filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_0_12607
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from copy import copy import itertools import math import os import pytest import random import shutil import tempfile import time from subprocess import check_call from tests.common.test_dimensions import create_exec_option_dimension_from_dict from tests.common.impala_test_suite import ImpalaTestSuite, LOG from tests.util.filesystem_utils import WAREHOUSE, get_fs_path from tests.util.test_file_parser import QueryTestSectionReader # Random fuzz testing of HDFS scanners. Existing tables for any HDFS file format # are corrupted in random ways to flush out bugs with handling of corrupted data. class TestScannersFuzzing(ImpalaTestSuite): # Use abort_on_error = False to ensure we scan all the files. ABORT_ON_ERROR_VALUES = [False] # Only run on all nodes - num_nodes=1 would not provide additional coverage. NUM_NODES_VALUES = [0] # Limit memory to avoid causing other concurrent tests to fail. MEM_LIMITS = ['512m'] # Test the codegen and non-codegen paths. DISABLE_CODEGEN_VALUES = [True, False] # Test a range of batch sizes to exercise different corner cases. BATCH_SIZES = [0, 1, 16, 10000] # Test with denial of reservations at varying frequency. This will affect the number # of scanner threads that can be spun up. DEBUG_ACTION_VALUES = [None, '-1:OPEN:[email protected]', '-1:OPEN:[email protected]'] @classmethod def get_workload(cls): return 'functional-query' @classmethod def add_test_dimensions(cls): super(TestScannersFuzzing, cls).add_test_dimensions() cls.ImpalaTestMatrix.add_dimension( create_exec_option_dimension_from_dict({ 'abort_on_error' : cls.ABORT_ON_ERROR_VALUES, 'num_nodes' : cls.NUM_NODES_VALUES, 'mem_limit' : cls.MEM_LIMITS, 'debug_action' : cls.DEBUG_ACTION_VALUES})) # TODO: enable for more table formats once they consistently pass the fuzz test. # TODO(IMPALA-6772): enable for ORC formats once a new version after release-1.4.3 # of ORC library is released. cls.ImpalaTestMatrix.add_constraint(lambda v: v.get_value('table_format').file_format in ('avro', 'parquet') or (v.get_value('table_format').file_format == 'text' and v.get_value('table_format').compression_codec in ('none', 'lzo'))) def test_fuzz_alltypes(self, vector, unique_database): table_format = vector.get_value('table_format') src_db = QueryTestSectionReader.get_db_name(table_format) table_name = "alltypes" self.run_fuzz_test(vector, src_db, table_name, unique_database, table_name) def test_fuzz_decimal_tbl(self, vector, unique_database): table_format = vector.get_value('table_format') table_name = "decimal_tbl" if table_format.file_format == 'avro': table_name = "avro_decimal_tbl" if table_format.compression_codec != 'snap' or \ table_format.compression_type != 'block': pytest.skip() elif table_format.file_format == 'rc' or \ table_format.file_format == 'seq': pytest.skip() elif table_format.file_format == 'text' and \ table_format.compression_codec != 'none': # decimal_tbl is not present for these file formats pytest.skip() src_db = QueryTestSectionReader.get_db_name(table_format) self.run_fuzz_test(vector, src_db, table_name, unique_database, table_name, 10) def test_fuzz_nested_types(self, vector, unique_database): table_format = vector.get_value('table_format') table_name = "complextypestbl" src_db = QueryTestSectionReader.get_db_name(table_format) if table_format.file_format != 'parquet': pytest.skip() self.run_fuzz_test(vector, src_db, table_name, unique_database, table_name, 10) def test_fuzz_uncompressed_parquet(self, vector, unique_database): """Parquet tables in default schema are compressed, so in order to do the fuzz_test on an uncompressed parquet table, this test clones from an existing parquet table into a new table with no compression. """ table_format = vector.get_value('table_format') if vector.get_value('table_format').compression_codec != 'none': pytest.skip() if table_format.file_format != 'parquet': pytest.skip() """Even when the compression_codec is none, the default compression type is snappy so compression codec is changed explicitly to be none. """ self.execute_query("set compression_codec=none") tbl_list = ["alltypes", "decimal_tbl"] for orig_tbl_name in tbl_list: src_table_name = "parquet_uncomp_src_" + orig_tbl_name fuzz_table_name = "parquet_uncomp_dst_" + orig_tbl_name fq_tbl_name = unique_database + "." + src_table_name create_tbl = ("create table {0} stored as parquet as select * from" " functional_parquet.{1}".format(fq_tbl_name, orig_tbl_name)) self.execute_query(create_tbl) self.run_fuzz_test(vector, unique_database, src_table_name, unique_database, fuzz_table_name, 10) # TODO: add test coverage for additional data types like char and varchar def run_fuzz_test(self, vector, src_db, src_table, fuzz_db, fuzz_table, num_copies=1): """ Do some basic fuzz testing: create a copy of an existing table with randomly corrupted files and make sure that we don't crash or behave in an unexpected way. 'unique_database' is used for the table, so it will be cleaned up automatically. If 'num_copies' is set, create that many corrupted copies of each input file. SCANNER_FUZZ_SEED can be set in the environment to reproduce the result (assuming that input files are the same). SCANNER_FUZZ_KEEP_FILES can be set in the environment to keep the generated files. """ # Create and seed a new random number generator for reproducibility. rng = random.Random() random_seed = os.environ.get("SCANNER_FUZZ_SEED") or time.time() LOG.info("Using random seed %d", random_seed) rng.seed(long(random_seed)) tmp_table_dir = tempfile.mkdtemp(prefix="tmp-scanner-fuzz-%s" % fuzz_table, dir=os.path.join(os.environ['IMPALA_HOME'], "testdata")) self.execute_query("create table %s.%s like %s.%s" % (fuzz_db, fuzz_table, src_db, src_table)) fuzz_table_location = get_fs_path("/test-warehouse/{0}.db/{1}".format( fuzz_db, fuzz_table)) LOG.info("Generating corrupted version of %s in %s. Local working directory is %s", fuzz_table, fuzz_db, tmp_table_dir) # Find the location of the existing table and get the full table directory structure. fq_table_name = src_db + "." + src_table table_loc = self._get_table_location(fq_table_name, vector) check_call(['hdfs', 'dfs', '-copyToLocal', table_loc + "/*", tmp_table_dir]) partitions = self.walk_and_corrupt_table_data(tmp_table_dir, num_copies, rng) for partition in partitions: self.execute_query('alter table {0}.{1} add partition ({2})'.format( fuzz_db, fuzz_table, ','.join(partition))) # Copy all of the local files and directories to hdfs. to_copy = ["%s/%s" % (tmp_table_dir, file_or_dir) for file_or_dir in os.listdir(tmp_table_dir)] self.filesystem_client.copy_from_local(to_copy, fuzz_table_location) if "SCANNER_FUZZ_KEEP_FILES" not in os.environ: shutil.rmtree(tmp_table_dir) # Querying the corrupted files should not DCHECK or crash. self.execute_query("refresh %s.%s" % (fuzz_db, fuzz_table)) # Execute a query that tries to read all the columns and rows in the file. # Also execute a count(*) that materializes no columns, since different code # paths are exercised. queries = [ 'select count(*) from (select distinct * from {0}.{1}) q'.format( fuzz_db, fuzz_table), 'select count(*) from {0}.{1} q'.format(fuzz_db, fuzz_table)] for query, batch_size, disable_codegen in \ itertools.product(queries, self.BATCH_SIZES, self.DISABLE_CODEGEN_VALUES): query_options = copy(vector.get_value('exec_option')) query_options['batch_size'] = batch_size query_options['disable_codegen'] = disable_codegen query_options['disable_codegen_rows_threshold'] = 0 try: result = self.execute_query(query, query_options = query_options) LOG.info('\n'.join(result.log)) except Exception as e: if 'memory limit exceeded' in str(e).lower(): # Memory limit error should fail query. continue msg = "Should not throw error when abort_on_error=0: '{0}'".format(e) LOG.error(msg) # Parquet and compressed text can fail the query for some parse errors. # E.g. corrupt Parquet footer (IMPALA-3773) or a corrupt LZO index file # (IMPALA-4013). table_format = vector.get_value('table_format') if table_format.file_format != 'parquet' \ and not (table_format.file_format == 'text' and \ table_format.compression_codec != 'none') \ and not table_format.file_format == 'rc' \ and not table_format.file_format == 'seq': raise def walk_and_corrupt_table_data(self, tmp_table_dir, num_copies, rng): """ Walks a local copy of a HDFS table directory. Returns a list of partitions, each as a list of "key=val" pairs. Ensures there is 'num_copies' copies of each file, and corrupts each of the copies. """ partitions = [] # Iterate over the partitions and files we downloaded. for subdir, dirs, files in os.walk(tmp_table_dir): if '_impala_insert_staging' in subdir: continue if len(dirs) != 0: continue # Skip non-leaf directories rel_subdir = os.path.relpath(subdir, tmp_table_dir) if rel_subdir != ".": # Create metadata for any directory partitions. partitions.append(self.partitions_from_path(rel_subdir)) # Corrupt all of the files that we find. for filename in files: filepath = os.path.join(subdir, filename) copies = [filepath] for copy_num in range(1, num_copies): copypath = os.path.join(subdir, "copy{0}_{1}".format(copy_num, filename)) shutil.copyfile(filepath, copypath) copies.append(copypath) for filepath in copies: self.corrupt_file(filepath, rng) return partitions def partitions_from_path(self, relpath): """ Return a list of "key=val" parts from partitions inferred from the directory path. """ reversed_partitions = [] while relpath != '': relpath, suffix = os.path.split(relpath) reversed_partitions.append(suffix) return reversed(reversed_partitions) def corrupt_file(self, path, rng): """ Corrupt the file at 'path' in the local file system in a randomised way using the random number generator 'rng'. Rewrites the file in-place. Logs a message to describe how the file was corrupted, so the error is reproducible. """ with open(path, "rb") as f: data = bytearray(f.read()) num_corruptions = rng.randint(0, int(math.log(len(data)))) for _ in xrange(num_corruptions): flip_offset = rng.randint(0, len(data) - 1) flip_val = rng.randint(0, 255) LOG.info("corrupt file: Flip byte in {0} at {1} from {2} to {3}".format( path, flip_offset, data[flip_offset], flip_val)) data[flip_offset] = flip_val if rng.random() < 0.4: truncation = rng.randint(0, len(data)) LOG.info("corrupt file: Truncate {0} to {1}".format(path, truncation)) data = data[:truncation] with open(path, "wb") as f: f.write(data)
the-stack_0_12608
import os import warnings from typing import Any, Callable, Dict, List, Optional, Tuple, Union import gym import numpy as np from stable_baselines3.common import base_class from stable_baselines3.common.callbacks import EvalCallback, BaseCallback from stable_baselines3.common.vec_env import VecEnv, sync_envs_normalization from controller.helpers.logging import merge_dicts, log_dict, get_done_or_dones # we're adapting stable_baseline's eval function to also return averaged info dict def evaluate_policy_with_info( model: "base_class.BaseAlgorithm", env: Union[gym.Env, VecEnv], n_eval_episodes: int = 10, deterministic: bool = True, render: bool = False, callback: Optional[Callable[[Dict[str, Any], Dict[str, Any]], None]] = None, reward_threshold: Optional[float] = None, return_episode_rewards: bool = False, warn: bool = True, ) -> Union[Tuple[float, float], Tuple[List[float], List[int]]]: """ Runs policy for ``n_eval_episodes`` episodes and returns average reward. This is made to work only with one env. .. note:: If environment has not been wrapped with ``Monitor`` wrapper, reward and episode lengths are counted as it appears with ``env.step`` calls. If the environment contains wrappers that modify rewards or episode lengths (e.g. reward scaling, early episode reset), these will affect the evaluation results as well. You can avoid this by wrapping environment with ``Monitor`` wrapper before anything else. :param model: The RL agent you want to evaluate. :param env: The gym environment. In the case of a ``VecEnv`` this must contain only one environment. :param n_eval_episodes: Number of episode to evaluate the agent :param deterministic: Whether to use deterministic or stochastic actions :param render: Whether to render the environment or not :param callback: callback function to do additional checks, called after each step. Gets locals() and globals() passed as parameters. :param reward_threshold: Minimum expected reward per episode, this will raise an error if the performance is not met :param return_episode_rewards: If True, a list of rewards and episde lengths per episode will be returned instead of the mean. :param warn: If True (default), warns user about lack of a Monitor wrapper in the evaluation environment. :return: Mean reward per episode, std of reward per episode. Returns ([float], [int]) when ``return_episode_rewards`` is True, first list containing per-episode rewards and second containing per-episode lengths (in number of steps). """ is_monitor_wrapped = False # Avoid circular import from stable_baselines3.common.env_util import is_wrapped from stable_baselines3.common.monitor import Monitor if isinstance(env, VecEnv): assert env.num_envs == 1, "You must pass only one environment when using this function" is_monitor_wrapped = env.env_is_wrapped(Monitor)[0] else: is_monitor_wrapped = is_wrapped(env, Monitor) if not is_monitor_wrapped and warn: warnings.warn( "Evaluation environment is not wrapped with a ``Monitor`` wrapper. " "This may result in reporting modified episode lengths and rewards, if other wrappers happen to modify these. " "Consider wrapping environment first with ``Monitor`` wrapper.", UserWarning, ) episode_rewards, episode_lengths = [], [] not_reseted = True all_infos = {} while len(episode_rewards) < n_eval_episodes: # Number of loops here might differ from true episodes # played, if underlying wrappers modify episode lengths. # Avoid double reset, as VecEnv are reset automatically. if not isinstance(env, VecEnv) or not_reseted: obs = env.reset() not_reseted = False done, state = False, None episode_reward = 0.0 episode_length = 0 while not done: action, state = model.predict(obs, state=state, deterministic=deterministic) obs, reward, done, info = env.step(action) episode_reward += reward if callback is not None: callback(locals(), globals()) episode_length += 1 if render: env.render() info = info[0] # access dict within list all_infos = merge_dicts(info, all_infos) if is_monitor_wrapped: # Do not trust "done" with episode endings. # Remove vecenv stacking (if any) if isinstance(env, VecEnv): info = info[0] if "episode" in info.keys(): # Monitor wrapper includes "episode" key in info if environment # has been wrapped with it. Use those rewards instead. episode_rewards.append(info["episode"]["r"]) episode_lengths.append(info["episode"]["l"]) else: episode_rewards.append(episode_reward) episode_lengths.append(episode_length) mean_reward = np.mean(episode_rewards) std_reward = np.std(episode_rewards) if reward_threshold is not None: assert mean_reward > reward_threshold, "Mean reward below threshold: " f"{mean_reward:.2f} < {reward_threshold:.2f}" if return_episode_rewards: return episode_rewards, episode_lengths, all_infos return mean_reward, std_reward, all_infos class EvalCallbackWithInfo(EvalCallback): def __init__( self, eval_env: Union[gym.Env, VecEnv], callback_on_new_best: Optional[BaseCallback] = None, n_eval_episodes: int = 5, eval_freq: int = 10000, log_path: str = None, best_model_save_path: str = None, deterministic: bool = True, render: bool = False, verbose: int = 1, warn: bool = True, exclude_infos_from_logging=["terminal_observation"], eval_at_init=False, eval_after_episode=True, ): super(EvalCallbackWithInfo, self).