Search is not available for this dataset
text
string
meta
dict
module std-reduction.Base where open import Esterel.Lang open import Esterel.Lang.Properties open import Esterel.Context using (EvaluationContext ; EvaluationContext1 ; _⟦_⟧e ; _≐_⟦_⟧e ; Context ; Context1 ; _⟦_⟧c ; _≐_⟦_⟧c) open EvaluationContext1 open import Esterel.Lang open import Esterel.Environment as Env using (Env) open import Esterel.Variable.Signal as Signal using (Signal) open import Esterel.Variable.Shared as SharedVar using (SharedVar) open import Esterel.Variable.Sequential as SeqVar using (SeqVar) open import Esterel.Lang.CanFunction using (Canₛ ; Canₛₕ) open import Data.List using (List; _∷_ ; [] ; mapMaybe) open import Data.List.Any using (any) open import blocked open import Data.Sum using (_⊎_ ; inj₁ ; inj₂) open import Data.Product using (_×_ ; proj₁ ; proj₂ ; _,_ ; ∃-syntax; Σ-syntax) open import Relation.Binary.PropositionalEquality using (_≡_ ; sym) open _≡_ import Data.Nat as Nat open import Relation.Nullary using (yes ; no ; ¬_) open import Function using (_∘_ ; id ; _$_) open import Data.Maybe using (Maybe) open Maybe open import Relation.Nullary.Decidable using (⌊_⌋) open import Data.Bool using (if_then_else_) blocked-or-done : Env → Ctrl → Term → Set blocked-or-done θ A p = (done p) ⊎ (blocked θ A p) mutual set-all-absent : (θ : Env) → (List (∃[ S ] Env.isSig∈ S θ)) → Env set-all-absent θ [] = θ set-all-absent θ ((S , S∈) ∷ Ss) = Env.set-sig{S} (set-all-absent θ Ss) (set-all-absent∈ θ S Ss S∈) Signal.absent set-all-absent∈ : ∀ θ S Ss → Env.isSig∈ S θ → Env.isSig∈ S (set-all-absent θ Ss) set-all-absent∈ θ S [] S∈ = S∈ set-all-absent∈ θ S (x ∷ Ss) S∈ = Env.sig-set-mono'{S = S}{S' = (proj₁ x)}{θ = set-all-absent θ Ss}{S'∈ = S'∈2} S∈2 where S∈2 = (set-all-absent∈ θ S Ss S∈) S'∈2 = (set-all-absent∈ θ (proj₁ x) Ss (proj₂ x)) mutual set-all-ready : (θ : Env) → (List (∃[ s ] Env.isShr∈ s θ)) → Env set-all-ready θ [] = θ set-all-ready θ ((s , s∈) ∷ ss) = Env.set-shr {s} θ2 s∈2 SharedVar.ready (Env.shr-vals{s} θ s∈) where s∈2 = (set-all-ready∈ θ s ss s∈) θ2 = (set-all-ready θ ss) set-all-ready∈ : ∀ θ s ss → Env.isShr∈ s θ → Env.isShr∈ s (set-all-ready θ ss) set-all-ready∈ θ s [] s∈ = s∈ set-all-ready∈ θ s (x ∷ ss) s∈ = Env.shr-set-mono' {s = s} {s' = proj₁ x} {θ = set-all-ready θ ss} {s'∈ = set-all-ready∈ θ (proj₁ x) ss (proj₂ x)} (set-all-ready∈ θ s ss s∈) shr-val-same-after-all-ready : ∀ s θ ss → (s∈ : Env.isShr∈ s θ) → (s∈2 : Env.isShr∈ s (set-all-ready θ ss)) → (Env.shr-vals {s} θ s∈) ≡ (Env.shr-vals {s} (set-all-ready θ ss) s∈2) shr-val-same-after-all-ready s θ [] s∈ s∈2 = Env.shr-vals-∈-irr{s}{θ} s∈ s∈2 shr-val-same-after-all-ready s θ ((s' , s'∈) ∷ ss) s∈ s∈2 with (SharedVar._≟_ s' s) ... | yes p rewrite p | Env.shr∈-eq{s}{θ} s∈ s'∈ = sym (proj₂ (Env.shr-putget{s}{(set-all-ready θ ss)}{SharedVar.ready}{(Env.shr-vals {s} θ s'∈)} (set-all-ready∈ θ s ss s∈) s∈2)) ... | no ¬s'≡s = sym (proj₂ (Env.shr-putputget{θ = (set-all-ready θ ss)}{v1l = Env.shr-stats{s} (set-all-ready θ ss) ((set-all-ready∈ θ s ss s∈))} (¬s'≡s ∘ sym) (set-all-ready∈ θ s ss s∈) (set-all-ready∈ θ s' ss s'∈) s∈2 refl (sym (shr-val-same-after-all-ready s θ ss s∈ (set-all-ready∈ θ s ss s∈))) )) -- can-set-absent' : (θ : Env) → Term → List (∃[ S ] (Σ[ S∈ ∈ (Env.isSig∈ S θ) ] (Env.sig-stats{S} θ S∈ ≡ Signal.unknown))) can-set-absent' θ p = mapMaybe id $ Env.SigDomMap θ get-res where get-res : (S : Signal) → Env.isSig∈ S θ → Maybe (∃[ S ] (Σ[ S∈ ∈ (Env.isSig∈ S θ) ] (Env.sig-stats{S} θ S∈ ≡ Signal.unknown))) get-res S S∈ with any (Nat._≟_ (Signal.unwrap S)) (Canₛ p θ) | Signal._≟ₛₜ_ (Env.sig-stats{S} θ S∈) Signal.unknown ... | no _ | yes eq = just $ S , (S∈ , eq) ... | _ | _ = nothing can-set-absent : (θ : Env) → Term → List (∃[ S ] Env.isSig∈ S θ) can-set-absent θ p = Data.List.map (λ x → proj₁ x , proj₁ (proj₂ x)) (can-set-absent' θ p) CanSetToReady : Env → Set CanSetToReady θ = (∃[ s ] (Σ[ S∈ ∈ (Env.isShr∈ s θ) ] (Env.shr-stats{s} θ S∈ ≡ SharedVar.old ⊎ Env.shr-stats{s} θ S∈ ≡ SharedVar.new))) can-set-ready' : (θ : Env) → Term → List (CanSetToReady θ) can-set-ready' θ p = mapMaybe id $ Env.ShrDomMap θ get-res where get-res : (s : SharedVar) → Env.isShr∈ s θ → Maybe (CanSetToReady θ) get-res s s∈ with any (Nat._≟_ (SharedVar.unwrap s)) (Canₛₕ p θ) | SharedVar._≟ₛₜ_ (Env.shr-stats{s} θ s∈) SharedVar.old | SharedVar._≟ₛₜ_ (Env.shr-stats{s} θ s∈) SharedVar.new ... | no _ | yes eq | _ = just $ s , (s∈ , inj₁ eq) ... | no _ | no _ | yes eq = just $ s , (s∈ , inj₂ eq) ... | _ | yes _ | yes _ = nothing ... | _ | yes _ | no _ = nothing ... | _ | no _ | yes _ = nothing ... | _ | no _ | no _ = nothing can-set-ready : (θ : Env) → Term → List (∃[ s ] Env.isShr∈ s θ) can-set-ready θ p = Data.List.map (λ x → proj₁ x , proj₁ (proj₂ x)) (can-set-ready' θ p) data left-most : Env → EvaluationContext → Set where lhole : ∀{θ} → left-most θ [] lseq : ∀{θ E q} → left-most θ E → left-most θ ((eseq q) ∷ E) lloopˢ : ∀{θ E q} → left-most θ E → left-most θ ((eloopˢ q) ∷ E) lparl : ∀{θ E q} → left-most θ E → left-most θ ((epar₁ q) ∷ E) lparrdone : ∀{θ E p} → done p → left-most θ E → left-most θ ((epar₂ p) ∷ E) lparrblocked : ∀{θ A E p} → blocked θ A p → left-most θ E → left-most θ ((epar₂ p) ∷ E) lsuspend : ∀{θ E S} → left-most θ E → left-most θ ((esuspend S) ∷ E) ltrap : ∀{θ E} → left-most θ E → left-most θ (etrap ∷ E)
{ "alphanum_fraction": 0.5614936622, "avg_line_length": 40.5416666667, "ext": "agda", "hexsha": "096e599dfa508e4667cf105cda6d4cb467e43b4e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "florence/esterel-calculus", "max_forks_repo_path": "agda/std-reduction/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "florence/esterel-calculus", "max_issues_repo_path": "agda/std-reduction/Base.agda", "max_line_length": 135, "max_stars_count": 3, "max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "florence/esterel-calculus", "max_stars_repo_path": "agda/std-reduction/Base.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z", "num_tokens": 2350, "size": 5838 }
module examples.Vec where {- Computed datatypes -} data One : Set where unit : One data Nat : Set where zero : Nat suc : Nat -> Nat data _*_ (A B : Set) : Set where pair : A -> B -> A * B infixr 20 _=>_ data _=>_ (A B : Set) : Set where lam : (A -> B) -> A => B lam2 : {A B C : Set} -> (A -> B -> C) -> (A => B => C) lam2 f = lam (\x -> lam (f x)) app : {A B : Set} -> (A => B) -> A -> B app (lam f) x = f x Vec : Nat -> Set -> Set Vec zero X = One Vec (suc n) X = X * Vec n X {- ... construct the vectors of a given length -} vHead : {X : Set} -> (n : Nat)-> Vec (suc n) X -> X vHead n (pair a b) = a vTail : {X : Set} -> (n : Nat)-> Vec (suc n) X -> Vec n X vTail n (pair a b) = b {- safe destructors for nonempty vectors -} {- useful vector programming operators -} vec : {X : Set} -> (n : Nat) -> X -> Vec n X vec zero x = unit vec (suc n) x = pair x (vec n x) vapp : {S T : Set} -> (n : Nat) -> Vec n (S => T) -> Vec n S -> Vec n T vapp zero unit unit = unit vapp (suc n) (pair f fs) (pair s ss) = pair (app f s) (vapp n fs ss) {- mapping and zipping come from these -} vMap : {S T : Set} -> (n : Nat) -> (S -> T) -> Vec n S -> Vec n T vMap n f ss = vapp n (vec n (lam f)) ss {- transposition gets the type it deserves -} transpose : {X : Set} -> (m n : Nat)-> Vec m (Vec n X) -> Vec n (Vec m X) transpose zero n xss = vec n unit transpose (suc m) n (pair xs xss) = vapp n (vapp n (vec n (lam2 pair)) xs) (transpose m n xss) {- Sets of a given finite size may be computed as follows... -} {- Resist the temptation to mention idioms. -} data Zero : Set where data _+_ (A B : Set) : Set where inl : A -> A + B inr : B -> A + B Fin : Nat -> Set Fin zero = Zero Fin (suc n) = One + Fin n {- We can use these sets to index vectors safely. -} vProj : {X : Set} -> (n : Nat)-> Vec n X -> Fin n -> X -- vProj zero () we can pretend that there is an exhaustiveness check vProj (suc n) (pair x xs) (inl unit) = x vProj (suc n) (pair x xs) (inr i) = vProj n xs i {- We can also tabulate a function as a vector. Resist the temptation to mention logarithms. -} vTab : {X : Set} -> (n : Nat)-> (Fin n -> X) -> Vec n X vTab zero _ = unit vTab (suc n) f = pair (f (inl unit)) (vTab n (\x -> f (inr x))) {- Question to ponder in your own time: if we use functional vectors what are vec and vapp -} {- Answer: K and S -} {- Inductive datatypes of the unfocused variety -} {- Every constructor must target the whole family rather than focusing on specific indices. -} data Tm (n : Nat) : Set where evar : Fin n -> Tm n eapp : Tm n -> Tm n -> Tm n elam : Tm (suc n) -> Tm n {- Renamings -} Ren : Nat -> Nat -> Set Ren m n = Vec m (Fin n) _`Ren`_ = Ren {- identity and composition -} idR : (n : Nat) -> n `Ren` n idR n = vTab n (\i -> i) coR : (l m n : Nat) -> m `Ren` n -> l `Ren` m -> l `Ren` n coR l m n m2n l2m = vMap l (vProj m m2n) l2m {- what theorems should we prove -} {- the lifting functor for Ren -} liftR : (m n : Nat) -> m `Ren` n -> suc m `Ren` suc n liftR m n m2n = pair (inl unit) (vMap m inr m2n) {- what theorems should we prove -} {- the functor from Ren to Tm-arrows -} rename : {m n : Nat} -> (m `Ren` n) -> Tm m -> Tm n rename {m}{n} m2n (evar i) = evar (vProj m m2n i) rename {m}{n} m2n (eapp f s) = eapp (rename m2n f) (rename m2n s) rename {m}{n} m2n (elam t) = elam (rename (liftR m n m2n) t) {- Substitutions -} Sub : Nat -> Nat -> Set Sub m n = Vec m (Tm n) _`Sub`_ = Sub {- identity; composition must wait; why -} idS : (n : Nat) -> n `Sub` n idS n = vTab n (evar {n}) {- functor from renamings to substitutions -} Ren2Sub : (m n : Nat) -> m `Ren` n -> m `Sub` n Ren2Sub m n m2n = vMap m evar m2n {- lifting functor for substitution -} liftS : (m n : Nat) -> m `Sub` n -> suc m `Sub` suc n liftS m n m2n = pair (evar (inl unit)) (vMap m (rename (vMap n inr (idR n))) m2n) {- functor from Sub to Tm-arrows -} subst : {m n : Nat} -> m `Sub` n -> Tm m -> Tm n subst {m}{n} m2n (evar i) = vProj m m2n i subst {m}{n} m2n (eapp f s) = eapp (subst m2n f) (subst m2n s) subst {m}{n} m2n (elam t) = elam (subst (liftS m n m2n) t) {- and now we can define composition -} coS : (l m n : Nat) -> m `Sub` n -> l `Sub` m -> l `Sub` n coS l m n m2n l2m = vMap l (subst m2n) l2m
{ "alphanum_fraction": 0.5399424651, "avg_line_length": 26.7396449704, "ext": "agda", "hexsha": "afe5ee1d7b10e1db5673712b7bdc987f0459cd69", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "larrytheliquid/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/Alonzo/Vec.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/Alonzo/Vec.agda", "max_line_length": 75, "max_stars_count": null, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "examples/outdated-and-incorrect/Alonzo/Vec.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1743, "size": 4519 }
open import Level open import Ordinals module OrdUtil {n : Level} (O : Ordinals {n} ) where open import logic open import nat open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) open import Data.Empty open import Relation.Binary.PropositionalEquality open import Relation.Nullary open import Relation.Binary hiding (_⇔_) open Ordinals.Ordinals O open Ordinals.IsOrdinals isOrdinal open Ordinals.IsNext isNext o<-dom : { x y : Ordinal } → x o< y → Ordinal o<-dom {x} _ = x o<-cod : { x y : Ordinal } → x o< y → Ordinal o<-cod {_} {y} _ = y o<-subst : {Z X z x : Ordinal } → Z o< X → Z ≡ z → X ≡ x → z o< x o<-subst df refl refl = df o<¬≡ : { ox oy : Ordinal } → ox ≡ oy → ox o< oy → ⊥ o<¬≡ {ox} {oy} eq lt with trio< ox oy o<¬≡ {ox} {oy} eq lt | tri< a ¬b ¬c = ¬b eq o<¬≡ {ox} {oy} eq lt | tri≈ ¬a b ¬c = ¬a lt o<¬≡ {ox} {oy} eq lt | tri> ¬a ¬b c = ¬b eq o<> : {x y : Ordinal } → y o< x → x o< y → ⊥ o<> {ox} {oy} lt tl with trio< ox oy o<> {ox} {oy} lt tl | tri< a ¬b ¬c = ¬c lt o<> {ox} {oy} lt tl | tri≈ ¬a b ¬c = ¬a tl o<> {ox} {oy} lt tl | tri> ¬a ¬b c = ¬a tl osuc-< : { x y : Ordinal } → y o< osuc x → x o< y → ⊥ osuc-< {x} {y} y<ox x<y with osuc-≡< y<ox osuc-< {x} {y} y<ox x<y | case1 refl = o<¬≡ refl x<y osuc-< {x} {y} y<ox x<y | case2 y<x = o<> x<y y<x osucc : {ox oy : Ordinal } → oy o< ox → osuc oy o< osuc ox ---- y < osuc y < x < osuc x ---- y < osuc y = x < osuc x ---- y < osuc y > x < osuc x -> y = x ∨ x < y → ⊥ osucc {ox} {oy} oy<ox with trio< (osuc oy) ox osucc {ox} {oy} oy<ox | tri< a ¬b ¬c = ordtrans a <-osuc osucc {ox} {oy} oy<ox | tri≈ ¬a refl ¬c = <-osuc osucc {ox} {oy} oy<ox | tri> ¬a ¬b c with osuc-≡< c osucc {ox} {oy} oy<ox | tri> ¬a ¬b c | case1 eq = ⊥-elim (o<¬≡ (sym eq) oy<ox) osucc {ox} {oy} oy<ox | tri> ¬a ¬b c | case2 lt = ⊥-elim (o<> lt oy<ox) osucprev : {ox oy : Ordinal } → osuc oy o< osuc ox → oy o< ox osucprev {ox} {oy} oy<ox with trio< oy ox osucprev {ox} {oy} oy<ox | tri< a ¬b ¬c = a osucprev {ox} {oy} oy<ox | tri≈ ¬a b ¬c = ⊥-elim (o<¬≡ (cong (λ k → osuc k) b) oy<ox ) osucprev {ox} {oy} oy<ox | tri> ¬a ¬b c = ⊥-elim (o<> (osucc c) oy<ox ) open _∧_ osuc2 : ( x y : Ordinal ) → ( osuc x o< osuc (osuc y )) ⇔ (x o< osuc y) proj2 (osuc2 x y) lt = osucc lt proj1 (osuc2 x y) ox<ooy with osuc-≡< ox<ooy proj1 (osuc2 x y) ox<ooy | case1 ox=oy = o<-subst <-osuc refl ox=oy proj1 (osuc2 x y) ox<ooy | case2 ox<oy = ordtrans <-osuc ox<oy _o≤_ : Ordinal → Ordinal → Set n a o≤ b = a o< osuc b -- (a ≡ b) ∨ ( a o< b ) xo<ab : {oa ob : Ordinal } → ( {ox : Ordinal } → ox o< oa → ox o< ob ) → oa o< osuc ob xo<ab {oa} {ob} a→b with trio< oa ob xo<ab {oa} {ob} a→b | tri< a ¬b ¬c = ordtrans a <-osuc xo<ab {oa} {ob} a→b | tri≈ ¬a refl ¬c = <-osuc xo<ab {oa} {ob} a→b | tri> ¬a ¬b c = ⊥-elim ( o<¬≡ refl (a→b c ) ) maxα : Ordinal → Ordinal → Ordinal maxα x y with trio< x y maxα x y | tri< a ¬b ¬c = y maxα x y | tri> ¬a ¬b c = x maxα x y | tri≈ ¬a refl ¬c = x omin : Ordinal → Ordinal → Ordinal omin x y with trio< x y omin x y | tri< a ¬b ¬c = x omin x y | tri> ¬a ¬b c = y omin x y | tri≈ ¬a refl ¬c = x min1 : {x y z : Ordinal } → z o< x → z o< y → z o< omin x y min1 {x} {y} {z} z<x z<y with trio< x y min1 {x} {y} {z} z<x z<y | tri< a ¬b ¬c = z<x min1 {x} {y} {z} z<x z<y | tri≈ ¬a refl ¬c = z<x min1 {x} {y} {z} z<x z<y | tri> ¬a ¬b c = z<y -- -- max ( osuc x , osuc y ) -- omax : ( x y : Ordinal ) → Ordinal omax x y with trio< x y omax x y | tri< a ¬b ¬c = osuc y omax x y | tri> ¬a ¬b c = osuc x omax x y | tri≈ ¬a refl ¬c = osuc x omax< : ( x y : Ordinal ) → x o< y → osuc y ≡ omax x y omax< x y lt with trio< x y omax< x y lt | tri< a ¬b ¬c = refl omax< x y lt | tri≈ ¬a b ¬c = ⊥-elim (¬a lt ) omax< x y lt | tri> ¬a ¬b c = ⊥-elim (¬a lt ) omax≤ : ( x y : Ordinal ) → x o≤ y → osuc y ≡ omax x y omax≤ x y le with trio< x y omax≤ x y le | tri< a ¬b ¬c = refl omax≤ x y le | tri≈ ¬a refl ¬c = refl omax≤ x y le | tri> ¬a ¬b c with osuc-≡< le omax≤ x y le | tri> ¬a ¬b c | case1 eq = ⊥-elim (¬b eq) omax≤ x y le | tri> ¬a ¬b c | case2 x<y = ⊥-elim (¬a x<y) omax≡ : ( x y : Ordinal ) → x ≡ y → osuc y ≡ omax x y omax≡ x y eq with trio< x y omax≡ x y eq | tri< a ¬b ¬c = ⊥-elim (¬b eq ) omax≡ x y eq | tri≈ ¬a refl ¬c = refl omax≡ x y eq | tri> ¬a ¬b c = ⊥-elim (¬b eq ) omax-x : ( x y : Ordinal ) → x o< omax x y omax-x x y with trio< x y omax-x x y | tri< a ¬b ¬c = ordtrans a <-osuc omax-x x y | tri> ¬a ¬b c = <-osuc omax-x x y | tri≈ ¬a refl ¬c = <-osuc omax-y : ( x y : Ordinal ) → y o< omax x y omax-y x y with trio< x y omax-y x y | tri< a ¬b ¬c = <-osuc omax-y x y | tri> ¬a ¬b c = ordtrans c <-osuc omax-y x y | tri≈ ¬a refl ¬c = <-osuc omxx : ( x : Ordinal ) → omax x x ≡ osuc x omxx x with trio< x x omxx x | tri< a ¬b ¬c = ⊥-elim (¬b refl ) omxx x | tri> ¬a ¬b c = ⊥-elim (¬b refl ) omxx x | tri≈ ¬a refl ¬c = refl omxxx : ( x : Ordinal ) → omax x (omax x x ) ≡ osuc (osuc x) omxxx x = trans ( cong ( λ k → omax x k ) (omxx x )) (sym ( omax< x (osuc x) <-osuc )) open _∧_ o≤-refl : { i j : Ordinal } → i ≡ j → i o≤ j o≤-refl {i} {j} eq = subst (λ k → i o< osuc k ) eq <-osuc OrdTrans : Transitive _o≤_ OrdTrans a≤b b≤c with osuc-≡< a≤b | osuc-≡< b≤c OrdTrans a≤b b≤c | case1 refl | case1 refl = <-osuc OrdTrans a≤b b≤c | case1 refl | case2 a≤c = ordtrans a≤c <-osuc OrdTrans a≤b b≤c | case2 a≤c | case1 refl = ordtrans a≤c <-osuc OrdTrans a≤b b≤c | case2 a<b | case2 b<c = ordtrans (ordtrans a<b b<c) <-osuc OrdPreorder : Preorder n n n OrdPreorder = record { Carrier = Ordinal ; _≈_ = _≡_ ; _∼_ = _o≤_ ; isPreorder = record { isEquivalence = record { refl = refl ; sym = sym ; trans = trans } ; reflexive = o≤-refl ; trans = OrdTrans } } FExists : {m l : Level} → ( ψ : Ordinal → Set m ) → {p : Set l} ( P : { y : Ordinal } → ψ y → ¬ p ) → (exists : ¬ (∀ y → ¬ ( ψ y ) )) → ¬ p FExists {m} {l} ψ {p} P = contra-position ( λ p y ψy → P {y} ψy p ) nexto∅ : {x : Ordinal} → o∅ o< next x nexto∅ {x} with trio< o∅ x nexto∅ {x} | tri< a ¬b ¬c = ordtrans a x<nx nexto∅ {x} | tri≈ ¬a b ¬c = subst (λ k → k o< next x) (sym b) x<nx nexto∅ {x} | tri> ¬a ¬b c = ⊥-elim ( ¬x<0 c ) next< : {x y z : Ordinal} → x o< next z → y o< next x → y o< next z next< {x} {y} {z} x<nz y<nx with trio< y (next z) next< {x} {y} {z} x<nz y<nx | tri< a ¬b ¬c = a next< {x} {y} {z} x<nz y<nx | tri≈ ¬a b ¬c = ⊥-elim (¬nx<nx x<nz (subst (λ k → k o< next x) b y<nx) (λ w nz=ow → o<¬≡ nz=ow (subst₂ (λ j k → j o< k ) (sym nz=ow) nz=ow (osuc<nx (subst (λ k → w o< k ) (sym nz=ow) <-osuc) )))) next< {x} {y} {z} x<nz y<nx | tri> ¬a ¬b c = ⊥-elim (¬nx<nx x<nz (ordtrans c y<nx ) (λ w nz=ow → o<¬≡ (sym nz=ow) (osuc<nx (subst (λ k → w o< k ) (sym nz=ow) <-osuc )))) osuc< : {x y : Ordinal} → osuc x ≡ y → x o< y osuc< {x} {y} refl = <-osuc nexto=n : {x y : Ordinal} → x o< next (osuc y) → x o< next y nexto=n {x} {y} x<noy = next< (osuc<nx x<nx) x<noy nexto≡ : {x : Ordinal} → next x ≡ next (osuc x) nexto≡ {x} with trio< (next x) (next (osuc x) ) -- next x o< next (osuc x ) -> osuc x o< next x o< next (osuc x) -> next x ≡ osuc z -> z o o< next x -> osuc z o< next x -> next x o< next x nexto≡ {x} | tri< a ¬b ¬c = ⊥-elim (¬nx<nx (osuc<nx x<nx ) a (λ z eq → o<¬≡ (sym eq) (osuc<nx (osuc< (sym eq))))) nexto≡ {x} | tri≈ ¬a b ¬c = b -- next (osuc x) o< next x -> osuc x o< next (osuc x) o< next x -> next (osuc x) ≡ osuc z -> z o o< next (osuc x) ... nexto≡ {x} | tri> ¬a ¬b c = ⊥-elim (¬nx<nx (ordtrans <-osuc x<nx) c (λ z eq → o<¬≡ (sym eq) (osuc<nx (osuc< (sym eq))))) next-is-limit : {x y : Ordinal} → ¬ (next x ≡ osuc y) next-is-limit {x} {y} eq = o<¬≡ (sym eq) (osuc<nx y<nx) where y<nx : y o< next x y<nx = osuc< (sym eq) omax<next : {x y : Ordinal} → x o< y → omax x y o< next y omax<next {x} {y} x<y = subst (λ k → k o< next y ) (omax< _ _ x<y ) (osuc<nx x<nx) x<ny→≡next : {x y : Ordinal} → x o< y → y o< next x → next x ≡ next y x<ny→≡next {x} {y} x<y y<nx with trio< (next x) (next y) x<ny→≡next {x} {y} x<y y<nx | tri< a ¬b ¬c = -- x < y < next x < next y ∧ next x = osuc z ⊥-elim ( ¬nx<nx y<nx a (λ z eq → o<¬≡ (sym eq) (osuc<nx (subst (λ k → z o< k ) (sym eq) <-osuc )))) x<ny→≡next {x} {y} x<y y<nx | tri≈ ¬a b ¬c = b x<ny→≡next {x} {y} x<y y<nx | tri> ¬a ¬b c = -- x < y < next y < next x ⊥-elim ( ¬nx<nx (ordtrans x<y x<nx) c (λ z eq → o<¬≡ (sym eq) (osuc<nx (subst (λ k → z o< k ) (sym eq) <-osuc )))) ≤next : {x y : Ordinal} → x o≤ y → next x o≤ next y ≤next {x} {y} x≤y with trio< (next x) y ≤next {x} {y} x≤y | tri< a ¬b ¬c = ordtrans a (ordtrans x<nx <-osuc ) ≤next {x} {y} x≤y | tri≈ ¬a refl ¬c = (ordtrans x<nx <-osuc ) ≤next {x} {y} x≤y | tri> ¬a ¬b c with osuc-≡< x≤y ≤next {x} {y} x≤y | tri> ¬a ¬b c | case1 refl = o≤-refl refl -- x = y < next x ≤next {x} {y} x≤y | tri> ¬a ¬b c | case2 x<y = o≤-refl (x<ny→≡next x<y c) -- x ≤ y < next x x<ny→≤next : {x y : Ordinal} → x o< next y → next x o≤ next y x<ny→≤next {x} {y} x<ny with trio< x y x<ny→≤next {x} {y} x<ny | tri< a ¬b ¬c = ≤next (ordtrans a <-osuc ) x<ny→≤next {x} {y} x<ny | tri≈ ¬a refl ¬c = o≤-refl refl x<ny→≤next {x} {y} x<ny | tri> ¬a ¬b c = o≤-refl (sym ( x<ny→≡next c x<ny )) omax<nomax : {x y : Ordinal} → omax x y o< next (omax x y ) omax<nomax {x} {y} with trio< x y omax<nomax {x} {y} | tri< a ¬b ¬c = subst (λ k → osuc y o< k ) nexto≡ (osuc<nx x<nx ) omax<nomax {x} {y} | tri≈ ¬a refl ¬c = subst (λ k → osuc x o< k ) nexto≡ (osuc<nx x<nx ) omax<nomax {x} {y} | tri> ¬a ¬b c = subst (λ k → osuc x o< k ) nexto≡ (osuc<nx x<nx ) omax<nx : {x y z : Ordinal} → x o< next z → y o< next z → omax x y o< next z omax<nx {x} {y} {z} x<nz y<nz with trio< x y omax<nx {x} {y} {z} x<nz y<nz | tri< a ¬b ¬c = osuc<nx y<nz omax<nx {x} {y} {z} x<nz y<nz | tri≈ ¬a refl ¬c = osuc<nx y<nz omax<nx {x} {y} {z} x<nz y<nz | tri> ¬a ¬b c = osuc<nx x<nz nn<omax : {x nx ny : Ordinal} → x o< next nx → x o< next ny → x o< next (omax nx ny) nn<omax {x} {nx} {ny} xnx xny with trio< nx ny nn<omax {x} {nx} {ny} xnx xny | tri< a ¬b ¬c = subst (λ k → x o< k ) nexto≡ xny nn<omax {x} {nx} {ny} xnx xny | tri≈ ¬a refl ¬c = subst (λ k → x o< k ) nexto≡ xny nn<omax {x} {nx} {ny} xnx xny | tri> ¬a ¬b c = subst (λ k → x o< k ) nexto≡ xnx record OrdinalSubset (maxordinal : Ordinal) : Set (suc n) where field os→ : (x : Ordinal) → x o< maxordinal → Ordinal os← : Ordinal → Ordinal os←limit : (x : Ordinal) → os← x o< maxordinal os-iso← : {x : Ordinal} → os→ (os← x) (os←limit x) ≡ x os-iso→ : {x : Ordinal} → (lt : x o< maxordinal ) → os← (os→ x lt) ≡ x module o≤-Reasoning {n : Level} (O : Ordinals {n} ) where -- open inOrdinal O resp-o< : _o<_ Respects₂ _≡_ resp-o< = resp₂ _o<_ trans1 : {i j k : Ordinal} → i o< j → j o< osuc k → i o< k trans1 {i} {j} {k} i<j j<ok with osuc-≡< j<ok trans1 {i} {j} {k} i<j j<ok | case1 refl = i<j trans1 {i} {j} {k} i<j j<ok | case2 j<k = ordtrans i<j j<k trans2 : {i j k : Ordinal} → i o< osuc j → j o< k → i o< k trans2 {i} {j} {k} i<oj j<k with osuc-≡< i<oj trans2 {i} {j} {k} i<oj j<k | case1 refl = j<k trans2 {i} {j} {k} i<oj j<k | case2 i<j = ordtrans i<j j<k open import Relation.Binary.Reasoning.Base.Triple (Preorder.isPreorder OrdPreorder) ordtrans --<-trans (resp₂ _o<_) --(resp₂ _<_) (λ x → ordtrans x <-osuc ) --<⇒≤ trans1 --<-transˡ trans2 --<-transʳ public -- hiding (_≈⟨_⟩_)
{ "alphanum_fraction": 0.5145481075, "avg_line_length": 40.4548611111, "ext": "agda", "hexsha": "fc0e463c0df2c05a025c53839bdc9811c9886425", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "shinji-kono/zf-in-agda", "max_forks_repo_path": "src/OrdUtil.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "shinji-kono/zf-in-agda", "max_issues_repo_path": "src/OrdUtil.agda", "max_line_length": 144, "max_stars_count": 5, "max_stars_repo_head_hexsha": "031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "shinji-kono/zf-in-agda", "max_stars_repo_path": "src/OrdUtil.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-10T13:27:48.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-02T13:46:23.000Z", "num_tokens": 5674, "size": 11651 }
module Prelude where open import Agda.Primitive using (Level; lzero; lsuc) renaming (_⊔_ to lmax) open import Relation.Binary.PropositionalEquality as Eq open import Data.List open import Data.Nat.Properties open import Data.List.Membership.DecSetoid ≡-decSetoid open import Data.List.Relation.Unary.Any open import Data.Empty open import Data.List.Relation.Unary.All -- sums data _+̇_ (A B : Set) : Set where Inl : A → A +̇ B Inr : B → A +̇ B -- Basic properties of lists emptyListIsEmpty : ∀ {x} → x ∉ [] emptyListIsEmpty () listNoncontainment : ∀ {x x' L} → x ∉ L → x' ∈ L → x ≢ x' listNoncontainment {x} {x'} {L} xNotInL x'InL = λ xEqx' → xNotInL (Eq.subst (λ a → a ∈ L) (Eq.sym xEqx') x'InL) listConcatNoncontainment : ∀ {x x' L} → x ≢ x' → x ∉ L → x ∉ (x' ∷ L) listConcatNoncontainment {x} {x'} {L} xNeqx' xNotInL (here xEqx') = xNeqx' xEqx' listConcatNoncontainment {x} {x'} {L} xNeqx' xNotInL (there xInConcat) = xNotInL xInConcat listConcatContainment : ∀ {x x' t} → x ∈ (x' ∷ t) → x' ≢ x → x ∈ t listConcatContainment {x} {x'} {t} (here px) x'Neqx = ⊥-elim (x'Neqx (Eq.sym px)) listConcatContainment {x} {x'} {t} (there xInCons) x'Neqx = xInCons -- Basic properties of equality ≢-sym : ∀ {a} {A : Set a} → {x x' : A} → x ≢ x' → x' ≢ x ≢-sym xNeqx' = λ x'Eqx → xNeqx' (Eq.sym x'Eqx) -- Congruence cong₃ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} (f : A → B → C → D) {x y u v w t} → x ≡ y → u ≡ v → w ≡ t → f x u w ≡ f y v t cong₃ f refl refl refl = refl -- All allInsideOut : {A : Set} → {L L' : List A} → {P : A → A → Set} → (∀ {T T'} → P T T' → P T' T) → All (λ T → All (λ T' → P T T') L) L' → All (λ T → All (λ T' → P T T') L') L allInsideOut {A} {[]} {.[]} sym [] = [] allInsideOut {A} {x ∷ L} {.[]} sym [] = [] ∷ allRelatedToEmpty where allRelatedToEmpty : {A : Set} → {L : List A} → {P : A → A → Set} → All (λ T → All (P T) []) L allRelatedToEmpty {A} {[]} {P} = [] allRelatedToEmpty {A} {x ∷ L} {P} = [] ∷ allRelatedToEmpty allInsideOut {A} {[]} {.(_ ∷ _)} sym (all₁ ∷ all₂) = [] allInsideOut {A} {x ∷ L} {(x' ∷ L')} {P} sym (all₁ ∷ all₂) = ((sym (Data.List.Relation.Unary.All.head all₁)) ∷ unwrap L' all₂) ∷ allInsideOut sym (Data.List.Relation.Unary.All.tail all₁ ∷ unwrap2 L' all₂) where unwrap : (M : List A) → All (λ T → All (P T) (x ∷ L)) M → All (λ T' → P x T') M unwrap .[] [] = [] unwrap (x ∷ r) (h ∷ t) = (sym (Data.List.Relation.Unary.All.head h)) ∷ unwrap r t unwrap2 : (M : List A) → All (λ T → All (P T) (x ∷ L)) M → All (λ T → All (P T) L) M unwrap2 [] all = [] unwrap2 (x ∷ M) (all₁ ∷ all₂) = (Data.List.Relation.Unary.All.tail all₁) ∷ unwrap2 M all₂ {- -- equality of naturals is decidable. we represent this as computing a -- choice of units, with inl <> meaning that the naturals are indeed the -- same and inr <> that they are not. natEQ : (x y : ℕ) → ((x ≡ y) + ((x ≡ y) → ⊥)) natEQ Z Z = Inl refl natEQ Z (1+ y) = Inr (λ ()) natEQ (1+ x) Z = Inr (λ ()) natEQ (1+ x) (1+ y) with natEQ x y natEQ (1+ x) (1+ .x) | Inl refl = Inl refl ... | Inr b = Inr (λ x₁ → b (1+inj x y x₁)) -- nat equality as a predicate. this saves some very repetative casing. natEQp : (x y : ℕ) → Set natEQp x y with natEQ x y natEQp x .x | Inl refl = ⊥ natEQp x y | Inr x₁ = ⊤ -} {- -- equality data _≡_ {l : Level} {A : Set l} (M : A) : A → Set l where refl : M ≡ M infixr 9 _≡_ {-# BUILTIN EQUALITY _≡_ #-} -- transitivity of equality _·_ : {l : Level} {α : Set l} {x y z : α} → x ≡ y → y ≡ z → x ≡ z refl · refl = refl -- symmetry of equality ! : {l : Level} {α : Set l} {x y : α} → x ≡ y → y ≡ x ! refl = refl -- ap, in the sense of HoTT, that all functions respect equality in their -- arguments. named in a slightly non-standard way to avoid naming -- clashes with hazelnut constructors. ap1 : {l1 l2 : Level} {α : Set l1} {β : Set l2} {x y : α} (F : α → β) → x ≡ y → F x ≡ F y ap1 F refl = refl -- transport, in the sense of HoTT, that fibrations respect equality tr : {l1 l2 : Level} {α : Set l1} {x y : α} (B : α → Set l2) → x ≡ y → B x → B y tr B refl x₁ = x₁ -- options data Maybe (A : Set) : Set where Some : A → Maybe A None : Maybe A -- the some constructor is injective. perhaps unsurprisingly. someinj : {A : Set} {x y : A} → Some x ≡ Some y → x ≡ y someinj refl = refl -- some isn't none. somenotnone : {A : Set} {x : A} → Some x ≡ None → ⊥ somenotnone () -- function extensionality, used to reason about contexts as finite -- functions. postulate funext : {A : Set} {B : A → Set} {f g : (x : A) → (B x)} → ((x : A) → f x ≡ g x) → f ≡ g -- non-equality is commutative flip : {A : Set} {x y : A} → (x ≡ y → ⊥) → (y ≡ x → ⊥) flip neq eq = neq (! eq) -- two types are said to be equivalent, or isomorphic, if there is a pair -- of functions between them where both round-trips are stable up to ≡ _≃_ : Set → Set → Set _≃_ A B = Σ[ f ∈ (A → B) ] Σ[ g ∈ (B → A) ] (((a : A) → g (f a) ≡ a) × (((b : B) → f (g b) ≡ b))) -}
{ "alphanum_fraction": 0.4883399551, "avg_line_length": 32.5224719101, "ext": "agda", "hexsha": "fe6b409ad24cf78df7871736762bc982348c0031", "lang": "Agda", "max_forks_count": 11, "max_forks_repo_forks_event_max_datetime": "2021-06-09T18:40:19.000Z", "max_forks_repo_forks_event_min_datetime": "2018-05-24T08:20:52.000Z", "max_forks_repo_head_hexsha": "bda0fac3aadfbce2eacdb89095d100125fa4fdd6", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "ivoysey/Obsidian", "max_forks_repo_path": "formalization/Prelude.agda", "max_issues_count": 259, "max_issues_repo_head_hexsha": "bda0fac3aadfbce2eacdb89095d100125fa4fdd6", "max_issues_repo_issues_event_max_datetime": "2022-03-29T18:20:05.000Z", "max_issues_repo_issues_event_min_datetime": "2017-08-18T19:50:41.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "ivoysey/Obsidian", "max_issues_repo_path": "formalization/Prelude.agda", "max_line_length": 113, "max_stars_count": 79, "max_stars_repo_head_hexsha": "bda0fac3aadfbce2eacdb89095d100125fa4fdd6", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "ivoysey/Obsidian", "max_stars_repo_path": "formalization/Prelude.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-27T10:34:28.000Z", "max_stars_repo_stars_event_min_datetime": "2017-08-19T16:24:10.000Z", "num_tokens": 2135, "size": 5789 }
-- Andreas, 2020-02-06, issue #906, and #942 #2068 #3136 #3431 #4391 #4418 -- -- Termination checker now tries to reduce calls away -- using non-recursive clauses. -- -- This fixes the problem that for dependent copattern definitions -- the earlier, non-recursive clauses get into non-guarded positions -- in later clauses via Agda's constraint solver, and there confuse -- the termination checker. module Issue906EtAl where module Issue906 where {- Globular types as a coinductive record -} record Glob : Set1 where coinductive field Ob : Set Hom : (a b : Ob) → Glob open Glob record Unit : Set where data _==_ {A : Set} (a : A) : A → Set where refl : a == a {- The terminal globular type -} Unit-glob : Glob Ob Unit-glob = Unit Hom Unit-glob _ _ = Unit-glob {- The tower of identity types -} Id-glob : (A : Set) → Glob Ob (Id-glob A) = A Hom (Id-glob A) a b = Id-glob (a == b) module Issue907 where data _==_ {A : Set} (a : A) : A → Set where idp : a == a -- Coinductive equivalences record CoEq (A B : Set) : Set where coinductive constructor coEq field to : A → B from : B → A eq : (a : A) (b : B) → CoEq (a == from b) (to a == b) open CoEq public id-CoEq : (A : Set) → CoEq A A to (id-CoEq A) a = a from (id-CoEq A) b = b eq (id-CoEq A) a b = id-CoEq _ -- Keep underscore! -- Solution: (a == from (id-CoEq A) b) -- contains recursive call module Issue942 where record Sigma (A : Set)(P : A → Set) : Set where constructor _,_ field fst : A snd : P fst open Sigma postulate A : Set x : A P Q : A → Set Px : P x f : ∀ {x} → P x → Q x ex : Sigma A Q ex = record { fst = x ; snd = f Px -- goal: P x } ex' : Sigma A Q ex' = x , f Px -- goal: P x ex'' : Sigma A Q fst ex'' = x snd ex'' = f Px -- goal: P (fst ex'') module Issue2068-OP where data _==_ {A : Set} : A → A → Set where refl : {a : A} → a == a data Bool : Set where tt : Bool ff : Bool record TwoEqualFunctions : Set₁ where field A : Set B : Set f : A → B g : A → B p : f == g postulate funext : {A B : Set} {f g : A → B} → ((a : A) → f a == g a) → f == g identities : TwoEqualFunctions TwoEqualFunctions.A identities = Bool TwoEqualFunctions.B identities = Bool TwoEqualFunctions.f identities x = x TwoEqualFunctions.g identities = λ{tt → tt ; ff → ff} TwoEqualFunctions.p identities = funext (λ{tt → refl ; ff → refl}) module Issue2068b where data _==_ {A : Set} : (a : A) → A → Set where refl : (a : A) → a == a data Unit : Set where unit : Unit record R : Set₁ where field f : Unit → Unit p : f == λ x → x postulate extId : (f : Unit → Unit) → (∀ a → f a == a) → f == λ x → x test : R R.f test = λ{ unit → unit } R.p test = extId _ λ{ unit → refl _ } -- R.p test = extId {! R.f test !} λ{unit → refl {! R.f test unit !}} module Issue2068c where record _×_ (A B : Set) : Set where field fst : A snd : B open _×_ test : ∀{A} (a : A) → (A → A) × (A → A) fst (test a) x = a snd (test a) x = fst (test a) (snd (test a) x) module Issue3136 (A : Set) where -- Andreas, 2018-07-22, issue #3136 -- WAS: Internal error when printing termination errors postulate any : {X : Set} → X x : A P : A → Set record C : Set where field a : A b : P a c : C c = λ where .C.a → x .C.b → λ where → any -- NOW: succeeds module Issue3413 where open import Agda.Builtin.Sigma open import Agda.Builtin.Equality postulate A : Set P : ∀{X : Set} → X → Set record Bob : Set₁ where field RE : Set resp : RE → Set open Bob bob : Bob bob .RE = A bob .resp e = Σ (P e) λ {x → A} module Issue4391 where record GlobSet : Set₁ where coinductive field cells : Set morphisms : cells → cells → GlobSet open GlobSet public record GlobSetMorphism (G H : GlobSet) : Set where coinductive field func : cells G → cells H funcMorphisms : (x y : cells G) → GlobSetMorphism (morphisms G x y) (morphisms H (func x) (func y)) open GlobSetMorphism public gComp : {G H I : GlobSet} → GlobSetMorphism H I → GlobSetMorphism G H → GlobSetMorphism G I func (gComp ϕ ψ) x = func ϕ (func ψ x) funcMorphisms (gComp ϕ ψ) x y = gComp (funcMorphisms ϕ (func ψ x) (func ψ y)) (funcMorphisms ψ x y) module Issue4391Nisse where record GlobSet : Set₁ where coinductive field cells : Set morphisms : cells → cells → GlobSet open GlobSet public mutual record GlobSetMorphism (G H : GlobSet) : Set where inductive field func : cells G → cells H funcMorphisms : (x y : cells G) → GlobSetMorphism′ (morphisms G x y) (morphisms H (func x) (func y)) record GlobSetMorphism′ (G H : GlobSet) : Set where coinductive field force : GlobSetMorphism G H open GlobSetMorphism public open GlobSetMorphism′ public works fails : {G H I : GlobSet} → GlobSetMorphism H I → GlobSetMorphism G H → GlobSetMorphism G I works ϕ ψ = record { func = λ x → func ϕ (func ψ x) ; funcMorphisms = λ { x y .force → works (funcMorphisms ϕ (func ψ x) (func ψ y) .force) (funcMorphisms ψ x y .force) } } fails ϕ ψ .func = λ x → func ϕ (func ψ x) fails ϕ ψ .funcMorphisms = λ { x y .force → fails (funcMorphisms ϕ (func ψ x) (func ψ y) .force) (funcMorphisms ψ x y .force) } module Issue4418 {l} (Index : Set l) (Shape : Index → Set l) (Position : (i : Index) → Shape i → Set l) (index : (i : Index) → (s : Shape i) → Position i s → Index) where record M (i : Index) : Set l where coinductive field shape : Shape i field children : (p : Position i shape) → M (index i shape p) open M record MBase (Rec : Index → Set l) (i : Index) : Set l where coinductive field shapeB : Shape i field childrenB : (p : Position i shapeB) → Rec (index i shapeB p) open MBase module _ (S : Index → Set l) (u : ∀ {i} → S i → MBase S i) where unroll : ∀ i → S i → M i unroll i s .shape = u s .shapeB unroll i s .children p = unroll _ (u s .childrenB p) -- Underscore solved as: index i (u s .shapeB) p
{ "alphanum_fraction": 0.5593811618, "avg_line_length": 22.8923611111, "ext": "agda", "hexsha": "20bffa998f42584346e9a9aea0a76f580bcac2dc", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-09-15T14:36:15.000Z", "max_forks_repo_forks_event_min_datetime": "2015-09-15T14:36:15.000Z", "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/Succeed/Issue906EtAl.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2015-09-15T15:49:15.000Z", "max_issues_repo_issues_event_min_datetime": "2015-09-15T15:49:15.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue906EtAl.agda", "max_line_length": 101, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue906EtAl.agda", "max_stars_repo_stars_event_max_datetime": "2016-05-20T13:58:52.000Z", "max_stars_repo_stars_event_min_datetime": "2016-05-20T13:58:52.000Z", "num_tokens": 2245, "size": 6593 }
open import Formalization.PredicateLogic.Signature module Formalization.PredicateLogic.Syntax.Tree (𝔏 : Signature) where open Signature(𝔏) open import Data.DependentWidthTree as Tree hiding (height) import Functional.Dependent import Lvl open import Formalization.PredicateLogic.Syntax(𝔏) open import Formalization.PredicateLogic.Syntax.Substitution(𝔏) open import Functional using (_∘_ ; _∘₂_ ; _∘₃_ ; _∘₄_ ; swap ; _←_ ; _on₂_) open import Numeral.Finite open import Numeral.Natural.Function.Proofs open import Numeral.Natural.Inductions open import Numeral.Natural.Relation.Order open import Numeral.Natural.Relation.Order.Proofs open import Numeral.Natural open import Relator.Equals open import Structure.Relator open import Structure.Relator.Ordering open import Structure.Relator.Ordering.Proofs open import Type.Dependent open import Type private variable ℓ : Lvl.Level private variable vars vars₁ vars₂ : ℕ private variable φ ψ : Formula(vars) tree : Formula(vars) → FiniteTreeStructure tree (_ $ _) = Node 0 \() tree ⊤ = Node 0 \() tree ⊥ = Node 0 \() tree (φ ∧ ψ) = Node 2 \{𝟎 → tree φ; (𝐒 𝟎) → tree ψ} tree (φ ∨ ψ) = Node 2 \{𝟎 → tree φ; (𝐒 𝟎) → tree ψ} tree (φ ⟶ ψ) = Node 2 \{𝟎 → tree φ; (𝐒 𝟎) → tree ψ} tree (Ɐ φ) = Node 1 \{𝟎 → tree φ} tree (∃ φ) = Node 1 \{𝟎 → tree φ} height : Formula(vars) → ℕ height = Tree.height ∘ tree -- Ordering on formulas based on the height of their tree representation. _<↑_ : (Σ ℕ Formula) → (Σ ℕ Formula) → Type _<↑_ = (_<_) on₂ (height Functional.Dependent.∘ Σ.right) substitute-height : ∀{t} → (height(substitute{vars₁ = vars₁}{vars₂ = vars₂} t φ) ≡ height φ) substitute-height {φ = f $ x} = [≡]-intro substitute-height {φ = ⊤} = [≡]-intro substitute-height {φ = ⊥} = [≡]-intro substitute-height {φ = φ ∧ ψ} {t} rewrite substitute-height {φ = φ}{t} rewrite substitute-height {φ = ψ}{t} = [≡]-intro substitute-height {φ = φ ∨ ψ} {t} rewrite substitute-height {φ = φ}{t} rewrite substitute-height {φ = ψ}{t} = [≡]-intro substitute-height {φ = φ ⟶ ψ} {t} rewrite substitute-height {φ = φ}{t} rewrite substitute-height {φ = ψ}{t} = [≡]-intro substitute-height {φ = Ɐ φ} {t} rewrite substitute-height {φ = φ}{termMapper𝐒 t} = [≡]-intro substitute-height {φ = ∃ φ} {t} rewrite substitute-height {φ = φ}{termMapper𝐒 t} = [≡]-intro instance [<↑]-wellfounded : Strict.Properties.WellFounded(_<↑_) [<↑]-wellfounded = wellfounded-image-by-trans {f = height Functional.Dependent.∘ Σ.right} induction-on-height : (P : ∀{vars} → Formula(vars) → Type{ℓ}) → (∀{vars}{φ : Formula(vars)} → (∀{vars}{ψ : Formula(vars)} → (height ψ < height φ) → P(ψ)) → P(φ)) → ∀{vars}{φ : Formula(vars)} → P(φ) induction-on-height P step {vars}{φ} = Strict.Properties.wellfounded-induction(_<↑_) (\{ {intro vars φ} p → step{vars}{φ} \{vars}{ψ} ph → p{intro vars ψ} ⦃ ph ⦄}) {intro vars φ} ⊤-height-order : (height{vars} ⊤ ≤ height φ) ⊤-height-order = [≤]-minimum ⊥-height-order : (height{vars} ⊥ ≤ height φ) ⊥-height-order = [≤]-minimum ∧-height-orderₗ : (height φ < height(φ ∧ ψ)) ∧-height-orderₗ = [≤]-with-[𝐒] ∧-height-orderᵣ : (height ψ < height(φ ∧ ψ)) ∧-height-orderᵣ = [≤]-with-[𝐒] ∨-height-orderₗ : (height φ < height(φ ∨ ψ)) ∨-height-orderₗ = [≤]-with-[𝐒] ∨-height-orderᵣ : (height ψ < height(φ ∨ ψ)) ∨-height-orderᵣ = [≤]-with-[𝐒] ⟶-height-orderₗ : (height φ < height(φ ⟶ ψ)) ⟶-height-orderₗ = [≤]-with-[𝐒] ⟶-height-orderᵣ : (height ψ < height(φ ⟶ ψ)) ⟶-height-orderᵣ = [≤]-with-[𝐒] Ɐ-height-order : (height φ < height(Ɐ φ)) Ɐ-height-order = [<]-of-[𝐒] ∃-height-order : (height φ < height(∃ φ)) ∃-height-order = [<]-of-[𝐒] -- induction-on-height : ∀{P : ∀{vars} → Formula(vars) → Type{ℓ}} → (∀{vars} → P{vars}(⊤)) → (∀{vars} → P{vars}(⊥)) → ((∀{vars}{ψ : Formula(vars)} → (height ψ < height φ) → P(ψ)) → P(φ)) → P(φ) -- induction-on-height {φ = φ} base⊤ base⊥ step = step {!Strict.Properties.wellfounded-induction(_<↑_)!}
{ "alphanum_fraction": 0.6494370522, "avg_line_length": 41.1368421053, "ext": "agda", "hexsha": "1bb0c5782ae14689e56d95066bc438e717bdee4d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Formalization/PredicateLogic/Syntax/Tree.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Formalization/PredicateLogic/Syntax/Tree.agda", "max_line_length": 197, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Formalization/PredicateLogic/Syntax/Tree.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1469, "size": 3908 }
{-# OPTIONS --sized-types #-} open import Relation.Binary.Core module Mergesort.Impl1.Correctness.Order {A : Set} (_≤_ : A → A → Set) (tot≤ : Total _≤_) where open import Data.List open import Function using (_∘_) open import List.Sorted _≤_ open import Mergesort.Impl1 _≤_ tot≤ open import SList open import SOList.Lower _≤_ open import SOList.Lower.Properties _≤_ theorem-mergesort-sorted : (xs : List A) → Sorted (forget (mergesort (size A xs))) theorem-mergesort-sorted = lemma-solist-sorted ∘ mergesort ∘ (size A)
{ "alphanum_fraction": 0.6821428571, "avg_line_length": 31.1111111111, "ext": "agda", "hexsha": "b5ee4b8f6b35b9571c81446eb78440901044f704", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/Mergesort/Impl1/Correctness/Order.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/Mergesort/Impl1/Correctness/Order.agda", "max_line_length": 82, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/Mergesort/Impl1/Correctness/Order.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 172, "size": 560 }
module Fough where open import Agda.Primitive renaming (_⊔_ to lmax) record Setoid l : Set (lsuc l) where field El : Set l Eq : El -> El -> Set l Rf : (x : El) -> Eq x x Sy : (x y : El) -> Eq x y -> Eq y x Tr : (x y z : El) -> Eq x y -> Eq y z -> Eq x z open Setoid module PACKQ {l}(X : Setoid l) where record _|-_~~_ (x y : El X) : Set l where constructor eq field qe : Eq X x y open _|-_~~_ public qprf = qe module _ {l}{X : Setoid l} where open PACKQ X infixr 5 _~[_>~_ _~<_]~_ infixr 6 _[SQED] _~[_>~_ : forall x {y z} -> _|-_~~_ x y -> _|-_~~_ y z -> _|-_~~_ x z x ~[ eq q >~ eq q' = eq (Tr X _ _ _ q q') _~<_]~_ : forall x {y z} -> _|-_~~_ y x -> _|-_~~_ y z -> _|-_~~_ x z x ~< eq q ]~ eq q' = eq (Tr X _ _ _ (Sy X _ _ q) q') _[SQED] : forall x -> _|-_~~_ x x _[SQED] x = eq (Rf X x) rS : forall {x} -> _|-_~~_ x x rS {x} = eq (Rf X x) open PACKQ public module _ {l}{X : Set l} where data _~_ (x : X) : X -> Set l where r~ : x ~ x {-# BUILTIN EQUALITY _~_ #-} module _ {l}(X : Set l) where IN : Setoid l El IN = X Eq IN = _~_ Rf IN x = r~ Sy IN x y r~ = r~ Tr IN x y z r~ q = q module _ {k l}(S : Set k)(T : S -> Set l) where record _><_ : Set (lmax k l) where constructor _,_ field fst : S snd : T fst open _><_ public infixr 10 _,_ infixr 20 _><_ module _ (l : Level) where record One : Set l where constructor <> infixr 20 _*_ _*_ : forall {k l} -> Set k -> Set l -> Set (lmax k l) S * T = S >< \ _ -> T infix 22 <_> <_> : forall {k l}{S : Set k}(T : S -> Set l) -> Set (lmax k l) < T > = _ >< T infixr 23 _:*_ _:*_ : forall {k l}{S : Set k}(T U : S -> Set l) -> S -> Set l (T :* U) s = T s * U s infixr 11 _&_ pattern _&_ s t = _ , s , t infixr 9 _/\_ _/\_ : forall {k l}{S : Set k}{T : Set l} -> S -> T -> S * T s /\ t = s , t module _ {k l}(S : Set k)(T : S -> Setoid l) where PI : Setoid (lmax k l) El PI = (s : S) -> El (T s) Eq PI f g = (s : S) -> Eq (T s) (f s) (g s) Rf PI f s = Rf (T s) (f s) Sy PI f g q s = Sy (T s) (f s) (g s) (q s) Tr PI f g h p q s = Tr (T s) (f s) (g s) (h s) (p s) (q s) IM : Setoid (lmax k l) El IM = {s : S} -> El (T s) Eq IM f g = (s : S) -> Eq (T s) (f {s}) (g {s}) Rf IM f s = Rf (T s) f Sy IM f g q s = Sy (T s) f g (q s) Tr IM f g h p q s = Tr (T s) f g h (p s) (q s) SG : Setoid (lmax k l) El SG = S >< \ s -> El (T s) Eq SG (s0 , t0) (s1 , t1) = (s0 ~ s1) >< \ { r~ -> Eq (T s0) t0 t1 } Rf SG (s , t) = r~ , Rf (T s) t Sy SG (s0 , t0) (.s0 , t1) (r~ , q) = r~ , Sy (T s0) t0 t1 q fst (Tr SG (s0 , t0) (.s0 , t1) (s2 , t2) (r~ , q01) (q , q12)) = q snd (Tr SG (s0 , t0) (.s0 , t1) (.s0 , t2) (r~ , q01) (r~ , q12)) = Tr (T s0) t0 t1 t2 q01 q12 module _ {k l}(T : Setoid k)(P : El T -> Set l) where EX : Setoid (lmax k l) El EX = El T >< P Eq EX (t0 , _) (t1 , _) = Eq T t0 t1 * One l Rf EX (t , _) = Rf T t , <> Sy EX (t0 , _) (t1 , _) (q , <>) = Sy T t0 t1 q , <> Tr EX (t0 , _) (t1 , _) (t2 , _) (q01 , <>) (q12 , <>) = Tr T t0 t1 t2 q01 q12 , <> module _ (k l : Level) where record Cat : Set (lsuc (lmax k l)) where field Obj : Set k Arr : Obj -> Obj -> Setoid l _~>_ : Obj -> Obj -> Set l S ~> T = El (Arr S T) _~~_ : {S T : Obj}(f g : S ~> T) -> Set l _~~_ {S}{T} = _|-_~~_ (Arr S T) field id : {T : Obj} -> T ~> T _-_ : {R S T : Obj} -> R ~> S -> S ~> T -> R ~> T coex : {R S T : Obj}{f f' : R ~> S}{g g' : S ~> T} -> f ~~ f' -> g ~~ g' -> (f - g) ~~ (f' - g') idco : {S T : Obj}(f : S ~> T) -> (id - f) ~~ f coid : {S T : Obj}(f : S ~> T) -> (f - id) ~~ f coco : {R S T U : Obj}(f : R ~> S)(g : S ~> T)(h : T ~> U) -> (f - (g - h)) ~~ ((f - g) - h) module _ (l : Level) where open Cat SET : Cat (lsuc l) l Obj SET = Set l Arr SET S T = PI S \ _ -> IN T id SET x = x _-_ SET f g x = g (f x) qe (coex SET (eq qf) (eq qg)) x rewrite qf x = qg _ qe (idco SET f) x = r~ qe (coid SET f) x = r~ qe (coco SET f g h) x = r~ module _ {l k l' k'}(C : Cat l k)(D : Cat l' k') where private module C = Cat C ; module D = Cat D Fun : Setoid (lmax l (lmax k (lmax l' k'))) Fun = SG (C.Obj -> D.Obj) \ Map -> EX (IM C.Obj \ S -> IM C.Obj \ T -> PI (S C.~> T) \ _ -> D.Arr (Map S) (Map T)) \ map -> ({S T : C.Obj}{f g : S C.~> T} -> f C.~~ g -> map f D.~~ map g) * ({X : C.Obj} -> map (C.id {X}) D.~~ D.id {Map X}) * ({R S T : C.Obj}(f : R C.~> S)(g : S C.~> T) -> map (f C.- g) D.~~ (map f D.- map g)) module _ (l k : Level) where CAT : Cat (lsuc (lmax l k)) (lmax l k) Cat.Obj CAT = Cat l k Cat.Arr CAT = Fun Cat.id CAT {C} = (\ X -> X) , (\ f -> f) , (\ q -> q) , rS , \ _ _ -> rS where open Cat C Cat._-_ CAT {C}{D}{E} (F , fm , fx , fi , fc) (G , gm , gx , gi , gc) = (\ X -> G (F X)) , (\ a -> gm (fm a)) , (\ q -> gx (fx q)) , (gm (fm C.id) ~[ gx fi >~ gm (D.id) ~[ gi >~ E.id [SQED]) , \ f g -> gm (fm (f C.- g)) ~[ gx (fc _ _) >~ gm (fm f D.- fm g) ~[ gc _ _ >~ (gm (fm f) E.- gm (fm g)) [SQED] where private module C = Cat C ; module D = Cat D ; module E = Cat E qe (Cat.coex CAT {C} {D} {E} {F , fm , fz} {F' , fm' , fz'} {G , gm , gx , gz} {G' , gm' , gz'} (eq (r~ , qf , <>)) (eq (r~ , qg , <>))) = r~ , (\ S T f -> qe {X = Cat.Arr E (G (F S)) (G (F T))} (gm (fm f) ~[ gx (eq (qf _ _ _)) >~ gm (fm' f) ~[ eq (qg _ _ _) >~ gm' (fm' f) [SQED])) , <> qe (Cat.idco CAT {C}{D} (F , fm , fz)) = r~ , (\ S T f -> qprf (D.Arr (F S) (F T)) rS) , <> where private module C = Cat C ; module D = Cat D qe (Cat.coid CAT {C} {D} (F , fm , fz)) = r~ , (\ S T f -> qprf (D.Arr (F S) (F T)) rS) , <> where private module C = Cat C ; module D = Cat D qe (Cat.coco CAT {B} {C} {D} {E} (F , fm , fz) (G , gm , gz) (H , hm , hz)) = r~ , (\ S T f -> qprf (Cat.Arr E (H (G (F S))) (H (G (F T)))) rS ) , <> module _ {l k l' k' : Level}(C : Cat l k)(D : Cat l' k') where private module C = Cat C ; module D = Cat D _=>_ : Cat (lmax l (lmax k (lmax l' k'))) (lmax l (lmax k k')) Cat.Obj _=>_ = El (Fun C D) Cat.Arr _=>_ (F , fm , _) (G , gm , _) = EX (IM C.Obj \ X -> D.Arr (F X) (G X)) \ n -> {S T : C.Obj}(f : S C.~> T) -> (fm f D.- n {T}) D.~~ (n {S} D.- gm f) Cat.id _=>_ {F , fm , _} = D.id , \ f -> fm f D.- D.id ~[ D.coid _ >~ fm f ~< D.idco _ ]~ (D.id D.- fm f) [SQED] Cat._-_ _=>_ {F , fm , fx , fi , fc} {G , gm , gx , gi , gc} {H , hm , hx , hi , hc} (n , na) (p , pa) = n D.- p , \ f -> fm f D.- (n D.- p) ~[ D.coco _ _ _ >~ (fm f D.- n) D.- p ~[ D.coex (na f) rS >~ (n D.- gm f) D.- p ~< D.coco _ _ _ ]~ n D.- (gm f D.- p) ~[ D.coex rS (pa f) >~ n D.- (p D.- hm f) ~[ D.coco _ _ _ >~ ((n D.- p) D.- hm f [SQED]) qe (Cat.coex _=>_ (eq (nq , <>)) (eq (pq , <>))) = (\ X -> qe (D.coex (eq (nq X)) (eq (pq X)))) , <> qe (Cat.idco _=>_ _) = (\ _ -> qe (D.idco _)) , <> qe (Cat.coid _=>_ _) = (\ _ -> qe (D.coid _)) , <> qe (Cat.coco _=>_ _ _ _) = (\ _ -> qe (D.coco _ _ _)) , <> module _ {l k : Level}(C : Cat l k)(I : Cat.Obj C) where open Cat C _/_ : Cat (lmax l k) k Cat.Obj _/_ = Obj >< \ X -> X ~> I Cat.Arr _/_ (X , f) (Y , g) = EX (Arr X Y) \ h -> (h - g) ~~ f Cat.id _/_ = id , idco _ Cat._-_ _/_ {R , r}{S , s}{T , t} (f , p) (g , q) = (f - g) , ((f - g) - t ~< coco _ _ _ ]~ f - (g - t) ~[ coex rS q >~ f - s ~[ p >~ r [SQED]) qe (Cat.coex _/_ (eq (q , <>)) (eq (q' , <>))) = qe (coex (eq q) (eq q')) , <> qe (Cat.idco _/_ _) = qe (idco _) , <> qe (Cat.coid _/_ _) = qe (coid _) , <> qe (Cat.coco _/_ _ _ _) = qe (coco _ _ _) , <> module BWD (X : Set) where data Bwd : Set where _-,_ : Bwd -> X -> Bwd [] : Bwd infixl 30 _-,_ module _ {X : Set} where open BWD X data _<=_ : Bwd -> Bwd -> Set where _-^_ : forall {ga de} -> ga <= de -> forall x -> ga <= (de -, x) _-,_ : forall {ga de} -> ga <= de -> forall x -> (ga -, x) <= (de -, x) [] : [] <= [] infixl 30 _-^_ data <_-_>~_ : forall {ga de ze}(th : ga <= de)(ph : de <= ze)(ps : ga <= ze) -> Set where _-^_ : forall {ga de ze}{th : ga <= de}{ph : de <= ze}{ps : ga <= ze} -> < th - ph >~ ps -> forall x -> < th - ph -^ x >~ ps -^ x _-^,_ : forall {ga de ze}{th : ga <= de}{ph : de <= ze}{ps : ga <= ze} -> < th - ph >~ ps -> forall x -> < th -^ x - ph -, x >~ ps -^ x _-,_ : forall {ga de ze}{th : ga <= de}{ph : de <= ze}{ps : ga <= ze} -> < th - ph >~ ps -> forall x -> < th -, x - ph -, x >~ ps -, x [] : < [] - [] >~ [] infix 25 <_-_>~_ infixl 30 _-^,_ io : forall {ga} -> ga <= ga io {ga -, x} = io {ga} -, x io {[]} = [] mkCo : forall {ga de ze}(th : ga <= de)(ph : de <= ze) -> <(< th - ph >~_)> mkCo th (ph -^ x) = let _ , v = mkCo th ph in _ , v -^ x mkCo (th -^ .x) (ph -, x) = let _ , v = mkCo th ph in _ , v -^, x mkCo (th -, .x) (ph -, x) = let _ , v = mkCo th ph in _ , v -, x mkCo [] [] = _ , [] _~-~_ : forall {ga de ze}{th : ga <= de}{ph : de <= ze}{ps0 ps1 : ga <= ze} -> (v0 : < th - ph >~ ps0)(v1 : < th - ph >~ ps1) -> (ps0 ~ ps1) >< \ { r~ -> v0 ~ v1 } (v0 -^ x) ~-~ (v1 -^ .x) with r~ , r~ <- v0 ~-~ v1 = r~ , r~ (v0 -^, x) ~-~ (v1 -^, .x) with r~ , r~ <- v0 ~-~ v1 = r~ , r~ (v0 -, x) ~-~ (v1 -, .x) with r~ , r~ <- v0 ~-~ v1 = r~ , r~ [] ~-~ [] = r~ , r~ _-<=_ : forall {ga de ze} -> ga <= de -> de <= ze -> ga <= ze th -<= ph = fst (mkCo th ph) io- : forall {ga de}(th : ga <= de) -> < io - th >~ th io- (th -^ x) = io- th -^ x io- (th -, x) = io- th -, x io- [] = [] infixl 30 _-io _-io : forall {ga de}(th : ga <= de) -> < th - io >~ th th -^ x -io = th -io -^, x th -, x -io = th -io -, x [] -io = [] assoc02 : forall {ga0 ga1 ga2 ga3} {th01 : ga0 <= ga1}{th23 : ga2 <= ga3} {th03 : ga0 <= ga3}{th12 : ga1 <= ga2} -> <(< th01 -_>~ th03) :* (< th12 - th23 >~_)> -> <(< th01 - th12 >~_) :* (<_- th23 >~ th03)> assoc02 (v -^ .x & w -^ x) = let v' & w' = assoc02 (v & w) in v' & w' -^ x assoc02 (v -^ .x & w -^, x) = let v' & w' = assoc02 (v & w) in v' -^ x & w' -^, x assoc02 (v -^, .x & w -, x) = let v' & w' = assoc02 (v & w) in v' -^, x & w' -^, x assoc02 (v -, .x & w -, x) = let v' & w' = assoc02 (v & w) in v' -, x & w' -, x assoc02 ([] & []) = [] & [] assoc03 : forall {ga0 ga1 ga2 ga3} {th01 : ga0 <= ga1}{th23 : ga2 <= ga3} {th02 : ga0 <= ga2}{th13 : ga1 <= ga3} -> <(< th01 -_>~ th02) :* (<_- th23 >~ th13)> -> <(< th01 - th13 >~_) :* (< th02 - th23 >~_)> assoc03 {th01 = th}{th13 = ph} (v & w) with _ , v' <- mkCo th ph | v0 & v1 <- assoc02 (v' & w) | r~ , r~ <- v ~-~ v0 = v' & v1 assoc13 : forall {ga0 ga1 ga2 ga3} {th01 : ga0 <= ga1}{th23 : ga2 <= ga3} {th03 : ga0 <= ga3}{th12 : ga1 <= ga2} -> <(< th01 - th12 >~_) :* (<_- th23 >~ th03)> -> <(< th01 -_>~ th03) :* (< th12 - th23 >~_)> assoc13 {th23 = ph}{th12 = th} (v & w) with _ , v' <- mkCo th ph | v0 & v1 <- assoc03 (v & v') | r~ , r~ <- w ~-~ v1 = v0 & v' THIN : Cat lzero lzero Cat.Obj THIN = Bwd Cat.Arr THIN ga de = IN (ga <= de) Cat.id THIN = io Cat._-_ THIN = _-<=_ Cat.coex THIN (eq r~) (eq r~) = eq r~ Cat.idco THIN th with v <- io- th | _ , w <- mkCo io th | r~ , r~ <- v ~-~ w = rS Cat.coid THIN ph with v <- ph -io | _ , w <- mkCo ph io | r~ , r~ <- v ~-~ w = rS Cat.coco THIN th ph ps with thph , v <- mkCo th ph | phps , w <- mkCo ph ps | _ , v1 <- mkCo thph ps | _ , w1 <- mkCo th phps | v2 & w2 <- assoc02 (w1 & w) | r~ , r~ <- v ~-~ v2 | r~ , r~ <- v1 ~-~ w2 = rS THIN/ : Bwd -> Cat lzero lzero Cat.Obj (THIN/ de) = <(_<= de)> Cat.Arr (THIN/ de) (_ , th0) (_ , th1) = EX (IN _) (<_- th1 >~ th0) Cat.id (THIN/ de) = io , io- _ Cat._-_ (THIN/ de) (th0 , v0) (th1 , v1) with w0 & w1 <- assoc02 (v0 & v1) = _ , w1 qe (Cat.coex (THIN/ de) {f = _ , v0} {._ , w0} {_ , v1} {._ , w1} (eq (r~ , <>)) (eq (r~ , <>))) with (r~ , r~) , (r~ , r~) <- v0 ~-~ w0 /\ v1 ~-~ w1 = r~ , <> qe (Cat.idco (THIN/ de) {_ , ph} (th , v)) with w <- io- th | w' & _ <- assoc02 (io- ph & v) | r~ , r~ <- w ~-~ w' = r~ , <> qe (Cat.coid (THIN/ de) {T = _ , ph} (th , v)) with w <- th -io | w' & _ <- assoc02 (v & io- ph) | r~ , r~ <- w ~-~ w' = r~ , <> qe (Cat.coco (THIN/ de) (_ , v01) (_ , v12) (_ , v23)) with w13 & v13 <- assoc02 (v12 & v23) | w02 & v02 <- assoc02 (v01 & v12) | w013 & v013 <- assoc02 (v01 & v13) | w023 & v023 <- assoc02 (v02 & v23) | w013' & w023' <- assoc03 (w02 & w13) | (r~ , r~) , (r~ , r~) <- w013' ~-~ w013 /\ w023' ~-~ w023 = r~ , <>
