Search is not available for this dataset
text
string | meta
dict |
---|---|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.HITs.ListedFiniteSet.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Data.Prod using (_×_; _,_)
open import Cubical.HITs.ListedFiniteSet.Base
private
variable
ℓ : Level
A B : Type ℓ
assoc-++ : ∀ (xs : LFSet A) ys zs → xs ++ (ys ++ zs) ≡ (xs ++ ys) ++ zs
assoc-++ [] ys zs = refl
assoc-++ (x ∷ xs) ys zs = cong (x ∷_) (assoc-++ xs ys zs)
assoc-++ (dup x xs i) ys zs j = dup x (assoc-++ xs ys zs j) i
assoc-++ (comm x y xs i) ys zs j = comm x y (assoc-++ xs ys zs j) i
assoc-++ (trunc xs xs' p q i k) ys zs j =
trunc
(assoc-++ xs ys zs j) (assoc-++ xs' ys zs j)
(cong (λ xs → assoc-++ xs ys zs j) p) (cong (λ xs → assoc-++ xs ys zs j) q)
i k
comm-++-[] : ∀ (xs : LFSet A) → xs ++ [] ≡ [] ++ xs
comm-++-[] xs =
PropElim.f
refl
(λ x {xs} ind →
(x ∷ xs) ++ [] ≡⟨ refl ⟩
x ∷ (xs ++ []) ≡⟨ cong (x ∷_) ind ⟩
x ∷ xs ≡⟨ refl ⟩
[] ++ (x ∷ xs) ∎
)
(λ _ → trunc _ _)
xs
comm-++-∷
: ∀ (z : A) xs ys
→ xs ++ (z ∷ ys) ≡ (z ∷ xs) ++ ys
comm-++-∷ z xs ys =
PropElim.f
refl
(λ x {xs} ind →
x ∷ (xs ++ (z ∷ ys)) ≡⟨ cong (x ∷_) ind ⟩
x ∷ z ∷ (xs ++ ys) ≡⟨ comm x z (xs ++ ys) ⟩
z ∷ x ∷ (xs ++ ys) ∎
)
(λ _ → trunc _ _)
xs
comm-++ : (xs ys : LFSet A) → xs ++ ys ≡ ys ++ xs
comm-++ xs ys =
PropElim.f
(comm-++-[] xs)
(λ y {ys} ind →
xs ++ (y ∷ ys) ≡⟨ comm-++-∷ y xs ys ⟩
y ∷ (xs ++ ys) ≡⟨ cong (y ∷_) ind ⟩
y ∷ (ys ++ xs) ≡⟨ refl ⟩
(y ∷ ys) ++ xs ∎
)
(λ _ → trunc _ _)
ys
idem-++ : (xs : LFSet A) → xs ++ xs ≡ xs
idem-++ =
PropElim.f
refl
(λ x {xs} ind →
(x ∷ xs) ++ (x ∷ xs) ≡⟨ refl ⟩
x ∷ (xs ++ (x ∷ xs)) ≡⟨ refl ⟩
x ∷ (xs ++ ((x ∷ []) ++ xs)) ≡⟨ cong (x ∷_) (assoc-++ xs (x ∷ []) xs) ⟩
x ∷ ((xs ++ (x ∷ [])) ++ xs)
≡⟨ cong (λ h → x ∷ (h ++ xs)) (comm-++ xs (x ∷ [])) ⟩
x ∷ x ∷ (xs ++ xs) ≡⟨ cong (λ ys → x ∷ x ∷ ys) ind ⟩
x ∷ x ∷ xs ≡⟨ dup x xs ⟩
x ∷ xs ∎
)
(λ xs → trunc (xs ++ xs) xs)
cart-product : LFSet A → LFSet B → LFSet (A × B)
cart-product [] ys = []
cart-product (x ∷ xs) ys = map (x ,_) ys ++ cart-product xs ys
cart-product (dup x xs i) ys =
( map (x ,_) ys ++ (map (x ,_) ys ++ cart-product xs ys)
≡⟨ assoc-++ (map (x ,_) ys) (map (x ,_) ys) (cart-product xs ys) ⟩
(map (x ,_) ys ++ map (x ,_) ys) ++ cart-product xs ys
≡⟨ cong (_++ cart-product xs ys) (idem-++ (map (x ,_) ys)) ⟩
map (x ,_) ys ++ cart-product xs ys
∎
) i
cart-product (comm x y xs i) ys =
( map (x ,_) ys ++ (map (y ,_) ys ++ cart-product xs ys)
≡⟨ assoc-++ (map (x ,_) ys) (map (y ,_) ys) (cart-product xs ys) ⟩
(map (x ,_) ys ++ map (y ,_) ys) ++ cart-product xs ys
≡⟨ cong (_++ cart-product xs ys) (comm-++ (map (x ,_) ys) (map (y ,_) ys)) ⟩
(map (y ,_) ys ++ map (x ,_) ys) ++ cart-product xs ys
≡⟨ sym (assoc-++ (map (y ,_) ys) (map (x ,_) ys) (cart-product xs ys)) ⟩
map (y ,_) ys ++ (map (x ,_) ys ++ cart-product xs ys)
∎
) i
cart-product (trunc xs xs′ p q i j) ys =
trunc
(cart-product xs ys) (cart-product xs′ ys)
(λ k → cart-product (p k) ys) (λ k → cart-product (q k) ys)
i j
| {
"alphanum_fraction": 0.4529339853,
"avg_line_length": 30.5794392523,
"ext": "agda",
"hexsha": "bfb2d562d242b0dab96a34ec5b7c95110841ee74",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/HITs/ListedFiniteSet/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/HITs/ListedFiniteSet/Properties.agda",
"max_line_length": 82,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/HITs/ListedFiniteSet/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1407,
"size": 3272
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Structures.TypeEqvTo where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.HITs.PropositionalTruncation
open import Cubical.Data.Sigma
open import Cubical.Foundations.SIP
open import Cubical.Foundations.Pointed
open import Cubical.Structures.Axioms
open import Cubical.Structures.Pointed
private
variable
ℓ ℓ' ℓ'' : Level
TypeEqvTo : (ℓ : Level) (X : Type ℓ') → Type (ℓ-max (ℓ-suc ℓ) ℓ')
TypeEqvTo ℓ X = TypeWithStr ℓ (λ Y → ∥ Y ≃ X ∥)
PointedEqvTo : (ℓ : Level) (X : Type ℓ') → Type (ℓ-max (ℓ-suc ℓ) ℓ')
PointedEqvTo ℓ X = TypeWithStr ℓ (λ Y → Y × ∥ Y ≃ X ∥)
module _ (X : Type ℓ') where
PointedEqvToStructure : Type ℓ → Type (ℓ-max ℓ ℓ')
PointedEqvToStructure = AxiomsStructure PointedStructure (λ Y _ → ∥ Y ≃ X ∥)
PointedEqvToEquivStr : StrEquiv PointedEqvToStructure ℓ''
PointedEqvToEquivStr = AxiomsEquivStr PointedEquivStr (λ Y _ → ∥ Y ≃ X ∥)
pointedEqvToUnivalentStr : UnivalentStr {ℓ} PointedEqvToStructure PointedEqvToEquivStr
pointedEqvToUnivalentStr = axiomsUnivalentStr PointedEquivStr {axioms = λ Y _ → ∥ Y ≃ X ∥}
(λ _ _ → squash) pointedUnivalentStr
PointedEqvToSIP : (A B : PointedEqvTo ℓ X) → A ≃[ PointedEqvToEquivStr ] B ≃ (A ≡ B)
PointedEqvToSIP = SIP pointedEqvToUnivalentStr
PointedEqvTo-sip : (A B : PointedEqvTo ℓ X) → A ≃[ PointedEqvToEquivStr ] B → (A ≡ B)
PointedEqvTo-sip A B = equivFun (PointedEqvToSIP A B)
| {
"alphanum_fraction": 0.7023498695,
"avg_line_length": 36.4761904762,
"ext": "agda",
"hexsha": "f721fa8960220e20c6140a8635addde3d867bbfa",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Structures/TypeEqvTo.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Structures/TypeEqvTo.agda",
"max_line_length": 92,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Structures/TypeEqvTo.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 579,
"size": 1532
} |
{-# OPTIONS --warning=error --safe --without-K #-}
open import LogicalFormulae
open import Numbers.Naturals.Definition
open import Maybe
module Numbers.Naturals.Subtraction where
_-N'_ : (a b : ℕ) → Maybe ℕ
zero -N' zero = yes 0
zero -N' succ b = no
succ a -N' zero = yes (succ a)
succ a -N' succ b = a -N' b
subtractZero : (a : ℕ) → a -N' 0 ≡ yes a
subtractZero zero = refl
subtractZero (succ a) = refl
| {
"alphanum_fraction": 0.6715686275,
"avg_line_length": 22.6666666667,
"ext": "agda",
"hexsha": "a2531e434f3a04d76ddaba9372275d7af90a49cb",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Numbers/Naturals/Subtraction.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Numbers/Naturals/Subtraction.agda",
"max_line_length": 50,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Numbers/Naturals/Subtraction.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 134,
"size": 408
} |
open import Common.Equality
open import Common.Prelude
NaN : Float
NaN = primFloatDiv 0.0 0.0
NaN≢-NaN : primFloatEquality NaN (primFloatNegate NaN) ≡ false
NaN≢-NaN = refl
| {
"alphanum_fraction": 0.7556818182,
"avg_line_length": 17.6,
"ext": "agda",
"hexsha": "32491e468cceb1da16730fda7cef0d45686ef852",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue2194.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue2194.agda",
"max_line_length": 62,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue2194.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 60,
"size": 176
} |
module Prelude.Strings where
import Data.String.Literals
import Data.List.Literals
open import Data.Unit
open import Agda.Builtin.FromString public
instance
isStringStringPublic = Data.String.Literals.isString
isStringListPublic = Data.List.Literals.isString
unitInstance = tt
| {
"alphanum_fraction": 0.8251748252,
"avg_line_length": 22,
"ext": "agda",
"hexsha": "4e8ad8dcaef43ed52b6daee8942ca461ee76c3c7",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2021-10-20T10:46:20.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-27T23:12:48.000Z",
"max_forks_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "WhatisRT/meta-cedille",
"max_forks_repo_path": "stdlib-exts/Prelude/Strings.agda",
"max_issues_count": 10,
"max_issues_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_issues_repo_issues_event_max_datetime": "2020-04-25T15:29:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-13T17:44:43.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "WhatisRT/meta-cedille",
"max_issues_repo_path": "stdlib-exts/Prelude/Strings.agda",
"max_line_length": 54,
"max_stars_count": 35,
"max_stars_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "WhatisRT/meta-cedille",
"max_stars_repo_path": "stdlib-exts/Prelude/Strings.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-12T22:59:10.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-13T07:44:50.000Z",
"num_tokens": 66,
"size": 286
} |
module B where
import C
| {
"alphanum_fraction": 0.76,
"avg_line_length": 6.25,
"ext": "agda",
"hexsha": "ca48559b6d8db60418372dacb4d56ad506d76c8f",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "examples/uptodate/B.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "examples/uptodate/B.agda",
"max_line_length": 14,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "examples/uptodate/B.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 7,
"size": 25
} |
{-# OPTIONS --universe-polymorphism #-}
open import Categories.Category
module Categories.Object.Exponential {o ℓ e} (C : Category o ℓ e) where
open Category C
open import Level
open import Categories.Square
import Categories.Object.Product
open Categories.Object.Product C
hiding (repack; repack≡id; repack∘; repack-cancel; up-to-iso; transport-by-iso)
import Categories.Object.Product.Morphisms
open Categories.Object.Product.Morphisms C
import Categories.Morphisms as Morphisms
record Exponential (A B : Obj) : Set (o ⊔ ℓ ⊔ e) where
field
B^A : Obj
product : Product B^A A
module product = Product product
B^A×A : Obj
B^A×A = product.A×B
field
eval : B^A×A ⇒ B
λg : {X : Obj} → (X×A : Product X A) → (Product.A×B X×A ⇒ B) → (X ⇒ B^A)
.β
: {X : Obj} → (X×A : Product X A)
→ {g : Product.A×B X×A ⇒ B}
→ (eval ∘ [ X×A ⇒ product ]first (λg X×A g) ≡ g)
.λ-unique
: {X : Obj} → (X×A : Product X A)
→ {g : Product.A×B X×A ⇒ B}
→ {h : X ⇒ B^A}
→ (eval ∘ [ X×A ⇒ product ]first h ≡ g)
→ (h ≡ λg X×A g)
.η
: ∀ {X : Obj} (X×A : Product X A)
{f : X ⇒ B^A }
→ λg X×A (eval ∘ [ X×A ⇒ product ]first f) ≡ f
η X×A {f} = sym (λ-unique X×A refl)
where open Equiv
.λ-cong
: {X : Obj}(X×A : Product X A)
→ ∀{f g}
→ (f ≡ g)
→ (λg X×A f ≡ λg X×A g)
λ-cong X×A {f}{g} f≡g = λ-unique X×A (trans (β X×A) f≡g)
where
open Equiv
.subst : ∀ {C D}
→ (p₂ : Product C A)
→ (p₃ : Product D A)
→ {f : Product.A×B p₃ ⇒ B}{g : C ⇒ D}
→ λg p₃ f ∘ g
≡ λg p₂ (f ∘ [ p₂ ⇒ p₃ ]first g)
subst {C}{D} p₂ p₃ {f}{g} = λ-unique p₂ subst-commutes
where
open HomReasoning
open Equiv
subst-commutes =
let p₁ = product in
begin
eval ∘ [ p₂ ⇒ p₁ ]first (λg p₃ f ∘ g)
↑⟨ refl ⟩∘⟨ [ p₂ ⇒ p₃ ⇒ p₁ ]first∘first ⟩
eval
∘ [ p₃ ⇒ p₁ ]first (λg p₃ f)
∘ [ p₂ ⇒ p₃ ]first g
↑⟨ assoc ⟩
(eval ∘ [ p₃ ⇒ p₁ ]first (λg p₃ f))
∘ [ p₂ ⇒ p₃ ]first g
↓⟨ β p₃ ⟩∘⟨ refl ⟩
f ∘ [ p₂ ⇒ p₃ ]first g
∎
.η-id : λg product eval ≡ id
η-id =
begin
λg product eval
↑⟨ identityʳ ⟩
λg product eval ∘ id
↓⟨ subst _ _ ⟩
λg product (eval ∘ [ product ⇒ product ]first id)
↓⟨ η product ⟩
id
∎
where
open Equiv
open HomReasoning
open Morphisms C
-- some aliases to make proof signatures less ugly
[_]eval : ∀{A B}(e₁ : Exponential A B) → Exponential.B^A×A e₁ ⇒ B
[ e₁ ]eval = Exponential.eval e₁
[_]λ : ∀{A B}(e₁ : Exponential A B)
→ {X : Obj} → (X×A : Product X A) → (Product.A×B X×A ⇒ B) → (X ⇒ Exponential.B^A e₁)
[ e₁ ]λ = Exponential.λg e₁
.λ-distrib : ∀ {A B C D}
→ (e₁ : Exponential C B)
→ (e₂ : Exponential A B)
→ (p₃ : Product D C)
→ (p₄ : Product D A)
→ (p₅ : Product (Exponential.B^A e₂) C)
→ {f : C ⇒ A}{g : Product.A×B p₄ ⇒ B}
→ [ e₁ ]λ p₃ (g ∘ [ p₃ ⇒ p₄ ]second f)
≡ [ e₁ ]λ p₅ ([ e₂ ]eval ∘ [ p₅ ⇒ Exponential.product e₂ ]second f)
∘ [ e₂ ]λ p₄ g
λ-distrib {A}{B}{C}{D} e₁ e₂ p₃ p₄ p₅ {f}{g} =
begin
[ e₁ ]λ p₃ (g ∘ [ p₃ ⇒ p₄ ]second f)
↑⟨ e₁.λ-cong p₃ eval∘second∘first ⟩
[ e₁ ]λ p₃ (([ e₂ ]eval ∘ [ p₅ ⇒ Exponential.product e₂ ]second f) ∘ [ p₃ ⇒ p₅ ]first ([ e₂ ]λ p₄ g))
↑⟨ e₁.subst p₃ p₅ ⟩
[ e₁ ]λ p₅ ([ e₂ ]eval ∘ [ p₅ ⇒ Exponential.product e₂ ]second f)
∘ [ e₂ ]λ p₄ g
∎
where
open HomReasoning
open Equiv
module e₁ = Exponential e₁
module e₂ = Exponential e₂
eval∘second∘first =
let p₁ = e₁.product in
let p₂ = e₂.product in
begin
([ e₂ ]eval ∘ [ p₅ ⇒ Exponential.product e₂ ]second f) ∘ [ p₃ ⇒ p₅ ]first ([ e₂ ]λ p₄ g)
↓⟨ assoc ⟩
[ e₂ ]eval
∘ [ p₅ ⇒ p₂ ]second f
∘ [ p₃ ⇒ p₅ ]first ([ e₂ ]λ p₄ g)
↑⟨ refl ⟩∘⟨ [ p₄ ⇒ p₂ , p₃ ⇒ p₅ ]first↔second ⟩
[ e₂ ]eval
∘ [ p₄ ⇒ p₂ ]first ([ e₂ ]λ p₄ g)
∘ [ p₃ ⇒ p₄ ]second f
↑⟨ assoc ⟩
([ e₂ ]eval ∘ [ p₄ ⇒ p₂ ]first ([ e₂ ]λ p₄ g))
∘ [ p₃ ⇒ p₄ ]second f
↓⟨ e₂.β p₄ ⟩∘⟨ refl ⟩
g ∘ [ p₃ ⇒ p₄ ]second f
∎
repack : ∀{A B} (e₁ e₂ : Exponential A B) → Exponential.B^A e₁ ⇒ Exponential.B^A e₂
repack e₁ e₂ = e₂.λg e₁.product e₁.eval
where
module e₁ = Exponential e₁
module e₂ = Exponential e₂
.repack≡id : ∀{A B} (e : Exponential A B) → repack e e ≡ id
repack≡id e = Exponential.η-id e
.repack∘ : ∀{A B} (e₁ e₂ e₃ : Exponential A B) → repack e₂ e₃ ∘ repack e₁ e₂ ≡ repack e₁ e₃
repack∘ {A} {B} e₁ e₂ e₃ =
let p₁ = product e₁ in
let p₂ = product e₂ in
begin
[ e₃ ]λ p₂ [ e₂ ]eval
∘ [ e₂ ]λ p₁ [ e₁ ]eval
↓⟨ λ-cong e₃ p₂ (introʳ (second-id p₂)) ⟩∘⟨ refl ⟩
[ e₃ ]λ p₂ ([ e₂ ]eval ∘ [ p₂ ⇒ p₂ ]second id)
∘ [ e₂ ]λ p₁ [ e₁ ]eval
↑⟨ λ-distrib e₃ e₂ p₁ p₁ p₂ ⟩
[ e₃ ]λ p₁ ([ e₁ ]eval ∘ [ p₁ ⇒ p₁ ]second id)
↑⟨ λ-cong e₃ p₁ (introʳ (second-id p₁)) ⟩
[ e₃ ]λ p₁ [ e₁ ]eval
∎
where
open Equiv
open Exponential
open HomReasoning
open GlueSquares C
.repack-cancel : ∀{A B} (e₁ e₂ : Exponential A B) → repack e₁ e₂ ∘ repack e₂ e₁ ≡ id
repack-cancel e₁ e₂ = Equiv.trans (repack∘ e₂ e₁ e₂) (repack≡id e₂)
up-to-iso : ∀{A B} (e₁ e₂ : Exponential A B) → Exponential.B^A e₁ ≅ Exponential.B^A e₂
up-to-iso e₁ e₂ = record
{ f = repack e₁ e₂
; g = repack e₂ e₁
; iso = record
{ isoˡ = repack-cancel e₂ e₁
; isoʳ = repack-cancel e₁ e₂
}
}
transport-by-iso : ∀{A B} (e : Exponential A B) → ∀ {X} → Exponential.B^A e ≅ X → Exponential A B
transport-by-iso e {X} e≅X = record
{ B^A = X
; product = X×A
; eval = e.eval
; λg = λ Y×A y → f ∘ e.λg Y×A y
; β = λ Y×A → let open HomReasoning in let open GlueSquares C in let open Equiv in begin
e.eval ∘ [ Y×A ⇒ X×A ]first (f ∘ e.λg Y×A _)
↓⟨ ∘-resp-≡ʳ (e.product.⟨⟩-cong₂ (pullˡ (cancelLeft isoˡ)) (pullˡ identityˡ)) ⟩
e.eval ∘ [ Y×A ⇒ e.product ]first (e.λg Y×A _)
↓⟨ (e.β Y×A) ⟩
_
∎
; λ-unique = λ Y×A y → let open GlueSquares C in
switch-gfˡ e≅X
(e.λ-unique Y×A
(Equiv.trans
(∘-resp-≡ʳ
(e.product.⟨⟩-cong₂
assoc
(Equiv.sym (pullˡ identityˡ))))
y)) -- look ma i can write lisp in agda --xplat
}
where
module e = Exponential e
X×A = Mobile e.product e≅X idⁱ
open _≅_ e≅X
| {
"alphanum_fraction": 0.5254077792,
"avg_line_length": 27.8427947598,
"ext": "agda",
"hexsha": "816512495170d760ee991631b111a9363680247d",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Object/Exponential.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Object/Exponential.agda",
"max_line_length": 105,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Object/Exponential.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 2821,
"size": 6376
} |
{-# OPTIONS --no-sized-types #-}
open import Common.Size renaming (↑_ to _^)
data Nat : {size : Size} -> Set where
zero : {size : Size} -> Nat {size ^}
suc : {size : Size} -> Nat {size} -> Nat {size ^}
weak : {i : Size} -> Nat {i} -> Nat {∞}
weak x = x
-- Should give error without sized types.
-- .i != ∞ of type Size
-- when checking that the expression x has type Nat
| {
"alphanum_fraction": 0.5853018373,
"avg_line_length": 23.8125,
"ext": "agda",
"hexsha": "3c18d43e3bf17aa8a001a26fb2b556a9c3670439",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/NoSizedTypes.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/NoSizedTypes.agda",
"max_line_length": 52,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/NoSizedTypes.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 117,
"size": 381
} |
module datatypes-safe where
open import bool public
open import integer public
open import list public
open import level public
open import maybe public
open import nat public
open import nat-division public
open import product public
open import sum public
open import tree public
open import trie public
open import unit public
open import vector public
| {
"alphanum_fraction": 0.837535014,
"avg_line_length": 22.3125,
"ext": "agda",
"hexsha": "cdac3831b1d25eb99e9a6a442f4137c2af39a07c",
"lang": "Agda",
"max_forks_count": 17,
"max_forks_repo_forks_event_max_datetime": "2021-11-28T20:13:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-03T22:38:15.000Z",
"max_forks_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rfindler/ial",
"max_forks_repo_path": "datatypes-safe.agda",
"max_issues_count": 8,
"max_issues_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_issues_repo_issues_event_max_datetime": "2022-03-22T03:43:34.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-07-09T22:53:38.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rfindler/ial",
"max_issues_repo_path": "datatypes-safe.agda",
"max_line_length": 31,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rfindler/ial",
"max_stars_repo_path": "datatypes-safe.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-04T15:05:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-02-06T13:09:31.000Z",
"num_tokens": 73,
"size": 357
} |
{-# OPTIONS --without-K #-}
module hott.topology.spaces.s1 where
open import hott.core
-- The universe where we work.
𝒰 = Type₀
module Definition where
private data SInternal : 𝒰 where
pointInternal : SInternal
S₁ : 𝒰
S₁ = SInternal
point : S₁
point = pointInternal
postulate loop : point ≡ point
-- the induction principle for s₁
ind-S₁ : {ℓ : Level}{B : S₁ → Type ℓ}
→ (b : B point)
→ (b ≡ b)
→ (x : S₁) → B x
ind-S₁ b x pointInternal = b
open Definition
| {
"alphanum_fraction": 0.6038095238,
"avg_line_length": 18.1034482759,
"ext": "agda",
"hexsha": "603597b74b367345f94beb07d88a4b51fee6500a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "piyush-kurur/hott",
"max_forks_repo_path": "agda/hott/topology/spaces/s1.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "piyush-kurur/hott",
"max_issues_repo_path": "agda/hott/topology/spaces/s1.agda",
"max_line_length": 40,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "piyush-kurur/hott",
"max_stars_repo_path": "agda/hott/topology/spaces/s1.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 165,
"size": 525
} |
{-# OPTIONS --safe --warning=error #-}
open import LogicalFormulae
open import Setoids.Setoids
open import Setoids.Lists
open import Functions
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Numbers.Naturals
open import Sets.FinSet
open import Groups.GroupDefinition
open import Lists.Lists
open import Orders
open import Groups.Groups
module Groups.GeneratedGroup where
data FreeCompletion {a b : _} {A : Set a} (S : Setoid {a} {b} A) : Set (a ⊔ b) where
ofLetter : A → FreeCompletion S
ofInv : A → FreeCompletion S
freeCompletionMap : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} (f : A → B) → FreeCompletion S → FreeCompletion T
freeCompletionMap f (ofLetter x) = ofLetter (f x)
freeCompletionMap f (ofInv x) = ofInv (f x)
freeInverse : {a b : _} {A : Set a} {S : Setoid {a} {b} A} (l : FreeCompletion S) → FreeCompletion S
freeInverse (ofLetter x) = ofInv x
freeInverse (ofInv x) = ofLetter x
freeCompletionSetoid : {a b : _} {A : Set a} (S : Setoid {a} {b} A) → Setoid (FreeCompletion S)
(freeCompletionSetoid S Setoid.∼ ofLetter w) (ofLetter x) = Setoid._∼_ S w x
(freeCompletionSetoid S Setoid.∼ ofLetter w) (ofInv x) = False'
(freeCompletionSetoid S Setoid.∼ ofInv w) (ofLetter x) = False'
(freeCompletionSetoid S Setoid.∼ ofInv w) (ofInv x) = Setoid._∼_ S w x
Reflexive.reflexive (Equivalence.reflexiveEq (Setoid.eq (freeCompletionSetoid S))) {ofLetter x} = Reflexive.reflexive (Equivalence.reflexiveEq (Setoid.eq S))
Reflexive.reflexive (Equivalence.reflexiveEq (Setoid.eq (freeCompletionSetoid S))) {ofInv x} = Reflexive.reflexive (Equivalence.reflexiveEq (Setoid.eq S))
Symmetric.symmetric (Equivalence.symmetricEq (Setoid.eq (freeCompletionSetoid S))) {ofLetter w} {ofLetter x} = Symmetric.symmetric (Equivalence.symmetricEq (Setoid.eq S))
Symmetric.symmetric (Equivalence.symmetricEq (Setoid.eq (freeCompletionSetoid S))) {ofLetter w} {ofInv x} ()
Symmetric.symmetric (Equivalence.symmetricEq (Setoid.eq (freeCompletionSetoid S))) {ofInv w} {ofLetter x} ()
Symmetric.symmetric (Equivalence.symmetricEq (Setoid.eq (freeCompletionSetoid S))) {ofInv w} {ofInv x} = Symmetric.symmetric (Equivalence.symmetricEq (Setoid.eq S))
Transitive.transitive (Equivalence.transitiveEq (Setoid.eq (freeCompletionSetoid S))) {ofLetter w} {ofLetter x} {ofLetter y} = Transitive.transitive (Equivalence.transitiveEq (Setoid.eq S))
Transitive.transitive (Equivalence.transitiveEq (Setoid.eq (freeCompletionSetoid S))) {ofLetter w} {ofLetter x} {ofInv y} _ ()
Transitive.transitive (Equivalence.transitiveEq (Setoid.eq (freeCompletionSetoid S))) {ofLetter w} {ofInv x} {y} ()
Transitive.transitive (Equivalence.transitiveEq (Setoid.eq (freeCompletionSetoid S))) {ofInv w} {ofLetter x} {y} ()
Transitive.transitive (Equivalence.transitiveEq (Setoid.eq (freeCompletionSetoid S))) {ofInv w} {ofInv x} {ofLetter y} _ ()
Transitive.transitive (Equivalence.transitiveEq (Setoid.eq (freeCompletionSetoid S))) {ofInv w} {ofInv x} {ofInv y} = Transitive.transitive (Equivalence.transitiveEq (Setoid.eq S))
freeCompletionMapWellDefined : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} (f : A → B) → ({x y : A} → Setoid._∼_ S x y → Setoid._∼_ T (f x) (f y)) → {x y : FreeCompletion S} → (Setoid._∼_ (freeCompletionSetoid S) x y) → (Setoid._∼_ (freeCompletionSetoid T) (freeCompletionMap f x) (freeCompletionMap f y))
freeCompletionMapWellDefined f fWD {ofLetter x} {ofLetter x₁} w1=w2 = fWD w1=w2
freeCompletionMapWellDefined f fWD {ofLetter x} {ofInv x₁} ()
freeCompletionMapWellDefined f fWD {ofInv x} {ofLetter x₁} ()
freeCompletionMapWellDefined f fWD {ofInv x} {ofInv x₁} w1=w2 = fWD w1=w2
record Word {a b : _} {A : Set a} (S : Setoid {a} {b} A) : Set (a ⊔ b) where
field
word : List (FreeCompletion S)
wordSetoid : {a b : _} {A : Set a} (S : Setoid {a} {b} A) → Setoid (Word S)
(wordSetoid S Setoid.∼ record { word = word1 }) record { word = word2 } = Setoid._∼_ (listSetoid (freeCompletionSetoid S)) word1 word2
Reflexive.reflexive (Equivalence.reflexiveEq (Setoid.eq (wordSetoid S))) {record { word = word }} = Reflexive.reflexive (Equivalence.reflexiveEq (Setoid.eq (listSetoid (freeCompletionSetoid S))))
Symmetric.symmetric (Equivalence.symmetricEq (Setoid.eq (wordSetoid S))) {record { word = word1 }} {record { word = word2 }} pr = Symmetric.symmetric (Equivalence.symmetricEq (Setoid.eq (listSetoid (freeCompletionSetoid S)))) pr
Transitive.transitive (Equivalence.transitiveEq (Setoid.eq (wordSetoid S))) {record { word = word1 }} {record { word = word2 }} {record { word = word3 }} pr1 pr2 = Transitive.transitive (Equivalence.transitiveEq (Setoid.eq (listSetoid (freeCompletionSetoid S)))) pr1 pr2
evalWord : {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} (G : Group S _+_) (w : Word S) → A
evalWord G record { word = [] } = Group.identity G
evalWord {_+_ = _+_} G record { word = (ofLetter x :: w) } = x + evalWord G record { word = w }
evalWord {_+_ = _+_} G record { word = (ofInv x :: w) } = (Group.inverse G x) + evalWord G record { word = w }
mapWord : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} (f : A → B) (w : Word S) → Word T
mapWord f record { word = word } = record { word = map (freeCompletionMap f) word }
subgroupSetoid : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} (T : Setoid {b} {d} B) {_+_ : A → A → A} (G : Group S _+_) {f : B → A} (fInj : SetoidInjection T S f) → Setoid (Word T)
Setoid._∼_ (subgroupSetoid {S = S} T G {f} fInj) w1 w2 = Setoid._∼_ S (evalWord G (mapWord f w1)) (evalWord G (mapWord f w2))
Reflexive.reflexive (Equivalence.reflexiveEq (Setoid.eq (subgroupSetoid {S = S} T G {f} fInj))) = Reflexive.reflexive (Equivalence.reflexiveEq (Setoid.eq S))
Symmetric.symmetric (Equivalence.symmetricEq (Setoid.eq (subgroupSetoid {S = S} T G {f} fInj))) = Symmetric.symmetric (Equivalence.symmetricEq (Setoid.eq S))
Transitive.transitive (Equivalence.transitiveEq (Setoid.eq (subgroupSetoid {S = S} T G {f} fInj))) = Transitive.transitive (Equivalence.transitiveEq (Setoid.eq S))
evalWordWellDefined : {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} (G : Group S _+_) (w1 w2 : Word S) → Setoid._∼_ (wordSetoid S) w1 w2 → Setoid._∼_ S (evalWord G w1) (evalWord G w2)
evalWordWellDefined {S = S} G record { word = [] } record { word = [] } w1=w2 = Reflexive.reflexive (Equivalence.reflexiveEq (Setoid.eq S))
evalWordWellDefined G record { word = [] } record { word = (x :: word) } ()
evalWordWellDefined {_+_ = _+_} G record { word = (x :: xs) } record { word = [] } ()
evalWordWellDefined {_+_ = _+_} G record { word = (ofLetter x :: xs) } record { word = (ofLetter y :: ys) } (x=y ,, snd) = Group.wellDefined G x=y (evalWordWellDefined G record { word = xs } record { word = ys } snd)
evalWordWellDefined {_+_ = _+_} G record { word = (ofLetter x :: xs) } record { word = (ofInv y :: ys) } (() ,, snd)
evalWordWellDefined {_+_ = _+_} G record { word = (ofInv x :: xs) } record { word = (ofLetter y :: ys) } (() ,, snd)
evalWordWellDefined {_+_ = _+_} G record { word = (ofInv x :: xs) } record { word = (ofInv y :: ys) } (x=y ,, snd) = Group.wellDefined G (inverseWellDefined G x=y) (evalWordWellDefined G record { word = xs } record { word = ys } snd)
mapWordWellDefined : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} (f : A → B) → ({x y : A} → (Setoid._∼_ S x y) → (Setoid._∼_ T (f x) (f y))) → {w1 : Word S} {w2 : Word S} → Setoid._∼_ (wordSetoid S) w1 w2 → Setoid._∼_ (wordSetoid T) (mapWord f w1) (mapWord f w2)
mapWordWellDefined {S = S} {T = T} f fWD {w1} {w2} w1=w2 = p
where
p : listEquality (freeCompletionSetoid T) (map (freeCompletionMap {S = S} {T = T} f) (Word.word w1)) (map (freeCompletionMap f) (Word.word w2))
p = listEqualityRespectsMap (freeCompletionSetoid S) (freeCompletionSetoid T) (freeCompletionMap {S = S} {T} f) (λ {x} {y} → freeCompletionMapWellDefined {S = S} {T = T} f fWD {x} {y}) {w1 = Word.word w1} {w2 = Word.word w2} w1=w2
subgroupOp : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} (T : Setoid {b} {d} B) {_+_ : A → A → A} (G : Group S _+_) {f : B → A} (fInj : SetoidInjection T S f) → Word T → Word T → Word T
subgroupOp T G fInj record { word = word1 } record { word = word2 } = record { word = word1 ++ word2 }
generatedSubgroup : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} (T : Setoid {b} {d} B) {_+_ : A → A → A} (G : Group S _+_) {f : B → A} (fInj : SetoidInjection T S f) → Group (subgroupSetoid T G fInj) (subgroupOp T G fInj)
Group.wellDefined (generatedSubgroup {S = S} T G {f = f} fInj) {record { word = w }} {record { word = x }} {record { word = y }} {record { word = z }} w=y x=z = need
where
need : Setoid._∼_ (subgroupSetoid T G fInj) (subgroupOp T G fInj (record { word = w }) (record { word = x })) (subgroupOp T G fInj (record { word = y }) (record { word = z }))
need = {!!}
Group.identity (generatedSubgroup T G fInj) = record { word = [] }
Group.inverse (generatedSubgroup T G fInj) record { word = word } = record { word = map freeInverse (rev word) }
Group.multAssoc (generatedSubgroup T G fInj) = {!!}
Group.multIdentRight (generatedSubgroup {S = S} T G {f = f} fInj) {a = record { word = word }} = need
where
open Setoid S
open Group G
need : evalWord G (mapWord f (record { word = word ++ [] })) ∼ evalWord G (mapWord f record { word = word })
need = {!!}
Group.multIdentLeft (generatedSubgroup {S = S} T G {f = f} fInj) = Reflexive.reflexive (Equivalence.reflexiveEq (Setoid.eq S))
Group.invLeft (generatedSubgroup {S = S} T G {f} fInj) {record { word = [] }} = Reflexive.reflexive (Equivalence.reflexiveEq (Setoid.eq S))
Group.invLeft (generatedSubgroup {S = S} T G {f} fInj) {record { word = x :: word }} = need
where
open Setoid S
open Group G
need : Setoid._∼_ (subgroupSetoid T G fInj) (record { word = (map freeInverse (rev (x :: word))) ++ (x :: word) }) (Group.identity (generatedSubgroup T G fInj))
need = {!!}
Group.invRight (generatedSubgroup T G fInj) = {!!}
| {
"alphanum_fraction": 0.6532736648,
"avg_line_length": 87.8547008547,
"ext": "agda",
"hexsha": "2b5afd805baff5e15428e8d430d9897e91cbe8c2",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Groups/GeneratedGroup.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Groups/GeneratedGroup.agda",
"max_line_length": 347,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Groups/GeneratedGroup.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 3612,
"size": 10279
} |
open import Agda.Builtin.Unit
open import Agda.Builtin.Nat
open import Agda.Builtin.Equality
open import Agda.Builtin.List
open import Agda.Builtin.Sigma
open import Agda.Builtin.Reflection renaming (bindTC to _>>=_)
data ⊥ : Set where
[_] : {A : Set} → A → List A
[ x ] = x ∷ []
vArg : {A : Set} → A → Arg A
vArg x = arg (arg-info visible relevant) x
macro
getFunDef : Name → Term → TC ⊤
getFunDef f hole = do
function cls ← getDefinition f
where _ → error
niceCls ← quoteTC cls
unify hole niceCls
where postulate error : _
noooo : (A : Set) → ⊥ → A
noooo A ()
-- Quoting the term `noooo Nat x` used to produce an absurd lambda
-- applied to `x`, which should not happen. It should instead simply
-- keep the term `noooo Nat x` as-is.
fooooo : ⊥ → Nat
fooooo x = noooo Nat x
test : getFunDef fooooo ≡
[
clause [ "x" , vArg (def (quote ⊥) []) ] [ vArg (var 0) ]
(def (quote noooo) (vArg (def (quote Nat) []) ∷ vArg (var 0 []) ∷ []))
]
test = refl
| {
"alphanum_fraction": 0.6141885326,
"avg_line_length": 24.5,
"ext": "agda",
"hexsha": "53588158911426905177e600a8a83c5e460973a9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "shlevy/agda",
"max_forks_repo_path": "test/Succeed/QuoteAbsurdClause.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/QuoteAbsurdClause.agda",
"max_line_length": 88,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/QuoteAbsurdClause.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 333,
"size": 1029
} |
{-# OPTIONS --rewriting #-}
open import Agda.Primitive
postulate
_↦_ : ∀ {i} {A : Set i} → A → A → Set i
idr : ∀ {i} {A : Set i} {a : A} → a ↦ a
{-# BUILTIN REWRITE _↦_ #-}
postulate
_==_ : ∀ {i} {A : Set i} → A → A → Set i
idp : ∀ {i} {A : Set i} {a : A} → a == a
postulate
HetEq : ∀ {i} {A B : Set i} (e : A == B) (a : A) (b : B) → Set i
HetEq↦ : ∀ {i} {A : Set i} (a b : A) → HetEq idp a b ↦ (a == b)
{-# REWRITE HetEq↦ #-}
HetEq↦2 : ∀ {i j} {A : Set i} {B : Set j} (u v : A → B) → HetEq idp u v ↦ (u == v)
HetEq↦2 u v = idr
| {
"alphanum_fraction": 0.4424131627,
"avg_line_length": 26.0476190476,
"ext": "agda",
"hexsha": "4022eaf832662e5c45714a4e54ad87bf16f2bbf3",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Succeed/Issue2090.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Succeed/Issue2090.agda",
"max_line_length": 82,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Succeed/Issue2090.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 266,
"size": 547
} |
module RedBlack where
open import Data.Nat
-- | The colour of a node.
data Color : Set where
red : Color
black : Color
-- | The red black tree
data Tree (A : Set) : ℕ -- black height
→ Color -- color of the root
→ Set
where
-- Empty node is always black
empty : Tree A 0 black
-- Both the children of the red node are black.
red : {d : ℕ}
→ Tree A d black -- left child
→ A -- element on the node
→ Tree A d black -- right child
→ Tree A d red -- The black height does not change
-- The children can be of either color
black : {d : ℕ} {cL cR : Color}
→ Tree A d cL -- left child
→ A -- element
→ Tree A d cR -- right child
→ Tree A (d + 1) black -- black height goes up by one.
-- Converts a tree with red root to a black tree. The type encodes the
-- fact that the height of the tree goes up by 1.
blacken : {A : Set} {d : ℕ}
→ Tree A d red
→ Tree A (d + 1) black
blacken (red lt x rt) = black lt x rt
| {
"alphanum_fraction": 0.5256637168,
"avg_line_length": 28.9743589744,
"ext": "agda",
"hexsha": "3c12458104e6a2583e58948d72464671dae3537a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1062c0b81f8dbb664fcc9376ba13695f0ee7ebc8",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "piyush-kurur/sample-code",
"max_forks_repo_path": "agda/RedBlack/RedBlack.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "1062c0b81f8dbb664fcc9376ba13695f0ee7ebc8",
"max_issues_repo_issues_event_max_datetime": "2017-11-01T05:48:28.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-11-01T05:48:28.000Z",
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "piyush-kurur/sample-code",
"max_issues_repo_path": "agda/RedBlack/RedBlack.agda",
"max_line_length": 70,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "1062c0b81f8dbb664fcc9376ba13695f0ee7ebc8",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "piyush-kurur/sample-code",
"max_stars_repo_path": "agda/RedBlack/RedBlack.agda",
"max_stars_repo_stars_event_max_datetime": "2017-06-20T02:19:33.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-06-19T12:34:08.000Z",
"num_tokens": 319,
"size": 1130
} |
open import Agda.Builtin.Bool
open import Agda.Builtin.Equality
open import Agda.Builtin.Sigma
open import Agda.Primitive
infixr 2 _×_
_×_ : ∀ {a b} → Set a → Set b → Set (a ⊔ b)
A × B = Σ A λ _ → B
∃-notation exists-notation :
∀ {a b} {A : Set a} → (A → Set b) → Set (a ⊔ b)
∃-notation = Σ _
exists-notation = Σ _
Σ-notation : ∀ {a b} (A : Set a) → (A → Set b) → Set (a ⊔ b)
Σ-notation = Σ
infixr 2 ∃-notation exists-notation Σ-notation
syntax ∃-notation (λ x → B) = ∃ x × B
syntax exists-notation (λ x → B) = exists x × B
syntax Σ-notation A (λ x → B) = [ x ∶ A ] × B
_ : ∃ b × b ≡ true × Bool
_ = true , refl , false
_ : exists b × b ≡ true
_ = true , refl
_ : [ b ∶ Bool ] × b ≡ true
_ = true , refl
_ : [ b₁ ∶ Bool ] × [ b₂ ∶ Bool ] × b₁ ≡ b₂
_ = true , true , refl
_ : [ b₁ ∶ Bool ] × ∃ b₂ × b₁ ≡ b₂
_ = true , true , refl
_ : [ f ∶ (Bool → Bool) ] × f ≡ λ x → x
_ = (λ x → x) , refl
data List (A : Set) : Set where
[] : List A
cons : A → List A → List A
infixr 5 cons
syntax [] = [ ]
syntax cons x xs = x consed to xs
_ : List Bool
_ = true consed to false consed to [ ]
f : List Bool → Bool
f [ ] = true
f (true consed to [ ]) = false
f (false consed to x consed to [ ]) = x
f _ = true
| {
"alphanum_fraction": 0.5129375951,
"avg_line_length": 21.9,
"ext": "agda",
"hexsha": "9a2382e2c0157592d060a3449e53d9f8cbc12a1b",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "cagix/agda",
"max_forks_repo_path": "test/Succeed/Issue5201.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "cagix/agda",
"max_issues_repo_path": "test/Succeed/Issue5201.agda",
"max_line_length": 60,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "cagix/agda",
"max_stars_repo_path": "test/Succeed/Issue5201.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 510,
"size": 1314
} |
{-# OPTIONS --rewriting #-}
open import Agda.Builtin.Bool
open import Agda.Builtin.Equality
{-# BUILTIN REWRITE _≡_ #-}
funny : true ≡ false → true ≡ false
funny x = x
{-# REWRITE funny #-}
| {
"alphanum_fraction": 0.6597938144,
"avg_line_length": 16.1666666667,
"ext": "agda",
"hexsha": "83fdce17298572c394c223bbe9fdc23cacae26f8",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue1980.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue1980.agda",
"max_line_length": 35,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue1980.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 57,
"size": 194
} |
module A.M where
import A.B.M
| {
"alphanum_fraction": 0.7096774194,
"avg_line_length": 7.75,
"ext": "agda",
"hexsha": "f3077cbfc1f511337d7a0cc63958a08978815104",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/A/M.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/A/M.agda",
"max_line_length": 16,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/A/M.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 10,
"size": 31
} |
{-# OPTIONS --type-in-type #-}
module dyn where
open import prelude
open import functors
open import poly0 public
open import prelude.Stream
open Stream
open import Data.List as L using (List)
record Dyn : Set where
constructor dyn
field
{state} : Set
{body} : ∫
pheno : ∫[ (state , λ _ → state) , body ]
open Dyn public
run : (d : Dyn) → ∫[ body d , 𝒴 ] → state d → Stream (π₁ (body d))
hd (run d@(dyn l) e s₀) = s₀ ★ l
tl (run d@(dyn l) e s₀) = run d e (s₀ # l ← hd (run d e s₀) # e ← tt)
module _ (d₁ d₂ : Dyn) where
_⊠⊠⊠_ : Dyn
_⊠⊠⊠_ = dyn (pheno d₁ ⟦⊠⟧ pheno d₂)
_⟫_ : (d : Dyn) → ∫[ body d , A ] → Dyn
d ⟫ l = dyn (pheno d ▸ l)
fun→dyn : ∀ {a b} → (a → b) → Dyn
fun→dyn f = dyn (λ a⁺ → a⁺ , f)
delay : Set → Dyn
delay s = fun→dyn (id {A = s})
| {
"alphanum_fraction": 0.558109834,
"avg_line_length": 22.3714285714,
"ext": "agda",
"hexsha": "6abec05927920494116a74f2bbdac76cf205df92",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-30T11:45:57.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-07-10T17:19:37.000Z",
"max_forks_repo_head_hexsha": "425de958985aacbd3284d3057fe21fd682e315ea",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dspivak/poly",
"max_forks_repo_path": "code-examples/agda/dyn.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "425de958985aacbd3284d3057fe21fd682e315ea",
"max_issues_repo_issues_event_max_datetime": "2022-01-12T10:06:32.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-09-02T02:29:39.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dspivak/poly",
"max_issues_repo_path": "code-examples/agda/dyn.agda",
"max_line_length": 69,
"max_stars_count": 53,
"max_stars_repo_head_hexsha": "425de958985aacbd3284d3057fe21fd682e315ea",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mstone/poly",
"max_stars_repo_path": "code-examples/agda/dyn.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T23:08:27.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-18T16:31:04.000Z",
"num_tokens": 330,
"size": 783
} |
module Categories.Coequalizer where
| {
"alphanum_fraction": 0.8888888889,
"avg_line_length": 18,
"ext": "agda",
"hexsha": "8330f6c0d2933e291d5fd541f605101de76745ab",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Coequalizer.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Coequalizer.agda",
"max_line_length": 35,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Coequalizer.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 8,
"size": 36
} |
open import Mockingbird.Forest using (Forest)
module Mockingbird.Forest.Combination.Properties {b ℓ} (forest : Forest {b} {ℓ}) where
open import Data.Product using (_×_; _,_)
open import Relation.Binary using (_Respects_)
open import Relation.Unary using (Pred; _∈_; _⊆_; ∅; _∩_)
open import Level using (Level; _⊔_)
open Forest forest
open import Mockingbird.Forest.Combination.Base forest
private
variable
x y z : Bird
p : Level
P Q : Pred Bird p
subst : P Respects _≈_ → x ≈ y → x ∈ ⟨ P ⟩ → y ∈ ⟨ P ⟩
subst respects x≈y [ x∈P ] = [ respects x≈y x∈P ]
subst respects x≈y (x₁∈⟨P⟩ ⟨∙⟩ x₂∈⟨P⟩ ∣ x₁x₂≈x) = x₁∈⟨P⟩ ⟨∙⟩ x₂∈⟨P⟩ ∣ trans x₁x₂≈x x≈y
subst′ : P Respects _≈_ → y ≈ x → x ∈ ⟨ P ⟩ → y ∈ ⟨ P ⟩
subst′ respects y≈x = subst respects (sym y≈x)
-- TODO: maybe lift ∅ to an arbitrary level p
⟨∅⟩ : ⟨ ∅ ⟩ ⊆ ∅
⟨∅⟩ (X ⟨∙⟩ Y ∣ xy≈z) = ⟨∅⟩ X
⟨_⟩⊆⟨_⟩ : ∀ {p} (P Q : Pred Bird p) → P ⊆ Q → ⟨ P ⟩ ⊆ ⟨ Q ⟩
⟨ P ⟩⊆⟨ Q ⟩ P⊆Q [ x∈P ] = [ P⊆Q x∈P ]
⟨ P ⟩⊆⟨ Q ⟩ P⊆Q (x∈⟨P⟩ ⟨∙⟩ y∈⟨P⟩ ∣ xy≈z) = ⟨ P ⟩⊆⟨ Q ⟩ P⊆Q x∈⟨P⟩ ⟨∙⟩ ⟨ P ⟩⊆⟨ Q ⟩ P⊆Q y∈⟨P⟩ ∣ xy≈z
weaken : ∀ {p} {P Q : Pred Bird p} → P ⊆ Q → ⟨ P ⟩ ⊆ ⟨ Q ⟩
weaken {P = P} {Q} = ⟨ P ⟩⊆⟨ Q ⟩
⟨_∩_⟩ : ∀ {p} (P Q : Pred Bird p) → ⟨ (P ∩ Q) ⟩ ⊆ ⟨ P ⟩ ∩ ⟨ Q ⟩
⟨ P ∩ Q ⟩ [ (x∈P , x∈Q) ] = ([ x∈P ] , [ x∈Q ])
⟨ P ∩ Q ⟩ (_⟨∙⟩_∣_ {x} {y} {z} x∈⟨P∩Q⟩ y∈⟨P∩Q⟩ xy≈z) =
let (x∈⟨P⟩ , x∈⟨Q⟩) = ⟨_∩_⟩ P Q x∈⟨P∩Q⟩
(y∈⟨P⟩ , y∈⟨Q⟩) = ⟨_∩_⟩ P Q y∈⟨P∩Q⟩
in (x∈⟨P⟩ ⟨∙⟩ y∈⟨P⟩ ∣ xy≈z , x∈⟨Q⟩ ⟨∙⟩ y∈⟨Q⟩ ∣ xy≈z)
-- NOTE: the inclusion ⟨P⟩ ∩ ⟨Q⟩ ⊆ ⟨P ∩ Q⟩ does not hold for all P and Q; let
-- for example P = {S, K}, Q = {I}, then SKK = I ∈ ⟨P⟩ ∩ ⟨Q⟩, but P ∩ Q = ∅, and
-- hence SKK = I ∉ ⟨P ∩ Q⟩.
-- TODO: formalise
| {
"alphanum_fraction": 0.4834437086,
"avg_line_length": 33.8979591837,
"ext": "agda",
"hexsha": "ee13fa0f7c41c5d38d63e192c5e18ab23e93eec2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "splintah/combinatory-logic",
"max_forks_repo_path": "Mockingbird/Forest/Combination/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "splintah/combinatory-logic",
"max_issues_repo_path": "Mockingbird/Forest/Combination/Properties.agda",
"max_line_length": 97,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "splintah/combinatory-logic",
"max_stars_repo_path": "Mockingbird/Forest/Combination/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-28T23:44:42.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-02-28T23:44:42.000Z",
"num_tokens": 958,
"size": 1661
} |
{-# OPTIONS --without-K #-}
open import HoTT
open import homotopy.RibbonCover
import homotopy.CoverClassification
module experimental.CoverClassificationCat {i} (A∙ : Ptd i)
(A-conn : is-connected 0 (fst A∙)) where
open Cover
open Gset
open homotopy.CoverClassification A∙ A-conn
private
A : Type i
A = fst A∙
a₁ : A
a₁ = snd A∙
π1A = fundamental-group A∙
-- A covering space constructed from a G-set.