__init__( eval_env, callback_on_new_best, n_eval_episodes, eval_freq, log_path, best_model_save_path, deterministic, render, verbose, warn ) self.exclude_infos_from_logging = exclude_infos_from_logging self.eval_at_init = eval_at_init self.eval_after_episode = eval_after_episode self.epside_counter = 0 def _init_callback(self) -> None: # Does not work in some corner cases, where the wrapper is not the same if not isinstance(self.training_env, type(self.eval_env)): warnings.warn("Training and eval env are not of the same type" f"{self.training_env} != {self.eval_env}") # Create folders if needed if self.best_model_save_path is not None: os.makedirs(self.best_model_save_path, exist_ok=True) if self.log_path is not None: os.makedirs(os.path.dirname(self.log_path), exist_ok=True) # test performance right at the beginning to see how well random policy does if self.eval_at_init: self.eval_with_info() def eval_with_info(self): # Sync training and eval env if there is VecNormalize sync_envs_normalization(self.training_env, self.eval_env) # Reset success rate buffer self._is_success_buffer = [] episode_rewards, episode_lengths, all_infos = evaluate_policy_with_info( self.model, self.eval_env, n_eval_episodes=self.n_eval_episodes, render=self.render, deterministic=self.deterministic, return_episode_rewards=True, warn=self.warn, callback=self._log_success_callback, ) if self.log_path is not None: self.evaluations_timesteps.append(self.num_timesteps) self.evaluations_results.append(episode_rewards) self.evaluations_length.append(episode_lengths) kwargs = {} # Save success log if present if len(self._is_success_buffer) > 0: self.evaluations_successes.append(self._is_success_buffer) kwargs = dict(successes=self.evaluations_successes) np.savez( self.log_path, timesteps=self.evaluations_timesteps, results=self.evaluations_results, ep_lengths=self.evaluations_length, **kwargs, ) mean_reward, std_reward = np.mean(episode_rewards), np.std(episode_rewards) mean_ep_length, std_ep_length = np.mean(episode_lengths), np.std(episode_lengths) self.last_mean_reward = mean_reward if self.verbose > 0: print(f"Eval num_timesteps={self.num_timesteps}, " f"episode_reward={mean_reward:.2f} +/- {std_reward:.2f}") print(f"Episode length: {mean_ep_length:.2f} +/- {std_ep_length:.2f}") # log mean infos from evaluation runs log_dict(all_infos, self.logger, "eval/mean_", "mean", self.exclude_infos_from_logging) # Add to current Logger self.logger.record("eval/mean_reward", float(mean_reward)) self.logger.record("eval/mean_ep_length", mean_ep_length) if len(self._is_success_buffer) > 0: success_rate = np.mean(self._is_success_buffer) if self.verbose > 0: print(f"Success rate: {100 * success_rate:.2f}%") self.logger.record("eval/success_rate", success_rate) if mean_reward > self.best_mean_reward: if self.verbose > 0: print("New best mean reward!") if self.best_model_save_path is not None: self.model.save(os.path.join(self.best_model_save_path, "best_model")) self.best_mean_reward = mean_reward # Trigger callback if needed if self.callback is not None: return self._on_event() def _on_step(self) -> bool: if get_done_or_dones(self): self.epside_counter += 1 eval_after_step = self.n_calls % self.eval_freq == 0 and not self.eval_after_episode eval_after_episode = self.epside_counter % self.eval_freq == 0 and self.eval_after_episode is_final_step = self.num_timesteps == self.model._total_timesteps if self.eval_freq > 0 and (eval_after_step or eval_after_episode or is_final_step): self.eval_with_info() return True
the-stack_0_12609
# -*- coding: utf-8 -*- countries = { "ad" : "Andorra", "ae" : "the United Arab Emirates", "af" : "Afghanistan", "ag" : "Antigua and Barbuda", "ai" : "Anguilla", "al" : "Albania", "am" : "Armenia", "an" : "the Netherlands Antilles", "ao" : "Angola", "aq" : "Antarctica", "ar" : "Argentina", "as" : "American Samoa", "at" : "Austria", "au" : "Australia", "aw" : "Aruba", "ax" : "the Aland Islands", "az" : "Azerbaijan", "ba" : "Bosnia and Herzegovina", "bb" : "Barbados", "bd" : "Bangladesh", "be" : "Belgium", "bf" : "Burkina Faso", "bg" : "Bulgaria", "bh" : "Bahrain", "bi" : "Burundi", "bj" : "Benin", "bl" : "Saint Bartelemey", "bm" : "Bermuda", "bn" : "Brunei", "bo" : "Bolivia", "bq" : "Bonaire, Sint Eustatius and Saba", "br" : "Brazil", "bs" : "the Bahamas", "bt" : "Bhutan", "bv" : "the Bouvet Island", "bw" : "Botswana", "by" : "Belarus", "bz" : "Belize", "ca" : "Canada", "cc" : "the Cocos (Keeling) Islands", "cd" : "the Democratic Republic of the Congo", "cf" : "Central African Republic", "cg" : "Congo", "ch" : "Switzerland", "ci" : u"Côte d'Ivoire", "ck" : "the Cook Islands", "cl" : "Chile", "cm" : "Cameroon", "cn" : "China", "co" : "Colombia", "cr" : "Costa Rica", "cu" : "Cuba", "cv" : "Cape Verde", "cw" : u"Curaçao", "cx" : "the Christmas Island", "cy" : "Cyprus", "cz" : "the Czech Republic", "de" : "Germany", "dj" : "Djibouti", "dk" : "Denmark", "dm" : "Dominica", "do" : "the Dominican Republic", "dz" : "Algeria", "ec" : "Ecuador", "ee" : "Estonia", "eg" : "Egypt", "eh" : "the Western Sahara", "er" : "Eritrea", "es" : "Spain", "et" : "Ethiopia", "fi" : "Finland", "fj" : "Fiji", "fk" : "the Falkland Islands (Malvinas)", "fm" : "the Federated States of Micronesia", "fo" : "the Faroe Islands", "fr" : "France", "ga" : "Gabon", "gb" : "the United Kingdom", "gd" : "Grenada", "ge" : "Georgia", "gf" : "French Guiana", "gg" : "Guernsey", "gh" : "Ghana", "gi" : "Gibraltar", "gl" : "Greenland", "gm" : "Gambia", "gn" : "Guinea", "gp" : "Guadeloupe", "gq" : "Equatorial Guinea", "gr" : "Greece", "gs" : "South Georgia and the South Sandwich Islands", "gt" : "Guatemala", "gu" : "Guam", "gw" : "Guinea-Bissau", "gy" : "Guyana", "hk" : "Hong Kong", "hm" : "Heard Island and McDonald Islands", "hn" : "Honduras", "hr" : "Croatia", "ht" : "Haiti", "hu" : "Hungary", "id" : "Indonesia", "ie" : "Ireland", "il" : "Israel", "im" : "the Isle of Man", "in" : "India", "io" : "the British Indian Ocean Territory", "iq" : "Iraq", "ir" : "Iran", "is" : "Iceland", "it" : "Italy", "je" : "Jersey", "jm" : "Jamaica", "jo" : "Jordan", "jp" : "Japan", "ke" : "Kenya", "kg" : "Kyrgyzstan", "kh" : "Cambodia", "ki" : "Kiribati", "km" : "Comoros", "kn" : "Saint Kitts and Nevis", "kp" : "North Korea", "kr" : "the Republic of Korea", "kw" : "Kuwait", "ky" : "the Cayman Islands", "kz" : "Kazakhstan", "la" : "Laos", "lb" : "Lebanon", "lc" : "Saint Lucia", "li" : "Liechtenstein", "lk" : "Sri Lanka", "lr" : "Liberia", "ls" : "Lesotho", "lt" : "Lithuania", "lu" : "Luxembourg", "lv" : "Latvia", "ly" : "Libya", "ma" : "Morocco", "mc" : "Monaco", "md" : "the Republic of Moldova", "me" : "Montenegro", "mf" : "Saint Martin", "mg" : "Madagascar", "mh" : "the Marshall Islands", "mk" : "Macedonia", "ml" : "Mali", "mm" : "Burma", "mn" : "Mongolia", "mo" : "Macau", "mp" : "the Northern Mariana Islands", "mq" : "Martinique", "mr" : "Mauritania", "ms" : "Montserrat", "mt" : "Malta", "mu" : "Mauritius", "mv" : "the Maldives", "mw" : "Malawi", "mx" : "Mexico", "my" : "Malaysia", "mz" : "Mozambique", "na" : "Namibia", "nc" : "New Caledonia", "ne" : "Niger", "nf" : "Norfolk Island", "ng" : "Nigeria", "ni" : "Nicaragua", "nl" : "the Netherlands", "no" : "Norway", "np" : "Nepal", "nr" : "Nauru", "nu" : "Niue", "nz" : "New Zealand", "om" : "Oman", "pa" : "Panama", "pe" : "Peru", "pf" : "French Polynesia", "pg" : "Papua New Guinea", "ph" : "the Philippines", "pk" : "Pakistan", "pl" : "Poland", "pm" : "Saint Pierre and Miquelon", "pn" : "the Pitcairn Islands", "pr" : "Puerto Rico", "ps" : "the Palestinian Territory", "pt" : "Portugal", "pw" : "Palau", "py" : "Paraguay", "qa" : "Qatar", "re" : "Reunion", "ro" : "Romania", "rs" : "Serbia", "ru" : "Russia", "rw" : "Rwanda", "sa" : "Saudi Arabia", "sb" : "the Solomon Islands", "sc" : "the Seychelles", "sd" : "Sudan", "se" : "Sweden", "sg" : "Singapore", "sh" : "Saint Helena", "si" : "Slovenia", "sj" : "Svalbard and Jan Mayen", "sk" : "Slovakia", "sl" : "Sierra Leone", "sm" : "San Marino", "sn" : "Senegal", "so" : "Somalia", "sr" : "Suriname", "ss" : "South Sudan", "st" : u"São Tomé and Príncipe", "sv" : "El Salvador", "sx" : "Sint Maarten", "sy" : "the Syrian Arab Republic", "sz" : "Swaziland", "tc" : "Turks and Caicos Islands", "td" : "Chad", "tf" : "the French Southern Territories", "tg" : "Togo", "th" : "Thailand", "tj" : "Tajikistan", "tk" : "Tokelau", "tl" : "East Timor", "tm" : "Turkmenistan", "tn" : "Tunisia", "to" : "Tonga", "tr" : "Turkey", "tt" : "Trinidad and Tobago", "tv" : "Tuvalu", "tw" : "Taiwan", "tz" : "the United Republic of Tanzania", "ua" : "Ukraine", "ug" : "Uganda", "um" : "the United States Minor Outlying Islands", "us" : "the United States", "uy" : "Uruguay", "uz" : "Uzbekistan", "va" : "Vatican City", "vc" : "Saint Vincent and the Grenadines", "ve" : "Venezuela", "vg" : "the British Virgin Islands", "vi" : "the United States Virgin Islands", "vn" : "Vietnam", "vu" : "Vanuatu", "wf" : "Wallis and Futuna", "ws" : "Samoa", "xk" : "Kosovo", "ye" : "Yemen", "yt" : "Mayotte", "za" : "South Africa", "zm" : "Zambia", "zw" : "Zimbabwe" }
the-stack_0_12610
""" ====================================================================== A demo of structured Ward hierarchical clustering on an image of coins ====================================================================== Compute the segmentation of a 2D image with Ward hierarchical clustering. The clustering is spatially constrained in order for each segmented region to be in one piece. """ # Author : Vincent Michel, 2010 # Alexandre Gramfort, 2011 # License: BSD 3 clause # %% # Generate data # ------------- from skimage.data import coins orig_coins = coins() # %% # Resize it to 20% of the original size to speed up the processing # Applying a Gaussian filter for smoothing prior to down-scaling # reduces aliasing artifacts. import numpy as np from scipy.ndimage import gaussian_filter from skimage.transform import rescale smoothened_coins = gaussian_filter(orig_coins, sigma=2) rescaled_coins = rescale( smoothened_coins, 0.2, mode="reflect", anti_aliasing=False, ) X = np.reshape(rescaled_coins, (-1, 1)) # %% # Define structure of the data # ---------------------------- # # Pixels are connected to their neighbors. from sklearn.feature_extraction.image import grid_to_graph connectivity = grid_to_graph(*rescaled_coins.shape) # %% # Compute clustering # ------------------ import time as time from sklearn.cluster import AgglomerativeClustering print("Compute structured hierarchical clustering...") st = time.time() n_clusters = 27 # number of regions ward = AgglomerativeClustering( n_clusters=n_clusters, linkage="ward", connectivity=connectivity ) ward.fit(X) label = np.reshape(ward.labels_, rescaled_coins.shape) print(f"Elapsed time: {time.time() - st:.3f}s") print(f"Number of pixels: {label.size}") print(f"Number of clusters: {np.unique(label).size}") # %% # Plot the results on an image # ---------------------------- # # Agglomerative clustering is able to segment each coin however, we have had to # use a ``n_cluster`` larger than the number of coins because the segmentation # is finding a large in the background. import matplotlib.pyplot as plt plt.figure(figsize=(5, 5)) plt.imshow(rescaled_coins, cmap=plt.cm.gray) for l in range(n_clusters): plt.contour( label == l, colors=[ plt.cm.nipy_spectral(l / float(n_clusters)), ], ) plt.axis("off") plt.show()
the-stack_0_12611
from Tkinter import * class Test(Frame): def printit(self): print(self.hi_there["command"]) def createWidgets(self): # a hello button self.QUIT = Button(self, text='QUIT', foreground='red', command=self.quit) self.QUIT.pack(side=LEFT, fill=BOTH) self.hi_there = Button(self, text='Hello', command=self.printit) self.hi_there.pack(side=LEFT) # note how Packer defaults to side=TOP self.guy2 = Button(self, text='button 2') self.guy2.pack() self.guy3 = Button(self, text='button 3') self.guy3.pack() def __init__(self, master=None): Frame.__init__(self, master) Pack.config(self) self.createWidgets() test = Test() test.mainloop()