{ "alphanum_fraction": 0.4014951295, "avg_line_length": 34.2196382429, "ext": "agda", "hexsha": "62f3e940cea01a196cbeef60c65bee4a24677620", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2019-09-21T18:45:46.000Z", "max_forks_repo_forks_event_min_datetime": "2019-09-11T09:55:10.000Z", "max_forks_repo_head_hexsha": "2e32d399ce35be1106a75c81f43e94aef182d97a", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "gallais/EGTBS", "max_forks_repo_path": "extended/Fough.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2e32d399ce35be1106a75c81f43e94aef182d97a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "gallais/EGTBS", "max_issues_repo_path": "extended/Fough.agda", "max_line_length": 97, "max_stars_count": 25, "max_stars_repo_head_hexsha": "2e32d399ce35be1106a75c81f43e94aef182d97a", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "gallais/EGTBS", "max_stars_repo_path": "extended/Fough.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-08T14:46:37.000Z", "max_stars_repo_stars_event_min_datetime": "2018-03-22T10:17:36.000Z", "num_tokens": 5967, "size": 13243 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import groups.ExactSequence open import homotopy.FunctionOver open import homotopy.PtdAdjoint open import homotopy.SuspAdjointLoop open import cohomology.MayerVietoris open import cohomology.Theory {- Standard Mayer-Vietoris exact sequence (algebraic) derived from - the result in cohomology.MayerVietoris (topological). - This is a whole bunch of algebra which is not very interesting. -} module cohomology.MayerVietorisExact {i} (CT : CohomologyTheory i) (n : ℤ) (ps : ⊙Span {i} {i} {i}) where open MayerVietorisFunctions ps module MV = MayerVietoris ps open ⊙Span ps open CohomologyTheory CT open import cohomology.BaseIndependence CT open import cohomology.Functor CT open import cohomology.InverseInSusp CT open import cohomology.LongExactSequence CT n ⊙reglue open import cohomology.Wedge CT mayer-vietoris-seq : HomSequence _ _ mayer-vietoris-seq = C n (⊙Pushout ps) ⟨ ×ᴳ-fanout (CF-hom n (⊙left ps)) (CF-hom n (⊙right ps)) ⟩→ C n X ×ᴳ C n Y ⟨ ×ᴳ-fanin (C-is-abelian _ _) (CF-hom n f) (inv-hom _ (C-is-abelian _ _) ∘ᴳ (CF-hom n g)) ⟩→ C n Z ⟨ CF-hom (succ n) ⊙extract-glue ∘ᴳ fst ((C-Susp n Z)⁻¹ᴳ) ⟩→ C (succ n) (⊙Pushout ps) ⟨ ×ᴳ-fanout (CF-hom _ (⊙left ps)) (CF-hom _ (⊙right ps)) ⟩→ C (succ n) X ×ᴳ C (succ n) Y ⊣| mayer-vietoris-exact : is-exact-seq mayer-vietoris-seq mayer-vietoris-exact = transport (λ {(r , s) → is-exact-seq s}) (pair= _ $ sequence= _ _ $ idp ∥⟨ ↓-over-×-in _→ᴳ_ idp (CWedge.⊙Wedge-rec-over n X Y _ _) ⟩∥ CWedge.path n X Y ∥⟨ ↓-over-×-in' _→ᴳ_ (ap↓ (λ φ → φ ∘ᴳ fst (C-Susp n (X ⊙∨ Y) ⁻¹ᴳ)) (CF-↓cod= (succ n) MV.ext-over) ∙ᵈ codomain-over-iso {χ = diff'} (codomain-over-equiv _ _)) (CWedge.Wedge-hom-η n X Y _ ▹ ap2 (×ᴳ-fanin (C-is-abelian n Z)) inl-lemma inr-lemma) ⟩∥ ap (C (succ n)) MV.⊙path ∙ uaᴳ (C-Susp n Z) ∥⟨ ↓-over-×-in _→ᴳ_ (CF-↓dom= (succ n) MV.cfcod-over ∙ᵈ domain-over-iso (! (ap (λ h → CF _ ⊙extract-glue ∘ h) (λ= (is-equiv.g-f (snd (C-Susp n Z))))) ◃ domain-over-equiv _ _)) idp ⟩∥ idp ∥⟨ ↓-over-×-in _→ᴳ_ idp (CWedge.⊙Wedge-rec-over (succ n) X Y _ _) ⟩∥ CWedge.path (succ n) X Y ∥⊣|) long-cofiber-exact where {- shorthand -} diff' = fst (C-Susp n Z) ∘ᴳ CF-hom (succ n) MV.⊙mv-diff ∘ᴳ fst (C-Susp n (X ⊙∨ Y) ⁻¹ᴳ) {- Variations on suspension axiom naturality -} natural-lemma₁ : {X Y : Ptd i} (n : ℤ) (f : X ⊙→ Y) → (fst (C-Susp n X) ∘ᴳ CF-hom _ (⊙Susp-fmap f)) ∘ᴳ fst (C-Susp n Y ⁻¹ᴳ) == CF-hom n f natural-lemma₁ {X} {Y} n f = ap (λ φ → φ ∘ᴳ fst (C-Susp n Y ⁻¹ᴳ)) (C-SuspF n f) ∙ group-hom= (λ= (ap (CF n f) ∘ is-equiv.f-g (snd (C-Susp n Y)))) natural-lemma₂ : {X Y : Ptd i} (n : ℤ) (f : X ⊙→ Y) → CF-hom _ (⊙Susp-fmap f) ∘ᴳ fst (C-Susp n Y ⁻¹ᴳ) == fst (C-Susp n X ⁻¹ᴳ) ∘ᴳ CF-hom n f natural-lemma₂ {X} {Y} n f = group-hom= (λ= (! ∘ is-equiv.g-f (snd (C-Susp n X)) ∘ CF _ (⊙Susp-fmap f) ∘ GroupHom.f (fst (C-Susp n Y ⁻¹ᴳ)))) ∙ ap (λ φ → fst (C-Susp n X ⁻¹ᴳ) ∘ᴳ φ) (natural-lemma₁ n f) {- Associativity lemmas -} assoc-lemma : ∀ {i} {G H K L J : Group i} (φ : L →ᴳ J) (ψ : K →ᴳ L) (χ : H →ᴳ K) (ξ : G →ᴳ H) → (φ ∘ᴳ ψ) ∘ᴳ χ ∘ᴳ ξ == φ ∘ᴳ ((ψ ∘ᴳ χ) ∘ᴳ ξ) assoc-lemma _ _ _ _ = group-hom= idp assoc-lemma₂ : ∀ {i} {G H K L J : Group i} (φ : L →ᴳ J) (ψ : K →ᴳ L) (χ : H →ᴳ K) (ξ : G →ᴳ H) → (φ ∘ᴳ ψ ∘ᴳ χ) ∘ᴳ ξ == φ ∘ᴳ ψ ∘ᴳ χ ∘ᴳ ξ assoc-lemma₂ _ _ _ _ = group-hom= idp inl-lemma : diff' ∘ᴳ CF-hom n (⊙projl X Y) == CF-hom n f inl-lemma = assoc-lemma₂ (fst (C-Susp n Z)) (CF-hom (succ n) MV.⊙mv-diff) (fst (C-Susp n (X ⊙∨ Y) ⁻¹ᴳ)) (CF-hom n (⊙projl X Y)) ∙ ap (λ φ → fst (C-Susp n Z) ∘ᴳ CF-hom (succ n) MV.⊙mv-diff ∘ᴳ φ) (! (natural-lemma₂ n (⊙projl X Y))) ∙ ! (assoc-lemma₂ (fst (C-Susp n Z)) (CF-hom _ MV.⊙mv-diff) (CF-hom _ (⊙Susp-fmap (⊙projl X Y))) (fst (C-Susp n X ⁻¹ᴳ))) ∙ ap (λ φ → (fst (C-Susp n Z) ∘ᴳ φ) ∘ᴳ fst (C-Susp n X ⁻¹ᴳ)) (! (CF-comp _ (⊙Susp-fmap (⊙projl X Y)) MV.⊙mv-diff)) ∙ ap (λ φ → (fst (C-Susp n Z) ∘ᴳ φ) ∘ᴳ fst (C-Susp n X ⁻¹ᴳ)) (CF-λ= (succ n) projl-mv-diff) ∙ natural-lemma₁ n f where {- Compute the left projection of mv-diff -} projl-mv-diff : (σz : fst (⊙Susp Z)) → Susp-fmap (projl X Y) (MV.mv-diff σz) == Susp-fmap (fst f) σz projl-mv-diff = Susp-elim idp (merid (pt X)) $ ↓-='-from-square ∘ λ z → (ap-∘ (Susp-fmap (projl X Y)) MV.mv-diff (merid z) ∙ ap (ap (Susp-fmap (projl X Y))) (MV.MVDiff.merid-β z) ∙ ap-∙ (Susp-fmap (projl X Y)) (merid (winl (fst f z))) (! (merid (winr (fst g z)))) ∙ (SuspFmap.merid-β (projl X Y) (winl (fst f z)) ∙2 (ap-! (Susp-fmap _) (merid (winr (fst g z))) ∙ ap ! (SuspFmap.merid-β (projl X Y) (winr (fst g z)))))) ∙v⊡ (vid-square {p = merid (fst f z)} ⊡h rt-square (merid (pt X))) ⊡v∙ (∙-unit-r _ ∙ ! (SuspFmap.merid-β (fst f) z)) inr-lemma : diff' ∘ᴳ CF-hom n (⊙projr X Y) == inv-hom _ (C-is-abelian n Z) ∘ᴳ CF-hom n g inr-lemma = assoc-lemma₂ (fst (C-Susp n Z)) (CF-hom (succ n) MV.⊙mv-diff) (fst (C-Susp n (X ⊙∨ Y) ⁻¹ᴳ)) (CF-hom n (⊙projr X Y)) ∙ ap (λ φ → fst (C-Susp n Z) ∘ᴳ CF-hom (succ n) MV.⊙mv-diff ∘ᴳ φ) (! (natural-lemma₂ n (⊙projr X Y))) ∙ ! (assoc-lemma₂ (fst (C-Susp n Z)) (CF-hom _ MV.⊙mv-diff) (CF-hom _ (⊙Susp-fmap (⊙projr X Y))) (fst (C-Susp n Y ⁻¹ᴳ))) ∙ ap (λ φ → (fst (C-Susp n Z) ∘ᴳ φ) ∘ᴳ fst (C-Susp n Y ⁻¹ᴳ)) (! (CF-comp _ (⊙Susp-fmap (⊙projr X Y)) MV.⊙mv-diff)) ∙ ∘ᴳ-assoc (fst (C-Susp n Z)) (CF-hom _ (⊙Susp-fmap (⊙projr X Y) ⊙∘ MV.⊙mv-diff)) (fst (C-Susp n Y ⁻¹ᴳ)) ∙ ap (λ φ → fst (C-Susp n Z) ∘ᴳ φ ∘ᴳ fst (C-Susp n Y ⁻¹ᴳ)) (CF-λ= (succ n) projr-mv-diff) ∙ ap (λ φ → fst (C-Susp n Z) ∘ᴳ φ ∘ᴳ fst (C-Susp n Y ⁻¹ᴳ)) (CF-comp _ (⊙Susp-fmap g) (⊙Susp-flip Z)) ∙ ! (assoc-lemma (fst (C-Susp n Z)) (CF-hom _ (⊙Susp-flip Z)) (CF-hom _ (⊙Susp-fmap g)) (fst (C-Susp n Y ⁻¹ᴳ))) ∙ ap (λ φ → (fst (C-Susp n Z) ∘ᴳ φ) ∘ᴳ CF-hom _ (⊙Susp-fmap g) ∘ᴳ fst (C-Susp n Y ⁻¹ᴳ)) (C-Susp-flip-is-inv (succ n)) ∙ ap (λ φ → φ ∘ᴳ CF-hom _ (⊙Susp-fmap g) ∘ᴳ fst (C-Susp n Y ⁻¹ᴳ)) (inv-hom-natural (C-is-abelian _ _) (C-is-abelian _ _) (fst (C-Susp n Z))) ∙ assoc-lemma (inv-hom _ (C-is-abelian n Z)) (fst (C-Susp n Z)) (CF-hom _ (⊙Susp-fmap g)) (fst (C-Susp n Y ⁻¹ᴳ)) ∙ ap (λ φ → inv-hom _ (C-is-abelian n Z) ∘ᴳ φ) (natural-lemma₁ n g) where {- Compute the right projection of mv-diff -} projr-mv-diff : (σz : fst (⊙Susp Z)) → Susp-fmap (projr X Y) (MV.mv-diff σz) == Susp-fmap (fst g) (Susp-flip σz) projr-mv-diff = Susp-elim (merid (pt Y)) idp $ ↓-='-from-square ∘ λ z → (ap-∘ (Susp-fmap (projr X Y)) MV.mv-diff (merid z) ∙ ap (ap (Susp-fmap (projr X Y))) (MV.MVDiff.merid-β z) ∙ ap-∙ (Susp-fmap (projr X Y)) (merid (winl (fst f z))) (! (merid (winr (fst g z)))) ∙ (SuspFmap.merid-β (projr X Y) (winl (fst f z)) ∙2 (ap-! (Susp-fmap (projr X Y)) (merid (winr (fst g z))) ∙ ap ! (SuspFmap.merid-β (projr X Y) (winr (fst g z)))))) ∙v⊡ ((lt-square (merid (pt Y)) ⊡h vid-square {p = ! (merid (fst g z))})) ⊡v∙ ! (ap-∘ (Susp-fmap (fst g)) Susp-flip (merid z) ∙ ap (ap (Susp-fmap (fst g))) (FlipSusp.merid-β z) ∙ ap-! (Susp-fmap (fst g)) (merid z) ∙ ap ! (SuspFmap.merid-β (fst g) z))
{ "alphanum_fraction": 0.5060375949, "avg_line_length": 42.7287234043, "ext": "agda", "hexsha": "addcb729e997b5c8ce690a2f1e9378ba337dd512", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/stash/cohomology/MayerVietorisExact.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/stash/cohomology/MayerVietorisExact.agda", "max_line_length": 76, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/stash/cohomology/MayerVietorisExact.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 3626, "size": 8033 }
module x03relations where import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; cong; sym) open import Data.Nat using (ℕ; zero; suc; _+_; _*_) open import Data.Nat.Properties using (+-comm; +-identityʳ; *-comm; +-suc) {- ------------------------------------------------------------------------------ -- DEFINING RELATIONS : INEQUALITY ≤ z≤n -------- zero ≤ n m ≤ n s≤s ------------- suc m ≤ suc n -} -- INDEXED datatype : the type m ≤ n is indexed by two naturals, m and n data _≤_ : ℕ → ℕ → Set where -- base case holds for all naturals z≤n : ∀ {n : ℕ} -- IMPLICIT args -------- → zero ≤ n -- inductive case holds if m ≤ n s≤s : ∀ {m n : ℕ} -- IMPLICIT args → m ≤ n ------------- → suc m ≤ suc n {- proof 2 ≤ 4 z≤n ----- 0 ≤ 2 s≤s ------- 1 ≤ 3 s≤s --------- 2 ≤ 4 -} _ : 2 ≤ 4 _ = s≤s (s≤s z≤n) -- no explicit 'n' arg to z≤n because implicit -- no explicit 'm' 'n' args to s≤s because implicit -- can be explicit _ : 2 ≤ 4 -- with implicit args _ = s≤s {1} {3} (s≤s {0} {2} (z≤n {2})) _ : 2 ≤ 4 -- with named implicit args _ = s≤s {m = 1} {n = 3} (s≤s {m = 0} {n = 2} (z≤n {n = 2})) _ : 2 ≤ 4 -- with some implicit named args _ = s≤s {n = 3} (s≤s {n = 2} z≤n) -- infer explicit term via _ -- e.g., +-identityʳ variant with implicit arguments +-identityʳ′ : ∀ {m : ℕ} → m + zero ≡ m +-identityʳ′ = +-identityʳ _ -- agda infers _ from context (if it can) -- precedence infix 4 _≤_ ------------------------------------------------------------------------------ -- DECIDABILITY : can compute ≤ : see Chapter Decidable {- ------------------------------------------------------------------------------ -- INVERSION above def goes from smaller to larger things (e.g., m ≤ n to suc m ≤ suc n) sometimes go from bigger to smaller things. only one way to prove suc m ≤ suc n, for any m n use it to invert rule -} inv-s≤s : ∀ {m n : ℕ} → suc m ≤ suc n ------------- → m ≤ n inv-s≤s (s≤s m≤n) = m≤n {- ^ variable name (m ≤ n (with spaces) is a type) m≤n is of type m ≤ n convention : var name from type not every rule is invertible e.g., rule for z≤n has no non-implicit hypotheses, so nothing to invert another example inversion -} inv-z≤n : ∀ {m : ℕ} → m ≤ zero -------- → m ≡ zero -- only one way a number can be ≤ zero inv-z≤n z≤n = refl {- ------------------------------------------------------------------------------ -- PROPERTIES OF ORDERING RELATIONS - REFLEXIVE : ∀ n , n ≤ n - TRANSITIVE : ∀ m n p, if m ≤ n && n ≤ p then m ≤ p - ANTI-SYMMETRIC : ∀ m n , if m ≤ n && n ≤ m then m ≡ n - TOTAL : ∀ m n , either m ≤ n or n ≤ m _≤_ satisfies all 4 names for some combinations: PREORDER : reflexive and transitive PARTIAL ORDER : preorder that is also anti-symmetric TOTAL ORDER : partial order that is also total Exercise orderings (practice) preorder that is not a partial order: -- https://math.stackexchange.com/a/2217969 partial order that is not a total order: -- https://math.stackexchange.com/a/367590 -- other properties - SYMMETRIC : ∀ x y, if x R y then y R x ------------------------------------------------------------------------------ REFLEXIVITY -} -- proof is via induction on implicit arg n ≤-refl : ∀ {n : ℕ} -- implicit arg to make it easier to invoke ----- → n ≤ n ≤-refl {zero} = z≤n -- zero ≤ zero -- inductive case applies IH '≤-refl {n}' for a proof of n ≤ n to 's≤s' giving proof suc n ≤ suc n ≤-refl {suc n} = s≤s ≤-refl -- suc n ≤ suc n {- ------------------------------------------------------------------------------ TRANSITIVITY -} -- inductive proof using evidence m ≤ n ≤-trans : ∀ {m n p : ℕ} → m ≤ n → n ≤ p ----- → m ≤ p -- base -- 1st first inequality holds by z≤n -- v ≤-trans z≤n _ = z≤n {- ^ ^ | now must show zero ≤ p; follows by z≤n n ≤ p case is irrelevant (written _) -} {- inductive -- 1st inequality -- | 2nd inequality v v -} ≤-trans (s≤s m≤n) (s≤s n≤p) = s≤s (≤-trans m≤n n≤p) {- 1st proves suc m ≤ suc n 2nd proves suc n ≤ suc p must now show suc m ≤ suc p IH '≤-trans m≤n n≤p' establishes m ≤ p goal follows by applying s≤s ≤-trans (s≤s m≤n) z≤n case cannot arise since - 1st inequality implies middle value is suc n - 2nd inequality implies that it is zero -} ≤-trans′ : ∀ (m n p : ℕ) -- ALTERNATIVE with explicit args → m ≤ n → n ≤ p ----- → m ≤ p ≤-trans′ zero _ _ z≤n _ = z≤n ≤-trans′ (suc m) (suc n) (suc p) (s≤s m≤n) (s≤s n≤p) = s≤s (≤-trans′ m n p m≤n n≤p) {- technique of induction on evidence that a property holds - e.g., inducting on evidence that m ≤ n rather than induction on values of which the property holds - e.g., inducting on m is often used ------------------------------------------------------------------------------ ANTI-SYMMETRY -} -- 842 -- proof via rewrite ≤-antisym' : ∀ {m n : ℕ} → m ≤ n → n ≤ m ----- → m ≡ n ≤-antisym' z≤n z≤n = refl ≤-antisym' (s≤s m≤n) (s≤s n≤m) rewrite ≤-antisym' m≤n n≤m = refl -- proof via induction over the evidence that m ≤ n and n ≤ m hold ≤-antisym : ∀ {m n : ℕ} → m ≤ n → n ≤ m ----- → m ≡ n ≤-antisym z≤n z≤n = refl ≤-antisym (s≤s m≤n) (s≤s n≤m) = cong suc (≤-antisym m≤n n≤m) {- base : both inequalities hold by z≤n - so given zero ≤ zero and zero ≤ zero - shows zero ≡ zero (via Reflexivity of equality) inductive - after using evidence for 1st and 2nd inequalities - have suc m ≤ suc n and suc n ≤ suc m - must show suc m ≡ suc n - IH '≤-antisym m≤n n≤m' establishes m ≡ n - goal follows by congruence Exercise ≤-antisym-cases (practice) TODO : describe why missing case OK The above proof omits cases where one argument is z≤n and one argument is s≤s. Why is it ok to omit them? -- Your code goes here ------------------------------------------------------------------------------ TOTAL -} -- datatype with PARAMETERS data Total (m n : ℕ) : Set where forward : m ≤ n --------- → Total m n flipped : n ≤ m --------- → Total m n {- Evidence that Total m n holds is either of the form - forward m≤n or - flipped n≤m where m≤n and n≤m are evidence of m ≤ n and n ≤ m respectively (above definition could also be written as a disjunction; see Chapter Connectives.) above data type uses PARAMETERS m n --- equivalent to following INDEXED datatype: -} data Total′ : ℕ → ℕ → Set where forward′ : ∀ {m n : ℕ} → m ≤ n ---------- → Total′ m n flipped′ : ∀ {m n : ℕ} → n ≤ m ---------- → Total′ m n {- Each parameter of the type translates as an implicit parameter of each constructor. Unlike an indexed datatype, where the indexes can vary (as in zero ≤ n and suc m ≤ suc n), in a parameterised datatype the parameters must always be the same (as in Total m n). Parameterised declarations are shorter, easier to read, and occasionally aid Agda’s termination checker. Use them in preference to indexed types when possible. ------------------------- show ≤ is a total order by induction over 1st and 2nd args uses WITH -} ≤-total : ∀ (m n : ℕ) → Total m n -- base : 1st arg zero so forward case holds with z≤n as evidence that zero ≤ n ≤-total zero n = forward z≤n -- base : 2nd arg zero so flipped case holds with z≤n as evidence that zero ≤ suc m ≤-total (suc m) zero = flipped z≤n -- inductive : IH establishes one of ≤-total (suc m) (suc n) with ≤-total m n -- forward case of IH with m≤n as evidence that m ≤ n -- follows that forward case of prop holds with s≤s m≤n as evidence that suc m ≤ suc n ... | forward m≤n = forward (s≤s m≤n) -- flipped case of IH with n≤m as evidence that n ≤ m -- follows that flipped case of prop holds with s≤s n≤m as evidence that suc n ≤ suc m ... | flipped n≤m = flipped (s≤s n≤m) {- WITH expression and one or more subsequent lines each line begins ... | followed by pattern and right-hand side WITH equivalent to defining a helper function: -} ≤-total′ : ∀ (m n : ℕ) → Total m n ≤-total′ zero n = forward z≤n ≤-total′ (suc m) zero = flipped z≤n ≤-total′ (suc m) (suc n) = helper (≤-total′ m n) where helper : Total m n → Total (suc m) (suc n) helper (forward m≤n) = forward (s≤s m≤n) helper (flipped n≤m) = flipped (s≤s n≤m) {- WHERE vars bound on the left-hand side of the preceding equation (e.g., m n) in scope in nested def any identifiers bound in nested definition (e.g., helper) in scope in right-hand side of preceding equation If both arguments are equal, then both cases hold and we could return evidence of either. In the code above we return the forward case, but there is a variant that returns the flipped case: -} ≤-total″ : ∀ (m n : ℕ) → Total m n ≤-total″ m zero = flipped z≤n ≤-total″ zero (suc n) = forward z≤n ≤-total″ (suc m) (suc n) with ≤-total″ m n ... | forward m≤n = forward (s≤s m≤n) ... | flipped n≤m = flipped (s≤s n≤m) -- differs from original : pattern matches on 2nd arg before 1st {- ------------------------------------------------------------------------------ MONOTONICITY ∀ {m n p q : ℕ} → m ≤ n → p ≤ q → m + p ≤ n + q addition is monotonic on the right proof by induction on 1st arg -} +-monoʳ-≤ : ∀ (n p q : ℕ) → p ≤ q ------------- → n + p ≤ n + q -- base : 1st is zero; zero + p ≤ zero + q -- def/eq p ≤ q -- evidence given by arg p≤q +-monoʳ-≤ zero p q p≤q = p≤q -- inductive : 1st is suc n; suc n + p ≤ suc n + q -- def/eq; suc (n + p) ≤ suc (n + q) -- IH +-monoʳ-≤ n p q p≤q establishes n + p ≤ n + q -- goal follows by applying s≤s +-monoʳ-≤ (suc n) p q p≤q = s≤s (+-monoʳ-≤ n p q p≤q) {- addition is monotonic on the left via previous result and commutativity of addition: -} +-monoˡ-≤ : ∀ (m n p : ℕ) → m ≤ n ------------- → m + p ≤ n + p +-monoˡ-≤ m n p m≤n -- m + p ≤ n + p rewrite +-comm m p -- p + m ≤ n + p | +-comm n p -- p + m ≤ p + n = +-monoʳ-≤ p m n m≤n -- combine above results: +-mono-≤ : ∀ (m n p q : ℕ) → m ≤ n → p ≤ q ------------- → m + p ≤ n + q +-mono-≤ m n p q m≤n p≤q = ≤-trans -- combining below via transitivity proves m + p ≤ n + q (+-monoˡ-≤ m n p m≤n) -- proves m + p ≤ n + p (+-monoʳ-≤ n p q p≤q) -- proves n + p ≤ n + q {- ------------------------------------------------------------------------------ Exercise *-mono-≤ (stretch) Show that multiplication is monotonic with regard to inequality. -} ------------------------- -- multiplication is monotonic on the right *-monoʳ-≤ : ∀ (n p q : ℕ) → p ≤ q ------------- → n * p ≤ n * q *-monoʳ-≤ zero p q p≤q -- zero * p ≤ zero * q -- zero ≤ zero = z≤n *-monoʳ-≤ n zero q p≤q -- n * zero ≤ n * q rewrite *-comm n zero -- 0 ≤ n * q = z≤n *-monoʳ-≤ n p zero p≤q -- n * p ≤ n * zero rewrite *-comm n zero -- n * p ≤ 0 | inv-z≤n p≤q -- n * 0 ≤ 0 | *-comm n zero -- 0 ≤ 0 = z≤n *-monoʳ-≤ n (suc p) (suc q) p≤q -- n * suc p ≤ n * suc q rewrite *-comm n (suc p) -- n + p * n ≤ n * suc q | *-comm n (suc q) -- n + p * n ≤ n + q * n | *-comm p n -- n + n * p ≤ n + q * n | *-comm q n -- n + n * p ≤ n + n * q = +-monoʳ-≤ n (n * p) (n * q) (*-monoʳ-≤ n p q (inv-s≤s p≤q)) ------------------------- -- multiplication is monotonic on the left *-monoˡ-≤ : ∀ (m n p : ℕ) → m ≤ n ------------- → m * p ≤ n * p *-monoˡ-≤ zero n p m≤n -- zero * p ≤ n * p -- zero ≤ n * p = z≤n *-monoˡ-≤ m zero p m≤n -- m * p ≤ zero * p -- m * p ≤ zero rewrite inv-z≤n m≤n -- 0 * p ≤ 0 -- zero ≤ 0 = z≤n *-monoˡ-≤ (suc m) (suc n) p m≤n -- suc m * p ≤ suc n * p -- p + m * p ≤ p + n * p = +-monoʳ-≤ p (m * p) (n * p) (*-monoˡ-≤ m n p (inv-s≤s m≤n)) ------------------------- *-mono-≤ : ∀ (m n p q : ℕ) → m ≤ n → p ≤ q ------------- → m * p ≤ n * q *-mono-≤ m n p q m≤n p≤q = ≤-trans (*-monoˡ-≤ m n p m≤n) (*-monoʳ-≤ n p q p≤q) {- ------------------------------------------------------------------------------ STRICT INEQUALITY < -} infix 4 _<_ data _<_ : ℕ → ℕ → Set where z<s : ∀ {n : ℕ} ------------ → zero < suc n -- diff from '≤' : 'zero ≤ n' s<s : ∀ {m n : ℕ} → m < n ------------- → suc m < suc n {- NOT REFLEXIVE IRREFLEXIVE : n < n never holds for any n TRANSITIVE NOT TOTAL TRICHOTOMY: ∀ m n, one of m < n, m ≡ n, or m > n holds - where m > n hold when n < m MONOTONIC with regards to ADDITION and MULTIPLICATION negation required to prove (so deferred to Chapter Negation) - irreflexivity - trichotomy case are mutually exclusive ------------------------------------------------------------------------------ show suc m ≤ n implies m < n (and conversely) -} m≤n→m<n : ∀ {m n : ℕ} → suc m ≤ n --------- → m < n m≤n→m<n {zero} {zero} () m≤n→m<n {zero} {suc n} m≤n = z<s m≤n→m<n {suc m} {suc n} m≤n = s<s (m≤n→m<n {m} {n} (inv-s≤s m≤n)) inv-s<s : ∀ {m n : ℕ} → suc m < suc n ------------- → m < n inv-s<s (s<s m<n) = m<n m<n→m≤n : ∀ {m n : ℕ} → m < n → m ≤ n m<n→m≤n {zero} {suc n} m<n = z≤n m<n→m≤n {suc m} {suc n} m<n = s≤s (m<n→m≤n {m} {n} (inv-s<s m<n)) {- can then give an alternative derivation of the properties of strict inequality (e.g., transitivity) by exploiting the corresponding properties of inequality ------------------------------------------------------------------------------ Exercise <-trans (recommended) : strict inequality is transitive. -} <-trans : ∀ {m n p : ℕ} → m < n → n < p ----- → m < p <-trans {zero} {n} {p} z<s (s<s n<p) = z<s <-trans {suc m} {suc n} {suc p} (s<s m<n) (s<s n<p) = s<s (<-trans {m} {n} {p} m<n n<p) <-trans' : ∀ {m n p : ℕ} → m < n → n < p ----- → m < p <-trans' z<s (s<s n<p) = z<s <-trans' (s<s m<n) (s<s n<p) = s<s (<-trans' m<n n<p) {- ------------------------------------------------------------------------------ Exercise trichotomy (practice) Show that strict inequality satisfies a weak version of trichotomy, in the sense that for any m and n that one of the following holds: - m < n - m ≡ n - m > n Define m > n to be the same as n < m. Need a data declaration, similar to that used for totality. (Later will show that the three cases are exclusive after negation is introduced.) -} -- from 842 data Trichotomy (m n : ℕ) : Set where is-< : m < n → Trichotomy m n is-≡ : m ≡ n → Trichotomy m n is-> : n < m → Trichotomy m n -- hc <-trichotomy : ∀ (m n : ℕ) → Trichotomy m n <-trichotomy zero zero = is-≡ refl <-trichotomy zero (suc n) = is-< z<s <-trichotomy (suc m) zero = is-> z<s <-trichotomy (suc m) (suc n) = helper (<-trichotomy m n) where helper : Trichotomy m n -> Trichotomy (suc m) (suc n) helper (is-< x) = is-< (s<s x) helper (is-≡ x) = is-≡ (cong suc x) helper (is-> x) = is-> (s<s x) {- ------------------------------------------------------------------------------ Exercise +-mono-< (practice) Show that addition is monotonic with respect to strict inequality. As with inequality, some additional definitions may be required. -} -- HC -- these proof are literal cut/paste/change '≤' to '<' -- no additional defs were required +-monoʳ-< : ∀ (n p q : ℕ) → p < q ------------- → n + p < n + q +-monoʳ-< zero p q p<q = p<q +-monoʳ-< (suc n) p q p<q = s<s (+-monoʳ-< n p q p<q) +-monoˡ-< : ∀ (m n p : ℕ) → m < n ------------- → m + p < n + p +-monoˡ-< m n p m<n rewrite +-comm m p | +-comm n p = +-monoʳ-< p m n m<n +-mono-< : ∀ (m n p q : ℕ) → m < n → p < q ------------- → m + p < n + q +-mono-< m n p q m<n p<q = <-trans (+-monoˡ-< m n p m<n) (+-monoʳ-< n p q p<q) {- ------------------------------------------------------------------------------ Exercise ≤-iff-< (recommended) : suc m ≤ n implies m < n, and conversely -} -- 842 exercise: LEtoLTS (1 point) ≤-<-to m≤n→m<sucn : ∀ {m n : ℕ} → m ≤ n → m < suc n m≤n→m<sucn {zero} m≤n = z<s m≤n→m<sucn {suc m} {suc n} m≤n = s<s (m≤n→m<sucn {m} {n} (inv-s≤s m≤n)) -- 842 exercise: LEStoLT (1 point) ≤-<--to′ sucm≤n→m<n : ∀ {m n : ℕ} → suc m ≤ n → m < n sucm≤n→m<n {zero} {suc n} sucm≤n = z<s sucm≤n→m<n {suc m} {suc n} sucm≤n = s<s (sucm≤n→m<n {m} {n} (inv-s≤s sucm≤n)) -- 842 exercise: LTtoSLE (1 point) ≤-<-from m<n→sucm≤n : ∀ {m n : ℕ} → m < n → suc m ≤ n m<n→sucm≤n {zero} {suc n} m<n = s≤s z≤n m<n→sucm≤n {suc m} {suc n} m<n = s≤s (m<n→sucm≤n {m} {n} (inv-s<s m<n)) -- 842 exercise: LTStoLE (1 point) ≤-<-from′ m<sucn→m≤n : ∀ {m n : ℕ} → m < suc n → m ≤ n m<sucn→m≤n {zero} z<n = z≤n m<sucn→m≤n {suc m} {suc n} (s<s m<n) = s≤s (m<sucn→m≤n {m} {n} m<n) -- ^ -- critical move {- ------------------------------------------------------------------------------ Exercise <-trans-revisited (practice) Give an alternative proof that strict inequality is transitive, using the relation between strict inequality and inequality and the fact that inequality is transitive. -- 842: use the above to give a proof of <-trans that uses ≤-trans -} n<p→n<sucp : ∀ {n p : ℕ} → n < p → n < suc p n<p→n<sucp z<s = z<s n<p→n<sucp {suc n} {suc p} n<p = s<s (n<p→n<sucp {n} {p} (inv-s<s n<p)) <-trans'' : ∀ {m n p : ℕ} → m < n → n < p ----- → m < p <-trans'' {zero} {suc n} {suc p} z<s _ = z<s <-trans'' {suc m} {suc n} {suc p} (s<s m<n) (s<s n<p) = sucm≤n→m<n (≤-trans (m<n→sucm≤n (s<s m<n)) (m<sucn→m≤n (s<s (n<p→n<sucp n<p)))) {- ------------------------------------------------------------------------------ EVEN and ODD : MUTUALLY RECURSIVE DATATYPE DECLARATION and OVERLOADED CONSTRUCTORS inequality and strict inequality are BINARY RELATIONS even and odd are UNARY RELATIONS, sometimes called PREDICATES -} -- identifier must be defined before it is used, so declare both before giving constructors. data even : ℕ → Set data odd : ℕ → Set data even where zero : -- overloaded with nat def --------- even zero suc : ∀ {n : ℕ} → odd n ------------ → even (suc n) data odd where suc : ∀ {n : ℕ} -- suc is overloaded with one above and nat def → even n ----------- → odd (suc n) {- overloading constructors is OK (handled by type inference overloading defined names NOT OK best practice : only overload related meanings -} -- mutually recursive proof functions : give types first, then impls -- sum of two even numbers is even e+e≡e : ∀ {m n : ℕ} → even m → even n ------------ → even (m + n) -- sum of even and odd is odd o+e≡o : ∀ {m n : ℕ} → odd m → even n ----------- → odd (m + n) -- given: zero is evidence that 1st is even -- given: 2nd is even -- result: even because 2nd is even e+e≡e zero en = en -- given: 1st is even because it is suc of odd -- given: 2nd is even -- result: even because it is suc of sum of odd and even number, which is odd e+e≡e (suc om) en = suc (o+e≡o om en) -- given: 1st odd because it is suc of even -- given: 2nd is event -- result: odd because it is suc of sum of two evens, which is even o+e≡o (suc em) en = suc (e+e≡e em en) ------------------------------------------------------------------------------ -- Exercise o+o≡e (stretch) : sum of two odd numbers is even -- 842 Hint: need to define another theorem and prove both by mutual induction -- sum of odd and even is odd e+o≡o : ∀ {m n : ℕ} → even m → odd n ----------- → odd (m + n) -- sum of odd and odd is even o+o≡e : ∀ {m n : ℕ} → odd m → odd n -------------- → even (m + n) e+o≡o zero on = on e+o≡o (suc em) on = suc (o+o≡e em on) o+o≡e (suc om) on = suc (e+o≡o om on) {- ------------------------------------------------------------------------------ Exercise Bin-predicates (stretch) representations not unique due to leading zeros eleven: ⟨⟩ I O I I -- canonical ⟨⟩ O O I O I I -- not canonical -} data Bin : Set where ⟨⟩ : Bin _O : Bin → Bin _I : Bin → Bin inc : Bin → Bin inc ⟨⟩ = ⟨⟩ I inc (b O) = b I inc (b I) = (inc b) O to : ℕ → Bin to zero = ⟨⟩ O to (suc m) = inc (to m) dbl : ℕ → ℕ dbl zero = zero dbl (suc m) = suc (suc (dbl m)) from : Bin → ℕ from ⟨⟩ = 0 from (b O) = dbl (from b) from (b I) = suc (dbl (from b)) -- httpS://www.reddit.com/r/agda/comments/hrvk07/plfa_quantifiers_help_with_binisomorphism/ -- holds if bitstring has a leading one data One : Bin → Set where one : One (⟨⟩ I) _withO : ∀ {b} → One b → One (b O) _withI : ∀ {b} → One b → One (b I) {- Hint: to prove below - first state/prove properties of One -} n≤1+n : ∀ (n : ℕ) → n ≤ 1 + n n≤1+n zero = z≤n n≤1+n (suc n) = s≤s (n≤1+n n) dbl-mono : ∀ (n : ℕ) → n ≤ dbl n dbl-mono zero = z≤n dbl-mono (suc n) = s≤s (≤-trans (dbl-mono n) (n≤1+n (dbl n))) -- not used; I thought it would be useful; first try n≤fromb→n≤dblfromb' : ∀ {n : ℕ} {b : Bin} → n ≤ from b → n ≤ dbl (from b) n≤fromb→n≤dblfromb' {zero} {b} p = z≤n n≤fromb→n≤dblfromb' {suc n} {b O} p = ≤-trans p (dbl-mono (from (b O))) n≤fromb→n≤dblfromb' {suc n} {b I} (s≤s p) = s≤s (≤-trans (≤-trans p (dbl-mono (dbl (from b)))) (n≤1+n (dbl (dbl (from b))))) -- not used; above cleaned up n≤fromb→n≤dblfromb : ∀ {n : ℕ} {b : Bin} → n ≤ from b → n ≤ dbl (from b) n≤fromb→n≤dblfromb {_} {b} p = ≤-trans p (dbl-mono (from b)) -- HINT: prove if One b then 1 is less or equal to the result of from b oneb→1≤fromb : ∀ {b : Bin} → One b → 1 ≤ from b oneb→1≤fromb {b I} _ = s≤s z≤n oneb→1≤fromb {b O} (p withO) = ≤-trans (oneb→1≤fromb p) (dbl-mono (from b)) oneb→0<fromb : ∀ {b : Bin} → One b → 0 < from b oneb→0<fromb p = m≤n→m<n (oneb→1≤fromb p) -- not used num-trailing-zeros : (b : Bin) {p : One b} → ℕ num-trailing-zeros (b I) = 0 num-trailing-zeros (b O) {p withO} = 1 + num-trailing-zeros b {p} -- not used do-dbls : ℕ -> ℕ do-dbls zero = suc zero do-dbls (suc n) = dbl (do-dbls n) {- xxx : {b : Bin} {n : ℕ} → (p : One b) → n ≡ num-trailing-zeros b {p} → do-dbls n ≤ from b xxx {⟨⟩ I} {zero} one ntz = s≤s z≤n xxx {b I} {zero} (ob withI) ntz = s≤s z≤n xxx {b O} {zero} (ob withO) ntz = ≤-trans (oneb→1≤fromb ob) (dbl-mono (from b)) xxx {b O} {suc n} (ob withO) ntz = {!!} -} -- bitstring is canonical if data Can : Bin → Set where czero : Can (⟨⟩ O) -- it consists of a single zero (representing zero) cone : ∀ {b : Bin} → One b -- it has a leading one (representing a positive number) ----- → Can b {- -------------------------------------------------- show that increment preserves canonical bitstrings -} oneb→one-incb : ∀ {b : Bin} → One b → One (inc b) oneb→one-incb one = one withO oneb→one-incb (p withO) = p withI oneb→one-incb (p withI) = oneb→one-incb p withO canb→canincb : ∀ {b : Bin} → Can b ---------- → Can (inc b) canb→canincb {.(⟨⟩ O)} czero = cone one canb→canincb {b} (cone p) = cone (oneb→one-incb p) {- -------------------------------------------------- show that converting a natural to a bitstring always yields a canonical bitstring -} can-to-n : ∀ {n : ℕ} → Can (to n) can-to-n {zero} = czero can-to-n {suc n} = canb→canincb (can-to-n {n}) {- -------------------------------------------------- show that converting a canonical bitstring to a natural and back is the identity TODO -} ob→obO : ∀ {b : Bin} → One b → One (b O) ob→obI : ∀ {b : Bin} → One b → One (b I) ob→obI {.(⟨⟩ I)} one = one withI ob→obI {.(_ O)} (p withO) = ob→obO p withI ob→obI {(b I)} (p withI) = ob→obI {b} p withI ob→obO {.(⟨⟩ I)} one = one withO ob→obO {.(_ O)} (p withO) = (ob→obO p) withO ob→obO {(b I)} (p withI) = ob→obI {b} p withO dblb : Bin → Bin dblb ⟨⟩ = ⟨⟩ dblb (⟨⟩ O) = ⟨⟩ O dblb b = b O dblbo : ∀ {b} → One b → Bin → Bin dblbo _ b = b O dblbc : ∀ {b} → Can b → Bin → Bin dblbc czero _ = ⟨⟩ O dblbc (cone _) b = b O xxxx : ∀ {b : Bin} {n : ℕ} → b ≡ (⟨⟩ I) → b ≡ to n → n ≡ 1 → (⟨⟩ I O) ≡ to (dbl n) xxxx p1 p2 p3 rewrite p3 = refl xx : ∀ {b : Bin} → One b -> to (dbl (from b)) ≡ b O xx one = refl xx {b O} (p withO) -- to (dbl (from (b O))) ≡ ((b O) O) -- to (dbl (dbl (from b))) ≡ ((b O) O) rewrite sym (xx p) -- to (dbl (dbl (from b))) ≡ (to (dbl (from b)) O) = {!!} xx {b I} (p withI) -- to (dbl (from (b I)) ≡ ((b I) O) -- inc (inc (to (dbl (dbl (from b))))) ≡ ((b I) O) = {!!} can-b→to-from-b≡b : ∀ {b : Bin} → Can b --------------- → to (from b) ≡ b can-b→to-from-b≡b czero = refl can-b→to-from-b≡b {.⟨⟩ I} (cone one) = refl can-b→to-from-b≡b {b O} (cone (p withO)) -- to (dbl (from b)) ≡ (b O) = xx p can-b→to-from-b≡b {b I} (cone (p withI)) -- inc (to (dbl (from b))) ≡ (b I) rewrite xx p -- (b I) ≡ (b I) = refl {- ------------------------------------------------------------------------------ Standard library defs in this chapter in standard library: import Data.Nat using (_≤_; z≤n; s≤s) import Data.Nat.Properties using (≤-refl; ≤-trans; ≤-antisym; ≤-total; +-monoʳ-≤; +-monoˡ-≤; +-mono-≤) ------------------------------------------------------------------------------ Unicode ≤ U+2264 LESS-THAN OR EQUAL TO (\<=, \le) ≥ U+2265 GREATER-THAN OR EQUAL TO (\>=, \ge) ˡ U+02E1 MODIFIER LETTER SMALL L (\^l) ʳ U+02B3 MODIFIER LETTER SMALL R (\^r) -}
{ "alphanum_fraction": 0.4840215305, "avg_line_length": 26.4875373878, "ext": "agda", "hexsha": "b6177650f804f01739877b08b170b691e02c64f5", "lang": "Agda", "max_forks_count": 8, "max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z", "max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_forks_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x03relations.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_issues_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x03relations.agda", "max_line_length": 99, "max_stars_count": 36, "max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_stars_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x03relations.agda", "max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z", "num_tokens": 9606, "size": 26567 }
module Data.Boolean.Numeral where open import Data open import Data.Boolean open import Data.Boolean.Stmt import Lvl open import Numeral.Natural open import Numeral.Natural.Oper.Comparisons open import Syntax.Number open import Type Bool-to-ℕ : Bool → ℕ Bool-to-ℕ 𝐹 = 0 Bool-to-ℕ 𝑇 = 1 ℕ-to-Bool : (n : ℕ) → . ⦃ _ : IsTrue(n <? 2) ⦄ → Bool ℕ-to-Bool 0 = 𝐹 ℕ-to-Bool 1 = 𝑇 instance Bool-from-ℕ : Numeral(Bool) Numeral.restriction-ℓ Bool-from-ℕ = Lvl.𝟎 Numeral.restriction Bool-from-ℕ n = IsTrue(n <? 2) num ⦃ Bool-from-ℕ ⦄ n = ℕ-to-Bool n
{ "alphanum_fraction": 0.6632124352, "avg_line_length": 23.16, "ext": "agda", "hexsha": "78ba368a24cf027250ac6d628466658753f1e537", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Data/Boolean/Numeral.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Data/Boolean/Numeral.agda", "max_line_length": 56, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Data/Boolean/Numeral.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 224, "size": 579 }
module Lib.Vec where open import Common.Nat open import Lib.Fin open import Common.Unit import Common.List as List; open List using (List ; [] ; _∷_) data Vec (A : Set) : Nat → Set where _∷_ : {n : Nat} → A → Vec A n → Vec A (suc n) [] : Vec A zero infixr 30 _++_ _++_ : {A : Set}{m n : Nat} → Vec A m → Vec A n → Vec A (m + n) [] ++ ys = ys (x ∷ xs) ++ ys = x ∷ (xs ++ ys) snoc : {A : Set}{n : Nat} → Vec A n → A → Vec A (suc n) snoc [] e = e ∷ [] snoc (x ∷ xs) e = x ∷ snoc xs e -- Recursive length. length : {A : Set}{n : Nat} → Vec A n → Nat length [] = zero length (x ∷ xs) = 1 + length xs length' : {A : Set}{n : Nat} → Vec A n → Nat length' {n = n} _ = n zipWith3 : ∀ {A B C D n} → (A → B → C → D) → Vec A n → Vec B n → Vec C n → Vec D n zipWith3 f [] [] [] = [] zipWith3 f (x ∷ xs) (y ∷ ys) (z ∷ zs) = f x y z ∷ zipWith3 f xs ys zs zipWith : ∀ {A B C n} → (A → B → C) → Vec A n → Vec B n → {u : Unit} → Vec C n zipWith _ [] [] = [] zipWith f (x ∷ xs) (y ∷ ys) = f x y ∷ zipWith f xs ys {u = unit} _!_ : ∀ {A n} → Vec A n → Fin n → A (x ∷ xs) ! fz = x (_ ∷ xs) ! fs n = xs ! n [] ! () -- Update vector at index _[_]=_ : {A : Set}{n : Nat} → Vec A n → Fin n → A → Vec A n (a ∷ as) [ fz ]= e = e ∷ as (a ∷ as) [ fs n ]= e = a ∷ (as [ n ]= e) [] [ () ]= e map : ∀ {A B n}(f : A → B)(xs : Vec A n) → Vec B n map f [] = [] map f (x ∷ xs) = f x ∷ map f xs -- Vector to List, forget the length. forgetL : {A : Set}{n : Nat} → Vec A n → List A forgetL [] = [] forgetL (x ∷ xs) = x ∷ forgetL xs -- List to Vector, "rem"member the length. rem : {A : Set}(xs : List A) → Vec A (List.length xs) rem [] = [] rem (x ∷ xs) = x ∷ rem xs
{ "alphanum_fraction": 0.475573867, "avg_line_length": 25.7424242424, "ext": "agda", "hexsha": "87dd1689eb4f1d416419afdd6883892d735a5dab", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Compiler/simple/Lib/Vec.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Compiler/simple/Lib/Vec.agda", "max_line_length": 82, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Compiler/simple/Lib/Vec.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 714, "size": 1699 }
{-# OPTIONS --cubical --safe #-} module Lens.Composition where open import Prelude open import Lens.Definition open import Lens.Operators infixr 9 _⋯_ _⋯_ : Lens A B → Lens B C → Lens A C fst (ab ⋯ bc) xs = ac where ab-xs : LensPart _ _ ab-xs = fst ab xs bc-ys : LensPart _ _ bc-ys = fst bc (get ab-xs) ac : LensPart _ _ get ac = get bc-ys set ac v = set ab-xs (set bc-ys v) get-set (snd (ab ⋯ bc)) s v = cong (getter bc) (get-set (snd ab) s _) ; bc .snd .get-set (get (fst ab s)) v set-get (snd (ab ⋯ bc)) s = cong (setter ab s) (set-get (snd bc) (get (fst ab s))) ; set-get (snd ab) s set-set (snd (ab ⋯ bc)) s v₁ v₂ = set-set (snd ab) s _ _ ; cong (setter ab s) (cong (flip (setter bc) v₂) (get-set (snd ab) _ _) ; set-set (snd bc) _ _ _)
{ "alphanum_fraction": 0.6068152031, "avg_line_length": 30.52, "ext": "agda", "hexsha": "5b3e17f44e9b9934966597e1b334a7285d2d9dd4", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Lens/Composition.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Lens/Composition.agda", "max_line_length": 154, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Lens/Composition.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 301, "size": 763 }
module InstanceArgumentsAmbiguous where postulate A B : Set f : {{a : A}} → B a₁ a₂ : A test : B test = f
{ "alphanum_fraction": 0.546875, "avg_line_length": 14.2222222222, "ext": "agda", "hexsha": "878e850c0cd87fe537e2a59d3370b650505f23a4", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/InstanceArgumentsAmbiguous.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/InstanceArgumentsAmbiguous.agda", "max_line_length": 39, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/fail/InstanceArgumentsAmbiguous.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 41, "size": 128 }
{-# OPTIONS --without-K --rewriting #-} open import Basics open import lib.Basics open import Flat module Axiom.C1 {@♭ i j : ULevel} (@♭ I : Type i) (@♭ R : I → Type j) where open import Axiom.C0 I R postulate C1 : (index : I) → R index
{ "alphanum_fraction": 0.6209677419, "avg_line_length": 22.5454545455, "ext": "agda", "hexsha": "cba18ad0c2195c0a1b7fa3e0d38c62844e91fa93", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "glangmead/formalization", "max_forks_repo_path": "cohesion/david_jaz_261/Axiom/C1.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "glangmead/formalization", "max_issues_repo_path": "cohesion/david_jaz_261/Axiom/C1.agda", "max_line_length": 75, "max_stars_count": 6, "max_stars_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "glangmead/formalization", "max_stars_repo_path": "cohesion/david_jaz_261/Axiom/C1.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-13T05:51:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-06T17:39:22.000Z", "num_tokens": 84, "size": 248 }
------------------------------------------------------------------------ -- The Agda standard library -- -- A Categorical view of the Sum type (Right-biased) ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Level module Data.Sum.Categorical.Right (a : Level) {b} (B : Set b) where open import Data.Sum open import Category.Functor open import Category.Applicative open import Category.Monad open import Function import Function.Identity.Categorical as Id Sumᵣ : Set (a ⊔ b) → Set (a ⊔ b) Sumᵣ A = A ⊎ B functor : RawFunctor Sumᵣ functor = record { _<$>_ = map₁ } applicative : RawApplicative Sumᵣ applicative = record { pure = inj₁ ; _⊛_ = [ map₁ , const ∘ inj₂ ]′ } monadT : RawMonadT (_∘′ Sumᵣ) monadT M = record { return = M.pure ∘′ inj₁ ; _>>=_ = λ ma f → ma M.>>= [ f , M.pure ∘′ inj₂ ]′ } where module M = RawMonad M monad : RawMonad Sumᵣ monad = monadT Id.monad ------------------------------------------------------------------------ -- Get access to other monadic functions module _ {F} (App : RawApplicative {a ⊔ b} F) where open RawApplicative App sequenceA : ∀ {A} → Sumᵣ (F A) → F (Sumᵣ A) sequenceA (inj₂ a) = pure (inj₂ a) sequenceA (inj₁ x) = inj₁ <$> x mapA : ∀ {A B} → (A → F B) → Sumᵣ A → F (Sumᵣ B) mapA f = sequenceA ∘ map₁ f forA : ∀ {A B} → Sumᵣ A → (A → F B) → F (Sumᵣ B) forA = flip mapA module _ {M} (Mon : RawMonad {a ⊔ b} M) where private App = RawMonad.rawIApplicative Mon sequenceM : ∀ {A} → Sumᵣ (M A) → M (Sumᵣ A) sequenceM = sequenceA App mapM : ∀ {A B} → (A → M B) → Sumᵣ A → M (Sumᵣ B) mapM = mapA App forM : ∀ {A B} → Sumᵣ A → (A → M B) → M (Sumᵣ B) forM = forA App
{ "alphanum_fraction": 0.5365572827, "avg_line_length": 24.4647887324, "ext": "agda", "hexsha": "f33b068aaf95dc66352481be5d3d0e86d3828b1a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Sum/Categorical/Right.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Sum/Categorical/Right.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Sum/Categorical/Right.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 615, "size": 1737 }
{-# OPTIONS --without-K --safe #-} module ProMonoid where open import Level open import Algebra.Core using (Op₂) open import Algebra.Definitions using (Congruent₂) open import Algebra.Structures open import Algebra.Bundles open import Relation.Binary -- Pre-ordered monoids, additively written record ProMonoid c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where infix 4 _≈_ _≼_ infixl 7 _∙_ field Carrier : Set c _≈_ : Rel Carrier ℓ₁ -- The underlying equality. _≼_ : Rel Carrier ℓ₂ -- The relation. isPreorder : IsPreorder _≈_ _≼_ _∙_ : Op₂ Carrier -- The monoid operations. ε : Carrier isMonoid : IsMonoid _≈_ _∙_ ε ∙-mon : Congruent₂ _≼_ _∙_ open IsPreorder isPreorder public hiding (module Eq) module Eq where setoid : Setoid c ℓ₁ setoid = record { isEquivalence = isEquivalence } open Setoid setoid public monoid : Monoid c ℓ₁ monoid = record { isMonoid = isMonoid } open IsMonoid isMonoid public -- using (∙-cong) hiding (reflexive; refl)
{ "alphanum_fraction": 0.6559849199, "avg_line_length": 24.1136363636, "ext": "agda", "hexsha": "7b5dbc2af703be28c42397147164c11ecab20f7b", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-02-25T20:39:03.000Z", "max_forks_repo_forks_event_min_datetime": "2018-11-13T16:01:46.000Z", "max_forks_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "andreasabel/ipl", "max_forks_repo_path": "src-cbpv/ProMonoid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "andreasabel/ipl", "max_issues_repo_path": "src-cbpv/ProMonoid.agda", "max_line_length": 60, "max_stars_count": 19, "max_stars_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "andreasabel/ipl", "max_stars_repo_path": "src-cbpv/ProMonoid.agda", "max_stars_repo_stars_event_max_datetime": "2021-04-27T19:10:49.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-16T08:08:51.000Z", "num_tokens": 349, "size": 1061 }
-- Andreas, 2016-01-13, highlighting of import directives -- {-# OPTIONS -v highlighting.names:100 -v scope.decl:70 -v tc.decl:10 #-} module _ where import Common.Product as Prod hiding (proj₁) -- proj₁ should be highlighted as field open Prod using (_×_) -- _×_ should be highlighted as record type module M (A : Set) = Prod using (_,_) -- highlighted as constructor renaming (proj₂ to snd) -- highlighted as projections
{ "alphanum_fraction": 0.6143141153, "avg_line_length": 38.6923076923, "ext": "agda", "hexsha": "90705bca7611678980fdde30f199cc217cdaa5e0", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue1714.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue1714.agda", "max_line_length": 88, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue1714.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 116, "size": 503 }
{-# OPTIONS --cubical --safe #-} module Cubical.Data.Everything where import Cubical.Data.BinNat import Cubical.Data.Bool import Cubical.Data.Empty import Cubical.Data.Equality import Cubical.Data.Fin import Cubical.Data.Nat import Cubical.Data.Nat.Algebra import Cubical.Data.Nat.Order import Cubical.Data.NatMinusOne import Cubical.Data.NatMinusTwo import Cubical.Data.NatPlusOne import Cubical.Data.Int import Cubical.Data.Sum import Cubical.Data.Prod import Cubical.Data.Unit import Cubical.Data.Sigma import Cubical.Data.DiffInt import Cubical.Data.Group import Cubical.Data.HomotopyGroup import Cubical.Data.List import Cubical.Data.Graph import Cubical.Data.InfNat import Cubical.Data.Queue
{ "alphanum_fraction": 0.8354792561, "avg_line_length": 25.8888888889, "ext": "agda", "hexsha": "cb16a7eca93e62d2f0ce622188d0ed1140f3c17d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "borsiemir/cubical", "max_forks_repo_path": "Cubical/Data/Everything.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "borsiemir/cubical", "max_issues_repo_path": "Cubical/Data/Everything.agda", "max_line_length": 36, "max_stars_count": null, "max_stars_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "borsiemir/cubical", "max_stars_repo_path": "Cubical/Data/Everything.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 183, "size": 699 }
{-# OPTIONS --warning=error --safe --without-K #-} open import LogicalFormulae open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import Functions.Definition open import Setoids.Setoids open import Setoids.Subset open import Graphs.Definition module Graphs.InducedSubgraph {a b c : _} {V' : Set a} {V : Setoid {a} {b} V'} (G : Graph c V) where open Graph G inducedSubgraph : {d : _} {pred : V' → Set d} (sub : subset V pred) → Graph c (subsetSetoid V sub) Graph._<->_ (inducedSubgraph sub) (x , _) (y , _) = x <-> y Graph.noSelfRelation (inducedSubgraph sub) (x , _) x=x = noSelfRelation x x=x Graph.symmetric (inducedSubgraph sub) {x , _} {y , _} x=y = symmetric x=y Graph.wellDefined (inducedSubgraph sub) {x , _} {y , _} {z , _} {w , _} x=y z=w x-z = wellDefined x=y z=w x-z
{ "alphanum_fraction": 0.6742138365, "avg_line_length": 41.8421052632, "ext": "agda", "hexsha": "179f2c0ea84e846a389b4edb3f63846252ec8533", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Graphs/InducedSubgraph.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Graphs/InducedSubgraph.agda", "max_line_length": 109, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Graphs/InducedSubgraph.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 272, "size": 795 }
{-# OPTIONS --allow-unsolved-metas #-} -- Andreas, 2016-12-19, issue #2344, reported by oinkium, shrunk by Ulf -- The function Agda.TypeChecking.Telescope.permuteTel -- used in the unifier was buggy. -- {-# OPTIONS -v tc.meta:25 #-} -- {-# OPTIONS -v tc.lhs:10 #-} -- {-# OPTIONS -v tc.lhs.unify:100 #-} -- {-# OPTIONS -v tc.cover:20 #-} data Nat : Set where zero : Nat suc : Nat → Nat data Fin : Nat → Set where zero : ∀ n → Fin (suc n) postulate T : Nat → Set mkT : ∀{l} → T l toNat : ∀ m → Fin m → Nat -- The underscore in the type signature is originally dependent on A,X,i -- but then pruned to be dependent on A,X only. -- The unifier had a problem with this. toNat-injective : ∀ (A : Set) X i → T (toNat _ i) -- Yellow expected. toNat-injective A X (zero n) = mkT -- Should pass.
{ "alphanum_fraction": 0.6240786241, "avg_line_length": 26.2580645161, "ext": "agda", "hexsha": "20d7c937857be83965e20328d4daabe352b12cd7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pthariensflame/agda", "max_forks_repo_path": "test/Succeed/Issue2344.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pthariensflame/agda", "max_issues_repo_path": "test/Succeed/Issue2344.agda", "max_line_length": 72, "max_stars_count": 3, "max_stars_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pthariensflame/agda", "max_stars_repo_path": "test/Succeed/Issue2344.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 265, "size": 814 }
module Data.Boolean.NaryOperators where open import Data.Boolean import Data.Boolean.Operators open Data.Boolean.Operators.Logic open import Function.DomainRaise open import Numeral.Natural private variable n : ℕ -- N-ary conjunction (AND). -- Every term is true. ∧₊ : (n : ℕ) → (Bool →̂ Bool)(n) ∧₊(0) = 𝑇 ∧₊(1) x = x ∧₊(𝐒(𝐒(n))) x = (x ∧_) ∘ (∧₊(𝐒(n))) -- N-ary disjunction (OR). -- There is a term which is true. ∨₊ : (n : ℕ) → (Bool →̂ Bool)(n) ∨₊(0) = 𝐹 ∨₊(1) x = x ∨₊(𝐒(𝐒(n))) x = (x ∨_) ∘ (∨₊(𝐒(n))) -- N-ary implication. -- All left terms together imply the right-most term. ⟶₊ : (n : ℕ) → (Bool →̂ Bool)(n) ⟶₊(0) = 𝑇 ⟶₊(1) x = x ⟶₊(𝐒(𝐒(n))) x = (x ⟶_) ∘ (⟶₊(𝐒(n))) -- N-ary NAND. -- Not every term is true. -- There is a term which is false. ⊼₊ : (n : ℕ) → (Bool →̂ Bool)(n) ⊼₊(0) = 𝐹 ⊼₊(1) x = ¬ x ⊼₊(𝐒(𝐒(n))) x = (x ⊼_) ∘ ((¬) ∘ (⊼₊(𝐒(n)))) -- N-ary NOR. -- There are no terms that are true. -- Every term is false. ⊽₊ : (n : ℕ) → (Bool →̂ Bool)(n) ⊽₊(0) = 𝐹 ⊽₊(1) x = ¬ x ⊽₊(𝐒(𝐒(n))) x = (x ⊽_) ∘ ((¬) ∘ (⊽₊(𝐒(n))))
{ "alphanum_fraction": 0.5052531041, "avg_line_length": 22.2765957447, "ext": "agda", "hexsha": "299e6b66bb23e7aaf5f9e6b8d3eac0d49568a7bd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Data/Boolean/NaryOperators.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Data/Boolean/NaryOperators.agda", "max_line_length": 53, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Data/Boolean/NaryOperators.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 543, "size": 1047 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Decidable.Sets module Decidable.Lemmas {a : _} {A : Set a} (dec : DecidableSet A) where squash : {x y : A} → .(x ≡ y) → x ≡ y squash {x} {y} x=y with dec x y ... | inl pr = pr ... | inr bad = exFalso (bad x=y)
{ "alphanum_fraction": 0.6085526316, "avg_line_length": 25.3333333333, "ext": "agda", "hexsha": "707a6ebc36d9d161a06724117d986f5a0bf970d5", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Decidable/Lemmas.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Decidable/Lemmas.agda", "max_line_length": 72, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Decidable/Lemmas.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 112, "size": 304 }
