroup G H e r = GroupΣ→Group (inducedStructure rawGroupUnivalentStr (Group→GroupΣ G) H (e , r)) InducedGroupPath : (G : Group {ℓ}) (H : RawGroupΣ) (e : ⟨ G ⟩ ≃ H .fst) (E : RawGroupEquivStr (Group→RawGroupΣ G) H e) → G ≡ InducedGroup G H e E InducedGroupPath G H e E = GroupPath G (InducedGroup G H e E) .fst (groupequiv e E) -- Extract the characterization of equality of groups GroupPath : (G H : Group {ℓ}) → (GroupEquiv G H) ≃ (G ≡ H) GroupPath = GroupΣTheory.GroupPath InducedGroup : (G : Group {ℓ}) (H : GroupΣTheory.RawGroupΣ) (e : ⟨ G ⟩ ≃ H .fst) → GroupΣTheory.RawGroupEquivStr (GroupΣTheory.Group→RawGroupΣ G) H e → Group InducedGroup = GroupΣTheory.InducedGroup InducedGroupPath : (G : Group {ℓ}) (H : GroupΣTheory.RawGroupΣ) (e : ⟨ G ⟩ ≃ H .fst) (E : GroupΣTheory.RawGroupEquivStr (GroupΣTheory.Group→RawGroupΣ G) H e) → G ≡ InducedGroup G H e E InducedGroupPath = GroupΣTheory.InducedGroupPath uaGroup : {G H : Group {ℓ}} → GroupEquiv G H → G ≡ H uaGroup {G = G} {H = H} = equivFun (GroupPath G H) carac-uaGroup : {G H : Group {ℓ}} (f : GroupEquiv G H) → cong ⟨_⟩ (uaGroup f) ≡ ua (GroupEquiv.eq f) carac-uaGroup f = ua (eq f) ∙ refl ≡⟨ sym (rUnit _) ⟩ ua (eq f) ∎ -- Group-ua functoriality Group≡ : (G H : Group {ℓ}) → ( Σ[ p ∈ ⟨ G ⟩ ≡ ⟨ H ⟩ ] Σ[ q ∈ PathP (λ i → p i) (0g (snd G)) (0g (snd H)) ] Σ[ r ∈ PathP (λ i → p i → p i → p i) (_+_ (snd G)) (_+_ (snd H)) ] Σ[ s ∈ PathP (λ i → p i → p i) (- snd G) (- snd H) ] PathP (λ i → IsGroup (q i) (r i) (s i)) (isGroup (snd G)) (isGroup (snd H))) ≃ (G ≡ H) Group≡ G H = isoToEquiv theIso where theIso : Iso _ _ fun theIso (p , q , r , s , t) i = p i , groupstr (q i) (r i) (s i) (t i) inv theIso x = cong ⟨_⟩ x , cong (0g ∘ snd) x , cong (_+_ ∘ snd) x , cong (-_ ∘ snd) x , cong (isGroup ∘ snd) x rightInv theIso _ = refl leftInv theIso _ = refl caracGroup≡ : {G H : Group {ℓ}} (p q : G ≡ H) → cong ⟨_⟩ p ≡ cong ⟨_⟩ q → p ≡ q caracGroup≡ {G = G} {H = H} p q P = sym (transportTransport⁻ (ua (Group≡ G H)) p) ∙∙ cong (transport (ua (Group≡ G H))) helper ∙∙ transportTransport⁻ (ua (Group≡ G H)) q where helper : transport (sym (ua (Group≡ G H))) p ≡ transport (sym (ua (Group≡ G H))) q helper = Σ≡Prop (λ _ → isPropΣ (isOfHLevelPathP' 1 (is-set (snd H)) _ _) λ _ → isPropΣ (isOfHLevelPathP' 1 (isSetΠ2 λ _ _ → is-set (snd H)) _ _) λ _ → isPropΣ (isOfHLevelPathP' 1 (isSetΠ λ _ → is-set (snd H)) _ _) λ _ → isOfHLevelPathP 1 (isPropIsGroup _ _ _) _ _) (transportRefl (cong ⟨_⟩ p) ∙ P ∙ sym (transportRefl (cong ⟨_⟩ q))) uaGroupId : (G : Group {ℓ}) → uaGroup (idGroupEquiv G) ≡ refl uaGroupId G = caracGroup≡ _ _ (carac-uaGroup (idGroupEquiv G) ∙ uaIdEquiv) uaCompGroupEquiv : {F G H : Group {ℓ}} (f : GroupEquiv F G) (g : GroupEquiv G H) → uaGroup (compGroupEquiv f g) ≡ uaGroup f ∙ uaGroup g uaCompGroupEquiv f g = caracGroup≡ _ _ ( cong ⟨_⟩ (uaGroup (compGroupEquiv f g)) ≡⟨ carac-uaGroup (compGroupEquiv f g) ⟩ ua (eq (compGroupEquiv f g)) ≡⟨ uaCompEquiv _ _ ⟩ ua (eq f) ∙ ua (eq g) ≡⟨ cong (_∙ ua (eq g)) (sym (carac-uaGroup f)) ⟩ cong ⟨_⟩ (uaGroup f) ∙ ua (eq g) ≡⟨ cong (cong ⟨_⟩ (uaGroup f) ∙_) (sym (carac-uaGroup g)) ⟩ cong ⟨_⟩ (uaGroup f) ∙ cong ⟨_⟩ (uaGroup g) ≡⟨ sym (cong-∙ ⟨_⟩ (uaGroup f) (uaGroup g)) ⟩ cong ⟨_⟩ (uaGroup f ∙ uaGroup g) ∎) where open GroupEquiv
{ "alphanum_fraction": 0.6013763008, "avg_line_length": 41.9577464789, "ext": "agda", "hexsha": "6883ff74f2ef6371fdc5868be7389bfd5204b5ac", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Edlyr/cubical", "max_forks_repo_path": "Cubical/Algebra/Group/MorphismProperties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Edlyr/cubical", "max_issues_repo_path": "Cubical/Algebra/Group/MorphismProperties.agda", "max_line_length": 149, "max_stars_count": null, "max_stars_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Edlyr/cubical", "max_stars_repo_path": "Cubical/Algebra/Group/MorphismProperties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4649, "size": 11916 }
module WrongHidingInLHS where f : Set -> Set f {x} = x
{ "alphanum_fraction": 0.6379310345, "avg_line_length": 8.2857142857, "ext": "agda", "hexsha": "d12e87376a5600992d99bd9e5c071cbd1b99cdd1", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/WrongHidingInLHS.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/WrongHidingInLHS.agda", "max_line_length": 29, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/WrongHidingInLHS.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 23, "size": 58 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Monads ------------------------------------------------------------------------ -- Note that currently the monad laws are not included here. {-# OPTIONS --without-K --safe #-} module Category.Monad where open import Function open import Category.Monad.Indexed open import Data.Unit RawMonad : ∀ {f} → (Set f → Set f) → Set _ RawMonad M = RawIMonad {I = ⊤} (λ _ _ → M) RawMonadT : ∀ {f} (T : (Set f → Set f) → (Set f → Set f)) → Set _ RawMonadT T = RawIMonadT {I = ⊤} (λ M _ _ → T (M _ _)) RawMonadZero : ∀ {f} → (Set f → Set f) → Set _ RawMonadZero M = RawIMonadZero {I = ⊤} (λ _ _ → M) RawMonadPlus : ∀ {f} → (Set f → Set f) → Set _ RawMonadPlus M = RawIMonadPlus {I = ⊤} (λ _ _ → M) module RawMonad {f} {M : Set f → Set f} (Mon : RawMonad M) where open RawIMonad Mon public module RawMonadZero {f} {M : Set f → Set f} (Mon : RawMonadZero M) where open RawIMonadZero Mon public module RawMonadPlus {f} {M : Set f → Set f} (Mon : RawMonadPlus M) where open RawIMonadPlus Mon public
{ "alphanum_fraction": 0.5270851247, "avg_line_length": 29.075, "ext": "agda", "hexsha": "f627b736ce1cf9f480177e31d541252faf95f3e9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Category/Monad.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Category/Monad.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Category/Monad.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 346, "size": 1163 }
{-# OPTIONS --without-K --safe #-} module Instance where open import Level it : ∀ {a} {A : Type a} → ⦃ _ : A ⦄ → A it ⦃ x ⦄ = x
{ "alphanum_fraction": 0.5267175573, "avg_line_length": 14.5555555556, "ext": "agda", "hexsha": "bfee23f5887601c07a9362918d10449e339806fb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/combinatorics-paper", "max_forks_repo_path": "agda/Instance.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/combinatorics-paper", "max_issues_repo_path": "agda/Instance.agda", "max_line_length": 39, "max_stars_count": null, "max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/combinatorics-paper", "max_stars_repo_path": "agda/Instance.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 52, "size": 131 }
-- Example, ℤ is an Euclidean Domain. Here all the properties needed -- are already proved in Data.Integer.Properties. However, we will -- prove there is another divmod pair such that the rank estimation -- is more precise, see EucDomain2.agda. {-# OPTIONS --without-K --safe #-} module Integer.EucDomain where -- imports from stdlib. open import Relation.Nullary using (¬_) open import Relation.Binary.PropositionalEquality using (refl ; _≡_) open import Data.Nat using (_<_) open import Data.Integer using (_+_ ; _*_ ; -_ ; ℤ ; 0ℤ ; 1ℤ ; ∣_∣ ; +[1+_] ; -[1+_] ; +_) open import Data.Integer.DivMod renaming (_div_ to _divℤ_; _mod_ to _modℤ_ ; n%d<d to euc-rankℤ; a≡a%n+[a/n]*n to euc-eqℤ) open import Data.Integer.Properties using (+-*-isCommutativeRing ; *-cancelˡ-≡) open import Algebra.Definitions (_≡_ {A = ℤ}) using (AlmostLeftCancellative) -- imports from local. import EuclideanDomain open EuclideanDomain.Structures (_≡_ {A = ℤ}) open EuclideanDomain.Bundles -- You will notice the recurring pattern that I have to split on -- the divisor d, and use ¬ d ≡ 0ℤ to exclude the zero divisor -- case. And addtionally, I have to repeat similary codes -- twice. This is the price of the translation from ¬ a ≡ 0ℤ to -- NonZero a. I don't have a good way to avoid this. This become -- even more awkward when dealing with Gaussian integers since we -- have more constructor there (meaning more cases and more -- repeatitions). -- On the other hand, a translation from NonZero predicate to -- non-equaity ¬ d ≡ 0ℤ is quite easy. We will use this to define -- div and mod with instance predicate argument for 𝔾. -- I could use NonZero predicate in the definition of Euclidean -- Domain, but that will make the definition more complicated. Also -- the file "Algebra.Definition" using the same method as here to -- exclude zero, for example the definition of -- "AlmostLeftCancellative", so we also comply this convention. -- div with irrelevant instance argument replaced by non-equality -- argument. div : ∀ (n d : ℤ) -> ¬ d ≡ 0ℤ -> ℤ div n (+ 0) n0 with n0 refl ... | () div n d@(+[1+ n₁ ]) n0 = n divℤ d div n d@(-[1+_] n₁) n0 = n divℤ d -- mod with irrelevant instance argument replaced by non-equality -- argument. mod : ∀ (n d : ℤ) -> ¬ d ≡ 0ℤ -> ℤ mod n (+ 0) n0 with n0 refl ... | () mod n d@(+[1+ n₁ ]) n0 = + (n modℤ d) mod n d@(-[1+_] n₁) n0 = + (n modℤ d) -- Divident = reminder + quotient * divisor. euc-eq : ∀ (n d : ℤ) (n0 : ¬ d ≡ 0ℤ) -> let r = mod n d n0 in let q = div n d n0 in n ≡ r + q * d euc-eq n (+ 0) n0 with n0 refl ... | () euc-eq n d@(+[1+ n₁ ]) n0 = euc-eqℤ n d euc-eq n d@(-[1+_] n₁) n0 = euc-eqℤ n d -- The rank of the reminder is strictly smaller than the rank of the -- divisor. euc-rank : ∀ (n d : ℤ) (n0 : ¬ d ≡ 0ℤ) -> let r = mod n d n0 in let q = div n d n0 in ∣ r ∣ < ∣ d ∣ euc-rank n (+ 0) n0 with n0 refl ... | () euc-rank n d@(+[1+ n₁ ]) n0 = euc-rankℤ n d euc-rank n d@(-[1+_] n₁) n0 = euc-rankℤ n d -- Multiplication is left cancellative. *-alc-ℤ : AlmostLeftCancellative 0ℤ _*_ *-alc-ℤ {+ 0} j k n0 with n0 refl ... | () *-alc-ℤ {i@(+[1+ n ])} j k n0 = *-cancelˡ-≡ i j k *-alc-ℤ { i@(-[1+ n ])} j k n0 = *-cancelˡ-≡ i j k -- ℤ is an Euclidean Domain. +-*-isEuclideanDomain : IsEuclideanDomain _+_ _*_ -_ 0ℤ 1ℤ +-*-isEuclideanDomain = record { isCommutativeRing = +-*-isCommutativeRing ; *-alc = *-alc-ℤ ; div = div ; mod = mod ; rank = ∣_∣ ; euc-eq = euc-eq ; euc-rank = euc-rank } -- Bundle. +-*-euclideanDomain : EuclideanDomainBundle _ _ +-*-euclideanDomain = record { isEuclideanDomain = +-*-isEuclideanDomain }
{ "alphanum_fraction": 0.5862068966, "avg_line_length": 36.3153153153, "ext": "agda", "hexsha": "f9a36ce8c59129d5c9a453f42e356a342c4aaf1c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7e268e8354065fde734c9c2d9998d2cfd4a21f71", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "onestruggler/EucDomain", "max_forks_repo_path": "Integer/EucDomain.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7e268e8354065fde734c9c2d9998d2cfd4a21f71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "onestruggler/EucDomain", "max_issues_repo_path": "Integer/EucDomain.agda", "max_line_length": 94, "max_stars_count": null, "max_stars_repo_head_hexsha": "7e268e8354065fde734c9c2d9998d2cfd4a21f71", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "onestruggler/EucDomain", "max_stars_repo_path": "Integer/EucDomain.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1372, "size": 4031 }
------------------------------------------------------------------------------ -- The gcd program is correct ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- This module proves the correctness of the gcd program using -- the Euclid's algorithm. module LTC-PCF.Program.GCD.Partial.CorrectnessProof where open import LTC-PCF.Base open import LTC-PCF.Data.Nat.Divisibility.NotBy0.Properties using ( 0∤x ; x∣S→x≤S ) open import LTC-PCF.Data.Nat.Type open import LTC-PCF.Program.GCD.Partial.CommonDivisor using ( gcdCD ) open import LTC-PCF.Program.GCD.Partial.Definitions using ( x≢0≢y ; gcdSpec ) open import LTC-PCF.Program.GCD.Partial.Divisible using ( gcdDivisible ) open import LTC-PCF.Program.GCD.Partial.GCD using ( gcd ) import LTC-PCF.Program.GCD.Partial.GreatestAnyCommonDivisor open module GreatestAnyCommonDivisor = LTC-PCF.Program.GCD.Partial.GreatestAnyCommonDivisor x∣S→x≤S 0∤x using ( gcdGACD ) open import LTC-PCF.Program.GCD.Partial.Totality using ( gcd-N ) ------------------------------------------------------------------------------ -- The gcd is correct gcdCorrect : ∀ {m n} → N m → N n → x≢0≢y m n → gcdSpec m n (gcd m n) gcdCorrect Nm Nn m≢0≢n = gcdCD Nm Nn m≢0≢n , gcdGACD (gcd-N Nm Nn m≢0≢n) (gcdCD Nm Nn m≢0≢n) (gcdDivisible Nm Nn m≢0≢n)
{ "alphanum_fraction": 0.557106599, "avg_line_length": 40.4102564103, "ext": "agda", "hexsha": "a229b9c0a1d2902daa6d004aa8423d0bd6a6f414", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/LTC-PCF/Program/GCD/Partial/CorrectnessProof.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/LTC-PCF/Program/GCD/Partial/CorrectnessProof.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/LTC-PCF/Program/GCD/Partial/CorrectnessProof.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 421, "size": 1576 }
module Structure.Operator.Monoid where import Lvl open import Logic open import Logic.Predicate open import Structure.Setoid open import Structure.Operator.Properties hiding (associativity ; identityₗ ; identityᵣ) open import Structure.Operator open import Type -- A type and a binary operator using this type is a monoid when: -- • The operator is associative. -- • The operator have an identity in both directions. record Monoid {ℓ ℓₑ} {T : Type{ℓ}} ⦃ _ : Equiv{ℓₑ}(T) ⦄ (_▫_ : T → T → T) : Stmt{ℓ Lvl.⊔ ℓₑ} where constructor intro field ⦃ binary-operator ⦄ : BinaryOperator(_▫_) ⦃ associativity ⦄ : Associativity(_▫_) ⦃ identity-existence ⦄ : ∃(Identity(_▫_)) id = [∃]-witness identity-existence identity : Identity (_▫_) id identity = [∃]-proof identity-existence identityₗ : Identityₗ (_▫_) id identityₗ = Identity.left(identity) identityᵣ : Identityᵣ (_▫_) id identityᵣ = Identity.right(identity) identity-existenceₗ : ∃(Identityₗ(_▫_)) identity-existenceₗ = [∃]-intro id ⦃ identityₗ ⦄ identity-existenceᵣ : ∃(Identityᵣ(_▫_)) identity-existenceᵣ = [∃]-intro id ⦃ identityᵣ ⦄ record MonoidObject {ℓ ℓₑ} : Stmt{Lvl.𝐒(ℓ Lvl.⊔ ℓₑ)} where constructor intro field {T} : Type{ℓ} ⦃ equiv ⦄ : Equiv{ℓₑ}(T) _▫_ : T → T → T ⦃ monoid ⦄ : Monoid(_▫_) open Monoid(monoid) public
{ "alphanum_fraction": 0.6784922395, "avg_line_length": 29.4130434783, "ext": "agda", "hexsha": "a987c79e594417d13d3cff69c1d7d1b7144668e3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Operator/Monoid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Operator/Monoid.agda", "max_line_length": 98, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Operator/Monoid.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 496, "size": 1353 }
module _ where open import Agda.Builtin.Equality postulate A : Set P : A → Set data Id (A : Set) : Set where id : A → Id A data Flat (@♭ A : Set) : Set where con : (@♭ x : A) → Flat A counit : {@♭ A : Set} → Flat A → A counit (con x) = x test2 : (@♭ x : Id A) → Flat A test2 (id x) = con x test3 : (@♭ x : A) (@♭ y : A) (@♭ p : x ≡ y) → P x → P y test3 x y refl p = p test4 : (@♭ x : A) (@♭ y : A) → Flat (x ≡ y) → P x → P y test4 x y (con refl) p = p test6 : (@♭ x y : A) → (eq : con x ≡ con y) → P x → P y test6 x .x refl p = p
{ "alphanum_fraction": 0.4844606947, "avg_line_length": 18.8620689655, "ext": "agda", "hexsha": "5ad1c8a05c63c5a243f80e74b028fcc6a5209eb7", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/FlatSplit.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/FlatSplit.agda", "max_line_length": 56, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/FlatSplit.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 252, "size": 547 }
-- {-# OPTIONS -v 10 #-} -- {-# OPTIONS -v auto:100 #-} postulate A : Set X : Set₂ X = (P : Set₁) → (A → P) → P foo : X → X foo x P f = {!!} -- Invoke Agsy in the hole above. Result: -- -- Set != Set₁ -- when checking that the expression A has type Set₁ -- -- The error message points to A in the definition of X. -- x : (P : Set₁) → (A → P) → P -- P : Set₁ -- f : A → P -- ? : P -- Agsy constructs f (x A (λ z → z)) which is ill-typed -- as A is in the wrong universe. -- It should take universe levels into account. -- Temporary fix: discard wrong solution, Agsy returns nothing.
{ "alphanum_fraction": 0.581512605, "avg_line_length": 20.5172413793, "ext": "agda", "hexsha": "a7ff9eacc3a1efe1e7d5b094ed7e2ea6fc7fc002", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue1504.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue1504.agda", "max_line_length": 63, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue1504.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 195, "size": 595 }
module sv20.assign2.Second where -- The solution for the second task starts in line 53 open import Data.Unit using (⊤; tt) open import Data.Product using (_×_ ; ∃) renaming (_,_ to ⟨_,_⟩) open import Relation.Nullary using (¬_) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Function using (_∘_) -- For the second task. We took one common definition of Subset mentioned in -- https://stackoverflow.com/q/34183349 -- Notice that this definition is equivalent to the definition presented in the -- Standard Library where Subset is a "record". Subset : (A : Set) -> Set _ Subset A = A → Set -- Because, we are using a different definition from the standard library, we -- need to define what it means to be included in a subset, what is a relation, -- what is the range and domain of a relation, and so forth. _∈_ : ∀ {A} → A → Subset A → Set a ∈ P = P a Relation : ∀ A B → Set₁ Relation A B = Subset (A × B) Range : ∀ {A B} → Relation A B → Subset B Range R b = ∃ (R ∘ ⟨_, b ⟩) -- equivalent to ∃ \a → R ⟨ a , b ⟩ Dom : ∀ {A B} → Relation A B → Subset A Dom R a = ∃ (R ∘ ⟨ a ,_⟩) -- equivalent to ∃ \b → R ⟨ a , b ⟩ _⊆_ : ∀ {A} → Subset A → Subset A → Set A ⊆ B = ∀ x → x ∈ A → x ∈ B _∩_ : ∀ {A} → Subset A → Subset A → Subset A A ∩ B = λ x → x ∈ A × x ∈ B _∪_ : ∀ {A} → Subset A → Subset A → Subset A A ∪ B = λ x → x ∈ A ⊎ x ∈ B _/_ : ∀ {A} → Subset A → Subset A → Subset A A / B = λ x → x ∈ A × ¬ (x ∈ B) -- Practice theorem ∪-range-⊆ : ∀ {A B} {F G : Relation A B} → (Range F ∪ Range G) ⊆ Range (F ∪ G) ∪-range-⊆ _ (inj₁ ⟨ a , fab ⟩) = ⟨ a , inj₁ fab ⟩ ∪-range-⊆ _ (inj₂ ⟨ a , gab ⟩) = ⟨ a , inj₂ gab ⟩ -- =========== SOLUTION TO TASK 2 STARTS HERE =========== -- range-theorem-2 range-∩-⊆ : ∀ {A B} {F G : Relation A B} → Range (F ∩ G) ⊆ (Range F ∩ Range G) range-∩-⊆ b b∈RangeF∩G = -- Given "b ∈ Range (F ∩ G)", we need to prove that "b ∈ (Range F ∩ Range G)" let ⟨ a , a,b∈F∩G ⟩ = b∈RangeF∩G -- (1) if "b ∈ Range (F ∩ G)" then there exists 'a' such that "(a,b) ∈ (F ∩ G)" ⟨ a,b∈F , a,b∈G ⟩ = a,b∈F∩G -- (2) per definition of intersection, if "(a,b) ∈ (F ∩ G)" then "(a,b) ∈ F" and "(a,b) ∈ G" b∈RangeF = ⟨ a , a,b∈F ⟩ -- (3) from (1) we know there is an 'a' such that "(a,b) ∈ F" (2), so "b ∈ Range F", per definition of Range b∈RangeG = ⟨ a , a,b∈G ⟩ -- (4) as above, "b ∈ Range G" because of 'a' (1) and "(a,b) ∈ F" (2) b∈RangeF∩RangeG = ⟨ b∈RangeF , b∈RangeG ⟩ -- (5) given "b ∈ Range F" (3) and "b ∈ Range G" (4), and definition of ∩ "b ∈ Range F ∩ Range G". QED in b∈RangeF∩RangeG -- dom-theorem-3 dom-/-⊆ : ∀ {A B} {F G : Relation A B} → (Dom F / Dom G) ⊆ Dom (F / G) dom-/-⊆ a a∈DomF/DomG = -- Given "a ∈ (Dom F / Dom G)", we need to prove that "a ∈ Dom (F / G)" let ⟨ a∈DomF , ¬a∈DomG ⟩ = a∈DomF/DomG -- (1) per definition of '/', "a ∈ (Dom F / Dom G)" is the same as "a ∈ Dom F" and "¬ a ∈ Dom G" ⟨ b , a,b∈F ⟩ = a∈DomF -- (2) per definition of 'Dom', if "a ∈ Dom F" then there exists 'b' such that "(a,b) ∈ F" ¬a,b∈G = -- (3) From "¬ a ∈ Dom G" we can prove that "¬ (a, b₁) ∈ G" for any 'b₁' λ{ a,b∈G → -- (a) By contradiction, suposse that "(a, b₁) ∈ G" for some 'b₁' let a∈DomG = ⟨ _ , a,b∈G ⟩ -- (b) per definition of 'Dom', "a ∈ Dom G" in ¬a∈DomG a∈DomG } -- We know that "¬ a ∈ Dom G" (3) and "a ∈ Dom G" (b). Nonesense! So, "¬ (a, b₁) ∈ G" for all 'b₁' a,b∈F/G = ⟨ a,b∈F , ¬a,b∈G ⟩ -- (4) per definition of '/' and given (2) and (3), "(a, b) ∈ F/G" a∈DomF/G = ⟨ b , a,b∈F/G ⟩ -- (5) per definition of 'Dom' and given (4) and 'b', we have that "a ∈ Dom (F / G)". QED in a∈DomF/G -- range-theorem-3 /-range-⊆ : ∀ {A B} {F G : Relation A B} → (Range F / Range G) ⊆ Range (F / G) /-range-⊆ b b∈RangeF/RangeG = -- Given "b ∈ (Range F / Range G)", we need to prove that "b ∈ Range (F / G)" let ⟨ b∈RangeF , ¬b∈RangeG ⟩ = b∈RangeF/RangeG -- (1) per definition of '/', "b ∈ Range F" and "¬ b ∈ Range G" ⟨ a , a,b∈F ⟩ = b∈RangeF -- (2) per definition of 'Range', there exists 'a' such that "(a,b) ∈ F" ¬a,b∈G = -- (3) by contradiction, we will prove that "¬ (a, b) ∈ G" given (1) λ{ a,b∈G → -- (a) suppose that there exists 'a₁' such that "(a₁, b) ∈ G" let b∈RangeG = ⟨ _ , a,b∈G ⟩ -- (b) per definition of Range and given (a), "b ∈ Range G" in ¬b∈RangeG b∈RangeG } -- (c) we know from (1) that "¬ b ∈ Range G" but (b) says "b ∈ Range G". Nonesense! a,b∈F/G = ⟨ a,b∈F , ¬a,b∈G ⟩ -- (4) per definition of '/' and given (2) and (3), then "(a, b) ∈ F / G" b∈RangeF/G = ⟨ a , a,b∈F/G ⟩ -- (5) per definition of 'Range' and given 'a' and (4), we know that "b ∈ Range (F / G)". QED in b∈RangeF/G -- Class exercise -- This is not really an exercise at all because this is the definition of `⊆`! exercise103a : ∀ {a} {A B : Subset a} → (∀ x → x ∈ A → x ∈ B) → A ⊆ B exercise103a x→x∈A→x∈B = x→x∈A→x∈B open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; cong) exercise103id→ : ∀ {a} {A B : Subset a} → A ≡ B → A ⊆ B × B ⊆ A exercise103id→ refl = ⟨ (λ{_ p → p}) , (λ{_ p → p}) ⟩ --exercise103id← : ∀ {a} {A B : Subset a} -- → A ⊆ B × B ⊆ A → A ≡ B --exercise103id← ⟨ A⊆B , B⊆A ⟩ = ? -- Probably impossible to prove without unification. Possibly, impossible to prove. Needs `postulate` exercise108a : ∀ {a} {A B : Subset a} (z : a) → (z ∈ A) × (z ∈ B) → z ∈ (A ∩ B) exercise108a _ ⟨ z∈A , z∈B ⟩ = ⟨ z∈A , z∈B ⟩ -- How to explain this?
{ "alphanum_fraction": 0.5084011779, "avg_line_length": 49.3418803419, "ext": "agda", "hexsha": "991d20417ec37f543576c568e56e2425f33025b2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "helq/old_code", "max_forks_repo_path": "proglangs-learning/Agda/sv20/assign2/Second.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d", "max_issues_repo_issues_event_max_datetime": "2021-06-07T15:39:48.000Z", "max_issues_repo_issues_event_min_datetime": "2020-03-10T19:20:21.000Z", "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "helq/old_code", "max_issues_repo_path": "proglangs-learning/Agda/sv20/assign2/Second.agda", "max_line_length": 148, "max_stars_count": null, "max_stars_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "helq/old_code", "max_stars_repo_path": "proglangs-learning/Agda/sv20/assign2/Second.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2263, "size": 5773 }
module NatTactic where module _ where open import Agda.Builtin.Nat open import Agda.Builtin.List -- n .. 1 downFrom : Nat → List Nat downFrom zero = [] downFrom (suc n) = suc n ∷ downFrom n module AgdaPreludeTest where open import Prelude open import Tactic.Nat -- All tactics know about addition, multiplication and subtraction -- of natural numbers, and can prove equalities and inequalities (_<_). -- The available tactics are: {- auto Prove an equation or inequality. -} auto-example₁ : (a b : Nat) → (a - b) * (a + b) ≡ a ^ 2 - b ^ 2 auto-example₁ a b = auto auto-example₂ : (a b : Nat) → (a + b) ^ 2 ≥ a ^ 2 + b ^ 2 auto-example₂ a b = auto {- by eq Prove the goal using the given assumption. For equalities it simplifies the goal and the assumption and checks if they match any of the following forms (up to symmetry): a ≡ b → a ≡ b a + b ≡ 0 → a ≡ 0 For inequalities, to prove a < b -> c < d, it simplifies the assumption and goal and then tries to prove c′ ≤ a′ and b′ ≤ d′. When proving that an inequality follows from an equality a ≡ b, the equality is weakened to a ≤ b before applying the above procedure. Proving an equality from an inequality works if the inequality simplifies to a ≤ 0 (or a < 0 in which case it's trivial). It then reduces that to a ≡ 0 and tries to prove the goal from that. -} by-example₁ : (xs ys : List Nat) → sum (xs ++ ys) ≡ sum ys + sum xs by-example₁ [] ys = auto by-example₁ (x ∷ xs) ys = by (by-example₁ xs ys) by-example₂ : (a b c : Nat) → a + c < b + c → a < b by-example₂ a b c lt = by lt by-example₃ : (a b : Nat) → a ≡ b * 2 → a + b < (b + 1) * 3 by-example₃ a b eq = by eq by-example₄ : (a b c : Nat) → a + b + c ≤ b → 2 * c ≡ c by-example₄ a b c lt = by lt by-example₅ : (a b c : Nat) → a + b ≡ b + c → 2 + a ≡ 1 + c + 1 by-example₅ a b c eq = by eq {- refute eq Proves an arbitrary proposition given a false equation. Works for equations that simplify to 0 ≡ suc n (or symmetric) or n < 0, for some n. -} refute-example₁ : {Anything : Set} (a : Nat) → a ≡ 2 * a + 1 → Anything refute-example₁ a eq = refute eq refute-example₂ : {Anything : Set} (a b : Nat) → a + b < a → Anything refute-example₂ a b lt = refute lt {- simplify-goal ? Simplify the current goal and let you keep working on the new goal. In most cases 'by prf' works better than 'simplify-goal => prf' since it will also simplify prf. The advantage of simplify-goal is that it allows holes in prf. -} simplify-goal-example₁ : (a b : Nat) → a - b ≡ b - a → a ≡ b simplify-goal-example₁ zero b eq = by eq simplify-goal-example₁ (suc a) zero eq = refute eq simplify-goal-example₁ (suc a) (suc b) eq = simplify-goal (simplify-goal-example₁ a b eq) -- Old goal: suc a ≡ suc b -- New goal: a ≡ b simplify-goal-example₂ : (a b : Nat) → a - b ≡ b - a → a < suc b simplify-goal-example₂ zero b eq = by eq simplify-goal-example₂ (suc a) zero eq = refute eq simplify-goal-example₂ (suc a) (suc b) eq = simplify-goal (simplify-goal-example₂ a b eq) -- Old goal: suc a ≤ suc b -- New goal: a ≤ b simplify-goal-example₃ : (a b c : Nat) → a ≡ c → a + b ≡ b + c simplify-goal-example₃ a b c eq = simplify-goal eq {- simplify eq λ x → ? Simplify the given equation (and the current goal) and bind the simplified equation to x in the new goal. -} lemma₁ : (a b : Nat) → a + b ≡ 0 → a ≡ 0 lemma₁ zero b eq = refl lemma₁ (suc a) b eq = refute eq simplify-example₁ : ∀ a b → (a + 1) * (b + 1) ≡ a * b + 1 → a ≡ 0 simplify-example₁ a b eq = simplify eq λ eq′ → lemma₁ a b eq′ lemma₂ : (a b : Nat) → a + b ≡ 0 → a < suc 0 lemma₂ zero b eq = auto lemma₂ (suc a) b eq = refute eq simplify-example₂ : ∀ a b → (a + 1) * (b + 1) ≡ a * b + 1 → a < suc 0 simplify-example₂ a b eq = simplify eq λ eq′ → by (lemma₂ a b eq′) simplify-example₃ : (a b c : Nat) → a + b ≡ b + c → 2 + a ≡ 1 + c + 1 simplify-example₃ a b c eq = simplify eq λ eq′ → eq′ {- induction Prove a goal ∀ n → P n using induction. Applies 'auto' in the base case and 'by IH' in the step case. -} induction-example₁ : ∀ n → sum (downFrom n) * 2 ≡ n * (n + 1) induction-example₁ = induction induction-example₂ : ∀ n → sum (downFrom n) * 2 < suc (n * (n + 1)) induction-example₂ = induction -- some equivalences needed to adapt Tactic.Nat to the standard library module EquivalenceOf≤ where open import Agda.Builtin.Equality open import Agda.Builtin.Nat open import Data.Nat using (less-than-or-equal) renaming (_≤_ to _≤s_) open import Data.Nat.Properties using (≤⇒≤″; ≤″⇒≤) open import Prelude using (diff; id) renaming (_≤_ to _≤p_) open import Tactic.Nat.Generic (quote _≤p_) (quote id) (quote id) using (by) ≤p→≤s : ∀ {a b} → a ≤p b → a ≤s b ≤p→≤s (diff k b₊₁≡k₊₁+a) = ≤″⇒≤ (less-than-or-equal {k = k} (by b₊₁≡k₊₁+a)) ≤s→≤p : ∀ {a b} → a ≤s b → a ≤p b ≤s→≤p a≤sb with ≤⇒≤″ a≤sb ≤s→≤p _ | less-than-or-equal {k = k} a+k≡b = diff k (by a+k≡b) module StandardLibraryTest where open import Agda.Builtin.Equality open import Data.Nat open import Data.List hiding (downFrom) open import Function private infixr 8 _^_ _^_ : ℕ → ℕ → ℕ n ^ zero = 1 n ^ suc m = n ^ m * n open EquivalenceOf≤ open import Tactic.Nat.Generic (quote _≤_) (quote ≤s→≤p) (quote ≤p→≤s) auto-example₁ : (a b : ℕ) → (a ∸ b) * (a + b) ≡ a ^ 2 ∸ b ^ 2 auto-example₁ a b = auto auto-example₂ : (a b : ℕ) → (a + b) ^ 2 ≥ a ^ 2 + b ^ 2 auto-example₂ a b = auto by-example₁ : (xs ys : List ℕ) → sum (xs ++ ys) ≡ sum ys + sum xs by-example₁ [] ys = auto by-example₁ (x ∷ xs) ys = by (by-example₁ xs ys) by-example₂ : (a b c : ℕ) → a + c < b + c → a < b by-example₂ a b c lt = by lt by-example₃ : (a b : ℕ) → a ≡ b * 2 → a + b < (b + 1) * 3 by-example₃ a b eq = by eq by-example₄ : (a b c : ℕ) → a + b + c ≤ b → 2 * c ≡ c by-example₄ a b c lt = by lt by-example₅ : (a b c : ℕ) → a + b ≡ b + c → 2 + a ≡ 1 + c + 1 by-example₅ a b c eq = by eq refute-example₁ : {Anything : Set} (a : ℕ) → a ≡ 2 * a + 1 → Anything refute-example₁ a eq = refute eq refute-example₂ : {Anything : Set} (a b : ℕ) → a + b < a → Anything refute-example₂ a b lt = refute lt simplify-goal-example₁ : (a b : ℕ) → a ∸ b ≡ b ∸ a → a ≡ b simplify-goal-example₁ zero b eq = by eq simplify-goal-example₁ (suc a) zero eq = refute eq simplify-goal-example₁ (suc a) (suc b) eq = simplify-goal (simplify-goal-example₁ a b eq) simplify-goal-example₂ : (a b : ℕ) → a ∸ b ≡ b ∸ a → a < suc b simplify-goal-example₂ zero b eq = by eq simplify-goal-example₂ (suc a) zero eq = refute eq simplify-goal-example₂ (suc a) (suc b) eq = simplify-goal (by (simplify-goal-example₂ a b eq)) simplify-goal-example₃ : (a b c : ℕ) → a ≡ c → a + b ≡ b + c simplify-goal-example₃ a b c eq = simplify-goal eq lemma₁ : (a b : ℕ) → a + b ≡ 0 → a ≡ 0 lemma₁ zero b eq = refl lemma₁ (suc a) b eq = refute eq simplify-example₁ : ∀ a b → (a + 1) * (b + 1) ≡ a * b + 1 → a ≡ 0 simplify-example₁ a b eq = simplify eq λ eq′ → lemma₁ a b eq′ lemma₂ : (a b : ℕ) → a + b ≡ 0 → a < suc 0 lemma₂ zero b eq = s≤s z≤n lemma₂ (suc a) b eq = refute eq simplify-example₂ : ∀ a b → (a + 1) * (b + 1) ≡ a * b + 1 → a < suc 0 simplify-example₂ a b eq = simplify eq λ eq′ → by (lemma₂ a b eq′) simplify-example₃ : (a b c : ℕ) → a + b ≡ b + c → 2 + a ≡ 1 + c + 1 simplify-example₃ a b c eq = simplify eq λ eq′ → eq′ induction-example₁ : ∀ n → sum (downFrom n) * 2 ≡ n * (n + 1) induction-example₁ = induction induction-example₂ : ∀ n → sum (downFrom n) * 2 < suc (n * (n + 1)) induction-example₂ = induction
{ "alphanum_fraction": 0.5689019897, "avg_line_length": 33.2326530612, "ext": "agda", "hexsha": "7e1fc861f448b2c8ad70a5515d4e3a4ade20ccaa", "lang": "Agda", "max_forks_count": 24, "max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z", "max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "L-TChen/agda-prelude", "max_forks_repo_path": "test/NatTactic.agda", "max_issues_count": 59, "max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z", "max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "L-TChen/agda-prelude", "max_issues_repo_path": "test/NatTactic.agda", "max_line_length": 80, "max_stars_count": 111, "max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "L-TChen/agda-prelude", "max_stars_repo_path": "test/NatTactic.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z", "num_tokens": 2938, "size": 8142 }
module Issue326 where open import Common.Prelude open import Common.MAlonzo using () -- see issue 561 postulate QName : Set printBool : Bool → IO Unit {-# BUILTIN QNAME QName #-} {-# COMPILED printBool print #-} primitive primQNameEquality : QName → QName → Bool main : IO Unit main = printBool (primQNameEquality (quote Unit) (quote IO))
{ "alphanum_fraction": 0.7220630372, "avg_line_length": 19.3888888889, "ext": "agda", "hexsha": "2fe6d82a62d32884cf4edc2458f071cfb5f07de8", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/Issue326.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/Issue326.agda", "max_line_length": 60, "max_stars_count": 1, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/succeed/Issue326.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 93, "size": 349 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category -- we use duality to prove properties about coequalizer module Categories.Diagram.Coequalizer.Properties {o ℓ e} (C : Category o ℓ e) where open Category C open import Categories.Diagram.Coequalizer C open import Categories.Morphism C open import Categories.Diagram.Equalizer op open import Categories.Diagram.Duality C private variable A B : Obj f g : A ⇒ B module _ (coe : Coequalizer f g) where open Coequalizer coe private equalizer : Equalizer f g equalizer = Coequalizer⇒coEqualizer coe open Equalizer equalizer using (unique′; equality-∘; unique-diagram) renaming ( id-equalize to id-coequalize ; equalize-resp-≈ to coequalize-resp-≈ ; equalize-resp-≈′ to coequalize-resp-≈′ ) public Coequalizer⇒Epi : Epi arr Coequalizer⇒Epi = Equalizer⇒Mono equalizer
{ "alphanum_fraction": 0.6950431034, "avg_line_length": 24.4210526316, "ext": "agda", "hexsha": "db8ace34fa275a525f1ffe3b25b7118b289c492e", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bblfish/agda-categories", "max_forks_repo_path": "src/Categories/Diagram/Coequalizer/Properties.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bblfish/agda-categories", "max_issues_repo_path": "src/Categories/Diagram/Coequalizer/Properties.agda", "max_line_length": 83, "max_stars_count": 279, "max_stars_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bblfish/agda-categories", "max_stars_repo_path": "src/Categories/Diagram/Coequalizer/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 275, "size": 928 }
------------------------------------------------------------------------ -- A lookahead operator cannot be defined ------------------------------------------------------------------------ -- In "Parsing with First-Class Derivatives" Brachthäuser, Rendel and -- Ostermann state that "Lookahead and [...] cannot be expressed as -- user defined combinators". Here I give a formal proof of a variant -- of this statement (in the present setting). module TotalParserCombinators.NoLookahead where open import Data.List open import Data.List.Properties open import Data.Product open import Data.Unit open import Function.Base open import Function.Equality using (_⟨$⟩_) open import Function.Equivalence using (Equivalence; _⇔_) open import Relation.Binary.PropositionalEquality as PE using (_≡_) open import Relation.Nullary open import TotalParserCombinators.Lib open import TotalParserCombinators.Parser open import TotalParserCombinators.Semantics.Continuation -- It is impossible to define a lookahead operator satisfying a -- certain specification (without changing the interface of the parser -- combinator library). no-lookahead : ¬ ∃ λ (look : ∀ {Tok R} {f-bag : List Tok → List R} → ((s : List Tok) → Parser Tok R (f-bag s)) → Parser Tok R (f-bag [])) → ∀ {Tok R x s₁ s₂} {f-bag : List Tok → List R} {f : (s : List Tok) → Parser Tok R (f-bag s)} → x ⊕ s₂ ∈ look f · s₁ ⇔ x ⊕ s₂ ∈ f s₁ · s₁ no-lookahead (look , correct) = ¬f[-]·[-] f[-]·[-] where f-bag : List ⊤ → List ⊤ f-bag [] = [ _ ] f-bag (_ ∷ _) = [] f : (s : List ⊤) → Parser ⊤ ⊤ (f-bag s) f [] = return _ f (_ ∷ _) = fail f[]·[] : _ ⊕ [] ∈ f [] · [] f[]·[] = return look-f·[] : _ ⊕ [] ∈ look f · [] look-f·[] = Equivalence.from correct ⟨$⟩ f[]·[] look-f·[-] : _ ⊕ [ _ ] ∈ look f · [ _ ] look-f·[-] = extend look-f·[] f[-]·[-] : _ ⊕ [ _ ] ∈ f [ _ ] · [ _ ] f[-]·[-] = Equivalence.to correct ⟨$⟩ look-f·[-] ¬f[-]·[-] : ¬ _ ⊕ [ _ ] ∈ f [ _ ] · [ _ ] ¬f[-]·[-] ()
{ "alphanum_fraction": 0.5561576355, "avg_line_length": 33.2786885246, "ext": "agda", "hexsha": "2a88c0f78865c21c69e73f67a39d7d65f48cfc54", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "TotalParserCombinators/NoLookahead.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "TotalParserCombinators/NoLookahead.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/parser-combinators", "max_stars_repo_path": "TotalParserCombinators/NoLookahead.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z", "num_tokens": 619, "size": 2030 }
------------------------------------------------------------------------------ -- Agda-Prop Library. -- Theorems of ⇔ connective. ------------------------------------------------------------------------------ open import Data.Nat using ( ℕ ) module Data.PropFormula.Theorems.Biimplication ( n : ℕ ) where ------------------------------------------------------------------------------ open import Data.PropFormula.Theorems.Classical n open import Data.PropFormula.Theorems.Implication n using ( ⊃-to-¬∨; ⊃⊃-to-∧⊃; ∧⊃-to-⊃⊃ ) open import Data.PropFormula.Theorems.Negation n using ( ¬-equiv₁ ; ¬-equiv₂; ¬∨-to-⊃; ¬¬-equiv₁; ¬¬-equiv₂ ) open import Data.PropFormula.Syntax n open import Function using ( _$_ ) ------------------------------------------------------------------------------ -- Theorem. ⇔-equiv₁ : ∀ {Γ} {φ ψ} → Γ ⊢ φ ⇔ ψ → Γ ⊢ (φ ⊃ ψ) ∧ (ψ ⊃ φ) -- Proof. ⇔-equiv₁ {Γ}{φ}{ψ} Γ⊢φ⇔ψ = ∧-intro (⊃-intro (⇔-elim₁ (assume φ) (weaken φ Γ⊢φ⇔ψ))) (⊃-intro (⇔-elim₂ (assume ψ) (weaken ψ Γ⊢φ⇔ψ))) -------------------------------------------------------------------------- ∎ -- Theorem. ⇔-equiv₂ : ∀ {Γ} {φ ψ} → Γ ⊢ (φ ⊃ ψ) ∧ (ψ ⊃ φ) → Γ ⊢ φ ⇔ ψ -- Proof. ⇔-equiv₂ {φ = φ}{ψ} Γ⊢⟪φ⊃ψ⟫∧⟪ψ⊃φ⟫ = ⇔-intro (⊃-elim (weaken φ (∧-proj₁ Γ⊢⟪φ⊃ψ⟫∧⟪ψ⊃φ⟫)) (assume φ)) (⊃-elim (weaken ψ (∧-proj₂ Γ⊢⟪φ⊃ψ⟫∧⟪ψ⊃φ⟫)) (assume ψ)) -------------------------------------------------------------------------- ∎ -- Theorem. ⇔-equiv : ∀ {Γ} {φ ψ} → Γ ⊢ (φ ⇔ ψ) ⇔ ((φ ⊃ ψ) ∧ (ψ ⊃ φ)) -- Proof. ⇔-equiv {Γ}{φ}{ψ} = ⇔-intro (⇔-equiv₁ (assume (φ ⇔ ψ))) (⇔-equiv₂ (assume ((φ ⊃ ψ) ∧ (ψ ⊃ φ)))) -------------------------------------------------------------------------- ∎ -- Theorem. ⇔-assoc₁ : ∀ {Γ} {φ ψ γ} → Γ ⊢ φ ⇔ (ψ ⇔ γ) → Γ ⊢ (φ ⇔ ψ) ⇔ γ -- Proof. ⇔-assoc₁ {Γ}{φ = φ}{ψ}{γ} thm = ⇔-intro (RAA (¬-elim (¬-intro (¬-elim (¬-intro (¬-elim (weaken φ $ weaken (ψ ⇔ γ) $ assume {Γ = Γ , φ ⇔ ψ} (¬ γ)) (⇔-elim₁ (⇔-elim₁ (assume {Γ = Γ , φ ⇔ ψ , ¬ γ , ψ ⇔ γ} φ) (weaken φ $ weaken (ψ ⇔ γ) (weaken (¬ γ) $ assume (φ ⇔ ψ)))) (⇔-elim₁ (assume {Γ = Γ , φ ⇔ ψ , ¬ γ , ψ ⇔ γ} φ) (weaken φ $ weaken (ψ ⇔ γ) $ weaken (¬ γ) $ weaken (φ ⇔ ψ) thm))))) (⇔-elim₂ (assume {Γ = Γ , φ ⇔ ψ , ¬ γ} (ψ ⇔ γ)) (weaken (ψ ⇔ γ) $ weaken (¬ γ) $ weaken (φ ⇔ ψ) thm)))) (⇔-intro (⊥-elim γ (¬-elim (⊥-elim (¬ ψ) (¬-elim (¬-intro -- ¬ φ (¬-elim (weaken φ $ weaken ψ $ assume {Γ = Γ , φ ⇔ ψ} (¬ γ)) (⇔-elim₁ (⇔-elim₁ (assume {Γ = Γ , φ ⇔ ψ , ¬ γ , ψ} φ) (weaken φ (weaken ψ (weaken (¬ γ) (assume (φ ⇔ ψ)))))) (⇔-elim₁ (assume {Γ = Γ , φ ⇔ ψ , ¬ γ , ψ} φ) (weaken φ $ weaken ψ $ weaken (¬ γ) $ weaken (φ ⇔ ψ) thm))))) (⇔-elim₂ -- φ (assume {Γ = Γ , φ ⇔ ψ , ¬ γ} ψ) (weaken ψ (weaken (¬ γ) (assume (φ ⇔ ψ))))))) (assume {Γ = Γ , φ ⇔ ψ , ¬ γ} ψ))) (⊥-elim ψ (¬-elim (weaken γ $ assume {Γ = Γ , φ ⇔ ψ} (¬ γ)) (assume {Γ = Γ , φ ⇔ ψ , ¬ γ} γ)))))) (⇔-intro (⇔-elim₂ (weaken φ $ assume γ) (⇔-elim₁ (assume {Γ = Γ , γ} φ) (weaken φ $ weaken γ thm))) (⇔-elim₂ (⇔-intro (weaken ψ $ weaken ψ $ assume γ) (weaken γ $ assume {Γ = Γ , γ} ψ)) (weaken ψ $ weaken γ thm))) -------------------------------------------------------------------------- ∎ -- Theorem. ⇔-assoc₂ : ∀ {Γ} {φ ψ γ} → Γ ⊢ (φ ⇔ ψ) ⇔ γ → Γ ⊢ φ ⇔ (ψ ⇔ γ) -- Proof. ⇔-assoc₂ {Γ}{φ}{ψ}{γ} thm = ⇔-intro (⇔-intro (⇔-elim₁ (⇔-intro (weaken φ (assume {Γ = Γ , φ} ψ)) (weaken ψ (weaken ψ (assume φ)))) (weaken ψ (weaken φ thm))) (⇔-elim₁ (weaken γ (assume φ)) (⇔-elim₂ (assume {Γ = Γ , φ} γ) (weaken γ (weaken φ thm))))) (RAA (¬-elim (¬-intro (¬-elim (¬-intro (¬-elim (weaken γ $ weaken (φ ⇔ ψ) $ assume {Γ = Γ , ψ ⇔ γ} (¬ φ)) (⇔-elim₂ (⇔-elim₂ (assume {Γ = Γ , ψ ⇔ γ , ¬ φ , (φ ⇔ ψ)} γ) (weaken γ $ weaken (φ ⇔ ψ) $ weaken (¬ φ) $ assume (ψ ⇔ γ))) (⇔-elim₂ (assume {Γ = Γ , ψ ⇔ γ , ¬ φ , (φ ⇔ ψ)} γ) (weaken γ $ weaken (φ ⇔ ψ) $ weaken (¬ φ) $ weaken (ψ ⇔ γ) thm))))) (⇔-elim₁ (assume {Γ = Γ , ψ ⇔ γ , ¬ φ} (φ ⇔ ψ)) (weaken (φ ⇔ ψ) (weaken (¬ φ) (weaken (ψ ⇔ γ) thm)))))) (⇔-intro (⊥-elim ψ (¬-elim (weaken φ $ assume {Γ = Γ , ψ ⇔ γ} (¬ φ)) (assume {Γ = Γ , ψ ⇔ γ , ¬ φ} φ))) (⊥-elim φ (¬-elim (⊥-elim (¬ ψ) (¬-elim (¬-intro (¬-elim (weaken γ $ weaken ψ $ assume {Γ = Γ , ψ ⇔ γ} (¬ φ)) (⇔-elim₂ (weaken γ $ assume {Γ = Γ , ψ ⇔ γ , ¬ φ} ψ) (⇔-elim₂ (assume {Γ = Γ , ψ ⇔ γ , ¬ φ , ψ} γ) (weaken γ $ weaken ψ $ weaken (¬ φ) $ weaken (ψ ⇔ γ) thm))))) (⇔-elim₁ (assume {Γ = Γ , ψ ⇔ γ , ¬ φ} ψ) (weaken ψ (weaken (¬ φ) (assume (ψ ⇔ γ))))))) (assume {Γ = Γ , ψ ⇔ γ , ¬ φ} ψ)))))) -------------------------------------------------------------------------- ∎ -- Theorem. ⇔-assoc : ∀ {Γ} {φ ψ γ} → Γ ⊢ (φ ⇔ (ψ ⇔ γ)) ⇔ ((φ ⇔ ψ) ⇔ γ) -- Proof. ⇔-assoc {φ = φ}{ψ}{γ} = ⇔-intro (⇔-assoc₁ (assume (φ ⇔ ψ ⇔ γ))) (⇔-assoc₂ (assume ((φ ⇔ ψ) ⇔ γ))) -------------------------------------------------------------------------- ∎ -- Theorem. ⇔-comm : ∀ {Γ} {φ ψ} → Γ ⊢ φ ⇔ ψ → Γ ⊢ ψ ⇔ φ -- Proof. ⇔-comm {Γ}{φ}{ψ} Γ⊢φ⇔ψ = ⇔-intro (⇔-elim₂ (assume ψ) (weaken ψ Γ⊢φ⇔ψ)) (⇔-elim₁ (assume φ) (weaken φ Γ⊢φ⇔ψ)) -------------------------------------------------------------------------- ∎ -- Theorem. ⊃-⇔-¬∨ : ∀ {Γ} {φ ψ} → Γ ⊢ (φ ⊃ ψ) ⇔ (¬ φ ∨ ψ) -- Proof. ⊃-⇔-¬∨ {Γ}{φ}{ψ} = ⇔-intro (⊃-to-¬∨ (assume (φ ⊃ ψ))) (¬∨-to-⊃ (assume (¬ φ ∨ ψ))) -------------------------------------------------------------------------- ∎ -- Theorem. bicon₀-thm : ∀ {Γ} {φ ψ} → Γ ⊢ φ ⇔ ψ → Γ ⊢ ¬ φ → Γ ⊢ ¬ ψ ⇔-¬-to-¬ = bicon₀-thm -- Proof. bicon₀-thm {Γ}{φ}{ψ} Γ⊢φ⇔ψ Γ⊢¬ψ = ¬-equiv₂ (⊃-intro (¬-elim (weaken ψ Γ⊢¬ψ) (⇔-elim₂ (assume ψ) (weaken ψ Γ⊢φ⇔ψ)))) -------------------------------------------------------------------------- ∎ -- Theorem. bicon₁-thm : ∀ {Γ} {φ ψ} → Γ ⊢ ¬ φ ⇔ ψ → Γ ⊢ φ → Γ ⊢ ¬ ψ ¬⇔-to-¬ = bicon₁-thm -- Proof. bicon₁-thm {Γ}{φ}{ψ} Γ⊢¬φ⇔ψ Γ⊢φ = ¬-equiv₂ (⊃-intro (¬-elim (⇔-elim₂ (assume ψ) (weaken ψ Γ⊢¬φ⇔ψ)) (weaken ψ Γ⊢φ))) -------------------------------------------------------------------------- ∎ -- Theorem. ¬-equiv : ∀ {Γ} {φ} → Γ ⊢ ¬ φ ⇔ (φ ⊃ ⊥) -- Proof. ¬-equiv {Γ}{φ} = ⇔-intro (¬-equiv₁ (assume (¬ φ))) (¬-equiv₂ (assume (φ ⊃ ⊥))) -------------------------------------------------------------------------- ∎ -- Theorem. ¬¬-equiv : ∀ {Γ} {φ} → Γ ⊢ ¬ (¬ φ) ⇔ φ -- Proof. ¬¬-equiv {Γ}{φ} = ⇔-intro (¬¬-equiv₁ (assume (¬ (¬ φ)))) (¬¬-equiv₂ (assume φ)) -------------------------------------------------------------------------- ∎ -- Theorem. ⊃⊃-⇔-∧⊃ : ∀ {Γ} {φ ψ γ} → Γ ⊢ (φ ⊃ (ψ ⊃ γ)) ⇔ ((φ ∧ ψ) ⊃ γ) -- Proof. ⊃⊃-⇔-∧⊃ {φ = φ}{ψ}{γ} = ⇔-intro (⊃⊃-to-∧⊃ (assume (φ ⊃ ψ ⊃ γ))) (∧⊃-to-⊃⊃ (assume (φ ∧ ψ ⊃ γ))) -------------------------------------------------------------------------- ∎ -- Theorem. ⇔-trans : ∀ {Γ} {φ ψ γ} → Γ ⊢ γ ⇔ φ → Γ ⊢ φ ⇔ ψ → Γ ⊢ γ ⇔ ψ subst⊢⇔₁ = ⇔-trans -- Proof. ⇔-trans {φ = φ}{ψ}{γ} Γ⊢γ⇔φ Γ⊢φ⇔ψ = ⇔-intro (⇔-elim₁ (⇔-elim₁ (assume γ) (weaken γ Γ⊢γ⇔φ)) (weaken γ Γ⊢φ⇔ψ)) (⇔-elim₂ (⇔-elim₂ (assume ψ) (weaken ψ Γ⊢φ⇔ψ)) (weaken ψ Γ⊢γ⇔φ)) -------------------------------------------------------------------------- ∎
