Search is not available for this dataset
text
string
meta
dict
{-# OPTIONS --safe #-} module Cubical.Categories.Instances.Sets where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Categories.Category open import Cubical.Categories.Functor open import Cubical.Categories.NaturalTransformation open Category module _ ℓ where SET : Category (ℓ-suc ℓ) ℓ ob SET = hSet ℓ Hom[_,_] SET (A , _) (B , _) = A → B id SET x = x _⋆_ SET f g x = g (f x) ⋆IdL SET f = refl ⋆IdR SET f = refl ⋆Assoc SET f g h = refl isSetHom SET {A} {B} = isSetΠ (λ _ → snd B) private variable ℓ ℓ' : Level open Functor -- Hom functors _[-,_] : (C : Category ℓ ℓ') → (c : C .ob) → Functor (C ^op) (SET ℓ') (C [-, c ]) .F-ob x = (C [ x , c ]) , C .isSetHom (C [-, c ]) .F-hom f k = f ⋆⟨ C ⟩ k (C [-, c ]) .F-id = funExt λ _ → C .⋆IdL _ (C [-, c ]) .F-seq _ _ = funExt λ _ → C .⋆Assoc _ _ _ _[_,-] : (C : Category ℓ ℓ') → (c : C .ob)→ Functor C (SET ℓ') (C [ c ,-]) .F-ob x = (C [ c , x ]) , C .isSetHom (C [ c ,-]) .F-hom f k = k ⋆⟨ C ⟩ f (C [ c ,-]) .F-id = funExt λ _ → C .⋆IdR _ (C [ c ,-]) .F-seq _ _ = funExt λ _ → sym (C .⋆Assoc _ _ _) module _ {C : Category ℓ ℓ'} {F : Functor C (SET ℓ')} where open NatTrans -- natural transformations by pre/post composition preComp : {x y : C .ob} → (f : C [ x , y ]) → C [ x ,-] ⇒ F → C [ y ,-] ⇒ F preComp f α .N-ob c k = (α ⟦ c ⟧) (f ⋆⟨ C ⟩ k) preComp f α .N-hom {x = c} {d} k = (λ l → (α ⟦ d ⟧) (f ⋆⟨ C ⟩ (l ⋆⟨ C ⟩ k))) ≡[ i ]⟨ (λ l → (α ⟦ d ⟧) (⋆Assoc C f l k (~ i))) ⟩ (λ l → (α ⟦ d ⟧) (f ⋆⟨ C ⟩ l ⋆⟨ C ⟩ k)) ≡[ i ]⟨ (λ l → (α .N-hom k) i (f ⋆⟨ C ⟩ l)) ⟩ (λ l → (F ⟪ k ⟫) ((α ⟦ c ⟧) (f ⋆⟨ C ⟩ l))) ∎ -- properties -- TODO: move to own file open CatIso renaming (inv to cInv) open Iso Iso→CatIso : ∀ {A B : (SET ℓ) .ob} → Iso (fst A) (fst B) → CatIso (SET ℓ) A B Iso→CatIso is .mor = is .fun Iso→CatIso is .cInv = is .inv Iso→CatIso is .sec = funExt λ b → is .rightInv b -- is .rightInv Iso→CatIso is .ret = funExt λ b → is .leftInv b -- is .rightInv
{ "alphanum_fraction": 0.5151798225, "avg_line_length": 29.3287671233, "ext": "agda", "hexsha": "a76f6a3616bafcbf1027358d01ac67813eb30010", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "63c770b381039c0132c17d7913f4566b35984701", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mzeuner/cubical", "max_forks_repo_path": "Cubical/Categories/Instances/Sets.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "63c770b381039c0132c17d7913f4566b35984701", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mzeuner/cubical", "max_issues_repo_path": "Cubical/Categories/Instances/Sets.agda", "max_line_length": 69, "max_stars_count": null, "max_stars_repo_head_hexsha": "63c770b381039c0132c17d7913f4566b35984701", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mzeuner/cubical", "max_stars_repo_path": "Cubical/Categories/Instances/Sets.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 932, "size": 2141 }
------------------------------------------------------------------------ -- Another implementation of the Fibonacci sequence using tail, along -- with some other examples ------------------------------------------------------------------------ module ArbitraryChunks where open import Codata.Musical.Notation open import Codata.Musical.Stream as S using (Stream; _≈_; _∷_) open import Data.Bool open import Data.Nat open import Data.Vec as V using (Vec; []; _∷_) open import Relation.Binary.PropositionalEquality as P using (_≡_; refl; [_]) ------------------------------------------------------------------------ -- Stream programs -- StreamP m n A encodes programs generating streams in chunks of size -- (at least) m, where the first chunk has size (at least) n. infixr 5 _∷_ data StreamP (m : ℕ) : ℕ → Set → Set₁ where [_] : ∀ {A} (xs : ∞ (StreamP m m A)) → StreamP m 0 A _∷_ : ∀ {n A} (x : A) (xs : StreamP m n A) → StreamP m (suc n) A forget : ∀ {n A} (xs : StreamP m (suc n) A) → StreamP m n A tail : ∀ {n A} (xs : StreamP m (suc n) A) → StreamP m n A zipWith : ∀ {n A B C} (f : A → B → C) (xs : StreamP m n A) (ys : StreamP m n B) → StreamP m n C map : ∀ {n A B} (f : A → B) (xs : StreamP m n A) → StreamP m n B data StreamW (m : ℕ) : ℕ → Set → Set₁ where [_] : ∀ {A} (xs : StreamP m m A) → StreamW m 0 A _∷_ : ∀ {n A} (x : A) (xs : StreamW m n A) → StreamW m (suc n) A forgetW : ∀ {m n A} → StreamW (suc m) (suc n) A → StreamW (suc m) n A forgetW {n = zero} (x ∷ [ xs ]) = [ x ∷ forget xs ] forgetW {n = suc n} (x ∷ xs) = x ∷ forgetW xs tailW : ∀ {m n A} → StreamW m (suc n) A → StreamW m n A tailW (x ∷ xs) = xs zipWithW : ∀ {m n A B C} → (A → B → C) → StreamW m n A → StreamW m n B → StreamW m n C zipWithW f [ xs ] [ ys ] = [ zipWith f xs ys ] zipWithW f (x ∷ xs) (y ∷ ys) = f x y ∷ zipWithW f xs ys mapW : ∀ {m n A B} → (A → B) → StreamW m n A → StreamW m n B mapW f [ xs ] = [ map f xs ] mapW f (x ∷ xs) = f x ∷ mapW f xs whnf : ∀ {m n A} → StreamP (suc m) n A → StreamW (suc m) n A whnf [ xs ] = [ ♭ xs ] whnf (x ∷ xs) = x ∷ whnf xs whnf (forget xs) = forgetW (whnf xs) whnf (tail xs) = tailW (whnf xs) whnf (zipWith f xs ys) = zipWithW f (whnf xs) (whnf ys) whnf (map f xs) = mapW f (whnf xs) mutual ⟦_⟧W : ∀ {m n A} → StreamW (suc m) (suc n) A → Stream A ⟦ x ∷ [ xs ] ⟧W = x ∷ ♯ ⟦ xs ⟧P ⟦ x ∷ (y ∷ xs) ⟧W = x ∷ ♯ ⟦ y ∷ xs ⟧W ⟦_⟧P : ∀ {m n A} → StreamP (suc m) (suc n) A → Stream A ⟦ xs ⟧P = ⟦ whnf xs ⟧W ------------------------------------------------------------------------ -- Some examples -- The Fibonacci sequence. fib : StreamP 1 1 ℕ fib = 0 ∷ [ ♯ (1 ∷ zipWith _+_ (forget fib) (tail fib)) ] -- Some sequence which is defined using (tail ∘ tail). someSequence : StreamP 2 2 ℕ someSequence = 0 ∷ 1 ∷ [ ♯ (1 ∷ 2 ∷ zipWith _+_ (tail (tail someSequence)) (forget (forget someSequence))) ] ------------------------------------------------------------------------ -- The definition of fib is correct -- ⟦_⟧ is homomorphic with respect to zipWith/S.zipWith. mutual zipWithW-hom : ∀ {m n A B C} (_∙_ : A → B → C) (xs : StreamW (suc m) (suc n) A) ys → ⟦ zipWithW _∙_ xs ys ⟧W ≈ S.zipWith _∙_ ⟦ xs ⟧W ⟦ ys ⟧W zipWithW-hom _∙_ (x ∷ [ xs ]) (y ∷ [ ys ]) = refl ∷ ♯ zipWith-hom _∙_ xs ys zipWithW-hom _∙_ (x ∷ x′ ∷ xs) (y ∷ y′ ∷ ys) = refl ∷ ♯ zipWithW-hom _∙_ (x′ ∷ xs) (y′ ∷ ys) zipWith-hom : ∀ {m n A B C} (_∙_ : A → B → C) (xs : StreamP (suc m) (suc n) A) ys → ⟦ zipWith _∙_ xs ys ⟧P ≈ S.zipWith _∙_ ⟦ xs ⟧P ⟦ ys ⟧P zipWith-hom _∙_ xs ys = zipWithW-hom _∙_ (whnf xs) (whnf ys) -- forget is the identity on streams. open import MapIterate using (_≈P_; _∷_; _≈⟨_⟩_; _∎; soundP) mutual forgetW-lemma : ∀ {m n A} x (xs : StreamW (suc m) (suc n) A) → ⟦ x ∷ forgetW xs ⟧W ≈P x ∷ ♯ ⟦ xs ⟧W forgetW-lemma x (x′ ∷ [ xs ]) = x ∷ ♯ (_ ≈⟨ forget-lemma x′ xs ⟩ x′ ∷ ♯ (_ ∎)) forgetW-lemma x (x′ ∷ x″ ∷ xs) = x ∷ ♯ (_ ≈⟨ forgetW-lemma x′ (x″ ∷ xs) ⟩ x′ ∷ ♯ (_ ∎) ) forget-lemma : ∀ {m n A} x (xs : StreamP (suc m) (suc n) A) → ⟦ x ∷ forget xs ⟧P ≈P x ∷ ♯ ⟦ xs ⟧P forget-lemma x xs with whnf xs | P.inspect whnf xs ... | y ∷ y′ ∷ ys | [ eq ] = x ∷ ♯ helper eq where helper : whnf xs ≡ y ∷ y′ ∷ ys → ⟦ y ∷ forgetW (y′ ∷ ys) ⟧W ≈P ⟦ xs ⟧P helper eq rewrite eq = _ ≈⟨ forgetW-lemma y (y′ ∷ ys) ⟩ y ∷ ♯ (_ ∎) ... | y ∷ [ ys ] | [ eq ] = x ∷ ♯ helper eq where helper : whnf xs ≡ y ∷ [ ys ] → ⟦ y ∷ forget ys ⟧P ≈P ⟦ xs ⟧P helper eq rewrite eq = _ ≈⟨ forget-lemma y ys ⟩ y ∷ ♯ (_ ∎) -- The stream ⟦ fib ⟧P satisfies its intended defining equation. open import Relation.Binary module SS {A : Set} = Setoid (S.setoid A) fib-correct : ⟦ fib ⟧P ≈ 0 ∷ ♯ (1 ∷ ♯ S.zipWith _+_ ⟦ fib ⟧P (S.tail ⟦ fib ⟧P)) fib-correct = refl ∷ ♯ (refl ∷ ♯ SS.trans (zipWith-hom _+_ (0 ∷ forget fib′) fib′) (S.zipWith-cong _+_ (SS.trans (soundP (forget-lemma 0 fib′)) (refl ∷ ♯ SS.refl)) SS.refl)) where fib′ = 1 ∷ zipWith _+_ (forget fib) (tail fib) ------------------------------------------------------------------------ -- map₂ -- A variant of S.map which processes streams in chunks of size 2. map₂ : {A B : Set} → (A → B) → Stream A → Stream B map₂ f (x ∷ xs) with ♭ xs map₂ f (x ∷ xs) | y ∷ ys = f x ∷ ♯ (f y ∷ ♯ map₂ f (♭ ys)) -- This function is extensionally equal to S.map. map≈map₂ : ∀ {A B} → (f : A → B) → (xs : Stream A) → S.map f xs ≈ map₂ f xs map≈map₂ f (x ∷ xs) with ♭ xs | P.inspect ♭ xs map≈map₂ f (x ∷ xs) | y ∷ ys | [ eq ] = refl ∷ ♯ helper eq where map-f-y∷ys = _ helper : ∀ {xs} → xs ≡ y ∷ ys → S.map f xs ≈ map-f-y∷ys helper refl = refl ∷ ♯ map≈map₂ f (♭ ys) -- However, as explained in "Beating the Productivity Checker Using -- Embedded Languages", the two functions are not interchangeable -- (assuming that pattern matching is evaluated strictly). Let us see -- what happens when we use the language above. We can define the -- stream of natural numbers using chunks of size 1 and 2. nats : StreamP 1 1 ℕ nats = 0 ∷ [ ♯ map suc nats ] nats₂ : StreamP 2 2 ℕ nats₂ = 0 ∷ 1 ∷ [ ♯ map suc nats₂ ] -- The first use of map corresponds to S.map, and the second to map₂. -- If we try to use map₂ in the first definition, then we get a type -- error. The following code is not accepted. -- nats : StreamP 2 1 ℕ -- nats = 0 ∷ [ ♯ map suc nats ]
{ "alphanum_fraction": 0.5082990711, "avg_line_length": 35.6902173913, "ext": "agda", "hexsha": "abde59e26b1ddb908c0edc1b1730182832057ea4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/codata", "max_forks_repo_path": "ArbitraryChunks.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/codata", "max_issues_repo_path": "ArbitraryChunks.agda", "max_line_length": 90, "max_stars_count": 1, "max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/codata", "max_stars_repo_path": "ArbitraryChunks.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z", "num_tokens": 2559, "size": 6567 }
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Terms that operate on changes with the Nehemiah plugin. ------------------------------------------------------------------------ module Nehemiah.Change.Term where open import Data.Integer open import Nehemiah.Syntax.Type public open import Nehemiah.Syntax.Term public open import Nehemiah.Change.Type public import Parametric.Change.Term Const ΔBase as ChangeTerm apply-base : ChangeTerm.ApplyStructure apply-base {base-int} = absV 2 (λ Δx x → add x Δx) apply-base {base-bag} = absV 2 (λ Δx x → union x Δx) diff-base : ChangeTerm.DiffStructure diff-base {base-int} = absV 2 (λ x y → add x (minus y)) diff-base {base-bag} = absV 2 (λ x y → union x (negate y)) nil-base : ChangeTerm.NilStructure nil-base {base-int} = absV 1 (λ x → intlit (+ 0)) nil-base {base-bag} = absV 1 (λ x → empty) open ChangeTerm.Structure apply-base diff-base nil-base public
{ "alphanum_fraction": 0.6220145379, "avg_line_length": 32.1, "ext": "agda", "hexsha": "b2e349402ba7dd270f13d2eebd576c32ccaae7e8", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "inc-lc/ilc-agda", "max_forks_repo_path": "Nehemiah/Change/Term.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z", "max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "inc-lc/ilc-agda", "max_issues_repo_path": "Nehemiah/Change/Term.agda", "max_line_length": 72, "max_stars_count": 10, "max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "inc-lc/ilc-agda", "max_stars_repo_path": "Nehemiah/Change/Term.agda", "max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z", "num_tokens": 243, "size": 963 }
module Numeral.Finite.Equiv where open import Numeral.Finite open import Relator.Equals.Proofs.Equiv open import Structure.Setoid instance 𝕟-equiv : ∀{n} → Equiv(𝕟(n)) 𝕟-equiv = [≡]-equiv
{ "alphanum_fraction": 0.7422680412, "avg_line_length": 19.4, "ext": "agda", "hexsha": "cf8306e7a70bab4dff8187b21b96f9cb0ab65193", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Finite/Equiv.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Finite/Equiv.agda", "max_line_length": 39, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Finite/Equiv.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 65, "size": 194 }
{-# OPTIONS --without-K --safe #-} open import Algebra open import Bundles open import Structures module Properties.RingWithoutOne {r₁ r₂} (R : RingWithoutOne r₁ r₂) where open RingWithoutOne R import Algebra.Properties.AbelianGroup as AbelianGroupProperties open import Function.Base using (_$_) open import Relation.Binary.Reasoning.Setoid setoid
{ "alphanum_fraction": 0.8016997167, "avg_line_length": 25.2142857143, "ext": "agda", "hexsha": "fa818697c1d4a13782c413a5586f2ddf5acfac3a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "72030f78934877ad67bf4e36e74e43845cabbf55", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Akshobhya1234/Agda-Algebra", "max_forks_repo_path": "src/Properties/RingWithoutOne.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "72030f78934877ad67bf4e36e74e43845cabbf55", "max_issues_repo_issues_event_max_datetime": "2022-01-31T18:19:52.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-02T20:50:34.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Akshobhya1234/Agda-Algebra", "max_issues_repo_path": "src/Properties/RingWithoutOne.agda", "max_line_length": 73, "max_stars_count": null, "max_stars_repo_head_hexsha": "72030f78934877ad67bf4e36e74e43845cabbf55", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Akshobhya1234/Agda-Algebra", "max_stars_repo_path": "src/Properties/RingWithoutOne.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 85, "size": 353 }
open import Agda.Builtin.List open import Agda.Builtin.Reflection open import Agda.Builtin.Unit postulate A B : Set @0 a : A tac : Term → TC ⊤ tac = unify (def (quote a) []) postulate f : {@0 @(tactic tac) x : A} → B test : B test = f
{ "alphanum_fraction": 0.6382113821, "avg_line_length": 13.6666666667, "ext": "agda", "hexsha": "3ed277e427be8af328df7646c38bf4aaa050ee2e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b5b3b1657556f720a7310cb7744edb1fac71eaf4", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "Seanpm2001-Agda-lang/agda", "max_forks_repo_path": "Issue5789.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "b5b3b1657556f720a7310cb7744edb1fac71eaf4", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "Seanpm2001-Agda-lang/agda", "max_issues_repo_path": "Issue5789.agda", "max_line_length": 35, "max_stars_count": 1, "max_stars_repo_head_hexsha": "6b13364d36eeb60d8ec15eaf8effe23c73401900", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "sseefried/agda", "max_stars_repo_path": "Issue5789.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-05T00:25:14.000Z", "max_stars_repo_stars_event_min_datetime": "2022-03-05T00:25:14.000Z", "num_tokens": 89, "size": 246 }
module StateSizedIO.GUI.WxBindingsFFI where open import Data.Bool.Base open import Data.Integer open import Data.Nat open import Data.Product hiding (map) open import NativeIO {-# FOREIGN GHC import qualified GHC.Conc.Sync #-} {-# FOREIGN GHC import qualified Control.Concurrent #-} {-# FOREIGN GHC import qualified Data.IORef #-} {-# FOREIGN GHC import qualified Graphics.UI.WX #-} {-# FOREIGN GHC import qualified Graphics.UI.WX.Timer #-} {-# FOREIGN GHC import qualified Graphics.UI.WXCore #-} {-# FOREIGN GHC import qualified Graphics.UI.WXCore.Events #-} postulate Frame : Set {-# COMPILE GHC Frame = type (Graphics.UI.WX.Frame ()) #-} postulate Button : Set {-# COMPILE GHC Button = type (Graphics.UI.WX.Button ()) #-} postulate TextCtrl : Set {-# COMPILE GHC TextCtrl = type (Graphics.UI.WX.TextCtrl ()) #-} postulate Timer : Set {-# COMPILE GHC Timer = type Graphics.UI.WX.Timer.Timer #-} postulate nativeNewFrame : String -> NativeIO Frame {-# COMPILE GHC nativeNewFrame = (\s -> Graphics.UI.WX.frame [Graphics.UI.WX.text Graphics.UI.WX.:= "Window"]) #-} -- -- Frame Layout -- {-# FOREIGN GHC setChildrenLayout' :: Graphics.UI.WX.Frame () -> Integer -> Integer -> Integer -> Integer -> IO () setChildrenLayout' win rowWidth' marginWidth' vspa' hspa' = do let rowWidth = fromIntegral rowWidth' let marginWidth = fromIntegral marginWidth' let vspa = fromIntegral vspa' let hspa = fromIntegral hspa' let list2Matrix n xs = map (\(x ,y)-> (take n) $ (drop (n*x)) y) $ zip [0..] $ replicate (div (length xs) n) xs blist <- Graphics.UI.WXCore.windowChildren win putStrLn ("Layout of frame, got " ++ (show $ length $ blist) ++ "children") let blist' = list2Matrix rowWidth blist let blist'' = (map . map) Graphics.UI.WX.widget blist' Graphics.UI.WX.set win [ Graphics.UI.WX.layout Graphics.UI.WX.:= Graphics.UI.WX.margin marginWidth $ Graphics.UI.WX.dynamic $ Graphics.UI.WX.grid vspa hspa $ blist''] #-} postulate nativeSetChildredLayout : Frame → ℕ → ℕ → ℕ → ℕ → NativeIO Unit {-# COMPILE GHC nativeSetChildredLayout = setChildrenLayout' #-} postulate nativeDoThreadDelay : NativeIO Bool {-# COMPILE GHC nativeDoThreadDelay = ((Control.Concurrent.threadDelay 100) >>= (\x -> return True)) #-} postulate nativeSetIdle : Frame -> NativeIO Bool -> NativeIO Unit {-# COMPILE GHC nativeSetIdle = (\fra prog -> Graphics.UI.WX.set fra [Graphics.UI.WX.on Graphics.UI.WX.idle Graphics.UI.WX.:= prog]) #-} nativeCreateFrame : NativeIO Frame nativeCreateFrame = nativeNewFrame "Start Text" native>>= (\f -> nativeSetIdle f nativeDoThreadDelay native>>= (\x -> nativeReturn f)) postulate nativeMakeButton : Frame → String → NativeIO Button {-# COMPILE GHC nativeMakeButton = (\myFrame str -> Graphics.UI.WX.button myFrame [Graphics.UI.WX.text Graphics.UI.WX.:= (Data.Text.unpack str)]) #-} postulate nativeMakeTextCtrl : Frame → String → NativeIO TextCtrl {-# COMPILE GHC nativeMakeTextCtrl = (\myFrame str -> Graphics.UI.WX.entry myFrame [Graphics.UI.WX.text Graphics.UI.WX.:= (Data.Text.unpack str)]) #-} postulate nativeAddButton : Frame → Button → NativeIO Unit {-# COMPILE GHC nativeAddButton = (\myFrame bt -> Graphics.UI.WX.set myFrame [Graphics.UI.WX.layout Graphics.UI.WX.:= Graphics.UI.WX.minsize (Graphics.UI.WX.sz 500 400) $ Graphics.UI.WX.column 1 [Graphics.UI.WX.hfill (Graphics.UI.WX.widget bt)]]) #-} postulate WxColor : Set {-# COMPILE GHC WxColor = type Graphics.UI.WX.Color #-} postulate nativeSetColorButton : Button → WxColor → NativeIO Unit {-# COMPILE GHC nativeSetColorButton = (\ bt co -> Graphics.UI.WX.set bt [ Graphics.UI.WX.color Graphics.UI.WX.:= co] ) #-} postulate nativeSetColorTextCtrl : TextCtrl → WxColor → NativeIO Unit {-# COMPILE GHC nativeSetColorTextCtrl = (\ txt co -> Graphics.UI.WX.set txt [ Graphics.UI.WX.color Graphics.UI.WX.:= co] ) #-} postulate rgb : ℕ → ℕ → ℕ → WxColor {-# COMPILE GHC rgb = (\ r b g -> Graphics.UI.WX.rgb r g b) #-} postulate TVar : Set → Set {-# COMPILE GHC TVar = type Control.Concurrent.STM.TVar.TVar #-} postulate MVar : Set → Set {-# COMPILE GHC MVar = type Control.Concurrent.MVar #-} Var : Set → Set Var = MVar postulate nativeNewVar : {A : Set} → A → NativeIO (Var A) nativeTakeVar : {A : Set} → Var A → NativeIO A nativePutVar : {A : Set} → Var A → A → NativeIO Unit {-# COMPILE GHC nativeNewVar = (\ _ -> Control.Concurrent.newMVar ) #-} {-# COMPILE GHC nativeTakeVar = (\ _ -> Control.Concurrent.takeMVar ) #-} {-# COMPILE GHC nativePutVar = (\ _ -> Control.Concurrent.putMVar ) #-} -- Fire Custom Event -- postulate nativeFireCustomEvent : Frame → NativeIO Unit {-# COMPILE GHC nativeFireCustomEvent = (\f -> Graphics.UI.WXCore.commandEventCreate Graphics.UI.WXCore.wxEVT_COMMAND_MENU_SELECTED (Graphics.UI.WXCore.wxID_HIGHEST+1) >>= (\ev -> fmap (\x -> ()) (Graphics.UI.WXCore.evtHandlerProcessEvent f ev))) #-} postulate nativeRegisterCustomEvent : Frame → NativeIO Unit → NativeIO Unit {-# COMPILE GHC nativeRegisterCustomEvent = (\win prog -> Graphics.UI.WXCore.evtHandlerOnMenuCommand win (Graphics.UI.WXCore.wxID_HIGHEST+1) (putStrLn " >>> CUSTOM EVENT FIRED <<<" >> Control.Concurrent.forkIO prog >> return ())) #-} {- for debugging postulate nativeRegisterDummyCustomEvent : Frame → NativeIO Unit {-# COMPILE GHC nativeRegisterDummyCustomEvent = (\win -> Graphics.UI.WXCore.evtHandlerOnMenuCommand win (Graphics.UI.WXCore.wxID_HIGHEST+1) (putStrLn " >>> CUSTOM EVENT FIRED <<<")) #-} -} postulate nativeSetButtonHandler : Button → NativeIO Unit → NativeIO Unit {-# COMPILE GHC nativeSetButtonHandler = (\ bt prog -> Graphics.UI.WX.set bt [Graphics.UI.WX.on Graphics.UI.WX.command Graphics.UI.WX.:= prog ]) #-} postulate prog : NativeIO Unit {-# COMPILE GHC prog = (putStrLn "timer goes off!") #-} postulate nativeSetTimer : Frame → ℤ → NativeIO Unit → NativeIO Timer {-# COMPILE GHC nativeSetTimer = (\ fra x prog -> Graphics.UI.WX.timer fra [ Graphics.UI.WX.interval Graphics.UI.WX.:= (fromInteger x) , Graphics.UI.WX.on Graphics.UI.WX.command Graphics.UI.WX.:= prog ]) #-} postulate ThreadId : Set {-# COMPILE GHC ThreadId = type GHC.Conc.Sync.ThreadId #-} postulate forkIO : NativeIO Unit → NativeIO ThreadId {-# COMPILE GHC forkIO = GHC.Conc.Sync.forkIO #-} postulate Bitmap : Set {-# COMPILE GHC Bitmap = type (Graphics.UI.WXCore.Bitmap ()) #-} postulate bitmap : String → Bitmap {-# COMPILE GHC bitmap = (\s -> Graphics.UI.WX.bitmap (Data.Text.unpack s)) #-} postulate DC : Set {-# COMPILE GHC DC = type (Graphics.UI.WXCore.DC ()) #-} postulate Rect : Set {-# COMPILE GHC Rect = type Graphics.UI.WXCore.Rect #-} postulate nativeSetClickRight : Frame → NativeIO Unit → NativeIO Unit {-# COMPILE GHC nativeSetClickRight = (\ fra prog -> Graphics.UI.WX.set fra [Graphics.UI.WX.on Graphics.UI.WX.clickRight Graphics.UI.WX.:= (\x -> prog)]) #-} postulate nativeSetOnPaint : Frame → (DC → Rect → NativeIO Unit) → NativeIO Unit {-# COMPILE GHC nativeSetOnPaint = (\ fra prog -> Graphics.UI.WX.set fra [Graphics.UI.WX.on Graphics.UI.WX.paint Graphics.UI.WX.:= prog]) #-} postulate nativeRepaint : Frame → NativeIO Unit {-# COMPILE GHC nativeRepaint = Graphics.UI.WX.repaint #-} Point : Set Point = (ℤ × ℤ) postulate NativePoint : Set {-# COMPILE GHC NativePoint = type Graphics.UI.WXCore.Point #-} postulate nativePoint : ℤ → ℤ → NativePoint {-# COMPILE GHC nativePoint = (\ x y -> Graphics.UI.WXCore.point (fromInteger x) (fromInteger y)) #-} postulate nativeDrawBitmapNativePoint : DC → Bitmap → NativePoint → Bool → NativeIO Unit {-# COMPILE GHC nativeDrawBitmapNativePoint = (\ d bi p bo -> Graphics.UI.WX.drawBitmap d bi p bo [] ) #-} nativeDrawBitmap : DC → Bitmap → Point → Bool → NativeIO Unit nativeDrawBitmap d bi (x , y) bo = nativeDrawBitmapNativePoint d bi (nativePoint x y) bo {-# FOREIGN GHC import Graphics.UI.WXCore.WxcClassesAL #-} postulate nativeBitmapGetWidth : Bitmap → NativeIO ℤ {-# COMPILE GHC nativeBitmapGetWidth = (\ b -> fmap fromIntegral (Graphics.UI.WXCore.WxcClassesAL.bitmapGetWidth b)) #-} postulate start : NativeIO Unit → NativeIO Unit {-# COMPILE GHC start = Graphics.UI.WX.start #-} -- -- Note: we add the "key pressed" event to a button -- and not to a frame, because of a bug in wxHaskell that prevents -- adding a key pressed event to a frame (at least on linux plattforms). -- postulate Key : Set showKey : Key -> String nativeSetKeyHandler : Button → (Key → NativeIO Unit) → NativeIO Unit {-# COMPILE GHC Key = type Graphics.UI.WXCore.Events.Key #-} {-# COMPILE GHC showKey = (\ k -> (Data.Text.pack (Graphics.UI.WXCore.Events.showKey k))) #-} {-# COMPILE GHC nativeSetKeyHandler = (\bt prog -> Graphics.UI.WX.set bt [Graphics.UI.WX.on Graphics.UI.WX.anyKey Graphics.UI.WX.:= prog]) #-} -- -- Delete Objects -- -- note: can be solved with instance arguments in the future postulate objectDeleteFrame : Frame → NativeIO Unit {-# COMPILE GHC objectDeleteFrame = (\f -> Graphics.UI.WX.objectDelete f) #-} postulate nativeDeleteButton : Button → NativeIO Unit {-# COMPILE GHC nativeDeleteButton = (\f -> Graphics.UI.WX.objectDelete f) #-} postulate nativeDeleteTextCtrl : TextCtrl → NativeIO Unit {-# COMPILE GHC nativeDeleteTextCtrl = (\f -> Graphics.UI.WX.objectDelete f) #-}
{ "alphanum_fraction": 0.7065758166, "avg_line_length": 37.2822580645, "ext": "agda", "hexsha": "8b16b8ac024729d3b450378d5f98d0334945af97", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "stephanadls/state-dependent-gui", "max_forks_repo_path": "src/StateSizedIO/GUI/WxBindingsFFI.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "stephanadls/state-dependent-gui", "max_issues_repo_path": "src/StateSizedIO/GUI/WxBindingsFFI.agda", "max_line_length": 250, "max_stars_count": 2, "max_stars_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "stephanadls/state-dependent-gui", "max_stars_repo_path": "src/StateSizedIO/GUI/WxBindingsFFI.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-31T17:20:59.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-31T15:37:39.000Z", "num_tokens": 2461, "size": 9246 }
{-# OPTIONS --type-in-type #-} module BialgebraSorting where import Relation.Binary.PropositionalEquality open Relation.Binary.PropositionalEquality open ≡-Reasoning open import Function open import Data.Product using (Σ; _,_; proj₁; proj₂) record Functor (F : Set → Set) : Set where field map : {A B : Set} → (A → B) → F A → F B map-∘ : {A B C : Set} {f : A → B} {g : B → C} → map g ∘ map f ≡ map (g ∘ f) map-id : {A : Set} → map (id {A = A}) ≡ id postulate extensionality : {S : Set}{T : S -> Set} {f g : (x : S) -> T x} -> ((x : S) -> f x ≡ g x) -> f ≡ g record InitialAlgebra {F : Set → Set} (F-Functor : Functor F) : Set where open Functor F-Functor field Mu : Set In : F Mu → Mu inᵒ : Mu → F Mu In-inᵒ : In ∘ inᵒ ≡ id inᵒ-In : inᵒ ∘ In ≡ id fold : {A : Set} (f : F A → A) → Mu → A fold-∘ : {A : Set} (f : F A → A) → (x : F Mu) → fold f (In x) ≡ f (map (fold f) x) fold-unique : {A : Set} {f : F A → A} → (h : Mu → A) → ((y : F Mu) → h (In y) ≡ f (map h y)) → (x : Mu) → h x ≡ fold f x record TerminalCoalgebra {F : Set → Set} (F-Functor : Functor F) : Set where open Functor F-Functor field Nu : Set Out : Nu → F Nu outᵒ : F Nu → Nu Out-outᵒ : Out ∘ outᵒ ≡ id outᵒ-Out : outᵒ ∘ Out ≡ id unfold : {A : Set} → (A → F A) → A → Nu unfold-∘ : {A : Set} (f : A → F A) → (x : A) → Out (unfold f x) ≡ map (unfold f) (f x) unfold-unique : {A : Set} {f : A → F A} → (h : A → Nu) → ((y : A) → Out (unfold f y) ≡ map (unfold f) (f y)) → (x : A) → h x ≡ unfold f x module Example {F : Set → Set} {F-Functor : Functor F} (alg : InitialAlgebra F-Functor) where open Functor F-Functor open InitialAlgebra alg {-# TERMINATING #-} in-is-in : inᵒ ≡ fold (map In) in-is-in = extensionality $ \ x → let f = map In in begin inᵒ x ≡⟨⟩ id (inᵒ x) ≡⟨ cong (_$ inᵒ x) $ sym map-id ⟩ map id (inᵒ x) ≡⟨ cong (\p → map p (inᵒ x)) $ sym In-inᵒ ⟩ map (In ∘ inᵒ) (inᵒ x) ≡⟨ cong (_$ inᵒ x) $ sym map-∘ ⟩ map In (map inᵒ (inᵒ x)) ≡⟨ cong (\p → map In ((map p) (inᵒ x))) in-is-in ⟩ map In (map (fold (map In)) (inᵒ x)) ≡⟨⟩ map In (map (fold f) (inᵒ x)) ≡⟨⟩ f (map (fold f) (inᵒ x)) ≡⟨ sym $ fold-∘ f (inᵒ x) ⟩ fold f (In (inᵒ x)) ≡⟨ cong (\p → fold f (p x)) In-inᵒ ⟩ fold f x ≡⟨⟩ fold (map In) x ∎ module Paper {F : Set → Set} {F-Functor : Functor F} (alg : InitialAlgebra F-Functor) (coalg : TerminalCoalgebra F-Functor) where open Functor F-Functor public open InitialAlgebra alg public open TerminalCoalgebra coalg public {-# TERMINATING #-} downcast : Nu → Mu downcast = In ∘ map downcast ∘ Out upcast : Mu → Nu upcast = fold outᵒ data List (A : Set) (K : Set) : Set where Nil : List A K Cons : A → K → List A K data Ordering : Set where LT : Ordering EQ : Ordering GT : Ordering record Ord (A : Set) : Set where field compare : A → A → Ordering data Bool : Set where false : Bool true : Bool _&&_ : Bool → Bool → Bool false && _ = false true && b = b not : Bool → Bool not false = true not true = false _==_ : Ordering → Ordering → Bool _==_ EQ EQ = true _==_ LT LT = true _==_ GT GT = true _==_ _ _ = false _!=_ : Ordering → Ordering → Bool _!=_ a b = not (a == b) data Maybe (A : Set) : Set where just : A → Maybe A nothing : Maybe A module Paper₂ {A : Set} (Ord-A : Ord A) (List-Functor : Functor (List A)) (alg : InitialAlgebra List-Functor) (coalg : TerminalCoalgebra List-Functor) where open Paper alg coalg open Ord Ord-A public is-sorted : Nu → Bool is-sorted = proj₂ ∘ fold (\ { Nil → nothing , true ; (Cons a (nothing , x)) → just a , x ; (Cons a (just a' , x)) → just a' , (x && (compare a a' != GT)) } ) ∘ downcast -- SortedList : {A : Set} → Ord A → Set -- SortedList ord = Σ Nu is-sorted open Functor record Bialgebra {F G : Set → Set} {F-functor : Functor F} {G-functor : Functor G} (f : {X : Set} → F (G X) → G (F X)) : Set where field a : {X : Set} → F X → X c : {X : Set} → X → G X bialgebra-proof : {X : Set} → c {X} ∘ a ≡ map G-functor a ∘ f ∘ map F-functor c bubbleSort : Bialgebra ? bubbleSort = ?
{ "alphanum_fraction": 0.5002180549, "avg_line_length": 24.3936170213, "ext": "agda", "hexsha": "ba2efd44d7a9e94039f303df8de777b4881a9fec", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-02-17T08:46:57.000Z", "max_forks_repo_forks_event_min_datetime": "2022-02-17T08:46:57.000Z", "max_forks_repo_head_hexsha": "cf6faf7103acd54c67f3464b1968387a98dd8fa2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "dominiquedevriese/reviews", "max_forks_repo_path": "agda-src/BialgebraSorting.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "cf6faf7103acd54c67f3464b1968387a98dd8fa2", "max_issues_repo_issues_event_max_datetime": "2022-02-17T16:51:24.000Z", "max_issues_repo_issues_event_min_datetime": "2022-02-17T09:10:00.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "dominiquedevriese/reviews", "max_issues_repo_path": "agda-src/BialgebraSorting.agda", "max_line_length": 94, "max_stars_count": 7, "max_stars_repo_head_hexsha": "cf6faf7103acd54c67f3464b1968387a98dd8fa2", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "dominiquedevriese/reviews", "max_stars_repo_path": "agda-src/BialgebraSorting.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-22T15:07:19.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-08T00:57:08.000Z", "num_tokens": 1757, "size": 4586 }
------------------------------------------------------------------------------ -- Testing the use of various options using only an OPTIONS pragma ------------------------------------------------------------------------------ {-# OPTIONS --exact-split --no-sized-types --no-universe-polymorphism --without-K #-} -- (24 January 2014) From the Agda implementation, the above list of -- options is saved in the interface file as an one element list, -- where the element is a list of the three options. module OptionsLList where postulate D : Set ∃ : (A : D → Set) → Set postulate foo : (A : D → Set) → ∃ A → ∃ A {-# ATP prove foo #-}
{ "alphanum_fraction": 0.4837278107, "avg_line_length": 29.3913043478, "ext": "agda", "hexsha": "6dd4bf4318dfa204c43bd2e0117bb292eef8f2fc", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z", "max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/apia", "max_forks_repo_path": "test/Succeed/non-fol-theorems/OptionsLList.agda", "max_issues_count": 121, "max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/apia", "max_issues_repo_path": "test/Succeed/non-fol-theorems/OptionsLList.agda", "max_line_length": 78, "max_stars_count": 10, "max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/apia", "max_stars_repo_path": "test/Succeed/non-fol-theorems/OptionsLList.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z", "num_tokens": 144, "size": 676 }
------------------------------------------------------------------------ -- The All predicate, defined using _∈_ ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Equality module List.All {c⁺} (eq : ∀ {a p} → Equality-with-J a p c⁺) where open Derived-definitions-and-properties eq open import Logical-equivalence using (_⇔_) open import Prelude open import Bag-equivalence eq open import Bijection eq as Bijection using (_↔_) import Equality.Groupoid eq as EG open import Function-universe eq as F hiding (id; _∘_) open import Groupoid eq open import H-level eq open import H-level.Closure eq open import List eq as L using (_++_) open import Monad eq hiding (map) open import Vec.Function eq as Vec using (Vec) private variable a b ℓ p q : Level A B : Type a P : A → Type p Q : A → Type q k x y : A n : ℕ xs ys : List A -- All P xs means that P holds for every element of xs. All : {A : Type a} → (A → Type p) → List A → Type (a ⊔ p) All P xs = ∀ x → x ∈ xs → P x -- The type xs ⊆ ys means that every element of xs is also an element -- of ys. infix 4 _⊆_ _⊆_ : {A : Type a} → List A → List A → Type a xs ⊆ ys = All (_∈ ys) xs -- The _⊆_ relation matches _∼[ implication ]_. ⊆↔∼[implication] : xs ⊆ ys ↔ xs ∼[ implication ] ys ⊆↔∼[implication] {xs = xs} {ys = ys} = xs ⊆ ys ↔⟨⟩ All (_∈ ys) xs ↔⟨⟩ (∀ x → x ∈ xs → x ∈ ys) ↔⟨⟩ xs ∼[ implication ] ys □ -- Some rearrangement lemmas. All-[] : ∀ {k} {A : Type a} (P : A → Type p) → Extensionality? k a (a ⊔ p) → All P [] ↝[ k ] ⊤ All-[] {a = a} {k = k} {A} P ext = All P [] ↔⟨⟩ (∀ y → y ∈ [] → P y) ↔⟨⟩ (∀ y → ⊥ → P y) ↝⟨ (∀-cong ext λ _ → Π⊥↔⊤ (lower-extensionality? k a a ext)) ⟩ (A → ⊤) ↔⟨ →-right-zero ⟩□ ⊤ □ module _ {k} {A : Type a} {P : A → Type p} (ext : Extensionality? k a (a ⊔ p)) where private ext′ : Extensionality? k a p ext′ = lower-extensionality? k a a ext All-∷ : All P (x ∷ xs) ↝[ k ] P x × All P xs All-∷ {x = x} {xs = xs} = All P (x ∷ xs) ↔⟨⟩ (∀ y → y ∈ x ∷ xs → P y) ↔⟨⟩ (∀ y → y ≡ x ⊎ y ∈ xs → P y) ↝⟨ ∀-cong ext (λ _ → Π⊎↔Π×Π ext′) ⟩ (∀ y → (y ≡ x → P y) × (y ∈ xs → P y)) ↔⟨ ΠΣ-comm ⟩ (∀ y → y ≡ x → P y) × (∀ y → y ∈ xs → P y) ↝⟨ (×-cong₁ λ _ → ∀-cong ext λ _ → →-cong₁ ext′ ≡-comm) ⟩ (∀ y → x ≡ y → P y) × (∀ y → y ∈ xs → P y) ↝⟨ inverse-ext? (λ ext → ∀-intro _ ext) ext ×-cong F.id ⟩□ P x × All P xs □ All-++ : All P (xs ++ ys) ↝[ k ] All P xs × All P ys All-++ {xs = xs} {ys = ys} = All P (xs ++ ys) ↔⟨⟩ (∀ x → x ∈ xs ++ ys → P x) ↝⟨ (∀-cong ext λ _ → →-cong₁ ext′ (Any-++ _ _ _)) ⟩ (∀ x → x ∈ xs ⊎ x ∈ ys → P x) ↝⟨ (∀-cong ext λ _ → Π⊎↔Π×Π ext′) ⟩ (∀ x → (x ∈ xs → P x) × (x ∈ ys → P x)) ↔⟨ ΠΣ-comm ⟩ (∀ x → x ∈ xs → P x) × (∀ x → x ∈ ys → P x) ↔⟨⟩ All P xs × All P ys □ All-concat : All P (L.concat xs) ↝[ k ] All (All P) xs All-concat {xs = xss} = (∀ x → x ∈ L.concat xss → P x) ↝⟨ ∀-cong ext (λ _ → →-cong₁ ext′ (Any-concat _ _)) ⟩ (∀ x → Any (x ∈_) xss → P x) ↝⟨ ∀-cong ext (λ _ → →-cong₁ ext′ (Any-∈ _ _)) ⟩ (∀ x → (∃ λ xs → x ∈ xs × xs ∈ xss) → P x) ↝⟨ ∀-cong ext (λ _ → from-bijection currying) ⟩ (∀ x → ∀ xs → x ∈ xs × xs ∈ xss → P x) ↔⟨ Π-comm ⟩ (∀ xs → ∀ x → x ∈ xs × xs ∈ xss → P x) ↝⟨ ∀-cong ext (λ _ → ∀-cong ext λ _ → from-bijection currying) ⟩ (∀ xs → ∀ x → x ∈ xs → xs ∈ xss → P x) ↝⟨ ∀-cong ext (λ _ → ∀-cong ext λ _ → from-bijection Π-comm) ⟩ (∀ xs → ∀ x → xs ∈ xss → x ∈ xs → P x) ↝⟨ ∀-cong ext (λ _ → from-bijection Π-comm) ⟩□ (∀ xs → xs ∈ xss → ∀ x → x ∈ xs → P x) □ All-map : ∀ {k} {A : Type a} {B : Type b} {P : B → Type p} {f : A → B} {xs : List A} → (ext : Extensionality? k (a ⊔ b) (a ⊔ b ⊔ p)) → All P (L.map f xs) ↝[ k ] All (P ∘ f) xs All-map {a = a} {b = b} {p = p} {k = k} {P = P} {f} {xs} ext = (∀ x → x ∈ L.map f xs → P x) ↝⟨ (∀-cong ext₁ λ _ → →-cong₁ ext₂ (Any-map _ _ _)) ⟩ (∀ x → Any (λ y → x ≡ f y) xs → P x) ↝⟨ (∀-cong ext₃ λ _ → →-cong₁ ext₄ (Any-∈ _ _)) ⟩ (∀ x → (∃ λ y → x ≡ f y × y ∈ xs) → P x) ↝⟨ (∀-cong ext₃ λ _ → from-bijection currying) ⟩ (∀ x → ∀ y → x ≡ f y × y ∈ xs → P x) ↝⟨ (∀-cong ext₃ λ _ → ∀-cong ext₅ λ _ → from-bijection currying) ⟩ (∀ x → ∀ y → x ≡ f y → y ∈ xs → P x) ↔⟨ Π-comm ⟩ (∀ x → ∀ y → y ≡ f x → x ∈ xs → P y) ↝⟨ (∀-cong ext₅ λ _ → ∀-cong ext₃ λ _ → →-cong₁ ext₆ ≡-comm) ⟩ (∀ x → ∀ y → f x ≡ y → x ∈ xs → P y) ↝⟨ (∀-cong ext₅ λ _ → inverse-ext? (λ ext → ∀-intro _ ext) ext₃) ⟩□ (∀ x → x ∈ xs → P (f x)) □ where ext₁ = lower-extensionality? k a a ext ext₂ = lower-extensionality? k a (a ⊔ b) ext ext₃ = lower-extensionality? k a lzero ext ext₄ = lower-extensionality? k lzero (a ⊔ b) ext ext₅ = lower-extensionality? k b lzero ext ext₆ = lower-extensionality? k a b ext All->>= : ∀ {k} {A B : Type ℓ} {P : B → Type p} {f : A → List B} {xs : List A} → (ext : Extensionality? k ℓ (ℓ ⊔ p)) → All P (xs >>= f) ↝[ k ] All (All P ∘ f) xs All->>= {P = P} {f = f} {xs = xs} ext = All P (L.concat (L.map f xs)) ↝⟨ All-concat ext ⟩ All (All P) (L.map f xs) ↝⟨ All-map ext ⟩□ All (All P ∘ f) xs □ All-const : {A : Type a} {B : Type b} {xs : List B} → Extensionality? k b a → All (const A) xs ↝[ k ] Vec A (L.length xs) All-const {A = A} {xs = xs} ext = (∀ x → x ∈ xs → A) ↔⟨ inverse currying ⟩ (∃ (_∈ xs) → A) ↝⟨ →-cong₁ ext (Fin-length _) ⟩□ (Fin (L.length xs) → A) □ private -- The following lemma that relates All-const and Fin-length holds -- by definition. All-const-Fin-length : ∀ {xs : List A} {bs : All (const B) xs} {i} → All-const _ bs i ≡ uncurry bs (_↔_.from (Fin-length xs) i) All-const-Fin-length = refl _ All-const-replicate : {A : Type a} → Extensionality? k lzero a → All (const A) (L.replicate n tt) ↝[ k ] Vec A n All-const-replicate {n = n} {A = A} ext = All (const A) (L.replicate n tt) ↝⟨ All-const ext ⟩ Vec A (L.length (L.replicate n tt)) ↝⟨ →-cong₁ ext $ ≡⇒↝ bijection $ cong Fin (L.length-replicate _) ⟩□ Vec A n □ All-Σ : {A : Type a} {P : A → Type p} {Q : ∀ x → P x → Type q} {xs : List A} → Extensionality? k a (a ⊔ p ⊔ q) → All (λ x → Σ (P x) (Q x)) xs ↝[ k ] ∃ λ (ps : All P xs) → ∀ x (x∈xs : x ∈ xs) → Q x (ps x x∈xs) All-Σ {P = P} {Q = Q} {xs = xs} ext = All (λ x → Σ (P x) (Q x)) xs ↔⟨⟩ (∀ x → x ∈ xs → Σ (P x) (Q x)) ↝⟨ (∀-cong ext λ _ → from-isomorphism ΠΣ-comm) ⟩ (∀ x → ∃ λ (ps : x ∈ xs → P x) → (x∈xs : x ∈ xs) → Q x (ps x∈xs)) ↔⟨ ΠΣ-comm ⟩ (∃ λ (ps : ∀ x → x ∈ xs → P x) → ∀ x (x∈xs : x ∈ xs) → Q x (ps x x∈xs)) ↔⟨⟩ (∃ λ (ps : All P xs) → ∀ x (x∈xs : x ∈ xs) → Q x (ps x x∈xs)) □ -- Some abbreviations. nil : All P [] nil {P = P} = _⇔_.from (All-[] P _) _ cons : P x → All P xs → All P (x ∷ xs) cons = curry (_⇔_.from (All-∷ _)) head : All P (x ∷ xs) → P x head = proj₁ ∘ _⇔_.to (All-∷ _) tail : All P (x ∷ xs) → All P xs tail = proj₂ ∘ _⇔_.to (All-∷ _) append : All P xs → All P ys → All P (xs ++ ys) append = curry (_⇔_.from (All-++ _)) -- All preserves h-levels (assuming extensionality). H-level-All : {A : Type a} {P : A → Type p} → Extensionality a (a ⊔ p) → ∀ n → (∀ x → H-level n (P x)) → (∀ xs → H-level n (All P xs)) H-level-All {a = a} ext n h xs = Π-closure ext n λ _ → Π-closure (lower-extensionality a a ext) n λ _ → h _ -- Some lemmas related to append. append-Any-++-inj₁ : ∀ {xs ys} {ps : All P xs} {qs : All P ys} (x∈xs : x ∈ xs) → append ps qs _ (_↔_.from (Any-++ _ _ _) (inj₁ x∈xs)) ≡ ps _ x∈xs append-Any-++-inj₁ {P = P} {x = x} {ps = ps} {qs} x∈xs = append ps qs _ (_↔_.from (Any-++ _ _ _) (inj₁ x∈xs)) ≡⟨⟩ [ ps _ , qs _ ] (_↔_.to (Any-++ _ _ _) (_↔_.from (Any-++ _ _ _) (inj₁ x∈xs))) ≡⟨ cong [ ps _ , qs _ ] (_↔_.right-inverse-of (Any-++ _ _ _) _) ⟩ [_,_] {C = λ _ → P x} (ps _) (qs _) (inj₁ x∈xs) ≡⟨⟩ ps _ x∈xs ∎ append-Any-++-inj₂ : ∀ xs {ys} {ps : All P xs} {qs : All P ys} {y∈ys : y ∈ ys} → append ps qs _ (_↔_.from (Any-++ _ xs _) (inj₂ y∈ys)) ≡ qs _ y∈ys append-Any-++-inj₂ {P = P} {y = y} xs {ps = ps} {qs} {y∈ys} = append ps qs _ (_↔_.from (Any-++ _ xs _) (inj₂ y∈ys)) ≡⟨⟩ [ ps _ , qs _ ] (_↔_.to (Any-++ _ _ _) (_↔_.from (Any-++ _ xs _) (inj₂ y∈ys))) ≡⟨ cong [ ps _ , qs _ ] (_↔_.right-inverse-of (Any-++ _ _ _) _) ⟩ [_,_] {C = λ _ → P y} (ps _) (qs _) (inj₂ y∈ys) ≡⟨⟩ qs _ y∈ys ∎ -- Some congruence lemmas. All-cong : ∀ {k} {A : Type a} {P : A → Type p} {Q : A → Type q} {xs ys} → Extensionality? ⌊ k ⌋-sym a (a ⊔ p ⊔ q) → (∀ x → P x ↝[ ⌊ k ⌋-sym ] Q x) → xs ∼[ ⌊ k ⌋-sym ] ys → All P xs ↝[ ⌊ k ⌋-sym ] All Q ys All-cong {a = a} {k = k} {P = P} {Q} {xs} {ys} ext P↝Q xs∼ys = All P xs ↔⟨⟩ (∀ x → x ∈ xs → P x) ↝⟨ ∀-cong ext (λ _ → →-cong (lower-extensionality? ⌊ k ⌋-sym a a ext) (xs∼ys _) (P↝Q _)) ⟩ (∀ x → x ∈ ys → Q x) ↔⟨⟩ All Q ys □ All-cong-→ : (∀ x → P x → Q x) → ys ∼[ implication ] xs → All P xs → All Q ys All-cong-→ {P = P} {Q = Q} {ys = ys} {xs = xs} P→Q ys∼xs = All P xs ↔⟨⟩ (∀ x → x ∈ xs → P x) ↝⟨ ∀-cong _ (λ _ → →-cong-→ (ys∼xs _) (P→Q _)) ⟩ (∀ x → x ∈ ys → Q x) ↔⟨⟩ All Q ys □ map : (∀ x → P x → Q x) → ys ⊆ xs → All P xs → All Q ys map P→Q ys∼xs = All-cong-→ P→Q ys∼xs map₁ : (∀ x → P x → Q x) → All P xs → All Q xs map₁ P→Q = map P→Q (λ _ → id) map₂ : ys ⊆ xs → All P xs → All P ys map₂ ys⊆xs = map (λ _ → id) ys⊆xs private map₁-∘ : ∀ {P : A → Type p} {xs} {f : ∀ x → P x → Q x} {ps : All P xs} → map₁ f ps ≡ λ _ → f _ ∘ ps _ map₁-∘ = refl _ map₂-∘ : ∀ {xs ys} {ys⊆xs : ys ⊆ xs} {ps : All P xs} → map₂ ys⊆xs ps ≡ λ _ → ps _ ∘ ys⊆xs _ map₂-∘ = refl _ -- Some properties that hold by definition. map₂∘map₂ : ∀ {xs ys zs} {xs⊆ys : xs ⊆ ys} {ys⊆zs : ys ⊆ zs} {ps : All P zs} → map₂ xs⊆ys (map₂ ys⊆zs ps) ≡ map₂ (map₁ ys⊆zs xs⊆ys) ps map₂∘map₂ = refl _ map₂-inj₂-∘ : ∀ {xs ys} {f : ys ⊆ xs} {p : P x} {ps : All P xs} → map₂ (λ _ → inj₂ ∘ f _) (cons p ps) ≡ map₂ f ps map₂-inj₂-∘ = refl _ map₂-id : ∀ {xs} {ps : All P xs} → map₂ (λ _ → id) ps ≡ ps map₂-id = refl _ map₂-inj₂ : ∀ {xs} {p : P x} {ps : All P xs} → map₂ (λ _ → inj₂) (cons p ps) ≡ ps map₂-inj₂ = refl _ -- Some rearrangement lemmas for map₂. map₂-⊎-map-id : {A : Type a} {P : A → Type p} → Extensionality a (a ⊔ p) → ∀ {x xs ys} {f : ys ⊆ xs} {p : P x} {ps : All P xs} → map₂ (λ _ → ⊎-map id (f _)) (cons p ps) ≡ cons p (map₂ f ps) map₂-⊎-map-id {a = a} ext {f = f} {p} {ps} = apply-ext ext λ _ → apply-ext (lower-extensionality lzero a ext) [ (λ _ → refl _) , (λ _ → refl _) ] map₂-⊎-map-id-inj₂ : {A : Type a} {P : A → Type p} → Extensionality a (a ⊔ p) → ∀ {x y xs} {p : P x} {q : P y} {ps : All P xs} → map₂ (λ _ → ⊎-map id inj₂) (cons p (cons q ps)) ≡ cons p ps map₂-⊎-map-id-inj₂ ext {p = p} {q} {ps} = map₂ (λ _ → ⊎-map id inj₂) (cons p (cons q ps)) ≡⟨ map₂-⊎-map-id ext ⟩ cons p (map₂ (λ _ → inj₂) (cons q ps)) ≡⟨⟩ cons p ps ∎ map₂-++-cong : {A : Type a} {P : A → Type p} → Extensionality a (a ⊔ p) → ∀ xs₁ {ys₁ xs₂ ys₂} {ps : All P xs₂} {qs : All P ys₂} {f : xs₁ ⊆ xs₂} {g : ys₁ ⊆ ys₂} → map₂ (++-cong f g) (append ps qs) ≡ append (map₂ f ps) (map₂ g qs) map₂-++-cong {a = a} ext _ {ps = ps} {qs} {f} {g} = apply-ext ext λ _ → apply-ext (lower-extensionality lzero a ext) λ x∈ → let lemma : ∀ x → [ ps _ , qs _ ] (⊎-map (f _) (g _) x) ≡ [ ps _ ∘ f _ , qs _ ∘ g _ ] x lemma = [ (λ _ → refl _) , (λ _ → refl _) ] in [ ps _ , qs _ ] (_↔_.to (Any-++ _ _ _) (_↔_.from (Any-++ _ _ _) (⊎-map (f _) (g _) (_↔_.to (Any-++ _ _ _) x∈)))) ≡⟨ cong [ ps _ , qs _ ] (_↔_.right-inverse-of (Any-++ _ _ _) _) ⟩ [ ps _ , qs _ ] (⊎-map (f _) (g _) (_↔_.to (Any-++ _ _ _) x∈)) ≡⟨ lemma (_↔_.to (Any-++ _ _ _) x∈) ⟩∎ [ ps _ ∘ f _ , qs _ ∘ g _ ] (_↔_.to (Any-++ _ _ _) x∈) ∎
{ "alphanum_fraction": 0.440830721, "avg_line_length": 35.5431754875, "ext": "agda", "hexsha": "3c34c445c3bc8e5700dd45dd8261bf7018da4323", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/List/All.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/List/All.agda", "max_line_length": 138, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/List/All.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 5704, "size": 12760 }
open import Common.Prelude test : Nat → Nat test = _Common.Prelude.+ 2
{ "alphanum_fraction": 0.7222222222, "avg_line_length": 14.4, "ext": "agda", "hexsha": "a1f4d2f1fa29b4385c7178576122f8828abdcdba", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Sections-5.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Sections-5.agda", "max_line_length": 26, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Sections-5.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 22, "size": 72 }
module UniDB.Core where open import Data.Nat public using (ℕ; suc; zero) open import Data.Fin public using (Fin; suc; zero) open import Function public using (id; _∘_) open import Relation.Binary.PropositionalEquality as PropEq public using (_≡_; _≢_; refl; sym; cong; cong₂; trans; subst; module ≡-Reasoning) open ≡-Reasoning public Inj : {A B : Set} (f : A → B) → Set Inj {A} f = {x y : A} → f x ≡ f y → x ≡ y -------------------------------------------------------------------------------- Dom : Set Dom = ℕ infixl 10 _∪_ _∪_ : Dom → Dom → Dom γ ∪ zero = γ γ ∪ suc δ = suc (γ ∪ δ) ∪-assoc : (γ₁ γ₂ γ₃ : Dom) → γ₁ ∪ (γ₂ ∪ γ₃) ≡ (γ₁ ∪ γ₂) ∪ γ₃ ∪-assoc γ₁ γ₂ zero = refl ∪-assoc γ₁ γ₂ (suc γ₃) = cong suc (∪-assoc γ₁ γ₂ γ₃) -------------------------------------------------------------------------------- STX : Set₁ STX = Dom → Set MOR : Set₁ MOR = Dom → Dom → Set -------------------------------------------------------------------------------- Ix : STX Ix = Fin
{ "alphanum_fraction": 0.4573170732, "avg_line_length": 24, "ext": "agda", "hexsha": "8225c6b924bbca26ee1d1e1388d6ccd8e5f066a3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "skeuchel/unidb-agda", "max_forks_repo_path": "UniDB/Core.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "skeuchel/unidb-agda", "max_issues_repo_path": "UniDB/Core.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "skeuchel/unidb-agda", "max_stars_repo_path": "UniDB/Core.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 325, "size": 984 }
module hcio where -- https://github.com/alhassy/AgdaCheatSheet#interacting-with-the-real-world-compilation-haskell-and-io open import Agda.Builtin.Coinduction using (♯_) open import Agda.Builtin.Unit using (⊤) open import Codata.Musical.Colist as CL using (take) open import Codata.Musical.Costring using (Costring) open import Data.String as S using (String; fromList) open import Data.Vec.Bounded as B using (toList) open import Function using (const; _∘_) open import IO as IO using () import IO.Primitive as Primitive infixr 1 _>>=_ _>>_ _>>=_ : ∀ {ℓ} {α β : Set ℓ} → IO.IO α → (α → IO.IO β) → IO.IO β this >>= f = ♯ this IO.>>= λ x → ♯ f x _>>_ : ∀{ℓ} {α β : Set ℓ} → IO.IO α → IO.IO β → IO.IO β x >> y = x >>= const y postulate getLine∞ : Primitive.IO Costring {-# FOREIGN GHC toColist :: [a] -> MAlonzo.Code.Codata.Musical.Colist.AgdaColist a toColist [] = MAlonzo.Code.Codata.Musical.Colist.Nil toColist (x : xs) = MAlonzo.Code.Codata.Musical.Colist.Cons x (MAlonzo.RTE.Sharp (toColist xs)) #-} {-# FOREIGN GHC import Prelude as Haskell #-} -- rename for clarity {-# COMPILE GHC getLine∞ = fmap toColist Haskell.getLine #-} getLine : IO.IO String getLine = IO.lift (getLine∞ Primitive.>>= (Primitive.return ∘ S.fromList ∘ B.toList ∘ CL.take 100))
{ "alphanum_fraction": 0.6435354273, "avg_line_length": 34.225, "ext": "agda", "hexsha": "02e0811d08bab08af98cd95f7bc7ab5b34182ee3", "lang": "Agda", "max_forks_count": 8, "max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z", "max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_forks_repo_path": "agda/examples-that-run/xxx/src-agda/hcio.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_issues_repo_path": "agda/examples-that-run/xxx/src-agda/hcio.agda", "max_line_length": 103, "max_stars_count": 36, "max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_stars_repo_path": "agda/examples-that-run/xxx/src-agda/hcio.agda", "max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z", "num_tokens": 431, "size": 1369 }
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Homotopy.Group.SuspensionMap where open import Cubical.Homotopy.Group.Base open import Cubical.Homotopy.Loopspace open import Cubical.Homotopy.Freudenthal open import Cubical.Homotopy.Connected open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed open import Cubical.Foundations.Pointed.Homogeneous open import Cubical.Foundations.HLevels open import Cubical.Foundations.GroupoidLaws renaming (assoc to ∙assoc) open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Function open import Cubical.Foundations.Path open import Cubical.Foundations.Equiv open import Cubical.Foundations.Transport open import Cubical.Functions.Morphism open import Cubical.HITs.Sn open import Cubical.HITs.Susp renaming (toSusp to σ ; toSuspPointed to σ∙) open import Cubical.HITs.S1 open import Cubical.Data.Bool hiding (_≟_) open import Cubical.Data.Sigma open import Cubical.Data.Nat open import Cubical.Data.Nat.Order open import Cubical.Algebra.Group open import Cubical.Algebra.Group.Morphisms open import Cubical.Algebra.Group.MorphismProperties open import Cubical.Algebra.Semigroup open import Cubical.Algebra.Monoid open import Cubical.HITs.PropositionalTruncation renaming (rec to pRec ; rec2 to pRec2 ; elim to pElim) open import Cubical.HITs.SetTruncation renaming (rec to sRec ; rec2 to sRec2 ; elim to sElim ; elim2 to sElim2 ; elim3 to sElim3 ; map to sMap) open import Cubical.HITs.Truncation renaming (rec to trRec) open Iso open IsGroup open IsSemigroup open IsMonoid open GroupStr {- This file concerns the suspension maps suspMapΩ : πₙA → πₙ₊₁ΣA and suspMap : π'ₙA → π'ₙ₊₁ΣA For instance, we want to transport freudenthal for suspMapΩ to suspMap by establishing a dependent path between the two functions. This gives, in particular, surjectivity of πₙ₊₁(Sⁿ) → πₙ₊₂(Sⁿ⁺¹) for n ≥ 2. -} -- Definition of the suspension functions suspMap : ∀ {ℓ} {A : Pointed ℓ}(n : ℕ) → S₊∙ (suc n) →∙ A → S₊∙ (suc (suc n)) →∙ Susp∙ (typ A) fst (suspMap n f) north = north fst (suspMap n f) south = north fst (suspMap {A = A} n f) (merid a i) = (merid (fst f a) ∙ sym (merid (pt A))) i snd (suspMap n f) = refl suspMapΩ∙ : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → ((Ω^ n) A) →∙ ((Ω^ (suc n)) (Susp∙ (typ A))) fst (suspMapΩ∙ {A = A} zero) a = merid a ∙ sym (merid (pt A)) snd (suspMapΩ∙ {A = A} zero) = rCancel (merid (pt A)) suspMapΩ∙ {A = A} (suc n) = Ω→ (suspMapΩ∙ {A = A} n) suspMapΩ : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → typ ((Ω^ n) A) → typ ((Ω^ (suc n)) (Susp∙ (typ A))) suspMapΩ {A = A} n = suspMapΩ∙ {A = A} n .fst suspMapπ' : ∀ {ℓ} (n : ℕ) {A : Pointed ℓ} → π' (suc n) A → π' (suc (suc n)) (Susp∙ (typ A)) suspMapπ' n = sMap (suspMap n) suspMapπ : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → π n A → π (suc n) (Susp∙ (typ A)) suspMapπ n = sMap (suspMapΩ n) {- suspMapΩ Ωⁿ A --------------------> Ω¹⁺ⁿ (Susp A) | | | = | ≃ flipΩ | Ωⁿ→ σ v Ωⁿ A -------------------> Ωⁿ (Ω (Susp A)) | | | | | ≃ Ω→SphereMap | ≃ Ω→SphereMap | | v post∘∙ . σ v (Sⁿ →∙ A) -------------- > (Sⁿ →∙ Ω (Susp A)) | | | = | ≃ botᵣ | | v suspMap v (Sⁿ →∙ A) -------------- > (Sⁿ⁺¹→∙ Susp A) -} botᵣ : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → (S₊∙ n →∙ Ω (Susp∙ (typ A))) → S₊∙ (suc n) →∙ Susp∙ (typ A) fst (botᵣ zero (f , p)) base = north fst (botᵣ zero (f , p)) (loop i) = f false i snd (botᵣ zero (f , p)) = refl fst (botᵣ (suc n) (f , p)) north = north fst (botᵣ (suc n) (f , p)) south = north fst (botᵣ (suc n) (f , p)) (merid a i) = f a i snd (botᵣ (suc n) (f , p)) = refl ----- Top square filler ----- top□ : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → Ω^→ (suc n) (σ∙ A) ≡ (((Iso.fun (flipΩIso (suc n))) , flipΩrefl n) ∘∙ suspMapΩ∙ (suc n)) top□ {A = A} zero = →∙Homogeneous≡ (isHomogeneousPath _ _) (funExt λ p → sym (transportRefl _)) top□ {A = A} (suc n) = cong Ω→ (top□ {A = A} n) ∙ →∙Homogeneous≡ (isHomogeneousPath _ _) (funExt λ x → Ω→∘ (fun (flipΩIso (suc n)) , flipΩrefl n) (suspMapΩ∙ (suc n)) x) ----- Middle square filler ----- module _ {ℓ ℓ'} (A : Pointed ℓ) (B : Pointed ℓ') (homogB : isHomogeneous B) (f : A →∙ B) where nat = isNaturalΩSphereMap A B homogB f mutual isNatural-Ω→SphereMap : ∀ n p → f ∘∙ Ω→SphereMap n p ≡ Ω→SphereMap n (Ω^→ n f .fst p) isNatural-Ω→SphereMap 0 p = →∙Homogeneous≡ homogB (funExt λ {true → f .snd; false → refl}) isNatural-Ω→SphereMap (n@(suc n')) p = cong (f ∘∙_) (Ω→SphereMap-split n' p) ∙ nat n' (Ω→SphereMapSplit₁ n' p) ∙ cong (ΩSphereMap n') inner ∙ sym (Ω→SphereMap-split n' (Ω^→ n f .fst p)) where inner : Ω→ (post∘∙ (S₊∙ n') f) .fst (Ω→ (Ω→SphereMap∙ n') .fst p) ≡ Ω→ (Ω→SphereMap∙ n') .fst (Ω^→ (suc n') f .fst p) inner = sym (Ω→∘ (post∘∙ (S₊∙ n') f) (Ω→SphereMap∙ n') p) ∙ cong (λ g∙ → Ω→ g∙ .fst p) (isNatural-Ω→SphereMap∙ n') ∙ Ω→∘ (Ω→SphereMap∙ n') (Ω^→ n' f) p isNatural-Ω→SphereMap∙ : ∀ n → post∘∙ (S₊∙ n) f ∘∙ (Ω→SphereMap∙ n) ≡ (Ω→SphereMap∙ n {A = B} ∘∙ Ω^→ n f) isNatural-Ω→SphereMap∙ n = →∙Homogeneous≡ (isHomogeneous→∙ homogB) (funExt (isNatural-Ω→SphereMap n)) mid□ : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → (p : typ ((Ω^ (suc n)) A)) → fst (post∘∙ (S₊∙ (suc n)) (σ∙ A)) (Ω→SphereMap (suc n) p) ≡ Ω→SphereMap (suc n) (fst (Ω^→ (suc n) (σ∙ A)) p) mid□ {A = A} n p = funExt⁻ (cong fst (isNatural-Ω→SphereMap∙ A (Ω (Susp∙ (typ A))) (isHomogeneousPath _ _) (σ∙ A) (suc n))) p ----- Bottom square filler ----- bot□ : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) (f : (S₊∙ (suc n) →∙ A)) → suspMap n f ≡ botᵣ {A = A} (suc n) (post∘∙ (S₊∙ (suc n)) (σ∙ A) .fst f) bot□ {A = A} n f = ΣPathP ((funExt (λ { north → refl ; south → refl ; (merid a i) → refl})) , refl) -- We prove that botᵣ is an equivalence botᵣ⁻' : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → S₊∙ (suc n) →∙ Susp∙ (typ A) → (S₊ n → typ (Ω (Susp∙ (typ A)))) botᵣ⁻' zero f false = sym (snd f) ∙∙ cong (fst f) loop ∙∙ snd f botᵣ⁻' zero f true = refl botᵣ⁻' (suc n) f x = sym (snd f) ∙∙ cong (fst f) (merid x ∙ sym (merid (ptSn (suc n)))) ∙∙ snd f botᵣ⁻ : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → S₊∙ (suc n) →∙ Susp∙ (typ A) → (S₊∙ n →∙ Ω (Susp∙ (typ A))) fst (botᵣ⁻ {A = A} n f) = botᵣ⁻' {A = A} n f snd (botᵣ⁻ {A = A} zero f) = refl snd (botᵣ⁻ {A = A} (suc n) f) = cong (sym (snd f) ∙∙_∙∙ snd f) (cong (cong (fst f)) (rCancel (merid (ptSn _)))) ∙ ∙∙lCancel (snd f) botᵣIso : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → Iso (S₊∙ n →∙ Ω (Susp∙ (typ A))) (S₊∙ (suc n) →∙ Susp∙ (typ A)) botᵣIso {A = A} n = (iso (botᵣ {A = A} n) (botᵣ⁻ {A = A} n) (h n) (retr n)) where h : (n : ℕ) → section (botᵣ {A = A} n) (botᵣ⁻ {A = A} n) h zero (f , p) = ΣPathP (funExt (λ { base → sym p ; (loop i) j → doubleCompPath-filler (sym p) (cong f loop) p (~ j) i}) , λ i j → p (~ i ∨ j)) h (suc n) (f , p) = ΣPathP (funExt (λ { north → sym p ; south → sym p ∙ cong f (merid (ptSn _)) ; (merid a i) j → hcomp (λ k → λ { (i = i0) → p (~ j ∧ k) ; (i = i1) → compPath-filler' (sym p) (cong f (merid (ptSn _))) k j ; (j = i1) → f (merid a i)}) (f (compPath-filler (merid a) (sym (merid (ptSn _))) (~ j) i))}) , λ i j → p (~ i ∨ j)) retr : (n : ℕ) → retract (botᵣ {A = A} n) (botᵣ⁻ {A = A} n) retr zero (f , p) = ΣPathP ((funExt (λ { false → sym (rUnit _) ; true → sym p})) , λ i j → p (~ i ∨ j)) retr (suc n) (f , p) = →∙Homogeneous≡ (isHomogeneousPath _ _) (funExt λ x → (λ i → rUnit (cong-∙ (fst ((botᵣ {A = A}(suc n) (f , p)))) (merid x) (sym (merid (ptSn (suc n)))) i) (~ i)) ∙∙ (λ i → f x ∙ sym (p i) ) ∙∙ sym (rUnit (f x))) -- Right hand composite iso IsoΩSphereMapᵣ : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → Iso (typ ((Ω^ (suc n)) (Susp∙ (typ A)))) ((S₊∙ (suc n) →∙ Susp∙ (typ A))) IsoΩSphereMapᵣ {A = A} n = compIso (flipΩIso n) (compIso (IsoΩSphereMap n) (botᵣIso {A = A} n)) -- The dependent path between the two suspension functions suspMapPathP : ∀ {ℓ} (A : Pointed ℓ) (n : ℕ) → (typ ((Ω^ (suc n)) A) → (typ ((Ω^ (suc (suc n))) (Susp∙ (typ A))))) ≡ ((S₊∙ (suc n) →∙ A) → S₊∙ (suc (suc n)) →∙ (Susp∙ (typ A))) suspMapPathP A n i = isoToPath (IsoΩSphereMap {A = A} (suc n)) i → isoToPath (IsoΩSphereMapᵣ {A = A} (suc n)) i Ωσ→suspMap : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → PathP (λ i → suspMapPathP A n i) (suspMapΩ (suc n)) (suspMap n) Ωσ→suspMap {A = A} n = toPathP (funExt (λ p → (λ i → transportRefl (Iso.fun (IsoΩSphereMapᵣ {A = A} (suc n)) (suspMapΩ {A = A} (suc n) (Iso.inv (IsoΩSphereMap {A = A} (suc n)) (transportRefl p i)))) i) ∙∙ cong (botᵣ {A = A} (suc n)) (cong (Ω→SphereMap (suc n) {A = Ω (Susp∙ (typ A)) }) ((sym (funExt⁻ (cong fst (top□ {A = A} n)) (invEq (Ω→SphereMap (suc n) , isEquiv-Ω→SphereMap (suc n)) p)))) ∙ (sym (mid□ n (invEq (Ω→SphereMap (suc n) , isEquiv-Ω→SphereMap (suc n)) p)) ∙ cong (σ∙ (fst A , snd A) ∘∙_) (secEq (Ω→SphereMap (suc n) , isEquiv-Ω→SphereMap (suc n)) p))) ∙∙ sym (bot□ n p))) -- Connectedness of suspFunΩ (Freudenthal) suspMapΩ-connected : ∀ {ℓ} (n : HLevel) (m : ℕ) {A : Pointed ℓ} (connA : isConnected (suc (suc n)) (typ A)) → isConnectedFun ((suc n + suc n) ∸ m) (suspMapΩ {A = A} m) suspMapΩ-connected n zero {A = A} connA = isConnectedσ n connA suspMapΩ-connected n (suc m) {A = A} connA with ((n + suc n) ≟ m) ... | (lt p) = subst (λ x → isConnectedFun x (suspMapΩ {A = A} (suc m))) (sym (n∸m≡0 _ m (<-weaken p))) λ b → tt* , (λ {tt* → refl}) ... | (eq q) = subst (λ x → isConnectedFun x (suspMapΩ {A = A} (suc m))) (sym (n∸n≡0 m) ∙ cong (_∸ m) (sym q)) λ b → tt* , (λ {tt* → refl}) ... | (gt p) = isConnectedCong' (n + suc n ∸ m) (suspMapΩ {A = A} m) (subst (λ x → isConnectedFun x (suspMapΩ {A = A} m)) (sym (suc∸-fst (n + suc n) m p)) (suspMapΩ-connected n m connA)) (snd (suspMapΩ∙ m)) -- We prove that the right iso is structure preserving private invComp : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → S₊∙ n →∙ Ω (Susp∙ (typ A)) → S₊∙ n →∙ Ω (Susp∙ (typ A)) → S₊∙ n →∙ Ω (Susp∙ (typ A)) fst (invComp n f g) x = (fst f x) ∙ (fst g x) snd (invComp n f g) = cong₂ _∙_ (snd f) (snd g) ∙ sym (rUnit refl) -- We prove that it agrees with ∙Π ∙Π≡invComp : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → (f g : S₊∙ (suc n) →∙ Ω (Susp∙ (typ A))) → ∙Π f g ≡ invComp {A = A} (suc n) f g ∙Π≡invComp zero f g = →∙Homogeneous≡ (isHomogeneousPath _ _) (funExt (λ { base → rUnit refl ∙ sym (cong (_∙ fst g (snd (S₊∙ 1))) (snd f) ∙ cong (refl ∙_) (snd g)) ; (loop i) j → hcomp (λ k → λ { (i = i0) → (rUnit refl ∙ sym (cong (_∙ fst g (snd (S₊∙ 1))) (snd f) ∙ cong (refl ∙_) (snd g))) j ; (i = i1) → (rUnit refl ∙ sym (cong (_∙ fst g (snd (S₊∙ 1))) (snd f) ∙ cong (refl ∙_) (snd g))) j ; (j = i0) → ((sym (snd f) ∙∙ cong (fst f) loop ∙∙ snd f) ∙ (sym (snd g) ∙∙ cong (fst g) loop ∙∙ snd g)) i ; (j = i1) → cong₂Funct _∙_ (cong (fst f) loop) (cong (fst g) loop) (~ k) i}) (hcomp (λ k → λ { (i = i0) → (rUnit refl ∙ sym (cong (_∙ snd g (~ k)) (λ j → snd f (j ∨ ~ k)) ∙ cong (refl ∙_) (λ j → snd g (j ∨ ~ k)))) j ; (i = i1) → (rUnit refl ∙ sym (cong (_∙ snd g (~ k)) (λ j → snd f (j ∨ ~ k)) ∙ cong (refl ∙_) (λ j → snd g (j ∨ ~ k)))) j ; (j = i0) → ((sym (snd f) ∙∙ cong (fst f) loop ∙∙ snd f) ∙ (sym (snd g) ∙∙ cong (fst g) loop ∙∙ snd g)) i ; (j = i1) → (cong (_∙ snd g (~ k)) (doubleCompPath-filler (sym (snd f)) (cong (fst f) loop) (snd f) (~ k)) ∙ cong ((snd f (~ k)) ∙_) (doubleCompPath-filler (sym (snd g)) (cong (fst g) loop) (snd g) (~ k))) i}) (hcomp (λ k → λ { (i = i0) → (rUnit (rUnit refl) ∙ cong (rUnit refl ∙_) (cong sym (rUnit refl))) k j ; (i = i1) → (rUnit (rUnit refl) ∙ cong (rUnit refl ∙_) (cong sym (rUnit refl))) k j ; (j = i0) → ((sym (snd f) ∙∙ cong (fst f) loop ∙∙ snd f) ∙ (sym (snd g) ∙∙ cong (fst g) loop ∙∙ snd g)) i ; (j = i1) → (cong (_∙ refl) ((sym (snd f) ∙∙ cong (fst f) loop ∙∙ snd f)) ∙ cong (refl ∙_) (sym (snd g) ∙∙ cong (fst g) loop ∙∙ snd g)) i}) ((cong (λ x → rUnit x j) (sym (snd f) ∙∙ cong (fst f) loop ∙∙ snd f) ∙ cong (λ x → lUnit x j) (sym (snd g) ∙∙ cong (fst g) loop ∙∙ snd g)) i)))})) ∙Π≡invComp {A = A} (suc n) f g = →∙Homogeneous≡ (isHomogeneousPath _ _) (funExt λ { north → rUnit refl ∙ sym (cong (fst f north ∙_) (snd g) ∙ cong (_∙ refl) (snd f)) ; south → rUnit refl ∙ sym (cong₂ _∙_ (cong (fst f) (sym (merid (ptSn _))) ∙ snd f) (cong (fst g) (sym (merid (ptSn _))) ∙ snd g)) ; (merid a i) j → p a i j}) where module _ (a : S₊ (suc n)) where f-n = fst f north g-n = fst g north cong-f = (cong (fst f) (merid a ∙ sym (merid (ptSn _)))) cong-g = (cong (fst g) (merid a ∙ sym (merid (ptSn _)))) c-f = sym (snd f) ∙∙ cong-f ∙∙ snd f c-g = sym (snd g) ∙∙ cong-g ∙∙ snd g p : I → I → fst (Ω (Susp∙ (typ A))) p i j = hcomp (λ k → λ { (i = i0) → (rUnit (λ _ → snd (Susp∙ (typ A))) ∙ sym ((cong (fst f north ∙_) (snd g) ∙ cong (_∙ refl) (snd f)))) j ; (i = i1) → (rUnit refl ∙ sym (cong₂ _∙_ (compPath-filler' (cong (fst f) (sym (merid (ptSn _)))) (snd f) k) (compPath-filler' (cong (fst g) (sym (merid (ptSn _)))) (snd g) k))) j ; (j = i0) → (c-f ∙ c-g) i ; (j = i1) → fst f (compPath-filler (merid a) (sym (merid (ptSn _))) (~ k) i) ∙ fst g (compPath-filler (merid a) (sym (merid (ptSn _))) (~ k) i)}) (hcomp (λ k → λ {(i = i0) → (rUnit (λ _ → snd (Susp∙ (typ A))) ∙ sym ((cong (fst f north ∙_) (snd g) ∙ cong (_∙ refl) (snd f)))) j ; (i = i1) → (rUnit refl ∙ sym (cong₂ _∙_ (snd f) (snd g))) j ; (j = i0) → (c-f ∙ c-g) i ; (j = i1) → cong₂Funct _∙_ cong-f cong-g (~ k) i}) (hcomp (λ k → λ {(i = i0) → (rUnit refl ∙ sym (compPath-filler' ((cong (fst f north ∙_) (snd g))) (cong (_∙ refl) (snd f)) k)) j ; (i = i1) → (rUnit refl ∙ sym (cong₂ _∙_ (λ i → snd f (i ∨ ~ k)) (snd g))) j ; (j = i0) → (c-f ∙ c-g) i ; (j = i1) → (cong (λ x → x ∙ snd g (~ k)) (doubleCompPath-filler refl cong-f (snd f) (~ k)) ∙ cong ((snd f (~ k)) ∙_) (doubleCompPath-filler (sym (snd g)) cong-g refl (~ k))) i}) (hcomp (λ k → λ {(i = i0) → compPath-filler (rUnit (λ _ → snd (Susp∙ (typ A)))) (sym ((cong (_∙ refl) (snd f)))) k j ; (i = i1) → compPath-filler (rUnit refl) (sym (cong (refl ∙_) (snd g))) k j ; (j = i0) → (c-f ∙ c-g) i ; (j = i1) → (cong (_∙ refl) ((λ j → snd f (~ j ∧ ~ k)) ∙∙ cong-f ∙∙ snd f) ∙ cong (refl ∙_) (sym (snd g) ∙∙ cong-g ∙∙ (λ j → snd g (j ∧ ~ k)))) i}) (((cong (λ x → rUnit x j) c-f) ∙ (cong (λ x → lUnit x j) c-g)) i)))) hom-botᵣ⁻ : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → (f g : S₊∙ (suc n) →∙ Susp∙ (typ A)) → botᵣ⁻ {A = A} n (∙Π f g) ≡ invComp {A = A} n (botᵣ⁻ {A = A} n f) (botᵣ⁻ {A = A} n g) hom-botᵣ⁻ zero f g = ΣPathP ((funExt (λ { false → sym (rUnit _) ; true → (rUnit _)})) , ((λ i j → rUnit refl (i ∧ ~ j)) ▷ lUnit (sym (rUnit refl)))) hom-botᵣ⁻ (suc n) f g = →∙Homogeneous≡ (isHomogeneousPath _ _) (funExt (λ x → (sym (rUnit (cong (fst (∙Π f g)) (merid x ∙ sym (merid (ptSn _)))))) ∙∙ cong-∙ (fst (∙Π f g)) (merid x) (sym (merid (ptSn _))) ∙∙ cong (cong (fst (∙Π f g)) (merid x) ∙_) (cong sym lem) ∙ sym (rUnit (cong (fst (∙Π f g)) (merid x))))) where lem : cong (fst (∙Π f g)) (merid (ptSn (suc n))) ≡ refl lem = (λ i → (sym (snd f) ∙∙ cong (fst f) (rCancel (merid (ptSn _)) i) ∙∙ snd f) ∙ (sym (snd g) ∙∙ cong (fst g) (rCancel (merid (ptSn _)) i) ∙∙ snd g)) ∙ (λ i → ∙∙lCancel (snd f) i ∙ ∙∙lCancel (snd g) i) ∙ sym (rUnit refl) -- We get that botᵣ⁻ (and hence botᵣ) is homomorphism hom-botᵣ⁻' : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → (f g : S₊∙ (suc (suc n)) →∙ Susp∙ (typ A)) → botᵣ⁻ {A = A} (suc n) (∙Π f g) ≡ ∙Π (botᵣ⁻ {A = A} (suc n) f) (botᵣ⁻ {A = A} (suc n) g) hom-botᵣ⁻' {A = A} n f g = hom-botᵣ⁻ {A = A} (suc n) f g ∙ sym (∙Π≡invComp {A = A} _ (botᵣ⁻ {A = A} _ f) (botᵣ⁻ {A = A} _ g)) hom-botᵣ : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → (f g : S₊∙ (suc n) →∙ Ω (Susp∙ (typ A))) → botᵣ {A = A} (suc n) (∙Π f g) ≡ ∙Π (botᵣ {A = A} (suc n) f) (botᵣ {A = A} (suc n) g) hom-botᵣ {A = A} n f g = morphLemmas.isMorphInv ∙Π ∙Π (botᵣ⁻ {A = A} (suc n)) (hom-botᵣ⁻' {A = A} n) (botᵣ {A = A} (suc n)) (leftInv (botᵣIso {A = A} (suc n))) (rightInv (botᵣIso {A = A} (suc n))) f g isHom-IsoΩSphereMapᵣ : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) (p q : typ ((Ω^ (2 + n)) (Susp∙ (typ A)))) → Iso.fun (IsoΩSphereMapᵣ (suc n)) (p ∙ q) ≡ ∙Π (Iso.fun (IsoΩSphereMapᵣ (suc n)) p) (Iso.fun (IsoΩSphereMapᵣ (suc n)) q) isHom-IsoΩSphereMapᵣ {A = A} n p q = cong (botᵣ {A = A} (suc n)) (cong (Ω→SphereMap (suc n) {A = Ω (Susp∙ (typ A))}) (flipΩIsopres· n p q) ∙ isHom-Ω→SphereMap n (fun (flipΩIso (suc n)) p) (fun (flipΩIso (suc n)) q)) ∙ hom-botᵣ n _ _ suspMapΩ→hom : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) (p q : typ ((Ω^ (suc n)) A)) → suspMapΩ (suc n) (p ∙ q) ≡ suspMapΩ (suc n) p ∙ suspMapΩ (suc n) q suspMapΩ→hom {A = A} n p q = cong (sym (snd (suspMapΩ∙ {A = A} n)) ∙∙_∙∙ snd (suspMapΩ∙ {A = A} n)) (cong-∙ (fst (suspMapΩ∙ {A = A} n)) p q) ∙ help (snd (suspMapΩ∙ {A = A} n)) _ _ where help : ∀ {ℓ} {A : Type ℓ} {x y : A} (p : x ≡ y) (q s : x ≡ x) → sym p ∙∙ (q ∙ s) ∙∙ p ≡ (sym p ∙∙ q ∙∙ p) ∙ (sym p ∙∙ s ∙∙ p) help {x = x} = J (λ y p → (q s : x ≡ x) → sym p ∙∙ (q ∙ s) ∙∙ p ≡ (sym p ∙∙ q ∙∙ p ) ∙ (sym p ∙∙ s ∙∙ p)) λ q s → sym (rUnit (q ∙ s)) ∙ cong₂ _∙_ (rUnit q) (rUnit s) private transportLem : ∀ {ℓ} {A B : Type ℓ} (_+A_ : A → A → A) (_+B_ : B → B → B) → (e : Iso A B) → ((x y : A) → fun e (x +A y) ≡ fun e x +B fun e y) → PathP (λ i → isoToPath e i → isoToPath e i → isoToPath e i) _+A_ _+B_ transportLem _+A_ _+B_ e hom = toPathP (funExt (λ p → funExt λ q → (λ i → transportRefl (fun e (inv e (transportRefl p i) +A inv e (transportRefl q i))) i) ∙∙ hom (inv e p) (inv e q) ∙∙ cong₂ _+B_ (rightInv e p) (rightInv e q))) pₗ : ∀ {ℓ} (A : Pointed ℓ) (n : ℕ) → typ (Ω ((Ω^ n) A)) ≡ (S₊∙ (suc n) →∙ A) pₗ A n = isoToPath (IsoΩSphereMap {A = A} (suc n)) pᵣ : ∀ {ℓ} (A : Pointed ℓ) (n : ℕ) → typ ((Ω^ (2 + n)) (Susp∙ (typ A))) ≡ (S₊∙ (suc (suc n)) →∙ Susp∙ (typ A)) pᵣ A n = isoToPath (IsoΩSphereMapᵣ {A = A} (suc n)) ∙Π→∙ : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → PathP (λ i → pₗ A n i → pₗ A n i → pₗ A n i) _∙_ ∙Π ∙Π→∙ {A = A} n = transportLem _∙_ ∙Π (IsoΩSphereMap {A = A} (suc n)) (isHom-Ω→SphereMap n) ∙Π→∙ᵣ : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → PathP (λ i → pᵣ A n i → pᵣ A n i → pᵣ A n i) _∙_ ∙Π ∙Π→∙ᵣ {A = A} n = transportLem _∙_ ∙Π (IsoΩSphereMapᵣ {A = A} (suc n)) (isHom-IsoΩSphereMapᵣ n) isHom-suspMap : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) (f g : S₊∙ (suc n) →∙ A) → suspMap n (∙Π f g) ≡ ∙Π (suspMap n f) (suspMap n g) isHom-suspMap {A = A} n = transport (λ i → (f g : isoToPath (IsoΩSphereMap {A = A} (suc n)) i) → Ωσ→suspMap n i (∙Π→∙ n i f g) ≡ ∙Π→∙ᵣ n i (Ωσ→suspMap n i f) (Ωσ→suspMap n i g)) (suspMapΩ→hom n) suspMapπHom : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → GroupHom (πGr n A) (πGr (suc n) (Susp∙ (typ A))) fst (suspMapπHom {A = A} n) = suspMapπ (suc n) snd (suspMapπHom {A = A} n) = makeIsGroupHom (sElim2 (λ _ _ → isSetPathImplicit) λ p q → cong ∣_∣₂ (suspMapΩ→hom n p q)) suspMapπ'Hom : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → GroupHom (π'Gr n A) (π'Gr (suc n) (Susp∙ (typ A))) fst (suspMapπ'Hom {A = A} n) = suspMapπ' n snd (suspMapπ'Hom {A = A} n) = makeIsGroupHom (sElim2 (λ _ _ → isSetPathImplicit) λ f g → cong ∣_∣₂ (isHom-suspMap n f g)) πGr≅π'Grᵣ : ∀ {ℓ} (n : ℕ) (A : Pointed ℓ) → GroupIso (πGr (suc n) (Susp∙ (typ A))) (π'Gr (suc n) (Susp∙ (typ A))) fst (πGr≅π'Grᵣ n A) = setTruncIso (IsoΩSphereMapᵣ (suc n)) snd (πGr≅π'Grᵣ n A) = makeIsGroupHom (sElim2 (λ _ _ → isSetPathImplicit) λ f g → cong ∣_∣₂ (isHom-IsoΩSphereMapᵣ n f g)) private isConnectedPres : ∀ {ℓ} {A : Pointed ℓ} (con n : ℕ) → isConnectedFun con (suspMapΩ∙ {A = A} (suc n) .fst) → isConnectedFun con (suspMap {A = A} n) isConnectedPres {A = A} con n hyp = transport (λ i → isConnectedFun con (Ωσ→suspMap {A = A} n i)) hyp isConnectedSuspMap : (n m : ℕ) → isConnectedFun ((m + suc m) ∸ n) (suspMap {A = S₊∙ (suc m)} n) isConnectedSuspMap n m = isConnectedPres _ _ (suspMapΩ-connected m (suc n) (sphereConnected (suc m))) isSurjectiveSuspMap : (n : ℕ) → isSurjective (suspMapπ'Hom {A = S₊∙ (2 + n)} (2 + n)) isSurjectiveSuspMap n = sElim (λ _ → isProp→isSet squash₁) λ f → trRec ((subst (λ x → isOfHLevel x (isInIm (suspMapπ'Hom (2 + n)) ∣ f ∣₂)) (sym (snd (lem n n))) (isProp→isOfHLevelSuc {A = isInIm (suspMapπ'Hom (2 + n)) ∣ f ∣₂} (fst (lem n n)) squash₁))) (λ p → ∣ ∣ fst p ∣₂ , (cong ∣_∣₂ (snd p)) ∣₁) (fst (isConnectedSuspMap (2 + n) (suc n) f)) where lem : (m n : ℕ) → Σ[ x ∈ ℕ ] ((m + suc (suc n) ∸ suc n) ≡ suc x) lem zero zero = 0 , refl lem (suc m) zero = suc m , +-comm m 2 lem zero (suc n) = lem zero n lem (suc m) (suc n) = fst (lem (suc m) n) , (cong (_∸ (suc n)) (+-comm m (3 + n)) ∙∙ cong (_∸ n) (+-comm (suc (suc n)) m) ∙∙ snd (lem (suc m) n))
