filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_0_11908
#import math import numpy as np import scipy.optimize from . import factor from .material import char_mat_strength __all__ = [ "pipe_ovality", "pipe_char_elastic_pressure", "pipe_char_plastic_pressure", "char_collapse_pressure_num", "char_collapse_pressure", "pipe_collapse_unity", "pipe_collapse_all" ] # from .pipe_collapse import pipe_char_elastic_pressure # from .pipe_collapse import pipe_char_plastic_pressure # from .pipe_collapse import pipe_ovality # from .pipe_collapse import char_collapse_pressure # from .pipe_collapse import pipe_collapse_unity # def pipeCollapse(t,D,P_c,SMYS,nu=0.3,E=207.*10**9, f_o=None): # '''DNV-OS-F101:2010 Sec.5 D401, collapse due to external pressure ''' # P_el = 2*E*(t/D)**3/(1-nu**2) # P_p = f_y*alpha_fab*(2*t/D) # if not f_o: # f_o = (D_max-D_min)/D # if f_o<0.005: f_o = 0.005 # return (P_c-P_el)*(P_c**2-P_p**2) - P_c*P_el*P_p*f_o*D/t def pipe_ovality(D, D_max=None, D_min=None) -> "O_0": """Calculate pipe ovality. Reference: DNVGL-ST-F101 (2017-12) sec:5.4.4.2 eq:5.14 page:96 $O_0$ """ if D_max is None: D_max = D if D_min is None: D_min = D O_0 = (D_max - D_min) / D if O_0 < 0.005: O_0 = 0.005 return O_0 def pipe_char_elastic_pressure(t, D, nu=0.3, E=207.0*10**9) -> "p_el": """Calculate p_el. Reference: DNVGL-ST-F101 (2017-12) sec:5.4.4.2 eq:5.12 page:96 $p_{el}$ """ p_el = 2*E*(t/D)**3/(1-nu**2) return p_el def pipe_char_plastic_pressure(t, D, f_y, alpha_fab) -> "p_p": """Calculate characteristic plastic pressure p_p. Reference: DNVGL-ST-F101 (2017-12) sec:5.4.4.2 eq:5.13 page:96 $p_p$ """ p_p = f_y*alpha_fab*(2*t/D) return p_p def p_c_zerofunc(p_c, p_el, p_p, O_0, D, t): return (p_c-p_el)*(p_c**2-p_p**2) - p_c*p_el*p_p*O_0*D/t def p_c_fprime(p_c, p_el, p_p, O_0, D, t): return 3*p_c**2 - 2*p_c*p_el - p_p**2 - p_el*p_p**O_0*D/t def char_collapse_pressure_num(p_el, p_p, O_0, D, t, p_c_0=1.e5) -> "p_c": """Calculate p_c numerically using Newton's method. Reference: DNVGL-ST-F101 (2017-12) sec:5.4.4.2 eq:5.11 page:95 $p_c$ """ p_c = scipy.optimize.newton(p_c_zerofunc, p_c_0, p_c_fprime, args=(p_el, p_p, O_0, D, t)) return p_c def char_collapse_pressure(p_el, p_p, O_0, D, t) -> "p_c": """Calculate p_c analytically using solution of cubic equation given in DNVGL-ST-F101. Reference: DNVGL-ST-F101 (2017-12) sec:13.4.7 eq:13.10 page:299 $p_c$ """ b = -p_el c = -(p_p**2 + p_el*p_p*O_0*D/t) d = p_el * p_p**2 u = 1/3 * (-1/3 * b**2 + c) v = 1/2 * (2/27 * b**3 - 1/3 * b*c + d) phi = np.arccos(-v / np.sqrt(-u**3)) y = -2 * np.sqrt(-u) * np.cos(phi/3 + 60*np.pi/180) p_c = y - 1/3 * b return p_c def pipe_collapse_unity(p_e, p_c, gamma_m, gamma_SCLB, p_min=0 ) -> "pipe_collapse_uty": """Calculate pipe collapse unity value. Local buckling – system collapse (external over pressure only). Reference: DNVGL-ST-F101 (2017-12) sec:5.4.4.1 eq:5.10 page:95 $p_{lt}$ """ # if gamma_m is None: # gamma_m = factor.gamma_m_map[limit_state] # if gamma_SCLB is None: # gamma_SCLB = factor.gamma_SCLB_map[SC] pipe_collapse_uty = (p_e - p_min) * gamma_m * gamma_SCLB / p_c return pipe_collapse_uty def external_pressure(depth, rho_water, g=9.81) -> "p_e": p_e = abs(depth) * rho_water * g return p_e def pipe_collapse_all(t, D, E, nu, SMYS, h_l, rho_water, gamma_m, alpha_fab, alpha_U, gamma_SCLB, material=None, T=None, f_ytemp=None, D_max=None, D_min=None, p_min=0, g=9.81 ) -> "{}": O_0 = pipe_ovality(D, D_max, D_min) p_el = pipe_char_elastic_pressure(t, D, nu, E) #_alpha_U = factor.alpha_U_map(alpha_U) f_y = char_mat_strength(SMYS, material, T, f_ytemp, alpha_U) #_alpha_fab = factor.alpha_fab_map(alpha_fab) p_p = pipe_char_plastic_pressure(t, D, f_y, alpha_fab) p_c = char_collapse_pressure(p_el, p_p, O_0, D, t) p_e = external_pressure(abs(h_l), rho_water, g) pipe_collapse_uty = pipe_collapse_unity(p_e, p_c, gamma_m, gamma_SCLB, p_min) return { "O_0": O_0, "p_el": p_el, "p_p": p_p, "p_c": p_c, "p_e": p_e, "pipe_collapse_uty": pipe_collapse_uty, } if __name__ == "__main__": p_c_0 = 1025*9.81*1 t = 0.0212 t_corr = 0.0005 t_fab = 0.001 t_1 = t - t_corr - t_fab D = 0.660 D_max = D D_min = D SMYS = 450e6 f_y = SMYS - 6e6 alpha_fab = 1.00 h_l = -410. rho_water = 1027. p_e = rho_water*9.81*abs(h_l) p_el = pipe_char_elastic_pressure(t_1, D, nu=0.3, E=207.*10**9) p_p = pipe_char_plastic_pressure(t_1, D, f_y, alpha_fab) O_0 = pipe_ovality(D, D_max, D_min) p_c = char_collapse_pressure_num(p_el, p_p, O_0, D, t_1, p_c_0=p_c_0) print("p_c (numerical)=", p_c) pipe_collapse_uty = pipe_collapse_unity(p_e, p_c) print("pipe_colpse_uty (numerical)=", pipe_collapse_uty) p_c = char_collapse_pressure(p_el, p_p, O_0, D, t_1) print("p_c=", p_c) pipe_collapse_uty = pipe_collapse_unity(p_e, p_c) print("pipe_colpse_uty=", pipe_collapse_uty)
the-stack_0_11911
from __future__ import division import math import torch from torch.jit.annotations import List, Tuple from torch import Tensor import torchvision # TODO: https://github.com/pytorch/pytorch/issues/26727 def zeros_like(tensor, dtype): # type: (Tensor, int) -> Tensor return torch.zeros_like(tensor, dtype=dtype, layout=tensor.layout, device=tensor.device, pin_memory=tensor.is_pinned()) @torch.jit.script class BalancedPositiveNegativeSampler(object): """ This class samples batches, ensuring that they contain a fixed proportion of positives """ def __init__(self, batch_size_per_image, positive_fraction): # type: (int, float) """ Arguments: batch_size_per_image (int): number of elements to be selected per image positive_fraction (float): percentace of positive elements per batch """ self.batch_size_per_image = batch_size_per_image self.positive_fraction = positive_fraction def __call__(self, matched_idxs): # type: (List[Tensor]) """ Arguments: matched idxs: list of tensors containing -1, 0 or positive values. Each tensor corresponds to a specific image. -1 values are ignored, 0 are considered as negatives and > 0 as positives. Returns: pos_idx (list[tensor]) neg_idx (list[tensor]) Returns two lists of binary masks for each image. The first list contains the positive elements that were selected, and the second list the negative example. """ pos_idx = [] neg_idx = [] for matched_idxs_per_image in matched_idxs: positive = torch.nonzero(matched_idxs_per_image >= 1).squeeze(1) negative = torch.nonzero(matched_idxs_per_image == 0).squeeze(1) num_pos = int(self.batch_size_per_image * self.positive_fraction) # protect against not enough positive examples num_pos = min(positive.numel(), num_pos) num_neg = self.batch_size_per_image - num_pos # protect against not enough negative examples num_neg = min(negative.numel(), num_neg) # randomly select positive and negative examples perm1 = torch.randperm(positive.numel(), device=positive.device)[:num_pos] perm2 = torch.randperm(negative.numel(), device=negative.device)[:num_neg] pos_idx_per_image = positive[perm1] neg_idx_per_image = negative[perm2] # create binary mask from indices pos_idx_per_image_mask = zeros_like( matched_idxs_per_image, dtype=torch.uint8 ) neg_idx_per_image_mask = zeros_like( matched_idxs_per_image, dtype=torch.uint8 ) pos_idx_per_image_mask[pos_idx_per_image] = torch.tensor(1, dtype=torch.uint8) neg_idx_per_image_mask[neg_idx_per_image] = torch.tensor(1, dtype=torch.uint8) pos_idx.append(pos_idx_per_image_mask) neg_idx.append(neg_idx_per_image_mask) return pos_idx, neg_idx @torch.jit.script def encode_boxes(reference_boxes, proposals, weights): # type: (torch.Tensor, torch.Tensor, torch.Tensor) -> torch.Tensor """ Encode a set of proposals with respect to some reference boxes Arguments: reference_boxes (Tensor): reference boxes proposals (Tensor): boxes to be encoded """ # perform some unpacking to make it JIT-fusion friendly wx = weights[0] wy = weights[1] ww = weights[2] wh = weights[3] proposals_x1 = proposals[:, 0].unsqueeze(1) proposals_y1 = proposals[:, 1].unsqueeze(1) proposals_x2 = proposals[:, 2].unsqueeze(1) proposals_y2 = proposals[:, 3].unsqueeze(1) reference_boxes_x1 = reference_boxes[:, 0].unsqueeze(1) reference_boxes_y1 = reference_boxes[:, 1].unsqueeze(1) reference_boxes_x2 = reference_boxes[:, 2].unsqueeze(1) reference_boxes_y2 = reference_boxes[:, 3].unsqueeze(1) # implementation starts here ex_widths = proposals_x2 - proposals_x1 ex_heights = proposals_y2 - proposals_y1 ex_ctr_x = proposals_x1 + 0.5 * ex_widths ex_ctr_y = proposals_y1 + 0.5 * ex_heights gt_widths = reference_boxes_x2 - reference_boxes_x1 gt_heights = reference_boxes_y2 - reference_boxes_y1 gt_ctr_x = reference_boxes_x1 + 0.5 * gt_widths gt_ctr_y = reference_boxes_y1 + 0.5 * gt_heights targets_dx = wx * (gt_ctr_x - ex_ctr_x) / ex_widths targets_dy = wy * (gt_ctr_y - ex_ctr_y) / ex_heights targets_dw = ww * torch.log(gt_widths / ex_widths) targets_dh = wh * torch.log(gt_heights / ex_heights) targets = torch.cat((targets_dx, targets_dy, targets_dw, targets_dh), dim=1) return targets @torch.jit.script class BoxCoder(object): """ This class encodes and decodes a set of bounding boxes into the representation used for training the regressors. """ def __init__(self, weights, bbox_xform_clip=math.log(1000. / 16)): # type: (Tuple[float, float, float, float], float) """ Arguments: weights (4-element tuple) bbox_xform_clip (float) """ self.weights = weights self.bbox_xform_clip = bbox_xform_clip def encode(self, reference_boxes, proposals): # type: (List[Tensor], List[Tensor]) boxes_per_image = [len(b) for b in reference_boxes] reference_boxes = torch.cat(reference_boxes, dim=0) proposals = torch.cat(proposals, dim=0) targets = self.encode_single(reference_boxes, proposals) return targets.split(boxes_per_image, 0) def encode_single(self, reference_boxes, proposals): """ Encode a set of proposals with respect to some reference boxes Arguments: reference_boxes (Tensor): reference boxes proposals (Tensor): boxes to be encoded """ dtype = reference_boxes.dtype device = reference_boxes.device weights = torch.as_tensor(self.weights, dtype=dtype, device=device) targets = encode_boxes(reference_boxes, proposals, weights) return targets def decode(self, rel_codes, boxes): # type: (Tensor, List[Tensor]) assert isinstance(boxes, (list, tuple)) assert isinstance(rel_codes, torch.Tensor) boxes_per_image = [b.size(0) for b in boxes] concat_boxes = torch.cat(boxes, dim=0) box_sum = 0 for val in boxes_per_image: box_sum += val pred_boxes = self.decode_single( rel_codes.reshape(box_sum, -1), concat_boxes ) return pred_boxes.reshape(box_sum, -1, 4) def decode_single(self, rel_codes, boxes): """ From a set of original boxes and encoded relative box offsets, get the decoded boxes. Arguments: rel_codes (Tensor): encoded boxes boxes (Tensor): reference boxes. """ boxes = boxes.to(rel_codes.dtype) widths = boxes[:, 2] - boxes[:, 0] heights = boxes[:, 3] - boxes[:, 1] ctr_x = boxes[:, 0] + 0.5 * widths ctr_y = boxes[:, 1] + 0.5 * heights wx, wy, ww, wh = self.weights dx = rel_codes[:, 0::4] / wx dy = rel_codes[:, 1::4] / wy dw = rel_codes[:, 2::4] / ww dh = rel_codes[:, 3::4] / wh # Prevent sending too large values into torch.exp() dw = torch.clamp(dw, max=self.bbox_xform_clip) dh = torch.clamp(dh, max=self.bbox_xform_clip) pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] pred_w = torch.exp(dw) * widths[:, None] pred_h = torch.exp(dh) * heights[:, None] pred_boxes1 = pred_ctr_x - torch.tensor(0.5, dtype=pred_ctr_x.dtype) * pred_w pred_boxes2 = pred_ctr_y - torch.tensor(0.5, dtype=pred_ctr_y.dtype) * pred_h pred_boxes3 = pred_ctr_x + torch.tensor(0.5, dtype=pred_ctr_x.dtype) * pred_w pred_boxes4 = pred_ctr_y + torch.tensor(0.5, dtype=pred_ctr_y.dtype) * pred_h pred_boxes = torch.stack((pred_boxes1, pred_boxes2, pred_boxes3, pred_boxes4), dim=2).flatten(1) return pred_boxes @torch.jit.script class Matcher(object): """ This class assigns to each predicted "element" (e.g., a box) a ground-truth element. Each predicted element will have exactly zero or one matches; each ground-truth element may be assigned to zero or more predicted elements. Matching is based on the MxN match_quality_matrix, that characterizes how well each (ground-truth, predicted)-pair match. For example, if the elements are boxes, the matrix may contain box IoU overlap values. The matcher returns a tensor of size N containing the index of the ground-truth element m that matches to prediction n. If there is no match, a negative value is returned. """ BELOW_LOW_THRESHOLD = -1 BETWEEN_THRESHOLDS = -2 __annotations__ = { 'BELOW_LOW_THRESHOLD': int, 'BETWEEN_THRESHOLDS': int, } def __init__(self, high_threshold, low_threshold, allow_low_quality_matches=False): # type: (float, float, bool) """ Args: high_threshold (float): quality values greater than or equal to this value are candidate matches. low_threshold (float): a lower quality threshold used to stratify matches into three levels: 1) matches >= high_threshold 2) BETWEEN_THRESHOLDS matches in [low_threshold, high_threshold) 3) BELOW_LOW_THRESHOLD matches in [0, low_threshold) allow_low_quality_matches (bool): if True, produce additional matches for predictions that have only low-quality match candidates. See set_low_quality_matches_ for more details. """ self.BELOW_LOW_THRESHOLD = -1 self.BETWEEN_THRESHOLDS = -2 assert low_threshold <= high_threshold self.high_threshold = high_threshold self.low_threshold = low_threshold self.allow_low_quality_matches = allow_low_quality_matches def __call__(self, match_quality_matrix): """ Args: match_quality_matrix (Tensor[float]): an MxN tensor, containing the pairwise quality between M ground-truth elements and N predicted elements. Returns: matches (Tensor[int64]): an N tensor where N[i] is a matched gt in [0, M - 1] or a negative value indicating that prediction i could not be matched. """ if match_quality_matrix.numel() == 0: # empty targets or proposals not supported during training if match_quality_matrix.shape[0] == 0: raise ValueError( "No ground-truth boxes available for one of the images " "during training") else: raise ValueError( "No proposal boxes available for one of the images " "during training") # match_quality_matrix is M (gt) x N (predicted) # Max over gt elements (dim 0) to find best gt candidate for each prediction matched_vals, matches = match_quality_matrix.max(dim=0) if self.allow_low_quality_matches: all_matches = matches.clone() else: all_matches = None # Assign candidate matches with low quality to negative (unassigned) values below_low_threshold = matched_vals < self.low_threshold between_thresholds = (matched_vals >= self.low_threshold) & ( matched_vals < self.high_threshold ) matches[below_low_threshold] = torch.tensor(self.BELOW_LOW_THRESHOLD) matches[between_thresholds] = torch.tensor(self.BETWEEN_THRESHOLDS) if self.allow_low_quality_matches: assert all_matches is not None self.set_low_quality_matches_(matches, all_matches, match_quality_matrix) return matches def set_low_quality_matches_(self, matches, all_matches, match_quality_matrix): """ Produce additional matches for predictions that have only low-quality matches. Specifically, for each ground-truth find the set of predictions that have maximum overlap with it (including ties); for each prediction in that set, if it is unmatched, then match it to the ground-truth with which it has the highest quality value. """ # For each gt, find the prediction with which it has highest quality highest_quality_foreach_gt, _ = match_quality_matrix.max(dim=1) # Find highest quality match available, even if it is low, including ties gt_pred_pairs_of_highest_quality = torch.nonzero( match_quality_matrix == highest_quality_foreach_gt[:, None] ) # Example gt_pred_pairs_of_highest_quality: # tensor([[ 0, 39796], # [ 1, 32055], # [ 1, 32070], # [ 2, 39190], # [ 2, 40255], # [ 3, 40390], # [ 3, 41455], # [ 4, 45470], # [ 5, 45325], # [ 5, 46390]]) # Each row is a (gt index, prediction index) # Note how gt items 1, 2, 3, and 5 each have two ties pred_inds_to_update = gt_pred_pairs_of_highest_quality[:, 1] matches[pred_inds_to_update] = all_matches[pred_inds_to_update]
the-stack_0_11914
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # author: Tang Zhuangkun import time import sys sys.path.append("..") import database.db_operator as db_operator import log.custom_logger as custom_logger class DataMinerCommonDBOperation: # 通用,常用的(非基金或股票信息)数据库操作 def __init__(self): pass def get_the_last_trading_date(self,day): # 获取传入日期参数最近的交易日期, 即上一个交易日 # day: 交易日期,如 2021-06-09 # return: 如果存在最近的交易日期,则返回日期 # 如果不存在,则返回 0000-00-00 # 查询SQL selecting_sql = "SELECT trading_date FROM trading_days WHERE trading_date <= '%s' ORDER BY " \ "ABS(DATEDIFF(trading_date, '%s')) ASC LIMIT 1" % (day,day) # 查询 selecting_result = db_operator.DBOperator().select_one("financial_data", selecting_sql) if selecting_result is not None: return str(selecting_result["trading_date"]) else: # 日志记录 log_msg = "无法获取 "+day+" 最近的交易日期" custom_logger.CustomLogger().log_writter(log_msg, 'error') return "0000-00-00" if __name__ == '__main__': time_start = time.time() go = DataMinerCommonDBOperation() last_trade_day = go.get_the_last_trading_date("2022-03-20") print(last_trade_day) time_end = time.time() print('Time Cost: ' + str(time_end - time_start))
the-stack_0_11915
#%% import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib import phd.viz import phd.thermo import phd.stats colors, palette = phd.viz.phd_style() # %% # Load the data sets and restrict to the carbon sources data = pd.read_csv('../../data/ch4_growth/analyzed_foldchange.csv') stats = pd.read_csv('../../data/ch8_growth_si/DNA_binding_energy_summary.csv') data = data[(data['strain']=='dilution') & (data['repressors'] > 0) & (data['fold_change'] >= 0) & (data['temp'] == 37) & (data['size']=='large')] summary = data.groupby(['carbon', 'date', 'run_number', 'atc_ngml']).mean().reset_index() summary = summary.groupby(['carbon', 'atc_ngml']).agg(('mean', 'sem')).reset_index() stats = stats[(stats['temp']==37)] # Define the constants for plotting rep_range = np.logspace(0, 3, 100) # %% # Set up the figure canvas fig, ax = plt.subplots(3, 3, figsize=(5.5, 5.5), dpi=100) phd.viz.despine(ax.ravel()) for a in ax.ravel(): a.set_xscale('log') a.set_yscale('log') a.set_xlim([1, 800]) a.set_ylim([1E-2, 1.1]) for i in range(3): ax[-1, i].set_xlabel('repressors per cell') ax[i, 0].set_ylabel('fold-change') for i in range(3): ax[0, i].spines['bottom'].set_visible(False) ax[0, i].set_xticks([]) ax[1, i].spines['bottom'].set_visible(False) ax[1, i].set_xticks([]) ax[i, 1].spines['left'].set_visible(False) ax[i, 1].set_yticks([]) ax[i, 2].spines['left'].set_visible(False) ax[i, 2].set_yticks([]) titles = ['acetate', 'glycerol', 'glucose'] title_colors = [colors['dark_brown'], colors['dark_green'], colors['dark_purple']] bgcolors = [colors['brown'], colors['green'], colors['purple']] for i in range(3): if i > 0: # apply offset transform to all y ticklabels. dx = -13 / fig.dpi dy = 0 offset = matplotlib.transforms.ScaledTranslation(dx, dy, fig.dpi_scale_trans) for label in ax[i, 0].yaxis.get_majorticklabels(): label.set_transform(label.get_transform() + offset) # Plot the predictions for i, pred in enumerate(titles): # Get the binding energy values for the prediction strain low, high = stats[(stats['carbon']==pred) & (stats['parameter']=='epRA')][ ['hpd_min', 'hpd_max']].values[0] # Compute the theory theo_min = phd.thermo.SimpleRepression(R=rep_range, ep_r=low, ka=139, ki=0.53, ep_ai=1000, effector_conc=0).fold_change() theo_max = phd.thermo.SimpleRepression(R=rep_range, ep_r=high, ka=139, ki=0.53, ep_ai=1000, effector_conc=0).fold_change() for j, fit in enumerate(titles): ax[i, j].fill_between(rep_range, theo_min, theo_max, color=title_colors[i], alpha=0.25) # Plot the data for i, carb in enumerate(titles): for j in range(3): if i == j: fill = 'white' edge = bgcolors[i] else: fill = bgcolors[i] edge = colors['grey'] # Isolate the data. d = summary[summary['carbon']==carb] ax[j, i].errorbar(d['repressors']['mean'], d['fold_change']['mean'], xerr=d['repressors']['sem'], yerr=d['fold_change']['sem'], fmt='o', ms=5, markerfacecolor=fill, markeredgewidth=0.5, linestyle='none', capsize=1, lw=0.75, markeredgecolor=edge, color=bgcolors[i]) plt.subplots_adjust(wspace=0.05, hspace=0.05) plt.savefig('../figs/figS10_plots.svg', bbox_inches='tight') # %%
the-stack_0_11916
"""Locale support module. The module provides low-level access to the C lib's locale APIs and adds high level number formatting APIs as well as a locale aliasing engine to complement these. The aliasing engine includes support for many commonly used locale names and maps them to values suitable for passing to the C lib's setlocale() function. It also includes default encodings for all supported locale names. """ import sys import encodings import encodings.aliases import re import _collections_abc from builtins import str as _builtin_str import functools # Try importing the _locale module. # # If this fails, fall back on a basic 'C' locale emulation. # Yuck: LC_MESSAGES is non-standard: can't tell whether it exists before # trying the import. So __all__ is also fiddled at the end of the file. __all__ = ["getlocale", "getdefaultlocale", "getpreferredencoding", "Error", "setlocale", "resetlocale", "localeconv", "strcoll", "strxfrm", "str", "atof", "atoi", "format", "format_string", "currency", "normalize", "LC_CTYPE", "LC_COLLATE", "LC_TIME", "LC_MONETARY", "LC_NUMERIC", "LC_ALL", "CHAR_MAX"] def _strcoll(a,b): """ strcoll(string,string) -> int. Compares two strings according to the locale. """ return (a > b) - (a < b) def _strxfrm(s): """ strxfrm(string) -> string. Returns a string that behaves for cmp locale-aware. """ return s try: from _locale import * except ImportError: # Locale emulation CHAR_MAX = 127 LC_ALL = 6 LC_COLLATE = 3 LC_CTYPE = 0 LC_MESSAGES = 5 LC_MONETARY = 4 LC_NUMERIC = 1 LC_TIME = 2 Error = ValueError def localeconv(): """ localeconv() -> dict. Returns numeric and monetary locale-specific parameters. """ # 'C' locale default values return {'grouping': [127], 'currency_symbol': '', 'n_sign_posn': 127, 'p_cs_precedes': 127, 'n_cs_precedes': 127, 'mon_grouping': [], 'n_sep_by_space': 127, 'decimal_point': '.', 'negative_sign': '', 'positive_sign': '', 'p_sep_by_space': 127, 'int_curr_symbol': '', 'p_sign_posn': 127, 'thousands_sep': '', 'mon_thousands_sep': '', 'frac_digits': 127, 'mon_decimal_point': '', 'int_frac_digits': 127} def setlocale(category, value=None): """ setlocale(integer,string=None) -> string. Activates/queries locale processing. """ if value not in (None, '', 'C'): raise Error('_locale emulation only supports "C" locale') return 'C' # These may or may not exist in _locale, so be sure to set them. if 'strxfrm' not in globals(): strxfrm = _strxfrm if 'strcoll' not in globals(): strcoll = _strcoll _localeconv = localeconv # With this dict, you can override some items of localeconv's return value. # This is useful for testing purposes. _override_localeconv = {} @functools.wraps(_localeconv) def localeconv(): d = _localeconv() if _override_localeconv: d.update(_override_localeconv) return d ### Number formatting APIs # Author: Martin von Loewis # improved by Georg Brandl # Iterate over grouping intervals def _grouping_intervals(grouping): last_interval = None for interval in grouping: # if grouping is -1, we are done if interval == CHAR_MAX: return # 0: re-use last group ad infinitum if interval == 0: if last_interval is None: raise ValueError("invalid grouping") while True: yield last_interval yield interval last_interval = interval #perform the grouping from right to left def _group(s, monetary=False): conv = localeconv() thousands_sep = conv[monetary and 'mon_thousands_sep' or 'thousands_sep'] grouping = conv[monetary and 'mon_grouping' or 'grouping'] if not grouping: return (s, 0) if s[-1] == ' ': stripped = s.rstrip() right_spaces = s[len(stripped):] s = stripped else: right_spaces = '' left_spaces = '' groups = [] for interval in _grouping_intervals(grouping): if not s or s[-1] not in "0123456789": # only non-digit characters remain (sign, spaces) left_spaces = s s = '' break groups.append(s[-interval:]) s = s[:-interval] if s: groups.append(s) groups.reverse() return ( left_spaces + thousands_sep.join(groups) + right_spaces, len(thousands_sep) * (len(groups) - 1) ) # Strip a given amount of excess padding from the given string def _strip_padding(s, amount): lpos = 0 while amount and s[lpos] == ' ': lpos += 1 amount -= 1 rpos = len(s) - 1 while amount and s[rpos] == ' ': rpos -= 1 amount -= 1 return s[lpos:rpos+1] _percent_re = re.compile(r'%(?:\((?P<key>.*?)\))?' r'(?P<modifiers>[-#0-9 +*.hlL]*?)[eEfFgGdiouxXcrs%]') def _format(percent, value, grouping=False, monetary=False, *additional): if additional: formatted = percent % ((value,) + additional) else: formatted = percent % value # floats and decimal ints need special action! if percent[-1] in 'eEfFgG': seps = 0 parts = formatted.split('.') if grouping: parts[0], seps = _group(parts[0], monetary=monetary) decimal_point = localeconv()[monetary and 'mon_decimal_point' or 'decimal_point'] formatted = decimal_point.join(parts) if seps: formatted = _strip_padding(formatted, seps) elif percent[-1] in 'diu': seps = 0 if grouping: formatted, seps = _group(formatted, monetary=monetary) if seps: formatted = _strip_padding(formatted, seps) return formatted def format_string(f, val, grouping=False, monetary=False): """Formats a string in the same way that the % formatting would use, but takes the current locale into account. Grouping is applied if the third parameter is true. Conversion uses monetary thousands separator and grouping strings if forth parameter monetary is true.""" percents = list(_percent_re.finditer(f)) new_f = _percent_re.sub('%s', f) if isinstance(val, _collections_abc.Mapping): new_val = [] for perc in percents: if perc.group()[-1]=='%': new_val.append('%') else: new_val.append(_format(perc.group(), val, grouping, monetary)) else: if not isinstance(val, tuple): val = (val,) new_val = [] i = 0 for perc in percents: if perc.group()[-1]=='%': new_val.append('%') else: starcount = perc.group('modifiers').count('*') new_val.append(_format(perc.group(), val[i], grouping, monetary, *val[i+1:i+1+starcount])) i += (1 + starcount) val = tuple(new_val) return new_f % val def format(percent, value, grouping=False, monetary=False, *additional): """Deprecated, use format_string instead.""" import warnings warnings.warn( "This method will be removed in a future version of Python. " "Use 'locale.format_string()' instead.", DeprecationWarning, stacklevel=2 ) match = _percent_re.match(percent) if not match or len(match.group())!= len(percent): raise ValueError(("format() must be given exactly one %%char " "format specifier, %s not valid") % repr(percent)) return _format(percent, value, grouping, monetary, *additional) def currency(val, symbol=True, grouping=False, international=False): """Formats val according to the currency settings in the current locale.""" conv = localeconv() # check for illegal values digits = conv[international and 'int_frac_digits' or 'frac_digits'] if digits == 127: raise ValueError("Currency formatting is not possible using " "the 'C' locale.") s = _format('%%.%if' % digits, abs(val), grouping, monetary=True) # '<' and '>' are markers if the sign must be inserted between symbol and value s = '<' + s + '>' if symbol: smb = conv[international and 'int_curr_symbol' or 'currency_symbol'] precedes = conv[val<0 and 'n_cs_precedes' or 'p_cs_precedes'] separated = conv[val<0 and 'n_sep_by_space' or 'p_sep_by_space'] if precedes: s = smb + (separated and ' ' or '') + s else: if international and smb[-1] == ' ': smb = smb[:-1] s = s + (separated and ' ' or '') + smb sign_pos = conv[val<0 and 'n_sign_posn' or 'p_sign_posn'] sign = conv[val<0 and 'negative_sign' or 'positive_sign'] if sign_pos == 0: s = '(' + s + ')' elif sign_pos == 1: s = sign + s elif sign_pos == 2: s = s + sign elif sign_pos == 3: s = s.replace('<', sign) elif sign_pos == 4: s = s.replace('>', sign) else: # the default if nothing specified; # this should be the most fitting sign position s = sign + s return s.replace('<', '').replace('>', '') def str(val): """Convert float to string, taking the locale into account.""" return _format("%.12g", val) def delocalize(string): "Parses a string as a normalized number according to the locale settings." conv = localeconv() #First, get rid of the grouping ts = conv['thousands_sep'] if ts: string = string.replace(ts, '') #next, replace the decimal point with a dot dd = conv['decimal_point'] if dd: string = string.replace(dd, '.') return string def atof(string, func=float): "Parses a string as a float according to the locale settings." return func(delocalize(string)) def atoi(string): "Converts a string to an integer according to the locale settings." return int(delocalize(string)) def _test(): setlocale(LC_ALL, "") #do grouping s1 = format_string("%d", 123456789,1) print(s1, "is", atoi(s1)) #standard formatting s1 = str(3.14) print(s1, "is", atof(s1)) ### Locale name aliasing engine # Author: Marc-Andre Lemburg, [email protected] # Various tweaks by Fredrik Lundh <[email protected]> # store away the low-level version of setlocale (it's # overridden below) _setlocale = setlocale def _replace_encoding(code, encoding): if '.' in code: langname = code[:code.index('.')] else: langname = code # Convert the encoding to a C lib compatible encoding string norm_encoding = encodings.normalize_encoding(encoding) #print('norm encoding: %r' % norm_encoding) norm_encoding = encodings.aliases.aliases.get(norm_encoding.lower(), norm_encoding) #print('aliased encoding: %r' % norm_encoding) encoding = norm_encoding norm_encoding = norm_encoding.lower() if norm_encoding in locale_encoding_alias: encoding = locale_encoding_alias[norm_encoding] else: norm_encoding = norm_encoding.replace('_', '') norm_encoding = norm_encoding.replace('-', '') if norm_encoding in locale_encoding_alias: encoding = locale_encoding_alias[norm_encoding] #print('found encoding %r' % encoding) return langname + '.' + encoding def _append_modifier(code, modifier): if modifier == 'euro': if '.' not in code: return code + '.ISO8859-15' _, _, encoding = code.partition('.') if encoding in ('ISO8859-15', 'UTF-8'): return code if encoding == 'ISO8859-1': return _replace_encoding(code, 'ISO8859-15') return code + '@' + modifier def normalize(localename): """ Returns a normalized locale code for the given locale name. The returned locale code is formatted for use with setlocale(). If normalization fails, the original name is returned unchanged. If the given encoding is not known, the function defaults to the default encoding for the locale code just like setlocale() does. """ # Normalize the locale name and extract the encoding and modifier code = localename.lower() if ':' in code: # ':' is sometimes used as encoding delimiter. code = code.replace(':', '.') if '@' in code: code, modifier = code.split('@', 1) else: modifier = '' if '.' in code: langname, encoding = code.split('.')[:2] else: langname = code encoding = '' # First lookup: fullname (possibly with encoding and modifier) lang_enc = langname if encoding: norm_encoding = encoding.replace('-', '') norm_encoding = norm_encoding.replace('_', '') lang_enc += '.' + norm_encoding lookup_name = lang_enc if modifier: lookup_name += '@' + modifier code = locale_alias.get(lookup_name, None) if code is not None: return code #print('first lookup failed') if modifier: # Second try: fullname without modifier (possibly with encoding) code = locale_alias.get(lang_enc, None) if code is not None: #print('lookup without modifier succeeded') if '@' not in code: return _append_modifier(code, modifier) if code.split('@', 1)[1].lower() == modifier: return code #print('second lookup failed') if encoding: # Third try: langname (without encoding, possibly with modifier) lookup_name = langname if modifier: lookup_name += '@' + modifier code = locale_alias.get(lookup_name, None) if code is not None: #print('lookup without encoding succeeded') if '@' not in code: return _replace_encoding(code, encoding) code, modifier = code.split('@', 1) return _replace_encoding(code, encoding) + '@' + modifier if modifier: # Fourth try: langname (without encoding and modifier) code = locale_alias.get(langname, None) if code is not None: #print('lookup without modifier and encoding succeeded') if '@' not in code: code = _replace_encoding(code, encoding) return _append_modifier(code, modifier) code, defmod = code.split('@', 1) if defmod.lower() == modifier: return _replace_encoding(code, encoding) + '@' + defmod return localename def _parse_localename(localename): """ Parses the locale code for localename and returns the result as tuple (language code, encoding). The localename is normalized and passed through the locale alias engine. A ValueError is raised in case the locale name cannot be parsed. The language code corresponds to RFC 1766. code and encoding can be None in case the values cannot be determined or are unknown to this implementation. """ code = normalize(localename) if '@' in code: # Deal with locale modifiers code, modifier = code.split('@', 1) if modifier == 'euro' and '.' not in code: # Assume Latin-9 for @euro locales. This is bogus, # since some systems may use other encodings for these # locales. Also, we ignore other modifiers. return code, 'iso-8859-15' if '.' in code: return tuple(code.split('.')[:2]) elif code == 'C': return None, None elif code == 'UTF-8': # On macOS "LC_CTYPE=UTF-8" is a valid locale setting # for getting UTF-8 handling for text. return None, 'UTF-8' raise ValueError('unknown locale: %s' % localename) def _build_localename(localetuple): """ Builds a locale code from the given tuple (language code, encoding). No aliasing or normalizing takes place. """ try: language, encoding = localetuple if language is None: language = 'C' if encoding is None: return language else: return language + '.' + encoding except (TypeError, ValueError): raise TypeError('Locale must be None, a string, or an iterable of ' 'two strings -- language code, encoding.') from None def getdefaultlocale(envvars=('LC_ALL', 'LC_CTYPE', 'LANG', 'LANGUAGE')): """ Tries to determine the default locale settings and returns them as tuple (language code, encoding). According to POSIX, a program which has not called setlocale(LC_ALL, "") runs using the portable 'C' locale. Calling setlocale(LC_ALL, "") lets it use the default locale as defined by the LANG variable. Since we don't want to interfere with the current locale setting we thus emulate the behavior in the way described above. To maintain compatibility with other platforms, not only the LANG variable is tested, but a list of variables given as envvars parameter. The first found to be defined will be used. envvars defaults to the search path used in GNU gettext; it must always contain the variable name 'LANG'. Except for the code 'C', the language code corresponds to RFC 1766. code and encoding can be None in case the values cannot be determined. """ try: # check if it's supported by the _locale module import _locale code, encoding = _locale._getdefaultlocale() except (ImportError, AttributeError): pass else: # make sure the code/encoding values are valid if sys.platform == "win32" and code and code[:2] == "0x": # map windows language identifier to language name code = windows_locale.get(int(code, 0)) # ...add other platform-specific processing here, if # necessary... return code, encoding # fall back on POSIX behaviour import os lookup = os.environ.get for variable in envvars: localename = lookup(variable,None) if localename: if variable == 'LANGUAGE': localename = localename.split(':')[0] break else: localename = 'C' return _parse_localename(localename) def getlocale(category=LC_CTYPE): """ Returns the current setting for the given locale category as tuple (language code, encoding). category may be one of the LC_* value except LC_ALL. It defaults to LC_CTYPE. Except for the code 'C', the language code corresponds to RFC 1766. code and encoding can be None in case the values cannot be determined. """ localename = _setlocale(category) if category == LC_ALL and ';' in localename: raise TypeError('category LC_ALL is not supported') return _parse_localename(localename) def setlocale(category, locale=None): """ Set the locale for the given category. The locale can be a string, an iterable of two strings (language code and encoding), or None. Iterables are converted to strings using the locale aliasing engine. Locale strings are passed directly to the C lib. category may be given as one of the LC_* values. """ if locale and not isinstance(locale, _builtin_str): # convert to string locale = normalize(_build_localename(locale)) return _setlocale(category, locale) def resetlocale(category=LC_ALL): """ Sets the locale for category to the default setting. The default setting is determined by calling getdefaultlocale(). category defaults to LC_ALL. """ _setlocale(category, _build_localename(getdefaultlocale())) if sys.platform.startswith("win"): # On Win32, this will return the ANSI code page def getpreferredencoding(do_setlocale = True): """Return the charset that the user is likely using.""" if sys.flags.utf8_mode: return 'UTF-8' import _bootlocale return _bootlocale.getpreferredencoding(False) else: # On Unix, if CODESET is available, use that. try: CODESET except NameError: if hasattr(sys, 'getandroidapilevel'): # On Android langinfo.h and CODESET are missing, and UTF-8 is # always used in mbstowcs() and wcstombs(). def getpreferredencoding(do_setlocale = True): return 'UTF-8' else: # Fall back to parsing environment variables :-( def getpreferredencoding(do_setlocale = True): """Return the charset that the user is likely using, by looking at environment variables.""" if sys.flags.utf8_mode: return 'UTF-8' res = getdefaultlocale()[1] if res is None: # LANG not set, default conservatively to ASCII res = 'ascii' return res else: def getpreferredencoding(do_setlocale = True): """Return the charset that the user is likely using, according to the system configuration.""" if sys.flags.utf8_mode: return 'UTF-8' import _bootlocale if do_setlocale: oldloc = setlocale(LC_CTYPE) try: setlocale(LC_CTYPE, "") except Error: pass result = _bootlocale.getpreferredencoding(False) if do_setlocale: setlocale(LC_CTYPE, oldloc) return result ### Database # # The following data was extracted from the locale.alias file which # comes with X11 and then hand edited removing the explicit encoding # definitions and adding some more aliases. The file is usually # available as /usr/lib/X11/locale/locale.alias. # # # The local_encoding_alias table maps lowercase encoding alias names # to C locale encoding names (case-sensitive). Note that normalize() # first looks up the encoding in the encodings.aliases dictionary and # then applies this mapping to find the correct C lib name for the # encoding. # locale_encoding_alias = { # Mappings for non-standard encoding names used in locale names '437': 'C', 'c': 'C', 'en': 'ISO8859-1', 'jis': 'JIS7', 'jis7': 'JIS7', 'ajec': 'eucJP', 'koi8c': 'KOI8-C', 'microsoftcp1251': 'CP1251', 'microsoftcp1255': 'CP1255', 'microsoftcp1256': 'CP1256', '88591': 'ISO8859-1', '88592': 'ISO8859-2', '88595': 'ISO8859-5', '885915': 'ISO8859-15', # Mappings from Python codec names to C lib encoding names 'ascii': 'ISO8859-1', 'latin_1': 'ISO8859-1', 'iso8859_1': 'ISO8859-1', 'iso8859_10': 'ISO8859-10', 'iso8859_11': 'ISO8859-11', 'iso8859_13': 'ISO8859-13', 'iso8859_14': 'ISO8859-14', 'iso8859_15': 'ISO8859-15', 'iso8859_16': 'ISO8859-16', 'iso8859_2': 'ISO8859-2', 'iso8859_3': 'ISO8859-3', 'iso8859_4': 'ISO8859-4', 'iso8859_5': 'ISO8859-5', 'iso8859_6': 'ISO8859-6', 'iso8859_7': 'ISO8859-7', 'iso8859_8': 'ISO8859-8', 'iso8859_9': 'ISO8859-9', 'iso2022_jp': 'JIS7', 'shift_jis': 'SJIS', 'tactis': 'TACTIS', 'euc_jp': 'eucJP', 'euc_kr': 'eucKR', 'utf_8': 'UTF-8', 'koi8_r': 'KOI8-R', 'koi8_t': 'KOI8-T', 'koi8_u': 'KOI8-U', 'kz1048': 'RK1048', 'cp1251': 'CP1251', 'cp1255': 'CP1255', 'cp1256': 'CP1256', # XXX This list is still incomplete. If you know more # mappings, please file a bug report. Thanks. } for k, v in sorted(locale_encoding_alias.items()): k = k.replace('_', '') locale_encoding_alias.setdefault(k, v) # # The locale_alias table maps lowercase alias names to C locale names # (case-sensitive). Encodings are always separated from the locale # name using a dot ('.'); they should only be given in case the # language name is needed to interpret the given encoding alias # correctly (CJK codes often have this need). # # Note that the normalize() function which uses this tables # removes '_' and '-' characters from the encoding part of the # locale name before doing the lookup. This saves a lot of # space in the table. # # MAL 2004-12-10: # Updated alias mapping to most recent locale.alias file # from X.org distribution using makelocalealias.py. # # These are the differences compared to the old mapping (Python 2.4 # and older): # # updated 'bg' -> 'bg_BG.ISO8859-5' to 'bg_BG.CP1251' # updated 'bg_bg' -> 'bg_BG.ISO8859-5' to 'bg_BG.CP1251' # updated 'bulgarian' -> 'bg_BG.ISO8859-5' to 'bg_BG.CP1251' # updated 'cz' -> 'cz_CZ.ISO8859-2' to 'cs_CZ.ISO8859-2' # updated 'cz_cz' -> 'cz_CZ.ISO8859-2' to 'cs_CZ.ISO8859-2' # updated 'czech' -> 'cs_CS.ISO8859-2' to 'cs_CZ.ISO8859-2' # updated 'dutch' -> 'nl_BE.ISO8859-1' to 'nl_NL.ISO8859-1' # updated 'et' -> 'et_EE.ISO8859-4' to 'et_EE.ISO8859-15' # updated 'et_ee' -> 'et_EE.ISO8859-4' to 'et_EE.ISO8859-15' # updated 'fi' -> 'fi_FI.ISO8859-1' to 'fi_FI.ISO8859-15' # updated 'fi_fi' -> 'fi_FI.ISO8859-1' to 'fi_FI.ISO8859-15' # updated 'iw' -> 'iw_IL.ISO8859-8' to 'he_IL.ISO8859-8' # updated 'iw_il' -> 'iw_IL.ISO8859-8' to 'he_IL.ISO8859-8' # updated 'japanese' -> 'ja_JP.SJIS' to 'ja_JP.eucJP' # updated 'lt' -> 'lt_LT.ISO8859-4' to 'lt_LT.ISO8859-13' # updated 'lv' -> 'lv_LV.ISO8859-4' to 'lv_LV.ISO8859-13' # updated 'sl' -> 'sl_CS.ISO8859-2' to 'sl_SI.ISO8859-2' # updated 'slovene' -> 'sl_CS.ISO8859-2' to 'sl_SI.ISO8859-2' # updated 'th_th' -> 'th_TH.TACTIS' to 'th_TH.ISO8859-11' # updated 'zh_cn' -> 'zh_CN.eucCN' to 'zh_CN.gb2312' # updated 'zh_cn.big5' -> 'zh_TW.eucTW' to 'zh_TW.big5' # updated 'zh_tw' -> 'zh_TW.eucTW' to 'zh_TW.big5' # # MAL 2008-05-30: # Updated alias mapping to most recent locale.alias file # from X.org distribution using makelocalealias.py. # # These are the differences compared to the old mapping (Python 2.5 # and older): # # updated 'cs_cs.iso88592' -> 'cs_CZ.ISO8859-2' to 'cs_CS.ISO8859-2' # updated 'serbocroatian' -> 'sh_YU.ISO8859-2' to 'sr_CS.ISO8859-2' # updated 'sh' -> 'sh_YU.ISO8859-2' to 'sr_CS.ISO8859-2' # updated 'sh_hr.iso88592' -> 'sh_HR.ISO8859-2' to 'hr_HR.ISO8859-2' # updated 'sh_sp' -> 'sh_YU.ISO8859-2' to 'sr_CS.ISO8859-2' # updated 'sh_yu' -> 'sh_YU.ISO8859-2' to 'sr_CS.ISO8859-2' # updated 'sp' -> 'sp_YU.ISO8859-5' to 'sr_CS.ISO8859-5' # updated 'sp_yu' -> 'sp_YU.ISO8859-5' to 'sr_CS.ISO8859-5' # updated 'sr' -> 'sr_YU.ISO8859-5' to 'sr_CS.ISO8859-5' # updated 'sr@cyrillic' -> 'sr_YU.ISO8859-5' to 'sr_CS.ISO8859-5' # updated 'sr_sp' -> 'sr_SP.ISO8859-2' to 'sr_CS.ISO8859-2' # updated 'sr_yu' -> 'sr_YU.ISO8859-5' to 'sr_CS.ISO8859-5' # updated 'sr_yu.cp1251@cyrillic' -> 'sr_YU.CP1251' to 'sr_CS.CP1251' # updated 'sr_yu.iso88592' -> 'sr_YU.ISO8859-2' to 'sr_CS.ISO8859-2' # updated 'sr_yu.iso88595' -> 'sr_YU.ISO8859-5' to 'sr_CS.ISO8859-5' # updated 'sr_yu.iso88595@cyrillic' -> 'sr_YU.ISO8859-5' to 'sr_CS.ISO8859-5' # updated 'sr_yu.microsoftcp1251@cyrillic' -> 'sr_YU.CP1251' to 'sr_CS.CP1251' # updated 'sr_yu.utf8@cyrillic' -> 'sr_YU.UTF-8' to 'sr_CS.UTF-8' # updated 'sr_yu@cyrillic' -> 'sr_YU.ISO8859-5' to 'sr_CS.ISO8859-5' # # AP 2010-04-12: # Updated alias mapping to most recent locale.alias file # from X.org distribution using makelocalealias.py. # # These are the differences compared to the old mapping (Python 2.6.5 # and older): # # updated 'ru' -> 'ru_RU.ISO8859-5' to 'ru_RU.UTF-8' # updated 'ru_ru' -> 'ru_RU.ISO8859-5' to 'ru_RU.UTF-8' # updated 'serbocroatian' -> 'sr_CS.ISO8859-2' to 'sr_RS.UTF-8@latin' # updated 'sh' -> 'sr_CS.ISO8859-2' to 'sr_RS.UTF-8@latin' # updated 'sh_yu' -> 'sr_CS.ISO8859-2' to 'sr_RS.UTF-8@latin' # updated 'sr' -> 'sr_CS.ISO8859-5' to 'sr_RS.UTF-8' # updated 'sr@cyrillic' -> 'sr_CS.ISO8859-5' to 'sr_RS.UTF-8' # updated 'sr@latn' -> 'sr_CS.ISO8859-2' to 'sr_RS.UTF-8@latin' # updated 'sr_cs.utf8@latn' -> 'sr_CS.UTF-8' to 'sr_RS.UTF-8@latin' # updated 'sr_cs@latn' -> 'sr_CS.ISO8859-2' to 'sr_RS.UTF-8@latin' # updated 'sr_yu' -> 'sr_CS.ISO8859-5' to 'sr_RS.UTF-8@latin' # updated 'sr_yu.utf8@cyrillic' -> 'sr_CS.UTF-8' to 'sr_RS.UTF-8' # updated 'sr_yu@cyrillic' -> 'sr_CS.ISO8859-5' to 'sr_RS.UTF-8' # # SS 2013-12-20: # Updated alias mapping to most recent locale.alias file # from X.org distribution using makelocalealias.py. # # These are the differences compared to the old mapping (Python 3.3.3 # and older): # # updated 'a3' -> 'a3_AZ.KOI8-C' to 'az_AZ.KOI8-C' # updated 'a3_az' -> 'a3_AZ.KOI8-C' to 'az_AZ.KOI8-C' # updated 'a3_az.koi8c' -> 'a3_AZ.KOI8-C' to 'az_AZ.KOI8-C' # updated 'cs_cs.iso88592' -> 'cs_CS.ISO8859-2' to 'cs_CZ.ISO8859-2' # updated 'hebrew' -> 'iw_IL.ISO8859-8' to 'he_IL.ISO8859-8' # updated 'hebrew.iso88598' -> 'iw_IL.ISO8859-8' to 'he_IL.ISO8859-8' # updated 'sd' -> '[email protected]' to 'sd_IN.UTF-8' # updated 'sr@latn' -> 'sr_RS.UTF-8@latin' to 'sr_CS.UTF-8@latin' # updated 'sr_cs' -> 'sr_RS.UTF-8' to 'sr_CS.UTF-8' # updated 'sr_cs.utf8@latn' -> 'sr_RS.UTF-8@latin' to 'sr_CS.UTF-8@latin' # updated 'sr_cs@latn' -> 'sr_RS.UTF-8@latin' to 'sr_CS.UTF-8@latin' # # SS 2014-10-01: # Updated alias mapping with glibc 2.19 supported locales. # # SS 2018-05-05: # Updated alias mapping with glibc 2.27 supported locales. # # These are the differences compared to the old mapping (Python 3.6.5 # and older): # # updated 'ca_es@valencia' -> 'ca_ES.ISO8859-15@valencia' to 'ca_ES.UTF-8@valencia' # updated 'kk_kz' -> 'kk_KZ.RK1048' to 'kk_KZ.ptcp154' # updated 'russian' -> 'ru_RU.ISO8859-5' to 'ru_RU.KOI8-R' locale_alias = { 'a3': 'az_AZ.KOI8-C', 'a3_az': 'az_AZ.KOI8-C', 'a3_az.koic': 'az_AZ.KOI8-C', 'aa_dj': 'aa_DJ.ISO8859-1', 'aa_er': 'aa_ER.UTF-8', 'aa_et': 'aa_ET.UTF-8', 'af': 'af_ZA.ISO8859-1', 'af_za': 'af_ZA.ISO8859-1', 'agr_pe': 'agr_PE.UTF-8', 'ak_gh': 'ak_GH.UTF-8', 'am': 'am_ET.UTF-8', 'am_et': 'am_ET.UTF-8', 'american': 'en_US.ISO8859-1', 'an_es': 'an_ES.ISO8859-15', 'anp_in': 'anp_IN.UTF-8', 'ar': 'ar_AA.ISO8859-6', 'ar_aa': 'ar_AA.ISO8859-6', 'ar_ae': 'ar_AE.ISO8859-6', 'ar_bh': 'ar_BH.ISO8859-6', 'ar_dz': 'ar_DZ.ISO8859-6', 'ar_eg': 'ar_EG.ISO8859-6', 'ar_in': 'ar_IN.UTF-8', 'ar_iq': 'ar_IQ.ISO8859-6', 'ar_jo': 'ar_JO.ISO8859-6', 'ar_kw': 'ar_KW.ISO8859-6', 'ar_lb': 'ar_LB.ISO8859-6', 'ar_ly': 'ar_LY.ISO8859-6', 'ar_ma': 'ar_MA.ISO8859-6', 'ar_om': 'ar_OM.ISO8859-6', 'ar_qa': 'ar_QA.ISO8859-6', 'ar_sa': 'ar_SA.ISO8859-6', 'ar_sd': 'ar_SD.ISO8859-6', 'ar_ss': 'ar_SS.UTF-8', 'ar_sy': 'ar_SY.ISO8859-6', 'ar_tn': 'ar_TN.ISO8859-6', 'ar_ye': 'ar_YE.ISO8859-6', 'arabic': 'ar_AA.ISO8859-6', 'as': 'as_IN.UTF-8', 'as_in': 'as_IN.UTF-8', 'ast_es': 'ast_ES.ISO8859-15', 'ayc_pe': 'ayc_PE.UTF-8', 'az': 'az_AZ.ISO8859-9E', 'az_az': 'az_AZ.ISO8859-9E', 'az_az.iso88599e': 'az_AZ.ISO8859-9E', 'az_ir': 'az_IR.UTF-8', 'be': 'be_BY.CP1251', 'be@latin': 'be_BY.UTF-8@latin', 'be_bg.utf8': 'bg_BG.UTF-8', 'be_by': 'be_BY.CP1251', 'be_by@latin': 'be_BY.UTF-8@latin', 'bem_zm': 'bem_ZM.UTF-8', 'ber_dz': 'ber_DZ.UTF-8', 'ber_ma': 'ber_MA.UTF-8', 'bg': 'bg_BG.CP1251', 'bg_bg': 'bg_BG.CP1251', 'bhb_in.utf8': 'bhb_IN.UTF-8', 'bho_in': 'bho_IN.UTF-8', 'bho_np': 'bho_NP.UTF-8', 'bi_vu': 'bi_VU.UTF-8', 'bn_bd': 'bn_BD.UTF-8', 'bn_in': 'bn_IN.UTF-8', 'bo_cn': 'bo_CN.UTF-8', 'bo_in': 'bo_IN.UTF-8', 'bokmal': 'nb_NO.ISO8859-1', 'bokm\xe5l': 'nb_NO.ISO8859-1', 'br': 'br_FR.ISO8859-1', 'br_fr': 'br_FR.ISO8859-1', 'brx_in': 'brx_IN.UTF-8', 'bs': 'bs_BA.ISO8859-2', 'bs_ba': 'bs_BA.ISO8859-2', 'bulgarian': 'bg_BG.CP1251', 'byn_er': 'byn_ER.UTF-8', 'c': 'C', 'c-french': 'fr_CA.ISO8859-1', 'c.ascii': 'C', 'c.en': 'C', 'c.iso88591': 'en_US.ISO8859-1', 'c.utf8': 'en_US.UTF-8', 'c_c': 'C', 'c_c.c': 'C', 'ca': 'ca_ES.ISO8859-1', 'ca_ad': 'ca_AD.ISO8859-1', 'ca_es': 'ca_ES.ISO8859-1', 'ca_es@valencia': 'ca_ES.UTF-8@valencia', 'ca_fr': 'ca_FR.ISO8859-1', 'ca_it': 'ca_IT.ISO8859-1', 'catalan': 'ca_ES.ISO8859-1', 'ce_ru': 'ce_RU.UTF-8', 'cextend': 'en_US.ISO8859-1', 'chinese-s': 'zh_CN.eucCN', 'chinese-t': 'zh_TW.eucTW', 'chr_us': 'chr_US.UTF-8', 'ckb_iq': 'ckb_IQ.UTF-8', 'cmn_tw': 'cmn_TW.UTF-8', 'crh_ua': 'crh_UA.UTF-8', 'croatian': 'hr_HR.ISO8859-2', 'cs': 'cs_CZ.ISO8859-2', 'cs_cs': 'cs_CZ.ISO8859-2', 'cs_cz': 'cs_CZ.ISO8859-2', 'csb_pl': 'csb_PL.UTF-8', 'cv_ru': 'cv_RU.UTF-8', 'cy': 'cy_GB.ISO8859-1', 'cy_gb': 'cy_GB.ISO8859-1', 'cz': 'cs_CZ.ISO8859-2', 'cz_cz': 'cs_CZ.ISO8859-2', 'czech': 'cs_CZ.ISO8859-2', 'da': 'da_DK.ISO8859-1', 'da_dk': 'da_DK.ISO8859-1', 'danish': 'da_DK.ISO8859-1', 'dansk': 'da_DK.ISO8859-1', 'de': 'de_DE.ISO8859-1', 'de_at': 'de_AT.ISO8859-1', 'de_be': 'de_BE.ISO8859-1', 'de_ch': 'de_CH.ISO8859-1', 'de_de': 'de_DE.ISO8859-1', 'de_it': 'de_IT.ISO8859-1', 'de_li.utf8': 'de_LI.UTF-8', 'de_lu': 'de_LU.ISO8859-1', 'deutsch': 'de_DE.ISO8859-1', 'doi_in': 'doi_IN.UTF-8', 'dutch': 'nl_NL.ISO8859-1', 'dutch.iso88591': 'nl_BE.ISO8859-1', 'dv_mv': 'dv_MV.UTF-8', 'dz_bt': 'dz_BT.UTF-8', 'ee': 'ee_EE.ISO8859-4', 'ee_ee': 'ee_EE.ISO8859-4', 'eesti': 'et_EE.ISO8859-1', 'el': 'el_GR.ISO8859-7', 'el_cy': 'el_CY.ISO8859-7', 'el_gr': 'el_GR.ISO8859-7', 'el_gr@euro': 'el_GR.ISO8859-15', 'en': 'en_US.ISO8859-1', 'en_ag': 'en_AG.UTF-8', 'en_au': 'en_AU.ISO8859-1', 'en_be': 'en_BE.ISO8859-1', 'en_bw': 'en_BW.ISO8859-1', 'en_ca': 'en_CA.ISO8859-1', 'en_dk': 'en_DK.ISO8859-1', 'en_dl.utf8': 'en_DL.UTF-8', 'en_gb': 'en_GB.ISO8859-1', 'en_hk': 'en_HK.ISO8859-1', 'en_ie': 'en_IE.ISO8859-1', 'en_il': 'en_IL.UTF-8', 'en_in': 'en_IN.ISO8859-1', 'en_ng': 'en_NG.UTF-8', 'en_nz': 'en_NZ.ISO8859-1', 'en_ph': 'en_PH.ISO8859-1', 'en_sc.utf8': 'en_SC.UTF-8', 'en_sg': 'en_SG.ISO8859-1', 'en_uk': 'en_GB.ISO8859-1', 'en_us': 'en_US.ISO8859-1', 'en_us@euro@euro': 'en_US.ISO8859-15', 'en_za': 'en_ZA.ISO8859-1', 'en_zm': 'en_ZM.UTF-8', 'en_zw': 'en_ZW.ISO8859-1', 'en_zw.utf8': 'en_ZS.UTF-8', 'eng_gb': 'en_GB.ISO8859-1', 'english': 'en_EN.ISO8859-1', 'english.iso88591': 'en_US.ISO8859-1', 'english_uk': 'en_GB.ISO8859-1', 'english_united-states': 'en_US.ISO8859-1', 'english_united-states.437': 'C', 'english_us': 'en_US.ISO8859-1', 'eo': 'eo_XX.ISO8859-3', 'eo.utf8': 'eo.UTF-8', 'eo_eo': 'eo_EO.ISO8859-3', 'eo_us.utf8': 'eo_US.UTF-8', 'eo_xx': 'eo_XX.ISO8859-3', 'es': 'es_ES.ISO8859-1', 'es_ar': 'es_AR.ISO8859-1', 'es_bo': 'es_BO.ISO8859-1', 'es_cl': 'es_CL.ISO8859-1', 'es_co': 'es_CO.ISO8859-1', 'es_cr': 'es_CR.ISO8859-1', 'es_cu': 'es_CU.UTF-8', 'es_do': 'es_DO.ISO8859-1', 'es_ec': 'es_EC.ISO8859-1', 'es_es': 'es_ES.ISO8859-1', 'es_gt': 'es_GT.ISO8859-1', 'es_hn': 'es_HN.ISO8859-1', 'es_mx': 'es_MX.ISO8859-1', 'es_ni': 'es_NI.ISO8859-1', 'es_pa': 'es_PA.ISO8859-1', 'es_pe': 'es_PE.ISO8859-1', 'es_pr': 'es_PR.ISO8859-1', 'es_py': 'es_PY.ISO8859-1', 'es_sv': 'es_SV.ISO8859-1', 'es_us': 'es_US.ISO8859-1', 'es_uy': 'es_UY.ISO8859-1', 'es_ve': 'es_VE.ISO8859-1', 'estonian': 'et_EE.ISO8859-1', 'et': 'et_EE.ISO8859-15', 'et_ee': 'et_EE.ISO8859-15', 'eu': 'eu_ES.ISO8859-1', 'eu_es': 'eu_ES.ISO8859-1', 'eu_fr': 'eu_FR.ISO8859-1', 'fa': 'fa_IR.UTF-8', 'fa_ir': 'fa_IR.UTF-8', 'fa_ir.isiri3342': 'fa_IR.ISIRI-3342', 'ff_sn': 'ff_SN.UTF-8', 'fi': 'fi_FI.ISO8859-15', 'fi_fi': 'fi_FI.ISO8859-15', 'fil_ph': 'fil_PH.UTF-8', 'finnish': 'fi_FI.ISO8859-1', 'fo': 'fo_FO.ISO8859-1', 'fo_fo': 'fo_FO.ISO8859-1', 'fr': 'fr_FR.ISO8859-1', 'fr_be': 'fr_BE.ISO8859-1', 'fr_ca': 'fr_CA.ISO8859-1', 'fr_ch': 'fr_CH.ISO8859-1', 'fr_fr': 'fr_FR.ISO8859-1', 'fr_lu': 'fr_LU.ISO8859-1', 'fran\xe7ais': 'fr_FR.ISO8859-1', 'fre_fr': 'fr_FR.ISO8859-1', 'french': 'fr_FR.ISO8859-1', 'french.iso88591': 'fr_CH.ISO8859-1', 'french_france': 'fr_FR.ISO8859-1', 'fur_it': 'fur_IT.UTF-8', 'fy_de': 'fy_DE.UTF-8', 'fy_nl': 'fy_NL.UTF-8', 'ga': 'ga_IE.ISO8859-1', 'ga_ie': 'ga_IE.ISO8859-1', 'galego': 'gl_ES.ISO8859-1', 'galician': 'gl_ES.ISO8859-1', 'gd': 'gd_GB.ISO8859-1', 'gd_gb': 'gd_GB.ISO8859-1', 'ger_de': 'de_DE.ISO8859-1', 'german': 'de_DE.ISO8859-1', 'german.iso88591': 'de_CH.ISO8859-1', 'german_germany': 'de_DE.ISO8859-1', 'gez_er': 'gez_ER.UTF-8', 'gez_et': 'gez_ET.UTF-8', 'gl': 'gl_ES.ISO8859-1', 'gl_es': 'gl_ES.ISO8859-1', 'greek': 'el_GR.ISO8859-7', 'gu_in': 'gu_IN.UTF-8', 'gv': 'gv_GB.ISO8859-1', 'gv_gb': 'gv_GB.ISO8859-1', 'ha_ng': 'ha_NG.UTF-8', 'hak_tw': 'hak_TW.UTF-8', 'he': 'he_IL.ISO8859-8', 'he_il': 'he_IL.ISO8859-8', 'hebrew': 'he_IL.ISO8859-8', 'hi': 'hi_IN.ISCII-DEV', 'hi_in': 'hi_IN.ISCII-DEV', 'hi_in.isciidev': 'hi_IN.ISCII-DEV', 'hif_fj': 'hif_FJ.UTF-8', 'hne': 'hne_IN.UTF-8', 'hne_in': 'hne_IN.UTF-8', 'hr': 'hr_HR.ISO8859-2', 'hr_hr': 'hr_HR.ISO8859-2', 'hrvatski': 'hr_HR.ISO8859-2', 'hsb_de': 'hsb_DE.ISO8859-2', 'ht_ht': 'ht_HT.UTF-8', 'hu': 'hu_HU.ISO8859-2', 'hu_hu': 'hu_HU.ISO8859-2', 'hungarian': 'hu_HU.ISO8859-2', 'hy_am': 'hy_AM.UTF-8', 'hy_am.armscii8': 'hy_AM.ARMSCII_8', 'ia': 'ia.UTF-8', 'ia_fr': 'ia_FR.UTF-8', 'icelandic': 'is_IS.ISO8859-1', 'id': 'id_ID.ISO8859-1', 'id_id': 'id_ID.ISO8859-1', 'ig_ng': 'ig_NG.UTF-8', 'ik_ca': 'ik_CA.UTF-8', 'in': 'id_ID.ISO8859-1', 'in_id': 'id_ID.ISO8859-1', 'is': 'is_IS.ISO8859-1', 'is_is': 'is_IS.ISO8859-1', 'iso-8859-1': 'en_US.ISO8859-1', 'iso-8859-15': 'en_US.ISO8859-15', 'iso8859-1': 'en_US.ISO8859-1', 'iso8859-15': 'en_US.ISO8859-15', 'iso_8859_1': 'en_US.ISO8859-1', 'iso_8859_15': 'en_US.ISO8859-15', 'it': 'it_IT.ISO8859-1', 'it_ch': 'it_CH.ISO8859-1', 'it_it': 'it_IT.ISO8859-1', 'italian': 'it_IT.ISO8859-1', 'iu': 'iu_CA.NUNACOM-8', 'iu_ca': 'iu_CA.NUNACOM-8', 'iu_ca.nunacom8': 'iu_CA.NUNACOM-8', 'iw': 'he_IL.ISO8859-8', 'iw_il': 'he_IL.ISO8859-8', 'iw_il.utf8': 'iw_IL.UTF-8', 'ja': 'ja_JP.eucJP', 'ja_jp': 'ja_JP.eucJP', 'ja_jp.euc': 'ja_JP.eucJP', 'ja_jp.mscode': 'ja_JP.SJIS', 'ja_jp.pck': 'ja_JP.SJIS', 'japan': 'ja_JP.eucJP', 'japanese': 'ja_JP.eucJP', 'japanese-euc': 'ja_JP.eucJP', 'japanese.euc': 'ja_JP.eucJP', 'jp_jp': 'ja_JP.eucJP', 'ka': 'ka_GE.GEORGIAN-ACADEMY', 'ka_ge': 'ka_GE.GEORGIAN-ACADEMY', 'ka_ge.georgianacademy': 'ka_GE.GEORGIAN-ACADEMY', 'ka_ge.georgianps': 'ka_GE.GEORGIAN-PS', 'ka_ge.georgianrs': 'ka_GE.GEORGIAN-ACADEMY', 'kab_dz': 'kab_DZ.UTF-8', 'kk_kz': 'kk_KZ.ptcp154', 'kl': 'kl_GL.ISO8859-1', 'kl_gl': 'kl_GL.ISO8859-1', 'km_kh': 'km_KH.UTF-8', 'kn': 'kn_IN.UTF-8', 'kn_in': 'kn_IN.UTF-8', 'ko': 'ko_KR.eucKR', 'ko_kr': 'ko_KR.eucKR', 'ko_kr.euc': 'ko_KR.eucKR', 'kok_in': 'kok_IN.UTF-8', 'korean': 'ko_KR.eucKR', 'korean.euc': 'ko_KR.eucKR', 'ks': 'ks_IN.UTF-8', 'ks_in': 'ks_IN.UTF-8', '[email protected]': 'ks_IN.UTF-8@devanagari', 'ku_tr': 'ku_TR.ISO8859-9', 'kw': 'kw_GB.ISO8859-1', 'kw_gb': 'kw_GB.ISO8859-1', 'ky': 'ky_KG.UTF-8', 'ky_kg': 'ky_KG.UTF-8', 'lb_lu': 'lb_LU.UTF-8', 'lg_ug': 'lg_UG.ISO8859-10', 'li_be': 'li_BE.UTF-8', 'li_nl': 'li_NL.UTF-8', 'lij_it': 'lij_IT.UTF-8', 'lithuanian': 'lt_LT.ISO8859-13', 'ln_cd': 'ln_CD.UTF-8', 'lo': 'lo_LA.MULELAO-1', 'lo_la': 'lo_LA.MULELAO-1', 'lo_la.cp1133': 'lo_LA.IBM-CP1133', 'lo_la.ibmcp1133': 'lo_LA.IBM-CP1133', 'lo_la.mulelao1': 'lo_LA.MULELAO-1', 'lt': 'lt_LT.ISO8859-13', 'lt_lt': 'lt_LT.ISO8859-13', 'lv': 'lv_LV.ISO8859-13', 'lv_lv': 'lv_LV.ISO8859-13', 'lzh_tw': 'lzh_TW.UTF-8', 'mag_in': 'mag_IN.UTF-8', 'mai': 'mai_IN.UTF-8', 'mai_in': 'mai_IN.UTF-8', 'mai_np': 'mai_NP.UTF-8', 'mfe_mu': 'mfe_MU.UTF-8', 'mg_mg': 'mg_MG.ISO8859-15', 'mhr_ru': 'mhr_RU.UTF-8', 'mi': 'mi_NZ.ISO8859-1', 'mi_nz': 'mi_NZ.ISO8859-1', 'miq_ni': 'miq_NI.UTF-8', 'mjw_in': 'mjw_IN.UTF-8', 'mk': 'mk_MK.ISO8859-5', 'mk_mk': 'mk_MK.ISO8859-5', 'ml': 'ml_IN.UTF-8', 'ml_in': 'ml_IN.UTF-8', 'mn_mn': 'mn_MN.UTF-8', 'mni_in': 'mni_IN.UTF-8', 'mr': 'mr_IN.UTF-8', 'mr_in': 'mr_IN.UTF-8', 'ms': 'ms_MY.ISO8859-1', 'ms_my': 'ms_MY.ISO8859-1', 'mt': 'mt_MT.ISO8859-3', 'mt_mt': 'mt_MT.ISO8859-3', 'my_mm': 'my_MM.UTF-8', 'nan_tw': 'nan_TW.UTF-8', 'nb': 'nb_NO.ISO8859-1', 'nb_no': 'nb_NO.ISO8859-1', 'nds_de': 'nds_DE.UTF-8', 'nds_nl': 'nds_NL.UTF-8', 'ne_np': 'ne_NP.UTF-8', 'nhn_mx': 'nhn_MX.UTF-8', 'niu_nu': 'niu_NU.UTF-8', 'niu_nz': 'niu_NZ.UTF-8', 'nl': 'nl_NL.ISO8859-1', 'nl_aw': 'nl_AW.UTF-8', 'nl_be': 'nl_BE.ISO8859-1', 'nl_nl': 'nl_NL.ISO8859-1', 'nn': 'nn_NO.ISO8859-1', 'nn_no': 'nn_NO.ISO8859-1', 'no': 'no_NO.ISO8859-1', 'no@nynorsk': 'ny_NO.ISO8859-1', 'no_no': 'no_NO.ISO8859-1', 'no_no.iso88591@bokmal': 'no_NO.ISO8859-1', 'no_no.iso88591@nynorsk': 'no_NO.ISO8859-1', 'norwegian': 'no_NO.ISO8859-1', 'nr': 'nr_ZA.ISO8859-1', 'nr_za': 'nr_ZA.ISO8859-1', 'nso': 'nso_ZA.ISO8859-15', 'nso_za': 'nso_ZA.ISO8859-15', 'ny': 'ny_NO.ISO8859-1', 'ny_no': 'ny_NO.ISO8859-1', 'nynorsk': 'nn_NO.ISO8859-1', 'oc': 'oc_FR.ISO8859-1', 'oc_fr': 'oc_FR.ISO8859-1', 'om_et': 'om_ET.UTF-8', 'om_ke': 'om_KE.ISO8859-1', 'or': 'or_IN.UTF-8', 'or_in': 'or_IN.UTF-8', 'os_ru': 'os_RU.UTF-8', 'pa': 'pa_IN.UTF-8', 'pa_in': 'pa_IN.UTF-8', 'pa_pk': 'pa_PK.UTF-8', 'pap_an': 'pap_AN.UTF-8', 'pap_aw': 'pap_AW.UTF-8', 'pap_cw': 'pap_CW.UTF-8', 'pd': 'pd_US.ISO8859-1', 'pd_de': 'pd_DE.ISO8859-1', 'pd_us': 'pd_US.ISO8859-1', 'ph': 'ph_PH.ISO8859-1', 'ph_ph': 'ph_PH.ISO8859-1', 'pl': 'pl_PL.ISO8859-2', 'pl_pl': 'pl_PL.ISO8859-2', 'polish': 'pl_PL.ISO8859-2', 'portuguese': 'pt_PT.ISO8859-1', 'portuguese_brazil': 'pt_BR.ISO8859-1', 'posix': 'C', 'posix-utf2': 'C', 'pp': 'pp_AN.ISO8859-1', 'pp_an': 'pp_AN.ISO8859-1', 'ps_af': 'ps_AF.UTF-8', 'pt': 'pt_PT.ISO8859-1', 'pt_br': 'pt_BR.ISO8859-1', 'pt_pt': 'pt_PT.ISO8859-1', 'quz_pe': 'quz_PE.UTF-8', 'raj_in': 'raj_IN.UTF-8', 'ro': 'ro_RO.ISO8859-2', 'ro_ro': 'ro_RO.ISO8859-2', 'romanian': 'ro_RO.ISO8859-2', 'ru': 'ru_RU.UTF-8', 'ru_ru': 'ru_RU.UTF-8', 'ru_ua': 'ru_UA.KOI8-U', 'rumanian': 'ro_RO.ISO8859-2', 'russian': 'ru_RU.KOI8-R', 'rw': 'rw_RW.ISO8859-1', 'rw_rw': 'rw_RW.ISO8859-1', 'sa_in': 'sa_IN.UTF-8', 'sat_in': 'sat_IN.UTF-8', 'sc_it': 'sc_IT.UTF-8', 'sd': 'sd_IN.UTF-8', 'sd_in': 'sd_IN.UTF-8', '[email protected]': 'sd_IN.UTF-8@devanagari', 'sd_pk': 'sd_PK.UTF-8', 'se_no': 'se_NO.UTF-8', 'serbocroatian': 'sr_RS.UTF-8@latin', 'sgs_lt': 'sgs_LT.UTF-8', 'sh': 'sr_RS.UTF-8@latin', 'sh_ba.iso88592@bosnia': 'sr_CS.ISO8859-2', 'sh_hr': 'sh_HR.ISO8859-2', 'sh_hr.iso88592': 'hr_HR.ISO8859-2', 'sh_sp': 'sr_CS.ISO8859-2', 'sh_yu': 'sr_RS.UTF-8@latin', 'shn_mm': 'shn_MM.UTF-8', 'shs_ca': 'shs_CA.UTF-8', 'si': 'si_LK.UTF-8', 'si_lk': 'si_LK.UTF-8', 'sid_et': 'sid_ET.UTF-8', 'sinhala': 'si_LK.UTF-8', 'sk': 'sk_SK.ISO8859-2', 'sk_sk': 'sk_SK.ISO8859-2', 'sl': 'sl_SI.ISO8859-2', 'sl_cs': 'sl_CS.ISO8859-2', 'sl_si': 'sl_SI.ISO8859-2', 'slovak': 'sk_SK.ISO8859-2', 'slovene': 'sl_SI.ISO8859-2', 'slovenian': 'sl_SI.ISO8859-2', 'sm_ws': 'sm_WS.UTF-8', 'so_dj': 'so_DJ.ISO8859-1', 'so_et': 'so_ET.UTF-8', 'so_ke': 'so_KE.ISO8859-1', 'so_so': 'so_SO.ISO8859-1', 'sp': 'sr_CS.ISO8859-5', 'sp_yu': 'sr_CS.ISO8859-5', 'spanish': 'es_ES.ISO8859-1', 'spanish_spain': 'es_ES.ISO8859-1', 'sq': 'sq_AL.ISO8859-2', 'sq_al': 'sq_AL.ISO8859-2', 'sq_mk': 'sq_MK.UTF-8', 'sr': 'sr_RS.UTF-8', 'sr@cyrillic': 'sr_RS.UTF-8', 'sr@latn': 'sr_CS.UTF-8@latin', 'sr_cs': 'sr_CS.UTF-8', 'sr_cs.iso88592@latn': 'sr_CS.ISO8859-2', 'sr_cs@latn': 'sr_CS.UTF-8@latin', 'sr_me': 'sr_ME.UTF-8', 'sr_rs': 'sr_RS.UTF-8', 'sr_rs@latn': 'sr_RS.UTF-8@latin', 'sr_sp': 'sr_CS.ISO8859-2', 'sr_yu': 'sr_RS.UTF-8@latin', 'sr_yu.cp1251@cyrillic': 'sr_CS.CP1251', 'sr_yu.iso88592': 'sr_CS.ISO8859-2', 'sr_yu.iso88595': 'sr_CS.ISO8859-5', 'sr_yu.iso88595@cyrillic': 'sr_CS.ISO8859-5', 'sr_yu.microsoftcp1251@cyrillic': 'sr_CS.CP1251', 'sr_yu.utf8': 'sr_RS.UTF-8', 'sr_yu.utf8@cyrillic': 'sr_RS.UTF-8', 'sr_yu@cyrillic': 'sr_RS.UTF-8', 'ss': 'ss_ZA.ISO8859-1', 'ss_za': 'ss_ZA.ISO8859-1', 'st': 'st_ZA.ISO8859-1', 'st_za': 'st_ZA.ISO8859-1', 'sv': 'sv_SE.ISO8859-1', 'sv_fi': 'sv_FI.ISO8859-1', 'sv_se': 'sv_SE.ISO8859-1', 'sw_ke': 'sw_KE.UTF-8', 'sw_tz': 'sw_TZ.UTF-8', 'swedish': 'sv_SE.ISO8859-1', 'szl_pl': 'szl_PL.UTF-8', 'ta': 'ta_IN.TSCII-0', 'ta_in': 'ta_IN.TSCII-0', 'ta_in.tscii': 'ta_IN.TSCII-0', 'ta_in.tscii0': 'ta_IN.TSCII-0', 'ta_lk': 'ta_LK.UTF-8', 'tcy_in.utf8': 'tcy_IN.UTF-8', 'te': 'te_IN.UTF-8', 'te_in': 'te_IN.UTF-8', 'tg': 'tg_TJ.KOI8-C', 'tg_tj': 'tg_TJ.KOI8-C', 'th': 'th_TH.ISO8859-11', 'th_th': 'th_TH.ISO8859-11', 'th_th.tactis': 'th_TH.TIS620', 'th_th.tis620': 'th_TH.TIS620', 'thai': 'th_TH.ISO8859-11', 'the_np': 'the_NP.UTF-8', 'ti_er': 'ti_ER.UTF-8', 'ti_et': 'ti_ET.UTF-8', 'tig_er': 'tig_ER.UTF-8', 'tk_tm': 'tk_TM.UTF-8', 'tl': 'tl_PH.ISO8859-1', 'tl_ph': 'tl_PH.ISO8859-1', 'tn': 'tn_ZA.ISO8859-15', 'tn_za': 'tn_ZA.ISO8859-15', 'to_to': 'to_TO.UTF-8', 'tpi_pg': 'tpi_PG.UTF-8', 'tr': 'tr_TR.ISO8859-9', 'tr_cy': 'tr_CY.ISO8859-9', 'tr_tr': 'tr_TR.ISO8859-9', 'ts': 'ts_ZA.ISO8859-1', 'ts_za': 'ts_ZA.ISO8859-1', 'tt': 'tt_RU.TATAR-CYR', 'tt_ru': 'tt_RU.TATAR-CYR', 'tt_ru.tatarcyr': 'tt_RU.TATAR-CYR', 'tt_ru@iqtelif': 'tt_RU.UTF-8@iqtelif', 'turkish': 'tr_TR.ISO8859-9', 'ug_cn': 'ug_CN.UTF-8', 'uk': 'uk_UA.KOI8-U', 'uk_ua': 'uk_UA.KOI8-U', 'univ': 'en_US.utf', 'universal': 'en_US.utf', 'universal.utf8@ucs4': 'en_US.UTF-8', 'unm_us': 'unm_US.UTF-8', 'ur': 'ur_PK.CP1256', 'ur_in': 'ur_IN.UTF-8', 'ur_pk': 'ur_PK.CP1256', 'uz': 'uz_UZ.UTF-8', 'uz_uz': 'uz_UZ.UTF-8', 'uz_uz@cyrillic': 'uz_UZ.UTF-8', 've': 've_ZA.UTF-8', 've_za': 've_ZA.UTF-8', 'vi': 'vi_VN.TCVN', 'vi_vn': 'vi_VN.TCVN', 'vi_vn.tcvn': 'vi_VN.TCVN', 'vi_vn.tcvn5712': 'vi_VN.TCVN', 'vi_vn.viscii': 'vi_VN.VISCII', 'vi_vn.viscii111': 'vi_VN.VISCII', 'wa': 'wa_BE.ISO8859-1', 'wa_be': 'wa_BE.ISO8859-1', 'wae_ch': 'wae_CH.UTF-8', 'wal_et': 'wal_ET.UTF-8', 'wo_sn': 'wo_SN.UTF-8', 'xh': 'xh_ZA.ISO8859-1', 'xh_za': 'xh_ZA.ISO8859-1', 'yi': 'yi_US.CP1255', 'yi_us': 'yi_US.CP1255', 'yo_ng': 'yo_NG.UTF-8', 'yue_hk': 'yue_HK.UTF-8', 'yuw_pg': 'yuw_PG.UTF-8', 'zh': 'zh_CN.eucCN', 'zh_cn': 'zh_CN.gb2312', 'zh_cn.big5': 'zh_TW.big5', 'zh_cn.euc': 'zh_CN.eucCN', 'zh_hk': 'zh_HK.big5hkscs', 'zh_hk.big5hk': 'zh_HK.big5hkscs', 'zh_sg': 'zh_SG.GB2312', 'zh_sg.gbk': 'zh_SG.GBK', 'zh_tw': 'zh_TW.big5', 'zh_tw.euc': 'zh_TW.eucTW', 'zh_tw.euctw': 'zh_TW.eucTW', 'zu': 'zu_ZA.ISO8859-1', 'zu_za': 'zu_ZA.ISO8859-1', } # # This maps Windows language identifiers to locale strings. # # This list has been updated from # http://msdn.microsoft.com/library/default.asp?url=/library/en-us/intl/nls_238z.asp # to include every locale up to Windows Vista. # # NOTE: this mapping is incomplete. If your language is missing, please # submit a bug report to the Python bug tracker at http://bugs.python.org/ # Make sure you include the missing language identifier and the suggested # locale code. # windows_locale = { 0x0436: "af_ZA", # Afrikaans 0x041c: "sq_AL", # Albanian 0x0484: "gsw_FR",# Alsatian - France 0x045e: "am_ET", # Amharic - Ethiopia 0x0401: "ar_SA", # Arabic - Saudi Arabia 0x0801: "ar_IQ", # Arabic - Iraq 0x0c01: "ar_EG", # Arabic - Egypt 0x1001: "ar_LY", # Arabic - Libya 0x1401: "ar_DZ", # Arabic - Algeria 0x1801: "ar_MA", # Arabic - Morocco 0x1c01: "ar_TN", # Arabic - Tunisia 0x2001: "ar_OM", # Arabic - Oman 0x2401: "ar_YE", # Arabic - Yemen 0x2801: "ar_SY", # Arabic - Syria 0x2c01: "ar_JO", # Arabic - Jordan 0x3001: "ar_LB", # Arabic - Lebanon 0x3401: "ar_KW", # Arabic - Kuwait 0x3801: "ar_AE", # Arabic - United Arab Emirates 0x3c01: "ar_BH", # Arabic - Bahrain 0x4001: "ar_QA", # Arabic - Qatar 0x042b: "hy_AM", # Armenian 0x044d: "as_IN", # Assamese - India 0x042c: "az_AZ", # Azeri - Latin 0x082c: "az_AZ", # Azeri - Cyrillic 0x046d: "ba_RU", # Bashkir 0x042d: "eu_ES", # Basque - Russia 0x0423: "be_BY", # Belarusian 0x0445: "bn_IN", # Begali 0x201a: "bs_BA", # Bosnian - Cyrillic 0x141a: "bs_BA", # Bosnian - Latin 0x047e: "br_FR", # Breton - France 0x0402: "bg_BG", # Bulgarian # 0x0455: "my_MM", # Burmese - Not supported 0x0403: "ca_ES", # Catalan 0x0004: "zh_CHS",# Chinese - Simplified 0x0404: "zh_TW", # Chinese - Taiwan 0x0804: "zh_CN", # Chinese - PRC 0x0c04: "zh_HK", # Chinese - Hong Kong S.A.R. 0x1004: "zh_SG", # Chinese - Singapore 0x1404: "zh_MO", # Chinese - Macao S.A.R. 0x7c04: "zh_CHT",# Chinese - Traditional 0x0483: "co_FR", # Corsican - France 0x041a: "hr_HR", # Croatian 0x101a: "hr_BA", # Croatian - Bosnia 0x0405: "cs_CZ", # Czech 0x0406: "da_DK", # Danish 0x048c: "gbz_AF",# Dari - Afghanistan 0x0465: "div_MV",# Divehi - Maldives 0x0413: "nl_NL", # Dutch - The Netherlands 0x0813: "nl_BE", # Dutch - Belgium 0x0409: "en_US", # English - United States 0x0809: "en_GB", # English - United Kingdom 0x0c09: "en_AU", # English - Australia 0x1009: "en_CA", # English - Canada 0x1409: "en_NZ", # English - New Zealand 0x1809: "en_IE", # English - Ireland 0x1c09: "en_ZA", # English - South Africa 0x2009: "en_JA", # English - Jamaica 0x2409: "en_CB", # English - Caribbean 0x2809: "en_BZ", # English - Belize 0x2c09: "en_TT", # English - Trinidad 0x3009: "en_ZW", # English - Zimbabwe 0x3409: "en_PH", # English - Philippines 0x4009: "en_IN", # English - India 0x4409: "en_MY", # English - Malaysia 0x4809: "en_IN", # English - Singapore 0x0425: "et_EE", # Estonian 0x0438: "fo_FO", # Faroese 0x0464: "fil_PH",# Filipino 0x040b: "fi_FI", # Finnish 0x040c: "fr_FR", # French - France 0x080c: "fr_BE", # French - Belgium 0x0c0c: "fr_CA", # French - Canada 0x100c: "fr_CH", # French - Switzerland 0x140c: "fr_LU", # French - Luxembourg 0x180c: "fr_MC", # French - Monaco 0x0462: "fy_NL", # Frisian - Netherlands 0x0456: "gl_ES", # Galician 0x0437: "ka_GE", # Georgian 0x0407: "de_DE", # German - Germany 0x0807: "de_CH", # German - Switzerland 0x0c07: "de_AT", # German - Austria 0x1007: "de_LU", # German - Luxembourg 0x1407: "de_LI", # German - Liechtenstein 0x0408: "el_GR", # Greek 0x046f: "kl_GL", # Greenlandic - Greenland 0x0447: "gu_IN", # Gujarati 0x0468: "ha_NG", # Hausa - Latin 0x040d: "he_IL", # Hebrew 0x0439: "hi_IN", # Hindi 0x040e: "hu_HU", # Hungarian 0x040f: "is_IS", # Icelandic 0x0421: "id_ID", # Indonesian 0x045d: "iu_CA", # Inuktitut - Syllabics 0x085d: "iu_CA", # Inuktitut - Latin 0x083c: "ga_IE", # Irish - Ireland 0x0410: "it_IT", # Italian - Italy 0x0810: "it_CH", # Italian - Switzerland 0x0411: "ja_JP", # Japanese 0x044b: "kn_IN", # Kannada - India 0x043f: "kk_KZ", # Kazakh 0x0453: "kh_KH", # Khmer - Cambodia 0x0486: "qut_GT",# K'iche - Guatemala 0x0487: "rw_RW", # Kinyarwanda - Rwanda 0x0457: "kok_IN",# Konkani 0x0412: "ko_KR", # Korean 0x0440: "ky_KG", # Kyrgyz 0x0454: "lo_LA", # Lao - Lao PDR 0x0426: "lv_LV", # Latvian 0x0427: "lt_LT", # Lithuanian 0x082e: "dsb_DE",# Lower Sorbian - Germany 0x046e: "lb_LU", # Luxembourgish 0x042f: "mk_MK", # FYROM Macedonian 0x043e: "ms_MY", # Malay - Malaysia 0x083e: "ms_BN", # Malay - Brunei Darussalam 0x044c: "ml_IN", # Malayalam - India 0x043a: "mt_MT", # Maltese 0x0481: "mi_NZ", # Maori 0x047a: "arn_CL",# Mapudungun 0x044e: "mr_IN", # Marathi 0x047c: "moh_CA",# Mohawk - Canada 0x0450: "mn_MN", # Mongolian - Cyrillic 0x0850: "mn_CN", # Mongolian - PRC 0x0461: "ne_NP", # Nepali 0x0414: "nb_NO", # Norwegian - Bokmal 0x0814: "nn_NO", # Norwegian - Nynorsk 0x0482: "oc_FR", # Occitan - France 0x0448: "or_IN", # Oriya - India 0x0463: "ps_AF", # Pashto - Afghanistan 0x0429: "fa_IR", # Persian 0x0415: "pl_PL", # Polish 0x0416: "pt_BR", # Portuguese - Brazil 0x0816: "pt_PT", # Portuguese - Portugal 0x0446: "pa_IN", # Punjabi 0x046b: "quz_BO",# Quechua (Bolivia) 0x086b: "quz_EC",# Quechua (Ecuador) 0x0c6b: "quz_PE",# Quechua (Peru) 0x0418: "ro_RO", # Romanian - Romania 0x0417: "rm_CH", # Romansh 0x0419: "ru_RU", # Russian 0x243b: "smn_FI",# Sami Finland 0x103b: "smj_NO",# Sami Norway 0x143b: "smj_SE",# Sami Sweden 0x043b: "se_NO", # Sami Northern Norway 0x083b: "se_SE", # Sami Northern Sweden 0x0c3b: "se_FI", # Sami Northern Finland 0x203b: "sms_FI",# Sami Skolt 0x183b: "sma_NO",# Sami Southern Norway 0x1c3b: "sma_SE",# Sami Southern Sweden 0x044f: "sa_IN", # Sanskrit 0x0c1a: "sr_SP", # Serbian - Cyrillic 0x1c1a: "sr_BA", # Serbian - Bosnia Cyrillic 0x081a: "sr_SP", # Serbian - Latin 0x181a: "sr_BA", # Serbian - Bosnia Latin 0x045b: "si_LK", # Sinhala - Sri Lanka 0x046c: "ns_ZA", # Northern Sotho 0x0432: "tn_ZA", # Setswana - Southern Africa 0x041b: "sk_SK", # Slovak 0x0424: "sl_SI", # Slovenian 0x040a: "es_ES", # Spanish - Spain 0x080a: "es_MX", # Spanish - Mexico 0x0c0a: "es_ES", # Spanish - Spain (Modern) 0x100a: "es_GT", # Spanish - Guatemala 0x140a: "es_CR", # Spanish - Costa Rica 0x180a: "es_PA", # Spanish - Panama 0x1c0a: "es_DO", # Spanish - Dominican Republic 0x200a: "es_VE", # Spanish - Venezuela 0x240a: "es_CO", # Spanish - Colombia 0x280a: "es_PE", # Spanish - Peru 0x2c0a: "es_AR", # Spanish - Argentina 0x300a: "es_EC", # Spanish - Ecuador 0x340a: "es_CL", # Spanish - Chile 0x380a: "es_UR", # Spanish - Uruguay 0x3c0a: "es_PY", # Spanish - Paraguay 0x400a: "es_BO", # Spanish - Bolivia 0x440a: "es_SV", # Spanish - El Salvador 0x480a: "es_HN", # Spanish - Honduras 0x4c0a: "es_NI", # Spanish - Nicaragua 0x500a: "es_PR", # Spanish - Puerto Rico 0x540a: "es_US", # Spanish - United States # 0x0430: "", # Sutu - Not supported 0x0441: "sw_KE", # Swahili 0x041d: "sv_SE", # Swedish - Sweden 0x081d: "sv_FI", # Swedish - Finland 0x045a: "syr_SY",# Syriac 0x0428: "tg_TJ", # Tajik - Cyrillic 0x085f: "tmz_DZ",# Tamazight - Latin 0x0449: "ta_IN", # Tamil 0x0444: "tt_RU", # Tatar 0x044a: "te_IN", # Telugu 0x041e: "th_TH", # Thai 0x0851: "bo_BT", # Tibetan - Bhutan 0x0451: "bo_CN", # Tibetan - PRC 0x041f: "tr_TR", # Turkish 0x0442: "tk_TM", # Turkmen - Cyrillic 0x0480: "ug_CN", # Uighur - Arabic 0x0422: "uk_UA", # Ukrainian 0x042e: "wen_DE",# Upper Sorbian - Germany 0x0420: "ur_PK", # Urdu 0x0820: "ur_IN", # Urdu - India 0x0443: "uz_UZ", # Uzbek - Latin 0x0843: "uz_UZ", # Uzbek - Cyrillic 0x042a: "vi_VN", # Vietnamese 0x0452: "cy_GB", # Welsh 0x0488: "wo_SN", # Wolof - Senegal 0x0434: "xh_ZA", # Xhosa - South Africa 0x0485: "sah_RU",# Yakut - Cyrillic 0x0478: "ii_CN", # Yi - PRC 0x046a: "yo_NG", # Yoruba - Nigeria 0x0435: "zu_ZA", # Zulu } def _print_locale(): """ Test function. """ categories = {} def _init_categories(categories=categories): for k,v in globals().items(): if k[:3] == 'LC_': categories[k] = v _init_categories() del categories['LC_ALL'] print('Locale defaults as determined by getdefaultlocale():') print('-'*72) lang, enc = getdefaultlocale() print('Language: ', lang or '(undefined)') print('Encoding: ', enc or '(undefined)') print() print('Locale settings on startup:') print('-'*72) for name,category in categories.items(): print(name, '...') lang, enc = getlocale(category) print(' Language: ', lang or '(undefined)') print(' Encoding: ', enc or '(undefined)') print() print() print('Locale settings after calling resetlocale():') print('-'*72) resetlocale() for name,category in categories.items(): print(name, '...') lang, enc = getlocale(category) print(' Language: ', lang or '(undefined)') print(' Encoding: ', enc or '(undefined)') print() try: setlocale(LC_ALL, "") except: print('NOTE:') print('setlocale(LC_ALL, "") does not support the default locale') print('given in the OS environment variables.') else: print() print('Locale settings after calling setlocale(LC_ALL, ""):') print('-'*72) for name,category in categories.items(): print(name, '...') lang, enc = getlocale(category) print(' Language: ', lang or '(undefined)') print(' Encoding: ', enc or '(undefined)') print() ### try: LC_MESSAGES except NameError: pass else: __all__.append("LC_MESSAGES") if __name__=='__main__': print('Locale aliasing:') print() _print_locale() print() print('Number formatting:') print() _test()
the-stack_0_11917
""" Augmenter that apply operation (word level) to textual input based on contextual word embeddings. """ import string import os import re import logging from nlpaug.augmenter.word import WordAugmenter import nlpaug.model.lang_models as nml from nlpaug.util import Action, Doc CONTEXT_WORD_EMBS_MODELS = {} def init_context_word_embs_model(model_path, model_type, device, force_reload=False, batch_size=32, top_k=None, silence=True, use_custom_api=False): global CONTEXT_WORD_EMBS_MODELS model_name = '_'.join([os.path.basename(model_path), model_type, str(device)]) if model_name in CONTEXT_WORD_EMBS_MODELS and not force_reload: CONTEXT_WORD_EMBS_MODELS[model_name].top_k = top_k CONTEXT_WORD_EMBS_MODELS[model_name].batch_size = batch_size CONTEXT_WORD_EMBS_MODELS[model_name].silence = silence return CONTEXT_WORD_EMBS_MODELS[model_name] if use_custom_api: if model_type == 'distilbert': model = nml.DistilBert(model_path, device=device, top_k=top_k, silence=silence, batch_size=batch_size) elif model_type == 'roberta': model = nml.Roberta(model_path, device=device, top_k=top_k, silence=silence, batch_size=batch_size) elif model_type == 'bert': model = nml.Bert(model_path, device=device, top_k=top_k, silence=silence, batch_size=batch_size) else: raise ValueError('Model type value is unexpected. Only support bert and roberta models.') else: if model_type in ['distilbert', 'bert', 'roberta', 'bart']: model = nml.FmTransformers(model_path, model_type=model_type, device=device, batch_size=batch_size, top_k=top_k, silence=silence) else: raise ValueError('Model type value is unexpected. Only support bert and roberta models.') CONTEXT_WORD_EMBS_MODELS[model_name] = model return model class ContextualWordEmbsAug(WordAugmenter): # https://arxiv.org/pdf/1805.06201.pdf, https://arxiv.org/pdf/2003.02245.pdf """ Augmenter that leverage contextual word embeddings to find top n similar word for augmentation. :param str model_path: Model name or model path. It used transformers to load the model. Tested 'bert-base-uncased', 'bert-base-cased', 'distilbert-base-uncased', 'roberta-base', 'distilroberta-base', 'facebook/bart-base', 'squeezebert/squeezebert-uncased'. :param str model_type: Type of model. For BERT model, use 'bert'. For RoBERTa/LongFormer model, use 'roberta'. For BART model, use 'bart'. If no value is provided, will determine from model name. :param str action: Either 'insert or 'substitute'. If value is 'insert', a new word will be injected to random position according to contextual word embeddings calculation. If value is 'substitute', word will be replaced according to contextual embeddings calculation :param int top_k: Controlling lucky draw pool. Top k score token will be used for augmentation. Larger k, more token can be used. Default value is 100. If value is None which means using all possible tokens. :param float aug_p: Percentage of word will be augmented. :param int aug_min: Minimum number of word will be augmented. :param int aug_max: Maximum number of word will be augmented. If None is passed, number of augmentation is calculated via aup_p. If calculated result from aug_p is smaller than aug_max, will use calculated result from aug_p. Otherwise, using aug_max. :param list stopwords: List of words which will be skipped from augment operation. Do NOT include the UNKNOWN word. UNKNOWN word of BERT is [UNK]. UNKNOWN word of RoBERTa and BART is <unk>. :param str stopwords_regex: Regular expression for matching words which will be skipped from augment operation. :param str device: Default value is CPU. If value is CPU, it uses CPU for processing. If value is CUDA, it uses GPU for processing. Possible values include 'cuda' and 'cpu'. (May able to use other options) :param int batch_size: Batch size. :param bool force_reload: Force reload the contextual word embeddings model to memory when initialize the class. Default value is False and suggesting to keep it as False if performance is the consideration. :param bool silence: Default is True. transformers library will print out warning message when leveraing pre-trained model. Set True to disable the expected warning message. :param str name: Name of this augmenter >>> import nlpaug.augmenter.word as naw >>> aug = naw.ContextualWordEmbsAug() """ def __init__(self, model_path='bert-base-uncased', model_type='', action="substitute", top_k=100, name='ContextualWordEmbs_Aug', aug_min=1, aug_max=10, aug_p=0.3, stopwords=None, batch_size=32, device='cpu', force_reload=False, stopwords_regex=None, verbose=0, silence=True, use_custom_api=True): super().__init__( action=action, name=name, aug_p=aug_p, aug_min=aug_min, aug_max=aug_max, tokenizer=None, device=device, stopwords=stopwords, verbose=verbose, stopwords_regex=stopwords_regex, include_detail=False) self.model_path = model_path self.model_type = model_type if model_type != '' else self.check_model_type() self.silence = silence # TODO: Slow when switching to HuggingFace pipeline. #https://github.com/makcedward/nlpaug/issues/248 self.use_custom_api = use_custom_api self.model = self.get_model( model_path=model_path, model_type=self.model_type, device=device, force_reload=force_reload, batch_size=batch_size, top_k=top_k, silence=silence, use_custom_api=use_custom_api) # Override stopwords # if stopwords and self.model_type in ['xlnet', 'roberta']: # stopwords = [self.stopwords] # lower case all stopwords if stopwords and 'uncased' in model_path: self.stopwords = [s.lower() for s in self.stopwords] self.stopword_reg = None self.reserve_word_reg = None self._build_stop_words(stopwords) self.device = self.model.device """ TODO: Reserve 2 spaces (e.g. [CLS], [SEP]) is not enough as it hit CUDA error in batch processing mode. Therefore, forcing to reserve 5 times of reserved spaces (i.e. 5) """ self.max_num_token = self.model.get_max_num_token() def _build_stop_words(self, stopwords): if stopwords: prefix_reg = '(?<=\s|\W)' suffix_reg = '(?=\s|\W)' stopword_reg = '('+')|('.join([prefix_reg + re.escape(s) + suffix_reg for s in stopwords])+')' self.stopword_reg = re.compile(stopword_reg) unknown_token = self.model.get_unknown_token() or self.model.UNKNOWN_TOKEN reserve_word_reg = '(' + prefix_reg + re.escape(unknown_token) + suffix_reg + ')' self.reserve_word_reg = re.compile(reserve_word_reg) def check_model_type(self): # if 'xlnet' in self.model_path.lower(): # return 'xlnet' if 'longformer' in self.model_path.lower(): return 'roberta' elif 'roberta' in self.model_path.lower(): return 'roberta' elif 'distilbert' in self.model_path.lower(): return 'bert' elif 'squeezebert' in self.model_path.lower(): return 'bert' elif 'bert' in self.model_path.lower(): return 'bert' elif 'bart' in self.model_path.lower(): return 'bart' # 'google/electra-small-discriminator', # 'google/reformer-enwik8', # 'funnel-transformer/small-base', # 'google/tapas-base', # 'microsoft/deberta-base' return '' def is_stop_words(self, token): # Will execute before any tokenization. No need to handle prefix processing if self.stopwords: unknown_token = self.model.get_unknown_token() or self.model.UNKNOWN_TOKEN if token == unknown_token: return True return token.lower() in self.stopwords else: return False def skip_aug(self, token_idxes, tokens): results = [] for token_idx in token_idxes: token = tokens[token_idx] # Do not augment subword if self.model_type in ['bert', 'electra'] \ and token.startswith(self.model.get_subword_prefix()): continue # Do not augment tokens if len is less than aug_min if (self.model.get_subword_prefix() in token and len(token) < self.aug_min+1) \ or (self.model.get_subword_prefix() not in token and len(token) < self.aug_min): continue if self.model_type in ['xlnet', 'roberta', 'bart']: # xlent may tokenize word incorrectly. For example, 'fox', will be tokeinzed as ['_', 'fox'] if token == self.model.get_subword_prefix(): continue # subword if not token.startswith(self.model.get_subword_prefix()): continue results.append(token_idx) return results def split_text(self, data): # Expect to have waring for "Token indices sequence length is longer than the specified maximum sequence length for this model" # Handle stopwords first #https://github.com/makcedward/nlpaug/issues/247 if self.stopwords: unknown_token = self.model.get_unknown_token() or self.model.UNKNOWN_TOKEN preprocessed_data, reserved_stopwords = self.replace_stopword_by_reserved_word(data, self.stopword_reg, unknown_token) else: preprocessed_data, reserved_stopwords = data, None orig_log_level = logging.getLogger('transformers.' + 'tokenization_utils_base').getEffectiveLevel() logging.getLogger('transformers.' + 'tokenization_utils_base').setLevel(logging.ERROR) tokens = self.model.get_tokenizer().tokenize(preprocessed_data) logging.getLogger('transformers.' + 'tokenization_utils_base').setLevel(orig_log_level) if self.model.get_model().config.max_position_embeddings == -1: # e.g. No max length restriction for XLNet return (preprocessed_data, None, tokens, None), reserved_stopwords # (Head text, tail text, head token, tail token), reserved_stopwords ids = self.model.get_tokenizer().convert_tokens_to_ids(tokens[:self.max_num_token]) head_text = self.model.get_tokenizer().decode(ids).strip() # head_text = self.model.get_tokenizer().convert_tokens_to_string(tokens[:self.max_num_token]).strip() tail_text = None if len(tokens) >= self.max_num_token: # tail_text = self.model.get_tokenizer().convert_tokens_to_string(tokens[self.max_num_token:]).strip() ids = self.model.get_tokenizer().convert_tokens_to_ids(tokens[self.max_num_token:]) tail_text = self.model.get_tokenizer().decode(ids).strip() return (head_text, tail_text, tokens[:self.max_num_token], tokens[self.max_num_token:]), reserved_stopwords def insert(self, data): if not data: return data if isinstance(data, list): all_data = data else: if data.strip() == '': return data all_data = [data] # If length of input is larger than max allowed input, only augment heading part split_results = [] # head_text, tail_text, head_tokens, tail_tokens reserved_stopwords = [] for d in all_data: split_result, reserved_stopword = self.split_text(d) split_results.append(split_result) reserved_stopwords.append(reserved_stopword) change_seq = 0 # Pick target word for augmentation for i, (split_result, reserved_stopword_tokens) in enumerate(zip(split_results, reserved_stopwords)): head_text, tail_text, head_tokens, tail_tokens = split_result if self.model_type in ['xlnet', 'roberta', 'bart']: # xlent and roberta tokens include prefix (e.g. ▁ or Ġ') cleaned_head_tokens = [t.replace(self.model.get_subword_prefix(), '') for t in head_tokens] else: cleaned_head_tokens = head_tokens head_doc = Doc(head_text, head_tokens) aug_idxes = self._get_aug_idxes(head_tokens) aug_idxes.sort(reverse=True) if reserved_stopword_tokens: head_doc, change_seq = self.substitute_back_reserved_stopwords( head_doc, reserved_stopword_tokens, change_seq) split_results[i] += (cleaned_head_tokens, head_doc, aug_idxes, ) # Pad aug_idxes max_aug_size = max([len(split_result[6]) for split_result in split_results]) for split_result in split_results: aug_idxes = split_result[6] for _ in range(max_aug_size - len(aug_idxes)): aug_idxes.append(-1) token_placeholder = self.model.get_mask_token() if self.model_type in ['xlnet', 'roberta', 'bart']: token_placeholder = self.model.get_subword_prefix() + token_placeholder # Adding prefix for # Augment same index of aug by batch for i in range(max_aug_size): masked_texts = [] aug_input_poses = [] # store which input augmented. No record if padding change_seq += 1 for j, split_result in enumerate(split_results): head_doc, aug_idx = split_result[5], split_result[6][i] # -1 if it is padding if aug_idx == -1: continue head_doc.add_token(aug_idx, token=token_placeholder, action=Action.INSERT, change_seq=self.parent_change_seq+change_seq) aug_input_poses.append(j) # some tokenizers handle special charas (e.g. don't can merge after decode) if self.model_type in ['bert', 'electra']: ids = self.model.get_tokenizer().convert_tokens_to_ids(head_doc.get_augmented_tokens()) masked_text = self.model.get_tokenizer().decode(ids).strip() elif self.model_type in ['xlnet', 'roberta', 'bart']: masked_text = self.model.get_tokenizer().convert_tokens_to_string(head_doc.get_augmented_tokens()).strip() masked_texts.append(masked_text) if not len(masked_texts): continue outputs = self.model.predict(masked_texts, target_words=None, n=2) # Update doc for aug_input_pos, output, masked_text in zip(aug_input_poses, outputs, masked_texts): split_result = split_results[aug_input_pos] head_doc = split_result[5] aug_idx = split_result[6][i] # augment position in text # TODO: Alternative method better than dropout candidate = '' if len(output) == 0: # TODO: no result? pass elif len(output) == 1: candidate = output[0] elif len(output) > 1: candidate = self.sample(output, 1)[0] # # In XLNet, it can be the first word of sentence which does not come with space. E.g. Zombine (ID:29110) # if self.model_type in ['xlnet']: # if candidate != '' and not candidate.startswith(self.model.get_subword_prefix()): # candidate = self.model.get_subword_prefix() + candidate # if self.model_type in ['roberta', 'bart']: # if candidate != '' and not candidate.startswith(self.model.get_subword_prefix()) and candidate.strip() != candidate: # candidate = self.model.get_subword_prefix() + candidate.strip() # no candidate if candidate == '': head_doc.add_change_log(aug_idx, new_token='', action=Action.DELETE, change_seq=self.parent_change_seq+change_seq) continue head_doc.update_change_log(aug_idx, token=candidate) # Early stop if number of token exceed max number if head_doc.size() > self.max_num_token: for j in range(i+1, max_aug_size): split_results[aug_input_pos][6][j] = -1 augmented_texts = [] for split_result, reserved_stopword_tokens in zip(split_results, reserved_stopwords): tail_text, head_doc = split_result[1], split_result[5] head_tokens = head_doc.get_augmented_tokens() # if self.model_type in ['xlnet', 'roberta']: # # xlent and roberta tokens include prefix (e.g. ▁ or Ġ') # head_tokens = [self.model.get_subword_prefix() + t if self.model.get_subword_prefix() not in t and i != 0 else t for i, t in enumerate(head_tokens)] ids = self.model.get_tokenizer().convert_tokens_to_ids(head_tokens) augmented_text = self.model.get_tokenizer().decode(ids) if tail_text: augmented_text += ' ' + tail_text augmented_texts.append(augmented_text) if isinstance(data, list): return augmented_texts else: return augmented_texts[0] def substitute(self, data): if not data: return data if isinstance(data, list): all_data = data else: if data.strip() == '': return data all_data = [data] # If length of input is larger than max allowed input, only augment heading part split_results = [] # head_text, tail_text, head_tokens, tail_tokens reserved_stopwords = [] for d in all_data: split_result, reserved_stopword = self.split_text(d) split_results.append(split_result) reserved_stopwords.append(reserved_stopword) change_seq = 0 # Pick target word for augmentation for i, (split_result, reserved_stopword_tokens) in enumerate(zip(split_results, reserved_stopwords)): head_text, tail_text, head_tokens, tail_tokens = split_result if self.model_type in ['xlnet', 'roberta', 'bart']: # xlent and roberta tokens include prefix (e.g. ▁ or Ġ') cleaned_head_tokens = [t.replace(self.model.get_subword_prefix(), '') for t in head_tokens] else: cleaned_head_tokens = head_tokens head_doc = Doc(head_text, head_tokens) aug_idxes = self._get_aug_idxes(head_tokens) aug_idxes.sort(reverse=True) if reserved_stopword_tokens: head_doc, change_seq = self.substitute_back_reserved_stopwords( head_doc, reserved_stopword_tokens, change_seq) head_tokens = head_doc.get_augmented_tokens() split_results[i] += (cleaned_head_tokens, head_doc, aug_idxes, ) # Pad aug_idxes max_aug_size = max([len(split_result[6]) for split_result in split_results]) for split_result in split_results: aug_idxes = split_result[6] for _ in range(max_aug_size - len(aug_idxes)): aug_idxes.append(-1) token_placeholder = self.model.get_mask_token() if self.model_type in ['xlnet', 'roberta', 'bart']: token_placeholder = self.model.get_subword_prefix() + token_placeholder # Adding prefix for # Augment same index of aug by batch for i in range(max_aug_size): original_tokens = [] masked_texts = [] aug_input_poses = [] # store which input augmented. No record if padding change_seq += 1 for j, split_result in enumerate(split_results): head_doc, aug_idx = split_result[5], split_result[6][i] # -1 if it is padding if aug_idx == -1: continue original_tokens.append(head_doc.get_token(aug_idx).get_latest_token().token) head_doc.add_change_log(aug_idx, new_token=token_placeholder, action=Action.SUBSTITUTE, change_seq=self.parent_change_seq+change_seq) # remove continuous sub-word to_remove_idxes = [] for k in range(aug_idx+1, head_doc.size()): subword_token = head_doc.get_token(k).orig_token.token if subword_token in string.punctuation: break if self.model_type in ['bert', 'electra'] and self.model.get_subword_prefix() in subword_token: to_remove_idxes.append(k) elif self.model_type in ['xlnet', 'roberta', 'bart'] and self.model.get_subword_prefix() not in subword_token: to_remove_idxes.append(k) else: break for k in reversed(to_remove_idxes): head_doc.add_change_log(k, new_token='', action=Action.SUBSTITUTE, change_seq=self.parent_change_seq+change_seq) aug_input_poses.append(j) # some tokenizers handle special charas (e.g. don't can merge after decode) if self.model_type in ['bert', 'electra']: ids = self.model.get_tokenizer().convert_tokens_to_ids(head_doc.get_augmented_tokens()) masked_text = self.model.get_tokenizer().decode(ids).strip() elif self.model_type in ['xlnet', 'roberta', 'bart']: masked_text = self.model.get_tokenizer().convert_tokens_to_string(head_doc.get_augmented_tokens()).strip() masked_texts.append(masked_text) if not len(masked_texts): continue outputs = self.model.predict(masked_texts, target_words=original_tokens, n=2) # Update doc for original_token, aug_input_pos, output, masked_text in zip(original_tokens, aug_input_poses, outputs, masked_texts): split_result = split_results[aug_input_pos] head_doc = split_result[5] aug_idx = split_result[6][i] # augment position in text # TODO: Alternative method better than dropout candidate = '' if len(output) == 0: # TODO: no result? pass elif len(output) == 1: candidate = output[0] elif len(output) > 1: candidate = self.sample(output, 1)[0] # # In XLNet, it can be the first word of sentence which does not come with space. E.g. Zombine (ID:29110) # if self.model_type in ['xlnet']: # if candidate != '' and not candidate.startswith(self.model.get_subword_prefix()): # candidate = self.model.get_subword_prefix() + candidate # if self.model_type in ['roberta', 'bart']: # if candidate != '' and not candidate.startswith(self.model.get_subword_prefix()) and candidate.strip() != candidate: # candidate = self.model.get_subword_prefix() + candidate.strip() # Fallback to original token if no candidate is appropriate if candidate == '': candidate = original_token head_doc.update_change_log(aug_idx, token=candidate, action=Action.SUBSTITUTE, change_seq=self.parent_change_seq+change_seq) # Early stop if number of token exceed max number if head_doc.size() > self.max_num_token: for j in range(i+1, max_aug_size): split_results[aug_input_pos][6][j] = -1 augmented_texts = [] for split_result in split_results: tail_text, head_doc = split_result[1], split_result[5] head_tokens = head_doc.get_augmented_tokens() # if self.model_type in ['xlnet', 'roberta']: # # xlent and roberta tokens include prefix (e.g. ▁ or Ġ') # head_tokens = [self.model.get_subword_prefix() + t if self.model.get_subword_prefix() not in t and i != 0 else t for i, t in enumerate(head_tokens)] ids = self.model.get_tokenizer().convert_tokens_to_ids(head_tokens) augmented_text = self.model.get_tokenizer().decode(ids) if tail_text is not None: augmented_text += ' ' + tail_text augmented_texts.append(augmented_text) if isinstance(data, list): return augmented_texts else: return augmented_texts[0] @classmethod def get_model(cls, model_path, model_type, device='cuda', force_reload=False, batch_size=32, top_k=None, silence=True, use_custom_api=False): return init_context_word_embs_model(model_path, model_type, device, force_reload, batch_size, top_k, silence, use_custom_api) def substitute_back_reserved_stopwords(self, doc, reserved_stopword_tokens, change_seq): unknown_token = self.model.get_unknown_token() or self.model.UNKNOWN_TOKEN reserved_pos = len(reserved_stopword_tokens) - 1 for token_i, token in enumerate(doc.get_augmented_tokens()): if token == unknown_token: change_seq += 1 doc.update_change_log(token_i, token=reserved_stopword_tokens[reserved_pos], action=Action.SUBSTITUTE, change_seq=self.parent_change_seq+change_seq) reserved_pos -= 1 return doc, change_seq
the-stack_0_11919
#!/usr/bin/env python2 import rospy from std_msgs.msg import Bool from dbw_mkz_msgs.msg import ThrottleCmd, SteeringCmd, BrakeCmd, SteeringReport from geometry_msgs.msg import TwistStamped from twist_controller import Controller ''' You can build this node only after you have built (or partially built) the `waypoint_updater` node. You will subscribe to `/twist_cmd` message which provides the proposed linear and angular velocities. You can subscribe to any other message that you find important or refer to the document for list of messages subscribed to by the reference implementation of this node. One thing to keep in mind while building this node and the `twist_controller` class is the status of `dbw_enabled`. While in the simulator, its enabled all the time, in the real car, that will not be the case. This may cause your PID controller to accumulate error because the car could temporarily be driven by a human instead of your controller. We have provided two launch files with this node. Vehicle specific values (like vehicle_mass, wheel_base) etc should not be altered in these files. We have also provided some reference implementations for PID controller and other utility classes. You are free to use them or build your own. Once you have the proposed throttle, brake, and steer values, publish it on the various publishers that we have created in the `__init__` function. ''' class DBWNode(object): def __init__(self): rospy.init_node('dbw_node') args = {'min_speed': 0.1, 'vehicle_mass': rospy.get_param('~vehicle_mass', 1736.35), 'fuel_capacity': rospy.get_param('~fuel_capacity', 13.5), 'brake_deadband': rospy.get_param('~brake_deadband', .1), 'decel_limit': rospy.get_param('~decel_limit', -5), 'accel_limit': rospy.get_param('~accel_limit', 1.), 'wheel_radius': rospy.get_param('~wheel_radius', 0.2413), 'wheel_base': rospy.get_param('~wheel_base', 2.8498), 'steer_ratio': rospy.get_param('~steer_ratio', 14.8), 'max_lat_accel': rospy.get_param('~max_lat_accel', 3.), 'max_steer_angle': rospy.get_param('~max_steer_angle', 8.)} self.steer_pub = rospy.Publisher('/vehicle/steering_cmd', SteeringCmd, queue_size=1) self.throttle_pub = rospy.Publisher('/vehicle/throttle_cmd', ThrottleCmd, queue_size=1) self.brake_pub = rospy.Publisher('/vehicle/brake_cmd', BrakeCmd, queue_size=1) # Create `Controller` object self.controller = Controller(args) # Subscribe to all the topics you need to rospy.Subscriber('/current_velocity', TwistStamped, self.velocity_cb) rospy.Subscriber('/twist_cmd', TwistStamped, self.twist_cb) rospy.Subscriber('/vehicle/dbw_enabled', Bool, self.dbw_cb) self.current_vel = None self.curr_ang_vel = None self.angular_vel = None self.linear_vel = None self.dbw = True self.twist = None self.loop() def loop(self): rate = rospy.Rate(50) # 50Hz # print('RosPy:', rospy.is_shutdown()) while not rospy.is_shutdown(): # Get predicted throttle, brake, and steering using `twist_controller` # You should only publish the control commands if dbw is enabled # print('Status (VAL):', self.current_vel, self.angular_vel, self.linear_vel) if None not in (self.current_vel, self.angular_vel, self.linear_vel): throttle, brake, steer = self.controller.control(self.current_vel, self.angular_vel, self.linear_vel, self.dbw) # print('Prediction (TBS):', throttle, brake, steer) if self.dbw: self.publish(throttle, brake, steer) rate.sleep() def publish(self, throttle, brake, steer): tcmd = ThrottleCmd() tcmd.enable = True tcmd.pedal_cmd_type = ThrottleCmd.CMD_PERCENT tcmd.pedal_cmd = throttle self.throttle_pub.publish(tcmd) scmd = SteeringCmd() scmd.enable = True scmd.steering_wheel_angle_cmd = steer self.steer_pub.publish(scmd) bcmd = BrakeCmd() bcmd.enable = True bcmd.pedal_cmd_type = BrakeCmd.CMD_TORQUE bcmd.pedal_cmd = brake self.brake_pub.publish(bcmd) def velocity_cb(self, msg): self.current_vel = msg.twist.linear.x def twist_cb(self, msg): self.linear_vel = msg.twist.linear.x self.angular_vel = msg.twist.angular.z def dbw_cb(self, msg): self.dbw = msg if __name__ == '__main__': DBWNode()
the-stack_0_11922
from tensorflow.keras.models import load_model from tensorflow import get_logger import logging import pickle import numpy as np logger = get_logger() logger.setLevel(logging.CRITICAL) CATEGORIES = ['Abyssian', 'American_bulldog', 'American_pit_bull', 'Basset_hound', 'Beagle', 'Bengal', 'Birdman', 'Bombay', 'Boxer', 'British_Shorthair', 'Chihuahua', 'Egyptian_Mau', 'English_Cocker_Spaniel', 'English_Setter', 'German_Shorthaired', 'Great_Pyrenees', 'Havanese', 'Japanese_Chin', 'Keeshond', 'Leonberger', 'Maine_Coon', 'Miniature_Pinscher', 'Newfoundland', 'Persian', 'Pomeranian', 'Pug', 'Ragdoll', 'Russian_Blue', 'Saint_Bernard', 'Samoyed', 'Scottish_Terrier', 'Shiba_Inu', 'Siamese', 'Sphynx', 'Staffordshire_Bull_Terrier', 'Wheaten_Terrier', 'Yorkshire_Terrier'] # Carrega o modelo model = load_model('98.1581807136535620200213231827_model.h5') # Pega a label label = pickle.load(open("y.pickle", "rb"))[2] # Pega uma imagem do dataset normalizado img = pickle.load(open("x.pickle", "rb"))[2] # Modelos so keras são otimizados para fazer predições em um batch, ou coleções # Adiciona a imagem em um batch que possui um só membro. img = (np.expand_dims(img, 0)) # Faz a predição predictions_single = model.predict(img) # Predição da única imagem no batch: predicao = np.argmax(predictions_single[0]) print(f"Predição: {predicao} -> {CATEGORIES[int(predicao)]}") print(f"label: {label} -> {CATEGORIES[label]}")
the-stack_0_11923
import re import requests import subprocess import time from time import sleep from log import log, log_add, now, RED, WHT, GRN, YEL # Named Constants # A local host that should always be up (ideally, the gateway router) Local_Host = "192.168.1.1" # An internet host that should always be up (Google DNS,for example) Internet_Host = "8.8.8.8" smallest_outage_to_report = 30 # seconds # Twitter Account of your Internet Provider. #Tweet_To = "@ask_spectrum" My_City = "SomeCity" # replace 'K' sequence by your API_KEY of ThingTweet Api_Key = 'KKKKKKKKKKKKKKKK' # replace 'W' sequence by your WriteAPIKey (from your thingSpeak channel settings) Write_Api_Key = 'WWWWWWWWWWWWWWWW' Thingspeak_Host = "api.thingspeak.com" Tweet_Path = "apps/thingtweet/1/statuses/update" Thingspeak_Path = "/update" Report_File = "netmon.log" # Delete the following line if you put your keys above from my_api_keys import Tweet_To, My_City, Api_Key, Write_Api_Key def send_tweet(message): payload = {'api_key': Api_Key, 'status': message} try: r = requests.post(f"https://{Thingspeak_Host}/{Tweet_Path}", params=payload) except Exception as e: log(f"Couldn't send tweet \"{message}\". Continuing. ({e})") if r.status_code != 200: log("Tweet fail {repr(r)}.") def send_down_tweet(duration): send_tweet(f"{Tweet_To}, internet was down: {str(duration)} s. " f"I'm in {My_City}. #DownTimeDetected") def send_start_tweet(): send_tweet(f"Downtime monitor started {now()}.") def send_thingspeak(duration): args = {'field1': str(duration), 'key': Write_Api_Key} headers = { "Content-type": "application/x-www-form-urlencoded", "Accept": "text/plain"} try: r = requests.post(f"https://{Thingspeak_Host}/{Thingspeak_Path}", params=args, headers=headers) except Exception as e: log(f"Couldn't post to thingspeak \"{duration}\". Continuing. ({e})") def host_down(host): """Return (True, '') if host is down, (False, latency) if up. """ latency = '' try: pipe = subprocess.PIPE r = subprocess.run(f"ping -c 1 {host}", shell=True, stdout=pipe, stderr=pipe) except subprocess.CalledProcessError as err: log(f'{RED}FATAL ERROR. Exiting: {err}') exit(1) else: output = r.stdout.decode('utf-8') if len(r.stderr) > 0: err = r.stderr.decode('utf-8') log(f"Surprising error: {YEL}{err}") ms_match = re.search("time=([0-9.]+) ms", output) if ms_match: latency = ms_match.group(1) down = r.returncode > 0 return (down, latency) def check_down(local, internet): """Returns (True, '') if internet is down, (False, latency) if up, None if it's not possible to check because the local net is down. """ inet_down, inet_latency = host_down(internet) if inet_down: # 2nd chance check in case it was just one lost packet inet_down, inet_latency = host_down(internet) if not inet_down: log("hiccup") return (inet_down, inet_latency) # Internet seems down, but are we even locally connected? local_down, local_latency = host_down(local) if local_down: # Locally disconnected, can't tell anything return (None, None) return (inet_down, inet_latency) # MAIN LOOP if __name__ == "__main__": send_start_tweet() log(f"{WHT} -- DownTime Monitor --\n") attempt_num = 0 was_offline = False start_of_outage = 0 outage_count = 0 long_outage_count = 0 while True: attempt_num += 1 latency = '' log(f"{YEL}#{attempt_num}, {long_outage_count}/{outage_count} " "short/long outage(s). ", end="") try: is_down, latency = check_down(Local_Host, Internet_Host) sleep(5) except Exception as e: log(f"{RED}Fail:{e}") sleep(5) continue except KeyboardInterrupt: log(f"{WHT}Goodbye!") exit(1) if is_down is None: log_add(f"{now()}: Disconnect on local network.") continue elif is_down: log_add(f"{WHT}Internet is {RED}down...") else: log_add(f"{WHT}Internet is up. (latency {GRN}{latency}{WHT})") # Internet went down after previous check if is_down and not was_offline: start_of_outage = time.time() was_offline = True continue # Internet came up after previous check if not is_down and was_offline: # 2 digits after decimal makes tweet slightly less likely # to be duplicate. Twitter blocks duplicate tweets. downtime = round(time.time() - start_of_outage, 2) outage_count += 1 was_offline = False send_thingspeak(downtime) if (downtime > smallest_outage_to_report): long_outage_count += 1 dt_str = log(f"Outage above {smallest_outage_to_report} s: {downtime} s\n") with open(Report_File, "a") as TxtFile: TxtFile.write(dt_str) send_down_tweet(downtime)
the-stack_0_11925
# befor eimporting anything! import sys import os sys.path.insert(1, os.path.realpath('/work/dev-box/blender-2.79-linux-glibc219-x86_64/2.79/python/lib/python3.5/site-packages/')) from enum import Enum class LogColor: INFO = '\033[94m' WARNING = '\033[93m' ERROR = '\033[91m\033[1m' ENDC = '\033[0m' class LogLevel(Enum): INFO = 1 WARNING = 2 ERROR = 3 def log(output,level=LogLevel.INFO): if level == LogLevel.INFO: sys.stderr.write(LogColor.INFO) elif level == LogLevel.WARNING: sys.stderr.write(LogColor.WARNING) elif level == LogLevel.ERROR: sys.stderr.write(LogColor.ERROR) sys.stderr.write(str(output)) sys.stderr.write(LogColor.ENDC) sys.stderr.write("\n") sys.stderr.flush() import bpy import bmesh import math import numpy as np import binvox_rw import import_off import_off.register() from bpy_extras.io_utils import axis_conversion from bpy.props import EnumProperty sphere_base_mesh = None cube_base_mesh = None circle_base_mesh = None def initialize(width=512, height=448): bpy.ops.mesh.primitive_ico_sphere_add() global sphere_base_mesh sphere_base_mesh = bpy.context.scene.objects.active.data.copy() for face in sphere_base_mesh.polygons: face.use_smooth = True bpy.ops.mesh.primitive_cube_add() global cube_base_mesh cube_base_mesh = bpy.context.scene.objects.active.data.copy() bpy.ops.mesh.primitive_circle_add(vertices=1024, radius=1, fill_type='NGON') global circle_base_mesh circle_base_mesh = bpy.context.scene.objects.active.data.copy() # Delete the scene, except for the camera and the lamp for obj in bpy.data.objects: if str(obj.name) in ['Camera']: continue obj.select = True bpy.ops.object.delete() scene = bpy.context.scene # set the camera and its constraint cam = scene.objects['Camera'] cam.location = (0, 3.0, 1.0) cam.data.lens = 35 cam.data.sensor_width = 32 cam.data.sensor_height = 32 cam_constraint = cam.constraints.new(type='TRACK_TO') cam_constraint.track_axis = 'TRACK_NEGATIVE_Z' cam_constraint.up_axis = 'UP_Y' def parent_obj_to_camera(b_camera): origin = (0, 0, 0) b_empty = bpy.data.objects.new('Empty', None) b_empty.location = origin b_camera.parent = b_empty # setup parenting scn = bpy.context.scene scn.objects.link(b_empty) scn.objects.active = b_empty return b_empty camera_target = parent_obj_to_camera(cam) cam_constraint.target = camera_target locations = [ (-0.98382, 0.445997, 0.526505), (-0.421806, -0.870784, 0.524944), (0.075576, -0.960128, 0.816464), (0.493553, -0.57716, 0.928208), (0.787275, -0.256822, 0.635172), (1.01032, 0.148764, 0.335078) ] for i in range(len(locations)): lamp_data = bpy.data.lamps.new(name='Point Lamp ' + str(i), type='POINT') lamp_data.shadow_method = 'RAY_SHADOW' lamp_data.shadow_ray_sample_method = 'CONSTANT_QMC' lamp_data.use_shadow = True lamp_data.shadow_soft_size = 1e6 lamp_data.distance = 2 lamp_data.energy = 0.1 lamp_data.use_diffuse = True lamp_data.use_specular = True lamp_data.falloff_type = 'CONSTANT' lamp_object = bpy.data.objects.new(name='Spot Lamp ' + str(i), object_data=lamp_data) scene.objects.link(lamp_object) lamp_object.location[0] = locations[i][0] lamp_object.location[1] = locations[i][1] lamp_object.location[2] = locations[i][2] lamp_object.rotation_euler[0] = 0 lamp_object.rotation_euler[1] = 0 lamp_object.rotation_euler[2] = 0 lamp_object.parent = camera_target try: if (2, 78, 0) <= bpy.app.version: # https://blender.stackexchange.com/questions/5281/blender-sets-compute-device-cuda-but-doesnt-use-it-for-actual-render-on-ec2 bpy.context.user_preferences.addons['cycles'].preferences.compute_device_type = 'CUDA' bpy.context.user_preferences.addons['cycles'].preferences.devices[0].use = True else: bpy.context.user_preferences.system.compute_device_type = 'CUDA' except TypeError: pass scene.render.use_file_extension = False scene.render.resolution_x = width scene.render.resolution_y = height scene.render.resolution_percentage = 100 scene.render.use_antialiasing = True scene.render.use_shadows = True world = bpy.context.scene.world world.zenith_color = [1.0, 1.0, 1.0] world.horizon_color = [1.0, 1.0, 1.0] scene.render.alpha_mode = 'SKY' world.light_settings.use_environment_light = True world.light_settings.environment_color = 'PLAIN' world.light_settings.environment_energy = 0.5 return camera_target def make_material(name, diffuse, alpha, shadow=False): material = bpy.data.materials.new(name) material.diffuse_color = diffuse material.diffuse_shader = 'LAMBERT' material.diffuse_intensity = 1 material.specular_color = (1, 1, 1) material.specular_shader = 'COOKTORR' material.specular_intensity = 2 material.alpha = alpha material.use_transparency = True material.ambient = 1.0 material.use_cast_shadows = shadow material.use_shadows = shadow return material def shadow_plane(material, offset = (0, 0, 0), scale = 1): global circle_base_mesh ob = bpy.data.objects.new("BRC_Shadow_Plane", circle_base_mesh) ob.location = offset ob.scale = (scale, scale, scale) bpy.context.scene.objects.link(ob) mat = material mat.use_shadows = True mat.use_transparent_shadows = True mat.use_only_shadow = True mat.use_raytrace = True mat.ambient = 0 ob.data.materials.append(mat) ob.active_material_index = 0 ob.active_material = mat def _load_mesh(name, vertices, faces): # vertices should be list of lists # faces should be list of lists edges = [] mesh = bpy.data.meshes.new(name=name) mesh.from_pydata(vertices, edges, faces) # mesh.vertices.add(len(verts)) # mesh.vertices.foreach_set("co", unpack_list(verts)) # mesh.faces.add(len(facets)) # mesh.faces.foreach_set("vertices", unpack_face_list(facets)) mesh.validate() mesh.update() scene = bpy.context.scene obj = bpy.data.objects.new(mesh.name, mesh) scene.objects.link(obj) scene.objects.active = obj obj.select = True axis_forward = EnumProperty( name="Forward", items=(('X', "X Forward", ""), ('Y', "Y Forward", ""), ('Z', "Z Forward", ""), ('-X', "-X Forward", ""), ('-Y', "-Y Forward", ""), ('-Z', "-Z Forward", ""), ), default='Y', ) axis_up = EnumProperty( name="Up", items=(('X', "X Up", ""), ('Y', "Y Up", ""), ('Z', "Z Up", ""), ('-X', "-X Up", ""), ('-Y', "-Y Up", ""), ('-Z', "-Z Up", ""), ), default='Z', ) global_matrix = axis_conversion(from_forward=axis_forward, from_up=axis_up).to_4x4() obj.matrix_world = global_matrix scene.update() return mesh def load_mesh(name, vertices, faces, material, offset=(0, 0, 0), scale=1, axes='xyz'): _load_mesh(name, vertices, faces) assert len(offset) == 3 assert scale > 0 assert len(axes) == 3 x_index = axes.find('x') y_index = axes.find('y') z_index = axes.find('z') assert x_index >= 0 and x_index < 3 assert y_index >= 0 and y_index < 3 assert z_index >= 0 and z_index < 3 assert x_index != y_index and x_index != z_index and y_index != z_index for obj in bpy.context.scene.objects: # obj.name contains the group name of a group of faces, see http://paulbourke.net/dataformats/obj/ # every mesh is of type 'MESH', this works not only for ShapeNet but also for 'simple' # obj files if obj.type == 'MESH' and not 'BRC' in obj.name: # change color # this is based on https://stackoverflow.com/questions/4644650/blender-how-do-i-add-a-color-to-an-object # but needed changing a lot of attributes according to documentation obj.data.materials.append(material) for vertex in obj.data.vertices: # make a copy, otherwise axes switching does not work vertex_copy = (vertex.co[0], vertex.co[1], vertex.co[2]) vertex.co[0] = vertex_copy[x_index] vertex.co[1] = vertex_copy[y_index] vertex.co[2] = vertex_copy[z_index] vertex.co[0] = vertex.co[0] * scale + offset[0] vertex.co[1] = vertex.co[1] * scale + offset[1] vertex.co[2] = vertex.co[2] * scale + offset[2] obj.name = 'BRC_' + obj.name def load_off(off_file, material, offset=(0, 0, 0), scale=1, axes='xyz'): bpy.ops.import_mesh.off(filepath=off_file) assert len(offset) == 3 assert scale > 0 assert len(axes) == 3 x_index = axes.find('x') y_index = axes.find('y') z_index = axes.find('z') assert x_index >= 0 and x_index < 3 assert y_index >= 0 and y_index < 3 assert z_index >= 0 and z_index < 3 assert x_index != y_index and x_index != z_index and y_index != z_index for obj in bpy.context.scene.objects: # obj.name contains the group name of a group of faces, see http://paulbourke.net/dataformats/obj/ # every mesh is of type 'MESH', this works not only for ShapeNet but also for 'simple' # obj files if obj.type == 'MESH' and not 'BRC' in obj.name: # change color # this is based on https://stackoverflow.com/questions/4644650/blender-how-do-i-add-a-color-to-an-object # but needed changing a lot of attributes according to documentation obj.data.materials.append(material) for vertex in obj.data.vertices: # make a copy, otherwise axes switching does not work vertex_copy = (vertex.co[0], vertex.co[1], vertex.co[2]) vertex.co[0] = vertex_copy[x_index] vertex.co[1] = vertex_copy[y_index] vertex.co[2] = vertex_copy[z_index] vertex.co[0] = vertex.co[0] * scale + offset[0] vertex.co[1] = vertex.co[1] * scale + offset[1] vertex.co[2] = vertex.co[2] * scale + offset[2] obj.name = 'BRC_' + obj.name def load_txt(txt_file, radius, material, offset=(0, 0, 0), scale=1, axes='xyz'): global sphere_base_mesh assert len(offset) == 3 assert scale > 0 assert len(axes) == 3 x_index = axes.find('x') y_index = axes.find('y') z_index = axes.find('z') assert x_index >= 0 and x_index < 3 assert y_index >= 0 and y_index < 3 assert z_index >= 0 and z_index < 3 assert x_index != y_index and x_index != z_index and y_index != z_index voxel_file = open(txt_file, 'r') voxel_lines = voxel_file.readlines() voxel_file.close() mesh = bmesh.new() for line in voxel_lines: vals = line.split(' ') if not line.startswith('#') and line.strip() != '' and len(vals) >= 3: location = ( float(vals[x_index]) * scale + offset[0], float(vals[y_index]) * scale + offset[1], float(vals[z_index]) * scale + offset[2] ) m = sphere_base_mesh.copy() for vertex in m.vertices: vertex.co[0] = vertex.co[0] * radius + location[0] vertex.co[1] = vertex.co[1] * radius + location[1] vertex.co[2] = vertex.co[2] * radius + location[2] mesh.from_mesh(m) mesh2 = bpy.data.meshes.new('Mesh') mesh.to_mesh(mesh2) obj = bpy.data.objects.new('BRC_Point_Cloud', mesh2) obj.data.materials.append(material) obj.active_material_index = 0 obj.active_material = material bpy.context.scene.objects.link(obj) def load_binvox(binvox_file, radius, material, offset, scale, axes): global cube_base_mesh assert len(offset) == 3 assert len(scale) == 3 assert len(axes) == 3 x_index = axes.find("x") y_index = axes.find("y") z_index = axes.find("z") assert x_index >= 0 and x_index < 3 assert y_index >= 0 and y_index < 3 assert z_index >= 0 and z_index < 3 assert x_index != y_index and x_index != z_index and y_index != z_index with open(binvox_file, 'rb') as f: model = binvox_rw.read_as_3d_array(f) points = np.where(model.data) locations = np.zeros((points[0].shape[0], 3), dtype=float) locations[:, 0] = (points[x_index][:] + 0.5) / model.data.shape[x_index] locations[:, 1] = (points[y_index][:] + 0.5) / model.data.shape[y_index] locations[:, 2] = (points[z_index][:] + 0.5) / model.data.shape[z_index] locations[:, 0] -= 0.5 locations[:, 1] -= 0.5 locations[:, 2] -= 0.5 locations[:, 0] = locations[:, 0] * scale[0] + offset[0] locations[:, 1] = locations[:, 1] * scale[1] + offset[1] locations[:, 2] = locations[:, 2] * scale[2] + offset[2] mesh = bmesh.new() for i in range(locations.shape[0]): m = cube_base_mesh.copy() for vertex in m.vertices: vertex.co[0] = vertex.co[0] * radius + locations[i, 0] vertex.co[1] = vertex.co[1] * radius + locations[i, 1] vertex.co[2] = vertex.co[2] * radius + locations[i, 2] mesh.from_mesh(m) mesh2 = bpy.data.meshes.new('Mesh') mesh.to_mesh(mesh2) obj = bpy.data.objects.new('BRC_Occupancy', mesh2) obj.data.materials.append(material) obj.active_material_index = 0 obj.active_material = material bpy.context.scene.objects.link(obj) def load_volume(volume, radius, material, offset, scale, axes): global cube_base_mesh assert len(offset) == 3 assert len(scale) == 3 assert len(axes) == 3 x_index = axes.find("x") y_index = axes.find("y") z_index = axes.find("z") assert x_index >= 0 and x_index < 3 assert y_index >= 0 and y_index < 3 assert z_index >= 0 and z_index < 3 assert x_index != y_index and x_index != z_index and y_index != z_index points = np.where(volume > 0) locations = np.zeros((points[0].shape[0], 3), dtype=float) locations[:, 0] = (points[x_index][:] + 0.5) / volume.shape[x_index] locations[:, 1] = (points[y_index][:] + 0.5) / volume.shape[y_index] locations[:, 2] = (points[z_index][:] + 0.5) / volume.shape[z_index] locations[:, 0] -= 0.5 locations[:, 1] -= 0.5 locations[:, 2] -= 0.5 locations[:, 0] = locations[:, 0] * scale[0] + offset[0] locations[:, 1] = locations[:, 1] * scale[1] + offset[1] locations[:, 2] = locations[:, 2] * scale[2] + offset[2] mesh = bmesh.new() for i in range(locations.shape[0]): m = cube_base_mesh.copy() for vertex in m.vertices: vertex.co[0] = vertex.co[0] * radius + locations[i, 0] vertex.co[1] = vertex.co[1] * radius + locations[i, 1] vertex.co[2] = vertex.co[2] * radius + locations[i, 2] mesh.from_mesh(m) mesh2 = bpy.data.meshes.new('Mesh') mesh.to_mesh(mesh2) obj = bpy.data.objects.new('BRC_Occupancy', mesh2) obj.data.materials.append(material) obj.active_material_index = 0 obj.active_material = material bpy.context.scene.objects.link(obj) def render(camera_target, output_file, rotation, distance): bpy.context.scene.render.filepath = output_file camera_target.rotation_euler[0] = math.radians(rotation[0]) camera_target.rotation_euler[1] = math.radians(rotation[1]) camera_target.rotation_euler[2] = math.radians(rotation[2]) cam = bpy.context.scene.objects['Camera'] cam.location = (0, 3.0 * distance, 1.0 * distance) bpy.ops.render.render(animation=False, write_still=True)
the-stack_0_11926