{ "alphanum_fraction": 0.2850744597, "avg_line_length": 26.5803571429, "ext": "agda", "hexsha": "5e9d0d01f978a72e36610da8e2d7f93474598338", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2017-12-01T17:01:25.000Z", "max_forks_repo_forks_event_min_datetime": "2017-03-30T16:41:56.000Z", "max_forks_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jonaprieto/agda-prop", "max_forks_repo_path": "src/Data/PropFormula/Theorems/Biimplication.agda", "max_issues_count": 18, "max_issues_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae", "max_issues_repo_issues_event_max_datetime": "2017-12-18T16:34:21.000Z", "max_issues_repo_issues_event_min_datetime": "2017-03-08T14:33:10.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jonaprieto/agda-prop", "max_issues_repo_path": "src/Data/PropFormula/Theorems/Biimplication.agda", "max_line_length": 78, "max_stars_count": 13, "max_stars_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jonaprieto/agda-prop", "max_stars_repo_path": "src/Data/PropFormula/Theorems/Biimplication.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T03:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2017-05-01T16:45:41.000Z", "num_tokens": 3602, "size": 8931 }
module Logic.ChainReasoning where module Mono where module Homogenous { A : Set } ( _==_ : A -> A -> Set ) (refl : (x : A) -> x == x) (trans : (x y z : A) -> x == y -> y == z -> x == z) where infix 2 chain>_ infixl 2 _===_ infix 3 _by_ chain>_ : (x : A) -> x == x chain> x = refl _ _===_ : {x y z : A} -> x == y -> y == z -> x == z xy === yz = trans _ _ _ xy yz _by_ : {x : A}(y : A) -> x == y -> x == y y by eq = eq module Poly where module Homogenous ( _==_ : {A : Set} -> A -> A -> Set ) (refl : {A : Set}(x : A) -> x == x) (trans : {A : Set}(x y z : A) -> x == y -> y == z -> x == z) where infix 2 chain>_ infixl 2 _===_ infix 3 _by_ chain>_ : {A : Set}(x : A) -> x == x chain> x = refl _ _===_ : {A : Set}{x y z : A} -> x == y -> y == z -> x == z xy === yz = trans _ _ _ xy yz _by_ : {A : Set}{x : A}(y : A) -> x == y -> x == y y by eq = eq module Heterogenous ( _==_ : {A B : Set} -> A -> B -> Set ) (refl : {A : Set}(x : A) -> x == x) (trans : {A B C : Set}(x : A)(y : B)(z : C) -> x == y -> y == z -> x == z) where infix 2 chain>_ infixl 2 _===_ infix 3 _by_ chain>_ : {A : Set}(x : A) -> x == x chain> x = refl _ _===_ : {A B C : Set}{x : A}{y : B}{z : C} -> x == y -> y == z -> x == z xy === yz = trans _ _ _ xy yz _by_ : {A B : Set}{x : A}(y : B) -> x == y -> x == y y by eq = eq module Heterogenous1 ( _==_ : {A B : Set1} -> A -> B -> Set1 ) (refl : {A : Set1}(x : A) -> x == x) (trans : {A B C : Set1}(x : A)(y : B)(z : C) -> x == y -> y == z -> x == z) where infix 2 chain>_ infixl 2 _===_ infix 3 _by_ chain>_ : {A : Set1}(x : A) -> x == x chain> x = refl _ _===_ : {A B C : Set1}{x : A}{y : B}{z : C} -> x == y -> y == z -> x == z xy === yz = trans _ _ _ xy yz _by_ : {A B : Set1}{x : A}(y : B) -> x == y -> x == y y by eq = eq
{ "alphanum_fraction": 0.3855421687, "avg_line_length": 23.4352941176, "ext": "agda", "hexsha": "f062f9acfcb326a7ad76ee299539caced099fa08", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/iird/Logic/ChainReasoning.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/iird/Logic/ChainReasoning.agda", "max_line_length": 79, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "examples/outdated-and-incorrect/iird/Logic/ChainReasoning.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 834, "size": 1992 }
{-# OPTIONS --without-K --no-pattern-matching #-} module Ch2-7 where open import Level hiding (lift) open import Ch2-1 open import Ch2-2 open import Ch2-3 open import Ch2-4 open import Ch2-5 open import Ch2-6 open import Data.Product open import Function using (id; _∘_) Definition-2-7-2-i : ∀ {a b} {A : Set a} {P : A → Set b} → (w w' : Σ[ x ∈ A ] P x) → (w ≡ w') → (Σ[ p ∈ proj₁ w ≡ proj₁ w' ] transport P p (proj₂ w) ≡ proj₂ w') Definition-2-7-2-i {_} {_} {A} {P} w w' p = J (Σ-syntax A P) D d w w' p where D : (w w' : Σ[ x ∈ A ] P x) (p : w ≡ w') → Set _ D w w' p = Σ[ p ∈ proj₁ w ≡ proj₁ w' ] transport P p (proj₂ w) ≡ proj₂ w' d : (x : Σ[ x ∈ A ] P x) → D x x refl d x = refl , refl Definition-2-7-2-ii : ∀ {a b} {A : Set a} {P : A → Set b} → (w w' : Σ[ x ∈ A ] P x) → (Σ[ p ∈ proj₁ w ≡ proj₁ w' ] transport P p (proj₂ w) ≡ proj₂ w') → (w ≡ w') Definition-2-7-2-ii {_} {_} {A} {P} w w' p = J A D d (proj₁ w) (proj₁ w') (proj₁ p) (proj₂ w) (proj₂ w') (proj₂ p) -- J A D d w1 w1' fst w2 w2' snd where D : (w1 w1' : A) (p : w1 ≡ w1') → Set _ D w1 w1' p = (w2 : P w1) (w2' : P w1') (q : transport P p w2 ≡ w2') → (w1 , w2) ≡ (w1' , w2') d : (x : A) → D x x refl d x w2 w2' snd = J (P x) E e w2 w2' snd where E : (w2 w2' : P x) (q : w2 ≡ w2') → Set _ E w2 w2' q = (x , w2) ≡ (x , w2') e : (y : P x) → E y y refl e y = refl Lemma-2-7-2-iii : ∀ {a b} {A : Set a} {P : A → Set b} → (w w' : Σ[ x ∈ A ] P x) → isequiv (Definition-2-7-2-i w w') Lemma-2-7-2-iii {_} {_} {A} {P} w w' = (Definition-2-7-2-ii w w' , α) , (Definition-2-7-2-ii w w' , β) where α : Definition-2-7-2-i w w' ∘ Definition-2-7-2-ii w w' ~ id α p = J A D d (proj₁ w) (proj₁ w') (proj₁ p) (proj₂ w) (proj₂ w') (proj₂ p) where D : (x y : A) (p : x ≡ y) → Set _ D x y p = (x' : P x) (y' : P y) (q : transport P p x' ≡ y') → (Definition-2-7-2-i (x , x') (y , y') ∘ Definition-2-7-2-ii (x , x') (y , y')) (p , q) ≡ id (p , q) d : (s : A) → D s s refl d s x' y' q = J (P s) E e x' y' q where E : (x' y' : P s) (q : x' ≡ y') → Set _ E x' y' q = (Definition-2-7-2-i (s , x') (s , y') ∘ Definition-2-7-2-ii (s , x') (s , y')) (refl , q) ≡ id (refl , q) e : (t : P s) → E t t refl e t = refl β : Definition-2-7-2-ii w w' ∘ Definition-2-7-2-i w w' ~ id β p = J (Σ[ x ∈ A ] P x) D d w w' p where D : (w w' : Σ[ x ∈ A ] P x) (p : w ≡ w') → Set _ D w w' p = (Definition-2-7-2-ii w w' ∘ Definition-2-7-2-i w w') p ≡ id p d : (x : Σ[ x ∈ A ] P x) → D x x refl d x = refl -- Theorem 2.7.2 Theorem-2-7-2 : ∀ {a b} {A : Set a} {P : A → Set b} → (w w' : Σ[ x ∈ A ] P x) → (w ≡ w') ≅ (Σ[ p ∈ proj₁ w ≡ proj₁ w' ] transport P p (proj₂ w) ≡ proj₂ w') Theorem-2-7-2 {_} {_} {A} {P} w w' = Definition-2-7-2-i w w' , Lemma-2-7-2-iii w w' -- Corollary 2.7.3 Corollary-2-7-3 : ∀ {a b} {A : Set a} {P : A → Set b} → (z : Σ[ x ∈ A ] P x) → z ≡ (proj₁ z , proj₂ z) Corollary-2-7-3 {a} {b} {A} {P} z = ←≅ (Theorem-2-7-2 z z) (refl , refl) -- Theorem 2.7.4 Theorem-2-7-4 : ∀ {a b} {A : Set a} → {P : A → Set b} → {Q : Σ[ x ∈ A ] P x → Set b} → {x y : A} → (p : x ≡ y) → (f : Σ[ u ∈ P x ] Q (x , u)) → transport (λ w → Σ[ u ∈ P w ] Q (w , u)) p f ≡ (transport P p (proj₁ f) , transport Q (←≅ (Theorem-2-7-2 (x , (proj₁ f)) (y , (transport P p (proj₁ f)))) (p , refl)) (proj₂ f)) Theorem-2-7-4 {a} {b} {A} {P} {Q} {x} {y} p f = J A D d x y p f where D : (x y : A) (p : x ≡ y) → Set _ D x y p = (f : Σ[ u ∈ P x ] Q (x , u)) → transport (λ w → Σ-syntax (P w) (λ u → Q (w , u))) p f ≡ (transport P p (proj₁ f) , transport Q (←≅ (Theorem-2-7-2 (x , proj₁ f) (y , transport P p (proj₁ f))) (p , refl)) (proj₂ f)) d : (x : A) → D x x refl d x f = refl
{ "alphanum_fraction": 0.4353792415, "avg_line_length": 32.3225806452, "ext": "agda", "hexsha": "f4f002bfed1dc71a63de768e7941112d1524359c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "75eea99a879e100304bd48c538c9d2db0b4a4ff3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/hott", "max_forks_repo_path": "src/Ch2-7.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "75eea99a879e100304bd48c538c9d2db0b4a4ff3", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/hott", "max_issues_repo_path": "src/Ch2-7.agda", "max_line_length": 114, "max_stars_count": null, "max_stars_repo_head_hexsha": "75eea99a879e100304bd48c538c9d2db0b4a4ff3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/hott", "max_stars_repo_path": "src/Ch2-7.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1899, "size": 4008 }
-- In a mutual block, either all or none must have a MEASURE declaration. module _ where open import Common.Prelude mutual {-# MEASURE n #-} f : (n : Nat) → Nat f zero = zero f (suc n) = g n {-# MEASURE n #-} g : (n : Nat) → Nat g zero = zero g (suc n) = suc (f n)
{ "alphanum_fraction": 0.5694444444, "avg_line_length": 14.4, "ext": "agda", "hexsha": "0fa05b7e8cf45373d3e3c54ab6f18958b70d47f4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/MeasureMutual.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/MeasureMutual.agda", "max_line_length": 73, "max_stars_count": 1, "max_stars_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "masondesu/agda", "max_stars_repo_path": "test/succeed/MeasureMutual.agda", "max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z", "num_tokens": 102, "size": 288 }
{-# OPTIONS --without-K --safe #-} module README where -- Formalization for "Decidability of Conversion for Type Theory in Type Theory" -- Git repository: https://github.com/mr-ohman/logrel-mltt ------------------ -- INTRODUCTION -- ------------------ -- A minimal library necessary for formalization: -- Embedding types into larger universes import Tools.Embedding -- The empty type and its elimination rule. import Tools.Empty -- The unit type. import Tools.Unit -- Sum type. import Tools.Sum -- Product type. import Tools.Product -- Identity function and composition. import Tools.Function -- Negation and decidability type. import Tools.Nullary -- Propositional equality and its properties. import Tools.PropositionalEquality -- Natural numbers and decidability of equality. import Tools.Nat --------------------------- -- LANGUAGE INTRODUCTION -- --------------------------- -- Syntax and semantics of weakening and substitution. import Definition.Untyped -- Propositional equality properties: Equalities between expressions, -- weakenings, substitutions and their combined composition. -- (These lemmas are not in the paper.) import Definition.Untyped.Properties -- Judgements: Typing rules, conversion, reduction rules -- and well-formed substitutions and respective equality. import Definition.Typed -- Well-formed context extraction and reduction properties. import Definition.Typed.Properties -- Well-formed weakening and its properties. import Definition.Typed.Weakening ------------------------------ -- KRIPKE LOGICAL RELATIONS -- ------------------------------ -- Generic equality relation definition. import Definition.Typed.EqualityRelation -- The judgemental instance of the generic equality. import Definition.Typed.EqRelInstance -- Logical relations definitions. import Definition.LogicalRelation -- Properties of logical relation: -- Reflexivity of the logical relation. import Definition.LogicalRelation.Properties.Reflexivity -- Escape lemma for the logical relation. import Definition.LogicalRelation.Properties.Escape -- Shape view of two or more types. import Definition.LogicalRelation.ShapeView -- Proof irrelevance for the logical relation. import Definition.LogicalRelation.Irrelevance -- Weakening of logical relation judgements. import Definition.LogicalRelation.Weakening -- Conversion of the logical relation. import Definition.LogicalRelation.Properties.Conversion -- Symmetry of the logical relation. import Definition.LogicalRelation.Properties.Symmetry -- Transitvity of the logical relation. import Definition.LogicalRelation.Properties.Transitivity -- Neutral introduction in the logical relation. import Definition.LogicalRelation.Properties.Neutral -- Weak head expansion of the logical relation. import Definition.LogicalRelation.Properties.Reduction -- Application in the logical relation. import Definition.LogicalRelation.Application -- Validity judgements definitions import Definition.LogicalRelation.Substitution -- Properties of validity judgements: -- Proof irrelevance for the validity judgements. import Definition.LogicalRelation.Substitution.Irrelevance -- Properties about valid substitutions: -- * Substitution well-formedness. -- * Substitution weakening. -- * Substitution lifting. -- * Identity substitution. -- * Reflexivity, symmetry and transitivity of substitution equality. import Definition.LogicalRelation.Substitution.Properties -- Single term substitution of validity judgements. import Definition.LogicalRelation.Substitution.Introductions.SingleSubst -- The fundamental theorem. import Definition.LogicalRelation.Fundamental -- Certain cases of the logical relation: -- Validity of Π-types. import Definition.LogicalRelation.Substitution.Introductions.Pi -- Validity of applications. import Definition.LogicalRelation.Substitution.Introductions.Application -- Validity of λ-terms. import Definition.LogicalRelation.Substitution.Introductions.Lambda -- Validity of natural recursion of natural numbers. import Definition.LogicalRelation.Substitution.Introductions.Natrec -- Reducibility of well-formedness. import Definition.LogicalRelation.Fundamental.Reducibility -- Consequences of the fundamental theorem: -- Canonicity of the system. import Definition.Typed.Consequences.Canonicity -- Injectivity of Π-types. import Definition.Typed.Consequences.Injectivity -- Syntactic validitiy of the system. import Definition.Typed.Consequences.Syntactic -- All types and terms fully reduce to WHNF. import Definition.Typed.Consequences.Reduction -- Strong equality of types. import Definition.Typed.Consequences.Equality -- Substiution in judgements and substitution composition. import Definition.Typed.Consequences.Substitution -- Uniqueness of the types of neutral terms. import Definition.Typed.Consequences.NeTypeEq -- Universe membership of types. import Definition.Typed.Consequences.InverseUniv -- Consistency of the type theory. import Definition.Typed.Consequences.Consistency
{ "alphanum_fraction": 0.7906605468, "avg_line_length": 27.532967033, "ext": "agda", "hexsha": "1a6df4c66394435539f2e6639e27be43b8278948", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "loic-p/logrel-mltt", "max_forks_repo_path": "README.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "loic-p/logrel-mltt", "max_issues_repo_path": "README.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "loic-p/logrel-mltt", "max_stars_repo_path": "README.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 950, "size": 5011 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Base open import lib.PathFunctor open import lib.PathGroupoid open import lib.path-seq.Reasoning module lib.path-seq.Ap where module _ {i j} {A : Type i} {B : Type j} (f : A → B) where ap-seq : {a a' : A} → a =-= a' → f a =-= f a' ap-seq [] = [] ap-seq (p ◃∙ s) = ap f p ◃∙ ap-seq s private ap-seq-∙-= : {a a' : A} → (s : a =-= a') → ap f (↯ s) == ↯ (ap-seq s) ap-seq-∙-= [] = idp ap-seq-∙-= (p ◃∙ []) = idp ap-seq-∙-= (idp ◃∙ s@(_ ◃∙ _)) = ap-seq-∙-= s ap-seq-∙ : {a a' : A} (s : a =-= a') → (ap f (↯ s) ◃∎) =ₛ ap-seq s ap-seq-∙ s = =ₛ-in (ap-seq-∙-= s) ∙-ap-seq : {a a' : A} (s : a =-= a') → ap-seq s =ₛ (ap f (↯ s) ◃∎) ∙-ap-seq s = !ₛ (ap-seq-∙ s) ap-seq-=ₛ : {a a' : A} {s t : a =-= a'} → s =ₛ t → ap-seq s =ₛ ap-seq t ap-seq-=ₛ {s = s} {t = t} (=ₛ-in p) = ap-seq s =ₛ⟨ ∙-ap-seq s ⟩ ap f (↯ s) ◃∎ =ₛ₁⟨ ap (ap f) p ⟩ ap f (↯ t) ◃∎ =ₛ⟨ ap-seq-∙ t ⟩ ap-seq t ∎ₛ module _ {i j k} {A : Type i} {B : Type j} {C : Type k} (f : A → B → C) where ap2-seq : {a a' : A} {b b' : B} → a =-= a' → b =-= b' → f a b =-= f a' b' ap2-seq [] [] = [] ap2-seq {a = a} [] t@(_ ◃∙ _) = ap-seq (f a) t ap2-seq {b = b} s@(_ ◃∙ _) [] = ap-seq (λ a → f a b) s ap2-seq (p ◃∙ s) (q ◃∙ t) = ap2 f p q ◃∙ ap2-seq s t private ap2-seq-∙-= : {a a' : A} {b b' : B} (s : a =-= a') (t : b =-= b') → ap2 f (↯ s) (↯ t) == ↯ (ap2-seq s t) ap2-seq-∙-= [] [] = idp ap2-seq-∙-= {a = a} [] t@(_ ◃∙ _) = ap2 f idp (↯ t) =⟨ ap2-idp-l f (↯ t) ⟩ ap (f a) (↯ t) =⟨ =ₛ-out (ap-seq-∙ (f a) t) ⟩ ↯ (ap-seq (f a) t) =∎ ap2-seq-∙-= {b = b} s@(_ ◃∙ _) [] = ap2 f (↯ s) idp =⟨ ap2-idp-r f (↯ s) ⟩ ap (λ a → f a b) (↯ s) =⟨ =ₛ-out (ap-seq-∙ (λ a → f a b) s ) ⟩ ↯ (ap-seq (λ a → f a b) s) =∎ ap2-seq-∙-= (p ◃∙ []) (q ◃∙ []) = idp ap2-seq-∙-= {a' = a'} (p ◃∙ []) (q ◃∙ t@(_ ◃∙ _)) = ap2 f p (q ∙ ↯ t) =⟨ ap (λ r → ap2 f r (q ∙ ↯ t)) (! (∙-unit-r p)) ⟩ ap2 f (p ∙ idp) (q ∙ ↯ t) =⟨ ap2-∙ f p idp q (↯ t) ⟩ ap2 f p q ∙ ap2 f idp (↯ t) =⟨ ap (ap2 f p q ∙_) (ap2-idp-l f (↯ t)) ⟩ ap2 f p q ∙ ap (f a') (↯ t) =⟨ ap (ap2 f p q ∙_) (=ₛ-out (ap-seq-∙ (f a') t)) ⟩ ap2 f p q ∙ ↯ (ap-seq (f a') t) =∎ ap2-seq-∙-= {b' = b'} (p ◃∙ s@(_ ◃∙ _)) (q ◃∙ []) = ap2 f (p ∙ ↯ s) q =⟨ ap (ap2 f (p ∙ ↯ s)) (! (∙-unit-r q)) ⟩ ap2 f (p ∙ ↯ s) (q ∙ idp) =⟨ ap2-∙ f p (↯ s) q idp ⟩ ap2 f p q ∙ ap2 f (↯ s) idp =⟨ ap (ap2 f p q ∙_) (ap2-idp-r f (↯ s)) ⟩ ap2 f p q ∙ ap (λ a → f a b') (↯ s) =⟨ ap (ap2 f p q ∙_) (=ₛ-out (ap-seq-∙ (λ a → f a b') s)) ⟩ ap2 f p q ∙ ↯ (ap-seq (λ a → f a b') s) =∎ ap2-seq-∙-= (p ◃∙ s@(_ ◃∙ _)) (q ◃∙ t@(_ ◃∙ _)) = ap2 f (p ∙ ↯ s) (q ∙ ↯ t) =⟨ ap2-∙ f p (↯ s) q (↯ t) ⟩ ap2 f p q ∙ ap2 f (↯ s) (↯ t) =⟨ ap (ap2 f p q ∙_) (ap2-seq-∙-= s t) ⟩ ap2 f p q ∙ ↯ (ap2-seq s t) =∎ ap2-seq-∙ : {a a' : A} {b b' : B} (s : a =-= a') (t : b =-= b') → ap2 f (↯ s) (↯ t) ◃∎ =ₛ ap2-seq s t ap2-seq-∙ s t = =ₛ-in (ap2-seq-∙-= s t) ∙-ap2-seq : {a a' : A} {b b' : B} (s : a =-= a') (t : b =-= b') → ap2-seq s t =ₛ ap2 f (↯ s) (↯ t) ◃∎ ∙-ap2-seq s t = !ₛ (ap2-seq-∙ s t)
{ "alphanum_fraction": 0.3513674197, "avg_line_length": 32.0380952381, "ext": "agda", "hexsha": "f6946648b44c322e7c9402983c5e3507566d2ff4", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "AntoineAllioux/HoTT-Agda", "max_forks_repo_path": "core/lib/path-seq/Ap.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "AntoineAllioux/HoTT-Agda", "max_issues_repo_path": "core/lib/path-seq/Ap.agda", "max_line_length": 77, "max_stars_count": 294, "max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "AntoineAllioux/HoTT-Agda", "max_stars_repo_path": "core/lib/path-seq/Ap.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 1912, "size": 3364 }
{-# OPTIONS --without-K #-} --open import HoTT open import homotopy.3x3.PushoutPushout open import homotopy.3x3.Transpose import homotopy.3x3.To as To import homotopy.3x3.From as From open import homotopy.3x3.Common module homotopy.3x3.ToFrom2 {i} (d : Span^2 {i}) where open Span^2 d open M d hiding (Pushout^2) open M (transpose d) using () renaming (A₀∙ to A∙₀; A₂∙ to A∙₂; A₄∙ to A∙₄; module F₁∙ to F∙₁; f₁∙ to f∙₁; module F₃∙ to F∙₃; f₃∙ to f∙₃; v-h-span to h-v-span) open M using (Pushout^2) open To d open From d open import homotopy.3x3.ToFromInit d module M2 (c : A₂₂) where coh : ∀ {i} {A : Type i} {a b c d : A} {p q : a == b} (α : p == q) {v w : b == d} {β β' : w == v} (eqβ : β == β') {t u : a == c} {ε ε' : u == t} (eqε : ε == ε') {r s : c == d} (ζ : r == s) (γ : (q , v =□ t , s)) (δ : (p , w =□ u , r)) (eq : γ == δ ∙□-i/ ! β' / ε' / ∙□-o/ ! α / ζ /) → (α , β , γ =□□ δ , ε , ζ) coh idp {β = idp} idp {ε = idp} idp idp _ _ x = x end-lemma1 : ap (right ∘ f∙₃) (glue c) == ap (to ∘ i∙₄ ∘ f∙₃) (glue c) :> E₂∙Red.T-lhs c end-lemma1 = ap (right ∘ f∙₃) (glue c) =⟨ ap-∘ right f∙₃ (glue c) ⟩ ap right (ap f∙₃ (glue c)) =⟨ ap (ap right) (F∙₃.glue-β c) ⟩ ap right (ap left (H₁₃ c) ∙ glue (f₂₃ c) ∙ ap right (! (H₃₃ c))) =⟨ ap-∙∙`∘`∘ right left right (H₁₃ c) (glue (f₂₃ c)) (! (H₃₃ c)) ⟩ ap (right ∘ left) (H₁₃ c) ∙ ap right (glue (f₂₃ c)) ∙ ap (right ∘ right) (! (H₃₃ c)) =⟨ ! (to-from-r-g (f₂₃ c)) |in-ctx (λ u → ap (right ∘ left) (H₁₃ c) ∙ u ∙ ap (right ∘ right) (! (H₃₃ c))) ⟩ ap (right ∘ left) (H₁₃ c) ∙ (ap (to ∘ i∙₄) (glue (f₂₃ c))) ∙ ap (right ∘ right) (! (H₃₃ c)) =⟨ ! (ap-∙∙`∘`∘ (to ∘ i∙₄) left right (H₁₃ c) (glue (f₂₃ c)) (! (H₃₃ c))) ⟩ ap (to ∘ i∙₄) (ap left (H₁₃ c) ∙ glue (f₂₃ c) ∙ ap right (! (H₃₃ c))) =⟨ ! (ap (ap (to ∘ i∙₄)) (F∙₃.glue-β c)) ⟩ ap (to ∘ i∙₄) (ap f∙₃ (glue c)) =⟨ ∘-ap (to ∘ i∙₄) f∙₃ (glue c) ⟩ ap (to ∘ i∙₄ ∘ f∙₃) (glue c) ∎ abstract lemma1 : ↓-='-out (apd (to-from-r ∘ f∙₃) (glue c)) == end-lemma1 lemma1 = ↓-='-out (apd (to-from-r ∘ f∙₃) (glue c)) =⟨ apd-∘'' to-from-r f∙₃ (glue c) (F∙₃.glue-β c) |in-ctx ↓-='-out ⟩ ↓-='-out (↓-ap-out= (λ b → to (from (right b)) == right b) f∙₃ (glue c) (F∙₃.glue-β c) (apd to-from-r (ap left (H₁₃ c) ∙ glue (f₂₃ c) ∙ ap right (! (H₃₃ c))))) =⟨ apd-∙∙`∘`∘ to-from-r left right (H₁₃ c) (glue (f₂₃ c)) (! (H₃₃ c)) |in-ctx (λ u → ↓-='-out (↓-ap-out= (λ b → to (from (right b)) == right b) f∙₃ (glue c) (F∙₃.glue-β c) u)) ⟩ ↓-='-out (↓-ap-out= (λ b → to (from (right b)) == right b) f∙₃ (glue c) (F∙₃.glue-β c) (↓-ap-in _ _ (apd (λ _ → idp) (H₁₃ c)) ∙ᵈ apd to-from-r (glue (f₂₃ c)) ∙ᵈ ↓-ap-in _ _ (apd (λ _ → idp) (! (H₃₃ c))))) =⟨ ToFromR.glue-β (f₂₃ c) |in-ctx (λ u → ↓-='-out (↓-ap-out= (λ b → to (from (right b)) == right b) f∙₃ (glue c) (F∙₃.glue-β c) (↓-ap-in _ _ (apd (λ _ → idp) (H₁₃ c)) ∙ᵈ u ∙ᵈ ↓-ap-in _ _ (apd (λ _ → idp) (! (H₃₃ c)))))) ⟩ ↓-='-out (↓-ap-out= (λ b → to (from (right b)) == right b) f∙₃ (glue c) (F∙₃.glue-β c) (↓-ap-in _ _ (apd (λ _ → idp) (H₁₃ c)) ∙ᵈ ↓-='-in (! (to-from-r-g (f₂₃ c))) ∙ᵈ ↓-ap-in _ _ (apd (λ _ → idp) (! (H₃₃ c))))) =⟨ lemma-a _ f∙₃ (glue c) (F∙₃.glue-β c) _ ⟩ ↓-='-out (↓-ap-in _ _ (apd (λ x → idp {a = right (left x)}) (H₁₃ c)) ∙ᵈ ↓-='-in (! (to-from-r-g (f₂₃ c))) ∙ᵈ ↓-ap-in _ _ (apd (λ _ → idp) (! (H₃₃ c)))) ∙□-i/ ap-∘ right f∙₃ (glue c) ∙ ap (ap right) (F∙₃.glue-β c) / ! (ap (ap (to ∘ i∙₄)) (F∙₃.glue-β c)) ∙ ∘-ap (to ∘ i∙₄) f∙₃ (glue c) / =⟨ lemma-b (glue (f₂₃ c)) (apd (λ _ → idp) (H₁₃ c)) (! (to-from-r-g (f₂₃ c))) (apd (λ _ → idp) (! (H₃₃ c))) |in-ctx (λ u → u ∙□-i/ ap-∘ right f∙₃ (glue c) ∙ ap (ap right) (F∙₃.glue-β c) / ! (ap (ap (to ∘ i∙₄)) (F∙₃.glue-β c)) ∙ ∘-ap (to ∘ i∙₄) f∙₃ (glue c) /) ⟩ (↓-='-out (apd (λ x → idp {a = right (left x)}) (H₁₃ c)) ∙□h ((! (to-from-r-g (f₂₃ c))) ∙□h (↓-='-out (apd (λ _ → idp) (! (H₃₃ c)))))) ∙□-i/ ap-∙∙`∘`∘ right left right (H₁₃ c) (glue (f₂₃ c)) (! (H₃₃ c)) / ! (ap-∙∙`∘`∘ (to ∘ i∙₄) left right (H₁₃ c) (glue (f₂₃ c)) (! (H₃₃ c))) / ∙□-i/ ap-∘ right f∙₃ (glue c) ∙ ap (ap right) (F∙₃.glue-β c) / ! (ap (ap (to ∘ i∙₄)) (F∙₃.glue-β c)) ∙ ∘-ap (to ∘ i∙₄) f∙₃ (glue c) / =⟨ coh3 |in-ctx (λ u → u ∙□-i/ ap-∙∙`∘`∘ right left right (H₁₃ c) (glue (f₂₃ c)) (! (H₃₃ c)) / ! (ap-∙∙`∘`∘ (to ∘ i∙₄) left right (H₁₃ c) (glue (f₂₃ c)) (! (H₃₃ c))) / ∙□-i/ ap-∘ right f∙₃ (glue c) ∙ ap (ap right) (F∙₃.glue-β c) / ! (ap (ap (to ∘ i∙₄)) (F∙₃.glue-β c)) ∙ ∘-ap (to ∘ i∙₄) f∙₃ (glue c) /) ⟩ ((! (to-from-r-g (f₂₃ c))) |in-ctx (λ u → ap (right ∘ left) (H₁₃ c) ∙ u ∙ ap (right ∘ right) (! (H₃₃ c)))) ∙□-i/ ap-∙∙`∘`∘ right left right (H₁₃ c) (glue (f₂₃ c)) (! (H₃₃ c)) / ! (ap-∙∙`∘`∘ (to ∘ i∙₄) left right (H₁₃ c) (glue (f₂₃ c)) (! (H₃₃ c))) / ∙□-i/ ap-∘ right f∙₃ (glue c) ∙ ap (ap right) (F∙₃.glue-β c) / ! (ap (ap (to ∘ i∙₄)) (F∙₃.glue-β c)) ∙ ∘-ap (to ∘ i∙₄) f∙₃ (glue c) / =⟨ coh' ⟩ end-lemma1 ∎ where coh' : ∀ {i} {A : Type i} {x y : A} {a b c d e f g h : x == y} {p : a == b} {q : b == c} {r : c == d} {s : d == e} {t : e == f} {u : f == g} {v : g == h} → (s ∙□-i/ r / t / ∙□-i/ p ∙ q / u ∙ v /) == (a =⟨ p ⟩ b =⟨ q ⟩ c =⟨ r ⟩ d =⟨ s ⟩ e =⟨ t ⟩ f =⟨ u ⟩ g =⟨ v ⟩ h ∎) coh' {p = idp} {idp} {idp} {idp} {idp} {idp} {idp} = idp coh2 : ∀ {i j} {A : Type i} {B : Type j} {f : A → B} {x y : A} {p : x == y} → ↓-='-out (apd (λ x → idp {a = f x}) p) == idp {a = ap f p} coh2 {p = idp} = idp coh3 : (↓-='-out (apd (λ x → idp {a = right (left x)}) (H₁₃ c)) ∙□h ((! (to-from-r-g (f₂₃ c))) ∙□h (↓-='-out (apd (λ _ → idp) (! (H₃₃ c)))))) == ((! (to-from-r-g (f₂₃ c))) |in-ctx (λ u → ap (right ∘ left) (H₁₃ c) ∙ u ∙ ap (right ∘ right) (! (H₃₃ c)))) coh3 = ↓-='-out (apd (λ x → idp {a = right (left x)}) (H₁₃ c)) ∙□h ((! (to-from-r-g (f₂₃ c))) ∙□h (↓-='-out (apd (λ _ → idp) (! (H₃₃ c))))) =⟨ coh2 {f = right ∘ left} {p = H₁₃ c} |in-ctx (λ u → u ∙□h ((! (to-from-r-g (f₂₃ c))) ∙□h (↓-='-out (apd (λ _ → idp) (! (H₃₃ c)))))) ⟩ idp {a = ap (right ∘ left) (H₁₃ c)} ∙□h ((! (to-from-r-g (f₂₃ c))) ∙□h (↓-='-out (apd (λ _ → idp) (! (H₃₃ c))))) =⟨ coh2 {f = right ∘ right} {p = ! (H₃₃ c)} |in-ctx (λ u → idp {a = ap (right ∘ left) (H₁₃ c)} ∙□h ((! (to-from-r-g (f₂₃ c))) ∙□h u)) ⟩ idp {a = ap (right ∘ left) (H₁₃ c)} ∙□h ((! (to-from-r-g (f₂₃ c))) ∙□h idp {a = ap (right ∘ right) (! (H₃₃ c))}) =⟨ coh4 (ap (right ∘ left) (H₁₃ c)) (ap (right ∘ right) (! (H₃₃ c))) (! (to-from-r-g (f₂₃ c))) ⟩ ((! (to-from-r-g (f₂₃ c))) |in-ctx (λ u → ap (right ∘ left) (H₁₃ c) ∙ u ∙ ap (right ∘ right) (! (H₃₃ c)))) ∎ where coh4 : ∀ {i} {A : Type i} {x y z t : A} (p : x == y) (q : z == t) {s t : y == z} (r : s == t) → (idp {a = p} ∙□h (r ∙□h idp {a = q})) == (r |in-ctx (λ u → p ∙ u ∙ q)) coh4 idp idp idp = idp end-lemma3 : ap (left ∘ f∙₁) (glue c) == ap (to ∘ i∙₀ ∘ f∙₁) (glue c) end-lemma3 = ap (left ∘ f∙₁) (glue c) =⟨ ap-∘ left f∙₁ (glue c) ⟩ ap left (ap f∙₁ (glue c)) =⟨ ap (ap left) (F∙₁.glue-β c) ⟩ ap left (ap left (! (H₁₁ c)) ∙ glue (f₂₁ c) ∙ ap right (H₃₁ c)) =⟨ ap-∙∙`∘`∘ left left right (! (H₁₁ c)) (glue (f₂₁ c)) (H₃₁ c) ⟩ ap (left ∘ left) (! (H₁₁ c)) ∙ ap left (glue (f₂₁ c)) ∙ ap (left ∘ right) (H₃₁ c) =⟨ ! (to-from-l-g (f₂₁ c)) |in-ctx (λ u → ap (left ∘ left) (! (H₁₁ c)) ∙ u ∙ ap (left ∘ right) (H₃₁ c)) ⟩ ap (left ∘ left) (! (H₁₁ c)) ∙ (ap (to ∘ i∙₀) (glue (f₂₁ c))) ∙ ap (left ∘ right) (H₃₁ c) =⟨ ! (ap-∙∙`∘`∘ (to ∘ i∙₀) left right (! (H₁₁ c)) (glue (f₂₁ c)) (H₃₁ c)) ⟩ ap (to ∘ i∙₀) (ap left (! (H₁₁ c)) ∙ glue (f₂₁ c) ∙ ap right (H₃₁ c)) =⟨ ! (ap (ap (to ∘ i∙₀)) (F∙₁.glue-β c)) ⟩ ap (to ∘ i∙₀) (ap f∙₁ (glue c)) =⟨ ∘-ap (to ∘ i∙₀) f∙₁ (glue c) ⟩ ap (to ∘ i∙₀ ∘ f∙₁) (glue c) ∎ lemma3 : ↓-='-out (apd (to-from-l ∘ f∙₁) (glue c)) == end-lemma3 lemma3 = ↓-='-out (apd (to-from-l ∘ f∙₁) (glue c)) =⟨ apd-∘'' to-from-l f∙₁ (glue c) (F∙₁.glue-β c) |in-ctx ↓-='-out ⟩ ↓-='-out (↓-ap-out= (λ b → to (from (left b)) == left b) f∙₁ (glue c) (F∙₁.glue-β c) (apd to-from-l (ap left (! (H₁₁ c)) ∙ glue (f₂₁ c) ∙ ap right (H₃₁ c)))) =⟨ lemma-a _ f∙₁ (glue c) (F∙₁.glue-β c) (apd to-from-l (ap left (! (H₁₁ c)) ∙ glue (f₂₁ c) ∙ ap right (H₃₁ c))) ⟩ ↓-='-out (apd to-from-l (ap left (! (H₁₁ c)) ∙ glue (f₂₁ c) ∙ ap right (H₃₁ c))) ∙□-i/ ap-∘ left f∙₁ (glue c) ∙ ap (ap left) (F∙₁.glue-β c) / ! (ap (ap (to ∘ from ∘ left)) (F∙₁.glue-β c)) ∙ ∘-ap (to ∘ from ∘ left) f∙₁ (glue c) / =⟨ apd-∙∙`∘`∘ to-from-l left right (! (H₁₁ c)) (glue (f₂₁ c)) (H₃₁ c) |in-ctx (λ u → ↓-='-out u ∙□-i/ ap-∘ left f∙₁ (glue c) ∙ ap (ap left) (F∙₁.glue-β c) / ! (ap (ap (to ∘ from ∘ left)) (F∙₁.glue-β c)) ∙ ∘-ap (to ∘ from ∘ left) f∙₁ (glue c) /) ⟩ ↓-='-out (↓-ap-in _ _ (apd (λ _ → idp) (! (H₁₁ c))) ∙ᵈ apd to-from-l (glue (f₂₁ c)) ∙ᵈ ↓-ap-in _ _ (apd (λ _ → idp) (H₃₁ c))) ∙□-i/ ap-∘ left f∙₁ (glue c) ∙ ap (ap left) (F∙₁.glue-β c) / ! (ap (ap (to ∘ from ∘ left)) (F∙₁.glue-β c)) ∙ ∘-ap (to ∘ from ∘ left) f∙₁ (glue c) / =⟨ ToFromL.glue-β (f₂₁ c) |in-ctx (λ u → ↓-='-out (↓-ap-in _ _ (apd (λ _ → idp) (! (H₁₁ c))) ∙ᵈ u ∙ᵈ ↓-ap-in _ _ (apd (λ _ → idp) (H₃₁ c))) ∙□-i/ ap-∘ left f∙₁ (glue c) ∙ ap (ap left) (F∙₁.glue-β c) / ! (ap (ap (to ∘ from ∘ left)) (F∙₁.glue-β c)) ∙ ∘-ap (to ∘ from ∘ left) f∙₁ (glue c) /) ⟩ ↓-='-out (↓-ap-in _ _ (apd (λ _ → idp) (! (H₁₁ c))) ∙ᵈ ↓-='-in (! (to-from-l-g (f₂₁ c))) ∙ᵈ ↓-ap-in _ _ (apd (λ _ → idp) (H₃₁ c))) ∙□-i/ ap-∘ left f∙₁ (glue c) ∙ ap (ap left) (F∙₁.glue-β c) / ! (ap (ap (to ∘ from ∘ left)) (F∙₁.glue-β c)) ∙ ∘-ap (to ∘ from ∘ left) f∙₁ (glue c) / =⟨ lemma-b (glue (f₂₁ c)) (apd (λ _ → idp) (! (H₁₁ c))) (! (to-from-l-g (f₂₁ c))) (apd (λ _ → idp) (H₃₁ c)) |in-ctx (λ u → u ∙□-i/ ap-∘ left f∙₁ (glue c) ∙ ap (ap left) (F∙₁.glue-β c) / ! (ap (ap (to ∘ from ∘ left)) (F∙₁.glue-β c)) ∙ ∘-ap (to ∘ from ∘ left) f∙₁ (glue c) /) ⟩ (↓-='-out (apd (λ _ → idp) (! (H₁₁ c))) ∙□h ((! (to-from-l-g (f₂₁ c))) ∙□h ↓-='-out (apd (λ _ → idp) (H₃₁ c)))) ∙□-i/ ap-∙∙`∘`∘ left left right (! (H₁₁ c)) (glue (f₂₁ c)) (H₃₁ c) / ! (ap-∙∙`∘`∘ (to ∘ i∙₀) left right (! (H₁₁ c)) (glue (f₂₁ c)) (H₃₁ c)) / ∙□-i/ ap-∘ left f∙₁ (glue c) ∙ ap (ap left) (F∙₁.glue-β c) / ! (ap (ap (to ∘ from ∘ left)) (F∙₁.glue-β c)) ∙ ∘-ap (to ∘ from ∘ left) f∙₁ (glue c) / =⟨ coh2 (left ∘ left) (left ∘ right) (! (H₁₁ c)) (! (to-from-l-g (f₂₁ c))) (H₃₁ c) |in-ctx (λ u → u ∙□-i/ ap-∙∙`∘`∘ left left right (! (H₁₁ c)) (glue (f₂₁ c)) (H₃₁ c) / ! (ap-∙∙`∘`∘ (to ∘ i∙₀) left right (! (H₁₁ c)) (glue (f₂₁ c)) (H₃₁ c)) / ∙□-i/ ap-∘ left f∙₁ (glue c) ∙ ap (ap left) (F∙₁.glue-β c) / ! (ap (ap (to ∘ from ∘ left)) (F∙₁.glue-β c)) ∙ ∘-ap (to ∘ from ∘ left) f∙₁ (glue c) /) ⟩ ((! (to-from-l-g (f₂₁ c))) |in-ctx (λ u → ap (left ∘ left) (! (H₁₁ c)) ∙ u ∙ ap (left ∘ right) (H₃₁ c))) ∙□-i/ ap-∙∙`∘`∘ left left right (! (H₁₁ c)) (glue (f₂₁ c)) (H₃₁ c) / ! (ap-∙∙`∘`∘ (to ∘ i∙₀) left right (! (H₁₁ c)) (glue (f₂₁ c)) (H₃₁ c)) / ∙□-i/ ap-∘ left f∙₁ (glue c) ∙ ap (ap left) (F∙₁.glue-β c) / ! (ap (ap (to ∘ from ∘ left)) (F∙₁.glue-β c)) ∙ ∘-ap (to ∘ from ∘ left) f∙₁ (glue c) / =⟨ coh3 ⟩ end-lemma3 ∎ where coh2 : ∀ {i i' j} {A : Type i} {A' : Type i'} {B : Type j} (f : A → B) (f' : A' → B) {a b : A} {a' b' : A'} (p : a == b) {s s' : f b == f' a'} (q : s == s') (r : a' == b') → (↓-='-out (apd (λ x → idp) p) ∙□h (q ∙□h (↓-='-out (apd (λ _ → idp) r)))) == (q |in-ctx (λ u → ap f p ∙ u ∙ ap f' r)) coh2 f f' idp idp idp = idp coh3 : ∀ {i} {A : Type i} {x y : A} {a b c d e f g h : x == y} {p : a == b} {q : b == c} {r : c == d} {s : d == e} {t : e == f} {u : f == g} {v : g == h} → (s ∙□-i/ r / t / ∙□-i/ p ∙ q / u ∙ v /) == (a =⟨ p ⟩ b =⟨ q ⟩ c =⟨ r ⟩ d =⟨ s ⟩ e =⟨ t ⟩ f =⟨ u ⟩ g =⟨ v ⟩ h ∎) coh3 {p = idp} {idp} {idp} {idp} {idp} {idp} {idp} = idp {- Lemma 2 -} lemma2-7 = ↓-='-out (ap↓ (ap to) (apd (glue {d = v-h-span}) (glue c))) =⟨ to-glue-glue-β c |in-ctx ↓-='-out ⟩ ↓-='-out (↓-='-in (E₂∙Red.coh c (↓-='-out (apd (glue {d = h-v-span}) (glue c)) ∙□-i/ E₂∙Red.lhs-i c / E₂∙Red.rhs-i c /) ∙□-i/ E₂∙Red.lhs-o c / E₂∙Red.rhs-o c /) ◃/ To.glue-β (left (f₂₁ c)) / ! (To.glue-β (right (f₂₃ c))) /) =⟨ thing _ (To.glue-β (left (f₂₁ c))) _ ⟩ E₂∙Red.coh c (↓-='-out (apd (glue {d = h-v-span}) (glue c)) ∙□-i/ E₂∙Red.lhs-i c / E₂∙Red.rhs-i c /) ∙□-i/ E₂∙Red.lhs-o c / E₂∙Red.rhs-o c / ∙□-o/ To.glue-β (left (f₂₁ c)) / ! (To.glue-β (right (f₂₃ c))) / ∎ lemma2-6 = ap□ to (↓-='-out (apd (glue {d = v-h-span}) (glue c))) =⟨ ap□-↓-='-out-β _ _ to (apd (glue {d = v-h-span}) (glue c)) ⟩ ↓-='-out (ap↓ (ap to) (apd (glue {d = v-h-span}) (glue c))) ∙□-i/ ∘-ap to (right ∘ f₃∙) (glue c) / ap-∘ to (left ∘ f₁∙) (glue c) / =⟨ lemma2-7 |in-ctx (λ u → (u ∙□-i/ ∘-ap to (right ∘ f₃∙) (glue c) / ap-∘ to (left ∘ f₁∙) (glue c) /)) ⟩ E₂∙Red.coh c (↓-='-out (apd (glue {d = h-v-span}) (glue c)) ∙□-i/ E₂∙Red.lhs-i c / E₂∙Red.rhs-i c /) ∙□-i/ E₂∙Red.lhs-o c / E₂∙Red.rhs-o c / ∙□-o/ To.glue-β (left (f₂₁ c)) / ! (To.glue-β (right (f₂₃ c))) / ∙□-i/ ∘-ap to (right ∘ f₃∙) (glue c) / ap-∘ to (left ∘ f₁∙) (glue c) / ∎ lemma2-5 = ap□ to (↓-='-out (apd (glue {d = v-h-span}) (glue c)) ∙□-i/ E∙₂Red.lhs-i c / E∙₂Red.rhs-i c /) =⟨ ap□-∙□-i/ to _ (E∙₂Red.lhs-i c) _ ⟩ ap□ to (↓-='-out (apd (glue {d = v-h-span}) (glue c))) ∙□-i/ ap (ap to) (E∙₂Red.lhs-i c) / ap (ap to) (E∙₂Red.rhs-i c) / =⟨ lemma2-6 |in-ctx (λ u → u ∙□-i/ ap (ap to) (E∙₂Red.lhs-i c) / ap (ap to) (E∙₂Red.rhs-i c) /) ⟩ E₂∙Red.coh c (↓-='-out (apd (glue {d = h-v-span}) (glue c)) ∙□-i/ E₂∙Red.lhs-i c / E₂∙Red.rhs-i c /) ∙□-i/ E₂∙Red.lhs-o c / E₂∙Red.rhs-o c / ∙□-o/ To.glue-β (left (f₂₁ c)) / ! (To.glue-β (right (f₂₃ c))) / ∙□-i/ ∘-ap to (right ∘ f₃∙) (glue c) / ap-∘ to (left ∘ f₁∙) (glue c) / ∙□-i/ ap (ap to) (E∙₂Red.lhs-i c) / ap (ap to) (E∙₂Red.rhs-i c) / ∎ lemma2'-1 = E∙₂Red.ap-ap-coh!-lhs-i c to ∙ ap (ap to) (E∙₂Red.lhs-i c) ∙ ∘-ap to (right ∘ f₃∙) (glue c) ∙ E₂∙Red.lhs-o c =⟨ eq1 {f = ap to} {q = ! (ap-∙∙`∘`∘ right left right (H₃₁ c) (glue (f₃₂ c)) (H₃₃ c))} { ! (ap (ap right) (F₃∙.glue-β c))} { ! (F₃∙.glue-β c) |in-ctx (ap right)} (!-ap (ap right) (F₃∙.glue-β c)) {∘-ap right f₃∙ (glue c)} {p = E∙₂Red.ap-ap-coh!-lhs-i c to} {∘-ap to (right ∘ f₃∙) (glue c)} {ap-∘ i₄∙ f₃∙ (glue c)} {F₃∙.glue-β c |in-ctx (ap i₄∙)} {ap-∙∙`∘`∘ i₄∙ left right (H₃₁ c) (glue (f₃₂ c)) (H₃₃ c)} {I₄∙.glue-β (f₃₂ c) |in-ctx (λ u → ap (left ∘ right) (H₃₁ c) ∙ u ∙ ap (right ∘ right) (H₃₃ c))} ⟩ (! (ap-∙∙`∘`∘ to (right ∘ left) (right ∘ right) (H₃₁ c) (ap right (glue (f₃₂ c))) (H₃₃ c)) ∙ ap (ap to) (! (ap-∙∙`∘`∘ right left right (H₃₁ c) (glue (f₃₂ c)) (H₃₃ c))) ∙ (ap (ap to) (! (F₃∙.glue-β c) |in-ctx (ap right)) ∙ (ap (ap to) (∘-ap right f₃∙ (glue c)) ∙ ∘-ap to (right ∘ f₃∙) (glue c) ∙ ap-∘ i₄∙ f₃∙ (glue c)) ∙ (F₃∙.glue-β c |in-ctx (ap i₄∙))) ∙ ap-∙∙`∘`∘ i₄∙ left right (H₃₁ c) (glue (f₃₂ c)) (H₃₃ c)) ∙ (I₄∙.glue-β (f₃₂ c) |in-ctx (λ u → ap (left ∘ right) (H₃₁ c) ∙ u ∙ ap (right ∘ right) (H₃₃ c))) =⟨ ap-∘^3-coh to right f₃∙ (glue c) |in-ctx (λ u → (! (ap-∙∙`∘`∘ to (right ∘ left) (right ∘ right) (H₃₁ c) (ap right (glue (f₃₂ c))) (H₃₃ c)) ∙ ap (ap to) (! (ap-∙∙`∘`∘ right left right (H₃₁ c) (glue (f₃₂ c)) (H₃₃ c))) ∙ (ap (ap to) (! (F₃∙.glue-β c) |in-ctx (ap right)) ∙ u ∙ (F₃∙.glue-β c |in-ctx (ap i₄∙))) ∙ ap-∙∙`∘`∘ i₄∙ left right (H₃₁ c) (glue (f₃₂ c)) (H₃₃ c)) ∙ (I₄∙.glue-β (f₃₂ c) |in-ctx (λ u → ap (left ∘ right) (H₃₁ c) ∙ u ∙ ap (right ∘ right) (H₃₃ c)))) ⟩ (! (ap-∙∙`∘`∘ to (right ∘ left) (right ∘ right) (H₃₁ c) (ap right (glue (f₃₂ c))) (H₃₃ c)) ∙ ap (ap to) (! (ap-∙∙`∘`∘ right left right (H₃₁ c) (glue (f₃₂ c)) (H₃₃ c))) ∙ (ap (ap to) (! (F₃∙.glue-β c) |in-ctx (ap right)) ∙ ∘-ap to right (ap f₃∙ (glue c)) ∙ (F₃∙.glue-β c |in-ctx (ap i₄∙))) ∙ ap-∙∙`∘`∘ i₄∙ left right (H₃₁ c) (glue (f₃₂ c)) (H₃₃ c)) ∙ (I₄∙.glue-β (f₃₂ c) |in-ctx (λ u → ap (left ∘ right) (H₃₁ c) ∙ u ∙ ap (right ∘ right) (H₃₃ c))) =⟨ ap-∘-ap-coh to right (F₃∙.glue-β c) |in-ctx (λ u → (! (ap-∙∙`∘`∘ to (right ∘ left) (right ∘ right) (H₃₁ c) (ap right (glue (f₃₂ c))) (H₃₃ c)) ∙ ap (ap to) (! (ap-∙∙`∘`∘ right left right (H₃₁ c) (glue (f₃₂ c)) (H₃₃ c))) ∙ u ∙ ap-∙∙`∘`∘ i₄∙ left right (H₃₁ c) (glue (f₃₂ c)) (H₃₃ c)) ∙ (I₄∙.glue-β (f₃₂ c) |in-ctx (λ u → ap (left ∘ right) (H₃₁ c) ∙ u ∙ ap (right ∘ right) (H₃₃ c)))) ⟩ (! (ap-∙∙`∘`∘ to (right ∘ left) (right ∘ right) (H₃₁ c) (ap right (glue (f₃₂ c))) (H₃₃ c)) ∙ ap (ap to) (! (ap-∙∙`∘`∘ right left right (H₃₁ c) (glue (f₃₂ c)) (H₃₃ c))) ∙ ∘-ap to right (ap left (H₃₁ c) ∙ glue (f₃₂ c) ∙ ap right (H₃₃ c)) ∙ ap-∙∙`∘`∘ i₄∙ left right (H₃₁ c) (glue (f₃₂ c)) (H₃₃ c)) ∙ (I₄∙.glue-β (f₃₂ c) |in-ctx (λ u → ap (left ∘ right) (H₃₁ c) ∙ u ∙ ap (right ∘ right) (H₃₃ c))) =⟨ ap-∘-ap-∙∙3`∘`∘-coh to right left right (H₃₁ c) (glue (f₃₂ c)) (H₃₃ c) |in-ctx (λ u → u ∙ (I₄∙.glue-β (f₃₂ c) |in-ctx (λ u → ap (left ∘ right) (H₃₁ c) ∙ u ∙ ap (right ∘ right) (H₃₃ c)))) ⟩ (∘-ap to right (glue (f₃₂ c)) |in-ctx (λ u → ap (left ∘ right) (H₃₁ c) ∙ u ∙ ap (right ∘ right) (H₃₃ c))) ∙ (I₄∙.glue-β (f₃₂ c) |in-ctx (λ u → ap (left ∘ right) (H₃₁ c) ∙ u ∙ ap (right ∘ right) (H₃₃ c))) =⟨ ∙-|in-ctx (λ u → ap (left ∘ right) (H₃₁ c) ∙ u ∙ ap (right ∘ right) (H₃₃ c)) (∘-ap to right (glue (f₃₂ c))) (I₄∙.glue-β (f₃₂ c)) ⟩ ((∘-ap to right (glue (f₃₂ c)) ∙ I₄∙.glue-β (f₃₂ c)) |in-ctx (λ u → ap (left ∘ right) (H₃₁ c) ∙ u ∙ ap (right ∘ right) (H₃₃ c))) ∎ where eq1 : ∀ {i j} {A : Type i} {B : Type j} {f : A → B} {a b c d : A} {q : a == b} {r r' : b == c} (e : r == r') {s : c == d} {g h k l m n : B} {p : g == f a} {t : f d == h} {u : h == k} {v : k == l} {w : l == m} {x : m == n} → p ∙ ap f (_ =⟨ q ⟩ _ =⟨ r ⟩ _ =⟨ s ⟩ _ ∎) ∙ t ∙ (_ =⟨ u ⟩ _ =⟨ v ⟩ _ =⟨ w ⟩ _ =⟨ x ⟩ _ ∎) == (p ∙ ap f q ∙ (ap f r' ∙ (ap f s ∙ t ∙ u) ∙ v) ∙ w) ∙ x eq1 {q = idp} {idp} {.idp} idp {idp} {p = p} {idp} {idp} {idp} {idp} {idp} = ! (∙-unit-r (p ∙ idp)) lemma2'-2 : E₂∙Red.rhs-o c ∙ ap-∘ to (left ∘ f₁∙) (glue c) ∙ ap (ap to) (E∙₂Red.rhs-i c) ∙ E∙₂Red.ap-ap-coh!-rhs-i c to == (! (∘-ap to left (glue (f₁₂ c)) ∙ I₀∙.glue-β (f₁₂ c)) |in-ctx (λ u → ap (left ∘ left) (H₁₁ c) ∙ u ∙ ap (right ∘ left) (H₁₃ c))) lemma2'-2 = E₂∙Red.rhs-o c ∙ ap-∘ to (left ∘ f₁∙) (glue c) ∙ ap (ap to) (E∙₂Red.rhs-i c) ∙ E∙₂Red.ap-ap-coh!-rhs-i c to =⟨ eq1 {f = ap to} {p = ! (I₀∙.glue-β (f₁₂ c) |in-ctx (λ u → (ap (left ∘ left) (H₁₁ c) ∙ u ∙ ap (right ∘ left) (H₁₃ c))))} { ! (ap-∙∙`∘`∘ i₀∙ left right (H₁₁ c) (glue (f₁₂ c)) (H₁₃ c))} { ! (F₁∙.glue-β c |in-ctx ap i₀∙)} {∘-ap i₀∙ f₁∙ (glue c)} {ap-∘ to (left ∘ f₁∙) (glue c)} {ap-∘ left f₁∙ (glue c)} {F₁∙.glue-β c |in-ctx (ap left)} {ap-∙∙`∘`∘ left left right (H₁₁ c) (glue (f₁₂ c)) (H₁₃ c)} {ap-∙∙`∘`∘ to (left ∘ left) (left ∘ right) (H₁₁ c) (ap left (glue (f₁₂ c))) (H₁₃ c)} ⟩ (! (I₀∙.glue-β (f₁₂ c) |in-ctx (λ u → (ap (left ∘ left) (H₁₁ c) ∙ u ∙ ap (right ∘ left) (H₁₃ c))))) ∙ ((! (ap-∙∙`∘`∘ i₀∙ left right (H₁₁ c) (glue (f₁₂ c)) (H₁₃ c))) ∙ ((! (F₁∙.glue-β c |in-ctx (λ u → ap i₀∙ u))) ∙ (∘-ap i₀∙ f₁∙ (glue c) ∙ ap-∘ to (left ∘ f₁∙) (glue c) ∙ ap (ap to) (ap-∘ left f₁∙ (glue c))) ∙ ap (ap to) (F₁∙.glue-β c |in-ctx (ap left))) ∙ ap (ap to) (ap-∙∙`∘`∘ left left right (H₁₁ c) (glue (f₁₂ c)) (H₁₃ c)) ∙ ap-∙∙`∘`∘ to (left ∘ left) (left ∘ right) (H₁₁ c) (ap left (glue (f₁₂ c))) (H₁₃ c)) =⟨ ap-∘^3-coh' to left f₁∙ (glue c) |in-ctx (λ u → (! (I₀∙.glue-β (f₁₂ c) |in-ctx (λ u → (ap (left ∘ left) (H₁₁ c) ∙ u ∙ ap (right ∘ left) (H₁₃ c))))) ∙ ((! (ap-∙∙`∘`∘ i₀∙ left right (H₁₁ c) (glue (f₁₂ c)) (H₁₃ c))) ∙ ((! (F₁∙.glue-β c |in-ctx (λ u → ap i₀∙ u))) ∙ u ∙ ap (ap to) (F₁∙.glue-β c |in-ctx (ap left))) ∙ ap (ap to) (ap-∙∙`∘`∘ left left right (H₁₁ c) (glue (f₁₂ c)) (H₁₃ c)) ∙ ap-∙∙`∘`∘ to (left ∘ left) (left ∘ right) (H₁₁ c) (ap left (glue (f₁₂ c))) (H₁₃ c))) ⟩ (! (I₀∙.glue-β (f₁₂ c) |in-ctx (λ u → (ap (left ∘ left) (H₁₁ c) ∙ u ∙ ap (right ∘ left) (H₁₃ c))))) ∙ ((! (ap-∙∙`∘`∘ i₀∙ left right (H₁₁ c) (glue (f₁₂ c)) (H₁₃ c))) ∙ ((! (F₁∙.glue-β c |in-ctx (ap i₀∙))) ∙ ap-∘ to left (ap f₁∙ (glue c)) ∙ ap (ap to) (F₁∙.glue-β c |in-ctx (ap left))) ∙ ap (ap to) (ap-∙∙`∘`∘ left left right (H₁₁ c) (glue (f₁₂ c)) (H₁₃ c)) ∙ ap-∙∙`∘`∘ to (left ∘ left) (left ∘ right) (H₁₁ c) (ap left (glue (f₁₂ c))) (H₁₃ c)) =⟨ ap-∘-ap-coh'2 to left (F₁∙.glue-β c) |in-ctx (λ u → (! (I₀∙.glue-β (f₁₂ c) |in-ctx (λ u → (ap (left ∘ left) (H₁₁ c) ∙ u ∙ ap (right ∘ left) (H₁₃ c))))) ∙ ((! (ap-∙∙`∘`∘ i₀∙ left right (H₁₁ c) (glue (f₁₂ c)) (H₁₃ c))) ∙ u ∙ ap (ap to) (ap-∙∙`∘`∘ left left right (H₁₁ c) (glue (f₁₂ c)) (H₁₃ c)) ∙ ap-∙∙`∘`∘ to (left ∘ left) (left ∘ right) (H₁₁ c) (ap left (glue (f₁₂ c))) (H₁₃ c))) ⟩ (! (I₀∙.glue-β (f₁₂ c) |in-ctx (λ u → (ap (left ∘ left) (H₁₁ c) ∙ u ∙ ap (right ∘ left) (H₁₃ c))))) ∙ ((! (ap-∙∙`∘`∘ i₀∙ left right (H₁₁ c) (glue (f₁₂ c)) (H₁₃ c))) ∙ ap-∘ to left (ap left (H₁₁ c) ∙ glue (f₁₂ c) ∙ ap right (H₁₃ c)) ∙ ap (ap to) (ap-∙∙`∘`∘ left left right (H₁₁ c) (glue (f₁₂ c)) (H₁₃ c)) ∙ ap-∙∙`∘`∘ to (left ∘ left) (left ∘ right) (H₁₁ c) (ap left (glue (f₁₂ c))) (H₁₃ c)) =⟨ ap-∘-ap-∙∙2`∘`∘-coh to left left right (H₁₁ c) (glue (f₁₂ c)) (H₁₃ c) |in-ctx (λ u → (! (I₀∙.glue-β (f₁₂ c) |in-ctx (λ u → (ap (left ∘ left) (H₁₁ c) ∙ u ∙ ap (right ∘ left) (H₁₃ c)))) ∙ u)) ⟩ (! (I₀∙.glue-β (f₁₂ c) |in-ctx (λ u → (ap (left ∘ left) (H₁₁ c) ∙ u ∙ ap (right ∘ left) (H₁₃ c))))) ∙ (ap-∘ to left (glue (f₁₂ c)) |in-ctx (λ u → ap (left ∘ left) (H₁₁ c) ∙ u ∙ ap (right ∘ left) (H₁₃ c))) =⟨ coh2 (glue (f₁₂ c)) (I₀∙.glue-β (f₁₂ c)) ⟩ (! (∘-ap to left (glue (f₁₂ c)) ∙ I₀∙.glue-β (f₁₂ c)) |in-ctx (λ u → ap (left ∘ left) (H₁₁ c) ∙ u ∙ ap (right ∘ left) (H₁₃ c))) ∎ where eq1 : ∀ {i j} {A : Type i} {B : Type j} {f : A → B} {a b c d e : B} {k l m n : A} {o : B} {p : a == b} {q : b == c} {r : c == d} {s : d == e} {t : e == f k} {u : k == l} {v : l == m} {w : m == n} {x : f n == o} → (_ =⟨ p ⟩ _ =⟨ q ⟩ _ =⟨ r ⟩ _ =⟨ s ⟩ _ ∎) ∙ t ∙ ap f (_ =⟨ u ⟩ _ =⟨ v ⟩ _ =⟨ w ⟩ _ ∎) ∙ x == (p ∙ (q ∙ ((r ∙ (s ∙ t ∙ ap f u) ∙ ap f v) ∙ ap f w ∙ x))) eq1 {p = idp} {idp} {idp} {idp} {t = t} {idp} {idp} {idp} {idp} = ! (∙-unit-r (t ∙ idp)) ∙ ! (∙-unit-r ((t ∙ idp) ∙ idp)) coh2 : ∀ {i j k l} {A : Type i} {B : Type j} {C : Type k} {D : Type l} {a a' : A} (q : a == a') {h : A → B} {g : B → C} {f : (g (h a) == g (h a')) → D} {r : g (h a) == g (h a')} (p : ap (g ∘ h) q == r) → (! (p |in-ctx f)) ∙ (ap-∘ g h q |in-ctx f) == (! (∘-ap g h q ∙ p) |in-ctx f) coh2 idp idp = idp lemma2-4' = ap□ to (↓-='-out (apd (glue {d = v-h-span}) (glue c)) ∙□-i/ E∙₂Red.lhs-i c / E∙₂Red.rhs-i c /) ∙□-i/ E∙₂Red.ap-ap-coh!-lhs-i c to / E∙₂Red.ap-ap-coh!-rhs-i c to / =⟨ lemma2-5 |in-ctx (λ u → u ∙□-i/ E∙₂Red.ap-ap-coh!-lhs-i c to / E∙₂Red.ap-ap-coh!-rhs-i c to /) ⟩ E₂∙Red.coh c (↓-='-out (apd (glue {d = h-v-span}) (glue c)) ∙□-i/ E₂∙Red.lhs-i c / E₂∙Red.rhs-i c /) ∙□-i/ E₂∙Red.lhs-o c / E₂∙Red.rhs-o c / ∙□-o/ To.glue-β (left (f₂₁ c)) / ! (To.glue-β (right (f₂₃ c))) / ∙□-i/ ∘-ap to (right ∘ f₃∙) (glue c) / ap-∘ to (left ∘ f₁∙) (glue c) / ∙□-i/ ap (ap to) (E∙₂Red.lhs-i c) / ap (ap to) (E∙₂Red.rhs-i c) / ∙□-i/ E∙₂Red.ap-ap-coh!-lhs-i c to / E∙₂Red.ap-ap-coh!-rhs-i c to / =⟨ assoc (E₂∙Red.coh c (↓-='-out (apd (glue {d = h-v-span}) (glue c)) ∙□-i/ E₂∙Red.lhs-i c / E₂∙Red.rhs-i c /)) (E₂∙Red.lhs-o c) (∘-ap to (right ∘ f₃∙) (glue c)) (ap (ap to) (E∙₂Red.lhs-i c)) (E∙₂Red.ap-ap-coh!-lhs-i c to) _ _ _ _ (To.glue-β (left (f₂₁ c))) _ ⟩ E₂∙Red.coh c (↓-='-out (apd (glue {d = h-v-span}) (glue c)) ∙□-i/ E₂∙Red.lhs-i c / E₂∙Red.rhs-i c /) ∙□-o/ To.glue-β (left (f₂₁ c)) / ! (To.glue-β (right (f₂₃ c))) / ∙□-i/ E∙₂Red.ap-ap-coh!-lhs-i c to ∙ ap (ap to) (E∙₂Red.lhs-i c) ∙ ∘-ap to (right ∘ f₃∙) (glue c) ∙ E₂∙Red.lhs-o c / E₂∙Red.rhs-o c ∙ ap-∘ to (left ∘ f₁∙) (glue c) ∙ ap (ap to) (E∙₂Red.rhs-i c) ∙ E∙₂Red.ap-ap-coh!-rhs-i c to / =⟨ ∙□-i/-rewrite (E₂∙Red.coh c (↓-='-out (apd (glue {d = h-v-span}) (glue c)) ∙□-i/ E₂∙Red.lhs-i c / E₂∙Red.rhs-i c /) ∙□-o/ To.glue-β (left (f₂₁ c)) / ! (To.glue-β (right (f₂₃ c))) /) lemma2'-1 lemma2'-2 ⟩ E₂∙Red.coh c (↓-='-out (apd (glue {d = h-v-span}) (glue c)) ∙□-i/ E₂∙Red.lhs-i c / E₂∙Red.rhs-i c /) ∙□-o/ To.glue-β (left (f₂₁ c)) / ! (To.glue-β (right (f₂₃ c))) / ∙□-i/ (∘-ap to right (glue (f₃₂ c)) ∙ I₄∙.glue-β (f₃₂ c)) |in-ctx (λ u → ap (left ∘ right) (H₃₁ c) ∙ u ∙ ap (right ∘ right) (H₃₃ c)) / (! (∘-ap to left (glue (f₁₂ c)) ∙ I₀∙.glue-β (f₁₂ c))) |in-ctx (λ u → ap (left ∘ left) (H₁₁ c) ∙ u ∙ ap (right ∘ left) (H₁₃ c)) / ∎ where assoc : ∀ {i} {A : Type i} {a b b' c : A} {u u' : a == b} {v v1 v2 v3 v4 : b == c} {w w1 w2 w3 w4 : a == b'} {x x' : b' == c} (α : (u , v =□ w , x)) (p1 : v1 == v) (p2 : v2 == v1) (p3 : v3 == v2) (p4 : v4 == v3) (q1 : w == w1) (q2 : w1 == w2) (q3 : w2 == w3) (q4 : w3 == w4) (r : u' == u) (s : x == x') → α ∙□-i/ p1 / q1 / ∙□-o/ r / s / ∙□-i/ p2 / q2 / ∙□-i/ p3 / q3 / ∙□-i/ p4 / q4 / == α ∙□-o/ r / s / ∙□-i/ p4 ∙ p3 ∙ p2 ∙ p1 / q1 ∙ q2 ∙ q3 ∙ q4 / assoc α idp idp idp idp idp idp idp idp idp idp = idp lemma2-4'' = E∙₂Red.ap-ap-coh! c to (ap□ to (↓-='-out (apd (glue {d = v-h-span}) (glue c)) ∙□-i/ E∙₂Red.lhs-i c / E∙₂Red.rhs-i c /) ∙□-i/ E∙₂Red.ap-ap-coh!-lhs-i c to / E∙₂Red.ap-ap-coh!-rhs-i c to /) =⟨ lemma2-4' |in-ctx (E∙₂Red.ap-ap-coh! c to) ⟩ E∙₂Red.ap-ap-coh! c to (E₂∙Red.coh c (↓-='-out (apd (glue {d = h-v-span}) (glue c)) ∙□-i/ E₂∙Red.lhs-i c / E₂∙Red.rhs-i c /) ∙□-o/ To.glue-β (left (f₂₁ c)) / ! (To.glue-β (right (f₂₃ c))) / ∙□-i/ (∘-ap to right (glue (f₃₂ c)) ∙ I₄∙.glue-β (f₃₂ c)) |in-ctx (λ u → ap (left ∘ right) (H₃₁ c) ∙ u ∙ ap (right ∘ right) (H₃₃ c)) / (! (∘-ap to left (glue (f₁₂ c)) ∙ I₀∙.glue-β (f₁₂ c))) |in-ctx (λ u → ap (left ∘ left) (H₁₁ c) ∙ u ∙ ap (right ∘ left) (H₁₃ c))/) =⟨ lemma! (∘-ap to left (glue (f₁₂ c)) ∙ I₀∙.glue-β (f₁₂ c)) (To.glue-β (right (f₂₃ c))) (To.glue-β (left (f₂₁ c))) (∘-ap to right (glue (f₃₂ c)) ∙ I₄∙.glue-β (f₃₂ c)) (↓-='-out (apd (glue {d = h-v-span}) (glue c)) ∙□-i/ E₂∙Red.lhs-i c / E₂∙Red.rhs-i c /) ⟩ ↓-='-out (apd (glue {d = h-v-span}) (glue c)) ∙□-i/ E₂∙Red.lhs-i c / E₂∙Red.rhs-i c / ∙□-o/ ∘-ap to left (glue (f₁₂ c)) ∙ I₀∙.glue-β (f₁₂ c) / ! (∘-ap to right (glue (f₃₂ c)) ∙ I₄∙.glue-β (f₃₂ c)) / ∙□-i/ (To.glue-β (right (f₂₃ c))) |in-ctx (λ u → ap (right ∘ left) (H₁₃ c) ∙ u ∙ ! (ap (right ∘ right) (H₃₃ c))) / (! (To.glue-β (left (f₂₁ c)))) |in-ctx (λ u → ! (ap (left ∘ left) (H₁₁ c)) ∙ u ∙ ap (left ∘ right) (H₃₁ c)) / ∎ lemma2-4 = ap□ to (E∙₂Red.coh! c (↓-='-out (apd (glue {d = v-h-span}) (glue c)) ∙□-i/ E∙₂Red.lhs-i c / E∙₂Red.rhs-i c /)) =⟨ E∙₂Red.ap-ap-coh!-β c to (↓-='-out (apd (glue {d = v-h-span}) (glue c)) ∙□-i/ E∙₂Red.lhs-i c / E∙₂Red.rhs-i c /) ⟩ E∙₂Red.ap-ap-coh! c to (ap□ to (↓-='-out (apd (glue {d = v-h-span}) (glue c)) ∙□-i/ E∙₂Red.lhs-i c / E∙₂Red.rhs-i c /) ∙□-i/ E∙₂Red.ap-ap-coh!-lhs-i c to / E∙₂Red.ap-ap-coh!-rhs-i c to /) ∙□-i/ E∙₂Red.ap-ap-coh!-lhs-o c to / E∙₂Red.ap-ap-coh!-rhs-o c to / =⟨ lemma2-4'' |in-ctx (λ u → u ∙□-i/ E∙₂Red.ap-ap-coh!-lhs-o c to / E∙₂Red.ap-ap-coh!-rhs-o c to /) ⟩ ↓-='-out (apd (glue {d = h-v-span}) (glue c)) ∙□-i/ E₂∙Red.lhs-i c / E₂∙Red.rhs-i c / ∙□-o/ ∘-ap to left (glue (f₁₂ c)) ∙ I₀∙.glue-β (f₁₂ c) / ! (∘-ap to right (glue (f₃₂ c)) ∙ I₄∙.glue-β (f₃₂ c)) / ∙□-i/ (To.glue-β (right (f₂₃ c))) |in-ctx (λ u → ap (right ∘ left) (H₁₃ c) ∙ u ∙ ! (ap (right ∘ right) (H₃₃ c))) / (! (To.glue-β (left (f₂₁ c)))) |in-ctx (λ u → ! (ap (left ∘ left) (H₁₁ c)) ∙ u ∙ ap (left ∘ right) (H₃₁ c)) / ∙□-i/ E∙₂Red.ap-ap-coh!-lhs-o c to / E∙₂Red.ap-ap-coh!-rhs-o c to / ∎