cover-hom-to-gset-hom : ∀ {j}
→ {cov₁ cov₂ : Cover A j}
→ CoverHom cov₁ cov₂
→ GsetHom (cover-to-gset cov₁) (cover-to-gset cov₂)
cover-hom-to-gset-hom {cov₁ = cov₁}{cov₂} f = record
{ f = f a₁
; pres-act = λ l x → lemma₂ x l
}
where
lemma₁ : ∀ x {a₂} (p : a₁ == a₂)
→ f a₂ (transport (Fiber cov₁) p x)
== transport (Fiber cov₂) p (f a₁ x)
lemma₁ _ idp = idp
lemma₂ : ∀ x {a₂} (p : a₁ =₀ a₂)
→ f a₂ (transport₀ (Fiber cov₁) (Fiber-level cov₁ a₂) p x)
== transport₀ (Fiber cov₂) (Fiber-level cov₂ a₂) p (f a₁ x)
lemma₂ x {a₂} = Trunc-elim
(λ p → =-preserves-level 0 (Fiber-level cov₂ a₂))
(lemma₁ x {a₂})
gset-hom-to-cover-hom : ∀ {j}
→ {gset₁ gset₂ : Gset π1A j}
→ GsetHom gset₁ gset₂
→ CoverHom (gset-to-cover gset₁) (gset-to-cover gset₂)
gset-hom-to-cover-hom {gset₁ = gset₁}{gset₂} (gset-hom f pres-act) a₂ =
Ribbon-rec
{P = Ribbon A∙ gset₂ a₂}
Ribbon-level
(λ el p → trace (f el) p)
(λ el loop p →
trace (f (act gset₁ el loop)) p
=⟨ pres-act loop el |in-ctx (λ x → trace x p) ⟩
trace (act gset₂ (f el) loop) p
=⟨ paste (f el) loop p ⟩
trace (f el) (loop ∙₀ p)
∎)
| {
"alphanum_fraction": 0.5669982446,
"avg_line_length": 28.9661016949,
"ext": "agda",
"hexsha": "0a9cd91dcada88f5be96131c1bbcf4a1cb1db370",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cmknapp/HoTT-Agda",
"max_forks_repo_path": "theorems/experimental/CoverClassificationCat.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cmknapp/HoTT-Agda",
"max_issues_repo_path": "theorems/experimental/CoverClassificationCat.agda",
"max_line_length": 73,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cmknapp/HoTT-Agda",
"max_stars_repo_path": "theorems/experimental/CoverClassificationCat.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 652,
"size": 1709
} |
open import Nat
open import Prelude
open import contexts
open import dynamics-core
open import type-assignment-unicity
module canonical-indeterminate-forms where
-- this type gives somewhat nicer syntax for the output of the canonical
-- forms lemma for indeterminates at num type
data cif-num : (Δ : hctx) (d : ihexp) → Set where
CIFNPlus1 : ∀{Δ d} →
Σ[ d1 ∈ ihexp ] Σ[ d2 ∈ ihexp ]
((d == d1 ·+ d2) ×
(Δ , ∅ ⊢ d1 :: num) ×
(Δ , ∅ ⊢ d2 :: num) ×
(d1 indet) ×
(d2 final)
)
→ cif-num Δ d
CIFNPlus2 : ∀{Δ d} →
Σ[ d1 ∈ ihexp ] Σ[ d2 ∈ ihexp ]
((d == d1 ·+ d2) ×
(Δ , ∅ ⊢ d1 :: num) ×
(Δ , ∅ ⊢ d2 :: num) ×
(d1 final) ×
(d2 indet)
)
→ cif-num Δ d
CIFNAp : ∀{Δ d} →
Σ[ d1 ∈ ihexp ] Σ[ d2 ∈ ihexp ] Σ[ τ2 ∈ htyp ]
((d == d1 ∘ d2) ×
(Δ , ∅ ⊢ d1 :: τ2 ==> num) ×
(Δ , ∅ ⊢ d2 :: τ2) ×
(d1 indet) ×
(d2 final) ×
((τ3 τ4 τ3' τ4' : htyp) (d1' : ihexp) → d1 ≠ (d1' ⟨ τ3 ==> τ4 ⇒ τ3' ==> τ4' ⟩))
)
→ cif-num Δ d
CIFNCase : ∀{Δ d} →
Σ[ d1 ∈ ihexp ] Σ[ x ∈ Nat ] Σ[ d2 ∈ ihexp ] Σ[ y ∈ Nat ] Σ[ d3 ∈ ihexp ]
Σ[ τ1 ∈ htyp ] Σ[ τ2 ∈ htyp ]
((d == case d1 x d2 y d3) ×
(Δ , ∅ ⊢ d1 :: τ1 ⊕ τ2) ×
(Δ , ■ (x , τ1) ⊢ d2 :: num) ×
(Δ , ■ (y , τ2) ⊢ d3 :: num) ×
(d1 indet) ×
((τ : htyp) (d' : ihexp) → d1 ≠ inl τ d') ×
((τ : htyp) (d' : ihexp) → d1 ≠ inr τ d') ×
((τ3 τ4 τ3' τ4' : htyp) (d' : ihexp) →
d1 ≠ (d' ⟨(τ3 ⊕ τ4) ⇒ (τ3' ⊕ τ4')⟩))
)
→ cif-num Δ d
CIFNFst : ∀{Δ d} →
Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ]
((d == fst d') ×
(Δ , ∅ ⊢ d' :: num ⊠ τ') ×
(d' indet) ×
((d1 d2 : ihexp) → d' ≠ ⟨ d1 , d2 ⟩) ×
((τ3 τ4 τ3' τ4' : htyp) (d'' : ihexp) →
d' ≠ (d'' ⟨(τ3 ⊠ τ4) ⇒ (τ3' ⊠ τ4')⟩))
)
→ cif-num Δ d
CIFNSnd : ∀{Δ d} →
Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ]
((d == snd d') ×
(Δ , ∅ ⊢ d' :: τ' ⊠ num) ×
(d' indet) ×
((d1 d2 : ihexp) → d' ≠ ⟨ d1 , d2 ⟩) ×
((τ3 τ4 τ3' τ4' : htyp) (d'' : ihexp) →
d' ≠ (d'' ⟨(τ3 ⊠ τ4) ⇒ (τ3' ⊠ τ4')⟩))
)
→ cif-num Δ d
CIFNEHole : ∀{Δ d} →
Σ[ u ∈ Nat ] Σ[ σ ∈ env ] Σ[ Γ ∈ tctx ]
((d == ⦇-⦈⟨ u , σ ⟩) ×
((u :: num [ Γ ]) ∈ Δ) ×
(Δ , ∅ ⊢ σ :s: Γ)
)
→ cif-num Δ d
CIFNNEHole : ∀{Δ d} →
Σ[ u ∈ Nat ] Σ[ σ ∈ env ] Σ[ Γ ∈ tctx ] Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ]
((d == ⦇⌜ d' ⌟⦈⟨ u , σ ⟩) ×
(Δ , ∅ ⊢ d' :: τ') ×
(d' final) ×
((u :: num [ Γ ]) ∈ Δ) ×
(Δ , ∅ ⊢ σ :s: Γ)
)
→ cif-num Δ d
CIFNCast : ∀{Δ d} →
Σ[ d' ∈ ihexp ]
((d == d' ⟨ ⦇-⦈ ⇒ num ⟩) ×
(Δ , ∅ ⊢ d' :: ⦇-⦈) ×
(d' indet) ×
((d'' : ihexp) (τ' : htyp) → d' ≠ (d'' ⟨ τ' ⇒ ⦇-⦈ ⟩))
)
→ cif-num Δ d
CIFNFailedCast : ∀{Δ d} →
Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ]
((d == d' ⟨ τ' ⇒⦇-⦈⇏ num ⟩) ×
(Δ , ∅ ⊢ d' :: τ') ×
(τ' ground) ×
(τ' ≠ num)
)
→ cif-num Δ d
canonical-indeterminate-forms-num : ∀{Δ d} →
Δ , ∅ ⊢ d :: num →
d indet →
cif-num Δ d
canonical-indeterminate-forms-num TANum ()
canonical-indeterminate-forms-num (TAPlus wt wt₁) (IPlus1 x x₁) = CIFNPlus1 (_ , _ , refl , wt , wt₁ , x , x₁)
canonical-indeterminate-forms-num (TAPlus wt wt₁) (IPlus2 x x₁) = CIFNPlus2 (_ , _ , refl , wt , wt₁ , x , x₁)
canonical-indeterminate-forms-num (TAVar x₁) ()
canonical-indeterminate-forms-num (TAAp wt wt₁) (IAp x ind x₁) = CIFNAp (_ , _ , _ , refl , wt , wt₁ , ind , x₁ , x)
canonical-indeterminate-forms-num {Δ = Δ} (TACase {τ1 = τ1} {τ2 = τ2} {x = x} {d1 = d1} {y = y} {d2 = d2} wt _ wt₁ _ wt₂) (ICase ninl ninr ncast ind) = CIFNCase (_ , _ , _ , _ , _ , _ , _ , refl , wt , tr (λ Γ' → Δ , Γ' ⊢ d1 :: num) (extend-empty x τ1) wt₁ , tr (λ Γ' → Δ , Γ' ⊢ d2 :: num) (extend-empty y τ2) wt₂ , ind , ninl , ninr , ncast)
canonical-indeterminate-forms-num (TAFst wt) (IFst x x₁ ind) = CIFNFst (_ , _ , refl , wt , ind , x , x₁)
canonical-indeterminate-forms-num (TASnd wt) (ISnd x x₁ ind) = CIFNSnd (_ , _ , refl , wt , ind , x , x₁)
canonical-indeterminate-forms-num (TAEHole x x₁) IEHole = CIFNEHole (_ , _ , _ , refl , x , x₁)
canonical-indeterminate-forms-num (TANEHole x wt x₁) (INEHole x₂) = CIFNNEHole (_ , _ , _ , _ , _ , refl , wt , x₂ , x , x₁)
canonical-indeterminate-forms-num (TACast wt x) (ICastHoleGround x₁ ind x₂) = CIFNCast (_ , refl , wt , ind , x₁)
canonical-indeterminate-forms-num (TAFailedCast x x₁ x₂ x₃) (IFailedCast x₄ x₅ x₆ x₇) = CIFNFailedCast (_ , _ , refl , x , x₅ , x₇)
-- this type gives somewhat nicer syntax for the output of the canonical
-- forms lemma for indeterminates at arrow type
data cif-arr : (Δ : hctx) (d : ihexp) (τ1 τ2 : htyp) → Set where
CIFAEHole : ∀{d Δ τ1 τ2} →
Σ[ u ∈ Nat ] Σ[ σ ∈ env ] Σ[ Γ ∈ tctx ]
((d == ⦇-⦈⟨ u , σ ⟩) ×
((u :: (τ1 ==> τ2) [ Γ ]) ∈ Δ) ×
(Δ , ∅ ⊢ σ :s: Γ)
)
→ cif-arr Δ d τ1 τ2
CIFANEHole : ∀{d Δ τ1 τ2} →
Σ[ u ∈ Nat ] Σ[ σ ∈ env ] Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ] Σ[ Γ ∈ tctx ]
((d == ⦇⌜ d' ⌟⦈⟨ u , σ ⟩) ×
(Δ , ∅ ⊢ d' :: τ') ×
(d' final) ×
((u :: (τ1 ==> τ2) [ Γ ]) ∈ Δ) ×
(Δ , ∅ ⊢ σ :s: Γ)
)
→ cif-arr Δ d τ1 τ2
CIFAAp : ∀{d Δ τ1 τ2} →
Σ[ d1 ∈ ihexp ] Σ[ d2 ∈ ihexp ] Σ[ τ2' ∈ htyp ] Σ[ τ1 ∈ htyp ] Σ[ τ2 ∈ htyp ]
((d == d1 ∘ d2) ×
(Δ , ∅ ⊢ d1 :: τ2' ==> (τ1 ==> τ2)) ×
(Δ , ∅ ⊢ d2 :: τ2') ×
(d1 indet) ×
(d2 final) ×
((τ3 τ4 τ3' τ4' : htyp) (d1' : ihexp) → d1 ≠ (d1' ⟨ τ3 ==> τ4 ⇒ τ3' ==> τ4' ⟩))
)
→ cif-arr Δ d τ1 τ2
CIFACase : ∀{Δ d τ1 τ2} →
Σ[ d1 ∈ ihexp ] Σ[ x ∈ Nat ] Σ[ d2 ∈ ihexp ] Σ[ y ∈ Nat ] Σ[ d3 ∈ ihexp ]
Σ[ τ3 ∈ htyp ] Σ[ τ4 ∈ htyp ]
((d == case d1 x d2 y d3) ×
(Δ , ∅ ⊢ d1 :: τ3 ⊕ τ4) ×
(Δ , ■ (x , τ3) ⊢ d2 :: τ1 ==> τ2) ×
(Δ , ■ (y , τ4) ⊢ d3 :: τ1 ==> τ2) ×
(d1 indet) ×
((τ : htyp) (d' : ihexp) → d1 ≠ inl τ d') ×
((τ : htyp) (d' : ihexp) → d1 ≠ inr τ d') ×
((τ5 τ6 τ5' τ6' : htyp) (d' : ihexp) →
d1 ≠ (d' ⟨(τ5 ⊕ τ6) ⇒ (τ5' ⊕ τ6')⟩))
)
→ cif-arr Δ d τ1 τ2
CIFAFst : ∀{Δ d τ1 τ2} →
Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ]
((d == fst d') ×
(Δ , ∅ ⊢ d' :: (τ1 ==> τ2) ⊠ τ') ×
(d' indet) ×
((d1 d2 : ihexp) → d' ≠ ⟨ d1 , d2 ⟩) ×
((τ3 τ4 τ3' τ4' : htyp) (d'' : ihexp) →
d' ≠ (d'' ⟨(τ3 ⊠ τ4) ⇒ (τ3' ⊠ τ4')⟩))
)
→ cif-arr Δ d τ1 τ2
CIFASnd : ∀{Δ d τ1 τ2} →
Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ]
((d == snd d') ×
(Δ , ∅ ⊢ d' :: τ' ⊠ (τ1 ==> τ2)) ×
(d' indet) ×
((d1 d2 : ihexp) → d' ≠ ⟨ d1 , d2 ⟩) ×
((τ3 τ4 τ3' τ4' : htyp) (d'' : ihexp) →
d' ≠ (d'' ⟨(τ3 ⊠ τ4) ⇒ (τ3' ⊠ τ4')⟩))
)
→ cif-arr Δ d τ1 τ2
CIFACast : ∀{d Δ τ1 τ2} →
Σ[ d' ∈ ihexp ] Σ[ τ1 ∈ htyp ] Σ[ τ2 ∈ htyp ] Σ[ τ1' ∈ htyp ] Σ[ τ2' ∈ htyp ]
((d == d' ⟨ (τ1' ==> τ2') ⇒ (τ1 ==> τ2) ⟩) ×
(Δ , ∅ ⊢ d' :: τ1' ==> τ2') ×
(d' indet) ×
((τ1' ==> τ2') ≠ (τ1 ==> τ2))
)
→ cif-arr Δ d τ1 τ2
CIFACastHole : ∀{d Δ τ1 τ2} →
Σ[ d' ∈ ihexp ]
((d == (d' ⟨ ⦇-⦈ ⇒ ⦇-⦈ ==> ⦇-⦈ ⟩)) ×
(τ1 == ⦇-⦈) ×
(τ2 == ⦇-⦈) ×
(Δ , ∅ ⊢ d' :: ⦇-⦈) ×
(d' indet) ×
((d'' : ihexp) (τ' : htyp) → d' ≠ (d'' ⟨ τ' ⇒ ⦇-⦈ ⟩))
)
→ cif-arr Δ d τ1 τ2
CIFAFailedCast : ∀{d Δ τ1 τ2} →
Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ]
((d == (d' ⟨ τ' ⇒⦇-⦈⇏ ⦇-⦈ ==> ⦇-⦈ ⟩) ) ×
(τ1 == ⦇-⦈) ×
(τ2 == ⦇-⦈) ×
(Δ , ∅ ⊢ d' :: τ') ×
(τ' ground) ×
(τ' ≠ (⦇-⦈ ==> ⦇-⦈))
)
→ cif-arr Δ d τ1 τ2
canonical-indeterminate-forms-arr : ∀{Δ d τ1 τ2 } →
Δ , ∅ ⊢ d :: (τ1 ==> τ2) →
d indet →
cif-arr Δ d τ1 τ2
canonical-indeterminate-forms-arr (TAVar x₁) ()
canonical-indeterminate-forms-arr (TALam _ wt) ()
canonical-indeterminate-forms-arr (TAAp wt wt₁) (IAp x ind x₁) = CIFAAp (_ , _ , _ , _ , _ , refl , wt , wt₁ , ind , x₁ , x)
canonical-indeterminate-forms-arr {Δ = Δ} (TACase {τ1 = τ1} {τ2 = τ2} {τ = τ3 ==> τ4} {x = x} {d1 = d1} {y = y} {d2 = d2} wt _ wt₁ _ wt₂) (ICase ninl ninr ncast ind) = CIFACase (_ , _ , _ , _ , _ , _ , _ , refl , wt , tr (λ Γ' → Δ , Γ' ⊢ d1 :: τ3 ==> τ4) (extend-empty x τ1) wt₁ , tr (λ Γ' → Δ , Γ' ⊢ d2 :: τ3 ==> τ4) (extend-empty y τ2) wt₂ , ind , ninl , ninr , ncast)
canonical-indeterminate-forms-arr (TAFst wt) (IFst x x₁ ind) = CIFAFst (_ , _ , refl , wt , ind , x , x₁)
canonical-indeterminate-forms-arr (TASnd wt) (ISnd x x₁ ind) = CIFASnd (_ , _ , refl , wt , ind , x , x₁)
canonical-indeterminate-forms-arr (TAEHole x x₁) IEHole = CIFAEHole (_ , _ , _ , refl , x , x₁)
canonical-indeterminate-forms-arr (TANEHole x wt x₁) (INEHole x₂) = CIFANEHole (_ , _ , _ , _ , _ , refl , wt , x₂ , x , x₁)
canonical-indeterminate-forms-arr (TACast wt x) (ICastArr x₁ ind) = CIFACast (_ , _ , _ , _ , _ , refl , wt , ind , x₁)
canonical-indeterminate-forms-arr (TACast wt TCHole2) (ICastHoleGround x₁ ind GArrHole) = CIFACastHole (_ , refl , refl , refl , wt , ind , x₁)
canonical-indeterminate-forms-arr (TAFailedCast x x₁ GArrHole x₃) (IFailedCast x₄ x₅ GArrHole x₇) = CIFAFailedCast (_ , _ , refl , refl , refl , x , x₅ , x₇)
-- this type gives somewhat nicer syntax for the output of the canonical
-- forms lemma for indeterminates at sum type
data cif-sum : (Δ : hctx) (d : ihexp) (τ1 τ2 : htyp) → Set where
CIFSEHole : ∀{d Δ τ1 τ2} →
Σ[ u ∈ Nat ] Σ[ σ ∈ env ] Σ[ Γ ∈ tctx ]
((d == ⦇-⦈⟨ u , σ ⟩) ×
((u :: (τ1 ⊕ τ2) [ Γ ]) ∈ Δ) ×
(Δ , ∅ ⊢ σ :s: Γ)
)
→ cif-sum Δ d τ1 τ2
CIFSNEHole : ∀{d Δ τ1 τ2} →
Σ[ u ∈ Nat ] Σ[ σ ∈ env ] Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ] Σ[ Γ ∈ tctx ]
((d == ⦇⌜ d' ⌟⦈⟨ u , σ ⟩) ×
(Δ , ∅ ⊢ d' :: τ') ×
(d' final) ×
((u :: (τ1 ⊕ τ2) [ Γ ]) ∈ Δ) ×
(Δ , ∅ ⊢ σ :s: Γ)
)
→ cif-sum Δ d τ1 τ2
CIFSAp : ∀{d Δ τ1 τ2} →
Σ[ d1 ∈ ihexp ] Σ[ d2 ∈ ihexp ] Σ[ τ2' ∈ htyp ] Σ[ τ1 ∈ htyp ] Σ[ τ2 ∈ htyp ]
((d == d1 ∘ d2) ×
(Δ , ∅ ⊢ d1 :: τ2' ==> (τ1 ⊕ τ2)) ×
(Δ , ∅ ⊢ d2 :: τ2') ×
(d1 indet) ×
(d2 final) ×
((τ3 τ4 τ3' τ4' : htyp) (d1' : ihexp) → d1 ≠ (d1' ⟨ τ3 ==> τ4 ⇒ τ3' ==> τ4' ⟩))
)
→ cif-sum Δ d τ1 τ2
CIFSInl : ∀{Δ d τ1 τ2} →
Σ[ d' ∈ ihexp ]
((d == inl τ2 d') ×
(Δ , ∅ ⊢ d' :: τ1) ×
(d' indet)
)
→ cif-sum Δ d τ1 τ2
CIFSInr : ∀{Δ d τ1 τ2} →
Σ[ d' ∈ ihexp ]
((d == inr τ1 d') ×
(Δ , ∅ ⊢ d' :: τ2) ×
(d' indet)
)
→ cif-sum Δ d τ1 τ2
CIFSCase : ∀{Δ d τ1 τ2} →
Σ[ d1 ∈ ihexp ] Σ[ x ∈ Nat ] Σ[ d2 ∈ ihexp ] Σ[ y ∈ Nat ] Σ[ d3 ∈ ihexp ]
Σ[ τ3 ∈ htyp ] Σ[ τ4 ∈ htyp ]
((d == case d1 x d2 y d3) ×
(Δ , ∅ ⊢ d1 :: τ3 ⊕ τ4) ×
(Δ , ■ (x , τ3) ⊢ d2 :: τ1 ⊕ τ2) ×
(Δ , ■ (y , τ4) ⊢ d3 :: τ1 ⊕ τ2) ×
(d1 indet) ×
((τ : htyp) (d' : ihexp) → d1 ≠ inl τ d') ×
((τ : htyp) (d' : ihexp) → d1 ≠ inr τ d') ×
((τ5 τ6 τ5' τ6' : htyp) (d' : ihexp) →
d1 ≠ (d' ⟨(τ5 ⊕ τ6) ⇒ (τ5' ⊕ τ6')⟩))
)
→ cif-sum Δ d τ1 τ2
CIFSFst : ∀{Δ d τ1 τ2} →
Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ]
((d == fst d') ×
(Δ , ∅ ⊢ d' :: (τ1 ⊕ τ2) ⊠ τ') ×
(d' indet) ×
((d1 d2 : ihexp) → d' ≠ ⟨ d1 , d2 ⟩) ×
((τ3 τ4 τ3' τ4' : htyp) (d'' : ihexp) →
d' ≠ (d'' ⟨(τ3 ⊠ τ4) ⇒ (τ3' ⊠ τ4')⟩))
)
→ cif-sum Δ d τ1 τ2
CIFSSnd : ∀{Δ d τ1 τ2} →
Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ]
((d == snd d') ×
(Δ , ∅ ⊢ d' :: τ' ⊠ (τ1 ⊕ τ2)) ×
(d' indet) ×
((d1 d2 : ihexp) → d' ≠ ⟨ d1 , d2 ⟩) ×
((τ3 τ4 τ3' τ4' : htyp) (d'' : ihexp) →
d' ≠ (d'' ⟨(τ3 ⊠ τ4) ⇒ (τ3' ⊠ τ4')⟩))
)
→ cif-sum Δ d τ1 τ2
CIFSCast : ∀{d Δ τ1 τ2} →
Σ[ d' ∈ ihexp ] Σ[ τ1 ∈ htyp ] Σ[ τ2 ∈ htyp ] Σ[ τ1' ∈ htyp ] Σ[ τ2' ∈ htyp ]
((d == d' ⟨ (τ1' ⊕ τ2') ⇒ (τ1 ⊕ τ2) ⟩) ×
(Δ , ∅ ⊢ d' :: τ1' ⊕ τ2') ×
(d' indet) ×
((τ1' ⊕ τ2') ≠ (τ1 ⊕ τ2))
)
→ cif-sum Δ d τ1 τ2
CIFSCastHole : ∀{d Δ τ1 τ2} →
Σ[ d' ∈ ihexp ]
((d == (d' ⟨ ⦇-⦈ ⇒ ⦇-⦈ ⊕ ⦇-⦈ ⟩)) ×
(τ1 == ⦇-⦈) ×
(τ2 == ⦇-⦈) ×
(Δ , ∅ ⊢ d' :: ⦇-⦈) ×
(d' indet) ×
((d'' : ihexp) (τ' : htyp) → d' ≠ (d'' ⟨ τ' ⇒ ⦇-⦈ ⟩))
)
→ cif-sum Δ d τ1 τ2
CIFSFailedCast : ∀{d Δ τ1 τ2} →
Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ]
((d == (d' ⟨ τ' ⇒⦇-⦈⇏ ⦇-⦈ ⊕ ⦇-⦈ ⟩) ) ×
(τ1 == ⦇-⦈) ×
(τ2 == ⦇-⦈) ×
(Δ , ∅ ⊢ d' :: τ') ×
(τ' ground) ×
(τ' ≠ (⦇-⦈ ⊕ ⦇-⦈))
)
→ cif-sum Δ d τ1 τ2
canonical-indeterminate-forms-sum : ∀{Δ d τ1 τ2 } →
Δ , ∅ ⊢ d :: (τ1 ⊕ τ2) →
d indet →
cif-sum Δ d τ1 τ2
canonical-indeterminate-forms-sum (TAAp wt wt₁) (IAp x ind x₁) = CIFSAp (_ , _ , _ , _ , _ , refl , wt , wt₁ , ind , x₁ , x)
canonical-indeterminate-forms-sum (TAInl wt) (IInl ind) = CIFSInl (_ , refl , wt , ind)
canonical-indeterminate-forms-sum (TAInr wt) (IInr ind) = CIFSInr (_ , refl , wt , ind)
canonical-indeterminate-forms-sum {Δ = Δ} (TACase {τ1 = τ1} {τ2 = τ2} {τ = τ3 ⊕ τ4} {x = x} {d1 = d1} {y = y} {d2 = d2} wt _ wt₁ _ wt₂) (ICase ninl ninr ncast ind) = CIFSCase (_ , _ , _ , _ , _ , _ , _ , refl , wt , tr (λ Γ' → Δ , Γ' ⊢ d1 :: (τ3 ⊕ τ4)) (extend-empty x τ1) wt₁ , tr (λ Γ' → Δ , Γ' ⊢ d2 :: (τ3 ⊕ τ4)) (extend-empty y τ2) wt₂ , ind , ninl , ninr , ncast)
canonical-indeterminate-forms-sum (TAFst wt) (IFst x x₁ ind) = CIFSFst (_ , _ , refl , wt , ind , x , x₁)
canonical-indeterminate-forms-sum (TASnd wt) (ISnd x x₁ ind) = CIFSSnd (_ , _ , refl , wt , ind , x , x₁)
canonical-indeterminate-forms-sum (TAEHole x x₁) IEHole = CIFSEHole (_ , _ , _ , refl , x , x₁)
canonical-indeterminate-forms-sum (TANEHole x wt x₁) (INEHole x₂) = CIFSNEHole (_ , _ , _ , _ , _ , refl , wt , x₂ , x , x₁)
canonical-indeterminate-forms-sum (TACast wt x) (ICastSum x₁ ind) = CIFSCast (_ , _ , _ , _ , _ , refl , wt , ind , x₁)
canonical-indeterminate-forms-sum (TACast wt x) (ICastHoleGround x₁ ind GSumHole) = CIFSCastHole (_ , refl , refl , refl , wt , ind , x₁)
canonical-indeterminate-forms-sum (TAFailedCast wt x x₁ x₂) (IFailedCast x₃ x₄ GSumHole x₆) = CIFSFailedCast (_ , _ , refl , refl , refl , wt , x₄ , x₆)
canonical-indeterminate-forms-sum (TAVar x) ()
-- this type gives somewhat nicer syntax for the output of the canonical
-- forms lemma for indeterminates at product type
data cif-prod : (Δ : hctx) (d : ihexp) (τ1 τ2 : htyp) → Set where
CIFPEHole : ∀{d Δ τ1 τ2} →
Σ[ u ∈ Nat ] Σ[ σ ∈ env ] Σ[ Γ ∈ tctx ]
((d == ⦇-⦈⟨ u , σ ⟩) ×
((u :: (τ1 ⊠ τ2) [ Γ ]) ∈ Δ) ×
(Δ , ∅ ⊢ σ :s: Γ)
)
→ cif-prod Δ d τ1 τ2
CIFPNEHole : ∀{d Δ τ1 τ2} →
Σ[ u ∈ Nat ] Σ[ σ ∈ env ] Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ] Σ[ Γ ∈ tctx ]
((d == ⦇⌜ d' ⌟⦈⟨ u , σ ⟩) ×
(Δ , ∅ ⊢ d' :: τ') ×
(d' final) ×
((u :: (τ1 ⊠ τ2) [ Γ ]) ∈ Δ) ×
(Δ , ∅ ⊢ σ :s: Γ)
)
→ cif-prod Δ d τ1 τ2
CIFPAp : ∀{d Δ τ1 τ2} →
Σ[ d1 ∈ ihexp ] Σ[ d2 ∈ ihexp ] Σ[ τ2' ∈ htyp ] Σ[ τ1 ∈ htyp ] Σ[ τ2 ∈ htyp ]
((d == d1 ∘ d2) ×
(Δ , ∅ ⊢ d1 :: τ2' ==> (τ1 ⊠ τ2)) ×
(Δ , ∅ ⊢ d2 :: τ2') ×
(d1 indet) ×
(d2 final) ×
((τ3 τ4 τ3' τ4' : htyp) (d1' : ihexp) → d1 ≠ (d1' ⟨ τ3 ==> τ4 ⇒ τ3' ==> τ4' ⟩))
)
→ cif-prod Δ d τ1 τ2
CIFPCase : ∀{Δ d τ1 τ2} →
Σ[ d1 ∈ ihexp ] Σ[ x ∈ Nat ] Σ[ d2 ∈ ihexp ] Σ[ y ∈ Nat ] Σ[ d3 ∈ ihexp ]
Σ[ τ3 ∈ htyp ] Σ[ τ4 ∈ htyp ]
((d == case d1 x d2 y d3) ×
(Δ , ∅ ⊢ d1 :: τ3 ⊕ τ4) ×
(Δ , ■ (x , τ3) ⊢ d2 :: τ1 ⊠ τ2) ×
(Δ , ■ (y , τ4) ⊢ d3 :: τ1 ⊠ τ2) ×
(d1 indet) ×
((τ : htyp) (d' : ihexp) → d1 ≠ inl τ d') ×
((τ : htyp) (d' : ihexp) → d1 ≠ inr τ d') ×
((τ5 τ6 τ5' τ6' : htyp) (d' : ihexp) →
d1 ≠ (d' ⟨(τ5 ⊕ τ6) ⇒ (τ5' ⊕ τ6')⟩))
)
→ cif-prod Δ d τ1 τ2
CIFPPair1 : ∀{Δ d τ1 τ2} →
Σ[ d1 ∈ ihexp ] Σ[ d2 ∈ ihexp ]
((d == ⟨ d1 , d2 ⟩) ×
(Δ , ∅ ⊢ d1 :: τ1) ×
(Δ , ∅ ⊢ d2 :: τ2) ×
d1 indet ×
d2 final
)
→ cif-prod Δ d τ1 τ2
CIFPPair2 : ∀{Δ d τ1 τ2} →
Σ[ d1 ∈ ihexp ] Σ[ d2 ∈ ihexp ]
((d == ⟨ d1 , d2 ⟩) ×
(Δ , ∅ ⊢ d1 :: τ1) ×
(Δ , ∅ ⊢ d2 :: τ2) ×
d1 final ×
d2 indet
)
→ cif-prod Δ d τ1 τ2
CIFPFst : ∀{Δ d τ1 τ2} →
Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ]
((d == fst d') ×
(Δ , ∅ ⊢ d' :: (τ1 ⊠ τ2) ⊠ τ') ×
(d' indet) ×
((d1 d2 : ihexp) → d' ≠ ⟨ d1 , d2 ⟩) ×
((τ3 τ4 τ3' τ4' : htyp) (d'' : ihexp) →
d' ≠ (d'' ⟨(τ3 ⊠ τ4) ⇒ (τ3' ⊠ τ4')⟩))
)
→ cif-prod Δ d τ1 τ2
CIFPSnd : ∀{Δ d τ1 τ2} →
Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ]
((d == snd d') ×
(Δ , ∅ ⊢ d' :: τ' ⊠ (τ1 ⊠ τ2)) ×
(d' indet) ×
((d1 d2 : ihexp) → d' ≠ ⟨ d1 , d2 ⟩) ×
((τ3 τ4 τ3' τ4' : htyp) (d'' : ihexp) →
d' ≠ (d'' ⟨(τ3 ⊠ τ4) ⇒ (τ3' ⊠ τ4')⟩))
)
→ cif-prod Δ d τ1 τ2
CIFPCast : ∀{d Δ τ1 τ2} →
Σ[ d' ∈ ihexp ] Σ[ τ1 ∈ htyp ] Σ[ τ2 ∈ htyp ] Σ[ τ1' ∈ htyp ] Σ[ τ2' ∈ htyp ]
((d == d' ⟨ (τ1' ⊠ τ2') ⇒ (τ1 ⊠ τ2) ⟩) ×
(Δ , ∅ ⊢ d' :: τ1' ⊠ τ2') ×
(d' indet) ×
((τ1' ⊠ τ2') ≠ (τ1 ⊠ τ2))
)
→ cif-prod Δ d τ1 τ2
CIFPCastHole : ∀{d Δ τ1 τ2} →
Σ[ d' ∈ ihexp ]
((d == (d' ⟨ ⦇-⦈ ⇒ ⦇-⦈ ⊠ ⦇-⦈ ⟩)) ×
(τ1 == ⦇-⦈) ×
(τ2 == ⦇-⦈) ×
(Δ , ∅ ⊢ d' :: ⦇-⦈) ×
(d' indet) ×
((d'' : ihexp) (τ' : htyp) → d' ≠ (d'' ⟨ τ' ⇒ ⦇-⦈ ⟩))
)
→ cif-prod Δ d τ1 τ2
CIFPFailedCast : ∀{d Δ τ1 τ2} →
Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ]
((d == (d' ⟨ τ' ⇒⦇-⦈⇏ ⦇-⦈ ⊠ ⦇-⦈ ⟩) ) ×
(τ1 == ⦇-⦈) ×
(τ2 == ⦇-⦈) ×
(Δ , ∅ ⊢ d' :: τ') ×
(τ' ground) ×
(τ' ≠ (⦇-⦈ ⊠ ⦇-⦈))
)
→ cif-prod Δ d τ1 τ2
canonical-indeterminate-forms-prod : ∀{Δ d τ1 τ2} →
Δ , ∅ ⊢ d :: (τ1 ⊠ τ2) →
d indet →
cif-prod Δ d τ1 τ2
canonical-indeterminate-forms-prod (TAVar x) ()
canonical-indeterminate-forms-prod (TAAp wt wt₁) (IAp x ind x₁) = CIFPAp (_ , _ , _ , _ , _ , refl , wt , wt₁ , ind , x₁ , x)
canonical-indeterminate-forms-prod {Δ = Δ} (TACase {τ1 = τ1} {τ2 = τ2} {τ = τ3 ⊠ τ4} {x = x} {d1 = d1} {y = y} {d2 = d2} wt _ wt₁ _ wt₂) (ICase ninl ninr ncast ind) = CIFPCase (_ , _ , _ , _ , _ , _ , _ , refl , wt , tr (λ Γ' → Δ , Γ' ⊢ d1 :: (τ3 ⊠ τ4)) (extend-empty x τ1) wt₁ , tr (λ Γ' → Δ , Γ' ⊢ d2 :: (τ3 ⊠ τ4)) (extend-empty y τ2) wt₂ , ind , ninl , ninr , ncast)
canonical-indeterminate-forms-prod (TAPair wt wt₁) (IPair1 ind x) = CIFPPair1 (_ , _ , refl , wt , wt₁ , ind , x)
canonical-indeterminate-forms-prod (TAPair wt wt₁) (IPair2 x ind) = CIFPPair2 (_ , _ , refl , wt , wt₁ , x , ind)
canonical-indeterminate-forms-prod (TAFst wt) (IFst x x₁ ind) = CIFPFst (_ , _ , refl , wt , ind , x , x₁)
canonical-indeterminate-forms-prod (TASnd wt) (ISnd x x₁ ind) = CIFPSnd (_ , _ , refl , wt , ind , x , x₁)
canonical-indeterminate-forms-prod (TAEHole x x₁) IEHole = CIFPEHole (_ , _ , _ , refl , x , x₁)
canonical-indeterminate-forms-prod (TANEHole x wt x₁) (INEHole x₂) = CIFPNEHole (_ , _ , _ , _ , _ , refl , wt , x₂ , x , x₁)
canonical-indeterminate-forms-prod (TACast wt x) (ICastProd x₁ ind) = CIFPCast (_ , _ , _ , _ , _ , refl , wt , ind , x₁)
canonical-indeterminate-forms-prod (TACast wt x) (ICastHoleGround x₁ ind GProdHole) = CIFPCastHole (_ , refl , refl , refl , wt , ind , x₁)
canonical-indeterminate-forms-prod (TAFailedCast wt x GProdHole x₂) (IFailedCast x₃ x₄ GProdHole x₆) = CIFPFailedCast (_ , _ , refl , refl , refl , wt , x₄ , x₆)
-- this type gives somewhat nicer syntax for the output of the canonical
-- forms lemma for indeterminates at hole type
data cif-hole : (Δ : hctx) (d : ihexp) → Set where
CIFHEHole : ∀{Δ d} →
Σ[ u ∈ Nat ] Σ[ σ ∈ env ] Σ[ Γ ∈ tctx ]
((d == ⦇-⦈⟨ u , σ ⟩) ×
((u :: ⦇-⦈ [ Γ ]) ∈ Δ) ×
(Δ , ∅ ⊢ σ :s: Γ)
)
→ cif-hole Δ d
CIFHNEHole : ∀{Δ d} →
Σ[ u ∈ Nat ] Σ[ σ ∈ env ] Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ] Σ[ Γ ∈ tctx ]
((d == ⦇⌜ d' ⌟⦈⟨ u , σ ⟩) ×
(Δ , ∅ ⊢ d' :: τ') ×
(d' final) ×
((u :: ⦇-⦈ [ Γ ]) ∈ Δ) ×
(Δ , ∅ ⊢ σ :s: Γ)
)
→ cif-hole Δ d
CIFHAp : ∀{Δ d} →
Σ[ d1 ∈ ihexp ] Σ[ d2 ∈ ihexp ] Σ[ τ2 ∈ htyp ]
((d == d1 ∘ d2) ×
(Δ , ∅ ⊢ d1 :: (τ2 ==> ⦇-⦈)) ×
(Δ , ∅ ⊢ d2 :: τ2) ×
(d1 indet) ×
(d2 final) ×
((τ3 τ4 τ3' τ4' : htyp) (d1' : ihexp) → d1 ≠ (d1' ⟨ τ3 ==> τ4 ⇒ τ3' ==> τ4' ⟩))
)
→ cif-hole Δ d
CIFHCase : ∀{Δ d} →
Σ[ d1 ∈ ihexp ] Σ[ x ∈ Nat ] Σ[ d2 ∈ ihexp ] Σ[ y ∈ Nat ] Σ[ d3 ∈ ihexp ]
Σ[ τ1 ∈ htyp ] Σ[ τ2 ∈ htyp ]
((d == case d1 x d2 y d3) ×
(Δ , ∅ ⊢ d1 :: τ1 ⊕ τ2) ×
(Δ , ■ (x , τ1) ⊢ d2 :: ⦇-⦈) ×
(Δ , ■ (y , τ2) ⊢ d3 :: ⦇-⦈) ×
(d1 indet) ×
((τ : htyp) (d' : ihexp) → d1 ≠ inl τ d') ×
((τ : htyp) (d' : ihexp) → d1 ≠ inr τ d') ×
((τ3 τ4 τ3' τ4' : htyp) (d' : ihexp) →
d1 ≠ (d' ⟨(τ3 ⊕ τ4) ⇒ (τ3' ⊕ τ4')⟩))
)
→ cif-hole Δ d
CIFHFst : ∀{Δ d} →
Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ]
((d == fst d') ×
(Δ , ∅ ⊢ d' :: ⦇-⦈ ⊠ τ') ×
(d' indet) ×
((d1 d2 : ihexp) → d' ≠ ⟨ d1 , d2 ⟩) ×
((τ3 τ4 τ3' τ4' : htyp) (d'' : ihexp) →
d' ≠ (d'' ⟨(τ3 ⊠ τ4) ⇒ (τ3' ⊠ τ4')⟩))
)
→ cif-hole Δ d
CIFHSnd : ∀{Δ d} →
Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ]
((d == snd d') ×
(Δ , ∅ ⊢ d' :: τ' ⊠ ⦇-⦈) ×
(d' indet) ×
((d1 d2 : ihexp) → d' ≠ ⟨ d1 , d2 ⟩) ×
((τ3 τ4 τ3' τ4' : htyp) (d'' : ihexp) →
d' ≠ (d'' ⟨(τ3 ⊠ τ4) ⇒ (τ3' ⊠ τ4')⟩))
)
→ cif-hole Δ d
CIFHCast : ∀{Δ d} →
Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ]
((d == d' ⟨ τ' ⇒ ⦇-⦈ ⟩) ×
(Δ , ∅ ⊢ d' :: τ') ×
(τ' ground) ×
(d' indet)
)
→ cif-hole Δ d
canonical-indeterminate-forms-hole : ∀{Δ d} →
Δ , ∅ ⊢ d :: ⦇-⦈ →
d indet →
cif-hole Δ d
canonical-indeterminate-forms-hole (TAVar x₁) ()
canonical-indeterminate-forms-hole (TAAp wt wt₁) (IAp x ind x₁) = CIFHAp (_ , _ , _ , refl , wt , wt₁ , ind , x₁ , x)
canonical-indeterminate-forms-hole {Δ = Δ} (TACase {τ1 = τ1} {τ2 = τ2} {x = x} {d1 = d1} {y = y} {d2 = d2} wt _ wt₁ _ wt₂) (ICase ninl ninr ncast ind) = CIFHCase (_ , _ , _ , _ , _ , _ , _ , refl , wt , tr (λ Γ' → Δ , Γ' ⊢ d1 :: ⦇-⦈) (extend-empty x τ1) wt₁ , tr (λ Γ' → Δ , Γ' ⊢ d2 :: ⦇-⦈) (extend-empty y τ2) wt₂ , ind , ninl , ninr , ncast)
canonical-indeterminate-forms-hole (TAFst wt) (IFst x x₁ ind) = CIFHFst (_ , _ , refl , wt , ind , x , x₁)
canonical-indeterminate-forms-hole (TASnd wt) (ISnd x x₁ ind) = CIFHSnd (_ , _ , refl , wt , ind , x , x₁)
canonical-indeterminate-forms-hole (TAEHole x x₁) IEHole = CIFHEHole (_ , _ , _ , refl , x , x₁)
canonical-indeterminate-forms-hole (TANEHole x wt x₁) (INEHole x₂) = CIFHNEHole (_ , _ , _ , _ , _ , refl , wt , x₂ , x , x₁)
canonical-indeterminate-forms-hole (TACast wt x) (ICastGroundHole x₁ ind) = CIFHCast (_ , _ , refl , wt , x₁ , ind)
canonical-indeterminate-forms-hole (TACast wt x) (ICastHoleGround x₁ ind ())
canonical-indeterminate-forms-hole (TAFailedCast x x₁ () x₃) (IFailedCast x₄ x₅ x₆ x₇)
canonical-indeterminate-forms-coverage : ∀{Δ d τ} →
Δ , ∅ ⊢ d :: τ →
d indet →
τ ≠ num →
((τ1 : htyp) (τ2 : htyp) → τ ≠ (τ1 ==> τ2)) →
((τ1 : htyp) (τ2 : htyp) → τ ≠ (τ1 ⊕ τ2)) →
((τ1 : htyp) (τ2 : htyp) → τ ≠ (τ1 ⊠ τ2)) →
τ ≠ ⦇-⦈ →
⊥
canonical-indeterminate-forms-coverage {τ = num} wt ind nn na ns np nh = nn refl
canonical-indeterminate-forms-coverage {τ = ⦇-⦈} wt ind nn na ns np nh = nh refl
canonical-indeterminate-forms-coverage {τ = τ ==> τ₁} wt ind nn na ns np nh = na τ τ₁ refl
canonical-indeterminate-forms-coverage {τ = τ ⊕ τ₁} wt ind nn na ns np nh = ns τ τ₁ refl
canonical-indeterminate-forms-coverage {τ = τ ⊠ τ₁} wt ind nn na ns np nh = np τ τ₁ refl
| {
"alphanum_fraction": 0.4045346527,
"avg_line_length": 43.9537671233,
"ext": "agda",
"hexsha": "130c88586c792a20223d1530f41a858361a6801c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnut-agda",
"max_forks_repo_path": "canonical-indeterminate-forms.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazelnut-agda",
"max_issues_repo_path": "canonical-indeterminate-forms.agda",
"max_line_length": 372,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazelnut-agda",
"max_stars_repo_path": "canonical-indeterminate-forms.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 11598,
"size": 25669
} |
------------------------------------------------------------------------------
-- Testing the FOL schemata
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOT.FOL.SchemataATP where
open import FOL.Base
------------------------------------------------------------------------------
postulate id₁ : {A₁ : D → Set} → ∀ {x} → A₁ x → A₁ x
{-# ATP prove id₁ #-}
id₂ : {A₁ : D → Set} → ∀ {x} → A₁ x → A₁ x
id₂ {A} {x} = prf
where
postulate prf : A x → A x
{-# ATP prove prf #-}
| {
"alphanum_fraction": 0.3414634146,
"avg_line_length": 29.0416666667,
"ext": "agda",
"hexsha": "ef758dba1d104aa39536561b1ee40d2496663a5d",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/FOT/FOL/SchemataATP.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/FOT/FOL/SchemataATP.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/FOT/FOL/SchemataATP.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 157,
"size": 697
} |
module Unit where
record Unit : Set where
constructor unit
{-# COMPILE GHC Unit = data () (()) #-}
| {
"alphanum_fraction": 0.6346153846,
"avg_line_length": 13,
"ext": "agda",
"hexsha": "686bcbc6e0f87743d63f7ccc3812413dc442bd2b",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z",
"max_forks_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "stephanadls/state-dependent-gui",
"max_forks_repo_path": "src/Unit.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "stephanadls/state-dependent-gui",
"max_issues_repo_path": "src/Unit.agda",
"max_line_length": 39,
"max_stars_count": 23,
"max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/ooAgda",
"max_stars_repo_path": "src/Unit.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z",
"num_tokens": 26,
"size": 104
} |
{-# OPTIONS --without-K --safe --exact-split #-}
module Math.Googology.Function.Properties where
-- agda-stdlib
open import Data.Nat
open import Data.Nat.Properties
open import Data.Nat.GeneralisedArithmetic using (fold)
open import Data.List
open import Function
open import Relation.Binary.PropositionalEquality
-- agda-misc
open import Math.Googology.Function
open ≤-Reasoning
------------------------------------------------------------------------
-- Properties of hyperoperation
H-rec : ∀ n a b → H (suc n) a (suc b) ≡ H n a (H (suc n) a b)
H-rec zero a b = refl
H-rec (suc zero) a b = refl
H-rec (suc (suc n)) a b = refl
-- H₀ is successor.
H-suc : ∀ a b → H 0 a b ≡ suc b
H-suc a b = refl
-- H₁ is addition.
H-+ : ∀ a b → H 1 a b ≡ a + b
H-+ a 0 = sym $ +-identityʳ a
H-+ a (suc b) = begin-equality
suc (H 1 a b) ≡⟨ cong suc $ H-+ a b ⟩
suc (a + b) ≡⟨⟩
suc a + b ≡⟨ sym $ +-suc a b ⟩
a + suc b ∎
-- H₂ is multiplication.
H-* : ∀ a b → H 2 a b ≡ a * b
H-* a 0 = sym $ *-zeroʳ a
H-* a (suc b) = begin-equality
H 1 a (H 2 a b) ≡⟨ cong (H 1 a) $ H-* a b ⟩
H 1 a (a * b) ≡⟨ H-+ a (a * b) ⟩
a + a * b ≡⟨ sym $ *-suc a b ⟩
a * suc b ∎
-- H₃ is exponentiation.
H-^ : ∀ a b → H 3 a b ≡ a ^ b
H-^ a 0 = refl
H-^ a (suc b) = begin-equality
H 2 a (H 3 a b) ≡⟨ cong (H 2 a) $ H-^ a b ⟩
H 2 a (a ^ b) ≡⟨ H-* a (a ^ b) ⟩
a * (a ^ b) ∎
-- Hₙ(a, 1) = a (n ≥ 2)
H[2+n,a,1]≡a : ∀ n a → H (2 + n) a 1 ≡ a
H[2+n,a,1]≡a 0 a = refl
H[2+n,a,1]≡a (suc n) a = begin-equality
H (suc (suc (suc n))) a 1 ≡⟨ H-rec (suc (suc n)) a 0 ⟩
H (2 + n) a 1 ≡⟨ H[2+n,a,1]≡a n a ⟩
a ∎
-- a ↑ⁿ 1 ≡ a
a↑ⁿ1≡a : ∀ a n → a ↑[ n ] 1 ≡ a
a↑ⁿ1≡a a n = H[2+n,a,1]≡a n a
-- Hₙ(2, 2) = 4 (n ≥ 1)
H[1+n,2,2]≡4 : ∀ n → H (1 + n) 2 2 ≡ 4
H[1+n,2,2]≡4 0 = refl
H[1+n,2,2]≡4 (suc n) = begin-equality
H (suc (suc n)) 2 (suc 1) ≡⟨ H-rec (suc n) 2 1 ⟩
H (suc n) 2 (H (suc (suc n)) 2 1) ≡⟨ cong (H (suc n) 2) $ H[2+n,a,1]≡a n 2 ⟩
H (suc n) 2 2 ≡⟨ H[1+n,2,2]≡4 n ⟩
4 ∎
-- Hₙ(1, b) = 1 (n ≥ 3)
H[3+n,1,b]≡1 : ∀ n b → H (3 + n) 1 b ≡ 1
H[3+n,1,b]≡1 0 b = trans (H-^ 1 b) (^-zeroˡ b)
H[3+n,1,b]≡1 (suc n) 0 = refl
H[3+n,1,b]≡1 (suc n) (suc b) = H[3+n,1,b]≡1 n (H (4 + n) 1 b)
-- Hₙ(a, a) = H₁₊ₙ(a, 2) (n ≥ 1)
H[1+n,a,a]≡H[2+n,a,2] : ∀ n a → H (1 + n) a a ≡ H (2 + n) a 2
H[1+n,a,a]≡H[2+n,a,2] n a = sym lemma where
lemma : H (2 + n) a 2 ≡ H (1 + n) a a
lemma = begin-equality
H (suc (suc n)) a 2
≡⟨ H-rec (suc n) a 1 ⟩
H (suc n) a (H (suc (suc n)) a 1)
≡⟨ cong (H (suc n) a) $ H[2+n,a,1]≡a n a ⟩
H (suc n) a a
∎
H-is-fold : ∀ n a b → H (3 + n) a b ≡ fold 1 (H (2 + n) a) b
H-is-fold n a 0 = refl
H-is-fold n a (suc b) = cong (H (2 + n) a) $ H-is-fold n a b
H[1+n,2,3]≡H[n,2,4] : ∀ n → H (1 + n) 2 3 ≡ H n 2 4
H[1+n,2,3]≡H[n,2,4] 0 = refl
H[1+n,2,3]≡H[n,2,4] (suc n) = begin-equality
H (2 + n) 2 3
≡⟨ H-rec (1 + n) 2 2 ⟩
H (1 + n) 2 (H (2 + n) 2 2)
≡⟨ cong (H (1 + n) 2) $ H[1+n,2,2]≡4 (1 + n) ⟩
H (1 + n) 2 4
∎
H[2+n,0,1]≡0 : ∀ n → H (2 + n) 0 1 ≡ 0
H[2+n,0,1]≡0 zero = refl
H[2+n,0,1]≡0 (suc n) = H[2+n,0,1]≡0 n
H[4+n,0,2*b]≡1 : ∀ n b → H (4 + n) 0 (2 * b) ≡ 1
H[4+n,0,1+2*b]≡0 : ∀ n b → H (4 + n) 0 (1 + 2 * b) ≡ 0
H[4+n,0,2*b]≡1 n zero = refl
H[4+n,0,2*b]≡1 n (suc b) = begin-equality
H (3 + n) 0 (H (4 + n) 0 (b + (suc (b + 0))))
≡⟨ cong (λ v → H (3 + n) 0 (H (4 + n) 0 v)) $ +-suc b (b + 0) ⟩
H (3 + n) 0 (H (4 + n) 0 (1 + 2 * b))
≡⟨ cong (H (3 + n) 0) $ H[4+n,0,1+2*b]≡0 n b ⟩
H (3 + n) 0 0
≡⟨⟩
1
∎
H[4+n,0,1+2*b]≡0 n b = begin-equality
H (3 + n) 0 (H (4 + n) 0 (2 * b))
≡⟨ cong (H (3 + n) 0) $ H[4+n,0,2*b]≡1 n b ⟩
H (3 + n) 0 1
≡⟨ H[2+n,0,1]≡0 (suc n) ⟩
0
∎
------------------------------------------------------------------------
-- Properties of `ack`
private
ack-H-helper :
(P : ℕ → ℕ → Set) →
(∀ n → P 0 n) →
(∀ m → P m 1 → P (suc m) 0) →
(∀ m n → P (suc m) n → (∀ n′ → P m n′) → P (suc m) (suc n)) →
∀ m n → P m n
ack-H-helper P P[0,n] P[m,0] P[m,n] = go where
go : ∀ m n → P m n
go 0 n = P[0,n] n
go (suc m) 0 = P[m,0] m (go m 1)
go (suc m) (suc n) = P[m,n] m n (go (suc m) n) (go m)
-- Ackermann function can be expressed in terms of hyperoperation.
-- 3 + Ack(m, n) = Hₙ(2, 3 + n)
ack-H : ∀ m n → 3 + ack m n ≡ H m 2 (3 + n)
ack-H = ack-H-helper P (λ _ → refl) P[m,0] P[m,n]
where
P : ℕ → ℕ → Set
P m n = 3 + ack m n ≡ H m 2 (3 + n)
P[m,0] : ∀ m → P m 1 → P (suc m) 0
P[m,0] m P[m,1] = trans P[m,1] (sym $ H[1+n,2,3]≡H[n,2,4] m)
P[m,n] : ∀ m n → P (suc m) n → (∀ n′ → P m n′) → P (suc m) (suc n)
P[m,n] m n P[m′,n] P[m,n′] = begin-equality
3 + ack m (ack (1 + m) n) ≡⟨ P[m,n′] (ack (1 + m) n) ⟩
H m 2 (3 + ack (1 + m) n) ≡⟨ cong (H m 2) $ P[m′,n] ⟩
H m 2 (H (1 + m) 2 (3 + n)) ≡⟨ sym $ H-rec m 2 (3 + n) ⟩
H (1 + m) 2 (4 + n) ∎
iter : (ℕ → ℕ) → ℕ → ℕ
iter f 0 = f 1
iter f (suc n) = f (iter f n)
iter-is-fold : ∀ f n → iter f n ≡ fold (f 1) f n
iter-is-fold f zero = refl
iter-is-fold f (suc n) = cong f (iter-is-fold f n)
ack-is-fold′ : ∀ m n → ack m n ≡ fold suc iter m n
ack-is-fold′ 0 n = refl
ack-is-fold′ (suc m) 0 = ack-is-fold′ m 1
ack-is-fold′ (suc m) (suc n) = begin-equality
ack m (ack (suc m) n)
≡⟨ ack-is-fold′ m (ack (suc m) n) ⟩
fold suc iter m (ack (suc m) n)
≡⟨ cong (fold suc iter m) $ ack-is-fold′ (suc m) n ⟩
fold suc iter m (iter (fold suc iter m) n)
∎
ack-is-fold : ∀ m n → ack m n ≡ fold suc (λ f n → fold (f 1) f n) m n
ack-is-fold zero n = refl
ack-is-fold (suc m) zero = ack-is-fold m 1
ack-is-fold (suc m) (suc n) =
trans (ack-is-fold m (ack (suc m) n))
(cong (fold suc (λ f n → fold (f 1) f n) m) (ack-is-fold (suc m) n))
| {
"alphanum_fraction": 0.4308313699,
"avg_line_length": 30.9479166667,
"ext": "agda",
"hexsha": "af32c30418a26090e835988e61a44ccdd5ea5f0b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rei1024/agda-misc",
"max_forks_repo_path": "Math/Googology/Function/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rei1024/agda-misc",
"max_issues_repo_path": "Math/Googology/Function/Properties.agda",
"max_line_length": 78,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rei1024/agda-misc",
"max_stars_repo_path": "Math/Googology/Function/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z",
"num_tokens": 3123,
"size": 5942
} |
{-# OPTIONS --without-K #-}
open import HoTT.Base
open import HoTT.Equivalence
module HoTT.Identity.Unit where
open variables
=𝟏-equiv : {x y : 𝟏 {i}} → (x == y) ≃ 𝟏 {j}
=𝟏-equiv {i} {j} {★} {★} = f , qinv→isequiv (g , η , ε)
where
f : {x y : 𝟏} → x == y → 𝟏 {j}
f _ = ★
g : {x y : 𝟏} → 𝟏 {j} → x == y
g {★} {★} _ = refl
η : g ∘ f ~ id
η refl = refl
ε : f ∘ g {★} {★} ~ id
ε ★ = refl
| {
"alphanum_fraction": 0.4465558195,
"avg_line_length": 21.05,
"ext": "agda",
"hexsha": "d31690d21ed577629062231bbef5a4df6be00558",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508",
"max_forks_repo_licenses": [
"0BSD"
],
"max_forks_repo_name": "michaelforney/hott",
"max_forks_repo_path": "HoTT/Identity/Unit.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"0BSD"
],
"max_issues_repo_name": "michaelforney/hott",
"max_issues_repo_path": "HoTT/Identity/Unit.agda",
"max_line_length": 55,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508",
"max_stars_repo_licenses": [
"0BSD"
],
"max_stars_repo_name": "michaelforney/hott",
"max_stars_repo_path": "HoTT/Identity/Unit.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 205,
"size": 421
} |
module Algebra.FreeSemiring where
open import Prelude
open import Algebra
data 𝑅 : Type where
_+_ : 𝑅 → 𝑅 → 𝑅
_*_ : 𝑅 → 𝑅 → 𝑅
1# : 𝑅
0# : 𝑅
+-comm : Commutative _+_
+-assoc : Associative _+_
*-assoc : Associative _*_
0+ : Identityˡ _+_ 0#
+0 : Identityʳ _+_ 0#
1* : Identityˡ _*_ 1#
*1 : Identityʳ _*_ 1#
0* : Zeroˡ _*_ 0#
*0 : Zeroʳ _*_ 0#
⟨+⟩* : _*_ Distributesˡ _+_
*⟨+⟩ : _*_ Distributesʳ _+_
semiring𝑅 : Semiring ℓzero
semiring𝑅 .Semiring.nearSemiring .NearSemiring.𝑅 = 𝑅
semiring𝑅 .Semiring.nearSemiring .NearSemiring._+_ = _+_
semiring𝑅 .Semiring.nearSemiring .NearSemiring._*_ = _*_
semiring𝑅 .Semiring.nearSemiring .NearSemiring.1# = 1#
semiring𝑅 .Semiring.nearSemiring .NearSemiring.0# = 0#
semiring𝑅 .Semiring.nearSemiring .NearSemiring.+-assoc = +-assoc
semiring𝑅 .Semiring.nearSemiring .NearSemiring.*-assoc = *-assoc
semiring𝑅 .Semiring.nearSemiring .NearSemiring.0+ = 0+
semiring𝑅 .Semiring.nearSemiring .NearSemiring.+0 = +0
semiring𝑅 .Semiring.nearSemiring .NearSemiring.1* = 1*
semiring𝑅 .Semiring.nearSemiring .NearSemiring.*1 = *1
semiring𝑅 .Semiring.nearSemiring .NearSemiring.0* = 0*
semiring𝑅 .Semiring.nearSemiring .NearSemiring.⟨+⟩* = ⟨+⟩*
semiring𝑅 .Semiring.+-comm = +-comm
semiring𝑅 .Semiring.*0 = *0
semiring𝑅 .Semiring.*⟨+⟩ = *⟨+⟩
-- open import Algebra.SemiringLiterals semiring𝑅
-- open import Literals.Number
-- open import Data.Unit.UniversePolymorphic
-- ex : 𝑅
-- ex = 410928
| {
"alphanum_fraction": 0.7051104972,
"avg_line_length": 30.1666666667,
"ext": "agda",
"hexsha": "882bd0b966fc2e04bae2d15efadb38efb71ea2d2",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Algebra/FreeSemiring.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Algebra/FreeSemiring.agda",
"max_line_length": 64,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Algebra/FreeSemiring.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 618,
"size": 1448
} |
{-# OPTIONS --universe-polymorphism #-}
module Categories.Agda where
open import Level
import Relation.Binary
import Function.Equality
import Categories.Support.Equivalence
import Categories.Support.SetoidFunctions
open import Categories.Support.PropositionalEquality
open import Categories.Category
open import Categories.Functor using (Functor)
Sets : ∀ o → Category _ _ _
Sets o = record
{ Obj = Set o
; _⇒_ = λ d c → d → c
; _≡_ = λ f g → ∀ {x} → f x ≣ g x
; _∘_ = λ f g x → f (g x)
; id = λ x → x
; assoc = ≣-refl
; identityˡ = ≣-refl
; identityʳ = ≣-refl
; equiv = record { refl = ≣-refl; sym = s; trans = t }
; ∘-resp-≡ = ∘-resp-≡′
}
where
s : {A B : Set o} → {i j : A → B} → ({x : A} → i x ≣ j x) → {x : A} → j x ≣ i x
s f {x} rewrite f {x} = ≣-refl
t : {A B : Set o} {i j k : A → B} → ({x : A} → i x ≣ j x) → ({x : A} → j x ≣ k x) → {x : A} → i x ≣ k x
t f g {x} rewrite f {x} | g {x} = ≣-refl
∘-resp-≡′ : {A B C : Set o} {f h : B → C} {g i : A → B} →
(∀ {x} → f x ≣ h x) →
(∀ {x} → g x ≣ i x) →
(∀ {x} → f (g x) ≣ h (i x))
∘-resp-≡′ {g = g} f≡h g≡i {x} rewrite f≡h {g x} | g≡i {x} = ≣-refl
-- use standard library setoids here, not our special irrelevant ones
Setoids : ∀ c ℓ → Category (suc (ℓ ⊔ c)) (ℓ ⊔ c) (ℓ ⊔ c)
Setoids c ℓ = record
{ Obj = Setoid c ℓ
; _⇒_ = _⟶_
; _≡_ = λ {X} {Y} → _≡′_ {X} {Y}
; _∘_ = _∘′_
; id = id′
; assoc = λ {_} {_} {_} {D} → Setoid.refl D
; identityˡ = λ {_} {B} → Setoid.refl B
; identityʳ = λ {_} {B} → Setoid.refl B
; equiv = λ {A} {B} → record
{ refl = Setoid.refl B
; sym = λ f → Setoid.sym B f
; trans = λ f g → Setoid.trans B f g
}
; ∘-resp-≡ = λ {A} {B} {C} {f} {h} {g} {i} → ∘-resp-≡′ {A} {B} {C} {f} {h} {g} {i}
}
where
infix 4 _≡′_
open Function.Equality using (_⟨$⟩_; cong; _⟶_) renaming (_∘_ to _∘′_; id to id′)
open Relation.Binary using (Setoid; module Setoid; Rel)
_≡′_ : ∀ {X Y} → Rel (X ⟶ Y) _
_≡′_ {X} {Y} f g = ∀ {x} → Setoid._≈_ Y (f ⟨$⟩ x) (g ⟨$⟩ x)
.∘-resp-≡′ : ∀ {A B C} {f h : B ⟶ C} {g i : A ⟶ B} → f ≡′ h → g ≡′ i → f ∘′ g ≡′ h ∘′ i
∘-resp-≡′ {C = C} {h = h} f≡h g≡i {x} = Setoid.trans C f≡h (cong h g≡i)
-- setoids with irrelevant equality
ISetoids : ∀ c ℓ → Category (suc (ℓ ⊔ c)) (ℓ ⊔ c) (ℓ ⊔ c)
ISetoids c ℓ = record
{ Obj = Setoid c ℓ
; _⇒_ = _⟶_
; _≡_ = λ {A B} → Setoid._≈_ (A ⇨ B)
; _∘_ = _∙_
; id = id′
; assoc = λ {A B C D} {f g h} →
cong (h ∙ g ∙ f)
; identityˡ = λ {A B f} → cong f
; identityʳ = λ {A B f} → cong f
; equiv = λ {A B} → Setoid.isEquivalence (A ⇨ B)
; ∘-resp-≡ = λ f≡h g≡i x≡y → f≡h (g≡i x≡y)
}
where
open Relation.Binary using (Rel)
open Categories.Support.Equivalence
open Categories.Support.SetoidFunctions renaming (id to id′)
Lift-IS : ∀ {c ℓ} a b → Functor (ISetoids c ℓ) (ISetoids (c ⊔ a) (ℓ ⊔ b))
Lift-IS {c} {ℓ} a b = record {
F₀ = Lift-setoid {c} {ℓ} {a} {b};
F₁ = λ f → record { _⟨$⟩_ = λ x → lift (f ⟨$⟩ (lower x)); cong = λ eq → lift (cong f (lower eq)) };
identity = λ x → x;
homomorphism = λ {_} {_} {_} {f} {g} eq → lift (cong g (cong f (lower eq)));
F-resp-≡ = λ eq₀ eq₁ → lift (eq₀ (lower eq₁)) }
where
open import Categories.Support.Equivalence
open Categories.Support.SetoidFunctions renaming (id to id′)
| {
"alphanum_fraction": 0.4945858941,
"avg_line_length": 32.8557692308,
"ext": "agda",
"hexsha": "50dc0cd6f8297945ae40a6f9f3636be8b46ed53a",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Agda.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Agda.agda",
"max_line_length": 118,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Agda.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 1531,
"size": 3417
} |
--
-- Created by Dependently-Typed Lambda Calculus on 2021-03-18
-- lambe
-- Author: dplaindoux
--
{-# OPTIONS --without-K --safe #-}
module Lambe where
open import Relation.Nullary
using (yes; no)
open import Data.List
using (List; []; [_]; _∷_; _++_)
open import Data.String
using (String; _≟_)
open import Relation.Binary.PropositionalEquality
using (_≢_; refl; _≡_)
module Kind where
{-
κ =
| ⋆
| κ → κ
| K
K = {mi:κi}I
-}
data t : Set where
* : t
_->_ : t → t → t
K : List (String*t) → t
| {
"alphanum_fraction": 0.553633218,
"avg_line_length": 15.6216216216,
"ext": "agda",
"hexsha": "ecbbd213f0170c62a71258facaec9d91b4717d1f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a39f8bb966594586d5fff257f5d6a1db939d2c97",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "d-plaindoux/lambe",
"max_forks_repo_path": "formalism/lambe.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a39f8bb966594586d5fff257f5d6a1db939d2c97",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "d-plaindoux/lambe",
"max_issues_repo_path": "formalism/lambe.agda",
"max_line_length": 61,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "a39f8bb966594586d5fff257f5d6a1db939d2c97",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "d-plaindoux/lambe-spec",
"max_stars_repo_path": "formalism/lambe.agda",
"max_stars_repo_stars_event_max_datetime": "2019-08-22T15:42:10.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-04-18T08:40:29.000Z",
"num_tokens": 192,
"size": 578
} |
open import Prelude
open import Nat
module List where
data List (A : Set) : Set where
[] : List A
_::_ : A → List A → List A
map : {A B : Set} → (A → B) → (List A) → List B
map f [] = []
map f (x :: L) = (f x) :: map f L
foldr : {A B : Set} → (A → B → B) → B → List A → B
foldr f b [] = b
foldr f b (x :: l) = f x (foldr f b l)
-- list membership
data _∈_ {A : Set} : A → List A → Set where
∈h : {x : A} {l : List A} → x ∈ (x :: l)
∈t : {x y : A} {l : List A} → x ∈ l → x ∈ y :: l
infixr 99 _::_
data Unique {A B : Set} (f : A → B) : List A → Set where
U[] : Unique f []
U:: : {x : A} {xs : List A}
→ Unique f xs
→ (f x ∈ map f xs → ⊥)
→ Unique f (x :: xs)
L : List (Nat × Nat)
L = ((1 , 9) :: (2 , 9) :: [])
ex1 : Unique π1 L
ex1 = U:: (U:: U[] notemp) notin
where
notemp : {x : Nat} → x ∈ [] → ⊥
notemp ()
notin : 1 ∈ (2 :: []) → ⊥
notin (∈t p) = notemp p
ex2 : Unique π2 L → ⊥
ex2 (U:: p x) = x ∈h
maxl : List Nat → Nat
maxl = foldr max 0
-- addmax : {L : List Nat} (p : Unique (\x → x) L) → Unique (\x → x) ((1+ (maxl L)) :: L)
-- addmax U[] = U:: U[] (λ ())
-- addmax (U:: p x₁) with addmax p
-- ... | ih = U:: (U:: p x₁) (λ x → x₁ {!!})
| {
"alphanum_fraction": 0.4149184149,
"avg_line_length": 24.2830188679,
"ext": "agda",
"hexsha": "d62437e701508f4780446769514cf0108499bb8d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "86a755ca6749e080f9a03287e34d1cda889f1edb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ivoysey/agda-tfp16",
"max_forks_repo_path": "List.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "86a755ca6749e080f9a03287e34d1cda889f1edb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ivoysey/agda-tfp16",
"max_issues_repo_path": "List.agda",
"max_line_length": 91,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "86a755ca6749e080f9a03287e34d1cda889f1edb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/agda-tfp16",
"max_stars_repo_path": "List.agda",
"max_stars_repo_stars_event_max_datetime": "2016-06-10T04:35:42.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-10T04:35:39.000Z",
"num_tokens": 545,
"size": 1287
} |
module Playground where
-- Equality type, and its only constructor refl
data _==_ {A : Set} (x : A) : A → Set where
refl : x == x
-- identity map of a type
id : {A : Set} → A → A
id x = x
-- action on paths
ap : {A B : Set} (f : A → B) {x y : A} → (x == y -> f x == f y)
ap f refl = refl
-- transport
transport : {A : Set} (B : A → Set) {x y : A} (p : x == y) → (B x → B y)
transport _ refl = id
-- Pi types
Π : (A : Set) (P : A → Set) → Set
Π A P = (x : A) → P x
-- Sigma types
record Σ (A : Set) (B : A → Set) : Set where
constructor _,_
field
fst : A
snd : B fst
open Σ public
-- empty type
data ⊥ : Set where
-- not operator
¬ : (A : Set) → Set
¬ A = A → ⊥
| {
"alphanum_fraction": 0.5168374817,
"avg_line_length": 18.4594594595,
"ext": "agda",
"hexsha": "f35fabee70ce9dbeda0b3c32e8f338df2789b156",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2018-06-25T15:05:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-02-22T19:58:46.000Z",
"max_forks_repo_head_hexsha": "af64d808630f4f1498a75201b6ca4d74d662516b",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "glangmead/hott_cmu80818",
"max_forks_repo_path": "Playground.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "af64d808630f4f1498a75201b6ca4d74d662516b",
"max_issues_repo_issues_event_max_datetime": "2018-03-25T14:44:31.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-02-22T21:01:16.000Z",
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "glangmead/hott_cmu80818",
"max_issues_repo_path": "Playground.agda",
"max_line_length": 72,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "af64d808630f4f1498a75201b6ca4d74d662516b",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "glangmead/hott_cmu80818",
"max_stars_repo_path": "Playground.agda",
"max_stars_repo_stars_event_max_datetime": "2018-09-04T02:52:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-05-03T20:32:19.000Z",
"num_tokens": 268,
"size": 683
} |
{-# OPTIONS --cubical #-}
open import Agda.Builtin.Nat
postulate
_≡_ : {A : Set} → A → A → Set
refl : (A : Set) (x : A) → x ≡ x
cong : (A B : Set) (x y : A) (f : A → B) (x≡y : x ≡ y) → f x ≡ f y
subst : (A : Set) (x y : A) (P : A → Set) → x ≡ y → P x → P y
apply : (A : Set) (B : A → Set) → ((x : A) → B x) → ((x : A) → B x)
apply _ _ f x = f x
postulate
A : Set
record R (f : A → A) : Set where
postulate
P : (f : A → A) → R f → Set
_ :
(f : A → A) (r : R f) →
P f (subst (A → A) _ f R
(cong _ _ _ _ (λ f → apply _ _ f 0) (refl _ (λ _ → {!!}))) r)
| {
"alphanum_fraction": 0.4114671164,
"avg_line_length": 22.8076923077,
"ext": "agda",
"hexsha": "3ab75e82b06358e6e183a476f876ce0f4c061ac9",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue4982.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue4982.agda",
"max_line_length": 72,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue4982.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 281,
"size": 593
} |
module Data.Boolean.Operators where
open import Data.Boolean
-- Definition of boolean operators with conventions from logic
module Logic where
infixl 1005 _∧_
infixl 1004 _∨_ _⊕_
infixl 1003 _⟵_ _⟷_ _⟶_
_∧_ : Bool → Bool → Bool
_∧_ 𝑇 𝑇 = 𝑇
_∧_ 𝐹 𝑇 = 𝐹
_∧_ 𝑇 𝐹 = 𝐹
_∧_ 𝐹 𝐹 = 𝐹
_∨_ : Bool → Bool → Bool
_∨_ 𝑇 𝑇 = 𝑇
_∨_ 𝐹 𝑇 = 𝑇
_∨_ 𝑇 𝐹 = 𝑇
_∨_ 𝐹 𝐹 = 𝐹
open Data.Boolean using () renaming (not to ¬) public
_⊕_ : Bool → Bool → Bool
_⊕_ 𝑇 𝑇 = 𝐹
_⊕_ 𝐹 𝑇 = 𝑇
_⊕_ 𝑇 𝐹 = 𝑇
_⊕_ 𝐹 𝐹 = 𝐹
_⟶_ : Bool → Bool → Bool
_⟶_ 𝑇 𝑇 = 𝑇
_⟶_ 𝐹 𝑇 = 𝑇
_⟶_ 𝑇 𝐹 = 𝐹
_⟶_ 𝐹 𝐹 = 𝑇
_⟵_ : Bool → Bool → Bool
_⟵_ 𝑇 𝑇 = 𝑇
_⟵_ 𝐹 𝑇 = 𝐹
_⟵_ 𝑇 𝐹 = 𝑇
_⟵_ 𝐹 𝐹 = 𝑇
_⟷_ : Bool → Bool → Bool
_⟷_ 𝑇 𝑇 = 𝑇
_⟷_ 𝐹 𝑇 = 𝐹
_⟷_ 𝑇 𝐹 = 𝐹
_⟷_ 𝐹 𝐹 = 𝑇
_⊼_ : Bool → Bool → Bool
_⊼_ 𝑇 𝑇 = 𝐹
_⊼_ 𝐹 𝑇 = 𝑇
_⊼_ 𝑇 𝐹 = 𝑇
_⊼_ 𝐹 𝐹 = 𝑇
_⊽_ : Bool → Bool → Bool
_⊽_ 𝑇 𝑇 = 𝐹
_⊽_ 𝐹 𝑇 = 𝐹
_⊽_ 𝑇 𝐹 = 𝐹
_⊽_ 𝐹 𝐹 = 𝑇
⊤ : Bool
⊤ = 𝑇
⊥ : Bool
⊥ = 𝐹
-- Definition of boolean operators with conventions from typical programming languages
module Programming where
open Logic using () renaming
(_∧_ to _&&_
; _∨_ to _||_
; ¬ to !
; _⟷_ to _==_
; _⊕_ to _!=_
; _⟶_ to _→?_
; _⟵_ to _←?_
) public
| {
"alphanum_fraction": 0.5119047619,
"avg_line_length": 16.1538461538,
"ext": "agda",
"hexsha": "62c22c1d2c85604ba4e8a14b2ff5367e192da084",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Data/Boolean/Operators.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Data/Boolean/Operators.agda",
"max_line_length": 86,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Data/Boolean/Operators.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 830,
"size": 1260
} |
-- Andreas, 2017-09-18, issue #2754 reported by nad.
-- Command line options
--
-- --ignore-interfaces -v tc:10
--
-- caused internal error when processing Agda.Primitive.
--
-- Reason: trying to debug print levels while level built-ins
-- are not yet bound.
--
-- Should work now, printing
--
-- .#Lacking_Level_Builtins#
--
-- where levels should be printed.
-- This file is left black intentionally.
| {
"alphanum_fraction": 0.6968215159,
"avg_line_length": 21.5263157895,
"ext": "agda",
"hexsha": "97dbaf643c9233f1f84c9a26252a32313975c6fd",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue2754.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue2754.agda",
"max_line_length": 61,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue2754.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 105,
"size": 409
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Lists, based on the Kleene star and plus, basic types and operations.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.List.Kleene.Base where
open import Data.Product as Product using (_×_; _,_; map₂; map₁; proj₁; proj₂)
open import Data.Nat as ℕ using (ℕ; suc; zero)
open import Data.Maybe as Maybe using (Maybe; just; nothing)
open import Data.Sum as Sum using (_⊎_; inj₁; inj₂)
open import Level as Level using (Level)
open import Algebra.Core using (Op₂)
open import Function.Base
private
variable
a b c : Level
A : Set a
B : Set b
C : Set c
------------------------------------------------------------------------
-- Definitions
--
-- These lists are exactly equivalent to normal lists, except the "cons"
-- case is split into its own data type. This lets us write all the same
-- functions as before, but it has 2 advantages:
--
-- * Some functions are easier to express on the non-empty type. Head,
-- for instance, has a natural safe implementation. Having the
-- non-empty type be defined mutually with the normal type makes the
-- use of this non-empty type occasionally more ergonomic.