{ "alphanum_fraction": 0.442146628, "avg_line_length": 41.232405892, "ext": "agda", "hexsha": "768171a5cfcadf93823587833b2c3d3de4fdc85c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Homotopy/Group/SuspensionMap.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Homotopy/Group/SuspensionMap.agda", "max_line_length": 87, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Homotopy/Group/SuspensionMap.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 10404, "size": 25193 }
module PiFrac.Category where open import Categories.Category.Monoidal open import Categories.Category.Monoidal.Braided open import Categories.Category.Monoidal.Symmetric open import Categories.Category.Monoidal.Rigid open import Categories.Category.Monoidal.CompactClosed open import Categories.Functor.Bifunctor open import Categories.Category open import Categories.Category.Product open import Categories.Category.Groupoid open import Data.Empty open import Data.Unit hiding (_≟_) open import Data.Sum open import Data.Product open import Data.Maybe open import Relation.Binary.Core open import Relation.Binary hiding (Symmetric) open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Function using (_∘_) open import PiFrac.Syntax open import PiFrac.Opsem open import PiFrac.Interp open import PiFrac.Properties Pi∙ : Category _ _ _ Pi∙ = record { Obj = Σ[ t ∈ 𝕌 ] ⟦ t ⟧ ; _⇒_ = λ (A , a) (B , b) → Σ[ c ∈ (A ↔ B) ] (interp c a ≡ just b) ; _≈_ = λ {(A , a)} {(B , b)} (c , eq) (c' , eq) → ⊤ ; id = id↔ , refl ; _∘_ = λ (c₂ , eq₂) (c₁ , eq₁) → comp (c₁ , eq₁) (c₂ , eq₂) ; assoc = tt ; sym-assoc = tt ; identityˡ = tt ; identityʳ = tt ; identity² = tt ; equiv = record { refl = tt ; sym = λ _ → tt ; trans = λ _ _ → tt } ; ∘-resp-≈ = λ _ _ → tt } where comp : ∀ {A B C a b c} → Σ[ c₁ ∈ (A ↔ B) ] (interp c₁ a ≡ just b) → Σ[ c₂ ∈ (B ↔ C) ] (interp c₂ b ≡ just c) → Σ[ c' ∈ (A ↔ C) ] (interp c' a ≡ just c) comp {c = c} (c₁ , eq₁) (c₂ , eq₂) = (c₁ ⨾ c₂) , subst (λ x → (x >>= interp c₂) ≡ just c) (sym eq₁) eq₂ Pi∙Groupoid : Groupoid _ _ _ Pi∙Groupoid = record { category = Pi∙ ; isGroupoid = record { _⁻¹ = λ (c , eq) → ! c , interp! c _ _ eq ; iso = record { isoˡ = tt ; isoʳ = tt } } } Pi∙Monoidal : Monoidal Pi∙ Pi∙Monoidal = record { ⊗ = record { F₀ = λ ((A , a) , (B , b)) → (A ×ᵤ B) , (a , b) ; F₁ = λ {((A , a) , (B , b))} {((C , c) , (D , d))} ((c₁ , eq₁) , (c₂ , eq₂)) → (c₁ ⊗ c₂) , subst (λ x → (x >>= (λ v₁' → interp c₂ b >>= λ v₂' → just (v₁' , v₂'))) ≡ just (c , d)) (sym eq₁) (subst (λ x → (x >>= λ v₂' → just (c , v₂')) ≡ just (c , d)) (sym eq₂) refl) ; identity = tt ; homomorphism = tt ; F-resp-≈ = λ _ → tt } ; unit = (𝟙 , tt) ; unitorˡ = record { from = unite⋆l , refl ; to = uniti⋆l , refl ; iso = record { isoˡ = tt ; isoʳ = tt } } ; unitorʳ = record { from = unite⋆r , refl ; to = uniti⋆r , refl ; iso = record { isoˡ = tt ; isoʳ = tt } } ; associator = record { from = assocr⋆ , refl ; to = assocl⋆ , refl ; iso = record { isoˡ = tt ; isoʳ = tt } } ; unitorˡ-commute-from = tt ; unitorˡ-commute-to = tt ; unitorʳ-commute-from = tt ; unitorʳ-commute-to = tt ; assoc-commute-from = tt ; assoc-commute-to = tt ; triangle = tt ; pentagon = tt } Pi∙Braided : Braided Pi∙Monoidal Pi∙Braided = record { braiding = record { F⇒G = record { η = λ _ → swap⋆ , refl ; commute = λ _ → tt ; sym-commute = λ _ → tt } ; F⇐G = record { η = λ _ → swap⋆ , refl ; commute = λ _ → tt ; sym-commute = λ _ → tt } ; iso = λ X → record { isoˡ = tt ; isoʳ = tt } } ; hexagon₁ = tt ; hexagon₂ = tt } Pi∙Symmetric : Symmetric Pi∙Monoidal Pi∙Symmetric = record { braided = Pi∙Braided ; commutative = tt} Pi∙Rigid : LeftRigid Pi∙Monoidal Pi∙Rigid = record { _⁻¹ = λ {(A , a) → 𝟙/ a , ↻} ; η = λ {(X , x)} → ηₓ x , refl ; ε = λ {(X , x)} → (swap⋆ ⨾ εₓ x) , εₓ≡ ; snake₁ = tt ; snake₂ = tt} where εₓ≡ : ∀ {X} {x : ⟦ X ⟧} → interp (swap⋆ ⨾ εₓ x) (↻ , x) ≡ just tt εₓ≡ {X} {x} with x ≟ x ... | yes refl = refl ... | no neq = ⊥-elim (neq refl) Pi∙CompactClosed : CompactClosed Pi∙Monoidal Pi∙CompactClosed = record { symmetric = Pi∙Symmetric ; rigid = inj₁ Pi∙Rigid }
{ "alphanum_fraction": 0.4450617284, "avg_line_length": 43.0088495575, "ext": "agda", "hexsha": "1812d3eff3ee73c3d37ba8dc96e38937fe856be2", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "PiFrac/Category.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "PiFrac/Category.agda", "max_line_length": 129, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "PiFrac/Category.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 1548, "size": 4860 }
{- Types Summer School 2007 Bertinoro Aug 19 - 31, 2007 Agda Ulf Norell -} {- Learn more about Agda on the Agda wiki: http://www.cs.chalmers.se/~ulfn/Agda This is where you find the exercises for the afternoon. -} -- Each Agda file contains a top-level module, whose -- name corresponds to the file name. module Basics where {- Expressions (types and terms) -} -- The expression language of Agda is your favorite dependently -- typed λ-calculus. -- For instance: id₁ : (A : Set) -> A -> A id₁ = \ A x -> x id₂ : (A : Set) -> A -> A id₂ = \ A x -> id₁ A (id₁ A x) -- Note: Agda likes white space. This is not correct: -- id:(A:Set)->A->A -- Why not? In Agda the following strings are valid identifiers: -- id: -- A:Set -- ->A->A -- Another useful function, featuring telescopes -- and typed λs. compose : (A B C : Set) -> (B -> C) -> (A -> B) -> A -> C compose = \(A B C : Set) f g x -> f (g x) compose' : (A B : Set)(C : B -> Set) (f : (x : B) -> C x)(g : A -> B) -> (x : A) -> C (g x) compose' = \A B C f g x -> f (g x) {- Implicit arguments -} -- Writing down type arguments explicitly soon gets old. -- Enter implicit arguments. -- Note the curlies in the telescope. And A mysteriously disappeares -- in the definition. id₃ : {A : Set} -> A -> A id₃ = \ x -> x -- And it's not there when applying the function. id₄ : {A : Set} -> A -> A id₄ = \ x -> (id₃ (id₃ x)) -- If you think the type checker should figure out the value of -- something explicit, you write _. id₆ : {A : Set} -> A -> A id₆ x = id₁ _ x -- Interesting though it is, eventually you'll get bored -- with the λ-calculus... -- Move on to: Datatypes.agda
{ "alphanum_fraction": 0.5753811406, "avg_line_length": 19.4615384615, "ext": "agda", "hexsha": "8c5e08ebe8e50a82b9ac4f88a7cce743acc79d05", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "examples/SummerSchool07/Lecture/Basics.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "examples/SummerSchool07/Lecture/Basics.agda", "max_line_length": 68, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "examples/SummerSchool07/Lecture/Basics.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 556, "size": 1771 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Basic lemmas showing that various types are related (isomorphic or -- equivalent or…) ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Function.Related.TypeIsomorphisms where open import Algebra import Algebra.FunctionProperties as FP open import Axiom.Extensionality.Propositional using (Extensionality) open import Algebra.Structures open import Data.Empty using (⊥; ⊥-elim) open import Data.Product as Prod hiding (swap) open import Data.Product.Function.NonDependent.Propositional open import Data.Sum as Sum open import Data.Sum.Properties using (swap-involutive) open import Data.Sum.Function.Propositional using (_⊎-cong_) open import Data.Unit using (⊤) open import Level using (Level; Lift; lower; 0ℓ; suc) open import Function open import Function.Equality using (_⟨$⟩_) open import Function.Equivalence as Eq using (_⇔_; Equivalence) open import Function.Inverse as Inv using (_↔_; Inverse; inverse) open import Function.Related open import Relation.Binary open import Relation.Binary.PropositionalEquality as P using (_≡_; _≗_) open import Relation.Nullary using (Dec; ¬_; yes; no) open import Relation.Nullary.Decidable using (True) ------------------------------------------------------------------------ -- Properties of Σ and _×_ -- Σ is associative Σ-assoc : ∀ {a b c} {A : Set a} {B : A → Set b} {C : (a : A) → B a → Set c} → Σ (Σ A B) (uncurry C) ↔ Σ A (λ a → Σ (B a) (C a)) Σ-assoc = inverse (λ where ((a , b) , c) → (a , b , c)) (λ where (a , b , c) → ((a , b) , c)) (λ _ → P.refl) (λ _ → P.refl) -- × is commutative ×-comm : ∀ {a b} (A : Set a) (B : Set b) → (A × B) ↔ (B × A) ×-comm _ _ = inverse Prod.swap Prod.swap (λ _ → P.refl) λ _ → P.refl -- × has ⊤ as its identity ×-identityˡ : ∀ ℓ → FP.LeftIdentity _↔_ (Lift ℓ ⊤) _×_ ×-identityˡ _ _ = inverse proj₂ -,_ (λ _ → P.refl) (λ _ → P.refl) ×-identityʳ : ∀ ℓ → FP.RightIdentity _↔_ (Lift ℓ ⊤) _×_ ×-identityʳ _ _ = inverse proj₁ (_, _) (λ _ → P.refl) (λ _ → P.refl) ×-identity : ∀ ℓ → FP.Identity _↔_ (Lift ℓ ⊤) _×_ ×-identity ℓ = ×-identityˡ ℓ , ×-identityʳ ℓ -- × has ⊥ has its zero ×-zeroˡ : ∀ ℓ → FP.LeftZero _↔_ (Lift ℓ ⊥) _×_ ×-zeroˡ ℓ A = inverse proj₁ (⊥-elim ∘′ lower) (⊥-elim ∘ lower ∘ proj₁) (⊥-elim ∘ lower) ×-zeroʳ : ∀ ℓ → FP.RightZero _↔_ (Lift ℓ ⊥) _×_ ×-zeroʳ ℓ A = inverse proj₂ (⊥-elim ∘′ lower) (⊥-elim ∘ lower ∘ proj₂) (⊥-elim ∘ lower) ×-zero : ∀ ℓ → FP.Zero _↔_ (Lift ℓ ⊥) _×_ ×-zero ℓ = ×-zeroˡ ℓ , ×-zeroʳ ℓ ------------------------------------------------------------------------ -- Properties of ⊎ -- ⊎ is associative ⊎-assoc : ∀ ℓ → FP.Associative {ℓ = ℓ} _↔_ _⊎_ ⊎-assoc ℓ _ _ _ = inverse [ [ inj₁ , inj₂ ∘′ inj₁ ]′ , inj₂ ∘′ inj₂ ]′ [ inj₁ ∘′ inj₁ , [ inj₁ ∘′ inj₂ , inj₂ ]′ ]′ [ [ (λ _ → P.refl) , (λ _ → P.refl) ] , (λ _ → P.refl) ] [ (λ _ → P.refl) , [ (λ _ → P.refl) , (λ _ → P.refl) ] ] -- ⊎ is commutative ⊎-comm : ∀ {a b} (A : Set a) (B : Set b) → (A ⊎ B) ↔ (B ⊎ A) ⊎-comm _ _ = inverse swap swap swap-involutive swap-involutive -- ⊎ has ⊥ as its identity ⊎-identityˡ : ∀ ℓ → FP.LeftIdentity _↔_ (Lift ℓ ⊥) _⊎_ ⊎-identityˡ _ _ = inverse [ (λ ()) , id ]′ inj₂ [ (λ ()) , (λ _ → P.refl) ] (λ _ → P.refl) ⊎-identityʳ : ∀ ℓ → FP.RightIdentity _↔_ (Lift ℓ ⊥) _⊎_ ⊎-identityʳ _ _ = inverse [ id , (λ ()) ]′ inj₁ [ (λ _ → P.refl) , (λ ()) ] (λ _ → P.refl) ⊎-identity : ∀ ℓ → FP.Identity _↔_ (Lift ℓ ⊥) _⊎_ ⊎-identity ℓ = ⊎-identityˡ ℓ , ⊎-identityʳ ℓ ------------------------------------------------------------------------ -- Properties of × and ⊎ -- × distributes over ⊎ ×-distribˡ-⊎ : ∀ ℓ → FP._DistributesOverˡ_ {ℓ = ℓ} _↔_ _×_ _⊎_ ×-distribˡ-⊎ ℓ _ _ _ = inverse (uncurry λ x → [ inj₁ ∘′ (x ,_) , inj₂ ∘′ (x ,_) ]′) [ Prod.map₂ inj₁ , Prod.map₂ inj₂ ]′ (uncurry λ _ → [ (λ _ → P.refl) , (λ _ → P.refl) ]) [ (λ _ → P.refl) , (λ _ → P.refl) ] ×-distribʳ-⊎ : ∀ ℓ → FP._DistributesOverʳ_ {ℓ = ℓ} _↔_ _×_ _⊎_ ×-distribʳ-⊎ ℓ _ _ _ = inverse (uncurry [ curry inj₁ , curry inj₂ ]′) [ Prod.map₁ inj₁ , Prod.map₁ inj₂ ]′ (uncurry [ (λ _ _ → P.refl) , (λ _ _ → P.refl) ]) [ (λ _ → P.refl) , (λ _ → P.refl) ] ×-distrib-⊎ : ∀ ℓ → FP._DistributesOver_ {ℓ = ℓ} _↔_ _×_ _⊎_ ×-distrib-⊎ ℓ = ×-distribˡ-⊎ ℓ , ×-distribʳ-⊎ ℓ ------------------------------------------------------------------------ -- ⊥, ⊤, _×_ and _⊎_ form a commutative semiring -- ⊤, _×_ form a commutative monoid ×-isMagma : ∀ k ℓ → IsMagma {Level.suc ℓ} (Related ⌊ k ⌋) _×_ ×-isMagma k ℓ = record { isEquivalence = SK-isEquivalence k ℓ ; ∙-cong = _×-cong_ } ×-magma : Symmetric-kind → (ℓ : Level) → Magma _ _ ×-magma k ℓ = record { isMagma = ×-isMagma k ℓ } ×-isSemigroup : ∀ k ℓ → IsSemigroup {Level.suc ℓ} (Related ⌊ k ⌋) _×_ ×-isSemigroup k ℓ = record { isMagma = ×-isMagma k ℓ ; assoc = λ _ _ _ → ↔⇒ Σ-assoc } ×-semigroup : Symmetric-kind → (ℓ : Level) → Semigroup _ _ ×-semigroup k ℓ = record { isSemigroup = ×-isSemigroup k ℓ } ×-isMonoid : ∀ k ℓ → IsMonoid (Related ⌊ k ⌋) _×_ (Lift ℓ ⊤) ×-isMonoid k ℓ = record { isSemigroup = ×-isSemigroup k ℓ ; identity = (↔⇒ ∘ ×-identityˡ ℓ) , (↔⇒ ∘ ×-identityʳ ℓ) } ×-monoid : Symmetric-kind → (ℓ : Level) → Monoid _ _ ×-monoid k ℓ = record { isMonoid = ×-isMonoid k ℓ } ×-isCommutativeMonoid : ∀ k ℓ → IsCommutativeMonoid (Related ⌊ k ⌋) _×_ (Lift ℓ ⊤) ×-isCommutativeMonoid k ℓ = record { isSemigroup = ×-isSemigroup k ℓ ; identityˡ = ↔⇒ ∘ ×-identityˡ ℓ ; comm = λ _ _ → ↔⇒ (×-comm _ _) } ×-commutativeMonoid : Symmetric-kind → (ℓ : Level) → CommutativeMonoid _ _ ×-commutativeMonoid k ℓ = record { isCommutativeMonoid = ×-isCommutativeMonoid k ℓ } -- ⊥, _⊎_ form a commutative monoid ⊎-isMagma : ∀ k ℓ → IsMagma {Level.suc ℓ} (Related ⌊ k ⌋) _⊎_ ⊎-isMagma k ℓ = record { isEquivalence = SK-isEquivalence k ℓ ; ∙-cong = _⊎-cong_ } ⊎-magma : Symmetric-kind → (ℓ : Level) → Magma _ _ ⊎-magma k ℓ = record { isMagma = ⊎-isMagma k ℓ } ⊎-isSemigroup : ∀ k ℓ → IsSemigroup {Level.suc ℓ} (Related ⌊ k ⌋) _⊎_ ⊎-isSemigroup k ℓ = record { isMagma = ⊎-isMagma k ℓ ; assoc = λ A B C → ↔⇒ (⊎-assoc ℓ A B C) } ⊎-semigroup : Symmetric-kind → (ℓ : Level) → Semigroup _ _ ⊎-semigroup k ℓ = record { isSemigroup = ⊎-isSemigroup k ℓ } ⊎-isMonoid : ∀ k ℓ → IsMonoid (Related ⌊ k ⌋) _⊎_ (Lift ℓ ⊥) ⊎-isMonoid k ℓ = record { isSemigroup = ⊎-isSemigroup k ℓ ; identity = (↔⇒ ∘ ⊎-identityˡ ℓ) , (↔⇒ ∘ ⊎-identityʳ ℓ) } ⊎-monoid : Symmetric-kind → (ℓ : Level) → Monoid _ _ ⊎-monoid k ℓ = record { isMonoid = ⊎-isMonoid k ℓ } ⊎-isCommutativeMonoid : ∀ k ℓ → IsCommutativeMonoid (Related ⌊ k ⌋) _⊎_ (Lift ℓ ⊥) ⊎-isCommutativeMonoid k ℓ = record { isSemigroup = ⊎-isSemigroup k ℓ ; identityˡ = ↔⇒ ∘ ⊎-identityˡ ℓ ; comm = λ _ _ → ↔⇒ (⊎-comm _ _) } ⊎-commutativeMonoid : Symmetric-kind → (ℓ : Level) → CommutativeMonoid _ _ ⊎-commutativeMonoid k ℓ = record { isCommutativeMonoid = ⊎-isCommutativeMonoid k ℓ } ×-⊎-isCommutativeSemiring : ∀ k ℓ → IsCommutativeSemiring (Related ⌊ k ⌋) _⊎_ _×_ (Lift ℓ ⊥) (Lift ℓ ⊤) ×-⊎-isCommutativeSemiring k ℓ = record { +-isCommutativeMonoid = ⊎-isCommutativeMonoid k ℓ ; *-isCommutativeMonoid = ×-isCommutativeMonoid k ℓ ; distribʳ = λ A B C → ↔⇒ (×-distribʳ-⊎ ℓ A B C) ; zeroˡ = ↔⇒ ∘ ×-zeroˡ ℓ } ×-⊎-commutativeSemiring : Symmetric-kind → (ℓ : Level) → CommutativeSemiring (Level.suc ℓ) ℓ ×-⊎-commutativeSemiring k ℓ = record { isCommutativeSemiring = ×-⊎-isCommutativeSemiring k ℓ } ------------------------------------------------------------------------ -- Some reordering lemmas ΠΠ↔ΠΠ : ∀ {a b p} {A : Set a} {B : Set b} (P : A → B → Set p) → ((x : A) (y : B) → P x y) ↔ ((y : B) (x : A) → P x y) ΠΠ↔ΠΠ _ = inverse flip flip (λ _ → P.refl) (λ _ → P.refl) ∃∃↔∃∃ : ∀ {a b p} {A : Set a} {B : Set b} (P : A → B → Set p) → (∃₂ λ x y → P x y) ↔ (∃₂ λ y x → P x y) ∃∃↔∃∃ P = inverse to from (λ _ → P.refl) (λ _ → P.refl) where to : (∃₂ λ x y → P x y) → (∃₂ λ y x → P x y) to (x , y , Pxy) = (y , x , Pxy) from : (∃₂ λ y x → P x y) → (∃₂ λ x y → P x y) from (y , x , Pxy) = (x , y , Pxy) ------------------------------------------------------------------------ -- Implicit and explicit function spaces are isomorphic Π↔Π : ∀ {a b} {A : Set a} {B : A → Set b} → ((x : A) → B x) ↔ ({x : A} → B x) Π↔Π = inverse (λ f {x} → f x) (λ f x → f) (λ _ → P.refl) (λ _ → P.refl) ------------------------------------------------------------------------ -- _→_ preserves the symmetric relations _→-cong-⇔_ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} → A ⇔ B → C ⇔ D → (A → C) ⇔ (B → D) A⇔B →-cong-⇔ C⇔D = Eq.equivalence (λ f x → Equivalence.to C⇔D ⟨$⟩ f (Equivalence.from A⇔B ⟨$⟩ x)) (λ f x → Equivalence.from C⇔D ⟨$⟩ f (Equivalence.to A⇔B ⟨$⟩ x)) →-cong : ∀ {a b c d} → Extensionality a c → Extensionality b d → ∀ {k} {A : Set a} {B : Set b} {C : Set c} {D : Set d} → A ∼[ ⌊ k ⌋ ] B → C ∼[ ⌊ k ⌋ ] D → (A → C) ∼[ ⌊ k ⌋ ] (B → D) →-cong extAC extBD {equivalence} A⇔B C⇔D = A⇔B →-cong-⇔ C⇔D →-cong extAC extBD {bijection} A↔B C↔D = record { to = Equivalence.to A→C⇔B→D ; from = Equivalence.from A→C⇔B→D ; inverse-of = record { left-inverse-of = λ f → extAC λ x → begin Inverse.from C↔D ⟨$⟩ (Inverse.to C↔D ⟨$⟩ f (Inverse.from A↔B ⟨$⟩ (Inverse.to A↔B ⟨$⟩ x))) ≡⟨ Inverse.left-inverse-of C↔D _ ⟩ f (Inverse.from A↔B ⟨$⟩ (Inverse.to A↔B ⟨$⟩ x)) ≡⟨ P.cong f $ Inverse.left-inverse-of A↔B x ⟩ f x ∎ ; right-inverse-of = λ f → extBD λ x → begin Inverse.to C↔D ⟨$⟩ (Inverse.from C↔D ⟨$⟩ f (Inverse.to A↔B ⟨$⟩ (Inverse.from A↔B ⟨$⟩ x))) ≡⟨ Inverse.right-inverse-of C↔D _ ⟩ f (Inverse.to A↔B ⟨$⟩ (Inverse.from A↔B ⟨$⟩ x)) ≡⟨ P.cong f $ Inverse.right-inverse-of A↔B x ⟩ f x ∎ } } where open P.≡-Reasoning A→C⇔B→D = ↔⇒ A↔B →-cong-⇔ ↔⇒ C↔D ------------------------------------------------------------------------ -- ¬_ preserves the symmetric relations ¬-cong-⇔ : ∀ {a b} {A : Set a} {B : Set b} → A ⇔ B → (¬ A) ⇔ (¬ B) ¬-cong-⇔ A⇔B = A⇔B →-cong-⇔ (⊥ ∎) where open EquationalReasoning ¬-cong : ∀ {a b} → Extensionality a 0ℓ → Extensionality b 0ℓ → ∀ {k} {A : Set a} {B : Set b} → A ∼[ ⌊ k ⌋ ] B → (¬ A) ∼[ ⌊ k ⌋ ] (¬ B) ¬-cong extA extB A≈B = →-cong extA extB A≈B (⊥ ∎) where open EquationalReasoning ------------------------------------------------------------------------ -- _⇔_ preserves _⇔_ -- The type of the following proof is a bit more general. Related-cong : ∀ {k a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} → A ∼[ ⌊ k ⌋ ] B → C ∼[ ⌊ k ⌋ ] D → (A ∼[ ⌊ k ⌋ ] C) ⇔ (B ∼[ ⌊ k ⌋ ] D) Related-cong {A = A} {B} {C} {D} A≈B C≈D = Eq.equivalence (λ A≈C → B ∼⟨ SK-sym A≈B ⟩ A ∼⟨ A≈C ⟩ C ∼⟨ C≈D ⟩ D ∎) (λ B≈D → A ∼⟨ A≈B ⟩ B ∼⟨ B≈D ⟩ D ∼⟨ SK-sym C≈D ⟩ C ∎) where open EquationalReasoning ------------------------------------------------------------------------ -- A lemma relating True dec and P, where dec : Dec P True↔ : ∀ {p} {P : Set p} (dec : Dec P) → ((p₁ p₂ : P) → p₁ ≡ p₂) → True dec ↔ P True↔ (yes p) irr = inverse (λ _ → p) (λ _ → _) (λ _ → P.refl) (irr p) True↔ (no ¬p) _ = inverse (λ()) ¬p (λ()) (⊥-elim ∘ ¬p) ------------------------------------------------------------------------ -- Equality between pairs can be expressed as a pair of equalities Σ-≡,≡↔≡ : ∀ {a b} {A : Set a} {B : A → Set b} {p₁ p₂ : Σ A B} → (∃ λ (p : proj₁ p₁ ≡ proj₁ p₂) → P.subst B p (proj₂ p₁) ≡ proj₂ p₂) ↔ (p₁ ≡ p₂) Σ-≡,≡↔≡ {A = A} {B} = inverse to from left-inverse-of right-inverse-of where to : {p₁ p₂ : Σ A B} → Σ (proj₁ p₁ ≡ proj₁ p₂) (λ p → P.subst B p (proj₂ p₁) ≡ proj₂ p₂) → p₁ ≡ p₂ to (P.refl , P.refl) = P.refl from : {p₁ p₂ : Σ A B} → p₁ ≡ p₂ → Σ (proj₁ p₁ ≡ proj₁ p₂) (λ p → P.subst B p (proj₂ p₁) ≡ proj₂ p₂) from P.refl = P.refl , P.refl left-inverse-of : {p₁ p₂ : Σ A B} (p : Σ (proj₁ p₁ ≡ proj₁ p₂) (λ x → P.subst B x (proj₂ p₁) ≡ proj₂ p₂)) → from (to p) ≡ p left-inverse-of (P.refl , P.refl) = P.refl right-inverse-of : {p₁ p₂ : Σ A B} (p : p₁ ≡ p₂) → to (from p) ≡ p right-inverse-of P.refl = P.refl ×-≡,≡↔≡ : ∀ {a b} {A : Set a} {B : Set b} {p₁ p₂ : A × B} → (proj₁ p₁ ≡ proj₁ p₂ × proj₂ p₁ ≡ proj₂ p₂) ↔ p₁ ≡ p₂ ×-≡,≡↔≡ {A = A} {B} = inverse to from left-inverse-of right-inverse-of where to : {p₁ p₂ : A × B} → (proj₁ p₁ ≡ proj₁ p₂) × (proj₂ p₁ ≡ proj₂ p₂) → p₁ ≡ p₂ to (P.refl , P.refl) = P.refl from : {p₁ p₂ : A × B} → p₁ ≡ p₂ → (proj₁ p₁ ≡ proj₁ p₂) × (proj₂ p₁ ≡ proj₂ p₂) from P.refl = P.refl , P.refl left-inverse-of : {p₁ p₂ : A × B} → (p : (proj₁ p₁ ≡ proj₁ p₂) × (proj₂ p₁ ≡ proj₂ p₂)) → from (to p) ≡ p left-inverse-of (P.refl , P.refl) = P.refl right-inverse-of : {p₁ p₂ : A × B} (p : p₁ ≡ p₂) → to (from p) ≡ p right-inverse-of P.refl = P.refl ×-≡×≡↔≡,≡ : ∀ {a b} {A : Set a} {B : Set b} {x y} (p : A × B) → (x ≡ proj₁ p × y ≡ proj₂ p) ↔ (x , y) ≡ p ×-≡×≡↔≡,≡ {x = x} {y} p = inverse to from from∘to to∘from where to : (x ≡ proj₁ p × y ≡ proj₂ p) → (x , y) ≡ p to = uncurry $ P.cong₂ _,_ from : (x , y) ≡ p → (x ≡ proj₁ p × y ≡ proj₂ p) from = < P.cong proj₁ , P.cong proj₂ > from∘to : ∀ v → from (to v) ≡ v from∘to (P.refl , P.refl) = P.refl to∘from : ∀ v → to (from v) ≡ v to∘from P.refl = P.refl ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 0.17 ×-CommutativeMonoid = ×-commutativeMonoid {-# WARNING_ON_USAGE ×-CommutativeMonoid "Warning: ×-CommutativeMonoid was deprecated in v0.17. Please use ×-commutativeMonoid instead." #-} ⊎-CommutativeMonoid = ⊎-commutativeMonoid {-# WARNING_ON_USAGE ⊎-CommutativeMonoid "Warning: ⊎-CommutativeMonoid was deprecated in v0.17. Please use ⊎-commutativeMonoid instead." #-} ×⊎-CommutativeSemiring = ×-⊎-commutativeSemiring {-# WARNING_ON_USAGE ×⊎-CommutativeSemiring "Warning: ×⊎-CommutativeSemiring was deprecated in v0.17. Please use ×-⊎-commutativeSemiring instead." #-}
{ "alphanum_fraction": 0.494875549, "avg_line_length": 35.0256410256, "ext": "agda", "hexsha": "e7aaf2ba8b964d403040b04509ee5a7eca65d163", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Function/Related/TypeIsomorphisms.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Function/Related/TypeIsomorphisms.agda", "max_line_length": 106, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Function/Related/TypeIsomorphisms.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 6289, "size": 15026 }
{- Types Summer School 2007 Bertinoro Aug 19 - 31, 2007 Agda Ulf Norell -} -- This is where the fun begins. -- Unleashing datatypes, pattern matching and recursion. module Datatypes where {- Simple datatypes. -} -- Let's define natural numbers. data Nat : Set where zero : Nat suc : Nat -> Nat -- A simple function. pred : Nat -> Nat pred zero = zero pred (suc n) = n -- Now let's do recursion. _+_ : Nat -> Nat -> Nat zero + m = m suc n + m = suc (n + m) infixl 60 _+_ -- An aside on infix operators: -- Any name containing _ can be used as a mixfix operator. -- The arguments simply go in place of the _. For instance: data Bool : Set where true : Bool false : Bool if_then_else_ : {A : Set} -> Bool -> A -> A -> A if true then x else y = x -- if false then x else y = y if_then_else_ false x y = y {- Parameterised datatypes -} data List (A : Set) : Set where [] : List A _::_ : A -> List A -> List A -- The parameters are implicit arguments to the constructors. nil : (A : Set) -> List A nil A = [] {A} map : {A B : Set} -> (A -> B) -> List A -> List B map f [] = [] map f (x :: xs) = f x :: map f xs {- Empty datatypes -} -- A very useful guy is the empty datatype. data False : Set where -- When pattern matching on an element of an empty type, something -- interesting happens: elim-False : {A : Set} -> False -> A elim-False () -- Look Ma, no right hand side! -- The pattern () is called an absurd pattern and matches elements -- of an empty type. {- What's next? -} -- The Curry-Howard isomorphism. -- CurryHoward.agda
{ "alphanum_fraction": 0.5953516091, "avg_line_length": 16.6138613861, "ext": "agda", "hexsha": "25035f930ae8e4f67e0afb63a1bce787dced2448", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "examples/SummerSchool07/Lecture/Datatypes.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "examples/SummerSchool07/Lecture/Datatypes.agda", "max_line_length": 66, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "examples/SummerSchool07/Lecture/Datatypes.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 494, "size": 1678 }
module Oscar.Definition where {- unpack : AList m n → Fin m → Term n -- sub substitute : (Fin m → Term n) → Term m → Term n -- _◃_ substitutes : ∀ N → (Fin m → Term n) → Terms N m → Terms N n -- _◃s_ stepify : (Term m → Term n) → Step m → Step n -- fmapS collapse : (List ∘ Step) n → Term n → Term n -- _⊹_ Substitist = Substitunction = Fin m → Term n Oscar.Data.Proposequality Oscar.Data.Proposextensequality Oscar.Data.Term Oscar.Data.Terms Oscar.Data.PropositionalEquality setoidPropositionalEquality : Set → Setoid Oscar.Data.IndexedPropositionalEquality setoidIndexedPropEq : ∀ {A : Set} {B : A → Set} → ((x : A) → B x) → ((x : A) → B x) → Setoid Oscar.Data.Substitist Oscar.Setoid.PropositionalEquality Oscar.Morphism.Substitist Oscar.Unification Oscar.Data.Substitunction Substitunction m n = Fin m → Term n : Morphism ℕ : Oscar.Definition.Substitist : Morphism ℕ = alistSetoid : IsSemigroupoid : Semigroupoid _++_ : IsCategory : Category Oscar.Definition.Substitist.internal AList alistSetoid : ℕ → ℕ → Setoid ε = anil _++_ -}
{ "alphanum_fraction": 0.6813996317, "avg_line_length": 21.72, "ext": "agda", "hexsha": "0e2e033592b1c31e03db63387d8afc9bbc9c08d3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-2/Oscar/Definition.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-2/Oscar/Definition.agda", "max_line_length": 94, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-2/Oscar/Definition.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 371, "size": 1086 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} module Haskell.Prelude where open import Haskell.Modules.Either public open import Haskell.Modules.Eq public open import Haskell.Modules.FunctorApplicativeMonad public open import Haskell.Modules.ToBool public ------------------------------------------------------------------------------ open import Level renaming (suc to ℓ+1; zero to ℓ0; _⊔_ to _ℓ⊔_) open import Data.Bool hiding (not; _≟_; _<_; _<?_; _≤_; _≤?_) public open import Data.List hiding (map; filter; lookup; tabulate; foldl; fromMaybe; [_]) public import Data.Nat as DN import Data.Nat.DivMod as DivMod import Data.Nat.Properties as DNP open import Data.Maybe using (Maybe; just; nothing) renaming (_>>=_ to _Maybe->>=_) public import Data.Product as DP open import Data.Unit.NonEta using (Unit; unit) public open import Function using (_∘_; id; typeOf; flip; const; _$_) public import Relation.Binary.PropositionalEquality as PE using (_≡_; refl) import Relation.Binary.Definitions as BD import Relation.Binary as RB ------------------------------------------------------------------------------ infixl 1 _&_ _&_ = Function._|>_ -- An approximation of Haskell's backtick notation for making infix operators. -- In Agda, there must be spaces between f and backticks flip' : _ -- Avoids warning about definition and syntax declaration being in different scopes. flip' = flip syntax flip' f = ` f ` ------------------------------------------------------------------------------ -- Guard Syntax -- -- -- Example Usage: -- -- > f : ℕ → ℕ -- > f x = grd‖ x ≟ℕ 10 ≔ 12 -- > ‖ otherwise≔ 40 + 2 -- -- -- > g : ℕ ⊎ ℕ → ℕ -- > g x = case x of λ -- > { (inj₁ x) → grd‖ x ≤? 10 ≔ 2 * x -- > ‖ otherwise≔ 42 -- > ; (inj₂ y) → y -- > } -- -- To type: ‖ --> \Vert -- ≔ --> \:= infix 3 _≔_ data GuardClause {a}{b}(A : Set a) : Set (a ℓ⊔ ℓ+1 b) where _≔_ : {B : Set b}{{ bb : ToBool B }} → B → A → GuardClause A infix 3 otherwise≔_ data Guards {a}{b}(A : Set a) : Set (a ℓ⊔ ℓ+1 b) where otherwise≔_ : A → Guards A clause : GuardClause{a}{b} A → Guards{a}{b} A → Guards A infixr 2 _‖_ _‖_ : ∀{a}{b}{A : Set a} → GuardClause{a}{b} A → Guards A → Guards A _‖_ = clause infix 1 grd‖_ grd‖_ : ∀{a}{b}{A : Set a} → Guards{a}{b} A → A grd‖_ (otherwise≔ a) = a grd‖_ (clause (b ≔ a) g) = if toBool b then a else (grd‖ g) ------------------------------------------------------------------------------ -- List infixl 9 _!?_ _!?_ : {A : Set} → List A → DN.ℕ → Maybe A [] !? _ = nothing (x ∷ _ ) !? 0 = just x (_ ∷ xs) !? (DN.suc n) = xs !? n find' : ∀ {A B : Set} → (A → Maybe B) → List A → Maybe B find' f [] = nothing find' f (a ∷ xs) = Data.Maybe.maybe′ f (find' f xs) (just a) foldl' = Data.List.foldl ------------------------------------------------------------------------------ -- Maybe maybe : ∀ {A B : Set} → B → (A → B) → Maybe A → B maybe b a→b = Data.Maybe.maybe′ a→b b ------------------------------------------------------------------------------ -- Nat div = DivMod._/_ data Ordering : Set where LT EQ GT : Ordering compare : DN.ℕ → DN.ℕ → Ordering compare m n with DNP.<-cmp m n ... | BD.tri< a ¬b ¬c = LT ... | BD.tri≈ ¬a b ¬c = EQ ... | BD.tri> ¬a ¬b c = GT ------------------------------------------------------------------------------ -- Product fst = DP.proj₁ snd = DP.proj₂ ------------------------------------------------------------------------------ -- Monad foldlM : ∀ {ℓ₁ ℓ₂} {A B : Set ℓ₁} {M : Set ℓ₁ → Set ℓ₂} ⦃ _ : Monad M ⦄ → (B → A → M B) → B → List A → M B foldlM _ z [] = pure z foldlM f z (x ∷ xs) = do z' ← f z x foldlM f z' xs foldrM : ∀ {ℓ₁ ℓ₂} {A B : Set ℓ₁} {M : Set ℓ₁ → Set ℓ₂} ⦃ _ : Monad M ⦄ → (A → B → M B) → B → List A → M B foldrM _ b [] = return b foldrM f b (a ∷ as) = foldrM f b as >>= f a foldM = foldlM foldM_ : {A B : Set} {M : Set → Set} ⦃ _ : Monad M ⦄ → (B → A → M B) → B → List A → M Unit foldM_ f a xs = foldlM f a xs >> pure unit fromMaybeM : ∀ {ℓ} {A : Set} {m : Set → Set ℓ} ⦃ _ : Monad m ⦄ → m A → m (Maybe A) → m A fromMaybeM ma mma = do mma >>= λ where nothing → ma (just a) → pure a -- NOTE: because 'forM_' is defined above, it is necessary to -- call 'forM' with parenthesis (e.g., recursive call in definition) -- to disambiguate it for the Agda parser. forM : ∀ {ℓ} {A B : Set} {M : Set → Set ℓ} ⦃ _ : Monad M ⦄ → List A → (A → M B) → M (List B) forM [] _ = return [] forM (x ∷ xs) f = do fx ← f x fxs ← (forM) xs f return (fx ∷ fxs) forM_ : ∀ {ℓ} {A B : Set} {M : Set → Set ℓ} ⦃ _ : Monad M ⦄ → List A → (A → M B) → M Unit forM_ [] _ = return unit forM_ (x ∷ xs) f = f x >> forM_ xs f
{ "alphanum_fraction": 0.498408277, "avg_line_length": 29.2209302326, "ext": "agda", "hexsha": "e20da97548e0580b684b0caae121d6669836b39e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/Haskell/Prelude.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/Haskell/Prelude.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/Haskell/Prelude.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1736, "size": 5026 }
module Ex6AgdaSetup where {- This file contains all the basic types you need for the editor. You should read and understand the Agda in this file, but not bother too much about the funny compiler directives. -} open import CS410-Prelude open import CS410-Nat record _**_ (S T : Set) : Set where constructor _,_ field outl : S outr : T open _**_ {-# COMPILED_DATA _**_ (,) (,) #-} infixr 4 _**_ _,_ _<=_ : Nat -> Nat -> Two zero <= y = tt suc x <= zero = ff suc x <= suc y = x <= y _++_ : {A : Set} -> List A -> List A -> List A [] ++ ys = ys (x :: xs) ++ ys = x :: (xs ++ ys) {- Here are backward lists, which are useful when the closest element is conceptually at the right end. They aren't really crucial as you could use ordinary lists but think of the data as being reversed, but I prefer to keep my thinking straight and use data which look like what I have in mind. -} data Bwd (X : Set) : Set where [] : Bwd X _<:_ : Bwd X -> X -> Bwd X infixl 3 _<:_ {- You will need access to characters, imported from Haskell. You can write character literals like 'c'. You also get strings, with String literals like "fred" -} postulate -- Haskell has a monad for doing IO, which we use at the top level IO : Set -> Set return : {A : Set} -> A -> IO A _>>=_ : {A B : Set} -> IO A -> (A -> IO B) -> IO B infixl 1 _>>=_ {-# BUILTIN IO IO #-} {-# COMPILED_TYPE IO IO #-} {-# COMPILED return (\ _ -> return) #-} {-# COMPILED _>>=_ (\ _ _ -> (>>=)) #-} {- Here's the characterization of keys I give you -} data Direction : Set where up down left right : Direction data Modifier : Set where normal shift control : Modifier data Key : Set where char : Char -> Key arrow : Modifier -> Direction -> Key enter : Key backspace : Key delete : Key escape : Key tab : Key data Event : Set where key : (k : Key) -> Event resize : (w h : Nat) -> Event {- This type classifies the difference between two editor states. -} data Change : Set where allQuiet : Change -- the buffer should be exactly the same cursorMove : Change -- the cursor has moved but the text is the same lineEdit : Change -- only the text on the current line has changed bigChange : Change -- goodness knows! {- This type collects the things you're allowed to do with the text window. -} data Action : Set where goRowCol : Nat -> Nat -> Action -- send the cursor somewhere sendText : List Char -> Action -- send some text move : Direction -> Nat -> Action -- which way and how much fgText : Colour -> Action bgText : Colour -> Action {- I wire all of that stuff up to its Haskell counterpart. -} {-# IMPORT ANSIEscapes #-} {-# IMPORT HaskellSetup #-} {-# COMPILED_DATA Direction ANSIEscapes.Dir ANSIEscapes.DU ANSIEscapes.DD ANSIEscapes.DL ANSIEscapes.DR #-} {-# COMPILED_DATA Modifier HaskellSetup.Modifier HaskellSetup.Normal HaskellSetup.Shift HaskellSetup.Control #-} {-# COMPILED_DATA Key HaskellSetup.Key HaskellSetup.Char HaskellSetup.Arrow HaskellSetup.Enter HaskellSetup.Backspace HaskellSetup.Delete HaskellSetup.Escape HaskellSetup.Tab #-} {-# COMPILED_DATA Event HaskellSetup.Event HaskellSetup.Key HaskellSetup.Resize #-} {-# COMPILED_DATA Change HaskellSetup.Change HaskellSetup.AllQuiet HaskellSetup.CursorMove HaskellSetup.LineEdit HaskellSetup.BigChange #-} {-# COMPILED_DATA Action HaskellSetup.Action HaskellSetup.GoRowCol HaskellSetup.SendText HaskellSetup.Move HaskellSetup.FgText HaskellSetup.BgText #-} {- This is the bit of code I wrote to animate your code. -} postulate mainLoop : {B : Set} -> -- buffer type -- INITIALIZER (List (List Char) -> B) -> -- make a buffer from some lines of text -- KEYSTROKE HANDLER (Key -> B -> -- keystroke and buffer in Change ** B) -> -- change report and buffer out -- RENDERER ((Nat ** Nat) -> -- height and width of screen (Nat ** Nat) -> -- top line number, left column number (Change ** B) -> -- change report and buffer to render (List Action ** -- how to update the display (Nat ** Nat))) -> -- new top line number, left column number -- PUT 'EM TOGETHER AND YOU'VE GOT AN EDITOR! IO One {-# COMPILED mainLoop (\ _ -> HaskellSetup.mainLoop) #-} {- You can use this to put noisy debug messages in Agda code. So trace "fred" tt evaluates to tt, but prints "fred" in the process. -} postulate trace : {A : Set} -> String -> A -> A {-# IMPORT Debug.Trace #-} {-# COMPILED trace (\ _ -> Debug.Trace.trace) #-} {- You can use this to print an error message when you don't know what else to do. It's very useful for filling in unfinished holes to persuade the compiler to compile your code even though it isn't finished: you get an error if you try to run a missing bit. -} postulate error : {A : Set} -> String -> A {-# COMPILED error (\ _ -> error) #-} {- Equality -} {- x == y is a type whenever x and y are values in the same type -} {- data _==_ {X : Set}(x : X) : X -> Set where refl : x == x -- and x == y has a constructor only when y actually is x! infixl 1 _==_ -- {-# BUILTIN EQUALITY _==_ #-} -- {-# BUILTIN REFL refl #-} {-# COMPILED_DATA _==_ HaskellSetup.EQ HaskellSetup.Refl #-} within_turn_into_because_ : {X Y : Set}(f : X -> Y)(x x' : X) -> x == x' -> f x == f x' within f turn x into .x because refl = refl -- the dot tells Agda that *only* x can go there symmetry : {X : Set}{x x' : X} -> x == x' -> x' == x symmetry refl = refl transitivity : {X : Set}{x0 x1 x2 : X} -> x0 == x1 -> x1 == x2 -> x0 == x2 transitivity refl refl = refl -} within_turn_into_because_ : {X Y : Set}(f : X -> Y)(x x' : X) -> x == x' -> f x == f x' within f turn x into .x because refl = refl {- postulate _==_ : {X : Set} -> X -> X -> Set -- the evidence that two X-values are equal refl : {X : Set}{x : X} -> x == x symmetry : {X : Set}{x x' : X} -> x == x' -> x' == x transitivity : {X : Set}{x0 x1 x2 : X} -> x0 == x1 -> x1 == x2 -> x0 == x2 within_turn_into_because_ : {X Y : Set}(f : X -> Y)(x x' : X) -> x == x' -> f x == f x' infix 1 _==_ {-# COMPILED_TYPE _==_ HaskellSetup.EQ #-} {- Here's an example. -} additionAssociative : (x y z : Nat) -> (x + y) + z == x + (y + z) additionAssociative zero y z = refl additionAssociative (suc x) y z = within suc turn ((x + y) + z) into (x + (y + z)) because additionAssociative x y z -}
{ "alphanum_fraction": 0.6069681245, "avg_line_length": 34.9481865285, "ext": "agda", "hexsha": "3dbd896d2b21a89d97152f7523d609c90fea7db2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "clarkdm/CS410", "max_forks_repo_path": "Ex6AgdaSetup.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "clarkdm/CS410", "max_issues_repo_path": "Ex6AgdaSetup.agda", "max_line_length": 82, "max_stars_count": null, "max_stars_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "clarkdm/CS410", "max_stars_repo_path": "Ex6AgdaSetup.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1961, "size": 6745 }
------------------------------------------------------------------------ -- The partiality monads in Partiality-monad.Inductive and -- Partiality-monad.Coinductive are pointwise equivalent, for sets, -- assuming extensionality and countable choice ------------------------------------------------------------------------ {-# OPTIONS --cubical --sized-types #-} open import Prelude hiding (⊥; ↑) module Partiality-monad.Equivalence {a} {A : Type a} where open import Equality.Propositional.Cubical open import Logical-equivalence using (_⇔_) open import Prelude.Size open import Bijection equality-with-J using (_↔_) open import Embedding equality-with-J using (Is-embedding; Injective≃Is-embedding) open import Equivalence equality-with-J as Eq using (_≃_; Is-equivalence) open import Function-universe equality-with-J as F hiding (id; _∘_) open import H-level equality-with-J open import H-level.Closure equality-with-J open import H-level.Truncation.Propositional equality-with-paths as Trunc open import Injection equality-with-J using (Injective) open import Quotient equality-with-paths as Quotient hiding ([_]) open import Univalence-axiom equality-with-J import Delay-monad as D open import Delay-monad.Alternative as A using (_↓_; _↑) import Delay-monad.Alternative.Equivalence as A import Delay-monad.Alternative.Partial-order as A import Delay-monad.Alternative.Termination as A import Delay-monad.Alternative.Weak-bisimilarity as A import Delay-monad.Bisimilarity as B import Partiality-monad.Coinductive as C import Partiality-monad.Coinductive.Alternative as CA open import Partiality-monad.Inductive as I hiding (_⊥; _⊑_; Increasing-sequence; _⇓_) open import Partiality-monad.Inductive.Alternative-order open import Partiality-monad.Inductive.Eliminators ------------------------------------------------------------------------ -- A function from the partiality monad defined in -- Partiality-monad.Coinductive.Alternative to the inductive -- partiality monad -- Turns potential values into partial values. Maybe→⊥ : Maybe A → A I.⊥ Maybe→⊥ nothing = never Maybe→⊥ (just y) = now y -- Maybe→⊥ is monotone. Maybe→⊥-mono : ∀ {x y} → A.LE x y → Maybe→⊥ x I.⊑ Maybe→⊥ y Maybe→⊥-mono (inj₁ refl) = ⊑-refl _ Maybe→⊥-mono (inj₂ (refl , y≢n)) = never⊑ _ -- Maybe→⊥ can be used to turn increasing sequences of one kind into -- increasing sequences of another kind. Delay→Inc-seq : A.Delay A → I.Increasing-sequence A Delay→Inc-seq (f , inc) = Maybe→⊥ ∘ f , Maybe→⊥-mono ∘ inc -- Turns increasing sequences of potential values into partial values. Delay→⊥ : A.Delay A → A I.⊥ Delay→⊥ = ⨆ ∘ Delay→Inc-seq -- Delay→⊥ is monotone (if A is a set). Delay→⊥-mono : Is-set A → ∀ x y → x A.∥⊑∥ y → Delay→⊥ x I.⊑ Delay→⊥ y Delay→⊥-mono A-set x@(f , _) y@(g , _) x⊑y = ∃⊑→⨆⊑⨆ inc where inc : ∀ m → ∃ λ n → Maybe→⊥ (f m) I.⊑ Maybe→⊥ (g n) inc m with inspect (f m) inc m | nothing , fm↑ = 0 , (Maybe→⊥ (f m) ≡⟨ cong Maybe→⊥ fm↑ ⟩⊑ never ⊑⟨ never⊑ _ ⟩■ Maybe→⊥ (g 0) ■) inc m | just z , fm↓z = k , (Maybe→⊥ (f m) ≡⟨ cong Maybe→⊥ fm↓z ⟩⊑ Maybe→⊥ (just z) ≡⟨ cong Maybe→⊥ (sym $ proj₂ y⇓z) ⟩⊑ Maybe→⊥ (g k) ■) where y⇓z = $⟨ ∣ m , fm↓z ∣ ⟩ x A.∥⇓∥ z ↝⟨ x⊑y z ⟩ y A.∥⇓∥ z ↝⟨ _⇔_.from (A.⇓⇔∥⇓∥ A-set y) ⟩□ y A.⇓ z □ k : ℕ k = proj₁ y⇓z -- Delay→⊥ maps weakly bisimilar values to equal values (if A is a -- set). Delay→⊥-≈→≡ : Is-set A → ∀ x y → x A.≈ y → Delay→⊥ x ≡ Delay→⊥ y Delay→⊥-≈→≡ A-set x y = x A.≈ y ↝⟨ Σ-map (Delay→⊥-mono A-set x y) (Delay→⊥-mono A-set y x) ⟩ Delay→⊥ x I.⊑ Delay→⊥ y × Delay→⊥ x I.⊒ Delay→⊥ y ↝⟨ uncurry antisymmetry ⟩□ Delay→⊥ x ≡ Delay→⊥ y □ -- If A is a set, then values in A CA.⊥ can be mapped to values in the -- inductive partiality monad. ⊥→⊥ : Is-set A → A CA.⊥ → A I.⊥ ⊥→⊥ A-set = Quotient.rec λ where .[]ʳ → Delay→⊥ .[]-respects-relationʳ {x = x} {y = y} → Delay→⊥-≈→≡ A-set x y .is-setʳ → ⊥-is-set ------------------------------------------------------------------------ -- A lemma -- I._⇓_ and A._∥⇓∥_ are pointwise logically equivalent (via Delay→⊥), -- for sets. ⇓⇔∥⇓∥ : Is-set A → ∀ x {y} → Delay→⊥ x I.⇓ y ⇔ x A.∥⇓∥ y ⇓⇔∥⇓∥ A-set x@(f , _) {y} = Delay→⊥ x I.⇓ y ↔⟨⟩ ⨆ (Delay→Inc-seq x) I.⇓ y ↔⟨ ⨆⇓≃∥∃⇓∥ ⟩ ∥ (∃ λ n → Maybe→⊥ (f n) I.⇓ y) ∥ ↝⟨ ∥∥-cong-⇔ (∃-cong λ _ → record { to = to _; from = cong Maybe→⊥ }) ⟩ ∥ (∃ λ n → f n ↓ y) ∥ ↝⟨ F.id ⟩□ x A.∥⇓∥ y □ where to : ∀ n → Maybe→⊥ (f n) I.⇓ y → f n ↓ y to n f⇓y with f n ... | nothing = ⊥-elim $ now≢never _ (sym f⇓y) ... | just y′ = just y′ ≡⟨ cong just y′≡y ⟩∎ just y ∎ where y′≡y = $⟨ f⇓y ⟩ now y′ ≡ now y ↔⟨ now≡now≃∥≡∥ ⟩ ∥ y′ ≡ y ∥ ↝⟨ ∥∥↔ A-set ⟩□ y′ ≡ y □ ------------------------------------------------------------------------ -- ⊥→⊥ is injective -- Delay→⊥ is (kind of) injective (if A is a set). Delay→⊥-injective : Is-set A → ∀ x y → Delay→⊥ x ≡ Delay→⊥ y → x A.≈ y Delay→⊥-injective A-set x y x≡y = lemma A-set x y (≡→⊑ x≡y) , lemma A-set y x (≡→⊑ (sym x≡y)) where ≡→⊑ : ∀ {x y} → x ≡ y → x I.⊑ y ≡→⊑ refl = ⊑-refl _ lemma : Is-set A → ∀ x y → Delay→⊥ x I.⊑ Delay→⊥ y → x A.∥⊑∥ y lemma A-set x y x⊑y z = x A.∥⇓∥ z ↝⟨ _⇔_.from (⇓⇔∥⇓∥ A-set x) ⟩ Delay→⊥ x I.⇓ z ↔⟨ ⇓≃now⊑ ⟩ now z I.⊑ Delay→⊥ x ↝⟨ flip ⊑-trans x⊑y ⟩ now z I.⊑ Delay→⊥ y ↔⟨ inverse ⇓≃now⊑ ⟩ Delay→⊥ y I.⇓ z ↝⟨ _⇔_.to (⇓⇔∥⇓∥ A-set y) ⟩□ y A.∥⇓∥ z □ -- ⊥→⊥ A-set is injective. ⊥→⊥-injective : (A-set : Is-set A) → Injective (⊥→⊥ A-set) ⊥→⊥-injective A-set {x} {y} = Quotient.elim-prop {P = λ x → ⊥→⊥ A-set x ≡ ⊥→⊥ A-set y → x ≡ y} (λ where .[]ʳ x → Quotient.elim-prop {P = λ y → Delay→⊥ x ≡ ⊥→⊥ A-set y → Quotient.[ x ] ≡ y} (λ where .[]ʳ y → []-respects-relation ∘ Delay→⊥-injective A-set x y .is-propositionʳ _ → Π-closure ext 1 λ _ → /-is-set) y .is-propositionʳ _ → Π-closure ext 1 λ _ → /-is-set) x ------------------------------------------------------------------------ -- ⊥→⊥ is surjective -- Delay→⊥ is surjective (if A is a set, assuming countable choice). Delay→⊥-surjective : Is-set A → Axiom-of-countable-choice a → Surjective Delay→⊥ Delay→⊥-surjective A-set cc = ⊥-rec-⊥ (record { pe = constant-sequence nothing ; po = constant-sequence ∘ just ; pl = λ s → (∀ n → ∥ (∃ λ x → Delay→⊥ x ≡ s [ n ]) ∥) ↝⟨ cc ⟩ ∥ (∀ n → ∃ λ x → Delay→⊥ x ≡ s [ n ]) ∥ ↔⟨ ∥∥-cong ΠΣ-comm ⟩ ∥ (∃ λ f → ∀ n → Delay→⊥ (f n) ≡ s [ n ]) ∥ ↝⟨ ∥∥-map (uncurry $ flip construct s) ⟩□ ∥ (∃ λ x → Delay→⊥ x ≡ ⨆ s) ∥ □ ; pp = λ _ → truncation-is-proposition }) where -- The increasing sequences (of type A.Delay A) returned by this -- function are constant. constant-sequence : ∀ x → ∥ (∃ λ y → Delay→⊥ y ≡ Maybe→⊥ x) ∥ constant-sequence x = ∣ (const x , const (inj₁ refl)) , ⨆-const ∣ -- Given a sequence and an increasing sequence s that are pointwise -- equal (via Delay→⊥) one can construct an increasing sequence that -- is equal (via Delay→⊥) to ⨆ s. construct : (f : ℕ → A.Delay A) (s : I.Increasing-sequence A) → (∀ n → Delay→⊥ (f n) ≡ s [ n ]) → ∃ λ x → Delay→⊥ x ≡ ⨆ s construct f s h = x , x-correct where -- We use f and an isomorphism between ℕ and ℕ × ℕ to construct a -- function from ℕ to Maybe A. f₂ : ℕ → ℕ → Maybe A f₂ m n = proj₁ (f m) n f₁ : ℕ → Maybe A f₁ = ℕ ↔⟨ ℕ↔ℕ² ⟩ ℕ × ℕ ↝⟨ uncurry f₂ ⟩□ Maybe A □ -- All values that this function can terminate with are equal. termination-value-unique-f₂ : ∀ {m n y m′ n′ y′} → f₂ m n ↓ y × f₂ m′ n′ ↓ y′ → y ≡ y′ termination-value-unique-f₂ {m} {n} {y} {m′} {n′} {y′} = f₂ m n ↓ y × f₂ m′ n′ ↓ y′ ↝⟨ f₂↓→⨆s⇓ ×-cong f₂↓→⨆s⇓ ⟩ ⨆ s I.⇓ y × ⨆ s I.⇓ y′ ↝⟨ uncurry termination-value-merely-unique ⟩ ∥ y ≡ y′ ∥ ↔⟨ ∥∥↔ A-set ⟩□ y ≡ y′ □ where f₂↓→⨆s⇓ : ∀ {y m n} → f₂ m n ↓ y → ⨆ s I.⇓ y f₂↓→⨆s⇓ {y} {m} f₂↓ = terminating-element-is-⨆ s (s [ m ] ≡⟨ sym (h m) ⟩ Delay→⊥ (f m) ≡⟨ _⇔_.from (⇓⇔∥⇓∥ A-set (f m)) ∣ _ , f₂↓ ∣ ⟩∎ now y ∎) termination-value-unique-f₁ : ∀ {y y′} → (∃ λ n → f₁ n ↓ y) → (∃ λ n → f₁ n ↓ y′) → y ≡ y′ termination-value-unique-f₁ (_ , ↓y) (_ , ↓y′) = termination-value-unique-f₂ (↓y , ↓y′) abstract -- Thus the function can be completed to an increasing sequence. completed-f₁ : ∃ λ x → ∀ {y} → x A.⇓ y ⇔ ∃ λ n → f₁ n ↓ y completed-f₁ = A.complete-function f₁ termination-value-unique-f₁ -- The increasing sequence that is returned above. x : A.Delay A x = proj₁ completed-f₁ -- Every potential value in the increasing sequence x is smaller -- than or equal to (via Maybe→⊥) some value in s. x⊑s : ∀ m → ∃ λ n → Maybe→⊥ (proj₁ x m) I.⊑ s [ n ] x⊑s m with inspect (proj₁ x m) x⊑s m | nothing , x↑ = zero , (Maybe→⊥ (proj₁ x m) ≡⟨ cong Maybe→⊥ x↑ ⟩⊑ never ⊑⟨ never⊑ _ ⟩■ s [ 0 ] ■) x⊑s m | just y , x↓ = n₁ , (Maybe→⊥ (proj₁ x m) ≡⟨ cong Maybe→⊥ x↓ ⟩⊑ now y ≡⟨ sym f⇓ ⟩⊑ Delay→⊥ (f n₁) ≡⟨ h n₁ ⟩⊑ s [ n₁ ] ■) where f₁↓ : ∃ λ n → f₁ n ↓ y f₁↓ = _⇔_.to (proj₂ completed-f₁) (_ , x↓) n = proj₁ f₁↓ n₁ = proj₁ (_↔_.to ℕ↔ℕ² n) n₂ = proj₂ (_↔_.to ℕ↔ℕ² n) f⇓ : Delay→⊥ (f n₁) I.⇓ y f⇓ = _≃_.from ⇓≃now⊑ (now y ≡⟨ cong Maybe→⊥ $ sym $ proj₂ f₁↓ ⟩⊑ Maybe→⊥ (f₁ n) ⊑⟨⟩ Maybe→⊥ (f₂ n₁ n₂) ⊑⟨⟩ Maybe→⊥ (proj₁ (f n₁) n₂) ⊑⟨⟩ Delay→Inc-seq (f n₁) [ n₂ ] ⊑⟨ upper-bound (Delay→Inc-seq (f n₁)) _ ⟩■ Delay→⊥ (f n₁) ■) -- Furthermore every potential value in f is smaller than or equal -- to x. f⊑x : ∀ m → f m A.⊑ x f⊑x m y = f m A.⇓ y ↝⟨ Σ-map (_↔_.from ℕ↔ℕ² ∘ (m ,_)) (λ {n} → f₂ m n ↓ y ↝⟨ ≡⇒→ (cong ((_↓ y) ∘ uncurry f₂) $ sym $ _↔_.right-inverse-of ℕ↔ℕ² (m , n)) ⟩ uncurry f₂ (_↔_.to ℕ↔ℕ² (_↔_.from ℕ↔ℕ² (m , n))) ↓ y ↝⟨ F.id ⟩□ f₁ (_↔_.from ℕ↔ℕ² (m , n)) ↓ y □) ⟩ (∃ λ n → f₁ n ↓ y) ↝⟨ _⇔_.from (proj₂ completed-f₁) ⟩□ x A.⇓ y □ -- Thus x is correctly defined. x-correct : Delay→⊥ x ≡ ⨆ s x-correct = antisymmetry (⊑→⨆⊑⨆ λ n → Delay→Inc-seq x [ n ] ⊑⟨ proj₂ (x⊑s n) ⟩■ s [ proj₁ (x⊑s n) ] ■) (least-upper-bound _ _ λ m → s [ m ] ≡⟨ sym (h m) ⟩⊑ Delay→⊥ (f m) ⊑⟨ Delay→⊥-mono A-set (f m) x (∥∥-map ∘ f⊑x m) ⟩■ Delay→⊥ x ■) -- ⊥→⊥ A-set is surjective (assuming countable choice). ⊥→⊥-surjective : (A-set : Is-set A) → Axiom-of-countable-choice a → Surjective (⊥→⊥ A-set) ⊥→⊥-surjective A-set cc x = ∥∥-map (λ { (pre , can-pre≡x) → Quotient.[ pre ] , can-pre≡x }) (Delay→⊥-surjective A-set cc x) ------------------------------------------------------------------------ -- ⊥→⊥ is an equivalence -- ⊥→⊥ A-set is an equivalence (assuming countable choice). ⊥→⊥-equiv : (A-set : Is-set A) → Axiom-of-countable-choice a → Is-equivalence (⊥→⊥ A-set) ⊥→⊥-equiv A-set cc = $⟨ _,_ {B = const _} (⊥→⊥-surjective A-set cc) (λ {_ _} → ⊥→⊥-injective A-set) ⟩ Surjective (⊥→⊥ A-set) × Injective (⊥→⊥ A-set) ↝⟨ Σ-map id (_≃_.to (Injective≃Is-embedding ext /-is-set ⊥-is-set _)) ⟩ Surjective (⊥→⊥ A-set) × Is-embedding (⊥→⊥ A-set) ↝⟨ _≃_.to surjective×embedding≃equivalence ⟩□ Is-equivalence (⊥→⊥ A-set) □ -- Thus the inductive definition of the partiality monad is equivalent -- to the definition in Partiality-monad.Coinductive.Alternative, for -- sets, assuming countable choice. ⊥≃⊥′ : Is-set A → Axiom-of-countable-choice a → A CA.⊥ ≃ A I.⊥ ⊥≃⊥′ A-set choice = Eq.⟨ _ , ⊥→⊥-equiv A-set choice ⟩ ------------------------------------------------------------------------ -- The two definitions of the partiality monad are equivalent -- The inductive and coinductive definitions of the partiality monad -- are pointwise equivalent, for sets, assuming extensionality and -- countable choice. ⊥≃⊥ : Is-set A → B.Extensionality a → Axiom-of-countable-choice a → A I.⊥ ≃ A C.⊥ ⊥≃⊥ A-set delay-ext choice = A I.⊥ ↝⟨ inverse (⊥≃⊥′ A-set choice) ⟩ A CA.⊥ ↔⟨ CA.⊥↔⊥ A-set delay-ext ⟩□ A C.⊥ □ -- The previous result has a number of preconditions. None of these -- preconditions are needed to translate from the delay monad to the -- quotient inductive-inductive partiality monad. Delay→⊥′ : D.Delay A ∞ → A I.⊥ Delay→⊥′ = D.Delay A ∞ ↝⟨ _⇔_.from A.Delay⇔Delay ⟩ A.Delay A ↝⟨ Delay→⊥ ⟩□ A I.⊥ □ -- This translation turns weakly bisimilar computations into equal -- computations, assuming that the underlying type is a set. Delay→⊥′-≈→≡ : Is-set A → ∀ {x y} → x B.≈ y → Delay→⊥′ x ≡ Delay→⊥′ y Delay→⊥′-≈→≡ A-set {x} {y} = x B.≈ y ↝⟨ _⇔_.to (A.≈⇔≈′ A-set) ⟩ _⇔_.from A.Delay⇔Delay x A.≈ _⇔_.from A.Delay⇔Delay y ↝⟨ Delay→⊥-≈→≡ A-set (_⇔_.from A.Delay⇔Delay x) (_⇔_.from A.Delay⇔Delay y) ⟩□ Delay→⊥′ x ≡ Delay→⊥′ y □ -- One can also translate from the coinductive to the inductive -- partiality monad, as long as the underlying type is a set. ⊥→⊥′ : Is-set A → A C.⊥ → A I.⊥ ⊥→⊥′ A-set = Quotient.rec λ where .[]ʳ → Delay→⊥′ .[]-respects-relationʳ → Trunc.rec I.⊥-is-set (Delay→⊥′-≈→≡ A-set) .is-setʳ → I.⊥-is-set
{ "alphanum_fraction": 0.481583099, "avg_line_length": 34.5473933649, "ext": "agda", "hexsha": "a583edf50e55859f8cc5d905b6d36f39f2733f33", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/partiality-monad", "max_forks_repo_path": "src/Partiality-monad/Equivalence.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/partiality-monad", "max_issues_repo_path": "src/Partiality-monad/Equivalence.agda", "max_line_length": 148, "max_stars_count": 2, "max_stars_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/partiality-monad", "max_stars_repo_path": "src/Partiality-monad/Equivalence.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:08.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:59:18.000Z", "num_tokens": 6075, "size": 14579 }
{-# OPTIONS --universe-polymorphism #-} -- {-# OPTIONS --verbose tc.rec:15 #-} -- {-# OPTIONS --verbose tc.records.ifs:15 #-} -- {-# OPTIONS --verbose tc.constr.findInScope:15 #-} -- {-# OPTIONS --verbose tc.term.args.ifs:15 #-} module InstanceArguments.05-equality-std2 where open import Agda.Primitive open import Relation.Nullary open import Relation.Binary open import Relation.Binary.PropositionalEquality open import Data.Bool hiding (_≟_) open DecSetoid {{...}} instance decBool = Data.Bool.decSetoid test : IsDecEquivalence (_≡_ {A = Bool}) test = isDecEquivalence test2 = false ≟ false
{ "alphanum_fraction": 0.7164179104, "avg_line_length": 25.125, "ext": "agda", "hexsha": "8d6b85d608f44837a99a2d6f0b06b08b89d1ce49", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "hborum/agda", "max_forks_repo_path": "test/LibSucceed/InstanceArguments/05-equality-std2.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/LibSucceed/InstanceArguments/05-equality-std2.agda", "max_line_length": 53, "max_stars_count": 3, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/LibSucceed/InstanceArguments/05-equality-std2.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 160, "size": 603 }
module Syntax.Substitution where open import Syntax.Substitution.Kits public open import Syntax.Substitution.Instances public open import Syntax.Substitution.Lemmas public
{ "alphanum_fraction": 0.8620689655, "avg_line_length": 24.8571428571, "ext": "agda", "hexsha": "a6e6cbb92571ca0a711a78b4be1ff46759d3cfa0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DimaSamoz/temporal-type-systems", "max_forks_repo_path": "src/Syntax/Substitution.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DimaSamoz/temporal-type-systems", "max_issues_repo_path": "src/Syntax/Substitution.agda", "max_line_length": 48, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DimaSamoz/temporal-type-systems", "max_stars_repo_path": "src/Syntax/Substitution.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-04T09:33:48.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-31T20:37:04.000Z", "num_tokens": 35, "size": 174 }
------------------------------------------------------------------------ -- Properties related to Any ------------------------------------------------------------------------ -- The other modules under Data.List.Any also contain properties -- related to Any. module Any where open import Algebra import Algebra.Definitions as FP open import Effect.Monad open import Data.Bool open import Data.Bool.Properties open import Data.Empty open import Data.List as List open import Data.List.Relation.Unary.Any as Any using (Any; here; there) import Data.List.Effectful open import Data.Product as Prod hiding (swap) open import Data.Product.Function.NonDependent.Propositional using (_×-cong_) open import Data.Product.Relation.Binary.Pointwise.NonDependent import Data.Product.Function.Dependent.Propositional as Σ open import Data.Sum as Sum using (_⊎_; inj₁; inj₂; [_,_]′) open import Data.Sum.Relation.Binary.Pointwise open import Data.Sum.Function.Propositional using (_⊎-cong_) open import Function using (_$_; _$′_; _∘_; id; flip; const) open import Function.Equality using (_⟨$⟩_) open import Function.Equivalence as Eq using (_⇔_; module Equivalence) open import Function.Inverse as Inv using (_↔_; module Inverse) open import Function.Related as Related using (Related; SK-sym) open import Function.Related.TypeIsomorphisms open import Level open import Relation.Binary hiding (_⇔_) import Relation.Binary.HeterogeneousEquality as H open import Relation.Binary.PropositionalEquality as P using (_≡_; refl; inspect) renaming ([_] to P[_]) open import Relation.Unary using (_⟨×⟩_; _⟨→⟩_) renaming (_⊆_ to _⋐_) open import Data.List.Membership.Propositional open import Data.List.Relation.Binary.BagAndSetEquality open Related.EquationalReasoning private module ×⊎ {k ℓ} = CommutativeSemiring (×-⊎-commutativeSemiring k ℓ) open module ListMonad {ℓ} = RawMonad (Data.List.Effectful.monad {ℓ = ℓ}) ------------------------------------------------------------------------ -- Some lemmas related to map, find and lose -- Any.map is functorial. map-id : ∀ {a p} {A : Set a} {P : A → Set p} (f : P ⋐ P) {xs} → (∀ {x} (p : P x) → f p ≡ p) → (p : Any P xs) → Any.map f p ≡ p map-id f hyp (here p) = P.cong here (hyp p) map-id f hyp (there p) = P.cong there $ map-id f hyp p map-∘ : ∀ {a p q r} {A : Set a} {P : A → Set p} {Q : A → Set q} {R : A → Set r} (f : Q ⋐ R) (g : P ⋐ Q) {xs} (p : Any P xs) → Any.map (f ∘ g) p ≡ Any.map f (Any.map g p) map-∘ f g (here p) = refl map-∘ f g (there p) = P.cong there $ map-∘ f g p -- Lemmas relating map and find. map∘find : ∀ {a p} {A : Set a} {P : A → Set p} {xs} (p : Any P xs) → let p′ = find p in {f : _≡_ (proj₁ p′) ⋐ P} → f refl ≡ proj₂ (proj₂ p′) → Any.map f (proj₁ (proj₂ p′)) ≡ p map∘find (here p) hyp = P.cong here hyp map∘find (there p) hyp = P.cong there (map∘find p hyp) find∘map : ∀ {a p q} {A : Set a} {P : A → Set p} {Q : A → Set q} {xs : List A} (p : Any P xs) (f : P ⋐ Q) → find (Any.map f p) ≡ Prod.map id (Prod.map id f) (find p) find∘map (here p) f = refl find∘map (there p) f rewrite find∘map p f = refl -- find satisfies a simple equality when the predicate is a -- propositional equality. find-∈ : ∀ {a} {A : Set a} {x : A} {xs : List A} (x∈xs : x ∈ xs) → find x∈xs ≡ (x , x∈xs , refl) find-∈ (here refl) = refl find-∈ (there x∈xs) rewrite find-∈ x∈xs = refl private -- find and lose are inverses (more or less). lose∘find : ∀ {a p} {A : Set a} {P : A → Set p} {xs : List A} (p : Any P xs) → uncurry′ lose (proj₂ (find p)) ≡ p lose∘find p = map∘find p P.refl find∘lose : ∀ {a p} {A : Set a} (P : A → Set p) {x xs} (x∈xs : x ∈ xs) (pp : P x) → find {P = P} (lose x∈xs pp) ≡ (x , x∈xs , pp) find∘lose P x∈xs p rewrite find∘map x∈xs (flip (P.subst P) p) | find-∈ x∈xs = refl -- Any can be expressed using _∈_. Any↔ : ∀ {a p} {A : Set a} {P : A → Set p} {xs} → (∃ λ x → x ∈ xs × P x) ↔ Any P xs Any↔ {P = P} {xs} = record { to = P.→-to-⟶ to ; from = P.→-to-⟶ (find {P = P}) ; inverse-of = record { left-inverse-of = λ p → find∘lose P (proj₁ (proj₂ p)) (proj₂ (proj₂ p)) ; right-inverse-of = lose∘find } } where to : (∃ λ x → x ∈ xs × P x) → Any P xs to = uncurry′ lose ∘ proj₂ ------------------------------------------------------------------------ -- Any is a congruence Any-cong : ∀ {k ℓ} {A : Set ℓ} {P₁ P₂ : A → Set ℓ} {xs₁ xs₂ : List A} → (∀ x → Related k (P₁ x) (P₂ x)) → xs₁ ∼[ k ] xs₂ → Related k (Any P₁ xs₁) (Any P₂ xs₂) Any-cong {P₁ = P₁} {P₂} {xs₁} {xs₂} P₁↔P₂ xs₁≈xs₂ = Any P₁ xs₁ ↔⟨ SK-sym $ Any↔ {P = P₁} ⟩ (∃ λ x → x ∈ xs₁ × P₁ x) ∼⟨ Σ.cong Inv.id (xs₁≈xs₂ ×-cong P₁↔P₂ _) ⟩ (∃ λ x → x ∈ xs₂ × P₂ x) ↔⟨ Any↔ {P = P₂} ⟩ Any P₂ xs₂ ∎ ------------------------------------------------------------------------ -- Swapping -- Nested occurrences of Any can sometimes be swapped. See also ×↔. swap : ∀ {ℓ} {A B : Set ℓ} {P : A → B → Set ℓ} {xs ys} → Any (λ x → Any (P x) ys) xs ↔ Any (λ y → Any (flip P y) xs) ys swap {ℓ} {P = P} {xs} {ys} = Any (λ x → Any (P x) ys) xs ↔⟨ SK-sym Any↔ ⟩ (∃ λ x → x ∈ xs × Any (P x) ys) ↔⟨ SK-sym $ Σ.cong Inv.id (Σ.cong Inv.id Any↔) ⟩ (∃ λ x → x ∈ xs × ∃ λ y → y ∈ ys × P x y) ↔⟨ Σ.cong Inv.id (∃∃↔∃∃ _) ⟩ (∃₂ λ x y → x ∈ xs × y ∈ ys × P x y) ↔⟨ ∃∃↔∃∃ _ ⟩ (∃₂ λ y x → x ∈ xs × y ∈ ys × P x y) ↔⟨ Σ.cong Inv.id (Σ.cong Inv.id (∃∃↔∃∃ _)) ⟩ (∃₂ λ y x → y ∈ ys × x ∈ xs × P x y) ↔⟨ Σ.cong Inv.id (∃∃↔∃∃ _) ⟩ (∃ λ y → y ∈ ys × ∃ λ x → x ∈ xs × P x y) ↔⟨ Σ.cong Inv.id (Σ.cong Inv.id Any↔) ⟩ (∃ λ y → y ∈ ys × Any (flip P y) xs) ↔⟨ Any↔ ⟩ Any (λ y → Any (flip P y) xs) ys ∎ ------------------------------------------------------------------------ -- Lemmas relating Any to ⊥ ⊥↔Any⊥ : ∀ {a} {A : Set a} {xs : List A} → ⊥ ↔ Any (const ⊥) xs ⊥↔Any⊥ {A = A} = record { to = P.→-to-⟶ (λ ()) ; from = P.→-to-⟶ (λ p → from p) ; inverse-of = record { left-inverse-of = λ () ; right-inverse-of = λ p → from p } } where from : {xs : List A} → Any (const ⊥) xs → ∀ {b} {B : Set b} → B from (here ()) from (there p) = from p ⊥↔Any[] : ∀ {a} {A : Set a} {P : A → Set} → ⊥ ↔ Any P [] ⊥↔Any[] = record { to = P.→-to-⟶ (λ ()) ; from = P.→-to-⟶ (λ ()) ; inverse-of = record { left-inverse-of = λ () ; right-inverse-of = λ () } } ------------------------------------------------------------------------ -- Lemmas relating Any to sums and products -- Sums commute with Any (for a fixed list). ⊎↔ : ∀ {a p q} {A : Set a} {P : A → Set p} {Q : A → Set q} {xs} → (Any P xs ⊎ Any Q xs) ↔ Any (λ x → P x ⊎ Q x) xs ⊎↔ {P = P} {Q} = record { to = P.→-to-⟶ to ; from = P.→-to-⟶ from ; inverse-of = record { left-inverse-of = from∘to ; right-inverse-of = to∘from } } where to : ∀ {xs} → Any P xs ⊎ Any Q xs → Any (λ x → P x ⊎ Q x) xs to = [ Any.map inj₁ , Any.map inj₂ ]′ from : ∀ {xs} → Any (λ x → P x ⊎ Q x) xs → Any P xs ⊎ Any Q xs from (here (inj₁ p)) = inj₁ (here p) from (here (inj₂ q)) = inj₂ (here q) from (there p) = Sum.map there there (from p) from∘to : ∀ {xs} (p : Any P xs ⊎ Any Q xs) → from (to p) ≡ p from∘to (inj₁ (here p)) = P.refl from∘to (inj₁ (there p)) rewrite from∘to (inj₁ p) = P.refl from∘to (inj₂ (here q)) = P.refl from∘to (inj₂ (there q)) rewrite from∘to (inj₂ q) = P.refl to∘from : ∀ {xs} (p : Any (λ x → P x ⊎ Q x) xs) → to (from p) ≡ p to∘from (here (inj₁ p)) = P.refl to∘from (here (inj₂ q)) = P.refl to∘from (there p) with from p | to∘from p to∘from (there .(Any.map inj₁ p)) | inj₁ p | P.refl = P.refl to∘from (there .(Any.map inj₂ q)) | inj₂ q | P.refl = P.refl -- Products "commute" with Any. ×↔ : {A B : Set} {P : A → Set} {Q : B → Set} {xs : List A} {ys : List B} → (Any P xs × Any Q ys) ↔ Any (λ x → Any (λ y → P x × Q y) ys) xs ×↔ {P = P} {Q} {xs} {ys} = record { to = P.→-to-⟶ to ; from = P.→-to-⟶ from ; inverse-of = record { left-inverse-of = from∘to ; right-inverse-of = to∘from } } where to : Any P xs × Any Q ys → Any (λ x → Any (λ y → P x × Q y) ys) xs to (p , q) = Any.map (λ p → Any.map (λ q → (p , q)) q) p from : Any (λ x → Any (λ y → P x × Q y) ys) xs → Any P xs × Any Q ys from pq with Prod.map id (Prod.map id find) (find pq) ... | (x , x∈xs , y , y∈ys , p , q) = (lose x∈xs p , lose y∈ys q) from∘to : ∀ pq → from (to pq) ≡ pq from∘to (p , q) rewrite find∘map {Q = λ x → Any (λ y → P x × Q y) ys} p (λ p → Any.map (λ q → (p , q)) q) | find∘map {Q = λ y → P (proj₁ (find p)) × Q y} q (λ q → proj₂ (proj₂ (find p)) , q) | lose∘find p | lose∘find q = refl to∘from : ∀ pq → to (from pq) ≡ pq to∘from pq with find pq | (λ (f : _≡_ (proj₁ (find pq)) ⋐ _) → map∘find pq {f}) ... | (x , x∈xs , pq′) | lem₁ with find pq′ | (λ (f : _≡_ (proj₁ (find pq′)) ⋐ _) → map∘find pq′ {f}) ... | (y , y∈ys , p , q) | lem₂ rewrite P.sym $ map-∘ {R = λ x → Any (λ y → P x × Q y) ys} (λ p → Any.map (λ q → p , q) (lose y∈ys q)) (λ y → P.subst P y p) x∈xs = lem₁ _ helper where helper : Any.map (λ q → p , q) (lose y∈ys q) ≡ pq′ helper rewrite P.sym $ map-∘ {R = λ y → P x × Q y} (λ q → p , q) (λ y → P.subst Q y q) y∈ys = lem₂ _ refl ------------------------------------------------------------------------ -- Invertible introduction (⁺) and elimination (⁻) rules for various -- list functions -- map. private map⁺ : ∀ {a b p} {A : Set a} {B : Set b} {P : B → Set p} {f : A → B} {xs} → Any (P ∘ f) xs → Any P (List.map f xs) map⁺ (here p) = here p map⁺ (there p) = there $ map⁺ p map⁻ : ∀ {a b p} {A : Set a} {B : Set b} {P : B → Set p} {f : A → B} {xs} → Any P (List.map f xs) → Any (P ∘ f) xs map⁻ {xs = []} () map⁻ {xs = x ∷ xs} (here p) = here p map⁻ {xs = x ∷ xs} (there p) = there $ map⁻ p map⁺∘map⁻ : ∀ {a b p} {A : Set a} {B : Set b} {P : B → Set p} {f : A → B} {xs} → (p : Any P (List.map f xs)) → map⁺ (map⁻ p) ≡ p map⁺∘map⁻ {xs = []} () map⁺∘map⁻ {xs = x ∷ xs} (here p) = refl map⁺∘map⁻ {xs = x ∷ xs} (there p) = P.cong there (map⁺∘map⁻ p) map⁻∘map⁺ : ∀ {a b p} {A : Set a} {B : Set b} (P : B → Set p) {f : A → B} {xs} → (p : Any (P ∘ f) xs) → map⁻ {P = P} (map⁺ p) ≡ p map⁻∘map⁺ P (here p) = refl map⁻∘map⁺ P (there p) = P.cong there (map⁻∘map⁺ P p) map↔ : ∀ {a b p} {A : Set a} {B : Set b} {P : B → Set p} {f : A → B} {xs} → Any (P ∘ f) xs ↔ Any P (List.map f xs) map↔ {P = P} {f = f} = record { to = P.