the-stack_0_12612
# -*- coding: utf-8 -*- import time from common.base_test import BaseTest from project import INIT0_PK, INIT1_PK, INIT2_PK, INIT3_PK, INIT4_PK import lemoncheesecake.api as lcc from lemoncheesecake.matching import check_that, not_equal_to SUITE = { "description": "Operation 'committee_member_deactivate'" } @lcc.prop("main", "type") @lcc.tags("operations", "committee_member_operations", "committee_member_deactivate") @lcc.suite("Check work of operation 'committee_member_deactivate'", rank=1) class CommitteeMemberDeactivate(BaseTest): def __init__(self): super().__init__() self.__database_api_identifier = None self.init0 = None self.init1 = None self.init2 = None self.init3 = None self.init4 = None def setup_suite(self): super().setup_suite() self._connect_to_ethereum() self._connect_to_echopy_lib() lcc.set_step("Setup for {}".format(self.__class__.__name__)) self.__database_api_identifier = self.get_identifier("database") self.committee_members_info = self.get_active_committee_members_info(self.__database_api_identifier) self.init0 = self.committee_members_info[0]["account_id"] self.init1 = self.committee_members_info[1]["account_id"] self.init2 = self.committee_members_info[2]["account_id"] self.init3 = self.committee_members_info[3]["account_id"] self.init4 = self.committee_members_info[4]["account_id"] lcc.log_info( "Echo initial accounts: {}, {}, {}, {}, {}".format( self.init0, self.init1, self.init2, self.init3, self.init4 ) ) def teardown_suite(self): self._disconnect_to_echopy_lib() super().teardown_suite() @lcc.test("Simple work of operation 'committee_member_deactivate'") @lcc.depends_on("Operations.CommitteeMember.CommitteeMemberActivate.CommitteeMemberActivate.method_main_check") def method_main_check(self): operation = self.echo_ops.get_committee_member_deactivate_operation( echo=self.echo, committee_member_account=self.init0, committee_to_deactivate=self.committee_members_info[-1]["committee_id"], signer=INIT0_PK ) collected_operation = self.collect_operations(operation, self.__database_api_identifier) lcc.log_info("Collected successfully") lcc.set_step("Make proposal of deactivating new account") operation = self.echo_ops.get_proposal_create_operation( echo=self.echo, fee_paying_account=self.init0, proposed_ops=collected_operation, expiration_time=self.get_expiration_time(15), review_period_seconds=10, signer=INIT0_PK ) collected_operation = self.collect_operations(operation, self.__database_api_identifier) broadcast_result = self.echo_ops.broadcast(echo=self.echo, list_operations=operation) if not self.is_operation_completed(broadcast_result, expected_static_variant=1): raise Exception("Operation 'proposal_created' failed while broadcast") proposal_id = broadcast_result["trx"]["operation_results"][0][1] lcc.set_step("Make voting of deactivating new account") operation = self.echo_ops.get_proposal_update_operation( echo=self.echo, fee_paying_account=self.init0, proposal=proposal_id, active_approvals_to_add=[self.init0, self.init1, self.init2, self.init3, self.init4], active_approvals_to_remove=[], key_approvals_to_add=[], key_approvals_to_remove=[], signer=[INIT0_PK, INIT1_PK, INIT2_PK, INIT3_PK, INIT4_PK] ) collected_operation = self.collect_operations(operation, self.__database_api_identifier) broadcast_result = self.echo_ops.broadcast(echo=self.echo, list_operations=collected_operation) if not self.is_operation_completed(broadcast_result, expected_static_variant=0): raise Exception("Operation 'proposal_update' failed while broadcast") lcc.log_info("All committee member has voted") lcc.set_step( "Waiting for maintenance and release of two blocks and check that new committee member were deactivated" ) self.produce_block(self.__database_api_identifier) time.sleep(15) self.produce_block(self.__database_api_identifier) check_that( "acitve committee member", self.committee_members_info[-1]["account_id"], not_equal_to(self.get_active_committee_members_info(self.__database_api_identifier)[-1]["account_id"]), quiet=True )
the-stack_0_12615
from flaskapp.models import Question from test.main.base_classes import BaseUnit from test.main.utils import test_post_request class AddQuestionTestCase(BaseUnit): def test_add_sub_question(self): # Test valid data new_question = dict( question="Is it okay?", mark=8, difficulty="Easy", cognitive_level="Application", imp=True, submit="submit", ) _, question = test_post_request(self, "/course/1/unit/1/question/sub/new/", new_question, Question, 1) # Testing if repr method is working self.assertEqual( str(question), "Question(Is it okay?, 8, Easy, Application, sub, True)", ) # Test invalid data new_question = dict( question="Isn't it okay?", mark=None, imp=False, difficulty="Easy", cognitive_level="Application", submit="submit", ) self.assertRaises( AttributeError, test_post_request, self, "/course/1/unit/1/question/sub/new/", new_question, Question, 2, ) def test_add_mcq_question(self): # test valid data new_mcq = dict( question="Rate it", mark=8, difficulty="Easy", cognitive_level="Application", imp=None, option1="10", option2="9", option3="8", option4="7", ) _, mcq = test_post_request(self, "/course/1/unit/1/question/mcq/new/", new_mcq, Question, 1) # test repr method self.assertEqual( str(mcq), "Question(Rate it, 8, Easy, Application, mcq, False)", ) # test invalid data new_mcq = dict( question=None, mark=8, difficulty="Easy", cognitive_level="Application", imp=True, submit="submit", option1="A", option2="B", option3="C", option4="D", ) self.assertRaises( AttributeError, test_post_request, self, "/course/1/unit/1/question/mcq/new/", new_mcq, Question, 2, )
the-stack_0_12616
import keras.metrics import tensorflow as tf def weighted_crossentropy(y_true, y_pred): class_weights = tf.constant([[[[1., 1., 10.]]]]) unweighted_losses = tf.nn.softmax_cross_entropy_with_logits_v2(labels=y_true, logits=y_pred) weights = tf.reduce_sum(class_weights * y_true, axis=-1) weighted_losses = weights * unweighted_losses loss = tf.reduce_mean(weighted_losses) return loss
the-stack_0_12617
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ """ import numpy as np from scipy.integrate._ivp.ivp import OdeResult import matplotlib.pyplot as plt plt.style.use('seaborn') def solve_ivp(fun, t_span, y0, t_eval=None, dt=0.01): t0, tf = float(t_span[0]), float(t_span[-1]) if t_eval is not None: assert t0 == t_eval[0] assert tf == t_eval[-1] # these variables are only needed if t_eval is not None i = 1 tp = t0 yp = y0 t = t0 y = y0 ts = [t] ys = [y] while t < tf : y = y + dt*fun(t,y) t = t + dt if t_eval is not None: while i < len(t_eval) and t >= t_eval[i]: if t == t_eval[i]: ts.append(t) ys.append(y) i += 1 elif t > t_eval[i]: yint = yp + (t_eval[i]-tp)*(y-yp)/(t-tp) ts.append(t_eval[i]) ys.append(yint) i += 1 tp = t yp = y else: ts.append(t) ys.append(y) ts = np.hstack(ts) ys = np.vstack(ys).T return OdeResult(t=ts, y=ys) if __name__ == "__main__": # stability region for Euler forward for this problem is h<2/50=0.04 @np.vectorize def func(t,y): return -50*y # t_span = (0,1) # y0 = np.array([1,1]) # # sol = solve_ivp(func, t_span, y0 ) # # plt.figure() # plt.plot(sol.t, sol.y) t_eval = np.linspace(0,1,10) y0 = np.array([1]) sol = solve_ivp(func, [t_eval[0], t_eval[-1]], y0, t_eval=t_eval)
the-stack_0_12618
#!/usr/bin/env python3 from __future__ import unicode_literals # Allow direct execution import os import sys import unittest sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) import io import re import string from test.helper import FakeYDL from yt_dlp.extractor import YoutubeIE from yt_dlp.compat import compat_str, compat_urlretrieve _TESTS = [ ( 'https://s.ytimg.com/yts/jsbin/html5player-vflHOr_nV.js', 86, '>=<;:/.-[+*)(\'&%$#"!ZYX0VUTSRQPONMLKJIHGFEDCBA\\yxwvutsrqponmlkjihgfedcba987654321', ), ( 'https://s.ytimg.com/yts/jsbin/html5player-vfldJ8xgI.js', 85, '3456789a0cdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRS[UVWXYZ!"#$%&\'()*+,-./:;<=>?@', ), ( 'https://s.ytimg.com/yts/jsbin/html5player-vfle-mVwz.js', 90, ']\\[@?>=<;:/.-,+*)(\'&%$#"hZYXWVUTSRQPONMLKJIHGFEDCBAzyxwvutsrqponmlkjiagfedcb39876', ), ( 'https://s.ytimg.com/yts/jsbin/html5player-en_US-vfl0Cbn9e.js', 84, 'O1I3456789abcde0ghijklmnopqrstuvwxyzABCDEFGHfJKLMN2PQRSTUVW@YZ!"#$%&\'()*+,-./:;<=', ), ( 'https://s.ytimg.com/yts/jsbin/html5player-en_US-vflXGBaUN.js', '2ACFC7A61CA478CD21425E5A57EBD73DDC78E22A.2094302436B2D377D14A3BBA23022D023B8BC25AA', 'A52CB8B320D22032ABB3A41D773D2B6342034902.A22E87CDD37DBE75A5E52412DC874AC16A7CFCA2', ), ( 'https://s.ytimg.com/yts/jsbin/html5player-en_US-vflBb0OQx.js', 84, '123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQ0STUVWXYZ!"#$%&\'()*+,@./:;<=>' ), ( 'https://s.ytimg.com/yts/jsbin/html5player-en_US-vfl9FYC6l.js', 83, '123456789abcdefghijklmnopqr0tuvwxyzABCDETGHIJKLMNOPQRS>UVWXYZ!"#$%&\'()*+,-./:;<=F' ), ( 'https://s.ytimg.com/yts/jsbin/html5player-en_US-vflCGk6yw/html5player.js', '4646B5181C6C3020DF1D9C7FCFEA.AD80ABF70C39BD369CCCAE780AFBB98FA6B6CB42766249D9488C288', '82C8849D94266724DC6B6AF89BBFA087EACCD963.B93C07FBA084ACAEFCF7C9D1FD0203C6C1815B6B' ), ( 'https://s.ytimg.com/yts/jsbin/html5player-en_US-vflKjOTVq/html5player.js', '312AA52209E3623129A412D56A40F11CB0AF14AE.3EE09501CB14E3BCDC3B2AE808BF3F1D14E7FBF12', '112AA5220913623229A412D56A40F11CB0AF14AE.3EE0950FCB14EEBCDC3B2AE808BF331D14E7FBF3', ) ] class TestPlayerInfo(unittest.TestCase): def test_youtube_extract_player_info(self): PLAYER_URLS = ( ('https://www.youtube.com/s/player/64dddad9/player_ias.vflset/en_US/base.js', '64dddad9'), ('https://www.youtube.com/s/player/64dddad9/player_ias.vflset/fr_FR/base.js', '64dddad9'), ('https://www.youtube.com/s/player/64dddad9/player-plasma-ias-phone-en_US.vflset/base.js', '64dddad9'), ('https://www.youtube.com/s/player/64dddad9/player-plasma-ias-phone-de_DE.vflset/base.js', '64dddad9'), ('https://www.youtube.com/s/player/64dddad9/player-plasma-ias-tablet-en_US.vflset/base.js', '64dddad9'), # obsolete ('https://www.youtube.com/yts/jsbin/player_ias-vfle4-e03/en_US/base.js', 'vfle4-e03'), ('https://www.youtube.com/yts/jsbin/player_ias-vfl49f_g4/en_US/base.js', 'vfl49f_g4'), ('https://www.youtube.com/yts/jsbin/player_ias-vflCPQUIL/en_US/base.js', 'vflCPQUIL'), ('https://www.youtube.com/yts/jsbin/player-vflzQZbt7/en_US/base.js', 'vflzQZbt7'), ('https://www.youtube.com/yts/jsbin/player-en_US-vflaxXRn1/base.js', 'vflaxXRn1'), ('https://s.ytimg.com/yts/jsbin/html5player-en_US-vflXGBaUN.js', 'vflXGBaUN'), ('https://s.ytimg.com/yts/jsbin/html5player-en_US-vflKjOTVq/html5player.js', 'vflKjOTVq'), ) for player_url, expected_player_id in PLAYER_URLS: player_id = YoutubeIE._extract_player_info(player_url) self.assertEqual(player_id, expected_player_id) class TestSignature(unittest.TestCase): def setUp(self): TEST_DIR = os.path.dirname(os.path.abspath(__file__)) self.TESTDATA_DIR = os.path.join(TEST_DIR, 'testdata') if not os.path.exists(self.TESTDATA_DIR): os.mkdir(self.TESTDATA_DIR) def make_tfunc(url, sig_input, expected_sig): m = re.match(r'.*-([a-zA-Z0-9_-]+)(?:/watch_as3|/html5player)?\.[a-z]+$', url) assert m, '%r should follow URL format' % url test_id = m.group(1) def test_func(self): basename = 'player-%s.js' % test_id fn = os.path.join(self.TESTDATA_DIR, basename) if not os.path.exists(fn): compat_urlretrieve(url, fn) ydl = FakeYDL() ie = YoutubeIE(ydl) with io.open(fn, encoding='utf-8') as testf: jscode = testf.read() func = ie._parse_sig_js(jscode) src_sig = ( compat_str(string.printable[:sig_input]) if isinstance(sig_input, int) else sig_input) got_sig = func(src_sig) self.assertEqual(got_sig, expected_sig) test_func.__name__ = str('test_signature_js_' + test_id) setattr(TestSignature, test_func.__name__, test_func) for test_spec in _TESTS: make_tfunc(*test_spec) if __name__ == '__main__': unittest.main()
the-stack_0_12619