# Authors: Alexandre Gramfort <[email protected]> # Matti Hamalainen <[email protected]> # Martin Luessi <[email protected]> # # License: BSD (3-clause) from .externals.six import string_types import os import copy from math import ceil import numpy as np from scipy import linalg, sparse from scipy.sparse import csr_matrix, coo_matrix import warnings from .filter import resample from .fiff.evoked import _get_peak from .parallel import parallel_func from .surface import (read_surface, _get_ico_surface, read_morph_map, _compute_nearest) from .utils import (get_subjects_dir, _check_subject, _check_pandas_index_arguments, _check_pandas_installed, logger, verbose) from .viz import plot_source_estimates from .fixes import in1d from .externals.six.moves import zip def _read_stc(filename): """ Aux Function """ fid = open(filename, 'rb') stc = dict() fid.seek(0, 2) # go to end of file file_length = fid.tell() fid.seek(0, 0) # go to beginning of file # read tmin in ms stc['tmin'] = float(np.fromfile(fid, dtype=">f4", count=1)) stc['tmin'] /= 1000.0 # read sampling rate in ms stc['tstep'] = float(np.fromfile(fid, dtype=">f4", count=1)) stc['tstep'] /= 1000.0 # read number of vertices/sources vertices_n = int(np.fromfile(fid, dtype=">u4", count=1)) # read the source vector stc['vertices'] = np.fromfile(fid, dtype=">u4", count=vertices_n) # read the number of timepts data_n = int(np.fromfile(fid, dtype=">u4", count=1)) if (vertices_n and # vertices_n can be 0 (empty stc) ((file_length / 4 - 4 - vertices_n) % (data_n * vertices_n)) != 0): raise ValueError('incorrect stc file size') # read the data matrix stc['data'] = np.fromfile(fid, dtype=">f4", count=vertices_n * data_n) stc['data'] = stc['data'].reshape([data_n, vertices_n]).T # close the file fid.close() return stc def _write_stc(filename, tmin, tstep, vertices, data): """Write an STC file Parameters ---------- filename : string The name of the STC file. tmin : float The first time point of the data in seconds. tstep : float Time between frames in seconds. vertices : array of integers Vertex indices (0 based). data : 2D array The data matrix (nvert * ntime). """ fid = open(filename, 'wb') # write start time in ms fid.write(np.array(1000 * tmin, dtype='>f4').tostring()) # write sampling rate in ms fid.write(np.array(1000 * tstep, dtype='>f4').tostring()) # write number of vertices fid.write(np.array(vertices.shape[0], dtype='>u4').tostring()) # write the vertex indices fid.write(np.array(vertices, dtype='>u4').tostring()) # write the number of timepts fid.write(np.array(data.shape[1], dtype='>u4').tostring()) # # write the data # fid.write(np.array(data.T, dtype='>f4').tostring()) # close the file fid.close() def _read_3(fid): """ Read 3 byte integer from file """ data = np.fromfile(fid, dtype=np.uint8, count=3).astype(np.int32) out = np.left_shift(data[0], 16) + np.left_shift(data[1], 8) + data[2] return out def _read_w(filename): """Read a w file and return as dict w files contain activations or source reconstructions for a single time point. Parameters ---------- filename : string The name of the w file. Returns ------- data: dict The w structure. It has the following keys: vertices vertex indices (0 based) data The data matrix (nvert long) """ with open(filename, 'rb', buffering=0) as fid: # buffering=0 for np bug # skip first 2 bytes fid.read(2) # read number of vertices/sources (3 byte integer) vertices_n = int(_read_3(fid)) vertices = np.zeros((vertices_n), dtype=np.int32) data = np.zeros((vertices_n), dtype=np.float32) # read the vertices and data for i in range(vertices_n): vertices[i] = _read_3(fid) data[i] = np.fromfile(fid, dtype='>f4', count=1)[0] w = dict() w['vertices'] = vertices w['data'] = data return w def _write_3(fid, val): """ Write 3 byte integer to file """ f_bytes = np.zeros((3), dtype=np.uint8) f_bytes[0] = (val >> 16) & 255 f_bytes[1] = (val >> 8) & 255 f_bytes[2] = val & 255 fid.write(f_bytes.tostring()) def _write_w(filename, vertices, data): """Read a w file w files contain activations or source reconstructions for a single time point. Parameters ---------- filename: string The name of the w file. vertices: array of int Vertex indices (0 based). data: 1D array The data array (nvert). """ assert(len(vertices) == len(data)) fid = open(filename, 'wb') # write 2 zero bytes fid.write(np.zeros((2), dtype=np.uint8).tostring()) # write number of vertices/sources (3 byte integer) vertices_n = len(vertices) _write_3(fid, vertices_n) # write the vertices and data for i in range(vertices_n): _write_3(fid, vertices[i]) #XXX: without float() endianness is wrong, not sure why fid.write(np.array(float(data[i]), dtype='>f4').tostring()) # close the file fid.close() def read_source_estimate(fname, subject=None): """Read a soure estimate object Parameters ---------- fname : str Path to (a) source-estimate file(s). subject : str | None Name of the subject the source estimate(s) is (are) from. It is good practice to set this attribute to avoid combining incompatible labels and SourceEstimates (e.g., ones from other subjects). Note that due to file specification limitations, the subject name isn't saved to or loaded from files written to disk. Returns ------- stc : SourceEstimate | VolSourceEstimate The soure estimate object loaded from file. Notes ----- - for volume source estimates, ``fname`` should provide the path to a single file named '*-vl.stc` or '*-vol.stc' - for surface source estimates, ``fname`` should either provide the path to the file corresponding to a single hemisphere ('*-lh.stc', '*-rh.stc') or only specify the asterisk part in these patterns. In any case, the function expects files for both hemisphere with names following this pattern. - for single time point .w files, ``fname`` should follow the same pattern as for surface estimates, except that files are named '*-lh.w' and '*-rh.w'. """ fname_arg = fname # make sure corresponding file(s) can be found ftype = None if os.path.exists(fname): if fname.endswith('-vl.stc') or fname.endswith('-vol.stc') or \ fname.endswith('-vl.w') or fname.endswith('-vol.w'): ftype = 'volume' elif fname.endswith('.stc'): ftype = 'surface' if fname.endswith(('-lh.stc', '-rh.stc')): fname = fname[:-7] else: err = ("Invalid .stc filename: %r; needs to end with " "hemisphere tag ('...-lh.stc' or '...-rh.stc')" % fname) raise IOError(err) elif fname.endswith('.w'): ftype = 'w' if fname.endswith(('-lh.w', '-rh.w')): fname = fname[:-5] else: err = ("Invalid .w filename: %r; needs to end with " "hemisphere tag ('...-lh.w' or '...-rh.w')" % fname) raise IOError(err) if ftype is not 'volume': stc_exist = [os.path.exists(f) for f in [fname + '-rh.stc', fname + '-lh.stc']] w_exist = [os.path.exists(f) for f in [fname + '-rh.w', fname + '-lh.w']] if all(stc_exist) and (ftype is not 'w'): ftype = 'surface' elif all(w_exist): ftype = 'w' elif any(stc_exist) or any(w_exist): raise IOError("Hemisphere missing for %r" % fname_arg) else: raise IOError("SourceEstimate File(s) not found for: %r" % fname_arg) # read the files if ftype == 'volume': # volume source space if fname.endswith('.stc'): kwargs = _read_stc(fname) elif fname.endswith('.w'): kwargs = _read_w(fname) kwargs['data'] = kwargs['data'][:, np.newaxis] kwargs['tmin'] = 0.0 kwargs['tstep'] = 0.0 else: raise IOError('Volume source estimate must end with .stc or .w') elif ftype == 'surface': # stc file with surface source spaces lh = _read_stc(fname + '-lh.stc') rh = _read_stc(fname + '-rh.stc') assert lh['tmin'] == rh['tmin'] assert lh['tstep'] == rh['tstep'] kwargs = lh.copy() kwargs['data'] = np.r_[lh['data'], rh['data']] kwargs['vertices'] = [lh['vertices'], rh['vertices']] elif ftype == 'w': # w file with surface source spaces lh = _read_w(fname + '-lh.w') rh = _read_w(fname + '-rh.w') kwargs = lh.copy() kwargs['data'] = np.atleast_2d(np.r_[lh['data'], rh['data']]).T kwargs['vertices'] = [lh['vertices'], rh['vertices']] # w files only have a single time point kwargs['tmin'] = 0.0 kwargs['tstep'] = 1.0 if ftype != 'volume': # Make sure the vertices are ordered vertices = kwargs['vertices'] if any([np.any(np.diff(v.astype(int)) <= 0) for v in vertices]): sidx = [np.argsort(verts) for verts in vertices] vertices = [verts[idx] for verts, idx in zip(vertices, sidx)] data = kwargs['data'][np.r_[sidx[0], len(sidx[0]) + sidx[1]]] kwargs['vertices'] = vertices kwargs['data'] = data kwargs['subject'] = subject if ftype == 'volume': stc = VolSourceEstimate(**kwargs) else: stc = SourceEstimate(**kwargs) return stc def _make_stc(data, vertices, tmin=None, tstep=None, subject=None): """Helper function to generate either a surface or volume source estimate """ if isinstance(vertices, list) and len(vertices) == 2: # make a surface source estimate stc = SourceEstimate(data, vertices=vertices, tmin=tmin, tstep=tstep, subject=subject) elif isinstance(vertices, np.ndarray) or isinstance(vertices, list)\ and len(vertices) == 1: stc = VolSourceEstimate(data, vertices=vertices, tmin=tmin, tstep=tstep, subject=subject) else: raise ValueError('vertices has to be either a list with one or two ' 'arrays or an array') return stc def _verify_source_estimate_compat(a, b): """Make sure two SourceEstimates are compatible for arith. operations""" compat = False if len(a.vertno) == len(b.vertno): if all([np.array_equal(av, vv) for av, vv in zip(a.vertno, b.vertno)]): compat = True if not compat: raise ValueError('Cannot combine SourceEstimates that do not have the ' 'same vertices. Consider using stc.expand().') if a.subject != b.subject: raise ValueError('source estimates do not have the same subject ' 'names, "%s" and "%s"' % (a.name, b.name)) class _BaseSourceEstimate(object): """Abstract base class for source estimates Parameters ---------- data : array of shape (n_dipoles, n_times) | 2-tuple (kernel, sens_data) The data in source space. The data can either be a single array or a tuple with two arrays: "kernel" shape (n_vertices, n_sensors) and "sens_data" shape (n_sensors, n_times). In this case, the source space data corresponds to "numpy.dot(kernel, sens_data)". vertices : array | list of two arrays Vertex numbers corresponding to the data. tmin : scalar Time point of the first sample in data. tstep : scalar Time step between successive samples in data. subject : str | None The subject name. While not necessary, it is safer to set the subject parameter to avoid analysis errors. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Attributes ---------- subject : str | None The subject name. times : array of shape (n_times,) The time vector. vertices : array or list of arrays of shape (n_dipoles,) The indices of the dipoles in the different source spaces. Can be an array if there is only one source space (e.g., for volumes). data : array of shape (n_dipoles, n_times) The data in source space. shape : tuple The shape of the data. A tuple of int (n_dipoles, n_times). """ @verbose def __init__(self, data, vertices=None, tmin=None, tstep=None, subject=None, verbose=None): kernel, sens_data = None, None if isinstance(data, tuple): if len(data) != 2: raise ValueError('If data is a tuple it has to be length 2') kernel, sens_data = data data = None if kernel.shape[1] != sens_data.shape[0]: raise ValueError('kernel and sens_data have invalid ' 'dimensions') if isinstance(vertices, list): if not (len(vertices) == 2 or len(vertices) == 1) or \ not all([isinstance(v, np.ndarray) for v in vertices]): raise ValueError('Vertices, if a list, must contain one or ' 'two numpy arrays') if any([np.any(np.diff(v.astype(int)) <= 0) for v in vertices]): raise ValueError('Vertices must be ordered in increasing ' 'order.') n_src = sum([len(v) for v in vertices]) if len(vertices) == 1: vertices = vertices[0] elif isinstance(vertices, np.ndarray): n_src = len(vertices) else: raise ValueError('Vertices must be a list or numpy array') # safeguard the user against doing something silly if data is not None and data.shape[0] != n_src: raise ValueError('Number of vertices (%i) and stc.shape[0] (%i) ' 'must match' % (n_src, data.shape[0])) self._data = data self.tmin = tmin self.tstep = tstep self.vertno = vertices self.verbose = verbose self._kernel = kernel self._sens_data = sens_data self._kernel_removed = False self.times = None self._update_times() self.subject = _check_subject(None, subject, False) def _remove_kernel_sens_data_(self): """Remove kernel and sensor space data and compute self._data """ if self._kernel is not None or self._sens_data is not None: self._kernel_removed = True self._data = np.dot(self._kernel, self._sens_data) self._kernel = None self._sens_data = None def crop(self, tmin=None, tmax=None): """Restrict SourceEstimate to a time interval Parameters ---------- tmin : float or None The first time point in seconds. If None the first present is used. tmax : float or None The last time point in seconds. If None the last present is used. """ mask = np.ones(len(self.times), dtype=np.bool) if tmax is not None: mask = mask & (self.times <= tmax) if tmin is not None: mask = mask & (self.times >= tmin) self.tmin = tmin if self._kernel is not None and self._sens_data is not None: self._sens_data = self._sens_data[:, mask] else: self._data = self._data[:, mask] self._update_times() return self # return self for chaining methods @verbose def resample(self, sfreq, npad=100, window='boxcar', n_jobs=1, verbose=None): """Resample data Parameters ---------- sfreq : float New sample rate to use. npad : int Amount to pad the start and end of the data. window : string or tuple Window to use in resampling. See scipy.signal.resample. n_jobs : int Number of jobs to run in parallel. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Defaults to self.verbose. Notes ----- For some data, it may be more accurate to use npad=0 to reduce artifacts. This is dataset dependent -- check your data! Note that the sample rate of the original data is inferred from tstep. """ # resampling in sensor instead of source space gives a somewhat # different result, so we don't allow it self._remove_kernel_sens_data_() o_sfreq = 1.0 / self.tstep self._data = resample(self._data, sfreq, o_sfreq, npad, n_jobs=n_jobs) # adjust indirectly affected variables self.tstep = 1.0 / sfreq self._update_times() @property def data(self): if self._data is None: # compute the solution the first time the data is accessed and # remove the kernel and sensor data self._remove_kernel_sens_data_() return self._data @property def shape(self): if self._data is not None: return self._data.shape return (self._kernel.shape[0], self._sens_data.shape[1]) def _update_times(self): """Update the times attribute after changing tmin, tmax, or tstep""" self.times = self.tmin + (self.tstep * np.arange(self.shape[1])) def __add__(self, a): stc = copy.deepcopy(self) stc += a return stc def __iadd__(self, a): self._remove_kernel_sens_data_() if isinstance(a, _BaseSourceEstimate): _verify_source_estimate_compat(self, a) self._data += a.data else: self._data += a return self def mean(self): """Make a summary stc file with mean power between tmin and tmax. Returns ------- stc : instance of SourceEstimate The modified stc (note: method operates inplace). """ data = self.data tmax = self.tmin + self.tstep * data.shape[1] tmin = (self.tmin + tmax) / 2. tstep = tmax - self.tmin mean_stc = SourceEstimate(self.data.mean(axis=1)[:, np.newaxis], vertices=self.vertno, tmin=tmin, tstep=tstep, subject=self.subject) return mean_stc def __sub__(self, a): stc = copy.deepcopy(self) stc -= a return stc def __isub__(self, a): self._remove_kernel_sens_data_() if isinstance(a, _BaseSourceEstimate): _verify_source_estimate_compat(self, a) self._data -= a.data else: self._data -= a return self def __truediv__(self, a): return self.__div__(a) def __div__(self, a): stc = copy.deepcopy(self) stc /= a return stc def __itruediv__(self, a): return self.__idiv__(a) def __idiv__(self, a): self._remove_kernel_sens_data_() if isinstance(a, _BaseSourceEstimate): _verify_source_estimate_compat(self, a) self._data /= a.data else: self._data /= a return self def __mul__(self, a): stc = copy.deepcopy(self) stc *= a return stc def __imul__(self, a): self._remove_kernel_sens_data_() if isinstance(a, _BaseSourceEstimate): _verify_source_estimate_compat(self, a) self._data *= a.data else: self._data *= a return self def __pow__(self, a): stc = copy.deepcopy(self) stc **= a return stc def __ipow__(self, a): self._remove_kernel_sens_data_() self._data **= a return self def __radd__(self, a): return self + a def __rsub__(self, a): return self - a def __rmul__(self, a): return self * a def __rdiv__(self, a): return self / a def __neg__(self): stc = copy.deepcopy(self) stc._remove_kernel_sens_data_() stc._data *= -1 return stc def __pos__(self): return self def sqrt(self): """Return copy of SourceEstimate with sqrt(data).""" return self ** (0.5) def copy(self): """Return copy of SourceEstimate instance""" return copy.deepcopy(self) def bin(self, width, tstart=None, tstop=None, func=np.mean): """Returns a SourceEstimate object with data summarized over time bins Time bins of ``width`` seconds. This method is intended for visualization only. No filter is applied to the data before binning, making the method inappropriate as a tool for downsampling data. Parameters ---------- width : scalar Width of the individual bins in seconds. func : callable Function that is applied to summarize the data. Needs to accept a numpy.array as first input and an ``axis`` keyword argument. tstart : scalar | None Time point where the first bin starts. The default is the first time point of the stc. tstop : scalar | None Last possible time point contained in a bin (if the last bin would be shorter than width it is dropped). The default is the last time point of the stc. Returns ------- stc : instance of SourceEstimate The binned SourceEstimate. """ if tstart is None: tstart = self.tmin if tstop is None: tstop = self.times[-1] times = np.arange(tstart, tstop + self.tstep, width) nv, _ = self.shape nt = len(times) - 1 data = np.empty((nv, nt), dtype=self.data.dtype) for i in range(nt): idx = (self.times >= times[i]) & (self.times < times[i + 1]) data[:, i] = func(self.data[:, idx], axis=1) tmin = times[0] + width / 2. stc = _make_stc(data, vertices=self.vertno, tmin=tmin, tstep=width, subject=self.subject) return stc def transform_data(self, func, idx=None, tmin_idx=None, tmax_idx=None): """Get data after a linear (time) transform has been applied The transorm is applied to each source time course independently. Parameters ---------- func : callable The transform to be applied, including parameters (see, e.g., mne.fixes.partial). The first parameter of the function is the input data. The first return value is the transformed data, remaining outputs are ignored. The first dimension of the transformed data has to be the same as the first dimension of the input data. idx : array | None Indicices of source time courses for which to compute transform. If None, all time courses are used. tmin_idx : int | None Index of first time point to include. If None, the index of the first time point is used. tmax_idx : int | None Index of the first time point not to include. If None, time points up to (and including) the last time point are included. Returns ------- data_t : ndarray The transformed data. .. note:: Applying transforms can be significantly faster if the SourceEstimate object was created using "(kernel, sens_data)", for the "data" parameter as the transform is applied in sensor space. Inverse methods, e.g., "apply_inverse_epochs", or "lcmv_epochs" do this automatically (if possible). """ if idx is None: # use all time courses by default idx = slice(None, None) if self._kernel is None and self._sens_data is None: if self._kernel_removed: warnings.warn('Performance can be improved by not accessing ' 'the data attribute before calling this method.') # transform source space data directly data_t = func(self.data[idx, tmin_idx:tmax_idx]) if isinstance(data_t, tuple): # use only first return value data_t = data_t[0] else: # apply transform in sensor space sens_data_t = func(self._sens_data[:, tmin_idx:tmax_idx]) if isinstance(sens_data_t, tuple): # use only first return value sens_data_t = sens_data_t[0] # apply inverse data_shape = sens_data_t.shape if len(data_shape) > 2: # flatten the last dimensions sens_data_t = sens_data_t.reshape(data_shape[0], np.prod(data_shape[1:])) data_t = np.dot(self._kernel[idx, :], sens_data_t) # restore original shape if necessary if len(data_shape) > 2: data_t = data_t.reshape(data_t.shape[0], *data_shape[1:]) return data_t def transform(self, func, idx=None, tmin=None, tmax=None, copy=False): """Apply linear transform The transform is applied to each source time course independently. Parameters ---------- func : callable The transform to be applied, including parameters (see, e.g., mne.fixes.partial). The first parameter of the function is the input data. The first two dimensions of the transformed data should be (i) vertices and (ii) time. Transforms which yield 3D output (e.g. time-frequency transforms) are valid, so long as the first two dimensions are vertices and time. In this case, the copy parameter (see below) must be True and a list of SourceEstimates, rather than a single instance of SourceEstimate, will be returned, one for each index of the 3rd dimension of the transformed data. In the case of transforms yielding 2D output (e.g. filtering), the user has the option of modifying the input inplace (copy = False) or returning a new instance of SourceEstimate (copy = True) with the transformed data. idx : array | None Indices of source time courses for which to compute transform. If None, all time courses are used. tmin : float | int | None First time point to include (ms). If None, self.tmin is used. tmax : float | int | None Last time point to include (ms). If None, self.tmax is used. copy : bool If True, return a new instance of SourceEstimate instead of modifying the input inplace. Returns ------- stcs : instance of SourceEstimate | list The transformed stc or, in the case of transforms which yield N-dimensional output (where N > 2), a list of stcs. For a list, copy must be True. Notes ----- Applying transforms can be significantly faster if the SourceEstimate object was created using "(kernel, sens_data)", for the "data" parameter as the transform is applied in sensor space. Inverse methods, e.g., "apply_inverse_epochs", or "lcmv_epochs" do this automatically (if possible). """ # min and max data indices to include times = np.round(1000 * self.times) if tmin is None: tmin_idx = None else: tmin = float(tmin) tmin_idx = np.where(times >= tmin)[0][0] if tmax is None: tmax_idx = None else: tmax = float(tmax) tmax_idx = np.where(times <= tmax)[0][-1] data_t = self.transform_data(func, idx=idx, tmin_idx=tmin_idx, tmax_idx=tmax_idx) # account for change in n_vertices if idx is not None: idx_lh = idx[idx < len(self.lh_vertno)] idx_rh = idx[idx >= len(self.lh_vertno)] - len(self.lh_vertno) verts_lh = self.lh_vertno[idx_lh] verts_rh = self.rh_vertno[idx_rh] else: verts_lh = self.lh_vertno verts_rh = self.rh_vertno verts = [verts_lh, verts_rh] tmin_idx = 0 if tmin_idx is None else tmin_idx tmax_idx = -1 if tmax_idx is None else tmax_idx tmin = self.times[tmin_idx] times = np.arange(self.times[tmin_idx], self.times[tmax_idx] + self.tstep / 2, self.tstep) if data_t.ndim > 2: # return list of stcs if transformed data has dimensionality > 2 if copy: stcs = [SourceEstimate(data_t[:, :, a], verts, tmin, self.tstep, self.subject) for a in range(data_t.shape[-1])] else: raise ValueError('copy must be True if transformed data has ' 'more than 2 dimensions') else: # return new or overwritten stc stcs = self if not copy else self.copy() stcs._data, stcs.vertno = data_t, verts stcs.tmin, stcs.times = tmin, times return stcs def as_data_frame(self, index=None, scale_time=1e3, copy=True): """Represent source estimates as Pandas DataFrame Export source estimates in tabular structure with vertices as columns and two additional info columns 'subject' and 'time'. This function is useful to visualize and analyse source time courses with external statistical software such as statsmodels or R. Parameters ---------- index : tuple of str | None Column to be used as index for the data. Valid string options are 'subject' and 'time'. If None, both info columns will be included in the table as categorial data. If stc.subject is None, only time will be included. scale_time : float Scaling to be applied to time units. copy : bool If true, data will be copied. Else data may be modified in place. Returns ------- df : instance of DataFrame Source estimates exported into tabular data structure. """ pd = _check_pandas_installed() default_index = ['subject', 'time'] if index is not None: _check_pandas_index_arguments(index, default_index) else: index = default_index if self.subject is None: index.remove('subject') data = self.data.T shape = data.shape mindex = list() mindex.append(('time', self.times * scale_time)) mindex.append(('subject', np.repeat(self.subject, shape[0]))) if copy: data = data.copy() assert all(len(mdx) == len(mindex[0]) for mdx in mindex) if isinstance(self.vertno, list): # surface source estimates v_names = [i for e in [['%s %i' % ('LH' if ii < 1 else 'RH', vert) for vert in vertno] for ii, vertno in enumerate(self.vertno)] for i in e] else: # volume source estimates v_names = ['VOL %d' % vert for vert in self.vertno] df = pd.DataFrame(data, columns=v_names) [df.insert(i, k, v) for i, (k, v) in enumerate(mindex)] if index is not None: if 'time' in index: df['time'] = df['time'].astype(np.int64) with warnings.catch_warnings(record=True): df.set_index(index, inplace=True) return df class SourceEstimate(_BaseSourceEstimate): """Container for surface source estimates Parameters ---------- data : array of shape (n_dipoles, n_times) | 2-tuple (kernel, sens_data) The data in source space. The data can either be a single array or a tuple with two arrays: "kernel" shape (n_vertices, n_sensors) and "sens_data" shape (n_sensors, n_times). In this case, the source space data corresponds to "numpy.dot(kernel, sens_data)". vertices : list of two arrays Vertex numbers corresponding to the data. tmin : scalar Time point of the first sample in data. tstep : scalar Time step between successive samples in data. subject : str | None The subject name. While not necessary, it is safer to set the subject parameter to avoid analysis errors. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Attributes ---------- subject : str | None The subject name. times : array of shape (n_times,) The time vector. vertno : list of two arrays of shape (n_dipoles,) The indices of the dipoles in the left and right source space. data : array of shape (n_dipoles, n_times) The data in source space. shape : tuple The shape of the data. A tuple of int (n_dipoles, n_times). """ @verbose def __init__(self, data, vertices=None, tmin=None, tstep=None, subject=None, verbose=None): if not (isinstance(vertices, list) and len(vertices) == 2): raise ValueError('Vertices, if a list, must contain two ' 'numpy arrays') _BaseSourceEstimate.__init__(self, data, vertices=vertices, tmin=tmin, tstep=tstep, subject=subject, verbose=verbose) @verbose def save(self, fname, ftype='stc', verbose=None): """Save the source estimates to a file Parameters ---------- fname : string The stem of the file name. The file names used for surface source spaces are obtained by adding "-lh.stc" and "-rh.stc" (or "-lh.w" and "-rh.w") to the stem provided, for the left and the right hemisphere, respectively. ftype : string File format to use. Allowed values are "stc" (default) and "w". The "w" format only supports a single time point. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Defaults to self.verbose. """ if ftype not in ['stc', 'w']: raise ValueError('ftype must be "stc" or "w", not "%s"' % ftype) lh_data = self.data[:len(self.lh_vertno)] rh_data = self.data[-len(self.rh_vertno):] if ftype == 'stc': logger.info('Writing STC to disk...') _write_stc(fname + '-lh.stc', tmin=self.tmin, tstep=self.tstep, vertices=self.lh_vertno, data=lh_data) _write_stc(fname + '-rh.stc', tmin=self.tmin, tstep=self.tstep, vertices=self.rh_vertno, data=rh_data) elif ftype == 'w': if self.shape[1] != 1: raise ValueError('w files can only contain a single time ' 'point') logger.info('Writing STC to disk (w format)...') _write_w(fname + '-lh.w', vertices=self.lh_vertno, data=lh_data[:, 0]) _write_w(fname + '-rh.w', vertices=self.rh_vertno, data=rh_data[:, 0]) logger.info('[done]') def __repr__(self): if isinstance(self.vertno, list): nv = sum([len(v) for v in self.vertno]) else: nv = self.vertno.size s = "%d vertices" % nv if self.subject is not None: s += ", subject : %s" % self.subject s += ", tmin : %s (ms)" % (1e3 * self.tmin) s += ", tmax : %s (ms)" % (1e3 * self.times[-1]) s += ", tstep : %s (ms)" % (1e3 * self.tstep) s += ", data size : %s x %s" % self.shape return "<SourceEstimate | %s>" % s @property def lh_data(self): return self.data[:len(self.lh_vertno)] @property def rh_data(self): return self.data[len(self.lh_vertno):] @property def lh_vertno(self): return self.vertno[0] @property def rh_vertno(self): return self.vertno[1] def _hemilabel_stc(self, label): if label.hemi == 'lh': stc_vertices = self.vertno[0] else: stc_vertices = self.vertno[1] # find index of the Label's vertices idx = np.nonzero(in1d(stc_vertices, label.vertices))[0] # find output vertices vertices = stc_vertices[idx] # find data if label.hemi == 'rh': values = self.data[idx + len(self.vertno[0])] else: values = self.data[idx] return vertices, values def in_label(self, label): """Returns a SourceEstimate object restricted to a label SourceEstimate contains the time course of activation of all sources inside the label. Parameters ---------- label : Label | BiHemiLabel The label (as created for example by mne.read_label). If the label does not match any sources in the SourceEstimate, a ValueError is raised. """ # make sure label and stc are compatible if label.subject is not None and self.subject is not None \ and label.subject != self.subject: raise RuntimeError('label and stc must have same subject names, ' 'currently "%s" and "%s"' % (label.subject, self.subject)) if label.hemi == 'both': lh_vert, lh_val = self._hemilabel_stc(label.lh) rh_vert, rh_val = self._hemilabel_stc(label.rh) vertices = [lh_vert, rh_vert] values = np.vstack((lh_val, rh_val)) elif label.hemi == 'lh': lh_vert, values = self._hemilabel_stc(label) vertices = [lh_vert, np.array([])] elif label.hemi == 'rh': rh_vert, values = self._hemilabel_stc(label) vertices = [np.array([]), rh_vert] else: raise TypeError("Expected Label or BiHemiLabel; got %r" % label) if sum([len(v) for v in vertices]) == 0: raise ValueError('No vertices match the label in the stc file') label_stc = SourceEstimate(values, vertices=vertices, tmin=self.tmin, tstep=self.tstep, subject=self.subject) return label_stc def expand(self, vertno): """Expand SourceEstimate to include more vertices This will add rows to stc.data (zero-filled) and modify stc.vertno to include all vertices in stc.vertno and the input vertno. Parameters ---------- vertno : list of array New vertices to add. Can also contain old values. Returns ------- stc : instance of SourceEstimate The modified stc (note: method operates inplace). """ if not isinstance(vertno, list): raise TypeError('vertno must be a list') if not len(self.vertno) == len(vertno): raise ValueError('vertno must have the same length as stc.vertno') # can no longer use kernel and sensor data self._remove_kernel_sens_data_() inserters = list() offsets = [0] for vi, (v_old, v_new) in enumerate(zip(self.vertno, vertno)): v_new = np.setdiff1d(v_new, v_old) inds = np.searchsorted(v_old, v_new) # newer numpy might overwrite inds after np.insert, copy here inserters += [inds.copy()] offsets += [len(v_old)] self.vertno[vi] = np.insert(v_old, inds, v_new) inds = [ii + offset for ii, offset in zip(inserters, offsets[:-1])] inds = np.concatenate(inds) new_data = np.zeros((len(inds), self._data.shape[1])) self._data = np.insert(self._data, inds, new_data, axis=0) return self @verbose def extract_label_time_course(self, labels, src, mode='mean_flip', allow_empty=False, verbose=None): """Extract label time courses for lists of labels This function will extract one time course for each label. The way the time courses are extracted depends on the mode parameter. Valid values for mode are: 'mean': Average within each label. 'mean_flip': Average within each label with sign flip depending on source orientation. 'pca_flip': Apply an SVD to the time courses within each label and use the scaled and sign-flipped first right-singular vector as the label time course. The scaling is performed such that the power of the label time course is the same as the average per-vertex time course power within the label. The sign of the resulting time course is adjusted by multiplying it with "sign(dot(u, flip))" where u is the first left-singular vector, and flip is a sing-flip vector based on the vertex normals. This procedure assures that the phase does not randomly change by 180 degrees from one stc to the next. See also mne.extract_label_time_course to extract time courses for a list of SourceEstimate more efficiently. Parameters ---------- labels : Label | list of Label The labels for which to extract the time courses. src : list Source spaces for left and right hemisphere. mode : str Extraction mode, see explanation above. allow_empty : bool Instead of emitting an error, return all-zero time course for labels that do not have any vertices in the source estimate. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- label_tc : array, shape=(len(labels), n_times) Extracted time course for each label. """ label_tc = extract_label_time_course(self, labels, src, mode=mode, return_generator=False, allow_empty=allow_empty, verbose=verbose) return label_tc def center_of_mass(self, subject=None, hemi=None, restrict_vertices=False, subjects_dir=None): """Return the vertex on a given surface that is at the center of mass of the activity in stc. Note that all activity must occur in a single hemisphere, otherwise an error is returned. The "mass" of each point in space for computing the spatial center of mass is computed by summing across time, and vice-versa for each point in time in computing the temporal center of mass. This is useful for quantifying spatio-temporal cluster locations, especially when combined with the function mne.source_space.vertex_to_mni(). Parameters ---------- subject : string | None The subject the stc is defined for. hemi : int, or None Calculate the center of mass for the left (0) or right (1) hemisphere. If None, one of the hemispheres must be all zeroes, and the center of mass will be calculated for the other hemisphere (useful for getting COM for clusters). restrict_vertices : bool, or array of int If True, returned vertex will be one from stc. Otherwise, it could be any vertex from surf. If an array of int, the returned vertex will come from that array. For most accuruate estimates, do not restrict vertices. subjects_dir : str, or None Path to the SUBJECTS_DIR. If None, the path is obtained by using the environment variable SUBJECTS_DIR. Returns ------- vertex : int Vertex of the spatial center of mass for the inferred hemisphere, with each vertex weighted by the sum of the stc across time. For a boolean stc, then, this would be weighted purely by the duration each vertex was active. hemi : int Hemisphere the vertex was taken from. t : float Time of the temporal center of mass (weighted by the sum across source vertices). References: Used in Larson and Lee, "The cortical dynamics underlying effective switching of auditory spatial attention", NeuroImage 2012. """ subject = _check_subject(self.subject, subject) values = np.sum(self.data, axis=1) # sum across time vert_inds = [np.arange(len(self.vertno[0])), np.arange(len(self.vertno[1])) + len(self.vertno[0])] if hemi is None: hemi = np.where(np.array([np.sum(values[vi]) for vi in vert_inds]))[0] if not len(hemi) == 1: raise ValueError('Could not infer hemisphere') hemi = hemi[0] if not hemi in [0, 1]: raise ValueError('hemi must be 0 or 1') subjects_dir = get_subjects_dir(subjects_dir) values = values[vert_inds[hemi]] hemis = ['lh', 'rh'] surf = os.path.join(subjects_dir, subject, 'surf', hemis[hemi] + '.sphere') if isinstance(surf, string_types): # read in surface surf = read_surface(surf) if restrict_vertices is False: restrict_vertices = np.arange(surf[0].shape[0]) elif restrict_vertices is True: restrict_vertices = self.vertno[hemi] if np.any(self.data < 0): raise ValueError('Cannot compute COM with negative values') pos = surf[0][self.vertno[hemi], :].T c_o_m = np.sum(pos * values, axis=1) / np.sum(values) # Find the vertex closest to the COM vertex = np.argmin(np.sqrt(np.mean((surf[0][restrict_vertices, :] - c_o_m) ** 2, axis=1))) vertex = restrict_vertices[vertex] # do time center of mass by using the values across space masses = np.sum(self.data, axis=0).astype(float) t_ind = np.sum(masses * np.arange(self.shape[1])) / np.sum(masses) t = self.tmin + self.tstep * t_ind return vertex, hemi, t def plot(self, subject=None, surface='inflated', hemi='lh', colormap='hot', time_label='time=%0.2f ms', smoothing_steps=10, fmin=5., fmid=10., fmax=15., transparent=True, alpha=1.0, time_viewer=False, config_opts={}, subjects_dir=None, figure=None, views='lat', colorbar=True): """Plot SourceEstimates with PySurfer Note: PySurfer currently needs the SUBJECTS_DIR environment variable, which will automatically be set by this function. Plotting multiple SourceEstimates with different values for subjects_dir will cause PySurfer to use the wrong FreeSurfer surfaces when using methods of the returned Brain object. It is therefore recommended to set the SUBJECTS_DIR environment variable or always use the same value for subjects_dir (within the same Python session). Parameters ---------- stc : SourceEstimates The source estimates to plot. subject : str | None The subject name corresponding to FreeSurfer environment variable SUBJECT. If None stc.subject will be used. If that is None, the environment will be used. surface : str The type of surface (inflated, white etc.). hemi : str, 'lh' | 'rh' | 'split' | 'both' The hemisphere to display. Using 'both' or 'split' requires PySurfer version 0.4 or above. colormap : str The type of colormap to use. time_label : str How to print info about the time instant visualized. smoothing_steps : int The amount of smoothing. fmin : float The minimum value to display. fmid : float The middle value on the colormap. fmax : float The maximum value for the colormap. transparent : bool If True, use a linear transparency between fmin and fmid. alpha : float Alpha value to apply globally to the overlay. time_viewer : bool Display time viewer GUI. config_opts : dict Keyword arguments for Brain initialization. See pysurfer.viz.Brain. subjects_dir : str The path to the FreeSurfer subjects reconstructions. It corresponds to FreeSurfer environment variable SUBJECTS_DIR. figure : instance of mayavi.core.scene.Scene | None If None, the last figure will be cleaned and a new figure will be created. views : str | list View to use. See surfer.Brain(). colorbar : bool If True, display colorbar on scene. Returns ------- brain : Brain A instance of surfer.viz.Brain from PySurfer. """ brain = plot_source_estimates(self, subject, surface=surface, hemi=hemi, colormap=colormap, time_label=time_label, smoothing_steps=smoothing_steps, fmin=fmin, fmid=fmid, fmax=fmax, transparent=transparent, alpha=alpha, time_viewer=time_viewer, config_opts=config_opts, subjects_dir=subjects_dir, figure=figure, views=views, colorbar=colorbar) return brain @verbose def morph(self, subject_to, grade=5, smooth=None, subjects_dir=None, buffer_size=64, n_jobs=1, subject_from=None, verbose=None): """Morph a source estimate from one subject to another Parameters ---------- subject_to : string Name of the subject on which to morph as named in the SUBJECTS_DIR stc_from : SourceEstimate Source estimates for subject "from" to morph grade : int, list (of two arrays), or None Resolution of the icosahedral mesh (typically 5). If None, all vertices will be used (potentially filling the surface). If a list, then values will be morphed to the set of vertices specified in in grade[0] and grade[1]. Note that specifying the vertices (e.g., grade=[np.arange(10242), np.arange(10242)] for fsaverage on a standard grade 5 source space) can be substantially faster than computing vertex locations. Note that if subject='fsaverage' and 'grade=5', this set of vertices will automatically be used (instead of computed) for speed, since this is a common morph. smooth : int or None Number of iterations for the smoothing of the surface data. If None, smooth is automatically defined to fill the surface with non-zero values. subjects_dir : string, or None Path to SUBJECTS_DIR if it is not set in the environment. buffer_size : int Morph data in chunks of `buffer_size` time instants. Saves memory when morphing long time intervals. n_jobs : int Number of jobs to run in parallel. subject_from : string Name of the original subject as named in the SUBJECTS_DIR. If None, self.subject will be used. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- stc_to : SourceEstimate Source estimate for the destination subject. """ subject_from = _check_subject(self.subject, subject_from) return morph_data(subject_from, subject_to, self, grade, smooth, subjects_dir, buffer_size, n_jobs, verbose) def morph_precomputed(self, subject_to, vertices_to, morph_mat, subject_from=None): """Morph source estimate between subjects using a precomputed matrix Parameters ---------- subject_to : string Name of the subject on which to morph as named in the SUBJECTS_DIR. vertices_to : list of array of int The vertices on the destination subject's brain. morph_mat : sparse matrix The morphing matrix, usually from compute_morph_matrix. subject_from : string | None Name of the original subject as named in the SUBJECTS_DIR. If None, self.subject will be used. Returns ------- stc_to : SourceEstimate Source estimate for the destination subject. """ subject_from = _check_subject(self.subject, subject_from) return morph_data_precomputed(subject_from, subject_to, self, vertices_to, morph_mat) def get_peak(self, hemi=None, tmin=None, tmax=None, mode='abs', vert_as_index=False, time_as_index=False): """Get location and latency of peak amplitude hemi : {'lh', 'rh', None} The hemi to be considered. If None, the entire source space is considered. tmin : float | None The minimum point in time to be considered for peak getting. tmax : float | None The maximum point in time to be considered for peak getting. mode : {'pos', 'neg', 'abs'} How to deal with the sign of the data. If 'pos' only positive values will be considered. If 'neg' only negative values will be considered. If 'abs' absolute values will be considered. Defaults to 'abs'. vert_as_index : bool whether to return the vertex index instead of of its ID. Defaults to False. time_as_index : bool Whether to return the time index instead of the latency. Defaults to False. Returns ------- pos : int The vertex exhibiting the maximum response, either ID or index. latency : float | int The time point of the maximum response, either latency in seconds or index. """ data = {'lh': self.lh_data, 'rh': self.rh_data, None: self.data}[hemi] vertno = {'lh': self.lh_vertno, 'rh': self.rh_vertno, None: np.concatenate(self.vertno)}[hemi] vert_idx, time_idx = _get_peak(data, self.times, tmin, tmax, mode) return (vert_idx if vert_as_index else vertno[vert_idx], time_idx if time_as_index else self.times[time_idx]) class VolSourceEstimate(_BaseSourceEstimate): """Container for volume source estimates Parameters ---------- data : array of shape (n_dipoles, n_times) | 2-tuple (kernel, sens_data) The data in source space. The data can either be a single array or a tuple with two arrays: "kernel" shape (n_vertices, n_sensors) and "sens_data" shape (n_sensors, n_times). In this case, the source space data corresponds to "numpy.dot(kernel, sens_data)". vertices : array Vertex numbers corresponding to the data. tmin : scalar Time point of the first sample in data. tstep : scalar Time step between successive samples in data. subject : str | None The subject name. While not necessary, it is safer to set the subject parameter to avoid analysis errors. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Attributes ---------- subject : str | None The subject name. times : array of shape (n_times,) The time vector. vertno : array of shape (n_dipoles,) The indices of the dipoles in the source space. data : array of shape (n_dipoles, n_times) The data in source space. shape : tuple The shape of the data. A tuple of int (n_dipoles, n_times). """ @verbose def __init__(self, data, vertices=None, tmin=None, tstep=None, subject=None, verbose=None): if not (isinstance(vertices, np.ndarray) or isinstance(vertices, list) and len(vertices) == 1): raise ValueError('Vertices must be a numpy array or a list with ' 'one array') _BaseSourceEstimate.__init__(self, data, vertices=vertices, tmin=tmin, tstep=tstep, subject=subject, verbose=verbose) @verbose def save(self, fname, ftype='stc', verbose=None): """Save the source estimates to a file Parameters ---------- fname : string The stem of the file name. The stem is extended with "-vl.stc" or "-vl.w". ftype : string File format to use. Allowed values are "stc" (default) and "w". The "w" format only supports a single time point. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Defaults to self.verbose. """ if ftype not in ['stc', 'w']: raise ValueError('ftype must be "stc" or "w", not "%s"' % ftype) if ftype == 'stc': logger.info('Writing STC to disk...') if not (fname.endswith('-vl.stc') or fname.endswith('-vol.stc')): fname += '-vl.stc' _write_stc(fname, tmin=self.tmin, tstep=self.tstep, vertices=self.vertno, data=self.data) elif ftype == 'w': logger.info('Writing STC to disk (w format)...') if not (fname.endswith('-vl.w') or fname.endswith('-vol.w')): fname += '-vl.w' _write_w(fname, vertices=self.vertno, data=self.data) logger.info('[done]') def save_as_volume(self, fname, src, dest='mri', mri_resolution=False): """Save a volume source estimate in a nifti file Parameters ---------- fname : string The name of the generated nifti file. src : list The list of source spaces (should actually be of length 1) dest : 'mri' | 'surf' If 'mri' the volume is defined in the coordinate system of the original T1 image. If 'surf' the coordinate system of the FreeSurfer surface is used (Surface RAS). mri_resolution: bool It True the image is saved in MRI resolution. WARNING: if you have many time points the file produced can be huge. Returns ------- img : instance Nifti1Image The image object. """ save_stc_as_volume(fname, self, src, dest=dest, mri_resolution=mri_resolution) def as_volume(self, src, dest='mri', mri_resolution=False): """Export volume source estimate as a nifti object Parameters ---------- src : list The list of source spaces (should actually be of length 1) dest : 'mri' | 'surf' If 'mri' the volume is defined in the coordinate system of the original T1 image. If 'surf' the coordinate system of the FreeSurfer surface is used (Surface RAS). mri_resolution: bool It True the image is saved in MRI resolution. WARNING: if you have many time points the file produced can be huge. Returns ------- img : instance Nifti1Image The image object. """ return save_stc_as_volume(None, self, src, dest=dest, mri_resolution=mri_resolution) def __repr__(self): if isinstance(self.vertno, list): nv = sum([len(v) for v in self.vertno]) else: nv = self.vertno.size s = "%d vertices" % nv if self.subject is not None: s += ", subject : %s" % self.subject s += ", tmin : %s (ms)" % (1e3 * self.tmin) s += ", tmax : %s (ms)" % (1e3 * self.times[-1]) s += ", tstep : %s (ms)" % (1e3 * self.tstep) s += ", data size : %s x %s" % self.shape return "<VolSourceEstimate | %s>" % s def get_peak(self, tmin=None, tmax=None, mode='abs', vert_as_index=False, time_as_index=False): """Get location and latency of peak amplitude tmin : float | None The minimum point in time to be considered for peak getting. tmax : float | None The maximum point in time to be considered for peak getting. mode : {'pos', 'neg', 'abs'} How to deal with the sign of the data. If 'pos' only positive values will be considered. If 'neg' only negative values will be considered. If 'abs' absolute values will be considered. Defaults to 'abs'. vert_as_index : bool whether to return the vertex index instead of of its ID. Defaults to False. time_as_index : bool Whether to return the time index instead of the latency. Defaults to False. Returns ------- pos : int The vertex exhibiting the maximum response, either ID or index. latency : float The latency in seconds. """ vert_idx, time_idx = _get_peak(self.data, self.times, tmin, tmax, mode) return (vert_idx if vert_as_index else self.vertno[vert_idx], time_idx if time_as_index else self.times[time_idx]) ############################################################################### # Morphing def mesh_edges(tris): """Returns sparse matrix with edges as an adjacency matrix Parameters ---------- tris : array of shape [n_triangles x 3] The triangles. Returns ------- edges : sparse matrix The adjacency matrix. """ npoints = np.max(tris) + 1 ones_ntris = np.ones(3 * len(tris)) a, b, c = tris.T x = np.concatenate((a, b, c)) y = np.concatenate((b, c, a)) edges = coo_matrix((ones_ntris, (x, y)), shape=(npoints, npoints)) edges = edges.tocsr() edges = edges + edges.T return edges def mesh_dist(tris, vert): """Compute adjacency matrix weighted by distances It generates an adjacency matrix where the entries are the distances between neighboring vertices. Parameters ---------- tris : array (n_tris x 3) Mesh triangulation vert : array (n_vert x 3) Vertex locations Returns ------- dist_matrix : scipy.sparse.csr_matrix Sparse matrix with distances between adjacent vertices """ edges = mesh_edges(tris).tocoo() # Euclidean distances between neighboring vertices dist = np.sqrt(np.sum((vert[edges.row, :] - vert[edges.col, :]) ** 2, axis=1)) dist_matrix = csr_matrix((dist, (edges.row, edges.col)), shape=edges.shape) return dist_matrix @verbose def _morph_buffer(data, idx_use, e, smooth, n_vertices, nearest, maps, verbose=None): """Morph data from one subject's source space to another Parameters ---------- data : array, or csr sparse matrix A n_vertices x n_times (or other dimension) dataset to morph. idx_use : array of int Vertices from the original subject's data. e : sparse matrix The mesh edges of the "from" subject. smooth : int Number of smoothing iterations to perform. A hard limit of 100 is also imposed. n_vertices : int Number of vertices. nearest : array of int Vertices on the destination surface to use. maps : sparse matrix Morph map from one subject to the other. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- data_morphed : array, or csr sparse matrix The morphed data (same type as input). """ n_iter = 99 # max nb of smoothing iterations (minus one) if smooth is not None: if smooth <= 0: raise ValueError('The number of smoothing operations ("smooth") ' 'has to be at least 1.') smooth -= 1 # make sure we're in CSR format e = e.tocsr() if sparse.issparse(data): use_sparse = True if not isinstance(data, sparse.csr_matrix): data = data.tocsr() else: use_sparse = False done = False # do the smoothing for k in range(n_iter + 1): # get the row sum mult = np.zeros(e.shape[1]) mult[idx_use] = 1 idx_use_data = idx_use data_sum = e * mult # new indices are non-zero sums idx_use = np.where(data_sum)[0] # typically want to make the next iteration have these indices idx_out = idx_use # figure out if this is the last iteration if smooth is None: if k == n_iter or len(idx_use) >= n_vertices: # stop when vertices filled idx_out = None done = True elif k == smooth: idx_out = None done = True # do standard smoothing multiplication data = _morph_mult(data, e, use_sparse, idx_use_data, idx_out) if done is True: break # do standard normalization if use_sparse: data.data /= data_sum[idx_use].repeat(np.diff(data.indptr)) else: data /= data_sum[idx_use][:, None] # do special normalization for last iteration if use_sparse: data_sum[data_sum == 0] = 1 data.data /= data_sum.repeat(np.diff(data.indptr)) else: data[idx_use, :] /= data_sum[idx_use][:, None] logger.info(' %d smooth iterations done.' % (k + 1)) data_morphed = maps[nearest, :] * data return data_morphed def _morph_mult(data, e, use_sparse, idx_use_data, idx_use_out=None): """Helper for morphing Equivalent to "data = (e[:, idx_use_data] * data)[idx_use_out]" but faster. """ if len(idx_use_data) < e.shape[1]: if use_sparse: data = e[:, idx_use_data] * data else: # constructing a new sparse matrix is faster than sub-indexing # e[:, idx_use_data]! col, row = np.meshgrid(np.arange(data.shape[1]), idx_use_data) d_sparse = sparse.csr_matrix((data.ravel(), (row.ravel(), col.ravel())), shape=(e.shape[1], data.shape[1])) data = e * d_sparse data = np.asarray(data.todense()) else: data = e * data # trim data if idx_use_out is not None: data = data[idx_use_out] return data def _get_subject_sphere_tris(subject, subjects_dir): spheres = [os.path.join(subjects_dir, subject, 'surf', xh + '.sphere.reg') for xh in ['lh', 'rh']] tris = [read_surface(s)[1] for s in spheres] return tris @verbose def morph_data(subject_from, subject_to, stc_from, grade=5, smooth=None, subjects_dir=None, buffer_size=64, n_jobs=1, verbose=None): """Morph a source estimate from one subject to another Parameters ---------- subject_from : string Name of the original subject as named in the SUBJECTS_DIR subject_to : string Name of the subject on which to morph as named in the SUBJECTS_DIR stc_from : SourceEstimate Source estimates for subject "from" to morph grade : int, list (of two arrays), or None Resolution of the icosahedral mesh (typically 5). If None, all vertices will be used (potentially filling the surface). If a list, then values will be morphed to the set of vertices specified in in grade[0] and grade[1]. Note that specifying the vertices (e.g., grade=[np.arange(10242), np.arange(10242)] for fsaverage on a standard grade 5 source space) can be substantially faster than computing vertex locations. Note that if subject='fsaverage' and 'grade=5', this set of vertices will automatically be used (instead of computed) for speed, since this is a common morph. smooth : int or None Number of iterations for the smoothing of the surface data. If None, smooth is automatically defined to fill the surface with non-zero values. subjects_dir : string, or None Path to SUBJECTS_DIR if it is not set in the environment. buffer_size : int Morph data in chunks of `buffer_size` time instants. Saves memory when morphing long time intervals. n_jobs : int Number of jobs to run in parallel verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- stc_to : SourceEstimate Source estimate for the destination subject. """ if not isinstance(stc_from, SourceEstimate): raise ValueError('Morphing is only possible with surface source ' 'estimates') logger.info('Morphing data...') subjects_dir = get_subjects_dir(subjects_dir) nearest = grade_to_vertices(subject_to, grade, subjects_dir, n_jobs) tris = _get_subject_sphere_tris(subject_from, subjects_dir) maps = read_morph_map(subject_from, subject_to, subjects_dir) # morph the data data = [stc_from.lh_data, stc_from.rh_data] data_morphed = [None, None] n_chunks = ceil(stc_from.data.shape[1] / float(buffer_size)) parallel, my_morph_buffer, _ = parallel_func(_morph_buffer, n_jobs) for hemi in [0, 1]: e = mesh_edges(tris[hemi]) e.data[e.data == 2] = 1 n_vertices = e.shape[0] e = e + sparse.eye(n_vertices, n_vertices) idx_use = stc_from.vertno[hemi] if len(idx_use) == 0: continue data_morphed[hemi] = np.concatenate( parallel(my_morph_buffer(data_buffer, idx_use, e, smooth, n_vertices, nearest[hemi], maps[hemi]) for data_buffer in np.array_split(data[hemi], n_chunks, axis=1)), axis=1) vertices = [nearest[0], nearest[1]] if data_morphed[0] is None: if data_morphed[1] is None: data = np.r_[[], []] vertices = [np.array([], dtype=int), np.array([], dtype=int)] else: data = data_morphed[1] vertices = [np.array([], dtype=int), vertices[1]] elif data_morphed[1] is None: data = data_morphed[0] vertices = [vertices[0], np.array([], dtype=int)] else: data = np.r_[data_morphed[0], data_morphed[1]] stc_to = SourceEstimate(data, vertices, stc_from.tmin, stc_from.tstep, subject=subject_to, verbose=stc_from.verbose) logger.info('[done]') return stc_to @verbose def compute_morph_matrix(subject_from, subject_to, vertices_from, vertices_to, smooth=None, subjects_dir=None, verbose=None): """Get a matrix that morphs data from one subject to another Parameters ---------- subject_from : string Name of the original subject as named in the SUBJECTS_DIR subject_to : string Name of the subject on which to morph as named in the SUBJECTS_DIR vertices_from : list of arrays of int Vertices for each hemisphere (LH, RH) for subject_from vertices_to : list of arrays of int Vertices for each hemisphere (LH, RH) for subject_to smooth : int or None Number of iterations for the smoothing of the surface data. If None, smooth is automatically defined to fill the surface with non-zero values. subjects_dir : string Path to SUBJECTS_DIR is not set in the environment verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- morph_matrix : sparse matrix matrix that morphs data from subject_from to subject_to """ logger.info('Computing morph matrix...') subjects_dir = get_subjects_dir(subjects_dir) tris = _get_subject_sphere_tris(subject_from, subjects_dir) maps = read_morph_map(subject_from, subject_to, subjects_dir) morpher = [None] * 2 for hemi in [0, 1]: e = mesh_edges(tris[hemi]) e.data[e.data == 2] = 1 n_vertices = e.shape[0] e = e + sparse.eye(n_vertices, n_vertices) idx_use = vertices_from[hemi] if len(idx_use) == 0: morpher[hemi] = [] continue m = sparse.eye(len(idx_use), len(idx_use), format='csr') morpher[hemi] = _morph_buffer(m, idx_use, e, smooth, n_vertices, vertices_to[hemi], maps[hemi]) # be careful about zero-length arrays if isinstance(morpher[0], list): morpher = morpher[1] elif isinstance(morpher[1], list): morpher = morpher[0] else: morpher = sparse_block_diag(morpher, format='csr') logger.info('[done]') return morpher @verbose def grade_to_vertices(subject, grade, subjects_dir=None, n_jobs=1, verbose=None): """Convert a grade to source space vertices for a given subject Parameters ---------- subject : str Name of the subject grade : int Resolution of the icosahedral mesh (typically 5). If None, all vertices will be used (potentially filling the surface). If a list, then values will be morphed to the set of vertices specified in in grade[0] and grade[1]. Note that specifying the vertices (e.g., grade=[np.arange(10242), np.arange(10242)] for fsaverage on a standard grade 5 source space) can be substantially faster than computing vertex locations. Note that if subject='fsaverage' and 'grade=5', this set of vertices will automatically be used (instead of computed) for speed, since this is a common morph. subjects_dir : string, or None Path to SUBJECTS_DIR if it is not set in the environment n_jobs : int Number of jobs to run in parallel verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- vertices : list of arrays of int Vertex numbers for LH and RH """ # add special case for fsaverage for speed if subject == 'fsaverage' and grade == 5: return [np.arange(10242), np.arange(10242)] subjects_dir = get_subjects_dir(subjects_dir) spheres_to = [os.path.join(subjects_dir, subject, 'surf', xh + '.sphere.reg') for xh in ['lh', 'rh']] lhs, rhs = [read_surface(s)[0] for s in spheres_to] if grade is not None: # fill a subset of vertices if isinstance(grade, list): if not len(grade) == 2: raise ValueError('grade as a list must have two elements ' '(arrays of output vertices)') vertices = grade else: # find which vertices to use in "to mesh" ico = _get_ico_tris(grade, return_surf=True) lhs /= np.sqrt(np.sum(lhs ** 2, axis=1))[:, None] rhs /= np.sqrt(np.sum(rhs ** 2, axis=1))[:, None] # Compute nearest vertices in high dim mesh parallel, my_compute_nearest, _ = \ parallel_func(_compute_nearest, n_jobs) lhs, rhs, rr = [a.astype(np.float32) for a in [lhs, rhs, ico['rr']]] vertices = parallel(my_compute_nearest(xhs, rr) for xhs in [lhs, rhs]) # Make sure the vertices are ordered vertices = [np.sort(verts) for verts in vertices] else: # potentially fill the surface vertices = [np.arange(lhs.shape[0]), np.arange(rhs.shape[0])] return vertices def morph_data_precomputed(subject_from, subject_to, stc_from, vertices_to, morph_mat): """Morph source estimate between subjects using a precomputed matrix Parameters ---------- subject_from : string Name of the original subject as named in the SUBJECTS_DIR. subject_to : string Name of the subject on which to morph as named in the SUBJECTS_DIR. stc_from : SourceEstimate Source estimates for subject "from" to morph. vertices_to : list of array of int The vertices on the destination subject's brain. morph_mat : sparse matrix The morphing matrix, typically from compute_morph_matrix. Returns ------- stc_to : SourceEstimate Source estimate for the destination subject. """ if not sparse.issparse(morph_mat): raise ValueError('morph_mat must be a sparse matrix') if not isinstance(vertices_to, list) or not len(vertices_to) == 2: raise ValueError('vertices_to must be a list of length 2') if not sum(len(v) for v in vertices_to) == morph_mat.shape[0]: raise ValueError('number of vertices in vertices_to must match ' 'morph_mat.shape[0]') if not stc_from.data.shape[0] == morph_mat.shape[1]: raise ValueError('stc_from.data.shape[0] must be the same as ' 'morph_mat.shape[0]') if stc_from.subject is not None and stc_from.subject != subject_from: raise ValueError('stc_from.subject and subject_from must match') data = morph_mat * stc_from.data stc_to = SourceEstimate(data, vertices_to, stc_from.tmin, stc_from.tstep, verbose=stc_from.verbose, subject=subject_to) return stc_to @verbose def spatio_temporal_src_connectivity(src, n_times, dist=None, verbose=None): """Compute connectivity for a source space activation over time Parameters ---------- src : source space The source space. n_times : int Number of time instants. dist : float, or None Maximal geodesic distance (in m) between vertices in the source space to consider neighbors. If None, immediate neighbors are extracted from an ico surface. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- connectivity : sparse COO matrix The connectivity matrix describing the spatio-temporal graph structure. If N is the number of vertices in the source space, the N first nodes in the graph are the vertices are time 1, the nodes from 2 to 2N are the vertices during time 2, etc. """ if dist is None: if src[0]['use_tris'] is None: raise Exception("The source space does not appear to be an ico " "surface. Connectivity cannot be extracted from " "non-ico source spaces.") used_verts = [np.unique(s['use_tris']) for s in src] lh_tris = np.searchsorted(used_verts[0], src[0]['use_tris']) rh_tris = np.searchsorted(used_verts[1], src[1]['use_tris']) tris = np.concatenate((lh_tris, rh_tris + np.max(lh_tris) + 1)) connectivity = spatio_temporal_tris_connectivity(tris, n_times) # deal with source space only using a subset of vertices masks = [in1d(u, s['vertno']) for s, u in zip(src, used_verts)] if sum(u.size for u in used_verts) != connectivity.shape[0] / n_times: raise ValueError('Used vertices do not match connectivity shape') if [np.sum(m) for m in masks] != [len(s['vertno']) for s in src]: raise ValueError('Vertex mask does not match number of vertices') masks = np.concatenate(masks) missing = 100 * float(len(masks) - np.sum(masks)) / len(masks) if missing: warnings.warn('%0.1f%% of original source space vertices have been' ' omitted, tri-based connectivity will have holes.\n' 'Consider using distance-based connectivity or ' 'morphing data to all source space vertices.' % missing) masks = np.tile(masks, n_times) masks = np.where(masks)[0] connectivity = connectivity.tocsr() connectivity = connectivity[masks] connectivity = connectivity[:, masks] # return to original format connectivity = connectivity.tocoo() return connectivity else: # use distances computed and saved in the source space file return spatio_temporal_dist_connectivity(src, n_times, dist) @verbose def grade_to_tris(grade, verbose=None): """Get tris defined for a certain grade Parameters ---------- grade : int Grade of an icosahedral mesh. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- tris : list 2-element list containing Nx3 arrays of tris, suitable for use in spatio_temporal_tris_connectivity. """ a = _get_ico_tris(grade, None, False) tris = np.concatenate((a, a + (np.max(a) + 1))) return tris @verbose def spatio_temporal_tris_connectivity(tris, n_times, verbose=None): """Compute connectivity from triangles and time instants Parameters ---------- tris : array N x 3 array defining triangles. n_times : int Number of time points verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- connectivity : sparse COO matrix The connectivity matrix describing the spatio-temporal graph structure. If N is the number of vertices in the source space, the N first nodes in the graph are the vertices are time 1, the nodes from 2 to 2N are the vertices during time 2, etc. """ edges = mesh_edges(tris).tocoo() return _get_connectivity_from_edges(edges, n_times) @verbose def spatio_temporal_dist_connectivity(src, n_times, dist, verbose=None): """Compute connectivity from distances in a source space and time instants Parameters ---------- src : source space The source space must have distances between vertices computed, such that src['dist'] exists and is useful. This can be obtained using MNE with a call to mne_add_patch_info with the --dist option. n_times : int Number of time points dist : float Maximal geodesic distance (in m) between vertices in the source space to consider neighbors. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- connectivity : sparse COO matrix The connectivity matrix describing the spatio-temporal graph structure. If N is the number of vertices in the source space, the N first nodes in the graph are the vertices are time 1, the nodes from 2 to 2N are the vertices during time 2, etc. """ if src[0]['dist'] is None: raise RuntimeError('src must have distances included, consider using\n' 'mne_add_patch_info with --dist argument') edges = sparse_block_diag([s['dist'][s['vertno'], :][:, s['vertno']] for s in src]) edges.data[:] = np.less_equal(edges.data, dist) # clean it up and put it in coo format edges = edges.tocsr() edges.eliminate_zeros() edges = edges.tocoo() return _get_connectivity_from_edges(edges, n_times) @verbose def spatial_src_connectivity(src, dist=None, verbose=None): """Compute connectivity for a source space activation Parameters ---------- src : source space The source space. dist : float, or None Maximal geodesic distance (in m) between vertices in the source space to consider neighbors. If None, immediate neighbors are extracted from an ico surface. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- connectivity : sparse COO matrix The connectivity matrix describing the spatial graph structure. """ return spatio_temporal_src_connectivity(src, 1, dist) @verbose def spatial_tris_connectivity(tris, verbose=None): """Compute connectivity from triangles Parameters ---------- tris : array N x 3 array defining triangles. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- connectivity : sparse COO matrix The connectivity matrix describing the spatial graph structure. """ return spatio_temporal_tris_connectivity(tris, 1) def spatial_dist_connectivity(src, dist, verbose=None): """Compute connectivity from distances in a source space Parameters ---------- src : source space The source space must have distances between vertices computed, such that src['dist'] exists and is useful. This can be obtained using MNE with a call to mne_add_patch_info with the --dist option. dist : float Maximal geodesic distance (in m) between vertices in the source space to consider neighbors. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- connectivity : sparse COO matrix The connectivity matrix describing the spatial graph structure. """ return spatio_temporal_dist_connectivity(src, 1, dist) def sparse_block_diag(mats, format=None, dtype=None): """An implementation of scipy.sparse.block_diag since old versions of scipy don't have it. Forms a sparse matrix by stacking matrices in block diagonal form. Parameters ---------- mats : list of matrices Input matrices. format : str, optional The sparse format of the result (e.g. "csr"). If not given, the matrix is returned in "coo" format. dtype : dtype specifier, optional The data-type of the output matrix. If not given, the dtype is determined from that of blocks. Returns ------- res : sparse matrix """ try: return sparse.block_diag(mats, format=format, dtype=dtype) except AttributeError: nmat = len(mats) rows = [] for ia, a in enumerate(mats): row = [None] * nmat row[ia] = a rows.append(row) return sparse.bmat(rows, format=format, dtype=dtype) @verbose def _get_connectivity_from_edges(edges, n_times, verbose=None): """Given edges sparse matrix, create connectivity matrix""" n_vertices = edges.shape[0] logger.info("-- number of connected vertices : %d" % n_vertices) nnz = edges.col.size aux = n_vertices * np.arange(n_times)[:, None] * np.ones((1, nnz), np.int) col = (edges.col[None, :] + aux).ravel() row = (edges.row[None, :] + aux).ravel() if n_times > 1: # add temporal edges o = (n_vertices * np.arange(n_times - 1)[:, None] + np.arange(n_vertices)[None, :]).ravel() d = (n_vertices * np.arange(1, n_times)[:, None] + np.arange(n_vertices)[None, :]).ravel() row = np.concatenate((row, o, d)) col = np.concatenate((col, d, o)) data = np.ones(edges.data.size * n_times + 2 * n_vertices * (n_times - 1), dtype=np.int) connectivity = coo_matrix((data, (row, col)), shape=(n_times * n_vertices, ) * 2) return connectivity @verbose def _get_ico_tris(grade, verbose=None, return_surf=False): """Get triangles for ico surface.""" ico = _get_ico_surface(grade) if not return_surf: return ico['tris'] else: return ico def save_stc_as_volume(fname, stc, src, dest='mri', mri_resolution=False): """Save a volume source estimate in a nifti file Parameters ---------- fname : string | None The name of the generated nifti file. If None, the image is only returned and not saved. stc : instance of VolSourceEstimate The source estimate src : list The list of source spaces (should actually be of length 1) dest : 'mri' | 'surf' If 'mri' the volume is defined in the coordinate system of the original T1 image. If 'surf' the coordinate system of the FreeSurfer surface is used (Surface RAS). mri_resolution: bool It True the image is saved in MRI resolution. WARNING: if you have many time points the file produced can be huge. Returns ------- img : instance Nifti1Image The image object. """ if not isinstance(stc, VolSourceEstimate): raise Exception('Only volume source estimates can be saved as ' 'volumes') n_times = stc.data.shape[1] shape = src[0]['shape'] shape3d = (shape[2], shape[1], shape[0]) shape = (n_times, shape[2], shape[1], shape[0]) vol = np.zeros(shape) mask3d = src[0]['inuse'].reshape(shape3d).astype(np.bool) if mri_resolution: mri_shape3d = (src[0]['mri_height'], src[0]['mri_depth'], src[0]['mri_width']) mri_shape = (n_times, src[0]['mri_height'], src[0]['mri_depth'], src[0]['mri_width']) mri_vol = np.zeros(mri_shape) interpolator = src[0]['interpolator'] for k, v in enumerate(vol): v[mask3d] = stc.data[:, k] if mri_resolution: mri_vol[k] = (interpolator * v.ravel()).reshape(mri_shape3d) if mri_resolution: vol = mri_vol vol = vol.T if mri_resolution: affine = src[0]['vox_mri_t']['trans'].copy() else: affine = src[0]['src_mri_t']['trans'].copy() if dest == 'mri': affine = np.dot(src[0]['mri_ras_t']['trans'], affine) affine[:3] *= 1e3 try: import nibabel as nib # lazy import to avoid dependency except ImportError: raise ImportError("nibabel is required to save volume images.") header = nib.nifti1.Nifti1Header() header.set_xyzt_units('mm', 'msec') header['pixdim'][4] = 1e3 * stc.tstep img = nib.Nifti1Image(vol, affine, header=header) if fname is not None: nib.save(img, fname) return img def _get_label_flip(labels, label_vertidx, src): """Helper function to get sign-flip for labels""" # do the import here to avoid circular dependency from .label import label_sign_flip # get the sign-flip vector for every label label_flip = list() for label, vertidx in zip(labels, label_vertidx): if label.hemi == 'both': raise ValueError('BiHemiLabel not supported when using sign-flip') if vertidx is not None: flip = label_sign_flip(label, src)[:, None] else: flip = None label_flip.append(flip) return label_flip @verbose def _gen_extract_label_time_course(stcs, labels, src, mode='mean', allow_empty=False, verbose=None): """Generator for extract_label_time_course""" n_labels = len(labels) # get vertno from source space, they have to be the same as in the stcs vertno = [s['vertno'] for s in src] nvert = [len(vn) for vn in vertno] # do the initialization label_vertidx = list() for label in labels: if label.hemi == 'both': # handle BiHemiLabel sub_labels = [label.lh, label.rh] else: sub_labels = [label] this_vertidx = list() for slabel in sub_labels: if slabel.hemi == 'lh': this_vertno = np.intersect1d(vertno[0], slabel.vertices) vertidx = np.searchsorted(vertno[0], this_vertno) elif slabel.hemi == 'rh': this_vertno = np.intersect1d(vertno[1], slabel.vertices) vertidx = nvert[0] + np.searchsorted(vertno[1], this_vertno) else: raise ValueError('label %s has invalid hemi' % label.name) this_vertidx.append(vertidx) # convert it to an array this_vertidx = np.concatenate(this_vertidx) if len(this_vertidx) == 0: msg = ('source space does not contain any vertices for label %s' % label.name) if not allow_empty: raise ValueError(msg) else: logger.warning(msg + '. Assigning all-zero time series to ' 'label.') this_vertidx = None # to later check if label is empty label_vertidx.append(this_vertidx) # mode-dependent initalization if mode == 'mean': pass # we have this here to catch invalid values for mode elif mode == 'mean_flip': # get the sign-flip vector for every label label_flip = _get_label_flip(labels, label_vertidx, src) elif mode == 'pca_flip': # get the sign-flip vector for every label label_flip = _get_label_flip(labels, label_vertidx, src) else: raise ValueError('%s is an invalid mode' % mode) # loop through source estimates and extract time series for stc in stcs: # make sure the stc is compatible with the source space if len(stc.vertno[0]) != nvert[0] or len(stc.vertno[1]) != nvert[1]: raise ValueError('stc not compatible with source space') if any([np.any(svn != vn) for svn, vn in zip(stc.vertno, vertno)]): raise ValueError('stc not compatible with source space') logger.info('Extracting time courses for %d labels (mode: %s)' % (n_labels, mode)) # do the extraction label_tc = np.zeros((n_labels, stc.data.shape[1]), dtype=stc.data.dtype) if mode == 'mean': for i, vertidx in enumerate(label_vertidx): if vertidx is not None: label_tc[i] = np.mean(stc.data[vertidx, :], axis=0) elif mode == 'mean_flip': for i, (vertidx, flip) in enumerate(zip(label_vertidx, label_flip)): if vertidx is not None: label_tc[i] = np.mean(flip * stc.data[vertidx, :], axis=0) elif mode == 'pca_flip': for i, (vertidx, flip) in enumerate(zip(label_vertidx, label_flip)): if vertidx is not None: U, s, V = linalg.svd(stc.data[vertidx, :], full_matrices=False) # determine sign-flip sign = np.sign(np.dot(U[:, 0], flip)) # use average power in label for scaling scale = linalg.norm(s) / np.sqrt(len(vertidx)) label_tc[i] = sign * scale * V[0] else: raise ValueError('%s is an invalid mode' % mode) # this is a generator! yield label_tc @verbose def extract_label_time_course(stcs, labels, src, mode='mean_flip', allow_empty=False, return_generator=False, verbose=None): """Extract label time course for lists of labels and source estimates This function will extract one time course for each label and source estimate. The way the time courses are extracted depends on the mode parameter. Valid values for mode are: 'mean': Average within each label. 'mean_flip': Average within each label with sign flip depending on source orientation. 'pca_flip': Apply an SVD to the time courses within each label and use the scaled and sign-flipped first right-singular vector as the label time course. The scaling is performed such that the power of the label time course is the same as the average per-vertex time course power within the label. The sign of the resulting time course is adjusted by multiplying it with "sign(dot(u, flip))" where u is the first left-singular vector, and flip is a sing-flip vector based on the vertex normals. This procedure assures that the phase does not randomly change by 180 degrees from one stc to the next. Parameters ---------- stcs : SourceEstimate | list (or generator) of SourceEstimate The source estimates from which to extract the time course. labels : Label | list of Label The labels for which to extract the time course. src : list Source spaces for left and right hemisphere. mode : str Extraction mode, see explanation above. allow_empty : bool Instead of emitting an error, return all-zero time courses for labels that do not have any vertices in the source estimate. return_generator : bool If True, a generator instead of a list is returned. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- label_tc : array | list (or generator) of array, shape=(len(labels), n_times) Extracted time course for each label and source estimate. """ # convert inputs to lists if isinstance(stcs, SourceEstimate): stcs = [stcs] return_several = False return_generator = False else: return_several = True if not isinstance(labels, list): labels = [labels] label_tc = _gen_extract_label_time_course(stcs, labels, src, mode=mode, allow_empty=allow_empty) if not return_generator: # do the extraction and return a list label_tc = list(label_tc) if not return_several: # input was a single SoureEstimate, return single array label_tc = label_tc[0] return label_tc
the-stack_0_11927
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ TridentNet Training Script. This script is a simplified version of the training script in detectron2/tools. """ import os from detectron2.checkpoint import DetectionCheckpointer from detectron2.config import get_cfg from detectron2.engine import DefaultTrainer, default_argument_parser, default_setup, launch from detectron2.evaluation import COCOEvaluator from tridentnet import add_tridentnet_config class Trainer(DefaultTrainer): @classmethod def build_evaluator(cls, cfg, dataset_name, output_folder=None): if output_folder is None: output_folder = os.path.join(cfg.OUTPUT_DIR, "inference") return COCOEvaluator(dataset_name, cfg, True, output_folder) def setup(args): """ Create configs and perform basic setups. """ cfg = get_cfg() add_tridentnet_config(cfg) cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() default_setup(cfg, args) return cfg def main(args): cfg = setup(args) if args.eval_only: model = Trainer.build_model(cfg) DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load( cfg.MODEL.WEIGHTS, resume=args.resume ) res = Trainer.test(cfg, model) return res trainer = Trainer(cfg) trainer.resume_or_load(resume=args.resume) return trainer.train() if __name__ == "__main__": args = default_argument_parser().parse_args() print("Command Line Args:", args) launch( main, args.num_gpus, num_machines=args.num_machines, machine_rank=args.machine_rank, dist_url=args.dist_url, args=(args,), )
the-stack_0_11931
#!/usr/bin/env python3 import argparse import configparser import logging import logging.handlers import os.path import subprocess import sys import threading import time import traceback from collections import Counter, defaultdict from io import StringIO # Global variables config = None email_log = None def tee_log(infile, out_lines, log_level): """ Create a thread that saves all the output on infile to out_lines and logs every line with log_level """ def tee_thread(): for line in iter(infile.readline, ""): logging.log(log_level, line.rstrip()) out_lines.append(line) infile.close() t = threading.Thread(target=tee_thread) t.daemon = True t.start() return t def snapraid_command(command, args={}, *, allow_statuscodes=[]): """ Run snapraid command Raises subprocess.CalledProcessError if errorlevel != 0 """ arguments = ["--quiet"] for (k, v) in args.items(): arguments.extend(["--" + k, str(v)]) p = subprocess.Popen( [config["snapraid"]["executable"], command] + arguments, stdout=subprocess.PIPE, stderr=subprocess.PIPE, # Snapraid always outputs utf-8 on windows. On linux, utf-8 # also seems a sensible assumption. encoding="utf-8", errors="replace") out = [] threads = [ tee_log(p.stdout, out, logging.OUTPUT), tee_log(p.stderr, [], logging.OUTERR)] for t in threads: t.join() ret = p.wait() # sleep for a while to make pervent output mixup time.sleep(0.3) if ret == 0 or ret in allow_statuscodes: return out else: raise subprocess.CalledProcessError(ret, "snapraid " + command) def send_email(success): import smtplib from email.mime.text import MIMEText from email import charset if len(config["smtp"]["host"]) == 0: logging.error("Failed to send email because smtp host is not set") return # use quoted-printable instead of the default base64 charset.add_charset("utf-8", charset.SHORTEST, charset.QP) if success: body = "SnapRAID job completed successfully:\n\n\n" else: body = "Error during SnapRAID job:\n\n\n" log = email_log.getvalue() maxsize = config['email'].get('maxsize', 500) * 1024 if maxsize and len(log) > maxsize: cut_lines = log.count("\n", maxsize // 2, -maxsize // 2) log = ( "NOTE: Log was too big for email and was shortened\n\n" + log[:maxsize // 2] + "[...]\n\n\n --- LOG WAS TOO BIG - {} LINES REMOVED --\n\n\n[...]".format( cut_lines) + log[-maxsize // 2:]) body += log msg = MIMEText(body, "plain", "utf-8") msg["Subject"] = config["email"]["subject"] + \ (" SUCCESS" if success else " ERROR") msg["From"] = config["email"]["from"] msg["To"] = config["email"]["to"] smtp = {"host": config["smtp"]["host"]} if config["smtp"]["port"]: smtp["port"] = config["smtp"]["port"] if config["smtp"]["ssl"]: server = smtplib.SMTP_SSL(**smtp) else: server = smtplib.SMTP(**smtp) if config["smtp"]["tls"]: server.starttls() if config["smtp"]["user"]: server.login(config["smtp"]["user"], config["smtp"]["password"]) server.sendmail( config["email"]["from"], [config["email"]["to"]], msg.as_string()) server.quit() def finish(is_success): if ("error", "success")[is_success] in config["email"]["sendon"]: try: send_email(is_success) except Exception: logging.exception("Failed to send email") if is_success: logging.info("Run finished successfully") else: logging.error("Run failed") sys.exit(0 if is_success else 1) def load_config(args): global config parser = configparser.RawConfigParser() parser.read(args.conf) sections = ["snapraid", "logging", "email", "smtp", "scrub"] config = dict((x, defaultdict(lambda: "")) for x in sections) for section in parser.sections(): for (k, v) in parser.items(section): config[section][k] = v.strip() int_options = [ ("snapraid", "deletethreshold"), ("logging", "maxsize"), ("scrub", "older-than"), ("email", "maxsize"), ] for section, option in int_options: try: config[section][option] = int(config[section][option]) except ValueError: config[section][option] = 0 config["smtp"]["ssl"] = (config["smtp"]["ssl"].lower() == "true") config["smtp"]["tls"] = (config["smtp"]["tls"].lower() == "true") config["scrub"]["enabled"] = (config["scrub"]["enabled"].lower() == "true") config["email"]["short"] = (config["email"]["short"].lower() == "true") config["snapraid"]["touch"] = (config["snapraid"]["touch"].lower() == "true") # Migration if config["scrub"]["percentage"]: config["scrub"]["plan"] = config["scrub"]["percentage"] if args.scrub is not None: config["scrub"]["enabled"] = args.scrub if args.ignore_deletethreshold: config["snapraid"]["deletethreshold"] = -1 def setup_logger(): log_format = logging.Formatter( "%(asctime)s [%(levelname)-6.6s] %(message)s") root_logger = logging.getLogger() logging.OUTPUT = 15 logging.addLevelName(logging.OUTPUT, "OUTPUT") logging.OUTERR = 25 logging.addLevelName(logging.OUTERR, "OUTERR") root_logger.setLevel(logging.OUTPUT) console_logger = logging.StreamHandler(sys.stdout) console_logger.setFormatter(log_format) root_logger.addHandler(console_logger) if config["logging"]["file"]: max_log_size = max(config["logging"]["maxsize"], 0) * 1024 file_logger = logging.handlers.RotatingFileHandler( config["logging"]["file"], maxBytes=max_log_size, backupCount=9) file_logger.setFormatter(log_format) root_logger.addHandler(file_logger) if config["email"]["sendon"]: global email_log email_log = StringIO() email_logger = logging.StreamHandler(email_log) email_logger.setFormatter(log_format) if config["email"]["short"]: # Don't send programm stdout in email email_logger.setLevel(logging.INFO) root_logger.addHandler(email_logger) def main(): parser = argparse.ArgumentParser() parser.add_argument("-c", "--conf", default="snapraid-runner.conf", metavar="CONFIG", help="Configuration file (default: %(default)s)") parser.add_argument("--no-scrub", action='store_false', dest='scrub', default=None, help="Do not scrub (overrides config)") parser.add_argument("--ignore-deletethreshold", action='store_true', help="Sync even if configured delete threshold is exceeded") args = parser.parse_args() if not os.path.exists(args.conf): print("snapraid-runner configuration file not found") parser.print_help() sys.exit(2) try: load_config(args) except Exception: print("unexpected exception while loading config") print(traceback.format_exc()) sys.exit(2) try: setup_logger() except Exception: print("unexpected exception while setting up logging") print(traceback.format_exc()) sys.exit(2) try: run() except Exception: logging.exception("Run failed due to unexpected exception:") finish(False) def run(): logging.info("=" * 60) logging.info("Run started") logging.info("=" * 60) if not os.path.isfile(config["snapraid"]["executable"]): logging.error("The configured snapraid executable \"{}\" does not " "exist or is not a file".format( config["snapraid"]["executable"])) finish(False) if config["snapraid"]["touch"]: logging.info("Running touch...") snapraid_command("touch") logging.info("*" * 60) logging.info("Running diff...") diff_out = snapraid_command("diff", allow_statuscodes=[2]) logging.info("*" * 60) diff_results = Counter(line.split(" ")[0] for line in diff_out) diff_results = dict((x, diff_results[x]) for x in ["add", "remove", "move", "update"]) logging.info(("Diff results: {add} added, {remove} removed, " + "{move} moved, {update} modified").format(**diff_results)) if (config["snapraid"]["deletethreshold"] >= 0 and diff_results["remove"] > config["snapraid"]["deletethreshold"]): logging.error( "Deleted files exceed delete threshold of {}, aborting".format( config["snapraid"]["deletethreshold"])) logging.error("Run again with --ignore-deletethreshold to sync anyways") finish(False) if (diff_results["remove"] + diff_results["add"] + diff_results["move"] + diff_results["update"] == 0): logging.info("No changes detected, no sync required") else: logging.info("Running sync...") try: snapraid_command("sync") except subprocess.CalledProcessError as e: logging.error(e) finish(False) logging.info("*" * 60) if config["scrub"]["enabled"]: logging.info("Running scrub...") try: # Check if a percentage plan was given int(config["scrub"]["plan"]) except ValueError: scrub_args = {"plan": config["scrub"]["plan"]} else: scrub_args = { "plan": config["scrub"]["plan"], "older-than": config["scrub"]["older-than"], } try: snapraid_command("scrub", scrub_args) except subprocess.CalledProcessError as e: logging.error(e) finish(False) logging.info("*" * 60) logging.info("All done") finish(True) main()
the-stack_0_11935
# # Copyright 2017 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import abstractmethod import math import numpy as np from pandas import isnull from toolz import merge from zipline.assets import Equity, Future from zipline.errors import HistoryWindowStartsBeforeData from zipline.finance.constants import ROOT_SYMBOL_TO_ETA, DEFAULT_ETA from zipline.finance.shared import AllowedAssetMarker, FinancialModelMeta from zipline.finance.transaction import create_transaction from zipline.utils.cache import ExpiringCache from zipline.utils.dummy import DummyMapping from zipline.utils.input_validation import ( expect_bounded, expect_strictly_bounded, ) SELL = 1 << 0 BUY = 1 << 1 STOP = 1 << 2 LIMIT = 1 << 3 SQRT_252 = math.sqrt(252) DEFAULT_EQUITY_VOLUME_SLIPPAGE_BAR_LIMIT = 0.025 DEFAULT_FUTURE_VOLUME_SLIPPAGE_BAR_LIMIT = 0.05 class LiquidityExceeded(Exception): pass def fill_price_worse_than_limit_price(fill_price, order): """ Checks whether the fill price is worse than the order's limit price. Parameters ---------- fill_price: float The price to check. order: zipline.finance.order.Order The order whose limit price to check. Returns ------- bool: Whether the fill price is above the limit price (for a buy) or below the limit price (for a sell). """ if order.limit: # this is tricky! if an order with a limit price has reached # the limit price, we will try to fill the order. do not fill # these shares if the impacted price is worse than the limit # price. return early to avoid creating the transaction. # buy order is worse if the impacted price is greater than # the limit price. sell order is worse if the impacted price # is less than the limit price if (order.direction > 0 and fill_price > order.limit) or ( order.direction < 0 and fill_price < order.limit ): return True return False class SlippageModel(metaclass=FinancialModelMeta): """ Abstract base class for slippage models. Slippage models are responsible for the rates and prices at which orders fill during a simulation. To implement a new slippage model, create a subclass of :class:`~zipline.finance.slippage.SlippageModel` and implement :meth:`process_order`. Methods ------- process_order(data, order) Attributes ---------- volume_for_bar : int Number of shares that have already been filled for the currently-filling asset in the current minute. This attribute is maintained automatically by the base class. It can be used by subclasses to keep track of the total amount filled if there are multiple open orders for a single asset. Notes ----- Subclasses that define their own constructors should call ``super(<subclass name>, self).__init__()`` before performing other initialization. """ # Asset types that are compatible with the given model. allowed_asset_types = (Equity, Future) def __init__(self): self._volume_for_bar = 0 @property def volume_for_bar(self): return self._volume_for_bar @abstractmethod def process_order(self, data, order): """ Compute the number of shares and price to fill for ``order`` in the current minute. Parameters ---------- data : zipline.protocol.BarData The data for the given bar. order : zipline.finance.order.Order The order to simulate. Returns ------- execution_price : float The price of the fill. execution_volume : int The number of shares that should be filled. Must be between ``0`` and ``order.amount - order.filled``. If the amount filled is less than the amount remaining, ``order`` will remain open and will be passed again to this method in the next minute. Raises ------ zipline.finance.slippage.LiquidityExceeded May be raised if no more orders should be processed for the current asset during the current bar. Notes ----- Before this method is called, :attr:`volume_for_bar` will be set to the number of shares that have already been filled for ``order.asset`` in the current minute. :meth:`process_order` is not called by the base class on bars for which there was no historical volume. """ raise NotImplementedError("process_order") def simulate(self, data, asset, orders_for_asset): self._volume_for_bar = 0 volume = data.current(asset, "volume") if volume == 0: return # can use the close price, since we verified there's volume in this # bar. price = data.current(asset, "close") # BEGIN # # Remove this block after fixing data to ensure volume always has # corresponding price. if isnull(price): return # END dt = data.current_dt for order in orders_for_asset: if order.open_amount == 0: continue order.check_triggers(price, dt) if not order.triggered: continue txn = None try: execution_price, execution_volume = self.process_order( data, order ) if execution_price is not None: txn = create_transaction( order, data.current_dt, execution_price, execution_volume, ) except LiquidityExceeded: break if txn: self._volume_for_bar += abs(txn.amount) yield order, txn def asdict(self): return self.__dict__ class NoSlippage(SlippageModel): """A slippage model where all orders fill immediately and completely at the current close price. Notes ----- This is primarily used for testing. """ @staticmethod def process_order(data, order): return ( data.current(order.asset, "close"), order.amount, ) class EquitySlippageModel(SlippageModel, metaclass=AllowedAssetMarker): """ Base class for slippage models which only support equities. """ allowed_asset_types = (Equity,) class FutureSlippageModel(SlippageModel, metaclass=AllowedAssetMarker): """ Base class for slippage models which only support futures. """ allowed_asset_types = (Future,) class VolumeShareSlippage(SlippageModel): """ Model slippage as a quadratic function of percentage of historical volume. Orders to buy will be filled at:: price * (1 + price_impact * (volume_share ** 2)) Orders to sell will be filled at:: price * (1 - price_impact * (volume_share ** 2)) where ``price`` is the close price for the bar, and ``volume_share`` is the percentage of minutely volume filled, up to a max of ``volume_limit``. Parameters ---------- volume_limit : float, optional Maximum percent of historical volume that can fill in each bar. 0.5 means 50% of historical volume. 1.0 means 100%. Default is 0.025 (i.e., 2.5%). price_impact : float, optional Scaling coefficient for price impact. Larger values will result in more simulated price impact. Smaller values will result in less simulated price impact. Default is 0.1. """ def __init__( self, volume_limit=DEFAULT_EQUITY_VOLUME_SLIPPAGE_BAR_LIMIT, price_impact=0.1, ): super(VolumeShareSlippage, self).__init__() self.volume_limit = volume_limit self.price_impact = price_impact def __repr__(self): return """ {class_name}( volume_limit={volume_limit}, price_impact={price_impact}) """.strip().format( class_name=self.__class__.__name__, volume_limit=self.volume_limit, price_impact=self.price_impact, ) def process_order(self, data, order): volume = data.current(order.asset, "volume") max_volume = self.volume_limit * volume # price impact accounts for the total volume of transactions # created against the current minute bar remaining_volume = max_volume - self.volume_for_bar if remaining_volume < 1: # we can't fill any more transactions raise LiquidityExceeded() # the current order amount will be the min of the # volume available in the bar or the open amount. cur_volume = int(min(remaining_volume, abs(order.open_amount))) if cur_volume < 1: return None, None # tally the current amount into our total amount ordered. # total amount will be used to calculate price impact total_volume = self.volume_for_bar + cur_volume volume_share = min(total_volume / volume, self.volume_limit) price = data.current(order.asset, "close") # BEGIN # # Remove this block after fixing data to ensure volume always has # corresponding price. if isnull(price): return # END simulated_impact = ( volume_share ** 2 * math.copysign(self.price_impact, order.direction) * price ) impacted_price = price + simulated_impact if fill_price_worse_than_limit_price(impacted_price, order): return None, None return (impacted_price, math.copysign(cur_volume, order.direction)) class FixedSlippage(SlippageModel): """ Simple model assuming a fixed-size spread for all assets. Parameters ---------- spread : float, optional Size of the assumed spread for all assets. Orders to buy will be filled at ``close + (spread / 2)``. Orders to sell will be filled at ``close - (spread / 2)``. Notes ----- This model does not impose limits on the size of fills. An order for an asset will always be filled as soon as any trading activity occurs in the order's asset, even if the size of the order is greater than the historical volume. """ def __init__(self, spread=0.0): super(FixedSlippage, self).__init__() self.spread = spread def __repr__(self): return "{class_name}(spread={spread})".format( class_name=self.__class__.__name__, spread=self.spread, ) def process_order(self, data, order): price = data.current(order.asset, "close") return (price * (1 + self.spread / 2.0 * order.direction), order.amount) class MarketImpactBase(SlippageModel): """ Base class for slippage models which compute a simulated price impact according to a history lookback. """ NO_DATA_VOLATILITY_SLIPPAGE_IMPACT = 10.0 / 10000 def __init__(self): super(MarketImpactBase, self).__init__() self._window_data_cache = ExpiringCache() @abstractmethod def get_txn_volume(self, data, order): """ Return the number of shares we would like to order in this minute. Parameters ---------- data : BarData order : Order Return ------ int : the number of shares """ raise NotImplementedError("get_txn_volume") @abstractmethod def get_simulated_impact( self, order, current_price, current_volume, txn_volume, mean_volume, volatility, ): """ Calculate simulated price impact. Parameters ---------- order : The order being processed. current_price : Current price of the asset being ordered. current_volume : Volume of the asset being ordered for the current bar. txn_volume : Number of shares/contracts being ordered. mean_volume : Trailing ADV of the asset. volatility : Annualized daily volatility of returns. Return ------ int : impact on the current price. """ raise NotImplementedError("get_simulated_impact") def process_order(self, data, order): if order.open_amount == 0: return None, None minute_data = data.current(order.asset, ["volume", "high", "low"]) mean_volume, volatility = self._get_window_data(data, order.asset, 20) # Price to use is the average of the minute bar's open and close. price = np.mean([minute_data["high"], minute_data["low"]]) volume = minute_data["volume"] if not volume: return None, None txn_volume = int( min(self.get_txn_volume(data, order), abs(order.open_amount)) ) # If the computed transaction volume is zero or a decimal value, 'int' # will round it down to zero. In that case just bail. if txn_volume == 0: return None, None if mean_volume == 0 or np.isnan(volatility): # If this is the first day the contract exists or there is no # volume history, default to a conservative estimate of impact. simulated_impact = price * self.NO_DATA_VOLATILITY_SLIPPAGE_IMPACT else: simulated_impact = self.get_simulated_impact( order=order, current_price=price, current_volume=volume, txn_volume=txn_volume, mean_volume=mean_volume, volatility=volatility, ) impacted_price = price + math.copysign( simulated_impact, order.direction ) if fill_price_worse_than_limit_price(impacted_price, order): return None, None return impacted_price, math.copysign(txn_volume, order.direction) def _get_window_data(self, data, asset, window_length): """ Internal utility method to return the trailing mean volume over the past 'window_length' days, and volatility of close prices for a specific asset. Parameters ---------- data : The BarData from which to fetch the daily windows. asset : The Asset whose data we are fetching. window_length : Number of days of history used to calculate the mean volume and close price volatility. Returns ------- (mean volume, volatility) """ try: values = self._window_data_cache.get(asset, data.current_session) except KeyError: try: # Add a day because we want 'window_length' complete days, # excluding the current day. volume_history = data.history( asset, "volume", window_length + 1, "1d", ) close_history = data.history( asset, "close", window_length + 1, "1d", ) except HistoryWindowStartsBeforeData: # If there is not enough data to do a full history call, return # values as if there was no data. return 0, np.NaN # Exclude the first value of the percent change array because it is # always just NaN. close_volatility = ( close_history[:-1] .pct_change()[1:] .std( skipna=False, ) ) values = { "volume": volume_history[:-1].mean(), "close": close_volatility * SQRT_252, } self._window_data_cache.set(asset, values, data.current_session) return values["volume"], values["close"] class VolatilityVolumeShare(MarketImpactBase): """ Model slippage for futures contracts according to the following formula: new_price = price + (price * MI / 10000), where 'MI' is market impact, which is defined as: MI = eta * sigma * sqrt(psi) - ``eta`` is a constant which varies by root symbol. - ``sigma`` is 20-day annualized volatility. - ``psi`` is the volume traded in the given bar divided by 20-day ADV. Parameters ---------- volume_limit : float Maximum percentage (as a decimal) of a bar's total volume that can be traded. eta : float or dict Constant used in the market impact formula. If given a float, the eta for all futures contracts is the same. If given a dictionary, it must map root symbols to the eta for contracts of that symbol. """ NO_DATA_VOLATILITY_SLIPPAGE_IMPACT = 7.5 / 10000 allowed_asset_types = (Future,) def __init__(self, volume_limit, eta=ROOT_SYMBOL_TO_ETA): super(VolatilityVolumeShare, self).__init__() self.volume_limit = volume_limit # If 'eta' is a constant, use a dummy mapping to treat it as a # dictionary that always returns the same value. # NOTE: This dictionary does not handle unknown root symbols, so it may # be worth revisiting this behavior. if isinstance(eta, (int, float)): self._eta = DummyMapping(float(eta)) else: # Eta is a dictionary. If the user's dictionary does not provide a # value for a certain contract, fall back on the pre-defined eta # values per root symbol. self._eta = merge(ROOT_SYMBOL_TO_ETA, eta) def __repr__(self): if isinstance(self._eta, DummyMapping): # Eta is a constant, so extract it. eta = self._eta["dummy key"] else: eta = "<varies>" return "{class_name}(volume_limit={volume_limit}, eta={eta})".format( class_name=self.__class__.__name__, volume_limit=self.volume_limit, eta=eta, ) def get_simulated_impact( self, order, current_price, current_volume, txn_volume, mean_volume, volatility, ): try: eta = self._eta[order.asset.root_symbol] except Exception: eta = DEFAULT_ETA psi = txn_volume / mean_volume market_impact = eta * volatility * math.sqrt(psi) # We divide by 10,000 because this model computes to basis points. # To convert from bps to % we need to divide by 100, then again to # convert from % to fraction. return (current_price * market_impact) / 10000 def get_txn_volume(self, data, order): volume = data.current(order.asset, "volume") return volume * self.volume_limit class FixedBasisPointsSlippage(SlippageModel): """ Model slippage as a fixed percentage difference from historical minutely close price, limiting the size of fills to a fixed percentage of historical minutely volume. Orders to buy are filled at:: historical_price * (1 + (basis_points * 0.0001)) Orders to sell are filled at:: historical_price * (1 - (basis_points * 0.0001)) Fill sizes are capped at:: historical_volume * volume_limit Parameters ---------- basis_points : float, optional Number of basis points of slippage to apply for each fill. Default is 5 basis points. volume_limit : float, optional Fraction of trading volume that can be filled each minute. Default is 10% of trading volume. Notes ----- - A basis point is one one-hundredth of a percent. - This class, default-constructed, is zipline's default slippage model for equities. """ @expect_bounded( basis_points=(0, None), __funcname="FixedBasisPointsSlippage", ) @expect_strictly_bounded( volume_limit=(0, None), __funcname="FixedBasisPointsSlippage", ) def __init__(self, basis_points=5.0, volume_limit=0.1): super(FixedBasisPointsSlippage, self).__init__() self.basis_points = basis_points self.percentage = self.basis_points / 10000.0 self.volume_limit = volume_limit def __repr__(self): return """ {class_name}( basis_points={basis_points}, volume_limit={volume_limit}, ) """.strip().format( class_name=self.__class__.__name__, basis_points=self.basis_points, volume_limit=self.volume_limit, ) def process_order(self, data, order): volume = data.current(order.asset, "volume") max_volume = int(self.volume_limit * volume) price = data.current(order.asset, "close") shares_to_fill = min( abs(order.open_amount), max_volume - self.volume_for_bar ) if shares_to_fill == 0: raise LiquidityExceeded() return ( price + price * (self.percentage * order.direction), shares_to_fill * order.direction, ) if __name__ == "__main__": f = EquitySlippageModel() # print(f.__meta__) print(f.__class__)
the-stack_0_11936
# Adapted from ZJULearning/resa # Better to use a decoupled implementation, # costs more codes, but clear. # Diff from RESA official code: # 1. we use BN+ReLU in channel reducer # 2. we always use the BUSD decoder in the paper (official code does not use BUSD in CULane) # 3. we always use 5 RESA iterations (4 in official code) # 4. we use a higher capacity lane existence classifier (same as ERFNet/ENet baseline) # 5. we use the SCNN sqrt(5) init trick for RESA, which # 5.1. enables fewer warmup steps # 5.2. combined with 4, produces slightly better performance # 6. we do not use horizontal flip or cutting height in loading, in which # 6.1. flip does not help performance (at least on the val set) # 6.2. w.o. cutting height trick probably is the main reason for our lower performance, but we can't use it since # other pytorch-auto-drive models do not use it. import torch.nn as nn from ..common_models import RESA, RESAReducer, BUSD, RESALaneExist, EDLaneExist, PlainDecoder from .._utils import IntermediateLayerGetter from .. import resnet class RESANet(nn.Module): def __init__(self, num_classes, backbone_name, flattened_size, channel_reduce, pretrained_backbone=True): super(RESANet, self).__init__() backbone = resnet.__dict__[backbone_name]( pretrained=pretrained_backbone, replace_stride_with_dilation=[False, True, True]) return_layers = {'layer3': 'out'} self.backbone = IntermediateLayerGetter(backbone, return_layers=return_layers) in_channels = 1024 if backbone_name == 'resnet50' or backbone_name == 'resnet101' else 256 # self.channel_reducer = RESAReducer(in_channels=in_channels, reduce=channel_reduce, bn_relu=False) self.channel_reducer = RESAReducer(in_channels=in_channels, reduce=channel_reduce) self.spatial_conv = RESA() self.decoder = BUSD(num_classes=num_classes) # self.decoder = PlainDecoder(num_classes=num_classes) self.lane_classifier = EDLaneExist(num_output=num_classes - 1, flattened_size=flattened_size) # self.lane_classifier = RESALaneExist(num_output=num_classes - 1, flattened_size=flattened_size) def forward(self, x): x = self.backbone(x)['out'] x = self.channel_reducer(x) x = self.spatial_conv(x) res = {'out': self.decoder(x), 'lane': self.lane_classifier(x)} return res
the-stack_0_11937