→-to-⟶ $ map⁺ {P = P} {f = f} ; from = P.→-to-⟶ $ map⁻ {P = P} {f = f} ; inverse-of = record { left-inverse-of = map⁻∘map⁺ P ; right-inverse-of = map⁺∘map⁻ } } -- _++_. private ++⁺ˡ : ∀ {a p} {A : Set a} {P : A → Set p} {xs ys} → Any P xs → Any P (xs ++ ys) ++⁺ˡ (here p) = here p ++⁺ˡ (there p) = there (++⁺ˡ p) ++⁺ʳ : ∀ {a p} {A : Set a} {P : A → Set p} xs {ys} → Any P ys → Any P (xs ++ ys) ++⁺ʳ [] p = p ++⁺ʳ (x ∷ xs) p = there (++⁺ʳ xs p) ++⁻ : ∀ {a p} {A : Set a} {P : A → Set p} xs {ys} → Any P (xs ++ ys) → Any P xs ⊎ Any P ys ++⁻ [] p = inj₂ p ++⁻ (x ∷ xs) (here p) = inj₁ (here p) ++⁻ (x ∷ xs) (there p) = Sum.map there id (++⁻ xs p) ++⁺∘++⁻ : ∀ {a p} {A : Set a} {P : A → Set p} xs {ys} (p : Any P (xs ++ ys)) → [ ++⁺ˡ , ++⁺ʳ xs ]′ (++⁻ xs p) ≡ p ++⁺∘++⁻ [] p = refl ++⁺∘++⁻ (x ∷ xs) (here p) = refl ++⁺∘++⁻ (x ∷ xs) (there p) with ++⁻ xs p | ++⁺∘++⁻ xs p ++⁺∘++⁻ (x ∷ xs) (there p) | inj₁ p′ | ih = P.cong there ih ++⁺∘++⁻ (x ∷ xs) (there p) | inj₂ p′ | ih = P.cong there ih ++⁻∘++⁺ : ∀ {a p} {A : Set a} {P : A → Set p} xs {ys} (p : Any P xs ⊎ Any P ys) → ++⁻ xs ([ ++⁺ˡ , ++⁺ʳ xs ]′ p) ≡ p ++⁻∘++⁺ [] (inj₁ ()) ++⁻∘++⁺ [] (inj₂ p) = refl ++⁻∘++⁺ (x ∷ xs) (inj₁ (here p)) = refl ++⁻∘++⁺ (x ∷ xs) {ys} (inj₁ (there p)) rewrite ++⁻∘++⁺ xs {ys} (inj₁ p) = refl ++⁻∘++⁺ (x ∷ xs) (inj₂ p) rewrite ++⁻∘++⁺ xs (inj₂ p) = refl ++↔ : ∀ {a p} {A : Set a} {P : A → Set p} {xs ys} → (Any P xs ⊎ Any P ys) ↔ Any P (xs ++ ys) ++↔ {P = P} {xs = xs} = record { to = P.→-to-⟶ [ ++⁺ˡ {P = P}, ++⁺ʳ {P = P} xs ]′ ; from = P.→-to-⟶ $ ++⁻ {P = P} xs ; inverse-of = record { left-inverse-of = ++⁻∘++⁺ xs ; right-inverse-of = ++⁺∘++⁻ xs } } -- return. private return⁺ : ∀ {a p} {A : Set a} {P : A → Set p} {x} → P x → Any P (return x) return⁺ = here return⁻ : ∀ {a p} {A : Set a} {P : A → Set p} {x} → Any P (return x) → P x return⁻ (here p) = p return⁻ (there ()) return⁺∘return⁻ : ∀ {a p} {A : Set a} {P : A → Set p} {x} (p : Any P (return x)) → return⁺ (return⁻ p) ≡ p return⁺∘return⁻ (here p) = refl return⁺∘return⁻ (there ()) return⁻∘return⁺ : ∀ {a p} {A : Set a} (P : A → Set p) {x} (p : P x) → return⁻ {P = P} (return⁺ p) ≡ p return⁻∘return⁺ P p = refl return↔ : ∀ {a p} {A : Set a} {P : A → Set p} {x} → P x ↔ Any P (return x) return↔ {P = P} = record { to = P.→-to-⟶ $ return⁺ {P = P} ; from = P.→-to-⟶ $ return⁻ {P = P} ; inverse-of = record { left-inverse-of = return⁻∘return⁺ P ; right-inverse-of = return⁺∘return⁻ } } -- _∷_. ∷↔ : ∀ {a p} {A : Set a} (P : A → Set p) {x xs} → (P x ⊎ Any P xs) ↔ Any P (x ∷ xs) ∷↔ P {x} {xs} = (P x ⊎ Any P xs) ↔⟨ return↔ {P = P} ⊎-cong (Any P xs ∎) ⟩ (Any P [ x ] ⊎ Any P xs) ↔⟨ ++↔ {P = P} {xs = [ x ]} ⟩ Any P (x ∷ xs) ∎ -- concat. private concat⁺ : ∀ {a p} {A : Set a} {P : A → Set p} {xss} → Any (Any P) xss → Any P (concat xss) concat⁺ (here p) = ++⁺ˡ p concat⁺ (there {x = xs} p) = ++⁺ʳ xs (concat⁺ p) concat⁻ : ∀ {a p} {A : Set a} {P : A → Set p} xss → Any P (concat xss) → Any (Any P) xss concat⁻ [] () concat⁻ ([] ∷ xss) p = there $ concat⁻ xss p concat⁻ ((x ∷ xs) ∷ xss) (here p) = here (here p) concat⁻ ((x ∷ xs) ∷ xss) (there p) with concat⁻ (xs ∷ xss) p ... | here p′ = here (there p′) ... | there p′ = there p′ concat⁻∘++⁺ˡ : ∀ {a p} {A : Set a} {P : A → Set p} {xs} xss (p : Any P xs) → concat⁻ (xs ∷ xss) (++⁺ˡ p) ≡ here p concat⁻∘++⁺ˡ xss (here p) = refl concat⁻∘++⁺ˡ xss (there p) rewrite concat⁻∘++⁺ˡ xss p = refl concat⁻∘++⁺ʳ : ∀ {a p} {A : Set a} {P : A → Set p} xs xss (p : Any P (concat xss)) → concat⁻ (xs ∷ xss) (++⁺ʳ xs p) ≡ there (concat⁻ xss p) concat⁻∘++⁺ʳ [] xss p = refl concat⁻∘++⁺ʳ (x ∷ xs) xss p rewrite concat⁻∘++⁺ʳ xs xss p = refl concat⁺∘concat⁻ : ∀ {a p} {A : Set a} {P : A → Set p} xss (p : Any P (concat xss)) → concat⁺ (concat⁻ xss p) ≡ p concat⁺∘concat⁻ [] () concat⁺∘concat⁻ ([] ∷ xss) p = concat⁺∘concat⁻ xss p concat⁺∘concat⁻ ((x ∷ xs) ∷ xss) (here p) = refl concat⁺∘concat⁻ ((x ∷ xs) ∷ xss) (there p) with concat⁻ (xs ∷ xss) p | concat⁺∘concat⁻ (xs ∷ xss) p concat⁺∘concat⁻ ((x ∷ xs) ∷ xss) (there .(++⁺ˡ p′)) | here p′ | refl = refl concat⁺∘concat⁻ ((x ∷ xs) ∷ xss) (there .(++⁺ʳ xs (concat⁺ p′))) | there p′ | refl = refl concat⁻∘concat⁺ : ∀ {a p} {A : Set a} {P : A → Set p} {xss} (p : Any (Any P) xss) → concat⁻ xss (concat⁺ p) ≡ p concat⁻∘concat⁺ (here p) = concat⁻∘++⁺ˡ _ p concat⁻∘concat⁺ (there {x = xs} {xs = xss} p) rewrite concat⁻∘++⁺ʳ xs xss (concat⁺ p) = P.cong there $ concat⁻∘concat⁺ p concat↔ : ∀ {a p} {A : Set a} {P : A → Set p} {xss} → Any (Any P) xss ↔ Any P (concat xss) concat↔ {P = P} {xss = xss} = record { to = P.→-to-⟶ $ concat⁺ {P = P} ; from = P.→-to-⟶ $ concat⁻ {P = P} xss ; inverse-of = record { left-inverse-of = concat⁻∘concat⁺ ; right-inverse-of = concat⁺∘concat⁻ xss } } -- _>>=_. >>=↔ : ∀ {ℓ p} {A B : Set ℓ} {P : B → Set p} {xs} {f : A → List B} → Any (Any P ∘ f) xs ↔ Any P (xs >>= f) >>=↔ {P = P} {xs} {f} = Any (Any P ∘ f) xs ↔⟨ map↔ {P = Any P} {f = f} ⟩ Any (Any P) (List.map f xs) ↔⟨ concat↔ {P = P} ⟩ Any P (xs >>= f) ∎ -- _⊛_. ⊛↔ : ∀ {ℓ} {A B : Set ℓ} {P : B → Set ℓ} {fs : List (A → B)} {xs : List A} → Any (λ f → Any (P ∘ f) xs) fs ↔ Any P (fs ⊛ xs) ⊛↔ {ℓ} {P = P} {fs} {xs} = Any (λ f → Any (P ∘ f) xs) fs ↔⟨ Any-cong (λ _ → Any-cong (λ _ → return↔ {a = ℓ} {p = ℓ}) (_ ∎)) (_ ∎) ⟩ Any (λ f → Any (Any P ∘ return ∘ f) xs) fs ↔⟨ Any-cong (λ _ → >>=↔ {ℓ = ℓ} {p = ℓ}) (_ ∎) ⟩ Any (λ f → Any P (xs >>= return ∘ f)) fs ↔⟨ >>=↔ {ℓ = ℓ} {p = ℓ} ⟩ Any P (fs ⊛ xs) ∎ -- An alternative introduction rule for _⊛_. ⊛⁺′ : ∀ {ℓ} {A B : Set ℓ} {P : A → Set ℓ} {Q : B → Set ℓ} {fs : List (A → B)} {xs} → Any (P ⟨→⟩ Q) fs → Any P xs → Any Q (fs ⊛ xs) ⊛⁺′ {ℓ} pq p = Inverse.to (⊛↔ {ℓ = ℓ}) ⟨$⟩ Any.map (λ pq → Any.map (λ {x} → pq {x}) p) pq -- _⊗_. ⊗↔ : ∀ {ℓ} {A B : Set ℓ} {P : A × B → Set ℓ} {xs : List A} {ys : List B} → Any (λ x → Any (λ y → P (x , y)) ys) xs ↔ Any P (xs ⊗ ys) ⊗↔ {ℓ} {P = P} {xs} {ys} = Any (λ x → Any (λ y → P (x , y)) ys) xs ↔⟨ return↔ {a = ℓ} {p = ℓ} ⟩ Any (λ _,_ → Any (λ x → Any (λ y → P (x , y)) ys) xs) (return _,_) ↔⟨ ⊛↔ ⟩ Any (λ x, → Any (P ∘ x,) ys) (_,_ <$> xs) ↔⟨ ⊛↔ ⟩ Any P (xs ⊗ ys) ∎ ⊗↔′ : {A B : Set} {P : A → Set} {Q : B → Set} {xs : List A} {ys : List B} → (Any P xs × Any Q ys) ↔ Any (P ⟨×⟩ Q) (xs ⊗ ys) ⊗↔′ {P = P} {Q} {xs} {ys} = (Any P xs × Any Q ys) ↔⟨ ×↔ ⟩ Any (λ x → Any (λ y → P x × Q y) ys) xs ↔⟨ ⊗↔ ⟩ Any (P ⟨×⟩ Q) (xs ⊗ ys) ∎ -- map-with-∈. map-with-∈↔ : ∀ {a b p} {A : Set a} {B : Set b} {P : B → Set p} {xs : List A} {f : ∀ {x} → x ∈ xs → B} → (∃₂ λ x (x∈xs : x ∈ xs) → P (f x∈xs)) ↔ Any P (mapWith∈ xs f) map-with-∈↔ {A = A} {B} {P} = record { to = P.→-to-⟶ (map-with-∈⁺ _) ; from = P.→-to-⟶ (map-with-∈⁻ _ _) ; inverse-of = record { left-inverse-of = from∘to _ ; right-inverse-of = to∘from _ _ } } where map-with-∈⁺ : ∀ {xs : List A} (f : ∀ {x} → x ∈ xs → B) → (∃₂ λ x (x∈xs : x ∈ xs) → P (f x∈xs)) → Any P (mapWith∈ xs f) map-with-∈⁺ f (_ , here refl , p) = here p map-with-∈⁺ f (_ , there x∈xs , p) = there $ map-with-∈⁺ (f ∘ there) (_ , x∈xs , p) map-with-∈⁻ : ∀ (xs : List A) (f : ∀ {x} → x ∈ xs → B) → Any P (mapWith∈ xs f) → ∃₂ λ x (x∈xs : x ∈ xs) → P (f x∈xs) map-with-∈⁻ [] f () map-with-∈⁻ (y ∷ xs) f (here p) = (y , here refl , p) map-with-∈⁻ (y ∷ xs) f (there p) = Prod.map id (Prod.map there id) $ map-with-∈⁻ xs (f ∘ there) p from∘to : ∀ {xs : List A} (f : ∀ {x} → x ∈ xs → B) (p : ∃₂ λ x (x∈xs : x ∈ xs) → P (f x∈xs)) → map-with-∈⁻ xs f (map-with-∈⁺ f p) ≡ p from∘to f (_ , here refl , p) = refl from∘to f (_ , there x∈xs , p) rewrite from∘to (f ∘ there) (_ , x∈xs , p) = refl to∘from : ∀ (xs : List A) (f : ∀ {x} → x ∈ xs → B) (p : Any P (mapWith∈ xs f)) → map-with-∈⁺ f (map-with-∈⁻ xs f p) ≡ p to∘from [] f () to∘from (y ∷ xs) f (here p) = refl to∘from (y ∷ xs) f (there p) = P.cong there $ to∘from xs (f ∘ there) p ------------------------------------------------------------------------ -- Any and any are related via T -- These introduction and elimination rules are not inverses, though. private any⁺ : ∀ {a} {A : Set a} (p : A → Bool) {xs} → Any (T ∘ p) xs → T (any p xs) any⁺ p (here px) = Equivalence.from T-∨ ⟨$⟩ inj₁ px any⁺ p (there {x = x} pxs) with p x ... | true = _ ... | false = any⁺ p pxs any⁻ : ∀ {a} {A : Set a} (p : A → Bool) xs → T (any p xs) → Any (T ∘ p) xs any⁻ p [] () any⁻ p (x ∷ xs) px∷xs with p x | inspect p x any⁻ p (x ∷ xs) px∷xs | true | P[ eq ] = here (Equivalence.from T-≡ ⟨$⟩ eq) any⁻ p (x ∷ xs) px∷xs | false | _ = there (any⁻ p xs px∷xs) any⇔ : ∀ {a} {A : Set a} {p : A → Bool} {xs} → Any (T ∘ p) xs ⇔ T (any p xs) any⇔ = Eq.equivalence (any⁺ _) (any⁻ _ _) ------------------------------------------------------------------------ -- _++_ is commutative private ++-comm : ∀ {a p} {A : Set a} {P : A → Set p} xs ys → Any P (xs ++ ys) → Any P (ys ++ xs) ++-comm xs ys = [ ++⁺ʳ ys , ++⁺ˡ ]′ ∘ ++⁻ xs ++-comm∘++-comm : ∀ {a p} {A : Set a} {P : A → Set p} xs {ys} (p : Any P (xs ++ ys)) → ++-comm ys xs (++-comm xs ys p) ≡ p ++-comm∘++-comm [] {ys} p rewrite ++⁻∘++⁺ ys {ys = []} (inj₁ p) = P.refl ++-comm∘++-comm {P = P} (x ∷ xs) {ys} (here p) rewrite ++⁻∘++⁺ {P = P} ys {ys = x ∷ xs} (inj₂ (here p)) = P.refl ++-comm∘++-comm (x ∷ xs) (there p) with ++⁻ xs p | ++-comm∘++-comm xs p ++-comm∘++-comm (x ∷ xs) {ys} (there .([ ++⁺ʳ xs , ++⁺ˡ ]′ (++⁻ ys (++⁺ʳ ys p)))) | inj₁ p | P.refl rewrite ++⁻∘++⁺ ys (inj₂ p) | ++⁻∘++⁺ ys (inj₂ $′ there {x = x} p) = refl ++-comm∘++-comm (x ∷ xs) {ys} (there .([ ++⁺ʳ xs , ++⁺ˡ ]′ (++⁻ ys (++⁺ˡ p)))) | inj₂ p | P.refl rewrite ++⁻∘++⁺ ys {ys = xs} (inj₁ p) | ++⁻∘++⁺ ys {ys = x ∷ xs} (inj₁ p) = P.refl ++↔++ : ∀ {a p} {A : Set a} {P : A → Set p} xs ys → Any P (xs ++ ys) ↔ Any P (ys ++ xs) ++↔++ {P = P} xs ys = record { to = P.→-to-⟶ $ ++-comm {P = P} xs ys ; from = P.→-to-⟶ $ ++-comm {P = P} ys xs ; inverse-of = record { left-inverse-of = ++-comm∘++-comm xs ; right-inverse-of = ++-comm∘++-comm ys } }
{ "alphanum_fraction": 0.4292844523, "avg_line_length": 36.1661341853, "ext": "agda", "hexsha": "cb232f2584a137eda2f82e1ec19cc4a033e6e988", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "benchmark/std-lib/Any.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "benchmark/std-lib/Any.agda", "max_line_length": 120, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "benchmark/std-lib/Any.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 9774, "size": 22640 }
------------------------------------------------------------------------ -- A variant of Coherently that is defined without the use of -- coinduction ------------------------------------------------------------------------ {-# OPTIONS --cubical #-} import Equality.Path as P module Lens.Non-dependent.Higher.Coherently.Not-coinductive {e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where open P.Derived-definitions-and-properties eq open import Prelude open import Container.Indexed equality-with-J open import Container.Indexed.M.Function equality-with-J open import H-level.Truncation.Propositional.One-step eq using (∥_∥¹) private variable a b p : Level -- A container that is used to define Coherently. Coherently-container : {B : Type b} (P : {A : Type a} → (A → B) → Type p) (step : {A : Type a} (f : A → B) → P f → ∥ A ∥¹ → B) → Container (∃ λ (A : Type a) → A → B) p lzero Coherently-container P step = λ where .Shape (_ , f) → P f .Position _ → ⊤ .index {o = A , f} {s = p} _ → ∥ A ∥¹ , step f p -- A variant of Coherently, defined using an indexed container. Coherently : {A : Type a} {B : Type b} (P : {A : Type a} → (A → B) → Type p) (step : {A : Type a} (f : A → B) → P f → ∥ A ∥¹ → B) → (f : A → B) → Type (lsuc a ⊔ b ⊔ p) Coherently P step f = M (Coherently-container P step) (_ , f)
{ "alphanum_fraction": 0.5395213923, "avg_line_length": 29.3404255319, "ext": "agda", "hexsha": "a904ba847e74f863e251a28779d9bcef2839def9", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-07-01T14:33:26.000Z", "max_forks_repo_forks_event_min_datetime": "2020-07-01T14:33:26.000Z", "max_forks_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/dependent-lenses", "max_forks_repo_path": "src/Lens/Non-dependent/Higher/Coherently/Not-coinductive.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/dependent-lenses", "max_issues_repo_path": "src/Lens/Non-dependent/Higher/Coherently/Not-coinductive.agda", "max_line_length": 72, "max_stars_count": 3, "max_stars_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/dependent-lenses", "max_stars_repo_path": "src/Lens/Non-dependent/Higher/Coherently/Not-coinductive.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:55:52.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T12:10:46.000Z", "num_tokens": 430, "size": 1379 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Maps from keys to values, based on AVL trees -- This modules provides a simpler map interface, without a dependency -- between the key and value types. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary using (StrictTotalOrder) module Data.AVL.Map {a ℓ₁ ℓ₂} (strictTotalOrder : StrictTotalOrder a ℓ₁ ℓ₂) where open import Data.Bool.Base using (Bool) open import Data.List.Base using (List) open import Data.Maybe.Base using (Maybe) open import Data.Product using (_×_) open import Level using (_⊔_) import Data.AVL strictTotalOrder as AVL open StrictTotalOrder strictTotalOrder renaming (Carrier to Key) ------------------------------------------------------------------------ -- The map type Map : ∀ {v} → (V : Set v) → Set (a ⊔ v ⊔ ℓ₂) Map v = AVL.Tree (AVL.const v) ------------------------------------------------------------------------ -- Repackaged functions module _ {v} {V : Set v} where empty : Map V empty = AVL.empty singleton : Key → V → Map V singleton = AVL.singleton insert : Key → V → Map V → Map V insert = AVL.insert insertWith : Key → (Maybe V → V) → Map V → Map V insertWith = AVL.insertWith delete : Key → Map V → Map V delete = AVL.delete lookup : Key → Map V → Maybe V lookup = AVL.lookup module _ {v w} {V : Set v} {W : Set w} where map : (V → W) → Map V → Map W map f = AVL.map f module _ {v} {V : Set v} where infix 4 _∈?_ _∈?_ : Key → Map V → Bool _∈?_ = AVL._∈?_ headTail : Map V → Maybe ((Key × V) × Map V) headTail = AVL.headTail initLast : Map V → Maybe (Map V × (Key × V)) initLast = AVL.initLast fromList : List (Key × V) → Map V fromList = AVL.fromList toList : Map V → List (Key × V) toList = AVL.toList module _ {v w} {V : Set v} {W : Set w} where unionWith : (V → Maybe W → W) → Map V → Map W → Map W unionWith f = AVL.unionWith f module _ {v} {V : Set v} where union : Map V → Map V → Map V union = AVL.union unionsWith : (V → Maybe V → V) → List (Map V) → Map V unionsWith f = AVL.unionsWith f unions : List (Map V) → Map V unions = AVL.unions
{ "alphanum_fraction": 0.5504146661, "avg_line_length": 24.1157894737, "ext": "agda", "hexsha": "4ec7f3b73bef12b373d687882a96fd76861dc20d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/AVL/Map.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/AVL/Map.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/AVL/Map.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 660, "size": 2291 }
open import Agda.Builtin.IO open import Agda.Builtin.List open import Agda.Builtin.Size open import Agda.Builtin.String record Thunk (F : Size → Set) (i : Size) : Set where coinductive field force : {j : Size< i} → F j open Thunk public FilePath = String -- A directory tree is rooted in the current directory; it comprises: -- * a list of files in the current directory -- * an IO action returning a list of subdirectory trees -- This definition does not typecheck if IO is not marked as strictly positive data DirectoryTree (i : Size) : Set where _:<_ : List FilePath → IO (List (Thunk DirectoryTree i)) → DirectoryTree i
{ "alphanum_fraction": 0.7247278383, "avg_line_length": 30.619047619, "ext": "agda", "hexsha": "e7a3a9ddf3d9eca0528753e33afcd7f155116d09", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-09-15T14:36:15.000Z", "max_forks_repo_forks_event_min_datetime": "2015-09-15T14:36:15.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/strictlypositiveio.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/strictlypositiveio.agda", "max_line_length": 78, "max_stars_count": 2, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/strictlypositiveio.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z", "num_tokens": 170, "size": 643 }
module Issue358 where postulate Sigma : Set -> (Set -> Set) -> Set syntax Sigma A (\x -> B) = x colon A operator B postulate T : Set test = x colon T operator {!!}
{ "alphanum_fraction": 0.6331360947, "avg_line_length": 16.9, "ext": "agda", "hexsha": "441e00c6f8ad011d7e466003a6a712bb7cf1c102", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/interaction/Issue358.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/interaction/Issue358.agda", "max_line_length": 48, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/interaction/Issue358.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 49, "size": 169 }
module Data.Variant where open import Data.List using (List) renaming ([_] to [_]ₗ) open import Data.List.Membership.Propositional using (_∈_) open import Data.Product using (∃; ∃-syntax; _,_) open import Data.Maybe using (Maybe; _>>=_; just) open import Data.Union using (Union; here) renaming (inj to injᵤ; proj to projᵤ) open import Relation.Binary.PropositionalEquality using (_≡_; refl) open import Level using (Level) -- ---------------------------------------------------------------------- -- Definitions -- A variant is tagged tag. It is motiviated by the existence -- of familys of tags. data Variant {a} (A : Set a) : A → Set a where -- injects a into a Variant indexed by a [_] : (a : A) → Variant A a -- A polymorphic variant is a open union of variants Variants : ∀ {a} (A : Set a) → List A → Set a Variants A ts = Union A (Variant A) ts -- ---------------------------------------------------------------------- -- Injections and projects to (and from) variants private variable a b : Level A : Set a t : A ts ts′ : List A inj : (t : A) → t ∈ ts → Variants A ts inj t t∈ts = injᵤ t∈ts ([ t ]) `_ : (t : A) → ⦃ t ∈ ts ⦄ → Variants A ts `_ t ⦃ t∈ts ⦄ = inj t t∈ts Proj : ∀ {a} (A : Set a) → (t : A) → Set a Proj A t = ∃ λ t′ → t ≡ t′ proj : t ∈ ts → Variants A ts → Maybe (Proj A t) proj t∈ts x = projᵤ t∈ts x >>= λ{ [ t ] → just (t , refl)} `proj : ⦃ t ∈ ts ⦄ → Variants A ts → Maybe (Proj A t) `proj ⦃ t∈ts ⦄ x = proj t∈ts x proj₀ : Variants A [ t ]ₗ → Proj A t proj₀ (here [ t ]) = t , refl
{ "alphanum_fraction": 0.5539057456, "avg_line_length": 26.2542372881, "ext": "agda", "hexsha": "675c9014e4498e6e26c319acb51b6215419644a5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "921a0dc44a69a74391031ca61568c624ab7f9c94", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "johnyob/agda-union", "max_forks_repo_path": "src/Data/Variant.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "921a0dc44a69a74391031ca61568c624ab7f9c94", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "johnyob/agda-union", "max_issues_repo_path": "src/Data/Variant.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "921a0dc44a69a74391031ca61568c624ab7f9c94", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "johnyob/agda-union", "max_stars_repo_path": "src/Data/Variant.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 518, "size": 1549 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category module Categories.Category.Cocomplete.Properties {o ℓ e} (C : Category o ℓ e) where open import Level open import Data.Product using (_,_) open import Categories.Adjoint.Properties open import Categories.Category.Complete open import Categories.Category.Complete.Properties open import Categories.Category.Cocomplete open import Categories.Category.Cocomplete.Finitely open import Categories.Category.Duality open import Categories.Category.Construction.Functors open import Categories.Functor open import Categories.Functor.Cocontinuous open import Categories.Functor.Duality open import Categories.NaturalTransformation as N open import Categories.NaturalTransformation.NaturalIsomorphism using (_≃_) open import Categories.Diagram.Limit open import Categories.Diagram.Limit.Properties open import Categories.Diagram.Colimit open import Categories.Diagram.Duality import Categories.Morphism.Reasoning as MR private variable o′ ℓ′ e′ o″ ℓ″ e″ : Level module C = Category C Cocomplete⇒FinitelyCocomplete : Cocomplete o′ ℓ′ e′ C → FinitelyCocomplete C Cocomplete⇒FinitelyCocomplete Coc = coFinitelyComplete⇒FinitelyCocomplete C (Complete⇒FinitelyComplete C.op (Cocomplete⇒coComplete C Coc)) module _ {D : Category o′ ℓ′ e′} (Coc : Cocomplete o″ ℓ″ e″ D) where private module D = Category D Functors-Cocomplete : Cocomplete o″ ℓ″ e″ (Functors C D) Functors-Cocomplete {J} F = coLimit⇒Colimit (Functors C D) LFop where module J = Category J module F = Functor F open Functor F F′ : Functor J.op (Functors C.op D.op) F′ = opF⇒ ∘F F.op L : (H : Functor J.op (Functors C.op D.op)) → Limit H L = Functors-Complete C.op {D = D.op} (λ G → Colimit⇒coLimit D (Coc (Functor.op G))) LF′ : Limit F′ LF′ = L F′ LF″ : Limit (opF⇐ ∘F F′) LF″ = rapl (Functorsᵒᵖ-equiv.L⊣R C.op D.op) F′ LF′ iso : opF⇐ ∘F F′ ≃ F.op iso = record { F⇒G = ntHelper record { η = λ _ → N.id ; commute = λ f → id-comm } ; F⇐G = ntHelper record { η = λ _ → N.id ; commute = λ f → id-comm } ; iso = λ j → record { isoˡ = D.identity² ; isoʳ = D.identity² } } where open MR D LFop : Limit op LFop = ≃-resp-lim iso LF″ -- TODO: need to refactor the where block above to show cocontinuous. there is no need to do it now. -- -- evalF-Cocontinuous : ∀ X → Cocontinuous o″ ℓ″ e″ (evalF C D X) -- evalF-Cocontinuous X {J} {F} L = Coc (evalF C D X ∘F F) , {!!} -- where
{ "alphanum_fraction": 0.6292577985, "avg_line_length": 33.2023809524, "ext": "agda", "hexsha": "81fc8691ca0d1ad041fd43dc3bab11b775de8b88", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5a49c6ac87cbb7e20511c28f28205163fe69f48f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "laMudri/agda-categories", "max_forks_repo_path": "src/Categories/Category/Cocomplete/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5a49c6ac87cbb7e20511c28f28205163fe69f48f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "laMudri/agda-categories", "max_issues_repo_path": "src/Categories/Category/Cocomplete/Properties.agda", "max_line_length": 104, "max_stars_count": null, "max_stars_repo_head_hexsha": "5a49c6ac87cbb7e20511c28f28205163fe69f48f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "laMudri/agda-categories", "max_stars_repo_path": "src/Categories/Category/Cocomplete/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 802, "size": 2789 }
module STLCRef.Examples where -- This file contains a few example programs for the definitional -- interpreter for STLC+Ref using monadic strength, defined in Section -- 3. open import STLCRef.Semantics open import Data.List open import Data.List.Relation.Unary.Any open import Data.List.Relation.Unary.All open import Relation.Binary.PropositionalEquality open import Data.Integer hiding (suc) open import Agda.Builtin.Nat hiding (_+_) open import Data.Maybe open import Data.Product ------------------- -- STLC FRAGMENT -- ------------------- -- The identity function: λ x . x idexpr : Expr [] (unit ⇒ unit) idexpr = ƛ (var (here refl)) -- id () = () test-idexpr : eval 2 (idexpr · unit) [] [] ≡ just (_ , [] , unit , _) test-idexpr = refl -- curried addition: λ x . λ y . y + x curry+ : Expr [] (int ⇒ (int ⇒ int)) curry+ = ƛ (ƛ (iop _+_ (var (here refl)) (var (there (here refl))))) -- 1 + 1 = 2 test-curry+ : eval 3 ((curry+ · (num (+ (suc zero)))) · (num (+ (suc zero)))) [] [] ≡ just (_ , [] , num (+ (suc (suc zero))) , _) test-curry+ = refl ------------------ -- REF FRAGMENT -- ------------------ -- Sugar for let: LET e1 e2 = (λ x . e2) e1 LET : ∀ {Γ a b} → Expr Γ a → Expr (a ∷ Γ) b → Expr Γ b LET bnd bod = (ƛ bod) · bnd -- Factorial function, defined via Landin's knot: -- -- let r = ref (λ x . x) in -- let f = λ n . ifz n then 1 else n * (!r (n - 1)) in -- let _ = r := f in -- f 4 landin-fac : Expr [] int landin-fac = LET (ref {t = int ⇒ int} (ƛ (var (here refl)))) (LET (ƛ {a = int} (ifz (var (here refl)) (num (+ 1)) (iop (Data.Integer._*_) (var (here refl)) ((! (var (there (here refl)))) · (iop (Data.Integer._-_) (var (here refl)) (num (+ 1))))))) (LET ((var (there (here refl))) ≔ var (here refl)) (var (there (here refl))) · (num (+ 4)))) test-landin-fac : eval 20 landin-fac [] [] ≡ just (_ , _ , num (+ 24) , _) test-landin-fac = refl -- Divergence via Landin's knot: -- -- let r = ref (λ x . x) in -- let f = λ x . !r 0 in -- let _ = r := f in -- f 0 landin-div : Expr [] int landin-div = LET (ref {t = int ⇒ int} (ƛ (var (here refl)))) (LET (ƛ {a = int} ((! (var (there (here refl)))) · num (+ zero))) (LET ((var (there (here refl))) ≔ var (here refl)) (var (there (here refl))) · (num (+ zero)))) test-landin-div : eval 1337 landin-div [] [] ≡ nothing test-landin-div = refl
{ "alphanum_fraction": 0.5472861842, "avg_line_length": 28.9523809524, "ext": "agda", "hexsha": "3c280d0ebb37dd45c9ef0ca35bdf514b1eadf2cf", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "metaborg/mj.agda", "max_forks_repo_path": "src/STLCRef/Examples.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "metaborg/mj.agda", "max_issues_repo_path": "src/STLCRef/Examples.agda", "max_line_length": 121, "max_stars_count": 10, "max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "metaborg/mj.agda", "max_stars_repo_path": "src/STLCRef/Examples.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z", "num_tokens": 813, "size": 2432 }
-- Proof: if we non-deterministically select an element -- which is less-than-or-equal than all other elements, -- such a result is the minimum of the list. -- This holds for any non-deterministically selected element. -- Basically, this is the translation of the Curry rule: -- -- min-nd xs@(_++[x]++_) | all (x<=) xs = x -- open import bool module minlist-is-correct (Choice : Set) (choose : Choice → 𝔹) (lchoice : Choice → Choice) (rchoice : Choice → Choice) where open import eq open import bool-thms open import bool-thms2 open import nat open import nat-thms open import list open import maybe open import inspect ---------------------------------------------------------------------- -- Some auxiliaries: -- We define our own less-or-equal since the standard definition with -- if-then-else produces too many branches: _<=_ : ℕ → ℕ → 𝔹 0 <= y = tt (suc x) <= 0 = ff (suc x) <= (suc y) = x <= y -- Some properties about less-or-equal: <=-refl : ∀ (x : ℕ) → x <= x ≡ tt <=-refl 0 = refl <=-refl (suc x) = <=-refl x <=-trans : ∀ (x y z : ℕ) → x <= y ≡ tt → y <= z ≡ tt → x <= z ≡ tt <=-trans zero y z p1 p2 = refl <=-trans (suc x) zero z p1 p2 = 𝔹-contra p1 <=-trans (suc x) (suc y) zero p1 p2 = 𝔹-contra p2 <=-trans (suc x) (suc y) (suc z) p1 p2 = <=-trans x y z p1 p2 <=-< : ∀ (x y : ℕ) → x <= y ≡ ff → y < x ≡ tt <=-< zero x () <=-< (suc x) zero p = refl <=-< (suc x) (suc y) p = <=-< x y p <-<= : ∀ (x y : ℕ) → x < y ≡ tt → y <= x ≡ ff <-<= x zero p rewrite <-0 x = 𝔹-contra p <-<= zero (suc y) p = refl <-<= (suc x) (suc y) p = <-<= x y p <-<=-ff : ∀ (x y : ℕ) → x < y ≡ ff → y <= x ≡ tt <-<=-ff zero zero p = refl <-<=-ff zero (suc y) p = 𝔹-contra (sym p) <-<=-ff (suc x) zero p = refl <-<=-ff (suc x) (suc y) p = <-<=-ff x y p <-<=-trans : ∀ (x y z : ℕ) → x < y ≡ tt → y <= z ≡ tt → x < z ≡ tt <-<=-trans zero zero z p1 p2 = 𝔹-contra p1 <-<=-trans zero (suc y) zero p1 p2 = 𝔹-contra p2 <-<=-trans zero (suc y) (suc z) p1 p2 = refl <-<=-trans (suc x) zero z p1 p2 = 𝔹-contra p1 <-<=-trans (suc x) (suc y) zero p1 p2 = 𝔹-contra p2 <-<=-trans (suc x) (suc y) (suc z) p1 p2 = <-<=-trans x y z p1 p2 ---------------------------------------------------------------------- -- More lemmas about ordering relations: leq-if : ∀ (x y z : ℕ) → y <= x && y <= z ≡ (if x <= z then y <= x else y <= z) leq-if x y z with inspect (y <= x) leq-if x y z | it tt p1 with inspect (x <= z) ... | it tt p2 rewrite p1 | p2 | <=-trans y x z p1 p2 = refl ... | it ff p2 rewrite p1 | p2 = refl leq-if x y z | it ff p1 with inspect (x <= z) ... | it tt p2 rewrite p1 | p2 = refl ... | it ff p2 rewrite p1 | p2 | <-<= z y (<-trans {z} {x} {y} (<=-< x z p2) (<=-< y x p1)) = refl le-if : ∀ (x y z : ℕ) → y < x && y < z ≡ (if x <= z then y < x else y < z) le-if x y z with inspect (y < x) le-if x y z | it tt p1 with inspect (x <= z) ... | it tt p2 rewrite p1 | p2 | <-<=-trans y x z p1 p2 = refl ... | it ff p2 rewrite p1 | p2 = refl le-if x y z | it ff p1 with inspect (x <= z) ... | it tt p2 rewrite p1 | p2 = refl ... | it ff p2 rewrite p1 | p2 | <-asym {z} {y} (<-<=-trans z x y (<=-< x z p2) (<-<=-ff y x p1)) = refl ---------------------------------------------------------------------- -- A lemma relating equality and orderings: =ℕ-not-le : ∀ (m n : ℕ) → m =ℕ n ≡ ~ (m < n) && m <= n =ℕ-not-le zero zero = refl =ℕ-not-le zero (suc m) = refl =ℕ-not-le (suc n) zero = refl =ℕ-not-le (suc n) (suc m) = =ℕ-not-le n m ---------------------------------------------------------------------- -- This is the translation of the Curry program: -- Check whether all elements of a list satisfy a given predicate: all : {A : Set} → (A → 𝔹) → 𝕃 A → 𝔹 all _ [] = tt all p (x :: xs) = p x && all p xs -- Deterministic min-d: min-d : (l : 𝕃 ℕ) → is-empty l ≡ ff → ℕ min-d [] () min-d (x :: []) _ = x min-d (x :: y :: xs) _ = --if x <= min-d (y :: xs) refl then x else min-d (y :: xs) refl let z = min-d (y :: xs) refl in if x <= z then x else z -- Select some element from a list: select : {A : Set} → Choice → 𝕃 A -> maybe A select _ [] = nothing select ch (x :: xs) = if choose ch then just x else select (lchoice ch) xs -- Select elements with a property from a list: select-with : {A : Set} → Choice → (A → 𝔹) → 𝕃 A → maybe A select-with _ p [] = nothing select-with ch p (x :: xs) = if choose ch then (if p x then just x else nothing) else select-with (lchoice ch) p xs {- -- more or less original definition: min-nd : Choice → 𝕃 ℕ -> maybe ℕ min-nd ch xs = (select ch xs) ≫=maybe (λ y → if all (_<=_ y) xs then just y else nothing) -} min-nd : Choice → (xs : 𝕃 ℕ) → maybe ℕ min-nd ch xs = select-with ch (λ x → all (_<=_ x) xs) xs ---------------------------------------------------------------------- -- Proof of the correctness of the operation select-with: select-with-correct : ∀ {A : Set} → (ch : Choice) (p : A → 𝔹) (xs : 𝕃 A) (z : A) → select-with ch p xs ≡ just z → p z ≡ tt select-with-correct ch p [] z () select-with-correct ch p (x :: xs) z u with choose ch select-with-correct ch p (x :: xs) z u | tt with inspect (p x) select-with-correct ch p (x :: xs) z u | tt | it tt v rewrite v | u | down-≡ u = v select-with-correct ch p (x :: xs) z u | tt | it ff v rewrite v with u select-with-correct ch p (x :: xs) z u | tt | it ff v | () select-with-correct ch p (x :: xs) z u | ff = select-with-correct (lchoice ch) p xs z u ---------------------------------------------------------------------- -- First step: if y smaller than all elements, y is smaller than the minimum: all-leq-min : ∀ (y x : ℕ) (xs : 𝕃 ℕ) → all (_<=_ y) (x :: xs) ≡ y <= min-d (x :: xs) refl all-leq-min y x [] = &&-tt (y <= x) all-leq-min y x (z :: zs) rewrite all-leq-min y z zs | ite-arg (_<=_ y) (x <= min-d (z :: zs) refl) x (min-d (z :: zs) refl) = leq-if x y (min-d (z :: zs) refl) -- Now we can prove: -- if min-nd selects an element, it is smaller or equal than the minimum: min-nd-select-min-d : ∀ (ch : Choice) (x : ℕ) (xs : 𝕃 ℕ) (z : ℕ) → min-nd ch (x :: xs) ≡ just z → z <= min-d (x :: xs) refl ≡ tt min-nd-select-min-d ch x xs z u rewrite sym (all-leq-min z x xs) | select-with-correct ch (λ y → all (_<=_ y) (x :: xs)) (x :: xs) z u = refl ---------------------------------------------------------------------- -- Next step: if y smaller than all elements, y is smaller than the minimum: all-less-min : ∀ (y x : ℕ) (xs : 𝕃 ℕ) → all (_<_ y) (x :: xs) ≡ y < min-d (x :: xs) refl all-less-min y x [] rewrite &&-tt (y < x) = refl all-less-min y x (z :: zs) rewrite all-less-min y z zs | ite-arg (_<_ y) (x <= min-d (z :: zs) refl) x (min-d (z :: zs) refl) = le-if x y (min-d (z :: zs) refl) -- Next want to prove that the element selected by min-nd cannot be smaller -- than the minimum. -- For this purpose, we prove an auxiliary lemma: -- If an element is selected from a list, it cannot be smaller than all elements select-with-all<-ff : ∀ (ch : Choice) (p : ℕ → 𝔹) (xs : 𝕃 ℕ) (z : ℕ) → select-with ch p xs ≡ just z → all (_<_ z) xs ≡ ff select-with-all<-ff ch _ [] z () select-with-all<-ff ch p (x :: xs) z u with (choose ch) select-with-all<-ff ch p (x :: xs) z u | tt with (p x) select-with-all<-ff ch p (x :: xs) z u | tt | tt rewrite down-≡ u | <-irrefl z = refl select-with-all<-ff ch p (x :: xs) z () | tt | ff select-with-all<-ff ch p (x :: xs) z u | ff rewrite select-with-all<-ff (lchoice ch) p xs z u | &&-ff (z < x) = refl -- Now we can prove: if min-nd selects an element, it cannot be smaller -- than all other elements: min-nd-select-all<-ff : ∀ (ch : Choice) (xs : 𝕃 ℕ) (z : ℕ) → min-nd ch xs ≡ just z → all (_<_ z) xs ≡ ff min-nd-select-all<-ff ch xs z u rewrite select-with-all<-ff ch (λ y → all (_<=_ y) xs) xs z u = refl ---------------------------------------------------------------------- -- This is the main theorem: min-nd-theorem : ∀ (ch : Choice) (x : ℕ) (xs : 𝕃 ℕ) (z : ℕ) → min-nd ch (x :: xs) ≡ just z → z =ℕ min-d (x :: xs) refl ≡ tt min-nd-theorem ch x xs z u rewrite =ℕ-not-le z (min-d (x :: xs) refl) -- split equality into no less and leq | min-nd-select-min-d ch x xs z u -- min-nd selects leq min. elements | sym (all-less-min z x xs) -- less-than min. elements satisfy all< | min-nd-select-all<-ff ch (x :: xs) z u -- min-nd can't select any all< element = refl ----------------------------------------------------------------------
{ "alphanum_fraction": 0.5105465563, "avg_line_length": 36.514893617, "ext": "agda", "hexsha": "141e6baaf47f1d29d10b75ae32c0e7713ca3f192", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b7cfdda11cdadeba882b6b72d75448acd8b0a294", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "mihanus/curry-agda", "max_forks_repo_path": "choices/minlist-is-correct.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b7cfdda11cdadeba882b6b72d75448acd8b0a294", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "mihanus/curry-agda", "max_issues_repo_path": "choices/minlist-is-correct.agda", "max_line_length": 81, "max_stars_count": null, "max_stars_repo_head_hexsha": "b7cfdda11cdadeba882b6b72d75448acd8b0a294", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "mihanus/curry-agda", "max_stars_repo_path": "choices/minlist-is-correct.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3001, "size": 8581 }
{- A Cubical proof of Blakers-Massey Theorem (KANG Rongji, Oct. 2021) Based on the previous type-theoretic proof described in Kuen-Bang Hou (Favonia), Eric Finster, Dan Licata, Peter LeFanu Lumsdaine, "A Mechanization of the Blakers–Massey Connectivity Theorem in Homotopy Type Theory" (https://arxiv.org/abs/1605.03227) Also the HoTT-Agda formalization by Favonia: (https://github.com/HoTT/HoTT-Agda/blob/master/theorems/homotopy/BlakersMassey.agda) Using cubes explicitly as much as possible. -} {-# OPTIONS --safe #-} module Cubical.Homotopy.BlakersMassey where open import Cubical.Foundations.Prelude open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Transport open import Cubical.Foundations.HLevels open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Data.Nat hiding (elim) open import Cubical.Data.Sigma open import Cubical.HITs.Truncation renaming (hLevelTrunc to Trunc) open import Cubical.Homotopy.Connected open import Cubical.Homotopy.WedgeConnectivity module BlakersMassey {ℓ₁ ℓ₂ ℓ₃ : Level} (X : Type ℓ₁)(Y : Type ℓ₂)(Q : X → Y → Type ℓ₃) {m : HLevel} (leftConn : (x : X) → isConnected (1 + m) (Σ[ y ∈ Y ] Q x y)) {n : HLevel} (rightConn : (y : Y) → isConnected (1 + n) (Σ[ x ∈ X ] Q x y)) where ℓ : Level ℓ = ℓ-max (ℓ-max ℓ₁ ℓ₂) ℓ₃ leftFiber : X → Type (ℓ-max ℓ₂ ℓ₃) leftFiber x = Σ[ y ∈ Y ] Q x y rightFiber : Y → Type (ℓ-max ℓ₁ ℓ₃) rightFiber y = Σ[ x ∈ X ] Q x y {- An alternative formulation of pushout with fewer parameters -} data Pushout : Type ℓ where inl : X → Pushout inr : Y → Pushout push : {x : X}{y : Y} → Q x y → inl x ≡ inr y {- Some preliminary definitions for convenience -} fiberSquare : {x₀ x₁ : X}{y₀ : Y}{p : Pushout}(q₀₀ : Q x₀ y₀)(q₁₀ : Q x₁ y₀) → inl x₁ ≡ p → inl x₀ ≡ p → Type ℓ fiberSquare q₀₀ q₁₀ r' r = PathP (λ i → push q₀₀ (~ i) ≡ r' i) (sym (push q₁₀)) r fiberSquarePush : {x₀ x₁ : X}{y₀ y₁ : Y}(q₀₀ : Q x₀ y₀)(q₁₀ : Q x₁ y₀)(q₁₁ : Q x₁ y₁) → inl x₀ ≡ inr y₁ → Type ℓ fiberSquarePush q₀₀ q₁₀ q₁₁ = fiberSquare q₀₀ q₁₀ (push q₁₁) fiber' : {x₀ : X}{y₀ : Y}(q₀₀ : Q x₀ y₀){x₁ : X}{p : Pushout} → inl x₁ ≡ p → inl x₀ ≡ p → Type ℓ fiber' {y₀ = y₀} q₀₀ {x₁ = x₁} r' r = Σ[ q₁₀ ∈ Q x₁ y₀ ] fiberSquare q₀₀ q₁₀ r' r fiber'Push : {x₀ x₁ : X}{y₀ y₁ : Y}(q₀₀ : Q x₀ y₀)(q₁₁ : Q x₁ y₁) → inl x₀ ≡ inr y₁ → Type ℓ fiber'Push q₀₀ q₁₁ = fiber' q₀₀ (push q₁₁) leftCodeExtended : {x₀ : X}{y₀ : Y}(q₀₀ : Q x₀ y₀) → (x₁ : X){p : Pushout} → inl x₁ ≡ p → inl x₀ ≡ p → Type ℓ leftCodeExtended {y₀ = y₀} q₀₀ x₁ r' r = Trunc (m + n) (fiber' q₀₀ r' r) rightCode : {x₀ : X}(y : Y) → inl x₀ ≡ inr y → Type ℓ rightCode y r = Trunc (m + n) (fiber push r) {- Bunch of coherence data that will be used to construct Code -} {- Definitions of fiber→ -} module _ {x₁ : X}{y₀ : Y}(q₁₀ : Q x₁ y₀) where {- (x₀ , q₀₀) = (x₁ , q₁₀) -} module _ {y₁ : Y}(q₁₁ : Q x₁ y₁) (r : inl x₁ ≡ inr y₁) (p : fiberSquarePush q₁₀ q₁₀ q₁₁ r) where fiber→[q₀₀=q₁₀]-filler : (i j k : I) → Pushout fiber→[q₀₀=q₁₀]-filler i j k' = hfill (λ k → λ { (i = i0) → push q₁₁ (j ∧ k) ; (i = i1) → p k j ; (j = i0) → push q₁₀ (i ∧ ~ k) ; (j = i1) → push q₁₁ k }) (inS (push q₁₀ (i ∧ ~ j))) k' fiber→[q₀₀=q₁₀] : fiber push r fiber→[q₀₀=q₁₀] .fst = q₁₁ fiber→[q₀₀=q₁₀] .snd i j = fiber→[q₀₀=q₁₀]-filler i j i1 ∣fiber→[q₀₀=q₁₀]∣ : rightCode _ r ∣fiber→[q₀₀=q₁₀]∣ = ∣ fiber→[q₀₀=q₁₀] ∣ₕ {- (y₁ , q₁₁) = (y₀ , q₁₀) -} module _ {x₀ : X}(q₀₀ : Q x₀ y₀) (r : inl x₀ ≡ inr y₀) (p : fiberSquarePush q₀₀ q₁₀ q₁₀ r) where fiber→[q₁₁=q₁₀]-filler : (i j k : I) → Pushout fiber→[q₁₁=q₁₀]-filler i j k' = hfill (λ k → λ { (i = i0) → push q₀₀ (j ∨ ~ k) ; (i = i1) → p k j ; (j = i0) → push q₀₀ (~ k) ; (j = i1) → push q₁₀ (~ i ∨ k) }) (inS (push q₁₀ (~ i ∨ ~ j))) k' fiber→[q₁₁=q₁₀] : fiber push r fiber→[q₁₁=q₁₀] .fst = q₀₀ fiber→[q₁₁=q₁₀] .snd i j = fiber→[q₁₁=q₁₀]-filler i j i1 ∣fiber→[q₁₁=q₁₀]∣ : rightCode _ r ∣fiber→[q₁₁=q₁₀]∣ = ∣ fiber→[q₁₁=q₁₀] ∣ₕ {- q₀₀ = q₁₁ = q₁₀ -} fiber→[q₀₀=q₁₀=q₁₁]-filler : (r : inl x₁ ≡ inr y₀) → (p : fiberSquarePush q₁₀ q₁₀ q₁₀ r) → (i j k l : I) → Pushout fiber→[q₀₀=q₁₀=q₁₁]-filler r p i j k l' = hfill (λ l → λ { (i = i0) → fiber→[q₀₀=q₁₀]-filler q₁₀ r p j k l ; (i = i1) → fiber→[q₁₁=q₁₀]-filler q₁₀ r p j k l ; (j = i0) → push q₁₀ ((i ∨ (k ∧ l)) ∧ (k ∨ (i ∧ ~ l))) ; (j = i1) → p l k ; (k = i0) → push q₁₀ ((i ∨ j) ∧ ~ l) ; (k = i1) → push q₁₀ ((i ∧ ~ j) ∨ l) }) (inS (push q₁₀ ((i ∨ (~ k ∧ j)) ∧ (~ k ∨ (i ∧ ~ j))))) l' fiber→[q₀₀=q₁₀=q₁₁] : fiber→[q₀₀=q₁₀] q₁₀ ≡ fiber→[q₁₁=q₁₀] q₁₀ fiber→[q₀₀=q₁₀=q₁₁] i r p .fst = q₁₀ fiber→[q₀₀=q₁₀=q₁₁] i r p .snd j k = fiber→[q₀₀=q₁₀=q₁₁]-filler r p i j k i1 ∣fiber→[q₀₀=q₁₀=q₁₁]∣ : ∣fiber→[q₀₀=q₁₀]∣ q₁₀ ≡ ∣fiber→[q₁₁=q₁₀]∣ q₁₀ ∣fiber→[q₀₀=q₁₀=q₁₁]∣ i r p = ∣ fiber→[q₀₀=q₁₀=q₁₁] i r p ∣ₕ {- Definitions of fiber← -} module _ {x₀ : X}{y₁ : Y}(q₀₁ : Q x₀ y₁) where {- (x₁ , q₁₁) = (x₀ , q₀₁) -} module _ {y₀ : Y}(q₀₀ : Q x₀ y₀) (r : inl x₀ ≡ inr y₁) (p : push q₀₁ ≡ r) where fiber←[q₁₁=q₀₁]-filler : (i j k : I) → Pushout fiber←[q₁₁=q₀₁]-filler i j k' = hfill (λ k → λ { (i = i0) → push q₀₀ (~ j ∧ k) ; (i = i1) → p k j ; (j = i0) → push q₀₀ (~ i ∧ k) ; (j = i1) → push q₀₁ i }) (inS (push q₀₁ (i ∧ j))) k' fiber←[q₁₁=q₀₁] : fiber'Push q₀₀ q₀₁ r fiber←[q₁₁=q₀₁] .fst = q₀₀ fiber←[q₁₁=q₀₁] .snd i j = fiber←[q₁₁=q₀₁]-filler i j i1 ∣fiber←[q₁₁=q₀₁]∣ : leftCodeExtended q₀₀ _ (push q₀₁) r ∣fiber←[q₁₁=q₀₁]∣ = ∣ fiber←[q₁₁=q₀₁] ∣ₕ {- (y₀ , q₀₀) = (y₁ , q₀₁) -} module _ {x₁ : X}(q₁₁ : Q x₁ y₁) (r : inl x₀ ≡ inr y₁) (p : push q₀₁ ≡ r) where fiber←[q₀₀=q₀₁]-filler : (i j k : I) → Pushout fiber←[q₀₀=q₀₁]-filler i j k' = hfill (λ k → λ { (i = i0) → push q₁₁ (~ j ∨ ~ k) ; (i = i1) → p k j ; (j = i0) → push q₀₁ (~ i) ; (j = i1) → push q₁₁ (i ∨ ~ k) }) (inS (push q₀₁ (~ i ∨ j))) k' fiber←[q₀₀=q₀₁] : fiber'Push q₀₁ q₁₁ r fiber←[q₀₀=q₀₁] .fst = q₁₁ fiber←[q₀₀=q₀₁] .snd i j = fiber←[q₀₀=q₀₁]-filler i j i1 ∣fiber←[q₀₀=q₀₁]∣ : leftCodeExtended q₀₁ _ (push q₁₁) r ∣fiber←[q₀₀=q₀₁]∣ = ∣ fiber←[q₀₀=q₀₁] ∣ₕ {- q₀₀ = q₀₁ = q₁₁ -} fiber←[q₀₀=q₀₁=q₁₁]-filler : (r : inl x₀ ≡ inr y₁) → (p : push q₀₁ ≡ r) → (i j k l : I) → Pushout fiber←[q₀₀=q₀₁=q₁₁]-filler r p i j k l' = hfill (λ l → λ { (i = i0) → fiber←[q₁₁=q₀₁]-filler q₀₁ r p j k l ; (i = i1) → fiber←[q₀₀=q₀₁]-filler q₀₁ r p j k l ; (j = i0) → push q₀₁ ((i ∨ (~ k ∧ l)) ∧ (~ k ∨ (i ∧ ~ l))) ; (j = i1) → p l k ; (k = i0) → push q₀₁ ((i ∨ l) ∧ ~ j) ; (k = i1) → push q₀₁ ((i ∧ ~ l) ∨ j) }) (inS (push q₀₁ ((i ∨ (k ∧ j)) ∧ (k ∨ (i ∧ ~ j))))) l' fiber←[q₀₀=q₀₁=q₁₁] : fiber←[q₁₁=q₀₁] q₀₁ ≡ fiber←[q₀₀=q₀₁] q₀₁ fiber←[q₀₀=q₀₁=q₁₁] i r p .fst = q₀₁ fiber←[q₀₀=q₀₁=q₁₁] i r p .snd j k = fiber←[q₀₀=q₀₁=q₁₁]-filler r p i j k i1 ∣fiber←[q₀₀=q₀₁=q₁₁]∣ : ∣fiber←[q₁₁=q₀₁]∣ q₀₁ ≡ ∣fiber←[q₀₀=q₀₁]∣ q₀₁ ∣fiber←[q₀₀=q₀₁=q₁₁]∣ i r p = ∣ fiber←[q₀₀=q₀₁=q₁₁] i r p ∣ₕ {- Definitions of fiber→← -} module _ {x₁ : X}{y₀ : Y}(q₁₀ : Q x₁ y₀) where {- (x₀ , q₀₀) = (x₁ , q₁₀) -} module _ {y₁ : Y}(q₁₁ : Q x₁ y₁) (r : inl x₁ ≡ inr y₁) (p : fiberSquarePush q₁₀ q₁₀ q₁₁ r) where fiber→←[q₀₀=q₁₀]-filler : (i j k l : I) → Pushout fiber→←[q₀₀=q₁₀]-filler i j k l' = let p' = fiber→[q₀₀=q₁₀] q₁₀ q₁₁ r p .snd in hfill (λ l → λ { (i = i0) → fiber←[q₁₁=q₀₁]-filler q₁₁ q₁₀ r p' j k l ; (i = i1) → fiber→[q₀₀=q₁₀]-filler q₁₀ q₁₁ r p l k j ; (j = i0) → push q₁₀ (~ k ∧ l) ; (j = i1) → p' l k ; (k = i0) → push q₁₀ (~ j ∧ l) ; (k = i1) → push q₁₁ j }) (inS (push q₁₁ (j ∧ k))) l' fiber→←[q₀₀=q₁₀] : fiber←[q₁₁=q₀₁] q₁₁ q₁₀ r (fiber→[q₀₀=q₁₀] q₁₀ q₁₁ r p .snd) .snd ≡ p fiber→←[q₀₀=q₁₀] i j k = fiber→←[q₀₀=q₁₀]-filler i j k i1 {- (y₁ , q₁₁) = (y₀ , q₁₀) -} module _ {x₀ : X}(q₀₀ : Q x₀ y₀) (r : inl x₀ ≡ inr y₀) (p : fiberSquarePush q₀₀ q₁₀ q₁₀ r) where fiber→←[q₁₁=q₁₀]-filler : (i j k l : I) → Pushout fiber→←[q₁₁=q₁₀]-filler i j k l' = let p' = fiber→[q₁₁=q₁₀] q₁₀ q₀₀ r p .snd in hfill (λ l → λ { (i = i0) → fiber←[q₀₀=q₀₁]-filler q₀₀ q₁₀ r p' j k l ; (i = i1) → fiber→[q₁₁=q₁₀]-filler q₁₀ q₀₀ r p l k j ; (j = i0) → push q₁₀ (~ k ∨ ~ l) ; (j = i1) → p' l k ; (k = i0) → push q₀₀ (~ j) ; (k = i1) → push q₁₀ (j ∨ ~ l) }) (inS (push q₀₀ (~ j ∨ k))) l' fiber→←[q₁₁=q₁₀] : fiber←[q₀₀=q₀₁] q₀₀ q₁₀ r (fiber→[q₁₁=q₁₀] q₁₀ q₀₀ r p .snd) .snd ≡ p fiber→←[q₁₁=q₁₀] i j k = fiber→←[q₁₁=q₁₀]-filler i j k i1 {- q₀₀ = q₁₀ = q₁₁ -} fiber→←hypercube : (r : inl x₁ ≡ inr y₀) → (p : fiberSquarePush q₁₀ q₁₀ q₁₀ r) → PathP (λ i → fiber←[q₀₀=q₀₁=q₁₁] q₁₀ i r (fiber→[q₀₀=q₁₀=q₁₁] q₁₀ i r p .snd) .snd ≡ p) (fiber→←[q₀₀=q₁₀] q₁₀ r p) (fiber→←[q₁₁=q₁₀] q₁₀ r p) fiber→←hypercube r p i j u v = hcomp (λ l → λ { (i = i0) → fiber→←[q₀₀=q₁₀]-filler q₁₀ r p j u v l ; (i = i1) → fiber→←[q₁₁=q₁₀]-filler q₁₀ r p j u v l ; (j = i0) → fiber←[q₀₀=q₀₁=q₁₁]-filler q₁₀ r (fiber→[q₀₀=q₁₀=q₁₁] q₁₀ i r p .snd) i u v l ; (j = i1) → fiber→[q₀₀=q₁₀=q₁₁]-filler q₁₀ r p i l v u ; (u = i0) → push q₁₀ ((i ∨ (~ v ∧ l)) ∧ (~ v ∨ (i ∧ ~ l))) ; (u = i1) → fiber→[q₀₀=q₁₀=q₁₁] q₁₀ i r p .snd l v ; (v = i0) → push q₁₀ ((i ∨ l) ∧ ~ u) ; (v = i1) → push q₁₀ ((i ∧ ~ l) ∨ u) }) (push q₁₀ ((i ∨ (v ∧ u)) ∧ (v ∨ (i ∧ ~ u)))) {- Definitions of fiber←→ -} module _ {x₀ : X}{y₁ : Y}(q₀₁ : Q x₀ y₁) where {- (x₁ , q₁₁) = (x₀ , q₀₁) -} module _ {y₀ : Y}(q₀₀ : Q x₀ y₀) (r : inl x₀ ≡ inr y₁) (p : push q₀₁ ≡ r) where fiber←→[q₁₁=q₀₁]-filler : (i j k l : I) → Pushout fiber←→[q₁₁=q₀₁]-filler i j k l' = let p' = fiber←[q₁₁=q₀₁] q₀₁ q₀₀ r p .snd in hfill (λ l → λ { (i = i0) → fiber→[q₀₀=q₁₀]-filler q₀₀ q₀₁ r p' j k l ; (i = i1) → fiber←[q₁₁=q₀₁]-filler q₀₁ q₀₀ r p l k j ; (j = i0) → push q₀₁ (k ∧ l) ; (j = i1) → p' l k ; (k = i0) → push q₀₀ (j ∧ ~ l) ; (k = i1) → push q₀₁ l }) (inS (push q₀₀ (j ∧ ~ k))) l' fiber←→[q₁₁=q₀₁] : fiber→[q₀₀=q₁₀] q₀₀ q₀₁ r (fiber←[q₁₁=q₀₁] q₀₁ q₀₀ r p .snd) .snd ≡ p fiber←→[q₁₁=q₀₁] i j k = fiber←→[q₁₁=q₀₁]-filler i j k i1 {- (y₀ , q₀₀) = (y₁ , q₀₁) -} module _ {x₁ : X}(q₁₁ : Q x₁ y₁) (r : inl x₀ ≡ inr y₁) (p : push q₀₁ ≡ r) where fiber←→[q₀₀=q₀₁]-filler : (i j k l : I) → Pushout fiber←→[q₀₀=q₀₁]-filler i j k l' = let p' = fiber←[q₀₀=q₀₁] q₀₁ q₁₁ r p .snd in hfill (λ l → λ { (i = i0) → fiber→[q₁₁=q₁₀]-filler q₁₁ q₀₁ r p' j k l ; (i = i1) → fiber←[q₀₀=q₀₁]-filler q₀₁ q₁₁ r p l k j ; (j = i0) → push q₀₁ (k ∨ ~ l) ; (j = i1) → p' l k ; (k = i0) → push q₀₁ (~ l) ; (k = i1) → push q₁₁ (~ j ∨ l) }) (inS (push q₁₁ (~ j ∨ ~ k))) l' fiber←→[q₀₀=q₀₁] : fiber→[q₁₁=q₁₀] q₁₁ q₀₁ r (fiber←[q₀₀=q₀₁] q₀₁ q₁₁ r p .snd) .snd ≡ p fiber←→[q₀₀=q₀₁] i j k = fiber←→[q₀₀=q₀₁]-filler i j k i1 {- q₀₀ = q₀₁ = q₁₁ -} fiber←→hypercube : (r : inl x₀ ≡ inr y₁) → (p : push q₀₁ ≡ r) → PathP (λ i → fiber→[q₀₀=q₁₀=q₁₁] q₀₁ i r (fiber←[q₀₀=q₀₁=q₁₁] q₀₁ i r p .snd) .snd ≡ p) (fiber←→[q₁₁=q₀₁] q₀₁ r p) (fiber←→[q₀₀=q₀₁] q₀₁ r p) fiber←→hypercube r p i j u v = hcomp (λ l → λ { (i = i0) → fiber←→[q₁₁=q₀₁]-filler q₀₁ r p j u v l ; (i = i1) → fiber←→[q₀₀=q₀₁]-filler q₀₁ r p j u v l ; (j = i0) → fiber→[q₀₀=q₁₀=q₁₁]-filler q₀₁ r (fiber←[q₀₀=q₀₁=q₁₁] q₀₁ i r p .snd) i u v l ; (j = i1) → fiber←[q₀₀=q₀₁=q₁₁]-filler q₀₁ r p i l v u ; (u = i0) → push q₀₁ ((i ∨ (v ∧ l)) ∧ (v ∨ (i ∧ ~ l))) ; (u = i1) → fiber←[q₀₀=q₀₁=q₁₁] q₀₁ i r p .snd l v ; (v = i0) → push q₀₁ ((i ∨ u) ∧ ~ l) ; (v = i1) → push q₀₁ ((i ∧ ~ u) ∨ l) }) (push q₀₁ ((i ∨ (~ v ∧ u)) ∧ (~ v ∨ (i ∧ ~ u)))) module Fiber→ {x₁ : X}{y₀ : Y}(q₁₀ : Q x₁ y₀) = WedgeConnectivity m n (leftFiber x₁ , (y₀ , q₁₀)) (leftConn x₁) (rightFiber y₀ , (x₁ , q₁₀)) (rightConn y₀) (λ (y₁ , q₁₁) (x₀ , q₀₀) → (((r : inl x₀ ≡ inr y₁) → fiberSquarePush q₀₀ q₁₀ q₁₁ r → rightCode _ r) , isOfHLevelΠ2 _ (λ x y → isOfHLevelTrunc _))) (λ (y₁ , q₁₁) → ∣fiber→[q₀₀=q₁₀]∣ q₁₀ q₁₁) (λ (x₀ , q₀₀) → ∣fiber→[q₁₁=q₁₀]∣ q₁₀ q₀₀) (∣fiber→[q₀₀=q₁₀=q₁₁]∣ q₁₀) fiber→ : {x₁ : X}{y₀ : Y}(q₁₀ : Q x₁ y₀) → {x₀ : X}(q₀₀ : Q x₀ y₀) → {y₁ : Y}(q₁₁ : Q x₁ y₁) → (r : inl x₀ ≡ inr y₁) → fiberSquarePush q₀₀ q₁₀ q₁₁ r → rightCode _ r fiber→ q₁₀ q₀₀ q₁₁ = Fiber→.extension q₁₀ (_ , q₁₁) (_ , q₀₀) module Fiber← {x₀ : X}{y₁ : Y}(q₀₁ : Q x₀ y₁) = WedgeConnectivity m n (leftFiber x₀ , (y₁ , q₀₁)) (leftConn x₀) (rightFiber y₁ , (x₀ , q₀₁)) (rightConn y₁) (λ (y₀ , q₀₀) (x₁ , q₁₁) → (((r : inl x₀ ≡ inr y₁) → push q₀₁ ≡ r → leftCodeExtended q₀₀ _ (push q₁₁) r) , isOfHLevelΠ2 _ (λ x y → isOfHLevelTrunc _))) (λ (y₀ , q₀₀) → ∣fiber←[q₁₁=q₀₁]∣ q₀₁ q₀₀) (λ (x₁ , q₁₁) → ∣fiber←[q₀₀=q₀₁]∣ q₀₁ q₁₁) (∣fiber←[q₀₀=q₀₁=q₁₁]∣ q₀₁) fiber← : {x₀ : X}{y₁ : Y}(q₀₁ : Q x₀ y₁) → {y₀ : Y}(q₀₀ : Q x₀ y₀) → {x₁ : X}(q₁₁ : Q x₁ y₁) → (r : inl x₀ ≡ inr y₁) → push q₀₁ ≡ r → leftCodeExtended q₀₀ _ (push q₁₁) r fiber← q₀₁ q₀₀ q₁₁ = Fiber←.extension q₀₁ (_ , q₀₀) (_ , q₁₁) module _ {x₀ x₁ : X}{y₀ y₁ : Y} (q₀₀ : Q x₀ y₀)(q₁₁ : Q x₁ y₁) (r : inl x₀ ≡ inr y₁) where left→rightCodeExtended : leftCodeExtended q₀₀ _ (push q₁₁) r → rightCode _ r left→rightCodeExtended = rec (isOfHLevelTrunc _) (λ (q₁₀ , p) → fiber→ q₁₀ q₀₀ q₁₁ r p) right→leftCodeExtended : rightCode _ r → leftCodeExtended q₀₀ _ (push q₁₁) r right→leftCodeExtended = rec (isOfHLevelTrunc _) (λ (q₀₁ , p) → fiber← q₀₁ q₀₀ q₁₁ r p) {- Definition of one-side homotopy -} module _ {x₁ : X}{y₀ : Y}(q₁₀ : Q x₁ y₀) where {- (x₀ , q₀₀) = (x₁ , q₁₀) -} module _ {y₁ : Y}(q₁₁ : Q x₁ y₁) (r : inl x₁ ≡ inr y₁) (p : fiberSquarePush q₁₀ q₁₀ q₁₁ r) where ∣fiber→←[q₀₀=q₁₀]∣ : right→leftCodeExtended q₁₀ q₁₁ r (fiber→ q₁₀ q₁₀ q₁₁ r p) ≡ ∣ q₁₀ , p ∣ₕ ∣fiber→←[q₀₀=q₁₀]∣ = (λ i → right→leftCodeExtended q₁₀ q₁₁ r (Fiber→.left q₁₀ (_ , q₁₁) i r p)) ∙ recUniq {n = m + n} _ _ _ ∙ (λ i → Fiber←.left q₁₁ (_ , q₁₀) i r (fiber→[q₀₀=q₁₀] q₁₀ q₁₁ r p .snd)) ∙ (λ i → ∣ q₁₀ , fiber→←[q₀₀=q₁₀] q₁₀ q₁₁ r p i ∣ₕ) {- (y₁ , q₁₁) = (y₀ , q₁₀) -} module _ {x₀ : X}(q₀₀ : Q x₀ y₀) (r : inl x₀ ≡ inr y₀) (p : fiberSquarePush q₀₀ q₁₀ q₁₀ r) where ∣fiber→←[q₁₁=q₁₀]∣ : right→leftCodeExtended q₀₀ q₁₀ r (fiber→ q₁₀ q₀₀ q₁₀ r p) ≡ ∣ q₁₀ , p ∣ₕ ∣fiber→←[q₁₁=q₁₀]∣ = (λ i → right→leftCodeExtended q₀₀ q₁₀ r (Fiber→.right q₁₀ (_ , q₀₀) i r p)) ∙ recUniq {n = m + n} _ _ _ ∙ (λ i → Fiber←.right q₀₀ (_ , q₁₀) i r (fiber→[q₁₁=q₁₀] q₁₀ q₀₀ r p .snd)) ∙ (λ i → ∣ q₁₀ , fiber→←[q₁₁=q₁₀] q₁₀ q₀₀ r p i ∣ₕ) {- q₀₀ = q₁₁ = q₁₀ -} module _ (r : inl x₁ ≡ inr y₀) (p : fiberSquarePush q₁₀ q₁₀ q₁₀ r) where path→←Square = (λ i j → right→leftCodeExtended q₁₀ q₁₀ r (Fiber→.homSquare q₁₀ i j r p)) ∙₂ (λ i → recUniq {n = m + n} _ _ _) ∙₂ (λ i j → Fiber←.homSquare q₁₀ i j r (fiber→[q₀₀=q₁₀=q₁₁] q₁₀ i r p .snd)) ∙₂ (λ i j → ∣ (q₁₀ , fiber→←hypercube q₁₀ r p i j) ∣ₕ) ∣fiber→←[q₀₀=q₁₀=q₁₁]∣ : ∣fiber→←[q₀₀=q₁₀]∣ q₁₀ ≡ ∣fiber→←[q₁₁=q₁₀]∣ q₁₀ ∣fiber→←[q₀₀=q₁₀=q₁₁]∣ i r p = path→←Square r p i fiber→← : {x₁ : X}{y₀ : Y}(q₁₀ : Q x₁ y₀) → {x₀ : X}(q₀₀ : Q x₀ y₀) → {y₁ : Y}(q₁₁ : Q x₁ y₁) → (r : inl x₀ ≡ inr y₁) → (p : fiberSquarePush q₀₀ q₁₀ q₁₁ r) → right→leftCodeExtended q₀₀ q₁₁ r (fiber→ q₁₀ q₀₀ q₁₁ r p) ≡ ∣ q₁₀ , p ∣ₕ fiber→← {x₁ = x₁} {y₀ = y₀} q₁₀ q₀₀' q₁₁' = WedgeConnectivity.extension m n (leftFiber x₁ , (y₀ , q₁₀)) (leftConn x₁) (rightFiber y₀ , (x₁ , q₁₀)) (rightConn y₀) (λ (y₁ , q₁₁) (x₀ , q₀₀) → (( (r : inl x₀ ≡ inr y₁) → (p : fiberSquarePush q₀₀ q₁₀ q₁₁ r) → right→leftCodeExtended q₀₀ q₁₁ r (fiber→ q₁₀ q₀₀ q₁₁ r p) ≡ ∣ q₁₀ , p ∣ₕ ) , isOfHLevelΠ2 _ (λ x y → isOfHLevelTruncPath))) (λ (y₁ , q₁₁) → ∣fiber→←[q₀₀=q₁₀]∣ q₁₀ q₁₁) (λ (x₀ , q₀₀) → ∣fiber→←[q₁₁=q₁₀]∣ q₁₀ q₀₀) (∣fiber→←[q₀₀=q₁₀=q₁₁]∣ q₁₀) (_ , q₁₁') (_ , q₀₀') {- Definition of the other side homotopy -} module _ {x₀ : X}{y₁ : Y}(q₀₁ : Q x₀ y₁) where {- (x₁ , q₁₁) = (x₀ , q₀₁) -} module _ {y₀ : Y}(q₀₀ : Q x₀ y₀) (r : inl x₀ ≡ inr y₁) (p : push q₀₁ ≡ r) where ∣fiber←→[q₁₁=q₀₁]∣ : left→rightCodeExtended q₀₀ q₀₁ r (fiber← q₀₁ q₀₀ q₀₁ r p) ≡ ∣ q₀₁ , p ∣ₕ ∣fiber←→[q₁₁=q₀₁]∣ = (λ i → left→rightCodeExtended q₀₀ q₀₁ r (Fiber←.left q₀₁ (_ , q₀₀) i r p)) ∙ recUniq {n = m + n} _ _ _ ∙ (λ i → Fiber→.left q₀₀ (_ , q₀₁) i r (fiber←[q₁₁=q₀₁] q₀₁ q₀₀ r p .snd)) ∙ (λ i → ∣ q₀₁ , fiber←→[q₁₁=q₀₁] q₀₁ q₀₀ r p i ∣ₕ) {- (y₀ , q₀₀) = (y₁ , q₀₁) -} module _ {x₁ : X}(q₁₁ : Q x₁ y₁) (r : inl x₀ ≡ inr y₁) (p : push q₀₁ ≡ r) where ∣fiber←→[q₀₀=q₀₁]∣ : left→rightCodeExtended q₀₁ q₁₁ r (fiber← q₀₁ q₀₁ q₁₁ r p) ≡ ∣ q₀₁ , p ∣ₕ ∣fiber←→[q₀₀=q₀₁]∣ = (λ i → left→rightCodeExtended q₀₁ q₁₁ r (Fiber←.right q₀₁ (_ , q₁₁) i r p)) ∙ recUniq {n = m + n} _ _ _ ∙ (λ i → Fiber→.right q₁₁ (_ , q₀₁) i r (fiber←[q₀₀=q₀₁] q₀₁ q₁₁ r p .snd)) ∙ (λ i → ∣ q₀₁ , fiber←→[q₀₀=q₀₁] q₀₁ q₁₁ r p i ∣ₕ) {- q₀₀ = q₀₁ = q₁₁ -} module _ (r : inl x₀ ≡ inr y₁) (p : push q₀₁ ≡ r) where path←→Square = (λ i j → left→rightCodeExtended q₀₁ q₀₁ r (Fiber←.homSquare q₀₁ i j r p)) ∙₂ (λ i → recUniq {n = m + n} _ _ _) ∙₂ (λ i j → Fiber→.homSquare q₀₁ i j r (fiber←[q₀₀=q₀₁=q₁₁] q₀₁ i r p .snd)) ∙₂ (λ i j → ∣ q₀₁ , fiber←→hypercube q₀₁ r p i j ∣ₕ) ∣fiber←→[q₀₀=q₀₁=q₁₁]∣ : ∣fiber←→[q₁₁=q₀₁]∣ q₀₁ ≡ ∣fiber←→[q₀₀=q₀₁]∣ q₀₁ ∣fiber←→[q₀₀=q₀₁=q₁₁]∣ i r p = path←→Square r p i fiber←→ : {x₀ : X}{y₁ : Y}(q₀₁ : Q x₀ y₁) → {y₀ : Y}(q₀₀ : Q x₀ y₀) → {x₁ : X}(q₁₁ : Q x₁ y₁) → (r : inl x₀ ≡ inr y₁) → (p : push q₀₁ ≡ r) → left→rightCodeExtended q₀₀ q₁₁ r (fiber← q₀₁ q₀₀ q₁₁ r p) ≡ ∣ q₀₁ , p ∣ₕ fiber←→ {x₀ = x₀} {y₁ = y₁} q₀₁ q₀₀' q₁₁' = WedgeConnectivity.extension m n (leftFiber x₀ , (y₁ , q₀₁)) (leftConn x₀) (rightFiber y₁ , (x₀ , q₀₁)) (rightConn y₁) (λ (y₀ , q₀₀) (x₁ , q₁₁) → (( (r : inl x₀ ≡ inr y₁) → (p : push q₀₁ ≡ r) → left→rightCodeExtended q₀₀ q₁₁ r (fiber← q₀₁ q₀₀ q₁₁ r p) ≡ ∣ q₀₁ , p ∣ₕ ) , isOfHLevelΠ2 _ (λ x y → isOfHLevelTruncPath))) (λ (y₀ , q₀₀) → ∣fiber←→[q₁₁=q₀₁]∣ q₀₁ q₀₀) (λ (x₁ , q₁₁) → ∣fiber←→[q₀₀=q₀₁]∣ q₀₁ q₁₁) (∣fiber←→[q₀₀=q₀₁=q₁₁]∣ q₀₁) (_ , q₀₀') (_ , q₁₁') module _ {x₀ x₁ : X}{y₀ y₁ : Y} (q₀₀ : Q x₀ y₀)(q₁₁ : Q x₁ y₁) (r : inl x₀ ≡ inr y₁) where left→right→leftCodeExtended : (a : leftCodeExtended q₀₀ _ (push q₁₁) r) → right→leftCodeExtended q₀₀ q₁₁ r (left→rightCodeExtended q₀₀ q₁₁ r a) ≡ a left→right→leftCodeExtended a = sym (∘rec _ _ _ (right→leftCodeExtended q₀₀ q₁₁ r) a) ∙ (λ i → recId _ (λ (q₁₀ , p) → fiber→← q₁₀ q₀₀ q₁₁ r p) i a) right→left→rightCodeExtended : (a : rightCode _ r) → left→rightCodeExtended q₀₀ q₁₁ r (right→leftCodeExtended q₀₀ q₁₁ r a) ≡ a right→left→rightCodeExtended a = sym (∘rec _ _ _ (left→rightCodeExtended q₀₀ q₁₁ r) a) ∙ (λ i → recId _ (λ (q₀₁ , p) → fiber←→ q₀₁ q₀₀ q₁₁ r p) i a) left≃rightCodeExtended : leftCodeExtended q₀₀ _ (push q₁₁) r ≃ rightCode y₁ r left≃rightCodeExtended = isoToEquiv (iso (left→rightCodeExtended _ _ _) (right→leftCodeExtended _ _ _) right→left→rightCodeExtended left→right→leftCodeExtended) {- Definition and properties of Code -} module _ (x₀ : X)(y₀ : Y)(q₀₀ : Q x₀ y₀) where leftCode' : (x : X){p : Pushout} → inl x ≡ p → inl x₀ ≡ p → Type ℓ leftCode' x r' = leftCodeExtended q₀₀ x r' leftCode : (x : X) → inl x₀ ≡ inl x → Type ℓ leftCode x = leftCode' x refl fiberPath : {x : X}{y : Y} → (q : Q x y) → leftCode' x (push q) ≡ rightCode y fiberPath q i r = ua (left≃rightCodeExtended q₀₀ q r) i pushCode : {x : X}{y : Y} → (q : Q x y) → PathP (λ i → inl x₀ ≡ push q i → Type ℓ) (leftCode x) (rightCode y) pushCode q i = hcomp (λ j → λ { (i = i0) → leftCode _ ; (i = i1) → fiberPath q j }) (leftCode' _ (λ j → push q (i ∧ j))) Code : (p : Pushout) → inl x₀ ≡ p → Type ℓ Code (inl x) = leftCode x Code (inr y) = rightCode y Code (push q i) = pushCode q i {- Transportation rule of pushCode -} transpLeftCode : (y : Y) → (q : Q x₀ y) → (q' : leftCodeExtended q₀₀ _ refl refl) → leftCode' _ (push q) (push q) transpLeftCode y q q' = transport (λ i → leftCode' _ (λ j → push q (i ∧ j)) (λ j → push q (i ∧ j))) q' transpPushCodeβ' : (y : Y) → (q : Q x₀ y) → (q' : leftCodeExtended q₀₀ _ refl refl) → transport (λ i → pushCode q i (λ j → push q (i ∧ j))) q' ≡ left→rightCodeExtended _ _ _ (transpLeftCode y q q') transpPushCodeβ' y q q' i = transportRefl (left→rightCodeExtended _ _ _ (transpLeftCode y q (transportRefl q' i))) i module _ {p : Pushout}(r : inl x₀ ≡ p) where fiber-filler : I → Type ℓ fiber-filler i = fiber' q₀₀ (λ j → r (i ∧ j)) (λ j → r (i ∧ j)) module _ (q : fiberSquare q₀₀ q₀₀ refl refl) where transpLeftCode-filler : (i j k : I) → Pushout transpLeftCode-filler i j k' = hfill (λ k → λ { (i = i0) → push q₀₀ (~ j) ; (i = i1) → r (j ∧ k) ; (j = i0) → push q₀₀ (~ i) ; (j = i1) → r (i ∧ k) }) (inS (q i j)) k' transpLeftCodeβ' : {p : Pushout} → (r : inl x₀ ≡ p) → (q : fiberSquare q₀₀ q₀₀ refl refl) → transport (λ i → fiber-filler r i) (q₀₀ , q) ≡ (q₀₀ , λ i j → transpLeftCode-filler r q i j i1) transpLeftCodeβ' r q = J (λ p r → transport (λ i → fiber-filler r i) (q₀₀ , q) ≡ (q₀₀ , λ i j → transpLeftCode-filler r q i j i1)) (transportRefl _ ∙ (λ k → (q₀₀ , λ i j → transpLeftCode-filler refl q i j k))) r transpLeftCodeβ : (y : Y) → (q : Q x₀ y) → (q' : fiberSquare q₀₀ q₀₀ refl refl) → transpLeftCode y q ∣ q₀₀ , q' ∣ₕ ≡ ∣ q₀₀ , (λ i j → transpLeftCode-filler (push q) q' i j i1) ∣ₕ transpLeftCodeβ y q q' = transportTrunc _ ∙ (λ i → ∣ transpLeftCodeβ' _ q' i ∣ₕ) transpPushCodeβ : (y : Y) → (q : Q x₀ y) → (q' : fiberSquare q₀₀ q₀₀ refl refl) → transport (λ i → pushCode q i (λ j → push q (i ∧ j))) ∣ q₀₀ , q' ∣ₕ ≡ ∣fiber→[q₀₀=q₁₀]∣ q₀₀ q (push q) (λ i j → transpLeftCode-filler (push q) q' i j i1) transpPushCodeβ y q q' = transpPushCodeβ' _ _ _ ∙ (λ i → left→rightCodeExtended _ _ _ (transpLeftCodeβ _ _ q' i)) ∙ recUniq {n = m + n} _ _ _ ∙ (λ i' → Fiber→.left q₀₀ (_ , q) i' (push q) (λ i j → transpLeftCode-filler (push q) q' i j i1)) {- The contractibility of Code -} centerCode : {p : Pushout} → (r : inl x₀ ≡ p) → Code p r centerCode r = transport (λ i → Code _ (λ j → r (i ∧ j))) ∣ q₀₀ , (λ i j → push q₀₀ (~ i ∧ ~ j)) ∣ₕ module _ (y : Y)(q : Q x₀ y) where transp-filler : (i j k : I) → Pushout transp-filler = transpLeftCode-filler (push q) (λ i' j' → push q₀₀ (~ i' ∧ ~ j')) transp-square : fiberSquare q₀₀ q₀₀ (push q) (push q) transp-square i j = transp-filler i j i1 contractionCodeRefl' : fiber→[q₀₀=q₁₀] q₀₀ q (push q) transp-square .snd ≡ refl contractionCodeRefl' i j k = hcomp (λ l → λ { (i = i0) → fiber→[q₀₀=q₁₀]-filler q₀₀ q (push q) transp-square j k l ; (i = i1) → transp-square (~ j ∨ l) k ; (j = i0) → push q (k ∧ (i ∨ l)) ; (j = i1) → transp-square l k ; (k = i0) → push q₀₀ (j ∧ ~ l) ; (k = i1) → push q ((i ∧ ~ j) ∨ l) }) (transp-filler (~ j) k i) contractionCodeRefl : centerCode (push q) ≡ ∣ q , refl ∣ₕ contractionCodeRefl = transpPushCodeβ _ _ _ ∙ (λ i → ∣ q , contractionCodeRefl' i ∣ₕ) module _ (y : Y)(r : inl x₀ ≡ inr y) where contractionCode' : (a : fiber push r) → centerCode r ≡ ∣ a ∣ₕ contractionCode' (q , p') = J (λ r' p → centerCode r' ≡ ∣ q , p ∣ₕ) (contractionCodeRefl _ q) p' contractionCode : (a : Code _ r) → centerCode r ≡ a contractionCode = elim (λ _ → isOfHLevelTruncPath) contractionCode' isContrCode : isContr (Code _ r) isContrCode = centerCode r , contractionCode excision-helper : (x : X) → Trunc (1 + m) (Σ[ y₀ ∈ Y ] Q x y₀) → (y : Y) → (r : inl x ≡ inr y) → isContr (Trunc (m + n) (fiber push r)) excision-helper x y' y r = rec (isProp→isOfHLevelSuc m isPropIsContr) (λ (y₀ , q₀₀) → isContrCode x y₀ q₀₀ y r ) y' {- The Main Result : Blakers-Massey Homotopy Excision Theorem -} Excision : (x : X)(y : Y) → isConnectedFun (m + n) (push {x = x} {y = y}) Excision x y = excision-helper x (leftConn x .fst) y
{ "alphanum_fraction": 0.4954250787, "avg_line_length": 39.9925925926, "ext": "agda", "hexsha": "77ddeacd11e4d6ba19c70dddd50398ba28bf4d4a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b1d105aeeab1ba9888394c6a919b99a476390b7b", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ecavallo/cubical", "max_forks_repo_path": "Cubical/Homotopy/BlakersMassey.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b1d105aeeab1ba9888394c6a919b99a476390b7b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ecavallo/cubical", "max_issues_repo_path": "Cubical/Homotopy/BlakersMassey.agda", "max_line_length": 120, "max_stars_count": null, "max_stars_repo_head_hexsha": "b1d105aeeab1ba9888394c6a919b99a476390b7b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ecavallo/cubical", "max_stars_repo_path": "Cubical/Homotopy/BlakersMassey.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 12296, "size": 26995 }
{-# OPTIONS --rewriting #-} open import Agda.Primitive postulate _↦_ : ∀{i j}{A : Set i}{B : Set j} → A → B → Set (i ⊔ j) {-# BUILTIN REWRITE _↦_ #-} -- currently fails a sanity check postulate resize : ∀{i j} → Set i → Set j resize-id : ∀{i} {j} {A : Set i} → resize {i} {j} A ↦ A {-# REWRITE resize-id #-} -- Impredicative quantification Forall : ∀{i} (F : Set i → Set) → Set Forall {i} F = resize ((X : Set i) → F X) -- Example: Impredicative encoding of natural numbers Nat = Forall λ X → (X → X) → X → X zero : Nat zero X s z = z suc : Nat → Nat suc n X s z = s (n X s z) -- requires impredicativity: id : Nat → Nat id n = n Nat suc zero
{ "alphanum_fraction": 0.5761689291, "avg_line_length": 18.9428571429, "ext": "agda", "hexsha": "22648cd63d1de3a6957823f9a4b8efdd055c4ba8", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Succeed/HeterogeneousRewriting.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Succeed/HeterogeneousRewriting.agda", "max_line_length": 62, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Succeed/HeterogeneousRewriting.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 248, "size": 663 }
module Data.Num.Increment where open import Data.Num.Core open import Data.Num.Bounded open import Data.Num.Maximum open import Data.Num.Next open import Data.Nat open import Data.Nat.Properties open import Data.Nat.Properties.Simple open import Data.Nat.Properties.Extra open import Data.Fin as Fin using (Fin; fromℕ≤; inject≤) renaming (zero to z; suc to s) open import Data.Fin.Properties using (toℕ-fromℕ≤; bounded) open import Data.Product open import Function open import Relation.Nullary.Decidable open import Relation.Nullary open import Relation.Nullary.Negation open import Relation.Binary open import Relation.Binary.PropositionalEquality open ≡-Reasoning open ≤-Reasoning renaming (begin_ to start_; _∎ to _□; _≡⟨_⟩_ to _≈⟨_⟩_) open DecTotalOrder decTotalOrder using (reflexive) renaming (refl to ≤-refl) ------------------------------------------------------------------------ -- a number is incrementable if there exists some n' : Numeral b d o such that ⟦ n' ⟧ℕ ≡ suc ⟦ n ⟧ℕ Incrementable : ∀ {b d o} → (xs : Numeral b d o) → Set Incrementable {b} {d} {o} xs = Σ[ xs' ∈ Numeral b d o ] ⟦ xs' ⟧ ≡ suc ⟦ xs ⟧ m≡1+n⇒m>n : ∀ {m n} → m ≡ suc n → m > n m≡1+n⇒m>n {zero} {n} () m≡1+n⇒m>n {suc m} {.m} refl = s≤s ≤-refl Maximum⇒¬Incrementable : ∀ {b d o} → (xs : Numeral b d o) → (max : Maximum xs) → ¬ (Incrementable xs) Maximum⇒¬Incrementable xs max (evidence , claim) = contradiction (max evidence) (>⇒≰ (m≡1+n⇒m>n claim)) Interval⇒Incrementable : ∀ {b d o} → (xs : Numeral (suc b) (suc d) o) → (¬greatest : ¬ (Greatest (lsd xs))) → (proper : 2 ≤ suc (d + o)) → Incrementable xs Interval⇒Incrementable {b} {d} {o} xs ¬greatest proper = (next-numeral-Proper xs proper) , (begin ⟦ next-numeral-Proper xs proper ⟧ ≡⟨ cong ⟦_⟧ (next-numeral-Proper-refine xs proper (Interval b d o ¬greatest)) ⟩ ⟦ next-numeral-Proper-Interval xs ¬greatest proper ⟧ ≡⟨ next-numeral-Proper-Interval-lemma xs ¬greatest proper ⟩ suc ⟦ xs ⟧ ∎) GappedEndpoint⇒¬Incrementable : ∀ {b d o} → (xs : Numeral (suc b) (suc d) o) → (greatest : Greatest (lsd xs)) → (proper : 2 ≤ suc (d + o)) → (gapped : Gapped xs proper) → ¬ (Incrementable xs) GappedEndpoint⇒¬Incrementable {b} {d} {o} xs greatest proper gapped (incremented , claim) = contradiction ⟦next⟧>⟦incremented⟧ ⟦next⟧≯⟦incremented⟧ where next : Numeral (suc b) (suc d) o next = next-numeral-Proper xs proper ⟦next⟧>⟦incremented⟧ : ⟦ next ⟧ > ⟦ incremented ⟧ ⟦next⟧>⟦incremented⟧ = start suc ⟦ incremented ⟧ ≈⟨ cong suc claim ⟩ suc (suc ⟦ xs ⟧) ≤⟨ next-numeral-Proper-GappedEndpoint-lemma xs greatest proper gapped ⟩ ⟦ next-numeral-Proper-GappedEndpoint xs proper gapped ⟧ ≈⟨ cong ⟦_⟧ (sym (next-numeral-Proper-refine xs proper (GappedEndpoint b d o greatest gapped))) ⟩ ⟦ next-numeral-Proper xs proper ⟧ □ ⟦next⟧≯⟦incremented⟧ : ⟦ next ⟧ ≯ ⟦ incremented ⟧ ⟦next⟧≯⟦incremented⟧ = ≤⇒≯ $ next-numeral-is-immediate-Proper xs incremented proper (m≡1+n⇒m>n claim) UngappedEndpoint⇒Incrementable : ∀ {b d o} → (xs : Numeral (suc b) (suc d) o) → (greatest : Greatest (lsd xs)) → (proper : 2 ≤ suc (d + o)) → (¬gapped : ¬ (Gapped xs proper)) → Incrementable xs UngappedEndpoint⇒Incrementable {b} {d} {o} xs greatest proper ¬gapped = (next-numeral-Proper xs proper) , (begin ⟦ next-numeral-Proper xs proper ⟧ ≡⟨ cong ⟦_⟧ (next-numeral-Proper-refine xs proper (UngappedEndpoint b d o greatest ¬gapped)) ⟩ ⟦ next-numeral-Proper-UngappedEndpoint xs greatest proper ¬gapped ⟧ ≡⟨ next-numeral-Proper-UngappedEndpoint-lemma xs greatest proper ¬gapped ⟩ suc ⟦ xs ⟧ ∎) ¬Gapped⇒Incrementable : ∀ {b d o} → (xs : Numeral (suc b) (suc d) o) → (proper : 2 ≤ suc (d + o)) → (¬gapped : ¬ (Gapped xs proper)) → Incrementable xs ¬Gapped⇒Incrementable xs proper ¬gapped with nextView xs proper ¬Gapped⇒Incrementable xs proper ¬gapped | Interval b d o ¬greatest = Interval⇒Incrementable xs ¬greatest proper ¬Gapped⇒Incrementable xs proper ¬gapped | GappedEndpoint b d o greatest gapped = contradiction gapped ¬gapped ¬Gapped⇒Incrementable xs proper ¬gapped | UngappedEndpoint b d o greatest _ = UngappedEndpoint⇒Incrementable xs greatest proper ¬gapped Incrementable?-Proper : ∀ {b d o} → (xs : Numeral (suc b) (suc d) o) → (proper : 2 ≤ suc (d + o)) → Dec (Incrementable xs) Incrementable?-Proper xs proper with nextView xs proper Incrementable?-Proper xs proper | Interval b d o ¬greatest = yes (Interval⇒Incrementable xs ¬greatest proper) Incrementable?-Proper xs proper | GappedEndpoint b d o greatest gapped = no (GappedEndpoint⇒¬Incrementable xs greatest proper gapped) Incrementable?-Proper xs proper | UngappedEndpoint b d o greatest ¬gapped = yes (UngappedEndpoint⇒Incrementable xs greatest proper ¬gapped) Incrementable? : ∀ {b d o} → (xs : Numeral b d o) → Dec (Incrementable xs) Incrementable? xs with Maximum? xs Incrementable? xs | yes max = no (Maximum⇒¬Incrementable xs max) Incrementable? {b} {d} {o} xs | no ¬max with numView b d o Incrementable? xs | no ¬max | NullBase d o = yes ((next-numeral-NullBase xs ¬max) , (next-numeral-NullBase-lemma xs ¬max)) Incrementable? xs | no ¬max | NoDigits b o = yes (NoDigits-explode xs) Incrementable? xs | no ¬max | AllZeros b = no (contradiction (Maximum-AllZeros xs) ¬max) Incrementable? xs | no ¬max | Proper b d o proper = Incrementable?-Proper xs proper increment : ∀ {b d o} → (xs : Numeral b d o) → (incr : True (Incrementable? xs)) → Numeral b d o increment xs incr = proj₁ $ toWitness incr increment-next-numeral-Proper : ∀ {b d o} → (xs : Numeral (suc b) (suc d) o) → (proper : 2 ≤ suc (d + o)) → (incr : True (Incrementable?-Proper xs proper)) → proj₁ (toWitness incr) ≡ next-numeral-Proper xs proper increment-next-numeral-Proper xs proper incr with nextView xs proper increment-next-numeral-Proper xs proper incr | Interval b d o ¬greatest = begin next-numeral-Proper xs proper ≡⟨ next-numeral-Proper-refine xs proper (Interval b d o ¬greatest) ⟩ next-numeral-Proper-Interval xs ¬greatest proper ∎ increment-next-numeral-Proper xs proper () | GappedEndpoint b d o greatest gapped increment-next-numeral-Proper xs proper incr | UngappedEndpoint b d o greatest ¬gapped = begin next-numeral-Proper xs proper ≡⟨ next-numeral-Proper-refine xs proper (UngappedEndpoint b d o greatest ¬gapped) ⟩ next-numeral-Proper-UngappedEndpoint xs greatest proper ¬gapped ∎ increment-next-numeral : ∀ {b d o} → (xs : Numeral b d o) → (¬max : ¬ (Maximum xs)) → (incr : True (Incrementable? xs)) → increment xs incr ≡ next-numeral xs ¬max increment-next-numeral xs ¬max incr with Maximum? xs increment-next-numeral xs ¬max () | yes max increment-next-numeral {b} {d} {o} xs ¬max incr | no _ with numView b d o increment-next-numeral xs _ incr | no ¬max | NullBase d o = refl increment-next-numeral xs _ incr | no ¬max | NoDigits b o = NoDigits-explode xs increment-next-numeral xs _ () | no ¬max | AllZeros b increment-next-numeral xs _ incr | no ¬max | Proper b d o proper = increment-next-numeral-Proper xs proper incr