{-# OPTIONS --without-K #-} open import Relation.Binary.PropositionalEquality open import Data.Product open import Data.Unit open import Data.Empty open import Function -- some HoTT-inspired combinators _&_ = cong _⁻¹ = sym _◾_ = trans coe : {A B : Set} → A ≡ B → A → B coe refl a = a _⊗_ : ∀ {A B : Set}{f g : A → B}{a a'} → f ≡ g → a ≡ a' → f a ≡ g a' refl ⊗ refl = refl infix 6 _⁻¹ infixr 4 _◾_ infixl 9 _&_ infixl 8 _⊗_ -- Syntax -------------------------------------------------------------------------------- infixr 4 _⇒_ infixr 4 _,_ data Ty : Set where ι : Ty _⇒_ : Ty → Ty → Ty data Con : Set where ∙ : Con _,_ : Con → Ty → Con data _∈_ (A : Ty) : Con → Set where vz : ∀ {Γ} → A ∈ (Γ , A) vs : ∀ {B Γ} → A ∈ Γ → A ∈ (Γ , B) data Tm Γ : Ty → Set where var : ∀ {A} → A ∈ Γ → Tm Γ A lam : ∀ {A B} → Tm (Γ , A) B → Tm Γ (A ⇒ B) app : ∀ {A B} → Tm Γ (A ⇒ B) → Tm Γ A → Tm Γ B -- Embedding -------------------------------------------------------------------------------- -- Order-preserving embedding data OPE : Con → Con → Set where ∙ : OPE ∙ ∙ drop : ∀ {A Γ Δ} → OPE Γ Δ → OPE (Γ , A) Δ keep : ∀ {A Γ Δ} → OPE Γ Δ → OPE (Γ , A) (Δ , A) -- OPE is a category idₑ : ∀ {Γ} → OPE Γ Γ idₑ {∙} = ∙ idₑ {Γ , A} = keep (idₑ {Γ}) wk : ∀ {A Γ} → OPE (Γ , A) Γ wk = drop idₑ _∘ₑ_ : ∀ {Γ Δ Σ} → OPE Δ Σ → OPE Γ Δ → OPE Γ Σ σ ∘ₑ ∙ = σ σ ∘ₑ drop δ = drop (σ ∘ₑ δ) drop σ ∘ₑ keep δ = drop (σ ∘ₑ δ) keep σ ∘ₑ keep δ = keep (σ ∘ₑ δ) idlₑ : ∀ {Γ Δ}(σ : OPE Γ Δ) → idₑ ∘ₑ σ ≡ σ idlₑ ∙ = refl idlₑ (drop σ) = drop & idlₑ σ idlₑ (keep σ) = keep & idlₑ σ idrₑ : ∀ {Γ Δ}(σ : OPE Γ Δ) → σ ∘ₑ idₑ ≡ σ idrₑ ∙ = refl idrₑ (drop σ) = drop & idrₑ σ idrₑ (keep σ) = keep & idrₑ σ assₑ : ∀ {Γ Δ Σ Ξ}(σ : OPE Σ Ξ)(δ : OPE Δ Σ)(ν : OPE Γ Δ) → (σ ∘ₑ δ) ∘ₑ ν ≡ σ ∘ₑ (δ ∘ₑ ν) assₑ σ δ ∙ = refl assₑ σ δ (drop ν) = drop & assₑ σ δ ν assₑ σ (drop δ) (keep ν) = drop & assₑ σ δ ν assₑ (drop σ) (keep δ) (keep ν) = drop & assₑ σ δ ν assₑ (keep σ) (keep δ) (keep ν) = keep & assₑ σ δ ν ∈ₑ : ∀ {A Γ Δ} → OPE Γ Δ → A ∈ Δ → A ∈ Γ ∈ₑ ∙ v = v ∈ₑ (drop σ) v = vs (∈ₑ σ v) ∈ₑ (keep σ) vz = vz ∈ₑ (keep σ) (vs v) = vs (∈ₑ σ v) ∈-idₑ : ∀ {A Γ}(v : A ∈ Γ) → ∈ₑ idₑ v ≡ v ∈-idₑ vz = refl ∈-idₑ (vs v) = vs & ∈-idₑ v ∈-∘ₑ : ∀ {A Γ Δ Σ}(σ : OPE Δ Σ)(δ : OPE Γ Δ)(v : A ∈ Σ) → ∈ₑ (σ ∘ₑ δ) v ≡ ∈ₑ δ (∈ₑ σ v) ∈-∘ₑ ∙ ∙ v = refl ∈-∘ₑ σ (drop δ) v = vs & ∈-∘ₑ σ δ v ∈-∘ₑ (drop σ) (keep δ) v = vs & ∈-∘ₑ σ δ v ∈-∘ₑ (keep σ) (keep δ) vz = refl ∈-∘ₑ (keep σ) (keep δ) (vs v) = vs & ∈-∘ₑ σ δ v Tmₑ : ∀ {A Γ Δ} → OPE Γ Δ → Tm Δ A → Tm Γ A Tmₑ σ (var v) = var (∈ₑ σ v) Tmₑ σ (lam t) = lam (Tmₑ (keep σ) t) Tmₑ σ (app f a) = app (Tmₑ σ f) (Tmₑ σ a) Tm-idₑ : ∀ {A Γ}(t : Tm Γ A) → Tmₑ idₑ t ≡ t Tm-idₑ (var v) = var & ∈-idₑ v Tm-idₑ (lam t) = lam & Tm-idₑ t Tm-idₑ (app f a) = app & Tm-idₑ f ⊗ Tm-idₑ a Tm-∘ₑ : ∀ {A Γ Δ Σ}(σ : OPE Δ Σ)(δ : OPE Γ Δ)(t : Tm Σ A) → Tmₑ (σ ∘ₑ δ) t ≡ Tmₑ δ (Tmₑ σ t) Tm-∘ₑ σ δ (var v) = var & ∈-∘ₑ σ δ v Tm-∘ₑ σ δ (lam t) = lam & Tm-∘ₑ (keep σ) (keep δ) t Tm-∘ₑ σ δ (app f a) = app & Tm-∘ₑ σ δ f ⊗ Tm-∘ₑ σ δ a -- Theory of substitution & embedding -------------------------------------------------------------------------------- infixr 6 _ₑ∘ₛ_ _ₛ∘ₑ_ _∘ₛ_ data Sub (Γ : Con) : Con → Set where ∙ : Sub Γ ∙ _,_ : ∀ {A : Ty}{Δ : Con} → Sub Γ Δ → Tm Γ A → Sub Γ (Δ , A) _ₛ∘ₑ_ : ∀ {Γ Δ Σ} → Sub Δ Σ → OPE Γ Δ → Sub Γ Σ ∙ ₛ∘ₑ δ = ∙ (σ , t) ₛ∘ₑ δ = σ ₛ∘ₑ δ , Tmₑ δ t _ₑ∘ₛ_ : ∀ {Γ Δ Σ} → OPE Δ Σ → Sub Γ Δ → Sub Γ Σ ∙ ₑ∘ₛ δ = δ drop σ ₑ∘ₛ (δ , t) = σ ₑ∘ₛ δ keep σ ₑ∘ₛ (δ , t) = σ ₑ∘ₛ δ , t dropₛ : ∀ {A Γ Δ} → Sub Γ Δ → Sub (Γ , A) Δ dropₛ σ = σ ₛ∘ₑ wk keepₛ : ∀ {A Γ Δ} → Sub Γ Δ → Sub (Γ , A) (Δ , A) keepₛ σ = dropₛ σ , var vz ⌜_⌝ᵒᵖᵉ : ∀ {Γ Δ} → OPE Γ Δ → Sub Γ Δ ⌜ ∙ ⌝ᵒᵖᵉ = ∙ ⌜ drop σ ⌝ᵒᵖᵉ = dropₛ ⌜ σ ⌝ᵒᵖᵉ ⌜ keep σ ⌝ᵒᵖᵉ = keepₛ ⌜ σ ⌝ᵒᵖᵉ ∈ₛ : ∀ {A Γ Δ} → Sub Γ Δ → A ∈ Δ → Tm Γ A ∈ₛ (σ , t) vz = t ∈ₛ (σ , t)(vs v) = ∈ₛ σ v Tmₛ : ∀ {A Γ Δ} → Sub Γ Δ → Tm Δ A → Tm Γ A Tmₛ σ (var v) = ∈ₛ σ v Tmₛ σ (lam t) = lam (Tmₛ (keepₛ σ) t) Tmₛ σ (app f a) = app (Tmₛ σ f) (Tmₛ σ a) idₛ : ∀ {Γ} → Sub Γ Γ idₛ {∙} = ∙ idₛ {Γ , A} = (idₛ {Γ} ₛ∘ₑ drop idₑ) , var vz _∘ₛ_ : ∀ {Γ Δ Σ} → Sub Δ Σ → Sub Γ Δ → Sub Γ Σ ∙ ∘ₛ δ = ∙ (σ , t) ∘ₛ δ = σ ∘ₛ δ , Tmₛ δ t assₛₑₑ : ∀ {Γ Δ Σ Ξ}(σ : Sub Σ Ξ)(δ : OPE Δ Σ)(ν : OPE Γ Δ) → (σ ₛ∘ₑ δ) ₛ∘ₑ ν ≡ σ ₛ∘ₑ (δ ∘ₑ ν) assₛₑₑ ∙ δ ν = refl assₛₑₑ (σ , t) δ ν = _,_ & assₛₑₑ σ δ ν ⊗ (Tm-∘ₑ δ ν t ⁻¹) assₑₛₑ : ∀ {Γ Δ Σ Ξ}(σ : OPE Σ Ξ)(δ : Sub Δ Σ)(ν : OPE Γ Δ) → (σ ₑ∘ₛ δ) ₛ∘ₑ ν ≡ σ ₑ∘ₛ (δ ₛ∘ₑ ν) assₑₛₑ ∙ δ ν = refl assₑₛₑ (drop σ) (δ , t) ν = assₑₛₑ σ δ ν assₑₛₑ (keep σ) (δ , t) ν = (_, Tmₑ ν t) & assₑₛₑ σ δ ν idlₑₛ : ∀ {Γ Δ}(σ : Sub Γ Δ) → idₑ ₑ∘ₛ σ ≡ σ idlₑₛ ∙ = refl idlₑₛ (σ , t) = (_, t) & idlₑₛ σ idlₛₑ : ∀ {Γ Δ}(σ : OPE Γ Δ) → idₛ ₛ∘ₑ σ ≡ ⌜ σ ⌝ᵒᵖᵉ idlₛₑ ∙ = refl idlₛₑ (drop σ) = ((idₛ ₛ∘ₑ_) ∘ drop) & idrₑ σ ⁻¹ ◾ assₛₑₑ idₛ σ wk ⁻¹ ◾ dropₛ & idlₛₑ σ idlₛₑ (keep σ) = (_, var vz) & (assₛₑₑ idₛ wk (keep σ) ◾ ((idₛ ₛ∘ₑ_) ∘ drop) & (idlₑ σ ◾ idrₑ σ ⁻¹) ◾ assₛₑₑ idₛ σ wk ⁻¹ ◾ (_ₛ∘ₑ wk) & idlₛₑ σ ) idrₑₛ : ∀ {Γ Δ}(σ : OPE Γ Δ) → σ ₑ∘ₛ idₛ ≡ ⌜ σ ⌝ᵒᵖᵉ idrₑₛ ∙ = refl idrₑₛ (drop σ) = assₑₛₑ σ idₛ wk ⁻¹ ◾ dropₛ & idrₑₛ σ idrₑₛ (keep σ) = (_, var vz) & (assₑₛₑ σ idₛ wk ⁻¹ ◾ (_ₛ∘ₑ wk) & idrₑₛ σ) ∈-ₑ∘ₛ : ∀ {A Γ Δ Σ}(σ : OPE Δ Σ)(δ : Sub Γ Δ)(v : A ∈ Σ) → ∈ₛ (σ ₑ∘ₛ δ) v ≡ ∈ₛ δ (∈ₑ σ v) ∈-ₑ∘ₛ ∙ δ v = refl ∈-ₑ∘ₛ (drop σ) (δ , t) v = ∈-ₑ∘ₛ σ δ v ∈-ₑ∘ₛ (keep σ) (δ , t) vz = refl ∈-ₑ∘ₛ (keep σ) (δ , t) (vs v) = ∈-ₑ∘ₛ σ δ v Tm-ₑ∘ₛ : ∀ {A Γ Δ Σ}(σ : OPE Δ Σ)(δ : Sub Γ Δ)(t : Tm Σ A) → Tmₛ (σ ₑ∘ₛ δ) t ≡ Tmₛ δ (Tmₑ σ t) Tm-ₑ∘ₛ σ δ (var v) = ∈-ₑ∘ₛ σ δ v Tm-ₑ∘ₛ σ δ (lam t) = lam & ((λ x → Tmₛ (x , var vz) t) & assₑₛₑ σ δ wk ◾ Tm-ₑ∘ₛ (keep σ) (keepₛ δ) t) Tm-ₑ∘ₛ σ δ (app f a) = app & Tm-ₑ∘ₛ σ δ f ⊗ Tm-ₑ∘ₛ σ δ a ∈-ₛ∘ₑ : ∀ {A Γ Δ Σ}(σ : Sub Δ Σ)(δ : OPE Γ Δ)(v : A ∈ Σ) → ∈ₛ (σ ₛ∘ₑ δ) v ≡ Tmₑ δ (∈ₛ σ v) ∈-ₛ∘ₑ (σ , _) δ vz = refl ∈-ₛ∘ₑ (σ , _) δ (vs v) = ∈-ₛ∘ₑ σ δ v Tm-ₛ∘ₑ : ∀ {A Γ Δ Σ}(σ : Sub Δ Σ)(δ : OPE Γ Δ)(t : Tm Σ A) → Tmₛ (σ ₛ∘ₑ δ) t ≡ Tmₑ δ (Tmₛ σ t) Tm-ₛ∘ₑ σ δ (var v) = ∈-ₛ∘ₑ σ δ v Tm-ₛ∘ₑ σ δ (lam t) = lam & ((λ x → Tmₛ (x , var vz) t) & (assₛₑₑ σ δ wk ◾ (σ ₛ∘ₑ_) & (drop & (idrₑ δ ◾ idlₑ δ ⁻¹)) ◾ assₛₑₑ σ wk (keep δ) ⁻¹) ◾ Tm-ₛ∘ₑ (keepₛ σ) (keep δ) t) Tm-ₛ∘ₑ σ δ (app f a) = app & Tm-ₛ∘ₑ σ δ f ⊗ Tm-ₛ∘ₑ σ δ a assₛₑₛ : ∀ {Γ Δ Σ Ξ}(σ : Sub Σ Ξ)(δ : OPE Δ Σ)(ν : Sub Γ Δ) → (σ ₛ∘ₑ δ) ∘ₛ ν ≡ σ ∘ₛ (δ ₑ∘ₛ ν) assₛₑₛ ∙ δ ν = refl assₛₑₛ (σ , t) δ ν = _,_ & assₛₑₛ σ δ ν ⊗ (Tm-ₑ∘ₛ δ ν t ⁻¹) assₛₛₑ : ∀ {Γ Δ Σ Ξ}(σ : Sub Σ Ξ)(δ : Sub Δ Σ)(ν : OPE Γ Δ) → (σ ∘ₛ δ) ₛ∘ₑ ν ≡ σ ∘ₛ (δ ₛ∘ₑ ν) assₛₛₑ ∙ δ ν = refl assₛₛₑ (σ , t) δ ν = _,_ & assₛₛₑ σ δ ν ⊗ (Tm-ₛ∘ₑ δ ν t ⁻¹) ∈-idₛ : ∀ {A Γ}(v : A ∈ Γ) → ∈ₛ idₛ v ≡ var v ∈-idₛ vz = refl ∈-idₛ (vs v) = ∈-ₛ∘ₑ idₛ wk v ◾ Tmₑ wk & ∈-idₛ v ◾ (var ∘ vs) & ∈-idₑ v ∈-∘ₛ : ∀ {A Γ Δ Σ}(σ : Sub Δ Σ)(δ : Sub Γ Δ)(v : A ∈ Σ) → ∈ₛ (σ ∘ₛ δ) v ≡ Tmₛ δ (∈ₛ σ v) ∈-∘ₛ (σ , _) δ vz = refl ∈-∘ₛ (σ , _) δ (vs v) = ∈-∘ₛ σ δ v Tm-idₛ : ∀ {A Γ}(t : Tm Γ A) → Tmₛ idₛ t ≡ t Tm-idₛ (var v) = ∈-idₛ v Tm-idₛ (lam t) = lam & Tm-idₛ t Tm-idₛ (app f a) = app & Tm-idₛ f ⊗ Tm-idₛ a Tm-∘ₛ : ∀ {A Γ Δ Σ}(σ : Sub Δ Σ)(δ : Sub Γ Δ)(t : Tm Σ A) → Tmₛ (σ ∘ₛ δ) t ≡ Tmₛ δ (Tmₛ σ t) Tm-∘ₛ σ δ (var v) = ∈-∘ₛ σ δ v Tm-∘ₛ σ δ (lam t) = lam & ((λ x → Tmₛ (x , var vz) t) & (assₛₛₑ σ δ wk ◾ (σ ∘ₛ_) & (idlₑₛ (dropₛ δ) ⁻¹) ◾ assₛₑₛ σ wk (keepₛ δ) ⁻¹) ◾ Tm-∘ₛ (keepₛ σ) (keepₛ δ) t) Tm-∘ₛ σ δ (app f a) = app & Tm-∘ₛ σ δ f ⊗ Tm-∘ₛ σ δ a idrₛ : ∀ {Γ Δ}(σ : Sub Γ Δ) → σ ∘ₛ idₛ ≡ σ idrₛ ∙ = refl idrₛ (σ , t) = _,_ & idrₛ σ ⊗ Tm-idₛ t idlₛ : ∀ {Γ Δ}(σ : Sub Γ Δ) → idₛ ∘ₛ σ ≡ σ idlₛ ∙ = refl idlₛ (σ , t) = (_, t) & (assₛₑₛ idₛ wk (σ , t) ◾ (idₛ ∘ₛ_) & idlₑₛ σ ◾ idlₛ σ) -- Reduction -------------------------------------------------------------------------------- data _~>_ {Γ} : ∀ {A} → Tm Γ A → Tm Γ A → Set where β : ∀ {A B}(t : Tm (Γ , A) B) t' → app (lam t) t' ~> Tmₛ (idₛ , t') t lam : ∀ {A B}{t t' : Tm (Γ , A) B} → t ~> t' → lam t ~> lam t' app₁ : ∀ {A B}{f}{f' : Tm Γ (A ⇒ B)}{a} → f ~> f' → app f a ~> app f' a app₂ : ∀ {A B}{f : Tm Γ (A ⇒ B)} {a a'} → a ~> a' → app f a ~> app f a' infix 3 _~>_ ~>ₛ : ∀ {Γ Δ A}{t t' : Tm Γ A}(σ : Sub Δ Γ) → t ~> t' → Tmₛ σ t ~> Tmₛ σ t' ~>ₛ σ (β t t') = coe ((app (lam (Tmₛ (keepₛ σ) t)) (Tmₛ σ t') ~>_) & (Tm-∘ₛ (keepₛ σ) (idₛ , Tmₛ σ t') t ⁻¹ ◾ (λ x → Tmₛ (x , Tmₛ σ t') t) & (assₛₑₛ σ wk (idₛ , Tmₛ σ t') ◾ ((σ ∘ₛ_) & idlₑₛ idₛ ◾ idrₛ σ) ◾ idlₛ σ ⁻¹) ◾ Tm-∘ₛ (idₛ , t') σ t)) (β (Tmₛ (keepₛ σ) t) (Tmₛ σ t')) ~>ₛ σ (lam step) = lam (~>ₛ (keepₛ σ) step) ~>ₛ σ (app₁ step) = app₁ (~>ₛ σ step) ~>ₛ σ (app₂ step) = app₂ (~>ₛ σ step) ~>ₑ : ∀ {Γ Δ A}{t t' : Tm Γ A}(σ : OPE Δ Γ) → t ~> t' → Tmₑ σ t ~> Tmₑ σ t' ~>ₑ σ (β t t') = coe ((app (lam (Tmₑ (keep σ) t)) (Tmₑ σ t') ~>_) & (Tm-ₑ∘ₛ (keep σ) (idₛ , Tmₑ σ t') t ⁻¹ ◾ (λ x → Tmₛ (x , Tmₑ σ t') t) & (idrₑₛ σ ◾ idlₛₑ σ ⁻¹) ◾ Tm-ₛ∘ₑ (idₛ , t') σ t)) (β (Tmₑ (keep σ) t) (Tmₑ σ t')) ~>ₑ σ (lam step) = lam (~>ₑ (keep σ) step) ~>ₑ σ (app₁ step) = app₁ (~>ₑ σ step) ~>ₑ σ (app₂ step) = app₂ (~>ₑ σ step) Tmₑ~> : ∀ {Γ Δ A}{t : Tm Γ A}{σ : OPE Δ Γ}{t'} → Tmₑ σ t ~> t' → ∃ λ t'' → (t ~> t'') × (Tmₑ σ t'' ≡ t') Tmₑ~> {t = var x} () Tmₑ~> {t = lam t} (lam step) with Tmₑ~> step ... | t'' , (p , refl) = lam t'' , lam p , refl Tmₑ~> {t = app (var v) a} (app₁ ()) Tmₑ~> {t = app (var v) a} (app₂ step) with Tmₑ~> step ... | t'' , (p , refl) = app (var v) t'' , app₂ p , refl Tmₑ~> {t = app (lam f) a} {σ} (β _ _) = Tmₛ (idₛ , a) f , β _ _ , Tm-ₛ∘ₑ (idₛ , a) σ f ⁻¹ ◾ (λ x → Tmₛ (x , Tmₑ σ a) f) & (idlₛₑ σ ◾ idrₑₛ σ ⁻¹) ◾ Tm-ₑ∘ₛ (keep σ) (idₛ , Tmₑ σ a) f Tmₑ~> {t = app (lam f) a} (app₁ (lam step)) with Tmₑ~> step ... | t'' , (p , refl) = app (lam t'') a , app₁ (lam p) , refl Tmₑ~> {t = app (lam f) a} (app₂ step) with Tmₑ~> step ... | t'' , (p , refl) = app (lam f) t'' , app₂ p , refl Tmₑ~> {t = app (app f a) a'} (app₁ step) with Tmₑ~> step ... | t'' , (p , refl) = app t'' a' , app₁ p , refl Tmₑ~> {t = app (app f a) a''} (app₂ step) with Tmₑ~> step ... | t'' , (p , refl) = app (app f a) t'' , app₂ p , refl -- Strong normalization/neutrality definition -------------------------------------------------------------------------------- data SN {Γ A} (t : Tm Γ A) : Set where sn : (∀ {t'} → t ~> t' → SN t') → SN t SNₑ→ : ∀ {Γ Δ A}{t : Tm Γ A}(σ : OPE Δ Γ) → SN t → SN (Tmₑ σ t) SNₑ→ σ (sn s) = sn λ {t'} step → let (t'' , (p , q)) = Tmₑ~> step in coe (SN & q) (SNₑ→ σ (s p)) SNₑ← : ∀ {Γ Δ A}{t : Tm Γ A}(σ : OPE Δ Γ) → SN (Tmₑ σ t) → SN t SNₑ← σ (sn s) = sn λ step → SNₑ← σ (s (~>ₑ σ step)) SN-app₁ : ∀ {Γ A B}{f : Tm Γ (A ⇒ B)}{a} → SN (app f a) → SN f SN-app₁ (sn s) = sn λ f~>f' → SN-app₁ (s (app₁ f~>f')) neu : ∀ {Γ A} → Tm Γ A → Set neu (lam _) = ⊥ neu _ = ⊤ neuₑ : ∀ {Γ Δ A}(σ : OPE Δ Γ)(t : Tm Γ A) → neu t → neu (Tmₑ σ t) neuₑ σ (lam t) nt = nt neuₑ σ (var v) nt = tt neuₑ σ (app f a) nt = tt -- The actual proof, by Kripke logical predicate -------------------------------------------------------------------------------- Tmᴾ : ∀ {Γ A} → Tm Γ A → Set Tmᴾ {Γ}{ι} t = SN t Tmᴾ {Γ}{A ⇒ B} t = ∀ {Δ}(σ : OPE Δ Γ){a} → Tmᴾ a → Tmᴾ (app (Tmₑ σ t) a) data Subᴾ {Γ} : ∀ {Δ} → Sub Γ Δ → Set where ∙ : Subᴾ ∙ _,_ : ∀ {A Δ}{σ : Sub Γ Δ}{t : Tm Γ A}(σᴾ : Subᴾ σ)(tᴾ : Tmᴾ t) → Subᴾ (σ , t) Tmᴾₑ : ∀ {Γ Δ A}{t : Tm Γ A}(σ : OPE Δ Γ) → Tmᴾ t → Tmᴾ (Tmₑ σ t) Tmᴾₑ {A = ι} σ tᴾ = SNₑ→ σ tᴾ Tmᴾₑ {A = A ⇒ B}{t} σ tᴾ δ aᴾ rewrite Tm-∘ₑ σ δ t ⁻¹ = tᴾ (σ ∘ₑ δ) aᴾ Subᴾₑ : ∀ {Γ Δ Σ}{σ : Sub Δ Σ}(δ : OPE Γ Δ) → Subᴾ σ → Subᴾ (σ ₛ∘ₑ δ) Subᴾₑ σ ∙ = ∙ Subᴾₑ σ (δ , tᴾ) = Subᴾₑ σ δ , Tmᴾₑ σ tᴾ ~>ᴾ : ∀ {Γ A}{t t' : Tm Γ A} → t ~> t' → Tmᴾ t → Tmᴾ t' ~>ᴾ {A = ι} t~>t' (sn tˢⁿ) = tˢⁿ t~>t' ~>ᴾ {A = A ⇒ B} t~>t' tᴾ = λ σ aᴾ → ~>ᴾ (app₁ (~>ₑ σ t~>t')) (tᴾ σ aᴾ) mutual -- quote qᴾ : ∀ {Γ A}{t : Tm Γ A} → Tmᴾ t → SN t qᴾ {A = ι} tᴾ = tᴾ qᴾ {A = A ⇒ B} tᴾ = SNₑ← wk $ SN-app₁ (qᴾ $ tᴾ wk (uᴾ (var vz) (λ ()))) -- unquote uᴾ : ∀ {Γ A}(t : Tm Γ A){nt : neu t} → (∀ {t'} → t ~> t' → Tmᴾ t') → Tmᴾ t uᴾ {Γ} {A = ι} t f = sn f uᴾ {Γ} {A ⇒ B} t {nt} f {Δ} σ {a} aᴾ = uᴾ (app (Tmₑ σ t) a) (go (Tmₑ σ t) (neuₑ σ t nt) f' a aᴾ (qᴾ aᴾ)) where f' : ∀ {t'} → Tmₑ σ t ~> t' → Tmᴾ t' f' step δ aᴾ with Tmₑ~> step ... | t'' , step' , refl rewrite Tm-∘ₑ σ δ t'' ⁻¹ = f step' (σ ∘ₑ δ) aᴾ go : ∀ {Γ A B}(t : Tm Γ (A ⇒ B)) → neu t → (∀ {t'} → t ~> t' → Tmᴾ t') → ∀ a → Tmᴾ a → SN a → ∀ {t'} → app t a ~> t' → Tmᴾ t' go _ () _ _ _ _ (β _ _) go t nt f a aᴾ sna (app₁ {f' = f'} step) = coe ((λ x → Tmᴾ (app x a)) & Tm-idₑ f') (f step idₑ aᴾ) go t nt f a aᴾ (sn aˢⁿ) (app₂ {a' = a'} step) = uᴾ (app t a') (go t nt f a' (~>ᴾ step aᴾ) (aˢⁿ step)) fundThm-∈ : ∀ {Γ A}(v : A ∈ Γ) → ∀ {Δ}{σ : Sub Δ Γ} → Subᴾ σ → Tmᴾ (∈ₛ σ v) fundThm-∈ vz (σᴾ , tᴾ) = tᴾ fundThm-∈ (vs v) (σᴾ , tᴾ) = fundThm-∈ v σᴾ fundThm-lam : ∀ {Γ A B} (t : Tm (Γ , A) B) → SN t → (∀ {a} → Tmᴾ a → Tmᴾ (Tmₛ (idₛ , a) t)) → ∀ a → SN a → Tmᴾ a → Tmᴾ (app (lam t) a) fundThm-lam {Γ} t (sn tˢⁿ) hyp a (sn aˢⁿ) aᴾ = uᴾ (app (lam t) a) λ {(β _ _) → hyp aᴾ; (app₁ (lam {t' = t'} t~>t')) → fundThm-lam t' (tˢⁿ t~>t') (λ aᴾ → ~>ᴾ (~>ₛ _ t~>t') (hyp aᴾ)) a (sn aˢⁿ) aᴾ; (app₂ a~>a') → fundThm-lam t (sn tˢⁿ) hyp _ (aˢⁿ a~>a') (~>ᴾ a~>a' aᴾ)} fundThm : ∀ {Γ A}(t : Tm Γ A) → ∀ {Δ}{σ : Sub Δ Γ} → Subᴾ σ → Tmᴾ (Tmₛ σ t) fundThm (var v) σᴾ = fundThm-∈ v σᴾ fundThm (lam {A} t) {σ = σ} σᴾ δ {a} aᴾ rewrite Tm-ₛ∘ₑ (keepₛ σ) (keep δ) t ⁻¹ | assₛₑₑ σ (wk {A}) (keep δ) | idlₑ δ = fundThm-lam (Tmₛ (σ ₛ∘ₑ drop δ , var vz) t) (qᴾ (fundThm t (Subᴾₑ (drop δ) σᴾ , uᴾ (var vz) (λ ())))) (λ aᴾ → coe (Tmᴾ & sub-sub-lem) (fundThm t (Subᴾₑ δ σᴾ , aᴾ))) a (qᴾ aᴾ) aᴾ where sub-sub-lem : ∀ {a} → Tmₛ (σ ₛ∘ₑ δ , a) t ≡ Tmₛ (idₛ , a) (Tmₛ (σ ₛ∘ₑ drop δ , var vz) t) sub-sub-lem {a} = (λ x → Tmₛ (x , a) t) & (idrₛ (σ ₛ∘ₑ δ) ⁻¹ ◾ assₛₑₛ σ δ idₛ ◾ assₛₑₛ σ (drop δ) (idₛ , a) ⁻¹) ◾ Tm-∘ₛ (σ ₛ∘ₑ drop δ , var vz) (idₛ , a) t fundThm (app f a) {σ = σ} σᴾ rewrite Tm-idₑ (Tmₛ σ f) ⁻¹ = fundThm f σᴾ idₑ (fundThm a σᴾ) idₛᴾ : ∀ {Γ} → Subᴾ (idₛ {Γ}) idₛᴾ {∙} = ∙ idₛᴾ {Γ , A} = Subᴾₑ wk idₛᴾ , uᴾ (var vz) (λ ()) strongNorm : ∀ {Γ A}(t : Tm Γ A) → SN t strongNorm t = qᴾ (coe (Tmᴾ & Tm-idₛ t) (fundThm t idₛᴾ))
{ "alphanum_fraction": 0.4268715578, "avg_line_length": 32.9753363229, "ext": "agda", "hexsha": "fa6d8ab5b2b3c190d9602b347b789be9229bdc0b", "lang": "Agda", "max_forks_count": 304, "max_forks_repo_forks_event_max_datetime": "2022-03-28T11:35:02.000Z", "max_forks_repo_forks_event_min_datetime": "2018-07-16T18:24:59.000Z", "max_forks_repo_head_hexsha": "5468837f55cbea38d5c5a163e1ea5d48edb92bcc", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "andorp/plfa.github.io", "max_forks_repo_path": "extra/KovacsSTLCnorm.agda", "max_issues_count": 323, "max_issues_repo_head_hexsha": "5468837f55cbea38d5c5a163e1ea5d48edb92bcc", "max_issues_repo_issues_event_max_datetime": "2022-03-30T07:42:57.000Z", "max_issues_repo_issues_event_min_datetime": "2018-07-05T22:34:34.000Z", "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "andorp/plfa.github.io", "max_issues_repo_path": "extra/KovacsSTLCnorm.agda", "max_line_length": 94, "max_stars_count": 1003, "max_stars_repo_head_hexsha": "5468837f55cbea38d5c5a163e1ea5d48edb92bcc", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "andorp/plfa.github.io", "max_stars_repo_path": "extra/KovacsSTLCnorm.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-27T07:03:28.000Z", "max_stars_repo_stars_event_min_datetime": "2018-07-05T18:15:14.000Z", "num_tokens": 8956, "size": 14707 }
{-# OPTIONS --without-K --safe #-} -- define a less-than-great equivalence on natural transformations module Categories.NaturalTransformation.Equivalence where open import Level open import Relation.Binary using (Rel; IsEquivalence; Setoid) open import Categories.Category open import Categories.Functor open import Categories.NaturalTransformation.Core private variable o ℓ e o′ ℓ′ e′ : Level C D E : Category o ℓ e -- This ad hoc equivalence for NaturalTransformation should really be 'modification' -- (yep, tricategories!). What is below is only part of the definition of a 'modification'. TODO infix 4 _≃_ _≃_ : ∀ {F G : Functor C D} → Rel (NaturalTransformation F G) _ _≃_ {D = D} X Y = ∀ {x} → D [ NaturalTransformation.η X x ≈ NaturalTransformation.η Y x ] ≃-isEquivalence : ∀ {F G : Functor C D} → IsEquivalence (_≃_ {F = F} {G}) ≃-isEquivalence {D = D} {F} {G} = record { refl = refl ; sym = λ f → sym f -- need to eta-expand to get things to line up properly ; trans = λ f g → trans f g } where open Category.Equiv D ≃-setoid : ∀ (F G : Functor C D) → Setoid _ _ ≃-setoid F G = record { Carrier = NaturalTransformation F G ; _≈_ = _≃_ ; isEquivalence = ≃-isEquivalence }
{ "alphanum_fraction": 0.6771589992, "avg_line_length": 31.7692307692, "ext": "agda", "hexsha": "fd27ebe9c4b64b87f501a5295cd3112f10c91254", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/NaturalTransformation/Equivalence.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/NaturalTransformation/Equivalence.agda", "max_line_length": 98, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/NaturalTransformation/Equivalence.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 377, "size": 1239 }
{- Computable stuff constructed from the Combinatorics of Finite Sets -} {-# OPTIONS --safe #-} module Cubical.Experiments.Combinatorics where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Data.Nat open import Cubical.Data.Sum open import Cubical.Data.Sigma open import Cubical.Data.Fin open import Cubical.Data.FinSet open import Cubical.Data.FinSet.Constructors open import Cubical.Functions.Embedding open import Cubical.Functions.Surjection -- some computable functions -- this should be addtion card+ : ℕ → ℕ → ℕ card+ m n = card (Fin m ⊎ Fin n , isFinSet⊎ (Fin m , isFinSetFin) (Fin n , isFinSetFin)) -- this should be multiplication card× : ℕ → ℕ → ℕ card× m n = card (Fin m × Fin n , isFinSet× (Fin m , isFinSetFin) (Fin n , isFinSetFin)) -- this should be exponential card→ : ℕ → ℕ → ℕ card→ m n = card ((Fin m → Fin n) , isFinSet→ (Fin m , isFinSetFin) (Fin n , isFinSetFin)) -- this should be factorial or zero card≃ : ℕ → ℕ → ℕ card≃ m n = card ((Fin m ≃ Fin n) , isFinSet≃ (Fin m , isFinSetFin) (Fin n , isFinSetFin)) -- this should be binomial coeffient card↪ : ℕ → ℕ → ℕ card↪ m n = card ((Fin m ↪ Fin n) , isFinSet↪ (Fin m , isFinSetFin) (Fin n , isFinSetFin)) -- this should be something that I don't know the name card↠ : ℕ → ℕ → ℕ card↠ m n = card ((Fin m ↠ Fin n) , isFinSet↠ (Fin m , isFinSetFin) (Fin n , isFinSetFin)) -- explicit numbers s2 : card≃ 2 2 ≡ 2 s2 = refl s3 : card≃ 3 3 ≡ 6 s3 = refl c3,2 : card↪ 2 3 ≡ 6 c3,2 = refl
{ "alphanum_fraction": 0.6846254928, "avg_line_length": 25.3666666667, "ext": "agda", "hexsha": "2c45bda19e73160049311386a09fa75fe2d53820", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Seanpm2001-web/cubical", "max_forks_repo_path": "Cubical/Experiments/Combinatorics.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Seanpm2001-web/cubical", "max_issues_repo_path": "Cubical/Experiments/Combinatorics.agda", "max_line_length": 90, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "FernandoLarrain/cubical", "max_stars_repo_path": "Cubical/Experiments/Combinatorics.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-05T00:28:39.000Z", "max_stars_repo_stars_event_min_datetime": "2022-03-05T00:28:39.000Z", "num_tokens": 530, "size": 1522 }
module FFI.Data.Maybe where open import Agda.Builtin.Equality using (_≡_; refl) {-# FOREIGN GHC import qualified Data.Maybe #-} data Maybe (A : Set) : Set where nothing : Maybe A just : A → Maybe A {-# COMPILE GHC Maybe = data Data.Maybe.Maybe (Data.Maybe.Nothing|Data.Maybe.Just) #-} just-inv : ∀ {A} {x y : A} → (just x ≡ just y) → (x ≡ y) just-inv refl = refl
{ "alphanum_fraction": 0.6505376344, "avg_line_length": 24.8, "ext": "agda", "hexsha": "58fd14861092bce37bc6823ada5a24db427d7b9b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "XanderYZZ/luau", "max_forks_repo_path": "prototyping/FFI/Data/Maybe.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "XanderYZZ/luau", "max_issues_repo_path": "prototyping/FFI/Data/Maybe.agda", "max_line_length": 86, "max_stars_count": 1, "max_stars_repo_head_hexsha": "72d8d443431875607fd457a13fe36ea62804d327", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "TheGreatSageEqualToHeaven/luau", "max_stars_repo_path": "prototyping/FFI/Data/Maybe.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-05T21:53:03.000Z", "max_stars_repo_stars_event_min_datetime": "2021-12-05T21:53:03.000Z", "num_tokens": 112, "size": 372 }
module JVM.Syntax where open import JVM.Syntax.Instructions public
{ "alphanum_fraction": 0.8382352941, "avg_line_length": 17, "ext": "agda", "hexsha": "1581f3b0976cd555fa60f7450379b5be66098a56", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:37:15.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:37:15.000Z", "max_forks_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "ajrouvoet/jvm.agda", "max_forks_repo_path": "src/JVM/Syntax.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "ajrouvoet/jvm.agda", "max_issues_repo_path": "src/JVM/Syntax.agda", "max_line_length": 42, "max_stars_count": 6, "max_stars_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "ajrouvoet/jvm.agda", "max_stars_repo_path": "src/JVM/Syntax.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-28T21:49:08.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T14:07:17.000Z", "num_tokens": 13, "size": 68 }
module DotPatternTermination where data Nat : Set where zero : Nat suc : Nat -> Nat -- A simple example. module Test1 where data D : Nat -> Set where cz : D zero c1 : forall {n} -> D n -> D (suc n) c2 : forall {n} -> D n -> D n -- To see that this is terminating the termination checker has to look at the -- natural number index, which is in a dot pattern. f : forall {n} -> D n -> Nat f cz = zero f (c1 d) = f (c2 d) f (c2 d) = f d -- There was a bug with dot patterns having the wrong context which manifested -- itself in the following example. module Test2 where data P : Nat -> Nat -> Set where c : forall {d r} -> P d r -> P (suc d) r c' : forall {d r} -> P d r -> P d r g : forall {d r} -> P d r -> Nat g .{suc d} {r} (c {d} .{r} x) = g (c' x) g (c' _) = zero -- Another bug where the dot patterns weren't substituted properly. module Test3 where data Parser : Nat -> Set where alt : (d : Nat) -> Nat -> Parser d -> Parser (suc d) ! : (d : Nat) -> Parser (suc d) pp : (d : Nat) -> Parser d parse₀ : (d : Nat) -> Parser d -> Nat parse₀ .(suc d) (alt d zero p) = parse₀ d p parse₀ .(suc d) (alt d _ p) = parse₀ d p parse₀ ._ (! d) = parse₀ d (pp d) parse₀ ._ (pp d) = zero
{ "alphanum_fraction": 0.5522273425, "avg_line_length": 28.3043478261, "ext": "agda", "hexsha": "f63b6853e2166e3757ab16aed5c302328b714f7a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/agda-kanso", "max_forks_repo_path": "test/succeed/DotPatternTermination.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/agda-kanso", "max_issues_repo_path": "test/succeed/DotPatternTermination.agda", "max_line_length": 79, "max_stars_count": null, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/DotPatternTermination.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 456, "size": 1302 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Characters ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Char where ------------------------------------------------------------------------ -- Re-export base definitions and decidability of equality open import Data.Char.Base public open import Data.Char.Properties using (_≟_; _==_) public
{ "alphanum_fraction": 0.3953974895, "avg_line_length": 29.875, "ext": "agda", "hexsha": "64208d29f79510bb7c5149f43d04c8a581bf5937", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Char.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Char.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Char.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 63, "size": 478 }
-- All 256 ASCII characters module LineEndings.LexASCII where {- In Block comment: Control characters 0-31   Rest of 7-bit ASCII !"#$%&'()*+,-./0123456789:;<=>? @ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_ `abcdefghijklmnopqrstuvwxyz{|}~ 8-Bit ASCII €‚ƒ„…†‡ ˆ‰Š‹ŒŽ ‘’“”•–— ˜™š›œžŸ  ¡¢£¤¥¦§¨©ª«¬­®¯°±²³´µ¶·¸¹º»¼½¾¿ ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖרÙÚÛÜÝÞß àáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿ -} -- In line comments --  -- --  -- !"#$%&'()*+,-./0123456789:;<=>? -- @ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_ -- `abcdefghijklmnopqrstuvwxyz{|}~ -- €‚ƒ„ -- Note: Agda translates the following character (decimal: 133 xd: x85) -- into a new line, see function convertLineEndings. -- … -- †‡ -- ˆ‰Š‹ŒŽ -- ‘’“”•–— -- ˜™š›œžŸ --  ¡¢£¤¥¦§¨©ª«¬­®¯°±²³´µ¶·¸¹º»¼½¾¿ -- ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖרÙÚÛÜÝÞß -- àáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿ -- -}
{ "alphanum_fraction": 0.5454545455, "avg_line_length": 15.3620689655, "ext": "agda", "hexsha": "d1893206262ff42db0b49dd1af9b6ebba3dc227f", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/LineEndings/LexASCII.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/LineEndings/LexASCII.agda", "max_line_length": 71, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/LineEndings/LexASCII.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 593, "size": 891 }
module Esterel.Context where open import Esterel.Lang open import Esterel.Environment using (Env) open import Esterel.Variable.Signal as Signal using (Signal ; _ₛ) renaming (_≟ₛₜ_ to _≟ₛₜₛ_) open import Esterel.Variable.Shared as SharedVar using (SharedVar ; _ₛₕ) renaming (_≟ₛₜ_ to _≟ₛₜₛₕ_) open import Esterel.Variable.Sequential as SeqVar using (SeqVar ; _ᵥ) open import Data.List using (List ; _∷_ ; []) infix 7 _⟦_⟧e infix 7 _⟦_⟧c infix 4 _≐_⟦_⟧e infix 4 _≐_⟦_⟧c data EvaluationContext1 : Set where epar₁ : (q : Term) → EvaluationContext1 epar₂ : (p : Term) → EvaluationContext1 eseq : (q : Term) → EvaluationContext1 eloopˢ : (q : Term) → EvaluationContext1 esuspend : (S : Signal) → EvaluationContext1 etrap : EvaluationContext1 EvaluationContext : Set EvaluationContext = List EvaluationContext1 _⟦_⟧e : EvaluationContext → Term → Term [] ⟦ p ⟧e = p (epar₁ q ∷ E) ⟦ p ⟧e = (E ⟦ p ⟧e) ∥ q (epar₂ p ∷ E) ⟦ q ⟧e = p ∥ (E ⟦ q ⟧e) (eseq q ∷ E) ⟦ p ⟧e = (E ⟦ p ⟧e) >> q (eloopˢ q ∷ E) ⟦ p ⟧e = loopˢ (E ⟦ p ⟧e) q (esuspend S ∷ E) ⟦ p ⟧e = suspend (E ⟦ p ⟧e) S (etrap ∷ E) ⟦ p ⟧e = trap (E ⟦ p ⟧e) data _≐_⟦_⟧e : Term → EvaluationContext → Term → Set where dehole : ∀{p} → (p ≐ [] ⟦ p ⟧e) depar₁ : ∀{p r q E} → (p ≐ E ⟦ r ⟧e) → (p ∥ q ≐ (epar₁ q ∷ E) ⟦ r ⟧e) depar₂ : ∀{p r q E} → (q ≐ E ⟦ r ⟧e) → (p ∥ q ≐ (epar₂ p ∷ E) ⟦ r ⟧e) deseq : ∀{p r q E} → (p ≐ E ⟦ r ⟧e) → (p >> q ≐ (eseq q ∷ E) ⟦ r ⟧e) deloopˢ : ∀{p r q E} → (p ≐ E ⟦ r ⟧e) → (loopˢ p q ≐ (eloopˢ q ∷ E) ⟦ r ⟧e) desuspend : ∀{p E r S} → (p ≐ E ⟦ r ⟧e) → (suspend p S ≐ (esuspend S ∷ E) ⟦ r ⟧e) detrap : ∀{p E r} → (p ≐ E ⟦ r ⟧e) → (trap p ≐ (etrap ∷ E) ⟦ r ⟧e) -- Should we just not use inclusion from EvaluationContext? data Context1 : Set where ceval : (E1 : EvaluationContext1) → Context1 csignl : (S : Signal) → Context1 cpresent₁ : (S : Signal) → (q : Term) → Context1 cpresent₂ : (S : Signal) → (p : Term) → Context1 cloop : Context1 cloopˢ₂ : (p : Term) → Context1 cseq₂ : (p : Term) → Context1 cshared : (s : SharedVar) → (e : Expr) → Context1 cvar : (x : SeqVar) → (e : Expr) → Context1 cif₁ : (x : SeqVar) → (q : Term) → Context1 cif₂ : (x : SeqVar) → (p : Term) → Context1 cenv : (θ : Env) → (A : Ctrl) → Context1 Context : Set Context = List Context1 _⟦_⟧c : Context → Term → Term [] ⟦ p ⟧c = p (ceval (epar₁ q) ∷ C) ⟦ p ⟧c = (C ⟦ p ⟧c) ∥ q (ceval (epar₂ p) ∷ C) ⟦ q ⟧c = p ∥ (C ⟦ q ⟧c) (ceval (eseq q) ∷ C) ⟦ p ⟧c = (C ⟦ p ⟧c) >> q (ceval (eloopˢ q) ∷ C) ⟦ p ⟧c = loopˢ (C ⟦ p ⟧c) q (cseq₂ p ∷ C) ⟦ q ⟧c = p >> (C ⟦ q ⟧c) (ceval (esuspend S) ∷ C) ⟦ p ⟧c = suspend (C ⟦ p ⟧c) S (ceval etrap ∷ C) ⟦ p ⟧c = trap (C ⟦ p ⟧c) (csignl S ∷ C) ⟦ p ⟧c = signl S (C ⟦ p ⟧c) (cpresent₁ S q ∷ C) ⟦ p ⟧c = present S ∣⇒ (C ⟦ p ⟧c) ∣⇒ q (cpresent₂ S p ∷ C) ⟦ q ⟧c = present S ∣⇒ p ∣⇒ (C ⟦ q ⟧c) (cloop ∷ C) ⟦ p ⟧c = loop (C ⟦ p ⟧c) (cloopˢ₂ p ∷ C) ⟦ q ⟧c = loopˢ p (C ⟦ q ⟧c) (cshared s e ∷ C) ⟦ p ⟧c = shared s ≔ e in: (C ⟦ p ⟧c) (cvar x e ∷ C) ⟦ p ⟧c = var x ≔ e in: (C ⟦ p ⟧c) (cif₁ x q ∷ C) ⟦ p ⟧c = if x ∣⇒ (C ⟦ p ⟧c) ∣⇒ q (cif₂ x p ∷ C) ⟦ q ⟧c = if x ∣⇒ p ∣⇒ (C ⟦ q ⟧c) (cenv θ A ∷ C) ⟦ p ⟧c = ρ⟨ θ , A ⟩· (C ⟦ p ⟧c) data _≐_⟦_⟧c : Term → Context → Term → Set where dchole : ∀{p} → (p ≐ [] ⟦ p ⟧c) dcpar₁ : ∀{p r q C} → (p ≐ C ⟦ r ⟧c) → (p ∥ q ≐ (ceval (epar₁ q) ∷ C) ⟦ r ⟧c) dcpar₂ : ∀{p r q C} → (q ≐ C ⟦ r ⟧c) → (p ∥ q ≐ (ceval (epar₂ p) ∷ C) ⟦ r ⟧c) dcseq₁ : ∀{p r q C} → (p ≐ C ⟦ r ⟧c) → (p >> q ≐ (ceval (eseq q) ∷ C) ⟦ r ⟧c) dcseq₂ : ∀{p r q C} → (q ≐ C ⟦ r ⟧c) → (p >> q ≐ (cseq₂ p ∷ C) ⟦ r ⟧c) dcsuspend : ∀{p C r S} → (p ≐ C ⟦ r ⟧c) → (suspend p S ≐ (ceval (esuspend S) ∷ C) ⟦ r ⟧c) dctrap : ∀{p C r} → (p ≐ C ⟦ r ⟧c) → (trap p ≐ (ceval etrap ∷ C) ⟦ r ⟧c) dcsignl : ∀{p C r S} → (p ≐ C ⟦ r ⟧c) → (signl S p ≐ (csignl S ∷ C) ⟦ r ⟧c) dcpresent₁ : ∀{p r q C S} → (p ≐ C ⟦ r ⟧c) → (present S ∣⇒ p ∣⇒ q ≐ (cpresent₁ S q ∷ C) ⟦ r ⟧c) dcpresent₂ : ∀{p r q C S} → (q ≐ C ⟦ r ⟧c) → (present S ∣⇒ p ∣⇒ q ≐ (cpresent₂ S p ∷ C) ⟦ r ⟧c) dcloop : ∀{p C r} → (p ≐ C ⟦ r ⟧c) → (loop p ≐ (cloop ∷ C) ⟦ r ⟧c) dcloopˢ₁ : ∀{p q C r} → (p ≐ C ⟦ r ⟧c) → (loopˢ p q ≐ (ceval (eloopˢ q) ∷ C) ⟦ r ⟧c) dcloopˢ₂ : ∀{p q C r} → (q ≐ C ⟦ r ⟧c) → (loopˢ p q ≐ (cloopˢ₂ p ∷ C) ⟦ r ⟧c) dcshared : ∀{p C r s e} → (p ≐ C ⟦ r ⟧c) → (shared s ≔ e in: p ≐ (cshared s e ∷ C) ⟦ r ⟧c) dcvar : ∀{p C r x e} → (p ≐ C ⟦ r ⟧c) → (var x ≔ e in: p ≐ (cvar x e ∷ C) ⟦ r ⟧c) dcif₁ : ∀{p r q x C} → (p ≐ C ⟦ r ⟧c) → (if x ∣⇒ p ∣⇒ q ≐ (cif₁ x q ∷ C) ⟦ r ⟧c) dcif₂ : ∀{p r q x C} → (q ≐ C ⟦ r ⟧c) → (if x ∣⇒ p ∣⇒ q ≐ (cif₂ x p ∷ C) ⟦ r ⟧c) dcenv : ∀{p C r θ A} → (p ≐ C ⟦ r ⟧c) → (ρ⟨ θ , A ⟩· p ≐ (cenv θ A ∷ C) ⟦ r ⟧c)
{ "alphanum_fraction": 0.4127269459, "avg_line_length": 51.5092592593, "ext": "agda", "hexsha": "c60d606cb710a5648bbff7e5620362e8d7a0f856", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "florence/esterel-calculus", "max_forks_repo_path": "agda/Esterel/Context.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "florence/esterel-calculus", "max_issues_repo_path": "agda/Esterel/Context.agda", "max_line_length": 109, "max_stars_count": 3, "max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "florence/esterel-calculus", "max_stars_repo_path": "agda/Esterel/Context.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z", "num_tokens": 2745, "size": 5563 }
module Cats.Category.Constructions.Terminal where open import Data.Product using (proj₁ ; proj₂) open import Level open import Cats.Category.Base import Cats.Category.Constructions.Iso as Iso import Cats.Category.Constructions.Unique as Unique module Build {lo la l≈} (Cat : Category lo la l≈) where open Category Cat open Iso.Build Cat open Unique.Build Cat IsTerminal : Obj → Set (lo ⊔ la ⊔ l≈) IsTerminal One = ∀ X → ∃! X One terminal→id-unique : ∀ {A} → IsTerminal A → IsUnique (id {A}) terminal→id-unique {A} term id′ with term A ... | ∃!-intro id″ _ id″-uniq = ≈.trans (≈.sym (id″-uniq _)) (id″-uniq _) terminal-unique : ∀ {A B} → IsTerminal A → IsTerminal B → A ≅ B terminal-unique {A} {B} A-term B-term = record { forth = ∃!′.arr (B-term A) ; back = ∃!′.arr (A-term B) ; back-forth = ≈.sym (terminal→id-unique A-term _) ; forth-back = ≈.sym (terminal→id-unique B-term _) } X⇒Terminal-unique : ∀ {One} → IsTerminal One → ∀ {X} {f g : X ⇒ One} → f ≈ g X⇒Terminal-unique term {X} {f} {g} with term X ... | ∃!-intro x _ x-uniq = ≈.trans (≈.sym (x-uniq _)) (x-uniq _) record HasTerminal {lo la l≈} (Cat : Category lo la l≈) : Set (lo ⊔ la ⊔ l≈) where open Category Cat open Build Cat field One : Obj isTerminal : IsTerminal One
{ "alphanum_fraction": 0.6196969697, "avg_line_length": 26.4, "ext": "agda", "hexsha": "e235538068088a6ab54da8642911f3e0e1099d92", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "alessio-b-zak/cats", "max_forks_repo_path": "Cats/Category/Constructions/Terminal.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "alessio-b-zak/cats", "max_issues_repo_path": "Cats/Category/Constructions/Terminal.agda", "max_line_length": 78, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "alessio-b-zak/cats", "max_stars_repo_path": "Cats/Category/Constructions/Terminal.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 465, "size": 1320 }
{- This second-order equational theory was created from the following second-order syntax description: syntax Combinatory | CL type * : 0-ary term app : * * -> * | _$_ l20 i : * k : * s : * theory (IA) x |> app (i, x) = x (KA) x y |> app (app(k, x), y) = x (SA) x y z |> app (app (app (s, x), y), z) = app (app(x, z), app(y, z)) -} module Combinatory.Equality where open import SOAS.Common open import SOAS.Context open import SOAS.Variable open import SOAS.Families.Core open import SOAS.Families.Build open import SOAS.ContextMaps.Inductive open import Combinatory.Signature open import Combinatory.Syntax open import SOAS.Metatheory.SecondOrder.Metasubstitution CL:Syn open import SOAS.Metatheory.SecondOrder.Equality CL:Syn private variable α β γ τ : *T Γ Δ Π : Ctx infix 1 _▹_⊢_≋ₐ_ -- Axioms of equality data _▹_⊢_≋ₐ_ : ∀ 𝔐 Γ {α} → (𝔐 ▷ CL) α Γ → (𝔐 ▷ CL) α Γ → Set where IA : ⁅ * ⁆̣ ▹ ∅ ⊢ I $ 𝔞 ≋ₐ 𝔞 KA : ⁅ * ⁆ ⁅ * ⁆̣ ▹ ∅ ⊢ (K $ 𝔞) $ 𝔟 ≋ₐ 𝔞 SA : ⁅ * ⁆ ⁅ * ⁆ ⁅ * ⁆̣ ▹ ∅ ⊢ ((S $ 𝔞) $ 𝔟) $ 𝔠 ≋ₐ (𝔞 $ 𝔠) $ (𝔟 $ 𝔠) open EqLogic _▹_⊢_≋ₐ_ open ≋-Reasoning
{ "alphanum_fraction": 0.5773913043, "avg_line_length": 22.5490196078, "ext": "agda", "hexsha": "519f71880546123ee100558bce2c22e98bb31d91", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z", "max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JoeyEremondi/agda-soas", "max_forks_repo_path": "out/Combinatory/Equality.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JoeyEremondi/agda-soas", "max_issues_repo_path": "out/Combinatory/Equality.agda", "max_line_length": 99, "max_stars_count": 39, "max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JoeyEremondi/agda-soas", "max_stars_repo_path": "out/Combinatory/Equality.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z", "num_tokens": 501, "size": 1150 }
-- Andreas, 2019-06-25, issue #3855 reported by nad -- Constraint solver needs to respect erasure. module _ (_≡_ : {A : Set₁} → A → A → Set) (refl : {A : Set₁} (x : A) → x ≡ x) where -- rejected : (@0 A : Set) → A ≡ A -- rejected A = refl A should-also-be-rejected : (@0 A : Set) → A ≡ A should-also-be-rejected A = refl _
{ "alphanum_fraction": 0.5813253012, "avg_line_length": 23.7142857143, "ext": "agda", "hexsha": "6c43d8577b4f22a738293802bf64239dc8a8c9b9", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue3855b.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue3855b.agda", "max_line_length": 51, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue3855b.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 125, "size": 332 }
-- Agda is an /interactive/ language; -- that's very important difference (compared to language-pts) module J where open import Level open import Data.Bool using (Bool; true; false) data ⊤ : Set where I : ⊤ data ⊥ : Set where data Eq {ℓ : Level} (A : Set ℓ) : A → A → Set ℓ where refl : {x : A} → Eq A x x J : ∀ {ℓ ℓ′} (A : Set ℓ) → (C : (x : A) → (y : A) → (p : Eq A x y) → Set ℓ′) → (r : (x : A) → C x x refl) → (u : A) → (v : A) → (p : Eq A u v) → C u v p J A C r u .u refl = r u Eq-sym : ∀ {ℓ} (A : Set ℓ) (x y : A) → Eq A x y → Eq A y x Eq-sym A x .x refl = refl Eq-sym-with-J : ∀ {ℓ} (A : Set ℓ) (x y : A) → Eq A x y → Eq A y x Eq-sym-with-J A = J A (λ x y _ → Eq A y x) (λ x → refl) Eq-trans-with-J : ∀ {ℓ} (A : Set ℓ) (x y z : A) → Eq A x y → Eq A y z → Eq A x z Eq-trans-with-J A x y z p = J A (λ u v _ → Eq A v z → Eq A u z) (λ _ r → r) x y p Bool-elim : ∀ {ℓ} (P : Bool → Set ℓ) → P true → P false → (b : Bool) → P b Bool-elim P t f false = f Bool-elim P t f true = t if1 : (r : Set1) → Bool → r → r → r if1 r b t f = Bool-elim (λ _ → r) t f b lemma-motive : Bool → Bool → Set lemma-motive u v = if1 Set u (if1 Set v ⊤ ⊥) ⊤ lemma : Eq Bool true false → ⊥ lemma p = J Bool (λ u v _ → lemma-motive u v) (λ b → Bool-elim (λ c → lemma-motive c c) I I b ) true false p
{ "alphanum_fraction": 0.5156369184, "avg_line_length": 26.7551020408, "ext": "agda", "hexsha": "288b91c0413a097a66f77f160117e681a73342f6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "761e5b92b14506b75164bd3162487df2d7fbfa93", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "phadej/language-pts", "max_forks_repo_path": "notes/J.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "761e5b92b14506b75164bd3162487df2d7fbfa93", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "phadej/language-pts", "max_issues_repo_path": "notes/J.agda", "max_line_length": 81, "max_stars_count": 9, "max_stars_repo_head_hexsha": "761e5b92b14506b75164bd3162487df2d7fbfa93", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "phadej/language-pts", "max_stars_repo_path": "notes/J.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:35:55.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-11T07:34:45.000Z", "num_tokens": 577, "size": 1311 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Unsafe String operations and proofs ------------------------------------------------------------------------ {-# OPTIONS --with-K #-} module Data.String.Unsafe where open import Data.String.Base open import Relation.Binary.PropositionalEquality using (_≡_) open import Relation.Binary.PropositionalEquality.TrustMe using (trustMe) ------------------------------------------------------------------------ -- Properties of conversion functions toList∘fromList : ∀ s → toList (fromList s) ≡ s toList∘fromList s = trustMe fromList∘toList : ∀ s → fromList (toList s) ≡ s fromList∘toList s = trustMe
{ "alphanum_fraction": 0.5204513399, "avg_line_length": 29.5416666667, "ext": "agda", "hexsha": "9e00c6118aa4903d07a9cd989f4b1299131a3a8c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/String/Unsafe.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/String/Unsafe.agda", "max_line_length": 73, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/String/Unsafe.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 134, "size": 709 }
------------------------------------------------------------------------ -- A coinductive definition of weak bisimilarity ------------------------------------------------------------------------ {-# OPTIONS --sized-types #-} open import Labelled-transition-system module Bisimilarity.Weak {ℓ} (lts : LTS ℓ) where open import Equality.Propositional open import Prelude open import Prelude.Size import Function-universe equality-with-J as F import Bisimilarity import Bisimilarity.Equational-reasoning-instances import Bisimilarity.General open import Equational-reasoning import Expansion import Expansion.Equational-reasoning-instances open import Indexed-container using (Container; ν; ν′) open import Relation open import Up-to open LTS lts private open module SB = Bisimilarity lts using (_∼_; _∼′_; [_]_∼_; [_]_∼′_) open module E = Expansion lts using (_≳_; _≳′_; _≲_; [_]_≳_; [_]_≳′_) private module General = Bisimilarity.General lts _[_]⇒̂_ _[_]⇒̂_ ⟶→⇒̂ ⟶→⇒̂ open General public using (module StepC; ⟨_,_⟩; left-to-right; right-to-left; force; [_]_≡_; [_]_≡′_; []≡↔; Extensionality; extensionality) renaming ( reflexive-∼ to reflexive-≈ ; reflexive-∼′ to reflexive-≈′ ; ≡⇒∼ to ≡⇒≈ ; ∼:_ to ≈:_ ; ∼′:_ to ≈′:_ ; module Bisimilarity-of-∼ to Bisimilarity-of-≈ ) -- StepC is given in the following way, rather than via open public, -- to make hyperlinks to it more informative. StepC : Container (Proc × Proc) (Proc × Proc) StepC = General.StepC -- The following definitions are given explicitly, to make the code -- easier to follow for readers of the paper. Weak-bisimilarity : Size → Rel₂ ℓ Proc Weak-bisimilarity = ν StepC Weak-bisimilarity′ : Size → Rel₂ ℓ Proc Weak-bisimilarity′ = ν′ StepC infix 4 [_]_≈_ [_]_≈′_ _≈_ _≈′_ [_]_≈_ : Size → Proc → Proc → Type ℓ [ i ] p ≈ q = ν StepC i (p , q) [_]_≈′_ : Size → Proc → Proc → Type ℓ [ i ] p ≈′ q = ν′ StepC i (p , q) _≈_ : Proc → Proc → Type ℓ _≈_ = [ ∞ ]_≈_ _≈′_ : Proc → Proc → Type ℓ _≈′_ = [ ∞ ]_≈′_ private -- However, these definitions are definitionally equivalent to -- corresponding definitions in General. indirect-Weak-bisimilarity : Weak-bisimilarity ≡ General.Bisimilarity indirect-Weak-bisimilarity = refl indirect-Weak-bisimilarity′ : Weak-bisimilarity′ ≡ General.Bisimilarity′ indirect-Weak-bisimilarity′ = refl indirect-[]≈ : [_]_≈_ ≡ General.[_]_∼_ indirect-[]≈ = refl indirect-[]≈′ : [_]_≈′_ ≡ General.[_]_∼′_ indirect-[]≈′ = refl indirect-≈ : _≈_ ≡ General._∼_ indirect-≈ = refl indirect-≈′ : _≈′_ ≡ General._∼′_ indirect-≈′ = refl -- Combinators that can perhaps make the code a bit nicer to read. infix -3 lr-result rl-result lr-result : ∀ {i p′ q q′} μ → [ i ] p′ ≈′ q′ → q [ μ ]⇒̂ q′ → ∃ λ q′ → q [ μ ]⇒̂ q′ × [ i ] p′ ≈′ q′ lr-result _ p′≈′q′ q⇒̂q′ = _ , q⇒̂q′ , p′≈′q′ rl-result : ∀ {i p p′ q′} μ → p [ μ ]⇒̂ p′ → [ i ] p′ ≈′ q′ → ∃ λ p′ → p [ μ ]⇒̂ p′ × [ i ] p′ ≈′ q′ rl-result _ p⇒̂p′ p′≈′q′ = _ , p⇒̂p′ , p′≈′q′ syntax lr-result μ p′≈′q′ q⇒̂q′ = p′≈′q′ ⇐̂[ μ ] q⇒̂q′ syntax rl-result μ p⇒̂p′ p′≈′q′ = p⇒̂p′ ⇒̂[ μ ] p′≈′q′ -- Processes that are related by the expansion ordering are weakly -- bisimilar. mutual ≳⇒≈ : ∀ {i p q} → [ i ] p ≳ q → [ i ] p ≈ q ≳⇒≈ {i} = λ p≳q → StepC.⟨ lr p≳q , rl p≳q ⟩ where lr : ∀ {p p′ q μ} → [ i ] p ≳ q → p [ μ ]⟶ p′ → ∃ λ q′ → q [ μ ]⇒̂ q′ × [ i ] p′ ≈′ q′ lr p≳q q⟶q′ = let p′ , p⟶̂p′ , p′≳′q′ = E.left-to-right p≳q q⟶q′ in p′ , ⟶̂→⇒̂ p⟶̂p′ , ≳⇒≈′ p′≳′q′ rl : ∀ {p q q′ μ} → [ i ] p ≳ q → q [ μ ]⟶ q′ → ∃ λ p′ → p [ μ ]⇒̂ p′ × [ i ] p′ ≈′ q′ rl p≳q q⟶q′ = let p′ , p⇒p′ , p′≳′q′ = E.right-to-left p≳q q⟶q′ in p′ , ⇒→⇒̂ p⇒p′ , ≳⇒≈′ p′≳′q′ ≳⇒≈′ : ∀ {i p q} → [ i ] p ≳′ q → [ i ] p ≈′ q force (≳⇒≈′ p≳′q) = ≳⇒≈ (SB.force p≳′q) -- Strongly bisimilar processes are weakly bisimilar. ∼⇒≈ : ∀ {i p q} → [ i ] p ∼ q → [ i ] p ≈ q ∼⇒≈ = ≳⇒≈ ∘ convert {a = ℓ} ∼⇒≈′ : ∀ {i p q} → [ i ] p ∼′ q → [ i ] p ≈′ q ∼⇒≈′ = ≳⇒≈′ ∘ convert {a = ℓ} -- Weak bisimilarity is a weak simulation (of one kind). weak-is-weak⇒ : ∀ {p p′ q} → p ≈ q → p ⇒ p′ → ∃ λ q′ → q ⇒ q′ × p′ ≈ q′ weak-is-weak⇒ = is-weak⇒ StepC.left-to-right (λ p≈′q → force p≈′q) ⇒̂→⇒ -- Weak bisimilarity is a weak simulation (of another kind). weak-is-weak⇒̂ : ∀ {p p′ q μ} → p ≈ q → p [ μ ]⇒̂ p′ → ∃ λ q′ → q [ μ ]⇒̂ q′ × p′ ≈ q′ weak-is-weak⇒̂ = is-weak⇒̂ StepC.left-to-right (λ p≈′q → force p≈′q) ⇒̂→⇒ id mutual -- Weak bisimilarity is symmetric. symmetric-≈ : ∀ {i p q} → [ i ] p ≈ q → [ i ] q ≈ p symmetric-≈ p≈q = StepC.⟨ Σ-map id (Σ-map id symmetric-≈′) ∘ StepC.right-to-left p≈q , Σ-map id (Σ-map id symmetric-≈′) ∘ StepC.left-to-right p≈q ⟩ symmetric-≈′ : ∀ {i p q} → [ i ] p ≈′ q → [ i ] q ≈′ p force (symmetric-≈′ p≈q) = symmetric-≈ (force p≈q) private -- An alternative proof of symmetry. alternative-proof-of-symmetry : ∀ {i p q} → [ i ] p ≈ q → [ i ] q ≈ p alternative-proof-of-symmetry {i} = uncurry [ i ]_≈_ ⁻¹ ⊆⟨ ν-symmetric _ _ swap refl F.id ⟩∎ uncurry [ i ]_≈_ ∎ mutual -- Weak bisimilarity is transitive. -- -- Note that the transitivity proof is not claimed to be -- size-preserving. For proofs showing that transitivity cannot, in -- general, be size-preserving in any of its arguments, see -- Bisimilarity.Weak.Delay-monad.size-preserving-transitivityʳ⇔uninhabited -- and size-preserving-transitivityˡ⇔uninhabited. transitive-≈ : ∀ {i p q r} → p ≈ q → q ≈ r → [ i ] p ≈ r transitive-≈ {i} = λ p≈q q≈r → StepC.⟨ lr p≈q q≈r , Σ-map id (Σ-map id symmetric-≈′) ∘ lr (symmetric-≈ q≈r) (symmetric-≈ p≈q) ⟩ where lr : ∀ {p p′ q r μ} → p ≈ q → q ≈ r → p [ μ ]⟶ p′ → ∃ λ r′ → r [ μ ]⇒̂ r′ × [ i ] p′ ≈′ r′ lr p≈q q≈r p⟶p′ = let q′ , q⇒̂q′ , p′≈′q′ = StepC.left-to-right p≈q p⟶p′ r′ , r⇒̂r′ , q′≈r′ = weak-is-weak⇒̂ q≈r q⇒̂q′ in r′ , r⇒̂r′ , transitive-≈′ p′≈′q′ q′≈r′ transitive-≈′ : ∀ {i p q r} → p ≈′ q → q ≈ r → [ i ] p ≈′ r force (transitive-≈′ p≈q q≈r) = transitive-≈ (force p≈q) q≈r -- The following variants of transitivity are partially -- size-preserving. -- -- For proofs showing that they cannot, in general, be size-preserving -- in the "other" argument, see the following lemmas in -- Bisimilarity.Weak.Delay-monad: -- size-preserving-transitivity-≳≈ˡ⇔uninhabited, -- size-preserving-transitivity-≈≲ʳ⇔uninhabited and -- size-preserving-transitivity-≈∼ʳ⇔uninhabited. mutual transitive-≳≈ : ∀ {i p q r} → p ≳ q → [ i ] q ≈ r → [ i ] p ≈ r transitive-≳≈ {i} {p} {r = r} p≳q q≈r = StepC.⟨ lr , rl ⟩ where lr : ∀ {p′ μ} → p [ μ ]⟶ p′ → ∃ λ r′ → r [ μ ]⇒̂ r′ × [ i ] p′ ≈′ r′ lr p⟶p′ with E.left-to-right p≳q p⟶p′ ... | _ , done s , p≳′q′ = r , silent s done , transitive-≳≈′ p≳′q′ (record { force = λ { {_} → q≈r } }) ... | q′ , step q⟶q′ , p′≳′q′ = let r′ , r⇒̂r′ , q′≈′r′ = StepC.left-to-right q≈r q⟶q′ in r′ , r⇒̂r′ , transitive-≳≈′ p′≳′q′ q′≈′r′ rl : ∀ {r′ μ} → r [ μ ]⟶ r′ → ∃ λ p′ → p [ μ ]⇒̂ p′ × [ i ] p′ ≈′ r′ rl r⟶r′ = let q′ , q⇒̂q′ , q′≈′r′ = StepC.right-to-left q≈r r⟶r′ p′ , p⇒̂p′ , p′≳q′ = E.converse-of-expansion-is-weak⇒̂ p≳q q⇒̂q′ in p′ , p⇒̂p′ , transitive-≳≈′ (record { force = p′≳q′ }) q′≈′r′ transitive-≳≈′ : ∀ {i p q r} → p ≳′ q → [ i ] q ≈′ r → [ i ] p ≈′ r force (transitive-≳≈′ p≳′q q≈′r) = transitive-≳≈ (force p≳′q) (force q≈′r) transitive-≈≲ : ∀ {i p q r} → [ i ] p ≈ q → q ≲ r → [ i ] p ≈ r transitive-≈≲ p≈q q≲r = symmetric-≈ (transitive-≳≈ q≲r (symmetric-≈ p≈q)) transitive-≈∼ : ∀ {i p q r} → [ i ] p ≈ q → q ∼ r → [ i ] p ≈ r transitive-≈∼ p≈q q∼r = symmetric-≈ $ transitive-≳≈ (convert {a = ℓ} (symmetric q∼r)) (symmetric-≈ p≈q)
{ "alphanum_fraction": 0.5127182045, "avg_line_length": 30.2641509434, "ext": "agda", "hexsha": "c9645d571e56709c6afcf6b248196a937bdc072f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/up-to", "max_forks_repo_path": "src/Bisimilarity/Weak.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/up-to", "max_issues_repo_path": "src/Bisimilarity/Weak.agda", "max_line_length": 76, "max_stars_count": null, "max_stars_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/up-to", "max_stars_repo_path": "src/Bisimilarity/Weak.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3686, "size": 8020 }
module Itse.Grammar where open import Relation.Binary.PropositionalEquality open import Relation.Nullary open import Relation.Unary open import Data.List open import Data.Maybe open import Data.String open import Data.Empty data ExprVari : Set Prgm : Set data Stmt : Set data Expr : ExprVari → Set data Name : ExprVari → Set data ExprVari where s : ExprVari -- sort k : ExprVari -- kind p : ExprVari -- type t : ExprVari -- term _≟-ExprVari_ : ∀ (e : ExprVari) (e′ : ExprVari) → Dec (e ≡ e′) TypeOf : ExprVari → ExprVari TypeOf s = s TypeOf k = s TypeOf p = k TypeOf t = p Kind : Set Type : Set Term : Set Nameₚ : Set Nameₜ : Set Sort = Expr s Kind = Expr k Type = Expr p Term = Expr t Nameₚ = Name p Nameₜ = Name t Prgm = List Stmt infixr 10 `defnₚ_⦂_≔_ `defnₚ_⦂_≔_ infixr 11 _`→_ infixr 12 `λₖₚ[_⦂_]_ `λₖₜ[_⦂_]_ `λₚₚ[_⦂_]_ `λₚₜ[_⦂_]_ `λₜₚ[_⦂_]_ `λₜₜ[_⦂_]_ infixr 13 _`∙ₚₚ_ _`∙ₚₜ_ _`∙ₜₚ_ _`∙ₜₜ_ infixr 14 `ₚ_ `ₜ_ data Stmt where `defnₚ_⦂_≔_ : Nameₚ → Kind → Type → Stmt `defnₜ_⦂_≔_ : Nameₜ → Type → Term → Stmt data Expr where -- sort `□ₛ : Sort -- kind `●ₖ : Kind `λₖₚ[_⦂_]_ : Nameₚ → Kind → Kind → Kind `λₖₜ[_⦂_]_ : Nameₜ → Type → Kind → Kind -- p `ₚ_ : Nameₚ → Type `λₚₚ[_⦂_]_ : Nameₚ → Kind → Type → Type `λₚₜ[_⦂_]_ : Nameₜ → Type → Type → Type _`∙ₚₚ_ : Type → Type → Type _`∙ₚₜ_ : Type → Term → Type `ι[_]_ : Nameₜ → Type → Type -- t `ₜ_ : Nameₜ → Term `λₜₚ[_⦂_]_ : Nameₚ → Kind → Term → Term `λₜₜ[_⦂_]_ : Nameₜ → Type → Term → Term _`∙ₜₚ_ : Term → Type → Term _`∙ₜₜ_ : Term → Term → Term data Name where nameₚ : Maybe String → Nameₚ nameₜ : Maybe String → Nameₜ postulate _≟-Name_ : ∀ {e} (n : Name e) → (n′ : Name e) → Dec (n ≡ n′) s ≟-ExprVari s = yes refl s ≟-ExprVari k = no λ () s ≟-ExprVari p = no λ () s ≟-ExprVari t = no λ () k ≟-ExprVari s = no λ () k ≟-ExprVari k = yes refl k ≟-ExprVari p = no λ () k ≟-ExprVari t = no λ () p ≟-ExprVari s = no λ () p ≟-ExprVari k = no λ () p ≟-ExprVari p = yes refl p ≟-ExprVari t = no λ () t ≟-ExprVari s = no λ () t ≟-ExprVari k = no λ () t ≟-ExprVari p = no λ () t ≟-ExprVari t = yes refl _`→_ : Type → Type → Type α `→ β = `λₚₜ[ nameₜ nothing ⦂ α ] β
{ "alphanum_fraction": 0.59503386, "avg_line_length": 21.5048543689, "ext": "agda", "hexsha": "286468a4cde67316bc117de81776668fab9d2341", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "4ee714b707b72e4ed8373c49ee739d576aafb70a", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Riib11/itse", "max_forks_repo_path": "agda/Itse/Grammar.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4ee714b707b72e4ed8373c49ee739d576aafb70a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "Riib11/itse", "max_issues_repo_path": "agda/Itse/Grammar.agda", "max_line_length": 75, "max_stars_count": 1, "max_stars_repo_head_hexsha": "4ee714b707b72e4ed8373c49ee739d576aafb70a", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "Riib11/itse", "max_stars_repo_path": "agda/Itse/Grammar.agda", "max_stars_repo_stars_event_max_datetime": "2021-04-14T15:09:19.000Z", "max_stars_repo_stars_event_min_datetime": "2021-04-14T15:09:19.000Z", "num_tokens": 1027, "size": 2215 }
-- Andreas, 2016-07-27, issue #2117 reported by Guillermo Calderon -- {-# OPTIONS -v tc:10 #-} record R : Set₁ where field A : Set open R {{...}} record S (r : R) : Set where instance i = r field f : A -- ERROR WAS: -- No instance of type R was found in scope. -- when checking that the expression A has type Set -- Should succeed!
{ "alphanum_fraction": 0.632183908, "avg_line_length": 17.4, "ext": "agda", "hexsha": "ad35e96a9f32585f8fd28f745ac78388f461c4a3", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue2117.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue2117.agda", "max_line_length": 66, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue2117.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 105, "size": 348 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Order morphisms ------------------------------------------------------------------------ module Relation.Binary.OrderMorphism where open import Relation.Binary open Poset import Function as F open import Level record _⇒-Poset_ {p₁ p₂ p₃ p₄ p₅ p₆} (P₁ : Poset p₁ p₂ p₃) (P₂ : Poset p₄ p₅ p₆) : Set (p₁ ⊔ p₃ ⊔ p₄ ⊔ p₆) where field fun : Carrier P₁ → Carrier P₂ monotone : _≤_ P₁ =[ fun ]⇒ _≤_ P₂ _⇒-DTO_ : ∀ {p₁ p₂ p₃ p₄ p₅ p₆} → DecTotalOrder p₁ p₂ p₃ → DecTotalOrder p₄ p₅ p₆ → Set _ DTO₁ ⇒-DTO DTO₂ = poset DTO₁ ⇒-Poset poset DTO₂ where open DecTotalOrder open _⇒-Poset_ id : ∀ {p₁ p₂ p₃} {P : Poset p₁ p₂ p₃} → P ⇒-Poset P id = record { fun = F.id ; monotone = F.id } _∘_ : ∀ {p₁ p₂ p₃ p₄ p₅ p₆ p₇ p₈ p₉} {P₁ : Poset p₁ p₂ p₃} {P₂ : Poset p₄ p₅ p₆} {P₃ : Poset p₇ p₈ p₉} → P₂ ⇒-Poset P₃ → P₁ ⇒-Poset P₂ → P₁ ⇒-Poset P₃ f ∘ g = record { fun = F._∘_ (fun f) (fun g) ; monotone = F._∘_ (monotone f) (monotone g) } const : ∀ {p₁ p₂ p₃ p₄ p₅ p₆} {P₁ : Poset p₁ p₂ p₃} {P₂ : Poset p₄ p₅ p₆} → Carrier P₂ → P₁ ⇒-Poset P₂ const {P₂ = P₂} x = record { fun = F.const x ; monotone = F.const (refl P₂) }
{ "alphanum_fraction": 0.4887436456, "avg_line_length": 25.9811320755, "ext": "agda", "hexsha": "706742d4f88e2e7005d2b0267300cad766cf6950", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Relation/Binary/OrderMorphism.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Relation/Binary/OrderMorphism.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Relation/Binary/OrderMorphism.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 583, "size": 1377 }
module MJSF.Examples.Integer where open import Prelude open import Data.Maybe open import Data.Star open import Data.Bool open import Data.List open import Data.Integer open import Data.List.Membership.Propositional open import Data.List.Relation.Unary.Any open import Data.List.Relation.Unary.All as All hiding (lookup) open import Data.Product hiding (Σ) open import Relation.Binary.PropositionalEquality open import Relation.Nullary.Decidable k : ℕ k = 5 open import MJSF.Syntax k open import ScopesFrames.ScopesFrames k Ty {- class Integer { int x = 0; void set(Integer b) { this.x = b.get() } } -} classes : List Ty classes = (cᵗ (# 0) (# 1) ∷ []) intmethods intfields : List Ty intfields = {- x -} vᵗ int ∷ [] intmethods = {- set -} mᵗ ((ref (# 1)) ∷ []) void ∷ [] Integer : Scope Integer = # 1 g : Graph -- root scope g zero = classes , [] -- class scope of Integer class g (suc zero)= (intmethods ++ intfields) , zero ∷ [] -- scope of Integer.set method g (suc (suc zero)) = (vᵗ (ref (# 1)) ∷ []) , # 1 ∷ [] -- scopes of main g (suc (suc (suc zero))) = vᵗ (ref Integer) ∷ [] , (# 0 ∷ []) g (suc (suc (suc (suc zero)))) = vᵗ (ref Integer) ∷ [] , # 3 ∷ [] g (suc (suc (suc (suc (suc ()))))) open SyntaxG g open UsesGraph g IntegerImpl : Class (# 0) (# 1) IntegerImpl = class0 {ms = intmethods}{intfields}{[]} (-- methods (#m' (meth (# 2) (body-void (set (this [] (here refl)) (path [] (there (here refl))) (get (var (path [] (here refl))) (path [] (there (here refl)))) ◅ ε)))) ∷ []) (-- fields (#v' tt) ∷ []) [] {- int main() { Integer x; Integer y; x = new Integer(); y = new Integer(); x.x = 9; y.x = 18; y.set(x); return y.x; } -} main : Body (# 0) int main = body ( loc (# 3) (ref Integer) ◅ loc (# 4) (ref Integer) ◅ asgn (path (here refl ∷ []) (here refl)) (new (path (here refl ∷ here refl ∷ []) (here refl))) ◅ asgn (path [] (here refl)) (new (path (here refl ∷ here refl ∷ []) (here refl))) ◅ set (var (path (here refl ∷ []) (here refl))) (path [] (there (here refl))) (num (+ 9)) ◅ set (var (path [] (here refl))) (path [] (there (here refl))) (num (+ 18)) ◅ run (call (var (path [] (here refl))) (path [] (here refl)) (var (path (here refl ∷ []) (here refl)) ∷ [])) ◅ ε ) (get (var (path [] (here refl))) (path [] (there (here refl)))) p : Program (# 0) int p = program classes (#c' (IntegerImpl , # 1 , obj (# 1) ⦃ refl ⦄) ∷ []) main open import MJSF.Semantics open Semantics _ g open import MJSF.Values open ValuesG _ g test : p ⇓⟨ 100 ⟩ (λ v → v ≡ num (+ 9) ) test = refl
{ "alphanum_fraction": 0.5628720238, "avg_line_length": 24.6605504587, "ext": "agda", "hexsha": "32700508a1ed49664ae7654a756d7b102ef35d78", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "metaborg/mj.agda", "max_forks_repo_path": "src/MJSF/Examples/Integer.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "metaborg/mj.agda", "max_issues_repo_path": "src/MJSF/Examples/Integer.agda", "max_line_length": 115, "max_stars_count": 10, "max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "metaborg/mj.agda", "max_stars_repo_path": "src/MJSF/Examples/Integer.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z", "num_tokens": 921, "size": 2688 }
{-# OPTIONS --universe-polymorphism #-} module Categories.Groupoid.Coproduct where open import Level open import Data.Sum open import Categories.Category open import Categories.Groupoid open import Categories.Morphisms import Categories.Coproduct as CoproductC Coproduct : ∀ {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} → Groupoid C → Groupoid D → Groupoid (CoproductC.Coproduct C D) Coproduct C D = record { _⁻¹ = λ { {inj₁ _} {inj₁ _} → λ { {lift f} → lift (C._⁻¹ f) } ; {inj₁ _} {inj₂ _} (lift ()) ; {inj₂ _} {inj₁ _} (lift ()) ; {inj₂ _} {inj₂ _} → λ { {lift f} → lift (D._⁻¹ f) } } ; iso = λ { {inj₁ _} {inj₁ _} → record { isoˡ = lift (Iso.isoˡ C.iso) ; isoʳ = lift (Iso.isoʳ C.iso) } ; {inj₁ _} {inj₂ _} {lift ()} ; {inj₂ _} {inj₁ _} {lift ()} ; {inj₂ _} {inj₂ _} → record { isoˡ = lift (Iso.isoˡ D.iso) ; isoʳ = lift (Iso.isoʳ D.iso) } } } where module C = Groupoid C module D = Groupoid D
{ "alphanum_fraction": 0.5169946333, "avg_line_length": 34.9375, "ext": "agda", "hexsha": "12f85fc96c2f6c11292737fc200ce9b1bca53e60", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "copumpkin/categories", "max_forks_repo_path": "Categories/Groupoid/Coproduct.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "copumpkin/categories", "max_issues_repo_path": "Categories/Groupoid/Coproduct.agda", "max_line_length": 75, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Groupoid/Coproduct.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 388, "size": 1118 }
module nat where open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) open import Data.Empty open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import logic nat-<> : { x y : Nat } → x < y → y < x → ⊥ nat-<> (s≤s x<y) (s≤s y<x) = nat-<> x<y y<x nat-<≡ : { x : Nat } → x < x → ⊥ nat-<≡ (s≤s lt) = nat-<≡ lt nat-≡< : { x y : Nat } → x ≡ y → x < y → ⊥ nat-≡< refl lt = nat-<≡ lt ¬a≤a : {la : Nat} → Suc la ≤ la → ⊥ ¬a≤a (s≤s lt) = ¬a≤a lt a<sa : {la : Nat} → la < Suc la a<sa {Zero} = s≤s z≤n a<sa {Suc la} = s≤s a<sa =→¬< : {x : Nat } → ¬ ( x < x ) =→¬< {Zero} () =→¬< {Suc x} (s≤s lt) = =→¬< lt >→¬< : {x y : Nat } → (x < y ) → ¬ ( y < x ) >→¬< (s≤s x<y) (s≤s y<x) = >→¬< x<y y<x <-∨ : { x y : Nat } → x < Suc y → ( (x ≡ y ) ∨ (x < y) ) <-∨ {Zero} {Zero} (s≤s z≤n) = case1 refl <-∨ {Zero} {Suc y} (s≤s lt) = case2 (s≤s z≤n) <-∨ {Suc x} {Zero} (s≤s ()) <-∨ {Suc x} {Suc y} (s≤s lt) with <-∨ {x} {y} lt <-∨ {Suc x} {Suc y} (s≤s lt) | case1 eq = case1 (cong (λ k → Suc k ) eq) <-∨ {Suc x} {Suc y} (s≤s lt) | case2 lt1 = case2 (s≤s lt1) max : (x y : Nat) → Nat max Zero Zero = Zero max Zero (Suc x) = (Suc x) max (Suc x) Zero = (Suc x) max (Suc x) (Suc y) = Suc ( max x y )
{ "alphanum_fraction": 0.4630071599, "avg_line_length": 26.7446808511, "ext": "agda", "hexsha": "83b751e38f15561b725861c4d7ae332f897ef993", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "shinji-kono/zf-in-agda", "max_forks_repo_path": "src/nat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "shinji-kono/zf-in-agda", "max_issues_repo_path": "src/nat.agda", "max_line_length": 86, "max_stars_count": 5, "max_stars_repo_head_hexsha": "031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "shinji-kono/zf-in-agda", "max_stars_repo_path": "src/nat.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-10T13:27:48.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-02T13:46:23.000Z", "num_tokens": 644, "size": 1257 }
------------------------------------------------------------------------ -- The Agda standard library -- -- "Evaluating" a polynomial, using Horner's method. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Tactic.RingSolver.Core.Polynomial.Parameters module Tactic.RingSolver.Core.Polynomial.Semantics {r₁ r₂ r₃ r₄} (homo : Homomorphism r₁ r₂ r₃ r₄) where open import Data.Nat using (ℕ; suc; zero; _≤′_; ≤′-step; ≤′-refl) open import Data.Vec using (Vec; []; _∷_; uncons) open import Data.List using ([]; _∷_) open import Data.Product using (_,_; _×_) open import Data.List.Kleene using (_+; _*; ∹_; _&_; []) open Homomorphism homo open import Tactic.RingSolver.Core.Polynomial.Base from open import Algebra.Operations.Ring rawRing drop : ∀ {i n} → i ≤′ n → Vec Carrier n → Vec Carrier i drop ≤′-refl xs = xs drop (≤′-step i+1≤n) (_ ∷ xs) = drop i+1≤n xs drop-1 : ∀ {i n} → suc i ≤′ n → Vec Carrier n → Carrier × Vec Carrier i drop-1 si≤n xs = uncons (drop si≤n xs) {-# INLINE drop-1 #-} _*⟨_⟩^_ : Carrier → Carrier → ℕ → Carrier x *⟨ ρ ⟩^ zero = x x *⟨ ρ ⟩^ suc i = ρ ^ i +1 * x {-# INLINE _*⟨_⟩^_ #-} -------------------------------------------------------------------------------- -- Evaluation -------------------------------------------------------------------------------- -- Why do we have three functions here? Why are they so weird looking? -- -- These three functions are the main bottleneck for all of the proofs: as such, -- slight changes can dramatically affect the length of proof code. mutual _⟦∷⟧_ : ∀ {n} → Poly n × Coeff n * → Carrier × Vec Carrier n → Carrier (x , []) ⟦∷⟧ (ρ , ρs) = ⟦ x ⟧ ρs (x , (∹ xs)) ⟦∷⟧ (ρ , ρs) = ρ * ⅀⟦ xs ⟧ (ρ , ρs) + ⟦ x ⟧ ρs ⅀⟦_⟧ : ∀ {n} → Coeff n + → (Carrier × Vec Carrier n) → Carrier ⅀⟦ x ≠0 Δ i & xs ⟧ (ρ , ρs) = ((x , xs) ⟦∷⟧ (ρ , ρs)) *⟨ ρ ⟩^ i {-# INLINE ⅀⟦_⟧ #-} ⟦_⟧ : ∀ {n} → Poly n → Vec Carrier n → Carrier ⟦ Κ x ⊐ i≤n ⟧ _ = ⟦ x ⟧ᵣ ⟦ ⅀ xs ⊐ i≤n ⟧ Ρ = ⅀⟦ xs ⟧ (drop-1 i≤n Ρ) {-# INLINE ⟦_⟧ #-} -------------------------------------------------------------------------------- -- Performance -------------------------------------------------------------------------------- -- As you might imagine, the implementation of the functions above seriously -- affect performance. What you might not realise, though, is that the most -- important component is the *order of the arguments*. For instance, if -- we change: -- -- (x , xs) ⟦∷⟧ (ρ , ρs) = ρ * ⅀⟦ xs ⟧ (ρ , ρs) + ⟦ x ⟧ ρs -- -- To: -- -- (x , xs) ⟦∷⟧ (ρ , ρs) = ⟦ x ⟧ ρs + ⅀⟦ xs ⟧ (ρ , ρs) * ρ -- -- We get a function that's several orders of magnitude slower!