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function from ... import core from ... import layers from ... import framework def append_cast_op(i, o, prog): """ Append a cast op in a given Program to cast input `i` to data type `o.dtype`. Args: i (Variable): The input Variable. o (Variable): The output Variable. prog (Program): The Program to append cast op. """ prog.global_block().append_op( type="cast", inputs={"X": i}, outputs={"Out": o}, attrs={"in_dtype": i.dtype, "out_dtype": o.dtype}) def _rename_arg(op, old_name, new_name): """ If an op has old_name input and output, rename these input args new_name. Args: op (Operator): Current operator. old_name (str): The old name of input args. new_name (str): The new name of input args. """ op_desc = op.desc if isinstance(op_desc, tuple): op_desc = op_desc[0] op_desc._rename_input(old_name, new_name) op_desc._rename_output(old_name, new_name) def _dtype_to_str(dtype): """ Convert specific variable type to its corresponding string. Args: dtype (VarType): Variable type. """ if dtype == core.VarDesc.VarType.FP16: return 'fp16' else: return 'fp32' def _insert_cast_op(block, op, idx, src_dtype, dest_dtype): """ Insert cast op and rename args of input and output. Args: block (Program): The block in which the operator is. op (Operator): The operator to insert cast op. idx (int): The index of current operator. src_dtype (VarType): The input variable dtype of cast op. desr_dtype (VarType): The output variable dtype of cast op. Returns: num_cast_op (int): The number of cast ops that have been inserted. """ num_cast_ops = 0 valid_types = [ core.VarDesc.VarType.LOD_TENSOR, core.VarDesc.VarType.SELECTED_ROWS, core.VarDesc.VarType.LOD_TENSOR_ARRAY ] for in_name in op.input_names: if src_dtype == core.VarDesc.VarType.FP32 and op.type == 'batch_norm': if in_name != 'X': continue for in_var_name in op.input(in_name): in_var = block.var(in_var_name) if in_var.type not in valid_types: continue if in_var.dtype == src_dtype: cast_name = in_var.name + '.cast_' + _dtype_to_str(dest_dtype) out_var = block.vars.get(cast_name) if out_var is None or out_var.dtype != dest_dtype: out_var = block.create_var( name=cast_name, dtype=dest_dtype, persistable=False, stop_gradient=False) block._insert_op( idx, type="cast", inputs={"X": in_var}, outputs={"Out": out_var}, attrs={ "in_dtype": in_var.dtype, "out_dtype": out_var.dtype }) num_cast_ops += 1 _rename_arg(op, in_var.name, out_var.name) else: if op.has_attr('in_dtype'): op._set_attr('in_dtype', dest_dtype) if src_dtype == core.VarDesc.VarType.FP32: for out_name in op.output_names: if op.type == 'batch_norm' and out_name != 'Y': continue for out_var_name in op.output(out_name): out_var = block.var(out_var_name) if out_var.type not in valid_types: continue if out_var.dtype == core.VarDesc.VarType.FP32: out_var.desc.set_dtype(core.VarDesc.VarType.FP16) if op.has_attr('out_dtype'): op._set_attr('out_dtype', core.VarDesc.VarType.FP16) return num_cast_ops def find_true_prev_op(ops, cur_op, var_name): """ Find the true prev op that outputs var_name variable. Args: ops (list): A list of ops. cur_op (Operator): Current operator which has var_name variable. var_name (string): Variable name. """ prev_op = [] for op in ops: if op == cur_op: break for out_name in op.output_names: for out_var_name in op.output(out_name): if out_var_name == var_name: prev_op.append(op) if prev_op: if not len(prev_op) == 1: raise ValueError("There must be only one previous op " "that outputs {0} variable".format(var_name)) else: return prev_op[0] return None def _is_in_black_varnames(op, amp_lists): for in_name in op.input_arg_names: if in_name in amp_lists.black_varnames: return True for out_name in op.output_arg_names: if out_name in amp_lists.black_varnames: return True return False def rewrite_program(main_prog, amp_lists): """ Traverse all ops in current block and insert cast op according to which set current op belongs to. 1. When an op belongs to the black list, add it to black set 2. When an op belongs to the white list, add it to white set 3. When an op belongs to the gray list. If one of its inputs is the output of black set op or black list op, add it to black set. If all of its previous ops are not black op and one of its inputs is the output of white set op or white list op, add it to white set. 4. When an op isn't in the lists, add it to black op set. 5. Add necessary cast ops to make sure that black set op will be computed in fp32 mode, while white set op will be computed in fp16 mode. Args: main_prog (Program): The main program for training. """ block = main_prog.global_block() ops = block.ops white_op_set = set() black_op_set = set() for op in ops: if amp_lists.black_varnames is not None and _is_in_black_varnames( op, amp_lists): black_op_set.add(op) continue if op.type in amp_lists.black_list: black_op_set.add(op) elif op.type in amp_lists.white_list: white_op_set.add(op) elif op.type in amp_lists.gray_list: is_black_op = False is_white_op = False for in_name in op.input_names: # if this op has inputs if in_name: for in_var_name in op.input(in_name): in_var = block.var(in_var_name) # this in_var isn't the output of other op if in_var.op is None: continue elif in_var.op is op: prev_op = find_true_prev_op(ops, op, in_var_name) if prev_op is None: continue else: prev_op = in_var.op # if it's one of inputs if prev_op in black_op_set or \ prev_op.type in amp_lists.black_list: is_black_op = True elif prev_op in white_op_set or \ prev_op.type in amp_lists.white_list: is_white_op = True if is_black_op: black_op_set.add(op) elif is_white_op: white_op_set.add(op) else: pass else: # For numerical safe, we apply fp32 computation on ops that # are not determined which list they should stay. black_op_set.add(op) idx = 0 while idx < len(ops): op = ops[idx] num_cast_ops = 0 if op in black_op_set: num_cast_ops = _insert_cast_op(block, op, idx, core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32) elif op in white_op_set: num_cast_ops = _insert_cast_op(block, op, idx, core.VarDesc.VarType.FP32, core.VarDesc.VarType.FP16) else: pass idx += num_cast_ops + 1 def update_role_var_grad(main_prog, params_grads): """ Update op_role_var attr for some ops to make sure the gradients transfered across gpus is FP16. 1. Check whether the op that outputs gradient is cast or not. 2. If op is cast and gradient is FP32, remove the op_role_var and find the prev op which outputs FP16 gradient 3. Update the op_role_var of the prev op. Args: main_prog (Program): The main program for training. params_grads (list): A list of params and grads. """ block = main_prog.global_block() BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize for p, g in params_grads: op = g.op if g.dtype == core.VarDesc.VarType.FP32 and op.type == 'cast': role = op.attr('op_role') if role & int(BACKWARD) and op.has_attr('op_role_var'): op.desc.remove_attr("op_role_var") else: raise ValueError("The cast op {0} must be in BACKWARD role " "and have op_role_var attr.".format(op)) fp16_grad_name = op.input(op.input_names[0])[0] op_for_fp16_grad = find_true_prev_op(block.ops, op, fp16_grad_name) op_role_var_attr_name = \ core.op_proto_and_checker_maker.kOpRoleVarAttrName() attr_val = [p.name, fp16_grad_name] if op_for_fp16_grad.has_attr(op_role_var_attr_name): attr_val.extend(op_for_fp16_grad.attr(op_role_var_attr_name)) op_for_fp16_grad._set_attr(op_role_var_attr_name, attr_val) # maximize the allreduce overlap op._set_attr('op_role', OPTIMIZE) def update_loss_scaling(is_overall_finite, prev_loss_scaling, num_good_steps, num_bad_steps, incr_every_n_steps, decr_every_n_nan_or_inf, incr_ratio, decr_ratio): """ Update loss scaling according to overall gradients. If all gradients is finite after incr_every_n_steps, loss scaling will increase by incr_ratio. Otherwisw, loss scaling will decrease by decr_ratio after decr_every_n_nan_or_inf steps and each step some gradients are infinite. Args: is_overall_finite (Variable): A boolean variable indicates whether all gradients are finite. prev_loss_scaling (Variable): Previous loss scaling. num_good_steps (Variable): A variable accumulates good steps in which all gradients are finite. num_bad_steps (Variable): A variable accumulates bad steps in which some gradients are infinite. incr_every_n_steps (Variable): A variable represents increasing loss scaling every n consecutive steps with finite gradients. decr_every_n_nan_or_inf (Variable): A variable represents decreasing loss scaling every n accumulated steps with nan or inf gradients. incr_ratio(float): The multiplier to use when increasing the loss scaling. decr_ratio(float): The less-than-one-multiplier to use when decreasing loss scaling. """ zero_steps = layers.fill_constant(shape=[1], dtype='int32', value=0) with layers.Switch() as switch: with switch.case(is_overall_finite): should_incr_loss_scaling = layers.less_than(incr_every_n_steps, num_good_steps + 1) with layers.Switch() as switch1: with switch1.case(should_incr_loss_scaling): new_loss_scaling = prev_loss_scaling * incr_ratio loss_scaling_is_finite = layers.isfinite(new_loss_scaling) with layers.Switch() as switch2: with switch2.case(loss_scaling_is_finite): layers.assign(new_loss_scaling, prev_loss_scaling) with switch2.default(): pass layers.assign(zero_steps, num_good_steps) layers.assign(zero_steps, num_bad_steps) with switch1.default(): layers.increment(num_good_steps) layers.assign(zero_steps, num_bad_steps) with switch.default(): should_decr_loss_scaling = layers.less_than(decr_every_n_nan_or_inf, num_bad_steps + 1) with layers.Switch() as switch3: with switch3.case(should_decr_loss_scaling): new_loss_scaling = prev_loss_scaling * decr_ratio static_loss_scaling = \ layers.fill_constant(shape=[1], dtype='float32', value=1.0) less_than_one = layers.less_than(new_loss_scaling, static_loss_scaling) with layers.Switch() as switch4: with switch4.case(less_than_one): layers.assign(static_loss_scaling, prev_loss_scaling) with switch4.default(): layers.assign(new_loss_scaling, prev_loss_scaling) layers.assign(zero_steps, num_good_steps) layers.assign(zero_steps, num_bad_steps) with switch3.default(): layers.assign(zero_steps, num_good_steps) layers.increment(num_bad_steps)
the-stack_0_11939
import requests import re import lxml.html import MySQLdb conn = MySQLdb.connect(db='Crawler', user='cloud', passwd='1111', charset='utf8mb4') c=conn.cursor() delete_sql = 'DELETE FROM re_info WHERE site_name = "인크루트"' c.execute(delete_sql) def crawling(page_count): front_url="http://job.incruit.com/entry/searchjob.asp?ct=12&ty=1&cd=1&page=" for i in range(1, page_count+1): url = front_url+str(i) list_page=requests.get(url) root=lxml.html.fromstring(list_page.content) for everything in root.cssselect('tbody'): for thing in everything.cssselect('tr'): t = 0 companies = thing.cssselect('th > div > .check_list_r > .links > a') if not companies: company = ' ' elif companies: company = companies[0].text.strip() titles = thing.cssselect('td > .subjects > .accent > a') if not titles: title = ' ' title_url = ' ' if titles: title = titles[0].text_content() title_url = titles[0].get('href') site_name = '인크루트' field1 = thing.cssselect('td > .subjects > .details_txts.firstChild > em') if not field1: field1 = ' ' elif field1: field1 = field1[0].text if title_url != ' ': #title_url = "https://"+title_url detail_page = requests.get(title_url) detail = lxml.html.fromstring(detail_page.content) careers = detail.cssselect('.jobpost_sider_jbinfo > div:nth-child(3) > dl:nth-child(2) > dd > div > div > em') if not careers: career = ' ' elif careers: career = careers[0].text academics = detail.cssselect('.jobpost_sider_jbinfo > div:nth-child(3) > dl:nth-child(3) > dd > div > div > em') if not academics: academic = ' ' elif academics: academic = academics[0].text working = detail.cssselect('.jobpost_sider_jbinfo > div.jobpost_sider_jbinfo_inlay.jobpost_sider_jbinfo_inlay_last > dl:nth-child(2) > dd > div > div.tooltip_layer_warp > ul > li') if not working: workingcondition = '' elif working: workingcondition = working[0].text areas = detail.cssselect('.jobpost_sider_jbinfo > div.jobpost_sider_jbinfo_inlay.jobpost_sider_jbinfo_inlay_last > dl:nth-child(3) > dd > div > div.inset_ely_lay') if not areas: area = ' ' if areas: area = areas[0].text area = area.split('> ')[0] deadlines = thing.cssselect('.ddays') if not deadlines: deadline = ' ' if deadlines: deadline = deadlines[0].text insert_sql = 'INSERT INTO re_info(company, title, title_url, site_name, field1, career, academic, area, workingcondition, deadline) VALUES(%s, %s, %s, %s, %s, %s, %s, %s, %s, %s)' insert_val = company, title, title_url, site_name, field1, career, academic, area, workingcondition, deadline c.execute(insert_sql, insert_val) conn.commit() def main(): page_count = 6 crawling(page_count) conn.close() main()
the-stack_0_11941
# -*- coding: utf-8 -*- # # Copyright 2020-2021 BigML # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Tree level output for python This module defines functions that generate python code to make local predictions """ from bigml.tree_utils import INDENT, COMPOSED_FIELDS from bigml.predict_utils.common import missing_branch, \ none_value, get_node, get_predicate, mintree_split from bigml.generators.tree_common import value_to_print, map_data, \ missing_prefix_code, filter_nodes, split_condition_code MISSING_OPERATOR = { "=": "is", "!=": "is not" } def missing_check_code(tree, offsets, fields, objective_id, field, depth, input_map, cmv, metric): """Builds the code to predict when the field is missing """ code = "%sif (%s is None):\n" % \ (INDENT * depth, map_data(fields[field]['slug'], input_map, True)) node = get_node(tree) value = value_to_print(node[offsets["output"]], fields[objective_id]['optype']) code += "%sreturn {\"prediction\": %s," \ " \"%s\": %s}\n" % \ (INDENT * (depth + 1), value, metric, node[offsets["confidence"]]) cmv.append(fields[field]['slug']) return code def plug_in_body(tree, offsets, fields, objective_id, regression, depth=1, cmv=None, input_map=False, ids_path=None, subtree=True): """Translate the model into a set of "if" python statements. `depth` controls the size of indentation. As soon as a value is missing that node is returned without further evaluation. """ # label for the confidence measure and initialization metric = "error" if regression else "confidence" if cmv is None: cmv = [] body = "" term_analysis_fields = [] item_analysis_fields = [] node = get_node(tree) children = [] if node[offsets["children#"]] == 0 else \ node[offsets["children"]] children = filter_nodes(children, offsets, ids=ids_path, subtree=subtree) if children: # field used in the split field = mintree_split(children) has_missing_branch = (missing_branch(children) or none_value(children)) # the missing is singled out as a special case only when there's # no missing branch in the children list one_branch = not has_missing_branch or \ fields[field]['optype'] in COMPOSED_FIELDS if (one_branch and not fields[field]['slug'] in cmv): body += missing_check_code(tree, offsets, fields, objective_id, field, depth, input_map, cmv, metric) for child in children: [_, field, value, _, _] = get_predicate(child) pre_condition = "" # code when missing_splits has been used if has_missing_branch and value is not None: pre_condition = missing_prefix_code(child, fields, field, input_map, cmv) # complete split condition code body += split_condition_code( \ child, fields, depth, input_map, pre_condition, term_analysis_fields, item_analysis_fields, cmv) # value to be determined in next node next_level = plug_in_body(child, offsets, fields, objective_id, regression, depth + 1, cmv=cmv[:], input_map=input_map, ids_path=ids_path, subtree=subtree) body += next_level[0] term_analysis_fields.extend(next_level[1]) item_analysis_fields.extend(next_level[2]) else: value = value_to_print(node[offsets["output"]], fields[objective_id]['optype']) body = "%sreturn {\"prediction\":%s, \"%s\":%s}\n" % ( \ INDENT * depth, value, metric, node[offsets["confidence"]]) return body, term_analysis_fields, item_analysis_fields
the-stack_0_11942
from datetime import datetime from typing import Union from dateutil import tz def format_iso_string(iso_string: str) -> str: utc_time = datetime.fromisoformat(iso_string) local_time = utc_time.astimezone(tz.tzlocal()) return local_time.strftime("%Y-%m-%d %H:%M:%S") def auto_unit(number: Union[int, float]) -> str: """ Returns a human-readable formatted size credit: glances """ if number is None: return "-" units = [ (1208925819614629174706176, "Y"), (1180591620717411303424, "Z"), (1152921504606846976, "E"), (1125899906842624, "P"), (1099511627776, "T"), (1073741824, "G"), (1048576, "M"), (1024, "K"), ] for unit, suffix in units: value = float(number) / unit if value > 1: precision = 0 if value < 10: precision = 2 elif value < 100: precision = 1 if suffix == "K": precision = 0 return "{:.{decimal}f}{suffix}".format(value, decimal=precision, suffix=suffix) return "{!s}".format(number)
the-stack_0_11944
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import warnings from typing import Callable, Dict, Optional, Sequence, Tuple from google.api_core import grpc_helpers # type: ignore from google.api_core import gapic_v1 # type: ignore from google import auth # type: ignore from google.auth import credentials # type: ignore from google.auth.transport.grpc import SslCredentials # type: ignore import grpc # type: ignore from google.ads.googleads.v4.resources.types import campaign_label from google.ads.googleads.v4.services.types import campaign_label_service from .base import CampaignLabelServiceTransport, DEFAULT_CLIENT_INFO class CampaignLabelServiceGrpcTransport(CampaignLabelServiceTransport): """gRPC backend transport for CampaignLabelService. Service to manage labels on campaigns. This class defines the same methods as the primary client, so the primary client can load the underlying transport implementation and call it. It sends protocol buffers over the wire using gRPC (which is built on top of HTTP/2); the ``grpcio`` package must be installed. """ def __init__( self, *, host: str = "googleads.googleapis.com", credentials: credentials.Credentials = None, credentials_file: str = None, scopes: Sequence[str] = None, channel: grpc.Channel = None, api_mtls_endpoint: str = None, client_cert_source: Callable[[], Tuple[bytes, bytes]] = None, ssl_channel_credentials: grpc.ChannelCredentials = None, quota_project_id: Optional[str] = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, ) -> None: """Instantiate the transport. Args: host (Optional[str]): The hostname to connect to. credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. This argument is ignored if ``channel`` is provided. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is ignored if ``channel`` is provided. scopes (Optional(Sequence[str])): A list of scopes. This argument is ignored if ``channel`` is provided. channel (Optional[grpc.Channel]): A ``Channel`` instance through which to make calls. api_mtls_endpoint (Optional[str]): Deprecated. The mutual TLS endpoint. If provided, it overrides the ``host`` argument and tries to create a mutual TLS channel with client SSL credentials from ``client_cert_source`` or applicatin default SSL credentials. client_cert_source (Optional[Callable[[], Tuple[bytes, bytes]]]): Deprecated. A callback to provide client SSL certificate bytes and private key bytes, both in PEM format. It is ignored if ``api_mtls_endpoint`` is None. ssl_channel_credentials (grpc.ChannelCredentials): SSL credentials for grpc channel. It is ignored if ``channel`` is provided. quota_project_id (Optional[str]): An optional project to use for billing and quota. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. Raises: google.auth.exceptions.MutualTLSChannelError: If mutual TLS transport creation failed for any reason. """ self._ssl_channel_credentials = ssl_channel_credentials if channel: # Sanity check: Ensure that channel and credentials are not both # provided. credentials = False # If a channel was explicitly provided, set it. self._grpc_channel = channel self._ssl_channel_credentials = None elif api_mtls_endpoint: warnings.warn( "api_mtls_endpoint and client_cert_source are deprecated", DeprecationWarning, ) host = ( api_mtls_endpoint if ":" in api_mtls_endpoint else api_mtls_endpoint + ":443" ) if credentials is None: credentials, _ = auth.default( scopes=self.AUTH_SCOPES, quota_project_id=quota_project_id ) # Create SSL credentials with client_cert_source or application # default SSL credentials. if client_cert_source: cert, key = client_cert_source() ssl_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) else: ssl_credentials = SslCredentials().ssl_credentials # create a new channel. The provided one is ignored. self._grpc_channel = type(self).create_channel( host, credentials=credentials, credentials_file=credentials_file, ssl_credentials=ssl_credentials, scopes=scopes or self.AUTH_SCOPES, quota_project_id=quota_project_id, options=[ ("grpc.max_send_message_length", -1), ("grpc.max_receive_message_length", -1), ], ) self._ssl_channel_credentials = ssl_credentials else: host = host if ":" in host else host + ":443" if credentials is None: credentials, _ = auth.default(scopes=self.AUTH_SCOPES) # create a new channel. The provided one is ignored. self._grpc_channel = type(self).create_channel( host, credentials=credentials, ssl_credentials=ssl_channel_credentials, scopes=self.AUTH_SCOPES, options=[ ("grpc.max_send_message_length", -1), ("grpc.max_receive_message_length", -1), ], ) self._stubs = {} # type: Dict[str, Callable] # Run the base constructor. super().__init__( host=host, credentials=credentials, client_info=client_info, ) @classmethod def create_channel( cls, host: str = "googleads.googleapis.com", credentials: credentials.Credentials = None, scopes: Optional[Sequence[str]] = None, **kwargs, ) -> grpc.Channel: """Create and return a gRPC channel object. Args: address (Optionsl[str]): The host for the channel to use. credentials (Optional[~.Credentials]): The authorization credentials to attach to requests. These credentials identify this application to the service. If none are specified, the client will attempt to ascertain the credentials from the environment. scopes (Optional[Sequence[str]]): A optional list of scopes needed for this service. These are only used when credentials are not specified and are passed to :func:`google.auth.default`. kwargs (Optional[dict]): Keyword arguments, which are passed to the channel creation. Returns: grpc.Channel: A gRPC channel object. """ return grpc_helpers.create_channel( host, credentials=credentials, scopes=scopes or cls.AUTH_SCOPES, **kwargs, ) @property def grpc_channel(self) -> grpc.Channel: """Return the channel designed to connect to this service. """ return self._grpc_channel @property def get_campaign_label( self, ) -> Callable[ [campaign_label_service.GetCampaignLabelRequest], campaign_label.CampaignLabel, ]: r"""Return a callable for the get campaign label method over gRPC. Returns the requested campaign-label relationship in full detail. Returns: Callable[[~.GetCampaignLabelRequest], ~.CampaignLabel]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "get_campaign_label" not in self._stubs: self._stubs["get_campaign_label"] = self.grpc_channel.unary_unary( "/google.ads.googleads.v4.services.CampaignLabelService/GetCampaignLabel", request_serializer=campaign_label_service.GetCampaignLabelRequest.serialize, response_deserializer=campaign_label.CampaignLabel.deserialize, ) return self._stubs["get_campaign_label"] @property def mutate_campaign_labels( self, ) -> Callable[ [campaign_label_service.MutateCampaignLabelsRequest], campaign_label_service.MutateCampaignLabelsResponse, ]: r"""Return a callable for the mutate campaign labels method over gRPC. Creates and removes campaign-label relationships. Operation statuses are returned. Returns: Callable[[~.MutateCampaignLabelsRequest], ~.MutateCampaignLabelsResponse]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "mutate_campaign_labels" not in self._stubs: self._stubs[ "mutate_campaign_labels" ] = self.grpc_channel.unary_unary( "/google.ads.googleads.v4.services.CampaignLabelService/MutateCampaignLabels", request_serializer=campaign_label_service.MutateCampaignLabelsRequest.serialize, response_deserializer=campaign_label_service.MutateCampaignLabelsResponse.deserialize, ) return self._stubs["mutate_campaign_labels"] __all__ = ("CampaignLabelServiceGrpcTransport",)
the-stack_0_11946
from restfly.iterator import APIIterator from box import BoxList from copy import copy class OTIterator(APIIterator): _path = None limit = 500 offset = 0 def __init__(self, api, **kwargs): self._path = kwargs.pop('path') self._payload = kwargs.pop('payload', {}) self.limit = kwargs.get('limit', self.limit) self.offset = kwargs.get('offset', self.offset) super(OTIterator, self).__init__(api, **kwargs) def _get_page(self): ''' Retrieves the next page of data ''' # if the size of the page is less than the limit, then we will simply # bail and let iterator stop. if self.num_pages > 0 and len(self.page) < self.limit: raise StopIteration() # make a copy of the payload (so not to pollute it) and then set the # offset and limits. p = copy(self._payload) p['offset'] = self.offset p['limit'] = self.limit # make the call and update the offset. self.page = self._api.post(self._path, json=p, box=BoxList) self.offset += self.limit
the-stack_0_11948
# # Metrix++, Copyright 2009-2013, Metrix++ Project # Link: http://metrixplusplus.sourceforge.net # # This file is a part of Metrix++ Tool. # # Metrix++ is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, version 3 of the License. # # Metrix++ is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Metrix++. If not, see <http://www.gnu.org/licenses/>. # import logging import re import mpp.api import mpp.utils import mpp.cout class Plugin(mpp.api.Plugin, mpp.api.IConfigurable, mpp.api.IRunable): MODE_NEW = 0x01 MODE_TREND = 0x03 MODE_TOUCHED = 0x07 MODE_ALL = 0x15 def declare_configuration(self, parser): self.parser = parser parser.add_option("--hotspots", "--hs", default=None, help="If not set (none), all exceeded limits are printed." " If set, exceeded limits are sorted (the worst is the first) and only first HOTSPOTS limits are printed." " [default: %default]", type=int) parser.add_option("--disable-suppressions", "--ds", action="store_true", default=False, help = "If not set (none), all suppressions are ignored" " and associated warnings are printed. [default: %default]") parser.add_option("--warn-mode", "--wm", default='all', choices=['new', 'trend', 'touched', 'all'], help="Defines the warnings mode. " "'all' - all warnings active, " "'new' - warnings for new regions/files only, " "'trend' - warnings for new regions/files and for bad trend of modified regions/files, " "'touched' - warnings for new and modified regions/files " "[default: %default]") parser.add_option("--min-limit", "--min", action="multiopt", help="A threshold per 'namespace:field' metric in order to select regions, " "which have got metric value less than the specified limit. " "This option can be specified multiple times, if it is necessary to apply several limits. " "Should be in the format: <namespace>:<field>:<limit-value>, for example: " "'std.code.lines:comments:1'.") parser.add_option("--max-limit", "--max", action="multiopt", help="A threshold per 'namespace:field' metric in order to select regions, " "which have got metric value more than the specified limit. " "This option can be specified multiple times, if it is necessary to apply several limits. " "Should be in the format: <namespace>:<field>:<limit-value>, for example: " "'std.code.complexity:cyclomatic:7'.") def configure(self, options): self.hotspots = options.__dict__['hotspots'] self.no_suppress = options.__dict__['disable_suppressions'] if options.__dict__['warn_mode'] == 'new': self.mode = self.MODE_NEW elif options.__dict__['warn_mode'] == 'trend': self.mode = self.MODE_TREND elif options.__dict__['warn_mode'] == 'touched': self.mode = self.MODE_TOUCHED elif options.__dict__['warn_mode'] == 'all': self.mode = self.MODE_ALL if self.mode != self.MODE_ALL and options.__dict__['db_file_prev'] == None: self.parser.error("option --warn-mode: The mode '" + options.__dict__['warn_mode'] + "' requires '--db-file-prev' option set") class Limit(object): def __init__(self, limit_type, limit, namespace, field, db_filter): self.type = limit_type self.limit = limit self.namespace = namespace self.field = field self.filter = db_filter def __repr__(self): return "namespace '" + self.namespace + "', filter '" + str(self.filter) + "'" self.limits = [] pattern = re.compile(r'''([^:]+)[:]([^:]+)[:]([-+]?[0-9]+(?:[.][0-9]+)?)''') if options.__dict__['max_limit'] != None: for each in options.__dict__['max_limit']: match = re.match(pattern, each) if match == None: self.parser.error("option --max-limit: Invalid format: " + each) limit = Limit("max", float(match.group(3)), match.group(1), match.group(2), (match.group(2), '>', float(match.group(3)))) self.limits.append(limit) if options.__dict__['min_limit'] != None: for each in options.__dict__['min_limit']: match = re.match(pattern, each) if match == None: self.parser.error("option --min-limit: Invalid format: " + each) limit = Limit("min", float(match.group(3)), match.group(1), match.group(2), (match.group(2), '<', float(match.group(3)))) self.limits.append(limit) def initialize(self): super(Plugin, self).initialize() db_loader = self.get_plugin('mpp.dbf').get_loader() self._verify_namespaces(db_loader.iterate_namespace_names()) for each in db_loader.iterate_namespace_names(): self._verify_fields(each, db_loader.get_namespace(each).iterate_field_names()) def _verify_namespaces(self, valid_namespaces): valid = [] for each in valid_namespaces: valid.append(each) for each in self.limits: if each.namespace not in valid: self.parser.error("option --{0}-limit: metric '{1}:{2}' is not available in the database file.". format(each.type, each.namespace, each.field)) def _verify_fields(self, namespace, valid_fields): valid = [] for each in valid_fields: valid.append(each) for each in self.limits: if each.namespace == namespace: if each.field not in valid: self.parser.error("option --{0}-limit: metric '{1}:{2}' is not available in the database file.". format(each.type, each.namespace, each.field)) def iterate_limits(self): for each in self.limits: yield each def is_mode_matched(self, limit, value, diff, is_modified): if is_modified == None: # means new region, True in all modes return True if self.mode == self.MODE_ALL: return True if self.mode == self.MODE_TOUCHED and is_modified == True: return True if self.mode == self.MODE_TREND and is_modified == True: if limit < value and diff > 0: return True if limit > value and diff < 0: return True return False def run(self, args): return main(self, args) def main(plugin, args): exit_code = 0 loader_prev = plugin.get_plugin('mpp.dbf').get_loader_prev() loader = plugin.get_plugin('mpp.dbf').get_loader() paths = None if len(args) == 0: paths = [""] else: paths = args # Try to optimise iterative change scans modified_file_ids = None if plugin.mode != plugin.MODE_ALL: modified_file_ids = get_list_of_modified_files(loader, loader_prev) for path in paths: path = mpp.utils.preprocess_path(path) for limit in plugin.iterate_limits(): logging.info("Applying limit: " + str(limit)) filters = [limit.filter] if modified_file_ids != None: filters.append(('file_id', 'IN', modified_file_ids)) sort_by = None limit_by = None limit_warnings = None if plugin.hotspots != None: sort_by = limit.field if limit.type == "max": sort_by = "-" + sort_by if plugin.mode == plugin.MODE_ALL: # if it is not ALL mode, the tool counts number of printed warnings below limit_by = plugin.hotspots limit_warnings = plugin.hotspots selected_data = loader.load_selected_data(limit.namespace, fields = [limit.field], path=path, filters = filters, sort_by=sort_by, limit_by=limit_by) if selected_data == None: mpp.utils.report_bad_path(path) exit_code += 1 continue for select_data in selected_data: if limit_warnings != None and limit_warnings <= 0: break is_modified = None diff = None file_data = loader.load_file_data(select_data.get_path()) file_data_prev = loader_prev.load_file_data(select_data.get_path()) if file_data_prev != None: if file_data.get_checksum() == file_data_prev.get_checksum(): diff = 0 is_modified = False else: matcher = mpp.utils.FileRegionsMatcher(file_data, file_data_prev) prev_id = matcher.get_prev_id(select_data.get_region().get_id()) if matcher.is_matched(select_data.get_region().get_id()): if matcher.is_modified(select_data.get_region().get_id()): is_modified = True else: is_modified = False diff = mpp.api.DiffData(select_data, file_data_prev.get_region(prev_id)).get_data(limit.namespace, limit.field) if (plugin.is_mode_matched(limit.limit, select_data.get_data(limit.namespace, limit.field), diff, is_modified) == False): continue is_sup = is_metric_suppressed(limit.namespace, limit.field, loader, select_data) if is_sup == True and plugin.no_suppress == False: continue exit_code += 1 region_cursor = 0 region_name = None if select_data.get_region() != None: region_cursor = select_data.get_region().cursor region_name = select_data.get_region().name report_limit_exceeded(select_data.get_path(), region_cursor, limit.namespace, limit.field, region_name, select_data.get_data(limit.namespace, limit.field), diff, limit.limit, is_modified, is_sup) if limit_warnings != None: limit_warnings -= 1 return exit_code def get_list_of_modified_files(loader, loader_prev): logging.info("Identifying changed files...") old_files_map = {} for each in loader_prev.iterate_file_data(): old_files_map[each.get_path()] = each.get_checksum() if len(old_files_map) == 0: return None modified_file_ids = [] for each in loader.iterate_file_data(): if len(modified_file_ids) > 1000: # If more than 1000 files changed, skip optimisation return None if (each.get_path() not in old_files_map.keys()) or old_files_map[each.get_path()] != each.get_checksum(): modified_file_ids.append(str(each.get_id())) old_files_map = None if len(modified_file_ids) != 0: modified_file_ids = " , ".join(modified_file_ids) modified_file_ids = "(" + modified_file_ids + ")" return modified_file_ids return None def is_metric_suppressed(metric_namespace, metric_field, loader, select_data): data = loader.load_file_data(select_data.get_path()) if select_data.get_region() != None: data = data.get_region(select_data.get_region().get_id()) sup_data = data.get_data('std.suppress', 'list') else: sup_data = data.get_data('std.suppress.file', 'list') if sup_data != None and sup_data.find('[' + metric_namespace + ':' + metric_field + ']') != -1: return True return False def report_limit_exceeded(path, cursor, namespace, field, region_name, stat_level, trend_value, stat_limit, is_modified, is_suppressed): if region_name != None: message = "Metric '" + namespace + ":" + field + "' for region '" + region_name + "' exceeds the limit." else: message = "Metric '" + namespace + ":" + field + "' exceeds the limit." details = [("Metric name", namespace + ":" + field), ("Region name", region_name), ("Metric value", stat_level), ("Modified", is_modified), ("Change trend", '{0:{1}}'.format(trend_value, '+' if trend_value else '')), ("Limit", stat_limit), ("Suppressed", is_suppressed)] mpp.cout.notify(path, cursor, mpp.cout.SEVERITY_WARNING, message, details)
the-stack_0_11949
# -*- coding: utf-8 -*- import datapackage import os # filenames FD_DIR = "../data/2020-02-21_fd/" RAW_DIR = "../data/2020-02-21/" files = os.listdir(FD_DIR) fd_files = [os.path.join(FD_DIR, f) for f in files] raw_files = [] for file in files: base = os.path.splitext(file)[0] path = os.path.join(RAW_DIR, base + ".txt") raw_files.append(path) # compute number of spikes for raw, fd in zip(raw_files, fd_files): with open(raw) as f: lines = f.readlines() # +1 might not be needed on Unix active_channels_raw = 0 for i in range(len(lines) - 1): if lines[i] == "[ms] \t[µV] \t \n" and \ lines[i+1] != "\n": active_channels_raw += 1 spikes_raw = (len(lines) - 60 * 4 - 2 + 1 + active_channels_raw) / 76 package = datapackage.Package(fd) spikes_fd = len(package.get_resource("spikes").read()) active_channels_fd = len(package.get_resource("spike-trains").read()) assert spikes_raw == spikes_fd, "Difference in number of spikes in file " \ + raw assert active_channels_raw == active_channels_fd, "Difference in number of\ active channels in file " + raw
the-stack_0_11950
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # TopicDB documentation build configuration file, created by # sphinx-quickstart on Sat Dec 24 10:06:55 2016. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation ROOT, use os.path.abspath to make it absolute, like shown here. # # import os # import sys # sys.path.insert(0, os.path.abspath('.')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of STRING: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # General information about the project. project = 'TopicDB' copyright = '2016, Brett Alistair Kromkamp' author = 'Brett Alistair Kromkamp' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '0.1.0' # The full version, including alpha/beta/rc tags. release = '0.1.0' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'alabaster' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # -- Options for HTMLHelp output ------------------------------------------ # Output file base name for HTML help builder. htmlhelp_basename = 'TopicDBdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'TopicDB.tex', 'TopicDB Documentation', 'Brett Alistair Kromkamp', 'manual'), ] # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'topicdb', 'TopicDB Documentation', [author], 1) ] # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'TopicDB', 'TopicDB Documentation', author, 'TopicDB', 'One line description of project.', 'Miscellaneous'), ]
the-stack_0_11952
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import six import numpy as np import time import os import math import paddle import paddle.fluid as fluid import paddle.fluid.core as core import paddle.fluid.framework as framework from paddle.fluid.executor import Executor import data from args import * import lm_model import logging logging.basicConfig() import pickle def prepare_batch_input(batch, args): x = batch['token_ids'] x_r = batch['token_ids_reverse'] y = batch['next_token_id'] y_r = batch['next_token_id_reverse'] inst = [] for i in range(len(x)): if args.use_custom_samples: custom_samples_array = np.zeros( (args.num_steps, args.n_negative_samples_batch + 1), dtype='int64') custom_samples_array_r = np.zeros( (args.num_steps, args.n_negative_samples_batch + 1), dtype='int64') custom_probabilities_array = np.zeros( (args.num_steps, args.n_negative_samples_batch + 1), dtype='float32') for j in range(args.num_steps): for k in range(args.n_negative_samples_batch + 1): custom_samples_array[j][k] = k custom_samples_array_r[j][k] = k custom_probabilities_array[j][k] = 1.0 custom_samples_array[j][0] = y[i][j] custom_samples_array_r[j][0] = y_r[i][j] inst.append([ x[i], y[i], x_r[i], y_r[i], custom_samples_array, custom_samples_array_r, custom_probabilities_array ]) else: inst.append([x[i], y[i], x_r[i], y_r[i]]) return inst def batch_reader(batch_list, args): res = [] for batch in batch_list: res.append(prepare_batch_input(batch, args)) return res def read_multiple(reader, batch_size, count, clip_last=True): """ Stack data from reader for multi-devices. """ def __impl__(): # one time read batch_size * count data for rnn for data in reader(): inst_num_per_part = batch_size split_data = {} len_check = True for k in data.keys(): if data[k] is not None: if len(data[k]) != batch_size * count: len_check = False print("data check error!!, data=" + data[k] + ", k=" + k) break if len_check: res = [] for i in range(count): split_data = {} for k in data.keys(): if data[k] is not None: split_data[k] = data[k][inst_num_per_part * i:inst_num_per_part * (i + 1)] res.append(split_data) yield res return __impl__ def LodTensor_Array(lod_tensor): lod = lod_tensor.lod() array = np.array(lod_tensor) new_array = [] for i in range(len(lod[0]) - 1): new_array.append(array[lod[0][i]:lod[0][i + 1]]) return new_array def get_current_model_para(train_prog, train_exe): param_list = train_prog.block(0).all_parameters() param_name_list = [p.name for p in param_list] vals = {} for p_name in param_name_list: p_array = np.array(fluid.global_scope().find_var(p_name).get_tensor()) vals[p_name] = p_array return vals def save_para_npz(train_prog, train_exe): logger.info("begin to save model to model_base") param_list = train_prog.block(0).all_parameters() param_name_list = [p.name for p in param_list] vals = {} for p_name in param_name_list: p_array = np.array(fluid.global_scope().find_var(p_name).get_tensor()) vals[p_name] = p_array emb = vals["embedding_para"] logger.info("begin to save model to model_base") np.savez("mode_base", **vals) def prepare_input(batch, epoch_id=0, with_lr=True): x, y = batch inst = [] for i in range(len(x)): inst.append([x[i], y[i]]) return inst def eval(vocab, infer_progs, dev_count, logger, args): infer_prog, infer_startup_prog, infer_model = infer_progs feed_order = infer_model.feed_order loss = infer_model.loss # prepare device place = core.CUDAPlace(0) if args.use_gpu else core.CPUPlace() exe = Executor(place) if not args.use_gpu: place = fluid.CPUPlace() import multiprocessing dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count())) else: place = fluid.CUDAPlace(0) dev_count = fluid.core.get_cuda_device_count() total_loss = 0.0 total_cnt = 0 n_batch_cnt = 0 n_batch_loss = 0.0 val_feed_list = [ infer_prog.global_block().var(var_name) for var_name in feed_order ] val_feeder = fluid.DataFeeder(val_feed_list, place) dev_data = data.BidirectionalLMDataset( args.test_path, vocab, test=True, shuffle_on_load=False) dev_data_iter = lambda: dev_data.iter_batches(args.batch_size * dev_count, args.num_steps) dev_reader = read_multiple(dev_data_iter, args.batch_size, dev_count) last_hidden_values = np.zeros( (dev_count, args.num_layers * 2 * args.batch_size * args.embed_size), dtype='float32') last_cell_values = np.zeros( (dev_count, args.num_layers * 2 * args.batch_size * args.hidden_size), dtype='float32') for batch_id, batch_list in enumerate(dev_reader(), 1): feed_data = batch_reader(batch_list, args) feed = list(val_feeder.feed_parallel(feed_data, dev_count)) for i in range(dev_count): init_hidden_tensor = fluid.core.LoDTensor() if args.use_gpu: placex = fluid.CUDAPlace(i) else: placex = fluid.CPUPlace() init_hidden_tensor.set(last_hidden_values[i], placex) init_cell_tensor = fluid.core.LoDTensor() init_cell_tensor.set(last_cell_values[i], placex) feed[i]['init_hiddens'] = init_hidden_tensor feed[i]['init_cells'] = init_cell_tensor last_hidden_values = [] last_cell_values = [] for i in range(dev_count): val_fetch_outs = exe.run( program=infer_prog, feed=feed[i], fetch_list=[ infer_model.loss.name, infer_model.last_hidden.name, infer_model.last_cell.name ], return_numpy=False) last_hidden_values.append(np.array(val_fetch_outs[1])) last_cell_values.append(np.array(val_fetch_outs[2])) total_loss += np.array(val_fetch_outs[0]).sum() n_batch_cnt += len(np.array(val_fetch_outs[0])) total_cnt += len(np.array(val_fetch_outs[0])) n_batch_loss += np.array(val_fetch_outs[0]).sum() last_hidden_values = np.array(last_hidden_values).reshape(( dev_count, args.num_layers * 2 * args.batch_size * args.embed_size)) last_cell_values = np.array(last_cell_values).reshape( (dev_count, args.num_layers * 2 * args.batch_size * args.hidden_size)) log_every_n_batch = args.log_interval if log_every_n_batch > 0 and batch_id % log_every_n_batch == 0: logger.info('Average dev loss from batch {} to {} is {}'.format( batch_id - log_every_n_batch + 1, batch_id, "%.10f" % ( n_batch_loss / n_batch_cnt))) n_batch_loss = 0.0 n_batch_cnt = 0 batch_offset = 0 ppl = np.exp(total_loss / total_cnt) return ppl def train(): args = parse_args() if args.random_seed == 0: args.random_seed = None print("random seed is None") if args.enable_ce: random.seed(args.random_seed) np.random.seed(args.random_seed) logger = logging.getLogger("lm") logger.setLevel(logging.INFO) formatter = logging.Formatter( '%(asctime)s - %(name)s - %(levelname)s - %(message)s') console_handler = logging.StreamHandler() console_handler.setLevel(logging.INFO) console_handler.setFormatter(formatter) logger.info('Running with args : {}'.format(args)) logger.info('Running paddle : {}'.format(paddle.version.commit)) hidden_size = args.hidden_size batch_size = args.batch_size data_path = args.data_path logger.info("begin to load vocab") vocab = data.Vocabulary(args.vocab_path, validate_file=True) vocab_size = vocab.size logger.info("finished load vocab") logger.info('build the model...') # build model train_prog = fluid.Program() train_startup_prog = fluid.Program() if args.enable_ce: train_prog.random_seed = args.random_seed train_startup_prog.random_seed = args.random_seed # build infer model infer_prog = fluid.Program() infer_startup_prog = fluid.Program() with fluid.program_guard(infer_prog, infer_startup_prog): with fluid.unique_name.guard(): # Infer process infer_model = lm_model.LanguageModel( args, vocab_size, test_mode=True) infer_model.build() infer_progs = infer_prog, infer_startup_prog, infer_model with fluid.program_guard(train_prog, train_startup_prog): with fluid.unique_name.guard(): # Training process train_model = lm_model.LanguageModel( args, vocab_size, test_mode=False) train_model.build() fluid.clip.set_gradient_clip( clip=fluid.clip.GradientClipByGlobalNorm( clip_norm=args.max_grad_norm)) # build optimizer if args.optim == 'adagrad': optimizer = fluid.optimizer.Adagrad( learning_rate=args.learning_rate, epsilon=0.0, initial_accumulator_value=1.0) elif args.optim == 'sgd': optimizer = fluid.optimizer.SGD( learning_rate=args.learning_rate) elif args.optim == 'adam': optimizer = fluid.optimizer.Adam( learning_rate=args.learning_rate) elif args.optim == 'rprop': optimizer = fluid.optimizer.RMSPropOptimizer( learning_rate=args.learning_rate) else: logger.error('Unsupported optimizer: {}'.format(args.optim)) exit(-1) optimizer.minimize(train_model.loss * args.num_steps) # initialize parameters place = core.CUDAPlace(0) if args.use_gpu else core.CPUPlace() exe = Executor(place) train_progs = train_prog, train_startup_prog, train_model if args.local: logger.info("local start_up:") train_loop(args, logger, vocab, train_progs, infer_progs, optimizer) else: if args.update_method == "nccl2": trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0")) if args.test_nccl: worker_endpoints_env = os.getenv("PADDLE_WORK_ENDPOINTS") worker_endpoints = worker_endpoints_env.split(',') trainers_num = len(worker_endpoints) current_endpoint = worker_endpoints[trainer_id] else: port = os.getenv("PADDLE_PORT") worker_ips = os.getenv("PADDLE_TRAINERS") worker_endpoints = [] for ip in worker_ips.split(","): worker_endpoints.append(':'.join([ip, port])) worker_endpoints_env = ','.join(worker_endpoints) trainers_num = len(worker_endpoints) current_endpoint = os.getenv("POD_IP") + ":" + port if trainer_id == 0: logger.info("train_id == 0, sleep 60s") time.sleep(60) logger.info("trainers_num:{}".format(trainers_num)) logger.info("worker_endpoints:{}".format(worker_endpoints)) logger.info("current_endpoint:{}".format(current_endpoint)) config = fluid.DistributeTranspilerConfig() config.mode = "nccl2" t = fluid.DistributeTranspiler(config=config) t.transpile( trainer_id, trainers=worker_endpoints_env, current_endpoint=current_endpoint, program=train_prog, startup_program=train_startup_prog) train_progs = train_prog, train_startup_prog, train_model train_loop(args, logger, vocab, train_progs, infer_progs, optimizer, trainers_num, trainer_id, worker_endpoints) else: port = os.getenv("PADDLE_PORT", "6174") pserver_ips = os.getenv("PADDLE_PSERVERS") eplist = [] for ip in pserver_ips.split(","): eplist.append(':'.join([ip, port])) pserver_endpoints = ",".join(eplist) trainers = int(os.getenv("PADDLE_TRAINERS_NUM", "0")) current_endpoint = os.getenv("POD_IP") + ":" + port trainer_id = int(os.getenv("PADDLE_TRAINER_ID")) logger.info("pserver_endpoints:{}".format(pserver_endpoints)) logger.info("current_endpoint:{}".format(current_endpoint)) logger.info("trainer_id:{}".format(trainer_id)) logger.info("pserver_ips:{}".format(pserver_ips)) logger.info("port:{}".format(port)) t = fluid.DistributeTranspiler() t.transpile( trainer_id, pservers=pserver_endpoints, trainers=trainers, program=train_prog, startup_program=startup_prog) if training_role == "PSERVER": logger.info("distributed: pserver started") current_endpoint = os.getenv("POD_IP") + ":" + os.getenv( "PADDLE_PORT") if not current_endpoint: logger.critical("need env SERVER_ENDPOINT") exit(1) pserver_prog = t.get_pserver_program(current_endpoint) pserver_startup = t.get_startup_program(current_endpoint, pserver_prog) exe.run(pserver_startup) exe.run(pserver_prog) elif training_role == "TRAINER": logger.info("distributed: trainer started") trainer_prog = t.get_trainer_program() train_loop(args, logger, vocab, train_progs, infer_progs, optimizer) else: logger.critical( "environment var TRAINER_ROLE should be TRAINER os PSERVER") exit(1) def train_loop(args, logger, vocab, train_progs, infer_progs, optimizer, nccl2_num_trainers=1, nccl2_trainer_id=0, worker_endpoints=None): train_prog, train_startup_prog, train_model = train_progs infer_prog, infer_startup_prog, infer_model = infer_progs # prepare device place = core.CUDAPlace(0) if args.use_gpu else core.CPUPlace() exe = Executor(place) if not args.use_gpu: place = fluid.CPUPlace() import multiprocessing dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count())) else: place = fluid.CUDAPlace(0) dev_count = fluid.core.get_cuda_device_count() if args.load_dir: logger.info('load pretrained checkpoints from {}'.format(args.load_dir)) fluid.io.load_persistables(exe, args.load_dir, main_program=train_prog) elif args.load_pretraining_params: logger.info('load pretrained params from {}'.format(args.load_pretraining_params)) exe.run(train_startup_prog) init_pretraining_params(exe, args.load_pretraining_params, main_program=train_prog) else: exe.run(train_startup_prog) # prepare data feed_list = [ train_prog.global_block().var(var_name) for var_name in train_model.feed_order ] feeder = fluid.DataFeeder(feed_list, place) logger.info('Training the model...') exe_strategy = fluid.parallel_executor.ExecutionStrategy() parallel_executor = fluid.ParallelExecutor( loss_name=train_model.loss.name, main_program=train_prog, use_cuda=bool(args.use_gpu), exec_strategy=exe_strategy, num_trainers=nccl2_num_trainers, trainer_id=nccl2_trainer_id) logger.info("begin to load data") train_data = data.BidirectionalLMDataset( args.train_path, vocab, test=(not args.shuffle), shuffle_on_load=args.shuffle) logger.info("finished load vocab") # get train epoch size log_interval = args.log_interval total_time = 0.0 batch_size = args.batch_size hidden_size = args.hidden_size custom_samples_array = np.zeros( (batch_size, args.num_steps, args.n_negative_samples_batch + 1), dtype='int64') custom_probabilities_array = np.zeros( (batch_size, args.num_steps, args.n_negative_samples_batch + 1), dtype='float32') for i in range(batch_size): for j in range(0, args.num_steps): for k in range(0, args.n_negative_samples_batch + 1): custom_samples_array[i][j][k] = k custom_probabilities_array[i][j][k] = 1.0 start_time = time.time() train_data_iter = lambda: train_data.iter_batches(batch_size * dev_count, args.num_steps) train_reader = read_multiple(train_data_iter, batch_size, dev_count) total_num = 0 n_batch_loss = 0.0 n_batch_cnt = 0 last_hidden_values = np.zeros( (dev_count, args.num_layers * 2 * batch_size * args.embed_size), dtype='float32') last_cell_values = np.zeros( (dev_count, args.num_layers * 2 * batch_size * hidden_size), dtype='float32') n_tokens_per_batch = args.batch_size * args.num_steps n_batches_per_epoch = int(args.all_train_tokens / n_tokens_per_batch) n_batches_total = args.max_epoch * n_batches_per_epoch begin_time = time.time() for batch_id, batch_list in enumerate(train_reader(), 1): if batch_id > n_batches_total: break feed_data = batch_reader(batch_list, args) feed = list(feeder.feed_parallel(feed_data, dev_count)) for i in range(dev_count): init_hidden_tensor = fluid.core.LoDTensor() if args.use_gpu: placex = fluid.CUDAPlace(i) else: placex = fluid.CPUPlace() init_hidden_tensor.set(last_hidden_values[i], placex) init_cell_tensor = fluid.core.LoDTensor() init_cell_tensor.set(last_cell_values[i], placex) feed[i]['init_hiddens'] = init_hidden_tensor feed[i]['init_cells'] = init_cell_tensor fetch_outs = parallel_executor.run( feed=feed, fetch_list=[ train_model.loss.name, train_model.last_hidden.name, train_model.last_cell.name ], return_numpy=False) cost_train = np.array(fetch_outs[0]).mean() last_hidden_values = np.array(fetch_outs[1]) last_hidden_values = last_hidden_values.reshape( (dev_count, args.num_layers * 2 * batch_size * args.embed_size)) last_cell_values = np.array(fetch_outs[2]) last_cell_values = last_cell_values.reshape(( dev_count, args.num_layers * 2 * batch_size * args.hidden_size)) total_num += args.batch_size * dev_count n_batch_loss += np.array(fetch_outs[0]).sum() n_batch_cnt += len(np.array(fetch_outs[0])) if batch_id > 0 and batch_id % log_interval == 0: smoothed_ppl = np.exp(n_batch_loss / n_batch_cnt) ppl = np.exp( np.array(fetch_outs[0]).sum() / len(np.array(fetch_outs[0]))) used_time = time.time() - begin_time speed = log_interval / used_time logger.info( "[train] step:{}, loss:{:.3f}, ppl:{:.3f}, smoothed_ppl:{:.3f}, speed:{:.3f}". format(batch_id, n_batch_loss / n_batch_cnt, ppl, smoothed_ppl, speed)) n_batch_loss = 0.0 n_batch_cnt = 0 begin_time = time.time() if batch_id > 0 and batch_id % args.dev_interval == 0: valid_ppl = eval(vocab, infer_progs, dev_count, logger, args) logger.info("valid ppl {}".format(valid_ppl)) if batch_id > 0 and batch_id % args.save_interval == 0: model_path = os.path.join(args.para_save_dir, str(batch_id + epoch_id)) if not os.path.isdir(model_path): os.makedirs(model_path) fluid.io.save_persistables( executor=exe, dirname=model_path, main_program=train_prog) end_time = time.time() total_time += end_time - start_time epoch_id = int(batch_id/n_batches_per_epoch) model_path = os.path.join(args.para_save_dir, str(epoch_id)) if not os.path.isdir(model_path): os.makedirs(model_path) fluid.io.save_persistables( executor=exe, dirname=model_path, main_program=train_prog) valid_ppl = eval(vocab, infer_progs, dev_count, logger, args) logger.info("valid ppl {}".format(valid_ppl)) test_ppl = eval(vocab, infer_progs, dev_count, logger, args) if __name__ == '__main__': train()
the-stack_0_11953
import copy import gym import os import sys import random import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from gym import wrappers from datetime import datetime from scipy.misc import imresize ##### testing only MAX_EXPERIENCES = 10000 MIN_EXPERIENCES = 1000 #MAX_EXPERIENCES = 500000 #MIN_EXPERIENCES = 50000 TARGET_UPDATE_PERIOD = 10000 IM_SIZE = 80 K = 4 #env.action_space.n def downsample_image(A): B = A[31:195] # select the important parts of the image B = B.mean(axis=2) # convert to grayscale # downsample image # changing aspect ratio doesn't significantly distort the image # nearest neighbor interpolation produces a much sharper image # than default bilinear B = imresize(B, size=(IM_SIZE, IM_SIZE), interp='nearest') return B def update_state(state, obs): obs_small = downsample_image(obs) return np.append(state[1:], np.expand_dims(obs_small, 0), axis=0) class DQN: def __init__(self, K, conv_layer_sizes, hidden_layer_sizes, gamma, scope): self.K = K self.scope = scope with tf.variable_scope(scope): # inputs and targets self.X = tf.placeholder(tf.float32, shape=(None, 4, IM_SIZE, IM_SIZE), name='X') # tensorflow convolution needs the order to be: # (num_samples, height, width, "color") # so we need to tranpose later self.G = tf.placeholder(tf.float32, shape=(None,), name='G') self.actions = tf.placeholder(tf.int32, shape=(None,), name='actions') # calculate output and cost # convolutional layers # these built-in layers are faster and don't require us to # calculate the size of the output of the final conv layer! Z = self.X / 255.0 Z = tf.transpose(Z, [0, 2, 3, 1]) for num_output_filters, filtersz, poolsz in conv_layer_sizes: Z = tf.contrib.layers.conv2d( Z, num_output_filters, filtersz, poolsz, activation_fn=tf.nn.relu ) # fully connected layers Z = tf.contrib.layers.flatten(Z) for M in hidden_layer_sizes: Z = tf.contrib.layers.fully_connected(Z, M) # final output layer self.predict_op = tf.contrib.layers.fully_connected(Z, K) selected_action_values = tf.reduce_sum( self.predict_op * tf.one_hot(self.actions, K), reduction_indices=[1] ) cost = tf.reduce_mean(tf.square(self.G - selected_action_values)) # self.train_op = tf.train.AdamOptimizer(1e-2).minimize(cost) # self.train_op = tf.train.AdagradOptimizer(1e-2).minimize(cost) # self.train_op = tf.train.RMSPropOptimizer(2.5e-4, decay=0.99, epsilon=1e-3).minimize(cost) self.train_op = tf.train.RMSPropOptimizer(0.00025, 0.99, 0.0, 1e-6).minimize(cost) # self.train_op = tf.train.MomentumOptimizer(1e-3, momentum=0.9).minimize(cost) # self.train_op = tf.train.GradientDescentOptimizer(1e-4).minimize(cost) self.cost = cost def copy_from(self, other): mine = [t for t in tf.trainable_variables() if t.name.startswith(self.scope)] mine = sorted(mine, key=lambda v: v.name) theirs = [t for t in tf.trainable_variables() if t.name.startswith(other.scope)] theirs = sorted(theirs, key=lambda v: v.name) ops = [] for p, q in zip(mine, theirs): actual = self.session.run(q) op = p.assign(actual) ops.append(op) self.session.run(ops) def set_session(self, session): self.session = session def predict(self, states): return self.session.run(self.predict_op, feed_dict={self.X: states}) def update(self, states, actions, targets): c, _ = self.session.run( [self.cost, self.train_op], feed_dict={ self.X: states, self.G: targets, self.actions: actions } ) return c def sample_action(self, x, eps): if np.random.random() < eps: return np.random.choice(self.K) else: return np.argmax(self.predict([x])[0]) def learn(model, target_model, experience_replay_buffer, gamma, batch_size): # Sample experiences samples = random.sample(experience_replay_buffer, batch_size) states, actions, rewards, next_states, dones = map(np.array, zip(*samples)) # Calculate targets next_Qs = target_model.predict(next_states) next_Q = np.amax(next_Qs, axis=1) targets = rewards + np.invert(dones).astype(np.float32) * gamma * next_Q # Update model loss = model.update(states, actions, targets) return loss def play_one( env, total_t, experience_replay_buffer, model, target_model, gamma, batch_size, epsilon, epsilon_change, epsilon_min): t0 = datetime.now() # Reset the environment obs = env.reset() obs_small = downsample_image(obs) state = np.stack([obs_small] * 4, axis=0) assert(state.shape == (4, 80, 80)) loss = None total_time_training = 0 num_steps_in_episode = 0 episode_reward = 0 done = False while not done: # Update target network if total_t % TARGET_UPDATE_PERIOD == 0: target_model.copy_from(model) print("Copied model parameters to target network. total_t = %s, period = %s" % (total_t, TARGET_UPDATE_PERIOD)) # Take action action = model.sample_action(state, epsilon) obs, reward, done, _ = env.step(action) obs_small = downsample_image(obs) next_state = np.append(state[1:], np.expand_dims(obs_small, 0), axis=0) # assert(state.shape == (4, 80, 80)) episode_reward += reward # Remove oldest experience if replay buffer is full if len(experience_replay_buffer) == MAX_EXPERIENCES: experience_replay_buffer.pop(0) # Save the latest experience experience_replay_buffer.append((state, action, reward, next_state, done)) # Train the model, keep track of time t0_2 = datetime.now() loss = learn(model, target_model, experience_replay_buffer, gamma, batch_size) dt = datetime.now() - t0_2 total_time_training += dt.total_seconds() num_steps_in_episode += 1 state = next_state total_t += 1 epsilon = max(epsilon - epsilon_change, epsilon_min) return total_t, episode_reward, (datetime.now() - t0), num_steps_in_episode, total_time_training/num_steps_in_episode, epsilon if __name__ == '__main__': # hyperparams and initialize stuff conv_layer_sizes = [(32, 8, 4), (64, 4, 2), (64, 3, 1)] hidden_layer_sizes = [512] gamma = 0.99 batch_sz = 32 num_episodes = 2 total_t = 0 experience_replay_buffer = [] episode_rewards = np.zeros(num_episodes) # epsilon # decays linearly until 0.1 epsilon = 1.0 epsilon_min = 0.1 epsilon_change = (epsilon - epsilon_min) / 500000 # Create environment env = gym.envs.make("Breakout-v0") # Create models model = DQN( K=K, conv_layer_sizes=conv_layer_sizes, hidden_layer_sizes=hidden_layer_sizes, gamma=gamma, scope="model") target_model = DQN( K=K, conv_layer_sizes=conv_layer_sizes, hidden_layer_sizes=hidden_layer_sizes, gamma=gamma, scope="target_model" ) with tf.Session() as sess: model.set_session(sess) target_model.set_session(sess) sess.run(tf.global_variables_initializer()) print("Populating experience replay buffer...") obs = env.reset() obs_small = downsample_image(obs) state = np.stack([obs_small] * 4, axis=0) # assert(state.shape == (4, 80, 80)) for i in range(MIN_EXPERIENCES): action = np.random.choice(K) obs, reward, done, _ = env.step(action) next_state = update_state(state, obs) # assert(state.shape == (4, 80, 80)) experience_replay_buffer.append((state, action, reward, next_state, done)) if done: obs = env.reset() obs_small = downsample_image(obs) state = np.stack([obs_small] * 4, axis=0) # assert(state.shape == (4, 80, 80)) else: state = next_state # Play a number of episodes and learn! for i in range(num_episodes): total_t, episode_reward, duration, num_steps_in_episode, time_per_step, epsilon = play_one( env, total_t, experience_replay_buffer, model, target_model, gamma, batch_sz, epsilon, epsilon_change, epsilon_min, ) episode_rewards[i] = episode_reward last_100_avg = episode_rewards[max(0, i - 100):i + 1].mean() print("Episode:", i, "Duration:", duration, "Num steps:", num_steps_in_episode, "Reward:", episode_reward, "Training time per step:", "%.3f" % time_per_step, "Avg Reward (Last 100):", "%.3f" % last_100_avg, "Epsilon:", "%.3f" % epsilon ) sys.stdout.flush()
the-stack_0_11957
# The actual simulation goes here # This is the main application framework for the Race Simulation which contains the MainWindow, # based on PyQt, and spawns a Qthread SimulationThread thread. Qt signals/slots are used to # communicate in both directions between them to control (start/pause/stop) and report results # between them. # # # To Execute: python3 simulation.py # # Dependencies: python3, PyQt5 etc. # # Description: MainWindow is created by the app, which in turn starts a SimulationThread thread. o # Note: the MainWindow is not a QMainWindow, rather a QWidget which allows for more flexibility # in placing controls, plots, etc. # The MainWindow contains user controls such push button (QPushButton) that when pressed, # emits a signal that is captured but the "slot" on the SimulationThread thread which acts on it # (thread_start_calculating). # Likewise, the SimulationThread thread emits various signals which are captured by associated slots # in the MainWindow and acted upon. # In either direction data (e.g. input parameters to the SimulationThread thread or results of # calculation from the SimulationThread thread) passed with emitted signal is then displayed on the # PushButton. # # This is based on : # https://stackoverflow.com/questions/52993677/how-do-i-setup-signals-and-slots-in-pyqt-with-qthreads-in-both-directions # Author: RMH 10/28/2020 # # Status: # 11/25/20 This version does NO simulating and provides only the very basic GUI framework # with a simple placeholder graph/plot, threading, and signalling between the thread and # the main window. # 12/1/20 Adding a data storage area to share between the SimulationThread and MainWindow thread # which incorporates a mutex mechanism (QReadWriteLock) to allow coordinating sharing of the # data which MainWindow will be consuming (reading). # 12/52/20 Manual merge in branch 'one-lock-rules-them-all' simulation code with the QThread # architecture framed in from the previous versions of this branch # USE ONLY SI UNITS import sys import time import logging from PyQt5.QtCore import * from PyQt5.QtGui import * from PyQt5.QtWidgets import * import pyqtgraph as pg import cProfile from datastore import (DataStore, RacingSimulationResults) from logging_config import configure_logging from physics_equations import (max_negative_power_physics_simulation, max_positive_power_physics_simulation, constrained_velocity_physics_simulation, ) from electric_car_properties import ElectricCarProperties from track_properties import (TrackProperties, high_plains_raceway) logger = logging.getLogger(__name__) class MainWindow(QWidget): # define the SIGNALs that MainWindow will send to other threads mainWindowStartCalculatingSignal = pyqtSignal(int) def __init__(self, *args, **kwargs): QWidget.__init__(self, parent=None) self.data_store = DataStore() logger.info("MainWindow: DataStore initialized", extra={'sim_index': self.data_store.get_simulation_index()}) # Create GUI related resources self.setWindowTitle('Race Simulation') # create the user play controls and data results graphs to run the simulation self.createUserDisplayControls() # create placeholders for the plots MainWindow will delivering (updating) # data into. self.graphs = pg.GraphicsLayoutWidget(show=True, title="Race Sim plots") self.graphs.resize(1000, 540) self.p1 = self.graphs.addPlot(name="Plot1", title="Time (s)") self.p2 = self.graphs.addPlot(name="Plot2", title="Distance (m)") self.p2.hide() self.p3 = self.graphs.addPlot(name="Plot3", title="Velocity (m/s)") self.p3.hide() self.p4 = self.graphs.addPlot(name="Plot4", title="Acceleration (m/s^2)") self.p4.hide() self.p5 = self.graphs.addPlot(name="Plot5", title="Motor Power") self.p5.hide() self.p6 = self.graphs.addPlot(name="Plot6", title="Battery Power") self.p6.hide() self.p7 = self.graphs.addPlot(name="Plot7", title="Battery Energy (joules)") self.p7.hide() # Links user X-coordinate movements of all plots together. Practically, there has # to be one plot they all link to, and in this case it's self.p1 (Time) b self.p2.setXLink(self.p1) self.p3.setXLink(self.p1) self.p4.setXLink(self.p1) self.p5.setXLink(self.p1) self.p6.setXLink(self.p1) self.p7.setXLink(self.p1) # Layout the major GUI components #self.layout = QtGui.QVBoxLayout() self.layout = QHBoxLayout() self.layout.addWidget(self.userDisplayControlsGroup) self.layout.addWidget(self.graphs) self.setLayout(self.layout) # Create the instances of our worker threads self.simulationThread = SimulationThread(self.data_store) self.plotRefreshTimingThread = PlotRefreshTimingThread() # Setup the SIGNALs to be received from the worker threads self.simulationThread.simulationThreadSignal.connect(self.signalRcvFromSimulationThread) self.plotRefreshTimingThread.plotRefreshTimingSignal.connect(self.signalPlotRefresh) # TODO - what mechanism and what to do when SimulationThread or dies like # refresh GUI and save/close results file?? #self.simulationThread.finished.connect(self.simulationThreadFinished) #self.simulationThread.terminated.connect(self.simulationThreadTerminated) # Now that the SimulationThread has been created (but not yet running), connect the # Button clicked in MainWindow - call a SimulationThread method to do something self.buttonRun.clicked.connect(self.createStartCalculatingSignal) self.buttonStop.clicked.connect(self.simulationThread.thread_stop_calculating) self.checkboxDistanceBreakpoint.clicked.connect(self.enableBreakpointSpinbox) self.simulationThread.start() self.plotRefreshTimingThread.start() def enableBreakpointSpinbox(self): if self.checkboxDistanceBreakpoint.isChecked() == True: self.spinboxDistanceBreakpoint.setEnabled(True) self.spinboxDistanceBreakpoint.setReadOnly(False) else: self.spinboxDistanceBreakpoint.setEnabled(False) self.spinboxDistanceBreakpoint.setReadOnly(True) def createStartCalculatingSignal(self): """ Send a SIGNAL to the simulation thread to start the simulation calculations. Based on the user's control settings in the GUI, figure out what "distance" value to send with the signal to Simulation Thread to start/continue simulation "distance" value sent to the SimulationThread is overload with these meanings: >0 distance in meters from the start on the track... =0 singlestep, <0 whole track, """ if self.checkboxDistanceBreakpoint.isChecked() == True: distance = self.spinboxDistanceBreakpoint.value() else: # No breakpoint indicated on GUI so run the whole track or # until user hits "pause" button distance = -1 # signal the thread self.simulationThread.thread_start_calculating(distance) def createUserDisplayControls(self): self.labelDisplayControl = QLabel("Display Control") # Note - FYI - created in the order the controls appear on screen self.labelStatus = QLabel("Status") self.textboxStatus = QLineEdit("Initialized", self) self.textboxStatus.setReadOnly(True) self.buttonRun = QPushButton('Run/Continue', self) self.buttonRun.setEnabled(True) self.buttonStop = QPushButton('Pause', self) self.buttonStop.setEnabled(True) self.checkboxDistanceBreakpoint = QCheckBox('Distance Breakpoint (m)', self) self.checkboxDistanceBreakpoint.setChecked(False) self.spinboxDistanceBreakpoint = QDoubleSpinBox() self.spinboxDistanceBreakpoint.setReadOnly(True) self.spinboxDistanceBreakpoint.setRange(0,999999) #outputs of simulation self.labelSimulationIndex = QLabel("Current Sim. Index") self.textboxSimulationIndex = QLineEdit("0",self) self.textboxSimulationIndex.setReadOnly(False) self.checkboxTime = QCheckBox('Time (s)', self) self.checkboxTime.setChecked(False) self.spinboxTime = QDoubleSpinBox() self.spinboxTime.setReadOnly(True) self.spinboxTime.setRange(0, 999999) self.checkboxDistance = QCheckBox('Distance (m)', self) self.checkboxDistance.setChecked(False) self.spinboxDistance = QDoubleSpinBox() self.spinboxDistance.setReadOnly(True) self.spinboxDistance.setRange(0,999999) self.checkboxVelocity = QCheckBox('Velocity (m/s)', self) self.checkboxVelocity.setChecked(False) self.spinboxVelocity = QDoubleSpinBox() self.spinboxVelocity.setReadOnly(True) self.spinboxVelocity.setRange(0,999999) self.checkboxAcceleration = QCheckBox('Acceleration (m/s^2)', self) self.checkboxAcceleration.setChecked(False) self.spinboxAcceleration = QDoubleSpinBox() self.spinboxAcceleration.setReadOnly(True) self.checkboxMotorPower = QCheckBox('Motor Power', self) self.checkboxMotorPower.setChecked(False) self.spinboxMotorPower = QDoubleSpinBox() self.spinboxMotorPower.setReadOnly(True) self.spinboxMotorPower.setRange(0,999999) self.checkboxBatteryPower = QCheckBox('Battery Power', self) self.checkboxBatteryPower.setChecked(False) self.spinboxBatteryPower = QDoubleSpinBox() self.spinboxBatteryPower.setReadOnly(True) self.spinboxBatteryPower.setRange(0,999999) self.checkboxBatteryEnergy = QCheckBox('Battery Energy (j)', self) self.checkboxBatteryEnergy.setChecked(False) self.spinboxBatteryEnergy = QDoubleSpinBox() self.spinboxBatteryEnergy.setReadOnly(True) self.spinboxBatteryEnergy.setRange(0,999999) #self.userDisplayControlsGroup = QtGui.QGroupBox('User Display Controls') self.userDisplayControlsGroup = QGroupBox('User Display Controls') #self.userDisplayControlsLayout= QtGui.QGridLayout() self.userDisplayControlsLayout= QGridLayout() self.userDisplayControlsLayout.addWidget(self.labelStatus, 0, 0) self.userDisplayControlsLayout.addWidget(self.textboxStatus, 0, 1) self.userDisplayControlsLayout.addWidget(self.buttonRun, 1, 0) self.userDisplayControlsLayout.addWidget(self.buttonStop, 1, 1) self.userDisplayControlsLayout.addWidget(self.checkboxDistanceBreakpoint, 2, 0) self.userDisplayControlsLayout.addWidget(self.spinboxDistanceBreakpoint, 2, 1) self.userDisplayControlsLayout.addWidget(self.labelSimulationIndex, 3, 0) self.userDisplayControlsLayout.addWidget(self.textboxSimulationIndex, 3, 1) self.userDisplayControlsLayout.addWidget(self.checkboxTime, 4, 0) self.userDisplayControlsLayout.addWidget(self.spinboxTime, 4, 1) self.userDisplayControlsLayout.addWidget(self.checkboxDistance, 5, 0) self.userDisplayControlsLayout.addWidget(self.spinboxDistance, 5, 1) self.userDisplayControlsLayout.addWidget(self.checkboxVelocity, 6, 0) self.userDisplayControlsLayout.addWidget(self.spinboxVelocity, 6, 1) self.userDisplayControlsLayout.addWidget(self.checkboxAcceleration, 7, 0) self.userDisplayControlsLayout.addWidget(self.spinboxAcceleration, 7, 1) self.userDisplayControlsLayout.addWidget(self.checkboxMotorPower, 8, 0) self.userDisplayControlsLayout.addWidget(self.spinboxMotorPower, 8, 1) self.userDisplayControlsLayout.addWidget(self.checkboxBatteryPower, 9, 0) self.userDisplayControlsLayout.addWidget(self.spinboxBatteryPower, 9, 1) self.userDisplayControlsLayout.addWidget(self.checkboxBatteryEnergy, 10, 0) self.userDisplayControlsLayout.addWidget(self.spinboxBatteryEnergy, 10, 1) self.userDisplayControlsGroup.setLayout(self.userDisplayControlsLayout) def simulationThreadResultsDataDisplay(self): # TODO placeholder for real work to be done when the SimulationThread (a simulationThread thread) # SIGNALs MainWindow new data is available in shared memory print('Window SIGNAL from SimulationThread: Results_data_ready') def simulationThreadFinished(self): # TODO placeholder for SimulationThread SIGNALs ??exiting # data is available in shared memory print('Window: SIGNAL From SimulationThread: Finished') def simulationThreadTerminated(self): # TODO placeholder for SimulationThread SIGNALs terminated print('Window: SIGNAL From SimulationThread: Terminated') """ Slots routines to handle SIGNALs sent to MainWindow from other threads """ @pyqtSlot(str) def signalRcvFromSimulationThread(self, text): #self.buttonRun.setText(text) self.textboxStatus.setText(text) @pyqtSlot() def signalPlotRefresh(self): #Display/update the window to display computation status, data, and plots selected by the user # This is called periodically because of the signal emitted from PlotRefreshTimingThread current_sim_index = (self.data_store.get_simulation_index()) logger.info("MainWindow:", extra={'sim_index': current_sim_index}) self.textboxSimulationIndex.setText("{}".format(current_sim_index)) """ Only refresh data if the simulations calculations have begun, indicated by current_sim-index > 0 Note: current_sim_index is descremented "-1" for the following calls because the lap_velocity_simulation calculations may be incomplete for the index when this "plot" signal was received and interrupted it. That is, the SimulationThread is/could be still updating a DataStore data (lists) records simulation_index and not all lists # have been calculated, so we should just plot upto the last complete record. """ if current_sim_index > 0 : # Get the current data values and update the corresponding display field textbox time = self.data_store.get_time_at_index(current_sim_index-1) self.spinboxTime.setValue(time) distance = self.data_store.get_distance_at_index(current_sim_index-1) self.spinboxDistance.setValue(distance) velocity = self.data_store.get_velocity_at_index(current_sim_index-1) self.spinboxVelocity.setValue(velocity) acceleration = self.data_store.get_acceleration_at_index(current_sim_index-1) self.spinboxAcceleration.setValue(acceleration) motor_power = self.data_store.get_motor_power_at_index(current_sim_index-1) self.spinboxMotorPower.setValue(motor_power) battery_power = self.data_store.get_battery_power_at_index(current_sim_index-1) self.spinboxBatteryPower.setValue(battery_power) # TBD not yet implemented in physics_equations #battery_energy = self.data_store.get_battery_energy_at_index(current_sim_index-1) #self.spinboxBatteryEnergy.setValue(battery_energy) # Display the data values # create a new plot for every point simulated so far x = [z for z in range(current_sim_index)] _time = [] _distance = [] _velocity = [] _max_velocity = [] _acceleration = [] _motor_power = [] _battery_power = [] _battery_energy = [] _time = self.data_store.get_time_list(current_sim_index) _distance = self.data_store.get_distance_list(current_sim_index) _velocity = self.data_store.get_velocity_list(current_sim_index) _max_velocity = self.data_store.get_track_max_velocity_list(current_sim_index) _acceleration = self.data_store.get_acceleration_list(current_sim_index) _motor_power = self.data_store.get_motor_power_list(current_sim_index) _battery_power = self.data_store.get_battery_power_list(current_sim_index) #TODO not yet implemented #_battery_energy = self.data_store.get_battery_energy_list(current_sim_index) self.p1.plot(x=x, y=_time, name="Plot1", title="Time") # selectively display the plots based on the checkboxes if self.checkboxDistance.isChecked() == True : self.p2.show() self.p2.plot(x=x, y=_distance, name="Plot2", title="Distance (m)") else: self.p2.hide() if self.checkboxVelocity.isChecked() == True : self.p3.show() self.p3.plot(x=x, y=_max_velocity, name="Plot3", title="Max Velocity (m/sec)", pen='r') self.p3.plot(x=x, y=_velocity, name="Plot3", title="Velocity (m/sec)") else: self.p3.hide() if self.checkboxAcceleration.isChecked() == True : self.p4.show() self.p4.plot(x=x, y=_acceleration, name="Plot4", title="Acceleration (m/sec^2)") else: self.p4.hide() if self.checkboxMotorPower.isChecked() == True : self.p5.show() self.p5.plot(x=x, y=_motor_power, name="Plot5", title="Motor Power") else: self.p5.hide() if self.checkboxBatteryPower.isChecked() == True : self.p6.show() self.p6.plot(x=x, y=_battery_power, name="Plot6", title="Battery Power") else: self.p6.hide() """TBD - to be added once Battery Energy is working in physics_equations if self.checkboxBatteryEnergy.isChecked() == True : self.p7.show() self.p7.plot(x=x, y=_battery_energy, name="Plot7", title="Battery Energy (joules)") else: self.p7.hide() """ class SimulationThread(QThread): # Define the Signals we'll be emitting to the MainWindow simulationThreadSignal = pyqtSignal(str) simulationThreadPlotSignal = pyqtSignal(int) breakpointDistance = 0 def __init__(self, passed_data_store, parent=None): QThread.__init__(self, parent) self.exiting = False self.setObjectName("SimulationThread") """ SimulationComputing is used for staring/stopping loop control logic which is controlled ( signalled) from the MainWindow. Start without compution in the simulationThread running """ self.simulationComputing = False self.breakpointDistance = 0 # Initialize the simulation universe self._data_store = passed_data_store self.initialize_race() #print('SimulationThread: __init()__') #print("SimulationThread: Simulation Index = {}".format(self._data_store.get_simulation_index())) #connect some signals from the main window to us #self.connect(self, QtCore.SIGNAL('To_End',self.processToEnd) def __del__(self): # Before a SimulationThread object is destroyed, we need to ensure that it stops processing. # For this reason, we implement the following method in a way that indicates to # the part of the object that performs the processing that it must stop, and waits # until it does so. self.exiting = True self.wait() # rotational inertia estimation: http://www.hpwizard.com/rotational-inertia.html def initialize_race(self): segment_distance = 0.005 # meters, this must be very very small battery_power = 40000 # 40kW motor_efficiency = 0.8 wheel_radius = 0.25 # m, ~20 in OD on tires rotational_inertia = 10 # kg*m^2 mass = 1000 # kg drag_coefficient = 0.4 frontal_area = 7 # m^2 air_density = 1 # kg/m^3 wheel_pressure_bar = 3 # bar track = TrackProperties() track.set_air_density(air_density) for distance in high_plains_raceway: track.add_critical_point(distance, high_plains_raceway[distance], track.FREE_ACCELERATION) track.generate_track_list(segment_distance) car = ElectricCarProperties() car.set_car_parameters(mass=mass, rotational_inertia=rotational_inertia, motor_power=battery_power, motor_efficiency=motor_efficiency, battery_capacity=10, drag_coefficient=drag_coefficient, frontal_area=frontal_area, wheel_radius=wheel_radius, wheel_pressure_bar=wheel_pressure_bar) self._data_store.initialize_lap_lists(len(track.distance_list)) self._data_store.set_car_properties(car) self._data_store.set_track_properties(track) """ SimulationThread signal handling routines. This is the collection of SLOTS that get signaled (emitted) from the MainWindow and tell the SimulationThread what to do, like change states and start calculating, pause, etc. """ @pyqtSlot() def thread_start_calculating(self, distance_value): """ This signal (slot) handler takes the distance value and updates SimulationThread computing state and interprets the distance_value into appropriate values for "breakpoints" to, if necessary, to stop computing. """ print("Breakpoint Distance value:{}".format(distance_value)) logger.info('Slot:thread_start_calculating :', extra={'sim_index': self._data_store.get_simulation_index()}) if distance_value == 0: logger.info('Slot:thread_start_calculating SINGLE STEP NOT IMPLEMENTED:', extra={'sim_index': self._data_store.get_simulation_index()}) #TODO - finish this breakpoint case self.simulationComputing = False elif distance_value == -1: logger.info('Slot:thread_start_calculating RUN TO COMPLETION :', extra={'sim_index': self._data_store.get_simulation_index()}) # set the breakpoint to be a very large number to indicate run to completion self.breakpointDistance = 9999999 self.simulationComputing = True else: # run to the distance value point in the track sim_index = self._data_store.get_simulation_index() if distance_value > self._data_store.get_distance_at_index(sim_index) : logger.info('Slot:thread_start_calculating RUN TO DISTANCE :', extra={'sim_index': sim_index}) # requested breakpoint is further down the track self.breakpointDistance = distance_value # Start computing and acknowledge to MainWindow by sending a signal back self.simulationThreadSignal.emit("Calculating...") # "state" variable indicating thread should be calculating self.simulationComputing = True else: logger.info('Slot:thread_start_calculating PAST REQUESTED DISTANCE :', extra={'sim_index': sim_index}) # simulation has already past this point in the track, don't proceed self.simulationComputing = False @pyqtSlot() def thread_stop_calculating(self): logger.info('Slot:thread_stop_calculating :', extra={'sim_index': self._data_store.get_simulation_index()}) # Now send a signal back to the main window self.simulationThreadSignal.emit("Paused") # "state" variable indicating thread should stop calculating self.simulationComputing = False def racing_simulation(self): """Function accepts a car and a track and executes a simulation to ouput critical metrics related to battery life and track speed. Args: Nothing, all required vars are defined in class Returns: Nothing, all required vars are defined in class """ results = RacingSimulationResults() self.lap_velocity_simulation() # only calculate results if the simulation ran through without an interruption if not self._data_store.exit_event.is_set(): lap_results = self._data_store.get_lap_results() # TODO fix this #results.laps_per_pit_stop = car["battery_capacity"] / lap_results.motor_energy_list[-1] results.lap_time = lap_results.end_velocity results.lap_results = lap_results self._data_store.set_race_results(results) def lap_velocity_simulation(self): """Function calculates the velocity profile of a car with car_properties on a track with track_properties. The car starts with an ititial velocity of initial_velocity. Args: data_store (DataStore): Thread safe storage for all simulation data Returns: Nothing (all data saved in the datastore) """ # performance increases by assigning local functions # https://towardsdatascience.com/10-techniques-to-speed-up-python-runtime-95e213e925dc add_physics_result_to_datastore = self._data_store.add_physics_results_to_lap_results get_velocity = self._data_store.get_velocity_at_index track = self._data_store.get_track_properties() air_density = track.get_air_density() car = self._data_store.get_car_properties() # need to populate the time profile be the same length as the distance list # to complete a lap of simulation list_len = len(track.distance_list) logger.debug('track.distance_list length={}'.format(list_len), extra={'sim_index': self._data_store.get_simulation_index()}) # TODO - Add self.simulationComputing to loop control to while while self._data_store.get_simulation_index() < list_len: # get the new index we are going to calculate sim_index = self._data_store.get_simulation_index() if self._data_store.exit_event.is_set(): break distance_of_travel = (track.distance_list[sim_index] - track.distance_list[sim_index - 1]) # only continue simulation computing if the GUI says to do so. if (self.simulationComputing == True and self.breakpointDistance > track.distance_list[sim_index]): velocity = get_velocity(sim_index - 1) physics_results = max_positive_power_physics_simulation(velocity, distance_of_travel, car, air_density) add_physics_result_to_datastore(physics_results, sim_index) # check if velocity constraints are violated if get_velocity(sim_index) > track.max_velocity_list[sim_index]: # velocity constraint violated!! # start walking back until velocity constraint at sim_index is met logger.info("velocity constraint violated starting walk back, current v: {}, max: {}" .format(physics_results.final_velocity, track.max_velocity_list[sim_index]), extra={'sim_index': self._data_store.get_simulation_index()}) max_velocity_constraint = track.max_velocity_list[sim_index] while get_velocity(sim_index) > max_velocity_constraint: """This while loop's purpose is to recalculate a portion of the car's car profile because the car ended up going too fast at a point on the track. To recalculate the following happens: 1. a "walk back" index is used to track how far back the recalculation occurs 2. from the index (sim_index - walk_back_index) to (sim_index - 1) the results are calculated as a maximum regeneration effort by the motor 3. at the sim_index the results are calculated as a constrained velocity - if the results of the calculation are realistic then the walk back is done - if the results are not realistic then increment the walk back counter and recalculate """ walk_back_counter = self._data_store.get_walk_back_counter() recalculation_start_index = sim_index - walk_back_counter logger.debug("starting and ending walkback index: {}, {}" .format(recalculation_start_index, sim_index), extra={'sim_index': self._data_store.get_simulation_index()}) for i in range(recalculation_start_index, sim_index): velocity = get_velocity(i - 1) logger.debug("velocity: {}" .format(velocity), extra={'sim_index': i}) # recalculate with negative motor power physics_results = max_negative_power_physics_simulation(velocity, distance_of_travel, car, air_density) logger.debug("next velocity: {}" .format(physics_results.final_velocity), extra={'sim_index': i}) add_physics_result_to_datastore(physics_results, i) velocity = get_velocity(sim_index - 1) # last deceleration will be a constrained velocity because # it will be neither max positive or negative motor power physics_results = \ constrained_velocity_physics_simulation(velocity, max_velocity_constraint, distance_of_travel, car, air_density) logger.debug("velocity start, end, max: {} {} {}" .format(velocity, physics_results.final_velocity, max_velocity_constraint), extra={'sim_index': sim_index}) # check if constrained velocity calculation is realistic # TODO other checks here can be on acceleration or wheel force if physics_results.motor_power < -car["motor_power"]: logger.debug( "velocity constraint still violated, calculated power: {}, max power: {}" .format(physics_results.motor_power, car["motor_power"]), extra={'sim_index': sim_index}) logger.debug("sim_index, walkback: {} {}, incrementing walk back" .format(sim_index, walk_back_counter), extra={'sim_index': sim_index}) self._data_store.increment_walk_back_counter() else: logger.info( "velocity constraint accepted, calculated power: {}, max power: {}" .format(physics_results.motor_power, car["motor_power"]), extra={'sim_index': sim_index}) logger.info("constrained velocity equation accepted", extra={'sim_index': sim_index}) add_physics_result_to_datastore(physics_results, sim_index) #end of while while get_velocity(sim_index) > max_velocity_constraint: # walk back complete, reset walk back index for next time self._data_store.reset_walk_back_counter() # completed calculation for the latest simulation index, self._data_store.increment_simulation_index() else: # self.simulationComputing is False or we've reached a breakpoint, # so wait for GUI user to indicate proceed if self.simulationComputing == True : # if we're computing and got here, we must have hit a breakpoint, therefore pause # Now send a signal back to the main window self.simulationThreadSignal.emit("Paused") # "state" variable indicating thread should stop calculating self.simulationComputing = False #else: # we've began not computing or a breakpoint already has sent us there # so do nothing more than waitk # in any case, wait until user gives us a new condition to continue computing time.sleep(1.0) logger.debug("waiting for simulationComputing==True", extra={'sim_index': sim_index}) # end of while data_store.get_simulation_index() < list_len: logger.info("SIMULATION COMPLETE!", extra={'sim_index': 'N/A'}) self.simulationThreadSignal.emit("Finished!") self._data_store.exit_event.set() def run(self): # Note: This is never called directly. It is called by Qt once the # thread environment with the thread's start() method has been setup, # and then runs "continuously" logger.info("SimulationThread: entering cProfile.runctx() ", extra={'sim_index': 'N/A'}) # profiling tool, look at results with runsnake: # https://kupczynski.info/2015/01/16/profiling-python-scripts.html # this has relatively little overhead for the overall runtime of the program # I have only been able to get the runsnake files to work on linux # alternative profile results viewer for windows (untried): https://sourceforge.net/projects/qcachegrindwin/ cProfile.runctx("self.racing_simulation()", globals(), locals(), 'profile-simulation.out') class PlotRefreshTimingThread(QThread): # Thread responsible for a periodic signal to the MainWindow which when received causes # MainWindow to refresh it's plots. # Define the Signals we'll be emitting to the MainWindow plotRefreshTimingSignal = pyqtSignal() # start without compution in the simulationThread running def __init__(self, parent=None): QThread.__init__(self, parent) self.exiting = False logger.info("PlotRefreshTimingThread: __init()__", extra={'sim_index': 'N/A'}) # TODO connect some signals from the main window to us #self.connect(self, QtCore.SIGNAL('To_End',self.processToEnd) def __del__(self): # Before a PlotRefreshTimingThread object is destroyed, we need to ensure that it stops # processing. For this reason, we implement the following method in a way that # indicates to the part of the object that performs the processing that it must stop, # and waits until it does so. self.exiting = True self.wait() def run(self): # Note: This is never called directly. It is called by Qt once the # thread environment with the thread's start() method has been setup, # and then runs "continuously" to do the work of the thread as it's main # processing loop logger.info("PlotRefreshTimingThread: entering while() ", extra={'sim_index': 'N/A'}) while True: time.sleep(5.0) self.plotRefreshTimingSignal.emit() if __name__ == "__main__": MainApp = QApplication(sys.argv) if __name__ == "__main__": configure_logging() window = MainWindow() window.show() sys.exit(cProfile.runctx("MainApp.exec_()", globals(), locals(), 'profile-display.out'))
the-stack_0_11958
""" Plot a geodesic of SO(3) equipped with its left-invariant canonical METRIC. """ import matplotlib.pyplot as plt import numpy as np import os import geomstats.visualization as visualization from geomstats.special_orthogonal_group import SpecialOrthogonalGroup SO3_GROUP = SpecialOrthogonalGroup(n=3) METRIC = SO3_GROUP.bi_invariant_metric def main(): initial_point = SO3_GROUP.identity initial_tangent_vec = [0.5, 0.5, 0.8] geodesic = METRIC.geodesic(initial_point=initial_point, initial_tangent_vec=initial_tangent_vec) n_steps = 10 t = np.linspace(0, 1, n_steps) points = geodesic(t) visualization.plot(points, space='SO3_GROUP') plt.show() if __name__ == "__main__": if os.environ['GEOMSTATS_BACKEND'] == 'tensorflow': print('Examples with visualizations are only implemented ' 'with numpy backend.\n' 'To change backend, write: ' 'export GEOMSTATS_BACKEND = \'numpy\'.') else: main()
the-stack_0_11959
from __future__ import division import random import pprint import sys import time import numpy as np import cv2 from optparse import OptionParser import pickle import os import traceback from keras import backend as K from keras.optimizers import Adam, SGD, RMSprop from keras.layers import Input from keras.models import Model, load_model, model_from_json from keras_frcnn import config, data_generators from keras_frcnn import losses as losses import keras_frcnn.roi_helpers as roi_helpers from keras.utils import generic_utils if 'tensorflow' == K.backend(): import tensorflow as tf from keras.backend.tensorflow_backend import set_session config2 = tf.ConfigProto() config2.gpu_options.allow_growth = True set_session(tf.Session(config=config2)) sys.setrecursionlimit(40000) def kl_div(P, Q): return np.nansum([p * np.log2(p / (q + 1e-8)) for p, q in zip(P, Q) if p != 0]) def js_distance(P, Q): M = 0.5 * (P + Q) return np.sqrt(0.5 * kl_div(P, M) + 0.5 * kl_div(Q, M)) def get_optimal_alpha(p_img, p_curr, rule_mode = "max"): js_dist_list = [js_distance(p_img[0,i,:], p_curr[0,i,:]) for i in range(p_img.shape[1])] if rule_mode == "max": dist_diff = np.nanmax(js_dist_list) elif rule_mode == "min": dist_diff = np.nanmin(js_dist_list) else: dist_diff = np.nanmean(js_dist_list) return np.max([alpha_final, dist_diff / (1 - dist_diff + 1e-8)]) def make_target_probas(p_img, p_curr, alpha, constrain_hard_examples = False): target_probas = (np.log(p_curr[0] + 1e-8) + alpha * np.log(p_img[0] + 1e-8)) / (1 + alpha) target_probas = np.exp(target_probas) / np.exp(target_probas).sum(axis = 1)[:, None] idx = [] if constrain_hard_examples: # Confident predictions in img_classifier idx_conf = np.where(p_img[0] >= 0.90) target_probas[idx_conf[0],:] = 0 target_probas[idx_conf] = 1 # Easy predictions (agreement between img and current) idx_agree = np.where((p_img[0].argmax(1) == p_curr[0].argmax(1)) & (p_curr[0].max(1) >= 0.50))[0] cols_agree = p_curr[0].argmax(1)[idx_agree] target_probas[idx_agree,:] = 0 target_probas[idx_agree, cols_agree] = 1 idx = np.unique(idx_conf[0].tolist() + idx_agree.tolist()).tolist() return np.expand_dims(target_probas, axis = 0), idx def make_target_bbs(bb_curr, bb_phase1, alpha): target_bbs = (bb_curr + alpha * bb_phase1) / (1 + alpha) return target_bbs def get_img_probas(img_path, P_cls, P_regr, ROIs, C, f): img = cv2.imread(img_path) new_height = 299 new_width = 299 img_probas = np.zeros((P_cls.shape[1], len(class_mapping))) for ii in range(P_cls.shape[1]): (x, y, w, h) = ROIs[0, ii, :] cls_num = np.argmax(P_cls[0, ii, :]) try: (tx, ty, tw, th) = P_regr[0, ii, 4 * cls_num:4 * (cls_num + 1)] tx /= C.classifier_regr_std[0] ty /= C.classifier_regr_std[1] tw /= C.classifier_regr_std[2] th /= C.classifier_regr_std[3] x, y, w, h = roi_helpers.apply_regr(x, y, w, h, tx, ty, tw, th) except: pass # Get the true BB coordinates x1, y1, x2, y2 = C.rpn_stride * x, C.rpn_stride * y, C.rpn_stride * (x + w), C.rpn_stride * (y + h) x1, y1, x2, y2 = data_generators.get_real_coordinates(f, x1, y1, x2, y2) # Get the probabilities from the image classifier cropped_img = img[y1:y2, x1:x2, :] x_resized = cv2.resize(np.copy(cropped_img), (int(new_width), int(new_height)), interpolation = cv2.INTER_CUBIC) x_resized = x_resized / 255. x_resized = np.expand_dims(x_resized, axis = 0) img_probas[ii, :] = img_classifier.predict(x_resized)[0] return np.expand_dims(img_probas, axis = 0) def rpn_to_class_inputs(X, img_data, C, mode = "source", eps = 0.05): [Y1, Y2] = model_rpn.predict(X) R = roi_helpers.rpn_to_roi(Y1, Y2, C, K.image_dim_ordering(), use_regr = True, overlap_thresh = 0.4, max_boxes = 300) X2, Y1, Y2, _ = roi_helpers.calc_iou(R, img_data, C, class_mapping, mode, eps) if X2 is None: rpn_accuracy_rpn_monitor.append(0) rpn_accuracy_for_epoch.append(0) raise NameError('No quality ROIs in X2. Training on another sample') neg_samples = np.where(Y1[0, :, :].argmax(1) == len(class_mapping) - 1) pos_samples = np.where(Y1[0, :, :].argmax(1) != len(class_mapping) - 1) if len(neg_samples) > 0: neg_samples = neg_samples[0] else: neg_samples = [] if len(pos_samples) > 0: pos_samples = pos_samples[0] else: pos_samples = [] rpn_accuracy_rpn_monitor.append(len(pos_samples)) rpn_accuracy_for_epoch.append((len(pos_samples))) if C.num_rois > 1: if len(pos_samples) < C.num_rois//2: selected_pos_samples = pos_samples.tolist() else: selected_pos_samples = np.random.choice(pos_samples, C.num_rois//2, replace=False).tolist() try: selected_neg_samples = np.random.choice(neg_samples, C.num_rois - len(selected_pos_samples), replace=False).tolist() except: selected_neg_samples = np.random.choice(neg_samples, C.num_rois - len(selected_pos_samples), replace=True).tolist() sel_samples = selected_pos_samples + selected_neg_samples else: # In the extreme case where num_rois = 1, we pick a random pos or neg sample selected_pos_samples = pos_samples.tolist() selected_neg_samples = neg_samples.tolist() if np.random.randint(0, 2): sel_samples = random.choice(neg_samples) else: sel_samples = random.choice(pos_samples) X2 = X2[:, sel_samples, :] Y1 = Y1[:, sel_samples, :] Y2 = Y2[:, sel_samples, :] return X2, Y1, Y2, len(selected_pos_samples) def get_target_img_data(X_target, img_data, alpha, constrain_hard_examples = False, use_optimal_alpha = False): [Y1, Y2, F] = phase1_rpn.predict(X_target) R = roi_helpers.rpn_to_roi(Y1, Y2, C, K.image_dim_ordering(), overlap_thresh = 0.7) # convert from (x1,y1,x2,y2) to (x,y,w,h) R[:, 2] -= R[:, 0] R[:, 3] -= R[:, 1] # apply the spatial pyramid pooling to the proposed regions bboxes = {} probs = {} all_probs = {} for jk in range(R.shape[0] // C.num_rois + 1): ROIs = np.expand_dims(R[C.num_rois * jk:C.num_rois * (jk + 1), :], axis = 0) if ROIs.shape[1] == 0: break if jk == R.shape[0] // C.num_rois: # Pad R curr_shape = ROIs.shape target_shape = (curr_shape[0], C.num_rois, curr_shape[2]) ROIs_padded = np.zeros(target_shape).astype(ROIs.dtype) ROIs_padded[:, :curr_shape[1], :] = ROIs ROIs_padded[0, curr_shape[1]:, :] = ROIs[0, 0, :] ROIs = ROIs_padded # Make predictions with current FRCNN and phase 1 detector [_, P_regr_phase1] = phase1_classifier.predict([F, ROIs]) [P_cls_curr, P_regr_curr] = model_classifier.predict([X_target, ROIs]) # <- This returns a (1, n_ROIs, n_class) and (1, n_ROIs, 4) tensors # Get the probabilities from the image classifier img_probas = get_img_probas(filepath, P_cls_curr, P_regr_curr, ROIs, C, f) # Optional re-computation of the alpha parameter if use_optimal_alpha: alpha = get_optimal_alpha(img_probas, P_cls_curr, "mean") # Get the target probabilities P_cls, no_change_bb_idx = make_target_probas(img_probas, P_cls_curr, alpha, constrain_hard_examples) for ii in range(P_cls.shape[1]): # If the detected object is bg skip if np.argmax(P_cls[0, ii, :]) == (P_cls.shape[2] - 1): continue cls_name = inv_map[np.argmax(P_cls[0, ii, :])] if cls_name not in bboxes: bboxes[cls_name] = [] probs[cls_name] = [] all_probs[cls_name] = [] cls_num = np.argmax(P_cls[0, ii, :]) (x1, y1, w1, h1) = ROIs[0, ii, :] (x2, y2, w2, h2) = ROIs[0, ii, :] try: (tx, ty, tw, th) = P_regr_phase1[0, ii, 4 * cls_num:4 * (cls_num + 1)] tx /= C.classifier_regr_std[0] ty /= C.classifier_regr_std[1] tw /= C.classifier_regr_std[2] th /= C.classifier_regr_std[3] x1, y1, w1, h1 = roi_helpers.apply_regr(x1, y1, w1, h1, tx, ty, tw, th) except: pass try: (tx, ty, tw, th) = P_regr_curr[0, ii, 4 * cls_num:4 * (cls_num + 1)] tx /= C.classifier_regr_std[0] ty /= C.classifier_regr_std[1] tw /= C.classifier_regr_std[2] th /= C.classifier_regr_std[3] x2, y2, w2, h2 = roi_helpers.apply_regr(x2, y2, w2, h2, tx, ty, tw, th) except: pass if ii in no_change_bb_idx: x, y, w, h = x2, y2, w2, h2 else: x, y, w, h = make_target_bbs(np.array([x2, y2, w2, h2]), np.array([x1, y1, w1, h1]), alpha) bboxes[cls_name].append([C.rpn_stride * x, C.rpn_stride * y, C.rpn_stride * (x + w), C.rpn_stride * (y + h)]) probs[cls_name].append(np.max(P_cls[0, ii, :])) all_probs[cls_name].append(P_cls[0, ii, :]) for key in bboxes: new_boxes, _, chosen_idx = roi_helpers.non_max_suppression_fast(np.array(bboxes[key]), np.array(probs[key]), overlap_thresh = 0.1) probas = np.array(all_probs[key])[chosen_idx, :] # img_data = {"filepath" : filepath, "width" : width, "height" : height, "bboxes" : []} # all_imgs[filename]['bboxes'].append({'class': class_name, 'x1': int(x1), 'x2': int(x2), 'y1': int(y1), 'y2': int(y2)}) for jk in range(new_boxes.shape[0]): (x1, y1, x2, y2) = new_boxes[jk, :] (x1, y1, x2, y2) = data_generators.get_real_coordinates(f, x1, y1, x2, y2) img_data["bboxes"].append({'class': key, 'x1': int(x1), 'x2': int(x2), 'y1': int(y1), 'y2': int(y2), 'probas': probas[jk, :]}) return img_data parser = OptionParser() parser.add_option("-s", "--source_path", dest="source_path", help="Path to source training txt file.") parser.add_option("-t", "--target_path", dest="target_path", help="Path to target training detections txt file.") parser.add_option("-p", "--parser", dest="parser", help="Parser to use. One of general or pascal_voc", default="general") parser.add_option("-r", "--num_rois", type="int", dest="num_rois", help="Number of ROIs to process at once.", default=32) parser.add_option("--num_epochs", type="int", dest="num_epochs", help="Number of epochs.", default=50) parser.add_option("--elen", dest="epoch_length", help="Set the epoch length. def=1000", default=1000) parser.add_option("--opt", dest="optimizers", help="Set the optimizer to use", default="SGD") parser.add_option("--lr", dest="lr", help="Initial learning rate", type=float, default=1e-3) parser.add_option("--load_checkpoint", dest="load_checkpoint", help="Path to model weights from past checkpoint. Used to resume training.", default=None) parser.add_option("--alpha_init", type=float, dest="alpha_init", help="Starting alpha value.", default=100.) parser.add_option("--alpha_final", type=float, dest="alpha_final", help="Final/smallest alpha value.", default=0.5) parser.add_option("--hard_constraints", dest="hard_constraints", help="Set hard thresholds on confident predictions", action="store_true", default=False) parser.add_option("--recompute_alpha", dest="recompute_alpha", help="Recompute alpha automatically using Hausdorf distance.", action="store_true", default=False) parser.add_option("--phase1_config_file", dest="phase1_config", help="Path of the config file of phase 1 F-RCNN.", default="config.pickle") parser.add_option("--phase1_weights", dest="phase1_weights", help="Path to .hdf5 file with phase 1 F-RCNN model weights") parser.add_option("--img_json", dest="img_json_path", help="Path to JSON file with phase 2 img model architecture") parser.add_option("--img_weights", dest="img_weight_path", help="Path to .hdf5 file with phase 2 img model weights") parser.add_option("--output_config_file", dest="output_config", help="Path to save final phase 3 config file (for testing)", default="config_phase3.pickle") parser.add_option("--output_weight_path", dest="output_weight_path", help="Output path for weights.", default='models/phase3/phase3_weights.hdf5') (options, args) = parser.parse_args() # Check for user errors if not options.phase1_weights: parser.error('Error: path to phase 1 weights must be specified. Pass --phase1_weights to command line') if not options.img_json_path: parser.error('Error: path to phase 2 JSON file must be specified. Pass --img_json to command line') if not options.img_weight_path: parser.error('Error: path to phase 2 weights must be specified. Pass --img_weights to command line') if not options.source_path: parser.error('Error: path to source training data must be specified. Pass --source_path to command line') if not options.target_path: parser.error('Error: path to target training data must be specified. Pass --target_path to command line') # Loading the selected parser if options.parser == 'pascal_voc': from keras_frcnn.pascal_voc_parser import get_data elif options.parser == "general": from keras_frcnn.general_parser import get_data else: raise ValueError("Command line option parser must be a valid one") # mkdir to save models. if not os.path.isdir("models"): os.mkdir("models") if not os.path.isdir("models/phase3"): os.mkdir("models/phase3") # Loading the config file from phase 1 with open(options.phase1_config, 'rb') as f_in: C = pickle.load(f_in) C.num_rois = int(options.num_rois) C.model_path = options.output_weight_path # Select the proper backbone configuration if C.network == 'vgg16': from keras_frcnn import vgg as nn feature_dim = 512 elif C.network == 'resnet50': from keras_frcnn import resnet as nn feature_dim = 1024 elif C.network == 'vgg19': from keras_frcnn import vgg19 as nn feature_dim = 512 elif C.network == 'mobilenetv1': from keras_frcnn import mobilenetv1 as nn feature_dim = 512 elif C.network == 'mobilenetv2': from keras_frcnn import mobilenetv2 as nn feature_dim = 320 elif C.network == 'densenet': from keras_frcnn import densenet as nn feature_dim = 1024 else: print('Check network name in phase 1 config file.') raise ValueError # Load source and target data and creating the generators source_imgs, classes_count, _ = get_data(options.source_path) target_imgs, _, _ = get_data(options.target_path) class_mapping = C.class_mapping if 'bg' not in classes_count: classes_count['bg'] = 0 if 'bg' not in class_mapping: class_mapping['bg'] = len(class_mapping) inv_map = {v: k for k, v in class_mapping.items()} print('Source training images per class:') pprint.pprint(classes_count) print('Num source classes (including bg) = {}'.format(len(classes_count))) with open(options.output_config, 'wb') as config_f: pickle.dump(C, config_f) print('Config has been written to {}, and can be loaded when testing to ensure correct results'.format(options.output_config)) source_train_imgs = [s for s in source_imgs if s['imageset'] == 'train'] target_train_imgs = [s for s in target_imgs if s['imageset'] == 'train'] source_val_imgs = [s for s in source_imgs if s['imageset'] == 'test'] # Feeling pretty, might delete later random.shuffle(source_train_imgs) random.shuffle(source_val_imgs) random.shuffle(target_train_imgs) print('Num source train images {}'.format(len(source_train_imgs))) #print('Num source val images {}'.format(len(source_val_imgs))) print('Num target train images {}'.format(len(target_train_imgs))) data_gen_source_train = data_generators.get_anchor_gt(source_train_imgs, classes_count, C, nn.get_img_output_length, K.image_dim_ordering(), mode = 'train') #data_gen_source_val = data_generators.get_anchor_gt(source_val_imgs, classes_count, C, nn.get_img_output_length, K.image_dim_ordering(), mode = 'val') data_gen_target_train = data_generators.get_anchor_gt(target_train_imgs, classes_count, C, nn.get_img_output_length, K.image_dim_ordering(), mode = 'val') if K.image_dim_ordering() == 'th': input_shape_img = (3, None, None) input_shape_features = (feature_dim, None, None) else: input_shape_img = (None, None, 3) input_shape_features = (None, None, feature_dim) # Loading the phase 1 detector img_input = Input(shape = input_shape_img) roi_input = Input(shape = (C.num_rois, 4)) feature_map_input = Input(shape = input_shape_features) shared_layers = nn.nn_base(img_input, trainable = True) num_anchors = len(C.anchor_box_scales) * len(C.anchor_box_ratios) rpn_layers = nn.rpn(shared_layers, num_anchors) classifier = nn.classifier(feature_map_input, roi_input, C.num_rois, nb_classes = len(class_mapping), trainable = True) phase1_rpn = Model(img_input, rpn_layers) phase1_classifier = Model([feature_map_input, roi_input], classifier) phase1_rpn.load_weights(options.phase1_weights, by_name = True) phase1_classifier.load_weights(options.phase1_weights, by_name = True) phase1_rpn.compile(optimizer = 'sgd', loss = 'mse') phase1_classifier.compile(optimizer = 'sgd', loss = 'mse') print("Loaded phase 1 Faster R-CNN detector") # Loading the image classifier # load json and create model json_file = open(options.img_json_path, 'r') img_classifier = model_from_json(json_file.read()) json_file.close() # load weights into new model img_classifier.load_weights(options.img_weight_path) print("Loaded phase 2 image classifier") # Creating the phase 3 detector img_input = Input(shape = input_shape_img) roi_input = Input(shape = (None, 4)) shared_layers = nn.nn_base(img_input, trainable = True) num_anchors = len(C.anchor_box_scales) * len(C.anchor_box_ratios) rpn = nn.rpn(shared_layers, num_anchors) classifier = nn.classifier(shared_layers, roi_input, C.num_rois, nb_classes = len(classes_count), trainable = True) model_rpn = Model(img_input, rpn[:2]) model_classifier = Model([img_input, roi_input], classifier) # This is a model that holds both the RPN and the classifier, used to load/save weights for the models model_all = Model([img_input, roi_input], rpn[:2] + classifier) # Load pretrained Imagenet weights try: print('Loading weights from {}'.format(C.base_net_weights)) model_rpn.load_weights(C.base_net_weights, by_name = True) model_classifier.load_weights(C.base_net_weights, by_name = True) except: print('Could not load pretrained model weights. Weights can be found in the keras application folder \ https://github.com/fchollet/keras/tree/master/keras/applications') # Use this to resume from previous training. Specify the frcnn model to load if options.load_checkpoint is not None: print("Loading previous model from", options.load_checkpoint) model_rpn.load_weights(options.load_checkpoint, by_name = True) model_classifier.load_weights(options.load_checkpoint, by_name = True) else: print("No previous model checkpoint was loaded") # Optimizer setup clipnorm_val = 1e-5 lr_val = options.lr if options.optimizers == "SGD": optimizer = SGD(lr = lr_val, momentum = 0.9, clipnorm = clipnorm_val) optimizer_classifier = SGD(lr = lr_val, momentum = 0.9, clipnorm = clipnorm_val) else: optimizer = Adam(lr = lr_val, clipnorm = clipnorm_val) optimizer_classifier = Adam(lr = lr_val, clipnorm = clipnorm_val / 1) # Compile the model AFTER loading weights! model_rpn.compile(optimizer=optimizer, loss=[losses.rpn_loss_cls(num_anchors), losses.rpn_loss_regr(num_anchors)]) model_classifier.compile(optimizer=optimizer_classifier, loss=[losses.class_loss_cls, losses.class_loss_regr(len(classes_count)-1)], metrics={'dense_class_{}'.format(len(classes_count)): 'accuracy'}) model_all.compile(optimizer = 'sgd', loss = 'mae') epoch_length = int(options.epoch_length) num_epochs = int(options.num_epochs) iter_num = 0 losses = np.zeros((epoch_length, 5)) rpn_accuracy_rpn_monitor = [] rpn_accuracy_for_epoch = [] best_loss = np.Inf class_mapping_inv = {v: k for k, v in class_mapping.items()} # Hyperparameters of the robust F-RCNN eps = 0.05 alpha_init = float(options.alpha_init) alpha_final = float(options.alpha_final) constant_thresh = int(5 / 7 * epoch_length * num_epochs) iter_count = 0 print('Starting training') for epoch_num in range(num_epochs): start_time = time.time() progbar = generic_utils.Progbar(epoch_length, stateful_metrics = ["rpn_cls", "rpn_regr", "detector_cls", "detector_regr", "avg nb of objects"]) print('Epoch {} / {}'.format(epoch_num + 1, num_epochs)) # if epoch_num > 0 and epoch_num < 45: # clipnorm_val = np.array(clipnorm_val * 0.95) # lr_val = lr_val * 0.95 # K.set_value(model_rpn.optimizer.lr, lr_val) # K.set_value(model_classifier.optimizer.lr, lr_val) # K.set_value(model_rpn.optimizer.clipnorm, clipnorm_val) # K.set_value(model_classifier.optimizer.clipnorm, clipnorm_val) while True: try: if iter_count <= constant_thresh: alpha = alpha_init - iter_count * (alpha_init - alpha_final) / constant_thresh if iter_count == constant_thresh and options.load_checkpoint is None: lr_val = lr_val * 0.1 K.set_value(model_rpn.optimizer.lr, lr_val) K.set_value(model_classifier.optimizer.lr, lr_val) if len(rpn_accuracy_rpn_monitor) == epoch_length and C.verbose: mean_overlapping_bboxes = float(sum(rpn_accuracy_rpn_monitor))/len(rpn_accuracy_rpn_monitor) rpn_accuracy_rpn_monitor = [] print('\nAverage number of overlapping bounding boxes from RPN = {} for {} previous iterations'.format(mean_overlapping_bboxes, epoch_length)) if mean_overlapping_bboxes == 0: print('RPN is not producing bounding boxes that overlap the ground truth boxes. Check RPN settings or keep training.') # Get next batch samples X, Y, img_data = next(data_gen_source_train) #X, Y, img_data = next(data_gen_source_val) # Unaltered RPN training with source data loss_rpn = model_rpn.train_on_batch(X, Y) # NOTE: calc_iou converts from (x1,y1,x2,y2) to (x,y,w,h) format # Y1 is the output with the one-hot hard labels [0,0,0,0,1,0] # X2 is the 1 x R x 4 tensor with the ROI coordinates to be trained, they're already in (x1,y1,w,h) format X2, Y1, Y2, n_pos_samples_1 = rpn_to_class_inputs(X, img_data, C, mode = "source") loss_class_1 = model_classifier.train_on_batch([X, X2], [Y1, Y2]) # VERY IMPORTANT: This loop guarantees that there will always be one target step per source step while True: try: X_target, filepath, width, height, f = next(data_gen_target_train) img_data = {"filepath" : filepath, "width" : width, "height" : height, "bboxes" : []} img_data = get_target_img_data(X_target, img_data, alpha, options.hard_constraints, options.recompute_alpha) X2, Y1, Y2, n_pos_samples_2 = rpn_to_class_inputs(X_target, img_data, C, mode = "target", eps = eps) loss_class_2 = model_classifier.train_on_batch([X_target, X2], [Y1, Y2]) break except Exception as e: #print(traceback.format_exc()) #print('Exception: {} at line {}'.format(e, sys.exc_info()[2].tb_lineno)) continue losses[iter_num, 0] = loss_rpn[1] losses[iter_num, 1] = loss_rpn[2] losses[iter_num, 2] = loss_class_1[1] + loss_class_2[1] losses[iter_num, 3] = loss_class_1[2] + loss_class_2[2] losses[iter_num, 4] = np.mean([loss_class_1[3], loss_class_2[3]]) progbar.update(iter_num, [('rpn_cls', losses[iter_num, 0]), ('rpn_regr', losses[iter_num, 1]), ('detector_cls', losses[iter_num, 2]), ('detector_regr', losses[iter_num, 3]), ("avg nb of objects", np.mean([n_pos_samples_1, n_pos_samples_2]))]) iter_num += 1 iter_count += 1 if iter_num == epoch_length: loss_rpn_cls = np.mean(losses[:, 0]) loss_rpn_regr = np.mean(losses[:, 1]) loss_class_cls = np.mean(losses[:, 2]) loss_class_regr = np.mean(losses[:, 3]) class_acc = np.mean(losses[:, 4]).round(1) curr_loss = loss_rpn_cls + loss_rpn_regr + loss_class_cls + loss_class_regr mean_overlapping_bboxes = float(sum(rpn_accuracy_for_epoch)) / len(rpn_accuracy_for_epoch) rpn_accuracy_for_epoch = [] if C.verbose: print('\nMean number of bounding boxes from RPN overlapping ground truth boxes: {}'.format(mean_overlapping_bboxes)) print('Classifier accuracy for bounding boxes from RPN: {}'.format(class_acc)) print('Loss RPN classifier: {}'.format(loss_rpn_cls)) print('Loss RPN regression: {}'.format(loss_rpn_regr)) print('Loss Detector classifier: {}'.format(loss_class_cls)) print('Loss Detector regression: {}'.format(loss_class_regr)) print('Total Loss: {}'.format(curr_loss)) print('Elapsed time: {}'.format(time.time() - start_time)) iter_num = 0 if curr_loss < best_loss: if C.verbose: print('Total loss decreased from {} to {}, saving weights'.format(best_loss, curr_loss)) best_loss = curr_loss model_all.save_weights(C.model_path) break except Exception as e: #print(traceback.format_exc()) #print('Exception: {} at line {}'.format(e, sys.exc_info()[2].tb_lineno)) continue print('Training complete, exiting.')