{ "alphanum_fraction": 0.6502008032, "avg_line_length": 40.597826087, "ext": "agda", "hexsha": "b2e1efd2a00d1d5851e318e72cbae145f0048fbe", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_forks_event_min_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/numeral", "max_forks_repo_path": "Data/Num/Increment.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/numeral", "max_issues_repo_path": "Data/Num/Increment.agda", "max_line_length": 109, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/numeral", "max_stars_repo_path": "Data/Num/Increment.agda", "max_stars_repo_stars_event_max_datetime": "2015-04-23T15:58:28.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-23T15:58:28.000Z", "num_tokens": 2427, "size": 7470 }
module Haskell.RangedSets.RangedSet where open import Agda.Builtin.Equality open import Haskell.Prim open import Haskell.Prim.Ord open import Haskell.Prim.Bool open import Haskell.Prim.Maybe open import Haskell.Prim.Enum open import Haskell.Prim.Num open import Haskell.Prim.Eq open import Haskell.Prim.Foldable open import Haskell.Prim.Monoid open import Haskell.Prim.Int open import Haskell.Prim.List open import Haskell.Prim.Integer open import Haskell.Prim.Real open import Haskell.RangedSets.Boundaries open import Haskell.RangedSets.Ranges open import Haskell.RangedSetsProp.library open import Haskell.RangedSetsProp.BoundariesProperties {-# FOREIGN AGDA2HS import Haskell.RangedSets.Boundaries #-} {-# FOREIGN AGDA2HS import Haskell.RangedSets.Ranges #-} {-# FOREIGN AGDA2HS import Data.List #-} infixl 7 _-/\-_ infixl 6 _-\/-_ _-!-_ infixl 5 _-<=-_ _-<-_ _-?-_ okAdjacent : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → Range a → Range a → Bool okAdjacent r@(Rg lower1 upper1) r2@(Rg lower2 upper2) = rangeLower r <= rangeUpper r && rangeUpper r <= rangeLower r2 && rangeLower r2 <= rangeUpper r2 {-# COMPILE AGDA2HS okAdjacent #-} validRangeList : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → List (Range a) → Bool validRangeList [] = true validRangeList (x ∷ []) = (rangeLower x) <= (rangeUpper x) validRangeList (x ∷ rs@(r1 ∷ rss)) = (okAdjacent x r1) && (validRangeList rs) {-# COMPILE AGDA2HS validRangeList #-} validBoundaryList : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → List (Boundary a) → Bool validBoundaryList [] = true validBoundaryList (x ∷ []) = true validBoundaryList (x ∷ rs@(r1 ∷ rss)) = (x <= r1) && (validBoundaryList rs) data RSet (a : Set) ⦃ o : Ord a ⦄ ⦃ dio : DiscreteOrdered a ⦄ : Set where RS : (rg : List (Range a)) → {IsTrue (validRangeList rg)} → RSet a {-# COMPILE AGDA2HS RSet #-} rSetRanges : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → RSet a → List (Range a) rSetRanges (RS ranges) = ranges {-# COMPILE AGDA2HS rSetRanges #-} overlap1 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → Range a → Range a → Bool overlap1 (Rg _ upper1) (Rg lower2 _) = (upper1 >= lower2) {-# COMPILE AGDA2HS overlap1 #-} sortedRangeList : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → List (Range a) → Bool sortedRangeList [] = true sortedRangeList (r ∷ []) = true sortedRangeList (r1 ∷ r2 ∷ rs) = (r1 <= r2) && (sortedRangeList (r2 ∷ rs)) validRanges : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → List (Range a) → Bool validRanges [] = true validRanges (r ∷ rs) = (rangeLower r <= rangeUpper r) && (validRanges rs) headandtailSorted : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs : List (Range a)) → ⦃ ne : NonEmpty rs ⦄ → (IsTrue (sortedRangeList rs)) → (IsTrue (sortedRangeList (tail rs ⦃ ne ⦄))) headandtailValidRanges : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs : List (Range a)) → ⦃ ne : NonEmpty rs ⦄ → (IsTrue (validRanges rs)) → (IsTrue (validRanges (tail rs ⦃ ne ⦄))) normalise : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rg : List (Range a)) → ⦃ IsTrue (sortedRangeList rg) ⦄ → ⦃ IsTrue (validRanges rg) ⦄ → List (Range a) postulate sortedList : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs : List (Range a)) -> IsTrue (sortedRangeList (sort (filter (λ r → (rangeIsEmpty r) == false) rs))) validRangesList : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs : List (Range a)) -> IsTrue (validRanges (sort (filter (λ r → (rangeIsEmpty r) == false) rs))) unsafeRangedSet : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rg : List (Range a)) → ⦃ IsTrue (validRangeList ⦃ o ⦄ ⦃ dio ⦄ rg) ⦄ → RSet a unsafeRangedSet rs ⦃ prf ⦄ = RS rs {prf} {-# COMPILE AGDA2HS unsafeRangedSet #-} validFunction2 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (b : Boundary a) → (f : Boundary a → Boundary a) → Bool validFunction2 b f = (f b) > b validFunction : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (b : Boundary a) → (g : Boundary a → Maybe (Boundary a)) → Bool validFunction b g with (g b) ... | Nothing = true ... | Just b2 = (b2 > b) ranges3 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → Maybe (Boundary a) → (f : Boundary a → Boundary a) → (g : Boundary a → Maybe (Boundary a)) → List (Range a) {-# TERMINATING #-} ranges2 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (b : Boundary a) → (f : Boundary a → Boundary a) → (g : Boundary a → Maybe (Boundary a)) → List (Range a) ranges2 b upperFunc succFunc = (Rg b (upperFunc b)) ∷ (ranges3 (succFunc b) upperFunc succFunc) ranges3 (Just b1) upperFunc succFunc = if ((validFunction2 b1 upperFunc) && (validFunction b1 succFunc)) then (ranges2 b1 upperFunc succFunc) else [] ranges3 Nothing _ _ = [] {-# COMPILE AGDA2HS ranges2 #-} {-# COMPILE AGDA2HS ranges3 #-} setBounds1 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (xs : List (Boundary a)) → List (Boundary a) setBounds1 (BoundaryBelowAll ∷ xs) = xs setBounds1 xs = (BoundaryBelowAll ∷ xs) {-# COMPILE AGDA2HS setBounds1 #-} bounds1 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → List (Range a) → List (Boundary a) bounds1 (r ∷ rs) = (rangeLower r) ∷ (rangeUpper r) ∷ (bounds1 rs) bounds1 [] = [] {-# COMPILE AGDA2HS bounds1 #-} ranges1 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → List (Boundary a) → List (Range a) ranges1 (b1 ∷ b2 ∷ bs) = (Rg b1 b2) ∷ (ranges1 bs) ranges1 (BoundaryAboveAll ∷ []) = [] ranges1 (b ∷ []) = (Rg b BoundaryAboveAll) ∷ [] ranges1 _ = [] {-# COMPILE AGDA2HS ranges1 #-} merge1 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → List (Range a) → List (Range a) → List (Range a) merge1 [] [] = [] merge1 ms1@(h1 ∷ t1) [] = ms1 merge1 [] ms2@(h2 ∷ t2) = ms2 merge1 ms1@(h1 ∷ t1) ms2@(h2 ∷ t2) = if_then_else_ (h1 < h2) (h1 ∷ (merge1 t1 ms2)) (h2 ∷ (merge1 ms1 t2)) {-# COMPILE AGDA2HS merge1 #-} merge2 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → List (Range a) → List (Range a) → List (Range a) merge2 [] [] = [] merge2 ms1@(h1 ∷ t1) [] = [] merge2 [] ms2@(h2 ∷ t2) = [] merge2 ms1@(h1 ∷ t1) ms2@(h2 ∷ t2) = (rangeIntersection h1 h2) ∷ (if_then_else_ (rangeUpper h1 < rangeUpper h2) (merge2 t1 ms2) (merge2 ms1 t2)) {-# COMPILE AGDA2HS merge2 #-} postulate sortedListComposed : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (r1 r2 : Range a) → (ranges : List (Range a)) → IsTrue (sortedRangeList (r1 ∷ r2 ∷ ranges)) → IsTrue (sortedRangeList ((Rg (rangeLower r1) (max (rangeUpper r1) (rangeUpper r2))) ∷ ranges)) validRangesComposed : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (r1 r2 : Range a) → (ranges : List (Range a)) → IsTrue (sortedRangeList (r1 ∷ r2 ∷ ranges)) → IsTrue (validRanges (r1 ∷ r2 ∷ ranges)) → IsTrue (validRanges ((Rg (rangeLower r1) (max (rangeUpper r1) (rangeUpper r2))) ∷ ranges)) rangesLTEQ : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (b : Boundary a) → (f : Boundary a → Boundary a) → IsTrue (f b > b) → IsTrue (b <= f b) stupid1 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (b b1 : Boundary a) → (f : Boundary a → Boundary a) → (g : Boundary a → Maybe (Boundary a)) → IsTrue (validFunction2 b f) → IsTrue (validFunction b g) → (cond : Bool) -- this condition is (validFunction2 b1 f) && (validFunction b1 g) → IsTrue cond → IsTrue (validFunction2 b1 f) stupid2 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (b b1 : Boundary a) → (f : Boundary a → Boundary a) → (g : Boundary a → Maybe (Boundary a)) → IsTrue (validFunction2 b f) → IsTrue (validFunction b g) → (cond : Bool) -- this condition is (validFunction2 b1 f) && (validFunction b1 g) → IsTrue cond → IsTrue (validFunction b1 g) -- used only when h <= h3 okSorted : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (h h3 : Range a) → sortedRangeList (h ∷ h3 ∷ []) ≡ true -- holds only when upper h <= lower(head ms) validList : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (h : Range a) → (ms : List (Range a)) → IsTrue (validRangeList ms) → validRangeList (h ∷ ms) ≡ true validIsSorted : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (ms : List (Range a)) → IsTrue (validRangeList ms) → IsTrue (sortedRangeList ms) -- holds only when h < (head ms) validSortedList : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (h : Range a) → (ms : List (Range a)) → IsTrue (sortedRangeList ms) → sortedRangeList (h ∷ ms) ≡ true normalise (r1 ∷ r2 ∷ rs) ⦃ prf ⦄ ⦃ prf2 ⦄ = if_then_else_ (overlap1 r1 r2) (normalise ((Rg (rangeLower r1) (max (rangeUpper r1) (rangeUpper r2))) ∷ rs) ⦃ sortedListComposed r1 r2 rs prf ⦄ ⦃ validRangesComposed r1 r2 rs prf prf2 ⦄ ) (r1 ∷ (normalise (r2 ∷ rs) ⦃ headandtailSorted (r1 ∷ r2 ∷ rs) prf ⦄ ⦃ headandtailValidRanges (r1 ∷ r2 ∷ rs) prf2 ⦄ )) normalise rs = rs {-# COMPILE AGDA2HS normalise #-} -- some useful proofs headandtail : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs : RSet a) → ⦃ ne : NonEmpty (rSetRanges rs) ⦄ → (IsTrue (validRangeList (rSetRanges rs))) → (IsTrue (validRangeList (tail (rSetRanges rs) ⦃ ne ⦄))) okAdjValid : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs : List (Range a)) → (r : Range a) → ⦃ ne : NonEmpty rs ⦄ → (IsTrue (validRangeList (r ∷ rs))) → IsTrue (okAdjacent r (head rs ⦃ ne ⦄)) headandtail2 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs : List (Range a)) → ⦃ ne : NonEmpty rs ⦄ → (IsTrue (validRangeList rs)) → (IsTrue (validRangeList (tail rs ⦃ ne ⦄))) tailandhead : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs : RSet a) → ⦃ ne : NonEmpty (rSetRanges rs) ⦄ → (IsTrue (validRangeList (rSetRanges rs))) → (IsTrue (validRangeList ((head (rSetRanges rs) ⦃ ne ⦄) ∷ []))) tailandhead2 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs : List (Range a)) → ⦃ ne : NonEmpty rs ⦄ → (IsTrue (validRangeList rs)) → (IsTrue (validRangeList ((head rs ⦃ ne ⦄) ∷ []))) okAdjIsTrue : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (r : Range a) → (r2 : Range a) → okAdjacent r r2 ≡ ((rangeLower r <= rangeUpper r) && (rangeUpper r <= rangeLower r2) && (rangeLower r2 <= rangeUpper r2)) normalisedSortedList0 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (ms : List (Range a)) → (prf : IsTrue (sortedRangeList ms)) → (prf2 : IsTrue (validRanges ms)) → validRangeList (normalise ms ⦃ prf ⦄ ⦃ prf2 ⦄) ≡ true normalisedSortedList00 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs : List (Range a)) → (r1 r2 : Range a) → (prf : IsTrue (sortedRangeList (r1 ∷ r2 ∷ rs))) → (prf2 : IsTrue (validRanges (r1 ∷ r2 ∷ rs))) → (b : Bool) → validRangeList (if_then_else_ b (normalise ((Rg (rangeLower r1) (max (rangeUpper r1) (rangeUpper r2))) ∷ rs) ⦃ sortedListComposed r1 r2 rs prf ⦄ ⦃ validRangesComposed r1 r2 rs prf prf2 ⦄) (r1 ∷ (normalise (r2 ∷ rs) ⦃ headandtailSorted (r1 ∷ r2 ∷ rs) prf ⦄ ⦃ headandtailValidRanges (r1 ∷ r2 ∷ rs) prf2 ⦄))) ≡ true normalisedSortedList : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (ms : List (Range a)) → (prf : IsTrue (sortedRangeList ms)) → (prf2 : IsTrue (validRanges ms)) → IsTrue (validRangeList (normalise ms ⦃ prf ⦄ ⦃ prf2 ⦄)) merge1HasValidRanges0 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs1 rs2 : RSet a) → IsTrue (validRangeList (rSetRanges rs1)) → IsTrue (validRangeList (rSetRanges rs2)) → (validRanges (merge1 (rSetRanges rs1) (rSetRanges rs2))) ≡ true merge1HasValidRanges00 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs1 rs2 : RSet a) → (h1 h2 : Range a) → IsTrue (validRangeList (h1 ∷ (rSetRanges rs1))) → IsTrue (validRangeList (h2 ∷ (rSetRanges rs2))) → (b : Bool) → validRanges (if_then_else_ b (h1 ∷ (merge1 (rSetRanges rs1) (h2 ∷ (rSetRanges rs2)))) (h2 ∷ (merge1 (h1 ∷ (rSetRanges rs1)) (rSetRanges rs2)))) ≡ true validListMeansValidRanges : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs1 : RSet a) → IsTrue (validRangeList (rSetRanges rs1)) → (validRanges (rSetRanges rs1)) ≡ true merge1HasValidRanges : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs1 rs2 : RSet a) → IsTrue (validRangeList (rSetRanges rs1)) → IsTrue (validRangeList (rSetRanges rs2)) → IsTrue (validRanges (merge1 (rSetRanges rs1) (rSetRanges rs2))) ranges2HasValidRanges0 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (b : Boundary a) → (f : Boundary a → Boundary a) → (g : Boundary a → Maybe (Boundary a)) → IsTrue (validFunction2 b f) → IsTrue (validFunction b g) → (validRanges (ranges2 b f g)) ≡ true ranges2HasValidRanges00 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (b : Boundary a) → (f : Boundary a → Boundary a) → (g : Boundary a → Maybe (Boundary a)) → (mb : Maybe (Boundary a)) → IsTrue (validFunction2 b f) → IsTrue (validFunction b g) → (validRanges ((Rg b (f b)) ∷ (ranges3 mb f g))) ≡ true ranges2HasValidRanges000 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (b b1 : Boundary a) → (f : Boundary a → Boundary a) → (g : Boundary a → Maybe (Boundary a)) → (cond : Bool) → IsTrue (validFunction2 b f) → IsTrue (validFunction b g) → (validRanges ((Rg b (f b)) ∷ (if cond then (ranges2 b1 f g) else []))) ≡ true ranges2HasValidRanges : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (b : Boundary a) → (f : Boundary a → Boundary a) → (g : Boundary a → Maybe (Boundary a)) → IsTrue (validFunction2 b f) → IsTrue (validFunction b g) → IsTrue (validRanges (ranges2 b f g)) unfoldSorted : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (b : Boundary a) → (f : Boundary a → Boundary a) → (g : Boundary a → Maybe (Boundary a)) → IsTrue (sortedRangeList (ranges2 b f g)) unfoldIsSorted00 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (b : Boundary a) → (f : Boundary a → Boundary a) → (g : Boundary a → Maybe (Boundary a)) → (b1 : Boundary a) → (cond : Bool) → sortedRangeList ((Rg b (f b)) ∷ (if_then_else_ cond (ranges2 b1 f g) [])) ≡ true unfoldIsSorted0 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (b : Boundary a) → (f : Boundary a → Boundary a) → (g : Boundary a → Maybe (Boundary a)) → (mb : Maybe (Boundary a)) → sortedRangeList ((Rg b (f b)) ∷ (ranges3 mb f g)) ≡ true unfoldIsSorted : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (b : Boundary a) → (f : Boundary a → Boundary a) → (g : Boundary a → Maybe (Boundary a)) → sortedRangeList (ranges2 b f g) ≡ true -- the following proofs are used for proving that intersection is valid intersection2 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs1 : RSet a) → (rs2 : RSet a) → ⦃ ne1 : NonEmpty (rSetRanges rs1) ⦄ → ⦃ ne2 : NonEmpty (rSetRanges rs2) ⦄ → IsTrue (validRangeList (rSetRanges rs1)) → IsTrue (validRangeList (rSetRanges rs2)) → (b : Bool) → validRangeList ( if_then_else_ b ((rangeIntersection (head (rSetRanges rs1) ⦃ ne1 ⦄) (head (rSetRanges rs2) ⦃ ne2 ⦄)) ∷ (filter (λ x → (rangeIsEmpty x == false)) (if_then_else_ (rangeUpper (head (rSetRanges rs1) ⦃ ne1 ⦄) < rangeUpper (head (rSetRanges rs2) ⦃ ne2 ⦄)) (merge2 (tail (rSetRanges rs1) ⦃ ne1 ⦄) (rSetRanges rs2)) (merge2 (rSetRanges rs1) (tail (rSetRanges rs2) ⦃ ne2 ⦄))))) (filter (λ x → (rangeIsEmpty x == false)) (if_then_else_ (rangeUpper (head (rSetRanges rs1) ⦃ ne1 ⦄) < rangeUpper (head (rSetRanges rs2) ⦃ ne2 ⦄)) (merge2 (tail (rSetRanges rs1) ⦃ ne1 ⦄) (rSetRanges rs2)) (merge2 (rSetRanges rs1) (tail (rSetRanges rs2) ⦃ ne2 ⦄)))) ) ≡ true intersection3 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs1 : RSet a) → (rs2 : RSet a) → ⦃ ne1 : NonEmpty (rSetRanges rs1) ⦄ → ⦃ ne2 : NonEmpty (rSetRanges rs2) ⦄ → IsTrue (validRangeList (rSetRanges rs1)) → IsTrue (validRangeList (rSetRanges rs2)) → (b : Bool) → validRangeList ((filter (λ x → (rangeIsEmpty x == false)) (if_then_else_ b (merge2 (tail (rSetRanges rs1) ⦃ ne1 ⦄) (rSetRanges rs2)) (merge2 (rSetRanges rs1) (tail (rSetRanges rs2) ⦃ ne2 ⦄))))) ≡ true intersectionHolds : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs1 : RSet a) → (rs2 : RSet a) → IsTrue (validRangeList (rSetRanges rs1)) → IsTrue (validRangeList (rSetRanges rs2)) → validRangeList (filter (λ x → (rangeIsEmpty x == false)) (merge2 (rSetRanges rs1) (rSetRanges rs2))) ≡ true -- intersection of two valid ranged sets is also valid range set intersection0 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs1 : RSet a) → (rs2 : RSet a) → IsTrue (validRangeList (rSetRanges rs1)) → IsTrue (validRangeList (rSetRanges rs2)) → IsTrue (validRangeList (filter (λ x → (rangeIsEmpty x == false)) (merge2 (rSetRanges rs1) (rSetRanges rs2)))) intersection0 ⦃ o ⦄ ⦃ dio ⦄ rs1 rs2 prf1 prf2 = subst IsTrue (sym (intersectionHolds ⦃ o ⦄ ⦃ dio ⦄ rs1 rs2 prf1 prf2)) IsTrue.itsTrue -- used for proving that union is valid (merge1 returns a valid range list) merge1IsSorted0 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (h1 h2 : Range a) → (t1 t2 : RSet a) → (b : Bool) → IsTrue (validRangeList (h1 ∷ (rSetRanges t1))) → IsTrue (validRangeList (h2 ∷ (rSetRanges t2))) → sortedRangeList (if_then_else_ b (h1 ∷ (merge1 (rSetRanges t1) (h2 ∷ (rSetRanges t2)))) (h2 ∷ (merge1 (h1 ∷ (rSetRanges t1)) (rSetRanges t2)))) ≡ true merge1IsSorted1 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs1 : RSet a) → (rs2 : RSet a) → IsTrue (validRangeList (rSetRanges rs1)) → IsTrue (validRangeList (rSetRanges rs2)) → sortedRangeList (merge1 (rSetRanges rs1) (rSetRanges rs2)) ≡ true merge1Sorted : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs1 : RSet a) → (rs2 : RSet a) → IsTrue (validRangeList (rSetRanges rs1)) → IsTrue (validRangeList (rSetRanges rs2)) → IsTrue (sortedRangeList (merge1 (rSetRanges rs1) (rSetRanges rs2))) merge1Sorted ⦃ o ⦄ ⦃ dio ⦄ rs1 rs2 prf1 prf2 = subst IsTrue (sym (merge1IsSorted1 rs1 rs2 prf1 prf2)) IsTrue.itsTrue -- union of two valid ranged sets is also valid range set unionHolds : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs1 : RSet a) → (rs2 : RSet a) → (prf1 : IsTrue (validRangeList (rSetRanges rs1))) → (prf2 : IsTrue (validRangeList (rSetRanges rs2))) → IsTrue (validRangeList (normalise (merge1 (rSetRanges rs1) (rSetRanges rs2)) ⦃ merge1Sorted rs1 rs2 prf1 prf2 ⦄ ⦃ merge1HasValidRanges rs1 rs2 prf1 prf2 ⦄)) unionHolds ⦃ o ⦄ ⦃ dio ⦄ rs1 rs2 prf1 prf2 = normalisedSortedList (merge1 (rSetRanges rs1) (rSetRanges rs2)) (merge1Sorted rs1 rs2 prf1 prf2) (merge1HasValidRanges rs1 rs2 prf1 prf2) -- used for proving negation is valid {-# TERMINATING #-} valid : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs : RSet a) → {IsTrue (validRangeList (rSetRanges rs))} → (validRangeList (rSetRanges rs)) ≡ (validBoundaryList (bounds1 (rSetRanges rs))) validSetBounds : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (bs : List (Boundary a)) → validBoundaryList (setBounds1 bs) ≡ validBoundaryList bs validRanges1 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (bs : List (Boundary a)) → validRangeList (ranges1 bs) ≡ validBoundaryList bs -- negation of valid ranged set is also valid prop3 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs : RSet a) → IsTrue (validRangeList (rSetRanges rs)) → validRangeList (rSetRanges rs) ≡ validBoundaryList (setBounds1 (bounds1 (rSetRanges rs))) prop3 ⦃ o ⦄ ⦃ dio ⦄ rs prf = trans (valid rs {prf}) (sym (validSetBounds (bounds1 (rSetRanges rs)))) prop4 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs : RSet a) → IsTrue (validRangeList (rSetRanges rs)) → validRangeList (rSetRanges rs) ≡ validRangeList (ranges1 (setBounds1 (bounds1 (rSetRanges rs)))) prop4 ⦃ o ⦄ ⦃ dio ⦄ rs prf = trans (prop3 rs prf) (sym (validRanges1 (setBounds1 (bounds1 (rSetRanges rs))))) negation : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs : RSet a) → (IsTrue (validRangeList (rSetRanges rs))) → (IsTrue (validRangeList (ranges1 (setBounds1 (bounds1 (rSetRanges rs)))))) negation ⦃ o ⦄ ⦃ dio ⦄ rs prf = subst IsTrue (prop4 rs prf) prf -- empty range is valid emptyRangeValid : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (validRangeList ⦃ o ⦄ ⦃ dio ⦄ []) ≡ true emptyRangeValid = refl empty : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → IsTrue (validRangeList ⦃ o ⦄ ⦃ dio ⦄ []) empty ⦃ o ⦄ ⦃ dio ⦄ = subst IsTrue (sym (emptyRangeValid ⦃ o ⦄ ⦃ dio ⦄)) IsTrue.itsTrue -- full range is valid fullRangeValid : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (validRangeList ⦃ o ⦄ ⦃ dio ⦄ (fullRange ⦃ o ⦄ ⦃ dio ⦄ ∷ [])) ≡ true full0 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → IsTrue (validRangeList ⦃ o ⦄ ⦃ dio ⦄ ((Rg BoundaryBelowAll BoundaryAboveAll) ∷ [])) full0 ⦃ o ⦄ ⦃ dio ⦄ = subst IsTrue (sym (fullRangeValid ⦃ o ⦄ ⦃ dio ⦄)) IsTrue.itsTrue -- any singleton range is valid singletonRangeValid0 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (x : a) → (validRangeList ((singletonRange x) ∷ [])) ≡ true singletonRangeValid : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (x : a) → IsTrue (validRangeList ((singletonRange x) ∷ [])) singletonRangeValid x = subst IsTrue (sym (singletonRangeValid0 x)) IsTrue.itsTrue rSingleton : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → a → RSet a rSingleton ⦃ o ⦄ ⦃ dio ⦄ a = RS ((singletonRange a) ∷ []) {singletonRangeValid a} {-# COMPILE AGDA2HS rSingleton #-} normaliseRangeList : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → List (Range a) → List (Range a) normaliseRangeList [] = [] normaliseRangeList rs@(r1 ∷ rss) = normalise (sort (filter (λ r → (rangeIsEmpty r) == false) rs)) ⦃ sortedList rs ⦄ ⦃ validRangesList rs ⦄ {-# COMPILE AGDA2HS normaliseRangeList #-} makeRangedSet : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → List (Range a) → RSet a makeRangedSet ⦃ o ⦄ ⦃ dio ⦄ [] = RS [] {empty ⦃ o ⦄ ⦃ dio ⦄} makeRangedSet ⦃ o ⦄ ⦃ dio ⦄ rs@(r1 ∷ rss) = RS (normaliseRangeList rs) { normalisedSortedList (sort (filter (λ r → (rangeIsEmpty r) == false) rs)) (sortedList rs) (validRangesList rs) } {-# COMPILE AGDA2HS makeRangedSet #-} rangesAreEmpty : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → List (Range a) → Bool rangesAreEmpty [] = true rangesAreEmpty (r ∷ rs) = false {-# COMPILE AGDA2HS rangesAreEmpty #-} rSetIsEmpty : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs : RSet a) → Bool rSetIsEmpty ⦃ o ⦄ ⦃ dio ⦄ rset@(RS ranges) = rangesAreEmpty ⦃ o ⦄ ⦃ dio ⦄ ranges {-# COMPILE AGDA2HS rSetIsEmpty #-} rSetNegation : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rg : RSet a) → {(IsTrue (validRangeList (rSetRanges rg)))} → RSet a rSetNegation ⦃ o ⦄ ⦃ dio ⦄ set@(RS ranges) {prf} = RS (ranges1 (setBounds1 (bounds1 ranges))) {negation set prf} {-# COMPILE AGDA2HS rSetNegation #-} rSetIsFull : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs : RSet a) → {IsTrue (validRangeList (rSetRanges rs))} → Bool rSetIsFull set {prf} = rSetIsEmpty (rSetNegation set {prf}) {-# COMPILE AGDA2HS rSetIsFull #-} rSetEmpty : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → RSet a rSetEmpty ⦃ o ⦄ ⦃ dio ⦄ = RS [] {empty ⦃ o ⦄ ⦃ dio ⦄} {-# COMPILE AGDA2HS rSetEmpty #-} rSetFull : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → RSet a rSetFull ⦃ o ⦄ ⦃ dio ⦄ = RS ((Rg BoundaryBelowAll BoundaryAboveAll) ∷ []) {full0 ⦃ o ⦄ ⦃ dio ⦄} {-# COMPILE AGDA2HS rSetFull #-} rSetHas : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs : RSet a) → {IsTrue (validRangeList (rSetRanges rs))} → a → Bool rSetHas (RS []) _ = false rSetHas ⦃ o ⦄ ⦃ dio ⦄ (RS ls@(r ∷ [])) value = rangeHas ⦃ o ⦄ r value rSetHas ⦃ o ⦄ ⦃ dio ⦄ rst@(RS ls@(r ∷ rs)) {prf} value = (rangeHas ⦃ o ⦄ r value) || (rSetHas (RS rs {headandtail rst prf}) {headandtail rst prf} value) {-# COMPILE AGDA2HS rSetHas #-} _-?-_ : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs : RSet a) → {IsTrue (validRangeList (rSetRanges rs))} → a → Bool _-?-_ rs {prf} = rSetHas rs {prf} {-# COMPILE AGDA2HS _-?-_ #-} negationHelper : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs : RSet a) → {tr0 : IsTrue (validRangeList (rSetRanges rs))} → validRangeList (rSetRanges (rSetNegation rs {tr0})) ≡ validRangeList (ranges1 (setBounds1 (bounds1 (rSetRanges rs)))) negation2 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs : RSet a) → {tr0 : IsTrue (validRangeList (rSetRanges rs))} → (tr : IsTrue (validRangeList (ranges1 (setBounds1 (bounds1 (rSetRanges rs)))))) → IsTrue (validRangeList (rSetRanges (rSetNegation rs {tr0}))) negation2 rs {prf0} prf = subst IsTrue (sym (negationHelper rs {prf0})) prf rSetUnion : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs1 : RSet a) → {IsTrue (validRangeList (rSetRanges rs1))} → (rs2 : RSet a) → {IsTrue (validRangeList (rSetRanges rs2))} → RSet a rSetUnion ⦃ o ⦄ ⦃ dio ⦄ r1@(RS ls1) {prf1} r2@(RS ls2) {prf2} = RS (normalise (merge1 ls1 ls2) ⦃ merge1Sorted r1 r2 prf1 prf2 ⦄ ⦃ merge1HasValidRanges r1 r2 prf1 prf2 ⦄) {unionHolds r1 r2 prf1 prf2} {-# COMPILE AGDA2HS rSetUnion #-} _-\/-_ : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs1 : RSet a) → {IsTrue (validRangeList (rSetRanges rs1))} → (rs2 : RSet a) → {IsTrue (validRangeList (rSetRanges rs2))} → RSet a _-\/-_ rs1 {prf1} rs2 {prf2} = rSetUnion rs1 {prf1} rs2 {prf2} {-# COMPILE AGDA2HS _-\/-_ #-} unionHelper : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs1 : RSet a) → (rs2 : RSet a) → (prf1 : IsTrue (validRangeList (rSetRanges rs1))) → (prf2 : IsTrue (validRangeList (rSetRanges rs2))) → validRangeList (rSetRanges (rSetUnion rs1 {prf1} rs2 {prf2})) ≡ validRangeList (normalise (merge1 (rSetRanges rs1) (rSetRanges rs2)) ⦃ merge1Sorted rs1 rs2 prf1 prf2 ⦄ ⦃ merge1HasValidRanges rs1 rs2 prf1 prf2 ⦄) unionHelper ⦃ o ⦄ ⦃ dio ⦄ rs1@(RS ls1) rs2@(RS ls2) prf1 prf2 = begin validRangeList (rSetRanges (rSetUnion rs1 {prf1} rs2 {prf2})) =⟨⟩ validRangeList (rSetRanges (RS (normalise (merge1 (rSetRanges rs1) (rSetRanges rs2)) ⦃ merge1Sorted rs1 rs2 prf1 prf2 ⦄ ⦃ merge1HasValidRanges rs1 rs2 prf1 prf2 ⦄) {unionHolds rs1 rs2 prf1 prf2})) =⟨⟩ validRangeList (normalise (merge1 (rSetRanges rs1) (rSetRanges rs2)) ⦃ merge1Sorted rs1 rs2 prf1 prf2 ⦄ ⦃ merge1HasValidRanges rs1 rs2 prf1 prf2 ⦄) end union2 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs1 : RSet a) → (rs2 : RSet a) → (prf1 : IsTrue (validRangeList (rSetRanges rs1))) → (prf2 : IsTrue (validRangeList (rSetRanges rs2))) → IsTrue (validRangeList (normalise (merge1 (rSetRanges rs1) (rSetRanges rs2)) ⦃ merge1Sorted rs1 rs2 prf1 prf2 ⦄ ⦃ merge1HasValidRanges rs1 rs2 prf1 prf2 ⦄)) → IsTrue (validRangeList (rSetRanges (rSetUnion rs1 {prf1} rs2 {prf2}))) union2 rs1 rs2 prf1 prf2 prf = subst IsTrue (sym (unionHelper rs1 rs2 prf1 prf2)) prf rSetIntersection : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs1 : RSet a) → {IsTrue (validRangeList (rSetRanges rs1))} → (rs2 : RSet a) → {IsTrue (validRangeList (rSetRanges rs2))} → RSet a rSetIntersection ⦃ o ⦄ ⦃ dio ⦄ rs1@(RS ls1) {prf1} rs2@(RS ls2) {prf2} = RS ⦃ o ⦄ ⦃ dio ⦄ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ⦃ o ⦄ ⦃ dio ⦄ ls1 ls2)) {intersection0 rs1 rs2 prf1 prf2} {-# COMPILE AGDA2HS rSetIntersection #-} _-/\-_ : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs1 : RSet a) → {IsTrue (validRangeList (rSetRanges rs1))} → (rs2 : RSet a) → {IsTrue (validRangeList (rSetRanges rs2))} → RSet a _-/\-_ rs1 {prf1} rs2 {prf2} = rSetIntersection rs1 {prf1} rs2 {prf2} {-# COMPILE AGDA2HS _-/\-_ #-} intersectHelper : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs1 : RSet a) → (rs2 : RSet a) → (prf1 : IsTrue (validRangeList (rSetRanges rs1))) → (prf2 : IsTrue (validRangeList (rSetRanges rs2))) → validRangeList (rSetRanges (rSetIntersection rs1 {prf1} rs2 {prf2})) ≡ validRangeList (filter (λ r → (rangeIsEmpty r) == false) (merge2 (rSetRanges rs1) (rSetRanges rs2))) intersection22 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs1 : RSet a) → (rs2 : RSet a) → (prf1 : IsTrue (validRangeList (rSetRanges rs1))) → (prf2 : IsTrue (validRangeList (rSetRanges rs2))) → IsTrue (validRangeList (filter (λ r → (rangeIsEmpty r) == false) (merge2 (rSetRanges rs1) (rSetRanges rs2)))) → IsTrue (validRangeList (rSetRanges (rSetIntersection rs1 {prf1} rs2 {prf2}))) intersection22 ⦃ o ⦄ ⦃ dio ⦄ rs1 rs2 prf1 prf2 prf = subst IsTrue (sym (intersectHelper rs1 rs2 prf1 prf2)) prf rSetDifference : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs1 : RSet a) → {IsTrue (validRangeList (rSetRanges rs1))} → (rs2 : RSet a) → {IsTrue (validRangeList (rSetRanges rs2))} → RSet a rSetDifference ⦃ o ⦄ ⦃ dio ⦄ rs1 {prf1} rs2 {prf2} = rSetIntersection rs1 {prf1} (rSetNegation rs2 {prf2}) {negation2 rs2 (negation rs2 prf2)} {-# COMPILE AGDA2HS rSetDifference #-} _-!-_ : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs1 : RSet a) → {IsTrue (validRangeList (rSetRanges rs1))} → (rs2 : RSet a) → {IsTrue (validRangeList (rSetRanges rs2))} → RSet a _-!-_ rs1 {prf1} rs2 {prf2} = rSetDifference rs1 {prf1} rs2 {prf2} {-# COMPILE AGDA2HS _-!-_ #-} rSetIsSubset : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs1 : RSet a) → {IsTrue (validRangeList (rSetRanges rs1))} → (rs2 : RSet a) → {IsTrue (validRangeList (rSetRanges rs2))} → Bool rSetIsSubset rs1 {prf1} rs2 {prf2} = rSetIsEmpty (rSetDifference rs1 {prf1} rs2 {prf2}) {-# COMPILE AGDA2HS rSetIsSubset #-} _-<=-_ : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs1 : RSet a) → {IsTrue (validRangeList (rSetRanges rs1))} → (rs2 : RSet a) → {IsTrue (validRangeList (rSetRanges rs2))} → Bool _-<=-_ rs1 {prf1} rs2 {prf2} = rSetIsSubset rs1 {prf1} rs2 {prf2} {-# COMPILE AGDA2HS _-<=-_ #-} rSetIsSubsetStrict : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs1 : RSet a) → {IsTrue (validRangeList (rSetRanges rs1))} → (rs2 : RSet a) → {IsTrue (validRangeList (rSetRanges rs2))} → Bool rSetIsSubsetStrict rs1 {prf1} rs2 {prf2} = rSetIsEmpty (rSetDifference rs1 {prf1} rs2 {prf2}) && not (rSetIsEmpty (rSetDifference rs2 {prf2} rs1 {prf1})) {-# COMPILE AGDA2HS rSetIsSubsetStrict #-} _-<-_ : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs1 : RSet a) → {IsTrue (validRangeList (rSetRanges rs1))} → (rs2 : RSet a) → {IsTrue (validRangeList (rSetRanges rs2))} → Bool _-<-_ rs1 {prf1} rs2 {prf2} = rSetIsSubsetStrict rs1 {prf1} rs2 {prf2} {-# COMPILE AGDA2HS _-<-_ #-} instance isRangedSetSemigroup : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → Semigroup (RSet a) isRangedSetSemigroup ._<>_ r1@(RS l1 {prf1}) r2@(RS l2 {prf2}) = rSetUnion r1 {prf1} r2 {prf2} isRangedSetMonoid : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → Monoid (RSet a) isRangedSetMonoid .mempty = rSetEmpty rSetUnfold : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (b : Boundary a) → (f : Boundary a → Boundary a) → (g : Boundary a → Maybe (Boundary a)) → ⦃ IsTrue (validFunction2 b f) ⦄ → ⦃ IsTrue (validFunction b g) ⦄ → RSet a rSetUnfold ⦃ o ⦄ ⦃ dio ⦄ bound upperFunc succFunc ⦃ fValid ⦄ ⦃ gValid ⦄ = RS (normalise (ranges2 bound upperFunc succFunc) ⦃ unfoldSorted bound upperFunc succFunc ⦄ ⦃ ranges2HasValidRanges bound upperFunc succFunc fValid gValid ⦄) { normalisedSortedList (ranges2 bound upperFunc succFunc) (unfoldSorted bound upperFunc succFunc) (ranges2HasValidRanges bound upperFunc succFunc fValid gValid) } {-# COMPILE AGDA2HS rSetUnfold #-} okAdjIsTrue ⦃ o ⦄ ⦃ dio ⦄ r@(Rg l1 u1) r2@(Rg l2 u2) = refl headandtailSorted rs@(r ∷ []) prf = IsTrue.itsTrue headandtailSorted rs@(r ∷ rss@(r2 ∷ rsss)) prf = isTrue&&₂ {r <= r2} prf headandtail rs@(RS (r ∷ [])) prf = IsTrue.itsTrue headandtail rs@(RS (r ∷ rss@(r2 ∷ rsss))) prf = isTrue&&₂ {okAdjacent r r2} prf tailandhead rs@(RS (r ∷ [])) prf = prf tailandhead rs@(RS (r ∷ rss@(r2 ∷ rsss))) prf = isTrue&&₁ {rangeLower r <= rangeUpper r} (subst IsTrue (okAdjIsTrue r r2) (isTrue&&₁ {okAdjacent r r2} prf)) okAdjValid rs@(r2 ∷ rss) r prf = isTrue&&₁ {okAdjacent r r2} prf tailandhead2 rs@(r ∷ []) prf = prf tailandhead2 rs@(r ∷ rss@(r2 ∷ rsss)) prf = isTrue&&₁ {rangeLower r <= rangeUpper r} (subst IsTrue (okAdjIsTrue r r2) (isTrue&&₁ {okAdjacent r r2} prf)) headandtail2 rs@(r ∷ []) prf = IsTrue.itsTrue headandtail2 rs@(r ∷ rss@(r2 ∷ rsss)) prf = isTrue&&₂ {okAdjacent r r2} prf headandtailValidRanges rs@(r ∷ []) prf = IsTrue.itsTrue headandtailValidRanges rs@(r ∷ rss@(r2 ∷ rsss)) prf = isTrue&&₂ {rangeLower r <= rangeUpper r} prf ranges2HasValidRanges ⦃ o ⦄ ⦃ dio ⦄ b f g prf1 prf2 = subst IsTrue (sym (ranges2HasValidRanges0 b f g prf1 prf2)) IsTrue.itsTrue ranges2HasValidRanges000 ⦃ o ⦄ ⦃ dio ⦄ b b1 f g false prf1 prf2 = begin (validRanges ⦃ o ⦄ ⦃ dio ⦄ ((Rg b (f b)) ∷ [])) =⟨⟩ b <= (f b) && (validRanges ⦃ o ⦄ ⦃ dio ⦄ []) =⟨⟩ b <= (f b) && true =⟨ prop_and_true (b <= (f b)) ⟩ b <= (f b) =⟨ propIsTrue (b <= (f b)) (rangesLTEQ b f prf1) ⟩ true end ranges2HasValidRanges000 ⦃ o ⦄ ⦃ dio ⦄ b b1 f g true prf1 prf2 = begin (validRanges ((Rg b (f b)) ∷ (ranges2 b1 f g))) =⟨⟩ b <= (f b) && (validRanges (ranges2 b1 f g)) =⟨ cong (b <= (f b) &&_) (ranges2HasValidRanges0 b1 f g (stupid1 b b1 f g prf1 prf2 true IsTrue.itsTrue) (stupid2 b b1 f g prf1 prf2 true IsTrue.itsTrue) ) ⟩ b <= (f b) && true =⟨ prop_and_true (b <= (f b)) ⟩ b <= (f b) =⟨ propIsTrue (b <= (f b)) (rangesLTEQ b f prf1) ⟩ true end ranges2HasValidRanges00 ⦃ o ⦄ ⦃ dio ⦄ b f g Nothing prf1 prf2 = begin (validRanges ⦃ o ⦄ ⦃ dio ⦄ ((Rg b (f b)) ∷ (ranges3 Nothing f g))) =⟨⟩ validRanges ⦃ o ⦄ ⦃ dio ⦄ ((Rg b (f b)) ∷ []) =⟨⟩ (b <= (f b)) && (validRanges ⦃ o ⦄ ⦃ dio ⦄ []) =⟨⟩ (b <= (f b)) && true =⟨ prop_and_true (b <= (f b)) ⟩ b <= (f b) =⟨ propIsTrue (b <= (f b)) (rangesLTEQ b f prf1) ⟩ true end ranges2HasValidRanges00 ⦃ o ⦄ ⦃ dio ⦄ b f g (Just b1) prf1 prf2 = begin (validRanges ((Rg b (f b)) ∷ (ranges3 (Just b1) f g))) =⟨⟩ validRanges ((Rg b (f b)) ∷ (if ((validFunction2 b1 f) && (validFunction b1 g)) then (ranges2 b1 f g) else [])) =⟨ ranges2HasValidRanges000 b b1 f g ((validFunction2 b1 f) && (validFunction b1 g)) prf1 prf2 ⟩ true end ranges2HasValidRanges0 ⦃ o ⦄ ⦃ dio ⦄ b f g prf1 prf2 = begin (validRanges (ranges2 b f g)) =⟨⟩ validRanges ((Rg b (f b)) ∷ (ranges3 (g b) f g)) =⟨ ranges2HasValidRanges00 b f g (g b) prf1 prf2 ⟩ true end merge1HasValidRanges ⦃ o ⦄ ⦃ dio ⦄ rs1 rs2 prf1 prf2 = subst IsTrue (sym (merge1HasValidRanges0 rs1 rs2 prf1 prf2)) IsTrue.itsTrue validListMeansValidRanges ⦃ o ⦄ ⦃ dio ⦄ rs1@(RS []) prf = begin (validRanges ⦃ o ⦄ ⦃ dio ⦄ []) =⟨⟩ true end validListMeansValidRanges ⦃ o ⦄ ⦃ dio ⦄ rs1@(RS (r1 ∷ [])) prf = begin (validRanges (r1 ∷ [])) =⟨⟩ (rangeLower r1 <= rangeUpper r1) && (validRanges ⦃ o ⦄ ⦃ dio ⦄ []) =⟨⟩ (rangeLower r1 <= rangeUpper r1) && true =⟨ prop_and_true (rangeLower r1 <= rangeUpper r1) ⟩ (rangeLower r1 <= rangeUpper r1) =⟨ propIsTrue (rangeLower r1 <= rangeUpper r1) prf ⟩ true end validListMeansValidRanges ⦃ o ⦄ ⦃ dio ⦄ rs1@(RS ranges@(r1 ∷ r2 ∷ r3)) prf = begin (validRanges ranges) =⟨⟩ (rangeLower r1 <= rangeUpper r1) && (validRanges ⦃ o ⦄ ⦃ dio ⦄ (r2 ∷ r3)) =⟨ cong ((rangeLower r1 <= rangeUpper r1) &&_) (validListMeansValidRanges (RS (r2 ∷ r3) {headandtail rs1 prf}) (headandtail rs1 prf)) ⟩ (rangeLower r1 <= rangeUpper r1) && true =⟨ prop_and_true (rangeLower r1 <= rangeUpper r1) ⟩ (rangeLower r1 <= rangeUpper r1) =⟨ propIsTrue (rangeLower r1 <= rangeUpper r1) (tailandhead rs1 prf) ⟩ true end merge1HasValidRanges00 ⦃ o ⦄ ⦃ dio ⦄ rs1@(RS t1) rs2@(RS t2) h1 h2 prf1 prf2 true = begin validRanges (h1 ∷ (merge1 (rSetRanges rs1) (h2 ∷ (rSetRanges rs2)))) =⟨⟩ (rangeLower h1 <= rangeUpper h1) && (validRanges (merge1 t1 (h2 ∷ t2))) =⟨ cong ((rangeLower h1 <= rangeUpper h1) &&_) (merge1HasValidRanges0 rs1 (RS (h2 ∷ t2) {prf2}) (headandtail (RS (h1 ∷ t1) {prf1}) prf1) prf2) ⟩ (rangeLower h1 <= rangeUpper h1) && true =⟨ prop_and_true (rangeLower h1 <= rangeUpper h1) ⟩ (rangeLower h1 <= rangeUpper h1) =⟨ propIsTrue (rangeLower h1 <= rangeUpper h1) (tailandhead (RS (h1 ∷ t1) {prf1}) prf1) ⟩ true end merge1HasValidRanges00 ⦃ o ⦄ ⦃ dio ⦄ rs1@(RS t1) rs2@(RS t2) h1 h2 prf1 prf2 false = begin validRanges (h2 ∷ (merge1 (h1 ∷ t1) t2)) =⟨⟩ (rangeLower h2 <= rangeUpper h2) && (validRanges (merge1 (h1 ∷ t1) t2)) =⟨ cong ((rangeLower h2 <= rangeUpper h2) &&_) (merge1HasValidRanges0 (RS (h1 ∷ t1) {prf1}) rs2 prf1 (headandtail (RS (h2 ∷ t2) {prf2}) prf2)) ⟩ (rangeLower h2 <= rangeUpper h2) && true =⟨ prop_and_true (rangeLower h2 <= rangeUpper h2) ⟩ (rangeLower h2 <= rangeUpper h2) =⟨ propIsTrue (rangeLower h2 <= rangeUpper h2) (tailandhead (RS (h2 ∷ t2) {prf2}) prf2) ⟩ true end merge1HasValidRanges0 ⦃ o ⦄ ⦃ dio ⦄ rs1@(RS []) rs2@(RS []) prf1 prf2 = begin (validRanges (merge1 (rSetRanges rs1) (rSetRanges rs2))) =⟨⟩ validRanges ⦃ o ⦄ ⦃ dio ⦄ [] =⟨⟩ true end merge1HasValidRanges0 ⦃ o ⦄ ⦃ dio ⦄ rs1@(RS (h1 ∷ t1)) rs2@(RS []) prf1 prf2 = begin (validRanges (merge1 (rSetRanges rs1) (rSetRanges rs2))) =⟨⟩ validRanges (h1 ∷ t1) =⟨ validListMeansValidRanges rs1 prf1 ⟩ true end merge1HasValidRanges0 ⦃ o ⦄ ⦃ dio ⦄ rs1@(RS []) rs2@(RS (h2 ∷ t2)) prf1 prf2 = begin (validRanges (merge1 (rSetRanges rs1) (rSetRanges rs2))) =⟨⟩ validRanges (h2 ∷ t2) =⟨ validListMeansValidRanges rs2 prf2 ⟩ true end merge1HasValidRanges0 ⦃ o ⦄ ⦃ dio ⦄ rs1@(RS (h1 ∷ t1)) rs2@(RS (h2 ∷ t2)) prf1 prf2 = begin (validRanges (merge1 (rSetRanges rs1) (rSetRanges rs2))) =⟨⟩ validRanges (if_then_else_ (h1 < h2) (h1 ∷ (merge1 t1 (h2 ∷ t2))) (h2 ∷ (merge1 (h1 ∷ t1) (t2)))) =⟨ merge1HasValidRanges00 (RS t1 {headandtail rs1 prf1}) (RS t2 {headandtail rs2 prf2}) h1 h2 prf1 prf2 (h1 < h2) ⟩ true end normalisedSortedList ⦃ o ⦄ ⦃ dio ⦄ ms prf prf2 = subst IsTrue (sym (normalisedSortedList0 ms prf prf2)) IsTrue.itsTrue normalisedSortedList00 ⦃ o ⦄ ⦃ dio ⦄ rs r1 r2 prf prf2 true = begin validRangeList (if_then_else_ true (normalise ((Rg (rangeLower r1) (max (rangeUpper r1) (rangeUpper r2))) ∷ rs) ⦃ sortedListComposed r1 r2 rs prf ⦄ ⦃ validRangesComposed r1 r2 rs prf prf2 ⦄) (r1 ∷ (normalise (r2 ∷ rs) ⦃ headandtailSorted (r1 ∷ r2 ∷ rs) prf ⦄ ⦃ headandtailValidRanges (r1 ∷ r2 ∷ rs) prf2 ⦄))) =⟨⟩ validRangeList ((normalise ((Rg (rangeLower r1) (max (rangeUpper r1) (rangeUpper r2))) ∷ rs) ⦃ sortedListComposed r1 r2 rs prf ⦄ ⦃ validRangesComposed r1 r2 rs prf prf2 ⦄) ) =⟨ normalisedSortedList0 ((Rg (rangeLower r1) (max (rangeUpper r1) (rangeUpper r2))) ∷ rs) (sortedListComposed r1 r2 rs prf) (validRangesComposed r1 r2 rs prf prf2) ⟩ true end normalisedSortedList00 ⦃ o ⦄ ⦃ dio ⦄ rs r1 r2 prf prf2 false = begin validRangeList (if_then_else_ false (normalise ((Rg (rangeLower r1) (max (rangeUpper r1) (rangeUpper r2))) ∷ rs) ⦃ sortedListComposed r1 r2 rs prf ⦄ ⦃ validRangesComposed r1 r2 rs prf prf2 ⦄) (r1 ∷ (normalise (r2 ∷ rs) ⦃ headandtailSorted (r1 ∷ r2 ∷ rs) prf ⦄ ⦃ headandtailValidRanges (r1 ∷ r2 ∷ rs) prf2 ⦄))) =⟨⟩ validRangeList (r1 ∷ (normalise (r2 ∷ rs) ⦃ headandtailSorted (r1 ∷ r2 ∷ rs) prf ⦄ ⦃ headandtailValidRanges (r1 ∷ r2 ∷ rs) prf2 ⦄)) =⟨ validList r1 (normalise (r2 ∷ rs) ⦃ headandtailSorted (r1 ∷ r2 ∷ rs) prf ⦄ ⦃ headandtailValidRanges (r1 ∷ r2 ∷ rs) prf2 ⦄) (normalisedSortedList (r2 ∷ rs) (headandtailSorted (r1 ∷ r2 ∷ rs) prf) (headandtailValidRanges (r1 ∷ r2 ∷ rs) prf2)) ⟩ true end normalisedSortedList0 ⦃ o ⦄ ⦃ dio ⦄ ms@([]) prf prf2 = begin validRangeList ⦃ o ⦄ ⦃ dio ⦄ (normalise [] ⦃ prf ⦄ ⦃ prf2 ⦄) =⟨⟩ validRangeList ⦃ o ⦄ ⦃ dio ⦄ [] =⟨⟩ true end normalisedSortedList0 ⦃ o ⦄ ⦃ dio ⦄ ms@(m ∷ []) prf prf2 = begin validRangeList (normalise ms ⦃ prf ⦄ ⦃ prf2 ⦄) =⟨⟩ validRangeList (m ∷ []) =⟨⟩ (rangeLower m <= rangeUpper m) =⟨ sym (prop_and_true (rangeLower m <= rangeUpper m)) ⟩ (rangeLower m <= rangeUpper m) && true =⟨⟩ (rangeLower m <= rangeUpper m) && (validRanges ⦃ o ⦄ ⦃ dio ⦄ []) =⟨⟩ validRanges ms =⟨ propIsTrue (validRanges ms) prf2 ⟩ true end normalisedSortedList0 ⦃ o ⦄ ⦃ dio ⦄ ms@(r1 ∷ r2 ∷ rs) prf prf2 = begin validRangeList (normalise ms ⦃ prf ⦄ ⦃ prf2 ⦄) =⟨⟩ validRangeList (if_then_else_ (overlap1 r1 r2) (normalise ((Rg (rangeLower r1) (max (rangeUpper r1) (rangeUpper r2))) ∷ rs) ⦃ sortedListComposed r1 r2 rs prf ⦄ ⦃ validRangesComposed r1 r2 rs prf prf2 ⦄) (r1 ∷ (normalise (r2 ∷ rs) ⦃ headandtailSorted (r1 ∷ r2 ∷ rs) prf ⦄ ⦃ headandtailValidRanges (r1 ∷ r2 ∷ rs) prf2 ⦄))) =⟨ normalisedSortedList00 rs r1 r2 prf prf2 (overlap1 r1 r2) ⟩ true end unfoldIsSorted00 ⦃ o ⦄ ⦃ dio ⦄ b f g b1 false = begin sortedRangeList ((Rg b (f b)) ∷ (if_then_else_ false (ranges2 b1 f g) [])) =⟨⟩ sortedRangeList ((Rg b (f b)) ∷ []) =⟨⟩ true end unfoldIsSorted00 ⦃ o ⦄ ⦃ dio ⦄ b f g b1 true = begin sortedRangeList ((Rg b (f b)) ∷ (if_then_else_ true (ranges2 b1 f g) [])) =⟨⟩ sortedRangeList ((Rg b (f b)) ∷ (ranges2 b1 f g)) =⟨ validSortedList (Rg b (f b)) (ranges2 b1 f g) (unfoldSorted b1 f g) ⟩ true end unfoldIsSorted0 ⦃ o ⦄ ⦃ dio ⦄ b f g Nothing = begin sortedRangeList ((Rg b (f b)) ∷ (ranges3 Nothing f g)) =⟨⟩ sortedRangeList ((Rg b (f b)) ∷ []) =⟨⟩ true end unfoldIsSorted0 ⦃ o ⦄ ⦃ dio ⦄ b f g mb@(Just b1) = begin sortedRangeList ((Rg b (f b)) ∷ (ranges3 mb f g)) =⟨⟩ sortedRangeList ((Rg b (f b)) ∷ (if_then_else_ ((validFunction2 b1 f) && (validFunction b1 g)) (ranges2 b1 f g) [])) =⟨ unfoldIsSorted00 b f g b1 ((validFunction2 b1 f) && (validFunction b1 g)) ⟩ true end unfoldIsSorted ⦃ o ⦄ ⦃ dio ⦄ b f g = begin sortedRangeList (ranges2 b f g) =⟨⟩ sortedRangeList ((Rg b (f b)) ∷ (ranges3 (g b) f g)) =⟨ unfoldIsSorted0 b f g (g b) ⟩ true end unfoldSorted ⦃ o ⦄ ⦃ dio ⦄ b f g = subst IsTrue (sym (unfoldIsSorted b f g)) IsTrue.itsTrue merge1IsSorted0 ⦃ o ⦄ ⦃ dio ⦄ h1 h2 rs1@(RS []) rs2@(RS []) true prf1 prf2 = begin sortedRangeList (h1 ∷ (merge1 [] (h2 ∷ []))) =⟨⟩ sortedRangeList (h1 ∷ h2 ∷ []) =⟨ okSorted h1 h2 ⟩ true end merge1IsSorted0 ⦃ o ⦄ ⦃ dio ⦄ h1 h2 rs1@(RS []) rs2@(RS t2@(h4 ∷ tt2)) true prf1 prf2 = begin sortedRangeList (h1 ∷ (merge1 [] (h2 ∷ t2))) =⟨⟩ sortedRangeList (h1 ∷ (h2 ∷ t2)) =⟨ validSortedList h1 (h2 ∷ t2) (validIsSorted (h2 ∷ t2) prf2) ⟩ true end merge1IsSorted0 ⦃ o ⦄ ⦃ dio ⦄ h1 h2 rs1@(RS t1@(h3 ∷ tt1)) rs2@(RS t2) true prf1 prf2 = begin sortedRangeList (h1 ∷ (merge1 t1 (h2 ∷ t2))) =⟨ validSortedList h1 (merge1 t1 (h2 ∷ t2)) (merge1Sorted rs1 (RS (h2 ∷ t2) {prf2}) (headandtail (RS (h1 ∷ t1) {prf1}) prf1) prf2) ⟩ true end merge1IsSorted0 ⦃ o ⦄ ⦃ dio ⦄ h1 h2 rs1@(RS []) rs2@(RS []) false prf1 prf2 = begin sortedRangeList (h2 ∷ (merge1 (h1 ∷ []) [])) =⟨⟩ sortedRangeList (h2 ∷ h1 ∷ []) =⟨ okSorted h2 h1 ⟩ true end merge1IsSorted0 ⦃ o ⦄ ⦃ dio ⦄ h1 h2 rs1@(RS t1@(h3 ∷ tt1)) rs2@(RS []) false prf1 prf2 = begin sortedRangeList (h2 ∷ (merge1 (h1 ∷ t1) [])) =⟨⟩ sortedRangeList (h2 ∷ h1 ∷ t1) =⟨ validSortedList h2 (h1 ∷ t1) (validIsSorted (h1 ∷ t1) prf1) ⟩ true end merge1IsSorted0 ⦃ o ⦄ ⦃ dio ⦄ h1 h2 rs1@(RS t1) rs2@(RS t2@(h4 ∷ tt2)) false prf1 prf2 = begin sortedRangeList (h2 ∷ (merge1 (h1 ∷ t1) t2)) =⟨ validSortedList h2 (merge1 (h1 ∷ t1) t2) (merge1Sorted (RS (h1 ∷ t1) {prf1}) rs2 prf1 (headandtail (RS (h2 ∷ t2) {prf2}) prf2)) ⟩ true end merge1IsSorted1 ⦃ o ⦄ ⦃ dio ⦄ rs1@(RS []) rs2@(RS []) prf1 prf2 = refl merge1IsSorted1 ⦃ o ⦄ ⦃ dio ⦄ rs1@(RS ms1@(h1 ∷ t1)) rs2@(RS []) prf1 prf2 = propIsTrue (sortedRangeList (merge1 (rSetRanges rs1) (rSetRanges rs2))) (validIsSorted (merge1 (rSetRanges rs1) (rSetRanges rs2)) prf1) merge1IsSorted1 ⦃ o ⦄ ⦃ dio ⦄ rs1@(RS []) rs2@(RS ms1@(h1 ∷ t1)) prf1 prf2 = propIsTrue (sortedRangeList (merge1 (rSetRanges rs1) (rSetRanges rs2))) (validIsSorted (merge1 (rSetRanges rs1) (rSetRanges rs2)) prf2) merge1IsSorted1 ⦃ o ⦄ ⦃ dio ⦄ rs1@(RS ms1@(h1 ∷ t1)) rs2@(RS ms2@(h2 ∷ t2)) prf1 prf2 = begin sortedRangeList (merge1 (rSetRanges rs1) (rSetRanges rs2)) =⟨⟩ sortedRangeList (if_then_else_ (h1 < h2) (h1 ∷ (merge1 t1 ms2)) (h2 ∷ (merge1 ms1 t2))) =⟨ merge1IsSorted0 h1 h2 (RS t1 {headandtail rs1 prf1}) (RS t2 {headandtail rs2 prf2}) (h1 < h2) prf1 prf2 ⟩ true end singletonRangeValid0 ⦃ o ⦄ ⦃ dio ⦄ x = begin validRangeList ((singletonRange x) ∷ []) =⟨⟩ ((rangeLower (singletonRange x)) <= (rangeUpper (singletonRange x))) =⟨⟩ ((rangeLower (Rg (BoundaryBelow x) (BoundaryAbove x))) <= (rangeUpper (Rg (BoundaryBelow x) (BoundaryAbove x)))) =⟨⟩ (BoundaryBelow x <= BoundaryAbove x) =⟨⟩ ((compare (BoundaryBelow x) (BoundaryAbove x) == LT) || (compare (BoundaryBelow x) (BoundaryAbove x) == EQ)) =⟨⟩ (((if_then_else_ (x > x) (if_then_else_ (adjacent x x) EQ GT) LT) == LT) || (compare (BoundaryBelow x) (BoundaryAbove x) == EQ)) =⟨ cong (_|| (compare (BoundaryBelow x) (BoundaryAbove x) == EQ)) (cong (_== LT) (propIf3 (x > x) (lt x x refl))) ⟩ ((LT == LT) || (compare (BoundaryBelow x) (BoundaryAbove x) == EQ)) =⟨⟩ (true || (compare (BoundaryBelow x) (BoundaryAbove x) == EQ)) =⟨⟩ true end intersectHelper ⦃ o ⦄ ⦃ dio ⦄ rs1@(RS ls1) rs2@(RS ls2) prf1 prf2 = begin validRangeList (rSetRanges (rSetIntersection rs1 {prf1} rs2 {prf2})) =⟨⟩ validRangeList (rSetRanges (RS (filter (λ r → (rangeIsEmpty r) == false) (merge2 (rSetRanges rs1) (rSetRanges rs2))) {intersection0 rs1 rs2 prf1 prf2})) =⟨⟩ validRangeList (filter (λ r → (rangeIsEmpty r) == false) (merge2 (rSetRanges rs1) (rSetRanges rs2))) end negationHelper ⦃ o ⦄ ⦃ dio ⦄ rs@(RS ranges) {prf} = begin validRangeList (rSetRanges (rSetNegation rs {prf})) =⟨⟩ validRangeList (rSetRanges (RS ⦃ o ⦄ ⦃ dio ⦄ (ranges1 ⦃ o ⦄ ⦃ dio ⦄ (setBounds1 ⦃ o ⦄ ⦃ dio ⦄ (bounds1 ⦃ o ⦄ ⦃ dio ⦄ ranges))) {negation rs prf})) =⟨⟩ validRangeList (ranges1 ⦃ o ⦄ ⦃ dio ⦄ (setBounds1 ⦃ o ⦄ ⦃ dio ⦄ (bounds1 ⦃ o ⦄ ⦃ dio ⦄ ranges))) =⟨⟩ validRangeList (ranges1 ⦃ o ⦄ ⦃ dio ⦄ (setBounds1 ⦃ o ⦄ ⦃ dio ⦄ (bounds1 ⦃ o ⦄ ⦃ dio ⦄ (rSetRanges rs)))) end fullRangeValid ⦃ o ⦄ ⦃ dio ⦄ = begin validRangeList ⦃ o ⦄ ⦃ dio ⦄ (fullRange ⦃ o ⦄ ⦃ dio ⦄ ∷ []) =⟨⟩ ((rangeLower (fullRange ⦃ o ⦄ ⦃ dio ⦄)) <= (rangeUpper (fullRange ⦃ o ⦄ ⦃ dio ⦄))) =⟨⟩ true end intersection3 ⦃ o ⦄ ⦃ dio ⦄ rs1@(RS ranges1@(r1 ∷ rss1)) rs2@(RS ranges2@(r2 ∷ rss2)) ⦃ ne1 ⦄ ⦃ ne2 ⦄ prf1 prf2 true = begin validRangeList (filter (λ x → (rangeIsEmpty x == false)) (if_then_else_ true (merge2 rss1 ranges2) (merge2 ⦃ o ⦄ ⦃ dio ⦄ ranges1 rss2))) =⟨⟩ validRangeList (filter (λ x → (rangeIsEmpty x == false)) (merge2 rss1 ranges2)) =⟨ intersectionHolds ⦃ o ⦄ ⦃ dio ⦄ (RS rss1 {headandtail rs1 ⦃ NonEmpty.itsNonEmpty ⦄ prf1}) rs2 (headandtail ⦃ o ⦄ ⦃ dio ⦄ rs1 ⦃ ne1 ⦄ prf1) prf2 ⟩ true end intersection3 ⦃ o ⦄ ⦃ dio ⦄ rs1@(RS ranges1@(r1 ∷ rss1)) rs2@(RS ranges2@(r2 ∷ rss2)) ⦃ ne1 ⦄ ⦃ ne2 ⦄ prf1 prf2 false = begin validRangeList (filter (λ x → (rangeIsEmpty x == false)) (if_then_else_ false (merge2 ⦃ o ⦄ ⦃ dio ⦄ rss1 ranges2) (merge2 ranges1 rss2))) =⟨⟩ validRangeList (filter (λ x → (rangeIsEmpty x == false)) (merge2 ranges1 rss2)) =⟨ intersectionHolds ⦃ o ⦄ ⦃ dio ⦄ rs1 (RS rss2 {headandtail rs2 ⦃ NonEmpty.itsNonEmpty ⦄ prf2}) prf1 (headandtail ⦃ o ⦄ ⦃ dio ⦄ rs2 ⦃ ne2 ⦄ prf2) ⟩ true end intersection2 ⦃ o ⦄ ⦃ dio ⦄ rs1@(RS ranges1@(r1 ∷ rss1)) rs2@(RS ranges2@(r2 ∷ rss2)) ⦃ ne1 ⦄ ⦃ ne2 ⦄ prf1 prf2 false = begin validRangeList ( if_then_else_ false ((rangeIntersection ⦃ o ⦄ ⦃ dio ⦄ r1 r2) ∷ (filter (λ x → (rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false)) (if_then_else_ ((rangeUpper ⦃ o ⦄ ⦃ dio ⦄ r1) < (rangeUpper ⦃ o ⦄ ⦃ dio ⦄ r2)) (merge2 ⦃ o ⦄ ⦃ dio ⦄ rss1 ranges2) (merge2 ⦃ o ⦄ ⦃ dio ⦄ ranges1 rss2)))) (filter (λ x → (rangeIsEmpty x == false)) (if_then_else_ (rangeUpper ⦃ o ⦄ ⦃ dio ⦄ r1 < rangeUpper ⦃ o ⦄ ⦃ dio ⦄ r2) (merge2 rss1 ranges2) (merge2 ranges1 rss2))) ) =⟨⟩ validRangeList (filter (λ x → (rangeIsEmpty x == false)) (if_then_else_ (rangeUpper ⦃ o ⦄ ⦃ dio ⦄ r1 < rangeUpper ⦃ o ⦄ ⦃ dio ⦄ r2) (merge2 rss1 ranges2) (merge2 ranges1 rss2))) =⟨ intersection3 ⦃ o ⦄ ⦃ dio ⦄ rs1 rs2 ⦃ ne1 ⦄ ⦃ ne2 ⦄ prf1 prf2 (rangeUpper ⦃ o ⦄ ⦃ dio ⦄ r1 < rangeUpper ⦃ o ⦄ ⦃ dio ⦄ r2) ⟩ true end intersection2 ⦃ o ⦄ ⦃ dio ⦄ rs1@(RS ranges1@(r1 ∷ rss1)) rs2@(RS ranges2@(r2 ∷ rss2)) ⦃ ne1 ⦄ ⦃ ne2 ⦄ prf1 prf2 true = begin validRangeList ( if_then_else_ true ((rangeIntersection ⦃ o ⦄ ⦃ dio ⦄ r1 r2) ∷ (filter (λ x → (rangeIsEmpty x == false)) (if_then_else_ (rangeUpper ⦃ o ⦄ ⦃ dio ⦄ r1 < rangeUpper ⦃ o ⦄ ⦃ dio ⦄ r2) (merge2 rss1 ranges2) (merge2 ranges1 rss2)))) (filter (λ x → (rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false)) (if_then_else_ (rangeUpper ⦃ o ⦄ ⦃ dio ⦄ r1 < rangeUpper ⦃ o ⦄ ⦃ dio ⦄ r2) (merge2 ⦃ o ⦄ ⦃ dio ⦄ rss1 ranges2) (merge2 ⦃ o ⦄ ⦃ dio ⦄ ranges1 rss2))) ) =⟨⟩ validRangeList ((rangeIntersection ⦃ o ⦄ ⦃ dio ⦄ r1 r2) ∷ (filter (λ x → (rangeIsEmpty x == false)) (if_then_else_ (rangeUpper ⦃ o ⦄ ⦃ dio ⦄ r1 < rangeUpper ⦃ o ⦄ ⦃ dio ⦄ r2) (merge2 rss1 ranges2) (merge2 ranges1 rss2)))) =⟨ validList (rangeIntersection ⦃ o ⦄ ⦃ dio ⦄ r1 r2) (filter (λ x → (rangeIsEmpty x == false)) (if_then_else_ (rangeUpper ⦃ o ⦄ ⦃ dio ⦄ r1 < rangeUpper ⦃ o ⦄ ⦃ dio ⦄ r2) (merge2 rss1 ranges2) (merge2 ranges1 rss2))) (subst IsTrue (sym (intersection3 ⦃ o ⦄ ⦃ dio ⦄ rs1 rs2 ⦃ ne1 ⦄ ⦃ ne2 ⦄ prf1 prf2 (rangeUpper ⦃ o ⦄ ⦃ dio ⦄ r1 < rangeUpper ⦃ o ⦄ ⦃ dio ⦄ r2))) IsTrue.itsTrue) ⟩ true end intersectionHolds ⦃ o ⦄ ⦃ dio ⦄ rs1@(RS []) rs2@(RS []) _ _ = begin validRangeList ⦃ o ⦄ ⦃ dio ⦄ (filter (λ x → (rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false)) (merge2 ⦃ o ⦄ ⦃ dio ⦄ (rSetRanges rs1) (rSetRanges rs2))) =⟨⟩ validRangeList ⦃ o ⦄ ⦃ dio ⦄ (filter (λ x → (rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false)) (merge2 ⦃ o ⦄ ⦃ dio ⦄ [] [])) =⟨⟩ validRangeList ⦃ o ⦄ ⦃ dio ⦄ (filter (λ x → (rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false)) []) =⟨⟩ validRangeList ⦃ o ⦄ ⦃ dio ⦄ [] =⟨⟩ true end intersectionHolds ⦃ o ⦄ ⦃ dio ⦄ rs1@(RS ranges@(r ∷ rs)) rs2@(RS []) _ _ = begin validRangeList ⦃ o ⦄ ⦃ dio ⦄ (filter (λ x → (rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false)) (merge2 ⦃ o ⦄ ⦃ dio ⦄ (rSetRanges rs1) (rSetRanges rs2))) =⟨⟩ validRangeList ⦃ o ⦄ ⦃ dio ⦄ (filter (λ x → (rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false)) (merge2 ⦃ o ⦄ ⦃ dio ⦄ ranges [])) =⟨⟩ validRangeList ⦃ o ⦄ ⦃ dio ⦄ (filter (λ x → (rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false)) []) =⟨⟩ validRangeList ⦃ o ⦄ ⦃ dio ⦄ [] =⟨⟩ true end intersectionHolds ⦃ o ⦄ ⦃ dio ⦄ rs1@(RS []) rs2@(RS ranges@(r ∷ rs)) _ _ = begin validRangeList ⦃ o ⦄ ⦃ dio ⦄ (filter (λ x → (rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false)) (merge2 ⦃ o ⦄ ⦃ dio ⦄ (rSetRanges rs1) (rSetRanges rs2))) =⟨⟩ validRangeList ⦃ o ⦄ ⦃ dio ⦄ (filter (λ x → (rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false)) (merge2 ⦃ o ⦄ ⦃ dio ⦄ [] ranges)) =⟨⟩ validRangeList ⦃ o ⦄ ⦃ dio ⦄ (filter (λ x → (rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false)) []) =⟨⟩ validRangeList ⦃ o ⦄ ⦃ dio ⦄ [] =⟨⟩ true end intersectionHolds ⦃ o ⦄ ⦃ dio ⦄ rs1@(RS ranges1@(r1 ∷ rss1)) rs2@(RS ranges2@(r2 ∷ rss2)) prf1 prf2 = begin validRangeList (filter (λ x → (rangeIsEmpty x == false)) (merge2 (rSetRanges rs1) (rSetRanges rs2))) =⟨⟩ validRangeList (filter (λ x → (rangeIsEmpty x == false)) ((rangeIntersection r1 r2) ∷ (if_then_else_ (rangeUpper ⦃ o ⦄ ⦃ dio ⦄ r1 < rangeUpper ⦃ o ⦄ ⦃ dio ⦄ r2) (merge2 rss1 ranges2) (merge2 ranges1 rss2)))) =⟨⟩ validRangeList ( if_then_else_ (rangeIsEmpty (rangeIntersection r1 r2) == false) ((rangeIntersection r1 r2) ∷ (filter (λ x → (rangeIsEmpty x == false)) (if_then_else_ (rangeUpper ⦃ o ⦄ ⦃ dio ⦄ r1 < rangeUpper ⦃ o ⦄ ⦃ dio ⦄ r2) (merge2 rss1 ranges2) (merge2 ranges1 rss2)))) (filter (λ x → (rangeIsEmpty x == false)) (if_then_else_ (rangeUpper ⦃ o ⦄ ⦃ dio ⦄ r1 < rangeUpper ⦃ o ⦄ ⦃ dio ⦄ r2) (merge2 rss1 ranges2) (merge2 ranges1 rss2))) ) =⟨ intersection2 ⦃ o ⦄ ⦃ dio ⦄ rs1 rs2 prf1 prf2 (rangeIsEmpty (rangeIntersection r1 r2) == false) ⟩ true end validRanges1 ⦃ o ⦄ ⦃ dio ⦄ [] = begin validRangeList ⦃ o ⦄ ⦃ dio ⦄ (ranges1 []) =⟨⟩ validRangeList ⦃ o ⦄ ⦃ dio ⦄ [] =⟨⟩ true =⟨⟩ validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ [] end validRanges1 ⦃ o ⦄ ⦃ dio ⦄ (BoundaryAboveAll ∷ []) = begin validRangeList ⦃ o ⦄ ⦃ dio ⦄ (ranges1 ⦃ o ⦄ ⦃ dio ⦄ (BoundaryAboveAll ∷ [])) =⟨⟩ validRangeList ⦃ o ⦄ ⦃ dio ⦄ [] =⟨⟩ true =⟨⟩ validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ (BoundaryAboveAll ∷ []) end validRanges1 ⦃ o ⦄ ⦃ dio ⦄ (BoundaryBelowAll ∷ []) = begin validRangeList ⦃ o ⦄ ⦃ dio ⦄ (ranges1 ⦃ o ⦄ ⦃ dio ⦄ (BoundaryBelowAll ∷ [])) =⟨⟩ validRangeList ⦃ o ⦄ ⦃ dio ⦄ ((Rg BoundaryBelowAll BoundaryAboveAll) ∷ []) =⟨⟩ true =⟨⟩ validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ (BoundaryBelowAll ∷ []) end validRanges1 ⦃ o ⦄ ⦃ dio ⦄ ((BoundaryAbove x) ∷ []) = begin validRangeList ⦃ o ⦄ ⦃ dio ⦄ (ranges1 ⦃ o ⦄ ⦃ dio ⦄ ((BoundaryAbove x) ∷ [])) =⟨⟩ validRangeList ⦃ o ⦄ ⦃ dio ⦄ ((Rg (BoundaryAbove x) BoundaryAboveAll) ∷ []) =⟨⟩ (BoundaryAbove x) <= BoundaryAboveAll =⟨⟩ true =⟨⟩ validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ ((BoundaryAbove x) ∷ []) end validRanges1 ⦃ o ⦄ ⦃ dio ⦄ ((BoundaryBelow x) ∷ []) = begin validRangeList ⦃ o ⦄ ⦃ dio ⦄ (ranges1 ⦃ o ⦄ ⦃ dio ⦄ ((BoundaryBelow x) ∷ [])) =⟨⟩ validRangeList ⦃ o ⦄ ⦃ dio ⦄ ((Rg (BoundaryBelow x) (BoundaryAboveAll)) ∷ []) =⟨⟩ (BoundaryBelow x) <= BoundaryAboveAll =⟨⟩ true =⟨⟩ validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ ((BoundaryBelow x) ∷ []) end validRanges1 ⦃ o ⦄ ⦃ dio ⦄ (b1 ∷ b2 ∷ []) = begin validRangeList ⦃ o ⦄ ⦃ dio ⦄ (ranges1 ⦃ o ⦄ ⦃ dio ⦄ (b1 ∷ b2 ∷ [])) =⟨⟩ validRangeList ⦃ o ⦄ ⦃ dio ⦄ ((Rg b1 b2) ∷ ranges1([])) =⟨⟩ validRangeList ⦃ o ⦄ ⦃ dio ⦄ ((Rg b1 b2) ∷ []) =⟨⟩ (b1 <= b2) =⟨ sym (prop_and_true (b1 <= b2)) ⟩ ((b1 <= b2) && true) =⟨⟩ ((b1 <= b2) && (validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ [])) =⟨⟩ validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ (b1 ∷ b2 ∷ []) end validRanges1 ⦃ o ⦄ ⦃ dio ⦄ (b1 ∷ b2 ∷ bs@(b3@(BoundaryBelow x) ∷ [])) = begin validRangeList ⦃ o ⦄ ⦃ dio ⦄ (ranges1 ⦃ o ⦄ ⦃ dio ⦄ (b1 ∷ b2 ∷ bs)) =⟨⟩ validRangeList ⦃ o ⦄ ⦃ dio ⦄ ((Rg b1 b2) ∷ (ranges1 ⦃ o ⦄ ⦃ dio ⦄ bs)) =⟨⟩ validRangeList ⦃ o ⦄ ⦃ dio ⦄ ((Rg b1 b2) ∷ (Rg b3 (BoundaryAboveAll)) ∷ []) =⟨⟩ ((okAdjacent (Rg b1 b2) (Rg b3 (BoundaryAboveAll))) && (validRangeList ⦃ o ⦄ ⦃ dio ⦄ [])) =⟨⟩ ((okAdjacent (Rg b1 b2) (Rg b3 BoundaryAboveAll)) && true) =⟨⟩ (((b1 <= b2) && (b2 <= b3) && (b3 <= BoundaryAboveAll)) && true) =⟨ prop_and_true ((b1 <= b2) && (b2 <= b3) && (b3 <= BoundaryAboveAll)) ⟩ ((b1 <= b2) && (b2 <= b3) && true) =⟨⟩ ((b1 <= b2) && (b2 <= b3) && (validBoundaryList (b3 ∷ []))) =⟨⟩ ((b1 <= b2) && (validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ (b2 ∷ b3 ∷ []))) =⟨⟩ validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ (b1 ∷ b2 ∷ bs) end validRanges1 ⦃ o ⦄ ⦃ dio ⦄ (b1 ∷ b2 ∷ bs@(b3@(BoundaryAbove x) ∷ [])) = begin validRangeList ⦃ o ⦄ ⦃ dio ⦄ (ranges1 ⦃ o ⦄ ⦃ dio ⦄ (b1 ∷ b2 ∷ bs)) =⟨⟩ validRangeList ⦃ o ⦄ ⦃ dio ⦄ ((Rg b1 b2) ∷ (ranges1 ⦃ o ⦄ ⦃ dio ⦄ bs)) =⟨⟩ validRangeList ⦃ o ⦄ ⦃ dio ⦄ ((Rg b1 b2) ∷ (Rg b3 (BoundaryAboveAll)) ∷ []) =⟨⟩ ((okAdjacent (Rg b1 b2) (Rg b3 BoundaryAboveAll)) && (validRangeList ⦃ o ⦄ ⦃ dio ⦄ [])) =⟨⟩ ((okAdjacent (Rg b1 b2) (Rg b3 BoundaryAboveAll)) && true) =⟨⟩ (((b1 <= b2) && (b2 <= b3) && (b3 <= BoundaryAboveAll)) && true) =⟨ prop_and_true ((b1 <= b2) && (b2 <= b3) && (b3 <= BoundaryAboveAll)) ⟩ ((b1 <= b2) && (b2 <= b3) && true) =⟨⟩ ((b1 <= b2) && (b2 <= b3) && (validBoundaryList (b3 ∷ []))) =⟨⟩ ((b1 <= b2) && (validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ (b2 ∷ b3 ∷ []))) =⟨⟩ validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ (b1 ∷ b2 ∷ bs) end validRanges1 ⦃ o ⦄ ⦃ dio ⦄ (b1 ∷ b2 ∷ bs@(b3@(BoundaryBelowAll) ∷ [])) = begin validRangeList ⦃ o ⦄ ⦃ dio ⦄ (ranges1 ⦃ o ⦄ ⦃ dio ⦄ (b1 ∷ b2 ∷ bs)) =⟨⟩ validRangeList ⦃ o ⦄ ⦃ dio ⦄ ((Rg b1 b2) ∷ (ranges1 ⦃ o ⦄ ⦃ dio ⦄ bs)) =⟨⟩ validRangeList ⦃ o ⦄ ⦃ dio ⦄ ((Rg b1 b2) ∷ (Rg b3 (BoundaryAboveAll)) ∷ []) =⟨⟩ ((okAdjacent (Rg b1 b2) (Rg b3 (BoundaryAboveAll))) && (validRangeList ⦃ o ⦄ ⦃ dio ⦄ [])) =⟨⟩ ((okAdjacent (Rg b1 b2) (Rg b3 (BoundaryAboveAll))) && true) =⟨⟩ (((b1 <= b2) && (b2 <= b3) && (b3 <= (BoundaryAboveAll))) && true) =⟨ prop_and_true ((b1 <= b2) && (b2 <= b3) && (b3 <= (BoundaryAboveAll))) ⟩ ((b1 <= b2) && (b2 <= b3) && true) =⟨⟩ ((b1 <= b2) && (b2 <= b3) && (validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ (b3 ∷ []))) =⟨⟩ ((b1 <= b2) && (validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ (b2 ∷ b3 ∷ []))) =⟨⟩ validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ (b1 ∷ b2 ∷ bs) end validRanges1 ⦃ o ⦄ ⦃ dio ⦄ (b1 ∷ b2 ∷ bs@(b3@(BoundaryAboveAll) ∷ [])) = begin validRangeList ⦃ o ⦄ ⦃ dio ⦄ (ranges1 ⦃ o ⦄ ⦃ dio ⦄ (b1 ∷ b2 ∷ bs)) =⟨⟩ validRangeList ⦃ o ⦄ ⦃ dio ⦄ ((Rg b1 b2) ∷ (ranges1 ⦃ o ⦄ ⦃ dio ⦄ bs)) =⟨⟩ validRangeList ⦃ o ⦄ ⦃ dio ⦄ ((Rg b1 b2) ∷ []) =⟨⟩ (b1 <= b2) =⟨ sym (prop_and_true (b1 <= b2)) ⟩ ((b1 <= b2) && true) =⟨⟩ ((b1 <= b2) && (b2 <= b3)) =⟨ sym (prop_and_true ((b1 <= b2) && (b2 <= b3))) ⟩ (((b1 <= b2) && (b2 <= b3)) && (validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ (b3 ∷ []))) =⟨ prop_and_assoc (b1 <= b2) (b2 <= b3) (validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ (b3 ∷ [])) ⟩ ((b1 <= b2) && (b2 <= b3) && (validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ (b3 ∷ []))) =⟨⟩ ((b1 <= b2) && (validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ (b2 ∷ b3 ∷ []))) =⟨⟩ validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ (b1 ∷ b2 ∷ bs) end validRanges1 ⦃ o ⦄ ⦃ dio ⦄ (b1 ∷ b2 ∷ bs@(b3 ∷ bss@(b4 ∷ bsss))) = begin validRangeList ⦃ o ⦄ ⦃ dio ⦄ (ranges1 ⦃ o ⦄ ⦃ dio ⦄ (b1 ∷ b2 ∷ bs)) =⟨⟩ validRangeList ⦃ o ⦄ ⦃ dio ⦄ ((Rg b1 b2) ∷ (ranges1 ⦃ o ⦄ ⦃ dio ⦄ bs)) =⟨⟩ validRangeList ⦃ o ⦄ ⦃ dio ⦄ ((Rg b1 b2) ∷ (Rg b3 b4) ∷ (ranges1 ⦃ o ⦄ ⦃ dio ⦄ bsss)) =⟨⟩ (okAdjacent (Rg b1 b2) (Rg b3 b4)) && validRangeList ((Rg b3 b4) ∷ (ranges1 ⦃ o ⦄ ⦃ dio ⦄ bsss)) =⟨⟩ (((b1 <= b2) && (b2 <= b3) && (b3 <= b4)) && (validRangeList ((Rg b3 b4) ∷ (ranges1 ⦃ o ⦄ ⦃ dio ⦄ bsss)))) =⟨⟩ (((b1 <= b2) && (b2 <= b3) && (b3 <= b4)) && (validRangeList (ranges1 ⦃ o ⦄ ⦃ dio ⦄ bs))) =⟨ cong (((b1 <= b2) && (b2 <= b3) && (b3 <= b4)) &&_) (validRanges1 ⦃ o ⦄ ⦃ dio ⦄ bs) ⟩ (((b1 <= b2) && ((b2 <= b3) && (b3 <= b4))) && (validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ bs)) =⟨ prop_and_assoc (b1 <= b2) ((b2 <= b3) && (b3 <= b4)) (validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ bs) ⟩ ((b1 <= b2) && (((b2 <= b3) && (b3 <= b4)) && (validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ bs))) =⟨ cong ((b1 <= b2) &&_) (prop_and_assoc (b2 <= b3) (b3 <= b4) (validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ bs)) ⟩ ((b1 <= b2) && ((b2 <= b3) && (b3 <= b4) && (validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ bs))) =⟨⟩ ((b1 <= b2) && ((b2 <= b3) && (b3 <= b4) && (b3 <= b4 && (validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ bss)))) =⟨ cong ((b1 <= b2) &&_) (cong (b2 <= b3 &&_) (prop_and_cancel (b3 <= b4))) ⟩ ((b1 <= b2) && (b2 <= b3) && (b3 <= b4) && (validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ bss)) =⟨⟩ ((b1 <= b2) && (b2 <= b3) && (validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ bs)) =⟨⟩ ((b1 <= b2) && (validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ (b2 ∷ bs))) =⟨⟩ validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ (b1 ∷ b2 ∷ bs) end validSetBounds ⦃ o ⦄ ⦃ dio ⦄ [] = begin validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ (setBounds1 ⦃ o ⦄ ⦃ dio ⦄ []) =⟨⟩ validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ [] end validSetBounds ⦃ o ⦄ ⦃ dio ⦄ bs@(BoundaryBelowAll ∷ []) = begin validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ (setBounds1 ⦃ o ⦄ ⦃ dio ⦄ bs) =⟨⟩ validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ [] =⟨⟩ true =⟨⟩ validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ bs end validSetBounds ⦃ o ⦄ ⦃ dio ⦄ bs@(b0@(BoundaryBelowAll) ∷ bss@(b1 ∷ b2)) = begin validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ (setBounds1 ⦃ o ⦄ ⦃ dio ⦄ bs) =⟨⟩ validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ bss =⟨⟩ (true && (validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ bss)) =⟨ cong (_&& (validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ bss)) (sym (BoundaryBelowAllSmaller ⦃ o ⦄ ⦃ dio ⦄ b1)) ⟩ ((BoundaryBelowAll <= b1) && (validBoundaryList bss)) =⟨⟩ validBoundaryList bs end validSetBounds ⦃ o ⦄ ⦃ dio ⦄ bs@(b@(BoundaryBelow x) ∷ bss) = begin validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ (setBounds1 ⦃ o ⦄ ⦃ dio ⦄ bs) =⟨⟩ validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ (BoundaryBelowAll ∷ bs) =⟨⟩ ((BoundaryBelowAll <= b) && (validBoundaryList bs)) =⟨⟩ (true && (validBoundaryList bs)) =⟨⟩ (validBoundaryList bs) end validSetBounds ⦃ o ⦄ ⦃ dio ⦄ bs@(b@(BoundaryAboveAll) ∷ bss) = begin validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ (setBounds1 ⦃ o ⦄ ⦃ dio ⦄ bs) =⟨⟩ validBoundaryList (BoundaryBelowAll ∷ bs) =⟨⟩ ((BoundaryBelowAll <= b) && (validBoundaryList bs)) =⟨⟩ (true && (validBoundaryList bs)) =⟨⟩ (validBoundaryList bs) end validSetBounds ⦃ o ⦄ ⦃ dio ⦄ bs@(b@(BoundaryAbove x) ∷ bss) = begin validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ (setBounds1 ⦃ o ⦄ ⦃ dio ⦄ bs) =⟨⟩ validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ (BoundaryBelowAll ∷ bs) =⟨⟩ ((BoundaryBelowAll <= b) && (validBoundaryList bs)) =⟨⟩ (true && (validBoundaryList bs)) =⟨⟩ (validBoundaryList bs) end valid ⦃ o ⦄ ⦃ dio ⦄ rs@(RS []) {_} = begin validRangeList ⦃ o ⦄ ⦃ dio ⦄ (rSetRanges rs) =⟨⟩ validRangeList ⦃ o ⦄ ⦃ dio ⦄ [] =⟨⟩ true =⟨⟩ validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ [] =⟨⟩ validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ (bounds1 ⦃ o ⦄ ⦃ dio ⦄ []) =⟨⟩ validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ (bounds1 ⦃ o ⦄ ⦃ dio ⦄ (rSetRanges rs)) end valid ⦃ o ⦄ ⦃ dio ⦄ rs@(RS (r ∷ [])) {_} = begin validRangeList ⦃ o ⦄ ⦃ dio ⦄ (rSetRanges rs) =⟨⟩ validRangeList ⦃ o ⦄ ⦃ dio ⦄ (r ∷ []) =⟨⟩ ((rangeLower ⦃ o ⦄ ⦃ dio ⦄ r) <= (rangeUpper ⦃ o ⦄ ⦃ dio ⦄ r)) =⟨ sym (prop_and_true ((rangeLower ⦃ o ⦄ ⦃ dio ⦄ r) <= (rangeUpper ⦃ o ⦄ ⦃ dio ⦄ r))) ⟩ (((rangeLower ⦃ o ⦄ ⦃ dio ⦄ r) <= (rangeUpper ⦃ o ⦄ ⦃ dio ⦄ r)) && true) =⟨⟩ (((rangeLower ⦃ o ⦄ ⦃ dio ⦄ r) <= (rangeUpper ⦃ o ⦄ ⦃ dio ⦄ r)) && (validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ [])) =⟨⟩ validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ ((rangeLower ⦃ o ⦄ ⦃ dio ⦄ r) ∷ (rangeUpper ⦃ o ⦄ ⦃ dio ⦄ r) ∷ []) =⟨⟩ validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ (bounds1 ⦃ o ⦄ ⦃ dio ⦄ (r ∷ [])) =⟨⟩ validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ (bounds1 ⦃ o ⦄ ⦃ dio ⦄ (rSetRanges rs)) end valid ⦃ o ⦄ ⦃ dio ⦄ rs@(RS ranges@(r@(Rg l1 u1) ∷ r1@(r2@(Rg l2 u2) ∷ rss))) {prf} = begin validRangeList ⦃ o ⦄ ⦃ dio ⦄ (rSetRanges rs) =⟨⟩ validRangeList ⦃ o ⦄ ⦃ dio ⦄ (r ∷ (r2 ∷ rss)) =⟨⟩ ((okAdjacent r r2) && (validRangeList ⦃ o ⦄ ⦃ dio ⦄ r1)) =⟨⟩ ((l1 <= u1 && (u1 <= l2 && l2 <= u2)) && (validRangeList ⦃ o ⦄ ⦃ dio ⦄ r1)) =⟨ cong ((l1 <= u1 && u1 <= l2 && l2 <= u2) &&_) (valid ⦃ o ⦄ ⦃ dio ⦄ (RS r1 {headandtail rs prf}) {headandtail rs prf}) ⟩ ((l1 <= u1 && (u1 <= l2 && l2 <= u2)) && (validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ (bounds1 ⦃ o ⦄ ⦃ dio ⦄ r1))) =⟨ prop_and_assoc (l1 <= u1) (u1 <= l2 && l2 <= u2) (validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ (bounds1 ⦃ o ⦄ ⦃ dio ⦄ r1)) ⟩ (l1 <= u1 && ((u1 <= l2 && l2 <= u2) && (validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ (bounds1 ⦃ o ⦄ ⦃ dio ⦄ r1)))) =⟨ cong (l1 <= u1 &&_) (prop_and_assoc (u1 <= l2) (l2 <= u2) (validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ (bounds1 ⦃ o ⦄ ⦃ dio ⦄ r1))) ⟩ (l1 <= u1 && u1 <= l2 && (l2 <= u2 && (validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ (bounds1 ⦃ o ⦄ ⦃ dio ⦄ r1)))) =⟨⟩ (l1 <= u1 && u1 <= l2 && (l2 <= u2 && (validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ ((rangeLower ⦃ o ⦄ ⦃ dio ⦄ r2) ∷ (rangeUpper ⦃ o ⦄ ⦃ dio ⦄ r2) ∷ (bounds1 ⦃ o ⦄ ⦃ dio ⦄ rss))))) =⟨⟩ (l1 <= u1 && u1 <= l2 && l2 <= u2 && l2 <= u2 && (validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ ((rangeUpper ⦃ o ⦄ ⦃ dio ⦄ r2) ∷ (bounds1 ⦃ o ⦄ ⦃ dio ⦄ rss)))) =⟨ cong (l1 <= u1 &&_) (cong (u1 <= l2 &&_) (prop_and_cancel (l2 <= u2))) ⟩ (l1 <= u1 && u1 <= l2 && ((l2 <= u2) && (validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ (u2 ∷ (bounds1 ⦃ o ⦄ ⦃ dio ⦄ rss))))) =⟨⟩ (l1 <= u1 && u1 <= l2 && (validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ (l2 ∷ (u2 ∷ (bounds1 ⦃ o ⦄ ⦃ dio ⦄ rss))))) =⟨⟩ (l1 <= u1 && (validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ (u1 ∷ l2 ∷ u2 ∷ (bounds1 ⦃ o ⦄ ⦃ dio ⦄ rss)))) =⟨⟩ (validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ (l1 ∷ u1 ∷ l2 ∷ u2 ∷ (bounds1 ⦃ o ⦄ ⦃ dio ⦄ rss))) =⟨⟩ (validBoundaryList ⦃ o ⦄ ⦃ dio ⦄ (bounds1 ⦃ o ⦄ ⦃ dio ⦄ ranges)) end