# -*- coding: utf-8 -*- """ oauthlib.oauth2.rfc6749 ~~~~~~~~~~~~~~~~~~~~~~~ This module is an implementation of various logic needed for consuming OAuth 2.0 RFC6749. """ from __future__ import absolute_import, unicode_literals import time import warnings from oauthlib.common import generate_token from oauthlib.oauth2.rfc6749 import tokens from oauthlib.oauth2.rfc6749.errors import (InsecureTransportError, TokenExpiredError) from oauthlib.oauth2.rfc6749.parameters import (parse_token_response, prepare_token_request, prepare_token_revocation_request) from oauthlib.oauth2.rfc6749.utils import is_secure_transport AUTH_HEADER = 'auth_header' URI_QUERY = 'query' BODY = 'body' FORM_ENC_HEADERS = { 'Content-Type': 'application/x-www-form-urlencoded' } class Client(object): """Base OAuth2 client responsible for access token management. This class also acts as a generic interface providing methods common to all client types such as ``prepare_authorization_request`` and ``prepare_token_revocation_request``. The ``prepare_x_request`` methods are the recommended way of interacting with clients (as opposed to the abstract prepare uri/body/etc methods). They are recommended over the older set because they are easier to use (more consistent) and add a few additional security checks, such as HTTPS and state checking. Some of these methods require further implementation only provided by the specific purpose clients such as :py:class:`oauthlib.oauth2.MobileApplicationClient` and thus you should always seek to use the client class matching the OAuth workflow you need. For Python, this is usually :py:class:`oauthlib.oauth2.WebApplicationClient`. """ refresh_token_key = 'refresh_token' def __init__(self, client_id, default_token_placement=AUTH_HEADER, token_type='Bearer', access_token=None, refresh_token=None, mac_key=None, mac_algorithm=None, token=None, scope=None, state=None, redirect_url=None, state_generator=generate_token, **kwargs): """Initialize a client with commonly used attributes. :param client_id: Client identifier given by the OAuth provider upon registration. :param default_token_placement: Tokens can be supplied in the Authorization header (default), the URL query component (``query``) or the request body (``body``). :param token_type: OAuth 2 token type. Defaults to Bearer. Change this if you specify the ``access_token`` parameter and know it is of a different token type, such as a MAC, JWT or SAML token. Can also be supplied as ``token_type`` inside the ``token`` dict parameter. :param access_token: An access token (string) used to authenticate requests to protected resources. Can also be supplied inside the ``token`` dict parameter. :param refresh_token: A refresh token (string) used to refresh expired tokens. Can also be supplied inside the ``token`` dict parameter. :param mac_key: Encryption key used with MAC tokens. :param mac_algorithm: Hashing algorithm for MAC tokens. :param token: A dict of token attributes such as ``access_token``, ``token_type`` and ``expires_at``. :param scope: A list of default scopes to request authorization for. :param state: A CSRF protection string used during authorization. :param redirect_url: The redirection endpoint on the client side to which the user returns after authorization. :param state_generator: A no argument state generation callable. Defaults to :py:meth:`oauthlib.common.generate_token`. """ self.client_id = client_id self.default_token_placement = default_token_placement self.token_type = token_type self.access_token = access_token self.refresh_token = refresh_token self.mac_key = mac_key self.mac_algorithm = mac_algorithm self.token = token or {} self.scope = scope self.state_generator = state_generator self.state = state self.redirect_url = redirect_url self.code = None self.expires_in = None self._expires_at = None self.populate_token_attributes(self.token) @property def token_types(self): """Supported token types and their respective methods Additional tokens can be supported by extending this dictionary. The Bearer token spec is stable and safe to use. The MAC token spec is not yet stable and support for MAC tokens is experimental and currently matching version 00 of the spec. """ return { 'Bearer': self._add_bearer_token, 'MAC': self._add_mac_token } def prepare_request_uri(self, *args, **kwargs): """Abstract method used to create request URIs.""" raise NotImplementedError("Must be implemented by inheriting classes.") def prepare_request_body(self, *args, **kwargs): """Abstract method used to create request bodies.""" raise NotImplementedError("Must be implemented by inheriting classes.") def parse_request_uri_response(self, *args, **kwargs): """Abstract method used to parse redirection responses.""" raise NotImplementedError("Must be implemented by inheriting classes.") def add_token(self, uri, http_method='GET', body=None, headers=None, token_placement=None, **kwargs): """Add token to the request uri, body or authorization header. The access token type provides the client with the information required to successfully utilize the access token to make a protected resource request (along with type-specific attributes). The client MUST NOT use an access token if it does not understand the token type. For example, the "bearer" token type defined in [`I-D.ietf-oauth-v2-bearer`_] is utilized by simply including the access token string in the request: .. code-block:: http GET /resource/1 HTTP/1.1 Host: example.com Authorization: Bearer mF_9.B5f-4.1JqM while the "mac" token type defined in [`I-D.ietf-oauth-v2-http-mac`_] is utilized by issuing a MAC key together with the access token which is used to sign certain components of the HTTP requests: .. code-block:: http GET /resource/1 HTTP/1.1 Host: example.com Authorization: MAC id="h480djs93hd8", nonce="274312:dj83hs9s", mac="kDZvddkndxvhGRXZhvuDjEWhGeE=" .. _`I-D.ietf-oauth-v2-bearer`: https://tools.ietf.org/html/rfc6749#section-12.2 .. _`I-D.ietf-oauth-v2-http-mac`: https://tools.ietf.org/html/rfc6749#section-12.2 """ if not is_secure_transport(uri): raise InsecureTransportError() token_placement = token_placement or self.default_token_placement case_insensitive_token_types = dict( (k.lower(), v) for k, v in self.token_types.items()) if not self.token_type.lower() in case_insensitive_token_types: raise ValueError("Unsupported token type: %s" % self.token_type) if not (self.access_token or self.token.get('access_token')): raise ValueError("Missing access token.") if self._expires_at and self._expires_at < time.time(): raise TokenExpiredError() return case_insensitive_token_types[self.token_type.lower()](uri, http_method, body, headers, token_placement, **kwargs) def prepare_authorization_request(self, authorization_url, state=None, redirect_url=None, scope=None, **kwargs): """Prepare the authorization request. This is the first step in many OAuth flows in which the user is redirected to a certain authorization URL. This method adds required parameters to the authorization URL. :param authorization_url: Provider authorization endpoint URL. :param state: CSRF protection string. Will be automatically created if not provided. The generated state is available via the ``state`` attribute. Clients should verify that the state is unchanged and present in the authorization response. This verification is done automatically if using the ``authorization_response`` parameter with ``prepare_token_request``. :param redirect_url: Redirect URL to which the user will be returned after authorization. Must be provided unless previously setup with the provider. If provided then it must also be provided in the token request. :param kwargs: Additional parameters to included in the request. :returns: The prepared request tuple with (url, headers, body). """ if not is_secure_transport(authorization_url): raise InsecureTransportError() self.state = state or self.state_generator() self.redirect_url = redirect_url or self.redirect_url self.scope = scope or self.scope auth_url = self.prepare_request_uri( authorization_url, redirect_uri=self.redirect_url, scope=self.scope, state=self.state, **kwargs) return auth_url, FORM_ENC_HEADERS, '' def prepare_token_request(self, token_url, authorization_response=None, redirect_url=None, state=None, body='', **kwargs): """Prepare a token creation request. Note that these requests usually require client authentication, either by including client_id or a set of provider specific authentication credentials. :param token_url: Provider token creation endpoint URL. :param authorization_response: The full redirection URL string, i.e. the location to which the user was redirected after successfull authorization. Used to mine credentials needed to obtain a token in this step, such as authorization code. :param redirect_url: The redirect_url supplied with the authorization request (if there was one). :param body: Existing request body (URL encoded string) to embed parameters into. This may contain extra paramters. Default ''. :param kwargs: Additional parameters to included in the request. :returns: The prepared request tuple with (url, headers, body). """ if not is_secure_transport(token_url): raise InsecureTransportError() state = state or self.state if authorization_response: self.parse_request_uri_response( authorization_response, state=state) self.redirect_url = redirect_url or self.redirect_url body = self.prepare_request_body(body=body, redirect_uri=self.redirect_url, **kwargs) return token_url, FORM_ENC_HEADERS, body def prepare_refresh_token_request(self, token_url, refresh_token=None, body='', scope=None, **kwargs): """Prepare an access token refresh request. Expired access tokens can be replaced by new access tokens without going through the OAuth dance if the client obtained a refresh token. This refresh token and authentication credentials can be used to obtain a new access token, and possibly a new refresh token. :param token_url: Provider token refresh endpoint URL. :param refresh_token: Refresh token string. :param body: Existing request body (URL encoded string) to embed parameters into. This may contain extra paramters. Default ''. :param scope: List of scopes to request. Must be equal to or a subset of the scopes granted when obtaining the refresh token. :param kwargs: Additional parameters to included in the request. :returns: The prepared request tuple with (url, headers, body). """ if not is_secure_transport(token_url): raise InsecureTransportError() self.scope = scope or self.scope body = self.prepare_refresh_body(body=body, refresh_token=refresh_token, scope=self.scope, **kwargs) return token_url, FORM_ENC_HEADERS, body def prepare_token_revocation_request(self, revocation_url, token, token_type_hint="access_token", body='', callback=None, **kwargs): """Prepare a token revocation request. :param revocation_url: Provider token revocation endpoint URL. :param token: The access or refresh token to be revoked (string). :param token_type_hint: ``"access_token"`` (default) or ``"refresh_token"``. This is optional and if you wish to not pass it you must provide ``token_type_hint=None``. :param callback: A jsonp callback such as ``package.callback`` to be invoked upon receiving the response. Not that it should not include a () suffix. :param kwargs: Additional parameters to included in the request. :returns: The prepared request tuple with (url, headers, body). Note that JSONP request may use GET requests as the parameters will be added to the request URL query as opposed to the request body. An example of a revocation request .. code-block: http POST /revoke HTTP/1.1 Host: server.example.com Content-Type: application/x-www-form-urlencoded Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW token=45ghiukldjahdnhzdauz&token_type_hint=refresh_token An example of a jsonp revocation request .. code-block: http GET /revoke?token=agabcdefddddafdd&callback=package.myCallback HTTP/1.1 Host: server.example.com Content-Type: application/x-www-form-urlencoded Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW and an error response .. code-block: http package.myCallback({"error":"unsupported_token_type"}); Note that these requests usually require client credentials, client_id in the case for public clients and provider specific authentication credentials for confidential clients. """ if not is_secure_transport(revocation_url): raise InsecureTransportError() return prepare_token_revocation_request(revocation_url, token, token_type_hint=token_type_hint, body=body, callback=callback, **kwargs) def parse_request_body_response(self, body, scope=None, **kwargs): """Parse the JSON response body. If the access token request is valid and authorized, the authorization server issues an access token as described in `Section 5.1`_. A refresh token SHOULD NOT be included. If the request failed client authentication or is invalid, the authorization server returns an error response as described in `Section 5.2`_. :param body: The response body from the token request. :param scope: Scopes originally requested. :return: Dictionary of token parameters. :raises: Warning if scope has changed. OAuth2Error if response is invalid. These response are json encoded and could easily be parsed without the assistance of OAuthLib. However, there are a few subtle issues to be aware of regarding the response which are helpfully addressed through the raising of various errors. A successful response should always contain **access_token** The access token issued by the authorization server. Often a random string. **token_type** The type of the token issued as described in `Section 7.1`_. Commonly ``Bearer``. While it is not mandated it is recommended that the provider include **expires_in** The lifetime in seconds of the access token. For example, the value "3600" denotes that the access token will expire in one hour from the time the response was generated. If omitted, the authorization server SHOULD provide the expiration time via other means or document the default value. **scope** Providers may supply this in all responses but are required to only if it has changed since the authorization request. .. _`Section 5.1`: https://tools.ietf.org/html/rfc6749#section-5.1 .. _`Section 5.2`: https://tools.ietf.org/html/rfc6749#section-5.2 .. _`Section 7.1`: https://tools.ietf.org/html/rfc6749#section-7.1 """ self.token = parse_token_response(body, scope=scope) self.populate_token_attributes(self.token) return self.token def prepare_refresh_body(self, body='', refresh_token=None, scope=None, **kwargs): """Prepare an access token request, using a refresh token. If the authorization server issued a refresh token to the client, the client makes a refresh request to the token endpoint by adding the following parameters using the "application/x-www-form-urlencoded" format in the HTTP request entity-body: grant_type REQUIRED. Value MUST be set to "refresh_token". refresh_token REQUIRED. The refresh token issued to the client. scope OPTIONAL. The scope of the access request as described by Section 3.3. The requested scope MUST NOT include any scope not originally granted by the resource owner, and if omitted is treated as equal to the scope originally granted by the resource owner. """ refresh_token = refresh_token or self.refresh_token return prepare_token_request(self.refresh_token_key, body=body, scope=scope, refresh_token=refresh_token, **kwargs) def _add_bearer_token(self, uri, http_method='GET', body=None, headers=None, token_placement=None): """Add a bearer token to the request uri, body or authorization header.""" if token_placement == AUTH_HEADER: headers = tokens.prepare_bearer_headers(self.access_token, headers) elif token_placement == URI_QUERY: uri = tokens.prepare_bearer_uri(self.access_token, uri) elif token_placement == BODY: body = tokens.prepare_bearer_body(self.access_token, body) else: raise ValueError("Invalid token placement.") return uri, headers, body def _add_mac_token(self, uri, http_method='GET', body=None, headers=None, token_placement=AUTH_HEADER, ext=None, **kwargs): """Add a MAC token to the request authorization header. Warning: MAC token support is experimental as the spec is not yet stable. """ headers = tokens.prepare_mac_header(self.access_token, uri, self.mac_key, http_method, headers=headers, body=body, ext=ext, hash_algorithm=self.mac_algorithm, **kwargs) return uri, headers, body def _populate_attributes(self, response): warnings.warn("Please switch to the public method " "populate_token_attributes.", DeprecationWarning) return self.populate_token_attributes(response) def populate_code_attributes(self, response): """Add attributes from an auth code response to self.""" if 'code' in response: self.code = response.get('code') def populate_token_attributes(self, response): """Add attributes from a token exchange response to self.""" if 'access_token' in response: self.access_token = response.get('access_token') if 'refresh_token' in response: self.refresh_token = response.get('refresh_token') if 'token_type' in response: self.token_type = response.get('token_type') if 'expires_in' in response: self.expires_in = response.get('expires_in') self._expires_at = time.time() + int(self.expires_in) if 'expires_at' in response: self._expires_at = int(response.get('expires_at')) if 'mac_key' in response: self.mac_key = response.get('mac_key') if 'mac_algorithm' in response: self.mac_algorithm = response.get('mac_algorithm')
the-stack_0_12621