the-stack_0_11960
# This file contains various useful constants for py3status GENERAL_DEFAULTS = { "color_bad": "#FF0000", "color_degraded": "#FFFF00", "color_good": "#00FF00", "color_separator": "#333333", "colors": False, "interval": 5, "output_format": "i3bar", } MAX_NESTING_LEVELS = 4 TIME_FORMAT = "%Y-%m-%d %H:%M:%S" TZTIME_FORMAT = "%Y-%m-%d %H:%M:%S %Z" TIME_MODULES = ["time", "tztime"] I3S_INSTANCE_MODULES = [ "battery", "cpu_temperature", "disk", "ethernet", "memory", "path_exists", "run_watch", "tztime", "volume", "wireless", ] I3S_SINGLE_NAMES = ["cpu_usage", "ddate", "ipv6", "load", "time"] I3S_ALLOWED_COLORS = ["color_bad", "color_good", "color_degraded"] # i3status modules that allow colors to be passed. # general section also allows colors so is included. I3S_COLOR_MODULES = ["general", "battery", "cpu_temperature", "disk", "load"] I3S_MODULE_NAMES = I3S_SINGLE_NAMES + I3S_INSTANCE_MODULES CONFIG_FILE_SPECIAL_SECTIONS = ["general", "py3status"] ERROR_CONFIG = """ general {colors = true interval = 60} order += "static_string py3status" order += "tztime local" order += "group error" static_string py3status {format = "py3status"} tztime local {format = "%c"} group error{ button_next = 1 button_prev = 0 fixed_width = False format = "{output}" static_string error_min {format = "CONFIG ERROR" color = "#FF0000"} static_string error {format = "$error" color = "#FF0000"} } """ COLOR_NAMES_EXCLUDED = ["good", "bad", "degraded", "separator", "threshold", "None"] COLOR_NAMES = { "aliceblue": "#F0F8FF", "antiquewhite": "#FAEBD7", "aqua": "#00FFFF", "aquamarine": "#7FFFD4", "azure": "#F0FFFF", "beige": "#F5F5DC", "bisque": "#FFE4C4", "black": "#000000", "blanchedalmond": "#FFEBCD", "blue": "#0000FF", "blueviolet": "#8A2BE2", "brown": "#A52A2A", "burlywood": "#DEB887", "cadetblue": "#5F9EA0", "chartreuse": "#7FFF00", "chocolate": "#D2691E", "coral": "#FF7F50", "cornflowerblue": "#6495ED", "cornsilk": "#FFF8DC", "crimson": "#DC143C", "cyan": "#00FFFF", "darkblue": "#00008B", "darkcyan": "#008B8B", "darkgoldenrod": "#B8860B", "darkgray": "#A9A9A9", "darkgrey": "#A9A9A9", "darkgreen": "#006400", "darkkhaki": "#BDB76B", "darkmagenta": "#8B008B", "darkolivegreen": "#556B2F", "darkorange": "#FF8C00", "darkorchid": "#9932CC", "darkred": "#8B0000", "darksalmon": "#E9967A", "darkseagreen": "#8FBC8F", "darkslateblue": "#483D8B", "darkslategray": "#2F4F4F", "darkslategrey": "#2F4F4F", "darkturquoise": "#00CED1", "darkviolet": "#9400D3", "deeppink": "#FF1493", "deepskyblue": "#00BFFF", "dimgray": "#696969", "dimgrey": "#696969", "dodgerblue": "#1E90FF", "firebrick": "#B22222", "floralwhite": "#FFFAF0", "forestgreen": "#228B22", "fuchsia": "#FF00FF", "gainsboro": "#DCDCDC", "ghostwhite": "#F8F8FF", "gold": "#FFD700", "goldenrod": "#DAA520", "gray": "#808080", "grey": "#808080", "green": "#008000", "greenyellow": "#ADFF2F", "honeydew": "#F0FFF0", "hotpink": "#FF69B4", "indianred": "#CD5C5C", "indigo": "#4B0082", "ivory": "#FFFFF0", "khaki": "#F0E68C", "lavender": "#E6E6FA", "lavenderblush": "#FFF0F5", "lawngreen": "#7CFC00", "lemonchiffon": "#FFFACD", "lightblue": "#ADD8E6", "lightcoral": "#F08080", "lightcyan": "#E0FFFF", "lightgoldenrodyellow": "#FAFAD2", "lightgray": "#D3D3D3", "lightgrey": "#D3D3D3", "lightgreen": "#90EE90", "lightpink": "#FFB6C1", "lightsalmon": "#FFA07A", "lightseagreen": "#20B2AA", "lightskyblue": "#87CEFA", "lightslategray": "#778899", "lightslategrey": "#778899", "lightsteelblue": "#B0C4DE", "lightyellow": "#FFFFE0", "lime": "#00FF00", "limegreen": "#32CD32", "linen": "#FAF0E6", "magenta": "#FF00FF", "maroon": "#800000", "mediumaquamarine": "#66CDAA", "mediumblue": "#0000CD", "mediumorchid": "#BA55D3", "mediumpurple": "#9370DB", "mediumseagreen": "#3CB371", "mediumslateblue": "#7B68EE", "mediumspringgreen": "#00FA9A", "mediumturquoise": "#48D1CC", "mediumvioletred": "#C71585", "midnightblue": "#191970", "mintcream": "#F5FFFA", "mistyrose": "#FFE4E1", "moccasin": "#FFE4B5", "navajowhite": "#FFDEAD", "navy": "#000080", "oldlace": "#FDF5E6", "olive": "#808000", "olivedrab": "#6B8E23", "orange": "#FFA500", "orangered": "#FF4500", "orchid": "#DA70D6", "palegoldenrod": "#EEE8AA", "palegreen": "#98FB98", "paleturquoise": "#AFEEEE", "palevioletred": "#DB7093", "papayawhip": "#FFEFD5", "peachpuff": "#FFDAB9", "peru": "#CD853F", "pink": "#FFC0CB", "plum": "#DDA0DD", "powderblue": "#B0E0E6", "purple": "#800080", "rebeccapurple": "#663399", "red": "#FF0000", "rosybrown": "#BC8F8F", "royalblue": "#4169E1", "saddlebrown": "#8B4513", "salmon": "#FA8072", "sandybrown": "#F4A460", "seagreen": "#2E8B57", "seashell": "#FFF5EE", "sienna": "#A0522D", "silver": "#C0C0C0", "skyblue": "#87CEEB", "slateblue": "#6A5ACD", "slategray": "#708090", "slategrey": "#708090", "snow": "#FFFAFA", "springgreen": "#00FF7F", "steelblue": "#4682B4", "tan": "#D2B48C", "teal": "#008080", "thistle": "#D8BFD8", "tomato": "#FF6347", "turquoise": "#40E0D0", "violet": "#EE82EE", "wheat": "#F5DEB3", "white": "#FFFFFF", "whitesmoke": "#F5F5F5", "yellow": "#FFFF00", "yellowgreen": "#9ACD32", } ON_TRIGGER_ACTIONS = ["refresh", "refresh_and_freeze"] POSITIONS = ["left", "center", "right"] RETIRED_MODULES = { "nvidia_temp": { "new": ["nvidia_smi"], "msg": "Module {old} has been replaced with a module {new}.", }, "scratchpad_async": { "new": ["scratchpad"], "msg": "Module {old} has been replaced with a consolidated module {new}.", }, "scratchpad_counter": { "new": ["scratchpad"], "msg": "Module {old} has been replaced with a consolidated module {new}.", }, "window_title": { "new": ["window"], "msg": "Module {old} has been replaced with a consolidated module {new}.", }, "window_title_async": { "new": ["window"], "msg": "Module {old} has been replaced with a consolidated module {new}.", }, "weather_yahoo": { "new": ["weather_owm"], "msg": "Module {old} is no longer available due to retired Yahoo Weather APIs and new Oath requirements. You can try a different module {new}.", }, "xkb_layouts": { "new": ["xkb_input"], "msg": "Module {old} has been replaced with a module {new} to support sway too.", }, } MARKUP_LANGUAGES = ["pango", "none"]
the-stack_0_11963
import os import numpy as np import sys BASE_DIR = os.path.dirname(os.path.abspath(__file__)) ROOT_DIR = os.path.dirname(BASE_DIR) sys.path.append(BASE_DIR) sys.path.append(os.path.join(ROOT_DIR, 'utils')) import data_prep_util import indoor3d_util # Constants data_dir = os.path.join(ROOT_DIR, 'data') indoor3d_data_dir = os.path.join(data_dir, 'stanford_indoor3d') NUM_POINT = 4096 H5_BATCH_SIZE = 1000 data_dim = [NUM_POINT, 9] label_dim = [NUM_POINT] data_dtype = 'float32' label_dtype = 'uint8' # Set paths filelist = os.path.join(BASE_DIR, 'meta/all_data_label.txt') data_label_files = [os.path.join(indoor3d_data_dir, line.rstrip()) for line in open(filelist)] output_dir = os.path.join(data_dir, 'indoor3d_sem_seg_hdf5_data') if not os.path.exists(output_dir): os.mkdir(output_dir) output_filename_prefix = os.path.join(output_dir, 'ply_data_all') output_room_filelist = os.path.join(output_dir, 'room_filelist.txt') fout_room = open(output_room_filelist, 'w') # -------------------------------------- # ----- BATCH WRITE TO HDF5 ----- # -------------------------------------- batch_data_dim = [H5_BATCH_SIZE] + data_dim batch_label_dim = [H5_BATCH_SIZE] + label_dim h5_batch_data = np.zeros(batch_data_dim, dtype=np.float32) h5_batch_label = np.zeros(batch_label_dim, dtype=np.uint8) buffer_size = 0 # state: record how many samples are currently in buffer h5_index = 0 # state: the next h5 file to save def insert_batch(data, label, last_batch=False): global h5_batch_data, h5_batch_label global buffer_size, h5_index data_size = data.shape[0] # If there is enough space, just insert if buffer_size + data_size <= h5_batch_data.shape[0]: h5_batch_data[buffer_size:buffer_size + data_size, ...] = data h5_batch_label[buffer_size:buffer_size + data_size] = label buffer_size += data_size else: # not enough space capacity = h5_batch_data.shape[0] - buffer_size assert (capacity >= 0) if capacity > 0: h5_batch_data[buffer_size:buffer_size + capacity, ...] = data[0:capacity, ...] h5_batch_label[buffer_size:buffer_size + capacity, ...] = label[0:capacity, ...] # Save batch data and label to h5 file, reset buffer_size h5_filename = output_filename_prefix + '_' + str(h5_index) + '.h5' data_prep_util.save_h5(h5_filename, h5_batch_data, h5_batch_label, data_dtype, label_dtype) print('Stored {0} with size {1}'.format(h5_filename, h5_batch_data.shape[0])) h5_index += 1 buffer_size = 0 # recursive call insert_batch(data[capacity:, ...], label[capacity:, ...], last_batch) if last_batch and buffer_size > 0: h5_filename = output_filename_prefix + '_' + str(h5_index) + '.h5' data_prep_util.save_h5(h5_filename, h5_batch_data[0:buffer_size, ...], h5_batch_label[0:buffer_size, ...], data_dtype, label_dtype) print('Stored {0} with size {1}'.format(h5_filename, buffer_size)) h5_index += 1 buffer_size = 0 return sample_cnt = 0 for i, data_label_filename in enumerate(data_label_files): print(data_label_filename) data, label = indoor3d_util.room2blocks_wrapper_normalized(data_label_filename, NUM_POINT, block_size=1.0, stride=0.5, random_sample=False, sample_num=None) print('{0}, {1}'.format(data.shape, label.shape)) for _ in range(data.shape[0]): fout_room.write(os.path.basename(data_label_filename)[0:-4] + '\n') sample_cnt += data.shape[0] insert_batch(data, label, i == len(data_label_files) - 1) fout_room.close() print("Total samples: {0}".format(sample_cnt))
the-stack_0_11964
import base64 import pytest from h.models.auth_client import GrantType class TestUpdateGroup: def test_it_returns_http_200_with_valid_payload_and_user_token( self, app, token_auth_header, first_party_group ): group = {"name": "Rename My Group"} res = app.patch_json( "/api/groups/{id}".format(id=first_party_group.pubid), group, headers=token_auth_header, ) assert res.status_code == 200 assert res.json_body["name"] == "Rename My Group" assert res.json_body["groupid"] is None def test_it_does_not_update_group_if_empty_payload_and_user_token( self, app, token_auth_header, first_party_group ): payload = {} res = app.patch_json( "/api/groups/{id}".format(id=first_party_group.pubid), payload, headers=token_auth_header, ) assert res.status_code == 200 assert res.json_body["name"] == "My First Group" assert res.json_body["groupid"] is None def test_it_ignores_non_whitelisted_fields_in_payload_and_user_token( self, app, token_auth_header, first_party_group ): group = { "id": "fbdzzz", "name": "My Group", "organization": "foobar", "joinable_by": "whoever", } res = app.patch_json( "/api/groups/{id}".format(id=first_party_group.pubid), group, headers=token_auth_header, ) assert res.status_code == 200 assert res.json_body["id"] != group["id"] assert res.json_body["organization"] is None def test_it_returns_http_400_with_invalid_payload_and_user_token( self, app, token_auth_header, first_party_group ): group = { "name": "Oooopoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo" } res = app.patch_json( "/api/groups/{id}".format(id=first_party_group.pubid), group, headers=token_auth_header, expect_errors=True, ) assert res.status_code == 400 def test_it_returns_http_400_if_groupid_set_on_default_authority_and_user_token( self, app, token_auth_header, first_party_group ): group = {"groupid": "3434kjkjk"} res = app.patch_json( "/api/groups/{id}".format(id=first_party_group.pubid), group, headers=token_auth_header, expect_errors=True, ) assert res.status_code == 400 def test_it_returns_http_404_if_no_authenticated_user(self, app, first_party_group): group = {"name": "My Group"} res = app.patch_json( "/api/groups/{id}".format(id=first_party_group.pubid), group, expect_errors=True, ) assert res.status_code == 404 def test_it_returns_http_404_if_token_user_unauthorized( self, app, token_auth_header, factories, db_session ): # Not created by user represented by token_auth_header group = factories.Group() db_session.commit() group_payload = {"name": "My Group"} res = app.patch_json( "/api/groups/{id}".format(id=group.pubid), group_payload, headers=token_auth_header, expect_errors=True, ) assert res.status_code == 404 def test_it_allows_auth_client_with_valid_forwarded_user( self, app, auth_client_header, third_party_user, factories, db_session ): group = factories.Group( creator=third_party_user, authority=third_party_user.authority ) db_session.commit() headers = auth_client_header headers["X-Forwarded-User"] = third_party_user.userid group_payload = {"name": "My Group"} path = "/api/groups/{id}".format(id=group.pubid) res = app.patch_json(path, group_payload, headers=headers) assert res.status_code == 200 assert res.json_body["name"] == "My Group" def test_it_allows_auth_client_with_matching_authority( self, app, auth_client_header, third_party_user, factories, db_session ): group = factories.Group( creator=third_party_user, authority=third_party_user.authority ) db_session.commit() group_payload = {"name": "My Group"} path = "/api/groups/{id}".format(id=group.pubid) res = app.patch_json(path, group_payload, headers=auth_client_header) assert res.status_code == 200 assert res.json_body["name"] == "My Group" def test_it_does_not_allow_auth_client_with_mismatched_authority( self, app, auth_client_header, factories, db_session ): group = factories.Group(authority="rando.biz") db_session.commit() group_payload = {"name": "My Group"} path = "/api/groups/{id}".format(id=group.pubid) res = app.patch_json( path, group_payload, headers=auth_client_header, expect_errors=True ) assert res.status_code == 404 def test_it_allows_groupid_from_auth_client_with_forwarded_user( self, app, auth_client_header, third_party_user, factories, db_session ): group = factories.Group( creator=third_party_user, authority=third_party_user.authority ) db_session.commit() headers = auth_client_header headers["X-Forwarded-User"] = third_party_user.userid group_payload = { "name": "My Group", "groupid": "group:[email protected]", } path = "/api/groups/{id}".format(id=group.pubid) res = app.patch_json(path, group_payload, headers=headers) assert res.status_code == 200 assert "groupid" in res.json_body assert res.json_body["groupid"] == "group:[email protected]" def test_it_returns_HTTP_Conflict_if_groupid_is_duplicate( self, app, auth_client_header, third_party_user, factories, db_session ): group1 = factories.Group( creator=third_party_user, authority=third_party_user.authority, groupid="group:[email protected]", ) group2 = factories.Group( creator=third_party_user, authority=third_party_user.authority, groupid="group:[email protected]", ) db_session.commit() headers = auth_client_header headers["X-Forwarded-User"] = third_party_user.userid group_payload = {"groupid": "group:[email protected]"} # Attempting to set group2's `groupid` to one already taken by group1 path = "/api/groups/{id}".format(id=group2.pubid) res = app.patch_json(path, group_payload, headers=headers, expect_errors=True) assert group1.groupid in res.json_body["reason"] assert res.status_code == 409 @pytest.fixture def first_party_user(db_session, factories): user = factories.User() db_session.commit() return user @pytest.fixture def first_party_group(db_session, factories, first_party_user): group = factories.Group( name="My First Group", description="Original description", creator=first_party_user, authority=first_party_user.authority, ) db_session.commit() return group @pytest.fixture def user_with_token(db_session, factories, first_party_user): token = factories.DeveloperToken(userid=first_party_user.userid) db_session.add(token) db_session.commit() return (first_party_user, token) @pytest.fixture def token_auth_header(user_with_token): user, token = user_with_token return {"Authorization": "Bearer {}".format(token.value)} @pytest.fixture def third_party_user(factories, db_session): user = factories.User(authority="thirdparty.com") db_session.commit() return user @pytest.fixture def auth_client(db_session, factories): auth_client = factories.ConfidentialAuthClient( authority="thirdparty.com", grant_type=GrantType.client_credentials ) db_session.commit() return auth_client @pytest.fixture def auth_client_header(auth_client): user_pass = "{client_id}:{secret}".format( client_id=auth_client.id, secret=auth_client.secret ) encoded = base64.standard_b64encode(user_pass.encode("utf-8")) return {"Authorization": "Basic {creds}".format(creds=encoded.decode("ascii"))}
the-stack_0_11966
from typing import Optional from typing import Union import pytest from _pytest.config import Config from _pytest.config import ExitCode from _pytest.config.argparsing import Parser from _pytest.fixtures import FixtureDef from _pytest.fixtures import SubRequest def pytest_addoption(parser: Parser) -> None: group = parser.getgroup("debugconfig") group.addoption( "--setupplan", "--setup-plan", action="store_true", help="Show what fixtures and tests would be executed but " "don't execute anything", ) @pytest.hookimpl(tryfirst=True) def pytest_fixture_setup( fixturedef: FixtureDef[object], request: SubRequest ) -> Optional[object]: # Will return a dummy fixture if the setuponly option is provided. if request.config.option.setupplan: my_cache_key = fixturedef.cache_key(request) fixturedef.cached_result = (None, my_cache_key, None) return fixturedef.cached_result return None @pytest.hookimpl(tryfirst=True) def pytest_cmdline_main(config: Config) -> Optional[Union[int, ExitCode]]: if config.option.setupplan: config.option.setuponly = True config.option.setupshow = True return None
the-stack_0_11967
"""HTML slide show Exporter class""" #----------------------------------------------------------------------------- # Copyright (c) 2013, the IPython Development Team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- from IPython.utils.traitlets import Unicode from IPython.nbconvert import preprocessors from IPython.config import Config from .html import HTMLExporter #----------------------------------------------------------------------------- # Classes #----------------------------------------------------------------------------- class SlidesExporter(HTMLExporter): """Exports HTML slides with reveal.js""" file_extension = Unicode( 'slides.html', config=True, help="Extension of the file that should be written to disk" ) output_mimetype = 'text/html' default_template = Unicode('reveal', config=True, help="""Template of the data format to use. I.E. 'reveal'""") @property def default_config(self): c = Config({ 'RevealHelpPreprocessor': { 'enabled': True, }, }) c.merge(super(SlidesExporter,self).default_config) return c
the-stack_0_11970
import os from collections import OrderedDict from itertools import chain import torch from torch import nn as nn from models.alexnet import Id from models.model_utils import ReverseLayerF from torch.autograd import Variable import numpy.random as npr import numpy as np import torch.nn.functional as F import random class AlexNetCaffe(nn.Module): def __init__(self, jigsaw_classes=1000, n_classes=100, domains=3, dropout=True): super(AlexNetCaffe, self).__init__() print("Using Caffe AlexNet") self.features = nn.Sequential(OrderedDict([ ("conv1", nn.Conv2d(3, 96, kernel_size=11, stride=4)), ("relu1", nn.ReLU(inplace=True)), ("pool1", nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True)), ("norm1", nn.LocalResponseNorm(5, 1.e-4, 0.75)), ("conv2", nn.Conv2d(96, 256, kernel_size=5, padding=2, groups=2)), ("relu2", nn.ReLU(inplace=True)), ("pool2", nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True)), ("norm2", nn.LocalResponseNorm(5, 1.e-4, 0.75)), ("conv3", nn.Conv2d(256, 384, kernel_size=3, padding=1)), ("relu3", nn.ReLU(inplace=True)), ("conv4", nn.Conv2d(384, 384, kernel_size=3, padding=1, groups=2)), ("relu4", nn.ReLU(inplace=True)), ("conv5", nn.Conv2d(384, 256, kernel_size=3, padding=1, groups=2)), ("relu5", nn.ReLU(inplace=True)), ("pool5", nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True)), ])) self.classifier = nn.Sequential(OrderedDict([ ("fc6", nn.Linear(256 * 6 * 6, 4096)), ("relu6", nn.ReLU(inplace=True)), ("drop6", nn.Dropout() if dropout else Id()), ("fc7", nn.Linear(4096, 4096)), ("relu7", nn.ReLU(inplace=True)), ("drop7", nn.Dropout() if dropout else Id())])) self.jigsaw_classifier = nn.Linear(4096, jigsaw_classes) self.class_classifier = nn.Linear(4096, n_classes) # self.domain_classifier = nn.Sequential( # nn.Linear(256 * 6 * 6, 1024), # nn.ReLU(), # nn.Dropout(), # nn.Linear(1024, 1024), # nn.ReLU(), # nn.Dropout(), # nn.Linear(1024, domains)) def get_params(self, base_lr): return [{"params": self.features.parameters(), "lr": 0.}, {"params": chain(self.classifier.parameters(), self.jigsaw_classifier.parameters() , self.class_classifier.parameters()#, self.domain_classifier.parameters() ), "lr": base_lr}] def is_patch_based(self): return False def forward(self, x, lambda_val=0): x = self.features(x*57.6) #57.6 is the magic number needed to bring torch data back to the range of caffe data, based on used std x = x.view(x.size(0), -1) #d = ReverseLayerF.apply(x, lambda_val) x = self.classifier(x) return self.jigsaw_classifier(x), self.class_classifier(x)#, self.domain_classifier(d) class Flatten(nn.Module): def forward(self, x): return x.view(x.size(0), -1) class AlexNetCaffeAvgPool(AlexNetCaffe): def __init__(self, jigsaw_classes=1000, n_classes=100): super().__init__() print("Global Average Pool variant") self.features = nn.Sequential(OrderedDict([ ("conv1", nn.Conv2d(3, 96, kernel_size=11, stride=4)), ("relu1", nn.ReLU(inplace=True)), ("pool1", nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True)), ("norm1", nn.LocalResponseNorm(5, 1.e-4, 0.75)), ("conv2", nn.Conv2d(96, 256, kernel_size=5, padding=2, groups=2)), ("relu2", nn.ReLU(inplace=True)), ("pool2", nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True)), ("norm2", nn.LocalResponseNorm(5, 1.e-4, 0.75)), ("conv3", nn.Conv2d(256, 384, kernel_size=3, padding=1)), ("relu3", nn.ReLU(inplace=True)), ("conv4", nn.Conv2d(384, 384, kernel_size=3, padding=1, groups=2)), ("relu4", nn.ReLU(inplace=True)), ("conv5", nn.Conv2d(384, 256, kernel_size=3, padding=1, groups=2)), # ("relu5", nn.ReLU(inplace=True)), # ("pool5", nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True)), ])) self.classifier = nn.Sequential( nn.BatchNorm2d(256), nn.ReLU(inplace=True), nn.Conv2d(256, 512, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(512), nn.ReLU(inplace=True), nn.Conv2d(512, 1024, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(1024), nn.ReLU(inplace=True)) self.jigsaw_classifier = nn.Sequential( nn.Conv2d(1024, 128, kernel_size=3, stride=2, bias=False), nn.BatchNorm2d(128), nn.ReLU(inplace=True), Flatten(), nn.Linear(128 * 6 * 6, jigsaw_classes) ) self.class_classifier = nn.Sequential( nn.Conv2d(1024, n_classes, kernel_size=3, padding=1, bias=False), nn.AvgPool2d(13), Flatten(), # nn.Linear(1024, n_classes) ) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') nn.init.constant_(m.bias, 0.) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) class AlexNetCaffeFC7(AlexNetCaffe): def __init__(self, jigsaw_classes=1000, n_classes=100, dropout=True): super(AlexNetCaffeFC7, self).__init__() print("FC7 branching variant") self.features = nn.Sequential(OrderedDict([ ("conv1", nn.Conv2d(3, 96, kernel_size=11, stride=4)), ("relu1", nn.ReLU(inplace=True)), ("pool1", nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True)), ("norm1", nn.LocalResponseNorm(5, 1.e-4, 0.75)), ("conv2", nn.Conv2d(96, 256, kernel_size=5, padding=2, groups=2)), ("relu2", nn.ReLU(inplace=True)), ("pool2", nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True)), ("norm2", nn.LocalResponseNorm(5, 1.e-4, 0.75)), ("conv3", nn.Conv2d(256, 384, kernel_size=3, padding=1)), ("relu3", nn.ReLU(inplace=True)), ("conv4", nn.Conv2d(384, 384, kernel_size=3, padding=1, groups=2)), ("relu4", nn.ReLU(inplace=True)), ("conv5", nn.Conv2d(384, 256, kernel_size=3, padding=1, groups=2)), ("relu5", nn.ReLU(inplace=True)), ("pool5", nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True)), ])) self.classifier = nn.Sequential(OrderedDict([ ("fc6", nn.Linear(256 * 6 * 6, 4096)), ("relu6", nn.ReLU(inplace=True)), ("drop6", nn.Dropout() if dropout else Id())])) self.jigsaw_classifier = nn.Sequential(OrderedDict([ ("fc7", nn.Linear(4096, 4096)), ("relu7", nn.ReLU(inplace=True)), ("drop7", nn.Dropout()), ("fc8", nn.Linear(4096, jigsaw_classes))])) self.class_classifier = nn.Sequential(OrderedDict([ ("fc7", nn.Linear(4096, 4096)), ("relu7", nn.ReLU(inplace=True)), ("drop7", nn.Dropout()), ("fc8", nn.Linear(4096, n_classes))])) def caffenet(jigsaw_classes, classes): model = AlexNetCaffe(jigsaw_classes, classes) for m in model.modules(): if isinstance(m, nn.Linear): nn.init.xavier_uniform_(m.weight, .1) nn.init.constant_(m.bias, 0.) state_dict = torch.load(os.path.join(os.path.dirname(__file__), "pretrained/alexnet_caffe.pth.tar")) del state_dict["classifier.fc8.weight"] del state_dict["classifier.fc8.bias"] model.load_state_dict(state_dict, strict=False) return model def caffenet_gap(jigsaw_classes, classes): model = AlexNetCaffe(jigsaw_classes, classes) state_dict = torch.load(os.path.join(os.path.dirname(__file__), "pretrained/alexnet_caffe.pth.tar")) del state_dict["classifier.fc6.weight"] del state_dict["classifier.fc6.bias"] del state_dict["classifier.fc7.weight"] del state_dict["classifier.fc7.bias"] del state_dict["classifier.fc8.weight"] del state_dict["classifier.fc8.bias"] model.load_state_dict(state_dict, strict=False) # weights are initialized in the constructor return model def caffenet_fc7(jigsaw_classes, classes): model = AlexNetCaffeFC7(jigsaw_classes, classes) state_dict = torch.load("models/pretrained/alexnet_caffe.pth.tar") state_dict["jigsaw_classifier.fc7.weight"] = state_dict["classifier.fc7.weight"] state_dict["jigsaw_classifier.fc7.bias"] = state_dict["classifier.fc7.bias"] state_dict["class_classifier.fc7.weight"] = state_dict["classifier.fc7.weight"] state_dict["class_classifier.fc7.bias"] = state_dict["classifier.fc7.bias"] del state_dict["classifier.fc8.weight"] del state_dict["classifier.fc8.bias"] del state_dict["classifier.fc7.weight"] del state_dict["classifier.fc7.bias"] model.load_state_dict(state_dict, strict=False) nn.init.xavier_uniform_(model.jigsaw_classifier.fc8.weight, .1) nn.init.constant_(model.jigsaw_classifier.fc8.bias, 0.) nn.init.xavier_uniform_(model.class_classifier.fc8.weight, .1) nn.init.constant_(model.class_classifier.fc8.bias, 0.) return model class AlexNetCaffeRSC(nn.Module): def __init__(self, n_classes=100, percent=6, dropout=True): super(AlexNetCaffeRSC, self).__init__() print("Using Caffe AlexNet") self.percent = percent print("Using Total Percent Sample: 1 / {}".format(self.percent)) self.features = nn.Sequential(OrderedDict([ ("conv1", nn.Conv2d(3, 96, kernel_size=11, stride=4)), ("relu1", nn.ReLU(inplace=True)), ("pool1", nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True)), ("norm1", nn.LocalResponseNorm(5, 1.e-4, 0.75)), ("conv2", nn.Conv2d(96, 256, kernel_size=5, padding=2, groups=2)), ("relu2", nn.ReLU(inplace=True)), ("pool2", nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True)), ("norm2", nn.LocalResponseNorm(5, 1.e-4, 0.75)), ("conv3", nn.Conv2d(256, 384, kernel_size=3, padding=1)), ("relu3", nn.ReLU(inplace=True)), ("conv4", nn.Conv2d(384, 384, kernel_size=3, padding=1, groups=2)), ("relu4", nn.ReLU(inplace=True)), ("conv5", nn.Conv2d(384, 256, kernel_size=3, padding=1, groups=2)), ("relu5", nn.ReLU(inplace=True)), ("pool5", nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True)), ])) self.classifier = nn.Sequential(OrderedDict([ ("fc6", nn.Linear(256 * 6 * 6, 4096)), ("relu6", nn.ReLU(inplace=True)), ("drop6", nn.Dropout() if dropout else Id()), ("fc7", nn.Linear(4096, 4096)), ("relu7", nn.ReLU(inplace=True)), ("drop7", nn.Dropout() if dropout else Id())])) # self.jigsaw_classifier = nn.Linear(4096, jigsaw_classes) self.class_classifier = nn.Linear(4096, n_classes) # self.domain_classifier = nn.Sequential( # nn.Linear(256 * 6 * 6, 1024), # nn.ReLU(), # nn.Dropout(), # nn.Linear(1024, 1024), # nn.ReLU(), # nn.Dropout(), # nn.Linear(1024, domains)) # def get_params(self, base_lr): # return [{"params": self.features.parameters(), "lr": 0.}, # {"params": chain(self.classifier.parameters() # , self.class_classifier.parameters()#, self.domain_classifier.parameters() # ), "lr": base_lr}] def is_patch_based(self): return False def forward(self, x, gt=None, flag=None): # x = self.features(x*57.6) #57.6 is the magic number needed to bring torch data back to the range of caffe data, based on used std # x = x.view(x.size(0), -1) # #d = ReverseLayerF.apply(x, lambda_val) # x = self.classifier(x) # return self.class_classifier(x)#, self.domain_classifier(d) # ------------------------------------------------------------------- x = self.features(x * 57.6) # x = self.features.conv1(x * 57.6) # x = self.features.relu1(x) # x = self.features.pool1(x) # x = self.features.norm1(x) # x = self.features.conv2(x) # x = self.features.relu2(x) # x = self.features.pool2(x) # x = self.features.norm2(x) # x = self.features.conv3(x) # x = self.features.relu3(x) # x = self.features.conv4(x) # x = self.features.relu4(x) # x = self.features.conv5(x) # x = self.features.relu5(x) # x = self.features.pool5(x) if flag: self.eval() x_new = x.clone().detach() # x_new = self.features.conv4(x_new) # x_new = self.features.relu4(x_new) # x_new = self.features.conv5(x_new) # x_new = self.features.relu5(x_new) # x_new = self.features.pool5(x_new) x_new = Variable(x_new.data, requires_grad=True) x_new_view = x_new.view(x_new.size(0), -1) x_new_view = self.classifier(x_new_view) output = self.class_classifier(x_new_view) class_num = output.shape[1] index = gt num_rois = x_new.shape[0] num_channel = x_new.shape[1] H = x_new.shape[2] HW = x_new.shape[2] * x_new.shape[3] one_hot = torch.zeros((1), dtype=torch.float32).cuda() one_hot = Variable(one_hot, requires_grad=False) sp_i = torch.ones([2, num_rois]).long() sp_i[0, :] = torch.arange(num_rois) sp_i[1, :] = index sp_v = torch.ones([num_rois]) one_hot_sparse = torch.sparse.FloatTensor(sp_i, sp_v, torch.Size([num_rois, class_num])).to_dense().cuda() one_hot_sparse = Variable(one_hot_sparse, requires_grad=False) # [256, 21] one_hot = torch.sum(output * one_hot_sparse) self.zero_grad() one_hot.backward() grads_val = x_new.grad.clone().detach() grad_channel_mean = torch.mean(grads_val.view(num_rois, num_channel, -1), dim=2) channel_mean = grad_channel_mean spatial_mean = torch.mean(grads_val, dim=1) spatial_mean = spatial_mean.view(num_rois, H, H).view(num_rois, HW) self.zero_grad() choose_one = random.randint(0, 9) if choose_one <= 4: # ---------------------------- spatial ----------------------- spatial_drop_num = int(HW * 1 / 3.0) th_mask_value = torch.sort(spatial_mean, dim=1, descending=True)[0][:, spatial_drop_num] th_mask_value = th_mask_value.view(num_rois, 1).expand(num_rois, HW) mask_all_cuda = torch.where(spatial_mean >= th_mask_value, torch.zeros(spatial_mean.shape).cuda(), torch.ones(spatial_mean.shape).cuda()) mask_all = mask_all_cuda.detach().cpu().numpy() for q in range(num_rois): mask_all_temp = np.ones((HW), dtype=np.float32) zero_index = np.where(mask_all[q, :] == 0)[0] num_zero_index = zero_index.size if num_zero_index >= spatial_drop_num: dumy_index = npr.choice(zero_index, size=spatial_drop_num, replace=False) else: zero_index = np.arange(HW) dumy_index = npr.choice(zero_index, size=spatial_drop_num, replace=False) mask_all_temp[dumy_index] = 0 mask_all[q, :] = mask_all_temp mask_all = torch.from_numpy(mask_all.reshape(num_rois, 7, 7)).cuda() mask_all = mask_all.view(num_rois, 1, 7, 7) else: # -------------------------- channel ---------------------------- mask_all = torch.zeros((num_rois, num_channel, 1, 1)).cuda() vector_thresh_percent = int(num_channel * 1 / 3.0) vector_thresh_value = torch.sort(channel_mean, dim=1, descending=True)[0][:, vector_thresh_percent] vector_thresh_value = vector_thresh_value.view(num_rois, 1).expand(num_rois, num_channel) vector = torch.where(channel_mean > vector_thresh_value, torch.zeros(channel_mean.shape).cuda(), torch.ones(channel_mean.shape).cuda()) vector_all = vector.detach().cpu().numpy() channel_drop_num = int(num_channel * 1 / 3.2) vector_all_new = np.ones((num_rois, num_channel), dtype=np.float32) for q in range(num_rois): vector_all_temp = np.ones((num_channel), dtype=np.float32) zero_index = np.where(vector_all[q, :] == 0)[0] num_zero_index = zero_index.size if num_zero_index >= channel_drop_num: dumy_index = npr.choice(zero_index, size=channel_drop_num, replace=False) else: zero_index = np.arange(num_channel) dumy_index = npr.choice(zero_index, size=channel_drop_num, replace=False) vector_all_temp[dumy_index] = 0 vector_all_new[q, :] = vector_all_temp vector = torch.from_numpy(vector_all_new).cuda() for m in range(num_rois): index_channel = vector[m, :].nonzero()[:, 0].long() index_channel = index_channel.detach().cpu().numpy().tolist() mask_all[m, index_channel, :, :] = 1 # ----------------------------------- batch ---------------------------------------- cls_prob_before = F.softmax(output, dim=1) x_new_view_after = x_new * mask_all x_new_view_after = x_new_view_after.view(x_new_view_after.size(0), -1) x_new_view_after = self.classifier(x_new_view_after) x_new_view_after = self.class_classifier(x_new_view_after) cls_prob_after = F.softmax(x_new_view_after, dim=1) sp_i = torch.ones([2, num_rois]).long() sp_i[0, :] = torch.arange(num_rois) sp_i[1, :] = index sp_v = torch.ones([num_rois]) one_hot_sparse = torch.sparse.FloatTensor(sp_i, sp_v, torch.Size([num_rois, class_num])).to_dense().cuda() before_vector = torch.sum(one_hot_sparse * cls_prob_before, dim=1) after_vector = torch.sum(one_hot_sparse * cls_prob_after, dim=1) change_vector = before_vector - after_vector - 0.0001 change_vector = torch.where(change_vector > 0, change_vector, torch.zeros(change_vector.shape).cuda()) th_fg_value = torch.sort(change_vector, dim=0, descending=True)[0][int(round(float(num_rois) * 1 / 3.0))] drop_index_fg = change_vector.gt(th_fg_value) ignore_index_fg = 1 - drop_index_fg not_01_ignore_index_fg = ignore_index_fg.nonzero()[:, 0] mask_all[not_01_ignore_index_fg.long(), :] = 1 self.train() mask_all = Variable(mask_all, requires_grad=True) x = x * mask_all x = x.view(x.size(0), -1) x = self.classifier(x) return self.class_classifier(x) # , self.domain_classifier(d) def caffenetRSC(classes, percent): model = AlexNetCaffeRSC(classes, percent) for m in model.modules(): if isinstance(m, nn.Linear): nn.init.xavier_uniform_(m.weight, .1) nn.init.constant_(m.bias, 0.) state_dict = torch.load(os.path.join(os.path.dirname(__file__), "pretrained/alexnet_caffe.pth.tar")) del state_dict["classifier.fc8.weight"] del state_dict["classifier.fc8.bias"] model.load_state_dict(state_dict, strict=False) return model
the-stack_0_11972
# -*- coding: utf-8 -*- # # Copyright (C) 2019 Chris Caron <[email protected]> # All rights reserved. # # This code is licensed under the MIT License. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files(the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and / or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions : # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from __future__ import absolute_import from __future__ import print_function from .NotifyBase import NotifyBase from ..common import NotifyImageSize from ..common import NotifyType from ..utils import parse_bool from ..AppriseLocale import gettext_lazy as _ # Default our global support flag NOTIFY_GNOME_SUPPORT_ENABLED = False try: # 3rd party modules (Gnome Only) import gi # require_version() call is required otherwise we generate a warning gi.require_version("Notify", "0.7") # We can import the actual libraries we care about now: from gi.repository import Notify from gi.repository import GdkPixbuf # We're good to go! NOTIFY_GNOME_SUPPORT_ENABLED = True except (ImportError, ValueError, AttributeError): # No problem; we just simply can't support this plugin; we could # be in microsoft windows, or we just don't have the python-gobject # library available to us (or maybe one we don't support)? # Alternativey A ValueError will get thrown upon calling # gi.require_version() if the requested Notify namespace isn't available pass # Urgencies class GnomeUrgency(object): LOW = 0 NORMAL = 1 HIGH = 2 GNOME_URGENCIES = { GnomeUrgency.LOW: 'low', GnomeUrgency.NORMAL: 'normal', GnomeUrgency.HIGH: 'high', } GNOME_URGENCY_MAP = { # Maps against string 'low' 'l': GnomeUrgency.LOW, # Maps against string 'moderate' 'm': GnomeUrgency.LOW, # Maps against string 'normal' 'n': GnomeUrgency.NORMAL, # Maps against string 'high' 'h': GnomeUrgency.HIGH, # Maps against string 'emergency' 'e': GnomeUrgency.HIGH, # Entries to additionally support (so more like Gnome's API) '0': GnomeUrgency.LOW, '1': GnomeUrgency.NORMAL, '2': GnomeUrgency.HIGH, } class NotifyGnome(NotifyBase): """ A wrapper for local Gnome Notifications """ # Set our global enabled flag enabled = NOTIFY_GNOME_SUPPORT_ENABLED requirements = { # Define our required packaging in order to work 'details': _('A local Gnome environment is required.') } # The default descriptive name associated with the Notification service_name = _('Gnome Notification') # The service URL service_url = 'https://www.gnome.org/' # The default protocol protocol = 'gnome' # A URL that takes you to the setup/help of the specific protocol setup_url = 'https://github.com/caronc/apprise/wiki/Notify_gnome' # Allows the user to specify the NotifyImageSize object image_size = NotifyImageSize.XY_128 # Disable throttle rate for Gnome requests since they are normally # local anyway request_rate_per_sec = 0 # Limit results to just the first 10 line otherwise there is just to much # content to display body_max_line_count = 10 # A title can not be used for Gnome Messages. Setting this to zero will # cause any title (if defined) to get placed into the message body. title_maxlen = 0 # Define object templates templates = ( '{schema}://', ) # Define our template arguments template_args = dict(NotifyBase.template_args, **{ 'urgency': { 'name': _('Urgency'), 'type': 'choice:int', 'values': GNOME_URGENCIES, 'default': GnomeUrgency.NORMAL, }, 'priority': { # Apprise uses 'priority' everywhere; it's just a nice consistent # feel to be able to use it here as well. Just map the # value back to 'priority' 'alias_of': 'urgency', }, 'image': { 'name': _('Include Image'), 'type': 'bool', 'default': True, 'map_to': 'include_image', }, }) def __init__(self, urgency=None, include_image=True, **kwargs): """ Initialize Gnome Object """ super(NotifyGnome, self).__init__(**kwargs) # The urgency of the message self.urgency = int( NotifyGnome.template_args['urgency']['default'] if urgency is None else next(( v for k, v in GNOME_URGENCY_MAP.items() if str(urgency).lower().startswith(k)), NotifyGnome.template_args['urgency']['default'])) # Track whether or not we want to send an image with our notification # or not. self.include_image = include_image return def send(self, body, title='', notify_type=NotifyType.INFO, **kwargs): """ Perform Gnome Notification """ try: # App initialization Notify.init(self.app_id) # image path icon_path = None if not self.include_image \ else self.image_path(notify_type, extension='.ico') # Build message body notification = Notify.Notification.new(body) # Assign urgency notification.set_urgency(self.urgency) # Always call throttle before any remote server i/o is made self.throttle() if icon_path: try: # Use Pixbuf to create the proper image type image = GdkPixbuf.Pixbuf.new_from_file(icon_path) # Associate our image to our notification notification.set_icon_from_pixbuf(image) notification.set_image_from_pixbuf(image) except Exception as e: self.logger.warning( "Could not load Gnome notification icon ({}): {}" .format(icon_path, e)) notification.show() self.logger.info('Sent Gnome notification.') except Exception: self.logger.warning('Failed to send Gnome notification.') self.logger.exception('Gnome Exception') return False return True def url(self, privacy=False, *args, **kwargs): """ Returns the URL built dynamically based on specified arguments. """ # Define any URL parameters params = { 'image': 'yes' if self.include_image else 'no', 'urgency': GNOME_URGENCIES[self.template_args['urgency']['default']] if self.urgency not in GNOME_URGENCIES else GNOME_URGENCIES[self.urgency], } # Extend our parameters params.update(self.url_parameters(privacy=privacy, *args, **kwargs)) return '{schema}://?{params}'.format( schema=self.protocol, params=NotifyGnome.urlencode(params), ) @staticmethod def parse_url(url): """ There are no parameters nessisary for this protocol; simply having gnome:// is all you need. This function just makes sure that is in place. """ results = NotifyBase.parse_url(url, verify_host=False) # Include images with our message results['include_image'] = \ parse_bool(results['qsd'].get('image', True)) # Gnome supports urgency, but we we also support the keyword priority # so that it is consistent with some of the other plugins if 'priority' in results['qsd'] and len(results['qsd']['priority']): # We intentionally store the priority in the urgency section results['urgency'] = \ NotifyGnome.unquote(results['qsd']['priority']) if 'urgency' in results['qsd'] and len(results['qsd']['urgency']): results['urgency'] = \ NotifyGnome.unquote(results['qsd']['urgency']) return results
the-stack_0_11975
""" Given two binary strings, return their sum (also a binary string). The input strings are both non-empty and contains only characters 1 or 0. Example 1: Input: a = "11", b = "1" Output: "100" Example 2: Input: a = "1010", b = "1011" Output: "10101" """ # 2018-6-23 # Add Binary class Solution: def addBinary(self, a, b): """ :type a: str :type b: str :rtype: str """ res = '' carry = '0' i = 0 lena = len(a) lenb = len(b) while i < max(lena, lenb) or carry == '1': aa = a[-1 - i] if i < lena else '0' bb = b[-1 - i] if i < lenb else '0' sums = int(aa) + int(bb) + int(carry) res = str(sums%2) + res carry = '1' if sums//2 > 0 else '0' i += 1 return res # test a = "1010" b = "1011" test = Solution() res = test.addBinary(a,b) print(res)
the-stack_0_11977
# Copyright (C) 2002, Thomas Hamelryck ([email protected]) # # This file is part of the Biopython distribution and governed by your # choice of the "Biopython License Agreement" or the "BSD 3-Clause License". # Please see the LICENSE file that should have been included as part of this # package. """Map residues of two structures to each other based on a FASTA alignment.""" from __future__ import print_function from Bio.Data import SCOPData from Bio.PDB import Selection from Bio.PDB.Polypeptide import is_aa class StructureAlignment(object): """Class to align two structures based on an alignment of their sequences.""" def __init__(self, fasta_align, m1, m2, si=0, sj=1): """Initialize. Attributes: - fasta_align - Alignment object - m1, m2 - two models - si, sj - the sequences in the Alignment object that correspond to the structures """ length = fasta_align.get_alignment_length() # Get the residues in the models rl1 = Selection.unfold_entities(m1, "R") rl2 = Selection.unfold_entities(m2, "R") # Residue positions p1 = 0 p2 = 0 # Map equivalent residues to each other map12 = {} map21 = {} # List of residue pairs (None if -) duos = [] for i in range(length): column = fasta_align[:, i] aa1 = column[si] aa2 = column[sj] if aa1 != "-": # Position in seq1 is not - while True: # Loop until an aa is found r1 = rl1[p1] p1 = p1 + 1 if is_aa(r1): break self._test_equivalence(r1, aa1) else: r1 = None if aa2 != "-": # Position in seq2 is not - while True: # Loop until an aa is found r2 = rl2[p2] p2 = p2 + 1 if is_aa(r2): break self._test_equivalence(r2, aa2) else: r2 = None if r1: # Map residue in seq1 to its equivalent in seq2 map12[r1] = r2 if r2: # Map residue in seq2 to its equivalent in seq1 map21[r2] = r1 # Append aligned pair (r is None if gap) duos.append((r1, r2)) self.map12 = map12 self.map21 = map21 self.duos = duos def _test_equivalence(self, r1, aa1): """Test if aa in sequence fits aa in structure (PRIVATE).""" resname = r1.get_resname() resname = SCOPData.protein_letters_3to1[resname] assert(aa1 == resname) def get_maps(self): """Map residues between the structures. Return two dictionaries that map a residue in one structure to the equivealent residue in the other structure. """ return self.map12, self.map21 def get_iterator(self): """Create an iterator over all residue pairs.""" for i in range(0, len(self.duos)): yield self.duos[i]
the-stack_0_11980
# Copyright 2019 The Dreamer Authors. Copyright 2020 Plan2Explore Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from plan2explore import tools def cross_entropy_method( cell, objective, state, obs_shape, action_shape, horizon, graph, beams=1000, topk=100, iterations=10, min_action=-1, max_action=1): obs_shape, action_shape = tuple(obs_shape), tuple(action_shape) batch = tools.shape(tools.nested.flatten(state)[0])[0] initial_state = tools.nested.map(lambda tensor: tf.tile( tensor, [beams] + [1] * (tensor.shape.ndims - 1)), state) extended_batch = tools.shape(tools.nested.flatten(initial_state)[0])[0] use_obs = tf.zeros([extended_batch, horizon, 1], tf.bool) obs = tf.zeros((extended_batch, horizon) + obs_shape) def iteration(index, mean, stddev): # Sample action proposals from belief. normal = tf.random_normal((batch, beams, horizon) + action_shape) action = normal * stddev[:, None] + mean[:, None] action = tf.clip_by_value(action, min_action, max_action) # Evaluate proposal actions. action = tf.reshape( action, (extended_batch, horizon) + action_shape) (_, state), _ = tf.nn.dynamic_rnn( cell, (0 * obs, action, use_obs), initial_state=initial_state) return_ = objective(state) return_ = tf.reshape(return_, (batch, beams)) # Re-fit belief to the best ones. _, indices = tf.nn.top_k(return_, topk, sorted=False) indices += tf.range(batch)[:, None] * beams best_actions = tf.gather(action, indices) mean, variance = tf.nn.moments(best_actions, 1) stddev = tf.sqrt(variance + 1e-6) return index + 1, mean, stddev mean = tf.zeros((batch, horizon) + action_shape) stddev = tf.ones((batch, horizon) + action_shape) _, mean, std = tf.while_loop( lambda index, mean, stddev: index < iterations, iteration, (0, mean, stddev), back_prop=False) return mean def action_head_policy( cell, objective, state, obs_shape, action_shape, graph, config, strategy, min_action=-1, max_action=1): features = cell.features_from_state(state) policy = graph.heads.action(features) if strategy == 'sample': action = policy.sample() elif strategy == 'mode': action = policy.mode() elif strategy == 'curious_sample': curious_policy = graph.heads.curious_action(features) action = curious_policy.sample() elif strategy == 'random_sample': batch = tools.shape(tools.nested.flatten(features)[0])[0] mean = tf.zeros((batch,action_shape[0])) stddev = tf.ones((batch,action_shape[0])) normal = tf.random_normal((batch,action_shape[0])) action = normal * stddev + mean action = tf.clip_by_value(action, min_action, max_action) else: raise NotImplementedError(strategy) plan = action[:, None, :] return plan
the-stack_0_11981
# -*- coding: utf-8 -*- # Copyright (C) 2012 Anaconda, Inc # SPDX-License-Identifier: BSD-3-Clause from __future__ import absolute_import, division, print_function, unicode_literals import hashlib import json import os from os.path import abspath, basename, dirname, isdir, isfile, islink, join import re import tarfile import tempfile from ..auxlib.entity import EntityEncoder from ..base.constants import CONDA_PACKAGE_EXTENSION_V1 from ..base.context import context from ..common.compat import PY3 from ..common.path import paths_equal from ..core.prefix_data import PrefixData from ..gateways.disk.delete import rmtree from ..install import PREFIX_PLACEHOLDER from ..misc import untracked def remove(prefix, files): """ Remove files for a given prefix. """ dst_dirs = set() for f in files: dst = join(prefix, f) dst_dirs.add(dirname(dst)) os.unlink(dst) for path in sorted(dst_dirs, key=len, reverse=True): try: os.rmdir(path) except OSError: # directory might not be empty pass def execute(args, parser): prefix = context.target_prefix if args.which: for path in args.which: for prec in which_package(path): print('%-50s %s' % (path, prec.dist_str())) return print('# prefix:', prefix) if args.reset: remove(prefix, untracked(prefix)) return if args.untracked: files = sorted(untracked(prefix)) print('# untracked files: %d' % len(files)) for fn in files: print(fn) return make_tarbz2(prefix, name=args.pkg_name.lower(), version=args.pkg_version, build_number=int(args.pkg_build)) def get_installed_version(prefix, name): for info in PrefixData(prefix).iter_records(): if info['name'] == name: return str(info['version']) return None def create_info(name, version, build_number, requires_py): d = dict( name=name, version=version, platform=context.platform, arch=context.arch_name, build_number=int(build_number), build=str(build_number), depends=[], ) if requires_py: d['build'] = ('py%d%d_' % requires_py) + d['build'] d['depends'].append('python %d.%d*' % requires_py) return d shebang_pat = re.compile(r'^#!.+$', re.M) def fix_shebang(tmp_dir, path): if open(path, 'rb').read(2) != '#!': return False with open(path) as fi: data = fi.read() m = shebang_pat.match(data) if not (m and 'python' in m.group()): return False data = shebang_pat.sub('#!%s/bin/python' % PREFIX_PLACEHOLDER, data, count=1) tmp_path = join(tmp_dir, basename(path)) with open(tmp_path, 'w') as fo: fo.write(data) os.chmod(tmp_path, int('755', 8)) return True def _add_info_dir(t, tmp_dir, files, has_prefix, info): info_dir = join(tmp_dir, 'info') os.mkdir(info_dir) with open(join(info_dir, 'files'), 'w') as fo: for f in files: fo.write(f + '\n') with open(join(info_dir, 'index.json'), 'w') as fo: json.dump(info, fo, indent=2, sort_keys=True, cls=EntityEncoder) if has_prefix: with open(join(info_dir, 'has_prefix'), 'w') as fo: for f in has_prefix: fo.write(f + '\n') for fn in os.listdir(info_dir): t.add(join(info_dir, fn), 'info/' + fn) def create_conda_pkg(prefix, files, info, tar_path, update_info=None): """ create a conda package with `files` (in `prefix` and `info` metadata) at `tar_path`, and return a list of warning strings """ files = sorted(files) warnings = [] has_prefix = [] tmp_dir = tempfile.mkdtemp() t = tarfile.open(tar_path, 'w:bz2') h = hashlib.new('sha1') for f in files: assert not (f.startswith('/') or f.endswith('/') or '\\' in f or f == ''), f path = join(prefix, f) if f.startswith('bin/') and fix_shebang(tmp_dir, path): path = join(tmp_dir, basename(path)) has_prefix.append(f) t.add(path, f) h.update(f.encode('utf-8')) h.update(b'\x00') if islink(path): link = os.readlink(path) if PY3 and isinstance(link, str): h.update(bytes(link, 'utf-8')) else: h.update(link) if link.startswith('/'): warnings.append('found symlink to absolute path: %s -> %s' % (f, link)) elif isfile(path): h.update(open(path, 'rb').read()) if path.endswith('.egg-link'): warnings.append('found egg link: %s' % f) info['file_hash'] = h.hexdigest() if update_info: update_info(info) _add_info_dir(t, tmp_dir, files, has_prefix, info) t.close() rmtree(tmp_dir) return warnings def make_tarbz2(prefix, name='unknown', version='0.0', build_number=0, files=None): if files is None: files = untracked(prefix) print("# files: %d" % len(files)) if len(files) == 0: print("# failed: nothing to do") return None if any('/site-packages/' in f for f in files): python_version = get_installed_version(prefix, 'python') assert python_version is not None requires_py = tuple(int(x) for x in python_version[:3].split('.')) else: requires_py = False info = create_info(name, version, build_number, requires_py) tarbz2_fn = ('%(name)s-%(version)s-%(build)s' % info) + CONDA_PACKAGE_EXTENSION_V1 create_conda_pkg(prefix, files, info, tarbz2_fn) print('# success') print(tarbz2_fn) return tarbz2_fn def which_package(path): """ given the path (of a (presumably) conda installed file) iterate over the conda packages the file came from. Usually the iteration yields only one package. """ path = abspath(path) prefix = which_prefix(path) if prefix is None: from ..exceptions import CondaVerificationError raise CondaVerificationError("could not determine conda prefix from: %s" % path) for prec in PrefixData(prefix).iter_records(): if any(paths_equal(join(prefix, f), path) for f in prec['files'] or ()): yield prec def which_prefix(path): """ given the path (to a (presumably) conda installed file) return the environment prefix in which the file in located """ prefix = abspath(path) while True: if isdir(join(prefix, 'conda-meta')): # we found the it, so let's return it return prefix if prefix == dirname(prefix): # we cannot chop off any more directories, so we didn't find it return None prefix = dirname(prefix)
the-stack_0_11983
""" Created by: Rob Mulla Sep 24 IEEE Fraud Detection Model - FE013 - Yang's Features - Raddars Features """ import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import os import sys import matplotlib.pylab as plt from sklearn.model_selection import KFold from datetime import datetime import time import logging from sklearn.metrics import roc_auc_score from catboost import CatBoostClassifier, Pool from timeit import default_timer as timer import lightgbm as lgb import gc start = timer() ################## # PARAMETERS ################### run_id = "{:%m%d_%H%M}".format(datetime.now()) KERNEL_RUN = False MODEL_NUMBER = os.path.basename(__file__).split('.')[0] if KERNEL_RUN: INPUT_DIR = '../input/champs-scalar-coupling/' FE_DIR = '../input/molecule-fe024/' FOLDS_DIR = '../input/champs-3fold-ids/' TARGET = "isFraud" N_ESTIMATORS = 100000 N_META_ESTIMATORS = 500000 LEARNING_RATE = 0.005 VERBOSE = 100 EARLY_STOPPING_ROUNDS = 100 RANDOM_STATE = 529 N_THREADS = 58 DEPTH = -1 #14 N_FOLDS = 5 SHUFFLE = False FE_SET = 'FE013' # Feature Engineering Version MODEL_TYPE = "lightgbm" ##################### ## SETUP LOGGER ##################### def get_logger(): """ credits to: https://www.kaggle.com/ogrellier/user-level-lightgbm-lb-1-4480 """ os.environ["TZ"] = "US/Eastern" time.tzset() FORMAT = "[%(levelname)s]%(asctime)s:%(name)s:%(message)s" logging.basicConfig(format=FORMAT) logger = logging.getLogger("main") logger.setLevel(logging.DEBUG) handler = logging.StreamHandler(sys.stdout) fhandler = logging.FileHandler(f'../logs/{MODEL_NUMBER}_{run_id}.log') formatter = logging.Formatter(FORMAT) handler.setFormatter(formatter) # logger.addHandler(handler) logger.addHandler(fhandler) return logger logger = get_logger() logger.info(f'Running for Model Number {MODEL_NUMBER}') ################## # PARAMETERS ################### if MODEL_TYPE == 'xgboost': EVAL_METRIC = "AUC" elif MODEL_TYPE == 'lightgbm': EVAL_METRIC = 'auc' elif MODEL_TYPE == 'catboost': EVAL_METRIC = "AUC" ################## # TRACKING FUNCTION ################### def update_tracking(run_id, field, value, csv_file="../tracking/tracking.csv", integer=False, digits=None, drop_incomplete_rows=False): """ Function to update the tracking CSV with information about the model """ try: df = pd.read_csv(csv_file, index_col=[0]) except FileNotFoundError: df = pd.DataFrame() if integer: value = round(value) elif digits is not None: value = round(value, digits) if drop_incomplete_rows: df = df.loc[~df['AUC'].isna()] df.loc[run_id, field] = value # Model number is index df.to_csv(csv_file) update_tracking(run_id, "model_number", MODEL_NUMBER, drop_incomplete_rows=True) update_tracking(run_id, "n_estimators", N_ESTIMATORS) update_tracking(run_id, "early_stopping_rounds", EARLY_STOPPING_ROUNDS) update_tracking(run_id, "random_state", RANDOM_STATE) update_tracking(run_id, "n_threads", N_THREADS) update_tracking(run_id, "learning_rate", LEARNING_RATE) update_tracking(run_id, "n_fold", N_FOLDS) update_tracking(run_id, "model_type", MODEL_TYPE) update_tracking(run_id, "eval_metric", EVAL_METRIC) update_tracking(run_id, "depth", DEPTH) update_tracking(run_id, "shuffle", SHUFFLE) update_tracking(run_id, "fe", FE_SET) ##################### # PREPARE MODEL DATA ##################### folds = KFold(n_splits=N_FOLDS, random_state=RANDOM_STATE, shuffle=SHUFFLE) logger.info('Loading Data...') train_df = pd.read_parquet(f'../data/train_{FE_SET}.parquet') test_df = pd.read_parquet(f'../data/test_{FE_SET}.parquet') logger.info('Done loading Data...') ########### # FEATURES ########### FEATURES = ['V1max', 'V2max', 'V3max', 'V4max', 'V5max', 'V6max', 'V7max', 'V8max', 'V9max', 'V10max', 'V11max', 'V12max', 'V13max', 'V14max', 'V15max', 'V16max', 'V17max', 'V18max', 'V19max', 'V20max', 'V21max', 'V22max', 'V23max', 'V24max', 'V25max', 'V26max', 'V27max', 'V28max', 'V29max', 'V30max', 'V31max', 'V32max', 'V33max', 'V34max', 'V35max', 'V36max', 'V37max', 'V38max', 'V39max', 'V40max', 'V41max', 'V42max', 'V43max', 'V44max', 'V45max', 'V46max', 'V47max', 'V48max', 'V49max', 'V50max', 'V51max', 'V52max', 'V53max', 'V54max', 'V55max', 'V56max', 'V57max', 'V58max', 'V59max', 'V60max', 'V61max', 'V62max', 'V63max', 'V64max', 'V65max', 'V66max', 'V67max', 'V68max', 'V69max', 'V70max', 'V71max', 'V72max', 'V73max', 'V74max', 'V75max', 'V76max', 'V77max', 'V78max', 'V79max', 'V80max', 'V81max', 'V82max', 'V83max', 'V84max', 'V85max', 'V86max', 'V87max', 'V88max', 'V89max', 'V90max', 'V91max', 'V92max', 'V93max', 'V94max', 'V95max', 'V96max', 'V97max', 'V98max', 'V99max', 'V100max', 'V101max', 'V102max', 'V103max', 'V104max', 'V105max', 'V106max', 'V107max', 'V108max', 'V109max', 'V110max', 'V111max', 'V112max', 'V113max', 'V114max', 'V115max', 'V116max', 'V117max', 'V118max', 'V119max', 'V120max', 'V121max', 'V122max', 'V123max', 'V124max', 'V125max', 'V126max', 'V127max', 'V128max', 'V129max', 'V130max', 'V131max', 'V132max', 'V133max', 'V134max', 'V135max', 'V136max', 'V137max', 'V138max', 'V139max', 'V140max', 'V141max', 'V142max', 'V143max', 'V144max', 'V145max', 'V146max', 'V147max', 'V148max', 'V149max', 'V150max', 'V151max', 'V152max', 'V153max', 'V154max', 'V155max', 'V156max', 'V157max', 'V158max', 'V159max', 'V160max', 'V161max', 'V162max', 'V163max', 'V164max', 'V165max', 'V166max', 'V167max', 'V168max', 'V169max', 'V170max', 'V171max', 'V172max', 'V173max', 'V174max', 'V175max', 'V176max', 'V177max', 'V178max', 'V179max', 'V180max', 'V181max', 'V182max', 'V183max', 'V184max', 'V185max', 'V186max', 'V187max', 'V188max', 'V189max', 'V190max', 'V191max', 'V192max', 'V193max', 'V194max', 'V195max', 'V196max', 'V197max', 'V198max', 'V199max', 'V200max', 'V201max', 'V202max', 'V203max', 'V204max', 'V205max', 'V206max', 'V207max', 'V208max', 'V209max', 'V210max', 'V211max', 'V212max', 'V213max', 'V214max', 'V215max', 'V216max', 'V217max', 'V218max', 'V219max', 'V220max', 'V221max', 'V222max', 'V223max', 'V224max', 'V225max', 'V226max', 'V227max', 'V228max', 'V229max', 'V230max', 'V231max', 'V232max', 'V233max', 'V234max', 'V235max', 'V236max', 'V237max', 'V238max', 'V239max', 'V240max', 'V241max', 'V242max', 'V243max', 'V244max', 'V245max', 'V246max', 'V247max', 'V248max', 'V249max', 'V250max', 'V251max', 'V252max', 'V253max', 'V254max', 'V255max', 'V256max', 'V257max', 'V258max', 'V259max', 'V260max', 'V261max', 'V262max', 'V263max', 'V264max', 'V265max', 'V266max', 'V267max', 'V268max', 'V269max', 'V270max', 'V271max', 'V272max', 'V273max', 'V274max', 'V275max', 'V276max', 'V277max', 'V278max', 'V279max', 'V280max', 'V281max', 'V282max', 'V283max', 'V284max', 'V285max', 'V286max', 'V287max', 'V288max', 'V289max', 'V290max', 'V291max', 'V292max', 'V293max', 'V294max', 'V295max', 'V296max', 'V297max', 'V298max', 'V299max', 'V300max', 'V301max', 'V302max', 'V303max', 'V304max', 'V305max', 'V306max', 'V307max', 'V308max', 'V309max', 'V310max', 'V311max', 'V312max', 'V313max', 'V314max', 'V315max', 'V316max', 'V317max', 'V318max', 'V319max', 'V320max', 'V321max', 'V322max', 'V323max', 'V324max', 'V325max', 'V326max', 'V327max', 'V328max', 'V329max', 'V330max', 'V331max', 'V332max', 'V333max', 'V334max', 'V335max', 'V336max', 'V337max', 'V338max', 'V339max', 'ntrans', 'min_amt', 'mean_amt', 'max_amt', 'num_trans_ints', 'minC1', 'minC2', 'minC3', 'minC4', 'minC5', 'minC6', 'minC7', 'minC8', 'minC9', 'minC10', 'minC11', 'minC12', 'minC13', 'minC14', 'maxC1', 'maxC2', 'maxC3', 'maxC4', 'maxC5', 'maxC6', 'maxC7', 'maxC8', 'maxC9', 'maxC10', 'maxC11', 'maxC12', 'maxC13', 'maxC14', 'countC1_inc', 'countC2_inc', 'countC3_inc', 'countC4_inc', 'countC5_inc', 'countC6_inc', 'countC7_inc', 'countC8_inc', 'countC9_inc', 'countC10_inc', 'countC11_inc', 'countC12_inc', 'countC13_inc', 'countC14_inc', 'ndistM1', 'ndistM2', 'ndistM3', 'ndistM4', 'ndistM5', 'ndistM6', 'ndistM7', 'ndistM8', 'ndistM9'] CAT_FEATURES = ['ProductCD', 'card4', 'card6', 'id_12', 'id_13', 'id_14', 'id_15', 'id_16', 'id_17', 'id_18', 'id_19', 'id_20', 'id_21', 'id_22', 'id_23', 'id_24', 'id_25', 'id_26', 'id_27', 'id_28', 'id_29', 'id_32', 'id_34', 'id_35', 'id_36', 'id_37', 'id_38', 'DeviceType', 'DeviceInfo', 'M4','P_emaildomain', 'R_emaildomain', 'addr1', 'addr2', 'M1', 'M2', 'M3', 'M5', 'M6', 'M7', 'M8', 'M9', 'ProductCD_W_95cents','ProductCD_W_00cents','ProductCD_W_50cents', 'ProductCD_W_50_95_0_cents','ProductCD_W_NOT_50_95_0_cents'] CAT_FEATURES = [c for c in CAT_FEATURES if c in FEATURES] X = train_df[FEATURES].copy() y = train_df[TARGET].copy() X_test = test_df[FEATURES].copy() X = X.fillna(-9999) X_test = X_test.fillna(-9999) logger.info('Running with features...') logger.info(FEATURES) logger.info(f'Target is {TARGET}') update_tracking(run_id, "n_features", len(FEATURES), integer=True) ############################ #### TRAIN MODELS FUNCTIONS ############################ def train_catboost(X_train, y_train, X_valid, y_valid, X_test, CAT_FEATURES, fold_n, feature_importance): train_dataset = Pool(data=X_train, label=y_train, cat_features=CAT_FEATURES) valid_dataset = Pool(data=X_valid, label=y_valid, cat_features=CAT_FEATURES) test_dataset = Pool(data=X_test, cat_features=CAT_FEATURES) model = CatBoostClassifier( iterations=N_ESTIMATORS, learning_rate=LEARNING_RATE, depth=DEPTH, eval_metric=EVAL_METRIC, verbose=VERBOSE, random_state=RANDOM_STATE, thread_count=N_THREADS, task_type="GPU") model.fit( train_dataset, eval_set=valid_dataset, early_stopping_rounds=EARLY_STOPPING_ROUNDS, ) y_pred_valid = model.predict_proba(valid_dataset)[:,1] y_pred = model.predict_proba(test_dataset)[:,1] fold_importance = pd.DataFrame() fold_importance["feature"] = model.feature_names_ fold_importance["importance"] = model.get_feature_importance() fold_importance["fold"] = fold_n + 1 feature_importance = pd.concat([feature_importance, fold_importance], axis=0) best_iteration = model.best_iteration_ return y_pred, y_pred_valid, feature_importance, best_iteration lgb_params = { 'objective':'binary', 'boosting_type':'gbdt', 'metric': EVAL_METRIC, 'n_jobs':N_THREADS, 'learning_rate':LEARNING_RATE, 'num_leaves': 2**8, 'max_depth':DEPTH, 'tree_learner':'serial', 'colsample_bytree': 0.85, 'subsample_freq':1, 'subsample':0.85, 'n_estimators':N_ESTIMATORS, 'max_bin':255, 'verbose':-1, 'seed': RANDOM_STATE, #'early_stopping_rounds':EARLY_STOPPING_ROUNDS, 'reg_alpha':0.3, 'reg_lamdba':0.243, #'categorical_feature': CAT_FEATURES } # lgb_params = { # 'min_data_in_leaf': 106, # 'num_leaves': 500, # 'learning_rate': LEARNING_RATE, #0.008, # 'min_child_weight': 0.03454472573214212, # 'bagging_fraction': 0.4181193142567742, # 'feature_fraction': 0.3797454081646243, # 'reg_lambda': 0.6485237330340494, # 'reg_alpha': 0.3899927210061127, # 'max_depth': DEPTH, #-1, # 'objective': 'binary', # 'seed': RANDOM_STATE, #13, # 'feature_fraction_seed': RANDOM_STATE, #13, # 'bagging_seed': RANDOM_STATE, #13, # 'drop_seed': RANDOM_STATE, #13, # 'data_random_seed': RANDOM_STATE, #13, # 'boosting_type': 'gbdt', # 'verbose': 1, # 'metric':'auc', # 'n_estimators':N_ESTIMATORS, # } def train_lightgbm(X_train, y_train, X_valid, y_valid, X_test, CAT_FEATURES, fold_n, feature_importance): X_train = X_train.copy() X_valid = X_valid.copy() X_test = X_test.copy() if len(CAT_FEATURES) > 0: X_train[CAT_FEATURES] = X_train[CAT_FEATURES].astype('category') X_valid[CAT_FEATURES] = X_valid[CAT_FEATURES].astype('category') X_test[CAT_FEATURES] = X_test[CAT_FEATURES].astype('category') model = lgb.LGBMClassifier(**lgb_params) model.fit(X_train, y_train, eval_set = [(X_train, y_train), (X_valid, y_valid)], verbose = VERBOSE, early_stopping_rounds=EARLY_STOPPING_ROUNDS) y_pred_valid = model.predict_proba(X_valid)[:,1] y_pred = model.predict_proba(X_test)[:,1] fold_importance = pd.DataFrame() fold_importance["feature"] = X_train.columns fold_importance["importance"] = model.feature_importances_ fold_importance["fold"] = fold_n + 1 feature_importance = pd.concat([feature_importance, fold_importance], axis=0) best_iteration = model.best_iteration_ return y_pred, y_pred_valid, feature_importance, best_iteration ################################ # Dataframes for storing results ################################# feature_importance = pd.DataFrame() oof = np.zeros(len(X)) pred = np.zeros(len(X_test)) oof_df = train_df[['isFraud']].copy() oof_df['oof'] = np.nan oof_df['fold'] = np.nan scores = [] best_iterations = [] del train_df, test_df gc.collect() for fold_n, (train_idx, valid_idx) in enumerate(folds.split(X, y)): X_train = X.iloc[train_idx] y_train = y.iloc[train_idx] X_valid = X.iloc[valid_idx] y_valid = y.iloc[valid_idx] if MODEL_TYPE == "catboost": y_pred, y_pred_valid, feature_importance, best_iteration = train_catboost(X_train, y_train, X_valid, y_valid, X_test, CAT_FEATURES, fold_n, feature_importance) if MODEL_TYPE == 'lightgbm': y_pred, y_pred_valid, feature_importance, best_iteration = train_lightgbm(X_train, y_train, X_valid, y_valid, X_test, CAT_FEATURES, fold_n, feature_importance) best_iterations.append(best_iteration) fold_score = roc_auc_score(y_valid, y_pred_valid) scores.append(fold_score) update_tracking(run_id, "AUC_f{}".format(fold_n + 1), fold_score, integer=False,) logger.info('Fold {} of {} CV mean AUC score: {:.4f}. Best iteration {}'.format(fold_n + 1, N_FOLDS, fold_score, best_iteration)) oof_df.iloc[valid_idx, oof_df.columns.get_loc('oof')] = y_pred_valid.reshape(-1) oof_df.iloc[valid_idx, oof_df.columns.get_loc('fold')] = fold_n + 1 pred += y_pred update_tracking(run_id, 'avg_best_iteration', np.mean(best_iterations), integer=True) ############### # Store Results ############### pred /= N_FOLDS score = np.mean(scores) sub = pd.read_csv('../input/sample_submission.csv') sub['isFraud'] = pred sub.to_csv(f'../sub/sub_{MODEL_NUMBER}_{run_id}_{score:.4f}.csv', index=False) oof_df.to_csv(f'../oof/oof_{MODEL_NUMBER}_{run_id}_{score:.4f}.csv') logger.info('CV mean AUC score: {:.4f}, std: {:.4f}.'.format(np.mean(scores), np.std(scores))) total_score = roc_auc_score(oof_df['isFraud'], oof_df['oof']) feature_importance.to_csv(f'../fi/fi_{MODEL_NUMBER}_{run_id}_{score:.4f}.csv') update_tracking(run_id, "AUC", total_score, integer=False,) logger.info('OOF AUC Score: {:.4f}'.format(total_score)) end = timer() update_tracking(run_id, "training_time", (end - start), integer=True) logger.info('Done!')