-- * It can make some proofs easier. By using the non-empty type where
-- possible, we can avoid an extra pattern match, which can really
-- simplify certain proofs.
infixr 5 _&_ ∹_
record _+ {a} (A : Set a) : Set a
data _* {a} (A : Set a) : Set a
-- Non-Empty Lists
record _+ A where
inductive
constructor _&_
field
head : A
tail : A *
-- Possibly Empty Lists
data _* A where
[] : A *
∹_ : A + → A *
open _+ public
------------------------------------------------------------------------
-- Uncons
uncons : A * → Maybe (A +)
uncons [] = nothing
uncons (∹ xs) = just xs
------------------------------------------------------------------------
-- FoldMap
foldMap+ : Op₂ B → (A → B) → A + → B
foldMap+ _∙_ f (x & []) = f x
foldMap+ _∙_ f (x & ∹ xs) = f x ∙ foldMap+ _∙_ f xs
foldMap* : Op₂ B → B → (A → B) → A * → B
foldMap* _∙_ ε f [] = ε
foldMap* _∙_ ε f (∹ xs) = foldMap+ _∙_ f xs
------------------------------------------------------------------------
-- Folds
module _ (f : A → B → B) (b : B) where
foldr+ : A + → B
foldr* : A * → B
foldr+ (x & xs) = f x (foldr* xs)
foldr* [] = b
foldr* (∹ xs) = foldr+ xs
module _ (f : B → A → B) where
foldl+ : B → A + → B
foldl* : B → A * → B
foldl+ b (x & xs) = foldl* (f b x) xs
foldl* b [] = b
foldl* b (∹ xs) = foldl+ b xs
------------------------------------------------------------------------
-- Concatenation
module Concat where
_++++_ : A + → A + → A +
_+++*_ : A + → A * → A +
_*+++_ : A * → A + → A +
_*++*_ : A * → A * → A *
head (xs +++* ys) = head xs
tail (xs +++* ys) = tail xs *++* ys
xs *++* ys = foldr* (λ x zs → ∹ x & zs) ys xs
xs ++++ ys = foldr+ (λ x zs → x & ∹ zs) ys xs
[] *+++ ys = ys
(∹ xs) *+++ ys = xs ++++ ys
open Concat public using () renaming (_++++_ to _+++_; _*++*_ to _++*_)
------------------------------------------------------------------------
-- Mapping
module _ (f : A → B) where
map+ : A + → B +
map* : A * → B *
head (map+ xs) = f (head xs)
tail (map+ xs) = map* (tail xs)
map* [] = []
map* (∹ xs) = ∹ map+ xs
module _ (f : A → Maybe B) where
mapMaybe+ : A + → B *
mapMaybe* : A * → B *
mapMaybe+ (x & xs) with f x
... | just y = ∹ y & mapMaybe* xs
... | nothing = mapMaybe* xs
mapMaybe* [] = []
mapMaybe* (∹ xs) = mapMaybe+ xs
------------------------------------------------------------------------
-- Applicative Operations
pure+ : A → A +
head (pure+ x) = x
tail (pure+ x) = []
pure* : A → A *
pure* x = ∹ pure+ x
module Apply where
_*<*>*_ : (A → B) * → A * → B *
_+<*>*_ : (A → B) + → A * → B *
_*<*>+_ : (A → B) * → A + → B *
_+<*>+_ : (A → B) + → A + → B +
[] *<*>* xs = []
(∹ fs) *<*>* xs = fs +<*>* xs
fs +<*>* xs = map* (head fs) xs ++* (tail fs *<*>* xs)
[] *<*>+ xs = []
(∹ fs) *<*>+ xs = ∹ fs +<*>+ xs
fs +<*>+ xs = map+ (head fs) xs Concat.+++* (tail fs *<*>+ xs)
open Apply public using () renaming (_*<*>*_ to _<*>*_; _+<*>+_ to _<*>+_)
------------------------------------------------------------------------
-- Monadic Operations
module Bind where
_+>>=+_ : A + → (A → B +) → B +
_+>>=*_ : A + → (A → B *) → B *
_*>>=+_ : A * → (A → B +) → B *
_*>>=*_ : A * → (A → B *) → B *
(x & xs) +>>=+ k = k x Concat.+++* (xs *>>=+ k)
(x & xs) +>>=* k = k x Concat.*++* (xs *>>=* k)
[] *>>=* k = []
(∹ xs) *>>=* k = xs +>>=* k
[] *>>=+ k = []
(∹ xs) *>>=+ k = ∹ xs +>>=+ k
open Bind public using () renaming (_*>>=*_ to _>>=*_; _+>>=+_ to _>>=+_)
------------------------------------------------------------------------
-- Scans
module Scanr (f : A → B → B) (b : B) where
cons : A → B + → B +
head (cons x xs) = f x (head xs)
tail (cons x xs) = ∹ xs
scanr+ : A + → B +
scanr* : A * → B +
scanr* = foldr* cons (b & [])
scanr+ = foldr+ cons (b & [])
open Scanr public using (scanr+; scanr*)
module _ (f : B → A → B) where
scanl* : B → A * → B +
head (scanl* b xs) = b
tail (scanl* b []) = []
tail (scanl* b (∹ xs)) = ∹ scanl* (f b (head xs)) (tail xs)
scanl+ : B → A + → B +
head (scanl+ b xs) = b
tail (scanl+ b xs) = ∹ scanl* (f b (head xs)) (tail xs)
scanl₁ : B → A + → B +
scanl₁ b xs = scanl* (f b (head xs)) (tail xs)
------------------------------------------------------------------------
-- Accumulating maps
module _ (f : B → A → (B × C)) where
mapAccumˡ* : B → A * → (B × C *)
mapAccumˡ+ : B → A + → (B × C +)
mapAccumˡ* b [] = b , []
mapAccumˡ* b (∹ xs) = map₂ ∹_ (mapAccumˡ+ b xs)
mapAccumˡ+ b (x & xs) =
let y , ys = f b x
z , zs = mapAccumˡ* y xs
in z , ys & zs
module _ (f : A → B → (C × B)) (b : B) where
mapAccumʳ* : A * → (C * × B)
mapAccumʳ+ : A + → (C + × B)
mapAccumʳ* [] = [] , b
mapAccumʳ* (∹ xs) = map₁ ∹_ (mapAccumʳ+ xs)
mapAccumʳ+ (x & xs) =
let ys , y = mapAccumʳ* xs
zs , z = f x y
in zs & ys , z
------------------------------------------------------------------------
-- Non-Empty Folds
last : A + → A
last (x & []) = x
last (_ & ∹ xs) = last xs
module _ (f : A → A → A) where
foldr₁ : A + → A
foldr₁ (x & []) = x
foldr₁ (x & ∹ xs) = f x (foldr₁ xs)
foldl₁ : A + → A
foldl₁ (x & xs) = foldl* f x xs
module _ (f : A → Maybe B → B) where
foldrMaybe* : A * → Maybe B
foldrMaybe+ : A + → B
foldrMaybe* [] = nothing
foldrMaybe* (∹ xs) = just (foldrMaybe+ xs)
foldrMaybe+ xs = f (head xs) (foldrMaybe* (tail xs))
------------------------------------------------------------------------
-- Indexing
_[_]* : A * → ℕ → Maybe A
_[_]+ : A + → ℕ → Maybe A
[] [ _ ]* = nothing
(∹ xs) [ i ]* = xs [ i ]+
xs [ zero ]+ = just (head xs)
xs [ suc i ]+ = tail xs [ i ]*
applyUpTo* : (ℕ → A) → ℕ → A *
applyUpTo+ : (ℕ → A) → ℕ → A +
applyUpTo* f zero = []
applyUpTo* f (suc n) = ∹ applyUpTo+ f n
head (applyUpTo+ f n) = f zero
tail (applyUpTo+ f n) = applyUpTo* (f ∘ suc) n
upTo* : ℕ → ℕ *
upTo* = applyUpTo* id
upTo+ : ℕ → ℕ +
upTo+ = applyUpTo+ id
------------------------------------------------------------------------
-- Manipulation
module ZipWith (f : A → B → C) where
+zipWith+ : A + → B + → C +
*zipWith+ : A * → B + → C *
+zipWith* : A + → B * → C *
*zipWith* : A * → B * → C *
head (+zipWith+ xs ys) = f (head xs) (head ys)
tail (+zipWith+ xs ys) = *zipWith* (tail xs) (tail ys)
*zipWith+ [] ys = []
*zipWith+ (∹ xs) ys = ∹ +zipWith+ xs ys
+zipWith* xs [] = []
+zipWith* xs (∹ ys) = ∹ +zipWith+ xs ys
*zipWith* [] ys = []
*zipWith* (∹ xs) ys = +zipWith* xs ys
open ZipWith public renaming (+zipWith+ to zipWith+; *zipWith* to zipWith*)
module Unzip (f : A → B × C) where
cons : B × C → B * × C * → B + × C +
cons = Product.zip′ _&_ _&_
unzipWith* : A * → B * × C *
unzipWith+ : A + → B + × C +
unzipWith* = foldr* (λ x xs → Product.map ∹_ ∹_ (cons (f x) xs)) ([] , [])
unzipWith+ xs = cons (f (head xs)) (unzipWith* (tail xs))
open Unzip using (unzipWith+; unzipWith*) public
module Partition (f : A → B ⊎ C) where
cons : B ⊎ C → B * × C * → B * × C *
proj₁ (cons (inj₁ x) xs) = ∹ x & proj₁ xs
proj₂ (cons (inj₁ x) xs) = proj₂ xs
proj₂ (cons (inj₂ x) xs) = ∹ x & proj₂ xs
proj₁ (cons (inj₂ x) xs) = proj₁ xs
partitionSumsWith* : A * → B * × C *
partitionSumsWith+ : A + → B * × C *
partitionSumsWith* = foldr* (cons ∘ f) ([] , [])
partitionSumsWith+ = foldr+ (cons ∘ f) ([] , [])
open Partition using (partitionSumsWith+; partitionSumsWith*) public
tails* : A * → (A +) *
tails+ : A + → (A +) +
head (tails+ xs) = xs
tail (tails+ xs) = tails* (tail xs)
tails* [] = []
tails* (∹ xs) = ∹ tails+ xs
reverse* : A * → A *
reverse* = foldl* (λ xs x → ∹ x & xs) []
reverse+ : A + → A +
reverse+ (x & xs) = foldl* (λ ys y → y & ∹ ys) (x & []) xs
| {
"alphanum_fraction": 0.4377457405,
"avg_line_length": 25.4333333333,
"ext": "agda",
"hexsha": "221bb494bd8f86f5e1c2c742c8475bb449ebee36",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/List/Kleene/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/List/Kleene/Base.agda",
"max_line_length": 78,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/List/Kleene/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 3277,
"size": 9156
} |
-- TODO: Move these to stuff related to metric spaces
module Derivative where
open Limit using (Lim ; lim)
-- Statement that the point x of function f is a differentiable point
DifferentiablePoint : (ℝ → ℝ) → ℝ → Stmt
DifferentiablePoint f(p) = Lim(x ↦ ((f(x) − f(p))/(x − p)))(p)
-- Statement that function f is differentiable
Differentiable : (ℝ → ℝ) → Stmt
Differentiable f = ∀{x} → DifferentiablePoint f(x)
-- Derivative value of function f at point x (if the point is differentiable)
𝐷 : (f : ℝ → ℝ) → (x : ℝ) → ⦃ _ : DifferentiablePoint f(x) ⦄ → ℝ
𝐷 _ _ ⦃ l ⦄ = Lim.L(l)
module Proofs where
instance postulate Differentiable-constant : ∀{a} → Differentiable(const(a))
instance postulate Differentiable-id : Differentiable(id)
instance postulate Differentiable-monomial : ∀{a} → Differentiable(x ↦ x ^ a)
instance postulate Differentiable-[eˣ] : Differentiable(x ↦ e ^ x)
instance postulate Differentiable-[⋅]-scalar : ∀{a} → Differentiable(x ↦ a ⋅ x)
instance postulate Differentiable-[+]-function : ∀{f g} → ⦃ _ : Differentiable(f) ⦄ → ⦃ _ : Differentiable(g) ⦄ → Differentiable(x ↦ f(x) + g(x))
instance postulate Differentiable-[−]-function : ∀{f g} → ⦃ _ : Differentiable(f) ⦄ → ⦃ _ : Differentiable(g) ⦄ → Differentiable(x ↦ f(x) − g(x))
instance postulate Differentiable-[⋅]-function : ∀{f g} → ⦃ _ : Differentiable(f) ⦄ → ⦃ _ : Differentiable(g) ⦄ → Differentiable(x ↦ f(x) ⋅ g(x))
instance postulate Differentiable-[/]-function : ∀{f g} → ⦃ _ : Differentiable(f) ⦄ → ⦃ _ : Differentiable(g) ⦄ → Differentiable(x ↦ f(x) / g(x))
instance postulate Differentiable-[∘]-function : ∀{f g} → ⦃ _ : Differentiable(f) ⦄ → ⦃ _ : Differentiable(g) ⦄ → Differentiable(f ∘ g)
instance postulate [𝐷]-constant : ∀{a} → ⦃ diff : Differentiable(const(a)) ⦄ → ∀{x} → 𝐷(const(a))(x)⦃ diff ⦄ ≡ a
instance postulate [𝐷]-id : ⦃ diff : Differentiable(id) ⦄ → ∀{x} → 𝐷(id)(x)⦃ diff ⦄ ≡ #(1)
instance postulate [𝐷]-monomial : ∀{a} → ⦃ diff : Differentiable(x ↦ x ^ a) ⦄ → ∀{x} → 𝐷(x ↦ x ^ a)(x)⦃ diff ⦄ ≡ a ⋅ x ^ (a − #(1))
instance postulate [𝐷]-[eˣ] : ⦃ diff : Differentiable(x ↦ e ^ x) ⦄ → ∀{x} → 𝐷(x ↦ e ^ x)(x)⦃ diff ⦄ ≡ e ^ x
instance postulate [𝐷]-[+]-function : ∀{f g} → ⦃ diff-f : Differentiable(f) ⦄ → ⦃ diff-g : Differentiable(g) ⦄ → ∀{x} → 𝐷(x ↦ f(x) + g(x))(x)⦃ Differentiable-[+]-function ⦃ diff-f ⦄ ⦃ diff-g ⦄ ⦄ ≡ 𝐷(f)(x)⦃ diff-f ⦄ + 𝐷(g)(x)⦃ diff-g ⦄
instance postulate [𝐷]-[−]-function : ∀{f g} → ⦃ diff-f : Differentiable(f) ⦄ → ⦃ diff-g : Differentiable(g) ⦄ → ∀{x} → 𝐷(x ↦ f(x) − g(x))(x)⦃ Differentiable-[−]-function ⦃ diff-f ⦄ ⦃ diff-g ⦄ ⦄ ≡ 𝐷(f)(x)⦃ diff-f ⦄ − 𝐷(g)(x)⦃ diff-g ⦄
instance postulate [𝐷]-[⋅]-function : ∀{f g} → ⦃ diff-f : Differentiable(f) ⦄ → ⦃ diff-g : Differentiable(g) ⦄ → ∀{x} → 𝐷(x ↦ f(x) ⋅ g(x))(x)⦃ Differentiable-[⋅]-function ⦃ diff-f ⦄ ⦃ diff-g ⦄ ⦄ ≡ 𝐷(f)(x)⦃ diff-f ⦄ ⋅ g(x) + f(x) ⋅ 𝐷(g)(x)⦃ diff-g ⦄
instance postulate [𝐷]-[/]-function : ∀{f g} → ⦃ diff-f : Differentiable(f) ⦄ → ⦃ diff-g : Differentiable(g) ⦄ → ∀{x} → 𝐷(x ↦ f(x) / g(x))(x)⦃ Differentiable-[/]-function ⦃ diff-f ⦄ ⦃ diff-g ⦄ ⦄ ≡ (𝐷(f)(x)⦃ diff-f ⦄ ⋅ g(x) − f(x) ⋅ 𝐷(g)(x)⦃ diff-g ⦄)/(g(x) ^ #(2))
instance postulate [𝐷]-[∘]-function : ∀{f g} → ⦃ diff-f : Differentiable(f) ⦄ → ⦃ diff-g : Differentiable(g) ⦄ → ∀{x} → 𝐷(x ↦ f(g(x)))(x)⦃ Differentiable-[∘]-function ⦃ diff-f ⦄ ⦃ diff-g ⦄ ⦄ ≡ 𝐷(f)(g(x))⦃ diff-f ⦄ ⋅ 𝐷(g)(x)⦃ diff-g ⦄
| {
"alphanum_fraction": 0.5768006942,
"avg_line_length": 88.641025641,
"ext": "agda",
"hexsha": "9d1056affcd6c7b99a732411ab89a29eaed26bc6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Real/Derivative.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Real/Derivative.agda",
"max_line_length": 266,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Real/Derivative.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1519,
"size": 3457
} |
module Show where
open import Data.Char hiding (show)
open import Data.List
open import Data.String hiding (show)
open import Function
record Show (A : Set) : Set where
field
show : A → String
open Show {{...}} public
fromHaskell : {A : Set} → (A → List Char) → Show A
fromHaskell primShow = record { show = fromList ∘ primShow }
| {
"alphanum_fraction": 0.6911764706,
"avg_line_length": 21.25,
"ext": "agda",
"hexsha": "32a6da2fa4c053c3ecbe04931d301e78259331fc",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c5ffd117f6d5a98f7c68a2a6b9be54a150c70945",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda-editor",
"max_forks_repo_path": "src/Show.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c5ffd117f6d5a98f7c68a2a6b9be54a150c70945",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda-editor",
"max_issues_repo_path": "src/Show.agda",
"max_line_length": 60,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c5ffd117f6d5a98f7c68a2a6b9be54a150c70945",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda-editor",
"max_stars_repo_path": "src/Show.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 94,
"size": 340
} |
{-# OPTIONS --universe-polymorphism #-}
module 13-implicitProofObligations where
open import Relation.Nullary
open import Relation.Nullary.Decidable
open import Data.Empty
open import Data.Unit hiding (_≟_)
open import Data.Nat
open import Data.Fin using (Fin; toℕ)
open import Data.Product using (_×_; _,_)
open import Data.Nat.DivMod
open import Relation.Binary.PropositionalEquality
open import Function
postulate
d : ℕ
d≢0 : d ≢ 0
-- d≢0' : d ≢ 0
fromWitnessFalse : ∀ {p} {P : Set p} {Q : Dec P} → ¬ P → False Q
fromWitnessFalse {Q = yes p} ¬P = ⊥-elim $ ¬P p
fromWitnessFalse {Q = no ¬p} ¬P = tt
⋯ : {A : Set} → {{v : A}} → A
⋯ {{v}} = v
_divMod′_ : (dividend divisor : ℕ) {{ ≢0 : divisor ≢ 0 }} → ℕ × ℕ
a divMod′ d with _divMod_ a d { fromWitnessFalse ⋯ }
._ divMod′ d | (result q r) = q , toℕ r
_div′_ : (dividend divisor : ℕ) {{ ≢0 : divisor ≢ 0 }} → ℕ
a div′ b with a divMod′ b
a div′ b | (q , _) = q
--Agda can't resolve hiddens
-- test : {d≢0 : False (d ≟ 0)} → ℕ
-- test = 5 div d
-- test2 : {{d≢0 : d ≢ 0}} → ℕ
-- test2 = 5 div′ d
test3 = 5 div 2
test4 = 5 div′ 2
where nz : 2 ≢ 0
nz ()
| {
"alphanum_fraction": 0.6120996441,
"avg_line_length": 24.4347826087,
"ext": "agda",
"hexsha": "f811966ba0f7001b2e13dd785f9efc3d934b59e8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4383a3d20328a6c43689161496cee8eb479aca08",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dagit/agda",
"max_forks_repo_path": "examples/instance-arguments/13-implicitProofObligations.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4383a3d20328a6c43689161496cee8eb479aca08",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dagit/agda",
"max_issues_repo_path": "examples/instance-arguments/13-implicitProofObligations.agda",
"max_line_length": 65,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "examples/instance-arguments/13-implicitProofObligations.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T07:26:06.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T07:26:06.000Z",
"num_tokens": 438,
"size": 1124
} |
open import Relation.Binary.PropositionalEquality using ( refl )
open import Web.Semantic.DL.ABox.Interp using ( _*_ ; ⌊_⌋ ; ind )
open import Web.Semantic.DL.ABox.Interp.Morphism using ( _,_ )
open import Web.Semantic.DL.ABox.Model using
( _⊨a_ ; on-bnode ; bnodes ; ⊨a-resp-≲ ; ⊨a-resp-≡³ ; _,_ )
open import Web.Semantic.DL.Category.Object using
( Object ; IN ; iface )
open import Web.Semantic.DL.Category.Morphism using
( _⇒_ ; BN ; impl ; _≣_ ; _⊑_ ; _,_ )
open import Web.Semantic.DL.Category.Composition using ( _∙_ )
open import Web.Semantic.DL.Category.Wiring using ( identity )
open import Web.Semantic.DL.Category.Properties.Composition.Lemmas using
( compose-left ; compose-right ; compose-resp-⊨a
; identity-intro ; identity-elim )
open import Web.Semantic.DL.Signature using ( Signature )
open import Web.Semantic.DL.TBox using ( TBox )
open import Web.Semantic.DL.TBox.Interp using ( Δ ; _⊨_≈_ ; ≈-refl ; ≈-sym )
open import Web.Semantic.DL.TBox.Interp.Morphism using ( ≲-refl )
open import Web.Semantic.Util using
( _∘_ ; _⊕_⊕_ ; False ; inode ; bnode ; enode ; left ; right )
module Web.Semantic.DL.Category.Properties.Composition.LeftUnit
{Σ : Signature} {S T : TBox Σ} where
compose-unit₁ : ∀ {A B : Object S T} (F : A ⇒ B) →
(identity A ∙ F ≣ F)
compose-unit₁ {A} {B} F = ( idF⊑F , F⊑idF ) where
idF⊑F : identity A ∙ F ⊑ F
idF⊑F I I⊨STA I⊨idF = (f , I⊨F) where
Iˡ⊨id : left * I ⊨a impl (identity A)
Iˡ⊨id = compose-left (identity A) F I I⊨idF
Iʳ⊨F : right * I ⊨a impl F
Iʳ⊨F = compose-right (identity A) F I I⊨idF
f : BN F → Δ ⌊ I ⌋
f w = ind I (bnode (enode w))
f✓ : ∀ x → ⌊ I ⌋ ⊨ ind I (right x) ≈ on-bnode f (ind I) x
f✓ (inode x) = ≈-sym ⌊ I ⌋ (identity-elim A (left * I) Iˡ⊨id x)
f✓ (bnode v) = ≈-refl ⌊ I ⌋
f✓ (enode y) = ≈-refl ⌊ I ⌋
I⊨F : bnodes I f ⊨a impl F
I⊨F = ⊨a-resp-≲ (≲-refl ⌊ I ⌋ , f✓) (impl F) Iʳ⊨F
F⊑idF : F ⊑ identity A ∙ F
F⊑idF I I⊨STA I⊨F = (f , I⊨idF) where
f : (False ⊕ IN A ⊕ BN F) → Δ ⌊ I ⌋
f (inode ())
f (bnode x) = ind I (inode x)
f (enode v) = ind I (bnode v)
Iˡ⊨id : left * bnodes I f ⊨a impl (identity A)
Iˡ⊨id = identity-intro A (left * bnodes I f) (λ x → ≈-refl ⌊ I ⌋)
Iʳ⊨F : right * bnodes I f ⊨a impl F
Iʳ⊨F = ⊨a-resp-≡³ I (on-bnode f (ind I) ∘ right) refl (impl F) I⊨F
I⊨idF : bnodes I f ⊨a impl (identity A ∙ F)
I⊨idF = compose-resp-⊨a (identity A) F (bnodes I f) Iˡ⊨id Iʳ⊨F
| {
"alphanum_fraction": 0.6073022312,
"avg_line_length": 37.9230769231,
"ext": "agda",
"hexsha": "87d4f9d4846d9c88856524059d2396c3ea00f788",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:03.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-12-03T14:52:09.000Z",
"max_forks_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/agda-web-semantic",
"max_forks_repo_path": "src/Web/Semantic/DL/Category/Properties/Composition/LeftUnit.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab",
"max_issues_repo_issues_event_max_datetime": "2021-01-04T20:57:19.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T02:32:28.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/agda-web-semantic",
"max_issues_repo_path": "src/Web/Semantic/DL/Category/Properties/Composition/LeftUnit.agda",
"max_line_length": 76,
"max_stars_count": 9,
"max_stars_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/agda-web-semantic",
"max_stars_repo_path": "src/Web/Semantic/DL/Category/Properties/Composition/LeftUnit.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-14T14:21:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-13T17:46:41.000Z",
"num_tokens": 1106,
"size": 2465
} |
{-# OPTIONS --cubical #-} --no-import-sorts
module Test2 where
-- open import Agda.Primitive renaming (_⊔_ to ℓ-max; lsuc to ℓ-suc; lzero to ℓ-zero)
open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc)
open import Cubical.Relation.Nullary.Base -- ¬_
open import Cubical.Data.Empty -- ⊥
open import Cubical.Foundations.Logic renaming (¬_ to ¬ᵖ_; ⊥ to ⊥ᵖ)
-- open import Cubical.Relation.Binary.Base using (PropRel)
-- data ⊥ : Set where
-- ¬_ : ∀{ℓ} → Set ℓ → Set ℓ
-- ¬ A = A → ⊥
inst-¬ : ∀{ℓ} {A : Set ℓ} → (A → ⊥) → {{a : A }} → ⊥
inst-¬ f {{a}} = f a
-- record SquareRootSpace {ℓ ℓ' : Level} : Set (ℓ-suc (ℓ-max ℓ ℓ')) where
-- field
-- X : Set ℓ
-- 0ˣ : X
-- _<_ : X → X → Set ℓ'
module TestA {ℓ ℓ'} (X : Set ℓ) (0ˣ : X) (_<_ : X → X → Set ℓ') where
_≤_ : X → X → Set ℓ'
a ≤ b = (b < a) → ⊥ -- ¬(b < a)
_≤ᵢ_ : X → X → Set ℓ'
a ≤ᵢ b = {{p : b < a}} → ⊥
-- postulate _≤'_ : X → X → Set ℓ'
_≤'_ : X → X → Set ℓ'
abstract a ≤' b = (b < a) → ⊥
-- field
postulate
sqrt : (x : X) → {{p : (0ˣ ≤ᵢ x)}} → X
sqrt' : (x : X) → {{p : (0ˣ ≤' x)}} → X
-- module _ {ℓ ℓ'} (SQS : SquareRootSpace {ℓ} {ℓ'}) where
-- open SquareRootSpace SQS
test1 : (x : X) → (0ˣ ≤ x) → X
test1 x 0≤x = let instance _ = inst-¬ 0≤x
in sqrt x -- works!
-- test2 : (x y z : X) → (0ˣ ≤ x) → (0ˣ ≤ y) → (0ˣ ≤ z) → X
-- test2 x y z 0≤x 0≤y 0≤z =
-- let instance 0≤xᵢ : 0ˣ ≤ᵢ x
-- 0≤xᵢ = inst-¬ 0≤x
-- 0≤yᵢ : 0ˣ ≤ᵢ y
-- 0≤yᵢ = inst-¬ 0≤y
-- 0≤zᵢ : 0ˣ ≤ᵢ z
-- 0≤zᵢ = inst-¬ 0≤z
-- -- Goal: X
-- -- Have: ⦃ p : 0ˣ ≤ᵢ x ⦄ → X
-- in sqrt y -- error!
test3 : (x y z : X) → (0ˣ ≤' x) → (0ˣ ≤' y) → (0ˣ ≤' z) → X
test3 x y z 0≤x 0≤y 0≤z =
let instance _ = 0≤x ; _ = 0≤y ; _ = 0≤z
in sqrt' y -- works!
-- _p_51 : 0ˣ ≤ᵢ y
-- errorFailed to solve the following constraints:
-- Resolve instance argument
-- _p_51
-- : {ℓ = ℓ₁ : Agda.Primitive.Level} {ℓ' = ℓ'' : Agda.Primitive.Level}
-- (X₁ : Set ℓ₁) (0ˣ₁ : X₁) (_<₁_ : X₁ → X₁ → Set ℓ'') (x₁ y₁ z₁ : X₁)
-- (0≤x₁ : 0ˣ₁ ≤ x₁) (0≤y₁ : 0ˣ₁ ≤ y₁) (0≤z₁ : 0ˣ₁ ≤ z₁) →
-- 0ˣ₁ ≤ᵢ y₁
-- Candidates
-- λ ⦃ a ⦄ → z a : ⦃ p : 0ˣ _<_ X ⦄ → ⊥
-- λ ⦃ a ⦄ → 0≤x a : ⦃ p : 0ˣ x X ⦄ → ⊥
-- λ ⦃ a ⦄ → 0≤y a : ⦃ p : 0ˣ y X ⦄ → ⊥
-- Instance arguments with explicit arguments are never considered by
-- instance search, so having an instance argument ⦃ p : 0ˣ ≤ x ⦄ has
-- no effect.
-- when checking that the expression ⦃ p : 0ˣ ≤ x ⦄ → X is a type
{- there is an email of Apostolis Xekoukoulotakis from 03.11.17, 11:52
data ⊥ : Set where
infix 3 ¬ᵢ_
¬ᵢ_ : ∀ {ℓ} → Set ℓ → Set ℓ
¬ᵢ P = {{p : P}} → ⊥
infix 3 ¬_
¬_ : ∀ {ℓ} → Set ℓ → Set ℓ
¬ P = (p : P) → ⊥
-}
| {
"alphanum_fraction": 0.475,
"avg_line_length": 28.1188118812,
"ext": "agda",
"hexsha": "76726edc0ad1f6fbe564a59e1dda2d08553be690",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mchristianl/synthetic-reals",
"max_forks_repo_path": "test/Test2.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mchristianl/synthetic-reals",
"max_issues_repo_path": "test/Test2.agda",
"max_line_length": 85,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mchristianl/synthetic-reals",
"max_stars_repo_path": "test/Test2.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z",
"num_tokens": 1397,
"size": 2840
} |
{-# OPTIONS --without-K #-}
module Lecture2 where
import Basics
open Basics public
-- Definition 2.2.3 define the identity function, and show lambda-abstraction in so doing
id : {i : Level} {A : UU i} → A → A
id = λ a → a -- can also use plain backslash \ instead of lambda (as it resembles lambda?)
-- Definition 2.2.4
comp : {i j k : Level} {A : UU i} {B : UU j} {C : UU k} → (B → C) → ((A → B) → (A → C))
comp = λ g f a → g(f(a)) -- the lambda extends to cover g, f and a
_∘_ : {i j k : Level} {A : UU i} {B : UU j} {C : UU k} → (B → C) → ((A → B) → (A → C))
g ∘ f = comp g f
data ℕ : U where
Nzero : ℕ
Nsucc : ℕ → ℕ
add : ℕ → ℕ → ℕ
add Nzero = id
add (Nsucc n) = Nsucc ∘ (add n)
-- try some examples, hit C-c C-n (or whatever "compute normal form" is bound to)
-- and try entering "add (Nsucc Nzero) (Nsucc (Nsucc Nzero))"
-- you should get "Nsucc (Nsucc (Nsucc Nzero))"
_+_ : ℕ → ℕ → ℕ
n + m = add n m
-- Exercise 2.3
const : {i j : Level} (A : UU i) (B : UU j) (b : B) → A → B
const A B b x = b
-- Exercise 2.4
Pi-swap : {i j k : Level} {A : UU i} {B : UU j} {C : A → (B → UU k)} →
((x : A) (y : B) → C x y) → ((y : B) (x : A) → C x y)
Pi-swap f y x = f x y
-- Exercise 2.5(a)
_**_ : ℕ → (ℕ → ℕ)
Nzero ** n = Nzero
(Nsucc m) ** n = (m ** n) + n
-- Exercise 2.5(b)
_^_ : ℕ → (ℕ → ℕ)
m ^ Nzero = Nsucc Nzero
m ^ (Nsucc n) = m ** (m ^ n)
-- Exercise 2.5(c)
factorial : ℕ → ℕ
factorial Nzero = Nsucc Nzero
factorial (Nsucc m) = (Nsucc m) ** (factorial m)
-- Exercise 2.6(a)
Nmax : ℕ → (ℕ → ℕ)
Nmax Nzero n = n
Nmax (Nsucc m) Nzero = Nsucc m
Nmax (Nsucc m) (Nsucc n) = Nsucc (Nmax m n)
-- Exercise 2.6(b)
Nmin : ℕ → (ℕ → ℕ)
Nmin Nzero n = Nzero
Nmin (Nsucc m) Nzero = Nzero
Nmin (Nsucc m) (Nsucc n) = Nsucc (Nmin m n)
-- Exercise 2.7
-- induction: for any dependent type P over ℕ, define a section of P
-- built out of a term in P 0 and a section of P n → P(Nsucc n)
ind-N : {i : Level} {P : ℕ → UU i} → P Nzero → ((n : ℕ) → P n → P(Nsucc n)) → ((n : ℕ) → P n)
ind-N p0 pS Nzero = p0
ind-N p0 pS (Nsucc n) = pS n (ind-N p0 pS n)
| {
"alphanum_fraction": 0.5511695906,
"avg_line_length": 27.36,
"ext": "agda",
"hexsha": "cd19968c3bbaea8505a2ed77d482f5390ad1bfd3",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2018-06-25T15:05:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-02-22T19:58:46.000Z",
"max_forks_repo_head_hexsha": "af64d808630f4f1498a75201b6ca4d74d662516b",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "glangmead/hott_cmu80818",
"max_forks_repo_path": "Lecture2.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "af64d808630f4f1498a75201b6ca4d74d662516b",
"max_issues_repo_issues_event_max_datetime": "2018-03-25T14:44:31.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-02-22T21:01:16.000Z",
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "glangmead/hott_cmu80818",
"max_issues_repo_path": "Lecture2.agda",
"max_line_length": 93,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "af64d808630f4f1498a75201b6ca4d74d662516b",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "glangmead/hott_cmu80818",
"max_stars_repo_path": "Lecture2.agda",
"max_stars_repo_stars_event_max_datetime": "2018-09-04T02:52:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-05-03T20:32:19.000Z",
"num_tokens": 867,
"size": 2052
} |
-- 2012-03-15, example by Nisse
module Issue585-11 where
data D₁ : Set where
d₁ : D₁
f₁ : D₁ → D₁ → D₁
f₁ x d₁ = x
data D₂ : Set where
d₂ : D₂ → D₂
postulate
P : D₁ → Set
f₂ : ∀ {n₁ n₂} → P n₁ → P n₂ → P (f₁ n₁ n₂)
mutual
f₃ : D₁ → D₂ → D₁
f₃ _ (d₂ _) = _
f₄ : ∀ {n} → P n → (i : D₂) → P (f₃ n i)
f₄ p (d₂ i) = f₂ p (f₄ p i)
-- This worked until Agda 2.3.0
-- Now, recursive solutions [here: f₃ n (d₂ i) = f₁ n (f₃ n i)]
-- are no longer found, since termination is not be guaranteed by the occurs check.
| {
"alphanum_fraction": 0.5668549906,
"avg_line_length": 18.9642857143,
"ext": "agda",
"hexsha": "476603ff14a68f851b26e4f06f7f3ad3ba2a661f",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue585-11.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue585-11.agda",
"max_line_length": 83,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue585-11.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 249,
"size": 531
} |
-- Andreas, 2014-11-02
record U : Set where
coinductive
constructor inn
field out : U
f : U → U
f u = {!u!}
| {
"alphanum_fraction": 0.5737704918,
"avg_line_length": 12.2,
"ext": "agda",
"hexsha": "7d4e6571e34e09a7b2e006e303241a12289492f6",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue1339.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue1339.agda",
"max_line_length": 22,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue1339.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 46,
"size": 122
} |
module SafeFlagPrimTrustMe where
open import Agda.Builtin.Equality
open import Agda.Builtin.TrustMe
| {
"alphanum_fraction": 0.8613861386,
"avg_line_length": 20.2,
"ext": "agda",
"hexsha": "694748867df72877104d8d5c7a74d7f114e53ede",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f77b563d328513138d6c88bf0a3e350a9b91f8ed",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "bennn/agda",
"max_forks_repo_path": "test/Fail/SafeFlagPrimTrustMe.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f77b563d328513138d6c88bf0a3e350a9b91f8ed",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "bennn/agda",
"max_issues_repo_path": "test/Fail/SafeFlagPrimTrustMe.agda",
"max_line_length": 33,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "f77b563d328513138d6c88bf0a3e350a9b91f8ed",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "bennn/agda",
"max_stars_repo_path": "test/Fail/SafeFlagPrimTrustMe.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 27,
"size": 101
} |
open import Agda.Builtin.Bool
open import Issue4166.Import {b = true} as A′
it : ⦃ Bool ⦄ → Bool
it ⦃ b ⦄ = b
b : Bool
b = it
| {
"alphanum_fraction": 0.6153846154,
"avg_line_length": 11.8181818182,
"ext": "agda",
"hexsha": "b885fac78cf2e40a63f5626fc1099ef16fcae473",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "cagix/agda",
"max_forks_repo_path": "test/Succeed/Issue4166.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "cagix/agda",
"max_issues_repo_path": "test/Succeed/Issue4166.agda",
"max_line_length": 45,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "cagix/agda",
"max_stars_repo_path": "test/Succeed/Issue4166.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 55,
"size": 130
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- This module is DEPRECATED. Please use
-- Data.List.Relation.Binary.Pointwise directly.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.List.Relation.Pointwise where
open import Data.List.Relation.Binary.Pointwise public
{-# WARNING_ON_IMPORT
"Data.List.Relation.Pointwise was deprecated in v1.0.
Use Data.List.Relation.Binary.Pointwise instead."
#-}
| {
"alphanum_fraction": 0.5524344569,
"avg_line_length": 29.6666666667,
"ext": "agda",
"hexsha": "7dd4e63d0c4d670c883b51c4d273fa4bd989d634",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/List/Relation/Pointwise.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/List/Relation/Pointwise.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/List/Relation/Pointwise.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 93,
"size": 534
} |
module Thesis.SIRelBigStep.Syntax where
open import Data.Nat
open import Thesis.SIRelBigStep.Types public
data Primitive : (τ : Type) → Set where
succ : Primitive (nat ⇒ nat)
add : Primitive (pair nat nat ⇒ nat)
data Const : (τ : Type) → Set where
lit : (n : ℕ) → Const nat
data Term (Γ : Context) (τ : Type) : Set
-- Source values
data SVal (Γ : Context) : (τ : Type) → Set where
var : ∀ {τ} →
(x : Var Γ τ) →
SVal Γ τ
abs : ∀ {σ τ}
(t : Term (σ • Γ) τ) →
SVal Γ (σ ⇒ τ)
cons : ∀ {τ1 τ2}
(sv1 : SVal Γ τ1)
(sv2 : SVal Γ τ2) →
SVal Γ (pair τ1 τ2)
const : ∀ {τ} → (c : Const τ) → SVal Γ τ
data Term (Γ : Context) (τ : Type) where
val :
SVal Γ τ →
Term Γ τ
primapp : ∀ {σ}
(p : Primitive (σ ⇒ τ)) →
(sv : SVal Γ σ) →
Term Γ τ
-- we use de Bruijn indices, so we don't need binding occurrences.
app : ∀ {σ}
(vs : SVal Γ (σ ⇒ τ)) →
(vt : SVal Γ σ) →
Term Γ τ
lett : ∀ {σ}
(s : Term Γ σ) →
(t : Term (σ • Γ) τ) →
Term Γ τ
| {
"alphanum_fraction": 0.525540275,
"avg_line_length": 22.1304347826,
"ext": "agda",
"hexsha": "e9a6abac0d47520264b046e37fd636acdeb9ccce",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "inc-lc/ilc-agda",
"max_forks_repo_path": "Thesis/SIRelBigStep/Syntax.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "inc-lc/ilc-agda",
"max_issues_repo_path": "Thesis/SIRelBigStep/Syntax.agda",
"max_line_length": 68,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "inc-lc/ilc-agda",
"max_stars_repo_path": "Thesis/SIRelBigStep/Syntax.agda",
"max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z",
"num_tokens": 400,
"size": 1018
} |
module Proof where
open import Prelude
open import Lambda
open import Subst
open import Trans
open import Reduction
import Chain
open module C = Chain _≤_ (\x -> refl-≤) (\x y z -> trans-≤)
renaming (_===_by_ to _<≤>_by_)
data SN {Γ : Ctx}{τ : Type}(t : Term Γ τ) : Set where
bound : (n : Nat) ->
({u : Term Γ τ}(r : t ⟶β* u) -> length r ≤ n) -> SN t
SNˢ : forall {Γ Δ} -> Terms Γ Δ -> Set
SNˢ ts = All² SN ts
-- Let's prove a simple lemma
lem-SN⟶β : {Γ : Ctx}{τ : Type}{t u : Term Γ τ} ->
SN t -> t ⟶β* u -> SN u
lem-SN⟶β {Γ}{τ}{t}{u}(bound n cap) r = bound n \r' ->
chain> length r'
<≤> length r + length r' by lem-≤+L (length r)
<≤> length (r ▹◃ r') by refl-≤' (lem-length▹◃ r r')
<≤> n by cap (r ▹◃ r')
qed
lem-SN-map : {Γ Δ : Ctx}{σ τ : Type}
(tm : Term Γ σ -> Term Δ τ) ->
(f : {t u : Term Γ σ} -> t ⟶β u -> tm t ⟶β tm u)
{t : Term Γ σ} -> SN (tm t) -> SN t
lem-SN-map tm f (bound n p) = bound n \r ->
chain> length r
<≤> length {R = _⟶β_} (map tm f r)
by refl-≤' (lem-length-map tm f r)
<≤> n by p (map tm f r)
qed
lem-SN•L : {Γ : Ctx}{σ τ : Type}{t : Term Γ (σ ⟶ τ)}{u : Term Γ σ} ->
SN (t • u) -> SN t
lem-SN•L {u = u} = lem-SN-map (\v -> v • u) •⟶L
lem-SN↑ : {Γ : Ctx}(Δ : Ctx){σ : Type}{t : Term Γ σ} ->
SN (t ↑ Δ) -> SN t
lem-SN↑ Δ = lem-SN-map (\v -> v ↑ Δ) (↑⟶β Δ)
lem-SN-x : {Γ Δ : Ctx}{σ : Type}(x : Var Γ (Δ ⇒ σ))
{ts : Terms Γ Δ} -> SNˢ ts -> SN (var x •ˢ ts)
lem-SN-x x ∅² = bound zero red-var
where
red-var : forall {u} -> (r : var x ⟶β* u) -> length r ≤ 0
red-var ()
lem-SN-x x (_◄²_ {x = t}{xs = ts} snts snt) = {! !}
where
sn-xts : SN (var x •ˢ ts)
sn-xts = lem-SN-x x snts
infix 30 ⟦_⟧ ∋_
⟦_⟧ ∋_ : (τ : Type){Γ : Ctx} -> Term Γ τ -> Set
⟦ ι ⟧ ∋ t = SN t
⟦ σ ⟶ τ ⟧ ∋ t = forall {Δ}(u : Term (_ ++ Δ) σ) ->
⟦ σ ⟧ ∋ u -> ⟦ τ ⟧ ∋ t ↑ Δ • u
mutual
lem-⟦⟧⊆SN : (σ : Type){Γ : Ctx}{t : Term Γ σ} ->
⟦ σ ⟧ ∋ t -> SN t
lem-⟦⟧⊆SN ι okt = okt
lem-⟦⟧⊆SN (σ ⟶ τ) {Γ}{t} okt = lem-SN↑ (ε , σ) sn-t↑
where
ih : {Δ : Ctx}{u : Term Δ τ} -> ⟦ τ ⟧ ∋ u -> SN u
ih = lem-⟦⟧⊆SN τ
sn• : (Δ : Ctx)(u : Term (Γ ++ Δ) σ) -> ⟦ σ ⟧ ∋ u -> SN (t ↑ Δ • u)
sn• Δ u h = ih (okt {Δ} u h)
sn-t↑ : SN (wk t)
sn-t↑ = lem-SN•L (sn• (ε , σ) vz (lem-⟦⟧ˣ σ vzero ∅²))
lem-⟦⟧ˣ : (σ : Type){Γ Δ : Ctx}(x : Var Γ (Δ ⇒ σ)){ts : Terms Γ Δ} ->
SNˢ ts -> ⟦ σ ⟧ ∋ var x •ˢ ts
lem-⟦⟧ˣ ι x snts = lem-SN-x x snts
lem-⟦⟧ˣ (σ ⟶ τ) {Γ}{Δ} x {ts} snts = \u oku -> {! !}
where
snts↑ : (Δ : Ctx) -> SNˢ (ts ↑ˢ Δ)
snts↑ Δ = {! !}
rem : (Δ : Ctx)(u : Term (Γ ++ Δ) σ) ->
⟦ σ ⟧ ∋ u -> ⟦ τ ⟧ ∋ var (x ↑ˣ Δ) •ˢ ts ↑ˢ Δ • u
rem Δ u oku = lem-⟦⟧ˣ τ (x ↑ˣ Δ) (snts↑ Δ ◄² lem-⟦⟧⊆SN σ oku)
lem-⟦⟧subst : {Γ Δ : Ctx}{τ : Type}(σ : Type)
{t : Term (Γ , τ) (Δ ⇒ σ)}{u : Term Γ τ}{vs : Terms Γ Δ} ->
⟦ σ ⟧ ∋ (t / [ u ]) •ˢ vs -> ⟦ σ ⟧ ∋ (ƛ t) • u •ˢ vs
lem-⟦⟧subst ι h = {!h !}
lem-⟦⟧subst (σ₁ ⟶ σ₂) h = {! !}
| {
"alphanum_fraction": 0.414258794,
"avg_line_length": 31.2156862745,
"ext": "agda",
"hexsha": "6901fe56a4b3876d3e0c0d61c02f73a4b70a9e4c",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/tait/Proof.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/tait/Proof.agda",
"max_line_length": 73,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "examples/outdated-and-incorrect/tait/Proof.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 1523,
"size": 3184
} |
{-# OPTIONS --universe-polymorphism #-}
module Categories.Profunctor where
open import Level hiding (lift)
open import Categories.Category
open import Categories.Agda
open import Categories.Bifunctor using (Functor; Bifunctor; _∘_)
open import Categories.Functor.Hom
open import Categories.Lan
open import Categories.Yoneda
Profunctor : ∀ {o ℓ e} {o′ ℓ′ e′} → Category o ℓ e → Category o′ ℓ′ e′ → Set _
Profunctor {ℓ = ℓ} {e} {ℓ′ = ℓ′} {e′} C D = Bifunctor (Category.op D) C (ISetoids (ℓ ⊔ ℓ′) (e ⊔ e′))
id : ∀ {o ℓ e} → {C : Category o ℓ e} → Profunctor C C
id {C = C} = Hom[ C ][-,-]
{-
_∘_ : ∀ {o ℓ e} {o′ ℓ′ e′} {o′′ ℓ′′ e′′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} {E : Category o′′ ℓ′′ e′′}
→ Profunctor D E → Profunctor C D → Profunctor C E
F ∘ G = {!!}
-} | {
"alphanum_fraction": 0.618251928,
"avg_line_length": 33.8260869565,
"ext": "agda",
"hexsha": "7a75c3c4c6a4c5be43831b63186fc173bfc15b08",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Profunctor.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Profunctor.agda",
"max_line_length": 113,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Profunctor.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 315,
"size": 778
} |
{-# OPTIONS --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Properties.Reduction {{eqrel : EqRelSet}} where
open EqRelSet {{...}}
open import Definition.Untyped
open import Definition.Typed
open import Definition.Typed.Properties
open import Definition.Typed.RedSteps
open import Definition.Typed.Weakening
open import Definition.LogicalRelation
open import Definition.LogicalRelation.Properties.Reflexivity
open import Definition.LogicalRelation.Properties.Transitivity
open import Definition.LogicalRelation.Properties.Symmetry
open import Definition.LogicalRelation.Properties.Escape
open import Definition.LogicalRelation.Properties.Conversion
open import Tools.Product
open import Tools.Empty
import Tools.PropositionalEquality as PE
import Data.Fin as Fin
import Data.Nat as Nat
-- Weak head expansion of reducible types.
redSubst* : ∀ {A B r l Γ}
→ Γ ⊢ A ⇒* B ^ r
→ Γ ⊩⟨ l ⟩ B ^ r
→ ∃ λ ([A] : Γ ⊩⟨ l ⟩ A ^ r)
→ Γ ⊩⟨ l ⟩ A ≡ B ^ r / [A]
redSubst* {A = A} D (Uᵣ′ B .(next l′) rU l′ l< PE.refl [[ ⊢A , ⊢B , D' ]]) =
let ⊢A = redFirst* D
in Uᵣ′ A (next l′) rU l′ l< PE.refl [[ ⊢A , ⊢B , D ⇨* D' ]] , D'
redSubst* D (ℕᵣ [[ ⊢B , ⊢ℕ , D′ ]]) =
let ⊢A = redFirst* D
in ℕᵣ ([[ ⊢A , ⊢ℕ , D ⇨* D′ ]]) , D′
redSubst* D (Emptyᵣ [[ ⊢B , ⊢Empty , D′ ]]) =
let ⊢A = redFirst* D
in Emptyᵣ ([[ ⊢A , ⊢Empty , D ⇨* D′ ]]) , D′
redSubst* D (ne′ K [[ ⊢B , ⊢K , D′ ]] neK K≡K) =
let ⊢A = redFirst* D
in (ne′ K [[ ⊢A , ⊢K , D ⇨* D′ ]] neK K≡K)
, (ne₌ _ [[ ⊢B , ⊢K , D′ ]] neK K≡K)
redSubst* D (Πᵣ′ rF lF lG lF≤ lG≤ F G [[ ⊢B , ⊢ΠFG , D′ ]] ⊢F ⊢G A≡A [F] [G] G-ext) =
let ⊢A = redFirst* D
in (Πᵣ′ rF lF lG lF≤ lG≤ F G [[ ⊢A , ⊢ΠFG , D ⇨* D′ ]] ⊢F ⊢G A≡A [F] [G] G-ext)
, (Π₌ _ _ D′ A≡A (λ ρ ⊢Δ → reflEq ([F] ρ ⊢Δ))
(λ ρ ⊢Δ [a] → reflEq ([G] ρ ⊢Δ [a])))
redSubst* D (∃ᵣ′ F G [[ ⊢B , ⊢ΠFG , D′ ]] ⊢F ⊢G A≡A [F] [G] G-ext) =
let ⊢A = redFirst* D
in (∃ᵣ′ F G [[ ⊢A , ⊢ΠFG , D ⇨* D′ ]] ⊢F ⊢G A≡A [F] [G] G-ext)
, (∃₌ _ _ D′ A≡A (λ ρ ⊢Δ → reflEq ([F] ρ ⊢Δ))
(λ ρ ⊢Δ [a] → reflEq ([G] ρ ⊢Δ [a])))
redSubst* {l = ι ¹} D (emb l< X) with redSubst* D X
redSubst* {l = ι ¹} D (emb l< X) | y , y₁ = emb l< y , y₁
redSubst* {l = ∞} D (emb l< X) with redSubst* D X
redSubst* {l = ∞} D (emb ∞< X) | y , y₁ = emb {l′ = ι ¹} ∞< y , y₁
redSubst*Term⁰ : ∀ {A t u ll Γ} → let l = ι ⁰ in
Γ ⊢ t ⇒* u ∷ A ^ ll
→ ([A] : Γ ⊩⟨ l ⟩ A ^ [ ! , ll ])
→ Γ ⊩⟨ l ⟩ u ∷ A ^ [ ! , ll ] / [A]
→ Γ ⊩⟨ l ⟩ t ∷ A ^ [ ! , ll ] / [A]
× Γ ⊩⟨ l ⟩ t ≡ u ∷ A ^ [ ! , ll ] / [A]
redSubst*Term⁰ t⇒u (ℕᵣ D) (ℕₜ n [[ ⊢u , ⊢n , d ]] n≡n prop) =
let A≡ℕ = subset* (red D)
⊢t = conv (redFirst*Term t⇒u) A≡ℕ
t⇒u′ = conv* t⇒u A≡ℕ
in ℕₜ n [[ ⊢t , ⊢n , t⇒u′ ⇨∷* d ]] n≡n prop
, ℕₜ₌ n n [[ ⊢t , ⊢n , t⇒u′ ⇨∷* d ]] [[ ⊢u , ⊢n , d ]]
n≡n (reflNatural-prop prop)
redSubst*Term⁰ t⇒u (ne′ K D neK K≡K) (neₜ k [[ ⊢t , ⊢u , d ]] (neNfₜ neK₁ ⊢k k≡k)) =
let A≡K = subset* (red D)
[d] = [[ ⊢t , ⊢u , d ]]
[d′] = [[ conv (redFirst*Term t⇒u) A≡K , ⊢u , conv* t⇒u A≡K ⇨∷* d ]]
in neₜ k [d′] (neNfₜ neK₁ ⊢k k≡k) , neₜ₌ k k [d′] [d] (neNfₜ₌ neK₁ neK₁ k≡k)
redSubst*Term⁰ {A} {t} {u} {l} {Γ} t⇒u (Πᵣ′ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(Πₜ f [[ ⊢t , ⊢u , d ]] funcF f≡f [f] [f]₁) =
let A≡ΠFG = subset* (red D)
t⇒u′ = conv* t⇒u A≡ΠFG
[d] = [[ ⊢t , ⊢u , d ]]
[d′] = [[ conv (redFirst*Term t⇒u) A≡ΠFG , ⊢u , conv* t⇒u A≡ΠFG ⇨∷* d ]]
in Πₜ f [d′] funcF f≡f [f] [f]₁
, Πₜ₌ f f [d′] [d] funcF funcF f≡f
(Πₜ f [d′] funcF f≡f [f] [f]₁)
(Πₜ f [d] funcF f≡f [f] [f]₁)
(λ [ρ] ⊢Δ [a] → reflEqTerm ([G] [ρ] ⊢Δ [a]) ([f]₁ [ρ] ⊢Δ [a]))
-- Weak head expansion of reducible terms.
redSubst*Term : ∀ {A t u l ll Γ}
→ Γ ⊢ t ⇒* u ∷ A ^ ll
→ ([A] : Γ ⊩⟨ l ⟩ A ^ [ ! , ll ])
→ Γ ⊩⟨ l ⟩ u ∷ A ^ [ ! , ll ] / [A]
→ Γ ⊩⟨ l ⟩ t ∷ A ^ [ ! , ll ] / [A]
× Γ ⊩⟨ l ⟩ t ≡ u ∷ A ^ [ ! , ll ] / [A]
redSubst*Term {t = t} {l = ι ¹} {Γ = Γ} t⇒u (Uᵣ′ A .(next ⁰) rU ⁰ l< PE.refl D) (Uₜ K [[ ⊢u , ⊢K , d ]] typeA A≡A [u]) =
let
A≡U = subset* (red D)
⊢t = conv (redFirst*Term t⇒u) A≡U
t⇒u′ = conv* t⇒u A≡U
[t] = λ {ρ} {Δ} ([ρ] : ρ ∷ Δ ⊆ Γ) ⊢Δ → proj₁ (redSubst* {l = ι ⁰} (wkRed* [ρ] ⊢Δ (univ* t⇒u′)) ([u] [ρ] ⊢Δ))
[t≡u] = λ {ρ} {Δ} ([ρ] : ρ ∷ Δ ⊆ Γ) ⊢Δ → proj₂ (redSubst* {l = ι ⁰} (wkRed* [ρ] ⊢Δ (univ* t⇒u′)) ([u] [ρ] ⊢Δ))
[[t]] = Uₜ K [[ ⊢t , ⊢K , t⇒u′ ⇨∷* d ]] typeA A≡A [t]
in
([[t]] , Uₜ₌ [[t]] (Uₜ K [[ ⊢u , ⊢K , d ]] typeA A≡A [u]) A≡A [t≡u])
redSubst*Term {t = t} {l = ∞} {Γ = Γ} t⇒u (Uᵣ′ A .(next ¹) rU ¹ l< PE.refl D) (Uₜ K [[ ⊢u , ⊢K , d ]] typeA A≡A [u]) =
let
A≡U = subset* (red D)
⊢t = conv (redFirst*Term t⇒u) A≡U
t⇒u′ = conv* t⇒u A≡U
[t] = λ {ρ} {Δ} ([ρ] : ρ ∷ Δ ⊆ Γ) ⊢Δ → proj₁ (redSubst* {l = ι ¹} (wkRed* [ρ] ⊢Δ (univ* t⇒u′)) ([u] [ρ] ⊢Δ))
[t≡u] = λ {ρ} {Δ} ([ρ] : ρ ∷ Δ ⊆ Γ) ⊢Δ → proj₂ (redSubst* {l = ι ¹} (wkRed* [ρ] ⊢Δ (univ* t⇒u′)) ([u] [ρ] ⊢Δ))
[[t]] = Uₜ K [[ ⊢t , ⊢K , t⇒u′ ⇨∷* d ]] typeA A≡A [t]
in
([[t]] , Uₜ₌ [[t]] (Uₜ K [[ ⊢u , ⊢K , d ]] typeA A≡A [u]) A≡A [t≡u])
redSubst*Term t⇒u (ℕᵣ D) (ℕₜ n [[ ⊢u , ⊢n , d ]] n≡n prop) =
let A≡ℕ = subset* (red D)
⊢t = conv (redFirst*Term t⇒u) A≡ℕ
t⇒u′ = conv* t⇒u A≡ℕ
in ℕₜ n [[ ⊢t , ⊢n , t⇒u′ ⇨∷* d ]] n≡n prop
, ℕₜ₌ n n [[ ⊢t , ⊢n , t⇒u′ ⇨∷* d ]] [[ ⊢u , ⊢n , d ]]
n≡n (reflNatural-prop prop)
redSubst*Term t⇒u (ne′ K D neK K≡K) (neₜ k [[ ⊢t , ⊢u , d ]] (neNfₜ neK₁ ⊢k k≡k)) =
let A≡K = subset* (red D)
[d] = [[ ⊢t , ⊢u , d ]]
[d′] = [[ conv (redFirst*Term t⇒u) A≡K , ⊢u , conv* t⇒u A≡K ⇨∷* d ]]
in neₜ k [d′] (neNfₜ neK₁ ⊢k k≡k) , neₜ₌ k k [d′] [d] (neNfₜ₌ neK₁ neK₁ k≡k)
redSubst*Term {A} {t} {u} {l} {Γ} t⇒u (Πᵣ′ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(Πₜ f [[ ⊢t , ⊢u , d ]] funcF f≡f [f] [f]₁) =
let A≡ΠFG = subset* (red D)
t⇒u′ = conv* t⇒u A≡ΠFG
[d] = [[ ⊢t , ⊢u , d ]]
[d′] = [[ conv (redFirst*Term t⇒u) A≡ΠFG , ⊢u , conv* t⇒u A≡ΠFG ⇨∷* d ]]
in Πₜ f [d′] funcF f≡f [f] [f]₁
, Πₜ₌ f f [d′] [d] funcF funcF f≡f
(Πₜ f [d′] funcF f≡f [f] [f]₁)
(Πₜ f [d] funcF f≡f [f] [f]₁)
(λ [ρ] ⊢Δ [a] → reflEqTerm ([G] [ρ] ⊢Δ [a]) ([f]₁ [ρ] ⊢Δ [a]))
redSubst*Term {l = ι ¹} D (emb l< X) [u] = redSubst*Term D X [u]
redSubst*Term {l = ∞} D (emb l< X) [u] = redSubst*Term D X [u]
-- Weak head expansion of reducible types with single reduction step.
redSubst : ∀ {A B r l Γ}
→ Γ ⊢ A ⇒ B ^ r
→ Γ ⊩⟨ l ⟩ B ^ r
→ ∃ λ ([A] : Γ ⊩⟨ l ⟩ A ^ r)
→ Γ ⊩⟨ l ⟩ A ≡ B ^ r / [A]
redSubst A⇒B [B] = redSubst* (A⇒B ⇨ id (escape [B])) [B]
-- Weak head expansion of reducible terms with single reduction step.
redSubstTerm : ∀ {A t u l ll Γ}
→ Γ ⊢ t ⇒ u ∷ A ^ ll
→ ([A] : Γ ⊩⟨ l ⟩ A ^ [ ! , ll ])
→ Γ ⊩⟨ l ⟩ u ∷ A ^ [ ! , ll ] / [A]
→ Γ ⊩⟨ l ⟩ t ∷ A ^ [ ! , ll ] / [A]
× Γ ⊩⟨ l ⟩ t ≡ u ∷ A ^ [ ! , ll ] / [A]
redSubstTerm t⇒u [A] [u] = redSubst*Term (t⇒u ⇨ id (escapeTerm [A] [u])) [A] [u]
-- Equalities
redSubst*EqTerm : ∀ {A B t t′ u u′ l ll Γ}
→ Γ ⊢ t ⇒* t′ ∷ A ^ ll
→ Γ ⊢ u ⇒* u′ ∷ B ^ ll
→ ([A] : Γ ⊩⟨ l ⟩ A ^ [ ! , ll ])
→ ([B] : Γ ⊩⟨ l ⟩ B ^ [ ! , ll ])
→ Γ ⊩⟨ l ⟩ A ≡ B ^ [ ! , ll ] / [A]
→ Γ ⊩⟨ l ⟩ t′ ∷ A ^ [ ! , ll ] / [A]
→ Γ ⊩⟨ l ⟩ u′ ∷ B ^ [ ! , ll ] / [B]
→ Γ ⊩⟨ l ⟩ t′ ≡ u′ ∷ A ^ [ ! , ll ] / [A]
→ Γ ⊩⟨ l ⟩ t ≡ u ∷ A ^ [ ! , ll ] / [A]
redSubst*EqTerm D D′ [A] [B] [A≡B] [t′] [u′] [t′≡u′] =
let
[t≡t′] = proj₂ (redSubst*Term D [A] [t′])
[u≡u′:B] = proj₂ (redSubst*Term D′ [B] [u′])
[u≡u′] = convEqTerm₂ [A] [B] [A≡B] [u≡u′:B]
in transEqTerm [A] [t≡t′] (transEqTerm [A] [t′≡u′] (symEqTerm [A] [u≡u′]))
| {
"alphanum_fraction": 0.425688302,
"avg_line_length": 44.843575419,
"ext": "agda",
"hexsha": "2afd5bfe2d3ac78014ac4a8bb900cc2ee8dd077f",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z",
"max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "CoqHott/logrel-mltt",
"max_forks_repo_path": "Definition/LogicalRelation/Properties/Reduction.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "CoqHott/logrel-mltt",
"max_issues_repo_path": "Definition/LogicalRelation/Properties/Reduction.agda",
"max_line_length": 120,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "CoqHott/logrel-mltt",
"max_stars_repo_path": "Definition/LogicalRelation/Properties/Reduction.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z",
"num_tokens": 4376,
"size": 8027
} |
open import Data.String using ( String )
open import Data.List.Primitive using ( #List )
open import Data.Maybe.Primitive using ( #Maybe )
open import Web.URI.Port.Primitive using ( Port? )
open import Web.URI.Scheme.Primitive using ( Scheme? )
module Web.URI.Primitive where
{-# IMPORT Data.Maybe #-}
{-# IMPORT Web.URI.AgdaFFI #-}
data #URI : Set where
#abs : Scheme? → String → Port? → (#List String) → (#Maybe String) → #URI
#rel : (#List String) → (#Maybe String) → #URI
{-# COMPILED_DATA #URI Web.URI.AgdaFFI.URI Web.URI.AgdaFFI.Abs Web.URI.AgdaFFI.Rel #-}
postulate #toString : #URI → String
{-# COMPILED #toString Web.URI.AgdaFFI.toString #-}
postulate #fromString : String → (#Maybe #URI)
{-# COMPILED #fromString Web.URI.AgdaFFI.fromString #-}
| {
"alphanum_fraction": 0.6968503937,
"avg_line_length": 36.2857142857,
"ext": "agda",
"hexsha": "b26e5f5e28800b862f45766822ff62a1876f5bd4",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:37:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:37:59.000Z",
"max_forks_repo_head_hexsha": "8ced22124dbe12fa820699bb362247a96d592c03",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/agda-web-uri",
"max_forks_repo_path": "src/Web/URI/Primitive.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8ced22124dbe12fa820699bb362247a96d592c03",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/agda-web-uri",
"max_issues_repo_path": "src/Web/URI/Primitive.agda",
"max_line_length": 86,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "8ced22124dbe12fa820699bb362247a96d592c03",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/agda-web-uri",
"max_stars_repo_path": "src/Web/URI/Primitive.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-23T04:56:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-23T04:56:25.000Z",
"num_tokens": 205,
"size": 762
} |
open import Oscar.Prelude
open import Oscar.Class.IsPrefunctor
open import Oscar.Class.Smap
open import Oscar.Class.Surjection
open import Oscar.Class.Transitivity
module Oscar.Class.Prefunctor where
record Prefunctor 𝔬₁ 𝔯₁ ℓ₁ 𝔬₂ 𝔯₂ ℓ₂ : Ø ↑̂ (𝔬₁ ∙̂ 𝔯₁ ∙̂ ℓ₁ ∙̂ 𝔬₂ ∙̂ 𝔯₂ ∙̂ ℓ₂) where
constructor ∁
field
{𝔒₁} : Ø 𝔬₁
_∼₁_ : 𝔒₁ → 𝔒₁ → Ø 𝔯₁
_∼̇₁_ : ∀ {x y} → x ∼₁ y → x ∼₁ y → Ø ℓ₁
_↦₁_ : Transitivity.type _∼₁_
{𝔒₂} : Ø 𝔬₂
_∼₂_ : 𝔒₂ → 𝔒₂ → Ø 𝔯₂
_∼̇₂_ : ∀ {x y} → x ∼₂ y → x ∼₂ y → Ø ℓ₂
_↦₂_ : Transitivity.type _∼₂_
{μ} : Surjection.type 𝔒₁ 𝔒₂
prefunctor-smap : Smap.type _∼₁_ _∼₂_ μ μ
⦃ `IsPrefunctor ⦄ : IsPrefunctor _∼₁_ _∼̇₁_ _↦₁_ _∼₂_ _∼̇₂_ _↦₂_ prefunctor-smap
| {
"alphanum_fraction": 0.6145251397,
"avg_line_length": 29.8333333333,
"ext": "agda",
"hexsha": "37ea5fc731b32ac0084d4312e445eb2f1f3bff6a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Oscar/Class/Prefunctor.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Oscar/Class/Prefunctor.agda",
"max_line_length": 84,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Oscar/Class/Prefunctor.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 397,
"size": 716
} |
module Negative5 where
data Funny (A : Set) : Set where
funny : A -> Funny (Funny A -> A) -> Funny A
| {
"alphanum_fraction": 0.619047619,
"avg_line_length": 17.5,
"ext": "agda",
"hexsha": "d2590ca075f0fa9293d1dd38dfb735e8ca173362",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Negative5.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Negative5.agda",
"max_line_length": 46,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Negative5.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 32,
"size": 105
} |
module _ where
-- Check that previous clauses reduce in later ones
open import Agda.Builtin.Nat hiding (_==_)
record Σ (A : Set) (B : A → Set) : Set where
field
fst : A
snd : B fst
open Σ
postulate
T : Nat → Set
mkT : ∀ n → T n
t5 : Σ Nat T
fst t5 = 5
snd t5 = mkT 5
-- Also with instance projections --
open import Agda.Builtin.Bool
open import Agda.Builtin.Equality
record Eq (A : Set) : Set where
field
_==_ : A → A → Bool
reflexive : ∀ x → true ≡ (x == x)
open Eq {{...}}
instance
EqNat : Eq Nat
_==_ {{EqNat}} zero zero = true
_==_ {{EqNat}} zero (suc y) = false
_==_ {{EqNat}} (suc x) zero = false
_==_ {{EqNat}} (suc x) (suc y) = x == y
reflexive {{EqNat}} zero = refl
reflexive {{EqNat}} (suc x) rewrite reflexive x = refl
| {
"alphanum_fraction": 0.5863808323,
"avg_line_length": 18.4418604651,
"ext": "agda",
"hexsha": "6a37635b887660b86318ff8f7d0f7c5ea38561e8",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/ClauseEval.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/ClauseEval.agda",
"max_line_length": 56,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/ClauseEval.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 290,
"size": 793
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Natural numbers represented in binary.