{ "alphanum_fraction": 0.5556056158, "avg_line_length": 45.7182724252, "ext": "agda", "hexsha": "cc50309d489585ab37b4467625d27a1dcee4d824", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "17cdbeb36af3d0b735c5db83bb811034c39a19cd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ioanasv/agda2hs", "max_forks_repo_path": "lib/Haskell/RangedSets/RangedSet.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "17cdbeb36af3d0b735c5db83bb811034c39a19cd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ioanasv/agda2hs", "max_issues_repo_path": "lib/Haskell/RangedSets/RangedSet.agda", "max_line_length": 212, "max_stars_count": 1, "max_stars_repo_head_hexsha": "17cdbeb36af3d0b735c5db83bb811034c39a19cd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ioanasv/agda2hs", "max_stars_repo_path": "lib/Haskell/RangedSets/RangedSet.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-25T09:41:34.000Z", "max_stars_repo_stars_event_min_datetime": "2021-05-25T09:41:34.000Z", "num_tokens": 29216, "size": 68806 }
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Bags with negative multiplicities, for Nehemiah. -- -- Instead of implementing bags (with negative multiplicities, -- like in the paper) in Agda, we postulate that a group of such -- bags exist. Note that integer bags with integer multiplicities -- are actually the free group given a singleton operation -- `Integer -> Bag`, so this should be easy to formalize in -- principle. ------------------------------------------------------------------------ module Postulate.Bag-Nehemiah where -- Postulates about bags of integers, version Nehemiah -- -- This module postulates bags of integers with negative -- multiplicities as a group under additive union. open import Relation.Binary.PropositionalEquality open import Algebra.Structures open import Data.Integer -- postulate Bag as an abelion group postulate Bag : Set -- singleton postulate singletonBag : ℤ → Bag -- union postulate _++_ : Bag → Bag → Bag infixr 5 _++_ -- negate = mapMultiplicities (λ z → - z) postulate negateBag : Bag → Bag postulate emptyBag : Bag instance postulate abelian-bag : IsAbelianGroup _≡_ _++_ emptyBag negateBag -- Naming convention follows Algebra.Morphism -- Homomorphic₁ : morphism preserves negation Homomorphic₁ : {A B : Set} (f : A → B) (negA : A → A) (negB : B → B) → Set Homomorphic₁ {A} {B} f negA negB = ∀ {x} → f (negA x) ≡ negB (f x) -- Homomorphic₂ : morphism preserves binary operation. Homomorphic₂ : {A B : Set} (f : A → B) (_+_ : A → A → A) (_*_ : B → B → B) → Set Homomorphic₂ {A} {B} f _+_ _*_ = ∀ {x y} → f (x + y) ≡ f x * f y -- postulate map, flatmap and sum to be homomorphisms postulate mapBag : (f : ℤ → ℤ) (b : Bag) → Bag postulate flatmapBag : (f : ℤ → Bag) (b : Bag) → Bag postulate sumBag : Bag → ℤ postulate homo-map : ∀ {f} → Homomorphic₂ (mapBag f) _++_ _++_ postulate homo-flatmap : ∀ {f} → Homomorphic₂ (flatmapBag f) _++_ _++_ postulate homo-sum : Homomorphic₂ sumBag _++_ _+_ postulate neg-map : ∀ {f} → Homomorphic₁ (mapBag f) negateBag negateBag postulate neg-flatmap : ∀ {f} → Homomorphic₁ (flatmapBag f) negateBag negateBag
{ "alphanum_fraction": 0.6537216828, "avg_line_length": 37.9473684211, "ext": "agda", "hexsha": "fc4f6ef8e3a4cc174f20ed0b008e65d7585dfcc5", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "inc-lc/ilc-agda", "max_forks_repo_path": "Postulate/Bag-Nehemiah.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z", "max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "inc-lc/ilc-agda", "max_issues_repo_path": "Postulate/Bag-Nehemiah.agda", "max_line_length": 79, "max_stars_count": 10, "max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "inc-lc/ilc-agda", "max_stars_repo_path": "Postulate/Bag-Nehemiah.agda", "max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z", "num_tokens": 633, "size": 2163 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of functions, such as associativity and commutativity ------------------------------------------------------------------------ -- These properties can (for instance) be used to define algebraic -- structures. open import Level open import Relation.Binary -- The properties are specified using the following relation as -- "equality". module Algebra.FunctionProperties {a ℓ} {A : Set a} (_≈_ : Rel A ℓ) where open import Data.Product ------------------------------------------------------------------------ -- Unary and binary operations open import Algebra.FunctionProperties.Core public ------------------------------------------------------------------------ -- Properties of operations Associative : Op₂ A → Set _ Associative _∙_ = ∀ x y z → ((x ∙ y) ∙ z) ≈ (x ∙ (y ∙ z)) Commutative : Op₂ A → Set _ Commutative _∙_ = ∀ x y → (x ∙ y) ≈ (y ∙ x) LeftIdentity : A → Op₂ A → Set _ LeftIdentity e _∙_ = ∀ x → (e ∙ x) ≈ x RightIdentity : A → Op₂ A → Set _ RightIdentity e _∙_ = ∀ x → (x ∙ e) ≈ x Identity : A → Op₂ A → Set _ Identity e ∙ = LeftIdentity e ∙ × RightIdentity e ∙ LeftZero : A → Op₂ A → Set _ LeftZero z _∙_ = ∀ x → (z ∙ x) ≈ z RightZero : A → Op₂ A → Set _ RightZero z _∙_ = ∀ x → (x ∙ z) ≈ z Zero : A → Op₂ A → Set _ Zero z ∙ = LeftZero z ∙ × RightZero z ∙ LeftInverse : A → Op₁ A → Op₂ A → Set _ LeftInverse e _⁻¹ _∙_ = ∀ x → (x ⁻¹ ∙ x) ≈ e RightInverse : A → Op₁ A → Op₂ A → Set _ RightInverse e _⁻¹ _∙_ = ∀ x → (x ∙ (x ⁻¹)) ≈ e Inverse : A → Op₁ A → Op₂ A → Set _ Inverse e ⁻¹ ∙ = LeftInverse e ⁻¹ ∙ × RightInverse e ⁻¹ ∙ _DistributesOverˡ_ : Op₂ A → Op₂ A → Set _ _*_ DistributesOverˡ _+_ = ∀ x y z → (x * (y + z)) ≈ ((x * y) + (x * z)) _DistributesOverʳ_ : Op₂ A → Op₂ A → Set _ _*_ DistributesOverʳ _+_ = ∀ x y z → ((y + z) * x) ≈ ((y * x) + (z * x)) _DistributesOver_ : Op₂ A → Op₂ A → Set _ * DistributesOver + = (* DistributesOverˡ +) × (* DistributesOverʳ +) _IdempotentOn_ : Op₂ A → A → Set _ _∙_ IdempotentOn x = (x ∙ x) ≈ x Idempotent : Op₂ A → Set _ Idempotent ∙ = ∀ x → ∙ IdempotentOn x IdempotentFun : Op₁ A → Set _ IdempotentFun f = ∀ x → f (f x) ≈ f x _Absorbs_ : Op₂ A → Op₂ A → Set _ _∙_ Absorbs _∘_ = ∀ x y → (x ∙ (x ∘ y)) ≈ x Absorptive : Op₂ A → Op₂ A → Set _ Absorptive ∙ ∘ = (∙ Absorbs ∘) × (∘ Absorbs ∙) Involutive : Op₁ A → Set _ Involutive f = ∀ x → f (f x) ≈ x
{ "alphanum_fraction": 0.5296506905, "avg_line_length": 27.3555555556, "ext": "agda", "hexsha": "1d49422474c1181033fb9d7678a311a3ff552f56", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Algebra/FunctionProperties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Algebra/FunctionProperties.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Algebra/FunctionProperties.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 866, "size": 2462 }
------------------------------------------------------------------------------ -- Properties of the divisibility relation ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module LTC-PCF.Data.Nat.Divisibility.By0.Properties where open import Common.FOL.Relation.Binary.EqReasoning open import LTC-PCF.Base open import LTC-PCF.Base.Properties open import LTC-PCF.Data.Nat open import LTC-PCF.Data.Nat.Properties open import LTC-PCF.Data.Nat.Divisibility.By0 open import LTC-PCF.Data.Nat.Inequalities open import LTC-PCF.Data.Nat.Inequalities.Properties open import LTC-PCF.Data.Nat.Properties open import LTC-PCF.Data.Nat.UnaryNumbers open import LTC-PCF.Data.Nat.UnaryNumbers.Totality ------------------------------------------------------------------------------ -- Any positive number divides 0. S∣0 : ∀ {n} → N n → succ₁ n ∣ zero S∣0 {n} Nn = zero , nzero , sym (*-leftZero (succ₁ n)) -- 0 divides 0. 0∣0 : zero ∣ zero 0∣0 = zero , nzero , sym (*-leftZero zero) -- The divisibility relation is reflexive. ∣-refl : ∀ {n} → N n → n ∣ n ∣-refl {n} Nn = [1] , 1-N , sym (*-leftIdentity Nn) -- If x divides y and z then x divides y ∸ z. x∣y→x∣z→x∣y∸z-helper : ∀ {m n o k k'} → N m → N k → N k' → n ≡ k * m → o ≡ k' * m → n ∸ o ≡ (k ∸ k') * m x∣y→x∣z→x∣y∸z-helper Nm Nk Nk' refl refl = sym (*∸-leftDistributive Nk Nk' Nm) x∣y→x∣z→x∣y∸z : ∀ {m n o} → N m → N n → N o → m ∣ n → m ∣ o → m ∣ n ∸ o x∣y→x∣z→x∣y∸z Nm Nn No (k , Nk , h₁) (k' , Nk' , h₂) = k ∸ k' , ∸-N Nk Nk' , x∣y→x∣z→x∣y∸z-helper Nm Nk Nk' h₁ h₂ -- If x divides y and z then x divides y + z. x∣y→x∣z→x∣y+z-helper : ∀ {m n o k k'} → N m → N k → N k' → n ≡ k * m → o ≡ k' * m → n + o ≡ (k + k') * m x∣y→x∣z→x∣y+z-helper Nm Nk Nk' refl refl = sym (*+-leftDistributive Nk Nk' Nm) x∣y→x∣z→x∣y+z : ∀ {m n o} → N m → N n → N o → m ∣ n → m ∣ o → m ∣ n + o x∣y→x∣z→x∣y+z Nm Nn No (k , Nk , h₁) (k' , Nk' , h₂) = k + k' , +-N Nk Nk' , x∣y→x∣z→x∣y+z-helper Nm Nk Nk' h₁ h₂ -- If x divides y and y is positive, then x ≤ y. x∣S→x≤S : ∀ {m n} → N m → N n → m ∣ (succ₁ n) → m ≤ succ₁ n x∣S→x≤S {m} Nm Nn (.zero , nzero , Sn≡0*m) = ⊥-elim (0≢S (trans (sym (*-leftZero m)) (sym Sn≡0*m))) x∣S→x≤S {m} Nm Nn (.(succ₁ k) , nsucc {k} Nk , Sn≡Sk*m) = subst (λ t₁ → m ≤ t₁) (sym Sn≡Sk*m) (subst (λ t₂ → m ≤ t₂) (sym (*-Sx k m)) (x≤x+y Nm (*-N Nk Nm))) 0∣x→x≡0 : ∀ {m} → N m → zero ∣ m → m ≡ zero 0∣x→x≡0 nzero _ = refl 0∣x→x≡0 (nsucc {m} Nm) (k , Nk , Sm≡k*0) = ⊥-elim (0≢S (trans (sym (*-leftZero k)) (trans (*-comm nzero Nk) (sym Sm≡k*0))))
{ "alphanum_fraction": 0.4742584385, "avg_line_length": 38.5921052632, "ext": "agda", "hexsha": "1ee9d99af0b2fb32ef3ef52d2ad0c8d66e0910cc", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/LTC-PCF/Data/Nat/Divisibility/By0/Properties.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/LTC-PCF/Data/Nat/Divisibility/By0/Properties.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/LTC-PCF/Data/Nat/Divisibility/By0/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 1194, "size": 2933 }
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.NType2 open import lib.types.Pi open import lib.types.Group {- The definition of G-sets. Thanks to Daniel Grayson. -} module lib.types.GroupSet {i} where -- The right group action with respect to the group [grp]. record GsetStructure (grp : Group i) {j} (El : Type j) (_ : is-set El) : Type (lmax i j) where constructor gset-structure private module G = Group grp module GS = GroupStructure G.group-struct field act : El → G.El → El unit-r : ∀ x → act x GS.ident == x assoc : ∀ x g₁ g₂ → act (act x g₁) g₂ == act x (GS.comp g₁ g₂) -- The definition of a G-set. A set [El] equipped with -- a right group action with respect to [grp]. record Gset (grp : Group i) j : Type (lsucc (lmax i j)) where constructor gset field El : Type j El-level : is-set El gset-struct : GsetStructure grp El El-level open GsetStructure gset-struct public El-is-set = El-level -- A helper function to establish equivalence between two G-sets. -- Many data are just props and this function do the coversion for them -- for you. You only need to show the non-trivial parts. module _ {grp : Group i} {j} {El : Type j} {El-level : is-set El} where private module G = Group grp module GS = GroupStructure G.group-struct open GsetStructure private gset-structure=' : ∀ {gss₁ gss₂ : GsetStructure grp El El-level} → (act= : act gss₁ == act gss₂) → unit-r gss₁ == unit-r gss₂ [ (λ act → ∀ x → act x GS.ident == x) ↓ act= ] → assoc gss₁ == assoc gss₂ [ (λ act → ∀ x g₁ g₂ → act (act x g₁) g₂ == act x (GS.comp g₁ g₂)) ↓ act= ] → gss₁ == gss₂ gset-structure=' {gset-structure _ _ _} {gset-structure ._ ._ ._} idp idp idp = idp gset-structure= : ∀ {gss₁ gss₂ : GsetStructure grp El El-level} → (∀ x g → act gss₁ x g == act gss₂ x g) → gss₁ == gss₂ gset-structure= act= = gset-structure=' (λ= λ x → λ= λ g → act= x g) (prop-has-all-paths-↓ (Π-level λ _ → El-level _ _)) (prop-has-all-paths-↓ (Π-level λ _ → Π-level λ _ → Π-level λ _ → El-level _ _)) module _ {grp : Group i} {j : ULevel} where private module G = Group grp module GS = GroupStructure G.group-struct open Gset {grp} {j} private gset='' : ∀ {gs₁ gs₂ : Gset grp j} → (El= : El gs₁ == El gs₂) → (El-level : El-level gs₁ == El-level gs₂ [ is-set ↓ El= ]) → gset-struct gs₁ == gset-struct gs₂ [ uncurry (GsetStructure grp) ↓ pair= El= El-level ] → gs₁ == gs₂ gset='' {gset _ _ _} {gset ._ ._ ._} idp idp idp = idp gset=' : ∀ {gs₁ gs₂ : Gset grp j} → (El= : El gs₁ == El gs₂) → (El-level : El-level gs₁ == El-level gs₂ [ is-set ↓ El= ]) → (∀ {x₁} {x₂} (p : x₁ == x₂ [ idf _ ↓ El= ]) g → act gs₁ x₁ g == act gs₂ x₂ g [ idf _ ↓ El= ]) → gs₁ == gs₂ gset=' {gset _ _ _} {gset ._ ._ _} idp idp act= = gset='' idp idp (gset-structure= λ x g → act= idp g) gset= : ∀ {gs₁ gs₂ : Gset grp j} → (El≃ : El gs₁ ≃ El gs₂) → (∀ {x₁} {x₂} → –> El≃ x₁ == x₂ → ∀ g → –> El≃ (act gs₁ x₁ g) == act gs₂ x₂ g) → gs₁ == gs₂ gset= El≃ act= = gset=' (ua El≃) (prop-has-all-paths-↓ is-set-is-prop) (λ x= g → ↓-idf-ua-in El≃ $ act= (↓-idf-ua-out El≃ x=) g) -- The Gset homomorphism. record GsetHom {grp : Group i} {j} (gset₁ gset₂ : Gset grp j) : Type (lmax i j) where constructor gset-hom open Gset field f : El gset₁ → El gset₂ pres-act : ∀ g x → f (act gset₁ x g) == act gset₂ (f x) g private gset-hom=' : ∀ {grp : Group i} {j} {gset₁ gset₂ : Gset grp j} {gsh₁ gsh₂ : GsetHom gset₁ gset₂} → (f= : GsetHom.f gsh₁ == GsetHom.f gsh₂) → (GsetHom.pres-act gsh₁ == GsetHom.pres-act gsh₂ [ (λ f → ∀ g x → f (Gset.act gset₁ x g) == Gset.act gset₂ (f x) g) ↓ f= ] ) → gsh₁ == gsh₂ gset-hom=' idp idp = idp gset-hom= : ∀ {grp : Group i} {j} {gset₁ gset₂ : Gset grp j} {gsh₁ gsh₂ : GsetHom gset₁ gset₂} → (∀ x → GsetHom.f gsh₁ x == GsetHom.f gsh₂ x) → gsh₁ == gsh₂ gset-hom= {gset₂ = gset₂} f= = gset-hom=' (λ= f=) (prop-has-all-paths-↓ $ Π-level λ _ → Π-level λ _ → Gset.El-level gset₂ _ _)
{ "alphanum_fraction": 0.5423956931, "avg_line_length": 34.828125, "ext": "agda", "hexsha": "d85019e6eb1ea6f14b72d0ee41112cb59f9e3131", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "lib/types/GroupSet.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "lib/types/GroupSet.agda", "max_line_length": 83, "max_stars_count": 1, "max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda", "max_stars_repo_path": "lib/types/GroupSet.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z", "num_tokens": 1637, "size": 4458 }
module StratSigma where data Sigma0 (A : Set0) (B : A -> Set0) : Set0 where _,_ : (x : A) (y : B x) -> Sigma0 A B _*0_ : (A : Set0)(B : Set0) -> Set0 A *0 B = Sigma0 A \_ -> B fst0 : {A : Set0}{B : A -> Set0} -> Sigma0 A B -> A fst0 (a , _) = a snd0 : {A : Set0}{B : A -> Set0} (p : Sigma0 A B) -> B (fst0 p) snd0 (a , b) = b data Zero0 : Set0 where data Unit0 : Set0 where Void : Unit0 data Sigma1 (A : Set1) (B : A -> Set1) : Set1 where _,_ : (x : A) (y : B x) -> Sigma1 A B _*1_ : (A : Set1)(B : Set1) -> Set1 A *1 B = Sigma1 A \_ -> B fst1 : {A : Set1}{B : A -> Set1} -> Sigma1 A B -> A fst1 (a , _) = a snd1 : {A : Set1}{B : A -> Set1} (p : Sigma1 A B) -> B (fst1 p) snd1 (a , b) = b data Zero1 : Set1 where data Unit1 : Set1 where Void : Unit1 data Sigma2 (A : Set2) (B : A -> Set2) : Set2 where _,_ : (x : A) (y : B x) -> Sigma2 A B _*2_ : (A : Set2)(B : Set2) -> Set2 A *2 B = Sigma2 A \_ -> B fst2 : {A : Set2}{B : A -> Set2} -> Sigma2 A B -> A fst2 (a , _) = a snd2 : {A : Set2}{B : A -> Set2} (p : Sigma2 A B) -> B (fst2 p) snd2 (a , b) = b data Zero2 : Set2 where data Unit2 : Set2 where Void : Unit2 data Sigma3 (A : Set3) (B : A -> Set3) : Set3 where _,_ : (x : A) (y : B x) -> Sigma3 A B _*3_ : (A : Set3)(B : Set3) -> Set3 A *3 B = Sigma3 A \_ -> B fst3 : {A : Set3}{B : A -> Set3} -> Sigma3 A B -> A fst3 (a , _) = a snd3 : {A : Set3}{B : A -> Set3} (p : Sigma3 A B) -> B (fst3 p) snd3 (a , b) = b data Zero3 : Set3 where data Unit3 : Set3 where Void : Unit3 data Sigma4 (A : Set4) (B : A -> Set4) : Set4 where _,_ : (x : A) (y : B x) -> Sigma4 A B _*4_ : (A : Set4)(B : Set4) -> Set4 A *4 B = Sigma4 A \_ -> B fst4 : {A : Set4}{B : A -> Set4} -> Sigma4 A B -> A fst4 (a , _) = a snd4 : {A : Set4}{B : A -> Set4} (p : Sigma4 A B) -> B (fst4 p) snd4 (a , b) = b data Zero4 : Set4 where data Unit4 : Set4 where Void : Unit4 data Sigma5 (A : Set5) (B : A -> Set5) : Set5 where _,_ : (x : A) (y : B x) -> Sigma5 A B _*5_ : (A : Set5)(B : Set5) -> Set5 A *5 B = Sigma5 A \_ -> B fst5 : {A : Set5}{B : A -> Set5} -> Sigma5 A B -> A fst5 (a , _) = a snd5 : {A : Set5}{B : A -> Set5} (p : Sigma5 A B) -> B (fst5 p) snd5 (a , b) = b data Zero5 : Set5 where data Unit5 : Set5 where Void : Unit5 data Sigma6 (A : Set6) (B : A -> Set6) : Set6 where _,_ : (x : A) (y : B x) -> Sigma6 A B _*6_ : (A : Set6)(B : Set6) -> Set6 A *6 B = Sigma6 A \_ -> B fst6 : {A : Set6}{B : A -> Set6} -> Sigma6 A B -> A fst6 (a , _) = a snd6 : {A : Set6}{B : A -> Set6} (p : Sigma6 A B) -> B (fst6 p) snd6 (a , b) = b data Zero6 : Set6 where data Unit6 : Set6 where Void : Unit6 data Sigma7 (A : Set7) (B : A -> Set7) : Set7 where _,_ : (x : A) (y : B x) -> Sigma7 A B _*7_ : (A : Set7)(B : Set7) -> Set7 A *7 B = Sigma7 A \_ -> B fst7 : {A : Set7}{B : A -> Set7} -> Sigma7 A B -> A fst7 (a , _) = a snd7 : {A : Set7}{B : A -> Set7} (p : Sigma7 A B) -> B (fst7 p) snd7 (a , b) = b data Zero7 : Set7 where data Unit7 : Set7 where Void : Unit7 data Sigma8 (A : Set8) (B : A -> Set8) : Set8 where _,_ : (x : A) (y : B x) -> Sigma8 A B _*8_ : (A : Set8)(B : Set8) -> Set8 A *8 B = Sigma8 A \_ -> B fst8 : {A : Set8}{B : A -> Set8} -> Sigma8 A B -> A fst8 (a , _) = a snd8 : {A : Set8}{B : A -> Set8} (p : Sigma8 A B) -> B (fst8 p) snd8 (a , b) = b data Zero8 : Set8 where data Unit8 : Set8 where Void : Unit8 data Sigma9 (A : Set9) (B : A -> Set9) : Set9 where _,_ : (x : A) (y : B x) -> Sigma9 A B _*9_ : (A : Set9)(B : Set9) -> Set9 A *9 B = Sigma9 A \_ -> B fst9 : {A : Set9}{B : A -> Set9} -> Sigma9 A B -> A fst9 (a , _) = a snd9 : {A : Set9}{B : A -> Set9} (p : Sigma9 A B) -> B (fst9 p) snd9 (a , b) = b data Zero9 : Set9 where data Unit9 : Set9 where Void : Unit9 data Sigma10 (A : Set10) (B : A -> Set10) : Set10 where _,_ : (x : A) (y : B x) -> Sigma10 A B _*10_ : (A : Set10)(B : Set10) -> Set10 A *10 B = Sigma10 A \_ -> B fst10 : {A : Set10}{B : A -> Set10} -> Sigma10 A B -> A fst10 (a , _) = a snd10 : {A : Set10}{B : A -> Set10} (p : Sigma10 A B) -> B (fst10 p) snd10 (a , b) = b data Zero10 : Set10 where data Unit10 : Set10 where Void : Unit10 data Sigma11 (A : Set11) (B : A -> Set11) : Set11 where _,_ : (x : A) (y : B x) -> Sigma11 A B _*11_ : (A : Set11)(B : Set11) -> Set11 A *11 B = Sigma11 A \_ -> B fst11 : {A : Set11}{B : A -> Set11} -> Sigma11 A B -> A fst11 (a , _) = a snd11 : {A : Set11}{B : A -> Set11} (p : Sigma11 A B) -> B (fst11 p) snd11 (a , b) = b data Zero11 : Set11 where data Unit11 : Set11 where Void : Unit11 data Sigma12 (A : Set12) (B : A -> Set12) : Set12 where _,_ : (x : A) (y : B x) -> Sigma12 A B _*12_ : (A : Set12)(B : Set12) -> Set12 A *12 B = Sigma12 A \_ -> B fst12 : {A : Set12}{B : A -> Set12} -> Sigma12 A B -> A fst12 (a , _) = a snd12 : {A : Set12}{B : A -> Set12} (p : Sigma12 A B) -> B (fst12 p) snd12 (a , b) = b data Zero12 : Set12 where data Unit12 : Set12 where Void : Unit12 data Sigma13 (A : Set13) (B : A -> Set13) : Set13 where _,_ : (x : A) (y : B x) -> Sigma13 A B _*13_ : (A : Set13)(B : Set13) -> Set13 A *13 B = Sigma13 A \_ -> B fst13 : {A : Set13}{B : A -> Set13} -> Sigma13 A B -> A fst13 (a , _) = a snd13 : {A : Set13}{B : A -> Set13} (p : Sigma13 A B) -> B (fst13 p) snd13 (a , b) = b data Zero13 : Set13 where data Unit13 : Set13 where Void : Unit13 data Sigma14 (A : Set14) (B : A -> Set14) : Set14 where _,_ : (x : A) (y : B x) -> Sigma14 A B _*14_ : (A : Set14)(B : Set14) -> Set14 A *14 B = Sigma14 A \_ -> B fst14 : {A : Set14}{B : A -> Set14} -> Sigma14 A B -> A fst14 (a , _) = a snd14 : {A : Set14}{B : A -> Set14} (p : Sigma14 A B) -> B (fst14 p) snd14 (a , b) = b data Zero14 : Set14 where data Unit14 : Set14 where Void : Unit14 data Sigma15 (A : Set15) (B : A -> Set15) : Set15 where _,_ : (x : A) (y : B x) -> Sigma15 A B _*15_ : (A : Set15)(B : Set15) -> Set15 A *15 B = Sigma15 A \_ -> B fst15 : {A : Set15}{B : A -> Set15} -> Sigma15 A B -> A fst15 (a , _) = a snd15 : {A : Set15}{B : A -> Set15} (p : Sigma15 A B) -> B (fst15 p) snd15 (a , b) = b data Zero15 : Set15 where data Unit15 : Set15 where Void : Unit15 data Sigma16 (A : Set16) (B : A -> Set16) : Set16 where _,_ : (x : A) (y : B x) -> Sigma16 A B _*16_ : (A : Set16)(B : Set16) -> Set16 A *16 B = Sigma16 A \_ -> B fst16 : {A : Set16}{B : A -> Set16} -> Sigma16 A B -> A fst16 (a , _) = a snd16 : {A : Set16}{B : A -> Set16} (p : Sigma16 A B) -> B (fst16 p) snd16 (a , b) = b data Zero16 : Set16 where data Unit16 : Set16 where Void : Unit16 data Sigma17 (A : Set17) (B : A -> Set17) : Set17 where _,_ : (x : A) (y : B x) -> Sigma17 A B _*17_ : (A : Set17)(B : Set17) -> Set17 A *17 B = Sigma17 A \_ -> B fst17 : {A : Set17}{B : A -> Set17} -> Sigma17 A B -> A fst17 (a , _) = a snd17 : {A : Set17}{B : A -> Set17} (p : Sigma17 A B) -> B (fst17 p) snd17 (a , b) = b data Zero17 : Set17 where data Unit17 : Set17 where Void : Unit17 data Sigma18 (A : Set18) (B : A -> Set18) : Set18 where _,_ : (x : A) (y : B x) -> Sigma18 A B _*18_ : (A : Set18)(B : Set18) -> Set18 A *18 B = Sigma18 A \_ -> B fst18 : {A : Set18}{B : A -> Set18} -> Sigma18 A B -> A fst18 (a , _) = a snd18 : {A : Set18}{B : A -> Set18} (p : Sigma18 A B) -> B (fst18 p) snd18 (a , b) = b data Zero18 : Set18 where data Unit18 : Set18 where Void : Unit18 data Sigma19 (A : Set19) (B : A -> Set19) : Set19 where _,_ : (x : A) (y : B x) -> Sigma19 A B _*19_ : (A : Set19)(B : Set19) -> Set19 A *19 B = Sigma19 A \_ -> B fst19 : {A : Set19}{B : A -> Set19} -> Sigma19 A B -> A fst19 (a , _) = a snd19 : {A : Set19}{B : A -> Set19} (p : Sigma19 A B) -> B (fst19 p) snd19 (a , b) = b data Zero19 : Set19 where data Unit19 : Set19 where Void : Unit19 data Sigma20 (A : Set20) (B : A -> Set20) : Set20 where _,_ : (x : A) (y : B x) -> Sigma20 A B _*20_ : (A : Set20)(B : Set20) -> Set20 A *20 B = Sigma20 A \_ -> B fst20 : {A : Set20}{B : A -> Set20} -> Sigma20 A B -> A fst20 (a , _) = a snd20 : {A : Set20}{B : A -> Set20} (p : Sigma20 A B) -> B (fst20 p) snd20 (a , b) = b data Zero20 : Set20 where data Unit20 : Set20 where Void : Unit20 data Sigma21 (A : Set21) (B : A -> Set21) : Set21 where _,_ : (x : A) (y : B x) -> Sigma21 A B _*21_ : (A : Set21)(B : Set21) -> Set21 A *21 B = Sigma21 A \_ -> B fst21 : {A : Set21}{B : A -> Set21} -> Sigma21 A B -> A fst21 (a , _) = a snd21 : {A : Set21}{B : A -> Set21} (p : Sigma21 A B) -> B (fst21 p) snd21 (a , b) = b data Zero21 : Set21 where data Unit21 : Set21 where Void : Unit21 data Sigma22 (A : Set22) (B : A -> Set22) : Set22 where _,_ : (x : A) (y : B x) -> Sigma22 A B _*22_ : (A : Set22)(B : Set22) -> Set22 A *22 B = Sigma22 A \_ -> B fst22 : {A : Set22}{B : A -> Set22} -> Sigma22 A B -> A fst22 (a , _) = a snd22 : {A : Set22}{B : A -> Set22} (p : Sigma22 A B) -> B (fst22 p) snd22 (a , b) = b data Zero22 : Set22 where data Unit22 : Set22 where Void : Unit22 data Sigma23 (A : Set23) (B : A -> Set23) : Set23 where _,_ : (x : A) (y : B x) -> Sigma23 A B _*23_ : (A : Set23)(B : Set23) -> Set23 A *23 B = Sigma23 A \_ -> B fst23 : {A : Set23}{B : A -> Set23} -> Sigma23 A B -> A fst23 (a , _) = a snd23 : {A : Set23}{B : A -> Set23} (p : Sigma23 A B) -> B (fst23 p) snd23 (a , b) = b data Zero23 : Set23 where data Unit23 : Set23 where Void : Unit23 data Sigma24 (A : Set24) (B : A -> Set24) : Set24 where _,_ : (x : A) (y : B x) -> Sigma24 A B _*24_ : (A : Set24)(B : Set24) -> Set24 A *24 B = Sigma24 A \_ -> B fst24 : {A : Set24}{B : A -> Set24} -> Sigma24 A B -> A fst24 (a , _) = a snd24 : {A : Set24}{B : A -> Set24} (p : Sigma24 A B) -> B (fst24 p) snd24 (a , b) = b data Zero24 : Set24 where data Unit24 : Set24 where Void : Unit24 data Sigma25 (A : Set25) (B : A -> Set25) : Set25 where _,_ : (x : A) (y : B x) -> Sigma25 A B _*25_ : (A : Set25)(B : Set25) -> Set25 A *25 B = Sigma25 A \_ -> B fst25 : {A : Set25}{B : A -> Set25} -> Sigma25 A B -> A fst25 (a , _) = a snd25 : {A : Set25}{B : A -> Set25} (p : Sigma25 A B) -> B (fst25 p) snd25 (a , b) = b data Zero25 : Set25 where data Unit25 : Set25 where Void : Unit25 data Sigma26 (A : Set26) (B : A -> Set26) : Set26 where _,_ : (x : A) (y : B x) -> Sigma26 A B _*26_ : (A : Set26)(B : Set26) -> Set26 A *26 B = Sigma26 A \_ -> B fst26 : {A : Set26}{B : A -> Set26} -> Sigma26 A B -> A fst26 (a , _) = a snd26 : {A : Set26}{B : A -> Set26} (p : Sigma26 A B) -> B (fst26 p) snd26 (a , b) = b data Zero26 : Set26 where data Unit26 : Set26 where Void : Unit26 data Sigma27 (A : Set27) (B : A -> Set27) : Set27 where _,_ : (x : A) (y : B x) -> Sigma27 A B _*27_ : (A : Set27)(B : Set27) -> Set27 A *27 B = Sigma27 A \_ -> B fst27 : {A : Set27}{B : A -> Set27} -> Sigma27 A B -> A fst27 (a , _) = a snd27 : {A : Set27}{B : A -> Set27} (p : Sigma27 A B) -> B (fst27 p) snd27 (a , b) = b data Zero27 : Set27 where data Unit27 : Set27 where Void : Unit27 data Sigma28 (A : Set28) (B : A -> Set28) : Set28 where _,_ : (x : A) (y : B x) -> Sigma28 A B _*28_ : (A : Set28)(B : Set28) -> Set28 A *28 B = Sigma28 A \_ -> B fst28 : {A : Set28}{B : A -> Set28} -> Sigma28 A B -> A fst28 (a , _) = a snd28 : {A : Set28}{B : A -> Set28} (p : Sigma28 A B) -> B (fst28 p) snd28 (a , b) = b data Zero28 : Set28 where data Unit28 : Set28 where Void : Unit28 data Sigma29 (A : Set29) (B : A -> Set29) : Set29 where _,_ : (x : A) (y : B x) -> Sigma29 A B _*29_ : (A : Set29)(B : Set29) -> Set29 A *29 B = Sigma29 A \_ -> B fst29 : {A : Set29}{B : A -> Set29} -> Sigma29 A B -> A fst29 (a , _) = a snd29 : {A : Set29}{B : A -> Set29} (p : Sigma29 A B) -> B (fst29 p) snd29 (a , b) = b data Zero29 : Set29 where data Unit29 : Set29 where Void : Unit29 data Sigma30 (A : Set30) (B : A -> Set30) : Set30 where _,_ : (x : A) (y : B x) -> Sigma30 A B _*30_ : (A : Set30)(B : Set30) -> Set30 A *30 B = Sigma30 A \_ -> B fst30 : {A : Set30}{B : A -> Set30} -> Sigma30 A B -> A fst30 (a , _) = a snd30 : {A : Set30}{B : A -> Set30} (p : Sigma30 A B) -> B (fst30 p) snd30 (a , b) = b data Zero30 : Set30 where data Unit30 : Set30 where Void : Unit30 data Sigma31 (A : Set31) (B : A -> Set31) : Set31 where _,_ : (x : A) (y : B x) -> Sigma31 A B _*31_ : (A : Set31)(B : Set31) -> Set31 A *31 B = Sigma31 A \_ -> B fst31 : {A : Set31}{B : A -> Set31} -> Sigma31 A B -> A fst31 (a , _) = a snd31 : {A : Set31}{B : A -> Set31} (p : Sigma31 A B) -> B (fst31 p) snd31 (a , b) = b data Zero31 : Set31 where data Unit31 : Set31 where Void : Unit31 data Sigma32 (A : Set32) (B : A -> Set32) : Set32 where _,_ : (x : A) (y : B x) -> Sigma32 A B _*32_ : (A : Set32)(B : Set32) -> Set32 A *32 B = Sigma32 A \_ -> B fst32 : {A : Set32}{B : A -> Set32} -> Sigma32 A B -> A fst32 (a , _) = a snd32 : {A : Set32}{B : A -> Set32} (p : Sigma32 A B) -> B (fst32 p) snd32 (a , b) = b data Zero32 : Set32 where data Unit32 : Set32 where Void : Unit32 data Sigma33 (A : Set33) (B : A -> Set33) : Set33 where _,_ : (x : A) (y : B x) -> Sigma33 A B _*33_ : (A : Set33)(B : Set33) -> Set33 A *33 B = Sigma33 A \_ -> B fst33 : {A : Set33}{B : A -> Set33} -> Sigma33 A B -> A fst33 (a , _) = a snd33 : {A : Set33}{B : A -> Set33} (p : Sigma33 A B) -> B (fst33 p) snd33 (a , b) = b data Zero33 : Set33 where data Unit33 : Set33 where Void : Unit33 data Sigma34 (A : Set34) (B : A -> Set34) : Set34 where _,_ : (x : A) (y : B x) -> Sigma34 A B _*34_ : (A : Set34)(B : Set34) -> Set34 A *34 B = Sigma34 A \_ -> B fst34 : {A : Set34}{B : A -> Set34} -> Sigma34 A B -> A fst34 (a , _) = a snd34 : {A : Set34}{B : A -> Set34} (p : Sigma34 A B) -> B (fst34 p) snd34 (a , b) = b data Zero34 : Set34 where data Unit34 : Set34 where Void : Unit34 data Sigma35 (A : Set35) (B : A -> Set35) : Set35 where _,_ : (x : A) (y : B x) -> Sigma35 A B _*35_ : (A : Set35)(B : Set35) -> Set35 A *35 B = Sigma35 A \_ -> B fst35 : {A : Set35}{B : A -> Set35} -> Sigma35 A B -> A fst35 (a , _) = a snd35 : {A : Set35}{B : A -> Set35} (p : Sigma35 A B) -> B (fst35 p) snd35 (a , b) = b data Zero35 : Set35 where data Unit35 : Set35 where Void : Unit35 data Sigma36 (A : Set36) (B : A -> Set36) : Set36 where _,_ : (x : A) (y : B x) -> Sigma36 A B _*36_ : (A : Set36)(B : Set36) -> Set36 A *36 B = Sigma36 A \_ -> B fst36 : {A : Set36}{B : A -> Set36} -> Sigma36 A B -> A fst36 (a , _) = a snd36 : {A : Set36}{B : A -> Set36} (p : Sigma36 A B) -> B (fst36 p) snd36 (a , b) = b data Zero36 : Set36 where data Unit36 : Set36 where Void : Unit36 data Sigma37 (A : Set37) (B : A -> Set37) : Set37 where _,_ : (x : A) (y : B x) -> Sigma37 A B _*37_ : (A : Set37)(B : Set37) -> Set37 A *37 B = Sigma37 A \_ -> B fst37 : {A : Set37}{B : A -> Set37} -> Sigma37 A B -> A fst37 (a , _) = a snd37 : {A : Set37}{B : A -> Set37} (p : Sigma37 A B) -> B (fst37 p) snd37 (a , b) = b data Zero37 : Set37 where data Unit37 : Set37 where Void : Unit37 data Sigma38 (A : Set38) (B : A -> Set38) : Set38 where _,_ : (x : A) (y : B x) -> Sigma38 A B _*38_ : (A : Set38)(B : Set38) -> Set38 A *38 B = Sigma38 A \_ -> B fst38 : {A : Set38}{B : A -> Set38} -> Sigma38 A B -> A fst38 (a , _) = a snd38 : {A : Set38}{B : A -> Set38} (p : Sigma38 A B) -> B (fst38 p) snd38 (a , b) = b data Zero38 : Set38 where data Unit38 : Set38 where Void : Unit38 data Sigma39 (A : Set39) (B : A -> Set39) : Set39 where _,_ : (x : A) (y : B x) -> Sigma39 A B _*39_ : (A : Set39)(B : Set39) -> Set39 A *39 B = Sigma39 A \_ -> B fst39 : {A : Set39}{B : A -> Set39} -> Sigma39 A B -> A fst39 (a , _) = a snd39 : {A : Set39}{B : A -> Set39} (p : Sigma39 A B) -> B (fst39 p) snd39 (a , b) = b data Zero39 : Set39 where data Unit39 : Set39 where Void : Unit39 data Sigma40 (A : Set40) (B : A -> Set40) : Set40 where _,_ : (x : A) (y : B x) -> Sigma40 A B _*40_ : (A : Set40)(B : Set40) -> Set40 A *40 B = Sigma40 A \_ -> B fst40 : {A : Set40}{B : A -> Set40} -> Sigma40 A B -> A fst40 (a , _) = a snd40 : {A : Set40}{B : A -> Set40} (p : Sigma40 A B) -> B (fst40 p) snd40 (a , b) = b data Zero40 : Set40 where data Unit40 : Set40 where Void : Unit40 data Sigma41 (A : Set41) (B : A -> Set41) : Set41 where _,_ : (x : A) (y : B x) -> Sigma41 A B _*41_ : (A : Set41)(B : Set41) -> Set41 A *41 B = Sigma41 A \_ -> B fst41 : {A : Set41}{B : A -> Set41} -> Sigma41 A B -> A fst41 (a , _) = a snd41 : {A : Set41}{B : A -> Set41} (p : Sigma41 A B) -> B (fst41 p) snd41 (a , b) = b data Zero41 : Set41 where data Unit41 : Set41 where Void : Unit41 data Sigma42 (A : Set42) (B : A -> Set42) : Set42 where _,_ : (x : A) (y : B x) -> Sigma42 A B _*42_ : (A : Set42)(B : Set42) -> Set42 A *42 B = Sigma42 A \_ -> B fst42 : {A : Set42}{B : A -> Set42} -> Sigma42 A B -> A fst42 (a , _) = a snd42 : {A : Set42}{B : A -> Set42} (p : Sigma42 A B) -> B (fst42 p) snd42 (a , b) = b data Zero42 : Set42 where data Unit42 : Set42 where Void : Unit42
{ "alphanum_fraction": 0.5227723929, "avg_line_length": 23.3642564802, "ext": "agda", "hexsha": "53be2e775dfd58baff4df5726227d2ea0cb2b18f", "lang": "Agda", "max_forks_count": 12, "max_forks_repo_forks_event_max_datetime": "2022-02-11T01:57:40.000Z", "max_forks_repo_forks_event_min_datetime": "2016-08-14T21:36:35.000Z", "max_forks_repo_head_hexsha": "8c46f766bddcec2218ddcaa79996e087699a75f2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mietek/epigram", "max_forks_repo_path": "models/StratSigma.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8c46f766bddcec2218ddcaa79996e087699a75f2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mietek/epigram", "max_issues_repo_path": "models/StratSigma.agda", "max_line_length": 68, "max_stars_count": 48, "max_stars_repo_head_hexsha": "8c46f766bddcec2218ddcaa79996e087699a75f2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mietek/epigram", "max_stars_repo_path": "models/StratSigma.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-11T01:55:28.000Z", "max_stars_repo_stars_event_min_datetime": "2016-01-09T17:36:19.000Z", "num_tokens": 7358, "size": 17126 }
{-# OPTIONS --cubical --safe #-} module Cubical.Data.Maybe.Properties where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Data.Empty open import Cubical.Data.Unit open import Cubical.Data.Nat open import Cubical.Relation.Nullary open import Cubical.Data.Sum open import Cubical.Data.Maybe.Base -- Path space of Maybe type module MaybePath {ℓ} {A : Type ℓ} where Cover : Maybe A → Maybe A → Type ℓ Cover nothing nothing = Lift Unit Cover nothing (just _) = Lift ⊥ Cover (just _) nothing = Lift ⊥ Cover (just a) (just a') = a ≡ a' reflCode : (c : Maybe A) → Cover c c reflCode nothing = lift tt reflCode (just b) = refl encode : ∀ c c' → c ≡ c' → Cover c c' encode c _ = J (λ c' _ → Cover c c') (reflCode c) encodeRefl : ∀ c → encode c c refl ≡ reflCode c encodeRefl c = JRefl (λ c' _ → Cover c c') (reflCode c) decode : ∀ c c' → Cover c c' → c ≡ c' decode nothing nothing _ = refl decode (just _) (just _) p = cong just p decodeRefl : ∀ c → decode c c (reflCode c) ≡ refl decodeRefl nothing = refl decodeRefl (just _) = refl decodeEncode : ∀ c c' → (p : c ≡ c') → decode c c' (encode c c' p) ≡ p decodeEncode c _ = J (λ c' p → decode c c' (encode c c' p) ≡ p) (cong (decode c c) (encodeRefl c) ∙ decodeRefl c) isOfHLevelCover : (n : ℕ) → isOfHLevel (suc (suc n)) A → ∀ c c' → isOfHLevel (suc n) (Cover c c') isOfHLevelCover n p nothing nothing = isOfHLevelLift (suc n) (isOfHLevelUnit (suc n)) isOfHLevelCover n p nothing (just a') = isOfHLevelLift (suc n) (subst (λ m → isOfHLevel m ⊥) (+-comm n 1) (hLevelLift n isProp⊥)) isOfHLevelCover n p (just a) nothing = isOfHLevelLift (suc n) (subst (λ m → isOfHLevel m ⊥) (+-comm n 1) (hLevelLift n isProp⊥)) isOfHLevelCover n p (just a) (just a') = p a a' isOfHLevelMaybe : ∀ {ℓ} (n : ℕ) {A : Type ℓ} → isOfHLevel (suc (suc n)) A → isOfHLevel (suc (suc n)) (Maybe A) isOfHLevelMaybe n lA c c' = retractIsOfHLevel (suc n) (MaybePath.encode c c') (MaybePath.decode c c') (MaybePath.decodeEncode c c') (MaybePath.isOfHLevelCover n lA c c') private variable ℓ : Level A : Type ℓ fromJust-def : A → Maybe A → A fromJust-def a nothing = a fromJust-def _ (just a) = a just-inj : (x y : A) → just x ≡ just y → x ≡ y just-inj x _ eq = cong (fromJust-def x) eq ¬nothing≡just : ∀ {x : A} → ¬ (nothing ≡ just x) ¬nothing≡just {A = A} {x = x} p = lower (subst (caseMaybe (Maybe A) (Lift ⊥)) p (just x)) ¬just≡nothing : ∀ {x : A} → ¬ (just x ≡ nothing) ¬just≡nothing {A = A} {x = x} p = lower (subst (caseMaybe (Lift ⊥) (Maybe A)) p (just x)) discreteMaybe : Discrete A → Discrete (Maybe A) discreteMaybe eqA nothing nothing = yes refl discreteMaybe eqA nothing (just a') = no ¬nothing≡just discreteMaybe eqA (just a) nothing = no ¬just≡nothing discreteMaybe eqA (just a) (just a') with eqA a a' ... | yes p = yes (cong just p) ... | no ¬p = no (λ p → ¬p (just-inj _ _ p)) module SumUnit where Maybe→SumUnit : Maybe A → Unit ⊎ A Maybe→SumUnit nothing = inl tt Maybe→SumUnit (just a) = inr a SumUnit→Maybe : Unit ⊎ A → Maybe A SumUnit→Maybe (inl _) = nothing SumUnit→Maybe (inr a) = just a Maybe→SumUnit→Maybe : (x : Maybe A) → SumUnit→Maybe (Maybe→SumUnit x) ≡ x Maybe→SumUnit→Maybe nothing = refl Maybe→SumUnit→Maybe (just _) = refl SumUnit→Maybe→SumUnit : (x : Unit ⊎ A) → Maybe→SumUnit (SumUnit→Maybe x) ≡ x SumUnit→Maybe→SumUnit (inl _) = refl SumUnit→Maybe→SumUnit (inr _) = refl Maybe≡SumUnit : Maybe A ≡ Unit ⊎ A Maybe≡SumUnit = isoToPath (iso SumUnit.Maybe→SumUnit SumUnit.SumUnit→Maybe SumUnit.SumUnit→Maybe→SumUnit SumUnit.Maybe→SumUnit→Maybe)
{ "alphanum_fraction": 0.6481286241, "avg_line_length": 33.875, "ext": "agda", "hexsha": "3f09b9c13ea55d501a46c34681bfe961c049191c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cj-xu/cubical", "max_forks_repo_path": "Cubical/Data/Maybe/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cj-xu/cubical", "max_issues_repo_path": "Cubical/Data/Maybe/Properties.agda", "max_line_length": 133, "max_stars_count": null, "max_stars_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cj-xu/cubical", "max_stars_repo_path": "Cubical/Data/Maybe/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1397, "size": 3794 }
{-# OPTIONS --safe #-} open import Definition.Typed.EqualityRelation module Definition.LogicalRelation.Weakening {{eqrel : EqRelSet}} where open EqRelSet {{...}} open import Definition.Untyped as U hiding (wk) open import Definition.Untyped.Properties open import Definition.Typed open import Definition.Typed.Weakening as T hiding (wk; wkEq; wkTerm; wkEqTerm) open import Definition.LogicalRelation open import Definition.LogicalRelation.Irrelevance open import Tools.Product import Tools.PropositionalEquality as PE import Data.Nat as Nat -- Weakening of neutrals in WHNF wkTermNe : ∀ {ρ Γ Δ k A rA} → ρ ∷ Δ ⊆ Γ → (⊢Δ : ⊢ Δ) → Γ ⊩neNf k ∷ A ^ rA → Δ ⊩neNf U.wk ρ k ∷ U.wk ρ A ^ rA wkTermNe {ρ} [ρ] ⊢Δ (neNfₜ neK ⊢k k≡k) = neNfₜ (wkNeutral ρ neK) (T.wkTerm [ρ] ⊢Δ ⊢k) (~-wk [ρ] ⊢Δ k≡k) wkEqTermNe : ∀ {ρ Γ Δ k k′ A rA} → ρ ∷ Δ ⊆ Γ → (⊢Δ : ⊢ Δ) → Γ ⊩neNf k ≡ k′ ∷ A ^ rA → Δ ⊩neNf U.wk ρ k ≡ U.wk ρ k′ ∷ U.wk ρ A ^ rA wkEqTermNe {ρ} [ρ] ⊢Δ (neNfₜ₌ neK neM k≡m) = neNfₜ₌ (wkNeutral ρ neK) (wkNeutral ρ neM) (~-wk [ρ] ⊢Δ k≡m) -- Weakening of reducible natural numbers mutual wkTermℕ : ∀ {ρ Γ Δ n} → ρ ∷ Δ ⊆ Γ → (⊢Δ : ⊢ Δ) → Γ ⊩ℕ n ∷ℕ → Δ ⊩ℕ U.wk ρ n ∷ℕ wkTermℕ {ρ} [ρ] ⊢Δ (ℕₜ n d n≡n prop) = ℕₜ (U.wk ρ n) (wkRed:*:Term [ρ] ⊢Δ d) (≅ₜ-wk [ρ] ⊢Δ n≡n) (wkNatural-prop [ρ] ⊢Δ prop) wkNatural-prop : ∀ {ρ Γ Δ n} → ρ ∷ Δ ⊆ Γ → (⊢Δ : ⊢ Δ) → Natural-prop Γ n → Natural-prop Δ (U.wk ρ n) wkNatural-prop ρ ⊢Δ (sucᵣ n) = sucᵣ (wkTermℕ ρ ⊢Δ n) wkNatural-prop ρ ⊢Δ zeroᵣ = zeroᵣ wkNatural-prop ρ ⊢Δ (ne nf) = ne (wkTermNe ρ ⊢Δ nf) mutual wkEqTermℕ : ∀ {ρ Γ Δ t u} → ρ ∷ Δ ⊆ Γ → (⊢Δ : ⊢ Δ) → Γ ⊩ℕ t ≡ u ∷ℕ → Δ ⊩ℕ U.wk ρ t ≡ U.wk ρ u ∷ℕ wkEqTermℕ {ρ} [ρ] ⊢Δ (ℕₜ₌ k k′ d d′ t≡u prop) = ℕₜ₌ (U.wk ρ k) (U.wk ρ k′) (wkRed:*:Term [ρ] ⊢Δ d) (wkRed:*:Term [ρ] ⊢Δ d′) (≅ₜ-wk [ρ] ⊢Δ t≡u) (wk[Natural]-prop [ρ] ⊢Δ prop) wk[Natural]-prop : ∀ {ρ Γ Δ n n′} → ρ ∷ Δ ⊆ Γ → (⊢Δ : ⊢ Δ) → [Natural]-prop Γ n n′ → [Natural]-prop Δ (U.wk ρ n) (U.wk ρ n′) wk[Natural]-prop ρ ⊢Δ (sucᵣ [n≡n′]) = sucᵣ (wkEqTermℕ ρ ⊢Δ [n≡n′]) wk[Natural]-prop ρ ⊢Δ zeroᵣ = zeroᵣ wk[Natural]-prop ρ ⊢Δ (ne x) = ne (wkEqTermNe ρ ⊢Δ x) -- Empty wkTermEmpty : ∀ {ρ Γ Δ l n} → ρ ∷ Δ ⊆ Γ → (⊢Δ : ⊢ Δ) → Γ ⊩Empty n ∷Empty^ l → Δ ⊩Empty U.wk ρ n ∷Empty^ l wkTermEmpty {ρ} [ρ] ⊢Δ (Emptyₜ (ne d)) = Emptyₜ (ne (T.wkTerm [ρ] ⊢Δ d)) wk[Empty]-prop : ∀ {ρ Γ Δ n l n′} → ρ ∷ Δ ⊆ Γ → (⊢Δ : ⊢ Δ) → [Empty]-prop Γ n n′ l → [Empty]-prop Δ (U.wk ρ n) (U.wk ρ n′) l wk[Empty]-prop {ρ} [ρ] ⊢Δ (ne d d') = ne (T.wkTerm [ρ] ⊢Δ d) (T.wkTerm [ρ] ⊢Δ d') wkEqTermEmpty : ∀ {ρ Γ Δ t u l } → ρ ∷ Δ ⊆ Γ → (⊢Δ : ⊢ Δ) → Γ ⊩Empty t ≡ u ∷Empty^ l → Δ ⊩Empty U.wk ρ t ≡ U.wk ρ u ∷Empty^ l wkEqTermEmpty {ρ} [ρ] ⊢Δ (Emptyₜ₌ (ne d d')) = Emptyₜ₌ (ne (T.wkTerm [ρ] ⊢Δ d) (T.wkTerm [ρ] ⊢Δ d')) -- Weakening of the logical relation wk : ∀ {ρ Γ Δ A rA l} → ρ ∷ Δ ⊆ Γ → ⊢ Δ → Γ ⊩⟨ l ⟩ A ^ rA → Δ ⊩⟨ l ⟩ U.wk ρ A ^ rA wk ρ ⊢Δ (Uᵣ (Uᵣ r l′ l< eq d)) = Uᵣ (Uᵣ r l′ l< eq (wkRed:*: ρ ⊢Δ d)) wk ρ ⊢Δ (ℕᵣ D) = ℕᵣ (wkRed:*: ρ ⊢Δ D) wk ρ ⊢Δ (Emptyᵣ D) = Emptyᵣ (wkRed:*: ρ ⊢Δ D) wk {ρ} [ρ] ⊢Δ (ne′ K D neK K≡K) = ne′ (U.wk ρ K) (wkRed:*: [ρ] ⊢Δ D) (wkNeutral ρ neK) (~-wk [ρ] ⊢Δ K≡K) wk {ρ} {Γ} {Δ} {A} {rA} {l} [ρ] ⊢Δ (Πᵣ′ rF lF lG lF≤ lG≤ F G D ⊢F ⊢G A≡A [F] [G] G-ext) = let ⊢ρF = T.wk [ρ] ⊢Δ ⊢F iF = [ rF , ι lF ] iG = [ TypeInfo.r rA , ι lG ] [F]′ : ∀ {ρ ρ′ E} ([ρ] : ρ ∷ E ⊆ Δ) ([ρ′] : ρ′ ∷ Δ ⊆ Γ) (⊢E : ⊢ E) → E ⊩⟨ l ⟩ U.wk ρ (U.wk ρ′ F) ^ iF [F]′ {ρ} {ρ′} [ρ] [ρ′] ⊢E = irrelevance′ (PE.sym (wk-comp ρ ρ′ F)) ([F] ([ρ] •ₜ [ρ′]) ⊢E) [a]′ : ∀ {ρ ρ′ E a} ([ρ] : ρ ∷ E ⊆ Δ) ([ρ′] : ρ′ ∷ Δ ⊆ Γ) (⊢E : ⊢ E) ([a] : E ⊩⟨ l ⟩ a ∷ U.wk ρ (U.wk ρ′ F) ^ iF / [F]′ [ρ] [ρ′] ⊢E) → E ⊩⟨ l ⟩ a ∷ U.wk (ρ • ρ′) F ^ iF / [F] ([ρ] •ₜ [ρ′]) ⊢E [a]′ {ρ} {ρ′} [ρ] [ρ′] ⊢E [a] = irrelevanceTerm′ (wk-comp ρ ρ′ F) PE.refl PE.refl ([F]′ [ρ] [ρ′] ⊢E) ([F] ([ρ] •ₜ [ρ′]) ⊢E) [a] [G]′ : ∀ {ρ ρ′ E a} ([ρ] : ρ ∷ E ⊆ Δ) ([ρ′] : ρ′ ∷ Δ ⊆ Γ) (⊢E : ⊢ E) ([a] : E ⊩⟨ l ⟩ a ∷ U.wk ρ (U.wk ρ′ F) ^ iF / [F]′ [ρ] [ρ′] ⊢E) → E ⊩⟨ l ⟩ U.wk (lift (ρ • ρ′)) G [ a ] ^ iG [G]′ η η′ ⊢E [a] = [G] (η •ₜ η′) ⊢E ([a]′ η η′ ⊢E [a]) in Πᵣ′ rF lF lG lF≤ lG≤ (U.wk ρ F) (U.wk (lift ρ) G) (T.wkRed:*: [ρ] ⊢Δ D) ⊢ρF (T.wk (lift [ρ]) (⊢Δ ∙ ⊢ρF) ⊢G) (≅-wk [ρ] ⊢Δ A≡A) (λ {ρ₁} [ρ₁] ⊢Δ₁ → irrelevance′ (PE.sym (wk-comp ρ₁ ρ F)) ([F] ([ρ₁] •ₜ [ρ]) ⊢Δ₁)) (λ {ρ₁} [ρ₁] ⊢Δ₁ [a] → irrelevance′ (wk-comp-subst ρ₁ ρ G) ([G]′ [ρ₁] [ρ] ⊢Δ₁ [a])) (λ {ρ₁} [ρ₁] ⊢Δ₁ [a] [b] [a≡b] → let [a≡b]′ = irrelevanceEqTerm′ (wk-comp ρ₁ ρ F) PE.refl PE.refl ([F]′ [ρ₁] [ρ] ⊢Δ₁) ([F] ([ρ₁] •ₜ [ρ]) ⊢Δ₁) [a≡b] in irrelevanceEq″ (wk-comp-subst ρ₁ ρ G) (wk-comp-subst ρ₁ ρ G) PE.refl PE.refl ([G]′ [ρ₁] [ρ] ⊢Δ₁ [a]) (irrelevance′ (wk-comp-subst ρ₁ ρ G) ([G]′ [ρ₁] [ρ] ⊢Δ₁ [a])) (G-ext ([ρ₁] •ₜ [ρ]) ⊢Δ₁ ([a]′ [ρ₁] [ρ] ⊢Δ₁ [a]) ([a]′ [ρ₁] [ρ] ⊢Δ₁ [b]) [a≡b]′)) wk {ρ} {Γ} {Δ} {A} {rA} {l} [ρ] ⊢Δ (∃ᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) = let ⊢ρF = T.wk [ρ] ⊢Δ ⊢F iF = [ % , TypeInfo.l rA ] [F]′ : ∀ {ρ ρ′ E} ([ρ] : ρ ∷ E ⊆ Δ) ([ρ′] : ρ′ ∷ Δ ⊆ Γ) (⊢E : ⊢ E) → E ⊩⟨ l ⟩ U.wk ρ (U.wk ρ′ F) ^ iF [F]′ {ρ} {ρ′} [ρ] [ρ′] ⊢E = irrelevance′ (PE.sym (wk-comp ρ ρ′ F)) ([F] ([ρ] •ₜ [ρ′]) ⊢E) [a]′ : ∀ {ρ ρ′ E a} ([ρ] : ρ ∷ E ⊆ Δ) ([ρ′] : ρ′ ∷ Δ ⊆ Γ) (⊢E : ⊢ E) ([a] : E ⊩⟨ l ⟩ a ∷ U.wk ρ (U.wk ρ′ F) ^ iF / [F]′ [ρ] [ρ′] ⊢E) → E ⊩⟨ l ⟩ a ∷ U.wk (ρ • ρ′) F ^ iF / [F] ([ρ] •ₜ [ρ′]) ⊢E [a]′ {ρ} {ρ′} [ρ] [ρ′] ⊢E [a] = irrelevanceTerm′ (wk-comp ρ ρ′ F) PE.refl PE.refl ([F]′ [ρ] [ρ′] ⊢E) ([F] ([ρ] •ₜ [ρ′]) ⊢E) [a] [G]′ : ∀ {ρ ρ′ E a} ([ρ] : ρ ∷ E ⊆ Δ) ([ρ′] : ρ′ ∷ Δ ⊆ Γ) (⊢E : ⊢ E) ([a] : E ⊩⟨ l ⟩ a ∷ U.wk ρ (U.wk ρ′ F) ^ iF / [F]′ [ρ] [ρ′] ⊢E) → E ⊩⟨ l ⟩ U.wk (lift (ρ • ρ′)) G [ a ] ^ rA [G]′ η η′ ⊢E [a] = [G] (η •ₜ η′) ⊢E ([a]′ η η′ ⊢E [a]) in ∃ᵣ′ (U.wk ρ F) (U.wk (lift ρ) G) (T.wkRed:*: [ρ] ⊢Δ D) ⊢ρF (T.wk (lift [ρ]) (⊢Δ ∙ ⊢ρF) ⊢G) (≅-wk [ρ] ⊢Δ A≡A) (λ {ρ₁} [ρ₁] ⊢Δ₁ → irrelevance′ (PE.sym (wk-comp ρ₁ ρ F)) ([F] ([ρ₁] •ₜ [ρ]) ⊢Δ₁)) (λ {ρ₁} [ρ₁] ⊢Δ₁ [a] → irrelevance′ (wk-comp-subst ρ₁ ρ G) ([G]′ [ρ₁] [ρ] ⊢Δ₁ [a])) (λ {ρ₁} [ρ₁] ⊢Δ₁ [a] [b] [a≡b] → let [a≡b]′ = irrelevanceEqTerm′ (wk-comp ρ₁ ρ F) PE.refl PE.refl ([F]′ [ρ₁] [ρ] ⊢Δ₁) ([F] ([ρ₁] •ₜ [ρ]) ⊢Δ₁) [a≡b] in irrelevanceEq″ (wk-comp-subst ρ₁ ρ G) (wk-comp-subst ρ₁ ρ G) PE.refl PE.refl ([G]′ [ρ₁] [ρ] ⊢Δ₁ [a]) (irrelevance′ (wk-comp-subst ρ₁ ρ G) ([G]′ [ρ₁] [ρ] ⊢Δ₁ [a])) (G-ext ([ρ₁] •ₜ [ρ]) ⊢Δ₁ ([a]′ [ρ₁] [ρ] ⊢Δ₁ [a]) ([a]′ [ρ₁] [ρ] ⊢Δ₁ [b]) [a≡b]′)) wk {l = ι ¹} ρ ⊢Δ (emb l< X) = emb l< (wk ρ ⊢Δ X) wk {l = ∞} ρ ⊢Δ (emb l< X) = emb l< (wk ρ ⊢Δ X) wkEq : ∀ {ρ Γ Δ A B r l} → ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) ([A] : Γ ⊩⟨ l ⟩ A ^ r) → Γ ⊩⟨ l ⟩ A ≡ B ^ r / [A] → Δ ⊩⟨ l ⟩ U.wk ρ A ≡ U.wk ρ B ^ r / wk [ρ] ⊢Δ [A] wkEq ρ ⊢Δ (Uᵣ (Uᵣ r l′ l< eq d)) D = wkRed* ρ ⊢Δ D wkEq ρ ⊢Δ (ℕᵣ D) A≡B = wkRed* ρ ⊢Δ A≡B wkEq ρ ⊢Δ (Emptyᵣ D) A≡B = wkRed* ρ ⊢Δ A≡B wkEq {ρ} [ρ] ⊢Δ (ne′ _ _ _ _) (ne₌ M D′ neM K≡M) = ne₌ (U.wk ρ M) (wkRed:*: [ρ] ⊢Δ D′) (wkNeutral ρ neM) (~-wk [ρ] ⊢Δ K≡M) wkEq {ρ} [ρ] ⊢Δ (Πᵣ′ rF lF lG lF≤ lG≤ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) = Π₌ (U.wk ρ F′) (U.wk (lift ρ) G′) (T.wkRed* [ρ] ⊢Δ D′) (≅-wk [ρ] ⊢Δ A≡B) (λ {ρ₁} [ρ₁] ⊢Δ₁ → irrelevanceEq″ (PE.sym (wk-comp ρ₁ ρ F)) (PE.sym (wk-comp ρ₁ ρ F′)) PE.refl PE.refl ([F] ([ρ₁] •ₜ [ρ]) ⊢Δ₁) (irrelevance′ (PE.sym (wk-comp ρ₁ ρ F)) ([F] ([ρ₁] •ₜ [ρ]) ⊢Δ₁)) ([F≡F′] ([ρ₁] •ₜ [ρ]) ⊢Δ₁)) (λ {ρ₁} [ρ₁] ⊢Δ₁ [a] → let [a]′ = irrelevanceTerm′ (wk-comp ρ₁ ρ F) PE.refl PE.refl (irrelevance′ (PE.sym (wk-comp ρ₁ ρ F)) ([F] ([ρ₁] •ₜ [ρ]) ⊢Δ₁)) ([F] ([ρ₁] •ₜ [ρ]) ⊢Δ₁) [a] in irrelevanceEq″ (wk-comp-subst ρ₁ ρ G) (wk-comp-subst ρ₁ ρ G′) PE.refl PE.refl ([G] ([ρ₁] •ₜ [ρ]) ⊢Δ₁ [a]′) (irrelevance′ (wk-comp-subst ρ₁ ρ G) ([G] ([ρ₁] •ₜ [ρ]) ⊢Δ₁ [a]′)) ([G≡G′] ([ρ₁] •ₜ [ρ]) ⊢Δ₁ [a]′)) wkEq {ρ} [ρ] ⊢Δ (∃ᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (∃₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) = ∃₌ (U.wk ρ F′) (U.wk (lift ρ) G′) (T.wkRed* [ρ] ⊢Δ D′) (≅-wk [ρ] ⊢Δ A≡B) (λ {ρ₁} [ρ₁] ⊢Δ₁ → irrelevanceEq″ (PE.sym (wk-comp ρ₁ ρ F)) (PE.sym (wk-comp ρ₁ ρ F′)) PE.refl PE.refl ([F] ([ρ₁] •ₜ [ρ]) ⊢Δ₁) (irrelevance′ (PE.sym (wk-comp ρ₁ ρ F)) ([F] ([ρ₁] •ₜ [ρ]) ⊢Δ₁)) ([F≡F′] ([ρ₁] •ₜ [ρ]) ⊢Δ₁)) (λ {ρ₁} [ρ₁] ⊢Δ₁ [a] → let [a]′ = irrelevanceTerm′ (wk-comp ρ₁ ρ F) PE.refl PE.refl (irrelevance′ (PE.sym (wk-comp ρ₁ ρ F)) ([F] ([ρ₁] •ₜ [ρ]) ⊢Δ₁)) ([F] ([ρ₁] •ₜ [ρ]) ⊢Δ₁) [a] in irrelevanceEq″ (wk-comp-subst ρ₁ ρ G) (wk-comp-subst ρ₁ ρ G′) PE.refl PE.refl ([G] ([ρ₁] •ₜ [ρ]) ⊢Δ₁ [a]′) (irrelevance′ (wk-comp-subst ρ₁ ρ G) ([G] ([ρ₁] •ₜ [ρ]) ⊢Δ₁ [a]′)) ([G≡G′] ([ρ₁] •ₜ [ρ]) ⊢Δ₁ [a]′)) wkEq {l = ι ¹} ρ ⊢Δ (emb l< X) A≡B = wkEq ρ ⊢Δ X A≡B wkEq {l = ∞} ρ ⊢Δ (emb l< X) A≡B = wkEq ρ ⊢Δ X A≡B wkTerm : ∀ {ρ Γ Δ A t r l} ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) ([A] : Γ ⊩⟨ l ⟩ A ^ r) → Γ ⊩⟨ l ⟩ t ∷ A ^ r / [A] → Δ ⊩⟨ l ⟩ U.wk ρ t ∷ U.wk ρ A ^ r / wk [ρ] ⊢Δ [A] wkTerm {ρ} {Δ = Δ} {t = t} {l = ι ¹} [ρ] ⊢Δ (Uᵣ (Uᵣ r ⁰ l< eq d)) (Uₜ K d₁ typeK K≡K [t]) = let -- this code is a bit of a mess tbh -- it is mostly about using irrelevance back and forth between proofs of -- reducibility using U.wk ρ′ (U.wk ρ t) and proofs using U.wk (ρ′ • ρ) t [t]′ = λ {ρ′} {Δ′} [ρ′] (⊢Δ′ : ⊢ Δ′) → irrelevance′ (PE.sym (wk-comp ρ′ ρ t)) ([t] ([ρ′] •ₜ [ρ]) ⊢Δ′) [t]′_to_[t] = λ {ρ′} {Δ′} {a} [ρ′] (⊢Δ′ : ⊢ Δ′) ([a] : Δ′ ⊩⟨ ι ⁰ ⟩ a ∷ U.wk ρ′ (U.wk ρ t) ^ [ r , ι ⁰ ] / [t]′ [ρ′] ⊢Δ′) → irrelevanceTerm′ (wk-comp ρ′ ρ t) PE.refl PE.refl ([t]′ [ρ′] ⊢Δ′) ([t] ([ρ′] •ₜ [ρ]) ⊢Δ′) [a] [t]′_to_[t]_eq = λ {ρ′} {Δ′} {a} {a′} [ρ′] (⊢Δ′ : ⊢ Δ′) (a≡a′ : Δ′ ⊩⟨ ι ⁰ ⟩ a ≡ a′ ∷ U.wk ρ′ (U.wk ρ t) ^ [ r , ι ⁰ ] / [t]′ [ρ′] ⊢Δ′) → irrelevanceEqTerm′ (wk-comp ρ′ ρ t) PE.refl PE.refl ([t]′ [ρ′] ⊢Δ′) ([t] ([ρ′] •ₜ [ρ]) ⊢Δ′) a≡a′ [t]′_to_[t]_id = λ {ρ′} {Δ′} {e} {B} [e] → (PE.subst (λ X → Δ′ ⊢ e ∷ Id (U ⁰) X B ^ [ % , ι ¹ ]) (wk-comp ρ′ ρ t) [e]) in Uₜ (U.wk ρ K) (wkRed:*:Term [ρ] ⊢Δ d₁) (wkType ρ typeK) (≅ₜ-wk [ρ] ⊢Δ K≡K) [t]′ -- this is a duplicate of the above code (because we need logRelRec to compute) -- surely there is a way to avoid this redundancy wkTerm {ρ} {Δ = Δ} {t = t} {l = ∞} [ρ] ⊢Δ (Uᵣ (Uᵣ r ¹ l< eq d)) (Uₜ K d₁ typeK K≡K [t]) = let [t]′ = λ {ρ′} {Δ′} [ρ′] (⊢Δ′ : ⊢ Δ′) → irrelevance′ (PE.sym (wk-comp ρ′ ρ t)) ([t] ([ρ′] •ₜ [ρ]) ⊢Δ′) [t]′_to_[t] = λ {ρ′} {Δ′} {a} [ρ′] (⊢Δ′ : ⊢ Δ′) ([a] : Δ′ ⊩⟨ ι ¹ ⟩ a ∷ U.wk ρ′ (U.wk ρ t) ^ [ r , ι ¹ ] / [t]′ [ρ′] ⊢Δ′) → irrelevanceTerm′ (wk-comp ρ′ ρ t) PE.refl PE.refl ([t]′ [ρ′] ⊢Δ′) ([t] ([ρ′] •ₜ [ρ]) ⊢Δ′) [a] [t]′_to_[t]_eq = λ {ρ′} {Δ′} {a} {a′} [ρ′] (⊢Δ′ : ⊢ Δ′) (a≡a′ : Δ′ ⊩⟨ ι ¹ ⟩ a ≡ a′ ∷ U.wk ρ′ (U.wk ρ t) ^ [ r , ι ¹ ] / [t]′ [ρ′] ⊢Δ′) → irrelevanceEqTerm′ (wk-comp ρ′ ρ t) PE.refl PE.refl ([t]′ [ρ′] ⊢Δ′) ([t] ([ρ′] •ₜ [ρ]) ⊢Δ′) a≡a′ [t]′_to_[t]_id = λ {ρ′} {Δ′} {e} {B} [e] → (PE.subst (λ X → Δ′ ⊢ e ∷ Id (U ⁰) X B ^ [ % , ι ¹ ]) (wk-comp ρ′ ρ t) [e]) in Uₜ (U.wk ρ K) (wkRed:*:Term [ρ] ⊢Δ d₁) (wkType ρ typeK) (≅ₜ-wk [ρ] ⊢Δ K≡K) [t]′ wkTerm ρ ⊢Δ (ℕᵣ D) [t] = wkTermℕ ρ ⊢Δ [t] wkTerm ρ ⊢Δ (Emptyᵣ D) [t] = wkTermEmpty ρ ⊢Δ [t] wkTerm {ρ} {r = [ ! , l′ ]} [ρ] ⊢Δ (ne′ K D neK K≡K) (neₜ k d nf) = neₜ (U.wk ρ k) (wkRed:*:Term [ρ] ⊢Δ d) (wkTermNe [ρ] ⊢Δ nf) wkTerm {ρ} {r = [ % , l′ ]} [ρ] ⊢Δ (ne′ K D neK K≡K) (neₜ d) = neₜ ( T.wkTerm [ρ] ⊢Δ d) wkTerm {ρ} {r = [ ! , l′ ]} [ρ] ⊢Δ (Πᵣ′ rF lF lG lF≤ lG≤ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Πₜ f d funcF f≡f [f] [f]₁) = Πₜ (U.wk ρ f) (wkRed:*:Term [ρ] ⊢Δ d) (wkFunction ρ funcF) (≅ₜ-wk [ρ] ⊢Δ f≡f) (λ {ρ₁} [ρ₁] ⊢Δ₁ [a] [b] [a≡b] → let F-compEq = wk-comp ρ₁ ρ F G-compEq = wk-comp-subst ρ₁ ρ G [F]₁ = [F] ([ρ₁] •ₜ [ρ]) ⊢Δ₁ [F]₂ = irrelevance′ (PE.sym (wk-comp ρ₁ ρ F)) [F]₁ [a]′ = irrelevanceTerm′ F-compEq PE.refl PE.refl [F]₂ [F]₁ [a] [b]′ = irrelevanceTerm′ F-compEq PE.refl PE.refl [F]₂ [F]₁ [b] [G]₁ = [G] ([ρ₁] •ₜ [ρ]) ⊢Δ₁ [a]′ [G]₂ = irrelevance′ G-compEq [G]₁ [a≡b]′ = irrelevanceEqTerm′ F-compEq PE.refl PE.refl [F]₂ [F]₁ [a≡b] in irrelevanceEqTerm″ PE.refl PE.refl (PE.cong (λ x → x ∘ _ ^ _ ) (PE.sym (wk-comp ρ₁ ρ _))) (PE.cong (λ x → x ∘ _ ^ _) (PE.sym (wk-comp ρ₁ ρ _))) G-compEq [G]₁ [G]₂ ([f] ([ρ₁] •ₜ [ρ]) ⊢Δ₁ [a]′ [b]′ [a≡b]′)) (λ {ρ₁} [ρ₁] ⊢Δ₁ [a] → let [F]₁ = [F] ([ρ₁] •ₜ [ρ]) ⊢Δ₁ [F]₂ = irrelevance′ (PE.sym (wk-comp ρ₁ ρ F)) [F]₁ [a]′ = irrelevanceTerm′ (wk-comp ρ₁ ρ F) PE.refl PE.refl [F]₂ [F]₁ [a] [G]₁ = [G] ([ρ₁] •ₜ [ρ]) ⊢Δ₁ [a]′ [G]₂ = irrelevance′ (wk-comp-subst ρ₁ ρ G) [G]₁ in irrelevanceTerm″ (wk-comp-subst ρ₁ ρ G) PE.refl PE.refl (PE.cong (λ x → x ∘ _ ^ _ ) (PE.sym (wk-comp ρ₁ ρ _))) [G]₁ [G]₂ ([f]₁ ([ρ₁] •ₜ [ρ]) ⊢Δ₁ [a]′)) wkTerm {ρ} {r = [ % , l′ ]} [ρ] ⊢Δ (Πᵣ′ rF lF lG lF≤ lG≤ F G D ⊢F ⊢G A≡A [F] [G] G-ext) d = T.wkTerm [ρ] ⊢Δ d wkTerm {ρ} [ρ] ⊢Δ (∃ᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) d = T.wkTerm [ρ] ⊢Δ d wkTerm {l = ι ¹} ρ ⊢Δ (emb l< X) t = wkTerm ρ ⊢Δ X t wkTerm {l = ∞} ρ ⊢Δ (emb l< X) t = wkTerm ρ ⊢Δ X t wkEqTerm : ∀ {ρ Γ Δ A t u r l} ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) ([A] : Γ ⊩⟨ l ⟩ A ^ r) → Γ ⊩⟨ l ⟩ t ≡ u ∷ A ^ r / [A] → Δ ⊩⟨ l ⟩ U.wk ρ t ≡ U.wk ρ u ∷ U.wk ρ A ^ r / wk [ρ] ⊢Δ [A] wkEqTerm {ρ} {Γ} {Δ} {A} {t} {u} {r} {l = ι ¹} [ρ] ⊢Δ (Uᵣ (Uᵣ ti ⁰ l< eq d)) (Uₜ₌ [t] [u] A≡B [t≡u]) = let [t]′ = λ {ρ′} {Δ′} ([ρ′] : ρ′ ∷ Δ′ ⊆ Δ) (⊢Δ′ : ⊢ Δ′) → irrelevance′ (PE.sym (wk-comp ρ′ ρ t)) (LogRel._⊩¹U_∷_^_/_.[t] [t] ([ρ′] •ₜ [ρ]) ⊢Δ′) [t]″ = λ {ρ′} {Δ′} ([ρ′] : ρ′ ∷ Δ′ ⊆ Δ) (⊢Δ′ : ⊢ Δ′) → LogRel._⊩¹U_∷_^_/_.[t] [t] ([ρ′] •ₜ [ρ]) ⊢Δ′ [t]′_to_[t]″ = λ {ρ′} {Δ′} {a} [ρ′] (⊢Δ′ : ⊢ Δ′) ([a] : Δ′ ⊩⟨ ι ⁰ ⟩ a ∷ U.wk ρ′ (U.wk ρ t) ^ [ ti , ι ⁰ ] / [t]′ [ρ′] ⊢Δ′) → (irrelevanceTerm′ (wk-comp ρ′ ρ t) PE.refl PE.refl ([t]′ [ρ′] ⊢Δ′) ([t]″ [ρ′] ⊢Δ′) [a]) [t≡u]′ = λ {ρ′} {Δ′} [ρ′] (⊢Δ′ : ⊢ Δ′) → irrelevanceEq″ (PE.sym (wk-comp ρ′ ρ t)) (PE.sym (wk-comp ρ′ ρ u)) PE.refl PE.refl ([t]″ [ρ′] ⊢Δ′) ((LogRel._⊩¹U_∷_^_/_.[t] (wkTerm [ρ] ⊢Δ (Uᵣ (Uᵣ ti ⁰ l< eq d)) [t]) [ρ′] ⊢Δ′)) ([t≡u] ([ρ′] •ₜ [ρ]) ⊢Δ′) in Uₜ₌ (wkTerm [ρ] ⊢Δ (Uᵣ (Uᵣ ti ⁰ l< eq d)) [t]) (wkTerm [ρ] ⊢Δ (Uᵣ (Uᵣ ti ⁰ l< eq d)) [u]) (≅ₜ-wk [ρ] ⊢Δ A≡B) [t≡u]′ -- this is a duplicate of the above code (because we need logRelRec to compute) -- surely there is a way to avoid this redundancy wkEqTerm {ρ} {Γ} {Δ} {A} {t} {u} {r} {l = ∞} [ρ] ⊢Δ (Uᵣ (Uᵣ ti ¹ l< eq d)) (Uₜ₌ [t] [u] A≡B [t≡u]) = let [t]′ = λ {ρ′} {Δ′} ([ρ′] : ρ′ ∷ Δ′ ⊆ Δ) (⊢Δ′ : ⊢ Δ′) → irrelevance′ (PE.sym (wk-comp ρ′ ρ t)) (LogRel._⊩¹U_∷_^_/_.[t] [t] ([ρ′] •ₜ [ρ]) ⊢Δ′) [t]″ = λ {ρ′} {Δ′} ([ρ′] : ρ′ ∷ Δ′ ⊆ Δ) (⊢Δ′ : ⊢ Δ′) → LogRel._⊩¹U_∷_^_/_.[t] [t] ([ρ′] •ₜ [ρ]) ⊢Δ′ [t]′_to_[t]″ = λ {ρ′} {Δ′} {a} [ρ′] (⊢Δ′ : ⊢ Δ′) ([a] : Δ′ ⊩⟨ ι ¹ ⟩ a ∷ U.wk ρ′ (U.wk ρ t) ^ [ ti , ι ¹ ] / [t]′ [ρ′] ⊢Δ′) → (irrelevanceTerm′ (wk-comp ρ′ ρ t) PE.refl PE.refl ([t]′ [ρ′] ⊢Δ′) ([t]″ [ρ′] ⊢Δ′) [a]) [t≡u]′ = λ {ρ′} {Δ′} [ρ′] (⊢Δ′ : ⊢ Δ′) → irrelevanceEq″ (PE.sym (wk-comp ρ′ ρ t)) (PE.sym (wk-comp ρ′ ρ u)) PE.refl PE.refl ([t]″ [ρ′] ⊢Δ′) ((LogRel._⊩¹U_∷_^_/_.[t] (wkTerm [ρ] ⊢Δ (Uᵣ (Uᵣ ti ¹ l< eq d)) [t]) [ρ′] ⊢Δ′)) ([t≡u] ([ρ′] •ₜ [ρ]) ⊢Δ′) in Uₜ₌ (wkTerm [ρ] ⊢Δ (Uᵣ (Uᵣ ti ¹ l< eq d)) [t]) (wkTerm [ρ] ⊢Δ (Uᵣ (Uᵣ ti ¹ l< eq d)) [u]) (≅ₜ-wk [ρ] ⊢Δ A≡B) [t≡u]′ wkEqTerm ρ ⊢Δ (ℕᵣ D) [t≡u] = wkEqTermℕ ρ ⊢Δ [t≡u] wkEqTerm ρ ⊢Δ (Emptyᵣ D) [t≡u] = wkEqTermEmpty ρ ⊢Δ [t≡u] wkEqTerm {ρ} {r = [ ! , l′ ]} [ρ] ⊢Δ (ne′ K D neK K≡K) (neₜ₌ k m d d′ nf) = neₜ₌ (U.wk ρ k) (U.wk ρ m) (wkRed:*:Term [ρ] ⊢Δ d) (wkRed:*:Term [ρ] ⊢Δ d′) (wkEqTermNe [ρ] ⊢Δ nf) wkEqTerm {ρ} {r = [ % , l′ ]}[ρ] ⊢Δ (ne′ K D neK K≡K) (neₜ₌ d d′) = neₜ₌ (T.wkTerm [ρ] ⊢Δ d) (T.wkTerm [ρ] ⊢Δ d′) wkEqTerm {ρ} {r = [ ! , l′ ]} [ρ] ⊢Δ (Πᵣ′ rF lF lG lF≤ lG≤ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Πₜ₌ f g d d′ funcF funcG f≡g [t] [u] [f≡g]) = let [A] = Πᵣ′ rF lF lG lF≤ lG≤ F G D ⊢F ⊢G A≡A [F] [G] G-ext in Πₜ₌ (U.wk ρ f) (U.wk ρ g) (wkRed:*:Term [ρ] ⊢Δ d) (wkRed:*:Term [ρ] ⊢Δ d′) (wkFunction ρ funcF) (wkFunction ρ funcG) (≅ₜ-wk [ρ] ⊢Δ f≡g) (wkTerm [ρ] ⊢Δ [A] [t]) (wkTerm [ρ] ⊢Δ [A] [u]) (λ {ρ₁} [ρ₁] ⊢Δ₁ [a] → let [F]₁ = [F] ([ρ₁] •ₜ [ρ]) ⊢Δ₁ [F]₂ = irrelevance′ (PE.sym (wk-comp ρ₁ ρ F)) [F]₁ [a]′ = irrelevanceTerm′ (wk-comp ρ₁ ρ F) PE.refl PE.refl [F]₂ [F]₁ [a] [G]₁ = [G] ([ρ₁] •ₜ [ρ]) ⊢Δ₁ [a]′ [G]₂ = irrelevance′ (wk-comp-subst ρ₁ ρ G) [G]₁ in irrelevanceEqTerm″ PE.refl PE.refl (PE.cong (λ y → y ∘ _ ^ _) (PE.sym (wk-comp ρ₁ ρ _))) (PE.cong (λ y → y ∘ _ ^ _) (PE.sym (wk-comp ρ₁ ρ _))) (wk-comp-subst ρ₁ ρ G) [G]₁ [G]₂ ([f≡g] ([ρ₁] •ₜ [ρ]) ⊢Δ₁ [a]′)) wkEqTerm {ρ} {r = [ % , l′ ]} [ρ] ⊢Δ (Πᵣ′ rF lF lG lF≤ lG≤ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (d , d′) = T.wkTerm [ρ] ⊢Δ d , T.wkTerm [ρ] ⊢Δ d′ wkEqTerm {ρ} {r = [ % , l′ ]} [ρ] ⊢Δ (∃ᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (d , d′) = T.wkTerm [ρ] ⊢Δ d , T.wkTerm [ρ] ⊢Δ d′ wkEqTerm {l = ι ¹} ρ ⊢Δ (emb l< X) t≡u = wkEqTerm ρ ⊢Δ X t≡u wkEqTerm {l = ∞} ρ ⊢Δ (emb l< X) t≡u = wkEqTerm ρ ⊢Δ X t≡u
{ "alphanum_fraction": 0.3715528319, "avg_line_length": 55.1335149864, "ext": "agda", "hexsha": "9d9bbeb553f0e139e2086b5d6aae3b9655bace68", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z", "max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z", "max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "CoqHott/logrel-mltt", "max_forks_repo_path": "Definition/LogicalRelation/Weakening.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "CoqHott/logrel-mltt", "max_issues_repo_path": "Definition/LogicalRelation/Weakening.agda", "max_line_length": 117, "max_stars_count": 2, "max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "CoqHott/logrel-mltt", "max_stars_repo_path": "Definition/LogicalRelation/Weakening.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z", "max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z", "num_tokens": 10812, "size": 20234 }
{-# OPTIONS --without-K #-} module function.extensionality.strong where open import level open import sum open import function.core open import equality.core open import function.isomorphism open import function.extensionality.core open import function.extensionality.proof open import hott.level.core open import hott.level.closure.core open import hott.equivalence.core private module Dummy {i j}{X : Set i}{Y : X → Set j} where _~_ : (f g : (x : X) → Y x) → Set (i ⊔ j) f ~ g = ∀ x → f x ≡ g x infix 5 _~_ R : (f : (x : X) → Y x) → f ~ f R f x = refl iso₁ : {f g : (x : X) → Y x} (p : f ≡ g) → funext (funext-inv p) ≡ p iso₁ {f} refl = funext-id f iso₂ : (f g : (x : X) → Y x) (h : f ~ g) → funext-inv (funext h) ≡ h iso₂ f g h = subst (λ {(g , h) → funext-inv (funext h) ≡ h}) (e-contr' (g , h)) strong-id where E : Set (i ⊔ j) E = Σ ((x : X) → Y x) λ g → f ~ g e-contr : contr E e-contr = retract-level (λ u → proj₁ ∘' u , proj₂ ∘' u) (λ {(g , h) x → g x , h x}) (λ {(g , h) → refl}) (Π-contr (λ x → singl-contr (f x))) e-contr' : (u : E) → (f , R f) ≡ u e-contr' u = contr⇒prop e-contr (f , R f) u strong-id : funext-inv (funext (R f)) ≡ R f strong-id = ap funext-inv (funext-id f) strong-funext-iso : {f g : (x : X) → Y x} → (f ~ g) ≅ (f ≡ g) strong-funext-iso {f}{g} = iso funext funext-inv (iso₂ f g) iso₁ strong-funext : {f g : (x : X) → Y x} → (f ~ g) ≡ (f ≡ g) strong-funext = ≅⇒≡ strong-funext-iso open Dummy public using (strong-funext; strong-funext-iso)
{ "alphanum_fraction": 0.505787037, "avg_line_length": 29.7931034483, "ext": "agda", "hexsha": "f70506a15f87eee364cd7b6ee5404f6b6f3a59fd", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-02-26T06:17:38.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-11T17:19:12.000Z", "max_forks_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "HoTT/M-types", "max_forks_repo_path": "function/extensionality/strong.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_issues_repo_issues_event_max_datetime": "2015-02-11T15:20:34.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-11T11:14:59.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "HoTT/M-types", "max_issues_repo_path": "function/extensionality/strong.agda", "max_line_length": 68, "max_stars_count": 27, "max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "HoTT/M-types", "max_stars_repo_path": "function/extensionality/strong.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z", "num_tokens": 632, "size": 1728 }
module ConstructorsInstance where record UnitRC : Set where instance constructor tt data UnitD : Set where instance tt : UnitD postulate fRC : {{_ : UnitRC}} → Set fD : {{_ : UnitD}} → Set tryRC : Set tryRC = fRC tryD : Set tryD = fD data D : Set where a : D instance b : D c : D postulate g : {{_ : D}} → Set -- This should work because instance search will choose [b] try2 : Set try2 = g
{ "alphanum_fraction": 0.62004662, "avg_line_length": 12.6176470588, "ext": "agda", "hexsha": "19943cf29a26a04d930dfa91c5e0c79386a7db2c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/ConstructorsInstance.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/ConstructorsInstance.agda", "max_line_length": 59, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/ConstructorsInstance.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 148, "size": 429 }
{-# OPTIONS --cubical --safe #-} module Cubical.HITs.Everything where open import Cubical.HITs.Cylinder public open import Cubical.HITs.Hopf public open import Cubical.HITs.Interval public open import Cubical.HITs.Ints.BiInvInt public hiding ( pred ; suc-pred ; pred-suc ) open import Cubical.HITs.Ints.DeltaInt public hiding ( pred ; succ ; zero ) open import Cubical.HITs.Ints.HAEquivInt public hiding ( suc-haequiv ) open import Cubical.HITs.Ints.IsoInt public open import Cubical.HITs.Ints.QuoInt public open import Cubical.HITs.Join public open import Cubical.HITs.ListedFiniteSet public open import Cubical.HITs.Pushout public open import Cubical.HITs.Modulo public open import Cubical.HITs.S1 public open import Cubical.HITs.S2 public open import Cubical.HITs.S3 public open import Cubical.HITs.Rational public open import Cubical.HITs.Susp public open import Cubical.HITs.SmashProduct public renaming (comm to Smash-comm) open import Cubical.HITs.Torus public open import Cubical.HITs.PropositionalTruncation public open import Cubical.HITs.SetTruncation public open import Cubical.HITs.GroupoidTruncation public open import Cubical.HITs.2GroupoidTruncation public open import Cubical.HITs.SetQuotients public open import Cubical.HITs.FiniteMultiset public hiding ( _++_ ; [_] ; assoc-++ ) open import Cubical.HITs.Colimit
{ "alphanum_fraction": 0.8198198198, "avg_line_length": 44.4, "ext": "agda", "hexsha": "0882b4eefa40eaf22ed9bffbfa771f44dff50fb9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cj-xu/cubical", "max_forks_repo_path": "Cubical/HITs/Everything.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cj-xu/cubical", "max_issues_repo_path": "Cubical/HITs/Everything.agda", "max_line_length": 83, "max_stars_count": null, "max_stars_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cj-xu/cubical", "max_stars_repo_path": "Cubical/HITs/Everything.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 384, "size": 1332 }
{-# OPTIONS -WShadowingInTelescope #-} bad : Set → Set → Set bad = λ x x → x
{ "alphanum_fraction": 0.6025641026, "avg_line_length": 15.6, "ext": "agda", "hexsha": "22dbd04070eeb6cd04afb5ef4b81345777f96942", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue2284.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue2284.agda", "max_line_length": 38, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue2284.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 26, "size": 78 }