{ "alphanum_fraction": 0.4192809481, "avg_line_length": 57.9288461538, "ext": "agda", "hexsha": "c80cba3f7f1fa4bd7ff5922cb996176226848d43", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "homotopy/3x3/ToFrom2.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "homotopy/3x3/ToFrom2.agda", "max_line_length": 209, "max_stars_count": 1, "max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda", "max_stars_repo_path": "homotopy/3x3/ToFrom2.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z", "num_tokens": 16558, "size": 30123 }
open import Common open import Global open import Projection open import Local open import Data.Fin open import Data.Product open import Data.Vec open import Relation.Binary.PropositionalEquality n = 4 Role = Fin n p : Role p = zero q : Role q = suc zero r : Role r = suc (suc zero) s : Role s = suc (suc (suc zero)) l : Label l = 0 l′ : Label l′ = 1 g₁ : Global n g₁ = msgSingle′ p q l endG lp : Local n lp = sendSingle q l endL g₁-proj-p-is-lp : project g₁ p ≡ lp g₁-proj-p-is-lp = refl lq : Local n lq = recvSingle p l endL g₁-proj-q-is-lq : project g₁ q ≡ lq g₁-proj-q-is-lq = refl p→q : Action n p→q = action′ p q l r→s : Action n r→s = action′ r s l′ g₂ : Global n g₂ = msgSingle′ r s l′ g₁ g₂′ : Global n g₂′ = msgSingle′ r s l′ endG g₁→end : g₁ - p→q →g endG g₁→end = →g-prefix g₂→g₁ : g₂ - r→s →g g₁ g₂→g₁ = →g-prefix g₂→g₂′ : g₂ - p→q →g g₂′ g₂→g₂′ = →g-cont g₁→end (λ ()) (λ ()) (λ ()) (λ ()) g₁-proj-p→end : (p , project g₁ p) - p→q →l (p , endL) g₁-proj-p→end = →l-send p refl λ () g₁-proj-q→end : (q , project g₁ q) - p→q →l (q , endL) g₁-proj-q→end = →l-recv q refl λ () g₂-proj-p→g₂′-proj-p : (p , project g₂ p) - p→q →l (p , project g₂′ p) g₂-proj-p→g₂′-proj-p = →l-send p refl λ () g₂-proj-q→g₂′-proj-q : (q , project g₂ q) - p→q →l (q , project g₂′ q) g₂-proj-q→g₂′-proj-q = →l-recv q refl λ () c₁ : Configuration n c₁ = lp ∷ lq ∷ endL ∷ endL ∷ [] cEnd : Configuration n cEnd = endL ∷ endL ∷ endL ∷ endL ∷ [] c₁→cEnd : c₁ - p→q →c cEnd c₁→cEnd = →c-comm c₁ (λ ()) refl refl refl g₁-proj-p→end g₁-proj-q→end g₁↔c₁ : g₁ ↔ c₁ g₁↔c₁ = record { isProj = refls } where refls : (p : Fin n) -> lookup c₁ p ≡ project g₁ p refls zero = refl refls (suc zero) = refl refls (suc (suc zero)) = refl refls (suc (suc (suc zero))) = refl
{ "alphanum_fraction": 0.594639866, "avg_line_length": 18.2755102041, "ext": "agda", "hexsha": "a0c973623a96e11509362b262594d514c467d462", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3d12eed9d340207d242d70f43c6b34e01d3620de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "fangyi-zhou/mpst-in-agda", "max_forks_repo_path": "Example.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "3d12eed9d340207d242d70f43c6b34e01d3620de", "max_issues_repo_issues_event_max_datetime": "2021-11-24T11:30:17.000Z", "max_issues_repo_issues_event_min_datetime": "2021-08-31T10:15:38.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "fangyi-zhou/mpst-in-agda", "max_issues_repo_path": "Example.agda", "max_line_length": 70, "max_stars_count": 1, "max_stars_repo_head_hexsha": "3d12eed9d340207d242d70f43c6b34e01d3620de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "fangyi-zhou/mpst-in-agda", "max_stars_repo_path": "Example.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-14T17:36:53.000Z", "max_stars_repo_stars_event_min_datetime": "2021-08-14T17:36:53.000Z", "num_tokens": 796, "size": 1791 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order open import Numbers.Integers.RingStructure.Ring open import Semirings.Definition open import Rings.Orders.Partial.Definition open import Rings.Orders.Total.Definition open import Orders.Total.Definition open import Orders.Partial.Definition open import Setoids.Orders.Total.Definition module Numbers.Integers.Order where infix 5 _<Z_ record _<Z_ (a : ℤ) (b : ℤ) : Set where constructor le field x : ℕ proof : (nonneg (succ x)) +Z a ≡ b lessLemma : (a x : ℕ) → succ x +N a ≡ a → False lessLemma zero x pr = naughtE (equalityCommutative pr) lessLemma (succ a) x pr = lessLemma a x q where q : succ x +N a ≡ a q rewrite Semiring.commutative ℕSemiring a (succ x) | Semiring.commutative ℕSemiring x a | Semiring.commutative ℕSemiring (succ a) x = succInjective pr irreflexive : (x : ℤ) → x <Z x → False irreflexive (nonneg x) record { x = y ; proof = proof } = lessLemma x y (nonnegInjective proof) irreflexive (negSucc a) record { x = x ; proof = proof } = naughtE (equalityCommutative q) where pr' : nonneg (succ x) +Z (negSucc a +Z nonneg (succ a)) ≡ negSucc a +Z nonneg (succ a) pr' rewrite +ZAssociative (nonneg (succ x)) (negSucc a) (nonneg (succ a)) = applyEquality (λ t → t +Z nonneg (succ a)) proof pr'' : nonneg (succ x) +Z nonneg 0 ≡ nonneg 0 pr'' rewrite equalityCommutative (additiveInverseExists a) = identityOfIndiscernablesLeft _≡_ pr' q where q : nonneg (succ x) +Z (negSucc a +Z nonneg (succ a)) ≡ nonneg (succ (x +N 0)) q rewrite Semiring.commutative ℕSemiring x 0 | additiveInverseExists a | Semiring.commutative ℕSemiring x 0 = refl pr''' : succ x +N 0 ≡ 0 pr''' = nonnegInjective pr'' q : succ x ≡ 0 q rewrite Semiring.commutative ℕSemiring 0 (succ x) = pr''' lessZTransitive : {a b c : ℤ} → (a <Z b) → (b <Z c) → (a <Z c) lessZTransitive {a} {b} {c} (le d1 pr1) (le d2 pr2) rewrite equalityCommutative pr1 = le (d1 +N succ d2) pr where pr : nonneg (succ (d1 +N succ d2)) +Z a ≡ c pr rewrite +ZAssociative (nonneg (succ d2)) (nonneg (succ d1)) a | Semiring.commutative ℕSemiring (succ d2) (succ d1) = pr2 lessInherits : {a b : ℕ} → (a <N b) → ((nonneg a) <Z (nonneg b)) _<Z_.x (lessInherits {a} {b} (le x proof)) = x _<Z_.proof (lessInherits {a} {.(succ (x +N a))} (le x refl)) = refl lessInheritsNegsucc : {a b : ℕ} → (a <N b) → ((negSucc b) <Z negSucc a) _<Z_.x (lessInheritsNegsucc {a} {b} (le x proof)) = x _<Z_.proof (lessInheritsNegsucc {a} {b} (le x proof)) rewrite equalityCommutative proof = transitivity (transitivity (+ZCommutative (nonneg x) (negSucc (x +N a))) (applyEquality (λ i → negSucc i +Z nonneg x) (Semiring.commutative ℕSemiring x a))) (equalityCommutative (negSucc+Nonneg a x)) lessNegsuccNonneg : {a b : ℕ} → (negSucc a <Z nonneg b) _<Z_.x (lessNegsuccNonneg {a} {b}) = a +N b _<Z_.proof (lessNegsuccNonneg {zero} {b}) = refl _<Z_.proof (lessNegsuccNonneg {succ a} {b}) = _<Z_.proof (lessNegsuccNonneg {a} {b}) lessThanTotalZ : {a b : ℤ} → ((a <Z b) || (b <Z a)) || (a ≡ b) lessThanTotalZ {nonneg a} {nonneg b} with TotalOrder.totality ℕTotalOrder a b lessThanTotalZ {nonneg a} {nonneg b} | inl (inl a<b) = inl (inl (lessInherits a<b)) lessThanTotalZ {nonneg a} {nonneg b} | inl (inr b<a) = inl (inr (lessInherits b<a)) lessThanTotalZ {nonneg a} {nonneg b} | inr a=b = inr (applyEquality nonneg a=b) lessThanTotalZ {nonneg a} {negSucc b} = inl (inr (lessNegsuccNonneg {b} {a})) lessThanTotalZ {negSucc a} {nonneg x} = inl (inl (lessNegsuccNonneg {a} {x})) lessThanTotalZ {negSucc a} {negSucc b} with TotalOrder.totality ℕTotalOrder a b ... | inl (inl a<b) = inl (inr (lessInheritsNegsucc a<b)) ... | inl (inr b<a) = inl (inl (lessInheritsNegsucc b<a)) lessThanTotalZ {negSucc a} {negSucc .a} | inr refl = inr refl ℤOrder : TotalOrder ℤ PartialOrder._<_ (TotalOrder.order ℤOrder) = _<Z_ PartialOrder.irreflexive (TotalOrder.order ℤOrder) {a} = irreflexive a PartialOrder.<Transitive (TotalOrder.order ℤOrder) = lessZTransitive TotalOrder.totality ℤOrder a b = lessThanTotalZ {a} {b} orderRespectsAddition : (a b : ℤ) → a <Z b → (c : ℤ) → a +Z c <Z b +Z c orderRespectsAddition (nonneg a) (nonneg b) (le x proof) (nonneg c) = le x (transitivity (+ZAssociative (nonneg (succ x)) (nonneg a) (nonneg c)) (applyEquality (_+Z nonneg c) proof)) orderRespectsAddition (nonneg a) (nonneg b) (le x proof) (negSucc c) = le x (transitivity (+ZAssociative (nonneg (succ x)) (nonneg a) (negSucc c)) (applyEquality (_+Z negSucc c) proof)) orderRespectsAddition (negSucc a) (nonneg b) (le x proof) (nonneg c) = le x (transitivity (+ZAssociative (nonneg (succ x)) (negSucc a) (nonneg c)) (applyEquality (_+Z nonneg c) proof)) orderRespectsAddition (negSucc a) (nonneg b) (le x proof) (negSucc c) = le x (transitivity (+ZAssociative (nonneg (succ x)) (negSucc a) (negSucc c)) (applyEquality (_+Z negSucc c) proof)) orderRespectsAddition (negSucc a) (negSucc b) (le x proof) (nonneg c) = le x (transitivity (+ZAssociative (nonneg (succ x)) (negSucc a) (nonneg c)) (applyEquality (_+Z nonneg c) proof)) orderRespectsAddition (negSucc a) (negSucc b) (le x proof) (negSucc c) = le x (transitivity (+ZAssociative (nonneg (succ x)) (negSucc a) (negSucc c)) (applyEquality (_+Z negSucc c) proof)) orderRespectsMultiplication : (a b : ℤ) → nonneg 0 <Z a → nonneg 0 <Z b → nonneg 0 <Z a *Z b orderRespectsMultiplication (nonneg (succ a)) (nonneg (succ b)) 0<a 0<b = lessInherits (succIsPositive (b +N a *N succ b)) ℤPOrderedRing : PartiallyOrderedRing ℤRing (SetoidTotalOrder.partial (totalOrderToSetoidTotalOrder ℤOrder)) PartiallyOrderedRing.orderRespectsAddition ℤPOrderedRing {a} {b} = orderRespectsAddition a b PartiallyOrderedRing.orderRespectsMultiplication ℤPOrderedRing {a} {b} = orderRespectsMultiplication a b ℤOrderedRing : TotallyOrderedRing ℤPOrderedRing TotallyOrderedRing.total ℤOrderedRing = totalOrderToSetoidTotalOrder ℤOrder
{ "alphanum_fraction": 0.6991518377, "avg_line_length": 60.13, "ext": "agda", "hexsha": "599b55f2c579fd64a6831a1b72a236df4594798e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Numbers/Integers/Order.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Numbers/Integers/Order.agda", "max_line_length": 289, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Numbers/Integers/Order.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 2190, "size": 6013 }
module Data.Option where import Lvl open import Data open import Type private variable ℓ ℓ₁ ℓ₂ : Lvl.Level private variable T : Type{ℓ} data Option (T : Type{ℓ}) : Type{ℓ} where None : Option(T) Some : T → Option(T) elim : ∀{A : Type{ℓ₁}}{B : Option(A) → Type{ℓ₂}} → B(None) → ((a : A) → B(Some a)) → ((o : Option(A)) → B(o)) elim b _ None = b elim b ab (Some a) = ab a
{ "alphanum_fraction": 0.5927835052, "avg_line_length": 22.8235294118, "ext": "agda", "hexsha": "26c6cdeb8fe12e17c5a6c27692f06d77b508bd94", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Data/Option.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Data/Option.agda", "max_line_length": 109, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Data/Option.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 145, "size": 388 }
{-# OPTIONS --universe-polymorphism #-} module IDesc where --******************************************** -- Prelude --******************************************** -- Some preliminary stuffs, to avoid relying on the stdlib --**************** -- Universe polymorphism --**************** data Level : Set where zero : Level suc : Level -> Level {-# BUILTIN LEVEL Level #-} {-# BUILTIN LEVELZERO zero #-} {-# BUILTIN LEVELSUC suc #-} max : Level -> Level -> Level max zero m = m max (suc n) zero = suc n max (suc n) (suc m) = suc (max n m) {-# BUILTIN LEVELMAX max #-} data Lifted {l : Level} (A : Set l) : Set (suc l) where lifter : A → Lifted A lift : {i : Level} -> Set i -> Set (suc i) lift x = Lifted x unlift : {l : Level}{A : Set l} -> Lifted A -> A unlift (lifter a) = a --**************** -- Sigma and friends --**************** data Sigma {i j : Level}(A : Set i) (B : A -> Set j) : Set (max i j) where _,_ : (x : A) (y : B x) -> Sigma A B pair : {i j : Level}{A : Set i}{B : A -> Set j} -> (x : A) (y : B x) -> Sigma {i = i}{j = j} A B pair x y = x , y _*_ : {i j : Level}(A : Set i)(B : Set j) -> Set (max i j) A * B = Sigma A \_ -> B fst : {i j : Level}{A : Set i}{B : A -> Set j} -> Sigma A B -> A fst (a , _) = a snd : {i j : Level}{A : Set i}{B : A -> Set j} (p : Sigma A B) -> B (fst p) snd (a , b) = b data Zero {i : Level} : Set i where data Unit {i : Level} : Set i where Void : Unit --**************** -- Sum and friends --**************** data _+_ {i j : Level}(A : Set i)(B : Set j) : Set (max i j) where l : A -> A + B r : B -> A + B --**************** -- Equality --**************** data _==_ {l : Level}{A : Set l}(x : A) : A -> Set l where refl : x == x cong : {l m : Level}{A : Set l}{B : Set m} (f : A -> B){x y : A} -> x == y -> f x == f y cong f refl = refl cong2 : {l m n : Level}{A : Set l}{B : Set m}{C : Set n} (f : A -> B -> C){x y : A}{z t : B} -> x == y -> z == t -> f x z == f y t cong2 f refl refl = refl trans : {l : Level}{A : Set l}{x y z : A} -> x == y -> y == z -> x == z trans refl refl = refl proof-lift-unlift-eq : {l : Level}{A : Set l}(x : Lifted A) -> lifter (unlift x) == x proof-lift-unlift-eq (lifter a) = refl postulate reflFun : {l m : Level}{A : Set l}{B : Set m}(f : A -> B)(g : A -> B)-> ((a : A) -> f a == g a) -> f == g --******************************************** -- Desc code --******************************************** data IDesc {l : Level}(I : Set (suc l)) : Set (suc l) where var : I -> IDesc I const : Set l -> IDesc I prod : IDesc I -> IDesc I -> IDesc I sigma : (S : Set l) -> (S -> IDesc I) -> IDesc I pi : (S : Set l) -> (S -> IDesc I) -> IDesc I --******************************************** -- Desc interpretation --******************************************** desc : {l : Level}{I : Set (suc l)} -> IDesc I -> (I -> Set l) -> Set l desc (var i) P = P i desc (const X) P = X desc (prod D D') P = desc D P * desc D' P desc (sigma S T) P = Sigma S (\s -> desc (T s) P) desc (pi S T) P = (s : S) -> desc (T s) P --******************************************** -- Fixpoint construction --******************************************** data IMu {l : Level}{I : Set (suc l)}(R : I -> IDesc {l = l} I)(i : I) : Set l where con : desc (R i) (\j -> IMu R j) -> IMu R i --******************************************** -- Predicate: Box --******************************************** box : {l : Level}{I : Set (suc l)}(D : IDesc I)(X : I -> Set l) -> desc D X -> IDesc (Sigma I X) box (var i) X x = var (i , x) box (const _) X x = const Unit box (prod D D') X (d , d') = prod (box D X d) (box D' X d') box (sigma S T) X (a , b) = box (T a) X b box (pi S T) X f = pi S (\s -> box (T s) X (f s)) --******************************************** -- Elimination principle: induction --******************************************** module Elim {l : Level} {I : Set (suc l)} (R : I -> IDesc I) (P : Sigma I (IMu R) -> Set l) (m : (i : I) (xs : desc (R i) (IMu R)) (hs : desc (box (R i) (IMu R) xs) P) -> P ( i , con xs )) where mutual induction : (i : I)(x : IMu R i) -> P (i , x) induction i (con xs) = m i xs (hyps (R i) xs) hyps : (D : IDesc I) -> (xs : desc D (IMu R)) -> desc (box D (IMu R) xs) P hyps (var i) x = induction i x hyps (const X) x = Void hyps (prod D D') (d , d') = hyps D d , hyps D' d' hyps (pi S R) f = \ s -> hyps (R s) (f s) hyps (sigma S R) ( a , b ) = hyps (R a) b induction : {l : Level} {I : Set (suc l)} (R : I -> IDesc I) (P : Sigma I (IMu R) -> Set l) (m : (i : I) (xs : desc (R i) (IMu R)) (hs : desc (box (R i) (IMu R) xs) P) -> P ( i , con xs)) -> (i : I)(x : IMu R i) -> P ( i , x ) induction = Elim.induction --******************************************** -- DescD --******************************************** data DescDConst {l : Level} : Set l where lvar : DescDConst lconst : DescDConst lprod : DescDConst lpi : DescDConst lsigma : DescDConst descDChoice : {l : Level} -> Set (suc l) -> DescDConst -> IDesc Unit descDChoice I lvar = const I descDChoice _ lconst = const (Set _) descDChoice _ lprod = prod (var Void) (var Void) descDChoice _ lpi = sigma (Set _) (\S -> pi (lift S) (\s -> var Void)) descDChoice _ lsigma = sigma (Set _) (\S -> pi (lift S) (\s -> var Void)) IDescD : {l : Level}(I : Set (suc l)) -> IDesc {l = suc l} Unit IDescD I = sigma DescDConst (descDChoice I) IDescl0 : {l : Level}(I : Set (suc l)) -> Unit -> Set (suc l) IDescl0 {x} I = IMu {l = suc x} (\_ -> IDescD {l = x} I) IDescl : {l : Level}(I : Set (suc l)) -> Set (suc l) IDescl I = IDescl0 I Void varl : {l : Level}{I : Set (suc l)}(i : I) -> IDescl I varl {x} i = con (lvar {l = suc x} , i) constl : {l : Level}{I : Set (suc l)}(X : Set l) -> IDescl I constl {x} X = con (lconst {l = suc x} , X) prodl : {l : Level}{I : Set (suc l)}(D D' : IDescl I) -> IDescl I prodl {x} D D' = con (lprod {l = suc x} , (D , D')) pil : {l : Level}{I : Set (suc l)}(S : Set l)(T : S -> IDescl I) -> IDescl I pil {x} S T = con (lpi {l = suc x} , pair {i = suc x}{j = suc x} S (\s -> T (unlift s))) sigmal : {l : Level}{I : Set (suc l)}(S : Set l)(T : S -> IDescl I) -> IDescl I sigmal {x} S T = con (lsigma {l = suc x} , pair {i = suc x}{j = suc x} S (\s -> T (unlift s))) --******************************************** -- From the embedding to the host --******************************************** cases : {l : Level} {I : Set (suc l)} (xs : desc (IDescD I) (IMu (λ _ -> IDescD I))) (hs : desc (box (IDescD I) (IMu (λ _ -> IDescD I)) xs) (λ _ -> IDesc I)) -> IDesc I cases ( lvar , i ) hs = var i cases ( lconst , X ) hs = const X cases ( lprod , (D , D') ) ( d , d' ) = prod d d' cases ( lpi , ( S , T ) ) hs = pi S (\s -> hs (lifter s) ) cases ( lsigma , ( S , T ) ) hs = sigma S (\s -> hs (lifter s)) phi : {l : Level}{I : Set (suc l)} -> IDescl I -> IDesc I phi {x} {I} d = induction (\_ -> IDescD I) (\_ -> IDesc I) (\_ -> cases) Void d --******************************************** -- From the host to the embedding --******************************************** psi : {l : Level}{I : Set (suc l)} -> IDesc I -> IDescl I psi (var i) = varl i psi (const X) = constl X psi (prod D D') = prodl (psi D) (psi D') psi (pi S T) = pil S (\s -> psi (T s)) psi (sigma S T) = sigmal S (\s -> psi (T s)) --******************************************** -- Isomorphism proof --******************************************** -- From host to host proof-phi-psi : {l : Level}{I : Set (suc l)} -> (D : IDesc I) -> phi (psi D) == D proof-phi-psi (var i) = refl proof-phi-psi (const x) = refl proof-phi-psi (prod D D') with proof-phi-psi D | proof-phi-psi D' ... | p | q = cong2 prod p q proof-phi-psi {x} (pi S T) = cong (pi S) (reflFun (\s -> phi (psi (T s))) T (\s -> proof-phi-psi (T s))) proof-phi-psi (sigma S T) = cong (sigma S) (reflFun (\ s -> phi (psi (T s))) T (\s -> proof-phi-psi (T s))) -- From embedding to embedding proof-psi-phi : {l : Level}(I : Set (suc l)) -> (D : IDescl I) -> psi (phi D) == D proof-psi-phi {x} I D = induction (\ _ -> IDescD I) P proof-psi-phi-cases Void D where P : Sigma Unit (IMu (\ x -> IDescD I)) -> Set (suc x) P ( Void , D ) = psi (phi D) == D proof-psi-phi-cases : (i : Unit) (xs : desc (IDescD I) (IDescl0 I)) (hs : desc (box (IDescD I) (IDescl0 I) xs) P) -> P (i , con xs) proof-psi-phi-cases Void (lvar , i) hs = refl proof-psi-phi-cases Void (lconst , x) hs = refl proof-psi-phi-cases Void (lprod , ( D , D' )) ( p , q ) = cong2 prodl p q proof-psi-phi-cases Void (lpi , ( S , T )) hs = cong (\T -> con (lpi {l = suc x} , ( S , T ) )) (trans (reflFun (\ s -> psi (phi (T (lifter (unlift s))))) (\ s -> psi (phi (T (s)))) (\s -> cong (\ s -> psi (phi (T (s)))) (proof-lift-unlift-eq s))) (reflFun (\s -> psi (phi (T s))) T hs)) proof-psi-phi-cases Void (lsigma , ( S , T )) hs = cong (\T -> con (lsigma {l = suc x} , ( S , T ) )) (trans (reflFun (\ s → psi (phi (T (lifter (unlift s))))) (\ s → psi (phi (T (s)))) (\s -> cong (\ s -> psi (phi (T (s)))) (proof-lift-unlift-eq s))) (reflFun (\s -> psi (phi (T s))) T hs))
{ "alphanum_fraction": 0.3768246531, "avg_line_length": 36.7483443709, "ext": "agda", "hexsha": "2f91bfc1ebee8aaec7d5d1329fc8110225006276", "lang": "Agda", "max_forks_count": 12, "max_forks_repo_forks_event_max_datetime": "2022-02-11T01:57:40.000Z", "max_forks_repo_forks_event_min_datetime": "2016-08-14T21:36:35.000Z", "max_forks_repo_head_hexsha": "8c46f766bddcec2218ddcaa79996e087699a75f2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mietek/epigram", "max_forks_repo_path": "models/IDesc.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8c46f766bddcec2218ddcaa79996e087699a75f2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mietek/epigram", "max_issues_repo_path": "models/IDesc.agda", "max_line_length": 123, "max_stars_count": 48, "max_stars_repo_head_hexsha": "8c46f766bddcec2218ddcaa79996e087699a75f2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mietek/epigram", "max_stars_repo_path": "models/IDesc.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-11T01:55:28.000Z", "max_stars_repo_stars_event_min_datetime": "2016-01-09T17:36:19.000Z", "num_tokens": 3453, "size": 11098 }
open import OutsideIn.Prelude open import OutsideIn.X module OutsideIn.Instantiations.Simple where open import Data.Fin hiding (_+_) data Type ( n : Set) : Set where funTy : Type n _·_ : Type n → Type n → Type n Var : n → Type n private fmap-τ : ∀ {a b} → (a → b) → Type a → Type b fmap-τ f (funTy) = funTy fmap-τ f (x · y) = fmap-τ f x · fmap-τ f y fmap-τ f (Var v) = Var (f v) fmap-τ-id : ∀ {A : Set} {f : A → A} → isIdentity f → isIdentity (fmap-τ f) fmap-τ-id {f = f} isid {funTy} = refl fmap-τ-id {f = f} isid {α · β} = cong₂ _·_ (fmap-τ-id isid) (fmap-τ-id isid) fmap-τ-id {f = f} isid {Var v} = cong Var isid fmap-τ-comp : {A B C : Set} {f : A → B} {g : B → C} {x : Type A} → fmap-τ (g ∘ f) x ≡ fmap-τ g (fmap-τ f x) fmap-τ-comp {x = funTy} = refl fmap-τ-comp {x = α · β} = cong₂ _·_ fmap-τ-comp fmap-τ-comp fmap-τ-comp {x = Var v} = cong Var refl type-is-functor : Functor Type type-is-functor = record { map = fmap-τ ; identity = fmap-τ-id ; composite = fmap-τ-comp } type-is-monad : Monad Type type-is-monad = record { is-functor = type-is-functor ; point = Var ; join = join-τ ; is-left-ident = left-id ; is-right-ident = refl ; >=>-assoc = λ {_}{_}{_}{_}{_}{_}{c}{v} → assoc {τ = c v} } where join-τ :{a : Set} → Type (Type a) → Type a join-τ (funTy) = funTy join-τ (x · y) = join-τ x · join-τ y join-τ (Var v) = v open Functor (type-is-functor) assoc : ∀{A B C}{a : B → Type C}{b : A → Type B}{τ : Type A} → join-τ (fmap-τ a (join-τ (fmap-τ b τ))) ≡ join-τ (fmap-τ (λ v' → join-τ (fmap-τ a (b v'))) τ) assoc {a = a}{b}{funTy} = refl assoc {a = a}{b}{α · β} = cong₂ _·_ (assoc {τ = α}) (assoc {τ = β}) assoc {a = a}{b}{Var v} = refl left-id : ∀ {a}{τ : Type a} → join-τ (Var <$> τ) ≡ τ left-id {_}{funTy} = refl left-id {_}{α · β} = cong₂ _·_ (left-id {τ = α}) (left-id {τ = β}) left-id {_}{Var v} = refl data SConstraint (x : Set) : Set where _∼_ : Type x → Type x → SConstraint x _∧′_ : SConstraint x → SConstraint x → SConstraint x ε : SConstraint x sconstraint-is-functor : Functor SConstraint sconstraint-is-functor = record { map = s-map; identity = s-ident; composite = s-comp } where open Functor (type-is-functor) s-map : {A B : Set} → (A → B) → SConstraint A → SConstraint B s-map f (ε) = ε s-map f (a ∼ b) = map f a ∼ map f b s-map f (a ∧′ b) = s-map f a ∧′ s-map f b s-ident : {A : Set} {f : A → A} → isIdentity f → isIdentity (s-map f) s-ident isid {ε} = refl s-ident isid {a ∼ b} = cong₂ _∼_ (identity isid) (identity isid) s-ident isid {a ∧′ b} = cong₂ _∧′_ (s-ident isid) (s-ident isid) s-comp : {A B C : Set} {f : A → B} {g : B → C} {x : SConstraint A} → s-map (g ∘ f) x ≡ s-map g (s-map f x) s-comp {x = ε} = refl s-comp {x = a ∼ b} = cong₂ _∼_ composite composite s-comp {x = a ∧′ b} = cong₂ _∧′_ s-comp s-comp _⟶_ : ∀ {n} → Type n → Type n → Type n a ⟶ b = (funTy · a) · b types : Types types = record { Type = Type ; type-is-monad = type-is-monad ; funType = _⟶_; appType = _·_ } data SVar (tc : Set)(n : ℕ) : Set where base : tc → SVar tc n unification : Fin n → SVar tc n thin : {n : ℕ} → Fin (suc n) → Fin n → Fin (suc n) thin zero y = suc y thin (suc x) zero = zero thin (suc x) (suc y) = suc (thin x y) thick : ∀ {n} → (x y : Fin (suc n)) → Ⓢ (Fin n) thick zero zero = zero thick zero (suc y) = suc y thick {zero } (suc ()) _ thick {suc _} (suc x) zero = suc zero thick {suc _} (suc x) (suc y) with thick x y ... | zero = zero ... | suc n = suc (suc n) check : ∀ {tc}{n} → Fin (suc n) → Type (SVar tc (suc n)) → Ⓢ (Type (SVar tc n)) check x (funTy) = suc funTy check x (Var (base v)) = suc (Var (base v)) check x (Var (unification n)) = map (Var ∘ unification) (thick x n) where open Functor (Monad.is-functor Ⓢ-is-monad) check x (a · b) = check x a >>= λ a′ → check x b >>= λ b′ → unit (a′ · b′) where open Monad (Ⓢ-is-monad) data AList (tc : Set) : ℕ → ℕ → Set where anil : ∀ {n} → AList tc n n _asnoc_/_ : ∀ {m n} → AList tc m n → Type (SVar tc m) → Fin (suc m) → AList tc (suc m) n _∃asnoc_/_ : ∀ {tc}{m} (a : ∃ (AList tc m)) (t' : Type (SVar tc m)) (x : Fin (suc m)) → ∃ (AList tc (suc m)) (n , σ) ∃asnoc t' / x = n , σ asnoc t' / x _for_ : ∀{tc}{n} → (Type (SVar tc n)) → Fin (suc n) → SVar tc (suc n) → Type (SVar tc n) (t′ for x) (base y) = Var (base y) (t′ for x) (unification y) with thick x y ... | suc y′ = Var (unification y′) ... | zero = t′ sub : ∀ {m n}{tc} → AList tc m n → SVar tc m → Type (SVar tc n) sub anil = Var sub (σ asnoc t / x) = sub σ >=> (t for x) where open Monad (type-is-monad) flexFlex : ∀ {tc}{m} (x y : Fin m) → ∃ (AList tc m) flexFlex {_}{suc m} x y with thick x y ... | suc y′ = m , anil asnoc Var (unification y′) / x ... | zero = suc m , anil flexFlex {_}{zero} () _ flexRigid : ∀ {tc}{m} (x : Fin m) (t : Type (SVar tc m)) -> Ⓢ (∃(AList tc m)) flexRigid {_}{suc m} x t with check x t ... | suc t′ = suc (m , anil asnoc t′ / x) ... | zero = zero flexRigid {_}{zero} () _ amgu : ∀{tc}{m} → (Eq tc) → (s t : Type (SVar tc m)) → ∃ (AList tc m) → Ⓢ (∃ (AList tc m)) amgu eq (funTy) (funTy) acc = suc acc amgu eq (Var (base a)) (Var (base b)) acc with eq a b ... | true = suc acc ... | false = zero amgu eq (Var (base a)) (funTy) acc = zero amgu eq (funTy) (Var (base b)) acc = zero amgu eq (funTy) (a · b) acc = zero amgu eq (Var (base _)) (a · b) acc = zero amgu eq (a · b) (funTy) acc = zero amgu eq (a · b) (Var (base _)) acc = zero amgu eq (a · b) (a′ · b′) acc = amgu eq a a′ acc >>= amgu eq b b′ where open Monad (Ⓢ-is-monad) amgu eq (Var (unification x)) (Var (unification y)) (m , anil) = suc (flexFlex x y) amgu eq (Var (unification x)) t (m , anil) = flexRigid x t amgu eq t (Var (unification x)) (m , anil) = flexRigid x t amgu eq s t (n , σ asnoc r / z) = Ⓢ-f.map (λ σ → σ ∃asnoc r / z) (amgu eq (s >>= (r for z)) (t >>= (r for z)) (n , σ)) where module Ⓢ-f = Functor (Monad.is-functor Ⓢ-is-monad) open Monad (type-is-monad) mgu : ∀{tc}{m}(eq : Eq tc)(s t : Type (SVar tc m)) → Ⓢ (∃ (AList tc m)) mgu {m = m} eq s t = amgu eq s t (m , anil) prf : ∀ {m n} → m + suc n ≡ suc m + n prf {zero} = refl prf {suc n} = cong suc (prf {n}) prf₂ : ∀ {m} → m + zero ≡ m prf₂ {zero} = refl prf₂ {suc n} = cong suc prf₂ svar-iso₁′ : ∀{m n}{tc} → SVar tc n ⨁ m → SVar tc (m + n) svar-iso₁′ {zero} x = x svar-iso₁′ {suc m}{n}{tc} v = subst (SVar tc) (prf {m}{n}) (svar-iso₁′ {m}{suc n} (pm-f.map ind v)) where module pm-f = Functor (Monad.is-functor (PlusN-is-monad {m})) ind : ∀{tc}{m} → Ⓢ (SVar tc m) → SVar tc (suc m) ind zero = unification zero ind (suc n) with n ... | base v = base v ... | unification x = unification (suc x) svar-iso₂′ : ∀{m}{tc} → Fin m → tc ⨁ m svar-iso₂′ {zero} () svar-iso₂′ {suc n} zero = pn-m.unit zero where module pn-m = Monad (PlusN-is-monad {n}) svar-iso₂′ {suc n} (suc v) = pm-f.map suc (svar-iso₂′ {n} v) where module pm-f = Functor (Monad.is-functor (PlusN-is-monad {n})) svar-iso₁ : ∀{m}{tc} → tc ⨁ m → SVar tc m svar-iso₁ {m}{tc} v = subst (SVar tc) prf₂ (svar-iso₁′ {m}{zero}{tc} (pm-f.map base v)) where module pm-f = Functor (Monad.is-functor (PlusN-is-monad {m})) svar-iso₂ : ∀{m}{tc} → SVar tc m → tc ⨁ m svar-iso₂ {m}{tc} (base v) = pm-m.unit v where module pm-m = Monad (PlusN-is-monad {m}) svar-iso₂ {m}{tc} (unification v) = svar-iso₂′ v open Functor (Monad.is-functor type-is-monad) using () renaming (map to τ-map) mgu′ : ∀{tc}{m}(eq : Eq tc)(s t : Type (tc ⨁ m)) → Ⓢ (∃ (λ n → tc ⨁ m → Type (tc ⨁ n))) mgu′ {tc}{m} eq s t with mgu {tc}{m} eq (τ-map svar-iso₁ s) (τ-map svar-iso₁ t) ... | zero = zero ... | suc (n , al) = suc (n , τ-map svar-iso₂ ∘ sub al ∘ svar-iso₁) data SConstraintShape (x : Set) : Shape → Set where _∼_ : Type x → Type x → SConstraintShape x Nullary ε : SConstraintShape x Nullary _∧′_ : ∀ {a b} → SConstraintShape x a → SConstraintShape x b → SConstraintShape x (Binary a b) applySubst : ∀ {a b}{s} → (a → Type b) → SConstraintShape a s → SConstraintShape b s applySubst f (a ∼ b) = (a >>= f) ∼ (b >>= f) where open Monad (type-is-monad) applySubst f (a ∧′ b) = applySubst f a ∧′ applySubst f b applySubst f (ε) = ε constraint-types : ∀{a b} → (Type a → Type b) → (SConstraint a → SConstraint b) constraint-types f ε = ε constraint-types f (a ∧′ b) = constraint-types f a ∧′ constraint-types f b constraint-types f (a ∼ b) = f a ∼ f b applySubst′ : ∀ {a b} → (a → Type b) → SConstraint a → SConstraint b applySubst′ f (a ∼ b) = (a >>= f) ∼ (b >>= f) where open Monad (type-is-monad) applySubst′ f (a ∧′ b) = applySubst′ f a ∧′ applySubst′ f b applySubst′ f (ε) = ε data AxiomScheme (n : Set) : Set where ax : AxiomScheme n coerceAxioms : ∀ {a b} → AxiomScheme a → AxiomScheme b coerceAxioms ax = ax coerceId : ∀ {x} → isIdentity (coerceAxioms {x} {x}) coerceId {_}{ax} = refl axiom-schemes : AxiomSchemes axiom-schemes = record { AxiomScheme = AxiomScheme ; axiomscheme-types = λ f → coerceAxioms ; axiomscheme-is-functor = record { map = λ f → coerceAxioms; identity = λ f → coerceId; composite = λ { {x = ax} → refl }} } is-ε : ∀ {m} (x : SConstraint m) → Dec (x ≡ ε) is-ε ε = yes refl is-ε (a ∧′ b) = no (λ ()) is-ε (a ∼ b) = no (λ ()) qconstraints : QConstraints qconstraints = record { QConstraint = SConstraint ; qconstraint-is-functor = sconstraint-is-functor ; constraint-types = constraint-types ; _∼_ = _∼_; _∧_ = _∧′_; ε = ε; is-ε = is-ε } open Monad (type-is-monad) hiding (_>=>_) open Functor (type-is-functor) data _,_⊩_ {n : Set}(Q : AxiomScheme n) : SConstraint n → SConstraint n → Set where ent-refl : ∀ {q q′} → Q , (q ∧′ q′) ⊩ q′ ent-trans : ∀ {q q₁ q₂ q₃} → Q , (q ∧′ q₁) ⊩ q₂ → Q , (q ∧′ q₂) ⊩ q₃ → Q , (q ∧′ q₁) ⊩ q₃ ent-typeq-refl : ∀ {q}{τ} → Q , q ⊩ (τ ∼ τ) ent-typeq-sym : ∀ {q}{τ₁ τ₂} → Q , q ⊩ (τ₁ ∼ τ₂) → Q , q ⊩ (τ₂ ∼ τ₁) ent-typeq-trans : ∀ {q}{τ₁ τ₂ τ₃} → Q , q ⊩ (τ₁ ∼ τ₂) → Q , q ⊩ (τ₂ ∼ τ₃) → Q , q ⊩ (τ₁ ∼ τ₃) ent-conj : ∀ {q q₁ q₂} → Q , q ⊩ q₁ → Q , q ⊩ q₂ → Q , q ⊩ (q₁ ∧′ q₂) ent-subst : ∀ {a b}{θ : a → Type b}{Q : AxiomScheme a}{q q₁ q₂ : SConstraint a} → Q , (q ∧′ q₁) ⊩ q₂ → coerceAxioms Q , constraint-types (join ∘ map θ) (q ∧′ q₁) ⊩ constraint-types (join ∘ map θ) q₂ ent-subst ent-refl = ent-refl ent-subst (ent-trans a b) = ent-trans (ent-subst a) (ent-subst b) ent-subst (ent-typeq-refl) = ent-typeq-refl ent-subst (ent-typeq-sym a) = ent-typeq-sym (ent-subst a) ent-subst (ent-typeq-trans a b) = ent-typeq-trans (ent-subst a) (ent-subst b) ent-subst (ent-conj a b) = ent-conj (ent-subst a) (ent-subst b) ent-typeq-subst : ∀ {a b}{Q : AxiomScheme a}{q : SConstraint a}{τ₁ τ₂ : Type a}{θ : a → Type b} → Q , q ⊩ (τ₁ ∼ τ₂) → coerceAxioms Q , constraint-types (join ∘ map θ) q ⊩ ((join ∘ map θ) τ₁ ∼ (join ∘ map θ) τ₂) ent-typeq-subst ent-refl = ent-refl ent-typeq-subst (ent-trans a b) = ent-trans (ent-subst a) (ent-typeq-subst b) ent-typeq-subst (ent-typeq-refl) = ent-typeq-refl ent-typeq-subst (ent-typeq-sym a) = ent-typeq-sym (ent-typeq-subst a) ent-typeq-subst (ent-typeq-trans a b) = ent-typeq-trans (ent-typeq-subst a) (ent-typeq-subst b) shapify : ∀ {a} → SConstraint a → ∃ (SConstraintShape a) shapify (a ∼ b) = Nullary , a ∼ b shapify (a ∧′ b) with shapify a | shapify b ... | r₁ , a′ | r₂ , b′ = Binary r₁ r₂ , a′ ∧′ b′ shapify (ε) = Nullary , ε entailment : Entailment entailment = record { _,_⊩_ = _,_⊩_ ; ent-refl = ent-refl ; ent-trans = ent-trans ; ent-subst = ent-subst ; ent-typeq-refl = ent-typeq-refl ; ent-typeq-sym = ent-typeq-sym ; ent-typeq-trans = ent-typeq-trans ; ent-typeq-subst = ent-typeq-subst ; ent-conj = ent-conj } open SimplificationPrelude ⦃ types ⦄ ⦃ axiom-schemes ⦄ ⦃ qconstraints ⦄ ⦃ entailment ⦄ constraint : ∀{s}{tc}{m} → Eq tc → SConstraintShape (tc ⨁ m) s → SimplifierResult tc m constraint {Unary _} _ () constraint {Nullary}{m = m} _ ε = m , ε , solved ε Var constraint {Nullary}{tc}{m} eq (a ∼ b) = convert (mgu′ {tc}{m} eq a b) where convert : Ⓢ (∃ (λ n → tc ⨁ m → Type (tc ⨁ n))) → SimplifierResult tc m convert (suc (n , θ)) = n , ε , solved ε θ convert zero = m , (a ∼ b) , solved _ Var constraint {Binary r₁ r₂}{tc}{m} eq (a ∧′ b) = convert (constraint {r₁}{tc}{m} eq a) where open Monad (type-is-monad) _special-∧_ : ∀ {n} → SConstraint n → SConstraint n → SConstraint n ε special-∧ n = n n special-∧ ε = n n special-∧ m = n ∧′ m convert : SimplifierResult tc m → SimplifierResult tc m convert (n , Qr , solved .Qr θ) = convert′ ( constraint {r₂}{tc}{n} eq (applySubst θ b)) where convert′ : SimplifierResult tc n → SimplifierResult tc m convert′ (n′ , Qr′ , solved .Qr′ θ′) = n′ , Qr′ special-∧ applySubst′ θ′ Qr , solved _ (θ′ >=> θ) simplifier : {x : Set} → Eq x → (n : ℕ) → AxiomScheme x → SConstraint x → SConstraint (x ⨁ n) → SimplifierResult x n simplifier {x} eq n ax con₁ con₂ with shapify con₂ ... | r , v = constraint {r}{x}{n} eq v postulate simplifier-sound : {x : Set} {n : ℕ} {eq : Eq x} (Q : AxiomScheme x) (Qg : SConstraint x) (Qw : SConstraint (x ⨁ n)) → IsSound Q Qg Qw (simplifier eq n Q Qg Qw) simplification : Simplification simplification = record {simplifier = simplifier; simplifier-sound = λ {x}{n}{eq} → simplifier-sound {x}{n}{eq} } Simple : (ℕ → Set) → X Simple dc = record { dc = dc ; types = types ; axiom-schemes = axiom-schemes ; qconstraints = qconstraints ; entailment = entailment ; simplification = simplification }
{ "alphanum_fraction": 0.504001549, "avg_line_length": 41.2074468085, "ext": "agda", "hexsha": "68761acb11bb8328f5cdf199d0e8f6713d408cb8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fc1fc1bba2af95806d9075296f9ed1074afa4c24", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "liamoc/outside-in", "max_forks_repo_path": "OutsideIn/Instantiations/Simple.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fc1fc1bba2af95806d9075296f9ed1074afa4c24", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "liamoc/outside-in", "max_issues_repo_path": "OutsideIn/Instantiations/Simple.agda", "max_line_length": 200, "max_stars_count": 2, "max_stars_repo_head_hexsha": "fc1fc1bba2af95806d9075296f9ed1074afa4c24", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "liamoc/outside-in", "max_stars_repo_path": "OutsideIn/Instantiations/Simple.agda", "max_stars_repo_stars_event_max_datetime": "2020-11-19T14:30:07.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-14T05:22:15.000Z", "num_tokens": 5840, "size": 15494 }
{-# OPTIONS --without-K #-} module Library where open import Data.Product using ( Σ ; Σ-syntax ; _×_ ) public open import Function using () renaming ( id to λ-id ; _∘_ to λ-comp ; flip to λ-flip ) public open import Level using ( Level ) renaming ( zero to ℓ-zero ; suc to ℓ-suc ; _⊔_ to ℓ-max ) public open import Relation.Binary.Core using ( Rel ) public open import Relation.Unary using ( Pred ) public open import Relation.Binary.PropositionalEquality using ( _≡_ ; module ≡-Reasoning ) renaming ( refl to ≡-refl ; sym to ≡-sym ; trans to ≡-trans) public open ≡-Reasoning using ( _≡⟨_⟩_ ) renaming ( begin_ to ≡-proof_ ; _∎ to _≡-qed ) public