{ "alphanum_fraction": 0.4801324503, "avg_line_length": 35.2987012987, "ext": "agda", "hexsha": "e746c1aa70a567c8c20ae6236ad9cfd57342f74b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Tactic/RingSolver/Core/Polynomial/Semantics.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Tactic/RingSolver/Core/Polynomial/Semantics.agda", "max_line_length": 80, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Tactic/RingSolver/Core/Polynomial/Semantics.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 922, "size": 2718 }
-- Andreas, 2016-08-08, issue #2132 reported by effectfully -- Pattern synonyms in lhss of display form definitions -- {-# OPTIONS -v scope:50 -v tc.decl:10 #-} open import Common.Equality data D : Set where C c : D g : D → D pattern C′ = C {-# DISPLAY C′ = C′ #-} {-# DISPLAY g C′ = c #-} -- Since pattern synonyms are now expanded on lhs of DISPLAY, -- this behaves as -- {-# DISPLAY C = C′ #-} -- {-# DISPLAY g C = c #-} test : C ≡ g C test = refl -- Expected error: -- C′ != c of type D -- when checking that the expression refl has type C′ ≡ c
{ "alphanum_fraction": 0.6131907308, "avg_line_length": 20.0357142857, "ext": "agda", "hexsha": "859c411eeee6d20662dbf06e0817f49c27ffea23", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue2132.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue2132.agda", "max_line_length": 61, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue2132.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 170, "size": 561 }
{-# OPTIONS --prop --rewriting #-} open import Examples.Sorting.Parallel.Comparable module Examples.Sorting.Parallel.Core (M : Comparable) where open import Calf.CostMonoid open ParCostMonoid parCostMonoid hiding (costMonoid) renaming ( _≤_ to _≤ₚ_; ≤-refl to ≤ₚ-refl; ≤-trans to ≤ₚ-trans; module ≤-Reasoning to ≤ₚ-Reasoning ) public open import Examples.Sorting.Core costMonoid fromℕ M public
{ "alphanum_fraction": 0.7261904762, "avg_line_length": 23.3333333333, "ext": "agda", "hexsha": "7ee364ffb903371f711e511feea2d1f397ef5546", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-01-29T08:12:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-10-06T10:28:24.000Z", "max_forks_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "jonsterling/agda-calf", "max_forks_repo_path": "src/Examples/Sorting/Parallel/Core.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "jonsterling/agda-calf", "max_issues_repo_path": "src/Examples/Sorting/Parallel/Core.agda", "max_line_length": 60, "max_stars_count": 29, "max_stars_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "jonsterling/agda-calf", "max_stars_repo_path": "src/Examples/Sorting/Parallel/Core.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T20:35:11.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-14T03:18:28.000Z", "num_tokens": 128, "size": 420 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Some boring lemmas used by the ring solver ------------------------------------------------------------------------ -- Note that these proofs use all "almost commutative ring" properties. {-# OPTIONS --without-K --safe #-} open import Algebra open import Algebra.Solver.Ring.AlmostCommutativeRing module Algebra.Solver.Ring.Lemmas {r₁ r₂ r₃} (coeff : RawRing r₁) (r : AlmostCommutativeRing r₂ r₃) (morphism : coeff -Raw-AlmostCommutative⟶ r) where private module C = RawRing coeff open AlmostCommutativeRing r open import Algebra.Morphism open _-Raw-AlmostCommutative⟶_ morphism open import Relation.Binary.Reasoning.Setoid setoid open import Function lemma₀ : ∀ a b c x → (a + b) * x + c ≈ a * x + (b * x + c) lemma₀ a b c x = begin (a + b) * x + c ≈⟨ distribʳ _ _ _ ⟨ +-cong ⟩ refl ⟩ (a * x + b * x) + c ≈⟨ +-assoc _ _ _ ⟩ a * x + (b * x + c) ∎ lemma₁ : ∀ a b c d x → (a + b) * x + (c + d) ≈ (a * x + c) + (b * x + d) lemma₁ a b c d x = begin (a + b) * x + (c + d) ≈⟨ lemma₀ _ _ _ _ ⟩ a * x + (b * x + (c + d)) ≈⟨ refl ⟨ +-cong ⟩ sym (+-assoc _ _ _) ⟩ a * x + ((b * x + c) + d) ≈⟨ refl ⟨ +-cong ⟩ (+-comm _ _ ⟨ +-cong ⟩ refl) ⟩ a * x + ((c + b * x) + d) ≈⟨ refl ⟨ +-cong ⟩ +-assoc _ _ _ ⟩ a * x + (c + (b * x + d)) ≈⟨ sym $ +-assoc _ _ _ ⟩ (a * x + c) + (b * x + d) ∎ lemma₂ : ∀ a b c x → a * c * x + b * c ≈ (a * x + b) * c lemma₂ a b c x = begin a * c * x + b * c ≈⟨ lem ⟨ +-cong ⟩ refl ⟩ a * x * c + b * c ≈⟨ sym $ distribʳ _ _ _ ⟩ (a * x + b) * c ∎ where lem = begin a * c * x ≈⟨ *-assoc _ _ _ ⟩ a * (c * x) ≈⟨ refl ⟨ *-cong ⟩ *-comm _ _ ⟩ a * (x * c) ≈⟨ sym $ *-assoc _ _ _ ⟩ a * x * c ∎ lemma₃ : ∀ a b c x → a * b * x + a * c ≈ a * (b * x + c) lemma₃ a b c x = begin a * b * x + a * c ≈⟨ *-assoc _ _ _ ⟨ +-cong ⟩ refl ⟩ a * (b * x) + a * c ≈⟨ sym $ distribˡ _ _ _ ⟩ a * (b * x + c) ∎ lemma₄ : ∀ a b c d x → (a * c * x + (a * d + b * c)) * x + b * d ≈ (a * x + b) * (c * x + d) lemma₄ a b c d x = begin (a * c * x + (a * d + b * c)) * x + b * d ≈⟨ distribʳ _ _ _ ⟨ +-cong ⟩ refl ⟩ (a * c * x * x + (a * d + b * c) * x) + b * d ≈⟨ refl ⟨ +-cong ⟩ ((refl ⟨ +-cong ⟩ refl) ⟨ *-cong ⟩ refl) ⟨ +-cong ⟩ refl ⟩ (a * c * x * x + (a * d + b * c) * x) + b * d ≈⟨ +-assoc _ _ _ ⟩ a * c * x * x + ((a * d + b * c) * x + b * d) ≈⟨ lem₁ ⟨ +-cong ⟩ (lem₂ ⟨ +-cong ⟩ refl) ⟩ a * x * (c * x) + (a * x * d + b * (c * x) + b * d) ≈⟨ refl ⟨ +-cong ⟩ +-assoc _ _ _ ⟩ a * x * (c * x) + (a * x * d + (b * (c * x) + b * d)) ≈⟨ sym $ +-assoc _ _ _ ⟩ a * x * (c * x) + a * x * d + (b * (c * x) + b * d) ≈⟨ sym $ distribˡ _ _ _ ⟨ +-cong ⟩ distribˡ _ _ _ ⟩ a * x * (c * x + d) + b * (c * x + d) ≈⟨ sym $ distribʳ _ _ _ ⟩ (a * x + b) * (c * x + d) ∎ where lem₁′ = begin a * c * x ≈⟨ *-assoc _ _ _ ⟩ a * (c * x) ≈⟨ refl ⟨ *-cong ⟩ *-comm _ _ ⟩ a * (x * c) ≈⟨ sym $ *-assoc _ _ _ ⟩ a * x * c ∎ lem₁ = begin a * c * x * x ≈⟨ lem₁′ ⟨ *-cong ⟩ refl ⟩ a * x * c * x ≈⟨ *-assoc _ _ _ ⟩ a * x * (c * x) ∎ lem₂ = begin (a * d + b * c) * x ≈⟨ distribʳ _ _ _ ⟩ a * d * x + b * c * x ≈⟨ *-assoc _ _ _ ⟨ +-cong ⟩ *-assoc _ _ _ ⟩ a * (d * x) + b * (c * x) ≈⟨ (refl ⟨ *-cong ⟩ *-comm _ _) ⟨ +-cong ⟩ refl ⟩ a * (x * d) + b * (c * x) ≈⟨ sym $ *-assoc _ _ _ ⟨ +-cong ⟩ refl ⟩ a * x * d + b * (c * x) ∎ lemma₅ : ∀ x → (0# * x + 1#) * x + 0# ≈ x lemma₅ x = begin (0# * x + 1#) * x + 0# ≈⟨ ((zeroˡ _ ⟨ +-cong ⟩ refl) ⟨ *-cong ⟩ refl) ⟨ +-cong ⟩ refl ⟩ (0# + 1#) * x + 0# ≈⟨ (+-identityˡ _ ⟨ *-cong ⟩ refl) ⟨ +-cong ⟩ refl ⟩ 1# * x + 0# ≈⟨ +-identityʳ _ ⟩ 1# * x ≈⟨ *-identityˡ _ ⟩ x ∎ lemma₆ : ∀ a x → 0# * x + a ≈ a lemma₆ a x = begin 0# * x + a ≈⟨ zeroˡ _ ⟨ +-cong ⟩ refl ⟩ 0# + a ≈⟨ +-identityˡ _ ⟩ a ∎ lemma₇ : ∀ x → - 1# * x ≈ - x lemma₇ x = begin - 1# * x ≈⟨ -‿*-distribˡ _ _ ⟩ - (1# * x) ≈⟨ -‿cong (*-identityˡ _) ⟩ - x ∎
{ "alphanum_fraction": 0.3843632959, "avg_line_length": 37.147826087, "ext": "agda", "hexsha": "865a56ee3105e15b166a4ee47009bf2fb60b0c92", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Solver/Ring/Lemmas.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Solver/Ring/Lemmas.agda", "max_line_length": 134, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Solver/Ring/Lemmas.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2013, "size": 4272 }
{-# OPTIONS --without-K --safe #-} module Data.Binary.Tests.Helpers where open import Data.List as List using (List; _∷_; []) open import Data.Product open import Data.Nat as Nat using (ℕ; suc; zero) open import Data.Binary.Definitions open import Data.Binary.Operations.Semantics open import Relation.Binary.PropositionalEquality _≡⌈_⌉≡_ : (𝔹 → 𝔹) → ℕ → (ℕ → ℕ) → Set fᵇ ≡⌈ n ⌉≡ fⁿ = let xs = List.upTo n in List.map (λ x → ⟦ fᵇ ⟦ x ⇑⟧ ⇓⟧ ) xs ≡ List.map fⁿ xs prod : ∀ {a b} {A : Set a} {B : Set b} → List A → List B → List (A × B) prod [] ys = [] prod (x ∷ xs) ys = List.foldr (λ y ys → (x , y) ∷ ys) (prod xs ys) ys _≡⌈_⌉₂≡_ : (𝔹 → 𝔹 → 𝔹) → ℕ → (ℕ → ℕ → ℕ) → Set fᵇ ≡⌈ n ⌉₂≡ fⁿ = List.map (λ { (x , y) → ⟦ fᵇ ⟦ x ⇑⟧ ⟦ y ⇑⟧ ⇓⟧ }) ys ≡ List.map (uncurry fⁿ) ys where xs : List ℕ xs = List.upTo n ys = prod xs xs
{ "alphanum_fraction": 0.574185766, "avg_line_length": 30.7037037037, "ext": "agda", "hexsha": "afd2b74da32e08b40854035067965252d4b6935f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-binary", "max_forks_repo_path": "Data/Binary/Tests/Helpers.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-binary", "max_issues_repo_path": "Data/Binary/Tests/Helpers.agda", "max_line_length": 95, "max_stars_count": 1, "max_stars_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-binary", "max_stars_repo_path": "Data/Binary/Tests/Helpers.agda", "max_stars_repo_stars_event_max_datetime": "2019-03-21T21:30:10.000Z", "max_stars_repo_stars_event_min_datetime": "2019-03-21T21:30:10.000Z", "num_tokens": 380, "size": 829 }
module Data.Tuple.Equivalence where import Lvl open import Data using (Unit ; <>) open import Data.Tuple as Tuple using (_⨯_ ; _,_) open import Logic.Propositional open import Structure.Setoid open import Structure.Function open import Structure.Operator open import Structure.Relator.Equivalence open import Structure.Relator.Properties open import Type private variable ℓₒ ℓₒ₁ ℓₒ₂ ℓₒ₃ ℓₒ₄ ℓₑ ℓₑ₁ ℓₑ₂ ℓₑ₃ ℓₑ₄ : Lvl.Level module _ {A : Type{ℓₒ₁}} ⦃ _ : Equiv{ℓₑ₁}(A) ⦄ {B : Type{ℓₒ₂}} ⦃ _ : Equiv{ℓₑ₂}(B) ⦄ where instance Tuple-equiv : Equiv(A ⨯ B) _≡_ ⦃ Tuple-equiv ⦄ (x₁ , y₁) (x₂ , y₂) = (x₁ ≡ x₂) ∧ (y₁ ≡ y₂) Equiv-equivalence ⦃ Tuple-equiv ⦄ = intro where instance [≡]-reflexivity : Reflexivity(_≡_ ⦃ Tuple-equiv ⦄) Reflexivity.proof([≡]-reflexivity) = [∧]-intro (reflexivity(_≡_)) (reflexivity(_≡_)) instance [≡]-symmetry : Symmetry(_≡_ ⦃ Tuple-equiv ⦄) Symmetry.proof([≡]-symmetry) ([∧]-intro l r) = [∧]-intro (symmetry(_≡_) l) (symmetry(_≡_) r) instance [≡]-transitivity : Transitivity(_≡_ ⦃ Tuple-equiv ⦄) Transitivity.proof([≡]-transitivity) ([∧]-intro l1 r1) ([∧]-intro l2 r2) = [∧]-intro (transitivity(_≡_) l1 l2) (transitivity(_≡_) r1 r2) instance left-function : Function(Tuple.left) Function.congruence left-function = Tuple.left instance right-function : Function(Tuple.right) Function.congruence right-function = Tuple.right instance [,]-function : BinaryOperator(_,_) BinaryOperator.congruence [,]-function a b = (a , b) module _ {A : Type{ℓₒ₁}} ⦃ equiv-A : Equiv{ℓₑ₁}(A) ⦄ {B : Type{ℓₒ₂}} ⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄ where instance swap-function : Function ⦃ Tuple-equiv ⦃ equiv-A ⦄ ⦃ equiv-B ⦄ ⦄ ⦃ Tuple-equiv ⦄ (Tuple.swap) Function.congruence swap-function = Tuple.swap module _ {A : Type{ℓₒ}} ⦃ equiv : Equiv{ℓₑ}(A) ⦄ where instance repeat-function : Function(Tuple.repeat{A = A}) Function.congruence repeat-function = Tuple.repeat module _ {A₁ : Type{ℓₒ₁}} ⦃ equiv-A₁ : Equiv{ℓₑ₁}(A₁) ⦄ {A₂ : Type{ℓₒ₂}} ⦃ equiv-A₂ : Equiv{ℓₑ₂}(A₂) ⦄ {B₁ : Type{ℓₒ₃}} ⦃ equiv-B₁ : Equiv{ℓₑ₃}(B₁) ⦄ {B₂ : Type{ℓₒ₄}} ⦃ equiv-B₂ : Equiv{ℓₑ₄}(B₂) ⦄ {f : A₁ → A₂} ⦃ func-f : Function(f) ⦄ {g : B₁ → B₂} ⦃ func-g : Function(g) ⦄ where instance map-function : Function(Tuple.map f g) Function.congruence map-function = Tuple.map (congruence₁(f)) (congruence₁(g)) module _ {A : Type{ℓₒ₁}} ⦃ equiv-A : Equiv{ℓₑ₁}(A) ⦄ {B : Type{ℓₒ₂}} ⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄ {C : Type{ℓₒ₃}} ⦃ equiv-C : Equiv{ℓₑ₃}(C) ⦄ where instance associateLeft-function : Function(Tuple.associateLeft {A = A}{B = B}{C = C}) Function.congruence associateLeft-function = Tuple.associateLeft instance associateRight-function : Function(Tuple.associateRight {A = A}{B = B}{C = C}) Function.congruence associateRight-function = Tuple.associateRight
{ "alphanum_fraction": 0.6456477039, "avg_line_length": 36.024691358, "ext": "agda", "hexsha": "17d9f8e8a651f5d4bebf493df6ee33958ab0769e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Data/Tuple/Equivalence.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Data/Tuple/Equivalence.agda", "max_line_length": 144, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Data/Tuple/Equivalence.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1195, "size": 2918 }
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.ZCohomology.Groups.CP2 where open import Cubical.Foundations.HLevels open import Cubical.Foundations.Function open import Cubical.Foundations.Univalence open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Equiv open import Cubical.Relation.Nullary open import Cubical.Data.Empty as ⊥ open import Cubical.Data.Unit open import Cubical.Data.Nat renaming (_+_ to _+ℕ_) open import Cubical.Data.Nat.Order open import Cubical.Data.Int open import Cubical.Data.Sigma open import Cubical.Algebra.Group open import Cubical.Algebra.Group.Instances.Int open import Cubical.Algebra.Group.Morphisms open import Cubical.Algebra.Group.MorphismProperties open import Cubical.Algebra.Group.Instances.Unit open import Cubical.HITs.Pushout open import Cubical.HITs.S1 open import Cubical.HITs.Sn open import Cubical.HITs.Susp open import Cubical.HITs.Join open import Cubical.HITs.SetTruncation as ST open import Cubical.HITs.PropositionalTruncation as PT open import Cubical.HITs.Truncation open import Cubical.Homotopy.Hopf open import Cubical.ZCohomology.Base open import Cubical.ZCohomology.Groups.Connected open import Cubical.ZCohomology.GroupStructure open import Cubical.ZCohomology.Properties open import Cubical.ZCohomology.MayerVietorisUnreduced open import Cubical.ZCohomology.Groups.Unit open import Cubical.ZCohomology.Groups.Sn open import Cubical.ZCohomology.RingStructure.CupProduct open S¹Hopf open IsGroupHom open Iso CP² : Type CP² = Pushout {A = TotalHopf} fst λ _ → tt characFunSpaceCP² : ∀ {ℓ} {A : Type ℓ} → Iso (CP² → A) (Σ[ x ∈ A ] Σ[ f ∈ (S₊ (suc (suc zero)) → A) ] ((y : TotalHopf) → f (fst y) ≡ x)) fun characFunSpaceCP² f = (f (inr tt)) , ((f ∘ inl ) , (λ a → cong f (push a))) inv characFunSpaceCP² (a , f , p) (inl x) = f x inv characFunSpaceCP² (a , f , p) (inr x) = a inv characFunSpaceCP² (a , f , p) (push b i) = p b i rightInv characFunSpaceCP² _ = refl leftInv characFunSpaceCP² _ = funExt λ { (inl x) → refl ; (inr x) → refl ; (push a i) → refl} H⁰CP²≅ℤ : GroupIso (coHomGr 0 CP²) ℤGroup H⁰CP²≅ℤ = H⁰-connected (inr tt) (PushoutToProp (λ _ → squash₁) (sphereElim _ (λ _ → isOfHLevelSuc 1 squash₁) ∣ sym (push (north , base)) ∣₁) λ _ → ∣ refl ∣₁) module M = MV (S₊ 2) Unit TotalHopf fst (λ _ → tt) H²CP²≅ℤ : GroupIso (coHomGr 2 CP²) ℤGroup H²CP²≅ℤ = compGroupIso (BijectionIso→GroupIso bij) (compGroupIso (invGroupIso trivIso) (Hⁿ-Sⁿ≅ℤ 1)) where isContrH¹TotalHopf : isContr (coHom 1 TotalHopf) isContrH¹TotalHopf = isOfHLevelRetractFromIso 0 (setTruncIso (domIso (invIso (IsoS³TotalHopf)))) (isOfHLevelRetractFromIso 0 ((fst (H¹-Sⁿ≅0 1))) isContrUnit) isContrH²TotalHopf : isContr (coHom 2 TotalHopf) isContrH²TotalHopf = isOfHLevelRetractFromIso 0 (setTruncIso (domIso (invIso (IsoS³TotalHopf)))) ((isOfHLevelRetractFromIso 0 (fst (Hⁿ-Sᵐ≅0 1 2 λ p → snotz (sym (cong predℕ p)))) isContrUnit)) trivIso : GroupIso (coHomGr 2 (Susp S¹)) (×coHomGr 2 (Susp S¹) Unit) fun (fst trivIso) x = x , 0ₕ _ inv (fst trivIso) = fst rightInv (fst trivIso) (x , p) = ΣPathP (refl , isContr→isProp (isContrHⁿ-Unit 1) _ _) leftInv (fst trivIso) x = refl snd trivIso = makeIsGroupHom λ _ _ → refl bij : BijectionIso (coHomGr 2 CP²) (×coHomGr 2 (Susp S¹) Unit) BijectionIso.fun bij = M.i 2 BijectionIso.inj bij x p = PT.rec (squash₂ _ _) (uncurry (λ z q → sym q ∙∙ cong (fst (M.d 1)) (isContr→isProp isContrH¹TotalHopf z (0ₕ _)) ∙∙ (M.d 1) .snd .pres1)) (M.Ker-i⊂Im-d 1 x p) where help : isInIm (M.d 1) x help = M.Ker-i⊂Im-d 1 x p BijectionIso.surj bij y = M.Ker-Δ⊂Im-i 2 y (isContr→isProp isContrH²TotalHopf _ _) H⁴CP²≅ℤ : GroupIso (coHomGr 4 CP²) ℤGroup H⁴CP²≅ℤ = compGroupIso (invGroupIso (BijectionIso→GroupIso bij)) (compGroupIso help (Hⁿ-Sⁿ≅ℤ 2)) where help : GroupIso (coHomGr 3 TotalHopf) (coHomGr 3 (S₊ 3)) help = isoType→isoCohom 3 (invIso IsoS³TotalHopf) bij : BijectionIso (coHomGr 3 TotalHopf) (coHomGr 4 CP²) BijectionIso.fun bij = M.d 3 BijectionIso.inj bij x p = PT.rec (squash₂ _ _) (uncurry (λ z q → sym q ∙∙ cong (M.Δ 3 .fst) (isOfHLevelΣ 1 (isContr→isProp (isOfHLevelRetractFromIso 0 (fst (Hⁿ-Sᵐ≅0 2 1 λ p → snotz (cong predℕ p))) isContrUnit)) (λ _ → isContr→isProp (isContrHⁿ-Unit 2)) z (0ₕ _ , 0ₕ _)) ∙∙ M.Δ 3 .snd .pres1)) (M.Ker-d⊂Im-Δ _ x p) BijectionIso.surj bij y = M.Ker-i⊂Im-d 3 y (isOfHLevelΣ 1 (isContr→isProp (isOfHLevelRetractFromIso 0 (fst (Hⁿ-Sᵐ≅0 3 1 λ p → snotz (cong predℕ p))) isContrUnit)) (λ _ → isContr→isProp (isContrHⁿ-Unit _)) _ _) -- Characterisations of the trivial groups private elim-TotalHopf : (B : TotalHopf → Type) → ((x : _) → isOfHLevel 3 (B x)) → B (north , base) → (x : _) → B x elim-TotalHopf = transport (λ i → (B : isoToPath IsoS³TotalHopf i → Type) → ((x : _) → isOfHLevel 3 (B x)) → B (transp (λ j → isoToPath IsoS³TotalHopf (i ∨ ~ j)) i (north , base)) → (x : _) → B x) λ B hLev elim-TotalHopf → sphereElim _ (λ _ → hLev _) elim-TotalHopf H¹-CP²≅0 : GroupIso (coHomGr 1 CP²) UnitGroup₀ H¹-CP²≅0 = contrGroupIsoUnit (isOfHLevelRetractFromIso 0 (setTruncIso characFunSpaceCP²) (isOfHLevelRetractFromIso 0 lem₂ lem₃)) where lem₁ : (f : (Susp S¹ → coHomK 1)) → ∥ (λ _ → 0ₖ _) ≡ f ∥₁ lem₁ f = PT.map (λ p → p) (Iso.fun PathIdTrunc₀Iso (isOfHLevelRetractFromIso 1 (fst (Hⁿ-Sᵐ≅0 0 1 (λ p → snotz (sym p)))) isPropUnit (0ₕ _) ∣ f ∣₂)) lem₂ : Iso ∥ (Σ[ x ∈ coHomK 1 ] ( Σ[ f ∈ (Susp S¹ → coHomK 1) ] ((y : TotalHopf) → f (fst y) ≡ x))) ∥₂ ∥ (Σ[ f ∈ (Susp S¹ → coHomK 1) ] ((y : TotalHopf) → f (fst y) ≡ 0ₖ 1)) ∥₂ fun lem₂ = ST.map (uncurry λ x → uncurry λ f p → (λ y → (-ₖ x) +ₖ f y) , λ y → cong ((-ₖ x) +ₖ_) (p y) ∙ lCancelₖ _ x) inv lem₂ = ST.map λ p → 0ₖ _ , p rightInv lem₂ = ST.elim (λ _ → isOfHLevelPath 2 squash₂ _ _) λ {(f , p) → cong ∣_∣₂ (ΣPathP ((funExt (λ x → lUnitₖ _ (f x))) , (funExt (λ y → sym (rUnit (λ i → (-ₖ 0ₖ 1) +ₖ p y i))) ◁ λ j y i → lUnitₖ _ (p y i) j)))} leftInv lem₂ = ST.elim (λ _ → isOfHLevelPath 2 squash₂ _ _) (uncurry (coHomK-elim _ (λ _ → isPropΠ (λ _ → squash₂ _ _)) (uncurry λ f p → cong ∣_∣₂ (ΣPathP (refl , (ΣPathP ((funExt (λ x → lUnitₖ _ (f x))) , ((funExt (λ y → sym (rUnit (λ i → (-ₖ 0ₖ 1) +ₖ p y i))) ◁ λ j y i → lUnitₖ _ (p y i) j))))))))) lem₃ : isContr _ fst lem₃ = ∣ (λ _ → 0ₖ 1) , (λ _ → refl) ∣₂ snd lem₃ = ST.elim (λ _ → isOfHLevelPath 2 squash₂ _ _) (uncurry λ f → PT.rec (isPropΠ (λ _ → squash₂ _ _)) (J (λ f _ → (y : (y₁ : TotalHopf) → f (fst y₁) ≡ 0ₖ 1) → ∣ (λ _ → 0ₖ 1) , (λ _ _ → 0ₖ 1) ∣₂ ≡ ∣ f , y ∣₂) (λ y → cong ∣_∣₂ (ΣPathP ((funExt (λ z → sym (y (north , base)))) , toPathP (s y))))) (lem₁ f)) where s : (y : TotalHopf → 0ₖ 1 ≡ 0ₖ 1) → transport (λ i → (_ : TotalHopf) → y (north , base) (~ i) ≡ ∣ base ∣) (λ _ _ → 0ₖ 1) ≡ y s y = funExt (elim-TotalHopf _ (λ _ → isOfHLevelPath 3 (isOfHLevelPath 3 (isOfHLevelTrunc 3) _ _) _ _) λ k → transp (λ i → y (north , base) (~ i ∧ ~ k) ≡ ∣ base ∣) k λ j → y (north , base) (~ k ∨ j)) Hⁿ-CP²≅0-higher : (n : ℕ) → ¬ (n ≡ 1) → GroupIso (coHomGr (3 +ℕ n) CP²) UnitGroup₀ Hⁿ-CP²≅0-higher n p = contrGroupIsoUnit ((0ₕ _) , (λ x → sym (main x))) where h : GroupHom (coHomGr (2 +ℕ n) TotalHopf) (coHomGr (3 +ℕ n) CP²) h = M.d (2 +ℕ n) propᵣ : isProp (fst (×coHomGr (3 +ℕ n) (Susp S¹) Unit)) propᵣ = isPropΣ (isOfHLevelRetractFromIso 1 (fst (Hⁿ-Sᵐ≅0 (2 +ℕ n) 1 λ p → ⊥.rec (snotz (cong predℕ p)))) isPropUnit) λ _ → isContr→isProp (isContrHⁿ-Unit _) propₗ : isProp (coHom (2 +ℕ n) TotalHopf) propₗ = subst (λ x → isProp (coHom (2 +ℕ n) x)) (isoToPath IsoS³TotalHopf) (isOfHLevelRetractFromIso 1 (fst (Hⁿ-Sᵐ≅0 (suc n) 2 λ q → p (cong predℕ q))) isPropUnit) inIm : (x : coHom (3 +ℕ n) CP²) → isInIm h x inIm x = M.Ker-i⊂Im-d (2 +ℕ n) x (propᵣ _ _) main : (x : coHom (3 +ℕ n) CP²) → x ≡ 0ₕ _ main x = PT.rec (squash₂ _ _) (uncurry (λ f p → sym p ∙∙ cong (h .fst) (propₗ f (0ₕ _)) ∙∙ pres1 (snd h))) (inIm x) -- All trivial groups: Hⁿ-CP²≅0 : (n : ℕ) → ¬ suc n ≡ 2 → ¬ suc n ≡ 4 → GroupIso (coHomGr (suc n) CP²) UnitGroup₀ Hⁿ-CP²≅0 zero p q = H¹-CP²≅0 Hⁿ-CP²≅0 (suc zero) p q = ⊥.rec (p refl) Hⁿ-CP²≅0 (suc (suc zero)) p q = Hⁿ-CP²≅0-higher 0 λ p → snotz (sym p) Hⁿ-CP²≅0 (suc (suc (suc zero))) p q = ⊥.rec (q refl) Hⁿ-CP²≅0 (suc (suc (suc (suc n)))) p q = Hⁿ-CP²≅0-higher (suc (suc n)) λ p → snotz (cong predℕ p) -- Another Brunerie number ℤ→HⁿCP²→ℤ : ℤ → ℤ ℤ→HⁿCP²→ℤ x = Iso.fun (fst H⁴CP²≅ℤ) (Iso.inv (fst H²CP²≅ℤ) x ⌣ Iso.inv (fst H²CP²≅ℤ) x) brunerie2 : ℤ brunerie2 = ℤ→HⁿCP²→ℤ 1 {- |brunerie2|≡1 : abs (ℤ→HⁿCP²→ℤ 1) ≡ 1 |brunerie2|≡1 = refl -}
{ "alphanum_fraction": 0.6101260414, "avg_line_length": 37.1507936508, "ext": "agda", "hexsha": "73d8f0d679e9d65fe0eb60f005f7929783b23546", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/ZCohomology/Groups/CP2.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/ZCohomology/Groups/CP2.agda", "max_line_length": 120, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/ZCohomology/Groups/CP2.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 4031, "size": 9362 }
{- This second-order equational theory was created from the following second-order syntax description: syntax FOL type * : 0-ary N : 0-ary term false : * | ⊥ or : * * -> * | _∨_ l20 true : * | ⊤ and : * * -> * | _∧_ l20 not : * -> * | ¬_ r50 eq : N N -> * | _≟_ l20 all : N.* -> * | ∀′ ex : N.* -> * | ∃′ theory (⊥U∨ᴸ) a |> or (false, a) = a (⊥U∨ᴿ) a |> or (a, false) = a (∨A) a b c |> or (or(a, b), c) = or (a, or(b, c)) (∨C) a b |> or(a, b) = or(b, a) (⊤U∧ᴸ) a |> and (true, a) = a (⊤U∧ᴿ) a |> and (a, true) = a (∧A) a b c |> and (and(a, b), c) = and (a, and(b, c)) (∧D∨ᴸ) a b c |> and (a, or (b, c)) = or (and(a, b), and(a, c)) (∧D∨ᴿ) a b c |> and (or (a, b), c) = or (and(a, c), and(b, c)) (⊥X∧ᴸ) a |> and (false, a) = false (⊥X∧ᴿ) a |> and (a, false) = false (¬N∨ᴸ) a |> or (not (a), a) = false (¬N∨ᴿ) a |> or (a, not (a)) = false (∧C) a b |> and(a, b) = and(b, a) (∨I) a |> or(a, a) = a (∧I) a |> and(a, a) = a (¬²) a |> not(not (a)) = a (∨D∧ᴸ) a b c |> or (a, and (b, c)) = and (or(a, b), or(a, c)) (∨D∧ᴿ) a b c |> or (and (a, b), c) = and (or(a, c), or(b, c)) (∨B∧ᴸ) a b |> or (and (a, b), a) = a (∨B∧ᴿ) a b |> or (a, and (a, b)) = a (∧B∨ᴸ) a b |> and (or (a, b), a) = a (∧B∨ᴿ) a b |> and (a, or (a, b)) = a (⊤X∨ᴸ) a |> or (true, a) = true (⊤X∨ᴿ) a |> or (a, true) = true (¬N∧ᴸ) a |> and (not (a), a) = false (¬N∧ᴿ) a |> and (a, not (a)) = false (DM∧) a b |> not (and (a, b)) = or (not(a), not(b)) (DM∨) a b |> not (or (a, b)) = and (not(a), not(b)) (DM∀) p : N.* |> not (all (x. p[x])) = ex (x. not(p[x])) (DM∃) p : N.* |> not (ex (x. p[x])) = all (x. not(p[x])) (∀D∧) p q : N.* |> all (x. and(p[x], q[x])) = and (all(x.p[x]), all(x.q[x])) (∃D∨) p q : N.* |> ex (x. or(p[x], q[x])) = or (ex(x.p[x]), ex(x.q[x])) (∧P∀ᴸ) p : * q : N.* |> and (p, all(x.q[x])) = all (x. and(p, q[x])) (∧P∃ᴸ) p : * q : N.* |> and (p, ex (x.q[x])) = ex (x. and(p, q[x])) (∨P∀ᴸ) p : * q : N.* |> or (p, all(x.q[x])) = all (x. or (p, q[x])) (∨P∃ᴸ) p : * q : N.* |> or (p, ex (x.q[x])) = ex (x. or (p, q[x])) (∧P∀ᴿ) p : N.* q : * |> and (all(x.p[x]), q) = all (x. and(p[x], q)) (∧P∃ᴿ) p : N.* q : * |> and (ex (x.p[x]), q) = ex (x. and(p[x], q)) (∨P∀ᴿ) p : N.* q : * |> or (all(x.p[x]), q) = all (x. or (p[x], q)) (∨P∃ᴿ) p : N.* q : * |> or (ex (x.p[x]), q) = ex (x. or (p[x], q)) (∀Eᴸ) p : N.* n : N |> all (x.p[x]) = and (p[n], all(x.p[x])) (∃Eᴸ) p : N.* n : N |> ex (x.p[x]) = or (p[n], ex (x.p[x])) (∀Eᴿ) p : N.* n : N |> all (x.p[x]) = and (all(x.p[x]), p[n]) (∃Eᴿ) p : N.* n : N |> ex (x.p[x]) = or (ex (x.p[x]), p[n]) (∃⟹) p : N.* q : * |> imp (ex (x.p[x]), q) = all (x. imp(p[x], q)) (∀⟹) p : N.* q : * |> imp (all(x.p[x]), q) = ex (x. imp(p[x], q)) -} module FOL.Equality where open import SOAS.Common open import SOAS.Context open import SOAS.Variable open import SOAS.Families.Core open import SOAS.Families.Build open import SOAS.ContextMaps.Inductive open import FOL.Signature open import FOL.Syntax open import SOAS.Metatheory.SecondOrder.Metasubstitution FOL:Syn open import SOAS.Metatheory.SecondOrder.Equality FOL:Syn private variable α β γ τ : FOLT Γ Δ Π : Ctx infix 1 _▹_⊢_≋ₐ_ -- Axioms of equality data _▹_⊢_≋ₐ_ : ∀ 𝔐 Γ {α} → (𝔐 ▷ FOL) α Γ → (𝔐 ▷ FOL) α Γ → Set where ⊥U∨ᴸ : ⁅ * ⁆̣ ▹ ∅ ⊢ ⊥ ∨ 𝔞 ≋ₐ 𝔞 ∨A : ⁅ * ⁆ ⁅ * ⁆ ⁅ * ⁆̣ ▹ ∅ ⊢ (𝔞 ∨ 𝔟) ∨ 𝔠 ≋ₐ 𝔞 ∨ (𝔟 ∨ 𝔠) ∨C : ⁅ * ⁆ ⁅ * ⁆̣ ▹ ∅ ⊢ 𝔞 ∨ 𝔟 ≋ₐ 𝔟 ∨ 𝔞 ⊤U∧ᴸ : ⁅ * ⁆̣ ▹ ∅ ⊢ ⊤ ∧ 𝔞 ≋ₐ 𝔞 ∧A : ⁅ * ⁆ ⁅ * ⁆ ⁅ * ⁆̣ ▹ ∅ ⊢ (𝔞 ∧ 𝔟) ∧ 𝔠 ≋ₐ 𝔞 ∧ (𝔟 ∧ 𝔠) ∧D∨ᴸ : ⁅ * ⁆ ⁅ * ⁆ ⁅ * ⁆̣ ▹ ∅ ⊢ 𝔞 ∧ (𝔟 ∨ 𝔠) ≋ₐ (𝔞 ∧ 𝔟) ∨ (𝔞 ∧ 𝔠) ⊥X∧ᴸ : ⁅ * ⁆̣ ▹ ∅ ⊢ ⊥ ∧ 𝔞 ≋ₐ ⊥ ¬N∨ᴸ : ⁅ * ⁆̣ ▹ ∅ ⊢ (¬ 𝔞) ∨ 𝔞 ≋ₐ ⊥ ∧C : ⁅ * ⁆ ⁅ * ⁆̣ ▹ ∅ ⊢ 𝔞 ∧ 𝔟 ≋ₐ 𝔟 ∧ 𝔞 ∨I : ⁅ * ⁆̣ ▹ ∅ ⊢ 𝔞 ∨ 𝔞 ≋ₐ 𝔞 ∧I : ⁅ * ⁆̣ ▹ ∅ ⊢ 𝔞 ∧ 𝔞 ≋ₐ 𝔞 ¬² : ⁅ * ⁆̣ ▹ ∅ ⊢ ¬ (¬ 𝔞) ≋ₐ 𝔞 ∨D∧ᴸ : ⁅ * ⁆ ⁅ * ⁆ ⁅ * ⁆̣ ▹ ∅ ⊢ 𝔞 ∨ (𝔟 ∧ 𝔠) ≋ₐ (𝔞 ∨ 𝔟) ∧ (𝔞 ∨ 𝔠) ∨B∧ᴸ : ⁅ * ⁆ ⁅ * ⁆̣ ▹ ∅ ⊢ (𝔞 ∧ 𝔟) ∨ 𝔞 ≋ₐ 𝔞 ∧B∨ᴸ : ⁅ * ⁆ ⁅ * ⁆̣ ▹ ∅ ⊢ (𝔞 ∨ 𝔟) ∧ 𝔞 ≋ₐ 𝔞 ⊤X∨ᴸ : ⁅ * ⁆̣ ▹ ∅ ⊢ ⊤ ∨ 𝔞 ≋ₐ ⊤ ¬N∧ᴸ : ⁅ * ⁆̣ ▹ ∅ ⊢ (¬ 𝔞) ∧ 𝔞 ≋ₐ ⊥ DM∧ : ⁅ * ⁆ ⁅ * ⁆̣ ▹ ∅ ⊢ ¬ (𝔞 ∧ 𝔟) ≋ₐ (¬ 𝔞) ∨ (¬ 𝔟) DM∨ : ⁅ * ⁆ ⁅ * ⁆̣ ▹ ∅ ⊢ ¬ (𝔞 ∨ 𝔟) ≋ₐ (¬ 𝔞) ∧ (¬ 𝔟) DM∀ : ⁅ N ⊩ * ⁆̣ ▹ ∅ ⊢ ¬ (∀′ (𝔞⟨ x₀ ⟩)) ≋ₐ ∃′ (¬ 𝔞⟨ x₀ ⟩) DM∃ : ⁅ N ⊩ * ⁆̣ ▹ ∅ ⊢ ¬ (∃′ (𝔞⟨ x₀ ⟩)) ≋ₐ ∀′ (¬ 𝔞⟨ x₀ ⟩) ∀D∧ : ⁅ N ⊩ * ⁆ ⁅ N ⊩ * ⁆̣ ▹ ∅ ⊢ ∀′ (𝔞⟨ x₀ ⟩ ∧ 𝔟⟨ x₀ ⟩) ≋ₐ (∀′ (𝔞⟨ x₀ ⟩)) ∧ (∀′ (𝔟⟨ x₀ ⟩)) ∃D∨ : ⁅ N ⊩ * ⁆ ⁅ N ⊩ * ⁆̣ ▹ ∅ ⊢ ∃′ (𝔞⟨ x₀ ⟩ ∨ 𝔟⟨ x₀ ⟩) ≋ₐ (∃′ (𝔞⟨ x₀ ⟩)) ∨ (∃′ (𝔟⟨ x₀ ⟩)) ∧P∀ᴸ : ⁅ * ⁆ ⁅ N ⊩ * ⁆̣ ▹ ∅ ⊢ 𝔞 ∧ (∀′ (𝔟⟨ x₀ ⟩)) ≋ₐ ∀′ (𝔞 ∧ 𝔟⟨ x₀ ⟩) ∧P∃ᴸ : ⁅ * ⁆ ⁅ N ⊩ * ⁆̣ ▹ ∅ ⊢ 𝔞 ∧ (∃′ (𝔟⟨ x₀ ⟩)) ≋ₐ ∃′ (𝔞 ∧ 𝔟⟨ x₀ ⟩) ∨P∀ᴸ : ⁅ * ⁆ ⁅ N ⊩ * ⁆̣ ▹ ∅ ⊢ 𝔞 ∨ (∀′ (𝔟⟨ x₀ ⟩)) ≋ₐ ∀′ (𝔞 ∨ 𝔟⟨ x₀ ⟩) ∨P∃ᴸ : ⁅ * ⁆ ⁅ N ⊩ * ⁆̣ ▹ ∅ ⊢ 𝔞 ∨ (∃′ (𝔟⟨ x₀ ⟩)) ≋ₐ ∃′ (𝔞 ∨ 𝔟⟨ x₀ ⟩) ∀Eᴸ : ⁅ N ⊩ * ⁆ ⁅ N ⁆̣ ▹ ∅ ⊢ ∀′ (𝔞⟨ x₀ ⟩) ≋ₐ 𝔞⟨ 𝔟 ⟩ ∧ (∀′ (𝔞⟨ x₀ ⟩)) ∃Eᴸ : ⁅ N ⊩ * ⁆ ⁅ N ⁆̣ ▹ ∅ ⊢ ∃′ (𝔞⟨ x₀ ⟩) ≋ₐ 𝔞⟨ 𝔟 ⟩ ∨ (∃′ (𝔞⟨ x₀ ⟩)) open EqLogic _▹_⊢_≋ₐ_ open ≋-Reasoning -- Derived equations ⊥U∨ᴿ : ⁅ * ⁆̣ ▹ ∅ ⊢ 𝔞 ∨ ⊥ ≋ 𝔞 ⊥U∨ᴿ = tr (ax ∨C with《 𝔞 ◃ ⊥ 》) (ax ⊥U∨ᴸ with《 𝔞 》) ⊤U∧ᴿ : ⁅ * ⁆̣ ▹ ∅ ⊢ 𝔞 ∧ ⊤ ≋ 𝔞 ⊤U∧ᴿ = tr (ax ∧C with《 𝔞 ◃ ⊤ 》) (ax ⊤U∧ᴸ with《 𝔞 》) ∧D∨ᴿ : ⁅ * ⁆ ⁅ * ⁆ ⁅ * ⁆̣ ▹ ∅ ⊢ (𝔞 ∨ 𝔟) ∧ 𝔠 ≋ (𝔞 ∧ 𝔠) ∨ (𝔟 ∧ 𝔠) ∧D∨ᴿ = begin (𝔞 ∨ 𝔟) ∧ 𝔠 ≋⟨ ax ∧C with《 𝔞 ∨ 𝔟 ◃ 𝔠 》 ⟩ 𝔠 ∧ (𝔞 ∨ 𝔟) ≋⟨ ax ∧D∨ᴸ with《 𝔠 ◃ 𝔞 ◃ 𝔟 》 ⟩ (𝔠 ∧ 𝔞) ∨ (𝔠 ∧ 𝔟) ≋⟨ cong₂[ ax ∧C with《 𝔠 ◃ 𝔞 》 ][ ax ∧C with《 𝔠 ◃ 𝔟 》 ]inside ◌ᵈ ∨ ◌ᵉ ⟩ (𝔞 ∧ 𝔠) ∨ (𝔟 ∧ 𝔠) ∎ ⊥X∧ᴿ : ⁅ * ⁆̣ ▹ ∅ ⊢ 𝔞 ∧ ⊥ ≋ ⊥ ⊥X∧ᴿ = tr (ax ∧C with《 𝔞 ◃ ⊥ 》) (ax ⊥X∧ᴸ with《 𝔞 》) ¬N∨ᴿ : ⁅ * ⁆̣ ▹ ∅ ⊢ 𝔞 ∨ (¬ 𝔞) ≋ ⊥ ¬N∨ᴿ = tr (ax ∨C with《 𝔞 ◃ (¬ 𝔞) 》) (ax ¬N∨ᴸ with《 𝔞 》) ∨D∧ᴿ : ⁅ * ⁆ ⁅ * ⁆ ⁅ * ⁆̣ ▹ ∅ ⊢ (𝔞 ∧ 𝔟) ∨ 𝔠 ≋ (𝔞 ∨ 𝔠) ∧ (𝔟 ∨ 𝔠) ∨D∧ᴿ = begin (𝔞 ∧ 𝔟) ∨ 𝔠 ≋⟨ ax ∨C with《 𝔞 ∧ 𝔟 ◃ 𝔠 》 ⟩ 𝔠 ∨ (𝔞 ∧ 𝔟) ≋⟨ ax ∨D∧ᴸ with《 𝔠 ◃ 𝔞 ◃ 𝔟 》 ⟩ (𝔠 ∨ 𝔞) ∧ (𝔠 ∨ 𝔟) ≋⟨ cong₂[ ax ∨C with《 𝔠 ◃ 𝔞 》 ][ ax ∨C with《 𝔠 ◃ 𝔟 》 ]inside ◌ᵈ ∧ ◌ᵉ ⟩ (𝔞 ∨ 𝔠) ∧ (𝔟 ∨ 𝔠) ∎ ⊤X∨ᴿ : ⁅ * ⁆̣ ▹ ∅ ⊢ 𝔞 ∨ ⊤ ≋ ⊤ ⊤X∨ᴿ = tr (ax ∨C with《 𝔞 ◃ ⊤ 》) (ax ⊤X∨ᴸ with《 𝔞 》) ¬N∧ᴿ : ⁅ * ⁆̣ ▹ ∅ ⊢ 𝔞 ∧ (¬ 𝔞) ≋ ⊥ ¬N∧ᴿ = tr (ax ∧C with《 𝔞 ◃ (¬ 𝔞) 》) (ax ¬N∧ᴸ with《 𝔞 》) ∧P∀ᴿ : ⁅ N ⊩ * ⁆ ⁅ * ⁆̣ ▹ ∅ ⊢ (∀′ (𝔞⟨ x₀ ⟩)) ∧ 𝔟 ≋ ∀′ (𝔞⟨ x₀ ⟩ ∧ 𝔟) ∧P∀ᴿ = begin (∀′ (𝔞⟨ x₀ ⟩)) ∧ 𝔟 ≋⟨ ax ∧C with《 ∀′ (𝔞⟨ x₀ ⟩) ◃ 𝔟 》 ⟩ 𝔟 ∧ (∀′ (𝔞⟨ x₀ ⟩)) ≋⟨ ax ∧P∀ᴸ with《 𝔟 ◃ 𝔞⟨ x₀ ⟩ 》 ⟩ ∀′ (𝔟 ∧ 𝔞⟨ x₀ ⟩) ≋⟨ cong[ ax ∧C with《 𝔟 ◃ 𝔞⟨ x₀ ⟩ 》 ]inside ∀′ (◌ᶜ⟨ x₀ ⟩) ⟩ ∀′ (𝔞⟨ x₀ ⟩ ∧ 𝔟) ∎ ∧P∃ᴿ : ⁅ N ⊩ * ⁆ ⁅ * ⁆̣ ▹ ∅ ⊢ (∃′ (𝔞⟨ x₀ ⟩)) ∧ 𝔟 ≋ ∃′ (𝔞⟨ x₀ ⟩ ∧ 𝔟) ∧P∃ᴿ = begin (∃′ (𝔞⟨ x₀ ⟩)) ∧ 𝔟 ≋⟨ ax ∧C with《 ∃′ (𝔞⟨ x₀ ⟩) ◃ 𝔟 》 ⟩ 𝔟 ∧ (∃′ (𝔞⟨ x₀ ⟩)) ≋⟨ ax ∧P∃ᴸ with《 𝔟 ◃ 𝔞⟨ x₀ ⟩ 》 ⟩ ∃′ (𝔟 ∧ 𝔞⟨ x₀ ⟩) ≋⟨ cong[ ax ∧C with《 𝔟 ◃ 𝔞⟨ x₀ ⟩ 》 ]inside ∃′ (◌ᶜ⟨ x₀ ⟩) ⟩ ∃′ (𝔞⟨ x₀ ⟩ ∧ 𝔟) ∎ ∨P∀ᴿ : ⁅ N ⊩ * ⁆ ⁅ * ⁆̣ ▹ ∅ ⊢ (∀′ (𝔞⟨ x₀ ⟩)) ∨ 𝔟 ≋ ∀′ (𝔞⟨ x₀ ⟩ ∨ 𝔟) ∨P∀ᴿ = begin (∀′ (𝔞⟨ x₀ ⟩)) ∨ 𝔟 ≋⟨ ax ∨C with《 ∀′ (𝔞⟨ x₀ ⟩) ◃ 𝔟 》 ⟩ 𝔟 ∨ (∀′ (𝔞⟨ x₀ ⟩)) ≋⟨ ax ∨P∀ᴸ with《 𝔟 ◃ 𝔞⟨ x₀ ⟩ 》 ⟩ ∀′ (𝔟 ∨ 𝔞⟨ x₀ ⟩) ≋⟨ cong[ ax ∨C with《 𝔟 ◃ 𝔞⟨ x₀ ⟩ 》 ]inside ∀′ (◌ᶜ⟨ x₀ ⟩) ⟩ ∀′ (𝔞⟨ x₀ ⟩ ∨ 𝔟) ∎ ∨P∃ᴿ : ⁅ N ⊩ * ⁆ ⁅ * ⁆̣ ▹ ∅ ⊢ (∃′ (𝔞⟨ x₀ ⟩)) ∨ 𝔟 ≋ ∃′ (𝔞⟨ x₀ ⟩ ∨ 𝔟) ∨P∃ᴿ = begin (∃′ (𝔞⟨ x₀ ⟩)) ∨ 𝔟 ≋⟨ ax ∨C with《 ∃′ (𝔞⟨ x₀ ⟩) ◃ 𝔟 》 ⟩ 𝔟 ∨ (∃′ (𝔞⟨ x₀ ⟩)) ≋⟨ ax ∨P∃ᴸ with《 𝔟 ◃ 𝔞⟨ x₀ ⟩ 》 ⟩ ∃′ (𝔟 ∨ 𝔞⟨ x₀ ⟩) ≋⟨ cong[ ax ∨C with《 𝔟 ◃ 𝔞⟨ x₀ ⟩ 》 ]inside ∃′ (◌ᶜ⟨ x₀ ⟩) ⟩ ∃′ (𝔞⟨ x₀ ⟩ ∨ 𝔟) ∎ ∀Eᴿ : ⁅ N ⊩ * ⁆ ⁅ N ⁆̣ ▹ ∅ ⊢ ∀′ (𝔞⟨ x₀ ⟩) ≋ (∀′ (𝔞⟨ x₀ ⟩)) ∧ 𝔞⟨ 𝔟 ⟩ ∀Eᴿ = tr (ax ∀Eᴸ with《 𝔞⟨ x₀ ⟩ ◃ 𝔟 》) (ax ∧C with《 𝔞⟨ 𝔟 ⟩ ◃ ∀′ (𝔞⟨ x₀ ⟩) 》) ∃Eᴿ : ⁅ N ⊩ * ⁆ ⁅ N ⁆̣ ▹ ∅ ⊢ ∃′ (𝔞⟨ x₀ ⟩) ≋ (∃′ (𝔞⟨ x₀ ⟩)) ∨ 𝔞⟨ 𝔟 ⟩ ∃Eᴿ = tr (ax ∃Eᴸ with《 𝔞⟨ x₀ ⟩ ◃ 𝔟 》) (ax ∨C with《 𝔞⟨ 𝔟 ⟩ ◃ ∃′ (𝔞⟨ x₀ ⟩) 》) ∃⟹ : ⁅ N ⊩ * ⁆ ⁅ * ⁆̣ ▹ ∅ ⊢ (∃′ (𝔞⟨ x₀ ⟩)) ⟹ 𝔟 ≋ ∀′ (𝔞⟨ x₀ ⟩ ⟹ 𝔟) ∃⟹ = begin (∃′ (𝔞⟨ x₀ ⟩)) ⟹ 𝔟 ≡⟨⟩ (¬ (∃′ (𝔞⟨ x₀ ⟩))) ∨ 𝔟 ≋⟨ cong[ ax DM∃ with《 𝔞⟨ x₀ ⟩ 》 ]inside (◌ᶜ ∨ 𝔟) ⟩ (∀′ (¬ (𝔞⟨ x₀ ⟩))) ∨ 𝔟 ≋⟨ thm ∨P∀ᴿ with《 ¬ 𝔞⟨ x₀ ⟩ ◃ 𝔟 》 ⟩ ∀′ (¬ (𝔞⟨ x₀ ⟩) ∨ 𝔟) ≡⟨⟩ ∀′ (𝔞⟨ x₀ ⟩ ⟹ 𝔟) ∎ ∀⟹ : ⁅ N ⊩ * ⁆ ⁅ * ⁆̣ ▹ ∅ ⊢ (∀′ (𝔞⟨ x₀ ⟩)) ⟹ 𝔟 ≋ ∃′ (𝔞⟨ x₀ ⟩ ⟹ 𝔟) ∀⟹ = begin (∀′ (𝔞⟨ x₀ ⟩)) ⟹ 𝔟 ≡⟨⟩ (¬ (∀′ (𝔞⟨ x₀ ⟩))) ∨ 𝔟 ≋⟨ cong[ ax DM∀ with《 𝔞⟨ x₀ ⟩ 》 ]inside (◌ᶜ ∨ 𝔟) ⟩ (∃′ (¬ (𝔞⟨ x₀ ⟩))) ∨ 𝔟 ≋⟨ thm ∨P∃ᴿ with《 ¬ 𝔞⟨ x₀ ⟩ ◃ 𝔟 》 ⟩ ∃′ (¬ (𝔞⟨ x₀ ⟩) ∨ 𝔟) ≡⟨⟩ ∃′ (𝔞⟨ x₀ ⟩ ⟹ 𝔟) ∎
{ "alphanum_fraction": 0.2954155711, "avg_line_length": 45.087628866, "ext": "agda", "hexsha": "be111a4f61035332eddfde8b9f4e0f8cac6eaff9", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z", "max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JoeyEremondi/agda-soas", "max_forks_repo_path": "out/FOL/Equality.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JoeyEremondi/agda-soas", "max_issues_repo_path": "out/FOL/Equality.agda", "max_line_length": 99, "max_stars_count": 39, "max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JoeyEremondi/agda-soas", "max_stars_repo_path": "out/FOL/Equality.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z", "num_tokens": 6412, "size": 8747 }
{-# OPTIONS --without-K --safe #-} module Categories.Category.Instance.Properties.Setoids where open import Level open import Data.Product using (Σ; proj₁; proj₂; _,_; Σ-syntax; _×_; -,_) open import Function.Equality using (Π) open import Relation.Binary using (Setoid; Preorder; Rel) open import Relation.Binary.PropositionalEquality as ≡ using (_≡_) open import Relation.Binary.Indexed.Heterogeneous using (_=[_]⇒_) open import Relation.Binary.Construct.Closure.SymmetricTransitive as ST using (Plus⇔; minimal) open Plus⇔ open import Categories.Category using (Category; _[_,_]) open import Categories.Functor open import Categories.Category.Instance.Setoids open import Categories.Category.Complete open import Categories.Category.Cocomplete import Categories.Category.Construction.Cocones as Coc import Categories.Category.Construction.Cones as Co import Relation.Binary.Reasoning.Setoid as RS open Π using (_⟨$⟩_) module _ {o ℓ e} c ℓ′ {J : Category o ℓ e} (F : Functor J (Setoids (o ⊔ c) (o ⊔ ℓ ⊔ c ⊔ ℓ′))) where private module J = Category J open Functor F module F₀ j = Setoid (F₀ j) open F₀ using () renaming (_≈_ to _[_≈_]) vertex-carrier : Set (o ⊔ c) vertex-carrier = Σ J.Obj F₀.Carrier coc : Rel vertex-carrier (o ⊔ ℓ ⊔ c ⊔ ℓ′) coc (X , x) (Y , y) = Σ[ f ∈ J [ X , Y ] ] Y [ (F₁ f ⟨$⟩ x) ≈ y ] coc-preorder : Preorder (o ⊔ c) (o ⊔ c) (o ⊔ ℓ ⊔ c ⊔ ℓ′) coc-preorder = record { Carrier = vertex-carrier ; _≈_ = _≡_ ; _∼_ = coc ; isPreorder = record { isEquivalence = ≡.isEquivalence ; reflexive = λ { {j , _} ≡.refl → J.id , (identity (F₀.refl j)) } ; trans = λ { {a , Sa} {b , Sb} {c , Sc} (f , eq₁) (g , eq₂) → let open RS (F₀ c) in g J.∘ f , (begin F₁ (g J.∘ f) ⟨$⟩ Sa ≈⟨ homomorphism (F₀.refl a) ⟩ F₁ g ⟨$⟩ (F₁ f ⟨$⟩ Sa) ≈⟨ Π.cong (F₁ g) eq₁ ⟩ F₁ g ⟨$⟩ Sb ≈⟨ eq₂ ⟩ Sc ∎) } } } Setoids-Cocomplete : (o ℓ e c ℓ′ : Level) → Cocomplete o ℓ e (Setoids (o ⊔ c) (o ⊔ ℓ ⊔ c ⊔ ℓ′)) Setoids-Cocomplete o ℓ e c ℓ′ {J} F = record { initial = record { ⊥ = record { N = ⇛-Setoid ; coapex = record { ψ = λ j → record { _⟨$⟩_ = j ,_ ; cong = λ i≈k → forth (-, identity i≈k) } ; commute = λ {X} X⇒Y x≈y → back (-, Π.cong (F₁ X⇒Y) (F₀.sym X x≈y)) } } ; ! = λ {K} → let module K = Cocone K in record { arr = record { _⟨$⟩_ = to-coapex K ; cong = minimal (coc c ℓ′ F) K.N (to-coapex K) (coapex-cong K) } ; commute = λ {X} x≈y → Π.cong (Coapex.ψ (Cocone.coapex K) X) x≈y } ; !-unique = λ { {K} f {a , Sa} {b , Sb} eq → let module K = Cocone K module f = Cocone⇒ f open RS K.N in begin K.ψ a ⟨$⟩ Sa ≈˘⟨ f.commute (F₀.refl a) ⟩ f.arr ⟨$⟩ (a , Sa) ≈⟨ Π.cong f.arr eq ⟩ f.arr ⟨$⟩ (b , Sb) ∎ } } } where open Functor F open Coc F module J = Category J module F₀ j = Setoid (F₀ j) open F₀ using () renaming (_≈_ to _[_≈_]) -- this is essentially a symmetric transitive closure of coc ⇛-Setoid : Setoid (o ⊔ c) (o ⊔ ℓ ⊔ c ⊔ ℓ′) ⇛-Setoid = ST.setoid (coc c ℓ′ F) (Preorder.refl (coc-preorder c ℓ′ F)) to-coapex : ∀ K → vertex-carrier c ℓ′ F → Setoid.Carrier (Cocone.N K) to-coapex K (j , Sj) = K.ψ j ⟨$⟩ Sj where module K = Cocone K coapex-cong : ∀ K → coc c ℓ′ F =[ to-coapex K ]⇒ (Setoid._≈_ (Cocone.N K)) coapex-cong K {X , x} {Y , y} (f , fx≈y) = begin K.ψ X ⟨$⟩ x ≈˘⟨ K.commute f (F₀.refl X) ⟩ K.ψ Y ⟨$⟩ (F₁ f ⟨$⟩ x) ≈⟨ Π.cong (K.ψ Y) fx≈y ⟩ K.ψ Y ⟨$⟩ y ∎ where module K = Cocone K open RS K.N Setoids-Complete : (o ℓ e c ℓ′ : Level) → Complete o ℓ e (Setoids (c ⊔ ℓ ⊔ o ⊔ ℓ′) (o ⊔ ℓ′)) Setoids-Complete o ℓ e c ℓ′ {J} F = record { terminal = record { ⊤ = record { N = record { Carrier = Σ (∀ j → F₀.Carrier j) (λ S → ∀ {X Y} (f : J [ X , Y ]) → [ F₀ Y ] F₁ f ⟨$⟩ S X ≈ S Y) ; _≈_ = λ { (S₁ , _) (S₂ , _) → ∀ j → [ F₀ j ] S₁ j ≈ S₂ j } ; isEquivalence = record { refl = λ j → F₀.refl j ; sym = λ a≈b j → F₀.sym j (a≈b j) ; trans = λ a≈b b≈c j → F₀.trans j (a≈b j) (b≈c j) } } ; apex = record { ψ = λ j → record { _⟨$⟩_ = λ { (S , _) → S j } ; cong = λ eq → eq j } ; commute = λ { {X} {Y} X⇒Y {_ , eq} {y} f≈g → F₀.trans Y (eq X⇒Y) (f≈g Y) } } } ; ! = λ {K} → let module K = Cone K in record { arr = record { _⟨$⟩_ = λ x → (λ j → K.ψ j ⟨$⟩ x) , λ f → K.commute f (Setoid.refl K.N) ; cong = λ a≈b j → Π.cong (K.ψ j) a≈b } ; commute = λ x≈y → Π.cong (K.ψ _) x≈y } ; !-unique = λ {K} f x≈y j → let module K = Cone K in F₀.sym j (Cone⇒.commute f (Setoid.sym K.N x≈y)) } } where open Functor F open Co F module J = Category J module F₀ j = Setoid (F₀ j) [_]_≈_ = Setoid._≈_
{ "alphanum_fraction": 0.4831397527, "avg_line_length": 34.6623376623, "ext": "agda", "hexsha": "fa4f959d0603469cb1fb41aa4c9c771128879d07", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MirceaS/agda-categories", "max_forks_repo_path": "src/Categories/Category/Instance/Properties/Setoids.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MirceaS/agda-categories", "max_issues_repo_path": "src/Categories/Category/Instance/Properties/Setoids.agda", "max_line_length": 99, "max_stars_count": null, "max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MirceaS/agda-categories", "max_stars_repo_path": "src/Categories/Category/Instance/Properties/Setoids.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2084, "size": 5338 }
open import Agda.Primitive variable ℓ : Level A : Set ℓ P : A → Set ℓ f : (x : A) → P x postulate R : (a : Level) → Set (lsuc a) r : (a : Level) → R a Id : (a : Level) (A : Set a) → A → A → Set a cong₂ : (a b c : Level) (A : Set a) (B : Set b) (C : Set c) (x y : A) (u v : B) (f : A → B → C) → Id c C (f x u) (f y v) foo : (x y u v : A) (g : A → A) → let a = _ in Id a (Id _ _ _ _) (cong₂ _ _ _ _ _ _ x y u v (λ x → f (g x))) (cong₂ _ _ _ _ _ _ (g x) (g y) u v f)
{ "alphanum_fraction": 0.397810219, "avg_line_length": 24.9090909091, "ext": "agda", "hexsha": "c5df27b7349587527475155402bc4502b3f177a5", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/Succeed/Issue4893.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue4893.agda", "max_line_length": 81, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue4893.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 245, "size": 548 }
open import Oscar.Prelude open import Oscar.Class open import Oscar.Class.Reflexivity module Oscar.Class.Reflexivity.Function where module _ {a} where instance 𝓡eflexivityFunction : Reflexivity.class Function⟦ a ⟧ 𝓡eflexivityFunction .⋆ = ¡
{ "alphanum_fraction": 0.7576923077, "avg_line_length": 16.25, "ext": "agda", "hexsha": "85999e23c4f708086562e294d75ef66b01c0d782", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Oscar/Class/Reflexivity/Function.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Oscar/Class/Reflexivity/Function.agda", "max_line_length": 57, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Oscar/Class/Reflexivity/Function.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 75, "size": 260 }
-- https://github.com/idris-lang/Idris-dev/blob/4e704011fb805fcb861cc9a1bd68a2e727cefdde/libs/contrib/Data/Nat/Fib.idr {-# OPTIONS --without-K --safe #-} -- agda-stdlib open import Algebra module Math.NumberTheory.Fibonacci.Generic {c e} (CM : CommutativeMonoid c e) (v0 v1 : CommutativeMonoid.Carrier CM) where -- agda-stdlib open import Data.Nat open import Function import Relation.Binary.PropositionalEquality as ≡ import Relation.Binary.Reasoning.Setoid as SetoidReasoning open CommutativeMonoid CM renaming ( Carrier to A ) open SetoidReasoning setoid fibRec : ℕ → A fibRec 0 = v0 fibRec 1 = v1 fibRec (suc (suc n)) = fibRec (suc n) ∙ fibRec n fibAcc : ℕ → A → A → A fibAcc 0 a b = a fibAcc (suc n) a b = fibAcc n b (a ∙ b) fib : ℕ → A fib n = fibAcc n v0 v1 lemma : ∀ m n o p → (m ∙ n) ∙ (o ∙ p) ≈ (m ∙ o) ∙ (n ∙ p) lemma m n o p = begin (m ∙ n) ∙ (o ∙ p) ≈⟨ assoc m n (o ∙ p) ⟩ m ∙ (n ∙ (o ∙ p)) ≈⟨ sym $ ∙-congˡ $ assoc n o p ⟩ m ∙ ((n ∙ o) ∙ p) ≈⟨ ∙-congˡ $ ∙-congʳ $ comm n o ⟩ m ∙ ((o ∙ n) ∙ p) ≈⟨ ∙-congˡ $ assoc o n p ⟩ m ∙ (o ∙ (n ∙ p)) ≈⟨ sym $ assoc m o (n ∙ p) ⟩ (m ∙ o) ∙ (n ∙ p) ∎ fibAcc-cong : ∀ {m n o p q r} → m ≡.≡ n → o ≈ p → q ≈ r → fibAcc m o q ≈ fibAcc n p r fibAcc-cong {zero} {.0} {o} {p} {q} {r} ≡.refl o≈p q≈r = o≈p fibAcc-cong {suc m} {.(suc m)} {o} {p} {q} {r} ≡.refl o≈p q≈r = fibAcc-cong {m = m} ≡.refl q≈r (∙-cong o≈p q≈r) fibAdd : ∀ m n o p q → fibAcc m n o ∙ fibAcc m p q ≈ fibAcc m (n ∙ p) (o ∙ q) fibAdd 0 n o p q = refl fibAdd 1 n o p q = refl fibAdd (suc (suc m)) n o p q = begin fibAcc (2 + m) n o ∙ fibAcc (2 + m) p q ≡⟨⟩ fibAcc (1 + m) o (n ∙ o) ∙ fibAcc (1 + m) q (p ∙ q) ≡⟨⟩ fibAcc m (n ∙ o) (o ∙ (n ∙ o)) ∙ fibAcc m (p ∙ q) (q ∙ (p ∙ q)) ≈⟨ fibAdd m (n ∙ o) (o ∙ (n ∙ o)) (p ∙ q) (q ∙ (p ∙ q)) ⟩ fibAcc m ((n ∙ o) ∙ (p ∙ q)) ((o ∙ (n ∙ o)) ∙ (q ∙ (p ∙ q))) ≈⟨ fibAcc-cong {m = m} ≡.refl (lemma n o p q) (lemma o (n ∙ o) q (p ∙ q)) ⟩ fibAcc m ((n ∙ p) ∙ (o ∙ q)) ((o ∙ q) ∙ ((n ∙ o) ∙ (p ∙ q))) ≈⟨ fibAcc-cong {m = m} ≡.refl refl (∙-congˡ $ lemma n o p q) ⟩ fibAcc m ((n ∙ p) ∙ (o ∙ q)) ((o ∙ q) ∙ ((n ∙ p) ∙ (o ∙ q))) ≡⟨⟩ fibAcc (1 + m) (o ∙ q) ((n ∙ p) ∙ (o ∙ q)) ≡⟨⟩ fibAcc (2 + m) (n ∙ p) (o ∙ q) ∎ fibRec≈fib : ∀ n → fibRec n ≈ fib n fibRec≈fib 0 = refl fibRec≈fib 1 = refl fibRec≈fib (suc (suc n)) = begin fibRec (2 + n) ≡⟨⟩ fibRec (1 + n) ∙ fibRec n ≈⟨ ∙-cong (fibRec≈fib (suc n)) (fibRec≈fib n) ⟩ fib (1 + n) ∙ fib n ≡⟨⟩ fibAcc (1 + n) v0 v1 ∙ fibAcc n v0 v1 ≡⟨⟩ fibAcc n v1 (v0 ∙ v1) ∙ fibAcc n v0 v1 ≈⟨ fibAdd n v1 (v0 ∙ v1) v0 v1 ⟩ fibAcc n (v1 ∙ v0) ((v0 ∙ v1) ∙ v1) ≈⟨ fibAcc-cong {m = n} ≡.refl (comm v1 v0) (trans (∙-congʳ (comm v0 v1)) (assoc v1 v0 v1)) ⟩ fibAcc n (v0 ∙ v1) (v1 ∙ (v0 ∙ v1)) ≡⟨⟩ fib (2 + n) ∎ fib[2+n]≈fib[1+n]∙fib[n] : ∀ n → fib (suc (suc n)) ≈ fib (suc n) ∙ fib n fib[2+n]≈fib[1+n]∙fib[n] n = trans (sym $ fibRec≈fib (suc (suc n))) (∙-cong (fibRec≈fib (suc n)) (fibRec≈fib n)) fib[1+n]∙fib[n]≈fib[2+n] : ∀ n → fib (suc n) ∙ fib n ≈ fib (suc (suc n)) fib[1+n]∙fib[n]≈fib[2+n] n = sym $ fib[2+n]≈fib[1+n]∙fib[n] n fib[n]∙fib[1+n]≈fib[2+n] : ∀ n → fib n ∙ fib (suc n) ≈ fib (suc (suc n)) fib[n]∙fib[1+n]≈fib[2+n] n = trans (comm (fib n) (fib (suc n))) (fib[1+n]∙fib[n]≈fib[2+n] n)
{ "alphanum_fraction": 0.4755820557, "avg_line_length": 39.5730337079, "ext": "agda", "hexsha": "64ba2d7715e55abcca5c65d3aabafa6c090d7248", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rei1024/agda-misc", "max_forks_repo_path": "Math/NumberTheory/Fibonacci/Generic.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rei1024/agda-misc", "max_issues_repo_path": "Math/NumberTheory/Fibonacci/Generic.agda", "max_line_length": 141, "max_stars_count": 3, "max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rei1024/agda-misc", "max_stars_repo_path": "Math/NumberTheory/Fibonacci/Generic.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z", "num_tokens": 1794, "size": 3522 }
module Lib.Maybe where data Maybe (A : Set) : Set where nothing : Maybe A just : A -> Maybe A {-# COMPILE GHC Maybe = data Maybe (Nothing | Just) #-}
{ "alphanum_fraction": 0.6149068323, "avg_line_length": 16.1, "ext": "agda", "hexsha": "e563a6717d7872b79b0d83a9dd8d1914811385a9", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "examples/simple-lib/Lib/Maybe.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "examples/simple-lib/Lib/Maybe.agda", "max_line_length": 55, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "examples/simple-lib/Lib/Maybe.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 46, "size": 161 }
module Subst where open import Prelude open import Lambda infix 100 _[_] _[_:=_] _↑ infixl 100 _↑_ _↑ˢ_ _↑ˣ_ _↓ˣ_ infixl 60 _-_ {- _-_ : {τ : Type}(Γ : Ctx) -> Var Γ τ -> Ctx ε - () Γ , τ - vz = Γ Γ , τ - vs x = (Γ - x) , τ wkˣ : {Γ : Ctx}{σ τ : Type} (x : Var Γ σ) -> Var (Γ - x) τ -> Var Γ τ wkˣ vz y = vs y wkˣ (vs x) vz = vz wkˣ (vs x) (vs y) = vs (wkˣ x y) wk : {Γ : Ctx}{σ τ : Type} (x : Var Γ σ) -> Term (Γ - x) τ -> Term Γ τ wk x (var y) = var (wkˣ x y) wk x (s • t) = wk x s • wk x t wk x (ƛ t) = ƛ wk (vs x) t _↑ : {Γ : Ctx}{σ τ : Type} -> Term Γ τ -> Term (Γ , σ) τ t ↑ = wk vz t _↑_ : {Γ : Ctx}{τ : Type} -> Term Γ τ -> (Δ : Ctx) -> Term (Γ ++ Δ) τ t ↑ ε = t t ↑ (Δ , σ) = (t ↑ Δ) ↑ data Cmpˣ {Γ : Ctx}{τ : Type}(x : Var Γ τ) : {σ : Type} -> Var Γ σ -> Set where same : Cmpˣ x x diff : {σ : Type}(y : Var (Γ - x) σ) -> Cmpˣ x (wkˣ x y) _≟_ : {Γ : Ctx}{σ τ : Type}(x : Var Γ σ)(y : Var Γ τ) -> Cmpˣ x y vz ≟ vz = same vz ≟ vs y = diff y vs x ≟ vz = diff vz vs x ≟ vs y with x ≟ y vs x ≟ vs .x | same = same vs x ≟ vs .(wkˣ x y) | diff y = diff (vs y) _[_:=_] : {Γ : Ctx}{σ τ : Type} -> Term Γ σ -> (x : Var Γ τ) -> Term (Γ - x) τ -> Term (Γ - x) σ var y [ x := u ] with x ≟ y var .x [ x := u ] | same = u var .(wkˣ x y) [ x := u ] | diff y = var y (s • t) [ x := u ] = s [ x := u ] • t [ x := u ] (ƛ t) [ x := u ] = ƛ t [ vs x := u ↑ ] -} infix 30 _─⟶_ infixl 90 _/_ _─⟶_ : Ctx -> Ctx -> Set Γ ─⟶ Δ = Terms Γ Δ idS : forall {Γ} -> Γ ─⟶ Γ idS = tabulate var infixr 80 _∘ˢ_ [_] : forall {Γ σ } -> Term Γ σ -> Γ ─⟶ Γ , σ [ t ] = idS ◄ t wkS : forall {Γ Δ τ} -> Γ ─⟶ Δ -> Γ , τ ─⟶ Δ wkS ∅ = ∅ wkS (θ ◄ t) = wkS θ ◄ wk t _↑ : forall {Γ Δ τ} -> (Γ ─⟶ Δ) -> Γ , τ ─⟶ Δ , τ θ ↑ = wkS θ ◄ vz _/_ : forall {Γ Δ τ} -> Term Δ τ -> Γ ─⟶ Δ -> Term Γ τ vz / (θ ◄ u) = u wk t / (θ ◄ u) = t / θ (s • t) / θ = s / θ • t / θ (ƛ t) / θ = ƛ t / θ ↑ _∘ˢ_ : forall {Γ Δ Θ} -> Δ ─⟶ Θ -> Γ ─⟶ Δ -> Γ ─⟶ Θ ∅ ∘ˢ θ = ∅ (δ ◄ t) ∘ˢ θ = δ ∘ˢ θ ◄ t / θ inj : forall {Γ Δ τ} Θ -> Term Γ τ -> Γ ─⟶ Δ ++ Θ -> Γ ─⟶ Δ , τ ++ Θ inj ε t θ = θ ◄ t inj (Θ , σ) t (θ ◄ u) = inj Θ t θ ◄ u [_⟵_] : forall {Γ τ} Δ -> Term (Γ ++ Δ) τ -> Γ ++ Δ ─⟶ Γ , τ ++ Δ [ Δ ⟵ t ] = inj Δ t idS _↑_ : forall {Γ σ} -> Term Γ σ -> (Δ : Ctx) -> Term (Γ ++ Δ) σ t ↑ ε = t t ↑ (Δ , τ) = wk (t ↑ Δ) _↑ˢ_ : forall {Γ Δ} -> Terms Γ Δ -> (Θ : Ctx) -> Terms (Γ ++ Θ) Δ ∅ ↑ˢ Θ = ∅ (ts ◄ t) ↑ˢ Θ = ts ↑ˢ Θ ◄ t ↑ Θ _↑ˣ_ : forall {Γ τ} -> Var Γ τ -> (Δ : Ctx) -> Var (Γ ++ Δ) τ x ↑ˣ ε = x x ↑ˣ (Δ , σ) = vsuc (x ↑ˣ Δ) lem-var-↑ˣ : forall {Γ τ}(x : Var Γ τ)(Δ : Ctx) -> var (x ↑ˣ Δ) ≡ var x ↑ Δ lem-var-↑ˣ x ε = refl lem-var-↑ˣ x (Δ , σ) = cong wk (lem-var-↑ˣ x Δ) {- Not true! lem-•-↑ : forall {Γ σ τ}(t : Term Γ (σ ⟶ τ))(u : Term Γ σ) Δ -> (t ↑ Δ) • (u ↑ Δ) ≡ (t • u) ↑ Δ lem-•-↑ t u ε = refl lem-•-↑ t u (Δ , δ) = {! !} lem-•ˢ-↑ : forall {Γ Θ τ}(t : Term Γ (Θ ⇒ τ))(ts : Terms Γ Θ) Δ -> (t ↑ Δ) •ˢ (ts ↑ˢ Δ) ≡ (t •ˢ ts) ↑ Δ lem-•ˢ-↑ t ∅ Δ = refl lem-•ˢ-↑ t (u ◄ us) Δ = {! !} -} {- _[_] : {Γ : Ctx}{σ τ : Type} -> Term (Γ , τ) σ -> Term Γ τ -> Term Γ σ t [ u ] = t / [ u ] -} {- vz [ u ] = u wk t [ u ] = {! !} (s • t) [ u ] = {! !} (ƛ_ {τ = ρ} t) [ u ] = ƛ {! !} -} {- _↓ˣ_ : {Γ : Ctx}{σ τ : Type} (y : Var Γ σ)(x : Var (Γ - y) τ) -> Var (Γ - wkˣ y x) σ vz ↓ˣ x = vz vs y ↓ˣ vz = y vs y ↓ˣ vs x = vs (y ↓ˣ x) lem-commute-minus : {Γ : Ctx}{σ τ : Type}(y : Var Γ σ)(x : Var (Γ - y) τ) -> Γ - y - x ≡ Γ - wkˣ y x - (y ↓ˣ x) lem-commute-minus vz x = refl lem-commute-minus (vs y) vz = refl lem-commute-minus (vs {Γ} y) (vs x) with Γ - y - x | lem-commute-minus y x ... | ._ | refl = refl Lem-wk-[] : {Γ : Ctx}{τ σ ρ : Type} (y : Var Γ τ) (x : Var (Γ - y) σ) (t : Term (Γ - wkˣ y x) ρ) (u : Term (Γ - y - x) τ) -> Set Lem-wk-[] {Γ}{τ}{σ}{ρ} y x t u = wk (wkˣ y x) t [ y := wk x u ] ≡ wk x t[u']' where u' : Term (Γ - wkˣ y x - y ↓ˣ x) τ u' = subst (\Δ -> Term Δ τ) (sym (lem-commute-minus y x)) u t[u']' : Term (Γ - y - x) ρ t[u']' = subst (\Δ -> Term Δ ρ) (lem-commute-minus y x) (t [ y ↓ˣ x := u' ]) postulate lem-wk-[] : {Γ : Ctx}{σ τ ρ : Type} (y : Var Γ τ)(x : Var (Γ - y) σ) (t : Term (Γ - wkˣ y x) ρ){u : Term (Γ - y - x) τ} -> Lem-wk-[] y x t u {- lem-wk-[] y x (var z) = {! !} lem-wk-[] y x (t • u) = {! !} lem-wk-[] y x (ƛ t) = {! !} -} lem-wk-[]' : {Γ : Ctx}{σ τ ρ : Type} (x : Var Γ σ)(t : Term (Γ - x , ρ) τ){u : Term (Γ - x) ρ} -> wk x (t [ vz := u ]) ≡ wk (vs x) t [ vz := wk x u ] lem-wk-[]' x t = sym (lem-wk-[] vz x t) -}
{ "alphanum_fraction": 0.3877466251, "avg_line_length": 25.6117021277, "ext": "agda", "hexsha": "d25509ae650c0de596d00b7166c2dd44469910b4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/tait/Subst.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/tait/Subst.agda", "max_line_length": 74, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "examples/outdated-and-incorrect/tait/Subst.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 2468, "size": 4815 }