------------------------------------------------------------------------
-- This module aims to create an alternative formulation of ℕ that is
-- still reasonably computationally efficient without having to call out
-- to Haskell.
{-# OPTIONS --without-K --safe #-}
module Data.Nat.Binary.Base where
open import Algebra.Core using (Op₂)
open import Data.Nat.Base as ℕ using (ℕ)
open import Data.Sum.Base using (_⊎_)
open import Function using (_on_)
open import Level using (0ℓ)
open import Relation.Binary using (Rel)
open import Relation.Binary.PropositionalEquality using (_≡_)
open import Relation.Nullary using (¬_)
------------------------------------------------------------------------
-- Definition
data ℕᵇ : Set where
zero : ℕᵇ
2[1+_] : ℕᵇ → ℕᵇ -- n → 2*(1+n) = nonzero even numbers
1+[2_] : ℕᵇ → ℕᵇ -- n → 1 + 2*n = odd numbers
------------------------------------------------------------------------
-- Ordering relations
infix 4 _<_ _>_ _≤_ _≮_ _≯_ _≰_ _≱_
data _<_ : Rel ℕᵇ 0ℓ where
0<even : ∀ {x} → zero < 2[1+ x ]
0<odd : ∀ {x} → zero < 1+[2 x ]
even<even : ∀ {x y} → x < y → 2[1+ x ] < 2[1+ y ]
even<odd : ∀ {x y} → x < y → 2[1+ x ] < 1+[2 y ]
odd<even : ∀ {x y} → x < y ⊎ x ≡ y → 1+[2 x ] < 2[1+ y ]
odd<odd : ∀ {x y} → x < y → 1+[2 x ] < 1+[2 y ]
-- In these constructors "even" stands for nonzero even.
_>_ : Rel ℕᵇ 0ℓ
x > y = y < x
_≤_ : Rel ℕᵇ 0ℓ
x ≤ y = x < y ⊎ x ≡ y
_≥_ : Rel ℕᵇ 0ℓ
x ≥ y = y ≤ x
_≮_ : Rel ℕᵇ 0ℓ
x ≮ y = ¬ (x < y)
_≯_ : Rel ℕᵇ 0ℓ
x ≯ y = ¬ (x > y)
_≰_ : Rel ℕᵇ 0ℓ
x ≰ y = ¬ (x ≤ y)
_≱_ : Rel ℕᵇ 0ℓ
x ≱ y = ¬ (x ≥ y)
------------------------------------------------------------------------
-- Basic operations
double : ℕᵇ → ℕᵇ
double zero = zero
double 2[1+ x ] = 2[1+ 1+[2 x ] ]
double 1+[2 x ] = 2[1+ (double x) ]
suc : ℕᵇ → ℕᵇ
suc zero = 1+[2 zero ]
suc 2[1+ x ] = 1+[2 (suc x) ]
suc 1+[2 x ] = 2[1+ x ]
pred : ℕᵇ → ℕᵇ
pred zero = zero
pred 2[1+ x ] = 1+[2 x ]
pred 1+[2 x ] = double x
------------------------------------------------------------------------
-- Addition, multiplication and certain related functions
infixl 6 _+_
infixl 7 _*_
_+_ : Op₂ ℕᵇ
zero + y = y
x + zero = x
2[1+ x ] + 2[1+ y ] = 2[1+ suc (x + y) ]
2[1+ x ] + 1+[2 y ] = suc 2[1+ (x + y) ]
1+[2 x ] + 2[1+ y ] = suc 2[1+ (x + y) ]
1+[2 x ] + 1+[2 y ] = suc 1+[2 (x + y) ]
_*_ : Op₂ ℕᵇ
zero * _ = zero
_ * zero = zero
2[1+ x ] * 2[1+ y ] = double 2[1+ x + (y + x * y) ]
2[1+ x ] * 1+[2 y ] = 2[1+ x + y * 2[1+ x ] ]
1+[2 x ] * 2[1+ y ] = 2[1+ y + x * 2[1+ y ] ]
1+[2 x ] * 1+[2 y ] = 1+[2 x + y * 1+[2 x ] ]
------------------------------------------------------------------------
-- Conversion between ℕᵇ and ℕ
toℕ : ℕᵇ → ℕ
toℕ zero = 0
toℕ 2[1+ x ] = 2 ℕ.* (ℕ.suc (toℕ x))
toℕ 1+[2 x ] = ℕ.suc (2 ℕ.* (toℕ x))
-- Costs O(n), could be improved using `_/_` and `_%_`
fromℕ : ℕ → ℕᵇ
fromℕ 0 = zero
fromℕ (ℕ.suc n) = suc (fromℕ n)
-- An alternative ordering lifted from ℕ
infix 4 _<ℕ_
_<ℕ_ : Rel ℕᵇ 0ℓ
_<ℕ_ = ℕ._<_ on toℕ
------------------------------------------------------------------------
-- Other functions
-- Useful in some termination proofs.
size : ℕᵇ → ℕ
size zero = 0
size 2[1+ x ] = ℕ.suc (size x)
size 1+[2 x ] = ℕ.suc (size x)
------------------------------------------------------------------------
-- Constants
0ᵇ = zero
1ᵇ = suc 0ᵇ
2ᵇ = suc 1ᵇ
3ᵇ = suc 2ᵇ
4ᵇ = suc 3ᵇ
5ᵇ = suc 4ᵇ
6ᵇ = suc 5ᵇ
7ᵇ = suc 6ᵇ
8ᵇ = suc 7ᵇ
9ᵇ = suc 8ᵇ
| {
"alphanum_fraction": 0.4328886469,
"avg_line_length": 24.6510067114,
"ext": "agda",
"hexsha": "63ff8ae9d6919efd8810f82e8a3244a20d426196",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/Nat/Binary/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/Nat/Binary/Base.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/Nat/Binary/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 1487,
"size": 3673
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Convenient syntax for reasoning with a setoid
------------------------------------------------------------------------
-- Example use:
-- n*0≡0 : ∀ n → n * 0 ≡ 0
-- n*0≡0 zero = refl
-- n*0≡0 (suc n) = begin
-- suc n * 0 ≈⟨ refl ⟩
-- n * 0 + 0 ≈⟨ ... ⟩
-- n * 0 ≈⟨ n*0≡0 n ⟩
-- 0 ∎
-- Module `≡-Reasoning` in `Relation.Binary.PropositionalEquality`
-- is recommended for equational reasoning when the underlying equality is
-- `_≡_`.
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary
module Relation.Binary.Reasoning.Setoid {s₁ s₂} (S : Setoid s₁ s₂) where
open Setoid S
------------------------------------------------------------------------
-- Publicly re-export base contents
open import Relation.Binary.Reasoning.Base.Single _≈_ refl trans public
renaming (_∼⟨_⟩_ to _≈⟨_⟩_)
infixr 2 _≈˘⟨_⟩_
_≈˘⟨_⟩_ : ∀ x {y z} → y ≈ x → y IsRelatedTo z → x IsRelatedTo z
x ≈˘⟨ x≈y ⟩ y∼z = x ≈⟨ sym x≈y ⟩ y∼z
| {
"alphanum_fraction": 0.4796208531,
"avg_line_length": 27.0512820513,
"ext": "agda",
"hexsha": "931a1f79a8960510d8e0c376b39d5da22de67821",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Reasoning/Setoid.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Reasoning/Setoid.agda",
"max_line_length": 74,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Reasoning/Setoid.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 347,
"size": 1055
} |
module bee2 where
open import Bee2.Crypto.Belt
open import Data.ByteString.Utf8
open import Data.ByteString.IO
open import Data.String using (toList)
open import Data.Product using (proj₁)
open import IO
-- beltPBKDF : Password → ℕ → Salt → Kek
main = run (writeBinaryFile "pbkdf2" (proj₁ (beltPBKDF (packStrict "zed") 1000 (packStrict "salt"))))
| {
"alphanum_fraction": 0.7528409091,
"avg_line_length": 23.4666666667,
"ext": "agda",
"hexsha": "2ee24fd191f7c5a1b38c2929e1b5e818511c9a4a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "22682afc8d488e3812307e104785d2b8dc8b9d4a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "semenov-vladyslav/bee2-agda",
"max_forks_repo_path": "app/bee2.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "22682afc8d488e3812307e104785d2b8dc8b9d4a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "semenov-vladyslav/bee2-agda",
"max_issues_repo_path": "app/bee2.agda",
"max_line_length": 101,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "22682afc8d488e3812307e104785d2b8dc8b9d4a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "semenov-vladyslav/bee2-agda",
"max_stars_repo_path": "app/bee2.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 101,
"size": 352
} |
{-# OPTIONS --without-K --safe #-}
module Dodo.Binary.Union where
-- Stdlib imports
open import Level using (Level; _⊔_)
open import Data.Sum using (_⊎_; inj₁; inj₂; swap)
open import Relation.Binary using (REL)
-- Local imports
open import Dodo.Binary.Equality
-- # Definitions
infixl 19 _∪₂_
_∪₂_ : {a b ℓ₁ ℓ₂ : Level} {A : Set a} {B : Set b}
→ REL A B ℓ₁
→ REL A B ℓ₂
→ REL A B (ℓ₁ ⊔ ℓ₂)
_∪₂_ p q x y = p x y ⊎ q x y
-- # Properties
module _ {a b ℓ : Level} {A : Set a} {B : Set b}
{R : REL A B ℓ} where
∪₂-idem : (R ∪₂ R) ⇔₂ R
∪₂-idem = ⇔: ⊆-proof ⊇-proof
where
⊆-proof : (R ∪₂ R) ⊆₂' R
⊆-proof _ _ (inj₁ Rxy) = Rxy
⊆-proof _ _ (inj₂ Rxy) = Rxy
⊇-proof : R ⊆₂' (R ∪₂ R)
⊇-proof _ _ = inj₁
module _ {a b ℓ₁ ℓ₂ : Level} {A : Set a} {B : Set b}
{P : REL A B ℓ₁} {Q : REL A B ℓ₂} where
∪₂-comm : (P ∪₂ Q) ⇔₂ (Q ∪₂ P)
∪₂-comm = ⇔: (λ _ _ → swap) (λ _ _ → swap)
module _ {a b ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {B : Set b} {P : REL A B ℓ₁}
{Q : REL A B ℓ₂} {R : REL A B ℓ₃} where
∪₂-assoc : (P ∪₂ Q) ∪₂ R ⇔₂ P ∪₂ (Q ∪₂ R)
∪₂-assoc = ⇔: ⊆-proof ⊇-proof
where
⊆-proof : ((P ∪₂ Q) ∪₂ R) ⊆₂' (P ∪₂ (Q ∪₂ R))
⊆-proof _ _ (inj₁ (inj₁ Pxy)) = inj₁ Pxy
⊆-proof _ _ (inj₁ (inj₂ Qxy)) = inj₂ (inj₁ Qxy)
⊆-proof _ _ (inj₂ Rxy) = inj₂ (inj₂ Rxy)
⊇-proof : (P ∪₂ (Q ∪₂ R)) ⊆₂' ((P ∪₂ Q) ∪₂ R)
⊇-proof _ _ (inj₁ Pxy) = inj₁ (inj₁ Pxy)
⊇-proof _ _ (inj₂ (inj₁ Qxy)) = inj₁ (inj₂ Qxy)
⊇-proof _ _ (inj₂ (inj₂ Rxy)) = inj₂ Rxy
-- # Operations
-- ## Operations: ⊆₂
module _ {a b ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {B : Set b}
{P : REL A B ℓ₁} {Q : REL A B ℓ₂} {R : REL A B ℓ₃} where
∪₂-combine-⊆₂ : P ⊆₂ Q → R ⊆₂ Q → (P ∪₂ R) ⊆₂ Q
∪₂-combine-⊆₂ (⊆: P⊆Q) (⊆: R⊆Q) = ⊆: (λ{x y → λ{(inj₁ Px) → P⊆Q x y Px; (inj₂ Rx) → R⊆Q x y Rx}})
module _ {a b ℓ₁ ℓ₂ : Level} {A : Set a} {B : Set b}
{P : REL A B ℓ₁} {Q : REL A B ℓ₂} where
∪₂-introˡ : P ⊆₂ (Q ∪₂ P)
∪₂-introˡ = ⊆: λ{_ _ → inj₂}
∪₂-introʳ : P ⊆₂ (P ∪₂ Q)
∪₂-introʳ = ⊆: λ{_ _ → inj₁}
module _ {a b ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {B : Set b}
{P : REL A B ℓ₁} {Q : REL A B ℓ₂} {R : REL A B ℓ₃} where
∪₂-introˡ-⊆₂ : P ⊆₂ R → P ⊆₂ (Q ∪₂ R)
∪₂-introˡ-⊆₂ (⊆: P⊆R) = ⊆: (λ x y Pxy → inj₂ (P⊆R x y Pxy))
∪₂-introʳ-⊆₂ : P ⊆₂ Q → P ⊆₂ (Q ∪₂ R)
∪₂-introʳ-⊆₂ (⊆: P⊆Q) = ⊆: (λ x y Pxy → inj₁ (P⊆Q x y Pxy))
∪₂-elimˡ-⊆₂ : (P ∪₂ Q) ⊆₂ R → Q ⊆₂ R
∪₂-elimˡ-⊆₂ (⊆: [P∪Q]⊆R) = ⊆: (λ x y Qxy → [P∪Q]⊆R x y (inj₂ Qxy))
∪₂-elimʳ-⊆₂ : (P ∪₂ Q) ⊆₂ R → P ⊆₂ R
∪₂-elimʳ-⊆₂ (⊆: [P∪Q]⊆R) = ⊆: (λ x y Pxy → [P∪Q]⊆R x y (inj₁ Pxy))
module _ {a b ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {B : Set b}
{P : REL A B ℓ₁} {Q : REL A B ℓ₂} {R : REL A B ℓ₃} where
∪₂-substˡ-⊆₂ : P ⊆₂ Q → (P ∪₂ R) ⊆₂ (Q ∪₂ R)
∪₂-substˡ-⊆₂ (⊆: P⊆Q) = ⊆: (λ{x y → λ{(inj₁ Pxy) → inj₁ (P⊆Q x y Pxy); (inj₂ Rxy) → inj₂ Rxy}})
∪₂-substʳ-⊆₂ : P ⊆₂ Q → (R ∪₂ P) ⊆₂ (R ∪₂ Q)
∪₂-substʳ-⊆₂ (⊆: P⊆Q) = ⊆: (λ{x y → λ{(inj₁ Rxy) → inj₁ Rxy; (inj₂ Pxy) → inj₂ (P⊆Q x y Pxy)}})
-- ## Operations: ⇔₂
module _ {a b ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {B : Set b}
{P : REL A B ℓ₁} {Q : REL A B ℓ₂} {R : REL A B ℓ₃} where
∪₂-substˡ : P ⇔₂ Q → (P ∪₂ R) ⇔₂ (Q ∪₂ R)
∪₂-substˡ = ⇔₂-compose ∪₂-substˡ-⊆₂ ∪₂-substˡ-⊆₂
∪₂-substʳ : P ⇔₂ Q → (R ∪₂ P) ⇔₂ (R ∪₂ Q)
∪₂-substʳ = ⇔₂-compose ∪₂-substʳ-⊆₂ ∪₂-substʳ-⊆₂
| {
"alphanum_fraction": 0.4817474566,
"avg_line_length": 28.0840336134,
"ext": "agda",
"hexsha": "5d9909f615c361c73c46be49a1ff5a2d58476512",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "sourcedennis/agda-dodo",
"max_forks_repo_path": "src/Dodo/Binary/Union.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "sourcedennis/agda-dodo",
"max_issues_repo_path": "src/Dodo/Binary/Union.agda",
"max_line_length": 99,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "sourcedennis/agda-dodo",
"max_stars_repo_path": "src/Dodo/Binary/Union.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1972,
"size": 3342
} |
postulate
F : @0 Set → Set
G : @0 Set → Set
G A = F (λ { → A })
| {
"alphanum_fraction": 0.447761194,
"avg_line_length": 11.1666666667,
"ext": "agda",
"hexsha": "f53c57483d554a4f81c197f0f56bc0543f9c67c4",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "cagix/agda",
"max_forks_repo_path": "test/Fail/Issue4525d.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "cagix/agda",
"max_issues_repo_path": "test/Fail/Issue4525d.agda",
"max_line_length": 19,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "cagix/agda",
"max_stars_repo_path": "test/Fail/Issue4525d.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 30,
"size": 67
} |
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import cohomology.Theory
open import homotopy.PushoutSplit
open import cw.CW
module cw.cohomology.WedgeOfCells {i} (OT : OrdinaryTheory i)
{n} (⊙skel : ⊙Skeleton {i} (S n)) where
open OrdinaryTheory OT
open import cohomology.Bouquet OT
open import cw.WedgeOfCells (⊙Skeleton.skel ⊙skel)
module _ (m : ℤ) where
CXₙ/Xₙ₋₁ : Group i
CXₙ/Xₙ₋₁ = C m ⊙Xₙ/Xₙ₋₁
CEl-Xₙ/Xₙ₋₁ : Type i
CEl-Xₙ/Xₙ₋₁ = Group.El CXₙ/Xₙ₋₁
abstract
CXₙ/Xₙ₋₁-is-abelian : is-abelian CXₙ/Xₙ₋₁
CXₙ/Xₙ₋₁-is-abelian = C-is-abelian m ⊙Xₙ/Xₙ₋₁
CXₙ/Xₙ₋₁-abgroup : AbGroup i
CXₙ/Xₙ₋₁-abgroup = CXₙ/Xₙ₋₁ , CXₙ/Xₙ₋₁-is-abelian
CXₙ/Xₙ₋₁-diag-β : ⊙has-cells-with-choice 0 ⊙skel i
→ CXₙ/Xₙ₋₁ (ℕ-to-ℤ (S n)) ≃ᴳ Πᴳ (⊙cells-last ⊙skel) (λ _ → C2 0)
CXₙ/Xₙ₋₁-diag-β ac = C-Bouquet-diag (S n) (⊙cells-last ⊙skel) (⊙cells-last-has-choice ⊙skel ac)
∘eᴳ C-emap (ℕ-to-ℤ (S n)) Bouquet-⊙equiv-Xₙ/Xₙ₋₁
abstract
CXₙ/Xₙ₋₁-≠-is-trivial : ∀ {m} (m≠Sn : m ≠ ℕ-to-ℤ (S n))
→ ⊙has-cells-with-choice 0 ⊙skel i
→ is-trivialᴳ (CXₙ/Xₙ₋₁ m)
CXₙ/Xₙ₋₁-≠-is-trivial {m} m≠Sn ac =
iso-preserves'-trivial (C-emap m Bouquet-⊙equiv-Xₙ/Xₙ₋₁) $
C-Bouquet-≠-is-trivial m (⊙cells-last ⊙skel) (S n) m≠Sn (⊙cells-last-has-choice ⊙skel ac)
CXₙ/Xₙ₋₁-<-is-trivial : ∀ {m} (m<Sn : m < S n)
→ ⊙has-cells-with-choice 0 ⊙skel i
→ is-trivialᴳ (CXₙ/Xₙ₋₁ (ℕ-to-ℤ m))
CXₙ/Xₙ₋₁-<-is-trivial m<Sn = CXₙ/Xₙ₋₁-≠-is-trivial (ℕ-to-ℤ-≠ (<-to-≠ m<Sn))
CXₙ/Xₙ₋₁->-is-trivial : ∀ {m} (m>Sn : S n < m)
→ ⊙has-cells-with-choice 0 ⊙skel i
→ is-trivialᴳ (CXₙ/Xₙ₋₁ (ℕ-to-ℤ m))
CXₙ/Xₙ₋₁->-is-trivial m>Sn = CXₙ/Xₙ₋₁-≠-is-trivial (≠-inv (ℕ-to-ℤ-≠ (<-to-≠ m>Sn)))
| {
"alphanum_fraction": 0.6094570928,
"avg_line_length": 33.5882352941,
"ext": "agda",
"hexsha": "088703e432726bc4b77c376db62124f8597f5d34",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "theorems/cw/cohomology/WedgeOfCells.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "theorems/cw/cohomology/WedgeOfCells.agda",
"max_line_length": 95,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "theorems/cw/cohomology/WedgeOfCells.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 935,
"size": 1713
} |
{-# OPTIONS --safe --without-K #-}
module Literals.Number where
open import Agda.Builtin.FromNat public
open Number ⦃ ... ⦄ public
| {
"alphanum_fraction": 0.7014925373,
"avg_line_length": 16.75,
"ext": "agda",
"hexsha": "76138af4b18dd4751145a89b04e0146c9e73fbb3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/combinatorics-paper",
"max_forks_repo_path": "agda/Literals/Number.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/combinatorics-paper",
"max_issues_repo_path": "agda/Literals/Number.agda",
"max_line_length": 39,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/combinatorics-paper",
"max_stars_repo_path": "agda/Literals/Number.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 35,
"size": 134
} |
module StateSizedIO.Base where
open import Size
open import SizedIO.Base
open import Data.Product
record IOInterfaceˢ : Set₁ where
field
IOStateˢ : Set
Commandˢ : IOStateˢ → Set
Responseˢ : (s : IOStateˢ) → (m : Commandˢ s) → Set
IOnextˢ : (s : IOStateˢ) → (m : Commandˢ s) → (Responseˢ s m)
→ IOStateˢ
open IOInterfaceˢ public
record Interfaceˢ : Set₁ where
field
Stateˢ : Set
Methodˢ : Stateˢ → Set
Resultˢ : (s : Stateˢ) → (m : Methodˢ s) → Set
nextˢ : (s : Stateˢ) → (m : Methodˢ s) → (Resultˢ s m)
→ Stateˢ
open Interfaceˢ public
{-
module _
(ioinf : IOInterface) -- (let C = Command ioi) (let R = Response ioi)
(objinf : Interfaceˢ) {-(let S = Stateˢ oi)-} --(let M = Methodˢ objinf) (let Rt = Resultˢ objinf)
-- (let n = nextˢ objinf)
where
@BEGIN@IOObject
record IOObjectˢ (i : Size) (s : Stateˢ objinf) : Set where
coinductive
field
HIDE-END
method :
∀{j : Size< i}
(m : Methodˢ objinf s) →
IO ioinf ∞ ( Σ[ r ∈ objinf .Resultˢ s m ]
IOObjectˢ j (objinf .nextˢ s m r))
@END
-}
module _
(ioinf : IOInterface)
(oinf : Interfaceˢ)
where
record IOObjectˢ (i : Size) (s : oinf .Stateˢ) : Set where
coinductive
field
method :
∀{j : Size< i}
(m : oinf .Methodˢ s) →
IO ioinf ∞ (Σ[ r ∈ oinf .Resultˢ s m ]
IOObjectˢ j (oinf .nextˢ s m r))
module _
(ioi : IOInterface) (let C = Command ioi) (let R = Response ioi)
(oi : Interfaceˢ) (let S = Stateˢ oi) (let M = Methodˢ oi) (let Rt = Resultˢ oi)
(let n = nextˢ oi)
where
record IOObjectˢ- (i : Size) (s : S) : Set where
coinductive
field
method : ∀{j : Size< i} (m : M s) → IO ioi ∞ (Rt s m )
open IOObjectˢ public
open IOObjectˢ- public
module _ (I : IOInterfaceˢ )
(let S = IOStateˢ I) (let C = Commandˢ I)
(let R = Responseˢ I) (let n = IOnextˢ I)
where
mutual
record IOˢ (i : Size) (A : S → Set) (s : S) : Set where
coinductive
-- constructor delay
field
forceˢ : {j : Size< i} → IOˢ' j A s
data IOˢ' (i : Size) (A : S → Set) (s : S) : Set where
doˢ' : (c : C s) (f : (r : R s c) → IOˢ i A (n s c r)) → IOˢ' i A s
returnˢ' : (a : A s) → IOˢ' i A s
data IOˢ+ (i : Size) (A : S → Set) (s : S) : Set where
doˢ' : (c : C s) (f : (r : R s c) → IOˢ i A (n s c r)) → IOˢ+ i A s
open IOˢ public
delayˢ : {i : Size}{I : IOInterfaceˢ}{A : IOStateˢ I → Set}{s : IOStateˢ I} → IOˢ' I i A s → IOˢ I (↑ i) A s
delayˢ p .forceˢ = p
module _ {I : IOInterfaceˢ }
(let S = IOStateˢ I) (let C = Commandˢ I)
(let R = Responseˢ I) (let n = IOnextˢ I)
where
returnˢ : ∀{i}{A : S → Set} (s : S) (a : A s) → IOˢ I i A s
returnˢ s a .forceˢ = returnˢ' a
-- 2017-04-05: Argument s is hidden now.
doˢ : ∀{i}{A : S → Set} {s : S} (c : C s)
(f : (r : R s c) → IOˢ I i A (n s c r))
→ IOˢ I i A s
doˢ c f .forceˢ = doˢ' c f
mutual
fmapˢ : (i : Size) → {A B : S → Set} → (f : (s : S) → A s → B s)
→ (s : S)
→ IOˢ I i A s
→ IOˢ I i B s
fmapˢ i {A} {B} f s p .forceˢ {j} = fmapˢ' j {A} {B} f s (p .forceˢ {j})
fmapˢ' : (i : Size) → {A B : S → Set} → (f : (s : S) → A s → B s)
→ (s : S)
→ IOˢ' I i A s
→ IOˢ' I i B s
fmapˢ' i {A} {B} f s (doˢ' c f₁) = doˢ' c (λ r → fmapˢ i {A} {B} f (IOnextˢ I s c r) (f₁ r))
fmapˢ' i {A} {B} f s (returnˢ' a) = returnˢ' (f s a)
| {
"alphanum_fraction": 0.4967444384,
"avg_line_length": 28.3538461538,
"ext": "agda",
"hexsha": "a48415439e9fa9e30f9cccc4401e66c0c8200493",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "stephanadls/state-dependent-gui",
"max_forks_repo_path": "src/StateSizedIO/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "stephanadls/state-dependent-gui",
"max_issues_repo_path": "src/StateSizedIO/Base.agda",
"max_line_length": 108,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "stephanadls/state-dependent-gui",
"max_stars_repo_path": "src/StateSizedIO/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-31T17:20:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-31T15:37:39.000Z",
"num_tokens": 1546,
"size": 3686
} |
module Untyped.Abstract where
open import Function
open import Data.String
open import Data.Nat
open import Data.Unit
open import Data.Product
open import Data.List
open import Data.Sum as Sum
open import Data.Maybe
open import Strict
open import Debug.Trace
open import Category.Monad
open import Untyped.Monads
postulate fail : ∀ {a : Set} → a
willneverhappenipromise : ∀ {a : Set} → String → a
willneverhappenipromise m = trace m fail
module _ where
Var = ℕ
Chan = ℕ
mutual
record Closure : Set where
inductive
constructor ⟨_⊢_⟩
field
env : Env
body : Exp
data Val : Set where
tt : Val
nat : ℕ → Val
chan : Chan → Val
⟨_,_⟩ : Val → Val → Val -- pairs
clos : Closure → Val -- closures
Env = List Val
data Exp : Set where
-- the functional core
nat : ℕ → Exp
var : Var → Exp
ƛ : Exp → Exp
_·_ : Exp → Exp → Exp
-- products
pair : Exp → Exp → Exp
letp : Exp → Exp → Exp
-- communication
close : Exp → Exp
receive : Exp → Exp
send : (ch : Exp) → (v : Exp) → Exp
-- threading
fork : Exp → Exp
extend : Val → Env → Env
extend = _∷_
unsafeLookup : ∀ {a} → ℕ → List a → a
unsafeLookup _ [] = willneverhappenipromise "lookup fail"
unsafeLookup zero (x ∷ xs) = x
unsafeLookup (suc n) (x ∷ xs) = unsafeLookup n xs
unsafeUpdate : ∀ {a} → ℕ → List a → a → List a
unsafeUpdate n [] a = willneverhappenipromise "update fail"
unsafeUpdate zero (x ∷ xs) a = a ∷ xs
unsafeUpdate (suc n) (x ∷ xs) a = x ∷ unsafeUpdate n xs a
-- Ideally this should be two different dispatch sets
data Comm : Set where
-- communication
send : Chan → Val → Comm
recv : Chan → Comm
clos : Chan → Comm
data Threading : Set where
-- threading
fork : Closure → Threading
yield : Threading
Cmd = Comm ⊎ Threading
⟦_⟧-comm : Comm → Set
⟦ clos x ⟧-comm = ⊤
⟦ send x x₁ ⟧-comm = ⊤
⟦ recv x ⟧-comm = Val
⟦_⟧-thr : Threading → Set
⟦ fork x ⟧-thr = Chan
⟦ yield ⟧-thr = ⊤
⟦_⟧ : Cmd → Set
⟦ inj₁ x ⟧ = ⟦ x ⟧-comm
⟦ inj₂ y ⟧ = ⟦ y ⟧-thr
data Thread : Set where
thread : Free Cmd ⟦_⟧ Val → Thread
ThreadPool = List Thread
Links = Chan → Chan
data Blocked : Set where
blocked : Blocked
{- Free an expression from its earthly -}
module _ {m}
⦃ m-monad : RawMonad m ⦄
⦃ m-read : MonadReader m Env ⦄
⦃ m-res : MonadResumption m Closure Chan ⦄
⦃ m-comm : MonadComm m Chan Val ⦄
where
open M
{-# NON_TERMINATING #-}
eval : Exp → m Val
eval (nat n) = do
return (nat n)
eval (var x) = do
asks (unsafeLookup x)
eval (ƛ e) = do
asks (clos ∘ ⟨_⊢ e ⟩)
eval (f · e) = do
clos ⟨ env ⊢ body ⟩ ← eval f
where _ → willneverhappenipromise "not a closure"
v ← eval e
local (λ _ → extend v env) (eval body)
-- products
eval (pair e₁ e₂) = do
v₁ ← eval e₁
v₂ ← eval e₂
return ⟨ v₁ , v₂ ⟩
eval (letp b e) = do
⟨ v₁ , v₂ ⟩ ← eval b
where _ → willneverhappenipromise "not a pair"
local (extend v₂ ∘ extend v₁) $ eval e
-- communication
eval (close e) = do
chan c ← eval e
where _ → willneverhappenipromise "not a channel to close"
M.close c
return tt
eval (receive e) = do
chan c ← eval e
where _ → willneverhappenipromise "not a channel to receive on"
M.recv c
eval (send e₁ e₂) = do
chan c ← eval e₁
where _ → willneverhappenipromise "not a channel to send on"
v ← eval e₂
M.send c v
return tt
-- threading
eval (fork e) = do
clos cl ← eval e
where _ → willneverhappenipromise "not a closure to fork"
c ← M.fork cl
return (chan c)
{- Interpreting communication commands -}
module _ {com}
⦃ com-comm : MonadComm com Chan Val ⦄ where
communicate : (cmd : Comm) → com ⟦ cmd ⟧-comm
communicate (Comm.send c v) = M.send c v
communicate (Comm.recv x) = M.recv x
communicate (clos x) = M.close x
{- Interpreting threading commands -}
module _ {thr}
⦃ thr-res : MonadResumption thr Closure Chan ⦄ where
threading : (cmd : Threading) → thr ⟦ cmd ⟧-thr
threading (Threading.fork cl) = M.fork cl
threading Threading.yield = M.yield
module _ {cmd}
⦃ cmd-comm : MonadComm cmd Chan Val ⦄
⦃ cmd-res : MonadResumption cmd Closure Chan ⦄ where
handle : (c : Cmd) → cmd ⟦ c ⟧
handle = Sum.[ communicate , threading ]
{- Round robin scheduling -}
module _ {w : Set} {m}
⦃ monad : RawMonad m ⦄
⦃ read : MonadState m (List w) ⦄
(atomic : w → m ⊤) where
open M
{-# NON_TERMINATING #-}
robin : m ⊤
robin = do
(h ∷ tl) ← get
where [] → return tt
put tl
atomic h
robin
| {
"alphanum_fraction": 0.5655061381,
"avg_line_length": 23.0046296296,
"ext": "agda",
"hexsha": "975825aef52e29f4143f4427232f89a86433c718",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2020-05-23T00:34:36.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-01-30T14:15:14.000Z",
"max_forks_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "laMudri/linear.agda",
"max_forks_repo_path": "src/Untyped/Abstract.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "laMudri/linear.agda",
"max_issues_repo_path": "src/Untyped/Abstract.agda",
"max_line_length": 71,
"max_stars_count": 34,
"max_stars_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "laMudri/linear.agda",
"max_stars_repo_path": "src/Untyped/Abstract.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-03T15:22:33.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-20T13:57:50.000Z",
"num_tokens": 1639,
"size": 4969
} |
-- Andreas, 2011-05-09
-- {-# OPTIONS -v tc.inj:40 -v tc.meta:30 #-}
module Issue383b where
postulate
Σ : (A : Set) → (A → Set) → Set
U : Set
El : U → Set
mutual
data Ctxt : Set where
_▻_ : (Γ : Ctxt) → (Env Γ → U) → Ctxt
Env : Ctxt → Set
Env (Γ ▻ σ) = Σ (Env Γ) λ γ → El (σ γ)
postulate
Δ : Ctxt
σ : Env Δ → U
δ : U → Env (Δ ▻ σ)
data Foo : (Γ : Ctxt) → (U → Env Γ) → Set where
foo : Foo _ δ
-- WORKS NOW; OLD COMPLAINT:
-- Agda does not solve or simplify the following constraint. Why? Env
-- is constructor-headed.
--
-- _40 := δ if [(Σ (Env Δ) (λ γ → El (σ γ))) =< (Env _39) : Set]
| {
"alphanum_fraction": 0.5353697749,
"avg_line_length": 20.064516129,
"ext": "agda",
"hexsha": "7226c4e90eb34d574b26630971ad15471e7d2480",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue383b.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue383b.agda",
"max_line_length": 69,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue383b.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 263,
"size": 622
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import Level using (0ℓ)
-- This module defines utility functions to help working on proofs.
module LibraBFT.Base.Util where
-- This is obviously not something that should be used in any legitimate proof. It's just for
-- convenience when we want to avoid importing a module with open holes while working on
-- something else.
obm-dangerous-magic! : ∀ {ℓ} {A : Set ℓ} → A
obm-dangerous-magic! {ℓ} {A} = magic
where postulate magic : A
| {
"alphanum_fraction": 0.7339055794,
"avg_line_length": 38.8333333333,
"ext": "agda",
"hexsha": "b73d411bcc180fb00841775baacbd36c06e15ee1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "cwjnkins/bft-consensus-agda",
"max_forks_repo_path": "LibraBFT/Base/Util.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "cwjnkins/bft-consensus-agda",
"max_issues_repo_path": "LibraBFT/Base/Util.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "cwjnkins/bft-consensus-agda",
"max_stars_repo_path": "LibraBFT/Base/Util.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 187,
"size": 699
} |
open import Data.Fin using (Fin; suc; zero)
open import Data.Nat using (ℕ)
open import Data.Vec using (Vec; []; _∷_; map)
open import Dipsy.Polarity renaming (pos to +; neg to -)
module Dipsy.Struct
(FOp : {n : ℕ} (as : Vec Polarity n) (b : Polarity) → Set)
(SOp : {n : ℕ} (as : Vec Polarity n) (b : Polarity) → Set)
where
open import Dipsy.Form FOp
mutual
data Struct : (b : Polarity) → Set where
·_· : {b : Polarity} → Form → Struct b
op : {n : ℕ} {as : Vec Polarity n} {b : Polarity}
→ SOp as b → Structs as → Struct b
data Structs : {n : ℕ} (as : Vec Polarity n) → Set where
[] : Structs []
_∷_ : {n : ℕ} {a : Polarity} {as : Vec Polarity n}
→ Struct a → Structs as → Structs (a ∷ as)
mutual
data Context : (b c : Polarity) → Set where
[] : {b : Polarity} → Context b b
op : {n : ℕ} {as : Vec Polarity n} {b c : Polarity}
→ SOp as c → (i : Fin n) → Contexts as b i → Context b c
data Contexts : {n : ℕ} (as : Vec Polarity n) (b : Polarity) (i : Fin n) → Set where
_<∷_ : {n : ℕ} {b c : Polarity} {as : Vec Polarity n}
→ Context b c → Structs as → Contexts (c ∷ as) b zero
_∷>_ : {n : ℕ} {a b : Polarity} {as : Vec Polarity n} {i : Fin n}
→ Struct a → Contexts as b i → Contexts (a ∷ as) b (suc i)
| {
"alphanum_fraction": 0.5578703704,
"avg_line_length": 37.0285714286,
"ext": "agda",
"hexsha": "8b826f6a30254f9b2f850215d7f1a5c93a3a03ab",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "06eec3f3325c71c81809ff19dfaf4fd43ba958ed",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "wenkokke/dipsy",
"max_forks_repo_path": "src/Dipsy/Struct.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "06eec3f3325c71c81809ff19dfaf4fd43ba958ed",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "wenkokke/dipsy",
"max_issues_repo_path": "src/Dipsy/Struct.agda",
"max_line_length": 86,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "06eec3f3325c71c81809ff19dfaf4fd43ba958ed",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "wenkokke/Dipsy",
"max_stars_repo_path": "src/Dipsy/Struct.agda",
"max_stars_repo_stars_event_max_datetime": "2020-09-10T13:43:29.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-10T13:43:29.000Z",
"num_tokens": 488,
"size": 1296
} |
{-# OPTIONS --without-K #-}
module Equiv2Path where
open import FT using (FT; ⟦_⟧; _⇛_; _◎_; sym⇛)
open import Equivalences using (_≃_)
open import FT-Nat using (normal; bridge)
equiv2path : {B₁ B₂ : FT} → (⟦ B₁ ⟧ ≃ ⟦ B₂ ⟧) → (B₁ ⇛ B₂)
equiv2path {B₁} {B₂} eq = ((normal B₁) ◎ bridge eq) ◎ (sym⇛ (normal B₂))
| {
"alphanum_fraction": 0.6121794872,
"avg_line_length": 28.3636363636,
"ext": "agda",
"hexsha": "52a507b762eb33eaae84dd529eafd60ba6e49616",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "Univalence/OldUnivalence/Equiv2Path.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "Univalence/OldUnivalence/Equiv2Path.agda",
"max_line_length": 72,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "Univalence/OldUnivalence/Equiv2Path.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 134,
"size": 312
} |
------------------------------------------------------------------------------
-- Inequalities on partial natural numbers
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Data.Nat.Inequalities where
open import FOTC.Base
infix 4 _<_ _≮_ _>_ _≯_ _≤_ _≰_ _≥_ _≱_
------------------------------------------------------------------------------
-- The function terms.
postulate
lt : D → D → D
lt-00 : lt zero zero ≡ false
lt-0S : ∀ n → lt zero (succ₁ n) ≡ true
lt-S0 : ∀ n → lt (succ₁ n) zero ≡ false
lt-SS : ∀ m n → lt (succ₁ m) (succ₁ n) ≡ lt m n
{-# ATP axioms lt-00 lt-0S lt-S0 lt-SS #-}
le : D → D → D
le m n = lt m (succ₁ n)
{-# ATP definition le #-}
gt : D → D → D
gt m n = lt n m
{-# ATP definition gt #-}
ge : D → D → D
ge m n = le n m
{-# ATP definition ge #-}
------------------------------------------------------------------------
-- The relations.
_<_ : D → D → Set
m < n = lt m n ≡ true
{-# ATP definition _<_ #-}
_≮_ : D → D → Set
m ≮ n = lt m n ≡ false
{-# ATP definition _≮_ #-}
_>_ : D → D → Set
m > n = gt m n ≡ true
{-# ATP definition _>_ #-}
_≯_ : D → D → Set
m ≯ n = gt m n ≡ false
{-# ATP definition _≯_ #-}
_≤_ : D → D → Set
m ≤ n = le m n ≡ true
{-# ATP definition _≤_ #-}
_≰_ : D → D → Set
m ≰ n = le m n ≡ false
{-# ATP definition _≰_ #-}
_≥_ : D → D → Set
m ≥ n = ge m n ≡ true
{-# ATP definition _≥_ #-}
_≱_ : D → D → Set
m ≱ n = ge m n ≡ false
{-# ATP definition _≱_ #-}
------------------------------------------------------------------------------
-- The lexicographical order.
Lexi : D → D → D → D → Set
Lexi m n m' n' = m < m' ∨ m ≡ m' ∧ n < n'
{-# ATP definition Lexi #-}
| {
"alphanum_fraction": 0.4014869888,
"avg_line_length": 23.835443038,
"ext": "agda",
"hexsha": "d5e7b3b31a79673addb7eb3d9a89cb8455f11757",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Data/Nat/Inequalities.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Data/Nat/Inequalities.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Data/Nat/Inequalities.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 577,
"size": 1883
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Talks.DURG where
open import Cubical.Algebra.Group
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Equiv
open import Cubical.Functions.FunExtEquiv
open import Cubical.Data.Sigma
open import Cubical.Data.Empty
open import Cubical.Data.Unit
open import Cubical.Data.Nat
open import Cubical.Relation.Binary
open import Cubical.DStructures.Base
open import Cubical.DStructures.Meta.Properties
open import Cubical.DStructures.Meta.Isomorphism
open import Cubical.DStructures.Structures.XModule
private
variable
ℓ ℓ' ℓ'' ℓ₁ ℓ₁' ℓ₁'' ℓ₂ ℓA ℓ≅A ℓA' ℓ≅A' ℓB ℓB' ℓ≅B' ℓ≅B ℓC ℓ≅C ℓ≅ᴰ ℓP : Level
{-
Goals of the project:
- define strict 2-groups
- define crossed modules
- prove their equivalence
- do something with the classifying space
perspective on groups
Problems:
- performance
- the maps going back and forth were fine,
but the identity types stating that these maps
are inverse to each other were too complex
How did we solve this?
- Copatterns
- Ulrik's idea: displayed univalent reflexive graphs
- Provide a fiberwise characterization of the identity types
of a type family to obtain a characterization of the
identity types of the total space
- Avoid equality on objects in proofs
- Modular and abstract
-}
-- DEFINITION
-- - URG structure
-- - alternative constructors
record URGStr' (A : Type ℓA) (ℓ≅A : Level) : Type (ℓ-max ℓA (ℓ-suc ℓ≅A)) where
no-eta-equality
constructor urgstr'
field
_≅_ : Rel A A ℓ≅A
ρ : isRefl _≅_
uni : isUnivalent _≅_ ρ
-- substituted version
record URGStr'' (A : Type ℓA) (ℓ≅A : Level) : Type (ℓ-max ℓA (ℓ-suc ℓ≅A)) where
field
-- a binary relation
_≅_ : A → A → Type ℓ≅A
-- a witness of reflexivity
ρ : (a : A) → a ≅ a
-- these two fields induce a map that turns
-- a path into a proof the endpoints are related
≡→≅ : {a a' : A} → a ≡ a' → a ≅ a'
≡→≅ {a} {a'} p = subst (λ z → a ≅ z) p (ρ a)
field
-- that natural map is a fiberwise equivalence
uni : (a a' : A) → isEquiv (≡→≅ {a} {a'})
-- alternatively, we could ask for any fiberwise equivalence
uni' = (a a' : A) → (a ≡ a') ≃ (a ≅ a')
-- another alternative: all ≅-singletons should be contractible
contrRelSingl' = (a : A) → isContr (Σ[ a' ∈ A ] (a ≅ a'))
-- We can prove that these are equivalent:
-- uni ↔ uni' ↔ contrRelSingl'
-- This gives rise to alternative constructors for URGs:
make-𝒮' : {A : Type ℓA}
{_≅_ : Rel A A ℓ≅A}
(ρ : isRefl _≅_)
(contrTotal : contrRelSingl _≅_)
→ URGStr A ℓ≅A
make-𝒮' {_≅_ = _≅_} ρ contrTotal =
urgstr _≅_
ρ
(contrRelSingl→isUnivalent _≅_ ρ contrTotal)
-- EXAMPLES
-- - groups
-- - univalent categories
-- - observational equality on ℕ
-- - universe
-- - identity types
-- The SIP for groups produces a URG structure on the type of groups
𝒮-group' : (ℓ : Level) → URGStr (Group {ℓ}) ℓ
𝒮-group' ℓ .URGStr._≅_ = GroupEquiv
𝒮-group' ℓ .URGStr.ρ = idGroupEquiv
𝒮-group' ℓ .URGStr.uni =
isUnivalent'→isUnivalent GroupEquiv
idGroupEquiv
λ G H → invEquiv (GroupPath G H)
-- Every univalent Category induces a URG on its type of objects
open import Cubical.Categories.Category renaming (isUnivalent to isUnivalentCat)
Cat→𝒮 : (𝒞 : Precategory ℓ ℓ')
→ (uni : isUnivalentCat 𝒞)
→ URGStr (𝒞 .ob) ℓ'
Cat→𝒮 𝒞 uni
= urgstr (CatIso {𝒞 = 𝒞})
idCatIso
λ x y → isUnivalentCat.univ uni x y
-- observational equality on ℕ
ℕ-≅ : ℕ → ℕ → Type ℓ-zero
ℕ-≅ 0 0 = Unit
ℕ-≅ 0 (suc _) = ⊥
ℕ-≅ (suc _) 0 = ⊥
ℕ-≅ (suc n) (suc m) = ℕ-≅ n m
-- observational equality on ℕ is a URG
𝒮-Nat' : URGStr ℕ ℓ-zero
𝒮-Nat' = {!!}
where
import Cubical.DStructures.Structures.Nat using (𝒮-Nat)
-- equivalences determine a URG on any universe
𝒮-universe : URGStr (Type ℓ) ℓ
𝒮-universe
= make-𝒮 {_≅_ = _≃_}
idEquiv
λ A → isContrRespectEquiv (Σ-cong-equiv-snd (λ A' → isoToEquiv (equivInv A' A)))
(equivContr' A)
where
module _ (A : Type ℓ) where
equivInv : (A' : Type ℓ) → Iso (A ≃ A') (A' ≃ A)
Iso.fun (equivInv A') = invEquiv
Iso.inv (equivInv A') = invEquiv
Iso.leftInv (equivInv A') = λ e → equivEq (invEquiv (invEquiv e)) e (funExt (λ x → refl))
Iso.rightInv (equivInv A') = λ e → equivEq (invEquiv (invEquiv e)) e (funExt (λ x → refl))
equivContr' : isContr (Σ[ A' ∈ Type ℓ ] A' ≃ A)
equivContr' = EquivContr A
-- trivially, a type is a URGStr with the relation given by its identity types
𝒮-type : (A : Type ℓ) → URGStr A ℓ
𝒮-type A = make-𝒮 {_≅_ = _≡_}
(λ _ → refl)
isContrSingl
-- THEOREM:
-- uniqueness of small URGs
𝒮-uniqueness' : (A : Type ℓA) → isContr (URGStr A ℓA)
𝒮-uniqueness' = {!!}
where
import Cubical.DStructures.Structures.Type using (𝒮-uniqueness)
-- DEFINITION
-- - displayed URG
record URGStrᴰ' {A : Type ℓA} (𝒮-A : URGStr A ℓ≅A)
(B : A → Type ℓB) (ℓ≅ᴰ : Level) : Type (ℓ-max (ℓ-max (ℓ-max ℓA ℓB) ℓ≅A) (ℓ-suc ℓ≅ᴰ)) where
no-eta-equality
constructor urgstrᴰ'
open URGStr 𝒮-A
field
_≅ᴰ⟨_⟩_ : {a a' : A} → B a → a ≅ a' → B a' → Type ℓ≅ᴰ
ρᴰ : {a : A} → isRefl _≅ᴰ⟨ ρ a ⟩_
uniᴰ : {a : A} → isUnivalent _≅ᴰ⟨ ρ a ⟩_ ρᴰ
-- Of course, this also has the alternative constructor make-𝒮ᴰ
-- using that the uniᴰ field follows from
uniᴰ' = {a : A} → (b : B a) → isContr (Σ[ b' ∈ B a ] b ≅ᴰ⟨ ρ a ⟩ b')
-- EXAMPLE
-- - pointedness displayed over the universe
𝒮ᴰ-pointed : {ℓ : Level} → URGStrᴰ (𝒮-universe {ℓ}) (λ A → A) ℓ
𝒮ᴰ-pointed {ℓ} =
make-𝒮ᴰ (λ a e b → equivFun e a ≡ b)
(λ _ → refl)
p
where
p : (A : Type ℓ) (a : A) → isContr (Σ[ b ∈ A ] a ≡ b)
p _ a = isContrSingl a
-- THEOREM
-- Every DURG on a type family B induces
-- a URG on the total space Σ[ a ∈ A ] B a
∫⟨_⟩'_ : {A : Type ℓA} (𝒮-A : URGStr A ℓ≅A)
{B : A → Type ℓB} (𝒮ᴰ-B : URGStrᴰ 𝒮-A B ℓ≅B)
→ URGStr (Σ A B) (ℓ-max ℓ≅A ℓ≅B)
∫⟨_⟩'_ = {!!}
{-
B ∫
| ↦ A × B
A
-}
-- EXAMPLE
-- A characterization of the identity types of pointed types
𝒮-pointed : {ℓ : Level} → URGStr (Σ[ A ∈ Type ℓ ] A) ℓ
𝒮-pointed = ∫⟨ 𝒮-universe ⟩ 𝒮ᴰ-pointed
-- EXAMPLE
-- - constant DURG
-- - URG product
-- - URG structure on pairs of groups
𝒮ᴰ-const : {A : Type ℓA} (𝒮-A : URGStr A ℓ≅A)
{B : Type ℓB} (𝒮-B : URGStr B ℓ≅B)
→ URGStrᴰ 𝒮-A (λ _ → B) ℓ≅B
𝒮ᴰ-const {A = A} 𝒮-A {B} 𝒮-B
= urgstrᴰ (λ b _ b' → b ≅ b') ρ uni
where
open URGStr 𝒮-B
_×𝒮_ : {A : Type ℓA} (𝒮-A : URGStr A ℓ≅A)
{B : Type ℓB} (𝒮-B : URGStr B ℓ≅B)
→ URGStr (A × B) (ℓ-max ℓ≅A ℓ≅B)
_×𝒮_ 𝒮-A 𝒮-B = ∫⟨ 𝒮-A ⟩ (𝒮ᴰ-const 𝒮-A 𝒮-B)
{-
const B ∫
A, B ↦ | ↦ A × B
A
-}
-- EXAMPLE
-- Group Homomorphisms displayed over pairs of groups
𝒮ᴰ-G²\F' : URGStrᴰ (𝒮-group' ℓ ×𝒮 𝒮-group' ℓ')
(λ (G , H) → GroupHom G H)
(ℓ-max ℓ ℓ')
𝒮ᴰ-G²\F' =
make-𝒮ᴰ (λ {(G , H)} {(G' , H')} f (eG , eH) f'
→ (g : ⟨ G ⟩)
→ GroupEquiv.eq eH .fst ((f .fun) g) ≡ (f' .fun) (GroupEquiv.eq eG .fst g))
(λ _ _ → refl)
λ (G , H) f → isContrRespectEquiv (Σ-cong-equiv-snd (λ f' → isoToEquiv (invIso (GroupMorphismExtIso f f'))))
(isContrSingl f)
where open GroupHom
{-
The displayed relation is defined as
f ≅⟨ eG , eH ⟩ f = commutativity of
f
G --------> H
| |
eG | | eH
| |
G'--------> H'
f'
Reflexivity is trivial
Univalence follows from contractibility of
Σ[ (f' , _) ∈ GroupHom G H ] (f ∼ f')
for all (f , _) ∈ GroupHom G H
-}
{-
Overview of Crossed Modules and Strict 2-Groups
Definition: Crossed module
- group action α of G₀ on H
- homomorphism φ : H → G₀
- equivariance condition
(g : G₀) → (h : H) → φ (g α h) ≡ g + (φ h) - g
- peiffer condition
(h h' : ⟨ H ⟩) → (φ h) α h' ≡ h + h' - h
Definition: Strict 2-Group
- internal category in the category of groups
This means
- split mono ι with two retractions
ι : G₀ ↔ G : σ τ₁
- vertical composition operation which satisfies the interchange law
_∘⟨_⟩_ : (g f : G₁) → isComposable g f → G₁
- equivalent to type of vertical compositions on internal reflexive graph: PFG
(a b : G₁) → ι(σ b) + a - ι(τ a) - ι(σ b) + b + ι(τ a) ≡ b + a
Produce this tree of displayed structures:
PFXM PFG VertComp
| | /
| | /
isEquivar isSecRet
| |
| |
B B
| |
| |
isAction isSecRet
| |
| |
LAS F B F×B
\ | | /
\ | | /
\ | / /
\ | / /
Grp
|
|
Grp
use the next result to display propositions like isAction, isEquivariant and isSecRet
-}
-- THEOREM
-- Subtypes have a simple DURG structure given by 𝟙
-- This makes it easy to impose axioms on a structure
Subtype→Sub-𝒮ᴰ : {A : Type ℓA}
→ (P : A → hProp ℓP)
→ (𝒮-A : URGStr A ℓ≅A)
→ URGStrᴰ 𝒮-A (λ a → P a .fst) ℓ-zero
Subtype→Sub-𝒮ᴰ P 𝒮-A =
make-𝒮ᴰ (λ _ _ _ → Unit)
(λ _ → tt)
(λ a p → isContrRespectEquiv (invEquiv (Σ-contractSnd (λ _ → isContrUnit)))
(inhProp→isContr p (P a .snd)))
-- EXAMPLE
-- isAction axioms on pairs of groups together with a left action structure
module _ (ℓ ℓ' : Level) where
ℓℓ' = ℓ-max ℓ ℓ'
open import Cubical.DStructures.Structures.Action
𝒮ᴰ-G²Las\Action' : URGStrᴰ (𝒮-G²Las ℓ ℓ')
(λ ((G , H) , _α_) → IsGroupAction G H _α_)
ℓ-zero
𝒮ᴰ-G²Las\Action' = Subtype→Sub-𝒮ᴰ (λ ((G , H) , _α_) → IsGroupAction G H _α_ , isPropIsGroupAction G H _α_)
(𝒮-G²Las ℓ ℓ')
𝒮-G²LasAction' : URGStr (Action ℓ ℓ') (ℓ-max ℓ ℓ')
𝒮-G²LasAction' = ∫⟨ 𝒮-G²Las ℓ ℓ' ⟩ 𝒮ᴰ-G²Las\Action'
{-
-- THEOREM
-- DURGs can be lifted to be displayed over the total space of
-- another DURG on the same base URG
B
|
B C Lift C
\ / ↦ |
A A
-}
VerticalLift-𝒮ᴰ' : {A : Type ℓA} (𝒮-A : URGStr A ℓ≅A)
{B : A → Type ℓB} (𝒮ᴰ-B : URGStrᴰ 𝒮-A B ℓ≅B)
{C : A → Type ℓC} (𝒮ᴰ-C : URGStrᴰ 𝒮-A C ℓ≅C)
→ URGStrᴰ (∫⟨ 𝒮-A ⟩ 𝒮ᴰ-C) (λ (a , _) → B a) ℓ≅B
VerticalLift-𝒮ᴰ' {ℓ≅B = ℓ≅B} 𝒮-A {B = B} 𝒮ᴰ-B 𝒮ᴰ-C =
urgstrᴰ (λ b (pA , _) b' → b ≅ᴰ⟨ pA ⟩ b')
ρᴰ
uniᴰ
where open URGStrᴰ 𝒮ᴰ-B
{-
-- THEOREM
-- A tower of two DURGs can be reassociated
C
|
B split B × C
| ↦ |
A A
(but C depends on B)
-}
splitTotal-𝒮ᴰ' : {A : Type ℓA} (𝒮-A : URGStr A ℓ≅A)
{B : A → Type ℓB} (𝒮ᴰ-B : URGStrᴰ 𝒮-A B ℓ≅B)
{C : Σ A B → Type ℓC} (𝒮ᴰ-C : URGStrᴰ (∫⟨ 𝒮-A ⟩ 𝒮ᴰ-B) C ℓ≅C)
→ URGStrᴰ 𝒮-A
(λ a → Σ[ b ∈ B a ] C (a , b))
(ℓ-max ℓ≅B ℓ≅C)
splitTotal-𝒮ᴰ' {A = A} 𝒮-A {B} 𝒮ᴰ-B {C} 𝒮ᴰ-C
= make-𝒮ᴰ (λ (b , c) eA (b' , c') → Σ[ eB ∈ b B≅ᴰ⟨ eA ⟩ b' ] c ≅ᴰ⟨ eA , eB ⟩ c')
(λ (b , c) → Bρᴰ b , ρᴰ c)
{!!}
where
open URGStrᴰ 𝒮ᴰ-C
open URGStr 𝒮-A
_B≅ᴰ⟨_⟩_ = URGStrᴰ._≅ᴰ⟨_⟩_ 𝒮ᴰ-B
Bρᴰ = URGStrᴰ.ρᴰ 𝒮ᴰ-B
Buniᴰ = URGStrᴰ.uniᴰ 𝒮ᴰ-B
{-
-- THEOREM
-- two DURGs over the same URGs can be combined
B
|
B C Lift C split B × C
\ / ↦ | ↦ |
A A A
-}
combine-𝒮ᴰ' : {A : Type ℓA} {𝒮-A : URGStr A ℓ≅A}
{B : A → Type ℓB} {C : A → Type ℓC}
(𝒮ᴰ-B : URGStrᴰ 𝒮-A B ℓ≅B)
(𝒮ᴰ-C : URGStrᴰ 𝒮-A C ℓ≅C)
→ URGStrᴰ 𝒮-A (λ a → B a × C a) (ℓ-max ℓ≅B ℓ≅C)
combine-𝒮ᴰ' {𝒮-A = 𝒮-A} 𝒮ᴰ-B 𝒮ᴰ-C = splitTotal-𝒮ᴰ 𝒮-A 𝒮ᴰ-B (VerticalLift-𝒮ᴰ 𝒮-A 𝒮ᴰ-C 𝒮ᴰ-B)
-- REMARK: DURG is equivalent to URG + morphism of URG via fibrant replacement
module _ (C : Type ℓ) where
dispTypeIso : Iso (C → Type ℓ) (Σ[ X ∈ Type ℓ ] (X → C))
Iso.fun dispTypeIso D = (Σ[ c ∈ C ] D c) , fst
Iso.inv dispTypeIso (X , F) c = Σ[ x ∈ X ] F x ≡ c
Iso.leftInv dispTypeIso = {!!}
Iso.rightInv dispTypeIso = {!!}
-- → combine is pullback in the (∞,1)-topos of DURGs
{-
With these operations we can construct the entire tree, but how
to get equivalences?
PFXM PFG VertComp
| | /
| | /
isEquivar isSecRet
| |
| |
B B
| |
| |
isAction isSecRet
| |
| |
LAS F B F×B
\ | | /
\ | | /
\ | / /
\ | / /
Grp
|
|
Grp
-- For URGs: relational isomorphisms
-}
record RelIso' {A : Type ℓA} (_≅_ : Rel A A ℓ≅A)
{A' : Type ℓA'} (_≅'_ : Rel A' A' ℓ≅A') : Type (ℓ-max (ℓ-max ℓA ℓA') (ℓ-max ℓ≅A ℓ≅A')) where
constructor reliso'
field
fun : A → A'
inv : A' → A
rightInv : (a' : A') → fun (inv a') ≅' a'
leftInv : (a : A) → inv (fun a) ≅ a
RelIso→Iso' : {A : Type ℓA} {A' : Type ℓA'}
(_≅_ : Rel A A ℓ≅A) (_≅'_ : Rel A' A' ℓ≅A')
{ρ : isRefl _≅_} {ρ' : isRefl _≅'_}
(uni : isUnivalent _≅_ ρ) (uni' : isUnivalent _≅'_ ρ')
(f : RelIso _≅_ _≅'_)
→ Iso A A'
Iso.fun (RelIso→Iso' _ _ _ _ f) = RelIso.fun f
Iso.inv (RelIso→Iso' _ _ _ _ f) = RelIso.inv f
Iso.rightInv (RelIso→Iso' _ _≅'_ {ρ' = ρ'} _ uni' f) a'
= invEquiv (≡→R _≅'_ ρ' , uni' (RelIso.fun f (RelIso.inv f a')) a') .fst (RelIso.rightInv f a')
Iso.leftInv (RelIso→Iso' _≅_ _ {ρ = ρ} uni _ f) a
= invEquiv (≡→R _≅_ ρ , uni (RelIso.inv f (RelIso.fun f a)) a) .fst (RelIso.leftInv f a)
{-
For DURGs:
pull back one of the DURGs
along an equivalence and show that
there is a fiberwise relational isomorphism
between B and f*B'
B f*B' B'
| / |
| / |
A ≃ A'
f
-}
𝒮ᴰ-*-Iso-Over→TotalIso : {A : Type ℓA} {𝒮-A : URGStr A ℓ≅A}
{A' : Type ℓA'} {𝒮-A' : URGStr A' ℓ≅A'}
(ℱ : Iso A A')
{B : A → Type ℓB} (𝒮ᴰ-B : URGStrᴰ 𝒮-A B ℓ≅B)
{B' : A' → Type ℓB'} (𝒮ᴰ-B' : URGStrᴰ 𝒮-A' B' ℓ≅B')
(𝒢 : 𝒮ᴰ-♭PIso (Iso.fun ℱ) 𝒮ᴰ-B 𝒮ᴰ-B')
→ Iso (Σ A B) (Σ A' B')
𝒮ᴰ-*-Iso-Over→TotalIso ℱ 𝒮ᴰ-B 𝒮ᴰ-B' 𝒢
= RelFiberIsoOver→Iso ℱ
(𝒮ᴰ→relFamily 𝒮ᴰ-B) (𝒮ᴰ-B .uniᴰ)
(𝒮ᴰ→relFamily 𝒮ᴰ-B') (𝒮ᴰ-B' .uniᴰ)
𝒢
where open URGStrᴰ
{-
Let's apply this machinery to our tower of DURGs.
-}
import Cubical.DStructures.Equivalences.GroupSplitEpiAction
import Cubical.DStructures.Equivalences.PreXModReflGraph
import Cubical.DStructures.Equivalences.XModPeifferGraph
import Cubical.DStructures.Equivalences.PeifferGraphS2G
{-
DISCUSSION
- alternate definition of URGs
- how to layer the cake
- uniformity, abstraction, no equality on objects,
results transferrable across proof assistants
and type theories
- unlike displayed categories not limited to
1-truncated types and type families
- easy to set up
- associates the other way compared to SNS
- every SNS gives DURG on the URG of the universe (not implemented)
OTHER THINGS WE DID
- Define (n,k)-groups
- Display homomorphisms of (n,k)-groups over pairs of such groups
- prove the equivalence of (0,1)-groups and axiomatic groups via EM-spaces
FUTURE WORK
- construct more operations
- use reflection to automate steps
- construct URG on the type of URG or even DURG structures
- meta-theory
- model of type theory
- more higher group theory ...