{ "alphanum_fraction": 0.5655430712, "avg_line_length": 18.6279069767, "ext": "agda", "hexsha": "1ea56a263b5a1acd8c76378f831cfb3659b6b2c4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "045f2ab8a40c1b87f578ef12c0d1e10d131b7da3", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "gunpinyo/agda-cat", "max_forks_repo_path": "src/Library.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "045f2ab8a40c1b87f578ef12c0d1e10d131b7da3", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "gunpinyo/agda-cat", "max_issues_repo_path": "src/Library.agda", "max_line_length": 49, "max_stars_count": null, "max_stars_repo_head_hexsha": "045f2ab8a40c1b87f578ef12c0d1e10d131b7da3", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "gunpinyo/agda-cat", "max_stars_repo_path": "src/Library.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 253, "size": 801 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Sublist-related properties ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Relation.Binary.Sublist.Propositional.Properties {a} {A : Set a} where open import Data.List.Base using (List; []; _∷_; map) open import Data.List.Membership.Propositional using (_∈_) open import Data.List.Relation.Unary.All using (All; []; _∷_) open import Data.List.Relation.Unary.Any using (Any; here; there) open import Data.List.Relation.Unary.Any.Properties using (here-injective; there-injective) open import Data.List.Relation.Binary.Sublist.Propositional hiding (map) import Data.List.Relation.Binary.Sublist.Setoid.Properties as SetoidProperties open import Data.Product using (∃; _,_; proj₂) open import Function.Base open import Level using (Level) open import Relation.Binary using (_Respects_) open import Relation.Binary.PropositionalEquality open import Relation.Unary using (Pred) private variable b ℓ : Level B : Set b ------------------------------------------------------------------------ -- Re-exporting setoid properties open SetoidProperties (setoid A) public hiding (map⁺) map⁺ : ∀ {as bs} (f : A → B) → as ⊆ bs → map f as ⊆ map f bs map⁺ {B = B} f = SetoidProperties.map⁺ (setoid A) (setoid B) (cong f) ------------------------------------------------------------------------ -- Category laws for _⊆_ ⊆-trans-idˡ : ∀ {xs ys : List A} {τ : xs ⊆ ys} → ⊆-trans ⊆-refl τ ≡ τ ⊆-trans-idˡ {_} {τ = [] } = refl ⊆-trans-idˡ {_} {τ = _ ∷ _} = cong (_ ∷_ ) ⊆-trans-idˡ ⊆-trans-idˡ {[]} {τ = _ ∷ʳ _} = cong (_ ∷ʳ_) ⊆-trans-idˡ ⊆-trans-idˡ {_ ∷ _} {τ = _ ∷ʳ _} = cong (_ ∷ʳ_) ⊆-trans-idˡ ⊆-trans-idʳ : ∀ {xs ys : List A} {τ : xs ⊆ ys} → ⊆-trans τ ⊆-refl ≡ τ ⊆-trans-idʳ {τ = [] } = refl ⊆-trans-idʳ {τ = _ ∷ʳ _ } = cong (_ ∷ʳ_ ) ⊆-trans-idʳ ⊆-trans-idʳ {τ = refl ∷ _} = cong (refl ∷_) ⊆-trans-idʳ -- Note: The associativity law is oriented such that rewriting with it -- may trigger reductions of ⊆-trans, which matches first on its -- second argument and then on its first argument. ⊆-trans-assoc : ∀ {ws xs ys zs : List A} {τ₁ : ws ⊆ xs} {τ₂ : xs ⊆ ys} {τ₃ : ys ⊆ zs} → ⊆-trans τ₁ (⊆-trans τ₂ τ₃) ≡ ⊆-trans (⊆-trans τ₁ τ₂) τ₃ ⊆-trans-assoc {τ₁ = _} {_} {_ ∷ʳ _} = cong (_ ∷ʳ_) ⊆-trans-assoc ⊆-trans-assoc {τ₁ = _} {_ ∷ʳ _} {_ ∷ _} = cong (_ ∷ʳ_) ⊆-trans-assoc ⊆-trans-assoc {τ₁ = _ ∷ʳ _ } {_ ∷ _} {_ ∷ _} = cong (_ ∷ʳ_) ⊆-trans-assoc ⊆-trans-assoc {τ₁ = refl ∷ _} {_ ∷ _} {_ ∷ _} = cong (_ ∷_ ) ⊆-trans-assoc ⊆-trans-assoc {τ₁ = []} {[]} {[]} = refl ------------------------------------------------------------------------ -- Laws concerning ⊆-trans and ∷ˡ⁻ ⊆-trans-∷ˡ⁻ᵣ : ∀ {y} {xs ys zs : List A} {τ : xs ⊆ ys} {σ : (y ∷ ys) ⊆ zs} → ⊆-trans τ (∷ˡ⁻ σ) ≡ ⊆-trans (y ∷ʳ τ) σ ⊆-trans-∷ˡ⁻ᵣ {σ = x ∷ σ} = refl ⊆-trans-∷ˡ⁻ᵣ {σ = y ∷ʳ σ} = cong (y ∷ʳ_) ⊆-trans-∷ˡ⁻ᵣ ⊆-trans-∷ˡ⁻ₗ : ∀ {x} {xs ys zs : List A} {τ : (x ∷ xs) ⊆ ys} {σ : ys ⊆ zs} → ⊆-trans (∷ˡ⁻ τ) σ ≡ ∷ˡ⁻ (⊆-trans τ σ) ⊆-trans-∷ˡ⁻ₗ {σ = y ∷ʳ σ} = cong (y ∷ʳ_) ⊆-trans-∷ˡ⁻ₗ ⊆-trans-∷ˡ⁻ₗ {τ = y ∷ʳ τ} {σ = refl ∷ σ} = cong (y ∷ʳ_) ⊆-trans-∷ˡ⁻ₗ ⊆-trans-∷ˡ⁻ₗ {τ = refl ∷ τ} {σ = refl ∷ σ} = refl ⊆-∷ˡ⁻trans-∷ : ∀ {y} {xs ys zs : List A} {τ : xs ⊆ ys} {σ : (y ∷ ys) ⊆ zs} → ∷ˡ⁻ (⊆-trans (refl ∷ τ) σ) ≡ ⊆-trans (y ∷ʳ τ) σ ⊆-∷ˡ⁻trans-∷ {σ = y ∷ʳ σ} = cong (y ∷ʳ_) ⊆-∷ˡ⁻trans-∷ ⊆-∷ˡ⁻trans-∷ {σ = refl ∷ σ} = refl ------------------------------------------------------------------------ -- Relationships to other predicates -- All P is a contravariant functor from _⊆_ to Set. All-resp-⊆ : {P : Pred A ℓ} → (All P) Respects _⊇_ All-resp-⊆ [] [] = [] All-resp-⊆ (_ ∷ʳ p) (_ ∷ xs) = All-resp-⊆ p xs All-resp-⊆ (refl ∷ p) (x ∷ xs) = x ∷ All-resp-⊆ p xs -- Any P is a covariant functor from _⊆_ to Set. Any-resp-⊆ : {P : Pred A ℓ} → (Any P) Respects _⊆_ Any-resp-⊆ = lookup ------------------------------------------------------------------------ -- Functor laws for All-resp-⊆ -- First functor law: identity. All-resp-⊆-refl : ∀ {P : Pred A ℓ} {xs : List A} → All-resp-⊆ ⊆-refl ≗ id {A = All P xs} All-resp-⊆-refl [] = refl All-resp-⊆-refl (p ∷ ps) = cong (p ∷_) (All-resp-⊆-refl ps) -- Second functor law: composition. All-resp-⊆-trans : ∀ {P : Pred A ℓ} {xs ys zs} {τ : xs ⊆ ys} (τ′ : ys ⊆ zs) → All-resp-⊆ {P = P} (⊆-trans τ τ′) ≗ All-resp-⊆ τ ∘ All-resp-⊆ τ′ All-resp-⊆-trans (_ ∷ʳ τ′) (p ∷ ps) = All-resp-⊆-trans τ′ ps All-resp-⊆-trans {τ = _ ∷ʳ _ } (refl ∷ τ′) (p ∷ ps) = All-resp-⊆-trans τ′ ps All-resp-⊆-trans {τ = refl ∷ _} (refl ∷ τ′) (p ∷ ps) = cong (p ∷_) (All-resp-⊆-trans τ′ ps) All-resp-⊆-trans {τ = [] } ([] ) [] = refl ------------------------------------------------------------------------ -- Functor laws for Any-resp-⊆ / lookup -- First functor law: identity. Any-resp-⊆-refl : ∀ {P : Pred A ℓ} {xs} → Any-resp-⊆ ⊆-refl ≗ id {A = Any P xs} Any-resp-⊆-refl (here p) = refl Any-resp-⊆-refl (there i) = cong there (Any-resp-⊆-refl i) lookup-⊆-refl = Any-resp-⊆-refl -- Second functor law: composition. Any-resp-⊆-trans : ∀ {P : Pred A ℓ} {xs ys zs} {τ : xs ⊆ ys} (τ′ : ys ⊆ zs) → Any-resp-⊆ {P = P} (⊆-trans τ τ′) ≗ Any-resp-⊆ τ′ ∘ Any-resp-⊆ τ Any-resp-⊆-trans (_ ∷ʳ τ′) i = cong there (Any-resp-⊆-trans τ′ i) Any-resp-⊆-trans {τ = _ ∷ʳ _} (_ ∷ τ′) i = cong there (Any-resp-⊆-trans τ′ i) Any-resp-⊆-trans {τ = _ ∷ _} (_ ∷ τ′) (there i) = cong there (Any-resp-⊆-trans τ′ i) Any-resp-⊆-trans {τ = refl ∷ _} (_ ∷ τ′) (here _) = refl Any-resp-⊆-trans {τ = [] } [] () lookup-⊆-trans = Any-resp-⊆-trans ------------------------------------------------------------------------ -- The `lookup` function for `xs ⊆ ys` is injective. -- -- Note: `lookup` can be seen as a strictly increasing reindexing function -- for indices into `xs`, producing indices into `ys`. lookup-injective : ∀ {P : Pred A ℓ} {xs ys} {τ : xs ⊆ ys} {i j : Any P xs} → lookup τ i ≡ lookup τ j → i ≡ j lookup-injective {τ = _ ∷ʳ _} = lookup-injective ∘′ there-injective lookup-injective {τ = x≡y ∷ _} {here _} {here _} = cong here ∘′ subst-injective x≡y ∘′ here-injective -- Note: instead of using subst-injective, we could match x≡y against refl on the lhs. -- However, this turns the following clause into a non-strict match. lookup-injective {τ = _ ∷ _} {there _} {there _} = cong there ∘′ lookup-injective ∘′ there-injective ------------------------------------------------------------------------- -- from∈ ∘ to∈ turns a sublist morphism τ : x∷xs ⊆ ys into a morphism -- [x] ⊆ ys. The same morphism is obtained by pre-composing τ with -- the canonial morphism [x] ⊆ x∷xs. -- -- Note: This lemma does not hold for Sublist.Setoid, but could hold for -- a hypothetical Sublist.Groupoid where trans refl = id. from∈∘to∈ : ∀ {x : A} {xs ys} (τ : x ∷ xs ⊆ ys) → from∈ (to∈ τ) ≡ ⊆-trans (refl ∷ minimum xs) τ from∈∘to∈ (x≡y ∷ τ) = cong (x≡y ∷_) ([]⊆-irrelevant _ _) from∈∘to∈ (y ∷ʳ τ) = cong (y ∷ʳ_) (from∈∘to∈ τ) from∈∘lookup : ∀{x : A} {xs ys} (τ : xs ⊆ ys) (i : x ∈ xs) → from∈ (lookup τ i) ≡ ⊆-trans (from∈ i) τ from∈∘lookup (y ∷ʳ τ) i = cong (y ∷ʳ_) (from∈∘lookup τ i) from∈∘lookup (_ ∷ τ) (there i) = cong (_ ∷ʳ_) (from∈∘lookup τ i) from∈∘lookup (refl ∷ τ) (here refl) = cong (refl ∷_) ([]⊆-irrelevant _ _) ------------------------------------------------------------------------ -- Weak pushout (wpo) -- A raw pushout is a weak pushout if the pushout square commutes. IsWeakPushout : ∀{xs ys zs : List A} {τ : xs ⊆ ys} {σ : xs ⊆ zs} → RawPushout τ σ → Set a IsWeakPushout {τ = τ} {σ = σ} rpo = ⊆-trans τ (RawPushout.leg₁ rpo) ≡ ⊆-trans σ (RawPushout.leg₂ rpo) -- Joining two list extensions with ⊆-pushout produces a weak pushout. ⊆-pushoutˡ-is-wpo : ∀{xs ys zs : List A} (τ : xs ⊆ ys) (σ : xs ⊆ zs) → IsWeakPushout (⊆-pushoutˡ τ σ) ⊆-pushoutˡ-is-wpo [] σ rewrite ⊆-trans-idʳ {τ = σ} = ⊆-trans-idˡ {xs = []} ⊆-pushoutˡ-is-wpo (y ∷ʳ τ) σ = cong (y ∷ʳ_) (⊆-pushoutˡ-is-wpo τ σ) ⊆-pushoutˡ-is-wpo (x≡y ∷ τ) (z ∷ʳ σ) = cong (z ∷ʳ_) (⊆-pushoutˡ-is-wpo (x≡y ∷ τ) σ) ⊆-pushoutˡ-is-wpo (refl ∷ τ) (refl ∷ σ) = cong (refl ∷_) (⊆-pushoutˡ-is-wpo τ σ) ------------------------------------------------------------------------ -- Properties of disjointness -- From τ₁ ⊎ τ₂ = τ, compute the injection ι₁ such that τ₁ = ⊆-trans ι₁ τ. DisjointUnion-inj₁ : ∀ {xs ys zs xys : List A} {τ₁ : xs ⊆ zs} {τ₂ : ys ⊆ zs} {τ : xys ⊆ zs} → DisjointUnion τ₁ τ₂ τ → ∃ λ (ι₁ : xs ⊆ xys) → ⊆-trans ι₁ τ ≡ τ₁ DisjointUnion-inj₁ [] = [] , refl DisjointUnion-inj₁ (y ∷ₙ d) = _ , cong (y ∷ʳ_) (proj₂ (DisjointUnion-inj₁ d)) DisjointUnion-inj₁ (x≈y ∷ₗ d) = refl ∷ _ , cong (x≈y ∷_) (proj₂ (DisjointUnion-inj₁ d)) DisjointUnion-inj₁ (x≈y ∷ᵣ d) = _ ∷ʳ _ , cong (_ ∷ʳ_) (proj₂ (DisjointUnion-inj₁ d)) -- From τ₁ ⊎ τ₂ = τ, compute the injection ι₂ such that τ₂ = ⊆-trans ι₂ τ. DisjointUnion-inj₂ : ∀ {xs ys zs xys : List A} {τ₁ : xs ⊆ zs} {τ₂ : ys ⊆ zs} {τ : xys ⊆ zs} → DisjointUnion τ₁ τ₂ τ → ∃ λ (ι₂ : ys ⊆ xys) → ⊆-trans ι₂ τ ≡ τ₂ DisjointUnion-inj₂ [] = [] , refl DisjointUnion-inj₂ (y ∷ₙ d) = _ , cong (y ∷ʳ_) (proj₂ (DisjointUnion-inj₂ d)) DisjointUnion-inj₂ (x≈y ∷ᵣ d) = refl ∷ _ , cong (x≈y ∷_) (proj₂ (DisjointUnion-inj₂ d)) DisjointUnion-inj₂ (x≈y ∷ₗ d) = _ ∷ʳ _ , cong (_ ∷ʳ_) (proj₂ (DisjointUnion-inj₂ d)) -- A sublist σ disjoint to both τ₁ and τ₂ is an equalizer -- for the separators of τ₁ and τ₂. equalize-separators : ∀ {us xs ys zs : List A} {σ : us ⊆ zs} {τ₁ : xs ⊆ zs} {τ₂ : ys ⊆ zs} (let s = separateˡ τ₁ τ₂) → Disjoint σ τ₁ → Disjoint σ τ₂ → ⊆-trans σ (Separation.separator₁ s) ≡ ⊆-trans σ (Separation.separator₂ s) equalize-separators [] [] = refl equalize-separators (y ∷ₙ d₁) (.y ∷ₙ d₂) = cong (y ∷ʳ_) (equalize-separators d₁ d₂) equalize-separators (y ∷ₙ d₁) (refl ∷ᵣ d₂) = cong (y ∷ʳ_) (equalize-separators d₁ d₂) equalize-separators (refl ∷ᵣ d₁) (y ∷ₙ d₂) = cong (y ∷ʳ_) (equalize-separators d₁ d₂) equalize-separators {τ₁ = refl ∷ _} {τ₂ = refl ∷ _} -- match here to work around deficiency of Agda's forcing translation (_ ∷ᵣ d₁) (_ ∷ᵣ d₂) = cong (_ ∷ʳ_) (cong (_ ∷ʳ_) (equalize-separators d₁ d₂)) equalize-separators (x≈y ∷ₗ d₁) (.x≈y ∷ₗ d₂) = cong (trans x≈y refl ∷_) (equalize-separators d₁ d₂)
{ "alphanum_fraction": 0.5119343839, "avg_line_length": 45.2125, "ext": "agda", "hexsha": "eccafee9250b34bd01e863c0bd8605981181c9e1", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/List/Relation/Binary/Sublist/Propositional/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/List/Relation/Binary/Sublist/Propositional/Properties.agda", "max_line_length": 122, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/List/Relation/Binary/Sublist/Propositional/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 4506, "size": 10851 }
{-# OPTIONS --safe --warning=error --without-K #-} open import Numbers.ClassicalReals.RealField open import LogicalFormulae open import Setoids.Subset open import Setoids.Setoids open import Setoids.Orders.Partial.Definition open import Sets.EquivalenceRelations open import Rings.Orders.Partial.Definition open import Rings.Definition open import Fields.Fields open import Groups.Definition open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order open import Functions.Definition module Numbers.Intervals.Arithmetic {a b c : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} {_<_ : Rel {_} {c} A} {R : Ring S _+_ _*_} {pOrder : SetoidPartialOrder S _<_} (pRing : PartiallyOrderedRing R pOrder) where open import Numbers.Intervals.Definition pRing open import Rings.Orders.Partial.Lemmas pRing open Ring R open Group additiveGroup open PartiallyOrderedRing pRing open Setoid S open Equivalence eq open SetoidPartialOrder pOrder intervalSum : OpenInterval → OpenInterval → OpenInterval intervalSum record { minBound = a ; maxBound = b } record { minBound = c ; maxBound = d } = record { minBound = a + c ; maxBound = b + d } intervalConstantSum : OpenInterval → A → OpenInterval intervalConstantSum record { minBound = x ; maxBound = y } a = record { minBound = x + a ; maxBound = y + a } intervalSumContains : {a b : A} → {i j : OpenInterval} → isInInterval a i → isInInterval b j → isInInterval (a + b) (intervalSum i j) intervalSumContains (fst1 ,, snd1) (fst2 ,, snd2) = ringAddInequalities fst1 fst2 ,, ringAddInequalities snd1 snd2 intervalConstantProduct : OpenInterval → (a : A) → (0R < a) → OpenInterval intervalConstantProduct record { minBound = minBound ; maxBound = maxBound } a 0<a = record { minBound = minBound * a ; maxBound = maxBound * a } intervalInverse : OpenInterval → OpenInterval intervalInverse record { minBound = b ; maxBound = c } = record { minBound = inverse c ; maxBound = inverse b } intervalConstantSumContains : {a : A} {i : OpenInterval} (c : A) → isInInterval a i → isInInterval (a + c) (intervalConstantSum i c) intervalConstantSumContains c (fst ,, snd) = orderRespectsAddition fst c ,, orderRespectsAddition snd c intervalConstantProductContains : {a : A} {i : OpenInterval} {c : A} → (0<c : 0R < c) → isInInterval a i → isInInterval (a * c) (intervalConstantProduct i c 0<c) intervalConstantProductContains {a} {i} 0<c ai = ringCanMultiplyByPositive 0<c (_&&_.fst ai) ,, ringCanMultiplyByPositive 0<c (_&&_.snd ai) intervalInverseContains : {a : A} {i : OpenInterval} → isInInterval a i → isInInterval (inverse a) (intervalInverse i) intervalInverseContains (less ,, greater) = ringSwapNegatives' greater ,, ringSwapNegatives' less intervalEquality : OpenInterval → OpenInterval → Set b intervalEquality record { minBound = minBound1 ; maxBound = maxBound1 } record { minBound = minBound ; maxBound = maxBound } = (minBound1 ∼ minBound) && (maxBound1 ∼ maxBound) intervalWellDefined : {a : A} {i j : OpenInterval} → intervalEquality i j → isInInterval a i → isInInterval a j intervalWellDefined (eq1 ,, eq2) (fst ,, snd) = <WellDefined eq1 reflexive fst ,, <WellDefined reflexive eq2 snd intervalWellDefined' : {a b : A} {i : OpenInterval} → a ∼ b → isInInterval a i → isInInterval b i intervalWellDefined' a=b (fst ,, snd) = <WellDefined reflexive a=b fst ,, <WellDefined a=b reflexive snd increaseBoundAbove : {a minB maxB : A} → isInInterval a record { minBound = minB ; maxBound = maxB } → {bigger : A} → maxB < bigger → isInInterval a record { minBound = minB ; maxBound = bigger } increaseBoundAbove (fst ,, snd) m<b = fst ,, <Transitive snd m<b
{ "alphanum_fraction": 0.7336268575, "avg_line_length": 57.6825396825, "ext": "agda", "hexsha": "95198cbeeb3b6095e95aaed35ceb50296a0857fa", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Numbers/Intervals/Arithmetic.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Numbers/Intervals/Arithmetic.agda", "max_line_length": 229, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Numbers/Intervals/Arithmetic.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 1033, "size": 3634 }
module SystemF.BigStep.Extrinsic where open import SystemF.BigStep.Types open import SystemF.BigStep.Extrinsic.Terms open import SystemF.BigStep.Extrinsic.Welltyped open import SystemF.BigStep.Extrinsic.Semantics
{ "alphanum_fraction": 0.8644859813, "avg_line_length": 30.5714285714, "ext": "agda", "hexsha": "25a0e3ab36f78d889a31d1775334c1fdb61dce88", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/SystemF/BigStep/Extrinsic.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/SystemF/BigStep/Extrinsic.agda", "max_line_length": 47, "max_stars_count": null, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/SystemF/BigStep/Extrinsic.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 53, "size": 214 }
open import Nat open import Prelude open import contexts open import core open import canonical-value-forms module canonical-boxed-forms where canonical-boxed-forms-b : ∀{Δ d} → Δ , ∅ ⊢ d :: b → d boxedval → d == c canonical-boxed-forms-b (TAVar _) (BVVal ()) canonical-boxed-forms-b wt (BVVal v) = canonical-value-forms-b wt v -- this type gives somewhat nicer syntax for the output of the canonical -- forms lemma for boxed values at arrow type data cbf-arr : (Δ : hctx) (d : iexp) (τ1 τ2 : typ) → Set where CBFLam : ∀{Δ d τ1 τ2} → (Σ[ x ∈ Nat ] Σ[ d' ∈ iexp ] (d == (·λ x [ τ1 ] d') × Δ , ■ (x , τ1) ⊢ d' :: τ2)) → cbf-arr Δ d τ1 τ2 CBFCastArr : ∀{Δ d τ1 τ2} → (Σ[ d' ∈ iexp ] Σ[ τ1' ∈ typ ] Σ[ τ2' ∈ typ ] (d == (d' ⟨ τ1' ==> τ2' ⇒ τ1 ==> τ2 ⟩) × (τ1' ==> τ2' ≠ τ1 ==> τ2) × (Δ , ∅ ⊢ d' :: τ1' ==> τ2'))) → cbf-arr Δ d τ1 τ2 data cbf-prod : (Δ : hctx) (d : iexp) (τ1 τ2 : typ) → Set where CBFPairVal : ∀{Δ d τ1 τ2} → (Σ[ d1 ∈ iexp ] Σ[ d2 ∈ iexp ] (d == ⟨ d1 , d2 ⟩ × Δ , ∅ ⊢ d1 :: τ1 × Δ , ∅ ⊢ d2 :: τ2 × d1 val × d2 val)) → cbf-prod Δ d τ1 τ2 CBFPairBV : ∀{Δ d τ1 τ2} → (Σ[ d1 ∈ iexp ] Σ[ d2 ∈ iexp ] (d == ⟨ d1 , d2 ⟩ × Δ , ∅ ⊢ d1 :: τ1 × Δ , ∅ ⊢ d2 :: τ2 × d1 boxedval × d2 boxedval )) → cbf-prod Δ d τ1 τ2 CBFCastProd : ∀{Δ d τ1 τ2} → (Σ[ d' ∈ iexp ] Σ[ τ1' ∈ typ ] Σ[ τ2' ∈ typ ] (d == (d' ⟨ τ1' ⊗ τ2' ⇒ τ1 ⊗ τ2 ⟩) × (τ1' ⊗ τ2' ≠ τ1 ⊗ τ2) × (τ1' ⊗ τ2' ~ τ1 ⊗ τ2) × (d' boxedval) × (Δ , ∅ ⊢ d' :: τ1' ⊗ τ2'))) → cbf-prod Δ d τ1 τ2 canonical-boxed-forms-arr : ∀{Δ d τ1 τ2 } → Δ , ∅ ⊢ d :: (τ1 ==> τ2) → d boxedval → cbf-arr Δ d τ1 τ2 canonical-boxed-forms-arr (TAVar x₁) (BVVal ()) canonical-boxed-forms-arr (TALam f wt) (BVVal v) = CBFLam (canonical-value-forms-arr (TALam f wt) v) canonical-boxed-forms-arr (TAAp wt wt₁) (BVVal ()) canonical-boxed-forms-arr (TAEHole x x₁) (BVVal ()) canonical-boxed-forms-arr (TANEHole x wt x₁) (BVVal ()) canonical-boxed-forms-arr (TACast wt x) (BVVal ()) canonical-boxed-forms-arr (TACast wt x) (BVArrCast x₁ bv) = CBFCastArr (_ , _ , _ , refl , x₁ , wt) canonical-boxed-forms-arr (TAFailedCast x x₁ x₂ x₃) (BVVal ()) canonical-boxed-forms-arr (TAFst wt) (BVVal ()) canonical-boxed-forms-arr (TASnd wt) (BVVal ()) canonical-boxed-forms-hole : ∀{Δ d} → Δ , ∅ ⊢ d :: ⦇·⦈ → d boxedval → Σ[ d' ∈ iexp ] Σ[ τ' ∈ typ ] ((d == d' ⟨ τ' ⇒ ⦇·⦈ ⟩) × (τ' ground) × (Δ , ∅ ⊢ d' :: τ')) canonical-boxed-forms-hole (TAVar x₁) (BVVal ()) canonical-boxed-forms-hole (TAAp wt wt₁) (BVVal ()) canonical-boxed-forms-hole (TAEHole x x₁) (BVVal ()) canonical-boxed-forms-hole (TANEHole x wt x₁) (BVVal ()) canonical-boxed-forms-hole (TACast wt x) (BVVal ()) canonical-boxed-forms-hole (TACast wt x) (BVHoleCast x₁ bv) = _ , _ , refl , x₁ , wt canonical-boxed-forms-hole (TAFailedCast x x₁ x₂ x₃) (BVVal ()) canonical-boxed-forms-hole (TAFst wt) (BVVal ()) canonical-boxed-forms-hole (TASnd wt) (BVVal ()) canonical-boxed-forms-prod : ∀{Δ d τ1 τ2 } → Δ , ∅ ⊢ d :: (τ1 ⊗ τ2) → d boxedval → cbf-prod Δ d τ1 τ2 canonical-boxed-forms-prod (TAVar x₁) (BVVal ()) canonical-boxed-forms-prod (TAAp wt wt₁) (BVVal ()) canonical-boxed-forms-prod (TAEHole x x₁) (BVVal ()) canonical-boxed-forms-prod (TANEHole x wt x₁) (BVVal ()) canonical-boxed-forms-prod (TACast wt x) (BVVal ()) canonical-boxed-forms-prod (TACast wt x) (BVProdCast x₁ bv) = CBFCastProd (_ , _ , _ , refl , x₁ , x , bv , wt) canonical-boxed-forms-prod (TAFailedCast wt x x₁ x₂) (BVVal ()) canonical-boxed-forms-prod (TAFst wt) (BVVal ()) canonical-boxed-forms-prod (TASnd wt) (BVVal ()) canonical-boxed-forms-prod (TAPair wt wt₁) (BVVal (VPair x x₁)) = CBFPairVal (_ , _ , refl , wt , wt₁ , x , x₁) canonical-boxed-forms-prod (TAPair wt wt₁) (BVPair bv bv₁) = CBFPairBV (_ , _ , refl , wt , wt₁ , bv , bv₁) canonical-boxed-forms-coverage : ∀{Δ d τ} → Δ , ∅ ⊢ d :: τ → d boxedval → τ ≠ b → ((τ1 : typ) (τ2 : typ) → τ ≠ (τ1 ==> τ2)) → τ ≠ ⦇·⦈ → ((τ1 : typ) (τ2 : typ) → τ ≠ (τ1 ⊗ τ2)) → ⊥ canonical-boxed-forms-coverage TAConst (BVVal x) nb na nh = λ _ → nb refl canonical-boxed-forms-coverage (TAVar x₁) (BVVal ()) nb na nh canonical-boxed-forms-coverage (TALam _ wt) (BVVal x₁) nb na nh = λ _ → na _ _ refl canonical-boxed-forms-coverage (TAAp wt wt₁) (BVVal ()) nb na nh canonical-boxed-forms-coverage (TAEHole x x₁) (BVVal ()) nb na nh canonical-boxed-forms-coverage (TANEHole x wt x₁) (BVVal ()) nb na nh canonical-boxed-forms-coverage (TACast wt x) (BVVal ()) nb na nh canonical-boxed-forms-coverage (TACast wt x) (BVArrCast x₁ bv) nb na nh = λ _ → na _ _ refl canonical-boxed-forms-coverage (TACast wt x) (BVHoleCast x₁ bv) nb na nh = λ _ → nh refl canonical-boxed-forms-coverage (TAFailedCast x x₁ x₂ x₃) (BVVal ()) canonical-boxed-forms-coverage (TACast wt x) (BVProdCast x₁ bv) nb na nh = λ z → z _ _ refl canonical-boxed-forms-coverage (TAFst wt) (BVVal ()) nb na nh canonical-boxed-forms-coverage (TASnd wt) (BVVal ()) nb na nh canonical-boxed-forms-coverage (TAPair wt wt₁) (BVVal x) nb na nh = λ z → z _ _ refl canonical-boxed-forms-coverage (TAPair wt wt₁) (BVPair bv bv₁) nb na nh = λ z → z _ _ refl
{ "alphanum_fraction": 0.5002402691, "avg_line_length": 49.157480315, "ext": "agda", "hexsha": "4a6b6f7977435f850e3fdcc0f63ee0ef18c27d40", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c3225acc3c94c56376c6842b82b8b5d76912df2a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnut-livelits-agda", "max_forks_repo_path": "canonical-boxed-forms.agda", "max_issues_count": 9, "max_issues_repo_head_hexsha": "c3225acc3c94c56376c6842b82b8b5d76912df2a", "max_issues_repo_issues_event_max_datetime": "2020-10-20T20:44:13.000Z", "max_issues_repo_issues_event_min_datetime": "2020-09-30T20:27:56.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazel-palette-agda", "max_issues_repo_path": "canonical-boxed-forms.agda", "max_line_length": 113, "max_stars_count": 4, "max_stars_repo_head_hexsha": "c3225acc3c94c56376c6842b82b8b5d76912df2a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazel-palette-agda", "max_stars_repo_path": "canonical-boxed-forms.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-19T15:38:31.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-04T06:45:06.000Z", "num_tokens": 2246, "size": 6243 }
module Languages.FILL.Intermediate where open import Utils.HaskellTypes open import Languages.FILL.TypeSyntax {-# IMPORT Languages.FILL.Intermediate #-} data IPattern : Set where PTriv : IPattern PVar : String → IPattern PTensor : IPattern → IPattern → IPattern PPar : IPattern → IPattern → IPattern {-# COMPILED_DATA IPattern Languages.FILL.Intermediate.IPattern Languages.FILL.Intermediate.PTriv Languages.FILL.Intermediate.PVar Languages.FILL.Intermediate.PTensor Languages.FILL.Intermediate.PPar #-} data ITerm : Set where Var : String → ITerm Triv : ITerm Void : ITerm TTensor : ITerm → ITerm → ITerm TPar : ITerm → ITerm → ITerm Lam : String → Type → ITerm → ITerm Let : ITerm → Type → IPattern → ITerm → ITerm App : ITerm → ITerm → ITerm {-# COMPILED_DATA ITerm Languages.FILL.Intermediate.ITerm Languages.FILL.Intermediate.Var Languages.FILL.Intermediate.Triv Languages.FILL.Intermediate.Void Languages.FILL.Intermediate.TTensor Languages.FILL.Intermediate.TPar Languages.FILL.Intermediate.Lam Languages.FILL.Intermediate.Let Languages.FILL.Intermediate.App #-}
{ "alphanum_fraction": 0.60397445, "avg_line_length": 38.0810810811, "ext": "agda", "hexsha": "2d1fc5b2d83ee88a7b16b7a8fc932149bbdcc87a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c83f5d8201362b26a749138f6dbff2dd509f85b1", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "heades/Agda-LLS", "max_forks_repo_path": "Source/ALL/Languages/FILL/Intermediate.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "c83f5d8201362b26a749138f6dbff2dd509f85b1", "max_issues_repo_issues_event_max_datetime": "2017-04-05T17:30:16.000Z", "max_issues_repo_issues_event_min_datetime": "2017-03-27T14:52:46.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "heades/Agda-LLS", "max_issues_repo_path": "Source/ALL/Languages/FILL/Intermediate.agda", "max_line_length": 64, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c83f5d8201362b26a749138f6dbff2dd509f85b1", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "heades/Agda-LLS", "max_stars_repo_path": "Source/ALL/Languages/FILL/Intermediate.agda", "max_stars_repo_stars_event_max_datetime": "2019-08-02T23:41:23.000Z", "max_stars_repo_stars_event_min_datetime": "2017-04-09T20:53:53.000Z", "num_tokens": 296, "size": 1409 }
module BTree.Complete.Alternative {A : Set} where open import BTree {A} open import BTree.Equality {A} data _⋗_ : BTree → BTree → Set where ⋗lf : (x : A) → (node x leaf leaf) ⋗ leaf ⋗nd : {l r l' r' : BTree} → (x x' : A) → l ≃ r → l' ≃ r' → l ⋗ l' → (node x l r) ⋗ (node x' l' r') mutual data _⋘_ : BTree → BTree → Set where lf⋘ : leaf ⋘ leaf ll⋘ : {l r l' r' : BTree} → (x x' : A) → (l⋘r : l ⋘ r) → (l'≃r' : l' ≃ r') → r ≃ l' → (node x l r) ⋘ (node x' l' r') lr⋘ : {l r l' r' : BTree} → (x x' : A) → (l⋙r : l ⋙ r) → (l'≃r' : l' ≃ r') → l ⋗ l' → (node x l r) ⋘ (node x' l' r') data _⋙_ : BTree → BTree → Set where ⋙lf : (x : A) → (node x leaf leaf) ⋙ leaf ⋙rl : {l r l' r' : BTree} → (x x' : A) → (l≃r : l ≃ r) → (l'⋘r' : l' ⋘ r') → l ⋗ r' → (node x l r) ⋙ (node x' l' r') ⋙rr : {l r l' r' : BTree} → (x x' : A) → (l≃r : l ≃ r) → (l'⋙r' : l' ⋙ r') → l ≃ l' → (node x l r) ⋙ (node x' l' r') data Complete : BTree → Set where leaf : Complete leaf left : {l r : BTree} (x : A) → Complete l → Complete r → l ⋘ r → Complete (node x l r) right : {l r : BTree} (x : A) → Complete l → Complete r → l ⋙ r → Complete (node x l r)
{ "alphanum_fraction": 0.2926963207, "avg_line_length": 28.9047619048, "ext": "agda", "hexsha": "909742cf69f8428d78f31b86a5eda63942d6f764", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/BTree/Complete/Alternative.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/BTree/Complete/Alternative.agda", "max_line_length": 50, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/BTree/Complete/Alternative.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 654, "size": 1821 }
------------------------------------------------------------------------------ -- The types used by the mirror function ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Program.Mirror.Type where open import FOTC.Base open import FOTC.Base.List open import FOTC.Data.List ------------------------------------------------------------------------------ -- Tree terms. postulate node : D → D → D -- The mutually totality predicates data Forest : D → Set -- The list of rose trees (called forest). data Tree : D → Set -- The rose tree type. data Forest where fnil : Forest [] fcons : ∀ {t ts} → Tree t → Forest ts → Forest (t ∷ ts) {-# ATP axioms fnil fcons #-} data Tree where tree : ∀ d {ts} → Forest ts → Tree (node d ts) {-# ATP axiom tree #-} ------------------------------------------------------------------------------ -- Mutual induction for Tree and Forest -- Adapted from the mutual induction principles generate from Coq -- 8.4pl4 using the command (see Coq'Art p. 401). -- -- Scheme Tree_mutual_ind := -- Minimality for Tree Sort Prop -- with Forest_mutual_ind := -- Minimality for Forest Sort Prop. Tree-mutual-ind : {A B : D → Set} → (∀ d {ts} → Forest ts → B ts → A (node d ts)) → B [] → (∀ {t ts} → Tree t → A t → Forest ts → B ts → B (t ∷ ts)) → ∀ {t} → Tree t → A t Forest-mutual-ind : {A B : D → Set} → (∀ d {ts} → Forest ts → B ts → A (node d ts)) → B [] → (∀ {t ts} → Tree t → A t → Forest ts → B ts → B (t ∷ ts)) → ∀ {ts} → Forest ts → B ts Tree-mutual-ind hA B[] _ (tree d fnil) = hA d fnil B[] Tree-mutual-ind hA B[] hB (tree d (fcons Tt Fts)) = hA d (fcons Tt Fts) (hB Tt (Tree-mutual-ind hA B[] hB Tt) Fts (Forest-mutual-ind hA B[] hB Fts)) Forest-mutual-ind _ B[] _ fnil = B[] Forest-mutual-ind hA B[] hB (fcons Tt Fts) = hB Tt (Tree-mutual-ind hA B[] hB Tt) Fts (Forest-mutual-ind hA B[] hB Fts)
{ "alphanum_fraction": 0.4995269631, "avg_line_length": 31.552238806, "ext": "agda", "hexsha": "2d9c846c7f53a6e2c9af232f6fc5b29fd2bf43ce", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Program/Mirror/Type.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Program/Mirror/Type.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Program/Mirror/Type.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 620, "size": 2114 }
-- Sometimes we can't infer a record type module InferRecordTypes-1 where bad = record { }
{ "alphanum_fraction": 0.7391304348, "avg_line_length": 18.4, "ext": "agda", "hexsha": "5550f3921a6f4b56f682780fb9fccbae7ab66986", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/InferRecordTypes-1.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/InferRecordTypes-1.agda", "max_line_length": 41, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/fail/InferRecordTypes-1.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 23, "size": 92 }
{-# OPTIONS --without-K --safe #-} open import Algebra.Structures.Bundles.Field module Algebra.Linear.Construct.Matrix.Square {k ℓ} (K : Field k ℓ) where open import Level using (_⊔_) open import Data.Nat using (ℕ) open import Data.Fin open import Data.Product open import Algebra.Structures.Field.Utils K open import Algebra.Linear.Construct.Matrix K public module F = Field K private M : ℕ -> Set k M n = Matrix n n K' : Set k K' = F.Carrier UpperTriangular : ℕ -> Set (k ⊔ ℓ) UpperTriangular n = ∃ λ (A : M n) -> ∀ {i j} -> j ≤ i -> (A ⟪ i , j ⟫) F.≈ F.0# LowerTriangular : ℕ -> Set (k ⊔ ℓ) LowerTriangular n = ∃ λ (A : M n) -> ∀ {i j} -> i ≤ j -> (A ⟪ i , j ⟫) F.≈ F.0# Invertible : ℕ -> Set (k ⊔ ℓ) Invertible n = ∃₂ λ (A B : M n) -> (A * B) ≈ I n × (B * A) ≈ I n trace : ∀ {n} -> M n n -> K' trace A = vsum (V.tabulate λ i → A ⟪ i , i ⟫) det : ∀ {n} -> M n -> K' det A = {!!}
{ "alphanum_fraction": 0.5700110254, "avg_line_length": 22.675, "ext": "agda", "hexsha": "72d7c578d34587d27563735bf548e88e83941230", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "felko/linear-algebra", "max_forks_repo_path": "src/Algebra/Linear/Construct/Matrix/Square.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "felko/linear-algebra", "max_issues_repo_path": "src/Algebra/Linear/Construct/Matrix/Square.agda", "max_line_length": 79, "max_stars_count": 15, "max_stars_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "felko/linear-algebra", "max_stars_repo_path": "src/Algebra/Linear/Construct/Matrix/Square.agda", "max_stars_repo_stars_event_max_datetime": "2020-12-30T06:18:08.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-02T14:11:00.000Z", "num_tokens": 348, "size": 907 }
module Dave.Algebra.Naturals.Monus where open import Dave.Algebra.Naturals.Definition open import Dave.Algebra.Naturals.Addition _∸_ : ℕ → ℕ → ℕ m ∸ zero = m zero ∸ suc n = zero suc m ∸ suc n = m ∸ n infixl 6 _∸_ ∸-zero : ∀ (n : ℕ) → 0 ∸ n ≡ 0 ∸-zero zero = refl ∸-zero (suc n) = refl ∸-assoc-+ : ∀ (m n p : ℕ) → m ∸ n ∸ p ≡ m ∸ (n + p) ∸-assoc-+ m zero p = refl ∸-assoc-+ zero (suc n) p = ∸-zero p ∸-assoc-+ (suc m) (suc n) p = begin suc m ∸ suc n ∸ p ≡⟨⟩ m ∸ n ∸ p ≡⟨ ∸-assoc-+ m n p ⟩ m ∸ (n + p) ≡⟨⟩ suc m ∸ suc (n + p) ≡⟨⟩ suc m ∸ (suc n + p) ∎
{ "alphanum_fraction": 0.4545454545, "avg_line_length": 27.0416666667, "ext": "agda", "hexsha": "56c527e96912c247c843858b46f1d092ea951c59", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "05213fb6ab1f51f770f9858b61526ba950e06232", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DavidStahl97/formal-proofs", "max_forks_repo_path": "Dave/Algebra/Naturals/Monus.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "05213fb6ab1f51f770f9858b61526ba950e06232", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DavidStahl97/formal-proofs", "max_issues_repo_path": "Dave/Algebra/Naturals/Monus.agda", "max_line_length": 55, "max_stars_count": null, "max_stars_repo_head_hexsha": "05213fb6ab1f51f770f9858b61526ba950e06232", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DavidStahl97/formal-proofs", "max_stars_repo_path": "Dave/Algebra/Naturals/Monus.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 306, "size": 649 }
{-# OPTIONS --safe #-} open import Definition.Typed.EqualityRelation module Definition.LogicalRelation.Substitution.Introductions.CastPi {{eqrel : EqRelSet}} where open EqRelSet {{...}} open import Definition.Untyped as U hiding (wk) open import Definition.Untyped.Properties open import Definition.Typed open import Definition.Typed.Properties open import Definition.Typed.Weakening as T hiding (wk; wkTerm; wkEqTerm) open import Definition.Typed.RedSteps open import Definition.LogicalRelation open import Definition.LogicalRelation.ShapeView open import Definition.LogicalRelation.Irrelevance open import Definition.LogicalRelation.Weakening open import Definition.LogicalRelation.Properties open import Definition.LogicalRelation.Application open import Definition.LogicalRelation.Substitution open import Definition.LogicalRelation.Substitution.Properties open import Definition.LogicalRelation.Substitution.Irrelevance as S open import Definition.LogicalRelation.Substitution.Reflexivity open import Definition.LogicalRelation.Substitution.Introductions.Sigma open import Definition.LogicalRelation.Substitution.Introductions.Fst open import Definition.LogicalRelation.Substitution.Introductions.Snd open import Definition.LogicalRelation.Substitution.Introductions.Pi open import Definition.LogicalRelation.Substitution.Introductions.Lambda open import Definition.LogicalRelation.Substitution.Introductions.Application open import Definition.LogicalRelation.Substitution.Introductions.Cast open import Definition.LogicalRelation.Substitution.Introductions.Id open import Definition.LogicalRelation.Substitution.Introductions.IdUPiPi open import Definition.LogicalRelation.Substitution.Introductions.Transp open import Definition.LogicalRelation.Substitution.Introductions.SingleSubst open import Definition.LogicalRelation.Substitution.MaybeEmbed open import Definition.LogicalRelation.Substitution.Introductions.Universe open import Definition.LogicalRelation.Substitution.Reduction open import Definition.LogicalRelation.Substitution.Weakening open import Definition.LogicalRelation.Substitution.Conversion open import Definition.LogicalRelation.Substitution.ProofIrrelevance open import Definition.LogicalRelation.Fundamental.Variable open import Tools.Product import Tools.PropositionalEquality as PE wk2d : Term → Term wk2d = U.wk (lift (lift (step id))) wk1f-cast-subst : ∀ σ f A' A rA e → (wk1 (subst σ f) ∘ cast ⁰ (wk1 (subst σ A')) (wk1 (subst σ A)) (Idsym (Univ rA ⁰) (wk1 (subst σ A)) (wk1 (subst σ A')) (fst (wk1 (subst σ e)))) (var 0) ^ ⁰) PE.≡ subst (repeat liftSubst (repeat liftSubst σ 1) 0) (wk1 f ∘ cast ⁰ (wk1 A') (wk1 A) (Idsym (Univ rA ⁰) (wk1 A) (wk1 A') (fst (wk1 e))) (var 0) ^ ⁰) wk1f-cast-subst σ f A' A rA e = PE.cong₂ (λ X Y → X ∘ Y ^ ⁰) (PE.sym (Idsym-subst-lemma σ f)) (PE.cong₃ (λ X Y Z → cast ⁰ X Y Z (var 0)) (PE.sym (Idsym-subst-lemma σ A')) (PE.sym (Idsym-subst-lemma σ A)) (PE.trans (PE.cong₃ (λ X Y Z → Idsym (Univ rA ⁰) X Y Z) (PE.sym (Idsym-subst-lemma σ A)) (PE.sym (Idsym-subst-lemma σ A')) (PE.sym (Idsym-subst-lemma σ (fst e)))) (PE.sym (subst-Idsym (liftSubst σ) (Univ rA ⁰) (wk1 A) (wk1 A') (fst (wk1 e)))))) B-cast-subst : ∀ σ A' A rA e B → subst (liftSubst σ) B [ cast ⁰ (wk1 (subst σ A')) (wk1 (subst σ A)) (Idsym (Univ rA ⁰) (wk1 (subst σ A)) (wk1 (subst σ A')) (fst (wk1 (subst σ e)))) (var 0) ]↑ PE.≡ subst (repeat liftSubst (repeat liftSubst σ 1) 0) (B [ cast ⁰ (wk1 A') (wk1 A) (Idsym (Univ rA ⁰) (wk1 A) (wk1 A') (fst (wk1 e))) (var 0) ]↑) B-cast-subst σ A′ A rA e B = PE.trans (PE.cong (λ X → (subst (liftSubst σ) B) [ X ]↑) (PE.cong₃ (λ X Y Z → cast ⁰ X Y Z (var 0)) (PE.sym (Idsym-subst-lemma σ A′)) (PE.sym (Idsym-subst-lemma σ A)) (PE.trans (PE.cong₃ (λ X Y Z → Idsym (Univ rA ⁰) X Y Z) (PE.sym (Idsym-subst-lemma σ A)) (PE.sym (Idsym-subst-lemma σ A′)) (PE.sym (Idsym-subst-lemma σ (fst e)))) (PE.sym (subst-Idsym (liftSubst σ) (Univ rA ⁰) (wk1 A) (wk1 A′) (fst (wk1 e))))))) (PE.sym ((singleSubstLift↑ σ B _))) wk2d11-111 : ∀ A → wk2d (wk1 (wk1 A)) PE.≡ wk1 (wk1 (wk1 A)) wk2d11-111 A = PE.trans (wk-comp (lift (lift (step id))) (step id) (wk1 A)) (PE.trans (wk-comp (step (lift (step id))) (step id) A) (PE.trans (PE.sym (wk-comp (step (step id)) (step id) A)) (PE.sym (wk-comp (step id) (step id) (wk1 A))))) wk2d1d-1d1d : ∀ A → wk2d (wk1d A) PE.≡ wk1d (wk1d A) wk2d1d-1d1d A = PE.trans (wk-comp (lift (lift (step id))) (lift (step id)) A) (PE.trans PE.refl (PE.sym (wk-comp (lift (step id)) (lift (step id)) A))) wk1∃-aux : ∀ A A' rA B B' → wk1 (∃ Id (Univ rA ⁰) A A' ▹ (Π wk1 A' ^ rA ° ⁰ ▹ Id (U ⁰) (wk1d B [ cast ⁰ (wk1 (wk1 A')) (wk1 (wk1 A)) (Idsym (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) (var 1)) (var 0) ]↑) (wk1d B') ° ¹ ° ¹)) PE.≡ ∃ Id (Univ rA ⁰) (wk1 A) (wk1 A') ▹ (Π wk1 (wk1 A') ^ rA ° ⁰ ▹ Id (U ⁰) (wk2d (wk1d B) [ cast ⁰ (wk2d (wk1 (wk1 A'))) (wk2d (wk1 (wk1 A))) (Idsym (Univ rA ⁰) (wk2d (wk1 (wk1 A))) (wk2d (wk1 (wk1 A'))) (var 1)) (var 0) ]↑) (wk1d (wk1d B')) ° ¹ ° ¹) wk1∃-aux A A' rA B B' = PE.cong₃ (λ X Y Z → ∃ Id (Univ rA ⁰) (wk1 A) (wk1 A') ▹ Π X ^ rA ° ⁰ ▹ Id (U ⁰) Y Z ° ¹ ° ¹) (PE.trans (wk-comp (lift (step id)) (step id) A') (PE.sym (wk-comp (step id) (step id) A'))) (PE.trans (wk-β↑ (wk1d B)) (PE.cong₃ (λ X Y Z → wk2d (wk1d B) [ cast ⁰ X Y Z (var 0) ]↑) PE.refl PE.refl (wk-Idsym (lift (lift (step id))) (Univ rA ⁰) _ _ (var 1)) )) (wk2d1d-1d1d B') wk1∃ : ∀ A A' rA B B' → wk1 (∃ Id (Univ rA ⁰) A A' ▹ (Π wk1 A' ^ rA ° ⁰ ▹ Id (U ⁰) (wk1d B [ cast ⁰ (wk1 (wk1 A')) (wk1 (wk1 A)) (Idsym (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) (var 1)) (var 0) ]↑) (wk1d B') ° ¹ ° ¹)) PE.≡ ∃ Id (Univ rA ⁰) (wk1 A) (wk1 A') ▹ (Π wk1 (wk1 A') ^ rA ° ⁰ ▹ Id (U ⁰) (wk1d (wk1d B) [ cast ⁰ (wk1 (wk1 (wk1 A'))) (wk1 (wk1 (wk1 A))) (Idsym (Univ rA ⁰) (wk1 (wk1 (wk1 A))) (wk1 (wk1 (wk1 A'))) (var 1)) (var 0) ]↑) (wk1d (wk1d B')) ° ¹ ° ¹) wk1∃ A A' rA B B' = PE.trans (wk1∃-aux A A' rA B B') (PE.cong₃ (λ X Y Z → ∃ Id (Univ rA ⁰) (wk1 A) (wk1 A') ▹ Π (wk1 (wk1 A')) ^ rA ° ⁰ ▹ Id (U ⁰) (X [ Y ]↑) Z ° ¹ ° ¹) (wk2d1d-1d1d B) (PE.cong₃ (λ X Y Z → cast ⁰ X Y Z (var 0)) (wk2d11-111 A') (wk2d11-111 A) (PE.cong₂ (λ X Y → Idsym (Univ rA ⁰) X Y (var 1)) (wk2d11-111 A) (wk2d11-111 A'))) PE.refl ) snd-cast-subst : ∀ A A' rA B B' e → Π wk1 (wk1 A') ^ rA ° ⁰ ▹ Id (U ⁰) (wk1d (wk1d B) [ cast ⁰ (wk1 (wk1 (wk1 A'))) (wk1 (wk1 (wk1 A))) (Idsym (Univ rA ⁰) (wk1 (wk1 (wk1 A))) (wk1 (wk1 (wk1 A'))) (var 1)) (var 0) ]↑) (wk1d (wk1d B')) ° ¹ ° ¹ [ fst (wk1 e) ] PE.≡ Π (wk1 A') ^ rA ° ⁰ ▹ Id (U ⁰) (wk1d B [ cast ⁰ (wk1 (wk1 A')) (wk1 (wk1 A)) (Idsym (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) (fst (wk1 (wk1 e)))) (var 0) ]↑) (wk1d B') ° ¹ ° ¹ snd-cast-subst A A' rA B B' e = PE.cong₃ (λ X Y Z → Π X ^ rA ° ⁰ ▹ Id (U ⁰) Y Z ° ¹ ° ¹) (wk1-singleSubst (wk1 A') _) (PE.trans (singleSubstLift↑ (sgSubst (fst (wk1 e))) (wk1d (wk1d B)) _) (PE.cong₂ (λ X Y → X [ Y ]↑) (wk1d-singleSubst (wk1d B) (fst (wk1 e))) (PE.cong₃ (λ X Y Z → cast ⁰ X Y Z (var 0)) (subst3wk A' (fst (wk1 e))) (subst3wk A (fst (wk1 e))) (PE.trans (subst-Idsym (liftSubst (sgSubst (fst (wk1 e)))) (Univ rA ⁰) (wk1 (wk1 (wk1 A))) (wk1 (wk1 (wk1 A'))) (var 1)) (PE.cong₂ (λ X Y → Idsym (Univ rA ⁰) X Y (fst (wk1 (wk1 e)))) (subst3wk A (fst (wk1 e))) (subst3wk A' (fst (wk1 e)))))))) (wk1d-singleSubst (wk1d B') (fst (wk1 e))) where subst3wk : ∀ t u → subst (liftSubst (sgSubst u)) (wk1 (wk1 (wk1 t))) PE.≡ wk1 (wk1 t) subst3wk t u = PE.trans (Idsym-subst-lemma (sgSubst u) (wk1 (wk1 t))) (PE.cong wk1 (wk1-singleSubst (wk1 t) u)) Id-cast-subst : ∀ A A' rA B B' e → Id (U ⁰) (wk1d B [ cast ⁰ (wk1 (wk1 A')) (wk1 (wk1 A)) (Idsym (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) (fst (wk1 (wk1 e)))) (var 0) ]↑) (wk1d B') [ var 0 ] PE.≡ Id (U ⁰) (B [ cast ⁰ (wk1 A') (wk1 A) (Idsym (Univ rA ⁰) (wk1 A) (wk1 A') (fst (wk1 e))) (var 0) ]↑) B' Id-cast-subst A A' rA B B' e = PE.cong₂ (Id (U ⁰)) (PE.trans (PE.cong (λ X → X [ var 0 ]) (wk1d[]-[]↑ (wk1d B) _)) (PE.trans aux (PE.sym (wk1d[]-[]↑ B _))) ) (wkSingleSubstId B') where aux : (wk1d (wk1d B) [ cast ⁰ (wk1 (wk1 A')) (wk1 (wk1 A)) (Idsym (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) (fst (wk1 (wk1 e)))) (var 0) ]) [ var 0 ] PE.