the-stack_0_11985
import torch import torch.nn as nn import torch.nn.functional as F use_cuda = torch.cuda.is_available() device = torch.device("cuda" if use_cuda else "cpu") class AugmentedConv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, dk, dv, Nh, relative): super(AugmentedConv, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.dk = dk self.dv = dv self.Nh = Nh self.relative = relative self.conv_out = nn.Conv2d(self.in_channels, self.out_channels - self.dv, self.kernel_size, padding=1) self.qkv_conv = nn.Conv2d(self.in_channels, 2 * self.dk + self.dv, kernel_size=1) self.attn_out = nn.Conv2d(self.dv, self.dv, 1) def forward(self, x): # Input x # (batch_size, channels, height, width) batch, _, height, width = x.size() # conv_out # (batch_size, out_channels, height, width) conv_out = self.conv_out(x) # flat_q, flat_k, flat_v # (batch_size, Nh, height * width, dvh or dkh) # dvh = dv / Nh, dkh = dk / Nh # q, k, v # (batch_size, Nh, height, width, dv or dk) flat_q, flat_k, flat_v, q, k, v = self.compute_flat_qkv(x, self.dk, self.dv, self.Nh) logits = torch.matmul(flat_q.transpose(2, 3), flat_k) if self.relative: h_rel_logits, w_rel_logits = self.relative_logits(q) logits += h_rel_logits logits += w_rel_logits weights = F.softmax(logits, dim=-1) # attn_out # (batch, Nh, height * width, dvh) attn_out = torch.matmul(weights, flat_v.transpose(2, 3)) attn_out = torch.reshape(attn_out, (batch, self.Nh, self.dv // self.Nh, height, width)) # combine_heads_2d # (batch, out_channels, height, width) attn_out = self.combine_heads_2d(attn_out) attn_out = self.attn_out(attn_out) return torch.cat((conv_out, attn_out), dim=1) def compute_flat_qkv(self, x, dk, dv, Nh): N, _, H, W = x.size() qkv = self.qkv_conv(x) q, k, v = torch.split(qkv, [dk, dk, dv], dim=1) q = self.split_heads_2d(q, Nh) k = self.split_heads_2d(k, Nh) v = self.split_heads_2d(v, Nh) dkh = dk // Nh q *= dkh ** -0.5 flat_q = torch.reshape(q, (N, Nh, dk // Nh, H * W)) flat_k = torch.reshape(k, (N, Nh, dk // Nh, H * W)) flat_v = torch.reshape(v, (N, Nh, dv // Nh, H * W)) return flat_q, flat_k, flat_v, q, k, v def split_heads_2d(self, x, Nh): batch, channels, height, width = x.size() ret_shape = (batch, Nh, channels // Nh, height, width) split = torch.reshape(x, ret_shape) return split def combine_heads_2d(self, x): batch, Nh, dv, H, W = x.size() ret_shape = (batch, Nh * dv, H, W) return torch.reshape(x, ret_shape) def relative_logits(self, q): B, Nh, dk, H, W = q.size() q = torch.transpose(q, 2, 4).transpose(2, 3) key_rel_w = nn.Parameter(torch.randn((2 * W - 1, dk), requires_grad=True)).to(device) rel_logits_w = self.relative_logits_1d(q, key_rel_w, H, W, Nh, "w") key_rel_h = nn.Parameter(torch.randn((2 * H - 1, dk), requires_grad=True)).to(device) rel_logits_h = self.relative_logits_1d(torch.transpose(q, 2, 3), key_rel_h, W, H, Nh, "h") return rel_logits_h, rel_logits_w def relative_logits_1d(self, q, rel_k, H, W, Nh, case): rel_logits = torch.einsum('bhxyd,md->bhxym', q, rel_k) rel_logits = torch.reshape(rel_logits, (-1, Nh * H, W, 2 * W - 1)) rel_logits = self.rel_to_abs(rel_logits) rel_logits = torch.reshape(rel_logits, (-1, Nh, H, W, W)) rel_logits = torch.unsqueeze(rel_logits, dim=3) rel_logits = rel_logits.repeat((1, 1, 1, H, 1, 1)) if case == "w": rel_logits = torch.transpose(rel_logits, 3, 4) elif case == "h": rel_logits = torch.transpose(rel_logits, 2, 4).transpose(4, 5).transpose(3, 5) rel_logits = torch.reshape(rel_logits, (-1, Nh, H * W, H * W)) return rel_logits def rel_to_abs(self, x): B, Nh, L, _ = x.size() col_pad = torch.zeros((B, Nh, L, 1)).to(device) x = torch.cat((x, col_pad), dim=3) flat_x = torch.reshape(x, (B, Nh, L * 2 * L)) flat_pad = torch.zeros((B, Nh, L - 1)).to(device) flat_x_padded = torch.cat((flat_x, flat_pad), dim=2) final_x = torch.reshape(flat_x_padded, (B, Nh, L + 1, 2 * L - 1)) final_x = final_x[:, :, :L, L - 1:] return final_x
the-stack_0_11986
# Copyright 2020 - 2021 MONAI Consortium # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ A collection of dictionary-based wrappers around the "vanilla" transforms for utility functions defined in :py:class:`monai.transforms.utility.array`. Class names are ended with 'd' to denote dictionary-based transforms. """ import logging import re from copy import deepcopy from typing import Any, Callable, Dict, Hashable, List, Mapping, Optional, Sequence, Tuple, Union import numpy as np import torch from monai.config import DtypeLike, KeysCollection from monai.config.type_definitions import NdarrayOrTensor from monai.data.utils import no_collation from monai.transforms.inverse import InvertibleTransform from monai.transforms.transform import MapTransform, Randomizable, RandomizableTransform from monai.transforms.utility.array import ( AddChannel, AddExtremePointsChannel, AsChannelFirst, AsChannelLast, CastToType, ClassesToIndices, ConvertToMultiChannelBasedOnBratsClasses, CuCIM, DataStats, EnsureChannelFirst, EnsureType, FgBgToIndices, Identity, IntensityStats, LabelToMask, Lambda, MapLabelValue, RemoveRepeatedChannel, RepeatChannel, SimulateDelay, SplitChannel, SqueezeDim, ToCupy, ToDevice, ToNumpy, ToPIL, TorchVision, ToTensor, Transpose, ) from monai.transforms.utils import extreme_points_to_image, get_extreme_points from monai.transforms.utils_pytorch_numpy_unification import concatenate from monai.utils import convert_to_numpy, ensure_tuple, ensure_tuple_rep from monai.utils.enums import TraceKeys, TransformBackends from monai.utils.type_conversion import convert_to_dst_type __all__ = [ "AddChannelD", "AddChannelDict", "AddChanneld", "AddExtremePointsChannelD", "AddExtremePointsChannelDict", "AddExtremePointsChanneld", "AsChannelFirstD", "AsChannelFirstDict", "AsChannelFirstd", "AsChannelLastD", "AsChannelLastDict", "AsChannelLastd", "CastToTypeD", "CastToTypeDict", "CastToTyped", "ConcatItemsD", "ConcatItemsDict", "ConcatItemsd", "ConvertToMultiChannelBasedOnBratsClassesD", "ConvertToMultiChannelBasedOnBratsClassesDict", "ConvertToMultiChannelBasedOnBratsClassesd", "CopyItemsD", "CopyItemsDict", "CopyItemsd", "CuCIMd", "CuCIMD", "CuCIMDict", "DataStatsD", "DataStatsDict", "DataStatsd", "DeleteItemsD", "DeleteItemsDict", "DeleteItemsd", "EnsureChannelFirstD", "EnsureChannelFirstDict", "EnsureChannelFirstd", "EnsureTypeD", "EnsureTypeDict", "EnsureTyped", "FgBgToIndicesD", "FgBgToIndicesDict", "FgBgToIndicesd", "IdentityD", "IdentityDict", "Identityd", "IntensityStatsd", "IntensityStatsD", "IntensityStatsDict", "LabelToMaskD", "LabelToMaskDict", "LabelToMaskd", "LambdaD", "LambdaDict", "Lambdad", "MapLabelValueD", "MapLabelValueDict", "MapLabelValued", "RandCuCIMd", "RandCuCIMD", "RandCuCIMDict", "RandLambdaD", "RandLambdaDict", "RandLambdad", "RandTorchVisionD", "RandTorchVisionDict", "RandTorchVisiond", "RemoveRepeatedChannelD", "RemoveRepeatedChannelDict", "RemoveRepeatedChanneld", "RepeatChannelD", "RepeatChannelDict", "RepeatChanneld", "SelectItemsD", "SelectItemsDict", "SelectItemsd", "SimulateDelayD", "SimulateDelayDict", "SimulateDelayd", "SplitChannelD", "SplitChannelDict", "SplitChanneld", "SqueezeDimD", "SqueezeDimDict", "SqueezeDimd", "ToCupyD", "ToCupyDict", "ToCupyd", "ToDeviced", "ToDeviceD", "ToDeviceDict", "ToNumpyD", "ToNumpyDict", "ToNumpyd", "ToPILD", "ToPILDict", "ToPILd", "ToTensorD", "ToTensorDict", "ToTensord", "TorchVisionD", "TorchVisionDict", "TorchVisiond", "Transposed", "TransposeDict", "TransposeD", "ClassesToIndicesd", "ClassesToIndicesD", "ClassesToIndicesDict", ] class Identityd(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.Identity`. """ backend = Identity.backend def __init__(self, keys: KeysCollection, allow_missing_keys: bool = False) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` allow_missing_keys: don't raise exception if key is missing. """ super().__init__(keys, allow_missing_keys) self.identity = Identity() def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: d = dict(data) for key in self.key_iterator(d): d[key] = self.identity(d[key]) return d class AsChannelFirstd(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.AsChannelFirst`. """ backend = AsChannelFirst.backend def __init__(self, keys: KeysCollection, channel_dim: int = -1, allow_missing_keys: bool = False) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` channel_dim: which dimension of input image is the channel, default is the last dimension. allow_missing_keys: don't raise exception if key is missing. """ super().__init__(keys, allow_missing_keys) self.converter = AsChannelFirst(channel_dim=channel_dim) def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: d = dict(data) for key in self.key_iterator(d): d[key] = self.converter(d[key]) return d class AsChannelLastd(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.AsChannelLast`. """ backend = AsChannelLast.backend def __init__(self, keys: KeysCollection, channel_dim: int = 0, allow_missing_keys: bool = False) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` channel_dim: which dimension of input image is the channel, default is the first dimension. allow_missing_keys: don't raise exception if key is missing. """ super().__init__(keys, allow_missing_keys) self.converter = AsChannelLast(channel_dim=channel_dim) def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: d = dict(data) for key in self.key_iterator(d): d[key] = self.converter(d[key]) return d class AddChanneld(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.AddChannel`. """ backend = AddChannel.backend def __init__(self, keys: KeysCollection, allow_missing_keys: bool = False) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` allow_missing_keys: don't raise exception if key is missing. """ super().__init__(keys, allow_missing_keys) self.adder = AddChannel() def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: d = dict(data) for key in self.key_iterator(d): d[key] = self.adder(d[key]) return d class EnsureChannelFirstd(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.EnsureChannelFirst`. """ backend = EnsureChannelFirst.backend def __init__( self, keys: KeysCollection, meta_keys: Optional[KeysCollection] = None, meta_key_postfix: str = "meta_dict", strict_check: bool = True, ) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` meta_keys: explicitly indicate the key of the corresponding meta data dictionary. for example, for data with key `image`, the metadata by default is in `image_meta_dict`. the meta data is a dictionary object which contains: filename, original_shape, etc. it can be a sequence of string, map to the `keys`. if None, will try to construct meta_keys by `key_{meta_key_postfix}`. meta_key_postfix: if meta_keys is None and `key_{postfix}` was used to store the metadata in `LoadImaged`. So need the key to extract metadata for channel dim information, default is `meta_dict`. For example, for data with key `image`, metadata by default is in `image_meta_dict`. strict_check: whether to raise an error when the meta information is insufficient. """ super().__init__(keys) self.adjuster = EnsureChannelFirst(strict_check=strict_check) self.meta_keys = ensure_tuple_rep(meta_keys, len(self.keys)) self.meta_key_postfix = ensure_tuple_rep(meta_key_postfix, len(self.keys)) def __call__(self, data) -> Dict[Hashable, NdarrayOrTensor]: d = dict(data) for key, meta_key, meta_key_postfix in zip(self.keys, self.meta_keys, self.meta_key_postfix): d[key] = self.adjuster(d[key], d[meta_key or f"{key}_{meta_key_postfix}"]) return d class RepeatChanneld(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.RepeatChannel`. """ backend = RepeatChannel.backend def __init__(self, keys: KeysCollection, repeats: int, allow_missing_keys: bool = False) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` repeats: the number of repetitions for each element. allow_missing_keys: don't raise exception if key is missing. """ super().__init__(keys, allow_missing_keys) self.repeater = RepeatChannel(repeats) def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: d = dict(data) for key in self.key_iterator(d): d[key] = self.repeater(d[key]) return d class RemoveRepeatedChanneld(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.RemoveRepeatedChannel`. """ backend = RemoveRepeatedChannel.backend def __init__(self, keys: KeysCollection, repeats: int, allow_missing_keys: bool = False) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` repeats: the number of repetitions for each element. allow_missing_keys: don't raise exception if key is missing. """ super().__init__(keys, allow_missing_keys) self.repeater = RemoveRepeatedChannel(repeats) def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: d = dict(data) for key in self.key_iterator(d): d[key] = self.repeater(d[key]) return d class SplitChanneld(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.SplitChannel`. All the input specified by `keys` should be split into same count of data. """ backend = SplitChannel.backend def __init__( self, keys: KeysCollection, output_postfixes: Optional[Sequence[str]] = None, channel_dim: int = 0, allow_missing_keys: bool = False, ) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` output_postfixes: the postfixes to construct keys to store split data. for example: if the key of input data is `pred` and split 2 classes, the output data keys will be: pred_(output_postfixes[0]), pred_(output_postfixes[1]) if None, using the index number: `pred_0`, `pred_1`, ... `pred_N`. channel_dim: which dimension of input image is the channel, default to 0. allow_missing_keys: don't raise exception if key is missing. """ super().__init__(keys, allow_missing_keys) self.output_postfixes = output_postfixes self.splitter = SplitChannel(channel_dim=channel_dim) def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: d = dict(data) for key in self.key_iterator(d): rets = self.splitter(d[key]) postfixes: Sequence = list(range(len(rets))) if self.output_postfixes is None else self.output_postfixes if len(postfixes) != len(rets): raise AssertionError("count of split results must match output_postfixes.") for i, r in enumerate(rets): split_key = f"{key}_{postfixes[i]}" if split_key in d: raise RuntimeError(f"input data already contains key {split_key}.") d[split_key] = r return d class CastToTyped(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.CastToType`. """ backend = CastToType.backend def __init__( self, keys: KeysCollection, dtype: Union[Sequence[Union[DtypeLike, torch.dtype]], DtypeLike, torch.dtype] = np.float32, allow_missing_keys: bool = False, ) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` dtype: convert image to this data type, default is `np.float32`. it also can be a sequence of dtypes or torch.dtype, each element corresponds to a key in ``keys``. allow_missing_keys: don't raise exception if key is missing. """ MapTransform.__init__(self, keys, allow_missing_keys) self.dtype = ensure_tuple_rep(dtype, len(self.keys)) self.converter = CastToType() def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: d = dict(data) for key, dtype in self.key_iterator(d, self.dtype): d[key] = self.converter(d[key], dtype=dtype) return d class ToTensord(MapTransform, InvertibleTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.ToTensor`. """ backend = ToTensor.backend def __init__( self, keys: KeysCollection, dtype: Optional[torch.dtype] = None, device: Optional[torch.device] = None, allow_missing_keys: bool = False, ) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` dtype: target data content type to convert, for example: torch.float, etc. device: specify the target device to put the Tensor data. allow_missing_keys: don't raise exception if key is missing. """ super().__init__(keys, allow_missing_keys) self.converter = ToTensor(dtype=dtype, device=device) def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: d = dict(data) for key in self.key_iterator(d): self.push_transform(d, key) d[key] = self.converter(d[key]) return d def inverse(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: d = deepcopy(dict(data)) for key in self.key_iterator(d): # Create inverse transform inverse_transform = ToNumpy() # Apply inverse d[key] = inverse_transform(d[key]) # Remove the applied transform self.pop_transform(d, key) return d class EnsureTyped(MapTransform, InvertibleTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.EnsureType`. Ensure the input data to be a PyTorch Tensor or numpy array, support: `numpy array`, `PyTorch Tensor`, `float`, `int`, `bool`, `string` and `object` keep the original. If passing a dictionary, list or tuple, still return dictionary, list or tuple and recursively convert every item to the expected data type. Note: Currently, we only convert tensor data to numpy array or scalar number in the inverse operation. """ backend = EnsureType.backend def __init__( self, keys: KeysCollection, data_type: str = "tensor", dtype: Optional[Union[DtypeLike, torch.dtype]] = None, device: Optional[torch.device] = None, allow_missing_keys: bool = False, ) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` data_type: target data type to convert, should be "tensor" or "numpy". dtype: target data content type to convert, for example: np.float32, torch.float, etc. device: for Tensor data type, specify the target device. allow_missing_keys: don't raise exception if key is missing. """ super().__init__(keys, allow_missing_keys) self.converter = EnsureType(data_type=data_type, dtype=dtype, device=device) def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: d = dict(data) for key in self.key_iterator(d): self.push_transform(d, key) d[key] = self.converter(d[key]) return d def inverse(self, data: Mapping[Hashable, Any]) -> Dict[Hashable, Any]: d = deepcopy(dict(data)) for key in self.key_iterator(d): # FIXME: currently, only convert tensor data to numpy array or scalar number, # need to also invert numpy array but it's not easy to determine the previous data type d[key] = convert_to_numpy(d[key]) # Remove the applied transform self.pop_transform(d, key) return d class ToNumpyd(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.ToNumpy`. """ backend = ToNumpy.backend def __init__(self, keys: KeysCollection, dtype: DtypeLike = None, allow_missing_keys: bool = False) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` dtype: target data type when converting to numpy array. allow_missing_keys: don't raise exception if key is missing. """ super().__init__(keys, allow_missing_keys) self.converter = ToNumpy(dtype=dtype) def __call__(self, data: Mapping[Hashable, Any]) -> Dict[Hashable, Any]: d = dict(data) for key in self.key_iterator(d): d[key] = self.converter(d[key]) return d class ToCupyd(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.ToCupy`. Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` dtype: data type specifier. It is inferred from the input by default. allow_missing_keys: don't raise exception if key is missing. """ backend = ToCupy.backend def __init__(self, keys: KeysCollection, dtype=None, allow_missing_keys: bool = False) -> None: super().__init__(keys, allow_missing_keys) self.converter = ToCupy(dtype=dtype) def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: d = dict(data) for key in self.key_iterator(d): d[key] = self.converter(d[key]) return d class ToPILd(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.ToNumpy`. """ backend = ToPIL.backend def __init__(self, keys: KeysCollection, allow_missing_keys: bool = False) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` allow_missing_keys: don't raise exception if key is missing. """ super().__init__(keys, allow_missing_keys) self.converter = ToPIL() def __call__(self, data: Mapping[Hashable, Any]) -> Dict[Hashable, Any]: d = dict(data) for key in self.key_iterator(d): d[key] = self.converter(d[key]) return d class Transposed(MapTransform, InvertibleTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.Transpose`. """ backend = Transpose.backend def __init__( self, keys: KeysCollection, indices: Optional[Sequence[int]], allow_missing_keys: bool = False ) -> None: super().__init__(keys, allow_missing_keys) self.transform = Transpose(indices) def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: d = dict(data) for key in self.key_iterator(d): d[key] = self.transform(d[key]) # if None was supplied then numpy uses range(a.ndim)[::-1] indices = self.transform.indices or range(d[key].ndim)[::-1] self.push_transform(d, key, extra_info={"indices": indices}) return d def inverse(self, data: Mapping[Hashable, Any]) -> Dict[Hashable, Any]: d = deepcopy(dict(data)) for key in self.key_iterator(d): transform = self.get_most_recent_transform(d, key) # Create inverse transform fwd_indices = np.array(transform[TraceKeys.EXTRA_INFO]["indices"]) inv_indices = np.argsort(fwd_indices) inverse_transform = Transpose(inv_indices.tolist()) # Apply inverse d[key] = inverse_transform(d[key]) # Remove the applied transform self.pop_transform(d, key) return d class DeleteItemsd(MapTransform): """ Delete specified items from data dictionary to release memory. It will remove the key-values and copy the others to construct a new dictionary. """ backend = [TransformBackends.TORCH, TransformBackends.NUMPY] def __init__(self, keys: KeysCollection, sep: str = ".", use_re: Union[Sequence[bool], bool] = False) -> None: """ Args: keys: keys of the corresponding items to delete, can be "A{sep}B{sep}C" to delete key `C` in nested dictionary, `C` can be regular expression. See also: :py:class:`monai.transforms.compose.MapTransform` sep: the separator tag to define nested dictionary keys, default to ".". use_re: whether the specified key is a regular expression, it also can be a list of bool values, map the to keys. """ super().__init__(keys) self.sep = sep self.use_re = ensure_tuple_rep(use_re, len(self.keys)) def __call__(self, data): def _delete_item(keys, d, use_re: bool = False): key = keys[0] if len(keys) > 1: d[key] = _delete_item(keys[1:], d[key], use_re) return d return {k: v for k, v in d.items() if (use_re and not re.search(key, k)) or (not use_re and k != key)} d = dict(data) for key, use_re in zip(self.keys, self.use_re): d = _delete_item(key.split(self.sep), d, use_re) return d class SelectItemsd(MapTransform): """ Select only specified items from data dictionary to release memory. It will copy the selected key-values and construct and new dictionary. """ backend = [TransformBackends.TORCH, TransformBackends.NUMPY] def __call__(self, data): return {key: data[key] for key in self.key_iterator(data)} class SqueezeDimd(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.SqueezeDim`. """ backend = SqueezeDim.backend def __init__(self, keys: KeysCollection, dim: int = 0, allow_missing_keys: bool = False) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` dim: dimension to be squeezed. Default: 0 (the first dimension) allow_missing_keys: don't raise exception if key is missing. """ super().__init__(keys, allow_missing_keys) self.converter = SqueezeDim(dim=dim) def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: d = dict(data) for key in self.key_iterator(d): d[key] = self.converter(d[key]) return d class DataStatsd(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.DataStats`. """ backend = DataStats.backend def __init__( self, keys: KeysCollection, prefix: Union[Sequence[str], str] = "Data", data_type: Union[Sequence[bool], bool] = True, data_shape: Union[Sequence[bool], bool] = True, value_range: Union[Sequence[bool], bool] = True, data_value: Union[Sequence[bool], bool] = False, additional_info: Optional[Union[Sequence[Callable], Callable]] = None, logger_handler: Optional[logging.Handler] = None, allow_missing_keys: bool = False, ) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` prefix: will be printed in format: "{prefix} statistics". it also can be a sequence of string, each element corresponds to a key in ``keys``. data_type: whether to show the type of input data. it also can be a sequence of bool, each element corresponds to a key in ``keys``. data_shape: whether to show the shape of input data. it also can be a sequence of bool, each element corresponds to a key in ``keys``. value_range: whether to show the value range of input data. it also can be a sequence of bool, each element corresponds to a key in ``keys``. data_value: whether to show the raw value of input data. it also can be a sequence of bool, each element corresponds to a key in ``keys``. a typical example is to print some properties of Nifti image: affine, pixdim, etc. additional_info: user can define callable function to extract additional info from input data. it also can be a sequence of string, each element corresponds to a key in ``keys``. logger_handler: add additional handler to output data: save to file, etc. add existing python logging handlers: https://docs.python.org/3/library/logging.handlers.html the handler should have a logging level of at least `INFO`. allow_missing_keys: don't raise exception if key is missing. """ super().__init__(keys, allow_missing_keys) self.prefix = ensure_tuple_rep(prefix, len(self.keys)) self.data_type = ensure_tuple_rep(data_type, len(self.keys)) self.data_shape = ensure_tuple_rep(data_shape, len(self.keys)) self.value_range = ensure_tuple_rep(value_range, len(self.keys)) self.data_value = ensure_tuple_rep(data_value, len(self.keys)) self.additional_info = ensure_tuple_rep(additional_info, len(self.keys)) self.logger_handler = logger_handler self.printer = DataStats(logger_handler=logger_handler) def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: d = dict(data) for key, prefix, data_type, data_shape, value_range, data_value, additional_info in self.key_iterator( d, self.prefix, self.data_type, self.data_shape, self.value_range, self.data_value, self.additional_info ): d[key] = self.printer(d[key], prefix, data_type, data_shape, value_range, data_value, additional_info) return d class SimulateDelayd(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.SimulateDelay`. """ backend = SimulateDelay.backend def __init__( self, keys: KeysCollection, delay_time: Union[Sequence[float], float] = 0.0, allow_missing_keys: bool = False ) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` delay_time: The minimum amount of time, in fractions of seconds, to accomplish this identity task. It also can be a sequence of string, each element corresponds to a key in ``keys``. allow_missing_keys: don't raise exception if key is missing. """ super().__init__(keys, allow_missing_keys) self.delay_time = ensure_tuple_rep(delay_time, len(self.keys)) self.delayer = SimulateDelay() def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: d = dict(data) for key, delay_time in self.key_iterator(d, self.delay_time): d[key] = self.delayer(d[key], delay_time=delay_time) return d class CopyItemsd(MapTransform): """ Copy specified items from data dictionary and save with different key names. It can copy several items together and copy several times. """ backend = [TransformBackends.TORCH, TransformBackends.NUMPY] def __init__( self, keys: KeysCollection, times: int, names: KeysCollection, allow_missing_keys: bool = False ) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` times: expected copy times, for example, if keys is "img", times is 3, it will add 3 copies of "img" data to the dictionary. names: the names corresponding to the newly copied data, the length should match `len(keys) x times`. for example, if keys is ["img", "seg"] and times is 2, names can be: ["img_1", "seg_1", "img_2", "seg_2"]. allow_missing_keys: don't raise exception if key is missing. Raises: ValueError: When ``times`` is nonpositive. ValueError: When ``len(names)`` is not ``len(keys) * times``. Incompatible values. """ super().__init__(keys, allow_missing_keys) if times < 1: raise ValueError(f"times must be positive, got {times}.") self.times = times names = ensure_tuple(names) if len(names) != (len(self.keys) * times): raise ValueError( "len(names) must match len(keys) * times, " f"got len(names)={len(names)} len(keys) * times={len(self.keys) * times}." ) self.names = names def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: """ Raises: KeyError: When a key in ``self.names`` already exists in ``data``. """ d = dict(data) key_len = len(self.keys) for i in range(self.times): for key, new_key in self.key_iterator(d, self.names[i * key_len : (i + 1) * key_len]): if new_key in d: raise KeyError(f"Key {new_key} already exists in data.") val = d[key] if isinstance(val, torch.Tensor): d[new_key] = val.detach().clone() else: d[new_key] = deepcopy(val) return d class ConcatItemsd(MapTransform): """ Concatenate specified items from data dictionary together on the first dim to construct a big array. Expect all the items are numpy array or PyTorch Tensor. """ backend = [TransformBackends.TORCH, TransformBackends.NUMPY] def __init__(self, keys: KeysCollection, name: str, dim: int = 0, allow_missing_keys: bool = False) -> None: """ Args: keys: keys of the corresponding items to be concatenated together. See also: :py:class:`monai.transforms.compose.MapTransform` name: the name corresponding to the key to store the concatenated data. dim: on which dimension to concatenate the items, default is 0. allow_missing_keys: don't raise exception if key is missing. """ super().__init__(keys, allow_missing_keys) self.name = name self.dim = dim def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: """ Raises: TypeError: When items in ``data`` differ in type. TypeError: When the item type is not in ``Union[numpy.ndarray, torch.Tensor]``. """ d = dict(data) output = [] data_type = None for key in self.key_iterator(d): if data_type is None: data_type = type(d[key]) elif not isinstance(d[key], data_type): raise TypeError("All items in data must have the same type.") output.append(d[key]) if len(output) == 0: return d if data_type is np.ndarray: d[self.name] = np.concatenate(output, axis=self.dim) elif data_type is torch.Tensor: d[self.name] = torch.cat(output, dim=self.dim) # type: ignore else: raise TypeError(f"Unsupported data type: {data_type}, available options are (numpy.ndarray, torch.Tensor).") return d class Lambdad(MapTransform, InvertibleTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.Lambda`. For example: .. code-block:: python :emphasize-lines: 2 input_data={'image': np.zeros((10, 2, 2)), 'label': np.ones((10, 2, 2))} lambd = Lambdad(keys='label', func=lambda x: x[:4, :, :]) print(lambd(input_data)['label'].shape) (4, 2, 2) Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` func: Lambda/function to be applied. It also can be a sequence of Callable, each element corresponds to a key in ``keys``. inv_func: Lambda/function of inverse operation if want to invert transforms, default to `lambda x: x`. It also can be a sequence of Callable, each element corresponds to a key in ``keys``. overwrite: whether to overwrite the original data in the input dictionary with lamdbda function output. default to True. it also can be a sequence of bool, each element corresponds to a key in ``keys``. allow_missing_keys: don't raise exception if key is missing. Note: The inverse operation doesn't allow to define `extra_info` or access other information, such as the image's original size. If need these complicated information, please write a new InvertibleTransform directly. """ backend = Lambda.backend def __init__( self, keys: KeysCollection, func: Union[Sequence[Callable], Callable], inv_func: Union[Sequence[Callable], Callable] = no_collation, overwrite: Union[Sequence[bool], bool] = True, allow_missing_keys: bool = False, ) -> None: super().__init__(keys, allow_missing_keys) self.func = ensure_tuple_rep(func, len(self.keys)) self.inv_func = ensure_tuple_rep(inv_func, len(self.keys)) self.overwrite = ensure_tuple_rep(overwrite, len(self.keys)) self._lambd = Lambda() def _transform(self, data: Any, func: Callable): return self._lambd(data, func=func) def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: d = dict(data) for key, func, overwrite in self.key_iterator(d, self.func, self.overwrite): ret = self._transform(data=d[key], func=func) if overwrite: d[key] = ret self.push_transform(d, key) return d def _inverse_transform(self, transform_info: Dict, data: Any, func: Callable): return self._lambd(data, func=func) def inverse(self, data): d = deepcopy(dict(data)) for key, inv_func, overwrite in self.key_iterator(d, self.inv_func, self.overwrite): transform = self.get_most_recent_transform(d, key) ret = self._inverse_transform(transform_info=transform, data=d[key], func=inv_func) if overwrite: d[key] = ret self.pop_transform(d, key) return d class RandLambdad(Lambdad, RandomizableTransform): """ Randomizable version :py:class:`monai.transforms.Lambdad`, the input `func` may contain random logic, or randomly execute the function based on `prob`. so `CacheDataset` will not execute it and cache the results. Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` func: Lambda/function to be applied. It also can be a sequence of Callable, each element corresponds to a key in ``keys``. inv_func: Lambda/function of inverse operation if want to invert transforms, default to `lambda x: x`. It also can be a sequence of Callable, each element corresponds to a key in ``keys``. overwrite: whether to overwrite the original data in the input dictionary with lamdbda function output. default to True. it also can be a sequence of bool, each element corresponds to a key in ``keys``. prob: probability of executing the random function, default to 1.0, with 100% probability to execute. note that all the data specified by `keys` will share the same random probability to execute or not. allow_missing_keys: don't raise exception if key is missing. For more details, please check :py:class:`monai.transforms.Lambdad`. Note: The inverse operation doesn't allow to define `extra_info` or access other information, such as the image's original size. If need these complicated information, please write a new InvertibleTransform directly. """ backend = Lambda.backend def __init__( self, keys: KeysCollection, func: Union[Sequence[Callable], Callable], inv_func: Union[Sequence[Callable], Callable] = no_collation, overwrite: Union[Sequence[bool], bool] = True, prob: float = 1.0, allow_missing_keys: bool = False, ) -> None: Lambdad.__init__( self=self, keys=keys, func=func, inv_func=inv_func, overwrite=overwrite, allow_missing_keys=allow_missing_keys, ) RandomizableTransform.__init__(self=self, prob=prob, do_transform=True) def _transform(self, data: Any, func: Callable): return self._lambd(data, func=func) if self._do_transform else data def __call__(self, data): self.randomize(data) return super().__call__(data) def _inverse_transform(self, transform_info: Dict, data: Any, func: Callable): return self._lambd(data, func=func) if transform_info[TraceKeys.DO_TRANSFORM] else data class LabelToMaskd(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.LabelToMask`. Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` select_labels: labels to generate mask from. for 1 channel label, the `select_labels` is the expected label values, like: [1, 2, 3]. for One-Hot format label, the `select_labels` is the expected channel indices. merge_channels: whether to use `np.any()` to merge the result on channel dim. if yes, will return a single channel mask with binary data. allow_missing_keys: don't raise exception if key is missing. """ backend = LabelToMask.backend def __init__( # pytype: disable=annotation-type-mismatch self, keys: KeysCollection, select_labels: Union[Sequence[int], int], merge_channels: bool = False, allow_missing_keys: bool = False, ) -> None: # pytype: disable=annotation-type-mismatch super().__init__(keys, allow_missing_keys) self.converter = LabelToMask(select_labels=select_labels, merge_channels=merge_channels) def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: d = dict(data) for key in self.key_iterator(d): d[key] = self.converter(d[key]) return d class FgBgToIndicesd(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.FgBgToIndices`. Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` fg_postfix: postfix to save the computed foreground indices in dict. for example, if computed on `label` and `postfix = "_fg_indices"`, the key will be `label_fg_indices`. bg_postfix: postfix to save the computed background indices in dict. for example, if computed on `label` and `postfix = "_bg_indices"`, the key will be `label_bg_indices`. image_key: if image_key is not None, use ``label == 0 & image > image_threshold`` to determine the negative sample(background). so the output items will not map to all the voxels in the label. image_threshold: if enabled image_key, use ``image > image_threshold`` to determine the valid image content area and select background only in this area. output_shape: expected shape of output indices. if not None, unravel indices to specified shape. allow_missing_keys: don't raise exception if key is missing. """ backend = FgBgToIndices.backend def __init__( self, keys: KeysCollection, fg_postfix: str = "_fg_indices", bg_postfix: str = "_bg_indices", image_key: Optional[str] = None, image_threshold: float = 0.0, output_shape: Optional[Sequence[int]] = None, allow_missing_keys: bool = False, ) -> None: super().__init__(keys, allow_missing_keys) self.fg_postfix = fg_postfix self.bg_postfix = bg_postfix self.image_key = image_key self.converter = FgBgToIndices(image_threshold, output_shape) def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: d = dict(data) image = d[self.image_key] if self.image_key else None for key in self.key_iterator(d): d[str(key) + self.fg_postfix], d[str(key) + self.bg_postfix] = self.converter(d[key], image) return d class ClassesToIndicesd(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.ClassesToIndices`. Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` indices_postfix: postfix to save the computed indices of all classes in dict. for example, if computed on `label` and `postfix = "_cls_indices"`, the key will be `label_cls_indices`. num_classes: number of classes for argmax label, not necessary for One-Hot label. image_key: if image_key is not None, use ``image > image_threshold`` to define valid region, and only select the indices within the valid region. image_threshold: if enabled image_key, use ``image > image_threshold`` to determine the valid image content area and select only the indices of classes in this area. output_shape: expected shape of output indices. if not None, unravel indices to specified shape. allow_missing_keys: don't raise exception if key is missing. """ backend = ClassesToIndices.backend def __init__( self, keys: KeysCollection, indices_postfix: str = "_cls_indices", num_classes: Optional[int] = None, image_key: Optional[str] = None, image_threshold: float = 0.0, output_shape: Optional[Sequence[int]] = None, allow_missing_keys: bool = False, ) -> None: super().__init__(keys, allow_missing_keys) self.indices_postfix = indices_postfix self.image_key = image_key self.converter = ClassesToIndices(num_classes, image_threshold, output_shape) def __call__(self, data: Mapping[Hashable, Any]): d = dict(data) image = d[self.image_key] if self.image_key else None for key in self.key_iterator(d): d[str(key) + self.indices_postfix] = self.converter(d[key], image) return d class ConvertToMultiChannelBasedOnBratsClassesd(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.ConvertToMultiChannelBasedOnBratsClasses`. Convert labels to multi channels based on brats18 classes: label 1 is the necrotic and non-enhancing tumor core label 2 is the the peritumoral edema label 4 is the GD-enhancing tumor The possible classes are TC (Tumor core), WT (Whole tumor) and ET (Enhancing tumor). """ backend = ConvertToMultiChannelBasedOnBratsClasses.backend def __init__(self, keys: KeysCollection, allow_missing_keys: bool = False): super().__init__(keys, allow_missing_keys) self.converter = ConvertToMultiChannelBasedOnBratsClasses() def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: d = dict(data) for key in self.key_iterator(d): d[key] = self.converter(d[key]) return d class AddExtremePointsChanneld(Randomizable, MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.AddExtremePointsChannel`. Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` label_key: key to label source to get the extreme points. background: Class index of background label, defaults to 0. pert: Random perturbation amount to add to the points, defaults to 0.0. sigma: if a list of values, must match the count of spatial dimensions of input data, and apply every value in the list to 1 spatial dimension. if only 1 value provided, use it for all spatial dimensions. rescale_min: minimum value of output data. rescale_max: maximum value of output data. allow_missing_keys: don't raise exception if key is missing. """ backend = AddExtremePointsChannel.backend def __init__( self, keys: KeysCollection, label_key: str, background: int = 0, pert: float = 0.0, sigma: Union[Sequence[float], float, Sequence[torch.Tensor], torch.Tensor] = 3.0, rescale_min: float = -1.0, rescale_max: float = 1.0, allow_missing_keys: bool = False, ): MapTransform.__init__(self, keys, allow_missing_keys) self.background = background self.pert = pert self.points: List[Tuple[int, ...]] = [] self.label_key = label_key self.sigma = sigma self.rescale_min = rescale_min self.rescale_max = rescale_max def randomize(self, label: NdarrayOrTensor) -> None: self.points = get_extreme_points(label, rand_state=self.R, background=self.background, pert=self.pert) def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: d = dict(data) label = d[self.label_key] if label.shape[0] != 1: raise ValueError("Only supports single channel labels!") # Generate extreme points self.randomize(label[0, :]) for key in self.key_iterator(d): img = d[key] points_image = extreme_points_to_image( points=self.points, label=label, sigma=self.sigma, rescale_min=self.rescale_min, rescale_max=self.rescale_max, ) points_image, *_ = convert_to_dst_type(points_image, img) # type: ignore d[key] = concatenate([img, points_image], axis=0) return d class TorchVisiond(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.TorchVision` for non-randomized transforms. For randomized transforms of TorchVision use :py:class:`monai.transforms.RandTorchVisiond`. Note: As most of the TorchVision transforms only work for PIL image and PyTorch Tensor, this transform expects input data to be dict of PyTorch Tensors, users can easily call `ToTensord` transform to convert Numpy to Tensor. """ backend = TorchVision.backend def __init__(self, keys: KeysCollection, name: str, allow_missing_keys: bool = False, *args, **kwargs) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` name: The transform name in TorchVision package. allow_missing_keys: don't raise exception if key is missing. args: parameters for the TorchVision transform. kwargs: parameters for the TorchVision transform. """ super().__init__(keys, allow_missing_keys) self.trans = TorchVision(name, *args, **kwargs) def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: d = dict(data) for key in self.key_iterator(d): d[key] = self.trans(d[key]) return d class RandTorchVisiond(Randomizable, MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.TorchVision` for randomized transforms. For deterministic non-randomized transforms of TorchVision use :py:class:`monai.transforms.TorchVisiond`. Note: - As most of the TorchVision transforms only work for PIL image and PyTorch Tensor, this transform expects input data to be dict of PyTorch Tensors, users can easily call `ToTensord` transform to convert Numpy to Tensor. - This class inherits the ``Randomizable`` purely to prevent any dataset caching to skip the transform computation. If the random factor of the underlying torchvision transform is not derived from `self.R`, the results may not be deterministic. See Also: :py:class:`monai.transforms.Randomizable`. """ backend = TorchVision.backend def __init__(self, keys: KeysCollection, name: str, allow_missing_keys: bool = False, *args, **kwargs) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` name: The transform name in TorchVision package. allow_missing_keys: don't raise exception if key is missing. args: parameters for the TorchVision transform. kwargs: parameters for the TorchVision transform. """ MapTransform.__init__(self, keys, allow_missing_keys) self.trans = TorchVision(name, *args, **kwargs) def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: d = dict(data) for key in self.key_iterator(d): d[key] = self.trans(d[key]) return d class MapLabelValued(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.MapLabelValue`. """ backend = MapLabelValue.backend def __init__( self, keys: KeysCollection, orig_labels: Sequence, target_labels: Sequence, dtype: DtypeLike = np.float32, allow_missing_keys: bool = False, ) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` orig_labels: original labels that map to others. target_labels: expected label values, 1: 1 map to the `orig_labels`. dtype: convert the output data to dtype, default to float32. allow_missing_keys: don't raise exception if key is missing. """ super().__init__(keys, allow_missing_keys) self.mapper = MapLabelValue(orig_labels=orig_labels, target_labels=target_labels, dtype=dtype) def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]: d = dict(data) for key in self.key_iterator(d): d[key] = self.mapper(d[key]) return d class IntensityStatsd(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.IntensityStats`. Compute statistics for the intensity values of input image and store into the meta data dictionary. For example: if `ops=[lambda x: np.mean(x), "max"]` and `key_prefix="orig"`, may generate below stats: `{"orig_custom_0": 1.5, "orig_max": 3.0}`. Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` ops: expected operations to compute statistics for the intensity. if a string, will map to the predefined operations, supported: ["mean", "median", "max", "min", "std"] mapping to `np.nanmean`, `np.nanmedian`, `np.nanmax`, `np.nanmin`, `np.nanstd`. if a callable function, will execute the function on input image. key_prefix: the prefix to combine with `ops` name to generate the key to store the results in the meta data dictionary. if some `ops` are callable functions, will use "{key_prefix}_custom_{index}" as the key, where index counts from 0. mask_keys: if not None, specify the mask array for the image to extract only the interested area to compute statistics, mask must have the same shape as the image. it should be a sequence of strings or None, map to the `keys`. channel_wise: whether to compute statistics for every channel of input image separately. if True, return a list of values for every operation, default to False. meta_keys: explicitly indicate the key of the corresponding meta data dictionary. used to store the computed statistics to the meta dict. for example, for data with key `image`, the metadata by default is in `image_meta_dict`. the meta data is a dictionary object which contains: filename, original_shape, etc. it can be a sequence of string, map to the `keys`. if None, will try to construct meta_keys by `key_{meta_key_postfix}`. meta_key_postfix: if meta_keys is None, use `key_{postfix}` to to fetch the meta data according to the key data, default is `meta_dict`, the meta data is a dictionary object. used to store the computed statistics to the meta dict. allow_missing_keys: don't raise exception if key is missing. """ backend = IntensityStats.backend def __init__( self, keys: KeysCollection, ops: Sequence[Union[str, Callable]], key_prefix: str, mask_keys: Optional[KeysCollection] = None, channel_wise: bool = False, meta_keys: Optional[KeysCollection] = None, meta_key_postfix: str = "meta_dict", allow_missing_keys: bool = False, ) -> None: super().__init__(keys, allow_missing_keys) self.stats = IntensityStats(ops=ops, key_prefix=key_prefix, channel_wise=channel_wise) self.mask_keys = ensure_tuple_rep(None, len(self.keys)) if mask_keys is None else ensure_tuple(mask_keys) self.meta_keys = ensure_tuple_rep(None, len(self.keys)) if meta_keys is None else ensure_tuple(meta_keys) if len(self.keys) != len(self.meta_keys): raise ValueError("meta_keys should have the same length as keys.") self.meta_key_postfix = ensure_tuple_rep(meta_key_postfix, len(self.keys)) def __call__(self, data) -> Dict[Hashable, NdarrayOrTensor]: d = dict(data) for key, mask_key, meta_key, meta_key_postfix in self.key_iterator( d, self.mask_keys, self.meta_keys, self.meta_key_postfix ): meta_key = meta_key or f"{key}_{meta_key_postfix}" d[key], d[meta_key] = self.stats( img=d[key], meta_data=d.get(meta_key), mask=d.get(mask_key) if mask_key is not None else None ) return d class ToDeviced(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.ToDevice`. """ backend = ToDevice.backend def __init__( self, keys: KeysCollection, device: Union[torch.device, str], allow_missing_keys: bool = False, **kwargs ) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` device: target device to move the Tensor, for example: "cuda:1". allow_missing_keys: don't raise exception if key is missing. kwargs: other args for the PyTorch `Tensor.to()` API, for more details: https://pytorch.org/docs/stable/generated/torch.Tensor.to.html. """ super().__init__(keys, allow_missing_keys) self.converter = ToDevice(device=device, **kwargs) def __call__(self, data: Mapping[Hashable, torch.Tensor]) -> Dict[Hashable, torch.Tensor]: d = dict(data) for key in self.key_iterator(d): d[key] = self.converter(d[key]) return d class CuCIMd(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.CuCIM` for non-randomized transforms. For randomized transforms of CuCIM use :py:class:`monai.transforms.RandCuCIMd`. Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` name: The transform name in CuCIM package. allow_missing_keys: don't raise exception if key is missing. args: parameters for the CuCIM transform. kwargs: parameters for the CuCIM transform. Note: CuCIM transforms only work with CuPy arrays, this transform expects input data to be `cupy.ndarray`. Users can call `ToCuPy` transform to convert a numpy array or torch tensor to cupy array. """ def __init__(self, keys: KeysCollection, name: str, allow_missing_keys: bool = False, *args, **kwargs) -> None: super().__init__(keys=keys, allow_missing_keys=allow_missing_keys) self.trans = CuCIM(name, *args, **kwargs) def __call__(self, data): """ Args: data: Dict[Hashable, `cupy.ndarray`] Returns: Dict[Hashable, `cupy.ndarray`] """ d = dict(data) for key in self.key_iterator(d): d[key] = self.trans(d[key]) return d class RandCuCIMd(CuCIMd, RandomizableTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.CuCIM` for randomized transforms. For deterministic non-randomized transforms of CuCIM use :py:class:`monai.transforms.CuCIMd`. Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` name: The transform name in CuCIM package. apply_prob: the probability to apply the transform (default=1.0) allow_missing_keys: don't raise exception if key is missing. args: parameters for the CuCIM transform. kwargs: parameters for the CuCIM transform. Note: - CuCIM transform only work with CuPy arrays, so this transform expects input data to be `cupy.ndarray`. Users can call `ToCuPy` transform to convert a numpy array or torch tensor to cupy array. - If the cuCIM transform is already randomized the `apply_prob` argument has nothing to do with the randomness of the underlying cuCIM transform. `apply_prob` defines if the transform (either randomized or non-randomized) being applied randomly, so it can apply non-randomized tranforms randomly but be careful with setting `apply_prob` to anything than 1.0 when using along with cuCIM's randomized transforms. - If the random factor of the underlying cuCIM transform is not derived from `self.R`, the results may not be deterministic. See Also: :py:class:`monai.transforms.Randomizable`. """ def __init__(self, apply_prob: float = 1.0, *args, **kwargs) -> None: CuCIMd.__init__(self, *args, **kwargs) RandomizableTransform.__init__(self, prob=apply_prob) def __call__(self, data): """ Args: data: Dict[Hashable, `cupy.ndarray`] Returns: Dict[Hashable, `cupy.ndarray`] """ self.randomize(data) if not self._do_transform: return dict(data) return super().__call__(data) IdentityD = IdentityDict = Identityd AsChannelFirstD = AsChannelFirstDict = AsChannelFirstd AsChannelLastD = AsChannelLastDict = AsChannelLastd AddChannelD = AddChannelDict = AddChanneld EnsureChannelFirstD = EnsureChannelFirstDict = EnsureChannelFirstd RemoveRepeatedChannelD = RemoveRepeatedChannelDict = RemoveRepeatedChanneld RepeatChannelD = RepeatChannelDict = RepeatChanneld SplitChannelD = SplitChannelDict = SplitChanneld CastToTypeD = CastToTypeDict = CastToTyped ToTensorD = ToTensorDict = ToTensord EnsureTypeD = EnsureTypeDict = EnsureTyped ToNumpyD = ToNumpyDict = ToNumpyd ToCupyD = ToCupyDict = ToCupyd ToPILD = ToPILDict = ToPILd TransposeD = TransposeDict = Transposed DeleteItemsD = DeleteItemsDict = DeleteItemsd SelectItemsD = SelectItemsDict = SelectItemsd SqueezeDimD = SqueezeDimDict = SqueezeDimd DataStatsD = DataStatsDict = DataStatsd SimulateDelayD = SimulateDelayDict = SimulateDelayd CopyItemsD = CopyItemsDict = CopyItemsd ConcatItemsD = ConcatItemsDict = ConcatItemsd LambdaD = LambdaDict = Lambdad LabelToMaskD = LabelToMaskDict = LabelToMaskd FgBgToIndicesD = FgBgToIndicesDict = FgBgToIndicesd ClassesToIndicesD = ClassesToIndicesDict = ClassesToIndicesd ConvertToMultiChannelBasedOnBratsClassesD = ( ConvertToMultiChannelBasedOnBratsClassesDict ) = ConvertToMultiChannelBasedOnBratsClassesd AddExtremePointsChannelD = AddExtremePointsChannelDict = AddExtremePointsChanneld TorchVisionD = TorchVisionDict = TorchVisiond RandTorchVisionD = RandTorchVisionDict = RandTorchVisiond RandLambdaD = RandLambdaDict = RandLambdad MapLabelValueD = MapLabelValueDict = MapLabelValued IntensityStatsD = IntensityStatsDict = IntensityStatsd ToDeviceD = ToDeviceDict = ToDeviced CuCIMD = CuCIMDict = CuCIMd RandCuCIMD = RandCuCIMDict = RandCuCIMd
the-stack_0_11989
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import numpy as np import unittest from paddle.jit import to_static, ProgramTranslator class NetWithParameterList(paddle.nn.Layer): def __init__(self, in_size, out_size): super(NetWithParameterList, self).__init__() weight = self.create_parameter([in_size, out_size]) bias = self.create_parameter([out_size], is_bias=True) self.params = paddle.nn.ParameterList([weight, bias]) @to_static def forward(self, x): out = paddle.matmul(x, self.params[0]) out = paddle.add(out, self.params[1]) out = paddle.tanh(out) return out class NetWithParameterListIter(NetWithParameterList): def __init__(self, in_size, out_size): super(NetWithParameterListIter, self).__init__(in_size, out_size) @to_static def forward(self, x): # NOTE: manually trigger `__iter__` logic. params = list(self.params.__iter__()) out = paddle.matmul(x, params[0]) out = paddle.add(out, params[1]) out = paddle.tanh(out) return out class TestParameterList(unittest.TestCase): def setUp(self): self.seed = 2021 self.iter_num = 5 self.prog_trans = ProgramTranslator() def train(self, is_iter, to_static): paddle.seed(self.seed) np.random.seed(self.seed) self.prog_trans.enable(to_static) if is_iter: net = NetWithParameterList(10, 3) else: net = NetWithParameterListIter(10, 3) sgd = paddle.optimizer.SGD(0.1, parameters=net.parameters()) for batch_id in range(self.iter_num): x = paddle.rand([4, 10], dtype='float32') out = net(x) loss = paddle.mean(out) loss.backward() sgd.step() sgd.clear_grad() return loss def test_parameter_list(self): static_loss = self.train(False, to_static=True) dygraph_loss = self.train(False, to_static=False) self.assertTrue(np.allclose(dygraph_loss, static_loss), msg='dygraph result is {}\nstatic result is {}'.format( dygraph_loss, static_loss)) def test_parameter_list_iter(self): static_loss = self.train(True, to_static=True) dygraph_loss = self.train(True, to_static=False) self.assertTrue(np.allclose(dygraph_loss, static_loss), msg='dygraph result is {}\nstatic result is {}'.format( dygraph_loss, static_loss)) class NetWithRawParamList(paddle.nn.Layer): def __init__(self, in_size, out_size): super(NetWithRawParamList, self).__init__() weight = self.add_parameter('w', self.create_parameter([in_size, out_size])) bias = self.add_parameter( 'b', self.create_parameter([out_size], is_bias=True)) self.params = [weight] self.bias_dict = {'b': bias} @to_static def forward(self, x): out = paddle.matmul(x, self.params[0]) out = paddle.add(out, self.bias_dict['b']) out = paddle.tanh(out) return out class TestRawParameterList(unittest.TestCase): def setUp(self): self.seed = 2021 self.iter_num = 5 self.prog_trans = ProgramTranslator() def init_net(self): self.net = NetWithRawParamList(10, 3) def train(self, to_static): paddle.seed(self.seed) np.random.seed(self.seed) self.prog_trans.enable(to_static) self.init_net() sgd = paddle.optimizer.SGD(0.1, parameters=self.net.parameters()) for batch_id in range(self.iter_num): x = paddle.rand([4, 10], dtype='float32') out = self.net(x) loss = paddle.mean(out) loss.backward() sgd.step() sgd.clear_grad() return loss def test_parameter_list(self): static_loss = self.train(to_static=True) dygraph_loss = self.train(to_static=False) self.assertTrue(np.allclose(dygraph_loss, static_loss), msg='dygraph result is {}\nstatic result is {}'.format( dygraph_loss, static_loss)) class NetWithSubLayerParamList(paddle.nn.Layer): def __init__(self, sub_layer): super(NetWithSubLayerParamList, self).__init__() self.sub_layer = sub_layer self.params = [sub_layer.weight] self.bias_dict = {'b': sub_layer.bias} @to_static def forward(self, x): out = paddle.matmul(x, self.params[0]) out = paddle.add(out, self.bias_dict['b']) out = paddle.tanh(out) return out class TestSubLayerParameterList(TestRawParameterList): def init_net(self): fc = paddle.nn.Linear(10, 3) self.net = NetWithSubLayerParamList(fc) if __name__ == '__main__': unittest.main()
the-stack_0_11992
import copy from django.conf import settings from olympia.constants.promoted import RECOMMENDED import olympia.core.logger from olympia import amo from olympia.amo.utils import attach_trans_dict from olympia.amo.celery import create_chunked_tasks_signatures from olympia.amo.utils import to_language from olympia.constants.search import SEARCH_LANGUAGE_TO_ANALYZER from olympia.lib.es.utils import create_index from olympia.versions.compare import version_int log = olympia.core.logger.getLogger('z.es') class AddonIndexer: """ Base Indexer class for add-ons. """ @classmethod def attach_translation_mappings(cls, mapping, field_names): """ For each field in field_names, attach a dict to the ES mapping properties making "<field_name>_translations" an object containing "string" and "lang" as non-indexed strings. Used to store non-indexed, non-analyzed translations in ES that will be sent back by the API for each item. It does not take care of the indexed content for search, it's there only to store and return raw translations. """ for field_name in field_names: # _translations is the suffix in TranslationSerializer. mapping['properties'][ '%s_translations' % field_name ] = cls.get_translations_definition() @classmethod def get_translations_definition(cls): """ Return the mapping to use for raw translations (to be returned directly by the API, not used for analysis). See attach_translation_mappings() for more information. """ return { 'type': 'object', 'properties': { 'lang': {'type': 'text', 'index': False}, 'string': {'type': 'text', 'index': False}, }, } @classmethod def get_raw_field_definition(cls): """ Return the mapping to use for the "raw" version of a field. Meant to be used as part of a 'fields': {'raw': ... } definition in the mapping of an existing field. Used for exact matches and sorting """ # It needs to be a keyword to turnoff all analysis ; that means we # don't get the lowercase filter applied by the standard & # language-specific analyzers, so we need to do that ourselves through # a custom normalizer for exact matches to work in a case-insensitive # way. return { 'type': 'keyword', 'normalizer': 'lowercase_keyword_normalizer', } @classmethod def attach_language_specific_analyzers(cls, mapping, field_names): """ For each field in field_names, attach language-specific mappings that will use specific analyzers for these fields in every language that we support. These mappings are used by the search filtering code if they exist. """ for lang, analyzer in SEARCH_LANGUAGE_TO_ANALYZER.items(): for field in field_names: property_name = '%s_l10n_%s' % (field, lang) mapping['properties'][property_name] = { 'type': 'text', 'analyzer': analyzer, } @classmethod def attach_language_specific_analyzers_with_raw_variant(cls, mapping, field_names): """ Like attach_language_specific_analyzers() but with an extra field to storethe "raw" variant of the value, for exact matches. """ for lang, analyzer in SEARCH_LANGUAGE_TO_ANALYZER.items(): for field in field_names: property_name = '%s_l10n_%s' % (field, lang) mapping['properties'][property_name] = { 'type': 'text', 'analyzer': analyzer, 'fields': { 'raw': cls.get_raw_field_definition(), }, } @classmethod def extract_field_api_translations(cls, obj, field, db_field=None): """ Returns a dict containing translations that we need to store for the API. Empty translations are skipped entirely. """ if db_field is None: db_field = '%s_id' % field extend_with_me = { '%s_translations' % field: [ {'lang': to_language(lang), 'string': str(string)} for lang, string in obj.translations[getattr(obj, db_field)] if string ] } return extend_with_me @classmethod def extract_field_search_translation(cls, obj, field, default_locale): """ Returns the translation for this field in the object's default locale, in the form a dict with one entry (the field being the key and the translation being the value, or an empty string if none was found). That field will be analyzed and indexed by ES *without* language-specific analyzers. """ translations = dict(obj.translations[getattr(obj, '%s_id' % field)]) default_locale = default_locale.lower() if default_locale else None value = translations.get(default_locale, getattr(obj, field)) return {field: str(value) if value else ''} @classmethod def extract_field_analyzed_translations(cls, obj, field, db_field=None): """ Returns a dict containing translations for each language that we have an analyzer for, for the given field. When no translation exist for a given language+field combo, the value returned is an empty string, to avoid storing the word "None" as the field does not understand null values. """ if db_field is None: db_field = '%s_id' % field translations = dict(obj.translations[getattr(obj, db_field)]) return { '%s_l10n_%s' % (field, lang): translations.get(lang) or '' for lang in SEARCH_LANGUAGE_TO_ANALYZER } # Fields we don't need to expose in the results, only used for filtering # or sorting. hidden_fields = ( '*.raw', 'boost', 'colors', 'hotness', # Translated content that is used for filtering purposes is stored # under 3 different fields: # - One field with all translations (e.g., "name"). # - One field for each language, using corresponding analyzer # (e.g., "name_l10n_en-us", "name_l10n_fr", etc.) # - One field with all translations in separate objects for the API # (e.g. "name_translations") # Only that last one with all translations needs to be returned. 'name', 'description', 'name_l10n_*', 'description_l10n_*', 'summary', 'summary_l10n_*', ) index_settings = { 'analysis': { 'analyzer': { 'standard_with_word_split': { # This analyzer tries to split the text into words by using # various methods. It also lowercases them and make sure # each token is only returned once. # Only use for short things with extremely meaningful # content like add-on name - it makes too many # modifications to be useful for things like descriptions, # for instance. 'tokenizer': 'standard', 'filter': [ 'custom_word_delimiter', 'lowercase', 'stop', 'custom_dictionary_decompounder', 'unique', ], }, 'trigram': { # Analyzer that splits the text into trigrams. 'tokenizer': 'ngram_tokenizer', 'filter': [ 'lowercase', ], }, }, 'tokenizer': { 'ngram_tokenizer': { 'type': 'ngram', 'min_gram': 3, 'max_gram': 3, 'token_chars': ['letter', 'digit'], } }, 'normalizer': { 'lowercase_keyword_normalizer': { # By default keywords are indexed 'as-is', but for exact # name matches we need to lowercase them before indexing, # so this normalizer does that for us. 'type': 'custom', 'filter': ['lowercase'], }, }, 'filter': { 'custom_word_delimiter': { # This filter is useful for add-on names that have multiple # words sticked together in a way that is easy to # recognize, like FooBar, which should be indexed as FooBar # and Foo Bar. (preserve_original: True makes us index both # the original and the split version.) 'type': 'word_delimiter', 'preserve_original': True, }, 'custom_dictionary_decompounder': { # This filter is also useful for add-on names that have # multiple words sticked together, but without a pattern # that we can automatically recognize. To deal with those, # we use a small dictionary of common words. It allows us # to index 'awesometabpassword' as 'awesome tab password', # helping users looking for 'tab password' find that addon. 'type': 'dictionary_decompounder', 'word_list': [ 'all', 'auto', 'ball', 'bar', 'block', 'blog', 'bookmark', 'browser', 'bug', 'button', 'cat', 'chat', 'click', 'clip', 'close', 'color', 'context', 'cookie', 'cool', 'css', 'delete', 'dictionary', 'down', 'download', 'easy', 'edit', 'fill', 'fire', 'firefox', 'fix', 'flag', 'flash', 'fly', 'forecast', 'fox', 'foxy', 'google', 'grab', 'grease', 'html', 'http', 'image', 'input', 'inspect', 'inspector', 'iris', 'js', 'key', 'keys', 'lang', 'link', 'mail', 'manager', 'map', 'mega', 'menu', 'menus', 'monkey', 'name', 'net', 'new', 'open', 'password', 'persona', 'privacy', 'query', 'screen', 'scroll', 'search', 'secure', 'select', 'smart', 'spring', 'status', 'style', 'super', 'sync', 'tab', 'text', 'think', 'this', 'time', 'title', 'translate', 'tree', 'undo', 'upload', 'url', 'user', 'video', 'window', 'with', 'word', 'zilla', ], }, }, } } @classmethod def get_model(cls): from olympia.addons.models import Addon return Addon @classmethod def get_index_alias(cls): """Return the index alias name.""" return settings.ES_INDEXES.get('default') @classmethod def get_mapping(cls): appver_mapping = { 'properties': { 'max': {'type': 'long'}, 'min': {'type': 'long'}, 'max_human': {'type': 'keyword', 'index': False}, 'min_human': {'type': 'keyword', 'index': False}, } } version_mapping = { 'type': 'object', 'properties': { 'compatible_apps': { 'properties': {app.id: appver_mapping for app in amo.APP_USAGE} }, # Keep '<version>.id' indexed to be able to run exists queries # on it. 'id': {'type': 'long'}, 'reviewed': {'type': 'date', 'index': False}, 'files': { 'type': 'object', 'properties': { 'id': {'type': 'long', 'index': False}, 'created': {'type': 'date', 'index': False}, 'hash': {'type': 'keyword', 'index': False}, 'filename': {'type': 'keyword', 'index': False}, 'is_mozilla_signed_extension': {'type': 'boolean'}, 'size': {'type': 'long', 'index': False}, 'strict_compatibility': {'type': 'boolean', 'index': False}, 'status': {'type': 'byte'}, 'permissions': {'type': 'keyword', 'index': False}, 'optional_permissions': {'type': 'keyword', 'index': False}, }, }, 'license': { 'type': 'object', 'properties': { 'id': {'type': 'long', 'index': False}, 'builtin': {'type': 'short', 'index': False}, 'name_translations': cls.get_translations_definition(), 'url': {'type': 'text', 'index': False}, }, }, 'release_notes_translations': cls.get_translations_definition(), 'version': {'type': 'keyword', 'index': False}, }, } mapping = { 'properties': { 'id': {'type': 'long'}, 'app': {'type': 'byte'}, 'average_daily_users': {'type': 'long'}, 'bayesian_rating': {'type': 'double'}, 'boost': {'type': 'float', 'null_value': 1.0}, 'category': {'type': 'integer'}, 'colors': { 'type': 'nested', 'properties': { 'h': {'type': 'integer'}, 's': {'type': 'integer'}, 'l': {'type': 'integer'}, 'ratio': {'type': 'double'}, }, }, 'contributions': {'type': 'text'}, 'created': {'type': 'date'}, 'current_version': version_mapping, 'default_locale': {'type': 'keyword', 'index': False}, 'description': {'type': 'text', 'analyzer': 'snowball'}, 'guid': {'type': 'keyword'}, 'has_eula': {'type': 'boolean', 'index': False}, 'has_privacy_policy': {'type': 'boolean', 'index': False}, 'hotness': {'type': 'double'}, 'icon_hash': {'type': 'keyword', 'index': False}, 'icon_type': {'type': 'keyword', 'index': False}, 'is_disabled': {'type': 'boolean'}, 'is_experimental': {'type': 'boolean'}, 'is_recommended': {'type': 'boolean'}, 'last_updated': {'type': 'date'}, 'listed_authors': { 'type': 'object', 'properties': { 'id': {'type': 'long'}, 'name': {'type': 'text'}, 'username': {'type': 'keyword'}, 'is_public': {'type': 'boolean', 'index': False}, }, }, 'modified': {'type': 'date', 'index': False}, 'name': { 'type': 'text', # Adding word-delimiter to split on camelcase, known # words like 'tab', and punctuation, and eliminate # duplicates. 'analyzer': 'standard_with_word_split', 'fields': { # Raw field for exact matches and sorting. 'raw': cls.get_raw_field_definition(), # Trigrams for partial matches. 'trigrams': { 'type': 'text', 'analyzer': 'trigram', }, }, }, 'previews': { 'type': 'object', 'properties': { 'id': {'type': 'long', 'index': False}, 'caption_translations': cls.get_translations_definition(), 'modified': {'type': 'date', 'index': False}, 'position': {'type': 'long', 'index': False}, 'sizes': { 'type': 'object', 'properties': { 'thumbnail': {'type': 'short', 'index': False}, 'image': {'type': 'short', 'index': False}, }, }, }, }, 'promoted': { 'type': 'object', 'properties': { 'group_id': {'type': 'byte'}, 'approved_for_apps': {'type': 'byte'}, }, }, 'ratings': { 'type': 'object', 'properties': { 'count': {'type': 'short', 'index': False}, 'average': {'type': 'float'}, }, }, 'slug': {'type': 'keyword'}, 'requires_payment': {'type': 'boolean', 'index': False}, 'status': {'type': 'byte'}, 'summary': {'type': 'text', 'analyzer': 'snowball'}, 'tags': {'type': 'keyword'}, 'type': {'type': 'byte'}, 'weekly_downloads': {'type': 'long'}, }, } # Add fields that we expect to return all translations without being # analyzed/indexed. cls.attach_translation_mappings( mapping, ( 'description', 'developer_comments', 'homepage', 'name', 'summary', 'support_email', 'support_url', ), ) # Add language-specific analyzers for localized fields that are # analyzed/indexed. cls.attach_language_specific_analyzers(mapping, ('description', 'summary')) cls.attach_language_specific_analyzers_with_raw_variant(mapping, ('name',)) return mapping @classmethod def extract_version(cls, obj, version_obj): from olympia.versions.models import License, Version data = ( { 'id': version_obj.pk, 'compatible_apps': cls.extract_compatibility_info(obj, version_obj), 'files': [ { 'id': version_obj.file.id, 'created': version_obj.file.created, 'filename': version_obj.file.filename, 'hash': version_obj.file.hash, 'is_mozilla_signed_extension': ( version_obj.file.is_mozilla_signed_extension ), 'size': version_obj.file.size, 'status': version_obj.file.status, 'strict_compatibility': version_obj.file.strict_compatibility, 'permissions': version_obj.file.permissions, 'optional_permissions': version_obj.file.optional_permissions, } ], 'reviewed': version_obj.reviewed, 'version': version_obj.version, } if version_obj else None ) if data and version_obj: attach_trans_dict(Version, [version_obj]) data.update( cls.extract_field_api_translations( version_obj, 'release_notes', db_field='release_notes_id' ) ) if version_obj.license: data['license'] = { 'id': version_obj.license.id, 'builtin': version_obj.license.builtin, 'url': version_obj.license.url, } attach_trans_dict(License, [version_obj.license]) data['license'].update( cls.extract_field_api_translations(version_obj.license, 'name') ) return data @classmethod def extract_compatibility_info(cls, obj, version_obj): """Return compatibility info for the specified version_obj, as will be indexed in ES.""" compatible_apps = {} for app, appver in version_obj.compatible_apps.items(): if appver: min_, max_ = appver.min.version_int, appver.max.version_int min_human, max_human = appver.min.version, appver.max.version if not version_obj.file.strict_compatibility: # The files attached to this version are not using strict # compatibility, so the max version essentially needs to be # ignored - let's fake a super high one. We leave max_human # alone to leave the API representation intact. max_ = version_int('*') else: # Fake wide compatibility for add-ons with no info. We don't # want to reindex every time a new version of the app is # released, so we directly index a super high version as the # max. min_human, max_human = ( amo.DEFAULT_WEBEXT_MIN_VERSIONS.get( app, amo.DEFAULT_WEBEXT_MIN_VERSION ), amo.FAKE_MAX_VERSION, ) min_, max_ = version_int(min_human), version_int(max_human) compatible_apps[app.id] = { 'min': min_, 'min_human': min_human, 'max': max_, 'max_human': max_human, } return compatible_apps @classmethod def extract_document(cls, obj): """Extract indexable attributes from an add-on.""" from olympia.addons.models import Preview attrs = ( 'id', 'average_daily_users', 'bayesian_rating', 'contributions', 'created', 'default_locale', 'guid', 'hotness', 'icon_hash', 'icon_type', 'is_disabled', 'is_experimental', 'last_updated', 'modified', 'requires_payment', 'slug', 'status', 'type', 'weekly_downloads', ) data = {attr: getattr(obj, attr) for attr in attrs} data['colors'] = None # Extract dominant colors from static themes. if obj.type == amo.ADDON_STATICTHEME: if obj.current_previews: data['colors'] = obj.current_previews[0].colors data['app'] = [app.id for app in obj.compatible_apps.keys()] # Boost by the number of users on a logarithmic scale. data['boost'] = float(data['average_daily_users'] ** 0.2) # Quadruple the boost if the add-on is public. if ( obj.status == amo.STATUS_APPROVED and not obj.is_experimental and 'boost' in data ): data['boost'] = float(max(data['boost'], 1) * 4) # We can use all_categories because the indexing code goes through the # transformer that sets it. data['category'] = [cat.id for cat in obj.all_categories] data['current_version'] = cls.extract_version(obj, obj.current_version) data['listed_authors'] = [ { 'name': a.name, 'id': a.id, 'username': a.username, 'is_public': a.is_public, } for a in obj.listed_authors ] data['has_eula'] = bool(obj.eula) data['has_privacy_policy'] = bool(obj.privacy_policy) data['is_recommended'] = bool( obj.promoted and obj.promoted.group == RECOMMENDED ) data['previews'] = [ { 'id': preview.id, 'modified': preview.modified, 'sizes': preview.sizes, 'position': preview.position, } for preview in obj.current_previews ] data['promoted'] = ( { 'group_id': obj.promoted.group_id, # store the app approvals because .approved_applications needs it. 'approved_for_apps': [ app.id for app in obj.promoted.approved_applications ], } if obj.promoted else None ) data['ratings'] = { 'average': obj.average_rating, 'count': obj.total_ratings, 'text_count': obj.text_ratings_count, } # We can use tag_list because the indexing code goes through the # transformer that sets it (attach_tags). data['tags'] = getattr(obj, 'tag_list', []) # Handle localized fields. # First, deal with the 3 fields that need everything: for field in ('description', 'name', 'summary'): data.update(cls.extract_field_api_translations(obj, field)) data.update( cls.extract_field_search_translation(obj, field, obj.default_locale) ) data.update(cls.extract_field_analyzed_translations(obj, field)) # Then add fields that only need to be returned to the API without # contributing to search relevancy. for field in ('developer_comments', 'homepage', 'support_email', 'support_url'): data.update(cls.extract_field_api_translations(obj, field)) if obj.type != amo.ADDON_STATICTHEME: # Also do that for preview captions, which are set on each preview # object. attach_trans_dict(Preview, obj.current_previews) for i, preview in enumerate(obj.current_previews): data['previews'][i].update( cls.extract_field_api_translations(preview, 'caption') ) return data @classmethod def create_new_index(cls, index_name): """ Create a new index for addons in ES. Intended to be used by reindexation (and tests), generally a bad idea to call manually. """ index_settings = copy.deepcopy(cls.index_settings) config = { 'mappings': cls.get_mapping(), 'settings': { # create_index will add its own index settings like number of # shards and replicas. 'index': index_settings }, } create_index(index_name, config) @classmethod def reindex_tasks_group(cls, index_name): """ Return the group of tasks to execute for a full reindex of addons on the index called `index_name` (which is not an alias but the real index name). """ from olympia.addons.tasks import index_addons ids = cls.get_model().unfiltered.values_list('id', flat=True).order_by('id') chunk_size = 150 return create_chunked_tasks_signatures( index_addons, list(ids), chunk_size, task_kwargs={'index': index_name} )
the-stack_0_11995
#Michael Astwood 2018 with help from https://apmonitor.com/wiki/index.php/Main/GekkoPythonOptimization #This program is built to control light #levels based on data taken during experiments. from gekko import GEKKO import numpy as np import matplotlib.pyplot as plt m = GEKKO() m.time = np.linspace(0,20,41) # Parameters for model mass = 500 b = m.Param(value=50) K = m.Param(value=0.8) # Manipulated variable (in our system it will be the light intensity) p = m.MV(value=50, lb=0, ub=100) #value is initial value, ub is upper bound, lb is lower bound p.STATUS = 1 # allow optimizer to change p.DCOST = 0 # smooth out changes in intensity p.DMAX = 10 # slow down changes in intensity # Controlled Variable (in our system it will be the ratio) v = m.CV(value=0) v.STATUS = 1 # add the setpoint to the objective m.options.CV_TYPE = 2 # squared error root(sum(x^2)) v.SP = 40 # set point v.TR_INIT = 0 # set point trajectory (0 = straight line at SP, 1 = starts at zero and ramps up) v.TAU = 5 # time constant of trajectory # Process model (this is a model for car acceleration) m.Equation(mass*v.dt() == -v*b + K*b*p) #a differential equation in terms of our controlled variable #linear drag vs gas pedal input m.options.IMODE = 6 #this puts the library in MPC mode m.solve(disp=True) #this finalizes our controller for this prediction cycle # get additional solution information import json with open(m.path+'//results.json') as f: results = json.load(f) #plotting the results plt.figure() plt.subplot(2,1,1) plt.plot(m.time,p.value,'b-',label='MV Optimized') plt.legend() plt.ylabel('Input') plt.subplot(2,1,2) plt.plot(m.time,results['v1.tr'],'k-',label='Reference Trajectory') plt.plot(m.time,v.value,'r--',label='CV Response') plt.ylabel('Output') plt.xlabel('Time') plt.legend(loc='best') plt.show()
the-stack_0_11997
from django.urls import include, path from event import views from rest_framework.routers import SimpleRouter from rest_framework_nested import routers router = SimpleRouter() router.register(r"event", views.EventViewSet) event_router = routers.NestedSimpleRouter(router, r"event", lookup="event") event_router.register( r"participants", views.EventParticipant, basename="event-participants" ) event_router.register( r"competitions", views.EventCompetitionListCreate, basename="competitions" ) router.register( r"competition", views.EventCompetitionRetrieveUpdateDestroy, basename="competition" ) event_participants_router = routers.NestedSimpleRouter( router, r"competition", lookup="competition" ) event_participants_router.register( r"participants", views.EventCompetitionParticipants, basename="competition-participants", ) event_participants_router.register( r"nominations", views.NominationView, basename="competition-nominations" ) router.register(r"tickets", views.TicketViewSet, basename="tickets") router.register(r"scans", views.TicketScanViewSet, basename="scans") router.register(r"quotas", views.EventQuotaViewSet, basename="quotas") app_name = "event" urlpatterns = [ path("", include(router.urls)), path("", include(event_router.urls)), path("", include(event_participants_router.urls)), ]
the-stack_0_11998
#!/usr/bin/python2.7 """Public interface to top-level pytype functions.""" from __future__ import print_function import contextlib import logging import os import sys import tokenize import traceback from pytype import __version__ from pytype import analyze from pytype import directors from pytype import errors from pytype import load_pytd from pytype import utils from pytype.pyc import pyc from pytype.pyi import parser from pytype.pytd import optimize from pytype.pytd import pytd from pytype.pytd import pytd_utils from pytype.pytd import serialize_ast from pytype.pytd import visitors from pytype.pytd.parse import builtins as pytd_builtins import six log = logging.getLogger(__name__) # Webpage explaining the pytype error codes ERROR_DOC_URL = "https://google.github.io/pytype/errors.html" def read_source_file(input_filename): try: with open(input_filename, "r") as fi: return fi.read() except IOError: raise utils.UsageError("Could not load input file %s" % input_filename) def _call(analyze_types, input_filename, errorlog, options, loader): """Helper function to call analyze.check/infer_types.""" src = read_source_file(input_filename) # 'deep' tells the analyzer whether to analyze functions not called from main. deep = not options.main_only return analyze_types( src=src, filename=input_filename, errorlog=errorlog, options=options, loader=loader, deep=deep) def check_py(input_filename, errorlog, options, loader): """Check the types of one file.""" _call(analyze.check_types, input_filename, errorlog, options, loader) def generate_pyi(input_filename, errorlog, options, loader): """Run the inferencer on one file, producing output. Args: input_filename: name of the file to process errorlog: Where error messages go. Instance of errors.ErrorLog. options: config.Options object. loader: A load_pytd.Loader instance. Returns: A tuple, (PYI Ast as string, TypeDeclUnit). Raises: CompileError: If we couldn't parse the input file. UsageError: If the input filepath is invalid. """ mod, builtins = _call( analyze.infer_types, input_filename, errorlog, options, loader) mod.Visit(visitors.VerifyVisitor()) mod = optimize.Optimize(mod, builtins, # TODO(kramm): Add FLAGs for these lossy=False, use_abcs=False, max_union=7, remove_mutable=False) mod = pytd_utils.CanonicalOrdering(mod, sort_signatures=True) result = pytd.Print(mod) log.info("=========== pyi optimized =============") log.info("\n%s", result) log.info("========================================") if not result.endswith("\n"): result += "\n" result_prefix = "" if options.quick: result_prefix += "# (generated with --quick)\n" if result_prefix: result = result_prefix + "\n" + result return result, mod def check_or_generate_pyi(options, errorlog, loader): """Returns generated errors and result pyi or None if it's only check. Args: options: config.Options object. errorlog: errors.ErrorLog object. loader: load_pytd.Loader object. Returns: A tuple, (PYI Ast as string, AST) or None. """ result = pytd_builtins.DEFAULT_SRC ast = pytd_builtins.GetDefaultAst(options.python_version) try: if options.check: check_py(input_filename=options.input, errorlog=errorlog, options=options, loader=loader) return None else: result, ast = generate_pyi(input_filename=options.input, errorlog=errorlog, options=options, loader=loader) except utils.UsageError as e: raise except pyc.CompileError as e: errorlog.python_compiler_error(options.input, e.lineno, e.error) except IndentationError as e: errorlog.python_compiler_error(options.input, e.lineno, e.msg) except tokenize.TokenError as e: msg, (lineno, unused_column) = e.args # pylint: disable=unbalanced-tuple-unpacking errorlog.python_compiler_error(options.input, lineno, msg) except directors.SkipFile: result += "# skip-file found, file not analyzed" except Exception as e: # pylint: disable=broad-except if options.nofail: log.warn("***Caught exception: %s", str(e), exc_info=True) if not options.check: result += ( # pytype: disable=name-error "# Caught error in pytype: " + str(e).replace("\n", "\n#") + "\n# " + "\n# ".join(traceback.format_exc().splitlines())) else: e.args = ( str(utils.message(e)) + "\nFile: %s" % options.input,) + e.args[1:] raise return (result, ast) def _write_pyi_output(options, contents, filename): assert filename if filename == "-": sys.stdout.write(contents) else: log.info("write pyi %r => %r", options.input, filename) with open(filename, "w") as fi: fi.write(contents) def process_one_file(options): """Check a .py file or generate a .pyi for it, according to options. Args: options: config.Options object. Returns: An error code (0 means no error). """ log.info("Process %s => %s", options.input, options.output) errorlog = errors.ErrorLog() loader = load_pytd.create_loader(options) try: generated_values = check_or_generate_pyi(options, errorlog, loader) except utils.UsageError as e: logging.error("Usage error: %s\n", utils.message(e)) return 1 if not options.check: result, ast = generated_values if options.pickle_output: pyi_output = options.verify_pickle else: pyi_output = options.output # Write out the pyi file. if pyi_output: _write_pyi_output(options, result, pyi_output) # Write out the pickle file. if options.pickle_output: log.info("write pickle %r => %r", options.input, options.output) write_pickle(ast, loader, options) exit_status = handle_errors(errorlog, options) # If we have set return_success, set exit_status to 0 after the regular error # handler has been called. if options.return_success: exit_status = 0 # Touch output file upon success. if options.touch and not exit_status: with open(options.touch, "a"): os.utime(options.touch, None) return exit_status def write_pickle(ast, loader, options): """Dump a pickle of the ast to a file.""" try: ast = serialize_ast.PrepareForExport( options.module_name, options.python_version, ast, loader) except parser.ParseError as e: if options.nofail: ast = serialize_ast.PrepareForExport( options.module_name, options.python_version, pytd_builtins.GetDefaultAst(options.python_version), loader) log.warn("***Caught exception: %s", str(e), exc_info=True) else: raise if options.verify_pickle: ast1 = ast.Visit(visitors.LateTypeToClassType()) ast1 = ast1.Visit(visitors.ClearClassPointers()) ast2 = loader.load_file(options.module_name, options.verify_pickle) ast2 = ast2.Visit(visitors.ClearClassPointers()) if not ast1.ASTeq(ast2): raise AssertionError() serialize_ast.StoreAst(ast, options.output) def print_error_doc_url(errorlog): names = {e.name for e in errorlog} if names: doclink = "\nFor more details, see %s" % ERROR_DOC_URL if len(names) == 1: doclink += "#" + names.pop() print(doclink + ".", file=sys.stderr) def handle_errors(errorlog, options): """Handle the errorlog according to the given options.""" if not options.report_errors: return 0 if options.output_errors_csv: errorlog.print_to_csv_file(options.output_errors_csv) return 0 # Command is successful regardless of errors. errorlog.print_to_stderr() print_error_doc_url(errorlog) return 1 if errorlog.has_error() else 0 # exit code def parse_pyi(options): """Tries parsing a PYI file.""" loader = load_pytd.create_loader(options) ast = loader.load_file(options.module_name, options.input) ast = loader.finish_and_verify_ast(ast) if options.output: result = "# Internal AST parsed and postprocessed from %s\n\n%s" % ( options.input, pytd.Print(ast)) _write_pyi_output(options, result, options.output) def get_pytype_version(): return __version__.__version__ @contextlib.contextmanager def wrap_pytype_exceptions(exception_type, filename=""): """Catch pytype errors and reraise them as a single exception type. NOTE: This will also wrap non-pytype errors thrown within the body of the code block; it is therefore recommended to use this to wrap a single function call. Args: exception_type: The class to wrap exceptions in. filename: A filename to use in error messages. Yields: nothing, just calls the code block. """ try: yield except utils.UsageError as e: raise exception_type("Pytype usage error: %s" % utils.message(e)) except pyc.CompileError as e: raise exception_type("Error reading file %s at line %s: %s" % (filename, e.lineno, e.error)) except tokenize.TokenError as e: msg, (lineno, unused_column) = e.args # pylint: disable=unbalanced-tuple-unpacking raise exception_type("Error reading file %s at line %s: %s" % (filename, lineno, msg)) except directors.SkipFile: raise exception_type("Pytype could not analyze file %s: " "'# skip-file' directive found" % filename) except Exception as e: # pylint: disable=broad-except msg = "Pytype error: %s: %s" % (e.__class__.__name__, e.args[0]) # We need the version check here because six.reraise doesn't work properly # in python3 if sys.version_info[0] == 2: _, _, tb = sys.exc_info() six.reraise(exception_type, exception_type(msg), tb) else: raise exception_type(msg).with_traceback(e.__traceback__)
the-stack_0_12002
import sys import warnings if not sys.warnoptions: warnings.simplefilter('ignore') import numpy as np from fuzzywuzzy import fuzz import json import tensorflow as tf from collections import Counter from ._utils._utils import load_graph, check_file from .num2word import to_cardinal from .texts._text_functions import ( normalizer_textcleaning, stemmer_str_idx, pad_sentence_batch, ) from .texts._tatabahasa import ( rules_normalizer, consonants, vowels, sounds, GO, PAD, EOS, UNK, ) from .spell import _return_possible, _edit_normalizer, _return_known from .topic_influencer import is_location from ._utils._paths import MALAY_TEXT, PATH_NORMALIZER, S3_PATH_NORMALIZER class _DEEP_NORMALIZER: def __init__(self, x, logits, sess, dicts): self._sess = sess self._x = x self._logits = logits self._dicts = dicts self._dicts['rev_dictionary_to'] = { int(k): v for k, v in self._dicts['rev_dictionary_to'].items() } def normalize(self, string): """ Normalize a string. Parameters ---------- string : str Returns ------- string: normalized string """ assert isinstance(string, str), 'input must be a string' token_strings = normalizer_textcleaning(string).split() idx = stemmer_str_idx(token_strings, self._dicts['dictionary_from']) predicted = self._sess.run( self._logits, feed_dict = {self._x: pad_sentence_batch(idx, PAD)[0]} ) results = [] for word in predicted: results.append( ''.join( [ self._dicts['rev_dictionary_to'][c] for c in word if c not in [GO, PAD, EOS, UNK] ] ) ) return ' '.join(results) class _SPELL_NORMALIZE: def __init__(self, corpus): self.corpus = Counter(corpus) def normalize(self, string, debug = True): """ Normalize a string Parameters ---------- string : str debug : bool, optional (default=True) If true, it will print character similarity distances. Returns ------- string: normalized string """ assert isinstance(string, str), 'input must be a string' result = [] for word in normalizer_textcleaning(string).split(): if word.istitle(): result.append(word) continue if word[0] == 'x' and len(word) > 1: result_string = 'tak ' word = word[1:] else: result_string = '' if word[-2:] == 'la': end_result_string = ' lah' word = word[:-2] elif word[-3:] == 'lah': end_result_string = ' lah' word = word[:-3] else: end_result_string = '' if word in sounds: result.append(result_string + sounds[word] + end_result_string) continue if word in rules_normalizer: result.append( result_string + rules_normalizer[word] + end_result_string ) continue if word in self.corpus: result.append(result_string + word + end_result_string) continue candidates = ( _return_known([word], self.corpus) or _return_known(_edit_normalizer(word), self.corpus) or _return_possible(word, self.corpus, _edit_normalizer) or [word] ) candidates = list(candidates) candidates = [ (candidate, is_location(candidate)) for candidate in list(candidates) ] if debug: print([(k, fuzz.ratio(string, k[0])) for k in candidates], '\n') strings = [fuzz.ratio(string, k[0]) for k in candidates] descending_sort = np.argsort(strings)[::-1] selected = None for index in descending_sort: if not candidates[index][1]: selected = candidates[index][0] break selected = ( candidates[descending_sort[0]][0] if not selected else selected ) result.append(result_string + selected + end_result_string) return ' '.join(result) class _FUZZY_NORMALIZE: def __init__(self, normalized, corpus): self.normalized = normalized self.corpus = corpus def normalize(self, string): """ Normalize a string. Parameters ---------- string : str Returns ------- string: normalized string """ assert isinstance(string, str), 'input must be a string' result = [] for word in normalizer_textcleaning(string).split(): if word.istitle(): result.append(word) continue if word[0] == 'x' and len(word) > 1: result_string = 'tak ' word = word[1:] else: result_string = '' if word[-2:] == 'la': end_result_string = ' lah' word = word[:-2] elif word[-3:] == 'lah': end_result_string = ' lah' word = word[:-3] else: end_result_string = '' if word in sounds: result.append(result_string + sounds[word] + end_result_string) continue if word in rules_normalizer: result.append( result_string + rules_normalizer[word] + end_result_string ) continue if word in self.corpus: result.append(result_string + word + end_result_string) continue results = [] for i in range(len(self.normalized)): results.append( np.mean([fuzz.ratio(word, k) for k in self.normalized[i]]) ) if len(np.where(np.array(results) > 70)[0]) < 1: result.append(result_string + word + end_result_string) continue result.append( result_string + self.corpus[np.argmax(results)] + end_result_string ) return ' '.join(result) def fuzzy(corpus): """ Train a fuzzy logic Normalizer Parameters ---------- corpus : list of strings. Prefer to feed with malaya.load_malay_dictionary() Returns ------- FUZZY_NORMALIZE: Trained malaya.normalizer._FUZZY_NORMALIZE class """ assert isinstance(corpus, list) and isinstance( corpus[0], str ), 'input must be list of strings' transform = [] for i in corpus: i = i.lower() result = [] result.append(i) result.append(''.join(char for char in i if char not in vowels)) if i[0] in consonants and i[-1] in consonants: result.append(i[0] + i[-1]) if i[-1] == 'a': result.append(i[:-1] + 'e') result.append(i + 'k') if i[1] in vowels and i[0] in consonants: result.append(i[0] + i[2:]) if i[-2] in vowels and i[-1] in consonants: result.append(i[:-2] + i[-1]) result.append(i[0] + i[-1]) if i[-2:] == 'ar': result.append(i[:-2] + 'o') if i[:2] == 'ha': result.append(i[1:]) transform.append(list(set(result))) return _FUZZY_NORMALIZE(transform, corpus) def spell(corpus): """ Train a Spelling Normalizer Parameters ---------- corpus : list of strings. Prefer to feed with malaya.load_malay_dictionary() Returns ------- SPELL_NORMALIZE: Trained malaya.normalizer._SPELL_NORMALIZE class """ assert isinstance(corpus, list) and isinstance( corpus[0], str ), 'input must be list of strings' return _SPELL_NORMALIZE(corpus) def basic(string): """ Use basic rules-based to normalize a string. Parameters ---------- string: str Returns ------- string: normalized string """ assert isinstance(string, str), 'input must be a string' result = [] for word in normalizer_textcleaning(string).split(): if word.istitle(): result.append(word) continue if word in sounds: result.append(sounds[word]) elif word[-1] == '2': result.append(word[:-1]) else: result.append(word) return ' '.join(result) def deep_model(): """ Load deep-learning model to normalize a string. This model totally more sucks than fuzzy based, Husein still need to read more. Returns ------- DEEP_NORMALIZER: malaya.normalizer._DEEP_NORMALIZER class """ check_file(PATH_NORMALIZER['deep'], S3_PATH_NORMALIZER['deep']) try: with open(PATH_NORMALIZER['deep']['setting'], 'r') as fopen: dic_normalizer = json.load(fopen) g = load_graph(PATH_NORMALIZER['deep']['model']) except: raise Exception( "model corrupted due to some reasons, please run malaya.clear_cache('normalizer') and try again" ) return _DEEP_NORMALIZER( g.get_tensor_by_name('import/Placeholder:0'), g.get_tensor_by_name('import/logits:0'), tf.InteractiveSession(graph = g), dic_normalizer, )
the-stack_0_12004
# -*- coding: utf-8 -*- # # Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Resource definitions for cloud platform apis.""" import enum BASE_URL = 'https://logging.googleapis.com/v2/' DOCS_URL = 'https://cloud.google.com/logging/docs/' class Collections(enum.Enum): """Collections for all supported apis.""" BILLINGACCOUNTS = ( 'billingAccounts', 'billingAccounts/{billingAccountsId}', {}, [u'billingAccountsId'], True ) BILLINGACCOUNTS_BUCKETS = ( 'billingAccounts.buckets', '{+name}', { '': 'billingAccounts/{billingAccountsId}/buckets/{bucketsId}', }, [u'name'], True ) BILLINGACCOUNTS_EXCLUSIONS = ( 'billingAccounts.exclusions', '{+name}', { '': 'billingAccounts/{billingAccountsId}/exclusions/{exclusionsId}', }, [u'name'], True ) BILLINGACCOUNTS_SINKS = ( 'billingAccounts.sinks', '{+sinkName}', { '': 'billingAccounts/{billingAccountsId}/sinks/{sinksId}', }, [u'sinkName'], True ) BUCKETS = ( 'buckets', '{+name}', { '': '{v2Id}/{v2Id1}/buckets/{bucketsId}', }, [u'name'], True ) EXCLUSIONS = ( 'exclusions', '{+name}', { '': '{v2Id}/{v2Id1}/exclusions/{exclusionsId}', }, [u'name'], True ) FOLDERS = ( 'folders', 'folders/{foldersId}', {}, [u'foldersId'], True ) FOLDERS_EXCLUSIONS = ( 'folders.exclusions', '{+name}', { '': 'folders/{foldersId}/exclusions/{exclusionsId}', }, [u'name'], True ) FOLDERS_LOCATIONS = ( 'folders.locations', 'folders/{foldersId}/locations/{locationsId}', {}, [u'foldersId', u'locationsId'], True ) FOLDERS_LOCATIONS_BUCKETS = ( 'folders.locations.buckets', '{+name}', { '': 'folders/{foldersId}/locations/{locationsId}/buckets/' '{bucketsId}', }, [u'name'], True ) FOLDERS_SINKS = ( 'folders.sinks', '{+sinkName}', { '': 'folders/{foldersId}/sinks/{sinksId}', }, [u'sinkName'], True ) ORGANIZATIONS = ( 'organizations', 'organizations/{organizationsId}', {}, [u'organizationsId'], True ) ORGANIZATIONS_EXCLUSIONS = ( 'organizations.exclusions', '{+name}', { '': 'organizations/{organizationsId}/exclusions/{exclusionsId}', }, [u'name'], True ) ORGANIZATIONS_LOCATIONS = ( 'organizations.locations', 'organizations/{organizationsId}/locations/{locationsId}', {}, [u'organizationsId', u'locationsId'], True ) ORGANIZATIONS_LOCATIONS_BUCKETS = ( 'organizations.locations.buckets', '{+name}', { '': 'organizations/{organizationsId}/locations/{locationsId}/' 'buckets/{bucketsId}', }, [u'name'], True ) ORGANIZATIONS_SINKS = ( 'organizations.sinks', '{+sinkName}', { '': 'organizations/{organizationsId}/sinks/{sinksId}', }, [u'sinkName'], True ) PROJECTS = ( 'projects', 'projects/{projectsId}', {}, [u'projectsId'], True ) PROJECTS_EXCLUSIONS = ( 'projects.exclusions', '{+name}', { '': 'projects/{projectsId}/exclusions/{exclusionsId}', }, [u'name'], True ) PROJECTS_LOCATIONS = ( 'projects.locations', 'projects/{projectsId}/locations/{locationsId}', {}, [u'projectsId', u'locationsId'], True ) PROJECTS_LOCATIONS_BUCKETS = ( 'projects.locations.buckets', '{+name}', { '': 'projects/{projectsId}/locations/{locationsId}/buckets/' '{bucketsId}', }, [u'name'], True ) PROJECTS_METRICS = ( 'projects.metrics', '{+metricName}', { '': 'projects/{projectsId}/metrics/{metricsId}', }, [u'metricName'], True ) PROJECTS_SINKS = ( 'projects.sinks', '{+sinkName}', { '': 'projects/{projectsId}/sinks/{sinksId}', }, [u'sinkName'], True ) SINKS = ( 'sinks', '{+sinkName}', { '': '{v2Id}/{v2Id1}/sinks/{sinksId}', }, [u'sinkName'], True ) def __init__(self, collection_name, path, flat_paths, params, enable_uri_parsing): self.collection_name = collection_name self.path = path self.flat_paths = flat_paths self.params = params self.enable_uri_parsing = enable_uri_parsing
the-stack_0_12006
#!/usr/bin/env python # -*- coding: utf-8 -*- '''Matching functions''' import numpy as np import numba from .exceptions import ParameterError from .utils import valid_intervals __all__ = ['match_intervals', 'match_events'] @numba.jit(nopython=True, cache=True) def __jaccard(int_a, int_b): # pragma: no cover '''Jaccard similarity between two intervals Parameters ---------- int_a, int_b : np.ndarrays, shape=(2,) Returns ------- Jaccard similarity between intervals ''' ends = [int_a[1], int_b[1]] if ends[1] < ends[0]: ends.reverse() starts = [int_a[0], int_b[0]] if starts[1] < starts[0]: starts.reverse() intersection = ends[0] - starts[1] if intersection < 0: intersection = 0. union = ends[1] - starts[0] if union > 0: return intersection / union return 0.0 @numba.jit(nopython=True, cache=True) def __match_interval_overlaps(query, intervals_to, candidates): # pragma: no cover '''Find the best Jaccard match from query to candidates''' best_score = -1 best_idx = -1 for idx in candidates: score = __jaccard(query, intervals_to[idx]) if score > best_score: best_score, best_idx = score, idx return best_idx @numba.jit(nopython=True, cache=True) def __match_intervals(intervals_from, intervals_to, strict=True): # pragma: no cover '''Numba-accelerated interval matching algorithm. ''' # sort index of the interval starts start_index = np.argsort(intervals_to[:, 0]) # sort index of the interval ends end_index = np.argsort(intervals_to[:, 1]) # and sorted values of starts start_sorted = intervals_to[start_index, 0] # and ends end_sorted = intervals_to[end_index, 1] search_ends = np.searchsorted(start_sorted, intervals_from[:, 1], side='right') search_starts = np.searchsorted(end_sorted, intervals_from[:, 0], side='left') output = np.empty(len(intervals_from), dtype=numba.uint32) for i in range(len(intervals_from)): query = intervals_from[i] # Find the intervals that start after our query ends after_query = search_ends[i] # And the intervals that end after our query begins before_query = search_starts[i] # Candidates for overlapping have to (end after we start) and (begin before we end) candidates = set(start_index[:after_query]) & set(end_index[before_query:]) # Proceed as before if len(candidates) > 0: output[i] = __match_interval_overlaps(query, intervals_to, candidates) elif strict: # Numba only lets us use compile-time constants in exception messages raise ParameterError else: # Find the closest interval # (start_index[after_query] - query[1]) is the distance to the next interval # (query[0] - end_index[before_query]) dist_before = np.inf dist_after = np.inf if search_starts[i] > 0: dist_before = query[0] - end_sorted[search_starts[i]-1] if search_ends[i] + 1 < len(intervals_to): dist_after = start_sorted[search_ends[i]+1] - query[1] if dist_before < dist_after: output[i] = end_index[search_starts[i]-1] else: output[i] = start_index[search_ends[i]+1] return output def match_intervals(intervals_from, intervals_to, strict=True): '''Match one set of time intervals to another. This can be useful for tasks such as mapping beat timings to segments. Each element `[a, b]` of `intervals_from` is matched to the element `[c, d]` of `intervals_to` which maximizes the Jaccard similarity between the intervals: `max(0, |min(b, d) - max(a, c)|) / |max(d, b) - min(a, c)|` In `strict=True` mode, if there is no interval with positive intersection with `[a,b]`, an exception is thrown. In `strict=False` mode, any interval `[a, b]` that has no intersection with any element of `intervals_to` is instead matched to the interval `[c, d]` which minimizes `min(|b - c|, |a - d|)` that is, the disjoint interval `[c, d]` with a boundary closest to `[a, b]`. .. note:: An element of `intervals_to` may be matched to multiple entries of `intervals_from`. Parameters ---------- intervals_from : np.ndarray [shape=(n, 2)] The time range for source intervals. The `i` th interval spans time `intervals_from[i, 0]` to `intervals_from[i, 1]`. `intervals_from[0, 0]` should be 0, `intervals_from[-1, 1]` should be the track duration. intervals_to : np.ndarray [shape=(m, 2)] Analogous to `intervals_from`. strict : bool If `True`, intervals can only match if they intersect. If `False`, disjoint intervals can match. Returns ------- interval_mapping : np.ndarray [shape=(n,)] For each interval in `intervals_from`, the corresponding interval in `intervals_to`. See Also -------- match_events Raises ------ ParameterError If either array of input intervals is not the correct shape If `strict=True` and some element of `intervals_from` is disjoint from every element of `intervals_to`. Examples -------- >>> ints_from = np.array([[3, 5], [1, 4], [4, 5]]) >>> ints_to = np.array([[0, 2], [1, 3], [4, 5], [6, 7]]) >>> librosa.util.match_intervals(ints_from, ints_to) array([2, 1, 2], dtype=uint32) >>> # [3, 5] => [4, 5] (ints_to[2]) >>> # [1, 4] => [1, 3] (ints_to[1]) >>> # [4, 5] => [4, 5] (ints_to[2]) The reverse matching of the above is not possible in `strict` mode because `[6, 7]` is disjoint from all intervals in `ints_from`. With `strict=False`, we get the following: >>> librosa.util.match_intervals(ints_to, ints_from, strict=False) array([1, 1, 2, 2], dtype=uint32) >>> # [0, 2] => [1, 4] (ints_from[1]) >>> # [1, 3] => [1, 4] (ints_from[1]) >>> # [4, 5] => [4, 5] (ints_from[2]) >>> # [6, 7] => [4, 5] (ints_from[2]) ''' if len(intervals_from) == 0 or len(intervals_to) == 0: raise ParameterError('Attempting to match empty interval list') # Verify that the input intervals has correct shape and size valid_intervals(intervals_from) valid_intervals(intervals_to) try: return __match_intervals(intervals_from, intervals_to, strict=strict) except ParameterError as exc: raise ParameterError('Unable to match intervals with strict={}'.format(strict)) from exc def match_events(events_from, events_to, left=True, right=True): '''Match one set of events to another. This is useful for tasks such as matching beats to the nearest detected onsets, or frame-aligned events to the nearest zero-crossing. .. note:: A target event may be matched to multiple source events. Examples -------- >>> # Sources are multiples of 7 >>> s_from = np.arange(0, 100, 7) >>> s_from array([ 0, 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98]) >>> # Targets are multiples of 10 >>> s_to = np.arange(0, 100, 10) >>> s_to array([ 0, 10, 20, 30, 40, 50, 60, 70, 80, 90]) >>> # Find the matching >>> idx = librosa.util.match_events(s_from, s_to) >>> idx array([0, 1, 1, 2, 3, 3, 4, 5, 6, 6, 7, 8, 8, 9, 9]) >>> # Print each source value to its matching target >>> zip(s_from, s_to[idx]) [(0, 0), (7, 10), (14, 10), (21, 20), (28, 30), (35, 30), (42, 40), (49, 50), (56, 60), (63, 60), (70, 70), (77, 80), (84, 80), (91, 90), (98, 90)] Parameters ---------- events_from : ndarray [shape=(n,)] Array of events (eg, times, sample or frame indices) to match from. events_to : ndarray [shape=(m,)] Array of events (eg, times, sample or frame indices) to match against. left : bool right : bool If `False`, then matched events cannot be to the left (or right) of source events. Returns ------- event_mapping : np.ndarray [shape=(n,)] For each event in `events_from`, the corresponding event index in `events_to`. `event_mapping[i] == arg min |events_from[i] - events_to[:]|` See Also -------- match_intervals Raises ------ ParameterError If either array of input events is not the correct shape ''' if len(events_from) == 0 or len(events_to) == 0: raise ParameterError('Attempting to match empty event list') # If we can't match left or right, then only strict equivalence # counts as a match. if not (left or right) and not np.all(np.in1d(events_from, events_to)): raise ParameterError('Cannot match events with left=right=False ' 'and events_from is not contained ' 'in events_to') # If we can't match to the left, then there should be at least one # target event greater-equal to every source event if (not left) and max(events_to) < max(events_from): raise ParameterError('Cannot match events with left=False ' 'and max(events_to) < max(events_from)') # If we can't match to the right, then there should be at least one # target event less-equal to every source event if (not right) and min(events_to) > min(events_from): raise ParameterError('Cannot match events with right=False ' 'and min(events_to) > min(events_from)') # array of matched items output = np.empty_like(events_from, dtype=np.int) return __match_events_helper(output, events_from, events_to, left, right) @numba.jit(nopython=True, cache=True) def __match_events_helper(output, events_from, events_to, left=True, right=True): # pragma: no cover # mock dictionary for events from_idx = np.argsort(events_from) sorted_from = events_from[from_idx] to_idx = np.argsort(events_to) sorted_to = events_to[to_idx] # find the matching indices matching_indices = np.searchsorted(sorted_to, sorted_from) # iterate over indices in matching_indices for ind, middle_ind in enumerate(matching_indices): left_flag = False right_flag = False left_ind = -1 right_ind = len(matching_indices) left_diff = 0 right_diff = 0 mid_diff = 0 middle_ind = matching_indices[ind] sorted_from_num = sorted_from[ind] # Prevent oob from chosen index if middle_ind == len(sorted_to): middle_ind -= 1 # Permitted to look to the left if left and middle_ind > 0: left_ind = middle_ind - 1 left_flag = True # Permitted to look to right if right and middle_ind < len(sorted_to) - 1: right_ind = middle_ind + 1 right_flag = True mid_diff = abs(sorted_to[middle_ind] - sorted_from_num) if left and left_flag: left_diff = abs(sorted_to[left_ind] - sorted_from_num) if right and right_flag: right_diff = abs(sorted_to[right_ind] - sorted_from_num) if left_flag and (not right and (sorted_to[middle_ind] > sorted_from_num) or (not right_flag and left_diff < mid_diff) or (left_diff < right_diff and left_diff < mid_diff)): output[ind] = to_idx[left_ind] # Check if right should be chosen elif right_flag and (right_diff < mid_diff): output[ind] = to_idx[right_ind] # Selected index wins else: output[ind] = to_idx[middle_ind] # Undo sorting solutions = np.empty_like(output) solutions[from_idx] = output return solutions
the-stack_0_12008
""" The multigrid module provides a framework for solving elliptic problems. A multigrid object is just a list of grids, from the finest mesh down (by factors of two) to a single interior zone (each grid has the same number of guardcells). The main multigrid class is setup to solve a constant-coefficient Helmholtz equation:: (alpha - beta L) phi = f where L is the Laplacian and alpha and beta are constants. If alpha = 0 and beta = -1, then this is the Poisson equation. We support Dirichlet or Neumann BCs, or a periodic domain. The general usage is as follows:: a = multigrid.CellCenterMG2d(nx, ny, verbose=1, alpha=alpha, beta=beta) this creates the multigrid object a, with a finest grid of nx by ny zones and the default boundary condition types. alpha and beta are the coefficients of the Helmholtz equation. Setting verbose = 1 causing debugging information to be output, so you can see the residual errors in each of the V-cycles. Initialization is done as:: a.init_zeros() this initializes the solution vector with zeros (this is not necessary if you just created the multigrid object, but it can be used to reset the solution between runs on the same object). Next:: a.init_RHS(zeros((nx, ny), numpy.float64)) this initializes the RHS on the finest grid to 0 (Laplace's equation). Any RHS can be set by passing through an array of (nx, ny) values here. Then to solve, you just do:: a.solve(rtol = 1.e-10) where rtol is the desired tolerance (residual norm / source norm) to access the final solution, use the get_solution method:: v = a.get_solution() For convenience, the grid information on the solution level is available as attributes to the class, a.ilo, a.ihi, a.jlo, a.jhi are the indices bounding the interior of the solution array (i.e. excluding the ghost cells). a.x and a.y are the coordinate arrays a.dx and a.dy are the grid spacings """ from __future__ import print_function import math import numpy as np import matplotlib.pyplot as plt import matplotlib import mesh.boundary as bnd import mesh.patch as patch from util import msg class CellCenterMG2d(object): """ The main multigrid class for cell-centered data. We require that nx = ny be a power of 2 and dx = dy, for simplicity """ def __init__(self, nx, ny, ng=1, xmin=0.0, xmax=1.0, ymin=0.0, ymax=1.0, xl_BC_type="dirichlet", xr_BC_type="dirichlet", yl_BC_type="dirichlet", yr_BC_type="dirichlet", xl_BC=None, xr_BC=None, yl_BC=None, yr_BC=None, alpha=0.0, beta=-1.0, nsmooth=10, nsmooth_bottom=50, verbose=0, aux_field=None, aux_bc=None, true_function=None, vis=0, vis_title=""): """ Create the CellCenterMG2d object. Note that this requires a grid to be a power of 2 in size and square. Parameters ---------- nx : int number of cells in x-direction ny : int number of cells in y-direction. xmin : float, optional minimum physical coordinate in x-direction xmax : float, optional maximum physical coordinate in x-direction ymin : float, optional minimum physical coordinate in y-direction ymax : float, optional maximum physical coordinate in y-direction xl_BC_type : {'neumann', 'dirichlet', 'periodic'}, optional boundary condition to enforce on lower x face xr_BC_type : {'neumann', 'dirichlet', 'periodic'}, optional boundary condition to enforce on upper x face yl_BC_type : {'neumann', 'dirichlet', 'periodic'}, optional boundary condition to enforce on lower y face yr_BC_type : {'neumann', 'dirichlet', 'periodic'}, optional boundary condition to enforce on upper y face xl_BC : function, optional function (of y) to call to get -x boundary values (homogeneous assumed otherwise) xr_BC : function, optional function (of y) to call to get +x boundary values (homogeneous assumed otherwise) yl_BC : function, optional function (of x) to call to get -y boundary values (homogeneous assumed otherwise) yr_BC : function, optional function (of x) to call to get +y boundary values (homogeneous assumed otherwise) alpha : float, optional coefficient in Helmholtz equation (alpha - beta L) phi = f beta : float, optional coefficient in Helmholtz equation (alpha - beta L) phi = f nsmooth : int, optional number of smoothing iterations to be done at each intermediate level in the V-cycle (up and down) nsmooth_bottom : int, optional number of smoothing iterations to be done during the bottom solve verbose : int, optional increase verbosity during the solve (for verbose=1) aux_field : list of str, optional extra fields to define and carry at each level. Useful for subclassing. aux_bc : list of BC objects, optional the boundary conditions corresponding to the aux fields true_function : function, optional a function (of x,y) that provides the exact solution to the elliptic problem we are solving. This is used only for visualization purposes vis : int, optional output a detailed visualization of every smoothing step all throughout the V-cycle (if vis=1) vis_title : string, optional a descriptive title to write on the visualization plots Returns ------- out: CellCenterMG2d object """ if nx != ny: raise ValueError("ERROR: multigrid currently requires nx = ny") self.nx = nx self.ny = ny self.ng = ng self.xmin = xmin self.xmax = xmax self.ymin = ymin self.ymax = ymax if (xmax-xmin) != (ymax-ymin): raise ValueError("ERROR: multigrid currently requires a square domain") self.alpha = alpha self.beta = beta self.nsmooth = nsmooth self.nsmooth_bottom = nsmooth_bottom self.max_cycles = 100 self.verbose = verbose # for visualization purposes, we can set a function name that # provides the true solution to our elliptic problem. if true_function is not None: self.true_function = true_function # a small number used in computing the error, so we don't divide by 0 self.small = 1.e-16 # keep track of whether we've initialized the RHS self.initialized_rhs = 0 # assume that self.nx = 2^(nlevels-1) and that nx = ny # this defines nlevels such that we end exactly on a 2x2 grid self.nlevels = int(math.log(self.nx)/math.log(2.0)) # a multigrid object will be a list of grids self.grids = [] # create the grids. Here, self.grids[0] will be the coarsest # grid and self.grids[nlevel-1] will be the finest grid # we store the solution, v, the rhs, f. # create the boundary condition object bc = bnd.BC(xlb=xl_BC_type, xrb=xr_BC_type, ylb=yl_BC_type, yrb=yr_BC_type) nx_t = ny_t = 2 for i in range(self.nlevels): # create the grid my_grid = patch.Grid2d(nx_t, ny_t, ng=self.ng, xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax) # add a CellCenterData2d object for this level to our list self.grids.append(patch.CellCenterData2d(my_grid, dtype=np.float64)) # create the phi BC object -- this only applies for the finest # level. On the coarser levels, phi represents the residual, # which has homogeneous BCs bc_p = bnd.BC(xlb=xl_BC_type, xrb=xr_BC_type, ylb=yl_BC_type, yrb=yr_BC_type, xl_func=xl_BC, xr_func=xr_BC, yl_func=yl_BC, yr_func=yr_BC, grid=my_grid) if i == self.nlevels-1: self.grids[i].register_var("v", bc_p) else: self.grids[i].register_var("v", bc) self.grids[i].register_var("f", bc) self.grids[i].register_var("r", bc) if aux_field is not None: for f, b in zip(aux_field, aux_bc): self.grids[i].register_var(f, b) self.grids[i].create() if self.verbose: print(self.grids[i]) nx_t = nx_t*2 ny_t = ny_t*2 # provide coordinate and indexing information for the solution mesh soln_grid = self.grids[self.nlevels-1].grid self.ilo = soln_grid.ilo self.ihi = soln_grid.ihi self.jlo = soln_grid.jlo self.jhi = soln_grid.jhi self.x = soln_grid.x self.dx = soln_grid.dx self.x2d = soln_grid.x2d self.y = soln_grid.y self.dy = soln_grid.dy # note, dy = dx is assumed self.y2d = soln_grid.y2d self.soln_grid = soln_grid # store the source norm self.source_norm = 0.0 # after solving, keep track of the number of cycles taken, the # relative error from the previous cycle, and the residual error # (normalized to the source norm) self.num_cycles = 0 self.residual_error = 1.e33 self.relative_error = 1.e33 # keep track of where we are in the V self.current_cycle = -1 self.current_level = -1 self.up_or_down = "" # for visualization -- what frame are we outputting? self.vis = vis self.vis_title = vis_title self.frame = 0 # these draw functions are for visualization purposes and are # not ordinarily used, except for plotting the progression of the # solution within the V def _draw_V(self): """ draw the V-cycle on our optional visualization """ xdown = np.linspace(0.0, 0.5, self.nlevels) xup = np.linspace(0.5, 1.0, self.nlevels) ydown = np.linspace(1.0, 0.0, self.nlevels) yup = np.linspace(0.0, 1.0, self.nlevels) plt.plot(xdown, ydown, lw=2, color="k") plt.plot(xup, yup, lw=2, color="k") plt.scatter(xdown, ydown, marker="o", color="k", s=40) plt.scatter(xup, yup, marker="o", color="k", s=40) if self.up_or_down == "down": plt.scatter(xdown[self.nlevels-self.current_level-1], ydown[self.nlevels-self.current_level-1], marker="o", color="r", zorder=100, s=38) else: plt.scatter(xup[self.current_level], yup[self.current_level], marker="o", color="r", zorder=100, s=38) plt.text(0.7, 0.1, "V-cycle %d" % (self.current_cycle)) plt.axis("off") def _draw_solution(self): """ plot the current solution on our optional visualization """ myg = self.grids[self.current_level].grid v = self.grids[self.current_level].get_var("v") cm = "viridis" plt.imshow(np.transpose(v[myg.ilo:myg.ihi+1, myg.jlo:myg.jhi+1]), interpolation="nearest", origin="lower", extent=[self.xmin, self.xmax, self.ymin, self.ymax], cmap=cm) #plt.xlabel("x") plt.ylabel("y") if self.current_level == self.nlevels-1: plt.title(r"solving $L\phi = f$") else: plt.title(r"solving $Le = r$") formatter = matplotlib.ticker.ScalarFormatter(useMathText=True) cb = plt.colorbar(format=formatter, shrink=0.5) cb.ax.yaxis.offsetText.set_fontsize("small") cl = plt.getp(cb.ax, 'ymajorticklabels') plt.setp(cl, fontsize="small") def _draw_main_solution(self): """ plot the solution at the finest level on our optional visualization """ myg = self.grids[self.nlevels-1].grid v = self.grids[self.nlevels-1].get_var("v") cm = "viridis" plt.imshow(np.transpose(v[myg.ilo:myg.ihi+1, myg.jlo:myg.jhi+1]), interpolation="nearest", origin="lower", extent=[self.xmin, self.xmax, self.ymin, self.ymax], cmap=cm) plt.xlabel("x") plt.ylabel("y") plt.title(r"current fine grid solution") formatter = matplotlib.ticker.ScalarFormatter(useMathText=True) cb = plt.colorbar(format=formatter, shrink=0.5) cb.ax.yaxis.offsetText.set_fontsize("small") cl = plt.getp(cb.ax, 'ymajorticklabels') plt.setp(cl, fontsize="small") def _draw_main_error(self): """ plot the error with respect to the true solution on our optional visualization """ myg = self.grids[self.nlevels-1].grid v = self.grids[self.nlevels-1].get_var("v") e = v - self.true_function(myg.x2d, myg.y2d) cmap = "viridis" plt.imshow(np.transpose(e[myg.ilo:myg.ihi+1, myg.jlo:myg.jhi+1]), interpolation="nearest", origin="lower", extent=[self.xmin, self.xmax, self.ymin, self.ymax], cmap=cmap) plt.xlabel("x") plt.ylabel("y") plt.title(r"current fine grid error") formatter = matplotlib.ticker.ScalarFormatter(useMathText=True) cb = plt.colorbar(format=formatter, shrink=0.5) cb.ax.yaxis.offsetText.set_fontsize("small") cl = plt.getp(cb.ax, 'ymajorticklabels') plt.setp(cl, fontsize="small") def grid_info(self, level, indent=0): """ Report simple grid information """ print("{}level: {}, grid: {} x {}".format( indent*" ", level, self.grids[level].grid.nx, self.grids[level].grid.ny)) def get_solution(self, grid=None): """ Return the solution after doing the MG solve If a grid object is passed in, then the solution is put on that grid -- not the passed in grid must have the same dx and dy Returns ------- out : ndarray """ v = self.grids[self.nlevels-1].get_var("v") if grid is None: return v.copy() else: myg = self.soln_grid assert grid.dx == myg.dx and grid.dy == myg.dy sol = grid.scratch_array() sol.v(buf=1)[:, :] = v.v(buf=1) return sol def get_solution_gradient(self, grid=None): """ Return the gradient of the solution after doing the MG solve. The x- and y-components are returned in separate arrays. If a grid object is passed in, then the gradient is computed on that grid. Note: the passed-in grid must have the same dx, dy Returns ------- out : ndarray, ndarray """ myg = self.soln_grid if grid is None: og = self.soln_grid else: og = grid assert og.dx == myg.dx and og.dy == myg.dy v = self.grids[self.nlevels-1].get_var("v") gx = og.scratch_array() gy = og.scratch_array() gx.v()[:, :] = 0.5*(v.ip(1) - v.ip(-1))/myg.dx gy.v()[:, :] = 0.5*(v.jp(1) - v.jp(-1))/myg.dy return gx, gy def get_solution_object(self): """ Return the full solution data object at the finest resolution after doing the MG solve Returns ------- out : CellCenterData2d object """ return self.grids[self.nlevels-1] def init_solution(self, data): """ Initialize the solution to the elliptic problem by passing in a value for all defined zones Parameters ---------- data : ndarray An array (of the same size as the finest MG level) with the values to initialize the solution to the elliptic problem. """ v = self.grids[self.nlevels-1].get_var("v") v[:, :] = data.copy() def init_zeros(self): """ Set the initial solution to zero """ v = self.grids[self.nlevels-1].get_var("v") v[:, :] = 0.0 def init_RHS(self, data): """ Initialize the right hand side, f, of the Helmholtz equation (alpha - beta L) phi = f Parameters ---------- data : ndarray An array (of the same size as the finest MG level) with the values to initialize the solution to the elliptic problem. """ f = self.grids[self.nlevels-1].get_var("f") f[:, :] = data.copy() # store the source norm self.source_norm = f.norm() if self.verbose: print("Source norm = ", self.source_norm) self.initialized_rhs = 1 def _compute_residual(self, level): """ compute the residual and store it in the r variable""" v = self.grids[level].get_var("v") f = self.grids[level].get_var("f") r = self.grids[level].get_var("r") myg = self.grids[level].grid # compute the residual # r = f - alpha phi + beta L phi r.v()[:, :] = f.v()[:, :] - self.alpha*v.v()[:, :] + \ self.beta*((v.ip(-1) + v.ip(1) - 2*v.v())/myg.dx**2 + (v.jp(-1) + v.jp(1) - 2*v.v())/myg.dy**2) def smooth(self, level, nsmooth): """ Use red-black Gauss-Seidel iterations to smooth the solution at a given level. This is used at each stage of the V-cycle (up and down) in the MG solution, but it can also be called directly to solve the elliptic problem (although it will take many more iterations). Parameters ---------- level : int The level in the MG hierarchy to smooth the solution nsmooth : int The number of r-b Gauss-Seidel smoothing iterations to perform """ v = self.grids[level].get_var("v") f = self.grids[level].get_var("f") myg = self.grids[level].grid self.grids[level].fill_BC("v") xcoeff = self.beta/myg.dx**2 ycoeff = self.beta/myg.dy**2 # do red-black G-S for i in range(nsmooth): # do the red black updating in four decoupled groups # # # | | | # --+-------+-------+-- # | | | # | 4 | 3 | # | | | # --+-------+-------+-- # | | | # jlo | 1 | 2 | # | | | # --+-------+-------+-- # | ilo | | # # groups 1 and 3 are done together, then we need to # fill ghost cells, and then groups 2 and 4 for n, (ix, iy) in enumerate([(0, 0), (1, 1), (1, 0), (0, 1)]): v.ip_jp(ix, iy, s=2)[:, :] = (f.ip_jp(ix, iy, s=2) + xcoeff*(v.ip_jp(1+ix, iy, s=2) + v.ip_jp(-1+ix, iy, s=2)) + ycoeff*(v.ip_jp(ix, 1+iy, s=2) + v.ip_jp(ix, -1+iy, s=2))) / \ (self.alpha + 2.0*xcoeff + 2.0*ycoeff) if n == 1 or n == 3: self.grids[level].fill_BC("v") if self.vis == 1: plt.clf() plt.subplot(221) self._draw_solution() plt.subplot(222) self._draw_V() plt.subplot(223) self._draw_main_solution() plt.subplot(224) self._draw_main_error() plt.suptitle(self.vis_title, fontsize=18) plt.pause(0.001) plt.draw() plt.savefig("mg_%4.4d.png" % (self.frame)) self.frame += 1 def solve(self, rtol=1.e-11): """ The main driver for the multigrid solution of the Helmholtz equation. This controls the V-cycles, smoothing at each step of the way and uses simple smoothing at the coarsest level to perform the bottom solve. Parameters ---------- rtol : float The relative tolerance (residual norm / source norm) to solve to. Note that if the source norm is 0 (e.g. the righthand side of our equation is 0), then we just use the norm of the residual. """ # start by making sure that we've initialized the RHS if not self.initialized_rhs: msg.fail("ERROR: RHS not initialized") if self.verbose: print("source norm = ", self.source_norm) old_phi = self.grids[self.nlevels-1].get_var("v").copy() residual_error = 1.e33 cycle = 1 # V-cycles until we achieve the L2 norm of the residual < rtol while residual_error > rtol and cycle <= self.max_cycles: self.current_cycle = cycle # zero out the solution on all but the finest grid for level in range(self.nlevels-1): self.grids[level].zero("v") if self.verbose: print("<<< beginning V-cycle (cycle {}) >>>\n".format(cycle)) # do V-cycles through the entire hierarchy level = self.nlevels-1 self.v_cycle(level) # compute the error with respect to the previous solution # this is for diagnostic purposes only -- it is not used to # determine convergence soln = self.grids[self.nlevels-1] diff = (soln.get_var("v") - old_phi)/(soln.get_var("v") + self.small) relative_error = soln.grid.norm(diff) old_phi = soln.get_var("v").copy() # compute the residual error, relative to the source norm self._compute_residual(self.nlevels-1) fp = self.grids[level] r = fp.get_var("r") if self.source_norm != 0.0: residual_error = r.norm()/self.source_norm else: residual_error = r.norm() if self.verbose: print("cycle {}: relative err = {}, residual err = {}\n".format( cycle, relative_error, residual_error)) cycle += 1 self.num_cycles = cycle-1 self.relative_error = relative_error self.residual_error = residual_error fp.fill_BC("v") def v_cycle(self, level): """ Perform a V-cycle for a single 2-level solve. This is applied recursively do V-cycle through the entire hierarchy. """ if level > 0: self.current_level = level self.up_or_down = "down" # pointers to the fine and coarse data fp = self.grids[level] cp = self.grids[level-1] if self.verbose: self._compute_residual(level) self.grid_info(level, indent=2) print(" before G-S, residual L2: {}".format(fp.get_var("r").norm())) # smooth on the current level self.smooth(level, self.nsmooth) # compute the residual self._compute_residual(level) if self.verbose: print(" after G-S, residual L2: {}\n".format(fp.get_var("r").norm())) # restrict the residual down to the RHS of the coarser level f_coarse = cp.get_var("f") f_coarse.v()[:, :] = fp.restrict("r").v() # solve the coarse problem self.v_cycle(level-1) # ascending part self.current_level = level self.up_or_down = "up" fp = self.grids[level] cp = self.grids[level-1] # prolong the error up from the coarse grid e = cp.prolong("v") # correct the solution on the current grid v = fp.get_var("v") v.v()[:, :] += e.v() fp.fill_BC("v") if self.verbose: self._compute_residual(level) self.grid_info(level, indent=2) print(" before G-S, residual L2: {}".format(fp.get_var("r").norm())) # smooth self.smooth(level, self.nsmooth) if self.verbose: self._compute_residual(level) print(" after G-S, residual L2: {}\n".format(fp.get_var("r").norm())) else: # bottom solve: solve the discrete coarse problem. We # could use any number of different matrix solvers here # (like CG), but since we are 2x2 by design at this point, # we will just smooth if self.verbose: print(" bottom solve:") self.current_level = level bp = self.grids[level] if self.verbose: self.grid_info(level, indent=2) print("") self.smooth(level, self.nsmooth_bottom) bp.fill_BC("v")