{-# OPTIONS --safe #-} open import Definition.Typed.EqualityRelation module Definition.LogicalRelation.Substitution.Introductions.IdUniv {{eqrel : EqRelSet}} where open EqRelSet {{...}} open import Definition.Untyped open import Definition.Untyped.Properties open import Definition.Typed open import Definition.Typed.Properties import Definition.Typed.Weakening as Twk open import Definition.Typed.EqualityRelation open import Definition.Typed.RedSteps open import Definition.LogicalRelation open import Definition.LogicalRelation.ShapeView open import Definition.LogicalRelation.Irrelevance open import Definition.LogicalRelation.Properties open import Definition.LogicalRelation.Application open import Definition.LogicalRelation.Substitution import Definition.LogicalRelation.Weakening as Lwk open import Definition.LogicalRelation.Substitution.Properties import Definition.LogicalRelation.Substitution.Irrelevance as S open import Definition.LogicalRelation.Substitution.Reflexivity open import Definition.LogicalRelation.Substitution.Weakening -- open import Definition.LogicalRelation.Substitution.Introductions.Nat open import Definition.LogicalRelation.Substitution.Introductions.Empty open import Definition.LogicalRelation.Substitution.Introductions.Pi open import Definition.LogicalRelation.Substitution.Introductions.Idlemmas open import Definition.LogicalRelation.Substitution.MaybeEmbed -- open import Definition.LogicalRelation.Substitution.Introductions.SingleSubst open import Definition.LogicalRelation.Substitution.Introductions.Universe open import Tools.Product open import Tools.Empty import Tools.Unit as TU import Tools.PropositionalEquality as PE import Data.Nat as Nat [Id]SProp : ∀ {t u Γ} (⊢Γ : ⊢ Γ) ([t] : Γ ⊩⟨ ι ⁰ ⟩ t ^ [ % , ι ⁰ ]) ([u] : Γ ⊩⟨ ι ⁰ ⟩ u ^ [ % , ι ⁰ ]) → Γ ⊩⟨ ι ¹ ⟩ Id (SProp ⁰) t u ^ [ % , ι ¹ ] [Id]SProp {t} {u} {Γ} ⊢Γ [t] [u] = let ⊢t = escape [t] ⊢u = escape [u] ⊢wkt = Twk.wk (Twk.step Twk.id) (⊢Γ ∙ ⊢u) ⊢t ⊢wku = Twk.wk (Twk.step Twk.id) (⊢Γ ∙ ⊢t) ⊢u [wkt] = λ {ρ} {Δ} ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → Lwk.wk [ρ] ⊢Δ [t] [wku] = λ {ρ} {Δ} ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → Lwk.wk [ρ] ⊢Δ [u] [t▹u] : Γ ⊩⟨ ι ⁰ ⟩ t ^ % ° ⁰ ▹▹ u ° ⁰ ° ¹ ^ [ % , ι ¹ ] [t▹u] = Πᵣ′ % ⁰ ⁰ (<is≤ 0<1) (<is≤ 0<1) t (wk1 u) (idRed:*: (univ (Πⱼ <is≤ 0<1 ▹ <is≤ 0<1 ▹ un-univ ⊢t ▹ un-univ ⊢wku))) ⊢t ⊢wku (≅-univ (≅ₜ-Π-cong (<is≤ 0<1) (<is≤ 0<1) ⊢t (≅-un-univ (escapeEqRefl [t])) (≅-un-univ (≅-wk (Twk.step Twk.id) (⊢Γ ∙ ⊢t) (escapeEqRefl [u]))))) [wkt] ([nondep] [u] [wkt]) ([nondepext] [u] [wkt]) [u▹t] : Γ ⊩⟨ ι ⁰ ⟩ u ^ % ° ⁰ ▹▹ t ° ⁰ ° ¹ ^ [ % , ι ¹ ] [u▹t] = Πᵣ′ % ⁰ ⁰ (<is≤ 0<1) (<is≤ 0<1) u (wk1 t) (idRed:*: (univ (Πⱼ <is≤ 0<1 ▹ <is≤ 0<1 ▹ un-univ ⊢u ▹ un-univ ⊢wkt))) ⊢u ⊢wkt (≅-univ (≅ₜ-Π-cong (<is≤ 0<1) (<is≤ 0<1) ⊢u (≅-un-univ (escapeEqRefl [u])) (≅-un-univ (≅-wk (Twk.step Twk.id) (⊢Γ ∙ ⊢u) (escapeEqRefl [t]))))) [wku] ([nondep] [t] [wku]) ([nondepext] [t] [wku]) [wkt▹u] = λ {ρ} {Δ} ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → Lwk.wk [ρ] ⊢Δ (emb emb< [t▹u]) ⊢t▹u = escape [t▹u] ⊢u▹t = Twk.wk (Twk.step Twk.id) (⊢Γ ∙ ⊢t▹u) (escape [u▹t]) ⊢Id = univ (Idⱼ (univ 0<1 ⊢Γ) (un-univ ⊢t) (un-univ ⊢u)) ⊢Eq = univ (∃ⱼ un-univ ⊢t▹u ▹ un-univ ⊢u▹t) in ∃ᵣ′ (t ^ % ° ⁰ ▹▹ u ° ⁰ ° ¹) (wk1 (u ^ % ° ⁰ ▹▹ t ° ⁰ ° ¹)) [[ ⊢Id , ⊢Eq , univ (Id-SProp (un-univ ⊢t) (un-univ ⊢u)) ⇨ id ⊢Eq ]] ⊢t▹u ⊢u▹t (≅-univ (≅ₜ-∃-cong ⊢t▹u (≅-un-univ (escapeEqRefl [t▹u])) (≅-un-univ (≅-wk (Twk.step Twk.id) (⊢Γ ∙ ⊢t▹u) (escapeEqRefl [u▹t]))))) [wkt▹u] ([nondep] (emb emb< [u▹t]) [wkt▹u]) ([nondepext] (emb emb< [u▹t]) [wkt▹u]) [IdExt]SProp : ∀ {t t′ u u′ Γ} (⊢Γ : ⊢ Γ) ([t] : Γ ⊩⟨ ι ⁰ ⟩ t ^ [ % , ι ⁰ ]) ([t′] : Γ ⊩⟨ ι ⁰ ⟩ t′ ^ [ % , ι ⁰ ]) ([t≡t′] : Γ ⊩⟨ ι ⁰ ⟩ t ≡ t′ ^ [ % , ι ⁰ ] / [t]) ([u] : Γ ⊩⟨ ι ⁰ ⟩ u ^ [ % , ι ⁰ ]) ([u′] : Γ ⊩⟨ ι ⁰ ⟩ u′ ^ [ % , ι ⁰ ]) ([u≡u′] : Γ ⊩⟨ ι ⁰ ⟩ u ≡ u′ ^ [ % , ι ⁰ ] / [u]) → Γ ⊩⟨ ι ¹ ⟩ Id (SProp ⁰) t u ≡ Id (SProp ⁰) t′ u′ ^ [ % , ι ¹ ] / [Id]SProp ⊢Γ [t] [u] [IdExt]SProp {t} {t′} {u} {u′} {Γ} ⊢Γ [t] [t′] [t≡t′] [u] [u′] [u≡u′] = let ⊢t = escape [t] ⊢t′ = escape [t′] ⊢u = escape [u] ⊢u′ = escape [u′] ⊢t≡t′ = ≅-un-univ (escapeEq [t] [t≡t′]) ⊢u≡u′ = ≅-un-univ (escapeEq [u] [u≡u′]) ⊢wkt = Twk.wk (Twk.step Twk.id) (⊢Γ ∙ ⊢u) ⊢t ⊢wku = Twk.wk (Twk.step Twk.id) (⊢Γ ∙ ⊢t) ⊢u [wkt] = λ {ρ} {Δ} ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → Lwk.wk [ρ] ⊢Δ [t] [wku] = λ {ρ} {Δ} ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → Lwk.wk [ρ] ⊢Δ [u] ⊢wkt′ = Twk.wk (Twk.step Twk.id) (⊢Γ ∙ ⊢u′) ⊢t′ ⊢wku′ = Twk.wk (Twk.step Twk.id) (⊢Γ ∙ ⊢t′) ⊢u′ [wkt′] = λ {ρ} {Δ} ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → Lwk.wk [ρ] ⊢Δ [t′] [wku′] = λ {ρ} {Δ} ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → Lwk.wk [ρ] ⊢Δ [u′] [t▹u] : Γ ⊩⟨ ι ⁰ ⟩ t ^ % ° ⁰ ▹▹ u ° ⁰ ° ¹ ^ [ % , ι ¹ ] [t▹u] = Πᵣ′ % ⁰ ⁰ (<is≤ 0<1) (<is≤ 0<1) t (wk1 u) (idRed:*: (univ (Πⱼ <is≤ 0<1 ▹ <is≤ 0<1 ▹ un-univ ⊢t ▹ un-univ ⊢wku))) ⊢t ⊢wku (≅-univ (≅ₜ-Π-cong (<is≤ 0<1) (<is≤ 0<1) ⊢t (≅-un-univ (escapeEqRefl [t])) (≅-un-univ (≅-wk (Twk.step Twk.id) (⊢Γ ∙ ⊢t) (escapeEqRefl [u]))))) [wkt] ([nondep] [u] [wkt]) ([nondepext] [u] [wkt]) [u▹t] : Γ ⊩⟨ ι ⁰ ⟩ u ^ % ° ⁰ ▹▹ t ° ⁰ ° ¹ ^ [ % , ι ¹ ] [u▹t] = Πᵣ′ % ⁰ ⁰ (<is≤ 0<1) (<is≤ 0<1) u (wk1 t) (idRed:*: (univ (Πⱼ <is≤ 0<1 ▹ <is≤ 0<1 ▹ un-univ ⊢u ▹ un-univ ⊢wkt))) ⊢u ⊢wkt (≅-univ (≅ₜ-Π-cong (<is≤ 0<1) (<is≤ 0<1) ⊢u (≅-un-univ (escapeEqRefl [u])) (≅-un-univ (≅-wk (Twk.step Twk.id) (⊢Γ ∙ ⊢u) (escapeEqRefl [t]))))) [wku] ([nondep] [t] [wku]) ([nondepext] [t] [wku]) [t▹u′] : Γ ⊩⟨ ι ⁰ ⟩ t′ ^ % ° ⁰ ▹▹ u′ ° ⁰ ° ¹ ^ [ % , ι ¹ ] [t▹u′] = Πᵣ′ % ⁰ ⁰ (<is≤ 0<1) (<is≤ 0<1) t′ (wk1 u′) (idRed:*: (univ (Πⱼ <is≤ 0<1 ▹ <is≤ 0<1 ▹ un-univ ⊢t′ ▹ un-univ ⊢wku′))) ⊢t′ ⊢wku′ (≅-univ (≅ₜ-Π-cong (<is≤ 0<1) (<is≤ 0<1) ⊢t′ (≅-un-univ (escapeEqRefl [t′])) (≅-un-univ (≅-wk (Twk.step Twk.id) (⊢Γ ∙ ⊢t′) (escapeEqRefl [u′]))))) [wkt′] ([nondep] [u′] [wkt′]) ([nondepext] [u′] [wkt′]) [u▹t′] : Γ ⊩⟨ ι ⁰ ⟩ u′ ^ % ° ⁰ ▹▹ t′ ° ⁰ ° ¹ ^ [ % , ι ¹ ] [u▹t′] = Πᵣ′ % ⁰ ⁰ (<is≤ 0<1) (<is≤ 0<1) u′ (wk1 t′) (idRed:*: (univ (Πⱼ <is≤ 0<1 ▹ <is≤ 0<1 ▹ un-univ ⊢u′ ▹ un-univ ⊢wkt′))) ⊢u′ ⊢wkt′ (≅-univ (≅ₜ-Π-cong (<is≤ 0<1) (<is≤ 0<1) ⊢u′ (≅-un-univ (escapeEqRefl [u′])) (≅-un-univ (≅-wk (Twk.step Twk.id) (⊢Γ ∙ ⊢u′) (escapeEqRefl [t′]))))) [wku′] ([nondep] [t′] [wku′]) ([nondepext] [t′] [wku′]) [t▹u≡t▹u′] : Γ ⊩⟨ ι ⁰ ⟩ t ^ % ° ⁰ ▹▹ u ° ⁰ ° ¹ ≡ t′ ^ % ° ⁰ ▹▹ u′ ° ⁰ ° ¹ ^ [ % , ι ¹ ] / [t▹u] [t▹u≡t▹u′] = Π₌ t′ (wk1 u′) (id (univ (Πⱼ <is≤ 0<1 ▹ <is≤ 0<1 ▹ un-univ ⊢t′ ▹ un-univ ⊢wku′))) (≅-univ (≅ₜ-Π-cong (<is≤ 0<1) (<is≤ 0<1) ⊢t ⊢t≡t′ (≅ₜ-wk (Twk.step Twk.id) (⊢Γ ∙ ⊢t) ⊢u≡u′))) (λ {ρ} {Δ} ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → Lwk.wkEq [ρ] ⊢Δ (emb emb< [t]) [t≡t′]) ([nondepext'] [u] [u′] [u≡u′] [wkt] [wkt′]) [u▹t≡u▹t′] : Γ ⊩⟨ ι ⁰ ⟩ u ^ % ° ⁰ ▹▹ t ° ⁰ ° ¹ ≡ u′ ^ % ° ⁰ ▹▹ t′ ° ⁰ ° ¹ ^ [ % , ι ¹ ] / [u▹t] [u▹t≡u▹t′] = Π₌ u′ (wk1 t′) (id (univ (Πⱼ <is≤ 0<1 ▹ <is≤ 0<1 ▹ un-univ ⊢u′ ▹ un-univ ⊢wkt′))) (≅-univ (≅ₜ-Π-cong (<is≤ 0<1) (<is≤ 0<1) ⊢u ⊢u≡u′ (≅ₜ-wk (Twk.step Twk.id) (⊢Γ ∙ ⊢u) ⊢t≡t′))) (λ {ρ} {Δ} ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → Lwk.wkEq [ρ] ⊢Δ (emb emb< [u]) [u≡u′]) ([nondepext'] [t] [t′] [t≡t′] [wku] [wku′]) ⊢t▹u = escape [t▹u] in ∃₌ {l′ = ¹} (t′ ^ % ° ⁰ ▹▹ u′ ° ⁰ ° ¹ ) (wk1 (u′ ^ % ° ⁰ ▹▹ t′ ° ⁰ ° ¹ )) (univ (Id-SProp (un-univ ⊢t′) (un-univ ⊢u′)) ⇨ id (univ (××ⱼ (▹▹ⱼ <is≤ 0<1 ▹ <is≤ 0<1 ▹ un-univ ⊢t′ ▹ un-univ ⊢u′) ▹ (▹▹ⱼ <is≤ 0<1 ▹ <is≤ 0<1 ▹ un-univ ⊢u′ ▹ un-univ ⊢t′)))) (≅-univ (≅ₜ-∃-cong ⊢t▹u (≅ₜ-Π-cong (<is≤ 0<1) (<is≤ 0<1) ⊢t ⊢t≡t′ (≅ₜ-wk (Twk.step Twk.id) (⊢Γ ∙ ⊢t) ⊢u≡u′)) (≅ₜ-Π-cong (<is≤ 0<1) (<is≤ 0<1) (Twk.wk (Twk.step Twk.id) (⊢Γ ∙ ⊢t▹u) ⊢u) (≅ₜ-wk (Twk.step Twk.id) (⊢Γ ∙ ⊢t▹u) ⊢u≡u′) (≅ₜ-wk (Twk.lift (Twk.step Twk.id)) ((⊢Γ ∙ ⊢t▹u) ∙ (Twk.wk (Twk.step Twk.id) (⊢Γ ∙ ⊢t▹u) ⊢u)) (≅ₜ-wk (Twk.step Twk.id) (⊢Γ ∙ ⊢u) ⊢t≡t′)) ))) (λ {ρ} {Δ} ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → Lwk.wkEq [ρ] ⊢Δ [t▹u] [t▹u≡t▹u′]) ([nondepext'] (emb emb< [u▹t]) (emb emb< [u▹t′]) [u▹t≡u▹t′] (λ {ρ} {Δ} ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → Lwk.wk [ρ] ⊢Δ (emb emb< [t▹u])) (λ {ρ} {Δ} ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → Lwk.wk [ρ] ⊢Δ (emb emb< [t▹u′]))) [Id]U : ∀ {A B Γ} (⊢Γ : ⊢ Γ) ([A] : Γ ⊩⟨ ι ⁰ ⟩ A ^ [ ! , ι ⁰ ]) ([B] : Γ ⊩⟨ ι ⁰ ⟩ B ^ [ ! , ι ⁰ ]) → Γ ⊩⟨ ι ¹ ⟩ Id (U ⁰) A B ^ [ % , ι ¹ ] [IdExtShape]U : ∀ {A A′ B B′ Γ} (⊢Γ : ⊢ Γ) ([A] : Γ ⊩⟨ ι ⁰ ⟩ A ^ [ ! , ι ⁰ ]) ([A′] : Γ ⊩⟨ ι ⁰ ⟩ A′ ^ [ ! , ι ⁰ ]) (ShapeA : ShapeView Γ (ι ⁰) (ι ⁰) A A′ [ ! , ι ⁰ ] [ ! , ι ⁰ ] [A] [A′]) ([A≡A′] : Γ ⊩⟨ ι ⁰ ⟩ A ≡ A′ ^ [ ! , ι ⁰ ] / [A]) ([B] : Γ ⊩⟨ ι ⁰ ⟩ B ^ [ ! , ι ⁰ ]) ([B′] : Γ ⊩⟨ ι ⁰ ⟩ B′ ^ [ ! , ι ⁰ ]) (ShapeB : ShapeView Γ (ι ⁰) (ι ⁰) B B′ [ ! , ι ⁰ ] [ ! , ι ⁰ ] [B] [B′]) ([B≡B′] : Γ ⊩⟨ ι ⁰ ⟩ B ≡ B′ ^ [ ! , ι ⁰ ] / [B]) → Γ ⊩⟨ ι ¹ ⟩ Id (U ⁰) A B ≡ Id (U ⁰) A′ B′ ^ [ % , ι ¹ ] / [Id]U ⊢Γ [A] [B] [IdExt]U : ∀ {A A′ B B′ Γ} (⊢Γ : ⊢ Γ) ([A] : Γ ⊩⟨ ι ⁰ ⟩ A ^ [ ! , ι ⁰ ]) ([A′] : Γ ⊩⟨ ι ⁰ ⟩ A′ ^ [ ! , ι ⁰ ]) ([A≡A′] : Γ ⊩⟨ ι ⁰ ⟩ A ≡ A′ ^ [ ! , ι ⁰ ] / [A]) ([B] : Γ ⊩⟨ ι ⁰ ⟩ B ^ [ ! , ι ⁰ ]) ([B′] : Γ ⊩⟨ ι ⁰ ⟩ B′ ^ [ ! , ι ⁰ ]) ([B≡B′] : Γ ⊩⟨ ι ⁰ ⟩ B ≡ B′ ^ [ ! , ι ⁰ ] / [B]) → Γ ⊩⟨ ι ¹ ⟩ Id (U ⁰) A B ≡ Id (U ⁰) A′ B′ ^ [ % , ι ¹ ] / [Id]U ⊢Γ [A] [B] [Id]U {A} {B} ⊢Γ (ne′ K D neK K≡K) [B] = let ⊢B = escape [B] B≡B = escapeEqRefl [B] in ne (ne (Id (U ⁰) K B) (univ:⇒*: (IdURed*Term (un-univ:⇒*: D) (un-univ ⊢B))) (IdUₙ neK) (~-IdU ⊢Γ K≡K (≅-un-univ B≡B))) [Id]U ⊢Γ (ℕᵣ [[ ⊢A , ⊢K , D ]]) (ℕᵣ [[ ⊢B , ⊢L , D₁ ]]) = let ⊢tA = (subset* D) in proj₁ (redSubst* (trans⇒* (univ⇒* (IdURed*Term′ (un-univ ⊢A) (un-univ ⊢K) (un-univ⇒* D) (un-univ ⊢B))) (trans⇒* (univ⇒* (IdUℕRed*Term′ (un-univ ⊢B) (un-univ ⊢L) (un-univ⇒* D₁))) (univ (Id-U-ℕℕ ⊢Γ) ⇨ id (univ (Unitⱼ ⊢Γ))))) (UnitType ⊢Γ)) [Id]U ⊢Γ (ℕᵣ D) (ne′ K D₁ neK K≡K) = let [B] = ne′ K D₁ neK K≡K ⊢B = escape {l = ι ¹} [B] in ne′ (Id (U ⁰) ℕ K) (univ:⇒*: (transTerm:⇒:* (IdURed*Term (un-univ:⇒*: D) (un-univ ⊢B) ) (IdUℕRed*Term (un-univ:⇒*: D₁)))) (IdUℕₙ neK) (~-IdUℕ ⊢Γ K≡K) [Id]U ⊢Γ (ℕᵣ [[ ⊢A , ⊢ℕ , D ]]) (Πᵣ′ rF lF lG (≡is≤ PE.refl) (≡is≤ PE.refl) F G D′ ⊢F ⊢G A≡A [F] [G] G-ext) = let [B] = Πᵣ′ rF lF lG (≡is≤ PE.refl) (≡is≤ PE.refl) F G D′ ⊢F ⊢G A≡A [F] [G] G-ext ⊢B = escape [B] in proj₁ (redSubst* (trans⇒* (univ⇒* (IdURed*Term′ (un-univ ⊢A) (un-univ ⊢ℕ) (un-univ⇒* D) (un-univ ⊢B))) (trans⇒* (univ⇒* (IdUℕRed*Term′ (un-univ ⊢B) (Πⱼ ≡is≤ PE.refl ▹ ≡is≤ PE.refl ▹ (un-univ ⊢F) ▹ (un-univ ⊢G)) (un-univ⇒* (red D′)))) (univ (Id-U-ℕΠ (un-univ ⊢F) (un-univ ⊢G)) ⇨ id (univ (Emptyⱼ ⊢Γ))))) (EmptyType ⊢Γ)) [Id]U ⊢Γ (Πᵣ′ rF lF lG (≡is≤ PE.refl) (≡is≤ PE.refl) F G [[ ⊢A , ⊢Π , D ]] ⊢F ⊢G A≡A [F] [G] G-ext) (ℕᵣ [[ ⊢B , ⊢ℕ , D' ]]) = proj₁ (redSubst* (trans⇒* (univ⇒* (IdURed*Term′ (un-univ ⊢A) (un-univ ⊢Π) (un-univ⇒* D) (un-univ ⊢B))) (trans⇒* (univ⇒* (IdUΠRed*Term′ (un-univ ⊢F) (un-univ ⊢G) (un-univ ⊢B) (un-univ ⊢ℕ) (un-univ⇒* D'))) (univ (Id-U-Πℕ (un-univ ⊢F) (un-univ ⊢G)) ⇨ id (univ (Emptyⱼ ⊢Γ))))) (EmptyType ⊢Γ)) [Id]U ⊢Γ (Πᵣ′ rF lF lG (≡is≤ PE.refl) (≡is≤ PE.refl) F G D ⊢F ⊢G A≡A [F] [G] G-ext) (ne′ K D₁ neK K≡K) = let [B] = ne′ K D₁ neK K≡K ⊢B = escape {l = ι ¹} [B] -- [F]' = PE.subst (λ X → _ ⊩⟨ _ ⟩ X ^ [ _ , _ ]) (wk-id F) ([F] Twk.id ⊢Γ) -- ⊢F≅F = ≅-un-univ (escapeEqRefl [F]') -- [G]' = PE.subst (λ X → _ ⊩⟨ _ ⟩ X ^ [ _ , _ ]) (wkSingleSubstId G) ([G] {a = var 0} (Twk.step Twk.id) (⊢Γ ∙ ⊢F) {!!}) -- ⊢G≅G = ≅-un-univ (escapeEqRefl [G]') in ne′ (Id (U ⁰) (Π F ^ rF ° lF ▹ G ° lG ° ⁰) K) (univ:⇒*: (transTerm:⇒:* (IdURed*Term (un-univ:⇒*: D) (un-univ ⊢B) ) (IdUΠRed*Term (un-univ ⊢F) (un-univ ⊢G) (un-univ:⇒*: D₁)))) (IdUΠₙ neK) (~-IdUΠ (≅-un-univ A≡A) K≡K) [Id]U {A} {B} {Γ} ⊢Γ (Πᵣ′ ! .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F G [[ ⊢A , ⊢ΠFG , D ]] ⊢F ⊢G A≡A [F] [G] G-ext) (Πᵣ′ ! .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₁ G₁ [[ ⊢B , ⊢ΠF₁G₁ , D₁ ]] ⊢F₁ ⊢G₁ B≡B [F₁] [G₁] G₁-ext) = ∃ᵣ′ (Id (U ⁰) F F₁) (IdGG₁ (step id) (var 0)) [[ (univ (Idⱼ (univ 0<1 ⊢Γ) (un-univ ⊢A) (un-univ ⊢B))) , ⊢∃ , D∃ ]] ⊢IdFF₁ ⊢IdGG₁ ∃≡∃ [IdFF₁] (λ {ρ} {Δ} {a} [ρ] ⊢Δ [a] → PE.subst (λ X → Δ ⊩⟨ ι ¹ ⟩ X ^ [ % , ι ¹ ]) (PE.sym (wksubst-IdTel ρ a)) ([IdGG₁] [ρ] ⊢Δ [a])) (λ {ρ} {Δ} {a} {b} [ρ] ⊢Δ [a] [b] [a≡b] → irrelevanceEq″ (PE.sym (wksubst-IdTel ρ a)) (PE.sym (wksubst-IdTel ρ b)) PE.refl PE.refl ([IdGG₁] [ρ] ⊢Δ [a]) (PE.subst (λ X → Δ ⊩⟨ ι ¹ ⟩ X ^ [ % , ι ¹ ]) (PE.sym (wksubst-IdTel ρ a)) ([IdGG₁] [ρ] ⊢Δ [a])) ([IdGG₁-ext] [ρ] ⊢Δ [a] [b] [a≡b])) where open IdTypeU-lemmas ⊢Γ ⊢A ⊢ΠFG D ⊢F ⊢G A≡A [F] [G] G-ext ⊢B ⊢ΠF₁G₁ D₁ ⊢F₁ ⊢G₁ B≡B [F₁] [G₁] G₁-ext (λ [ρ] ⊢Δ → [Id]U ⊢Δ ([F] [ρ] ⊢Δ) ([F₁] [ρ] ⊢Δ)) (λ [ρ] ⊢Δ [x] [y] → [Id]U ⊢Δ ([G] [ρ] ⊢Δ [x]) ([G₁] [ρ] ⊢Δ [y])) (λ [ρ] ⊢Δ [x] [x′] [x≡x′] [y] [y′] [y≡y′] → [IdExt]U ⊢Δ ([G] [ρ] ⊢Δ [x]) ([G] [ρ] ⊢Δ [x′]) (G-ext [ρ] ⊢Δ [x] [x′] [x≡x′]) ([G₁] [ρ] ⊢Δ [y]) ([G₁] [ρ] ⊢Δ [y′]) (G₁-ext [ρ] ⊢Δ [y] [y′] [y≡y′])) [Id]U {A} {B} {Γ} ⊢Γ (Πᵣ′ % .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F G [[ ⊢A , ⊢ΠFG , D ]] ⊢F ⊢G A≡A [F] [G] G-ext) (Πᵣ′ % .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₁ G₁ [[ ⊢B , ⊢ΠF₁G₁ , D₁ ]] ⊢F₁ ⊢G₁ B≡B [F₁] [G₁] G₁-ext) = ∃ᵣ′ (Id (SProp ⁰) F F₁) (IdGG₁ (step id) (var 0)) [[ (univ (Idⱼ (univ 0<1 ⊢Γ) (un-univ ⊢A) (un-univ ⊢B))) , ⊢∃ , D∃ ]] ⊢IdFF₁ ⊢IdGG₁ ∃≡∃ [IdFF₁] (λ {ρ} {Δ} {a} [ρ] ⊢Δ [a] → PE.subst (λ X → Δ ⊩⟨ ι ¹ ⟩ X ^ [ % , ι ¹ ]) (PE.sym (wksubst-IdTel ρ a)) ([IdGG₁] [ρ] ⊢Δ [a])) (λ {ρ} {Δ} {a} {b} [ρ] ⊢Δ [a] [b] [a≡b] → irrelevanceEq″ (PE.sym (wksubst-IdTel ρ a)) (PE.sym (wksubst-IdTel ρ b)) PE.refl PE.refl ([IdGG₁] [ρ] ⊢Δ [a]) (PE.subst (λ X → Δ ⊩⟨ ι ¹ ⟩ X ^ [ % , ι ¹ ]) (PE.sym (wksubst-IdTel ρ a)) ([IdGG₁] [ρ] ⊢Δ [a])) ([IdGG₁-ext] [ρ] ⊢Δ [a] [b] [a≡b])) where open IdTypeU-lemmas ⊢Γ ⊢A ⊢ΠFG D ⊢F ⊢G A≡A [F] [G] G-ext ⊢B ⊢ΠF₁G₁ D₁ ⊢F₁ ⊢G₁ B≡B [F₁] [G₁] G₁-ext (λ [ρ] ⊢Δ → [Id]SProp ⊢Δ ([F] [ρ] ⊢Δ) ([F₁] [ρ] ⊢Δ)) (λ [ρ] ⊢Δ [x] [y] → [Id]U ⊢Δ ([G] [ρ] ⊢Δ [x]) ([G₁] [ρ] ⊢Δ [y])) (λ [ρ] ⊢Δ [x] [x′] [x≡x′] [y] [y′] [y≡y′] → [IdExt]U ⊢Δ ([G] [ρ] ⊢Δ [x]) ([G] [ρ] ⊢Δ [x′]) (G-ext [ρ] ⊢Δ [x] [x′] [x≡x′]) ([G₁] [ρ] ⊢Δ [y]) ([G₁] [ρ] ⊢Δ [y′]) (G₁-ext [ρ] ⊢Δ [y] [y′] [y≡y′])) [Id]U ⊢Γ (Πᵣ′ ! .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F G [[ ⊢A , ⊢ΠFG , D ]] ⊢F ⊢G A≡A [F] [G] G-ext) (Πᵣ′ % .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₁ G₁ [[ ⊢B , ⊢ΠF₁G₁ , D' ]] ⊢F₁ ⊢G₁ B≡B [F₁] [G₁] G₁-ext) = proj₁ (redSubst* (trans⇒* (univ⇒* (IdURed*Term′ (un-univ ⊢A) (un-univ ⊢ΠFG) (un-univ⇒* D) (un-univ ⊢B))) (trans⇒* (univ⇒* (IdUΠRed*Term′ (un-univ ⊢F) (un-univ ⊢G) (un-univ ⊢B) (un-univ ⊢ΠF₁G₁) (un-univ⇒* D'))) (univ (Id-U-ΠΠ!% !≢% (un-univ ⊢F) (un-univ ⊢G) (un-univ ⊢F₁) (un-univ ⊢G₁)) ⇨ id (univ (Emptyⱼ ⊢Γ))))) (EmptyType ⊢Γ)) [Id]U ⊢Γ (Πᵣ′ % .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F G [[ ⊢A , ⊢ΠFG , D ]] ⊢F ⊢G A≡A [F] [G] G-ext) (Πᵣ′ ! .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₁ G₁ [[ ⊢B , ⊢ΠF₁G₁ , D' ]] ⊢F₁ ⊢G₁ B≡B [F₁] [G₁] G₁-ext) = proj₁ (redSubst* (trans⇒* (univ⇒* (IdURed*Term′ (un-univ ⊢A) (un-univ ⊢ΠFG) (un-univ⇒* D) (un-univ ⊢B))) (trans⇒* (univ⇒* (IdUΠRed*Term′ (un-univ ⊢F) (un-univ ⊢G) (un-univ ⊢B) (un-univ ⊢ΠF₁G₁) (un-univ⇒* D'))) (univ (Id-U-ΠΠ!% (λ e → !≢% (PE.sym e)) (un-univ ⊢F) (un-univ ⊢G) (un-univ ⊢F₁) (un-univ ⊢G₁)) ⇨ id (univ (Emptyⱼ ⊢Γ))))) (EmptyType ⊢Γ)) [IdExtShape]U ⊢Γ _ _ (ℕᵥ ℕA [[ ⊢A , ⊢K , D ]]) [A≡A′] _ _ (ℕᵥ NB [[ ⊢B , ⊢L , D₁ ]]) [B≡B′] = Π₌ (Empty _) (Empty _) (trans⇒* (univ⇒* (IdURed*Term′ (un-univ ⊢A) (un-univ ⊢K) (un-univ⇒* D) (un-univ ⊢B))) (trans⇒* (univ⇒* (IdUℕRed*Term′ (un-univ ⊢B) (un-univ ⊢L) (un-univ⇒* D₁))) (univ (Id-U-ℕℕ ⊢Γ) ⇨ id (univ (Unitⱼ ⊢Γ))))) (≅-univ (Unit≡Unit ⊢Γ)) (λ [ρ] ⊢Δ → id (univ (Emptyⱼ ⊢Δ))) λ [ρ] ⊢Δ [a] → id (univ (Emptyⱼ ⊢Δ)) [IdExtShape]U ⊢Γ _ _ (ℕᵥ ℕA D) [A≡A′] _ _ (ne neB neB') (ne₌ M D′ neM K≡M) = let [[ ⊢B , _ , _ ]] = D′ in ne₌ (Id (U ⁰) ℕ M) (univ:⇒*: (transTerm:⇒:* (IdURed*Term (un-univ:⇒*: D) (un-univ ⊢B) ) (IdUℕRed*Term (un-univ:⇒*: D′)))) (IdUℕₙ neM) (~-IdUℕ ⊢Γ K≡M) [IdExtShape]U ⊢Γ _ _ (ℕᵥ [[ ⊢A , ⊢ℕ , D ]] [[ ⊢A' , ⊢ℕ' , D' ]]) [A≡A′] _ _ (Πᵥ (Πᵣ rF lF lG (≡is≤ PE.refl) (≡is≤ PE.refl) F G D′ ⊢F ⊢G A≡A [F] [G] G-ext) (Πᵣ rF' lF' lG' (≡is≤ PE.refl) (≡is≤ PE.refl) F' G' D′' ⊢F' ⊢G' A≡A' [F]' [G]' G-ext')) [B≡B′] = let [B]' = Πᵣ′ rF' lF' lG' (≡is≤ PE.refl) (≡is≤ PE.refl) F' G' D′' ⊢F' ⊢G' A≡A' [F]' [G]' G-ext' ⊢B' = escape [B]' in trans⇒* (univ⇒* (IdURed*Term′ (un-univ ⊢A') (un-univ ⊢ℕ') (un-univ⇒* D') (un-univ ⊢B'))) (trans⇒* (univ⇒* (IdUℕRed*Term′ (un-univ ⊢B') (Πⱼ ≡is≤ PE.refl ▹ ≡is≤ PE.refl ▹ (un-univ ⊢F') ▹ (un-univ ⊢G')) (un-univ⇒* (red D′')))) (univ (Id-U-ℕΠ (un-univ ⊢F') (un-univ ⊢G')) ⇨ id (univ (Emptyⱼ ⊢Γ)))) [IdExtShape]U {A} {A′} {B} {B′} ⊢Γ _ _ (ne neA neA') (ne₌ M D neM K≡M) [B] [B'] [ShapeB] [B≡B′] = let ⊢B' = escape [B'] B≡B' = escapeEq [B] [B≡B′] in ne₌ (Id (U ⁰) M B′) (univ:⇒*: (IdURed*Term (un-univ:⇒*: D) (un-univ ⊢B'))) (IdUₙ neM) (~-IdU ⊢Γ K≡M (≅-un-univ B≡B')) [IdExtShape]U ⊢Γ _ _ (Πᵥ (Πᵣ rF lF lG (≡is≤ PE.refl) (≡is≤ PE.refl) F G D′ ⊢F ⊢G A≡A [F] [G] G-ext) (Πᵣ rF' lF' lG' (≡is≤ PE.refl) (≡is≤ PE.refl) F' G' [[ ⊢A' , ⊢Π' , DΠ' ]] ⊢F' ⊢G' A≡A' [F]' [G]' G-ext')) [A≡A′] _ _ (ℕᵥ [[ ⊢A , ⊢ℕ , D ]] [[ ⊢B' , ⊢ℕ' , D' ]]) [B≡B′] = trans⇒* (univ⇒* (IdURed*Term′ (un-univ ⊢A') (un-univ ⊢Π') (un-univ⇒* DΠ') (un-univ ⊢B'))) (trans⇒* (univ⇒* (IdUΠRed*Term′ (un-univ ⊢F') (un-univ ⊢G') (un-univ ⊢B') (un-univ ⊢ℕ') (un-univ⇒* D'))) (univ (Id-U-Πℕ (un-univ ⊢F') (un-univ ⊢G')) ⇨ id (univ (Emptyⱼ ⊢Γ)))) [IdExtShape]U ⊢Γ _ _ (Πᵥ (Πᵣ rF' .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F' G' De' ⊢F' ⊢G' A≡A' [F]' [G]' G-ext') (Πᵣ rF .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F G D ⊢F ⊢G A≡A [F] [G] G-ext)) (Π₌ F′ G′ D′₁ A≡B [F≡F′] [G≡G′]) _ _ (ne neA neB) (ne₌ M D′ neM K≡M) = let [[ ⊢B , _ , _ ]] = D′ Π≡Π = whrDet* (red D , Whnf.Πₙ) (D′₁ , Whnf.Πₙ) F≡F' , rF≡rF' , _ , G≡G' , _ = Π-PE-injectivity Π≡Π in ne₌ (Id (U ⁰) (Π F ^ rF ° ⁰ ▹ G ° ⁰ ° ⁰) M) (univ:⇒*: (transTerm:⇒:* (IdURed*Term (un-univ:⇒*: D) (un-univ ⊢B) ) (IdUΠRed*Term (un-univ ⊢F) (un-univ ⊢G) (un-univ:⇒*: D′)))) (IdUΠₙ neM) (PE.subst (λ X → _ ⊢ Id (U ⁰) (Π F' ^ rF' ° ⁰ ▹ G' ° ⁰ ° ⁰) _ ~ Id (U ⁰) (Π F ^ X ° ⁰ ▹ G ° ⁰ ° ⁰) M ∷ SProp _ ^ _) (PE.sym rF≡rF') (~-IdUΠ (≅-un-univ (PE.subst (λ X → _ ⊢ Π F' ^ rF' ° ⁰ ▹ G' ° ⁰ ° ⁰ ≅ Π F ^ rF' ° ⁰ ▹ X ° ⁰ ° ⁰ ^ _ ) (PE.sym G≡G') (PE.subst (λ X → _ ⊢ Π F' ^ rF' ° ⁰ ▹ G' ° ⁰ ° ⁰ ≅ Π X ^ rF' ° ⁰ ▹ G′ ° ⁰ ° ⁰ ^ _ ) (PE.sym F≡F') A≡B))) K≡M)) [IdExtShape]U ⊢Γ _ _ (Πᵥ (Πᵣ % .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₁ G₁ [[ ⊢A₁ , ⊢ΠF₁G₁ , D₁ ]] ⊢F₁ ⊢G₁ A₁≡A₁ [F₁] [G₁] G₁-ext) (Πᵣ ! .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₂ G₂ [[ ⊢A₂ , ⊢ΠF₂G₂ , D₂ ]] ⊢F₂ ⊢G₂ A₂≡A₂ [F₂] [G₂] G₂-ext)) (Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) _ _ (Πᵥ _ _) (Π₌ F′₁ G′₁ D′₁ A≡B₁ [F≡F′]₁ [G≡G′]₁) = let ΠFG′≡ΠFG′₁ = whrDet* (D₂ , Πₙ) (D′ , Πₙ) F′≡F′₁ , rF≡rF′ , _ , G′≡G′₁ , _ = Π-PE-injectivity ΠFG′≡ΠFG′₁ in ⊥-elim (!≢% rF≡rF′) [IdExtShape]U ⊢Γ _ _ (Πᵥ (Πᵣ ! .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₁ G₁ [[ ⊢A₁ , ⊢ΠF₁G₁ , D₁ ]] ⊢F₁ ⊢G₁ A₁≡A₁ [F₁] [G₁] G₁-ext) (Πᵣ % .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₂ G₂ [[ ⊢A₂ , ⊢ΠF₂G₂ , D₂ ]] ⊢F₂ ⊢G₂ A₂≡A₂ [F₂] [G₂] G₂-ext)) (Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) _ _ (Πᵥ _ _) (Π₌ F′₁ G′₁ D′₁ A≡B₁ [F≡F′]₁ [G≡G′]₁) = let ΠFG′≡ΠFG′₁ = whrDet* (D₂ , Πₙ) (D′ , Πₙ) F′≡F′₁ , rF≡rF′ , _ , G′≡G′₁ , _ = Π-PE-injectivity ΠFG′≡ΠFG′₁ in ⊥-elim (!≢% (PE.sym rF≡rF′)) [IdExtShape]U ⊢Γ _ _ (Πᵥ _ _) (Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) _ _ (Πᵥ (Πᵣ % .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₁ G₁ [[ ⊢A₁ , ⊢ΠF₁G₁ , D₁ ]] ⊢F₁ ⊢G₁ A₁≡A₁ [F₁] [G₁] G₁-ext) (Πᵣ ! .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₂ G₂ [[ ⊢A₂ , ⊢ΠF₂G₂ , D₂ ]] ⊢F₂ ⊢G₂ A₂≡A₂ [F₂] [G₂] G₂-ext)) (Π₌ F′₁ G′₁ D′₁ A≡B₁ [F≡F′]₁ [G≡G′]₁) = let ΠFG′≡ΠFG′₁ = whrDet* (D₂ , Πₙ) (D′₁ , Πₙ) F′≡F′₁ , rF≡rF′ , _ , G′≡G′₁ , _ = Π-PE-injectivity ΠFG′≡ΠFG′₁ in ⊥-elim (!≢% rF≡rF′) [IdExtShape]U ⊢Γ _ _ (Πᵥ _ _) (Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) _ _ (Πᵥ (Πᵣ ! .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₁ G₁ [[ ⊢A₁ , ⊢ΠF₁G₁ , D₁ ]] ⊢F₁ ⊢G₁ A₁≡A₁ [F₁] [G₁] G₁-ext) (Πᵣ % .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₂ G₂ [[ ⊢A₂ , ⊢ΠF₂G₂ , D₂ ]] ⊢F₂ ⊢G₂ A₂≡A₂ [F₂] [G₂] G₂-ext)) (Π₌ F′₁ G′₁ D′₁ A≡B₁ [F≡F′]₁ [G≡G′]₁) = let ΠFG′≡ΠFG′₁ = whrDet* (D₂ , Πₙ) (D′₁ , Πₙ) F′≡F′₁ , rF≡rF′ , _ , G′≡G′₁ , _ = Π-PE-injectivity ΠFG′≡ΠFG′₁ in ⊥-elim (!≢% (PE.sym rF≡rF′)) [IdExtShape]U ⊢Γ _ _ (Πᵥ (Πᵣ ! .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₁ G₁ [[ ⊢A₁ , ⊢ΠF₁G₁ , D₁ ]] ⊢F₁ ⊢G₁ A₁≡A₁ [F₁] [G₁] G₁-ext) (Πᵣ ! .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₂ G₂ [[ ⊢A₂ , ⊢ΠF₂G₂ , D₂ ]] ⊢F₂ ⊢G₂ A₂≡A₂ [F₂] [G₂] G₂-ext)) (Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) _ _ (Πᵥ (Πᵣ % .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₃ G₃ [[ ⊢A₃ , ⊢ΠF₃G₃ , D₃ ]] ⊢F₃ ⊢G₃ A₃≡A₃ [F₃] [G₃] G₃-ext) (Πᵣ % .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₄ G₄ [[ ⊢A₄ , ⊢ΠF₄G₄ , D₄ ]] ⊢F₄ ⊢G₄ A₄≡A₄ [F₄] [G₄] G₄-ext)) (Π₌ F′₁ G′₁ D′₁ A≡B₁ [F≡F′]₁ [G≡G′]₁) = trans⇒* (univ⇒* (IdURed*Term′ (un-univ ⊢A₂) (un-univ ⊢ΠF₂G₂) (un-univ⇒* D₂) (un-univ ⊢A₄))) (trans⇒* (univ⇒* (IdUΠRed*Term′ (un-univ ⊢F₂) (un-univ ⊢G₂) (un-univ ⊢A₄) (un-univ ⊢ΠF₄G₄) (un-univ⇒* D₄))) (univ (Id-U-ΠΠ!% !≢% (un-univ ⊢F₂) (un-univ ⊢G₂) (un-univ ⊢F₄) (un-univ ⊢G₄)) ⇨ id (univ (Emptyⱼ ⊢Γ)))) [IdExtShape]U ⊢Γ _ _ (Πᵥ (Πᵣ % .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₁ G₁ [[ ⊢A₁ , ⊢ΠF₁G₁ , D₁ ]] ⊢F₁ ⊢G₁ A₁≡A₁ [F₁] [G₁] G₁-ext) (Πᵣ % .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₂ G₂ [[ ⊢A₂ , ⊢ΠF₂G₂ , D₂ ]] ⊢F₂ ⊢G₂ A₂≡A₂ [F₂] [G₂] G₂-ext)) (Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) _ _ (Πᵥ (Πᵣ ! .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₃ G₃ [[ ⊢A₃ , ⊢ΠF₃G₃ , D₃ ]] ⊢F₃ ⊢G₃ A₃≡A₃ [F₃] [G₃] G₃-ext) (Πᵣ ! .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₄ G₄ [[ ⊢A₄ , ⊢ΠF₄G₄ , D₄ ]] ⊢F₄ ⊢G₄ A₄≡A₄ [F₄] [G₄] G₄-ext)) (Π₌ F′₁ G′₁ D′₁ A≡B₁ [F≡F′]₁ [G≡G′]₁) = trans⇒* (univ⇒* (IdURed*Term′ (un-univ ⊢A₂) (un-univ ⊢ΠF₂G₂) (un-univ⇒* D₂) (un-univ ⊢A₄))) (trans⇒* (univ⇒* (IdUΠRed*Term′ (un-univ ⊢F₂) (un-univ ⊢G₂) (un-univ ⊢A₄) (un-univ ⊢ΠF₄G₄) (un-univ⇒* D₄))) (univ (Id-U-ΠΠ!% (λ e → !≢% (PE.sym e)) (un-univ ⊢F₂) (un-univ ⊢G₂) (un-univ ⊢F₄) (un-univ ⊢G₄)) ⇨ id (univ (Emptyⱼ ⊢Γ)))) [IdExtShape]U {A₁} {A₂} {A₃} {A₄} {Γ} ⊢Γ _ _ (Πᵥ (Πᵣ ! .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₁ G₁ [[ ⊢A₁ , ⊢ΠF₁G₁ , D₁ ]] ⊢F₁ ⊢G₁ A₁≡A₁ [F₁] [G₁] G₁-ext) (Πᵣ ! .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₂ G₂ [[ ⊢A₂ , ⊢ΠF₂G₂ , D₂ ]] ⊢F₂ ⊢G₂ A₂≡A₂ [F₂] [G₂] G₂-ext)) (Π₌ F₂′ G₂′ D₂′ A₁≡A₂′ [F₁≡F₂′] [G₁≡G₂′]) _ _ (Πᵥ (Πᵣ ! .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₃ G₃ [[ ⊢A₃ , ⊢ΠF₃G₃ , D₃ ]] ⊢F₃ ⊢G₃ A₃≡A₃ [F₃] [G₃] G₃-ext) (Πᵣ ! .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₄ G₄ [[ ⊢A₄ , ⊢ΠF₄G₄ , D₄ ]] ⊢F₄ ⊢G₄ A₄≡A₄ [F₄] [G₄] G₄-ext)) (Π₌ F₄′ G₄′ D₄′ A₃≡A₄′ [F₃≡F₄′] [G₃≡G₄′]) = ∃₌ (Id (U ⁰) F₂ F₄) (E₂.IdGG₁ (step id) (var 0)) E₂.D∃ ∃₁≡∃₂ [IdFF₁≡IdFF₂] (λ {ρ} {Δ} {e} [ρ] ⊢Δ [e] → irrelevanceEq″ (PE.sym (E₁.wksubst-IdTel ρ e)) (PE.sym (E₂.wksubst-IdTel ρ e)) PE.refl PE.refl (E₁.[IdGG₁] [ρ] ⊢Δ [e]) (PE.subst (λ X → Δ ⊩⟨ ι ¹ ⟩ X ^ [ % , ι ¹ ]) (PE.sym (E₁.wksubst-IdTel ρ e)) (E₁.[IdGG₁] [ρ] ⊢Δ [e])) ([IdGG₁≡IdGG₂] [ρ] ⊢Δ [e])) where Π≡Π = whrDet* (D₂ , Whnf.Πₙ) (D₂′ , Whnf.Πₙ) F₂≡F₂′ = let x , _ , _ , _ , _ = Π-PE-injectivity Π≡Π in x G₂≡G₂′ = let _ , _ , _ , x , _ = Π-PE-injectivity Π≡Π in x Π≡Π′ = whrDet* (D₄ , Whnf.Πₙ) (D₄′ , Whnf.Πₙ) F₄≡F₄′ = let x , _ , _ , _ , _ = Π-PE-injectivity Π≡Π′ in x G₄≡G₄′ = let _ , _ , _ , x , _ = Π-PE-injectivity Π≡Π′ in x A₁≡A₂ = PE.subst₂ (λ X Y → Γ ⊢ Π F₁ ^ ! ° ⁰ ▹ G₁ ° ⁰ ° ⁰ ≅ Π X ^ ! ° ⁰ ▹ Y ° ⁰ ° ⁰ ^ [ ! , ι ⁰ ]) (PE.sym F₂≡F₂′) (PE.sym G₂≡G₂′) A₁≡A₂′ A₃≡A₄ = PE.subst₂ (λ X Y → Γ ⊢ Π F₃ ^ ! ° ⁰ ▹ G₃ ° ⁰ ° ⁰ ≅ Π X ^ ! ° ⁰ ▹ Y ° ⁰ ° ⁰ ^ [ ! , ι ⁰ ]) (PE.sym F₄≡F₄′) (PE.sym G₄≡G₄′) A₃≡A₄′ [F₁≡F₂] = PE.subst (λ X → ∀ {ρ Δ} → ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → Δ ⊩⟨ ι ⁰ ⟩ wk ρ F₁ ≡ wk ρ X ^ [ ! , ι ⁰ ] / [F₁] [ρ] ⊢Δ) (PE.sym F₂≡F₂′) [F₁≡F₂′] [F₃≡F₄] = PE.subst (λ X → ∀ {ρ Δ} → ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → Δ ⊩⟨ ι ⁰ ⟩ wk ρ F₃ ≡ wk ρ X ^ [ ! , ι ⁰ ] / [F₃] [ρ] ⊢Δ) (PE.sym F₄≡F₄′) [F₃≡F₄′] [G₁≡G₂] = PE.subst (λ X → ∀ {ρ Δ a} → ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → ([a] : Δ ⊩⟨ ι ⁰ ⟩ a ∷ wk ρ F₁ ^ [ ! , ι ⁰ ] / [F₁] [ρ] ⊢Δ) → Δ ⊩⟨ ι ⁰ ⟩ wk (lift ρ) G₁ [ a ] ≡ wk (lift ρ) X [ a ] ^ [ ! , ι ⁰ ] / [G₁] [ρ] ⊢Δ [a]) (PE.sym G₂≡G₂′) [G₁≡G₂′] [G₃≡G₄] = PE.subst (λ X → ∀ {ρ Δ a} → ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → ([a] : Δ ⊩⟨ ι ⁰ ⟩ a ∷ wk ρ F₃ ^ [ ! , ι ⁰ ] / [F₃] [ρ] ⊢Δ) → Δ ⊩⟨ ι ⁰ ⟩ wk (lift ρ) G₃ [ a ] ≡ wk (lift ρ) X [ a ] ^ [ ! , ι ⁰ ] / [G₃] [ρ] ⊢Δ [a]) (PE.sym G₄≡G₄′) [G₃≡G₄′] open IdTypeU-lemmas-2 ⊢Γ ⊢A₁ ⊢ΠF₁G₁ D₁ ⊢F₁ ⊢G₁ A₁≡A₁ [F₁] [G₁] G₁-ext ⊢A₂ ⊢ΠF₂G₂ D₂ ⊢F₂ ⊢G₂ A₂≡A₂ [F₂] [G₂] G₂-ext ⊢A₃ ⊢ΠF₃G₃ D₃ ⊢F₃ ⊢G₃ A₃≡A₃ [F₃] [G₃] G₃-ext ⊢A₄ ⊢ΠF₄G₄ D₄ ⊢F₄ ⊢G₄ A₄≡A₄ [F₄] [G₄] G₄-ext A₁≡A₂ A₃≡A₄ [F₁≡F₂] [F₃≡F₄] [G₁≡G₂] [G₃≡G₄] (λ [ρ] ⊢Δ → [Id]U ⊢Δ ([F₁] [ρ] ⊢Δ) ([F₃] [ρ] ⊢Δ)) (λ [ρ] ⊢Δ [x] [y] → [Id]U ⊢Δ ([G₁] [ρ] ⊢Δ [x]) ([G₃] [ρ] ⊢Δ [y])) (λ [ρ] ⊢Δ → [Id]U ⊢Δ ([F₂] [ρ] ⊢Δ) ([F₄] [ρ] ⊢Δ)) (λ [ρ] ⊢Δ [x] [y] → [Id]U ⊢Δ ([G₂] [ρ] ⊢Δ [x]) ([G₄] [ρ] ⊢Δ [y])) (λ [ρ] ⊢Δ [x] [x′] [x≡x′] [y] [y′] [y≡y′] → [IdExt]U ⊢Δ ([G₁] [ρ] ⊢Δ [x]) ([G₁] [ρ] ⊢Δ [x′]) (G₁-ext [ρ] ⊢Δ [x] [x′] [x≡x′]) ([G₃] [ρ] ⊢Δ [y]) ([G₃] [ρ] ⊢Δ [y′]) (G₃-ext [ρ] ⊢Δ [y] [y′] [y≡y′])) (λ [ρ] ⊢Δ [x] [x′] [x≡x′] [y] [y′] [y≡y′] → [IdExt]U ⊢Δ ([G₂] [ρ] ⊢Δ [x]) ([G₂] [ρ] ⊢Δ [x′]) (G₂-ext [ρ] ⊢Δ [x] [x′] [x≡x′]) ([G₄] [ρ] ⊢Δ [y]) ([G₄] [ρ] ⊢Δ [y′]) (G₄-ext [ρ] ⊢Δ [y] [y′] [y≡y′])) (λ [ρ] ⊢Δ → [IdExt]U ⊢Δ ([F₁] [ρ] ⊢Δ) ([F₂] [ρ] ⊢Δ) ([F₁≡F₂] [ρ] ⊢Δ) ([F₃] [ρ] ⊢Δ) ([F₄] [ρ] ⊢Δ) ([F₃≡F₄] [ρ] ⊢Δ)) (λ [ρ] ⊢Δ [x₁] [x₂] [G₁x₁≡G₂x₂] [x₃] [x₄] [G₃x₃≡G₄x₄] → [IdExt]U ⊢Δ ([G₁] [ρ] ⊢Δ [x₁]) ([G₂] [ρ] ⊢Δ [x₂]) [G₁x₁≡G₂x₂] ([G₃] [ρ] ⊢Δ [x₃]) ([G₄] [ρ] ⊢Δ [x₄]) [G₃x₃≡G₄x₄]) [IdExtShape]U {A₁} {A₂} {A₃} {A₄} {Γ} ⊢Γ _ _ (Πᵥ (Πᵣ % .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₁ G₁ [[ ⊢A₁ , ⊢ΠF₁G₁ , D₁ ]] ⊢F₁ ⊢G₁ A₁≡A₁ [F₁] [G₁] G₁-ext) (Πᵣ % .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₂ G₂ [[ ⊢A₂ , ⊢ΠF₂G₂ , D₂ ]] ⊢F₂ ⊢G₂ A₂≡A₂ [F₂] [G₂] G₂-ext)) (Π₌ F₂′ G₂′ D₂′ A₁≡A₂′ [F₁≡F₂′] [G₁≡G₂′]) _ _ (Πᵥ (Πᵣ % .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₃ G₃ [[ ⊢A₃ , ⊢ΠF₃G₃ , D₃ ]] ⊢F₃ ⊢G₃ A₃≡A₃ [F₃] [G₃] G₃-ext) (Πᵣ % .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F₄ G₄ [[ ⊢A₄ , ⊢ΠF₄G₄ , D₄ ]] ⊢F₄ ⊢G₄ A₄≡A₄ [F₄] [G₄] G₄-ext)) (Π₌ F₄′ G₄′ D₄′ A₃≡A₄′ [F₃≡F₄′] [G₃≡G₄′]) = ∃₌ (Id (SProp ⁰) F₂ F₄) (E₂.IdGG₁ (step id) (var 0)) E₂.D∃ ∃₁≡∃₂ [IdFF₁≡IdFF₂] (λ {ρ} {Δ} {e} [ρ] ⊢Δ [e] → irrelevanceEq″ (PE.sym (E₁.wksubst-IdTel ρ e)) (PE.sym (E₂.wksubst-IdTel ρ e)) PE.refl PE.refl (E₁.[IdGG₁] [ρ] ⊢Δ [e]) (PE.subst (λ X → Δ ⊩⟨ ι ¹ ⟩ X ^ [ % , ι ¹ ]) (PE.sym (E₁.wksubst-IdTel ρ e)) (E₁.[IdGG₁] [ρ] ⊢Δ [e])) ([IdGG₁≡IdGG₂] [ρ] ⊢Δ [e])) where Π≡Π = whrDet* (D₂ , Whnf.Πₙ) (D₂′ , Whnf.Πₙ) F₂≡F₂′ = let x , _ , _ , _ , _ = Π-PE-injectivity Π≡Π in x G₂≡G₂′ = let _ , _ , _ , x , _ = Π-PE-injectivity Π≡Π in x Π≡Π′ = whrDet* (D₄ , Whnf.Πₙ) (D₄′ , Whnf.Πₙ) F₄≡F₄′ = let x , _ , _ , _ , _ = Π-PE-injectivity Π≡Π′ in x G₄≡G₄′ = let _ , _ , _ , x , _ = Π-PE-injectivity Π≡Π′ in x A₁≡A₂ = PE.subst₂ (λ X Y → Γ ⊢ Π F₁ ^ % ° ⁰ ▹ G₁ ° ⁰ ° ⁰ ≅ Π X ^ % ° ⁰ ▹ Y ° ⁰ ° ⁰ ^ [ ! , ι ⁰ ]) (PE.sym F₂≡F₂′) (PE.sym G₂≡G₂′) A₁≡A₂′ A₃≡A₄ = PE.subst₂ (λ X Y → Γ ⊢ Π F₃ ^ % ° ⁰ ▹ G₃ ° ⁰ ° ⁰ ≅ Π X ^ % ° ⁰ ▹ Y ° ⁰ ° ⁰ ^ [ ! , ι ⁰ ]) (PE.sym F₄≡F₄′) (PE.sym G₄≡G₄′) A₃≡A₄′ [F₁≡F₂] = PE.subst (λ X → ∀ {ρ Δ} → ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → Δ ⊩⟨ ι ⁰ ⟩ wk ρ F₁ ≡ wk ρ X ^ [ % , ι ⁰ ] / [F₁] [ρ] ⊢Δ) (PE.sym F₂≡F₂′) [F₁≡F₂′] [F₃≡F₄] = PE.subst (λ X → ∀ {ρ Δ} → ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → Δ ⊩⟨ ι ⁰ ⟩ wk ρ F₃ ≡ wk ρ X ^ [ % , ι ⁰ ] / [F₃] [ρ] ⊢Δ) (PE.sym F₄≡F₄′) [F₃≡F₄′] [G₁≡G₂] = PE.subst (λ X → ∀ {ρ Δ a} → ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → ([a] : Δ ⊩⟨ ι ⁰ ⟩ a ∷ wk ρ F₁ ^ [ % , ι ⁰ ] / [F₁] [ρ] ⊢Δ) → Δ ⊩⟨ ι ⁰ ⟩ wk (lift ρ) G₁ [ a ] ≡ wk (lift ρ) X [ a ] ^ [ ! , ι ⁰ ] / [G₁] [ρ] ⊢Δ [a]) (PE.sym G₂≡G₂′) [G₁≡G₂′] [G₃≡G₄] = PE.subst (λ X → ∀ {ρ Δ a} → ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → ([a] : Δ ⊩⟨ ι ⁰ ⟩ a ∷ wk ρ F₃ ^ [ % , ι ⁰ ] / [F₃] [ρ] ⊢Δ) → Δ ⊩⟨ ι ⁰ ⟩ wk (lift ρ) G₃ [ a ] ≡ wk (lift ρ) X [ a ] ^ [ ! , ι ⁰ ] / [G₃] [ρ] ⊢Δ [a]) (PE.sym G₄≡G₄′) [G₃≡G₄′] open IdTypeU-lemmas-2 ⊢Γ ⊢A₁ ⊢ΠF₁G₁ D₁ ⊢F₁ ⊢G₁ A₁≡A₁ [F₁] [G₁] G₁-ext ⊢A₂ ⊢ΠF₂G₂ D₂ ⊢F₂ ⊢G₂ A₂≡A₂ [F₂] [G₂] G₂-ext ⊢A₃ ⊢ΠF₃G₃ D₃ ⊢F₃ ⊢G₃ A₃≡A₃ [F₃] [G₃] G₃-ext ⊢A₄ ⊢ΠF₄G₄ D₄ ⊢F₄ ⊢G₄ A₄≡A₄ [F₄] [G₄] G₄-ext A₁≡A₂ A₃≡A₄ [F₁≡F₂] [F₃≡F₄] [G₁≡G₂] [G₃≡G₄] (λ [ρ] ⊢Δ → [Id]SProp ⊢Δ ([F₁] [ρ] ⊢Δ) ([F₃] [ρ] ⊢Δ)) (λ [ρ] ⊢Δ [x] [y] → [Id]U ⊢Δ ([G₁] [ρ] ⊢Δ [x]) ([G₃] [ρ] ⊢Δ [y])) (λ [ρ] ⊢Δ → [Id]SProp ⊢Δ ([F₂] [ρ] ⊢Δ) ([F₄] [ρ] ⊢Δ)) (λ [ρ] ⊢Δ [x] [y] → [Id]U ⊢Δ ([G₂] [ρ] ⊢Δ [x]) ([G₄] [ρ] ⊢Δ [y])) (λ [ρ] ⊢Δ [x] [x′] [x≡x′] [y] [y′] [y≡y′] → [IdExt]U ⊢Δ ([G₁] [ρ] ⊢Δ [x]) ([G₁] [ρ] ⊢Δ [x′]) (G₁-ext [ρ] ⊢Δ [x] [x′] [x≡x′]) ([G₃] [ρ] ⊢Δ [y]) ([G₃] [ρ] ⊢Δ [y′]) (G₃-ext [ρ] ⊢Δ [y] [y′] [y≡y′])) (λ [ρ] ⊢Δ [x] [x′] [x≡x′] [y] [y′] [y≡y′] → [IdExt]U ⊢Δ ([G₂] [ρ] ⊢Δ [x]) ([G₂] [ρ] ⊢Δ [x′]) (G₂-ext [ρ] ⊢Δ [x] [x′] [x≡x′]) ([G₄] [ρ] ⊢Δ [y]) ([G₄] [ρ] ⊢Δ [y′]) (G₄-ext [ρ] ⊢Δ [y] [y′] [y≡y′])) (λ [ρ] ⊢Δ → [IdExt]SProp ⊢Δ ([F₁] [ρ] ⊢Δ) ([F₂] [ρ] ⊢Δ) ([F₁≡F₂] [ρ] ⊢Δ) ([F₃] [ρ] ⊢Δ) ([F₄] [ρ] ⊢Δ) ([F₃≡F₄] [ρ] ⊢Δ)) (λ [ρ] ⊢Δ [x₁] [x₂] [G₁x₁≡G₂x₂] [x₃] [x₄] [G₃x₃≡G₄x₄] → [IdExt]U ⊢Δ ([G₁] [ρ] ⊢Δ [x₁]) ([G₂] [ρ] ⊢Δ [x₂]) [G₁x₁≡G₂x₂] ([G₃] [ρ] ⊢Δ [x₃]) ([G₄] [ρ] ⊢Δ [x₄]) [G₃x₃≡G₄x₄]) [IdExt]U ⊢Γ [A] [A′] [A≡A′] [B] [B′] [B≡B′] = [IdExtShape]U ⊢Γ [A] [A′] (goodCases [A] [A′] [A≡A′]) [A≡A′] [B] [B′] (goodCases [B] [B′] [B≡B′]) [B≡B′] Ugen' : ∀ {Γ rU l} → (⊢Γ : ⊢ Γ) → ((next l) LogRel.⊩¹U logRelRec (next l) ^ Γ) (Univ rU l) (next l) Ugen' {Γ} {rU} {⁰} ⊢Γ = Uᵣ rU ⁰ emb< PE.refl ((idRed:*: (Ugenⱼ ⊢Γ))) Ugen' {Γ} {rU} {¹} ⊢Γ = Uᵣ rU ¹ ∞< PE.refl (idRed:*: (Uⱼ ⊢Γ)) [Id]UGen : ∀ {A t u Γ l} (⊢Γ : ⊢ Γ) ([A] : (l LogRel.⊩¹U logRelRec l ^ Γ) A (ι ¹)) ([t] : Γ ⊩⟨ l ⟩ t ∷ A ^ [ ! , ι ¹ ] / Uᵣ [A]) ([u] : Γ ⊩⟨ l ⟩ u ∷ A ^ [ ! , ι ¹ ] / Uᵣ [A]) → Γ ⊩⟨ l ⟩ Id A t u ^ [ % , ι ¹ ] [Id]UGen {A} {t} {u} {Γ} {ι .¹} ⊢Γ (Uᵣ ! ⁰ emb< PE.refl [[ ⊢A , ⊢B , D ]]) (Uₜ K d typeK K≡K [t]) (Uₜ M d₁ typeM M≡M [u]) = let [t0] : Γ ⊩⟨ ι ⁰ ⟩ t ^ [ ! , ι ⁰ ] [t0] = PE.subst (λ X → Γ ⊩⟨ ι ⁰ ⟩ X ^ [ ! , ι ⁰ ]) (wk-id t) ([t] Twk.id ⊢Γ) [u0] = PE.subst (λ X → Γ ⊩⟨ ι ⁰ ⟩ X ^ [ ! , ι ⁰ ]) (wk-id u) ([u] Twk.id ⊢Γ) ⊢tA = conv (un-univ (escape [t0])) (sym (subset* D)) ⊢uA = conv (un-univ (escape [u0])) (sym (subset* D)) in proj₁ (redSubst* (IdRed* ⊢tA ⊢uA D) ([Id]U ⊢Γ [t0] [u0])) [Id]UGen {A} {t} {u} {Γ} {ι .¹} ⊢Γ (Uᵣ % ⁰ emb< PE.refl [[ ⊢A , ⊢B , D ]]) (Uₜ K d typeK K≡K [t]) (Uₜ M d₁ typeM M≡M [u]) = let [t0] : Γ ⊩⟨ ι ⁰ ⟩ t ^ [ % , ι ⁰ ] [t0] = PE.subst (λ X → Γ ⊩⟨ ι ⁰ ⟩ X ^ [ % , ι ⁰ ]) (wk-id t) ([t] Twk.id ⊢Γ) [u0] = PE.subst (λ X → Γ ⊩⟨ ι ⁰ ⟩ X ^ [ % , ι ⁰ ]) (wk-id u) ([u] Twk.id ⊢Γ) ⊢tA = conv (un-univ (escape [t0])) (sym (subset* D)) ⊢uA = conv (un-univ (escape [u0])) (sym (subset* D)) in proj₁ (redSubst* (IdRed* ⊢tA ⊢uA D) ([Id]SProp ⊢Γ [t0] [u0])) [IdExt]UGen : ∀ {A B t v u w Γ l l'} (⊢Γ : ⊢ Γ) ([A] : (l LogRel.⊩¹U logRelRec l ^ Γ) A (ι ¹)) ([B] : (l' LogRel.⊩¹U logRelRec l' ^ Γ) B (ι ¹)) ([A≡B] : Γ ⊩⟨ l ⟩ A ≡ B ^ [ ! , ι ¹ ] / Uᵣ [A]) ([t] : Γ ⊩⟨ l ⟩ t ∷ A ^ [ ! , ι ¹ ] / Uᵣ [A]) ([v] : Γ ⊩⟨ l' ⟩ v ∷ B ^ [ ! , ι ¹ ] / Uᵣ [B]) ([t≡v] : Γ ⊩⟨ l ⟩ t ≡ v ∷ A ^ [ ! , ι ¹ ] / Uᵣ [A]) ([u] : Γ ⊩⟨ l ⟩ u ∷ A ^ [ ! , ι ¹ ] / Uᵣ [A]) ([w] : Γ ⊩⟨ l' ⟩ w ∷ B ^ [ ! , ι ¹ ] / Uᵣ [B]) ([u≡w] : Γ ⊩⟨ l ⟩ u ≡ w ∷ A ^ [ ! , ι ¹ ] / Uᵣ [A]) → Γ ⊩⟨ l ⟩ Id A t u ≡ Id B v w ^ [ % , ι ¹ ] / [Id]UGen ⊢Γ [A] [t] [u] [IdExt]UGen {A} {B} {t} {v} {u} {w} {Γ} {.(ι ¹)} {.(ι ¹)} ⊢Γ (Uᵣ ! ⁰ emb< PE.refl d) (Uᵣ r₁ ⁰ emb< PE.refl d₁) [A≡B] [t] [v] [t≡v] [u] [w] [u≡w] = let U≡U = whrDet* (red d₁ , Uₙ) ([A≡B] , Uₙ) r≡r , _ = Univ-PE-injectivity U≡U [UA] = Uᵣ ! ⁰ emb< PE.refl d [UB] = Uᵣ r₁ ⁰ emb< PE.refl d₁ [U] = Ugen' ⊢Γ [U]' = Ugen' ⊢Γ [UA]' , [UAeq] = redSubst* (red d) (Uᵣ [U]) [UB]' , [UBeq] = redSubst* (PE.subst (λ X → Γ ⊢ _ ⇒* Univ X _ ^ _) r≡r (red d₁)) (Uᵣ [U]') [t]′ = convTerm₁ {t = t} [UA]' (Uᵣ [U]) [UAeq] (irrelevanceTerm (Uᵣ [UA]) [UA]' [t]) [t^] = univEq (Uᵣ [U]) [t]′ [v]′ = convTerm₁ {t = v} [UB]' (Uᵣ [U]) [UBeq] (irrelevanceTerm (Uᵣ [UB]) [UB]' [v]) [v^] = univEq (Uᵣ [U]) [v]′ [t≡v]′ = convEqTerm₁ {t = t} {u = v} [UA]' (Uᵣ [U]) [UAeq] (irrelevanceEqTerm (Uᵣ [UA]) [UA]' [t≡v]) [t≡v^] = univEqEq (Uᵣ [U]) [t^] [t≡v]′ [u]′ = convTerm₁ {t = u} [UA]' (Uᵣ [U]) [UAeq] (irrelevanceTerm (Uᵣ [UA]) [UA]' [u]) [u^] = univEq (Uᵣ [U]) [u]′ [w]′ = convTerm₁ {t = w} [UB]' (Uᵣ [U]) [UBeq] (irrelevanceTerm (Uᵣ [UB]) [UB]' [w]) [w^] = univEq (Uᵣ [U]) [w]′ [u≡w]′ = convEqTerm₁ {t = u} {u = w} [UA]' (Uᵣ [U]) [UAeq] (irrelevanceEqTerm (Uᵣ [UA]) [UA]' [u≡w]) [u≡w^] = univEqEq (Uᵣ [U]) [u^] [u≡w]′ X = irrelevanceEq {A = Id (U ⁰) t u} {B = Id (U ⁰) v w} ([Id]U ⊢Γ [t^] [u^]) ([Id]UGen ⊢Γ [U] [t]′ [u]′) ([IdExt]U ⊢Γ [t^] [v^] [t≡v^] [u^] [w^] [u≡w^]) [IdA] , [IdA≡U] = redSubst* (IdRed* (escapeTerm (Uᵣ [UA]) [t]) (escapeTerm (Uᵣ [UA]) [u]) (red d)) ([Id]UGen ⊢Γ [U] [t]′ [u]′) [IdB] , [IdB≡U] = redSubst* (IdRed* (escapeTerm (Uᵣ [UB]) [v]) (escapeTerm (Uᵣ [UB]) [w]) (PE.subst (λ X → Γ ⊢ _ ⇒* Univ X _ ^ _) r≡r (red d₁))) ([Id]UGen ⊢Γ [U] [v]′ [w]′) [IdA≡U]′ = irrelevanceEq {A = Id A t u} {B = Id (U ⁰) t u} [IdA] ([Id]UGen ⊢Γ [UA] [t] [u]) [IdA≡U] [IdB≡U]′ = irrelevanceEq {A = Id B v w} {B = Id (U ⁰) v w} [IdB] ([Id]UGen ⊢Γ [UB] [v] [w]) [IdB≡U] in transEq {A = Id A t u} {B = Id (U _) t u} {C = Id B v w} ([Id]UGen ⊢Γ [UA] [t] [u]) ([Id]UGen ⊢Γ [U] [t]′ [u]′) ([Id]UGen ⊢Γ [UB] [v] [w]) [IdA≡U]′ (transEq {A = Id (U _) t u} {B = Id (U _) v w} {C = Id B v w} ([Id]UGen ⊢Γ [U] [t]′ [u]′) ([Id]UGen ⊢Γ [U] [v]′ [w]′) ([Id]UGen ⊢Γ [UB] [v] [w]) X (symEq {A = Id B v w} {B = Id (U _) v w} ([Id]UGen ⊢Γ [UB] [v] [w]) ([Id]UGen ⊢Γ [U] [v]′ [w]′) [IdB≡U]′)) [IdExt]UGen {A} {B} {t} {v} {u} {w} {Γ} {.(ι ¹)} {.(ι ¹)} ⊢Γ (Uᵣ % ⁰ emb< PE.refl d) (Uᵣ r₁ ⁰ emb< PE.refl d₁) [A≡B] [t] [v] [t≡v] [u] [w] [u≡w] = let U≡U = whrDet* (red d₁ , Uₙ) ([A≡B] , Uₙ) r≡r , _ = Univ-PE-injectivity U≡U [UA] = Uᵣ % ⁰ emb< PE.refl d [UB] = Uᵣ r₁ ⁰ emb< PE.refl d₁ [U] = Ugen' ⊢Γ [U]' = Ugen' ⊢Γ [UA]' , [UAeq] = redSubst* (red d) (Uᵣ [U]) [UB]' , [UBeq] = redSubst* (PE.subst (λ X → Γ ⊢ _ ⇒* Univ X _ ^ _) r≡r (red d₁)) (Uᵣ [U]') [t]′ = convTerm₁ {t = t} [UA]' (Uᵣ [U]) [UAeq] (irrelevanceTerm (Uᵣ [UA]) [UA]' [t]) [t^] = univEq (Uᵣ [U]) [t]′ [v]′ = convTerm₁ {t = v} [UB]' (Uᵣ [U]) [UBeq] (irrelevanceTerm (Uᵣ [UB]) [UB]' [v]) [v^] = univEq (Uᵣ [U]) [v]′ [t≡v]′ = convEqTerm₁ {t = t} {u = v} [UA]' (Uᵣ [U]) [UAeq] (irrelevanceEqTerm (Uᵣ [UA]) [UA]' [t≡v]) [t≡v^] = univEqEq (Uᵣ [U]) [t^] [t≡v]′ [u]′ = convTerm₁ {t = u} [UA]' (Uᵣ [U]) [UAeq] (irrelevanceTerm (Uᵣ [UA]) [UA]' [u]) [u^] = univEq (Uᵣ [U]) [u]′ [w]′ = convTerm₁ {t = w} [UB]' (Uᵣ [U]) [UBeq] (irrelevanceTerm (Uᵣ [UB]) [UB]' [w]) [w^] = univEq (Uᵣ [U]) [w]′ [u≡w]′ = convEqTerm₁ {t = u} {u = w} [UA]' (Uᵣ [U]) [UAeq] (irrelevanceEqTerm (Uᵣ [UA]) [UA]' [u≡w]) [u≡w^] = univEqEq (Uᵣ [U]) [u^] [u≡w]′ X = irrelevanceEq {A = Id (SProp ⁰) t u} {B = Id (SProp ⁰) v w} ([Id]SProp ⊢Γ [t^] [u^]) ([Id]UGen ⊢Γ [U] [t]′ [u]′) ([IdExt]SProp ⊢Γ [t^] [v^] [t≡v^] [u^] [w^] [u≡w^]) [IdA] , [IdA≡U] = redSubst* (IdRed* (escapeTerm (Uᵣ [UA]) [t]) (escapeTerm (Uᵣ [UA]) [u]) (red d)) ([Id]UGen ⊢Γ [U] [t]′ [u]′) [IdB] , [IdB≡U] = redSubst* (IdRed* (escapeTerm (Uᵣ [UB]) [v]) (escapeTerm (Uᵣ [UB]) [w]) (PE.subst (λ X → Γ ⊢ _ ⇒* Univ X _ ^ _) r≡r (red d₁))) ([Id]UGen ⊢Γ [U] [v]′ [w]′) [IdA≡U]′ = irrelevanceEq {A = Id A t u} {B = Id (SProp ⁰) t u} [IdA] ([Id]UGen ⊢Γ [UA] [t] [u]) [IdA≡U] [IdB≡U]′ = irrelevanceEq {A = Id B v w} {B = Id (SProp ⁰) v w} [IdB] ([Id]UGen ⊢Γ [UB] [v] [w]) [IdB≡U] in transEq {A = Id A t u} {B = Id (SProp _) t u} {C = Id B v w} ([Id]UGen ⊢Γ [UA] [t] [u]) ([Id]UGen ⊢Γ [U] [t]′ [u]′) ([Id]UGen ⊢Γ [UB] [v] [w]) [IdA≡U]′ (transEq {A = Id (SProp _) t u} {B = Id (SProp _) v w} {C = Id B v w} ([Id]UGen ⊢Γ [U] [t]′ [u]′) ([Id]UGen ⊢Γ [U] [v]′ [w]′) ([Id]UGen ⊢Γ [UB] [v] [w]) X (symEq {A = Id B v w} {B = Id (SProp _) v w} ([Id]UGen ⊢Γ [UB] [v] [w]) ([Id]UGen ⊢Γ [U] [v]′ [w]′) [IdB≡U]′))
{ "alphanum_fraction": 0.4061318241, "avg_line_length": 68.1678200692, "ext": "agda", "hexsha": "87b048d3e4f0cacf7f61a9dfcf7a535f04d85fe4", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z", "max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z", "max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "CoqHott/logrel-mltt", "max_forks_repo_path": "Definition/LogicalRelation/Substitution/Introductions/IdUniv.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "CoqHott/logrel-mltt", "max_issues_repo_path": "Definition/LogicalRelation/Substitution/Introductions/IdUniv.agda", "max_line_length": 178, "max_stars_count": 2, "max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "CoqHott/logrel-mltt", "max_stars_repo_path": "Definition/LogicalRelation/Substitution/Introductions/IdUniv.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z", "max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z", "num_tokens": 24723, "size": 39401 }
{-# OPTIONS --cubical --safe --postfix-projections #-} module Cardinality.Finite.Structure where open import Prelude open import Data.Fin open import Data.Nat open import Data.Nat.Properties private variable n m : ℕ liftˡ : ∀ n m → Fin m → Fin (n + m) liftˡ zero m x = x liftˡ (suc n) m x = fs (liftˡ n m x) liftʳ : ∀ n m → Fin n → Fin (n + m) liftʳ (suc n) m f0 = f0 liftʳ (suc n) m (fs x) = fs (liftʳ n m x) mapl : (A → B) → A ⊎ C → B ⊎ C mapl f (inl x) = inl (f x) mapl f (inr x) = inr x fin-sum-to : ∀ n m → Fin n ⊎ Fin m → Fin (n + m) fin-sum-to n m = either (liftʳ n m) (liftˡ n m) fin-sum-from : ∀ n m → Fin (n + m) → Fin n ⊎ Fin m fin-sum-from zero m x = inr x fin-sum-from (suc n) m f0 = inl f0 fin-sum-from (suc n) m (fs x) = mapl fs (fin-sum-from n m x) mapl-distrib : ∀ {a b c d} {A : Type a} {B : Type b} {C : Type c} {D : Type d} (xs : A ⊎ B) (h : A → C) (f : C → D) (g : B → D) → either′ f g (mapl h xs) ≡ either′ (f ∘′ h) g xs mapl-distrib (inl x) h f g = refl mapl-distrib (inr x) h f g = refl either-distrib : ∀ {d} {D : Type d} (f : A → C) (g : B → C) (h : C → D) (xs : A ⊎ B) → either′ (h ∘ f) (h ∘ g) xs ≡ h (either′ f g xs) either-distrib f g h (inl x) = refl either-distrib f g h (inr x) = refl open import Path.Reasoning fin-sum-to-from : ∀ n m x → fin-sum-to n m (fin-sum-from n m x) ≡ x fin-sum-to-from zero m x = refl fin-sum-to-from (suc n) m f0 = refl fin-sum-to-from (suc n) m (fs x) = fin-sum-to (suc n) m (mapl fs (fin-sum-from n m x)) ≡⟨ mapl-distrib (fin-sum-from n m x) fs (liftʳ (suc n) m) (liftˡ (suc n) m) ⟩ either (liftʳ (suc n) m ∘ fs) (liftˡ (suc n) m) (fin-sum-from n m x) ≡⟨⟩ either (fs ∘ liftʳ n m) (fs ∘ liftˡ n m) (fin-sum-from n m x) ≡⟨ either-distrib (liftʳ n m) (liftˡ n m) fs (fin-sum-from n m x) ⟩ fs (either (liftʳ n m) (liftˡ n m) (fin-sum-from n m x)) ≡⟨ cong fs (fin-sum-to-from n m x) ⟩ fs x ∎ -- fin-sum-from-to : ∀ n m x → fin-sum-from n m (fin-sum-to n m x) ≡ x -- fin-sum-from-to n m (inl x) = {!!} -- fin-sum-from-to n m (inr x) = {!!} -- fin-sum : ∀ n m → Fin n ⊎ Fin m ⇔ Fin (n + m) -- fin-sum n m .fun = fin-sum-to n m -- fin-sum n m .inv = fin-sum-from n m -- fin-sum n m .rightInv = fin-sum-to-from n m -- fin-sum n m .leftInv = fin-sum-from-to n m
{ "alphanum_fraction": 0.5582822086, "avg_line_length": 33.5588235294, "ext": "agda", "hexsha": "c5278de3bfbf1eb20ab2560c6814bfcafc3b73e5", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/combinatorics-paper", "max_forks_repo_path": "agda/Cardinality/Finite/Structure.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/combinatorics-paper", "max_issues_repo_path": "agda/Cardinality/Finite/Structure.agda", "max_line_length": 177, "max_stars_count": 4, "max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/combinatorics-paper", "max_stars_repo_path": "agda/Cardinality/Finite/Structure.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-05T15:32:14.000Z", "max_stars_repo_stars_event_min_datetime": "2021-01-05T14:07:44.000Z", "num_tokens": 980, "size": 2282 }
module Data.Signed where open import Data.Bit using (Bit ; b0 ; b1 ; Bits-num ; Bits-neg ; Overflowing ; _overflow:_ ; result ; carry ; WithCarry ; _with-carry:_ ; toBool ; tryToFinₙ ; !ₙ ; _⊕_ ; _↔_ ) renaming ( _+_ to bit+ ; _-_ to bit- ; ! to bit! ; _&_ to bit& ; _~|_ to bit| ; _^_ to bit^ ; _>>_ to bit>> ; _<<_ to bit<< ) open import Data.Unit using (⊤) open import Data.Nat using (ℕ; suc; zero) renaming (_≤_ to ℕ≤) open import Data.Vec using (Vec; _∷_; []; head; tail; replicate) open import Data.Nat.Literal using (Number) open import Data.Int.Literal using (Negative) open import Data.Maybe using (just; nothing) open import Data.Empty using (⊥) infixl 8 _-_ _+_ infixl 7 _<<_ _>>_ infixl 6 _&_ infixl 5 _^_ infixl 4 _~|_ record Signed (n : ℕ) : Set where constructor mk-int field bits : Vec Bit n open Signed public instance Signed-num : {m : ℕ} → Number (Signed m) Signed-num {zero} .Number.Constraint = Number.Constraint (Bits-num {zero}) Signed-num {suc m} .Number.Constraint = Number.Constraint (Bits-num {m}) Signed-num {zero} .Number.fromNat zero ⦃ p ⦄ = mk-int [] where Signed-num {zero} .Number.fromNat (suc _) ⦃ ℕ≤.s≤s () ⦄ Signed-num {suc m} .Number.fromNat n ⦃ p ⦄ = mk-int (mk-bits p) where mk-bits : Number.Constraint (Bits-num {m}) n → Vec Bit (suc m) mk-bits p = b0 ∷ Number.fromNat Bits-num n ⦃ p ⦄ instance Signed-neg : {m : ℕ} → Negative (Signed (suc m)) Signed-neg {m} .Negative.Constraint = Negative.Constraint (Bits-neg {m}) Signed-neg {m} .Negative.fromNeg n ⦃ p ⦄ = mk-int bitVec where bitVec : Vec Bit (suc m) bitVec = Negative.fromNeg (Bits-neg {m}) n ⦃ p ⦄ _+_ : {n : ℕ} → Signed n → Signed n → Overflowing (Signed n) p + q = mk-int (result sum) overflow: toBool overflow where sum = bit+ (bits p) (bits q) last-carry : {n : ℕ} → Vec Bit n → Bit last-carry [] = b0 last-carry (b ∷ _) = b overflow = head (carry sum) ⊕ last-carry (tail (carry sum)) _-_ : {n : ℕ} → Signed n → Signed n → Overflowing (Signed n) p - q = mk-int (result sub) overflow: toBool overflow where sub = bit- (bits p) (bits q) last-carry : {n : ℕ} → Vec Bit n → Bit last-carry [] = b0 last-carry (b ∷ _) = b overflow = head (carry sub) ↔ last-carry (tail (carry sub)) rotr : {n : ℕ} → Signed n → Signed n → WithCarry (Signed n) (Signed n) rotr {n} (mk-int ps) (mk-int qs) = new-result with-carry: new-carry where shifted : WithCarry (Vec Bit n) (Vec Bit n) shifted with tryToFinₙ qs ... | just i = bit>> ps i ... | nothing = replicate b0 with-carry: ps new-result : Signed n new-result = mk-int (result shifted) new-carry : Signed n new-carry = mk-int (carry shifted) rotl : {n : ℕ} → Signed n → Signed n → WithCarry (Signed n) (Signed n) rotl {n} (mk-int ps) (mk-int qs) = new-result with-carry: new-carry where shifted : WithCarry (Vec Bit n) (Vec Bit n) shifted with tryToFinₙ qs ... | just i = bit<< ps i ... | nothing = replicate b0 with-carry: ps new-result : Signed n new-result = mk-int (result shifted) new-carry : Signed n new-carry = mk-int (carry shifted) _>>_ : {n : ℕ} → Signed n → Signed n → Signed n ps >> qs = result (rotr ps qs) _<<_ : {n : ℕ} → Signed n → Signed n → Signed n ps << qs = result (rotl ps qs) arotr : {n : ℕ} → Signed n → Signed n → WithCarry (Signed n) (Signed n) arotr {n} (mk-int []) _ = mk-int [] with-carry: mk-int [] arotr {suc n} (mk-int (p ∷ ps)) (mk-int qs) = new-result with-carry: new-carry where shifted : WithCarry (Vec Bit n) (Vec Bit n) shifted with tryToFinₙ qs ... | just i = bit>> ps i ... | nothing = replicate b0 with-carry: ps new-result : Signed (suc n) new-result = mk-int (p ∷ result shifted) new-carry : Signed (suc n) new-carry = mk-int (b0 ∷ carry shifted) arotl : {n : ℕ} → Signed n → Signed n → WithCarry (Signed n) (Signed n) arotl {n} (mk-int []) _ = mk-int [] with-carry: mk-int [] arotl {suc n} (mk-int (p ∷ ps)) (mk-int qs) = new-result with-carry: new-carry where shifted : WithCarry (Vec Bit n) (Vec Bit n) shifted with tryToFinₙ qs ... | just i = bit<< ps i ... | nothing = replicate b0 with-carry: ps new-result : Signed (suc n) new-result = mk-int (p ∷ result shifted) new-carry : Signed (suc n) new-carry = mk-int (b0 ∷ carry shifted) _a>>_ : {n : ℕ} → Signed n → Signed n → Signed n ps a>> qs = result (rotr ps qs) _a<<_ : {n : ℕ} → Signed n → Signed n → Signed n ps a<< qs = result (rotl ps qs) ! : {n : ℕ} → Signed n → Signed n ! (mk-int ps) = mk-int (!ₙ ps) _&_ : {n : ℕ} → Signed n → Signed n → Signed n (mk-int ps) & (mk-int qs) = mk-int (bit& ps qs) _~|_ : {n : ℕ} → Signed n → Signed n → Signed n (mk-int ps) ~| (mk-int qs) = mk-int (bit| ps qs) _^_ : {n : ℕ} → Signed n → Signed n → Signed n (mk-int ps) ^ (mk-int qs) = mk-int (bit^ ps qs)
{ "alphanum_fraction": 0.6, "avg_line_length": 31.7741935484, "ext": "agda", "hexsha": "53f8736d78ac5b37caaaa70c0680902b874ff255", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9f5129d97ee7b89fb8e43136779a78806b7506ab", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "brunoczim/Celeste", "max_forks_repo_path": "formalization/Data/Signed.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9f5129d97ee7b89fb8e43136779a78806b7506ab", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "brunoczim/Celeste", "max_issues_repo_path": "formalization/Data/Signed.agda", "max_line_length": 78, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9f5129d97ee7b89fb8e43136779a78806b7506ab", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "brunoczim/Celeste", "max_stars_repo_path": "formalization/Data/Signed.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-16T17:31:57.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-16T17:31:57.000Z", "num_tokens": 1768, "size": 4925 }
{-# OPTIONS --warning=error --safe --without-K #-} open import LogicalFormulae open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import Functions open import Setoids.Setoids open import Setoids.Subset open import Graphs.Definition open import Sets.FinSet.Definition open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order open import Sets.EquivalenceRelations open import Graphs.CompleteGraph open import Graphs.Colouring module Graphs.RamseyTriangle where hasMonochromaticTriangle : {a : _} {n : ℕ} (G : Graph a (reflSetoid (FinSet n))) → Set (lsuc lzero) hasMonochromaticTriangle {n = n} G = Sg (FinSet n → Set) λ pred → (subset (reflSetoid (FinSet n)) pred) && {!!} ramseyForTriangle : (k : ℕ) → Sg ℕ (λ N → (n : ℕ) → (N <N n) → (c : Colouring k (Kn n)) → {!!}) ramseyForTriangle k = {!!}
{ "alphanum_fraction": 0.7246376812, "avg_line_length": 34.5, "ext": "agda", "hexsha": "8610d6331637094af1708d9bc1b59f0fe3efe821", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Graphs/RamseyTriangle.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Graphs/RamseyTriangle.agda", "max_line_length": 111, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Graphs/RamseyTriangle.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 255, "size": 828 }
{-# OPTIONS --sized-types #-} module SizedTypesRigidVarClash where postulate Size : Set _^ : Size -> Size ∞ : Size {-# BUILTIN SIZE Size #-} {-# BUILTIN SIZESUC _^ #-} {-# BUILTIN SIZEINF ∞ #-} data Nat : {size : Size} -> Set where zero : {size : Size} -> Nat {size ^} suc : {size : Size} -> Nat {size} -> Nat {size ^} inc : {i j : Size} -> Nat {i} -> Nat {j ^} inc x = suc x
{ "alphanum_fraction": 0.5413533835, "avg_line_length": 19.95, "ext": "agda", "hexsha": "5216954232310dc5aa62648ceac3a4cada316838", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "larrytheliquid/agda", "max_forks_repo_path": "test/fail/SizedTypesRigidVarClash.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/agda", "max_issues_repo_path": "test/fail/SizedTypesRigidVarClash.agda", "max_line_length": 52, "max_stars_count": null, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/fail/SizedTypesRigidVarClash.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 137, "size": 399 }
-- Andreas, 2017-01-18, issue #2413 -- As-patterns of variable patterns data Bool : Set where true false : Bool test : Bool → Bool test x@y = {!x!} -- split on x test1 : Bool → Bool test1 x@_ = {!x!} -- split on x test2 : Bool → Bool test2 x@y = {!y!} -- split on y
{ "alphanum_fraction": 0.6080586081, "avg_line_length": 18.2, "ext": "agda", "hexsha": "41b4ab767d76019a85de84f3c3f5b21f726d147d", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue2413.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue2413.agda", "max_line_length": 35, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue2413.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 101, "size": 273 }
module reverse_string where open import Data.String open import Data.List reverse_string : String → String reverse_string s = fromList (reverse (toList s))
{ "alphanum_fraction": 0.7974683544, "avg_line_length": 19.75, "ext": "agda", "hexsha": "36d529693dc9ac6a423c03b8795149b789c17298", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-11-09T22:08:40.000Z", "max_forks_repo_forks_event_min_datetime": "2018-11-09T22:08:40.000Z", "max_forks_repo_head_hexsha": "9ad63ea473a958506c041077f1d810c0c7c8c18d", "max_forks_repo_licenses": [ "Info-ZIP" ], "max_forks_repo_name": "seanwallawalla-forks/RosettaCodeData", "max_forks_repo_path": "Task/Reverse-a-string/Agda/reverse-a-string.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9ad63ea473a958506c041077f1d810c0c7c8c18d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Info-ZIP" ], "max_issues_repo_name": "seanwallawalla-forks/RosettaCodeData", "max_issues_repo_path": "Task/Reverse-a-string/Agda/reverse-a-string.agda", "max_line_length": 48, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9ad63ea473a958506c041077f1d810c0c7c8c18d", "max_stars_repo_licenses": [ "Info-ZIP" ], "max_stars_repo_name": "LaudateCorpus1/RosettaCodeData", "max_stars_repo_path": "Task/Reverse-a-string/Agda/reverse-a-string.agda", "max_stars_repo_stars_event_max_datetime": "2018-11-09T22:08:38.000Z", "max_stars_repo_stars_event_min_datetime": "2018-11-09T22:08:38.000Z", "num_tokens": 34, "size": 158 }
{-# OPTIONS --safe --without-K #-} open import Algebra.Bundles using (Monoid) module Categories.Category.Construction.MonoidAsCategory o {c ℓ} (M : Monoid c ℓ) where open import Data.Unit.Polymorphic open import Level open import Categories.Category.Core open Monoid M -- A monoid is a category with one object MonoidAsCategory : Category o c ℓ MonoidAsCategory = record { Obj = ⊤ ; assoc = assoc _ _ _ ; sym-assoc = sym (assoc _ _ _) ; identityˡ = identityˡ _ ; identityʳ = identityʳ _ ; identity² = identityˡ _ ; equiv = isEquivalence ; ∘-resp-≈ = ∙-cong }
{ "alphanum_fraction": 0.7010309278, "avg_line_length": 23.28, "ext": "agda", "hexsha": "904e2ea5d36b76424c52f8fdc7343f686cf6d45d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Category/Construction/MonoidAsCategory.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Category/Construction/MonoidAsCategory.agda", "max_line_length": 87, "max_stars_count": 5, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Category/Construction/MonoidAsCategory.agda", "max_stars_repo_stars_event_max_datetime": "2019-05-22T03:54:24.000Z", "max_stars_repo_stars_event_min_datetime": "2019-05-21T17:07:19.000Z", "num_tokens": 180, "size": 582 }
------------------------------------------------------------------------------ -- Non-terminating GCD ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOT.FOTC.Program.GCD.GCD-NT where open import Data.Nat open import Relation.Nullary ------------------------------------------------------------------------------ {-# TERMINATING #-} gcd : ℕ → ℕ → ℕ gcd 0 0 = 0 gcd (suc m) 0 = suc m gcd 0 (suc n) = suc n gcd (suc m) (suc n) with suc m ≤? suc n gcd (suc m) (suc n) | yes p = gcd (suc m) (suc n ∸ suc m) gcd (suc m) (suc n) | no ¬p = gcd (suc m ∸ suc n) (suc n)
{ "alphanum_fraction": 0.37625, "avg_line_length": 32, "ext": "agda", "hexsha": "f82cc4bf5890c80197f9a2625987d47c72373ace", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/FOT/FOTC/Program/GCD/GCD-NT.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/FOT/FOTC/Program/GCD/GCD-NT.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/FOT/FOTC/Program/GCD/GCD-NT.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 202, "size": 800 }
module Structure.Signature where open import Data.Tuple.Raise open import Data.Tuple.Raiseᵣ.Functions import Lvl open import Numeral.Natural open import Structure.Function open import Structure.Setoid open import Structure.Relator open import Type private variable ℓ ℓᵢ ℓᵢ₁ ℓᵢ₂ ℓᵢ₃ ℓd ℓd₁ ℓd₂ ℓᵣ ℓᵣ₁ ℓᵣ₂ ℓₑ ℓₑ₁ ℓₑ₂ : Lvl.Level private variable n : ℕ -- A signature consists of a countable family of sets of function and relation symbols. -- `functions(n)` and `relations(n)` should be interpreted as the indices for functions/relations of arity `n`. record Signature : Type{Lvl.𝐒(ℓᵢ₁ Lvl.⊔ ℓᵢ₂)} where field functions : ℕ → Type{ℓᵢ₁} relations : ℕ → Type{ℓᵢ₂} private variable s : Signature{ℓᵢ₁}{ℓᵢ₂} import Data.Tuple.Equiv as Tuple -- A structure with a signature `s` consists of a domain and interpretations of the function/relation symbols in `s`. record Structure (s : Signature{ℓᵢ₁}{ℓᵢ₂}) : Type{Lvl.𝐒(ℓₑ Lvl.⊔ ℓd Lvl.⊔ ℓᵣ) Lvl.⊔ ℓᵢ₁ Lvl.⊔ ℓᵢ₂} where open Signature(s) field domain : Type{ℓd} ⦃ equiv ⦄ : ∀{n} → Equiv{ℓₑ}(domain ^ n) ⦃ ext ⦄ : ∀{n} → Tuple.Extensionality(equiv{𝐒(𝐒 n)}) function : functions(n) → ((domain ^ n) → domain) ⦃ function-func ⦄ : ∀{fi} → Function(function{n} fi) relation : relations(n) → ((domain ^ n) → Type{ℓᵣ}) ⦃ relation-func ⦄ : ∀{ri} → UnaryRelator(relation{n} ri) open Structure public using() renaming (domain to dom ; function to fn ; relation to rel) open import Logic.Predicate module _ {s : Signature{ℓᵢ₁}{ℓᵢ₂}} where private variable A B C S : Structure{ℓd = ℓd}{ℓᵣ = ℓᵣ}(s) private variable fi : Signature.functions s n private variable ri : Signature.relations s n private variable xs : dom(S) ^ n record Homomorphism (A : Structure{ℓₑ = ℓₑ₁}{ℓd = ℓd₁}{ℓᵣ = ℓᵣ₁}(s)) (B : Structure{ℓₑ = ℓₑ₂}{ℓd = ℓd₂}{ℓᵣ = ℓᵣ₂}(s)) (f : dom(A) → dom(B)) : Type{ℓₑ₁ Lvl.⊔ ℓₑ₂ Lvl.⊔ ℓd₁ Lvl.⊔ ℓd₂ Lvl.⊔ ℓᵣ₁ Lvl.⊔ ℓᵣ₂ Lvl.⊔ Lvl.ofType(Type.of s)} where field ⦃ function ⦄ : Function(f) preserve-functions : ∀{xs : dom(A) ^ n} → (f(fn(A) fi xs) ≡ fn(B) fi (map f xs)) preserve-relations : ∀{xs : dom(A) ^ n} → (rel(A) ri xs) → (rel(B) ri (map f xs)) _→ₛₜᵣᵤ_ : Structure{ℓₑ = ℓₑ₁}{ℓd = ℓd₁}{ℓᵣ = ℓᵣ₁}(s) → Structure{ℓₑ = ℓₑ₂}{ℓd = ℓd₂}{ℓᵣ = ℓᵣ₂}(s) → Type A →ₛₜᵣᵤ B = ∃(Homomorphism A B) open import Data open import Data.Tuple as Tuple using (_,_) open import Data.Tuple.Raiseᵣ.Proofs open import Functional open import Function.Proofs open import Lang.Instance open import Structure.Operator open import Structure.Relator.Properties open import Syntax.Transitivity idₛₜᵣᵤ : A →ₛₜᵣᵤ A ∃.witness idₛₜᵣᵤ = id Homomorphism.preserve-functions (∃.proof (idₛₜᵣᵤ {A = A})) {n} {fi} {xs} = congruence₁(fn A fi) (symmetry(Equiv._≡_ (Structure.equiv A)) ⦃ Equiv.symmetry infer ⦄ map-id) Homomorphism.preserve-relations (∃.proof (idₛₜᵣᵤ {A = A})) {n} {ri} {xs} = substitute₁ₗ(rel A ri) map-id _∘ₛₜᵣᵤ_ : let _ = A , B , C in (B →ₛₜᵣᵤ C) → (A →ₛₜᵣᵤ B) → (A →ₛₜᵣᵤ C) ∃.witness (([∃]-intro f) ∘ₛₜᵣᵤ ([∃]-intro g)) = f ∘ g Homomorphism.function (∃.proof ([∃]-intro f ∘ₛₜᵣᵤ [∃]-intro g)) = [∘]-function {f = f}{g = g} Homomorphism.preserve-functions (∃.proof (_∘ₛₜᵣᵤ_ {A = A} {B = B} {C = C} ([∃]-intro f ⦃ hom-f ⦄) ([∃]-intro g ⦃ hom-g ⦄))) {fi = fi} = transitivity(_≡_) ⦃ Equiv.transitivity infer ⦄ (transitivity(_≡_) ⦃ Equiv.transitivity infer ⦄ (congruence₁(f) (Homomorphism.preserve-functions hom-g)) (Homomorphism.preserve-functions hom-f)) (congruence₁(fn C fi) (symmetry(Equiv._≡_ (Structure.equiv C)) ⦃ Equiv.symmetry infer ⦄ (map-[∘] {f = f}{g = g}))) Homomorphism.preserve-relations (∃.proof (_∘ₛₜᵣᵤ_ {A = A} {B = B} {C = C} ([∃]-intro f ⦃ hom-f ⦄) ([∃]-intro g ⦃ hom-g ⦄))) {ri = ri} = substitute₁ₗ (rel C ri) map-[∘] ∘ Homomorphism.preserve-relations hom-f ∘ Homomorphism.preserve-relations hom-g open import Function.Equals open import Function.Equals.Proofs open import Logic.Predicate.Equiv open import Structure.Category open import Structure.Categorical.Properties Structure-Homomorphism-category : Category(_→ₛₜᵣᵤ_ {ℓₑ}{ℓd}{ℓᵣ}) Category._∘_ Structure-Homomorphism-category = _∘ₛₜᵣᵤ_ Category.id Structure-Homomorphism-category = idₛₜᵣᵤ BinaryOperator.congruence (Category.binaryOperator Structure-Homomorphism-category) = [⊜][∘]-binaryOperator-raw _⊜_.proof (Morphism.Associativity.proof (Category.associativity Structure-Homomorphism-category) {_} {_} {_} {_} {[∃]-intro f} {[∃]-intro g} {[∃]-intro h}) {x} = reflexivity(_≡_) ⦃ Equiv.reflexivity infer ⦄ {f(g(h(x)))} _⊜_.proof (Morphism.Identityₗ.proof (Tuple.left (Category.identity Structure-Homomorphism-category)) {f = [∃]-intro f}) {x} = reflexivity(_≡_) ⦃ Equiv.reflexivity infer ⦄ {f(x)} _⊜_.proof (Morphism.Identityᵣ.proof (Tuple.right (Category.identity Structure-Homomorphism-category)) {f = [∃]-intro f}) {x} = reflexivity(_≡_) ⦃ Equiv.reflexivity infer ⦄ {f(x)} module _ (s : Signature{ℓᵢ₁}{ℓᵢ₂}) where data Term : Type{ℓᵢ₁} where var : ℕ → Term func : (Signature.functions s n) → (Term ^ n) → Term
{ "alphanum_fraction": 0.6686297605, "avg_line_length": 49.9411764706, "ext": "agda", "hexsha": "4dc3787469a3c7b69c0022807fdd10853201c31c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Signature.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Signature.agda", "max_line_length": 445, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Signature.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 2166, "size": 5094 }
module Issue292-19 where postulate I : Set i₁ i₂ : I J : Set j : I → J data D : I → Set where d₁ : D i₁ d₂ : D i₂ data P : ∀ i → D i → Set where p₁ : P i₁ d₁ p₂ : P i₂ d₂ data P′ : ∀ i → D i → Set where p₁ : P′ i₁ d₁ data E : J → Set where e₁ : E (j i₁) e₂ : E (j i₂) data Q : ∀ i → E i → Set where q₁ : Q (j i₁) e₁ q₂ : Q (j i₂) e₂ Ok : Q (j i₁) e₁ → Set₁ Ok q₁ = Set AlsoOk : P i₁ d₁ → Set₁ AlsoOk p₁ = Set Foo : ∀ {i} (d : D i) → P′ i d → Set₁ Foo d₁ _ = Set Foo d₂ ()