≡ wk1d B [ cast ⁰ (wk1 A') (wk1 A) (Idsym (Univ rA ⁰) (wk1 A) (wk1 A') (fst (wk1 e))) (var 0) ] aux = PE.trans (singleSubstLift (wk1d (wk1d B)) _) (PE.cong₄ (λ X Y Z T → X [ cast ⁰ Y Z T (var 0) ]) (wk1d-singleSubst (wk1d B) (var 0)) (wk1-singleSubst (wk1 A') (var 0)) (wk1-singleSubst (wk1 A) (var 0)) (PE.trans (subst-Idsym _ (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) (wk1 (wk1 (fst e)))) (PE.cong₃ (λ X Y Z → Idsym (Univ rA ⁰) X Y Z) (wk1-singleSubst (wk1 A) (var 0)) (wk1-singleSubst (wk1 A') (var 0)) (wk1-singleSubst (wk1 (fst e)) (var 0))))) cast-Πᵗᵛ-aux : ∀ {A B A' B' rA Γ e f} ([Γ] : ⊩ᵛ Γ) → let l = ∞ lΠ = ⁰ [UA] = maybeEmbᵛ {A = Univ rA _} [Γ] (Uᵛ emb< [Γ]) [UΠ] = maybeEmbᵛ {A = Univ ! _} [Γ] (Uᵛ emb< [Γ]) in ([A] : Γ ⊩ᵛ⟨ l ⟩ A ^ [ rA , ι lΠ ] / [Γ]) ([A'] : Γ ⊩ᵛ⟨ l ⟩ A' ^ [ rA , ι lΠ ] / [Γ]) ([UB] : Γ ∙ A ^ [ rA , ι lΠ ] ⊩ᵛ⟨ l ⟩ Univ ! lΠ ^ [ ! , next lΠ ] / [Γ] ∙ [A]) ([UB'] : Γ ∙ A' ^ [ rA , ι lΠ ] ⊩ᵛ⟨ l ⟩ Univ ! lΠ ^ [ ! , next lΠ ] / [Γ] ∙ [A']) ([A]ₜ : Γ ⊩ᵛ⟨ l ⟩ A ∷ Univ rA lΠ ^ [ ! , next lΠ ] / [Γ] / [UA]) ([B]ₜ : Γ ∙ A ^ [ rA , ι lΠ ] ⊩ᵛ⟨ l ⟩ B ∷ Univ ! lΠ ^ [ ! , next lΠ ] / [Γ] ∙ [A] / (λ {Δ} {σ} → [UB] {Δ} {σ})) ([A']ₜ : Γ ⊩ᵛ⟨ l ⟩ A' ∷ Univ rA lΠ ^ [ ! , next lΠ ] / [Γ] / [UA]) ([B']ₜ : Γ ∙ A' ^ [ rA , ι lΠ ] ⊩ᵛ⟨ l ⟩ B' ∷ Univ ! lΠ ^ [ ! , next lΠ ] / [Γ] ∙ [A'] / (λ {Δ} {σ} → [UB'] {Δ} {σ})) ([Id] : Γ ⊩ᵛ⟨ l ⟩ Id (U lΠ) (Π A ^ rA ° lΠ ▹ B ° lΠ ° lΠ) (Π A' ^ rA ° lΠ ▹ B' ° lΠ ° lΠ) ^ [ % , next lΠ ] / [Γ]) ([e]ₜ : Γ ⊩ᵛ⟨ l ⟩ e ∷ Id (U lΠ) (Π A ^ rA ° lΠ ▹ B ° lΠ ° lΠ) (Π A' ^ rA ° lΠ ▹ B' ° lΠ ° lΠ) ^ [ % , next lΠ ] / [Γ] / [Id]) ([ΠAB] : Γ ⊩ᵛ⟨ l ⟩ Π A ^ rA ° lΠ ▹ B ° lΠ ° lΠ ^ [ ! , ι lΠ ] / [Γ]) ([f]ₜ : Γ ⊩ᵛ⟨ l ⟩ f ∷ Π A ^ rA ° lΠ ▹ B ° lΠ ° lΠ ^ [ ! , ι lΠ ] / [Γ] / [ΠAB]) → ([Id-U-ΠΠ] : [ Γ ⊩ᵛ⟨ l ⟩ (Id (U ⁰) (Π A ^ rA ° ⁰ ▹ B ° ⁰ ° lΠ) (Π A' ^ rA ° ⁰ ▹ B' ° ⁰ ° lΠ)) ≡ ∃ (Id (Univ rA ⁰) A A') ▹ (Π (wk1 A') ^ rA ° ⁰ ▹ Id (U ⁰) ((U.wk (lift (step id)) B) [ cast ⁰ (wk1 (wk1 A')) (wk1 (wk1 A)) (Idsym (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) (var 1)) (var 0) ]↑) (U.wk (lift (step id)) B') ° ¹ ° ¹) ∷ SProp ¹ ^ [ ! , next ¹ ] / [Γ] ] ) → let [IdAA'] = Idᵛ {A = Univ rA ⁰} {t = A} {u = A'} [Γ] (λ {Δ} {σ} → [UA] {Δ} {σ}) [A]ₜ [A']ₜ [ΓId] = _∙_ {A = Id (Univ rA ⁰) A A'} [Γ] [IdAA'] [wA'] = wk1ᵗᵛ {F = Id (Univ rA ⁰) A A'} {G = A'} {lG = ⁰} [Γ] [IdAA'] [A']ₜ [wA']' = wk1ᵛ {A = A'} {F = Id (Univ rA ⁰) A A'} [Γ] [IdAA'] [A'] [wA]' = wk1ᵛ {A = A} {F = Id (Univ rA ⁰) A A'} [Γ] [IdAA'] [A] [wA] = wk1ᵗᵛ {F = Id (Univ rA ⁰) A A'} {G = A} {lG = ⁰} [Γ] [IdAA'] [A]ₜ [ΓIdA'] = _∙_ {A = wk1 A'} [ΓId] [wA']' [wwA']' = wk1ᵛ {A = wk1 A'} {F = wk1 A'} [ΓId] [wA']' [wA']' [wwA'] = wk1ᵗᵛ {F = wk1 A'} {G = wk1 A'} {lG = ⁰} [ΓId] [wA']' [wA'] [wwA] = wk1ᵗᵛ {F = wk1 A'} {G = wk1 A} {lG = ⁰} [ΓId] [wA']' [wA] [wwUA'] = λ {Δ} {σ} r → maybeEmbᵛ {A = Univ r _ } [ΓIdA'] (λ {Δ} {σ} → Uᵛ emb< [ΓIdA'] {Δ} {σ}) {Δ} {σ} [wwIdAA'] = Idᵛ {A = Univ rA ⁰} {t = wk1 (wk1 A)} {u = wk1 (wk1 A')} [ΓIdA'] (λ {Δ} {σ} → [wwUA'] {Δ} {σ} rA) [wwA] [wwA'] [ΓA'] = (_∙_ {Γ} {A'} [Γ] [A']) [w'A] = wk1ᵗᵛ {F = A'} {G = A} {lG = ⁰} [Γ] [A'] [A]ₜ [w'A'] = wk1ᵗᵛ {F = A'} {G = A'} {lG = ⁰} [Γ] [A'] [A']ₜ [w'A']' = wk1ᵛ {A = A'} {F = A'} [Γ] [A'] [A'] [wUA] = maybeEmbᵛ {A = Univ rA _} [ΓA'] (λ {Δ} {σ} → Uᵛ emb< [ΓA'] {Δ} {σ}) [wIdAA'] = Idᵛ {A = Univ rA ⁰} {t = wk1 A} {u = wk1 A'} [ΓA'] (λ {Δ} {σ} → [wUA] {Δ} {σ}) [w'A] [w'A'] [ww'A']' = wk1ᵛ {A = wk1 A'} {F = Id (Univ rA ⁰) (wk1 A) (wk1 A')} [ΓA'] [wIdAA'] [w'A']' [ww'A'] = wk1ᵗᵛ {F = Id (Univ rA ⁰) (wk1 A) (wk1 A')} {G = wk1 A'} {lG = ⁰} [ΓA'] [wIdAA'] [w'A'] [ΓA'Id] = _∙_ {A = Id (Univ rA ⁰) (wk1 A) (wk1 A')} [ΓA'] [wIdAA'] [ΓA'IdA'] = _∙_ {A = wk1 (wk1 A')} [ΓA'Id] [ww'A']' [wwwUA'] = λ {Δ} {σ} r → maybeEmbᵛ {A = Univ r _ } [ΓA'IdA'] (λ {Δ} {σ} → Uᵛ emb< [ΓA'IdA'] {Δ} {σ}) {Δ} {σ} [www'A'] = wk1ᵗᵛ {F = wk1 (wk1 A')} {G = wk1 (wk1 A')} {lG = ⁰} [ΓA'Id] [ww'A']' [ww'A'] [ww'A] = wk1ᵗᵛ {F = Id (Univ rA ⁰) (wk1 A) (wk1 A')} {G = wk1 A} {lG = ⁰} [ΓA'] [wIdAA'] [w'A] [www'A] = wk1ᵗᵛ {F = wk1 (wk1 A')} {G = wk1 (wk1 A)} {lG = ⁰} [ΓA'Id] [ww'A']' [ww'A] [wwwIdAA'] = Idᵛ {A = Univ rA ⁰} {t = wk1 (wk1 (wk1 A))} {u = wk1 (wk1 (wk1 A'))} [ΓA'IdA'] (λ {Δ} {σ} → [wwwUA'] {Δ} {σ} rA) [www'A] [www'A'] [wwwU¹] = λ {Δ} {σ} r → Uᵛ {rU = r} ∞< [ΓA'Id] {Δ} {σ} Id-U-ΠΠ-res-end A A' B B' = Π (wk1 A') ^ rA ° ⁰ ▹ Id (U ⁰) ((wk1d B) [ cast ⁰ (wk1 (wk1 A')) (wk1 (wk1 A)) (Idsym (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) (var 1)) (var 0) ]↑) (wk1d B') ° ¹ ° ¹ in ([Id-U-ΠΠ-res-end] : Γ ∙ A' ^ [ rA , ι ⁰ ] ∙ Id (Univ rA ⁰) (wk1 A) (wk1 A') ^ [ % , ι ¹ ] ⊩ᵛ⟨ ∞ ⟩ Id-U-ΠΠ-res-end (wk1 A) (wk1 A') (wk1d B) (wk1d B') ∷ SProp ¹ ^ [ ! , ∞ ] / [ΓA'Id] / (λ {Δ} {σ} → [wwwU¹] {Δ} {σ} %)) ([var]ₜ : Γ ∙ A' ^ [ rA , ι ⁰ ] ⊩ᵛ⟨ ∞ ⟩ var 0 ∷ wk1 A' ^ [ rA , ι ⁰ ] / [ΓA'] / wk1ᵛ {A = A'} {F = A'} [Γ] [A'] [A']) ([var0']ₜ : Γ ∙ A' ^ [ rA , ι ⁰ ] ∙ Id (Univ rA ⁰) (wk1 A) (wk1 A') ^ [ % , ι ¹ ] ∙ wk1 (wk1 A') ^ [ rA , ι ⁰ ] ⊩ᵛ⟨ ∞ ⟩ var 0 ∷ wk1 (wk1 (wk1 A')) ^ [ rA , ι ⁰ ] / [ΓA'IdA'] / wk1ᵛ {A = wk1 (wk1 A')} {F = wk1 (wk1 A')} [ΓA'Id] [ww'A']' [ww'A']') ([var1']ₜ : Γ ∙ A' ^ [ rA , ι ⁰ ] ∙ Id (Univ rA ⁰) (wk1 A) (wk1 A') ^ [ % , ι ¹ ] ∙ wk1 (wk1 A') ^ [ rA , ι ⁰ ] ⊩ᵛ⟨ ∞ ⟩ var 1 ∷ Id (Univ rA ⁰) (wk1 (wk1 (wk1 A))) (wk1 (wk1 (wk1 A'))) ^ [ % , ι ¹ ] / [ΓA'IdA'] / [wwwIdAA']) → [ Γ ⊩ᵛ⟨ l ⟩ (cast lΠ (Π A ^ rA ° lΠ ▹ B ° lΠ ° lΠ) (Π A' ^ rA ° lΠ ▹ B' ° lΠ ° lΠ) e f) ≡ (lam A' ▹ (let a = cast lΠ (wk1 A') (wk1 A) (Idsym (Univ rA lΠ) (wk1 A) (wk1 A') (fst (wk1 e))) (var 0) in cast lΠ (B [ a ]↑) B' ((snd (wk1 e)) ∘ (var 0) ^ ¹) ((wk1 f) ∘ a ^ lΠ)) ^ ⁰) ∷ Π A' ^ rA ° lΠ ▹ B' ° lΠ ° lΠ ^ [ ! , ι lΠ ] / [Γ] ] cast-Πᵗᵛ-aux {A} {B} {A'} {B'} {rA} {Γ} {e} {f} [Γ] [A] [A'] [UB] [UB'] [A]ₜ [B]ₜ [A']ₜ [B']ₜ [Id] [e]ₜ [ΠAB] [f]ₜ [Id-U-ΠΠ] [Id-U-ΠΠ-res-end] [var]ₜ [var0']ₜ [var1']ₜ = let l = ∞ lΠ = ⁰ [UA] = maybeEmbᵛ {A = Univ rA _} [Γ] (Uᵛ emb< [Γ]) [UΠ] = maybeEmbᵛ {A = Univ ! _} [Γ] (Uᵛ emb< [Γ]) ⊢AΔ = λ {Δ} {σ} ⊢Δ [σ] → escapeTerm (proj₁ ([UA] {Δ} {σ} ⊢Δ [σ])) (proj₁ ([A]ₜ ⊢Δ [σ])) ⊢A'Δ = λ {Δ} {σ} ⊢Δ [σ] → escapeTerm (proj₁ ([UA] {Δ} {σ} ⊢Δ [σ])) (proj₁ ([A']ₜ ⊢Δ [σ])) ⊢A = λ {Δ} {σ} ⊢Δ [σ] → escape (proj₁ ([A] {Δ} {σ} ⊢Δ [σ])) ⊢A' = λ {Δ} {σ} ⊢Δ [σ] → escape (proj₁ ([A'] {Δ} {σ} ⊢Δ [σ])) [ΓA] = (_∙_ {Γ} {A} [Γ] [A]) [ΓA'] = (_∙_ {Γ} {A'} [Γ] [A']) ⊢BΔ = λ {Δ} {σ} ⊢Δ [σ] → escapeTerm (proj₁ ([UB] {Δ} {σ} ⊢Δ [σ])) (proj₁ ([B]ₜ {Δ} {σ} ⊢Δ [σ])) [A]' = univᵛ {A = A} [Γ] (≡is≤ PE.refl) (λ {Δ} {σ} → [UA] {Δ} {σ}) [A]ₜ [A']' = univᵛ {A = A'} [Γ] (≡is≤ PE.refl) (λ {Δ} {σ} → [UA] {Δ} {σ}) [A']ₜ [B]' = univᵛ {A = B} [ΓA] (≡is≤ PE.refl) (λ {Δ} {σ} → [UB] {Δ} {σ}) [B]ₜ [B] = maybeEmbᵛ {A = B} [ΓA] [B]' [B']' = univᵛ {A = B'} [ΓA'] (≡is≤ PE.refl) (λ {Δ} {σ} → [UB'] {Δ} {σ}) [B']ₜ [B'] = maybeEmbᵛ {A = B'} [ΓA'] [B']' ⊢B'Δ = λ {Δ} {σ} ⊢Δ [σ] → escapeTerm (proj₁ ([UB'] {Δ} {σ} ⊢Δ [σ])) (proj₁ ([B']ₜ {Δ} {σ} ⊢Δ [σ])) [liftσ] = λ {Δ} {σ} ⊢Δ [σ] → liftSubstS {F = A} {σ = σ} {Δ = Δ} [Γ] ⊢Δ [A] [σ] [liftσ'] = λ {Δ} {σ} ⊢Δ [σ] → liftSubstS {F = A'} {σ = σ} {Δ = Δ} [Γ] ⊢Δ [A'] [σ] ⊢e = λ {Δ} {σ} ⊢Δ [σ] → escapeTerm (proj₁ ([Id] {Δ} {σ} ⊢Δ [σ])) (proj₁ ([e]ₜ {Δ} {σ} ⊢Δ [σ])) ⊢f = λ {Δ} {σ} ⊢Δ [σ] → escapeTerm (proj₁ ([ΠAB] {Δ} {σ} ⊢Δ [σ])) (proj₁ ([f]ₜ {Δ} {σ} ⊢Δ [σ])) [ΠAB'] = Πᵛ {A'} {B'} (≡is≤ PE.refl) (≡is≤ PE.refl) [Γ] [A'] [B'] [ΓA'] = _∙_ {A = A'} [Γ] [A'] [wUA] = maybeEmbᵛ {A = Univ rA _} [ΓA'] (λ {Δ} {σ} → Uᵛ emb< [ΓA'] {Δ} {σ}) [wUA]ᵗ = Uᵗᵛ [ΓA'] [IdAA']ₜ = Idᵗᵛ {A = Univ rA ⁰} {t = A} {u = A'} [Γ] (λ {Δ} {σ} → [UA] {Δ} {σ}) [A]ₜ [A']ₜ (Uᵗᵛ [Γ]) [IdAA'] = Idᵛ {A = Univ rA ⁰} {t = A} {u = A'} [Γ] (λ {Δ} {σ} → [UA] {Δ} {σ}) [A]ₜ [A']ₜ [ΓId] = _∙_ {A = Id (Univ rA ⁰) A A'} [Γ] [IdAA'] [wA'] = wk1ᵗᵛ {F = Id (Univ rA ⁰) A A'} {G = A'} {lG = ⁰} [Γ] [IdAA'] [A']ₜ [wA']' = wk1ᵛ {A = A'} {F = Id (Univ rA ⁰) A A'} [Γ] [IdAA'] [A'] [wA]' = wk1ᵛ {A = A} {F = Id (Univ rA ⁰) A A'} [Γ] [IdAA'] [A] [wA] = wk1ᵗᵛ {F = Id (Univ rA ⁰) A A'} {G = A} {lG = ⁰} [Γ] [IdAA'] [A]ₜ [ΓIdA'] = _∙_ {A = wk1 A'} [ΓId] [wA']' [wwU¹] = λ {Δ} {σ} r → Uᵛ {rU = r} ∞< [ΓIdA'] {Δ} {σ} [wwUA'] = λ {Δ} {σ} r → maybeEmbᵛ {A = Univ r _ } [ΓIdA'] (λ {Δ} {σ} → Uᵛ emb< [ΓIdA'] {Δ} {σ}) {Δ} {σ} [ΓIdA] = _∙_ {A = wk1 A} [ΓId] [wA]' [wwA'] = wk1ᵗᵛ {F = wk1 A'} {G = wk1 A'} {lG = ⁰} [ΓId] [wA']' [wA'] [wwA] = wk1ᵗᵛ {F = wk1 A'} {G = wk1 A} {lG = ⁰} [ΓId] [wA']' [wA] [wwA']' = wk1ᵛ {A = wk1 A'} {F = wk1 A'} [ΓId] [wA']' [wA']' [wwA]' = wk1ᵛ {A = wk1 A} {F = wk1 A'} [ΓId] [wA']' [wA]' [wwU0A] = maybeEmbᵛ {A = Univ ! _ } [ΓIdA] (λ {Δ} {σ} → Uᵛ emb< [ΓIdA] {Δ} {σ}) [wB'] = wk1dᵗᵛ {F = A'} {F' = Id (Univ rA ⁰) A A'} {G = B'} [Γ] [A'] [IdAA'] (λ {Δ} {σ} → [UB'] {Δ} {σ}) (λ {Δ} {σ} → [wwUA'] {Δ} {σ} !) [B']ₜ [wB] = wk1dᵗᵛ {F = A} {F' = Id (Univ rA ⁰) A A'} {G = B} [Γ] [A] [IdAA'] (λ {Δ} {σ} → [UB] {Δ} {σ}) (λ {Δ} {σ} → [wwU0A] {Δ} {σ}) [B]ₜ [wwIdAA'] = Idᵛ {A = Univ rA ⁰} {t = wk1 (wk1 A)} {u = wk1 (wk1 A')} [ΓIdA'] (λ {Δ} {σ} → [wwUA'] {Δ} {σ} rA) [wwA] [wwA'] [wwIdA'A] = Idᵛ {A = Univ rA ⁰} {t = wk1 (wk1 A')} {u = wk1 (wk1 A)} [ΓIdA'] (λ {Δ} {σ} → [wwUA'] {Δ} {σ} rA) [wwA'] [wwA] Id-U-ΠΠ-res-end A A' B B' = Π (wk1 A') ^ rA ° ⁰ ▹ Id (U ⁰) ((wk1d B) [ cast ⁰ (wk1 (wk1 A')) (wk1 (wk1 A)) (Idsym (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) (var 1)) (var 0) ]↑) (wk1d B') ° ¹ ° ¹ Id-U-ΠΠ-left = Id (U lΠ) (Π A ^ rA ° lΠ ▹ B ° lΠ ° lΠ) (Π A' ^ rA ° lΠ ▹ B' ° lΠ ° lΠ) Id-U-ΠΠ-res A A' B B' = ∃ (Id (Univ rA ⁰) A A') ▹ Id-U-ΠΠ-res-end A A' B B' [wU¹] = λ {Δ} {σ} r → Uᵛ {rU = r} ∞< [ΓA'] {Δ} {σ} modelsTermEq [SProp] _ [Id-U-ΠΠ-res] [eq] = [Id-U-ΠΠ] [Id-U-ΠΠ-res]' = maybeEmbᵛ {A = Id-U-ΠΠ-res A A' B B'} [Γ] (univᵛ {A = Id-U-ΠΠ-res A A' B B'} [Γ] (≡is≤ PE.refl) [SProp] [Id-U-ΠΠ-res]) [conve]ₜ = convᵛ {t = e} {A = Id-U-ΠΠ-left} {B = Id-U-ΠΠ-res A A' B B'} [Γ] [Id] [Id-U-ΠΠ-res]' (univEqᵛ {A = Id-U-ΠΠ-left} {B = Id-U-ΠΠ-res A A' B B'} [Γ] [SProp] [Id] [eq]) [e]ₜ [we] = wk1Termᵛ {F = A'} {G = Id-U-ΠΠ-res A A' B B'} {t = e} [Γ] [A'] [Id-U-ΠΠ-res]' [conve]ₜ [w'A] = wk1ᵗᵛ {F = A'} {G = A} {lG = ⁰} [Γ] [A'] [A]ₜ [w'A]' = wk1ᵛ {A = A} {F = A'} [Γ] [A'] [A] [w'A]⁰ = wk1ᵛ {A = A} {F = A'} [Γ] [A'] [A]' [w'A'] = wk1ᵗᵛ {F = A'} {G = A'} {lG = ⁰} [Γ] [A'] [A']ₜ [w'A']' = wk1ᵛ {A = A'} {F = A'} [Γ] [A'] [A'] [w'A']⁰ = wk1ᵛ {A = A'} {F = A'} [Γ] [A'] [A']' [wIdA'A] = Idᵛ {A = Univ rA ⁰} {t = wk1 A'} {u = wk1 A} [ΓA'] (λ {Δ} {σ} → [wUA] {Δ} {σ}) [w'A'] [w'A] [wIdAA'] = Idᵛ {A = Univ rA ⁰} {t = wk1 A} {u = wk1 A'} [ΓA'] (λ {Δ} {σ} → [wUA] {Δ} {σ}) [w'A] [w'A'] [wIdAA']ᵗ = Idᵗᵛ {A = Univ rA ⁰} {t = wk1 A} {u = wk1 A'} [ΓA'] (λ {Δ} {σ} → [wUA] {Δ} {σ}) [w'A] [w'A'] (λ {Δ} {σ} → Uᵗᵛ [ΓA'] {Δ} {σ}) [wIdAA']ₜ = Idᵗᵛ {A = Univ rA ⁰} {t = wk1 A} {u = wk1 A'} [ΓA'] (λ {Δ} {σ} → [wUA] {Δ} {σ}) [w'A] [w'A'] (λ {Δ} {σ} → Uᵗᵛ [ΓA'] {Δ} {σ}) [ww'A']' = wk1ᵛ {A = wk1 A'} {F = Id (Univ rA ⁰) (wk1 A) (wk1 A')} [ΓA'] [wIdAA'] [w'A']' [ww'A'] = wk1ᵗᵛ {F = Id (Univ rA ⁰) (wk1 A) (wk1 A')} {G = wk1 A'} {lG = ⁰} [ΓA'] [wIdAA'] [w'A'] [ww'A]' = wk1ᵛ {A = wk1 A} {F = Id (Univ rA ⁰) (wk1 A) (wk1 A')} [ΓA'] [wIdAA'] [w'A]' [ww'A] = wk1ᵗᵛ {F = Id (Univ rA ⁰) (wk1 A) (wk1 A')} {G = wk1 A} {lG = ⁰} [ΓA'] [wIdAA'] [w'A] [ΓA'A'] = _∙_ {A = wk1 A'} [ΓA'] [w'A']' [ww'UA'] = λ {Δ} {σ} r → maybeEmbᵛ {A = Univ r _ } [ΓA'A'] (λ {Δ} {σ} → Uᵛ emb< [ΓA'A'] {Δ} {σ}) {Δ} {σ} [ΓA'A] = _∙_ {A = wk1 A} [ΓA'] [w'A]' [ww'UA] = λ {Δ} {σ} r → maybeEmbᵛ {A = Univ r _ } [ΓA'A] (λ {Δ} {σ} → Uᵛ emb< [ΓA'A] {Δ} {σ}) {Δ} {σ} [ΓA'Id] = _∙_ {A = Id (Univ rA ⁰) (wk1 A) (wk1 A')} [ΓA'] [wIdAA'] [ΓA'IdA'] = _∙_ {A = wk1 (wk1 A')} [ΓA'Id] [ww'A']' [www'UA'] = λ {Δ} {σ} r → maybeEmbᵛ {A = Univ r _ } [ΓA'IdA'] (λ {Δ} {σ} → Uᵛ emb< [ΓA'IdA'] {Δ} {σ}) {Δ} {σ} [ΓA'IdA] = _∙_ {A = wk1 (wk1 A)} [ΓA'Id] [ww'A]' [www'UA] = λ {Δ} {σ} r → maybeEmbᵛ {A = Univ r _ } [ΓA'IdA] (λ {Δ} {σ} → Uᵛ emb< [ΓA'IdA] {Δ} {σ}) {Δ} {σ} [w'B'] = wk1dᵗᵛ {F = A'} {F' = A'} {G = B'} [Γ] [A'] [A'] (λ {Δ} {σ} → [UB'] {Δ} {σ}) ((λ {Δ} {σ} → [ww'UA'] {Δ} {σ} !)) [B']ₜ [ww'B'] = wk1dᵗᵛ {F = wk1 A'} {F' = Id (Univ rA ⁰) (wk1 A) (wk1 A')} {G = wk1d B'} [ΓA'] [w'A']' [wIdAA'] (λ {Δ} {σ} → [ww'UA'] {Δ} {σ} !) (λ {Δ} {σ} → [www'UA'] {Δ} {σ} !) [w'B'] [w'B] = wk1dᵗᵛ {F = A} {F' = A'} {G = B} [Γ] [A] [A'] (λ {Δ} {σ} → [UB] {Δ} {σ}) ((λ {Δ} {σ} → [ww'UA] {Δ} {σ} !)) [B]ₜ [ww'B] = wk1dᵗᵛ {F = wk1 A} {F' = Id (Univ rA ⁰) (wk1 A) (wk1 A')} {G = wk1d B} [ΓA'] [w'A]' [wIdAA'] (λ {Δ} {σ} → [ww'UA] {Δ} {σ} !) (λ {Δ} {σ} → [www'UA] {Δ} {σ} !) [w'B] [www'A']' = wk1ᵛ {A = wk1 (wk1 A')} {F = wk1 (wk1 A') } [ΓA'Id] [ww'A']' [ww'A']' [www'A'] = wk1ᵗᵛ {F = wk1 (wk1 A')} {G = wk1 (wk1 A')} {lG = ⁰} [ΓA'Id] [ww'A']' [ww'A'] [www'A]' = wk1ᵛ {A = wk1 (wk1 A)} {F = wk1 (wk1 A')} [ΓA'Id] [ww'A']' [ww'A]' [www'A] = wk1ᵗᵛ {F = wk1 (wk1 A')} {G = wk1 (wk1 A)} {lG = ⁰} [ΓA'Id] [ww'A']' [ww'A] [wwU¹] = λ {Δ} {σ} r → Uᵛ {rU = r} ∞< [ΓA'A'] {Δ} {σ} [wwwU¹] = λ {Δ} {σ} r → Uᵛ {rU = r} ∞< [ΓA'Id] {Δ} {σ} Id-U-ΠΠ-res-end-wk1d = Id-U-ΠΠ-res-end (wk1 A) (wk1 A') (wk1d B) (wk1d B') Id-U-ΠΠ-res-wk1d = Id-U-ΠΠ-res (wk1 A) (wk1 A') (wk1d B) (wk1d B') [Id-U-ΠΠ-res-end]' = maybeEmbᵛ {A = Id-U-ΠΠ-res-end-wk1d} [ΓA'Id] (univᵛ {A = Id-U-ΠΠ-res-end-wk1d} [ΓA'Id] (≡is≤ PE.refl) (λ {Δ} {σ} → [wwwU¹] {Δ} {σ} %) [Id-U-ΠΠ-res-end]) [we]' = S.irrelevanceTerm′ {A = wk1 (Id-U-ΠΠ-res A A' B B')} {A′ = Id-U-ΠΠ-res-wk1d} {t = wk1 e} (wk1∃ A A' rA B B') PE.refl [ΓA'] [ΓA'] (wk1ᵛ {A = Id-U-ΠΠ-res A A' B B'} {F = A'} [Γ] [A'] [Id-U-ΠΠ-res]') (∃ᵛ {F = Id (Univ rA ⁰) (wk1 A) (wk1 A')} {G = Id-U-ΠΠ-res-end-wk1d} [ΓA'] [wIdAA'] [Id-U-ΠΠ-res-end]') [we] [fst] = fstᵛ {F = Id (Univ rA ⁰) (wk1 A) (wk1 A')} {G = Id-U-ΠΠ-res-end-wk1d} {tu = wk1 e} [ΓA'] [wIdAA'] [Id-U-ΠΠ-res-end]' (λ {Δ} {σ} → [wwwU¹] {Δ} {σ} %) [wIdAA']ᵗ [Id-U-ΠΠ-res-end] [we]' [wfste] : Γ ∙ A' ^ [ rA , ι ⁰ ] ⊩ᵛ⟨ ∞ ⟩ Idsym (Univ rA ⁰) (wk1 A) (wk1 A') (fst (wk1 e)) ∷ Id (Univ rA ⁰) (wk1 A') (wk1 A) ^ [ % , ι ¹ ] / [ΓA'] / [wIdA'A] [wfste] = IdSymᵗᵛ {A = Univ rA ⁰} {t = wk1 A} {u = wk1 A'} {e = fst (wk1 e)} [ΓA'] (λ {Δ} {σ} → [wU¹] {Δ} {σ} !) (λ {Δ} {σ} → [wUA]ᵗ {Δ} {σ}) (λ {Δ} {σ} → [wUA] {Δ} {σ}) [w'A] [w'A'] [wIdAA'] [wIdA'A] [fst] cast-Π-a A A' e = cast ⁰ (wk1 A') (wk1 A) (Idsym (Univ rA ⁰) (wk1 A) (wk1 A') (fst (wk1 e))) (var 0) [cast-Π-a] : Γ ∙ A' ^ [ rA , ι ⁰ ] ⊩ᵛ⟨ ∞ ⟩ cast-Π-a A A' e ∷ wk1 A ^ [ rA , ι ⁰ ] / [ΓA'] / wk1ᵛ {A = A} {F = A'} [Γ] [A'] [A] [cast-Π-a] = castᵗᵛ {wk1 A'} {wk1 A} {t = var 0} {e = Idsym (Univ rA ⁰) (wk1 A) (wk1 A') (fst (wk1 e))} [ΓA'] (λ {Δ} {σ} → [wUA] {Δ} {σ}) [w'A'] [w'A] (wk1ᵛ {A = A'} {F = A'} [Γ] [A'] [A']) (wk1ᵛ {A = A} {F = A'} [Γ] [A'] [A]) [var]ₜ [wIdA'A] [wfste] B[cast-Π-a]↑ₜ = subst↑STerm {F = A'} {F' = A} {G = B} {t = cast-Π-a A A' e} [Γ] [A'] [A] (λ {Δ} {σ} → [UB'] {Δ} {σ}) (λ {Δ} {σ} → [UB] {Δ} {σ}) [B]ₜ [cast-Π-a] [f°cast-Π-a] = appᵛ↑ {F = A} {F' = A'} {G = B} {t = wk1 f} {u = cast-Π-a A A' e} (≡is≤ PE.refl) (≡is≤ PE.refl) [Γ] [A] [A'] [B] [ΠAB] (wk1Termᵛ {F = A'} {G = Π A ^ rA ° ⁰ ▹ B ° ⁰ ° lΠ} {t = f} [Γ] [A'] [ΠAB] [f]ₜ) [cast-Π-a] [wIdBB'] : Γ ∙ A' ^ [ rA , ι ⁰ ] ⊩ᵛ⟨ ∞ ⟩ Id (Univ ! ⁰) (B [ cast-Π-a A A' e ]↑) B' ^ [ % , ι ¹ ] / [ΓA'] [wIdBB'] = Idᵛ {A = Univ ! ⁰} {t = B [ cast-Π-a A A' e ]↑} {u = B'} [ΓA'] (λ {Δ} {σ} → [UB'] {Δ} {σ}) B[cast-Π-a]↑ₜ [B']ₜ [snd] = sndᵛ {F = Id (Univ rA ⁰) (wk1 A) (wk1 A')} {G = Id-U-ΠΠ-res-end-wk1d} {tu = wk1 e} [ΓA'] [wIdAA'] [Id-U-ΠΠ-res-end]' (λ {Δ} {σ} → [wwwU¹] {Δ} {σ} %) [wIdAA']ᵗ [Id-U-ΠΠ-res-end] [we]' [sndType]' = S.irrelevance′ {A = Id-U-ΠΠ-res-end-wk1d [ fst (wk1 e) ]} {A′ = Π (wk1 A') ^ rA ° ⁰ ▹ Id (U ⁰) ((wk1d B) [ cast ⁰ (wk1 (wk1 A')) (wk1 (wk1 A)) (Idsym (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) (fst (wk1 (wk1 e)))) (var 0) ]↑) (wk1d B') ° ¹ ° ¹} (snd-cast-subst A A' rA B B' e) [ΓA'] [ΓA'] (substS {F = Id (Univ rA ⁰) (wk1 A) (wk1 A')} {G = Id-U-ΠΠ-res-end-wk1d} {fst (wk1 e)} [ΓA'] [wIdAA'] [Id-U-ΠΠ-res-end]' [fst]) [snd]' = S.irrelevanceTerm′ {A = Id-U-ΠΠ-res-end-wk1d [ fst (wk1 e) ]} {A′ = Π (wk1 A') ^ rA ° ⁰ ▹ Id (U ⁰) ((wk1d B) [ cast ⁰ (wk1 (wk1 A')) (wk1 (wk1 A)) (Idsym (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) (fst (wk1 (wk1 e)))) (var 0) ]↑) (wk1d B') ° ¹ ° ¹} {t = snd (wk1 e)} (snd-cast-subst A A' rA B B' e) PE.refl [ΓA'] [ΓA'] (substS {F = Id (Univ rA ⁰) (wk1 A) (wk1 A')} {G = Id-U-ΠΠ-res-end-wk1d} {fst (wk1 e)} [ΓA'] [wIdAA'] [Id-U-ΠΠ-res-end]' [fst]) [sndType]' [snd] [wsnde] : Γ ∙ A' ^ [ rA , ι ⁰ ] ⊩ᵛ⟨ ∞ ⟩ (snd (wk1 e)) ∘ (var 0) ^ ¹ ∷ Id (Univ ! ⁰) (B [ cast-Π-a A A' e ]↑) B' ^ [ % , ι ¹ ] / [ΓA'] / [wIdBB'] [wsnde] = let X = appᵛ {F = wk1 A'} {G = Id (U ⁰) ((wk1d B) [ cast ⁰ (wk1 (wk1 A')) (wk1 (wk1 A)) (Idsym (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) (fst (wk1 (wk1 e)))) (var 0) ]↑) (wk1d B')} {t = snd (wk1 e)} {u = var 0} [ΓA'] [w'A']' [sndType]' [snd]' [var]ₜ in S.irrelevanceTerm′ {A = (Id (U ⁰) ((wk1d B) [ cast ⁰ (wk1 (wk1 A')) (wk1 (wk1 A)) (Idsym (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) (fst (wk1 (wk1 e)))) (var 0) ]↑) (wk1d B')) [ var 0 ]} {A′ = Id (Univ ! ⁰) (B [ cast-Π-a A A' e ]↑) B'} {t = (snd (wk1 e)) ∘ (var 0) ^ ¹} (Id-cast-subst A A' rA B B' e) PE.refl [ΓA'] [ΓA'] (substSΠ {wk1 A'} {Id (U ⁰) (wk1d B [ cast ⁰ (wk1 (wk1 A')) (wk1 (wk1 A)) (Idsym (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) (fst (wk1 (wk1 e)))) (var 0) ]↑) (wk1d B')} {var 0} [ΓA'] [w'A']' [sndType]' [var]ₜ ) [wIdBB'] X cast-Π-res A A' B B' e f = cast ⁰ (B [ cast-Π-a A A' e ]↑) B' ((snd (wk1 e)) ∘ (var 0) ^ ¹) ((wk1 f) ∘ cast-Π-a A A' e ^ ⁰) [cast-Π-res] : Γ ⊩ᵛ⟨ ∞ ⟩ lam A' ▹ cast-Π-res A A' B B' e f ^ ⁰ ∷ Π A' ^ rA ° ⁰ ▹ B' ° ⁰ ° ⁰ ^ [ ! , ι ⁰ ] / [Γ] / [ΠAB'] [cast-Π-res] = lamᵛ {F = A'} {G = B'} {t = cast-Π-res A A' B B' e f} (≡is≤ PE.refl) (≡is≤ PE.refl) [Γ] [A'] [B'] (castᵗᵛ {B [ cast-Π-a A A' e ]↑} {B'} {t = (wk1 f) ∘ cast-Π-a A A' e ^ ⁰} {e = (snd (wk1 e)) ∘ (var 0) ^ ¹} [ΓA'] (λ {Δ} {σ} → [UB'] {Δ} {σ}) B[cast-Π-a]↑ₜ [B']ₜ (subst↑S {F = A'} {G = B} {F' = A} [Γ] [A'] [A] [B] [cast-Π-a]) [B'] [f°cast-Π-a] [wIdBB'] [wsnde]) [cast-Π] : Γ ⊩ᵛ cast ⁰ (Π A ^ rA ° ⁰ ▹ B ° ⁰ ° ⁰) (Π A' ^ rA ° ⁰ ▹ B' ° ⁰ ° ⁰) e f ⇒ lam A' ▹ cast-Π-res A A' B B' e f ^ ⁰ ∷ Π A' ^ rA ° ⁰ ▹ B' ° ⁰ ° ⁰ ^ ι ⁰ / [Γ] [cast-Π] = λ {Δ} {σ} ⊢Δ [σ] → let Aσ = ⊢AΔ {Δ} {σ} ⊢Δ [σ] Bσ = ⊢BΔ {Δ ∙ subst σ A ^ _} {liftSubst σ} (⊢Δ ∙ ⊢A {Δ} {σ} ⊢Δ [σ]) ([liftσ] {Δ} {σ} ⊢Δ [σ]) A'σ = ⊢A'Δ {Δ} {σ} ⊢Δ [σ] B'σ = ⊢B'Δ {Δ ∙ subst σ A' ^ _} {liftSubst σ} (⊢Δ ∙ ⊢A' {Δ} {σ} ⊢Δ [σ]) ([liftσ'] {Δ} {σ} ⊢Δ [σ]) eσ = ⊢e {Δ} {σ} ⊢Δ [σ] fσ = ⊢f {Δ} {σ} ⊢Δ [σ] X : Δ ⊢ (cast ⁰ (Π (subst σ A) ^ rA ° ⁰ ▹ (subst (liftSubst σ) B) ° ⁰ ° ⁰) (Π (subst σ A') ^ rA ° ⁰ ▹ (subst (liftSubst σ) B') ° ⁰ ° ⁰) (subst σ e) (subst σ f)) ⇒ lam (subst σ A') ▹ cast-Π-res (subst σ A) (subst σ A') (subst (liftSubst σ) B) (subst (liftSubst σ) B') (subst σ e) (subst σ f) ^ ⁰ ∷ Π (subst σ A') ^ rA ° ⁰ ▹ (subst (liftSubst σ) B') ° ⁰ ° ⁰ ^ ι ⁰ X = cast-Π {Δ} {subst σ A} {subst σ A'} {rA} {subst (liftSubst σ) B} {subst (liftSubst σ) B'} {subst σ e} {subst σ f} Aσ Bσ A'σ B'σ eσ fσ in PE.subst (λ BB → Δ ⊢ subst σ (cast ⁰ (Π A ^ rA ° ⁰ ▹ B ° ⁰ ° ⁰) (Π A' ^ rA ° ⁰ ▹ B' ° ⁰ ° ⁰) e f) ⇒ lam subst σ A' ▹ BB ^ ⁰ ∷ subst σ (Π A' ^ rA ° ⁰ ▹ B' ° ⁰ ° ⁰) ^ ι ⁰ ) (PE.cong₄ (cast ⁰) (B-cast-subst σ A' A rA e B) PE.refl (PE.cong₂ (λ X Y → snd X ∘ Y ^ ¹) (PE.sym (Idsym-subst-lemma σ e)) PE.refl) (wk1f-cast-subst σ f A' A rA e)) X [id] , [eq] = redSubstTermᵛ {Π A' ^ rA ° ⁰ ▹ B' ° ⁰ ° ⁰} {cast ⁰ (Π A ^ rA ° ⁰ ▹ B ° ⁰ ° ⁰) (Π A' ^ rA ° ⁰ ▹ B' ° ⁰ ° ⁰) e f} {lam A' ▹ cast-Π-res A A' B B' e f ^ ⁰} [Γ] (λ {Δ} {σ} ⊢Δ [σ] → [cast-Π] {Δ} {σ} ⊢Δ [σ]) [ΠAB'] [cast-Π-res] in modelsTermEq [ΠAB'] [id] [cast-Π-res] [eq] cast-Πᵗᵛ : ∀ {A B A' B' rA Γ e f} ([Γ] : ⊩ᵛ Γ) → let l = ∞ lΠ = ⁰ [UA] = maybeEmbᵛ {A = Univ rA _} [Γ] (Uᵛ emb< [Γ]) [UΠ] = maybeEmbᵛ {A = Univ ! _} [Γ] (Uᵛ emb< [Γ]) in ([A] : Γ ⊩ᵛ⟨ l ⟩ A ^ [ rA , ι lΠ ] / [Γ]) ([A'] : Γ ⊩ᵛ⟨ l ⟩ A' ^ [ rA , ι lΠ ] / [Γ]) ([UB] : Γ ∙ A ^ [ rA , ι lΠ ] ⊩ᵛ⟨ l ⟩ Univ ! lΠ ^ [ ! , next lΠ ] / [Γ] ∙ [A]) ([UB'] : Γ ∙ A' ^ [ rA , ι lΠ ] ⊩ᵛ⟨ l ⟩ Univ ! lΠ ^ [ ! , next lΠ ] / [Γ] ∙ [A']) ([A]ₜ : Γ ⊩ᵛ⟨ l ⟩ A ∷ Univ rA lΠ ^ [ ! , next lΠ ] / [Γ] / [UA]) ([B]ₜ : Γ ∙ A ^ [ rA , ι lΠ ] ⊩ᵛ⟨ l ⟩ B ∷ Univ ! lΠ ^ [ ! , next lΠ ] / [Γ] ∙ [A] / (λ {Δ} {σ} → [UB] {Δ} {σ})) ([A']ₜ : Γ ⊩ᵛ⟨ l ⟩ A' ∷ Univ rA lΠ ^ [ ! , next lΠ ] / [Γ] / [UA]) ([B']ₜ : Γ ∙ A' ^ [ rA , ι lΠ ] ⊩ᵛ⟨ l ⟩ B' ∷ Univ ! lΠ ^ [ ! , next lΠ ] / [Γ] ∙ [A'] / (λ {Δ} {σ} → [UB'] {Δ} {σ})) ([Id] : Γ ⊩ᵛ⟨ l ⟩ Id (U lΠ) (Π A ^ rA ° lΠ ▹ B ° lΠ ° lΠ) (Π A' ^ rA ° lΠ ▹ B' ° lΠ ° lΠ) ^ [ % , next lΠ ] / [Γ]) ([e]ₜ : Γ ⊩ᵛ⟨ l ⟩ e ∷ Id (U lΠ) (Π A ^ rA ° lΠ ▹ B ° lΠ ° lΠ) (Π A' ^ rA ° lΠ ▹ B' ° lΠ ° lΠ) ^ [ % , next lΠ ] / [Γ] / [Id]) ([ΠAB] : Γ ⊩ᵛ⟨ l ⟩ Π A ^ rA ° lΠ ▹ B ° lΠ ° lΠ ^ [ ! , ι lΠ ] / [Γ]) ([f]ₜ : Γ ⊩ᵛ⟨ l ⟩ f ∷ Π A ^ rA ° lΠ ▹ B ° lΠ ° lΠ ^ [ ! , ι lΠ ] / [Γ] / [ΠAB]) → [ Γ ⊩ᵛ⟨ l ⟩ (cast lΠ (Π A ^ rA ° lΠ ▹ B ° lΠ ° lΠ) (Π A' ^ rA ° lΠ ▹ B' ° lΠ ° lΠ) e f) ≡ (lam A' ▹ (let a = cast lΠ (wk1 A') (wk1 A) (Idsym (Univ rA lΠ) (wk1 A) (wk1 A') (fst (wk1 e))) (var 0) in cast lΠ (B [ a ]↑) B' ((snd (wk1 e)) ∘ (var 0) ^ ¹) ((wk1 f) ∘ a ^ ⁰)) ^ ⁰) ∷ Π A' ^ rA ° lΠ ▹ B' ° lΠ ° lΠ ^ [ ! , ι lΠ ] / [Γ] ] abstract cast-Πᵗᵛ {A} {B} {A'} {B'} {rA} {Γ} {e} {f} [Γ] [A] [A'] [UB] [UB'] [A]ₜ [B]ₜ [A']ₜ [B']ₜ [Id] [e]ₜ [ΠAB] [f]ₜ = let l = ∞ lΠ = ⁰ [UA] = maybeEmbᵛ {A = Univ rA _} [Γ] (Uᵛ emb< [Γ]) [IdAA'] = Idᵛ {A = Univ rA ⁰} {t = A} {u = A'} [Γ] (λ {Δ} {σ} → [UA] {Δ} {σ}) [A]ₜ [A']ₜ [ΓId] = _∙_ {A = Id (Univ rA ⁰) A A'} [Γ] [IdAA'] [wA'] = wk1ᵗᵛ {F = Id (Univ rA ⁰) A A'} {G = A'} {lG = ⁰} [Γ] [IdAA'] [A']ₜ [wA']' = wk1ᵛ {A = A'} {F = Id (Univ rA ⁰) A A'} [Γ] [IdAA'] [A'] [wA]' = wk1ᵛ {A = A} {F = Id (Univ rA ⁰) A A'} [Γ] [IdAA'] [A] [wA] = wk1ᵗᵛ {F = Id (Univ rA ⁰) A A'} {G = A} {lG = ⁰} [Γ] [IdAA'] [A]ₜ [ΓIdA'] = _∙_ {A = wk1 A'} [ΓId] [wA']' [wwA']' = wk1ᵛ {A = wk1 A'} {F = wk1 A'} [ΓId] [wA']' [wA']' [wwA'] = wk1ᵗᵛ {F = wk1 A'} {G = wk1 A'} {lG = ⁰} [ΓId] [wA']' [wA'] [wwA] = wk1ᵗᵛ {F = wk1 A'} {G = wk1 A} {lG = ⁰} [ΓId] [wA']' [wA] [wwUA'] = λ {Δ} {σ} r → maybeEmbᵛ {A = Univ r _ } [ΓIdA'] (λ {Δ} {σ} → Uᵛ emb< [ΓIdA'] {Δ} {σ}) {Δ} {σ} [wwIdAA'] = Idᵛ {A = Univ rA ⁰} {t = wk1 (wk1 A)} {u = wk1 (wk1 A')} [ΓIdA'] (λ {Δ} {σ} → [wwUA'] {Δ} {σ} rA) [wwA] [wwA'] [ΓA'] = (_∙_ {Γ} {A'} [Γ] [A']) [w'A] = wk1ᵗᵛ {F = A'} {G = A} {lG = ⁰} [Γ] [A'] [A]ₜ [w'A'] = wk1ᵗᵛ {F = A'} {G = A'} {lG = ⁰} [Γ] [A'] [A']ₜ [w'A']' = wk1ᵛ {A = A'} {F = A'} [Γ] [A'] [A'] [wUA] = maybeEmbᵛ {A = Univ rA _} [ΓA'] (λ {Δ} {σ} → Uᵛ emb< [ΓA'] {Δ} {σ}) [wIdAA'] = Idᵛ {A = Univ rA ⁰} {t = wk1 A} {u = wk1 A'} [ΓA'] (λ {Δ} {σ} → [wUA] {Δ} {σ}) [w'A] [w'A'] [ww'A']' = wk1ᵛ {A = wk1 A'} {F = Id (Univ rA ⁰) (wk1 A) (wk1 A')} [ΓA'] [wIdAA'] [w'A']' [ww'A'] = wk1ᵗᵛ {F = Id (Univ rA ⁰) (wk1 A) (wk1 A')} {G = wk1 A'} {lG = ⁰} [ΓA'] [wIdAA'] [w'A'] [ΓA'Id] = _∙_ {A = Id (Univ rA ⁰) (wk1 A) (wk1 A')} [ΓA'] [wIdAA'] [ΓA'IdA'] = _∙_ {A = wk1 (wk1 A')} [ΓA'Id] [ww'A']' [wwwUA'] = λ {Δ} {σ} r → maybeEmbᵛ {A = Univ r _ } [ΓA'IdA'] (λ {Δ} {σ} → Uᵛ emb< [ΓA'IdA'] {Δ} {σ}) {Δ} {σ} [www'A'] = wk1ᵗᵛ {F = wk1 (wk1 A')} {G = wk1 (wk1 A')} {lG = ⁰} [ΓA'Id] [ww'A']' [ww'A'] [ww'A] = wk1ᵗᵛ {F = Id (Univ rA ⁰) (wk1 A) (wk1 A')} {G = wk1 A} {lG = ⁰} [ΓA'] [wIdAA'] [w'A] [www'A] = wk1ᵗᵛ {F = wk1 (wk1 A')} {G = wk1 (wk1 A)} {lG = ⁰} [ΓA'Id] [ww'A']' [ww'A] [wwwIdAA'] = Idᵛ {A = Univ rA ⁰} {t = wk1 (wk1 (wk1 A))} {u = wk1 (wk1 (wk1 A'))} [ΓA'IdA'] (λ {Δ} {σ} → [wwwUA'] {Δ} {σ} rA) [www'A] [www'A'] [wA]ₜ = wk1ᵗᵛ {F = A'} {G = A} {lG = ⁰} [Γ] [A'] [A]ₜ [wA] = wk1ᵛ {A = A} {F = A'} [Γ] [A'] [A] [wA']ₜ = wk1ᵗᵛ {F = A'} {G = A'} {lG = ⁰} [Γ] [A'] [A']ₜ [wA'] = wk1ᵛ {A = A'} {F = A'} [Γ] [A'] [A'] [wA']' = wk1ᵛ {A = A'} {F = A'} [Γ] [A'] [A'] [wA]' = wk1ᵛ {A = A} {F = A'} [Γ] [A'] [A] [ΓA'A'] = _∙_ {A = wk1 A'} [ΓA'] [wA']' [ΓA'A] = _∙_ {A = wk1 A} [ΓA'] [wA]' [wwUA'] = λ {Δ} {σ} r → maybeEmbᵛ {A = Univ r _ } [ΓA'A'] (λ {Δ} {σ} → Uᵛ emb< [ΓA'A'] {Δ} {σ}) {Δ} {σ} [wwUA] = λ {Δ} {σ} r → maybeEmbᵛ {A = Univ r _ } [ΓA'A] (λ {Δ} {σ} → Uᵛ emb< [ΓA'A] {Δ} {σ}) {Δ} {σ} [wB']ₜ = wk1dᵗᵛ {F = A'} {F' = A'} {G = B'} [Γ] [A'] [A'] (λ {Δ} {σ} → [UB'] {Δ} {σ}) ((λ {Δ} {σ} → [wwUA'] {Δ} {σ} !)) [B']ₜ [wB]ₜ = wk1dᵗᵛ {F = A} {F' = A'} {G = B} [Γ] [A] [A'] (λ {Δ} {σ} → [UB] {Δ} {σ}) ((λ {Δ} {σ} → [wwUA] {Δ} {σ} !)) [B]ₜ [var]ₜ : Γ ∙ A' ^ [ rA , ι ⁰ ] ⊩ᵛ⟨ ∞ ⟩ var 0 ∷ wk1 A' ^ [ rA , ι ⁰ ] / [ΓA'] / wk1ᵛ {A = A'} {F = A'} [Γ] [A'] [A'] [var]ₜ = proj₂ (fundamentalVar here [ΓA']) [var0']ₜ : Γ ∙ A' ^ [ rA , ι ⁰ ] ∙ Id (Univ rA ⁰) (wk1 A) (wk1 A') ^ [ % , ι ¹ ] ∙ wk1 (wk1 A') ^ [ rA , ι ⁰ ] ⊩ᵛ⟨ ∞ ⟩ var 0 ∷ wk1 (wk1 (wk1 A')) ^ [ rA , ι ⁰ ] / [ΓA'IdA'] / wk1ᵛ {A = wk1 (wk1 A')} {F = wk1 (wk1 A')} [ΓA'Id] [ww'A']' [ww'A']' [var0']ₜ = proj₂ (fundamentalVar here [ΓA'IdA']) [var1']ₜ : Γ ∙ A' ^ [ rA , ι ⁰ ] ∙ Id (Univ rA ⁰) (wk1 A) (wk1 A') ^ [ % , ι ¹ ] ∙ wk1 (wk1 A') ^ [ rA , ι ⁰ ] ⊩ᵛ⟨ ∞ ⟩ var 1 ∷ Id (Univ rA ⁰) (wk1 (wk1 (wk1 A))) (wk1 (wk1 (wk1 A'))) ^ [ % , ι ¹ ] / [ΓA'IdA'] / [wwwIdAA'] [var1']ₜ = let X = fundamentalVar (there here) [ΓA'IdA'] in S.irrelevanceTerm {A = Id (Univ rA ⁰) (wk1 (wk1 (wk1 A))) (wk1 (wk1 (wk1 A')))} {t = var 1} [ΓA'IdA'] [ΓA'IdA'] (proj₁ X) [wwwIdAA'] (proj₂ X) in cast-Πᵗᵛ-aux {A} {B} {A'} {B'} {rA} {Γ} {e} {f} [Γ] [A] [A'] (λ {Δ} {σ} → [UB] {Δ} {σ}) (λ {Δ} {σ} → [UB'] {Δ} {σ}) [A]ₜ [B]ₜ [A']ₜ [B']ₜ [Id] [e]ₜ [ΠAB] [f]ₜ (Id-U-ΠΠᵗᵛ {A} {B} {A'} {B'} {rA} {Γ} [Γ] [A] [A'] (λ {Δ} {σ} → [UB] {Δ} {σ}) (λ {Δ} {σ} → [UB'] {Δ} {σ}) [A]ₜ [B]ₜ [A']ₜ [B']ₜ) (Id-U-ΠΠ-resᵗᵛ {wk1 A} {wk1d B} {wk1 A'} {wk1d B'} [ΓA'] [wA] [wA'] (λ {Δ} {σ} → [wwUA] {Δ} {σ} !) (λ {Δ} {σ} → [wwUA'] {Δ} {σ} !) [wA]ₜ [wB]ₜ [wA']ₜ [wB']ₜ [var0']ₜ [var1']ₜ) [var]ₜ [var0']ₜ [var1']ₜ
{ "alphanum_fraction": 0.3893316067, "avg_line_length": 80.4729458918, "ext": "agda", "hexsha": "14435461c35e8cdeb1157a0b492e95dd516cdf3f", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z", "max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z", "max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "CoqHott/logrel-mltt", "max_forks_repo_path": "Definition/LogicalRelation/Substitution/Introductions/CastPi.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "CoqHott/logrel-mltt", "max_issues_repo_path": "Definition/LogicalRelation/Substitution/Introductions/CastPi.agda", "max_line_length": 210, "max_stars_count": 2, "max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "CoqHott/logrel-mltt", "max_stars_repo_path": "Definition/LogicalRelation/Substitution/Introductions/CastPi.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z", "max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z", "num_tokens": 20823, "size": 40156 }
-- Be afraid… Type as type Type {-# OPTIONS --type-in-type #-} {- Be really afraid: this module is a hack to give definitional equalities to ▹. This is done by introducing an 'evil' function called 'run' that should not appear in user code. Is this safe to do? This remains to be explored. By the same token we give a definitional equalities to fix as well. Beware of non-termination! -} open import guarded-recursion.prelude renaming (O to zero; S to suc) module guarded-recursion.compute where -- Same as in prelude but type-in-type module Coe₀ where coe : {A B : Type} → A ≡ B → A → B coe = transport id coe! : {A B : Type} → A ≡ B → B → A coe! = transport id ∘ ! module _ {A : Type} {P Q : A → Type} (p : P ≡ Q) {x} where coe₁ : P x → Q x coe₁ = transport (λ P → P x) p coe₁! : Q x → P x coe₁! = transport (λ P → P x) (! p) module _ {A : Type} {B : Type} {R S : A → B → Type} (p : R ≡ S) {x y} where coe₂ : R x y → S x y coe₂ = transport (λ R → R x y) p coe₂! : S x y → R x y coe₂! = transport (λ R → R x y) (! p) open Coe₀ infixl 6 _⊛_ data ▹_ : Type → Type private -- 'run' should not appear in user code run : ∀ {A} → ▹ A → A -- User code should not pattern-match on ▹_... data ▹_ where next : ∀ {A} → A → ▹ A _⊛_ : ∀ {A} {B : A → Type} → ▹ ((x : A) → B x) → (x : ▹ A) → ▹ (B (run x)) run (next x) = x run (f ⊛ x) = run f (run x) ▸ : ▹ Type → Type ▸ x = ▹ (run x) ▸F : ∀ {A} → (A → Type) → ▹ A → Type ▸F F x = ▸ (next F ⊛ x) map▹ : ∀ {A} {B : A → Type} → ((x : A) → B x) → (x : ▹ A) → ▸F B x map▹ f x = next f ⊛ x private module Unused where by-computation : ∀ {A} {B : A → Type} {x} → ▸ (next B ⊛ x) ≡ ▹ (B (run x)) by-computation = idp const⊛ : ∀ {A} {X : Type} {x : ▹ X} → ▸ (next (λ _ → A) ⊛ x) ≡ ▹ A const⊛ = idp -- useless: the dependent version is just as fine _⊛′_ : ∀ {A B} → ▹ (A → B) → ▹ A → ▹ B _⊛′_ = _⊛_ -- useless: the dependent version is just as fine map▹′ : ∀ {A B} → (A → B) → ▹ A → ▹ B map▹′ = map▹ zip : ∀ {A} {B : A → Type} → Σ (▹ A) (▸F B) → ▹ Σ A B zip (x , y) = map▹ _,_ x ⊛ y unzip : ∀ {A} {B : A → Type} → ▹ Σ A B → Σ (▹ A) (▸F B) unzip p = map▹ fst p , map▹ snd p module M (fix : ∀ {A} → (▹ A → A) → A) (fix-rule : ∀ {A} (f : ▹ A → A) → fix f ≡ f (next (fix f))) where -- Streams of 'A's S : Type → Type S A = fix (λ X → A × ▸ X) rollS : ∀ {A} → A × ▹ (S A) → S A rollS = coe! (fix-rule _) unS : ∀ {A} → S A → A × ▹ (S A) unS = coe (fix-rule _) hd : ∀ {A} → S A → A hd = fst ∘ unS tl : ∀ {A} → S A → ▹ S A tl = snd ∘ unS infixl 4 _∷_ _∷_ : ∀ {A} → A → ▹ S A → S A x ∷ xs = rollS (x , xs) BF : ∀ {A} → ▹ (S A → S A → Type) → S A → S A → Type BF ▹B xs ys = (hd xs ≡ hd ys) × ▸ (▹B ⊛ tl xs ⊛ tl ys) B : ∀ {A} → S A → S A → Type B = fix BF rollB : ∀ {A} {xs ys : S A} → BF (next B) xs ys → B xs ys rollB = coe₂! (fix-rule BF) B-reflF : ∀ {A} → ▹((xs : S A) → B xs xs) → (xs : S A) → B xs xs B-reflF ▹BR xs = rollB (idp , ▹BR ⊛ tl xs) -- Reflexivity of the Bisimilarity relation -- Thanks to computation at the level of types this definition nicely -- goes through. B-refl : ∀ {A} (xs : S A) → B xs xs B-refl = fix B-reflF repeatS : ∀ {A} → A → S A repeatS x = fix (_∷_ x) zapSf : ∀ {A B} → ▹ (S (A → B) → S A → S B) → S (A → B) → S A → S B zapSf zapS fs xs = hd fs (hd xs) ∷ zapS ⊛ tl fs ⊛ tl xs zapS : ∀ {A B} → S (A → B) → S A → S B zapS = fix zapSf -- repeatS and zapS form an applicative functor iterateS : ∀ {A} → (A → A) → A → S A iterateS f = fix λ iterateS x → x ∷ iterateS ⊛ next (f x) mapSf : ∀ {A B} → (A → B) → ▹(S A → S B) → S A → S B mapSf f mapS xs = f (hd xs) ∷ mapS ⊛ tl xs mapS : ∀ {A B} → (A → B) → S A → S B mapS f = fix (mapSf f) nats : S ℕ nats = fix (λ nats → 0 ∷ map▹ (mapS suc) nats) ▹^ : ∀ ℕ → Type → Type ▹^ zero A = A ▹^ (suc n) A = ▹ ▹^ n A next^ : ∀ {A} n → A → ▹^ n A next^ zero x = x next^ (suc n) x = next (next^ n x) map▹^ : ∀ {A B} n → (A → B) → ▹^ n A → ▹^ n B map▹^ zero f = f map▹^ (suc n) f = map▹ (map▹^ n f) run^ : ∀ {A} n → ▹^ n A → A run^ zero = id run^ (suc n) = run^ n ∘ run ‼ : ∀ {A} → (n : ℕ) → S A → ▹^ n A ‼ zero = hd ‼ (suc n) = map▹ (‼ n) ∘ tl run‼ : ∀ {A} → ℕ → S A → A run‼ n = run^ n ∘ ‼ n module HiddenFix {A} (f : ▹ A → A) where -- This definition is not intended to termination-check. -- Use with care it's really easy to make the type-checker loop. {-# TERMINATING #-} fix : Hidden A fix = hide f (next (reveal fix)) fix-rule : reveal fix ≡ f (next (reveal fix)) fix-rule = idp {_} {A} {reveal fix} open HiddenFix open M (reveal ∘ fix) fix-rule -- -} -- -} -- -} -- -} -- -}
{ "alphanum_fraction": 0.4765432099, "avg_line_length": 24.7959183673, "ext": "agda", "hexsha": "6c839840524409d86990b62edcd3ba5d0c33434c", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-11-16T16:21:54.000Z", "max_forks_repo_forks_event_min_datetime": "2015-08-19T12:37:53.000Z", "max_forks_repo_head_hexsha": "9fba7d89d8b27e9bb08c27df802608b5fff769e0", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "np/guarded-recursion", "max_forks_repo_path": "guarded-recursion/compute.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9fba7d89d8b27e9bb08c27df802608b5fff769e0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "np/guarded-recursion", "max_issues_repo_path": "guarded-recursion/compute.agda", "max_line_length": 79, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9fba7d89d8b27e9bb08c27df802608b5fff769e0", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "np/guarded-recursion", "max_stars_repo_path": "guarded-recursion/compute.agda", "max_stars_repo_stars_event_max_datetime": "2016-12-06T23:04:56.000Z", "max_stars_repo_stars_event_min_datetime": "2016-12-06T23:04:56.000Z", "num_tokens": 2156, "size": 4860 }
module Prelude.Char where open import Prelude.Bool open import Prelude.Nat open import Prelude.Equality open import Prelude.Equality.Unsafe open import Prelude.Decidable open import Prelude.Function open import Prelude.Ord open import Agda.Builtin.Char open Agda.Builtin.Char public using (Char) isLower = primIsLower isDigit = primIsDigit isSpace = primIsSpace isAscii = primIsAscii isLatin1 = primIsLatin1 isPrint = primIsPrint isHexDigit = primIsHexDigit isAlpha = primIsAlpha toUpper = primToUpper toLower = primToLower isAlphaNum : Char → Bool isAlphaNum c = isAlpha c || isDigit c charToNat = primCharToNat natToChar = primNatToChar charToNat-inj : ∀ {x y} → charToNat x ≡ charToNat y → x ≡ y charToNat-inj {x} p with charToNat x charToNat-inj refl | ._ = unsafeEqual -- need to be strict in the proof! --- Equality -- eqChar : Char → Char → Bool eqChar = eqNat on charToNat instance EqChar : Eq Char _==_ {{EqChar}} x y with eqChar x y ... | false = no unsafeNotEqual ... | true = yes unsafeEqual -- Missing primitive isUpper isUpper : Char → Bool isUpper c = isNo (toLower c == c) --- Ord --- instance OrdChar : Ord Char OrdChar = OrdBy charToNat-inj OrdLawsChar : Ord/Laws Char OrdLawsChar = OrdLawsBy charToNat-inj
{ "alphanum_fraction": 0.7249417249, "avg_line_length": 21.45, "ext": "agda", "hexsha": "5eeabf3420c904053d139410b8ff1d08517e75e2", "lang": "Agda", "max_forks_count": 24, "max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z", "max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "L-TChen/agda-prelude", "max_forks_repo_path": "src/Prelude/Char.agda", "max_issues_count": 59, "max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z", "max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "L-TChen/agda-prelude", "max_issues_repo_path": "src/Prelude/Char.agda", "max_line_length": 73, "max_stars_count": 111, "max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "L-TChen/agda-prelude", "max_stars_repo_path": "src/Prelude/Char.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z", "num_tokens": 399, "size": 1287 }
{-# OPTIONS --without-K --safe #-} module Definition.Typed where open import Definition.Untyped hiding (_∷_) open import Tools.Fin open import Tools.Nat open import Tools.Product infixl 30 _∙_ infix 30 Πⱼ_▹_ infix 30 Σⱼ_▹_ infix 30 ⟦_⟧ⱼ_▹_ private variable n m : Nat Γ : Con Term n A B F : Term n G : Term (1+ n) x : Fin n -- Well-typed variables data _∷_∈_ : (x : Fin n) (A : Term n) (Γ : Con Term n) → Set where here : x0 ∷ wk1 A ∈ (Γ ∙ A) there : (h : x ∷ A ∈ Γ) → (x +1) ∷ wk1 A ∈ (Γ ∙ B) mutual -- Well-formed context data ⊢_ : Con Term n → Set where ε : ⊢ ε _∙_ : ⊢ Γ → Γ ⊢ A → ⊢ Γ ∙ A -- Well-formed type data _⊢_ (Γ : Con Term n) : Term n → Set where Uⱼ : ⊢ Γ → Γ ⊢ U ℕⱼ : ⊢ Γ → Γ ⊢ ℕ Emptyⱼ : ⊢ Γ → Γ ⊢ Empty Unitⱼ : ⊢ Γ → Γ ⊢ Unit Πⱼ_▹_ : Γ ⊢ F → Γ ∙ F ⊢ G → Γ ⊢ Π F ▹ G Σⱼ_▹_ : Γ ⊢ F → Γ ∙ F ⊢ G → Γ ⊢ Σ F ▹ G univ : Γ ⊢ A ∷ U → Γ ⊢ A -- Well-formed term of a type data _⊢_∷_ (Γ : Con Term n) : Term n → Term n → Set where Πⱼ_▹_ : ∀ {F G} → Γ ⊢ F ∷ U → Γ ∙ F ⊢ G ∷ U → Γ ⊢ Π F ▹ G ∷ U Σⱼ_▹_ : ∀ {F G} → Γ ⊢ F ∷ U → Γ ∙ F ⊢ G ∷ U → Γ ⊢ Σ F ▹ G ∷ U ℕⱼ : ⊢ Γ → Γ ⊢ ℕ ∷ U Emptyⱼ : ⊢ Γ → Γ ⊢ Empty ∷ U Unitⱼ : ⊢ Γ → Γ ⊢ Unit ∷ U var : ∀ {A x} → ⊢ Γ → x ∷ A ∈ Γ → Γ ⊢ var x ∷ A lamⱼ : ∀ {F G t} → Γ ⊢ F → Γ ∙ F ⊢ t ∷ G → Γ ⊢ lam t ∷ Π F ▹ G _∘ⱼ_ : ∀ {g a F G} → Γ ⊢ g ∷ Π F ▹ G → Γ ⊢ a ∷ F → Γ ⊢ g ∘ a ∷ G [ a ] prodⱼ : ∀ {F G t u} → Γ ⊢ F → Γ ∙ F ⊢ G → Γ ⊢ t ∷ F → Γ ⊢ u ∷ G [ t ] → Γ ⊢ prod t u ∷ Σ F ▹ G fstⱼ : ∀ {F G t} → Γ ⊢ F → Γ ∙ F ⊢ G → Γ ⊢ t ∷ Σ F ▹ G → Γ ⊢ fst t ∷ F sndⱼ : ∀ {F G t} → Γ ⊢ F → Γ ∙ F ⊢ G → Γ ⊢ t ∷ Σ F ▹ G → Γ ⊢ snd t ∷ G [ fst t ] zeroⱼ : ⊢ Γ → Γ ⊢ zero ∷ ℕ sucⱼ : ∀ {n} → Γ ⊢ n ∷ ℕ → Γ ⊢ suc n ∷ ℕ natrecⱼ : ∀ {G s z n} → Γ ∙ ℕ ⊢ G → Γ ⊢ z ∷ G [ zero ] → Γ ⊢ s ∷ Π ℕ ▹ (G ▹▹ G [ suc (var x0) ]↑) → Γ ⊢ n ∷ ℕ → Γ ⊢ natrec G z s n ∷ G [ n ] Emptyrecⱼ : ∀ {A e} → Γ ⊢ A → Γ ⊢ e ∷ Empty → Γ ⊢ Emptyrec A e ∷ A starⱼ : ⊢ Γ → Γ ⊢ star ∷ Unit conv : ∀ {t A B} → Γ ⊢ t ∷ A → Γ ⊢ A ≡ B → Γ ⊢ t ∷ B -- Type equality data _⊢_≡_ (Γ : Con Term n) : Term n → Term n → Set where univ : ∀ {A B} → Γ ⊢ A ≡ B ∷ U → Γ ⊢ A ≡ B refl : ∀ {A} → Γ ⊢ A → Γ ⊢ A ≡ A sym : ∀ {A B} → Γ ⊢ A ≡ B → Γ ⊢ B ≡ A trans : ∀ {A B C} → Γ ⊢ A ≡ B → Γ ⊢ B ≡ C → Γ ⊢ A ≡ C Π-cong : ∀ {F H G E} → Γ ⊢ F → Γ ⊢ F ≡ H → Γ ∙ F ⊢ G ≡ E → Γ ⊢ Π F ▹ G ≡ Π H ▹ E Σ-cong : ∀ {F H G E} → Γ ⊢ F → Γ ⊢ F ≡ H → Γ ∙ F ⊢ G ≡ E → Γ ⊢ Σ F ▹ G ≡ Σ H ▹ E -- Term equality data _⊢_≡_∷_ (Γ : Con Term n) : Term n → Term n → Term n → Set where refl : ∀ {t A} → Γ ⊢ t ∷ A → Γ ⊢ t ≡ t ∷ A sym : ∀ {t u A} → Γ ⊢ t ≡ u ∷ A → Γ ⊢ u ≡ t ∷ A trans : ∀ {t u r A} → Γ ⊢ t ≡ u ∷ A → Γ ⊢ u ≡ r ∷ A → Γ ⊢ t ≡ r ∷ A conv : ∀ {A B t u} → Γ ⊢ t ≡ u ∷ A → Γ ⊢ A ≡ B → Γ ⊢ t ≡ u ∷ B Π-cong : ∀ {E F G H} → Γ ⊢ F → Γ ⊢ F ≡ H ∷ U → Γ ∙ F ⊢ G ≡ E ∷ U → Γ ⊢ Π F ▹ G ≡ Π H ▹ E ∷ U Σ-cong : ∀ {E F G H} → Γ ⊢ F → Γ ⊢ F ≡ H ∷ U → Γ ∙ F ⊢ G ≡ E ∷ U → Γ ⊢ Σ F ▹ G ≡ Σ H ▹ E ∷ U app-cong : ∀ {a b f g F G} → Γ ⊢ f ≡ g ∷ Π F ▹ G → Γ ⊢ a ≡ b ∷ F → Γ ⊢ f ∘ a ≡ g ∘ b ∷ G [ a ] β-red : ∀ {a t F G} → Γ ⊢ F → Γ ∙ F ⊢ t ∷ G → Γ ⊢ a ∷ F → Γ ⊢ (lam t) ∘ a ≡ t [ a ] ∷ G [ a ] η-eq : ∀ {f g F G} → Γ ⊢ F → Γ ⊢ f ∷ Π F ▹ G → Γ ⊢ g ∷ Π F ▹ G → Γ ∙ F ⊢ wk1 f ∘ var x0 ≡ wk1 g ∘ var x0 ∷ G → Γ ⊢ f ≡ g ∷ Π F ▹ G fst-cong : ∀ {t t' F G} → Γ ⊢ F → Γ ∙ F ⊢ G → Γ ⊢ t ≡ t' ∷ Σ F ▹ G → Γ ⊢ fst t ≡ fst t' ∷ F snd-cong : ∀ {t t' F G} → Γ ⊢ F → Γ ∙ F ⊢ G → Γ ⊢ t ≡ t' ∷ Σ F ▹ G → Γ ⊢ snd t ≡ snd t' ∷ G [ fst t ] Σ-β₁ : ∀ {F G t u} → Γ ⊢ F → Γ ∙ F ⊢ G → Γ ⊢ t ∷ F → Γ ⊢ u ∷ G [ t ] → Γ ⊢ fst (prod t u) ≡ t ∷ F Σ-β₂ : ∀ {F G t u} → Γ ⊢ F → Γ ∙ F ⊢ G → Γ ⊢ t ∷ F → Γ ⊢ u ∷ G [ t ] → Γ ⊢ snd (prod t u) ≡ u ∷ G [ fst (prod t u) ] Σ-η : ∀ {p r F G} → Γ ⊢ F → Γ ∙ F ⊢ G → Γ ⊢ p ∷ Σ F ▹ G → Γ ⊢ r ∷ Σ F ▹ G → Γ ⊢ fst p ≡ fst r ∷ F → Γ ⊢ snd p ≡ snd r ∷ G [ fst p ] → Γ ⊢ p ≡ r ∷ Σ F ▹ G suc-cong : ∀ {m n} → Γ ⊢ m ≡ n ∷ ℕ → Γ ⊢ suc m ≡ suc n ∷ ℕ natrec-cong : ∀ {z z′ s s′ n n′ F F′} → Γ ∙ ℕ ⊢ F ≡ F′ → Γ ⊢ z ≡ z′ ∷ F [ zero ] → Γ ⊢ s ≡ s′ ∷ Π ℕ ▹ (F ▹▹ F [ suc (var x0) ]↑) → Γ ⊢ n ≡ n′ ∷ ℕ → Γ ⊢ natrec F z s n ≡ natrec F′ z′ s′ n′ ∷ F [ n ] natrec-zero : ∀ {z s F} → Γ ∙ ℕ ⊢ F → Γ ⊢ z ∷ F [ zero ] → Γ ⊢ s ∷ Π ℕ ▹ (F ▹▹ F [ suc (var x0) ]↑) → Γ ⊢ natrec F z s zero ≡ z ∷ F [ zero ] natrec-suc : ∀ {n z s F} → Γ ⊢ n ∷ ℕ → Γ ∙ ℕ ⊢ F → Γ ⊢ z ∷ F [ zero ] → Γ ⊢ s ∷ Π ℕ ▹ (F ▹▹ F [ suc (var x0) ]↑) → Γ ⊢ natrec F z s (suc n) ≡ (s ∘ n) ∘ (natrec F z s n) ∷ F [ suc n ] Emptyrec-cong : ∀ {A A' e e'} → Γ ⊢ A ≡ A' → Γ ⊢ e ≡ e' ∷ Empty → Γ ⊢ Emptyrec A e ≡ Emptyrec A' e' ∷ A η-unit : ∀ {e e'} → Γ ⊢ e ∷ Unit → Γ ⊢ e' ∷ Unit → Γ ⊢ e ≡ e' ∷ Unit -- Term reduction data _⊢_⇒_∷_ (Γ : Con Term n) : Term n → Term n → Term n → Set where conv : ∀ {A B t u} → Γ ⊢ t ⇒ u ∷ A → Γ ⊢ A ≡ B → Γ ⊢ t ⇒ u ∷ B app-subst : ∀ {A B t u a} → Γ ⊢ t ⇒ u ∷ Π A ▹ B → Γ ⊢ a ∷ A → Γ ⊢ t ∘ a ⇒ u ∘ a ∷ B [ a ] β-red : ∀ {A B a t} → Γ ⊢ A → Γ ∙ A ⊢ t ∷ B → Γ ⊢ a ∷ A → Γ ⊢ (lam t) ∘ a ⇒ t [ a ] ∷ B [ a ] fst-subst : ∀ {t t' F G} → Γ ⊢ F → Γ ∙ F ⊢ G → Γ ⊢ t ⇒ t' ∷ Σ F ▹ G → Γ ⊢ fst t ⇒ fst t' ∷ F snd-subst : ∀ {t t' F G} → Γ ⊢ F → Γ ∙ F ⊢ G → Γ ⊢ t ⇒ t' ∷ Σ F ▹ G → Γ ⊢ snd t ⇒ snd t' ∷ G [ fst t ] Σ-β₁ : ∀ {F G t u} → Γ ⊢ F → Γ ∙ F ⊢ G → Γ ⊢ t ∷ F → Γ ⊢ u ∷ G [ t ] → Γ ⊢ fst (prod t u) ⇒ t ∷ F Σ-β₂ : ∀ {F G t u} → Γ ⊢ F → Γ ∙ F ⊢ G → Γ ⊢ t ∷ F → Γ ⊢ u ∷ G [ t ] -- TODO(WN): Prove that 𝔍 ∷ G [ t ] is admissible → Γ ⊢ snd (prod t u) ⇒ u ∷ G [ fst (prod t u) ] natrec-subst : ∀ {z s n n′ F} → Γ ∙ ℕ ⊢ F → Γ ⊢ z ∷ F [ zero ] → Γ ⊢ s ∷ Π ℕ ▹ (F ▹▹ F [ suc (var x0) ]↑) → Γ ⊢ n ⇒ n′ ∷ ℕ → Γ ⊢ natrec F z s n ⇒ natrec F z s n′ ∷ F [ n ] natrec-zero : ∀ {z s F} → Γ ∙ ℕ ⊢ F → Γ ⊢ z ∷ F [ zero ] → Γ ⊢ s ∷ Π ℕ ▹ (F ▹▹ F [ suc (var x0) ]↑) → Γ ⊢ natrec F z s zero ⇒ z ∷ F [ zero ] natrec-suc : ∀ {n z s F} → Γ ⊢ n ∷ ℕ → Γ ∙ ℕ ⊢ F → Γ ⊢ z ∷ F [ zero ] → Γ ⊢ s ∷ Π ℕ ▹ (F ▹▹ F [ suc (var x0) ]↑) → Γ ⊢ natrec F z s (suc n) ⇒ (s ∘ n) ∘ (natrec F z s n) ∷ F [ suc n ] Emptyrec-subst : ∀ {n n′ A} → Γ ⊢ A → Γ ⊢ n ⇒ n′ ∷ Empty → Γ ⊢ Emptyrec A n ⇒ Emptyrec A n′ ∷ A -- Type reduction data _⊢_⇒_ (Γ : Con Term n) : Term n → Term n → Set where univ : ∀ {A B} → Γ ⊢ A ⇒ B ∷ U → Γ ⊢ A ⇒ B -- Term reduction closure data _⊢_⇒*_∷_ (Γ : Con Term n) : Term n → Term n → Term n → Set where id : ∀ {A t} → Γ ⊢ t ∷ A → Γ ⊢ t ⇒* t ∷ A _⇨_ : ∀ {A t t′ u} → Γ ⊢ t ⇒ t′ ∷ A → Γ ⊢ t′ ⇒* u ∷ A → Γ ⊢ t ⇒* u ∷ A -- Type reduction closure data _⊢_⇒*_ (Γ : Con Term n) : Term n → Term n → Set where id : ∀ {A} → Γ ⊢ A → Γ ⊢ A ⇒* A _⇨_ : ∀ {A A′ B} → Γ ⊢ A ⇒ A′ → Γ ⊢ A′ ⇒* B → Γ ⊢ A ⇒* B -- Type reduction to whnf _⊢_↘_ : (Γ : Con Term n) → Term n → Term n → Set Γ ⊢ A ↘ B = Γ ⊢ A ⇒* B × Whnf B -- Term reduction to whnf _⊢_↘_∷_ : (Γ : Con Term n) → Term n → Term n → Term n → Set Γ ⊢ t ↘ u ∷ A = Γ ⊢ t ⇒* u ∷ A × Whnf u -- Type eqaulity with well-formed types _⊢_:≡:_ : (Γ : Con Term n) → Term n → Term n → Set Γ ⊢ A :≡: B = Γ ⊢ A × Γ ⊢ B × (Γ ⊢ A ≡ B) -- Term equality with well-formed terms _⊢_:≡:_∷_ : (Γ : Con Term n) → Term n → Term n → Term n → Set Γ ⊢ t :≡: u ∷ A = (Γ ⊢ t ∷ A) × (Γ ⊢ u ∷ A) × (Γ ⊢ t ≡ u ∷ A) -- Type reduction closure with well-formed types record _⊢_:⇒*:_ (Γ : Con Term n) (A B : Term n) : Set where constructor [_,_,_] field ⊢A : Γ ⊢ A ⊢B : Γ ⊢ B D : Γ ⊢ A ⇒* B open _⊢_:⇒*:_ using () renaming (D to red; ⊢A to ⊢A-red; ⊢B to ⊢B-red) public -- Term reduction closure with well-formed terms record _⊢_:⇒*:_∷_ (Γ : Con Term n) (t u A : Term n) : Set where constructor [_,_,_] field ⊢t : Γ ⊢ t ∷ A ⊢u : Γ ⊢ u ∷ A d : Γ ⊢ t ⇒* u ∷ A open _⊢_:⇒*:_∷_ using () renaming (d to redₜ; ⊢t to ⊢t-redₜ; ⊢u to ⊢u-redₜ) public -- Well-formed substitutions. data _⊢ˢ_∷_ (Δ : Con Term m) : (σ : Subst m n) (Γ : Con Term n) → Set where id : ∀ {σ} → Δ ⊢ˢ σ ∷ ε _,_ : ∀ {A σ} → Δ ⊢ˢ tail σ ∷ Γ → Δ ⊢ head σ ∷ subst (tail σ) A → Δ ⊢ˢ σ ∷ Γ ∙ A -- Conversion of well-formed substitutions. data _⊢ˢ_≡_∷_ (Δ : Con Term m) : (σ σ′ : Subst m n) (Γ : Con Term n) → Set where id : ∀ {σ σ′} → Δ ⊢ˢ σ ≡ σ′ ∷ ε _,_ : ∀ {A σ σ′} → Δ ⊢ˢ tail σ ≡ tail σ′ ∷ Γ → Δ ⊢ head σ ≡ head σ′ ∷ subst (tail σ) A → Δ ⊢ˢ σ ≡ σ′ ∷ Γ ∙ A -- Note that we cannot use the well-formed substitutions. -- For that, we need to prove the fundamental theorem for substitutions. ⟦_⟧ⱼ_▹_ : (W : BindingType) → ∀ {F G} → Γ ⊢ F → Γ ∙ F ⊢ G → Γ ⊢ ⟦ W ⟧ F ▹ G ⟦ BΠ ⟧ⱼ ⊢F ▹ ⊢G = Πⱼ ⊢F ▹ ⊢G ⟦ BΣ ⟧ⱼ ⊢F ▹ ⊢G = Σⱼ ⊢F ▹ ⊢G ⟦_⟧ⱼᵤ_▹_ : (W : BindingType) → ∀ {F G} → Γ ⊢ F ∷ U → Γ ∙ F ⊢ G ∷ U → Γ ⊢ ⟦ W ⟧ F ▹ G ∷ U ⟦ BΠ ⟧ⱼᵤ ⊢F ▹ ⊢G = Πⱼ ⊢F ▹ ⊢G ⟦ BΣ ⟧ⱼᵤ ⊢F ▹ ⊢G = Σⱼ ⊢F ▹ ⊢G
{ "alphanum_fraction": 0.2857257611, "avg_line_length": 30.9676616915, "ext": "agda", "hexsha": "4b7a71fadcf7db3e1a1bd90d432683f7d08559bb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ea83fc4f618d1527d64ecac82d7d17e2f18ac391", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "fhlkfy/logrel-mltt", "max_forks_repo_path": "Definition/Typed.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ea83fc4f618d1527d64ecac82d7d17e2f18ac391", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "fhlkfy/logrel-mltt", "max_issues_repo_path": "Definition/Typed.agda", "max_line_length": 90, "max_stars_count": null, "max_stars_repo_head_hexsha": "ea83fc4f618d1527d64ecac82d7d17e2f18ac391", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "fhlkfy/logrel-mltt", "max_stars_repo_path": "Definition/Typed.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5318, "size": 12449 }
-- Binary coproducts {-# OPTIONS --safe #-} module Cubical.Categories.Limits.BinCoproduct where open import Cubical.Categories.Category.Base open import Cubical.Data.Sigma.Base open import Cubical.Foundations.HLevels open import Cubical.Foundations.Prelude open import Cubical.HITs.PropositionalTruncation.Base private variable ℓ ℓ' : Level module _ (C : Category ℓ ℓ') where open Category C module _ {x y x+y : ob} (i₁ : Hom[ x , x+y ]) (i₂ : Hom[ y , x+y ]) where isBinCoproduct : Type (ℓ-max ℓ ℓ') isBinCoproduct = ∀ {z : ob} (f₁ : Hom[ x , z ]) (f₂ : Hom[ y , z ]) → ∃![ f ∈ Hom[ x+y , z ] ] (i₁ ⋆ f ≡ f₁) × (i₂ ⋆ f ≡ f₂) isPropIsBinCoproduct : isProp (isBinCoproduct) isPropIsBinCoproduct = isPropImplicitΠ (λ _ → isPropΠ2 (λ _ _ → isPropIsContr)) record BinCoproduct (x y : ob) : Type (ℓ-max ℓ ℓ') where field binCoprodOb : ob binCoprodInj₁ : Hom[ x , binCoprodOb ] binCoprodInj₂ : Hom[ y , binCoprodOb ] univProp : isBinCoproduct binCoprodInj₁ binCoprodInj₂ BinCoproducts : Type (ℓ-max ℓ ℓ') BinCoproducts = (x y : ob) → BinCoproduct x y hasBinCoproducts : Type (ℓ-max ℓ ℓ') hasBinCoproducts = ∥ BinCoproducts ∥₁
{ "alphanum_fraction": 0.647634584, "avg_line_length": 27.8636363636, "ext": "agda", "hexsha": "68e65661fa100a709e5e93e6c9625c859a8752e4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Categories/Limits/BinCoproduct.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Categories/Limits/BinCoproduct.agda", "max_line_length": 83, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Categories/Limits/BinCoproduct.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 456, "size": 1226 }
{-# OPTIONS --without-K --safe #-} -- Some properties of Restriction Categories -- The first few lemmas are from Cocket & Lack, Lemma 2.1 and 2.2 module Categories.Category.Restriction.Properties where open import Data.Product using (Σ; _,_) open import Level using (Level; _⊔_) open import Categories.Category.Core using (Category) open import Categories.Category.Restriction using (Restriction) open import Categories.Category.SubCategory open import Categories.Morphism using (Mono) open import Categories.Morphism.Idempotent using (Idempotent) open import Categories.Morphism.Properties using (Mono-id) import Categories.Morphism.Reasoning as MR module _ {o ℓ e : Level} {𝒞 : Category o ℓ e} (R : Restriction 𝒞) where open Category 𝒞 open Restriction R open HomReasoning open MR 𝒞 using (elimˡ; introʳ) private variable A B C : Obj f : A ⇒ B g : B ⇒ C ↓f-idempotent : (A ⇒ B) → Idempotent 𝒞 A ↓f-idempotent f = record { idem = f ↓ ; idempotent = ⟺ ↓-denestʳ ○ ↓-cong pidʳ } -- a special version of ↓ being a partial left identity ↓-pidˡ-gf : f ↓ ∘ (g ∘ f) ↓ ≈ (g ∘ f) ↓ ↓-pidˡ-gf {f = f} {g = g} = begin f ↓ ∘ (g ∘ f) ↓ ≈⟨ ↓-comm ⟩ (g ∘ f) ↓ ∘ f ↓ ≈˘⟨ ↓-denestʳ ⟩ ((g ∘ f) ∘ f ↓) ↓ ≈⟨ ↓-cong assoc ⟩ (g ∘ (f ∘ f ↓)) ↓ ≈⟨ ↓-cong (∘-resp-≈ʳ pidʳ) ⟩ (g ∘ f) ↓ ∎ -- left denesting looks different in its conclusion ↓-denestˡ : (g ↓ ∘ f) ↓ ≈ (g ∘ f) ↓ ↓-denestˡ {g = g} {f = f} = begin (g ↓ ∘ f) ↓ ≈⟨ ↓-cong ↓-skew-comm ⟩ (f ∘ (g ∘ f) ↓) ↓ ≈⟨ ↓-denestʳ ⟩ f ↓ ∘ (g ∘ f) ↓ ≈⟨ ↓-pidˡ-gf ⟩ (g ∘ f) ↓ ∎ ↓-idempotent : f ↓ ↓ ≈ f ↓ ↓-idempotent {f = f} = begin f ↓ ↓ ≈˘⟨ ↓-cong identityʳ ⟩ (f ↓ ∘ id) ↓ ≈⟨ ↓-denestˡ ⟩ (f ∘ id) ↓ ≈⟨ ↓-cong identityʳ ⟩ f ↓ ∎ ↓↓denest : (g ↓ ∘ f ↓) ↓ ≈ g ↓ ∘ f ↓ ↓↓denest {g = g} {f = f} = begin (g ↓ ∘ f ↓) ↓ ≈⟨ ↓-denestʳ ⟩ g ↓ ↓ ∘ f ↓ ≈⟨ (↓-idempotent ⟩∘⟨refl) ⟩ g ↓ ∘ f ↓ ∎ Mono⇒f↓≈id : Mono 𝒞 f → f ↓ ≈ id Mono⇒f↓≈id {f = f} mono = mono (f ↓) id (pidʳ ○ ⟺ identityʳ) -- if the domain of g is at least that of f, then the restriction coincides ↓⊃⇒≈ : f ∘ g ↓ ≈ f → f ↓ ≈ f ↓ ∘ g ↓ ↓⊃⇒≈ {f = f} {g = g} fg↓≈f = ⟺ (↓-cong fg↓≈f) ○ ↓-denestʳ Mono⇒Total : Mono 𝒞 f → total f Mono⇒Total = Mono⇒f↓≈id ∘-pres-total : {A B C : Obj} {f : B ⇒ C} {g : A ⇒ B} → total f → total g → total (f ∘ g) ∘-pres-total {f = f} {g = g} tf tg = begin (f ∘ g) ↓ ≈˘⟨ ↓-denestˡ ⟩ (f ↓ ∘ g) ↓ ≈⟨ ↓-cong (elimˡ tf) ⟩ g ↓ ≈⟨ tg ⟩ id ∎ total-gf⇒total-f : total (g ∘ f) → total f total-gf⇒total-f {g = g} {f = f} tgf = begin f ↓ ≈⟨ introʳ tgf ⟩ f ↓ ∘ (g ∘ f) ↓ ≈⟨ ↓-pidˡ-gf ⟩ (g ∘ f) ↓ ≈⟨ tgf ⟩ id ∎ total-SubCat : SubCat 𝒞 Obj total-SubCat = record { U = λ x → x ; R = total ; Rid = Mono⇒Total (Mono-id 𝒞) ; _∘R_ = ∘-pres-total } Total : Category o (ℓ ⊔ e) e Total = SubCategory 𝒞 total-SubCat