the-stack_0_12011
#=============================================================================== # Copyright 2017-2019 Intel Corporation # All Rights Reserved. # # If this software was obtained under the Intel Simplified Software License, # the following terms apply: # # The source code, information and material ("Material") contained herein is # owned by Intel Corporation or its suppliers or licensors, and title to such # Material remains with Intel Corporation or its suppliers or licensors. The # Material contains proprietary information of Intel or its suppliers and # licensors. The Material is protected by worldwide copyright laws and treaty # provisions. No part of the Material may be used, copied, reproduced, # modified, published, uploaded, posted, transmitted, distributed or disclosed # in any way without Intel's prior express written permission. No license under # any patent, copyright or other intellectual property rights in the Material # is granted to or conferred upon you, either expressly, by implication, # inducement, estoppel or otherwise. Any license under such intellectual # property rights must be express and approved by Intel in writing. # # Unless otherwise agreed by Intel in writing, you may not remove or alter this # notice or any other notice embedded in Materials by Intel or Intel's # suppliers or licensors in any way. # # # If this software was obtained under the Apache License, Version 2.0 (the # "License"), the following terms apply: # # You may not use this file except in compliance with the License. You may # obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # limitations under the License. #=============================================================================== # # Intel(R) Integrated Performance Primitives (Intel(R) IPP) Cryptography # import re import sys import os import hashlib Header = sys.argv[1] ## Intel(R) IPP Crypto dispatcher will be generated for fucntions in Header OutDir = sys.argv[2] ## Output folder for generated files cpulist = sys.argv[3] ## Actual CPU list: semicolon separated string cpulist = cpulist.split(';') headerID= False ## Header ID define to avoid multiple include like: #if !defined( __IPPCP_H__ ) from gen_disp_common import readNextFunction HDR= open( Header, 'r' ) h= HDR.readlines() HDR.close() ## keep filename only (incdir, Header)= os.path.split(Header) ## original header name to declare external functions as internal for dispatcher OrgH= Header isFunctionFound = True curLine = 0 FunName = "" FunArg = "" while (isFunctionFound == True): result = readNextFunction(h, curLine, headerID) curLine = result['curLine'] FunName = result['FunName'] FunArg = result['FunArg'] isFunctionFound = result['success'] if (isFunctionFound == True): ################################################## ## create dispatcher files: C file with inline asm ################################################## filename = "jmp_{}_{}".format(FunName, hashlib.sha512(FunName.encode('utf-8')).hexdigest()[:8]) DISP= open( os.sep.join([OutDir, filename + ".asm"]), 'w' ) for cpu in cpulist: DISP.write("EXTRN "+cpu+"_"+FunName+":PROC\n") DISP.write("EXTRN ippcpJumpIndexForMergedLibs:DWORD\n") DISP.write("EXTRN ippcpSafeInit:PROC\n\n") DISP.write("_DATA SEGMENT\n\n") DISP.write(" DQ in_"+FunName+"\n") DISP.write(FunName+"_arraddr") for cpu in cpulist: DISP.write(" DQ "+cpu+"_"+FunName+"\n") DISP.write(""" _DATA ENDS _TEXT SEGMENT in_{FunName} PROC PRIVATE call ippcpSafeInit ALIGN 16 {FunName} PROC PUBLIC movsxd rax, DWORD PTR ippcpJumpIndexForMergedLibs lea r10, {FunName}_arraddr jmp qword ptr [r10+rax*8] {FunName} ENDP in_{FunName} ENDP _TEXT ENDS END """.format(FunName=FunName)) DISP.close()
the-stack_0_12012
"""Tests for certbot_dns_joker.dns_joker.""" import unittest try: import mock except ImportError: # pragma: no cover from unittest import mock # type: ignore from requests.exceptions import HTTPError import urllib.parse import requests import requests_mock from certbot.compat import os from certbot.errors import PluginError from certbot.plugins import dns_test_common from certbot.plugins.dns_test_common import DOMAIN from certbot.tests import util as test_util FAKE_USERNAME = 'fake_username' FAKE_PASSWORD = 'fake_password' MOCK_ENDPOINT = 'mock://endpoint' class AuthenticatorTest(test_util.TempDirTestCase, dns_test_common.BaseAuthenticatorTest): def setUp(self): super(AuthenticatorTest, self).setUp() from certbot_dns_joker.dns_joker import Authenticator path = os.path.join(self.tempdir, 'file.ini') dns_test_common.write({ # 'certbot_dns_joker:dns_joker_username': FAKE_USERNAME, # 'certbot_dns_joker:dns_joker_password': FAKE_PASSWORD, 'joker_username': FAKE_USERNAME, 'joker_password': FAKE_PASSWORD, }, path) self.config = mock.MagicMock(joker_credentials=path, joker_propagation_seconds=0) # don't wait during tests # self.auth = Authenticator(self.config, "certbot_dns_joker:dns_joker") self.auth = Authenticator(self.config, "joker") self.mock_client = mock.MagicMock() # _get_joker_client | pylint: disable=protected-access self.auth._get_joker_client = mock.MagicMock(return_value=self.mock_client) def test_perform(self): self.auth.perform([self.achall]) expected = [ mock.call.add_txt_record( DOMAIN, "_acme-challenge." + DOMAIN, mock.ANY ) ] self.assertEqual(expected, self.mock_client.mock_calls) def test_cleanup(self): # _attempt_cleanup | pylint: disable=protected-access self.auth._attempt_cleanup = True self.auth.cleanup([self.achall]) expected = [ mock.call.del_txt_record( DOMAIN, "_acme-challenge." + DOMAIN, mock.ANY ) ] self.assertEqual(expected, self.mock_client.mock_calls) class JokerClientTest(unittest.TestCase): record_name = "_acme-challenge." + DOMAIN record_content = "bar" record_ttl = 42 def setUp(self): from certbot_dns_joker.dns_joker import _JokerClient self.client = _JokerClient(FAKE_USERNAME, FAKE_PASSWORD, DOMAIN, self.record_ttl, endpoint=MOCK_ENDPOINT) self.adapter = requests_mock.Adapter() self.client.session.mount('mock://', self.adapter) def _register_response(self, response='good', subdomain=None, additional_matcher=None, **kwargs): def add_matcher(request): data = urllib.parse.parse_qs(request.text) add_result = True if additional_matcher is not None: add_result = additional_matcher(request) def submatch(label): if subdomain: print(f'checking label:{label} subdomain:{subdomain}') return len(label) > len(subdomain) and label[-len(subdomain)-1:] == '.' + subdomain else: return True # The error message is unhelpful (NoMockAddress) if this fails. return ( ("username" in data and data["username"] == [FAKE_USERNAME]) and ("password" in data and data["password"] == [FAKE_PASSWORD]) and ("zone" in data and data["zone"] == [DOMAIN]) and ("label" in data and submatch(data["label"][0])) and add_result ) self.adapter.register_uri( requests_mock.ANY, MOCK_ENDPOINT, text=response, status_code=200 if response == 'good' else 400, additional_matcher=add_matcher, **kwargs ) def test_add_txt_record(self): self._register_response() self.client.add_txt_record( DOMAIN, self.record_name, self.record_content ) def test_add_txt_record_fail_to_authenticate(self): self._register_response(response='badauth') with self.assertRaises(PluginError) as context: self.client.add_txt_record( DOMAIN, self.record_name, self.record_content ) def test_add_txt_record_fail_to_find_domain(self): self._register_response(response='nohost') with self.assertRaises(PluginError) as context: self.client.add_txt_record( DOMAIN, self.record_name, self.record_content ) def test_add_txt_record_subdomain(self): self._register_response(subdomain='sub') self.client.add_txt_record( 'sub.' + DOMAIN, 'challenge.sub.' + DOMAIN, self.record_content ) def test_del_txt_record(self): self._register_response() self.client.del_txt_record( DOMAIN, self.record_name, self.record_content ) if __name__ == "__main__": unittest.main() # pragma: no cover
the-stack_0_12015
from stix2 import MemoryStore, Filter import json from itertools import chain def query_all(srcs, filters): """return the union of a query across multiple memorystores""" return list(chain.from_iterable( src.query(filters) for src in srcs )) def get_related(srcs, src_type, rel_type, target_type, reverse=False): """build relationship mappings params: srcs: memorystores for enterprise, mobile and pre-attack, in an array src_type: source type for the relationships, e.g "attack-pattern" rel_type: relationship type for the relationships, e.g "uses" target_type: target type for the relationship, e.g "intrusion-set" reverse: build reverse mapping of target to source """ relationships = query_all(srcs, [ Filter('type', '=', 'relationship'), Filter('relationship_type', '=', rel_type), Filter('revoked', '=', False) ]) # stix_id => [ ids of objects with relationships with stix_id ] id_to_related = {} # build the dict for relationship in relationships: if (src_type in relationship.source_ref and target_type in relationship.target_ref): if (relationship.source_ref in id_to_related and not reverse) or (relationship.target_ref in id_to_related and reverse): if not reverse: id_to_related[relationship.source_ref].append({ "relationship": relationship, "id": relationship.target_ref }) else: id_to_related[relationship.target_ref].append({ "relationship": relationship, "id": relationship.source_ref }) else: if not reverse: id_to_related[relationship.source_ref] = [{ "relationship": relationship, "id": relationship.target_ref }] else: id_to_related[relationship.target_ref] = [{ "relationship": relationship, "id": relationship.source_ref }] # all objects of target type if not reverse: targets = query_all(srcs, [ Filter('type', '=', target_type), Filter('revoked', '=', False) ]) else: targets = query_all(srcs, [ Filter('type', '=', src_type), Filter('revoked', '=', False) ]) id_to_target = {} # build the dict for target in targets: id_to_target[target.id] = target output = {} for stix_id in id_to_related: value = [] for related in id_to_related[stix_id]: if not related["id"] in id_to_target: continue # targetting a revoked object value.append({ "object": json.loads(id_to_target[related["id"]].serialize()), "relationship": json.loads(related["relationship"].serialize()) }) output[stix_id] = value return output # tool:group def tools_used_by_groups(srcs): """returns group_id => {tool, relationship} for each tool used by the group. srcs should be an array of memorystores for enterprise, mobile and pre """ return get_related(srcs, "intrusion-set", "uses", "tool") def groups_using_tool(srcs): """returns tool_id => {group, relationship} for each group using the tool. srcs should be an array of memorystores for enterprise, mobile and pre """ return get_related(srcs, "intrusion-set", "uses", "tool", reverse=True) # malware:group def malware_used_by_groups(srcs): """returns group_id => {malware, relationship} for each malware used by group. srcs should be an array of memorystores for enterprise, mobile and pre """ return get_related(srcs, "intrusion-set", "uses", "malware") def groups_using_malware(srcs): """returns malware_id => {group, relationship} for each group using the malware. srcs should be an array of memorystores for enterprise, mobile and pre """ return get_related(srcs, "intrusion-set", "uses", "malware", reverse=True) # technique:group def techniques_used_by_groups(srcs): """returns group_id => {technique, relationship} for each technique used by the group. srcs should be an array of memorystores for enterprise, mobile and pre """ return get_related(srcs, "intrusion-set", "uses", "attack-pattern") def groups_using_technique(srcs): """returns technique_id => {group, relationship} for each group using the technique. srcs should be an array of memorystores for enterprise, mobile and pre """ return get_related(srcs, "intrusion-set", "uses", "attack-pattern", reverse=True) # technique:malware def techniques_used_by_malware(srcs): """return malware => {technique, relationship} for each technique used by the malware. srcs should be an array of memorystores for enterprise, mobile and pre """ return get_related(srcs, "malware", "uses", "attack-pattern") def malware_using_technique(srcs): """return technique_id => {malware, relationship} for each malware using the technique. srcs should be an array of memorystores for enterprise, mobile and pre """ return get_related(srcs, "malware", "uses", "attack-pattern", reverse=True) # technique:tool def techniques_used_by_tools(srcs): """return tool_id => {technique, relationship} for each technique used by the tool. srcs should be an array of memorystores for enterprise, mobile and pre """ return get_related(srcs, "tool", "uses", "attack-pattern") def tools_using_technique(srcs): """return technique_id => {tool, relationship} for each tool using the technique. srcs should be an array of memorystores for enterprise, mobile and pre """ return get_related(srcs, "tool", "uses", "attack-pattern", reverse=True) # technique:mitigation def mitigation_mitigates_techniques(srcs): """return mitigation_id => {technique, relationship} for each technique mitigated by the mitigation. srcs should be an array of memorystores for enterprise, mobile and pre """ return get_related(srcs, "course-of-action", "mitigates", "attack-pattern", reverse=False) def technique_mitigated_by_mitigation(srcs): """return technique_id => {mitigation, relationship} for each mitigation of the technique. srcs should be an array of memorystores for enterprise, mobile and pre """ return get_related(srcs, "course-of-action", "mitigates", "attack-pattern", reverse=True) # technique:technique def technique_related_to_technique(srcs): """return technique_id => {technique, relationship} for each technique related to the technique. srcs should be an array of memorystores for enterprise, mobile and pre """ return get_related(srcs, "attack-pattern", "related-to", "attack-pattern") # technique:subtechnique def subtechniques_of(srcs): """ return technique_id => {subtechnique, relationship} for each subtechnique of the technique. srcs should be an array of memorystores for enterprise, mobile and pre """ return get_related(srcs, "attack-pattern", "subtechnique-of", "attack-pattern", reverse=True) def parent_technique_of(srcs): """ return subtechnique_id => {technique, relationship} describing the parent technique of the subtechnique. srcs should be an array of memorystores for enterprise, mobile and pre """ return get_related(srcs, "attack-pattern", "subtechnique-of", "attack-pattern") def load(url): """Load stix data from file""" src = MemoryStore() src.load_from_file(url) return src
the-stack_0_12017
# resources/srx/addrbook_finder.py import netaddr #from .zone import Zone #from .addrbook import ZoneAddrBook class AddrBookFinderResults(object): """ Helper-class to hold the results of a :ZoneAddrFind.find(): invocation """ def __init__(self, ab, find, results): self._ab = ab self._find = find self._results = results self.sets = [] @property def lpm(self): """ The longest-prefix-matching address is the last one in the results list. This fact is a result of the :ZoneAddrFinder.find(): sorted call """ return self._results[-1][0] @property def items(self): """ Return a list of the matching address items and sets """ return self.addrs + self.sets @property def addrs(self): """ Return a list of the matching address items """ # return a list of names return [x[0] for x in self._results] @property def matching(self): """ Returns the string value of the original querried address presented to the find() method """ return self._find def __repr__(self): """ Provides the matching value and the zone name associated with this results """ return "%s(%s in %s)" % ( self.__class__.__name__, self._find, self._ab.name) class AddrBookFinder(object): # ------------------------------------------------------------------------- # CONSTRUCTOR # ------------------------------------------------------------------------- def __init__(self, addr_book): """ addr_book Either a ZoneAddrBook or SharedAddrBook instance """ self._ab = addr_book self._index = None def __repr__(self): return "AddrBookFinder(%s)" % self._ab.name def compile(self): """ Compile a list of netaddr objects against the catalog of address items """ # create a tuple of (addr-name, netaddr) for each of the items in the # address-book self._index = [(name, netaddr.IPNetwork(addr['ip_prefix'])) for name, addr in self._ab.addr.catalog.items()] def find(self, addr, sets=True): """ Given an ip or ip_prefix locate the matching address book address and address-set items. """ # if the caller hasn't explicity invoked :compile(): to create the # netaddr objects, then do that now. if self._index is None: self.compile() # convert the provided :addr: into a netaddr object and then # to a subnet match to find address entries. the matching # values will be sorted with longest prefix matching to be # last in the list ip = netaddr.IPNetwork(addr).ip # is ip in the subnet? in_net = lambda i: ip & i[1].netmask == i[1].network # used to sort by prefix-length by_pflen = lambda a, b: cmp(a[1].prefixlen, b[1].prefixlen) r = sorted( filter( in_net, self._index), cmp=by_pflen) # find/sort if r is None: return None # now that we have some matching entries, we should find which # address-set items uses the items results = AddrBookFinderResults(self._ab, addr, r) if sets is True: results.sets = self.find_sets(results) # return the results object return results def find_sets(self, r): """ Given a :AddrBookFinderResults: object, which contains the list of matching address items, locate the list of address-set objects that use those items """ catalog = self._ab.set.catalog in_addr = lambda i: i in v['addr_list'] sets = [k for k, v in catalog.items() if filter(in_addr, r.addrs)] in_set = lambda i: i in v['set_list'] subsets = [k for k, v in catalog.items() if filter(in_set, sets)] return sets + subsets
the-stack_0_12018
# dataset settings dataset_type = "PascalContextDataset" data_root = "data/VOCdevkit/VOC2010/" img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True ) img_scale = (512, 512) crop_size = (512, 512) max_ratio = 8 train_pipeline = [ dict(type="LoadImageFromFile"), dict(type="LoadAnnotations"), dict(type="Resize", img_scale=img_scale, ratio_range=(0.5, 2.0)), dict(type="RandomCrop", crop_size=crop_size, cat_max_ratio=0.75), dict(type="RandomFlip", prob=0.5), dict(type="PhotoMetricDistortion"), dict(type="Normalize", **img_norm_cfg), dict(type="Pad", size=crop_size, pad_val=0, seg_pad_val=255), dict(type="DefaultFormatBundle"), dict(type="Collect", keys=["img", "gt_semantic_seg"]), ] val_pipeline = [ dict(type="LoadImageFromFile"), dict( type="MultiScaleFlipAug", img_scale=(512 * max_ratio, 512), flip=False, transforms=[ dict(type="Resize", keep_ratio=True), dict(type="RandomFlip"), dict(type="Normalize", **img_norm_cfg), dict(type="ImageToTensor", keys=["img"]), dict(type="Collect", keys=["img"]), ], ), ] test_pipeline = [ dict(type="LoadImageFromFile"), dict( type="MultiScaleFlipAug", img_scale=(512 * max_ratio, 512), flip=False, transforms=[ dict(type="Resize", keep_ratio=True), dict(type="RandomFlip"), dict(type="Normalize", **img_norm_cfg), dict(type="ImageToTensor", keys=["img"]), dict(type="Collect", keys=["img"]), ], ), ] data = dict( samples_per_gpu=4, workers_per_gpu=4, train=dict( type=dataset_type, data_root=data_root, img_dir="JPEGImages", ann_dir="SegmentationClassContext", split="ImageSets/SegmentationContext/train.txt", pipeline=train_pipeline, ), val=dict( type=dataset_type, data_root=data_root, img_dir="JPEGImages", ann_dir="SegmentationClassContext", split="ImageSets/SegmentationContext/val.txt", pipeline=val_pipeline, ), test=dict( type=dataset_type, data_root=data_root, img_dir="JPEGImages", ann_dir="SegmentationClassContext", split="ImageSets/SegmentationContext/val.txt", pipeline=test_pipeline, ), )
the-stack_0_12019
# encoding: utf8 from __future__ import unicode_literals from django.db import models, migrations import autoslug.fields import cities_light.models class Migration(migrations.Migration): dependencies = [ ('cities_light', '0001_initial'), ] operations = [ migrations.CreateModel( name='City', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name_ascii', models.CharField(db_index=True, max_length=200, blank=True)), ('slug', autoslug.fields.AutoSlugField(editable=False)), ('geoname_id', models.IntegerField(unique=True, null=True, blank=True)), ('alternate_names', models.TextField(default='', null=True, blank=True)), ('name', models.CharField(max_length=200, db_index=True)), ('display_name', models.CharField(max_length=200)), ('search_names', cities_light.models.ToSearchTextField(default='', max_length=4000, db_index=True, blank=True)), ('latitude', models.DecimalField(null=True, max_digits=8, decimal_places=5, blank=True)), ('longitude', models.DecimalField(null=True, max_digits=8, decimal_places=5, blank=True)), ('region', models.ForeignKey(to_field='id', blank=True, to='cities_light.Region', null=True)), ('country', models.ForeignKey(to='cities_light.Country', to_field='id')), ('population', models.BigIntegerField(db_index=True, null=True, blank=True)), ('feature_code', models.CharField(db_index=True, max_length=10, null=True, blank=True)), ], options={ 'ordering': ['name'], 'unique_together': set([('region', 'name'), ('region', 'slug')]), 'abstract': False, 'verbose_name_plural': 'cities', }, bases=(models.Model,), ), ]
the-stack_0_12022
############################################################# ## ## ## Copyright (c) 2003-2017 by The University of Queensland ## ## Centre for Geoscience Computing ## ## http://earth.uq.edu.au/centre-geoscience-computing ## ## ## ## Primary Business: Brisbane, Queensland, Australia ## ## Licensed under the Open Software License version 3.0 ## ## http://www.apache.org/licenses/LICENSE-2.0 ## ## ## ############################################################# """ Defines the L{ImageFormat} class and functions for mapping a file name extension to an associated C{ImageFormat} object. """ import os import os.path class ImageFormat(object): """ Class representing an image format. """ def __init__(self, name): """ Constructor. @type name: str @param name: Name assigned to this image format. """ self.name = name def getName(self): """ Returns the name associated with this image format. @rtype: str """ return self.name def __str__(self): return self.getName() PNG = ImageFormat("PNG") PNM = ImageFormat("PNM") _nameFormatDict = dict() _nameFormatDict[str.upper(str(PNG))] = PNG _nameFormatDict[str.upper(str(PNM))] = PNM def _getDelimitedFormatNameString(): return ", ".join(map(str,list(_nameFormatDict.keys()))) def getFormatFromName(formatName, ext=None): """ Returns the C{{ImageFormat}} object which corresponds to a specified image-format name (string). @type formatName: str @param formatName: The name of an image format, one of: {0:s} @type ext: str @param ext: File name extension for error message string. """.format(_getDelimitedFormatNameString()) if str.upper(formatName) in _nameFormatDict: return _nameFormatDict[str.upper(formatName)] raise \ ValueError( ( "No image format found which matched extension '{0:s}';" + " valid image file formats are: {1:s}" ).format(ext, _getDelimitedFormatNameString()) ) def getFormatFromExtension(fileName): """ Returns the C{ImageFormat} object which corresponds to a specified file name. Uses the C{fileName} extension to try and deduce the corresponding C{ImageFormat} object. @type fileName: str @param fileName: A file name. @rtype: C{ImageFormat} @return: An C{ImageFormat} object corresponding to the specified file name (and corresponding file name extension). """ (base, ext) = os.path.splitext(fileName) if (len(ext) > 0): formatName = str.lstrip(ext, ".") else: raise ValueError( "Could not determine image format from file " + "name " + fileName + ", no extension." ) return getFormatFromName(formatName, ext)
the-stack_0_12023
from InquirerPy.utils import color_print import sys, psutil, time, cursor, valclient, ctypes, traceback, os, subprocess from .utilities.killable_thread import Thread from .utilities.config.app_config import Config from .utilities.config.modify_config import Config_Editor from .utilities.processes import Processes from .utilities.rcs import Riot_Client_Services from .utilities.systray import Systray from .utilities.version_checker import Checker from .utilities.logging import Logger from .utilities.program_data import Program_Data from .localization.localization import Localizer from .presence.presence import Presence from .webserver import server # weird console window management stuff kernel32 = ctypes.WinDLL('kernel32') user32 = ctypes.WinDLL('user32') hWnd = kernel32.GetConsoleWindow() kernel32.SetConsoleMode(kernel32.GetStdHandle(-10), (0x4|0x80|0x20|0x2|0x10|0x1|0x00|0x100)) #disable inputs to console kernel32.SetConsoleMode(kernel32.GetStdHandle(-11), 7) #allow for ANSI sequences class Startup: def __init__(self): if not Processes.is_program_already_running(): cursor.hide() Logger.create_logger() Program_Data.update_file_location() self.config = Config.fetch_config() if "locale" in self.config.keys(): if self.config["locale"][0] == "": config = Localizer.prompt_locale(self.config) Config.modify_config(config) Systray.restart() self.installs = Program_Data.fetch_installs() Localizer.set_locale(self.config) self.config = Config.check_config() Localizer.config = self.config Logger.debug(self.config) self.client = None if Localizer.get_config_value("region",0) == "": # try to autodetect region on first launch self.check_region() ctypes.windll.kernel32.SetConsoleTitleW(f"valorant-rpc {Localizer.get_config_value('version')}") color_print([("Red", Localizer.get_localized_text("prints","startup","wait_for_rpc"))]) try: self.presence = Presence(self.config) Startup.clear_line() except Exception as e: traceback.print_exc() color_print([("Cyan",f"{Localizer.get_localized_text('prints','startup','discord_not_detected')} ({e})")]) if not Processes.are_processes_running(): color_print([("Red", Localizer.get_localized_text("prints","startup","starting_valorant"))]) self.start_game() os._exit(1) self.run() def run(self): self.presence.update_presence("startup") Checker.check_version(self.config) if not Processes.are_processes_running(): color_print([("Red", Localizer.get_localized_text("prints","startup","starting_valorant"))]) self.start_game() self.setup_client() self.systray = Systray(self.client,self.config) self.dispatch_systray() if self.client.fetch_presence() is None: self.wait_for_presence() self.check_run_cli() self.dispatch_presence() self.dispatch_webserver() color_print([("LimeGreen",f"{Localizer.get_localized_text('prints','startup','startup_successful')}\n")]) time.sleep(5) user32.ShowWindow(hWnd, 0) #hide window self.systray_thread.join() self.presence_thread.stop() def dispatch_webserver(self): server.client = self.client server.config = self.config self.webserver_thread = Thread(target=server.start,daemon=True) self.webserver_thread.start() def dispatch_presence(self): self.presence_thread = Thread(target=self.presence.main_loop,daemon=True) self.presence_thread.start() def dispatch_systray(self): self.systray_thread = Thread(target=self.systray.run) self.systray_thread.start() def setup_client(self): self.client = valclient.Client(region=Localizer.get_config_value("region",0)) self.client.activate() self.presence.client = self.client def wait_for_presence(self): presence_timeout = Localizer.get_config_value("startup","presence_timeout") presence_timer = 0 print() while self.client.fetch_presence() is None: Startup.clear_line() color_print([("Cyan", "["),("White",f"{presence_timer}"),("Cyan", f"] {Localizer.get_localized_text('prints','startup','waiting_for_presence')}")]) presence_timer += 1 if presence_timer >= presence_timeout: self.systray.exit() os._exit(1) time.sleep(1) Startup.clear_line() Startup.clear_line() def start_game(self): path = Riot_Client_Services.get_rcs_path() launch_timeout = Localizer.get_config_value("startup","game_launch_timeout") launch_timer = 0 psutil.subprocess.Popen([path, "--launch-product=valorant", "--launch-patchline=live"]) print() while not Processes.are_processes_running(): Startup.clear_line() color_print([("Cyan", "["),("White",f"{launch_timer}"),("Cyan", f"] {Localizer.get_localized_text('prints','startup','waiting_for_valorant')}")]) launch_timer += 1 if launch_timer >= launch_timeout: self.systray.exit() os._exit(1) time.sleep(1) Startup.clear_line() def check_run_cli(self): if Localizer.get_config_value("startup","auto_launch_skincli"): skincli_path = self.installs.get("valorant-skin-cli") if skincli_path is not None: subprocess.Popen(f"start {skincli_path}", shell=True) def check_region(self): color_print([("Red bold",Localizer.get_localized_text("prints","startup","autodetect_region"))]) client = valclient.Client(region="na") client.activate() sessions = client.riotclient_session_fetch_sessions() for _,session in sessions.items(): if session["productId"] == "valorant": launch_args = session["launchConfiguration"]["arguments"] for arg in launch_args: if "-ares-deployment" in arg: region = arg.replace("-ares-deployment=","") self.config[Localizer.get_config_key("region")][0] = region Config.modify_config(self.config) color_print([("LimeGreen",f"{Localizer.get_localized_text('prints','startup','autodetected_region')} {Localizer.get_config_value('region',0)}")]) time.sleep(5) Systray.restart() @staticmethod def clear_line(): sys.stdout.write("\033[F") # move cursor up one line sys.stdout.write("\r\033[K")
the-stack_0_12024
# Copyright (C) Dnspython Contributors, see LICENSE for text of ISC license # Copyright (C) 2003-2007, 2009-2011 Nominum, Inc. # # Permission to use, copy, modify, and distribute this software and its # documentation for any purpose with or without fee is hereby granted, # provided that the above copyright notice and this permission notice # appear in all copies. # # THE SOFTWARE IS PROVIDED "AS IS" AND NOMINUM DISCLAIMS ALL WARRANTIES # WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL NOMINUM BE LIABLE FOR # ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES # WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN # ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT # OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. import struct import dns.exception import dns.immutable import dns.rdata _pows = tuple(10**i for i in range(0, 11)) # default values are in centimeters _default_size = 100.0 _default_hprec = 1000000.0 _default_vprec = 1000.0 # for use by from_wire() _MAX_LATITUDE = 0x80000000 + 90 * 3600000 _MIN_LATITUDE = 0x80000000 - 90 * 3600000 _MAX_LONGITUDE = 0x80000000 + 180 * 3600000 _MIN_LONGITUDE = 0x80000000 - 180 * 3600000 def _exponent_of(what, desc): if what == 0: return 0 exp = None for (i, pow) in enumerate(_pows): if what < pow: exp = i - 1 break if exp is None or exp < 0: raise dns.exception.SyntaxError("%s value out of bounds" % desc) return exp def _float_to_tuple(what): if what < 0: sign = -1 what *= -1 else: sign = 1 what = round(what * 3600000) # pylint: disable=round-builtin degrees = int(what // 3600000) what -= degrees * 3600000 minutes = int(what // 60000) what -= minutes * 60000 seconds = int(what // 1000) what -= int(seconds * 1000) what = int(what) return (degrees, minutes, seconds, what, sign) def _tuple_to_float(what): value = float(what[0]) value += float(what[1]) / 60.0 value += float(what[2]) / 3600.0 value += float(what[3]) / 3600000.0 return float(what[4]) * value def _encode_size(what, desc): what = int(what) exponent = _exponent_of(what, desc) & 0xF base = what // pow(10, exponent) & 0xF return base * 16 + exponent def _decode_size(what, desc): exponent = what & 0x0F if exponent > 9: raise dns.exception.FormError("bad %s exponent" % desc) base = (what & 0xF0) >> 4 if base > 9: raise dns.exception.FormError("bad %s base" % desc) return base * pow(10, exponent) def _check_coordinate_list(value, low, high): if value[0] < low or value[0] > high: raise ValueError(f'not in range [{low}, {high}]') if value[1] < 0 or value[1] > 59: raise ValueError('bad minutes value') if value[2] < 0 or value[2] > 59: raise ValueError('bad seconds value') if value[3] < 0 or value[3] > 999: raise ValueError('bad milliseconds value') if value[4] != 1 and value[4] != -1: raise ValueError('bad hemisphere value') @dns.immutable.immutable class LOC(dns.rdata.Rdata): """LOC record""" # see: RFC 1876 __slots__ = ['latitude', 'longitude', 'altitude', 'size', 'horizontal_precision', 'vertical_precision'] def __init__(self, rdclass, rdtype, latitude, longitude, altitude, size=_default_size, hprec=_default_hprec, vprec=_default_vprec): """Initialize a LOC record instance. The parameters I{latitude} and I{longitude} may be either a 4-tuple of integers specifying (degrees, minutes, seconds, milliseconds), or they may be floating point values specifying the number of degrees. The other parameters are floats. Size, horizontal precision, and vertical precision are specified in centimeters.""" super().__init__(rdclass, rdtype) if isinstance(latitude, int): latitude = float(latitude) if isinstance(latitude, float): latitude = _float_to_tuple(latitude) _check_coordinate_list(latitude, -90, 90) self.latitude = tuple(latitude) if isinstance(longitude, int): longitude = float(longitude) if isinstance(longitude, float): longitude = _float_to_tuple(longitude) _check_coordinate_list(longitude, -180, 180) self.longitude = tuple(longitude) self.altitude = float(altitude) self.size = float(size) self.horizontal_precision = float(hprec) self.vertical_precision = float(vprec) def to_text(self, origin=None, relativize=True, **kw): if self.latitude[4] > 0: lat_hemisphere = 'N' else: lat_hemisphere = 'S' if self.longitude[4] > 0: long_hemisphere = 'E' else: long_hemisphere = 'W' text = "%d %d %d.%03d %s %d %d %d.%03d %s %0.2fm" % ( self.latitude[0], self.latitude[1], self.latitude[2], self.latitude[3], lat_hemisphere, self.longitude[0], self.longitude[1], self.longitude[2], self.longitude[3], long_hemisphere, self.altitude / 100.0 ) # do not print default values if self.size != _default_size or \ self.horizontal_precision != _default_hprec or \ self.vertical_precision != _default_vprec: text += " {:0.2f}m {:0.2f}m {:0.2f}m".format( self.size / 100.0, self.horizontal_precision / 100.0, self.vertical_precision / 100.0 ) return text @classmethod def from_text(cls, rdclass, rdtype, tok, origin=None, relativize=True, relativize_to=None): latitude = [0, 0, 0, 0, 1] longitude = [0, 0, 0, 0, 1] size = _default_size hprec = _default_hprec vprec = _default_vprec latitude[0] = tok.get_int() t = tok.get_string() if t.isdigit(): latitude[1] = int(t) t = tok.get_string() if '.' in t: (seconds, milliseconds) = t.split('.') if not seconds.isdigit(): raise dns.exception.SyntaxError( 'bad latitude seconds value') latitude[2] = int(seconds) l = len(milliseconds) if l == 0 or l > 3 or not milliseconds.isdigit(): raise dns.exception.SyntaxError( 'bad latitude milliseconds value') if l == 1: m = 100 elif l == 2: m = 10 else: m = 1 latitude[3] = m * int(milliseconds) t = tok.get_string() elif t.isdigit(): latitude[2] = int(t) t = tok.get_string() if t == 'S': latitude[4] = -1 elif t != 'N': raise dns.exception.SyntaxError('bad latitude hemisphere value') longitude[0] = tok.get_int() t = tok.get_string() if t.isdigit(): longitude[1] = int(t) t = tok.get_string() if '.' in t: (seconds, milliseconds) = t.split('.') if not seconds.isdigit(): raise dns.exception.SyntaxError( 'bad longitude seconds value') longitude[2] = int(seconds) l = len(milliseconds) if l == 0 or l > 3 or not milliseconds.isdigit(): raise dns.exception.SyntaxError( 'bad longitude milliseconds value') if l == 1: m = 100 elif l == 2: m = 10 else: m = 1 longitude[3] = m * int(milliseconds) t = tok.get_string() elif t.isdigit(): longitude[2] = int(t) t = tok.get_string() if t == 'W': longitude[4] = -1 elif t != 'E': raise dns.exception.SyntaxError('bad longitude hemisphere value') t = tok.get_string() if t[-1] == 'm': t = t[0: -1] altitude = float(t) * 100.0 # m -> cm tokens = tok.get_remaining(max_tokens=3) if len(tokens) >= 1: value = tokens[0].unescape().value if value[-1] == 'm': value = value[0: -1] size = float(value) * 100.0 # m -> cm if len(tokens) >= 2: value = tokens[1].unescape().value if value[-1] == 'm': value = value[0: -1] hprec = float(value) * 100.0 # m -> cm if len(tokens) >= 3: value = tokens[2].unescape().value if value[-1] == 'm': value = value[0: -1] vprec = float(value) * 100.0 # m -> cm # Try encoding these now so we raise if they are bad _encode_size(size, "size") _encode_size(hprec, "horizontal precision") _encode_size(vprec, "vertical precision") return cls(rdclass, rdtype, latitude, longitude, altitude, size, hprec, vprec) def _to_wire(self, file, compress=None, origin=None, canonicalize=False): milliseconds = (self.latitude[0] * 3600000 + self.latitude[1] * 60000 + self.latitude[2] * 1000 + self.latitude[3]) * self.latitude[4] latitude = 0x80000000 + milliseconds milliseconds = (self.longitude[0] * 3600000 + self.longitude[1] * 60000 + self.longitude[2] * 1000 + self.longitude[3]) * self.longitude[4] longitude = 0x80000000 + milliseconds altitude = int(self.altitude) + 10000000 size = _encode_size(self.size, "size") hprec = _encode_size(self.horizontal_precision, "horizontal precision") vprec = _encode_size(self.vertical_precision, "vertical precision") wire = struct.pack("!BBBBIII", 0, size, hprec, vprec, latitude, longitude, altitude) file.write(wire) @classmethod def from_wire_parser(cls, rdclass, rdtype, parser, origin=None): (version, size, hprec, vprec, latitude, longitude, altitude) = \ parser.get_struct("!BBBBIII") if version != 0: raise dns.exception.FormError("LOC version not zero") if latitude < _MIN_LATITUDE or latitude > _MAX_LATITUDE: raise dns.exception.FormError("bad latitude") if latitude > 0x80000000: latitude = (latitude - 0x80000000) / 3600000 else: latitude = -1 * (0x80000000 - latitude) / 3600000 if longitude < _MIN_LONGITUDE or longitude > _MAX_LONGITUDE: raise dns.exception.FormError("bad longitude") if longitude > 0x80000000: longitude = (longitude - 0x80000000) / 3600000 else: longitude = -1 * (0x80000000 - longitude) / 3600000 altitude = float(altitude) - 10000000.0 size = _decode_size(size, "size") hprec = _decode_size(hprec, "horizontal precision") vprec = _decode_size(vprec, "vertical precision") return cls(rdclass, rdtype, latitude, longitude, altitude, size, hprec, vprec) @property def float_latitude(self): "latitude as a floating point value" return _tuple_to_float(self.latitude) @property def float_longitude(self): "longitude as a floating point value" return _tuple_to_float(self.longitude)
the-stack_0_12025
from backend.blockchain.block import Block from backend.wallet.transactions import Transaction from backend.wallet.wallet import Wallet from backend.config import MINING_REWARD_INPUT class Blockchain: def __init__(self): self.chain = [Block.genesis()] def add_block(self, data): self.chain.append(Block.mine_block(self.chain[-1], data)) def __repr__(self): return f'Blockchain: {self.chain}' def replace_chain(self, chain): if len(chain) <= len(self.chain): raise Exception('Cannot replace. The incoming chain must be longer') try: Blockchain.is_valid_chain(chain) except Exception as e: raise Exception(f'Cannot replace. The incoming chain is invalid: {e}') self.chain = chain def to_json(self): return list(map(lambda block: block.to_json(), self.chain)) @staticmethod def from_json(chain_json): blockchain = Blockchain() blockchain.chain = list( map(lambda block_json: Block.from_json(block_json), chain_json) ) return blockchain @staticmethod def is_valid_chain(chain): if chain[0] != Block.genesis(): raise Exception('The genesis block must be valid') for i in range(1, len(chain)): block = chain[i] last_block = chain[i-1] Block.is_valid_block(last_block, block) Blockchain.is_valid_transaction_chain(chain) @staticmethod def is_valid_transaction_chain(chain): transaction_ids = set() for i in range(len(chain)): block = chain[i] has_mining_reward = False for transaction_json in block.data: transaction = Transaction.from_json(transaction_json) if transaction.id in transaction_ids: raise Exception(f'Transaction {transaction.id} is not unique') transaction_ids.add(transaction.id) if transaction.input == MINING_REWARD_INPUT: if has_mining_reward: raise Exception( 'There can be only one mining reward per block. '\ f'Check block with hash: {block.hash}' ) has_mining_reward = True else: historic_blockchain = Blockchain() historic_blockchain.chain = chain[0:i] historic_balance = Wallet.calculate_balance( historic_blockchain, transaction.input['address'] ) if historic_balance != transaction.input['amount']: raise Exception(f'Transaction {transaction.id} has an invalid input amount') transaction.is_valid_transaction(transaction) def main(): blockchain = Blockchain() blockchain.add_block('one') blockchain.add_block('two') print(blockchain) print(f'blockchain.py ___name__: {__name__}') if __name__ == '__main__': main()
the-stack_0_12026
# coding: utf8 # !/usr/bin/env python import hunspell import pandas as pd from math import log import matplotlib.pyplot as plt import seaborn as sns import codecs import pickle import re import unicodedata from ast import literal_eval def getScriptPath(): return "/home/alexis/Documents/EPFL/MS3/Project/python" def getIdxOfWord(ws, w): """Return index of word in sentence""" try: wIdx = ws.index(w) except: wIdx = -1 return wIdx def stem(stemmer, word): """ Computes a possible stem for a given word :param word: string The word to be stemmed :return: string The last possible stem in list, or the word itself if no stem found """ wstem = stemmer.stem(word) if len(wstem) > 0: # and wstem[-1] not in stopwords return unicode(wstem[-1], 'utf8') else: return word def storeCount(array, key): """Increments value for key in store by one, or sets to 1 if key nonexistent.""" if key in array: array[key] += 1 else: array[key] = 1 def storeIncrement(store, key, incr): """ Increment value for key in store by given increment. :param incr: float """ if key in store: store[key] += incr else: store[key] = incr def idxForMaxKeyValPair(array): maxV = array[0][1] i = 0 maxVIdx = 0 for k, v in array: if v > maxV: maxV = v maxVIdx = i i += 1 return maxVIdx def keyForMaxValue(_dict): maxK = '' maxV = 0 for k, v in _dict.iteritems(): if v > maxV: maxV = v maxK = k return maxK def sortUsingList(tosort, reflist): """ Sorts tosort by order of reflist. Example: tosort: ['a', 'b', 'c'], reflist: [1, 3, 2] Return: ['a', 'c', 'b'] :param tosort: :param reflist: :return: """ return [x for (y, x) in sorted(zip(reflist, tosort))] def sortNTopByVal(tosort, top, descending=False): """ Sort dictionary by descending values and return top elements. Return list of tuples. """ return sorted([(k, v) for k, v in tosort.items()], key=lambda x: x[1], reverse=descending)[:top] def buildSentsByChar(chars, sents): """ NOT NEEDED ANY MORE Build map of chars to list of indices where characters occur in sents. """ char_sent_map = dict.fromkeys(chars, list()) for ix, sent in enumerate(sents): for char, ix_lst in char_sent_map.iteritems(): if char in sent['nostop']: ix_lst.append(ix) return char_sent_map def writeData(bookfile, char_list, wsent, sentences): """ Write data relevant to book to pickle files """ file_prefix = '../books-txt/predicted-data/' name_prefix = bookfile.split('/')[-1][:-4] # TODO get without .txt # write list to file, one element per line with codecs.open(file_prefix + name_prefix + '-chars.p', mode='wb') as f: pickle.dump(char_list, f) # write characters sentences dict to file in json format with codecs.open(file_prefix + name_prefix + '-charsents.p', mode='wb') as f: pickle.dump(wsent, f) # write sentences dict to file in json format with codecs.open(file_prefix + name_prefix + '-sents.p', mode='wb') as f: pickle.dump(sentences, f) def getSurroundings(array, idx, window=2): """ Return words +-2 from idx """ surroundings = [] if idx > 1: surroundings.append(array[idx - 2]) else: surroundings.append('---') if idx > 0: surroundings.append(array[idx - 1]) else: surroundings.append('---') if idx < len(array) - 1: surroundings.append(array[idx + 1]) else: surroundings.append('---') if idx < len(array) - 2: surroundings.append(array[idx + 2]) else: surroundings.append('---') return surroundings def getWindow(lst, index, window): """ :param lst: Some list :param index: index at senter of window :param window: window size -> +- window on each side Total size of 2*window+1 """ min_idx = index-window if index-window >= 0 else 0 max_idx = index+window if index+window < len(lst) else len(lst)-1 return range(min_idx, max_idx+1) def removeAccents(in_str): encoding = "utf-8" if(is_ascii(in_str)): in_str = in_str.decode(encoding) in_str = unicodedata.normalize('NFKD', in_str) in_str = in_str.encode('ASCII', 'ignore') return in_str def is_ascii(mystr): try: mystr.decode('ascii') return True except UnicodeDecodeError: return False def camelSplit(name): """ Returns the string split if written in Camel case """ return re.sub('(?!^)([A-Z][a-z]+)', r' \1', name).split() def objFromByte(r): try: return literal_eval(r.content.decode('utf-8')) except ValueError: return None
the-stack_0_12027
#!/usr/bin/env python3 # # This file is part of GreatFET from __future__ import print_function import ast import argparse from greatfet.utils import GreatFETArgumentParser, log_silent, log_verbose def int_auto_base(s): """ Allows the user to pass an integer argument on the command line e.g. in decimal, or in hex with 0x notation. Used with argparse like `type=int_auto_base`, since argparse's `type` argument accepts any function. """ # base=0 means autodetect the base from the prefix (if any). return int(s, base=0) def main(): # Set up a simple argument parser. parser = GreatFETArgumentParser(description="""Utility for chipcon debugging via GreatFET (See /firmware/common/swra.c for pin mappings)""", verbose_by_default=True) parser.add_argument('--chip-id', action='store_true', # Short options (one dash) should always be one letter help="Print the chip ID of the connected device.") parser.add_argument('-a', '--address', dest='address', metavar='<n>', type=int_auto_base, help="Starting address (default: 0)", default=0) parser.add_argument('-l', '--length', dest='length', metavar='<n>', type=int_auto_base, help="Length of data to read") parser.add_argument('-r', '--read', metavar='<filename>', type=argparse.FileType('wb'), help="Read data into file") parser.add_argument('--no-erase', dest='erase', default=True, action='store_false', help="Do not erase the flash before performing a write operation") parser.add_argument('--no-verify', dest='verify', action='store_false', default=True, help="Do not verify the flash after performing a write operation") parser.add_argument('-E', '--mass-erase', action='store_true', help="Erase the entire flash memory") parser.add_argument('-w', '--write', metavar='<filename>', type=argparse.FileType('rb'), help="Write data from file") args = parser.parse_args() log_function = log_verbose if args.verbose else log_silent device = parser.find_specified_device() chipcon = device.create_programmer('chipcon') chipcon.debug_init() if args.chip_id: chip_id(chipcon) if args.read: if not args.length: parser.error("argument -s/--length: expected one argument") read_flash(chipcon, args.read, args.address, args.length, log_function) if args.mass_erase: mass_erase_flash(chipcon, log_function) if args.write: program_flash(chipcon, args.write, args.address, args.erase, args.verify, log_function) def chip_id(programmer): print("Chip ID:", programmer.get_chip_id()) def read_flash(programmer, out_file, start_address, length, log_function): log_function("Reading {} bytes starting at address {:02x}...".format(length, start_address)) data = programmer.read_flash(start_address=start_address, length=length) out_file.write(data) def mass_erase_flash(programmer, log_function): log_function("Erasing entire flash...") programmer.mass_erase_flash() def program_flash(programmer, in_file, start_address, erase, verify, log_function): log_function("Writing data to flash...") image_array = in_file.read() programmer.program_flash(image_array, erase=erase, verify=verify, start=start_address) if __name__ == '__main__': main()
the-stack_0_12028
# Copyright 2019 Open Source Robotics Foundation, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ros2cli.node.strategy import add_arguments from ros2cli.node.strategy import NodeStrategy from ros2component.api import container_node_name_completer from ros2component.api import find_container_node_names from ros2component.api import get_components_in_container from ros2component.api import get_components_in_containers from ros2component.verb import VerbExtension from ros2node.api import get_node_names class ListVerb(VerbExtension): """Output a list of running containers and components.""" def add_arguments(self, parser, cli_name): add_arguments(parser) argument = parser.add_argument( 'container_node_name', nargs='?', default=None, help='Name of the container node to list components from') argument.completer = container_node_name_completer parser.add_argument( '--containers-only', action='store_true', help='List found containers nodes only') def main(self, *, args): with NodeStrategy(args) as node: container_node_names = find_container_node_names( node=node, node_names=get_node_names(node=node) ) if args.container_node_name is not None: if args.container_node_name not in [n.full_name for n in container_node_names]: return "Unable to find container node '" + args.container_node_name + "'" if not args.containers_only: ok, outcome = get_components_in_container( node=node, remote_container_node_name=args.container_node_name ) if not ok: return f'{outcome} when listing components in {args.container_node_name}' if any(outcome): print(*[ f'{component.uid} {component.name}' for component in outcome ], sep='\n') else: results = get_components_in_containers(node=node, remote_containers_node_names=[ n.full_name for n in container_node_names ]) for container_node_name, (ok, outcome) in results.items(): print(container_node_name) if not args.containers_only: if not ok: print(f'{outcome} when listing components') continue if any(outcome): print(*[ f' {component.uid} {component.name}' for component in outcome ], sep='\n')
the-stack_0_12030
import torch import torch.nn as nn import torch.nn.functional as F class ContrastiveLoss(nn.Module): """ Contrastive loss function. Based on: http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf """ def __init__(self, margin: float = 2.0): super(ContrastiveLoss, self).__init__() self.margin = margin self.eps = 1e-9 def forward(self, output1: torch.Tensor, output2: torch.Tensor, label: torch.Tensor): euclidean_distance = F.pairwise_distance(output1, output2) losses = 0.5 * (label.float() * euclidean_distance + (1 + (-1 * label)).float() * F.relu(self.margin - (euclidean_distance + self.eps).sqrt()).pow(2)) loss_contrastive = torch.mean(losses) return loss_contrastive
the-stack_0_12031
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import unittest import jmespath from chart.tests.helm_template_generator import render_chart class ResourceQuotaTest(unittest.TestCase): def test_resource_quota_template(self): docs = render_chart( values={ "quotas": { "configmaps": "10", "persistentvolumeclaims": "4", "pods": "4", "replicationcontrollers": "20", "secrets": "10", "services": "10", } }, show_only=["templates/resourcequota.yaml"], ) assert "ResourceQuota" == jmespath.search("kind", docs[0]) assert "20" == jmespath.search("spec.hard.replicationcontrollers", docs[0]) def test_resource_quota_are_not_added_by_default(self): docs = render_chart( show_only=["templates/resourcequota.yaml"], ) assert docs == []
the-stack_0_12033
# -*- coding: utf-8 -*- # Copyright (C) 2012 Anaconda, Inc # SPDX-License-Identifier: BSD-3-Clause from __future__ import absolute_import, division, print_function, unicode_literals from collections import defaultdict from logging import DEBUG, getLogger from ._vendor.auxlib.decorators import memoize from ._vendor.toolz import concat, groupby from .base.constants import ChannelPriority, MAX_CHANNEL_PRIORITY from .base.context import context from .common.compat import iteritems, iterkeys, itervalues, odict, on_win, text_type from .common.io import time_recorder from .common.logic import Clauses, get_sat_solver_cls, minimal_unsatisfiable_subset from .common.toposort import toposort from .exceptions import InvalidSpec, ResolvePackageNotFound, UnsatisfiableError from .models.channel import Channel, MultiChannel from .models.enums import NoarchType from .models.match_spec import MatchSpec from .models.records import PackageRecord from .models.version import VersionOrder log = getLogger(__name__) stdoutlog = getLogger('conda.stdoutlog') # used in conda build Unsatisfiable = UnsatisfiableError ResolvePackageNotFound = ResolvePackageNotFound get_sat_solver_cls = memoize(get_sat_solver_cls) def dashlist(iterable, indent=2): return ''.join('\n' + ' ' * indent + '- ' + str(x) for x in iterable) class Resolve(object): def __init__(self, index, sort=False, processed=False, channels=()): self.index = index self.channels = channels self._channel_priorities_map = self._make_channel_priorities(channels) if channels else {} self._channel_priority = context.channel_priority self._solver_ignore_timestamps = context.solver_ignore_timestamps groups = groupby("name", itervalues(index)) trackers = defaultdict(list) for name in groups: unmanageable_precs = [prec for prec in groups[name] if prec.is_unmanageable] if unmanageable_precs: log.debug("restricting to unmanageable packages: %s", name) groups[name] = unmanageable_precs tf_precs = (prec for prec in groups[name] if prec.track_features) for prec in tf_precs: for feature_name in prec.track_features: trackers[feature_name].append(prec) self.groups = groups # Dict[package_name, List[PackageRecord]] self.trackers = trackers # Dict[track_feature, List[PackageRecord]] self._cached_find_matches = {} # Dict[MatchSpec, Set[PackageRecord]] self.ms_depends_ = {} # Dict[PackageRecord, List[MatchSpec]] self._reduced_index_cache = {} self._strict_channel_cache = {} if sort: for group in itervalues(groups): group.sort(key=self.version_key, reverse=True) def default_filter(self, features=None, filter=None): # TODO: fix this import; this is bad from .core.subdir_data import make_feature_record if filter is None: filter = {} else: filter.clear() filter.update({make_feature_record(fstr): False for fstr in iterkeys(self.trackers)}) if features: filter.update({make_feature_record(fstr): True for fstr in features}) return filter def valid(self, spec_or_prec, filter, optional=True): """Tests if a package, MatchSpec, or a list of both has satisfiable dependencies, assuming cyclic dependencies are always valid. Args: spec_or_prec: a package record, a MatchSpec, or an iterable of these. filter: a dictionary of (fkey,valid) pairs, used to consider a subset of dependencies, and to eliminate repeated searches. optional: if True (default), do not enforce optional specifications when considering validity. If False, enforce them. Returns: True if the full set of dependencies can be satisfied; False otherwise. If filter is supplied and update is True, it will be updated with the search results. """ def v_(spec): return v_ms_(spec) if isinstance(spec, MatchSpec) else v_fkey_(spec) def v_ms_(ms): return (optional and ms.optional or any(v_fkey_(fkey) for fkey in self.find_matches(ms))) def v_fkey_(prec): val = filter.get(prec) if val is None: filter[prec] = True try: depends = self.ms_depends(prec) except InvalidSpec as e: val = filter[prec] = False else: val = filter[prec] = all(v_ms_(ms) for ms in depends) return val result = v_(spec_or_prec) return result def valid2(self, spec_or_prec, filter_out, optional=True): def is_valid(_spec_or_prec): if isinstance(_spec_or_prec, MatchSpec): return is_valid_spec(_spec_or_prec) else: return is_valid_prec(_spec_or_prec) def is_valid_spec(_spec): return optional and _spec.optional or any( is_valid_prec(_prec) for _prec in self.find_matches(_spec) ) def is_valid_prec(prec): val = filter_out.get(prec) if val is None: filter_out[prec] = False try: has_valid_deps = all(is_valid_spec(ms) for ms in self.ms_depends(prec)) except InvalidSpec as e: val = filter_out[prec] = "invalid dep specs" else: val = filter_out[prec] = False if has_valid_deps else "invalid depends specs" return not val return is_valid(spec_or_prec) def invalid_chains(self, spec, filter, optional=True): """Constructs a set of 'dependency chains' for invalid specs. A dependency chain is a tuple of MatchSpec objects, starting with the requested spec, proceeding down the dependency tree, ending at a specification that cannot be satisfied. Uses self.valid_ as a filter, both to prevent chains and to allow other routines to prune the list of valid packages with additional criteria. Args: spec: a package key or MatchSpec filter: a dictionary of (prec, valid) pairs to be used when testing for package validity. optional: if True (default), do not enforce optional specifications when considering validity. If False, enforce them. Returns: A generator of tuples, empty if the MatchSpec is valid. """ def chains_(spec, names): if spec.name in names: return names.add(spec.name) if self.valid(spec, filter, optional): return precs = self.find_matches(spec) found = False for prec in precs: for m2 in self.ms_depends(prec): for x in chains_(m2, names): found = True yield (spec,) + x if not found: yield (spec,) return chains_(spec, set()) def invalid_chains2(self, spec, filter_out, optional=True): def chains_(spec, names): if spec.name in names: return names.add(spec.name) if self.valid2(spec, filter_out, optional): return precs = self.find_matches(spec) found = False for prec in precs: for m2 in self.ms_depends(prec): for x in chains_(m2, names): found = True yield (spec,) + x if not found: yield (spec,) return chains_(spec, set()) def verify_specs(self, specs): """Perform a quick verification that specs and dependencies are reasonable. Args: specs: An iterable of strings or MatchSpec objects to be tested. Returns: Nothing, but if there is a conflict, an error is thrown. Note that this does not attempt to resolve circular dependencies. """ non_tf_specs = [] bad_deps = [] feature_names = set() for ms in specs: _feature_names = ms.get_exact_value('track_features') if _feature_names: feature_names.update(_feature_names) else: non_tf_specs.append(ms) filter = self.default_filter(feature_names) for ms in non_tf_specs: bad_deps.extend(self.invalid_chains(ms, filter.copy())) if bad_deps: raise ResolvePackageNotFound(bad_deps) return non_tf_specs, feature_names def find_conflicts(self, specs): """Perform a deeper analysis on conflicting specifications, by attempting to find the common dependencies that might be the cause of conflicts. Args: specs: An iterable of strings or MatchSpec objects to be tested. It is assumed that the specs conflict. Returns: Nothing, because it always raises an UnsatisfiableError. Strategy: If we're here, we know that the specs conflict. This could be because: - One spec conflicts with another; e.g. ['numpy 1.5*', 'numpy >=1.6'] - One spec conflicts with a dependency of another; e.g. ['numpy 1.5*', 'scipy 0.12.0b1'] - Each spec depends on *the same package* but in a different way; e.g., ['A', 'B'] where A depends on numpy 1.5, and B on numpy 1.6. Technically, all three of these cases can be boiled down to the last one if we treat the spec itself as one of the "dependencies". There might be more complex reasons for a conflict, but this code only considers the ones above. The purpose of this code, then, is to identify packages (like numpy above) that all of the specs depend on *but in different ways*. We then identify the dependency chains that lead to those packages. """ sdeps = {} # For each spec, assemble a dictionary of dependencies, with package # name as key, and all of the matching packages as values. for ms in specs: rec = sdeps.setdefault(ms, {}) slist = [ms] while slist: ms2 = slist.pop() deps = rec.setdefault(ms2.name, set()) for fkey in self.find_matches(ms2): if fkey not in deps: deps.add(fkey) slist.extend(ms3 for ms3 in self.ms_depends(fkey) if ms3.name != ms.name) # Find the list of dependencies they have in common. And for each of # *those*, find the individual packages that they all share. Those need # to be removed as conflict candidates. commkeys = set.intersection(*(set(s.keys()) for s in sdeps.values())) commkeys = {k: set.intersection(*(v[k] for v in sdeps.values())) for k in commkeys} # and find the dependency chains that lead to them. bad_deps = [] for ms, sdep in iteritems(sdeps): filter = {} for mn, v in sdep.items(): if mn != ms.name and mn in commkeys: # Mark this package's "unique" dependencies as invalid for fkey in v - commkeys[mn]: filter[fkey] = False # Find the dependencies that lead to those invalid choices ndeps = set(self.invalid_chains(ms, filter, False)) # This may produce some additional invalid chains that we # don't care about. Select only those that terminate in our # predetermined set of "common" keys. ndeps = [nd for nd in ndeps if nd[-1].name in commkeys] if ndeps: bad_deps.extend(ndeps) else: # This means the package *itself* was the common conflict. bad_deps.append((ms,)) raise UnsatisfiableError(bad_deps) def _get_strict_channel(self, package_name): try: channel_name = self._strict_channel_cache[package_name] except KeyError: all_channel_names = set(prec.channel.name for prec in self.groups[package_name]) by_cp = {self._channel_priorities_map.get(cn, 1): cn for cn in all_channel_names} highest_priority = sorted(by_cp)[0] # highest priority is the lowest number channel_name = self._strict_channel_cache[package_name] = by_cp[highest_priority] return channel_name @time_recorder(module_name=__name__) def get_reduced_index(self, specs): # TODO: fix this import; this is bad from .core.subdir_data import make_feature_record strict_channel_priority = context.channel_priority == ChannelPriority.STRICT cache_key = strict_channel_priority, frozenset(specs) if cache_key in self._reduced_index_cache: return self._reduced_index_cache[cache_key] if log.isEnabledFor(DEBUG): log.debug('Retrieving packages for: %s', dashlist(sorted(text_type(s) for s in specs))) specs, features = self.verify_specs(specs) filter_out = {prec: False if val else "feature not enabled" for prec, val in iteritems(self.default_filter(features))} snames = set() top_level_spec = None cp_filter_applied = set() # values are package names def filter_group(_specs): # all _specs should be for the same package name name = next(iter(_specs)).name group = self.groups.get(name, ()) # implement strict channel priority if strict_channel_priority and name not in cp_filter_applied: sole_source_channel_name = self._get_strict_channel(name) for prec in group: if prec.channel.name != sole_source_channel_name: filter_out[prec] = "removed due to strict channel priority" cp_filter_applied.add(name) # Prune packages that don't match any of the patterns # or which have unsatisfiable dependencies nold = nnew = 0 for prec in group: if not filter_out.setdefault(prec, False): nold += 1 if not self.match_any(_specs, prec): filter_out[prec] = "incompatible with required spec %s" % top_level_spec continue unsatisfiable_dep_specs = tuple( ms for ms in self.ms_depends(prec) if not any(not filter_out.get(rec, False) for rec in self.find_matches(ms)) ) if unsatisfiable_dep_specs: filter_out[prec] = "unsatisfiable dependencies %s" % " ".join( str(s) for s in unsatisfiable_dep_specs ) continue filter_out[prec] = False nnew += 1 reduced = nnew < nold if reduced: log.debug('%s: pruned from %d -> %d' % (name, nold, nnew)) if any(ms.optional for ms in _specs): return reduced elif nnew == 0: # Indicates that a conflict was found; we can exit early return None # Perform the same filtering steps on any dependencies shared across # *all* packages in the group. Even if just one of the packages does # not have a particular dependency, it must be ignored in this pass. # Otherwise, we might do more filtering than we should---and it is # better to have extra packages here than missing ones. if reduced or name not in snames: snames.add(name) _dep_specs = groupby(lambda s: s.name, ( dep_spec for prec in group if not filter_out.get(prec, False) for dep_spec in self.ms_depends(prec) if not dep_spec.optional )) _dep_specs.pop("*", None) # discard track_features specs for deps in itervalues(_dep_specs): if len(deps) >= nnew: res = filter_group(set(deps)) if res: reduced = True elif res is None: # Indicates that a conflict was found; we can exit early return None return reduced # Iterate on pruning until no progress is made. We've implemented # what amounts to "double-elimination" here; packages get one additional # chance after their first "False" reduction. This catches more instances # where one package's filter affects another. But we don't have to be # perfect about this, so performance matters. for _ in range(2): snames.clear() slist = list(specs) reduced = False while slist: s = slist.pop() top_level_spec = s reduced = filter_group([s]) if reduced: slist.append(s) elif reduced is None: break if reduced is None: # This filter reset means that unsatisfiable indexes leak through. filter_out = {prec: False if val else "feature not enabled" for prec, val in iteritems(self.default_filter(features))} # TODO: raise unsatisfiable exception here # Messaging to users should be more descriptive. # 1. Are there no direct matches? # 2. Are there no matches for first-level dependencies? # 3. Have the first level dependencies been invalidated? break # Determine all valid packages in the dependency graph reduced_index2 = {prec: prec for prec in (make_feature_record(fstr) for fstr in features)} processed_specs = set() specs_queue = set(specs) while specs_queue: this_spec = specs_queue.pop() processed_specs.add(this_spec) add_these_precs2 = tuple( prec for prec in self.find_matches(this_spec) if prec not in reduced_index2 and self.valid2(prec, filter_out) ) if strict_channel_priority and add_these_precs2: strict_chanel_name = self._get_strict_channel(add_these_precs2[0].name) add_these_precs2 = tuple( prec for prec in add_these_precs2 if prec.channel.name == strict_chanel_name ) reduced_index2.update((prec, prec) for prec in add_these_precs2) # We do not pull packages into the reduced index due # to a track_features dependency. Remember, a feature # specifies a "soft" dependency: it must be in the # environment, but it is not _pulled_ in. The SAT # logic doesn't do a perfect job of capturing this # behavior, but keeping these packages out of the # reduced index helps. Of course, if _another_ # package pulls it in by dependency, that's fine. specs_queue.update( ms for prec in add_these_precs2 for ms in self.ms_depends(prec) if "track_features" not in ms and ms not in processed_specs ) self._reduced_index_cache[cache_key] = reduced_index2 return reduced_index2 def match_any(self, mss, prec): return any(ms.match(prec) for ms in mss) def find_matches(self, spec): # type: (MatchSpec) -> Set[PackageRecord] res = self._cached_find_matches.get(spec, None) if res is not None: return res spec_name = spec.get_exact_value('name') if spec_name: candidate_precs = self.groups.get(spec_name, ()) elif spec.get_exact_value('track_features'): feature_names = spec.get_exact_value('track_features') candidate_precs = concat( self.trackers.get(feature_name, ()) for feature_name in feature_names ) else: candidate_precs = itervalues(self.index) res = frozenset(p for p in candidate_precs if spec.match(p)) self._cached_find_matches[spec] = res return res def ms_depends(self, prec): # type: (PackageRecord) -> List[MatchSpec] deps = self.ms_depends_.get(prec) if deps is None: deps = [MatchSpec(d) for d in prec.combined_depends] deps.extend(MatchSpec(track_features=feat) for feat in prec.features) self.ms_depends_[prec] = deps return deps def version_key(self, prec, vtype=None): channel = prec.channel channel_priority = self._channel_priorities_map.get(channel.name, 1) # TODO: ask @mcg1969 why the default value is 1 here # NOQA valid = 1 if channel_priority < MAX_CHANNEL_PRIORITY else 0 version_comparator = VersionOrder(prec.get('version', '')) build_number = prec.get('build_number', 0) build_string = prec.get('build') ts = prec.get('timestamp', 0) if self._channel_priority != ChannelPriority.DISABLED: vkey = [valid, -channel_priority, version_comparator, build_number] else: vkey = [valid, version_comparator, -channel_priority, build_number] if self._solver_ignore_timestamps: vkey.append(build_string) else: vkey.extend((ts, build_string)) return vkey @staticmethod def _make_channel_priorities(channels): priorities_map = odict() for priority_counter, chn in enumerate(concat( (Channel(cc) for cc in c._channels) if isinstance(c, MultiChannel) else (c,) for c in (Channel(c) for c in channels) )): channel_name = chn.name if channel_name in priorities_map: continue priorities_map[channel_name] = min(priority_counter, MAX_CHANNEL_PRIORITY - 1) return priorities_map def get_pkgs(self, ms, emptyok=False): # pragma: no cover # legacy method for conda-build ms = MatchSpec(ms) precs = self.find_matches(ms) if not precs and not emptyok: raise ResolvePackageNotFound([(ms,)]) return sorted(precs, key=self.version_key) @staticmethod def to_sat_name(val): # val can be a PackageRecord or MatchSpec if isinstance(val, PackageRecord): return val.dist_str() elif isinstance(val, MatchSpec): return '@s@' + text_type(val) + ('?' if val.optional else '') else: raise NotImplementedError() @staticmethod def to_feature_metric_id(prec_dist_str, feat): return '@fm@%s@%s' % (prec_dist_str, feat) def push_MatchSpec(self, C, spec): spec = MatchSpec(spec) sat_name = self.to_sat_name(spec) m = C.from_name(sat_name) if m is not None: # the spec has already been pushed onto the clauses stack return sat_name simple = spec._is_single() nm = spec.get_exact_value('name') tf = frozenset(_tf for _tf in ( f.strip() for f in spec.get_exact_value('track_features') or () ) if _tf) if nm: tgroup = libs = self.groups.get(nm, []) elif tf: assert len(tf) == 1 k = next(iter(tf)) tgroup = libs = self.trackers.get(k, []) else: tgroup = libs = self.index.keys() simple = False if not simple: libs = [fkey for fkey in tgroup if spec.match(fkey)] if len(libs) == len(tgroup): if spec.optional: m = True elif not simple: ms2 = MatchSpec(track_features=tf) if tf else MatchSpec(nm) m = C.from_name(self.push_MatchSpec(C, ms2)) if m is None: sat_names = [self.to_sat_name(prec) for prec in libs] if spec.optional: ms2 = MatchSpec(track_features=tf) if tf else MatchSpec(nm) sat_names.append('!' + self.to_sat_name(ms2)) m = C.Any(sat_names) C.name_var(m, sat_name) return sat_name @time_recorder(module_name=__name__) def gen_clauses(self): C = Clauses(sat_solver_cls=get_sat_solver_cls(context.sat_solver)) for name, group in iteritems(self.groups): group = [self.to_sat_name(prec) for prec in group] # Create one variable for each package for sat_name in group: C.new_var(sat_name) # Create one variable for the group m = C.new_var(self.to_sat_name(MatchSpec(name))) # Exactly one of the package variables, OR # the negation of the group variable, is true C.Require(C.ExactlyOne, group + [C.Not(m)]) # If a package is installed, its dependencies must be as well for prec in itervalues(self.index): nkey = C.Not(self.to_sat_name(prec)) for ms in self.ms_depends(prec): C.Require(C.Or, nkey, self.push_MatchSpec(C, ms)) if log.isEnabledFor(DEBUG): log.debug("gen_clauses returning with clause count: %d", C.get_clause_count()) return C def generate_spec_constraints(self, C, specs): result = [(self.push_MatchSpec(C, ms),) for ms in specs] if log.isEnabledFor(DEBUG): log.debug( "generate_spec_constraints returning with clause count: %d", C.get_clause_count()) return result def generate_feature_count(self, C): result = {self.push_MatchSpec(C, MatchSpec(track_features=name)): 1 for name in iterkeys(self.trackers)} if log.isEnabledFor(DEBUG): log.debug( "generate_feature_count returning with clause count: %d", C.get_clause_count()) return result def generate_update_count(self, C, specs): return {'!'+ms.target: 1 for ms in specs if ms.target and C.from_name(ms.target)} def generate_feature_metric(self, C): eq = {} # a C.minimize() objective: Dict[varname, coeff] # Given a pair (prec, feature), assign a "1" score IF: # - The prec is installed # - The prec does NOT require the feature # - At least one package in the group DOES require the feature # - A package that tracks the feature is installed for name, group in iteritems(self.groups): prec_feats = {self.to_sat_name(prec): set(prec.features) for prec in group} active_feats = set.union(*prec_feats.values()).intersection(self.trackers) for feat in active_feats: clause_id_for_feature = self.push_MatchSpec(C, MatchSpec(track_features=feat)) for prec_sat_name, features in prec_feats.items(): if feat not in features: feature_metric_id = self.to_feature_metric_id(prec_sat_name, feat) C.name_var(C.And(prec_sat_name, clause_id_for_feature), feature_metric_id) eq[feature_metric_id] = 1 return eq def generate_removal_count(self, C, specs): return {'!'+self.push_MatchSpec(C, ms.name): 1 for ms in specs} def generate_install_count(self, C, specs): return {self.push_MatchSpec(C, ms.name): 1 for ms in specs if ms.optional} def generate_package_count(self, C, missing): return {self.push_MatchSpec(C, nm): 1 for nm in missing} def generate_version_metrics(self, C, specs, include0=False): # each of these are weights saying how well packages match the specs # format for each: a C.minimize() objective: Dict[varname, coeff] eqc = {} # channel eqv = {} # version eqb = {} # build number eqt = {} # timestamp sdict = {} # Dict[package_name, PackageRecord] for s in specs: s = MatchSpec(s) # needed for testing sdict.setdefault(s.name, []) # # TODO: this block is important! can't leave it commented out # rec = sdict.setdefault(s.name, []) # if s.target: # dist = Dist(s.target) # if dist in self.index: # if self.index[dist].get('priority', 0) < MAX_CHANNEL_PRIORITY: # rec.append(dist) for name, targets in iteritems(sdict): pkgs = [(self.version_key(p), p) for p in self.groups.get(name, [])] pkey = None # keep in mind that pkgs is already sorted according to version_key (a tuple, # so composite sort key). Later entries in the list are, by definition, # greater in some way, so simply comparing with != suffices. for version_key, prec in pkgs: if targets and any(prec == t for t in targets): continue if pkey is None: ic = iv = ib = it = 0 # valid package, channel priority elif pkey[0] != version_key[0] or pkey[1] != version_key[1]: ic += 1 iv = ib = it = 0 # version elif pkey[2] != version_key[2]: iv += 1 ib = it = 0 # build number elif pkey[3] != version_key[3]: ib += 1 it = 0 elif not self._solver_ignore_timestamps and pkey[4] != version_key[4]: it += 1 prec_sat_name = self.to_sat_name(prec) if ic or include0: eqc[prec_sat_name] = ic if iv or include0: eqv[prec_sat_name] = iv if ib or include0: eqb[prec_sat_name] = ib if it or include0: eqt[prec_sat_name] = it pkey = version_key return eqc, eqv, eqb, eqt def dependency_sort(self, must_have): # type: (Dict[package_name, PackageRecord]) -> List[PackageRecord] assert isinstance(must_have, dict) digraph = {} # Dict[package_name, Set[dependent_package_names]] for package_name, prec in iteritems(must_have): if prec in self.index: digraph[package_name] = set(ms.name for ms in self.ms_depends(prec)) # There are currently at least three special cases to be aware of. # 1. The `toposort()` function, called below, contains special case code to remove # any circular dependency between python and pip. # 2. conda/plan.py has special case code for menuinst # Always link/unlink menuinst first/last on windows in case a subsequent # package tries to import it to create/remove a shortcut # 3. On windows, python noarch packages need an implicit dependency on conda added, if # conda is in the list of packages for the environment. Python noarch packages # that have entry points use conda's own conda.exe python entry point binary. If conda # is going to be updated during an operation, the unlink / link order matters. # See issue #6057. if on_win and 'conda' in digraph: for package_name, dist in iteritems(must_have): record = self.index.get(prec) if hasattr(record, 'noarch') and record.noarch == NoarchType.python: digraph[package_name].add('conda') sorted_keys = toposort(digraph) must_have = must_have.copy() # Take all of the items in the sorted keys # Don't fail if the key does not exist result = [must_have.pop(key) for key in sorted_keys if key in must_have] # Take any key that were not sorted result.extend(must_have.values()) return result def environment_is_consistent(self, installed): log.debug('Checking if the current environment is consistent') if not installed: return None, [] sat_name_map = {} # Dict[sat_name, PackageRecord] specs = [] for prec in installed: sat_name_map[self.to_sat_name(prec)] = prec specs.append(MatchSpec('%s %s %s' % (prec.name, prec.version, prec.build))) r2 = Resolve({prec: prec for prec in installed}, True, True, channels=self.channels) C = r2.gen_clauses() constraints = r2.generate_spec_constraints(C, specs) solution = C.sat(constraints) return bool(solution) def get_conflicting_specs(self, specs): if not specs: return () reduced_index = self.get_reduced_index(specs) # Check if satisfiable def mysat(specs, add_if=False): constraints = r2.generate_spec_constraints(C, specs) return C.sat(constraints, add_if) r2 = Resolve(reduced_index, True, True, channels=self.channels) C = r2.gen_clauses() solution = mysat(specs, True) if solution: return () else: # This first result is just a single unsatisfiable core. There may be several. unsat_specs = list(minimal_unsatisfiable_subset(specs, sat=mysat)) satisfiable_specs = set(specs) - set(unsat_specs) # In this loop, we test each unsatisfiable spec individually against the satisfiable # specs to ensure there are no other unsatisfiable specs in the set. final_unsat_specs = set() while unsat_specs: this_spec = unsat_specs.pop(0) final_unsat_specs.add(this_spec) test_specs = satisfiable_specs | {this_spec} C = r2.gen_clauses() # TODO: wasteful call, but Clauses() needs refactored solution = mysat(test_specs, True) if not solution: these_unsat = minimal_unsatisfiable_subset(test_specs, sat=mysat) if len(these_unsat) > 1: unsat_specs.extend(these_unsat) satisfiable_specs -= set(unsat_specs) return tuple(final_unsat_specs) def bad_installed(self, installed, new_specs): log.debug('Checking if the current environment is consistent') if not installed: return None, [] sat_name_map = {} # Dict[sat_name, PackageRecord] specs = [] for prec in installed: sat_name_map[self.to_sat_name(prec)] = prec specs.append(MatchSpec('%s %s %s' % (prec.name, prec.version, prec.build))) new_index = {prec: prec for prec in itervalues(sat_name_map)} r2 = Resolve(new_index, True, True, channels=self.channels) C = r2.gen_clauses() constraints = r2.generate_spec_constraints(C, specs) solution = C.sat(constraints) limit = xtra = None if not solution or xtra: def get_(name, snames): if name not in snames: snames.add(name) for fn in self.groups.get(name, []): for ms in self.ms_depends(fn): get_(ms.name, snames) # New addition: find the largest set of installed packages that # are consistent with each other, and include those in the # list of packages to maintain consistency with snames = set() eq_optional_c = r2.generate_removal_count(C, specs) solution, _ = C.minimize(eq_optional_c, C.sat()) snames.update(sat_name_map[sat_name]['name'] for sat_name in (C.from_index(s) for s in solution) if sat_name and sat_name[0] != '!' and '@' not in sat_name) # Existing behavior: keep all specs and their dependencies for spec in new_specs: get_(MatchSpec(spec).name, snames) if len(snames) < len(sat_name_map): limit = snames xtra = [rec for sat_name, rec in iteritems(sat_name_map) if rec['name'] not in snames] log.debug('Limiting solver to the following packages: %s', ', '.join(limit)) if xtra: log.debug('Packages to be preserved: %s', xtra) return limit, xtra def restore_bad(self, pkgs, preserve): if preserve: sdict = {prec.name: prec for prec in pkgs} pkgs.extend(p for p in preserve if p.name not in sdict) def install_specs(self, specs, installed, update_deps=True): specs = list(map(MatchSpec, specs)) snames = {s.name for s in specs} log.debug('Checking satisfiability of current install') limit, preserve = self.bad_installed(installed, specs) for prec in installed: if prec not in self.index: continue name, version, build = prec.name, prec.version, prec.build schannel = prec.channel.canonical_name if name in snames or limit is not None and name not in limit: continue # If update_deps=True, set the target package in MatchSpec so that # the solver can minimize the version change. If update_deps=False, # fix the version and build so that no change is possible. if update_deps: # TODO: fix target here spec = MatchSpec(name=name, target=prec.dist_str()) else: spec = MatchSpec(name=name, version=version, build=build, channel=schannel) specs.append(spec) return specs, preserve def install(self, specs, installed=None, update_deps=True, returnall=False): specs, preserve = self.install_specs(specs, installed or [], update_deps) pkgs = self.solve(specs, returnall=returnall, _remove=False) self.restore_bad(pkgs, preserve) return pkgs def remove_specs(self, specs, installed): nspecs = [] # There's an imperfect thing happening here. "specs" nominally contains # a list of package names or track_feature values to be removed. But # because of add_defaults_to_specs it may also contain version contraints # like "python 2.7*", which are *not* asking for python to be removed. # We need to separate these two kinds of specs here. for s in map(MatchSpec, specs): # Since '@' is an illegal version number, this ensures that all of # these matches will never match an actual package. Combined with # optional=True, this has the effect of forcing their removal. if s._is_single(): nspecs.append(MatchSpec(s, version='@', optional=True)) else: nspecs.append(MatchSpec(s, optional=True)) snames = set(s.name for s in nspecs if s.name) limit, _ = self.bad_installed(installed, nspecs) preserve = [] for prec in installed: nm, ver = prec.name, prec.version if nm in snames: continue elif limit is not None: preserve.append(prec) else: # TODO: fix target here nspecs.append(MatchSpec(name=nm, version='>='+ver if ver else None, optional=True, target=prec.dist_str())) return nspecs, preserve def remove(self, specs, installed): specs, preserve = self.remove_specs(specs, installed) pkgs = self.solve(specs, _remove=True) self.restore_bad(pkgs, preserve) return pkgs @time_recorder(module_name=__name__) def solve(self, specs, returnall=False, _remove=False): # type: (List[str], bool) -> List[PackageRecord] if log.isEnabledFor(DEBUG): log.debug('Solving for: %s', dashlist(sorted(text_type(s) for s in specs))) # Find the compliant packages log.debug("Solve: Getting reduced index of compliant packages") len0 = len(specs) specs = tuple(map(MatchSpec, specs)) reduced_index = self.get_reduced_index(specs) if not reduced_index: return False if reduced_index is None else ([[]] if returnall else []) # Check if satisfiable log.debug("Solve: determining satisfiability") def mysat(specs, add_if=False): constraints = r2.generate_spec_constraints(C, specs) return C.sat(constraints, add_if) r2 = Resolve(reduced_index, True, True, channels=self.channels) C = r2.gen_clauses() solution = mysat(specs, True) if not solution: specs = minimal_unsatisfiable_subset(specs, sat=mysat) self.find_conflicts(specs) speco = [] # optional packages specr = [] # requested packages speca = [] # all other packages specm = set(r2.groups) # missing from specs for k, s in enumerate(specs): if s.name in specm: specm.remove(s.name) if not s.optional: (speca if s.target or k >= len0 else specr).append(s) elif any(r2.find_matches(s)): s = MatchSpec(s.name, optional=True, target=s.target) speco.append(s) speca.append(s) speca.extend(MatchSpec(s) for s in specm) # Removed packages: minimize count log.debug("Solve: minimize removed packages") if _remove: eq_optional_c = r2.generate_removal_count(C, speco) solution, obj7 = C.minimize(eq_optional_c, solution) log.debug('Package removal metric: %d', obj7) # Requested packages: maximize versions log.debug("Solve: maximize versions of requested packages") eq_req_c, eq_req_v, eq_req_b, eq_req_t = r2.generate_version_metrics(C, specr) solution, obj3a = C.minimize(eq_req_c, solution) solution, obj3 = C.minimize(eq_req_v, solution) log.debug('Initial package channel/version metric: %d/%d', obj3a, obj3) # Track features: minimize feature count log.debug("Solve: minimize track_feature count") eq_feature_count = r2.generate_feature_count(C) solution, obj1 = C.minimize(eq_feature_count, solution) log.debug('Track feature count: %d', obj1) # Featured packages: minimize number of featureless packages # installed when a featured alternative is feasible. # For example, package name foo exists with two built packages. One with # 'track_features: 'feat1', and one with 'track_features': 'feat2'. # The previous "Track features" minimization pass has chosen 'feat1' for the # environment, but not 'feat2'. In this case, the 'feat2' version of foo is # considered "featureless." if not context.featureless_minimization_disabled_feature_flag: log.debug("Solve: maximize number of packages that have necessary features") eq_feature_metric = r2.generate_feature_metric(C) solution, obj2 = C.minimize(eq_feature_metric, solution) log.debug('Package misfeature count: %d', obj2) # Requested packages: maximize builds log.debug("Solve: maximize build numbers of requested packages") solution, obj4 = C.minimize(eq_req_b, solution) log.debug('Initial package build metric: %d', obj4) # Optional installations: minimize count if not _remove: log.debug("Solve: minimize number of optional installations") eq_optional_install = r2.generate_install_count(C, speco) solution, obj49 = C.minimize(eq_optional_install, solution) log.debug('Optional package install metric: %d', obj49) # Dependencies: minimize the number of packages that need upgrading log.debug("Solve: minimize number of necessary upgrades") eq_u = r2.generate_update_count(C, speca) solution, obj50 = C.minimize(eq_u, solution) log.debug('Dependency update count: %d', obj50) # Remaining packages: maximize versions, then builds log.debug("Solve: maximize versions and builds of indirect dependencies") eq_c, eq_v, eq_b, eq_t = r2.generate_version_metrics(C, speca) solution, obj5a = C.minimize(eq_c, solution) solution, obj5 = C.minimize(eq_v, solution) solution, obj6 = C.minimize(eq_b, solution) log.debug('Additional package channel/version/build metrics: %d/%d/%d', obj5a, obj5, obj6) # Maximize timestamps log.debug("Solve: maximize timestamps") eq_t.update(eq_req_t) solution, obj6t = C.minimize(eq_t, solution) log.debug('Timestamp metric: %d', obj6t) # Prune unnecessary packages log.debug("Solve: prune unnecessary packages") eq_c = r2.generate_package_count(C, specm) solution, obj7 = C.minimize(eq_c, solution, trymax=True) log.debug('Weak dependency count: %d', obj7) def clean(sol): return [q for q in (C.from_index(s) for s in sol) if q and q[0] != '!' and '@' not in q] log.debug('Looking for alternate solutions') nsol = 1 psolutions = [] psolution = clean(solution) psolutions.append(psolution) while True: nclause = tuple(C.Not(C.from_name(q)) for q in psolution) solution = C.sat((nclause,), True) if solution is None: break nsol += 1 if nsol > 10: log.debug('Too many solutions; terminating') break psolution = clean(solution) psolutions.append(psolution) if nsol > 1: psols2 = list(map(set, psolutions)) common = set.intersection(*psols2) diffs = [sorted(set(sol) - common) for sol in psols2] if not context.json: stdoutlog.info( '\nWarning: %s possible package resolutions ' '(only showing differing packages):%s%s' % ('>10' if nsol > 10 else nsol, dashlist(', '.join(diff) for diff in diffs), '\n ... and others' if nsol > 10 else '')) # def stripfeat(sol): # return sol.split('[')[0] new_index = {self.to_sat_name(prec): prec for prec in itervalues(self.index)} if returnall: if len(psolutions) > 1: raise RuntimeError() # TODO: clean up this mess # return [sorted(Dist(stripfeat(dname)) for dname in psol) for psol in psolutions] # return [sorted((new_index[sat_name] for sat_name in psol), key=lambda x: x.name) # for psol in psolutions] # return sorted(Dist(stripfeat(dname)) for dname in psolutions[0]) return sorted((new_index[sat_name] for sat_name in psolutions[0]), key=lambda x: x.name)
the-stack_0_12034
#!/usr/bin/env python3 # Copyright (c) 2014-2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Base class for RPC testing.""" from enum import Enum import logging import optparse import os import pdb import shutil import sys import tempfile import time from .authproxy import JSONRPCException from . import coverage from .test_node import TestNode from .util import ( MAX_NODES, PortSeed, assert_equal, check_json_precision, connect_nodes_bi, disconnect_nodes, get_datadir_path, initialize_datadir, p2p_port, set_node_times, sync_blocks, sync_mempools, ) class TestStatus(Enum): PASSED = 1 FAILED = 2 SKIPPED = 3 TEST_EXIT_PASSED = 0 TEST_EXIT_FAILED = 1 TEST_EXIT_SKIPPED = 77 class BitcoinTestFramework(): """Base class for a stomp test script. Individual stomp test scripts should subclass this class and override the set_test_params() and run_test() methods. Individual tests can also override the following methods to customize the test setup: - add_options() - setup_chain() - setup_network() - setup_nodes() The __init__() and main() methods should not be overridden. This class also contains various public and private helper methods.""" def __init__(self): """Sets test framework defaults. Do not override this method. Instead, override the set_test_params() method""" self.setup_clean_chain = False self.nodes = [] self.mocktime = 0 self.supports_cli = False self.set_test_params() assert hasattr(self, "num_nodes"), "Test must set self.num_nodes in set_test_params()" def main(self): """Main function. This should not be overridden by the subclass test scripts.""" parser = optparse.OptionParser(usage="%prog [options]") parser.add_option("--nocleanup", dest="nocleanup", default=False, action="store_true", help="Leave stompds and test.* datadir on exit or error") parser.add_option("--noshutdown", dest="noshutdown", default=False, action="store_true", help="Don't stop stompds after the test execution") parser.add_option("--srcdir", dest="srcdir", default=os.path.normpath(os.path.dirname(os.path.realpath(__file__))+"/../../../src"), help="Source directory containing stompd/stomp-cli (default: %default)") parser.add_option("--cachedir", dest="cachedir", default=os.path.normpath(os.path.dirname(os.path.realpath(__file__)) + "/../../cache"), help="Directory for caching pregenerated datadirs") parser.add_option("--tmpdir", dest="tmpdir", help="Root directory for datadirs") parser.add_option("-l", "--loglevel", dest="loglevel", default="INFO", help="log events at this level and higher to the console. Can be set to DEBUG, INFO, WARNING, ERROR or CRITICAL. Passing --loglevel DEBUG will output all logs to console. Note that logs at all levels are always written to the test_framework.log file in the temporary test directory.") parser.add_option("--tracerpc", dest="trace_rpc", default=False, action="store_true", help="Print out all RPC calls as they are made") parser.add_option("--portseed", dest="port_seed", default=os.getpid(), type='int', help="The seed to use for assigning port numbers (default: current process id)") parser.add_option("--coveragedir", dest="coveragedir", help="Write tested RPC commands into this directory") parser.add_option("--configfile", dest="configfile", help="Location of the test framework config file") parser.add_option("--pdbonfailure", dest="pdbonfailure", default=False, action="store_true", help="Attach a python debugger if test fails") parser.add_option("--usecli", dest="usecli", default=False, action="store_true", help="use bitcoin-cli instead of RPC for all commands") self.add_options(parser) (self.options, self.args) = parser.parse_args() PortSeed.n = self.options.port_seed os.environ['PATH'] = self.options.srcdir + ":" + self.options.srcdir + "/qt:" + os.environ['PATH'] check_json_precision() self.options.cachedir = os.path.abspath(self.options.cachedir) # Set up temp directory and start logging if self.options.tmpdir: self.options.tmpdir = os.path.abspath(self.options.tmpdir) os.makedirs(self.options.tmpdir, exist_ok=False) else: self.options.tmpdir = tempfile.mkdtemp(prefix="test") self._start_logging() success = TestStatus.FAILED try: if self.options.usecli and not self.supports_cli: raise SkipTest("--usecli specified but test does not support using CLI") self.setup_chain() self.setup_network() time.sleep(5) self.run_test() success = TestStatus.PASSED except JSONRPCException as e: self.log.exception("JSONRPC error") except SkipTest as e: self.log.warning("Test Skipped: %s" % e.message) success = TestStatus.SKIPPED except AssertionError as e: self.log.exception("Assertion failed") except KeyError as e: self.log.exception("Key error") except Exception as e: self.log.exception("Unexpected exception caught during testing") except KeyboardInterrupt as e: self.log.warning("Exiting after keyboard interrupt") if success == TestStatus.FAILED and self.options.pdbonfailure: print("Testcase failed. Attaching python debugger. Enter ? for help") pdb.set_trace() if not self.options.noshutdown: self.log.info("Stopping nodes") if self.nodes: self.stop_nodes() else: for node in self.nodes: node.cleanup_on_exit = False self.log.info("Note: stompds were not stopped and may still be running") if not self.options.nocleanup and not self.options.noshutdown and success != TestStatus.FAILED: self.log.info("Cleaning up") shutil.rmtree(self.options.tmpdir) else: self.log.warning("Not cleaning up dir %s" % self.options.tmpdir) if success == TestStatus.PASSED: self.log.info("Tests successful") exit_code = TEST_EXIT_PASSED elif success == TestStatus.SKIPPED: self.log.info("Test skipped") exit_code = TEST_EXIT_SKIPPED else: self.log.error("Test failed. Test logging available at %s/test_framework.log", self.options.tmpdir) self.log.error("Hint: Call {} '{}' to consolidate all logs".format(os.path.normpath(os.path.dirname(os.path.realpath(__file__)) + "/../combine_logs.py"), self.options.tmpdir)) exit_code = TEST_EXIT_FAILED logging.shutdown() sys.exit(exit_code) # Methods to override in subclass test scripts. def set_test_params(self): """Tests must this method to change default values for number of nodes, topology, etc""" raise NotImplementedError def add_options(self, parser): """Override this method to add command-line options to the test""" pass def setup_chain(self): """Override this method to customize blockchain setup""" self.log.info("Initializing test directory " + self.options.tmpdir) if self.setup_clean_chain: self._initialize_chain_clean() else: self._initialize_chain() def setup_network(self): """Override this method to customize test network topology""" self.setup_nodes() # Connect the nodes as a "chain". This allows us # to split the network between nodes 1 and 2 to get # two halves that can work on competing chains. for i in range(self.num_nodes - 1): connect_nodes_bi(self.nodes, i, i + 1) self.sync_all() def setup_nodes(self): """Override this method to customize test node setup""" extra_args = None if hasattr(self, "extra_args"): extra_args = self.extra_args self.add_nodes(self.num_nodes, extra_args) self.start_nodes() def run_test(self): """Tests must override this method to define test logic""" raise NotImplementedError # Public helper methods. These can be accessed by the subclass test scripts. def add_nodes(self, num_nodes, extra_args=None, rpchost=None, timewait=None, binary=None): """Instantiate TestNode objects""" if extra_args is None: extra_args = [[]] * num_nodes if binary is None: binary = [None] * num_nodes assert_equal(len(extra_args), num_nodes) assert_equal(len(binary), num_nodes) for i in range(num_nodes): self.nodes.append(TestNode(i, self.options.tmpdir, extra_args[i], rpchost, timewait=timewait, binary=binary[i], stderr=None, mocktime=self.mocktime, coverage_dir=self.options.coveragedir, use_cli=self.options.usecli)) def start_node(self, i, *args, **kwargs): """Start a stompd""" node = self.nodes[i] node.start(*args, **kwargs) node.wait_for_rpc_connection() time.sleep(10) if self.options.coveragedir is not None: coverage.write_all_rpc_commands(self.options.coveragedir, node.rpc) def start_nodes(self, extra_args=None, *args, **kwargs): """Start multiple stompds""" if extra_args is None: extra_args = [None] * self.num_nodes assert_equal(len(extra_args), self.num_nodes) try: for i, node in enumerate(self.nodes): node.start(extra_args[i], *args, **kwargs) for node in self.nodes: node.wait_for_rpc_connection() except: # If one node failed to start, stop the others self.stop_nodes() raise time.sleep(10) if self.options.coveragedir is not None: for node in self.nodes: coverage.write_all_rpc_commands(self.options.coveragedir, node.rpc) def stop_node(self, i): """Stop a stompd test node""" self.nodes[i].stop_node() self.nodes[i].wait_until_stopped() def stop_nodes(self): """Stop multiple stompd test nodes""" for node in self.nodes: # Issue RPC to stop nodes node.stop_node() for node in self.nodes: # Wait for nodes to stop time.sleep(5) node.wait_until_stopped() def restart_node(self, i, extra_args=None): """Stop and start a test node""" self.stop_node(i) self.start_node(i, extra_args) def assert_start_raises_init_error(self, i, extra_args=None, expected_msg=None, *args, **kwargs): with tempfile.SpooledTemporaryFile(max_size=2**16) as log_stderr: try: self.start_node(i, extra_args, stderr=log_stderr, *args, **kwargs) self.stop_node(i) except Exception as e: assert 'stompd exited' in str(e) # node must have shutdown self.nodes[i].running = False self.nodes[i].process = None if expected_msg is not None: log_stderr.seek(0) stderr = log_stderr.read().decode('utf-8') if expected_msg not in stderr: raise AssertionError("Expected error \"" + expected_msg + "\" not found in:\n" + stderr) else: if expected_msg is None: assert_msg = "stompd should have exited with an error" else: assert_msg = "stompd should have exited with expected error " + expected_msg raise AssertionError(assert_msg) def wait_for_node_exit(self, i, timeout): self.nodes[i].process.wait(timeout) def split_network(self): """ Split the network of four nodes into nodes 0/1 and 2/3. """ disconnect_nodes(self.nodes[1], 2) disconnect_nodes(self.nodes[2], 1) self.sync_all([self.nodes[:2], self.nodes[2:]]) def join_network(self): """ Join the (previously split) network halves together. """ connect_nodes_bi(self.nodes, 1, 2) self.sync_all() def sync_all(self, node_groups=None): if not node_groups: node_groups = [self.nodes] for group in node_groups: sync_blocks(group) sync_mempools(group) def enable_mocktime(self): """Enable mocktime for the script. mocktime may be needed for scripts that use the cached version of the blockchain. If the cached version of the blockchain is used without mocktime then the mempools will not sync due to IBD. For backwared compatibility of the python scripts with previous versions of the cache, this helper function sets mocktime to Jan 1, 2014 + (201 * 10 * 60)""" self.mocktime = 1454124732 + (201 * 10 * 60) def disable_mocktime(self): self.mocktime = 0 # Private helper methods. These should not be accessed by the subclass test scripts. def _start_logging(self): # Add logger and logging handlers self.log = logging.getLogger('TestFramework') self.log.setLevel(logging.DEBUG) # Create file handler to log all messages fh = logging.FileHandler(self.options.tmpdir + '/test_framework.log') fh.setLevel(logging.DEBUG) # Create console handler to log messages to stderr. By default this logs only error messages, but can be configured with --loglevel. ch = logging.StreamHandler(sys.stdout) # User can provide log level as a number or string (eg DEBUG). loglevel was caught as a string, so try to convert it to an int ll = int(self.options.loglevel) if self.options.loglevel.isdigit() else self.options.loglevel.upper() ch.setLevel(ll) # Format logs the same as stompd's debug.log with microprecision (so log files can be concatenated and sorted) formatter = logging.Formatter(fmt='%(asctime)s.%(msecs)03d000 %(name)s (%(levelname)s): %(message)s', datefmt='%Y-%m-%d %H:%M:%S') formatter.converter = time.gmtime fh.setFormatter(formatter) ch.setFormatter(formatter) # add the handlers to the logger self.log.addHandler(fh) self.log.addHandler(ch) if self.options.trace_rpc: rpc_logger = logging.getLogger("BitcoinRPC") rpc_logger.setLevel(logging.DEBUG) rpc_handler = logging.StreamHandler(sys.stdout) rpc_handler.setLevel(logging.DEBUG) rpc_logger.addHandler(rpc_handler) def _initialize_chain(self): """Initialize a pre-mined blockchain for use by the test. Create a cache of a 200-block-long chain (with wallet) for MAX_NODES Afterward, create num_nodes copies from the cache.""" assert self.num_nodes <= MAX_NODES create_cache = False for i in range(MAX_NODES): if not os.path.isdir(get_datadir_path(self.options.cachedir, i)): create_cache = True break if create_cache: self.log.debug("Creating data directories from cached datadir") # find and delete old cache directories if any exist for i in range(MAX_NODES): if os.path.isdir(get_datadir_path(self.options.cachedir, i)): shutil.rmtree(get_datadir_path(self.options.cachedir, i)) # Create cache directories, run bitcoinds: for i in range(MAX_NODES): datadir = initialize_datadir(self.options.cachedir, i) args = [os.getenv("BITCOIND", "stompd"), "-spendzeroconfchange=1", "-server", "-keypool=1", "-datadir=" + datadir, "-discover=0"] if i > 0: args.append("-connect=127.0.0.1:" + str(p2p_port(0))) self.nodes.append(TestNode(i, self.options.cachedir, extra_args=[], rpchost=None, timewait=None, binary=None, stderr=None, mocktime=self.mocktime, coverage_dir=None)) self.nodes[i].args = args self.start_node(i) # Wait for RPC connections to be ready for node in self.nodes: node.wait_for_rpc_connection() # Create a 200-block-long chain; each of the 4 first nodes # gets 25 mature blocks and 25 immature. # Note: To preserve compatibility with older versions of # initialize_chain, only 4 nodes will generate coins. # # blocks are created with timestamps 10 minutes apart # starting from 2010 minutes in the past self.enable_mocktime() block_time = self.mocktime - (201 * 60) for i in range(2): for peer in range(4): for j in range(25): set_node_times(self.nodes, block_time) self.nodes[peer].generate(1) block_time += 60 # Must sync before next peer starts generating blocks sync_blocks(self.nodes) # Shut them down, and clean up cache directories: self.stop_nodes() self.nodes = [] self.disable_mocktime() def cache_path(n, *paths): return os.path.join(get_datadir_path(self.options.cachedir, n), "regtest", *paths) for i in range(MAX_NODES): for entry in os.listdir(cache_path(i)): if entry not in ['wallet.dat', 'chainstate', 'blocks', 'sporks', 'zerocoin', 'backups']: os.remove(cache_path(i, entry)) for i in range(self.num_nodes): from_dir = get_datadir_path(self.options.cachedir, i) to_dir = get_datadir_path(self.options.tmpdir, i) shutil.copytree(from_dir, to_dir) initialize_datadir(self.options.tmpdir, i) # Overwrite port/rpcport in bitcoin.conf def _initialize_chain_clean(self): """Initialize empty blockchain for use by the test. Create an empty blockchain and num_nodes wallets. Useful if a test case wants complete control over initialization.""" for i in range(self.num_nodes): initialize_datadir(self.options.tmpdir, i) class ComparisonTestFramework(BitcoinTestFramework): """Test framework for doing p2p comparison testing Sets up some stompd binaries: - 1 binary: test binary - 2 binaries: 1 test binary, 1 ref binary - n>2 binaries: 1 test binary, n-1 ref binaries""" def set_test_params(self): self.num_nodes = 2 self.setup_clean_chain = True def add_options(self, parser): parser.add_option("--testbinary", dest="testbinary", default=os.getenv("BITCOIND", "stompd"), help="stompd binary to test") parser.add_option("--refbinary", dest="refbinary", default=os.getenv("BITCOIND", "stompd"), help="stompd binary to use for reference nodes (if any)") def setup_network(self): extra_args = [['-whitelist=127.0.0.1']] * self.num_nodes if hasattr(self, "extra_args"): extra_args = self.extra_args self.add_nodes(self.num_nodes, extra_args, binary=[self.options.testbinary] + [self.options.refbinary] * (self.num_nodes - 1)) self.start_nodes() class SkipTest(Exception): """This exception is raised to skip a test""" def __init__(self, message): self.message = message
the-stack_0_12036
import numpy as np import matplotlib.pyplot as plt from matplotlib.gridspec import GridSpec def fft_wavenumbers(x, y, shape_dat, shape_pdat): """ Compute the wavenumbers. Parameters ---------- x : 1D array Coordinates along x direction. y : 1D array Coordinates along y direction. shape_dat : tuple Shape of the input data. shape_pdat : tuple Shape of the pad. Returns ------- u : array Wavenumber. v : TYPE Wavenumber. """ dx = (np.amax(x) - np.amin(x))/(shape_dat[0] - 1) dy = (np.amax(y) - np.amin(y))/(shape_dat[1] - 1) fx = 2*np.pi*np.fft.fftfreq(shape_pdat[0], dx) fy = 2*np.pi*np.fft.fftfreq(shape_pdat[1], dy) v,u=np.meshgrid(fy, fx) return (u,v) def fft_pad_data(data, mode='edge'): """ Perform the 2D discrete Fourier transform and extend the data with padding. Parameters ---------- data : 2D array Input data. mode : TYPE, optional The type of the pad, available on numpy.pad. The default is 'edge'. Returns ------- fpdat : 2D array The padded data. mask : boolean The mask to perform the unppading. """ n_points=int(2**(np.ceil(np.log(np.max(data.shape))/np.log(2)))) nx, ny = data.shape padx = int((n_points - nx)/2) pady = int((n_points - ny)/2) padded_data = np.pad(data, ((padx, padx), (pady, pady)),mode) mask = np.zeros_like(padded_data, dtype=bool) mask[padx:padx+data.shape[0], pady:pady+data.shape[1]] = True fpdat = np.fft.fft2(padded_data) return (fpdat,mask) def ifft_unpad_data(data_p, mask, shape_dat): ''' Unpad the extended data to fit the original data shape. Parameters ---------- data_p : 2D array Padded data. mask : boolean The mask that will be used to unpad the data. shape_dat : tuple Shape of the original data. Returns ------- data : array Unpadded data. ''' ifft_data = np.real(np.fft.ifft2(data_p)) data = ifft_data[mask] return np.reshape(data, shape_dat) def butter2d_lp(shape, f, n): """ Designs a lowpass 2D Butterworth filter. Modified from Peirce JW (2009) Generating stimuli for neuroscience using PsychoPy. Front. Neuroinform. 2:10. doi:10.3389/neuro.11.010.2008. Parameters ---------- shape : tuple Size of the filter. f : float Relative cutoff frequency of the filter. n : int Order of the filter, the higher n is the sharper the transition is. Returns ------- filt : 2D array Filter kernel centered. """ rows, cols = shape x = np.linspace(-0.5, 0.5, cols) y = np.linspace(-0.5, 0.5, rows) radius = np.sqrt((x**2)[np.newaxis] + (y**2)[:, np.newaxis]) filt = 1 / (1.0 + (radius / f)**(2*n)) return (filt) def plot_wav(decomp): """ Plot the data in DWT domain Parameters ---------- data : list Data in wavelet domain. Returns ------- None. """ plt.figure(figsize=(10,10)) gs = GridSpec(4, 4) ax = plt.subplot(gs[0, 0]) plt.imshow(decomp[0]) plt.xticks([]) plt.yticks([]) ax = plt.subplot(gs[1,0]) plt.imshow(decomp[1][0]) plt.xticks([]) plt.yticks([]) ax = plt.subplot(gs[0, 1]) plt.imshow(decomp[1][1]) plt.xticks([]) plt.yticks([]) ax = plt.subplot(gs[1, 1]) plt.imshow(decomp[1][2]) plt.xticks([]) plt.yticks([]) ax = plt.subplot(gs[2:,:2]) plt.imshow(decomp[2][0]) plt.xticks([]) plt.yticks([]) ax = plt.subplot(gs[:2,2:]) plt.imshow(decomp[2][1]) plt.xticks([]) plt.yticks([]) ax = plt.subplot(gs[2:,2:]) plt.imshow(decomp[2][2]) plt.xticks([]) plt.yticks([]) plt.tight_layout() return
the-stack_0_12041
from pid import PID from lowpass import LowPassFilter from yaw_controller import YawController import rospy GAS_DENSITY = 2.858 ONE_MPH = 0.44704 class Controller(object): def __init__(self, vehicle_mass, fuel_capacity, brake_deadband, decel_limit, accel_limit, wheel_radius, wheel_base, steer_ratio, max_lat_accel, max_steer_angle): self.yaw_controller = YawController(wheel_base, steer_ratio, 0.1, max_lat_accel, max_steer_angle) kp = 0.3 ki = 0.1 kd = 0.0 mn = 0. # minimum throttle value mx = 0.2 #max throttle self.throttle_controller = PID(kp, ki, kd, mn, mx) tau = 0.5 # 1/(2pi*tau) = cutoff frequency ts = 0.02 # sample time self.vel_lpf = LowPassFilter(tau, ts) self.vehicle_mass = vehicle_mass self.fuel_capacity = fuel_capacity self.brake_deadband = brake_deadband self.decel_limit = decel_limit self.accel_limit = accel_limit self.wheel_radius = wheel_radius self.last_time = rospy.get_time() def control(self, current_vel, dbw_enabled, linear_vel, angular_vel): if not dbw_enabled: self.throttle_controller.reset() return 0., 0., 0. current_vel = self.vel_lpf.filt(current_vel) # rospy.logwarn("Angular vel: {0}".format(angular_vel)) # rospy.logwarn("Current vel: {0}".format(current_vel)) # rospy.logwarn("Target vel: {0}".format(linear_vel)) steering = self.yaw_controller.get_steering(linear_vel, angular_vel, current_vel) # could add damping --> based on target_ang_vel - current_ang_vel vel_error = linear_vel - current_vel self.last_vel = current_vel current_time = rospy.get_time() sample_time = current_time - self.last_time self.last_time = current_time throttle = self.throttle_controller.step(vel_error, sample_time) brake = 0 if linear_vel == 0. and current_vel <0.1: throttle = 0 brake = 700 # N*m to hold car in place if stopped at light; acc ~ 1 m/s^2 elif linear_vel <.1 and vel_error < 0: throttle = 0 decel = max(vel_error, self.decel_limit) brake = abs(decel)*self.vehicle_mass*self.wheel_radius # Torque N*m return throttle, brake, steering
the-stack_0_12042
import base64 import unittest import zlib from os.path import abspath, basename, dirname, join from robot.utils.asserts import assert_equal, assert_true from robot.utils.platform import PY2 from robot.result import Keyword, Message, TestCase, TestSuite from robot.result.executionerrors import ExecutionErrors from robot.model import Statistics from robot.reporting.jsmodelbuilders import * from robot.reporting.stringcache import StringIndex try: long except NameError: long = int CURDIR = dirname(abspath(__file__)) def decode_string(string): string = string if PY2 else string.encode('ASCII') return zlib.decompress(base64.b64decode(string)).decode('UTF-8') def remap(model, strings): if isinstance(model, StringIndex): if strings[model].startswith('*'): # Strip the asterisk from a raw string. return strings[model][1:] return decode_string(strings[model]) elif isinstance(model, (int, long, type(None))): return model elif isinstance(model, tuple): return tuple(remap(item, strings) for item in model) else: raise AssertionError("Item '%s' has invalid type '%s'" % (model, type(model))) class TestBuildTestSuite(unittest.TestCase): def test_default_suite(self): self._verify_suite(TestSuite()) def test_suite_with_values(self): suite = TestSuite('Name', 'Doc', {'m1': 'v1', 'M2': 'V2'}, None, 'Message', '20111204 19:00:00.000', '20111204 19:00:42.001') self._verify_suite(suite, 'Name', 'Doc', ('m1', '<p>v1</p>', 'M2', '<p>V2</p>'), message='Message', start=0, elapsed=42001) def test_relative_source(self): self._verify_suite(TestSuite(source='non-existing'), source='non-existing') source = join(CURDIR, 'test_jsmodelbuilders.py') self._verify_suite(TestSuite(source=source), source=source, relsource=basename(source)) def test_suite_html_formatting(self): self._verify_suite(TestSuite(name='*xxx*', doc='*bold* <&>', metadata={'*x*': '*b*', '<': '>'}), name='*xxx*', doc='<b>bold</b> &lt;&amp;&gt;', metadata=('*x*', '<p><b>b</b></p>', '&lt;', '<p>&gt;</p>')) def test_default_test(self): self._verify_test(TestCase()) def test_test_with_values(self): test = TestCase('Name', '*Doc*', ['t1', 't2'], '1 minute', 'PASS', 'Msg', '20111204 19:22:22.222', '20111204 19:22:22.333') test.setup.config(kwname='setup', type='setup') test.teardown.config(kwname='td', type='teardown') k1 = self._verify_keyword(test.setup, type=1, kwname='setup') k2 = self._verify_keyword(test.teardown, type=2, kwname='td') self._verify_test(test, 'Name', '<b>Doc</b>', ('t1', 't2'), '1 minute', 1, 'Msg', 0, 111, (k1, k2)) def test_name_escaping(self): kw = Keyword('quote:"', 'and *url* https://url.com', '*"Doc"*',) self._verify_keyword(kw, 0, 'quote:&quot;', 'and *url* https://url.com', '<b>"Doc"</b>') test = TestCase('quote:" and *url* https://url.com', '*"Doc"*',) self._verify_test(test, 'quote:&quot; and *url* https://url.com', '<b>"Doc"</b>') suite = TestSuite('quote:" and *url* https://url.com', '*"Doc"*',) self._verify_suite(suite, 'quote:&quot; and *url* https://url.com', '<b>"Doc"</b>') def test_default_keyword(self): self._verify_keyword(Keyword()) def test_keyword_with_values(self): kw = Keyword('KW Name', 'libname', 'http://doc', ('arg1', 'arg2'), ('${v1}', '${v2}'), ('tag1', 'tag2'), '1 second', 'setup', 'PASS', '20111204 19:42:42.000', '20111204 19:42:42.042') self._verify_keyword(kw, 1, 'KW Name', 'libname', '<a href="http://doc">http://doc</a>', 'arg1, arg2', '${v1}, ${v2}', 'tag1, tag2', '1 second', 1, 0, 42) def test_default_message(self): self._verify_message(Message()) self._verify_min_message_level('INFO') def test_message_with_values(self): msg = Message('Message', 'DEBUG', timestamp='20111204 22:04:03.210') self._verify_message(msg, 'Message', 1, 0) self._verify_min_message_level('DEBUG') def test_warning_linking(self): msg = Message('Message', 'WARN', timestamp='20111204 22:04:03.210', parent=TestCase().body.create_keyword()) self._verify_message(msg, 'Message', 3, 0) links = self.context._msg_links assert_equal(len(links), 1) key = (msg.message, msg.level, msg.timestamp) assert_equal(remap(links[key], self.context.strings), 't1-k1') def test_error_linking(self): msg = Message('ERROR Message', 'ERROR', timestamp='20150609 01:02:03.004', parent=TestCase().body.create_keyword().body.create_keyword()) self._verify_message(msg, 'ERROR Message', 4, 0) links = self.context._msg_links assert_equal(len(links), 1) key = (msg.message, msg.level, msg.timestamp) assert_equal(remap(links[key], self.context.strings), 't1-k1-k1') def test_message_with_html(self): self._verify_message(Message('<img>'), '&lt;img&gt;') self._verify_message(Message('<b></b>', html=True), '<b></b>') def test_nested_structure(self): suite = TestSuite() suite.setup.config(kwname='setup', type='setup') suite.teardown.config(kwname='td', type='teardown') K1 = self._verify_keyword(suite.setup, type=1, kwname='setup') K2 = self._verify_keyword(suite.teardown, type=2, kwname='td') suite.suites = [TestSuite()] suite.suites[0].tests = [TestCase(tags=['crit', 'xxx'])] t = self._verify_test(suite.suites[0].tests[0], tags=('crit', 'xxx')) suite.tests = [TestCase(), TestCase(status='PASS')] S1 = self._verify_suite(suite.suites[0], status=0, tests=(t,), stats=(1, 0, 1, 0)) suite.tests[0].body = [Keyword(type=Keyword.FOR_TYPE), Keyword()] suite.tests[0].body[0].body = [Keyword(type=Keyword.FOR_ITEM_TYPE), Message()] k = self._verify_keyword(suite.tests[0].body[0].body[0], type=4) m = self._verify_message(suite.tests[0].body[0].messages[0]) k1 = self._verify_keyword(suite.tests[0].body[0], type=3, body=(k, m)) suite.tests[0].body[1].body = [Message(), Message('msg', level='TRACE')] m1 = self._verify_message(suite.tests[0].body[1].messages[0]) m2 = self._verify_message(suite.tests[0].body[1].messages[1], 'msg', level=0) k2 = self._verify_keyword(suite.tests[0].body[1], body=(m1, m2)) T1 = self._verify_test(suite.tests[0], body=(k1, k2)) T2 = self._verify_test(suite.tests[1], status=1) self._verify_suite(suite, status=0, keywords=(K1, K2), suites=(S1,), tests=(T1, T2), stats=(3, 1, 2, 0)) self._verify_min_message_level('TRACE') def test_timestamps(self): suite = TestSuite(starttime='20111205 00:33:33.333') suite.setup.config(kwname='s1', starttime='20111205 00:33:33.334') suite.setup.body.create_message('Message', timestamp='20111205 00:33:33.343') suite.setup.body.create_message(level='DEBUG', timestamp='20111205 00:33:33.344') suite.tests.create(starttime='20111205 00:33:34.333') context = JsBuildingContext() model = SuiteBuilder(context).build(suite) self._verify_status(model[5], start=0) self._verify_status(model[-2][0][8], start=1) self._verify_mapped(model[-2][0][-1], context.strings, ((8, 10, 2, 'Message'), (8, 11, 1, ''))) self._verify_status(model[-3][0][4], start=1000) def test_if(self): test = TestSuite().tests.create() if_ = test.body.create_if(condition='$x > 0', branch_status='NOT RUN') else_if = if_.orelse.config(condition='$y > 0', branch_status='PASS') else_ = else_if.orelse.config() else_.body.create_keyword('z') exp_if = ( 5, '$x &gt; 0', '', '', '', '', '', '', (3, None, 0), () ) exp_else_if = ( 6, '$y &gt; 0', '', '', '', '', '', '', (1, None, 0), () ) exp_else = ( 7, '', '', '', '', '', '', '', (0, None, 0), ((0, 'z', '', '', '', '', '', '', (0, None, 0), ()),) ) self._verify_test(test, body=(exp_if, exp_else_if, exp_else)) def _verify_status(self, model, status=0, start=None, elapsed=0): assert_equal(model, (status, start, elapsed)) def _verify_suite(self, suite, name='', doc='', metadata=(), source='', relsource='', status=2, message='', start=None, elapsed=0, suites=(), tests=(), keywords=(), stats=(0, 0, 0, 0)): status = (status, start, elapsed, message) \ if message else (status, start, elapsed) doc = '<p>%s</p>' % doc if doc else '' return self._build_and_verify(SuiteBuilder, suite, name, source, relsource, doc, metadata, status, suites, tests, keywords, stats) def _get_status(self, *elements): return elements if elements[-1] else elements[:-1] def _verify_test(self, test, name='', doc='', tags=(), timeout='', status=0, message='', start=None, elapsed=0, body=()): status = (status, start, elapsed, message) \ if message else (status, start, elapsed) doc = '<p>%s</p>' % doc if doc else '' return self._build_and_verify(TestBuilder, test, name, timeout, doc, tags, status, body) def _verify_keyword(self, keyword, type=0, kwname='', libname='', doc='', args='', assign='', tags='', timeout='', status=0, start=None, elapsed=0, body=()): status = (status, start, elapsed) doc = '<p>%s</p>' % doc if doc else '' return self._build_and_verify(KeywordBuilder, keyword, type, kwname, libname, timeout, doc, args, assign, tags, status, body) def _verify_message(self, msg, message='', level=2, timestamp=None): return self._build_and_verify(MessageBuilder, msg, 8, timestamp, level, message) def _verify_min_message_level(self, expected): assert_equal(self.context.min_level, expected) def _build_and_verify(self, builder_class, item, *expected): self.context = JsBuildingContext(log_path=join(CURDIR, 'log.html')) model = builder_class(self.context).build(item) self._verify_mapped(model, self.context.strings, expected) return expected def _verify_mapped(self, model, strings, expected): mapped_model = tuple(remap(model, strings)) assert_equal(mapped_model, expected) class TestSplitting(unittest.TestCase): def test_test_keywords(self): suite = self._get_suite_with_tests() expected, _ = self._build_and_remap(suite) expected_split = [expected[-3][0][-1], expected[-3][1][-1]] expected[-3][0][-1], expected[-3][1][-1] = 1, 2 model, context = self._build_and_remap(suite, split_log=True) assert_equal(context.strings, ('*', '*suite', '*t1', '*t2')) assert_equal(model, expected) assert_equal([strings for _, strings in context.split_results], [('*', '*t1-k1', '*t1-k1-k1', '*t1-k2'), ('*', '*t2-k1')]) assert_equal([self._to_list(remap(*res)) for res in context.split_results], expected_split) def _get_suite_with_tests(self): suite = TestSuite(name='suite') suite.tests = [TestCase('t1'), TestCase('t2')] suite.tests[0].body = [Keyword('t1-k1'), Keyword('t1-k2')] suite.tests[0].body[0].body = [Keyword('t1-k1-k1')] suite.tests[1].body = [Keyword('t2-k1')] return suite def _build_and_remap(self, suite, split_log=False): context = JsBuildingContext(split_log=split_log) model = remap(SuiteBuilder(context).build(suite), context.strings) return self._to_list(model), context def _to_list(self, model): return list(self._to_list(item) if isinstance(item, tuple) else item for item in model) def test_suite_keywords(self): suite = self._get_suite_with_keywords() expected, _ = self._build_and_remap(suite) expected_split = [expected[-2][0][-1], expected[-2][1][-1]] expected[-2][0][-1], expected[-2][1][-1] = 1, 2 model, context = self._build_and_remap(suite, split_log=True) assert_equal(context.strings, ('*', '*root', '*k1', '*k2')) assert_equal(model, expected) assert_equal([strings for _, strings in context.split_results], [('*', '*k1-k2'), ('*',)]) assert_equal([self._to_list(remap(*res)) for res in context.split_results], expected_split) def _get_suite_with_keywords(self): suite = TestSuite(name='root') suite.setup.config(kwname='k1') suite.teardown.config(kwname='k2') suite.setup.body.create_keyword('k1-k2') return suite def test_nested_suite_and_test_keywords(self): suite = self._get_nested_suite_with_tests_and_keywords() expected, _ = self._build_and_remap(suite) expected_split = [expected[-4][0][-3][0][-1], expected[-4][0][-3][1][-1], expected[-4][1][-3][0][-1], expected[-4][1][-2][0][-1], expected[-2][0][-1], expected[-2][1][-1]] (expected[-4][0][-3][0][-1], expected[-4][0][-3][1][-1], expected[-4][1][-3][0][-1], expected[-4][1][-2][0][-1], expected[-2][0][-1], expected[-2][1][-1]) = 1, 2, 3, 4, 5, 6 model, context = self._build_and_remap(suite, split_log=True) assert_equal(model, expected) assert_equal([self._to_list(remap(*res)) for res in context.split_results], expected_split) def _get_nested_suite_with_tests_and_keywords(self): suite = self._get_suite_with_keywords() sub = TestSuite(name='suite2') suite.suites = [self._get_suite_with_tests(), sub] sub.setup.config(kwname='kw') sub.setup.body.create_keyword('skw').body.create_message('Message') sub.tests.create('test', doc='tdoc').body.create_keyword('koowee', doc='kdoc') return suite def test_message_linking(self): suite = self._get_suite_with_keywords() msg1 = suite.setup.body[0].body.create_message( 'Message 1', 'WARN', timestamp='20111204 22:04:03.210' ) msg2 = suite.tests.create().body.create_keyword().body.create_message( 'Message 2', 'ERROR', timestamp='20111204 22:04:04.210' ) context = JsBuildingContext(split_log=True) SuiteBuilder(context).build(suite) errors = ErrorsBuilder(context).build(ExecutionErrors([msg1, msg2])) assert_equal(remap(errors, context.strings), ((8, -1000, 3, 'Message 1', 's1-k1-k1'), (8, 0, 4, 'Message 2', 's1-t1-k1'))) assert_equal(remap(context.link(msg1), context.strings), 's1-k1-k1') assert_equal(remap(context.link(msg2), context.strings), 's1-t1-k1') assert_true('*s1-k1-k1' in context.strings) assert_true('*s1-t1-k1' in context.strings) for res in context.split_results: assert_true('*s1-k1-k1' not in res[1]) assert_true('*s1-t1-k1' not in res[1]) class TestPruneInput(unittest.TestCase): def setUp(self): self.suite = TestSuite() self.suite.setup.config(kwname='s') self.suite.teardown.config(kwname='t') s1 = self.suite.suites.create() s1.setup.config(kwname='s1') tc = s1.tests.create() tc.setup.config(kwname='tcs') tc.teardown.config(kwname='tct') tc.body = [Keyword(), Keyword(), Keyword()] tc.body[0].body = [Keyword(), Keyword(), Message(), Message(), Message()] tc.body[0].teardown.config(kwname='kt') s2 = self.suite.suites.create() t1 = s2.tests.create() t2 = s2.tests.create() t1.body = [Keyword()] t2.body = [Keyword(), Keyword()] def test_no_pruning(self): SuiteBuilder(JsBuildingContext(prune_input=False)).build(self.suite) assert_equal(self.suite.setup.kwname, 's') assert_equal(self.suite.teardown.kwname, 't') assert_equal(self.suite.suites[0].setup.kwname, 's1') assert_equal(self.suite.suites[0].teardown.kwname, None) assert_equal(self.suite.suites[0].tests[0].setup.kwname, 'tcs') assert_equal(self.suite.suites[0].tests[0].teardown.kwname, 'tct') assert_equal(len(self.suite.suites[0].tests[0].body), 3) assert_equal(len(self.suite.suites[0].tests[0].body[0].body), 5) assert_equal(len(self.suite.suites[0].tests[0].body[0].messages), 3) assert_equal(self.suite.suites[0].tests[0].body[0].teardown.kwname, 'kt') assert_equal(len(self.suite.suites[1].tests[0].body), 1) assert_equal(len(self.suite.suites[1].tests[1].body), 2) def test_prune_suites_from_suite(self): suite = self.suite assert_equal(len(suite.suites), 2) assert_equal(len(suite.tests), 0) SuiteBuilder(JsBuildingContext(prune_input=True)).build(suite) assert_equal(len(suite.suites), 0) assert_equal(len(suite.tests), 0) def test_prune_test_from_suite(self): suite = self.suite.suites[0] assert_equal(len(suite.suites), 0) assert_equal(len(suite.tests), 1) SuiteBuilder(JsBuildingContext(prune_input=True)).build(suite) assert_equal(len(suite.suites), 0) assert_equal(len(suite.tests), 0) def test_prune_test(self): test = self.suite.suites[0].tests[0] assert_equal(len(test.body), 3) TestBuilder(JsBuildingContext(prune_input=True)).build(test) assert_equal(len(test.body), 0) def test_prune_keyword(self): kw = self.suite.suites[0].tests[0].body[0] assert_equal(len(kw.body), 5) assert_equal(len(kw.messages), 3) KeywordBuilder(JsBuildingContext(prune_input=True)).build(kw) assert_equal(len(kw.body), 0) assert_equal(len(kw.messages), 0) def test_prune_errors(self): errors = ExecutionErrors([Message(), Message()]) ErrorsBuilder(JsBuildingContext(prune_input=False)).build(errors) assert_equal(len(errors), 2) ErrorsBuilder(JsBuildingContext(prune_input=True)).build(errors) assert_equal(len(errors), 0) class TestBuildStatistics(unittest.TestCase): def test_total_stats(self): all = self._build_statistics()[0][0] self._verify_stat(all, 2, 2, 1, 'All Tests', '00:00:33') def test_tag_stats(self): stats = self._build_statistics()[1] comb, t1, t2, t3 = self._build_statistics()[1] self._verify_stat(t2, 2, 0, 0, 't2', '00:00:22', doc='doc', links='t:url') self._verify_stat(comb, 2, 0, 0, 'name', '00:00:22', info='combined', combined='t1&amp;t2') self._verify_stat(t1, 2, 2, 0, 't1', '00:00:33') self._verify_stat(t3, 0, 1, 1, 't3', '00:00:01') def test_suite_stats(self): root, sub1, sub2 = self._build_statistics()[2] self._verify_stat(root, 2, 2, 1, 'root', '00:00:42', name='root', id='s1') self._verify_stat(sub1, 1, 1, 1, 'root.sub1', '00:00:10', name='sub1', id='s1-s1') self._verify_stat(sub2, 1, 1, 0, 'root.sub2', '00:00:30', name='sub2', id='s1-s2') def _build_statistics(self): return StatisticsBuilder().build(self._get_statistics()) def _get_statistics(self): return Statistics(self._get_suite(), suite_stat_level=2, tag_stat_combine=[('t1&t2', 'name')], tag_doc=[('t2', 'doc')], tag_stat_link=[('?2', 'url', '%1')]) def _get_suite(self): ts = lambda s, ms=0: '20120816 16:09:%02d.%03d' % (s, ms) suite = TestSuite(name='root', starttime=ts(0), endtime=ts(42)) sub1 = TestSuite(name='sub1', starttime=ts(0), endtime=ts(10)) sub2 = TestSuite(name='sub2') suite.suites = [sub1, sub2] sub1.tests = [ TestCase(tags=['t1', 't2'], status='PASS', starttime=ts(0), endtime=ts(1, 500)), TestCase(tags=['t1', 't3'], status='FAIL', starttime=ts(2), endtime=ts(3, 499)), TestCase(tags=['t3'], status='SKIP', starttime=ts(3, 560), endtime=ts(3, 560)) ] sub2.tests = [ TestCase(tags=['t1', 't2'], status='PASS', starttime=ts(10), endtime=ts(30)) ] sub2.suites.create(name='below suite stat level')\ .tests.create(tags=['t1'], status='FAIL', starttime=ts(30), endtime=ts(40)) return suite def _verify_stat(self, stat, pass_, fail, skip, label, elapsed, **attrs): attrs.update({'pass': pass_, 'fail': fail, 'skip': skip, 'label': label, 'elapsed': elapsed}) assert_equal(stat, attrs) class TestBuildErrors(unittest.TestCase): def setUp(self): msgs = [Message('Error', 'ERROR', timestamp='20111206 14:33:00.000'), Message('Warning', 'WARN', timestamp='20111206 14:33:00.042')] self.errors = ExecutionErrors(msgs) def test_errors(self): context = JsBuildingContext() model = ErrorsBuilder(context).build(self.errors) model = remap(model, context.strings) assert_equal(model, ((8, 0, 4, 'Error'), (8, 42, 3, 'Warning'))) def test_linking(self): self.errors.messages.create('Linkable', 'WARN', timestamp='20111206 14:33:00.001') context = JsBuildingContext() msg = TestSuite().tests.create().body.create_keyword().body.create_message( 'Linkable', 'WARN', timestamp='20111206 14:33:00.001' ) MessageBuilder(context).build(msg) model = ErrorsBuilder(context).build(self.errors) model = remap(model, context.strings) assert_equal(model, ((8, -1, 4, 'Error'), (8, 41, 3, 'Warning'), (8, 0, 3, 'Linkable', 's1-t1-k1'))) if __name__ == '__main__': unittest.main()