{-# OPTIONS --safe #-} module Cubical.Algebra.CommAlgebra.FreeCommAlgebra.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.HLevels open import Cubical.Foundations.Structure open import Cubical.Foundations.Function hiding (const) open import Cubical.Foundations.Isomorphism open import Cubical.Data.Sigma.Properties using (Σ≡Prop) open import Cubical.HITs.SetTruncation open import Cubical.Algebra.CommRing open import Cubical.Algebra.CommAlgebra.FreeCommAlgebra.Base open import Cubical.Algebra.Ring using () open import Cubical.Algebra.CommAlgebra open import Cubical.Algebra.CommAlgebra.Instances.Initial open import Cubical.Algebra.Algebra open import Cubical.Data.Empty open import Cubical.Data.Sigma private variable ℓ ℓ' ℓ'' : Level module Theory {R : CommRing ℓ} {I : Type ℓ'} where open CommRingStr (snd R) using (0r; 1r) renaming (_·_ to _·r_; _+_ to _+r_; ·Comm to ·r-comm; ·Rid to ·r-rid) module _ (A : CommAlgebra R ℓ'') (φ : I → ⟨ A ⟩) where open CommAlgebraStr (A .snd) open AlgebraTheory (CommRing→Ring R) (CommAlgebra→Algebra A) open Construction using (var; const) renaming (_+_ to _+c_; -_ to -c_; _·_ to _·c_) imageOf0Works : 0r ⋆ 1a ≡ 0a imageOf0Works = 0-actsNullifying 1a imageOf1Works : 1r ⋆ 1a ≡ 1a imageOf1Works = ⋆-lid 1a inducedMap : ⟨ R [ I ] ⟩ → ⟨ A ⟩ inducedMap (var x) = φ x inducedMap (const r) = r ⋆ 1a inducedMap (P +c Q) = (inducedMap P) + (inducedMap Q) inducedMap (-c P) = - inducedMap P inducedMap (Construction.+-assoc P Q S i) = +-assoc (inducedMap P) (inducedMap Q) (inducedMap S) i inducedMap (Construction.+-rid P i) = let eq : (inducedMap P) + (inducedMap (const 0r)) ≡ (inducedMap P) eq = (inducedMap P) + (inducedMap (const 0r)) ≡⟨ refl ⟩ (inducedMap P) + (0r ⋆ 1a) ≡⟨ cong (λ u → (inducedMap P) + u) (imageOf0Works) ⟩ (inducedMap P) + 0a ≡⟨ +-rid _ ⟩ (inducedMap P) ∎ in eq i inducedMap (Construction.+-rinv P i) = let eq : (inducedMap P - inducedMap P) ≡ (inducedMap (const 0r)) eq = (inducedMap P - inducedMap P) ≡⟨ +-rinv _ ⟩ 0a ≡⟨ sym imageOf0Works ⟩ (inducedMap (const 0r))∎ in eq i inducedMap (Construction.+-comm P Q i) = +-comm (inducedMap P) (inducedMap Q) i inducedMap (P ·c Q) = inducedMap P · inducedMap Q inducedMap (Construction.·-assoc P Q S i) = ·Assoc (inducedMap P) (inducedMap Q) (inducedMap S) i inducedMap (Construction.·-lid P i) = let eq = inducedMap (const 1r) · inducedMap P ≡⟨ cong (λ u → u · inducedMap P) imageOf1Works ⟩ 1a · inducedMap P ≡⟨ ·Lid (inducedMap P) ⟩ inducedMap P ∎ in eq i inducedMap (Construction.·-comm P Q i) = ·-comm (inducedMap P) (inducedMap Q) i inducedMap (Construction.ldist P Q S i) = ·Ldist+ (inducedMap P) (inducedMap Q) (inducedMap S) i inducedMap (Construction.+HomConst s t i) = ⋆-ldist s t 1a i inducedMap (Construction.·HomConst s t i) = let eq = (s ·r t) ⋆ 1a ≡⟨ cong (λ u → u ⋆ 1a) (·r-comm _ _) ⟩ (t ·r s) ⋆ 1a ≡⟨ ⋆-assoc t s 1a ⟩ t ⋆ (s ⋆ 1a) ≡⟨ cong (λ u → t ⋆ u) (sym (·Rid _)) ⟩ t ⋆ ((s ⋆ 1a) · 1a) ≡⟨ ⋆-rassoc t (s ⋆ 1a) 1a ⟩ (s ⋆ 1a) · (t ⋆ 1a) ∎ in eq i inducedMap (Construction.0-trunc P Q p q i j) = isSetAlgebra (CommAlgebra→Algebra A) (inducedMap P) (inducedMap Q) (cong _ p) (cong _ q) i j module _ where open IsAlgebraHom inducedHom : AlgebraHom (CommAlgebra→Algebra (R [ I ])) (CommAlgebra→Algebra A) inducedHom .fst = inducedMap inducedHom .snd .pres0 = 0-actsNullifying _ inducedHom .snd .pres1 = imageOf1Works inducedHom .snd .pres+ x y = refl inducedHom .snd .pres· x y = refl inducedHom .snd .pres- x = refl inducedHom .snd .pres⋆ r x = (r ⋆ 1a) · inducedMap x ≡⟨ ⋆-lassoc r 1a (inducedMap x) ⟩ r ⋆ (1a · inducedMap x) ≡⟨ cong (λ u → r ⋆ u) (·Lid (inducedMap x)) ⟩ r ⋆ inducedMap x ∎ module _ (A : CommAlgebra R ℓ'') where open CommAlgebraStr (A .snd) open AlgebraTheory (CommRing→Ring R) (CommAlgebra→Algebra A) open Construction using (var; const) renaming (_+_ to _+c_; -_ to -c_; _·_ to _·c_) Hom = CommAlgebraHom (R [ I ]) A open IsAlgebraHom evaluateAt : Hom → I → ⟨ A ⟩ evaluateAt φ x = φ .fst (var x) mapRetrievable : ∀ (φ : I → ⟨ A ⟩) → evaluateAt (inducedHom A φ) ≡ φ mapRetrievable φ = refl proveEq : ∀ {X : Type ℓ''} (isSetX : isSet X) (f g : ⟨ R [ I ] ⟩ → X) → (var-eq : (x : I) → f (var x) ≡ g (var x)) → (const-eq : (r : ⟨ R ⟩) → f (const r) ≡ g (const r)) → (+-eq : (x y : ⟨ R [ I ] ⟩) → (eq-x : f x ≡ g x) → (eq-y : f y ≡ g y) → f (x +c y) ≡ g (x +c y)) → (·-eq : (x y : ⟨ R [ I ] ⟩) → (eq-x : f x ≡ g x) → (eq-y : f y ≡ g y) → f (x ·c y) ≡ g (x ·c y)) → (-eq : (x : ⟨ R [ I ] ⟩) → (eq-x : f x ≡ g x) → f (-c x) ≡ g (-c x)) → f ≡ g proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i (var x) = var-eq x i proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i (const x) = const-eq x i proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i (x +c y) = +-eq x y (λ i → proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i x) (λ i → proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i y) i proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i (-c x) = -eq x ((λ i → proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i x)) i proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i (x ·c y) = ·-eq x y (λ i → proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i x) (λ i → proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i y) i proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i (Construction.+-assoc x y z j) = let rec : (x : ⟨ R [ I ] ⟩) → f x ≡ g x rec x = (λ i → proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i x) a₀₋ : f (x +c (y +c z)) ≡ g (x +c (y +c z)) a₀₋ = +-eq _ _ (rec x) (+-eq _ _ (rec y) (rec z)) a₁₋ : f ((x +c y) +c z) ≡ g ((x +c y) +c z) a₁₋ = +-eq _ _ (+-eq _ _ (rec x) (rec y)) (rec z) a₋₀ : f (x +c (y +c z)) ≡ f ((x +c y) +c z) a₋₀ = cong f (Construction.+-assoc x y z) a₋₁ : g (x +c (y +c z)) ≡ g ((x +c y) +c z) a₋₁ = cong g (Construction.+-assoc x y z) in isSet→isSet' isSetX a₀₋ a₁₋ a₋₀ a₋₁ j i proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i (Construction.+-rid x j) = let rec : (x : ⟨ R [ I ] ⟩) → f x ≡ g x rec x = (λ i → proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i x) a₀₋ : f (x +c (const 0r)) ≡ g (x +c (const 0r)) a₀₋ = +-eq _ _ (rec x) (const-eq 0r) a₁₋ : f x ≡ g x a₁₋ = rec x a₋₀ : f (x +c (const 0r)) ≡ f x a₋₀ = cong f (Construction.+-rid x) a₋₁ : g (x +c (const 0r)) ≡ g x a₋₁ = cong g (Construction.+-rid x) in isSet→isSet' isSetX a₀₋ a₁₋ a₋₀ a₋₁ j i proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i (Construction.+-rinv x j) = let rec : (x : ⟨ R [ I ] ⟩) → f x ≡ g x rec x = (λ i → proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i x) a₀₋ : f (x +c (-c x)) ≡ g (x +c (-c x)) a₀₋ = +-eq x (-c x) (rec x) (-eq x (rec x)) a₁₋ : f (const 0r) ≡ g (const 0r) a₁₋ = const-eq 0r a₋₀ : f (x +c (-c x)) ≡ f (const 0r) a₋₀ = cong f (Construction.+-rinv x) a₋₁ : g (x +c (-c x)) ≡ g (const 0r) a₋₁ = cong g (Construction.+-rinv x) in isSet→isSet' isSetX a₀₋ a₁₋ a₋₀ a₋₁ j i proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i (Construction.+-comm x y j) = let rec : (x : ⟨ R [ I ] ⟩) → f x ≡ g x rec x = (λ i → proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i x) a₀₋ : f (x +c y) ≡ g (x +c y) a₀₋ = +-eq x y (rec x) (rec y) a₁₋ : f (y +c x) ≡ g (y +c x) a₁₋ = +-eq y x (rec y) (rec x) a₋₀ : f (x +c y) ≡ f (y +c x) a₋₀ = cong f (Construction.+-comm x y) a₋₁ : g (x +c y) ≡ g (y +c x) a₋₁ = cong g (Construction.+-comm x y) in isSet→isSet' isSetX a₀₋ a₁₋ a₋₀ a₋₁ j i proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i (Construction.·-assoc x y z j) = let rec : (x : ⟨ R [ I ] ⟩) → f x ≡ g x rec x = (λ i → proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i x) a₀₋ : f (x ·c (y ·c z)) ≡ g (x ·c (y ·c z)) a₀₋ = ·-eq _ _ (rec x) (·-eq _ _ (rec y) (rec z)) a₁₋ : f ((x ·c y) ·c z) ≡ g ((x ·c y) ·c z) a₁₋ = ·-eq _ _ (·-eq _ _ (rec x) (rec y)) (rec z) a₋₀ : f (x ·c (y ·c z)) ≡ f ((x ·c y) ·c z) a₋₀ = cong f (Construction.·-assoc x y z) a₋₁ : g (x ·c (y ·c z)) ≡ g ((x ·c y) ·c z) a₋₁ = cong g (Construction.·-assoc x y z) in isSet→isSet' isSetX a₀₋ a₁₋ a₋₀ a₋₁ j i proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i (Construction.·-lid x j) = let rec : (x : ⟨ R [ I ] ⟩) → f x ≡ g x rec x = (λ i → proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i x) a₀₋ : f ((const 1r) ·c x) ≡ g ((const 1r) ·c x) a₀₋ = ·-eq _ _ (const-eq 1r) (rec x) a₁₋ : f x ≡ g x a₁₋ = rec x a₋₀ : f ((const 1r) ·c x) ≡ f x a₋₀ = cong f (Construction.·-lid x) a₋₁ : g ((const 1r) ·c x) ≡ g x a₋₁ = cong g (Construction.·-lid x) in isSet→isSet' isSetX a₀₋ a₁₋ a₋₀ a₋₁ j i proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i (Construction.·-comm x y j) = let rec : (x : ⟨ R [ I ] ⟩) → f x ≡ g x rec x = (λ i → proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i x) a₀₋ : f (x ·c y) ≡ g (x ·c y) a₀₋ = ·-eq _ _ (rec x) (rec y) a₁₋ : f (y ·c x) ≡ g (y ·c x) a₁₋ = ·-eq _ _ (rec y) (rec x) a₋₀ : f (x ·c y) ≡ f (y ·c x) a₋₀ = cong f (Construction.·-comm x y) a₋₁ : g (x ·c y) ≡ g (y ·c x) a₋₁ = cong g (Construction.·-comm x y) in isSet→isSet' isSetX a₀₋ a₁₋ a₋₀ a₋₁ j i proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i (Construction.ldist x y z j) = let rec : (x : ⟨ R [ I ] ⟩) → f x ≡ g x rec x = (λ i → proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i x) a₀₋ : f ((x +c y) ·c z) ≡ g ((x +c y) ·c z) a₀₋ = ·-eq (x +c y) z (+-eq _ _ (rec x) (rec y)) (rec z) a₁₋ : f ((x ·c z) +c (y ·c z)) ≡ g ((x ·c z) +c (y ·c z)) a₁₋ = +-eq _ _ (·-eq _ _ (rec x) (rec z)) (·-eq _ _ (rec y) (rec z)) a₋₀ : f ((x +c y) ·c z) ≡ f ((x ·c z) +c (y ·c z)) a₋₀ = cong f (Construction.ldist x y z) a₋₁ : g ((x +c y) ·c z) ≡ g ((x ·c z) +c (y ·c z)) a₋₁ = cong g (Construction.ldist x y z) in isSet→isSet' isSetX a₀₋ a₁₋ a₋₀ a₋₁ j i proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i (Construction.+HomConst s t j) = let rec : (x : ⟨ R [ I ] ⟩) → f x ≡ g x rec x = (λ i → proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i x) a₀₋ : f (const (s +r t)) ≡ g (const (s +r t)) a₀₋ = const-eq (s +r t) a₁₋ : f (const s +c const t) ≡ g (const s +c const t) a₁₋ = +-eq _ _ (const-eq s) (const-eq t) a₋₀ : f (const (s +r t)) ≡ f (const s +c const t) a₋₀ = cong f (Construction.+HomConst s t) a₋₁ : g (const (s +r t)) ≡ g (const s +c const t) a₋₁ = cong g (Construction.+HomConst s t) in isSet→isSet' isSetX a₀₋ a₁₋ a₋₀ a₋₁ j i proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i (Construction.·HomConst s t j) = let rec : (x : ⟨ R [ I ] ⟩) → f x ≡ g x rec x = (λ i → proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i x) a₀₋ : f (const (s ·r t)) ≡ g (const (s ·r t)) a₀₋ = const-eq (s ·r t) a₁₋ : f (const s ·c const t) ≡ g (const s ·c const t) a₁₋ = ·-eq _ _ (const-eq s) (const-eq t) a₋₀ : f (const (s ·r t)) ≡ f (const s ·c const t) a₋₀ = cong f (Construction.·HomConst s t) a₋₁ : g (const (s ·r t)) ≡ g (const s ·c const t) a₋₁ = cong g (Construction.·HomConst s t) in isSet→isSet' isSetX a₀₋ a₁₋ a₋₀ a₋₁ j i proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i (Construction.0-trunc x y p q j k) = let P : (x : ⟨ R [ I ] ⟩) → f x ≡ g x P x i = proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i x Q : (x : ⟨ R [ I ] ⟩) → f x ≡ g x Q x i = proveEq isSetX f g var-eq const-eq +-eq ·-eq -eq i x in isOfHLevel→isOfHLevelDep 2 (λ z → isProp→isSet (isSetX (f z) (g z))) _ _ (cong P p) (cong Q q) (Construction.0-trunc x y p q) j k i homRetrievable : ∀ (f : Hom) → inducedMap A (evaluateAt f) ≡ fst f homRetrievable f = proveEq (isSetAlgebra (CommAlgebra→Algebra A)) (inducedMap A (evaluateAt f)) (λ x → f $a x) (λ x → refl) (λ r → r ⋆ 1a ≡⟨ cong (λ u → r ⋆ u) (sym f.pres1) ⟩ r ⋆ (f $a (const 1r)) ≡⟨ sym (f.pres⋆ r _) ⟩ f $a (const r ·c const 1r) ≡⟨ cong (λ u → f $a u) (sym (Construction.·HomConst r 1r)) ⟩ f $a (const (r ·r 1r)) ≡⟨ cong (λ u → f $a (const u)) (·r-rid r) ⟩ f $a (const r) ∎) (λ x y eq-x eq-y → ι (x +c y) ≡⟨ refl ⟩ (ι x + ι y) ≡⟨ cong (λ u → u + ι y) eq-x ⟩ ((f $a x) + ι y) ≡⟨ cong (λ u → (f $a x) + u) eq-y ⟩ ((f $a x) + (f $a y)) ≡⟨ sym (f.pres+ _ _) ⟩ (f $a (x +c y)) ∎) (λ x y eq-x eq-y → ι (x ·c y) ≡⟨ refl ⟩ ι x · ι y ≡⟨ cong (λ u → u · ι y) eq-x ⟩ (f $a x) · (ι y) ≡⟨ cong (λ u → (f $a x) · u) eq-y ⟩ (f $a x) · (f $a y) ≡⟨ sym (f.pres· _ _) ⟩ f $a (x ·c y) ∎) (λ x eq-x → ι (-c x) ≡⟨ refl ⟩ - ι x ≡⟨ cong (λ u → - u) eq-x ⟩ - (f $a x) ≡⟨ sym (f.pres- x) ⟩ f $a (-c x) ∎) where ι = inducedMap A (evaluateAt f) module f = IsAlgebraHom (f .snd) evaluateAt : {R : CommRing ℓ} {I : Type ℓ'} (A : CommAlgebra R ℓ'') (f : CommAlgebraHom (R [ I ]) A) → (I → fst A) evaluateAt A f x = f $a (Construction.var x) inducedHom : {R : CommRing ℓ} {I : Type ℓ'} (A : CommAlgebra R ℓ'') (φ : I → fst A ) → CommAlgebraHom (R [ I ]) A inducedHom A φ = Theory.inducedHom A φ homMapIso : {R : CommRing ℓ} {I : Type ℓ} (A : CommAlgebra R ℓ') → Iso (CommAlgebraHom (R [ I ]) A) (I → (fst A)) Iso.fun (homMapIso A) = evaluateAt A Iso.inv (homMapIso A) = inducedHom A Iso.rightInv (homMapIso A) = λ ϕ → Theory.mapRetrievable A ϕ Iso.leftInv (homMapIso {R = R} {I = I} A) = λ f → Σ≡Prop (λ f → isPropIsCommAlgebraHom {M = R [ I ]} {N = A} f) (Theory.homRetrievable A f) homMapPath : {R : CommRing ℓ} {I : Type ℓ} (A : CommAlgebra R ℓ') → CommAlgebraHom (R [ I ]) A ≡ (I → fst A) homMapPath A = isoToPath (homMapIso A) module _ {R : CommRing ℓ} {A B : CommAlgebra R ℓ''} where open AlgebraHoms A′ = CommAlgebra→Algebra A B′ = CommAlgebra→Algebra B R′ = (CommRing→Ring R) ν : AlgebraHom A′ B′ → (⟨ A ⟩ → ⟨ B ⟩) ν φ = φ .fst {- Hom(R[I],A) → (I → A) ↓ ↓ Hom(R[I],B) → (I → B) -} naturalR : {I : Type ℓ'} (ψ : CommAlgebraHom A B) (f : CommAlgebraHom (R [ I ]) A) → (fst ψ) ∘ evaluateAt A f ≡ evaluateAt B (ψ ∘a f) naturalR ψ f = refl {- Hom(R[I],A) → (I → A) ↓ ↓ Hom(R[J],A) → (J → A) -} naturalL : {I J : Type ℓ'} (φ : J → I) (f : CommAlgebraHom (R [ I ]) A) → (evaluateAt A f) ∘ φ ≡ evaluateAt A (f ∘a (inducedHom (R [ I ]) (λ x → Construction.var (φ x)))) naturalL φ f = refl module _ {R : CommRing ℓ} where {- Prove that the FreeCommAlgebra over R on zero generators is isomorphic to the initial R-Algebra - R itsself. -} freeOn⊥ : CommAlgebraEquiv (R [ ⊥ ]) (initialCAlg R) freeOn⊥ = equivByInitiality R (R [ ⊥ ]) {- Show that R[⊥] has the universal property of the initial R-Algbera and conclude that those are isomorphic -} λ B → let to : CommAlgebraHom (R [ ⊥ ]) B → (⊥ → fst B) to = evaluateAt B from : (⊥ → fst B) → CommAlgebraHom (R [ ⊥ ]) B from = inducedHom B from-to : (x : _) → from (to x) ≡ x from-to x = Σ≡Prop (λ f → isPropIsCommAlgebraHom {M = R [ ⊥ ]} {N = B} f) (Theory.homRetrievable B x) equiv : CommAlgebraHom (R [ ⊥ ]) B ≃ (⊥ → fst B) equiv = isoToEquiv (iso to from (λ x → isContr→isOfHLevel 1 isContr⊥→A _ _) from-to) in isOfHLevelRespectEquiv 0 (invEquiv equiv) isContr⊥→A
{ "alphanum_fraction": 0.4792174653, "avg_line_length": 42.4939759036, "ext": "agda", "hexsha": "e02ddc0e7f46d17ba799a046defa42d5c6f48558", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "howsiyu/cubical", "max_forks_repo_path": "Cubical/Algebra/CommAlgebra/FreeCommAlgebra/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "howsiyu/cubical", "max_issues_repo_path": "Cubical/Algebra/CommAlgebra/FreeCommAlgebra/Properties.agda", "max_line_length": 102, "max_stars_count": null, "max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "howsiyu/cubical", "max_stars_repo_path": "Cubical/Algebra/CommAlgebra/FreeCommAlgebra/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 7165, "size": 17635 }
------------------------------------------------------------------------ -- Encoders and decoders ------------------------------------------------------------------------ open import Atom module Coding (atoms : χ-atoms) where open import Equality.Propositional open import Prelude hiding (const) open import Tactic.By.Propositional open import Bijection equality-with-J as Bijection using (_↔_) open import Equality.Decision-procedures equality-with-J open import Function-universe equality-with-J hiding (id; _∘_) open import Injection equality-with-J using (Injective) open import List equality-with-J using (foldr) open import Maybe equality-with-J open import Monad equality-with-J open import Chi atoms open import Constants atoms open import Free-variables atoms open import Values atoms open χ-atoms atoms ------------------------------------------------------------------------ -- General definitions -- Representation functions. record Rep {a b} (A : Type a) (B : Type b) : Type (a ⊔ b) where field -- Representation function. ⌜_⌝ : A → B -- ⌜_⌝ is injective. rep-injective : Injective ⌜_⌝ open Rep ⦃ … ⦄ public -- An identity encoder. id-rep : ∀ {a} {A : Type a} → Rep A A id-rep = record { ⌜_⌝ = id ; rep-injective = id } -- Composition of representation functions. infixr 9 _∘-rep_ _∘-rep_ : ∀ {a b c} {A : Type a} {B : Type b} {C : Type c} → Rep B C → Rep A B → Rep A C r₁ ∘-rep r₂ = record { ⌜_⌝ = R₁.⌜_⌝ ∘ R₂.⌜_⌝ ; rep-injective = λ {x y} → R₁.⌜ R₂.⌜ x ⌝ ⌝ ≡ R₁.⌜ R₂.⌜ y ⌝ ⌝ ↝⟨ R₁.rep-injective ⟩ R₂.⌜ x ⌝ ≡ R₂.⌜ y ⌝ ↝⟨ R₂.rep-injective ⟩□ x ≡ y □ } where module R₁ = Rep r₁ module R₂ = Rep r₂ -- Encoder/decoder pairs. record Code {a b} (A : Type a) (B : Type b) : Type (a ⊔ b) where field -- Encoder. code : A → B -- Partial decoder. decode : B → Maybe A -- The decoder must decode encoded values successfully. decode∘code : ∀ x → decode (code x) ≡ just x -- The encoder is injective. code-injective : Injective code code-injective {x} {y} eq = ⊎.cancel-inj₂ ( just x ≡⟨ by decode∘code ⟩ decode (code x) ≡⟨ by eq ⟩ decode (code y) ≡⟨ by decode∘code ⟩∎ just y ∎) -- Encoder/decoder pairs can be turned into representation -- functions. rep : Rep A B rep = record { ⌜_⌝ = code ; rep-injective = code-injective } open Code ⦃ … ⦄ public -- Converts bijections to encoders. ↔→Code : ∀ {a b} {A : Type a} {B : Type b} → A ↔ B → Code A B ↔→Code A↔B = record { code = to ; decode = λ b → just (from b) ; decode∘code = λ a → just (from (to a)) ≡⟨ cong just (left-inverse-of a) ⟩ just a ∎ } where open _↔_ A↔B -- An identity encoder. id-code : ∀ {a} {A : Type a} → Code A A id-code = ↔→Code Bijection.id -- Composition of encoders. infixr 9 _∘-code_ _∘-code_ : ∀ {a b c} {A : Type a} {B : Type b} {C : Type c} → Code B C → Code A B → Code A C c₁ ∘-code c₂ = record { code = C₁.code ∘ C₂.code ; decode = λ c → C₁.decode c >>=′ C₂.decode ; decode∘code = λ a → C₁.decode (C₁.code (C₂.code a)) >>=′ C₂.decode ≡⟨ cong (_>>=′ _) (C₁.decode∘code (C₂.code a)) ⟩ return (C₂.code a) >>=′ C₂.decode ≡⟨⟩ C₂.decode (C₂.code a) ≡⟨ by C₂.decode∘code ⟩∎ return a ∎ } where module C₁ = Code c₁ module C₂ = Code c₂ ------------------------------------------------------------------------ -- Some general definitions related to χ -- Constructor applications can be encoded as expressions (that are -- also constructor applications). code-Consts : ∃ λ (cd : Code Consts Exp) → ∀ c → Constructor-application (Code.code cd c) code-Consts = record { code = cd ; decode = dc ; decode∘code = dc∘cd } , cd-cs where mutual cd : Consts → Exp cd (const c cs) = const c (cd⋆ cs) cd⋆ : List Consts → List Exp cd⋆ [] = [] cd⋆ (c ∷ cs) = cd c ∷ cd⋆ cs mutual cd-cs : ∀ c → Constructor-application (cd c) cd-cs (const c cs) = const c (cd⋆-cs cs) cd⋆-cs : ∀ cs → Constructor-applications (cd⋆ cs) cd⋆-cs [] = [] cd⋆-cs (c ∷ cs) = cd-cs c ∷ cd⋆-cs cs mutual dc : Exp → Maybe Consts dc (const c es) = const c ⟨$⟩ dc⋆ es dc _ = nothing dc⋆ : List Exp → Maybe (List Consts) dc⋆ [] = return [] dc⋆ (e ∷ es) = _∷_ ⟨$⟩ dc e ⊛ dc⋆ es mutual dc∘cd : ∀ c → dc (cd c) ≡ just c dc∘cd (const c cs) = const c ⟨$⟩ ⟨ dc⋆ (cd⋆ cs) ⟩ ≡⟨ ⟨by⟩ (dc∘cd⋆ cs) ⟩ const c ⟨$⟩ return cs ≡⟨ refl ⟩∎ return (const c cs) ∎ dc∘cd⋆ : ∀ cs → dc⋆ (cd⋆ cs) ≡ just cs dc∘cd⋆ [] = refl dc∘cd⋆ (c ∷ cs) = _∷_ ⟨$⟩ ⟨ dc (cd c) ⟩ ⊛ dc⋆ (cd⋆ cs) ≡⟨ ⟨by⟩ (dc∘cd c) ⟩ _∷_ ⟨$⟩ return c ⊛ ⟨ dc⋆ (cd⋆ cs) ⟩ ≡⟨ ⟨by⟩ (dc∘cd⋆ cs) ⟩ _∷_ ⟨$⟩ return c ⊛ return cs ≡⟨⟩ return (c ∷ cs) ∎ -- Converts instances of the form Rep A Consts to Rep A Exp. rep-Consts-Exp : ∀ {a} {A : Type a} ⦃ r : Rep A Consts ⦄ → Rep A Exp rep-Consts-Exp ⦃ r ⦄ = rep ⦃ proj₁ code-Consts ⦄ ∘-rep r -- Represents something as an expression. rep-as-Exp : ∀ {a} {A : Type a} ⦃ r : Rep A Consts ⦄ → A → Exp rep-as-Exp = ⌜_⌝ ⦃ rep-Consts-Exp ⦄ -- rep-as-Exp returns constructor applications. rep-const : ∀ {a} {A : Type a} ⦃ r : Rep A Consts ⦄ (x : A) → Constructor-application (rep-as-Exp x) rep-const = proj₂ code-Consts ∘ ⌜_⌝ -- rep-as-Exp returns closed expressions. rep-closed : ∀ {a} {A : Type a} ⦃ r : Rep A Consts ⦄ (x : A) → Closed (rep-as-Exp x) rep-closed = const→closed ∘ rep-const -- Constructor applications can be encoded as closed expressions. code-Consts-Closed : Code Consts Closed-exp Code.code code-Consts-Closed c = code ⦃ r = proj₁ code-Consts ⦄ c , const→closed (proj₂ code-Consts c) Code.decode code-Consts-Closed (e , _) = decode ⦃ r = proj₁ code-Consts ⦄ e Code.decode∘code code-Consts-Closed c = decode ⦃ r = proj₁ code-Consts ⦄ (code ⦃ r = proj₁ code-Consts ⦄ c) ≡⟨ decode∘code ⦃ r = proj₁ code-Consts ⦄ c ⟩∎ just c ∎ -- Converts instances of the form Rep A Consts to Rep A Closed-exp. rep-Consts-Closed-exp : ∀ {a} {A : Type a} ⦃ r : Rep A Consts ⦄ → Rep A Closed-exp rep-Consts-Closed-exp ⦃ r ⦄ = rep ⦃ r = code-Consts-Closed ⦄ ∘-rep r -- rep-as-Exp returns values. rep-value : ∀ {a} {A : Type a} ⦃ r : Rep A Consts ⦄ (x : A) → Value (rep-as-Exp x) rep-value = const→value ∘ rep-const -- Some derived lemmas. subst-rep : ∀ {a} {A : Type a} ⦃ r : Rep A Consts ⦄ (x : A) {y e} → rep-as-Exp x [ y ← e ] ≡ rep-as-Exp x subst-rep x = subst-closed _ _ (rep-closed x) substs-rep : ∀ {a} {A : Type a} ⦃ r : Rep A Consts ⦄ (x : A) ps → foldr (λ ye → _[ proj₁ ye ← proj₂ ye ]) (rep-as-Exp x) ps ≡ rep-as-Exp x substs-rep x = substs-closed (rep-as-Exp x) (rep-closed x) rep⇓rep : ∀ {a} {A : Type a} ⦃ r : Rep A Consts ⦄ (x : A) → rep-as-Exp x ⇓ rep-as-Exp x rep⇓rep x = values-compute-to-themselves (rep-value x) rep⇓≡rep : ∀ {a} {A : Type a} ⦃ r : Rep A Consts ⦄ {v} (x : A) → rep-as-Exp x ⇓ v → rep-as-Exp x ≡ v rep⇓≡rep x = values-only-compute-to-themselves (rep-value x) ------------------------------------------------------------------------ -- Specifications of how a number of types are encoded as χ -- constructor applications -- Encoder for booleans. code-Bool : Code Bool Consts code-Bool = record { code = cd ; decode = dc ; decode∘code = dc∘cd } where cd : Bool → Consts cd true = const c-true [] cd false = const c-false [] dc : Consts → Maybe Bool dc (const c args) with c-true C.≟ c | c-false C.≟ c dc (const c []) | yes _ | _ = return true dc (const c []) | _ | yes _ = return false dc (const c _) | _ | _ = nothing dc∘cd : ∀ b → dc (cd b) ≡ just b dc∘cd true with c-true C.≟ c-true ... | yes _ = refl ... | no t≢t = ⊥-elim (t≢t refl) dc∘cd false with c-true C.≟ c-false | c-false C.≟ c-false ... | no _ | no f≢f = ⊥-elim (f≢f refl) ... | yes t≡f | _ = ⊥-elim (C.distinct-codes→distinct-names (λ ()) t≡f) ... | no _ | yes _ = refl -- Encoder for natural numbers. code-ℕ : Code ℕ Consts code-ℕ = record { code = cd ; decode = dc ; decode∘code = dc∘cd } where cd : ℕ → Consts cd zero = const c-zero [] cd (suc n) = const c-suc (cd n ∷ []) dc : Consts → Maybe ℕ dc (const c args) with c-zero C.≟ c | c-suc C.≟ c dc (const c []) | yes eq | _ = return zero dc (const c (n ∷ [])) | _ | yes eq = map suc (dc n) dc (const c _) | _ | _ = nothing dc∘cd : ∀ n → dc (cd n) ≡ just n dc∘cd zero with c-zero C.≟ c-zero ... | yes _ = refl ... | no z≢z = ⊥-elim (z≢z refl) dc∘cd (suc n) with c-zero C.≟ c-suc | c-suc C.≟ c-suc ... | no _ | no s≢s = ⊥-elim (s≢s refl) ... | yes z≡s | _ = ⊥-elim (C.distinct-codes→distinct-names (λ ()) z≡s) ... | no _ | yes _ = map suc ⟨ dc (cd n) ⟩ ≡⟨ ⟨by⟩ (dc∘cd n) ⟩ map suc (return n) ≡⟨ refl ⟩∎ return (suc n) ∎ -- Encoder for variables. code-Var : Code Var Consts code-Var = code-ℕ ∘-code ↔→Code V.countably-infinite -- Encoder for constants. code-Const : Code Const Consts code-Const = code-ℕ ∘-code ↔→Code C.countably-infinite -- Encoders for products. module _ {a b} {A : Type a} {B : Type b} where private encode : (A → Consts) → (B → Consts) → A × B → Consts encode encA encB (x , y) = const c-pair (encA x ∷ encB y ∷ []) rep-× : ⦃ r : Rep A Consts ⦄ ⦃ s : Rep B Consts ⦄ → Rep (A × B) Consts rep-× ⦃ r ⦄ ⦃ s ⦄ = record { ⌜_⌝ = encode ⌜_⌝ ⌜_⌝ ; rep-injective = λ { {x₁ , x₂} {y₁ , y₂} → const c-pair (⌜ x₁ ⌝ ∷ ⌜ x₂ ⌝ ∷ []) ≡ const c-pair (⌜ y₁ ⌝ ∷ ⌜ y₂ ⌝ ∷ []) ↝⟨ lemma ⟩ ⌜ x₁ ⌝ ≡ ⌜ y₁ ⌝ × ⌜ x₂ ⌝ ≡ ⌜ y₂ ⌝ ↝⟨ Σ-map rep-injective rep-injective ⟩ x₁ ≡ y₁ × x₂ ≡ y₂ ↝⟨ uncurry (cong₂ _,_) ⟩□ (x₁ , x₂) ≡ (y₁ , y₂) □ } } where lemma : ∀ {c₁ c₂ x₁ x₂ y₁ y₂} → Consts.const c₁ (x₁ ∷ x₂ ∷ []) ≡ const c₂ (y₁ ∷ y₂ ∷ []) → x₁ ≡ y₁ × x₂ ≡ y₂ lemma refl = refl , refl code-× : ⦃ c : Code A Consts ⦄ ⦃ d : Code B Consts ⦄ → Code (A × B) Consts code-× = record { code = cd ; decode = dc ; decode∘code = dc∘cd } where cd : A × B → Consts cd = encode code code dc : Consts → Maybe (A × B) dc (const c args) with c-pair C.≟ c dc (const c (x ∷ y ∷ [])) | yes _ = decode x >>=′ λ x → decode y >>=′ λ y → just (x , y) dc (const c args) | _ = nothing dc∘cd : ∀ x → dc (cd x) ≡ just x dc∘cd (x , y) with c-pair C.≟ c-pair ... | no p≢p = ⊥-elim (p≢p refl) ... | yes _ = (⟨ decode (code x) ⟩ >>=′ λ x → decode (code y) >>=′ λ y → just (x , y)) ≡⟨ ⟨by⟩ decode∘code ⟩ (return x >>=′ λ x → decode (code y) >>=′ λ y → just (x , y)) ≡⟨⟩ (⟨ decode (code y) ⟩ >>=′ λ y → just (x , y)) ≡⟨ ⟨by⟩ decode∘code ⟩ (return y >>=′ λ y → just (x , y)) ≡⟨ refl ⟩∎ return (x , y) ∎ -- Encoders for lists. module _ {a} {A : Type a} where private encode : (A → Consts) → List A → Consts encode enc [] = const c-nil [] encode enc (x ∷ xs) = const c-cons (enc x ∷ encode enc xs ∷ []) rep-List : ⦃ r : Rep A Consts ⦄ → Rep (List A) Consts rep-List = record { ⌜_⌝ = encode ⌜_⌝ ; rep-injective = injective } where injective : ∀ {xs ys} → encode ⌜_⌝ xs ≡ encode ⌜_⌝ ys → xs ≡ ys injective {[]} {[]} = λ _ → refl injective {[]} {_ ∷ _} = λ () injective {_ ∷ _} {[]} = λ () injective {x ∷ xs} {y ∷ ys} = const c-cons (⌜ x ⌝ ∷ encode ⌜_⌝ xs ∷ []) ≡ const c-cons (⌜ y ⌝ ∷ encode ⌜_⌝ ys ∷ []) ↝⟨ lemma ⟩ ⌜ x ⌝ ≡ ⌜ y ⌝ × encode ⌜_⌝ xs ≡ encode ⌜_⌝ ys ↝⟨ Σ-map rep-injective injective ⟩ x ≡ y × xs ≡ ys ↝⟨ uncurry (cong₂ _∷_) ⟩□ x ∷ xs ≡ y ∷ ys □ where lemma : ∀ {c₁ x₁ y₁ c₂ x₂ y₂} → Consts.const c₁ (x₁ ∷ y₁ ∷ []) ≡ const c₂ (x₂ ∷ y₂ ∷ []) → x₁ ≡ x₂ × y₁ ≡ y₂ lemma refl = refl , refl code-List : ⦃ c : Code A Consts ⦄ → Code (List A) Consts code-List = record { code = cd ; decode = dc ; decode∘code = dc∘cd } where cd : List A → Consts cd = encode code dc : Consts → Maybe (List A) dc (const c args) with c-nil C.≟ c | c-cons C.≟ c dc (const c []) | yes eq | _ = return [] dc (const c′ (x ∷ xs ∷ [])) | _ | yes eq = _∷_ ⟨$⟩ decode x ⊛ dc xs dc (const c args) | _ | _ = nothing dc∘cd : ∀ x → dc (cd x) ≡ just x dc∘cd [] with c-nil C.≟ c-nil ... | yes _ = refl ... | no n≢n = ⊥-elim (n≢n refl) dc∘cd (x ∷ xs) with c-nil C.≟ c-cons | c-cons C.≟ c-cons ... | no _ | no c≢c = ⊥-elim (c≢c refl) ... | yes n≡c | _ = ⊥-elim (C.distinct-codes→distinct-names (λ ()) n≡c) ... | no _ | yes _ = _∷_ ⟨$⟩ ⟨ decode (code x) ⟩ ⊛ dc (cd xs) ≡⟨ ⟨by⟩ decode∘code ⟩ _∷_ ⟨$⟩ return x ⊛ ⟨ dc (cd xs) ⟩ ≡⟨ ⟨by⟩ (dc∘cd xs) ⟩ _∷_ ⟨$⟩ return x ⊛ return xs ≡⟨⟩ return (x ∷ xs) ∎ -- Encoder for lists of variables. code-Var⋆ : Code (List Var) Consts code-Var⋆ = code-List ⦃ code-Var ⦄ private module Var = Code code-Var module Var⋆ = Code code-Var⋆ module Const = Code code-Const -- Encoder for the abstract syntax. mutual code-E : Exp → Consts code-E (apply e₁ e₂) = const c-apply (code-E e₁ ∷ code-E e₂ ∷ []) code-E (lambda x e) = const c-lambda (code ⦃ code-Var ⦄ x ∷ code-E e ∷ []) code-E (case e bs) = const c-case (code-E e ∷ code-B⋆ bs ∷ []) code-E (rec x e) = const c-rec (code ⦃ code-Var ⦄ x ∷ code-E e ∷ []) code-E (var x) = const c-var (code ⦃ code-Var ⦄ x ∷ []) code-E (const c es) = const c-const (code ⦃ code-Const ⦄ c ∷ code-⋆ es ∷ []) code-B : Br → Consts code-B (branch c xs e) = const c-branch (code ⦃ code-Const ⦄ c ∷ code ⦃ code-Var⋆ ⦄ xs ∷ code-E e ∷ []) -- TODO: One could presumably use sized types to avoid repetitive -- code. However, I did not want to use sized types in the -- specification of χ. code-⋆ : List Exp → Consts code-⋆ [] = const c-nil [] code-⋆ (e ∷ es) = const c-cons (code-E e ∷ code-⋆ es ∷ []) code-B⋆ : List Br → Consts code-B⋆ [] = const c-nil [] code-B⋆ (b ∷ bs) = const c-cons (code-B b ∷ code-B⋆ bs ∷ []) mutual decode-E : Consts → Maybe Exp decode-E (const c args) with c-apply C.≟ c | c-lambda C.≟ c | c-case C.≟ c | c-rec C.≟ c | c-var C.≟ c | c-const C.≟ c decode-E (const c (e₁ ∷ e₂ ∷ [])) | yes eq | _ | _ | _ | _ | _ = apply ⟨$⟩ decode-E e₁ ⊛ decode-E e₂ decode-E (const c (x ∷ e ∷ [])) | _ | yes eq | _ | _ | _ | _ = lambda ⟨$⟩ decode ⦃ code-Var ⦄ x ⊛ decode-E e decode-E (const c (e ∷ bs ∷ [])) | _ | _ | yes eq | _ | _ | _ = case ⟨$⟩ decode-E e ⊛ decode-B⋆ bs decode-E (const c (x ∷ e ∷ [])) | _ | _ | _ | yes eq | _ | _ = rec ⟨$⟩ decode ⦃ code-Var ⦄ x ⊛ decode-E e decode-E (const c (x ∷ [])) | _ | _ | _ | _ | yes eq | _ = var ⟨$⟩ decode ⦃ code-Var ⦄ x decode-E (const c (c′ ∷ es ∷ [])) | _ | _ | _ | _ | _ | yes eq = const ⟨$⟩ decode ⦃ code-Const ⦄ c′ ⊛ decode-⋆ es decode-E (const c args) | _ | _ | _ | _ | _ | _ = nothing decode-B : Consts → Maybe Br decode-B (const c args) with c-branch C.≟ c decode-B (const c (c′ ∷ xs ∷ e ∷ [])) | yes eq = branch ⟨$⟩ decode ⦃ code-Const ⦄ c′ ⊛ decode ⦃ code-Var⋆ ⦄ xs ⊛ decode-E e decode-B (const c args) | _ = nothing decode-⋆ : Consts → Maybe (List Exp) decode-⋆ (const c args) with c-nil C.≟ c | c-cons C.≟ c decode-⋆ (const c []) | yes eq | _ = return [] decode-⋆ (const c′ (e ∷ es ∷ [])) | _ | yes eq = _∷_ ⟨$⟩ decode-E e ⊛ decode-⋆ es decode-⋆ (const c args) | _ | _ = nothing decode-B⋆ : Consts → Maybe (List Br) decode-B⋆ (const c args) with c-nil C.≟ c | c-cons C.≟ c decode-B⋆ (const c []) | yes eq | _ = return [] decode-B⋆ (const c′ (b ∷ bs ∷ [])) | _ | yes eq = _∷_ ⟨$⟩ decode-B b ⊛ decode-B⋆ bs decode-B⋆ (const c args) | _ | _ = nothing mutual decode∘code-E : ∀ e → decode-E (code-E e) ≡ just e decode∘code-E (apply e₁ e₂) with c-apply C.≟ c-apply ... | no c≢c = ⊥-elim (c≢c refl) ... | yes _ = apply ⟨$⟩ ⟨ decode-E (code-E e₁) ⟩ ⊛ decode-E (code-E e₂) ≡⟨ ⟨by⟩ (decode∘code-E e₁) ⟩ apply ⟨$⟩ return e₁ ⊛ ⟨ decode-E (code-E e₂) ⟩ ≡⟨ ⟨by⟩ (decode∘code-E e₂) ⟩ apply ⟨$⟩ return e₁ ⊛ return e₂ ≡⟨⟩ return (apply e₁ e₂) ∎ decode∘code-E (lambda x e) with c-apply C.≟ c-lambda | c-lambda C.≟ c-lambda ... | _ | no l≢l = ⊥-elim (l≢l refl) ... | yes a≡l | _ = ⊥-elim (C.distinct-codes→distinct-names (λ ()) a≡l) ... | no _ | yes _ = lambda ⟨$⟩ ⟨ Var.decode (code ⦃ code-Var ⦄ x) ⟩ ⊛ decode-E (code-E e) ≡⟨ ⟨by⟩ Var.decode∘code ⟩ lambda ⟨$⟩ return x ⊛ ⟨ decode-E (code-E e) ⟩ ≡⟨ ⟨by⟩ (decode∘code-E e) ⟩ lambda ⟨$⟩ return x ⊛ return e ≡⟨⟩ return (lambda x e) ∎ decode∘code-E (case e bs) with c-apply C.≟ c-case | c-lambda C.≟ c-case | c-case C.≟ c-case ... | _ | _ | no c≢c = ⊥-elim (c≢c refl) ... | _ | yes l≡c | _ = ⊥-elim (C.distinct-codes→distinct-names (λ ()) l≡c) ... | yes a≡c | _ | _ = ⊥-elim (C.distinct-codes→distinct-names (λ ()) a≡c) ... | no _ | no _ | yes _ = case ⟨$⟩ ⟨ decode-E (code-E e) ⟩ ⊛ decode-B⋆ (code-B⋆ bs) ≡⟨ ⟨by⟩ (decode∘code-E e) ⟩ case ⟨$⟩ return e ⊛ ⟨ decode-B⋆ (code-B⋆ bs) ⟩ ≡⟨ ⟨by⟩ (decode∘code-B⋆ bs) ⟩ case ⟨$⟩ return e ⊛ return bs ≡⟨⟩ return (case e bs) ∎ decode∘code-E (rec x e) with c-apply C.≟ c-rec | c-lambda C.≟ c-rec | c-case C.≟ c-rec | c-rec C.≟ c-rec ... | _ | _ | _ | no r≢r = ⊥-elim (r≢r refl) ... | _ | _ | yes c≡r | _ = ⊥-elim (C.distinct-codes→distinct-names (λ ()) c≡r) ... | _ | yes l≡r | _ | _ = ⊥-elim (C.distinct-codes→distinct-names (λ ()) l≡r) ... | yes a≡r | _ | _ | _ = ⊥-elim (C.distinct-codes→distinct-names (λ ()) a≡r) ... | no _ | no _ | no _ | yes _ = rec ⟨$⟩ ⟨ Var.decode (code ⦃ code-Var ⦄ x) ⟩ ⊛ decode-E (code-E e) ≡⟨ ⟨by⟩ Var.decode∘code ⟩ rec ⟨$⟩ return x ⊛ ⟨ decode-E (code-E e) ⟩ ≡⟨ ⟨by⟩ (decode∘code-E e) ⟩ rec ⟨$⟩ return x ⊛ return e ≡⟨⟩ return (rec x e) ∎ decode∘code-E (var x) with c-apply C.≟ c-var | c-lambda C.≟ c-var | c-case C.≟ c-var | c-rec C.≟ c-var | c-var C.≟ c-var ... | _ | _ | _ | _ | no v≢v = ⊥-elim (v≢v refl) ... | _ | _ | _ | yes r≡v | _ = ⊥-elim (C.distinct-codes→distinct-names (λ ()) r≡v) ... | _ | _ | yes c≡v | _ | _ = ⊥-elim (C.distinct-codes→distinct-names (λ ()) c≡v) ... | _ | yes l≡v | _ | _ | _ = ⊥-elim (C.distinct-codes→distinct-names (λ ()) l≡v) ... | yes a≡v | _ | _ | _ | _ = ⊥-elim (C.distinct-codes→distinct-names (λ ()) a≡v) ... | no _ | no _ | no _ | no _ | yes _ = var ⟨$⟩ ⟨ Var.decode (code ⦃ code-Var ⦄ x) ⟩ ≡⟨ ⟨by⟩ Var.decode∘code ⟩ var ⟨$⟩ return x ≡⟨ refl ⟩∎ return (var x) ∎ decode∘code-E (const c es) with c-apply C.≟ c-const | c-lambda C.≟ c-const | c-case C.≟ c-const | c-rec C.≟ c-const | c-var C.≟ c-const | c-const C.≟ c-const ... | _ | _ | _ | _ | _ | no c≢c = ⊥-elim (c≢c refl) ... | _ | _ | _ | _ | yes v≡c | _ = ⊥-elim (C.distinct-codes→distinct-names (λ ()) v≡c) ... | _ | _ | _ | yes r≡c | _ | _ = ⊥-elim (C.distinct-codes→distinct-names (λ ()) r≡c) ... | _ | _ | yes c≡c | _ | _ | _ = ⊥-elim (C.distinct-codes→distinct-names (λ ()) c≡c) ... | _ | yes l≡c | _ | _ | _ | _ = ⊥-elim (C.distinct-codes→distinct-names (λ ()) l≡c) ... | yes a≡c | _ | _ | _ | _ | _ = ⊥-elim (C.distinct-codes→distinct-names (λ ()) a≡c) ... | no _ | no _ | no _ | no _ | no _ | yes _ = const ⟨$⟩ ⟨ Const.decode (code ⦃ code-Const ⦄ c) ⟩ ⊛ decode-⋆ (code-⋆ es) ≡⟨ ⟨by⟩ Const.decode∘code ⟩ const ⟨$⟩ return c ⊛ ⟨ decode-⋆ (code-⋆ es) ⟩ ≡⟨ ⟨by⟩ (decode∘code-⋆ es) ⟩ const ⟨$⟩ return c ⊛ return es ≡⟨⟩ return (const c es) ∎ decode∘code-B : ∀ b → decode-B (code-B b) ≡ just b decode∘code-B (branch c xs e) with c-branch C.≟ c-branch ... | no b≢b = ⊥-elim (b≢b refl) ... | yes _ = branch ⟨$⟩ ⟨ Const.decode (code ⦃ code-Const ⦄ c) ⟩ ⊛ Var⋆.decode (code ⦃ code-Var⋆ ⦄ xs) ⊛ decode-E (code-E e) ≡⟨ ⟨by⟩ Const.decode∘code ⟩ branch ⟨$⟩ return c ⊛ ⟨ Var⋆.decode (code ⦃ code-Var⋆ ⦄ xs) ⟩ ⊛ decode-E (code-E e) ≡⟨ ⟨by⟩ Var⋆.decode∘code ⟩ branch ⟨$⟩ return c ⊛ return xs ⊛ ⟨ decode-E (code-E e) ⟩ ≡⟨ ⟨by⟩ (decode∘code-E e) ⟩ branch ⟨$⟩ return c ⊛ return xs ⊛ return e ≡⟨⟩ return (branch c xs e) ∎ decode∘code-⋆ : ∀ es → decode-⋆ (code-⋆ es) ≡ just es decode∘code-⋆ [] with c-nil C.≟ c-nil ... | no n≢n = ⊥-elim (n≢n refl) ... | yes _ = refl decode∘code-⋆ (e ∷ es) with c-nil C.≟ c-cons | c-cons C.≟ c-cons ... | no _ | no c≢c = ⊥-elim (c≢c refl) ... | yes n≡c | _ = ⊥-elim (C.distinct-codes→distinct-names (λ ()) n≡c) ... | no _ | yes _ = _∷_ ⟨$⟩ ⟨ decode-E (code-E e) ⟩ ⊛ decode-⋆ (code-⋆ es) ≡⟨ ⟨by⟩ (decode∘code-E e) ⟩ _∷_ ⟨$⟩ return e ⊛ ⟨ decode-⋆ (code-⋆ es) ⟩ ≡⟨ ⟨by⟩ (decode∘code-⋆ es) ⟩ _∷_ ⟨$⟩ return e ⊛ return es ≡⟨⟩ return (e ∷ es) ∎ decode∘code-B⋆ : ∀ bs → decode-B⋆ (code-B⋆ bs) ≡ just bs decode∘code-B⋆ [] with c-nil C.≟ c-nil ... | no n≢n = ⊥-elim (n≢n refl) ... | yes _ = refl decode∘code-B⋆ (b ∷ bs) with c-nil C.≟ c-cons | c-cons C.≟ c-cons ... | no _ | no c≢c = ⊥-elim (c≢c refl) ... | yes n≡c | _ = ⊥-elim (C.distinct-codes→distinct-names (λ ()) n≡c) ... | no _ | yes _ = _∷_ ⟨$⟩ ⟨ decode-B (code-B b) ⟩ ⊛ decode-B⋆ (code-B⋆ bs) ≡⟨ ⟨by⟩ (decode∘code-B b) ⟩ _∷_ ⟨$⟩ return b ⊛ ⟨ decode-B⋆ (code-B⋆ bs) ⟩ ≡⟨ ⟨by⟩ (decode∘code-B⋆ bs) ⟩ _∷_ ⟨$⟩ return b ⊛ return bs ≡⟨⟩ return (b ∷ bs) ∎ code-Exp : Code Exp Consts Code.code code-Exp = code-E Code.decode code-Exp = decode-E Code.decode∘code code-Exp = decode∘code-E code-Br : Code Br Consts Code.code code-Br = code-B Code.decode code-Br = decode-B Code.decode∘code code-Br = decode∘code-B code-Exps : Code (List Exp) Consts Code.code code-Exps = code-⋆ Code.decode code-Exps = decode-⋆ Code.decode∘code code-Exps = decode∘code-⋆ code-Brs : Code (List Br) Consts Code.code code-Brs = code-B⋆ Code.decode code-Brs = decode-B⋆ Code.decode∘code code-Brs = decode∘code-B⋆ -- Encoder for closed expressions. code-Closed : Code Closed-exp Consts Code.code code-Closed = code ⦃ code-Exp ⦄ ∘ proj₁ Code.decode code-Closed c with decode ⦃ code-Exp ⦄ c ... | nothing = nothing ... | just e with closed? e ... | yes cl = just (e , cl) ... | no _ = nothing Code.decode∘code code-Closed (c , cl) with decode ⦃ r = code-Exp ⦄ (code ⦃ code-Exp ⦄ c) | decode∘code ⦃ r = code-Exp ⦄ c ... | .(just c) | refl with closed? c ... | no ¬cl = ⊥-elim (¬cl cl) ... | yes cl′ = cong just (closed-equal-if-expressions-equal refl)
{ "alphanum_fraction": 0.4356647484, "avg_line_length": 36, "ext": "agda", "hexsha": "ee18ca6e4f56d3cb4ab7bb0a94d3fd089931d27d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/chi", "max_forks_repo_path": "src/Coding.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1", "max_issues_repo_issues_event_max_datetime": "2020-06-08T11:08:25.000Z", "max_issues_repo_issues_event_min_datetime": "2020-05-21T23:29:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/chi", "max_issues_repo_path": "src/Coding.agda", "max_line_length": 116, "max_stars_count": 2, "max_stars_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/chi", "max_stars_repo_path": "src/Coding.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-20T16:27:00.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:07.000Z", "num_tokens": 9983, "size": 27108 }
-- Hilbert-style formalisation of closed syntax. -- Sequences of terms. module OldBasicILP.Syntax.ClosedHilbertSequential where open import OldBasicILP.Syntax.Common public -- Mutually-recursive declarations. data Ty : Set record Proof (Ξ : Cx Ty) (A : Ty) : Set data ⊢ᴰ_ : Cx Ty → Set _⧺ᴰ_ : ∀ {Ξ₁ Ξ₂} → ⊢ᴰ Ξ₁ → ⊢ᴰ Ξ₂ → ⊢ᴰ Ξ₁ ⧺ Ξ₂ -- Types parametrised by closed derivations. infixr 10 _⦂_ infixl 9 _∧_ infixr 7 _▻_ data Ty where α_ : Atom → Ty _▻_ : Ty → Ty → Ty _⦂_ : ∀ {Ξ A} → Proof Ξ A → Ty → Ty _∧_ : Ty → Ty → Ty ⊤ : Ty -- Anti-bug wrappers. record Proof (Ξ : Cx Ty) (A : Ty) where inductive constructor [_] field der : ⊢ᴰ Ξ , A -- More mutually-recursive declarations. appᴰ : ∀ {Ξ₁ Ξ₂ A B} → ⊢ᴰ Ξ₁ , A ▻ B → ⊢ᴰ Ξ₂ , A → ⊢ᴰ (Ξ₂ , A) ⧺ (Ξ₁ , A ▻ B) , B boxᴰ : ∀ {Ξ A} → (d : ⊢ᴰ Ξ , A) → ⊢ᴰ ∅ , [ d ] ⦂ A -- Derivations. infix 3 ⊢ᴰ_ data ⊢ᴰ_ where nil : ⊢ᴰ ∅ mp : ∀ {Ξ A B} → A ▻ B ∈ Ξ → A ∈ Ξ → ⊢ᴰ Ξ → ⊢ᴰ Ξ , B ci : ∀ {Ξ A} → ⊢ᴰ Ξ → ⊢ᴰ Ξ , A ▻ A ck : ∀ {Ξ A B} → ⊢ᴰ Ξ → ⊢ᴰ Ξ , A ▻ B ▻ A cs : ∀ {Ξ A B C} → ⊢ᴰ Ξ → ⊢ᴰ Ξ , (A ▻ B ▻ C) ▻ (A ▻ B) ▻ A ▻ C nec : ∀ {Ξ A} → ∀ {`Ξ} → (`d : ⊢ᴰ `Ξ , A) → ⊢ᴰ Ξ → ⊢ᴰ Ξ , [ `d ] ⦂ A cdist : ∀ {Ξ A B} → ∀ {`Ξ₁ `Ξ₂} → {`d₁ : ⊢ᴰ `Ξ₁ , A ▻ B} → {`d₂ : ⊢ᴰ `Ξ₂ , A} → ⊢ᴰ Ξ → ⊢ᴰ Ξ , [ `d₁ ] ⦂ (A ▻ B) ▻ [ `d₂ ] ⦂ A ▻ [ appᴰ `d₁ `d₂ ] ⦂ B cup : ∀ {Ξ A} → ∀ {`Ξ} → {`d : ⊢ᴰ `Ξ , A} → ⊢ᴰ Ξ → ⊢ᴰ Ξ , [ `d ] ⦂ A ▻ [ boxᴰ `d ] ⦂ [ `d ] ⦂ A cdown : ∀ {Ξ A} → ∀ {`Ξ} → {`d : ⊢ᴰ `Ξ , A} → ⊢ᴰ Ξ → ⊢ᴰ Ξ , [ `d ] ⦂ A ▻ A cpair : ∀ {Ξ A B} → ⊢ᴰ Ξ → ⊢ᴰ Ξ , A ▻ B ▻ A ∧ B cfst : ∀ {Ξ A B} → ⊢ᴰ Ξ → ⊢ᴰ Ξ , A ∧ B ▻ A csnd : ∀ {Ξ A B} → ⊢ᴰ Ξ → ⊢ᴰ Ξ , A ∧ B ▻ B unit : ∀ {Ξ} → ⊢ᴰ Ξ → ⊢ᴰ Ξ , ⊤ -- Anti-bug wrappers. infix 3 ⊢_ ⊢_ : Ty → Set ⊢ A = ∃ (λ Ξ → ⊢ᴰ Ξ , A) -- Concatenation of derivations. d₁ ⧺ᴰ nil = d₁ d₁ ⧺ᴰ mp i j d₂ = mp (mono∈ weak⊆⧺₂ i) (mono∈ weak⊆⧺₂ j) (d₁ ⧺ᴰ d₂) d₁ ⧺ᴰ ci d₂ = ci (d₁ ⧺ᴰ d₂) d₁ ⧺ᴰ ck d₂ = ck (d₁ ⧺ᴰ d₂) d₁ ⧺ᴰ cs d₂ = cs (d₁ ⧺ᴰ d₂) d₁ ⧺ᴰ nec `d d₂ = nec `d (d₁ ⧺ᴰ d₂) d₁ ⧺ᴰ cdist d₂ = cdist (d₁ ⧺ᴰ d₂) d₁ ⧺ᴰ cup d₂ = cup (d₁ ⧺ᴰ d₂) d₁ ⧺ᴰ cdown d₂ = cdown (d₁ ⧺ᴰ d₂) d₁ ⧺ᴰ cpair d₂ = cpair (d₁ ⧺ᴰ d₂) d₁ ⧺ᴰ cfst d₂ = cfst (d₁ ⧺ᴰ d₂) d₁ ⧺ᴰ csnd d₂ = csnd (d₁ ⧺ᴰ d₂) d₁ ⧺ᴰ unit d₂ = unit (d₁ ⧺ᴰ d₂) -- Modus ponens and necessitation in nested form. appᴰ {Ξ₁} {Ξ₂} {A} {B} d₁ d₂ = mp top (mono∈ (weak⊆⧺₁ (Ξ₁ , A ▻ B)) top) (d₂ ⧺ᴰ d₁) boxᴰ {Ξ} {A} d = nec d nil app : ∀ {A B} → ⊢ A ▻ B → ⊢ A → ⊢ B app {A} {B} (Ξ₁ , d₁) (Ξ₂ , d₂) = Ξ₃ , d₃ where Ξ₃ = (Ξ₂ , A) ⧺ (Ξ₁ , A ▻ B) d₃ = appᴰ d₁ d₂ box : ∀ {A} → (t : ⊢ A) → ⊢ [ π₂ t ] ⦂ A box (Ξ , d) = ∅ , boxᴰ d
{ "alphanum_fraction": 0.4323348971, "avg_line_length": 24.3070175439, "ext": "agda", "hexsha": "cac2c8f5ad6f10de8e51bf6a5e1ef8492a368b0b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/hilbert-gentzen", "max_forks_repo_path": "OldBasicILP/Syntax/ClosedHilbertSequential.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/hilbert-gentzen", "max_issues_repo_path": "OldBasicILP/Syntax/ClosedHilbertSequential.agda", "max_line_length": 92, "max_stars_count": 29, "max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/hilbert-gentzen", "max_stars_repo_path": "OldBasicILP/Syntax/ClosedHilbertSequential.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z", "num_tokens": 1725, "size": 2771 }
------------------------------------------------------------------------ -- Some types and functions used by several parser variants ------------------------------------------------------------------------ module Utilities where open import Data.Product open import Data.List open import Data.Function using (flip) ------------------------------------------------------------------------ -- Associativity -- Used to specify how chain₁, chain and chain≥ should apply the -- parsed operators: left or right associatively. data Assoc : Set where left : Assoc right : Assoc ------------------------------------------------------------------------ -- Post-processing for the chain parsers -- Application. appʳ : forall {r} -> r × (r -> r -> r) -> r -> r appʳ (x , _•_) y = x • y appˡ : forall {r} -> r -> (r -> r -> r) × r -> r appˡ x (_•_ , y) = x • y -- Shifting. See Examples below for an illuminating example. shiftˡ : forall {a b} -> List (a × b) -> a -> a × List (b × a) shiftˡ [] x = (x , []) shiftˡ ((x₁ , x₂) ∷ xs₃) x₄ = (x₁ , (x₂ , proj₁ x₃xs₄) ∷ proj₂ x₃xs₄) where x₃xs₄ = shiftˡ xs₃ x₄ -- The post-processing function. See Examples below for some -- illuminating examples. chain₁-combine : forall {r} -> Assoc -> List (r × (r -> r -> r)) -> r -> r chain₁-combine right xs y = foldr appʳ y xs chain₁-combine left xs y with shiftˡ xs y ... | (x , ys) = foldl appˡ x ys -- Variants. shiftʳ : forall {a b} -> a -> List (b × a) -> List (a × b) × a shiftʳ x [] = ([] , x) shiftʳ x₁ ((x₂ , x₃) ∷ xs₄) = ((x₁ , x₂) ∷ proj₁ xs₃x₄ , proj₂ xs₃x₄) where xs₃x₄ = shiftʳ x₃ xs₄ chain≥-combine : forall {r} -> Assoc -> r -> List ((r -> r -> r) × r) -> r chain≥-combine left x ys = foldl appˡ x ys chain≥-combine right x ys with shiftʳ x ys ... | (xs , y) = foldr appʳ y xs private module Examples {r s : Set} (x y z : r) (A B : s) (_+_ _*_ : r -> r -> r) where open import Relation.Binary.PropositionalEquality ex₁ : shiftˡ ((x , A) ∷ (y , B) ∷ []) z ≡ (x , ((A , y) ∷ (B , z) ∷ [])) ex₁ = refl ex₁ʳ : chain₁-combine right ((x , _+_) ∷ (y , _*_) ∷ []) z ≡ x + (y * z) ex₁ʳ = refl ex₁ˡ : chain₁-combine left ((x , _+_) ∷ (y , _*_) ∷ []) z ≡ (x + y) * z ex₁ˡ = refl ex≥ : shiftʳ x ((A , y) ∷ (B , z) ∷ []) ≡ ((x , A) ∷ (y , B) ∷ [] , z) ex≥ = refl ex≥ʳ : chain≥-combine right x ((_+_ , y) ∷ (_*_ , z) ∷ []) ≡ x + (y * z) ex≥ʳ = refl ex≥ˡ : chain≥-combine left x ((_+_ , y) ∷ (_*_ , z) ∷ []) ≡ (x + y) * z ex≥ˡ = refl ------------------------------------------------------------------------ -- Some suitably typed composition operators infixr 9 _∘′_ _∘₂_ _∘′_ : {a c : Set} {b : a -> Set1} -> (forall {x} -> b x -> c) -> ((x : a) -> b x) -> (a -> c) f ∘′ g = \x -> f (g x) _∘₂_ : {a b c : Set2} -> (b -> c) -> (a -> b) -> (a -> c) f ∘₂ g = \x -> f (g x)
{ "alphanum_fraction": 0.445799458, "avg_line_length": 29.8181818182, "ext": "agda", "hexsha": "5d7bfbf8b14f2b6a0b3448c3889c6b30d3f08940", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "misc/Utilities.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": "2018-01-24T16:39:37.000Z", "max_issues_repo_issues_event_min_datetime": "2018-01-22T22:21:41.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "misc/Utilities.agda", "max_line_length": 74, "max_stars_count": 7, "max_stars_repo_head_hexsha": "b396d35cc2cb7e8aea50b982429ee385f001aa88", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "yurrriq/parser-combinators", "max_stars_repo_path": "misc/Utilities.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-22T05:35:31.000Z", "max_stars_repo_stars_event_min_datetime": "2016-12-13T05:23:14.000Z", "num_tokens": 1052, "size": 2952 }
{-# OPTIONS --cubical --safe #-} module Cubical.Foundations.Pointed.Base where open import Cubical.Foundations.Prelude Pointed : (ℓ : Level) → Type (ℓ-suc ℓ) Pointed ℓ = Σ[ A ∈ Type ℓ ] A typ : ∀ {ℓ} (A∙ : Pointed ℓ) → Type ℓ typ = fst pt : ∀ {ℓ} (A∙ : Pointed ℓ) → typ A∙ pt = snd
{ "alphanum_fraction": 0.6153846154, "avg_line_length": 20.4285714286, "ext": "agda", "hexsha": "83ac03040699a5c6ad46c57c1131b9d958a0d1d5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a01973ef7264f9454a40697313a2073c51a6b77a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/cubical", "max_forks_repo_path": "Cubical/Foundations/Pointed/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a01973ef7264f9454a40697313a2073c51a6b77a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/cubical", "max_issues_repo_path": "Cubical/Foundations/Pointed/Base.agda", "max_line_length": 45, "max_stars_count": null, "max_stars_repo_head_hexsha": "a01973ef7264f9454a40697313a2073c51a6b77a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/cubical", "max_stars_repo_path": "Cubical/Foundations/Pointed/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 118, "size": 286 }
module Oscar.Class.Substitution where open import Oscar.Data.Equality open import Oscar.Function open import Oscar.Relation open import Oscar.Level record Substitution {a} {A : Set a} {b} (B : A → Set b) {c} (C : A → Set c) : Set (a ⊔ b ⊔ c) where field ε : ∀ {m} → B m → C m _◇_ : ∀ {l m n} → (g : B m → C n) (f : B l → C m) → B l → C n ◇-left-identity : ∀ {m n} → (f : B m → C n) → ε ◇ f ≡̇ f ◇-right-identity : ∀ {m n} → (f : B m → C n) → f ◇ ε ≡̇ f ◇-associativity : ∀ {k l m n} (f : B k → C l) (g : B l → C m) (h : B m → C n) → h ◇ (g ◇ f) ≡̇ (h ◇ g) ◇ f open Substitution ⦃ … ⦄ public {-# DISPLAY Substitution._◇_ _ = _◇_ #-} instance Substitution-id : ∀ {a} {A : Set a} {bc} {BC : A → Set bc} → Substitution BC BC Substitution.ε Substitution-id = id Substitution._◇_ Substitution-id g f = g ∘ f Substitution.◇-left-identity Substitution-id _ _ = refl Substitution.◇-right-identity Substitution-id _ _ = refl Substitution.◇-associativity Substitution-id _ _ _ _ = refl
{ "alphanum_fraction": 0.5832502493, "avg_line_length": 37.1481481481, "ext": "agda", "hexsha": "34d399fa8c0ef9b0c5e3c8f11a4add28679d6599", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-2/Oscar/Class/Substitution.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-2/Oscar/Class/Substitution.agda", "max_line_length": 110, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-2/Oscar/Class/Substitution.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 404, "size": 1003 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order open import Numbers.Naturals.Naturals open import Numbers.Naturals.Multiplication open import Numbers.Integers.Order open import Numbers.Integers.RingStructure.Ring open import Numbers.Integers.RingStructure.IntegralDomain open import Semirings.Definition open import Rings.EuclideanDomains.Definition open import Orders.Total.Definition open import Numbers.Naturals.EuclideanAlgorithm module Numbers.Integers.RingStructure.EuclideanDomain where private norm : ℤ → ℕ norm (nonneg x) = x norm (negSucc x) = succ x norm' : {a : ℤ} → (a!=0 : (a ≡ nonneg 0) → False) → ℕ norm' {a} _ = norm a multiplyIncreasesSuccLemma : (a b : ℕ) → succ (succ a) <N (succ (succ a)) *N (succ (succ b)) multiplyIncreasesSuccLemma a b with multiplyIncreases (succ (succ b)) (succ (succ a)) (le b (applyEquality succ (Semiring.commutative ℕSemiring b 1))) (le (succ a) (applyEquality (λ i → succ (succ i)) (Semiring.sumZeroRight ℕSemiring a))) ... | bl rewrite multiplicationNIsCommutative (succ (succ b)) (succ (succ a)) = bl multiplyIncreasesSucc : (a b : ℕ) → succ a ≤N (succ a) *N (succ b) multiplyIncreasesSucc zero zero = inr refl multiplyIncreasesSucc zero (succ b) = inl (le (b +N 0) (Semiring.commutative ℕSemiring (succ (b +N 0)) 1)) multiplyIncreasesSucc (succ a) zero = inr (applyEquality (λ i → succ (succ i)) (equalityCommutative (productWithOneRight a))) multiplyIncreasesSucc (succ a) (succ b) = inl (multiplyIncreasesSuccLemma a b) multiplyIncreasesSuccLemma' : (a b : ℕ) → succ (succ a) <N succ ((succ (succ a)) *N succ b) +N succ a multiplyIncreasesSuccLemma' a b = succPreservesInequality (le (b +N succ (b +N a *N succ b)) refl) multiplyIncreasesSucc' : (a b : ℕ) → succ a ≤N succ ((b +N a *N b) +N a) multiplyIncreasesSucc' zero zero = inr refl multiplyIncreasesSucc' zero (succ b) = inl (le b (applyEquality succ (transitivity (Semiring.commutative ℕSemiring b 1) (transitivity (equalityCommutative (Semiring.sumZeroRight ℕSemiring (succ b))) (equalityCommutative (Semiring.sumZeroRight ℕSemiring _)))))) multiplyIncreasesSucc' (succ a) zero rewrite multiplicationNIsCommutative a zero = inr refl multiplyIncreasesSucc' (succ a) (succ b) = inl (multiplyIncreasesSuccLemma' a b) normSize : {a b : ℤ} → (a!=0 : (a ≡ nonneg 0) → False) → (b!=0 : (b ≡ nonneg 0) → False) → (c : ℤ) → b ≡ (a *Z c) → (norm a) ≤N (norm b) normSize {nonneg a} {nonneg b} a!=0 b!=0 (nonneg zero) b=ac rewrite nonnegInjective b=ac | multiplicationNIsCommutative a 0 = exFalso (b!=0 refl) normSize {nonneg a} {nonneg b} a!=0 b!=0 (nonneg (succ 0)) b=ac rewrite nonnegInjective b=ac | multiplicationNIsCommutative a 1 = inr (equalityCommutative (Semiring.sumZeroRight ℕSemiring a)) normSize {nonneg 0} {nonneg b} a!=0 b!=0 (nonneg (succ (succ c))) b=ac = exFalso (a!=0 refl) normSize {nonneg (succ a)} {nonneg (succ b)} a!=0 b!=0 (nonneg (succ (succ c))) b=ac rewrite nonnegInjective b=ac = multiplyIncreasesSucc a (succ c) normSize {nonneg 0} {nonneg b} a!=0 b!=0 (negSucc c) bad = exFalso (a!=0 refl) normSize {nonneg (succ a)} {nonneg b} a!=0 b!=0 (negSucc c) () normSize {nonneg a} {negSucc b} a!=0 b!=0 (nonneg c) () normSize {nonneg (succ a)} {negSucc b} a!=0 b!=0 (negSucc c) pr rewrite negSuccInjective pr = multiplyIncreasesSucc' a c normSize {negSucc a} {nonneg zero} _ b!=0 c pr = exFalso (b!=0 refl) normSize {negSucc a} {nonneg (succ b)} _ _ (nonneg zero) () normSize {negSucc a} {nonneg (succ b)} _ _ (nonneg (succ x)) () normSize {negSucc a} {nonneg (succ b)} _ _ (negSucc c) pr rewrite nonnegInjective pr = multiplyIncreasesSucc a c normSize {negSucc a} {negSucc b} _ _ (nonneg (succ c)) pr rewrite negSuccInjective pr | multiplicationNIsCommutative c a | Semiring.commutative ℕSemiring (a +N a *N c) c | Semiring.+Associative ℕSemiring c a (a *N c) | Semiring.commutative ℕSemiring c a | equalityCommutative (Semiring.+Associative ℕSemiring a c (a *N c)) | Semiring.commutative ℕSemiring a (c +N a *N c) = multiplyIncreasesSucc' a c divAlg : {a b : ℤ} → (a!=0 : (a ≡ nonneg 0) → False) → (b!=0 : (b ≡ nonneg 0) → False) → DivisionAlgorithmResult ℤRing norm' a!=0 b!=0 divAlg {nonneg zero} {b} a!=0 b!=0 = exFalso (a!=0 refl) divAlg {nonneg (succ a)} {nonneg zero} a!=0 b!=0 = exFalso (b!=0 refl) divAlg {nonneg (succ a)} {nonneg (succ b)} a!=0 b!=0 with divisionAlg (succ b) (succ a) divAlg {nonneg (succ a)} {nonneg (succ b)} a!=0 b!=0 | record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = inl remIsSmall ; quotSmall = quotSmall } = record { quotient = nonneg quot ; rem = nonneg rem ; remSmall = u ; divAlg = transitivity (applyEquality nonneg (equalityCommutative pr)) t } where t : nonneg ((quot +N b *N quot) +N rem) ≡ nonneg (quot *N succ b) +Z nonneg rem t rewrite multiplicationNIsCommutative (succ b) quot = +Zinherits (quot *N succ b) rem u : (nonneg rem ≡ nonneg 0) || Sg ((nonneg rem ≡ nonneg 0) → False) (λ pr → rem <N succ b) u with TotalOrder.totality ℤOrder (nonneg 0) (nonneg rem) u | inl (inl 0<rem) = inr ((λ p → TotalOrder.irreflexive ℤOrder (TotalOrder.<WellDefined ℤOrder refl p 0<rem)) , remIsSmall) u | inr 0=rem rewrite 0=rem = inl refl divAlg {nonneg (succ a)} {negSucc b} _ _ with divisionAlg (succ b) (succ a) divAlg {nonneg (succ a)} {negSucc b} _ _ | record { quot = zero ; rem = rem ; pr = pr ; remIsSmall = inl remIsSmall ; quotSmall = inl quotSmall } rewrite multiplicationNIsCommutative b 0 = record { quotient = nonneg 0 ; rem = nonneg rem ; remSmall = inr (p , remIsSmall) ; divAlg = applyEquality nonneg (equalityCommutative pr) } where p : (nonneg rem ≡ nonneg 0) → False p pr2 rewrite pr = naughtE (equalityCommutative (nonnegInjective pr2)) divAlg {nonneg (succ a)} {negSucc b} _ _ | record { quot = succ quot ; rem = zero ; pr = pr ; remIsSmall = inl remIsSmall ; quotSmall = inl quotSmall } = record { quotient = negSucc quot ; rem = nonneg zero ; remSmall = inl refl ; divAlg = applyEquality nonneg (transitivity (equalityCommutative pr) (applyEquality (λ i → i +N 0) (multiplicationNIsCommutative (succ b) (succ quot)))) } divAlg {nonneg (succ a)} {negSucc b} _ _ | record { quot = succ quot ; rem = succ rem ; pr = pr ; remIsSmall = inl remIsSmall ; quotSmall = inl quotSmall } = record { quotient = negSucc quot ; rem = nonneg (succ rem) ; remSmall = inr ((λ ()) , remIsSmall) ; divAlg = applyEquality nonneg (transitivity (equalityCommutative pr) (applyEquality (λ i → i +N succ rem) (multiplicationNIsCommutative (succ b) (succ quot)))) } divAlg {negSucc a} {nonneg zero} _ b!=0 = exFalso (b!=0 refl) divAlg {negSucc a} {nonneg (succ b)} _ _ with divisionAlg (succ b) (succ a) divAlg {negSucc a} {nonneg (succ b)} _ _ | record { quot = zero ; rem = zero ; pr = pr ; remIsSmall = inl remIsSmall ; quotSmall = quotSmall } = exFalso (naughtE (transitivity (equalityCommutative (transitivity (Semiring.sumZeroRight ℕSemiring _) (multiplicationNIsCommutative b 0))) pr)) divAlg {negSucc a} {nonneg (succ b)} _ _ | record { quot = succ quot ; rem = zero ; pr = pr ; remIsSmall = inl remIsSmall ; quotSmall = quotSmall } = record { quotient = negSucc quot ; rem = nonneg 0 ; remSmall = inl refl ; divAlg = applyEquality negSucc (succInjective (transitivity (equalityCommutative pr) t)) } where t : succ (quot +N b *N succ quot) +N 0 ≡ succ ((quot +N b *N quot) +N b) t rewrite Semiring.sumZeroRight ℕSemiring (succ (quot +N b *N succ quot)) | Semiring.commutative ℕSemiring (quot +N b *N quot) b | Semiring.+Associative ℕSemiring b quot (b *N quot) | Semiring.commutative ℕSemiring b quot | equalityCommutative (Semiring.+Associative ℕSemiring quot b (b *N quot)) | multiplicationNIsCommutative b (succ quot) | multiplicationNIsCommutative quot b = refl divAlg {negSucc a} {nonneg (succ b)} _ _ | record { quot = zero ; rem = succ rem ; pr = pr ; remIsSmall = inl remIsSmall ; quotSmall = quotSmall } rewrite multiplicationNIsCommutative b 0 | equalityCommutative (succInjective pr) = record { quotient = nonneg zero ; rem = negSucc rem ; remSmall = inr (((λ ()) , remIsSmall)) ; divAlg = refl } divAlg {negSucc a} {nonneg (succ b)} _ _ | record { quot = succ quot ; rem = succ rem ; pr = pr ; remIsSmall = inl remIsSmall ; quotSmall = quotSmall } = record { quotient = negSucc quot ; rem = negSucc rem ; remSmall = inr ((λ ()) , remIsSmall) ; divAlg = applyEquality negSucc (succInjective (transitivity (equalityCommutative pr) t)) } where t : succ b *N succ quot +N succ rem ≡ succ (succ (succ b *N quot +N b) +N rem) t rewrite Semiring.commutative ℕSemiring ((quot +N b *N quot) +N b) rem | Semiring.commutative ℕSemiring (succ rem) ((quot +N b *N quot) +N b) | multiplicationNIsCommutative b (succ quot) | equalityCommutative (Semiring.+Associative ℕSemiring quot (b *N quot) b) | Semiring.commutative ℕSemiring b (quot *N b) | multiplicationNIsCommutative b quot = refl divAlg {negSucc a} {negSucc b} _ _ with divisionAlg (succ b) (succ a) divAlg {negSucc a} {negSucc b} _ _ | record { quot = zero ; rem = zero ; pr = pr ; remIsSmall = inl remIsSmall ; quotSmall = quotSmall } = exFalso (naughtE (transitivity (equalityCommutative (transitivity (Semiring.sumZeroRight ℕSemiring (b *N 0)) (multiplicationNIsCommutative b 0))) pr)) divAlg {negSucc a} {negSucc b} _ _ | record { quot = zero ; rem = succ rem ; pr = pr ; remIsSmall = inl remIsSmall ; quotSmall = quotSmall } rewrite multiplicationNIsCommutative b 0 | equalityCommutative (succInjective pr) = record { quotient = nonneg 0 ; rem = negSucc rem ; remSmall = inr ((λ ()) , remIsSmall) ; divAlg = refl } divAlg {negSucc a} {negSucc b} _ _ | record { quot = succ quot ; rem = zero ; pr = pr ; remIsSmall = inl remIsSmall ; quotSmall = quotSmall } rewrite Semiring.sumZeroRight ℕSemiring (quot +N b *N succ quot) | Semiring.commutative ℕSemiring b (succ quot) = record { quotient = nonneg (succ quot) ; rem = nonneg 0 ; remSmall = inl refl ; divAlg = applyEquality negSucc (succInjective (transitivity (equalityCommutative pr) t)) } where t : succ (quot +N b *N succ quot) ≡ succ ((b +N quot *N b) +N quot) t rewrite Semiring.commutative ℕSemiring quot (b *N succ quot) | multiplicationNIsCommutative b (succ quot) = refl divAlg {negSucc a} {negSucc b} _ _ | record { quot = succ quot ; rem = succ rem ; pr = pr ; remIsSmall = inl remIsSmall ; quotSmall = quotSmall } rewrite multiplicationNIsCommutative b (succ quot) | Semiring.commutative ℕSemiring quot (b +N quot *N b) | Semiring.commutative ℕSemiring ((b +N quot *N b) +N quot) (succ rem) | Semiring.commutative ℕSemiring rem ((b +N quot *N b) +N quot) = record { quotient = nonneg (succ quot) ; rem = negSucc rem ; remSmall = inr (((λ ()) , remIsSmall)) ; divAlg = applyEquality negSucc (equalityCommutative (succInjective pr)) } ℤEuclideanDomain : EuclideanDomain ℤRing EuclideanDomain.isIntegralDomain ℤEuclideanDomain = ℤIntDom EuclideanDomain.norm ℤEuclideanDomain = norm' EuclideanDomain.normSize ℤEuclideanDomain = normSize EuclideanDomain.divisionAlg ℤEuclideanDomain {a} {b} a!=0 b!=0 = divAlg {a} {b} a!=0 b!=0
{ "alphanum_fraction": 0.6966921572, "avg_line_length": 107.1047619048, "ext": "agda", "hexsha": "d25f4770363dcd66d86a2e9d8fd21102ffeef4e7", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Numbers/Integers/RingStructure/EuclideanDomain.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Numbers/Integers/RingStructure/EuclideanDomain.agda", "max_line_length": 566, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Numbers/Integers/RingStructure/EuclideanDomain.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 3764, "size": 11246 }
{-# OPTIONS --without-K --safe #-} data D : Set where c : D → D variable x y : D data P : D → D → Set where c : P (c x) (c y) record Q (y : D) : Set where G : .(Q y) → P x y → Set₁ G _ c = Set
{ "alphanum_fraction": 0.4901960784, "avg_line_length": 12.75, "ext": "agda", "hexsha": "2d9857d6038696178188ca700e7cc05a59fa2246", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Succeed/Issue5611.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Succeed/Issue5611.agda", "max_line_length": 34, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Succeed/Issue5611.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 83, "size": 204 }
{-# OPTIONS --without-K #-} module hott.loop.sum where open import sum open import equality open import function.core open import function.extensionality open import function.isomorphism open import function.overloading open import sets.nat open import pointed open import hott.equivalence open import hott.level.core open import hott.loop.core open import hott.loop.properties private abstract loop-sum' : ∀ {i}{j}{A : Set i}{B : A → Set j}(n : ℕ) → (hB : (a : A) → h n (B a)) → {a₀ : A}{b₀ : B a₀} → Ω n {Σ A B} (a₀ , b₀) ≅ Ω n a₀ loop-sum' 0 hB {a₀}{b₀} = Σ-ap-iso refl≅ (λ a → contr-⊤-iso (hB a)) ·≅ ×-right-unit loop-sum' {A = A}{B = B} (suc n) hB {a₀}{b₀} = Ω-iso n (sym≅ Σ-split-iso) refl ·≅ loop-sum' n λ p → hB _ _ _ loop-sum-β : ∀ {i}{j}{A : Set i}{B : A → Set j}(n : ℕ) → (hB : (a : A) → h n (B a)) → {a₀ : A}{b₀ : B a₀} → (p : Ω n {Σ A B} (a₀ , b₀)) → apply≅ (loop-sum' n hB) p ≡ mapΩ n proj₁ p loop-sum-β zero hB p = refl loop-sum-β (suc n) hB p = loop-sum-β n _ (mapΩ n apΣ p) · mapΩ-hom n apΣ proj₁ p · funext-inv (ap proj₁ (ap (mapΩP n) lem)) p where lem : ∀ {i}{j}{A : Set i}{B : A → Set j}{a₀ : A}{b₀ : B a₀} → _≡_ {A = PMap (_≡_ {A = Σ A B} (a₀ , b₀) (a₀ , b₀) , refl) ((a₀ ≡ a₀) , refl)} (proj₁ ∘ apΣ , refl) (ap proj₁ , refl) lem = apply≅ pmap-eq ((λ _ → refl) , refl) loop-sum : ∀ {i}{j}{A : Set i}{B : A → Set j}(n : ℕ) → (hB : (a : A) → h n (B a)) → {a₀ : A}{b₀ : B a₀} → Ω n {Σ A B} (a₀ , b₀) ≅ Ω n a₀ loop-sum n hB {a₀}{b₀} = ≈⇒≅ (mapΩ n proj₁ , subst weak-equiv eq we) where abstract we : weak-equiv (apply (loop-sum' n hB {a₀}{b₀})) we = proj₂ (≅⇒≈ (loop-sum' n hB)) eq : apply (loop-sum' n hB {a₀}{b₀}) ≡ mapΩ n proj₁ eq = funext (loop-sum-β n hB)
{ "alphanum_fraction": 0.4844689379, "avg_line_length": 35.0175438596, "ext": "agda", "hexsha": "dead2df931861e74d992cfcb5dbd6378c9ba339c", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z", "max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pcapriotti/agda-base", "max_forks_repo_path": "src/hott/loop/sum.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/hott/loop/sum.agda", "max_line_length": 92, "max_stars_count": 20, "max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pcapriotti/agda-base", "max_stars_repo_path": "src/hott/loop/sum.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z", "num_tokens": 798, "size": 1996 }
module Oscar.Property.Associativity where open import Oscar.Level record Associativity {𝔬} {⋆ : Set 𝔬} {𝔪} {_⇒_ : ⋆ → ⋆ → Set 𝔪} (_∙_ : ∀ {y z} → y ⇒ z → ∀ {x} → x ⇒ y → x ⇒ z) {𝔮} (_≤_ : ∀ {x y} → x ⇒ y → x ⇒ y → Set 𝔮) : Set (𝔬 ⊔ 𝔪 ⊔ 𝔮) where field associativity : ∀ {w x} (f : w ⇒ x) {y} (g : x ⇒ y) {z} (h : y ⇒ z) → ((h ∙ g) ∙ f) ≤ (h ∙ (g ∙ f)) open Associativity ⦃ … ⦄ public association : ∀ {𝔬} {⋆ : Set 𝔬} {𝔪} {_⇒_ : ⋆ → ⋆ → Set 𝔪} (_∙_ : ∀ {y z} → y ⇒ z → ∀ {x} → x ⇒ y → x ⇒ z) {𝔮} (_≤_ : ∀ {x y} → x ⇒ y → x ⇒ y → Set 𝔮) ⦃ _ : Associativity _∙_ _≤_ ⦄ → ∀ {w x} (f : w ⇒ x) {y} (g : x ⇒ y) {z} (h : y ⇒ z) → ((h ∙ g) ∙ f) ≤ (h ∙ (g ∙ f)) association _∙_ _≤_ = associativity {_∙_ = _∙_} {_≤_ = _≤_}
{ "alphanum_fraction": 0.4083557951, "avg_line_length": 29.68, "ext": "agda", "hexsha": "c9836f2c5e23a421a45a0f5e02c58c939af50b7c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-2/Oscar/Property/Associativity.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-2/Oscar/Property/Associativity.agda", "max_line_length": 103, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-2/Oscar/Property/Associativity.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 423, "size": 742 }
------------------------------------------------------------------------ -- Universe levels ------------------------------------------------------------------------ module Imports.Level where postulate Level : Set zero : Level suc : (i : Level) → Level _⊔_ : Level -> Level -> Level {-# BUILTIN LEVEL Level #-} {-# BUILTIN LEVELZERO zero #-} {-# BUILTIN LEVELSUC suc #-} {-# BUILTIN LEVELMAX _⊔_ #-} infixl 6 _⊔_
{ "alphanum_fraction": 0.399543379, "avg_line_length": 21.9, "ext": "agda", "hexsha": "6b173f9f82a29c67ca819f63bf807828a7116624", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "np/agda-git-experiment", "max_forks_repo_path": "test/fail/Imports/Level.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "np/agda-git-experiment", "max_issues_repo_path": "test/fail/Imports/Level.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/fail/Imports/Level.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 99, "size": 438 }
module Mockingbird.Forest where open import Mockingbird.Forest.Base public
{ "alphanum_fraction": 0.8552631579, "avg_line_length": 19, "ext": "agda", "hexsha": "5bbef510aee552bc4fe9985285c7c0d29459c54d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "splintah/combinatory-logic", "max_forks_repo_path": "Mockingbird/Forest.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "splintah/combinatory-logic", "max_issues_repo_path": "Mockingbird/Forest.agda", "max_line_length": 42, "max_stars_count": 1, "max_stars_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "splintah/combinatory-logic", "max_stars_repo_path": "Mockingbird/Forest.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-28T23:44:42.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-28T23:44:42.000Z", "num_tokens": 18, "size": 76 }
-- {-# OPTIONS --show-implicit #-} -- {-# OPTIONS -v tc.lhs.unify:65 -v tc.irr:50 #-} open import Agda.Builtin.Nat data B {A : Set} : A → Set where b : (a : A) → B a data C {A : Set} : ∀ a → B {A} a → Set where c : (a : A) → C a (b a) id : ∀ x → C _ x → B 0 id x (c y) = {!!}
{ "alphanum_fraction": 0.4753521127, "avg_line_length": 20.2857142857, "ext": "agda", "hexsha": "490ded96b4af3479ed073fe910f238cb27a07d58", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-04-01T18:30:09.000Z", "max_forks_repo_forks_event_min_datetime": "2021-04-01T18:30:09.000Z", "max_forks_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "hborum/agda", "max_forks_repo_path": "test/interaction/Issue2620.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": "2020-01-26T18:22:08.000Z", "max_issues_repo_issues_event_min_datetime": "2020-01-26T18:22:08.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/interaction/Issue2620.agda", "max_line_length": 50, "max_stars_count": 2, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/interaction/Issue2620.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z", "num_tokens": 121, "size": 284 }
{-# OPTIONS --without-K #-} module hw2 where open import Level using (_⊔_) open import Function using (id) open import Data.Nat using (ℕ; suc; _+_; _*_) open import Data.Empty using (⊥) open import Data.Sum using (_⊎_; inj₁; inj₂) import Level infix 4 _≡_ recℕ : ∀ {ℓ} → (C : Set ℓ) → C → (ℕ → C → C) → ℕ → C recℕ C z f 0 = z recℕ C z f (suc n) = f n (recℕ C z f n) indℕ : ∀ {ℓ} → (C : ℕ → Set ℓ) → C 0 → ((n : ℕ) → C n → C (suc n)) → (n : ℕ) → C n indℕ C z f 0 = z indℕ C z f (suc n) = f n (indℕ C z f n) ------------------------------------------------------------------------------ -- ≡ data _≡_ {ℓ} {A : Set ℓ} : (x y : A) → Set ℓ where refl : (x : A) → x ≡ x rec≡ : {A : Set} → (R : A → A → Set) {reflexiveR : {a : A} → R a a} → ({x y : A} (p : x ≡ y) → R x y) rec≡ R {reflR} (refl y) = reflR {y} ------------------------------------------------------------------------------ -- subst subst : ∀ {ℓ} {A : Set ℓ} {C : A → Set ℓ} → ({x y : A} (p : x ≡ y) → C x → C y) subst (refl x) = id ------------------------------------------------------------------------------ -- ∘ _∘_ : {A B C : Set} → (f : B → C) → (g : A → B) → A → C f ∘ g = (λ a → f (g a)) module Circle1 where private data S¹* : Set where base* : S¹* S¹ : Set S¹ = S¹* base : S¹ base = base* postulate loop : base ≡ base recS¹ : {C : Set} → (cbase : C) → (cloop : cbase ≡ cbase) → S¹ → C recS¹ cbase cloop base* = cbase -- postulate -- βrecS¹ : {C : Set} → (cbase : C) → (cloop : cbase ≡ cbase) -- → ap (recS¹ cbase cloop) loop ≡ cloop -- indS¹ : {C : S¹ → Set} -- → (cbase : C base) → (cloop : transport C look cbase ≡ cbase) -- → apd (indS¹ {C} cbase cloop) loop ≡ cloop