{ "alphanum_fraction": 0.5155987924, "avg_line_length": 30.4183673469, "ext": "agda", "hexsha": "fd01c8ac1b18aaa6b7c8902a982753e94e1a8a1a", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Category/Restriction/Properties.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Category/Restriction/Properties.agda", "max_line_length": 90, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Category/Restriction/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 1367, "size": 2981 }
------------------------------------------------------------------------ -- Lemmas about the initial bag index ------------------------------------------------------------------------ module TotalParserCombinators.InitialBag where open import Category.Monad open import Data.List import Data.List.Categorical open import Data.List.Membership.Propositional using (_∈_) open import Data.List.Membership.Propositional.Properties as M hiding (⊛-∈↔) open import Data.List.Relation.Binary.BagAndSetEquality using () renaming (_∼[_]_ to _List-∼[_]_) open import Data.List.Relation.Unary.Any open import Data.List.Relation.Unary.Any.Properties open import Data.Maybe hiding (_>>=_) open import Data.Product open import Data.Sum open import Function.Base open import Function.Equality using (_⟨$⟩_) open import Function.Inverse as Inv using (_↔_) import Function.Related as Related open import Level open import Relation.Binary.PropositionalEquality as P using (_≡_; refl) open import Relation.Binary.HeterogeneousEquality as H using (refl) renaming (_≅_ to _≅′_) open Inv.Inverse open RawMonadPlus {f = zero} Data.List.Categorical.monadPlus using () renaming (_⊛_ to _⊛′_) open Related using (SK-sym) open import TotalParserCombinators.Parser open import TotalParserCombinators.Semantics ------------------------------------------------------------------------ -- Optimisation private abstract ⊛-∈↔ : ∀ {A B : Set} (fs : List (A → B)) {xs y} → (∃₂ λ f x → f ∈ fs × x ∈ xs × y ≡ f x) ↔ y ∈ (fs ⊛′ xs) ⊛-∈↔ = M.⊛-∈↔ ------------------------------------------------------------------------ -- Sanity check: The initial set index is correctly defined mutual complete : ∀ {Tok R xs x} {p : Parser Tok R xs} → x ∈ p · [] → x ∈ xs complete x∈p = complete′ x∈p refl private complete′ : ∀ {Tok R xs x s} {p : Parser Tok R xs} → x ∈ p · s → s ≡ [] → x ∈ xs complete′ return refl = to return↔ ⟨$⟩ refl complete′ (∣-left x∈p₁) refl = to ++↔ ⟨$⟩ inj₁ (complete x∈p₁) complete′ (∣-right xs₁ x∈p₂) refl = to (++↔ {P = _≡_ _} {xs = xs₁}) ⟨$⟩ inj₂ (complete x∈p₂) complete′ (<$> x∈p) refl = to (map-∈↔ _) ⟨$⟩ (_ , complete x∈p , refl) complete′ (_⊛_ {s₁ = []} {xs = just _} f∈p₁ x∈p₂) refl = to (⊛-∈↔ _) ⟨$⟩ (_ , _ , complete f∈p₁ , complete x∈p₂ , refl) complete′ (_>>=_ {s₁ = []} {xs = just xs} {f = just _} x∈p₁ y∈p₂x) refl = to (>>=-∈↔ {xs = xs}) ⟨$⟩ (_ , complete x∈p₁ , complete y∈p₂x) complete′ (cast {xs₁≈xs₂ = xs₁≈xs₂} x∈p) refl = to xs₁≈xs₂ ⟨$⟩ complete x∈p complete′ (_⊛_ {s₁ = []} {xs = nothing} f∈p₁ x∈p₂) refl with complete x∈p₂ ... | () complete′ (_>>=_ {s₁ = []} {xs = nothing} x∈p₁ y∈p₂x) refl with complete x∈p₁ ... | () complete′ (_>>=_ {s₁ = []} {xs = just _} {f = nothing} x∈p₁ y∈p₂x) refl with complete y∈p₂x ... | () complete′ token () complete′ (_⊛_ {s₁ = _ ∷ _} _ _) () complete′ (_>>=_ {s₁ = _ ∷ _} _ _) () complete′ (nonempty _) () mutual sound : ∀ {Tok R xs x} (p : Parser Tok R xs) → x ∈ xs → x ∈ p · [] sound (return x) (here refl) = return sound (_∣_ {xs₁ = xs₁} p₁ p₂) x∈xs with from (++↔ {P = _≡_ _} {xs = xs₁}) ⟨$⟩ x∈xs ... | inj₁ x∈xs₁ = ∣-left (sound p₁ x∈xs₁) ... | inj₂ x∈xs₂ = ∣-right xs₁ (sound p₂ x∈xs₂) sound (f <$> p) x∈xs with from (map-∈↔ f) ⟨$⟩ x∈xs ... | (y , y∈xs , refl) = <$> sound p y∈xs sound (_⊛_ {fs = fs} {just xs} p₁ p₂) y∈ys with from (⊛-∈↔ (flatten fs) {xs = xs}) ⟨$⟩ y∈ys sound (_⊛_ {fs = nothing} {just xs} p₁ p₂) y∈ys | (f′ , x′ , () , x′∈xs , refl) sound (_⊛_ {fs = just fs} {just xs} p₁ p₂) y∈ys | (f′ , x′ , f′∈fs , x′∈xs , refl) = _⊛_ {fs = ○} {xs = ○} (sound p₁ f′∈fs) (sound p₂ x′∈xs) sound (_>>=_ {xs = zs} {f = just f} p₁ p₂) y∈ys with from (>>=-∈↔ {xs = flatten zs} {f = f}) ⟨$⟩ y∈ys ... | (x , x∈zs , y∈fx) = _>>=_ {xs = zs} {f = just f} (sound p₁ x∈zs) (sound′ (p₂ x) x∈zs y∈fx) sound (cast xs₁≈xs₂ p) x∈xs = cast (sound p (from xs₁≈xs₂ ⟨$⟩ x∈xs)) sound (return _) (there ()) sound fail () sound token () sound (_⊛_ {xs = nothing} _ _) () sound (_>>=_ {f = nothing} _ _) () sound (nonempty _) () private sound′ : ∀ {Tok R₁ R₂ x y xs} {zs : Maybe (List R₁)} (p : ∞⟨ zs ⟩Parser Tok R₂ xs) → x ∈ flatten zs → y ∈ xs → y ∈ ♭? p · [] sound′ {zs = just _} p _ = sound p sound′ {zs = nothing} p () mutual sound∘complete : ∀ {Tok R xs x} {p : Parser Tok R xs} (x∈p : x ∈ p · []) → sound p (complete x∈p) ≡ x∈p sound∘complete x∈p = H.≅-to-≡ (sound∘complete′ x∈p refl) private sound∘complete′ : ∀ {Tok R xs x s} {p : Parser Tok R xs} (x∈p : x ∈ p · s) (s≡[] : s ≡ []) → sound p (complete′ x∈p s≡[]) ≅′ x∈p sound∘complete′ return refl = refl sound∘complete′ (∣-left {xs₁ = xs₁} {xs₂ = xs₂} x∈p₁) refl rewrite left-inverse-of (++↔ {P = _≡_ _} {xs = xs₁} {ys = xs₂}) (inj₁ (complete x∈p₁)) = H.cong _∈_·_.∣-left (sound∘complete′ x∈p₁ refl) sound∘complete′ (∣-right xs₁ x∈p₂) refl rewrite left-inverse-of (++↔ {P = _≡_ _} {xs = xs₁}) (inj₂ (complete x∈p₂)) = H.cong (_∈_·_.∣-right xs₁) (sound∘complete′ x∈p₂ refl) sound∘complete′ (<$>_ {f = f} x∈p) refl rewrite left-inverse-of (map-∈↔ f) (_ , complete x∈p , refl) = H.cong _∈_·_.<$>_ (sound∘complete′ x∈p refl) sound∘complete′ (_⊛_ {s₁ = []} {fs = fs} {xs = just xs} f∈p₁ x∈p₂) refl with complete f∈p₁ | complete x∈p₂ | from inv ⟨$⟩ (to inv ⟨$⟩ (_ , _ , complete f∈p₁ , complete x∈p₂ , refl)) | left-inverse-of inv (_ , _ , complete f∈p₁ , complete x∈p₂ , refl) | sound∘complete f∈p₁ | sound∘complete x∈p₂ where inv = ⊛-∈↔ (flatten fs) {xs = xs} sound∘complete′ (_⊛_ {s₁ = []} {fs = nothing} {xs = just xs} _ _) refl | () | _ | _ | _ | _ | _ sound∘complete′ (_⊛_ {s₁ = []} {fs = just fs} {xs = just xs} {p₁ = p₁} {p₂ = p₂} .(sound p₁ ∈fs) .(sound p₂ ∈xs)) refl | ∈fs | ∈xs | ._ | refl | refl | refl = refl sound∘complete′ (_>>=_ {x = x} {y = y} {s₁ = []} {xs = just _} {f = just f} {p₁ = p₁} {p₂ = p₂} x∈p₁ y∈p₂x) refl rewrite left-inverse-of (>>=-∈↔ {f = f}) (_ , complete x∈p₁ , complete y∈p₂x) with sound p₁ (complete x∈p₁) | sound∘complete x∈p₁ | sound′ (p₂ x) (complete x∈p₁) (complete y∈p₂x) | helper (p₂ x) (complete x∈p₁) y∈p₂x where helper : ∀ {Tok R₁ R₂ x y ys} {xs : Maybe (List R₁)} (p : ∞⟨ xs ⟩Parser Tok R₂ ys) → (x∈xs : x ∈ flatten xs) (y∈p : y ∈ ♭? p · []) → sound′ p x∈xs (complete y∈p) ≡ y∈p helper {xs = nothing} p () _ helper {xs = just _} p _ y∈p = sound∘complete y∈p ... | ._ | refl | ._ | refl = refl sound∘complete′ (cast {xs₁≈xs₂ = xs₁≈xs₂} x∈p) refl with complete x∈p | sound∘complete x∈p sound∘complete′ (cast {xs₁≈xs₂ = xs₁≈xs₂} .(sound _ x∈xs)) refl | x∈xs | refl rewrite left-inverse-of xs₁≈xs₂ x∈xs = refl sound∘complete′ (_⊛_ {s₁ = []} {xs = nothing} _ x∈p₂) refl with complete x∈p₂ ... | () sound∘complete′ (_>>=_ {s₁ = []} {xs = nothing} x∈p₁ y∈p₂x) refl with complete x∈p₁ ... | () sound∘complete′ (_>>=_ {s₁ = []} {xs = just _} {f = nothing} x∈p₁ y∈p₂x) refl with complete y∈p₂x ... | () sound∘complete′ token () sound∘complete′ (_⊛_ {s₁ = _ ∷ _} _ _) () sound∘complete′ (_>>=_ {s₁ = _ ∷ _} _ _) () sound∘complete′ (nonempty _) () complete∘sound : ∀ {Tok R xs x} (p : Parser Tok R xs) (x∈p : x ∈ xs) → complete (sound p x∈p) ≡ x∈p complete∘sound (return x) (here refl) = refl complete∘sound (_∣_ {xs₁ = xs₁} p₁ p₂) x∈xs with from (++↔ {P = _≡_ _} {xs = xs₁}) ⟨$⟩ x∈xs | right-inverse-of (++↔ {P = _≡_ _} {xs = xs₁}) x∈xs complete∘sound (_∣_ {xs₁ = xs₁} p₁ p₂) .(to ++↔ ⟨$⟩ inj₁ x∈xs₁) | inj₁ x∈xs₁ | refl = P.cong (_⟨$⟩_ (to ++↔) ∘ inj₁) $ complete∘sound p₁ x∈xs₁ complete∘sound (_∣_ {xs₁ = xs₁} p₁ p₂) .(to (++↔ {P = _≡_ _} {xs = xs₁}) ⟨$⟩ inj₂ x∈xs₂) | inj₂ x∈xs₂ | refl = P.cong (_⟨$⟩_ (to (++↔ {P = _≡_ _} {xs = xs₁})) ∘ inj₂) $ complete∘sound p₂ x∈xs₂ complete∘sound (f <$> p) x∈xs with from (map-∈↔ f) ⟨$⟩ x∈xs | right-inverse-of (map-∈↔ f) x∈xs complete∘sound (f <$> p) .(to (map-∈↔ f) ⟨$⟩ (y , y∈xs , refl)) | (y , y∈xs , refl) | refl = P.cong (λ y∈ → to (map-∈↔ _) ⟨$⟩ (y , y∈ , refl)) (complete∘sound p y∈xs) complete∘sound (_⊛_ {fs = fs} {just xs} p₁ p₂) y∈ys with from (⊛-∈↔ (flatten fs) {xs = xs}) ⟨$⟩ y∈ys | right-inverse-of (⊛-∈↔ (flatten fs) {xs = xs}) y∈ys complete∘sound (_⊛_ {fs = nothing} {xs = just xs} p₁ p₂) y∈ys | (f′ , x′ , () , x′∈xs , refl) | _ complete∘sound (_⊛_ {fs = just fs} {xs = just xs} p₁ p₂) .(to (⊛-∈↔ _) ⟨$⟩ (f′ , x′ , f′∈fs , x′∈xs , refl)) | (f′ , x′ , f′∈fs , x′∈xs , refl) | refl = P.cong₂ (λ f′∈ x′∈ → to (⊛-∈↔ _) ⟨$⟩ (f′ , x′ , f′∈ , x′∈ , refl)) (complete∘sound p₁ f′∈fs) (complete∘sound p₂ x′∈xs) complete∘sound (_>>=_ {xs = zs} {just f} p₁ p₂) y∈ys with from (>>=-∈↔ {xs = flatten zs} {f = f}) ⟨$⟩ y∈ys | right-inverse-of (>>=-∈↔ {xs = flatten zs} {f = f}) y∈ys complete∘sound (_>>=_ {xs = nothing} {just f} p₁ p₂) ._ | (x , () , y∈fx) | refl complete∘sound (_>>=_ {xs = just zs} {just f} p₁ p₂) .(to (>>=-∈↔ {f = f}) ⟨$⟩ (x , x∈zs , y∈fx)) | (x , x∈zs , y∈fx) | refl = P.cong₂ (λ x∈ y∈ → to (>>=-∈↔ {f = f}) ⟨$⟩ (x , x∈ , y∈)) (complete∘sound p₁ x∈zs) (complete∘sound (p₂ x) y∈fx) complete∘sound (cast xs₁≈xs₂ p) x∈xs rewrite complete∘sound p (from xs₁≈xs₂ ⟨$⟩ x∈xs) = right-inverse-of xs₁≈xs₂ x∈xs complete∘sound (return _) (there ()) complete∘sound fail () complete∘sound token () complete∘sound (_⊛_ {xs = nothing} _ _) () complete∘sound (_>>=_ {f = nothing} _ _) () complete∘sound (nonempty _) () correct : ∀ {Tok R xs x} {p : Parser Tok R xs} → x ∈ p · [] ↔ x ∈ xs correct {p = p} = record { to = P.→-to-⟶ complete ; from = P.→-to-⟶ $ sound p ; inverse-of = record { left-inverse-of = sound∘complete ; right-inverse-of = complete∘sound p } } ------------------------------------------------------------------------ -- Equal parsers have equal initial bags/sets -- Note that this property holds also for the subbag and subset -- relations. cong : ∀ {k Tok R xs₁ xs₂} {p₁ : Parser Tok R xs₁} {p₂ : Parser Tok R xs₂} → p₁ ∼[ k ] p₂ → initial-bag p₁ List-∼[ k ] initial-bag p₂ cong {xs₁ = xs₁} {xs₂} {p₁} {p₂} p₁≈p₂ {x} = (x ∈ xs₁) ↔⟨ SK-sym correct ⟩ x ∈ p₁ · [] ∼⟨ p₁≈p₂ ⟩ x ∈ p₂ · [] ↔⟨ correct ⟩ (x ∈ xs₂) ∎ where open Related.EquationalReasoning
{ "alphanum_fraction": 0.4595206168, "avg_line_length": 46.9763779528, "ext": "agda", "hexsha": "bb5a74737446a6719f2012f5a240af7ece7e99d2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "TotalParserCombinators/InitialBag.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "TotalParserCombinators/InitialBag.agda", "max_line_length": 135, "max_stars_count": 1, "max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/parser-combinators", "max_stars_repo_path": "TotalParserCombinators/InitialBag.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z", "num_tokens": 4555, "size": 11932 }
-- 2012-03-16 Andreas, fixing shift/reduce conflict introduced by record update module Issue549 where record M.R { A } : Set where -- gives: Not a valid identifier M.R -- If you remove the A, you get: Not a valid pattern -- since then it is parsed as a record update expression
{ "alphanum_fraction": 0.7392857143, "avg_line_length": 31.1111111111, "ext": "agda", "hexsha": "6f1e32e1159f91391a3483f8c447dae515784bcd", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue549.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue549.agda", "max_line_length": 79, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue549.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 72, "size": 280 }
open import Spire.Type module Spire.Denotational where ---------------------------------------------------------------------- data Term : Set → Set₁ eval : {A : Set} → Term A → A ---------------------------------------------------------------------- data Term where {- Type introduction -} `⊥ `⊤ `Bool `ℕ `Desc `Type : ∀{ℓ} → Term (Type ℓ) `Π `Σ : ∀{ℓ} (A : Term (Type ℓ)) (B : ⟦ ℓ ∣ eval A ⟧ → Term (Type ℓ)) → Term (Type ℓ) `⟦_⟧ : ∀{ℓ} (A : Term (Type ℓ)) → Term (Type (suc ℓ)) `⟦_⟧ᵈ : ∀{ℓ} (D : Term (Desc ℓ)) (X : Term (Type ℓ)) → Term (Type ℓ) `μ : ∀{ℓ} (D : Term (Desc ℓ)) → Term (Type ℓ) {- Type elimination -} `elimType : ∀{ℓ} (P : (n : ℕ) → Type n → Term (Type ℓ)) → ((n : ℕ) → Term ⟦ ℓ ∣ eval (P n `⊥) ⟧) → ((n : ℕ) → Term ⟦ ℓ ∣ eval (P n `⊤) ⟧) → ((n : ℕ) → Term ⟦ ℓ ∣ eval (P n `Bool) ⟧) → ((n : ℕ) → Term ⟦ ℓ ∣ eval (P n `ℕ) ⟧) → ((n : ℕ) (A : Type n) (B : ⟦ n ∣ A ⟧ → Type n) (rec₁ : ⟦ ℓ ∣ eval (P n A) ⟧) (rec₂ : (a : ⟦ n ∣ A ⟧) → ⟦ ℓ ∣ eval (P n (B a)) ⟧) → Term ⟦ ℓ ∣ eval (P n (`Π A B)) ⟧) → ((n : ℕ) (A : Type n) (B : ⟦ n ∣ A ⟧ → Type n) (rec₁ : ⟦ ℓ ∣ eval (P n A) ⟧) (rec₂ : (a : ⟦ n ∣ A ⟧) → ⟦ ℓ ∣ eval (P n (B a)) ⟧) → Term ⟦ ℓ ∣ eval (P n (`Σ A B)) ⟧) → ((n : ℕ) → Term ⟦ ℓ ∣ eval (P n `Desc) ⟧) → ((n : ℕ) (D : Desc n) (X : Type n) (rec : ⟦ ℓ ∣ eval (P n X) ⟧) → Term ⟦ ℓ ∣ eval (P n (`⟦ D ⟧ᵈ X)) ⟧) → ((n : ℕ) (D : Desc n) → Term ⟦ ℓ ∣ eval (P n (`μ D)) ⟧) → ((n : ℕ) → Term ⟦ ℓ ∣ eval (P n `Type) ⟧) → ((n : ℕ) (A : Type n) (rec : ⟦ ℓ ∣ eval (P n A) ⟧) → Term ⟦ ℓ ∣ eval (P (suc n) `⟦ A ⟧) ⟧) → (n : Term ℕ) (A : Term (Type (eval n))) → Term ⟦ ℓ ∣ eval (P (eval n) (eval A)) ⟧ {- Desc introduction -} `⊤ᵈ `Xᵈ : ∀{ℓ} → Term (Desc ℓ) `Πᵈ `Σᵈ : ∀{ℓ} (A : Term (Type ℓ)) (B : ⟦ ℓ ∣ eval A ⟧ → Term (Desc (suc ℓ))) → Term (Desc (suc ℓ)) {- Desc elimination -} `elimDesc : ∀{ℓ} (P : (n : ℕ) → Desc n → Term (Type ℓ)) → ((n : ℕ) → Term ⟦ ℓ ∣ eval (P n `⊤) ⟧) → ((n : ℕ) → Term ⟦ ℓ ∣ eval (P n `X) ⟧) → ((n : ℕ) (A : Type n) (D : ⟦ n ∣ A ⟧ → Desc (suc n)) (rec : (a : ⟦ n ∣ A ⟧) → ⟦ ℓ ∣ eval (P (suc n) (D a)) ⟧) → Term ⟦ ℓ ∣ eval (P (suc n) (`Π A D)) ⟧) → ((n : ℕ) (A : Type n) (D : ⟦ n ∣ A ⟧ → Desc (suc n)) (rec : (a : ⟦ n ∣ A ⟧) → ⟦ ℓ ∣ eval (P (suc n) (D a)) ⟧) → Term ⟦ ℓ ∣ eval (P (suc n) (`Σ A D)) ⟧) → (n : Term ℕ) (D : Term (Desc (eval n))) → Term ⟦ ℓ ∣ eval (P (eval n) (eval D)) ⟧ {- Value introduction -} `tt : Term ⊤ `true `false : Term Bool `zero : Term ℕ `suc : Term ℕ → Term ℕ `λ : ∀{A} {B : A → Set} (f : (a : A) → Term (B a)) → Term ((a : A) → B a) _`,_ : ∀{A B} (a : Term A) (b : Term (B (eval a))) → Term (Σ A B) `con : ∀{ℓ D} (x : Term (⟦ ℓ ∣ D ⟧ᵈ (μ D))) → Term (μ D) {- Value elimination -} `elim⊥ : ∀{A} → Term ⊥ → Term A `elimBool : ∀{ℓ} (P : Bool → Term (Type ℓ)) (pt : Term ⟦ ℓ ∣ eval (P true) ⟧) (pf : Term ⟦ ℓ ∣ eval (P false) ⟧) (b : Term Bool) → Term ⟦ ℓ ∣ eval (P (eval b)) ⟧ `elimℕ : ∀{ℓ} (P : ℕ → Term (Type ℓ)) (pz : Term ⟦ ℓ ∣ eval (P zero) ⟧) (ps : (n : ℕ) → ⟦ ℓ ∣ eval (P n) ⟧ → Term ⟦ ℓ ∣ eval (P (suc n)) ⟧) (n : Term ℕ) → Term ⟦ ℓ ∣ eval (P (eval n)) ⟧ `proj₁ : ∀{A B} (ab : Term (Σ A B)) → Term A `proj₂ : ∀{A B} (ab : Term (Σ A B)) → Term (B (proj₁ (eval ab))) _`$_ : ∀{A} {B : A → Set} (f : Term ((a : A) → B a)) (a : Term A) → Term (B (eval a)) `des : ∀{ℓ} {D : Desc ℓ} → (Term (μ D)) → Term (⟦ ℓ ∣ D ⟧ᵈ (μ D)) ---------------------------------------------------------------------- {- Type introduction -} eval `⊥ = `⊥ eval `⊤ = `⊤ eval `Bool = `Bool eval `ℕ = `ℕ eval `Desc = `Desc eval `Type = `Type eval (`Π A B) = `Π (eval A) (λ a → eval (B a)) eval (`Σ A B) = `Σ (eval A) (λ a → eval (B a)) eval (`μ D) = `μ (eval D) eval (`⟦ D ⟧ᵈ X) = `⟦ eval D ⟧ᵈ (eval X) eval `⟦ A ⟧ = `⟦ eval A ⟧ {- Type elimination -} eval (`elimType {ℓ = ℓ} P p⊥ p⊤ pBool pℕ pΠ pΣ pDesc p⟦D⟧ᵈ pμ pType p⟦A⟧ n A) = elimType (λ n A → ⟦ ℓ ∣ eval (P n A) ⟧) (λ n → eval (p⊥ n)) (λ n → eval (p⊤ n)) (λ n → eval (pBool n)) (λ n → eval (pℕ n)) (λ n A B rec₁ rec₂ → eval (pΠ n A B rec₁ rec₂)) (λ n A B rec₁ rec₂ → eval (pΣ n A B rec₁ rec₂)) (λ n → eval (pDesc n)) (λ n D X rec → eval (p⟦D⟧ᵈ n D X rec)) (λ n D → eval (pμ n D)) (λ n → eval (pType n)) (λ n A rec → eval (p⟦A⟧ n A rec)) (eval n) (eval A) {- Desc introduction -} eval `⊤ᵈ = `⊤ eval `Xᵈ = `X eval (`Πᵈ A D) = `Π (eval A) (λ a → eval (D a)) eval (`Σᵈ A D) = `Σ (eval A) (λ a → eval (D a)) {- Desc elimination -} eval (`elimDesc {ℓ = ℓ} P p⊤ pX pΠ pΣ n D) = elimDesc (λ n D → ⟦ ℓ ∣ eval (P n D) ⟧) (λ n → eval (p⊤ n)) (λ n → eval (pX n)) (λ n A D rec → eval (pΠ n A D rec)) (λ n A D rec → eval (pΣ n A D rec)) (eval n) (eval D) {- Value introduction -} eval `tt = tt eval `true = true eval `false = false eval `zero = zero eval (`suc n) = suc (eval n) eval (`λ f) = λ a → eval (f a) eval (a `, b) = eval a , eval b eval (`con x) = con (eval x) {- Value elimination -} eval (`elim⊥ bot) = elim⊥ (eval bot) eval (`elimBool {ℓ = ℓ} P pt pf b) = elimBool (λ b → ⟦ ℓ ∣ eval (P b) ⟧) (eval pt) (eval pf) (eval b) eval (`elimℕ {ℓ = ℓ} P pz ps n) = elimℕ (λ n → ⟦ ℓ ∣ eval (P n) ⟧) (eval pz) (λ n pn → eval (ps n pn)) (eval n) eval (`proj₁ ab) = proj₁ (eval ab) eval (`proj₂ ab) = proj₂ (eval ab) eval (f `$ a) = (eval f) (eval a) eval (`des {ℓ = ℓ} x) = des {ℓ = ℓ} (eval x) ----------------------------------------------------------------------
{ "alphanum_fraction": 0.4013937282, "avg_line_length": 29.7409326425, "ext": "agda", "hexsha": "35fff44095c0ef1f64b18c460b455c6db3781b78", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-08-17T21:00:07.000Z", "max_forks_repo_forks_event_min_datetime": "2015-08-17T21:00:07.000Z", "max_forks_repo_head_hexsha": "3d67f137ee9423b7e6f8593634583998cd692353", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "spire/spire", "max_forks_repo_path": "formalization/agda/Spire/Denotational.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3d67f137ee9423b7e6f8593634583998cd692353", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "spire/spire", "max_issues_repo_path": "formalization/agda/Spire/Denotational.agda", "max_line_length": 86, "max_stars_count": 43, "max_stars_repo_head_hexsha": "3d67f137ee9423b7e6f8593634583998cd692353", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "spire/spire", "max_stars_repo_path": "formalization/agda/Spire/Denotational.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T17:10:59.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-28T23:25:33.000Z", "num_tokens": 2698, "size": 5740 }
open import Coinduction using ( ∞ ; ♯_ ; ♭ ) open import Data.Product using ( _,_ ) open import FRP.LTL.ISet.Core using ( ISet ; M⟦_⟧ ; splitM⟦_⟧ ; ⟦_⟧ ; ⌈_⌉ ; [_] ) open import FRP.LTL.ISet.Product using ( _∧_ ) open import FRP.LTL.ISet.Stateless using ( _⇒_ ) open import FRP.LTL.Time.Bound using ( Time∞ ; fin ; +∞ ; _≼_ ; _≺_ ; ≼-refl ; ≺-impl-≼ ; ≺-impl-⋡ ; _≺-trans_ ; _≼-case_ ; lt ; eq ; gt ; t≺+∞ ) open import FRP.LTL.Time.Interval using ( [_⟩ ) open import FRP.LTL.Util using ( ⊥-elim ; ≡-relevant ) open import Relation.Binary.PropositionalEquality using ( _≡_ ; refl ) module FRP.LTL.ISet.Decoupled where data _∙_⊷_∙_ (A : ISet) (s : Time∞) (B : ISet) (u : Time∞) : Set where inp : .(s ≺ u) → .(u ≺ +∞) → (∀ {t} .(s≺t : s ≺ t) → M⟦ A ⟧ [ s≺t ⟩ → ∞ (A ∙ t ⊷ B ∙ u)) → (A ∙ s ⊷ B ∙ u) out : ∀ {v} .(u≺v : u ≺ v) → M⟦ B ⟧ [ u≺v ⟩ → ∞ (A ∙ s ⊷ B ∙ v) → (A ∙ s ⊷ B ∙ u) done : .(u ≡ +∞) → (A ∙ s ⊷ B ∙ u) _▹_ : ISet → ISet → ISet A ▹ B = ⌈ (λ t → A ∙ fin t ⊷ B ∙ fin t) ⌉ _/_/_ : ∀ {A B s t u} → (A ∙ s ⊷ B ∙ u) → .(s≺t : s ≺ t) → M⟦ A ⟧ [ s≺t ⟩ → (A ∙ t ⊷ B ∙ u) inp s≺u u≺∞ P / s≺t / σ = ♭ (P s≺t σ) out u≺v τ P / s≺t / σ = out u≺v τ (♯ (♭ P / s≺t / σ)) done u≡∞ / s≺t / σ = done u≡∞ mutual ≻-tr : ∀ {A B C s u} .(s≻u : u ≺ s) → M⟦ B ⟧ [ s≻u ⟩ → ((A ∧ B) ∙ u ⊷ (A ∧ C) ∙ u) → (B ∙ s ⊷ C ∙ u) ≻-tr s≻u σ (inp u≺u u≺∞ P) = ⊥-elim (≺-impl-⋡ u≺u ≼-refl) ≻-tr {A} {B} {C} {s} {u} s≻u σ (out {v} u≺v [ ρ , τ ] P) with s ≼-case v ≻-tr {A} {B} {C} s≻u σ (out u≺v [ ρ , τ ] P) | lt s≺v with splitM⟦ A ⟧ [ s≻u ⟩ [ s≺v ⟩ refl ρ ≻-tr {A} {B} {C} s≻u σ (out u≺v [ ρ , τ ] P) | lt s≺v | (ρ₁ , ρ₂) = out u≺v τ (♯ ≺-tr s≺v ρ₂ (♭ P / s≻u / [ ρ₁ , σ ])) ≻-tr {A} {B} {C} s≻u σ (out u≺v [ ρ , τ ] P) | eq s≡v with ≡-relevant s≡v ≻-tr {A} {B} {C} s≻u σ (out u≺v [ ρ , τ ] P) | eq s≡v | refl = out u≺v τ (♯ tr (♭ P / s≻u / [ ρ , σ ])) ≻-tr {A} {B} {C} s≻u σ (out u≺v [ ρ , τ ] P) | gt s≻v with splitM⟦ B ⟧ [ u≺v ⟩ [ s≻v ⟩ refl σ ≻-tr {A} {B} {C} s≻u σ (out u≺v [ ρ , τ ] P) | gt s≻v | (σ₁ , σ₂) = out u≺v τ (♯ ≻-tr s≻v σ₂ (♭ P / u≺v / [ ρ , σ₁ ])) ≻-tr s≻u σ (done u≡∞) = done u≡∞ ≺-tr : ∀ {A B C s u} .(s≺u : s ≺ u) → M⟦ A ⟧ [ s≺u ⟩ → ((A ∧ B) ∙ s ⊷ (A ∧ C) ∙ u) → (B ∙ s ⊷ C ∙ u) ≺-tr {A} {B} {C} {s} {+∞} s≺u ρ P = done refl ≺-tr {A} {B} {C} {s} {fin u} s≺u ρ P = inp s≺u t≺+∞ Q where Q : ∀ {t} .(s≺t : s ≺ t) → M⟦ B ⟧ [ s≺t ⟩ → ∞ (B ∙ t ⊷ C ∙ fin u) Q {t} s≺t σ with t ≼-case (fin u) Q s≺t σ | lt t≺u with splitM⟦ _ ⟧ [ s≺t ⟩ [ t≺u ⟩ refl ρ Q s≺t σ | lt t≺u | (ρ₁ , ρ₂) = ♯ ≺-tr t≺u ρ₂ (P / s≺t / [ ρ₁ , σ ]) Q s≺t σ | eq t≡u with ≡-relevant t≡u Q s≺t σ | eq t≡u | refl = ♯ tr (P / s≺u / [ ρ , σ ]) Q s≺t σ | gt t≻u with splitM⟦ _ ⟧ [ s≺u ⟩ [ t≻u ⟩ refl σ Q s≺t σ | gt t≻u | (σ₁ , σ₂) = ♯ (≻-tr t≻u σ₂ (P / s≺u / [ ρ , σ₁ ])) tr : ∀ {A B C s} → ((A ∧ B) ∙ s ⊷ (A ∧ C) ∙ s) → (B ∙ s ⊷ C ∙ s) tr (inp s≺s s≺∞ P) = ⊥-elim (≺-impl-⋡ s≺s ≼-refl) tr (out s≺u [ ρ , τ ] P) = out s≺u τ (♯ ≺-tr s≺u ρ (♭ P)) tr (done s≡∞) = done s≡∞ loop : ∀ {A B C} → ⟦ ((A ∧ B) ▹ (A ∧ C)) ⇒ (B ▹ C) ⟧ loop [ [ f ] ] = [ (λ t t∈i → tr (f t t∈i)) ]
{ "alphanum_fraction": 0.3975640225, "avg_line_length": 44.4722222222, "ext": "agda", "hexsha": "98024255a47e4145e0eb0876b8ed550b653c1568", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:04.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-01T07:33:00.000Z", "max_forks_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/agda-frp-ltl", "max_forks_repo_path": "src/FRP/LTL/ISet/Decoupled.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5", "max_issues_repo_issues_event_max_datetime": "2015-03-02T15:23:53.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-01T07:01:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/agda-frp-ltl", "max_issues_repo_path": "src/FRP/LTL/ISet/Decoupled.agda", "max_line_length": 146, "max_stars_count": 21, "max_stars_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/agda-frp-ltl", "max_stars_repo_path": "src/FRP/LTL/ISet/Decoupled.agda", "max_stars_repo_stars_event_max_datetime": "2020-06-15T02:51:13.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-02T20:25:05.000Z", "num_tokens": 1957, "size": 3202 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Prelude open import LibraBFT.Lemmas open import LibraBFT.Abstract.Types open import LibraBFT.Abstract.Types.EpochConfig open WithAbsVote -- This module defines the notion of one Record r "extending" another -- Record r' (denoted r' ← r), ensuring rules about rounds and that r -- correctly identifies r' module LibraBFT.Abstract.Records.Extends (UID : Set) (_≟UID_ : (u₀ u₁ : UID) → Dec (u₀ ≡ u₁)) (NodeId : Set) (𝓔 : EpochConfig UID NodeId) (𝓥 : VoteEvidence UID NodeId 𝓔) where open import LibraBFT.Abstract.Records UID _≟UID_ NodeId 𝓔 𝓥 -- Most of the conditions in section 4.2 of the paper (see -- LibraBFT.Abstract.RecordChain.Properties) would be checked -- by the implementation to validate data received. -- -- In the Abstract model, however, we are only concerned with -- proving the properties; only round numbers and identifiers -- for previous records are actually critical to thm S5! data _←_ : Record → Record → Set where I←B : {b : Block} → 0 < getRound b → bPrevQC b ≡ nothing → I ← B b Q←B : {q : QC} {b : Block} → getRound q < getRound b → just (qCertBlockId q) ≡ bPrevQC b → Q q ← B b B←Q : {b : Block} {q : QC} → getRound q ≡ getRound b → bId b ≡ qCertBlockId q → B b ← Q q -- Equivalent records extend equivalent records (modulo injectivity -- failure of bId). ←-≈Rec : ∀{r₀ r₁ s₀ s₁} → s₀ ← r₀ → s₁ ← r₁ → r₀ ≈Rec r₁ → NonInjective-≡ bId ⊎ (s₀ ≈Rec s₁) ←-≈Rec (I←B x x₁) (I←B x₂ x₃) hyp = inj₂ eq-I ←-≈Rec (I←B x x₁) (Q←B x₂ x₃) (eq-B refl) = ⊥-elim (maybe-⊥ (sym x₃) x₁) ←-≈Rec (Q←B x x₁) (I←B x₂ x₃) (eq-B refl) = ⊥-elim (maybe-⊥ (sym x₁) x₃) ←-≈Rec (Q←B {q₀} x refl) (Q←B {q₁} x₂ refl) (eq-B refl) = inj₂ (eq-Q refl) -- Here is where we wouldn't be able to -- complete the proof if we required round equality -- in eq-Q ←-≈Rec (B←Q {b₀} x refl) (B←Q {b₁} w refl) (eq-Q refl) with b₀ ≟Block b₁ ...| no hb = inj₁ ((b₀ , b₁) , (λ x → hb x) , refl) ...| yes prf = inj₂ (eq-B prf) ←-irrelevant : Irrelevant _←_ ←-irrelevant (I←B r₁ h₁) (I←B r₂ h₂) = cong₂ I←B (≤-irrelevant r₁ r₂) (≡-irrelevant h₁ h₂) ←-irrelevant (Q←B r₁ h₁) (Q←B r₂ h₂) = cong₂ Q←B (≤-irrelevant r₁ r₂) (≡-irrelevant h₁ h₂) ←-irrelevant (B←Q r₁ h₁) (B←Q r₂ h₂) = cong₂ B←Q (≡-irrelevant r₁ r₂) (≡-irrelevant h₁ h₂) ←-round-≤ : ∀{r₀ r₁} → r₀ ← r₁ → round r₀ ≤ round r₁ ←-round-≤ (I←B r h) = z≤n ←-round-≤ (Q←B r h) = <⇒≤ r ←-round-≤ (B←Q refl h) = ≤-refl ←←-round-< : ∀{r r₀ r₁} → r ← r₀ → r₀ ← r₁ → round r < round r₁ ←←-round-< (I←B r h) (B←Q refl _) = r ←←-round-< (Q←B r h) rr = ≤-trans r (←-round-≤ rr) ←←-round-< (B←Q refl h) (Q←B prf _) = prf -- LemmaS1, clause 2: injectivity of _←_ lemmaS1-2 : ∀{r₀ r₁ r₂ r₂'} → r₂ ≈Rec r₂' → r₀ ← r₂ → r₁ ← r₂' → uid r₀ ≡ uid r₁ lemmaS1-2 {i₀} {i₁} {b} hyp (I←B _ i₀←b) (I←B _ i₁←b) = refl lemmaS1-2 {q} {i} {b} (eq-B refl) (Q←B _ ()) (I←B _ refl) lemmaS1-2 {i} {q} {b} (eq-B refl) (I←B _ refl) (Q←B _ ()) lemmaS1-2 {q₀} {q₁} {b} (eq-B refl) (Q←B _ refl) (Q←B _ refl) = refl lemmaS1-2 {b₀} {b₁} {q} (eq-Q refl) (B←Q _ refl) (B←Q _ refl) = refl -- A better name for lemmaS1-2 ←-inj : ∀{r₀ r₁ r₂} → r₀ ← r₂ → r₁ ← r₂ → uid r₀ ≡ uid r₁ ←-inj = lemmaS1-2 ≈Rec-refl
{ "alphanum_fraction": 0.5626659586, "avg_line_length": 37.2871287129, "ext": "agda", "hexsha": "962631d07a41778f3a5e20de4b9226a3006a61d3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "cwjnkins/bft-consensus-agda", "max_forks_repo_path": "LibraBFT/Abstract/Records/Extends.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "cwjnkins/bft-consensus-agda", "max_issues_repo_path": "LibraBFT/Abstract/Records/Extends.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "cwjnkins/bft-consensus-agda", "max_stars_repo_path": "LibraBFT/Abstract/Records/Extends.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1569, "size": 3766 }
{- This file contains: - 3×3 lemma for pushouts Written by: Loïc Pujet, April 2019 -} {-# OPTIONS --cubical --safe #-} module Cubical.HITs.Pushout.Properties where open import Cubical.Core.Glue open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.GroupoidLaws open import Cubical.Data.Prod.Base open import Cubical.Data.Unit open import Cubical.HITs.Pushout.Base {- 3×3 lemma for pushouts Let Aᵢⱼ denote a type, fᵢⱼ a map and Hᵢⱼ a homotopy. Given a diagram of the following shape: A00 ←—f01—— A02 ——f03—→ A04 ↑ ↑ ↑ f10 H11 f12 H13 f14 | | | A20 ←—f21—— A22 ——f23—→ A24 | | | f30 H31 f32 H33 f34 ↓ ↓ ↓ A40 ←—f41—— A42 ——f43—→ A44 one can build its colimit from pushouts in two ways: - either build pushouts A□0, A□2, A□4 of the lines and then build the pushout A□○ of the resulting diagram A□0 ←—f□1—— A□2 ——f□3—→ A□4 ; - or build pushouts of the columns and build the pushout A○□ of the resulting diagram A0□ ← A2□ → A4□. Then the lemma states there is an equivalence A□○ ≃ A○□. -} module 3x3-span (A00 A02 A04 A20 A22 A24 A40 A42 A44 : Type₀) (f10 : A20 → A00) (f12 : A22 → A02) (f14 : A24 → A04) (f30 : A20 → A40) (f32 : A22 → A42) (f34 : A24 → A44) (f01 : A02 → A00) (f21 : A22 → A20) (f41 : A42 → A40) (f03 : A02 → A04) (f23 : A22 → A24) (f43 : A42 → A44) (H11 : ∀ x → f01 (f12 x) ≡ f10 (f21 x)) (H13 : ∀ x → f03 (f12 x) ≡ f14 (f23 x)) (H31 : ∀ x → f41 (f32 x) ≡ f30 (f21 x)) (H33 : ∀ x → f43 (f32 x) ≡ f34 (f23 x)) where -- pushouts of the lines A□0 : Type₀ A□0 = Pushout f10 f30 A□2 : Type₀ A□2 = Pushout f12 f32 A□4 : Type₀ A□4 = Pushout f14 f34 -- maps between pushouts f□1 : A□2 → A□0 f□1 (inl x) = inl (f01 x) f□1 (inr x) = inr (f41 x) f□1 (push a j) = ((λ i → inl (H11 a i)) ∙∙ push (f21 a) ∙∙ (λ i → inr (H31 a (~ i)))) j f□3 : A□2 → A□4 f□3 (inl x) = inl (f03 x) f□3 (inr x) = inr (f43 x) f□3 (push a j) = ((λ i → inl (H13 a i)) ∙∙ push (f23 a) ∙∙ (λ i → inr (H33 a (~ i)))) j -- total pushout A□○ : Type₀ A□○ = Pushout f□1 f□3 -- pushouts of the columns A0□ : Type₀ A0□ = Pushout f01 f03 A2□ : Type₀ A2□ = Pushout f21 f23 A4□ : Type₀ A4□ = Pushout f41 f43 -- maps between pushouts f1□ : A2□ → A0□ f1□ (inl x) = inl (f10 x) f1□ (inr x) = inr (f14 x) f1□ (push a j) = ((λ i → inl (H11 a (~ i))) ∙∙ push (f12 a) ∙∙ (λ i → inr (H13 a i))) j f3□ : A2□ → A4□ f3□ (inl x) = inl (f30 x) f3□ (inr x) = inr (f34 x) f3□ (push a j) = ((λ i → inl (H31 a (~ i))) ∙∙ push (f32 a) ∙∙ (λ i → inr (H33 a i))) j -- total pushout A○□ : Type₀ A○□ = Pushout f1□ f3□ -- forward map of the equivalence A□○ ≃ A○□ forward-l : A□0 → A○□ forward-l (inl x) = inl (inl x) forward-l (inr x) = inr (inl x) forward-l (push a i) = push (inl a) i forward-r : A□4 → A○□ forward-r (inl x) = inl (inr x) forward-r (inr x) = inr (inr x) forward-r (push a i) = push (inr a) i forward-filler : A22 → I → I → I → A○□ forward-filler a i j = hfill (λ t → λ { (i = i0) → inl (doubleCompPath-filler (λ k → inl (H11 a (~ k))) (push (f12 a)) (λ k → inr (H13 a k)) j (~ t)) ; (i = i1) → inr (doubleCompPath-filler (λ k → inl (H31 a (~ k))) (push (f32 a)) (λ k → inr (H33 a k)) j (~ t)) ; (j = i0) → forward-l (doubleCompPath-filler (λ k → inl (H11 a k)) (push (f21 a)) (λ k → inr (H31 a (~ k))) i t) ; (j = i1) → forward-r (doubleCompPath-filler (λ k → inl (H13 a k)) (push (f23 a)) (λ k → inr (H33 a (~ k))) i t) }) (inS (push (push a j) i)) A□○→A○□ : A□○ → A○□ A□○→A○□ (inl x) = forward-l x A□○→A○□ (inr x) = forward-r x A□○→A○□ (push (inl x) i) = inl (push x i) A□○→A○□ (push (inr x) i) = inr (push x i) A□○→A○□ (push (push a i) j) = forward-filler a i j i1 -- backward map backward-l : A0□ → A□○ backward-l (inl x) = inl (inl x) backward-l (inr x) = inr (inl x) backward-l (push a i) = push (inl a) i backward-r : A4□ → A□○ backward-r (inl x) = inl (inr x) backward-r (inr x) = inr (inr x) backward-r (push a i) = push (inr a) i backward-filler : A22 → I → I → I → A□○ backward-filler a i j = hfill (λ t → λ { (i = i0) → inl (doubleCompPath-filler (λ k → inl (H11 a k)) (push (f21 a)) (λ k → inr (H31 a (~ k))) j (~ t)) ; (i = i1) → inr (doubleCompPath-filler (λ k → inl (H13 a k)) (push (f23 a)) (λ k → inr (H33 a (~ k))) j (~ t)) ; (j = i0) → backward-l (doubleCompPath-filler (λ k → inl (H11 a (~ k))) (push (f12 a)) (λ k → inr (H13 a k)) i t) ; (j = i1) → backward-r (doubleCompPath-filler (λ k → inl (H31 a (~ k))) (push (f32 a)) (λ k → inr (H33 a k)) i t) }) (inS (push (push a j) i)) A○□→A□○ : A○□ → A□○ A○□→A□○ (inl x) = backward-l x A○□→A□○ (inr x) = backward-r x A○□→A□○ (push (inl x) i) = inl (push x i) A○□→A□○ (push (inr x) i) = inr (push x i) A○□→A□○ (push (push a i) j) = backward-filler a i j i1 -- first homotopy homotopy1-l : ∀ x → A□○→A○□ (backward-l x) ≡ inl x homotopy1-l (inl x) = refl homotopy1-l (inr x) = refl homotopy1-l (push a i) = refl homotopy1-r : ∀ x → A□○→A○□ (backward-r x) ≡ inr x homotopy1-r (inl x) = refl homotopy1-r (inr x) = refl homotopy1-r (push a i) = refl A○□→A□○→A○□ : ∀ x → A□○→A○□ (A○□→A□○ x) ≡ x A○□→A□○→A○□ (inl x) = homotopy1-l x A○□→A□○→A○□ (inr x) = homotopy1-r x A○□→A□○→A○□ (push (inl x) i) k = push (inl x) i A○□→A□○→A○□ (push (inr x) i) k = push (inr x) i A○□→A□○→A○□ (push (push a i) j) k = hcomp (λ t → λ { (i = i0) → forward-l (doubleCompPath-filler (λ k → inl (H11 a k)) (push (f21 a)) (λ k → inr (H31 a (~ k))) j (~ t)) ; (i = i1) → forward-r (doubleCompPath-filler (λ k → inl (H13 a k)) (push (f23 a)) (λ k → inr (H33 a (~ k))) j (~ t)) ; (j = i0) → homotopy1-l (doubleCompPath-filler (λ k → inl (H11 a (~ k))) (push (f12 a)) (λ k → inr (H13 a k)) i t) k ; (j = i1) → homotopy1-r (doubleCompPath-filler (λ k → inl (H31 a (~ k))) (push (f32 a)) (λ k → inr (H33 a k)) i t) k ; (k = i0) → A□○→A○□ (backward-filler a i j t) ; (k = i1) → forward-filler a j i (~ t) }) (forward-filler a j i i1) -- second homotopy homotopy2-l : ∀ x → A○□→A□○ (forward-l x) ≡ inl x homotopy2-l (inl x) = refl homotopy2-l (inr x) = refl homotopy2-l (push a i) = refl homotopy2-r : ∀ x → A○□→A□○ (forward-r x) ≡ inr x homotopy2-r (inl x) = refl homotopy2-r (inr x) = refl homotopy2-r (push a i) = refl A□○→A○□→A□○ : ∀ x → A○□→A□○ (A□○→A○□ x) ≡ x A□○→A○□→A□○ (inl x) = homotopy2-l x A□○→A○□→A□○ (inr x) = homotopy2-r x A□○→A○□→A□○ (push (inl x) i) k = push (inl x) i A□○→A○□→A□○ (push (inr x) i) k = push (inr x) i A□○→A○□→A□○ (push (push a i) j) k = hcomp (λ t → λ { (i = i0) → backward-l (doubleCompPath-filler (λ k → inl (H11 a (~ k))) (push (f12 a)) (λ k → inr (H13 a k)) j (~ t)) ; (i = i1) → backward-r (doubleCompPath-filler (λ k → inl (H31 a (~ k))) (push (f32 a)) (λ k → inr (H33 a k)) j (~ t)) ; (j = i0) → homotopy2-l (doubleCompPath-filler (λ k → inl (H11 a k)) (push (f21 a)) (λ k → inr (H31 a (~ k))) i t) k ; (j = i1) → homotopy2-r (doubleCompPath-filler (λ k → inl (H13 a k)) (push (f23 a)) (λ k → inr (H33 a (~ k))) i t) k ; (k = i0) → A○□→A□○ (forward-filler a i j t) ; (k = i1) → backward-filler a j i (~ t) }) (backward-filler a j i i1) -- equivalence Pushout3x3 : A□○ ≡ A○□ Pushout3x3 = isoToPath (iso A□○→A○□ A○□→A□○ A○□→A□○→A○□ A□○→A○□→A□○) Pushout3x3 : ∀ A00 A02 A04 A20 A22 A24 A40 A42 A44 f10 f12 f14 f30 f32 f34 f01 f21 f41 f03 f23 f43 H11 H13 H31 H33 → 3x3-span.A□○ A00 A02 A04 A20 A22 A24 A40 A42 A44 f10 f12 f14 f30 f32 f34 f01 f21 f41 f03 f23 f43 H11 H13 H31 H33 ≡ 3x3-span.A○□ A00 A02 A04 A20 A22 A24 A40 A42 A44 f10 f12 f14 f30 f32 f34 f01 f21 f41 f03 f23 f43 H11 H13 H31 H33 Pushout3x3 = 3x3-span.Pushout3x3
{ "alphanum_fraction": 0.5, "avg_line_length": 35, "ext": "agda", "hexsha": "cf99cf78dbd23c0684922a75b76e28e2a476b424", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "48bd72e073b11d7501342d88eede05974a616977", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "loic-p/cubical", "max_forks_repo_path": "Cubical/HITs/Pushout/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "48bd72e073b11d7501342d88eede05974a616977", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "loic-p/cubical", "max_issues_repo_path": "Cubical/HITs/Pushout/Properties.agda", "max_line_length": 152, "max_stars_count": null, "max_stars_repo_head_hexsha": "48bd72e073b11d7501342d88eede05974a616977", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "loic-p/cubical", "max_stars_repo_path": "Cubical/HITs/Pushout/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4070, "size": 8470 }
-- Andreas, 2016-01-03, issue reported by mechvel module _ where -- With hidden parameter, things work module Works0 {A : Set} where postulate P : (a : A) → Set record Works (a : A) : Set where f : P a → Set f p with p ... | _ = A -- With visible parameter, the error is triggered -- because it is turned hidden inside the record section module Fails (A : Set) where postulate P : (a : A) → Set -- Modules do not touch visibility of parameters, so things work. module Works (a : A) where f : P a → Set f p with p ... | _ = A -- Records have some magic to make record parameters hidden -- in record section. -- This leads to an error in @checkInternal@. record Fails (a : A) : Set where f : P a → Set f p with p ... | _ = A -- ERROR WAS: -- Expected a visible argument, but found a hidden argument -- when checking that the type (w p : P a) → Set of the -- generated with function is well-formed -- Should succeed.
{ "alphanum_fraction": 0.6266397578, "avg_line_length": 20.6458333333, "ext": "agda", "hexsha": "e533f7de5c2eaed982ef5dad0e4b95ee56fbce2c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1759.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1759.agda", "max_line_length": 67, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1759.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 289, "size": 991 }
-- Andreas, 2015-06-11 {-# OPTIONS --copatterns #-} open import Common.Size module _ {C : Set} {R : C → Set} where mutual record IO (i : Size) (A : Set) : Set where coinductive constructor delay field force : {j : Size< i} → IO' j A data IO' (i : Size) (A : Set) : Set where do : (c : C) (f : R c → IO i A) → IO' i A return : (a : A) → IO' i A open IO module Works where _>>=_ : ∀{i A B} (m : IO i A) (k : A → IO i B) → IO i B force (m >>= k) with force m force (m >>= k) {j} | do c f = do c λ x → f x >>= k force (m >>= k) {j} | return a = force (k a) _>>=_ : ∀{i A B} (m : IO i A) (k : A → IO i B) → IO i B force (m >>= k) with force m force (m >>= k) | do c f = do c λ x → f x >>= k force (m >>= k) | return a = force (k a) -- Error WAS: -- Too few arguments given in with-clause -- when checking that the clause -- force (m >>= k) with force m -- force (m >>= k) | do c f = do c (λ x → f x >>= k) -- force (m >>= k) | return a = force (k a) -- has type {i : Size} {A B : Set} → IO i A → (A → IO i B) → IO i B
{ "alphanum_fraction": 0.4967259121, "avg_line_length": 26.0731707317, "ext": "agda", "hexsha": "8785f61c475f7d2fd167dfa7b48b92b73fe1fade", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Succeed/Issue1551.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Succeed/Issue1551.agda", "max_line_length": 67, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Succeed/Issue1551.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 419, "size": 1069 }
module Test01 where hoge : {A : Set} → A → A hoge x = x open import Relation.Binary.PropositionalEquality as PropEq using (_≡_; subst) open import Function using (id) lemma1 : {X Y : Set} → (X ≡ (X → Y)) → X lemma1 p rewrite p = (λ x → let f = subst id p x in f x) curry : {X Y : Set} → (X ≡ (X → Y)) → Y curry p = (let f = subst id p (lemma1 p) in f (lemma1 p)) open import Data.Bool open import Data.Nat open import Data.Empty postulate First : ℕ → Set All : ℕ → Set fToA : ((n : ℕ) → First n) → ((n : ℕ) → All n) fToA2 : (z : ℕ) → (First z → All z) tekito : (z : ℕ) → ((All z → ⊥) → (First z → ⊥)) → First (suc z) contra : (z : ℕ) → ((All z → ⊥) → (First z → ⊥)) → (First z → All z) mutual -- 失敗 contraFirstToAll : (z : ℕ) → ((All z → ⊥) → (First z → ⊥)) -- contraFirstToAll z allToVoid _ = let foo = (contra z (contraFirstToAll z)) (limitedDivSeq z) in allToVoid foo contraFirstToAll z allToVoid _ = let foo = fToA (λ k → limitedDivSeq k) in allToVoid (foo z) limitedDivSeq : (n : ℕ) → First n limitedDivSeq zero = {! !} limitedDivSeq (suc n) = let bar = contraFirstToAll n in tekito n bar -- Idris {- postulate foo : (t : Nat) -> LT' t (S t) contraFirstToAll : (z : Nat) -> (((AllLimited . B.allDivSeq) z -> Void) -> ((FirstLimited . B.allDivSeq) z -> Void)) contraFirstToAll Z allToVoid _ = allToVoid IsAllLimited00 contraFirstToAll (S z) _ _ = wfInd {P=(\z=>Void)} {rel=LT'} step (S z) where step : (x : Nat) -> ((y : Nat) -> LT' y x -> Void) -> Void step Z _ = believe_me "ここには来ない" step (S x) rs = rs x (foo x) -- ?rhs1 が書けない!! contraFirstToAll : (z : Nat) -> (((AllLimited . B.allDivSeq) z -> Void) -> ((FirstLimited . B.allDivSeq) z -> Void)) contraFirstToAll Z allToVoid _ = allToVoid IsAllLimited00 contraFirstToAll (S z) _ _ = step (S z) SIsNotZ (wellFounded {rel=LT'} (S z)) where step : (x : Nat) -> Not (x = Z) -> Accessible LT' x -> Void step Z p _ = void (p Refl) step (S x) p (Access rs) = step x ?rhs1 (rs x (foo x)) -}
{ "alphanum_fraction": 0.5824767499, "avg_line_length": 37.1454545455, "ext": "agda", "hexsha": "65018fec56aa8bd1bee8a54723d6169cd91e062b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9117b6bec9880d8c0a5d6ee4399fd841c3544d84", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "righ1113/Agda", "max_forks_repo_path": "Test01.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9117b6bec9880d8c0a5d6ee4399fd841c3544d84", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "righ1113/Agda", "max_issues_repo_path": "Test01.agda", "max_line_length": 115, "max_stars_count": null, "max_stars_repo_head_hexsha": "9117b6bec9880d8c0a5d6ee4399fd841c3544d84", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "righ1113/Agda", "max_stars_repo_path": "Test01.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 781, "size": 2043 }
-- This demonstrates a known issue: -- The parser is not aware of strings, thus, -- a closing block comment delimiter inside a string -- is taken as a closing block comment delimiter. -- Without nested comments: {- This is commented-out. test = "A weird string with comment closing -} and other garbage @#$% that appears now as Agda code!" -} -- With nested comments: {- {- This is commented-out. test = "A weird string with comment closing -} and other garbage @#$%!" -- NB: this confuses even Agda (at the time of writing, version 2.6.1). -} This should be still commented-out. -} -- The reverse situation: test = "Never put comment opening {- inside a string!" postulate ThisShouldNotBeCommentedOut : Set -- -} This should be text, not code!! -- SNAFU.