{ "alphanum_fraction": 0.4875239923, "avg_line_length": 13.7105263158, "ext": "agda", "hexsha": "29eeb695ef9aaabc671715b96b5e98e6aed743db", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue292-19.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue292-19.agda", "max_line_length": 37, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue292-19.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 257, "size": 521 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Data.List.Any.Membership instantiated with propositional equality, -- along with some additional definitions. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Membership.Propositional {a} {A : Set a} where open import Data.List.Relation.Unary.Any using (Any) open import Relation.Binary.PropositionalEquality using (setoid; subst) import Data.List.Membership.Setoid as SetoidMembership ------------------------------------------------------------------------ -- Re-export contents of setoid membership open SetoidMembership (setoid A) public hiding (lose) ------------------------------------------------------------------------ -- Other operations lose : ∀ {p} {P : A → Set p} {x xs} → x ∈ xs → P x → Any P xs lose = SetoidMembership.lose (setoid A) (subst _)
{ "alphanum_fraction": 0.5099685205, "avg_line_length": 35.2962962963, "ext": "agda", "hexsha": "2c485fa2a844d5c7afe2f38dd3364872e36458bd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Membership/Propositional.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Membership/Propositional.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Membership/Propositional.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 175, "size": 953 }
module TelescopingLet2 where f : (let ★ = Set) (A : ★) → A → Set₁ f A x = ★ -- should fail, since ★ is not in scope in the definition
{ "alphanum_fraction": 0.6222222222, "avg_line_length": 22.5, "ext": "agda", "hexsha": "6e833ca7f01d0a4572a5d228742fc6ead898ea91", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/TelescopingLet2.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/TelescopingLet2.agda", "max_line_length": 57, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/TelescopingLet2.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 47, "size": 135 }
module Ag05 where open import Agda.Builtin.Nat open import Agda.Builtin.Equality open import Agda.Builtin.Bool {- data _≡_ {A : Set} (x : A) : A → Set where refl : x ≡ x -} data Refine : (A : Set) → (A → Set) → Set where MkRefine : ∀ {A : Set} {f : A → Set} → (a : A) → (f a) → Refine A f data _∧_ : Set → Set → Set where and : ∀ (A B : Set) → A ∧ B -- hl-suc : ∀ {a : Nat} → Refine Nat (λ ) silly : Set silly = Refine Nat (_≡_ 0) sillySon : silly sillySon = MkRefine zero refl data _≤_ : Nat → Nat → Set where z≤s : ∀ {b : Nat} → 0 ≤ b s≤s : ∀ {m n : Nat} → m ≤ n → suc m ≤ suc n data le-Total (x y : Nat) : Set where le-left : x ≤ y → le-Total x y le-right : y ≤ x → le-Total x y le : Nat → Nat → Bool le zero zero = true le zero (suc n) = true le (suc m) zero = false le (suc m) (suc n) = le m n le-wtf : ∀ (x y : Nat) → le-Total x y le-wtf zero zero = le-left z≤s le-wtf zero (suc y) = le-left z≤s le-wtf (suc x) zero = le-right z≤s le-wtf (suc x) (suc y) with le-wtf x y ... | le-left P = le-left (s≤s P) ... | le-right Q = le-right (s≤s Q) {- with le x y -- x ≤ y ... | true = {!!} ... | false = {!!} -} _⟨_⟩ : (A : Set) → (A → Set) → Set _⟨_⟩ = Refine and-refine : ∀ {A : Set} (f g : A → Set) → (a : A) → f a → g a → Refine A (λ x → (f x) ∧ (g x)) and-refine f g x Pa Pb = MkRefine x (and (f x) (g x)) hSuc : ∀ {m : Nat} → ( Nat ⟨ (λ x → x ≤ m ) ⟩ ) → ( Nat ⟨ (λ x → x ≤ suc m ) ⟩ ) hSuc (MkRefine a P) = MkRefine (suc a) (s≤s P) postulate ≤-trans : ∀ {x y z : Nat} → x ≤ y → y ≤ z → x ≤ z min : ∀ {m n : Nat} → ( Nat ⟨ (λ x → x ≤ m) ⟩ ) → ( Nat ⟨ (λ x → x ≤ n) ⟩ ) → ( Nat ⟨ (λ x → (x ≤ m) ∧ (x ≤ n)) ⟩ ) min (MkRefine a Pa) (MkRefine b Pb) with le-wtf a b ... {- a ≤ b -} | le-left P = {!and-refine ? ? Pa ? !} ... {- b ≤ a -} | le-right Q = {!and-refine _ _ ? Pb !} {- with le-Total a b ... | le-left a = {!!} ... | le-right b = ? -} {- min {m} {n} (MkRefine a P₀) (MkRefine b P₁) with (le a b) ... | true = {!!} ... | false = {!!} -} {- min {m} {n} (MkRefine zero x) (MkRefine b y) = MkRefine 0 (and (zero ≤ m) (zero ≤ n)) min {m} {n} (MkRefine (suc a) x) (MkRefine zero y) = MkRefine 0 (and (zero ≤ m) (zero ≤ n)) min {suc m} {suc n} (MkRefine (suc a) x) (MkRefine (suc b) y) = {!hSuc (min (MkRefine a ?) (MkRefine b ?))!} -}
{ "alphanum_fraction": 0.4308450171, "avg_line_length": 30.6860465116, "ext": "agda", "hexsha": "e16ead6ddcd74a26774736dab4a00ae50dfb792a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-12-13T04:50:46.000Z", "max_forks_repo_forks_event_min_datetime": "2019-12-13T04:50:46.000Z", "max_forks_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Brethland/LEARNING-STUFF", "max_forks_repo_path": "Agda/Ag05.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Brethland/LEARNING-STUFF", "max_issues_repo_path": "Agda/Ag05.agda", "max_line_length": 108, "max_stars_count": 2, "max_stars_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Brethland/LEARNING-STUFF", "max_stars_repo_path": "Agda/Ag05.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-11T10:35:42.000Z", "max_stars_repo_stars_event_min_datetime": "2020-02-03T05:05:52.000Z", "num_tokens": 1068, "size": 2639 }
{-# OPTIONS --without-K --safe #-} -- the usual notion of mate is defined by two isomorphisms between hom set(oid)s are natural, -- but due to explicit universe level, a different definition is used. module Categories.Adjoint.Mate where open import Level open import Data.Product using (Σ; _,_) open import Function.Equality using (Π; _⟶_; _⇨_) renaming (_∘_ to _∙_) open import Relation.Binary using (Setoid; IsEquivalence) open import Categories.Category open import Categories.Category.Instance.Setoids open import Categories.Functor open import Categories.Functor.Hom open import Categories.NaturalTransformation renaming (id to idN) open import Categories.NaturalTransformation.Equivalence using (_≃_) open import Categories.Adjoint import Categories.Morphism.Reasoning as MR private variable o ℓ e : Level C D : Category o ℓ e L L′ R R′ : Functor C D -- this notion of mate can be seen in MacLane in which this notion is shown equivalent to the -- definition via naturally isomorphic hom setoids. record Mate {L : Functor C D} (L⊣R : L ⊣ R) (L′⊣R′ : L′ ⊣ R′) (α : NaturalTransformation L L′) (β : NaturalTransformation R′ R) : Set (levelOfTerm L⊣R ⊔ levelOfTerm L′⊣R′) where private module L⊣R = Adjoint L⊣R module L′⊣R′ = Adjoint L′⊣R′ module C = Category C module D = Category D field commute₁ : (R ∘ˡ α) ∘ᵥ L⊣R.unit ≃ (β ∘ʳ L′) ∘ᵥ L′⊣R′.unit commute₂ : L⊣R.counit ∘ᵥ L ∘ˡ β ≃ L′⊣R′.counit ∘ᵥ (α ∘ʳ R′) -- there are two equivalent commutative diagram open NaturalTransformation renaming (commute to η-commute) open Functor module _ where open D open HomReasoning open MR D commute₃ : ∀ {X} → L⊣R.counit.η (F₀ L′ X) ∘ F₁ L (η β (F₀ L′ X)) ∘ F₁ L (L′⊣R′.unit.η X) ≈ η α X commute₃ {X} = begin L⊣R.counit.η (F₀ L′ X) ∘ F₁ L (η β (F₀ L′ X)) ∘ F₁ L (L′⊣R′.unit.η X) ≈˘⟨ refl⟩∘⟨ homomorphism L ⟩ L⊣R.counit.η (F₀ L′ X) ∘ F₁ L (η β (F₀ L′ X) C.∘ L′⊣R′.unit.η X) ≈˘⟨ refl⟩∘⟨ F-resp-≈ L commute₁ ⟩ L⊣R.counit.η (F₀ L′ X) ∘ F₁ L (F₁ R (η α X) C.∘ L⊣R.unit.η X) ≈⟨ L⊣R.RLadjunct≈id ⟩ η α X ∎ module _ where open C open HomReasoning open MR C commute₄ : ∀ {X} → F₁ R (L′⊣R′.counit.η X) ∘ F₁ R (η α (F₀ R′ X)) ∘ L⊣R.unit.η (F₀ R′ X) ≈ η β X commute₄ {X} = begin F₁ R (L′⊣R′.counit.η X) ∘ F₁ R (η α (F₀ R′ X)) ∘ L⊣R.unit.η (F₀ R′ X) ≈˘⟨ pushˡ (homomorphism R) ⟩ F₁ R (L′⊣R′.counit.η X D.∘ η α (F₀ R′ X)) ∘ L⊣R.unit.η (F₀ R′ X) ≈˘⟨ F-resp-≈ R commute₂ ⟩∘⟨refl ⟩ F₁ R (L⊣R.counit.η X D.∘ F₁ L (η β X)) ∘ L⊣R.unit.η (F₀ R′ X) ≈⟨ L⊣R.LRadjunct≈id ⟩ η β X ∎ record HaveMate {L L′ : Functor C D} {R R′ : Functor D C} (L⊣R : L ⊣ R) (L′⊣R′ : L′ ⊣ R′) : Set (levelOfTerm L⊣R ⊔ levelOfTerm L′⊣R′) where field α : NaturalTransformation L L′ β : NaturalTransformation R′ R mate : Mate L⊣R L′⊣R′ α β module α = NaturalTransformation α module β = NaturalTransformation β open Mate mate public -- show that the commutative diagram implies natural isomorphism between homsetoids. -- the problem is that two homsetoids live in two universe level, in a situation similar to the definition -- of adjoint via naturally isomorphic homsetoids. module _ {L L′ : Functor C D} {R R′ : Functor D C} {L⊣R : L ⊣ R} {L′⊣R′ : L′ ⊣ R′} {α : NaturalTransformation L L′} {β : NaturalTransformation R′ R} (mate : Mate L⊣R L′⊣R′ α β) where private open Mate mate open Functor module C = Category C module D = Category D module α = NaturalTransformation α module β = NaturalTransformation β module L⊣R = Adjoint L⊣R module L′⊣R′ = Adjoint L′⊣R′ -- there are two squares to show module _ {X : C.Obj} {Y : D.Obj} where open Setoid (L′⊣R′.Hom[L-,-].F₀ (X , Y) ⇨ L⊣R.Hom[-,R-].F₀ (X , Y)) open C hiding (_≈_) open MR C open C.HomReasoning module DH = D.HomReasoning mate-commute₁ : F₁ Hom[ C ][-,-] (C.id , β.η Y) ∙ L′⊣R′.Hom-inverse.to {X} {Y} ≈ L⊣R.Hom-inverse.to {X} {Y} ∙ F₁ Hom[ D ][-,-] (α.η X , D.id) mate-commute₁ {f} {g} f≈g = begin β.η Y ∘ (F₁ R′ f ∘ L′⊣R′.unit.η X) ∘ C.id ≈⟨ refl⟩∘⟨ identityʳ ⟩ β.η Y ∘ F₁ R′ f ∘ L′⊣R′.unit.η X ≈⟨ pullˡ (β.commute f) ⟩ (F₁ R f ∘ β.η (F₀ L′ X)) ∘ L′⊣R′.unit.η X ≈˘⟨ pushʳ commute₁ ⟩ F₁ R f ∘ F₁ R (α.η X) ∘ L⊣R.unit.η X ≈˘⟨ pushˡ (homomorphism R) ⟩ F₁ R (f D.∘ α.η X) ∘ L⊣R.unit.η X ≈⟨ F-resp-≈ R (D.∘-resp-≈ˡ f≈g DH.○ DH.⟺ D.identityˡ) ⟩∘⟨refl ⟩ F₁ R (D.id D.∘ g D.∘ α.η X) ∘ L⊣R.unit.η X ∎ module _ {X : C.Obj} {Y : D.Obj} where open Setoid (L′⊣R′.Hom[-,R-].F₀ (X , Y) ⇨ L⊣R.Hom[L-,-].F₀ (X , Y)) open D hiding (_≈_) open MR D open D.HomReasoning module CH = C.HomReasoning mate-commute₂ : F₁ Hom[ D ][-,-] (α.η X , D.id) ∙ L′⊣R′.Hom-inverse.from {X} {Y} ≈ L⊣R.Hom-inverse.from {X} {Y} ∙ F₁ Hom[ C ][-,-] (C.id , β.η Y) mate-commute₂ {f} {g} f≈g = begin D.id ∘ (L′⊣R′.counit.η Y ∘ F₁ L′ f) ∘ α.η X ≈⟨ identityˡ ⟩ (L′⊣R′.counit.η Y ∘ F₁ L′ f) ∘ α.η X ≈˘⟨ pushʳ (α.commute f) ⟩ L′⊣R′.counit.η Y ∘ α.η (F₀ R′ Y) ∘ F₁ L f ≈˘⟨ pushˡ commute₂ ⟩ (L⊣R.counit.η Y ∘ F₁ L (β.η Y)) ∘ F₁ L f ≈˘⟨ pushʳ (homomorphism L) ⟩ L⊣R.counit.η Y ∘ F₁ L (β.η Y C.∘ f) ≈⟨ refl⟩∘⟨ F-resp-≈ L (C.∘-resp-≈ʳ (f≈g CH.○ CH.⟺ C.identityʳ)) ⟩ L⊣R.counit.η Y ∘ F₁ L (β.η Y C.∘ g C.∘ C.id) ∎ -- alternatively, if commute₃ and commute₄ are shown, then a Mate can be constructed. module _ {L L′ : Functor C D} {R R′ : Functor D C} {L⊣R : L ⊣ R} {L′⊣R′ : L′ ⊣ R′} {α : NaturalTransformation L L′} {β : NaturalTransformation R′ R} where private open Functor module C = Category C module D = Category D module α = NaturalTransformation α module β = NaturalTransformation β module L⊣R = Adjoint L⊣R module L′⊣R′ = Adjoint L′⊣R′ module _ (commute₃ : ∀ {X} → L⊣R.counit.η (F₀ L′ X) D.∘ F₁ L (β.η (F₀ L′ X)) D.∘ F₁ L (L′⊣R′.unit.η X) D.≈ α.η X) where open C open HomReasoning commute₁ : ∀ {X} → F₁ R (α.η X) ∘ L⊣R.unit.η X ≈ β.η (F₀ L′ X) ∘ L′⊣R′.unit.η X commute₁ {X} = begin F₁ R (α.η X) ∘ L⊣R.unit.η X ≈˘⟨ F-resp-≈ R commute₃ ⟩∘⟨refl ⟩ F₁ R (L⊣R.counit.η (F₀ L′ X) D.∘ F₁ L (β.η (F₀ L′ X)) D.∘ F₁ L (L′⊣R′.unit.η X)) ∘ L⊣R.unit.η X ≈˘⟨ F-resp-≈ R (D.∘-resp-≈ʳ (homomorphism L)) ⟩∘⟨refl ⟩ F₁ R (L⊣R.counit.η (F₀ L′ X) D.∘ F₁ L (β.η (F₀ L′ X) ∘ L′⊣R′.unit.η X)) ∘ L⊣R.unit.η X ≈⟨ L⊣R.LRadjunct≈id ⟩ β.η (F₀ L′ X) ∘ L′⊣R′.unit.η X ∎ module _ (commute₄ : ∀ {X} → F₁ R (L′⊣R′.counit.η X) C.∘ F₁ R (α.η (F₀ R′ X)) C.∘ L⊣R.unit.η (F₀ R′ X) C.≈ β.η X) where open D open HomReasoning open MR C commute₂ : ∀ {X} → L⊣R.counit.η X ∘ F₁ L (β.η X) ≈ L′⊣R′.counit.η X ∘ α.η (F₀ R′ X) commute₂ {X} = begin L⊣R.counit.η X ∘ F₁ L (β.η X) ≈˘⟨ refl⟩∘⟨ F-resp-≈ L commute₄ ⟩ L⊣R.counit.η X ∘ F₁ L (F₁ R (L′⊣R′.counit.η X) C.∘ F₁ R (α.η (F₀ R′ X)) C.∘ L⊣R.unit.η (F₀ R′ X)) ≈˘⟨ refl⟩∘⟨ F-resp-≈ L (pushˡ (homomorphism R)) ⟩ L⊣R.counit.η X ∘ F₁ L (F₁ R (L′⊣R′.counit.η X ∘ α.η (F₀ R′ X)) C.∘ L⊣R.unit.η (F₀ R′ X)) ≈⟨ L⊣R.RLadjunct≈id ⟩ L′⊣R′.counit.η X ∘ α.η (F₀ R′ X) ∎ mate′ : (∀ {X} → L⊣R.counit.η (F₀ L′ X) D.∘ F₁ L (β.η (F₀ L′ X)) D.∘ F₁ L (L′⊣R′.unit.η X) D.≈ α.η X) → (∀ {X} → F₁ R (L′⊣R′.counit.η X) C.∘ F₁ R (α.η (F₀ R′ X)) C.∘ L⊣R.unit.η (F₀ R′ X) C.≈ β.η X) → Mate L⊣R L′⊣R′ α β mate′ commute₃ commute₄ = record { commute₁ = commute₁ commute₃ ; commute₂ = commute₂ commute₄ }
{ "alphanum_fraction": 0.5419387886, "avg_line_length": 39.6395939086, "ext": "agda", "hexsha": "e2e725cb4f8983d6f6535e0e0d1c614219e77f38", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Adjoint/Mate.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Adjoint/Mate.agda", "max_line_length": 121, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Adjoint/Mate.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 3777, "size": 7809 }
open import Agda.Builtin.List map : ∀ {a b} {A : Set a} {B : Set b} → (A → B) → List A → List B map f [] = [] map f (x ∷ xs) = f x ∷ map f xs foldr : ∀ {a b} {A : Set a} {B : Set b} → (A → B → B) → B → List A → B foldr c n [] = n foldr c n (x ∷ xs) = c x (foldr c n xs) data Rose (A : Set) : Set where leaf : (a : A) → Rose A node : (rs : List (Rose A)) → Rose A record IsSeq (A S : Set) : Set where field nil : S sg : (a : A) → S _∙_ : (s t : S) → S concat : (ss : List S) → S concat = foldr _∙_ nil open IsSeq {{...}} {-# TERMINATING #-} flatten : ∀{A S} {{_ : IsSeq A S}} → Rose A → S flatten (leaf a) = sg a flatten (node rs) = concat (map flatten rs)
{ "alphanum_fraction": 0.4885386819, "avg_line_length": 23.2666666667, "ext": "agda", "hexsha": "7ba773f267d1699b339075e94bf242692164809a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue3175.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue3175.agda", "max_line_length": 70, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue3175.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 289, "size": 698 }
{-# OPTIONS --safe --experimental-lossy-unification #-} {- This file contains: 1. The long exact sequence of loop spaces Ωⁿ (fib f) → Ωⁿ A → Ωⁿ B 2. The long exact sequence of homotopy groups πₙ(fib f) → πₙ A → πₙ B 3. Some lemmas relating the map in the sequence to maps using the other definition of πₙ (maps from Sⁿ) -} module Cubical.Homotopy.Group.LES where open import Cubical.Homotopy.Loopspace open import Cubical.Homotopy.Group.Base open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed open import Cubical.Foundations.Pointed.Homogeneous open import Cubical.Foundations.HLevels open import Cubical.Foundations.GroupoidLaws renaming (assoc to ∙assoc) open import Cubical.Foundations.Path open import Cubical.Foundations.Isomorphism open Iso open import Cubical.Foundations.Equiv open import Cubical.Foundations.Function open import Cubical.HITs.SetTruncation renaming (rec to sRec ; elim to sElim ; elim2 to sElim2 ; map to sMap) open import Cubical.HITs.PropositionalTruncation renaming (rec to pRec) open import Cubical.Data.Sigma open import Cubical.Data.Nat open import Cubical.Algebra.Group open import Cubical.Algebra.Group.Morphisms open import Cubical.Algebra.Group.MorphismProperties open import Cubical.Algebra.Group.GroupPath -- We will need an explicitly defined equivalence -- (PathP (λ i → p i ≡ y) q q) ≃ (sym q ∙∙ p ∙∙ q ≡ refl) -- This is given by →∙∙lCancel below module _ {ℓ : Level} {A : Type ℓ} {x y : A} (p : x ≡ x) (q : x ≡ y) where →∙∙lCancel-fill : PathP (λ i → p i ≡ y) q q → I → I → I → A →∙∙lCancel-fill PP k i j = hfill (λ k → λ {(i = i0) → doubleCompPath-filler (sym q) p q k j ; (i = i1) → y ; (j = i0) → q (i ∨ k) ; (j = i1) → q (i ∨ k)}) (inS (PP j i)) k ←∙∙lCancel-fill : sym q ∙∙ p ∙∙ q ≡ refl → I → I → I → A ←∙∙lCancel-fill PP k i j = hfill (λ k → λ {(i = i0) → q (j ∨ ~ k) ; (i = i1) → q (j ∨ ~ k) ; (j = i0) → doubleCompPath-filler (sym q) p q (~ k) i ; (j = i1) → y}) (inS (PP j i)) k →∙∙lCancel : PathP (λ i → p i ≡ y) q q → sym q ∙∙ p ∙∙ q ≡ refl →∙∙lCancel PP i j = →∙∙lCancel-fill PP i1 i j ←∙∙lCancel : sym q ∙∙ p ∙∙ q ≡ refl → PathP (λ i → p i ≡ y) q q ←∙∙lCancel PP i j = ←∙∙lCancel-fill PP i1 i j ←∙∙lCancel→∙∙lCancel : (PP : PathP (λ i → p i ≡ y) q q) → ←∙∙lCancel (→∙∙lCancel PP) ≡ PP ←∙∙lCancel→∙∙lCancel PP r i j = hcomp (λ k → λ {(r = i0) → ←∙∙lCancel-fill (→∙∙lCancel PP) k i j ; (r = i1) → PP i j ; (j = i0) → doubleCompPath-filler (sym q) p q (~ k ∧ ~ r) i ; (j = i1) → y ; (i = i0) → q (j ∨ ~ k ∧ ~ r) ; (i = i1) → q (j ∨ ~ k ∧ ~ r)}) (hcomp (λ k → λ {(r = i0) → →∙∙lCancel-fill PP k j i ; (r = i1) → PP i j ; (j = i0) → doubleCompPath-filler (sym q) p q (k ∧ ~ r) i ; (j = i1) → y ; (i = i0) → q (j ∨ k ∧ ~ r) ; (i = i1) → q (j ∨ k ∧ ~ r)}) (PP i j)) →∙∙lCancel←∙∙lCancel : (PP : sym q ∙∙ p ∙∙ q ≡ refl) → →∙∙lCancel (←∙∙lCancel PP) ≡ PP →∙∙lCancel←∙∙lCancel PP r i j = hcomp (λ k → λ {(r = i0) → →∙∙lCancel-fill (←∙∙lCancel PP) k i j ; (r = i1) → PP i j ; (j = i0) → q (i ∨ k ∨ r) ; (j = i1) → q (i ∨ k ∨ r) ; (i = i0) → doubleCompPath-filler (sym q) p q (r ∨ k) j ; (i = i1) → y}) (hcomp (λ k → λ {(r = i0) → ←∙∙lCancel-fill PP k j i ; (r = i1) → PP i j ; (j = i0) → q (i ∨ r ∨ ~ k) ; (j = i1) → q (i ∨ r ∨ ~ k) ; (i = i0) → doubleCompPath-filler (sym q) p q (r ∨ ~ k) j ; (i = i1) → y}) (PP i j)) ←∙∙lCancel-refl-refl : {ℓ : Level} {A : Type ℓ} {x : A} (p : refl {x = x} ≡ refl) → ←∙∙lCancel {x = x} {y = x} refl refl (sym (rUnit refl) ∙ p) ≡ flipSquare p ←∙∙lCancel-refl-refl p k i j = hcomp (λ r → λ { (i = i0) → p i0 i0 ; (i = i1) → p i0 i0 ; (j = i0) → rUnit (λ _ → p i0 i0) (~ r) i ; (j = i1) → p i0 i0 ; (k = i0) → ←∙∙lCancel-fill refl refl (sym (rUnit refl) ∙ p) r i j ; (k = i1) → compPath-filler' (sym (rUnit refl)) p (~ r) j i}) ((sym (rUnit refl) ∙ p) j i) {- We need an iso Ω(fib f) ≅ fib(Ω f) -} ΩFibreIso : {ℓ ℓ' : Level} {A : Pointed ℓ} {B : Pointed ℓ'} (f : A →∙ B) → Iso (typ (Ω (fiber (fst f) (pt B) , (pt A) , snd f))) (fiber (Ω→ f .fst) refl) fun (ΩFibreIso f) p = (cong fst p) , →∙∙lCancel (cong (fst f) (cong fst p)) (snd f) (cong snd p) fst (inv (ΩFibreIso f) (p , q) i) = p i snd (inv (ΩFibreIso f) (p , q) i) = ←∙∙lCancel (cong (fst f) p) (snd f) q i rightInv (ΩFibreIso f) (p , q) = ΣPathP (refl , →∙∙lCancel←∙∙lCancel _ _ q) fst (leftInv (ΩFibreIso f) p i j) = fst (p j) snd (leftInv (ΩFibreIso f) p i j) k = ←∙∙lCancel→∙∙lCancel _ _ (cong snd p) i j k {- Some homomorphism properties of the above iso -} ΩFibreIsopres∙fst : {ℓ ℓ' : Level} {A : Pointed ℓ} {B : Pointed ℓ'} (f : A →∙ B) → (p q : (typ (Ω (fiber (fst f) (pt B) , (pt A) , snd f)))) → fst (fun (ΩFibreIso f) (p ∙ q)) ≡ fst (fun (ΩFibreIso f) p) ∙ fst (fun (ΩFibreIso f) q) ΩFibreIsopres∙fst f p q = cong-∙ fst p q ΩFibreIso⁻pres∙snd : {ℓ ℓ' : Level} {A : Pointed ℓ} {B : Pointed ℓ'} (f : A →∙ B) (p q : typ (Ω (Ω B))) → inv (ΩFibreIso f) (refl , (Ω→ f .snd ∙ p ∙ q)) ≡ inv (ΩFibreIso f) (refl , Ω→ f .snd ∙ p) ∙ inv (ΩFibreIso f) (refl , Ω→ f .snd ∙ q) ΩFibreIso⁻pres∙snd {A = A} {B = B}= →∙J (λ b₀ f → (p q : typ (Ω (Ω (fst B , b₀)))) → inv (ΩFibreIso f) (refl , (Ω→ f .snd ∙ p ∙ q)) ≡ inv (ΩFibreIso f) (refl , Ω→ f .snd ∙ p) ∙ inv (ΩFibreIso f) (refl , Ω→ f .snd ∙ q)) ind where ind : (f : typ A → typ B) (p q : typ (Ω (Ω (fst B , f (pt A))))) → inv (ΩFibreIso (f , refl)) (refl , (sym (rUnit refl) ∙ p ∙ q)) ≡ inv (ΩFibreIso (f , refl)) (refl , sym (rUnit refl) ∙ p) ∙ inv (ΩFibreIso (f , refl)) (refl , sym (rUnit refl) ∙ q) fst (ind f p q i j) = (rUnit refl ∙ sym (cong-∙ fst (inv (ΩFibreIso (f , refl)) (refl , sym (rUnit refl) ∙ p)) (inv (ΩFibreIso (f , refl)) (refl , sym (rUnit refl) ∙ q)))) i j snd (ind f p q i j) k = hcomp (λ r → λ {(i = i0) → ←∙∙lCancel-refl-refl (p ∙ q) (~ r) j k -- ; (i = i1) → snd (compPath-filler (inv (ΩFibreIso (f , refl)) (refl , sym (rUnit refl) ∙ p)) (inv (ΩFibreIso (f , refl)) (refl , sym (rUnit refl) ∙ q)) r j) k ; (j = i0) → f (snd A) ; (j = i1) → snd (inv (ΩFibreIso (f , refl)) (refl , sym (rUnit refl) ∙ q) (r ∨ ~ i)) k ; (k = i0) → main r i j ; (k = i1) → f (snd A)}) (hcomp (λ r → λ {(i = i0) → (p ∙ q) k j ; (i = i1) → ←∙∙lCancel-refl-refl p (~ r) j k ; (j = i0) → f (snd A) ; (j = i1) → ←∙∙lCancel-refl-refl q (~ r) (~ i) k ; (k = i0) → f (pt A) ; (k = i1) → f (snd A)}) (hcomp (λ r → λ {(i = i0) → (compPath-filler' p q r) k j ; (i = i1) → p (k ∨ ~ r) j ; (j = i0) → f (snd A) ; (j = i1) → q k (~ i) ; (k = i0) → p (k ∨ ~ r) j ; (k = i1) → f (snd A)}) (q k (~ i ∧ j)))) where P = (inv (ΩFibreIso (f , refl)) (refl , sym (rUnit refl) ∙ p)) Q = (inv (ΩFibreIso (f , refl)) (refl , sym (rUnit refl) ∙ q)) main : I → I → I → fst B main r i j = hcomp (λ k → λ {(i = i0) → f (snd A) ; (i = i1) → f (fst (compPath-filler P Q (r ∨ ~ k) j)) ; (j = i0) → f (snd A) ; (j = i1) → f (snd A) ; (r = i0) → f (fst (compPath-filler P Q (i ∧ ~ k) j)) ; (r = i1) → f ((rUnit refl ∙ sym (cong-∙ fst P Q)) i j)}) (hcomp (λ k → λ {(i = i0) → f (rUnit (λ _ → pt A) (~ k ∧ r) j) ; (i = i1) → f (fst ((P ∙ Q) j)) ; (j = i0) → f (snd A) ; (j = i1) → f (snd A) ; (r = i0) → f (fst (compPath-filler P Q i j)) ; (r = i1) → f ((compPath-filler' (rUnit refl) (sym (cong-∙ fst P Q)) k) i j)}) (hcomp (λ k → λ {(i = i0) → f (rUnit (λ _ → pt A) (k ∧ r) j) ; (i = i1) → f (fst (compPath-filler P Q k j)) ; (j = i0) → f (snd A) ; (j = i1) → f (snd A) ; (r = i0) → f (fst (compPath-filler P Q (i ∧ k) j)) ; (r = i1) → f ((cong-∙∙-filler fst refl P Q) k (~ i) j)}) (f (snd A)))) ΩFibreIso∙ : {ℓ ℓ' : Level} {A : Pointed ℓ} {B : Pointed ℓ'} (f : A →∙ B) → Iso.fun (ΩFibreIso f) refl ≡ (refl , (∙∙lCancel (snd f))) ΩFibreIso∙ {A = A} {B = B} = →∙J (λ b f → Iso.fun (ΩFibreIso f) refl ≡ (refl , (∙∙lCancel (snd f)))) λ f → ΣPathP (refl , help f) where help : (f : fst A → fst B) → →∙∙lCancel (λ i → f (snd A)) refl (λ i → refl) ≡ ∙∙lCancel refl help f i j r = hcomp (λ k → λ {(i = i0) → →∙∙lCancel-fill (λ _ → f (snd A)) refl refl k j r ; (i = i1) → ∙∙lCancel-fill (λ _ → f (snd A)) j r k ; (j = i0) → rUnit (λ _ → f (snd A)) k r ; (j = i1) → f (snd A) ; (r = i1) → f (snd A) ; (r = i0) → f (snd A)}) (f (snd A)) ΩFibreIso⁻∙ : {ℓ ℓ' : Level} {A : Pointed ℓ} {B : Pointed ℓ'} (f : A →∙ B) → Iso.inv (ΩFibreIso f) (refl , (∙∙lCancel (snd f))) ≡ refl ΩFibreIso⁻∙ f = cong (Iso.inv (ΩFibreIso f)) (sym (ΩFibreIso∙ f)) ∙ leftInv (ΩFibreIso f) refl {- Ωⁿ (fib f) ≃∙ fib (Ωⁿ f) -} Ω^Fibre≃∙ : {ℓ ℓ' : Level} {A : Pointed ℓ} {B : Pointed ℓ'} (n : ℕ) (f : A →∙ B) → ((Ω^ n) (fiber (fst f) (pt B) , (pt A) , snd f)) ≃∙ ((fiber (Ω^→ n f .fst) (snd ((Ω^ n) B))) , (snd ((Ω^ n) A)) , (Ω^→ n f .snd)) Ω^Fibre≃∙ zero f = (idEquiv _) , refl Ω^Fibre≃∙ (suc n) f = compEquiv∙ (Ω≃∙ (Ω^Fibre≃∙ n f)) ((isoToEquiv (ΩFibreIso (Ω^→ n f))) , ΩFibreIso∙ (Ω^→ n f)) {- Its inverse iso directly defined -} Ω^Fibre≃∙⁻ : {ℓ ℓ' : Level} {A : Pointed ℓ} {B : Pointed ℓ'} (n : ℕ) (f : A →∙ B) → ((fiber (Ω^→ n f .fst) (snd ((Ω^ n) B))) , (snd ((Ω^ n) A)) , (Ω^→ n f .snd)) ≃∙ ((Ω^ n) (fiber (fst f) (pt B) , (pt A) , snd f)) Ω^Fibre≃∙⁻ zero f = (idEquiv _) , refl Ω^Fibre≃∙⁻ (suc n) f = compEquiv∙ ((isoToEquiv (invIso (ΩFibreIso (Ω^→ n f)))) , (ΩFibreIso⁻∙ (Ω^→ n f))) (Ω≃∙ (Ω^Fibre≃∙⁻ n f)) isHomogeneousΩ^→fib : {ℓ ℓ' : Level} {A : Pointed ℓ} {B : Pointed ℓ'} (n : ℕ) (f : A →∙ B) → isHomogeneous ((fiber (Ω^→ (suc n) f .fst) (snd ((Ω^ (suc n)) B))) , (snd ((Ω^ (suc n)) A)) , (Ω^→ (suc n) f .snd)) isHomogeneousΩ^→fib n f = subst isHomogeneous (ua∙ ((fst (Ω^Fibre≃∙ (suc n) f))) (snd (Ω^Fibre≃∙ (suc n) f))) (isHomogeneousPath _ _) Ω^Fibre≃∙sect : {ℓ ℓ' : Level} {A : Pointed ℓ} {B : Pointed ℓ'} (n : ℕ) (f : A →∙ B) → (≃∙map (Ω^Fibre≃∙⁻ n f) ∘∙ ≃∙map (Ω^Fibre≃∙ n f)) ≡ idfun∙ _ Ω^Fibre≃∙sect zero f = ΣPathP (refl , (sym (rUnit refl))) Ω^Fibre≃∙sect (suc n) f = →∙Homogeneous≡ (isHomogeneousPath _ _) (funExt λ p → cong (fst (fst (Ω≃∙ (Ω^Fibre≃∙⁻ n f)))) (leftInv (ΩFibreIso (Ω^→ n f)) ((fst (fst (Ω≃∙ (Ω^Fibre≃∙ n f))) p))) ∙ sym (Ω→∘ (≃∙map (Ω^Fibre≃∙⁻ n f)) (≃∙map (Ω^Fibre≃∙ n f)) p) ∙ (λ i → (Ω→ (Ω^Fibre≃∙sect n f i)) .fst p) ∙ sym (rUnit p)) Ω^Fibre≃∙retr : {ℓ ℓ' : Level} {A : Pointed ℓ} {B : Pointed ℓ'} (n : ℕ) (f : A →∙ B) → (≃∙map (Ω^Fibre≃∙ n f) ∘∙ ≃∙map (Ω^Fibre≃∙⁻ n f)) ≡ idfun∙ _ Ω^Fibre≃∙retr zero f = ΣPathP (refl , (sym (rUnit refl))) Ω^Fibre≃∙retr (suc n) f = →∙Homogeneous≡ (isHomogeneousΩ^→fib n f) (funExt (λ p → cong (fun (ΩFibreIso (Ω^→ n f))) ((sym (Ω→∘ (≃∙map (Ω^Fibre≃∙ n f)) (≃∙map (Ω^Fibre≃∙⁻ n f)) (inv (ΩFibreIso (Ω^→ n f)) p))) ∙ (λ i → Ω→ (Ω^Fibre≃∙retr n f i) .fst (inv (ΩFibreIso (Ω^→ n f)) p)) ∙ sym (rUnit (inv (ΩFibreIso (Ω^→ n f)) p))) ∙ rightInv (ΩFibreIso (Ω^→ n f)) p)) Ω^Fibre≃∙' : {ℓ ℓ' : Level} {A : Pointed ℓ} {B : Pointed ℓ'} (n : ℕ) (f : A →∙ B) → ((Ω^ n) (fiber (fst f) (pt B) , (pt A) , snd f)) ≃∙ ((fiber (Ω^→ n f .fst) (snd ((Ω^ n) B))) , (snd ((Ω^ n) A)) , (Ω^→ n f .snd)) Ω^Fibre≃∙' zero f = idEquiv _ , refl Ω^Fibre≃∙' (suc zero) f = (isoToEquiv (ΩFibreIso (Ω^→ zero f))) , ΩFibreIso∙ (Ω^→ zero f) Ω^Fibre≃∙' (suc (suc n)) f = compEquiv∙ (Ω≃∙ (Ω^Fibre≃∙ (suc n) f)) ((isoToEquiv (ΩFibreIso (Ω^→ (suc n) f))) , ΩFibreIso∙ (Ω^→ (suc n) f)) -- The long exact sequence of loop spaces. module ΩLES {ℓ ℓ' : Level} {A : Pointed ℓ} {B : Pointed ℓ'} (f : A →∙ B) where {- Fibre of f -} fibf : Pointed _ fibf = fiber (fst f) (pt B) , (pt A , snd f) {- Fibre of Ωⁿ f -} fibΩ^f : (n : ℕ) → Pointed _ fst (fibΩ^f n) = fiber (Ω^→ n f .fst) (snd ((Ω^ n) B)) snd (fibΩ^f n) = (snd ((Ω^ n) A)) , (Ω^→ n f .snd) Ω^fibf : (n : ℕ) → Pointed _ Ω^fibf n = (Ω^ n) fibf {- Helper function fib (Ωⁿ f) → Ωⁿ A -} fibΩ^f→A : (n : ℕ) → fibΩ^f n →∙ (Ω^ n) A fst (fibΩ^f→A n) = fst snd (fibΩ^f→A n) = refl {- The main function Ωⁿ(fib f) → Ωⁿ A, which is just the composition Ωⁿ(fib f) ≃ fib (Ωⁿ f) → Ωⁿ A, where the last function is fibΩ^f→A. Hence most proofs will concern fibΩ^f→A, since it is easier to work with. -} Ω^fibf→A : (n : ℕ) → Ω^fibf n →∙ (Ω^ n) A Ω^fibf→A n = fibΩ^f→A n ∘∙ ≃∙map (Ω^Fibre≃∙ n f) {- The function preserves path composition -} Ω^fibf→A-pres∙ : (n : ℕ) → (p q : Ω^fibf (suc n) .fst) → Ω^fibf→A (suc n) .fst (p ∙ q) ≡ Ω^fibf→A (suc n) .fst p ∙ Ω^fibf→A (suc n) .fst q Ω^fibf→A-pres∙ n p q = cong (fst (fibΩ^f→A (suc n))) (cong (fun (ΩFibreIso (Ω^→ n f))) (Ω→pres∙ (≃∙map (Ω^Fibre≃∙ n f)) p q)) ∙ ΩFibreIsopres∙fst (Ω^→ n f) (fst (Ω→ (≃∙map (Ω^Fibre≃∙ n f))) p) (fst (Ω→ (≃∙map (Ω^Fibre≃∙ n f))) q) {- The function Ωⁿ A → Ωⁿ B -} A→B : (n : ℕ) → (Ω^ n) A →∙ (Ω^ n) B A→B n = Ω^→ n f {- It preserves path composition -} A→B-pres∙ : (n : ℕ) → (p q : typ ((Ω^ (suc n)) A)) → fst (A→B (suc n)) (p ∙ q) ≡ fst (A→B (suc n)) p ∙ fst (A→B (suc n)) q A→B-pres∙ n p q = Ω^→pres∙ f n p q {- Helper function Ωⁿ⁺¹ B → fib (Ωⁿ f) -} ΩB→fibΩ^f : (n : ℕ) → ((Ω^ (suc n)) B) →∙ fibΩ^f n fst (ΩB→fibΩ^f n) x = (snd ((Ω^ n) A)) , (Ω^→ n f .snd ∙ x) snd (ΩB→fibΩ^f n) = ΣPathP (refl , (sym (rUnit _))) {- The main function Ωⁿ⁺¹ B → Ωⁿ (fib f), factoring through the above function -} ΩB→Ω^fibf : (n : ℕ) → (Ω^ (suc n)) B →∙ Ω^fibf n ΩB→Ω^fibf n = (≃∙map (Ω^Fibre≃∙⁻ n f)) ∘∙ ΩB→fibΩ^f n {- It preserves path composition -} ΩB→Ω^fibf-pres∙ : (n : ℕ) → (p q : typ ((Ω^ (2 + n)) B)) → fst (ΩB→Ω^fibf (suc n)) (p ∙ q) ≡ fst (ΩB→Ω^fibf (suc n)) p ∙ fst (ΩB→Ω^fibf (suc n)) q ΩB→Ω^fibf-pres∙ n p q = cong (fst (fst (Ω^Fibre≃∙⁻ (suc n) f))) refl ∙ cong (fst (fst (Ω≃∙ (Ω^Fibre≃∙⁻ n f)))) (cong (fun (invIso (ΩFibreIso (Ω^→ n f)))) (λ _ → snd ((Ω^ suc n) A) , Ω^→ (suc n) f .snd ∙ p ∙ q)) ∙ cong (fst (fst (Ω≃∙ (Ω^Fibre≃∙⁻ n f)))) (ΩFibreIso⁻pres∙snd (Ω^→ n f) p q) ∙ Ω≃∙pres∙ (Ω^Fibre≃∙⁻ n f) (inv (ΩFibreIso (Ω^→ n f)) (refl , Ω→ (Ω^→ n f) .snd ∙ p)) (inv (ΩFibreIso (Ω^→ n f)) (refl , Ω→ (Ω^→ n f) .snd ∙ q)) {- Hence we have our sequence ... → Ωⁿ⁺¹B → Ωⁿ(fib f) → Ωⁿ A → Ωⁿ B → ... (*) We first prove the exactness properties for the helper functions ΩB→fibΩ^f and fibΩ^f→A, and then deduce exactness of the whole sequence by noting that the functions in (*) are just ΩB→fibΩ^f, fibΩ^f→A but composed with equivalences -} private Im-fibΩ^f→A⊂Ker-A→B : (n : ℕ) (x : _) → isInIm∙ (fibΩ^f→A n) x → isInKer∙ (A→B n) x Im-fibΩ^f→A⊂Ker-A→B n x = uncurry λ p → J (λ x _ → isInKer∙ (A→B n) x) (snd p) Ker-fibΩ^f→A⊂Im-ΩB→fibΩ^f : (n : ℕ) (x : _) → isInKer∙ (fibΩ^f→A n) x → isInIm∙ (ΩB→fibΩ^f n) x Ker-fibΩ^f→A⊂Im-ΩB→fibΩ^f n x ker = (sym (Ω^→ n f .snd) ∙ cong (Ω^→ n f .fst) (sym ker) ∙ snd x) , ΣPathP ((sym ker) , ((∙assoc (Ω^→ n f .snd) (sym (Ω^→ n f .snd)) (sym (cong (Ω^→ n f .fst) ker) ∙ snd x) ∙∙ cong (_∙ (sym (cong (Ω^→ n f .fst) ker) ∙ snd x)) (rCancel (Ω^→ n f .snd)) ∙∙ sym (lUnit (sym (cong (Ω^→ n f .fst) ker) ∙ snd x))) ◁ (λ i j → compPath-filler' (cong (Ω^→ n f .fst) (sym ker)) (snd x) (~ i) j))) Im-A→B⊂Ker-ΩB→fibΩ^f : (n : ℕ) (x : fst (((Ω^ (suc n)) B))) → isInIm∙ (A→B (suc n)) x → isInKer∙ (ΩB→fibΩ^f n) x Im-A→B⊂Ker-ΩB→fibΩ^f n x = uncurry λ p → J (λ x _ → isInKer∙ (ΩB→fibΩ^f n) x) (ΣPathP (p , (((λ i → (λ j → Ω^→ n f .snd (j ∧ ~ i)) ∙ ((λ j → Ω^→ n f .snd (~ j ∧ ~ i)) ∙∙ cong (Ω^→ n f .fst) p ∙∙ Ω^→ n f .snd)) ∙ sym (lUnit (cong (Ω^→ n f .fst) p ∙ Ω^→ n f .snd))) ◁ λ i j → compPath-filler' (cong (Ω^→ n f .fst) p) (Ω^→ n f .snd) (~ i) j))) Ker-ΩB→fibΩ^f⊂Im-A→B : (n : ℕ) (x : fst (((Ω^ (suc n)) B))) → isInKer∙ (ΩB→fibΩ^f n) x → isInIm∙ (A→B (suc n)) x fst (Ker-ΩB→fibΩ^f⊂Im-A→B n x inker) = cong fst inker snd (Ker-ΩB→fibΩ^f⊂Im-A→B n x inker) = lem where lem : fst (A→B (suc n)) (λ i → fst (inker i)) ≡ x lem i j = hcomp (λ k → λ { (i = i0) → doubleCompPath-filler (sym (snd (Ω^→ n f))) ((λ i → Ω^→ n f .fst (fst (inker i)))) (snd (Ω^→ n f)) k j ; (i = i1) → compPath-filler' (Ω^→ n f .snd) x (~ k) j ; (j = i0) → snd (Ω^→ n f) k ; (j = i1) → snd (Ω^→ n f) (k ∨ i)}) (hcomp (λ k → λ { (i = i0) → (snd (inker j)) (~ k) ; (i = i1) → ((Ω^→ n f .snd) ∙ x) (j ∨ ~ k) ; (j = i0) → ((Ω^→ n f .snd) ∙ x) (~ k) ; (j = i1) → snd (Ω^→ n f) (i ∨ ~ k)}) (snd ((Ω^ n) B))) {- Finally, we get exactness of the sequence we are interested in -} Im-Ω^fibf→A⊂Ker-A→B : (n : ℕ) (x : _) → isInIm∙ (Ω^fibf→A n) x → isInKer∙ (A→B n) x Im-Ω^fibf→A⊂Ker-A→B n x x₁ = Im-fibΩ^f→A⊂Ker-A→B n x (((fst (fst (Ω^Fibre≃∙ n f))) (fst x₁)) , snd x₁) Ker-A→B⊂Im-Ω^fibf→A : (n : ℕ) (x : _) → isInKer∙ (A→B n) x → isInIm∙ (Ω^fibf→A n) x Ker-A→B⊂Im-Ω^fibf→A n x ker = invEq (fst (Ω^Fibre≃∙ n f)) (x , ker) , (cong fst (secEq (fst (Ω^Fibre≃∙ n f)) (x , ker))) Ker-Ω^fibf→A⊂Im-ΩB→Ω^fibf : (n : ℕ) (x : _) → isInKer∙ (Ω^fibf→A n) x → isInIm∙ (ΩB→Ω^fibf n) x Ker-Ω^fibf→A⊂Im-ΩB→Ω^fibf n x p = fst r , cong (fst ((fst (Ω^Fibre≃∙⁻ n f)))) (snd r) ∙ funExt⁻ (cong fst (Ω^Fibre≃∙sect n f)) x where r : isInIm∙ (ΩB→fibΩ^f n) (fst (fst (Ω^Fibre≃∙ n f)) x) r = Ker-fibΩ^f→A⊂Im-ΩB→fibΩ^f n (fst (fst (Ω^Fibre≃∙ n f)) x) p Im-ΩB→Ω^fibf⊂Ker-Ω^fibf→A : (n : ℕ) (x : _) → isInIm∙ (ΩB→Ω^fibf n) x → isInKer∙ (Ω^fibf→A n) x Im-ΩB→Ω^fibf⊂Ker-Ω^fibf→A n x = uncurry λ p → J (λ x _ → isInKer∙ (Ω^fibf→A n) x) (cong (fst (fibΩ^f→A n)) (funExt⁻ (cong fst (Ω^Fibre≃∙retr n f)) _)) Im-A→B⊂Ker-ΩB→Ω^fibf : (n : ℕ) (x : fst (((Ω^ (suc n)) B))) → isInIm∙ (A→B (suc n)) x → isInKer∙ (ΩB→Ω^fibf n) x Im-A→B⊂Ker-ΩB→Ω^fibf n x p = cong (fst ((fst (Ω^Fibre≃∙⁻ n f)))) (Im-A→B⊂Ker-ΩB→fibΩ^f n x p) ∙ snd (Ω^Fibre≃∙⁻ n f) Ker-ΩB→Ω^fibf⊂Im-A→B : (n : ℕ) (x : fst (((Ω^ (suc n)) B))) → isInKer∙ (ΩB→Ω^fibf n) x → isInIm∙ (A→B (suc n)) x Ker-ΩB→Ω^fibf⊂Im-A→B n x p = Ker-ΩB→fibΩ^f⊂Im-A→B n x (funExt⁻ (cong fst (sym (Ω^Fibre≃∙retr n f))) (ΩB→fibΩ^f n .fst x) ∙ cong (fst (fst (Ω^Fibre≃∙ n f))) p ∙ snd (Ω^Fibre≃∙ n f)) {- Some useful lemmas for converting the above sequence a a sequence of homotopy groups -} module setTruncLemmas {ℓ ℓ' ℓ'' : Level} {A : Pointed ℓ} {B : Pointed ℓ'} {C : Pointed ℓ''} (n m l : ℕ) (f : (Ω ((Ω^ n) A)) →∙ (Ω ((Ω^ m) B))) (g : (Ω ((Ω^ m) B)) →∙ (Ω ((Ω^ l) C))) (e₁ : IsGroupHom (snd (πGr n A)) (sMap (fst f)) (snd (πGr m B))) (e₂ : IsGroupHom (snd (πGr m B)) (sMap (fst g)) (snd (πGr l C))) where ker⊂im : ((x : typ (Ω ((Ω^ m) B))) → isInKer∙ g x → isInIm∙ f x) → (x : π (suc m) B) → isInKer (_ , e₂) x → isInIm (_ , e₁) x ker⊂im ind = sElim (λ _ → isSetΠ λ _ → isProp→isSet squash₁) λ p ker → pRec squash₁ (λ ker∙ → ∣ ∣ ind p ker∙ .fst ∣₂ , cong ∣_∣₂ (ind p ker∙ .snd) ∣₁ ) (fun PathIdTrunc₀Iso ker) im⊂ker : ((x : typ (Ω ((Ω^ m) B))) → isInIm∙ f x → isInKer∙ g x) → (x : π (suc m) B) → isInIm (_ , e₁) x → isInKer (_ , e₂) x im⊂ker ind = sElim (λ _ → isSetΠ λ _ → isSetPathImplicit) λ p → pRec (squash₂ _ _) (uncurry (sElim (λ _ → isSetΠ λ _ → isSetPathImplicit) λ a q → pRec (squash₂ _ _) (λ q → cong ∣_∣₂ (ind p (a , q))) (fun PathIdTrunc₀Iso q))) {- The long exact sequence of homotopy groups -} module πLES {ℓ ℓ' : Level} {A : Pointed ℓ} {B : Pointed ℓ'} (f : A →∙ B) where module Ωs = ΩLES f open Ωs renaming (A→B to A→B') fib = fibf fib→A : (n : ℕ) → GroupHom (πGr n fib) (πGr n A) fst (fib→A n) = sMap (fst (Ω^fibf→A (suc n))) snd (fib→A n) = makeIsGroupHom (sElim2 (λ _ _ → isSetPathImplicit) λ p q → cong ∣_∣₂ (Ω^fibf→A-pres∙ n p q)) A→B : (n : ℕ) → GroupHom (πGr n A) (πGr n B) fst (A→B n) = sMap (fst (A→B' (suc n))) snd (A→B n) = makeIsGroupHom (sElim2 (λ _ _ → isSetPathImplicit) λ g h → cong ∣_∣₂ (Ω^→pres∙ f n g h)) B→fib : (n : ℕ) → GroupHom (πGr (suc n) B) (πGr n fib) fst (B→fib n) = sMap (fst (ΩB→Ω^fibf (suc n))) snd (B→fib n) = makeIsGroupHom (sElim2 (λ _ _ → isSetPathImplicit) λ p q → cong ∣_∣₂ (ΩB→Ω^fibf-pres∙ n p q)) Ker-A→B⊂Im-fib→A : (n : ℕ) (x : π (suc n) A) → isInKer (A→B n) x → isInIm (fib→A n) x Ker-A→B⊂Im-fib→A n = setTruncLemmas.ker⊂im n n n (Ω^fibf→A (suc n)) (A→B' (suc n)) (snd (fib→A n)) (snd (A→B n)) (Ker-A→B⊂Im-Ω^fibf→A (suc n)) Im-fib→A⊂Ker-A→B : (n : ℕ) (x : π (suc n) A) → isInIm (fib→A n) x → isInKer (A→B n) x Im-fib→A⊂Ker-A→B n = setTruncLemmas.im⊂ker n n n (Ω^fibf→A (suc n)) (A→B' (suc n)) (snd (fib→A n)) (snd (A→B n)) (Im-Ω^fibf→A⊂Ker-A→B (suc n)) Ker-fib→A⊂Im-B→fib : (n : ℕ) (x : π (suc n) fib) → isInKer (fib→A n) x → isInIm (B→fib n) x Ker-fib→A⊂Im-B→fib n = setTruncLemmas.ker⊂im (suc n) n n (ΩB→Ω^fibf (suc n)) (Ω^fibf→A (suc n)) (snd (B→fib n)) (snd (fib→A n)) (Ker-Ω^fibf→A⊂Im-ΩB→Ω^fibf (suc n)) Im-B→fib⊂Ker-fib→A : (n : ℕ) (x : π (suc n) fib) → isInIm (B→fib n) x → isInKer (fib→A n) x Im-B→fib⊂Ker-fib→A n = setTruncLemmas.im⊂ker (suc n) n n (ΩB→Ω^fibf (suc n)) (Ω^fibf→A (suc n)) (snd (B→fib n)) (snd (fib→A n)) (Im-ΩB→Ω^fibf⊂Ker-Ω^fibf→A (suc n)) Im-A→B⊂Ker-B→fib : (n : ℕ) (x : π (suc (suc n)) B) → isInIm (A→B (suc n)) x → isInKer (B→fib n) x Im-A→B⊂Ker-B→fib n = setTruncLemmas.im⊂ker (suc n) (suc n) n (A→B' (suc (suc n))) (ΩB→Ω^fibf (suc n)) (snd (A→B (suc n))) (snd (B→fib n)) (Im-A→B⊂Ker-ΩB→Ω^fibf (suc n)) Ker-B→fib⊂Im-A→B : (n : ℕ) (x : π (suc (suc n)) B) → isInKer (B→fib n) x → isInIm (A→B (suc n)) x Ker-B→fib⊂Im-A→B n = setTruncLemmas.ker⊂im (suc n) (suc n) n (A→B' (suc (suc n))) (ΩB→Ω^fibf (suc n)) (snd (A→B (suc n))) (snd (B→fib n)) (Ker-ΩB→Ω^fibf⊂Im-A→B (suc n)) {- We prove that the map Ωⁿ(fib f) → Ωⁿ A indeed is just the map Ωⁿ fst -} private Ω^fibf→A-ind : ∀ {ℓ ℓ'} {A : Pointed ℓ} {B : Pointed ℓ'} (n : ℕ) (f : A →∙ B) → ΩLES.Ω^fibf→A f (suc n) ≡ Ω→ (ΩLES.Ω^fibf→A f n) Ω^fibf→A-ind {A = A} {B = B} n f = (λ _ → πLES.Ωs.fibΩ^f→A f (suc n) ∘∙ ≃∙map (Ω^Fibre≃∙ (suc n) f)) ∙ →∙Homogeneous≡ (isHomogeneousPath _ _) (funExt λ p → (λ j → cong fst (Ω→ (≃∙map (Ω^Fibre≃∙ n f)) .fst p)) ∙ rUnit ((λ i → fst (Ω→ (≃∙map (Ω^Fibre≃∙ n f)) .fst p i))) ∙ sym (Ω→∘ (πLES.Ωs.fibΩ^f→A f n) (≃∙map (Ω^Fibre≃∙ n f)) p)) Ω^fibf→A≡ : ∀ {ℓ ℓ'} {A : Pointed ℓ} {B : Pointed ℓ'} (n : ℕ) (f : A →∙ B) → ΩLES.Ω^fibf→A f n ≡ Ω^→ n (fst , refl) Ω^fibf→A≡ zero f = ΣPathP (refl , (sym (lUnit refl))) Ω^fibf→A≡ (suc n) f = Ω^fibf→A-ind n f ∙ cong Ω→ (Ω^fibf→A≡ n f) {- We now get a nice characterisation of the functions in the induced LES of homotopy groups defined using (Sⁿ →∙ A) -} π∘∙A→B-PathP : ∀ {ℓ ℓ'} {A : Pointed ℓ} {B : Pointed ℓ'} (n : ℕ) (f : A →∙ B) → PathP (λ i → GroupHomπ≅π'PathP A B n i) (πLES.A→B f n) (π'∘∙Hom n f) π∘∙A→B-PathP n f = toPathP (Σ≡Prop (λ _ → isPropIsGroupHom _ _) (π'∘∙Hom'≡π'∘∙fun n f)) π∘∙fib→A-PathP : ∀ {ℓ ℓ'} {A : Pointed ℓ} {B : Pointed ℓ'} (n : ℕ) (f : A →∙ B) → PathP (λ i → GroupHomπ≅π'PathP (ΩLES.fibf f) A n i) (πLES.fib→A f n) (π'∘∙Hom n (fst , refl)) π∘∙fib→A-PathP {A = A} {B = B} n f = toPathP (Σ≡Prop (λ _ → isPropIsGroupHom _ _) (cong (transport (λ i → (fst (GroupPath _ _) (GroupIso→GroupEquiv (π'Gr≅πGr n (ΩLES.fibf f))) (~ i)) .fst → (fst (GroupPath _ _) (GroupIso→GroupEquiv (π'Gr≅πGr n A)) (~ i)) .fst)) lem ∙ π'∘∙Hom'≡π'∘∙fun n (fst , refl))) where lem : πLES.fib→A f n .fst ≡ sMap (Ω^→ (suc n) (fst , refl) .fst) lem = cong sMap (cong fst (Ω^fibf→A≡ (suc n) f))
{ "alphanum_fraction": 0.4439345718, "avg_line_length": 40.3916292975, "ext": "agda", "hexsha": "72363726ec2492d8778d4ac18b3e139b1b830927", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Homotopy/Group/LES.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Homotopy/Group/LES.agda", "max_line_length": 80, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Homotopy/Group/LES.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 12729, "size": 27022 }
{-# OPTIONS --cubical --safe #-} module CubicalAbsurd where open import Cubical.Core.Everything open import Cubical.Data.Nat open import Cubical.Data.Empty theWrongThing : 1 + 1 ≡ 3 → ⊥ theWrongThing thatMoney = znots (injSuc (injSuc thatMoney))
{ "alphanum_fraction": 0.7540322581, "avg_line_length": 24.8, "ext": "agda", "hexsha": "f476f8e394bafd11190adadd759ab76111acde83", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-12-13T04:50:46.000Z", "max_forks_repo_forks_event_min_datetime": "2019-12-13T04:50:46.000Z", "max_forks_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Brethland/LEARNING-STUFF", "max_forks_repo_path": "Agda/CubicalAbsurd.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Brethland/LEARNING-STUFF", "max_issues_repo_path": "Agda/CubicalAbsurd.agda", "max_line_length": 59, "max_stars_count": 2, "max_stars_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Brethland/LEARNING-STUFF", "max_stars_repo_path": "Agda/CubicalAbsurd.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-11T10:35:42.000Z", "max_stars_repo_stars_event_min_datetime": "2020-02-03T05:05:52.000Z", "num_tokens": 77, "size": 248 }
{-# OPTIONS --cubical --no-import-sorts #-} module Number.Prelude.QuoInt where open import Cubical.HITs.Ints.QuoInt public using ( ℤ ; HasFromNat ; HasFromNeg ; Int≡ℤ ; signed ; posneg ; ℤ→Int ; sucℤ ; predℤ ; pos ; neg ; sucℤ-+ʳ ; Sign ; spos ; sneg ) renaming ( isSetℤ to is-setᶻ ; _+_ to _+ᶻ_ ; _*_ to _·ᶻ_ ; -_ to infixl 6 -ᶻ_ ; *-comm to ·ᶻ-comm ; *-assoc to ·ᶻ-assoc ; +-comm to +ᶻ-comm ; +-assoc to +ᶻ-assoc ; sign to signᶻ ; abs to absᶻ ; _*S_ to _·ˢ_ ) open import Number.Instances.QuoInt public using ( ℤlattice ; ⊕-identityʳ ) renaming ( is-LinearlyOrderedCommRing to is-LinearlyOrderedCommRingᶻ ; min to minᶻ ; max to maxᶻ ; _<_ to _<ᶻ_ ; ·-reflects-< to ·ᶻ-reflects-<ᶻ ; ·-reflects-<ˡ to ·ᶻ-reflects-<ᶻˡ ; 0<1 to 0<1 ; +-reflects-< to +ᶻ-reflects-<ᶻ ; +-preserves-< to +ᶻ-preserves-<ᶻ ; +-creates-< to +ᶻ-creates-<ᶻ ; suc-creates-< to suc-creates-<ᶻ ; +-creates-≤ to +ᶻ-creates-≤ᶻ ; ·-creates-< to ·ᶻ-creates-<ᶻ ; ·-creates-≤ to ·ᶻ-creates-≤ᶻ ; ·-creates-≤-≡ to ·ᶻ-creates-≤ᶻ-≡ ; ·-creates-<ˡ-≡ to ·ᶻ-creates-<ᶻˡ-≡ ; ·-creates-<-flippedˡ-≡ to ·ᶻ-creates-<ᶻ-flippedˡ-≡ ; ·-creates-<-flippedʳ-≡ to ·ᶻ-creates-<ᶻ-flippedʳ-≡ ; ≤-dicho to ≤ᶻ-dicho ; ≤-min-+ to ≤ᶻ-minᶻ-+ᶻ ; ≤-max-+ to ≤ᶻ-maxᶻ-+ᶻ ; ≤-min-· to ≤ᶻ-minᶻ-·ᶻ ; ≤-max-· to ≤ᶻ-maxᶻ-·ᶻ ; +-min-distribʳ to +ᶻ-minᶻ-distribʳ ; ·-min-distribʳ to ·ᶻ-minᶻ-distribʳ ; +-max-distribʳ to +ᶻ-maxᶻ-distribʳ ; ·-max-distribʳ to ·ᶻ-maxᶻ-distribʳ ; +-min-distribˡ to +ᶻ-minᶻ-distribˡ ; ·-min-distribˡ to ·ᶻ-minᶻ-distribˡ ; +-max-distribˡ to +ᶻ-maxᶻ-distribˡ ; ·-max-distribˡ to ·ᶻ-maxᶻ-distribˡ ; pos<pos[suc] to pos<ᶻpos[suc] ; 0<ᶻpos[suc] to 0<ᶻpos[suc] ; ·-nullifiesˡ to ·ᶻ-nullifiesˡ ; ·-nullifiesʳ to ·ᶻ-nullifiesʳ ; ·-preserves-0< to ·ᶻ-preserves-0<ᶻ ; ·-reflects-0< to ·ᶻ-reflects-0<ᶻ ; ·-creates-<-≡ to ·ᶻ-creates-<ᶻ-≡ ; -flips-<0 to -flips-<ᶻ0 ; -flips-< to -ᶻ-flips-<ᶻ ; -identity-· to -ᶻ-identity-·ᶻ ; -distˡ to -ᶻ-distˡ ; ·-reflects-<-flippedˡ to ·ᶻ-reflects-<ᶻ-flippedˡ ; ·-reflects-<-flippedʳ to ·ᶻ-reflects-<ᶻ-flippedʳ ; #-dicho to #ᶻ-dicho ; ·-preserves-signˡ to ·ᶻ-preserves-signᶻˡ ; #⇒≢ to #ᶻ⇒≢ ; <-split-pos to <ᶻ-split-pos ; <-split-neg to <ᶻ-split-neg ; <0-sign to <ᶻ0-signᶻ ; 0<-sign to 0<ᶻ-signᶻ ; sign-pos to signᶻ-pos ; ·-reflects-≡ˡ to ·ᶻ-reflects-≡ˡ ; ·-reflects-≡ʳ to ·ᶻ-reflects-≡ʳ ) open import Number.Structures2 open IsLinearlyOrderedCommRing is-LinearlyOrderedCommRingᶻ public using () renaming ( _-_ to _-ᶻ_ -- ; is-LinearlyOrderedCommSemiring to is-LinearlyOrderedCommSemiringᶻ ; _≤_ to _≤ᶻ_ -- NOTE: somehow this get an ugly prefix turning `0 ≤ᶻ aᶻ` into `(is-LinearlyOrderedCommSemiringᶻ IsLinearlyOrderedCommSemiring.≤ pos 0) aⁿᶻ` ; _#_ to _#ᶻ_ -- but some-other-how _#ᶻ_ works fine ... ? ; <-irrefl to <ᶻ-irrefl -- turns out that this was due to `p = [ 0 ≤ᶻ aⁿᶻ ] ∋ is-0≤ⁿᶻ` instead of `p : [ 0 ≤ᶻ aⁿᶻ ]; p = is-0≤ⁿᶻ` ; <-trans to <ᶻ-trans ; +-<-ext to +ᶻ-<ᶻ-ext ; +-rinv to +ᶻ-rinv ; +-identity to +ᶻ-identity ; ·-preserves-< to ·ᶻ-preserves-<ᶻ ; <-tricho to <ᶻ-tricho ; <-asym to <ᶻ-asym ; ·-identity to ·ᶻ-identity ; is-min to is-minᶻ ; is-max to is-maxᶻ ; is-dist to is-distᶻ ) -- open IsLinearlyOrderedCommSemiring is-LinearlyOrderedCommSemiringᶻ public using () renaming -- ( _≤_ to _≤ᶻ_ ) open import MorePropAlgebra.Properties.Lattice ℤlattice open OnSet is-setᶻ public using () renaming ( min-≤ to minᶻ-≤ᶻ ; max-≤ to maxᶻ-≤ᶻ ; ≤-reflectsʳ-≡ to ≤ᶻ-reflectsʳ-≡ ; ≤-reflectsˡ-≡ to ≤ᶻ-reflectsˡ-≡ ; min-identity to minᶻ-identity ; min-identity-≤ to minᶻ-identity-≤ᶻ ; max-identity-≤ to maxᶻ-identity-≤ᶻ ; min-comm to minᶻ-comm ; min-assoc to minᶻ-assoc ; max-identity to maxᶻ-identity ; max-comm to maxᶻ-comm ; max-assoc to maxᶻ-assoc ; min-max-absorptive to minᶻ-maxᶻ-absorptive ; max-min-absorptive to maxᶻ-minᶻ-absorptive )
{ "alphanum_fraction": 0.5119390696, "avg_line_length": 35.9851851852, "ext": "agda", "hexsha": "098de6c4c443c31e52d44a20da37b61e318cef81", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mchristianl/synthetic-reals", "max_forks_repo_path": "agda/Number/Prelude/QuoInt.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mchristianl/synthetic-reals", "max_issues_repo_path": "agda/Number/Prelude/QuoInt.agda", "max_line_length": 172, "max_stars_count": 3, "max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mchristianl/synthetic-reals", "max_stars_repo_path": "agda/Number/Prelude/QuoInt.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z", "num_tokens": 2204, "size": 4858 }
-- Andreas, 2015-07-18 -- Postpone checking of record expressions when type is blocked. -- Guess type of record expressions when type is blocked. open import Common.Product open import Common.Prelude open import Common.Equality T : Bool → Set T true = Bool × Nat T false = ⊥ works : (P : ∀{b} → b ≡ true → T b → Set) → Set works P = P refl record{ proj₁ = true; proj₂ = 0 } -- Guess or postpone. test : (P : ∀{b} → T b → b ≡ true → Set) → Set test P = P record{ proj₁ = true; proj₂ = 0 } refl guess : (P : ∀{b} → T b → Set) → Set guess P = P record{ proj₁ = true; proj₂ = 0 } record R : Set where field f : Bool record S : Set where field f : Bool U : Bool → Set U true = R U false = S postpone : (P : ∀{b} → U b → b ≡ true → Set) → Set postpone P = P record{ f = false } refl -- ambiguous : (P : ∀{b} → U b → Set) → Set -- ambiguous P = P record{ f = false }
{ "alphanum_fraction": 0.6002265006, "avg_line_length": 22.075, "ext": "agda", "hexsha": "8c7ab7d0a106183733a8a81392d3163b957f20c8", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/PostponeRecordExpr.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/PostponeRecordExpr.agda", "max_line_length": 64, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/PostponeRecordExpr.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 305, "size": 883 }
-- Some tests for the Agda Abstract Machine. open import Agda.Builtin.Nat open import Agda.Builtin.Equality open import Agda.Builtin.Sigma _×_ : Set → Set → Set A × B = Σ A λ _ → B id : Nat → Nat id x = x -- Applying id should not break sharing double : Nat → Nat double n = id n + id n pow : Nat → Nat pow zero = 1 pow (suc n) = double (pow n) test-pow : pow 64 ≡ 18446744073709551616 test-pow = refl -- Projections should not break sharing addPair : Nat × Nat → Nat addPair p = fst p + snd p dup : Nat → Nat × Nat dup x .fst = x dup x .snd = x smush : Nat × Nat → Nat × Nat smush p = dup (addPair p) iter : {A : Set} → (A → A) → Nat → A → A iter f zero x = x iter f (suc n) x = f (iter f n x) pow' : Nat → Nat pow' n = addPair (iter smush n (0 , 1)) test-pow' : pow' 64 ≡ pow 64 test-pow' = refl -- Should not be linear (not quadratic) for neutral n. builtin : Nat → Nat → Nat builtin k n = k + n - k test-builtin : ∀ n → builtin 50000 n ≡ n test-builtin n = refl
{ "alphanum_fraction": 0.6247464503, "avg_line_length": 19.3333333333, "ext": "agda", "hexsha": "6abf878bc1e3178418a5366676a163918ca2e11b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/AgdaAbstractMachine.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/AgdaAbstractMachine.agda", "max_line_length": 54, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/AgdaAbstractMachine.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 356, "size": 986 }
module Oscar.Instance where open import Oscar.Class.Associativity open import Oscar.Class.Congruity open import Oscar.Class.Equivalence open import Oscar.Class.Extensionality open import Oscar.Class.Injectivity open import Oscar.Class.Preservativity open import Oscar.Class.Reflexivity open import Oscar.Class.Semifunctor open import Oscar.Class.Semigroup open import Oscar.Class.Symmetry open import Oscar.Class.Transitivity open import Oscar.Data.Equality open import Oscar.Data.Fin open import Oscar.Data.Nat open import Oscar.Function open import Oscar.Relation open import Oscar.Data.Equality.properties using (≡̇-sym; ≡̇-trans) renaming (sym to ≡-sym ;trans to ≡-trans) instance InjectivityFinSuc : ∀ {n} → Injectivity _≡_ _≡_ (Fin.suc {n}) suc Injectivity.injectivity InjectivityFinSuc refl = refl data D : Set where d1 : Nat → D d2 : Nat → Nat → D pattern d2l r l = d2 l r instance InjectivityDd1 : Injectivity _≡_ _≡_ d1 d1 Injectivity.injectivity InjectivityDd1 refl = refl instance InjectivityD2l : ∀ {r1 r2} → Injectivity _≡_ _≡_ (d2l r1) (flip d2 r2) Injectivity.injectivity InjectivityD2l refl = refl instance InjectivityoidD2l : ∀ {r1} {r2} → Injectivityoid _ _ _ _ _ Injectivityoid.A InjectivityoidD2l = D Injectivityoid.B InjectivityoidD2l = D Injectivityoid._≋₁_ InjectivityoidD2l = _≡_ Injectivityoid.I InjectivityoidD2l = Nat Injectivityoid._≋₂_ InjectivityoidD2l = _≡_ Injectivityoid.μₗ (InjectivityoidD2l {r1} {r2}) = d2l r1 Injectivityoid.μᵣ (InjectivityoidD2l {r1} {r2}) = flip d2 r2 Injectivityoid.`injectivity InjectivityoidD2l refl = refl instance InjectivityoidD2r : ∀ {r1} {r2} → Injectivityoid _ _ _ _ _ Injectivityoid.A InjectivityoidD2r = D Injectivityoid.B InjectivityoidD2r = D Injectivityoid._≋₁_ InjectivityoidD2r = _≡_ Injectivityoid.I InjectivityoidD2r = Nat Injectivityoid._≋₂_ InjectivityoidD2r = _≡_ Injectivityoid.μₗ (InjectivityoidD2r {r1} {r2}) = d2 r1 Injectivityoid.μᵣ (InjectivityoidD2r {r1} {r2}) = d2 r2 Injectivityoid.`injectivity InjectivityoidD2r refl = refl open Injectivityoid ⦃ … ⦄ using (`injectivity) instance InjectivityD2r : ∀ {l1 l2} → Injectivity _≡_ _≡_ (d2 l1) (d2 l2) Injectivity.injectivity InjectivityD2r refl = refl pattern d2' {l} r = d2 l r injectivity-test : (k l m n : Nat) → (d2 k m ≡ d2 l n) → (d1 k ≡ d1 l) → Set injectivity-test k l m n eq1 eq2 with injectivity {_≋₁_ = _≡_} {_≋₂_ = _≡_} {f = d2'} eq1 injectivity-test k l m n eq1 eq2 | ref with injectivity {_≋₁_ = _≡_} {_≋₂_ = _≡_} {f = d1} eq2 … | ref2 = {!!} -- with `injectivity ⦃ ? ⦄ eq2 -- … | ref3 = {!ref!} instance ≡-Reflexivity : ∀ {a} {A : Set a} → Reflexivity (_≡_ {A = A}) Reflexivity.reflexivity ≡-Reflexivity = refl ≡̇-Reflexivity : ∀ {a} {A : Set a} {b} {B : A → Set b} → Reflexivity (_≡̇_ {B = B}) Reflexivity.reflexivity ≡̇-Reflexivity _ = refl ≡-flip≡-Extensionality : ∀ {a} {A : Set a} → Extensionality {B = const A} _≡_ (λ ⋆ → flip _≡_ ⋆) id id Extensionality.extensionality ≡-flip≡-Extensionality = ≡-sym ≡̇-flip≡̇-Extensionality : ∀ {a} {A : Set a} {b} {B : A → Set b} → Extensionality {B = const ((x : A) → B x)} _≡̇_ (λ ⋆ → flip _≡̇_ ⋆) id id Extensionality.extensionality ≡̇-flip≡̇-Extensionality = ≡̇-sym ≡-Transitivity : ∀ {a} {A : Set a} → Transitivity {A = A} _≡_ Transitivity.transitivity ≡-Transitivity = λ ⋆ → ≡-trans ⋆ ≡̇-Transitivity : ∀ {a} {A : Set a} {b} {B : A → Set b} → Transitivity {A = (x : A) → B x} _≡̇_ Transitivity.transitivity ≡̇-Transitivity = ≡̇-trans ≡-Congruity : ∀ {a} {A : Set a} {b} {B : Set b} {ℓ₂} {_≋₂_ : B → B → Set ℓ₂} ⦃ _ : Reflexivity _≋₂_ ⦄ → Congruity (_≡_ {A = A}) _≋₂_ Congruity.congruity ≡-Congruity μ refl = reflexivity module Term {𝔣} (FunctionName : Set 𝔣) where open import Oscar.Data.Term FunctionName open import Oscar.Data.Term.internal.SubstituteAndSubstitution FunctionName as ⋆ instance ◇-≡̇-Associativity : Associativity _◇_ _≡̇_ Associativity.associativity ◇-≡̇-Associativity = ◇-associativity ∘-≡̇-Associativity : ∀ {a} {A : Set a} {b} {B : A → Set b} → Associativity {_►_ = _⟨ B ⟩→_} (λ ⋆ → _∘_ ⋆) _≡̇_ Associativity.associativity ∘-≡̇-Associativity _ _ _ _ = refl ◇-∘-≡̇-◃-◃-◃-Preservativity : ∀ {l m n} → Preservativity (λ ⋆ → _◇_ (m ⊸ n ∋ ⋆)) (_∘′_ {A = Term l}) _≡̇_ _◃_ _◃_ _◃_ Preservativity.preservativity ◇-∘-≡̇-◃-◃-◃-Preservativity g f τ = symmetry (◃-associativity τ f g) ≡̇-≡̇-◃-◃-Extensionality : ∀ {m n} → Extensionality _≡̇_ (λ ⋆ → _≡̇_ ⋆) (_◃_ {m} {n}) (λ ⋆ → _◃_ ⋆) Extensionality.extensionality ≡̇-≡̇-◃-◃-Extensionality = ◃-extensionality semifunctor-◃ : Semifunctor _◇_ _≡̇_ (λ ⋆ → _∘_ ⋆) _≡̇_ id _◃_ semifunctor-◃ = it open import Oscar.Data.AList FunctionName postulate _++_ : ∀ {m n} → AList m n → ∀ {l} → AList l m → AList l n sub : ∀ {m n} → AList m n → m ⊸ n ++-assoc : ∀ {l m n o} (ρ : AList l m) (σ : AList n _) (τ : AList o _) → ρ ++ (σ ++ τ) ≡ (ρ ++ σ) ++ τ subfact1 : ∀ {l m n} (ρ : AList m n) (σ : AList l m) → sub (ρ ++ σ) ≡̇ (sub ρ ◇ sub σ) instance ++-≡-Associativity : Associativity _++_ _≡_ Associativity.associativity ++-≡-Associativity f g h = ++-assoc h g f ++-◇-sub-sub-sub : ∀ {l m n} → Preservativity (λ ⋆ → _++_ (AList m n ∋ ⋆)) (λ ⋆ → _◇_ ⋆ {l = l}) _≡̇_ sub sub sub Preservativity.preservativity ++-◇-sub-sub-sub = subfact1 semifunctor-sub : Semifunctor _++_ _≡_ _◇_ _≡̇_ id sub semifunctor-sub = it -- ≡̇-extension : ∀ -- {a} {A : Set a} {b} {B : A → Set b} -- {ℓ₁} {_≤₁_ : (x : A) → B x → Set ℓ₁} -- {c} {C : Set c} -- {d} {D : C → Set d} -- {μ₁ : A → (z : C) → D z} -- {μ₂ : ∀ {x} → B x → (z : C) → D z} -- ⦃ _ : Extensionality _≤₁_ (λ ⋆ → _≡̇_ ⋆) μ₁ μ₂ ⦄ -- {x} {y : B x} -- → x ≤₁ y → μ₁ x ≡̇ μ₂ y -- ≡̇-extension = extension (λ ⋆ → _≡̇_ ⋆) -- test-◃-extensionality : ∀ {m n} {f g : m ⊸ n} → f ≡̇ g → f ◃_ ≡̇ g ◃_ -- test-◃-extensionality = ≡̇-extension -- ≡̇-extension -- ⦃ ? ⦄ -- extension (λ ⋆ → _≡̇_ ⋆) -- postulate -- R : Set -- S : Set -- _◀_ : ∀ {m n} → m ⊸ n → R → S -- _◀'_ : ∀ {m n} → m ⊸ n → R → S -- _◆_ : ∀ {m n} → m ⊸ n → ∀ {l} → l ⊸ m → l ⊸ n -- instance ≡̇-≡̇-◀-◀'-Extensionality : ∀ {m n} → Extensionality _≡̇_ (λ ⋆ → _≡̇_ ⋆) ((m ⊸ n → _) ∋ _◀_) _◀'_ -- instance ≡̇-≡̇-◀-◀-Extensionality : ∀ {m n} → Extensionality _≡̇_ (λ ⋆ → _≡̇_ ⋆) ((m ⊸ n → _) ∋ _◀_) _◀_ -- instance ◆-◇-≡̇-Associativity : ∀ {k} → Associativity _◆_ (λ ⋆ → _◇_ ⋆) ((k ⊸ _ → _) ∋ _≡̇_) -- instance ◆-◇-≡̇-Associativity' : ∀ {k} → Associativity _◇_ (λ ⋆ → _◆_ ⋆) ((k ⊸ _ → _) ∋ _≡̇_) -- test-◀-extensionality : ∀ {m n} {f g : m ⊸ n} → f ≡̇ g → f ◀_ ≡̇ g ◀_ -- test-◀-extensionality {m} {n} = ≡̇-extension -- -- extensionality {_≤₁_ = _≡̇_} {μ₁ = ((m ⊸ n → _) ∋ _◀_)} {μ₂ = _◀_} -- test-◀'-extensionality : ∀ {m n} {f g : m ⊸ n} → f ≡̇ g → f ◀_ ≡̇ g ◀'_ -- test-◀'-extensionality = ≡̇-extension -- test-◃-associativity : ∀ {l} (t : Term l) {m} (f : l ⊸ m) {n} (g : m ⊸ n) → g ◃ (f ◃ t) ≡ (g ◇ f) ◃ t -- test-◃-associativity = association _◇_ _≡_ -- test-◇-associativity : ∀ {k l} (f : k ⊸ l) {m} (g : l ⊸ m) {n} (h : m ⊸ n) → h ◇ (g ◇ f) ≡̇ (h ◇ g) ◇ f -- test-◇-associativity = association _◇_ _≡̇_ -- test-◆-associativity : ∀ {k l} (f : k ⊸ l) {m} (g : l ⊸ m) {n} (h : m ⊸ n) → h ◇ (g ◇ f) ≡̇ (h ◆ g) ◇ f -- test-◆-associativity = association _◆_ _≡̇_ -- test-◆-associativity' : ∀ {k l} (f : k ⊸ l) {m} (g : l ⊸ m) {n} (h : m ⊸ n) → h ◆ (g ◆ f) ≡̇ (h ◇ g) ◆ f -- test-◆-associativity' = association _◇_ _≡̇_