from typing import TYPE_CHECKING, List from django.conf import settings from saleor.plugins.base_plugin import BasePlugin, ConfigurationTypeField from . import ( GatewayConfig, authorize, capture, get_client_token, list_client_sources, process_payment, refund, void, ) GATEWAY_NAME = "Braintree" if TYPE_CHECKING: # flake8: noqa from . import GatewayResponse, PaymentData, TokenConfig from ...interface import CustomerSource def require_active_plugin(fn): def wrapped(self, *args, **kwargs): previous = kwargs.get("previous_value", None) if not self.active: return previous return fn(self, *args, **kwargs) return wrapped class BraintreeGatewayPlugin(BasePlugin): PLUGIN_ID = "mirumee.payments.braintree" PLUGIN_NAME = GATEWAY_NAME DEFAULT_ACTIVE = settings.BRAINTREE_PLUGIN_ACTIVE DEFAULT_CONFIGURATION = [ {"name": "Public API key", "value": settings.BRAINTREE_PUBLIC_KEY}, {"name": "Secret API key", "value": settings.BRAINTREE_PRIVATE_KEY}, {"name": "Use sandbox", "value": settings.BRAINTREE_SANDBOX_MODE}, {"name": "Merchant ID", "value": settings.BRAINTREE_MERCHANT_ID}, {"name": "Store customers card", "value": False}, {"name": "Automatic payment capture", "value": True}, {"name": "Require 3D secure", "value": False}, ] CONFIG_STRUCTURE = { "Public API key": { "type": ConfigurationTypeField.SECRET, "help_text": "Provide Braintree public API key", "label": "Public API key", }, "Secret API key": { "type": ConfigurationTypeField.SECRET, "help_text": "Provide Braintree secret API key", "label": "Secret API key", }, "Merchant ID": { "type": ConfigurationTypeField.SECRET, "help_text": "Provide Braintree merchant ID", "label": "Merchant ID", }, "Use sandbox": { "type": ConfigurationTypeField.BOOLEAN, "help_text": "Determines if Saleor should use Braintree sandbox API.", "label": "Use sandbox", }, "Store customers card": { "type": ConfigurationTypeField.BOOLEAN, "help_text": "Determines if Saleor should store cards on payments" " in Braintree customer.", "label": "Store customers card", }, "Automatic payment capture": { "type": ConfigurationTypeField.BOOLEAN, "help_text": "Determines if Saleor should automaticaly capture payments.", "label": "Automatic payment capture", }, "Require 3D secure": { "type": ConfigurationTypeField.BOOLEAN, "help_text": "Determines if Saleor should enforce 3D secure during payment.", "label": "Require 3D secure", }, } def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) configuration = {item["name"]: item["value"] for item in self.configuration} self.config = GatewayConfig( gateway_name=GATEWAY_NAME, auto_capture=configuration["Automatic payment capture"], connection_params={ "sandbox_mode": configuration["Use sandbox"], "merchant_id": configuration["Merchant ID"], "public_key": configuration["Public API key"], "private_key": configuration["Secret API key"], }, store_customer=configuration["Store customers card"], require_3d_secure=configuration["Require 3D secure"], ) def _get_gateway_config(self) -> GatewayConfig: return self.config @require_active_plugin def authorize_payment( self, payment_information: "PaymentData", previous_value ) -> "GatewayResponse": return authorize(payment_information, self._get_gateway_config()) @require_active_plugin def capture_payment( self, payment_information: "PaymentData", previous_value ) -> "GatewayResponse": return capture(payment_information, self._get_gateway_config()) @require_active_plugin def refund_payment( self, payment_information: "PaymentData", previous_value ) -> "GatewayResponse": return refund(payment_information, self._get_gateway_config()) @require_active_plugin def void_payment( self, payment_information: "PaymentData", previous_value ) -> "GatewayResponse": return void(payment_information, self._get_gateway_config()) @require_active_plugin def process_payment( self, payment_information: "PaymentData", previous_value ) -> "GatewayResponse": return process_payment(payment_information, self._get_gateway_config()) @require_active_plugin def list_payment_sources( self, customer_id: str, previous_value ) -> List["CustomerSource"]: sources = list_client_sources(self._get_gateway_config(), customer_id) previous_value.extend(sources) return previous_value @require_active_plugin def get_client_token(self, token_config: "TokenConfig", previous_value): return get_client_token(self._get_gateway_config(), token_config) @require_active_plugin def get_payment_config(self, previous_value): config = self._get_gateway_config() return [ {"field": "store_customer_card", "value": config.store_customer}, {"field": "client_token", "value": get_client_token(config=config)}, ]
the-stack_0_12623
# -*- coding: utf-8 -*- from __future__ import absolute_import, unicode_literals import inspect import sys from math import trunc def get_locale(name): """Returns an appropriate :class:`Locale <arrow.locales.Locale>` corresponding to an inpute locale name. :param name: the name of the locale. """ locale_cls = _locales.get(name.lower()) if locale_cls is None: raise ValueError("Unsupported locale '{}'".format(name)) return locale_cls() # base locale type. class Locale(object): """ Represents locale-specific data and functionality. """ names = [] timeframes = { "now": "", "seconds": "", "minute": "", "minutes": "", "hour": "", "hours": "", "day": "", "days": "", "week": "", "weeks": "", "month": "", "months": "", "year": "", "years": "", } meridians = {"am": "", "pm": "", "AM": "", "PM": ""} past = None future = None month_names = [] month_abbreviations = [] day_names = [] day_abbreviations = [] ordinal_day_re = r"(\d+)" def __init__(self): self._month_name_to_ordinal = None def describe(self, timeframe, delta=0, only_distance=False): """ Describes a delta within a timeframe in plain language. :param timeframe: a string representing a timeframe. :param delta: a quantity representing a delta in a timeframe. :param only_distance: return only distance eg: "11 seconds" without "in" or "ago" keywords """ humanized = self._format_timeframe(timeframe, delta) if not only_distance: humanized = self._format_relative(humanized, timeframe, delta) return humanized def day_name(self, day): """ Returns the day name for a specified day of the week. :param day: the ``int`` day of the week (1-7). """ return self.day_names[day] def day_abbreviation(self, day): """ Returns the day abbreviation for a specified day of the week. :param day: the ``int`` day of the week (1-7). """ return self.day_abbreviations[day] def month_name(self, month): """ Returns the month name for a specified month of the year. :param month: the ``int`` month of the year (1-12). """ return self.month_names[month] def month_abbreviation(self, month): """ Returns the month abbreviation for a specified month of the year. :param month: the ``int`` month of the year (1-12). """ return self.month_abbreviations[month] def month_number(self, name): """ Returns the month number for a month specified by name or abbreviation. :param name: the month name or abbreviation. """ if self._month_name_to_ordinal is None: self._month_name_to_ordinal = self._name_to_ordinal(self.month_names) self._month_name_to_ordinal.update( self._name_to_ordinal(self.month_abbreviations) ) return self._month_name_to_ordinal.get(name) def year_full(self, year): """ Returns the year for specific locale if available :param name: the ``int`` year (4-digit) """ return "{:04d}".format(year) def year_abbreviation(self, year): """ Returns the year for specific locale if available :param name: the ``int`` year (4-digit) """ return "{:04d}".format(year)[2:] def meridian(self, hour, token): """ Returns the meridian indicator for a specified hour and format token. :param hour: the ``int`` hour of the day. :param token: the format token. """ if token == "a": return self.meridians["am"] if hour < 12 else self.meridians["pm"] if token == "A": return self.meridians["AM"] if hour < 12 else self.meridians["PM"] def ordinal_number(self, n): """ Returns the ordinal format of a given integer :param n: an integer """ return self._ordinal_number(n) def _ordinal_number(self, n): return "{}".format(n) def _name_to_ordinal(self, lst): return dict(map(lambda i: (i[1].lower(), i[0] + 1), enumerate(lst[1:]))) def _format_timeframe(self, timeframe, delta): return self.timeframes[timeframe].format(trunc(abs(delta))) def _format_relative(self, humanized, timeframe, delta): if timeframe == "now": return humanized direction = self.past if delta < 0 else self.future return direction.format(humanized) # base locale type implementations. class EnglishLocale(Locale): names = [ "en", "en_us", "en_gb", "en_au", "en_be", "en_jp", "en_za", "en_ca", "en_ph", ] past = "{0} ago" future = "in {0}" timeframes = { "now": "just now", "seconds": "seconds", "minute": "a minute", "minutes": "{0} minutes", "hour": "an hour", "hours": "{0} hours", "day": "a day", "days": "{0} days", "week": "a week", "weeks": "{0} weeks", "month": "a month", "months": "{0} months", "year": "a year", "years": "{0} years", } meridians = {"am": "am", "pm": "pm", "AM": "AM", "PM": "PM"} month_names = [ "", "January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November", "December", ] month_abbreviations = [ "", "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec", ] day_names = [ "", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday", ] day_abbreviations = ["", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"] ordinal_day_re = r"((?P<value>[2-3]?1(?=st)|[2-3]?2(?=nd)|[2-3]?3(?=rd)|[1-3]?[04-9](?=th)|1[1-3](?=th))(st|nd|rd|th))" def _ordinal_number(self, n): if n % 100 not in (11, 12, 13): remainder = abs(n) % 10 if remainder == 1: return "{}st".format(n) elif remainder == 2: return "{}nd".format(n) elif remainder == 3: return "{}rd".format(n) return "{}th".format(n) def describe(self, timeframe, delta=0, only_distance=False): """ Describes a delta within a timeframe in plain language. :param timeframe: a string representing a timeframe. :param delta: a quantity representing a delta in a timeframe. :param only_distance: return only distance eg: "11 seconds" without "in" or "ago" keywords """ humanized = super(EnglishLocale, self).describe(timeframe, delta, only_distance) if only_distance and timeframe == "now": humanized = "instantly" return humanized class ItalianLocale(Locale): names = ["it", "it_it"] past = "{0} fa" future = "tra {0}" timeframes = { "now": "adesso", "seconds": "qualche secondo", "minute": "un minuto", "minutes": "{0} minuti", "hour": "un'ora", "hours": "{0} ore", "day": "un giorno", "days": "{0} giorni", "month": "un mese", "months": "{0} mesi", "year": "un anno", "years": "{0} anni", } month_names = [ "", "gennaio", "febbraio", "marzo", "aprile", "maggio", "giugno", "luglio", "agosto", "settembre", "ottobre", "novembre", "dicembre", ] month_abbreviations = [ "", "gen", "feb", "mar", "apr", "mag", "giu", "lug", "ago", "set", "ott", "nov", "dic", ] day_names = [ "", "lunedì", "martedì", "mercoledì", "giovedì", "venerdì", "sabato", "domenica", ] day_abbreviations = ["", "lun", "mar", "mer", "gio", "ven", "sab", "dom"] ordinal_day_re = r"((?P<value>[1-3]?[0-9](?=[ºª]))[ºª])" def _ordinal_number(self, n): return "{}º".format(n) class SpanishLocale(Locale): names = ["es", "es_es"] past = "hace {0}" future = "en {0}" timeframes = { "now": "ahora", "seconds": "segundos", "minute": "un minuto", "minutes": "{0} minutos", "hour": "una hora", "hours": "{0} horas", "day": "un día", "days": "{0} días", "week": "una semana", "weeks": "{0} semanas", "month": "un mes", "months": "{0} meses", "year": "un año", "years": "{0} años", } meridians = {"am": "am", "pm": "pm", "AM": "AM", "PM": "PM"} month_names = [ "", "enero", "febrero", "marzo", "abril", "mayo", "junio", "julio", "agosto", "septiembre", "octubre", "noviembre", "diciembre", ] month_abbreviations = [ "", "ene", "feb", "mar", "abr", "may", "jun", "jul", "ago", "sep", "oct", "nov", "dic", ] day_names = [ "", "lunes", "martes", "miércoles", "jueves", "viernes", "sábado", "domingo", ] day_abbreviations = ["", "lun", "mar", "mie", "jue", "vie", "sab", "dom"] ordinal_day_re = r"((?P<value>[1-3]?