{ "alphanum_fraction": 0.704041721, "avg_line_length": 24.7419354839, "ext": "agda", "hexsha": "02683829471e903cf9a9664d1c6d0a8cbc23f4c4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "93d317c87bddf973e3fa6abd5bf24dcfa9a797f0", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "andreasabel/agda2lagda", "max_forks_repo_path": "test/ClosingCommentInString.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "93d317c87bddf973e3fa6abd5bf24dcfa9a797f0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "andreasabel/agda2lagda", "max_issues_repo_path": "test/ClosingCommentInString.agda", "max_line_length": 101, "max_stars_count": 11, "max_stars_repo_head_hexsha": "93d317c87bddf973e3fa6abd5bf24dcfa9a797f0", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "andreasabel/agda2lagda", "max_stars_repo_path": "test/ClosingCommentInString.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-16T07:28:10.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-01T12:10:15.000Z", "num_tokens": 189, "size": 767 }
open import Function open import Relation.Nullary open import Relation.Binary hiding (_⇒_) open import Relation.Binary.PropositionalEquality hiding ([_]) open import Data.Sum open import Data.Product delim : ∀ {α β} {A : Set α} {B : Dec A -> Set β} -> (d : Dec A) -> (∀ x -> B (yes x)) -> (∀ c -> B (no c)) -> B d delim (yes x) f g = f x delim (no c) f g = g c drec = λ {α β} {A : Set α} {B : Set β} -> delim {A = A} {B = λ _ -> B} dcong₂ : ∀ {α β γ} {A : Set α} {B : Set β} {C : Set γ} {x y v w} -> (f : A -> B -> C) -> (∀ {x y} -> f x v ≡ f y w -> x ≡ y × v ≡ w) -> Dec (x ≡ y) -> Dec (v ≡ w) -> Dec (f x v ≡ f y w) dcong₂ f inj d₁ d₂ = drec d₁ (λ p₁ -> drec d₂ (λ p₂ -> yes (cong₂ f p₁ p₂)) (λ c -> no (c ∘ proj₂ ∘ inj))) (λ c -> no (c ∘ proj₁ ∘ inj)) infixl 5 _▻_ infixr 6 _⇒_ infix 4 _≟ᵗ_ _≟ᶜ_ _∈_ _⊂[_]_ _⊂?_ _⊢_ infixr 6 vs_ infixr 5 ƛ_ infixl 7 _·_ data Type : Set where ⋆ : Type _⇒_ : Type -> Type -> Type data Con : Set where ε : Con _▻_ : Con -> Type -> Con data _∈_ σ : Con -> Set where vz : ∀ {Γ} -> σ ∈ Γ ▻ σ vs_ : ∀ {Γ τ} -> σ ∈ Γ -> σ ∈ Γ ▻ τ data _⊢_ Γ : Type -> Set where var : ∀ {σ} -> σ ∈ Γ -> Γ ⊢ σ ƛ_ : ∀ {σ τ} -> Γ ▻ σ ⊢ τ -> Γ ⊢ σ ⇒ τ _·_ : ∀ {σ τ} -> Γ ⊢ σ ⇒ τ -> Γ ⊢ σ -> Γ ⊢ τ ⇒-inj : ∀ {σ₁ σ₂ τ₁ τ₂} -> σ₁ ⇒ τ₁ ≡ σ₂ ⇒ τ₂ -> σ₁ ≡ σ₂ × τ₁ ≡ τ₂ ⇒-inj refl = refl , refl ▻-inj : ∀ {Γ₁ Γ₂ σ₁ σ₂} -> Γ₁ ▻ σ₁ ≡ Γ₂ ▻ σ₂ -> Γ₁ ≡ Γ₂ × σ₁ ≡ σ₂ ▻-inj refl = refl , refl _≟ᵗ_ : Decidable (_≡_ {A = Type}) ⋆ ≟ᵗ ⋆ = yes refl (σ₁ ⇒ τ₁) ≟ᵗ (σ₂ ⇒ τ₂) = dcong₂ _⇒_ ⇒-inj (σ₁ ≟ᵗ σ₂) (τ₁ ≟ᵗ τ₂) ⋆ ≟ᵗ (σ₂ ⇒ τ₂) = no λ() (σ₁ ⇒ τ₁) ≟ᵗ ⋆ = no λ() _≟ᶜ_ : Decidable (_≡_ {A = Con}) ε ≟ᶜ ε = yes refl Γ ▻ σ ≟ᶜ Δ ▻ τ = dcong₂ _▻_ ▻-inj (Γ ≟ᶜ Δ) (σ ≟ᵗ τ) ε ≟ᶜ Δ ▻ τ = no λ() Γ ▻ σ ≟ᶜ ε = no λ() data _⊂[_]_ : Con -> Type -> Con -> Set where stop : ∀ {Γ σ} -> Γ ⊂[ σ ] Γ ▻ σ skip : ∀ {Γ Δ σ τ} -> Γ ⊂[ σ ] Δ -> Γ ⊂[ σ ] Δ ▻ τ sub : ∀ {Γ Δ σ} -> Γ ⊂[ σ ] Δ -> σ ∈ Δ sub stop = vz sub (skip p) = vs (sub p) ⊂-inj : ∀ {Γ Δ σ τ} -> Γ ⊂[ σ ] Δ ▻ τ -> Γ ⊂[ σ ] Δ ⊎ Γ ≡ Δ × σ ≡ τ ⊂-inj stop = inj₂ (refl , refl) ⊂-inj (skip p) = inj₁ p _⊂?_ : ∀ {σ} -> Decidable _⊂[ σ ]_ _⊂?_ Γ ε = no λ() _⊂?_ {σ} Γ (Δ ▻ τ) with λ c₁ -> drec (Γ ⊂? Δ) (yes ∘ skip) (λ c₂ -> no ([ c₂ , c₁ ] ∘ ⊂-inj)) ... | r with σ ≟ᵗ τ ... | no c₁ = r (c₁ ∘ proj₂) ... | yes p₁ rewrite p₁ with Γ ≟ᶜ Δ ... | no c₁ = r (c₁ ∘ proj₁) ... | yes p₂ rewrite p₂ = yes stop ⊢_ : Type -> Set ⊢ σ = ∀ {Γ} -> Γ ⊢ σ ⟦_⟧ᵗ : Type -> Set ⟦ ⋆ ⟧ᵗ = ⊢ ⋆ ⟦ σ ⇒ τ ⟧ᵗ = ⟦ σ ⟧ᵗ -> ⟦ τ ⟧ᵗ mutual ↑ : ∀ {σ} -> ⊢ σ -> ⟦ σ ⟧ᵗ ↑ {⋆} t = t ↑ {σ ⇒ τ} f = λ x -> ↑ (f · ↓ x) ↓ : ∀ {σ} -> ⟦ σ ⟧ᵗ -> ⊢ σ ↓ {⋆} t = t ↓ {σ ⇒ τ} f = λ {Γ} -> ƛ (↓ (f (varˢ Γ σ))) varˢ : ∀ Γ σ -> ⟦ σ ⟧ᵗ varˢ Γ σ = ↑ (λ {Δ} -> var (diff Δ Γ σ)) where diff : ∀ Δ Γ σ -> σ ∈ Δ diff Δ Γ σ = drec (Γ ⊂? Δ) sub ⊥ where postulate ⊥ : _ data ⟦_⟧ᶜ : Con -> Set where Ø : ⟦ ε ⟧ᶜ _▷_ : ∀ {Γ σ} -> ⟦ Γ ⟧ᶜ -> ⟦ σ ⟧ᵗ -> ⟦ Γ ▻ σ ⟧ᶜ lookupᵉ : ∀ {Γ σ} -> σ ∈ Γ -> ⟦ Γ ⟧ᶜ -> ⟦ σ ⟧ᵗ lookupᵉ vz (ρ ▷ x) = x lookupᵉ (vs v) (ρ ▷ x) = lookupᵉ v ρ idᵉ : ∀ {Γ} -> ⟦ Γ ⟧ᶜ idᵉ {ε} = Ø idᵉ {Γ ▻ σ} = idᵉ ▷ varˢ Γ σ ⟦_⟧ : ∀ {Γ σ} -> Γ ⊢ σ -> ⟦ Γ ⟧ᶜ -> ⟦ σ ⟧ᵗ ⟦ var v ⟧ ρ = lookupᵉ v ρ ⟦ ƛ b ⟧ ρ = λ x -> ⟦ b ⟧ (ρ ▷ x) ⟦ f · x ⟧ ρ = ⟦ f ⟧ ρ (⟦ x ⟧ ρ) eval : ∀ {Γ σ} -> Γ ⊢ σ -> ⟦ σ ⟧ᵗ eval t = ⟦ t ⟧ idᵉ norm : ∀ {Γ σ} -> Γ ⊢ σ -> Γ ⊢ σ norm t = ↓ (eval t) Term : Type -> Set Term σ = ε ⊢ σ I : Term (⋆ ⇒ ⋆) I = ↓ id K : Term (⋆ ⇒ ⋆ ⇒ ⋆) K = ↓ const S : Term ((⋆ ⇒ ⋆ ⇒ ⋆) ⇒ (⋆ ⇒ ⋆) ⇒ ⋆ ⇒ ⋆) S = ↓ _ˢ_ B : Term ((⋆ ⇒ ⋆) ⇒ (⋆ ⇒ ⋆) ⇒ ⋆ ⇒ ⋆) B = ↓ _∘′_ C : Term ((⋆ ⇒ ⋆ ⇒ ⋆) ⇒ ⋆ ⇒ ⋆ ⇒ ⋆) C = ↓ flip W : Term ((⋆ ⇒ ⋆ ⇒ ⋆) ⇒ ⋆ ⇒ ⋆) W = ↓ λ f x -> f x x P : Term ((⋆ ⇒ ⋆ ⇒ ⋆) ⇒ (⋆ ⇒ ⋆) ⇒ ⋆ ⇒ ⋆ ⇒ ⋆) P = ↓ _on_ O : Term (((⋆ ⇒ ⋆) ⇒ ⋆) ⇒ (⋆ ⇒ ⋆) ⇒ ⋆) O = ↓ λ g f -> f (g f) test₁ : norm (ε ▻ ⋆ ⇒ ⋆ ▻ ⋆ ⊢ ⋆ ∋ (ƛ var (vs vs vz) · var vz) · var vz) ≡ var (vs vz) · var vz test₁ = refl test₂ : S ≡ ƛ ƛ ƛ var (vs vs vz) · var vz · (var (vs vz) · var vz) test₂ = refl
{ "alphanum_fraction": 0.3912302071, "avg_line_length": 24.4345238095, "ext": "agda", "hexsha": "8de6b1c8ad908998d6061933e73d44558ee42e20", "lang": "Agda", "max_forks_count": 304, "max_forks_repo_forks_event_max_datetime": "2022-03-28T11:35:02.000Z", "max_forks_repo_forks_event_min_datetime": "2018-07-16T18:24:59.000Z", "max_forks_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "manikdv/plfa.github.io", "max_forks_repo_path": "extra/extra/Liftable.agda", "max_issues_count": 323, "max_issues_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4", "max_issues_repo_issues_event_max_datetime": "2022-03-30T07:42:57.000Z", "max_issues_repo_issues_event_min_datetime": "2018-07-05T22:34:34.000Z", "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "manikdv/plfa.github.io", "max_issues_repo_path": "extra/extra/Liftable.agda", "max_line_length": 94, "max_stars_count": 1003, "max_stars_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "manikdv/plfa.github.io", "max_stars_repo_path": "extra/extra/Liftable.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-27T07:03:28.000Z", "max_stars_repo_stars_event_min_datetime": "2018-07-05T18:15:14.000Z", "num_tokens": 2376, "size": 4105 }
open import Prelude open import core module lemmas-consistency where -- type consistency is symmetric ~sym : {t1 t2 : htyp} → t1 ~ t2 → t2 ~ t1 ~sym TCRefl = TCRefl ~sym TCHole1 = TCHole2 ~sym TCHole2 = TCHole1 ~sym (TCArr p1 p2) = TCArr (~sym p1) (~sym p2) -- type consistency isn't transitive not-trans : ((t1 t2 t3 : htyp) → t1 ~ t2 → t2 ~ t3 → t1 ~ t3) → ⊥ not-trans t with t (b ==> b) ⦇-⦈ b TCHole1 TCHole2 ... | () -- every pair of types is either consistent or not consistent ~dec : (t1 t2 : htyp) → ((t1 ~ t2) + (t1 ~̸ t2)) -- this takes care of all hole cases, so we don't consider them below ~dec _ ⦇-⦈ = Inl TCHole1 ~dec ⦇-⦈ _ = Inl TCHole2 -- num cases ~dec b b = Inl TCRefl ~dec b (t2 ==> t3) = Inr ICBaseArr1 -- arrow cases ~dec (t1 ==> t2) b = Inr ICBaseArr2 ~dec (t1 ==> t2) (t3 ==> t4) with ~dec t1 t3 | ~dec t2 t4 ... | Inl x | Inl y = Inl (TCArr x y) ... | Inl _ | Inr y = Inr (ICArr2 y) ... | Inr x | _ = Inr (ICArr1 x) -- no pair of types is both consistent and not consistent ~apart : {t1 t2 : htyp} → (t1 ~̸ t2) → (t1 ~ t2) → ⊥ ~apart ICBaseArr1 () ~apart ICBaseArr2 () ~apart (ICArr1 x) TCRefl = ~apart x TCRefl ~apart (ICArr1 x) (TCArr y y₁) = ~apart x y ~apart (ICArr2 x) TCRefl = ~apart x TCRefl ~apart (ICArr2 x) (TCArr y y₁) = ~apart x y₁
{ "alphanum_fraction": 0.5812917595, "avg_line_length": 33.675, "ext": "agda", "hexsha": "84cc732f16923d5bda0d3539e401319110f01626", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-09-13T18:20:02.000Z", "max_forks_repo_forks_event_min_datetime": "2019-09-13T18:20:02.000Z", "max_forks_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnut-dynamics-agda", "max_forks_repo_path": "lemmas-consistency.agda", "max_issues_count": 54, "max_issues_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c", "max_issues_repo_issues_event_max_datetime": "2018-11-29T16:32:40.000Z", "max_issues_repo_issues_event_min_datetime": "2017-06-29T20:53:34.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazelnut-dynamics-agda", "max_issues_repo_path": "lemmas-consistency.agda", "max_line_length": 73, "max_stars_count": 16, "max_stars_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazelnut-dynamics-agda", "max_stars_repo_path": "lemmas-consistency.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-19T02:50:23.000Z", "max_stars_repo_stars_event_min_datetime": "2018-03-12T14:32:03.000Z", "num_tokens": 602, "size": 1347 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Lists defined in terms of Data.Star ------------------------------------------------------------------------ module Data.Star.List where open import Data.Star open import Data.Unit open import Relation.Binary.Simple open import Data.Star.Nat -- Lists. List : Set → Set List a = Star (Const a) tt tt -- Nil and cons. [] : ∀ {a} → List a [] = ε infixr 5 _∷_ _∷_ : ∀ {a} → a → List a → List a _∷_ = _◅_ -- The sum of the elements in a list containing natural numbers. sum : List ℕ → ℕ sum = fold (Star Always) _+_ zero
{ "alphanum_fraction": 0.5063091483, "avg_line_length": 19.2121212121, "ext": "agda", "hexsha": "54aeb1a40dbd71ccb4b4954a5d1740b296c10f9f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Data/Star/List.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Data/Star/List.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Data/Star/List.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 160, "size": 634 }
open import Agda.Builtin.Sigma dup : ∀ {A : Set} → A → Σ A λ _ → A dup x = x , x postulate A : Set module M {x : A} where y = x data X : Set where mkX : ∀ {x : A} → let (_ , _) = dup x open M {x} in X
{ "alphanum_fraction": 0.4508196721, "avg_line_length": 12.2, "ext": "agda", "hexsha": "bfee6d9cf9b8ddb3b7916387157f73972013c4b1", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "cagix/agda", "max_forks_repo_path": "test/Succeed/Issue5584.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "cagix/agda", "max_issues_repo_path": "test/Succeed/Issue5584.agda", "max_line_length": 35, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "cagix/agda", "max_stars_repo_path": "test/Succeed/Issue5584.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 98, "size": 244 }
module MissingDefinition where T : Set -> Set
{ "alphanum_fraction": 0.7142857143, "avg_line_length": 8.1666666667, "ext": "agda", "hexsha": "08b1d79d49da0ba2deb84248b0c64d8cb2e8d733", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/MissingDefinition.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/MissingDefinition.agda", "max_line_length": 30, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Fail/MissingDefinition.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 12, "size": 49 }
{-# OPTIONS --without-K #-} open import Base module Spaces.WedgeCircles {i} (A : Set i) where {- The idea is data wedge-circles : Set (suc i) where base : wedge-circles loops : A → base ≡ base -} private data #wedge-circles : Set (suc i) where #base : #wedge-circles wedge-circles : Set (suc i) wedge-circles = #wedge-circles base : wedge-circles base = #base postulate -- HIT loops : A → base ≡ base wedge-circles-rec : ∀ {i} (P : wedge-circles → Set i) (x : P base) (p : (t : A) → transport P (loops t) x ≡ x) → ((t : wedge-circles) → P t) wedge-circles-rec P x p #base = x postulate -- HIT β : ∀ {i} (P : wedge-circles → Set i) (x : P base) (p : (t : A) → transport P (loops t) x ≡ x) (t : A) → apd (wedge-circles-rec P x p) (loops t) ≡ p t wedge-circles-rec-nondep : ∀ {i} (B : Set i) (x : B) (p : A → x ≡ x) → (wedge-circles → B) wedge-circles-rec-nondep B x p #base = x postulate -- HIT β-nondep : ∀ {i} (B : Set i) (x : B) (p : A → x ≡ x) (t : A) → ap (wedge-circles-rec-nondep B x p) (loops t) ≡ p t
{ "alphanum_fraction": 0.5692742696, "avg_line_length": 24.1136363636, "ext": "agda", "hexsha": "2e7dd48d2e9d19e27bcd6fa04576f1139bc1e00c", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "old/Spaces/WedgeCircles.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "old/Spaces/WedgeCircles.agda", "max_line_length": 75, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "old/Spaces/WedgeCircles.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 415, "size": 1061 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category -- we use duality to prove properties about coequalizer module Categories.Diagram.Coequalizer.Properties {o ℓ e} (C : Category o ℓ e) where open Category C open import Categories.Diagram.Coequalizer C using (Coequalizer; IsCoequalizer) open import Categories.Morphism C import Categories.Morphism.Reasoning as MR open import Categories.Diagram.Equalizer op open import Categories.Diagram.Equalizer.Properties op open import Categories.Diagram.Duality C open import Categories.Diagram.KernelPair C open import Categories.Diagram.Pullback C open import Categories.Morphism.Regular C import Relation.Binary.Reasoning.Setoid as SR open Pullback hiding (universal; unique) private variable A B : Obj f g : A ⇒ B module _ (coe : Coequalizer f g) where open Coequalizer coe private equalizer : Equalizer f g equalizer = Coequalizer⇒coEqualizer coe open Equalizer equalizer using (unique′; unique-diagram) renaming ( id-equalize to id-coequalize ; equalize-resp-≈ to coequalize-resp-≈ ; equalize-resp-≈′ to coequalize-resp-≈′ ) public -- a regular epi is a coequalizer of its kernel pair regular-is-coeq-kp : {A B : Obj} (f : A ⇒ B) → RegularEpi f → (kp : KernelPair f) → IsCoequalizer (p₁ kp) (p₂ kp) f regular-is-coeq-kp {A} {B} f record { C = D ; h = h ; g = g ; coequalizer = coeq } kp = record { equality = IsPullback.commute (isPullback kp) ; coequalize = λ {_}{u} u∘p₁≈u∘p₂ → coequalize (u∘h≈u∘g u u∘p₁≈u∘p₂) ; universal = universal ; unique = unique } where open IsCoequalizer coeq pb-univ : D ⇒ P kp pb-univ = IsPullback.universal (isPullback kp) equality u∘h≈u∘g : {X : Obj} → (u : A ⇒ X) → u ∘ (p₁ kp) ≈ u ∘ (p₂ kp) → u ∘ h ≈ u ∘ g u∘h≈u∘g {X} u u∘p₁≈u∘p₂ = begin u ∘ h ≈˘⟨ refl⟩∘⟨ p₁∘universal≈h₁ kp ⟩ u ∘ (p₁ kp ∘ pb-univ) ≈⟨ pullˡ u∘p₁≈u∘p₂ ⟩ (u ∘ p₂ kp) ∘ pb-univ ≈⟨ pullʳ (p₂∘universal≈h₂ kp) ⟩ u ∘ g ∎ where open Category.HomReasoning C open MR C retract-coequalizer : ∀ {X Y} {f : Y ⇒ X} {g : X ⇒ Y} → f RetractOf g → IsCoequalizer (g ∘ f) id f retract-coequalizer f∘g≈id = IscoEqualizer⇒IsCoequalizer (section-equalizer f∘g≈id)
{ "alphanum_fraction": 0.6467554792, "avg_line_length": 32.7746478873, "ext": "agda", "hexsha": "6acd0871f842b9a266d199e8c81eb83dfd59cd46", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "8f3c844d929508040dfa21f681fa260056214b73", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "maxsnew/agda-categories", "max_forks_repo_path": "src/Categories/Diagram/Coequalizer/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8f3c844d929508040dfa21f681fa260056214b73", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "maxsnew/agda-categories", "max_issues_repo_path": "src/Categories/Diagram/Coequalizer/Properties.agda", "max_line_length": 115, "max_stars_count": null, "max_stars_repo_head_hexsha": "8f3c844d929508040dfa21f681fa260056214b73", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "maxsnew/agda-categories", "max_stars_repo_path": "src/Categories/Diagram/Coequalizer/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 848, "size": 2327 }
------------------------------------------------------------------------------ -- Properties related with lists using instances of the induction principle ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOT.FOTC.Data.List.Induction.Instances.PropertiesATP where open import FOTC.Base open import FOTC.Base.List open import FOTC.Data.List open import FOTC.Data.Nat.Type ------------------------------------------------------------------------------ -- Totality properties lengthList-N-ind-instance : N (length []) → (∀ x {xs} → N (length xs) → N (length (x ∷ xs))) → ∀ {xs} → List xs → N (length xs) lengthList-N-ind-instance = List-ind (λ as → N (length as)) postulate lengthList-N : ∀ {xs} → List xs → N (length xs) {-# ATP prove lengthList-N lengthList-N-ind-instance #-} ++-List-ind-instance : ∀ {ys} → List ([] ++ ys) → (∀ x {xs} → List (xs ++ ys) → List ((x ∷ xs) ++ ys)) → ∀ {xs} → List xs → List (xs ++ ys) ++-List-ind-instance {ys} = List-ind (λ as → List (as ++ ys)) postulate ++-List : ∀ {xs ys} → List xs → List ys → List (xs ++ ys) {-# ATP prove ++-List ++-List-ind-instance #-} map-List-ind-instance : ∀ {f} → List (map f []) → (∀ x {xs} → List (map f xs) → List (map f (x ∷ xs))) → ∀ {xs} → List xs → List (map f xs) map-List-ind-instance {f} = List-ind (λ as → List (map f as)) postulate map-List : ∀ f {xs} → List xs → List (map f xs) {-# ATP prove map-List map-List-ind-instance #-} ------------------------------------------------------------------------------ ++-assoc-ind-instance : ∀ {ys zs} → ([] ++ ys) ++ zs ≡ [] ++ ys ++ zs → (∀ x {xs} → (xs ++ ys) ++ zs ≡ xs ++ ys ++ zs → ((x ∷ xs) ++ ys) ++ zs ≡ (x ∷ xs) ++ ys ++ zs) → ∀ {xs} → List xs → (xs ++ ys) ++ zs ≡ xs ++ ys ++ zs ++-assoc-ind-instance {ys} {zs} = List-ind (λ as → (as ++ ys) ++ zs ≡ as ++ ys ++ zs ) postulate ++-assoc : ∀ {xs} → List xs → ∀ ys zs → (xs ++ ys) ++ zs ≡ xs ++ ys ++ zs {-# ATP prove ++-assoc ++-assoc-ind-instance #-} map-++-ind-instance : ∀ {f} {ys} → map f ([] ++ ys) ≡ map f [] ++ map f ys → (∀ x {xs} → map f (xs ++ ys) ≡ map f xs ++ map f ys → map f ((x ∷ xs) ++ ys) ≡ map f (x ∷ xs) ++ map f ys) → ∀ {xs} → List xs → map f (xs ++ ys) ≡ map f xs ++ map f ys map-++-ind-instance {f} {ys} = List-ind (λ as → map f (as ++ ys) ≡ map f as ++ map f ys) postulate map-++ : ∀ f {xs} → List xs → ∀ ys → map f (xs ++ ys) ≡ map f xs ++ map f ys {-# ATP prove map-++ map-++-ind-instance #-}
{ "alphanum_fraction": 0.4599030213, "avg_line_length": 34.3717948718, "ext": "agda", "hexsha": "685ac286f2834cc73a923d6380b64ceafcf26b8e", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/FOT/FOTC/Data/List/Induction/Instances/PropertiesATP.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/FOT/FOTC/Data/List/Induction/Instances/PropertiesATP.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/FOT/FOTC/Data/List/Induction/Instances/PropertiesATP.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 838, "size": 2681 }
module plfa.part1.Bin where import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; cong) open import Data.Nat using (ℕ; zero; suc; _*_; _+_) open import Data.Nat.Properties using (+-suc) data Bin : Set where ⟨⟩ : Bin _O : Bin → Bin _I : Bin → Bin inc : Bin → Bin inc ⟨⟩ = ⟨⟩ I inc (b O) = b I inc (b I) = (inc b) O to : ℕ → Bin to zero = ⟨⟩ O to (suc n) = inc (to n) from : Bin → ℕ from ⟨⟩ = 0 from (b O) = 2 * from b from (b I) = suc (2 * from b) inc-suc-law : ∀ b → from (inc b) ≡ suc (from b) inc-suc-law ⟨⟩ = refl inc-suc-law (b O) = refl inc-suc-law (b I) rewrite inc-suc-law b | +-suc (suc (from b)) ((from b) + 0) = refl from-to-identity : ∀ n → from (to n) ≡ n from-to-identity zero = refl from-to-identity (suc n) rewrite inc-suc-law (to n) | from-to-identity n = refl
{ "alphanum_fraction": 0.5880239521, "avg_line_length": 20.875, "ext": "agda", "hexsha": "4c1eae40d2fb2a16d8370a07ec18878b67746772", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "75bef9bb35643160e2d2ab4221a3057f22eb3324", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "abolotina/plfa.github.io", "max_forks_repo_path": "src/plfa/part1/Bin.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "75bef9bb35643160e2d2ab4221a3057f22eb3324", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "abolotina/plfa.github.io", "max_issues_repo_path": "src/plfa/part1/Bin.agda", "max_line_length": 51, "max_stars_count": null, "max_stars_repo_head_hexsha": "75bef9bb35643160e2d2ab4221a3057f22eb3324", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "abolotina/plfa.github.io", "max_stars_repo_path": "src/plfa/part1/Bin.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 326, "size": 835 }
module Oscar.Class.Equivalence where open import Oscar.Class.Reflexivity open import Oscar.Class.Symmetry open import Oscar.Class.Transitivity open import Oscar.Function open import Oscar.Level record Equivalence {a} {A : Set a} {ℓ} (_≋_ : A → A → Set ℓ) : Set (a ⊔ ℓ) where field ⦃ ′reflexivity ⦄ : Reflexivity _≋_ ⦃ ′symmetry ⦄ : Symmetry _≋_ ⦃ ′transitivity ⦄ : Transitivity _≋_ open Equivalence ⦃ … ⦄ public hiding (′reflexivity; ′symmetry; ′transitivity) instance Equivalence⋆ : ∀ {a} {A : Set a} {ℓ} {_≋_ : A → A → Set ℓ} ⦃ _ : Reflexivity _≋_ ⦄ ⦃ _ : Symmetry _≋_ ⦄ ⦃ _ : Transitivity _≋_ ⦄ → Equivalence _≋_ Equivalence.′reflexivity Equivalence⋆ = it Equivalence.′symmetry Equivalence⋆ = it Equivalence.′transitivity Equivalence⋆ = it
{ "alphanum_fraction": 0.6687737042, "avg_line_length": 27.275862069, "ext": "agda", "hexsha": "1076cdbc1ee33d0a77e7aabb5c9721d2df620273", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-2/Oscar/Class/Equivalence.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-2/Oscar/Class/Equivalence.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-2/Oscar/Class/Equivalence.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 308, "size": 791 }
module sv20.assign2.Second_old4 where open import Data.Bool as Bool using (Bool; true; false; T; _∨_; _∧_) --open import Relation.Nullary using (¬_) open import Data.Unit using (⊤; tt) open import Data.Empty using (⊥; ⊥-elim) open import Data.Nat using (ℕ; zero; suc; _+_; _*_) open import Level using (Level; _⊔_; 0ℓ) renaming (suc to lsuc) --open import Data.Sum using (_⊎_; inj₁; inj₂) open import Data.Product using (_×_; ∃-syntax) renaming (_,_ to ⟨_,_⟩) open import Function using (_∘_) --import Relation.Binary.PropositionalEquality as Eq --open Eq using (_≡_; refl; subst) Subset : ∀ {α} (A : Set α) -> Set _ Subset A = A → Bool _∈_ : ∀ {α} {A : Set α} → A → Subset A → Set a ∈ p = T (p a) --odd : Subset ℕ --odd 0 = false --odd 1 = true --odd (suc (suc n)) = odd n -- --_ : 3 ∈ odd --_ = tt -- --_ : Subset Set -- I'm not actually sure, what this is --_ = λ _ → true -- _ : true ∈ odd -- Doesn't make sense. Type inference fails --_ = ? --∈or∉ : ∀ {A : Set} (SubA : Subset A) (a : A) → (a ∈ SubA) ⊎ ¬ (a ∈ SubA) --∈or∉ subset a with subset a --... | true = inj₁ tt --... | false = inj₂ ⊥-elim -- --empty-⊥ : ∀ (sub : Subset ⊥) (a : ⊥) → ¬ (a ∈ sub) --empty-⊥ _ () --¬⊥ : ∀ (A : Set) → ¬ (⊥ ∈ A) -- doesn't make any sense --¬⊥ = ? Relation : ∀ {α β} (A : Set α) (B : Set β) → Set (α ⊔ β) Relation A B = Subset (A × B) --equalℕ : Relation ℕ ℕ --equalℕ ⟨ zero , zero ⟩ = true --equalℕ ⟨ zero , (suc n) ⟩ = false --equalℕ ⟨ (suc m) , zero ⟩ = false --equalℕ ⟨ (suc m) , (suc n) ⟩ = equalℕ ⟨ m , n ⟩ --_ : equalℕ ⟨ 3 , 4 ⟩ ≡ false --_ = refl _∪_ : ∀ {A : Set} → Subset A → Subset A → Subset A A ∪ B = λ x → (A x) ∨ (B x) _∩_ : ∀ {A : Set} → Subset A → Subset A → Subset A A ∩ B = λ x → (A x) ∧ (B x) _⊆_ : ∀ {A : Set} → Subset A → Subset A → Set A ⊆ B = ∀ x → x ∈ A → x ∈ B wholeSet : ∀ (A : Set) → Subset A wholeSet _ = λ _ → true --odd⊆ℕ : odd ⊆ wholeSet ℕ ----odd⊆ℕ zero () ----odd⊆ℕ 1 tt = tt ----odd⊆ℕ (suc (suc n)) _ = tt ---- or, simply --odd⊆ℕ _ _ = tt -- In general ∀subset⊆set : ∀ {A : Set} {sub : Subset A} → sub ⊆ wholeSet A ∀subset⊆set = λ _ _ → tt record _⇔_ (A B : Set) : Set where field to : A → B from : B → A record Range (A B : Set) : Set where field range : Relation A B → Subset B def : ∀ (rel : Relation A B) (b : B) → (∃[ a ] (⟨ a , b ⟩ ∈ rel)) ⇔ (b ∈ range rel) --lemma : ∀ {A B : Set} -- (F G : Relation A B) -- (b : B) -- → ∃[ a ] (⟨ a , b ⟩ ∈ (F ∩ G)) -- → ∃[ a ] ((⟨ a , b ⟩ ∈ F) × (⟨ a , b ⟩ ∈ G)) --lemma f g b ⟨ a , f∩ga ⟩ with f ⟨ a , b ⟩ | g ⟨ a , b ⟩ --... | true | true = ⟨ ? , ⟨ ? , ? ⟩ ⟩ --... | true | false = ⊥-elim f∩ga --... | false | true = ⊥-elim f∩ga --... | false | false = ⊥-elim f∩ga -- --module range-props {A B : Set} (rng : Range A B) where -- range = Range.range rng -- def = Range.def rng -- -- range-∩-⊆ : (F G : Relation A B) -- → range (F ∩ G) ⊆ (range F ∩ range G) -- range-∩-⊆ f g b = ? -- where -- --def-rngf-→ = _⇔_.to (def f b) -- -- -- b ∈ range (f ∩ g) → ∃[ a ] (⟨ a , b ⟩ ∈ (f ∩ g)) -- def-rngf-← = _⇔_.from (def (f ∩ g) b) -- -- b ∈ range (f ∩ g) → ∃[ a ] ((⟨ a , b ⟩ ∈ F) × (⟨ a , b ⟩ ∈ G)) -- lemma' = (lemma f g b) ∘ def-rngf-← -- Class exercise -- Dammit! All definitions of subset I have found for agda make this problem not a problem exercise103a : ∀ {a} {A B : Subset a} → (∀ x → x ∈ A → x ∈ B) → A ⊆ B exercise103a ∀x→x∈A→x∈B = ∀x→x∈A→x∈B
{ "alphanum_fraction": 0.464811784, "avg_line_length": 29.328, "ext": "agda", "hexsha": "b6bb0c61d46835f14d2342fccfce4645a6d2589b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "helq/old_code", "max_forks_repo_path": "proglangs-learning/Agda/sv20/assign2/Second_old4.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d", "max_issues_repo_issues_event_max_datetime": "2021-06-07T15:39:48.000Z", "max_issues_repo_issues_event_min_datetime": "2020-03-10T19:20:21.000Z", "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "helq/old_code", "max_issues_repo_path": "proglangs-learning/Agda/sv20/assign2/Second_old4.agda", "max_line_length": 90, "max_stars_count": null, "max_stars_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "helq/old_code", "max_stars_repo_path": "proglangs-learning/Agda/sv20/assign2/Second_old4.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1510, "size": 3666 }
-- Andreas, 2018-05-11, issue #3049 reported by Ulf -- Positivity checker too optimistic about polarity of arguments -- beyond the formal function arity. -- Backwards-compatible version of the test case. -- {-# OPTIONS -v tc.pos.args:100 #-} module Issue3049 where data Bool : Set where true false : Bool T : Bool → Set₁ T true = Set → Set T false = Set bad : ∀ b → T b bad true = λ A → A → A -- negative A bad false = Bool F : Bool → ∀ b → T b F true b = bad b -- is not (can't be) eta-expanded F false true = λ A → A F false false = Bool -- Should fail positivity check: data D : Set where nop : (b : Bool) → F b true D → D data ⊥ : Set where d : D d = nop true (λ x → x) !d : D → ⊥ !d (nop true f) = !d (f d) !d (nop false x) = !d x loop : ⊥ loop = !d d
{ "alphanum_fraction": 0.6007556675, "avg_line_length": 18.4651162791, "ext": "agda", "hexsha": "96f5e2faaf2d1a019d82a69a9034db3cbaa96245", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue3049.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue3049.agda", "max_line_length": 64, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue3049.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 269, "size": 794 }
-- Andreas, 2012-10-20 module Issue481NonExistentModule where open import NonExistentModule Set -- test the error message and location
{ "alphanum_fraction": 0.7985611511, "avg_line_length": 15.4444444444, "ext": "agda", "hexsha": "8b119e571de4f1f26fa5f581acd8eccf9ec7b2ee", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/Issue481NonExistentModule.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/Issue481NonExistentModule.agda", "max_line_length": 38, "max_stars_count": 1, "max_stars_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "np/agda-git-experiment", "max_stars_repo_path": "test/fail/Issue481NonExistentModule.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 36, "size": 139 }
module Haskell.Prim.Traversable where open import Haskell.Prim open import Haskell.Prim.Applicative open import Haskell.Prim.Functor open import Haskell.Prim.Foldable open import Haskell.Prim.Monad open import Haskell.Prim.List open import Haskell.Prim.Maybe open import Haskell.Prim.Either open import Haskell.Prim.Tuple -------------------------------------------------- -- Traversable record Traversable (t : Set → Set) : Set₁ where field traverse : ⦃ Applicative f ⦄ → (a → f b) → t a → f (t b) overlap ⦃ functor ⦄ : Functor t overlap ⦃ foldable ⦄ : Foldable t sequenceA : ⦃ Applicative f ⦄ → t (f a) → f (t a) sequenceA = traverse id mapM : ⦃ Monad m ⦄ → (a → m b) → t a → m (t b) mapM = traverse sequence : ⦃ Monad m ⦄ → t (m a) → m (t a) sequence = sequenceA open Traversable ⦃ ... ⦄ public instance iTraversableList : Traversable List iTraversableList .traverse f [] = pure [] iTraversableList .traverse f (x ∷ xs) = ⦇ f x ∷ traverse f xs ⦈ iTraversableMaybe : Traversable Maybe iTraversableMaybe .traverse f Nothing = pure Nothing iTraversableMaybe .traverse f (Just x) = Just <$> f x iTraversableEither : Traversable (Either a) iTraversableEither .traverse f (Left x) = pure (Left x) iTraversableEither .traverse f (Right y) = Right <$> f y iTraversablePair : Traversable (a ×_) iTraversablePair .traverse f (x , y) = (x ,_) <$> f y
{ "alphanum_fraction": 0.6591070163, "avg_line_length": 28.7959183673, "ext": "agda", "hexsha": "beec7aa74a29ce9138dcd904668ce44aace268c8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "4cb28f1b5032948b19b977b390fa260be292abf6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "flupe/agda2hs", "max_forks_repo_path": "lib/Haskell/Prim/Traversable.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4cb28f1b5032948b19b977b390fa260be292abf6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "flupe/agda2hs", "max_issues_repo_path": "lib/Haskell/Prim/Traversable.agda", "max_line_length": 65, "max_stars_count": null, "max_stars_repo_head_hexsha": "4cb28f1b5032948b19b977b390fa260be292abf6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "flupe/agda2hs", "max_stars_repo_path": "lib/Haskell/Prim/Traversable.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 451, "size": 1411 }
open import Data.List using ( List ; [] ; _∷_ ) open import Data.List.Any using ( here ; there ) open import Data.Product using ( _,_ ; proj₁ ; proj₂ ) open import Data.Sum using ( inj₁ ; inj₂ ) open import Relation.Binary.PropositionalEquality using ( refl ; sym ; trans ; subst₂ ) open import Relation.Unary using ( _∈_ ; _⊆_ ) open import Web.Semantic.DL.ABox using ( ABox ; ε ; _,_ ; _∼_ ; ⟨ABox⟩ ; Assertions ; ⟨ABox⟩-resp-id ; ⟨ABox⟩-resp-∘ ; ⟨ABox⟩-resp-∘² ) open import Web.Semantic.DL.ABox.Interp using ( Interp ; _,_ ; ⌊_⌋ ; ind ; _*_ ) open import Web.Semantic.DL.ABox.Interp.Morphism using ( _,_ ) open import Web.Semantic.DL.ABox.Model using ( _⊨a_ ; *-resp-⟨ABox⟩ ; ⊨a-resp-⊇ ) open import Web.Semantic.DL.Category.Object using ( Object ; _,_ ; IN ; fin ; iface ) open import Web.Semantic.DL.Category.Morphism using ( _⇒_ ; _,_ ; BN ; impl ) open import Web.Semantic.DL.Category.Tensor using ( _⊗_ ) open import Web.Semantic.DL.Category.Unit using ( I ) open import Web.Semantic.DL.Integrity using ( Unique ; Mediator ; Initial ; _⊕_⊨_ ; _,_ ) open import Web.Semantic.DL.KB using ( _,_ ) open import Web.Semantic.DL.KB.Model using ( _⊨_ ) open import Web.Semantic.DL.Signature using ( Signature ) open import Web.Semantic.DL.TBox using ( TBox ; _,_ ) open import Web.Semantic.DL.TBox.Interp using ( _⊨_≈_ ; ≈-refl ; ≈-sym ; ≈-trans ) open import Web.Semantic.DL.TBox.Interp.Morphism using ( ≲-refl ; ≲-image ) open import Web.Semantic.DL.TBox.Model using ( _⊨t_ ) open import Web.Semantic.Util using ( id ; _∘_ ; False ; tt ; ⊎-swap ; ⊎-assoc ; ⊎-assoc⁻¹ ; ⊎-unit₁ ; ⊎-unit₂ ; _∈ˡ_ ; _⊕_⊕_ ; inode ; bnode ; enode ) module Web.Semantic.DL.Category.Wiring {Σ : Signature} where wires : ∀ {X Y} → (Y → X) → List Y → ABox Σ (X ⊕ False ⊕ Y) wires f [] = ε wires f (y ∷ ys) = (inode (f y) ∼ enode y , wires f ys) wires-≈ : ∀ {X Y y ys I} (f : Y → X) → (y ∈ˡ ys) → (I ⊨a wires f ys) → (⌊ I ⌋ ⊨ ind I (inode (f y)) ≈ ind I (enode y)) wires-≈ f (here refl) (x≈y , xs≈ys) = x≈y wires-≈ f (there y∈ys) (x≈y , xs≈ys) = wires-≈ f y∈ys xs≈ys wires-≈⁻¹ : ∀ {X Y I} (f : Y → X) → (∀ y → ⌊ I ⌋ ⊨ ind I (inode (f y)) ≈ ind I (enode y)) → ∀ ys → (I ⊨a wires f ys) wires-≈⁻¹ f ∀y∙x≈y [] = tt wires-≈⁻¹ f ∀y∙x≈y (y ∷ ys) = (∀y∙x≈y y , wires-≈⁻¹ f ∀y∙x≈y ys) wired : ∀ {X Y} → (Y → X) → (X ⊕ False ⊕ Y) → X wired f (inode x) = x wired f (bnode ()) wired f (enode y) = f y wired-init : ∀ {X Y} (f : Y → X) ys → (∀ y → y ∈ˡ ys) → (I : Interp Σ X) → (S : TBox Σ) → (⌊ I ⌋ ⊨t S) → (wired f * I ∈ Initial I (S , wires f ys)) wired-init f ys ∀y∙y∈ys (I , i) S I⊨S = ( (≲-refl I , λ x → ≈-refl I) , (I⊨S , wires-≈⁻¹ f (λ x → ≈-refl I) ys) , mediator ) where mediator : Mediator (I , i) (I , i ∘ wired f) (≲-refl I , λ x → ≈-refl I) (S , wires f ys) mediator (K , k) (I≲K , i≲k) (K⊨S , K⊨F) = ((I≲K , j≲k) , (λ x → ≈-refl K) , uniq ) where j≲k : ∀ x → K ⊨ ≲-image I≲K (i (wired f x)) ≈ k x j≲k (inode x) = i≲k x j≲k (bnode ()) j≲k (enode y) = ≈-trans K (i≲k (f y)) (wires-≈ f (∀y∙y∈ys y) K⊨F) uniq : Unique (I , i) (I , i ∘ wired f) (K , k) (≲-refl I , λ x → ≈-refl I) (I≲K , i≲k) uniq J≲₁K J≲₂K I≲K≋I≲J≲₁K I≲K≋I≲J≲₂K x = ≈-trans K (≈-sym K (I≲K≋I≲J≲₁K x)) (I≲K≋I≲J≲₂K x) wires✓ : ∀ {X Y ys} (f : Y → X) → (∀ y → y ∈ˡ ys) → (S T : TBox Σ) (A : ABox Σ X) (B : ABox Σ Y) → (Assertions (⟨ABox⟩ f B) ⊆ Assertions A) → (I : Interp Σ X) → (I ⊨ (S , T) , A) → (I ⊕ S , wires f ys ⊨ T , B) wires✓ {X} {Y} {ys} f ∀y∙y∈ys S T A B B⊆A I I⊨STA = (J , J-init , (J⊨T , J⊨B)) where J : Interp Σ (X ⊕ False ⊕ Y) J = wired f * I J⊨T : ⌊ J ⌋ ⊨t T J⊨T = proj₂ (proj₁ I⊨STA) J⊨B : enode * J ⊨a B J⊨B = *-resp-⟨ABox⟩ f I B (⊨a-resp-⊇ I (⟨ABox⟩ f B) A B⊆A (proj₂ I⊨STA)) J-init : J ∈ Initial I (S , wires f ys) J-init = wired-init f ys ∀y∙y∈ys I S (proj₁ (proj₁ I⊨STA)) wiring-impl : ∀ {S T : TBox Σ} → (A B : Object S T) (f : IN B → IN A) → ABox Σ (IN A ⊕ False ⊕ IN B) wiring-impl A B f = wires f (proj₁ (fin B)) wiring-impl✓ : ∀ {S T : TBox Σ} → (A B : Object S T) (f : IN B → IN A) → (Assertions (⟨ABox⟩ f (iface B)) ⊆ Assertions (iface A)) → ∀ I → (I ⊨ (S , T) , iface A) → (I ⊕ (S , wiring-impl A B f) ⊨ (T , iface B)) wiring-impl✓ {S} {T} (X , X∈Fin , A) (Y , Y∈Fin , B) f B⊆A = wires✓ f (proj₂ Y∈Fin) S T A B B⊆A wiring : ∀ {S T : TBox Σ} → (A B : Object S T) (f : IN B → IN A) → (Assertions (⟨ABox⟩ f (iface B)) ⊆ Assertions (iface A)) → (A ⇒ B) wiring A B f B⊆A = ( False , wiring-impl A B f , wiring-impl✓ A B f B⊆A ) id✓ : ∀ {S T : TBox Σ} → (A : Object S T) → (Assertions (⟨ABox⟩ id (iface A)) ⊆ Assertions (iface A)) id✓ A = subst₂ Assertions (⟨ABox⟩-resp-id (iface A)) refl identity : ∀ {S T : TBox Σ} → (A : Object S T) → (A ⇒ A) identity A = wiring A A id (id✓ A) ⊎-swap✓ : ∀ {S T : TBox Σ} → (A B : Object S T) → Assertions (⟨ABox⟩ ⊎-swap (iface (B ⊗ A))) ⊆ Assertions (iface (A ⊗ B)) ⊎-swap✓ A B (inj₁ b∈B) = inj₂ (subst₂ Assertions (⟨ABox⟩-resp-∘ ⊎-swap inj₁ (iface B)) refl b∈B) ⊎-swap✓ A B (inj₂ a∈A) = inj₁ (subst₂ Assertions (⟨ABox⟩-resp-∘ ⊎-swap inj₂ (iface A)) refl a∈A) symm : ∀ {S T : TBox Σ} → (A B : Object S T) → ((A ⊗ B) ⇒ (B ⊗ A)) symm A B = wiring (A ⊗ B) (B ⊗ A) ⊎-swap (⊎-swap✓ A B) ⊎-assoc⁻¹✓ : ∀ {S T : TBox Σ} → (A B C : Object S T) → (Assertions (⟨ABox⟩ ⊎-assoc⁻¹ (iface (A ⊗ (B ⊗ C))))) ⊆ (Assertions (iface ((A ⊗ B) ⊗ C))) ⊎-assoc⁻¹✓ A B C (inj₁ a∈A) = inj₁ (inj₁ (subst₂ Assertions (trans (⟨ABox⟩-resp-∘ ⊎-assoc⁻¹ inj₁ (iface A)) (sym (⟨ABox⟩-resp-∘ inj₁ inj₁ (iface A)))) refl a∈A)) ⊎-assoc⁻¹✓ A B C (inj₂ (inj₁ b∈B)) = inj₁ (inj₂ (subst₂ Assertions (trans (⟨ABox⟩-resp-∘² ⊎-assoc⁻¹ inj₂ inj₁ (iface B)) (sym (⟨ABox⟩-resp-∘ inj₁ inj₂ (iface B)))) refl b∈B)) ⊎-assoc⁻¹✓ A B C (inj₂ (inj₂ c∈C)) = inj₂ (subst₂ Assertions (⟨ABox⟩-resp-∘² ⊎-assoc⁻¹ inj₂ inj₂ (iface C)) refl c∈C) assoc : ∀ {S T : TBox Σ} → (A B C : Object S T) → (((A ⊗ B) ⊗ C) ⇒ (A ⊗ (B ⊗ C))) assoc A B C = wiring ((A ⊗ B) ⊗ C) (A ⊗ (B ⊗ C)) ⊎-assoc⁻¹ (⊎-assoc⁻¹✓ A B C) ⊎-assoc✓ : ∀ {S T : TBox Σ} → (A B C : Object S T) → (Assertions (⟨ABox⟩ ⊎-assoc (iface ((A ⊗ B) ⊗ C)))) ⊆ (Assertions (iface (A ⊗ (B ⊗ C)))) ⊎-assoc✓ A B C (inj₁ (inj₁ a∈A)) = inj₁ (subst₂ Assertions (⟨ABox⟩-resp-∘² ⊎-assoc inj₁ inj₁ (iface A)) refl a∈A) ⊎-assoc✓ A B C (inj₁ (inj₂ b∈B)) = inj₂ (inj₁ (subst₂ Assertions (trans (⟨ABox⟩-resp-∘² ⊎-assoc inj₁ inj₂ (iface B)) (sym (⟨ABox⟩-resp-∘ inj₂ inj₁ (iface B)))) refl b∈B)) ⊎-assoc✓ A B C (inj₂ c∈C) = inj₂ (inj₂ (subst₂ Assertions (trans (⟨ABox⟩-resp-∘ ⊎-assoc inj₂ (iface C)) (sym (⟨ABox⟩-resp-∘ inj₂ inj₂ (iface C)))) refl c∈C)) assoc⁻¹ : ∀ {S T : TBox Σ} → (A B C : Object S T) → ((A ⊗ (B ⊗ C)) ⇒ ((A ⊗ B) ⊗ C)) assoc⁻¹ A B C = wiring (A ⊗ (B ⊗ C)) ((A ⊗ B) ⊗ C) ⊎-assoc (⊎-assoc✓ A B C) inj₂✓ : ∀ {S T : TBox Σ} → (A : Object S T) → (Assertions (⟨ABox⟩ inj₂ (iface A))) ⊆ (Assertions (iface (I ⊗ A))) inj₂✓ A = inj₂ unit₁ : ∀ {S T : TBox Σ} (A : Object S T) → ((I ⊗ A) ⇒ A) unit₁ A = wiring (I ⊗ A) A inj₂ (inj₂✓ A) ⊎-unit₁✓ : ∀ {S T : TBox Σ} → (A : Object S T) → Assertions (⟨ABox⟩ ⊎-unit₁ (iface (I ⊗ A))) ⊆ Assertions (iface A) ⊎-unit₁✓ A (inj₁ ()) ⊎-unit₁✓ A (inj₂ a∈A) = subst₂ Assertions (trans (⟨ABox⟩-resp-∘ ⊎-unit₁ inj₂ (iface A)) (⟨ABox⟩-resp-id (iface A))) refl a∈A unit₁⁻¹ : ∀ {S T : TBox Σ} (A : Object S T) → (A ⇒ (I ⊗ A)) unit₁⁻¹ A = wiring A (I ⊗ A) ⊎-unit₁ (⊎-unit₁✓ A) inj₁✓ : ∀ {S T : TBox Σ} → (A : Object S T) → (Assertions (⟨ABox⟩ inj₁ (iface A))) ⊆ (Assertions (iface (A ⊗ I))) inj₁✓ A = inj₁ unit₂ : ∀ {S T : TBox Σ} (A : Object S T) → ((A ⊗ I) ⇒ A) unit₂ A = wiring (A ⊗ I) A inj₁ (inj₁✓ A) ⊎-unit₂✓ : ∀ {S T : TBox Σ} (A : Object S T) → Assertions (⟨ABox⟩ ⊎-unit₂ (iface (A ⊗ I))) ⊆ Assertions (iface A) ⊎-unit₂✓ A (inj₁ a∈A) = subst₂ Assertions (trans (⟨ABox⟩-resp-∘ ⊎-unit₂ inj₁ (iface A)) (⟨ABox⟩-resp-id (iface A))) refl a∈A ⊎-unit₂✓ A (inj₂ ()) unit₂⁻¹ : ∀ {S T : TBox Σ} (A : Object S T) → (A ⇒ (A ⊗ I)) unit₂⁻¹ A = wiring A (A ⊗ I) ⊎-unit₂ (⊎-unit₂✓ A)
{ "alphanum_fraction": 0.5322540781, "avg_line_length": 39.2815533981, "ext": "agda", "hexsha": "fb189a2ac0c648021e4bf61b3378c80a25582b0e", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:03.000Z", "max_forks_repo_forks_event_min_datetime": "2017-12-03T14:52:09.000Z", "max_forks_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/agda-web-semantic", "max_forks_repo_path": "src/Web/Semantic/DL/Category/Wiring.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab", "max_issues_repo_issues_event_max_datetime": "2021-01-04T20:57:19.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T02:32:28.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/agda-web-semantic", "max_issues_repo_path": "src/Web/Semantic/DL/Category/Wiring.agda", "max_line_length": 81, "max_stars_count": 9, "max_stars_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/agda-web-semantic", "max_stars_repo_path": "src/Web/Semantic/DL/Category/Wiring.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-14T14:21:08.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-13T17:46:41.000Z", "num_tokens": 4059, "size": 8092 }
module _ where module Test₁ where module A where infixl 0 _+_ data D : Set where • : D _+_ : D → D → D module B where data D : Set where • : D _+_ : D → D → D open A open B Foo : A.D Foo = • + • + • module Test₂ where module A where data D : Set where • : D _+_ : D → D → D module B where data D : Set where • : D _+_ : D → D → D open A open B Foo : A.D Foo = • + • module Test₃ where module A where data D : Set where • : D c : D → D → D syntax c x y = x + y module B where data D : Set where • : D c : D → D → D syntax c x y = x + y open A open B Foo : A.D Foo = • + •
{ "alphanum_fraction": 0.4404283802, "avg_line_length": 10.9852941176, "ext": "agda", "hexsha": "f8d822a298a1f1ed2ad7fd3c0cdd3ab6730a9807", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1436-18.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1436-18.agda", "max_line_length": 24, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1436-18.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 277, "size": 747 }
postulate A : Set B : Set t : B data C : (b : B) → Set foo : (b : B) → C b → B data C where c : (x : C t) → C (foo t x) foo b x = {!x!}
{ "alphanum_fraction": 0.4256756757, "avg_line_length": 10.5714285714, "ext": "agda", "hexsha": "0b0efefaf6555c6c82ff2a6f6220ad4c1e9930c1", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue3032.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue3032.agda", "max_line_length": 29, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue3032.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 70, "size": 148 }
module Syntax.Implication.Dependent where open import Functional using (id) open import Functional.Dependent import Lvl open import Type private variable ℓ₁ ℓ₂ ℓ₃ ℓ₄ : Lvl.Level _⇒-[_]_ : ∀(X : Type{ℓ₁}){Y : ∀{_ : X} → Type{ℓ₂}}{Z : ∀{x : X}{_ : Y{x}} → Type{ℓ₃}} → (P : (x : X) → Y{x}) → (∀{x : X} → (y : Y{x}) → Z{x}{y}) → ((x : X) → Z{x}{P(x)}) _⇒-[_]_ = const(swap(_∘_)) infixr 0.98 _⇒-[_]_ {-# INLINE _⇒-[_]_ #-} _⇒-[]_ : ∀(X : Type{ℓ₁}){Y : ∀{_ : X} → Type{ℓ₂}} → ((x : X) → Y{x}) → ((x : X) → Y{x}) _⇒-[]_ = const id infixr 0.98 _⇒-[]_ {-# INLINE _⇒-[]_ #-} _⇒-end : ∀(X : Type{ℓ₁}) → (X → X) _⇒-end = const id infixr 0.99 _⇒-end {-# INLINE _⇒-end #-} _⇒_ = apply infixl 0.97 _⇒_ {-# INLINE _⇒_ #-} -- TODO: Change these to be similar to the ones in Syntax.Implication •_⇒₁_ = apply infixl 0.97 •_⇒₁_ {-# INLINE •_⇒₁_ #-} •_•_⇒₂_ : ∀{X : Type{ℓ₁}}{Y : ∀{_ : X} → Type{ℓ₂}}{Z : ∀{x : X}{_ : Y{x}} → Type{ℓ₃}} → (x : X) → (y : Y{x}) → ((x : X) → (y : Y{x}) → Z{x}{y}) → Z{x}{y} • a • b ⇒₂ P = P ⇒ apply a ⇒ apply b infixl 0.97 •_•_⇒₂_ {-# INLINE •_•_⇒₂_ #-} •_•_•_⇒₃_ : ∀{X : Type{ℓ₁}}{Y : ∀{_ : X} → Type{ℓ₂}}{Z : ∀{x : X}{_ : Y{x}} → Type{ℓ₃}}{W : ∀{x : X}{y : Y{x}}{_ : Z{x}{y}} → Type{ℓ₄}} → (x : X) → (y : Y{x}) → (z : Z{x}{y}) → ((x : X) → (y : Y{x}) → (z : Z{x}{y}) → W{x}{y}{z}) → W{x}{y}{z} • a • b • c ⇒₃ P = P ⇒ apply a ⇒ apply b ⇒ apply c infixl 0.97 •_•_•_⇒₃_ {-# INLINE •_•_•_⇒₃_ #-}
{ "alphanum_fraction": 0.4615384615, "avg_line_length": 32.9534883721, "ext": "agda", "hexsha": "963058a04eeeee0cf6f9d9e0801b5d77f457e959", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Syntax/Implication/Dependent.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Syntax/Implication/Dependent.agda", "max_line_length": 241, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Syntax/Implication/Dependent.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 765, "size": 1417 }
module Numeral.Natural.Oper where open import Numeral.Natural infixl 10010 _+_ infix 10010 _−₀_ _𝄩_ infixl 10020 _⋅_ -- infix 10020 _/₀_ infixl 10030 _^_ -- TODO: It would require a great amount of work, but consider changing the induction to being on the left side instead of the right on _+_ and _⋅_. It will then mirror how lists (a similar structure) uses induction in its definition. The advantage of having it on the right side as it is now is that induction using the full operator name is easier: ℕ-induction(_+_ a) vs ℕ-induction(a ↦ _+_ a b) -- Addition _+_ : ℕ → ℕ → ℕ x + 𝟎 = x x + 𝐒(y) = 𝐒(x + y) {-# BUILTIN NATPLUS _+_ #-} -- Multiplication _⋅_ : ℕ → ℕ → ℕ _ ⋅ 𝟎 = 𝟎 x ⋅ 𝐒(y) = x + (x ⋅ y) {-# BUILTIN NATTIMES _⋅_ #-} -- Exponentiation _^_ : ℕ → ℕ → ℕ x ^ 𝟎 = 𝐒(𝟎) x ^ 𝐒(y) = x ⋅ (x ^ y) -- Factorial _! : ℕ → ℕ 𝟎 ! = 𝐒(𝟎) 𝐒(x) ! = 𝐒(x) ⋅ (x !) -- Distance (Absolute subtraction) (Interval length) _𝄩_ : ℕ → ℕ → ℕ 𝟎 𝄩 𝟎 = 𝟎 𝐒(x) 𝄩 𝟎 = 𝐒(x) 𝟎 𝄩 𝐒(x) = 𝐒(x) 𝐒(x) 𝄩 𝐒(y) = x 𝄩 y -- Closed total subtraction (monus) _−₀_ : ℕ → ℕ → ℕ x −₀ 𝟎 = x 𝟎 −₀ 𝐒(_) = 𝟎 𝐒(x) −₀ 𝐒(y) = x −₀ y {-# BUILTIN NATMINUS _−₀_ #-} -- Closed total ceiled division (rounding up) {-# TERMINATING #-} _⌈/₀⌉_ : ℕ → ℕ → ℕ 𝟎 ⌈/₀⌉ y = 𝟎 {-# CATCHALL #-} x ⌈/₀⌉ 𝟎 = 𝟎 {-# CATCHALL #-} x ⌈/₀⌉ y = 𝐒((x −₀ y) ⌈/₀⌉ y) -- Hyperoperation: (a ↑[n]↑ b) where (n=0)⇒(_ ↦ 𝐒) , (n=1)⇒(+) , (n=2)⇒(⋅) , (n=3)⇒(^) _↑[_]↑_ : ℕ → ℕ → ℕ → ℕ _ ↑[ 0 ]↑ b = 𝐒(b) a ↑[ 1 ]↑ 0 = a _ ↑[ 2 ]↑ 0 = 0 _ ↑[ 𝐒(𝐒(𝐒(n))) ]↑ 0 = 1 {-# CATCHALL #-} a ↑[ 𝐒(n) ]↑ (𝐒(b)) = a ↑[ n ]↑ (a ↑[ n ]↑ b)
{ "alphanum_fraction": 0.5266089109, "avg_line_length": 23.7647058824, "ext": "agda", "hexsha": "164d83523a0a18417516f9bc78279691ff24fd52", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Natural/Oper.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Natural/Oper.agda", "max_line_length": 397, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Natural/Oper.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 826, "size": 1616 }