{ "alphanum_fraction": 0.4123303167, "avg_line_length": 23.5733333333, "ext": "agda", "hexsha": "afb0f85544a5bfadc78b1923b4bdc0a1bb28e345", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b05c58ffdaed99932ca2acc632deca8d14742b04", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andmkent/misc-HoTT", "max_forks_repo_path": "hw2.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b05c58ffdaed99932ca2acc632deca8d14742b04", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andmkent/misc-HoTT", "max_issues_repo_path": "hw2.agda", "max_line_length": 78, "max_stars_count": 1, "max_stars_repo_head_hexsha": "b05c58ffdaed99932ca2acc632deca8d14742b04", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "andmkent/misc-HoTT", "max_stars_repo_path": "hw2.agda", "max_stars_repo_stars_event_max_datetime": "2016-01-26T18:17:16.000Z", "max_stars_repo_stars_event_min_datetime": "2016-01-26T18:17:16.000Z", "num_tokens": 705, "size": 1768 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Base.Types open import LibraBFT.ImplShared.Consensus.Types ------------------------------------------------------------------------------ open import Data.String using (String) module LibraBFT.Impl.IO.OBM.Messages where record ECPWire : Set where constructor ECPWire∙new field --_ecpwWhy : Text -- for log visualization --_ecpwEpoch : Epoch -- for log visualization; epoch of sender --_ecpwRound : Round -- for log visualization; round of sender _ecpwECP : EpochChangeProof -- instance S.Serialize ECPWire record EpRRqWire : Set where constructor EpRRqWire∙new field --_eprrqwWhy : Text -- for log visualization --_eprrqEpoch : Epoch -- for log visualization; epoch of sender --_eprrqRound : Round -- for log visualization; round of sender _eprrqEpRRq : EpochRetrievalRequest -- instance S.Serialize EpRRqWire data Input : Set where IBlockRetrievalRequest : Instant → BlockRetrievalRequest → Input IBlockRetrievalResponse : Instant → BlockRetrievalResponse → Input IEpochChangeProof : AccountAddress → ECPWire → Input IEpochRetrievalRequest : AccountAddress → EpRRqWire → Input IInit : Instant → Input IProposal : Instant → AccountAddress → ProposalMsg → Input IReconfigLocalEpochChange : ReconfigEventEpochChange → Input ISyncInfo : Instant → AccountAddress → SyncInfo → Input ITimeout : Instant → String {-String is ThreadId-} → Epoch → Round → Input IVote : Instant → AccountAddress → VoteMsg → Input
{ "alphanum_fraction": 0.5682539683, "avg_line_length": 50.1136363636, "ext": "agda", "hexsha": "16cc37fd3f48f690f6c239b32ffde98c6b6de50c", "lang": "Agda", "max_forks_count": 6, "max_forks_repo_forks_event_max_datetime": "2022-02-18T01:04:32.000Z", "max_forks_repo_forks_event_min_datetime": "2020-12-16T19:43:52.000Z", "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/Impl/IO/OBM/Messages.agda", "max_issues_count": 72, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": "2022-03-25T05:36:11.000Z", "max_issues_repo_issues_event_min_datetime": "2021-02-04T05:04:33.000Z", "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/Impl/IO/OBM/Messages.agda", "max_line_length": 111, "max_stars_count": 4, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/Impl/IO/OBM/Messages.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-18T19:24:05.000Z", "max_stars_repo_stars_event_min_datetime": "2020-12-16T19:43:41.000Z", "num_tokens": 496, "size": 2205 }
------------------------------------------------------------------------------ -- Totality properties of the division ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Program.Division.TotalityATP where open import FOTC.Base open import FOTC.Data.Nat open import FOTC.Data.Nat.Inequalities open import FOTC.Program.Division.Division open import FOTC.Program.Division.Specification ------------------------------------------------------------------------------ -- The division is total when the dividend is less than the divisor. postulate div-x<y-N : ∀ {i j} → i < j → N (div i j) {-# ATP prove div-x<y-N #-} -- The division is total when the dividend is greater or equal than -- the divisor. -- N (div (i ∸ j) j) i ≮j → div i j ≡ succ (div (i ∸ j) j) ------------------------------------------------------------------ -- N (div i j) postulate div-x≮y-N : ∀ {i j} → (divSpec (i ∸ j) j (div (i ∸ j) j)) → i ≮ j → N (div i j) {-# ATP prove div-x≮y-N #-}
{ "alphanum_fraction": 0.4299287411, "avg_line_length": 36.0857142857, "ext": "agda", "hexsha": "36bf6eaba4c26b72ef60d6002668c154bf377e14", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Program/Division/TotalityATP.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Program/Division/TotalityATP.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Program/Division/TotalityATP.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 280, "size": 1263 }
module L0E where open import Common -- Syntax data Conj : Set where and or : Conj data N : Set where Saddie Liz Hank : N data Vᵢ : Set where snores sleeps is-boring : Vᵢ data Vₜ : Set where loves hates is-taller-than : Vₜ data Neg : Set where it-is-not-the-case-that : Neg data VP : Set where iv : Vᵢ -> VP tv : Vₜ -> N -> VP data S : Set where sconjs : S -> Conj -> S -> S negs : Neg -> S -> S predvp : N -> VP -> S example1 : S example1 = predvp Saddie (iv snores) example2 : S example2 = predvp Liz (iv sleeps) example3 : S example3 = negs it-is-not-the-case-that (predvp Hank (iv snores)) example41 example42 : S example41 = sconjs (sconjs (predvp Saddie (iv sleeps)) or (predvp Liz (iv is-boring))) and (predvp Hank (iv snores)) example42 = sconjs (predvp Saddie (iv sleeps)) or (sconjs (predvp Liz (iv is-boring)) and (predvp Hank (iv snores))) example5 : S example5 = negs it-is-not-the-case-that (negs it-is-not-the-case-that (predvp Saddie (iv sleeps))) -- Semantics data Individual : Set where Anwar_Sadat : Individual Queen_Elizabeth_II : Individual Henry_Kissinger : Individual ⟦_⟧N : N -> Individual ⟦ Saddie ⟧N = Anwar_Sadat ⟦ Liz ⟧N = Queen_Elizabeth_II ⟦ Hank ⟧N = Henry_Kissinger ⟦_⟧̬̬̌Vᵢ : Vᵢ -> Individual -> Bool ⟦ snores ⟧̬̬̌Vᵢ Anwar_Sadat = true ⟦ snores ⟧̬̬̌Vᵢ Queen_Elizabeth_II = true ⟦ snores ⟧̬̬̌Vᵢ Henry_Kissinger = false ⟦ sleeps ⟧̬̬̌Vᵢ Anwar_Sadat = true ⟦ sleeps ⟧̬̬̌Vᵢ Queen_Elizabeth_II = false ⟦ sleeps ⟧̬̬̌Vᵢ Henry_Kissinger = false ⟦ is-boring ⟧̬̬̌Vᵢ Anwar_Sadat = true ⟦ is-boring ⟧̬̬̌Vᵢ Queen_Elizabeth_II = true ⟦ is-boring ⟧̬̬̌Vᵢ Henry_Kissinger = true ⟦_⟧Vₜ : Vₜ -> Individual -> Individual -> Bool ⟦ loves ⟧Vₜ Anwar_Sadat _ = true ⟦ loves ⟧Vₜ Queen_Elizabeth_II Anwar_Sadat = false ⟦ loves ⟧Vₜ Queen_Elizabeth_II Queen_Elizabeth_II = true ⟦ loves ⟧Vₜ Queen_Elizabeth_II Henry_Kissinger = false ⟦ loves ⟧Vₜ Henry_Kissinger Anwar_Sadat = true ⟦ loves ⟧Vₜ Henry_Kissinger Queen_Elizabeth_II = false ⟦ loves ⟧Vₜ Henry_Kissinger Henry_Kissinger = true ⟦ hates ⟧Vₜ Anwar_Sadat _ = false ⟦ hates ⟧Vₜ Queen_Elizabeth_II Anwar_Sadat = true ⟦ hates ⟧Vₜ Queen_Elizabeth_II Queen_Elizabeth_II = false ⟦ hates ⟧Vₜ Queen_Elizabeth_II Henry_Kissinger = true ⟦ hates ⟧Vₜ Henry_Kissinger Anwar_Sadat = false ⟦ hates ⟧Vₜ Henry_Kissinger Queen_Elizabeth_II = true ⟦ hates ⟧Vₜ Henry_Kissinger Henry_Kissinger = false ⟦ is-taller-than ⟧Vₜ Anwar_Sadat Anwar_Sadat = false ⟦ is-taller-than ⟧Vₜ Anwar_Sadat Queen_Elizabeth_II = true ⟦ is-taller-than ⟧Vₜ Anwar_Sadat Henry_Kissinger = false ⟦ is-taller-than ⟧Vₜ Queen_Elizabeth_II _ = false ⟦ is-taller-than ⟧Vₜ Henry_Kissinger Anwar_Sadat = true ⟦ is-taller-than ⟧Vₜ Henry_Kissinger Queen_Elizabeth_II = true ⟦ is-taller-than ⟧Vₜ Henry_Kissinger Henry_Kissinger = false ⟦_⟧VP : VP -> Individual -> Bool ⟦ iv v ⟧VP = ⟦ v ⟧̬̬̌Vᵢ ⟦ tv v n ⟧VP = ⟦ v ⟧Vₜ ⟦ n ⟧N ⟦_⟧S : S -> Bool ⟦ sconjs x and x₂ ⟧S = ⟦ x ⟧S && ⟦ x₂ ⟧S ⟦ sconjs x or x₂ ⟧S = ⟦ x ⟧S || ⟦ x₂ ⟧S ⟦ negs x x₁ ⟧S = neg ⟦ x₁ ⟧S ⟦ predvp x x₁ ⟧S = ⟦ x₁ ⟧VP ⟦ x ⟧N
{ "alphanum_fraction": 0.6985850609, "avg_line_length": 28.4018691589, "ext": "agda", "hexsha": "1c4813e7422fc37b1d25a2dc5eddb6a0e927ed2e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9f8bbff7248dbeb54919e03957daf9b35ec1ac23", "max_forks_repo_licenses": [ "Artistic-2.0" ], "max_forks_repo_name": "daherb/Agda-Montague", "max_forks_repo_path": "L0E.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9f8bbff7248dbeb54919e03957daf9b35ec1ac23", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Artistic-2.0" ], "max_issues_repo_name": "daherb/Agda-Montague", "max_issues_repo_path": "L0E.agda", "max_line_length": 116, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9f8bbff7248dbeb54919e03957daf9b35ec1ac23", "max_stars_repo_licenses": [ "Artistic-2.0" ], "max_stars_repo_name": "daherb/Agda-Montague", "max_stars_repo_path": "L0E.agda", "max_stars_repo_stars_event_max_datetime": "2020-12-18T11:56:24.000Z", "max_stars_repo_stars_event_min_datetime": "2020-12-18T11:56:24.000Z", "num_tokens": 1308, "size": 3039 }
-- There was a problem with open public in parameterised modules. module Issue165 where postulate X : Set module M where postulate P : Set module R₀ (X : Set) where open M public module R₁ (X : Set) where open R₀ X public open R₁ X postulate p : P
{ "alphanum_fraction": 0.7115384615, "avg_line_length": 14.4444444444, "ext": "agda", "hexsha": "c9c4589a656323fa5e0bec16f50bfb4f69637d12", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue165.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue165.agda", "max_line_length": 65, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue165.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 79, "size": 260 }
-- In this file we consider the special of localising at a single -- element f : R (or rather the set of powers of f). This is also -- known as inverting f. -- We then prove that localising first at an element f and at an element -- g (or rather the image g/1) is the same as localising at the product f·g -- This fact has an important application in algebraic geometry where it's -- used to define the structure sheaf of a commutative ring. {-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Algebra.CommRing.Localisation.InvertingElements where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.HLevels open import Cubical.Foundations.Powerset open import Cubical.Foundations.Transport open import Cubical.Functions.FunExtEquiv import Cubical.Data.Empty as ⊥ open import Cubical.Data.Bool open import Cubical.Data.Nat renaming ( _+_ to _+ℕ_ ; _·_ to _·ℕ_ ; +-comm to +ℕ-comm ; +-assoc to +ℕ-assoc ; ·-assoc to ·ℕ-assoc ; ·-comm to ·ℕ-comm) open import Cubical.Data.Nat.Order open import Cubical.Data.Vec open import Cubical.Data.Sigma.Base open import Cubical.Data.Sigma.Properties open import Cubical.Data.FinData open import Cubical.Relation.Nullary open import Cubical.Relation.Binary open import Cubical.Algebra.Group open import Cubical.Algebra.AbGroup open import Cubical.Algebra.Monoid open import Cubical.Algebra.Ring open import Cubical.Algebra.CommRing open import Cubical.Algebra.CommRing.Localisation.Base open import Cubical.Algebra.CommRing.Localisation.UniversalProperty open import Cubical.Algebra.RingSolver.ReflectionSolving open import Cubical.HITs.SetQuotients as SQ open import Cubical.HITs.PropositionalTruncation as PT open Iso private variable ℓ ℓ' : Level A : Type ℓ module _(R' : CommRing ℓ) where open isMultClosedSubset private R = fst R' open CommRingStr (snd R') open Exponentiation R' [_ⁿ|n≥0] : R → ℙ R [ f ⁿ|n≥0] g = (∃[ n ∈ ℕ ] g ≡ f ^ n) , isPropPropTrunc -- Σ[ n ∈ ℕ ] (s ≡ f ^ n) × (∀ m → s ≡ f ^ m → n ≤ m) maybe better, this isProp: -- (n,s≡fⁿ,p) (m,s≡fᵐ,q) then n≤m by p and m≤n by q => n≡m powersFormMultClosedSubset : (f : R) → isMultClosedSubset R' [ f ⁿ|n≥0] powersFormMultClosedSubset f .containsOne = PT.∣ zero , refl ∣ powersFormMultClosedSubset f .multClosed = PT.map2 λ (m , p) (n , q) → (m +ℕ n) , (λ i → (p i) · (q i)) ∙ ·-of-^-is-^-of-+ f m n R[1/_] : R → Type ℓ R[1/ f ] = Loc.S⁻¹R R' [ f ⁿ|n≥0] (powersFormMultClosedSubset f) R[1/_]AsCommRing : R → CommRing ℓ R[1/ f ]AsCommRing = Loc.S⁻¹RAsCommRing R' [ f ⁿ|n≥0] (powersFormMultClosedSubset f) -- A useful lemma: (gⁿ/1)≡(g/1)ⁿ in R[1/f] ^-respects-/1 : {f g : R} (n : ℕ) → [ (g ^ n) , 1r , PT.∣ 0 , (λ _ → 1r) ∣ ] ≡ Exponentiation._^_ R[1/ f ]AsCommRing [ g , 1r , powersFormMultClosedSubset _ .containsOne ] n ^-respects-/1 zero = refl ^-respects-/1 {f} {g} (suc n) = eq/ _ _ ( (1r , powersFormMultClosedSubset f .containsOne) , cong (1r · (g · (g ^ n)) ·_) (·Lid 1r)) ∙ cong (CommRingStr._·_ (R[1/ f ]AsCommRing .snd) [ g , 1r , powersFormMultClosedSubset f .containsOne ]) (^-respects-/1 n) -- A slight improvement for eliminating into propositions InvElPropElim : {f : R} {P : R[1/ f ] → Type ℓ'} → (∀ x → isProp (P x)) → (∀ (r : R) (n : ℕ) → P [ r , (f ^ n) , PT.∣ n , refl ∣ ]) -- ∀ r n → P (r/fⁿ) ---------------------------------------------------------- → (∀ x → P x) InvElPropElim {f = f} {P = P} PisProp base = elimProp (λ _ → PisProp _) []-case where S[f] = Loc.S R' [ f ⁿ|n≥0] (powersFormMultClosedSubset f) []-case : (a : R × S[f]) → P [ a ] []-case (r , s , s∈S[f]) = PT.rec (PisProp _) Σhelper s∈S[f] where Σhelper : Σ[ n ∈ ℕ ] s ≡ f ^ n → P [ r , s , s∈S[f] ] Σhelper (n , p) = subst P (cong [_] (≡-× refl (Σ≡Prop (λ _ → isPropPropTrunc) (sym p)))) (base r n) -- For predicates over the set of powers powersPropElim : {f : R} {P : R → Type ℓ'} → (∀ x → isProp (P x)) → (∀ n → P (f ^ n)) ------------------------------ → ∀ s → s ∈ [ f ⁿ|n≥0] → P s powersPropElim {f = f} {P = P} PisProp base s = PT.rec (PisProp s) λ (n , p) → subst P (sym p) (base n) module DoubleLoc (R' : CommRing ℓ) (f g : (fst R')) where open isMultClosedSubset open CommRingStr (snd R') open CommRingTheory R' open Exponentiation R' open RingTheory (CommRing→Ring R') open CommRingStr (snd (R[1/_]AsCommRing R' f)) renaming ( _·_ to _·ᶠ_ ; 1r to 1ᶠ ; _+_ to _+ᶠ_ ; 0r to 0ᶠ ; ·Lid to ·ᶠ-lid ; ·Rid to ·ᶠ-rid ; ·Assoc to ·ᶠ-assoc ; ·-comm to ·ᶠ-comm) open IsRingHom private R = fst R' R[1/f] = R[1/_] R' f R[1/f]AsCommRing = R[1/_]AsCommRing R' f R[1/fg] = R[1/_] R' (f · g) R[1/fg]AsCommRing = R[1/_]AsCommRing R' (f · g) R[1/f][1/g] = R[1/_] (R[1/_]AsCommRing R' f) [ g , 1r , powersFormMultClosedSubset R' f .containsOne ] R[1/f][1/g]AsCommRing = R[1/_]AsCommRing (R[1/_]AsCommRing R' f) [ g , 1r , powersFormMultClosedSubset R' f .containsOne ] R[1/f][1/g]ˣ = R[1/f][1/g]AsCommRing ˣ _/1/1 : R → R[1/f][1/g] r /1/1 = [ [ r , 1r , PT.∣ 0 , refl ∣ ] , 1ᶠ , PT.∣ 0 , refl ∣ ] /1/1AsCommRingHom : CommRingHom R' R[1/f][1/g]AsCommRing fst /1/1AsCommRingHom = _/1/1 snd /1/1AsCommRingHom = makeIsRingHom refl lem+ lem· where lem+ : _ lem+ r r' = cong [_] (≡-× (cong [_] (≡-× (cong₂ _+_ (sym (·Rid _) ∙ (λ i → (·Rid r (~ i)) · (·Rid 1r (~ i)))) (sym (·Rid _) ∙ (λ i → (·Rid r' (~ i)) · (·Rid 1r (~ i))))) (Σ≡Prop (λ _ → isPropPropTrunc) (sym (·Lid _) ∙ (λ i → (·Lid 1r (~ i)) · (·Lid 1r (~ i))))))) (Σ≡Prop (λ _ → isPropPropTrunc) (sym (·ᶠ-lid 1ᶠ)))) lem· : _ lem· r r' = cong [_] (≡-× (cong [_] (≡-× refl (Σ≡Prop (λ _ → isPropPropTrunc) (sym (·Lid _))))) (Σ≡Prop (λ _ → isPropPropTrunc) (sym (·ᶠ-lid 1ᶠ)))) -- this will give us a map R[1/fg] → R[1/f][1/g] by the universal property of localisation fⁿgⁿ/1/1∈R[1/f][1/g]ˣ : (s : R) → s ∈ ([_ⁿ|n≥0] R' (f · g)) → s /1/1 ∈ R[1/f][1/g]ˣ fⁿgⁿ/1/1∈R[1/f][1/g]ˣ = powersPropElim R' (λ s → R[1/f][1/g]ˣ (s /1/1) .snd) ℕcase where ℕcase : (n : ℕ) → ((f · g) ^ n) /1/1 ∈ R[1/f][1/g]ˣ ℕcase n = [ [ 1r , (f ^ n) , PT.∣ n , refl ∣ ] , [ (g ^ n) , 1r , PT.∣ 0 , refl ∣ ] --denominator , PT.∣ n , ^-respects-/1 _ n ∣ ] , eq/ _ _ ((1ᶠ , powersFormMultClosedSubset _ _ .containsOne) , eq/ _ _ ((1r , powersFormMultClosedSubset _ _ .containsOne) , path)) where eq1 : ∀ x → 1r · (1r · (x · 1r) · 1r) · (1r · 1r · (1r · 1r)) ≡ x eq1 = solve R' eq2 : ∀ x y → x · y ≡ 1r · (1r · 1r · (1r · y)) · (1r · (1r · x) · 1r) eq2 = solve R' path : 1r · (1r · ((f · g) ^ n · 1r) · 1r) · (1r · 1r · (1r · 1r)) ≡ 1r · (1r · 1r · (1r · g ^ n)) · (1r · (1r · f ^ n) · 1r) path = 1r · (1r · ((f · g) ^ n · 1r) · 1r) · (1r · 1r · (1r · 1r)) ≡⟨ eq1 ((f · g) ^ n) ⟩ (f · g) ^ n ≡⟨ ^-ldist-· _ _ _ ⟩ f ^ n · g ^ n ≡⟨ eq2 (f ^ n) (g ^ n) ⟩ 1r · (1r · 1r · (1r · g ^ n)) · (1r · (1r · f ^ n) · 1r) ∎ -- the main result: localising at one element and then at another is -- the same as localising at the product. -- takes forever to compute without experimental lossy unification R[1/fg]≡R[1/f][1/g] : R[1/fg]AsCommRing ≡ R[1/f][1/g]AsCommRing R[1/fg]≡R[1/f][1/g] = S⁻¹RChar R' ([_ⁿ|n≥0] R' (f · g)) (powersFormMultClosedSubset R' (f · g)) _ /1/1AsCommRingHom pathtoR[1/fg] where open PathToS⁻¹R pathtoR[1/fg] : PathToS⁻¹R R' ([_ⁿ|n≥0] R' (f · g)) (powersFormMultClosedSubset R' (f · g)) R[1/f][1/g]AsCommRing /1/1AsCommRingHom φS⊆Aˣ pathtoR[1/fg] = fⁿgⁿ/1/1∈R[1/f][1/g]ˣ kerφ⊆annS pathtoR[1/fg] r p = toGoal helperR[1/f] where open RingTheory (CommRing→Ring R[1/f]AsCommRing) renaming ( 0RightAnnihilates to 0ᶠRightAnnihilates ; 0LeftAnnihilates to 0ᶠ-leftNullifies) open Exponentiation R[1/f]AsCommRing renaming (_^_ to _^ᶠ_) hiding (·-of-^-is-^-of-+ ; ^-ldist-·) S[f] = Loc.S R' ([_ⁿ|n≥0] R' f) (powersFormMultClosedSubset R' f) S[fg] = Loc.S R' ([_ⁿ|n≥0] R' (f · g)) (powersFormMultClosedSubset R' (f · g)) g/1 : R[1/_] R' f g/1 = [ g , 1r , powersFormMultClosedSubset R' f .containsOne ] S[g/1] = Loc.S R[1/f]AsCommRing ([_ⁿ|n≥0] R[1/f]AsCommRing g/1) (powersFormMultClosedSubset R[1/f]AsCommRing g/1) r/1 : R[1/_] R' f r/1 = [ r , 1r , powersFormMultClosedSubset R' f .containsOne ] -- this is the crucial step, modulo truncation we can take p to be generated -- by the quotienting relation of localisation. Note that we wouldn't be able -- to prove our goal if kerφ⊆annS was formulated with a Σ instead of a ∃ ∥r/1,1/1≈0/1,1/1∥ : ∃[ u ∈ S[g/1] ] fst u ·ᶠ r/1 ·ᶠ 1ᶠ ≡ fst u ·ᶠ 0ᶠ ·ᶠ 1ᶠ ∥r/1,1/1≈0/1,1/1∥ = Iso.fun (SQ.isEquivRel→TruncIso (Loc.locIsEquivRel _ _ _) _ _) p helperR[1/f] : ∃[ n ∈ ℕ ] [ g ^ n · r , 1r , PT.∣ 0 , refl ∣ ] ≡ 0ᶠ helperR[1/f] = PT.rec isPropPropTrunc (uncurry (uncurry (powersPropElim R[1/f]AsCommRing (λ _ → isPropΠ (λ _ → isPropPropTrunc)) baseCase))) ∥r/1,1/1≈0/1,1/1∥ where baseCase : ∀ n → g/1 ^ᶠ n ·ᶠ r/1 ·ᶠ 1ᶠ ≡ g/1 ^ᶠ n ·ᶠ 0ᶠ ·ᶠ 1ᶠ → ∃[ n ∈ ℕ ] [ g ^ n · r , 1r , PT.∣ 0 , refl ∣ ] ≡ 0ᶠ baseCase n q = PT.∣ n , path ∣ where path : [ g ^ n · r , 1r , PT.∣ 0 , refl ∣ ] ≡ 0ᶠ path = [ g ^ n · r , 1r , PT.∣ 0 , refl ∣ ] ≡⟨ cong [_] (≡-× refl (Σ≡Prop (λ _ → isPropPropTrunc) (sym (·Rid _)))) ⟩ [ g ^ n , 1r , PT.∣ 0 , refl ∣ ] ·ᶠ r/1 ≡⟨ cong (_·ᶠ r/1) (^-respects-/1 _ n) ⟩ g/1 ^ᶠ n ·ᶠ r/1 ≡⟨ sym (·ᶠ-rid _) ⟩ g/1 ^ᶠ n ·ᶠ r/1 ·ᶠ 1ᶠ ≡⟨ q ⟩ g/1 ^ᶠ n ·ᶠ 0ᶠ ·ᶠ 1ᶠ ≡⟨ cong (_·ᶠ 1ᶠ) (0ᶠRightAnnihilates _) ∙ 0ᶠ-leftNullifies 1ᶠ ⟩ 0ᶠ ∎ toGoal : ∃[ n ∈ ℕ ] [ g ^ n · r , 1r , PT.∣ 0 , refl ∣ ] ≡ 0ᶠ → ∃[ u ∈ S[fg] ] fst u · r ≡ 0r toGoal = PT.rec isPropPropTrunc Σhelper where Σhelper : Σ[ n ∈ ℕ ] [ g ^ n · r , 1r , PT.∣ 0 , refl ∣ ] ≡ 0ᶠ → ∃[ u ∈ S[fg] ] fst u · r ≡ 0r Σhelper (n , q) = PT.map Σhelper2 helperR where -- now, repeat the above strategy with q ∥gⁿr≈0∥ : ∃[ u ∈ S[f] ] fst u · (g ^ n · r) · 1r ≡ fst u · 0r · 1r ∥gⁿr≈0∥ = Iso.fun (SQ.isEquivRel→TruncIso (Loc.locIsEquivRel _ _ _) _ _) q helperR : ∃[ m ∈ ℕ ] f ^ m · g ^ n · r ≡ 0r helperR = PT.rec isPropPropTrunc (uncurry (uncurry (powersPropElim R' (λ _ → isPropΠ (λ _ → isPropPropTrunc)) baseCase))) ∥gⁿr≈0∥ where baseCase : (m : ℕ) → f ^ m · (g ^ n · r) · 1r ≡ f ^ m · 0r · 1r → ∃[ m ∈ ℕ ] f ^ m · g ^ n · r ≡ 0r baseCase m q' = PT.∣ m , path ∣ where path : f ^ m · g ^ n · r ≡ 0r path = (λ i → ·Rid (·Assoc (f ^ m) (g ^ n) r (~ i)) (~ i)) ∙∙ q' ∙∙ (λ i → ·Rid (0RightAnnihilates (f ^ m) i) i) Σhelper2 : Σ[ m ∈ ℕ ] f ^ m · g ^ n · r ≡ 0r → Σ[ u ∈ S[fg] ] fst u · r ≡ 0r Σhelper2 (m , q') = (((f · g) ^ l) , PT.∣ l , refl ∣) , path where l = max m n path : (f · g) ^ l · r ≡ 0r path = (f · g) ^ l · r ≡⟨ cong (_· r) (^-ldist-· _ _ _) ⟩ f ^ l · g ^ l · r ≡⟨ cong₂ (λ x y → f ^ x · g ^ y · r) (sym (≤-∸-+-cancel {m = m} left-≤-max)) (sym (≤-∸-+-cancel {m = n} right-≤-max)) ⟩ f ^ (l ∸ m +ℕ m) · g ^ (l ∸ n +ℕ n) · r ≡⟨ cong₂ (λ x y → x · y · r) (sym (·-of-^-is-^-of-+ _ _ _)) (sym (·-of-^-is-^-of-+ _ _ _)) ⟩ f ^ (l ∸ m) · f ^ m · (g ^ (l ∸ n) · g ^ n) · r ≡⟨ cong (_· r) (·-commAssocSwap _ _ _ _) ⟩ f ^ (l ∸ m) · g ^ (l ∸ n) · (f ^ m · g ^ n) · r ≡⟨ sym (·Assoc _ _ _) ⟩ f ^ (l ∸ m) · g ^ (l ∸ n) · (f ^ m · g ^ n · r) ≡⟨ cong (f ^ (l ∸ m) · g ^ (l ∸ n) ·_) q' ⟩ f ^ (l ∸ m) · g ^ (l ∸ n) · 0r ≡⟨ 0RightAnnihilates _ ⟩ 0r ∎ surχ pathtoR[1/fg] = InvElPropElim _ (λ _ → isPropPropTrunc) toGoal where open Exponentiation R[1/f]AsCommRing renaming (_^_ to _^ᶠ_) hiding (·-of-^-is-^-of-+ ; ^-ldist-·) open CommRingStr (snd R[1/f][1/g]AsCommRing) renaming (_·_ to _·R[1/f][1/g]_) hiding (1r ; ·Lid ; ·Rid ; ·Assoc) open Units R[1/f][1/g]AsCommRing g/1 : R[1/_] R' f g/1 = [ g , 1r , powersFormMultClosedSubset R' f .containsOne ] S[fg] = Loc.S R' ([_ⁿ|n≥0] R' (f · g)) (powersFormMultClosedSubset R' (f · g)) baseCase : (r : R) (m n : ℕ) → ∃[ x ∈ R × S[fg] ] (x .fst /1/1) ≡ [ [ r , f ^ m , PT.∣ m , refl ∣ ] , [ g ^ n , 1r , PT.∣ 0 , refl ∣ ] , PT.∣ n , ^-respects-/1 _ n ∣ ] ·R[1/f][1/g] (x .snd .fst /1/1) baseCase r m n = PT.∣ ((r · f ^ (l ∸ m) · g ^ (l ∸ n)) -- x .fst , (f · g) ^ l , PT.∣ l , refl ∣) -- x .snd , eq/ _ _ ((1ᶠ , PT.∣ 0 , refl ∣) , eq/ _ _ ((1r , PT.∣ 0 , refl ∣) , path)) ∣ -- reduce equality of double fractions into equality in R where eq1 : ∀ r flm gln gn fm → 1r · (1r · (r · flm · gln) · (gn · 1r)) · (1r · (fm · 1r) · 1r) ≡ r · flm · (gln · gn) · fm eq1 = solve R' eq2 : ∀ r flm gl fm → r · flm · gl · fm ≡ r · (flm · fm ) · gl eq2 = solve R' eq3 : ∀ r fgl → r · fgl ≡ 1r · (1r · (r · fgl) · 1r) · (1r · 1r · (1r · 1r)) eq3 = solve R' l = max m n path : 1r · (1r · (r · f ^ (l ∸ m) · g ^ (l ∸ n)) · (g ^ n · 1r)) · (1r · (f ^ m · 1r) · 1r) ≡ 1r · (1r · (r · (f · g) ^ l) · 1r) · (1r · 1r · (1r · 1r)) path = 1r · (1r · (r · f ^ (l ∸ m) · g ^ (l ∸ n)) · (g ^ n · 1r)) · (1r · (f ^ m · 1r) · 1r) ≡⟨ eq1 r (f ^ (l ∸ m)) (g ^ (l ∸ n)) (g ^ n) (f ^ m) ⟩ r · f ^ (l ∸ m) · (g ^ (l ∸ n) · g ^ n) · f ^ m ≡⟨ cong (λ x → r · f ^ (l ∸ m) · x · f ^ m) (·-of-^-is-^-of-+ _ _ _) ⟩ r · f ^ (l ∸ m) · g ^ (l ∸ n +ℕ n) · f ^ m ≡⟨ cong (λ x → r · f ^ (l ∸ m) · g ^ x · f ^ m) (≤-∸-+-cancel right-≤-max) ⟩ r · f ^ (l ∸ m) · g ^ l · f ^ m ≡⟨ eq2 r (f ^ (l ∸ m)) (g ^ l) (f ^ m) ⟩ r · (f ^ (l ∸ m) · f ^ m) · g ^ l ≡⟨ cong (λ x → r · x · g ^ l) (·-of-^-is-^-of-+ _ _ _) ⟩ r · f ^ (l ∸ m +ℕ m) · g ^ l ≡⟨ cong (λ x → r · f ^ x · g ^ l) (≤-∸-+-cancel left-≤-max) ⟩ r · f ^ l · g ^ l ≡⟨ sym (·Assoc _ _ _) ⟩ r · (f ^ l · g ^ l) ≡⟨ cong (r ·_) (sym (^-ldist-· _ _ _)) ⟩ r · (f · g) ^ l ≡⟨ eq3 r ((f · g) ^ l) ⟩ 1r · (1r · (r · (f · g) ^ l) · 1r) · (1r · 1r · (1r · 1r)) ∎ base-^ᶠ-helper : (r : R) (m n : ℕ) → ∃[ x ∈ R × S[fg] ] (x .fst /1/1) ≡ [ [ r , f ^ m , PT.∣ m , refl ∣ ] , g/1 ^ᶠ n , PT.∣ n , refl ∣ ] ·R[1/f][1/g] (x .snd .fst /1/1) base-^ᶠ-helper r m n = subst (λ y → ∃[ x ∈ R × S[fg] ] (x .fst /1/1) ≡ [ [ r , f ^ m , PT.∣ m , refl ∣ ] , y ] ·R[1/f][1/g] (x .snd .fst /1/1)) (Σ≡Prop (λ _ → isPropPropTrunc) (^-respects-/1 _ n)) (baseCase r m n) indStep : (r : R[1/_] R' f) (n : ℕ) → ∃[ x ∈ R × S[fg] ] (x .fst /1/1) ≡ [ r , g/1 ^ᶠ n , PT.∣ n , refl ∣ ] ·R[1/f][1/g] (x .snd .fst /1/1) indStep = InvElPropElim _ (λ _ → isPropΠ λ _ → isPropPropTrunc) base-^ᶠ-helper toGoal : (r : R[1/_] R' f) (n : ℕ) → ∃[ x ∈ R × S[fg] ] (x .fst /1/1) ·R[1/f][1/g] ((x .snd .fst /1/1) ⁻¹) ⦃ φS⊆Aˣ pathtoR[1/fg] (x .snd .fst) (x .snd .snd) ⦄ ≡ [ r , g/1 ^ᶠ n , PT.∣ n , refl ∣ ] toGoal r n = PT.map Σhelper (indStep r n) where Σhelper : Σ[ x ∈ R × S[fg] ] (x .fst /1/1) ≡ [ r , g/1 ^ᶠ n , PT.∣ n , refl ∣ ] ·R[1/f][1/g] (x .snd .fst /1/1) → Σ[ x ∈ R × S[fg] ] (x .fst /1/1) ·R[1/f][1/g] ((x .snd .fst /1/1) ⁻¹) ⦃ φS⊆Aˣ pathtoR[1/fg] (x .snd .fst) (x .snd .snd) ⦄ ≡ [ r , g/1 ^ᶠ n , PT.∣ n , refl ∣ ] Σhelper ((r' , s , s∈S[fg]) , p) = (r' , s , s∈S[fg]) , ⁻¹-eq-elim ⦃ φS⊆Aˣ pathtoR[1/fg] s s∈S[fg] ⦄ p -- In this module we construct the map R[1/fg]→R[1/f][1/g] directly -- and show that it is equal (although not judgementally) to the map induced -- by the universal property of localisation, i.e. transporting along the path -- constructed above. Given that this is the easier direction, we can see that -- it is pretty cumbersome to prove R[1/fg]≡R[1/f][1/g] directly, -- which illustrates the usefulness of S⁻¹RChar quite well. private module check where φ : R[1/fg] → R[1/f][1/g] φ = SQ.rec squash/ ϕ ϕcoh where S[fg] = Loc.S R' ([_ⁿ|n≥0] R' (f · g)) (powersFormMultClosedSubset R' (f · g)) curriedϕΣ : (r s : R) → Σ[ n ∈ ℕ ] s ≡ (f · g) ^ n → R[1/f][1/g] curriedϕΣ r s (n , s≡fg^n) = [ [ r , (f ^ n) , PT.∣ n , refl ∣ ] , [ (g ^ n) , 1r , PT.∣ 0 , refl ∣ ] --denominator , PT.∣ n , ^-respects-/1 R' n ∣ ] curriedϕ : (r s : R) → ∃[ n ∈ ℕ ] s ≡ (f · g) ^ n → R[1/f][1/g] curriedϕ r s = elim→Set (λ _ → squash/) (curriedϕΣ r s) coh where coh : (x y : Σ[ n ∈ ℕ ] s ≡ (f · g) ^ n) → curriedϕΣ r s x ≡ curriedϕΣ r s y coh (n , s≡fg^n) (m , s≡fg^m) = eq/ _ _ ((1ᶠ , PT.∣ 0 , refl ∣) , eq/ _ _ ( (1r , powersFormMultClosedSubset R' f .containsOne) , path)) where eq1 : ∀ r gm fm → 1r · (1r · r · gm) · (1r · fm · 1r) ≡ r · (gm · fm) eq1 = solve R' path : 1r · (1r · r · (g ^ m)) · (1r · (f ^ m) · 1r) ≡ 1r · (1r · r · (g ^ n)) · (1r · (f ^ n) · 1r) path = 1r · (1r · r · (g ^ m)) · (1r · (f ^ m) · 1r) ≡⟨ eq1 r (g ^ m) (f ^ m) ⟩ r · (g ^ m · f ^ m) ≡⟨ cong (r ·_) (sym (^-ldist-· g f m)) ⟩ r · ((g · f) ^ m) ≡⟨ cong (λ x → r · (x ^ m)) (·-comm _ _) ⟩ r · ((f · g) ^ m) ≡⟨ cong (r ·_) ((sym s≡fg^m) ∙ s≡fg^n) ⟩ r · ((f · g) ^ n) ≡⟨ cong (λ x → r · (x ^ n)) (·-comm _ _) ⟩ r · ((g · f) ^ n) ≡⟨ cong (r ·_) (^-ldist-· g f n) ⟩ r · (g ^ n · f ^ n) ≡⟨ sym (eq1 r (g ^ n) (f ^ n)) ⟩ 1r · (1r · r · (g ^ n)) · (1r · (f ^ n) · 1r) ∎ ϕ : R × S[fg] → R[1/f][1/g] ϕ = uncurry2 curriedϕ -- λ (r / (fg)ⁿ) → ((r / fⁿ) / gⁿ) curriedϕcohΣ : (r s r' s' u : R) → (p : u · r · s' ≡ u · r' · s) → (α : Σ[ n ∈ ℕ ] s ≡ (f · g) ^ n) → (β : Σ[ m ∈ ℕ ] s' ≡ (f · g) ^ m) → (γ : Σ[ l ∈ ℕ ] u ≡ (f · g) ^ l) → ϕ (r , s , PT.∣ α ∣) ≡ ϕ (r' , s' , PT.∣ β ∣) curriedϕcohΣ r s r' s' u p (n , s≡fgⁿ) (m , s'≡fgᵐ) (l , u≡fgˡ) = eq/ _ _ ( ( [ (g ^ l) , 1r , powersFormMultClosedSubset R' f .containsOne ] , PT.∣ l , ^-respects-/1 R' l ∣) , eq/ _ _ ((f ^ l , PT.∣ l , refl ∣) , path)) where eq1 : ∀ fl gl r gm fm → fl · (gl · r · gm) · (1r · fm · 1r) ≡ fl · gl · r · (gm · fm) eq1 = solve R' path : f ^ l · (g ^ l · transp (λ i → R) i0 r · transp (λ i → R) i0 (g ^ m)) · (1r · transp (λ i → R) i0 (f ^ m) · transp (λ i → R) i0 1r) ≡ f ^ l · (g ^ l · transp (λ i → R) i0 r' · transp (λ i → R) i0 (g ^ n)) · (1r · transp (λ i → R) i0 (f ^ n) · transp (λ i → R) i0 1r) path = f ^ l · (g ^ l · transp (λ i → R) i0 r · transp (λ i → R) i0 (g ^ m)) · (1r · transp (λ i → R) i0 (f ^ m) · transp (λ i → R) i0 1r) ≡⟨ (λ i → f ^ l · (g ^ l · transportRefl r i · transportRefl (g ^ m) i) · (1r · transportRefl (f ^ m) i · transportRefl 1r i)) ⟩ f ^ l · (g ^ l · r · g ^ m) · (1r · f ^ m · 1r) ≡⟨ eq1 (f ^ l) (g ^ l) r (g ^ m) (f ^ m) ⟩ f ^ l · g ^ l · r · (g ^ m · f ^ m) ≡⟨ (λ i → ^-ldist-· f g l (~ i) · r · ^-ldist-· g f m (~ i)) ⟩ (f · g) ^ l · r · (g · f) ^ m ≡⟨ cong (λ x → (f · g) ^ l · r · x ^ m) (·-comm _ _) ⟩ (f · g) ^ l · r · (f · g) ^ m ≡⟨ (λ i → u≡fgˡ (~ i) · r · s'≡fgᵐ (~ i)) ⟩ u · r · s' ≡⟨ p ⟩ u · r' · s ≡⟨ (λ i → u≡fgˡ i · r' · s≡fgⁿ i) ⟩ (f · g) ^ l · r' · (f · g) ^ n ≡⟨ cong (λ x → (f · g) ^ l · r' · x ^ n) (·-comm _ _) ⟩ (f · g) ^ l · r' · (g · f) ^ n ≡⟨ (λ i → ^-ldist-· f g l i · r' · ^-ldist-· g f n i) ⟩ f ^ l · g ^ l · r' · (g ^ n · f ^ n) ≡⟨ sym (eq1 (f ^ l) (g ^ l) r' (g ^ n) (f ^ n)) ⟩ f ^ l · (g ^ l · r' · g ^ n) · (1r · f ^ n · 1r) ≡⟨ (λ i → f ^ l · (g ^ l · transportRefl r' (~ i) · transportRefl (g ^ n) (~ i)) · (1r · transportRefl (f ^ n) (~ i) · transportRefl 1r (~ i))) ⟩ f ^ l · (g ^ l · transp (λ i → R) i0 r' · transp (λ i → R) i0 (g ^ n)) · (1r · transp (λ i → R) i0 (f ^ n) · transp (λ i → R) i0 1r) ∎ curriedϕcoh : (r s r' s' u : R) → (p : u · r · s' ≡ u · r' · s) → (α : ∃[ n ∈ ℕ ] s ≡ (f · g) ^ n) → (β : ∃[ m ∈ ℕ ] s' ≡ (f · g) ^ m) → (γ : ∃[ l ∈ ℕ ] u ≡ (f · g) ^ l) → ϕ (r , s , α) ≡ ϕ (r' , s' , β) curriedϕcoh r s r' s' u p = PT.elim (λ _ → isPropΠ2 (λ _ _ → squash/ _ _)) λ α → PT.elim (λ _ → isPropΠ (λ _ → squash/ _ _)) λ β → PT.rec (squash/ _ _) λ γ → curriedϕcohΣ r s r' s' u p α β γ ϕcoh : (a b : R × S[fg]) → Loc._≈_ R' ([_ⁿ|n≥0] R' (f · g)) (powersFormMultClosedSubset R' (f · g)) a b → ϕ a ≡ ϕ b ϕcoh (r , s , α) (r' , s' , β) ((u , γ) , p) = curriedϕcoh r s r' s' u p α β γ -- the map induced by the universal property open S⁻¹RUniversalProp R' ([_ⁿ|n≥0] R' (f · g)) (powersFormMultClosedSubset R' (f · g)) χ : R[1/fg] → R[1/f][1/g] χ = S⁻¹RHasUniversalProp R[1/f][1/g]AsCommRing /1/1AsCommRingHom fⁿgⁿ/1/1∈R[1/f][1/g]ˣ .fst .fst .fst -- the sanity check: -- both maps send a fraction r/(fg)ⁿ to a double fraction, -- where numerator and denominator are almost the same fraction respectively. -- unfortunately the proofs that the denominators are powers are quite different for -- the two maps, but of course we can ignore them. -- The definition of χ introduces a lot of (1r ·_). Perhaps most surprisingly, -- we have to give the path eq1 for the equality of the numerator of the numerator. φ≡χ : ∀ r → φ r ≡ χ r φ≡χ = InvElPropElim _ (λ _ → squash/ _ _) ℕcase where ℕcase : (r : R) (n : ℕ) → φ [ r , (f · g) ^ n , PT.∣ n , refl ∣ ] ≡ χ [ r , (f · g) ^ n , PT.∣ n , refl ∣ ] ℕcase r n = cong [_] (ΣPathP --look into the components of the double-fractions ( cong [_] (ΣPathP (eq1 , Σ≡Prop (λ x → S'[f] x .snd) (sym (·Lid _)))) , Σ≡Prop (λ x → S'[f][g] x .snd) --ignore proof that denominator is power of g/1 ( cong [_] (ΣPathP (sym (·Lid _) , Σ≡Prop (λ x → S'[f] x .snd) (sym (·Lid _))))))) where S'[f] = ([_ⁿ|n≥0] R' f) S'[f][g] = ([_ⁿ|n≥0] R[1/f]AsCommRing [ g , 1r , powersFormMultClosedSubset R' f .containsOne ]) eq1 : transp (λ i → fst R') i0 r ≡ r · transp (λ i → fst R') i0 1r eq1 = transportRefl r ∙∙ sym (·Rid r) ∙∙ cong (r ·_) (sym (transportRefl 1r))
{ "alphanum_fraction": 0.4375452134, "avg_line_length": 41.0594059406, "ext": "agda", "hexsha": "54f99ce12c17122de5241d774c797924c604e1ec", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "8d687c1a6237ad2db1396c6b0af6667bd203f548", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dolio/cubical", "max_forks_repo_path": "Cubical/Algebra/CommRing/Localisation/InvertingElements.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8d687c1a6237ad2db1396c6b0af6667bd203f548", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dolio/cubical", "max_issues_repo_path": "Cubical/Algebra/CommRing/Localisation/InvertingElements.agda", "max_line_length": 104, "max_stars_count": null, "max_stars_repo_head_hexsha": "8d687c1a6237ad2db1396c6b0af6667bd203f548", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dolio/cubical", "max_stars_repo_path": "Cubical/Algebra/CommRing/Localisation/InvertingElements.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 10683, "size": 24882 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Relation.Binary.Base where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Data.Sigma open import Cubical.HITs.SetQuotients.Base open import Cubical.HITs.PropositionalTruncation.Base Rel : ∀ {ℓ} (A B : Type ℓ) (ℓ' : Level) → Type (ℓ-max ℓ (ℓ-suc ℓ')) Rel A B ℓ' = A → B → Type ℓ' PropRel : ∀ {ℓ} (A B : Type ℓ) (ℓ' : Level) → Type (ℓ-max ℓ (ℓ-suc ℓ')) PropRel A B ℓ' = Σ[ R ∈ Rel A B ℓ' ] ∀ a b → isProp (R a b) idPropRel : ∀ {ℓ} (A : Type ℓ) → PropRel A A ℓ idPropRel A .fst a a' = ∥ a ≡ a' ∥ idPropRel A .snd _ _ = squash invPropRel : ∀ {ℓ ℓ'} {A B : Type ℓ} → PropRel A B ℓ' → PropRel B A ℓ' invPropRel R .fst b a = R .fst a b invPropRel R .snd b a = R .snd a b compPropRel : ∀ {ℓ ℓ' ℓ''} {A B C : Type ℓ} → PropRel A B ℓ' → PropRel B C ℓ'' → PropRel A C (ℓ-max ℓ (ℓ-max ℓ' ℓ'')) compPropRel R S .fst a c = ∥ Σ[ b ∈ _ ] (R .fst a b × S .fst b c) ∥ compPropRel R S .snd _ _ = squash graphRel : ∀ {ℓ} {A B : Type ℓ} → (A → B) → Rel A B ℓ graphRel f a b = f a ≡ b module BinaryRelation {ℓ ℓ' : Level} {A : Type ℓ} (R : Rel A A ℓ') where isRefl : Type (ℓ-max ℓ ℓ') isRefl = (a : A) → R a a isSym : Type (ℓ-max ℓ ℓ') isSym = (a b : A) → R a b → R b a isTrans : Type (ℓ-max ℓ ℓ') isTrans = (a b c : A) → R a b → R b c → R a c record isEquivRel : Type (ℓ-max ℓ ℓ') where constructor equivRel field reflexive : isRefl symmetric : isSym transitive : isTrans isPropValued : Type (ℓ-max ℓ ℓ') isPropValued = (a b : A) → isProp (R a b) isEffective : Type (ℓ-max ℓ ℓ') isEffective = (a b : A) → isEquiv (eq/ {R = R} a b) EquivRel : ∀ {ℓ} (A : Type ℓ) (ℓ' : Level) → Type (ℓ-max ℓ (ℓ-suc ℓ')) EquivRel A ℓ' = Σ[ R ∈ Rel A A ℓ' ] BinaryRelation.isEquivRel R EquivPropRel : ∀ {ℓ} (A : Type ℓ) (ℓ' : Level) → Type (ℓ-max ℓ (ℓ-suc ℓ')) EquivPropRel A ℓ' = Σ[ R ∈ PropRel A A ℓ' ] BinaryRelation.isEquivRel (R .fst)
{ "alphanum_fraction": 0.5892504931, "avg_line_length": 31.2, "ext": "agda", "hexsha": "be51c02b7d27169d2918a6db3250cfc876bc93e6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3a9bb56260c25a6f2e9c20af8d278de0fe8d9e05", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "apabepa10/cubical", "max_forks_repo_path": "Cubical/Relation/Binary/Base.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "3a9bb56260c25a6f2e9c20af8d278de0fe8d9e05", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "apabepa10/cubical", "max_issues_repo_path": "Cubical/Relation/Binary/Base.agda", "max_line_length": 78, "max_stars_count": null, "max_stars_repo_head_hexsha": "3a9bb56260c25a6f2e9c20af8d278de0fe8d9e05", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "apabepa10/cubical", "max_stars_repo_path": "Cubical/Relation/Binary/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 879, "size": 2028 }
{-# OPTIONS --exact-split #-} -- {-# OPTIONS -v tc.cover:10 #-} postulate A : Set record I : Set where constructor i field f : A data Wrap : (j : I) → Set where con : (j : I) → Wrap j postulate C : Set anything : C test : (X : I) -> Wrap X -> C test (i ._) (con x) = anything
{ "alphanum_fraction": 0.5420875421, "avg_line_length": 14.1428571429, "ext": "agda", "hexsha": "f419544a4a91c8c3e5f294f954983b9059739b3d", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1380a.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1380a.agda", "max_line_length": 33, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1380a.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 105, "size": 297 }
{-# OPTIONS --cubical-compatible #-} open import Common.Prelude open import Common.Equality KNat : {x : Nat} (e : x ≡ x) → e ≡ refl KNat refl = refl KEqNat : {x : Nat} {e : x ≡ x} (p : e ≡ e) → p ≡ refl KEqNat refl = refl KListNat : {x : List Nat} (e : x ≡ x) → e ≡ refl KListNat refl = refl data D (A : Set) : Nat → Set where c : (x : A)(y : Nat) → D A y -- Jesper 2015-12-18: this test case doesn't work yet with the new unifier -- We need generalization of indices when applying the injectivity rule --test : {A : Set} {x₁ x₂ : A} {y : Nat} → c x₁ y ≡ c x₂ y → Set --test refl = Nat
{ "alphanum_fraction": 0.6037099494, "avg_line_length": 28.2380952381, "ext": "agda", "hexsha": "f05f01da3c0a13fec18bb20962946fd106d4b68c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Fail/SetDetection.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Fail/SetDetection.agda", "max_line_length": 74, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Fail/SetDetection.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 226, "size": 593 }
{-# OPTIONS --without-K #-} open import Base open import Integers open import Homotopy.Truncation open import Spaces.Spheres open import Spaces.Suspension open import Homotopy.Connected open import Homotopy.ConnectedSuspension open import Homotopy.Pointed open import Homotopy.HomotopyGroups module Spaces.PikSn where abstract Sⁿ-S-is-connected : (n : ℕ) → is-connected ⟨ n ⟩ (Sⁿ (S n)) Sⁿ-S-is-connected n = suspension-is-connected-S (Sⁿ n) ind-hyp (proj (⋆Sⁿ n)) where ind-hyp : is-connected (n -1) (Sⁿ n) ind-hyp with n ind-hyp | O = inhab-prop-is-contr (proj true) (τ-is-truncated _ _) ind-hyp | S n = Sⁿ-S-is-connected n Sⁿ⋆ : (n : ℕ) → pType₀ Sⁿ⋆ n = ⋆[ Sⁿ n , ⋆Sⁿ n ] abstract πk-Sⁿ-is-contr : (k n : ℕ) (lt : k < n) → is-contr⋆ (πⁿ k (Sⁿ⋆ n)) πk-Sⁿ-is-contr k O () πk-Sⁿ-is-contr k (S n) lt = connected-πⁿ k n lt _ (Sⁿ-S-is-connected n)
{ "alphanum_fraction": 0.6547085202, "avg_line_length": 27.875, "ext": "agda", "hexsha": "3eea826b92026d846c1aca87544720b7eca3f4d7", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "old/Spaces/PikSn.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "old/Spaces/PikSn.agda", "max_line_length": 73, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "old/Spaces/PikSn.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 347, "size": 892 }
{-# OPTIONS --rewriting #-} module RewritingNat where open import Common.Equality {-# BUILTIN REWRITE _≡_ #-} data Nat : Set where zero : Nat suc : Nat → Nat _+_ : Nat → Nat → Nat zero + n = n (suc m) + n = suc (m + n) plusAssoc : ∀ x {y z : Nat} → ((x + y) + z) ≡ (x + (y + z)) plusAssoc zero = refl plusAssoc (suc x) {y} {z} rewrite plusAssoc x {y} {z} = refl plus0T : Set plus0T = ∀{x} → (x + zero) ≡ x plusSucT : Set plusSucT = ∀{x y} → (x + (suc y)) ≡ suc (x + y) postulate plus0p : plus0T {-# REWRITE plus0p #-} plusSucp : plusSucT {-# REWRITE plusSucp plusAssoc #-} plus0 : plus0T plus0 = refl data Vec (A : Set) : Nat → Set where [] : Vec A zero _∷_ : ∀ {n} (x : A) (xs : Vec A n) → Vec A (suc n) -- Needs REWRITE plus0p plusSucp reverseAcc : ∀{A n m} → Vec A n → Vec A m → Vec A (n + m) reverseAcc [] acc = acc reverseAcc (x ∷ xs) acc = reverseAcc xs (x ∷ acc) append : ∀{A n m} → Vec A n → Vec A m → Vec A (n + m) append [] ys = ys append (x ∷ xs) ys = x ∷ append xs ys -- Note: appendAssoc needs REWRITE plusAssoc to be well-typed. appendAssoc : ∀{A n m l} (u : Vec A n) {v : Vec A m}{w : Vec A l} → append (append u v) w ≡ append u (append v w) appendAssoc [] = refl appendAssoc (x ∷ xs) {v} {w} rewrite appendAssoc xs {v} {w} = refl
{ "alphanum_fraction": 0.5750972763, "avg_line_length": 22.9464285714, "ext": "agda", "hexsha": "8d79d148d068a5e866b5ca4a4d3d91c0c291fb16", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Succeed/RewritingNat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Succeed/RewritingNat.agda", "max_line_length": 67, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Succeed/RewritingNat.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 501, "size": 1285 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import Dijkstra.EitherD open import LibraBFT.Impl.Consensus.EpochManagerTypes open import LibraBFT.Impl.Handle open InitHandler import LibraBFT.Impl.IO.OBM.GenKeyFile as GenKeyFile import LibraBFT.Impl.IO.OBM.Properties.Start as Start import LibraBFT.Impl.Properties.Util as Util import LibraBFT.Impl.Types.BlockInfo as BlockInfo import LibraBFT.Impl.Types.ValidatorSigner as ValidatorSigner open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.ImplShared.Consensus.Types.EpochIndep open import LibraBFT.ImplShared.Interface.Output open import Optics.All open import Util.Prelude open import Yasm.Types as YT module LibraBFT.Impl.Handle.InitProperties where ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ open Util.Invariants open Util.InitProofDefs module getEmRmSpec (em : EpochManager) where Contract : EitherD-Post ErrLog RoundManager Contract (Left x) = ⊤ Contract (Right rm) = rm IsNormalRoundManagerOf em contract' : EitherD-weakestPre (getEmRm-ed-abs em) Contract contract' rewrite getEmRm-ed-abs≡ with em ^∙ emProcessor | inspect (_^∙ emProcessor) em ...| nothing | _ = tt ...| just (RoundProcessorRecovery x) | _ = tt ...| just (RoundProcessorNormal x) | [ refl ] = refl module initializeSpec (now : Instant) (nfl : GenKeyFile.NfLiwsVsVvPe) where contract' : EitherD-weakestPre (initialize-ed-abs now nfl) (InitContract nothing) contract' rewrite initialize-ed-abs≡ = Start.startViaConsensusProviderSpec.contract' now nfl (TxTypeDependentStuffForNetwork∙new proposalGenerator (StateComputer∙new BlockInfo.gENESIS_VERSION)) module initEMWithOutputSpec (bsi : BootstrapInfo) (vs : ValidatorSigner) where contract' : EitherD-weakestPre (initEMWithOutput-ed-abs bsi vs) (InitContract nothing) contract' rewrite initEMWithOutput-ed-abs≡ = initializeSpec.contract' now (mkNfLiwsVsVvPe bsi vs) module initRMWithOutputSpec (bsi : BootstrapInfo) (vs : ValidatorSigner) where Contract : EitherD-Post ErrLog (RoundManager × List Output) Contract (Left x) = ⊤ Contract (Right (rm , outs)) = InitContractOk nothing rm outs open initRMWithOutput-ed bsi vs contract-step₁ : ∀ {em lo} → EMInitCond nothing (em , lo) → EitherD-weakestPre (step₁ (em , lo)) Contract contract-step₁ {em} {lo} (rm , inrm , cntrctOk) = EitherD-⇒-bind (getEmRm-ed-abs em) (getEmRmSpec.contract' em) P⇒Q where P⇒Q : EitherD-Post-⇒ (getEmRmSpec.Contract em) (EitherD-weakestPre-bindPost (λ rm → RightD (rm , lo)) Contract) P⇒Q (Left x) _ = tt P⇒Q (Right rm') pf .rm' refl rewrite IsNormalRoundManagerOf-inj {em} inrm pf = cntrctOk contract' : EitherD-weakestPre (initRMWithOutput-ed-abs bsi vs) Contract contract' rewrite initRMWithOutput-ed-abs≡ = EitherD-⇒-bind (initEMWithOutput-ed-abs bsi vs) (initEMWithOutputSpec.contract' bsi vs) P⇒Q where P⇒Q : EitherD-Post-⇒ (InitContract nothing) _ P⇒Q (Left x) _ = tt P⇒Q (Right (em , lo)) pf .(em , lo) refl = contract-step₁ pf contract : Contract (initRMWithOutput-e-abs bsi vs) contract rewrite initRMWithOutput≡ {bsi} {vs} = EitherD-contract (initRMWithOutput-ed-abs bsi vs) Contract contract' ------------------------------------------------------------------------------ module initHandlerSpec (pid : Author) (bsi : BootstrapInfo) where record ContractOk (rm : RoundManager) (acts : List (YT.Action NetworkMsg)) : Set where constructor mkContractOk field rmInv : Util.Invariants.RoundManagerInv rm sdLVnothing : InitSdLV≡ rm nothing sigs∈bs : InitSigs∈bs rm isInitPM : InitIsInitPM acts -- TODO-3: We will eventually need to know that our ValidatorSigner is for the correct peer, -- because it will be needed to prove impl-sps-avp : StepPeerState-AllValidParts Contract : Maybe (RoundManager × List (YT.Action NetworkMsg)) → Set Contract nothing = ⊤ Contract (just (rm , acts)) = ContractOk rm acts -- TODO-2: this property is more succinctly/elegantly stated as Contract (initHandler pid bsi), -- and can be proved by starting the proof as follows: -- -- contract : Contract (initHandler pid bsi) -- contract with initHandler pid bsi | inspect (initHandler pid) bsi -- ...| nothing | _ = tt -- ...| just (rm , acts) | [ hndl≡just ] -- -- However, this breaks a bunch of proofs that use this, so not doing it for now. contract : ∀ {x} → initHandler pid bsi ≡ x → Contract x contract {nothing} hndl≡nothing rewrite sym hndl≡nothing = tt contract {just (rm , acts)} hndl≡just with ValidatorSigner.obmGetValidatorSigner pid (bsi ^∙ bsiVSS) ...| Left _ = absurd nothing ≡ just _ case hndl≡just of λ () ...| Right vs with initRMWithOutputSpec.contract bsi vs ...| initRMWithOutputContractOk with initRMWithOutput-e-abs bsi vs ...| Left _ = absurd nothing ≡ just (rm , acts) case hndl≡just of λ () ...| Right rm×outs rewrite sym (cong proj₂ (just-injective hndl≡just)) | (cong proj₁ (just-injective hndl≡just)) = mkContractOk (InitContractOk.rmInv initRMWithOutputContractOk) (InitContractOk.sdLV≡ initRMWithOutputContractOk) (InitContractOk.sigs∈bs initRMWithOutputContractOk) (InitContractOk.isInitPM initRMWithOutputContractOk)
{ "alphanum_fraction": 0.6566012414, "avg_line_length": 39.2171052632, "ext": "agda", "hexsha": "d974ac40ec8e4f9db9abc6d1efdfa285f8e5a578", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/Impl/Handle/InitProperties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/Impl/Handle/InitProperties.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/Impl/Handle/InitProperties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1684, "size": 5961 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Generalised notion of interleaving two lists into one in an -- order-preserving manner ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Relation.Ternary.Interleaving where open import Level open import Data.List.Base as List using (List; []; _∷_; _++_) open import Data.List.Relation.Binary.Pointwise using (Pointwise; []; _∷_) open import Data.Product as Prod using (∃; ∃₂; _×_; uncurry; _,_; -,_; proj₂) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Function open import Relation.Binary open import Relation.Binary.PropositionalEquality as P using (_≡_) ------------------------------------------------------------------------ -- Definition module _ {a b c l r} {A : Set a} {B : Set b} {C : Set c} (L : REL A C l) (R : REL B C r) where data Interleaving : List A → List B → List C → Set (a ⊔ b ⊔ c ⊔ l ⊔ r) where [] : Interleaving [] [] [] _∷ˡ_ : ∀ {a c l r cs} → L a c → Interleaving l r cs → Interleaving (a ∷ l) r (c ∷ cs) _∷ʳ_ : ∀ {b c l r cs} → R b c → Interleaving l r cs → Interleaving l (b ∷ r) (c ∷ cs) ------------------------------------------------------------------------ -- Operations module _ {a b c l r} {A : Set a} {B : Set b} {C : Set c} {L : REL A C l} {R : REL B C r} where -- injections left : ∀ {as cs} → Pointwise L as cs → Interleaving L R as [] cs left [] = [] left (l ∷ pw) = l ∷ˡ left pw right : ∀ {bs cs} → Pointwise R bs cs → Interleaving L R [] bs cs right [] = [] right (r ∷ pw) = r ∷ʳ right pw -- swap swap : ∀ {cs l r} → Interleaving L R l r cs → Interleaving R L r l cs swap [] = [] swap (l ∷ˡ sp) = l ∷ʳ swap sp swap (r ∷ʳ sp) = r ∷ˡ swap sp -- extract the "proper" equality split from the pointwise relations break : ∀ {cs l r} → Interleaving L R l r cs → ∃ $ uncurry $ λ csl csr → Interleaving _≡_ _≡_ csl csr cs × Pointwise L l csl × Pointwise R r csr break [] = -, [] , [] , [] break (l ∷ˡ sp) = let (_ , eq , pwl , pwr) = break sp in -, P.refl ∷ˡ eq , l ∷ pwl , pwr break (r ∷ʳ sp) = let (_ , eq , pwl , pwr) = break sp in -, P.refl ∷ʳ eq , pwl , r ∷ pwr -- map module _ {a b c l r p q} {A : Set a} {B : Set b} {C : Set c} {L : REL A C l} {R : REL B C r} {P : REL A C p} {Q : REL B C q} where map : ∀ {cs l r} → L ⇒ P → R ⇒ Q → Interleaving L R l r cs → Interleaving P Q l r cs map L⇒P R⇒Q [] = [] map L⇒P R⇒Q (l ∷ˡ sp) = L⇒P l ∷ˡ map L⇒P R⇒Q sp map L⇒P R⇒Q (r ∷ʳ sp) = R⇒Q r ∷ʳ map L⇒P R⇒Q sp module _ {a b c l r p} {A : Set a} {B : Set b} {C : Set c} {L : REL A C l} {R : REL B C r} where map₁ : ∀ {P : REL A C p} {as l r} → L ⇒ P → Interleaving L R l r as → Interleaving P R l r as map₁ L⇒P = map L⇒P id map₂ : ∀ {P : REL B C p} {as l r} → R ⇒ P → Interleaving L R l r as → Interleaving L P l r as map₂ = map id ------------------------------------------------------------------------ -- Special case: The second and third list have the same type module _ {a b l r} {A : Set a} {B : Set b} {L : REL A B l} {R : REL A B r} where -- converting back and forth with pointwise split : ∀ {as bs} → Pointwise (λ a b → L a b ⊎ R a b) as bs → ∃₂ λ asr asl → Interleaving L R asl asr bs split [] = [] , [] , [] split (inj₁ l ∷ pw) = Prod.map _ (Prod.map _ (l ∷ˡ_)) (split pw) split (inj₂ r ∷ pw) = Prod.map _ (Prod.map _ (r ∷ʳ_)) (split pw) unsplit : ∀ {l r as} → Interleaving L R l r as → ∃ λ bs → Pointwise (λ a b → L a b ⊎ R a b) bs as unsplit [] = -, [] unsplit (l ∷ˡ sp) = Prod.map _ (inj₁ l ∷_) (unsplit sp) unsplit (r ∷ʳ sp) = Prod.map _ (inj₂ r ∷_) (unsplit sp)
{ "alphanum_fraction": 0.4905903583, "avg_line_length": 37.2980769231, "ext": "agda", "hexsha": "aec8505cee0b32e2d37c9bab8feaa317d19eca32", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Ternary/Interleaving.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Ternary/Interleaving.agda", "max_line_length": 89, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Ternary/Interleaving.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1410, "size": 3879 }
module Plain.Terms where open import Data.Nat open import Data.Fin record Signature (n : ℕ) : Set where field -- symbols are encoded as numbers in Fin n -- arity ar : Fin n → ℕ open Signature public -- | Countable set of Variables Var : Set Var = ℕ open import Data.Vec as V open import Size -- | Term in with a signature Σ with variables var data Term {i : Size} {j : Size< i} {n : ℕ} (Σ : Signature n) (var : Set) : Set where FNode : {k : Size< j} → (f : Fin n) → Vec (Term {j} {k} {n} Σ var) (ar Σ f) → Term {i} {j} {n} Σ var VNode : (v : var) → Term {i} {j} {n} Σ var open import Data.Empty -- | Ground Terms GTerm : {n : ℕ} → (Σ : Signature n) → Set GTerm Σ = Term Σ ⊥ open import Data.List as L -- | Horn clause -- data Clause {n : ℕ} (Σ : Signature n) : Set where _:-_ : (Term Σ Var) → List (Term Σ Var) → Clause Σ cHead : {n : ℕ} → {Σ : Signature n} → Clause Σ → Term Σ Var cHead (a :- _) = a cBody : {n : ℕ} → {Σ : Signature n} → Clause Σ → List (Term Σ Var) cBody (_ :- bs) = bs record Program {n : ℕ} (Σ : Signature n) : Set where field prg : List (Clause Σ) -- → Program Σ --unPrg : {n : ℕ} → {Σ : Signature n} → Program Σ → List (Clause Σ) --unPrg (prg cls) = cls record GSubst {n : ℕ} (Σ : Signature n) : Set₁ where field subst : (Var → GTerm Σ) open GSubst -- | substitution application app : {i : Size} → {j : Size< i} → {n : ℕ} → {Σ : Signature n} → GSubst Σ → Term {i} {j} Σ Var → GTerm Σ app σ (FNode f fs) = FNode f (V.map (app σ) fs) app σ (VNode v) = subst σ v
{ "alphanum_fraction": 0.5768488746, "avg_line_length": 22.5362318841, "ext": "agda", "hexsha": "b934394caa2e325577bb20b81ff5e93069be1669", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "411ca7970b6f64857a36ebcf648c9a58b90bb4b2", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "frantisekfarka/lp-mod", "max_forks_repo_path": "Plain/Terms.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "411ca7970b6f64857a36ebcf648c9a58b90bb4b2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "frantisekfarka/lp-mod", "max_issues_repo_path": "Plain/Terms.agda", "max_line_length": 67, "max_stars_count": null, "max_stars_repo_head_hexsha": "411ca7970b6f64857a36ebcf648c9a58b90bb4b2", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "frantisekfarka/lp-mod", "max_stars_repo_path": "Plain/Terms.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 600, "size": 1555 }
module spaceShipSimpleVar where open import Unit open import Data.List.Base hiding ([]) open import Data.Bool.Base open import Data.Integer open import Data.Product hiding (map) open import NativeIO open import StateSizedIO.GUI.WxBindingsFFI open import StateSizedIO.GUI.WxGraphicsLib open import StateSized.GUI.ShipBitMap open import SizedIO.Base open import StateSizedIO.GUI.BaseStateDependent open import StateSizedIO.GUI.VariableList VarType = ℤ varInit : VarType varInit = (+ 150) onPaint : ∀{i} → VarType → DC → Rect → IO GuiLev1Interface i VarType onPaint z dc rect = do (drawBitmap dc ship (z , (+ 150)) true) λ _ → return z moveSpaceShip : ∀{i} → Frame → VarType → IO GuiLev1Interface i VarType moveSpaceShip fra z = return (z + + 20) callRepaint : ∀{i} → Frame → VarType → IO GuiLev1Interface i VarType callRepaint fra z = do (repaint fra) λ _ → return z buttonHandler : ∀{i} → Frame → List (VarType → IO GuiLev1Interface i VarType) buttonHandler fra = moveSpaceShip fra ∷ [ callRepaint fra ] program : ∀{i} → IOˢ GuiLev2Interface i (λ _ → Unit) [] program = doˢ (level1C makeFrame) λ fra → doˢ (level1C (makeButton fra)) λ bt → doˢ (level1C (addButton fra bt)) λ _ → doˢ (createVar varInit) λ _ → doˢ (setButtonHandler bt (buttonHandler fra)) λ _ → doˢ (setOnPaint fra [ onPaint ]) returnˢ main : NativeIO Unit main = start (translateLev2 program)
{ "alphanum_fraction": 0.6717305152, "avg_line_length": 32.9130434783, "ext": "agda", "hexsha": "a9c8b79789fd1cd857dd5d33412f15e8792512cc", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z", "max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/ooAgda", "max_forks_repo_path": "presentationsAndExampleCode/agdaImplementorsMeetingGlasgow22April2016AntonSetzer/spaceShipSimpleVar.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/ooAgda", "max_issues_repo_path": "presentationsAndExampleCode/agdaImplementorsMeetingGlasgow22April2016AntonSetzer/spaceShipSimpleVar.agda", "max_line_length": 78, "max_stars_count": 23, "max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/ooAgda", "max_stars_repo_path": "presentationsAndExampleCode/agdaImplementorsMeetingGlasgow22April2016AntonSetzer/spaceShipSimpleVar.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z", "num_tokens": 458, "size": 1514 }
{- Formal verification of authenticated append-only skiplists in Agda, version 1.0. Copyright (c) 2020 Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import Data.Empty open import Data.Sum open import Data.Fin using (Fin; toℕ ; fromℕ ; fromℕ≤) open import Data.Fin.Properties using (toℕ<n; toℕ-injective) open import Data.Nat renaming (_≟_ to _≟ℕ_; _≤?_ to _≤?ℕ_) open import Data.Nat.Properties open import Data.List renaming (map to List-map) open import Data.List.Relation.Unary.Any open import Function open import Relation.Binary.PropositionalEquality open import Relation.Nullary -- This module pulls in the definitions from AAOSL.Hops and uses -- them to construct a DepRel based on the dependency relation -- defined there, showing that this concrete AAOSL enjoys the -- properties we have proved for abstract ones module AAOSL.Concrete where open import Data.Nat.Even open import Data.Nat.Encode open import AAOSL.Lemmas open import AAOSL.Hops open import AAOSL.Abstract.Hash open import AAOSL.Abstract.DepRel --------------------------------------------------- -- Translating the proofs about Hops into a DepRel, -- as required by AAOSL.Abstract.Advancement getHop : ∀{j}(h : Fin (lvlOf j)) → H (toℕ h) j (j ∸ 2 ^ toℕ h) getHop {j} h = h-correct j (toℕ h) (toℕ<n {lvlOf j} h) hop-prog : {m : ℕ} (h : Fin (lvlOf m)) → m ∸ (2 ^ toℕ h) ≢ m hop-prog {zero} () hop-prog {suc m} h = ∸-≢ (2 ^ toℕ h) (1≤2^n (toℕ h)) (lvlOf-correct (toℕ<n h)) hop-≤ : {m : ℕ} (h : Fin (lvlOf m)) → m ∸ (2 ^ toℕ h) ≤ m hop-≤ {zero} () hop-≤ {suc m} h = m∸n≤m (suc m) (2 ^ toℕ h) lvlOfsuc : ∀ m → 0 < lvlOf (suc m) lvlOfsuc m with even? (suc m) ...| yes _ = s≤s z≤n ...| no _ = s≤s z≤n -- This proves that ℕ makes a skiplog dependency relation -- by connecting the indexes by their largest power of two. skiplog-dep-rel : DepRel skiplog-dep-rel = record { lvlof = lvlOf ; lvlof-z = refl ; lvlof-s = lvlOfsuc ; hop-tgt = λ {m} h → m ∸ 2 ^ toℕ h ; hop-tgt-inj = λ {m} {h} {h'} prf → toℕ-injective (2^-injective {toℕ h} {toℕ h'} (∸-inj (2 ^ toℕ h) (2 ^ toℕ h') (lvlOf-correct (toℕ<n h)) (lvlOf-correct (toℕ<n h')) prf)) ; hop-< = λ h → ≤∧≢⇒< (hop-≤ h) (hop-prog h) ; hops-nested-or-nonoverlapping = λ {h₁} {h₂} {h₃} {h₄} a b → no-overlap-< (getHop h₃) (getHop h₄) a b } -- This, in turn, enables us to bring the abstract module into -- scope with everything instantiated minus the hash functions. module _ (hash : ByteString → Hash) (hash-cr : ∀{x y} → hash x ≡ hash y → Collision hash x y ⊎ x ≡ y) where open import AAOSL.Abstract.Advancement hash hash-cr encodeℕ encodeℕ-inj skiplog-dep-rel open import AAOSL.Abstract.EvoCR hash hash-cr encodeℕ encodeℕ-inj skiplog-dep-rel
{ "alphanum_fraction": 0.6078494972, "avg_line_length": 38.0617283951, "ext": "agda", "hexsha": "057f0527ca6dd1b070031334832f02ade0bbf094", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-02-18T04:33:50.000Z", "max_forks_repo_forks_event_min_datetime": "2020-12-22T00:01:03.000Z", "max_forks_repo_head_hexsha": "318881fb24af06bbaafa33edeea0745eca1873f0", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/aaosl-agda", "max_forks_repo_path": "AAOSL/Concrete.agda", "max_issues_count": 5, "max_issues_repo_head_hexsha": "318881fb24af06bbaafa33edeea0745eca1873f0", "max_issues_repo_issues_event_max_datetime": "2021-02-12T04:16:40.000Z", "max_issues_repo_issues_event_min_datetime": "2021-01-04T03:45:34.000Z", "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/aaosl-agda", "max_issues_repo_path": "AAOSL/Concrete.agda", "max_line_length": 111, "max_stars_count": 9, "max_stars_repo_head_hexsha": "318881fb24af06bbaafa33edeea0745eca1873f0", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/aaosl-agda", "max_stars_repo_path": "AAOSL/Concrete.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-31T10:16:38.000Z", "max_stars_repo_stars_event_min_datetime": "2020-12-22T00:01:00.000Z", "num_tokens": 1023, "size": 3083 }
{-# OPTIONS --cubical --safe #-} module Cubical.Algebra.SymmetricGroup where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Data.Sigma open import Cubical.Data.Nat using (ℕ ; suc ; zero) open import Cubical.Data.Fin using (Fin ; isSetFin) open import Cubical.Data.Empty open import Cubical.Relation.Nullary using (¬_) open import Cubical.Structures.Group open import Cubical.Structures.NAryOp private variable ℓ ℓ' : Level Symmetric-Group : (X : Type ℓ) → isSet X → Group Symmetric-Group X isSetX = (X ≃ X) , compEquiv , (isOfHLevel≃ 2 isSetX isSetX , compEquiv-assoc) , idEquiv X , (λ f → compEquivEquivId f , compEquivIdEquiv f) , λ f → invEquiv f , invEquiv-is-rinv f , invEquiv-is-linv f -- Finite symmetrics groups Sym : ℕ → Group Sym n = Symmetric-Group (Fin n) isSetFin
{ "alphanum_fraction": 0.7432432432, "avg_line_length": 28.6451612903, "ext": "agda", "hexsha": "de2908886476c491b896946aa2c5c917920712f3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cmester0/cubical", "max_forks_repo_path": "Cubical/Algebra/SymmetricGroup.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cmester0/cubical", "max_issues_repo_path": "Cubical/Algebra/SymmetricGroup.agda", "max_line_length": 122, "max_stars_count": 1, "max_stars_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cmester0/cubical", "max_stars_repo_path": "Cubical/Algebra/SymmetricGroup.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-23T23:52:11.000Z", "max_stars_repo_stars_event_min_datetime": "2020-03-23T23:52:11.000Z", "num_tokens": 284, "size": 888 }
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Algebra.CommRing.Instances.Polynomials.MultivariatePoly where open import Cubical.Foundations.Prelude open import Cubical.Data.Nat using (ℕ) open import Cubical.Data.Sigma open import Cubical.Data.Vec open import Cubical.Data.Vec.OperationsNat open import Cubical.Algebra.Monoid.Instances.NatVec open import Cubical.Algebra.Ring open import Cubical.Algebra.CommRing open import Cubical.Algebra.GradedRing.DirectSumHIT open import Cubical.Algebra.GradedRing.Instances.Polynomials open import Cubical.Algebra.CommRing.Instances.Int private variable ℓ : Level ----------------------------------------------------------------------------- -- General Nth polynome open GradedRing-⊕HIT-index open GradedRing-⊕HIT-⋆ open ExtensionCommRing module _ (ACommRing@(A , Astr) : CommRing ℓ) (n : ℕ) where open CommRingStr Astr open RingTheory (CommRing→Ring ACommRing) PolyCommRing : CommRing ℓ PolyCommRing = ⊕HITgradedRing-CommRing (NatVecMonoid n) (λ _ → A) (λ _ → snd (Ring→AbGroup (CommRing→Ring ACommRing))) 1r _·_ 0LeftAnnihilates 0RightAnnihilates (λ a b c → ΣPathP ((+n-vec-assoc _ _ _) , (·Assoc _ _ _))) (λ a → ΣPathP ((+n-vec-rid _) , (·IdR _))) (λ a → ΣPathP((+n-vec-lid _) , (·IdL _))) ·DistR+ ·DistL+ λ x y → ΣPathP ((+n-vec-comm _ _) , (·Comm _ _)) ----------------------------------------------------------------------------- -- Notation and syntax in the case 1,2,3 and ℤ module _ (Ar@(A , Astr) : CommRing ℓ) (n : ℕ) where Poly : Type ℓ Poly = fst (PolyCommRing Ar n) -- Possible renaming when you import -- (PolyCommRing to A[X1,···,Xn] ; Poly to A[x1,···,xn])
{ "alphanum_fraction": 0.5957792208, "avg_line_length": 29.3333333333, "ext": "agda", "hexsha": "90e1be9faf8bad5d4eecf5fa8236b5823a1e30fe", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/CommRing/Instances/Polynomials/MultivariatePoly.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/CommRing/Instances/Polynomials/MultivariatePoly.agda", "max_line_length": 77, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/CommRing/Instances/Polynomials/MultivariatePoly.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 539, "size": 1848 }
{- This file contains: - Definitions equivalences - Glue types -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Core.Glue where open import Cubical.Core.Primitives open import Agda.Builtin.Cubical.Glue public using ( isEquiv -- ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} (f : A → B) → Type (ℓ ⊔ ℓ') ; equiv-proof -- ∀ (y : B) → isContr (fiber f y) ; _≃_ -- ∀ {ℓ ℓ'} (A : Type ℓ) (B : Type ℓ') → Type (ℓ ⊔ ℓ') ; equivFun -- ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → A ≃ B → A → B ; equivProof -- ∀ {ℓ ℓ'} (T : Type ℓ) (A : Type ℓ') (w : T ≃ A) (a : A) φ → -- Partial φ (fiber (equivFun w) a) → fiber (equivFun w) a ; primGlue -- ∀ {ℓ ℓ'} (A : Type ℓ) {φ : I} (T : Partial φ (Type ℓ')) -- → (e : PartialP φ (λ o → T o ≃ A)) → Type ℓ' ; prim^unglue -- ∀ {ℓ ℓ'} {A : Type ℓ} {φ : I} {T : Partial φ (Type ℓ')} -- → {e : PartialP φ (λ o → T o ≃ A)} → primGlue A T e → A -- The ∀ operation on I. This is commented out as it is not currently used for anything -- ; primFaceForall -- (I → I) → I ) renaming ( prim^glue to glue -- ∀ {ℓ ℓ'} {A : Type ℓ} {φ : I} {T : Partial φ (Type ℓ')} -- → {e : PartialP φ (λ o → T o ≃ A)} -- → PartialP φ T → A → primGlue A T e ; pathToEquiv to lineToEquiv -- ∀ {ℓ : I → Level} (P : (i : I) → Type (ℓ i)) → P i0 ≃ P i1 ) private variable ℓ ℓ' : Level -- Uncurry Glue to make it more pleasant to use Glue : (A : Type ℓ) {φ : I} → (Te : Partial φ (Σ[ T ∈ Type ℓ' ] T ≃ A)) → Type ℓ' Glue A Te = primGlue A (λ x → Te x .fst) (λ x → Te x .snd) -- Make the φ argument of prim^unglue explicit unglue : {A : Type ℓ} (φ : I) {T : Partial φ (Type ℓ')} {e : PartialP φ (λ o → T o ≃ A)} → primGlue A T e → A unglue φ = prim^unglue {φ = φ} -- People unfamiliar with [Glue], [glue] and [uglue] can find the types below more -- informative as they demonstrate the computational behavior. -- -- Full inference rules can be found in Section 6 of CCHM: -- https://arxiv.org/pdf/1611.02108.pdf -- Cubical Type Theory: a constructive interpretation of the univalence axiom -- Cyril Cohen, Thierry Coquand, Simon Huber, Anders Mörtberg private Glue-S : (A : Type ℓ) {φ : I} → (Te : Partial φ (Σ[ T ∈ Type ℓ' ] T ≃ A)) → Sub (Type ℓ') φ (λ { (φ = i1) → Te 1=1 .fst }) Glue-S A Te = inS (Glue A Te) glue-S : ∀ {A : Type ℓ} {φ : I} → {T : Partial φ (Type ℓ')} {e : PartialP φ (λ o → T o ≃ A)} → (t : PartialP φ T) → Sub A φ (λ { (φ = i1) → e 1=1 .fst (t 1=1) }) → Sub (primGlue A T e) φ (λ { (φ = i1) → t 1=1 }) glue-S t s = inS (glue t (outS s)) unglue-S : ∀ {A : Type ℓ} (φ : I) {T : Partial φ (Type ℓ')} {e : PartialP φ (λ o → T o ≃ A)} → (x : primGlue A T e) → Sub A φ (λ { (φ = i1) → e 1=1 .fst x }) unglue-S φ x = inS (prim^unglue {φ = φ} x)
{ "alphanum_fraction": 0.4874470166, "avg_line_length": 35.6627906977, "ext": "agda", "hexsha": "b22f7b2cce9342e57965d6713e5400154f5ee3cd", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bijan2005/univalent-foundations", "max_forks_repo_path": "Cubical/Core/Glue.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bijan2005/univalent-foundations", "max_issues_repo_path": "Cubical/Core/Glue.agda", "max_line_length": 102, "max_stars_count": null, "max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bijan2005/univalent-foundations", "max_stars_repo_path": "Cubical/Core/Glue.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1162, "size": 3067 }
-- Andreas, 2018-03-03, termination bug found by Nisse -- caused by a missing call to `instantiate`. -- {-# OPTIONS -vtc:20 -vterm:20 #-} {-# BUILTIN SIZEUNIV SizeU #-} {-# BUILTIN SIZE Size #-} {-# BUILTIN SIZELT Size<_ #-} {-# BUILTIN SIZEINF ∞ #-} record Unit (i : Size) : Set where coinductive field force : (j : Size< i) → Unit j postulate tail : Unit ∞ → Unit ∞ id : ∀ i → Unit i → Unit i u : ∀ i → Unit i u i = tail (id _ λ { .Unit.force j → u j }) -- Should not termination check.