{ "alphanum_fraction": 0.5817750856, "avg_line_length": 38.9435897436, "ext": "agda", "hexsha": "6e54c7487f5e4e4792f3a211968b528608637a63", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-2/Oscar/Instance.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-2/Oscar/Instance.agda", "max_line_length": 121, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-2/Oscar/Instance.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3462, "size": 7594 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} open import Cubical.Core.Everything open import Cubical.Relation.Binary.Raw module Cubical.Relation.Binary.Raw.Construct.StrictToNonStrict {a ℓ} {A : Type a} (_<_ : RawRel A ℓ) where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Data.Prod open import Cubical.Data.Sum.Base renaming (rec to ⊎-rec) open import Cubical.Data.Empty renaming (elim to ⊥-elim) using () open import Cubical.Relation.Binary.Raw.Properties open import Cubical.Relation.Nullary ------------------------------------------------------------------------ -- Conversion -- _<_ can be turned into _≤_ as follows: _≤_ : RawRel A _ x ≤ y = (x < y) ⊎ (x ≡ y) ------------------------------------------------------------------------ -- The converted relations have certain properties -- (if the original relations have certain other properties) ≤-isPropValued : isSet A → isPropValued _<_ → Irreflexive _<_ → isPropValued _≤_ ≤-isPropValued isSetA propv irrefl x y (inl p) (inl q) = cong inl (propv x y p q) ≤-isPropValued isSetA propv irrefl x y (inl p) (inr q) = ⊥-elim (irrefl→tonoteq _<_ irrefl p q) ≤-isPropValued isSetA propv irrefl x y (inr p) (inl q) = ⊥-elim (irrefl→tonoteq _<_ irrefl q p) ≤-isPropValued isSetA propv irrefl x y (inr p) (inr q) = cong inr (isSetA x y p q) <⇒≤ : _<_ ⇒ _≤_ <⇒≤ = inl ≤-fromEq : FromEq _≤_ ≤-fromEq = inr ≤-reflexive : Reflexive _≤_ ≤-reflexive = fromeq→reflx _≤_ ≤-fromEq ≤-antisym : Transitive _<_ → Irreflexive _<_ → Antisymmetric _≤_ ≤-antisym transitive irrefl (inl x<y) (inl y<x) = ⊥-elim (trans∧irr→asym _<_ transitive irrefl x<y y<x) ≤-antisym _ _ _ (inr y≡x) = sym y≡x ≤-antisym _ _ (inr x≡y) _ = x≡y ≤-transitive : Transitive _<_ → Transitive _≤_ ≤-transitive <-trans (inl x<y) (inl y<z) = inl $ <-trans x<y y<z ≤-transitive _ (inl x<y) (inr y≡z) = inl $ Respectsʳ≡ _<_ y≡z x<y ≤-transitive _ (inr x≡y) (inl y<z) = inl $ Respectsˡ≡ _<_ (sym x≡y) y<z ≤-transitive _ (inr x≡y) (inr y≡z) = inr $ x≡y ∙ y≡z <-≤-trans : Transitive _<_ → Trans _<_ _≤_ _<_ <-≤-trans transitive x<y (inl y<z) = transitive x<y y<z <-≤-trans transitive x<y (inr y≡z) = Respectsʳ≡ _<_ y≡z x<y ≤-<-trans : Transitive _<_ → Trans _≤_ _<_ _<_ ≤-<-trans transitive (inl x<y) y<z = transitive x<y y<z ≤-<-trans transitive (inr x≡y) y<z = Respectsˡ≡ _<_ (sym x≡y) y<z ≤-total : Trichotomous _<_ → Total _≤_ ≤-total <-tri x y with <-tri x y ... | tri< x<y x≢y x≯y = inl (inl x<y) ... | tri≡ x≮y x≡y x≯y = inl (inr x≡y) ... | tri> x≮y x≢y x>y = inr (inl x>y) ≤-decidable : Discrete A → Decidable _<_ → Decidable _≤_ ≤-decidable _≟_ _<?_ x y with x ≟ y ... | yes p = yes (inr p) ... | no ¬p with x <? y ... | yes q = yes (inl q) ... | no ¬q = no (⊎-rec ¬q ¬p) ≤-decidable′ : Trichotomous _<_ → Decidable _≤_ ≤-decidable′ compare x y with compare x y ... | tri< x<y _ _ = yes (inl x<y) ... | tri≡ _ x≡y _ = yes (inr x≡y) ... | tri> x≮y x≢y _ = no (⊎-rec x≮y x≢y) ------------------------------------------------------------------------ -- Converting structures isPreorder : Transitive _<_ → IsPreorder _≤_ isPreorder transitive = record { reflexive = ≤-reflexive ; transitive = ≤-transitive transitive } isPartialOrder : IsStrictPartialOrder _<_ → IsPartialOrder _≤_ isPartialOrder spo = record { isPreorder = isPreorder S.transitive ; antisym = ≤-antisym S.transitive S.irrefl } where module S = IsStrictPartialOrder spo isTotalOrder : IsStrictTotalOrder _<_ → IsTotalOrder _≤_ isTotalOrder sto = record { isPartialOrder = isPartialOrder S.isStrictPartialOrder ; total = λ x y → ∣ ≤-total S.compare x y ∣ } where module S = IsStrictTotalOrder sto isDecTotalOrder : IsStrictTotalOrder _<_ → IsDecTotalOrder _≤_ isDecTotalOrder sto = record { isTotalOrder = isTotalOrder sto ; _≤?_ = ≤-decidable′ S.compare } where module S = IsStrictTotalOrder sto
{ "alphanum_fraction": 0.6193253868, "avg_line_length": 34.2869565217, "ext": "agda", "hexsha": "f32ff40bc23f9e2ef263937d1e44d41da3446bdf", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bijan2005/univalent-foundations", "max_forks_repo_path": "Cubical/Relation/Binary/Raw/Construct/StrictToNonStrict.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bijan2005/univalent-foundations", "max_issues_repo_path": "Cubical/Relation/Binary/Raw/Construct/StrictToNonStrict.agda", "max_line_length": 103, "max_stars_count": null, "max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bijan2005/univalent-foundations", "max_stars_repo_path": "Cubical/Relation/Binary/Raw/Construct/StrictToNonStrict.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1529, "size": 3943 }
------------------------------------------------------------------------ -- The "time complexity" of the compiled program matches the one -- obtained from the instrumented interpreter ------------------------------------------------------------------------ open import Prelude hiding (_+_; _*_) import Lambda.Syntax module Lambda.Compiler-correctness.Steps-match {Name : Type} (open Lambda.Syntax Name) (def : Name → Tm 1) where import Equality.Propositional as E open import Logical-equivalence using (_⇔_) import Tactic.By.Propositional as By open import Prelude.Size open import Conat E.equality-with-J as Conat using (Conat; zero; suc; force; ⌜_⌝; _+_; _*_; max; [_]_≤_; step-≤; step-∼≤; _∎≤) open import Function-universe E.equality-with-J hiding (_∘_) open import List E.equality-with-J using (_++_) open import Monad E.equality-with-J using (return; _>>=_; _⟨$⟩_) open import Vec.Data E.equality-with-J open import Delay-monad open import Delay-monad.Bisimilarity open import Delay-monad.Quantitative-weak-bisimilarity open import Lambda.Compiler def open import Lambda.Delay-crash open import Lambda.Interpreter.Steps def open import Lambda.Virtual-machine.Instructions Name hiding (crash) open import Lambda.Virtual-machine comp-name private module C = Closure Code module T = Closure Tm ------------------------------------------------------------------------ -- Some lemmas -- A rearrangement lemma for ⟦_⟧. ⟦⟧-· : ∀ {n} (t₁ t₂ : Tm n) {ρ} {k : T.Value → Delay-crash C.Value ∞} → ⟦ t₁ · t₂ ⟧ ρ >>= k ∼ ⟦ t₁ ⟧ ρ >>= λ v₁ → ⟦ t₂ ⟧ ρ >>= λ v₂ → v₁ ∙ v₂ >>= k ⟦⟧-· t₁ t₂ {ρ} {k} = ⟦ t₁ · t₂ ⟧ ρ >>= k ∼⟨⟩ (do v₁ ← ⟦ t₁ ⟧ ρ v₂ ← ⟦ t₂ ⟧ ρ v₁ ∙ v₂) >>= k ∼⟨ symmetric (associativity (⟦ t₁ ⟧ _) _ _) ⟩ (do v₁ ← ⟦ t₁ ⟧ ρ (do v₂ ← ⟦ t₂ ⟧ ρ v₁ ∙ v₂) >>= k) ∼⟨ (⟦ t₁ ⟧ _ ∎) >>=-cong (λ _ → symmetric (associativity (⟦ t₂ ⟧ _) _ _)) ⟩ (do v₁ ← ⟦ t₁ ⟧ ρ v₂ ← ⟦ t₂ ⟧ ρ v₁ ∙ v₂ >>= k) ∎ -- Lemmas related to conatural numbers. private lemma₁ : ∀ {δ} → [ ∞ ] δ ≤ ⌜ 1 ⌝ + δ lemma₁ = Conat.≤suc lemma₂ : ∀ {δ} → [ ∞ ] δ ≤ max ⌜ 1 ⌝ δ lemma₂ = Conat.ʳ≤max ⌜ 1 ⌝ _ lemma₃ : ∀ {δ} → [ ∞ ] max ⌜ 1 ⌝ δ ≤ max ⌜ 1 ⌝ δ + ⌜ 1 ⌝ lemma₃ = Conat.m≤m+n lemma₄ : ∀ {δ} → [ ∞ ] δ ≤ max ⌜ 1 ⌝ δ + ⌜ 1 ⌝ lemma₄ {δ} = δ ≤⟨ lemma₂ ⟩ max ⌜ 1 ⌝ δ ≤⟨ lemma₃ {δ = δ} ⟩ max ⌜ 1 ⌝ δ + ⌜ 1 ⌝ ∎≤ lemma₅ : ∀ {δ} → [ ∞ ] ⌜ 1 ⌝ + δ ≤ δ + ⌜ 1 ⌝ lemma₅ {δ} = ⌜ 1 ⌝ + δ ∼⟨ Conat.+-comm ⌜ 1 ⌝ ⟩≤ δ + ⌜ 1 ⌝ ∎≤ lemma₆ : ∀ {δ} → [ ∞ ] ⌜ 1 ⌝ + δ ≤ max ⌜ 1 ⌝ δ + ⌜ 1 ⌝ lemma₆ {δ} = ⌜ 1 ⌝ + δ ≤⟨ lemma₅ ⟩ δ + ⌜ 1 ⌝ ≤⟨ lemma₂ Conat.+-mono (⌜ 1 ⌝ ∎≤) ⟩ max ⌜ 1 ⌝ δ + ⌜ 1 ⌝ ∎≤ lemma₇ : ∀ {δ} → [ ∞ ] max ⌜ 1 ⌝ (⌜ 1 ⌝ + δ) ≤ ⌜ 1 ⌝ + δ lemma₇ {δ} = suc λ { .force → δ ∎≤ } lemma₈ : ∀ {δ} → [ ∞ ] max ⌜ 1 ⌝ (max ⌜ 1 ⌝ δ) ≤ max ⌜ 1 ⌝ δ lemma₈ {δ} = suc λ { .force → Conat.pred δ ∎≤ } lemma₉ : ∀ {δ} → [ ∞ ] max ⌜ 1 ⌝ (max ⌜ 1 ⌝ (max ⌜ 1 ⌝ δ)) ≤ max ⌜ 1 ⌝ δ lemma₉ {δ} = max ⌜ 1 ⌝ (max ⌜ 1 ⌝ (max ⌜ 1 ⌝ δ)) ≤⟨ lemma₈ ⟩ max ⌜ 1 ⌝ (max ⌜ 1 ⌝ δ) ≤⟨ lemma₈ ⟩ max ⌜ 1 ⌝ δ ∎≤ lemma₁₀ : ∀ {δ} → [ ∞ ] ⌜ 1 ⌝ + ⌜ 0 ⌝ ≤ max ⌜ 1 ⌝ δ lemma₁₀ = suc λ { .force → zero } lemma₁₁ : Conat.[ ∞ ] max ⌜ 1 ⌝ ⌜ 1 ⌝ ∼ ⌜ 1 ⌝ lemma₁₁ = suc λ { .force → zero } lemma₁₂ : Conat.[ ∞ ] ⌜ 1 ⌝ + ⌜ 1 ⌝ ∼ ⌜ 2 ⌝ lemma₁₂ = Conat.symmetric-∼ (Conat.⌜⌝-+ 1) ------------------------------------------------------------------------ -- Well-formed continuations and stacks -- A continuation is OK with respect to a certain state and conatural -- number if the following property is satisfied. Cont-OK : Size → State → (T.Value → Delay-crash C.Value ∞) → Conat ∞ → Type Cont-OK i ⟨ c , s , ρ ⟩ k δ = ∀ v → [ i ∣ ⌜ 1 ⌝ ∣ δ ] exec ⟨ c , val (comp-val v) ∷ s , ρ ⟩ ≳ k v -- If the In-tail-context parameter indicates that we are in a tail -- context, then the stack must have a certain shape, and it must be -- related to the continuation and the conatural number in a certain -- way. data Stack-OK (i : Size) (k : T.Value → Delay-crash C.Value ∞) (δ : Conat ∞) : In-tail-context → Stack → Type where unrestricted : ∀ {s} → Stack-OK i k δ false s restricted : ∀ {s n} {c : Code n} {ρ : C.Env n} → Cont-OK i ⟨ c , s , ρ ⟩ k δ → Stack-OK i k δ true (ret c ρ ∷ s) -- A lemma that can be used to show that certain stacks are OK. ret-ok : ∀ {p i s n c} {ρ : C.Env n} {k δ} → Cont-OK i ⟨ c , s , ρ ⟩ k δ → Stack-OK i k (⌜ 1 ⌝ + δ) p (ret c ρ ∷ s) ret-ok {true} c-ok = restricted (weakenˡ lemma₁ ∘ c-ok) ret-ok {false} _ = unrestricted ------------------------------------------------------------------------ -- The semantics of the compiled program matches that of the source -- code mutual -- Some lemmas making up the main part of the compiler correctness -- result. ⟦⟧-correct : ∀ {i n} (t : Tm n) (ρ : T.Env n) {c s} {k : T.Value → Delay-crash C.Value ∞} {tc δ} → Stack-OK i k δ tc s → Cont-OK i ⟨ c , s , comp-env ρ ⟩ k δ → [ i ∣ ⌜ 1 ⌝ ∣ max ⌜ 1 ⌝ δ ] exec ⟨ comp tc t c , s , comp-env ρ ⟩ ≳ ⟦ t ⟧ ρ >>= k ⟦⟧-correct (var x) ρ {c} {s} {k} _ c-ok = exec ⟨ var x ∷ c , s , comp-env ρ ⟩ ≳⟨ later (λ { .force → exec ⟨ c , val By.⟨ index (comp-env ρ) x ⟩ ∷ s , comp-env ρ ⟩ ≡⟨ By.⟨by⟩ (comp-index ρ x) ⟩ˢ exec ⟨ c , val (comp-val (index ρ x)) ∷ s , comp-env ρ ⟩ ≳⟨ weakenˡ lemma₄ (c-ok (index ρ x)) ⟩ˢ k (index ρ x) ∎ }) ⟩ˢ ⟦ var x ⟧ ρ >>= k ∎ ⟦⟧-correct (lam t) ρ {c} {s} {k} _ c-ok = exec ⟨ clo (comp-body t) ∷ c , s , comp-env ρ ⟩ ≳⟨ later (λ { .force → exec ⟨ c , val (comp-val (T.lam t ρ)) ∷ s , comp-env ρ ⟩ ≳⟨ weakenˡ lemma₄ (c-ok (T.lam t ρ)) ⟩ˢ k (T.lam t ρ) ∎ }) ⟩ˢ ⟦ lam t ⟧ ρ >>= k ∎ ⟦⟧-correct (t₁ · t₂) ρ {c} {s} {k} _ c-ok = exec ⟨ comp false t₁ (comp false t₂ (app ∷ c)) , s , comp-env ρ ⟩ ≳⟨ weakenˡ lemma₉ (⟦⟧-correct t₁ _ unrestricted λ v₁ → exec ⟨ comp false t₂ (app ∷ c) , val (comp-val v₁) ∷ s , comp-env ρ ⟩ ≳⟨ (⟦⟧-correct t₂ _ unrestricted λ v₂ → exec ⟨ app ∷ c , val (comp-val v₂) ∷ val (comp-val v₁) ∷ s , comp-env ρ ⟩ ≳⟨ ∙-correct v₁ v₂ c-ok ⟩ˢ v₁ ∙ v₂ >>= k ∎) ⟩ˢ (⟦ t₂ ⟧ ρ >>= λ v₂ → v₁ ∙ v₂ >>= k) ∎) ⟩ˢ (⟦ t₁ ⟧ ρ >>= λ v₁ → ⟦ t₂ ⟧ ρ >>= λ v₂ → v₁ ∙ v₂ >>= k) ∼⟨ symmetric (⟦⟧-· t₁ t₂) ⟩ ⟦ t₁ · t₂ ⟧ ρ >>= k ∎ ⟦⟧-correct (call f t) ρ {c} {s} {k} unrestricted c-ok = exec ⟨ comp false (call f t) c , s , comp-env ρ ⟩ ∼⟨⟩ˢ exec ⟨ comp false t (cal f ∷ c) , s , comp-env ρ ⟩ ≳⟨ (⟦⟧-correct t _ unrestricted λ v → exec ⟨ cal f ∷ c , val (comp-val v) ∷ s , comp-env ρ ⟩ ≳⟨ (later λ { .force → weakenˡ lemma₅ ( exec ⟨ comp-name f , ret c (comp-env ρ) ∷ s , comp-val v ∷ [] ⟩ ≳⟨ body-lemma (def f) [] c-ok ⟩ˢ (⟦ def f ⟧ (v ∷ []) >>= k) ∎) }) ⟩ˢ (T.lam (def f) [] ∙ v >>= k) ∎) ⟩ˢ (⟦ t ⟧ ρ >>= λ v → T.lam (def f) [] ∙ v >>= k) ∼⟨ associativity (⟦ t ⟧ ρ) _ _ ⟩ (⟦ t ⟧ ρ >>= λ v → T.lam (def f) [] ∙ v) >>= k ∼⟨⟩ ⟦ call f t ⟧ ρ >>= k ∎ ⟦⟧-correct (call f t) ρ {c} {ret c′ ρ′ ∷ s} {k} (restricted c-ok) _ = exec ⟨ comp true (call f t) c , ret c′ ρ′ ∷ s , comp-env ρ ⟩ ∼⟨⟩ˢ exec ⟨ comp false t (tcl f ∷ c) , ret c′ ρ′ ∷ s , comp-env ρ ⟩ ≳⟨ (⟦⟧-correct t _ unrestricted λ v → exec ⟨ tcl f ∷ c , val (comp-val v) ∷ ret c′ ρ′ ∷ s , comp-env ρ ⟩ ≳⟨ (later λ { .force → weakenˡ lemma₅ ( exec ⟨ comp-name f , ret c′ ρ′ ∷ s , comp-val v ∷ [] ⟩ ≳⟨ body-lemma (def f) [] c-ok ⟩ˢ ⟦ def f ⟧ (v ∷ []) >>= k ∎) }) ⟩ˢ T.lam (def f) [] ∙ v >>= k ∎) ⟩ˢ (⟦ t ⟧ ρ >>= λ v → T.lam (def f) [] ∙ v >>= k) ∼⟨ associativity (⟦ t ⟧ ρ) _ _ ⟩ (⟦ t ⟧ ρ >>= λ v → T.lam (def f) [] ∙ v) >>= k ∼⟨⟩ ⟦ call f t ⟧ ρ >>= k ∎ ⟦⟧-correct (con b) ρ {c} {s} {k} _ c-ok = exec ⟨ con b ∷ c , s , comp-env ρ ⟩ ≳⟨ later (λ { .force → exec ⟨ c , val (comp-val (T.con b)) ∷ s , comp-env ρ ⟩ ≳⟨ weakenˡ lemma₄ (c-ok (T.con b)) ⟩ˢ k (T.con b) ∎ }) ⟩ˢ ⟦ con b ⟧ ρ >>= k ∎ ⟦⟧-correct (if t₁ t₂ t₃) ρ {c} {s} {k} {tc} s-ok c-ok = exec ⟨ comp false t₁ (bra (comp tc t₂ []) (comp tc t₃ []) ∷ c) , s , comp-env ρ ⟩ ≳⟨ weakenˡ lemma₈ (⟦⟧-correct t₁ _ unrestricted λ v₁ → ⟦if⟧-correct v₁ t₂ t₃ s-ok c-ok) ⟩ˢ (⟦ t₁ ⟧ ρ >>= λ v₁ → ⟦if⟧ v₁ t₂ t₃ ρ >>= k) ∼⟨ associativity (⟦ t₁ ⟧ ρ) _ _ ⟩ (⟦ t₁ ⟧ ρ >>= λ v₁ → ⟦if⟧ v₁ t₂ t₃ ρ) >>= k ∼⟨⟩ ⟦ if t₁ t₂ t₃ ⟧ ρ >>= k ∎ body-lemma : ∀ {i n n′} (t : Tm (suc n)) ρ {ρ′ : C.Env n′} {c s v} {k : T.Value → Delay-crash C.Value ∞} {δ} → Cont-OK i ⟨ c , s , ρ′ ⟩ k δ → [ i ∣ ⌜ 1 ⌝ ∣ ⌜ 1 ⌝ + δ ] exec ⟨ comp-body t , ret c ρ′ ∷ s , comp-val v ∷ comp-env ρ ⟩ ≳ ⟦ t ⟧ (v ∷ ρ) >>= k body-lemma t ρ {ρ′} {c} {s} {v} {k} c-ok = exec ⟨ comp-body t , ret c ρ′ ∷ s , comp-val v ∷ comp-env ρ ⟩ ∼⟨⟩ˢ exec ⟨ comp-body t , ret c ρ′ ∷ s , comp-env (v ∷ ρ) ⟩ ≳⟨ weakenˡ lemma₇ (⟦⟧-correct t (_ ∷ _) (ret-ok c-ok) λ v′ → exec ⟨ ret ∷ [] , val (comp-val v′) ∷ ret c ρ′ ∷ s , comp-env (v ∷ ρ) ⟩ ≳⟨⟩ˢ exec ⟨ c , val (comp-val v′) ∷ s , ρ′ ⟩ ≳⟨ c-ok v′ ⟩ˢ k v′ ∎) ⟩ˢ ⟦ t ⟧ (v ∷ ρ) >>= k ∎ ∙-correct : ∀ {i n} v₁ v₂ {ρ : C.Env n} {c s} {k : T.Value → Delay-crash C.Value ∞} {δ} → Cont-OK i ⟨ c , s , ρ ⟩ k δ → [ i ∣ ⌜ 1 ⌝ ∣ max ⌜ 1 ⌝ δ ] exec ⟨ app ∷ c , val (comp-val v₂) ∷ val (comp-val v₁) ∷ s , ρ ⟩ ≳ v₁ ∙ v₂ >>= k ∙-correct (T.lam t₁ ρ₁) v₂ {ρ} {c} {s} {k} c-ok = exec ⟨ app ∷ c , val (comp-val v₂) ∷ val (comp-val (T.lam t₁ ρ₁)) ∷ s , ρ ⟩ ≳⟨ later (λ { .force → weakenˡ lemma₆ ( exec ⟨ comp-body t₁ , ret c ρ ∷ s , comp-val v₂ ∷ comp-env ρ₁ ⟩ ≳⟨ body-lemma t₁ _ c-ok ⟩ˢ ⟦ t₁ ⟧ (v₂ ∷ ρ₁) >>= k ∎) }) ⟩ˢ T.lam t₁ ρ₁ ∙ v₂ >>= k ∎ ∙-correct (T.con b) v₂ {ρ} {c} {s} {k} _ = weakenˡ lemma₁₀ ( exec ⟨ app ∷ c , val (comp-val v₂) ∷ val (comp-val (T.con b)) ∷ s , ρ ⟩ ≳⟨⟩ˢ crash ∼⟨⟩ˢ T.con b ∙ v₂ >>= k ∎ˢ) ⟦if⟧-correct : ∀ {i n} v₁ (t₂ t₃ : Tm n) {ρ : T.Env n} {c s} {k : T.Value → Delay-crash C.Value ∞} {tc δ} → Stack-OK i k δ tc s → Cont-OK i ⟨ c , s , comp-env ρ ⟩ k δ → [ i ∣ ⌜ 1 ⌝ ∣ max ⌜ 1 ⌝ δ ] exec ⟨ bra (comp tc t₂ []) (comp tc t₃ []) ∷ c , val (comp-val v₁) ∷ s , comp-env ρ ⟩ ≳ ⟦if⟧ v₁ t₂ t₃ ρ >>= k ⟦if⟧-correct (T.lam t₁ ρ₁) t₂ t₃ {ρ} {c} {s} {k} {tc} _ _ = weakenˡ lemma₁₀ ( exec ⟨ bra (comp tc t₂ []) (comp tc t₃ []) ∷ c , val (comp-val (T.lam t₁ ρ₁)) ∷ s , comp-env ρ ⟩ ≳⟨⟩ˢ crash ∼⟨⟩ˢ ⟦if⟧ (T.lam t₁ ρ₁) t₂ t₃ ρ >>= k ∎ˢ) ⟦if⟧-correct (T.con true) t₂ t₃ {ρ} {c} {s} {k} {tc} s-ok c-ok = exec ⟨ bra (comp tc t₂ []) (comp tc t₃ []) ∷ c , val (comp-val (T.con true)) ∷ s , comp-env ρ ⟩ ≳⟨ later (λ { .force → weakenˡ lemma₃ ( exec ⟨ comp tc t₂ [] ++ c , s , comp-env ρ ⟩ ≡⟨ By.by (comp-++ _ t₂) ⟩ˢ exec ⟨ comp tc t₂ c , s , comp-env ρ ⟩ ≳⟨ ⟦⟧-correct t₂ _ s-ok c-ok ⟩ˢ ⟦ t₂ ⟧ ρ >>= k ∎) }) ⟩ˢ ⟦if⟧ (T.con true) t₂ t₃ ρ >>= k ∎ ⟦if⟧-correct (T.con false) t₂ t₃ {ρ} {c} {s} {k} {tc} s-ok c-ok = exec ⟨ bra (comp tc t₂ []) (comp tc t₃ []) ∷ c , val (comp-val (T.con false)) ∷ s , comp-env ρ ⟩ ≳⟨ later (λ { .force → weakenˡ lemma₃ ( exec ⟨ comp tc t₃ [] ++ c , s , comp-env ρ ⟩ ≡⟨ By.by (comp-++ _ t₃) ⟩ˢ exec ⟨ comp tc t₃ c , s , comp-env ρ ⟩ ≳⟨ ⟦⟧-correct t₃ _ s-ok c-ok ⟩ˢ ⟦ t₃ ⟧ ρ >>= k ∎) }) ⟩ˢ ⟦if⟧ (T.con false) t₂ t₃ ρ >>= k ∎ -- The "time complexity" of the compiled program is linear in the time -- complexity obtained from the instrumented interpreter, and vice -- versa. steps-match : (t : Tm 0) → [ ∞ ] steps (⟦ t ⟧ []) ≤ steps (exec ⟨ comp₀ t , [] , [] ⟩) × [ ∞ ] steps (exec ⟨ comp₀ t , [] , [] ⟩) ≤ ⌜ 1 ⌝ + ⌜ 2 ⌝ * steps (⟦ t ⟧ []) steps-match t = $⟨ ⟦⟧-correct t [] unrestricted (λ v → laterˡ (return (comp-val v) ∎ˢ)) ⟩ [ ∞ ∣ ⌜ 1 ⌝ ∣ max ⌜ 1 ⌝ ⌜ 1 ⌝ ] exec ⟨ comp₀ t , [] , [] ⟩ ≳ comp-val ⟨$⟩ ⟦ t ⟧ [] ↝⟨ proj₂ ∘ _⇔_.to ≳⇔≈×steps≤steps² ⟩ [ ∞ ] steps (comp-val ⟨$⟩ ⟦ t ⟧ []) ≤ steps (exec ⟨ comp₀ t , [] , [] ⟩) × [ ∞ ] steps (exec ⟨ comp₀ t , [] , [] ⟩) ≤ max ⌜ 1 ⌝ ⌜ 1 ⌝ + (⌜ 1 ⌝ + ⌜ 1 ⌝) * steps (comp-val ⟨$⟩ ⟦ t ⟧ []) ↝⟨ _⇔_.to (steps-⟨$⟩ Conat.≤-cong-∼ (_ Conat.∎∼) ×-cong (_ Conat.∎∼) Conat.≤-cong-∼ lemma₁₁ Conat.+-cong lemma₁₂ Conat.*-cong steps-⟨$⟩) ⟩□ [ ∞ ] steps (⟦ t ⟧ []) ≤ steps (exec ⟨ comp₀ t , [] , [] ⟩) × [ ∞ ] steps (exec ⟨ comp₀ t , [] , [] ⟩) ≤ ⌜ 1 ⌝ + ⌜ 2 ⌝ * steps (⟦ t ⟧ []) □
{ "alphanum_fraction": 0.3702799897, "avg_line_length": 38.449382716, "ext": "agda", "hexsha": "cb9287e951298f7a1571cb90cad92433c2fd7f47", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/definitional-interpreters", "max_forks_repo_path": "src/Lambda/Compiler-correctness/Steps-match.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/definitional-interpreters", "max_issues_repo_path": "src/Lambda/Compiler-correctness/Steps-match.agda", "max_line_length": 145, "max_stars_count": null, "max_stars_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/definitional-interpreters", "max_stars_repo_path": "src/Lambda/Compiler-correctness/Steps-match.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 6144, "size": 15572 }
module _ where {- NOTE: To run move to adga directory or figure out how `agda -I` works -} open import utility open import Esterel.Lang open import Esterel.Lang.Properties open import Esterel.Environment as Env open import Esterel.Context open import Data.Product open import Data.Sum open import Data.Bool open import Data.List open import Relation.Nullary import Relation.Binary.PropositionalEquality as Prop open import Data.Empty open import calculus open import context-properties open import Esterel.Lang.Binding open import Data.Maybe using (just ; nothing) open import Esterel.Variable.Signal as Signal using (Signal ; _ₛ) open import Esterel.Variable.Sequential as SeqVar using (SeqVar ; _ᵥ) open import Esterel.Variable.Shared as ShVar using (SharedVar ; _ₛₕ) open import Data.List.Any S : Signal S = 0 ₛ start : Term start = signl S ((emit S) >> (present S ∣⇒ pause ∣⇒ nothin)) step1 = ρ (Θ [ (just Signal.unknown) ] [] []) · ((emit S) >> (present S ∣⇒ pause ∣⇒ nothin)) step2 = ρ (Θ [ (just Signal.present) ] [] []) · (nothin >> (present S ∣⇒ pause ∣⇒ nothin)) step3 = ρ (Θ [ (just Signal.present) ] [] []) · (present S ∣⇒ pause ∣⇒ nothin) end : Term end = ρ (Θ [ (just Signal.present) ] [] []) · pause red : start ⟶* end red = rstep{start}{step1} (⟶-inclusion (rraise-signal{((emit S) >> (present S ∣⇒ pause ∣⇒ nothin))}{S}) ) (rstep {step1} {step2} (⟶-inclusion (remit (Data.List.Any.Any.here Prop.refl) (deseq{p = (emit S)}{q = (present S ∣⇒ pause ∣⇒ nothin)} (dehole{emit S})))) (rstep {step2} {step3} (rcontext (cenv (Θ (just Signal.present ∷ []) [] []) ∷ []) (dcenv dchole) rseq-done) (rstep {step3} {end} (rcontext [] dchole (ris-present (Data.List.Any.Any.here Prop.refl) Prop.refl dehole)) rrefl)))
{ "alphanum_fraction": 0.610542477, "avg_line_length": 39.8775510204, "ext": "agda", "hexsha": "a03022058b8c820fad0d6756f10e6c0d7e7ff4e9", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "florence/esterel-calculus", "max_forks_repo_path": "cross-tests/examples/test.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "florence/esterel-calculus", "max_issues_repo_path": "cross-tests/examples/test.agda", "max_line_length": 114, "max_stars_count": 3, "max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "florence/esterel-calculus", "max_stars_repo_path": "cross-tests/examples/test.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z", "num_tokens": 596, "size": 1954 }
postulate I : Set f : Set → I mutual data P : I → Set where Q : I → Set Q x = P (f (P x))
{ "alphanum_fraction": 0.4757281553, "avg_line_length": 9.3636363636, "ext": "agda", "hexsha": "9015e79903cd9f20b39c198fd4aea01930a79eb8", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue3592-1.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue3592-1.agda", "max_line_length": 24, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue3592-1.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 45, "size": 103 }
{-# OPTIONS --without-K #-} module WithoutK8 where data I : Set where i : I module M (x : I) where data D : Set where d : D data P : D → Set where postulate x : I open module M′ = M x Foo : P d → Set Foo ()
{ "alphanum_fraction": 0.5688888889, "avg_line_length": 10.7142857143, "ext": "agda", "hexsha": "bf5d43cf64cfb6b3b508e0f70d81246fce1b0b74", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "np/agda-git-experiment", "max_forks_repo_path": "test/fail/WithoutK8.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "np/agda-git-experiment", "max_issues_repo_path": "test/fail/WithoutK8.agda", "max_line_length": 27, "max_stars_count": 1, "max_stars_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "np/agda-git-experiment", "max_stars_repo_path": "test/fail/WithoutK8.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 76, "size": 225 }
module Human.List where open import Human.Nat infixr 5 _,_ data List {a} (A : Set a) : Set a where end : List A _,_ : (x : A) (xs : List A) → List A {-# BUILTIN LIST List #-} {-# COMPILE JS List = function(x,v) { if (x.length < 1) { return v["[]"](); } else { return v["_∷_"](x[0], x.slice(1)); } } #-} {-# COMPILE JS end = Array() #-} {-# COMPILE JS _,_ = function (x) { return function(y) { return Array(x).concat(y); }; } #-} foldr : ∀ {A : Set} {B : Set} → (A → B → B) → B → List A → B foldr c n end = n foldr c n (x , xs) = c x (foldr c n xs) length : ∀ {A : Set} → List A → Nat length = foldr (λ a n → suc n) zero -- TODO -- -- filter -- reduce -- Receives a function that transforms each element of A, a function A and a new list, B. map : ∀ {A : Set} {B : Set} → (f : A → B) → List A → List B map f end = end map f (x , xs) = (f x) , (map f xs) -- f transforms element x, return map to do a new transformation -- Sum all numbers in a list sum : List Nat → Nat sum end = zero sum (x , l) = x + (sum l) remove-last : ∀ {A : Set} → List A → List A remove-last end = end remove-last (x , l) = l
{ "alphanum_fraction": 0.5516328332, "avg_line_length": 28.325, "ext": "agda", "hexsha": "21cc7c58c4b6dd20c7f624fa65c4983af33ff34c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b509eb4c4014605facfb4ee5c807cd07753d4477", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MaisaMilena/JuiceMaker", "max_forks_repo_path": "src/Human/List.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b509eb4c4014605facfb4ee5c807cd07753d4477", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MaisaMilena/JuiceMaker", "max_issues_repo_path": "src/Human/List.agda", "max_line_length": 128, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b509eb4c4014605facfb4ee5c807cd07753d4477", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MaisaMilena/JuiceMaker", "max_stars_repo_path": "src/Human/List.agda", "max_stars_repo_stars_event_max_datetime": "2020-11-28T05:46:27.000Z", "max_stars_repo_stars_event_min_datetime": "2019-03-29T17:35:20.000Z", "num_tokens": 401, "size": 1133 }
{-# OPTIONS --safe #-} module Cubical.Data.Vec.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.HLevels open import Cubical.Foundations.Univalence import Cubical.Data.Empty as ⊥ open import Cubical.Data.Unit open import Cubical.Data.Nat open import Cubical.Data.Sigma open import Cubical.Data.Sum open import Cubical.Data.Vec.Base open import Cubical.Data.FinData open import Cubical.Relation.Nullary open Iso private variable ℓ : Level A : Type ℓ -- This is really cool! -- Compare with: https://github.com/agda/agda-stdlib/blob/master/src/Data/Vec/Properties/WithK.agda#L32 ++-assoc : ∀ {m n k} (xs : Vec A m) (ys : Vec A n) (zs : Vec A k) → PathP (λ i → Vec A (+-assoc m n k (~ i))) ((xs ++ ys) ++ zs) (xs ++ ys ++ zs) ++-assoc {m = zero} [] ys zs = refl ++-assoc {m = suc m} (x ∷ xs) ys zs i = x ∷ ++-assoc xs ys zs i -- Equivalence between Fin n → A and Vec A n FinVec→Vec : {n : ℕ} → FinVec A n → Vec A n FinVec→Vec {n = zero} xs = [] FinVec→Vec {n = suc _} xs = xs zero ∷ FinVec→Vec (λ x → xs (suc x)) Vec→FinVec : {n : ℕ} → Vec A n → FinVec A n Vec→FinVec xs f = lookup f xs FinVec→Vec→FinVec : {n : ℕ} (xs : FinVec A n) → Vec→FinVec (FinVec→Vec xs) ≡ xs FinVec→Vec→FinVec {n = zero} xs = funExt λ f → ⊥.rec (¬Fin0 f) FinVec→Vec→FinVec {n = suc n} xs = funExt goal where goal : (f : Fin (suc n)) → Vec→FinVec (xs zero ∷ FinVec→Vec (λ x → xs (suc x))) f ≡ xs f goal zero = refl goal (suc f) i = FinVec→Vec→FinVec (λ x → xs (suc x)) i f Vec→FinVec→Vec : {n : ℕ} (xs : Vec A n) → FinVec→Vec (Vec→FinVec xs) ≡ xs Vec→FinVec→Vec {n = zero} [] = refl Vec→FinVec→Vec {n = suc n} (x ∷ xs) i = x ∷ Vec→FinVec→Vec xs i FinVecIsoVec : (n : ℕ) → Iso (FinVec A n) (Vec A n) FinVecIsoVec n = iso FinVec→Vec Vec→FinVec Vec→FinVec→Vec FinVec→Vec→FinVec FinVec≃Vec : (n : ℕ) → FinVec A n ≃ Vec A n FinVec≃Vec n = isoToEquiv (FinVecIsoVec n) FinVec≡Vec : (n : ℕ) → FinVec A n ≡ Vec A n FinVec≡Vec n = ua (FinVec≃Vec n) isContrVec0 : isContr (Vec A 0) isContrVec0 = [] , λ { [] → refl } -- encode - decode Vec module VecPath {A : Type ℓ} where code : {n : ℕ} → (v v' : Vec A n) → Type ℓ code [] [] = Unit* code (a ∷ v) (a' ∷ v') = (a ≡ a') × (v ≡ v') -- encode reflEncode : {n : ℕ} → (v : Vec A n) → code v v reflEncode [] = tt* reflEncode (a ∷ v) = refl , refl encode : {n : ℕ} → (v v' : Vec A n) → (v ≡ v') → code v v' encode v v' p = J (λ v' _ → code v v') (reflEncode v) p encodeRefl : {n : ℕ} → (v : Vec A n) → encode v v refl ≡ reflEncode v encodeRefl v = JRefl (λ v' _ → code v v') (reflEncode v) -- decode decode : {n : ℕ} → (v v' : Vec A n) → (r : code v v') → (v ≡ v') decode [] [] _ = refl decode (a ∷ v) (a' ∷ v') (p , q) = cong₂ _∷_ p q decodeRefl : {n : ℕ} → (v : Vec A n) → decode v v (reflEncode v) ≡ refl decodeRefl [] = refl decodeRefl (a ∷ v) = refl -- equiv ≡Vec≃codeVec : {n : ℕ} → (v v' : Vec A n) → (v ≡ v') ≃ (code v v') ≡Vec≃codeVec v v' = isoToEquiv is where is : Iso (v ≡ v') (code v v') fun is = encode v v' inv is = decode v v' rightInv is = sect v v' where sect : {n : ℕ} → (v v' : Vec A n) → (r : code v v') → encode v v' (decode v v' r) ≡ r sect [] [] tt* = encodeRefl [] sect (a ∷ v) (a' ∷ v') (p , q) = J (λ a' p → encode (a ∷ v) (a' ∷ v') (decode (a ∷ v) (a' ∷ v') (p , q)) ≡ (p , q)) (J (λ v' q → encode (a ∷ v) (a ∷ v') (decode (a ∷ v) (a ∷ v') (refl , q)) ≡ (refl , q)) (encodeRefl (a ∷ v)) q) p leftInv is = retr v v' where retr : {n : ℕ} → (v v' : Vec A n) → (p : v ≡ v') → decode v v' (encode v v' p) ≡ p retr v v' p = J (λ v' p → decode v v' (encode v v' p) ≡ p) (cong (decode v v) (encodeRefl v) ∙ decodeRefl v) p isOfHLevelVec : (h : HLevel) (n : ℕ) → isOfHLevel (suc (suc h)) A → isOfHLevel (suc (suc h)) (Vec A n) isOfHLevelVec h zero ofLevelA [] [] = isOfHLevelRespectEquiv (suc h) (invEquiv (≡Vec≃codeVec [] [])) (isOfHLevelUnit* (suc h)) isOfHLevelVec h (suc n) ofLevelA (x ∷ v) (x' ∷ v') = isOfHLevelRespectEquiv (suc h) (invEquiv (≡Vec≃codeVec _ _)) (isOfHLevelΣ (suc h) (ofLevelA x x') (λ _ → isOfHLevelVec h n ofLevelA v v')) discreteA→discreteVecA : Discrete A → (n : ℕ) → Discrete (Vec A n) discreteA→discreteVecA DA zero [] [] = yes refl discreteA→discreteVecA DA (suc n) (a ∷ v) (a' ∷ v') with (DA a a') | (discreteA→discreteVecA DA n v v') ... | yes p | yes q = yes (invIsEq (snd (≡Vec≃codeVec (a ∷ v) (a' ∷ v'))) (p , q)) ... | yes p | no ¬q = no (λ r → ¬q (snd (funIsEq (snd (≡Vec≃codeVec (a ∷ v) (a' ∷ v'))) r))) ... | no ¬p | yes q = no (λ r → ¬p (fst (funIsEq (snd (≡Vec≃codeVec (a ∷ v) (a' ∷ v'))) r))) ... | no ¬p | no ¬q = no (λ r → ¬q (snd (funIsEq (snd (≡Vec≃codeVec (a ∷ v) (a' ∷ v'))) r))) ≢-∷ : {m : ℕ} → (Discrete A) → (a : A) → (v : Vec A m) → (a' : A) → (v' : Vec A m) → (a ∷ v ≡ a' ∷ v' → ⊥.⊥) → (a ≡ a' → ⊥.⊥) ⊎ (v ≡ v' → ⊥.⊥) ≢-∷ {m} discreteA a v a' v' ¬r with (discreteA a a') | (discreteA→discreteVecA discreteA m v v') ... | yes p | yes q = ⊥.rec (¬r (cong₂ _∷_ p q)) ... | yes p | no ¬q = inr ¬q ... | no ¬p | y = inl ¬p
{ "alphanum_fraction": 0.525136612, "avg_line_length": 38.661971831, "ext": "agda", "hexsha": "4059ed3cb3481f0e98e66a52fad77aca56474f1c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Data/Vec/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Data/Vec/Properties.agda", "max_line_length": 132, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Data/Vec/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2257, "size": 5490 }
module Oscar.Data.AList where open import Oscar.Data.Equality open import Oscar.Data.Nat open import Oscar.Level module _ {a} (A : Nat → Set a) where data AList (n : Nat) : Nat → Set a where [] : AList n n _∷_ : ∀ {m} → A m → AList n m → AList n (suc m) open import Oscar.Category module Category' {a} {A : Nat → Set a} where _⊸_ = AList A infix 4 _≋_ _≋_ : ∀ {m n} → m ⊸ n → m ⊸ n → Set a _≋_ = _≡_ infixr 9 _∙_ _∙_ : ∀ {m n} → m ⊸ n → ∀ {l} → l ⊸ m → l ⊸ n [] ∙ ρ = ρ (x ∷ σ) ∙ ρ = x ∷ (σ ∙ ρ) ∙-associativity : ∀ {k l} (f : k ⊸ l) {m} (g : l ⊸ m) {n} (h : m ⊸ n) → (h ∙ g) ∙ f ≋ h ∙ g ∙ f ∙-associativity f g [] = refl ∙-associativity f g (x ∷ h) = cong (x ∷_) (∙-associativity f g h) ε : ∀ {n} → n ⊸ n ε = [] ∙-left-identity : ∀ {m n} (σ : m ⊸ n) → ε ∙ σ ≋ σ ∙-left-identity _ = refl ∙-right-identity : ∀ {m n} (σ : m ⊸ n) → σ ∙ ε ≋ σ ∙-right-identity [] = refl ∙-right-identity (x ∷ σ) = cong (x ∷_) (∙-right-identity σ) semigroupoidAList : Semigroupoid (AList A) (λ {x y} → ≡-setoid (AList A x y)) Semigroupoid._∙_ semigroupoidAList = _∙_ Semigroupoid.∙-extensionality semigroupoidAList refl refl = refl Semigroupoid.∙-associativity semigroupoidAList = ∙-associativity categoryAList : Category semigroupoidAList Category.ε categoryAList = ε Category.ε-left-identity categoryAList = ∙-left-identity _ Category.ε-right-identity categoryAList = ∙-right-identity _ -- ∙-associativity σ _ [] = refl -- ∙-associativity (τ asnoc t / x) ρ σ = cong (λ s → s asnoc t / x) (∙-associativity τ ρ σ) -- -- semigroupoid : ∀ {a} (A : Nat → Set a) → Semigroupoid a a ∅̂ -- -- Semigroupoid._∙_ = semigroupoid -- -- -- record Semigroupoid -- -- -- {𝔬} {𝔒 : -- -- -- -- module Oscar.Data.AList {𝔣} (FunctionName : Set 𝔣) where -- -- -- -- open import Oscar.Data.Fin -- -- -- -- open import Oscar.Data.Nat -- -- -- -- open import Oscar.Data.Product -- -- -- -- open import Oscar.Data.Term FunctionName -- -- -- -- open import Oscar.Data.IList -- -- -- -- pattern anil = [] -- -- -- -- pattern _asnoc_/_ σ t' x = (t' , x) ∷ σ -- -- -- -- AList : Nat → Nat → Set 𝔣 -- -- -- -- AList m n = IList (λ m → Term m × Fin (suc m)) n m -- -- -- -- -- data AList' (n : Nat) : Nat -> Set 𝔣 where -- -- -- -- -- anil : AList' n n -- -- -- -- -- _asnoc_/_ : ∀ {m} (σ : AList' n m) (t' : Term m) (x : Fin (suc m)) -- -- -- -- -- -> AList' n (suc m) -- -- -- -- -- open import Oscar.Function -- -- -- -- -- --AList = flip AList' -- -- -- -- -- -- data AList : Nat -> Nat -> Set 𝔣 where -- -- -- -- -- -- anil : ∀ {n} -> AList n n -- -- -- -- -- -- _asnoc_/_ : ∀ {m n} (σ : AList m n) (t' : Term m) (x : Fin (suc m)) -- -- -- -- -- -- -> AList (suc m) n -- -- -- -- -- -- -- open import Relation.Binary.PropositionalEquality renaming ([_] to [[_]]) -- -- -- -- -- -- -- open ≡-Reasoning -- -- -- -- -- -- -- step-prop : ∀ {m n} (s t : Term (suc m)) (σ : AList m n) r z -> -- -- -- -- -- -- -- (Unifies s t [-◇ sub (σ asnoc r / z) ]) ⇔ (Unifies ((r for z) ◃ s) ((r for z) ◃ t) [-◇ sub σ ]) -- -- -- -- -- -- -- step-prop s t σ r z f = to , from -- -- -- -- -- -- -- where -- -- -- -- -- -- -- lemma1 : ∀ t -> (f ◇ sub σ) ◃ ((r for z) ◃ t) ≡ (f ◇ (sub σ ◇ (r for z))) ◃ t -- -- -- -- -- -- -- lemma1 t = bind-assoc f (sub σ) (r for z) t -- -- -- -- -- -- -- to = λ a → begin -- -- -- -- -- -- -- (f ◇ sub σ) ◃ ((r for z) ◃ s) ≡⟨ lemma1 s ⟩ -- -- -- -- -- -- -- (f ◇ (sub σ ◇ (r for z))) ◃ s ≡⟨ a ⟩ -- -- -- -- -- -- -- (f ◇ (sub σ ◇ (r for z))) ◃ t ≡⟨ sym (lemma1 t) ⟩ -- -- -- -- -- -- -- (f ◇ sub σ) ◃ ((r for z) ◃ t) ∎ -- -- -- -- -- -- -- from = λ a → begin -- -- -- -- -- -- -- (f ◇ (sub σ ◇ (r for z))) ◃ s ≡⟨ sym (lemma1 s) ⟩ -- -- -- -- -- -- -- (f ◇ sub σ) ◃ ((r for z) ◃ s) ≡⟨ a ⟩ -- -- -- -- -- -- -- (f ◇ sub σ) ◃ ((r for z) ◃ t) ≡⟨ lemma1 t ⟩ -- -- -- -- -- -- -- (f ◇ (sub σ ◇ (r for z))) ◃ t ∎ -- -- -- -- -- -- -- record ⋆amgu (T : ℕ → Set) : Set where -- -- -- -- -- -- -- field amgu : ∀ {m} (s t : T m) (acc : ∃ (AList m)) -> Maybe (∃ (AList m)) -- -- -- -- -- -- -- open ⋆amgu ⦃ … ⦄ public -- -- -- -- -- -- -- open import Category.Monad using (RawMonad) -- -- -- -- -- -- -- import Level -- -- -- -- -- -- -- open RawMonad (Data.Maybe.monad {Level.zero}) -- -- -- -- -- -- -- open import Relation.Binary using (IsDecEquivalence) -- -- -- -- -- -- -- open import Relation.Nullary using (Dec; yes; no) -- -- -- -- -- -- -- open import Data.Nat using (ℕ; _≟_) -- -- -- -- -- -- -- open import Data.Product using () renaming (Σ to Σ₁) -- -- -- -- -- -- -- open Σ₁ renaming (proj₁ to π₁; proj₂ to π₂) -- -- -- -- -- -- -- open import Data.Product using (Σ) -- -- -- -- -- -- -- open Σ -- -- -- -- -- -- -- open import Data.Sum -- -- -- -- -- -- -- open import Function -- -- -- -- -- -- -- NothingForkLeft : ∀ {m l} (s1 t1 : Term m) (ρ : AList m l) (s2 t2 : Term m) → -- -- -- -- -- -- -- Nothing⋆ $ Unifies⋆ s1 t1 [-◇⋆ sub ρ ] → -- -- -- -- -- -- -- Nothing⋆ $ Unifies⋆ (s1 fork s2) (t1 fork t2) [-◇⋆ sub ρ ] -- -- -- -- -- -- -- NothingForkLeft s1 t1 ρ s2 t2 nounify = No[Q◇ρ]→No[P◇ρ] No[Q◇ρ] -- -- -- -- -- -- -- where -- -- -- -- -- -- -- P = Unifies⋆ (s1 fork s2) (t1 fork t2) -- -- -- -- -- -- -- Q = (Unifies⋆ s1 t1 ∧⋆ Unifies⋆ s2 t2) -- -- -- -- -- -- -- Q⇔P : Q ⇔⋆ P -- -- -- -- -- -- -- Q⇔P = switch⋆ P Q (Properties.fact1' {_} {s1} {s2} {t1} {t2}) -- -- -- -- -- -- -- No[Q◇ρ]→No[P◇ρ] : Nothing⋆ (Q [-◇⋆ sub ρ ]) -> Nothing⋆ (P [-◇⋆ sub ρ ]) -- -- -- -- -- -- -- No[Q◇ρ]→No[P◇ρ] = Properties.fact2⋆ (Q [-◇⋆ sub ρ ]) (P [-◇⋆ sub ρ ]) (Properties.fact5⋆ Q P (sub ρ) Q⇔P) -- -- -- -- -- -- -- No[Q◇ρ] : Nothing⋆ (Q [-◇⋆ sub ρ ]) -- -- -- -- -- -- -- No[Q◇ρ] = failure-propagation.first⋆ (sub ρ) (Unifies⋆ s1 t1) (Unifies⋆ s2 t2) nounify -- -- -- -- -- -- -- NothingForkRight : ∀ {m l n} (σ : AList l n) -- -- -- -- -- -- -- (s1 s2 : Term m) -- -- -- -- -- -- -- (t1 t2 : Term m) → -- -- -- -- -- -- -- (ρ : AList m l) → -- -- -- -- -- -- -- Max⋆ (Unifies⋆ s1 t1 [-◇⋆ sub ρ ]) $ sub σ → -- -- -- -- -- -- -- Nothing⋆ $ Unifies⋆ s2 t2 [-◇⋆ sub (σ ++ ρ) ] → -- -- -- -- -- -- -- Nothing⋆ $ Unifies⋆ (s1 fork s2) (t1 fork t2) [-◇⋆ sub ρ ] -- -- -- -- -- -- -- NothingForkRight σ s1 s2 t1 t2 ρ a nounify = No[Q◇ρ]→No[P◇ρ]⋆ No[Q◇ρ]⋆ -- -- -- -- -- -- -- where -- -- -- -- -- -- -- P⋆ = Unifies⋆ (s1 fork s2) (t1 fork t2) -- -- -- -- -- -- -- Q⋆ = (Unifies⋆ s1 t1 ∧⋆ Unifies⋆ s2 t2) -- -- -- -- -- -- -- Q⇔P⋆ : Q⋆ ⇔⋆ P⋆ -- -- -- -- -- -- -- Q⇔P⋆ = switch⋆ P⋆ Q⋆ (Properties.fact1'⋆ {_} {s1} {s2} {t1} {t2}) -- -- -- -- -- -- -- No[Q◇ρ]→No[P◇ρ]⋆ : Nothing⋆ (Q⋆ [-◇⋆ sub ρ ]) -> Nothing⋆ (P⋆ [-◇⋆ sub ρ ]) -- -- -- -- -- -- -- No[Q◇ρ]→No[P◇ρ]⋆ = Properties.fact2⋆ (Q⋆ [-◇⋆ sub ρ ]) (P⋆ [-◇⋆ sub ρ ]) (Properties.fact5⋆ Q⋆ P⋆ (sub ρ) Q⇔P⋆) -- -- -- -- -- -- -- No[Q◇ρ]⋆ : Nothing⋆ (Q⋆ [-◇⋆ sub ρ ]) -- -- -- -- -- -- -- No[Q◇ρ]⋆ = failure-propagation.second⋆ (sub ρ) (sub σ) (Unifies⋆ s1 t1) (Unifies s2 t2) a -- -- -- -- -- -- -- (λ f → nounify f ∘ π₂ (Unifies s2 t2) (cong (f ◃_) ∘ sym ∘ SubList.fact1 σ ρ)) -- -- -- -- -- -- -- MaxFork : ∀ {m l n n1} (s1 s2 t1 t2 : Term m) -- -- -- -- -- -- -- (ρ : AList m l) (σ : AList l n) → -- -- -- -- -- -- -- Max⋆ (Unifies⋆ s1 t1 [-◇⋆ sub ρ ]) $ sub σ → -- -- -- -- -- -- -- (σ1 : AList n n1) → -- -- -- -- -- -- -- Max⋆ (Unifies⋆ s2 t2 [-◇⋆ sub (σ ++ ρ) ]) $ sub σ1 → -- -- -- -- -- -- -- Max⋆ (Unifies⋆ (s1 fork s2) (t1 fork t2) [-◇⋆ sub ρ ]) $ sub (σ1 ++ σ) -- -- -- -- -- -- -- MaxFork s1 s2 t1 t2 ρ σ a σ1 b = Max[P∧Q◇ρ][σ1++σ] -- -- -- -- -- -- -- where -- -- -- -- -- -- -- P = Unifies s1 t1 -- -- -- -- -- -- -- Q = Unifies s2 t2 -- -- -- -- -- -- -- P∧Q = P ∧ Q -- -- -- -- -- -- -- C = Unifies (s1 fork s2) (t1 fork t2) -- -- -- -- -- -- -- Max[C◇ρ]⇔Max[P∧Q◇ρ] : Max (C [-◇ sub ρ ]) ⇔ Max (P∧Q [-◇ sub ρ ]) -- -- -- -- -- -- -- Max[C◇ρ]⇔Max[P∧Q◇ρ] = Max.fact (C [-◇ sub ρ ]) (P∧Q [-◇ sub ρ ]) (Properties.fact5 C P∧Q (sub ρ) -- -- -- -- -- -- -- (Properties.fact1' {_} {s1} {s2} {t1} {t2})) -- -- -- -- -- -- -- Max[Q◇σ++ρ]⇔Max[Q◇σ◇ρ] : Max (Q [-◇ sub (σ ++ ρ)]) ⇔ Max (Q [-◇ sub σ ◇ sub ρ ]) -- -- -- -- -- -- -- Max[Q◇σ++ρ]⇔Max[Q◇σ◇ρ] = Max.fact (Q [-◇ sub (σ ++ ρ)]) (Q [-◇ sub σ ◇ sub ρ ]) (Properties.fact6 Q (SubList.fact1 σ ρ)) -- -- -- -- -- -- -- Max[P∧Q◇ρ][σ1++σ] : π₁ (Max (C [-◇ sub ρ ])) (sub (σ1 ++ σ)) -- -- -- -- -- -- -- Max[P∧Q◇ρ][σ1++σ] = π₂ (Max (C [-◇ sub ρ ])) (≐-sym (SubList.fact1 σ1 σ)) -- -- -- -- -- -- -- (proj₂ (Max[C◇ρ]⇔Max[P∧Q◇ρ] (sub σ1 ◇ sub σ)) -- -- -- -- -- -- -- (optimist (sub ρ) (sub σ) (sub σ1) P Q (DClosed.fact1 s1 t1) a (proj₁ (Max[Q◇σ++ρ]⇔Max[Q◇σ◇ρ] (sub σ1)) b))) -- -- -- -- -- -- -- NothingVecHead : ∀ {m l} (t₁ t₂ : Term m) (ρ : AList m l) {N} (ts₁ ts₂ : Vec (Term m) N) → -- -- -- -- -- -- -- Nothing⋆ $ Unifies⋆ t₁ t₂ [-◇⋆ sub ρ ] → -- -- -- -- -- -- -- Nothing⋆ $ Unifies⋆V (t₁ ∷ ts₁) (t₂ ∷ ts₂) [-◇⋆ sub ρ ] -- -- -- -- -- -- -- NothingVecHead t₁ t₂ ρ ts₁ ts₂ nounify = No[Q◇ρ]→No[P◇ρ] No[Q◇ρ] -- -- -- -- -- -- -- where -- -- -- -- -- -- -- P = Unifies⋆V (t₁ ∷ ts₁) (t₂ ∷ ts₂) -- -- -- -- -- -- -- Q = (Unifies⋆ t₁ t₂ ∧⋆ Unifies⋆V ts₁ ts₂) -- -- -- -- -- -- -- Q⇔P : Q ⇔⋆ P -- -- -- -- -- -- -- Q⇔P = switch⋆ P Q (Properties.fact1'V {_} {t₁} {t₂} {_} {ts₁} {ts₂}) -- -- -- -- -- -- -- No[Q◇ρ]→No[P◇ρ] : Nothing⋆ (Q [-◇⋆ sub ρ ]) -> Nothing⋆ (P [-◇⋆ sub ρ ]) -- -- -- -- -- -- -- No[Q◇ρ]→No[P◇ρ] = Properties.fact2⋆ (Q [-◇⋆ sub ρ ]) (P [-◇⋆ sub ρ ]) (Properties.fact5⋆ Q P (sub ρ) Q⇔P) -- -- -- -- -- -- -- No[Q◇ρ] : Nothing⋆ (Q [-◇⋆ sub ρ ]) -- -- -- -- -- -- -- No[Q◇ρ] = failure-propagation.first⋆ (sub ρ) (Unifies⋆ t₁ t₂) (Unifies⋆V ts₁ ts₂) nounify -- -- -- -- -- -- -- NothingVecTail : ∀ {m l n} (σ : AList l n) -- -- -- -- -- -- -- (t₁ t₂ : Term m) -- -- -- -- -- -- -- {N} -- -- -- -- -- -- -- (ts₁ ts₂ : Vec (Term m) N) → -- -- -- -- -- -- -- (ρ : AList m l) → -- -- -- -- -- -- -- Max⋆ (Unifies⋆ t₁ t₂ [-◇⋆ sub ρ ]) $ sub σ → -- -- -- -- -- -- -- Nothing⋆ $ Unifies⋆V ts₁ ts₂ [-◇⋆ sub (σ ++ ρ) ] → -- -- -- -- -- -- -- Nothing⋆ $ Unifies⋆V (t₁ ∷ ts₁) (t₂ ∷ ts₂) [-◇⋆ sub ρ ] -- -- -- -- -- -- -- NothingVecTail σ t₁ t₂ ts₁ ts₂ ρ a nounify = No[Q◇ρ]→No[P◇ρ]⋆ No[Q◇ρ]⋆ -- -- -- -- -- -- -- where -- -- -- -- -- -- -- P⋆ = Unifies⋆V (t₁ ∷ ts₁) (t₂ ∷ ts₂) -- -- -- -- -- -- -- Q⋆ = (Unifies⋆ t₁ t₂ ∧⋆ Unifies⋆V ts₁ ts₂) -- -- -- -- -- -- -- Q⇔P⋆ : Q⋆ ⇔⋆ P⋆ -- -- -- -- -- -- -- Q⇔P⋆ = switch⋆ P⋆ Q⋆ (Properties.fact1'V {_} {t₁} {t₂} {_} {ts₁} {ts₂}) -- -- -- -- -- -- -- -- Q⇔P⋆ = switch⋆ P⋆ Q⋆ (Properties.fact1'⋆ {_} {s1} {s2} {t1} {t2}) -- -- -- -- -- -- -- No[Q◇ρ]→No[P◇ρ]⋆ : Nothing⋆ (Q⋆ [-◇⋆ sub ρ ]) -> Nothing⋆ (P⋆ [-◇⋆ sub ρ ]) -- -- -- -- -- -- -- No[Q◇ρ]→No[P◇ρ]⋆ = Properties.fact2⋆ (Q⋆ [-◇⋆ sub ρ ]) (P⋆ [-◇⋆ sub ρ ]) (Properties.fact5⋆ Q⋆ P⋆ (sub ρ) Q⇔P⋆) -- -- -- -- -- -- -- No[Q◇ρ]⋆ : Nothing⋆ (Q⋆ [-◇⋆ sub ρ ]) -- -- -- -- -- -- -- No[Q◇ρ]⋆ = failure-propagation.second⋆ (sub ρ) (sub σ) (Unifies⋆ t₁ t₂) (UnifiesV ts₁ ts₂) a -- -- -- -- -- -- -- (λ f → nounify f ∘ π₂ (UnifiesV ts₁ ts₂) (cong (f ◃_) ∘ sym ∘ SubList.fact1 σ ρ)) -- -- -- -- -- -- -- MaxVec : ∀ {m l n n1} (t₁ t₂ : Term m) {N} (ts₁ ts₂ : Vec (Term m) N) -- -- -- -- -- -- -- (ρ : AList m l) (σ : AList l n) → -- -- -- -- -- -- -- Max⋆ (Unifies⋆ t₁ t₂ [-◇⋆ sub ρ ]) $ sub σ → -- -- -- -- -- -- -- (σ1 : AList n n1) → -- -- -- -- -- -- -- Max⋆ (Unifies⋆V ts₁ ts₂ [-◇⋆ sub (σ ++ ρ) ]) $ sub σ1 → -- -- -- -- -- -- -- Max⋆ (Unifies⋆V (t₁ ∷ ts₁) (t₂ ∷ ts₂) [-◇⋆ sub ρ ]) $ sub (σ1 ++ σ) -- -- -- -- -- -- -- MaxVec t₁ t₂ ts₁ ts₂ ρ σ a σ1 b = Max[P∧Q◇ρ][σ1++σ] -- -- -- -- -- -- -- where -- -- -- -- -- -- -- P = Unifies t₁ t₂ -- -- -- -- -- -- -- Q = UnifiesV ts₁ ts₂ -- -- -- -- -- -- -- P∧Q = P ∧ Q -- -- -- -- -- -- -- C = UnifiesV (t₁ ∷ ts₁) (t₂ ∷ ts₂) -- -- -- -- -- -- -- Max[C◇ρ]⇔Max[P∧Q◇ρ] : Max (C [-◇ sub ρ ]) ⇔ Max (P∧Q [-◇ sub ρ ]) -- -- -- -- -- -- -- Max[C◇ρ]⇔Max[P∧Q◇ρ] = Max.fact (C [-◇ sub ρ ]) (P∧Q [-◇ sub ρ ]) (Properties.fact5 C P∧Q (sub ρ) -- -- -- -- -- -- -- (Properties.fact1'V {_} {t₁} {t₂} {_} {ts₁} {ts₂})) -- -- -- -- -- -- -- Max[Q◇σ++ρ]⇔Max[Q◇σ◇ρ] : Max (Q [-◇ sub (σ ++ ρ)]) ⇔ Max (Q [-◇ sub σ ◇ sub ρ ]) -- -- -- -- -- -- -- Max[Q◇σ++ρ]⇔Max[Q◇σ◇ρ] = Max.fact (Q [-◇ sub (σ ++ ρ)]) (Q [-◇ sub σ ◇ sub ρ ]) (Properties.fact6 Q (SubList.fact1 σ ρ)) -- -- -- -- -- -- -- Max[P∧Q◇ρ][σ1++σ] : π₁ (Max (C [-◇ sub ρ ])) (sub (σ1 ++ σ)) -- -- -- -- -- -- -- Max[P∧Q◇ρ][σ1++σ] = π₂ (Max (C [-◇ sub ρ ])) (≐-sym (SubList.fact1 σ1 σ)) -- -- -- -- -- -- -- (proj₂ (Max[C◇ρ]⇔Max[P∧Q◇ρ] (sub σ1 ◇ sub σ)) -- -- -- -- -- -- -- (optimist (sub ρ) (sub σ) (sub σ1) P Q (DClosed.fact1 t₁ t₂) a (proj₁ (Max[Q◇σ++ρ]⇔Max[Q◇σ◇ρ] (sub σ1)) b))) -- -- -- -- -- -- -- NothingFor→NothingComposition : ∀ {m l} (s t : Term (suc m)) (ρ : AList m l) -- -- -- -- -- -- -- (r : Term m) (z : Fin (suc m)) → -- -- -- -- -- -- -- Nothing⋆ (Unifies⋆ ((r for z) ◃ s) ((r for z) ◃ t) [-◇⋆ sub ρ ]) → -- -- -- -- -- -- -- Nothing⋆ (Unifies⋆ s t [-◇⋆ sub (ρ asnoc r / z) ]) -- -- -- -- -- -- -- NothingFor→NothingComposition s t ρ r z nounify = NoQ→NoP nounify -- -- -- -- -- -- -- where -- -- -- -- -- -- -- P = Unifies s t [-◇ sub (ρ asnoc r / z) ] -- -- -- -- -- -- -- Q = Unifies ((r for z) ◃ s) ((r for z) ◃ t) [-◇ sub ρ ] -- -- -- -- -- -- -- NoQ→NoP : Nothing Q → Nothing P -- -- -- -- -- -- -- NoQ→NoP = Properties.fact2 Q P (switch P Q (step-prop s t ρ r z)) -- -- -- -- -- -- -- MaxFor→MaxComposition : ∀ {m l n} (s t : Term (suc m)) (ρ : AList m l) -- -- -- -- -- -- -- (r : Term m) (z : Fin (suc m)) (σ : AList l n) → -- -- -- -- -- -- -- Max⋆ (Unifies⋆ ((r for z) ◃ s) ((r for z) ◃ t) [-◇⋆ sub ρ ]) $ sub σ → -- -- -- -- -- -- -- Max⋆ (Unifies⋆ s t [-◇⋆ sub (ρ asnoc r / z) ]) $ sub σ -- -- -- -- -- -- -- MaxFor→MaxComposition s t ρ r z σ a = proj₂ (MaxP⇔MaxQ (sub σ)) a -- -- -- -- -- -- -- where -- -- -- -- -- -- -- P = Unifies s t [-◇ sub (ρ asnoc r / z) ] -- -- -- -- -- -- -- Q = Unifies ((r for z) ◃ s) ((r for z) ◃ t) [-◇ sub ρ ] -- -- -- -- -- -- -- MaxP⇔MaxQ : Max P ⇔ Max Q -- -- -- -- -- -- -- MaxP⇔MaxQ = Max.fact P Q (step-prop s t ρ r z) -- -- -- -- -- -- -- module _ ⦃ isDecEquivalenceA : IsDecEquivalence (_≡_ {A = FunctionName}) ⦄ where -- -- -- -- -- -- -- open IsDecEquivalence isDecEquivalenceA using () renaming (_≟_ to _≟F_) -- -- -- -- -- -- -- mutual -- -- -- -- -- -- -- instance ⋆amguTerm : ⋆amgu Term -- -- -- -- -- -- -- ⋆amgu.amgu ⋆amguTerm leaf leaf acc = just acc -- -- -- -- -- -- -- ⋆amgu.amgu ⋆amguTerm leaf (function _ _) acc = nothing -- -- -- -- -- -- -- ⋆amgu.amgu ⋆amguTerm leaf (s' fork t') acc = nothing -- -- -- -- -- -- -- ⋆amgu.amgu ⋆amguTerm (s' fork t') leaf acc = nothing -- -- -- -- -- -- -- ⋆amgu.amgu ⋆amguTerm (s' fork t') (function _ _) acc = nothing -- -- -- -- -- -- -- ⋆amgu.amgu ⋆amguTerm (s1 fork s2) (t1 fork t2) acc = -- -- -- -- -- -- -- amgu s2 t2 =<< amgu s1 t1 acc -- -- -- -- -- -- -- ⋆amgu.amgu ⋆amguTerm (function fn₁ ts₁) leaf acc = nothing -- -- -- -- -- -- -- ⋆amgu.amgu ⋆amguTerm (function fn₁ {n₁} ts₁) (function fn₂ {n₂} ts₂) acc -- -- -- -- -- -- -- with fn₁ ≟F fn₂ -- -- -- -- -- -- -- … | no _ = nothing -- -- -- -- -- -- -- … | yes _ with n₁ ≟ n₂ -- -- -- -- -- -- -- … | no _ = nothing -- -- -- -- -- -- -- … | yes refl = amgu ts₁ ts₂ acc -- -- -- -- -- -- -- ⋆amgu.amgu ⋆amguTerm (function fn₁ ts₁) (_ fork _) acc = nothing -- -- -- -- -- -- -- ⋆amgu.amgu ⋆amguTerm (i x) (i y) (m , anil) = just (flexFlex x y) -- -- -- -- -- -- -- ⋆amgu.amgu ⋆amguTerm (i x) t (m , anil) = flexRigid x t -- -- -- -- -- -- -- ⋆amgu.amgu ⋆amguTerm t (i x) (m , anil) = flexRigid x t -- -- -- -- -- -- -- ⋆amgu.amgu ⋆amguTerm s t (n , σ asnoc r / z) = -- -- -- -- -- -- -- (λ σ -> σ ∃asnoc r / z) <$> -- -- -- -- -- -- -- amgu ((r for z) ◃ s) ((r for z) ◃ t) (n , σ) -- -- -- -- -- -- -- instance ⋆amguVecTerm : ∀ {N} → ⋆amgu (flip Vec N ∘ Term) -- -- -- -- -- -- -- ⋆amgu.amgu ⋆amguVecTerm [] [] acc = just acc -- -- -- -- -- -- -- ⋆amgu.amgu ⋆amguVecTerm (t₁ ∷ t₁s) (t₂ ∷ t₂s) acc = amgu t₁s t₂s =<< amgu t₁ t₂ acc -- -- -- -- -- -- -- mgu : ∀ {m} -> (s t : Term m) -> Maybe (∃ (AList m)) -- -- -- -- -- -- -- mgu {m} s t = amgu s t (m , anil) -- -- -- -- -- -- -- mutual -- -- -- -- -- -- -- -- We use a view so that we need to handle fewer cases in the main proof -- -- -- -- -- -- -- data AmguT : {m : ℕ} -> (s t : Term m) -> ∃ (AList m) -> Maybe (∃ (AList m)) -> Set where -- -- -- -- -- -- -- Flip : ∀ {m s t acc} -> amgu t s acc ≡ amgu s t acc -> -- -- -- -- -- -- -- AmguT {m} t s acc (amgu t s acc) -> AmguT s t acc (amgu s t acc) -- -- -- -- -- -- -- leaf-leaf : ∀ {m acc} -> AmguT {m} leaf leaf acc (just acc) -- -- -- -- -- -- -- fn-name : ∀ {m fn₁ fn₂ N₁ N₂ acc} {ts₁ : Vec (Term m) N₁} {ts₂ : Vec (Term m) N₂} → -- -- -- -- -- -- -- fn₁ ≢ fn₂ → -- -- -- -- -- -- -- AmguT {m} (function fn₁ ts₁) -- -- -- -- -- -- -- (function fn₂ ts₂) -- -- -- -- -- -- -- acc nothing -- -- -- -- -- -- -- fn-size : ∀ {m fn₁ fn₂ N₁ N₂ acc} {ts₁ : Vec (Term m) N₁} {ts₂ : Vec (Term m) N₂} → -- -- -- -- -- -- -- N₁ ≢ N₂ → -- -- -- -- -- -- -- AmguT {m} (function fn₁ ts₁) -- -- -- -- -- -- -- (function fn₂ ts₂) -- -- -- -- -- -- -- acc nothing -- -- -- -- -- -- -- fn-fn : ∀ {m fn N acc} {ts₁ ts₂ : Vec (Term m) N} → -- -- -- -- -- -- -- AmguT {m} (function fn ts₁) -- -- -- -- -- -- -- (function fn ts₂) -- -- -- -- -- -- -- acc (amgu ts₁ ts₂ acc) -- -- -- -- -- -- -- leaf-fork : ∀ {m s t acc} -> AmguT {m} leaf (s fork t) acc nothing -- -- -- -- -- -- -- leaf-fn : ∀ {m fn N} {ts : Vec (Term _) N} {acc} -> AmguT {m} leaf (function fn ts) acc nothing -- -- -- -- -- -- -- fork-fn : ∀ {m s t fn N} {ts : Vec (Term _) N} {acc} -> AmguT {m} (s fork t) (function fn ts) acc nothing -- -- -- -- -- -- -- fork-fork : ∀ {m s1 s2 t1 t2 acc} -> AmguT {m} (s1 fork s2) (t1 fork t2) acc (amgu s2 t2 =<< amgu s1 t1 acc) -- -- -- -- -- -- -- var-var : ∀ {m x y} -> AmguT (i x) (i y) (m , anil) (just (flexFlex x y)) -- -- -- -- -- -- -- var-t : ∀ {m x t} -> i x ≢ t -> AmguT (i x) t (m , anil) (flexRigid x t) -- -- -- -- -- -- -- s-t : ∀{m s t n σ r z} -> AmguT {suc m} s t (n , σ asnoc r / z) ((λ σ -> σ ∃asnoc r / z) <$> -- -- -- -- -- -- -- amgu ((r for z) ◃ s) ((r for z) ◃ t) (n , σ)) -- -- -- -- -- -- -- data AmguTV : {m : ℕ} -> ∀ {N} (ss ts : Vec (Term m) N) -> ∃ (AList m) -> Maybe (∃ (AList m)) -> Set where -- -- -- -- -- -- -- fn0-fn0 : ∀ {m acc} → -- -- -- -- -- -- -- AmguTV {m} ([]) -- -- -- -- -- -- -- ([]) -- -- -- -- -- -- -- acc (just acc) -- -- -- -- -- -- -- fns-fns : ∀ {m N acc} {t₁ t₂ : Term m} {ts₁ ts₂ : Vec (Term m) N} → -- -- -- -- -- -- -- AmguTV {m} ((t₁ ∷ ts₁)) -- -- -- -- -- -- -- ((t₂ ∷ ts₂)) -- -- -- -- -- -- -- acc (amgu ts₁ ts₂ =<< amgu t₁ t₂ acc) -- -- -- -- -- -- -- view : ∀ {m : ℕ} -> (s t : Term m) -> (acc : ∃ (AList m)) -> AmguT s t acc (amgu s t acc) -- -- -- -- -- -- -- view leaf leaf acc = leaf-leaf -- -- -- -- -- -- -- view leaf (s fork t) acc = leaf-fork -- -- -- -- -- -- -- view (s fork t) leaf acc = Flip refl leaf-fork -- -- -- -- -- -- -- view (s1 fork s2) (t1 fork t2) acc = fork-fork -- -- -- -- -- -- -- view (function fn₁ {n₁} ts₁) (function fn₂ {n₂} ts₂) acc with -- -- -- -- -- -- -- fn₁ ≟F fn₂ -- -- -- -- -- -- -- … | no neq = fn-name neq -- -- -- -- -- -- -- … | yes refl with n₁ ≟ n₂ -- -- -- -- -- -- -- … | yes refl = fn-fn -- -- -- -- -- -- -- … | no neq = fn-size neq -- -- -- -- -- -- -- view leaf (function fn ts) acc = leaf-fn -- -- -- -- -- -- -- view (function fn ts) leaf acc = Flip refl leaf-fn -- -- -- -- -- -- -- view (function fn ts) (_ fork _) acc = Flip refl fork-fn -- -- -- -- -- -- -- view (s fork t) (function fn ts) acc = fork-fn -- -- -- -- -- -- -- view (i x) (i y) (m , anil) = var-var -- -- -- -- -- -- -- view (i x) leaf (m , anil) = var-t (λ ()) -- -- -- -- -- -- -- view (i x) (s fork t) (m , anil) = var-t (λ ()) -- -- -- -- -- -- -- view (i x) (function fn ts) (m , anil) = var-t (λ ()) -- -- -- -- -- -- -- view leaf (i x) (m , anil) = Flip refl (var-t (λ ())) -- -- -- -- -- -- -- view (s fork t) (i x) (m , anil) = Flip refl (var-t (λ ())) -- -- -- -- -- -- -- view (function fn ts) (i x) (m , anil) = Flip refl (var-t (λ ())) -- -- -- -- -- -- -- view (i x) (i x') (n , σ asnoc r / z) = s-t -- -- -- -- -- -- -- view (i x) leaf (n , σ asnoc r / z) = s-t -- -- -- -- -- -- -- view (i x) (s fork t) (n , σ asnoc r / z) = s-t -- -- -- -- -- -- -- view leaf (i x) (n , σ asnoc r / z) = s-t -- -- -- -- -- -- -- view (s fork t) (i x) (n , σ asnoc r / z) = s-t -- -- -- -- -- -- -- view (function fn ts) (i x) (n , σ asnoc r / z) = s-t -- -- -- -- -- -- -- view (i x) (function fn ts) (n , σ asnoc r / z) = s-t -- -- -- -- -- -- -- viewV : ∀ {m : ℕ} {N} -> (ss ts : Vec (Term m) N) -> (acc : ∃ (AList m)) -> AmguTV ss ts acc (amgu ss ts acc) -- -- -- -- -- -- -- viewV [] [] acc = fn0-fn0 -- -- -- -- -- -- -- viewV (t ∷ ts₁) (t₂ ∷ ts₂) acc = fns-fns -- -- -- -- -- -- -- amgu-Correctness : {m : ℕ} -> (s t : Term m) -> ∃ (AList m) -> Set -- -- -- -- -- -- -- amgu-Correctness s t (l , ρ) = -- -- -- -- -- -- -- (∃ λ n → ∃ λ σ → π₁ (Max (Unifies s t [-◇ sub ρ ])) (sub σ) × amgu s t (l , ρ) ≡ just (n , σ ++ ρ )) -- -- -- -- -- -- -- ⊎ (Nothing ((Unifies s t) [-◇ sub ρ ]) × amgu s t (l , ρ) ≡ nothing) -- -- -- -- -- -- -- amgu-Correctness⋆ : {m : ℕ} -> (s t : Term m) -> ∃ (AList m) -> Set -- -- -- -- -- -- -- amgu-Correctness⋆ s t (l , ρ) = -- -- -- -- -- -- -- (∃ λ n → ∃ λ σ → π₁ (Max (Unifies s t [-◇ sub ρ ])) (sub σ) × amgu s t (l , ρ) ≡ just (n , σ ++ ρ )) -- -- -- -- -- -- -- ⊎ (Nothing ((Unifies s t) [-◇ sub ρ ]) × amgu s t (l , ρ) ≡ nothing) -- -- -- -- -- -- -- amgu-Ccomm : ∀ {m} s t acc -> amgu {m = m} s t acc ≡ amgu t s acc -> amgu-Correctness s t acc -> amgu-Correctness t s acc -- -- -- -- -- -- -- amgu-Ccomm s t (l , ρ) st≡ts = lemma -- -- -- -- -- -- -- where -- -- -- -- -- -- -- Unst = (Unifies s t) [-◇ sub ρ ] -- -- -- -- -- -- -- Unts = (Unifies t s) [-◇ sub ρ ] -- -- -- -- -- -- -- Unst⇔Unts : ((Unifies s t) [-◇ sub ρ ]) ⇔ ((Unifies t s) [-◇ sub ρ ]) -- -- -- -- -- -- -- Unst⇔Unts = Properties.fact5 (Unifies s t) (Unifies t s) (sub ρ) (Properties.fact1 {_} {s} {t}) -- -- -- -- -- -- -- lemma : amgu-Correctness s t (l , ρ) -> amgu-Correctness t s (l , ρ) -- -- -- -- -- -- -- lemma (inj₁ (n , σ , MaxUnst , amgu≡just)) = -- -- -- -- -- -- -- inj₁ (n , σ , proj₁ (Max.fact Unst Unts Unst⇔Unts (sub σ)) MaxUnst , trans (sym st≡ts) amgu≡just) -- -- -- -- -- -- -- lemma (inj₂ (NoUnst , amgu≡nothing)) = -- -- -- -- -- -- -- inj₂ ((λ {_} → Properties.fact2 Unst Unts Unst⇔Unts NoUnst) , trans (sym st≡ts) amgu≡nothing) -- -- -- -- -- -- -- amgu-Ccomm⋆ : ∀ {m} s t acc -> amgu {m = m} s t acc ≡ amgu t s acc -> amgu-Correctness⋆ s t acc -> amgu-Correctness⋆ t s acc -- -- -- -- -- -- -- amgu-Ccomm⋆ s t (l , ρ) st≡ts = lemma -- -- -- -- -- -- -- where -- -- -- -- -- -- -- Unst = (Unifies s t) [-◇ sub ρ ] -- -- -- -- -- -- -- Unts = (Unifies t s) [-◇ sub ρ ] -- -- -- -- -- -- -- Unst⇔Unts : ((Unifies s t) [-◇ sub ρ ]) ⇔ ((Unifies t s) [-◇ sub ρ ]) -- -- -- -- -- -- -- Unst⇔Unts = Properties.fact5 (Unifies s t) (Unifies t s) (sub ρ) (Properties.fact1 {_} {s} {t}) -- -- -- -- -- -- -- lemma : amgu-Correctness s t (l , ρ) -> amgu-Correctness t s (l , ρ) -- -- -- -- -- -- -- lemma (inj₁ (n , σ , MaxUnst , amgu≡just)) = -- -- -- -- -- -- -- inj₁ (n , σ , proj₁ (Max.fact Unst Unts Unst⇔Unts (sub σ)) MaxUnst , trans (sym st≡ts) amgu≡just) -- -- -- -- -- -- -- lemma (inj₂ (NoUnst , amgu≡nothing)) = -- -- -- -- -- -- -- inj₂ ((λ {_} → Properties.fact2 Unst Unts Unst⇔Unts NoUnst) , trans (sym st≡ts) amgu≡nothing) -- -- -- -- -- -- -- mutual -- -- -- -- -- -- -- amguV-c : ∀ {m N} {ss ts : Vec (Term m) N} {l ρ} -> AmguTV ss ts (l , ρ) (amgu ss ts (l , ρ)) -> -- -- -- -- -- -- -- (∃ λ n → ∃ λ σ → Max⋆ (Unifies⋆V ss ts [-◇⋆ sub ρ ]) (sub σ) × amgu {m = m} ss ts (l , ρ) ≡ just (n , σ ++ ρ )) -- -- -- -- -- -- -- ⊎ (Nothing⋆ (Unifies⋆V ss ts [-◇⋆ sub ρ ]) × amgu {m = m} ss ts (l , ρ) ≡ nothing) -- -- -- -- -- -- -- amguV-c {m} {N} {ss} {ts} {l} {ρ} amg with amgu ss ts (l , ρ) -- -- -- -- -- -- -- amguV-c {m} {0} {.