{-# OPTIONS --without-K #-} {- Here, truncations with propositional computational behaviour are defined. This lack of a definitional β-rule enabled us to talk about this notion inside type theory without truncations, albeit complicating setup and proofs. After definition and basic accessories concerning universal properties, recursion and elimination, we prove that truncation is functorial. With this, we turn our attention to the problem of uniqueness of truncation, i.e. the type of truncations of a given type being propositional. -} module Universe.Trunc.Basics where open import lib.Basics open import lib.NType2 open import lib.Equivalences2 open import lib.types.Unit open import lib.types.Nat hiding (_+_) open import lib.types.Pi open import lib.types.Sigma open import lib.types.Paths open import Universe.Utility.General open import Universe.Utility.TruncUniverse open import Universe.Trunc.Universal -- *** Definition 6.4 *** record trunc-ty {i} (n : ℕ₋₂) (A : Type i) (j : ULevel) : Type (lsucc (i ⊔ j)) where constructor ty-cons field type : n -Type i cons : A → ⟦ type ⟧ univ : univ-Type type cons j module _ {i} {n : ℕ₋₂} {A : Type i} where trunc-ty-lower : ∀ {j₀} (j₁ : ULevel) → trunc-ty n A (j₀ ⊔ j₁) → trunc-ty n A j₀ trunc-ty-lower {j₀} j₁ (ty-cons t c u) = ty-cons t c (univ-lower t c (j₀ ⊔ j₁) u) {- Since Agda does not support specifying ordering relations on universe levels, we encounter an awkward dependency inversion: the index k needs to be specified in the module arguments, since the truncation type depends on it, even though we would rather have it at each individual definition. This shortcoming will be the source of many explicitely specified levels. -} module trunc-props {i} {n : ℕ₋₂} {A : Type i} {j k} (tr : trunc-ty n A (i ⊔ j ⊔ k)) where open trunc-ty tr up : (U : n -Type k) → (⟦ type ⟧ → ⟦ U ⟧) ≃ (A → ⟦ U ⟧) up U = ((λ f → f ∘ cons) , univ-lower type cons (i ⊔ j ⊔ k) univ U) dup : (U : ⟦ type ⟧ → n -Type k) → ((ta : ⟦ type ⟧) → ⟦ U ta ⟧) ≃ ((a : A) → ⟦ U (cons a) ⟧) dup U = ((λ f → f ∘ cons) , with-univ.duniv type cons (univ-lower type cons (i ⊔ j ⊔ k) univ) U) abstract rec : (U : n -Type k) → (A → ⟦ U ⟧) → ⟦ type ⟧ → ⟦ U ⟧ rec U = <– (up U) elim : (U : ⟦ type ⟧ → n -Type k) → ((a : A) → ⟦ U (cons a) ⟧) → (ta : ⟦ type ⟧) → ⟦ U ta ⟧ elim U = <– (dup U) rec-β : {U : n -Type k} {f : A → ⟦ U ⟧} (a : A) → rec U f (cons a) == f a rec-β {U} {f} a = app= (<–-inv-r (up U) f) a elim-β : {U : ⟦ type ⟧ → n -Type k} {f : (a : A) → ⟦ U (cons a) ⟧} (a : A) → elim U f (cons a) == f a elim-β {U} {f} a = app= (<–-inv-r (dup U) f) a {- Truncation acts as a functor. While tedious, we state all lemmata in their most general form. Instead of assuming an n-truncation operator, we individually assume a truncation for each type we need. While seeming overly convoluted at first, this generality will actually pay off with an unconventional use of fmap-equiv in showing that trunc-ty is propositional. -} module trunc-functor {n : ℕ₋₂} where open trunc-ty open trunc-props -- The functorial action of truncation (truncation preserves maps). module _ {ia ib j} where module fmap {A : Type ia} {B : Type ib} (TrA : trunc-ty n A (ia ⊔ ib ⊔ j)) (TrB : trunc-ty n B (ia ⊔ ib ⊔ j)) (f : A → B) where map : ⟦ type TrA ⟧ → ⟦ type TrB ⟧ map = rec {j = ia ⊔ ib ⊔ j} TrA (type TrB) (cons TrB ∘ f) β : (a : A) → map (cons TrA a) == cons TrB (f a) β = rec-β TrA {type TrB} -- The functorial action preserves the identity. module _ {i j} {A : Type i} (TrA : trunc-ty n A (i ⊔ j)) where private module I = fmap {j = i ⊔ j} TrA TrA (idf _) fmap-fuse-id : (ta : ⟦ type TrA ⟧) → I.map ta == ta fmap-fuse-id = elim {j = i ⊔ j} TrA (λ ta → Path-≤ (type TrA) (I.map ta) ta) I.β -- The functorial action preserves composition. module _ {ia ib ic j} where private l : ULevel l = ia ⊔ ib ⊔ ic ⊔ j module _ {A : Type ia} {B : Type ib} {C : Type ic} (TrA : trunc-ty n A l) (TrB : trunc-ty n B l) (TrC : trunc-ty n C l) (f : A → B) (g : B → C) where private module F = fmap {j = l} TrA TrB f module G = fmap {j = l} TrB TrC g module GF = fmap {j = l} TrA TrC (g ∘ f) open trunc-props fmap-fuse-∘ : (ta : ⟦ type TrA ⟧) → GF.map ta == G.map (F.map ta) fmap-fuse-∘ = elim {j = l} TrA (λ ta → Path-≤ (type TrC) (GF.map ta) (G.map (F.map ta))) $ λ a → GF.map (cons TrA a) =⟨ GF.β a ⟩ cons TrC (g (f a)) =⟨ ! (G.β (f a)) ⟩ G.map (cons TrB (f a)) =⟨ ap G.map (! (F.β a)) ⟩ G.map (F.map (cons TrA a)) ∎ {- Corollary: truncation preserves equivalences. The below general form produces a unexpected benefit: the underlying type of a truncation is unique up to constructor-preserving equivalence. -} module _ where private module _ {ia ib j} where private l : ULevel l = ia ⊔ ib ⊔ j module half {A : Type ia} {B : Type ib} (TrA : trunc-ty n A l) (TrB : trunc-ty n B l) (e : A ≃ B) where module F = fmap {j = l} TrA TrB (–> e) module G = fmap {j = l} TrB TrA (<– e) module BB = fmap {j = l} TrB TrB f-g : (tb : ⟦ type TrB ⟧) → F.map (G.map tb) == tb f-g tb = F.map (G.map tb) =⟨ ! (fmap-fuse-∘ {j = l} TrB TrA TrB (<– e) (–> e) tb) ⟩ BB.map (–> e ∘ <– e) tb =⟨ app= (ap BB.map (λ= (<–-inv-r e))) tb ⟩ BB.map (idf _) tb =⟨ fmap-fuse-id {j = l} TrB tb ⟩ tb ∎ module _ {ia ib j} where module _ {A : Type ia} {B : Type ib} (TrA : trunc-ty n A (ia ⊔ ib ⊔ j)) (TrB : trunc-ty n B (ia ⊔ ib ⊔ j)) (e : A ≃ B) where private module H = half {j = j} TrA TrB e module K = half {j = j} TrB TrA (e ⁻¹) fmap-equiv : ⟦ type TrA ≃-≤ type TrB ⟧ fmap-equiv = equiv H.F.map K.F.map H.f-g K.f-g {- The type of n-truncations of A is propositional: truncations are unique if existent. -} module _ {i} {n : ℕ₋₂} {A : Type i} where open trunc-ty open trunc-functor {- For the purpose of this module, it will be easier for us to regard trunc-ty as a left-associatived Σ-type. In this way, we may examine the equality on the first component while disregarding the second one, which is a proposition. -} private e : ∀ {j} → trunc-ty n A j ≃ Σ (Σ _ _) _ e = equiv (λ {(ty-cons t c u) → ((t , c) , u)}) (λ {((t , c) , u) → ty-cons t c u}) (λ _ → idp) (λ _ → idp) {- First, let us structurally decompose the combined equality over the type and cons record fields of trunc-ty. Note that this kind of lemma would be superfluous in a proof assistant fully supporting univalent foundations. -} path : (U V : Σ (n -Type i) (λ ty → A → ⟦ ty ⟧)) → (U == V) ≃ Σ (⟦ fst U ⟧ ≃ ⟦ fst V ⟧) (λ e → –> e ∘ snd U == snd V) path ((X , u) , f) ((Y , v) , g) = equiv-Σ eq₁ (_⁻¹ ∘ eq₂) ∘e =Σ-eqv _ _ ⁻¹ where eq₁ : ((X , u) == (Y , v)) ≃ (X ≃ Y) eq₁ = (X , u) == (Y , v) ≃⟨ =Σ-eqv _ _ ⁻¹ ⟩ Σ (X == Y) (λ p → u == v [ _ ↓ p ]) ≃⟨ Σ₂-contr h ⟩ X == Y ≃⟨ ua-equiv ⁻¹ ⟩ X ≃ Y ≃∎ where h : (p : X == Y) → is-contr (u == v [ _ ↓ p ]) h _ = =-[-↓-]-level (λ _ → has-level-is-prop) eq₂ : (e : X ≃ Y) → (–> e ∘ f == g) ≃ (f == g [ _ ↓ <– eq₁ e ]) eq₂ = λ e → –> e ∘ f == g ≃⟨ app=-equiv ⟩ (∀ a → –> e (f a) == g a) ≃⟨ equiv-Π-r (λ a → ↓-idf-ua-equiv e) ⟩ (∀ a → f a == g a [ _ ↓ ua e ]) ≃⟨ ↓-cst→app-equiv ⟩ (f == g [ _ ↓ ua e ]) ≃⟨ ↓-cst2-equiv _ _ ⟩ (f == g [ _ ↓ <– eq₁ e ]) ≃∎ module _ {j} where {- Important special case of the general form of fmap-equiv: the underlying type of a truncation is unique up to constructor-preserving equivalence. -} module unique (Tr₁ : trunc-ty n A (i ⊔ j)) (Tr₂ : trunc-ty n A (i ⊔ j)) where type-equiv : ⟦ type Tr₁ ≃-≤ type Tr₂ ⟧ type-equiv = fmap-equiv {j = j} Tr₁ Tr₂ (ide _) cons-path : –> type-equiv ∘ cons Tr₁ == cons Tr₂ cons-path = λ= (fmap.β {j = j} Tr₁ Tr₂ (idf _)) type-cons-path : Path {A = Σ (n -Type i) (λ ty → A → ⟦ ty ⟧)} (fst (–> e Tr₁)) (fst (–> e Tr₂)) type-cons-path = <– (path _ _) (type-equiv , cons-path) -- *** Lemma 6.7 *** -- We are now ready to prove propositionality of trunc-ty. trunc-ty-prop : is-prop (trunc-ty n A _) trunc-ty-prop = all-paths-is-prop $ λ Tr₀ Tr₁ → <– (equiv-ap e _ _) (pair= (unique.type-cons-path Tr₀ Tr₁) (prop-has-all-paths-↓ (Π-level (λ _ → is-equiv-is-prop _)))) trunc-inhab-contr : trunc-ty n A _ → is-contr (trunc-ty n A _) trunc-inhab-contr Tr = (Tr , prop-has-all-paths trunc-ty-prop _)
{ "alphanum_fraction": 0.5215957447, "avg_line_length": 40.6926406926, "ext": "agda", "hexsha": "db2594c5d6155e627c8618b312078da71f5ad8c3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c8fb8da3354fc9e0c430ac14160161759b4c5b37", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "sattlerc/HoTT-Agda", "max_forks_repo_path": "Universe/Trunc/Basics.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c8fb8da3354fc9e0c430ac14160161759b4c5b37", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "sattlerc/HoTT-Agda", "max_issues_repo_path": "Universe/Trunc/Basics.agda", "max_line_length": 105, "max_stars_count": null, "max_stars_repo_head_hexsha": "c8fb8da3354fc9e0c430ac14160161759b4c5b37", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "sattlerc/HoTT-Agda", "max_stars_repo_path": "Universe/Trunc/Basics.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3301, "size": 9400 }
record _×_ (A B : Set) : Set where no-eta-equality constructor _,_ field fst : A snd : B open _×_ swap : ∀ {A B} → A × B → B × A swap (x , y) = y , x data _≡_ {A : Set} (x : A) : A → Set where refl : x ≡ x -- This should fail since we don't have eta for _×_. fails : ∀ {A B} (p : A × B) → swap p ≡ (snd p , fst p) fails p = refl
{ "alphanum_fraction": 0.5171428571, "avg_line_length": 17.5, "ext": "agda", "hexsha": "e6db38b951a22bd08290a5d0db61eb596d5651d8", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/NoEtaPatterns.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Fail/NoEtaPatterns.agda", "max_line_length": 54, "max_stars_count": 3, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Fail/NoEtaPatterns.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 145, "size": 350 }
-- Author: Makoto Takeyama module ParenDepTac where ---------------------------------------------------------------------- -- Preliminary ---------------------------------------------------------------------- infix 3 _≡_ data _≡_ {A : Set}(x : A) : A -> Set where refl : x ≡ x subst : {A : Set}(C : A -> Set){x y : A} -> x ≡ y -> C y -> C x subst C refl c = c sym : {A : Set}{x y : A} -> x ≡ y -> y ≡ x sym refl = refl cong : {A B : Set}(f : A -> B){x y : A} -> x ≡ y -> f x ≡ f y cong f refl = refl infixl 2 _`tran`_ _`tran`_ : {A : Set}{x y z : A} -> x ≡ y -> y ≡ z -> x ≡ z refl `tran` refl = refl data FALSE : Set where data TRUE : Set where tt : TRUE data Nat : Set where zer : Nat suc : Nat -> Nat _+_ : Nat -> Nat -> Nat zer + n = n suc m + n = suc ( m + n ) ---------------------------------------------------------------------- -- Strings of parentheses ---------------------------------------------------------------------- infix 5 ≪_ ≫_ data Parens : Set where ε : Parens ≪_ : Parens -> Parens ≫_ : Parens -> Parens infixr 5 _·_ _·_ : Parens -> Parens -> Parens ε · ys = ys ≪ xs · ys = ≪ (xs · ys) ≫ xs · ys = ≫ (xs · ys) ·ass : (xs : Parens){ys zs : Parens} -> xs · (ys · zs) ≡ (xs · ys) · zs ·ass ε = refl ·ass (≪ xs) = cong ≪_ (·ass xs) ·ass (≫ xs) = cong ≫_ (·ass xs) ·unitR : {xs : Parens} -> xs · ε ≡ xs ·unitR {ε} = refl ·unitR {≪ xs} = cong ≪_ ·unitR ·unitR {≫ xs} = cong ≫_ ·unitR _≫' : Parens -> Parens xs ≫' = xs · ≫ ε _≪' : Parens -> Parens xs ≪' = xs · ≪ ε ---------------------------------------------------------------------- -- A poorman's tactics for equational reasoning ---------------------------------------------------------------------- infixr 5 _⊙_ data Exp : Set where Var : Nat -> Exp Lit : Parens -> Exp _⊙_ : Exp -> Exp -> Exp nf0 : Exp -> Exp -> Exp nf0 (Var x) e0 = Var x ⊙ e0 nf0 (Lit a) e0 = Lit a ⊙ e0 nf0 (e1 ⊙ e2) e0 = nf0 e1 (nf0 e2 e0) nf : Exp -> Exp nf e = nf0 e (Lit ε) Env = Nat -> Parens module withEnv(ρ : Env) where ⟦_⟧ : Exp -> Parens ⟦ Var x ⟧ = ρ x ⟦ Lit a ⟧ = a ⟦ e1 ⊙ e2 ⟧ = ⟦ e1 ⟧ · ⟦ e2 ⟧ nfSound0 : (e e0 : Exp) -> ⟦ e ⊙ e0 ⟧ ≡ ⟦ nf0 e e0 ⟧ nfSound0 (Var x) e0 = refl nfSound0 (Lit a) e0 = refl nfSound0 (e1 ⊙ e2) e0 = sym (·ass ⟦ e1 ⟧) `tran` cong (_·_ ⟦ e1 ⟧) (nfSound0 e2 e0) `tran` nfSound0 e1 (nf0 e2 e0) nfSound : (e : Exp) -> ⟦ e ⟧ ≡ ⟦ nf e ⟧ nfSound e = sym ·unitR `tran` nfSound0 e (Lit ε) tac : (e1 e2 : Exp) -> nf e1 ≡ nf e2 -> ⟦ e1 ⟧ ≡ ⟦ e2 ⟧ tac e1 e2 p = nfSound e1 `tran` subst (\x -> ⟦ x ⟧ ≡ ⟦ nf e2 ⟧) p refl `tran` sym (nfSound e2) module tac4 (a0 a1 a2 a3 : Parens) where ρ : Env ρ zer = a0 ρ (suc zer) = a1 ρ (suc (suc zer)) = a2 ρ (suc (suc (suc zer))) = a3 ρ (suc (suc (suc (suc _ )))) = ε open module tac4' = withEnv ρ public using (tac) v0 = Var zer v1 = Var (suc zer) v2 = Var (suc (suc zer)) v3 = Var (suc (suc (suc zer))) [≪] = Lit (≪ ε) [≫] = Lit (≫ ε) ---------------------------------------------------------------------- -- Derivations of S and T grammars -- indexed by their underlying strings ---------------------------------------------------------------------- infix 3 _∈S _∈T infix 4 <_> _⟨_⟩ infixl 4 _•_ data _∈S : Parens -> Set where εS : ε ∈S <_> : {xs : Parens} -> xs ∈S -> ≪ xs ≫' ∈S _•_ : {xs ys : Parens} -> xs ∈S -> ys ∈S -> xs · ys ∈S data _∈T : Parens -> Set where εT : ε ∈T _⟨_⟩ : {xs ys : Parens} -> xs ∈T -> ys ∈T -> xs · ≪ ys ≫' ∈T ---------------------------------------------------------------------- -- Equivalence of S and T grammars ---------------------------------------------------------------------- infixl 3 _○_ _○_ : {xs ys : Parens} -> xs ∈T -> ys ∈T -> xs · ys ∈T t ○ εT = subst _∈T ·unitR t _○_ {xs} t (t1 ⟨ t2 ⟩) = subst _∈T (·ass xs) ((t ○ t1) ⟨ t2 ⟩) S⊂T : {xs : Parens} -> xs ∈S -> xs ∈T S⊂T εS = εT S⊂T (< s >) = εT ⟨ S⊂T s ⟩ S⊂T (s1 • s2) = S⊂T s1 ○ S⊂T s2 T⊂S : {xs : Parens} -> xs ∈T -> xs ∈S T⊂S εT = εS T⊂S (t1 ⟨ t2 ⟩) = T⊂S t1 • < T⊂S t2 > ---------------------------------------------------------------------- -- Recursively defined test function ---------------------------------------------------------------------- Test : Nat -> Parens -> Set Test n (≪ xs) = Test (suc n) xs Test (suc n) (≫ xs) = Test n xs Test zer (≫ xs) = FALSE Test (suc n) ε = FALSE Test zer ε = TRUE ---------------------------------------------------------------------- -- Soundness of Test ---------------------------------------------------------------------- lemTest : (m : Nat)(xs : Parens) -> Test m xs -> (n : Nat)(ys : Parens) -> Test n ys -> Test (m + n) (xs · ys) lemTest m (≪ xs) p = lemTest (suc m) xs p lemTest (suc m) (≫ xs) p = lemTest m xs p lemTest zer (≫ xs) () lemTest (suc m) ε () lemTest zer ε tt = \ n ys q -> q sound : {xs : Parens} -> xs ∈S -> Test zer xs sound εS = tt sound (<_>{xs} s) = lemTest zer xs (sound s) (suc zer) (≫ ε) tt sound (_•_{xs}{ys} s1 s2) = lemTest zer xs (sound s1) zer ys (sound s2) ---------------------------------------------------------------------- -- Completeness of Test ---------------------------------------------------------------------- complete : (xs : Parens) -> Test zer xs -> xs ∈S complete xs0 p0 = parse init εS xs0 p0 where data St : Nat -> Parens -> Set where init : St zer ε _*_≪ : {n : Nat} -> {xs : Parens} -> St n xs -> {ys : Parens} -> ys ∈S -> St (suc n) (xs · ys ≪') stPar : forall {n xs} -> St n xs -> Parens stPar {xs = xs} _ = xs ∈SPar : forall {xs} -> xs ∈S -> Parens ∈SPar {xs} _ = xs parse : {n : Nat} -> {xs : Parens} -> St n xs -> {ys : Parens} -> ys ∈S -> (zs : Parens) -> Test n zs -> xs · ys · zs ∈S -- <SHIFT> (st , s , ≪ zs ) ↦ (st * s ≪ , εS , zs) -- <REDUCE> (st * s3 ≪ , s , ≫ zs ) ↦ (st , s3 • < s > , zs) -- <FINISH> (init , s , ε ) ↦ s parse {_} {xs} st {ys} s (≪ zs) p = subst _∈S eq (parse (st * s ≪) εS zs p) where open module foo = tac4 xs ys zs ε eq = tac (v0 ⊙ v1 ⊙ [≪] ⊙ v2) ((v0 ⊙ v1 ⊙ [≪]) ⊙ v2) refl parse (st * s3 ≪) {ys} s (≫ zs) p = subst _∈S eq (parse st (s3 • < s >) zs p) where open module foo = tac4 (stPar st) (∈SPar s3) ys zs eq = tac ((v0 ⊙ v1 ⊙ [≪]) ⊙ v2 ⊙ [≫] ⊙ v3) ( v0 ⊙ (v1 ⊙ [≪] ⊙ v2 ⊙ [≫]) ⊙ v3) refl parse ( _ * _ ≪) _ ε () parse init _ (≫ zs) () parse init s ε tt = subst _∈S ·unitR s
{ "alphanum_fraction": 0.3839637798, "avg_line_length": 29.0127118644, "ext": "agda", "hexsha": "aa607de92cb016090ef0fbf4c0cc65ceedd9421b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/agda-kanso", "max_forks_repo_path": "examples/ParenDepTac.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/agda-kanso", "max_issues_repo_path": "examples/ParenDepTac.agda", "max_line_length": 79, "max_stars_count": null, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "examples/ParenDepTac.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2577, "size": 6847 }
{-# OPTIONS --rewriting #-} module Correctness where open import Convertibility public open import Semantics public {-# BUILTIN REWRITE _≡_ #-} {-# REWRITE idmono⊩⋆ #-} -- TODO: Naming things. module _ {{_ : Model}} where ⟦_≔_⟧∈ : ∀ {C Γ w} → (i : C ∈ Γ) → w ⟪ Γ ∖ i ⊫ C ⟫ → ∀ {A} → A ∈ Γ → w ⟪ Γ ∖ i ⊫ A ⟫ ⟦ i ≔ ⟪c⟫ ⟧∈ j with i ≟∈ j ⟦ i ≔ ⟪c⟫ ⟧∈ .i | same = ⟪c⟫ ⟦ i ≔ ⟪c⟫ ⟧∈ ._ | diff j = ⟪var⟫ j lem≔∈ : ∀ {A C Γ w} → (i : C ∈ Γ) (c : Γ ∖ i ⊢ C) (j : A ∈ Γ) → ⟦ i ≔ eval c ⟧∈ j ≡ eval ([ i ≔ c ]∈ j) {w} lem≔∈ i c j with i ≟∈ j lem≔∈ i c .i | same = refl lem≔∈ i c ._ | diff j = refl -- TODO: Naming things. module _ {{_ : Model}} where plug : ∀ {C Γ w} → (i : C ∈ Γ) → w ⊩⋆ Γ ∖ i → w ⊩ C → w ⊩⋆ Γ plug top γ s = γ , s plug (pop i) (γ , r) s = plug i γ s , r ⟦_≔_⟧ : ∀ {C Γ w} → (i : C ∈ Γ) → w ⟪ Γ ∖ i ⊫ C ⟫ → ∀ {A} → (∀ {w′} → w′ ⟪ Γ ⊫ A ⟫) → w ⟪ Γ ∖ i ⊫ A ⟫ ⟦ i ≔ ⟪c⟫ ⟧ ⟪d⟫ = λ γ → ⟪d⟫ (plug i γ (⟪c⟫ γ)) -- TODO: The var case in lem≔. postulate oops≔var₁ : ∀ {C Γ w} → (i : C ∈ Γ) (⟪c⟫ : w ⟪ Γ ∖ i ⊫ C ⟫) (γ : w ⊩⋆ Γ ∖ i) → ⟪var⟫ {C} i (plug i γ (⟪c⟫ γ)) ≡ ⟪c⟫ γ -- oops≔var₁ top ⟪c⟫ γ = refl -- oops≔var₁ (pop i) ⟪c⟫ (γ , s) = {!!} postulate oops≔var₂ : ∀ {A C Γ w} → (i : C ∈ Γ) (⟪c⟫ : w ⟪ Γ ∖ i ⊫ C ⟫) (j : A ∈ Γ ∖ i) (γ : w ⊩⋆ Γ ∖ i) → ⟪var⟫ {A} (mono∈ (thin⊆ i) j) (plug i γ (⟪c⟫ γ)) ≡ ⟪var⟫ {A} j γ -- oops≔var₂ top ⟪c⟫ j γ = cong² ⟪var⟫ (idmono∈ j) refl -- oops≔var₂ (pop i) ⟪c⟫ j (γ , s) = {!!} oops≔var : ∀ {A C Γ w} → (i : C ∈ Γ) (⟪c⟫ : w ⟪ Γ ∖ i ⊫ C ⟫) (j : A ∈ Γ) → ⟦ i ≔ ⟪c⟫ ⟧ {A} (⟪var⟫ {A} j) ≡ ⟦ i ≔ ⟪c⟫ ⟧∈ {A} j oops≔var i ⟪c⟫ j with i ≟∈ j oops≔var i ⟪c⟫ .i | same = funext (λ γ → oops≔var₁ i ⟪c⟫ γ) oops≔var i ⟪c⟫ ._ | diff j = funext (λ γ → oops≔var₂ i ⟪c⟫ j γ) -- TODO: The lam case in lem≔. lem₁ : ∀ {C Γ w w′} → (i : C ∈ Γ) (γ : w ⊩⋆ Γ ∖ i) (s : w ⊩ C) (p : w ≤ w′) → mono⊩⋆ p (plug i γ s) ≡ plug i (mono⊩⋆ p γ) (mono⊩ {C} p s) lem₁ top γ s p = refl lem₁ (pop i) (γ , r) s p = cong² _,_ (lem₁ i γ s p) refl mutual postulate lem₂ : ∀ {A Γ w w′} → (p : w ≤ w′) (d : Γ ⊢ A) (γ : w ⊩⋆ Γ) → mono⊩ {A} p (eval d γ) ≡ eval d (mono⊩⋆ p γ) -- lem₂ p (var {A} j) γ = {!!} -- lem₂ p (lam {A} {B} d) γ = {!!} -- lem₂ p (app {A} {B} d e) γ = {!!} -- lem₂ p (pair {A} {B} d e) γ = lem₂pair p d e γ -- lem₂ p (fst {A} {B} d) γ = lem₂fst p d γ -- lem₂ p (snd {A} {B} d) γ = lem₂snd p d γ -- lem₂ p unit γ = refl lem₂pair : ∀ {A B Γ w w′} → (p : w ≤ w′) (d : Γ ⊢ A) (e : Γ ⊢ B) (γ : w ⊩⋆ Γ) → mono⊩ {A ⩕ B} p (⟪pair⟫ {A} {B} (eval d) (eval e) γ) ≡ ⟪pair⟫ {A} {B} (eval d) (eval e) (mono⊩⋆ p γ) lem₂pair {A} {B} p d e γ = begin mono⊩ {A ⩕ B} p (⟪pair⟫ {A} {B} (eval d) (eval e) γ) ≡⟨⟩ ⟪pair⟫ {A} {B} (λ γ′ → mono⊩ {A} p (eval d γ)) (λ γ′ → mono⊩ {B} p (eval e γ)) (mono⊩⋆ p γ) ≡⟨ cong² (λ ⟪d⟫ ⟪e⟫ → ⟪pair⟫ {A} {B} ⟪d⟫ ⟪e⟫ (mono⊩⋆ p γ)) (funext (λ γ′ → lem₂ p d γ)) (funext (λ γ′ → lem₂ p e γ)) ⟩ ⟪pair⟫ {A} {B} (λ γ′ → eval d (mono⊩⋆ p γ)) (λ γ′ → eval e (mono⊩⋆ p γ)) (mono⊩⋆ p γ) ≡⟨⟩ ⟪pair⟫ {A} {B} (eval d) (eval e) (mono⊩⋆ p γ) ∎ lem₂fst : ∀ {A B Γ w w′} → (p : w ≤ w′) (d : Γ ⊢ A ⩕ B) (γ : w ⊩⋆ Γ) → mono⊩ {A} p (⟪fst⟫ {A} {B} (eval d) γ) ≡ ⟪fst⟫ {A} {B} (eval d) (mono⊩⋆ p γ) lem₂fst {A} {B} p d γ = begin mono⊩ {A} p (⟪fst⟫ {A} {B} (eval d) γ) ≡⟨⟩ ⟪fst⟫ {A} {B} (λ γ′ → mono⊩ {A ⩕ B} p (eval d γ)) (mono⊩⋆ p γ) ≡⟨ cong (λ ⟪d⟫ → ⟪fst⟫ {A} {B} ⟪d⟫ (mono⊩⋆ p γ)) (funext (λ γ′ → lem₂ p d γ)) ⟩ ⟪fst⟫ {A} {B} (λ γ′ → eval d (mono⊩⋆ p γ)) (mono⊩⋆ p γ) ≡⟨⟩ ⟪fst⟫ {A} {B} (eval d) (mono⊩⋆ p γ) ∎ lem₂snd : ∀ {A B Γ w w′} → (p : w ≤ w′) (d : Γ ⊢ A ⩕ B) (γ : w ⊩⋆ Γ) → mono⊩ {B} p (⟪snd⟫ {A} {B} (eval d) γ) ≡ ⟪snd⟫ {A} {B} (eval d) (mono⊩⋆ p γ) lem₂snd {A} {B} p d γ = begin mono⊩ {B} p (⟪snd⟫ {A} {B} (eval d) γ) ≡⟨⟩ ⟪snd⟫ {A} {B} (λ γ′ → mono⊩ {A ⩕ B} p (eval d γ)) (mono⊩⋆ p γ) ≡⟨ cong (λ ⟪d⟫ → ⟪snd⟫ {A} {B} ⟪d⟫ (mono⊩⋆ p γ)) (funext (λ γ′ → lem₂ p d γ)) ⟩ ⟪snd⟫ {A} {B} (λ γ′ → eval d (mono⊩⋆ p γ)) (mono⊩⋆ p γ) ≡⟨⟩ ⟪snd⟫ {A} {B} (eval d) (mono⊩⋆ p γ) ∎ postulate oops≔lam₂ : ∀ {A C Γ w w′} → (i : C ∈ Γ) (c : Γ ∖ i ⊢ C) (γ : w ⊩⋆ Γ ∖ i) (p : w ≤ w′) (s : w′ ⊩ A) → mono⊩ {C} p (eval c γ) ≡ eval (mono⊢ (weak⊆ {A = A}) c) (mono⊩⋆ p γ , s) -- oops≔lam₂ i c γ p s = {!!} oops≔lam₁ : ∀ {A B C Γ w w′} → (i : C ∈ Γ) (c : Γ ∖ i ⊢ C) (d : Γ , A ⊢ B) (γ : w ⊩⋆ Γ ∖ i) (p : w ≤ w′) (s : w′ ⊩ A) → eval d (mono⊩⋆ p (plug i γ (eval c γ)) , s) ≡ eval d (plug i (mono⊩⋆ p γ) (eval (mono⊢ (weak⊆ {A = A}) c) (mono⊩⋆ p γ , s)) , s) oops≔lam₁ {A} {B} {C} i c d γ p s = begin eval d (mono⊩⋆ p (plug i γ (eval c γ)) , s) ≡⟨ cong (eval d) (cong² _,_ (lem₁ i γ (eval c γ) p) refl) ⟩ eval d (plug i (mono⊩⋆ p γ) (mono⊩ {C} p (eval c γ)) , s) ≡⟨ cong (eval d) (cong² _,_ (cong² (plug i) refl (oops≔lam₂ i c γ p s)) refl) ⟩ eval d (plug i (mono⊩⋆ p γ) (eval (mono⊢ weak⊆ c) (mono⊩⋆ p γ , s)) , s) ∎ oops≔lam : ∀ {A B C Γ w} → (i : C ∈ Γ) (c : Γ ∖ i ⊢ C) (d : Γ , A ⊢ B) → ⟦ i ≔ eval c {w} ⟧ {A ⇒ B} (⟪lam⟫ {A} {B} (eval d)) ≡ ⟪lam⟫ {A} {B} (⟦ pop {A = C} {B = A} i ≔ eval (mono⊢ (weak⊆ {A = A}) c) ⟧ {B} (eval d)) oops≔lam i c d = funext (λ γ → ⟨funext⟩ (funext (λ p → funext (λ s → oops≔lam₁ i c d γ p s)))) mutual lem≔ : ∀ {A C Γ w} → (i : C ∈ Γ) (c : Γ ∖ i ⊢ C) (d : Γ ⊢ A) → ⟦ i ≔ eval c ⟧ {A} (eval d) ≡ eval ([ i ≔ c ] d) {w} lem≔ i c (var j) = lem≔var i c j lem≔ i c (lam d) = lem≔lam i c d lem≔ i c (app d e) = lem≔app i c d e lem≔ i c (pair d e) = lem≔pair i c d e lem≔ i c (fst d) = lem≔fst i c d lem≔ i c (snd d) = lem≔snd i c d lem≔ i c unit = lem≔unit i c lem≔var : ∀ {A C Γ w} → (i : C ∈ Γ) (c : Γ ∖ i ⊢ C) (j : A ∈ Γ) → ⟦ i ≔ eval c ⟧ {A} (⟪var⟫ {A} j) ≡ eval ([ i ≔ c ] (var j)) {w} lem≔var {A} i c j = begin ⟦ i ≔ eval c ⟧ {A} (⟪var⟫ {A} j) ≡⟨ oops≔var i (eval c) j ⟩ ⟦ i ≔ eval c ⟧∈ {A} j ≡⟨ lem≔∈ i c j ⟩ eval ([ i ≔ c ]∈ j) ≡⟨⟩ eval ([ i ≔ c ] (var j)) ∎ lem≔lam : ∀ {A B C Γ w} → (i : C ∈ Γ) (c : Γ ∖ i ⊢ C) (d : Γ , A ⊢ B) → ⟦ i ≔ eval c ⟧ {A ⇒ B} (⟪lam⟫ {A} {B} (eval d)) ≡ eval ([ i ≔ c ] (lam d)) {w} lem≔lam {A} {B} {C} i c d = begin ⟦ i ≔ eval c ⟧ {A ⇒ B} (⟪lam⟫ {A} {B} (eval d)) ≡⟨ oops≔lam i c d ⟩ ⟪lam⟫ {A} {B} (⟦ pop {A = C} {B = A} i ≔ eval (mono⊢ (weak⊆ {A = A}) c) ⟧ {B} (eval d)) ≡⟨ cong (⟪lam⟫ {A} {B}) (⟨funext⟩ (lem≔ (pop i) (mono⊢ (weak⊆ {A = A}) c) d)) ⟩ ⟪lam⟫ {A} {B} (eval ([ pop {A = C} {B = A} i ≔ mono⊢ (weak⊆ {A = A}) c ] d)) ≡⟨⟩ eval (lam ([ pop i ≔ mono⊢ weak⊆ c ] d)) ≡⟨⟩ eval ([ i ≔ c ] (lam d)) ∎ lem≔app : ∀ {A B C Γ w} → (i : C ∈ Γ) (c : Γ ∖ i ⊢ C) (d : Γ ⊢ A ⇒ B) (e : Γ ⊢ A) → ⟦ i ≔ eval c ⟧ {B} (⟪app⟫ {A} {B} (eval d) (eval e)) ≡ eval ([ i ≔ c ] (app d e)) {w} lem≔app {A} {B} i c d e = begin ⟦ i ≔ eval c ⟧ {B} (⟪app⟫ {A} {B} (eval d) (eval e)) ≡⟨⟩ ⟪app⟫ {A} {B} (⟦ i ≔ eval c ⟧ {A ⇒ B} (eval d)) (⟦ i ≔ eval c ⟧ {A} (eval e)) ≡⟨ cong² (⟪app⟫ {A} {B}) (lem≔ i c d) (funext (λ γ → extfun (lem≔ i c e) γ)) ⟩ ⟪app⟫ {A} {B} (eval ([ i ≔ c ] d)) (eval ([ i ≔ c ] e)) ≡⟨⟩ eval (app ([ i ≔ c ] d) ([ i ≔ c ] e)) ≡⟨⟩ eval ([ i ≔ c ] (app d e)) ∎ lem≔pair : ∀ {A B C Γ w} → (i : C ∈ Γ) (c : Γ ∖ i ⊢ C) (d : Γ ⊢ A) (e : Γ ⊢ B) → ⟦ i ≔ eval c ⟧ {A ⩕ B} (⟪pair⟫ {A} {B} (eval d) (eval e)) ≡ eval ([ i ≔ c ] (pair d e)) {w} lem≔pair {A} {B} i c d e = begin ⟦ i ≔ eval c ⟧ {A ⩕ B} (⟪pair⟫ {A} {B} (eval d) (eval e)) ≡⟨⟩ ⟪pair⟫ {A} {B} (⟦ i ≔ eval c ⟧ {A} (eval d)) (⟦ i ≔ eval c ⟧ {B} (eval e)) ≡⟨ cong² (⟪pair⟫ {A} {B}) (lem≔ i c d) (lem≔ i c e) ⟩ ⟪pair⟫ {A} {B} (eval ([ i ≔ c ] d)) (eval ([ i ≔ c ] e)) ≡⟨⟩ eval (pair ([ i ≔ c ] d) ([ i ≔ c ] e)) ≡⟨⟩ eval ([ i ≔ c ] (pair d e)) ∎ lem≔fst : ∀ {A B C Γ w} → (i : C ∈ Γ) (c : Γ ∖ i ⊢ C) (d : Γ ⊢ A ⩕ B) → ⟦ i ≔ eval c ⟧ {A} (⟪fst⟫ {A} {B} (eval d)) ≡ eval ([ i ≔ c ] (fst d)) {w} lem≔fst {A} {B} i c d = begin ⟦ i ≔ eval c ⟧ {A} (⟪fst⟫ {A} {B} (eval d)) ≡⟨⟩ ⟪fst⟫ {A} {B} (⟦ i ≔ eval c ⟧ {A ⩕ B} (eval d)) ≡⟨ cong (⟪fst⟫ {A} {B}) (lem≔ i c d) ⟩ ⟪fst⟫ {A} {B} (eval ([ i ≔ c ] d)) ≡⟨⟩ eval (fst ([ i ≔ c ] d)) ≡⟨⟩ eval ([ i ≔ c ] (fst d)) ∎ lem≔snd : ∀ {A B C Γ w} → (i : C ∈ Γ) (c : Γ ∖ i ⊢ C) (d : Γ ⊢ A ⩕ B) → ⟦ i ≔ eval c ⟧ {B} (⟪snd⟫ {A} {B} (eval d)) ≡ eval ([ i ≔ c ] (snd d)) {w} lem≔snd {A} {B} i c d = begin ⟦ i ≔ eval c ⟧ {B} (⟪snd⟫ {A} {B} (eval d)) ≡⟨⟩ ⟪snd⟫ {A} {B} (⟦ i ≔ eval c ⟧ {A ⩕ B} (eval d)) ≡⟨ cong (⟪snd⟫ {A} {B}) (lem≔ i c d) ⟩ ⟪snd⟫ {A} {B} (eval ([ i ≔ c ] d)) ≡⟨⟩ eval (snd ([ i ≔ c ] d)) ≡⟨⟩ eval ([ i ≔ c ] (snd d)) ∎ lem≔unit : ∀ {C Γ w} → (i : C ∈ Γ) (c : Γ ∖ i ⊢ C) → ⟦ i ≔ eval c ⟧ {⫪} ⟪unit⟫ ≡ eval ([ i ≔ c ] unit) {w} lem≔unit i c = refl -- TODO: Naming things. -- NOTE: This is using {-# REWRITE idmono⊩⋆ #-}. module _ {{_ : Model}} where lemreduce⇒ : ∀ {A B Γ w} → (d : Γ , A ⊢ B) (e : Γ ⊢ A) → ⟪app⟫ {A} {B} (⟪lam⟫ {A} {B} (eval d)) (eval e {w}) ≡ eval ([ top ≔ e ] d) {w} lemreduce⇒ d e = lem≔ top e d -- TODO: The expand⇒ case in eval✓. module _ {{_ : Model}} where postulate lemexpand⇒ : ∀ {A B Γ w} → (d : Γ ⊢ A ⇒ B) → eval d {w} ≡ ⟪lam⟫ {A} {B} (⟪app⟫ {A} {B} {Γ , A} (eval (mono⊢ {A ⇒ B} (weak⊆ {A = A}) d)) (⟪v₀⟫ {A})) -- lemexpand⇒ d = {!!} -- Correctness of evaluation with respect to β-η-equivalence. module _ {{_ : Model}} where eval✓ : ∀ {A Γ} {d d′ : Γ ⊢ A} {w} → d ≡ᵝᵑ d′ → eval d {w} ≡ eval d′ {w} eval✓ refl≡ᵝᵑ = refl eval✓ (trans≡ᵝᵑ p q) = trans (eval✓ p) (eval✓ q) eval✓ (sym≡ᵝᵑ p) = sym (eval✓ p) eval✓ (cong≡ᵝᵑlam {A} {B} p) = cong (⟪lam⟫ {A} {B}) (⟨funext⟩ (eval✓ p)) eval✓ (cong≡ᵝᵑapp {A} {B} p q) = cong² (⟪app⟫ {A} {B}) (eval✓ p) (eval✓ q) eval✓ (cong≡ᵝᵑpair {A} {B} p q) = cong² (⟪pair⟫ {A} {B}) (eval✓ p) (eval✓ q) eval✓ (cong≡ᵝᵑfst {A} {B} p) = cong (⟪fst⟫ {A} {B}) (eval✓ p) eval✓ (cong≡ᵝᵑsnd {A} {B} p) = cong (⟪snd⟫ {A} {B}) (eval✓ p) eval✓ (reduce⇒ d e) = lemreduce⇒ d e eval✓ (reduce⩕₁ d e) = refl eval✓ (reduce⩕₂ d e) = refl eval✓ (expand⇒ d) = lemexpand⇒ d eval✓ (expand⩕ d) = refl eval✓ (expand⫪ d) = refl
{ "alphanum_fraction": 0.3696844377, "avg_line_length": 39.3038869258, "ext": "agda", "hexsha": "6da0b9ebe490e67bb437da3b3294463f3df01659", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "54e9a83a8db4e33a33bf5dae5b2d651ad38aa3d5", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/nbe-correctness", "max_forks_repo_path": "src/Correctness.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "54e9a83a8db4e33a33bf5dae5b2d651ad38aa3d5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/nbe-correctness", "max_issues_repo_path": "src/Correctness.agda", "max_line_length": 142, "max_stars_count": 3, "max_stars_repo_head_hexsha": "54e9a83a8db4e33a33bf5dae5b2d651ad38aa3d5", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/nbe-correctness", "max_stars_repo_path": "src/Correctness.agda", "max_stars_repo_stars_event_max_datetime": "2017-03-23T18:51:34.000Z", "max_stars_repo_stars_event_min_datetime": "2017-03-23T06:25:23.000Z", "num_tokens": 6064, "size": 11123 }
{-# OPTIONS --without-K --safe #-} module PiFracMemSem where open import Relation.Binary.Core open import Data.Empty open import Function open import Data.Nat open import Data.Nat.Properties open import Data.Fin as Fin using (Fin; zero; suc) open import Data.Vec open import Data.Vec.Relation.Unary.Any.Properties open import Data.Vec.Any hiding (map) open import Data.Empty using (⊥) open import Data.Unit using (⊤; tt) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Data.Product using (_×_; _,_; proj₁; proj₂; Σ-syntax) open import Relation.Nullary open import Relation.Binary.PropositionalEquality renaming ([_] to R[_]) open import PiFracDyn infix 80 ∣_∣ ∣_∣ : (A : 𝕌) → ℕ ∣ 𝟘 ∣ = 0 ∣ 𝟙 ∣ = 1 ∣ A₁ +ᵤ A₂ ∣ = ∣ A₁ ∣ + ∣ A₂ ∣ ∣ A₁ ×ᵤ A₂ ∣ = ∣ A₁ ∣ * ∣ A₂ ∣ ∣ 𝟙/ A ∣ = 1 Vec× : ∀ {n m} {A B : Set} → Vec A n → Vec B m → Vec (A × B) (n * m) Vec× va vb = concat (map (λ a₁ → map (a₁ ,_) vb) va) ∈map : ∀ {ℓ₁ ℓ₂} {n} {A : Set ℓ₁} {B : Set ℓ₂} {v : Vec A n} → (f : A → B) → (a : A) → Any (a ≡_) v → Any (f a ≡_) (map f v) ∈map f a (here refl) = here refl ∈map f a (there a∈v) = there (∈map f a a∈v) inVec× : ∀ {n m} {A B : Set} → (va : Vec A n) → (vb : Vec B m) → (a : A) (b : B) → Any (a ≡_) va → Any (b ≡_) vb → Any ((a , b) ≡_) (Vec× va vb) inVec× (a ∷ va) vb .a b (here refl) b∈vb = ++⁺ˡ {xs = map (a ,_) vb} (∈map _ _ b∈vb) inVec× (x ∷ va) vb a b (there a∈va) b∈vb = ++⁺ʳ (map (x ,_) vb) (inVec× va vb a b a∈va b∈vb) any≡← : ∀ {ℓ} {A : Set ℓ} {n} {a} → (v : Vec A n) → (i : Fin n) → a ≡ lookup v i → Any (a ≡_) v any≡← (_ ∷ _) Fin.0F refl = here refl any≡← (_ ∷ v) (suc i) refl = there (any≡← v i refl) Enum : (A : 𝕌) → Vec ⟦ A ⟧ ∣ A ∣ Enum 𝟘 = [] Enum 𝟙 = tt ∷ [] Enum (A₁ +ᵤ A₂) = map inj₁ (Enum A₁) ++ map inj₂ (Enum A₂) Enum (A₁ ×ᵤ A₂) = Vec× (Enum A₁) (Enum A₂) Enum (𝟙/ A) = ○ ∷ [] Find : {A : 𝕌} (x : ⟦ A ⟧) → Σ[ i ∈ Fin ∣ A ∣ ] (x ≡ lookup (Enum A) i) Find {𝟘} () Find {𝟙} tt = index tt∈𝟙 , lookup-index tt∈𝟙 where tt∈𝟙 : Any (tt ≡_) (Enum 𝟙) tt∈𝟙 = here refl Find {A₁ +ᵤ A₂} (inj₁ x) = let i , p₁ = Find x in let x∈A₁ : Any ((inj₁ x) ≡_) (Enum (A₁ +ᵤ A₂)) x∈A₁ = ++⁺ˡ {xs = map inj₁ (Enum A₁)} (∈map inj₁ x (any≡← _ i p₁)) in index x∈A₁ , lookup-index x∈A₁ Find {A₁ +ᵤ A₂} (inj₂ y) = let j , p₂ = Find y in let y∈A₂ : Any ((inj₂ y) ≡_) (Enum (A₁ +ᵤ A₂)) y∈A₂ = ++⁺ʳ (map inj₁ (Enum A₁)) (∈map inj₂ y (any≡← _ j p₂)) in index y∈A₂ , lookup-index y∈A₂ Find {A₁ ×ᵤ A₂} (x , y) = let i , p₁ = Find x j , p₂ = Find y in let xy∈A₁×A₂ : Any ((x , y) ≡_) (Enum (A₁ ×ᵤ A₂)) xy∈A₁×A₂ = inVec× (Enum A₁) (Enum A₂) x y (any≡← (Enum A₁) i p₁) (any≡← (Enum A₂) j p₂) in index xy∈A₁×A₂ , lookup-index xy∈A₁×A₂ Find {𝟙/ A} ○ = index ○∈𝟙/A , lookup-index ○∈𝟙/A where ○∈𝟙/A : Any (○ ≡_) (Enum (𝟙/ A)) ○∈𝟙/A = here refl Find' : {A : 𝕌} (x : ⟦ A ⟧) → Fin ∣ A ∣ Find' = proj₁ ∘ Find data State (A : 𝕌) : Set where ⟪_[_]⟫ : Vec ⟦ A ⟧ ∣ A ∣ → Fin ∣ A ∣ → State A resolve : {A : 𝕌} → State A → ⟦ A ⟧ resolve ⟪ v [ i ]⟫ = lookup v i st : {A B : 𝕌} → ⟦ A ⟧ → (c : A ↔ B) → Σ[ C ∈ 𝕌 ] (C ↔ B × State C) st (inj₂ y) (unite₊l {t}) = _ , id↔ , ⟪ Enum t [ Find' y ]⟫ st a (uniti₊l {t}) = _ , id↔ , ⟪ (Enum (𝟘 +ᵤ t)) [ Find' a ]⟫ st (inj₁ x) (unite₊r {t}) = _ , id↔ , ⟪ Enum t [ Find' x ]⟫ st a (uniti₊r {t}) = _ , id↔ , ⟪ (Enum (t +ᵤ 𝟘)) [ Find' {t +ᵤ 𝟘} (inj₁ a) ]⟫ st (inj₁ x) (swap₊ {t₁} {t₂}) = _ , id↔ , ⟪ Enum _ [ Find' {t₂ +ᵤ t₁} (inj₂ x) ]⟫ st (inj₂ y) (swap₊ {t₁} {t₂}) = _ , id↔ , ⟪ Enum _ [ Find' {t₂ +ᵤ t₁} (inj₁ y) ]⟫ st (inj₁ x) (assocl₊ {t₁} {t₂} {t₃}) = _ , id↔ , ⟪ Enum _ [ Find' {(t₁ +ᵤ t₂) +ᵤ t₃} (inj₁ (inj₁ x)) ]⟫ st (inj₂ (inj₁ x)) (assocl₊ {t₁} {t₂} {t₃}) = _ , id↔ , ⟪ Enum _ [ Find' {(t₁ +ᵤ t₂) +ᵤ t₃} (inj₁ (inj₂ x)) ]⟫ st (inj₂ (inj₂ y)) (assocl₊ {t₁} {t₂} {t₃}) = _ , id↔ , ⟪ Enum _ [ Find' {(t₁ +ᵤ t₂) +ᵤ t₃} (inj₂ y) ]⟫ st (inj₁ (inj₁ x)) (assocr₊ {t₁} {t₂} {t₃}) = _ , id↔ , ⟪ Enum _ [ Find' {t₁ +ᵤ t₂ +ᵤ t₃} (inj₁ x) ]⟫ st (inj₁ (inj₂ y)) (assocr₊ {t₁} {t₂} {t₃}) = _ , id↔ , ⟪ Enum _ [ Find' {t₁ +ᵤ t₂ +ᵤ t₃} (inj₂ (inj₁ y)) ]⟫ st (inj₂ y) (assocr₊ {t₁} {t₂} {t₃}) = _ , id↔ , ⟪ Enum _ [ Find' {t₁ +ᵤ t₂ +ᵤ t₃} (inj₂ (inj₂ y)) ]⟫ st (tt , y) unite⋆l = _ , id↔ , ⟪ Enum _ [ Find' y ]⟫ st a uniti⋆l = _ , id↔ , ⟪ Enum _ [ Find' (tt , a) ]⟫ st (x , tt) unite⋆r = _ , id↔ , ⟪ Enum _ [ Find' x ]⟫ st a uniti⋆r = _ , id↔ , ⟪ Enum _ [ Find' (a , tt) ]⟫ st (x , y) swap⋆ = _ , id↔ , ⟪ Enum _ [ Find' (y , x) ]⟫ st (x , y , z) assocl⋆ = _ , id↔ , ⟪ Enum _ [ Find' ((x , y) , z) ]⟫ st ((x , y) , z) assocr⋆ = _ , id↔ , ⟪ Enum _ [ Find' (x , y , z) ]⟫ st (inj₁ x , y) (dist {t₁} {t₂} {t₃}) = _ , id↔ , ⟪ Enum _ [ Find' {t₁ ×ᵤ t₃ +ᵤ t₂ ×ᵤ t₃} (inj₁ (x , y)) ]⟫ st (inj₂ x , y) (dist {t₁} {t₂} {t₃}) = _ , id↔ , ⟪ Enum _ [ Find' {t₁ ×ᵤ t₃ +ᵤ t₂ ×ᵤ t₃} (inj₂ (x , y)) ]⟫ st (inj₁ (x , y)) (factor {t₁} {t₂} {t₃}) = _ , id↔ , ⟪ Enum _ [ Find' {(t₁ +ᵤ t₂) ×ᵤ t₃} (inj₁ x , y) ]⟫ st (inj₂ (y , z)) (factor {t₁} {t₂} {t₃}) = _ , id↔ , ⟪ Enum _ [ Find' {(t₁ +ᵤ t₂) ×ᵤ t₃} (inj₂ y , z) ]⟫ st (x , inj₁ y) (distl {t₁} {t₂} {t₃}) = _ , id↔ , ⟪ Enum _ [ Find' {(t₁ ×ᵤ t₂) +ᵤ (t₁ ×ᵤ t₃)} (inj₁ (x , y)) ]⟫ st (x , inj₂ y) (distl {t₁} {t₂} {t₃}) = _ , id↔ , ⟪ Enum _ [ Find' {(t₁ ×ᵤ t₂) +ᵤ (t₁ ×ᵤ t₃)} (inj₂ (x , y)) ]⟫ st (inj₁ (x , y)) (factorl {t₁} {t₂} {t₃}) = _ , id↔ , ⟪ Enum _ [ Find' {t₁ ×ᵤ (t₂ +ᵤ t₃)} (x , inj₁ y) ]⟫ st (inj₂ (x , z)) (factorl {t₁} {t₂} {t₃}) = _ , id↔ , ⟪ Enum _ [ Find' {t₁ ×ᵤ (t₂ +ᵤ t₃)} (x , inj₂ z) ]⟫ st tt (η {t} v) = _ , id↔ , ⟪ Enum (t ×ᵤ (𝟙/ v)) [ Find' {t ×ᵤ (𝟙/ v)} (v , ○) ]⟫ st (x , ○) (ε {t} v) with 𝕌dec t v x st (x , ○) (ε {t} v) | yes _ = _ , id↔ , ⟪ Enum _ [ Find' tt ]⟫ st (x , ○) (ε {t} v) | no _ = _ , (ε {t} v) , ⟪ Enum (t ×ᵤ (𝟙/ v)) [ Find' {t ×ᵤ (𝟙/ v)} (x , ○) ]⟫ st a id↔ = _ , id↔ , ⟪ Enum _ [ Find' a ]⟫ st a (id↔ ⊚ c) = _ , c , ⟪ Enum _ [ Find' a ]⟫ st a (c₁ ⊚ c₂) = let _ , c , st' = st a c₁ in _ , c ⊚ c₂ , st' st (inj₁ x) (_⊕_ {t₁} {t₂} {_} {t₄} id↔ c₂) = _ , id↔ , ⟪ Enum _ [ Find' {_ +ᵤ t₄} (inj₁ x) ]⟫ st (inj₁ x) (_⊕_ {t₁} {t₂} c₁ c₂) = let _ , c , st' = st x c₁ in _ , c ⊕ c₂ , ⟪ Enum _ [ Find' {_ +ᵤ t₂} (inj₁ $ resolve st') ]⟫ st (inj₂ y) (_⊕_ {t₁} {t₂} {t₃} {_} c₁ id↔) = _ , id↔ , ⟪ Enum _ [ Find' {t₃ +ᵤ _} (inj₂ y) ]⟫ st (inj₂ y) (_⊕_ {t₁} c₁ c₂) = let _ , c , st' = st y c₂ in _ , c₁ ⊕ c , ⟪ Enum _ [ Find' {t₁ +ᵤ _} (inj₂ $ resolve st') ]⟫ st (x , y) (id↔ ⊗ id↔) = _ , id↔ , ⟪ Enum _ [ Find' (x , y) ]⟫ st (x , y) (id↔ ⊗ c₂) = let _ , c , st' = st y c₂ in _ , id↔ ⊗ c , ⟪ Enum _ [ Find' (x , resolve st') ]⟫ st (x , y) (c₁ ⊗ c₂) = let _ , c , st' = st x c₁ in _ , c ⊗ c₂ , ⟪ Enum _ [ Find' (resolve st' , y) ]⟫ step : {A B : 𝕌} (c : A ↔ B) → State A → Σ[ C ∈ 𝕌 ] (C ↔ B × State C) step c ⟪ v [ i ]⟫ = st (lookup v i) c data State' : Set where ⟪_∥_[_]⟫ : {A B : 𝕌} → A ↔ B → Vec ⟦ A ⟧ ∣ A ∣ → Fin ∣ A ∣ → State' step' : State' → State' step' ⟪ c ∥ v [ i ]⟫ with step c ⟪ v [ i ]⟫ step' ⟪ c ∥ v [ i ]⟫ | _ , c' , ⟪ v' [ i' ]⟫ = ⟪ c' ∥ v' [ i' ]⟫ run : (n : ℕ) → State' → Vec State' (suc n) run 0 st = [ st ] run (suc n) st with run n st ... | sts with last sts ... | ⟪ cx ∥ vx [ ix ]⟫ rewrite +-comm 1 (suc n) = sts ++ [ step' ⟪ cx ∥ vx [ ix ]⟫ ] ex₁ : Vec State' 33 ex₁ = run 32 ⟪ id' ∥ Enum 𝟚 [ Fin.fromℕ 1 ]⟫
{ "alphanum_fraction": 0.4242613921, "avg_line_length": 49.925, "ext": "agda", "hexsha": "ca192d65dd5d88bff1ab5b14c5faf752df38bb85", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "fracGC/PiFracMemSem.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "fracGC/PiFracMemSem.agda", "max_line_length": 117, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "fracGC/PiFracMemSem.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 4116, "size": 7988 }
open import Common.Prelude open import Common.Equality open import Common.Reflection pattern _`+_ a b = def (quote _+_) (vArg a ∷ vArg b ∷ []) `_ : Term → Term ` con c [] = con (quote Term.con) (vArg (lit (qname c)) ∷ vArg (con (quote []) []) ∷ []) ` _ = unknown -- Prevent quotation data WrapTerm : Set where wrap : Term → WrapTerm macro eval : WrapTerm → Tactic eval (wrap u) hole = bindTC (normalise u) λ u → unify hole (` u) t : Term t = lam visible (abs "n" (lit (nat 1) `+ var 0 [])) lem : eval (wrap t) ≡ Term.con (quote suc) [] lem = refl
{ "alphanum_fraction": 0.6102292769, "avg_line_length": 22.68, "ext": "agda", "hexsha": "b855a50e356b73cbc1502bfe8e070c8a0c461969", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/MacroEval.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/MacroEval.agda", "max_line_length": 88, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/MacroEval.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 190, "size": 567 }
-- Hilbert-style formalisation of closed syntax. -- Sequences of terms. module OldBasicILP.UntypedSyntax.ClosedHilbertSequential where open import OldBasicILP.UntypedSyntax.Common public -- Closed, untyped representations. data Rep : ℕ → Set where NIL : Rep zero MP : ∀ {n} → Fin n → Fin n → Rep n → Rep (suc n) CI : ∀ {n} → Rep n → Rep (suc n) CK : ∀ {n} → Rep n → Rep (suc n) CS : ∀ {n} → Rep n → Rep (suc n) NEC : ∀ {n} → ∀ {`n} → Rep (suc `n) → Rep n → Rep (suc n) CDIST : ∀ {n} → Rep n → Rep (suc n) CUP : ∀ {n} → Rep n → Rep (suc n) CDOWN : ∀ {n} → Rep n → Rep (suc n) CPAIR : ∀ {n} → Rep n → Rep (suc n) CFST : ∀ {n} → Rep n → Rep (suc n) CSND : ∀ {n} → Rep n → Rep (suc n) UNIT : ∀ {n} → Rep n → Rep (suc n) -- Anti-bug wrappers. record Proof : Set where constructor [_] field {len} : ℕ rep : Rep (suc len) open ClosedSyntax (Proof) public -- Concatenation of representations. _⧺ᴿ_ : ∀ {n₁ n₂} → Rep n₁ → Rep n₂ → Rep (n₁ + n₂) r₁ ⧺ᴿ NIL = r₁ r₁ ⧺ᴿ MP i j r₂ = MP (monoFin weak≤+₂ i) (monoFin weak≤+₂ j) (r₁ ⧺ᴿ r₂) r₁ ⧺ᴿ CI r₂ = CI (r₁ ⧺ᴿ r₂) r₁ ⧺ᴿ CK r₂ = CK (r₁ ⧺ᴿ r₂) r₁ ⧺ᴿ CS r₂ = CS (r₁ ⧺ᴿ r₂) r₁ ⧺ᴿ NEC `r r₂ = NEC `r (r₁ ⧺ᴿ r₂) r₁ ⧺ᴿ CDIST r₂ = CDIST (r₁ ⧺ᴿ r₂) r₁ ⧺ᴿ CUP r₂ = CUP (r₁ ⧺ᴿ r₂) r₁ ⧺ᴿ CDOWN r₂ = CDOWN (r₁ ⧺ᴿ r₂) r₁ ⧺ᴿ CPAIR r₂ = CPAIR (r₁ ⧺ᴿ r₂) r₁ ⧺ᴿ CFST r₂ = CFST (r₁ ⧺ᴿ r₂) r₁ ⧺ᴿ CSND r₂ = CSND (r₁ ⧺ᴿ r₂) r₁ ⧺ᴿ UNIT r₂ = UNIT (r₁ ⧺ᴿ r₂) -- Modus ponens and necessitation in nested form. APP : ∀ {n₁ n₂} → Rep (suc n₁) → Rep (suc n₂) → Rep (suc (suc n₂ + suc n₁)) APP {n₁} {n₂} r₁ r₂ = MP zero (monoFin (weak≤+₁ (suc n₁)) zero) (r₂ ⧺ᴿ r₁) BOX : ∀ {n} → Rep (suc n) → Rep (suc zero) BOX {n} r = NEC r NIL -- Derivations. mutual infix 3 ⊢ᴰ_ data ⊢ᴰ_ : Cx Ty → Set where nil : ⊢ᴰ ∅ mp : ∀ {Ξ A B} → A ▻ B ∈ Ξ → A ∈ Ξ → ⊢ᴰ Ξ → ⊢ᴰ Ξ , B ci : ∀ {Ξ A} → ⊢ᴰ Ξ → ⊢ᴰ Ξ , A ▻ A ck : ∀ {Ξ A B} → ⊢ᴰ Ξ → ⊢ᴰ Ξ , A ▻ B ▻ A cs : ∀ {Ξ A B C} → ⊢ᴰ Ξ → ⊢ᴰ Ξ , (A ▻ B ▻ C) ▻ (A ▻ B) ▻ A ▻ C nec : ∀ {Ξ A} → ∀ {`Ξ} → (d : ⊢ᴰ `Ξ , A) → ⊢ᴰ Ξ → ⊢ᴰ Ξ , [ ᴿ⌊ d ⌋ ] ⦂ A cdist : ∀ {Ξ A B} → ∀ {n₁ n₂} → {r₁ : Rep (suc n₁)} → {r₂ : Rep (suc n₂)} → ⊢ᴰ Ξ → ⊢ᴰ Ξ , [ r₁ ] ⦂ (A ▻ B) ▻ [ r₂ ] ⦂ A ▻ [ APP r₁ r₂ ] ⦂ B cup : ∀ {Ξ A} → ∀ {n} → {r : Rep (suc n)} → ⊢ᴰ Ξ → ⊢ᴰ Ξ , [ r ] ⦂ A ▻ [ BOX r ] ⦂ [ r ] ⦂ A cdown : ∀ {Ξ A} → ∀ {n} → {r : Rep (suc n)} → ⊢ᴰ Ξ → ⊢ᴰ Ξ , [ r ] ⦂ A ▻ A cpair : ∀ {Ξ A B} → ⊢ᴰ Ξ → ⊢ᴰ Ξ , A ▻ B ▻ A ∧ B cfst : ∀ {Ξ A B} → ⊢ᴰ Ξ → ⊢ᴰ Ξ , A ∧ B ▻ A csnd : ∀ {Ξ A B} → ⊢ᴰ Ξ → ⊢ᴰ Ξ , A ∧ B ▻ B unit : ∀ {Ξ} → ⊢ᴰ Ξ → ⊢ᴰ Ξ , ⊤ -- Projection from derivations to representations. ᴿ⌊_⌋ : ∀ {Ξ} → ⊢ᴰ Ξ → Rep ᴺ⌊ Ξ ⌋ ᴿ⌊ nil ⌋ = NIL ᴿ⌊ mp i j d ⌋ = MP ⁱ⌊ i ⌋ ⁱ⌊ j ⌋ ᴿ⌊ d ⌋ ᴿ⌊ ci d ⌋ = CI ᴿ⌊ d ⌋ ᴿ⌊ ck d ⌋ = CK ᴿ⌊ d ⌋ ᴿ⌊ cs d ⌋ = CS ᴿ⌊ d ⌋ ᴿ⌊ nec `d d ⌋ = NEC ᴿ⌊ `d ⌋ ᴿ⌊ d ⌋ ᴿ⌊ cdist d ⌋ = CDIST ᴿ⌊ d ⌋ ᴿ⌊ cup d ⌋ = CUP ᴿ⌊ d ⌋ ᴿ⌊ cdown d ⌋ = CDOWN ᴿ⌊ d ⌋ ᴿ⌊ cpair d ⌋ = CPAIR ᴿ⌊ d ⌋ ᴿ⌊ cfst d ⌋ = CFST ᴿ⌊ d ⌋ ᴿ⌊ csnd d ⌋ = CSND ᴿ⌊ d ⌋ ᴿ⌊ unit d ⌋ = UNIT ᴿ⌊ d ⌋ -- Anti-bug wrappers. infix 3 ⊢_ ⊢_ : Ty → Set ⊢ A = ∃ (λ Ξ → ⊢ᴰ Ξ , A) -- Concatenation of derivations. _⧺ᴰ_ : ∀ {Ξ₁ Ξ₂} → ⊢ᴰ Ξ₁ → ⊢ᴰ Ξ₂ → ⊢ᴰ Ξ₁ ⧺ Ξ₂ d₁ ⧺ᴰ nil = d₁ d₁ ⧺ᴰ mp i j d₂ = mp (mono∈ weak⊆⧺₂ i) (mono∈ weak⊆⧺₂ j) (d₁ ⧺ᴰ d₂) d₁ ⧺ᴰ ci d₂ = ci (d₁ ⧺ᴰ d₂) d₁ ⧺ᴰ ck d₂ = ck (d₁ ⧺ᴰ d₂) d₁ ⧺ᴰ cs d₂ = cs (d₁ ⧺ᴰ d₂) d₁ ⧺ᴰ nec `d d₂ = nec `d (d₁ ⧺ᴰ d₂) d₁ ⧺ᴰ cdist d₂ = cdist (d₁ ⧺ᴰ d₂) d₁ ⧺ᴰ cup d₂ = cup (d₁ ⧺ᴰ d₂) d₁ ⧺ᴰ cdown d₂ = cdown (d₁ ⧺ᴰ d₂) d₁ ⧺ᴰ cpair d₂ = cpair (d₁ ⧺ᴰ d₂) d₁ ⧺ᴰ cfst d₂ = cfst (d₁ ⧺ᴰ d₂) d₁ ⧺ᴰ csnd d₂ = csnd (d₁ ⧺ᴰ d₂) d₁ ⧺ᴰ unit d₂ = unit (d₁ ⧺ᴰ d₂) -- Modus ponens and necessitation in nested form. app : ∀ {A B} → ⊢ A ▻ B → ⊢ A → ⊢ B app {A} {B} (Ξ₁ , d₁) (Ξ₂ , d₂) = Ξ₃ , d₃ where Ξ₃ = (Ξ₂ , A) ⧺ (Ξ₁ , A ▻ B) d₃ = mp top (mono∈ (weak⊆⧺₁ (Ξ₁ , A ▻ B)) top) (d₂ ⧺ᴰ d₁) box : ∀ {A} → (t : ⊢ A) → ⊢ [ ᴿ⌊ π₂ t ⌋ ] ⦂ A box (Ξ , d) = ∅ , nec d nil
{ "alphanum_fraction": 0.4462237094, "avg_line_length": 28.6575342466, "ext": "agda", "hexsha": "50eb04987f2f1cf33592c9a1b5f8e49cd3e45300", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/hilbert-gentzen", "max_forks_repo_path": "OldBasicILP/UntypedSyntax/ClosedHilbertSequential.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/hilbert-gentzen", "max_issues_repo_path": "OldBasicILP/UntypedSyntax/ClosedHilbertSequential.agda", "max_line_length": 89, "max_stars_count": 29, "max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/hilbert-gentzen", "max_stars_repo_path": "OldBasicILP/UntypedSyntax/ClosedHilbertSequential.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z", "num_tokens": 2595, "size": 4184 }
module Nat.Sum where open import Data.Nat open import Relation.Binary open import Relation.Binary.PropositionalEquality open DecTotalOrder decTotalOrder hiding (refl) +id : (n : ℕ) → n + zero ≡ n +id zero = refl +id (suc n) = cong suc (+id n) +assoc : (m n : ℕ) → m + suc n ≡ suc (m + n) +assoc zero n = refl +assoc (suc m) n = cong suc (+assoc m n)
{ "alphanum_fraction": 0.656424581, "avg_line_length": 21.0588235294, "ext": "agda", "hexsha": "be82a3f09ef970423398bc55dd8eb9a05a83edb1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/Nat/Sum.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/Nat/Sum.agda", "max_line_length": 50, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/Nat/Sum.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 119, "size": 358 }
module CH where data ℕ : Set where zero : ℕ succ : ℕ → ℕ infixl 6 _+_ _+_ : ℕ → ℕ → ℕ zero + m = m (succ n) + m = succ (n + m) infix 4 _≡_ data _≡_ {A : Set} (x : A) : A → Set where refl : x ≡ x {- t1 : {n : ℕ} -> zero ≡ n t1 = refl -} data _==_ {A : Set} : A → A → Set where refl' : (a : A) → a == a sym : ∀ x y → x == y → y == x sym .a .a (refl' a) = refl' a
{ "alphanum_fraction": 0.4464751958, "avg_line_length": 14.7307692308, "ext": "agda", "hexsha": "d78a1fc1d3571ec426ae75ff329eaa34bbce6d8b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andrejtokarcik/agda-semantics", "max_forks_repo_path": "tests/covered/CH.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andrejtokarcik/agda-semantics", "max_issues_repo_path": "tests/covered/CH.agda", "max_line_length": 42, "max_stars_count": 3, "max_stars_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "andrejtokarcik/agda-semantics", "max_stars_repo_path": "tests/covered/CH.agda", "max_stars_repo_stars_event_max_datetime": "2018-12-06T17:24:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-10T15:33:56.000Z", "num_tokens": 183, "size": 383 }
-- This is mainly a test of the quality of error messages for -- termination problems. module TerminationLambda where postulate Id : Set → Set F : Set → Set F = λ A → F (Id A)
{ "alphanum_fraction": 0.6983240223, "avg_line_length": 17.9, "ext": "agda", "hexsha": "8d527116522044630d1a87eb57e15a0f6a170a7b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/TerminationLambda.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/TerminationLambda.agda", "max_line_length": 61, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/TerminationLambda.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 48, "size": 179 }
module UniDB.Morph.Shifts where open import UniDB.Spec -------------------------------------------------------------------------------- data Shifts : MOR where refl : {γ : Dom} → Shifts γ γ step : {γ₁ γ₂ : Dom} (ξ : Shifts γ₁ γ₂) → Shifts γ₁ (suc γ₂) skip : {γ₁ γ₂ : Dom} (ξ : Shifts γ₁ γ₂) → Shifts (suc γ₁) (suc γ₂) shiftIx : {γ₁ γ₂ : Dom} (ξ : Shifts γ₁ γ₂) (i : Ix γ₁) → Ix γ₂ shiftIx refl i = i shiftIx (step ξ) i = suc (shiftIx ξ i) shiftIx (skip ξ) zero = zero shiftIx (skip ξ) (suc i) = suc (shiftIx ξ i) -------------------------------------------------------------------------------- instance iLkShifts : {T : STX} {{vrT : Vr T}} → Lk T Shifts lk {{iLkShifts}} ξ i = vr (shiftIx ξ i) iUpShifts : Up Shifts _↑₁ {{iUpShifts}} refl = refl _↑₁ {{iUpShifts}} ξ = skip ξ _↑_ {{iUpShifts}} ξ 0 = ξ _↑_ {{iUpShifts}} ξ (suc δ⁺) = ξ ↑ δ⁺ ↑₁ ↑-zero {{iUpShifts}} ξ = refl ↑-suc {{iUpShifts}} ξ δ⁺ = refl iIdmShifts : Idm Shifts idm {{iIdmShifts}} γ = refl {γ} iWkmShifts : Wkm Shifts wkm {{iWkmShifts}} zero = idm _ wkm {{iWkmShifts}} (suc δ) = step (wkm δ) iCompShifts : Comp Shifts _⊙_ {{iCompShifts}} ξ₁ refl = ξ₁ _⊙_ {{iCompShifts}} ξ₁ (step ξ₂) = step (ξ₁ ⊙ ξ₂) _⊙_ {{iCompShifts}} refl (skip ξ₂) = skip ξ₂ _⊙_ {{iCompShifts}} (step ξ₁) (skip ξ₂) = step (ξ₁ ⊙ ξ₂) _⊙_ {{iCompShifts}} (skip ξ₁) (skip ξ₂) = skip (ξ₁ ⊙ ξ₂) -------------------------------------------------------------------------------- shiftIx-⊙ : {γ₁ γ₂ γ₃ : Dom} (ξ₁ : Shifts γ₁ γ₂) (ξ₂ : Shifts γ₂ γ₃) → (i : Ix γ₁) → shiftIx (ξ₁ ⊙ ξ₂) i ≡ shiftIx ξ₂ (shiftIx ξ₁ i) shiftIx-⊙ ξ₁ refl i = refl shiftIx-⊙ ξ₁ (step ξ₂) i = cong suc (shiftIx-⊙ ξ₁ ξ₂ i) shiftIx-⊙ refl (skip ξ₂) i = refl shiftIx-⊙ (step ξ₁) (skip ξ₂) i = cong suc (shiftIx-⊙ ξ₁ ξ₂ i) shiftIx-⊙ (skip ξ₁) (skip ξ₂) zero = refl shiftIx-⊙ (skip ξ₁) (skip ξ₂) (suc i) = cong suc (shiftIx-⊙ ξ₁ ξ₂ i) shiftIx-wkm : {γ : Dom} (δ : Dom) (i : Ix γ) → shiftIx (wkm δ) i ≡ wk δ i shiftIx-wkm zero i = refl shiftIx-wkm (suc δ) i = cong suc (shiftIx-wkm δ i) -------------------------------------------------------------------------------- instance iUpIdmShifts : UpIdm Shifts idm-↑₁ {{iUpIdmShifts}} = refl iCompIdmShifts : CompIdm Shifts ⊙-idm {{iCompIdmShifts}} ξ = refl idm-⊙ {{iCompIdmShifts}} refl = refl idm-⊙ {{iCompIdmShifts}} (step ξ) = cong step (idm-⊙ ξ) idm-⊙ {{iCompIdmShifts}} (skip ξ) = refl iUpCompShifts : UpComp Shifts ⊙-↑₁ {{iUpCompShifts}} ξ refl = refl ⊙-↑₁ {{iUpCompShifts}} refl (step ζ) = cong (skip ∘ step) (idm-⊙ ζ) ⊙-↑₁ {{iUpCompShifts}} (step ξ) (step ζ) = refl ⊙-↑₁ {{iUpCompShifts}} (skip ξ) (step ζ) = refl ⊙-↑₁ {{iUpCompShifts}} refl (skip ζ) = refl ⊙-↑₁ {{iUpCompShifts}} (step ξ) (skip ζ) = refl ⊙-↑₁ {{iUpCompShifts}} (skip ξ) (skip ζ) = refl iWkmHomShifts : WkmHom Shifts wkm-zero {{iWkmHomShifts}} = refl wkm-suc {{iWkmHomShifts}} δ = refl module _ {T : STX} {{vrT : Vr T}} where instance iLkUpShifts : {{wkT : Wk T}} {{wkVrT : WkVr T}} → LkUp T Shifts lk-↑₁-zero {{iLkUpShifts}} refl = refl lk-↑₁-zero {{iLkUpShifts}} (step ξ) = refl lk-↑₁-zero {{iLkUpShifts}} (skip ξ) = refl lk-↑₁-suc {{iLkUpShifts}} refl i = sym (wk₁-vr i) lk-↑₁-suc {{iLkUpShifts}} (step ξ) i = sym (wk₁-vr (suc (shiftIx ξ i))) lk-↑₁-suc {{iLkUpShifts}} (skip ξ) i = sym (wk₁-vr (shiftIx (skip ξ) i)) iLkRenShifts : LkRen T Shifts lk-ren {{iLkRenShifts}} ξ i = refl iLkIdmShifts : LkIdm T Shifts lk-idm {{iLkIdmShifts}} i = refl iLkWkmShifts : LkWkm T Shifts lk-wkm {{iLkWkmShifts}} δ i = cong vr (shiftIx-wkm δ i) --------------------------------------------------------------------------------
{ "alphanum_fraction": 0.508744856, "avg_line_length": 35.6697247706, "ext": "agda", "hexsha": "43f980e126ff82cc2e3193932c44ef7d04c1acab", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "skeuchel/unidb-agda", "max_forks_repo_path": "UniDB/Morph/Shifts.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "skeuchel/unidb-agda", "max_issues_repo_path": "UniDB/Morph/Shifts.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "skeuchel/unidb-agda", "max_stars_repo_path": "UniDB/Morph/Shifts.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1692, "size": 3888 }