{ "alphanum_fraction": 0.5793499044, "avg_line_length": 21.7916666667, "ext": "agda", "hexsha": "9ce5e445127b6ca79ee58ff4cf48bf07d55b61a4", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue2985.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue2985.agda", "max_line_length": 54, "max_stars_count": 2, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue2985.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z", "num_tokens": 173, "size": 523 }
-- Andreas, 2019-05-30, issue #3823 -- Named where module M should be in scope in rhs. -- This enables to use it in expressions like record{M}. open import Agda.Builtin.Equality record R : Set₂ where field A : Set₁ r : R r = record {M} module M where A = Set -- ERROR WAS: -- No module M in scope -- when scope checking record { M } test : r ≡ record {A = Set} test = refl -- Should succeed. -- Should also work with module parameters. s : Set₁ → R s B = record {L} module L where A = B -- With rewrite: postulate B : Set a b : B a≡b : a ≡ b P : B → Set record W : Set where field wrap : P b w : P a → W w p rewrite a≡b = record {N} module N where wrap = p -- Should also succeed in the presence of `rewrite`. module N' = N -- See issue #3824.
{ "alphanum_fraction": 0.6160602258, "avg_line_length": 15.3269230769, "ext": "agda", "hexsha": "468dbd960408df780edcf4151e1c7e493e644583", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-04-01T18:30:09.000Z", "max_forks_repo_forks_event_min_datetime": "2021-04-01T18:30:09.000Z", "max_forks_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "hborum/agda", "max_forks_repo_path": "test/Succeed/Issue3823.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": "2020-01-26T18:22:08.000Z", "max_issues_repo_issues_event_min_datetime": "2020-01-26T18:22:08.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Succeed/Issue3823.agda", "max_line_length": 56, "max_stars_count": 2, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Succeed/Issue3823.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z", "num_tokens": 261, "size": 797 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Empty type ------------------------------------------------------------------------ module Data.Empty where open import Level data ⊥ : Set where {-# IMPORT Data.FFI #-} {-# COMPILED_DATA ⊥ Data.FFI.AgdaEmpty #-} ⊥-elim : ∀ {w} {Whatever : Set w} → ⊥ → Whatever ⊥-elim ()
{ "alphanum_fraction": 0.3880208333, "avg_line_length": 21.3333333333, "ext": "agda", "hexsha": "b32d11b5cb21f365328ae2b27164dc4f776d7d11", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Data/Empty.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Data/Empty.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Data/Empty.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 80, "size": 384 }
module Relation.Equivalence.Univalence where open import Basics open import Level open import Relation.Equality open import Data.Product -- For any A and B, a quasi-inverse of f is a triple with -- ∘ A way back (an inverse for the homomorphism) -- ∘ Homotopies: -- ⊚ α : f ∘ g ∼ id -- ⊚ β : g ∘ f ∼ id -- For now, because I am lazy, the presence of a quasi-inverse will count -- as our definition of equivalence for now. Sorry. record IsEquiv {i j}{A : Set i}{B : Set j}(to : A → B) : Set (i ⊔ j) where field from : B → A iso₁ : (x : A) → from (to x) ≡ x iso₂ : (y : B) → to (from y) ≡ y -- Example 2.4.7: Identity is an equivalence. id-is-equiv : ∀ {i} (A : Set i) → IsEquiv (id {i}{A}) id-is-equiv {i} A = record { from = id {i}{A} ; iso₁ = λ _ → refl ; iso₂ = λ _ → refl } -- Type equivalence is also an equivalence, just on the Universe because: -- ∘ id-is-equiv works for it, therefore A ≃ A -- ∘ With A ≃ B, we can always make B ≃ A -- ∘ With A ≃ B and B ≃ C we have A ≃ C _≃_ : ∀ {i j} (A : Set i) (B : Set j) → Set (i ⊔ j) A ≃ B = Σ (A → B) IsEquiv postulate -- Just kidding ua : ∀ {i} {{A : Set i}}{{B : Set i}} → (A ≃ B) ≃ (A ≡ B) -- ^This says "equivalent types may be identified"
{ "alphanum_fraction": 0.5786113328, "avg_line_length": 31.325, "ext": "agda", "hexsha": "76f3b09eb476b05d6580b17b601cd83d6b4b8e0e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "CodaFi/HoTT-Exercises", "max_forks_repo_path": "Relation/Equivalence/Univalence.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "CodaFi/HoTT-Exercises", "max_issues_repo_path": "Relation/Equivalence/Univalence.agda", "max_line_length": 74, "max_stars_count": null, "max_stars_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "CodaFi/HoTT-Exercises", "max_stars_repo_path": "Relation/Equivalence/Univalence.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 458, "size": 1253 }
module Example where data Nat : Set where zero : Nat suc : Nat -> Nat postulate case-Nat : (P : Nat -> Set) -> P zero -> ((n:Nat) -> P (suc n)) -> (n : Nat) -> P n -- test : Nat -> Nat test = case-Nat _ zero (\n -> n) {- data Size : Set where empty : Size nonempty : Size whatever : Size data Nat : Set where zero : Nat suc : Nat -> Nat data List (A:Set) : Set where nil : List A (::) : A -> List A -> List A data Monad (M:Set -> Set) : Set1 where monad : Monad M postulate build : {M:Set -> Set} -> Monad M -> {C:Size -> Set} -> (A:Set) -> (A -> C nonempty) -> ((n:Size) -> List (C n) -> M (List A)) -> List A -> M (C whatever) test : (A:Set) -> Nat test A = build monad A (\x -> x) (\n xs -> xs) nil -}
{ "alphanum_fraction": 0.5130548303, "avg_line_length": 18.2380952381, "ext": "agda", "hexsha": "4d18d98a3c4e99cae6d7b6b804c5affb4fc1e49c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "notes/papers/implicit/examples/Example.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "notes/papers/implicit/examples/Example.agda", "max_line_length": 68, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "notes/papers/implicit/examples/Example.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 276, "size": 766 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Setoids.Setoids open import Functions.Definition open import Functions.Lemmas open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order open import Numbers.Integers.Integers open import Numbers.Rationals.Definition open import Sets.FinSet.Definition open import Sets.FinSet.Lemmas open import Sets.Cardinality.Finite.Definition open import Groups.Definition open import Groups.Groups open import Groups.Abelian.Definition open import Groups.FiniteGroups.Definition open import Rings.Definition open import Numbers.Modulo.Group open import Numbers.Modulo.Definition open import Semirings.Definition module Groups.LectureNotes.Lecture1 where ℤIsGroup : _ ℤIsGroup = ℤGroup ℚIsGroup : _ ℚIsGroup = Ring.additiveGroup ℚRing -- TODO: R is a group with + integersMinusNotGroup : Group (reflSetoid ℤ) (_-Z_) → False integersMinusNotGroup record { +WellDefined = wellDefined ; 0G = identity ; inverse = inverse ; +Associative = multAssoc ; identRight = multIdentRight ; identLeft = multIdentLeft ; invLeft = invLeft ; invRight = invRight } with multAssoc {nonneg 3} {nonneg 2} {nonneg 1} integersMinusNotGroup record { +WellDefined = wellDefined ; 0G = identity ; inverse = inverse ; +Associative = multAssoc ; identRight = multIdentRight ; identLeft = multIdentLeft ; invLeft = invLeft ; invRight = invRight } | () negSuccInjective : {a b : ℕ} → (negSucc a ≡ negSucc b) → a ≡ b negSuccInjective {a} {.a} refl = refl nonnegInjective : {a b : ℕ} → (nonneg a ≡ nonneg b) → a ≡ b nonnegInjective {a} {.a} refl = refl integersTimesNotGroup : Group (reflSetoid ℤ) (_*Z_) → False integersTimesNotGroup record { +WellDefined = wellDefined ; 0G = (nonneg zero) ; inverse = inverse ; +Associative = multAssoc ; identRight = multIdentRight ; identLeft = multIdentLeft ; invLeft = invLeft ; invRight = invRight } with multIdentLeft {negSucc 1} ... | () integersTimesNotGroup record { +WellDefined = wellDefined ; 0G = (nonneg (succ zero)) ; inverse = inverse ; +Associative = multAssoc ; identRight = multIdentRight ; identLeft = multIdentLeft ; invLeft = invLeft ; invRight = invRight } with invLeft {nonneg zero} ... | bl with inverse (nonneg zero) integersTimesNotGroup record { +WellDefined = wellDefined ; 0G = (nonneg (succ zero)) ; inverse = inverse ; +Associative = multAssoc ; identRight = multIdentRight ; identLeft = multIdentLeft ; invLeft = invLeft ; invRight = invRight } | () | nonneg zero integersTimesNotGroup record { +WellDefined = wellDefined ; 0G = (nonneg (succ zero)) ; inverse = inverse ; +Associative = multAssoc ; identRight = multIdentRight ; identLeft = multIdentLeft ; invLeft = invLeft ; invRight = invRight } | p | nonneg (succ x) = naughtE (nonnegInjective (transitivity (applyEquality nonneg (equalityCommutative (Semiring.productZeroRight ℕSemiring x))) p)) integersTimesNotGroup record { +WellDefined = wellDefined ; 0G = (nonneg (succ zero)) ; inverse = inverse ; +Associative = multAssoc ; identRight = multIdentRight ; identLeft = multIdentLeft ; invLeft = invLeft ; invRight = invRight } | () | negSucc x integersTimesNotGroup record { +WellDefined = wellDefined ; 0G = (nonneg (succ (succ x))) ; inverse = inverse ; +Associative = multAssoc ; identRight = multIdentRight ; identLeft = multIdentLeft ; invLeft = invLeft ; invRight = invRight } with succInjective (negSuccInjective (multIdentLeft {negSucc 1})) ... | () integersTimesNotGroup record { +WellDefined = wellDefined ; 0G = (negSucc x) ; inverse = inverse ; +Associative = multAssoc ; identRight = multIdentRight ; identLeft = multIdentLeft ; invLeft = invLeft ; invRight = invRight } with multIdentLeft {nonneg 2} integersTimesNotGroup record { +WellDefined = wellDefined ; 0G = (negSucc x) ; inverse = inverse ; +Associative = multAssoc ; identRight = multIdentRight ; identLeft = multIdentLeft ; invLeft = invLeft ; invRight = invRight } | () -- TODO: Q is not a group with *Q -- TODO: Q without 0 is a group with *Q -- TODO: {1, -1} is a group with * ℤnIsGroup : (n : ℕ) → (0<n : 0 <N n) → _ ℤnIsGroup n pr = ℤnGroup n pr -- Groups example 8.9 from lecture 1 data Weird : Set where e : Weird a : Weird b : Weird c : Weird _+W_ : Weird → Weird → Weird e +W t = t a +W e = a a +W a = e a +W b = c a +W c = b b +W e = b b +W a = c b +W b = e b +W c = a c +W e = c c +W a = b c +W b = a c +W c = e +WAssoc : {x y z : Weird} → (x +W (y +W z)) ≡ (x +W y) +W z +WAssoc {e} {y} {z} = refl +WAssoc {a} {e} {z} = refl +WAssoc {a} {a} {e} = refl +WAssoc {a} {a} {a} = refl +WAssoc {a} {a} {b} = refl +WAssoc {a} {a} {c} = refl +WAssoc {a} {b} {e} = refl +WAssoc {a} {b} {a} = refl +WAssoc {a} {b} {b} = refl +WAssoc {a} {b} {c} = refl +WAssoc {a} {c} {e} = refl +WAssoc {a} {c} {a} = refl +WAssoc {a} {c} {b} = refl +WAssoc {a} {c} {c} = refl +WAssoc {b} {e} {z} = refl +WAssoc {b} {a} {e} = refl +WAssoc {b} {a} {a} = refl +WAssoc {b} {a} {b} = refl +WAssoc {b} {a} {c} = refl +WAssoc {b} {b} {e} = refl +WAssoc {b} {b} {a} = refl +WAssoc {b} {b} {b} = refl +WAssoc {b} {b} {c} = refl +WAssoc {b} {c} {e} = refl +WAssoc {b} {c} {a} = refl +WAssoc {b} {c} {b} = refl +WAssoc {b} {c} {c} = refl +WAssoc {c} {e} {z} = refl +WAssoc {c} {a} {e} = refl +WAssoc {c} {a} {a} = refl +WAssoc {c} {a} {b} = refl +WAssoc {c} {a} {c} = refl +WAssoc {c} {b} {e} = refl +WAssoc {c} {b} {a} = refl +WAssoc {c} {b} {b} = refl +WAssoc {c} {b} {c} = refl +WAssoc {c} {c} {e} = refl +WAssoc {c} {c} {a} = refl +WAssoc {c} {c} {b} = refl +WAssoc {c} {c} {c} = refl weirdGroup : Group (reflSetoid Weird) _+W_ Group.+WellDefined weirdGroup = reflGroupWellDefined Group.0G weirdGroup = e Group.inverse weirdGroup t = t Group.+Associative weirdGroup {r} {s} {t} = +WAssoc {r} {s} {t} Group.identRight weirdGroup {e} = refl Group.identRight weirdGroup {a} = refl Group.identRight weirdGroup {b} = refl Group.identRight weirdGroup {c} = refl Group.identLeft weirdGroup {e} = refl Group.identLeft weirdGroup {a} = refl Group.identLeft weirdGroup {b} = refl Group.identLeft weirdGroup {c} = refl Group.invLeft weirdGroup {e} = refl Group.invLeft weirdGroup {a} = refl Group.invLeft weirdGroup {b} = refl Group.invLeft weirdGroup {c} = refl Group.invRight weirdGroup {e} = refl Group.invRight weirdGroup {a} = refl Group.invRight weirdGroup {b} = refl Group.invRight weirdGroup {c} = refl weirdAb : AbelianGroup weirdGroup AbelianGroup.commutative weirdAb {e} {e} = refl AbelianGroup.commutative weirdAb {e} {a} = refl AbelianGroup.commutative weirdAb {e} {b} = refl AbelianGroup.commutative weirdAb {e} {c} = refl AbelianGroup.commutative weirdAb {a} {e} = refl AbelianGroup.commutative weirdAb {a} {a} = refl AbelianGroup.commutative weirdAb {a} {b} = refl AbelianGroup.commutative weirdAb {a} {c} = refl AbelianGroup.commutative weirdAb {b} {e} = refl AbelianGroup.commutative weirdAb {b} {a} = refl AbelianGroup.commutative weirdAb {b} {b} = refl AbelianGroup.commutative weirdAb {b} {c} = refl AbelianGroup.commutative weirdAb {c} {e} = refl AbelianGroup.commutative weirdAb {c} {a} = refl AbelianGroup.commutative weirdAb {c} {b} = refl AbelianGroup.commutative weirdAb {c} {c} = refl weirdProjection : Weird → FinSet 4 weirdProjection a = ofNat 0 (le 3 refl) weirdProjection b = ofNat 1 (le 2 refl) weirdProjection c = ofNat 2 (le 1 refl) weirdProjection e = ofNat 3 (le zero refl) weirdProjectionSurj : Surjection weirdProjection weirdProjectionSurj fzero = a , refl weirdProjectionSurj (fsucc fzero) = b , refl weirdProjectionSurj (fsucc (fsucc fzero)) = c , refl weirdProjectionSurj (fsucc (fsucc (fsucc fzero))) = e , refl weirdProjectionSurj (fsucc (fsucc (fsucc (fsucc ())))) weirdProjectionInj : (x y : Weird) → weirdProjection x ≡ weirdProjection y → Setoid._∼_ (reflSetoid Weird) x y weirdProjectionInj e e fx=fy = refl weirdProjectionInj e a () weirdProjectionInj e b () weirdProjectionInj e c () weirdProjectionInj a e () weirdProjectionInj a a fx=fy = refl weirdProjectionInj a b () weirdProjectionInj a c () weirdProjectionInj b e () weirdProjectionInj b a () weirdProjectionInj b b fx=fy = refl weirdProjectionInj b c () weirdProjectionInj c e () weirdProjectionInj c a () weirdProjectionInj c b () weirdProjectionInj c c fx=fy = refl weirdFinite : FiniteGroup weirdGroup (FinSet 4) SetoidToSet.project (FiniteGroup.toSet weirdFinite) = weirdProjection SetoidToSet.wellDefined (FiniteGroup.toSet weirdFinite) x y = applyEquality weirdProjection SetoidToSet.surj (FiniteGroup.toSet weirdFinite) = weirdProjectionSurj SetoidToSet.inj (FiniteGroup.toSet weirdFinite) = weirdProjectionInj FiniteSet.size (FiniteGroup.finite weirdFinite) = 4 FiniteSet.mapping (FiniteGroup.finite weirdFinite) = id FiniteSet.bij (FiniteGroup.finite weirdFinite) = idIsBijective weirdOrder : groupOrder weirdFinite ≡ 4 weirdOrder = refl -- TODO: dihedral groups -- TODO: matrix groups on R -- TODO: general linear groups on R
{ "alphanum_fraction": 0.7110342519, "avg_line_length": 41.8831775701, "ext": "agda", "hexsha": "cfbf7733befd7b7245fb59862b15103ec46e6124", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Groups/LectureNotes/Lecture1.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Groups/LectureNotes/Lecture1.agda", "max_line_length": 386, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Groups/LectureNotes/Lecture1.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 3016, "size": 8963 }
-- The empty type; also used as absurd proposition (``Falsity''). {-# OPTIONS --without-K --safe #-} module Tools.Empty where data ⊥ : Set where -- Ex falsum quod libet. ⊥-elim : ∀ {a} {A : Set a} → ⊥ → A ⊥-elim () ⊥-elimω : ∀ {A : Agda.Primitive.Setω} → ⊥ → A ⊥-elimω ()
{ "alphanum_fraction": 0.571942446, "avg_line_length": 17.375, "ext": "agda", "hexsha": "7e123e3bc8bbc11fed8d0ed4adb50bd3dd957f6c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "loic-p/logrel-mltt", "max_forks_repo_path": "Tools/Empty.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "loic-p/logrel-mltt", "max_issues_repo_path": "Tools/Empty.agda", "max_line_length": 65, "max_stars_count": null, "max_stars_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "loic-p/logrel-mltt", "max_stars_repo_path": "Tools/Empty.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 106, "size": 278 }
module Lib where -- Natural numbers data Nat : Set where zero : Nat suc : Nat -> Nat {-# BUILTIN NATURAL Nat #-} _+_ : Nat -> Nat -> Nat zero + n = n suc k + n = suc (k + n) -- Finite sets data Fin : Nat -> Set where fzero : forall {n} -> Fin (suc n) fsuc : forall {n} -> Fin n -> Fin (suc n) fin : forall {n} (k : Nat) -> Fin (suc (k + n)) fin zero = fzero fin (suc i) = fsuc (fin i) -- Lists infixl 0 _,_ data List (X : Set) : Set where [] : List X _,_ : List X -> X -> List X -- List membership data LMem {X : Set} (a : X) : List X -> Set where lzero : forall {l} -> LMem a (l , a) lsuc : forall {l b} -> LMem a l -> LMem a (l , b) -- Vectors data Vec (X : Set) : Nat -> Set where [] : Vec X zero _,_ : forall {n} -> Vec X n -> X -> Vec X (suc n) proj : forall {X n} -> Vec X n -> Fin n -> X proj [] () proj (_ , a) fzero = a proj (v , _) (fsuc i) = proj v i -- Vector membership data VMem {X : Set} (a : X) : forall {n} -> Fin n -> Vec X n -> Set where mzero : forall {n} {v : Vec X n} -> VMem a fzero (v , a) msuc : forall {n i b} {v : Vec X n} -> VMem a i v -> VMem a (fsuc i) (v , b) fmem : forall {X n} -> (i : Fin n) -> {v : Vec X n} -> VMem (proj v i) i v fmem {_} {zero} () fmem {_} {suc n} fzero {_ , a} = mzero fmem {_} {suc n} (fsuc i) {v , _} = msuc (fmem i) mem : forall {X n} -> (k : Nat) -> {v : Vec X (suc (k + n))} -> VMem (proj v (fin k)) (fin k) v mem i = fmem (fin i)
{ "alphanum_fraction": 0.4746632457, "avg_line_length": 22.5942028986, "ext": "agda", "hexsha": "1ea71170036f6dc08f1cfb317a695c1805f97225", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2dd761bfa96ccda089888e8defa6814776fa2922", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/formal-logic", "max_forks_repo_path": "src/Lib.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2dd761bfa96ccda089888e8defa6814776fa2922", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/formal-logic", "max_issues_repo_path": "src/Lib.agda", "max_line_length": 95, "max_stars_count": 26, "max_stars_repo_head_hexsha": "2dd761bfa96ccda089888e8defa6814776fa2922", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/formal-logic", "max_stars_repo_path": "src/Lib.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-13T12:37:44.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-31T09:49:52.000Z", "num_tokens": 597, "size": 1559 }
------------------------------------------------------------------------------ -- Agda-Prop Library. -- Deep Embedding for Propositional Logic. ------------------------------------------------------------------------------ open import Data.Nat using ( ℕ ) module Data.PropFormula ( n : ℕ ) where ------------------------------------------------------------------------------ open import Data.PropFormula.Dec n public open import Data.PropFormula.Properties n public open import Data.PropFormula.Syntax n public open import Data.PropFormula.Theorems n public open import Data.Bool public using ( Bool; true; false; not ) renaming ( _∧_ to _&&_; _∨_ to _||_ ) open import Data.Fin public using ( Fin; zero; suc; #_ ) open import Data.List public using ( List; []; _∷_; _++_; [_] ) open import Data.Vec public using ( Vec; lookup ) open import Function public using ( _$_ ) ------------------------------------------------------------------------------
{ "alphanum_fraction": 0.4720812183, "avg_line_length": 35.1785714286, "ext": "agda", "hexsha": "ea4ae66e257a0b406b148ce9dc709fc245037324", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2017-12-01T17:01:25.000Z", "max_forks_repo_forks_event_min_datetime": "2017-03-30T16:41:56.000Z", "max_forks_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jonaprieto/agda-prop", "max_forks_repo_path": "src/Data/PropFormula.agda", "max_issues_count": 18, "max_issues_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae", "max_issues_repo_issues_event_max_datetime": "2017-12-18T16:34:21.000Z", "max_issues_repo_issues_event_min_datetime": "2017-03-08T14:33:10.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jonaprieto/agda-prop", "max_issues_repo_path": "src/Data/PropFormula.agda", "max_line_length": 78, "max_stars_count": 13, "max_stars_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jonaprieto/agda-prop", "max_stars_repo_path": "src/Data/PropFormula.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T03:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2017-05-01T16:45:41.000Z", "num_tokens": 185, "size": 985 }
module W where open import Function using (_∘_) open import Data.Bool using (Bool; true; false) open import Data.Product open import Data.Unit using (⊤; tt) open import Data.Empty using (⊥; ⊥-elim) data W (S : Set) (P : S → Set) : Set where max : (s : S) → (f : P s → W S P) → W S P -- data ℕ : Set where -- zero : ℕ _^0 -- succ : ℕ → ℕ ∣ℕ∣ ℕ : Set ℕ = W Bool f where f : Bool → Set f true = ⊤ -- 1 f false = ⊥ -- 0 zero : ℕ zero = max false ⊥-elim succ : ℕ → ℕ succ n = max true (λ _ → n) _+_ : ℕ → ℕ → ℕ (max true f) + y = max true (λ _ → f tt + y) (max false f) + y = y -- data Tree : Set where -- leaf : Tree _^0 -- node : Tree → Tree → Tree |ℕ| x |ℕ| Tree : Set Tree = W Bool λ { true → Bool ; false → ⊥ } leaf : Tree leaf = max false ⊥-elim -- _^0 node : Tree → Tree → Tree node l r = max true λ { true → l -- ∣Tree∣^2 ; false → r } data LW (S : Set) (LP : S → Set × Set) : Set where lmax : (s : Σ S (proj₁ ∘ LP)) → (proj₂ (LP (proj₁ s)) → LW S LP) → LW S LP List : (X : Set) → Set List X = LW Bool (λ { true → X , ⊤ -- cons ; false → ⊤ , ⊥ }) -- nil nil : {X : Set} → List X nil = lmax (false , tt) ⊥-elim cons : {X : Set} → (x : X) → List X → List X cons {X} x xs = lmax (true , x) λ _ → xs -- induction principle on W-types indW : (S : Set) → (P : S → Set) → (C : W S P → Set) -- property → (c : (s : S) -- given a shape → (f : P s → W S P) -- and a bunch of kids → (h : (p : P s) → C (f p)) -- if C holds for all kids → C (max s f)) -- C holds for (max s f) → (x : W S P) → C x indW S P C step (max s f) = step s f (λ p → {! !} S P C step (f p)) indℕ : (C : ℕ → Set) → C zero → ((n : ℕ) → C n → C (succ n)) → (x : ℕ) → C x indℕ C base step (max true f) = step (f tt) (indℕ C base step (f tt)) indℕ C base step (max false f) = {! base !}
{ "alphanum_fraction": 0.4532019704, "avg_line_length": 26.0256410256, "ext": "agda", "hexsha": "c8f125ea9ae5ee3dd974b47f36237a1e2f37ee42", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_forks_event_min_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/numeral", "max_forks_repo_path": "Sandbox/W.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/numeral", "max_issues_repo_path": "Sandbox/W.agda", "max_line_length": 79, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/numeral", "max_stars_repo_path": "Sandbox/W.agda", "max_stars_repo_stars_event_max_datetime": "2015-04-23T15:58:28.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-23T15:58:28.000Z", "num_tokens": 758, "size": 2030 }
-- Andreas, 2015-07-13 Better parse errors for illegal type signatures -1 : Set1 -1 = Set
{ "alphanum_fraction": 0.7065217391, "avg_line_length": 18.4, "ext": "agda", "hexsha": "9b01d15f1a71aa733e9d37af52842497af8681d6", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue1609-negative-literal.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue1609-negative-literal.agda", "max_line_length": 71, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue1609-negative-literal.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 30, "size": 92 }
------------------------------------------------------------------------ -- The one-step truncation HIT with an erased higher constructor ------------------------------------------------------------------------ {-# OPTIONS --erased-cubical --safe #-} -- The module is parametrised by a notion of equality. The higher -- constructor of the HIT defining the one-step truncation operator -- uses path equality, but the supplied notion of equality is used for -- many other things. import Equality.Path as P module H-level.Truncation.Propositional.One-step.Erased {e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where open P.Derived-definitions-and-properties eq hiding (elim) open import Logical-equivalence using (_⇔_) open import Prelude open import Bijection equality-with-J using (_↔_) open import Equality.Decidable-UIP equality-with-J using (Constant) import Equality.Decidable-UIP P.equality-with-J as PD open import Equality.Path.Isomorphisms eq open import Equivalence equality-with-J as Eq using (_≃_) open import Equivalence.Erased.Cubical eq as EEq using (_≃ᴱ_) open import Function-universe equality-with-J as F hiding (id; _∘_) open import H-level.Closure equality-with-J open import Surjection equality-with-J using (_↠_) private variable a b p : Level A B : Type a P : A → Type p e r x y : A n : ℕ ------------------------------------------------------------------------ -- The type -- One-step truncation. -- -- This definition is based on that in van Doorn's "Constructing the -- Propositional Truncation using Non-recursive HITs", but has an -- erased higher constructor. data ∥_∥¹ᴱ (A : Type a) : Type a where ∣_∣ : A → ∥ A ∥¹ᴱ @0 ∣∣-constantᴾ : PD.Constant (∣_∣ {A = A}) -- The function ∣_∣ is constant (in erased contexts). @0 ∣∣-constant : Constant (∣_∣ {A = A}) ∣∣-constant x y = _↔_.from ≡↔≡ (∣∣-constantᴾ x y) ------------------------------------------------------------------------ -- Eliminators -- A dependent eliminator, expressed using paths. record Elimᴾ {A : Type a} (P : ∥ A ∥¹ᴱ → Type p) : Type (a ⊔ p) where no-eta-equality field ∣∣ʳ : ∀ x → P ∣ x ∣ @0 ∣∣-constantʳ : (x y : A) → P.[ (λ i → P (∣∣-constantᴾ x y i)) ] ∣∣ʳ x ≡ ∣∣ʳ y open Elimᴾ public elimᴾ : Elimᴾ P → (x : ∥ A ∥¹ᴱ) → P x elimᴾ {A = A} {P = P} e = helper where module E = Elimᴾ e helper : (x : ∥ A ∥¹ᴱ) → P x helper ∣ x ∣ = E.∣∣ʳ x helper (∣∣-constantᴾ x y i) = E.∣∣-constantʳ x y i -- A non-dependent eliminator, expressed using paths. record Recᴾ (A : Type a) (B : Type b) : Type (a ⊔ b) where no-eta-equality field ∣∣ʳ : A → B @0 ∣∣-constantʳ : PD.Constant ∣∣ʳ open Recᴾ public recᴾ : Recᴾ A B → ∥ A ∥¹ᴱ → B recᴾ r = elimᴾ λ where .∣∣ʳ → R.∣∣ʳ .∣∣-constantʳ → R.∣∣-constantʳ where module R = Recᴾ r -- A dependent eliminator. record Elim {A : Type a} (P : ∥ A ∥¹ᴱ → Type p) : Type (a ⊔ p) where no-eta-equality field ∣∣ʳ : ∀ x → P ∣ x ∣ @0 ∣∣-constantʳ : (x y : A) → subst P (∣∣-constant x y) (∣∣ʳ x) ≡ ∣∣ʳ y open Elim public elim : Elim P → (x : ∥ A ∥¹ᴱ) → P x elim e = elimᴾ λ where .∣∣ʳ → E.∣∣ʳ .∣∣-constantʳ x y → subst≡→[]≡ (E.∣∣-constantʳ x y) where module E = Elim e -- A "computation" rule. @0 elim-∣∣-constant : dcong (elim e) (∣∣-constant x y) ≡ Elim.∣∣-constantʳ e x y elim-∣∣-constant = dcong-subst≡→[]≡ (refl _) -- A non-dependent eliminator. record Rec (A : Type a) (B : Type b) : Type (a ⊔ b) where no-eta-equality field ∣∣ʳ : A → B @0 ∣∣-constantʳ : Constant ∣∣ʳ open Rec public rec : Rec A B → ∥ A ∥¹ᴱ → B rec r = recᴾ λ where .∣∣ʳ → R.∣∣ʳ .∣∣-constantʳ x y → _↔_.to ≡↔≡ (R.∣∣-constantʳ x y) where module R = Rec r -- A "computation" rule. @0 rec-∣∣-constant : cong (rec r) (∣∣-constant x y) ≡ Rec.∣∣-constantʳ r x y rec-∣∣-constant = cong-≡↔≡ (refl _) -- A variant of rec. rec′ : (f : A → B) → @0 Constant f → ∥ A ∥¹ᴱ → B rec′ f c = rec λ where .Rec.∣∣ʳ → f .Rec.∣∣-constantʳ → c ------------------------------------------------------------------------ -- Some preservation lemmas -- A map function for ∥_∥¹ᴱ. ∥∥¹ᴱ-map : (A → B) → ∥ A ∥¹ᴱ → ∥ B ∥¹ᴱ ∥∥¹ᴱ-map f = rec λ where .∣∣ʳ x → ∣ f x ∣ .∣∣-constantʳ x y → ∣∣-constant (f x) (f y) -- The truncation operator preserves logical equivalences. ∥∥¹ᴱ-cong-⇔ : A ⇔ B → ∥ A ∥¹ᴱ ⇔ ∥ B ∥¹ᴱ ∥∥¹ᴱ-cong-⇔ A⇔B = record { to = ∥∥¹ᴱ-map (_⇔_.to A⇔B) ; from = ∥∥¹ᴱ-map (_⇔_.from A⇔B) } private -- A lemma used below. @0 ∥∥¹ᴱ-cong-lemma : (f : A → B) (g : B → A) (eq : ∀ x → f (g x) ≡ x) → subst (λ z → ∥∥¹ᴱ-map f (∥∥¹ᴱ-map g z) ≡ z) (∣∣-constant x y) (cong ∣_∣ (eq x)) ≡ cong ∣_∣ (eq y) ∥∥¹ᴱ-cong-lemma {x = x} {y = y} f g eq = subst (λ z → ∥∥¹ᴱ-map f (∥∥¹ᴱ-map g z) ≡ z) (∣∣-constant x y) (cong ∣_∣ (eq x)) ≡⟨ subst-in-terms-of-trans-and-cong ⟩ trans (sym (cong (∥∥¹ᴱ-map f ∘ ∥∥¹ᴱ-map g) (∣∣-constant x y))) (trans (cong ∣_∣ (eq x)) (cong id (∣∣-constant x y))) ≡⟨ cong₂ (λ p q → trans (sym p) (trans (cong ∣_∣ (eq x)) q)) (trans (sym $ cong-∘ _ _ _) $ trans (cong (cong (∥∥¹ᴱ-map f)) rec-∣∣-constant) $ rec-∣∣-constant) (sym $ cong-id _) ⟩ trans (sym (∣∣-constant (f (g x)) (f (g y)))) (trans (cong ∣_∣ (eq x)) (∣∣-constant x y)) ≡⟨ cong (λ f → trans _ (trans (cong ∣_∣ (f _)) _)) $ sym $ _≃_.left-inverse-of (Eq.extensionality-isomorphism bad-ext) eq ⟩ trans (sym (∣∣-constant (f (g x)) (f (g y)))) (trans (cong ∣_∣ (ext⁻¹ (⟨ext⟩ eq) x)) (∣∣-constant x y)) ≡⟨ elim₁ (λ {f} eq → trans (sym (∣∣-constant (f x) (f y))) (trans (cong ∣_∣ (ext⁻¹ eq x)) (∣∣-constant x y)) ≡ cong ∣_∣ (ext⁻¹ eq y)) ( trans (sym (∣∣-constant x y)) (trans (cong ∣_∣ (ext⁻¹ (refl id) x)) (∣∣-constant x y)) ≡⟨ cong (trans _) $ trans (cong (flip trans _) $ trans (cong (cong _) $ cong-refl _) $ cong-refl _) $ trans-reflˡ _ ⟩ trans (sym (∣∣-constant x y)) (∣∣-constant x y) ≡⟨ trans-symˡ _ ⟩ refl _ ≡⟨ trans (sym $ cong-refl _) $ cong (cong _) $ sym $ cong-refl _ ⟩∎ cong ∣_∣ (ext⁻¹ (refl _) y) ∎) _ ⟩ cong ∣_∣ (ext⁻¹ (⟨ext⟩ eq) y) ≡⟨ cong (λ f → cong ∣_∣ (f _)) $ _≃_.left-inverse-of (Eq.extensionality-isomorphism bad-ext) eq ⟩∎ cong ∣_∣ (eq y) ∎ -- The truncation operator preserves split surjections. ∥∥¹ᴱ-cong-↠ : A ↠ B → ∥ A ∥¹ᴱ ↠ ∥ B ∥¹ᴱ ∥∥¹ᴱ-cong-↠ A↠B = record { logical-equivalence = ∥∥¹ᴱ-cong-⇔ (_↠_.logical-equivalence A↠B) ; right-inverse-of = elim λ where .∣∣ʳ x → cong ∣_∣ (_↠_.right-inverse-of A↠B x) .∣∣-constantʳ x y → ∥∥¹ᴱ-cong-lemma (_↠_.to A↠B) (_↠_.from A↠B) (_↠_.right-inverse-of A↠B) } -- The truncation operator preserves bijections. ∥∥¹ᴱ-cong-↔ : A ↔ B → ∥ A ∥¹ᴱ ↔ ∥ B ∥¹ᴱ ∥∥¹ᴱ-cong-↔ A↔B = record { surjection = ∥∥¹ᴱ-cong-↠ (_↔_.surjection A↔B) ; left-inverse-of = elim λ where .∣∣ʳ x → cong ∣_∣ (_↔_.left-inverse-of A↔B x) .∣∣-constantʳ x y → ∥∥¹ᴱ-cong-lemma (_↔_.from A↔B) (_↔_.to A↔B) (_↔_.left-inverse-of A↔B) } -- The truncation operator preserves equivalences. ∥∥¹ᴱ-cong-≃ : A ≃ B → ∥ A ∥¹ᴱ ≃ ∥ B ∥¹ᴱ ∥∥¹ᴱ-cong-≃ = from-isomorphism ∘ ∥∥¹ᴱ-cong-↔ ∘ from-isomorphism -- The truncation operator preserves equivalences with erased proofs. ∥∥¹ᴱ-cong-≃ᴱ : A ≃ᴱ B → ∥ A ∥¹ᴱ ≃ᴱ ∥ B ∥¹ᴱ ∥∥¹ᴱ-cong-≃ᴱ A≃B = EEq.[≃]→≃ᴱ (EEq.[proofs] (∥∥¹ᴱ-cong-≃ (EEq.≃ᴱ→≃ A≃B))) ------------------------------------------------------------------------ -- Iterated applications of the one-step truncation operator -- Applies the one-step truncation the given number of times, from the -- "outside". -- -- This definition and the next one are taken from van Doorn's -- "Constructing the Propositional Truncation using Non-recursive -- HITs". ∥_∥¹ᴱ-out-^ : Type a → ℕ → Type a ∥ A ∥¹ᴱ-out-^ zero = A ∥ A ∥¹ᴱ-out-^ (suc n) = ∥ ∥ A ∥¹ᴱ-out-^ n ∥¹ᴱ -- A "constructor" for ∥_∥¹ᴱ-out-^. ∣_∣-out-^ : A → ∀ n → ∥ A ∥¹ᴱ-out-^ n ∣ x ∣-out-^ zero = x ∣ x ∣-out-^ (suc n) = ∣ ∣ x ∣-out-^ n ∣ -- A rearrangement lemma. ∥∥¹ᴱ-out-^+≃ : ∀ m → ∥ A ∥¹ᴱ-out-^ (m + n) ≃ ∥ ∥ A ∥¹ᴱ-out-^ n ∥¹ᴱ-out-^ m ∥∥¹ᴱ-out-^+≃ zero = F.id ∥∥¹ᴱ-out-^+≃ {A = A} {n = n} (suc m) = ∥ ∥ A ∥¹ᴱ-out-^ (m + n) ∥¹ᴱ ↝⟨ ∥∥¹ᴱ-cong-≃ (∥∥¹ᴱ-out-^+≃ m) ⟩□ ∥ ∥ ∥ A ∥¹ᴱ-out-^ n ∥¹ᴱ-out-^ m ∥¹ᴱ □ -- ∥_∥¹ᴱ commutes with ∥_∥¹ᴱ-out-^ n. ∥∥¹ᴱ-∥∥¹ᴱ-out-^-commute : ∀ n → ∥ ∥ A ∥¹ᴱ-out-^ n ∥¹ᴱ ↔ ∥ ∥ A ∥¹ᴱ ∥¹ᴱ-out-^ n ∥∥¹ᴱ-∥∥¹ᴱ-out-^-commute zero = F.id ∥∥¹ᴱ-∥∥¹ᴱ-out-^-commute {A = A} (suc n) = ∥ ∥ ∥ A ∥¹ᴱ-out-^ n ∥¹ᴱ ∥¹ᴱ ↝⟨ ∥∥¹ᴱ-cong-↔ (∥∥¹ᴱ-∥∥¹ᴱ-out-^-commute n) ⟩□ ∥ ∥ ∥ A ∥¹ᴱ ∥¹ᴱ-out-^ n ∥¹ᴱ □ private -- The lemma above is defined using _↔_ rather than _≃_ because the -- following equalities hold by definition when _↔_ is used, but (at -- the time of writing) the second one does not hold when _≃_ is -- used. _ : {x : A} → _↔_.left-inverse-of (∥∥¹ᴱ-∥∥¹ᴱ-out-^-commute 0) ∣ x ∣ ≡ refl ∣ x ∣ _ = refl _ _ : {A : Type a} {x : ∥ A ∥¹ᴱ-out-^ (suc n)} → _↔_.left-inverse-of (∥∥¹ᴱ-∥∥¹ᴱ-out-^-commute (1 + n)) ∣ x ∣ ≡ cong ∣_∣ (_↔_.left-inverse-of (∥∥¹ᴱ-∥∥¹ᴱ-out-^-commute n) x) _ = refl _ -- A variant of ∥_∥¹ᴱ-out-^ which applies the one-step truncation the -- given number of times from the "inside". ∥_∥¹ᴱ-in-^ : Type a → ℕ → Type a ∥ A ∥¹ᴱ-in-^ zero = A ∥ A ∥¹ᴱ-in-^ (suc n) = ∥ ∥ A ∥¹ᴱ ∥¹ᴱ-in-^ n -- The two variants of ∥_∥¹ᴱ^ are pointwise equivalent. ∥∥¹ᴱ-out-^≃∥∥¹ᴱ-in-^ : ∀ n → ∥ A ∥¹ᴱ-out-^ n ≃ ∥ A ∥¹ᴱ-in-^ n ∥∥¹ᴱ-out-^≃∥∥¹ᴱ-in-^ zero = F.id ∥∥¹ᴱ-out-^≃∥∥¹ᴱ-in-^ {A = A} (suc n) = ∥ ∥ A ∥¹ᴱ-out-^ n ∥¹ᴱ ↔⟨ ∥∥¹ᴱ-∥∥¹ᴱ-out-^-commute n ⟩ ∥ ∥ A ∥¹ᴱ ∥¹ᴱ-out-^ n ↝⟨ ∥∥¹ᴱ-out-^≃∥∥¹ᴱ-in-^ n ⟩□ ∥ ∥ A ∥¹ᴱ ∥¹ᴱ-in-^ n □ -- ∥_∥¹ᴱ commutes with ∥_∥¹ᴱ-in-^ n. ∥∥¹ᴱ-∥∥¹ᴱ-in-^-commute : ∀ n → ∥ ∥ A ∥¹ᴱ-in-^ n ∥¹ᴱ ≃ ∥ ∥ A ∥¹ᴱ ∥¹ᴱ-in-^ n ∥∥¹ᴱ-∥∥¹ᴱ-in-^-commute {A = A} n = ∥ ∥ A ∥¹ᴱ-in-^ n ∥¹ᴱ ↝⟨ ∥∥¹ᴱ-cong-≃ (inverse $ ∥∥¹ᴱ-out-^≃∥∥¹ᴱ-in-^ n) ⟩ ∥ ∥ A ∥¹ᴱ-out-^ n ∥¹ᴱ ↔⟨⟩ ∥ A ∥¹ᴱ-out-^ (suc n) ↝⟨ ∥∥¹ᴱ-out-^≃∥∥¹ᴱ-in-^ (suc n) ⟩ ∥ A ∥¹ᴱ-in-^ (suc n) ↔⟨⟩ ∥ ∥ A ∥¹ᴱ ∥¹ᴱ-in-^ n □ -- A "constructor" for ∥_∥¹ᴱ-in-^. ∣_,_∣-in-^ : ∀ n → ∥ A ∥¹ᴱ-in-^ n → ∥ A ∥¹ᴱ-in-^ (suc n) ∣ zero , x ∣-in-^ = ∣ x ∣ ∣ suc n , x ∣-in-^ = ∣ n , x ∣-in-^ -- ∣_,_∣-in-^ is related to ∣_∣. ∣∣≡∣,∣-in-^ : ∀ n {x : ∥ A ∥¹ᴱ-out-^ n} → _≃_.to (∥∥¹ᴱ-out-^≃∥∥¹ᴱ-in-^ (suc n)) ∣ x ∣ ≡ ∣ n , _≃_.to (∥∥¹ᴱ-out-^≃∥∥¹ᴱ-in-^ n) x ∣-in-^ ∣∣≡∣,∣-in-^ zero {x = x} = ∣ x ∣ ∎ ∣∣≡∣,∣-in-^ (suc n) {x = x} = _≃_.to (∥∥¹ᴱ-out-^≃∥∥¹ᴱ-in-^ (2 + n)) ∣ x ∣ ≡⟨⟩ _≃_.to (∥∥¹ᴱ-out-^≃∥∥¹ᴱ-in-^ (1 + n)) ∣ _↔_.to (∥∥¹ᴱ-∥∥¹ᴱ-out-^-commute n) x ∣ ≡⟨ ∣∣≡∣,∣-in-^ n ⟩∎ ∣ n , _≃_.to (∥∥¹ᴱ-out-^≃∥∥¹ᴱ-in-^ n) (_↔_.to (∥∥¹ᴱ-∥∥¹ᴱ-out-^-commute n) x) ∣-in-^ ∎ -- A variant of ∣∣≡∣,∣-in-^. ∣,∣-in-^≡∣∣ : ∀ n {x : ∥ A ∥¹ᴱ-in-^ n} → _≃_.from (∥∥¹ᴱ-out-^≃∥∥¹ᴱ-in-^ (suc n)) ∣ n , x ∣-in-^ ≡ ∣ _≃_.from (∥∥¹ᴱ-out-^≃∥∥¹ᴱ-in-^ n) x ∣ ∣,∣-in-^≡∣∣ zero {x = x} = ∣ x ∣ ∎ ∣,∣-in-^≡∣∣ (suc n) {x = x} = _≃_.from (∥∥¹ᴱ-out-^≃∥∥¹ᴱ-in-^ (2 + n)) ∣ 1 + n , x ∣-in-^ ≡⟨⟩ _↔_.from (∥∥¹ᴱ-∥∥¹ᴱ-out-^-commute (1 + n)) (_≃_.from (∥∥¹ᴱ-out-^≃∥∥¹ᴱ-in-^ (1 + n)) ∣ n , x ∣-in-^) ≡⟨ cong (_↔_.from (∥∥¹ᴱ-∥∥¹ᴱ-out-^-commute (1 + n))) $ ∣,∣-in-^≡∣∣ n ⟩∎ _↔_.from (∥∥¹ᴱ-∥∥¹ᴱ-out-^-commute (1 + n)) ∣ _≃_.from (∥∥¹ᴱ-out-^≃∥∥¹ᴱ-in-^ n) x ∣ ∎
{ "alphanum_fraction": 0.4401943395, "avg_line_length": 34.8575268817, "ext": "agda", "hexsha": "293715f0f73b952beb23af5cb3fb49e97094a1bc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/H-level/Truncation/Propositional/One-step/Erased.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/H-level/Truncation/Propositional/One-step/Erased.agda", "max_line_length": 138, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/H-level/Truncation/Propositional/One-step/Erased.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 6069, "size": 12967 }
{-# OPTIONS --universe-polymorphism #-} module Coind where open import Common.IO open import Common.Level open import Common.Nat open import Common.Unit open import Common.Coinduction renaming (♯_ to sharp; ♭ to flat) {- infix 1000 sharp_ postulate Infinity : ∀ {a} (A : Set a) → Set a sharp_ : ∀ {a} {A : Set a} → A → Infinity A flat : ∀ {a} {A : Set a} → Infinity A → A {-# BUILTIN INFINITY Infinity #-} {-# BUILTIN SHARP sharp_ #-} {-# BUILTIN FLAT flat #-} -} data Stream (A : Set) : Set where _::_ : (x : A) (xs : ∞ (Stream A)) → Stream A ones : Stream Nat ones = 1 :: (sharp ones) twos : Stream Nat twos = 2 :: (sharp twos) incr : Nat -> Stream Nat incr n = n :: (sharp (incr (n + 1))) printStream : Nat -> Stream Nat -> IO Unit printStream zero _ = putStrLn "" printStream (suc steps) (n :: ns) = printNat n ,, printStream steps (flat ns) main : IO Unit main = printStream 10 twos ,, printStream 10 ones ,, printStream 10 (incr zero)
{ "alphanum_fraction": 0.6202020202, "avg_line_length": 21.5217391304, "ext": "agda", "hexsha": "302b52143b713e8a731fb0447e838c45d21708d8", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Compiler/simple/Coind.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": "2017-02-24T19:38:17.000Z", "max_issues_repo_issues_event_min_datetime": "2017-02-24T19:27:31.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Compiler/simple/Coind.agda", "max_line_length": 64, "max_stars_count": 4, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Compiler/simple/Coind.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-23T04:56:23.000Z", "max_stars_repo_stars_event_min_datetime": "2017-02-24T16:53:22.000Z", "num_tokens": 316, "size": 990 }
---------------------------------------------------------------------- -- Copyright: 2013, Jan Stolarek, Lodz University of Technology -- -- -- -- License: See LICENSE file in root of the repo -- -- Repo address: https://github.com/jstolarek/dep-typed-wbl-heaps -- -- -- -- Definition of Bool datatype, which represents logical true and -- -- false. -- ---------------------------------------------------------------------- module Basics.Bool where data Bool : Set where false : Bool true : Bool
{ "alphanum_fraction": 0.3454038997, "avg_line_length": 44.875, "ext": "agda", "hexsha": "62423a6c4dbc59953ec4f5dbd8fb3dd8b72cde92", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "57db566cb840dc70331c29eb7bf3a0c849f8b27e", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "jstolarek/dep-typed-wbl-heaps", "max_forks_repo_path": "src/Basics/Bool.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "57db566cb840dc70331c29eb7bf3a0c849f8b27e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "jstolarek/dep-typed-wbl-heaps", "max_issues_repo_path": "src/Basics/Bool.agda", "max_line_length": 70, "max_stars_count": 1, "max_stars_repo_head_hexsha": "57db566cb840dc70331c29eb7bf3a0c849f8b27e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "jstolarek/dep-typed-wbl-heaps", "max_stars_repo_path": "src/Basics/Bool.agda", "max_stars_repo_stars_event_max_datetime": "2018-05-02T21:48:43.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-02T21:48:43.000Z", "num_tokens": 103, "size": 718 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Decidable propositional membership over lists ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary using (Decidable) open import Relation.Binary.PropositionalEquality using (_≡_; decSetoid) module Data.List.Membership.DecPropositional {a} {A : Set a} (_≟_ : Decidable (_≡_ {A = A})) where ------------------------------------------------------------------------ -- Re-export contents of propositional membership open import Data.List.Membership.Propositional {A = A} public open import Data.List.Membership.DecSetoid (decSetoid _≟_) public using (_∈?_)
{ "alphanum_fraction": 0.5278514589, "avg_line_length": 34.2727272727, "ext": "agda", "hexsha": "9909301188fdd290ebc409079c9054e07fd881dc", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Membership/DecPropositional.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Membership/DecPropositional.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Membership/DecPropositional.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 147, "size": 754 }
{-# OPTIONS --without-K --safe #-} module Cats.Category.Fun.Facts.Product where open import Data.Product using (_,_) open import Cats.Category open import Cats.Category.Fun as Fun using (_↝_) open import Cats.Category.Constructions.Product using (HasBinaryProducts) open import Cats.Functor using (Functor) open import Cats.Trans using (Trans) import Cats.Category.Fun.Facts.Terminal as Terminal open Functor open Trans module Build {lo la l≈ lo′ la′ l≈′} (C : Category lo la l≈) (D : Category lo′ la′ l≈′) {{D× : HasBinaryProducts D}} where infixr 2 _×_ _×′_ ⟨_,_⟩ private module D = Category D module D× = HasBinaryProducts D× open D.≈ open Category (C ↝ D) _×_ : (F G : Obj) → Obj F × G = record { fobj = λ c → fobj F c D×.× fobj G c ; fmap = λ f → D×.⟨ fmap F f × fmap G f ⟩ ; fmap-resp = λ f≈g → D×.⟨×⟩-resp (fmap-resp F f≈g) (fmap-resp G f≈g) ; fmap-id = trans (D×.⟨×⟩-resp (fmap-id F) (fmap-id G)) D×.⟨×⟩-id ; fmap-∘ = trans D×.⟨×⟩-∘ (D×.⟨×⟩-resp (fmap-∘ F) (fmap-∘ G)) } projl : ∀ {F G} → F × G ⇒ F projl = record { component = λ c → D×.projl ; natural = D×.⟨×⟩-projl } projr : ∀ {F G} → F × G ⇒ G projr = record { component = λ c → D×.projr ; natural = D×.⟨×⟩-projr } ⟨_,_⟩ : ∀ {F G X} → X ⇒ F → X ⇒ G → X ⇒ F × G ⟨_,_⟩ α β = record { component = λ c → D×.⟨ component α c , component β c ⟩ ; natural = λ {c} {d} {f} → trans D×.⟨,⟩-∘ (trans (D×.⟨,⟩-resp (natural α) (natural β)) (sym D×.⟨×⟩-⟨,⟩)) } ⟨,⟩-projl : ∀ {F G X} {α : X ⇒ F} (β : X ⇒ G) → α ≈ projl ∘ ⟨ α , β ⟩ ⟨,⟩-projl β = Fun.≈-intro (sym D×.⟨,⟩-projl) ⟨,⟩-projr : ∀ {F G X} (α : X ⇒ F) {β : X ⇒ G} → β ≈ projr ∘ ⟨ α , β ⟩ ⟨,⟩-projr α = Fun.≈-intro (sym D×.⟨,⟩-projr) ⟨,⟩-unique : ∀ {F G X} {α : X ⇒ F} {β : X ⇒ G} {u} → α ≈ projl ∘ u → β ≈ projr ∘ u → ⟨ α , β ⟩ ≈ u ⟨,⟩-unique (Fun.≈-intro pl) (Fun.≈-intro pr) = Fun.≈-intro (D×.⟨,⟩-unique pl pr) isBinaryProduct : ∀ {F G} → IsBinaryProduct (F × G) projl projr isBinaryProduct α β = record { arr = ⟨ α , β ⟩ ; prop = (⟨,⟩-projl β , ⟨,⟩-projr α) ; unique = λ { (eql , eqr) → ⟨,⟩-unique eql eqr } } _×′_ : (F G : Obj) → BinaryProduct F G F ×′ G = mkBinaryProduct projl projr isBinaryProduct private open module Build′ {lo la l≈ lo′ la′ l≈′} {C : Category lo la l≈} {D : Category lo′ la′ l≈′} = Build C D public instance hasBinaryProducts : ∀ {lo la l≈ lo′ la′ l≈′} → {C : Category lo la l≈} {D : Category lo′ la′ l≈′} → {{D× : HasBinaryProducts D}} → HasBinaryProducts (C ↝ D) hasBinaryProducts = record { _×′_ = _×′_ } hasFiniteProducts : ∀ {lo la l≈ lo′ la′ l≈′} → {C : Category lo la l≈} {D : Category lo′ la′ l≈′} → {{D× : HasFiniteProducts D}} → HasFiniteProducts (C ↝ D) hasFiniteProducts = record { hasTerminal = Terminal.hasTerminal } -- record {} doesn't work for some reason.
{ "alphanum_fraction": 0.5223631509, "avg_line_length": 25.6068376068, "ext": "agda", "hexsha": "1a4dcaca22fdf6d7c42777b9501e20c8cc8b6209", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-18T15:35:07.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-18T15:35:07.000Z", "max_forks_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JLimperg/cats", "max_forks_repo_path": "Cats/Category/Fun/Facts/Product.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JLimperg/cats", "max_issues_repo_path": "Cats/Category/Fun/Facts/Product.agda", "max_line_length": 73, "max_stars_count": 24, "max_stars_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JLimperg/cats", "max_stars_repo_path": "Cats/Category/Fun/Facts/Product.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-06T05:00:46.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-03T15:18:57.000Z", "num_tokens": 1238, "size": 2996 }
{-# OPTIONS --safe #-} module Cubical.Algebra.CommRing.FiberedProduct where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Data.Sigma open import Cubical.Algebra.Ring open import Cubical.Algebra.CommRing private variable ℓ : Level module _ (A B C : CommRing ℓ) (α : CommRingHom A C) (β : CommRingHom B C) where private module A = CommRingStr (snd A) module B = CommRingStr (snd B) module C = CommRingStr (snd C) module α = IsRingHom (snd α) module β = IsRingHom (snd β) open CommRingStr open CommRingHoms open IsRingHom fbT : Type ℓ fbT = Σ[ ab ∈ fst A × fst B ] (fst α (fst ab) ≡ fst β (snd ab)) fbT≡ : {x y : fbT} → fst (fst x) ≡ fst (fst y) → snd (fst x) ≡ snd (fst y) → x ≡ y fbT≡ h1 h2 = Σ≡Prop (λ _ → is-set (snd C) _ _) λ i → (h1 i) , (h2 i) 0fbT : fbT 0fbT = (A.0r , B.0r) , α.pres0 ∙ sym β.pres0 1fbT : fbT 1fbT = (A.1r , B.1r) , α.pres1 ∙ sym β.pres1 _+fbT_ : fbT → fbT → fbT ((a1 , b1) , hab1) +fbT ((a2 , b2) , hab2) = (a1 A.+ a2 , b1 B.+ b2) , α.pres+ a1 a2 ∙∙ (λ i → hab1 i C.+ hab2 i) ∙∙ sym (β.pres+ b1 b2) _·fbT_ : fbT → fbT → fbT ((a1 , b1) , hab1) ·fbT ((a2 , b2) , hab2) = (a1 A.· a2 , b1 B.· b2) , α.pres· a1 a2 ∙∙ (λ i → hab1 i C.· hab2 i) ∙∙ sym (β.pres· b1 b2) -fbT_ : fbT → fbT -fbT ((a , b) , hab) = (A.- a , B.- b) , α.pres- a ∙∙ cong C.-_ hab ∙∙ sym (β.pres- b) fiberedProduct : CommRing ℓ fst fiberedProduct = fbT 0r (snd fiberedProduct) = 0fbT 1r (snd fiberedProduct) = 1fbT _+_ (snd fiberedProduct) = _+fbT_ _·_ (snd fiberedProduct) = _·fbT_ -_ (snd fiberedProduct) = -fbT_ isCommRing (snd fiberedProduct) = makeIsCommRing (isSetΣSndProp (isSet× (is-set (snd A)) (is-set (snd B))) λ x → is-set (snd C) _ _) (λ _ _ _ → fbT≡ (A.+Assoc _ _ _) (B.+Assoc _ _ _)) (λ _ → fbT≡ (A.+Rid _) (B.+Rid _)) (λ _ → fbT≡ (A.+Rinv _) (B.+Rinv _)) (λ _ _ → fbT≡ (A.+Comm _ _) (B.+Comm _ _)) (λ _ _ _ → fbT≡ (A.·Assoc _ _ _) (B.·Assoc _ _ _)) (λ _ → fbT≡ (A.·Rid _) (B.·Rid _)) (λ _ _ _ → fbT≡ (A.·Rdist+ _ _ _) (B.·Rdist+ _ _ _)) (λ _ _ → fbT≡ (A.·Comm _ _) (B.·Comm _ _)) fiberedProductPr₁ : CommRingHom fiberedProduct A fst fiberedProductPr₁ = fst ∘ fst snd fiberedProductPr₁ = makeIsRingHom refl (λ _ _ → refl) (λ _ _ → refl) fiberedProductPr₂ : CommRingHom fiberedProduct B fst fiberedProductPr₂ = snd ∘ fst snd fiberedProductPr₂ = makeIsRingHom refl (λ _ _ → refl) (λ _ _ → refl) fiberedProductPr₁₂Commutes : compCommRingHom fiberedProduct A C fiberedProductPr₁ α ≡ compCommRingHom fiberedProduct B C fiberedProductPr₂ β fiberedProductPr₁₂Commutes = RingHom≡ (funExt (λ x → x .snd)) fiberedProductUnivProp : (D : CommRing ℓ) (h : CommRingHom D A) (k : CommRingHom D B) → compCommRingHom D A C h α ≡ compCommRingHom D B C k β → ∃![ l ∈ CommRingHom D fiberedProduct ] (h ≡ compCommRingHom D fiberedProduct A l fiberedProductPr₁) × (k ≡ compCommRingHom D fiberedProduct B l fiberedProductPr₂) fiberedProductUnivProp D (h , hh) (k , hk) H = uniqueExists f (RingHom≡ refl , RingHom≡ refl) (λ _ → isProp× (isSetRingHom _ _ _ _) (isSetRingHom _ _ _ _)) (λ { (g , _) (Hh , Hk) → RingHom≡ (funExt (λ d → fbT≡ (funExt⁻ (cong fst Hh) d) (funExt⁻ (cong fst Hk) d))) }) where f : CommRingHom D fiberedProduct fst f d = (h d , k d) , funExt⁻ (cong fst H) d snd f = makeIsRingHom (fbT≡ (hh .pres1) (hk .pres1)) (λ _ _ → fbT≡ (hh .pres+ _ _) (hk .pres+ _ _)) (λ _ _ → fbT≡ (hh .pres· _ _) (hk .pres· _ _))
{ "alphanum_fraction": 0.5615738375, "avg_line_length": 38.3725490196, "ext": "agda", "hexsha": "8325782ee771980a6c738ba0007fb7c8b6669e71", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "lpw25/cubical", "max_forks_repo_path": "Cubical/Algebra/CommRing/FiberedProduct.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "lpw25/cubical", "max_issues_repo_path": "Cubical/Algebra/CommRing/FiberedProduct.agda", "max_line_length": 102, "max_stars_count": null, "max_stars_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "lpw25/cubical", "max_stars_repo_path": "Cubical/Algebra/CommRing/FiberedProduct.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1539, "size": 3914 }
{-# OPTIONS --without-K #-} module sets.nat.ordering.leq.decide where open import decidable open import sets.core open import sets.nat.core open import sets.nat.ordering.leq.core open import sets.nat.ordering.lt.core _≤?_ : (n m : ℕ) → Dec (n ≤ m) 0 ≤? m = yes z≤n suc n ≤? 0 = no λ () suc n ≤? suc m with n ≤? m suc n ≤? suc m | yes p = yes (s≤s p) suc n ≤? suc m | no u = no λ p → u (ap-pred-≤ p)
{ "alphanum_fraction": 0.6259351621, "avg_line_length": 25.0625, "ext": "agda", "hexsha": "b7615da29bf1f03112de0bc2f6e10f5dae161829", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z", "max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pcapriotti/agda-base", "max_forks_repo_path": "src/sets/nat/ordering/leq/decide.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/sets/nat/ordering/leq/decide.agda", "max_line_length": 48, "max_stars_count": 20, "max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pcapriotti/agda-base", "max_stars_repo_path": "src/sets/nat/ordering/leq/decide.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z", "num_tokens": 154, "size": 401 }
-- records are allowed in mutual blocks module Issue138 where mutual B = Set record Foo : Set where
{ "alphanum_fraction": 0.712962963, "avg_line_length": 10.8, "ext": "agda", "hexsha": "da1037159f7665c1ab8527a38cdc333fc6038164", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/Issue138.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/Issue138.agda", "max_line_length": 39, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/Issue138.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 28, "size": 108 }
-- This file tests that record constructors are used in error -- messages, if possible. module RecordConstructorsInErrorMessages where record R : Set₁ where constructor con field {A} : Set f : A → A {B C} D {E} : Set g : B → C → E postulate A : Set r₁ : R r₂ : R r₂ = record { A = A ; f = λ x → x ; B = A ; C = A ; D = A ; g = λ x _ → x } data _≡_ {A : Set₁} (x : A) : A → Set where refl : x ≡ x foo : r₁ ≡ r₂ foo = refl
{ "alphanum_fraction": 0.5040322581, "avg_line_length": 15.0303030303, "ext": "agda", "hexsha": "034b6d4f1dcda6a5d3cd942d0720aec4949afc45", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/RecordConstructorsInErrorMessages.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/RecordConstructorsInErrorMessages.agda", "max_line_length": 61, "max_stars_count": 1, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Fail/RecordConstructorsInErrorMessages.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 192, "size": 496 }