[0-9](?=[ºª]))[ºª])" def _ordinal_number(self, n): return "{}º".format(n) class FrenchLocale(Locale): names = ["fr", "fr_fr"] past = "il y a {0}" future = "dans {0}" timeframes = { "now": "maintenant", "seconds": "quelques secondes", "minute": "une minute", "minutes": "{0} minutes", "hour": "une heure", "hours": "{0} heures", "day": "un jour", "days": "{0} jours", "week": "une semaine", "weeks": "{0} semaines", "month": "un mois", "months": "{0} mois", "year": "un an", "years": "{0} ans", } month_names = [ "", "janvier", "février", "mars", "avril", "mai", "juin", "juillet", "août", "septembre", "octobre", "novembre", "décembre", ] month_abbreviations = [ "", "janv", "févr", "mars", "avr", "mai", "juin", "juil", "août", "sept", "oct", "nov", "déc", ] day_names = [ "", "lundi", "mardi", "mercredi", "jeudi", "vendredi", "samedi", "dimanche", ] day_abbreviations = ["", "lun", "mar", "mer", "jeu", "ven", "sam", "dim"] ordinal_day_re = ( r"((?P<value>\b1(?=er\b)|[1-3]?[02-9](?=e\b)|[1-3]1(?=e\b))(er|e)\b)" ) def _ordinal_number(self, n): if abs(n) == 1: return "{}er".format(n) return "{}e".format(n) class GreekLocale(Locale): names = ["el", "el_gr"] past = "{0} πριν" future = "σε {0}" timeframes = { "now": "τώρα", "seconds": "δευτερόλεπτα", "minute": "ένα λεπτό", "minutes": "{0} λεπτά", "hour": "μία ώρα", "hours": "{0} ώρες", "day": "μία μέρα", "days": "{0} μέρες", "month": "ένα μήνα", "months": "{0} μήνες", "year": "ένα χρόνο", "years": "{0} χρόνια", } month_names = [ "", "Ιανουαρίου", "Φεβρουαρίου", "Μαρτίου", "Απριλίου", "Μαΐου", "Ιουνίου", "Ιουλίου", "Αυγούστου", "Σεπτεμβρίου", "Οκτωβρίου", "Νοεμβρίου", "Δεκεμβρίου", ] month_abbreviations = [ "", "Ιαν", "Φεβ", "Μαρ", "Απρ", "Μαϊ", "Ιον", "Ιολ", "Αυγ", "Σεπ", "Οκτ", "Νοε", "Δεκ", ] day_names = [ "", "Δευτέρα", "Τρίτη", "Τετάρτη", "Πέμπτη", "Παρασκευή", "Σάββατο", "Κυριακή", ] day_abbreviations = ["", "Δευ", "Τρι", "Τετ", "Πεμ", "Παρ", "Σαβ", "Κυρ"] class JapaneseLocale(Locale): names = ["ja", "ja_jp"] past = "{0}前" future = "{0}後" timeframes = { "now": "現在", "seconds": "数秒", "minute": "1分", "minutes": "{0}分", "hour": "1時間", "hours": "{0}時間", "day": "1日", "days": "{0}日", "week": "1週間", "weeks": "{0}週間", "month": "1ヶ月", "months": "{0}ヶ月", "year": "1年", "years": "{0}年", } month_names = [ "", "1月", "2月", "3月", "4月", "5月", "6月", "7月", "8月", "9月", "10月", "11月", "12月", ] month_abbreviations = [ "", " 1", " 2", " 3", " 4", " 5", " 6", " 7", " 8", " 9", "10", "11", "12", ] day_names = ["", "月曜日", "火曜日", "水曜日", "木曜日", "金曜日", "土曜日", "日曜日"] day_abbreviations = ["", "月", "火", "水", "木", "金", "土", "日"] class SwedishLocale(Locale): names = ["sv", "sv_se"] past = "för {0} sen" future = "om {0}" timeframes = { "now": "just nu", "seconds": "några sekunder", "minute": "en minut", "minutes": "{0} minuter", "hour": "en timme", "hours": "{0} timmar", "day": "en dag", "days": "{0} dagar", "month": "en månad", "months": "{0} månader", "year": "ett år", "years": "{0} år", } month_names = [ "", "januari", "februari", "mars", "april", "maj", "juni", "juli", "augusti", "september", "oktober", "november", "december", ] month_abbreviations = [ "", "jan", "feb", "mar", "apr", "maj", "jun", "jul", "aug", "sep", "okt", "nov", "dec", ] day_names = [ "", "måndag", "tisdag", "onsdag", "torsdag", "fredag", "lördag", "söndag", ] day_abbreviations = ["", "mån", "tis", "ons", "tor", "fre", "lör", "sön"] class FinnishLocale(Locale): names = ["fi", "fi_fi"] # The finnish grammar is very complex, and its hard to convert # 1-to-1 to something like English. past = "{0} sitten" future = "{0} kuluttua" timeframes = { "now": ["juuri nyt", "juuri nyt"], "seconds": ["muutama sekunti", "muutaman sekunnin"], "minute": ["minuutti", "minuutin"], "minutes": ["{0} minuuttia", "{0} minuutin"], "hour": ["tunti", "tunnin"], "hours": ["{0} tuntia", "{0} tunnin"], "day": ["päivä", "päivä"], "days": ["{0} päivää", "{0} päivän"], "month": ["kuukausi", "kuukauden"], "months": ["{0} kuukautta", "{0} kuukauden"], "year": ["vuosi", "vuoden"], "years": ["{0} vuotta", "{0} vuoden"], } # Months and days are lowercase in Finnish month_names = [ "", "tammikuu", "helmikuu", "maaliskuu", "huhtikuu", "toukokuu", "kesäkuu", "heinäkuu", "elokuu", "syyskuu", "lokakuu", "marraskuu", "joulukuu", ] month_abbreviations = [ "", "tammi", "helmi", "maalis", "huhti", "touko", "kesä", "heinä", "elo", "syys", "loka", "marras", "joulu", ] day_names = [ "", "maanantai", "tiistai", "keskiviikko", "torstai", "perjantai", "lauantai", "sunnuntai", ] day_abbreviations = ["", "ma", "ti", "ke", "to", "pe", "la", "su"] def _format_timeframe(self, timeframe, delta): return ( self.timeframes[timeframe][0].format(abs(delta)), self.timeframes[timeframe][1].format(abs(delta)), ) def _format_relative(self, humanized, timeframe, delta): if timeframe == "now": return humanized[0] direction = self.past if delta < 0 else self.future which = 0 if delta < 0 else 1 return direction.format(humanized[which]) def _ordinal_number(self, n): return "{}.".format(n) class ChineseCNLocale(Locale): names = ["zh", "zh_cn"] past = "{0}前" future = "{0}后" timeframes = { "now": "刚才", "seconds": "几秒", "minute": "1分钟", "minutes": "{0}分钟", "hour": "1小时", "hours": "{0}小时", "day": "1天", "days": "{0}天", "week": "一周", "weeks": "{0}周", "month": "1个月", "months": "{0}个月", "year": "1年", "years": "{0}年", } month_names = [ "", "一月", "二月", "三月", "四月", "五月", "六月", "七月", "八月", "九月", "十月", "十一月", "十二月", ] month_abbreviations = [ "", " 1", " 2", " 3", " 4", " 5", " 6", " 7", " 8", " 9", "10", "11", "12", ] day_names = ["", "星期一", "星期二", "星期三", "星期四", "星期五", "星期六", "星期日"] day_abbreviations = ["", "一", "二", "三", "四", "五", "六", "日"] class ChineseTWLocale(Locale): names = ["zh_tw"] past = "{0}前" future = "{0}後" timeframes = { "now": "剛才", "seconds": "幾秒", "minute": "1分鐘", "minutes": "{0}分鐘", "hour": "1小時", "hours": "{0}小時", "day": "1天", "days": "{0}天", "month": "1個月", "months": "{0}個月", "year": "1年", "years": "{0}年", } month_names = [ "", "1月", "2月", "3月", "4月", "5月", "6月", "7月", "8月", "9月", "10月", "11月", "12月", ] month_abbreviations = [ "", " 1", " 2", " 3", " 4", " 5", " 6", " 7", " 8", " 9", "10", "11", "12", ] day_names = ["", "周一", "周二", "周三", "周四", "周五", "周六", "周日"] day_abbreviations = ["", "一", "二", "三", "四", "五", "六", "日"] class KoreanLocale(Locale): names = ["ko", "ko_kr"] past = "{0} 전" future = "{0} 후" timeframes = { "now": "지금", "seconds": "몇 초", "minute": "1분", "minutes": "{0}분", "hour": "1시간", "hours": "{0}시간", "day": "1일", "days": "{0}일", "month": "1개월", "months": "{0}개월", "year": "1년", "years": "{0}년", } month_names = [ "", "1월", "2월", "3월", "4월", "5월", "6월", "7월", "8월", "9월", "10월", "11월", "12월", ] month_abbreviations = [ "", " 1", " 2", " 3", " 4", " 5", " 6", " 7", " 8", " 9", "10", "11", "12", ] day_names = ["", "월요일", "화요일", "수요일", "목요일", "금요일", "토요일", "일요일"] day_abbreviations = ["", "월", "화", "수", "목", "금", "토", "일"] # derived locale types & implementations. class DutchLocale(Locale): names = ["nl", "nl_nl"] past = "{0} geleden" future = "over {0}" timeframes = { "now": "nu", "seconds": "seconden", "minute": "een minuut", "minutes": "{0} minuten", "hour": "een uur", "hours": "{0} uur", "day": "een dag", "days": "{0} dagen", "month": "een maand", "months": "{0} maanden", "year": "een jaar", "years": "{0} jaar", } # In Dutch names of months and days are not starting with a capital letter # like in the English language. month_names = [ "", "januari", "februari", "maart", "april", "mei", "juni", "juli", "augustus", "september", "oktober", "november", "december", ] month_abbreviations = [ "", "jan", "feb", "mrt", "apr", "mei", "jun", "jul", "aug", "sep", "okt", "nov", "dec", ] day_names = [ "", "maandag", "dinsdag", "woensdag", "donderdag", "vrijdag", "zaterdag", "zondag", ] day_abbreviations = ["", "ma", "di", "wo", "do", "vr", "za", "zo"] class SlavicBaseLocale(Locale): def _format_timeframe(self, timeframe, delta): form = self.timeframes[timeframe] delta = abs(delta) if isinstance(form, list): if delta % 10 == 1 and delta % 100 != 11: form = form[0] elif 2 <= delta % 10 <= 4 and (delta % 100 < 10 or delta % 100 >= 20): form = form[1] else: form = form[2] return form.format(delta) class BelarusianLocale(SlavicBaseLocale): names = ["be", "be_by"] past = "{0} таму" future = "праз {0}" timeframes = { "now": "зараз", "seconds": "некалькі секунд", "minute": "хвіліну", "minutes": ["{0} хвіліну", "{0} хвіліны", "{0} хвілін"], "hour": "гадзіну", "hours": ["{0} гадзіну", "{0} гадзіны", "{0} гадзін"], "day": "дзень", "days": ["{0} дзень", "{0} дні", "{0} дзён"], "month": "месяц", "months": ["{0} месяц", "{0} месяцы", "{0} месяцаў"], "year": "год", "years": ["{0} год", "{0} гады", "{0} гадоў"], } month_names = [ "", "студзеня", "лютага", "сакавіка", "красавіка", "траўня", "чэрвеня", "ліпеня", "жніўня", "верасня", "кастрычніка", "лістапада", "снежня", ] month_abbreviations = [ "", "студ", "лют", "сак", "крас", "трав", "чэрв", "ліп", "жнів", "вер", "каст", "ліст", "снеж", ] day_names = [ "", "панядзелак", "аўторак", "серада", "чацвер", "пятніца", "субота", "нядзеля", ] day_abbreviations = ["", "пн", "ат", "ср", "чц", "пт", "сб", "нд"] class PolishLocale(SlavicBaseLocale): names = ["pl", "pl_pl"] past = "{0} temu" future = "za {0}" timeframes = { "now": "teraz", "seconds": "kilka sekund", "minute": "minutę", "minutes": ["{0} minut", "{0} minuty", "{0} minut"], "hour": "godzina", "hours": ["{0} godzin", "{0} godziny", "{0} godzin"], "day": "dzień", "days": ["{0} dzień", "{0} dni", "{0} dni"], "month": "miesiąc", "months": ["{0} miesiąc", "{0} miesiące", "{0} miesięcy"], "year": "rok", "years": ["{0} rok", "{0} lata", "{0} lat"], } month_names = [ "", "styczeń", "luty", "marzec", "kwiecień", "maj", "czerwiec", "lipiec", "sierpień", "wrzesień", "październik", "listopad", "grudzień", ] month_abbreviations = [ "", "sty", "lut", "mar", "kwi", "maj", "cze", "lip", "sie", "wrz", "paź", "lis", "gru", ] day_names = [ "", "poniedziałek", "wtorek", "środa", "czwartek", "piątek", "sobota", "niedziela", ] day_abbreviations = ["", "Pn", "Wt", "Śr", "Czw", "Pt", "So", "Nd"] class RussianLocale(SlavicBaseLocale): names = ["ru", "ru_ru"] past = "{0} назад" future = "через {0}" timeframes = { "now": "сейчас", "seconds": "несколько секунд", "minute": "минуту", "minutes": ["{0} минуту", "{0} минуты", "{0} минут"], "hour": "час", "hours": ["{0} час", "{0} часа", "{0} часов"], "day": "день", "days": ["{0} день", "{0} дня", "{0} дней"], "week": "неделю", "weeks": ["{0} неделю", "{0} недели", "{0} недель"], "month": "месяц", "months": ["{0} месяц", "{0} месяца", "{0} месяцев"], "year": "год", "years": ["{0} год", "{0} года", "{0} лет"], } month_names = [ "", "января", "февраля", "марта", "апреля", "мая", "июня", "июля", "августа", "сентября", "октября", "ноября", "декабря", ] month_abbreviations = [ "", "янв", "фев", "мар", "апр", "май", "июн", "июл", "авг", "сен", "окт", "ноя", "дек", ] day_names = [ "", "понедельник", "вторник", "среда", "четверг", "пятница", "суббота", "воскресенье", ] day_abbreviations = ["", "пн", "вт", "ср", "чт", "пт", "сб", "вс"] class AfrikaansLocale(Locale): names = ["af", "af_nl"] past = "{0} gelede" future = "in {0}" timeframes = { "now": "nou", "seconds": "sekondes", "minute": "minuut", "minutes": "{0} minute", "hour": "uur", "hours": "{0} ure", "day": "een dag", "days": "{0} dae", "month": "een maand", "months": "{0} maande", "year": "een jaar", "years": "{0} jaar", } month_names = [ "", "Januarie", "Februarie", "Maart", "April", "Mei", "Junie", "Julie", "Augustus", "September", "Oktober", "November", "Desember", ] month_abbreviations = [ "", "Jan", "Feb", "Mrt", "Apr", "Mei", "Jun", "Jul", "Aug", "Sep", "Okt", "Nov", "Des", ] day_names = [ "", "Maandag", "Dinsdag", "Woensdag", "Donderdag", "Vrydag", "Saterdag", "Sondag", ] day_abbreviations = ["", "Ma", "Di", "Wo", "Do", "Vr", "Za", "So"] class BulgarianLocale(SlavicBaseLocale): names = ["bg", "bg_BG"] past = "{0} назад" future = "напред {0}" timeframes = { "now": "сега", "seconds": "няколко секунди", "minute": "минута", "minutes": ["{0} минута", "{0} минути", "{0} минути"], "hour": "час", "hours": ["{0} час", "{0} часа", "{0} часа"], "day": "ден", "days": ["{0} ден", "{0} дни", "{0} дни"], "month": "месец", "months": ["{0} месец", "{0} месеца", "{0} месеца"], "year": "година", "years": ["{0} година", "{0} години", "{0} години"], } month_names = [ "", "януари", "февруари", "март", "април", "май", "юни", "юли", "август", "септември", "октомври", "ноември", "декември", ] month_abbreviations = [ "", "ян", "февр", "март", "апр", "май", "юни", "юли", "авг", "септ", "окт", "ноем", "дек", ] day_names = [ "", "понеделник", "вторник", "сряда", "четвъртък", "петък", "събота", "неделя", ] day_abbreviations = ["", "пон", "вт", "ср", "четв", "пет", "съб", "нед"] class UkrainianLocale(SlavicBaseLocale): names = ["ua", "uk_ua"] past = "{0} тому" future = "за {0}" timeframes = { "now": "зараз", "seconds": "кілька секунд", "minute": "хвилину", "minutes": ["{0} хвилину", "{0} хвилини", "{0} хвилин"], "hour": "годину", "hours": ["{0} годину", "{0} години", "{0} годин"], "day": "день", "days": ["{0} день", "{0} дні", "{0} днів"], "month": "місяць", "months": ["{0} місяць", "{0} місяці", "{0} місяців"], "year": "рік", "years": ["{0} рік", "{0} роки", "{0} років"], } month_names = [ "", "січня", "лютого", "березня", "квітня", "травня", "червня", "липня", "серпня", "вересня", "жовтня", "листопада", "грудня", ] month_abbreviations = [ "", "січ", "лют", "бер", "квіт", "трав", "черв", "лип", "серп", "вер", "жовт", "лист", "груд", ] day_names = [ "", "понеділок", "вівторок", "середа", "четвер", "п’ятниця", "субота", "неділя", ] day_abbreviations = ["", "пн", "вт", "ср", "чт", "пт", "сб", "нд"] class MacedonianLocale(SlavicBaseLocale): names = ["mk", "mk_mk"] past = "пред {0}" future = "за {0}" timeframes = { "now": "сега", "seconds": "секунди", "minute": "една минута", "minutes": ["{0} минута", "{0} минути", "{0} минути"], "hour": "еден саат", "hours": ["{0} саат", "{0} саати", "{0} саати"], "day": "еден ден", "days": ["{0} ден", "{0} дена", "{0} дена"], "month": "еден месец", "months": ["{0} месец", "{0} месеци", "{0} месеци"], "year": "една година", "years": ["{0} година", "{0} години", "{0} години"], } meridians = {"am": "дп", "pm": "пп", "AM": "претпладне", "PM": "попладне"} month_names = [ "", "Јануари", "Февруари", "Март", "Април", "Мај", "Јуни", "Јули", "Август", "Септември", "Октомври", "Ноември", "Декември", ] month_abbreviations = [ "", "Јан.", " Фев.", " Мар.", " Апр.", " Мај", " Јун.", " Јул.", " Авг.", " Септ.", " Окт.", " Ноем.", " Декем.", ] day_names = [ "", "Понеделник", " Вторник", " Среда", " Четврток", " Петок", " Сабота", " Недела", ] day_abbreviations = [ "", "Пон.", " Вт.", " Сре.", " Чет.", " Пет.", " Саб.", " Нед.", ] class DeutschBaseLocale(Locale): past = "vor {0}" future = "in {0}" timeframes = { "now": "gerade eben", "seconds": "Sekunden", "minute": "einer Minute", "minutes": "{0} Minuten", "hour": "einer Stunde", "hours": "{0} Stunden", "day": "einem Tag", "days": "{0} Tagen", "month": "einem Monat", "months": "{0} Monaten", "year": "einem Jahr", "years": "{0} Jahren", } timeframes_only_distance = timeframes.copy() timeframes_only_distance["minute"] = "eine Minute" timeframes_only_distance["hour"] = "eine Stunde" timeframes_only_distance["day"] = "ein Tag" timeframes_only_distance["month"] = "ein Monat" timeframes_only_distance["year"] = "ein Jahr" month_names = [ "", "Januar", "Februar", "März", "April", "Mai", "Juni", "Juli", "August", "September", "Oktober", "November", "Dezember", ] month_abbreviations = [ "", "Jan", "Feb", "Mär", "Apr", "Mai", "Jun", "Jul", "Aug", "Sep", "Okt", "Nov", "Dez", ] day_names = [ "", "Montag", "Dienstag", "Mittwoch", "Donnerstag", "Freitag", "Samstag", "Sonntag", ] day_abbreviations = ["", "Mo", "Di", "Mi", "Do", "Fr", "Sa", "So"] def _ordinal_number(self, n): return "{}.".format(n) def describe(self, timeframe, delta=0, only_distance=False): """ Describes a delta within a timeframe in plain language. :param timeframe: a string representing a timeframe. :param delta: a quantity representing a delta in a timeframe. :param only_distance: return only distance eg: "11 seconds" without "in" or "ago" keywords """ humanized = self.timeframes_only_distance[timeframe].format(trunc(abs(delta))) if not only_distance: humanized = self._format_timeframe(timeframe, delta) humanized = self._format_relative(humanized, timeframe, delta) return humanized class GermanLocale(DeutschBaseLocale, Locale): names = ["de", "de_de"] class AustrianLocale(DeutschBaseLocale, Locale): names = ["de_at"] month_names = [ "", "Jänner", "Februar", "März", "April", "Mai", "Juni", "Juli", "August", "September", "Oktober", "November", "Dezember", ] class NorwegianLocale(Locale): names = ["nb", "nb_no"] past = "for {0} siden" future = "om {0}" timeframes = { "now": "nå nettopp", "seconds": "noen sekunder", "minute": "ett minutt", "minutes": "{0} minutter", "hour": "en time", "hours": "{0} timer", "day": "en dag", "days": "{0} dager", "month": "en måned", "months": "{0} måneder", "year": "ett år", "years": "{0} år", } month_names = [ "", "januar", "februar", "mars", "april", "mai", "juni", "juli", "august", "september", "oktober", "november", "desember", ] month_abbreviations = [ "", "jan", "feb", "mar", "apr", "mai", "jun", "jul", "aug", "sep", "okt", "nov", "des", ] day_names = [ "", "mandag", "tirsdag", "onsdag", "torsdag", "fredag", "lørdag", "søndag", ] day_abbreviations = ["", "ma", "ti", "on", "to", "fr", "lø", "sø"] class NewNorwegianLocale(Locale): names = ["nn", "nn_no"] past = "for {0} sidan" future = "om {0}" timeframes = { "now": "no nettopp", "seconds": "nokre sekund", "minute": "ett minutt", "minutes": "{0} minutt", "hour": "ein time", "hours": "{0} timar", "day": "ein dag", "days": "{0} dagar", "month": "en månad", "months": "{0} månader", "year": "eit år", "years": "{0} år", } month_names = [ "", "januar", "februar", "mars", "april", "mai", "juni", "juli", "august", "september", "oktober", "november", "desember", ] month_abbreviations = [ "", "jan", "feb", "mar", "apr", "mai", "jun", "jul", "aug", "sep", "okt", "nov", "des", ] day_names = [ "", "måndag", "tysdag", "onsdag", "torsdag", "fredag", "laurdag", "sundag", ] day_abbreviations = ["", "må", "ty", "on", "to", "fr", "la", "su"] class PortugueseLocale(Locale): names = ["pt", "pt_pt"] past = "há {0}" future = "em {0}" timeframes = { "now": "agora", "second": "um segundo", "seconds": "{0} segundos", "minute": "um minuto", "minutes": "{0} minutos", "hour": "uma hora", "hours": "{0} horas", "day": "um dia", "days": "{0} dias", "week": "uma semana", "weeks": "{0} semanas", "month": "um mês", "months": "{0} meses", "year": "um ano", "years": "{0} anos", } month_names = [ "", "janeiro", "fevereiro", "março", "abril", "maio", "junho", "julho", "agosto", "setembro", "outubro", "novembro", "dezembro", ] month_abbreviations = [ "", "jan", "fev", "mar", "abr", "maio", "jun", "jul", "ago", "set", "out", "nov", "dez", ] day_names = [ "", "segunda-feira", "terça-feira", "quarta-feira", "quinta-feira", "sexta-feira", "sábado", "domingo", ] day_abbreviations = ["", "seg", "ter", "qua", "qui", "sex", "sab", "dom"] class BrazilianPortugueseLocale(PortugueseLocale): names = ["pt_br"] past = "faz {0}" future = "em {0}" timeframes = { "now": "agora", "second": "um segundo", "seconds": "{0} segundos", "minute": "um minuto", "minutes": "{0} minutos", "hour": "uma hora", "hours": "{0} horas", "day": "um dia", "days": "{0} dias", "week": "uma semana", "weeks": "{0} semanas", "month": "um mês", "months": "{0} meses", "year": "um ano", "years": "{0} anos", } month_names = [ "", "Janeiro", "Fevereiro", "Março", "Abril", "Maio", "Junho", "Julho", "Agosto", "Setembro", "Outubro", "Novembro", "Dezembro", ] month_abbreviations = [ "", "Jan", "Fev", "Mar", "Abr", "Mai", "Jun", "Jul", "Ago", "Set", "Out", "Nov", "Dez", ] day_names = [ "", "Segunda-feira", "Terça-feira", "Quarta-feira", "Quinta-feira", "Sexta-feira", "Sábado", "Domingo", ] day_abbreviations = ["", "Seg", "Ter", "Qua", "Qui", "Sex", "Sab", "Dom"] class TagalogLocale(Locale): names = ["tl", "tl_ph"] past = "nakaraang {0}" future = "{0} mula ngayon" timeframes = { "now": "ngayon lang", "seconds": "segundo", "minute": "isang minuto", "minutes": "{0} minuto", "hour": "isang oras", "hours": "{0} oras", "day": "isang araw", "days": "{0} araw", "month": "isang buwan", "months": "{0} buwan", "year": "isang taon", "years": "{0} taon", } month_names = [ "", "Enero", "Pebrero", "Marso", "Abril", "Mayo", "Hunyo", "Hulyo", "Agosto", "Setyembre", "Oktubre", "Nobyembre", "Disyembre", ] month_abbreviations = [ "", "Ene", "Peb", "Mar", "Abr", "May", "Hun", "Hul", "Ago", "Set", "Okt", "Nob", "Dis", ] day_names = [ "", "Lunes", "Martes", "Miyerkules", "Huwebes", "Biyernes", "Sabado", "Linggo", ] day_abbreviations = ["", "Lun", "Mar", "Miy", "Huw", "Biy", "Sab", "Lin"] def _ordinal_number(self, n): return "ika-{}".format(n) class VietnameseLocale(Locale): names = ["vi", "vi_vn"] past = "{0} trước" future = "{0} nữa" timeframes = { "now": "hiện tại", "seconds": "giây", "minute": "một phút", "minutes": "{0} phút", "hour": "một giờ", "hours": "{0} giờ", "day": "một ngày", "days": "{0} ngày", "week": "một tuần", "weeks": "{0} tuần", "month": "một tháng", "months": "{0} tháng", "year": "một năm", "years": "{0} năm", } month_names = [ "", "Tháng Một", "Tháng Hai", "Tháng Ba", "Tháng Tư", "Tháng Năm", "Tháng Sáu", "Tháng Bảy", "Tháng Tám", "Tháng Chín", "Tháng Mười", "Tháng Mười Một", "Tháng Mười Hai", ] month_abbreviations = [ "", "Tháng 1", "Tháng 2", "Tháng 3", "Tháng 4", "Tháng 5", "Tháng 6", "Tháng 7", "Tháng 8", "Tháng 9", "Tháng 10", "Tháng 11", "Tháng 12", ] day_names = [ "", "Thứ Hai", "Thứ Ba", "Thứ Tư", "Thứ Năm", "Thứ Sáu", "Thứ Bảy", "Chủ Nhật", ] day_abbreviations = ["", "Thứ 2", "Thứ 3", "Thứ 4", "Thứ 5", "Thứ 6", "Thứ 7", "CN"] class TurkishLocale(Locale): names = ["tr", "tr_tr"] past = "{0} önce" future = "{0} sonra" timeframes = { "now": "şimdi", "seconds": "saniye", "minute": "bir dakika", "minutes": "{0} dakika", "hour": "bir saat", "hours": "{0} saat", "day": "bir gün", "days": "{0} gün", "month": "bir ay", "months": "{0} ay", "year": "yıl", "years": "{0} yıl", } month_names = [ "", "Ocak", "Şubat", "Mart", "Nisan", "Mayıs", "Haziran", "Temmuz", "Ağustos", "Eylül", "Ekim", "Kasım", "Aralık", ] month_abbreviations = [ "", "Oca", "Şub", "Mar", "Nis", "May", "Haz", "Tem", "Ağu", "Eyl", "Eki", "Kas", "Ara", ] day_names = [ "", "Pazartesi", "Salı", "Çarşamba", "Perşembe", "Cuma", "Cumartesi", "Pazar", ] day_abbreviations = ["", "Pzt", "Sal", "Çar", "Per", "Cum", "Cmt", "Paz"] class AzerbaijaniLocale(Locale): names = ["az", "az_az"] past = "{0} əvvəl" future = "{0} sonra" timeframes = { "now": "indi", "seconds": "saniyə", "minute": "bir dəqiqə", "minutes": "{0} dəqiqə", "hour": "bir saat", "hours": "{0} saat", "day": "bir gün", "days": "{0} gün", "month": "bir ay", "months": "{0} ay", "year": "il", "years": "{0} il", } month_names = [ "", "Yanvar", "Fevral", "Mart", "Aprel", "May", "İyun", "İyul", "Avqust", "Sentyabr", "Oktyabr", "Noyabr", "Dekabr", ] month_abbreviations = [ "", "Yan", "Fev", "Mar", "Apr", "May", "İyn", "İyl", "Avq", "Sen", "Okt", "Noy", "Dek", ] day_names = [ "", "Bazar ertəsi", "Çərşənbə axşamı", "Çərşənbə", "Cümə axşamı", "Cümə", "Şənbə", "Bazar", ] day_abbreviations = ["", "Ber", "Çax", "Çər", "Cax", "Cüm", "Şnb", "Bzr"] class ArabicLocale(Locale): names = [ "ar", "ar_ae", "ar_bh", "ar_dj", "ar_eg", "ar_eh", "ar_er", "ar_km", "ar_kw", "ar_ly", "ar_om", "ar_qa", "ar_sa", "ar_sd", "ar_so", "ar_ss", "ar_td", "ar_ye", ] past = "منذ {0}" future = "خلال {0}" timeframes = { "now": "الآن", "seconds": {"double": "ثانيتين", "ten": "{0} ثوان", "higher": "{0} ثانية"}, "minute": "دقيقة", "minutes": {"double": "دقيقتين", "ten": "{0} دقائق", "higher": "{0} دقيقة"}, "hour": "ساعة", "hours": {"double": "ساعتين", "ten": "{0} ساعات", "higher": "{0} ساعة"}, "day": "يوم", "days": {"double": "يومين", "ten": "{0} أيام", "higher": "{0} يوم"}, "month": "شهر", "months": {"double": "شهرين", "ten": "{0} أشهر", "higher": "{0} شهر"}, "year": "سنة", "years": {"double": "سنتين", "ten": "{0} سنوات", "higher": "{0} سنة"}, } month_names = [ "", "يناير", "فبراير", "مارس", "أبريل", "مايو", "يونيو", "يوليو", "أغسطس", "سبتمبر", "أكتوبر", "نوفمبر", "ديسمبر", ] month_abbreviations = [ "", "يناير", "فبراير", "مارس", "أبريل", "مايو", "يونيو", "يوليو", "أغسطس", "سبتمبر", "أكتوبر", "نوفمبر", "ديسمبر", ] day_names = [ "", "الإثنين", "الثلاثاء", "الأربعاء", "الخميس", "الجمعة", "السبت", "الأحد", ] day_abbreviations = ["", "إثنين", "ثلاثاء", "أربعاء", "خميس", "جمعة", "سبت", "أحد"] def _format_timeframe(self, timeframe, delta): form = self.timeframes[timeframe] delta = abs(delta) if isinstance(form, dict): if delta == 2: form = form["double"] elif delta > 2 and delta <= 10: form = form["ten"] else: form = form["higher"] return form.format(delta) class LevantArabicLocale(ArabicLocale): names = ["ar_iq", "ar_jo", "ar_lb", "ar_ps", "ar_sy"] month_names = [ "", "كانون الثاني", "شباط", "آذار", "نيسان", "أيار", "حزيران", "تموز", "آب", "أيلول", "تشرين الأول", "تشرين الثاني", "كانون الأول", ] month_abbreviations = [ "", "كانون الثاني", "شباط", "آذار", "نيسان", "أيار", "حزيران", "تموز", "آب", "أيلول", "تشرين الأول", "تشرين الثاني", "كانون الأول", ] class AlgeriaTunisiaArabicLocale(ArabicLocale): names = ["ar_tn", "ar_dz"] month_names = [ "", "جانفي", "فيفري", "مارس", "أفريل", "ماي", "جوان", "جويلية", "أوت", "سبتمبر", "أكتوبر", "نوفمبر", "ديسمبر", ] month_abbreviations = [ "", "جانفي", "فيفري", "مارس", "أفريل", "ماي", "جوان", "جويلية", "أوت", "سبتمبر", "أكتوبر", "نوفمبر", "ديسمبر", ] class MauritaniaArabicLocale(ArabicLocale): names = ["ar_mr"] month_names = [ "", "يناير", "فبراير", "مارس", "إبريل", "مايو", "يونيو", "يوليو", "أغشت", "شتمبر", "أكتوبر", "نوفمبر", "دجمبر", ] month_abbreviations = [ "", "يناير", "فبراير", "مارس", "إبريل", "مايو", "يونيو", "يوليو", "أغشت", "شتمبر", "أكتوبر", "نوفمبر", "دجمبر", ] class MoroccoArabicLocale(ArabicLocale): names = ["ar_ma"] month_names = [ "", "يناير", "فبراير", "مارس", "أبريل", "ماي", "يونيو", "يوليوز", "غشت", "شتنبر", "أكتوبر", "نونبر", "دجنبر", ] month_abbreviations = [ "", "يناير", "فبراير", "مارس", "أبريل", "ماي", "يونيو", "يوليوز", "غشت", "شتنبر", "أكتوبر", "نونبر", "دجنبر", ] class IcelandicLocale(Locale): def _format_timeframe(self, timeframe, delta): timeframe = self.timeframes[timeframe] if delta < 0: timeframe = timeframe[0] elif delta > 0: timeframe = timeframe[1] return timeframe.format(abs(delta)) names = ["is", "is_is"] past = "fyrir {0} síðan" future = "eftir {0}" timeframes = { "now": "rétt í þessu", "seconds": ("nokkrum sekúndum", "nokkrar sekúndur"), "minute": ("einni mínútu", "eina mínútu"), "minutes": ("{0} mínútum", "{0} mínútur"), "hour": ("einum tíma", "einn tíma"), "hours": ("{0} tímum", "{0} tíma"), "day": ("einum degi", "einn dag"), "days": ("{0} dögum", "{0} daga"), "month": ("einum mánuði", "einn mánuð"), "months": ("{0} mánuðum", "{0} mánuði"), "year": ("einu ári", "eitt ár"), "years": ("{0} árum", "{0} ár"), } meridians = {"am": "f.h.", "pm": "e.h.", "AM": "f.h.", "PM": "e.h."