[]} {.[]} {l} {ρ} fn0-fn0 | .(just (l , ρ)) = inj₁ (_ , anil , trivial-problemV {_} {_} {_} {[]} {sub ρ} , cong (just ∘ _,_ l) (sym (SubList.anil-id-l ρ))) -- -- -- -- -- -- -- amguV-c {m} {.(suc _)} {(t₁ ∷ ts₁)} {(t₂ ∷ ts₂)} {l} {ρ} fns-fns | _ with amgu t₁ t₂ (l , ρ) | amgu-c $ view t₁ t₂ (l , ρ) -- -- -- -- -- -- -- amguV-c {m} {.(suc _)} {(t₁ ∷ ts₁)} {(t₂ ∷ ts₂)} {l} {ρ} fns-fns | _ | am | inj₂ (nounify , refl) = inj₂ ((λ {_} → NothingVecHead t₁ t₂ ρ _ _ nounify) , refl) -- -- -- -- -- -- -- amguV-c {m} {.(suc _)} {(t₁ ∷ ts₁)} {(t₂ ∷ ts₂)} {l} {ρ} fns-fns | _ | am | inj₁ (n , σ , a , refl) -- -- -- -- -- -- -- with amgu ts₁ ts₂ (n , σ ++ ρ) | amguV-c (viewV (ts₁) (ts₂) (n , (σ ++ ρ))) -- -- -- -- -- -- -- … | _ | inj₂ (nounify , refl) = inj₂ ((λ {_} → NothingVecTail σ t₁ t₂ _ _ ρ a nounify) , refl) -- -- -- -- -- -- -- … | _ | inj₁ (n1 , σ1 , a1 , refl) = inj₁ (n1 , σ1 ++ σ , MaxVec t₁ t₂ _ _ ρ σ a σ1 a1 , cong (λ σ -> just (n1 , σ)) (++-assoc σ1 σ ρ)) -- -- -- -- -- -- -- amgu-c : ∀ {m s t l ρ} -> AmguT s t (l , ρ) (amgu s t (l , ρ)) -> -- -- -- -- -- -- -- (∃ λ n → ∃ λ σ → Max⋆ (Unifies⋆ s t [-◇⋆ sub ρ ]) (sub σ) × amgu {m = m} s t (l , ρ) ≡ just (n , σ ++ ρ )) -- -- -- -- -- -- -- ⊎ (Nothing⋆ (Unifies⋆ s t [-◇⋆ sub ρ ]) × amgu {m = m} s t (l , ρ) ≡ nothing) -- -- -- -- -- -- -- amgu-c {m} {s} {t} {l} {ρ} amg with amgu s t (l , ρ) -- -- -- -- -- -- -- amgu-c {l = l} {ρ} leaf-leaf | ._ -- -- -- -- -- -- -- = inj₁ (l , anil , trivial-problem {_} {_} {leaf} {sub ρ} , cong (λ x -> just (l , x)) (sym (SubList.anil-id-l ρ)) ) -- -- -- -- -- -- -- amgu-c (fn-name neq) | _ = inj₂ ((λ f x → neq (Term-function-inj-FunctionName x)) , refl) -- -- -- -- -- -- -- amgu-c (fn-size neq) | _ = inj₂ ((λ f x → neq (Term-function-inj-VecSize x)) , refl) -- -- -- -- -- -- -- amgu-c {s = function fn ts₁} {t = function .fn ts₂} {l = l} {ρ = ρ} fn-fn | _ with amgu ts₁ ts₂ | amguV-c (viewV ts₁ ts₂ (l , ρ)) -- -- -- -- -- -- -- … | _ | inj₂ (nounify , refl!) rewrite refl! = inj₂ ((λ {_} f feq → nounify f (Term-function-inj-Vector feq)) , refl) -- -- -- -- -- -- -- … | _ | inj₁ (n , σ , (b , c) , refl!) rewrite refl! = inj₁ (_ , _ , ((cong (function fn) b) , (λ {_} f' feq → c f' (Term-function-inj-Vector feq))) , refl ) -- -- -- -- -- -- -- amgu-c leaf-fork | .nothing = inj₂ ((λ _ () ) , refl) -- -- -- -- -- -- -- amgu-c leaf-fn | _ = inj₂ ((λ _ () ) , refl) -- -- -- -- -- -- -- amgu-c fork-fn | _ = inj₂ ((λ _ () ) , refl) -- -- -- -- -- -- -- amgu-c {m} {s1 fork s2} {t1 fork t2} {l} {ρ} fork-fork | ._ -- -- -- -- -- -- -- with amgu s1 t1 (l , ρ) | amgu-c $ view s1 t1 (l , ρ) -- -- -- -- -- -- -- … | .nothing | inj₂ (nounify , refl) = inj₂ ((λ {_} -> NothingForkLeft s1 t1 ρ s2 t2 nounify) , refl) -- -- -- -- -- -- -- … | .(just (n , σ ++ ρ)) | inj₁ (n , σ , a , refl) -- -- -- -- -- -- -- with amgu s2 t2 (n , σ ++ ρ) | amgu-c (view s2 t2 (n , (σ ++ ρ))) -- -- -- -- -- -- -- … | .nothing | inj₂ (nounify , refl) = inj₂ ( (λ {_} -> NothingForkRight σ s1 s2 t1 t2 ρ a nounify) , refl) -- -- -- -- -- -- -- … | .(just (n1 , σ1 ++ (σ ++ ρ))) | inj₁ (n1 , σ1 , b , refl) -- -- -- -- -- -- -- = inj₁ (n1 , σ1 ++ σ , MaxFork s1 s2 t1 t2 ρ σ a σ1 b , cong (λ σ -> just (n1 , σ)) (++-assoc σ1 σ ρ)) -- -- -- -- -- -- -- amgu-c {suc l} {i x} {i y} (var-var) | .(just (flexFlex x y)) -- -- -- -- -- -- -- with thick? x y | Thick.fact1 x y (thick? x y) refl -- -- -- -- -- -- -- … | .(just y') | inj₂ (y' , thinxy'≡y , refl ) -- -- -- -- -- -- -- = inj₁ (l , anil asnoc i y' / x , var-elim-i-≡ x (i y) (sym (cong i thinxy'≡y)) , refl ) -- -- -- -- -- -- -- … | .nothing | inj₁ ( x≡y , refl ) rewrite sym x≡y -- -- -- -- -- -- -- = inj₁ (suc l , anil , trivial-problem {_} {_} {i x} {sub anil} , refl) -- -- -- -- -- -- -- amgu-c {suc l} {i x} {t} (var-t ix≢t) | .(flexRigid x t) -- -- -- -- -- -- -- with check x t | check-prop x t -- -- -- -- -- -- -- … | .nothing | inj₂ ( ps , r , refl) = inj₂ ( (λ {_} -> NothingStep x t ix≢t ps r ) , refl) -- -- -- -- -- -- -- … | .(just t') | inj₁ (t' , r , refl) = inj₁ ( l , anil asnoc t' / x , var-elim-i-≡ x t r , refl ) -- -- -- -- -- -- -- amgu-c {suc m} {s} {t} {l} {ρ asnoc r / z} s-t -- -- -- -- -- -- -- | .((λ x' → x' ∃asnoc r / z) <$> -- -- -- -- -- -- -- (amgu ((r for z) ◃ s) ((r for z) ◃ t) (l , ρ))) -- -- -- -- -- -- -- with amgu-c (view ((r for z) ◃ s) ((r for z) ◃ t) (l , ρ)) -- -- -- -- -- -- -- … | inj₂ (nounify , ra) = inj₂ ( (λ {_} -> NothingFor→NothingComposition s t ρ r z nounify) , cong (_<$>_ (λ x' → x' ∃asnoc r / z)) ra ) -- -- -- -- -- -- -- … | inj₁ (n , σ , a , ra) = inj₁ (n , σ , MaxFor→MaxComposition s t ρ r z σ a , cong (_<$>_ (λ x' → x' ∃asnoc r / z)) ra) -- -- -- -- -- -- -- amgu-c {m} {s} {t} {l} {ρ} (Flip amguts≡amgust amguts) | ._ = amgu-Ccomm⋆ t s (l , ρ) amguts≡amgust (amgu-c amguts) -- -- -- -- -- -- -- amgu-c {zero} {i ()} _ | _ -- -- -- -- -- -- -- mgu-c : ∀ {m} (s t : Term m) -> -- -- -- -- -- -- -- (∃ λ n → ∃ λ σ → (Max⋆ (Unifies⋆ s t)) (sub σ) × mgu s t ≡ just (n , σ)) -- -- -- -- -- -- -- ⊎ (Nothing⋆ (Unifies⋆ s t) × mgu s t ≡ nothing) -- -- -- -- -- -- -- mgu-c {m} s t = amgu-c (view s t (m , anil)) -- -- -- -- -- -- -- unify : ∀ {m} (s t : Term m) -> -- -- -- -- -- -- -- (∃ λ n → ∃ λ (σ : AList m n) → Max⋆ (Unifies⋆ s t) $ sub σ) -- -- -- -- -- -- -- ⊎ Nothing⋆ (Unifies⋆ s t) -- -- -- -- -- -- -- unify {m} s t with amgu-c (view s t (m , anil)) -- -- -- -- -- -- -- unify {m} s₁ t | inj₁ (proj₃ , proj₄ , proj₅ , proj₆) = inj₁ (proj₃ , proj₄ , proj₅) -- -- -- -- -- -- -- unify {m} s t | inj₂ (proj₃ , _) = inj₂ proj₃ -- -- -- -- -- -- -- unifyV : ∀ {m N} (s t : Vec (Term m) N) -> -- -- -- -- -- -- -- (∃ λ n → ∃ λ (σ : AList m n) → Max⋆ (Unifies⋆V s t) $ sub σ) -- -- -- -- -- -- -- ⊎ Nothing⋆ (Unifies⋆V s t) -- -- -- -- -- -- -- unifyV {m} {N} s t with amguV-c (viewV s t (m , anil)) -- -- -- -- -- -- -- … | inj₁ (proj₃ , proj₄ , proj₅ , proj₆) = inj₁ (proj₃ , proj₄ , proj₅) -- -- -- -- -- -- -- … | inj₂ (proj₃ , _) = inj₂ proj₃ -- -- -- -- -- -- -- open import Oscar.Data.Permutation -- -- -- -- -- -- -- unifyWith : ∀ {m N} (p q : Term m) (X Y : Vec (Term m) N) → -- -- -- -- -- -- -- (∃ λ X* → X* ≡ordering' X × ∃ λ n → ∃ λ (σ : AList m n) → Max⋆ (Unifies⋆V (p ∷ X*) (q ∷ Y)) $ sub σ) -- -- -- -- -- -- -- ⊎ -- -- -- -- -- -- -- (∀ X* → X* ≡ordering' X → Nothing⋆ (Unifies⋆V (p ∷ X*) (q ∷ Y))) -- -- -- -- -- -- -- unifyWith p q X Y = {!!}
{ "alphanum_fraction": 0.3592898166, "avg_line_length": 68.0575396825, "ext": "agda", "hexsha": "a3e076a01589982c5bd76c49ea50f20d5e84870a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-2/Oscar/Data/AList.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-2/Oscar/Data/AList.agda", "max_line_length": 198, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-2/Oscar/Data/AList.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 14227, "size": 34301 }
module AKS.Primality where open import AKS.Primality.Base public open import AKS.Primality.Properties public
{ "alphanum_fraction": 0.8454545455, "avg_line_length": 22, "ext": "agda", "hexsha": "243e64c438dfeb57aa1611fa7488f7f15d3dc69b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mckeankylej/thesis", "max_forks_repo_path": "proofs/AKS/Primality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mckeankylej/thesis", "max_issues_repo_path": "proofs/AKS/Primality.agda", "max_line_length": 43, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mckeankylej/thesis", "max_stars_repo_path": "proofs/AKS/Primality.agda", "max_stars_repo_stars_event_max_datetime": "2020-12-01T22:38:27.000Z", "max_stars_repo_stars_event_min_datetime": "2020-12-01T22:38:27.000Z", "num_tokens": 28, "size": 110 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category.Core using (Category) open import Categories.Comonad -- Verbatim dual of Categories.Adjoint.Construction.Kleisli module Categories.Adjoint.Construction.CoKleisli {o ℓ e} {C : Category o ℓ e} (M : Comonad C) where open import Categories.Category.Construction.CoKleisli open import Categories.Adjoint open import Categories.Functor open import Categories.Functor.Properties open import Categories.NaturalTransformation.Core open import Categories.NaturalTransformation.NaturalIsomorphism using (_≃_) open import Categories.Morphism.Reasoning C private module C = Category C module M = Comonad M open M.F open C open HomReasoning open Equiv Forgetful : Functor (CoKleisli M) C Forgetful = record { F₀ = λ X → F₀ X ; F₁ = λ f → F₁ f ∘ M.δ.η _ ; identity = Comonad.identityˡ M ; homomorphism = λ {X Y Z} {f g} → hom-proof {X} {Y} {Z} {f} {g} ; F-resp-≈ = λ eq → ∘-resp-≈ˡ (F-resp-≈ eq) } where trihom : {X Y Z W : Obj} {f : X ⇒ Y} {g : Y ⇒ Z} {h : Z ⇒ W} → F₁ (h ∘ g ∘ f) ≈ F₁ h ∘ F₁ g ∘ F₁ f trihom {X} {Y} {Z} {W} {f} {g} {h} = begin F₁ (h ∘ g ∘ f) ≈⟨ homomorphism ⟩ F₁ h ∘ F₁ (g ∘ f) ≈⟨ refl⟩∘⟨ homomorphism ⟩ F₁ h ∘ F₁ g ∘ F₁ f ∎ hom-proof : {X Y Z : Obj} {f : F₀ X ⇒ Y} {g : F₀ Y ⇒ Z} → (F₁ (g ∘ F₁ f ∘ M.δ.η X)) ∘ M.δ.η X ≈ (F₁ g ∘ M.δ.η Y) ∘ F₁ f ∘ M.δ.η X hom-proof {X} {Y} {Z} {f} {g} = begin (F₁ (g ∘ F₁ f ∘ M.δ.η X)) ∘ M.δ.η X ≈⟨ pushˡ trihom ⟩ F₁ g ∘ (F₁ (F₁ f) ∘ F₁ (M.δ.η X)) ∘ M.δ.η X ≈⟨ refl⟩∘⟨ (pullʳ (sym M.assoc)) ⟩ F₁ g ∘ F₁ (F₁ f) ∘ M.δ.η (F₀ X) ∘ M.δ.η X ≈⟨ refl⟩∘⟨ pullˡ (sym (M.δ.commute f)) ⟩ F₁ g ∘ (M.δ.η Y ∘ F₁ f) ∘ M.δ.η X ≈⟨ assoc²'' ⟩ (F₁ g ∘ M.δ.η Y) ∘ F₁ f ∘ M.δ.η X ∎ Cofree : Functor C (CoKleisli M) Cofree = record { F₀ = λ X → X ; F₁ = λ f → f ∘ M.ε.η _ ; identity = λ {A} → identityˡ ; homomorphism = λ {X Y Z} {f g} → hom-proof {X} {Y} {Z} {f} {g} ; F-resp-≈ = λ x → ∘-resp-≈ˡ x } where hom-proof : {X Y Z : Obj} {f : X ⇒ Y} {g : Y ⇒ Z} → (g ∘ f) ∘ M.ε.η X ≈ (g ∘ M.ε.η Y) ∘ (F₁ (f ∘ M.ε.η X) ∘ M.δ.η X) hom-proof {X} {Y} {Z} {f} {g} = begin (g ∘ f) ∘ M.ε.η X ≈⟨ pullʳ (sym (M.ε.commute f)) ⟩ g ∘ M.ε.η Y ∘ F₁ f ≈⟨ sym (pullʳ (refl⟩∘⟨ elimʳ (Comonad.identityˡ M))) ⟩ (g ∘ M.ε.η Y) ∘ (F₁ f ∘ F₁ (M.ε.η X) ∘ M.δ.η X) ≈⟨ refl⟩∘⟨ pullˡ (sym homomorphism) ⟩ (g ∘ M.ε.η Y) ∘ (F₁ (f ∘ M.ε.η X) ∘ M.δ.η X) ∎ FC≃M : Forgetful ∘F Cofree ≃ M.F FC≃M = record { F⇒G = ntHelper record { η = λ X → F₁ C.id ; commute = λ {X Y} f → to-commute {X} {Y} f } ; F⇐G = ntHelper record { η = λ X → F₁ C.id ; commute = λ {X Y} f → from-commute {X} {Y} f } ; iso = λ X → record { isoˡ = elimʳ identity ○ identity ; isoʳ = elimʳ identity ○ identity } } where to-commute : {X Y : Obj} → (f : X ⇒ Y) → F₁ C.id ∘ F₁ (f ∘ M.ε.η X) ∘ M.δ.η X ≈ F₁ f ∘ F₁ C.id to-commute {X} {Y} f = begin F₁ C.id ∘ F₁ (f ∘ M.ε.η X) ∘ M.δ.η X ≈⟨ elimˡ identity ⟩ F₁ (f ∘ M.ε.η X) ∘ M.δ.η X ≈⟨ pushˡ homomorphism ⟩ F₁ f ∘ F₁ (M.ε.η X) ∘ M.δ.η X ≈⟨ refl⟩∘⟨ Comonad.identityˡ M ⟩ F₁ f ∘ C.id ≈⟨ refl⟩∘⟨ sym identity ⟩ F₁ f ∘ F₁ C.id ∎ from-commute : {X Y : Obj} → (f : X ⇒ Y) → F₁ C.id ∘ F₁ f ≈ (F₁ (f ∘ M.ε.η X) ∘ M.δ.η X) ∘ F₁ C.id from-commute {X} {Y} f = begin F₁ C.id ∘ F₁ f ≈⟨ [ M.F ]-resp-square id-comm-sym ⟩ F₁ f ∘ F₁ C.id ≈⟨ introʳ (Comonad.identityˡ M) ⟩∘⟨refl ⟩ (F₁ f ∘ F₁ (M.ε.η X) ∘ M.δ.η X) ∘ F₁ C.id ≈⟨ pullˡ (sym homomorphism) ⟩∘⟨refl ⟩ (F₁ (f ∘ M.ε.η X) ∘ M.δ.η X) ∘ F₁ C.id ∎ -- useful lemma: FF1≈1 : {X : Obj} → F₁ (F₁ (C.id {X})) ≈ C.id FF1≈1 {X} = begin F₁ (F₁ (C.id {X})) ≈⟨ F-resp-≈ identity ⟩ F₁ (C.id) ≈⟨ identity ⟩ C.id ∎ Forgetful⊣Cofree : Forgetful ⊣ Cofree Forgetful⊣Cofree = record { unit = ntHelper record { η = λ X → F₁ C.id ; commute = λ {X Y} f → unit-commute {X} {Y} f } ; counit = ntHelper record { η = M.ε.η ; commute = λ {X Y} f → counit-commute {X} {Y} f } ; zig = λ {A} → zig-proof {A} ; zag = λ {B} → zag-proof {B} } where unit-commute : ∀ {X Y : Obj} → (f : F₀ X ⇒ Y) → F₁ C.id ∘ F₁ f ∘ M.δ.η X ≈ ((F₁ f ∘ M.δ.η X) ∘ M.ε.η (F₀ X)) ∘ F₁ (F₁ C.id) ∘ M.δ.η X unit-commute {X} {Y} f = begin F₁ C.id ∘ F₁ f ∘ M.δ.η X ≈⟨ elimˡ identity ⟩ F₁ f ∘ M.δ.η X ≈⟨ introʳ (Comonad.identityʳ M) ⟩ (F₁ f ∘ M.δ.η X) ∘ M.ε.η (F₀ X) ∘ M.δ.η X ≈⟨ sym assoc ⟩ ((F₁ f ∘ M.δ.η X) ∘ M.ε.η (F₀ X)) ∘ M.δ.η X ≈⟨ intro-center FF1≈1 ⟩ ((F₁ f ∘ M.δ.η X) ∘ M.ε.η (F₀ X)) ∘ F₁ (F₁ C.id) ∘ M.δ.η X ∎ counit-commute : ∀ {X Y : Obj} → (f : X ⇒ Y) → M.ε.η Y ∘ (F₁ (f ∘ M.ε.η X) ∘ M.δ.η X) ≈ f ∘ M.ε.η X counit-commute {X} {Y} f = begin M.ε.η Y ∘ F₁ (f ∘ M.ε.η X) ∘ M.δ.η X ≈⟨ refl⟩∘⟨ pushˡ homomorphism ⟩ M.ε.η Y ∘ (F₁ f ∘ F₁ (M.ε.η X) ∘ M.δ.η X) ≈⟨ refl⟩∘⟨ elimʳ (Comonad.identityˡ M) ⟩ M.ε.η Y ∘ F₁ f ≈⟨ M.ε.commute f ⟩ f ∘ M.ε.η X ∎ zig-proof : {A : Obj} → M.ε.η (F₀ A) ∘ F₁ (F₁ C.id) ∘ M.δ.η _ ≈ C.id zig-proof {A} = begin M.ε.η (F₀ A) ∘ F₁ (F₁ C.id) ∘ M.δ.η _ ≈⟨ elim-center FF1≈1 ⟩ M.ε.η (F₀ A) ∘ M.δ.η _ ≈⟨ Comonad.identityʳ M ⟩ C.id ∎ zag-proof : {B : Obj} → (M.ε.η B ∘ M.ε.η (F₀ B)) ∘ (F₁ (F₁ C.id) ∘ M.δ.η _) ≈ M.ε.η B zag-proof {B} = begin (M.ε.η B ∘ M.ε.η (F₀ B)) ∘ (F₁ (F₁ C.id) ∘ M.δ.η _) ≈⟨ assoc ⟩ M.ε.η B ∘ (M.ε.η (F₀ B) ∘ (F₁ (F₁ C.id) ∘ M.δ.η _)) ≈⟨ refl⟩∘⟨ elim-center FF1≈1 ⟩ M.ε.η B ∘ (M.ε.η (F₀ B) ∘ M.δ.η _) ≈⟨ elimʳ (Comonad.identityʳ M) ⟩ M.ε.η B ∎
{ "alphanum_fraction": 0.4658520254, "avg_line_length": 40.0939597315, "ext": "agda", "hexsha": "d4217d5c6475cc5b069b22d4fccbd8cb40a4e93d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Adjoint/Construction/CoKleisli.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Adjoint/Construction/CoKleisli.agda", "max_line_length": 105, "max_stars_count": 5, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Adjoint/Construction/CoKleisli.agda", "max_stars_repo_stars_event_max_datetime": "2019-05-22T03:54:24.000Z", "max_stars_repo_stars_event_min_datetime": "2019-05-21T17:07:19.000Z", "num_tokens": 2997, "size": 5974 }
{-# OPTIONS --safe #-} {- This uses ideas from Floris van Doorn's phd thesis and the code in https://github.com/cmu-phil/Spectral/blob/master/spectrum/basic.hlean -} module Cubical.Homotopy.Spectrum where open import Cubical.Foundations.Prelude open import Cubical.Data.Unit.Pointed open import Cubical.Foundations.Equiv open import Cubical.Data.Int open import Cubical.Homotopy.Prespectrum private variable ℓ : Level record Spectrum (ℓ : Level) : Type (ℓ-suc ℓ) where open GenericPrespectrum field prespectrum : Prespectrum ℓ equiv : (k : ℤ) → isEquiv (fst (map prespectrum k)) open GenericPrespectrum prespectrum public
{ "alphanum_fraction": 0.7542242704, "avg_line_length": 25.0384615385, "ext": "agda", "hexsha": "bd628ac6c27102b00637821fcfac09513b387f60", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Homotopy/Spectrum.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Homotopy/Spectrum.agda", "max_line_length": 71, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Homotopy/Spectrum.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 185, "size": 651 }
{- This file contains: - the abelianization of groups as a HIT as proposed in https://arxiv.org/abs/2007.05833 The definition of the abelianization is not as a set-quotient, since the relation of abelianization is cumbersome to work with. -} {-# OPTIONS --safe #-} module Cubical.Algebra.Group.Abelianization.Base where open import Cubical.Data.Sigma open import Cubical.Algebra.Group.Base open import Cubical.Algebra.Group.Properties private variable ℓ : Level module _ (G : Group ℓ) where open GroupStr {{...}} open GroupTheory G private instance _ = snd G {- The definition of the abelianization of a group as a higher inductive type. The generality of the comm relation will be needed to define the group structure on the abelianization. -} data Abelianization : Type ℓ where η : (g : fst G) → Abelianization comm : (a b c : fst G) → η (a · (b · c)) ≡ η (a · (c · b)) isset : (x y : Abelianization) → (p q : x ≡ y) → p ≡ q
{ "alphanum_fraction": 0.6849037487, "avg_line_length": 27.4166666667, "ext": "agda", "hexsha": "868d98c3c273baa2116d59ffe2d33646b5a41464", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/Group/Abelianization/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/Group/Abelianization/Base.agda", "max_line_length": 127, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/Group/Abelianization/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 289, "size": 987 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category module Categories.Category.Construction.Properties.Presheaves.Complete {o ℓ e} (C : Category o ℓ e) where open import Data.Product open import Function.Equality using (Π) renaming (_∘_ to _∙_) open import Relation.Binary open import Relation.Binary.Construct.Closure.SymmetricTransitive as ST using (Plus⇔) open Plus⇔ open import Categories.Category.Complete open import Categories.Category.Cocomplete open import Categories.Category.Construction.Presheaves open import Categories.Category.Instance.Setoids open import Categories.Category.Instance.Properties.Setoids open import Categories.Diagram.Limit as Lim open import Categories.Diagram.Colimit open import Categories.Functor open import Categories.NaturalTransformation import Categories.Category.Construction.Cones as Co import Categories.Category.Construction.Cocones as Coc import Relation.Binary.Reasoning.Setoid as SetoidR private module C = Category C open C open Π using (_⟨$⟩_) module _ o′ where private P = Presheaves′ o′ o′ C module P = Category P module _ {J : Category o′ o′ o′} (F : Functor J P) where module J = Category J module F = Functor F open F module F₀ j = Functor (F₀ j) module F₁ {a b} (f : a J.⇒ b) = NaturalTransformation (F₁ f) open Setoid using () renaming (_≈_ to [_]_≈_) F[-,_] : Obj → Functor J (Setoids o′ o′) F[-, X ] = record { F₀ = λ j → F₀.₀ j X ; F₁ = λ f → F₁.η f X ; identity = identity ; homomorphism = homomorphism ; F-resp-≈ = λ eq → F-resp-≈ eq -- this application cannot be eta reduced } -- limit related definitions module LimFX X = Limit (Setoids-Complete _ _ _ o′ o′ F[-, X ]) module FCone (K : Co.Cone F) where open Co.Cone F K public module N = Functor N module ψ j = NaturalTransformation (ψ j) module FCone⇒ {K K′ : Co.Cone F} (K⇒K′ : Co.Cone⇒ F K K′) where open Co.Cone⇒ F K⇒K′ public module arr = NaturalTransformation arr FXcone : ∀ X → (K : Co.Cone F) → Co.Cone F[-, X ] FXcone X K = record { N = N.₀ X ; apex = record { ψ = λ j → ψ.η j X ; commute = λ f → commute f -- this application cannot be eta reduced } } where open FCone K ⊤ : Co.Cone F ⊤ = record { N = record { F₀ = λ X → LimFX.apex X ; F₁ = λ {A B} f → record { _⟨$⟩_ = λ { (S , eq) → (λ j → F₀.₁ j f ⟨$⟩ S j) , λ {X Y} g → let open SetoidR (F₀.₀ Y B) in begin F₁.η g B ⟨$⟩ (F₀.₁ X f ⟨$⟩ S X) ≈⟨ F₁.commute g f (Setoid.refl (F₀.₀ X A)) ⟩ F₀.₁ Y f ⟨$⟩ (F₁.η g A ⟨$⟩ S X) ≈⟨ Π.cong (F₀.₁ Y f) (eq g) ⟩ F₀.₁ Y f ⟨$⟩ S Y ∎ } ; cong = λ eq j → Π.cong (F₀.₁ j f) (eq j) } ; identity = λ eq j → F₀.identity j (eq j) ; homomorphism = λ eq j → F₀.homomorphism j (eq j) ; F-resp-≈ = λ eq eq′ j → F₀.F-resp-≈ j eq (eq′ j) } ; apex = record { ψ = λ j → ntHelper record { η = λ X → record { _⟨$⟩_ = λ { (S , eq) → S j } ; cong = λ eq → eq j } ; commute = λ f eq → Π.cong (F₀.₁ j f) (eq j) } ; commute = λ { {Y} {Z} f {W} {S₁ , eq₁} {S₂ , eq₂} eq → let open SetoidR (F₀.₀ Z W) in begin F₁.η f W ⟨$⟩ S₁ Y ≈⟨ eq₁ f ⟩ S₁ Z ≈⟨ eq Z ⟩ S₂ Z ∎ } } } K⇒⊤′ : ∀ X {K} → Co.Cones F [ K , ⊤ ] → Co.Cones F[-, X ] [ FXcone X K , LimFX.limit X ] K⇒⊤′ X {K} K⇒⊤ = record { arr = arr.η X ; commute = comm } where open FCone⇒ K⇒⊤ renaming (commute to comm) complete : Limit F complete = record { terminal = record { ⊤ = ⊤ ; ! = λ {K} → let module K = FCone K in record { arr = ntHelper record { η = λ X → LimFX.rep X (FXcone X K) ; commute = λ {X Y} f eq j → K.ψ.commute j f eq } ; commute = λ eq → Π.cong (K.ψ.η _ _) eq } ; !-unique = λ K⇒⊤ {X} → LimFX.terminal.!-unique X (K⇒⊤′ X K⇒⊤) } } -- colimit related definitions module ColimFX X = Colimit (Setoids-Cocomplete _ _ _ o′ o′ F[-, X ]) module FCocone (K : Coc.Cocone F) where open Coc.Cocone F K public module N = Functor N module ψ j = NaturalTransformation (ψ j) module FCocone⇒ {K K′ : Coc.Cocone F} (K⇒K′ : Coc.Cocone⇒ F K K′) where open Coc.Cocone⇒ F K⇒K′ public module arr = NaturalTransformation arr FXcocone : ∀ X → (K : Coc.Cocone F) → Coc.Cocone F[-, X ] FXcocone X K = record { N = N.₀ X ; coapex = record { ψ = λ j → ψ.η j X ; commute = λ f → commute f -- this application cannot be eta reduced } } where open FCocone K ⊥ : Coc.Cocone F ⊥ = record { N = record { F₀ = λ X → ColimFX.coapex X ; F₁ = λ {A B} f → record { _⟨$⟩_ = λ { (j , Sj) → j , F₀.₁ j f ⟨$⟩ Sj } ; cong = λ { {a , Sa} {b , Sb} → ST.map (λ { (j , Sj) → j , F₀.₁ j f ⟨$⟩ Sj }) (helper f) } } ; identity = λ { {A} {j , _} eq → forth⁺ (J.id , identity (F₀.identity j (Setoid.refl (F₀.₀ j A)))) eq } ; homomorphism = λ {X Y Z} {f g} → λ { {_} {j , Sj} eq → let open Setoid (F₀.₀ j Z) in ST.trans (coc o′ o′ F[-, Z ]) (ST.map (hom-map f g) (helper (f ∘ g)) eq) (forth (J.id , trans (identity refl) (F₀.homomorphism j (Setoid.refl (F₀.₀ j X))))) } ; F-resp-≈ = λ {A B} {f g} eq → λ { {j , Sj} eq′ → let open Setoid (F₀.₀ j B) in ST.trans (coc o′ o′ F[-, B ]) (forth (J.id , trans (identity refl) (F₀.F-resp-≈ j eq (Setoid.refl (F₀.₀ j A))))) (ST.map (λ { (j , Sj) → (j , F₀.₁ j g ⟨$⟩ Sj) }) (helper g) eq′) } } ; coapex = record { ψ = λ j → ntHelper record { η = λ X → record { _⟨$⟩_ = j ,_ ; cong = λ eq → forth (-, identity eq) } ; commute = λ {X Y} f eq → back (-, identity (Π.cong (F₀.₁ j f) (Setoid.sym (F₀.₀ j X) eq))) } ; commute = λ {a b} f {X} {x y} eq → let open ST.Plus⇔Reasoning (coc o′ o′ F[-, X ]) in back (f , Π.cong (F₁.η f X) (Setoid.sym (F₀.₀ a X) eq)) } } where helper : ∀ {A B} (f : B C.⇒ A) {a Sa b Sb} → Σ (a J.⇒ b) (λ g → [ F₀.₀ b A ] F₁.η g A ⟨$⟩ Sa ≈ Sb) → Σ (a J.⇒ b) λ h → [ F₀.₀ b B ] F₁.η h B ⟨$⟩ (F₀.₁ a f ⟨$⟩ Sa) ≈ F₀.₁ b f ⟨$⟩ Sb helper {A} {B} f {a} {Sa} {b} {Sb} (g , eq′) = let open SetoidR (F₀.₀ b B) in g , (begin F₁.η g B ⟨$⟩ (F₀.₁ a f ⟨$⟩ Sa) ≈⟨ F₁.commute g f (Setoid.refl (F₀.₀ a A)) ⟩ F₀.₁ b f ⟨$⟩ (F₁.η g A ⟨$⟩ Sa) ≈⟨ Π.cong (F₀.₁ b f) eq′ ⟩ F₀.₁ b f ⟨$⟩ Sb ∎) hom-map : ∀ {X Y Z} → Y C.⇒ X → Z C.⇒ Y → Σ J.Obj (λ j → Setoid.Carrier (F₀.₀ j X)) → Σ J.Obj (λ j → Setoid.Carrier (F₀.₀ j Z)) hom-map f g (j , Sj) = j , F₀.₁ j (f ∘ g) ⟨$⟩ Sj ⊥⇒K′ : ∀ X {K} → Coc.Cocones F [ ⊥ , K ] → Coc.Cocones F[-, X ] [ ColimFX.colimit X , FXcocone X K ] ⊥⇒K′ X {K} ⊥⇒K = record { arr = arr.η X ; commute = comm } where open FCocone⇒ ⊥⇒K renaming (commute to comm) ! : {K : Coc.Cocone F} → Coc.Cocone⇒ F ⊥ K ! {K} = record { arr = ntHelper record { η = λ X → ColimFX.rep X (FXcocone X K) ; commute = λ {X Y} f → λ { {a , Sa} {b , Sb} eq → let open SetoidR (K.N.F₀ Y) in begin K.ψ.η a Y ⟨$⟩ (F₀.₁ a f ⟨$⟩ Sa) ≈⟨ K.ψ.commute a f (Setoid.refl (F₀.₀ a X)) ⟩ K.N.F₁ f ⟨$⟩ (K.ψ.η a X ⟨$⟩ Sa) ≈⟨ Π.cong (K.N.F₁ f) (ST.minimal (coc o′ o′ F[-, X ]) (K.N.₀ X) (Kψ X) (helper X) eq) ⟩ K.N.F₁ f ⟨$⟩ (K.ψ.η b X ⟨$⟩ Sb) ∎ } } ; commute = λ eq → Π.cong (K.ψ.η _ _) eq } where module K = FCocone K Kψ : ∀ X → Σ J.Obj (λ j → Setoid.Carrier (F₀.₀ j X)) → Setoid.Carrier (K.N.F₀ X) Kψ X (j , S) = K.ψ.η j X ⟨$⟩ S helper : ∀ X → coc o′ o′ F[-, X ] =[ Kψ X ]⇒ [ K.N.₀ X ]_≈_ helper X {a , Sa} {b , Sb} (f , eq) = begin K.ψ.η a X ⟨$⟩ Sa ≈˘⟨ K.commute f (Setoid.refl (F₀.₀ a X)) ⟩ K.ψ.η b X ⟨$⟩ (F₁.η f X ⟨$⟩ Sa) ≈⟨ Π.cong (K.ψ.η b X) eq ⟩ K.ψ.η b X ⟨$⟩ Sb ∎ where open SetoidR (K.N.₀ X) cocomplete : Colimit F cocomplete = record { initial = record { ⊥ = ⊥ ; ! = ! ; !-unique = λ ⊥⇒K {X} → ColimFX.initial.!-unique X (⊥⇒K′ X ⊥⇒K) } } Presheaves-Complete : Complete o′ o′ o′ P Presheaves-Complete F = complete F Presheaves-Cocomplete : Cocomplete o′ o′ o′ P Presheaves-Cocomplete F = cocomplete F
{ "alphanum_fraction": 0.4486098094, "avg_line_length": 38.412, "ext": "agda", "hexsha": "ad7b4be74ff18140ee77051c13b405ffaa4f7c2d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MirceaS/agda-categories", "max_forks_repo_path": "src/Categories/Category/Construction/Properties/Presheaves/Complete.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MirceaS/agda-categories", "max_issues_repo_path": "src/Categories/Category/Construction/Properties/Presheaves/Complete.agda", "max_line_length": 141, "max_stars_count": null, "max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MirceaS/agda-categories", "max_stars_repo_path": "src/Categories/Category/Construction/Properties/Presheaves/Complete.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3507, "size": 9603 }
{-# OPTIONS --cubical-compatible #-} data ℕ : Set where zero : ℕ suc : ℕ → ℕ Test : Set Test = ℕ test : Test → ℕ test zero = zero test (suc n) = test n
{ "alphanum_fraction": 0.5849056604, "avg_line_length": 12.2307692308, "ext": "agda", "hexsha": "d629c2196b05ee034b01b4637408839acba8620b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Succeed/Issue1214.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Succeed/Issue1214.agda", "max_line_length": 36, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Succeed/Issue1214.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 55, "size": 159 }
module Serializer where open import Data.List open import Data.Fin hiding (_+_) open import Data.Nat open import Data.Product open import Data.Bool open import Function using (_∘_ ; _$_ ; _∋_) open import Function.Injection hiding (_∘_) open import Function.Surjection hiding (_∘_) open import Function.Bijection hiding (_∘_) open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import Reflection open import Helper.Fin open import Helper.CodeGeneration ----------------------------------- -- Generic ----------------------------------- -- Finite record Serializer (T : Set) : Set where constructor serializer field size : ℕ from : T -> Fin size to : Fin size -> T bijection : Bijection (setoid T) (setoid (Fin size))
{ "alphanum_fraction": 0.6684210526, "avg_line_length": 24.5161290323, "ext": "agda", "hexsha": "c113d616537308b72783c5193b32b0e2c74e42f2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "cb95986b772b7a01195619be5e8e590f2429c759", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mathijsb/generic-in-agda", "max_forks_repo_path": "Serializer.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "cb95986b772b7a01195619be5e8e590f2429c759", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mathijsb/generic-in-agda", "max_issues_repo_path": "Serializer.agda", "max_line_length": 64, "max_stars_count": 6, "max_stars_repo_head_hexsha": "cb95986b772b7a01195619be5e8e590f2429c759", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mathijsb/generic-in-agda", "max_stars_repo_path": "Serializer.agda", "max_stars_repo_stars_event_max_datetime": "2016-08-04T16:05:24.000Z", "max_stars_repo_stars_event_min_datetime": "2015-06-09T09:59:27.000Z", "num_tokens": 178, "size": 760 }
------------------------------------------------------------------------------ -- Test the consistency of FOTC.Data.List ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- In the module FOTC.Data.List we declare Agda postulates as FOL -- axioms. We test if it is possible to prove an unprovable theorem -- from these axioms. module FOTC.Data.List.Consistency.Axioms where open import FOTC.Base open import FOTC.Data.List ------------------------------------------------------------------------------ postulate impossible : ∀ d e → d ≡ e {-# ATP prove impossible #-}
{ "alphanum_fraction": 0.4529032258, "avg_line_length": 33.6956521739, "ext": "agda", "hexsha": "24492e0943a22bd11263f5f2c44d99f14230e066", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Data/List/Consistency/Axioms.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Data/List/Consistency/Axioms.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Data/List/Consistency/Axioms.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 138, "size": 775 }
open import Data.Product using ( _×_ ; _,_ ) open import Data.Sum using ( inj₁ ; inj₂ ) open import Relation.Binary.PropositionalEquality using ( _≡_ ; refl ) open import Relation.Unary using ( _∈_ ; _⊆_ ) open import Web.Semantic.DL.ABox using ( ABox ; Assertions ; ⟨ABox⟩ ; ε ; _,_ ; _∼_ ; _∈₁_ ; _∈₂_ ) open import Web.Semantic.DL.ABox.Interp using ( Interp ; _,_ ; ⌊_⌋ ; ind ; _*_ ) open import Web.Semantic.DL.ABox.Interp.Morphism using ( _≲_ ; _,_ ; ≲⌊_⌋ ; ≲-resp-ind ; ≡³-impl-≲ ) open import Web.Semantic.DL.Signature using ( Signature ) open import Web.Semantic.DL.TBox.Interp using ( Δ ; _⊨_≈_ ; ≈-refl ; ≈-sym ; ≈-trans ; con ; rol ; con-≈ ; rol-≈ ) open import Web.Semantic.DL.TBox.Interp.Morphism using ( ≲-image ; ≲-resp-≈ ; ≲-resp-con ; ≲-resp-rol ; ≲-refl ) open import Web.Semantic.Util using ( True ; tt ; id ; _∘_ ; _⊕_⊕_ ; inode ; bnode ; enode ; →-dist-⊕ ) module Web.Semantic.DL.ABox.Model {Σ : Signature} where infix 2 _⊨a_ _⊨b_ infixr 5 _,_ _⟦_⟧₀ : ∀ {X} (I : Interp Σ X) → X → (Δ ⌊ I ⌋) I ⟦ x ⟧₀ = ind I x _⊨a_ : ∀ {X} → Interp Σ X → ABox Σ X → Set I ⊨a ε = True I ⊨a (A , B) = (I ⊨a A) × (I ⊨a B) I ⊨a x ∼ y = ⌊ I ⌋ ⊨ ind I x ≈ ind I y I ⊨a x ∈₁ c = ind I x ∈ con ⌊ I ⌋ c I ⊨a (x , y) ∈₂ r = (ind I x , ind I y) ∈ rol ⌊ I ⌋ r Assertions✓ : ∀ {X} (I : Interp Σ X) A {a} → (a ∈ Assertions A) → (I ⊨a A) → (I ⊨a a) Assertions✓ I ε () I⊨A Assertions✓ I (A , B) (inj₁ a∈A) (I⊨A , I⊨B) = Assertions✓ I A a∈A I⊨A Assertions✓ I (A , B) (inj₂ a∈B) (I⊨A , I⊨B) = Assertions✓ I B a∈B I⊨B Assertions✓ I (i ∼ j) refl I⊨A = I⊨A Assertions✓ I (i ∈₁ c) refl I⊨A = I⊨A Assertions✓ I (ij ∈₂ r) refl I⊨A = I⊨A ⊨a-resp-⊇ : ∀ {X} (I : Interp Σ X) A B → (Assertions A ⊆ Assertions B) → (I ⊨a B) → (I ⊨a A) ⊨a-resp-⊇ I ε B A⊆B I⊨B = tt ⊨a-resp-⊇ I (A₁ , A₂) B A⊆B I⊨B = ( ⊨a-resp-⊇ I A₁ B (A⊆B ∘ inj₁) I⊨B , ⊨a-resp-⊇ I A₂ B (A⊆B ∘ inj₂) I⊨B ) ⊨a-resp-⊇ I (x ∼ y) B A⊆B I⊨B = Assertions✓ I B (A⊆B refl) I⊨B ⊨a-resp-⊇ I (x ∈₁ c) B A⊆B I⊨B = Assertions✓ I B (A⊆B refl) I⊨B ⊨a-resp-⊇ I (xy ∈₂ r) B A⊆B I⊨B = Assertions✓ I B (A⊆B refl) I⊨B ⊨a-resp-≲ : ∀ {X} {I J : Interp Σ X} → (I ≲ J) → ∀ A → (I ⊨a A) → (J ⊨a A) ⊨a-resp-≲ {X} {I} {J} I≲J ε I⊨A = tt ⊨a-resp-≲ {X} {I} {J} I≲J (A , B) (I⊨A , I⊨B) = (⊨a-resp-≲ I≲J A I⊨A , ⊨a-resp-≲ I≲J B I⊨B) ⊨a-resp-≲ {X} {I} {J} I≲J (x ∼ y) I⊨x∼y = ≈-trans ⌊ J ⌋ (≈-sym ⌊ J ⌋ (≲-resp-ind I≲J x)) (≈-trans ⌊ J ⌋ (≲-resp-≈ ≲⌊ I≲J ⌋ I⊨x∼y) (≲-resp-ind I≲J y)) ⊨a-resp-≲ {X} {I} {J} I≲J (x ∈₁ c) I⊨x∈c = con-≈ ⌊ J ⌋ c (≲-resp-con ≲⌊ I≲J ⌋ I⊨x∈c) (≲-resp-ind I≲J x) ⊨a-resp-≲ {X} {I} {J} I≲J ((x , y) ∈₂ r) I⊨xy∈r = rol-≈ ⌊ J ⌋ r (≈-sym ⌊ J ⌋ (≲-resp-ind I≲J x)) (≲-resp-rol ≲⌊ I≲J ⌋ I⊨xy∈r) (≲-resp-ind I≲J y) ⊨a-resp-≡ : ∀ {X : Set} (I : Interp Σ X) j → (ind I ≡ j) → ∀ A → (I ⊨a A) → (⌊ I ⌋ , j ⊨a A) ⊨a-resp-≡ (I , i) .i refl A I⊨A = I⊨A ⊨a-resp-≡³ : ∀ {V X Y : Set} (I : Interp Σ (X ⊕ V ⊕ Y)) j → (→-dist-⊕ (ind I) ≡ →-dist-⊕ j) → ∀ A → (I ⊨a A) → (⌊ I ⌋ , j ⊨a A) ⊨a-resp-≡³ I j i≡j = ⊨a-resp-≲ (≡³-impl-≲ I j i≡j) ⟨ABox⟩-Assertions : ∀ {X Y a} (f : X → Y) (A : ABox Σ X) → (a ∈ Assertions A) → (⟨ABox⟩ f a ∈ Assertions (⟨ABox⟩ f A)) ⟨ABox⟩-Assertions f ε () ⟨ABox⟩-Assertions f (A , B) (inj₁ a∈A) = inj₁ (⟨ABox⟩-Assertions f A a∈A) ⟨ABox⟩-Assertions f (A , B) (inj₂ a∈B) = inj₂ (⟨ABox⟩-Assertions f B a∈B) ⟨ABox⟩-Assertions f (x ∼ y) refl = refl ⟨ABox⟩-Assertions f (x ∈₁ c) refl = refl ⟨ABox⟩-Assertions f ((x , y) ∈₂ r) refl = refl ⟨ABox⟩-resp-⊨ : ∀ {X Y} {I : Interp Σ X} {j : Y → Δ ⌊ I ⌋} (f : X → Y) → (∀ x → ⌊ I ⌋ ⊨ ind I x ≈ j (f x)) → ∀ A → (I ⊨a A) → (⌊ I ⌋ , j ⊨a ⟨ABox⟩ f A) ⟨ABox⟩-resp-⊨ {X} {Y} {I} f i≈j∘f ε I⊨ε = tt ⟨ABox⟩-resp-⊨ {X} {Y} {I} f i≈j∘f (A , B) (I⊨A , I⊨B) = (⟨ABox⟩-resp-⊨ f i≈j∘f A I⊨A , ⟨ABox⟩-resp-⊨ f i≈j∘f B I⊨B) ⟨ABox⟩-resp-⊨ {X} {Y} {I} f i≈j∘f (x ∼ y) x≈y = ≈-trans ⌊ I ⌋ (≈-sym ⌊ I ⌋ (i≈j∘f x)) (≈-trans ⌊ I ⌋ x≈y (i≈j∘f y)) ⟨ABox⟩-resp-⊨ {X} {Y} {I} f i≈j∘f (x ∈₁ c) x∈⟦c⟧ = con-≈ ⌊ I ⌋ c x∈⟦c⟧ (i≈j∘f x) ⟨ABox⟩-resp-⊨ {X} {Y} {I} f i≈j∘f ((x , y) ∈₂ r) xy∈⟦r⟧ = rol-≈ ⌊ I ⌋ r (≈-sym ⌊ I ⌋ (i≈j∘f x)) xy∈⟦r⟧ (i≈j∘f y) *-resp-⟨ABox⟩ : ∀ {X Y} (f : Y → X) I A → (I ⊨a ⟨ABox⟩ f A) → (f * I ⊨a A) *-resp-⟨ABox⟩ f (I , i) ε I⊨ε = tt *-resp-⟨ABox⟩ f (I , i) (A , B) (I⊨A , I⊨B) = (*-resp-⟨ABox⟩ f (I , i) A I⊨A , *-resp-⟨ABox⟩ f (I , i) B I⊨B ) *-resp-⟨ABox⟩ f (I , i) (x ∼ y) x≈y = x≈y *-resp-⟨ABox⟩ f (I , i) (x ∈₁ c) x∈⟦c⟧ = x∈⟦c⟧ *-resp-⟨ABox⟩ f (I , i) ((x , y) ∈₂ r) xy∈⟦c⟧ = xy∈⟦c⟧ -- bnodes I f is the same as I, except that f is used as the interpretation -- for bnodes. on-bnode : ∀ {V W X Y Z : Set} → (W → Z) → ((X ⊕ V ⊕ Y) → Z) → ((X ⊕ W ⊕ Y) → Z) on-bnode f g (inode x) = g (inode x) on-bnode f g (bnode w) = f w on-bnode f g (enode y) = g (enode y) bnodes : ∀ {V W X Y} → (I : Interp Σ (X ⊕ V ⊕ Y)) → (W → Δ ⌊ I ⌋) → Interp Σ (X ⊕ W ⊕ Y) bnodes I f = (⌊ I ⌋ , on-bnode f (ind I)) bnodes-resp-≲ : ∀ {V W X Y} (I J : Interp Σ (X ⊕ V ⊕ Y)) → (I≲J : I ≲ J) → (f : W → Δ ⌊ I ⌋) → (bnodes I f ≲ bnodes J (≲-image ≲⌊ I≲J ⌋ ∘ f)) bnodes-resp-≲ (I , i) (J , j) (I≲J , i≲j) f = (I≲J , lemma) where lemma : ∀ x → J ⊨ ≲-image I≲J (on-bnode f i x) ≈ on-bnode (≲-image I≲J ∘ f) j x lemma (inode x) = i≲j (inode x) lemma (bnode v) = ≈-refl J lemma (enode y) = i≲j (enode y) -- I ⊨b A whenever there exists an f such that bnodes I f ⊨a A data _⊨b_ {V W X Y} (I : Interp Σ (X ⊕ V ⊕ Y)) (A : ABox Σ (X ⊕ W ⊕ Y)) : Set where _,_ : ∀ f → (bnodes I f ⊨a A) → (I ⊨b A) inb : ∀ {V W X Y} {I : Interp Σ (X ⊕ V ⊕ Y)} {A : ABox Σ (X ⊕ W ⊕ Y)} → (I ⊨b A) → W → Δ ⌊ I ⌋ inb (f , I⊨A) = f ⊨b-impl-⊨a : ∀ {V W X Y} {I : Interp Σ (X ⊕ V ⊕ Y)} {A : ABox Σ (X ⊕ W ⊕ Y)} → (I⊨A : I ⊨b A) → (bnodes I (inb I⊨A) ⊨a A) ⊨b-impl-⊨a (f , I⊨A) = I⊨A ⊨a-impl-⊨b : ∀ {V X Y} (I : Interp Σ (X ⊕ V ⊕ Y)) A → (I ⊨a A) → (I ⊨b A) ⊨a-impl-⊨b I A I⊨A = (ind I ∘ bnode , ⊨a-resp-≲ (≲-refl ⌊ I ⌋ , lemma) A I⊨A) where lemma : ∀ x → ⌊ I ⌋ ⊨ ind I x ≈ on-bnode (ind I ∘ bnode) (ind I) x lemma (inode x) = ≈-refl ⌊ I ⌋ lemma (bnode v) = ≈-refl ⌊ I ⌋ lemma (enode y) = ≈-refl ⌊ I ⌋ ⊨b-resp-≲ : ∀ {V W X Y} {I J : Interp Σ (X ⊕ V ⊕ Y)} → (I ≲ J) → ∀ (A : ABox Σ (X ⊕ W ⊕ Y)) → (I ⊨b A) → (J ⊨b A) ⊨b-resp-≲ I≲J A (f , I⊨A) = ((≲-image ≲⌊ I≲J ⌋ ∘ f) , ⊨a-resp-≲ (bnodes-resp-≲ _ _ I≲J f) A I⊨A)
{ "alphanum_fraction": 0.46203125, "avg_line_length": 39.263803681, "ext": "agda", "hexsha": "aebec4544a56bd10a78e08023d1c8a2f88e7d759", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:03.000Z", "max_forks_repo_forks_event_min_datetime": "2017-12-03T14:52:09.000Z", "max_forks_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/agda-web-semantic", "max_forks_repo_path": "src/Web/Semantic/DL/ABox/Model.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab", "max_issues_repo_issues_event_max_datetime": "2021-01-04T20:57:19.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T02:32:28.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/agda-web-semantic", "max_issues_repo_path": "src/Web/Semantic/DL/ABox/Model.agda", "max_line_length": 80, "max_stars_count": 9, "max_stars_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/agda-web-semantic", "max_stars_repo_path": "src/Web/Semantic/DL/ABox/Model.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-14T14:21:08.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-13T17:46:41.000Z", "num_tokens": 3954, "size": 6400 }
{-# OPTIONS --allow-unsolved-metas --no-termination-check #-} module Bag where import Prelude import Equiv import Datoid import Eq import Nat import List import Pos open Prelude open Equiv open Datoid open Eq open Nat open List abstract ---------------------------------------------------------------------- -- Bag type private -- If this were Coq then the invariant should be a Prop. Similar -- remarks apply to some definitions below. Since I have to write -- the supporting library myself I can't be bothered to -- distinguish Set and Prop right now though. data BagType (a : Datoid) : Set where bt : (pairs : List (Pair Pos.Pos (El a))) → NoDuplicates a (map snd pairs) → BagType a list : {a : Datoid} → BagType a → List (Pair Pos.Pos (El a)) list (bt l _) = l contents : {a : Datoid} → BagType a → List (El a) contents b = map snd (list b) invariant : {a : Datoid} → (b : BagType a) → NoDuplicates a (contents b) invariant (bt _ i) = i private elemDatoid : Datoid → Datoid elemDatoid a = pairDatoid Pos.posDatoid a BagEq : (a : Datoid) → BagType a → BagType a → Set BagEq a b1 b2 = rel' (Permutation (elemDatoid a)) (list b1) (list b2) eqRefl : {a : Datoid} → (x : BagType a) → BagEq a x x eqRefl {a} x = refl (Permutation (elemDatoid a)) {list x} eqSym : {a : Datoid} → (x y : BagType a) → BagEq a x y → BagEq a y x eqSym {a} x y = sym (Permutation (elemDatoid a)) {list x} {list y} eqTrans : {a : Datoid} → (x y z : BagType a) → BagEq a x y → BagEq a y z → BagEq a x z eqTrans {a} x y z = trans (Permutation (elemDatoid a)) {list x} {list y} {list z} eqDec : {a : Datoid} → (x y : BagType a) → Either (BagEq a x y) _ eqDec {a} x y = decRel (Permutation (elemDatoid a)) (list x) (list y) BagEquiv : (a : Datoid) → DecidableEquiv (BagType a) BagEquiv a = decEquiv (equiv (BagEq a) eqRefl eqSym eqTrans) (dec eqDec) Bag : Datoid → Datoid Bag a = datoid (BagType a) (BagEquiv a) ---------------------------------------------------------------------- -- Bag primitives empty : {a : Datoid} → El (Bag a) empty = bt nil unit private data LookupResult (a : Datoid) (x : El a) (b : El (Bag a)) : Set where lr : Nat → (b' : El (Bag a)) → Not (member a x (contents b')) → ({y : El a} → Not (member a y (contents b)) → Not (member a y (contents b'))) → LookupResult a x b lookup1 : {a : Datoid} → (n : Pos.Pos) → (y : El a) → (b' : El (Bag a)) → (nyb' : Not (member a y (contents b'))) → (x : El a) → Either (datoidRel a x y) _ → LookupResult a x b' → LookupResult a x (bt (pair n y :: list b') (pair nyb' (invariant b'))) lookup1 n y b' nyb' x (left xy) _ = lr (Pos.toNat n) b' (contrapositive (memberPreservesEq xy (contents b')) nyb') (\{y'} ny'b → snd (notDistribIn ny'b)) lookup1 {a} n y b' nyb' x (right nxy) (lr n' (bt b'' ndb'') nxb'' nmPres) = lr n' (bt (pair n y :: b'') (pair (nmPres nyb') ndb'')) (notDistribOut {datoidRel a x y} nxy nxb'') (\{y'} ny'b → notDistribOut (fst (notDistribIn ny'b)) (nmPres (snd (notDistribIn ny'b)))) lookup2 : {a : Datoid} → (x : El a) → (b : El (Bag a)) → LookupResult a x b lookup2 x (bt nil nd) = lr zero (bt nil nd) (not id) (\{_} _ → not id) lookup2 {a} x (bt (pair n y :: b) (pair nyb ndb)) = lookup1 n y (bt b ndb) nyb x (decRel (datoidEq a) x y) (lookup2 x (bt b ndb)) lookup3 : {a : Datoid} → {x : El a} → {b : El (Bag a)} → LookupResult a x b → Pair Nat (El (Bag a)) lookup3 (lr n b _ _) = pair n b lookup : {a : Datoid} → El a → El (Bag a) → Pair Nat (El (Bag a)) lookup x b = lookup3 (lookup2 x b) private insert' : {a : Datoid} → (x : El a) → {b : El (Bag a)} → LookupResult a x b → El (Bag a) insert' x (lr n (bt b ndb) nxb _) = bt (pair (Pos.suc' n) x :: b) (pair nxb ndb) insert : {a : Datoid} → El a → El (Bag a) → El (Bag a) insert x b = insert' x (lookup2 x b) private postulate insertLemma1 : {a : Datoid} → (x : El a) → (b : El (Bag a)) → (nxb : Not (member a x (contents b))) → datoidRel (Bag a) (insert x b) (bt (pair Pos.one x :: list b) (pair nxb (invariant b))) insertLemma2 : {a : Datoid} → (n : Pos.Pos) → (x : El a) → (b : El (Bag a)) → (nxb : Not (member a x (contents b))) → datoidRel (Bag a) (insert x (bt (pair n x :: list b) (pair nxb (invariant b)))) (bt (pair (Pos.suc n) x :: list b) (pair nxb (invariant b))) ---------------------------------------------------------------------- -- Bag traversals data Traverse (a : Datoid) : Set where Empty : Traverse a Insert : (x : El a) → (b : El (Bag a)) → Traverse a run : {a : Datoid} → Traverse a → El (Bag a) run Empty = empty run (Insert x b) = insert x b abstract traverse : {a : Datoid} → El (Bag a) → Traverse a traverse (bt nil _) = Empty traverse {a} (bt (pair n x :: b) (pair nxb ndb)) = traverse' (Pos.pred n) where private traverse' : Maybe Pos.Pos → Traverse a traverse' Nothing = Insert x (bt b ndb) traverse' (Just n) = Insert x (bt (pair n x :: b) (pair nxb ndb)) traverseTraverses : {a : Datoid} → (b : El (Bag a)) → datoidRel (Bag a) (run (traverse b)) b traverseTraverses {a} (bt nil unit) = dRefl (Bag a) {empty} traverseTraverses {a} (bt (pair n x :: b) (pair nxb ndb)) = tT (Pos.pred n) (Pos.predOK n) where private postulate subst' : {a : Datoid} → (P : El a → Set) → (x y : El a) → datoidRel a x y → P x → P y tT : (predN : Maybe Pos.Pos) → Pos.Pred n predN → datoidRel (Bag a) (run (traverse (bt (pair n x :: b) (pair nxb ndb)))) (bt (pair n x :: b) (pair nxb ndb)) tT Nothing (Pos.ok eq) = {!!} -- subst' (\p → datoidRel (Bag a) -- (run (traverse (bt (pair p x :: b) (pair nxb ndb)))) -- (bt (pair p x :: b) (pair nxb ndb))) -- Pos.one n eq (insertLemma1 x (bt b ndb) nxb) -- eq : one == n -- data Pred (p : Pos) (mP : Maybe Pos) : Set where -- ok : datoidRel posDatoid (sucPred mP) p → Pred p mP -- insert x (bt b ndb) == bt (pair n x :: b) (pair nxb ndb) tT (Just n) (Pos.ok eq) = {!!} -- insertLemma2 n x (bt b ndb) nxb -- insert x (bt (pair n x :: b) (pair nxb btb) == -- bt (pair (suc n) x :: b) (pair nxb btb) bagElim : {a : Datoid} → (P : El (Bag a) → Set) → Respects (Bag a) P → P empty → ((x : El a) → (b : El (Bag a)) → P b → P (insert x b)) → (b : El (Bag a)) → P b bagElim {a} P Prespects e i b = bagElim' b (traverse b) (traverseTraverses b) where private bagElim' : (b : El (Bag a)) → (t : Traverse a) → datoidRel (Bag a) (run t) b → P b bagElim' b Empty eq = subst Prespects empty b eq e bagElim' b (Insert x b') eq = subst Prespects (insert x b') b eq (i x b' (bagElim' b' (traverse b') (traverseTraverses b'))) ---------------------------------------------------------------------- -- Respect and equality preservation lemmas postulate insertPreservesRespect : {a : Datoid} → (P : El (Bag a) → Set) → (x : El a) → Respects (Bag a) P → Respects (Bag a) (\b → P (insert x b)) lookupPreservesRespect : {a : Datoid} → (P : El (Bag a) → Set) → (x : El a) → Respects (Bag a) P → Respects (Bag a) (\b → P (snd $ lookup x b)) -- This doesn't type check without John Major equality or some -- ugly substitutions... -- bagElimPreservesEquality -- : {a : Datoid} -- → (P : El (Bag a) → Set) -- → (r : Respects (Bag a) P) -- → (e : P empty) -- → (i : (x : El a) → (b : El (Bag a)) → P b → P (insert x b)) -- → ( (x1 x2 : El a) → (b1 b2 : El (Bag a)) -- → (p1 : P b1) → (p2 : P b2) -- → (eqX : datoidRel a x1 x2) → (eqB : datoidRel (Bag a) b1 b2) -- → i x1 b1 p1 =^= i x2 b2 p2 -- ) -- → (b1 b2 : El (Bag a)) -- → datoidRel (Bag a) b1 b2 -- → bagElim P r e i b1 =^= bagElim P r e i b2
{ "alphanum_fraction": 0.4779345878, "avg_line_length": 32.9446494465, "ext": "agda", "hexsha": "7fd912057e6379f5bd1f30c4a037fe7478738531", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "examples/AIM4/bag/Bag.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "examples/AIM4/bag/Bag.agda", "max_line_length": 79, "max_stars_count": 3, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "examples/AIM4/bag/Bag.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 2954, "size": 8928 }
{-# OPTIONS --without-K --safe #-} -- | Operations that ensure a cycle traverses a particular element -- at most once. module Dodo.Binary.Cycle where -- Stdlib import import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; _≢_; refl) open import Level using (Level; _⊔_) open import Function using (_∘_) open import Data.Product using (_×_; _,_; proj₁; proj₂) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Relation.Nullary using (yes; no) open import Relation.Binary using (Rel) open import Relation.Binary.Construct.Closure.Transitive using (TransClosure; [_]; _∷_; _∷ʳ_; _++_) -- Local imports open import Dodo.Unary.Dec open import Dodo.Binary.Transitive -- # Definitions -- | The given relation, with proofs that neither element equals `z`. ExcludeRel : {a ℓ : Level} {A : Set a} → (R : Rel A ℓ) → (z : A) → Rel A (a ⊔ ℓ) ExcludeRel R z x y = R x y × x ≢ z × y ≢ z -- | A cycle of R which passes through `z` /exactly once/. data PassCycle {a ℓ : Level} {A : Set a} (R : Rel A ℓ) (z : A) : Set (a ⊔ ℓ) where cycle₁ : R z z → PassCycle R z cycle₂ : {x : A} → x ≢ z → R z x → R x z → PassCycle R z cycleₙ : {x y : A} → R z x → TransClosure (ExcludeRel R z) x y → R y z → PassCycle R z -- # Functions -- | A cycle of a relation either /does not/ pass through an element `y`, or it -- can be made to pass through `y` /exactly once/. -- -- Note that if the original cycle passes `y` /more than once/, then only one -- cycle of the multi-cycle through `y` may be taken. divert-cycle : {a ℓ : Level} {A : Set a} → {R : Rel A ℓ} → {x : A} → TransClosure R x x → {y : A} → DecPred (_≡ y) → PassCycle R y ⊎ TransClosure (ExcludeRel R y) x x divert-cycle {x = x} [ Rxx ] eq-xm with eq-xm x ... | yes refl = inj₁ (cycle₁ Rxx) ... | no x≢y = inj₂ [ ( Rxx , x≢y , x≢y ) ] divert-cycle {A = A} {R = R} {x} ( Rxw ∷ R⁺wx ) {y} eq-dec = lemma Rxw R⁺wx where -- Chain that starts with `y`. -- -- `Ryx` and `R⁺xz` are acculumators. lemma-incl : {x z : A} → R y x → TransClosure (ExcludeRel R y) x z → TransClosure R z y → PassCycle R y lemma-incl Ryx R⁺xz [ Rzy ] = cycleₙ Ryx R⁺xz Rzy lemma-incl Ryx R⁺xz (_∷_ {_} {w} Rzw R⁺wy) with eq-dec w lemma-incl Ryx R⁺xz (_∷_ {_} {w} Rzw R⁺wy) | yes refl = cycleₙ Ryx R⁺xz Rzw lemma-incl Ryx R⁺xz (_∷_ {_} {w} Rzw R⁺wy) | no w≢y = let z≢y = ⁺-lift-predʳ (proj₂ ∘ proj₂) R⁺xz in lemma-incl Ryx (R⁺xz ∷ʳ (Rzw , z≢y , w≢y)) R⁺wy -- First step of a chain that starts with `y`. lemma-incl₀ : {x : A} → R y x → TransClosure R x y → PassCycle R y lemma-incl₀ {x} Ryx R⁺xy with eq-dec x lemma-incl₀ {x} Ryx R⁺xy | yes refl = cycle₁ Ryx lemma-incl₀ {x} Ryx [ Rxy ] | no x≢y = cycle₂ x≢y Ryx Rxy lemma-incl₀ {x} Ryx (_∷_ {_} {z} Rxz R⁺zy) | no x≢y with eq-dec z lemma-incl₀ {x} Ryx (_∷_ {x} {z} Rxz R⁺zy) | no x≢y | yes refl = cycle₂ x≢y Ryx Rxz lemma-incl₀ {x} Ryx (_∷_ {x} {z} Rxz R⁺zy) | no x≢y | no z≢y = lemma-incl Ryx [ Rxz , x≢y , z≢y ] R⁺zy -- Chain that does /not/ (yet) pass through `y`. lemma-excl : {z : A} → TransClosure (ExcludeRel R y) x z → TransClosure R z x → PassCycle R y ⊎ TransClosure (ExcludeRel R y) x x lemma-excl R⁺xz [ Rzx ] = let z≢y = ⁺-lift-predʳ (proj₂ ∘ proj₂) R⁺xz x≢y = ⁺-lift-predˡ (proj₁ ∘ proj₂) R⁺xz in inj₂ (R⁺xz ∷ʳ (Rzx , z≢y , x≢y)) lemma-excl R⁺xz (_∷_ {_} {w} Rzw R⁺wx) with eq-dec w lemma-excl R⁺xz (_∷_ {_} {_} Rzw [ Rwx ]) | yes refl = inj₁ (cycleₙ Rwx R⁺xz Rzw) lemma-excl R⁺xz (_∷_ {_} {_} Rzw (Rwq ∷ R⁺qx)) | yes refl = inj₁ (lemma-incl₀ Rwq (R⁺qx ++ (⁺-map _ proj₁ R⁺xz) ∷ʳ Rzw)) lemma-excl R⁺xz (_∷_ {_} {_} Rzw R⁺wx) | no w≢y = let z≢y = ⁺-lift-predʳ (proj₂ ∘ proj₂) R⁺xz in lemma-excl (R⁺xz ∷ʳ (Rzw , z≢y , w≢y)) R⁺wx lemma : {w : A} → R x w → TransClosure R w x → PassCycle R y ⊎ TransClosure (ExcludeRel R y) x x lemma {_} Rxw R⁺wx with eq-dec x lemma {_} Rxw R⁺wx | yes refl = inj₁ (lemma-incl₀ Rxw R⁺wx) lemma {w} Rxw R⁺wx | no x≢y with eq-dec w lemma {_} Rxw [ Rwx ] | no x≢y | yes refl = inj₁ (cycle₂ x≢y Rwx Rxw) lemma {_} Rxw ( Rwz ∷ R⁺zx ) | no x≢y | yes refl = inj₁ (lemma-incl₀ Rwz (R⁺zx ∷ʳ Rxw)) lemma {_} Rxw R⁺wx | no x≢y | no w≢y = lemma-excl [ Rxw , x≢y , w≢y ] R⁺wx
{ "alphanum_fraction": 0.5893978145, "avg_line_length": 45.7553191489, "ext": "agda", "hexsha": "d73ab4df3527f4f64ab1f64faca745fc9bf6c4be", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "sourcedennis/agda-dodo", "max_forks_repo_path": "src/Dodo/Binary/Cycle.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "sourcedennis/agda-dodo", "max_issues_repo_path": "src/Dodo/Binary/Cycle.agda", "max_line_length": 131, "max_stars_count": null, "max_stars_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "sourcedennis/agda-dodo", "max_stars_repo_path": "src/Dodo/Binary/Cycle.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1822, "size": 4301 }
{-# OPTIONS --without-K --safe #-} -- A "canonical" presentation of limits in Setoid. -- -- These limits are obviously isomorphic to those created by -- the Completeness proof, but are far less unweildy to work with. -- This isomorphism is witnessed by Categories.Diagram.Pullback.up-to-iso module Categories.Category.Instance.Properties.Setoids.Limits.Canonical where open import Level open import Data.Product using (_,_; _×_) open import Relation.Binary.Bundles using (Setoid) open import Function.Equality as SΠ renaming (id to ⟶-id) import Relation.Binary.Reasoning.Setoid as SR open import Categories.Diagram.Pullback open import Categories.Category.Instance.Setoids open Setoid renaming (_≈_ to [_][_≈_]) -------------------------------------------------------------------------------- -- Pullbacks record FiberProduct {o ℓ} {X Y Z : Setoid o ℓ} (f : X ⟶ Z) (g : Y ⟶ Z) : Set (o ⊔ ℓ) where field elem₁ : Carrier X elem₂ : Carrier Y commute : [ Z ][ f ⟨$⟩ elem₁ ≈ g ⟨$⟩ elem₂ ] open FiberProduct pullback : ∀ (o ℓ : Level) {X Y Z : Setoid (o ⊔ ℓ) ℓ} → (f : X ⟶ Z) → (g : Y ⟶ Z) → Pullback (Setoids (o ⊔ ℓ) ℓ) f g pullback _ _ {X = X} {Y = Y} {Z = Z} f g = record { P = record { Carrier = FiberProduct f g ; _≈_ = λ p q → [ X ][ elem₁ p ≈ elem₁ q ] × [ Y ][ elem₂ p ≈ elem₂ q ] ; isEquivalence = record { refl = (refl X) , (refl Y) ; sym = λ (eq₁ , eq₂) → sym X eq₁ , sym Y eq₂ ; trans = λ (eq₁ , eq₂) (eq₁′ , eq₂′) → (trans X eq₁ eq₁′) , (trans Y eq₂ eq₂′) } } ; p₁ = record { _⟨$⟩_ = elem₁ ; cong = λ (eq₁ , _) → eq₁ } ; p₂ = record { _⟨$⟩_ = elem₂ ; cong = λ (_ , eq₂) → eq₂ } ; isPullback = record { commute = λ {p} {q} (eq₁ , eq₂) → trans Z (cong f eq₁) (commute q) ; universal = λ {A} {h₁} {h₂} eq → record { _⟨$⟩_ = λ a → record { elem₁ = h₁ ⟨$⟩ a ; elem₂ = h₂ ⟨$⟩ a ; commute = eq (refl A) } ; cong = λ eq → cong h₁ eq , cong h₂ eq } ; unique = λ eq₁ eq₂ x≈y → eq₁ x≈y , eq₂ x≈y ; p₁∘universal≈h₁ = λ {_} {h₁} {_} eq → cong h₁ eq ; p₂∘universal≈h₂ = λ {_} {_} {h₂} eq → cong h₂ eq } }
{ "alphanum_fraction": 0.548045977, "avg_line_length": 34.5238095238, "ext": "agda", "hexsha": "5d746ca2f723cfe6b74a36c5d7347d3961e67433", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d07746023503cc8f49670e309a6170dc4b404b95", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andrejbauer/agda-categories", "max_forks_repo_path": "src/Categories/Category/Instance/Properties/Setoids/Limits/Canonical.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d07746023503cc8f49670e309a6170dc4b404b95", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andrejbauer/agda-categories", "max_issues_repo_path": "src/Categories/Category/Instance/Properties/Setoids/Limits/Canonical.agda", "max_line_length": 116, "max_stars_count": 279, "max_stars_repo_head_hexsha": "cfa6aefd3069d4db995191b458c886edcfba8294", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "tetrapharmakon/agda-categories", "max_stars_repo_path": "src/Categories/Category/Instance/Properties/Setoids/Limits/Canonical.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 769, "size": 2175 }