-}
| {
"alphanum_fraction": 0.5282562708,
"avg_line_length": 28.4767641997,
"ext": "agda",
"hexsha": "037aaa3c8f8587edd22bbbd10299cade8bcc7d4c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Schippmunk/cubical",
"max_forks_repo_path": "Cubical/Talks/DURG.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Schippmunk/cubical",
"max_issues_repo_path": "Cubical/Talks/DURG.agda",
"max_line_length": 120,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Schippmunk/cubical",
"max_stars_repo_path": "Cubical/Talks/DURG.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 6629,
"size": 16545
} |
{-# OPTIONS --cubical --safe --postfix-projections #-}
open import Prelude
module Cardinality.Finite.Cardinal.Category {ℓ : Level} where
open import Cardinality.Finite.Cardinal
open import HITs.PropositionalTruncation
open import Data.Sigma.Properties
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Categories
open import Cubical.Foundations.Univalence
open import Categories.Product
open import Categories.Exponential
open import Data.Fin
open import Cardinality.Finite.ManifestBishop
𝒞⇒isSet : 𝒞 A → isSet A
𝒞⇒isSet = Discrete→isSet ∘ 𝒞⇒Discrete
finSetPreCategory : PreCategory (ℓsuc ℓ) ℓ
finSetPreCategory .PreCategory.Ob = Σ (Type ℓ) 𝒞
finSetPreCategory .PreCategory.Hom (X , _) (Y , _) = X → Y
finSetPreCategory .PreCategory.Id = id
finSetPreCategory .PreCategory.Comp f g = f ∘ g
finSetPreCategory .PreCategory.assoc-Comp _ _ _ = refl
finSetPreCategory .PreCategory.Comp-Id _ = refl
finSetPreCategory .PreCategory.Id-Comp _ = refl
finSetPreCategory .PreCategory.Hom-Set {X} {Y} = hLevelPi 2 λ _ → Discrete→isSet (𝒞⇒Discrete (Y .snd))
open PreCategory finSetPreCategory
iso-iso : (X ≅ Y) ⇔ (fst X ⇔ fst Y)
iso-iso .fun (f , g , f∘g , g∘f) = iso f g (λ x i → g∘f i x) (λ x i → f∘g i x)
iso-iso .inv (iso f g g∘f f∘g) = f , g , (λ i x → f∘g x i) , (λ i x → g∘f x i)
iso-iso .rightInv _ = refl
iso-iso .leftInv _ = refl
finSetCategory : Category (ℓsuc ℓ) ℓ
finSetCategory .Category.preCategory = finSetPreCategory
finSetCategory .Category.univalent {X} {Y} =
≃ΣProp≡ (λ _ → squash) ⟨ trans-≃ ⟩
univalence ⟨ trans-≃ ⟩
isoToEquiv (
sym-⇔ (iso⇔equiv (Discrete→isSet (𝒞⇒Discrete (X .snd)))) ⟨ trans-⇔ ⟩
sym-⇔ (iso-iso {X} {Y}))
finSetHasProducts : HasProducts finSetCategory
finSetHasProducts .HasProducts.product X Y .Product.obj = X .fst × Y .fst , X .snd ∥×∥ Y .snd
finSetHasProducts .HasProducts.product X Y .Product.proj₁ = fst
finSetHasProducts .HasProducts.product X Y .Product.proj₂ = snd
finSetHasProducts .HasProducts.product X Y .Product.ump f g .fst z = f z , g z
finSetHasProducts .HasProducts.product X Y .Product.ump f g .snd .fst .fst = refl
finSetHasProducts .HasProducts.product X Y .Product.ump f g .snd .fst .snd = refl
finSetHasProducts .HasProducts.product X Y .Product.ump f g .snd .snd (f≡ , g≡) i x = f≡ (~ i) x , g≡ (~ i) x
finSetHasExp : HasExponentials finSetCategory finSetHasProducts
finSetHasExp X Y .Exponential.obj = (X .fst → Y .fst) , (X .snd ∥→∥ Y .snd)
finSetHasExp X Y .Exponential.eval (f , x) = f x
finSetHasExp X Y .Exponential.uniq X₁ f .fst = curry f
finSetHasExp X Y .Exponential.uniq X₁ f .snd .fst = refl
finSetHasExp X Y .Exponential.uniq X₁ f .snd .snd x = cong curry (sym x)
open import Categories.Pullback
open import Cardinality.Finite.SplitEnumerable using (ℰ!⟨Lift⟩; ℰ!⟨⊤⟩; ℰ!⟨⊥⟩)
finSetHasPullbacks : HasPullbacks finSetCategory
finSetHasPullbacks {X = X} {Y = Y} {Z = Z} f g .Pullback.P = ∃[ ab ] (f (fst ab) ≡ g (snd ab)) , ((X .snd ∥×∥ Y .snd) ∥Σ∥ λ _ → 𝒞⟨≡⟩ _ _ (Z .snd))
finSetHasPullbacks f g .Pullback.p₁ ((x , _) , _) = x
finSetHasPullbacks f g .Pullback.p₂ ((_ , y) , _) = y
finSetHasPullbacks f g .Pullback.commute = funExt snd
finSetHasPullbacks f g .Pullback.ump {A = A} h₁ h₂ p .fst x = (h₁ x , h₂ x) , λ i → p i x
finSetHasPullbacks f g .Pullback.ump {A = A} h₁ h₂ p .snd .fst .fst = refl
finSetHasPullbacks f g .Pullback.ump {A = A} h₁ h₂ p .snd .fst .snd = refl
finSetHasPullbacks {Z = Z} f g .Pullback.ump {A = A} h₁ h₂ p .snd .snd {i} (p₁e , p₂e) = funExt (λ x → ΣProp≡ (λ _ → 𝒞⇒isSet (Z .snd) _ _) λ j → p₁e (~ j) x , p₂e (~ j) x)
finSetTerminal : Terminal
finSetTerminal .fst = Lift _ ⊤ , ∣ ℰ!⇒ℬ (ℰ!⟨Lift⟩ ℰ!⟨⊤⟩) ∣
finSetTerminal .snd .fst x .lower = tt
finSetTerminal .snd .snd y = funExt λ _ → refl
finSetInitial : Initial
finSetInitial .fst = Lift _ ⊥ , ∣ ℰ!⇒ℬ (ℰ!⟨Lift⟩ ℰ!⟨⊥⟩) ∣
finSetInitial .snd .fst ()
finSetInitial .snd .snd y i ()
open import HITs.PropositionalTruncation
open import Categories.Coequalizer
∃!′ : (A : Type a) → (A → Type b) → Type (a ℓ⊔ b)
∃!′ A P = ∥ Σ A P ∥ Prelude.× AtMostOne P
lemma23 : ∀ {p} {P : A → hProp p} → ∃!′ A (fst ∘ P) → Σ A (fst ∘ P)
lemma23 {P = P} (x , y) = rec (λ xs ys → ΣProp≡ (snd ∘ P) (y (xs .fst) (ys .fst) (xs .snd) (ys .snd))) id x
module _ {A : Type a} {P : A → Type b} (R : ∀ x → P x → hProp c) where
uniqueChoice : (Π[ x ⦂ A ] (∃!′ (P x) (λ u → R x u .fst))) →
Σ[ f ⦂ Π[ x ⦂ A ] P x ] Π[ x ⦂ A ] (R x (f x) .fst)
uniqueChoice H = fst ∘ mid , snd ∘ mid
where
mid : Π[ x ⦂ A ] Σ[ u ⦂ P x ] (R x u .fst)
mid x = lemma23 {P = R x} (H x)
open import HITs.PropositionalTruncation.Sugar
open import Data.List using (_∷_; [])
open import Cardinality.Finite.SplitEnumerable.Search using (ℰ!⟨fib⟩)
module CoeqProofs {X Y : Ob} (f : X ⟶ Y) where
KernelPair : Pullback finSetCategory {X = X} {Z = Y} {Y = X} f f
KernelPair = finSetHasPullbacks f f
Im : Ob
Im = ∃[ b ] ∥ fiber f b ∥ , (Y .snd ∥Σ∥ λ x → do cx ← X .snd ; cy ← Y .snd ; ∣ ℰ!⇒ℬ (ℰ!⟨fib⟩ f _ (ℬ⇒ℰ! cx) (ℬ⇒ℰ! cy)) ∣)
im : X ⟶ Im
im x = f x , ∣ x , refl ∣
open Pullback KernelPair
lem : ∀ {H : Ob} (h : X ⟶ H) → h ∘ p₁ ≡ h ∘ p₂ → Σ[ f ⦂ (Im ⟶ H) ] Π[ x ⦂ Im .fst ] (∀ y → im y ≡ x → h y ≡ f x)
lem {H = H} h eq = uniqueChoice R prf
where
R : Im .fst → H .fst → hProp _
R w x .fst = ∀ y → im y ≡ w → h y ≡ x
R w x .snd = hLevelPi 1 λ _ → hLevelPi 1 λ _ → 𝒞⇒isSet (H .snd) _ _
prf : Π[ x ⦂ Im .fst ] ∃!′ (H .fst) (λ u → ∀ y → im y ≡ x → h y ≡ u)
prf (xy , p) .fst = (λ { (z , r) → h z , λ y imy≡xyp → cong (_$ ((y , z) , cong fst imy≡xyp ; sym r)) eq }) ∥$∥ p
prf (xy , p) .snd x₁ x₂ Px₁ Px₂ = rec (𝒞⇒isSet (H .snd) x₁ x₂) (λ { (z , zs) → sym (Px₁ z (ΣProp≡ (λ _ → squash) zs)) ; Px₂ z (ΣProp≡ (λ _ → squash) zs) } ) p
lem₂ : ∀ (H : Ob) (h : X ⟶ H) (i : Im ⟶ H) (x : Im .fst) (hi : h ≡ i ∘ im) (eq : h ∘ p₁ ≡ h ∘ p₂) → i x ≡ lem {H = H} h eq .fst x
lem₂ H h i x hi eq = rec (𝒞⇒isSet (H .snd) _ _) (λ { (y , ys) → (cong i (ΣProp≡ (λ _ → squash) (sym ys)) ; sym (cong (_$ y) hi)) ; lem {H = H} h eq .snd x y (ΣProp≡ (λ _ → squash) ys) }) (x .snd)
finSetCoeq : Coequalizer finSetCategory {X = P} {Y = X} p₁ p₂
finSetCoeq .Coequalizer.obj = Im
finSetCoeq .Coequalizer.arr = im
finSetCoeq .Coequalizer.equality = funExt λ x → ΣProp≡ (λ _ → squash) λ i → commute i x
finSetCoeq .Coequalizer.coequalize {H = H} {h = h} eq = lem {H = H} h eq .fst
finSetCoeq .Coequalizer.universal {H = H} {h = h} {eq = eq} = funExt λ x → lem {H = H} h eq .snd (im x) x refl
finSetCoeq .Coequalizer.unique {H = H} {h = h} {i = i} {eq = eq} prf = funExt λ x → lem₂ H h i x prf eq
open CoeqProofs public using (finSetCoeq)
module PullbackSurjProofs {X Y : Ob} (f : X ⟶ Y) (fSurj : Surjective f) where
KernelPair : Pullback finSetCategory {X = X} {Z = Y} {Y = X} f f
KernelPair = finSetHasPullbacks f f
open Pullback KernelPair
p₁surj : Surjective p₁
p₁surj y = ∣ ((y , y) , refl) , refl ∣
p₂surj : Surjective p₂
p₂surj y = ∣ ((y , y) , refl) , refl ∣
| {
"alphanum_fraction": 0.6216409377,
"avg_line_length": 44.8461538462,
"ext": "agda",
"hexsha": "926ed20d26192f3464c211e20bf3ffe1c79c5505",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/combinatorics-paper",
"max_forks_repo_path": "agda/Cardinality/Finite/Cardinal/Category.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/combinatorics-paper",
"max_issues_repo_path": "agda/Cardinality/Finite/Cardinal/Category.agda",
"max_line_length": 197,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/combinatorics-paper",
"max_stars_repo_path": "agda/Cardinality/Finite/Cardinal/Category.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2995,
"size": 6996
} |
{-# OPTIONS --safe --warning=error --without-K --guardedness #-}
open import Setoids.Setoids
open import Rings.Definition
open import Rings.Orders.Partial.Definition
open import Rings.Orders.Total.Definition
open import Groups.Definition
open import Groups.Lemmas
open import Fields.Fields
open import Sets.EquivalenceRelations
open import Sequences
open import Setoids.Orders.Partial.Definition
open import Setoids.Orders.Total.Definition
open import Functions.Definition
open import LogicalFormulae
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.Order
open import Numbers.Naturals.Order.Lemmas
module Fields.CauchyCompletion.Addition {m n o : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A → A → A} {_*_ : A → A → A} {_<_ : Rel {m} {o} A} {pOrder : SetoidPartialOrder S _<_} {R : Ring S _+_ _*_} {pRing : PartiallyOrderedRing R pOrder} (order : TotallyOrderedRing pRing) (F : Field R) where
open Setoid S
open SetoidTotalOrder (TotallyOrderedRing.total order)
open SetoidPartialOrder pOrder
open Equivalence eq
open PartiallyOrderedRing pRing
open Ring R
open Group additiveGroup
open Field F
open import Fields.Lemmas F
open import Fields.CauchyCompletion.Definition order F
open import Rings.Orders.Partial.Lemmas pRing
open import Fields.Orders.Total.Lemmas {F = F} (record { oRing = order })
open import Rings.Orders.Total.AbsoluteValue order
open import Rings.Orders.Total.Lemmas order
open import Rings.Orders.Total.Cauchy order
open import Rings.InitialRing R
private
lemm : (m : ℕ) (a b : Sequence A) → index (apply _+_ a b) m ≡ (index a m) + (index b m)
lemm zero a b = refl
lemm (succ m) a b = lemm m (Sequence.tail a) (Sequence.tail b)
private
additionConverges : (a b : CauchyCompletion) → cauchy (apply _+_ (CauchyCompletion.elts a) (CauchyCompletion.elts b))
additionConverges record { elts = a ; converges = convA } record { elts = b ; converges = convB } ε 0<e with halve charNot2 ε
... | e/2 , e/2Pr with convA e/2 (halvePositive e/2 (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq e/2Pr) 0<e))
... | Na , prA with convB e/2 (halvePositive e/2 (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq e/2Pr) 0<e))
... | Nb , prB = (Na +N Nb) , t
where
t : {m n : ℕ} → Na +N Nb <N m → Na +N Nb <N n → abs ((index (apply _+_ a b) m) + inverse (index (apply _+_ a b) n)) < ε
t {m} {n} <m <n with prA {m} {n} (inequalityShrinkLeft <m) (inequalityShrinkLeft <n)
... | am-an<e/2 with prB {m} {n} (inequalityShrinkRight <m) (inequalityShrinkRight <n)
... | bm-bn<e/2 with triangleInequality (index a m + inverse (index a n)) (index b m + inverse (index b n))
... | inl tri rewrite lemm m a b | lemm n a b = SetoidPartialOrder.<WellDefined pOrder (Equivalence.reflexive eq) e/2Pr (SetoidPartialOrder.<Transitive pOrder {_} {(abs ((index a m) + (inverse (index a n)))) + (abs ((index b m) + (inverse (index b n))))} (<WellDefined (absWellDefined _ _ (Equivalence.transitive eq (Equivalence.symmetric eq (+Associative {index a m})) (Equivalence.transitive eq (+WellDefined (Equivalence.reflexive eq {index a m}) (Equivalence.transitive eq groupIsAbelian (Equivalence.transitive eq (Equivalence.symmetric eq (+Associative {index b m})) (+WellDefined (Equivalence.reflexive eq {index b m}) (Equivalence.symmetric eq (invContravariant additiveGroup)))))) (+Associative {index a m})))) (Equivalence.reflexive eq) tri) (ringAddInequalities am-an<e/2 bm-bn<e/2))
... | inr tri rewrite lemm m a b | lemm n a b = SetoidPartialOrder.<WellDefined pOrder (Equivalence.reflexive eq) e/2Pr (<WellDefined (Equivalence.transitive eq (Equivalence.symmetric eq tri) (absWellDefined _ _ (Equivalence.transitive eq (Equivalence.symmetric eq (+Associative {index a m})) (Equivalence.transitive eq (+WellDefined (Equivalence.reflexive eq {index a m}) (Equivalence.transitive eq groupIsAbelian (Equivalence.transitive eq (Equivalence.symmetric eq (+Associative {index b m})) (+WellDefined (Equivalence.reflexive eq {index b m}) (Equivalence.symmetric eq (invContravariant additiveGroup)))))) (+Associative {index a m}))))) (Equivalence.reflexive eq) (ringAddInequalities am-an<e/2 bm-bn<e/2))
_+C_ : CauchyCompletion → CauchyCompletion → CauchyCompletion
CauchyCompletion.elts (record { elts = a ; converges = convA } +C record { elts = b ; converges = convB }) = apply _+_ a b
CauchyCompletion.converges (a +C b) = additionConverges a b
inverseDistributes : {r s : A} → inverse (r + s) ∼ inverse r + inverse s
inverseDistributes = Equivalence.transitive eq (invContravariant additiveGroup) groupIsAbelian
-C_ : CauchyCompletion → CauchyCompletion
CauchyCompletion.elts (-C a) = map inverse (CauchyCompletion.elts a)
CauchyCompletion.converges (-C record { elts = elts ; converges = converges }) ε 0<e with converges ε 0<e
CauchyCompletion.converges (-C record { elts = elts ; converges = converges }) ε 0<e | N , prN = N , ans
where
ans : {m n : ℕ} → (N <N m) → (N <N n) → abs ((index (map inverse elts) m) + inverse (index (map inverse elts) n)) < ε
ans {m} {n} N<m N<n = <WellDefined (Equivalence.transitive eq (absWellDefined _ _ (Equivalence.reflexive eq)) (Equivalence.transitive eq (absNegation (index elts m + inverse (index elts n))) (absWellDefined _ _ (Equivalence.transitive eq inverseDistributes (+WellDefined (identityOfIndiscernablesLeft _∼_ (Equivalence.reflexive eq) (equalityCommutative (mapAndIndex elts inverse m))) (inverseWellDefined additiveGroup (identityOfIndiscernablesLeft _∼_ (Equivalence.reflexive eq) (equalityCommutative (mapAndIndex elts inverse n))))))))) (Equivalence.reflexive eq) (prN N<m N<n)
| {
"alphanum_fraction": 0.7316078709,
"avg_line_length": 77.2739726027,
"ext": "agda",
"hexsha": "6d6b6788930b6163f849d4eed583bf81965384eb",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Fields/CauchyCompletion/Addition.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Fields/CauchyCompletion/Addition.agda",
"max_line_length": 800,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Fields/CauchyCompletion/Addition.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 1729,
"size": 5641
} |
{-# OPTIONS --cubical --safe #-}
module Data.Binary where
open import Data.Binary.Definition public
using (𝔹; 0ᵇ; 1ᵇ_; 2ᵇ_)
open import Data.Binary.Conversion public
using (⟦_⇑⟧; ⟦_⇓⟧)
open import Data.Binary.Addition public
using (_+_)
open import Data.Binary.Multiplication public
using (_*_)
open import Data.Binary.Subtraction public
using (_-_)
open import Data.Binary.Isomorphism public
using (𝔹⇔ℕ)
open import Data.Binary.Increment public
using (inc)
| {
"alphanum_fraction": 0.7405063291,
"avg_line_length": 24.9473684211,
"ext": "agda",
"hexsha": "f525d28fda3c0f24c94ebc90dd25535ed200bc2f",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Data/Binary.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Data/Binary.agda",
"max_line_length": 45,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Data/Binary.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 150,
"size": 474
} |
open import Prelude
open import core
module lemmas-ground where
-- not ground types aren't hole to hole
ground-arr-not-hole : ∀{τ} →
(τ ground → ⊥) →
(τ ≠ (⦇·⦈ ==> ⦇·⦈))
ground-arr-not-hole notg refl = notg GHole
ground-prod-not-hole : ∀{τ} →
(τ ground → ⊥) →
(τ ≠ (⦇·⦈ ⊗ ⦇·⦈))
ground-prod-not-hole notg refl = notg GProd
-- not ground types either have to be hole or an arrow or a prod
notground : ∀{τ} →
(τ ground → ⊥) →
(τ == ⦇·⦈) +
(Σ[ τ1 ∈ typ ] Σ[ τ2 ∈ typ ] (τ == (τ1 ==> τ2))) +
(Σ[ τ1 ∈ typ ] Σ[ τ2 ∈ typ ] (τ == (τ1 ⊗ τ2)))
notground {b} gnd = abort (gnd GBase)
notground {⦇·⦈} gnd = Inl refl
notground {τ ==> τ₁} gnd = Inr (Inl (τ , τ₁ , refl))
notground {τ ⊗ τ₁} gnd = Inr (Inr (τ , τ₁ , refl))
ground-arr-lem :
(τ : typ) →
((τ ground) → ⊥) →
(τ ≠ ⦇·⦈) →
Σ[ τ1 ∈ typ ] Σ[ τ2 ∈ typ ]
(((τ == (τ1 ==> τ2)) × ((τ1 ==> τ2) ≠ (⦇·⦈ ==> ⦇·⦈))) +
((τ == (τ1 ⊗ τ2)) × ((τ1 ⊗ τ2) ≠ (⦇·⦈ ⊗ ⦇·⦈))))
ground-arr-lem b ng nh = abort (ng GBase)
ground-arr-lem ⦇·⦈ ng nh = abort (nh refl)
ground-arr-lem (τ1 ==> τ2) ng nh = τ1 , τ2 , Inl (refl , λ x → ng (lem' x))
where
lem' : ∀{τ1 τ2} → τ1 ==> τ2 == ⦇·⦈ ==> ⦇·⦈ → (τ1 ==> τ2) ground
lem' refl = GHole
ground-arr-lem (τ1 ⊗ τ2) ng nh = τ1 , τ2 , Inr (refl , (λ x → ng (lem' x)))
where
lem' : ∀{τ1 τ2} → τ1 ⊗ τ2 == ⦇·⦈ ⊗ ⦇·⦈ → (τ1 ⊗ τ2) ground
lem' refl = GProd
| {
"alphanum_fraction": 0.405356056,
"avg_line_length": 37.3409090909,
"ext": "agda",
"hexsha": "8f29d13602179f65ba312b258b2180b41a9f5a24",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c3225acc3c94c56376c6842b82b8b5d76912df2a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnut-livelits-agda",
"max_forks_repo_path": "lemmas-ground.agda",
"max_issues_count": 9,
"max_issues_repo_head_hexsha": "c3225acc3c94c56376c6842b82b8b5d76912df2a",
"max_issues_repo_issues_event_max_datetime": "2020-10-20T20:44:13.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-09-30T20:27:56.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazel-palette-agda",
"max_issues_repo_path": "lemmas-ground.agda",
"max_line_length": 77,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "c3225acc3c94c56376c6842b82b8b5d76912df2a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazel-palette-agda",
"max_stars_repo_path": "lemmas-ground.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-19T15:38:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-04T06:45:06.000Z",
"num_tokens": 700,
"size": 1643
} |
module New.LangChanges where
open import New.Lang public
open import New.Changes
isChAlgτ : (τ : Type) → IsChAlg ⟦ τ ⟧Type ⟦ Δt τ ⟧Type
Chτ : (τ : Type) → Set
Chτ τ = ⟦ Δt τ ⟧Type
chAlgt : (τ : Type) → ChAlg ⟦ τ ⟧Type
chAlgt τ = record { Ch = Chτ τ ; isChAlg = isChAlgτ τ}
instance
ichAlgt : ∀ {τ} → ChAlg ⟦ τ ⟧Type
ichAlgt {τ} = chAlgt τ
isChAlgτ (σ ⇒ τ) = isChAlg {{funCA {{chAlgt σ}} {{chAlgt τ}}}}
isChAlgτ int = isChAlg {{intCA}}
isChAlgτ (pair σ τ) = isChAlg {{pairCA {{chAlgt σ}} {{chAlgt τ}}}}
isChAlgτ (sum σ τ) = isChAlg {{sumCA {{chAlgt σ}} {{chAlgt τ}}}}
ΔΓ : Context → Context
ΔΓ ∅ = ∅
ΔΓ (τ • Γ) = Δt τ • τ • ΔΓ Γ
module _ where
ChΓ : ∀ (Γ : Context) → Set
ChΓ Γ = ⟦ ΔΓ Γ ⟧Context
_e⊕_ : ∀ {Γ} → ⟦ Γ ⟧Context → ChΓ Γ → ⟦ Γ ⟧Context
_e⊕_ ∅ ∅ = ∅
_e⊕_ (v • ρ) (dv • _ • dρ) = v ⊕ dv • ρ e⊕ dρ
_e⊝_ : ∀ {Γ} → ⟦ Γ ⟧Context → ⟦ Γ ⟧Context → ChΓ Γ
_e⊝_ ∅ ∅ = ∅
_e⊝_ (v₂ • ρ₂) (v₁ • ρ₁) = v₂ ⊝ v₁ • v₁ • ρ₂ e⊝ ρ₁
validΓ : ∀ {Γ} → ⟦ Γ ⟧Context → ChΓ Γ → Set
validΓ ∅ ∅ = ⊤
validΓ (v • ρ) (dv • v′ • dρ) = valid v dv × v ≡ v′ × validΓ ρ dρ
e⊝-valid : ∀ {Γ} → (ρ1 ρ2 : ⟦ Γ ⟧Context) → validΓ ρ1 (ρ2 e⊝ ρ1)
e⊝-valid ∅ ∅ = tt
e⊝-valid (v₁ • ρ₁) (v₂ • ρ₂) = ⊝-valid v₁ v₂ , refl , e⊝-valid ρ₁ ρ₂
e⊕-⊝ : ∀ {Γ} → (ρ2 ρ1 : ⟦ Γ ⟧Context) → ρ1 e⊕ (ρ2 e⊝ ρ1) ≡ ρ2
e⊕-⊝ ∅ ∅ = refl
e⊕-⊝ (v₂ • ρ₂) (v₁ • ρ₁) = cong₂ _•_ (⊕-⊝ v₂ v₁) (e⊕-⊝ ρ₂ ρ₁)
{-# TERMINATING #-}
isEnvCA : ∀ Γ → IsChAlg ⟦ Γ ⟧Context (ChΓ Γ)
e⊚-valid : ∀ {Γ} → (ρ : ⟦ Γ ⟧Context) (dρ1 : ChΓ Γ) →
validΓ ρ dρ1 →
(dρ2 : ChΓ Γ) →
validΓ (ρ e⊕ dρ1) dρ2 →
validΓ ρ (IsChAlg.default-⊚ (isEnvCA Γ) dρ1 ρ dρ2)
e⊚-correct : ∀ {Γ} → (ρ : ⟦ Γ ⟧Context) (dρ1 : ChΓ Γ) →
validΓ ρ dρ1 →
(dρ2 : ChΓ Γ) →
validΓ (ρ e⊕ dρ1) dρ2 →
(ρ e⊕ IsChAlg.default-⊚ (isEnvCA Γ) dρ1 ρ dρ2) ≡
((ρ e⊕ dρ1) e⊕ dρ2)
isEnvCA Γ = record
{ _⊕_ = _e⊕_
; _⊝_ = _e⊝_
; valid = validΓ
; ⊝-valid = e⊝-valid
; ⊕-⊝ = e⊕-⊝
; _⊚[_]_ = IsChAlg.default-⊚ (isEnvCA Γ)
; ⊚-valid = e⊚-valid
; ⊚-correct = e⊚-correct
}
e⊚-valid {Γ} = IsChAlg.default-⊚-valid (isEnvCA Γ)
e⊚-correct {Γ} = IsChAlg.default-⊚-correct (isEnvCA Γ)
envCA : ∀ Γ → ChAlg ⟦ Γ ⟧Context
envCA Γ = record
{ Ch = ChΓ Γ
; isChAlg = isEnvCA Γ }
instance
ienvCA : ∀ {Γ} → ChAlg ⟦ Γ ⟧Context
ienvCA {Γ} = envCA Γ
| {
"alphanum_fraction": 0.5076271186,
"avg_line_length": 27.7647058824,
"ext": "agda",
"hexsha": "e5abf85cf03d92611b3278a79324e4593fadcf97",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "inc-lc/ilc-agda",
"max_forks_repo_path": "New/LangChanges.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "inc-lc/ilc-agda",
"max_issues_repo_path": "New/LangChanges.agda",
"max_line_length": 70,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "inc-lc/ilc-agda",
"max_stars_repo_path": "New/LangChanges.agda",
"max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z",
"num_tokens": 1346,
"size": 2360
} |
{-# OPTIONS --without-K #-}
module ConcretePermutation where
open import Level renaming (zero to lzero) hiding (suc)
open import Data.Nat using (ℕ)
open import Data.Fin using (Fin; zero; inject+; fromℕ)
open import Data.Vec using (Vec; tabulate; allFin; []; _∷_)
open import Data.Vec.Properties using (tabulate∘lookup)
open import Function using (_∘_)
open import Relation.Binary using (Setoid)
open import Relation.Binary.PropositionalEquality using (_≡_; setoid)
--
open import Proofs using (
-- VectorLemmas
_!!_
)
------------------------------------------------------------------------------
-- A concrete permutation has 4 components:
-- - the one-line notation for a permutation
-- - the one-line notation for the inverse permutation
-- - and 2 proofs that these are indeed inverses
-- One-line notation for permutations with identity and composition
FinVec : ℕ → ℕ → Set
FinVec m n = Vec (Fin m) n
1C : {n : ℕ} → FinVec n n
1C {n} = allFin n
_∘̂_ : {n₀ n₁ n₂ : ℕ} → Vec (Fin n₁) n₀ → Vec (Fin n₂) n₁ → Vec (Fin n₂) n₀
π₁ ∘̂ π₂ = tabulate (_!!_ π₂ ∘ _!!_ π₁)
-- Actual permutation
record CPerm (values : ℕ) (size : ℕ) : Set where
constructor cp
field
π : FinVec values size
πᵒ : FinVec size values
αp : π ∘̂ πᵒ ≡ 1C
βp : πᵒ ∘̂ π ≡ 1C
------------------------------------------------------------------------------
-- We can compare concrete permutations for equality using _≡_
-- It is actually sufficient to compare just the forward π using _≡_
-- The set of permutations under _≡_
SCPerm : ℕ → ℕ → Setoid lzero lzero
SCPerm m n = setoid (CPerm m n)
-- This is just tabulate∘lookup, but it hides the details; should this
-- be called 'join' or 'flatten' ?
cauchyext : {m n : ℕ} (π : FinVec m n) → tabulate (_!!_ π) ≡ π
cauchyext π = tabulate∘lookup π
------------------------------------------------------------------------------
-- I always mix up which way the permutation works. Here is a small
-- example to serve as a reminder:
-- values
0₅ 1₅ 2₅ 3₅ 4₅ : Fin 5
0₅ = zero
1₅ = inject+ 3 (fromℕ 1)
2₅ = inject+ 2 (fromℕ 2)
3₅ = inject+ 1 (fromℕ 3)
4₅ = fromℕ 4
-- indices
0₃ 1₃ 2₃ : Fin 3
0₃ = zero
1₃ = inject+ 1 (fromℕ 1)
2₃ = fromℕ 2
πex : FinVec 5 3
πex = 4₅ ∷ 3₅ ∷ 2₅ ∷ []
fex : Fin 3 → Fin 5
fex i = πex !! i
-- fex 0₃ => 4₅
-- fex 1₃ => 3₅
-- fex 2₃ => 2₅
------------------------------------------------------------------------------
| {
"alphanum_fraction": 0.5740356698,
"avg_line_length": 24.8556701031,
"ext": "agda",
"hexsha": "4564ed6965ca76df6f718e7d5b67cb9fa8f09652",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "Univalence/ConcretePermutation.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "Univalence/ConcretePermutation.agda",
"max_line_length": 78,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "Univalence/ConcretePermutation.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 799,
"size": 2411
} |
{-# OPTIONS --without-K --safe #-}
open import Categories.Bicategory using (Bicategory)
module Categories.Bicategory.Extras {o ℓ e t} (Bicat : Bicategory o ℓ e t) where
open import Data.Product using (_,_)
import Categories.Category.Construction.Core as Core
open import Categories.Category.Construction.Functors using (Functors; module curry)
open import Categories.Functor using (Functor)
open import Categories.Functor.Bifunctor using (flip-bifunctor)
open import Categories.Functor.Bifunctor.Properties
open import Categories.NaturalTransformation
using (NaturalTransformation; ntHelper)
open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism)
import Categories.Morphism as Mor
import Categories.Morphism.Reasoning as MR
open import Categories.NaturalTransformation.NaturalIsomorphism.Properties using (push-eq)
open Bicategory Bicat public
private
variable
A B C D : Obj
f g h i : A ⇒₁ B
α β γ δ : f ⇒₂ g
infixr 10 _▷ᵢ_
infixl 10 _◁ᵢ_
infixr 6 _⟩⊚⟨_ refl⟩⊚⟨_
infixl 7 _⟩⊚⟨refl
module ⊚ {A B C} = Functor (⊚ {A} {B} {C})
module ⊚-assoc {A B C D} = NaturalIsomorphism (⊚-assoc {A} {B} {C} {D})
module unitˡ {A B} = NaturalIsomorphism (unitˡ {A} {B})
module unitʳ {A B} = NaturalIsomorphism (unitʳ {A} {B})
module id {A} = Functor (id {A})
private
module MR′ {A} {B} where
open Core.Shorthands (hom A B) public
open MR (hom A B) public hiding (push-eq)
open MR′
unitorˡ : {A B : Obj} {f : A ⇒₁ B} → id₁ ∘₁ f ≅ f
unitorˡ {_} {_} {f} = record
{ from = unitˡ.⇒.η (_ , f)
; to = unitˡ.⇐.η (_ , f)
; iso = unitˡ.iso (_ , f)
}
module unitorˡ {A B f} = _≅_ (unitorˡ {A} {B} {f})
unitorʳ : {A B : Obj} {f : A ⇒₁ B} → f ∘₁ id₁ ≅ f
unitorʳ {_} {_} {f} = record
{ from = unitʳ.⇒.η (f , _)
; to = unitʳ.⇐.η (f , _)
; iso = unitʳ.iso (f , _)
}
module unitorʳ {A B f} = _≅_ (unitorʳ {A} {B} {f})
associator : {A B C D : Obj} {f : D ⇒₁ B} {g : C ⇒₁ D} {h : A ⇒₁ C} →
(f ∘₁ g) ∘₁ h ≅ f ∘₁ g ∘₁ h
associator {_} {_} {_} {_} {f} {g} {h} = record
{ from = ⊚-assoc.⇒.η ((f , g) , h)
; to = ⊚-assoc.⇐.η ((f , g) , h)
; iso = ⊚-assoc.iso ((f , g) , h)
}
module associator {A B C D} {f : C ⇒₁ B} {g : D ⇒₁ C} {h} = _≅_ (associator {A = A} {B = B} {f = f} {g = g} {h = h})
module Shorthands where
λ⇒ = unitorˡ.from
λ⇐ = unitorˡ.to
ρ⇒ = unitorʳ.from
ρ⇐ = unitorʳ.to
α⇒ = associator.from
α⇐ = associator.to
open Shorthands
-- Two curried versions of ⊚.
-⊚[-] : Functor (hom A B) (Functors (hom B C) (hom A C))
-⊚[-] = curry.F₀ (flip-bifunctor ⊚)
[-]⊚- : Functor (hom B C) (Functors (hom A B) (hom A C))
[-]⊚- = curry.F₀ ⊚
-⊚_ : A ⇒₁ B → Functor (hom B C) (hom A C)
-⊚_ = Functor.F₀ -⊚[-]
_⊚- : B ⇒₁ C → Functor (hom A B) (hom A C)
_⊚- = Functor.F₀ [-]⊚-
-▷_ : ∀ {C} → f ⇒₂ g → NaturalTransformation (-⊚_ {C = C} f) (-⊚ g)
-▷_ = Functor.F₁ -⊚[-]
_◁- : ∀ {A} → f ⇒₂ g → NaturalTransformation (_⊚- {A = A} f) (g ⊚-)
_◁- = Functor.F₁ [-]⊚-
identity₂ˡ : id₂ ∘ᵥ α ≈ α
identity₂ˡ = hom.identityˡ
identity₂ʳ : α ∘ᵥ id₂ ≈ α
identity₂ʳ = hom.identityʳ
assoc₂ : (α ∘ᵥ β) ∘ᵥ γ ≈ α ∘ᵥ β ∘ᵥ γ
assoc₂ = hom.assoc
id₂◁ : id₂ {f = g} ◁ f ≈ id₂
id₂◁ = ⊚.identity
▷id₂ : f ▷ id₂ {f = g} ≈ id₂
▷id₂ = ⊚.identity
open hom.HomReasoning
open hom.Equiv
_⊚ᵢ_ : f ≅ h → g ≅ i → f ⊚₀ g ≅ h ⊚₀ i
α ⊚ᵢ β = record
{ from = from α ⊚₁ from β
; to = to α ⊚₁ to β
; iso = record
{ isoˡ = [ ⊚ ]-merge (isoˡ α) (isoˡ β) ○ ⊚.identity
; isoʳ = [ ⊚ ]-merge (isoʳ α) (isoʳ β) ○ ⊚.identity }
}
_◁ᵢ_ : {g h : B ⇒₁ C} (α : g ≅ h) (f : A ⇒₁ B) → g ∘₁ f ≅ h ∘₁ f
α ◁ᵢ _ = α ⊚ᵢ idᵢ
_▷ᵢ_ : {f g : A ⇒₁ B} (h : B ⇒₁ C) (α : f ≅ g) → h ∘₁ f ≅ h ∘₁ g
_ ▷ᵢ α = idᵢ ⊚ᵢ α
⊚-resp-≈ : α ≈ β → γ ≈ δ → α ⊚₁ γ ≈ β ⊚₁ δ
⊚-resp-≈ p q = ⊚.F-resp-≈ (p , q)
⊚-resp-≈ˡ : α ≈ β → α ⊚₁ γ ≈ β ⊚₁ γ
⊚-resp-≈ˡ p = ⊚.F-resp-≈ (p , hom.Equiv.refl)
⊚-resp-≈ʳ : γ ≈ δ → α ⊚₁ γ ≈ α ⊚₁ δ
⊚-resp-≈ʳ q = ⊚.F-resp-≈ (hom.Equiv.refl , q)
_⟩⊚⟨_ : α ≈ β → γ ≈ δ → α ⊚₁ γ ≈ β ⊚₁ δ
_⟩⊚⟨_ = ⊚-resp-≈
refl⟩⊚⟨_ : γ ≈ δ → α ⊚₁ γ ≈ α ⊚₁ δ
refl⟩⊚⟨_ = ⊚-resp-≈ʳ
_⟩⊚⟨refl : α ≈ β → α ⊚₁ γ ≈ β ⊚₁ γ
_⟩⊚⟨refl = ⊚-resp-≈ˡ
∘ᵥ-distr-◁ : (α ◁ f) ∘ᵥ (β ◁ f) ≈ (α ∘ᵥ β) ◁ f
∘ᵥ-distr-◁ {f = f} = ⟺ (Functor.homomorphism (-⊚ f))
∘ᵥ-distr-▷ : (f ▷ α) ∘ᵥ (f ▷ β) ≈ f ▷ (α ∘ᵥ β)
∘ᵥ-distr-▷ {f = f} = ⟺ (Functor.homomorphism (f ⊚-))
λ⇒-∘ᵥ-▷ : λ⇒ ∘ᵥ (id₁ ▷ α) ≈ α ∘ᵥ λ⇒
λ⇒-∘ᵥ-▷ {α = α} = begin
λ⇒ ∘ᵥ (id₁ ▷ α) ≈˘⟨ refl⟩∘⟨ id.identity ⟩⊚⟨refl ⟩
λ⇒ ∘ᵥ id.F₁ _ ⊚₁ α ≈⟨ unitˡ.⇒.commute (_ , α) ⟩
α ∘ᵥ λ⇒ ∎
▷-∘ᵥ-λ⇐ : (id₁ ▷ α) ∘ᵥ λ⇐ ≈ λ⇐ ∘ᵥ α
▷-∘ᵥ-λ⇐ = conjugate-to (unitorˡ ⁻¹) (unitorˡ ⁻¹) λ⇒-∘ᵥ-▷
ρ⇒-∘ᵥ-◁ : ρ⇒ ∘ᵥ (α ◁ id₁) ≈ α ∘ᵥ ρ⇒
ρ⇒-∘ᵥ-◁ {α = α} = begin
ρ⇒ ∘ᵥ (α ◁ id₁) ≈˘⟨ refl⟩∘⟨ refl⟩⊚⟨ id.identity ⟩
ρ⇒ ∘ᵥ (α ⊚₁ id.F₁ _) ≈⟨ unitʳ.⇒.commute (α , _) ⟩
α ∘ᵥ ρ⇒ ∎
◁-∘ᵥ-ρ⇐ : (α ◁ id₁) ∘ᵥ ρ⇐ ≈ ρ⇐ ∘ᵥ α
◁-∘ᵥ-ρ⇐ = conjugate-to (unitorʳ ⁻¹) (unitorʳ ⁻¹) ρ⇒-∘ᵥ-◁
α⇐-◁-∘₁ : α⇐ ∘ᵥ (γ ◁ (g ∘₁ f)) ≈ ((γ ◁ g) ◁ f) ∘ᵥ α⇐
α⇐-◁-∘₁ {γ = γ} {g = g} {f = f} = begin
α⇐ ∘ᵥ (γ ◁ (g ∘₁ f)) ≈˘⟨ refl⟩∘⟨ refl⟩⊚⟨ ⊚.identity ⟩
α⇐ ∘ᵥ (γ ⊚₁ id₂ ⊚₁ id₂) ≈⟨ ⊚-assoc.⇐.commute ((γ , id₂) , id₂) ⟩
((γ ◁ g) ◁ f) ∘ᵥ α⇐ ∎
α⇒-◁-∘₁ : α⇒ ∘ᵥ γ ◁ g ◁ f ≈ γ ◁ (g ∘₁ f) ∘ᵥ α⇒
α⇒-◁-∘₁ = ⟺ (conjugate-to associator associator α⇐-◁-∘₁)
α⇐-▷-◁ : α⇐ ∘ᵥ (f ▷ (γ ◁ g)) ≈ ((f ▷ γ) ◁ g) ∘ᵥ α⇐
α⇐-▷-◁ {f = f} {γ = γ} {g = g} = ⊚-assoc.⇐.commute ((id₂ , γ) , id₂)
α⇒-▷-∘₁ : α⇒ ∘ᵥ (f ∘₁ g) ▷ γ ≈ f ▷ g ▷ γ ∘ᵥ α⇒
α⇒-▷-∘₁{f = f} {g = g} {γ = γ} = begin
α⇒ ∘ᵥ (f ⊚₀ g) ▷ γ ≈˘⟨ refl⟩∘⟨ ⊚.identity ⟩⊚⟨refl ⟩
α⇒ ∘ᵥ (f ▷ id₂) ⊚₁ γ ≈⟨ ⊚-assoc.⇒.commute ((id₂ , id₂) , γ) ⟩
f ▷ g ▷ γ ∘ᵥ α⇒ ∎
α⇐-▷-∘₁ : α⇐ ∘ᵥ (g ▷ (f ▷ γ)) ≈ ((g ∘₁ f) ▷ γ) ∘ᵥ α⇐
α⇐-▷-∘₁ = conjugate-from associator associator (⟺ α⇒-▷-∘₁)
◁-▷-exchg : ∀ {α : f ⇒₂ g} {β : h ⇒₂ i} → (i ▷ α) ∘ᵥ (β ◁ f) ≈ (β ◁ g) ∘ᵥ (h ▷ α)
◁-▷-exchg = [ ⊚ ]-commute
triangle-iso : {f : A ⇒₁ B} {g : B ⇒₁ C} →
(g ▷ᵢ unitorˡ ∘ᵢ associator) ≈ᵢ (unitorʳ ◁ᵢ f)
triangle-iso = ⌞ triangle ⌟
triangle-inv : {f : A ⇒₁ B} {g : B ⇒₁ C} → α⇐ ∘ᵥ g ▷ λ⇐ ≈ ρ⇐ ◁ f
triangle-inv = to-≈ triangle-iso
pentagon-iso : ∀ {E} {f : A ⇒₁ B} {g : B ⇒₁ C} {h : C ⇒₁ D} {i : D ⇒₁ E} →
(i ▷ᵢ associator ∘ᵢ associator ∘ᵢ associator ◁ᵢ f) ≈ᵢ
(associator {f = i} {h} {g ∘₁ f} ∘ᵢ associator)
pentagon-iso = ⌞ pentagon ⌟
pentagon-inv : ∀ {E} {f : A ⇒₁ B} {g : B ⇒₁ C} {h : C ⇒₁ D} {i : D ⇒₁ E} →
(α⇐ ◁ f ∘ᵥ α⇐) ∘ᵥ i ▷ α⇐ ≈ α⇐ ∘ᵥ α⇐ {f = i} {h} {g ∘₁ f}
pentagon-inv = to-≈ pentagon-iso
module UnitorCoherence where
-- Extra coherence laws for the unitors.
--
-- These are similar to the extra coherence laws for monoidal
-- categories that Kelly proved admissible in 1964. The proofs are
-- largely the same. See Categories.Category.Monoidal.Properties
-- for the monoidal versions and
--
-- https://ncatlab.org/nlab/show/monoidal+category
--
-- for an explanation of the proof and references to Kelly's paper.
open ComHom
-- As described on nLab, we start by proving that the 'perimeters'
-- of two large diagrams commute...
id▷λ-perimeter : [ ((id₁ ⊚₀ id₁) ⊚₀ f) ⊚₀ g ⇒ id₁ ⊚₀ (f ⊚₀ g) ]⟨
α⇒ ◁ g ⇒⟨ (id₁ ⊚₀ (id₁ ⊚₀ f)) ⊚₀ g ⟩
α⇒ ⇒⟨ id₁ ⊚₀ ((id₁ ⊚₀ f) ⊚₀ g) ⟩
id₁ ▷ α⇒ ⇒⟨ id₁ ⊚₀ (id₁ ⊚₀ (f ⊚₀ g)) ⟩
id₁ ▷ λ⇒
≈ ρ⇒ ◁ f ◁ g ⇒⟨ (id₁ ⊚₀ f) ⊚₀ g ⟩
α⇒
⟩
id▷λ-perimeter {f = f} {g = g} = begin
id₁ ▷ λ⇒ ∘ᵥ id₁ ▷ α⇒ ∘ᵥ α⇒ ∘ᵥ α⇒ ◁ g ≈⟨ refl⟩∘⟨ pentagon ⟩
id₁ ▷ λ⇒ ∘ᵥ α⇒ ∘ᵥ α⇒ ≈⟨ pullˡ triangle ⟩
ρ⇒ ◁ (f ⊚₀ g) ∘ᵥ α⇒ ≈˘⟨ refl⟩⊚⟨ ⊚.identity ⟩∘⟨refl ⟩
ρ⇒ ⊚₁ (id₂ ◁ g) ∘ᵥ α⇒ ≈˘⟨ ⊚-assoc.⇒.commute _ ⟩
α⇒ ∘ᵥ ρ⇒ ◁ f ◁ g ∎
ρ◁id-perimeter : [ ((f ⊚₀ g) ⊚₀ id₁) ⊚₀ id₁ ⇒ f ⊚₀ (g ⊚₀ id₁) ]⟨
α⇒ ◁ id₁ ⇒⟨ (f ⊚₀ (g ⊚₀ id₁)) ⊚₀ id₁ ⟩
α⇒ ⇒⟨ f ⊚₀ ((g ⊚₀ id₁) ⊚₀ id₁) ⟩
f ▷ α⇒ ⇒⟨ f ⊚₀ (g ⊚₀ (id₁ ⊚₀ id₁)) ⟩
f ▷ g ▷ λ⇒
≈ ρ⇒ ◁ id₁ ⇒⟨ (f ⊚₀ g) ⊚₀ id₁ ⟩
α⇒
⟩
ρ◁id-perimeter {f = f} {g = g} = begin
f ▷ g ▷ λ⇒ ∘ᵥ f ▷ α⇒ ∘ᵥ α⇒ ∘ᵥ α⇒ ◁ id₁ ≈⟨ refl⟩∘⟨ pentagon ⟩
f ▷ g ▷ λ⇒ ∘ᵥ α⇒ ∘ᵥ α⇒ ≈˘⟨ pushˡ (⊚-assoc.⇒.commute _) ⟩
(α⇒ ∘ᵥ (f ▷ id₂) ⊚₁ λ⇒) ∘ᵥ α⇒ ≈⟨ pullʳ (⊚.identity ⟩⊚⟨refl ⟩∘⟨refl) ⟩
α⇒ ∘ᵥ (f ⊚₀ g) ▷ λ⇒ ∘ᵥ α⇒ ≈⟨ refl⟩∘⟨ triangle ⟩
α⇒ ∘ᵥ ρ⇒ ◁ id₁ ∎
-- ... which allow us to prove that the following triangles commute...
id▷λ-coherence : [ id₁ ⊚₀ ((id₁ ⊚₀ f) ⊚₀ g) ⇒ id₁ ⊚₀ (f ⊚₀ g) ]⟨
id₁ ▷ (λ⇒ ◁ g)
≈ id₁ ▷ α⇒ ⇒⟨ id₁ ⊚₀ (id₁ ⊚₀ (f ⊚₀ g)) ⟩
id₁ ▷ λ⇒
⟩
id▷λ-coherence {f = f} {g = g} = begin
id₁ ▷ (λ⇒ ◁ g)
≈⟨ switch-fromtoʳ associator (⟺ (⊚-assoc.⇒.commute _)) ⟩
(α⇒ ∘ᵥ (id₁ ▷ λ⇒) ◁ g) ∘ᵥ α⇐
≈⟨ (refl⟩∘⟨ switch-fromtoʳ associator triangle ⟩⊚⟨refl) ⟩∘⟨refl ⟩
(α⇒ ∘ᵥ ((ρ⇒ ◁ f ∘ᵥ α⇐) ◁ g)) ∘ᵥ α⇐
≈⟨ pushˡ (pushʳ (Functor.homomorphism (-⊚ g))) ⟩
(α⇒ ∘ᵥ ρ⇒ ◁ f ◁ g) ∘ᵥ (α⇐ ◁ g ∘ᵥ α⇐)
≈˘⟨ switch-fromtoʳ (associator ∘ᵢ (associator ⊚ᵢ idᵢ))
(hom.assoc ○ id▷λ-perimeter) ⟩
id₁ ▷ λ⇒ ∘ᵥ id₁ ▷ α⇒
∎
ρ◁id-coherence : [ ((f ⊚₀ g) ⊚₀ id₁) ⊚₀ id₁ ⇒ (f ⊚₀ g) ⊚₀ id₁ ]⟨
ρ⇒ ◁ id₁
≈ α⇒ ◁ id₁ ⇒⟨ (f ⊚₀ (g ⊚₀ id₁)) ⊚₀ id₁ ⟩
(f ▷ ρ⇒) ◁ id₁
⟩
ρ◁id-coherence {f = f} {g = g} = begin
ρ⇒ ◁ id₁
≈⟨ switch-fromtoˡ associator (⟺ ρ◁id-perimeter) ⟩
α⇐ ∘ᵥ f ▷ g ▷ λ⇒ ∘ᵥ f ▷ α⇒ ∘ᵥ α⇒ ∘ᵥ α⇒ ◁ id₁
≈˘⟨ pullʳ (pushˡ (Functor.homomorphism (f ⊚-))) ⟩
(α⇐ ∘ᵥ f ▷ (g ▷ λ⇒ ∘ᵥ α⇒)) ∘ᵥ α⇒ ∘ᵥ α⇒ ◁ id₁
≈⟨ pullˡ (pushˡ (refl⟩∘⟨ refl⟩⊚⟨ triangle)) ⟩
(α⇐ ∘ᵥ f ▷ (ρ⇒ ◁ id₁) ∘ᵥ α⇒) ∘ᵥ α⇒ ◁ id₁
≈˘⟨ switch-fromtoˡ associator (⊚-assoc.⇒.commute _) ⟩∘⟨refl ⟩
(f ▷ ρ⇒) ◁ id₁ ∘ᵥ α⇒ ◁ id₁
∎
-- ... which are the results modulo (id₁ ⊚-) and (-⊚ id₁).
unitorˡ-coherence : [ (id₁ ⊚₀ f) ⊚₀ g ⇒ f ⊚₀ g ]⟨
λ⇒ ◁ g
≈ α⇒ ⇒⟨ id₁ ⊚₀ (f ⊚₀ g) ⟩
λ⇒
⟩
unitorˡ-coherence {f = f} {g = g} = push-eq unitˡ (begin
id.F₁ _ ⊚₁ (λ⇒ ◁ g) ≈⟨ id.identity ⟩⊚⟨refl ⟩
id₁ ▷ (λ⇒ ◁ g) ≈⟨ id▷λ-coherence ⟩
id₁ ▷ λ⇒ ∘ᵥ id₁ ▷ α⇒ ≈˘⟨ Functor.homomorphism (id₁ ⊚-) ⟩
id₁ ▷ (λ⇒ ∘ᵥ α⇒) ≈˘⟨ id.identity ⟩⊚⟨refl ⟩
id.F₁ _ ⊚₁ (λ⇒ ∘ᵥ α⇒) ∎)
unitorʳ-coherence : [ (f ⊚₀ g) ⊚₀ id₁ ⇒ f ⊚₀ g ]⟨
ρ⇒
≈ α⇒ ⇒⟨ f ⊚₀ (g ⊚₀ id₁) ⟩
f ▷ ρ⇒
⟩
unitorʳ-coherence {f = f} {g = g} = push-eq unitʳ (begin
ρ⇒ ⊚₁ id.F₁ _ ≈⟨ refl⟩⊚⟨ id.identity ⟩
ρ⇒ ◁ id₁ ≈⟨ ρ◁id-coherence ⟩
(f ▷ ρ⇒) ◁ id₁ ∘ᵥ α⇒ ◁ id₁ ≈˘⟨ Functor.homomorphism (-⊚ id₁) ⟩
(f ▷ ρ⇒ ∘ᵥ α⇒) ◁ id₁ ≈˘⟨ refl⟩⊚⟨ id.identity ⟩
(f ▷ ρ⇒ ∘ᵥ α⇒) ⊚₁ id.F₁ _ ∎)
open UnitorCoherence public using (unitorˡ-coherence; unitorʳ-coherence)
| {
"alphanum_fraction": 0.4535173642,
"avg_line_length": 33.8253012048,
"ext": "agda",
"hexsha": "0460206dc304ddd7e787a0df36f97239574337d8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "8f3c844d929508040dfa21f681fa260056214b73",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "maxsnew/agda-categories",
"max_forks_repo_path": "src/Categories/Bicategory/Extras.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8f3c844d929508040dfa21f681fa260056214b73",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "maxsnew/agda-categories",
"max_issues_repo_path": "src/Categories/Bicategory/Extras.agda",
"max_line_length": 116,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "8f3c844d929508040dfa21f681fa260056214b73",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "maxsnew/agda-categories",
"max_stars_repo_path": "src/Categories/Bicategory/Extras.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 6388,
"size": 11230
} |
------------------------------------------------------------------------------
-- Colists
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Data.Colist where
open import FOTC.Base
open import FOTC.Data.Colist.Type public
| {
"alphanum_fraction": 0.3752860412,
"avg_line_length": 31.2142857143,
"ext": "agda",
"hexsha": "374df8859f175afb4c466ed5546fc0edd650968a",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Data/Colist.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Data/Colist.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Data/Colist.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 67,
"size": 437
} |
module trie-fast where
open import trie-core public
open import string
open import maybe
open import char
open import bool
open import eq
trie-lookup-fast3 : ∀{A : Set} → trie A → string → maybe A
trie-lookup-fast3{A} t s
= extract (stringFoldl f t s)
where
extract : trie A → maybe A
extract (trie.Node x _) = x
-- define an "empty trie" and change this to:
-- (trie A) → char → (trie A)
f : trie A → char → trie A
f (Node _ ts) c with cal-lookup ts c
f (Node _ ts) c | nothing = Node nothing empty-cal
f (Node _ ts) c | just t = t
trie-lookup : ∀{A : Set} → trie A → string → maybe A
trie-lookup = trie-lookup-fast3
trie-insert-fast2 : ∀{A : Set} → trie A → string → A → trie A
trie-insert-fast2{A} t s new-data = (stringFoldr g initial-f s) t
where
initial-f : trie A → trie A
initial-f (Node _ ts) = Node (just new-data) ts
g : char → (trie A → trie A) → (trie A → trie A)
g c f (Node odata ts) with cal-lookup ts c
g c f (Node odata ts) | nothing = Node odata (cal-add ts c (f empty-trie))
g c f (Node odata ts) | just t = Node odata (cal-insert ts c (f t))
trie-insert : ∀{A : Set} → trie A → string → A → trie A
trie-insert = trie-insert-fast2
trie-remove-fast : ∀{A : Set} → trie A → string → trie A
trie-remove-fast{A} t s = (stringFoldr g initial-f s) t
where
initial-f : trie A → trie A
initial-f (Node _ ts) = Node nothing ts
g : char → (trie A → trie A) → (trie A → trie A)
g c f (Node odata ts) with cal-lookup ts c
g c f (Node odata ts) | nothing = Node odata ts
g c f (Node odata ts) | just t = Node odata (cal-insert ts c (f t))
trie-remove : ∀{A : Set} → trie A → string → trie A
trie-remove = trie-remove-fast
open import trie-functions trie-lookup trie-insert trie-remove public
| {
"alphanum_fraction": 0.6308724832,
"avg_line_length": 31.3684210526,
"ext": "agda",
"hexsha": "27f327f5d9f8a416bb9d6667d9b2d90f1db685af",
"lang": "Agda",
"max_forks_count": 17,
"max_forks_repo_forks_event_max_datetime": "2021-11-28T20:13:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-03T22:38:15.000Z",
"max_forks_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rfindler/ial",
"max_forks_repo_path": "trie-fast.agda",
"max_issues_count": 8,
"max_issues_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_issues_repo_issues_event_max_datetime": "2022-03-22T03:43:34.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-07-09T22:53:38.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rfindler/ial",
"max_issues_repo_path": "trie-fast.agda",
"max_line_length": 77,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rfindler/ial",
"max_stars_repo_path": "trie-fast.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-04T15:05:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-02-06T13:09:31.000Z",
"num_tokens": 585,
"size": 1788
} |
module Lambda where
-- The typed λ-calculus
-- The type of types
data ty : Set where
ι : ty -- the base type
_⇒_ : ty → ty → ty -- function type
_×_ : ty → ty → ty -- product type
infixr 7 _⇒_
infixl 8 _×_
-- A typing context, there are no variable names because we use de Bruijn indices.
data ctx : Set where
• : ctx -- empty context
_,_ : ctx → ty → ctx -- context extension
infixr 5 _,_
-- A variable is a natural number (de Bruijn index, position in the context),
-- but at the same time a proof that a type appears in the context.
-- We write Γ ∋ A for the type of variables in Γ of type A.
data _∋_ : (Γ : ctx) (B : ty) → Set where
Z : {Γ : ctx} {B : ty} → (Γ , B) ∋ B -- zero index
S : {Γ : ctx} {A B : ty} → Γ ∋ B → (Γ , A) ∋ B -- successor index
infix 4 _∋_
-- The type of terms in context Γ of type A
data tm (Γ : ctx) : (A : ty) → Set where
tm-var : {A : ty} → Γ ∋ A → tm Γ A
tm-λ : {B : ty} {A : ty} → tm (Γ , A) B → tm Γ (A ⇒ B)
tm-app : {A B : ty} → tm Γ (A ⇒ B) → tm Γ A → tm Γ B
tm-pair : {A B : ty} → tm Γ A → tm Γ B → tm Γ (A × B)
tm-fst : {A B : ty} → tm Γ (A × B) → tm Γ A
tm-snd : {A B : ty} → tm Γ (A × B) → tm Γ B
-- We need serveral boring auxiliary functions whose
-- purpose is to define substitution
-- A variable renaming is a type-preserving map from variables in Γ to variables in Δ
-- (In Agda "renaming" is a reserved word.)
variable-renaming = λ Γ Δ → ∀ {A} → Γ ∋ A → Δ ∋ A
-- we may extend a renaming by one more variable (which does not get renamed)
extend-renaming : ∀ {Γ Δ A} → variable-renaming Γ Δ → variable-renaming (Γ , A) (Δ , A)
extend-renaming ρ Z = Z
extend-renaming ρ (S x) = S (ρ x)
-- the action of a renaming on a term
term-rename : ∀ {Γ Δ} → variable-renaming Γ Δ → (∀ {A} → tm Γ A → tm Δ A)
term-rename ρ (tm-var x) = tm-var (ρ x)
term-rename ρ (tm-λ t) = tm-λ (term-rename (extend-renaming ρ) t)
term-rename ρ (tm-app s t) = tm-app (term-rename ρ s) (term-rename ρ t)
term-rename ρ (tm-pair s t) = tm-pair (term-rename ρ s) (term-rename ρ t)
term-rename ρ (tm-fst t) = tm-fst (term-rename ρ t)
term-rename ρ (tm-snd t) = tm-snd (term-rename ρ t)
-- a special kind of renaming is weakening by a variable, which we write as ↑
↑ : ∀ {Γ A B} → tm Γ A → tm (Γ , B) A
↑ = term-rename S
-- a substitution from Γ to Δ takes variables in Γ to terms in Δ
substitution = λ Γ Δ → (∀ {A} → Γ ∋ A → tm Δ A)
extend-substutition : ∀ {Γ Δ A} → substitution Γ Δ → substitution (Γ , A) (Δ , A)
extend-substutition σ Z = tm-var Z
extend-substutition σ (S x) = ↑ (σ x)
-- The action of a substitution on a term
term-substitute : ∀ {Γ Δ} → substitution Γ Δ → ∀ {A} → tm Γ A → tm Δ A
term-substitute σ (tm-var x) = σ x
term-substitute σ (tm-λ t) = tm-λ (term-substitute (extend-substutition σ) t)
term-substitute σ (tm-app s t) = tm-app (term-substitute σ s) (term-substitute σ t)
term-substitute σ (tm-pair s t) = tm-pair (term-substitute σ s) (term-substitute σ t)
term-substitute σ (tm-fst t) = tm-fst (term-substitute σ t)
term-substitute σ (tm-snd t) = tm-snd (term-substitute σ t)
-- Auxiliary substitution that replaces just the 0-th variable
subst-Z : ∀ {Γ A} → tm Γ A → substitution (Γ , A) Γ
subst-Z t Z = t
subst-Z T (S x) = tm-var x
-- A common kind of substitution only replaces the 0-th variable with a term
-- and leaves all the others intact, so we define its action as a shorthand
_[_] : ∀ {Γ A B} → tm (Γ , A) B → tm Γ A → tm Γ B
_[_] {Γ} {A} {B} s t = term-substitute (subst-Z t) s where
infix 5 _[_]
-- Judgemental equality
data _≡_ {Γ : ctx} : {A : ty} (t s : tm Γ A) → Set where
-- general rules
eq-refl : {A : ty} {t : tm Γ A} → t ≡ t
eq-tran : {A : ty} {t s u : tm Γ A} → t ≡ s → s ≡ u → t ≡ u
eq-sym : {A : ty} {t s : tm Γ A} → t ≡ s → s ≡ t
-- congruence rules
eq-congr-app : ∀ {A B} {t₁ t₂ : tm Γ (A ⇒ B)} {s₁ s₂ : tm Γ A} →
t₁ ≡ t₂ → s₁ ≡ s₂ → tm-app t₁ s₁ ≡ tm-app t₂ s₂
eq-congr-λ : ∀ {A B} {t₁ t₂ : tm (Γ , A) B} → t₁ ≡ t₂ → tm-λ t₁ ≡ tm-λ t₂
eq-congr-pair : ∀ {A B} {t₁ t₂ : tm Γ (A ⇒ B)} {s₁ s₂ : tm Γ A} →
t₁ ≡ t₂ → s₁ ≡ s₂ → tm-pair t₁ s₁ ≡ tm-pair t₂ s₂
eq-congr-fst : ∀ {A B} {s t : tm Γ (A × B)} → s ≡ t → tm-fst s ≡ tm-fst t
eq-congr-snd : ∀ {A B} {s t : tm Γ (A × B)} → s ≡ t → tm-snd s ≡ tm-snd t
-- function type rules
eq-β : ∀ {A B} {t : tm (Γ , A) B} {s : tm Γ A} → tm-app (tm-λ t) s ≡ t [ s ]
eq-⇒ : ∀ {A B} {s t : tm Γ (A ⇒ B)} →
tm-app (↑ s) (tm-var Z) ≡ tm-app (↑ t) (tm-var Z)
→ s ≡ t
-- product rules
eq-fst : ∀ {A B} {u : tm Γ A} {v : tm Γ B} → tm-fst (tm-pair u v) ≡ u
eq-snd : ∀ {A B} {u : tm Γ A} {v : tm Γ B} → tm-snd (tm-pair u v) ≡ v
eq-× : ∀{A B} {s t : tm Γ (A × B)} → tm-fst s ≡ tm-fst t → tm-snd s ≡ tm-snd t → s ≡ t
infix 4 _≡_
-- "η-equivalence" for products
eq-pair-η : ∀ {Γ A B} {s : tm Γ (A × B)} → tm-pair (tm-fst s) (tm-snd s) ≡ s
eq-pair-η = eq-× eq-fst eq-snd
-- subst-↑ : ∀ {Γ A B} (t : tm Γ A) (s : tm Γ B) → (( (↑ t) [ s ] ) ≡ t)
-- subst-↑ (tm-var x) s = eq-refl
-- subst-↑ (tm-λ t) s = eq-congr-λ {!!}
-- subst-↑ (tm-app t₁ t₂) s = eq-congr-app (subst-↑ t₁ s) (subst-↑ t₂ s)
-- I commented this lemma that we tried to prove this morning because we did not achieve to do it yet, and Agda doesn't like the fact that I did not detail the other case of terms yet
-- Example: the identity function
-- Note that we actually define a family of terms, indexed by a context
-- and a type, but the family is constant, i.e., it is always the same term.
tm-id : ∀ {Γ A} → tm Γ (A ⇒ A)
tm-id = tm-λ (tm-var Z)
-- Appying the identity function twice does nothing
app-id-id : ∀ {Γ A} {t : tm Γ A} → tm-app tm-id (tm-app tm-id t) ≡ t
-- app-id-id = eq-tran (eq-congr-app eq-refl eq-β) eq-β
app-id-id = eq-tran eq-β eq-β
-- Eta-rule
eq-η : ∀ {Γ A B} {t : tm Γ (A ⇒ B)} → tm-λ (tm-app (↑ t) (tm-var Z)) ≡ t
eq-η = eq-⇒(eq-tran eq-β (eq-congr-app {!!} eq-refl))
-- natural numbers
data N : Set where
zero : N
succ : N → N
-- church numerals
tm-numeral : ∀ {Γ} → N → tm Γ ((ι ⇒ ι) ⇒ (ι ⇒ ι))
tm-numeral zero = tm-id
tm-numeral (succ n) = tm-λ (tm-λ (tm-app (tm-app (tm-numeral n) (tm-var (S Z))) (tm-app (tm-var (S Z)) (tm-var Z))))
| {
"alphanum_fraction": 0.5455945779,
"avg_line_length": 41.8838709677,
"ext": "agda",
"hexsha": "1556ffbe7a4c534a1f43f40917edd324fdbe4036",
"lang": "Agda",
"max_forks_count": 6,
"max_forks_repo_forks_event_max_datetime": "2021-05-24T02:51:43.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-02-16T13:43:07.000Z",
"max_forks_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andrejbauer/formaltt",
"max_forks_repo_path": "src/Experimental/Lambda.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_issues_repo_issues_event_max_datetime": "2021-05-14T16:15:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-04-30T14:18:25.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andrejbauer/formaltt",
"max_issues_repo_path": "src/Experimental/Lambda.agda",
"max_line_length": 185,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cilinder/formaltt",
"max_stars_repo_path": "src/Experimental/Lambda.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-19T15:50:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-16T14:07:06.000Z",
"num_tokens": 2562,
"size": 6492
} |
open import Prelude
open import Nat
open import core
open import contexts
module lemmas-gcomplete where
-- if you add a complete type to a complete context, the result is also a
-- complete context
gcomp-extend : ∀{Γ τ x} → Γ gcomplete → τ tcomplete → x # Γ → (Γ ,, (x , τ)) gcomplete
gcomp-extend {Γ} {τ} {x} gc tc apart x_query τ_query x₁ with natEQ x x_query
gcomp-extend {Γ} {τ} {x} gc tc apart .x τ_query x₂ | Inl refl = tr (λ qq → qq tcomplete) (lem-apart-union-eq {Γ = Γ} apart x₂) tc
gcomp-extend {Γ} {τ} {x} gc tc apart x_query τ_query x₂ | Inr x₁ = gc x_query τ_query (lem-neq-union-eq {Γ = Γ} (flip x₁) x₂ )
| {
"alphanum_fraction": 0.6756329114,
"avg_line_length": 48.6153846154,
"ext": "agda",
"hexsha": "8629285241163fbd6ff99461555dae0d2fea823b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-09-13T18:20:02.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-09-13T18:20:02.000Z",
"max_forks_repo_head_hexsha": "c3225acc3c94c56376c6842b82b8b5d76912df2a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnut-livelits-agda",
"max_forks_repo_path": "lemmas-gcomplete.agda",
"max_issues_count": 54,
"max_issues_repo_head_hexsha": "c3225acc3c94c56376c6842b82b8b5d76912df2a",
"max_issues_repo_issues_event_max_datetime": "2018-11-29T16:32:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-06-29T20:53:34.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazel-palette-agda",
"max_issues_repo_path": "lemmas-gcomplete.agda",
"max_line_length": 131,
"max_stars_count": 16,
"max_stars_repo_head_hexsha": "c3225acc3c94c56376c6842b82b8b5d76912df2a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazel-palette-agda",
"max_stars_repo_path": "lemmas-gcomplete.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-19T02:50:23.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-03-12T14:32:03.000Z",
"num_tokens": 231,
"size": 632
} |
------------------------------------------------------------------------
-- A definitional interpreter
------------------------------------------------------------------------
{-# OPTIONS --cubical --safe #-}
module Lambda.Simplified.Partiality-monad.Inductive.Interpreter where
open import Equality.Propositional.Cubical
open import Prelude hiding (⊥)
open import Bijection equality-with-J using (_↔_)
open import Function-universe equality-with-J hiding (id; _∘_)
open import Monad equality-with-J
open import Univalence-axiom equality-with-J
open import Vec.Function equality-with-J
open import Partiality-monad.Inductive
open import Partiality-monad.Inductive.Fixpoints
open import Partiality-monad.Inductive.Monad
open import Lambda.Simplified.Syntax
open Closure Tm
------------------------------------------------------------------------
-- One interpreter
module Interpreter₁ where
-- This interpreter is defined as the least upper bound of a
-- sequence of increasingly defined interpreters.
infix 10 _∙_
mutual
⟦_⟧′ : ∀ {n} → Tm n → Env n → ℕ → Value ⊥
⟦ var x ⟧′ ρ n = return (ρ x)
⟦ ƛ t ⟧′ ρ n = return (ƛ t ρ)
⟦ t₁ · t₂ ⟧′ ρ n = ⟦ t₁ ⟧′ ρ n >>= λ v₁ →
⟦ t₂ ⟧′ ρ n >>= λ v₂ →
(v₁ ∙ v₂) n
_∙_ : Value → Value → ℕ → Value ⊥
(ƛ t₁ ρ ∙ v₂) zero = never
(ƛ t₁ ρ ∙ v₂) (suc n) = ⟦ t₁ ⟧′ (cons v₂ ρ) n
mutual
⟦⟧′-increasing :
∀ {n} (t : Tm n) ρ n → ⟦ t ⟧′ ρ n ⊑ ⟦ t ⟧′ ρ (suc n)
⟦⟧′-increasing (var x) ρ n = return (ρ x) ■
⟦⟧′-increasing (ƛ t) ρ n = return (ƛ t ρ) ■
⟦⟧′-increasing (t₁ · t₂) ρ n =
⟦⟧′-increasing t₁ ρ n >>=-mono λ v₁ →
⟦⟧′-increasing t₂ ρ n >>=-mono λ v₂ →
∙-increasing v₁ v₂ n
∙-increasing : ∀ v₁ v₂ n → (v₁ ∙ v₂) n ⊑ (v₁ ∙ v₂) (suc n)
∙-increasing (ƛ t₁ ρ) v₂ (suc n) = ⟦⟧′-increasing t₁ (cons v₂ ρ) n
∙-increasing (ƛ t₁ ρ) v₂ zero =
never ⊑⟨ never⊑ _ ⟩■
⟦ t₁ ⟧′ (cons v₂ ρ) 0 ■
⟦_⟧ˢ : ∀ {n} → Tm n → Env n → Increasing-sequence Value
⟦ t ⟧ˢ ρ = ⟦ t ⟧′ ρ , ⟦⟧′-increasing t ρ
⟦_⟧ : ∀ {n} → Tm n → Env n → Value ⊥
⟦ t ⟧ ρ = ⨆ (⟦ t ⟧ˢ ρ)
------------------------------------------------------------------------
-- Another interpreter
module Interpreter₂ where
-- This interpreter is defined using a fixpoint combinator.