the-stack_0_12043
# Copyright (c) 2020 original authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an \"AS IS\" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from expertai.nlapi.v1 import constants from expertai.nlapi.v1.errors import ExpertAiRequestError, MissingParametersError from expertai.nlapi.v1.object_mapper import ObjectMapper from expertai.nlapi.v1.request import ExpertAiRequest from expertai.nlapi.v1.response import ExpertAiResponse from expertai.nlapi.v1.validate import ExpertAiValidation class ExpertAiClient: def __init__(self): self.response_class = ExpertAiResponse self._endpoint_path = "" def urlpath_keywords(self, endpoint_path): return re.findall(r"\{(\w+)\}", endpoint_path) def verify_request(self, endpoint_path, **kwargs): """ Verify that the user has set all the required parameters. Some of the endpoint url paths are parameterised, therefore the user has to provide some value when setting up the endpoint method """ required_params = self.urlpath_keywords(endpoint_path) if not required_params: return params = kwargs.get("params") or {} missing_params = set(required_params).difference(set(params.keys())) if required_params and missing_params: raise MissingParametersError( "Missing request parameters: {}".format( ",".join(*[missing_params]) ) ) ExpertAiValidation().check_parameters(params=params) def get_method_name_for_endpoint(self, endpoint_path): return dict(constants.URLS_AND_METHODS).get(endpoint_path) def create_request(self, endpoint_path, params=None, body=None): http_method_name = self.get_method_name_for_endpoint(endpoint_path) if params: self.verify_request(endpoint_path, params=params) endpoint_path = endpoint_path.format(**params) return ExpertAiRequest( endpoint_path=endpoint_path, http_method_name=http_method_name, body=body, ) def process_response(self, response): if not response.successful: raise ExpertAiRequestError( "Response status code: {}".format(response.status_code) ) elif response.bad_request: return ExpertAiRequestError( response.bad_request_message(response.json) ) return ObjectMapper().read_json(response.json) def full_analysis(self, params, body): request = self.create_request( endpoint_path=constants.FULL_ANALYSIS_PATH, params=params, body=body, ) response = self.response_class(response=request.send()) return self.process_response(response) def specific_resource_analysis(self, params, body): request = self.create_request( endpoint_path=constants.SPECIFIC_RESOURCE_ANALYSIS_PATH, params=params, body=body, ) response = self.response_class(response=request.send()) return self.process_response(response) def iptc_media_topics_classification(self, params, body): request = self.create_request( endpoint_path=constants.IPTC_MEDIA_TOPICS_CLASSIFICATION_PATH, params=params, body=body, ) response = self.response_class(response=request.send()) return self.process_response(response) def contexts(self): request = self.create_request(endpoint_path=constants.CONTEXTS_PATH) response = self.response_class(response=request.send()) return self.process_response(response) def contexts_standard(self): request = self.create_request( endpoint_path=constants.CONTEXTS_STANDARD_PATH ) response = self.response_class(response=request.send()) return self.process_response(response) def iptc_taxonomies_list(self): request = self.create_request( endpoint_path=constants.TAXONOMIES_LIST_PATH ) response = self.response_class(response=request.send()) return self.process_response(response) def iptc_taxonomies(self): request = self.create_request( endpoint_path=constants.IPTC_TAXONOMIES_PATH ) response = self.response_class(response=request.send()) return self.process_response(response)
the-stack_0_12044
""" Renderer Module This module defines the PlotlyRenderer class and a single function, fig_to_plotly, which is intended to be the main way that user's will interact with the matplotlylib package. """ from __future__ import absolute_import import six import warnings import plotly.graph_objs as go from plotly.matplotlylib.mplexporter import Renderer from plotly.matplotlylib import mpltools # Warning format def warning_on_one_line(msg, category, filename, lineno, file=None, line=None): return "%s:%s: %s:\n\n%s\n\n" % (filename, lineno, category.__name__, msg) warnings.formatwarning = warning_on_one_line class PlotlyRenderer(Renderer): """A renderer class inheriting from base for rendering mpl plots in plotly. A renderer class to be used with an exporter for rendering matplotlib plots in Plotly. This module defines the PlotlyRenderer class which handles the creation of the JSON structures that get sent to plotly. All class attributes available are defined in __init__(). Basic Usage: # (mpl code) # fig = gcf() renderer = PlotlyRenderer(fig) exporter = Exporter(renderer) exporter.run(fig) # ... et voila """ def __init__(self): """Initialize PlotlyRenderer obj. PlotlyRenderer obj is called on by an Exporter object to draw matplotlib objects like figures, axes, text, etc. All class attributes are listed here in the __init__ method. """ self.plotly_fig = go.Figure() self.mpl_fig = None self.current_mpl_ax = None self.bar_containers = None self.current_bars = [] self.axis_ct = 0 self.x_is_mpl_date = False self.mpl_x_bounds = (0, 1) self.mpl_y_bounds = (0, 1) self.msg = "Initialized PlotlyRenderer\n" def open_figure(self, fig, props): """Creates a new figure by beginning to fill out layout dict. The 'autosize' key is set to false so that the figure will mirror sizes set by mpl. The 'hovermode' key controls what shows up when you mouse around a figure in plotly, it's set to show the 'closest' point. Positional agurments: fig -- a matplotlib.figure.Figure object. props.keys(): [ 'figwidth', 'figheight', 'dpi' ] """ self.msg += "Opening figure\n" self.mpl_fig = fig self.plotly_fig["layout"] = go.Layout( width=int(props["figwidth"] * props["dpi"]), height=int(props["figheight"] * props["dpi"]), autosize=False, hovermode="closest", ) self.mpl_x_bounds, self.mpl_y_bounds = mpltools.get_axes_bounds(fig) margin = go.layout.Margin( l=int(self.mpl_x_bounds[0] * self.plotly_fig["layout"]["width"]), r=int((1 - self.mpl_x_bounds[1]) * self.plotly_fig["layout"]["width"]), t=int((1 - self.mpl_y_bounds[1]) * self.plotly_fig["layout"]["height"]), b=int(self.mpl_y_bounds[0] * self.plotly_fig["layout"]["height"]), pad=0, ) self.plotly_fig["layout"]["margin"] = margin def close_figure(self, fig): """Closes figure by cleaning up data and layout dictionaries. The PlotlyRenderer's job is to create an appropriate set of data and layout dictionaries. When the figure is closed, some cleanup and repair is necessary. This method removes inappropriate dictionary entries, freeing up Plotly to use defaults and best judgements to complete the entries. This method is called by an Exporter object. Positional arguments: fig -- a matplotlib.figure.Figure object. """ self.plotly_fig["layout"]["showlegend"] = False self.msg += "Closing figure\n" def open_axes(self, ax, props): """Setup a new axes object (subplot in plotly). Plotly stores information about subplots in different 'xaxis' and 'yaxis' objects which are numbered. These are just dictionaries included in the layout dictionary. This function takes information from the Exporter, fills in appropriate dictionary entries, and updates the layout dictionary. PlotlyRenderer keeps track of the number of plots by incrementing the axis_ct attribute. Setting the proper plot domain in plotly is a bit tricky. Refer to the documentation for mpltools.convert_x_domain and mpltools.convert_y_domain. Positional arguments: ax -- an mpl axes object. This will become a subplot in plotly. props.keys() -- [ 'axesbg', (background color for axes obj) 'axesbgalpha', (alpha, or opacity for background) 'bounds', ((x0, y0, width, height) for axes) 'dynamic', (zoom/pan-able?) 'axes', (list: [xaxis, yaxis]) 'xscale', (log, linear, or date) 'yscale', 'xlim', (range limits for x) 'ylim', 'xdomain' (xdomain=xlim, unless it's a date) 'ydomain' ] """ self.msg += " Opening axes\n" self.current_mpl_ax = ax self.bar_containers = [ c for c in ax.containers # empty is OK if c.__class__.__name__ == "BarContainer" ] self.current_bars = [] self.axis_ct += 1 # set defaults in axes xaxis = go.layout.XAxis( anchor="y{0}".format(self.axis_ct), zeroline=False, ticks="inside" ) yaxis = go.layout.YAxis( anchor="x{0}".format(self.axis_ct), zeroline=False, ticks="inside" ) # update defaults with things set in mpl mpl_xaxis, mpl_yaxis = mpltools.prep_xy_axis( ax=ax, props=props, x_bounds=self.mpl_x_bounds, y_bounds=self.mpl_y_bounds ) xaxis.update(mpl_xaxis) yaxis.update(mpl_yaxis) bottom_spine = mpltools.get_spine_visible(ax, "bottom") top_spine = mpltools.get_spine_visible(ax, "top") left_spine = mpltools.get_spine_visible(ax, "left") right_spine = mpltools.get_spine_visible(ax, "right") xaxis["mirror"] = mpltools.get_axis_mirror(bottom_spine, top_spine) yaxis["mirror"] = mpltools.get_axis_mirror(left_spine, right_spine) xaxis["showline"] = bottom_spine yaxis["showline"] = top_spine # put axes in our figure self.plotly_fig["layout"]["xaxis{0}".format(self.axis_ct)] = xaxis self.plotly_fig["layout"]["yaxis{0}".format(self.axis_ct)] = yaxis # let all subsequent dates be handled properly if required if "type" in dir(xaxis) and xaxis["type"] == "date": self.x_is_mpl_date = True def close_axes(self, ax): """Close the axes object and clean up. Bars from bar charts are given to PlotlyRenderer one-by-one, thus they need to be taken care of at the close of each axes object. The self.current_bars variable should be empty unless a bar chart has been created. Positional arguments: ax -- an mpl axes object, not required at this time. """ self.draw_bars(self.current_bars) self.msg += " Closing axes\n" self.x_is_mpl_date = False def draw_bars(self, bars): # sort bars according to bar containers mpl_traces = [] for container in self.bar_containers: mpl_traces.append( [ bar_props for bar_props in self.current_bars if bar_props["mplobj"] in container ] ) for trace in mpl_traces: self.draw_bar(trace) def draw_bar(self, coll): """Draw a collection of similar patches as a bar chart. After bars are sorted, an appropriate data dictionary must be created to tell plotly about this data. Just like draw_line or draw_markers, draw_bar translates patch/path information into something plotly understands. Positional arguments: patch_coll -- a collection of patches to be drawn as a bar chart. """ tol = 1e-10 trace = [mpltools.make_bar(**bar_props) for bar_props in coll] widths = [bar_props["x1"] - bar_props["x0"] for bar_props in trace] heights = [bar_props["y1"] - bar_props["y0"] for bar_props in trace] vertical = abs(sum(widths[0] - widths[iii] for iii in range(len(widths)))) < tol horizontal = ( abs(sum(heights[0] - heights[iii] for iii in range(len(heights)))) < tol ) if vertical and horizontal: # Check for monotonic x. Can't both be true! x_zeros = [bar_props["x0"] for bar_props in trace] if all( (x_zeros[iii + 1] > x_zeros[iii] for iii in range(len(x_zeros[:-1]))) ): orientation = "v" else: orientation = "h" elif vertical: orientation = "v" else: orientation = "h" if orientation == "v": self.msg += " Attempting to draw a vertical bar chart\n" old_heights = [bar_props["y1"] for bar_props in trace] for bar in trace: bar["y0"], bar["y1"] = 0, bar["y1"] - bar["y0"] new_heights = [bar_props["y1"] for bar_props in trace] # check if we're stacked or not... for old, new in zip(old_heights, new_heights): if abs(old - new) > tol: self.plotly_fig["layout"]["barmode"] = "stack" self.plotly_fig["layout"]["hovermode"] = "x" x = [bar["x0"] + (bar["x1"] - bar["x0"]) / 2 for bar in trace] y = [bar["y1"] for bar in trace] bar_gap = mpltools.get_bar_gap( [bar["x0"] for bar in trace], [bar["x1"] for bar in trace] ) if self.x_is_mpl_date: x = [bar["x0"] for bar in trace] formatter = ( self.current_mpl_ax.get_xaxis() .get_major_formatter() .__class__.__name__ ) x = mpltools.mpl_dates_to_datestrings(x, formatter) else: self.msg += " Attempting to draw a horizontal bar chart\n" old_rights = [bar_props["x1"] for bar_props in trace] for bar in trace: bar["x0"], bar["x1"] = 0, bar["x1"] - bar["x0"] new_rights = [bar_props["x1"] for bar_props in trace] # check if we're stacked or not... for old, new in zip(old_rights, new_rights): if abs(old - new) > tol: self.plotly_fig["layout"]["barmode"] = "stack" self.plotly_fig["layout"]["hovermode"] = "y" x = [bar["x1"] for bar in trace] y = [bar["y0"] + (bar["y1"] - bar["y0"]) / 2 for bar in trace] bar_gap = mpltools.get_bar_gap( [bar["y0"] for bar in trace], [bar["y1"] for bar in trace] ) bar = go.Bar( orientation=orientation, x=x, y=y, xaxis="x{0}".format(self.axis_ct), yaxis="y{0}".format(self.axis_ct), opacity=trace[0]["alpha"], # TODO: get all alphas if array? marker=go.bar.Marker( color=trace[0]["facecolor"], # TODO: get all line=dict(width=trace[0]["edgewidth"]), ), ) # TODO ditto if len(bar["x"]) > 1: self.msg += " Heck yeah, I drew that bar chart\n" self.plotly_fig.add_trace(bar), if bar_gap is not None: self.plotly_fig["layout"]["bargap"] = bar_gap else: self.msg += " Bar chart not drawn\n" warnings.warn( "found box chart data with length <= 1, " "assuming data redundancy, not plotting." ) def draw_marked_line(self, **props): """Create a data dict for a line obj. This will draw 'lines', 'markers', or 'lines+markers'. props.keys() -- [ 'coordinates', ('data', 'axes', 'figure', or 'display') 'data', (a list of xy pairs) 'mplobj', (the matplotlib.lines.Line2D obj being rendered) 'label', (the name of the Line2D obj being rendered) 'linestyle', (linestyle dict, can be None, see below) 'markerstyle', (markerstyle dict, can be None, see below) ] props['linestyle'].keys() -- [ 'alpha', (opacity of Line2D obj) 'color', (color of the line if it exists, not the marker) 'linewidth', 'dasharray', (code for linestyle, see DASH_MAP in mpltools.py) 'zorder', (viewing precedence when stacked with other objects) ] props['markerstyle'].keys() -- [ 'alpha', (opacity of Line2D obj) 'marker', (the mpl marker symbol, see SYMBOL_MAP in mpltools.py) 'facecolor', (color of the marker face) 'edgecolor', (color of the marker edge) 'edgewidth', (width of marker edge) 'markerpath', (an SVG path for drawing the specified marker) 'zorder', (viewing precedence when stacked with other objects) ] """ self.msg += " Attempting to draw a line " line, marker = {}, {} if props["linestyle"] and props["markerstyle"]: self.msg += "... with both lines+markers\n" mode = "lines+markers" elif props["linestyle"]: self.msg += "... with just lines\n" mode = "lines" elif props["markerstyle"]: self.msg += "... with just markers\n" mode = "markers" if props["linestyle"]: color = mpltools.merge_color_and_opacity( props["linestyle"]["color"], props["linestyle"]["alpha"] ) # print(mpltools.convert_dash(props['linestyle']['dasharray'])) line = go.scatter.Line( color=color, width=props["linestyle"]["linewidth"], dash=mpltools.convert_dash(props["linestyle"]["dasharray"]), ) if props["markerstyle"]: marker = go.scatter.Marker( opacity=props["markerstyle"]["alpha"], color=props["markerstyle"]["facecolor"], symbol=mpltools.convert_symbol(props["markerstyle"]["marker"]), size=props["markerstyle"]["markersize"], line=dict( color=props["markerstyle"]["edgecolor"], width=props["markerstyle"]["edgewidth"], ), ) if props["coordinates"] == "data": marked_line = go.Scatter( mode=mode, name=( str(props["label"]) if isinstance(props["label"], six.string_types) else props["label"] ), x=[xy_pair[0] for xy_pair in props["data"]], y=[xy_pair[1] for xy_pair in props["data"]], xaxis="x{0}".format(self.axis_ct), yaxis="y{0}".format(self.axis_ct), line=line, marker=marker, ) if self.x_is_mpl_date: formatter = ( self.current_mpl_ax.get_xaxis() .get_major_formatter() .__class__.__name__ ) marked_line["x"] = mpltools.mpl_dates_to_datestrings( marked_line["x"], formatter ) self.plotly_fig.add_trace(marked_line), self.msg += " Heck yeah, I drew that line\n" else: self.msg += " Line didn't have 'data' coordinates, " "not drawing\n" warnings.warn( "Bummer! Plotly can currently only draw Line2D " "objects from matplotlib that are in 'data' " "coordinates!" ) def draw_image(self, **props): """Draw image. Not implemented yet! """ self.msg += " Attempting to draw image\n" self.msg += " Not drawing image\n" warnings.warn( "Aw. Snap! You're gonna have to hold off on " "the selfies for now. Plotly can't import " "images from matplotlib yet!" ) def draw_path_collection(self, **props): """Add a path collection to data list as a scatter plot. Current implementation defaults such collections as scatter plots. Matplotlib supports collections that have many of the same parameters in common like color, size, path, etc. However, they needn't all be the same. Plotly does not currently support such functionality and therefore, the style for the first object is taken and used to define the remaining paths in the collection. props.keys() -- [ 'paths', (structure: [vertices, path_code]) 'path_coordinates', ('data', 'axes', 'figure', or 'display') 'path_transforms', (mpl transform, including Affine2D matrix) 'offsets', (offset from axes, helpful if in 'data') 'offset_coordinates', ('data', 'axes', 'figure', or 'display') 'offset_order', 'styles', (style dict, see below) 'mplobj' (the collection obj being drawn) ] props['styles'].keys() -- [ 'linewidth', (one or more linewidths) 'facecolor', (one or more facecolors for path) 'edgecolor', (one or more edgecolors for path) 'alpha', (one or more opacites for path) 'zorder', (precedence when stacked) ] """ self.msg += " Attempting to draw a path collection\n" if props["offset_coordinates"] is "data": markerstyle = mpltools.get_markerstyle_from_collection(props) scatter_props = { "coordinates": "data", "data": props["offsets"], "label": None, "markerstyle": markerstyle, "linestyle": None, } self.msg += " Drawing path collection as markers\n" self.draw_marked_line(**scatter_props) else: self.msg += " Path collection not linked to 'data', " "not drawing\n" warnings.warn( "Dang! That path collection is out of this " "world. I totally don't know what to do with " "it yet! Plotly can only import path " "collections linked to 'data' coordinates" ) def draw_path(self, **props): """Draw path, currently only attempts to draw bar charts. This function attempts to sort a given path into a collection of horizontal or vertical bar charts. Most of the actual code takes place in functions from mpltools.py. props.keys() -- [ 'data', (a list of verticies for the path) 'coordinates', ('data', 'axes', 'figure', or 'display') 'pathcodes', (code for the path, structure: ['M', 'L', 'Z', etc.]) 'style', (style dict, see below) 'mplobj' (the mpl path object) ] props['style'].keys() -- [ 'alpha', (opacity of path obj) 'edgecolor', 'facecolor', 'edgewidth', 'dasharray', (style for path's enclosing line) 'zorder' (precedence of obj when stacked) ] """ self.msg += " Attempting to draw a path\n" is_bar = mpltools.is_bar(self.current_mpl_ax.containers, **props) if is_bar: self.current_bars += [props] else: self.msg += " This path isn't a bar, not drawing\n" warnings.warn( "I found a path object that I don't think is part " "of a bar chart. Ignoring." ) def draw_text(self, **props): """Create an annotation dict for a text obj. Currently, plotly uses either 'page' or 'data' to reference annotation locations. These refer to 'display' and 'data', respectively for the 'coordinates' key used in the Exporter. Appropriate measures are taken to transform text locations to reference one of these two options. props.keys() -- [ 'text', (actual content string, not the text obj) 'position', (an x, y pair, not an mpl Bbox) 'coordinates', ('data', 'axes', 'figure', 'display') 'text_type', ('title', 'xlabel', or 'ylabel') 'style', (style dict, see below) 'mplobj' (actual mpl text object) ] props['style'].keys() -- [ 'alpha', (opacity of text) 'fontsize', (size in points of text) 'color', (hex color) 'halign', (horizontal alignment, 'left', 'center', or 'right') 'valign', (vertical alignment, 'baseline', 'center', or 'top') 'rotation', 'zorder', (precedence of text when stacked with other objs) ] """ self.msg += " Attempting to draw an mpl text object\n" if not mpltools.check_corners(props["mplobj"], self.mpl_fig): warnings.warn( "Looks like the annotation(s) you are trying \n" "to draw lies/lay outside the given figure size.\n\n" "Therefore, the resulting Plotly figure may not be \n" "large enough to view the full text. To adjust \n" "the size of the figure, use the 'width' and \n" "'height' keys in the Layout object. Alternatively,\n" "use the Margin object to adjust the figure's margins." ) align = props["mplobj"]._multialignment if not align: align = props["style"]["halign"] # mpl default if "annotations" not in self.plotly_fig["layout"]: self.plotly_fig["layout"]["annotations"] = [] if props["text_type"] == "xlabel": self.msg += " Text object is an xlabel\n" self.draw_xlabel(**props) elif props["text_type"] == "ylabel": self.msg += " Text object is a ylabel\n" self.draw_ylabel(**props) elif props["text_type"] == "title": self.msg += " Text object is a title\n" self.draw_title(**props) else: # just a regular text annotation... self.msg += " Text object is a normal annotation\n" if props["coordinates"] is not "data": self.msg += ( " Text object isn't linked to 'data' " "coordinates\n" ) x_px, y_px = ( props["mplobj"].get_transform().transform(props["position"]) ) x, y = mpltools.display_to_paper(x_px, y_px, self.plotly_fig["layout"]) xref = "paper" yref = "paper" xanchor = props["style"]["halign"] # no difference here! yanchor = mpltools.convert_va(props["style"]["valign"]) else: self.msg += " Text object is linked to 'data' " "coordinates\n" x, y = props["position"] axis_ct = self.axis_ct xaxis = self.plotly_fig["layout"]["xaxis{0}".format(axis_ct)] yaxis = self.plotly_fig["layout"]["yaxis{0}".format(axis_ct)] if ( xaxis["range"][0] < x < xaxis["range"][1] and yaxis["range"][0] < y < yaxis["range"][1] ): xref = "x{0}".format(self.axis_ct) yref = "y{0}".format(self.axis_ct) else: self.msg += ( " Text object is outside " "plotting area, making 'paper' reference.\n" ) x_px, y_px = ( props["mplobj"].get_transform().transform(props["position"]) ) x, y = mpltools.display_to_paper( x_px, y_px, self.plotly_fig["layout"] ) xref = "paper" yref = "paper" xanchor = props["style"]["halign"] # no difference here! yanchor = mpltools.convert_va(props["style"]["valign"]) annotation = go.layout.Annotation( text=( str(props["text"]) if isinstance(props["text"], six.string_types) else props["text"] ), opacity=props["style"]["alpha"], x=x, y=y, xref=xref, yref=yref, align=align, xanchor=xanchor, yanchor=yanchor, showarrow=False, # change this later? font=go.layout.annotation.Font( color=props["style"]["color"], size=props["style"]["fontsize"] ), ) self.plotly_fig["layout"]["annotations"] += (annotation,) self.msg += " Heck, yeah I drew that annotation\n" def draw_title(self, **props): """Add a title to the current subplot in layout dictionary. If there exists more than a single plot in the figure, titles revert to 'page'-referenced annotations. props.keys() -- [ 'text', (actual content string, not the text obj) 'position', (an x, y pair, not an mpl Bbox) 'coordinates', ('data', 'axes', 'figure', 'display') 'text_type', ('title', 'xlabel', or 'ylabel') 'style', (style dict, see below) 'mplobj' (actual mpl text object) ] props['style'].keys() -- [ 'alpha', (opacity of text) 'fontsize', (size in points of text) 'color', (hex color) 'halign', (horizontal alignment, 'left', 'center', or 'right') 'valign', (vertical alignment, 'baseline', 'center', or 'top') 'rotation', 'zorder', (precedence of text when stacked with other objs) ] """ self.msg += " Attempting to draw a title\n" if len(self.mpl_fig.axes) > 1: self.msg += ( " More than one subplot, adding title as " "annotation\n" ) x_px, y_px = props["mplobj"].get_transform().transform(props["position"]) x, y = mpltools.display_to_paper(x_px, y_px, self.plotly_fig["layout"]) annotation = go.layout.Annotation( text=props["text"], font=go.layout.annotation.Font( color=props["style"]["color"], size=props["style"]["fontsize"] ), xref="paper", yref="paper", x=x, y=y, xanchor="center", yanchor="bottom", showarrow=False, # no arrow for a title! ) self.plotly_fig["layout"]["annotations"] += (annotation,) else: self.msg += ( " Only one subplot found, adding as a " "plotly title\n" ) self.plotly_fig["layout"]["title"] = props["text"] titlefont = dict( size=props["style"]["fontsize"], color=props["style"]["color"] ) self.plotly_fig["layout"]["titlefont"] = titlefont def draw_xlabel(self, **props): """Add an xaxis label to the current subplot in layout dictionary. props.keys() -- [ 'text', (actual content string, not the text obj) 'position', (an x, y pair, not an mpl Bbox) 'coordinates', ('data', 'axes', 'figure', 'display') 'text_type', ('title', 'xlabel', or 'ylabel') 'style', (style dict, see below) 'mplobj' (actual mpl text object) ] props['style'].keys() -- [ 'alpha', (opacity of text) 'fontsize', (size in points of text) 'color', (hex color) 'halign', (horizontal alignment, 'left', 'center', or 'right') 'valign', (vertical alignment, 'baseline', 'center', or 'top') 'rotation', 'zorder', (precedence of text when stacked with other objs) ] """ self.msg += " Adding xlabel\n" axis_key = "xaxis{0}".format(self.axis_ct) self.plotly_fig["layout"][axis_key]["title"] = str(props["text"]) titlefont = dict(size=props["style"]["fontsize"], color=props["style"]["color"]) self.plotly_fig["layout"][axis_key]["titlefont"] = titlefont def draw_ylabel(self, **props): """Add a yaxis label to the current subplot in layout dictionary. props.keys() -- [ 'text', (actual content string, not the text obj) 'position', (an x, y pair, not an mpl Bbox) 'coordinates', ('data', 'axes', 'figure', 'display') 'text_type', ('title', 'xlabel', or 'ylabel') 'style', (style dict, see below) 'mplobj' (actual mpl text object) ] props['style'].keys() -- [ 'alpha', (opacity of text) 'fontsize', (size in points of text) 'color', (hex color) 'halign', (horizontal alignment, 'left', 'center', or 'right') 'valign', (vertical alignment, 'baseline', 'center', or 'top') 'rotation', 'zorder', (precedence of text when stacked with other objs) ] """ self.msg += " Adding ylabel\n" axis_key = "yaxis{0}".format(self.axis_ct) self.plotly_fig["layout"][axis_key]["title"] = props["text"] titlefont = dict(size=props["style"]["fontsize"], color=props["style"]["color"]) self.plotly_fig["layout"][axis_key]["titlefont"] = titlefont def resize(self): """Revert figure layout to allow plotly to resize. By default, PlotlyRenderer tries its hardest to precisely mimic an mpl figure. However, plotly is pretty good with aesthetics. By running PlotlyRenderer.resize(), layout parameters are deleted. This lets plotly choose them instead of mpl. """ self.msg += "Resizing figure, deleting keys from layout\n" for key in ["width", "height", "autosize", "margin"]: try: del self.plotly_fig["layout"][key] except (KeyError, AttributeError): pass def strip_style(self): self.msg += "Stripping mpl style is no longer supported\n"
the-stack_0_12046
#!/usr/bin/env python # -*- encoding:utf-8 -*- """ gh_lists.py MILESTONE Functions for Github API requests. """ from __future__ import print_function, division, absolute_import import os import re import sys import json import collections import argparse from urllib2 import urlopen Issue = collections.namedtuple('Issue', ('id', 'title', 'url')) def main(): p = argparse.ArgumentParser(usage=__doc__.lstrip()) p.add_argument('--project', default='holgern/pyedflib') p.add_argument('milestone') args = p.parse_args() getter = CachedGet('gh_cache.json') try: milestones = get_milestones(getter, args.project) if args.milestone not in milestones: msg = "Milestone {0} not available. Available milestones: {1}" msg = msg.format(args.milestone, u", ".join(sorted(milestones))) p.error(msg) issues = get_issues(getter, args.project, args.milestone) issues.sort() finally: getter.save() prs = [x for x in issues if u'/pull/' in x.url] issues = [x for x in issues if x not in prs] def print_list(title, items): print() print(title) print("-"*len(title)) print() for issue in items: msg = u"- `#{0} <{1}>`__: {2}" title = re.sub(u"\s+", u" ", issue.title.strip()) if len(title) > 60: remainder = re.sub(u"\s.*$", u"...", title[60:]) if len(remainder) > 20: remainder = title[:80] + u"..." else: title = title[:60] + remainder msg = msg.format(issue.id, issue.url, title) print(msg) print() msg = u"Issues closed for {0}".format(args.milestone) print_list(msg, issues) msg = u"Pull requests for {0}".format(args.milestone) print_list(msg, prs) return 0 def get_milestones(getter, project): url = "https://api.github.com/repos/{project}/milestones".format(project=project) raw_data, info = getter.get(url) data = json.loads(raw_data) milestones = {} for ms in data: milestones[ms[u'title']] = ms[u'number'] return milestones def get_issues(getter, project, milestone): milestones = get_milestones(getter, project) mid = milestones[milestone] url = "https://api.github.com/repos/{project}/issues?milestone={mid}&state=closed&sort=created&direction=asc" url = url.format(project=project, mid=mid) raw_datas = [] while True: raw_data, info = getter.get(url) raw_datas.append(raw_data) if 'link' not in info: break m = re.search('<(.*?)>; rel="next"', info['link']) if m: url = m.group(1) continue break issues = [] for raw_data in raw_datas: data = json.loads(raw_data) for issue_data in data: issues.append(Issue(issue_data[u'number'], issue_data[u'title'], issue_data[u'html_url'])) return issues class CachedGet(object): def __init__(self, filename): self.filename = filename if os.path.isfile(filename): print("[gh_lists] using {0} as cache (remove it if you want fresh data)".format(filename), file=sys.stderr) with open(filename, 'rb') as f: self.cache = json.load(f) else: self.cache = {} def get(self, url): url = unicode(url) if url not in self.cache: print("[gh_lists] get:", url, file=sys.stderr) req = urlopen(url) if req.getcode() != 200: raise RuntimeError() data = req.read() info = dict(req.info()) self.cache[url] = (data, info) req.close() else: print("[gh_lists] get (cached):", url, file=sys.stderr) return self.cache[url] def save(self): tmp = self.filename + ".new" with open(tmp, 'wb') as f: json.dump(self.cache, f) os.rename(tmp, self.filename) if __name__ == "__main__": sys.exit(main())
the-stack_0_12049
import os import numpy as np import music21 import math # Parameter n_pitch: Pitch-Range reicht von 0 bis 127 MAX_PITCH = 128 # Parameter d_[duration]_[dots]: SIGN_DUR = "d" # Parameter v_[velocity]: Lautstärke der folgenden Noten, reicht von 4, 8, 12, ... bis 128 (in 4er-Schritten) SIGN_VELO = "v" MIN_VELO = 0 MAX_VELO = 128 # Parameter t_[tempo]: Tempo der folgenden Noten, reicht von 24, 28, 32, ... bis 160 (in 4er-Schritten) SIGN_TEMP0 = "t" MIN_TEMP0 = 24 MAX_TEMPO = 128 # Zeichen zur Markierung des Ende des Stücks (End Of File) SIGN_EOF = "\n" # neue Note SIGN_NOTE = "n" # Zeichen für die Wait-Zeit SIGN_WAIT = "w" # 3-punktierte Halbe und 3-punktierte 32-tel THREE_DOTTED_BREVE = 15 THREE_DOTTED_32ND = 0.21875 def load_midi(data_path, sample_freq=4, piano_range=(33, 93), transpo_range=10, stretching_range=10): text = "" vocab = set() if os.path.isfile(data_path): # gegebener Pfad ist eine einzelne Midi-Datei file_extension = os.path.splitext(data_path)[1] if file_extension == ".midi" or file_extension == ".mid": text = parse_midi(file_path=data_path, piano_range=piano_range, sample_freq=sample_freq, transpo_range=transpo_range, stretching_range=stretching_range) vocab = set(text.split(" ")) else: # Lade jede Datei einzeln for file in os.listdir(data_path): file_path = os.path.join(data_path, file) file_extension = os.path.splitext(file_path)[1] # Prüfen, ob der file_path kein weiterer Ordner ist und ob die Dateiendung passt (.mid oder .midi) if os.path.isfile(file_path) and (file_extension == ".midi" or file_extension == ".mid"): encoded_midi = parse_midi(file_path=file_path, piano_range=piano_range, sample_freq=sample_freq, transpo_range=transpo_range, stretching_range=stretching_range) if len(encoded_midi) > 0: words = set(encoded_midi.split(" ")) vocab = vocab | words text += encoded_midi + " " # letztes Leerzeichen wird entfernt text = text[:-1] return text, vocab def parse_midi(file_path: str, piano_range, sample_freq, transpo_range, stretching_range): midi_file_path = None print(f"> Parse MIDI-File: {file_path}") # Als Parameter kann auch eine Datei mit Pfad übergeben werden: midi_dir = os.path.dirname(file_path) midi_name = os.path.basename(file_path).split(".") [0] # Falls eine txt-Datei von dieser Midi-Datei bereits existiert, wird diese geladen midi_txt_name = os.path.join(midi_dir, midi_name + ".txt") if (os.path.isfile(midi_txt_name)): midi_file_path = open(midi_txt_name, "r") encoded_midi = midi_file_path.read() else: # Lade mit Music21 die Midi-Datei midi = music21.midi.MidiFile() midi.open(file_path) midi.read() midi.close() # Konvertierung der Midi-Datei in Liste mit Noten und Akkorden encoded_midi = midi_to_encoded(midifile=midi, piano_range=piano_range, sample_freq=sample_freq, transpo_range=transpo_range, stretching_range=stretching_range) if len(encoded_midi) > 0: # neue txt-Datei erzeugen midi_file_path = open(midi_txt_name, "w+") midi_file_path.write(encoded_midi) midi_file_path.flush() if midi_file_path: midi_file_path.close() return encoded_midi def midi_to_encoded(midifile, piano_range, sample_freq, transpo_range, stretching_range): try: stream = music21.midi.translate.midiFileToStream(midifile) except: return [] piano_roll = midi_to_piano_roll(midi_stream=stream, sample_freq=sample_freq, piano_range=piano_range, transpo_range=transpo_range, stretching_range=stretching_range) encoded = piano_roll_to_encoded(piano_roll) return " ".join(encoded) def piano_roll_to_encoded(piano_roll): # Konvertierung der piano_roll in eine Liste mit Strings, die die Noten darstellen sollen encoded = {} counter = 0 for version in piano_roll: # letztes Tempo, Geschwindigkeit und Dauer auf -1 setzen _tempo = -1 _velo = -1 _duration = -1.0 version_encoded = [] for i in range(len(version)): # die letzten Noten sind in der letzten Reihe gespeichert tempo = version[i, -1][0] # neues Tempo wird hinzugefügt if tempo != 0 and tempo != _tempo: version_encoded.append(SIGN_TEMP0 + "_" + str(int(tempo))) _tempo = tempo # Fahre mit dem aktuellen Time Step fort for next_step in range(len(version[i]) -1): duration = version[i, next_step][0] velo = int(version[i, next_step][1]) # neues Tempo if velo != 0 and velo != _velo: version_encoded.append(SIGN_VELO + "_" + str(velo)) _velo = velo # neue Duration if duration != 0 and duration != _duration: duration_tuple = music21.duration.durationTupleFromQuarterLength(duration) version_encoded.append(SIGN_DUR + "_" + duration_tuple.type + "_" + str(duration_tuple.dots)) _duration = duration # neue Note wird hinzugefügt if velo != 0 and duration != 0: version_encoded.append(SIGN_NOTE + "_" + str(next_step)) # Ende dieses Zeitabschnittes if (len(version_encoded) > 0) and version_encoded[-1][0] == SIGN_WAIT: # 'Warte'-Zeit wird um 1 erhöht version_encoded[-1] = "w_" + str(int(version_encoded[-1].split("_")[1]) + 1) else: version_encoded.append("w_1") # Ende des Stücks markieren version_encoded.append(SIGN_EOF) # Check, ob diese Version der MIDI-Datei nicht schon mal hinzugefügt wurde version_encoded_str = " ".join(version_encoded) if version_encoded_str not in encoded: encoded[version_encoded_str] = counter counter += 1 return encoded.keys() def write(encoded_midi, path): # Erzeugt eine Midi-Datei mit dem gegebenen Midi-Daten midi = encoded_to_midi(encoded_midi) midi.open(path, "wb") midi.write() midi.close() def encoded_to_midi(note_encoded, ts_duration=0.25): notes = [] velo = 100 duration = "16th" dots = 0 ts = 0 for note in note_encoded.split(" "): if len(note) == 0: continue elif note[0] == SIGN_WAIT: wait_counter = int(note.split("_")[1]) ts += wait_counter elif note[0] == SIGN_NOTE: pitch = int(note.split("_")[1]) note = music21.note.Note(pitch) note.duration = music21.duration.Duration(type=duration, dots=dots) note.offset = ts * ts_duration note.volume.velocity = velo notes.append(note) elif note[0] == SIGN_DUR: duration = note.split("_")[1] dots = int(note.split("_")[2]) elif note[0] == SIGN_VELO: velo = int(note.split("_")[1]) elif note[0] == SIGN_TEMP0: if note.split("_")[1] != "": tempo = int(note.split("_")[1]) if tempo > 0: mark = music21.tempo.MetronomeMark(number=tempo) mark.offset = ts * ts_duration notes.append(mark) piano = music21.instrument.fromString("Piano") notes.insert(0, piano) piano_stream = music21.stream.Stream(notes) main_stream = music21.stream.Stream([piano_stream]) midi_file = music21.midi.translate.streamToMidiFile(main_stream) return midi_file def midi_parse_notes(midi_stream, sample_freq): note_filter = music21.stream.filters.ClassFilter('Note') events = [] notes_list = midi_stream.recurse().addFilter(note_filter) for note in notes_list: pitch = note.pitch.midi dur = note.duration.quarterLength velo = note.volume.velocity # Abrunden offset = math.floor(note.offset * sample_freq) events.append((pitch, dur, velo, offset)) return events def midi_parse_chords(midi_stream, sample_freq): chord_filter = music21.stream.filters.ClassFilter('Chord') events = [] chords_list = midi_stream.recurse().addFilter(chord_filter) for chord in chords_list: pitches_in_chord = chord.pitches for p in pitches_in_chord: pitch = p.midi dur = chord.duration.quarterLength velo = chord.volume.velocity offset = math.floor(chord.offset * sample_freq) events.append((pitch, dur, velo, offset)) return events def midi_parse_metronome(midi_stream, sample_freq): metro_filter = music21.stream.filters.ClassFilter('MetronomeMark') events = [] metro_list = midi_stream.recurse().addFilter(metro_filter) for metro in metro_list: time = int(metro.number) offset = math.floor(metro.offset * sample_freq) events.append((time, offset)) return events def midi_to_notes(midi_stream, sample_freq, transpo_range): notes = [] notes += midi_parse_notes(midi_stream=midi_stream, sample_freq=sample_freq) notes += midi_parse_chords(midi_stream=midi_stream, sample_freq=sample_freq) # Transponieren aller Noten in die gewünschte Lage transposed_notes = transpose_notes(notes, transpo_range) return transposed_notes def transpose_notes(notes, transpo_range): transpos = [] first_key = -math.floor(transpo_range/2) last_key = math.ceil(transpo_range/2) for key in range(first_key, last_key): notes_in_key = [] for n in notes: pitch, dur, velo, offset = n new_pitch = pitch + key notes_in_key.append((new_pitch, dur, velo, offset)) transpos.append(notes_in_key) return transpos def midi_to_piano_roll(midi_stream, sample_freq, piano_range, transpo_range, stretching_range): # Anzahl time_steps im Piano-Roll berechnen time_steps = math.floor(midi_stream.duration.quarterLength * sample_freq) + 1 # Midi-Datei --> Liste mit (pitch, duration, velocity, offset) transpos = midi_to_notes(midi_stream=midi_stream, sample_freq=sample_freq, transpo_range=transpo_range) time_events = midi_parse_metronome(midi_stream=midi_stream, sample_freq=sample_freq) time_stretches = stretch_time(time_events=time_events, stretching_range=stretching_range) piano_roll_notes = notes_to_piano_roll(transpositions=transpos, time_stretches=time_stretches, time_steps=time_steps, piano_range=piano_range) return piano_roll_notes def notes_to_piano_roll(transpositions, time_stretches, time_steps, piano_range): performances = [] min_pitch, max_pitch = piano_range for t in range(len(transpositions)): for s in range(len(time_stretches)): # neue Piano-Roll mit berechneter Größe # Zusätzliche Dimension, um am Anfang die Lautstärke und Dauer zu beschreiben piano_roll = np.zeros((time_steps, MAX_PITCH + 1, 2)) for note in transpositions[t]: pitch, dur, velo, offset = note if dur == 0.0: continue pitch = clamp_pitch(pitch=pitch, max=max_pitch, min=min_pitch) piano_roll[offset, pitch][0] = clamp_duration(dur) piano_roll[offset, pitch][1] = discretize_value(val=velo, bins=32, range_=(MIN_VELO, MAX_VELO)) for time_events in time_stretches[s]: time, offset = time_events piano_roll[offset, -1][0] = discretize_value(val=time, bins=100, range_=(MIN_TEMP0, MAX_TEMPO)) performances.append(piano_roll) return performances def stretch_time(time_events, stretching_range): stretches = [] slower_time = -math.floor(stretching_range/2) faster_time = math.ceil(stretching_range/2) for stretch_time in range(slower_time, faster_time): time_events_in_stretch = [] for e in time_events: time, offset = e s_time = time + 0.05 * stretch_time * MAX_TEMPO time_events_in_stretch.append((s_time, offset)) stretches.append(time_events_in_stretch) return stretches def discretize_value(val, bins, range_): min_val, max_val = range_ val = int(max(min_val, val)) val = int(min(val, max_val)) bin_size = (max_val/bins) return math.floor(val/bin_size) * bin_size def clamp_pitch(pitch, max, min): while pitch < min: pitch += 12 while pitch >= max: pitch -= 12 return pitch def clamp_duration(dur, max=THREE_DOTTED_BREVE, min=THREE_DOTTED_32ND): # falls die gegebene Dauer (dur) höher als das Maximum (3-punktierte Halbe) ist if dur > max: dur = max # falls die Dauer kleiner als das Minimum (3-punktierte 32-tel) ist if dur < min: dur = min dur_tuple = music21.duration.durationTupleFromQuarterLength(dur) if dur_tuple.type == "inexpressible": duration_clos_type = music21.duration.quarterLengthToClosestType(dur)[0] dur = music21.duration.typeToDuration[duration_clos_type] return dur
the-stack_0_12051
# -*- coding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # Copyright (C) 2004-2010 Tiny SPRL (<http://tiny.be>). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## from openerp.osv import fields, osv import time class account_voucher_line(osv.osv): def _supplier_invoice_number(self, cursor, user, ids, name, arg, context=None): res = {} cursor.execute("""SELECT vl.id, i.supplier_invoice_number FROM account_voucher_line vl inner join account_move_line ml on vl.move_line_id = ml.id left outer join account_invoice i on ml.move_id = i.move_id WHERE vl.id IN %s""",(tuple(ids),)) for line_id, supplier_invoice_number in cursor.fetchall(): res[line_id] = supplier_invoice_number return res _inherit = 'account.voucher.line' _columns = { 'supplier_invoice_number': fields.function(_supplier_invoice_number, string='Supplier Invoice Number', type='char'), } account_voucher_line() class account_voucher(osv.osv): _inherit = 'account.voucher' _columns = { 'date_cheque':fields.date('Cheque Date', readonly=True, select=True, states={'draft':[('readonly',False)]}), 'number_cheque':fields.char('Cheque No.', size=64), } _defaults = { 'date_cheque': lambda *a: time.strftime('%Y-%m-%d'), } account_voucher() # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
the-stack_0_12053
#@+leo-ver=5-thin #@+node:tbrown.20091029123555.5319: * @file ../plugins/attrib_edit.py #@+<< docstring >> #@+node:tbrown.20091009210724.10972: ** << docstring >> r""" Edits user attributes in a Qt frame. This plugin creates a frame for editing attributes similar to:: Name: Fred Blogs Home: 555-555-5555 Work: 555-555-5556 ``attrib_edit`` is also intended to provide attribute editing for other plugins, see below. The editor panel appears in the Log pane in its own tab. If the free_layout system is active you can move it into its own pane (e.g. below the body text) by right clicking the pane dividers. The attributes can be stored in different ways, three modes are implemented currently: v.u mode These attributes are stored in the "unknownAttributes" (uA) data for each node, accessed via v.u. Field: Attributes are lines starting (no whitespace) with "AttributeName:" in the body text. @Child Attributes are the head strings of child nodes when the head string starts with '@AttributeName' where the first letter (second character) must be capitalized. The plugin defines the following commands, available either in the plugin's sub-menu in the Plugins menu, or as ``Alt-X attrib-edit-*``. attrib-edit-modes Select which attribute setting / getting modes to use. More than one mode can be used at the same time. You can also control which modes are active by listing them with the @data attrib_edit_active_modes setting. For example:: Field: @Child # v.u mode would cause only the "Field:" and "@Child" modes to be active be default. attrib-edit-manage Select which attributes, from all attributes seen so far in this outline, to include on the current node. attrib-edit-scan Scan the entire outline for attributes so ``attrib-edit-manage`` has the complete list. attrib-edit-create Create a new attribute on the current node. If Field: or \@Child modes are active, they simply remind you how to create an attribute in the log pane. If the "v.u mode" mode is active, you're prompted for a path for the attribute. For example:: addressbook First to store the attribute in v.u['addressbook']['_edit']['First'] As a convenience, entering a path like:: todo metadata created|creator|revised would create:: v.u.['todo']['metadata']['_edit']['created'] v.u.['todo']['metadata']['_edit']['creator'] v.u.['todo']['metadata']['_edit']['revised'] **Technical details** See the source for complete documentation for use with other plugins. Here are some points of interest: - In addition to ``v.u['addressbook']['_edit']['first']``, paths like ``v.u['addressbook']['_edit']['_int']['age']`` may be used to identify type, although currently there's no difference in the edit widget. - In the future the plugin may allow other plugins to register to provide attribute path information, instead of just scanning for ['_edit'] entries in v.u. - Currently there's no sorting of the attributes in "v.u mode", which is a problem for some applications. It's unclear where the desired order would be stored, without even more repetition in v.u. When other plugins can register to manipulate the attribute list each plugin could address this, with unordered presentation in the absence of the client plugin. """ #@-<< docstring >> # Written by TNB. from leo.core import leoGlobals as g from leo.core.leoQt import isQt6, QtConst, QtCore, QtWidgets from leo.core.leoQt import DialogCode, Orientation # # Fail fast, right after all imports. g.assertUi('qt') # May raise g.UiTypeException, caught by the plugins manager. #@+others #@+node:tbrown.20091009210724.10975: ** init def init(): """Return True if the plugin has loaded successfully.""" if g.app.gui.guiName() != "qt": print('attrib_edit.py plugin not loading because gui is not Qt') return False g.registerHandler('after-create-leo-frame', onCreate) g.plugin_signon(__name__) return True #@+node:tbrown.20091009210724.10976: ** onCreate def onCreate(tag, key): c = key.get('c') attrib_edit_Controller(c) #@+node:tbrown.20091103080354.1400: ** class AttributeGetter class AttributeGetter: implementations = [] typeMap = { '_int': int, '_float': float, '_bool': bool, } @classmethod def register(cls, subclass): cls.implementations.append(subclass) def __init__(self, c): self.c = c def name(self): return "ABSTRACT VIRTUAL BASE CLASS" def getAttribs(self, v): raise NotImplementedError def setAttrib(self, v, path, value): raise NotImplementedError def delAttrib(self, v, path): raise NotImplementedError def helpCreate(self): """either a string telling user how to add an attribute, or True if the Getter needs to help the user create an attribute""" return "ABSTRACT VIRTUAL BASE CLASS" def longDescrip(self, path): """give the long description of the attribute on path 'path'. ASSUMES: path determines name E.g. attribute named 'count' might be described as 'address.people.count' """ raise NotImplementedError #@+node:tbrown.20091103080354.1402: ** class AttributeGetterUA class AttributeGetterUA(AttributeGetter): #@+others #@+node:tbrown.20091103080354.1409: *3* recSearch def recSearch(self, d, path, ans): """recursive search of tree of dicts for values whose key path is like [*][*][*]['_edit'][*] or [*][*][*]['_edit']['_int'][*] Modifies list ans """ for k in d: if isinstance(d[k], dict): if k not in ('_edit', '_view'): self.recSearch(d[k], path + [k], ans) else: # k == '_edit' or '_view' for ek in d[k]: if ek in self.typeMap: # ek is '_int' or similar type_ = self.typeMap[ek] for ekt in d[k][ek]: ans.append((self, ekt, d[k][ek][ekt], tuple(path + ['_edit', ek, ekt]), type_, k != '_edit')) else: ans.append((self, ek, d[k][ek], tuple(path + ['_edit', ek]), str, k != '_edit')) #@+node:tbrown.20091103080354.1410: *3* getAttribs def getAttribs(self, v): """Return a list of tuples describing editable uAs. (class, name, value, path, type, readonly) e.g. (AttributeGetterUA, 'created', '2009-09-23', ('stickynotes','_edit','created'), str, False), (AttributeGetterUA, 'cars', 2, ('inventory','_edit','_int','cars'), int, False) Changes should be written back to v.uA['stickynotes']['_edit']['created'] and v.uA['inventory']['_edit']['_int']['cars'] respectively """ ans = [] d = v.u self.recSearch(d, [], ans) return ans #@+node:tbrown.20091103080354.1430: *3* setAttrib def setAttrib(self, v, path, value): """copy value into dict a on path, e.g. a['one']['more']['level'] = value """ a = v.u for i in path[:-1]: a = a.setdefault(i, {}) a[path[-1]] = value #@+node:tbrown.20091103080354.1438: *3* delAttrib def delAttrib(self, v, path): a = v.u for i in path[:-1]: try: a = a[i] except KeyError: return try: del a[path[-1]] except KeyError: pass #@+node:tbrown.20091103080354.1411: *3* name def name(self): return "v.u mode" #@+node:tbrown.20091103080354.1431: *3* helpCreate def helpCreate(self): """does the Getter need to help the user create an attribute?""" return True #@+node:tbrown.20091103080354.1432: *3* createAttrib def createAttrib(self, v, gui_parent=None): path, ok = QtWidgets.QInputDialog.getText(gui_parent, "Enter attribute path", "Enter path to attribute (space separated words)") ns = str(path).split() if not ok or not ns: g.es("Cancelled") return #FIXME type_ = {True: '_view', False: '_edit'}[readonly] type_ = '_edit' if '|' in ns[-1]: nslist = [ns[:-1] + [i.strip()] for i in ns[-1].split('|')] else: nslist = [ns] for ns in nslist: if type_ not in ns: ns.insert(-1, type_) self.setAttrib(v, ns, '') #FIXME self.attrPaths.add(tuple(ns)) #@+node:tbrown.20091103080354.1433: *3* longDescrip def longDescrip(self, path): return '.'.join([j for j in path if j not in ('_edit', '_view')]) #@-others AttributeGetter.register(AttributeGetterUA) #@+node:tbrown.20091103080354.1420: ** class AttributeGetterAt class AttributeGetterAt(AttributeGetter): #@+others #@+node:tbrown.20091103080354.1422: *3* getAttribs def getAttribs(self, v): """Return a list of tuples describing editable uAs. (class, name, value, path, type, readonly) e.g. (AttributeGetterUA, 'created', '2009-09-23', ('stickynotes','_edit','created'), str, False), (AttributeGetterUA, 'cars', 2, ('inventory','_edit','_int','cars'), int, False) Changes should be written back to v.uA['stickynotes']['_edit']['created'] and v.uA['inventory']['_edit']['_int']['cars'] respectively """ ans = [] for n in v.children: if n.h and n.h[0] == '@' and ('A' <= n.h[1] <= 'Z'): words = n.h[1:].split(None, 1) if not words: continue if len(words) == 1: words.append('') ans.append((self, words[0], words[1], words[0], str, False)) return ans #@+node:tbrown.20091103080354.6237: *3* setAttrib def setAttrib(self, v, path, value): for n in v.children: if n.h[0] == '@' and ('A' <= n.h[1] <= 'Z'): words = n.h[1:].split(None, 1) if len(words) == 1: words.append('') if words[0] == path: n.h = "@%s %s" % (path, value) break else: p = self.c.vnode2position(v) n = p.insertAsLastChild() n.h = "@%s %s" % (path, value) #@+node:tbrown.20091103080354.6244: *3* delAttrib def delAttrib(self, v, path): for n in v.children: if n.h[0] == '@' and ('A' <= n.h[1] <= 'Z'): words = n.h[1:].split(None, 1) if not words: continue if words[0] == path: p = self.c.vnode2position(n) p.doDelete() break #@+node:tbrown.20091103080354.1423: *3* name def name(self): return "@Child" #@+node:tbrown.20091103080354.1443: *3* helpCreate def helpCreate(self): return "Add a child named '@AttributeName'" #@+node:tbrown.20091103080354.1435: *3* longName def longDescrip(self, path): return path #@-others AttributeGetter.register(AttributeGetterAt) #@+node:tbrown.20091103080354.1427: ** class AttributeGetterColon class AttributeGetterColon(AttributeGetter): #@+others #@+node:tbrown.20091103080354.1428: *3* getAttribs def getAttribs(self, v): ans = [] parts = v.b.split('\n', 100) for i in parts[:99]: if not i or i[0].isspace(): continue words = i.split(None, 1) if words and words[0] and words[0][-1] == ':': if len(words) == 1: words.append('') ans.append((self, words[0][:-1], words[1], words[0][:-1], str, False)) return ans #@+node:tbrown.20091103080354.6246: *3* setAttrib def setAttrib(self, v, path, value): parts = v.b.split('\n', 100) for n, i in enumerate(parts[:99]): words = i.split(None, 1) if words and words[0] and words[0][-1] == ':' and words[0][:-1] == path: parts[n] = "%s: %s" % (path, value) v.b = '\n'.join(parts) break else: v.b = "%s: %s\n%s" % (path, value, v.b) #@+node:tbrown.20091103080354.6248: *3* delAttrib def delAttrib(self, v, path): parts = v.b.split('\n', 100) for n, i in enumerate(parts[:99]): words = i.split(None, 1) if words and words[0] and words[0][-1] == ':' and words[0][:-1] == path: del parts[n] v.b = '\n'.join(parts) break #@+node:tbrown.20091103080354.1429: *3* name def name(self): return "Field:" #@+node:tbrown.20091103080354.1441: *3* helpCreate def helpCreate(self): return "Add 'AttributeName:' to the text" #@+node:tbrown.20091103080354.1437: *3* longName def longDescrip(self, path): return path #@-others AttributeGetter.register(AttributeGetterColon) #@+node:tbrown.20091028131637.1353: ** class ListDialog class ListDialog(QtWidgets.QDialog): #@+others #@+node:tbrown.20091028131637.1354: *3* __init__ (attrib_edit.py) def __init__(self, parent, title, text, entries): self.entries = entries super().__init__(parent) vbox = QtWidgets.QVBoxLayout() sa = QtWidgets.QScrollArea() salo = QtWidgets.QVBoxLayout() frame = QtWidgets.QFrame() frame.setLayout(salo) self.buttons = [] for entry in entries: hbox = QtWidgets.QHBoxLayout() cb = QtWidgets.QCheckBox(entry[0]) self.buttons.append(cb) if entry[1]: cb.setChecked(True if isQt6 else QtConst.Checked) hbox.addWidget(cb) salo.addLayout(hbox) sa.setWidget(frame) vbox.addWidget(sa) hbox = QtWidgets.QHBoxLayout() ok = QtWidgets.QPushButton("Ok") cancel = QtWidgets.QPushButton("Cancel") ok.clicked.connect(self.writeBack) cancel.clicked.connect(self.reject) # QtCore.QObject.connect(ok, QtCore.SIGNAL('clicked(bool)'), self.writeBack) # QtCore.QObject.connect(cancel, QtCore.SIGNAL('clicked(bool)'), self.reject) hbox.addWidget(ok) hbox.addWidget(cancel) vbox.addLayout(hbox) self.setLayout(vbox) #@+node:tbrown.20091028131637.1359: *3* writeBack def writeBack(self, event=None): for n, i in enumerate(self.buttons): self.entries[n][1] = (i.isChecked()) self.accept() #@-others #@+node:tbrown.20091010211613.5257: ** class editWatcher class editWatcher: """class to supply widget for editing attribute and handle its textChanged signal""" def __init__(self, c, v, class_, name, value, path, type_): """v - node whose attribute we edit name - name of edited attribute value - initial value of edited attribute path - dictionary key path to attribute in v.u type_ - attribute type """ self.c = c self.v = v self.class_ = class_ self.name = name self.value = value self.path = path self.type_ = type_ self._widget = None def widget(self): """return widget for editing this attribute""" if not self._widget: self._widget = w = QtWidgets.QLineEdit(str(self.value)) w.textChanged.connect(self.updateValue) self._widget.focusOutEvent = self.lostFocus # see lostFocus() return self._widget def updateValue(self, newValue): """copy value from widget to v.u""" self.class_.setAttrib(self.v, self.path, self.type_(newValue)) self.v.setDirty() def lostFocus(self, event): """Can activate this in in widget(), but it stops tabbing through the attributes - unless we can check that none of our siblings has focus...""" sibs = self._widget.parent().findChildren(QtWidgets.QLineEdit) for i in sibs: if i.hasFocus(): break else: self.c.redraw() #X def setValue(a, path, value): #X """copy value into dict a on path, #X e.g. a['one']['more']['level'] = value #X """ #X for i in path[:-1]: #X a = a.setdefault(i, {}) #X a[path[-1]] = value #@+node:tbrown.20091009210724.10979: ** class attrib_edit_Controller class attrib_edit_Controller: """A per-commander class that manages attribute editing.""" #@+others #@+node:tbrown.20091009210724.10981: *3* __init__ & reloadSettings (attrib_edit_Controller) def __init__(self, c): self.c = c c.attribEditor = self self.pname = "_attrib_edit_frame" # used to tag out panel self.reloadSettings() self.attrPaths = set() # set of tuples (getter-class, path) self.handlers = [ ('select3', self.updateEditor), ] for i in self.handlers: g.registerHandler(i[0], i[1]) # 'body' or 'tab' mode # self.guiMode = c.config.getString('attrib-edit-placement') or 'tab' self.guiMode = 'tab' # body mode in not compatible with nested_splitter, causes hard crash if self.guiMode == 'body': self.holder = QtWidgets.QSplitter(Orientation.Vertical) self.holder.setMinimumWidth(300) parent = c.frame.top.leo_body_frame.parent() self.holder.addWidget(c.frame.top.leo_body_frame) parent.addWidget(self.holder) self.parent = self.holder elif self.guiMode == 'tab': self.parent = QtWidgets.QFrame() self.holder = QtWidgets.QHBoxLayout() self.parent.setLayout(self.holder) c.frame.log.createTab('Attribs', widget=self.parent) def reloadSettings(self): c = self.c c.registerReloadSettings(self) active = c.config.getData('attrib_edit_active_modes') or [] self.getsetters = [] for i in AttributeGetter.implementations: s = i(c) self.getsetters.append([s, (s.name() in active)]) if not active: self.getsetters[0][1] = True # turn on the first one #@+node:tbrown.20091009210724.10983: *3* __del__ def __del__(self): for i in self.handlers: g.unregisterHandler(i[0], i[1]) #@+node:tbrown.20091009210724.11210: *3* initForm def initForm(self): """set up self.form, the blank form layout before adding edit widgets""" self.editors = [] w = self.holder for i in w.parent().findChildren(QtCore.QObject): if i.objectName() == self.pname: i.hide() i.deleteLater() pnl = QtWidgets.QFrame() pnl.setObjectName(self.pname) self.form = QtWidgets.QFormLayout() self.form.setVerticalSpacing(0) pnl.setLayout(self.form) pnl.setAutoFillBackground(True) w.addWidget(pnl) #@+node:tbrown.20091009210724.11047: *3* updateEditor def updateEditor(self, tag, k): """update edit panel when new node selected""" if k['c'] != self.c: return # not our problem self.updateEditorInt() #@+node:tbrown.20091028100922.1493: *3* updateEditorInt def updateEditorInt(self): c = self.c self.initForm() for attr in self.getAttribs(): class_, name, value, path, type_, readonly = attr if readonly: self.form.addRow(QtWidgets.QLabel(name), QtWidgets.QLabel(str(value))) else: editor = editWatcher(c, c.currentPosition().v, class_, name, value, path, type_) self.editors.append(editor) self.form.addRow(QtWidgets.QLabel(name), editor.widget()) #@+node:tbrown.20091103080354.1405: *3* recSearch (not used) # def JUNKrecSearch(self, d, path, ans): # """recursive search of tree of dicts for values whose # key path is like [*][*][*]['_edit'][*] or # [*][*][*]['_edit']['_int'][*] # Modifies list ans # """ # for k in d: # if isinstance(d[k], dict): # if k not in ('_edit', '_view'): # self.recSearch(d[k], path+[k], ans) # else: # # k == '_edit' or '_view' # for ek in d[k]: # if ek in self.typeMap: # # ek is '_int' or similar # type_ = self.typeMap[ek] # for ekt in d[k][ek]: # ans.append((ekt, d[k][ek][ekt], tuple(path+['_edit',ek,ekt]), # type_, k != '_edit')) # else: # ans.append((ek, d[k][ek], tuple(path+['_edit',ek]), str, k != '_edit')) #@+node:tbrown.20091103080354.1406: *3* getAttribs def getAttribs(self, v=None): """Return a list of tuples describing editable uAs. (class, name, value, path, type, readonly) e.g. (class, 'created', '2009-09-23', ('stickynotes','_edit','created'), str, False), (class, 'cars', 2, ('inventory','_edit','_int','cars'), int, False) Changes should be written back to v.uA['stickynotes']['_edit']['created'] and v.uA['inventory']['_edit']['_int']['cars'] respectively """ ans = [] if not v: v = self.c.currentPosition().v for getter, isOn in self.getsetters: if not isOn: continue ans.extend(getter.getAttribs(v)) for ns in ans: self.attrPaths.add((ns[0], ns[1], ns[3])) # class, name, path return ans #@+node:tbrown.20091029101116.1413: *3* addAttrib def addAttrib(self, attrib): attrib[0].setAttrib(self.c.currentPosition().v, attrib[2], '') #@+node:tbrown.20091029101116.1414: *3* delAttrib def delAttrib(self, attrib): attrib[0].delAttrib(self.c.currentPosition().v, attrib[2]) #@+node:tbrown.20091029101116.1424: *3* scanAttribs def scanAttribs(self): """scan all of c for attrbutes""" for v in self.c.all_unique_nodes(): self.getAttribs(v) # updates internal list of attribs g.es("%d attributes found" % len(self.attrPaths)) #@+node:tbrown.20091011151836.14788: *3* createAttrib def createAttrib(self, event=None, readonly=False): ans = [] for getter, isOn in self.getsetters: if not isOn: continue if getter.helpCreate() is True: ans.append(getter) else: g.es("For '%s' attributes:\n %s" % (getter.name(), getter.helpCreate())) if len(ans) > 1: g.error('Eror: more than one attribute type (%s) active' % ', '.join([i.name() for i in ans])) elif ans: ans[0].createAttrib(self.c.currentPosition().v, gui_parent=self.parent) self.updateEditorInt() self.c.currentPosition().v.setDirty() self.c.redraw() #@+node:tbrown.20091028131637.1358: *3* manageAttrib def manageAttrib(self): attribs = [(i[0], i[1], i[3]) for i in self.getAttribs()] dat = [] for attr in self.attrPaths: txt = attr[0].longDescrip(attr[2]) active = attr in attribs dat.append([txt, active, attr]) if not dat: g.es('No attributes seen (yet)') return dat.sort(key=lambda x: x[0]) res = ListDialog(self.parent, "Enter attribute path", "Enter path to attribute (space separated words)", dat) res.exec_() if res.result() == DialogCode.Rejected: return # check for deletions for i in dat: if i[2] in attribs and not i[1]: res = QtWidgets.QMessageBox(QtWidgets.QMessageBox.Question, "Really delete attributes?", "Really delete attributes?", QtWidgets.QMessageBox.Ok | QtWidgets.QMessageBox.Cancel, self.parent) if res.exec_() == QtWidgets.QMessageBox.Cancel: return break # apply changes for i in dat: if i[2] in attribs and not i[1]: self.delAttrib(i[2]) elif i[2] not in attribs and i[1]: self.addAttrib(i[2]) self.updateEditorInt() self.c.redraw() #@+node:tbrown.20091103080354.1415: *3* manageModes def manageModes(self): modes = [[i[0].name(), i[1]] for i in self.getsetters] res = ListDialog(self.parent, "Enter attribute path", "Enter path to attribute (space separated words)", modes) res.exec_() if res.result() == DialogCode.Rejected: return for n, i in enumerate(modes): self.getsetters[n][1] = i[1] self.updateEditorInt() #@-others #@+node:tbrown.20091029101116.1415: ** cmd_Modes (attrib_edit_Controller) @g.command('attrib-edit-modes') def cmd_Modes(event): c = event.get('c') c.attribEditor.manageModes() #@+node:tbrown.20091103080354.1413: ** cmd_Manage (attrib_edit_Controller) @g.command('attrib-edit-manage') def cmd_Manage(event): c = event.get('c') c.attribEditor.manageAttrib() #@+node:tbrown.20091029101116.1419: ** cmd_Create (attrib_edit_Controller) @g.command('attrib-edit-create') def cmd_Create(event): c = event.get('c') c.attribEditor.createAttrib() #@+node:tbrown.20091029101116.1421: ** cmd_CreateReadonly (attrib_edit_Controller) def Xcmd_CreateReadonly(c): c.attribEditor.createAttrib(readonly=True) #@+node:tbrown.20091029101116.1426: ** cmd_Scan (attrib_edit_Controller) @g.command('attrib-edit-scan') def cmd_Scan(event): c = event.get('c') c.attribEditor.scanAttribs() #@-others #@@language python #@@tabwidth -4 #@-leo
the-stack_0_12057
""" This file offers the methods to automatically retrieve the graph Listeria monocytogenes Scott. The graph is automatically retrieved from the STRING repository. References --------------------- Please cite the following if you use the data: ```bib @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } ``` """ from typing import Dict from ..automatic_graph_retrieval import AutomaticallyRetrievedGraph from ...ensmallen import Graph # pylint: disable=import-error def ListeriaMonocytogenesScott( directed: bool = False, preprocess: bool = True, load_nodes: bool = True, verbose: int = 2, cache: bool = True, cache_path: str = "graphs/string", version: str = "links.v11.5", **additional_graph_kwargs: Dict ) -> Graph: """Return new instance of the Listeria monocytogenes Scott graph. The graph is automatically retrieved from the STRING repository. Parameters ------------------- directed: bool = False Wether to load the graph as directed or undirected. By default false. preprocess: bool = True Whether to preprocess the graph to be loaded in optimal time and memory. load_nodes: bool = True, Whether to load the nodes vocabulary or treat the nodes simply as a numeric range. verbose: int = 2, Wether to show loading bars during the retrieval and building of the graph. cache: bool = True Whether to use cache, i.e. download files only once and preprocess them only once. cache_path: str = "graphs" Where to store the downloaded graphs. version: str = "links.v11.5" The version of the graph to retrieve. The available versions are: - homology.v11.0 - homology.v11.5 - physical.links.v11.0 - physical.links.v11.5 - links.v11.0 - links.v11.5 additional_graph_kwargs: Dict Additional graph kwargs. Returns ----------------------- Instace of Listeria monocytogenes Scott graph. References --------------------- Please cite the following if you use the data: ```bib @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } ``` """ return AutomaticallyRetrievedGraph( graph_name="ListeriaMonocytogenesScott", repository="string", version=version, directed=directed, preprocess=preprocess, load_nodes=load_nodes, verbose=verbose, cache=cache, cache_path=cache_path, additional_graph_kwargs=additional_graph_kwargs )()
the-stack_0_12060
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Compute (upsampled) Nifti label image from bundle and centroid. Each voxel will have the label of its nearest centroid point. """ import argparse import logging import nibabel as nib import numpy as np from scilpy.io.streamlines import load_tractogram_with_reference from scilpy.io.utils import (add_overwrite_arg, add_reference_arg, assert_inputs_exist, assert_outputs_exist, add_verbose_arg) from scilpy.tractanalysis.streamlines_metrics import compute_tract_counts_map from scilpy.tractanalysis.distance_to_centroid import min_dist_to_centroid def _build_arg_parser(): p = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter) p.add_argument('in_bundle', help='Fiber bundle file.') p.add_argument('in_centroid', help='Centroid streamline corresponding to bundle.') p.add_argument('output_map', help='Nifti image with corresponding labels.') p.add_argument('--upsample', type=float, default=2, help='Upsample reference grid by this factor. ' '[%(default)s]') add_reference_arg(p) add_overwrite_arg(p) add_verbose_arg(p) return p def main(): parser = _build_arg_parser() args = parser.parse_args() assert_inputs_exist(parser, [args.in_bundle, args.in_centroid], optional=args.reference) assert_outputs_exist(parser, args, args.output_map) sft_bundle = load_tractogram_with_reference(parser, args, args.in_bundle) sft_centroid = load_tractogram_with_reference(parser, args, args.in_centroid) if not len(sft_bundle.streamlines): logging.error('Empty bundle file {}. ' 'Skipping'.format(args.in_bundle)) raise ValueError if not len(sft_centroid.streamlines): logging.error('Centroid file {} should contain one streamline. ' 'Skipping'.format(args.in_centroid)) raise ValueError sft_bundle.to_vox() bundle_streamlines_vox = sft_bundle.streamlines bundle_streamlines_vox._data *= args.upsample sft_centroid.to_vox() centroid_streamlines_vox = sft_centroid.streamlines centroid_streamlines_vox._data *= args.upsample upsampled_shape = [s * args.upsample for s in sft_bundle.dimensions] tdi_mask = compute_tract_counts_map(bundle_streamlines_vox, upsampled_shape) > 0 tdi_mask_nzr = np.nonzero(tdi_mask) tdi_mask_nzr_ind = np.transpose(tdi_mask_nzr) min_dist_ind, _ = min_dist_to_centroid(tdi_mask_nzr_ind, centroid_streamlines_vox[0]) # Save the (upscaled) labels mask labels_mask = np.zeros(tdi_mask.shape) labels_mask[tdi_mask_nzr] = min_dist_ind + 1 # 0 is background value rescaled_affine = sft_bundle.affine rescaled_affine[:3, :3] /= args.upsample labels_img = nib.Nifti1Image(labels_mask, rescaled_affine) upsampled_spacing = sft_bundle.voxel_sizes / args.upsample labels_img.header.set_zooms(upsampled_spacing) nib.save(labels_img, args.output_map) if __name__ == '__main__': main()
the-stack_0_12061
""" Import as: import im.airflow.devops.dags.im_infra as imaddimin """ import os import airflow from airflow import DAG from airflow.operators.bash import BashOperator P1_AIRFLOW_WORKER_DB_LOADER_QUEUE = os.environ[ "P1_AIRFLOW_WORKER_DB_LOADER_QUEUE" ] STAGE = os.environ["STAGE"] SEND_EMAIL = STAGE not in ["LOCAL", "TEST"] default_args = { "owner": "airflow", "start_date": airflow.utils.dates.days_ago(1), "email": [], "email_on_failure": SEND_EMAIL, "email_on_retry": SEND_EMAIL, } dag = DAG( "IM_INFRA", default_args=default_args, schedule_interval=None, max_active_runs=1, ) # Create EDGAR DB schema. test = BashOperator( task_id="test", bash_command='bash -c "/app/im/devops/docker_build/entrypoints/entrypoint_worker.sh ' "im/app/transform/convert_s3_to_sql.py " "--provider kibot " "--symbol AAPL " "--frequency T " "--contract_type continuous " "--asset_class stocks " '--exchange NYSE"', dag=dag, queue=P1_AIRFLOW_WORKER_DB_LOADER_QUEUE, )
the-stack_0_12067
from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf from tensorflow.contrib.layers.python import layers as tf_layers from rsa import * from cka import * import matplotlib.pyplot as plt # heiner activation maximization filters early layers # based on https://github.com/zonghua94/mnist/blob/master/mnist_cnn.py def compute_accuracy(v_x, v_y): global prediction y_pre = sess.run(prediction, feed_dict={x: v_x}) correct_prediction = tf.equal(tf.argmax(y_pre, 1), tf.argmax(v_y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) result = sess.run(accuracy, feed_dict={x: v_x, y: v_y}) return result def conv_block(inp, cweight, bweight, reuse, scope, activation=tf.nn.relu, max_pool_pad='VALID', residual=False): """ Perform, conv, batch norm, nonlinearity, and max pool """ stride, no_stride = [1,2,2,1], [1,1,1,1] conv_output = tf.nn.conv2d(inp, cweight, stride, 'SAME') + bweight normed = tf_layers.batch_norm(conv_output, activation_fn=activation, reuse=reuse, scope=scope) return normed def reshape_elems_of_list(layers, shape = (10000, -1)): reshaped_layers = [] for layer in layers: layer = np.reshape(layer, shape) reshaped_layers.append(layer) return reshaped_layers # load mnist data mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) x = tf.placeholder(tf.float32, [None, 784]) y = tf.placeholder(tf.float32, [None, 10]) keep_prob = tf.placeholder(tf.float32) # reshape(data you want to reshape, [-1, reshape_height, reshape_weight, imagine layers]) image layers=1 when the imagine is in white and black, =3 when the imagine is RGB x_image = tf.reshape(x, [-1, 28, 28, 1]) weights = {} convolution = True if convolution: dtype = tf.float32 conv_initializer = tf.contrib.layers.xavier_initializer_conv2d(dtype=dtype) weights['conv1'] = tf.get_variable('conv1', [3, 3, 1, 64], initializer=conv_initializer, dtype=dtype) weights['b1'] = tf.Variable(tf.zeros([64])) weights['conv2'] = tf.get_variable('conv2', [3, 3, 64, 64], initializer=conv_initializer, dtype=dtype) weights['b2'] = tf.Variable(tf.zeros([64])) weights['conv3'] = tf.get_variable('conv3', [3, 3, 64, 64], initializer=conv_initializer, dtype=dtype) weights['b3'] = tf.Variable(tf.zeros([64])) weights['conv4'] = tf.get_variable('conv4', [3, 3, 64, 64], initializer=conv_initializer, dtype=dtype) weights['b4'] = tf.Variable(tf.zeros([64])) weights['w5'] = tf.Variable(tf.random_normal([64, 10]), name='w5') weights['b5'] = tf.Variable(tf.zeros([10]), name='b5') tvars = tf.trainable_variables() scope = "" hidden1 = conv_block(x_image, weights['conv1'], weights['b1'], False, scope + '0') hidden2 = conv_block(hidden1, weights['conv2'], weights['b2'], False, scope + '1') hidden3 = conv_block(hidden2, weights['conv3'], weights['b3'], False, scope + '2') hidden4 = conv_block(hidden3, weights['conv4'], weights['b4'], False, scope + '3') hidden4 = tf.reduce_mean(hidden4, [1, 2]) out = tf.matmul(hidden4, weights['w5']) + weights['b5'] prediction = tf.nn.softmax(out) tvars = tf.trainable_variables() layer_names = ["Pooling layer 1", "Pooling layer 2", "Pooling layer 3", "Pooling layer 4", "Logits/Head"] else: weights = {} dims = [200, 100, 50, 20] weights['w1'] = tf.Variable(tf.truncated_normal([784, dims[0]], stddev=0.01)) weights['b1'] = tf.Variable(tf.zeros(dims[0])) for i, dim in enumerate(dims): if i == len(dims) -1: break weights['w'+str(i+2)] = tf.Variable(tf.truncated_normal([dims[i], dims[i+1]], stddev=0.01)) weights['b'+str(i+2)] = tf.Variable(tf.zeros(dims[i+1])) weights['w5'] = tf.Variable(tf.random_normal([dims[-1], 10]), name='w5') weights['b5'] = tf.Variable(tf.zeros([10]), name='b5') x_image = tf.reshape(x_image, [-1, 784]) hidden1 = tf.nn.relu(tf_layers.batch_norm(tf.matmul(x_image, weights['w1']) + weights['b1'])) hidden2 = tf.nn.relu(tf_layers.batch_norm(tf.matmul(hidden1, weights['w2']) + weights['b2'])) hidden3 = tf.nn.relu(tf_layers.batch_norm(tf.matmul(hidden2, weights['w3']) + weights['b3'])) hidden4 = tf.nn.relu(tf_layers.batch_norm(tf.matmul(hidden3, weights['w4']) + weights['b4'])) out = tf.matmul(hidden4, weights['w5']) + weights['b5'] prediction = tf.nn.softmax(out) layer_names = [f"Hidden Layer {i+1} FC {dim}" for i, dim in enumerate(dims)] layer_names.append("Logits/Head") # calculate the loss cross_entropy = tf.reduce_mean(-tf.reduce_sum(y * tf.log(prediction), reduction_indices=[1])) train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)#, var_list=g_vars) N = 100 test_images = mnist.test.images[:N] test_labels = mnist.test.labels[:N] for sim_measure in ["cka", "euclidean"]: # init session sess = tf.Session() sess.run(tf.global_variables_initializer()) start = sess.run([hidden1, hidden2, hidden3, hidden4, out], feed_dict={x: test_images, y: test_labels}) prev = start similarities = [] similarities_prev = [] steps = [] all_representations = [] labels = [] colors = [] for i in range(200): batch_x, batch_y = mnist.train.next_batch(100) sess.run(train_step, feed_dict={x: batch_x, y: batch_y, keep_prob: 0.5}) if i % 5 == 0: steps.append(i) representations = sess.run([hidden1, hidden2, hidden3, hidden4, out], feed_dict={x: test_images, y: test_labels}) labels = labels + [f"{i} ({j+1})" for j in range(5)] colors = colors + list(range(5)) peter = representations[0].reshape((N,-1)) all_representations = all_representations + [r.reshape((N,-1)) for r in representations] if sim_measure == "cka": similarities_of_step = [kernel_CKA(np.reshape(s, (N, -1)), np.reshape(r, (N, -1))) for s, r in zip(start, representations)] similarities_of_step_prev = [kernel_CKA(np.reshape(s, (N, -1)), np.reshape(r, (N, -1))) for s, r in zip(prev, representations)] else: print(np.mean(start[0]), np.mean(representations[0])) similarities_of_step = [rsa(np.array([np.reshape(s, (N, -1)), np.reshape(r, (N, -1))]), sim_measure) for s, r in zip(start, representations)] similarities_of_step_prev = [rsa(np.array([np.reshape(s, (N, -1)), np.reshape(r, (N, -1))]), sim_measure) for s, r in zip(prev, representations)] similarities.append(similarities_of_step) similarities_prev.append(similarities_of_step_prev) prev = representations.copy() print(i, compute_accuracy(mnist.test.images, mnist.test.labels)) plot_rsa(all_representations, labels, colors) similarities = np.array(similarities).transpose() similarities_prev = np.array(similarities_prev).transpose() fig = plt.figure(figsize=(8, 2.5)) if sim_measure == "cka": plt.title(f"CKA similarity before and after training") plt.ylabel("Similarity") else: plt.title(f"RSA ({sim_measure}) dissimilarity before and after training") plt.ylabel("Dissimilarity") plt.xlabel("Number of training steps") #plt.yscale('symlog', linthreshy=0.015) plt.ylim(-0.05, 1.05) for i in range(len(similarities)): plt.plot(steps, similarities[i], label=layer_names[i]) #plt.plot(range(len(similarities_prev[i])), similarities_prev[i], label=layer_names[i]+" to prev") plt.legend(bbox_to_anchor=(1.04, 0.5), loc="center left", borderaxespad=0) plt.show()
the-stack_0_12069
# -*- coding: utf-8 -*- # Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import proto # type: ignore from google.protobuf import duration_pb2 # type: ignore from google.protobuf import wrappers_pb2 # type: ignore __protobuf__ = proto.module( package="google.cloud.aiplatform.v1.schema.predict.prediction", manifest={"VideoActionRecognitionPredictionResult",}, ) class VideoActionRecognitionPredictionResult(proto.Message): r"""Prediction output format for Video Action Recognition. Attributes: id (str): The resource ID of the AnnotationSpec that had been identified. display_name (str): The display name of the AnnotationSpec that had been identified. time_segment_start (google.protobuf.duration_pb2.Duration): The beginning, inclusive, of the video's time segment in which the AnnotationSpec has been identified. Expressed as a number of seconds as measured from the start of the video, with fractions up to a microsecond precision, and with "s" appended at the end. time_segment_end (google.protobuf.duration_pb2.Duration): The end, exclusive, of the video's time segment in which the AnnotationSpec has been identified. Expressed as a number of seconds as measured from the start of the video, with fractions up to a microsecond precision, and with "s" appended at the end. confidence (google.protobuf.wrappers_pb2.FloatValue): The Model's confidence in correction of this prediction, higher value means higher confidence. """ id = proto.Field(proto.STRING, number=1,) display_name = proto.Field(proto.STRING, number=2,) time_segment_start = proto.Field( proto.MESSAGE, number=4, message=duration_pb2.Duration, ) time_segment_end = proto.Field( proto.MESSAGE, number=5, message=duration_pb2.Duration, ) confidence = proto.Field(proto.MESSAGE, number=6, message=wrappers_pb2.FloatValue,) __all__ = tuple(sorted(__protobuf__.manifest))
the-stack_0_12072
from typing import List from matplotlib import pyplot as plt import numpy as np from scipy import stats from scipy.optimize import curve_fit def nice_string_output( names: List[str], values: List[str], extra_spacing: int = 0, ): max_values = len(max(values, key=len)) max_names = len(max(names, key=len)) string = "" for name, value in zip(names, values): string += "{0:s} {1:>{spacing}} \n".format( name, value, spacing=extra_spacing + max_values + max_names - len(name), ) return string[:-2] def plot_gaussian( data, ax: plt.Axes, nBins=100, textpos="l", legend=False, short_text=False ): # make sure our data is an ndarray if type(data) == list: data = np.array(data) ### FITTING WITH A GAUSSIAN def func_gauss(x, N, mu, sigma): return N * stats.norm.pdf(x, mu, sigma) counts, bin_edges = np.histogram(data, bins=nBins) bin_centers = (bin_edges[1:] + bin_edges[:-1]) / 2 s_counts = np.sqrt(counts) x = bin_centers[counts > 0] y = counts[counts > 0] sy = s_counts[counts > 0] popt_gauss, pcov_gauss = curve_fit( func_gauss, x, y, p0=[1, data.mean(), data.std()] ) y_func = func_gauss(x, *popt_gauss) pKS = stats.ks_2samp(y, y_func) pKS_g1, pKS_g2 = pKS[0], pKS[1] # print('LOOK! \n \n \n pKS is {} \n \n \n '.format(pKS_g2)) chi2_gauss = sum((y - y_func) ** 2 / sy ** 2) NDOF_gauss = nBins - 3 prob_gauss = stats.chi2.sf(chi2_gauss, NDOF_gauss) if short_text == True: namesl = [ "Gauss_N", "Gauss_Mu", "Gauss_Sigma", ] valuesl = [ "{:.3f} +/- {:.3f}".format(val, unc) for val, unc in zip(popt_gauss, np.diagonal(pcov_gauss)) ] del namesl[0] # remove gauss n del valuesl[0] else: namesl = [ "Gauss_N", "Gauss_Mu", "Gauss_Sigma", "KS stat", "KS_pval", "Chi2 / NDOF", "Prob", ] valuesl = ( [ "{:.3f} +/- {:.3f}".format(val, unc) for val, unc in zip(popt_gauss, np.diagonal(pcov_gauss)) ] + ["{:.3f}".format(pKS_g1)] + ["{:.3f}".format(pKS_g2)] + ["{:.3f} / {}".format(chi2_gauss, NDOF_gauss)] + ["{:.3f}".format(prob_gauss)] ) ax.errorbar(x, y, yerr=sy, xerr=0, fmt=".", elinewidth=1) ax.plot(x, y_func, "--", label="Gaussian") if textpos == "l": ax.text( 0.02, 0.98, nice_string_output(namesl, valuesl), family="monospace", transform=ax.transAxes, fontsize=10, verticalalignment="top", alpha=0.5, ) elif textpos == "r": ax.text( 0.6, 0.98, nice_string_output(namesl, valuesl), family="monospace", transform=ax.transAxes, fontsize=10, verticalalignment="top", alpha=0.5, ) if legend: ax.legend(loc="center left") return ax if __name__ == '__main__': samples = stats.expon.rvs(5.7, size=10000) # samples = stats.poisson.rvs(mu=2, size=10000) # samples = stats.cauchy.rvs(size=10000) sums = np.zeros(1000) for si in range(len(sums)): sums[si] = np.mean(np.random.choice(samples, size=10)) fig, ax = plt.subplots() plot_gaussian(sums, ax) plt.show()
the-stack_0_12073
# -*- coding: utf-8 -*- import os import sys sys.path.insert(0, os.path.abspath('..')) # -- General configuration ------------------------------------------------ # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.intersphinx', 'sphinx.ext.napoleon', 'sphinx.ext.todo', ] # TODO: Please Read! # Uncomment the below if you use native CircuitPython modules such as # digitalio, micropython and busio. List the modules you use. Without it, the # autodoc module docs will fail to generate with a warning. # autodoc_mock_imports = ["digitalio", "busio"] intersphinx_mapping = {'python': ('https://docs.python.org/3.4', None),'CircuitPython': ('https://circuitpython.readthedocs.io/en/latest/', None)} # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # General information about the project. project = u'nonblocking_timer Library' copyright = u'2017 Michael Schneider' author = u'Michael Schneider' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = u'1.0' # The full version, including alpha/beta/rc tags. release = u'1.0' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store', '.env', 'CODE_OF_CONDUCT.md'] # The reST default role (used for this markup: `text`) to use for all # documents. # default_role = "any" # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # If this is True, todo emits a warning for each TODO entries. The default is False. todo_emit_warnings = True napoleon_numpy_docstring = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # on_rtd = os.environ.get('READTHEDOCS', None) == 'True' if not on_rtd: # only import and set the theme if we're building docs locally try: import sphinx_rtd_theme html_theme = 'sphinx_rtd_theme' html_theme_path = [sphinx_rtd_theme.get_html_theme_path(), '.'] except: html_theme = 'default' html_theme_path = ['.'] else: html_theme_path = ['.'] # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # The name of an image file (relative to this directory) to use as a favicon of # the docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # html_favicon = '_static/favicon.ico' # Output file base name for HTML help builder. htmlhelp_basename = 'Nonblocking_timerLibrarydoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'nonblocking_timerLibrary.tex', u'nonblocking_timer Library Documentation', author, 'manual'), ] # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'nonblocking_timerlibrary', u'nonblocking_timer Library Documentation', [author], 1) ] # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'nonblocking_timerLibrary', u' nonblocking_timer Library Documentation', author, 'nonblocking_timerLibrary', 'One line description of project.', 'Miscellaneous'), ]
the-stack_0_12074
# coding: utf-8 # /*########################################################################## # # Copyright (c) 2016-2019 European Synchrotron Radiation Facility # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ###########################################################################*/ """Basic tests for PlotWidget""" __authors__ = ["T. Vincent"] __license__ = "MIT" __date__ = "03/01/2019" import unittest import logging import numpy import sys from silx.utils.testutils import ParametricTestCase, parameterize from silx.gui.utils.testutils import SignalListener from silx.gui.utils.testutils import TestCaseQt from silx.test.utils import test_options from silx.gui import qt from silx.gui.plot import PlotWidget from silx.gui.plot.items.curve import CurveStyle from silx.gui.colors import Colormap from .utils import PlotWidgetTestCase SIZE = 1024 """Size of the test image""" DATA_2D = numpy.arange(SIZE ** 2).reshape(SIZE, SIZE) """Image data set""" logger = logging.getLogger(__name__) class TestSpecialBackend(PlotWidgetTestCase, ParametricTestCase): def __init__(self, methodName='runTest', backend=None): TestCaseQt.__init__(self, methodName=methodName) self.__backend = backend def _createPlot(self): return PlotWidget(backend=self.__backend) def testPlot(self): self.assertIsNotNone(self.plot) class TestPlotWidget(PlotWidgetTestCase, ParametricTestCase): """Basic tests for PlotWidget""" def testShow(self): """Most basic test""" pass def testSetTitleLabels(self): """Set title and axes labels""" title, xlabel, ylabel = 'the title', 'x label', 'y label' self.plot.setGraphTitle(title) self.plot.getXAxis().setLabel(xlabel) self.plot.getYAxis().setLabel(ylabel) self.qapp.processEvents() self.assertEqual(self.plot.getGraphTitle(), title) self.assertEqual(self.plot.getXAxis().getLabel(), xlabel) self.assertEqual(self.plot.getYAxis().getLabel(), ylabel) def _checkLimits(self, expectedXLim=None, expectedYLim=None, expectedRatio=None): """Assert that limits are as expected""" xlim = self.plot.getXAxis().getLimits() ylim = self.plot.getYAxis().getLimits() ratio = abs(xlim[1] - xlim[0]) / abs(ylim[1] - ylim[0]) if expectedXLim is not None: self.assertEqual(expectedXLim, xlim) if expectedYLim is not None: self.assertEqual(expectedYLim, ylim) if expectedRatio is not None: self.assertTrue( numpy.allclose(expectedRatio, ratio, atol=0.01)) def testChangeLimitsWithAspectRatio(self): self.plot.setKeepDataAspectRatio() self.qapp.processEvents() xlim = self.plot.getXAxis().getLimits() ylim = self.plot.getYAxis().getLimits() defaultRatio = abs(xlim[1] - xlim[0]) / abs(ylim[1] - ylim[0]) self.plot.getXAxis().setLimits(1., 10.) self._checkLimits(expectedXLim=(1., 10.), expectedRatio=defaultRatio) self.qapp.processEvents() self._checkLimits(expectedXLim=(1., 10.), expectedRatio=defaultRatio) self.plot.getYAxis().setLimits(1., 10.) self._checkLimits(expectedYLim=(1., 10.), expectedRatio=defaultRatio) self.qapp.processEvents() self._checkLimits(expectedYLim=(1., 10.), expectedRatio=defaultRatio) def testResizeWidget(self): """Test resizing the widget and receiving limitsChanged events""" self.plot.resize(200, 200) self.qapp.processEvents() self.qWait(100) xlim = self.plot.getXAxis().getLimits() ylim = self.plot.getYAxis().getLimits() listener = SignalListener() self.plot.getXAxis().sigLimitsChanged.connect(listener.partial('x')) self.plot.getYAxis().sigLimitsChanged.connect(listener.partial('y')) # Resize without aspect ratio self.plot.resize(200, 300) self.qapp.processEvents() self.qWait(100) self._checkLimits(expectedXLim=xlim, expectedYLim=ylim) self.assertEqual(listener.callCount(), 0) # Resize with aspect ratio self.plot.setKeepDataAspectRatio(True) self.qapp.processEvents() self.qWait(1000) listener.clear() # Clean-up received signal self.plot.resize(200, 200) self.qapp.processEvents() self.qWait(100) self.assertNotEqual(listener.callCount(), 0) def testAddRemoveItemSignals(self): """Test sigItemAdded and sigItemAboutToBeRemoved""" listener = SignalListener() self.plot.sigItemAdded.connect(listener.partial('add')) self.plot.sigItemAboutToBeRemoved.connect(listener.partial('remove')) self.plot.addCurve((1, 2, 3), (3, 2, 1), legend='curve') self.assertEqual(listener.callCount(), 1) curve = self.plot.getCurve('curve') self.plot.remove('curve') self.assertEqual(listener.callCount(), 2) self.assertEqual(listener.arguments(callIndex=0), ('add', curve)) self.assertEqual(listener.arguments(callIndex=1), ('remove', curve)) def testGetItems(self): """Test getItems method""" curve_x = 1, 2 self.plot.addCurve(curve_x, (3, 4)) image = (0, 1), (2, 3) self.plot.addImage(image) scatter_x = 10, 11 self.plot.addScatter(scatter_x, (12, 13), (0, 1)) marker_pos = 5, 5 self.plot.addMarker(*marker_pos) marker_x = 6 self.plot.addXMarker(marker_x) self.plot.addItem((0, 5), (2, 10), shape='rectangle') items = self.plot.getItems() self.assertEqual(len(items), 6) self.assertTrue(numpy.all(numpy.equal(items[0].getXData(), curve_x))) self.assertTrue(numpy.all(numpy.equal(items[1].getData(), image))) self.assertTrue(numpy.all(numpy.equal(items[2].getXData(), scatter_x))) self.assertTrue(numpy.all(numpy.equal(items[3].getPosition(), marker_pos))) self.assertTrue(numpy.all(numpy.equal(items[4].getPosition()[0], marker_x))) self.assertEqual(items[5].getType(), 'rectangle') def testBackGroundColors(self): self.plot.setVisible(True) self.qWaitForWindowExposed(self.plot) self.qapp.processEvents() # Custom the full background color = self.plot.getBackgroundColor() self.assertTrue(color.isValid()) self.assertEqual(color, qt.QColor(255, 255, 255)) self.plot.setBackgroundColor("red") color = self.plot.getBackgroundColor() self.assertTrue(color.isValid()) self.qapp.processEvents() # Custom the data background color = self.plot.getDataBackgroundColor() self.assertFalse(color.isValid()) self.plot.setDataBackgroundColor("red") color = self.plot.getDataBackgroundColor() self.assertTrue(color.isValid()) self.qapp.processEvents() # Back to default self.plot.setBackgroundColor('white') self.plot.setDataBackgroundColor(None) color = self.plot.getBackgroundColor() self.assertTrue(color.isValid()) self.assertEqual(color, qt.QColor(255, 255, 255)) color = self.plot.getDataBackgroundColor() self.assertFalse(color.isValid()) self.qapp.processEvents() class TestPlotImage(PlotWidgetTestCase, ParametricTestCase): """Basic tests for addImage""" def setUp(self): super(TestPlotImage, self).setUp() self.plot.getYAxis().setLabel('Rows') self.plot.getXAxis().setLabel('Columns') def testPlotColormapTemperature(self): self.plot.setGraphTitle('Temp. Linear') colormap = Colormap(name='temperature', normalization='linear', vmin=None, vmax=None) self.plot.addImage(DATA_2D, legend="image 1", colormap=colormap) def testPlotColormapGray(self): self.plot.setKeepDataAspectRatio(False) self.plot.setGraphTitle('Gray Linear') colormap = Colormap(name='gray', normalization='linear', vmin=None, vmax=None) self.plot.addImage(DATA_2D, legend="image 1", colormap=colormap) def testPlotColormapTemperatureLog(self): self.plot.setGraphTitle('Temp. Log') colormap = Colormap(name='temperature', normalization=Colormap.LOGARITHM, vmin=None, vmax=None) self.plot.addImage(DATA_2D, legend="image 1", colormap=colormap) def testPlotRgbRgba(self): self.plot.setKeepDataAspectRatio(False) self.plot.setGraphTitle('RGB + RGBA') rgb = numpy.array( (((0, 0, 0), (128, 0, 0), (255, 0, 0)), ((0, 128, 0), (0, 128, 128), (0, 128, 256))), dtype=numpy.uint8) self.plot.addImage(rgb, legend="rgb", origin=(0, 0), scale=(10, 10), resetzoom=False) rgba = numpy.array( (((0, 0, 0, .5), (.5, 0, 0, 1), (1, 0, 0, .5)), ((0, .5, 0, 1), (0, .5, .5, 1), (0, 1, 1, .5))), dtype=numpy.float32) self.plot.addImage(rgba, legend="rgba", origin=(5, 5), scale=(10, 10), resetzoom=False) self.plot.resetZoom() def testPlotColormapCustom(self): self.plot.setKeepDataAspectRatio(False) self.plot.setGraphTitle('Custom colormap') colormap = Colormap(name=None, normalization=Colormap.LINEAR, vmin=None, vmax=None, colors=((0., 0., 0.), (1., 0., 0.), (0., 1., 0.), (0., 0., 1.))) self.plot.addImage(DATA_2D, legend="image 1", colormap=colormap, resetzoom=False) colormap = Colormap(name=None, normalization=Colormap.LINEAR, vmin=None, vmax=None, colors=numpy.array( ((0, 0, 0, 0), (0, 0, 0, 128), (128, 128, 128, 128), (255, 255, 255, 255)), dtype=numpy.uint8)) self.plot.addImage(DATA_2D, legend="image 2", colormap=colormap, origin=(DATA_2D.shape[0], 0), resetzoom=False) self.plot.resetZoom() def testImageOriginScale(self): """Test of image with different origin and scale""" self.plot.setGraphTitle('origin and scale') tests = [ # (origin, scale) ((10, 20), (1, 1)), ((10, 20), (-1, -1)), ((-10, 20), (2, 1)), ((10, -20), (-1, -2)), (100, 2), (-100, (1, 1)), ((10, 20), 2), ] for origin, scale in tests: with self.subTest(origin=origin, scale=scale): self.plot.addImage(DATA_2D, origin=origin, scale=scale) try: ox, oy = origin except TypeError: ox, oy = origin, origin try: sx, sy = scale except TypeError: sx, sy = scale, scale xbounds = ox, ox + DATA_2D.shape[1] * sx ybounds = oy, oy + DATA_2D.shape[0] * sy # Check limits without aspect ratio xmin, xmax = self.plot.getXAxis().getLimits() ymin, ymax = self.plot.getYAxis().getLimits() self.assertEqual(xmin, min(xbounds)) self.assertEqual(xmax, max(xbounds)) self.assertEqual(ymin, min(ybounds)) self.assertEqual(ymax, max(ybounds)) # Check limits with aspect ratio self.plot.setKeepDataAspectRatio(True) xmin, xmax = self.plot.getXAxis().getLimits() ymin, ymax = self.plot.getYAxis().getLimits() self.assertTrue(round(xmin, 7) <= min(xbounds)) self.assertTrue(round(xmax, 7) >= max(xbounds)) self.assertTrue(round(ymin, 7) <= min(ybounds)) self.assertTrue(round(ymax, 7) >= max(ybounds)) self.plot.setKeepDataAspectRatio(False) # Reset aspect ratio self.plot.clear() self.plot.resetZoom() def testPlotColormapDictAPI(self): """Test that the addImage API using a colormap dictionary is still working""" self.plot.setGraphTitle('Temp. Log') colormap = { 'name': 'temperature', 'normalization': 'log', 'vmin': None, 'vmax': None } self.plot.addImage(DATA_2D, legend="image 1", colormap=colormap) def testPlotComplexImage(self): """Test that a complex image is displayed as its absolute value.""" data = numpy.linspace(1, 1j, 100).reshape(10, 10) self.plot.addImage(data, legend='complex') image = self.plot.getActiveImage() retrievedData = image.getData(copy=False) self.assertTrue( numpy.all(numpy.equal(retrievedData, numpy.absolute(data)))) def testPlotBooleanImage(self): """Test that a boolean image is displayed and converted to int8.""" data = numpy.zeros((10, 10), dtype=numpy.bool) data[::2, ::2] = True self.plot.addImage(data, legend='boolean') image = self.plot.getActiveImage() retrievedData = image.getData(copy=False) self.assertTrue(numpy.all(numpy.equal(retrievedData, data))) self.assertIs(retrievedData.dtype.type, numpy.int8) def testPlotAlphaImage(self): """Test with an alpha image layer""" data = numpy.random.random((10, 10)) alpha = numpy.linspace(0, 1, 100).reshape(10, 10) self.plot.addImage(data, legend='image') image = self.plot.getActiveImage() image.setData(data, alpha=alpha) self.qapp.processEvents() self.assertTrue(numpy.array_equal(alpha, image.getAlphaData())) class TestPlotCurve(PlotWidgetTestCase): """Basic tests for addCurve.""" # Test data sets xData = numpy.arange(1000) yData = -500 + 100 * numpy.sin(xData) xData2 = xData + 1000 yData2 = xData - 1000 + 200 * numpy.random.random(1000) def setUp(self): super(TestPlotCurve, self).setUp() self.plot.setGraphTitle('Curve') self.plot.getYAxis().setLabel('Rows') self.plot.getXAxis().setLabel('Columns') self.plot.setActiveCurveHandling(False) def testPlotCurveColorFloat(self): color = numpy.array(numpy.random.random(3 * 1000), dtype=numpy.float32).reshape(1000, 3) self.plot.addCurve(self.xData, self.yData, legend="curve 1", replace=False, resetzoom=False, color=color, linestyle="", symbol="s") self.plot.addCurve(self.xData2, self.yData2, legend="curve 2", replace=False, resetzoom=False, color='green', linestyle="-", symbol='o') self.plot.resetZoom() def testPlotCurveColorByte(self): color = numpy.array(255 * numpy.random.random(3 * 1000), dtype=numpy.uint8).reshape(1000, 3) self.plot.addCurve(self.xData, self.yData, legend="curve 1", replace=False, resetzoom=False, color=color, linestyle="", symbol="s") self.plot.addCurve(self.xData2, self.yData2, legend="curve 2", replace=False, resetzoom=False, color='green', linestyle="-", symbol='o') self.plot.resetZoom() def testPlotCurveColors(self): color = numpy.array(numpy.random.random(3 * 1000), dtype=numpy.float32).reshape(1000, 3) self.plot.addCurve(self.xData, self.yData, legend="curve 2", replace=False, resetzoom=False, color=color, linestyle="-", symbol='o') self.plot.resetZoom() # Test updating color array # From array to array newColors = numpy.ones((len(self.xData), 3), dtype=numpy.float32) self.plot.addCurve(self.xData, self.yData, legend="curve 2", replace=False, resetzoom=False, color=newColors, symbol='o') # Array to single color self.plot.addCurve(self.xData, self.yData, legend="curve 2", replace=False, resetzoom=False, color='green', symbol='o') # single color to array self.plot.addCurve(self.xData, self.yData, legend="curve 2", replace=False, resetzoom=False, color=color, symbol='o') class TestPlotScatter(PlotWidgetTestCase, ParametricTestCase): """Basic tests for addScatter""" def testScatter(self): x = numpy.arange(100) y = numpy.arange(100) value = numpy.arange(100) self.plot.addScatter(x, y, value) self.plot.resetZoom() def testScatterVisualization(self): self.plot.addScatter((0, 1, 2, 3), (2, 0, 2, 1), (0, 1, 2, 3)) self.plot.resetZoom() self.qapp.processEvents() scatter = self.plot.getItems()[0] for visualization in ('solid', 'points', scatter.Visualization.SOLID, scatter.Visualization.POINTS): with self.subTest(visualization=visualization): scatter.setVisualization(visualization) self.qapp.processEvents() class TestPlotMarker(PlotWidgetTestCase): """Basic tests for add*Marker""" def setUp(self): super(TestPlotMarker, self).setUp() self.plot.getYAxis().setLabel('Rows') self.plot.getXAxis().setLabel('Columns') self.plot.getXAxis().setAutoScale(False) self.plot.getYAxis().setAutoScale(False) self.plot.setKeepDataAspectRatio(False) self.plot.setLimits(0., 100., -100., 100.) def testPlotMarkerX(self): self.plot.setGraphTitle('Markers X') markers = [ (10., 'blue', False, False), (20., 'red', False, False), (40., 'green', True, False), (60., 'gray', True, True), (80., 'black', False, True), ] for x, color, select, drag in markers: name = str(x) if select: name += " sel." if drag: name += " drag" self.plot.addXMarker(x, name, name, color, select, drag) self.plot.resetZoom() def testPlotMarkerY(self): self.plot.setGraphTitle('Markers Y') markers = [ (-50., 'blue', False, False), (-30., 'red', False, False), (0., 'green', True, False), (10., 'gray', True, True), (80., 'black', False, True), ] for y, color, select, drag in markers: name = str(y) if select: name += " sel." if drag: name += " drag" self.plot.addYMarker(y, name, name, color, select, drag) self.plot.resetZoom() def testPlotMarkerPt(self): self.plot.setGraphTitle('Markers Pt') markers = [ (10., -50., 'blue', False, False), (40., -30., 'red', False, False), (50., 0., 'green', True, False), (50., 20., 'gray', True, True), (70., 50., 'black', False, True), ] for x, y, color, select, drag in markers: name = "{0},{1}".format(x, y) if select: name += " sel." if drag: name += " drag" self.plot.addMarker(x, y, name, name, color, select, drag) self.plot.resetZoom() def testPlotMarkerWithoutLegend(self): self.plot.setGraphTitle('Markers without legend') self.plot.getYAxis().setInverted(True) # Markers without legend self.plot.addMarker(10, 10) self.plot.addMarker(10, 20) self.plot.addMarker(40, 50, text='test', symbol=None) self.plot.addMarker(40, 50, text='test', symbol='+') self.plot.addXMarker(25) self.plot.addXMarker(35) self.plot.addXMarker(45, text='test') self.plot.addYMarker(55) self.plot.addYMarker(65) self.plot.addYMarker(75, text='test') self.plot.resetZoom() def testPlotMarkerYAxis(self): # Check only the API legend = self.plot.addMarker(10, 10) item = self.plot._getMarker(legend) self.assertEqual(item.getYAxis(), "left") legend = self.plot.addMarker(10, 10, yaxis="right") item = self.plot._getMarker(legend) self.assertEqual(item.getYAxis(), "right") legend = self.plot.addMarker(10, 10, yaxis="left") item = self.plot._getMarker(legend) self.assertEqual(item.getYAxis(), "left") legend = self.plot.addXMarker(10, yaxis="right") item = self.plot._getMarker(legend) self.assertEqual(item.getYAxis(), "right") legend = self.plot.addXMarker(10, yaxis="left") item = self.plot._getMarker(legend) self.assertEqual(item.getYAxis(), "left") legend = self.plot.addYMarker(10, yaxis="right") item = self.plot._getMarker(legend) self.assertEqual(item.getYAxis(), "right") legend = self.plot.addYMarker(10, yaxis="left") item = self.plot._getMarker(legend) self.assertEqual(item.getYAxis(), "left") self.plot.resetZoom() # TestPlotItem ################################################################ class TestPlotItem(PlotWidgetTestCase): """Basic tests for addItem.""" # Polygon coordinates and color polygons = [ # legend, x coords, y coords, color ('triangle', numpy.array((10, 30, 50)), numpy.array((55, 70, 55)), 'red'), ('square', numpy.array((10, 10, 50, 50)), numpy.array((10, 50, 50, 10)), 'green'), ('star', numpy.array((60, 70, 80, 60, 80)), numpy.array((25, 50, 25, 40, 40)), 'blue'), ] # Rectangle coordinantes and color rectangles = [ # legend, x coords, y coords, color ('square 1', numpy.array((1., 10.)), numpy.array((1., 10.)), 'red'), ('square 2', numpy.array((10., 20.)), numpy.array((10., 20.)), 'green'), ('square 3', numpy.array((20., 30.)), numpy.array((20., 30.)), 'blue'), ('rect 1', numpy.array((1., 30.)), numpy.array((35., 40.)), 'black'), ('line h', numpy.array((1., 30.)), numpy.array((45., 45.)), 'darkRed'), ] def setUp(self): super(TestPlotItem, self).setUp() self.plot.getYAxis().setLabel('Rows') self.plot.getXAxis().setLabel('Columns') self.plot.getXAxis().setAutoScale(False) self.plot.getYAxis().setAutoScale(False) self.plot.setKeepDataAspectRatio(False) self.plot.setLimits(0., 100., -100., 100.) def testPlotItemPolygonFill(self): self.plot.setGraphTitle('Item Fill') for legend, xList, yList, color in self.polygons: self.plot.addItem(xList, yList, legend=legend, replace=False, shape="polygon", fill=True, color=color) self.plot.resetZoom() def testPlotItemPolygonNoFill(self): self.plot.setGraphTitle('Item No Fill') for legend, xList, yList, color in self.polygons: self.plot.addItem(xList, yList, legend=legend, replace=False, shape="polygon", fill=False, color=color) self.plot.resetZoom() def testPlotItemRectangleFill(self): self.plot.setGraphTitle('Rectangle Fill') for legend, xList, yList, color in self.rectangles: self.plot.addItem(xList, yList, legend=legend, replace=False, shape="rectangle", fill=True, color=color) self.plot.resetZoom() def testPlotItemRectangleNoFill(self): self.plot.setGraphTitle('Rectangle No Fill') for legend, xList, yList, color in self.rectangles: self.plot.addItem(xList, yList, legend=legend, replace=False, shape="rectangle", fill=False, color=color) self.plot.resetZoom() class TestPlotActiveCurveImage(PlotWidgetTestCase): """Basic tests for active curve and image handling""" xData = numpy.arange(1000) yData = -500 + 100 * numpy.sin(xData) xData2 = xData + 1000 yData2 = xData - 1000 + 200 * numpy.random.random(1000) def tearDown(self): self.plot.setActiveCurveHandling(False) super(TestPlotActiveCurveImage, self).tearDown() def testActiveCurveAndLabels(self): # Active curve handling off, no label change self.plot.setActiveCurveHandling(False) self.plot.getXAxis().setLabel('XLabel') self.plot.getYAxis().setLabel('YLabel') self.plot.addCurve((1, 2), (1, 2)) self.assertEqual(self.plot.getXAxis().getLabel(), 'XLabel') self.assertEqual(self.plot.getYAxis().getLabel(), 'YLabel') self.plot.addCurve((1, 2), (2, 3), xlabel='x1', ylabel='y1') self.assertEqual(self.plot.getXAxis().getLabel(), 'XLabel') self.assertEqual(self.plot.getYAxis().getLabel(), 'YLabel') self.plot.clear() self.assertEqual(self.plot.getXAxis().getLabel(), 'XLabel') self.assertEqual(self.plot.getYAxis().getLabel(), 'YLabel') # Active curve handling on, label changes self.plot.setActiveCurveHandling(True) self.plot.getXAxis().setLabel('XLabel') self.plot.getYAxis().setLabel('YLabel') # labels changed as active curve self.plot.addCurve((1, 2), (1, 2), legend='1', xlabel='x1', ylabel='y1') self.plot.setActiveCurve('1') self.assertEqual(self.plot.getXAxis().getLabel(), 'x1') self.assertEqual(self.plot.getYAxis().getLabel(), 'y1') # labels not changed as not active curve self.plot.addCurve((1, 2), (2, 3), legend='2') self.assertEqual(self.plot.getXAxis().getLabel(), 'x1') self.assertEqual(self.plot.getYAxis().getLabel(), 'y1') # labels changed self.plot.setActiveCurve('2') self.assertEqual(self.plot.getXAxis().getLabel(), 'XLabel') self.assertEqual(self.plot.getYAxis().getLabel(), 'YLabel') self.plot.setActiveCurve('1') self.assertEqual(self.plot.getXAxis().getLabel(), 'x1') self.assertEqual(self.plot.getYAxis().getLabel(), 'y1') self.plot.clear() self.assertEqual(self.plot.getXAxis().getLabel(), 'XLabel') self.assertEqual(self.plot.getYAxis().getLabel(), 'YLabel') def testPlotActiveCurveSelectionMode(self): self.plot.clear() self.plot.setActiveCurveHandling(True) legend = "curve 1" self.plot.addCurve(self.xData, self.yData, legend=legend, color="green") # active curve should be None self.assertEqual(self.plot.getActiveCurve(just_legend=True), None) # active curve should be None when None is set as active curve self.plot.setActiveCurve(legend) current = self.plot.getActiveCurve(just_legend=True) self.assertEqual(current, legend) self.plot.setActiveCurve(None) current = self.plot.getActiveCurve(just_legend=True) self.assertEqual(current, None) # testing it automatically toggles if there is only one self.plot.setActiveCurveSelectionMode("legacy") current = self.plot.getActiveCurve(just_legend=True) self.assertEqual(current, legend) # active curve should not change when None set as active curve self.assertEqual(self.plot.getActiveCurveSelectionMode(), "legacy") self.plot.setActiveCurve(None) current = self.plot.getActiveCurve(just_legend=True) self.assertEqual(current, legend) # situation where no curve is active self.plot.clear() self.plot.setActiveCurveHandling(True) self.assertEqual(self.plot.getActiveCurveSelectionMode(), "atmostone") self.plot.addCurve(self.xData, self.yData, legend=legend, color="green") self.assertEqual(self.plot.getActiveCurve(just_legend=True), None) self.plot.addCurve(self.xData2, self.yData2, legend="curve 2", color="red") self.assertEqual(self.plot.getActiveCurve(just_legend=True), None) self.plot.setActiveCurveSelectionMode("legacy") self.assertEqual(self.plot.getActiveCurve(just_legend=True), None) # the first curve added should be active self.plot.clear() self.plot.addCurve(self.xData, self.yData, legend=legend, color="green") self.assertEqual(self.plot.getActiveCurve(just_legend=True), legend) self.plot.addCurve(self.xData2, self.yData2, legend="curve 2", color="red") self.assertEqual(self.plot.getActiveCurve(just_legend=True), legend) def testActiveCurveStyle(self): """Test change of active curve style""" self.plot.setActiveCurveHandling(True) self.plot.setActiveCurveStyle(color='black') style = self.plot.getActiveCurveStyle() self.assertEqual(style.getColor(), (0., 0., 0., 1.)) self.assertIsNone(style.getLineStyle()) self.assertIsNone(style.getLineWidth()) self.assertIsNone(style.getSymbol()) self.assertIsNone(style.getSymbolSize()) self.plot.addCurve(x=self.xData, y=self.yData, legend="curve1") curve = self.plot.getCurve("curve1") curve.setColor('blue') curve.setLineStyle('-') curve.setLineWidth(1) curve.setSymbol('o') curve.setSymbolSize(5) # Check default current style defaultStyle = curve.getCurrentStyle() self.assertEqual(defaultStyle, CurveStyle(color='blue', linestyle='-', linewidth=1, symbol='o', symbolsize=5)) # Activate curve with highlight color=black self.plot.setActiveCurve("curve1") style = curve.getCurrentStyle() self.assertEqual(style.getColor(), (0., 0., 0., 1.)) self.assertEqual(style.getLineStyle(), '-') self.assertEqual(style.getLineWidth(), 1) self.assertEqual(style.getSymbol(), 'o') self.assertEqual(style.getSymbolSize(), 5) # Change highlight to linewidth=2 self.plot.setActiveCurveStyle(linewidth=2) style = curve.getCurrentStyle() self.assertEqual(style.getColor(), (0., 0., 1., 1.)) self.assertEqual(style.getLineStyle(), '-') self.assertEqual(style.getLineWidth(), 2) self.assertEqual(style.getSymbol(), 'o') self.assertEqual(style.getSymbolSize(), 5) self.plot.setActiveCurve(None) self.assertEqual(curve.getCurrentStyle(), defaultStyle) def testActiveImageAndLabels(self): # Active image handling always on, no API for toggling it self.plot.getXAxis().setLabel('XLabel') self.plot.getYAxis().setLabel('YLabel') # labels changed as active curve self.plot.addImage(numpy.arange(100).reshape(10, 10), legend='1', xlabel='x1', ylabel='y1') self.assertEqual(self.plot.getXAxis().getLabel(), 'x1') self.assertEqual(self.plot.getYAxis().getLabel(), 'y1') # labels not changed as not active curve self.plot.addImage(numpy.arange(100).reshape(10, 10), legend='2') self.assertEqual(self.plot.getXAxis().getLabel(), 'x1') self.assertEqual(self.plot.getYAxis().getLabel(), 'y1') # labels changed self.plot.setActiveImage('2') self.assertEqual(self.plot.getXAxis().getLabel(), 'XLabel') self.assertEqual(self.plot.getYAxis().getLabel(), 'YLabel') self.plot.setActiveImage('1') self.assertEqual(self.plot.getXAxis().getLabel(), 'x1') self.assertEqual(self.plot.getYAxis().getLabel(), 'y1') self.plot.clear() self.assertEqual(self.plot.getXAxis().getLabel(), 'XLabel') self.assertEqual(self.plot.getYAxis().getLabel(), 'YLabel') ############################################################################## # Log ############################################################################## class TestPlotEmptyLog(PlotWidgetTestCase): """Basic tests for log plot""" def testEmptyPlotTitleLabelsLog(self): self.plot.setGraphTitle('Empty Log Log') self.plot.getXAxis().setLabel('X') self.plot.getYAxis().setLabel('Y') self.plot.getXAxis()._setLogarithmic(True) self.plot.getYAxis()._setLogarithmic(True) self.plot.resetZoom() class TestPlotAxes(TestCaseQt, ParametricTestCase): # Test data xData = numpy.arange(1, 10) yData = xData ** 2 def __init__(self, methodName='runTest', backend=None): unittest.TestCase.__init__(self, methodName) self.__backend = backend def setUp(self): super(TestPlotAxes, self).setUp() self.plot = PlotWidget(backend=self.__backend) # It is not needed to display the plot # It saves a lot of time # self.plot.show() # self.qWaitForWindowExposed(self.plot) def tearDown(self): self.qapp.processEvents() self.plot.setAttribute(qt.Qt.WA_DeleteOnClose) self.plot.close() del self.plot super(TestPlotAxes, self).tearDown() def testDefaultAxes(self): axis = self.plot.getXAxis() self.assertEqual(axis.getScale(), axis.LINEAR) axis = self.plot.getYAxis() self.assertEqual(axis.getScale(), axis.LINEAR) axis = self.plot.getYAxis(axis="right") self.assertEqual(axis.getScale(), axis.LINEAR) def testOldPlotAxis_getterSetter(self): """Test silx API prior to silx 0.6""" x = self.plot.getXAxis() y = self.plot.getYAxis() p = self.plot tests = [ # setters (p.setGraphXLimits, (10, 20), x.getLimits, (10, 20)), (p.setGraphYLimits, (10, 20), y.getLimits, (10, 20)), (p.setGraphXLabel, "foox", x.getLabel, "foox"), (p.setGraphYLabel, "fooy", y.getLabel, "fooy"), (p.setYAxisInverted, True, y.isInverted, True), (p.setXAxisLogarithmic, True, x.getScale, x.LOGARITHMIC), (p.setYAxisLogarithmic, True, y.getScale, y.LOGARITHMIC), (p.setXAxisAutoScale, False, x.isAutoScale, False), (p.setYAxisAutoScale, False, y.isAutoScale, False), # getters (x.setLimits, (11, 20), p.getGraphXLimits, (11, 20)), (y.setLimits, (11, 20), p.getGraphYLimits, (11, 20)), (x.setLabel, "fooxx", p.getGraphXLabel, "fooxx"), (y.setLabel, "fooyy", p.getGraphYLabel, "fooyy"), (y.setInverted, False, p.isYAxisInverted, False), (x.setScale, x.LINEAR, p.isXAxisLogarithmic, False), (y.setScale, y.LINEAR, p.isYAxisLogarithmic, False), (x.setAutoScale, True, p.isXAxisAutoScale, True), (y.setAutoScale, True, p.isYAxisAutoScale, True), ] for testCase in tests: setter, value, getter, expected = testCase with self.subTest(): if setter is not None: if not isinstance(value, tuple): value = (value, ) setter(*value) if getter is not None: self.assertEqual(getter(), expected) def testOldPlotAxis_Logarithmic(self): """Test silx API prior to silx 0.6""" x = self.plot.getXAxis() y = self.plot.getYAxis() yright = self.plot.getYAxis(axis="right") self.assertEqual(x.getScale(), x.LINEAR) self.assertEqual(y.getScale(), x.LINEAR) self.assertEqual(yright.getScale(), x.LINEAR) self.plot.setXAxisLogarithmic(True) self.assertEqual(x.getScale(), x.LOGARITHMIC) self.assertEqual(y.getScale(), x.LINEAR) self.assertEqual(yright.getScale(), x.LINEAR) self.assertEqual(self.plot.isXAxisLogarithmic(), True) self.assertEqual(self.plot.isYAxisLogarithmic(), False) self.plot.setYAxisLogarithmic(True) self.assertEqual(x.getScale(), x.LOGARITHMIC) self.assertEqual(y.getScale(), x.LOGARITHMIC) self.assertEqual(yright.getScale(), x.LOGARITHMIC) self.assertEqual(self.plot.isXAxisLogarithmic(), True) self.assertEqual(self.plot.isYAxisLogarithmic(), True) yright.setScale(yright.LINEAR) self.assertEqual(x.getScale(), x.LOGARITHMIC) self.assertEqual(y.getScale(), x.LINEAR) self.assertEqual(yright.getScale(), x.LINEAR) self.assertEqual(self.plot.isXAxisLogarithmic(), True) self.assertEqual(self.plot.isYAxisLogarithmic(), False) def testOldPlotAxis_AutoScale(self): """Test silx API prior to silx 0.6""" x = self.plot.getXAxis() y = self.plot.getYAxis() yright = self.plot.getYAxis(axis="right") self.assertEqual(x.isAutoScale(), True) self.assertEqual(y.isAutoScale(), True) self.assertEqual(yright.isAutoScale(), True) self.plot.setXAxisAutoScale(False) self.assertEqual(x.isAutoScale(), False) self.assertEqual(y.isAutoScale(), True) self.assertEqual(yright.isAutoScale(), True) self.assertEqual(self.plot.isXAxisAutoScale(), False) self.assertEqual(self.plot.isYAxisAutoScale(), True) self.plot.setYAxisAutoScale(False) self.assertEqual(x.isAutoScale(), False) self.assertEqual(y.isAutoScale(), False) self.assertEqual(yright.isAutoScale(), False) self.assertEqual(self.plot.isXAxisAutoScale(), False) self.assertEqual(self.plot.isYAxisAutoScale(), False) yright.setAutoScale(True) self.assertEqual(x.isAutoScale(), False) self.assertEqual(y.isAutoScale(), True) self.assertEqual(yright.isAutoScale(), True) self.assertEqual(self.plot.isXAxisAutoScale(), False) self.assertEqual(self.plot.isYAxisAutoScale(), True) def testOldPlotAxis_Inverted(self): """Test silx API prior to silx 0.6""" x = self.plot.getXAxis() y = self.plot.getYAxis() yright = self.plot.getYAxis(axis="right") self.assertEqual(x.isInverted(), False) self.assertEqual(y.isInverted(), False) self.assertEqual(yright.isInverted(), False) self.plot.setYAxisInverted(True) self.assertEqual(x.isInverted(), False) self.assertEqual(y.isInverted(), True) self.assertEqual(yright.isInverted(), True) self.assertEqual(self.plot.isYAxisInverted(), True) yright.setInverted(False) self.assertEqual(x.isInverted(), False) self.assertEqual(y.isInverted(), False) self.assertEqual(yright.isInverted(), False) self.assertEqual(self.plot.isYAxisInverted(), False) def testLogXWithData(self): self.plot.setGraphTitle('Curve X: Log Y: Linear') self.plot.addCurve(self.xData, self.yData, legend="curve", replace=False, resetzoom=True, color='green', linestyle="-", symbol='o') axis = self.plot.getXAxis() axis.setScale(axis.LOGARITHMIC) self.assertEqual(axis.getScale(), axis.LOGARITHMIC) def testLogYWithData(self): self.plot.setGraphTitle('Curve X: Linear Y: Log') self.plot.addCurve(self.xData, self.yData, legend="curve", replace=False, resetzoom=True, color='green', linestyle="-", symbol='o') axis = self.plot.getYAxis() axis.setScale(axis.LOGARITHMIC) self.assertEqual(axis.getScale(), axis.LOGARITHMIC) axis = self.plot.getYAxis(axis="right") self.assertEqual(axis.getScale(), axis.LOGARITHMIC) def testLogYRightWithData(self): self.plot.setGraphTitle('Curve X: Linear Y: Log') self.plot.addCurve(self.xData, self.yData, legend="curve", replace=False, resetzoom=True, color='green', linestyle="-", symbol='o') axis = self.plot.getYAxis(axis="right") axis.setScale(axis.LOGARITHMIC) self.assertEqual(axis.getScale(), axis.LOGARITHMIC) axis = self.plot.getYAxis() self.assertEqual(axis.getScale(), axis.LOGARITHMIC) def testLimitsChanged_setLimits(self): self.plot.addCurve(self.xData, self.yData, legend="curve", replace=False, resetzoom=False, color='green', linestyle="-", symbol='o') listener = SignalListener() self.plot.getXAxis().sigLimitsChanged.connect(listener.partial(axis="x")) self.plot.getYAxis().sigLimitsChanged.connect(listener.partial(axis="y")) self.plot.getYAxis(axis="right").sigLimitsChanged.connect(listener.partial(axis="y2")) self.plot.setLimits(0, 1, 0, 1, 0, 1) # at least one event per axis self.assertEqual(len(set(listener.karguments(argumentName="axis"))), 3) def testLimitsChanged_resetZoom(self): self.plot.addCurve(self.xData, self.yData, legend="curve", replace=False, resetzoom=False, color='green', linestyle="-", symbol='o') listener = SignalListener() self.plot.getXAxis().sigLimitsChanged.connect(listener.partial(axis="x")) self.plot.getYAxis().sigLimitsChanged.connect(listener.partial(axis="y")) self.plot.getYAxis(axis="right").sigLimitsChanged.connect(listener.partial(axis="y2")) self.plot.resetZoom() # at least one event per axis self.assertEqual(len(set(listener.karguments(argumentName="axis"))), 3) def testLimitsChanged_setXLimit(self): self.plot.addCurve(self.xData, self.yData, legend="curve", replace=False, resetzoom=False, color='green', linestyle="-", symbol='o') listener = SignalListener() axis = self.plot.getXAxis() axis.sigLimitsChanged.connect(listener) axis.setLimits(20, 30) # at least one event per axis self.assertEqual(listener.arguments(callIndex=-1), (20.0, 30.0)) self.assertEqual(axis.getLimits(), (20.0, 30.0)) def testLimitsChanged_setYLimit(self): self.plot.addCurve(self.xData, self.yData, legend="curve", replace=False, resetzoom=False, color='green', linestyle="-", symbol='o') listener = SignalListener() axis = self.plot.getYAxis() axis.sigLimitsChanged.connect(listener) axis.setLimits(20, 30) # at least one event per axis self.assertEqual(listener.arguments(callIndex=-1), (20.0, 30.0)) self.assertEqual(axis.getLimits(), (20.0, 30.0)) def testLimitsChanged_setYRightLimit(self): self.plot.addCurve(self.xData, self.yData, legend="curve", replace=False, resetzoom=False, color='green', linestyle="-", symbol='o') listener = SignalListener() axis = self.plot.getYAxis(axis="right") axis.sigLimitsChanged.connect(listener) axis.setLimits(20, 30) # at least one event per axis self.assertEqual(listener.arguments(callIndex=-1), (20.0, 30.0)) self.assertEqual(axis.getLimits(), (20.0, 30.0)) def testScaleProxy(self): listener = SignalListener() y = self.plot.getYAxis() yright = self.plot.getYAxis(axis="right") y.sigScaleChanged.connect(listener.partial("left")) yright.sigScaleChanged.connect(listener.partial("right")) yright.setScale(yright.LOGARITHMIC) self.assertEqual(y.getScale(), y.LOGARITHMIC) events = listener.arguments() self.assertEqual(len(events), 2) self.assertIn(("left", y.LOGARITHMIC), events) self.assertIn(("right", y.LOGARITHMIC), events) def testAutoScaleProxy(self): listener = SignalListener() y = self.plot.getYAxis() yright = self.plot.getYAxis(axis="right") y.sigAutoScaleChanged.connect(listener.partial("left")) yright.sigAutoScaleChanged.connect(listener.partial("right")) yright.setAutoScale(False) self.assertEqual(y.isAutoScale(), False) events = listener.arguments() self.assertEqual(len(events), 2) self.assertIn(("left", False), events) self.assertIn(("right", False), events) def testInvertedProxy(self): listener = SignalListener() y = self.plot.getYAxis() yright = self.plot.getYAxis(axis="right") y.sigInvertedChanged.connect(listener.partial("left")) yright.sigInvertedChanged.connect(listener.partial("right")) yright.setInverted(True) self.assertEqual(y.isInverted(), True) events = listener.arguments() self.assertEqual(len(events), 2) self.assertIn(("left", True), events) self.assertIn(("right", True), events) def testAxesDisplayedFalse(self): """Test coverage on setAxesDisplayed(False)""" self.plot.setAxesDisplayed(False) def testAxesDisplayedTrue(self): """Test coverage on setAxesDisplayed(True)""" self.plot.setAxesDisplayed(True) class TestPlotCurveLog(PlotWidgetTestCase, ParametricTestCase): """Basic tests for addCurve with log scale axes""" # Test data xData = numpy.arange(1000) + 1 yData = xData ** 2 def _setLabels(self): self.plot.getXAxis().setLabel('X') self.plot.getYAxis().setLabel('X * X') def testPlotCurveLogX(self): self._setLabels() self.plot.getXAxis()._setLogarithmic(True) self.plot.setGraphTitle('Curve X: Log Y: Linear') self.plot.addCurve(self.xData, self.yData, legend="curve", replace=False, resetzoom=True, color='green', linestyle="-", symbol='o') def testPlotCurveLogY(self): self._setLabels() self.plot.getYAxis()._setLogarithmic(True) self.plot.setGraphTitle('Curve X: Linear Y: Log') self.plot.addCurve(self.xData, self.yData, legend="curve", replace=False, resetzoom=True, color='green', linestyle="-", symbol='o') def testPlotCurveLogXY(self): self._setLabels() self.plot.getXAxis()._setLogarithmic(True) self.plot.getYAxis()._setLogarithmic(True) self.plot.setGraphTitle('Curve X: Log Y: Log') self.plot.addCurve(self.xData, self.yData, legend="curve", replace=False, resetzoom=True, color='green', linestyle="-", symbol='o') def testPlotCurveErrorLogXY(self): self.plot.getXAxis()._setLogarithmic(True) self.plot.getYAxis()._setLogarithmic(True) # Every second error leads to negative number errors = numpy.ones_like(self.xData) errors[::2] = self.xData[::2] + 1 tests = [ # name, xerror, yerror ('xerror=3', 3, None), ('xerror=N array', errors, None), ('xerror=Nx1 array', errors.reshape(len(errors), 1), None), ('xerror=2xN array', numpy.array((errors, errors)), None), ('yerror=6', None, 6), ('yerror=N array', None, errors ** 2), ('yerror=Nx1 array', None, (errors ** 2).reshape(len(errors), 1)), ('yerror=2xN array', None, numpy.array((errors, errors)) ** 2), ] for name, xError, yError in tests: with self.subTest(name): self.plot.setGraphTitle(name) self.plot.addCurve(self.xData, self.yData, legend=name, xerror=xError, yerror=yError, replace=False, resetzoom=True, color='green', linestyle="-", symbol='o') self.qapp.processEvents() self.plot.clear() self.plot.resetZoom() self.qapp.processEvents() def testPlotCurveToggleLog(self): """Add a curve with negative data and toggle log axis""" arange = numpy.arange(1000) + 1 tests = [ # name, xData, yData ('x>0, some negative y', arange, arange - 500), ('x>0, y<0', arange, -arange), ('some negative x, y>0', arange - 500, arange), ('x<0, y>0', -arange, arange), ('some negative x and y', arange - 500, arange - 500), ('x<0, y<0', -arange, -arange), ] for name, xData, yData in tests: with self.subTest(name): self.plot.addCurve(xData, yData, resetzoom=True) self.qapp.processEvents() # no log axis xLim = self.plot.getXAxis().getLimits() self.assertEqual(xLim, (min(xData), max(xData))) yLim = self.plot.getYAxis().getLimits() self.assertEqual(yLim, (min(yData), max(yData))) # x axis log self.plot.getXAxis()._setLogarithmic(True) self.qapp.processEvents() xLim = self.plot.getXAxis().getLimits() yLim = self.plot.getYAxis().getLimits() positives = xData > 0 if numpy.any(positives): self.assertTrue(numpy.allclose( xLim, (min(xData[positives]), max(xData[positives])))) self.assertEqual( yLim, (min(yData[positives]), max(yData[positives]))) else: # No positive x in the curve self.assertEqual(xLim, (1., 100.)) self.assertEqual(yLim, (1., 100.)) # x axis and y axis log self.plot.getYAxis()._setLogarithmic(True) self.qapp.processEvents() xLim = self.plot.getXAxis().getLimits() yLim = self.plot.getYAxis().getLimits() positives = numpy.logical_and(xData > 0, yData > 0) if numpy.any(positives): self.assertTrue(numpy.allclose( xLim, (min(xData[positives]), max(xData[positives])))) self.assertTrue(numpy.allclose( yLim, (min(yData[positives]), max(yData[positives])))) else: # No positive x and y in the curve self.assertEqual(xLim, (1., 100.)) self.assertEqual(yLim, (1., 100.)) # y axis log self.plot.getXAxis()._setLogarithmic(False) self.qapp.processEvents() xLim = self.plot.getXAxis().getLimits() yLim = self.plot.getYAxis().getLimits() positives = yData > 0 if numpy.any(positives): self.assertEqual( xLim, (min(xData[positives]), max(xData[positives]))) self.assertTrue(numpy.allclose( yLim, (min(yData[positives]), max(yData[positives])))) else: # No positive y in the curve self.assertEqual(xLim, (1., 100.)) self.assertEqual(yLim, (1., 100.)) # no log axis self.plot.getYAxis()._setLogarithmic(False) self.qapp.processEvents() xLim = self.plot.getXAxis().getLimits() self.assertEqual(xLim, (min(xData), max(xData))) yLim = self.plot.getYAxis().getLimits() self.assertEqual(yLim, (min(yData), max(yData))) self.plot.clear() self.plot.resetZoom() self.qapp.processEvents() class TestPlotImageLog(PlotWidgetTestCase): """Basic tests for addImage with log scale axes.""" def setUp(self): super(TestPlotImageLog, self).setUp() self.plot.getXAxis().setLabel('Columns') self.plot.getYAxis().setLabel('Rows') def testPlotColormapGrayLogX(self): self.plot.getXAxis()._setLogarithmic(True) self.plot.setGraphTitle('CMap X: Log Y: Linear') colormap = Colormap(name='gray', normalization='linear', vmin=None, vmax=None) self.plot.addImage(DATA_2D, legend="image 1", origin=(1., 1.), scale=(1., 1.), resetzoom=False, colormap=colormap) self.plot.resetZoom() def testPlotColormapGrayLogY(self): self.plot.getYAxis()._setLogarithmic(True) self.plot.setGraphTitle('CMap X: Linear Y: Log') colormap = Colormap(name='gray', normalization='linear', vmin=None, vmax=None) self.plot.addImage(DATA_2D, legend="image 1", origin=(1., 1.), scale=(1., 1.), resetzoom=False, colormap=colormap) self.plot.resetZoom() def testPlotColormapGrayLogXY(self): self.plot.getXAxis()._setLogarithmic(True) self.plot.getYAxis()._setLogarithmic(True) self.plot.setGraphTitle('CMap X: Log Y: Log') colormap = Colormap(name='gray', normalization='linear', vmin=None, vmax=None) self.plot.addImage(DATA_2D, legend="image 1", origin=(1., 1.), scale=(1., 1.), resetzoom=False, colormap=colormap) self.plot.resetZoom() def testPlotRgbRgbaLogXY(self): self.plot.getXAxis()._setLogarithmic(True) self.plot.getYAxis()._setLogarithmic(True) self.plot.setGraphTitle('RGB + RGBA X: Log Y: Log') rgb = numpy.array( (((0, 0, 0), (128, 0, 0), (255, 0, 0)), ((0, 128, 0), (0, 128, 128), (0, 128, 256))), dtype=numpy.uint8) self.plot.addImage(rgb, legend="rgb", origin=(1, 1), scale=(10, 10), resetzoom=False) rgba = numpy.array( (((0, 0, 0, .5), (.5, 0, 0, 1), (1, 0, 0, .5)), ((0, .5, 0, 1), (0, .5, .5, 1), (0, 1, 1, .5))), dtype=numpy.float32) self.plot.addImage(rgba, legend="rgba", origin=(5., 5.), scale=(10., 10.), resetzoom=False) self.plot.resetZoom() class TestPlotMarkerLog(PlotWidgetTestCase): """Basic tests for markers on log scales""" # Test marker parameters markers = [ # x, y, color, selectable, draggable (10., 10., 'blue', False, False), (20., 20., 'red', False, False), (40., 100., 'green', True, False), (40., 500., 'gray', True, True), (60., 800., 'black', False, True), ] def setUp(self): super(TestPlotMarkerLog, self).setUp() self.plot.getYAxis().setLabel('Rows') self.plot.getXAxis().setLabel('Columns') self.plot.getXAxis().setAutoScale(False) self.plot.getYAxis().setAutoScale(False) self.plot.setKeepDataAspectRatio(False) self.plot.setLimits(1., 100., 1., 1000.) self.plot.getXAxis()._setLogarithmic(True) self.plot.getYAxis()._setLogarithmic(True) def testPlotMarkerXLog(self): self.plot.setGraphTitle('Markers X, Log axes') for x, _, color, select, drag in self.markers: name = str(x) if select: name += " sel." if drag: name += " drag" self.plot.addXMarker(x, name, name, color, select, drag) self.plot.resetZoom() def testPlotMarkerYLog(self): self.plot.setGraphTitle('Markers Y, Log axes') for _, y, color, select, drag in self.markers: name = str(y) if select: name += " sel." if drag: name += " drag" self.plot.addYMarker(y, name, name, color, select, drag) self.plot.resetZoom() def testPlotMarkerPtLog(self): self.plot.setGraphTitle('Markers Pt, Log axes') for x, y, color, select, drag in self.markers: name = "{0},{1}".format(x, y) if select: name += " sel." if drag: name += " drag" self.plot.addMarker(x, y, name, name, color, select, drag) self.plot.resetZoom() class TestPlotItemLog(PlotWidgetTestCase): """Basic tests for items with log scale axes""" # Polygon coordinates and color polygons = [ # legend, x coords, y coords, color ('triangle', numpy.array((10, 30, 50)), numpy.array((55, 70, 55)), 'red'), ('square', numpy.array((10, 10, 50, 50)), numpy.array((10, 50, 50, 10)), 'green'), ('star', numpy.array((60, 70, 80, 60, 80)), numpy.array((25, 50, 25, 40, 40)), 'blue'), ] # Rectangle coordinantes and color rectangles = [ # legend, x coords, y coords, color ('square 1', numpy.array((1., 10.)), numpy.array((1., 10.)), 'red'), ('square 2', numpy.array((10., 20.)), numpy.array((10., 20.)), 'green'), ('square 3', numpy.array((20., 30.)), numpy.array((20., 30.)), 'blue'), ('rect 1', numpy.array((1., 30.)), numpy.array((35., 40.)), 'black'), ('line h', numpy.array((1., 30.)), numpy.array((45., 45.)), 'darkRed'), ] def setUp(self): super(TestPlotItemLog, self).setUp() self.plot.getYAxis().setLabel('Rows') self.plot.getXAxis().setLabel('Columns') self.plot.getXAxis().setAutoScale(False) self.plot.getYAxis().setAutoScale(False) self.plot.setKeepDataAspectRatio(False) self.plot.setLimits(1., 100., 1., 100.) self.plot.getXAxis()._setLogarithmic(True) self.plot.getYAxis()._setLogarithmic(True) def testPlotItemPolygonLogFill(self): self.plot.setGraphTitle('Item Fill Log') for legend, xList, yList, color in self.polygons: self.plot.addItem(xList, yList, legend=legend, replace=False, shape="polygon", fill=True, color=color) self.plot.resetZoom() def testPlotItemPolygonLogNoFill(self): self.plot.setGraphTitle('Item No Fill Log') for legend, xList, yList, color in self.polygons: self.plot.addItem(xList, yList, legend=legend, replace=False, shape="polygon", fill=False, color=color) self.plot.resetZoom() def testPlotItemRectangleLogFill(self): self.plot.setGraphTitle('Rectangle Fill Log') for legend, xList, yList, color in self.rectangles: self.plot.addItem(xList, yList, legend=legend, replace=False, shape="rectangle", fill=True, color=color) self.plot.resetZoom() def testPlotItemRectangleLogNoFill(self): self.plot.setGraphTitle('Rectangle No Fill Log') for legend, xList, yList, color in self.rectangles: self.plot.addItem(xList, yList, legend=legend, replace=False, shape="rectangle", fill=False, color=color) self.plot.resetZoom() def suite(): testClasses = (TestPlotWidget, TestPlotImage, TestPlotCurve, TestPlotScatter, TestPlotMarker, TestPlotItem, TestPlotAxes, TestPlotActiveCurveImage, TestPlotEmptyLog, TestPlotCurveLog, TestPlotImageLog, TestPlotMarkerLog, TestPlotItemLog) test_suite = unittest.TestSuite() # Tests with matplotlib for testClass in testClasses: test_suite.addTest(parameterize(testClass, backend=None)) test_suite.addTest(parameterize(TestSpecialBackend, backend=u"mpl")) if sys.version_info[0] == 2: test_suite.addTest(parameterize(TestSpecialBackend, backend=b"mpl")) if test_options.WITH_GL_TEST: # Tests with OpenGL backend for testClass in testClasses: test_suite.addTest(parameterize(testClass, backend='gl')) return test_suite if __name__ == '__main__': unittest.main(defaultTest='suite')
the-stack_0_12076