M : Type → Type₁
M = Partial (∃ λ n → Tm n × Env n) (λ _ → Value)
infix 10 _∙_
_∙_ : Value → Value → M Value
ƛ t₁ ρ ∙ v₂ = rec (_ , t₁ , cons v₂ ρ)
⟦_⟧′ : ∀ {n} → Tm n → Env n → M Value
⟦ var x ⟧′ ρ = return (ρ x)
⟦ ƛ t ⟧′ ρ = return (ƛ t ρ)
⟦ t₁ · t₂ ⟧′ ρ = ⟦ t₁ ⟧′ ρ >>= λ v₁ →
⟦ t₂ ⟧′ ρ >>= λ v₂ →
v₁ ∙ v₂
evalP : (∃ λ n → Tm n × Env n) → M Value
evalP (_ , t , ρ) = ⟦ t ⟧′ ρ
eval : Trans-⊑ (∃ λ n → Tm n × Env n) (λ _ → Value)
eval = transformer evalP
⟦_⟧ : ∀ {n} → Tm n → Env n → Value ⊥
⟦ t ⟧ ρ = fixP evalP (_ , t , ρ)
------------------------------------------------------------------------
-- The two interpreters are pointwise equal
-- Both interpreters' bodies have the form ⨆ s for some sequences s,
-- and element n in the first interpreter's sequence is equal to
-- element 1 + n in the second interpreter's sequence (when the
-- arguments are equal).
interpreters-equal :
∀ {n} (t : Tm n) ρ →
Interpreter₁.⟦ t ⟧ ρ ≡ Interpreter₂.⟦ t ⟧ ρ
interpreters-equal = λ t ρ →
$⟨ ⟦⟧-lemma t ρ ⟩
(∀ n → Interpreter₁.⟦ t ⟧′ ρ n ≡
app→ Interpreter₂.eval (suc n) (_ , t , ρ)) ↝⟨ cong ⨆ ∘ _↔_.to equality-characterisation-increasing ⟩
⨆ (Interpreter₁.⟦ t ⟧ˢ ρ) ≡
⨆ (tailˢ (at (fix→-sequence Interpreter₂.eval) (_ , t , ρ))) ↝⟨ flip trans (⨆tail≡⨆ _) ⟩
⨆ (Interpreter₁.⟦ t ⟧ˢ ρ) ≡
⨆ (at (fix→-sequence Interpreter₂.eval) (_ , t , ρ)) ↝⟨ id ⟩□
Interpreter₁.⟦ t ⟧ ρ ≡ Interpreter₂.⟦ t ⟧ ρ □
where
open Partial
open Trans-⊑
mutual
⟦⟧-lemma :
∀ {n} (t : Tm n) ρ n →
Interpreter₁.⟦ t ⟧′ ρ n ≡
function (Interpreter₂.⟦ t ⟧′ ρ)
(app→ Interpreter₂.eval n)
⟦⟧-lemma (var x) ρ n = refl
⟦⟧-lemma (ƛ t) ρ n = refl
⟦⟧-lemma (t₁ · t₂) ρ n =
cong₂ _>>=_ (⟦⟧-lemma t₁ ρ n) $ ⟨ext⟩ λ v₁ →
cong₂ _>>=_ (⟦⟧-lemma t₂ ρ n) $ ⟨ext⟩ λ v₂ →
∙-lemma v₁ v₂ n
∙-lemma :
∀ v₁ v₂ n →
(v₁ Interpreter₁.∙ v₂) n ≡
function (v₁ Interpreter₂.∙ v₂)
(app→ Interpreter₂.eval n)
∙-lemma (ƛ t₁ ρ) v₂ zero = refl
∙-lemma (ƛ t₁ ρ) v₂ (suc n) = ⟦⟧-lemma t₁ (cons v₂ ρ) n
------------------------------------------------------------------------
-- An example
-- The semantics of Ω is the non-terminating computation never.
-- A proof for Interpreter₁.
Ω-loops₁ : Interpreter₁.⟦ Ω ⟧ nil ≡ never
Ω-loops₁ =
antisymmetry (least-upper-bound _ _ lemma) (never⊑ _)
where
open Interpreter₁
ω-nil = ƛ (var fzero · var fzero) nil
reduce-twice :
∀ n → ⟦ Ω ⟧′ nil n ≡ (ω-nil ∙ ω-nil) n
reduce-twice n =
⟦ Ω ⟧′ nil n ≡⟨ now->>= ⟩
(⟦ ω ⟧′ nil n >>= λ v₂ → (ω-nil ∙ v₂) n) ≡⟨ now->>= ⟩∎
(ω-nil ∙ ω-nil) n ∎
lemma : ∀ n → ⟦ Ω ⟧′ nil n ⊑ never
lemma zero =
⟦ Ω ⟧′ nil zero ≡⟨ reduce-twice zero ⟩⊑
(ω-nil ∙ ω-nil) zero ⊑⟨⟩
never ■
lemma (suc n) =
⟦ Ω ⟧′ nil (suc n) ≡⟨ reduce-twice (suc n) ⟩⊑
⟦ Ω ⟧′ nil n ⊑⟨ lemma n ⟩■
never ■
-- A direct proof for Interpreter₂.
Ω-loops₂ : Interpreter₂.⟦ Ω ⟧ nil ≡ never
Ω-loops₂ = antisymmetry (least-upper-bound _ _ lemma) (never⊑ _)
module Ω-loops₂ where
open Interpreter₂
open Trans-⊑
open Partial
ω-nil = ƛ (var fzero · var fzero) nil
reduce-twice :
∀ f →
function eval f (_ , Ω , nil) ≡
f (_ , var fzero · var fzero , cons ω-nil nil)
reduce-twice f =
function eval f (_ , Ω , nil) ≡⟨⟩
function (⟦ Ω ⟧′ nil) f ≡⟨ cong {x = function (⟦ Ω ⟧′ nil)} (_$ f) (⟨ext⟩ λ _ → now->>=) ⟩
function (⟦ ω ⟧′ nil >>= λ v₂ → ω-nil ∙ v₂) f ≡⟨ cong {x = function (⟦ ω ⟧′ nil >>= ω-nil ∙_)} (_$ f) (⟨ext⟩ λ _ → now->>=) ⟩
function (ω-nil ∙ ω-nil) f ≡⟨⟩
f (_ , var fzero · var fzero , cons ω-nil nil) ∎
lemma : ∀ n → app→ eval n (_ , Ω , nil) ⊑ never
lemma zero = never⊑ never
lemma (suc zero) =
app→ eval 1 (_ , Ω , nil) ≡⟨ reduce-twice _ ⟩⊑
app→ eval 0 (_ , Ω , nil) ⊑⟨⟩
never ■
lemma (suc (suc n)) =
app→ eval (suc (suc n)) (_ , Ω , nil) ≡⟨ reduce-twice _ ⟩⊑
app→ eval (suc n) (_ , Ω , nil) ⊑⟨ lemma (suc n) ⟩■
never ■
-- Another proof for Interpreter₂. This proof uses Scott induction.
Ω-loops₂′ : Interpreter₂.⟦ Ω ⟧ nil ≡ never
Ω-loops₂′ = antisymmetry lemma (never⊑ _)
where
open Interpreter₂
open Trans-⊑
open Partial
lemma =
⟦ Ω ⟧ nil ⊑⟨⟩
fixP evalP (_ , Ω , nil) ≡⟨ cong (_$ (_ , Ω , nil)) $
fixP-is-fixpoint-combinator evalP ⟩⊑
function eval (fixP evalP) (_ , Ω , nil) ⊑⟨ fixP-induction₁
(λ f → function eval f (_ , Ω , nil) ⊑ never) (
function eval (const never) (_ , Ω , nil) ≡⟨ Ω-loops₂.reduce-twice _ ⟩⊑
never ■)
(λ s hyp →
function eval (⨆ ∘ s) (_ , Ω , nil) ≡⟨ Ω-loops₂.reduce-twice _ ⟩⊑
⨆ (s _) ⊑⟨ least-upper-bound _ _ (λ n →
s _ [ n ] ≡⟨ sym $ Ω-loops₂.reduce-twice _ ⟩⊑
function eval (λ x → s x [ n ]) (_ , Ω , nil) ⊑⟨ hyp n ⟩■
never ■) ⟩
never ■)
evalP
(λ g hyp →
function eval (function eval g) (_ , Ω , nil) ≡⟨ Ω-loops₂.reduce-twice _ ⟩⊑
function eval g (_ , Ω , nil) ⊑⟨ hyp ⟩■
never ■) ⟩■
never ■
------------------------------------------------------------------------
-- Setup
-- Let us use Interpreter₂ as the default interpreter.
open Interpreter₂ public
| {
"alphanum_fraction": 0.4333973562,
"avg_line_length": 34.3062015504,
"ext": "agda",
"hexsha": "36680585d483a44c79750fd39b49cd543342d1f9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/partiality-monad",
"max_forks_repo_path": "src/Lambda/Simplified/Partiality-monad/Inductive/Interpreter.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/partiality-monad",
"max_issues_repo_path": "src/Lambda/Simplified/Partiality-monad/Inductive/Interpreter.agda",
"max_line_length": 131,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/partiality-monad",
"max_stars_repo_path": "src/Lambda/Simplified/Partiality-monad/Inductive/Interpreter.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:59:18.000Z",
"num_tokens": 3127,
"size": 8851
} |
module Elements where
open import OscarPrelude
open import Arity
open import Vector
open import Element
record Elements : Set
where
constructor ⟨_⟩
field
{arity} : Arity
elements : Vector Element arity
open Elements public
instance EqElements : Eq Elements
Eq._==_ EqElements (⟨_⟩ {𝑎₁} εs₁) (⟨_⟩ {𝑎₂} εs₂)
with 𝑎₁ ≟ 𝑎₂
… | no 𝑎₁≢𝑎₂ = no λ {refl → 𝑎₁≢𝑎₂ refl}
… | yes refl
with εs₁ ≟ εs₂
… | yes refl = yes refl
… | no εs₁≢εs₂ = no λ {refl → εs₁≢εs₂ refl}
| {
"alphanum_fraction": 0.6757894737,
"avg_line_length": 18.2692307692,
"ext": "agda",
"hexsha": "b441a8a483906b0d20b8754cb77104407ed497d5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-1/Elements.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-1/Elements.agda",
"max_line_length": 48,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-1/Elements.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 197,
"size": 475
} |
{-# OPTIONS --safe --experimental-lossy-unification #-}
module Cubical.Categories.DistLatticeSheaf.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Structure
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Powerset
open import Cubical.Data.Sigma
open import Cubical.Data.Nat using (ℕ)
open import Cubical.Data.Nat.Order
open import Cubical.Data.FinData
open import Cubical.Data.FinData.Order
open import Cubical.Relation.Binary.Poset
open import Cubical.Algebra.Ring
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.Semilattice
open import Cubical.Algebra.Lattice
open import Cubical.Algebra.DistLattice
open import Cubical.Algebra.DistLattice.Basis
open import Cubical.Algebra.DistLattice.BigOps
open import Cubical.Categories.Category
open import Cubical.Categories.Functor
open import Cubical.Categories.NaturalTransformation
open import Cubical.Categories.Limits.Pullback
open import Cubical.Categories.Limits.Terminal
open import Cubical.Categories.Limits.Limits
open import Cubical.Categories.Limits.RightKan
open import Cubical.Categories.Instances.Functors
open import Cubical.Categories.Instances.CommRings
open import Cubical.Categories.Instances.Poset
open import Cubical.Categories.Instances.Semilattice
open import Cubical.Categories.Instances.Lattice
open import Cubical.Categories.Instances.DistLattice
open import Cubical.Categories.DistLatticeSheaf.Diagram
private
variable
ℓ ℓ' ℓ'' : Level
module PreSheafExtension (L : DistLattice ℓ) (C : Category ℓ' ℓ'')
(limitC : Limits {ℓ} {ℓ} C) (L' : ℙ (fst L)) where
open Functor
private
DLCat = DistLatticeCategory L
DLSubCat = ΣPropCat DLCat L'
DLPreSheaf = Functor (DLCat ^op) C
DLSubPreSheaf = Functor (DLSubCat ^op) C
i : Functor DLSubCat DLCat
F-ob i = fst
F-hom i f = f
F-id i = refl
F-seq i _ _ = refl
DLRan : DLSubPreSheaf → DLPreSheaf
DLRan = Ran limitC (i ^opF)
module _ (L : DistLattice ℓ) (C : Category ℓ' ℓ'') (T : Terminal C) where
open Category hiding (_⋆_)
open Functor
open Order (DistLattice→Lattice L)
open DistLatticeStr (snd L)
open JoinSemilattice (Lattice→JoinSemilattice (DistLattice→Lattice L))
open MeetSemilattice (Lattice→MeetSemilattice (DistLattice→Lattice L))
using (∧≤RCancel ; ∧≤LCancel)
open PosetStr (IndPoset .snd) hiding (_≤_)
𝟙 : ob C
𝟙 = terminalOb C T
private
DLCat : Category ℓ ℓ
DLCat = DistLatticeCategory L
open Category DLCat
-- C-valued presheaves on a distributive lattice
DLPreSheaf : Type (ℓ-max (ℓ-max ℓ ℓ') ℓ'')
DLPreSheaf = Functor (DLCat ^op) C
module _ (x y : L .fst)where
hom-∨₁ : DLCat [ x , x ∨l y ]
hom-∨₁ = ∨≤RCancel _ _
hom-∨₂ : DLCat [ y , x ∨l y ]
hom-∨₂ = ∨≤LCancel _ _
hom-∧₁ : DLCat [ x ∧l y , x ]
hom-∧₁ = ≤m→≤j _ _ (∧≤RCancel _ _)
hom-∧₂ : DLCat [ x ∧l y , y ]
hom-∧₂ = ≤m→≤j _ _ (∧≤LCancel _ _)
{-
x ∧ y ----→ x
| |
| sq |
V V
y ----→ x ∨ y
-}
sq : hom-∧₂ ⋆ hom-∨₂ ≡ hom-∧₁ ⋆ hom-∨₁
sq = is-prop-valued (x ∧l y) (x ∨l y) (hom-∧₂ ⋆ hom-∨₂) (hom-∧₁ ⋆ hom-∨₁)
{-
F(x ∨ y) ----→ F(x)
| |
| Fsq |
V V
F(y) ------→ F(x ∧ y)
-}
Fsq : (F : DLPreSheaf)
→ F .F-hom hom-∨₂ ⋆⟨ C ⟩ F .F-hom hom-∧₂ ≡
F .F-hom hom-∨₁ ⋆⟨ C ⟩ F .F-hom hom-∧₁
Fsq F = F-square F sq
isDLSheafPullback : (F : DLPreSheaf) → Type (ℓ-max (ℓ-max ℓ ℓ') ℓ'')
isDLSheafPullback F = (F-ob F 0l ≡ 𝟙)
× ((x y : L .fst) → isPullback C _ _ _ (Fsq x y F))
-- TODO: might be better to define this as a record
DLSheafPullback : Type (ℓ-max (ℓ-max ℓ ℓ') ℓ'')
DLSheafPullback = Σ[ F ∈ DLPreSheaf ] isDLSheafPullback F
-- Now for the proper version using limits of the right kind:
open Join L
isDLSheaf : (F : DLPreSheaf) → Type _
isDLSheaf F = ∀ (n : ℕ) (α : FinVec (fst L) n) → isLimCone _ _ (F-cone F (⋁Cone L α))
--TODO: Equivalence of isDLSheaf and isDLSheafPullback
module SheafOnBasis (L : DistLattice ℓ) (C : Category ℓ' ℓ'') (T : Terminal C)
(L' : ℙ (fst L)) (hB : IsBasis L L') where
open Category
open Functor
open DistLatticeStr ⦃...⦄
open SemilatticeStr ⦃...⦄
open IsBasis hB
private
DLCat = DistLatticeCategory L
BasisCat = ΣPropCat DLCat L'
DLBasisPreSheaf = Functor (BasisCat ^op) C
-- to avoid writing 𝟙 L C T
1c : ob C
1c = terminalOb C T
instance
_ = snd L
_ = snd (Basis→MeetSemilattice L L' hB)
module condSquare (x y : ob BasisCat) (x∨y∈L' : fst x ∨l fst y ∈ L') where
private
x∨y : ob BasisCat -- = Σ[ x ∈ L ] (x ∈ L')
x∨y = fst x ∨l fst y , x∨y∈L'
{-
x ∧ y ----→ x
| |
| sq |
V V
y ----→ x ∨ y
but as a square in BasisCat
-}
Bsq : seq' BasisCat {x = x · y} {y = y} {z = x∨y} (hom-∧₂ L C T (fst x) (fst y))
(hom-∨₂ L C T (fst x) (fst y))
≡ seq' BasisCat {x = x · y} {y = x} {z = x∨y} (hom-∧₁ L C T (fst x) (fst y))
(hom-∨₁ L C T (fst x) (fst y))
Bsq = sq L C T (fst x) (fst y)
{-
F(x ∨ y) ----→ F(x)
| |
| Fsq |
V V
F(y) ------→ F(x ∧ y)
square in C but now F is only presheaf on BasisCat
-}
BFsq : (F : DLBasisPreSheaf)
→ seq' C {x = F .F-ob x∨y} {y = F .F-ob y} {z = F .F-ob (x · y)}
(F .F-hom (hom-∨₂ L C T (fst x) (fst y)))
(F .F-hom (hom-∧₂ L C T (fst x) (fst y)))
≡ seq' C {x = F .F-ob x∨y} {y = F .F-ob x} {z = F .F-ob (x · y)}
(F .F-hom (hom-∨₁ L C T (fst x) (fst y)))
(F .F-hom (hom-∧₁ L C T (fst x) (fst y)))
BFsq F = F-square F Bsq
-- On a basis this is weaker than the definition below!
isDLBasisSheafPullback : DLBasisPreSheaf → Type (ℓ-max (ℓ-max ℓ ℓ') ℓ'')
isDLBasisSheafPullback F = ((0∈L' : 0l ∈ L') → F .F-ob (0l , 0∈L') ≡ 1c)
× ((x y : ob BasisCat) (x∨y∈L' : fst x ∨l fst y ∈ L')
→ isPullback C _ _ _ (BFsq x y x∨y∈L' F))
where open condSquare
DLBasisSheafPullback : Type (ℓ-max (ℓ-max ℓ ℓ') ℓ'')
DLBasisSheafPullback = Σ[ F ∈ DLBasisPreSheaf ] isDLBasisSheafPullback F
-- the correct defintion
open Join L
module condCone {n : ℕ} (α : FinVec (ob BasisCat) n) (⋁α∈L' : ⋁ (λ i → α i .fst) ∈ L') where
open JoinSemilattice (Lattice→JoinSemilattice (DistLattice→Lattice L))
open PosetStr (IndPoset .snd) hiding (_≤_)
open MeetSemilattice (Lattice→MeetSemilattice (DistLattice→Lattice L))
using (∧≤RCancel ; ∧≤LCancel)
open Order (DistLattice→Lattice L)
open Cone
private
α' : FinVec (fst L) n
α' i = α i .fst
⋁α : ob BasisCat
⋁α = ⋁ α' , ⋁α∈L'
BDiag : Functor (DLShfDiag n) (BasisCat ^op)
F-ob BDiag (sing i) = α i
F-ob BDiag (pair i j _) = α i · α j -- α i ∧ α j + basis is closed under ∧
F-hom BDiag idAr = is-refl _
F-hom BDiag singPairL = ≤m→≤j _ _ (∧≤RCancel _ _)
F-hom BDiag singPairR = ≤m→≤j _ _ (∧≤LCancel _ _)
F-id BDiag = is-prop-valued _ _ _ _
F-seq BDiag _ _ = is-prop-valued _ _ _ _
B⋁Cone : Cone BDiag ⋁α
coneOut B⋁Cone (sing i) = ind≤⋁ α' i
coneOut B⋁Cone (pair i _ _) = is-trans _ (α' i) _ (≤m→≤j _ _ (∧≤RCancel _ _)) (ind≤⋁ α' i)
coneOutCommutes B⋁Cone _ = is-prop-valued _ _ _ _
isDLBasisSheaf : DLBasisPreSheaf → Type _
isDLBasisSheaf F = ∀ {n : ℕ} (α : FinVec (ob BasisCat) n) (⋁α∈L' : ⋁ (λ i → α i .fst) ∈ L')
→ isLimCone _ _ (F-cone F (B⋁Cone α ⋁α∈L'))
where open condCone
-- To prove the statement we probably need that C is:
-- 1. univalent
-- 2. has finite limits (or pullbacks and a terminal object)
-- 3. isGroupoid (C .ob)
-- The last point is not strictly necessary, but we have to have some
-- control over the hLevel as we want to write F(x) in terms of its
-- basis cover which is information hidden under a prop truncation...
-- Alternatively we just prove the statement for C = CommRingsCategory
-- TODO: is unique existence expressed like this what we want?
-- statement : (F' : DLBasisSheaf)
-- → ∃![ F ∈ DLSheaf L C T ] ((x : fst L) → (x ∈ L') → CatIso C (F-ob (fst F) x) (F-ob (fst F') x)) -- TODO: if C is univalent the CatIso could be ≡?
-- statement (F' , h1 , hPb) = ?
-- It might be easier to prove all of these if we use the definition
-- in terms of particular limits instead
-- Scrap zone:
-- -- Sublattices: upstream later
-- record isSublattice (L' : ℙ (fst L)) : Type ℓ where
-- field
-- 1l-closed : 1l ∈ L'
-- 0l-closed : 0l ∈ L'
-- ∧l-closed : {x y : fst L} → x ∈ L' → y ∈ L' → x ∧l y ∈ L'
-- ∨l-closed : {x y : fst L} → x ∈ L' → y ∈ L' → x ∨l y ∈ L'
-- open isSublattice
-- Sublattice : Type (ℓ-suc ℓ)
-- Sublattice = Σ[ L' ∈ ℙ (fst L) ] isSublattice L'
-- restrictDLSheaf : DLSheaf → Sublattice → DLSheaf
-- F-ob (fst (restrictDLSheaf F (L' , HL'))) x = {!F-ob (fst F) x!} -- Hmm, not nice...
-- F-hom (fst (restrictDLSheaf F L')) = {!!}
-- F-id (fst (restrictDLSheaf F L')) = {!!}
-- F-seq (fst (restrictDLSheaf F L')) = {!!}
-- snd (restrictDLSheaf F L') = {!!}
| {
"alphanum_fraction": 0.5796994073,
"avg_line_length": 31.5986622074,
"ext": "agda",
"hexsha": "45948bd794e87bfc6a91ed421100baa946dc3c07",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Categories/DistLatticeSheaf/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Categories/DistLatticeSheaf/Base.agda",
"max_line_length": 161,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Categories/DistLatticeSheaf/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 3571,
"size": 9448
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020, 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
-- This is a selection of useful functions and definitions
-- from the standard library that we tend to use a lot.
module LibraBFT.Prelude where
open import Level
renaming (suc to ℓ+1; zero to ℓ0; _⊔_ to _ℓ⊔_)
public
1ℓ : Level
1ℓ = ℓ+1 0ℓ
open import Agda.Builtin.Unit
public
open import Data.Unit.NonEta
public
open import Data.Empty
public
open import Data.Nat
renaming (_≟_ to _≟ℕ_; _≤?_ to _≤?ℕ_)
public
open import Data.Nat.Properties
hiding (≡-irrelevant)
public
open import Data.List
renaming (map to List-map ; filter to List-filter ; lookup to List-lookup;
tabulate to List-tabulate)
hiding (fromMaybe; [_])
public
open import Data.List.Properties
renaming (≡-dec to List-≡-dec; length-map to List-length-map; map-compose to List-map-compose)
using (∷-injective; length-++; map-++-commute; sum-++-commute; map-tabulate; ++-identityʳ)
public
open import Data.List.Relation.Binary.Subset.Propositional
renaming (_⊆_ to _⊆List_)
public
open import Data.List.Relation.Unary.Any
using (Any; here; there)
renaming (lookup to Any-lookup; map to Any-map; satisfied to Any-satisfied
;index to Any-index; any to Any-any)
public
open import Data.List.Relation.Unary.Any.Properties
using (¬Any[])
renaming ( map⁺ to Any-map⁺
; map⁻ to Any-map⁻
; concat⁺ to Any-concat⁺
; concat⁻ to Any-concat⁻
; ++⁻ to Any-++⁻
; ++⁺ʳ to Any-++ʳ
; ++⁺ˡ to Any-++ˡ
; singleton⁻ to Any-singleton⁻
; tabulate⁺ to Any-tabulate⁺
)
public
open import Data.List.Relation.Unary.All
using (All; []; _∷_)
renaming (head to All-head; tail to All-tail;
lookup to All-lookup; tabulate to All-tabulate;
reduce to All-reduce)
public
open import Data.List.Relation.Unary.All.Properties
renaming ( tabulate⁻ to All-tabulate⁻
; tabulate⁺ to All-tabulate⁺
; map⁺ to All-map⁺
; map⁻ to All-map⁻
)
public
open import Data.List.Membership.Propositional
using (_∈_; _∉_)
public
open import Data.Vec
using (Vec; []; _∷_)
renaming (replicate to Vec-replicate; lookup to Vec-lookup
;map to Vec-map; head to Vec-head; tail to Vec-tail
;updateAt to Vec-updateAt; tabulate to Vec-tabulate
;allFin to Vec-allFin; toList to Vec-toList; fromList to Vec-fromList
;_++_ to _Vec-++_)
public
open import Data.Vec.Relation.Unary.All
using ([]; _∷_)
renaming (All to Vec-All; lookup to Vec-All-lookup)
public
open import Data.Vec.Properties
using ()
renaming (updateAt-minimal to Vec-updateAt-minimal
;[]=⇒lookup to Vec-[]=⇒lookup
;lookup⇒[]= to Vec-lookup⇒[]=
;lookup∘tabulate to Vec-lookup∘tabulate
;≡-dec to Vec-≡-dec)
public
open import Data.List.Relation.Binary.Pointwise
using (decidable-≡)
public
open import Data.Bool
renaming (_≟_ to _≟Bool_)
hiding (_≤?_; _<_; _<?_; _≤_)
public
open import Data.Maybe
renaming (map to Maybe-map; zip to Maybe-zip ; _>>=_ to _Maybe->>=_)
hiding (align; alignWith; zipWith)
public
open import Data.Maybe.Relation.Unary.Any
renaming (Any to Maybe-Any; dec to Maybe-Any-dec)
hiding (map; zip; zipWith; unzip ; unzipWith)
public
maybe-any-⊥ : ∀{a}{A : Set a} → Maybe-Any {A = A} (λ _ → ⊤) nothing → ⊥
maybe-any-⊥ ()
open import Data.Maybe.Properties
using (just-injective)
renaming (≡-dec to Maybe-≡-dec)
public
open import Data.Fin
using (Fin; suc; zero; fromℕ; fromℕ< ; toℕ ; cast)
renaming (_≟_ to _≟Fin_; _≤?_ to _≤?Fin_; _≤_ to _≤Fin_ ; _<_ to _<Fin_;
inject₁ to Fin-inject₁; inject+ to Fin-inject+)
public
fins : (n : ℕ) → List (Fin n)
fins n = Vec-toList (Vec-allFin n)
open import Data.Fin.Properties
using (toℕ-injective)
renaming (<-cmp to Fin-<-cmp; <⇒≢ to <⇒≢Fin)
public
open import Relation.Binary.PropositionalEquality
hiding (decSetoid)
public
open import Relation.Binary.HeterogeneousEquality
using (_≅_)
renaming (cong to ≅-cong; cong₂ to ≅-cong₂)
public
open import Relation.Binary
public
≡-irrelevant : ∀{a}{A : Set a} → Irrelevant {a} {A} _≡_
≡-irrelevant refl refl = refl
to-witness-lemma : ∀{ℓ}{A : Set ℓ}{a : A}{f : Maybe A}(x : Is-just f)
→ to-witness x ≡ a → f ≡ just a
to-witness-lemma (just x) refl = refl
open import Data.Sum
renaming ([_,_] to either; map to ⊎-map)
public
open import Function
using (_∘_; id; case_of_; _on_; typeOf; flip; const)
public
open import Data.Product
renaming (map to ×-map; map₂ to ×-map₂; map₁ to ×-map₁; <_,_> to split; swap to ×-swap)
hiding (zip)
public
open import Data.Product.Properties
public
open import Relation.Nullary
hiding (Irrelevant; proof)
public
open import Relation.Nullary.Decidable
hiding (map)
public
infix 0 if-yes_then_else_
infix 0 if-dec_then_else_
if-yes_then_else_ : {A B : Set} → Dec A → (A → B) → (¬ A → B) → B
if-yes (yes prf) then f else _ = f prf
if-yes (no prf) then _ else g = g prf
if-dec_then_else_ : {A B : Set} → Dec A → B → B → B
if-dec x then f else g = if-yes x then const f else const g
open import Relation.Nullary.Negation
using (contradiction; contraposition)
public
open import Relation.Binary
using (Setoid; IsPreorder)
public
-- Evidence that a function is not injective
NonInjective : ∀{a b c}{A : Set a}{B : Set b}
→ (_≈_ : Rel A c)
→ (A → B) → Set (a ℓ⊔ b ℓ⊔ c)
NonInjective {A = A} _≈_ f
= Σ (A × A) (λ { (x₁ , x₂) → ¬ (x₁ ≈ x₂) × f x₁ ≡ f x₂ })
NonInjective-≡ : ∀{a b}{A : Set a}{B : Set b}
→ (A → B) → Set (a ℓ⊔ b)
NonInjective-≡ = NonInjective _≡_
NonInjective-∘ : ∀{a b c}{A : Set a}{B : Set b}{C : Set c}
→ {f : A → B}(g : B → C)
→ NonInjective-≡ f
→ NonInjective-≡ (g ∘ f)
NonInjective-∘ g ((x0 , x1) , (x0≢x1 , fx0≡fx1))
= ((x0 , x1) , x0≢x1 , (cong g fx0≡fx1))
--------------------------------------------
-- Handy fmap and bind for specific types --
_<M$>_ : ∀{a b}{A : Set a}{B : Set b}
→ (f : A → B)
→ Maybe A → Maybe B
_<M$>_ = Maybe-map
<M$>-univ : ∀{a b}{A : Set a}{B : Set b}
→ (f : A → B)(x : Maybe A)
→ {y : B} → f <M$> x ≡ just y
→ ∃[ x' ] (x ≡ just x' × f x' ≡ y)
<M$>-univ f (just x) refl = x , (refl , refl)
maybe-lift : {A : Set}
→ {mx : Maybe A}{x : A}
→ (P : A → Set)
→ P x → mx ≡ just x
→ maybe {B = const Set} P ⊥ mx
maybe-lift {mx = just .x} {x} P px refl = px
<M$>-nothing : ∀ {a b}{A : Set a}{B : Set b}(f : A → B)
→ f <M$> nothing ≡ nothing
<M$>-nothing _ = refl
_<⊎$>_ : ∀{a b c}{A : Set a}{B : Set b}{C : Set c}
→ (A → B) → C ⊎ A → C ⊎ B
f <⊎$> (inj₁ hb) = inj₁ hb
f <⊎$> (inj₂ x) = inj₂ (f x)
_⊎⟫=_ : ∀{a b c}{A : Set a}{B : Set b}{C : Set c}
→ C ⊎ A → (A → C ⊎ B) → C ⊎ B
(inj₁ x) ⊎⟫= _ = inj₁ x
(inj₂ a) ⊎⟫= f = f a
-- TODO-1: Maybe this belongs somewhere else? It's in a similar
-- category as Optics, so maybe should similarly be in a module that
-- is separate from the main project?
------------------
-- Guard Syntax --
--
-- Example Usage:
--
-- > f : ℕ → ℕ
-- > f x = grd‖ x ≟ℕ 10 ≔ 12
-- > ‖ otherwise≔ 40 + 2
--
--
-- > g : ℕ ⊎ ℕ → ℕ
-- > g x = case x of λ
-- > { (inj₁ x) → grd‖ x ≤? 10 ≔ 2 * x
-- > ‖ otherwise≔ 42
-- > ; (inj₂ y) → y
-- > }
--
-- To type: ‖ --> \Vert
-- ≔ --> \:=
record ToBool {a}(A : Set a) : Set a where
field
toBool : A → Bool
open ToBool {{ ... }} public
instance
ToBool-Bool : ToBool Bool
ToBool-Bool = record { toBool = id }
ToBool-Dec : ∀{a}{A : Set a} → ToBool (Dec A)
ToBool-Dec = record { toBool = ⌊_⌋ }
infix 3 _≔_
data GuardClause {a}(A : Set a) : Set (ℓ+1 a) where
_≔_ : {B : Set a}{{ bb : ToBool B }} → B → A → GuardClause A
infix 3 otherwise≔_
data Guards {a}(A : Set a) : Set (ℓ+1 a) where
otherwise≔_ : A → Guards A
clause : GuardClause A → Guards A → Guards A
infixr 2 _‖_
_‖_ : ∀{a}{A : Set a} → GuardClause A → Guards A → Guards A
_‖_ = clause
infix 1 grd‖_
grd‖_ : ∀{a}{A : Set a} → Guards A → A
grd‖_ (otherwise≔ a) = a
grd‖_ (clause (b ≔ a) g) = if toBool b then a else (grd‖ g)
Any-satisfied-∈ : ∀{a ℓ}{A : Set a}{P : A → Set ℓ}{xs : List A}
→ Any P xs → Σ A (λ x → P x × x ∈ xs)
Any-satisfied-∈ (here px) = _ , (px , here refl)
Any-satisfied-∈ (there p) = let (a , px , prf) = Any-satisfied-∈ p
in (a , px , there prf)
f-sum : ∀{a}{A : Set a} → (A → ℕ) → List A → ℕ
f-sum f = sum ∘ List-map f
open import LibraBFT.Base.Util public
| {
"alphanum_fraction": 0.5479928353,
"avg_line_length": 28.7606060606,
"ext": "agda",
"hexsha": "f0d37d60d0d6285ee905afb69a1ca9238b41c87d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "cwjnkins/bft-consensus-agda",
"max_forks_repo_path": "LibraBFT/Prelude.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "cwjnkins/bft-consensus-agda",
"max_issues_repo_path": "LibraBFT/Prelude.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "cwjnkins/bft-consensus-agda",
"max_stars_repo_path": "LibraBFT/Prelude.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3360,
"size": 9491
} |
{-# OPTIONS --without-K --safe #-}
module Math.NumberTheory.Product.Generic where
-- agda-stdlib
open import Algebra
-- agda-misc
open import Math.NumberTheory.Summation.Generic
-- TODO add syntax
module MonoidProduct {c e} (M : Monoid c e) =
MonoidSummation M
renaming
( Σ< to Π<
; Σ≤ to Π≤
; Σ<range to Π<range
; Σ≤range to Π≤range
)
using ()
| {
"alphanum_fraction": 0.6712328767,
"avg_line_length": 17.380952381,
"ext": "agda",
"hexsha": "f947b13ce1c4c6e07b06017f0dcbc8bb932566ca",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rei1024/agda-misc",
"max_forks_repo_path": "Math/NumberTheory/Product/Generic.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rei1024/agda-misc",
"max_issues_repo_path": "Math/NumberTheory/Product/Generic.agda",
"max_line_length": 47,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rei1024/agda-misc",
"max_stars_repo_path": "Math/NumberTheory/Product/Generic.agda",
"max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z",
"num_tokens": 127,
"size": 365
} |
postulate
C : Set
anything : C
record I : Set where
constructor c
field
f : C
data Wrap : (j : I) → Set where
wrap : ∀ {j} → Wrap j
-- The following should not pass.
-- It did before the fix of #142.
issue142 : ∀ {j} → Wrap j → C
issue142 {c _} (wrap {c _}) with anything
issue142 {c _} (wrap .{c anything}) | z = z
| {
"alphanum_fraction": 0.5958083832,
"avg_line_length": 17.5789473684,
"ext": "agda",
"hexsha": "0b440622a834ebc918e67e41b54c081d6039c72d",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue1606.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue1606.agda",
"max_line_length": 43,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue1606.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 118,
"size": 334
} |
open import Relation.Unary using ( ∅ ; _∪_ )
open import Web.Semantic.DL.Signature using ( Signature ; CN ; RN )
open import Web.Semantic.Util using ( Subset ; ⁅_⁆ )
module Web.Semantic.DL.Role where
data Role (Σ : Signature) : Set where
⟨_⟩ : (r : RN Σ) → Role Σ
⟨_⟩⁻¹ : (r : RN Σ) → Role Σ
inv : ∀ {Σ} → Role Σ → Role Σ
inv ⟨ r ⟩ = ⟨ r ⟩⁻¹
inv ⟨ r ⟩⁻¹ = ⟨ r ⟩
| {
"alphanum_fraction": 0.5876010782,
"avg_line_length": 26.5,
"ext": "agda",
"hexsha": "b6b3eec49aa7aa8541dd123d7c3b7526fa431822",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:03.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-12-03T14:52:09.000Z",
"max_forks_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bblfish/agda-web-semantic",
"max_forks_repo_path": "src/Web/Semantic/DL/Role.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057",
"max_issues_repo_issues_event_max_datetime": "2021-01-04T20:57:19.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T02:32:28.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bblfish/agda-web-semantic",
"max_issues_repo_path": "src/Web/Semantic/DL/Role.agda",
"max_line_length": 67,
"max_stars_count": 9,
"max_stars_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/agda-web-semantic",
"max_stars_repo_path": "src/Web/Semantic/DL/Role.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-14T14:21:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-13T17:46:41.000Z",
"num_tokens": 154,
"size": 371
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020, 2021 Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Prelude
open import LibraBFT.Lemmas
open import LibraBFT.Base.PKCS
open import LibraBFT.Base.Types
import LibraBFT.Yasm.Base as LYB
-- This module provides some definitions and properties that facilitate
-- proofs of properties about a distributed system modeled by Yasm.System
-- paramaterized by some SystemParameters.
module LibraBFT.Yasm.Properties
(ℓ-EC : Level)
(EpochConfig : Set ℓ-EC)
(epochId : EpochConfig → EpochId)
(authorsN : EpochConfig → ℕ)
(parms : LYB.SystemParameters ℓ-EC EpochConfig epochId authorsN)
-- In addition to the parameters used by the rest of the system model, this module
-- needs to relate Members to PKs and PeerIds, so that StepPeerState-AllValidParts
-- can be defined. This enables the application to prove that honest peers sign
-- new messages only for their own public key. The system model does not know that
-- directly.
(senderPKOK : (ec : EpochConfig) → PK → LYB.SystemParameters.PeerId parms → Set)
where
open LYB.SystemParameters parms
open import LibraBFT.Yasm.AvailableEpochs PeerId ℓ-EC EpochConfig epochId authorsN
using (AvailableEpochs) renaming (lookup'' to EC-lookup)
import LibraBFT.Yasm.AvailableEpochs PeerId ℓ-EC EpochConfig epochId authorsN
as AE
open import LibraBFT.Yasm.Base ℓ-EC EpochConfig epochId authorsN
open import LibraBFT.Yasm.System ℓ-EC EpochConfig epochId authorsN parms
open import Util.FunctionOverride PeerId _≟PeerId_
-- A ValidPartForPK collects the assumptions about what a /part/ in the outputs of an honest verifier
-- satisfies: (i) the epoch field is consistent with the existent epochs and (ii) the verifier is
-- a member of the associated epoch config, and (iii) has the given PK in that epoch.
record ValidSenderForPK {e}(𝓔s : AvailableEpochs e)(part : Part)(sender : PeerId)(pk : PK) : Set ℓ-EC where
constructor mkValidSenderForPK
field
vp-epoch : part-epoch part < e
vp-ec : EpochConfig
vp-ec-≡ : AE.lookup'' 𝓔s vp-epoch ≡ vp-ec
vp-sender-ok : senderPKOK vp-ec pk sender
open ValidSenderForPK public
-- A valid part remains valid when new epochs are added
ValidSenderForPK-stable-epoch : ∀{e part α pk}{𝓔s : AvailableEpochs e}(𝓔 : EpochConfigFor e)
→ ValidSenderForPK 𝓔s part α pk
→ ValidSenderForPK (AE.append 𝓔 𝓔s) part α pk
ValidSenderForPK-stable-epoch {pk = pk} {𝓔s = 𝓔s} 𝓔 (mkValidSenderForPK e ec refl vpk) = record
{ vp-epoch = ≤-step e
; vp-ec = ec
; vp-ec-≡ = AE.lookup''-≤-step-lemma 𝓔s 𝓔 e
; vp-sender-ok = vpk
}
-- A valid part remains valid
ValidSenderForPK-stable : ∀{e e' α}{st : SystemState e}{st' : SystemState e'}
→ Step* st st' → ∀{part pk}
→ ValidSenderForPK (availEpochs st) part α pk
→ ValidSenderForPK (availEpochs st') part α pk
ValidSenderForPK-stable step-0 v = v
ValidSenderForPK-stable (step-s st (step-epoch 𝓔)) v
= ValidSenderForPK-stable-epoch 𝓔 (ValidSenderForPK-stable st v)
ValidSenderForPK-stable (step-s st (step-peer _)) v
= ValidSenderForPK-stable st v
sameEpoch⇒sameEC : ∀ {e p1 p2 α1 α2 pk1 pk2}{𝓔s : AvailableEpochs e}
→ (vp1 : ValidSenderForPK 𝓔s p1 α1 pk1)
→ (vp2 : ValidSenderForPK 𝓔s p2 α2 pk2)
→ part-epoch p1 ≡ part-epoch p2
→ vp-ec vp1 ≡ vp-ec vp2
sameEpoch⇒sameEC {𝓔s = 𝓔s} vp1 vp2 parts≡ =
trans (sym (vp-ec-≡ vp1))
(trans (AE.lookup-𝓔s-injective 𝓔s (vp-epoch vp1) (vp-epoch vp2) parts≡)
(vp-ec-≡ vp2))
-- TODO-1 : prove it
postulate
ValidSenderForPK⇒ep≡ : ∀ {e p1 p2 α1 pk} {𝓔s : AvailableEpochs e}
→ WithVerSig pk p1 → WithVerSig pk p2
→ part-epoch p1 ≡ part-epoch p2
→ ValidSenderForPK 𝓔s p1 α1 pk
→ ValidSenderForPK 𝓔s p2 α1 pk
-- We say that an implementation produces only valid parts iff all parts of every message in the
-- output of a 'StepPeerState' are either: (i) a valid new part (i.e., the part is valid and no
-- message with the same signature has been sent previously), or (ii) a message has been sent
-- with the same signature.
StepPeerState-AllValidParts : Set ℓ-EC
StepPeerState-AllValidParts = ∀{e s m part pk initd' outs}{α}{𝓔s : AvailableEpochs e}{st : SystemState e}
→ (r : ReachableSystemState st)
→ Meta-Honest-PK pk
→ StepPeerState α 𝓔s (msgPool st) (initialised st) (peerStates st α) initd' (s , outs)
→ m ∈ outs → part ⊂Msg m → (ver : WithVerSig pk part)
→ (ValidSenderForPK 𝓔s part α pk × ¬ (MsgWithSig∈ pk (ver-signature ver) (msgPool st)))
⊎ MsgWithSig∈ pk (ver-signature ver) (msgPool st)
-- A /part/ was introduced by a specific step when:
IsValidNewPart : ∀{e e'}{pre : SystemState e}{post : SystemState e'} → Signature → PK → Step pre post → Set ℓ-EC
IsValidNewPart _ _ (step-epoch _) = Lift (ℓ-EC) ⊥
-- said step is a /step-peer/ and
IsValidNewPart {pre = pre} sig pk (step-peer {pid = pid} pstep)
-- the part has never been seen before
= ReachableSystemState pre
× ¬ (MsgWithSig∈ pk sig (msgPool pre))
× Σ (MsgWithSig∈ pk sig (msgPool (StepPeer-post pstep)))
(λ m → ValidSenderForPK (availEpochs pre) (msgPart m) (msgSender m) pk)
-- When we can prove that the implementation provided by 'parms' at the
-- top of this module satisfies 'StepPeerState-AllValidParts', we can
-- prove a number of useful structural properties:
-- TODO-2: Refactor into a file (LibraBFT.Yasm.Properties.Structural) later on
-- if this grows too large.
module Structural (sps-avp : StepPeerState-AllValidParts) where
-- We can unwind the state and highlight the step where a part was
-- originally sent. This 'unwind' function combined with Any-Step-elim
-- enables a powerful form of reasoning. The 'honestVoteEpoch' below
-- exemplifies this well.
unwind : ∀{e}{st : SystemState e}(tr : ReachableSystemState st)
→ ∀{p m σ pk} → Meta-Honest-PK pk
→ p ⊂Msg m → (σ , m) ∈ msgPool st → (ver : WithVerSig pk p)
→ Any-Step (IsValidNewPart (ver-signature ver) pk) tr
unwind (step-s tr (step-epoch _)) hpk p⊂m m∈sm sig
= step-there (unwind tr hpk p⊂m m∈sm sig)
unwind (step-s tr (step-peer {pid = β} {outs = outs} {pre = pre} sp)) hpk p⊂m m∈sm sig
with Any-++⁻ (List-map (β ,_) outs) {msgPool pre} m∈sm
...| inj₂ furtherBack = step-there (unwind tr hpk p⊂m furtherBack sig)
...| inj₁ thisStep
with sp
...| step-cheat fm isCheat
with thisStep
...| here refl
with isCheat p⊂m sig
...| inj₁ abs = ⊥-elim (hpk abs)
...| inj₂ sentb4
with unwind tr {p = msgPart sentb4} hpk (msg⊆ sentb4) (msg∈pool sentb4) (msgSigned sentb4)
...| res rewrite msgSameSig sentb4 = step-there res
unwind (step-s tr (step-peer {pid = β} {outs = outs} {pre = pre} sp)) hpk p⊂m m∈sm sig
| inj₁ thisStep
| step-honest x
with Any-satisfied-∈ (Any-map⁻ thisStep)
...| (m , refl , m∈outs)
with sps-avp tr hpk x m∈outs p⊂m sig
...| inj₂ sentb4 with unwind tr {p = msgPart sentb4} hpk (msg⊆ sentb4) (msg∈pool sentb4) (msgSigned sentb4)
...| res rewrite msgSameSig sentb4 = step-there res
unwind (step-s tr (step-peer {pid = β} {outs = outs} {pre = pre} sp)) {p} hpk p⊂m m∈sm sig
| inj₁ thisStep
| step-honest x
| (m , refl , m∈outs)
| inj₁ (valid-part , notBefore) =
step-here tr (tr , notBefore , MsgWithSig∈-++ˡ (mkMsgWithSig∈ _ _ p⊂m β thisStep sig refl)
, valid-part)
-- Unwind is inconvenient to use by itself because we have to do
-- induction on Any-Step-elim. The 'honestPartValid' property below
-- provides a fairly general result conveniently: for every part
-- verifiable with an honest PK, there is a msg with the same
-- signature that is valid for some pid.
honestPartValid : ∀ {e st} → ReachableSystemState {e} st → ∀ {pk nm v sender}
→ Meta-Honest-PK pk
→ v ⊂Msg nm → (sender , nm) ∈ msgPool st → (ver : WithVerSig pk v)
→ Σ (MsgWithSig∈ pk (ver-signature ver) (msgPool st))
(λ msg → (ValidSenderForPK (availEpochs st) (msgPart msg) (msgSender msg) pk))
honestPartValid {e} {st} r {pk = pk} hpk v⊂m m∈pool ver
-- We extract two pieces of important information from the place where the part 'v'
-- was first sent: (a) there is a message with the same signature /in the current pool/
-- and (b) its epoch is less than e.
= Any-Step-elim (λ { {st = step-epoch _} ()
; {st = step-peer {pid = pid} ps} (_ , _ , new , valid) tr
→ MsgWithSig∈-Step* tr new
, ValidSenderForPK-stable tr (subst (λ P → ValidSenderForPK _ P (msgSender (MsgWithSig∈-Step* tr new)) pk)
(MsgWithSig∈-Step*-part tr new)
(subst (λ sndr → ValidSenderForPK _ _ sndr pk)
(MsgWithSig∈-Step*-sender tr new)
valid))
})
(unwind r hpk v⊂m m∈pool ver)
-- Unforgeability is also an important property stating that every part that is
-- verified with an honest public key has either been sent by α or is a replay
-- of another message sent before.
ext-unforgeability'
: ∀{e α m part pk}{st : SystemState e} → ReachableSystemState st
-- If a message m has been sent by α, containing part
→ (α , m) ∈ msgPool st → part ⊂Msg m
-- And the part can be verified with an honest public key,
→ (sig : WithVerSig pk part) → Meta-Honest-PK pk
-- then either the part is a valid part by α (meaning that α can
-- sign the part itself) or a message with the same signature has
-- been sent previously.
→ ValidSenderForPK (availEpochs st) part α pk
⊎ MsgWithSig∈ pk (ver-signature sig) (msgPool st)
ext-unforgeability' (step-s st (step-epoch 𝓔)) m∈sm p⊆m sig hpk
= ⊎-map (ValidSenderForPK-stable-epoch 𝓔) id (ext-unforgeability' st m∈sm p⊆m sig hpk)
ext-unforgeability' {part = part} (step-s st (step-peer {pid = β} {outs = outs} {pre = pre} sp)) m∈sm p⊆m sig hpk
with Any-++⁻ (List-map (β ,_) outs) {msgPool pre} m∈sm
...| inj₂ furtherBack = MsgWithSig∈-++ʳ <⊎$> (ext-unforgeability' st furtherBack p⊆m sig hpk)
...| inj₁ thisStep
with sp
...| step-cheat fm isCheat
with thisStep
...| here refl
with isCheat p⊆m sig
...| inj₁ abs = ⊥-elim (hpk abs)
...| inj₂ sentb4 = inj₂ (MsgWithSig∈-++ʳ sentb4)
ext-unforgeability' {α = α} {m = m} {part = part} (step-s st (step-peer {pid = β} {outs = outs} {pre = pre} sp)) m∈sm p⊆m sig hpk
| inj₁ thisStep
| step-honest x
with Any-satisfied-∈ (Any-map⁻ thisStep)
...| (m , refl , m∈outs) = ⊎-map proj₁ MsgWithSig∈-++ʳ (sps-avp st hpk x m∈outs p⊆m sig)
-- The ext-unforgeability' property can be collapsed in a single clause.
-- TODO-2: so far, ext-unforgeability is used only to get a MsgWithSig∈ that is passed to
-- msgWithSigSentByAuthor, which duplicates some of the reasoning in the proof of
-- ext-unforgeability'; should these properties possibly be combined into one simpler proof?
ext-unforgeability
: ∀{e α₀ m part pk}{st : SystemState e} → ReachableSystemState st
→ (α₀ , m) ∈ msgPool st → part ⊂Msg m
→ (sig : WithVerSig pk part) → Meta-Honest-PK pk
→ MsgWithSig∈ pk (ver-signature sig) (msgPool st)
ext-unforgeability {_} {α₀} {m} {st = st} rst m∈sm p⊂m sig hpk
with ext-unforgeability' rst m∈sm p⊂m sig hpk
...| inj₁ p
= mkMsgWithSig∈ _ _ p⊂m α₀ m∈sm sig refl
...| inj₂ sentb4 = sentb4
¬cheatForgeNew : ∀ {e pid pk vsig mst outs m}{st : SystemState e}
→ (sp : StepPeer st pid mst outs)
→ outs ≡ m ∷ []
→ (ic : isCheat sp)
→ Meta-Honest-PK pk
→ MsgWithSig∈ pk vsig ((pid , m) ∷ msgPool st)
→ MsgWithSig∈ pk vsig (msgPool st)
¬cheatForgeNew sc@(step-cheat fm isCheat) refl _ hpk mws
with msg∈pool mws
...| there m∈pool = mkMsgWithSig∈ (msgWhole mws) (msgPart mws) (msg⊆ mws) (msgSender mws) m∈pool (msgSigned mws) (msgSameSig mws)
...| here m∈pool
with isCheat (subst (msgPart mws ⊂Msg_) (cong proj₂ m∈pool) (msg⊆ mws)) (msgSigned mws)
...| inj₁ dis = ⊥-elim (hpk dis)
...| inj₂ mws' rewrite msgSameSig mws = mws'
msgWithSigSentByAuthor : ∀ {e pk sig}{st : SystemState e}
→ ReachableSystemState st
→ Meta-Honest-PK pk
→ MsgWithSig∈ pk sig (msgPool st)
→ Σ (MsgWithSig∈ pk sig (msgPool st))
λ mws → ValidSenderForPK (availEpochs st) (msgPart mws) (msgSender mws) pk
msgWithSigSentByAuthor step-0 _ ()
msgWithSigSentByAuthor (step-s {pre = pre} preach (step-epoch 𝓔)) hpk mws
rewrite step-epoch-does-not-send pre 𝓔
with msgWithSigSentByAuthor preach hpk mws
...| mws' , vpb = mws' , ValidSenderForPK-stable {st = pre} (step-s step-0 (step-epoch 𝓔)) vpb
msgWithSigSentByAuthor {pk = pk} (step-s {pre = pre} preach (step-peer theStep@(step-cheat fm cheatCons))) hpk mws
with (¬cheatForgeNew theStep refl unit hpk mws)
...| mws'
with msgWithSigSentByAuthor preach hpk mws'
...| mws'' , vpb'' = MsgWithSig∈-++ʳ mws'' , vpb''
msgWithSigSentByAuthor {e} (step-s {pre = pre} preach (step-peer {pid = pid} {outs = outs} (step-honest sps))) hpk mws
with Any-++⁻ (List-map (pid ,_) outs) {msgPool pre} (msg∈pool mws)
...| inj₂ furtherBack
with msgWithSigSentByAuthor preach hpk (MsgWithSig∈-transp mws furtherBack)
...| mws' , vpb' = MsgWithSig∈-++ʳ mws' , vpb'
msgWithSigSentByAuthor {e} (step-s {pre = pre} preach (step-peer {pid = pid} {outs = outs} (step-honest sps))) hpk mws
| inj₁ thisStep
with Any-satisfied-∈ (Any-map⁻ thisStep)
...| (m' , refl , m∈outs)
with sps-avp preach hpk sps m∈outs (msg⊆ mws) (msgSigned mws)
...| inj₁ (vpbα₀ , _) = mws , vpbα₀
...| inj₂ mws'
with msgWithSigSentByAuthor preach hpk mws'
...| mws'' , vpb'' rewrite sym (msgSameSig mws) = MsgWithSig∈-++ʳ mws'' , vpb''
newMsg⊎msgSentB4 : ∀ {e pk v m pid sndr st' outs} {st : SystemState e}
→ (r : ReachableSystemState st)
→ (stP : StepPeer st pid st' outs)
→ Meta-Honest-PK pk → (sig : WithVerSig pk v)
→ v ⊂Msg m → (sndr , m) ∈ msgPool (StepPeer-post stP)
→ (m ∈ outs × ValidSenderForPK (availEpochs st) v pid pk
× ¬ (MsgWithSig∈ pk (ver-signature sig) (msgPool st)))
⊎ MsgWithSig∈ pk (ver-signature sig) (msgPool st)
newMsg⊎msgSentB4 {e} {pk} {v} {m} {pid} {sndr} {_} {outs} {st} r stP pkH sig v⊂m m∈post
with Any-++⁻ (List-map (pid ,_) outs) m∈post
...| inj₂ m∈preSt = inj₂ (mkMsgWithSig∈ m v v⊂m sndr m∈preSt sig refl)
...| inj₁ nm∈outs
with Any-map (cong proj₂) (Any-map⁻ nm∈outs)
...| m∈outs
with stP
...| step-honest stH
with sps-avp r pkH stH m∈outs v⊂m sig
...| inj₁ newVote = inj₁ (m∈outs , newVote)
...| inj₂ msb4 = inj₂ msb4
newMsg⊎msgSentB4 {e} {pk} {v} {m} {pid} {sndr} {_} {outs} {st} r stP pkH sig v⊂m m∈post
| inj₁ nm∈outs
| here refl
| step-cheat fm ic
= let mws = mkMsgWithSig∈ m v v⊂m pid (here refl) sig refl
in inj₂ (¬cheatForgeNew {st = st} (step-cheat fm ic) refl unit pkH mws)
-- This could potentially be more general, for example covering the whole SystemState, rather than
-- just one peer's state. However, this would put more burden on the user and is not required so
-- far.
CarrierProp : Set₁
CarrierProp = Part → PeerState → Set
module _ (P : CarrierProp) where
record PropCarrier (pk : PK) (sig : Signature) {e} (st : SystemState e) : Set (ℓ-EC ℓ⊔ (ℓ+1 0ℓ)) where
constructor mkCarrier
field
carrStReach : ReachableSystemState st -- Enables use of invariants when proving that steps preserve carrProp
carrSent : MsgWithSig∈ pk sig (msgPool st)
carrValid : ValidSenderForPK (availEpochs st) (msgPart carrSent) (msgSender carrSent) pk
carrProp : P (msgPart carrSent) (peerStates st (msgSender carrSent))
open PropCarrier public
PeerStepPreserves : Set (ℓ+1 ℓ0 ℓ⊔ ℓ-EC)
PeerStepPreserves = ∀ {e initd' ps' outs pk sig}{pre : SystemState e}
→ (r : ReachableSystemState pre)
→ (pc : PropCarrier pk sig {e} pre)
→ (sps : StepPeerState {e} (msgSender (carrSent pc))
(availEpochs pre)
(msgPool pre)
(initialised pre)
(peerStates pre (msgSender (carrSent pc)))
initd'
(ps' , outs))
→ P (msgPart (carrSent pc)) ps'
module _ (PSP : PeerStepPreserves) where
Carrier-transp : ∀ {e' e'' pk sig} {pre : SystemState e'}{post : SystemState e''}
→ (theStep : Step pre post)
→ PropCarrier pk sig pre
→ PropCarrier pk sig post
Carrier-transp {pre = pre} {post} (step-epoch ec) (mkCarrier r mws vpk lvr) =
mkCarrier (step-s r (step-epoch ec)) mws (ValidSenderForPK-stable-epoch ec vpk) lvr
Carrier-transp {e' = e'} {pre = pre} {post} theStep@(step-peer {pid = pid} {st'} {pre = .pre} sps) pc@(mkCarrier r mws vpk prop)
with step-s r theStep
...| postReach
with sps
...| step-cheat fm isch = mkCarrier postReach (MsgWithSig∈-++ʳ mws) vpk
(subst (λ ps → P (msgPart mws) (ps (msgSender mws))) (sym (cheatStepDNMPeerStates {pre = pre} (step-cheat fm isch) unit)) prop)
-- PeerStates not changed by cheat steps
...| step-honest {st = st} sps'
with msgSender mws ≟PeerId pid
...| no neq = mkCarrier postReach (MsgWithSig∈-++ʳ mws) vpk
(subst (λ ps → P (msgPart mws) ps) (override-target-≢ {f = peerStates pre} neq) prop)
...| yes refl = mkCarrier postReach (MsgWithSig∈-++ʳ mws) vpk
(subst (λ ps → P (msgPart mws) ps) (sym override-target-≡) (PSP r pc sps'))
| {
"alphanum_fraction": 0.5915745291,
"avg_line_length": 53.8181818182,
"ext": "agda",
"hexsha": "93d40e429814bbb99b0a6c651c1efed0d6fdb12e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "34e4627855fb198665d0c98f377403a906ba75d7",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "haroldcarr/bft-consensus-agda",
"max_forks_repo_path": "LibraBFT/Yasm/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "34e4627855fb198665d0c98f377403a906ba75d7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "haroldcarr/bft-consensus-agda",
"max_issues_repo_path": "LibraBFT/Yasm/Properties.agda",
"max_line_length": 138,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "34e4627855fb198665d0c98f377403a906ba75d7",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "haroldcarr/bft-consensus-agda",
"max_stars_repo_path": "LibraBFT/Yasm/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 6122,
"size": 19536
} |
module Issue252 where
data I : Set where
zero : I
data D : I → Set where
c : ∀ i → D i → D i
id : I → I
id i = i
index : ∀ i → D i → I
index i _ = i
foo : ∀ i → D i → D zero
foo .i (c i d) with id i
foo ._ (c i d) | zero = d
bar : ∀ i → D i → D zero
bar .i (c i d) with index i d
bar ._ (c i d) | zero = d
-- In the context of the first goal d has type D i′, in the second it
-- has type D i. Well, not any more.
| {
"alphanum_fraction": 0.5471698113,
"avg_line_length": 16.96,
"ext": "agda",
"hexsha": "23f0bf5417b640cc0809fe15968f0279e8acb970",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/succeed/Issue252.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/succeed/Issue252.agda",
"max_line_length": 69,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/agda",
"max_stars_repo_path": "test/succeed/Issue252.agda",
"max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z",
"num_tokens": 166,
"size": 424
} |
module Thesis.SIRelBigStep.Normalization where
open import Thesis.SIRelBigStep.Lang
open import Data.Unit.Base hiding (_≤_)
open import Data.Product
open import Relation.Binary.PropositionalEquality
-- Define logical relation for normalization. Adapted from TAPL Ch. 12.
mutual
normT : ∀ {Γ} τ (t : Term Γ τ) (ρ : ⟦ Γ ⟧Context) → Set
normT τ t ρ = Σ[ v ∈ Val τ ] ρ ⊢ t ↓[ no ] v × normV τ v
normV : ∀ τ (v : Val τ) → Set
normV (σ ⇒ τ) (closure t ρ) = ∀ (v : Val σ) → (vv : normV _ v) → normT τ t (v • ρ)
normV (pair τ1 τ2) (pairV v1 v2) = normV _ v1 × normV _ v2
normV nat (natV n) = ⊤
normρ : ∀ Γ (ρ : ⟦ Γ ⟧Context) → Set
normρ ∅ ∅ = ⊤
normρ (τ • Γ) (v • ρ) = normV τ v × normρ Γ ρ
⟦_⟧VarNorm : ∀ {Γ τ} (x : Var Γ τ) {ρ} →
normρ Γ ρ →
normV τ (⟦ x ⟧Var ρ)
⟦ this ⟧VarNorm {v • ρ} (vv , ρρ) = vv
⟦ that x ⟧VarNorm {v • ρ} (vv , ρρ) = ⟦ x ⟧VarNorm ρρ
-- Prove fundamental property.
normT-fund : ∀ {τ Γ} (t : Term Γ τ) ρ (ρρ : normρ Γ ρ) →
normT τ t ρ
normV-fund-const : ∀ {τ} (c : Const τ) → normV τ (eval-const c)
normV-fund-const (lit n) = tt
normV-fund-sval : ∀ {τ Γ} (sv : SVal Γ τ) ρ (ρρ : normρ Γ ρ) → normV τ (eval sv ρ)
normV-fund-sval (var x) ρ ρρ = ⟦ x ⟧VarNorm ρρ
normV-fund-sval (abs t) ρ ρρ v vv = normT-fund t (v • ρ) (vv , ρρ)
normV-fund-sval (cons sv1 sv2) ρ ρρ = normV-fund-sval sv1 ρ ρρ , normV-fund-sval sv2 ρ ρρ
normV-fund-sval (const c) ρ ρρ = normV-fund-const c
-- Not inlined because it gives the right type ascription to the derivation `val sv`.
normT-fund-sval : ∀ {τ Γ} (sv : SVal Γ τ) ρ (ρρ : normρ Γ ρ) → normT τ (val sv) ρ
normT-fund-sval sv ρ ρρ = eval sv ρ , val sv , normV-fund-sval sv ρ ρρ
normV-fund-primitive : ∀ {σ τ} p →
∀ v → (vv : normV σ v) →
normV τ (eval-primitive p v)
normV-fund-primitive succ (natV n) vv = tt
normV-fund-primitive add (pairV (natV m) (natV n)) vv = tt
open import Data.Nat
normT-fund (val sv) ρ ρρ = normT-fund-sval sv ρ ρρ
normT-fund (primapp p sv) ρ ρρ = eval-primitive p (eval sv ρ) , primapp p sv , normV-fund-primitive p (eval sv ρ) (normV-fund-sval sv ρ ρρ)
normT-fund (app vs vt) ρ ρρ with normT-fund-sval vs ρ ρρ | normT-fund-sval vt ρ ρρ
... | closure t ρ₁ , ↓fv , fvv | av , ↓av , avv with fvv av avv
... | v , ↓v , vv = v , app zero _ ↓fv ↓av ↓v , vv
normT-fund (lett s t) ρ ρρ with normT-fund s ρ ρρ
... | sv , ↓s , svv with normT-fund t (sv • ρ) (svv , ρρ)
... | tv , ↓t , tvv = tv , lett zero zero sv s t ↓s ↓t , tvv
-- Deduce from fundamental property that all terms indeed normalize.
normalize : ∀ {τ} (t : Term ∅ τ) → Σ[ v ∈ Val τ ] ∅ ⊢ t ↓[ no ] v
normalize t with normT-fund t ∅ tt
... | v , ↓ , _ = v , ↓
| {
"alphanum_fraction": 0.6088448342,
"avg_line_length": 39.7424242424,
"ext": "agda",
"hexsha": "9f8b45536987a7c0eea2b651aff75ba7f2f00d14",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "inc-lc/ilc-agda",
"max_forks_repo_path": "Thesis/SIRelBigStep/Normalization.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "inc-lc/ilc-agda",
"max_issues_repo_path": "Thesis/SIRelBigStep/Normalization.agda",
"max_line_length": 139,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "inc-lc/ilc-agda",
"max_stars_repo_path": "Thesis/SIRelBigStep/Normalization.agda",
"max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z",
"num_tokens": 1159,
"size": 2623
} |
module Esterel.Environment where
open import utility
open import Data.Empty
open import Esterel.Variable.Signal as Signal
using (Signal ; _ₛ)
open import Esterel.Variable.Shared as SharedVar
using (SharedVar ; _ₛₕ)
open import Esterel.Variable.Sequential as SeqVar
using (SeqVar ; _ᵥ)
open import Data.Product
import Data.FiniteMap
open import Data.Nat as Nat
using (ℕ)
open import Data.List as List
using (List ; [] ; _∷_)
open import Data.Sum
using (_⊎_ ; inj₁ ; inj₂ ; [_,_])
open import Function
using (_∘_)
open import Relation.Nullary
using (Dec ; yes ; no ; ¬_)
open import Relation.Binary
using (Decidable)
open import Relation.Binary.PropositionalEquality
using (_≡_ ; refl ; cong ; sym ; module ≡-Reasoning ; trans ; subst ; inspect)
open import Data.List.Any
using (Any)
open ≡-Reasoning using (_≡⟨_⟩_ ; _≡⟨⟩_ ; _∎ ; begin_)
module SigMap = Data.FiniteMap Signal.unwrap Signal.wrap Signal.unwrap-injective Signal.bijective
module ShrMap = Data.FiniteMap SharedVar.unwrap SharedVar.wrap SharedVar.unwrap-injective SharedVar.bijective
module VarMap = Data.FiniteMap SeqVar.unwrap SeqVar.wrap SeqVar.unwrap-injective SeqVar.bijective
record Env : Set where
constructor Θ
field
sig : SigMap.Map Signal.Status
shr : ShrMap.Map (SharedVar.Status × ℕ)
var : VarMap.Map ℕ
open Env public
-- A VarList is a three-tuple of lists of unwrapped signals,
-- shared variables and sequential variables.
VarList : Set
VarList = List ℕ × List ℕ × List ℕ
Dom : Env -> VarList
Dom (Θ sig shr var) = (SigMap.keys sig) , (ShrMap.keys shr) , (VarMap.keys var)
[]env = Θ [] [] []
Sig∈ : (S : Signal) →
(e : Env) →
Relation.Nullary.Dec
(Any (SigMap.inj= S)
(SigMap.keys (sig e)))
Sig∈ s e = SigMap.∈Check s (sig e)
Shr∈ : (s : SharedVar) → (e : Env) →
Relation.Nullary.Dec
(Any (ShrMap.inj= s)
(ShrMap.keys (shr e)))
Shr∈ s e = ShrMap.∈Check s (shr e)
Var∈ : (x : SeqVar) → (e : Env) →
Relation.Nullary.Dec
(Any (VarMap.inj= x)
(VarMap.keys (var e)))
Var∈ x e = VarMap.∈Check x (var e)
isSig∈ : (S : Signal) → (e : Env) → Set
isSig∈ S e = (SigMap.∈Dom S (sig e))
isShr∈ : SharedVar → Env → Set
isShr∈ s e = ShrMap.∈Dom s (shr e)
isVar∈ : SeqVar → Env → Set
isVar∈ x e = VarMap.∈Dom x (var e)
SigDomMap : ∀{a}{L : Set a} → (θ : Env) → (f : (S : Signal) → isSig∈ S θ → L) → List L
SigDomMap = SigMap.key-map ∘ sig
ShrDomMap : ∀{a}{L : Set a} → (θ : Env) → (f : (S : SharedVar) → isShr∈ S θ → L) → List L
ShrDomMap = ShrMap.key-map ∘ shr
SigDom : Env → List ℕ
SigDom (Θ sig shr var) = (SigMap.keys sig)
ShrDom : Env → List ℕ
ShrDom (Θ sig shr var) = (ShrMap.keys shr)
VarDom : Env → List ℕ
VarDom (Θ sig shr var) = (VarMap.keys var)
sig-stats : ∀{S} → (θ : Env) → (SigMap.∈Dom S (sig θ)) → Signal.Status
sig-stats{S} θ S∈ = SigMap.lookup{k = S} (sig θ) S∈
shr-stats : ∀{s} → (θ : Env) → (ShrMap.∈Dom s (shr θ)) → SharedVar.Status
shr-stats{s} θ s∈ = proj₁ (ShrMap.lookup{k = s} (shr θ) s∈)
shr-vals : ∀{s} → (θ : Env) → (ShrMap.∈Dom s (shr θ)) → ℕ
shr-vals{s} θ s∈ = proj₂ (ShrMap.lookup{k = s} (shr θ) s∈)
var-vals : ∀{x} → (θ : Env) → (VarMap.∈Dom x (var θ)) → ℕ
var-vals{x} θ x∈ = VarMap.lookup{k = x} (var θ) x∈
set-sig : ∀{S} → (θ : Env) → (SigMap.∈Dom S (sig θ)) → Signal.Status → Env
set-sig{S} (Θ sig shr var) S∈ status =
Θ (SigMap.update sig S status) shr var
set-shr : ∀{s} → (θ : Env) → (ShrMap.∈Dom s (shr θ)) → SharedVar.Status → ℕ → Env
set-shr{s} (Θ sig shr var) s∈ status n =
Θ sig (ShrMap.update shr s (status , n)) var
set-var : ∀{x} → (θ : Env) → (VarMap.∈Dom x (var θ)) → ℕ → Env
set-var{x} (Θ sig shr var) x∈ n =
Θ sig shr (VarMap.update var x n)
_←_ : Env → Env → Env
Θ sig₁ shr₁ seq₁ ← Θ sig₂ shr₂ seq₂ =
Θ (SigMap.union sig₁ sig₂)
(ShrMap.union shr₁ shr₂)
(VarMap.union seq₁ seq₂)
data EnvVar : Set where
vsig : Signal → EnvVar
vshr : SharedVar → EnvVar
vvar : SeqVar → EnvVar
data ∈map : EnvVar → Env → Set where
∈sig : ∀{S θ} → (isSig∈ S θ) → ∈map (vsig S) θ
∈shr : ∀{s θ} → (isShr∈ s θ) → ∈map (vshr s) θ
∈var : ∀{x θ} → (isVar∈ x θ) → ∈map (vvar x) θ
-- thrms
sig-set-mono' : ∀{S S' θ stat} → ∀{S'∈ : (isSig∈ S' θ)} → (isSig∈ S θ) → (isSig∈ S (set-sig{S'} θ S'∈ stat))
sig-set-mono'{S}{S'}{θ}{stat}{S'∈} i = SigMap.insert-mono{_}{k = S}{m = sig θ}{S'}{stat} i
shr-set-mono' : ∀{s s' θ stat n} → ∀{s'∈ : (isShr∈ s' θ)} → (isShr∈ s θ) → (isShr∈ s (set-shr{s'} θ s'∈ stat n))
shr-set-mono'{s}{s'}{θ}{stat}{n}{s'∈} i = ShrMap.insert-mono{_}{k = s}{m = shr θ}{s'}{stat ,′ n} i
seq-set-mono' : ∀{x x' θ n} → ∀{x'∈ : (isVar∈ x' θ)} → (isVar∈ x θ) → (isVar∈ x (set-var{x'} θ x'∈ n))
seq-set-mono'{x}{x'}{θ}{n}{x'∈} i = VarMap.insert-mono{_}{k = x}{m = var θ}{x'}{n} i
sig-set-mono : ∀{V S' θ stat} → ∀{S'∈ : (isSig∈ S' θ)} → ∈map V θ → (∈map V (set-sig{S'} θ S'∈ stat))
sig-set-mono{S' = S'}{θ}{S'∈ = S'∈} (∈sig{S} x) = ∈sig{S} (sig-set-mono'{S = S}{S' = S'}{θ = θ}{S'∈ = S'∈} x)
sig-set-mono (∈shr x) = ∈shr x
sig-set-mono (∈var x₁) = ∈var x₁
shr-set-mono : ∀{V s' θ stat n} → ∀{s'∈ : (isShr∈ s' θ)} → (∈map V θ) → (∈map V (set-shr{s'} θ s'∈ stat n))
shr-set-mono (∈sig x) = ∈sig x
shr-set-mono{s' = s'}{θ}{stat}{n}{s'∈}(∈shr{s} x) = ∈shr{s} (shr-set-mono'{s}{s'}{θ}{stat}{n}{s'∈} x)
shr-set-mono (∈var x₁) = ∈var x₁
seq-set-mono : ∀{V x' θ n} → ∀{x'∈ : (isVar∈ x' θ)} → (∈map V θ) → (∈map V (set-var{x'} θ x'∈ n))
seq-set-mono (∈sig x) = ∈sig x
seq-set-mono (∈shr x) = ∈shr x
seq-set-mono{x' = x'}{θ}{n}{x'∈} (∈var{x} x₁) = ∈var {x} (seq-set-mono'{x}{x'}{θ}{n}{x'∈} x₁)
←-mono : ∀{θ θ' V} → ∈map V θ → ∈map V (θ ← θ')
←-mono{θ}{θ'}{vsig S} (∈sig x) = ∈sig{S}{(θ ← θ')} (SigMap.U-mono{_}{sig θ}{sig θ'}{S} x)
←-mono{θ}{θ'}{vshr s} (∈shr x) = ∈shr{s}{(θ ← θ')} (ShrMap.U-mono{_}{shr θ}{shr θ'}{s} x)
←-mono{θ}{θ'}{vvar x} (∈var x₁) = ∈var{x}{(θ ← θ')} (VarMap.U-mono{_}{var θ}{var θ'}{x} x₁)
←-comm : ∀ θ θ' → distinct (Dom θ) (Dom θ') → (θ ← θ') ≡ (θ' ← θ)
←-comm (Θ Ss ss xs) (Θ Ss' ss' xs') (Ss≠Ss' , ss≠ss' , xs≠xs')
rewrite SigMap.union-comm Ss Ss' Ss≠Ss'
| ShrMap.union-comm ss ss' ss≠ss'
| VarMap.union-comm xs xs' xs≠xs' = refl
←-assoc : ∀ θ θ' θ'' → (θ ← (θ' ← θ'')) ≡ ((θ ← θ') ← θ'')
←-assoc (Θ Ss ss xs) (Θ Ss' ss' xs') (Θ Ss'' ss'' xs'')
rewrite SigMap.union-assoc Ss Ss' Ss''
| ShrMap.union-assoc ss ss' ss''
| VarMap.union-assoc xs xs' xs'' = refl
←-assoc-comm : ∀ θ θ' θ'' → distinct (Dom θ') (Dom θ'') → ((θ ← θ') ← θ'') ≡ ((θ ← θ'') ← θ')
←-assoc-comm θ θ' θ'' Domθ'≠Domθ'' =
(θ ← θ') ← θ''
≡⟨ sym (←-assoc θ θ' θ'') ⟩
θ ← (θ' ← θ'')
≡⟨ cong (θ ←_) (←-comm θ' θ'' Domθ'≠Domθ'') ⟩
θ ← (θ'' ← θ')
≡⟨ ←-assoc θ θ'' θ' ⟩
(θ ← θ'') ← θ' ∎
Dom-←-assoc-comm : ∀ θ θ' θ'' → Dom ((θ ← θ') ← θ'') ≡ Dom ((θ ← θ'') ← θ')
Dom-←-assoc-comm (Θ Ss ss xs) (Θ Ss' ss' xs') (Θ Ss'' ss'' xs'')
rewrite SigMap.keys-assoc-comm Ss Ss' Ss''
| ShrMap.keys-assoc-comm ss ss' ss''
| VarMap.keys-assoc-comm xs xs' xs'' = refl
Dom-←-comm : ∀ θ θ' → Dom (θ ← θ') ≡ Dom (θ' ← θ)
Dom-←-comm θ θ' = Dom-←-assoc-comm []env θ θ'
sig-←-monoʳ : ∀ S θ θ' → isSig∈ S θ → isSig∈ S (θ' ← θ)
sig-←-monoʳ S θ θ' S∈Domθ
rewrite cong proj₁ (Dom-←-comm θ' θ)
= SigMap.U-mono {_} {Env.sig θ} {Env.sig θ'} {S} S∈Domθ
shr-←-monoʳ : ∀ s θ θ' → isShr∈ s θ → isShr∈ s (θ' ← θ)
shr-←-monoʳ s θ θ' s∈Domθ
rewrite cong (proj₁ ∘ proj₂) (Dom-←-comm θ' θ)
= ShrMap.U-mono {_} {Env.shr θ} {Env.shr θ'} {s} s∈Domθ
seq-←-monoʳ : ∀ x θ θ' → isVar∈ x θ → isVar∈ x (θ' ← θ)
seq-←-monoʳ x θ θ' x∈Domθ
rewrite cong (proj₂ ∘ proj₂) (Dom-←-comm θ' θ)
= VarMap.U-mono {_} {var θ} {var θ'} {x} x∈Domθ
sig-←-monoˡ : ∀ S θ θ' → isSig∈ S θ → isSig∈ S (θ ← θ')
sig-←-monoˡ S θ θ' S∈Domθ
= SigMap.U-mono {_} {Env.sig θ} {Env.sig θ'} {S} S∈Domθ
shr-←-monoˡ : ∀ s θ θ' → isShr∈ s θ → isShr∈ s (θ ← θ')
shr-←-monoˡ s θ θ' s∈Domθ
= ShrMap.U-mono {_} {Env.shr θ} {Env.shr θ'} {s} s∈Domθ
seq-←-monoˡ : ∀ x θ θ' → isVar∈ x θ → isVar∈ x (θ ← θ')
seq-←-monoˡ x θ θ' x∈Domθ
= VarMap.U-mono {_} {var θ} {var θ'} {x} x∈Domθ
sig-←⁻ : ∀ {θ₁ θ₂} S → isSig∈ S (θ₁ ← θ₂) → isSig∈ S θ₁ ⊎ isSig∈ S θ₂
sig-←⁻ {θ₁} {θ₂} S = SigMap.U⁻-m {Signal.Status} {sig θ₁} {sig θ₂} {S}
shr-←⁻ : ∀ {θ₁ θ₂} s → isShr∈ s (θ₁ ← θ₂) → isShr∈ s θ₁ ⊎ isShr∈ s θ₂
shr-←⁻ {θ₁} {θ₂} s = ShrMap.U⁻-m {_} {shr θ₁} {shr θ₂} {s}
seq-←⁻ : ∀ {θ₁ θ₂} x → isVar∈ x (θ₁ ← θ₂) → isVar∈ x θ₁ ⊎ isVar∈ x θ₂
seq-←⁻ {θ₁} {θ₂} x = VarMap.U⁻-m {_} {var θ₁} {var θ₂} {x}
sig-↚⁻ : ∀ {θ₁ θ₂} S → ¬ isSig∈ S θ₁ → ¬ isSig∈ S θ₂ → ¬ isSig∈ S (θ₁ ← θ₂)
sig-↚⁻ {θ₁} {θ₂} S S∉Domθ₁ S∉Domθ₂ = [ S∉Domθ₁ , S∉Domθ₂ ] ∘ sig-←⁻ {θ₁} {θ₂} S
sig-stats-∈-irr : ∀{S θ} → (∈1 : (SigMap.∈Dom S (sig θ))) → (∈2 : (SigMap.∈Dom S (sig θ))) → sig-stats{S} θ ∈1 ≡ sig-stats{S} θ ∈2
sig-stats-∈-irr{S} {θ} ∈1 ∈2 = SigMap.lookup-∈-irr{k = S}{m = (sig θ)} ∈1 ∈2
shr-stats-∈-irr : ∀{s θ} → (∈1 : ShrMap.∈Dom s (shr θ)) → (∈2 : ShrMap.∈Dom s (shr θ)) → shr-stats{s} θ ∈1 ≡ shr-stats{s} θ ∈2
shr-stats-∈-irr{s}{θ} ∈1 ∈2 = cong proj₁ (ShrMap.lookup-∈-irr{k = s}{m = (shr θ)} ∈1 ∈2)
shr-vals-∈-irr : ∀{s θ} → (∈1 : ShrMap.∈Dom s (shr θ)) → (∈2 : ShrMap.∈Dom s (shr θ)) → shr-vals{s} θ ∈1 ≡ shr-vals{s} θ ∈2
shr-vals-∈-irr{s}{θ} ∈1 ∈2 = cong proj₂ (ShrMap.lookup-∈-irr{k = s}{m = (shr θ)} ∈1 ∈2)
var-vals-∈-irr : ∀{x θ} → (∈1 : VarMap.∈Dom x (var θ)) → (∈2 : VarMap.∈Dom x (var θ)) → var-vals{x} θ ∈1 ≡ var-vals{x} θ ∈2
var-vals-∈-irr{x} {θ} ∈1 ∈2 = VarMap.lookup-∈-irr{_}{x}{var θ} ∈1 ∈2
sig-←-∉-irr-stats' : ∀ S θ θ' →
(S∈ : isSig∈ S θ) →
(S∉ : ¬ isSig∈ S θ') →
(S∈Dom⟨θ←θ'⟩ : isSig∈ S (θ ← θ')) →
sig-stats {S} θ S∈ ≡ sig-stats {S} (θ ← θ') S∈Dom⟨θ←θ'⟩
sig-←-∉-irr-stats' S θ θ' S∈ S∉ S∈' =
SigMap.U-∉-irr-get-help-m {_} {Env.sig θ} {Env.sig θ'} {S} S∈ S∉ S∈'
sig-←-∉-irr-stats : ∀ S θ θ' →
(S∈ : isSig∈ S θ) →
(S∉ : ¬ isSig∈ S θ') →
∃ λ S∈Dom⟨θ←θ'⟩ →
sig-stats {S} θ S∈ ≡ sig-stats {S} (θ ← θ') S∈Dom⟨θ←θ'⟩
sig-←-∉-irr-stats S θ θ' S∈ S∉ =
SigMap.U-∉-irr-get-m {_} {Env.sig θ} {Env.sig θ'} {S} S∈ S∉
shr-←-∉-irr-stats' : ∀ s θ θ' →
(s∈ : isShr∈ s θ) →
(s∉ : ¬ isShr∈ s θ') →
(s∈Dom⟨θ←θ'⟩ : isShr∈ s (θ ← θ')) →
shr-stats {s} θ s∈ ≡ shr-stats {s} (θ ← θ') s∈Dom⟨θ←θ'⟩
shr-←-∉-irr-stats' s θ θ' s∈ s∉ s∈'
rewrite ShrMap.U-∉-irr-get-help-m {_} {Env.shr θ} {Env.shr θ'} {s} s∈ s∉ s∈'
= refl
shr-←-∉-irr-stats : ∀ s θ θ' →
(s∈ : isShr∈ s θ) →
(s∉ : ¬ isShr∈ s θ') →
∃ λ s∈Dom⟨θ←θ'⟩ →
shr-stats {s} θ s∈ ≡ shr-stats {s} (θ ← θ') s∈Dom⟨θ←θ'⟩
shr-←-∉-irr-stats s θ θ' s∈ s∉
rewrite proj₂ (ShrMap.U-∉-irr-get-m {_} {Env.shr θ} {Env.shr θ'} {s} s∈ s∉)
= (_ , refl)
shr-←-∉-irr-vals' : ∀ s θ θ' →
(s∈ : isShr∈ s θ) →
(s∉ : ¬ isShr∈ s θ') →
(s∈Dom⟨θ←θ'⟩ : isShr∈ s (θ ← θ')) →
shr-vals {s} θ s∈ ≡ shr-vals {s} (θ ← θ') s∈Dom⟨θ←θ'⟩
shr-←-∉-irr-vals' s θ θ' s∈ s∉ s∈'
rewrite ShrMap.U-∉-irr-get-help-m {_} {Env.shr θ} {Env.shr θ'} {s} s∈ s∉ s∈'
= refl
shr-←-∉-irr-vals : ∀ s θ θ' →
(s∈ : isShr∈ s θ) →
(s∉ : ¬ isShr∈ s θ') →
∃ λ s∈Dom⟨θ←θ'⟩ →
shr-vals {s} θ s∈ ≡ shr-vals {s} (θ ← θ') s∈Dom⟨θ←θ'⟩
shr-←-∉-irr-vals s θ θ' s∈ s∉
rewrite proj₂ (ShrMap.U-∉-irr-get-m {_} {Env.shr θ} {Env.shr θ'} {s} s∈ s∉)
= (_ , refl)
var-←-∉-irr-vals' : ∀ x θ θ' →
(x∈ : isVar∈ x θ) →
(x∉ : ¬ isVar∈ x θ') →
(x∈Dom⟨θ←θ'⟩ : isVar∈ x (θ ← θ')) →
var-vals {x} θ x∈ ≡ var-vals {x} (θ ← θ') x∈Dom⟨θ←θ'⟩
var-←-∉-irr-vals' x θ θ' x∈ x∉ x∈' =
VarMap.U-∉-irr-get-help-m {_} {Env.var θ} {Env.var θ'} {x} x∈ x∉ x∈'
var-←-∉-irr-vals : ∀ x θ θ' →
(x∈ : isVar∈ x θ) →
(x∉ : ¬ isVar∈ x θ') →
∃ λ x∈Dom⟨θ←θ'⟩ →
var-vals {x} θ x∈ ≡ var-vals {x} (θ ← θ') x∈Dom⟨θ←θ'⟩
var-←-∉-irr-vals x θ θ' x∈ x∉ =
VarMap.U-∉-irr-get-m {_} {Env.var θ} {Env.var θ'} {x} x∈ x∉
sig-stats-←-right-irr' : ∀ S θ θ' →
(S∈ : isSig∈ S θ') →
(S∈' : isSig∈ S (θ ← θ')) →
sig-stats {S} (θ ← θ') S∈' ≡ sig-stats {S} θ' S∈
sig-stats-←-right-irr' S θ θ' S∈ S∈' =
SigMap.get-U-right-irr-m S (Env.sig θ) (Env.sig θ') S∈' S∈
sig-stats-←-right-irr : ∀ S θ θ' →
(S∈ : isSig∈ S θ') →
∃ λ S∈' →
sig-stats {S} (θ ← θ') S∈' ≡ sig-stats {S} θ' S∈
sig-stats-←-right-irr S θ θ' S∈ =
sig-←-monoʳ S θ' θ S∈ ,
SigMap.get-U-right-irr-m S (Env.sig θ) (Env.sig θ') (sig-←-monoʳ S θ' θ S∈) S∈
shr-stats-←-right-irr' : ∀ s θ θ' →
(s∈ : isShr∈ s θ') →
(s∈' : isShr∈ s (θ ← θ')) →
shr-stats {s} (θ ← θ') s∈' ≡ shr-stats {s} θ' s∈
shr-stats-←-right-irr' s θ θ' s∈ s∈'
rewrite ShrMap.get-U-right-irr-m s (Env.shr θ) (Env.shr θ') s∈' s∈
= refl
shr-stats-←-right-irr : ∀ s θ θ' →
(s∈ : isShr∈ s θ') →
∃ λ s∈' →
shr-stats {s} (θ ← θ') s∈' ≡ shr-stats {s} θ' s∈
shr-stats-←-right-irr s θ θ' s∈ =
shr-←-monoʳ s θ' θ s∈ ,
cong proj₁
(ShrMap.get-U-right-irr-m s (Env.shr θ) (Env.shr θ')
(shr-←-monoʳ s θ' θ s∈) s∈)
shr-vals-←-right-irr' : ∀ s θ θ' →
(s∈ : isShr∈ s θ') →
(s∈' : isShr∈ s (θ ← θ')) →
shr-vals {s} (θ ← θ') s∈' ≡ shr-vals {s} θ' s∈
shr-vals-←-right-irr' s θ θ' s∈ s∈'
rewrite ShrMap.get-U-right-irr-m s (Env.shr θ) (Env.shr θ') s∈' s∈
= refl
shr-vals-←-right-irr : ∀ s θ θ' →
(s∈ : isShr∈ s θ') →
∃ λ s∈' →
shr-vals {s} (θ ← θ') s∈' ≡ shr-vals {s} θ' s∈
shr-vals-←-right-irr s θ θ' s∈ =
shr-←-monoʳ s θ' θ s∈ ,
cong proj₂
(ShrMap.get-U-right-irr-m s (Env.shr θ) (Env.shr θ')
(shr-←-monoʳ s θ' θ s∈) s∈)
var-vals-←-right-irr' : ∀ x θ θ' →
(x∈ : isVar∈ x θ') →
(x∈' : isVar∈ x (θ ← θ')) →
var-vals {x} (θ ← θ') x∈' ≡ var-vals {x} θ' x∈
var-vals-←-right-irr' x θ θ' x∈ x∈' =
VarMap.get-U-right-irr-m x (Env.var θ) (Env.var θ') x∈' x∈
var-vals-←-right-irr : ∀ x θ θ' →
(x∈ : isVar∈ x θ') →
∃ λ x∈' →
var-vals {x} (θ ← θ') x∈' ≡ var-vals {x} θ' x∈
var-vals-←-right-irr x θ θ' x∈ =
seq-←-monoʳ x θ' θ x∈ ,
VarMap.get-U-right-irr-m x (Env.var θ) (Env.var θ') (seq-←-monoʳ x θ' θ x∈) x∈
sig-stats-←-irr' : ∀ S θ θ' θ'' →
(S∈ : isSig∈ S θ'') →
(S∈' : isSig∈ S (θ ← θ'')) →
(S∈'' : isSig∈ S (θ' ← θ'')) →
sig-stats {S} (θ ← θ'') S∈' ≡ sig-stats {S} (θ' ← θ'') S∈''
sig-stats-←-irr' S θ θ' θ'' S∈ S∈' S∈'' =
SigMap.∈-get-U-irr-m S (sig θ) (sig θ') (sig θ'') S∈' S∈'' S∈
sig-stats-←-irr : ∀ S θ θ' θ'' →
(S∈ : isSig∈ S θ'') →
∃ λ S∈' →
∃ λ S∈'' →
sig-stats {S} (θ ← θ'') S∈' ≡ sig-stats {S} (θ' ← θ'') S∈''
sig-stats-←-irr S θ θ' θ'' S∈ =
sig-←-monoʳ S θ'' θ S∈ ,
sig-←-monoʳ S θ'' θ' S∈ ,
SigMap.∈-get-U-irr-m S (sig θ) (sig θ') (sig θ'')
(sig-←-monoʳ S θ'' θ S∈) (sig-←-monoʳ S θ'' θ' S∈) S∈
shr-stats-←-irr' : ∀ s θ θ' θ'' →
(s∈ : isShr∈ s θ'') →
(s∈' : isShr∈ s (θ ← θ'')) →
(s∈'' : isShr∈ s (θ' ← θ'')) →
shr-stats {s} (θ ← θ'') s∈' ≡ shr-stats {s} (θ' ← θ'') s∈''
shr-stats-←-irr' s θ θ' θ'' s∈ s∈' s∈''
rewrite ShrMap.∈-get-U-irr-m s (shr θ) (shr θ') (shr θ'') s∈' s∈'' s∈
= refl
shr-stats-←-irr : ∀ s θ θ' θ'' →
(s∈ : isShr∈ s θ'') →
∃ λ s∈' →
∃ λ s∈'' →
shr-stats {s} (θ ← θ'') s∈' ≡ shr-stats {s} (θ' ← θ'') s∈''
shr-stats-←-irr s θ θ' θ'' s∈ =
shr-←-monoʳ s θ'' θ s∈ ,
shr-←-monoʳ s θ'' θ' s∈ ,
cong proj₁
(ShrMap.∈-get-U-irr-m s (shr θ) (shr θ') (shr θ'')
(shr-←-monoʳ s θ'' θ s∈) (shr-←-monoʳ s θ'' θ' s∈) s∈)
shr-vals-←-irr' : ∀ s θ θ' θ'' →
(s∈ : isShr∈ s θ'') →
(s∈' : isShr∈ s (θ ← θ'')) →
(s∈'' : isShr∈ s (θ' ← θ'')) →
shr-vals {s} (θ ← θ'') s∈' ≡ shr-vals {s} (θ' ← θ'') s∈''
shr-vals-←-irr' s θ θ' θ'' s∈ s∈' s∈''
rewrite ShrMap.∈-get-U-irr-m s (shr θ) (shr θ') (shr θ'') s∈' s∈'' s∈
= refl
shr-vals-←-irr : ∀ s θ θ' θ'' →
(s∈ : isShr∈ s θ'') →
∃ λ s∈' →
∃ λ s∈'' →
shr-vals {s} (θ ← θ'') s∈' ≡ shr-vals {s} (θ' ← θ'') s∈''
shr-vals-←-irr s θ θ' θ'' s∈ =
shr-←-monoʳ s θ'' θ s∈ ,
shr-←-monoʳ s θ'' θ' s∈ ,
cong proj₂
(ShrMap.∈-get-U-irr-m s (shr θ) (shr θ') (shr θ'')
(shr-←-monoʳ s θ'' θ s∈) (shr-←-monoʳ s θ'' θ' s∈) s∈)
var-vals-←-irr' : ∀ x θ θ' θ'' →
(x∈ : isVar∈ x θ'') →
(x∈' : isVar∈ x (θ ← θ'')) →
(x∈'' : isVar∈ x (θ' ← θ'')) →
var-vals {x} (θ ← θ'') x∈' ≡ var-vals {x} (θ' ← θ'') x∈''
var-vals-←-irr' x θ θ' θ'' x∈ x∈' x∈'' =
VarMap.∈-get-U-irr-m x (var θ) (var θ') (var θ'') x∈' x∈'' x∈
var-vals-←-irr : ∀ x θ θ' θ'' →
(x∈ : isVar∈ x θ'') →
∃ λ x∈' →
∃ λ x∈'' →
var-vals {x} (θ ← θ'') x∈' ≡ var-vals {x} (θ' ← θ'') x∈''
var-vals-←-irr x θ θ' θ'' x∈ =
seq-←-monoʳ x θ'' θ x∈ ,
seq-←-monoʳ x θ'' θ' x∈ ,
VarMap.∈-get-U-irr-m x (var θ) (var θ') (var θ'')
(seq-←-monoʳ x θ'' θ x∈) (seq-←-monoʳ x θ'' θ' x∈) x∈
sig-stats-←-both-irr' : ∀ S θ θ' θ'' S∈ S∈' S∈Dom⟨θ←θ''⟩ S∈Dom⟨θ'←θ''⟩ →
sig-stats {S} θ S∈ ≡ sig-stats {S} θ' S∈' →
sig-stats {S} (θ ← θ'') S∈Dom⟨θ←θ''⟩ ≡ sig-stats {S} (θ' ← θ'') S∈Dom⟨θ'←θ''⟩
sig-stats-←-both-irr' S θ θ' θ'' S∈ S∈' S∈Dom⟨θ←θ''⟩ S∈Dom⟨θ'←θ''⟩ θS≡θ'S =
SigMap.get-U-both-irr-m S (Env.sig θ) (Env.sig θ') (Env.sig θ'')
S∈ S∈' S∈Dom⟨θ←θ''⟩ S∈Dom⟨θ'←θ''⟩ θS≡θ'S
sig-stats-←-both-irr : ∀ S θ θ' θ'' S∈ S∈' →
sig-stats {S} θ S∈ ≡ sig-stats {S} θ' S∈' →
∃ λ S∈Dom⟨θ←θ''⟩ → ∃ λ S∈Dom⟨θ'←θ''⟩ →
sig-stats {S} (θ ← θ'') S∈Dom⟨θ←θ''⟩ ≡ sig-stats {S} (θ' ← θ'') S∈Dom⟨θ'←θ''⟩
sig-stats-←-both-irr S θ θ' θ'' S∈ S∈' θS≡θ'S =
S∈Dom⟨θ←θ''⟩ ,
S∈Dom⟨θ'←θ''⟩ ,
SigMap.get-U-both-irr-m S (Env.sig θ) (Env.sig θ') (Env.sig θ'')
S∈ S∈' S∈Dom⟨θ←θ''⟩ S∈Dom⟨θ'←θ''⟩ θS≡θ'S
where S∈Dom⟨θ←θ''⟩ = sig-←-monoˡ S θ θ'' S∈
S∈Dom⟨θ'←θ''⟩ = sig-←-monoˡ S θ' θ'' S∈'
shr-stats-←-both-irr' : ∀ s θ θ' θ'' s∈ s∈' s∈Dom⟨θ←θ''⟩ s∈Dom⟨θ'←θ''⟩ →
shr-stats {s} θ s∈ ≡ shr-stats {s} θ' s∈' →
shr-vals {s} θ s∈ ≡ shr-vals {s} θ' s∈' →
shr-stats {s} (θ ← θ'') s∈Dom⟨θ←θ''⟩ ≡ shr-stats {s} (θ' ← θ'') s∈Dom⟨θ'←θ''⟩
shr-stats-←-both-irr' s θ θ' θ'' s∈ s∈' s∈Dom⟨θ←θ''⟩ s∈Dom⟨θ'←θ''⟩ proj₁θs≡proj₁θ's proj₂θs≡proj₂θ's =
cong proj₁
(ShrMap.get-U-both-irr-m s (Env.shr θ) (Env.shr θ') (Env.shr θ'')
s∈ s∈' s∈Dom⟨θ←θ''⟩ s∈Dom⟨θ'←θ''⟩ (prod-ind proj₁θs≡proj₁θ's proj₂θs≡proj₂θ's))
where prod-ind : {A B : Set} {x,y x',y' : A × B} →
proj₁ x,y ≡ proj₁ x',y' → proj₂ x,y ≡ proj₂ x',y' → x,y ≡ x',y'
prod-ind {_} {_} {x , y} {x' , y'} refl refl = refl
shr-stats-←-both-irr : ∀ s θ θ' θ'' s∈ s∈' →
shr-stats {s} θ s∈ ≡ shr-stats {s} θ' s∈' →
shr-vals {s} θ s∈ ≡ shr-vals {s} θ' s∈' →
∃ λ s∈Dom⟨θ←θ''⟩ → ∃ λ s∈Dom⟨θ'←θ''⟩ →
shr-stats {s} (θ ← θ'') s∈Dom⟨θ←θ''⟩ ≡ shr-stats {s} (θ' ← θ'') s∈Dom⟨θ'←θ''⟩
shr-stats-←-both-irr s θ θ' θ'' s∈ s∈' proj₁θs≡proj₁θ's proj₂θs≡proj₂θ's =
s∈Dom⟨θ←θ''⟩ ,
s∈Dom⟨θ'←θ''⟩ ,
cong proj₁
(ShrMap.get-U-both-irr-m s (Env.shr θ) (Env.shr θ') (Env.shr θ'')
s∈ s∈' s∈Dom⟨θ←θ''⟩ s∈Dom⟨θ'←θ''⟩ (prod-ind proj₁θs≡proj₁θ's proj₂θs≡proj₂θ's))
where s∈Dom⟨θ←θ''⟩ = shr-←-monoˡ s θ θ'' s∈
s∈Dom⟨θ'←θ''⟩ = shr-←-monoˡ s θ' θ'' s∈'
prod-ind : {A B : Set} {x,y x',y' : A × B} →
proj₁ x,y ≡ proj₁ x',y' → proj₂ x,y ≡ proj₂ x',y' → x,y ≡ x',y'
prod-ind {_} {_} {x , y} {x' , y'} refl refl = refl
shr-vals-←-both-irr' : ∀ s θ θ' θ'' s∈ s∈' s∈Dom⟨θ←θ''⟩ s∈Dom⟨θ'←θ''⟩ →
shr-stats {s} θ s∈ ≡ shr-stats {s} θ' s∈' →
shr-vals {s} θ s∈ ≡ shr-vals {s} θ' s∈' →
shr-vals {s} (θ ← θ'') s∈Dom⟨θ←θ''⟩ ≡ shr-vals {s} (θ' ← θ'') s∈Dom⟨θ'←θ''⟩
shr-vals-←-both-irr' s θ θ' θ'' s∈ s∈' s∈Dom⟨θ←θ''⟩ s∈Dom⟨θ'←θ''⟩ proj₁θs≡proj₁θ's proj₂θs≡proj₂θ's =
cong proj₂
(ShrMap.get-U-both-irr-m s (Env.shr θ) (Env.shr θ') (Env.shr θ'')
s∈ s∈' s∈Dom⟨θ←θ''⟩ s∈Dom⟨θ'←θ''⟩ (prod-ind proj₁θs≡proj₁θ's proj₂θs≡proj₂θ's))
where prod-ind : {A B : Set} {x,y x',y' : A × B} →
proj₁ x,y ≡ proj₁ x',y' → proj₂ x,y ≡ proj₂ x',y' → x,y ≡ x',y'
prod-ind {_} {_} {x , y} {x' , y'} refl refl = refl
shr-vals-←-both-irr : ∀ s θ θ' θ'' s∈ s∈' →
shr-stats {s} θ s∈ ≡ shr-stats {s} θ' s∈' →
shr-vals {s} θ s∈ ≡ shr-vals {s} θ' s∈' →
∃ λ s∈Dom⟨θ←θ''⟩ → ∃ λ s∈Dom⟨θ'←θ''⟩ →
shr-vals {s} (θ ← θ'') s∈Dom⟨θ←θ''⟩ ≡ shr-vals {s} (θ' ← θ'') s∈Dom⟨θ'←θ''⟩
shr-vals-←-both-irr s θ θ' θ'' s∈ s∈' proj₁θs≡proj₁θ's proj₂θs≡proj₂θ's =
s∈Dom⟨θ←θ''⟩ ,
s∈Dom⟨θ'←θ''⟩ ,
cong proj₂
(ShrMap.get-U-both-irr-m s (Env.shr θ) (Env.shr θ') (Env.shr θ'')
s∈ s∈' s∈Dom⟨θ←θ''⟩ s∈Dom⟨θ'←θ''⟩ (prod-ind proj₁θs≡proj₁θ's proj₂θs≡proj₂θ's))
where s∈Dom⟨θ←θ''⟩ = shr-←-monoˡ s θ θ'' s∈
s∈Dom⟨θ'←θ''⟩ = shr-←-monoˡ s θ' θ'' s∈'
prod-ind : {A B : Set} {x,y x',y' : A × B} →
proj₁ x,y ≡ proj₁ x',y' → proj₂ x,y ≡ proj₂ x',y' → x,y ≡ x',y'
prod-ind {_} {_} {x , y} {x' , y'} refl refl = refl
var-vals-←-both-irr' : ∀ x θ θ' θ'' x∈ x∈' x∈Dom⟨θ←θ''⟩ x∈Dom⟨θ'←θ''⟩ →
var-vals {x} θ x∈ ≡ var-vals {x} θ' x∈' →
var-vals {x} (θ ← θ'') x∈Dom⟨θ←θ''⟩ ≡ var-vals {x} (θ' ← θ'') x∈Dom⟨θ'←θ''⟩
var-vals-←-both-irr' x θ θ' θ'' x∈ x∈' x∈Dom⟨θ←θ''⟩ x∈Dom⟨θ'←θ''⟩ θx≡θ'x =
VarMap.get-U-both-irr-m x (Env.var θ) (Env.var θ') (Env.var θ'')
x∈ x∈' x∈Dom⟨θ←θ''⟩ x∈Dom⟨θ'←θ''⟩ θx≡θ'x
var-vals-←-both-irr : ∀ x θ θ' θ'' x∈ x∈' →
var-vals {x} θ x∈ ≡ var-vals {x} θ' x∈' →
∃ λ x∈Dom⟨θ←θ''⟩ → ∃ λ x∈Dom⟨θ'←θ''⟩ →
var-vals {x} (θ ← θ'') x∈Dom⟨θ←θ''⟩ ≡ var-vals {x} (θ' ← θ'') x∈Dom⟨θ'←θ''⟩
var-vals-←-both-irr x θ θ' θ'' x∈ x∈' θx≡θ'x =
S∈Dom⟨θ←θ''⟩ ,
S∈Dom⟨θ'←θ''⟩ ,
VarMap.get-U-both-irr-m x (Env.var θ) (Env.var θ') (Env.var θ'')
x∈ x∈' S∈Dom⟨θ←θ''⟩ S∈Dom⟨θ'←θ''⟩ θx≡θ'x
where S∈Dom⟨θ←θ''⟩ = seq-←-monoˡ x θ θ'' x∈
S∈Dom⟨θ'←θ''⟩ = seq-←-monoˡ x θ' θ'' x∈'
sig-putputget : ∀{S S' θ stat1 stat2}
→ ¬ S ≡ S'
→ (∈1 : SigMap.∈Dom S (sig θ))
→ (∈S' : SigMap.∈Dom S' (sig θ))
→ (∈2 : SigMap.∈Dom S (sig (set-sig{S'} θ ∈S' stat2)))
→ sig-stats{S} θ ∈1 ≡ stat1
→ sig-stats{S} (set-sig{S'} θ ∈S' stat2) ∈2 ≡ stat1
sig-putputget {θ = θ} neq ∈1 ∈S' ∈2 eq = SigMap.putputget {m = (sig θ)} neq ∈1 ∈2 eq
sig-putputget/m : ∀{S S' θ stat2}
→ ¬ S ≡ S'
→ (∈1 : SigMap.∈Dom S (sig θ))
→ (∈S' : SigMap.∈Dom S' (sig θ))
→ (∈2 : SigMap.∈Dom S (sig (set-sig{S'} θ ∈S' stat2)))
→ sig-stats{S} (set-sig{S'} θ ∈S' stat2) ∈2 ≡ sig-stats{S} θ ∈1
sig-putputget/m {S}{S'}{θ} neq ∈1 ∈S' ∈2 with sig-stats{S} θ ∈1 | inspect (sig-stats{S} θ) ∈1
sig-putputget/m {S} {S'} {θ} neq ∈1 ∈S' ∈2 | k | Relation.Binary.PropositionalEquality.[ eq ] = SigMap.putputget {m = (sig θ)} neq ∈1 ∈2 eq
shr-putputget : ∀{s s' θ v1l v1r v2l v2r}
→ ¬ s ≡ s'
→ (∈1 : ShrMap.∈Dom s (shr θ))
→ (∈s' : ShrMap.∈Dom s' (shr θ))
→ (∈2 : ShrMap.∈Dom s (shr (set-shr{s'} θ ∈s' v2l v2r)))
→ shr-stats{s} θ ∈1 ≡ v1l
→ shr-vals{s} θ ∈1 ≡ v1r
→ (shr-stats{s} (set-shr{s'} θ ∈s' v2l v2r) ∈2) ≡ v1l × (shr-vals{s} (set-shr{s'} θ ∈s' v2l v2r) ∈2) ≡ v1r
shr-putputget {θ = θ}{v1l}{v1r}{v2l}{v2r} neq ∈1 ∈S' ∈2 refl refl with ShrMap.putputget {m = (shr θ)}{v = (v1l ,′ v1r)}{(v2l ,′ v2r)} neq ∈1 ∈2 refl
... | res = (cong proj₁ res) ,′ (cong proj₂ res)
seq-putputget : ∀{x x' θ v1 v2}
→ ¬ x ≡ x'
→ (∈1 : VarMap.∈Dom x (var θ))
→ (∈x' : VarMap.∈Dom x' (var θ))
→ (∈2 : VarMap.∈Dom x (var (set-var{x'} θ ∈x' v2)))
→ var-vals{x} θ ∈1 ≡ v1
→ var-vals{x} (set-var{x'} θ ∈x' v2) ∈2 ≡ v1
seq-putputget {θ = θ} neq ∈1 ∈x' ∈2 eq = VarMap.putputget {m = (var θ)} neq ∈1 ∈2 eq
sig-getput : ∀ {θ} S →
(S∈ : isSig∈ S θ) →
θ ≡ set-sig {S} θ S∈ (sig-stats {S} θ S∈)
sig-getput {θ} S S∈
rewrite sym (SigMap.getput-m S (Env.sig θ) S∈)
= refl
shr-getput : ∀ {θ} s →
(s∈ : isShr∈ s θ) →
θ ≡
set-shr {s} θ s∈
(shr-stats {s} θ s∈)
(shr-vals {s} θ s∈)
shr-getput {θ} s s∈
rewrite sym (ShrMap.getput-m s (Env.shr θ) s∈)
= refl
var-getput : ∀ {θ} x →
(x∈ : isVar∈ x θ) →
θ ≡ set-var {x} θ x∈ (var-vals {x} θ x∈)
var-getput {θ} x x∈
rewrite sym (VarMap.getput-m x (Env.var θ) x∈)
= refl
sig-putget : ∀{S θ stat}
→ (∈1 : SigMap.∈Dom S (sig θ))
→ (∈2 : SigMap.∈Dom S (sig (set-sig{S} θ ∈1 stat)))
→ (sig-stats{S} (set-sig{S} θ ∈1 stat) ∈2) ≡ stat
sig-putget {S}{θ}{stat} ∈1 ∈2 = SigMap.putget-m{_}{(sig θ)}{S}{stat} ∈2
shr-putget : ∀{s θ stat n}
→ (∈1 : ShrMap.∈Dom s (shr θ))
→ (∈2 : ShrMap.∈Dom s (shr (set-shr{s} θ ∈1 stat n)))
→ (shr-stats{s} (set-shr{s} θ ∈1 stat n) ∈2) ≡ stat × (shr-vals{s} (set-shr{s} θ ∈1 stat n) ∈2) ≡ n
shr-putget {s}{θ}{stat}{n} ∈1 ∈2 with ShrMap.putget-m{_}{(shr θ)}{s}{stat ,′ n} ∈2
... | eq rewrite eq = refl , refl
shr-putput-overwrite : ∀ s θ stat1 n1 stat2 n2
→ (∈1 : (isShr∈ s θ))
→ (∈2 : isShr∈ s (set-shr{s} θ ∈1 stat1 n1))
→ (set-shr{s} (set-shr{s} θ ∈1 stat1 n1) ∈2 stat2 n2)
≡ (set-shr{s} θ ∈1 stat2 n2)
shr-putput-overwrite s θ stat1 n1 stat2 n2 _ _ rewrite
ShrMap.putput-overwrite (shr θ) s (stat1 ,′ n1) (stat2 ,′ n2) = refl
sig-set-←-← : ∀ S v θ θ' →
(S∈Domθ : isSig∈ S θ) →
(S∈Domθ' : isSig∈ S θ') →
θ ← θ' ≡
(set-sig {S} θ S∈Domθ v) ← θ'
sig-set-←-← S v θ θ' S∈Domθ S∈Domθ'
rewrite SigMap.update-union-union S v (Env.sig θ) (Env.sig θ') S∈Domθ S∈Domθ'
= refl
shr-set-←-← : ∀ s v n θ θ' →
(s∈Domθ : isShr∈ s θ) →
(s∈Domθ' : isShr∈ s θ') →
θ ← θ' ≡
(set-shr {s} θ s∈Domθ v n) ← θ'
shr-set-←-← s v n θ θ' s∈Domθ s∈Domθ'
rewrite ShrMap.update-union-union s (v , n) (Env.shr θ) (Env.shr θ') s∈Domθ s∈Domθ'
= refl
var-set-←-← : ∀ x v θ θ' →
(x∈Domθ : isVar∈ x θ) →
(x∈Domθ' : isVar∈ x θ') →
θ ← θ' ≡
(set-var {x} θ x∈Domθ v) ← θ'
var-set-←-← x v θ θ' x∈Domθ x∈Domθ'
rewrite VarMap.update-union-union x v (Env.var θ) (Env.var θ') x∈Domθ x∈Domθ'
= refl
sig∈-eq : ∀{S θ} → (∈1 : SigMap.∈Dom S (sig θ)) → (∈2 : SigMap.∈Dom S (sig θ)) → ∈1 ≡ ∈2
sig∈-eq {S}{θ} ∈1 ∈2 = SigMap.ineq-m{_}{S}{sig θ} ∈1 ∈2
shr∈-eq : ∀{s θ} → (∈1 : ShrMap.∈Dom s (shr θ)) → (∈2 : ShrMap.∈Dom s (shr θ)) → ∈1 ≡ ∈2
shr∈-eq {s}{θ} ∈1 ∈2 = ShrMap.ineq-m{_}{s}{shr θ} ∈1 ∈2
seq∈-eq : ∀{x θ} → (∈1 : VarMap.∈Dom x (var θ)) → (∈2 : VarMap.∈Dom x (var θ)) → ∈1 ≡ ∈2
seq∈-eq {x}{θ} ∈1 ∈2 = VarMap.ineq-m{_}{x}{var θ} ∈1 ∈2
sig∈-eq' : ∀{S θ} → (∈1 : SigMap.∈Dom{Signal.Status} S θ) → (∈2 : SigMap.∈Dom S θ) → ∈1 ≡ ∈2
sig∈-eq' {S}{θ} ∈1 ∈2 = SigMap.ineq-m{_}{S}{θ} ∈1 ∈2
shr∈-eq' : ∀{s θ} → (∈1 : ShrMap.∈Dom{(SharedVar.Status × ℕ)} s θ) → (∈2 : ShrMap.∈Dom s θ) → ∈1 ≡ ∈2
shr∈-eq' {s}{θ} ∈1 ∈2 = ShrMap.ineq-m{_}{s}{θ} ∈1 ∈2
seq∈-eq' : ∀{x : SeqVar} {θ : VarMap.Map ℕ} → (∈1 : VarMap.∈Dom{ℕ} x θ) → (∈2 : VarMap.∈Dom x θ) → ∈1 ≡ ∈2
seq∈-eq' {x}{θ} ∈1 ∈2 = VarMap.ineq-m{_}{x}{θ} ∈1 ∈2
sig-set-comm : ∀{θ S1 S2 stat1 stat2} → (S1∈ : isSig∈ S1 θ) → (S2∈ : isSig∈ S2 θ)
→ ¬ S1 ≡ S2 → ∃ λ S1∈' → ∃ λ S2∈'
→ (set-sig{S2} (set-sig{S1} θ S1∈ stat1) S2∈' stat2) ≡ (set-sig{S1} (set-sig{S2} θ S2∈ stat2) S1∈' stat1)
sig-set-comm{θ}{S1}{S2}{stat1}{stat2} S1∈ S2∈ ¬S1≡S2
rewrite SigMap.put-comm{_}{sig θ}{S1}{S2}{stat1}{stat2} ¬S1≡S2 = sig-set-mono'{S1}{S2}{θ}{stat2}{S2∈} S1∈ , sig-set-mono'{S2}{S1}{θ}{S'∈ = S1∈} S2∈ , refl
shr-set-comm : ∀ θ s1 s2 stat1 n1 stat2 n2 → (s1∈ : isShr∈ s1 θ) → (s2∈ : isShr∈ s2 θ)
→ ¬ s1 ≡ s2 → ∃ λ s1∈' → ∃ λ s2∈'
→ (set-shr{s2} (set-shr{s1} θ s1∈ stat1 n1) s2∈' stat2 n2) ≡ (set-shr{s1} (set-shr{s2} θ s2∈ stat2 n2) s1∈' stat1 n1)
shr-set-comm θ s1 s2 stat1 n1 stat2 n2 s1∈ s2∈ ¬s1≡s2
rewrite ShrMap.put-comm{_}{shr θ}{s1}{s2}{stat1 , n1}{stat2 , n2} ¬s1≡s2 = shr-set-mono'{s1}{s2}{θ}{_}{_}{s2∈} s1∈ , shr-set-mono'{s2}{s1}{θ}{s'∈ = s1∈} s2∈ , refl
seq-set-comm : ∀ θ x1 x2 n1 n2 → (x1∈ : isVar∈ x1 θ) → (x2∈ : isVar∈ x2 θ)
→ ¬ x1 ≡ x2 → ∃ λ x1∈' → ∃ λ x2∈'
→ (set-var{x2} (set-var{x1} θ x1∈ n1) x2∈' n2) ≡ (set-var{x1} (set-var{x2} θ x2∈ n2) x1∈' n1)
seq-set-comm θ x1 x2 n1 n2 x1∈ x2∈ ¬x1≡x2
rewrite VarMap.put-comm{_}{var θ}{x1}{x2}{n1}{n2} ¬x1≡x2 = seq-set-mono'{x1}{x2}{θ}{n2}{x2∈} x1∈ , seq-set-mono'{x2}{x1}{θ}{x'∈ = x1∈} x2∈ , refl
sig-←-irr-get : ∀ {θ₁ θ₂ S} → (S∈Domθ₁ : isSig∈ S θ₁) → ¬ (isSig∈ S θ₂) → ∃ λ S∈Dom⟨θ₁←θ₂⟩ → sig-stats {S} θ₁ S∈Domθ₁ ≡ sig-stats {S} (θ₁ ← θ₂) S∈Dom⟨θ₁←θ₂⟩
sig-←-irr-get {θ₁@(Θ Ss _ _)} {θ₂@(Θ Ss' _ _)} {S} S∈Domθ₁ S∉Domθ₂ with SigMap.U-∉-irr-get-m {_} {Ss} {Ss'} {S} S∈Domθ₁ S∉Domθ₂
... | a , b rewrite b = a , refl
shr-←-irr-get : ∀ {θ₁ θ₂ s} → (s∈Domθ₁ : isShr∈ s θ₁) → ¬ (isShr∈ s θ₂) → ∃ λ s∈Dom⟨θ₁←θ₂⟩ → shr-stats {s} θ₁ s∈Domθ₁ ≡ shr-stats {s} (θ₁ ← θ₂) s∈Dom⟨θ₁←θ₂⟩
shr-←-irr-get {θ₁@(Θ _ ss _)} {θ₂@(Θ _ ss' _)} {s} s∈Domθ₁ s∉Domθ₂ with ShrMap.U-∉-irr-get-m {_} {ss} {ss'} {s} s∈Domθ₁ s∉Domθ₂
... | a , b rewrite b = a , refl
seq-←-irr-get : ∀ {θ₁ θ₂ x} → (x∈Domθ₁ : isVar∈ x θ₁) → ¬ (isVar∈ x θ₂) → ∃ λ x∈Dom⟨θ₁←θ₂⟩ → var-vals {x} θ₁ x∈Domθ₁ ≡ var-vals {x} (θ₁ ← θ₂) x∈Dom⟨θ₁←θ₂⟩
seq-←-irr-get {θ₁@(Θ _ _ xs)} {θ₂@(Θ _ _ xs')} {x} x∈Domθ₁ x∉Domθ₂ with VarMap.U-∉-irr-get-m {_} {xs} {xs'} {x} x∈Domθ₁ x∉Domθ₂
... | a , b rewrite b = a , refl
sig-←-irr-get' : ∀ {θ₁ θ₂ S} → (S∈Domθ₁ : isSig∈ S θ₁) → ¬ (isSig∈ S θ₂) → (S∈Dom⟨θ₁←θ₂⟩ : isSig∈ S (θ₁ ← θ₂)) → sig-stats {S} θ₁ S∈Domθ₁ ≡ sig-stats {S} (θ₁ ← θ₂) S∈Dom⟨θ₁←θ₂⟩
sig-←-irr-get' {θ₁@(Θ Ss _ _)} {θ₂@(Θ Ss' _ _)} {S} S∈Domθ₁ S∉Domθ₂ S∈Dom⟨θ₁←θ₂⟩ with SigMap.U-∉-irr-get-m {_} {Ss} {Ss'} {S} S∈Domθ₁ S∉Domθ₂
... | a , b rewrite b | sig∈-eq{S}{θ₁ ← θ₂} a S∈Dom⟨θ₁←θ₂⟩ = refl
shr-←-irr-get' : ∀ {θ₁ θ₂ s} → (s∈Domθ₁ : isShr∈ s θ₁) → ¬ (isShr∈ s θ₂) → (s∈Dom⟨θ₁←θ₂⟩ : isShr∈ s (θ₁ ← θ₂)) → shr-stats {s} θ₁ s∈Domθ₁ ≡ shr-stats {s} (θ₁ ← θ₂) s∈Dom⟨θ₁←θ₂⟩
shr-←-irr-get' {θ₁@(Θ _ ss _)} {θ₂@(Θ _ ss' _)} {s} s∈Domθ₁ s∉Domθ₂ s∈Dom⟨θ₁←θ₂⟩ with ShrMap.U-∉-irr-get-m {_} {ss} {ss'} {s} s∈Domθ₁ s∉Domθ₂
... | a , b rewrite (cong proj₁ b) | shr∈-eq{s}{θ₁ ← θ₂} a s∈Dom⟨θ₁←θ₂⟩ = refl
shr-←-irr-get/vals' : ∀ {θ₁ θ₂ s} → (s∈Domθ₁ : isShr∈ s θ₁) → ¬ (isShr∈ s θ₂) → (s∈Dom⟨θ₁←θ₂⟩ : isShr∈ s (θ₁ ← θ₂)) → shr-vals {s} θ₁ s∈Domθ₁ ≡ shr-vals {s} (θ₁ ← θ₂) s∈Dom⟨θ₁←θ₂⟩
shr-←-irr-get/vals' {θ₁@(Θ _ ss _)} {θ₂@(Θ _ ss' _)} {s} s∈Domθ₁ s∉Domθ₂ s∈Dom⟨θ₁←θ₂⟩ with ShrMap.U-∉-irr-get-m {_} {ss} {ss'} {s} s∈Domθ₁ s∉Domθ₂
... | a , b rewrite (cong proj₂ b) | shr∈-eq{s}{θ₁ ← θ₂} a s∈Dom⟨θ₁←θ₂⟩ = refl
seq-←-irr-get' : ∀ {θ₁ θ₂ x} → (x∈Domθ₁ : isVar∈ x θ₁) → ¬ (isVar∈ x θ₂) → (x∈Dom⟨θ₁←θ₂⟩ : isVar∈ x (θ₁ ← θ₂)) → var-vals {x} θ₁ x∈Domθ₁ ≡ var-vals {x} (θ₁ ← θ₂) x∈Dom⟨θ₁←θ₂⟩
seq-←-irr-get' {θ₁@(Θ _ _ xs)} {θ₂@(Θ _ _ xs')} {x} x∈Domθ₁ x∉Domθ₂ x∈Dom⟨θ₁←θ₂⟩ with VarMap.U-∉-irr-get-m {_} {xs} {xs'} {x} x∈Domθ₁ x∉Domθ₂
... | a , b rewrite b | seq∈-eq{x}{θ₁ ← θ₂} a x∈Dom⟨θ₁←θ₂⟩ = refl
sig-set-←-comm' : ∀ S v θ θ' →
(S∈ : isSig∈ S θ) →
¬ (isSig∈ S θ') →
(S∈' : isSig∈ S (θ ← θ')) →
(set-sig {S} θ S∈ v) ← θ' ≡
set-sig {S} (θ ← θ') S∈' v
sig-set-←-comm' S v θ θ' S∈ S∉Domθ' S∈'
rewrite SigMap.put-union-comm {_} S v (Env.sig θ) (Env.sig θ') S∉Domθ'
= refl
sig-set-←-comm : ∀ S v θ θ' →
(S∈ : isSig∈ S θ) →
¬ (isSig∈ S θ') →
∃ λ S∈Dom⟨θ←θ'⟩ →
(set-sig {S} θ S∈ v) ← θ' ≡
set-sig {S} (θ ← θ') S∈Dom⟨θ←θ'⟩ v
sig-set-←-comm S v θ θ' S∈ S∉Domθ'
rewrite SigMap.put-union-comm {_} S v (Env.sig θ) (Env.sig θ') S∉Domθ'
= SigMap.U-mono {_} {Env.sig θ} {Env.sig θ'} {S} S∈ , refl
shr-set-←-comm' : ∀ s v n θ θ' →
(s∈ : isShr∈ s θ) →
¬ (isShr∈ s θ') →
(s∈' : isShr∈ s (θ ← θ')) →
(set-shr {s} θ s∈ v n) ← θ' ≡
set-shr {s} (θ ← θ') s∈' v n
shr-set-←-comm' s v n θ θ' s∈ s∉Domθ' s∈'
rewrite ShrMap.put-union-comm {_} s (v , n) (Env.shr θ) (Env.shr θ') s∉Domθ'
= refl
shr-set-←-comm : ∀ s v n θ θ' →
(s∈ : isShr∈ s θ) →
¬ (isShr∈ s θ') →
∃ λ s∈Dom⟨θ←θ'⟩ →
(set-shr {s} θ s∈ v n) ← θ' ≡
set-shr {s} (θ ← θ') s∈Dom⟨θ←θ'⟩ v n
shr-set-←-comm s v n θ θ' s∈ s∉Domθ'
rewrite ShrMap.put-union-comm {_} s (v , n) (Env.shr θ) (Env.shr θ') s∉Domθ'
= ShrMap.U-mono {_} {Env.shr θ} {Env.shr θ'} {s} s∈ , refl
var-set-←-comm' : ∀ x v θ θ' →
(x∈ : isVar∈ x θ) →
¬ (isVar∈ x θ') →
(x∈' : isVar∈ x (θ ← θ')) →
(set-var {x} θ x∈ v) ← θ' ≡
set-var {x} (θ ← θ') x∈' v
var-set-←-comm' x v θ θ' x∈ x∉Domθ' x∈'
rewrite VarMap.put-union-comm {_} x v (Env.var θ) (Env.var θ') x∉Domθ'
= refl
var-set-←-comm : ∀ x v θ θ' →
(x∈ : isVar∈ x θ) →
¬ (isVar∈ x θ') →
∃ λ x∈Dom⟨θ←θ'⟩ →
(set-var {x} θ x∈ v) ← θ' ≡
set-var {x} (θ ← θ') x∈Dom⟨θ←θ'⟩ v
var-set-←-comm x v θ θ' x∈ x∉Domθ'
rewrite VarMap.put-union-comm {_} x v (Env.var θ) (Env.var θ') x∉Domθ'
= VarMap.U-mono {_} {Env.var θ} {Env.var θ'} {x} x∈ , refl
lookup-S-eq : ∀{a b} θ S S∈ S∈₁ → sig-stats{S = S} θ S∈ ≡ a → sig-stats{S = S} θ S∈₁ ≡ b → ¬ a ≡ b → ⊥
lookup-S-eq θ S S∈ S∈' eq1 eq2 neg rewrite sig∈-eq{S}{θ} S∈ S∈' = neg (trans (sym eq1) eq2)
lookup-s-eq : ∀{a b} θ s s∈ s∈₁ → shr-stats{s = s} θ s∈ ≡ a → shr-stats{s = s} θ s∈₁ ≡ b → ¬ a ≡ b → ⊥
lookup-s-eq θ s s∈ s∈' eq1 eq2 neg rewrite shr∈-eq{s}{θ} s∈ s∈' = neg (trans (sym eq1) eq2)
lookup-S-¬eq : ∀{a b} θ S S' S∈ S'∈ → sig-stats{S = S} θ S∈ ≡ a → sig-stats{S = S'} θ S'∈ ≡ b → ¬ a ≡ b → ¬ S ≡ S'
lookup-S-¬eq θ S S' S∈ S'∈ S≡ S'≡ a≠b with S Signal.≟ S'
... | yes refl = ⊥-elim (lookup-S-eq θ S S∈ S'∈ S≡ S'≡ a≠b)
... | no x = x
lookup-s-stat-¬eq : ∀{a b} θ s s' s∈ s'∈ → shr-stats{s = s} θ s∈ ≡ a → shr-stats{s = s'} θ s'∈ ≡ b → ¬ a ≡ b → ¬ s ≡ s'
lookup-s-stat-¬eq θ s s' s∈ s'∈ s≡ s'≡ a≠b with s SharedVar.≟ s'
... | yes refl = ⊥-elim (lookup-s-eq θ s s∈ s'∈ s≡ s'≡ a≠b)
... | no x = x
←-=-irr-S : ∀ θ θ' → (Dom θ) ≡ (Dom θ') → ∀ S → (S∈ : isSig∈ S (θ ← θ')) → (S∈2 : isSig∈ S θ')
→ sig-stats{S} (θ ← θ') S∈ ≡ sig-stats{S} θ' S∈2
←-=-irr-S θ θ' eq = SigMap.union-=-irr (sig θ) (sig θ') (cong proj₁ eq)
←-=-irr-s-stats : ∀ θ θ' → (Dom θ) ≡ (Dom θ') → ∀ s → (s∈ : isShr∈ s (θ ← θ')) → (s∈2 : isShr∈ s θ')
→ shr-stats{s} (θ ← θ') s∈ ≡ shr-stats{s} θ' s∈2
←-=-irr-s-stats θ θ' eq a b = (cong proj₁) ∘ (ShrMap.union-=-irr (shr θ) (shr θ') (cong (proj₁ ∘ proj₂) eq) a b)
←-=-irr-s-vals : ∀ θ θ' → (Dom θ) ≡ (Dom θ') → ∀ s → (s∈ : isShr∈ s (θ ← θ')) → (s∈2 : isShr∈ s θ')
→ shr-vals{s} (θ ← θ') s∈ ≡ shr-vals{s} θ' s∈2
←-=-irr-s-vals θ θ' eq a b = (cong proj₂) ∘ (ShrMap.union-=-irr (shr θ) (shr θ') (cong (proj₁ ∘ proj₂) eq) a b)
←-=-irr-x : ∀ θ θ' → (Dom θ) ≡ (Dom θ') → ∀ x → (x∈ : isVar∈ x (θ ← θ')) → (x∈2 : isVar∈ x θ')
→ var-vals{x} (θ ← θ') x∈ ≡ var-vals{x} θ' x∈2
←-=-irr-x θ θ' eq = (VarMap.union-=-irr (var θ) (var θ') (cong (proj₂ ∘ proj₂) eq))
←-single-overwrite-sig : ∀ S stat θ → isSig∈ S θ → ((Θ SigMap.[ S ↦ stat ] [] []) ← θ) ≡ θ
←-single-overwrite-sig S stat θ k∈ rewrite SigMap.single-val-overwrite S stat (sig θ) k∈ = refl
←-single-overwrite-shr : ∀ s stat v θ → isShr∈ s θ → ((Θ [] ShrMap.[ s ↦ (stat ,′ v) ] []) ← θ) ≡ θ
←-single-overwrite-shr s stat v θ k∈ rewrite ShrMap.single-val-overwrite s (stat ,′ v) (shr θ) k∈ = refl
←-single-overwrite-seq : ∀ x n θ → isVar∈ x θ → ((Θ [] [] VarMap.[ x ↦ n ]) ← θ) ≡ θ
←-single-overwrite-seq x n θ k∈ rewrite VarMap.single-val-overwrite x n (var θ) k∈ = refl
sig-set=← : ∀ θ S stat → (S∈ : isSig∈ S θ) → (set-sig{S = S} θ S∈ stat) ≡ (θ ← (Θ SigMap.[ S ↦ stat ] [] []))
sig-set=← θ S stat S∈
rewrite SigMap.union-insert-eq S stat (sig θ)
| ShrMap.union-comm (shr θ) [] (λ z _ → λ ())
| VarMap.union-comm (var θ) [] (λ z _ → λ ())
= refl
shr-set=← : ∀ θ s stat n → (s∈ : isShr∈ s θ) → (set-shr{s = s} θ s∈ stat n) ≡ (θ ← (Θ [] ShrMap.[ s ↦ (stat ,′ n) ] []))
shr-set=← θ s stat n s∈
rewrite ShrMap.union-insert-eq s (stat ,′ n) (shr θ)
| SigMap.union-comm (sig θ) [] (λ z _ → λ ())
| VarMap.union-comm (var θ) [] (λ z _ → λ ())
= refl
seq-set=← : ∀ θ x n → (x∈ : isVar∈ x θ) → (set-var{x = x} θ x∈ n) ≡ (θ ← (Θ [] [] VarMap.[ x ↦ n ]))
seq-set=← θ x n x∈
rewrite VarMap.union-insert-eq x n (var θ)
| SigMap.union-comm (sig θ) [] (λ z _ → λ ())
| ShrMap.union-comm (shr θ) [] (λ z _ → λ ())
= refl
sig-set-clobber : ∀ S stat θ θi S∈ → isSig∈ S θi → (set-sig{S = S} θ S∈ stat) ← θi ≡ θ ← θi
sig-set-clobber S stat θ θi S∈θ S∈θi
=
(set-sig{S = S} θ S∈θ stat) ← θi
≡⟨ cong (_← θi)(sig-set=← θ S stat S∈θ) ⟩
(θ ← θ2) ← θi
≡⟨ sym (←-assoc θ θ2 θi) ⟩
(θ ← (θ2 ← θi))
≡⟨ cong (θ ←_) (←-single-overwrite-sig S stat θi S∈θi) ⟩
(θ ← θi) ∎
where θ2 = Θ SigMap.[ S ↦ stat ] [] []
shr-set-clobber : ∀ v stat n θ θi v∈ → isShr∈ v θi → (set-shr{s = v} θ v∈ stat n) ← θi ≡ θ ← θi
shr-set-clobber v stat n θ θi v∈θ v∈θi
=
(set-shr{s = v} θ v∈θ stat n) ← θi
≡⟨ cong (_← θi) (shr-set=← θ v stat n v∈θ) ⟩
(θ ← θ2) ← θi
≡⟨ sym (←-assoc θ θ2 θi) ⟩
(θ ← (θ2 ← θi))
≡⟨ cong (θ ←_) (←-single-overwrite-shr v stat n θi v∈θi) ⟩
(θ ← θi) ∎
where θ2 = Θ [] ShrMap.[ v ↦ (stat ,′ n) ] []
seq-set-clobber : ∀ v n θ θi v∈ → isVar∈ v θi → (set-var{x = v} θ v∈ n) ← θi ≡ θ ← θi
seq-set-clobber v n θ θi v∈θ v∈θi
=
(set-var{x = v} θ v∈θ n) ← θi
≡⟨ cong (_← θi) (seq-set=← θ v n v∈θ) ⟩
(θ ← θ2) ← θi
≡⟨ sym (←-assoc θ θ2 θi) ⟩
(θ ← (θ2 ← θi))
≡⟨ cong (θ ←_) (←-single-overwrite-seq v n θi v∈θi) ⟩
(θ ← θi) ∎
where θ2 = Θ [] [] VarMap.[ v ↦ n ]
sig-switch : ∀ S stat θ θi S∈ S∈2 → ¬ isSig∈ S θi → set-sig{S = S} (θ ← θi) S∈2 stat ≡ (set-sig{S = S} θ S∈ stat) ← θi
sig-switch S stat θ θi S∈ S∈2 S∉
= set-sig{S = S} (θ ← θi) S∈2 stat
≡⟨ sig-set=← (θ ← θi) S stat S∈2 ⟩
(θ ← θi) ← θ2
≡⟨ ←-assoc-comm θ θi θ2 ((λ z x x₁ → S∉ (subst (_∈ (SigMap.keys (sig θi))) (∈:: (subst (z ∈_) (SigMap.keys-1map S stat) x₁)) x)) , ((λ x x₁ → λ ()) , (λ x x₁ → λ ()))) ⟩
(θ ← θ2) ← θi
≡⟨ cong (_← θi) (sym (sig-set=← θ S stat S∈ )) ⟩
(set-sig{S = S} θ S∈ stat) ← θi ∎
where θ2 = Θ SigMap.[ S ↦ stat ] [] []
shr-switch : ∀ s stat n θ θi s∈ s∈2 → ¬ isShr∈ s θi → set-shr{s = s} (θ ← θi) s∈2 stat n ≡ (set-shr{s = s} θ s∈ stat n) ← θi
shr-switch s stat n θ θi s∈ s∈2 s∉
= set-shr{s = s} (θ ← θi) s∈2 stat n
≡⟨ shr-set=← (θ ← θi) s stat n s∈2 ⟩
(θ ← θi) ← θ2
≡⟨ ←-assoc-comm θ θi θ2 ((λ x x₁ → λ ()) , ((λ z x x₁ → s∉ (subst (_∈ (ShrMap.keys (shr θi))) (∈:: (subst (z ∈_) (ShrMap.keys-1map s (stat ,′ n)) x₁)) x)) , (λ x x₁ → λ ()))) ⟩
(θ ← θ2) ← θi
≡⟨ cong (_← θi) (sym (shr-set=← θ s stat n s∈ )) ⟩
(set-shr{s = s} θ s∈ stat n) ← θi ∎
where θ2 = Θ [] ShrMap.[ s ↦ (stat ,′ n) ] []
seq-switch : ∀ x n θ θi x∈ x∈2 → ¬ isVar∈ x θi → set-var{x = x} (θ ← θi) x∈2 n ≡ (set-var{x = x} θ x∈ n) ← θi
seq-switch x n θ θi x∈ x∈2 x∉
= set-var{x = x} (θ ← θi) x∈2 n
≡⟨ seq-set=← (θ ← θi) x n x∈2 ⟩
(θ ← θi) ← θ2
≡⟨ ←-assoc-comm θ θi θ2 ((λ x x₁ → λ ()) , ((λ x x₁ → λ ()) , (λ z j x₁ → x∉ (subst (_∈ (VarMap.keys (var θi))) (∈:: (subst (z ∈_) (VarMap.keys-1map x n) x₁)) j)))) ⟩
(θ ← θ2) ← θi
≡⟨ cong (_← θi) (sym (seq-set=← θ x n x∈ )) ⟩
(set-var{x = x} θ x∈ n) ← θi ∎
where θ2 = Θ [] [] VarMap.[ x ↦ n ]
sig-switch-right : ∀ S stat θl θr S∈ S∈2 → (θl ← (set-sig{S} θr S∈ stat)) ≡ (set-sig{S} (θl ← θr) S∈2 stat)
sig-switch-right S stat θl θr S∈ S∈2 =
(θl ← (set-sig{S} θr S∈ stat))
≡⟨ cong (θl ←_) (sig-set=← θr S stat S∈) ⟩
(θl ← (θr ← (Θ SigMap.[ S ↦ stat ] [] [])))
≡⟨ ←-assoc θl θr _ ⟩
((θl ← θr) ← (Θ SigMap.[ S ↦ stat ] [] []))
≡⟨ sym (sig-set=← (θl ← θr) S stat S∈2) ⟩
(set-sig{S} (θl ← θr) S∈2 stat) ∎
shr-switch-right : ∀ s stat n θl θr s∈ s∈2 → (θl ← (set-shr{s} θr s∈ stat n)) ≡ (set-shr{s} (θl ← θr) s∈2 stat n)
shr-switch-right s stat n θl θr s∈ s∈2 =
(θl ← (set-shr{s} θr s∈ stat n))
≡⟨ cong (θl ←_) (shr-set=← θr s stat n s∈) ⟩
(θl ← (θr ← (Θ [] ShrMap.[ s ↦ (stat ,′ n) ] [])))
≡⟨ ←-assoc θl θr _ ⟩
((θl ← θr) ← (Θ [] ShrMap.[ s ↦ (stat ,′ n) ] []))
≡⟨ sym (shr-set=← (θl ← θr) s stat n s∈2) ⟩
(set-shr{s} (θl ← θr) s∈2 stat n) ∎
seq-switch-right : ∀ x n θl θr x∈ x∈2 → (θl ← (set-var{x} θr x∈ n)) ≡ (set-var{x} (θl ← θr) x∈2 n)
seq-switch-right x n θl θr x∈ x∈2 =
(θl ← (set-var{x} θr x∈ n))
≡⟨ cong (θl ←_) (seq-set=← θr x n x∈) ⟩
(θl ← (θr ← (Θ [] [] VarMap.[ x ↦ n ])))
≡⟨ ←-assoc θl θr _ ⟩
((θl ← θr) ← (Θ [] [] VarMap.[ x ↦ n ]))
≡⟨ sym (seq-set=← (θl ← θr) x n x∈2) ⟩
(set-var{x} (θl ← θr) x∈2 n) ∎
sig-set-dom-eq : ∀ S stat θ S∈ → (Dom θ) ≡ (Dom (set-sig{S = S} θ S∈ stat))
sig-set-dom-eq S stat θ S∈ rewrite SigMap.update-domain-eq S stat (sig θ) S∈ = refl
shr-set-dom-eq : ∀ s stat n θ s∈ → (Dom θ) ≡ (Dom (set-shr{s = s} θ s∈ stat n))
shr-set-dom-eq s stat n θ s∈ rewrite ShrMap.update-domain-eq s (stat ,′ n) (shr θ) s∈ = refl
seq-set-dom-eq : ∀ x n θ x∈ → (Dom θ) ≡ (Dom (set-var{x = x} θ x∈ n))
seq-set-dom-eq x n θ x∈ rewrite VarMap.update-domain-eq x n (var θ) x∈ = refl