# Copyright 2014-present MongoDB, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tools for specifying BSON codec options.""" import datetime from abc import abstractmethod from collections import namedtuple from bson.py3compat import ABC, abc, abstractproperty, string_type from bson.binary import (ALL_UUID_REPRESENTATIONS, PYTHON_LEGACY, UUID_REPRESENTATION_NAMES) _RAW_BSON_DOCUMENT_MARKER = 101 def _raw_document_class(document_class): """Determine if a document_class is a RawBSONDocument class.""" marker = getattr(document_class, '_type_marker', None) return marker == _RAW_BSON_DOCUMENT_MARKER class TypeEncoder(ABC): """Base class for defining type codec classes which describe how a custom type can be transformed to one of the types BSON understands. Codec classes must implement the ``python_type`` attribute, and the ``transform_python`` method to support encoding. """ @abstractproperty def python_type(self): """The Python type to be converted into something serializable.""" pass @abstractmethod def transform_python(self, value): """Convert the given Python object into something serializable.""" pass class TypeDecoder(ABC): """Base class for defining type codec classes which describe how a BSON type can be transformed to a custom type. Codec classes must implement the ``bson_type`` attribute, and the ``transform_bson`` method to support decoding. """ @abstractproperty def bson_type(self): """The BSON type to be converted into our own type.""" pass @abstractmethod def transform_bson(self, value): """Convert the given BSON value into our own type.""" pass class TypeCodec(TypeEncoder, TypeDecoder): """Base class for defining type codec classes which describe how a custom type can be transformed to/from one of the types BSON already understands, and can encode/decode. Codec classes must implement the ``python_type`` attribute, and the ``transform_python`` method to support encoding, as well as the ``bson_type`` attribute, and the ``transform_bson`` method to support decoding. """ pass class TypeRegistry(object): """Encapsulates type codecs used in encoding and / or decoding BSON, as well as the fallback encoder. Type registries cannot be modified after instantiation. ``TypeRegistry`` can be initialized with an iterable of type codecs, and a callable for the fallback encoder:: >>> from bson.codec_options import TypeRegistry >>> type_registry = TypeRegistry([Codec1, Codec2, Codec3, ...], ... fallback_encoder) :Parameters: - `type_codecs` (optional): iterable of type codec instances. If ``type_codecs`` contains multiple codecs that transform a single python or BSON type, the transformation specified by the type codec occurring last prevails. - `fallback_encoder` (optional): callable that accepts a single, unencodable python value and transforms it into a type that BSON can encode. """ def __init__(self, type_codecs=None, fallback_encoder=None): self.__type_codecs = list(type_codecs or []) self._fallback_encoder = fallback_encoder self._encoder_map = {} self._decoder_map = {} if self._fallback_encoder is not None: if not callable(fallback_encoder): raise TypeError("fallback_encoder %r is not a callable" % ( fallback_encoder)) for codec in self.__type_codecs: is_valid_codec = False if isinstance(codec, TypeEncoder): self._validate_type_encoder(codec) is_valid_codec = True self._encoder_map[codec.python_type] = codec.transform_python if isinstance(codec, TypeDecoder): is_valid_codec = True self._decoder_map[codec.bson_type] = codec.transform_bson if not is_valid_codec: raise TypeError( "Expected an instance of %s, %s, or %s, got %r instead" % ( TypeEncoder.__name__, TypeDecoder.__name__, TypeCodec.__name__, codec)) def _validate_type_encoder(self, codec): from bson import _BUILT_IN_TYPES for pytype in _BUILT_IN_TYPES: if issubclass(codec.python_type, pytype): err_msg = ("TypeEncoders cannot change how built-in types are " "encoded (encoder %s transforms type %s)" % (codec, pytype)) raise TypeError(err_msg) def __repr__(self): return ('%s(type_codecs=%r, fallback_encoder=%r)' % ( self.__class__.__name__, self.__type_codecs, self._fallback_encoder)) def __eq__(self, other): if not isinstance(other, type(self)): return NotImplemented return ((self._decoder_map == other._decoder_map) and (self._encoder_map == other._encoder_map) and (self._fallback_encoder == other._fallback_encoder)) _options_base = namedtuple( 'CodecOptions', ('document_class', 'tz_aware', 'uuid_representation', 'unicode_decode_error_handler', 'tzinfo', 'type_registry')) class CodecOptions(_options_base): """Encapsulates options used encoding and / or decoding BSON. The `document_class` option is used to define a custom type for use decoding BSON documents. Access to the underlying raw BSON bytes for a document is available using the :class:`~bson.raw_bson.RawBSONDocument` type:: >>> from bson.raw_bson import RawBSONDocument >>> from bson.codec_options import CodecOptions >>> codec_options = CodecOptions(document_class=RawBSONDocument) >>> coll = db.get_collection('test', codec_options=codec_options) >>> doc = coll.find_one() >>> doc.raw '\\x16\\x00\\x00\\x00\\x07_id\\x00[0\\x165\\x91\\x10\\xea\\x14\\xe8\\xc5\\x8b\\x93\\x00' The document class can be any type that inherits from :class:`~collections.MutableMapping`:: >>> class AttributeDict(dict): ... # A dict that supports attribute access. ... def __getattr__(self, key): ... return self[key] ... def __setattr__(self, key, value): ... self[key] = value ... >>> codec_options = CodecOptions(document_class=AttributeDict) >>> coll = db.get_collection('test', codec_options=codec_options) >>> doc = coll.find_one() >>> doc._id ObjectId('5b3016359110ea14e8c58b93') See :doc:`/examples/datetimes` for examples using the `tz_aware` and `tzinfo` options. See :class:`~bson.binary.UUIDLegacy` for examples using the `uuid_representation` option. :Parameters: - `document_class`: BSON documents returned in queries will be decoded to an instance of this class. Must be a subclass of :class:`~collections.MutableMapping`. Defaults to :class:`dict`. - `tz_aware`: If ``True``, BSON datetimes will be decoded to timezone aware instances of :class:`~datetime.datetime`. Otherwise they will be naive. Defaults to ``False``. - `uuid_representation`: The BSON representation to use when encoding and decoding instances of :class:`~uuid.UUID`. Defaults to :data:`~bson.binary.PYTHON_LEGACY`. - `unicode_decode_error_handler`: The error handler to apply when a Unicode-related error occurs during BSON decoding that would otherwise raise :exc:`UnicodeDecodeError`. Valid options include 'strict', 'replace', and 'ignore'. Defaults to 'strict'. - `tzinfo`: A :class:`~datetime.tzinfo` subclass that specifies the timezone to/from which :class:`~datetime.datetime` objects should be encoded/decoded. - `type_registry`: Instance of :class:`TypeRegistry` used to customize encoding and decoding behavior. .. warning:: Care must be taken when changing `unicode_decode_error_handler` from its default value ('strict'). The 'replace' and 'ignore' modes should not be used when documents retrieved from the server will be modified in the client application and stored back to the server. """ def __new__(cls, document_class=dict, tz_aware=False, uuid_representation=PYTHON_LEGACY, unicode_decode_error_handler="strict", tzinfo=None, type_registry=None): if not (issubclass(document_class, abc.MutableMapping) or _raw_document_class(document_class)): raise TypeError("document_class must be dict, bson.son.SON, " "bson.raw_bson.RawBSONDocument, or a " "sublass of collections.MutableMapping") if not isinstance(tz_aware, bool): raise TypeError("tz_aware must be True or False") if uuid_representation not in ALL_UUID_REPRESENTATIONS: raise ValueError("uuid_representation must be a value " "from bson.binary.ALL_UUID_REPRESENTATIONS") if not isinstance(unicode_decode_error_handler, (string_type, None)): raise ValueError("unicode_decode_error_handler must be a string " "or None") if tzinfo is not None: if not isinstance(tzinfo, datetime.tzinfo): raise TypeError( "tzinfo must be an instance of datetime.tzinfo") if not tz_aware: raise ValueError( "cannot specify tzinfo without also setting tz_aware=True") type_registry = type_registry or TypeRegistry() if not isinstance(type_registry, TypeRegistry): raise TypeError("type_registry must be an instance of TypeRegistry") return tuple.__new__( cls, (document_class, tz_aware, uuid_representation, unicode_decode_error_handler, tzinfo, type_registry)) def _arguments_repr(self): """Representation of the arguments used to create this object.""" document_class_repr = ( 'dict' if self.document_class is dict else repr(self.document_class)) uuid_rep_repr = UUID_REPRESENTATION_NAMES.get(self.uuid_representation, self.uuid_representation) return ('document_class=%s, tz_aware=%r, uuid_representation=%s, ' 'unicode_decode_error_handler=%r, tzinfo=%r, ' 'type_registry=%r' % (document_class_repr, self.tz_aware, uuid_rep_repr, self.unicode_decode_error_handler, self.tzinfo, self.type_registry)) def __repr__(self): return '%s(%s)' % (self.__class__.__name__, self._arguments_repr()) def with_options(self, **kwargs): """Make a copy of this CodecOptions, overriding some options:: >>> from bson.codec_options import DEFAULT_CODEC_OPTIONS >>> DEFAULT_CODEC_OPTIONS.tz_aware False >>> options = DEFAULT_CODEC_OPTIONS.with_options(tz_aware=True) >>> options.tz_aware True .. versionadded:: 3.5 """ return CodecOptions( kwargs.get('document_class', self.document_class), kwargs.get('tz_aware', self.tz_aware), kwargs.get('uuid_representation', self.uuid_representation), kwargs.get('unicode_decode_error_handler', self.unicode_decode_error_handler), kwargs.get('tzinfo', self.tzinfo), kwargs.get('type_registry', self.type_registry) ) DEFAULT_CODEC_OPTIONS = CodecOptions() def _parse_codec_options(options): """Parse BSON codec options.""" return CodecOptions( document_class=options.get( 'document_class', DEFAULT_CODEC_OPTIONS.document_class), tz_aware=options.get( 'tz_aware', DEFAULT_CODEC_OPTIONS.tz_aware), uuid_representation=options.get( 'uuidrepresentation', DEFAULT_CODEC_OPTIONS.uuid_representation), unicode_decode_error_handler=options.get( 'unicode_decode_error_handler', DEFAULT_CODEC_OPTIONS.unicode_decode_error_handler), tzinfo=options.get('tzinfo', DEFAULT_CODEC_OPTIONS.tzinfo), type_registry=options.get( 'type_registry', DEFAULT_CODEC_OPTIONS.type_registry))
the-stack_0_12078
from flask import url_for def test_ping(client): resp = client.get(url_for('main.ping')) assert resp.status_code == 200 resp = resp.json assert resp == { 'addition': {'msg': "it's alive!"}, 'description': {}, 'result': True, 'status': 200, }
the-stack_0_12079
#!/usr/bin/env python # -*- coding: utf-8 -*- # # ardour2fxp.py # """Convert one or more Ardour VST presets XML file to VST2 FXP preset files.""" import argparse import os import sys from base64 import b64decode from collections import namedtuple from os.path import exists, isdir, join from struct import calcsize, pack from xml.etree import ElementTree as ET FXP_HEADER_FMT = '>4si4s4i28s' FXP_PREAMBEL_SIZE = calcsize('>4si') FXP_HEADER_SIZE = calcsize(FXP_HEADER_FMT) FXP_FORMAT_VERSION = 1 CHUNK_MAGIC = b'CcnK' FX_MAGIC_PARAMS = b'FxCk' FX_MAGIC_CHUNK = b'FPCh' FX_DEFAULT_VERSION = 1 PRESET_BASE_FIELDS = ( 'plugin_id', 'plugin_version', 'hash', 'label', 'num_params', ) ChunkPreset = namedtuple('ChunkPreset', PRESET_BASE_FIELDS + ('chunk',)) Preset = namedtuple('Preset', PRESET_BASE_FIELDS + ('params',)) def label2fn(label): """Replace characters in label unsuitable for filenames with underscore.""" return label.strip().replace(' ', '_') def parse_ardourpresets(root): """Parse ardour VST presets XML document. Returns list of Preset or ChunkPreset instances. """ if root.tag != 'VSTPresets': raise ValueError("Root node must be 'VSTPresets'.") presets = [] for preset in root: if preset.tag not in ('Preset', 'ChunkPreset'): print("Invalid preset type: {}".format(preset.tag)) continue try: type, plugin_id, hash = preset.attrib['uri'].split(':', 2) plugin_id = int(plugin_id) version = preset.attrib.get('version') num_params = preset.attrib.get('numParams') label = preset.attrib['label'] if version is not None: version = int(version) if num_params is not None: num_params = int(num_params) if type != "VST": raise ValueError except (KeyError, ValueError): print("Invalid preset format: {}".format(preset.attrib)) continue if preset.tag == 'Preset': params = {int(param.attrib['index']): param.attrib['value'] for param in preset} params = [float(value) for _, value in sorted(params.items())] presets.append(Preset(plugin_id, version, hash, label, num_params, params)) elif preset.tag == 'ChunkPreset': presets.append(ChunkPreset(plugin_id, version, hash, label, num_params, b64decode(preset.text))) return presets def main(args=None): argparser = argparse.ArgumentParser() argparser.add_argument('-v', '--fx-version', type=int, help="VST plugin version number") argparser.add_argument('-f', '--force', action="store_true", help="Overwrite existing destination file(s)") argparser.add_argument('-o', '--output-dir', help="Ardour presets output directory") argparser.add_argument('infiles', nargs='*', metavar='XML', help="Ardour VST presets XML (input) file(s)") args = argparser.parse_args(args) output_dir = args.output_dir or os.getcwd() if not args.infiles: argparser.print_help() return 2 for infile in args.infiles: try: root_node = ET.parse(infile).getroot() presets = parse_ardourpresets(root_node) except Exception as exc: return "Error reading Ardour preset file '{}': {}".format( infile, exc) if not presets: return "No valid presets found in input file(s)." for preset in presets: plugin_id = pack('>I', preset.plugin_id).decode('ascii') dstdir = join(output_dir, plugin_id) if not isdir(dstdir): os.makedirs(dstdir) fxp_fn = join(dstdir, label2fn(preset.label)) + '.fxp' if exists(fxp_fn) and not args.force: print("FXP output file '{}' already exists. Skipping".format( fxp_fn)) continue with open(fxp_fn, 'wb') as fp: if args.fx_version is not None: fx_version = args.fx_version elif preset.plugin_version is not None: fx_version = preset.plugin_version else: fx_version = FX_DEFAULT_VERSION if isinstance(preset, Preset): if preset.num_params is None: num_params = len(preset.params) else: num_params = preset.num_params params_fmt = '>{:d}f'.format(num_params) size = (FXP_HEADER_SIZE - FXP_PREAMBEL_SIZE + calcsize(params_fmt)) fx_magic = FX_MAGIC_PARAMS elif isinstance(preset, ChunkPreset): if preset.num_params is None: num_params = int(len(preset.chunk) / 4) else: num_params = preset.num_params chunk_len = len(preset.chunk) chunk_size = pack('>i', chunk_len) size = (FXP_HEADER_SIZE - FXP_PREAMBEL_SIZE + len(chunk_size) + chunk_len) fx_magic = FX_MAGIC_CHUNK else: raise TypeError("Wrong preset type: {!r}".format(preset)) header = pack( FXP_HEADER_FMT, CHUNK_MAGIC, size, fx_magic, FXP_FORMAT_VERSION, preset.plugin_id, fx_version, num_params, preset.label.encode('latin1', errors='replace') ) fp.write(header) if isinstance(preset, Preset): data = pack(params_fmt, *preset.params) fp.write(data) elif isinstance(preset, ChunkPreset): fp.write(chunk_size) fp.write(preset.chunk) if __name__ == '__main__': sys.exit(main() or 0)
the-stack_0_12081
try: import _thread except ModuleNotFoundError: _thread = None class Producer: """ Uses a list instead of a set to ensure correct ordering of subscriptions. Does not allow lambda functions to be used. :params name: name of producer :params validation: a function which will accept arguments passed into emit and check values / types raising a ValueError if incorrect type :params as_threads: option to run handlers as threads :raises NotImplementedError if micro-python version does not implement _thread and as_threads keyword set to True. """ def __init__(self, *args, name=None, validation=None, as_threads=False): if as_threads and not _thread: raise NotImplementedError( 'threading is not available in this distribution') self.__handlers = [] self.__name = name self.__validation = validation self.__as_threads = as_threads # private methods def _add_handler(self, handler_func): if handler_func in self.__handlers: raise ValueError('handler is already subscribed.') self.__handlers.append(handler_func) return self def _remove_handler(self, handler_func): if not handler_func in self.__handlers: raise ValueError('handler is not subscribed to producer') self.__handlers.remove(handler_func) return self # public methods def subscribe(self, handler_func): """ Subscribe a function as a callback to the producer. :params handler_func: a callback function that will be invoked when a value is sent to the emit method. Function cannot be a lambda. :raises ValueError if handler is a lambda or already subscribed. """ if handler_func.__name__ == '<lambda>': raise ValueError('handler cannot be a lambda function') return self._add_handler(handler_func) def unsubscribe(self, handler_func): """ Unsubscribe a callback from the producer. :raises ValueError if handler is not already subscribed. """ return self._remove_handler(handler_func) def emit(self, *args, **kwargs): """ Send arguments and keyword arguments to subscribed functions. Arguments are first passed through the validation function and then passed sequentially to each subscribed callback. If as_threads is set to True callbacks are started as separate threads. """ if self.__validation: self.__validation(*args, **kwargs) for handler in self.__handlers: if self.__as_threads and _thread: _thread.start_new_thread(handler, args, kwargs) else: handler(*args, **kwargs) # datamodel methods def __repr__(self): return "Producer(%s)" % self.__name def __len__(self): return len(self.__handlers) __call__ = emit __iadd__ = subscribe __isub__ = unsubscribe
the-stack_0_12082
# From https://github.com/taki0112/ResNet-Tensorflow. import tensorflow as tf import tensorflow.contrib as tf_contrib weight_init = tf_contrib.layers.variance_scaling_initializer() weight_regularizer = tf_contrib.layers.l2_regularizer(0.0001) def conv(x, channels, kernel=4, stride=2, padding='SAME', use_bias=True, scope='conv_0'): with tf.variable_scope(scope): x = tf.layers.conv2d(inputs=x, filters=channels, kernel_size=kernel, kernel_initializer=weight_init, kernel_regularizer=weight_regularizer, strides=stride, use_bias=use_bias, padding=padding) return x def fully_conneted(x, units, use_bias=True, scope='fully_0'): with tf.variable_scope(scope): x = flatten(x) x = tf.layers.dense(x, units=units, kernel_initializer=weight_init, kernel_regularizer=weight_regularizer, use_bias=use_bias) return x def resblock(x_init, channels, is_training=True, use_bias=True, downsample=False, scope='resblock'): with tf.variable_scope(scope): x = batch_norm(x_init, is_training, scope='batch_norm_0') x = relu(x) if downsample: x = conv(x, channels, kernel=3, stride=2, use_bias=use_bias, scope='conv_0') x_init = conv(x_init, channels, kernel=1, stride=2, use_bias=use_bias, scope='conv_init') else: x = conv(x, channels, kernel=3, stride=1, use_bias=use_bias, scope='conv_0') x = batch_norm(x, is_training, scope='batch_norm_1') x = relu(x) x = conv(x, channels, kernel=3, stride=1, use_bias=use_bias, scope='conv_1') return x + x_init def bottle_resblock(x_init, channels, is_training=True, use_bias=True, downsample=False, scope='bottle_resblock'): with tf.variable_scope(scope): x = batch_norm(x_init, is_training, scope='batch_norm_1x1_front') shortcut = relu(x) x = conv(shortcut, channels, kernel=1, stride=1, use_bias=use_bias, scope='conv_1x1_front') x = batch_norm(x, is_training, scope='batch_norm_3x3') x = relu(x) if downsample: x = conv(x, channels, kernel=3, stride=2, use_bias=use_bias, scope='conv_0') shortcut = conv(shortcut, channels*4, kernel=1, stride=2, use_bias=use_bias, scope='conv_init') else: x = conv(x, channels, kernel=3, stride=1, use_bias=use_bias, scope='conv_0') shortcut = conv(shortcut, channels * 4, kernel=1, stride=1, use_bias=use_bias, scope='conv_init') x = batch_norm(x, is_training, scope='batch_norm_1x1_back') x = relu(x) x = conv(x, channels*4, kernel=1, stride=1, use_bias=use_bias, scope='conv_1x1_back') return x + shortcut def get_residual_layer(res_n): x = [] if res_n == 18: x = [2, 2, 2, 2] if res_n == 34: x = [3, 4, 6, 3] if res_n == 50: x = [3, 4, 6, 3] if res_n == 101: x = [3, 4, 23, 3] if res_n == 152: x = [3, 8, 36, 3] return x def flatten(x): return tf.layers.flatten(x) def global_avg_pooling(x): gap = tf.reduce_mean(x, axis=[1, 2], keepdims=True) return gap def avg_pooling(x): return tf.layers.average_pooling2d(x, pool_size=2, strides=2, padding='SAME') def relu(x): return tf.nn.relu(x) def batch_norm(x, is_training=True, scope='batch_norm'): return tf_contrib.layers.batch_norm(x, decay=0.9, epsilon=1e-05, center=True, scale=True, updates_collections=None, is_training=is_training, scope=scope) def classification_loss(logit, label): loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits_v2(labels=label, logits=logit)) prediction = tf.equal(tf.argmax(logit, -1), tf.argmax(label, -1)) accuracy = tf.reduce_mean(tf.cast(prediction, tf.float32)) return loss, accuracy def classification_loss_weighted(logit, label): loss = tf.reduce_mean(tf.nn.weighted_cross_entropy_with_logits( targets=label, logits=logit, pos_weight=2)) # cost1 = tf.reduce_mean(tf.nn.weighted_cross_entropy_with_logits(targets=y, logits=pred,pos_weight=1)) prediction = tf.equal(tf.argmax(logit, -1), tf.argmax(label, -1)) accuracy = tf.reduce_mean(tf.cast(prediction, tf.float32)) return loss, accuracy
the-stack_0_12083
import copy import numpy import logging from six.moves import xrange import theano from theano import tensor, scalar, gof from theano.compile import optdb from theano.compile.ops import shape_i from theano.gof import (local_optimizer, EquilibriumDB, SequenceDB, Optimizer, toolbox) from theano.gof.optdb import LocalGroupDB from theano.scalar.basic import Scalar, Pow, Cast from theano.scan_module import scan_utils, scan_op, scan_opt from theano.tensor.nnet.conv import ConvOp from theano.tests.breakpoint import PdbBreakpoint from .type import GpuArrayType, GpuArrayConstant, get_context from .basic_ops import (as_gpuarray_variable, infer_context_name, host_from_gpu, GpuToGpu, HostFromGpu, GpuFromHost, GpuSplit, GpuContiguous, GpuAlloc, GpuAllocEmpty, GpuReshape, GpuEye, gpu_join, GpuJoin) from .blas import (gpu_dot22, GpuGemv, GpuGemm, GpuGer, gpugemm_no_inplace) from .conv import GpuConv from .nnet import (GpuCrossentropySoftmaxArgmax1HotWithBias, GpuCrossentropySoftmax1HotWithBiasDx, GpuSoftmaxWithBias, GpuSoftmax) from .elemwise import (GpuElemwise, GpuDimShuffle, GpuCAReduceCuda, GpuCAReduceCPY) from .subtensor import (GpuIncSubtensor, GpuSubtensor, GpuAdvancedSubtensor1, GpuAdvancedIncSubtensor1, GpuAdvancedIncSubtensor1_dev20) from .opt_util import alpha_merge, output_merge _logger = logging.getLogger("theano.sandbox.gpuarray.opt") gpu_optimizer = EquilibriumDB() gpu_cut_copies = EquilibriumDB() gpu_seqopt = SequenceDB() # Don't register this right now conv_groupopt = LocalGroupDB() conv_groupopt.__name__ = "gpua_conv_opts" gpu_seqopt.register('gpuarray_local_optimiziations', gpu_optimizer, 1, 'fast_compile', 'fast_run', 'inplace', 'gpuarray') gpu_seqopt.register('gpuarray_cut_transfers', gpu_cut_copies, 2, 'fast_compile', 'fast_run', 'gpuarray') # do not add 'fast_run' to these two as this would always enable gpuarray mode optdb.register('gpuarray_opt', gpu_seqopt, optdb.__position__.get('add_destroy_handler', 49.5) - 1, 'gpuarray') def register_opt(*tags, **kwargs): def f(local_opt): name = (kwargs and kwargs.pop('name')) or local_opt.__name__ gpu_optimizer.register(name, local_opt, 'fast_run', 'gpuarray', *tags) return local_opt return f register_opt('fast_compile')(theano.tensor.opt.local_track_shape_i) gpu_optimizer.register('local_remove_all_assert', theano.tensor.opt.local_remove_all_assert, 'unsafe') def safe_to_gpu(x, ctx_name): if isinstance(x.type, tensor.TensorType): return GpuFromHost(ctx_name)(x) else: return x def safe_to_cpu(x): if isinstance(x.type, GpuArrayType): return host_from_gpu(x) else: return x def op_lifter(OP, cuda_only=False): """ OP(..., host_from_gpu(), ...) -> host_from_gpu(GpuOP(...)) gpu_from_host(OP(inp0, ...)) -> GpuOP(inp0, ...) """ def f(maker): def local_opt(node): if type(node.op) in OP: # Either one of our inputs is on the gpu or # all of our clients are on the gpu replace = False # TODO: Maybe set context_name with infer_context_name()? context_name = None # We replace if any input is a host_from_gpu for i in node.inputs: if i.owner and i.owner.op == host_from_gpu: context_name = i.owner.inputs[0].type.context_name replace = True break if not replace: # We replace if *all* clients are on the GPU clients = [c for o in node.outputs for c in o.clients] replace = len(clients) != 0 for c, idx in clients: if (c == 'output' or not isinstance(c.op, GpuFromHost)): replace = False # TODO: check that the clients want the same context? if replace: # All clients are GpuFromHost and we have at least one context_name = clients[0][0].op.context_name # Check if we should replace if (not replace or (cuda_only and get_context(context_name).kind != 'cuda')): return False new_op = maker(node, context_name) # This is needed as sometimes new_op inherits from OP. if new_op and new_op != node.op: if isinstance(new_op, theano.Op): # tag the inputs with the context in case # the context was derived from the outputs def tag(i, ctx): i.tag.context_name = ctx return i inputs = [tag(i, context_name) for i in node.inputs] return [safe_to_cpu(o) for o in new_op(*inputs, return_list=True)] elif isinstance(new_op, (tuple, list)): return [safe_to_cpu(o) for o in new_op] else: # suppose it is a variable on the GPU return [host_from_gpu(new_op)] return False local_opt.__name__ = maker.__name__ return local_optimizer(OP)(local_opt) return f class InputToGpuOptimizer(Optimizer): """ Transfer the input to the gpu to start the rolling wave. """ def add_requirements(self, fgraph): fgraph.attach_feature(toolbox.ReplaceValidate()) def apply(self, fgraph): for input in fgraph.inputs: if isinstance(input.type, GpuArrayType): continue if (len(input.clients) == 1 and (input.clients[0][0] == 'output' or isinstance(input.clients[0][0].op, GpuFromHost))): continue ctx_name = getattr(input.tag, 'context_name', None) try: new_input = host_from_gpu(GpuFromHost(ctx_name)(input)) fgraph.replace_validate(input, new_input, "InputToGpuOptimizer") except TypeError: # This could fail if the inputs are not TensorTypes pass except ValueError: # If there is no context tag and no default context # then it stays on the CPU if not hasattr(input.tag, 'context_name'): raise pass gpu_seqopt.register('InputToGpuArrayOptimizer', InputToGpuOptimizer(), 0, 'fast_run', 'fast_compile', 'merge') @local_optimizer([GpuFromHost, GpuToGpu, host_from_gpu]) def local_cut_gpu_transfers(node): # gpu[ab] -> host -> gpub if (isinstance(node.op, GpuFromHost) and node.inputs[0].owner and node.inputs[0].owner.op == host_from_gpu): other = node.inputs[0].owner.inputs[0] if node.op.context_name == other.type.context_name: return [other] else: return [GpuToGpu(node.op.context_name)(other)] # ? -> gpua -> host elif (node.op == host_from_gpu and node.inputs[0].owner): n2 = node.inputs[0].owner # host -> if isinstance(n2.op, GpuFromHost): return [n2.inputs[0]] # gpub -> if isinstance(n2.op, GpuToGpu): return [host_from_gpu(n2.inputs[0])] # ? -> gpua -> gpub elif isinstance(node.op, GpuToGpu): # Transfer within same context if node.inputs[0].type.context_name == node.op.context_name: return [node.inputs[0]] if node.inputs[0].owner: n2 = node.inputs[0].owner # host -> if isinstance(n2.op, GpuFromHost): return [GpuFromHost(node.op.context_name)(n2.inputs[0])] # gpuc -> if isinstance(n2.op, GpuToGpu): if node.op.context_name == n2.inputs[0].type.context_name: return [n2.inputs[0]] else: return [node.op(n2.inputs[0])] gpu_cut_copies.register('cut_gpua_host_transfers', local_cut_gpu_transfers, 'fast_compile', 'fast_run', 'inplace', 'gpuarray') gpu_cut_copies.register('cut_gpua_constant_transfers', tensor.opt.constant_folding, 'fast_compile', 'fast_run', 'gpuarray') optdb['canonicalize'].register('local_cut_gpua_host_gpua', local_cut_gpu_transfers, 'fast_compile', 'fast_run', 'gpuarray') @register_opt('fast_compile') @local_optimizer([tensor.Alloc]) def local_gpuaalloc2(node): """ Join(axis, {Alloc or HostFromGPU}, ...) -> Join(axis, GpuAlloc, Alloc, ...) Moves an alloc that is an input to join to the gpu. """ try: get_context(None) except ValueError: # If there is no default context then we do not perform the move here. return if (isinstance(node.op, tensor.Alloc) and all(c != 'output' and c.op == tensor.join and all(i.owner and i.owner.op in [host_from_gpu, tensor.alloc] for i in c.inputs[1:]) for c, idx in node.outputs[0].clients)): return [host_from_gpu(GpuAlloc(None)(*node.inputs))] @register_opt('fast_compile') @op_lifter([tensor.Alloc]) def local_gpuaalloc(node, context_name): return GpuAlloc(context_name)(*node.inputs) @register_opt() @local_optimizer([GpuAlloc]) def local_gpualloc_memset_0(node): if isinstance(node.op, GpuAlloc) and not node.op.memset_0: inp = node.inputs[0] if (isinstance(inp, GpuArrayConstant) and inp.data.size == 1 and (numpy.asarray(inp.data) == 0).all()): new_op = GpuAlloc(node.op.context_name, memset_0=True) return [new_op(*node.inputs)] @register_opt() @local_optimizer([GpuContiguous]) def local_gpu_contiguous_gpu_contiguous(node): """ gpu_contiguous(gpu_contiguous(x)) -> gpu_contiguous(x) """ if isinstance(node.op, GpuContiguous): inp = node.inputs[0] if inp.owner and isinstance(inp.owner.op, GpuContiguous): return [inp] @register_opt('fast_compile') @op_lifter([tensor.Reshape]) def local_gpureshape(node, context_name): op = node.op name = op.name if name: name = 'Gpu' + name res = GpuReshape(op.ndim, op.name) return res @register_opt('fast_compile') @op_lifter([tensor.Rebroadcast]) def local_gpu_rebroadcast(node, context_name): if isinstance(node.inputs[0].owner.op, HostFromGpu): return node.op(node.inputs[0].owner.inputs[0]) @register_opt('fast_compile') @op_lifter([tensor.Flatten]) def local_gpuflatten(node, context_name): op = node.op shp = [] if op.outdim != 1: shp = [node.inputs[0].shape[i] for i in range(op.outdim - 1)] shp += [-1] res = GpuReshape(op.outdim, None) o = res(node.inputs[0], theano.tensor.as_tensor_variable(shp)) return o @register_opt('fast_compile') @op_lifter([tensor.Elemwise]) def local_gpu_elemwise(node, context_name): op = node.op scal_op = op.scalar_op name = op.name if name: name = 'Gpu' + name if len(node.outputs) > 1: return res = GpuElemwise(scal_op, name=name, inplace_pattern=copy.copy(op.inplace_pattern), nfunc_spec=op.nfunc_spec) # If the elemwise operation is a pow, casts might be required on the # inputs and or outputs because only the (float, float)->float and # (double, double)->double cases are implemented at the moment. if isinstance(op.scalar_op, Pow): # Only transfer the computation on the gpu if the output dtype is # floating point. Else, give up on the transfer to the gpu. out_dtype = node.outputs[0].dtype if out_dtype not in ['float16', 'float32', 'float64']: return # Transfer the inputs on the GPU and cast them to the right dtype. new_inputs = [] for inp in node.inputs: if inp.dtype != out_dtype: gpu_cast_op = GpuElemwise(Cast(Scalar(out_dtype))) new_inputs.append(gpu_cast_op(as_gpuarray_variable(inp))) else: new_inputs.append(as_gpuarray_variable(inp)) # Perform the exponent on the gpu and transfer the output back to the # cpu. gpu_output = res(*new_inputs) cpu_output = host_from_gpu(gpu_output) return [cpu_output] else: return res def max_inputs_to_GpuElemwise(node): ptr_size = 8 int_size = 4 # we take the limit from CUDA for now argument_limit = 232 ndim = node.inputs[0].type.ndim # number of elements and shape size_param_mandatory = (int_size * (ndim + 1)) + \ (ptr_size + int_size * ndim) * len(node.outputs) nb_bytes_avail = argument_limit - size_param_mandatory nb_bytes_per_input = ptr_size + ndim * int_size max_nb_inputs = nb_bytes_avail // nb_bytes_per_input return max_nb_inputs gpu_local_elemwise_fusion = tensor.opt.local_elemwise_fusion_op( GpuElemwise, max_inputs_to_GpuElemwise) optdb.register('gpua_elemwise_fusion', tensor.opt.FusionOptimizer(gpu_local_elemwise_fusion), 71.00, 'fast_run', 'fusion', 'local_elemwise_fusion', 'gpuarray') inplace_gpu_elemwise_opt = tensor.opt.inplace_elemwise_optimizer_op( GpuElemwise) optdb.register('gpua_inplace_opt', inplace_gpu_elemwise_opt, 75, 'inplace_elemwise_optimizer', 'fast_run', 'inplace', 'gpuarray') @register_opt('fast_compile') @op_lifter([tensor.DimShuffle]) def local_gpua_dimshuffle(node, context_name): return GpuDimShuffle(node.op.input_broadcastable, node.op.new_order) @register_opt('fast_compile') @op_lifter([tensor.SpecifyShape]) def local_gpua_specifyShape(node, context_name): if isinstance(node.inputs[0].type, GpuArrayType): return inp = [GpuFromHost(context_name)(node.inputs[0])] + node.inputs[1:] return tensor.specify_shape(*inp) @register_opt('fast_compile') @op_lifter([theano.compile.ops.Shape]) def local_gpua_shape(node, context_name): # op_lifter will call this opt too frequently as the output is # always on the CPU. if isinstance(node.inputs[0].type, GpuArrayType): return return [GpuFromHost(context_name)(node.inputs[0]).shape] def gpu_print_wrapper(op, cnda): op.old_op.global_fn(op.old_op, numpy.asarray(cnda)) @register_opt('fast_compile') @op_lifter([tensor.printing.Print]) def local_gpu_print_op(node, context_name): x, = node.inputs gpu_x, = x.owner.inputs new_op = node.op.__class__(global_fn=gpu_print_wrapper) new_op.old_op = node.op return new_op(gpu_x) @register_opt('fast_compile') @local_optimizer([PdbBreakpoint]) def local_gpu_pdbbreakpoint_op(node): if isinstance(node.op, PdbBreakpoint): old_inputs = node.inputs old_outputs = node.outputs new_inputs = node.inputs[:1] input_transfered = [] # Go through the monitored variables, only transfering on GPU those # for which the input comes from the GPU or the output will be # transfered on the GPU. nb_monitored_vars = len(node.outputs) for i in range(nb_monitored_vars): inp = old_inputs[i + 1] out = old_outputs[i] input_is_from_gpu = (inp.owner and isinstance(inp.owner.op, HostFromGpu)) output_goes_to_gpu = False for c in out.clients: if c == 'output': continue if isinstance(c[0].op, GpuFromHost): output_goes_to_gpu = True context_name = c[0].op.context_name break if input_is_from_gpu: # The op should be applied on the GPU version of the input new_inputs.append(inp.owner.inputs[0]) input_transfered.append(True) elif output_goes_to_gpu: # The input should be transfered to the gpu new_inputs.append(GpuFromHost(context_name)(inp)) input_transfered.append(True) else: # No transfer is required. new_inputs.append(inp) input_transfered.append(False) # Only continue the optimization if at least one input has been # transfered to the gpu if not any(input_transfered): return False # Apply the op on the new inputs new_op_outputs = node.op(*new_inputs, return_list=True) # Propagate the transfer to the gpu through the outputs that require # it new_outputs = [] for i in range(len(new_op_outputs)): if input_transfered[i]: new_outputs.append(host_from_gpu(new_op_outputs[i])) else: new_outputs.append(new_op_outputs[i]) return new_outputs return False @register_opt('fast_compile') @op_lifter([tensor.Join]) def local_gpua_join(node, context_name): return gpu_join @register_opt('fast_compile') @local_optimizer([GpuJoin]) def local_gpuajoin_1(node): # join of a single element if (isinstance(node.op, GpuJoin) and len(node.inputs) == 2): return [node.inputs[1]] @register_opt('fast_compile') @op_lifter([tensor.Split]) def local_gpua_split(node, context_name): return GpuSplit(node.op.len_splits) @register_opt('fast_compile') @op_lifter([tensor.Subtensor]) def local_gpua_subtensor(node, context_name): x = node.inputs[0] if (x.owner and isinstance(x.owner.op, HostFromGpu)): gpu_x = x.owner.inputs[0] if (gpu_x.owner and isinstance(gpu_x.owner.op, GpuFromHost) and # And it is a shared var or an input of the graph. not gpu_x.owner.inputs[0].owner): if len(x.clients) == 1: if any([n == 'output' or any([isinstance(v.type, GpuArrayType) for v in n.inputs + n.outputs]) for n, _ in node.outputs[0].clients]): return else: return [host_from_gpu(gpu_x.owner.op(node.outputs[0]))] return GpuSubtensor(node.op.idx_list) @register_opt('fast_compile') @op_lifter([tensor.IncSubtensor]) def local_gpua_incsubtensor(node, context_name): return GpuIncSubtensor(node.op.idx_list, node.op.inplace, node.op.set_instead_of_inc, node.op.destroyhandler_tolerate_aliased) @register_opt('fast_compile') @op_lifter([tensor.AdvancedSubtensor1]) def local_gpua_advanced_subtensor(node, context_name): return GpuAdvancedSubtensor1() @register_opt('fast_compile') @op_lifter([tensor.AdvancedIncSubtensor1]) def local_gpua_advanced_incsubtensor(node, context_name): # This is disabled on non-cuda contexts if get_context(context_name).kind != 'cuda': return None x, y, ilist = node.inputs # Gpu Ops needs both inputs to have the same dtype if (x.type.dtype != y.type.dtype): dtype = scalar.upcast(x.type.dtype, y.type.dtype) if x.type.dtype != dtype: x = tensor.cast(x, dtype) if y.type.dtype != dtype: y = tensor.cast(y, dtype) set_instead_of_inc = node.op.set_instead_of_inc active_device_no = theano.sandbox.cuda.active_device_number() device_properties = theano.sandbox.cuda.device_properties compute_capability = device_properties(active_device_no)['major'] if (compute_capability < 2 or x.ndim != 2 or y.ndim != 2): return [GpuAdvancedIncSubtensor1( set_instead_of_inc=set_instead_of_inc)(x, y, ilist)] else: return [GpuAdvancedIncSubtensor1_dev20( set_instead_of_inc=set_instead_of_inc)(x, y, ilist)] @register_opt('fast_compile') @op_lifter([tensor.CAReduce, tensor.Sum, tensor.elemwise.Prod]) def local_gpua_careduce(node, context_name): if isinstance(node.op.scalar_op, (scalar.Add, scalar.Mul, scalar.Maximum, scalar.Minimum)): ctx = get_context(context_name) if ctx.kind == 'opencl': op = GpuCAReduceCPY if node.op.scalar_op not in [scalar.add, scalar.mul]: # We don't support yet all reduction with cpy code. return elif ctx.kind == 'cuda': op = GpuCAReduceCuda else: return False x, = node.inputs greduce = op( node.op.scalar_op, axis=node.op.axis, dtype=getattr(node.op, 'dtype', None), acc_dtype=getattr(node.op, 'acc_dtype', None)) gvar = greduce(x) # We need to have the make node called, otherwise the mask can # be None if (op is GpuCAReduceCPY or gvar.owner.op.supports_c_code([GpuFromHost(context_name)(x)])): return greduce else: # Try to make a simpler pattern based on reshaping # The principle is that if two adjacent dimensions have # the same value in the reduce_mask, then we can reshape # to make them a single dimension, do the reduction, and # then reshape to get them back. if node.op.axis is None: reduce_mask = [1] * x.type.ndim else: reduce_mask = [0] * x.type.ndim for a in node.op.axis: assert reduce_mask[a] == 0 reduce_mask[a] = 1 shape_of = node.fgraph.shape_feature.shape_of x_shape = shape_of[x] new_in_shp = [x_shape[0]] new_mask = [reduce_mask[0]] for i in xrange(1, x.type.ndim): if reduce_mask[i] == reduce_mask[i - 1]: new_in_shp[-1] *= x_shape[i] else: new_mask.append(reduce_mask[i]) new_in_shp.append(x_shape[i]) new_axis = [] for idx, m in enumerate(new_mask): if m == 1: new_axis.append(idx) greduce = op( node.op.scalar_op, axis=new_axis, reduce_mask=new_mask, dtype=getattr(node.op, 'dtype', None), acc_dtype=getattr(node.op, 'acc_dtype', None)) reshaped_x = x.reshape(tensor.stack(new_in_shp)) gpu_reshaped_x = GpuFromHost(context_name)(reshaped_x) gvar = greduce(gpu_reshaped_x) # We need to have the make node called, otherwise the mask can # be None reshaped_gpu_inputs = [gpu_reshaped_x] if greduce.supports_c_code(reshaped_gpu_inputs): reduce_reshaped_x = host_from_gpu( greduce(gpu_reshaped_x)) if reduce_reshaped_x.ndim != node.outputs[0].ndim: unreshaped_reduce = reduce_reshaped_x.reshape( tensor.stack(shape_of[node.outputs[0]])) else: unreshaped_reduce = reduce_reshaped_x return [unreshaped_reduce] @register_opt('fast_compile') @op_lifter([tensor.blas.Gemv, tensor.blas_c.CGemv]) def local_gpua_gemv(node, context_name): return GpuGemv(inplace=node.op.inplace) @register_opt('fast_compile') @op_lifter([tensor.blas.Gemm]) def local_gpua_gemm(node, context_name): return GpuGemm(inplace=node.op.inplace) @register_opt('fast_compile') @op_lifter([tensor.basic.Dot]) def local_gpua_hgemm(node, context_name): from theano.sandbox.cuda import nvcc_compiler if nvcc_compiler.nvcc_version < '7.5': _logger.warning("Not performing dot of float16 on the GPU since " "cuda 7.5 is not available. Updating could speed up " "your code.") return A = node.inputs[0] B = node.inputs[1] if (A.ndim == 2 and B.ndim == 2 and A.dtype == 'float16' and B.dtype == 'float16'): fgraph = node.inputs[0].fgraph C = GpuAllocEmpty(dtype='float16', context_name=context_name)( shape_i(A, 0, fgraph), shape_i(B, 1, fgraph)) return gpugemm_no_inplace(C, 1.0, A, B, 0.0) @register_opt() @alpha_merge(GpuGemm, alpha_in=1, beta_in=4) def local_gpuagemm_alpha_merge(node, *inputs): return [gpugemm_no_inplace(*inputs)] @register_opt() @output_merge(GpuGemm, alpha_in=1, beta_in=4, out_in=0) def local_gpuagemm_output_merge(node, *inputs): return [gpugemm_no_inplace(*inputs)] @register_opt('fast_compile') @op_lifter([tensor.blas.Ger, tensor.blas_c.CGer, tensor.blas_scipy.ScipyGer]) def local_gpua_ger(node, context_name): return GpuGer(inplace=node.op.destructive) @register_opt('fast_compile') @op_lifter([tensor.blas.Dot22]) def local_gpua_dot22(node, context_name): return gpu_dot22 @register_opt('fast_compile') @op_lifter([tensor.basic.Eye]) def local_gpua_eye(node, context_name): return GpuEye(dtype=node.op.dtype, context_name=context_name) @register_opt('fast_compile') @op_lifter([tensor.nnet.CrossentropySoftmaxArgmax1HotWithBias], cuda_only=True) def local_gpua_crossentropysoftmaxargmax1hotwithbias(node, context_name): return GpuCrossentropySoftmaxArgmax1HotWithBias() @register_opt('fast_compile') @op_lifter([tensor.nnet.CrossentropySoftmax1HotWithBiasDx], cuda_only=True) def local_gpua_crossentropysoftmax1hotwithbiasdx(node, context_name): return GpuCrossentropySoftmax1HotWithBiasDx() @register_opt('fast_compile') @op_lifter([tensor.nnet.Softmax], cuda_only=True) def local_gpua_softmax(node, context_name): return GpuSoftmax() @register_opt('fast_compile') @op_lifter([tensor.nnet.SoftmaxWithBias], cuda_only=True) def local_gpua_softmaxwithbias(node, context_name): return GpuSoftmaxWithBias() @register_opt('fast_compile') @op_lifter([theano.tensor.opt.Assert]) def local_assert(node, context_name): if (node.inputs[0].owner and isinstance(node.inputs[0].owner.op, HostFromGpu)): return [host_from_gpu(node.op(node.inputs[0].owner.inputs[0], *node.inputs[1:]))] @register_opt('fast_compile') @op_lifter([ConvOp]) def local_gpu_conv(node, context_name): def GpuConvOp_from_ConvOp(op): logical_img_hw = None if op.kshp_logical is not None and op.kshp_logical != op.kshp: return None ret = GpuConv(border_mode=op.out_mode, subsample=(op.dx, op.dy), logical_img_hw=logical_img_hw, logical_kern_hw=op.kshp_logical, logical_kern_align_top=op.kshp_logical_top_aligned, kshp=op.kshp, version=op.version, direction_hint=op.direction_hint, verbose=op.verbose, imshp=op.imshp, nkern=op.nkern, bsize=op.bsize, fft_opt=op.fft_opt) if op.imshp_logical is not None: logical_img_hw = op.imshp_logical[1:3] if logical_img_hw != op.imshp[1:3]: rstride = int(numpy.ceil(op.imshp_logical[1] / float(op.imshp[1]))) cstride = int(numpy.ceil(op.imshp_logical[2] / float(op.imshp[2]))) def make_graph(img, kern): buf = tensor.alloc(numpy.asarray(0, dtype=img.dtype), img.shape[0], *op.imshp_logical) img = tensor.set_subtensor(buf[:, :, ::rstride, ::cstride], img) img = GpuFromHost(context_name)(img) return ret(img, kern) return make_graph return ret def values_eq_approx(a, b): """ This fct is needed to don't have DebugMode raise useless error due to ronding error. This happen as We reduce on the two last dimensions, so this can raise the absolute error if the number of element we reduce on is significant. """ assert a.ndim == 4 atol = None if a.shape[-1] * a.shape[-2] > 100: # For float32 the default atol is 1e-5 atol = 3e-5 return GpuArrayType.values_eq_approx(a, b, atol=atol) img, kern = node.inputs gpu_conv = GpuConvOp_from_ConvOp(node.op) if gpu_conv is None: return out = gpu_conv(GpuFromHost(context_name)(img), GpuFromHost(context_name)(kern)) assert isinstance(out.type, GpuArrayType) # Make sure to keep the broadcastable pattern of the original # convolution even if we might gain or lose some due to different # information at the node level. out = tensor.patternbroadcast(out, node.outputs[0].broadcastable) out.values_eq_approx = values_eq_approx return [out] # Register this here so that it goes after 'local_gpu_conv' register_opt()(conv_groupopt) @register_opt("low_memory") @local_optimizer([GpuCAReduceCuda]) def local_gpu_elemwise_careduce(node): """ Merge some GpuCAReduceCuda and GPUElemwise. """ if (isinstance(node.op, GpuCAReduceCuda) and node.op.pre_scalar_op is None and node.inputs[0].owner and isinstance(node.inputs[0].owner.op, GpuElemwise) and # The Op support all scalar with 1 inputs. We don't # automatically add more case, as some like trigonometic # operation with some reduction pattern will probably result # to slow down. isinstance(node.inputs[0].owner.op.scalar_op, scalar.basic.Sqr)): op = node.op inp = node.inputs[0].owner.inputs[0] return [GpuCAReduceCuda(scalar_op=op.scalar_op, reduce_mask=op.reduce_mask, pre_scalar_op=scalar.basic.sqr)(inp)] def tensor_to_gpu(x, context_name): if isinstance(x.type, tensor.TensorType): y = GpuArrayType(broadcastable=x.type.broadcastable, context_name=context_name, dtype=x.type.dtype)() if x.name: y.name = x.name + '[Gpua]' return y else: return x def gpu_safe_new(x, tag=''): """ Internal function that constructs a new variable from x with the same type, but with a different name (old name + tag). This function is used by gradient, or the R-op to construct new variables for the inputs of the inner graph such that there is no interference between the original graph and the newly constructed graph. """ if hasattr(x, 'name') and x.name is not None: nw_name = x.name + tag else: nw_name = None if isinstance(x, theano.Constant): return x.clone() nw_x = x.type() nw_x.name = nw_name return nw_x def gpu_reconstruct_graph(inputs, outputs, tag=None): """ Different interface to clone, that allows you to pass inputs. Compared to clone, this method always replaces the inputs with new variables of the same type, and returns those (in the same order as the original inputs). """ if tag is None: tag = '' nw_inputs = [gpu_safe_new(x, tag) for x in inputs] givens = {} for nw_x, x in zip(nw_inputs, inputs): givens[x] = nw_x nw_outputs = scan_utils.clone(outputs, replace=givens) return (nw_inputs, nw_outputs) @register_opt('scan', 'fast_compile') @op_lifter([scan_op.Scan]) def local_scan_to_gpua(node, context_name): info = copy.deepcopy(node.op.info) if info.get('gpua', False): return info['gpua'] = True nw_ins = [node.inputs[0]] e = (1 + node.op.n_seqs + node.op.n_mit_mot + node.op.n_mit_sot + node.op.n_sit_sot + node.op.n_shared_outs) nw_ins += [safe_to_gpu(x, context_name) for x in node.inputs[1:e]] b = e e = e + node.op.n_nit_sot nw_ins += node.inputs[b:e] nw_ins += [safe_to_gpu(x, context_name) for x in node.inputs[e:]] scan_ins = [tensor_to_gpu(x, context_name) for x in node.op.inputs] # The inner output corresponding to the looping condition should not be # moved to the gpu if node.op.info['as_while']: scan_outs = [safe_to_gpu(x, context_name) for x in node.op.outputs[:-1]] scan_outs += [node.op.outputs[-1]] else: scan_outs = [safe_to_gpu(x, context_name) for x in node.op.outputs] scan_outs = scan_utils.clone( scan_outs, replace=list(zip(node.op.inputs, (safe_to_cpu(x) for x in scan_ins)))) # We need to construct the hash here, because scan # __init__ does not know about the gpu and can not # handle graphs with inputs being on the gpu tmp_in, tmp_out = gpu_reconstruct_graph(scan_ins, scan_outs) local_fgraph = gof.FunctionGraph(tmp_in, tmp_out, clone=True) _cmodule_key = gof.CLinker().cmodule_key_(local_fgraph, []) info['gpu_hash'] = hash(_cmodule_key) def typebuild(dtype, broadcastable, context_name=context_name): return GpuArrayType(dtype=dtype, broadcastable=broadcastable, context_name=context_name) nw_op = scan_op.Scan(scan_ins, scan_outs, info, typeConstructor=typebuild).make_node(*nw_ins) return nw_op.outputs def _scan_type_infer(node): context_name = infer_context_name(*node.inputs) def typebuild(dtype, broadcastable, context_name=context_name): return GpuArrayType(dtype=dtype, broadcastable=broadcastable, context_name=context_name) return typebuild optdb.register('gpua_scanOp_make_inplace', scan_opt.ScanInplaceOptimizer(typeInfer=_scan_type_infer, gpua_flag=True), 75, 'gpuarray', 'fast_run', 'inplace', 'scan')
the-stack_0_12086
import requests from lxml import html url = 'https://info.urfu.ru/ru/departures/kafedry/' # Получение исходного кода страницы response = requests.get(url) # Преобразование тела документа в дерево элементов parsed_body = html.fromstring(response.text) # Получение всех элементов класса 'course-box' course_boxes = parsed_body.find_class('course-box') # Создание пустого списка для последующего добавления кафедр departments = [] for box in course_boxes: # Получение содержания элемента с тегом <a> link = box.find('a') # Получение содержания элемента с тегом <p> text = link.find('p') # Добавление названия кафедры в заготовленный список departments.append(text.text_content())
the-stack_0_12088
#!/usr/bin/env python import os import requests import json import datetime import shutil from bs4 import BeautifulSoup here = os.path.dirname(os.path.abspath(__file__)) hospital_id = os.path.basename(here) url ='https://www.huntsvillehospital.org/price-transparency' today = datetime.datetime.today().strftime('%Y-%m-%d') outdir = os.path.join(here, today) if not os.path.exists(outdir): os.mkdir(outdir) prefix = "https://www.huntsvillehospital.org" response = requests.get(url) soup = BeautifulSoup(response.text, 'lxml') # Each folder will have a list of records records = [] for entry in soup.find_all('a', href=True): download_url = prefix + entry['href'] if '.csv' in download_url: filename = os.path.basename(download_url.split('?')[0]) output_file = os.path.join(outdir, filename) os.system('wget -O "%s" "%s"' % (output_file, download_url)) record = { 'hospital_id': hospital_id, 'filename': filename, 'date': today, 'uri': filename, 'name': filename, 'url': download_url } records.append(record) # Keep json record of all files included records_file = os.path.join(outdir, 'records.json') with open(records_file, 'w') as filey: filey.write(json.dumps(records, indent=4)) # This folder is also latest. latest = os.path.join(here, 'latest') if os.path.exists(latest): shutil.rmtree(latest) shutil.copytree(outdir, latest)
the-stack_0_12089
"""Integration tests for :mod:`esmvalcore._recipe_checks`.""" from typing import Any, List from unittest import mock import pytest import esmvalcore._recipe_checks as check ERR_ALL = 'Looked for files matching%s' ERR_D = ('Looked for files in %s, but did not find any file pattern to match ' 'against') ERR_F = ('Looked for files matching %s, but did not find any existing input ' 'directory') ERR_RANGE = 'No input data available for years {} in files {}' VAR = { 'filename': 'a/c.nc', 'frequency': 'mon', 'short_name': 'tas', 'start_year': 2020, 'end_year': 2025, 'alias': 'alias', } FX_VAR = { 'filename': 'a/b.nc', 'frequency': 'fx', 'short_name': 'areacella', } FILES = [ 'a/b/c_20200101-20201231', 'a/b/c_20210101-20211231', 'a/b/c_20220101-20221231', 'a/b/c_20230101-20231231', 'a/b/c_20240101-20241231', 'a/b/c_20250101-20251231', ] DATA_AVAILABILITY_DATA = [ (FILES, dict(VAR), None), (FILES, dict(FX_VAR), None), (FILES[:-1], dict(VAR), ERR_RANGE.format('2025', FILES[:-1])), (FILES[:-2], dict(VAR), ERR_RANGE.format('2024, 2025', FILES[:-2])), ([FILES[1]] + [FILES[3]], dict(VAR), ERR_RANGE.format('2020, 2022, 2024, 2025', [FILES[1]] + [FILES[3]])), ] @pytest.mark.parametrize('input_files,var,error', DATA_AVAILABILITY_DATA) @mock.patch('esmvalcore._recipe_checks.logger', autospec=True) def test_data_availability_data(mock_logger, input_files, var, error): """Test check for data when data is present.""" saved_var = dict(var) if error is None: check.data_availability(input_files, var, None, None) mock_logger.error.assert_not_called() else: with pytest.raises(check.RecipeError) as rec_err: check.data_availability(input_files, var, None, None) assert str(rec_err.value) == error assert var == saved_var DATA_AVAILABILITY_NO_DATA: List[Any] = [ ([], [], None), ([], None, None), (None, [], None), (None, None, None), (['dir1'], [], (ERR_D, ['dir1'])), (['dir1', 'dir2'], [], (ERR_D, ['dir1', 'dir2'])), (['dir1'], None, (ERR_D, ['dir1'])), (['dir1', 'dir2'], None, (ERR_D, ['dir1', 'dir2'])), ([], ['a*.nc'], (ERR_F, ['a*.nc'])), ([], ['a*.nc', 'b*.nc'], (ERR_F, ['a*.nc', 'b*.nc'])), (None, ['a*.nc'], (ERR_F, ['a*.nc'])), (None, ['a*.nc', 'b*.nc'], (ERR_F, ['a*.nc', 'b*.nc'])), (['1'], ['a'], (ERR_ALL, ': 1/a')), (['1'], ['a', 'b'], (ERR_ALL, '\n1/a\n1/b')), (['1', '2'], ['a'], (ERR_ALL, '\n1/a\n2/a')), (['1', '2'], ['a', 'b'], (ERR_ALL, '\n1/a\n1/b\n2/a\n2/b')), ] @pytest.mark.parametrize('dirnames,filenames,error', DATA_AVAILABILITY_NO_DATA) @mock.patch('esmvalcore._recipe_checks.logger', autospec=True) def test_data_availability_no_data(mock_logger, dirnames, filenames, error): """Test check for data when no data is present.""" var = dict(VAR) var_no_filename = { 'frequency': 'mon', 'short_name': 'tas', 'start_year': 2020, 'end_year': 2025, 'alias': 'alias', } error_first = ('No input files found for variable %s', var_no_filename) error_last = ("Set 'log_level' to 'debug' to get more information", ) with pytest.raises(check.RecipeError) as rec_err: check.data_availability([], var, dirnames, filenames) assert str(rec_err.value) == 'Missing data for alias: tas' if error is None: assert mock_logger.error.call_count == 2 errors = [error_first, error_last] else: assert mock_logger.error.call_count == 3 errors = [error_first, error, error_last] calls = [mock.call(*e) for e in errors] assert mock_logger.error.call_args_list == calls assert var == VAR
the-stack_0_12090
# Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """TensorFlow ops for directed graphs.""" import tensorflow as tf from syntaxnet.util import check def ArcPotentialsFromTokens(source_tokens, target_tokens, weights): r"""Returns arc potentials computed from token activations and weights. For each batch of source and target token activations, computes a scalar potential for each arc as the 3-way product between the activation vectors of the source and target of the arc and the |weights|. Specifically, arc[b,s,t] = \sum_{i,j} source_tokens[b,s,i] * weights[i,j] * target_tokens[b,t,j] Note that the token activations can be extended with bias terms to implement a "biaffine" model (Dozat and Manning, 2017). Args: source_tokens: [B,N,S] tensor of batched activations for the source token in each arc. target_tokens: [B,N,T] tensor of batched activations for the target token in each arc. weights: [S,T] matrix of weights. B,N may be statically-unknown, but S,T must be statically-known. The dtype of all arguments must be compatible. Returns: [B,N,N] tensor A of arc potentials where A_{b,s,t} is the potential of the arc from s to t in batch element b. The dtype of A is the same as that of the arguments. Note that the diagonal entries (i.e., where s==t) represent self-loops and may not be meaningful. """ # All arguments must have statically-known rank. check.Eq(source_tokens.get_shape().ndims, 3, 'source_tokens must be rank 3') check.Eq(target_tokens.get_shape().ndims, 3, 'target_tokens must be rank 3') check.Eq(weights.get_shape().ndims, 2, 'weights must be a matrix') # All activation dimensions must be statically-known. num_source_activations = weights.get_shape().as_list()[0] num_target_activations = weights.get_shape().as_list()[1] check.NotNone(num_source_activations, 'unknown source activation dimension') check.NotNone(num_target_activations, 'unknown target activation dimension') check.Eq(source_tokens.get_shape().as_list()[2], num_source_activations, 'dimension mismatch between weights and source_tokens') check.Eq(target_tokens.get_shape().as_list()[2], num_target_activations, 'dimension mismatch between weights and target_tokens') # All arguments must share the same type. check.Same([weights.dtype.base_dtype, source_tokens.dtype.base_dtype, target_tokens.dtype.base_dtype], 'dtype mismatch') source_tokens_shape = tf.shape(source_tokens) target_tokens_shape = tf.shape(target_tokens) batch_size = source_tokens_shape[0] num_tokens = source_tokens_shape[1] with tf.control_dependencies([ tf.assert_equal(batch_size, target_tokens_shape[0]), tf.assert_equal(num_tokens, target_tokens_shape[1])]): # Flatten out the batch dimension so we can use one big multiplication. targets_bnxt = tf.reshape(target_tokens, [-1, num_target_activations]) # Matrices are row-major, so we arrange for the RHS argument of each matmul # to have its transpose flag set. That way no copying is required to align # the rows of the LHS with the columns of the RHS. weights_targets_bnxs = tf.matmul(targets_bnxt, weights, transpose_b=True) # The next computation is over pairs of tokens within each batch element, so # restore the batch dimension. weights_targets_bxnxs = tf.reshape( weights_targets_bnxs, [batch_size, num_tokens, num_source_activations]) # Note that this multiplication is repeated across the batch dimension, # instead of being one big multiplication as in the first matmul. There # doesn't seem to be a way to arrange this as a single multiplication given # the pairwise nature of this computation. arcs_bxnxn = tf.matmul(source_tokens, weights_targets_bxnxs, transpose_b=True) return arcs_bxnxn def ArcSourcePotentialsFromTokens(tokens, weights): r"""Returns arc source potentials computed from tokens and weights. For each batch of token activations, computes a scalar potential for each arc as the product between the activations of the source token and the |weights|. Specifically, arc[b,s,:] = \sum_{i} weights[i] * tokens[b,s,i] Args: tokens: [B,N,S] tensor of batched activations for source tokens. weights: [S] vector of weights. B,N may be statically-unknown, but S must be statically-known. The dtype of all arguments must be compatible. Returns: [B,N,N] tensor A of arc potentials as defined above. The dtype of A is the same as that of the arguments. Note that the diagonal entries (i.e., where s==t) represent self-loops and may not be meaningful. """ # All arguments must have statically-known rank. check.Eq(tokens.get_shape().ndims, 3, 'tokens must be rank 3') check.Eq(weights.get_shape().ndims, 1, 'weights must be a vector') # All activation dimensions must be statically-known. num_source_activations = weights.get_shape().as_list()[0] check.NotNone(num_source_activations, 'unknown source activation dimension') check.Eq(tokens.get_shape().as_list()[2], num_source_activations, 'dimension mismatch between weights and tokens') # All arguments must share the same type. check.Same([weights.dtype.base_dtype, tokens.dtype.base_dtype], 'dtype mismatch') tokens_shape = tf.shape(tokens) batch_size = tokens_shape[0] num_tokens = tokens_shape[1] # Flatten out the batch dimension so we can use a couple big matmuls. tokens_bnxs = tf.reshape(tokens, [-1, num_source_activations]) weights_sx1 = tf.expand_dims(weights, 1) sources_bnx1 = tf.matmul(tokens_bnxs, weights_sx1) sources_bnxn = tf.tile(sources_bnx1, [1, num_tokens]) # Restore the batch dimension in the output. sources_bxnxn = tf.reshape(sources_bnxn, [batch_size, num_tokens, num_tokens]) return sources_bxnxn def RootPotentialsFromTokens(root, tokens, weights): r"""Returns root selection potentials computed from tokens and weights. For each batch of token activations, computes a scalar potential for each root selection as the 3-way product between the activations of the artificial root token, the token activations, and the |weights|. Specifically, roots[b,r] = \sum_{i,j} root[i] * weights[i,j] * tokens[b,r,j] Args: root: [S] vector of activations for the artificial root token. tokens: [B,N,T] tensor of batched activations for root tokens. weights: [S,T] matrix of weights. B,N may be statically-unknown, but S,T must be statically-known. The dtype of all arguments must be compatible. Returns: [B,N] matrix R of root-selection potentials as defined above. The dtype of R is the same as that of the arguments. """ # All arguments must have statically-known rank. check.Eq(root.get_shape().ndims, 1, 'root must be a vector') check.Eq(tokens.get_shape().ndims, 3, 'tokens must be rank 3') check.Eq(weights.get_shape().ndims, 2, 'weights must be a matrix') # All activation dimensions must be statically-known. num_source_activations = weights.get_shape().as_list()[0] num_target_activations = weights.get_shape().as_list()[1] check.NotNone(num_source_activations, 'unknown source activation dimension') check.NotNone(num_target_activations, 'unknown target activation dimension') check.Eq(root.get_shape().as_list()[0], num_source_activations, 'dimension mismatch between weights and root') check.Eq(tokens.get_shape().as_list()[2], num_target_activations, 'dimension mismatch between weights and tokens') # All arguments must share the same type. check.Same([weights.dtype.base_dtype, root.dtype.base_dtype, tokens.dtype.base_dtype], 'dtype mismatch') root_1xs = tf.expand_dims(root, 0) tokens_shape = tf.shape(tokens) batch_size = tokens_shape[0] num_tokens = tokens_shape[1] # Flatten out the batch dimension so we can use a couple big matmuls. tokens_bnxt = tf.reshape(tokens, [-1, num_target_activations]) weights_targets_bnxs = tf.matmul(tokens_bnxt, weights, transpose_b=True) roots_1xbn = tf.matmul(root_1xs, weights_targets_bnxs, transpose_b=True) # Restore the batch dimension in the output. roots_bxn = tf.reshape(roots_1xbn, [batch_size, num_tokens]) return roots_bxn def CombineArcAndRootPotentials(arcs, roots): """Combines arc and root potentials into a single set of potentials. Args: arcs: [B,N,N] tensor of batched arc potentials. roots: [B,N] matrix of batched root potentials. Returns: [B,N,N] tensor P of combined potentials where P_{b,s,t} = s == t ? roots[b,t] : arcs[b,s,t] """ # All arguments must have statically-known rank. check.Eq(arcs.get_shape().ndims, 3, 'arcs must be rank 3') check.Eq(roots.get_shape().ndims, 2, 'roots must be a matrix') # All arguments must share the same type. dtype = arcs.dtype.base_dtype check.Same([dtype, roots.dtype.base_dtype], 'dtype mismatch') roots_shape = tf.shape(roots) arcs_shape = tf.shape(arcs) batch_size = roots_shape[0] num_tokens = roots_shape[1] with tf.control_dependencies([ tf.assert_equal(batch_size, arcs_shape[0]), tf.assert_equal(num_tokens, arcs_shape[1]), tf.assert_equal(num_tokens, arcs_shape[2])]): return tf.matrix_set_diag(arcs, roots) def LabelPotentialsFromTokens(tokens, weights): r"""Computes label potentials from tokens and weights. For each batch of token activations, computes a scalar potential for each label as the product between the activations of the source token and the |weights|. Specifically, labels[b,t,l] = \sum_{i} weights[l,i] * tokens[b,t,i] Args: tokens: [B,N,T] tensor of batched token activations. weights: [L,T] matrix of weights. B,N may be dynamic, but L,T must be static. The dtype of all arguments must be compatible. Returns: [B,N,L] tensor of label potentials as defined above, with the same dtype as the arguments. """ check.Eq(tokens.get_shape().ndims, 3, 'tokens must be rank 3') check.Eq(weights.get_shape().ndims, 2, 'weights must be a matrix') num_labels = weights.get_shape().as_list()[0] num_activations = weights.get_shape().as_list()[1] check.NotNone(num_labels, 'unknown number of labels') check.NotNone(num_activations, 'unknown activation dimension') check.Eq(tokens.get_shape().as_list()[2], num_activations, 'activation mismatch between weights and tokens') tokens_shape = tf.shape(tokens) batch_size = tokens_shape[0] num_tokens = tokens_shape[1] check.Same([tokens.dtype.base_dtype, weights.dtype.base_dtype], 'dtype mismatch') # Flatten out the batch dimension so we can use one big matmul(). tokens_bnxt = tf.reshape(tokens, [-1, num_activations]) labels_bnxl = tf.matmul(tokens_bnxt, weights, transpose_b=True) # Restore the batch dimension in the output. labels_bxnxl = tf.reshape(labels_bnxl, [batch_size, num_tokens, num_labels]) return labels_bxnxl def LabelPotentialsFromTokenPairs(sources, targets, weights): r"""Computes label potentials from source and target tokens and weights. For each aligned pair of source and target token activations, computes a scalar potential for each label on the arc from the source to the target. Specifically, labels[b,t,l] = \sum_{i,j} sources[b,t,i] * weights[l,i,j] * targets[b,t,j] Args: sources: [B,N,S] tensor of batched source token activations. targets: [B,N,T] tensor of batched target token activations. weights: [L,S,T] tensor of weights. B,N may be dynamic, but L,S,T must be static. The dtype of all arguments must be compatible. Returns: [B,N,L] tensor of label potentials as defined above, with the same dtype as the arguments. """ check.Eq(sources.get_shape().ndims, 3, 'sources must be rank 3') check.Eq(targets.get_shape().ndims, 3, 'targets must be rank 3') check.Eq(weights.get_shape().ndims, 3, 'weights must be rank 3') num_labels = weights.get_shape().as_list()[0] num_source_activations = weights.get_shape().as_list()[1] num_target_activations = weights.get_shape().as_list()[2] check.NotNone(num_labels, 'unknown number of labels') check.NotNone(num_source_activations, 'unknown source activation dimension') check.NotNone(num_target_activations, 'unknown target activation dimension') check.Eq(sources.get_shape().as_list()[2], num_source_activations, 'activation mismatch between weights and source tokens') check.Eq(targets.get_shape().as_list()[2], num_target_activations, 'activation mismatch between weights and target tokens') check.Same([sources.dtype.base_dtype, targets.dtype.base_dtype, weights.dtype.base_dtype], 'dtype mismatch') sources_shape = tf.shape(sources) targets_shape = tf.shape(targets) batch_size = sources_shape[0] num_tokens = sources_shape[1] with tf.control_dependencies([tf.assert_equal(batch_size, targets_shape[0]), tf.assert_equal(num_tokens, targets_shape[1])]): # For each token, we must compute a vector-3tensor-vector product. There is # no op for this, but we can use reshape() and matmul() to compute it. # Reshape |weights| and |targets| so we can use a single matmul(). weights_lsxt = tf.reshape(weights, [num_labels * num_source_activations, num_target_activations]) targets_bnxt = tf.reshape(targets, [-1, num_target_activations]) weights_targets_bnxls = tf.matmul(targets_bnxt, weights_lsxt, transpose_b=True) # Restore all dimensions. weights_targets_bxnxlxs = tf.reshape( weights_targets_bnxls, [batch_size, num_tokens, num_labels, num_source_activations]) # Incorporate the source activations. In this case, we perform a batched # matmul() between the trailing [L,S] matrices of the current result and the # trailing [S] vectors of the tokens. sources_bxnx1xs = tf.expand_dims(sources, 2) labels_bxnxlx1 = tf.matmul(weights_targets_bxnxlxs, sources_bxnx1xs, transpose_b=True) labels_bxnxl = tf.squeeze(labels_bxnxlx1, [3]) return labels_bxnxl
the-stack_0_12091
"""main module """ import argparse import importlib.util import os import shutil import tempfile import threading import uuid import docker import yaml from . import preprocess def __import_configurator(path): conf_path = os.path.join(path, "configurator.py") spec = importlib.util.spec_from_file_location("configurator", conf_path) module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) return module def __start_container(client, base_path, properties, build, nocache, network, alias=None, **container_opts): image_path = os.path.join(base_path, properties.pop("image")) cache = client.images.list(filters={'label':f"seed={image_path}"}) if (not build) and cache: print(" Using Cached Image") image = cache[0] else: print(" Building Image... ", end='', flush=True) image = client.images.build( path=image_path, nocache=nocache, rm=True, pull=True, labels={'seed':image_path} ) print("Done") configurator = __import_configurator(image_path) ret = configurator.configure(properties) if isinstance(ret, tuple): configurator_opts, teardown = ret else: configurator_opts, teardown = (ret, lambda: None) del configurator print(" Starting Container... ", end='', flush=True) container = client.containers.create( image=image.id, detach=True, init=True, **container_opts, **configurator_opts ) print("Done") network.connect( container, aliases=[alias] if alias is not None else None ) container.start() return (container, teardown) def __log_container(name, container): logs = container.logs( stdout=True, stderr=True, stream=True, follow=True ) for log in logs: print(f"{name}:", log.decode(), end='', flush=True) def __parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--wdir', default="", help="path to working directory") parser.add_argument('--config', default='config.yml', help="path to config file relative to working directory") parser.add_argument('--adapterdir', default='adapters', help="adapter search path relative to working directory") parser.add_argument('--applicationdir', default='applications', help="application search path relative to working directory") parser.add_argument('--bundledir', default='bundles', help="bundle search path relative to working directory") parser.add_argument('--controllerdir', default='controllers', help="controller search path relative to working directory") parser.add_argument('--build', action='store_true', help="rebuild adapter or controller images") parser.add_argument('--nocache', action='store_true', help="don't use build cache on adapter or controller rebuild") parser.add_argument('--verbose', '-v', action='count', default=0, help="print adapter (1st level) and controller (2nd level) log") args = parser.parse_args() args.wdir = os.path.join(os.getcwd(), args.wdir) return args def main(): """main function """ args = __parse_args() adapter, controllers, network, bundledir = None, None, None, None try: with open(os.path.join(args.wdir, args.config)) as config_f: config = yaml.load(config_f)["config"] run_id = str(uuid.uuid4()) print(f"Starting With Run Id \"{run_id}\"") #Set up directories bundledir = tempfile.TemporaryDirectory() resultdir = os.path.join("results", run_id) os.makedirs(resultdir) bundlepath = os.path.join( args.wdir, args.bundledir, config["bundle"]["name"], "bundle" ) preprocess.preprocess_bundle( bundlepath + ".xml", os.path.join(bundledir.name, "bundle.xml"), config["bundle"]['parameters'] ) shutil.copy( bundlepath + ".controller-bindings.yml", os.path.join(bundledir.name, "bundle.controller-bindings.yml") ) #Set up network and containers client = docker.from_env() network = client.networks.create(run_id) controllers = {} for name, properties in config["controllers"].items(): print(f"Starting Controller \"{name}\"") applications = { application: os.path.join( args.wdir, args.applicationdir, application) for application in properties['applications']} controllers[name] = __start_container( client, os.path.join(args.wdir, args.controllerdir), dict(properties, **{ "applications": applications, "bundledir": bundledir.name, "resultdir": os.path.join(os.getcwd(), resultdir) }), args.build, args.nocache, network, alias=name ) print("Done") print(f"Starting Adapter \"{config['adapter']['image']}\"") adapter = __start_container( client, os.path.join(args.wdir, args.adapterdir), dict(config["adapter"], **{ "bundledir": bundledir.name, "resultdir": os.path.join(os.getcwd(), resultdir), "controllers": config["controllers"] }), args.build, args.nocache, network, privileged=True ) print("Done") try: if args.verbose >= 2: for name, (container, _) in controllers.items(): arg = (name, container) threading.Thread(target=__log_container, args=arg).start() if args.verbose >= 1: __log_container("adapter", adapter[0]) import time time.sleep(10) adapter[0].wait() except KeyboardInterrupt: pass finally: print("Tearing Down") if adapter is not None: adapter[0].stop() adapter[0].remove() adapter[1]() if controllers is not None: for controller, teardown in controllers.values(): controller.stop() controller.remove() teardown() if network is not None: network.remove() if bundledir is not None: bundledir.cleanup() if __name__ == "__main__": main()
the-stack_0_12093
# Authors: Alexandre Gramfort <[email protected]> # Matti Hamalainen <[email protected]> # Denis Engemann <[email protected]> # Teon Brooks <[email protected]> # # License: BSD (3-clause) from copy import deepcopy from itertools import count from math import sqrt import numpy as np from scipy import linalg from .tree import dir_tree_find from .tag import find_tag from .constants import FIFF from .pick import pick_types from .write import (write_int, write_float, write_string, write_name_list, write_float_matrix, end_block, start_block) from ..utils import logger, verbose, warn from ..externals.six import string_types class Projection(dict): """Projection vector. A basic class to proj a meaningful print for projection vectors. """ def __repr__(self): # noqa: D105 s = "%s" % self['desc'] s += ", active : %s" % self['active'] s += ", n_channels : %s" % self['data']['ncol'] return "<Projection | %s>" % s class ProjMixin(object): """Mixin class for Raw, Evoked, Epochs. Notes ----- This mixin adds a proj attribute as a property to data containers. It is True if at least one proj is present and all of them are active. The projs might not be applied yet if data are not preloaded. In this case it's the _projector attribute that does the job. If a private _data attribute is present then the projs applied to it are the ones marked as active. A proj parameter passed in constructor of raw or epochs calls apply_proj and hence after the .proj attribute is True. As soon as you've applied the projs it will stay active in the remaining pipeline. The suggested pipeline is proj=True in epochs (it's cheaper than for raw). When you use delayed SSP in Epochs, projs are applied when you call get_data() method. They are not applied to the evoked._data unless you call apply_proj(). The reason is that you want to reject with projs although it's not stored in proj mode. """ @property def proj(self): """Whether or not projections are active.""" return (len(self.info['projs']) > 0 and all(p['active'] for p in self.info['projs'])) @verbose def add_proj(self, projs, remove_existing=False, verbose=None): """Add SSP projection vectors. Parameters ---------- projs : list List with projection vectors. remove_existing : bool Remove the projection vectors currently in the file. verbose : bool, str, int, or None If not None, override default verbose level (see :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>` for more). Returns ------- self : instance of Raw | Epochs | Evoked The data container. """ if isinstance(projs, Projection): projs = [projs] if (not isinstance(projs, list) and not all(isinstance(p, Projection) for p in projs)): raise ValueError('Only projs can be added. You supplied ' 'something else.') # mark proj as inactive, as they have not been applied projs = deactivate_proj(projs, copy=True, verbose=self.verbose) if remove_existing: # we cannot remove the proj if they are active if any(p['active'] for p in self.info['projs']): raise ValueError('Cannot remove projectors that have ' 'already been applied') self.info['projs'] = projs else: self.info['projs'].extend(projs) # We don't want to add projectors that are activated again. self.info['projs'] = _uniquify_projs(self.info['projs'], check_active=False, sort=False) return self def apply_proj(self): """Apply the signal space projection (SSP) operators to the data. Notes ----- Once the projectors have been applied, they can no longer be removed. It is usually not recommended to apply the projectors at too early stages, as they are applied automatically later on (e.g. when computing inverse solutions). Hint: using the copy method individual projection vectors can be tested without affecting the original data. With evoked data, consider the following example:: projs_a = mne.read_proj('proj_a.fif') projs_b = mne.read_proj('proj_b.fif') # add the first, copy, apply and see ... evoked.add_proj(a).copy().apply_proj().plot() # add the second, copy, apply and see ... evoked.add_proj(b).copy().apply_proj().plot() # drop the first and see again evoked.copy().del_proj(0).apply_proj().plot() evoked.apply_proj() # finally keep both Returns ------- self : instance of Raw | Epochs | Evoked The instance. """ from ..epochs import BaseEpochs from ..evoked import Evoked from .base import BaseRaw if self.info['projs'] is None or len(self.info['projs']) == 0: logger.info('No projector specified for this dataset. ' 'Please consider the method self.add_proj.') return self # Exit delayed mode if you apply proj if isinstance(self, BaseEpochs) and self._do_delayed_proj: logger.info('Leaving delayed SSP mode.') self._do_delayed_proj = False if all(p['active'] for p in self.info['projs']): logger.info('Projections have already been applied. ' 'Setting proj attribute to True.') return self _projector, info = setup_proj(deepcopy(self.info), activate=True, verbose=self.verbose) # let's not raise a RuntimeError here, otherwise interactive plotting if _projector is None: # won't be fun. logger.info('The projections don\'t apply to these data.' ' Doing nothing.') return self self._projector, self.info = _projector, info if isinstance(self, (BaseRaw, Evoked)): if self.preload: self._data = np.dot(self._projector, self._data) else: # BaseEpochs if self.preload: for ii, e in enumerate(self._data): self._data[ii] = self._project_epoch(e) else: self.load_data() # will automatically apply logger.info('SSP projectors applied...') return self def del_proj(self, idx='all'): """Remove SSP projection vector. Note: The projection vector can only be removed if it is inactive (has not been applied to the data). Parameters ---------- idx : int | list of int | str Index of the projector to remove. Can also be "all" (default) to remove all projectors. Returns ------- self : instance of Raw | Epochs | Evoked """ if isinstance(idx, string_types) and idx == 'all': idx = list(range(len(self.info['projs']))) idx = np.atleast_1d(np.array(idx, int)).ravel() if any(self.info['projs'][ii]['active'] for ii in idx): raise ValueError('Cannot remove projectors that have already ' 'been applied') self.info['projs'] = [p for pi, p in enumerate(self.info['projs']) if pi not in idx] return self def plot_projs_topomap(self, ch_type=None, layout=None, axes=None): """Plot SSP vector. Parameters ---------- ch_type : 'mag' | 'grad' | 'planar1' | 'planar2' | 'eeg' | None | List The channel type to plot. For 'grad', the gradiometers are collec- ted in pairs and the RMS for each pair is plotted. If None (default), it will return all channel types present. If a list of ch_types is provided, it will return multiple figures. layout : None | Layout | List of Layouts Layout instance specifying sensor positions (does not need to be specified for Neuromag data). If possible, the correct layout file is inferred from the data; if no appropriate layout file was found, the layout is automatically generated from the sensor locations. Or a list of Layout if projections are from different sensor types. axes : instance of Axes | list | None The axes to plot to. If list, the list must be a list of Axes of the same length as the number of projectors. If instance of Axes, there must be only one projector. Defaults to None. Returns ------- fig : instance of matplotlib figure Figure distributing one image per channel across sensor topography. """ if self.info['projs'] is not None or len(self.info['projs']) != 0: from ..viz.topomap import plot_projs_topomap from ..channels.layout import find_layout if layout is None: layout = [] if ch_type is None: ch_type = [ch for ch in ['meg', 'eeg'] if ch in self] elif isinstance(ch_type, string_types): ch_type = [ch_type] for ch in ch_type: if ch in self: layout.append(find_layout(self.info, ch, exclude=[])) else: warn('Channel type %s is not found in info.' % ch) fig = plot_projs_topomap(self.info['projs'], layout, axes=axes) else: raise ValueError("Info is missing projs. Nothing to plot.") return fig def _proj_equal(a, b, check_active=True): """Test if two projectors are equal.""" equal = ((a['active'] == b['active'] or not check_active) and a['kind'] == b['kind'] and a['desc'] == b['desc'] and a['data']['col_names'] == b['data']['col_names'] and a['data']['row_names'] == b['data']['row_names'] and a['data']['ncol'] == b['data']['ncol'] and a['data']['nrow'] == b['data']['nrow'] and np.all(a['data']['data'] == b['data']['data'])) return equal @verbose def _read_proj(fid, node, verbose=None): """Read spatial projections from a FIF file. Parameters ---------- fid : file The file descriptor of the open file. node : tree node The node of the tree where to look. verbose : bool, str, int, or None If not None, override default verbose level (see :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>` for more). Returns ------- projs: dict The list of projections. """ projs = list() # Locate the projection data nodes = dir_tree_find(node, FIFF.FIFFB_PROJ) if len(nodes) == 0: return projs tag = find_tag(fid, nodes[0], FIFF.FIFF_NCHAN) if tag is not None: global_nchan = int(tag.data) items = dir_tree_find(nodes[0], FIFF.FIFFB_PROJ_ITEM) for item in items: # Find all desired tags in one item tag = find_tag(fid, item, FIFF.FIFF_NCHAN) if tag is not None: nchan = int(tag.data) else: nchan = global_nchan tag = find_tag(fid, item, FIFF.FIFF_DESCRIPTION) if tag is not None: desc = tag.data else: tag = find_tag(fid, item, FIFF.FIFF_NAME) if tag is not None: desc = tag.data else: raise ValueError('Projection item description missing') # XXX : is this useful ? # tag = find_tag(fid, item, FIFF.FIFF_PROJ_ITEM_CH_NAME_LIST) # if tag is not None: # namelist = tag.data # else: # raise ValueError('Projection item channel list missing') tag = find_tag(fid, item, FIFF.FIFF_PROJ_ITEM_KIND) if tag is not None: kind = int(tag.data) else: raise ValueError('Projection item kind missing') tag = find_tag(fid, item, FIFF.FIFF_PROJ_ITEM_NVEC) if tag is not None: nvec = int(tag.data) else: raise ValueError('Number of projection vectors not specified') tag = find_tag(fid, item, FIFF.FIFF_PROJ_ITEM_CH_NAME_LIST) if tag is not None: names = tag.data.split(':') else: raise ValueError('Projection item channel list missing') tag = find_tag(fid, item, FIFF.FIFF_PROJ_ITEM_VECTORS) if tag is not None: data = tag.data else: raise ValueError('Projection item data missing') tag = find_tag(fid, item, FIFF.FIFF_MNE_PROJ_ITEM_ACTIVE) if tag is not None: active = bool(tag.data) else: active = False tag = find_tag(fid, item, FIFF.FIFF_MNE_ICA_PCA_EXPLAINED_VAR) if tag is not None: explained_var = tag.data else: explained_var = None # handle the case when data is transposed for some reason if data.shape[0] == len(names) and data.shape[1] == nvec: data = data.T if data.shape[1] != len(names): raise ValueError('Number of channel names does not match the ' 'size of data matrix') # Use exactly the same fields in data as in a named matrix one = Projection(kind=kind, active=active, desc=desc, data=dict(nrow=nvec, ncol=nchan, row_names=None, col_names=names, data=data), explained_var=explained_var) projs.append(one) if len(projs) > 0: logger.info(' Read a total of %d projection items:' % len(projs)) for k in range(len(projs)): if projs[k]['active']: misc = 'active' else: misc = ' idle' logger.info(' %s (%d x %d) %s' % (projs[k]['desc'], projs[k]['data']['nrow'], projs[k]['data']['ncol'], misc)) return projs ############################################################################### # Write def _write_proj(fid, projs): """Write a projection operator to a file. Parameters ---------- fid : file The file descriptor of the open file. projs : dict The projection operator. """ if len(projs) == 0: return start_block(fid, FIFF.FIFFB_PROJ) for proj in projs: start_block(fid, FIFF.FIFFB_PROJ_ITEM) write_int(fid, FIFF.FIFF_NCHAN, proj['data']['ncol']) write_name_list(fid, FIFF.FIFF_PROJ_ITEM_CH_NAME_LIST, proj['data']['col_names']) write_string(fid, FIFF.FIFF_NAME, proj['desc']) write_int(fid, FIFF.FIFF_PROJ_ITEM_KIND, proj['kind']) if proj['kind'] == FIFF.FIFFV_PROJ_ITEM_FIELD: write_float(fid, FIFF.FIFF_PROJ_ITEM_TIME, 0.0) write_int(fid, FIFF.FIFF_PROJ_ITEM_NVEC, proj['data']['nrow']) write_int(fid, FIFF.FIFF_MNE_PROJ_ITEM_ACTIVE, proj['active']) write_float_matrix(fid, FIFF.FIFF_PROJ_ITEM_VECTORS, proj['data']['data']) if proj['explained_var'] is not None: write_float(fid, FIFF.FIFF_MNE_ICA_PCA_EXPLAINED_VAR, proj['explained_var']) end_block(fid, FIFF.FIFFB_PROJ_ITEM) end_block(fid, FIFF.FIFFB_PROJ) ############################################################################### # Utils def _check_projs(projs, copy=True): """Check that projs is a list of Projection.""" if not isinstance(projs, (list, tuple)): raise TypeError('projs must be a list or tuple, got %s' % (type(projs),)) for pi, p in enumerate(projs): if not isinstance(p, Projection): raise TypeError('All entries in projs list must be Projection ' 'instances, but projs[%d] is type %s' % (pi, type(p))) return deepcopy(projs) if copy else projs def make_projector(projs, ch_names, bads=(), include_active=True): """Create an SSP operator from SSP projection vectors. Parameters ---------- projs : list List of projection vectors. ch_names : list of str List of channels to include in the projection matrix. bads : list of str Some bad channels to exclude. If bad channels were marked in the raw file when projs were calculated using mne-python, they should not need to be included here as they will have been automatically omitted from the projectors. include_active : bool Also include projectors that are already active. Returns ------- proj : array of shape [n_channels, n_channels] The projection operator to apply to the data. nproj : int How many items in the projector. U : array The orthogonal basis of the projection vectors (optional). """ return _make_projector(projs, ch_names, bads, include_active) def _make_projector(projs, ch_names, bads=(), include_active=True, inplace=False): """Subselect projs based on ch_names and bads. Use inplace=True mode to modify ``projs`` inplace so that no warning will be raised next time projectors are constructed with the given inputs. If inplace=True, no meaningful data are returned. """ nchan = len(ch_names) if nchan == 0: raise ValueError('No channel names specified') default_return = (np.eye(nchan, nchan), 0, []) # Check trivial cases first if projs is None: return default_return nvec = 0 nproj = 0 for p in projs: if not p['active'] or include_active: nproj += 1 nvec += p['data']['nrow'] if nproj == 0: return default_return # Pick the appropriate entries vecs = np.zeros((nchan, nvec)) nvec = 0 nonzero = 0 for k, p in enumerate(projs): if not p['active'] or include_active: if (len(p['data']['col_names']) != len(np.unique(p['data']['col_names']))): raise ValueError('Channel name list in projection item %d' ' contains duplicate items' % k) # Get the two selection vectors to pick correct elements from # the projection vectors omitting bad channels sel = [] vecsel = [] for c, name in enumerate(ch_names): if name in p['data']['col_names'] and name not in bads: sel.append(c) vecsel.append(p['data']['col_names'].index(name)) # If there is something to pick, pickit nrow = p['data']['nrow'] this_vecs = vecs[:, nvec:nvec + nrow] if len(sel) > 0: this_vecs[sel] = p['data']['data'][:, vecsel].T # Rescale for better detection of small singular values for v in range(p['data']['nrow']): psize = sqrt(np.sum(this_vecs[:, v] * this_vecs[:, v])) if psize > 0: orig_n = p['data']['data'].any(axis=0).sum() # Average ref still works if channels are removed if len(vecsel) < 0.9 * orig_n and not inplace and \ (p['kind'] != FIFF.FIFFV_MNE_PROJ_ITEM_EEG_AVREF or len(vecsel) == 1): warn('Projection vector "%s" has magnitude %0.2f ' '(should be unity), applying projector with ' '%s/%s of the original channels available may ' 'be dangerous, consider recomputing and adding ' 'projection vectors for channels that are ' 'eventually used. If this is intentional, ' 'consider using info.normalize_proj()' % (p['desc'], psize, len(vecsel), orig_n)) this_vecs[:, v] /= psize nonzero += 1 # If doing "inplace" mode, "fix" the projectors to only operate # on this subset of channels. if inplace: p['data']['data'] = this_vecs[sel].T p['data']['col_names'] = [p['data']['col_names'][ii] for ii in vecsel] nvec += p['data']['nrow'] # Check whether all of the vectors are exactly zero if nonzero == 0 or inplace: return default_return # Reorthogonalize the vectors U, S, V = linalg.svd(vecs[:, :nvec], full_matrices=False) # Throw away the linearly dependent guys nproj = np.sum((S / S[0]) > 1e-2) U = U[:, :nproj] # Here is the celebrated result proj = np.eye(nchan, nchan) - np.dot(U, U.T) return proj, nproj, U def _normalize_proj(info): """Normalize proj after subselection to avoid warnings. This is really only useful for tests, and might not be needed eventually if we change or improve our handling of projectors with picks. """ # Here we do info.get b/c info can actually be a noise cov _make_projector(info['projs'], info.get('ch_names', info.get('names')), info['bads'], include_active=True, inplace=True) def make_projector_info(info, include_active=True): """Make an SSP operator using the measurement info. Calls make_projector on good channels. Parameters ---------- info : dict Measurement info. include_active : bool Also include projectors that are already active. Returns ------- proj : array of shape [n_channels, n_channels] The projection operator to apply to the data. nproj : int How many items in the projector. """ proj, nproj, _ = make_projector(info['projs'], info['ch_names'], info['bads'], include_active) return proj, nproj @verbose def activate_proj(projs, copy=True, verbose=None): """Set all projections to active. Useful before passing them to make_projector. Parameters ---------- projs : list The projectors. copy : bool Modify projs in place or operate on a copy. verbose : bool, str, int, or None If not None, override default verbose level (see :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>` for more). Returns ------- projs : list The projectors. """ if copy: projs = deepcopy(projs) # Activate the projection items for proj in projs: proj['active'] = True logger.info('%d projection items activated' % len(projs)) return projs @verbose def deactivate_proj(projs, copy=True, verbose=None): """Set all projections to inactive. Useful before saving raw data without projectors applied. Parameters ---------- projs : list The projectors. copy : bool Modify projs in place or operate on a copy. verbose : bool, str, int, or None If not None, override default verbose level (see :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>` for more). Returns ------- projs : list The projectors. """ if copy: projs = deepcopy(projs) # Deactivate the projection items for proj in projs: proj['active'] = False logger.info('%d projection items deactivated' % len(projs)) return projs @verbose def make_eeg_average_ref_proj(info, activate=True, verbose=None): """Create an EEG average reference SSP projection vector. Parameters ---------- info : dict Measurement info. activate : bool If True projections are activated. verbose : bool, str, int, or None If not None, override default verbose level (see :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>` for more). Returns ------- eeg_proj: instance of Projection The SSP/PCA projector. """ if info.get('custom_ref_applied', False): raise RuntimeError('A custom reference has been applied to the ' 'data earlier. Please use the ' 'mne.io.set_eeg_reference function to move from ' 'one EEG reference to another.') logger.info("Adding average EEG reference projection.") eeg_sel = pick_types(info, meg=False, eeg=True, ref_meg=False, exclude='bads') ch_names = info['ch_names'] eeg_names = [ch_names[k] for k in eeg_sel] n_eeg = len(eeg_sel) if n_eeg == 0: raise ValueError('Cannot create EEG average reference projector ' '(no EEG data found)') vec = np.ones((1, n_eeg)) vec /= n_eeg explained_var = None eeg_proj_data = dict(col_names=eeg_names, row_names=None, data=vec, nrow=1, ncol=n_eeg) eeg_proj = Projection(active=activate, data=eeg_proj_data, desc='Average EEG reference', kind=FIFF.FIFFV_MNE_PROJ_ITEM_EEG_AVREF, explained_var=explained_var) return eeg_proj def _has_eeg_average_ref_proj(projs, check_active=False): """Determine if a list of projectors has an average EEG ref. Optionally, set check_active=True to additionally check if the CAR has already been applied. """ for proj in projs: if (proj['desc'] == 'Average EEG reference' or proj['kind'] == FIFF.FIFFV_MNE_PROJ_ITEM_EEG_AVREF): if not check_active or proj['active']: return True return False def _needs_eeg_average_ref_proj(info): """Determine if the EEG needs an averge EEG reference. This returns True if no custom reference has been applied and no average reference projection is present in the list of projections. """ eeg_sel = pick_types(info, meg=False, eeg=True, ref_meg=False, exclude='bads') return (len(eeg_sel) > 0 and not info['custom_ref_applied'] and not _has_eeg_average_ref_proj(info['projs'])) @verbose def setup_proj(info, add_eeg_ref=True, activate=True, verbose=None): """Set up projection for Raw and Epochs. Parameters ---------- info : dict The measurement info. add_eeg_ref : bool If True, an EEG average reference will be added (unless one already exists). activate : bool If True projections are activated. verbose : bool, str, int, or None If not None, override default verbose level (see :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>` for more). Returns ------- projector : array of shape [n_channels, n_channels] The projection operator to apply to the data. info : dict The modified measurement info (Warning: info is modified inplace). """ # Add EEG ref reference proj if necessary if add_eeg_ref and _needs_eeg_average_ref_proj(info): eeg_proj = make_eeg_average_ref_proj(info, activate=activate) info['projs'].append(eeg_proj) # Create the projector projector, nproj = make_projector_info(info) if nproj == 0: if verbose: logger.info('The projection vectors do not apply to these ' 'channels') projector = None else: logger.info('Created an SSP operator (subspace dimension = %d)' % nproj) # The projection items have been activated if activate: info['projs'] = activate_proj(info['projs'], copy=False) return projector, info def _uniquify_projs(projs, check_active=True, sort=True): """Make unique projs.""" final_projs = [] for proj in projs: # flatten if not any(_proj_equal(p, proj, check_active) for p in final_projs): final_projs.append(proj) my_count = count(len(final_projs)) def sorter(x): """Sort in a nice way.""" digits = [s for s in x['desc'] if s.isdigit()] if digits: sort_idx = int(digits[-1]) else: sort_idx = next(my_count) return (sort_idx, x['desc']) return sorted(final_projs, key=sorter) if sort else final_projs
the-stack_0_12094
from django.shortcuts import render, get_object_or_404, render_to_response from django.contrib.auth.decorators import login_required from django.http import HttpResponse from .models import Report, UploadedFile, Folder from .forms import ReportForm, FolderForm from django.template import RequestContext from web.models import UserGroup from django.contrib.auth.models import User from Crypto import Random from datetime import datetime # Create your views here. random_generator = Random.new().read def index(request): return render(request, 'createReport.html') def thanks(request): return render(request, 'form.html') def folders(request): reports = Report.objects.all() folders = Folder.objects.all() return render(request, 'reports/folders.html', {'folders': folders}) def viewReportsInFolders(request): folders = Folder.objects.all() reports = Report.objects.all() return render(request, 'reports/savedReports.html', {'folders': folders, 'reports': reports}) def create_folder(request): reports = Report.objects.all() username_id = request.user if request.method == 'POST': form = FolderForm(request.POST, request.FILES) selected = request.POST.getlist('selected_report[]') if form.is_valid(): folder_object = Folder.objects.create( name=form.cleaned_data['title'], owner=username_id ) for report_selected in selected: re = Report.objects.get(title=report_selected) folder_object.members.add(re) return HttpResponse("Folder has been updated") else: form = FolderForm() variables = RequestContext(request, { 'form': form, 'reports': reports }) return render_to_response( 'reports/folderz.html', variables, ) def edit_folder(request, id=None): try: folder=Folder.objects.get(id=id) form_class=FolderForm(user=request.user, instance=folder) if request.method == 'POST': form = FolderForm(request.POST, request.FILES, instance=folder) selected = request.POST.getlist('selected_report[]') if form.is_valid(): folder_object = Folder.objects.create( name=form.cleaned_data['title'], owner=username_id ) for report_selected in selected: re = Report.objects.get(title=report_selected) folder_object.members.add(re) return render(request, '/reports/doneEditingFolder.html', {'form_class': form_class}) except: return HttpResponse("You can't update this folder") def edit_with_delete(request, id=None): try: folder = Folder.objects.get(id=id) print(folder.owner) if folder.owner != request.user: text = "You do not have permission to change this folder" return HttpResponse(text) else: Folder.objects.filter(id=id).delete() print("deleted") return render(request, 'reports/redirect_to_change.html') except: text = "You are unable to change this folder" return HttpResponse(text) def folder(request): folder_name = request.POST.get('selected') print(folder_name) reports = Report.objects.all() print(reports) return render(request, 'reports/folder.html', {'folder_name': folder_name, 'reports': reports}) @login_required def delete_folder(request, id=None): try: folder = Folder.objects.get(id=id) if folder.owner != request.user: text = "You do not have permission to delete this folder" return HttpResponse(text) else: Folder.objects.filter(id=id).delete() return render(request, 'reports/deleteFolder.html') except: text = "You are unable to delete this folder" return HttpResponse(text) @login_required def add_report(request): form_class = ReportForm(user=request.user) # if this is a POST request process the form data if request.method == 'POST': # create a form instance and populate it with data from the request form = ReportForm(request.POST, request.FILES, user=request.user) # check whether it's valid: if form.is_valid(): report = form.save(commit=False) report.owner = User.objects.get(username=request.user.username) if form.cleaned_data['Share with:'] != 'all': report.group = UserGroup.objects.get( name=form.cleaned_data['Share with:']) files = request.FILES.getlist('file_field') report.save() for f in files: file = UploadedFile(report=report, owner=request.user) file.file_obj = f file.save() # redirect to a new URL: return render(request, 'reports/createReport.html', {'form': form_class}) else: text = form.errors return HttpResponse(text) return render(request, 'reports/createReport.html', {'form': form_class}) @login_required def edit_report(request, id=None): try: if id: report = Report.objects.get(pk=id) if report.owner != request.user: text = "You do not have permission to edit this report" return HttpResponse(text) else: report = Report() form_class = ReportForm(user=request.user, instance=report) if request.method == 'POST': form = ReportForm(request.POST, request.FILES, instance=report, user=request.user) if form.is_valid(): report = form.save(commit=False) report.owner = User.objects.get(username=request.user.username) if form.cleaned_data['Share with:'] != 'all': report.group = UserGroup.objects.get( name=form.cleaned_data['Share with:']) files = request.FILES.getlist('file_field') report.save() for curr in report.file_set.all(): curr.delete() for f in files: file = UploadedFile(report=report, owner=request.user) file.file_obj = f file.save() return render(request, 'reports/doneEditing.html', {'form': form_class}) else: text = form.errors return HttpResponse(text) except: text = "You are not able to edit this report" return HttpResponse(text) return render(request, 'reports/editReport.html', {'form': form_class, 'id': id}) @login_required def see_reports(request): initial_search = {} reports_list = Report.objects.all().filter(group=None) for group in UserGroup.objects.filter(members=request.user): reports_list = reports_list | group.report_set.all() # Filter based by min date if request.GET.get('sincesearch', False): date_in = request.GET['sincesearch'] initial_search['since'] = date_in date_since = datetime( *[int(v) for v in date_in.replace('T', '-').replace(':', '-').split('-')]) reports_list = reports_list.filter(timestamp__gte=date_since) # Filter based by max date if request.GET.get('beforesearch', False): date_in = request.GET['beforesearch'] initial_search['before'] = date_in date_since = datetime( *[int(v) for v in date_in.replace('T', '-').replace(':', '-').split('-')]) reports_list = reports_list.filter(timestamp__lte=date_since) # Filter based on creator if request.GET.get('ownersearch', False): owner = request.GET['ownersearch'] initial_search['owner'] = owner reports_list = reports_list.filter(owner__username__icontains=owner) # Filter based on title if request.GET.get('titlesearch', False): title = request.GET['titlesearch'] initial_search['title'] = title reports_list = reports_list.filter(title__icontains=title) # Filter based on descriptions if request.GET.get('descsearch', False): desc = request.GET['descsearch'] initial_search['desc'] = desc short_search = reports_list.filter(short_desc__icontains=desc) long_search = reports_list.filter(long_desc__icontains=desc) reports_list = short_search | long_search for report in reports_list: report.files = report.file_set.all() for file in report.files: file.file_obj.name = file.file_obj.name.split('/')[-1] return render(request, 'reports/see_reports.html', {'reports_list': reports_list, 'search_values': initial_search}) def add_reports(request, folder_name): print("hi") print(folder_name) reports = Report.objects.all() username_id = request.user print(request.method) if request.method == 'POST': print("hi2") form = FolderForm(request.POST) selected = request.POST.getlist('selectedReport[]') print(selected) if form.is_valid(): print("hi3") folder_object = Folder.objects.create(name=folder_name, owner=username_id) folder_object.save() for report_selected in selected: re = Report.objects.get(title=report_selected) folder_object.members.add(re) print(folder_object.members) else: form = FolderForm() folder_object = [] if folder_name is not None: folder_object = Folder.objects.get(name=folder_name) print(folder_object) print(folder_object.members) variables = RequestContext(request, {'form': form, 'reports': reports}) return render_to_response( 'reports/folder.html', variables, ) def viewFolders(request): context = {} context['folders_list'] = Folder.objects.all() return render(request, '/reports/folders', context) @login_required def see_my_reports(request): initial_search = {} my_reports_list = Report.objects.all().filter(owner=request.user).order_by('keyword') for group in UserGroup.objects.filter(members=request.user): my_reports_list = my_reports_list | group.report_set.all() # Filter based by min date if request.GET.get('sincesearch', False): date_in = request.GET['sincesearch'] initial_search['since'] = date_in date_since = datetime( *[int(v) for v in date_in.replace('T', '-').replace(':', '-').split('-')]) my_reports_list = my_reports_list.filter(timestamp__gte=date_since) # Filter based by max date if request.GET.get('beforesearch', False): date_in = request.GET['beforesearch'] initial_search['before'] = date_in date_since = datetime( *[int(v) for v in date_in.replace('T', '-').replace(':', '-').split('-')]) my_reports_list = my_reports_list.filter(timestamp__lte=date_since) # Filter based on creator if request.GET.get('ownersearch', False): owner = request.GET['ownersearch'] initial_search['owner'] = owner my_reports_list = my_reports_list.filter(owner__username__icontains=owner) # Filter based on title if request.GET.get('titlesearch', False): title = request.GET['titlesearch'] initial_search['title'] = title my_reports_list = my_reports_list.filter(title__icontains=title) # Filter based on descriptions if request.GET.get('descsearch', False): desc = request.GET['descsearch'] initial_search['desc'] = desc short_search = my_reports_list.filter(short_desc__icontains=desc) long_search = my_reports_list.filter(long_desc__icontains=desc) my_reports_list = short_search | long_search for report in my_reports_list: report.files = report.file_set.all() for file in report.files: file.file_obj.name = file.file_obj.name.split('/')[-1] return render(request, 'reports/see_my_reports.html', {'my_reports_list': my_reports_list, 'search_values': initial_search}) @login_required def delete_report(request, id=None): try: report = Report.objects.get(id=id) print(report.owner) if report.owner != request.user: text = "You do not have permission to delete this report" return HttpResponse(text) else: Report.objects.filter(id=id).delete() return render(request, 'reports/deleteReport.html') except: # text = "You are not able to delete this report" # return HttpResponse(text) return render(request, 'reports/deleteReport.html') @login_required def download_file(request, pk): file = get_object_or_404(UploadedFile, pk=pk) if file.report.group is not None: if file.report.group not in UserGroup.objects.filter(members=request.user): return HttpResponse(status=404) filename = file.file_obj.name.split('/')[-1] response = HttpResponse(file.file_obj, content_type='text/plain') response['Content-Disposition'] = 'attachment; filename=%s' % filename return response
the-stack_0_12097
import urllib3 import json from api.src.postgre import Postgres class DataCrawler: def getData(self): jsonOndeFoiRoubado = self.getJsonFromOndeFoiRoubado() jsonOndeTemTiro = self.getJsonFromOnteTemTiro() postgre = Postgres() postgre.open() postgre.insertOndeFoiRoubado(jsonOndeFoiRoubado) postgre.insertOndeTemTiro(jsonOndeTemTiro) postgre.close() def getJsonFromOndeFoiRoubado(self): http = urllib3.PoolManager() r = http.request('GET', 'http://www.ondefuiroubado.com.br/rio-de-janeiro/RJ'); htmlData = str(r.data.decode('utf-8')) idxStart = htmlData.find('OndeFuiRoubado.Views.CrimesIndexView.initialize') idxEnd = htmlData.find('OndeFuiRoubado.PoliceStations') htmlData = htmlData[idxStart:idxEnd] htmlData = htmlData.replace('OndeFuiRoubado.Views.CrimesIndexView.initialize(','') htmlData = htmlData.strip() htmlData = htmlData.replace(');\\n });\\n\\n document.addEventListener(\\\'onMainMapLoad\\\', function(data) {\\n','') htmlData = htmlData.strip() htmlData = htmlData.replace("document.addEventListener('onMainMapLoad', function(data) {",'') htmlData = htmlData.replace("\n","") htmlData = htmlData.replace("); });","") return json.loads(htmlData) def getJsonFromOnteTemTiro(self): http = urllib3.PoolManager() r = http.request('GET', 'https://www.googleapis.com/fusiontables/v1/query?sql=SELECT%20*%20FROM%201HaQhL95pS0XhFQcifZ6fzKifuCXVdFxl-caH0zDf&key=AIzaSyC1CNeSPJOm5mPzk3kTrXuHJgG5vJP9Tgo'); htmlData = str(r.data.decode('utf-8')) htmlData = htmlData.replace("\\n","#") return json.loads(htmlData)