sig-∉-maint : ∀ S S' stat θ S'∈ → ¬ isSig∈ S θ → ¬ isSig∈ S (set-sig{S = S'} θ S'∈ stat)
sig-∉-maint S S' stat θ S'∈ S∉ x rewrite cong proj₁ (sig-set-dom-eq S' stat θ S'∈) = S∉ x
shr-∉-maint : ∀ s s' stat n θ s'∈ → ¬ isShr∈ s θ → ¬ isShr∈ s (set-shr{s = s'} θ s'∈ stat n)
shr-∉-maint s s' stat n θ s'∈ s∉ x rewrite cong snd (shr-set-dom-eq s' stat n θ s'∈) = s∉ x
sig-∉-single : ∀ S S' stat → ¬ S ≡ S' → ¬ isSig∈ S (Θ SigMap.[ S' ↦ stat ] [] [])
sig-∉-single S S' stat neg x rewrite SigMap.keys-1map S' stat with x
... | Any.here px = (Signal.unwrap-neq neg) px
... | Any.there ()
shr-∉-single : ∀ s s' stat n → ¬ s ≡ s' → ¬ isShr∈ s (Θ [] ShrMap.[ s' ↦ (stat ,′ n) ] [])
shr-∉-single s s' stat n neg x rewrite ShrMap.keys-1map s' (stat ,′ n) with x
... | Any.here px = (SharedVar.unwrap-neq neg) px
... | Any.there ()
sig-∈-single : ∀ S stat → isSig∈ S (Θ SigMap.[ S ↦ stat ] [] [])
sig-∈-single S stat rewrite SigMap.keys-1map S stat = Data.List.Any.here refl
sig-∈-single-right-← : ∀ S stat θ → isSig∈ S (θ ← (Θ SigMap.[ S ↦ stat ] [] []))
sig-∈-single-right-← S stat θ = sig-←-monoʳ S (Θ SigMap.[ S ↦ stat ] [] []) θ (sig-∈-single S stat)
shr-∈-single : ∀ s stat n → isShr∈ s (Θ [] ShrMap.[ s ↦ (stat ,′ n) ] [])
shr-∈-single s stat n rewrite ShrMap.keys-1map s (stat ,′ n) = Data.List.Any.here refl
sig-single-∈-eq : ∀ S S' stat' →
isSig∈ S (Θ SigMap.[ S' ↦ stat' ] [] []) →
Signal.unwrap S ≡ Signal.unwrap S'
sig-single-∈-eq S S' stat' S∈Dom[S'] rewrite SigMap.keys-1map S' stat' = ∈:: S∈Dom[S']
sig-put-mby-overwrite : ∀ S S' θ statneq statput S∈ S'∈ S∈2
→ ¬ statneq ≡ statput
→ ¬ (sig-stats{S} θ S∈ ≡ statneq)
→ ¬ (sig-stats{S} (set-sig{S'} θ S'∈ statput) S∈2 ≡ statneq)
sig-put-mby-overwrite S S' θ statneq statput S∈ S'∈ S∈2 neq≠put ¬ref ref
with S Signal.≟ S'
... | yes refl = lookup-S-eq (set-sig{S} θ S'∈ statput) S S∈2 S∈2 (sig-putget{S}{θ}{statput} S'∈ S∈2) ref (neq≠put ∘ sym)
... | no ¬refl = ¬ref (trans (sym (sig-putputget/m{S}{S'}{θ} ¬refl S∈ S'∈ S∈2)) ref)
sig-stats-1map' : ∀ S status →
(S∈ : isSig∈ S (Θ SigMap.[ S ↦ status ] ShrMap.empty VarMap.empty)) →
sig-stats {S} (Θ SigMap.[ S ↦ status ] ShrMap.empty VarMap.empty) S∈
≡ status
sig-stats-1map' S status S∈ = SigMap.putget-m {_} {SigMap.empty} {S} {status} S∈
sig-stats-1map-right-← : ∀ S status θ →
(S∈ : isSig∈ S (θ ← (Θ SigMap.[ S ↦ status ] [] []))) →
(sig-stats{S} (θ ← (Θ SigMap.[ S ↦ status ] [] [])) S∈ ≡ status)
sig-stats-1map-right-← S stat θ S∈
= trans (sig-stats-←-right-irr' S θ (Θ SigMap.[ S ↦ stat ] [] []) (sig-∈-single S stat) S∈) (sig-stats-1map' S stat (sig-∈-single S stat))
sig-put-1map-overwrite' : ∀ S status status' →
(S∈ : isSig∈ S (Θ SigMap.[ S ↦ status ] ShrMap.empty VarMap.empty)) →
set-sig {S} (Θ SigMap.[ S ↦ status ] ShrMap.empty VarMap.empty) S∈ status'
≡ Θ SigMap.[ S ↦ status' ] ShrMap.empty VarMap.empty
sig-put-1map-overwrite' S status status' S∈
rewrite SigMap.putput-overwrite SigMap.empty S status status'
= refl
-- ←-comm : ∀ θ θ' → distinct (Dom θ) (Dom θ') → (θ ← θ') ≡ (θ' ← θ)
sig-set-inner-clobber : ∀ θ θ' θ'' S stat → isSig∈ S θ''
→ ((θ ← (Θ SigMap.[ S ↦ stat ] [] [])) ← θ') ← θ''
≡
((θ ← θ') ← θ'')
sig-set-inner-clobber θ θ' θ'' S stat S∈θ'' with Sig∈ S θ'
... | yes S∈θ' = (((θ ← (Θ SigMap.[ S ↦ stat ] [] [])) ← θ') ← θ'')
≡⟨ cong (λ x → (x ← θ'')) (sym (←-assoc θ (Θ SigMap.[ S ↦ stat ] [] []) θ')) ⟩
((θ ← ((Θ SigMap.[ S ↦ stat ] [] []) ← θ')) ← θ'')
≡⟨ cong (λ x → (θ ← x) ← θ'' )
(←-single-overwrite-sig S stat (Θ (sig θ') (shr θ') (var θ')) S∈θ') ⟩
((θ ← θ') ← θ'') ∎
... | no S∉θ' = (((θ ← (Θ SigMap.[ S ↦ stat ] [] [])) ← θ') ← θ'')
≡⟨ cong (λ x → (x ← θ'')) (sym (←-assoc θ (Θ SigMap.[ S ↦ stat ] [] []) θ')) ⟩
((θ ← ((Θ SigMap.[ S ↦ stat ] [] []) ← θ')) ← θ'')
≡⟨ cong (λ x → (θ ← x) ← θ'' )
( ←-comm (Θ SigMap.[ S ↦ stat ] [] []) θ' (ds , ((λ z → λ ()) , (λ z → λ ())))) ⟩
((θ ← (θ' ← (Θ SigMap.[ S ↦ stat ] [] []))) ← θ'')
≡⟨ cong (_← θ'') (←-assoc θ θ' (Θ SigMap.[ S ↦ stat ] [] [])) ⟩
(((θ ← θ') ← (Θ SigMap.[ S ↦ stat ] [] [])) ← θ'')
≡⟨ sym (←-assoc (θ ← θ') (Θ SigMap.[ S ↦ stat ] [] []) θ'') ⟩
((θ ← θ') ← ((Θ SigMap.[ S ↦ stat ] [] []) ← θ''))
≡⟨ cong ((θ ← θ') ←_) (←-single-overwrite-sig S stat (Θ (sig θ'') (shr θ'') (var θ''))
S∈θ'') ⟩
((θ ← θ') ← θ'')
∎
where
ds : distinct' (proj₁ (Dom (Θ SigMap.[ S ↦ stat ] [] []))) (proj₁ (Dom θ'))
ds z x y rewrite SigMap.keys-1map S stat with x
... | Any.here refl = ⊥-elim (S∉θ' y)
... | Any.there ()
sig-single-notin-distinct : ∀ S status θ →
Signal.unwrap S ∉ proj₁ (Dom θ) →
distinct (Dom (Θ SigMap.[ S ↦ status ] [] [])) (Dom θ)
sig-single-notin-distinct S status θ S∉Domθ =
(λ S'' S''∈[S] S''∈Domθ →
S∉Domθ
(subst (_∈ proj₁ (Dom θ))
(∈:: (subst (S'' ∈_) (SigMap.keys-1map S status) S''∈[S]))
S''∈Domθ)) ,′
(λ _ ()) ,′
(λ _ ())
-- a special case of sig-single-notin-distinct
sig-single-noteq-distinct : ∀ S status S' status' →
¬ Signal.unwrap S ≡ Signal.unwrap S' →
distinct (Dom (Θ SigMap.[ S ↦ status ] [] [])) (Dom (Θ SigMap.[ S' ↦ status' ] [] []))
sig-single-noteq-distinct S status S' status' S≢S' =
(λ S'' S''∈[S] S''∈[S'] →
S≢S'
(trans
(sym (∈:: (subst (S'' ∈_) (SigMap.keys-1map S status) S''∈[S])))
(∈:: (subst (S'' ∈_) (SigMap.keys-1map S' status') S''∈[S'])))) ,′
(λ _ ()) ,′
(λ _ ())
sig-single-←-←-overwrite : ∀ θ S status status' →
(θ ← Θ SigMap.[ S ↦ status ] [] []) ← Θ SigMap.[ S ↦ status' ] [] [] ≡
θ ← Θ SigMap.[ S ↦ status' ] [] []
sig-single-←-←-overwrite θ S status status'
rewrite sym (←-assoc θ (Θ SigMap.[ S ↦ status ] [] []) (Θ SigMap.[ S ↦ status' ] [] []))
= cong (θ ←_)
(←-single-overwrite-sig S status (Θ SigMap.[ S ↦ status' ] [] [])
(sig-∈-single S status'))
sig-set-clobber-single-as-← : ∀ S status status' θ S∈ → (set-sig{S} (θ ← (Θ SigMap.[ S ↦ status' ] [] [])) S∈ status) ≡ (θ ← (Θ SigMap.[ S ↦ status ] [] []))
sig-set-clobber-single-as-← S status status' θ S∈
=(begin
(set-sig{S} (θ ← θs1) ((sig-∈-single-right-← S status' θ)) status)
≡⟨ sym (sig-switch-right S status θ θs1 ((sig-∈-single S status')) ((sig-∈-single-right-← S status' θ))) ⟩
(θ ← (set-sig{S} θs1 ((sig-∈-single S status')) status))
≡⟨ cong (_←_ θ) (sig-put-1map-overwrite' S status' status ((sig-∈-single S status'))) ⟩
(θ ← θs2) ∎)
where
θs1 = (Θ SigMap.[ S ↦ status' ] [] [])
θs2 = (Θ SigMap.[ S ↦ status ] [] [])
| {
"alphanum_fraction": 0.4860467077,
"avg_line_length": 42.2475512021,
"ext": "agda",
"hexsha": "8716a3b63c8e9e9e8d833c0d52c01c06df61603b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z",
"max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "florence/esterel-calculus",
"max_forks_repo_path": "agda/Esterel/Environment.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "florence/esterel-calculus",
"max_issues_repo_path": "agda/Esterel/Environment.agda",
"max_line_length": 179,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "florence/esterel-calculus",
"max_stars_repo_path": "agda/Esterel/Environment.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z",
"num_tokens": 25569,
"size": 47444
} |
{-# OPTIONS --safe #-}
module Cubical.Algebra.DistLattice.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.HalfAdjoint
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Transport
open import Cubical.Foundations.SIP
open import Cubical.Data.Sigma
open import Cubical.Displayed.Base
open import Cubical.Displayed.Auto
open import Cubical.Displayed.Record
open import Cubical.Displayed.Universe
open import Cubical.Algebra.Semigroup
open import Cubical.Algebra.Monoid
open import Cubical.Algebra.CommMonoid
open import Cubical.Algebra.Semilattice
open import Cubical.Algebra.Lattice.Base
open Iso
private
variable
ℓ ℓ' : Level
record IsDistLattice {L : Type ℓ}
(0l 1l : L) (_∨l_ _∧l_ : L → L → L) : Type ℓ where
constructor isdistlattice
field
isLattice : IsLattice 0l 1l _∨l_ _∧l_
∨l-dist-∧l : (x y z : L) → (x ∨l (y ∧l z) ≡ (x ∨l y) ∧l (x ∨l z))
× ((y ∧l z) ∨l x ≡ (y ∨l x) ∧l (z ∨l x))
∧l-dist-∨l : (x y z : L) → (x ∧l (y ∨l z) ≡ (x ∧l y) ∨l (x ∧l z))
× ((y ∨l z) ∧l x ≡ (y ∧l x) ∨l (z ∧l x))
open IsLattice isLattice public
∨lLdist∧l : (x y z : L) → x ∨l (y ∧l z) ≡ (x ∨l y) ∧l (x ∨l z)
∨lLdist∧l x y z = ∨l-dist-∧l x y z .fst
∨lRdist∧l : (x y z : L) → (y ∧l z) ∨l x ≡ (y ∨l x) ∧l (z ∨l x)
∨lRdist∧l x y z = ∨l-dist-∧l x y z .snd
∧lLdist∨l : (x y z : L) → x ∧l (y ∨l z) ≡ (x ∧l y) ∨l (x ∧l z)
∧lLdist∨l x y z = ∧l-dist-∨l x y z .fst
∧lRdist∨l : (x y z : L) → (y ∨l z) ∧l x ≡ (y ∧l x) ∨l (z ∧l x)
∧lRdist∨l x y z = ∧l-dist-∨l x y z .snd
record DistLatticeStr (A : Type ℓ) : Type (ℓ-suc ℓ) where
constructor distlatticestr
field
0l : A
1l : A
_∨l_ : A → A → A
_∧l_ : A → A → A
isDistLattice : IsDistLattice 0l 1l _∨l_ _∧l_
infix 7 _∨l_
infix 6 _∧l_
open IsDistLattice isDistLattice public
DistLattice : ∀ ℓ → Type (ℓ-suc ℓ)
DistLattice ℓ = TypeWithStr ℓ DistLatticeStr
isSetDistLattice : (L : DistLattice ℓ) → isSet ⟨ L ⟩
isSetDistLattice L = L .snd .DistLatticeStr.is-set
-- when proving the axioms for a distributive lattice
-- we use the fact that from distributivity and absorption
-- of ∧l over ∨l we can derive distributivity and absorption
-- of ∨l over ∧l and vice versa. We give provide thus two
-- ways of making a distributive lattice...
makeIsDistLattice∧lOver∨l : {L : Type ℓ} {0l 1l : L} {_∨l_ _∧l_ : L → L → L}
(is-setL : isSet L)
(∨l-assoc : (x y z : L) → x ∨l (y ∨l z) ≡ (x ∨l y) ∨l z)
(∨l-rid : (x : L) → x ∨l 0l ≡ x)
(∨l-comm : (x y : L) → x ∨l y ≡ y ∨l x)
(∧l-assoc : (x y z : L) → x ∧l (y ∧l z) ≡ (x ∧l y) ∧l z)
(∧l-rid : (x : L) → x ∧l 1l ≡ x)
(∧l-comm : (x y : L) → x ∧l y ≡ y ∧l x)
(∧l-absorb-∨l : (x y : L) → x ∧l (x ∨l y) ≡ x)
(∧l-ldist-∨l : (x y z : L) → x ∧l (y ∨l z) ≡ (x ∧l y) ∨l (x ∧l z))
→ IsDistLattice 0l 1l _∨l_ _∧l_
makeIsDistLattice∧lOver∨l {_∨l_ = _∨l_} {_∧l_ = _∧l_} is-setL
∨l-assoc ∨l-rid ∨l-comm
∧l-assoc ∧l-rid ∧l-comm
∧l-absorb-∨l ∧l-ldist-∨l =
isdistlattice (makeIsLattice is-setL ∨l-assoc ∨l-rid (λ x → ∨l-comm _ x ∙ ∨l-rid x) ∨l-comm
∧l-assoc ∧l-rid (λ x → ∧l-comm _ x ∙ ∧l-rid x) ∧l-comm
∨l-absorb-∧l ∧l-absorb-∨l)
(λ x y z → ∨l-ldist-∧l _ _ _ , ∨l-rdist-∧l _ _ _)
(λ x y z → ∧l-ldist-∨l _ _ _ , ∧l-rdist-∨l _ _ _)
where
∧l-idem : ∀ x → x ∧l x ≡ x
∧l-idem x = cong (x ∧l_) (sym (∨l-rid _)) ∙ ∧l-absorb-∨l _ _
∨l-absorb-∧l : ∀ x y → x ∨l (x ∧l y) ≡ x
∨l-absorb-∧l x y =
cong (_∨l (x ∧l y)) (sym (∧l-idem _)) ∙∙ sym (∧l-ldist-∨l _ _ _) ∙∙ ∧l-absorb-∨l _ _
∧l-rdist-∨l : ∀ x y z → (y ∨l z) ∧l x ≡ (y ∧l x) ∨l (z ∧l x)
∧l-rdist-∨l _ _ _ = ∧l-comm _ _ ∙∙ ∧l-ldist-∨l _ _ _ ∙∙ cong₂ (_∨l_) (∧l-comm _ _) (∧l-comm _ _)
∨l-ldist-∧l : ∀ x y z → x ∨l (y ∧l z) ≡ (x ∨l y) ∧l (x ∨l z)
∨l-ldist-∧l x y z = x ∨l (y ∧l z)
≡⟨ cong (_∨l (y ∧l z)) (sym (∨l-absorb-∧l _ _)) ⟩
(x ∨l (x ∧l z)) ∨l (y ∧l z)
≡⟨ sym (∨l-assoc _ _ _) ⟩
x ∨l ((x ∧l z) ∨l (y ∧l z))
≡⟨ cong (_∨l ((x ∧l z) ∨l (y ∧l z))) (sym (∧l-comm _ _ ∙ ∧l-absorb-∨l _ _)) ⟩
((x ∨l y) ∧l x) ∨l ((x ∧l z) ∨l (y ∧l z))
≡⟨ cong (((x ∨l y) ∧l x) ∨l_) (sym (∧l-rdist-∨l _ _ _)) ⟩
((x ∨l y) ∧l x) ∨l ((x ∨l y) ∧l z)
≡⟨ sym (∧l-ldist-∨l _ _ _) ⟩
(x ∨l y) ∧l (x ∨l z) ∎
∨l-rdist-∧l : ∀ x y z → (y ∧l z) ∨l x ≡ (y ∨l x) ∧l (z ∨l x)
∨l-rdist-∧l x y z = ∨l-comm _ x ∙∙ ∨l-ldist-∧l _ _ _ ∙∙ cong₂ (_∧l_) (∨l-comm _ _) (∨l-comm _ _)
makeDistLattice∧lOver∨l : {L : Type ℓ} (0l 1l : L) (_∨l_ _∧l_ : L → L → L)
(is-setL : isSet L)
(∨l-assoc : (x y z : L) → x ∨l (y ∨l z) ≡ (x ∨l y) ∨l z)
(∨l-rid : (x : L) → x ∨l 0l ≡ x)
(∨l-comm : (x y : L) → x ∨l y ≡ y ∨l x)
(∧l-assoc : (x y z : L) → x ∧l (y ∧l z) ≡ (x ∧l y) ∧l z)
(∧l-rid : (x : L) → x ∧l 1l ≡ x)
(∧l-comm : (x y : L) → x ∧l y ≡ y ∧l x)
(∧l-absorb-∨l : (x y : L) → x ∧l (x ∨l y) ≡ x)
(∧l-ldist-∨l : (x y z : L) → x ∧l (y ∨l z) ≡ (x ∧l y) ∨l (x ∧l z))
→ DistLattice ℓ
makeDistLattice∧lOver∨l 0l 1l _∨l_ _∧l_ is-setL ∨l-assoc ∨l-rid ∨l-comm
∧l-assoc ∧l-rid ∧l-comm
∧l-absorb-∨l ∧l-ldist-∨l =
_ , distlatticestr _ _ _ _
(makeIsDistLattice∧lOver∨l is-setL ∨l-assoc ∨l-rid ∨l-comm
∧l-assoc ∧l-rid ∧l-comm
∧l-absorb-∨l ∧l-ldist-∨l)
makeIsDistLattice∨lOver∧l : {L : Type ℓ} {0l 1l : L} {_∨l_ _∧l_ : L → L → L}
(is-setL : isSet L)
(∨l-assoc : (x y z : L) → x ∨l (y ∨l z) ≡ (x ∨l y) ∨l z)
(∨l-rid : (x : L) → x ∨l 0l ≡ x)
(∨l-comm : (x y : L) → x ∨l y ≡ y ∨l x)
(∧l-assoc : (x y z : L) → x ∧l (y ∧l z) ≡ (x ∧l y) ∧l z)
(∧l-rid : (x : L) → x ∧l 1l ≡ x)
(∧l-comm : (x y : L) → x ∧l y ≡ y ∧l x)
(∨l-absorb-∧l : (x y : L) → x ∨l (x ∧l y) ≡ x)
(∨l-ldist-∧l : (x y z : L) → x ∨l (y ∧l z) ≡ (x ∨l y) ∧l (x ∨l z))
→ IsDistLattice 0l 1l _∨l_ _∧l_
makeIsDistLattice∨lOver∧l {_∨l_ = _∨l_} {_∧l_ = _∧l_} is-setL
∨l-assoc ∨l-rid ∨l-comm
∧l-assoc ∧l-rid ∧l-comm
∨l-absorb-∧l ∨l-ldist-∧l =
isdistlattice
(makeIsLattice is-setL ∨l-assoc ∨l-rid (λ x → ∨l-comm _ x ∙ ∨l-rid x) ∨l-comm
∧l-assoc ∧l-rid (λ x → ∧l-comm _ x ∙ ∧l-rid x) ∧l-comm
∨l-absorb-∧l ∧l-absorb-∨l)
(λ x y z → ∨l-ldist-∧l _ _ _ , ∨l-rdist-∧l _ _ _)
(λ x y z → ∧l-ldist-∨l _ _ _ , ∧l-rdist-∨l _ _ _)
where
∨l-idem : ∀ x → x ∨l x ≡ x
∨l-idem x = cong (x ∨l_) (sym (∧l-rid _)) ∙ ∨l-absorb-∧l _ _
∧l-absorb-∨l : ∀ x y → x ∧l (x ∨l y) ≡ x
∧l-absorb-∨l x y =
cong (_∧l (x ∨l y)) (sym (∨l-idem _)) ∙∙ sym (∨l-ldist-∧l _ _ _) ∙∙ ∨l-absorb-∧l _ _
∨l-rdist-∧l : ∀ x y z → (y ∧l z) ∨l x ≡ (y ∨l x) ∧l (z ∨l x)
∨l-rdist-∧l _ _ _ = ∨l-comm _ _ ∙∙ ∨l-ldist-∧l _ _ _ ∙∙ cong₂ (_∧l_) (∨l-comm _ _) (∨l-comm _ _)
∧l-ldist-∨l : ∀ x y z → x ∧l (y ∨l z) ≡ (x ∧l y) ∨l (x ∧l z)
∧l-ldist-∨l x y z = x ∧l (y ∨l z)
≡⟨ cong (_∧l (y ∨l z)) (sym (∧l-absorb-∨l _ _)) ⟩
(x ∧l (x ∨l z)) ∧l (y ∨l z)
≡⟨ sym (∧l-assoc _ _ _) ⟩
x ∧l ((x ∨l z) ∧l (y ∨l z))
≡⟨ cong (_∧l ((x ∨l z) ∧l (y ∨l z))) (sym (∨l-comm _ _ ∙ ∨l-absorb-∧l _ _)) ⟩
((x ∧l y) ∨l x) ∧l ((x ∨l z) ∧l (y ∨l z))
≡⟨ cong (((x ∧l y) ∨l x) ∧l_) (sym (∨l-rdist-∧l _ _ _)) ⟩
((x ∧l y) ∨l x) ∧l ((x ∧l y) ∨l z)
≡⟨ sym (∨l-ldist-∧l _ _ _) ⟩
(x ∧l y) ∨l (x ∧l z) ∎
∧l-rdist-∨l : ∀ x y z → (y ∨l z) ∧l x ≡ (y ∧l x) ∨l (z ∧l x)
∧l-rdist-∨l x y z = ∧l-comm _ x ∙∙ ∧l-ldist-∨l _ _ _ ∙∙ cong₂ (_∨l_) (∧l-comm _ _) (∧l-comm _ _)
makeDistLattice∨lOver∧l : {L : Type ℓ} (0l 1l : L) (_∨l_ _∧l_ : L → L → L)
(is-setL : isSet L)
(∨l-assoc : (x y z : L) → x ∨l (y ∨l z) ≡ (x ∨l y) ∨l z)
(∨l-rid : (x : L) → x ∨l 0l ≡ x)
(∨l-comm : (x y : L) → x ∨l y ≡ y ∨l x)
(∧l-assoc : (x y z : L) → x ∧l (y ∧l z) ≡ (x ∧l y) ∧l z)
(∧l-rid : (x : L) → x ∧l 1l ≡ x)
(∧l-comm : (x y : L) → x ∧l y ≡ y ∧l x)
(∨l-absorb-∧l : (x y : L) → x ∨l (x ∧l y) ≡ x)
(∨l-ldist-∧l : (x y z : L) → x ∨l (y ∧l z) ≡ (x ∨l y) ∧l (x ∨l z))
→ DistLattice ℓ
makeDistLattice∨lOver∧l 0l 1l _∨l_ _∧l_ is-setL ∨l-assoc ∨l-rid ∨l-comm
∧l-assoc ∧l-rid ∧l-comm
∨l-absorb-∧l ∨l-ldist-∧l =
_ , distlatticestr _ _ _ _
(makeIsDistLattice∨lOver∧l is-setL ∨l-assoc ∨l-rid ∨l-comm
∧l-assoc ∧l-rid ∧l-comm ∨l-absorb-∧l ∨l-ldist-∧l)
DistLatticeStr→LatticeStr : {A : Type ℓ} → DistLatticeStr A → LatticeStr A
DistLatticeStr→LatticeStr (distlatticestr _ _ _ _ H) =
latticestr _ _ _ _ (IsDistLattice.isLattice H)
DistLattice→Lattice : DistLattice ℓ → Lattice ℓ
DistLattice→Lattice (_ , distlatticestr _ _ _ _ H) =
_ , latticestr _ _ _ _ (IsDistLattice.isLattice H)
DistLatticeHom : (L : DistLattice ℓ) (M : DistLattice ℓ') → Type (ℓ-max ℓ ℓ')
DistLatticeHom L M = LatticeHom (DistLattice→Lattice L) (DistLattice→Lattice M)
IsDistLatticeEquiv : {A : Type ℓ} {B : Type ℓ'}
(L : DistLatticeStr A) (e : A ≃ B) (M : DistLatticeStr B) → Type (ℓ-max ℓ ℓ')
IsDistLatticeEquiv L e M =
IsLatticeHom (DistLatticeStr→LatticeStr L) (e .fst) (DistLatticeStr→LatticeStr M)
DistLatticeEquiv : (L : DistLattice ℓ) (M : DistLattice ℓ') → Type (ℓ-max ℓ ℓ')
DistLatticeEquiv L M = Σ[ e ∈ (L .fst ≃ M .fst) ] IsDistLatticeEquiv (L .snd) e (M .snd)
isPropIsDistLattice : {L : Type ℓ} (0l 1l : L) (_∨l_ _∧l_ : L → L → L)
→ isProp (IsDistLattice 0l 1l _∨l_ _∧l_)
isPropIsDistLattice 0l 1l _∨l_ _∧l_ (isdistlattice LL LD1 LD2) (isdistlattice ML MD1 MD2) =
λ i → isdistlattice (isPropIsLattice _ _ _ _ LL ML i) (isPropDist1 LD1 MD1 i)
(isPropDist2 LD2 MD2 i)
where
isSetL : isSet _
isSetL = LL .IsLattice.joinSemilattice .IsSemilattice.isCommMonoid .IsCommMonoid.isMonoid
.IsMonoid.isSemigroup .IsSemigroup.is-set
isPropDist1 : isProp ((x y z : _) → (x ∨l (y ∧l z) ≡ (x ∨l y) ∧l (x ∨l z))
× ((y ∧l z) ∨l x ≡ (y ∨l x) ∧l (z ∨l x)))
isPropDist1 = isPropΠ3 (λ _ _ _ → isProp× (isSetL _ _) (isSetL _ _))
isPropDist2 : isProp ((x y z : _) → (x ∧l (y ∨l z) ≡ (x ∧l y) ∨l (x ∧l z))
× ((y ∨l z) ∧l x ≡ (y ∧l x) ∨l (z ∧l x)))
isPropDist2 = isPropΠ3 (λ _ _ _ → isProp× (isSetL _ _) (isSetL _ _))
𝒮ᴰ-DistLattice : DUARel (𝒮-Univ ℓ) DistLatticeStr ℓ
𝒮ᴰ-DistLattice =
𝒮ᴰ-Record (𝒮-Univ _) IsDistLatticeEquiv
(fields:
data[ 0l ∣ null ∣ pres0 ]
data[ 1l ∣ null ∣ pres1 ]
data[ _∨l_ ∣ bin ∣ pres∨l ]
data[ _∧l_ ∣ bin ∣ pres∧l ]
prop[ isDistLattice ∣ (λ _ _ → isPropIsDistLattice _ _ _ _) ])
where
open DistLatticeStr
open IsLatticeHom
-- faster with some sharing
null = autoDUARel (𝒮-Univ _) (λ A → A)
bin = autoDUARel (𝒮-Univ _) (λ A → A → A → A)
DistLatticePath : (L M : DistLattice ℓ) → DistLatticeEquiv L M ≃ (L ≡ M)
DistLatticePath = ∫ 𝒮ᴰ-DistLattice .UARel.ua
| {
"alphanum_fraction": 0.4482458224,
"avg_line_length": 46.0839416058,
"ext": "agda",
"hexsha": "2115bbbafd5bae1a0cd474dff0c6516b1570cada",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "lpw25/cubical",
"max_forks_repo_path": "Cubical/Algebra/DistLattice/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "lpw25/cubical",
"max_issues_repo_path": "Cubical/Algebra/DistLattice/Base.agda",
"max_line_length": 100,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "lpw25/cubical",
"max_stars_repo_path": "Cubical/Algebra/DistLattice/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 5583,
"size": 12627
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Relation.Binary.Raw.Construct.Intersection where
open import Cubical.Core.Everything
open import Cubical.Foundations.Function using (_∘_)
open import Cubical.Data.Prod
open import Cubical.Data.Sum.Base using (_⊎_; inl; inr; rec)
open import Cubical.Relation.Binary.Raw
open import Cubical.Relation.Nullary using (yes; no)
------------------------------------------------------------------------
-- Definition
_∩_ : ∀ {a b ℓ₁ ℓ₂} {A : Type a} {B : Type b} →
RawREL A B ℓ₁ → RawREL A B ℓ₂ → RawREL A B (ℓ-max ℓ₁ ℓ₂)
L ∩ R = λ i j → L i j × R i j
------------------------------------------------------------------------
-- Properties
module _ {a ℓ₁ ℓ₂} {A : Type a} (L : RawRel A ℓ₁) (R : RawRel A ℓ₂) where
reflexive : Reflexive L → Reflexive R → Reflexive (L ∩ R)
reflexive L-refl R-refl = L-refl , R-refl
symmetric : Symmetric L → Symmetric R → Symmetric (L ∩ R)
symmetric L-sym R-sym = map L-sym R-sym
transitive : Transitive L → Transitive R → Transitive (L ∩ R)
transitive L-trans R-trans (xLy , xRy) (yLz , yRz) = L-trans xLy yLz , R-trans xRy yRz
respects : ∀ {p} (P : A → Type p) →
P Respects L ⊎ P Respects R → P Respects (L ∩ R)
respects P resp (Lxy , Rxy) = rec (λ x → x Lxy) (λ x → x Rxy) resp
min : ∀ {⊤} → Minimum L ⊤ → Minimum R ⊤ → Minimum (L ∩ R) ⊤
min L-min R-min = intro L-min R-min
max : ∀ {⊥} → Maximum L ⊥ → Maximum R ⊥ → Maximum (L ∩ R) ⊥
max L-max R-max = intro L-max R-max
toNotEq : ToNotEq L ⊎ ToNotEq R → ToNotEq (L ∩ R)
toNotEq tonoteq (Lxy , Rxy) x≡y = rec (λ x → x Lxy x≡y) (λ y → y Rxy x≡y) tonoteq
irreflexive : Irreflexive L ⊎ Irreflexive R → Irreflexive (L ∩ R)
irreflexive irrefl (xLx , xRx) = rec (λ x → x xLx) (λ y → y xRx) irrefl
antisymmetric : Antisymmetric L ⊎ Antisymmetric R → Antisymmetric (L ∩ R)
antisymmetric (inl L-antisym) (Lxy , _) (Lyx , _) = L-antisym Lxy Lyx
antisymmetric (inr R-antisym) (_ , Rxy) (_ , Ryx) = R-antisym Rxy Ryx
module _ {a b ℓ₁ ℓ₂ ℓ₃} {A : Type a} {B : Type b}
(≈ : RawREL A B ℓ₁) {L : RawREL A B ℓ₂} {R : RawREL A B ℓ₃} where
implies : (≈ ⇒ L) → (≈ ⇒ R) → ≈ ⇒ (L ∩ R)
implies ≈⇒L ≈⇒R = intro ≈⇒L ≈⇒R
module _ {a ℓ₁ ℓ₂ ℓ₃} {A : Type a}
(≈ : RawRel A ℓ₁) (L : RawRel A ℓ₂) (R : RawRel A ℓ₃) where
respectsˡ : L Respectsˡ ≈ → R Respectsˡ ≈ → (L ∩ R) Respectsˡ ≈
respectsˡ L-resp R-resp x≈y = map (L-resp x≈y) (R-resp x≈y)
respectsʳ : L Respectsʳ ≈ → R Respectsʳ ≈ → (L ∩ R) Respectsʳ ≈
respectsʳ L-resp R-resp x≈y = map (L-resp x≈y) (R-resp x≈y)
respects₂ : L Respects₂ ≈ → R Respects₂ ≈ → (L ∩ R) Respects₂ ≈
respects₂ (Lʳ , Lˡ) (Rʳ , Rˡ) = respectsʳ Lʳ Rʳ , respectsˡ Lˡ Rˡ
module _ {a b ℓ₁ ℓ₂} {A : Type a} {B : Type b} {L : RawREL A B ℓ₁} {R : RawREL A B ℓ₂} where
decidable : Decidable L → Decidable R → Decidable (L ∩ R)
decidable L? R? x y = ×-dec (L? x y) (R? x y)
------------------------------------------------------------------------
-- Structures
module _ {a ℓ₁ ℓ₂} {A : Type a} {L : RawRel A ℓ₁} {R : RawRel A ℓ₂} where
isPartialEquivalence : IsPartialEquivalence L → IsPartialEquivalence R → IsPartialEquivalence (L ∩ R)
isPartialEquivalence eqₗ eqᵣ = record
{ symmetric = symmetric L R Eqₗ.symmetric Eqᵣ.symmetric
; transitive = transitive L R Eqₗ.transitive Eqᵣ.transitive
}
where module Eqₗ = IsPartialEquivalence eqₗ; module Eqᵣ = IsPartialEquivalence eqᵣ
isEquivalence : IsEquivalence L → IsEquivalence R → IsEquivalence (L ∩ R)
isEquivalence eqₗ eqᵣ = record
{ isPartialEquivalence = isPartialEquivalence Eqₗ.isPartialEquivalence Eqᵣ.isPartialEquivalence
; reflexive = reflexive L R Eqₗ.reflexive Eqᵣ.reflexive
}
where module Eqₗ = IsEquivalence eqₗ; module Eqᵣ = IsEquivalence eqᵣ
isDecEquivalence : IsDecEquivalence L → IsDecEquivalence R → IsDecEquivalence (L ∩ R)
isDecEquivalence eqₗ eqᵣ = record
{ isEquivalence = isEquivalence Eqₗ.isEquivalence Eqᵣ.isEquivalence
; _≟_ = decidable Eqₗ._≟_ Eqᵣ._≟_
}
where module Eqₗ = IsDecEquivalence eqₗ; module Eqᵣ = IsDecEquivalence eqᵣ
isPreorder : IsPreorder L → IsPreorder R → IsPreorder (L ∩ R)
isPreorder Oₗ Oᵣ = record
{ reflexive = reflexive L R Oₗ.reflexive Oᵣ.reflexive
; transitive = transitive L R Oₗ.transitive Oᵣ.transitive
}
where module Oₗ = IsPreorder Oₗ; module Oᵣ = IsPreorder Oᵣ
isPartialOrderˡ : IsPartialOrder L → IsPreorder R → IsPartialOrder (L ∩ R)
isPartialOrderˡ Oₗ Oᵣ = record
{ isPreorder = isPreorder Oₗ.isPreorder Oᵣ
; antisym = antisymmetric L R (inl Oₗ.antisym)
}
where module Oₗ = IsPartialOrder Oₗ; module Oᵣ = IsPreorder Oᵣ
isPartialOrderʳ : IsPreorder L → IsPartialOrder R → IsPartialOrder (L ∩ R)
isPartialOrderʳ Oₗ Oᵣ = record
{ isPreorder = isPreorder Oₗ Oᵣ.isPreorder
; antisym = antisymmetric L R (inr Oᵣ.antisym)
}
where module Oₗ = IsPreorder Oₗ; module Oᵣ = IsPartialOrder Oᵣ
isStrictPartialOrderˡ : IsStrictPartialOrder L → Transitive R → IsStrictPartialOrder (L ∩ R)
isStrictPartialOrderˡ Oₗ transitiveᵣ = record
{ irrefl = irreflexive L R (inl Oₗ.irrefl)
; transitive = transitive L R Oₗ.transitive transitiveᵣ
}
where module Oₗ = IsStrictPartialOrder Oₗ
isStrictPartialOrderʳ : Transitive L → IsStrictPartialOrder R → IsStrictPartialOrder (L ∩ R)
isStrictPartialOrderʳ transitiveₗ Oᵣ = record
{ irrefl = irreflexive L R (inr Oᵣ.irrefl)
; transitive = transitive L R transitiveₗ Oᵣ.transitive
}
where module Oᵣ = IsStrictPartialOrder Oᵣ
| {
"alphanum_fraction": 0.634402852,
"avg_line_length": 40.9489051095,
"ext": "agda",
"hexsha": "40b580926bfdec81145a5a767a09ce9728216367",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bijan2005/univalent-foundations",
"max_forks_repo_path": "Cubical/Relation/Binary/Raw/Construct/Intersection.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bijan2005/univalent-foundations",
"max_issues_repo_path": "Cubical/Relation/Binary/Raw/Construct/Intersection.agda",
"max_line_length": 103,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bijan2005/univalent-foundations",
"max_stars_repo_path": "Cubical/Relation/Binary/Raw/Construct/Intersection.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2181,
"size": 5610
} |
-- Andreas & Jesper, 2018-05-11, issue #3052 reported by identicalsnowflake
--
-- The problem here was that free variable collection had the standard
-- monoid instance of IntMap, which is just "randomly" picking one variant.
-- Thus, if we have both irrelevant and relevant occurrences of a variable,
-- we get whatever.
-- Now we keep the stronger information (relevant, see maxVarOcc).
{-# OPTIONS --show-irrelevant #-}
-- {-# OPTIONS -v tc.meta.assign:100 -v tc.meta.occurs:45 #-}
-- {-# OPTIONS -v tc.lhs:100 #-}
postulate
A : Set
B : A → Set
record Σ : Set where
constructor _,_
field
proj₁ : A
proj₂ : B proj₁
open Σ public
record Foo : Set where
constructor foo
field
.theFoo : Σ
test : Foo → Foo
test (foo (a , b)) = foo (a , thm a b) -- Error at b
-- Constraint: a, b ⊢ ?0 .a .b a = B a : Set
-- Note the irrelevant occurrence .a and the relevant occurrence a
-- on the lhs of this constraint!
where
-- Meta ?0 : [.a, .b, x] Set
postulate thm : (x : A) (y : _) → B x
-- Underscore should solved by B x
-- thm x y = y -- WAS: Worked only if definition is given (which
-- Should succeed.
| {
"alphanum_fraction": 0.6460869565,
"avg_line_length": 28.0487804878,
"ext": "agda",
"hexsha": "34070f53a3f5c932abaac107e269a0ad0f93b9a9",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Succeed/Issue3052-simplified.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Succeed/Issue3052-simplified.agda",
"max_line_length": 75,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Succeed/Issue3052-simplified.agda",
"max_stars_repo_stars_event_max_datetime": "2016-03-17T01:45:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-03-17T01:45:59.000Z",
"num_tokens": 350,
"size": 1150
} |
module Ex3Lec where
----------------------------------------------------------------------------
-- EXERCISE 3 -- MONADS FOR HUTTON'S RAZOR
--
-- VALUE: 15%
-- DEADLINE: 5pm, Friday 20 November (week 9)
--
-- DON'T SUBMIT, COMMIT!
--
-- The purpose of this exercise is to introduce you to some useful
-- mathematical structures and build good tools for working with
-- vectors
----------------------------------------------------------------------------
open import CS410-Prelude
open import CS410-Monoid
open import CS410-Nat
open import CS410-Vec
open import CS410-Functor
-- HINT: your tasks are heralded with the eminently searchable tag, "???"
----------------------------------------------------------------------------
-- HUTTON'S RAZOR
----------------------------------------------------------------------------
HVal : Set -- the set of *values* for Hutton's Razor
HVal = Two + Nat -- Booleans or natural numbers
foo : HVal
foo = tt , ff
goo : HVal
goo = ff , 42
data HExp (X : Set) : Set where
var : X -> HExp X -- variables
val : HVal -> HExp X -- values
_+H_ _>=H_ : (e1 e2 : HExp X) -> HExp X -- addition, comparison
ifH_then_else_ : (e1 e2 e3 : HExp X) -> HExp X -- conditional
_>=2_ : Nat -> Nat -> Two
x >=2 zero = tt
zero >=2 suc _ = ff
suc m >=2 suc n = m >=2 n
----------------------------------------------------------------------------
-- ??? 3.1 the HExp syntax-with-substitution monad (score: ? / 2)
----------------------------------------------------------------------------
-- Show that HExp is a monad, where the "bind" operation performs
-- simultaneous substitution (transforming all the variables in a term).
hExpMonad : Monad HExp
hExpMonad = record { return = {!!} ; _>>=_ = {!!} }
----------------------------------------------------------------------------
-- ??? 3.2 the error management monad (score: ? / 1)
----------------------------------------------------------------------------
-- show that "+ E" is monadic, generalising the "Maybe" monad by allowing
-- some sort of error report
errorMonad : (E : Set) -> Monad \ V -> V + E -- "value or error"
errorMonad E = {!!}
----------------------------------------------------------------------------
-- ??? 3.3 the environment monad transformer (score: ? / 1)
----------------------------------------------------------------------------
-- show that "+ E" is monadic, generalising the "Maybe" monad by allowing
-- some sort of error report
envMonad : (G : Set){M : Set -> Set} -> Monad M ->
Monad \ V -> G -> M V -- "computation in an environment"
envMonad G MM = {!!} where
open Monad MM
----------------------------------------------------------------------------
-- ??? 3.4 interpreting Hutton's Razor (score: ? / 3)
----------------------------------------------------------------------------
-- Implement an interpreter for Hutton's Razor.
-- You will need to construct a type to represent possible run-time errors.
-- Ensure that addition and comparison act on numbers, not Booleans.
-- Ensure that the condition in an "if" is a Boolean, not a number.
data InterpretError : Set where
-- helpful things to build
Env : Set -> Set -- an environment for a given set of variables
Env X = X -> HVal
Compute : Set{- variables -} -> Set{- values -} -> Set
Compute X V = Env X -> V + InterpretError -- how to compute a V
computeMonad : {X : Set} -> Monad (Compute X)
computeMonad = {!!} -- build this from the above parts
-- This operation should explain how to get the value of a variable
-- from the environment.
varVal : {X : Set} -> X -> Compute X HVal
varVal x = {!!}
-- These operations should ensure that you get the sort of value
-- that you want, in order to ensure that you don't do bogus
-- computation.
mustBeNat : {X : Set} -> HVal -> Compute X Nat
mustBeNat v = {!!}
mustBeTwo : {X : Set} -> HVal -> Compute X Two
mustBeTwo v = {!!}
-- Now, you're ready to go. Don't introduce the environent explicitly.
-- Use the monad to thread it.
interpret : {X : Set} -> HExp X -> Compute X HVal
interpret {X} = go where
open Monad (envMonad (Env X) (errorMonad InterpretError))
go : HExp X -> Env X -> HVal + InterpretError
go t = {!!}
| {
"alphanum_fraction": 0.494014733,
"avg_line_length": 33.6744186047,
"ext": "agda",
"hexsha": "2f3d8f69983ebbbfdb77b9f330f74d67ccb09bd3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "clarkdm/CS410",
"max_forks_repo_path": "Ex3Lec.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "clarkdm/CS410",
"max_issues_repo_path": "Ex3Lec.agda",
"max_line_length": 77,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "clarkdm/CS410",
"max_stars_repo_path": "Ex3Lec.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1018,
"size": 4344
} |
{-# OPTIONS --type-in-type #-}
open import Data.Product
data ⊥ : Set where
-- f doesn't type check unless we put the equality type in Set
data _≡_ {ℓ} {A : Set ℓ} (a : A) : A → Set where
refl : a ≡ a
subst : ∀ {ℓ ℓ′} {A : Set ℓ} {a b : A} → (P : A → Set ℓ′) → (p : a ≡ b) → P a → P b
subst _ refl pa = pa
¬_ : ∀ {ℓ} → Set ℓ → Set ℓ
¬ A = A → ⊥
℘ : ∀ {ℓ} → Set ℓ → Set _
℘ {ℓ} S = S → Set
{-# NO_POSITIVITY_CHECK #-}
record Bad : Set₁ where
constructor mkBad
field bad : ℘ (℘ Bad)
f : ℘ Bad → Bad
f p = mkBad (_≡ p)
fInj : ∀ {p q} → f p ≡ f q → p ≡ q
fInj {p} fp≡fq = subst (λ p≡ → p≡ p) (badInj fp≡fq) refl
where
badInj : ∀ {a b} → mkBad a ≡ mkBad b → a ≡ b
badInj refl = refl
-- type-in-type is for here onwards
P₀ : ℘ Bad
P₀ x = Σ[ P ∈ ℘ Bad ] x ≡ f P × ¬ (P x)
x₀ : Bad
x₀ = f P₀
P₀x₀→¬P₀x₀ : P₀ x₀ → ¬ P₀ x₀
P₀x₀→¬P₀x₀ (P , x₀≡fP , ¬Px₀) P₀x₀ = ¬Px₀ (subst (λ P → P x₀) (fInj x₀≡fP) P₀x₀)
¬P₀x₀→P₀x₀ : ¬ P₀ x₀ → P₀ x₀
¬P₀x₀→P₀x₀ ¬P₀x₀ = P₀ , refl , ¬P₀x₀
¬P₀x₀ : ¬ P₀ x₀
¬P₀x₀ P₀x₀ = P₀x₀→¬P₀x₀ P₀x₀ P₀x₀
false : ⊥
false = ¬P₀x₀ (¬P₀x₀→P₀x₀ ¬P₀x₀) | {
"alphanum_fraction": 0.5296846011,
"avg_line_length": 21.137254902,
"ext": "agda",
"hexsha": "8fd5263b2615ce62d17f1b3ee7e1531532899940",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "d54cdaf24391b2726e491a18cba2d2d8ae3ac20b",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ionathanch/ionathanch.github.io",
"max_forks_repo_path": "_assets/agda/Positivity.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d54cdaf24391b2726e491a18cba2d2d8ae3ac20b",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ionathanch/ionathanch.github.io",
"max_issues_repo_path": "_assets/agda/Positivity.agda",
"max_line_length": 83,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "d54cdaf24391b2726e491a18cba2d2d8ae3ac20b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ionathanch/ionathanch.github.io",
"max_stars_repo_path": "_assets/agda/Positivity.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 569,
"size": 1078
} |
open import System.IO using ( _>>_ ; putStr ; commit )
open import Data.Natural using ( show )
open import System.IO.Examples.Four using ( four )
module System.IO.Examples.HelloFour where
main = putStr "Hello, " >> putStr (show four) >> putStr ".\n" >> commit
| {
"alphanum_fraction": 0.7022900763,
"avg_line_length": 32.75,
"ext": "agda",
"hexsha": "db9b3c20496f85d86365534c060cf98ae52f7c52",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:23.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-08-10T06:12:54.000Z",
"max_forks_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ilya-fiveisky/agda-system-io",
"max_forks_repo_path": "src/System/IO/Examples/HelloFour.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ilya-fiveisky/agda-system-io",
"max_issues_repo_path": "src/System/IO/Examples/HelloFour.agda",
"max_line_length": 71,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ilya-fiveisky/agda-system-io",
"max_stars_repo_path": "src/System/IO/Examples/HelloFour.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-15T04:35:41.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-04T13:45:16.000Z",
"num_tokens": 71,
"size": 262
} |
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Monoids.Definition
module Semirings.Definition where
record Semiring {a : _} {A : Set a} (Zero One : A) (_+_ : A → A → A) (_*_ : A → A → A) : Set a where
field
monoid : Monoid Zero _+_
commutative : (a b : A) → a + b ≡ b + a
multMonoid : Monoid One _*_
productZeroLeft : (a : A) → Zero * a ≡ Zero
productZeroRight : (a : A) → a * Zero ≡ Zero
+DistributesOver* : (a b c : A) → a * (b + c) ≡ (a * b) + (a * c)
+DistributesOver*' : (a b c : A) → (a + b) * c ≡ (a * c) + (b * c)
+Associative = Monoid.associative monoid
*Associative = Monoid.associative multMonoid
productOneLeft = Monoid.idLeft multMonoid
productOneRight = Monoid.idRight multMonoid
sumZeroLeft = Monoid.idLeft monoid
sumZeroRight = Monoid.idRight monoid
+WellDefined : {a b c d : A} → (a ≡ c) → (b ≡ d) → (a + b) ≡ (c + d)
+WellDefined refl refl = refl
-- (b+c)(a+a) == b(a+a) + c(a+a) == ba+ba+ca+ca == (ba+ca) + (ba+ca)
-- (b+c)(a+a) ==? (b+c)a+(b+c)a
| {
"alphanum_fraction": 0.5820754717,
"avg_line_length": 37.8571428571,
"ext": "agda",
"hexsha": "92e5f571d9e5ff16c1b5922b9fa2251725d0e339",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Semirings/Definition.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Semirings/Definition.agda",
"max_line_length": 100,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Semirings/Definition.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 412,
"size": 1060
} |
{-# OPTIONS --type-in-type --rewriting #-}
open import Agda.Builtin.Sigma
open import Agda.Builtin.Equality
coe : {A B : Set} → A ≡ B → A → B
coe refl x = x
{-# BUILTIN REWRITE _≡_ #-}
Tel = Set
U = Set
variable
Δ : Tel
A B : Δ → U
δ₀ δ₁ : Δ
postulate
IdTel : (Δ : Tel)(δ₀ δ₁ : Δ) → Tel
Id : (A : Δ → U){δ₀ δ₁ : Δ}(δ₂ : IdTel Δ δ₀ δ₁) → A δ₀ → A δ₁ → U
ap : {A : Δ → U}(a : (δ : Δ) → A δ)
→ {δ₀ δ₁ : Δ}(δ₂ : IdTel Δ δ₀ δ₁) → Id A δ₂ (a δ₀) (a δ₁)
idTel-sigma : {a₀ : A δ₀}{a₁ : A δ₁}
→ IdTel (Σ Δ A) (δ₀ , a₀) (δ₁ , a₁)
≡ Σ (IdTel Δ δ₀ δ₁) (λ δ₂ → Id A δ₂ a₀ a₁)
{-# REWRITE idTel-sigma #-}
id-u : {A₀ A₁ : U}{δ₂ : IdTel Δ δ₀ δ₁}
→ Id {Δ = Δ}(λ _ → U) δ₂ A₀ A₁ ≡ (A₀ → A₁ → U)
{-# REWRITE id-u #-}
id-ap : {δ₂ : IdTel Δ δ₀ δ₁}{a₀ : A δ₀}{a₁ : A δ₁}
→ Id A δ₂ a₀ a₁ ≡ ap {A = λ _ → U} A δ₂ a₀ a₁
ap-sigma : {δ₂ : IdTel Δ δ₀ δ₁}{a₀ : A δ₀}{a₁ : A δ₁}
{B : (δ : Δ) → A δ → U}
{b₀ : B δ₀ a₀}{b₁ : B δ₁ a₁}→
ap {Δ = Δ}{A = λ _ → U} (λ δ → Σ (A δ) (B δ))
δ₂ (a₀ , b₀) (a₁ , b₁) ≡
Σ (Id A δ₂ a₀ a₁) λ a₂ → Id {Δ = Σ Δ A} (λ (δ , a) → B δ a) (δ₂ , a₂) b₀ b₁
{-# REWRITE ap-sigma #-}
{-# REWRITE id-ap #-}
ap-proj₁ : {δ₂ : IdTel Δ δ₀ δ₁}
{B : (δ : Δ) → A δ → U}
{ab : (δ : Δ) → Σ (A δ) (B δ)}
→ ap {Δ = Δ}{A = A}(λ δ → fst (ab δ)) δ₂
≡ fst (ap ab δ₂)
| {
"alphanum_fraction": 0.4121253406,
"avg_line_length": 28.7843137255,
"ext": "agda",
"hexsha": "20baf87b539733db297ad34dd41aa8e1f01c1905",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue5531.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue5531.agda",
"max_line_length": 91,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue5531.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 688,
"size": 1468
} |
{-# OPTIONS --cubical-compatible --rewriting --confluence-check #-}
module Issue1719.Spans where
open import Issue1719.Common
record Span : Set₁ where
constructor span
field
A B C : Set
f : C → A
g : C → B
open Span public
| {
"alphanum_fraction": 0.673553719,
"avg_line_length": 17.2857142857,
"ext": "agda",
"hexsha": "b6bd69c2798968c5eedca6d1dc2a9350dc2d99fe",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Succeed/Issue1719/Spans.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Succeed/Issue1719/Spans.agda",
"max_line_length": 67,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Succeed/Issue1719/Spans.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 69,
"size": 242
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.