} month_names = [ "", "janúar", "febrúar", "mars", "apríl", "maí", "júní", "júlí", "ágúst", "september", "október", "nóvember", "desember", ] month_abbreviations = [ "", "jan", "feb", "mar", "apr", "maí", "jún", "júl", "ágú", "sep", "okt", "nóv", "des", ] day_names = [ "", "mánudagur", "þriðjudagur", "miðvikudagur", "fimmtudagur", "föstudagur", "laugardagur", "sunnudagur", ] day_abbreviations = ["", "mán", "þri", "mið", "fim", "fös", "lau", "sun"] class DanishLocale(Locale): names = ["da", "da_dk"] past = "for {0} siden" future = "efter {0}" timeframes = { "now": "lige nu", "seconds": "et par sekunder", "minute": "et minut", "minutes": "{0} minutter", "hour": "en time", "hours": "{0} timer", "day": "en dag", "days": "{0} dage", "month": "en måned", "months": "{0} måneder", "year": "et år", "years": "{0} år", } month_names = [ "", "januar", "februar", "marts", "april", "maj", "juni", "juli", "august", "september", "oktober", "november", "december", ] month_abbreviations = [ "", "jan", "feb", "mar", "apr", "maj", "jun", "jul", "aug", "sep", "okt", "nov", "dec", ] day_names = [ "", "mandag", "tirsdag", "onsdag", "torsdag", "fredag", "lørdag", "søndag", ] day_abbreviations = ["", "man", "tir", "ons", "tor", "fre", "lør", "søn"] class MalayalamLocale(Locale): names = ["ml"] past = "{0} മുമ്പ്" future = "{0} ശേഷം" timeframes = { "now": "ഇപ്പോൾ", "seconds": "സെക്കന്റ്‌", "minute": "ഒരു മിനിറ്റ്", "minutes": "{0} മിനിറ്റ്", "hour": "ഒരു മണിക്കൂർ", "hours": "{0} മണിക്കൂർ", "day": "ഒരു ദിവസം ", "days": "{0} ദിവസം ", "month": "ഒരു മാസം ", "months": "{0} മാസം ", "year": "ഒരു വർഷം ", "years": "{0} വർഷം ", } meridians = { "am": "രാവിലെ", "pm": "ഉച്ചക്ക് ശേഷം", "AM": "രാവിലെ", "PM": "ഉച്ചക്ക് ശേഷം", } month_names = [ "", "ജനുവരി", "ഫെബ്രുവരി", "മാർച്ച്‌", "ഏപ്രിൽ ", "മെയ്‌ ", "ജൂണ്‍", "ജൂലൈ", "ഓഗസ്റ്റ്‌", "സെപ്റ്റംബർ", "ഒക്ടോബർ", "നവംബർ", "ഡിസംബർ", ] month_abbreviations = [ "", "ജനു", "ഫെബ് ", "മാർ", "ഏപ്രിൽ", "മേയ്", "ജൂണ്‍", "ജൂലൈ", "ഓഗസ്റ", "സെപ്റ്റ", "ഒക്ടോ", "നവം", "ഡിസം", ] day_names = ["", "തിങ്കള്‍", "ചൊവ്വ", "ബുധന്‍", "വ്യാഴം", "വെള്ളി", "ശനി", "ഞായര്‍"] day_abbreviations = [ "", "തിങ്കള്‍", "ചൊവ്വ", "ബുധന്‍", "വ്യാഴം", "വെള്ളി", "ശനി", "ഞായര്‍", ] class HindiLocale(Locale): names = ["hi"] past = "{0} पहले" future = "{0} बाद" timeframes = { "now": "अभी", "seconds": "सेकंड्", "minute": "एक मिनट ", "minutes": "{0} मिनट ", "hour": "एक घंटा", "hours": "{0} घंटे", "day": "एक दिन", "days": "{0} दिन", "month": "एक माह ", "months": "{0} महीने ", "year": "एक वर्ष ", "years": "{0} साल ", } meridians = {"am": "सुबह", "pm": "शाम", "AM": "सुबह", "PM": "शाम"} month_names = [ "", "जनवरी", "फरवरी", "मार्च", "अप्रैल ", "मई", "जून", "जुलाई", "अगस्त", "सितंबर", "अक्टूबर", "नवंबर", "दिसंबर", ] month_abbreviations = [ "", "जन", "फ़र", "मार्च", "अप्रै", "मई", "जून", "जुलाई", "आग", "सित", "अकत", "नवे", "दिस", ] day_names = [ "", "सोमवार", "मंगलवार", "बुधवार", "गुरुवार", "शुक्रवार", "शनिवार", "रविवार", ] day_abbreviations = ["", "सोम", "मंगल", "बुध", "गुरुवार", "शुक्र", "शनि", "रवि"] class CzechLocale(Locale): names = ["cs", "cs_cz"] timeframes = { "now": "Teď", "seconds": {"past": "{0} sekundami", "future": ["{0} sekundy", "{0} sekund"]}, "minute": {"past": "minutou", "future": "minutu", "zero": "{0} minut"}, "minutes": {"past": "{0} minutami", "future": ["{0} minuty", "{0} minut"]}, "hour": {"past": "hodinou", "future": "hodinu", "zero": "{0} hodin"}, "hours": {"past": "{0} hodinami", "future": ["{0} hodiny", "{0} hodin"]}, "day": {"past": "dnem", "future": "den", "zero": "{0} dnů"}, "days": {"past": "{0} dny", "future": ["{0} dny", "{0} dnů"]}, "month": {"past": "měsícem", "future": "měsíc", "zero": "{0} měsíců"}, "months": {"past": "{0} měsíci", "future": ["{0} měsíce", "{0} měsíců"]}, "year": {"past": "rokem", "future": "rok", "zero": "{0} let"}, "years": {"past": "{0} lety", "future": ["{0} roky", "{0} let"]}, } past = "Před {0}" future = "Za {0}" month_names = [ "", "leden", "únor", "březen", "duben", "květen", "červen", "červenec", "srpen", "září", "říjen", "listopad", "prosinec", ] month_abbreviations = [ "", "led", "úno", "bře", "dub", "kvě", "čvn", "čvc", "srp", "zář", "říj", "lis", "pro", ] day_names = [ "", "pondělí", "úterý", "středa", "čtvrtek", "pátek", "sobota", "neděle", ] day_abbreviations = ["", "po", "út", "st", "čt", "pá", "so", "ne"] def _format_timeframe(self, timeframe, delta): """Czech aware time frame format function, takes into account the differences between past and future forms.""" form = self.timeframes[timeframe] if isinstance(form, dict): if delta == 0: form = form["zero"] # And *never* use 0 in the singular! elif delta > 0: form = form["future"] else: form = form["past"] delta = abs(delta) if isinstance(form, list): if 2 <= delta % 10 <= 4 and (delta % 100 < 10 or delta % 100 >= 20): form = form[0] else: form = form[1] return form.format(delta) class SlovakLocale(Locale): names = ["sk", "sk_sk"] timeframes = { "now": "Teraz", "seconds": {"past": "pár sekundami", "future": ["{0} sekundy", "{0} sekúnd"]}, "minute": {"past": "minútou", "future": "minútu", "zero": "{0} minút"}, "minutes": {"past": "{0} minútami", "future": ["{0} minúty", "{0} minút"]}, "hour": {"past": "hodinou", "future": "hodinu", "zero": "{0} hodín"}, "hours": {"past": "{0} hodinami", "future": ["{0} hodiny", "{0} hodín"]}, "day": {"past": "dňom", "future": "deň", "zero": "{0} dní"}, "days": {"past": "{0} dňami", "future": ["{0} dni", "{0} dní"]}, "month": {"past": "mesiacom", "future": "mesiac", "zero": "{0} mesiacov"}, "months": {"past": "{0} mesiacmi", "future": ["{0} mesiace", "{0} mesiacov"]}, "year": {"past": "rokom", "future": "rok", "zero": "{0} rokov"}, "years": {"past": "{0} rokmi", "future": ["{0} roky", "{0} rokov"]}, } past = "Pred {0}" future = "O {0}" month_names = [ "", "január", "február", "marec", "apríl", "máj", "jún", "júl", "august", "september", "október", "november", "december", ] month_abbreviations = [ "", "jan", "feb", "mar", "apr", "máj", "jún", "júl", "aug", "sep", "okt", "nov", "dec", ] day_names = [ "", "pondelok", "utorok", "streda", "štvrtok", "piatok", "sobota", "nedeľa", ] day_abbreviations = ["", "po", "ut", "st", "št", "pi", "so", "ne"] def _format_timeframe(self, timeframe, delta): """Slovak aware time frame format function, takes into account the differences between past and future forms.""" form = self.timeframes[timeframe] if isinstance(form, dict): if delta == 0: form = form["zero"] # And *never* use 0 in the singular! elif delta > 0: form = form["future"] else: form = form["past"] delta = abs(delta) if isinstance(form, list): if 2 <= delta % 10 <= 4 and (delta % 100 < 10 or delta % 100 >= 20): form = form[0] else: form = form[1] return form.format(delta) class FarsiLocale(Locale): names = ["fa", "fa_ir"] past = "{0} قبل" future = "در {0}" timeframes = { "now": "اکنون", "seconds": "ثانیه", "minute": "یک دقیقه", "minutes": "{0} دقیقه", "hour": "یک ساعت", "hours": "{0} ساعت", "day": "یک روز", "days": "{0} روز", "month": "یک ماه", "months": "{0} ماه", "year": "یک سال", "years": "{0} سال", } meridians = { "am": "قبل از ظهر", "pm": "بعد از ظهر", "AM": "قبل از ظهر", "PM": "بعد از ظهر", } month_names = [ "", "January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November", "December", ] month_abbreviations = [ "", "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec", ] day_names = [ "", "دو شنبه", "سه شنبه", "چهارشنبه", "پنجشنبه", "جمعه", "شنبه", "یکشنبه", ] day_abbreviations = ["", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"] class HebrewLocale(Locale): names = ["he", "he_IL"] past = "לפני {0}" future = "בעוד {0}" timeframes = { "now": "הרגע", "seconds": "שניות", "minute": "דקה", "minutes": "{0} דקות", "hour": "שעה", "hours": "{0} שעות", "2-hours": "שעתיים", "day": "יום", "days": "{0} ימים", "2-days": "יומיים", "month": "חודש", "months": "{0} חודשים", "2-months": "חודשיים", "year": "שנה", "years": "{0} שנים", "2-years": "שנתיים", } meridians = { "am": 'לפנ"צ', "pm": 'אחר"צ', "AM": "לפני הצהריים", "PM": "אחרי הצהריים", } month_names = [ "", "ינואר", "פברואר", "מרץ", "אפריל", "מאי", "יוני", "יולי", "אוגוסט", "ספטמבר", "אוקטובר", "נובמבר", "דצמבר", ] month_abbreviations = [ "", "ינו׳", "פבר׳", "מרץ", "אפר׳", "מאי", "יוני", "יולי", "אוג׳", "ספט׳", "אוק׳", "נוב׳", "דצמ׳", ] day_names = ["", "שני", "שלישי", "רביעי", "חמישי", "שישי", "שבת", "ראשון"] day_abbreviations = ["", "ב׳", "ג׳", "ד׳", "ה׳", "ו׳", "ש׳", "א׳"] def _format_timeframe(self, timeframe, delta): """Hebrew couple of <timeframe> aware""" couple = "2-{}".format(timeframe) if abs(delta) == 2 and couple in self.timeframes: return self.timeframes[couple].format(abs(delta)) else: return self.timeframes[timeframe].format(abs(delta)) class MarathiLocale(Locale): names = ["mr"] past = "{0} आधी" future = "{0} नंतर" timeframes = { "now": "सद्य", "seconds": "सेकंद", "minute": "एक मिनिट ", "minutes": "{0} मिनिट ", "hour": "एक तास", "hours": "{0} तास", "day": "एक दिवस", "days": "{0} दिवस", "month": "एक महिना ", "months": "{0} महिने ", "year": "एक वर्ष ", "years": "{0} वर्ष ", } meridians = {"am": "सकाळ", "pm": "संध्याकाळ", "AM": "सकाळ", "PM": "संध्याकाळ"} month_names = [ "", "जानेवारी", "फेब्रुवारी", "मार्च", "एप्रिल", "मे", "जून", "जुलै", "अॉगस्ट", "सप्टेंबर", "अॉक्टोबर", "नोव्हेंबर", "डिसेंबर", ] month_abbreviations = [ "", "जान", "फेब्रु", "मार्च", "एप्रि", "मे", "जून", "जुलै", "अॉग", "सप्टें", "अॉक्टो", "नोव्हें", "डिसें", ] day_names = [ "", "सोमवार", "मंगळवार", "बुधवार", "गुरुवार", "शुक्रवार", "शनिवार", "रविवार", ] day_abbreviations = ["", "सोम", "मंगळ", "बुध", "गुरु", "शुक्र", "शनि", "रवि"] def _map_locales(): locales = {} for _, cls in inspect.getmembers(sys.modules[__name__], inspect.isclass): if issubclass(cls, Locale): # pragma: no branch for name in cls.names: locales[name.lower()] = cls return locales class CatalanLocale(Locale): names = ["ca", "ca_es", "ca_ad", "ca_fr", "ca_it"] past = "Fa {0}" future = "En {0}" timeframes = { "now": "Ara mateix", "seconds": "segons", "minute": "1 minut", "minutes": "{0} minuts", "hour": "una hora", "hours": "{0} hores", "day": "un dia", "days": "{0} dies", "month": "un mes", "months": "{0} mesos", "year": "un any", "years": "{0} anys", } month_names = [ "", "Gener", "Febrer", "Març", "Abril", "Maig", "Juny", "Juliol", "Agost", "Setembre", "Octubre", "Novembre", "Desembre", ] month_abbreviations = [ "", "Gener", "Febrer", "Març", "Abril", "Maig", "Juny", "Juliol", "Agost", "Setembre", "Octubre", "Novembre", "Desembre", ] day_names = [ "", "Dilluns", "Dimarts", "Dimecres", "Dijous", "Divendres", "Dissabte", "Diumenge", ] day_abbreviations = [ "", "Dilluns", "Dimarts", "Dimecres", "Dijous", "Divendres", "Dissabte", "Diumenge", ] class BasqueLocale(Locale): names = ["eu", "eu_eu"] past = "duela {0}" future = "{0}" # I don't know what's the right phrase in Basque for the future. timeframes = { "now": "Orain", "seconds": "segundu", "minute": "minutu bat", "minutes": "{0} minutu", "hour": "ordu bat", "hours": "{0} ordu", "day": "egun bat", "days": "{0} egun", "month": "hilabete bat", "months": "{0} hilabet", "year": "urte bat", "years": "{0} urte", } month_names = [ "", "urtarrilak", "otsailak", "martxoak", "apirilak", "maiatzak", "ekainak", "uztailak", "abuztuak", "irailak", "urriak", "azaroak", "abenduak", ] month_abbreviations = [ "", "urt", "ots", "mar", "api", "mai", "eka", "uzt", "abu", "ira", "urr", "aza", "abe", ] day_names = [ "", "astelehena", "asteartea", "asteazkena", "osteguna", "ostirala", "larunbata", "igandea", ] day_abbreviations = ["", "al", "ar", "az", "og", "ol", "lr", "ig"] class HungarianLocale(Locale): names = ["hu", "hu_hu"] past = "{0} ezelőtt" future = "{0} múlva" timeframes = { "now": "éppen most", "seconds": {"past": "másodpercekkel", "future": "pár másodperc"}, "minute": {"past": "egy perccel", "future": "egy perc"}, "minutes": {"past": "{0} perccel", "future": "{0} perc"}, "hour": {"past": "egy órával", "future": "egy óra"}, "hours": {"past": "{0} órával", "future": "{0} óra"}, "day": {"past": "egy nappal", "future": "egy nap"}, "days": {"past": "{0} nappal", "future": "{0} nap"}, "month": {"past": "egy hónappal", "future": "egy hónap"}, "months": {"past": "{0} hónappal", "future": "{0} hónap"}, "year": {"past": "egy évvel", "future": "egy év"}, "years": {"past": "{0} évvel", "future": "{0} év"}, } month_names = [ "", "január", "február", "március", "április", "május", "június", "július", "augusztus", "szeptember", "október", "november", "december", ] month_abbreviations = [ "", "jan", "febr", "márc", "ápr", "máj", "jún", "júl", "aug", "szept", "okt", "nov", "dec", ] day_names = [ "", "hétfő", "kedd", "szerda", "csütörtök", "péntek", "szombat", "vasárnap", ] day_abbreviations = ["", "hét", "kedd", "szer", "csüt", "pént", "szom", "vas"] meridians = {"am": "de", "pm": "du", "AM": "DE", "PM": "DU"} def _format_timeframe(self, timeframe, delta): form = self.timeframes[timeframe] if isinstance(form, dict): if delta > 0: form = form["future"] else: form = form["past"] return form.format(abs(delta)) class EsperantoLocale(Locale): names = ["eo", "eo_xx"] past = "antaŭ {0}" future = "post {0}" timeframes = { "now": "nun", "seconds": "kelkaj sekundoj", "minute": "unu minuto", "minutes": "{0} minutoj", "hour": "un horo", "hours": "{0} horoj", "day": "unu tago", "days": "{0} tagoj", "month": "unu monato", "months": "{0} monatoj", "year": "unu jaro", "years": "{0} jaroj", } month_names = [ "", "januaro", "februaro", "marto", "aprilo", "majo", "junio", "julio", "aŭgusto", "septembro", "oktobro", "novembro", "decembro", ] month_abbreviations = [ "", "jan", "feb", "mar", "apr", "maj", "jun", "jul", "aŭg", "sep", "okt", "nov", "dec", ] day_names = [ "", "lundo", "mardo", "merkredo", "ĵaŭdo", "vendredo", "sabato", "dimanĉo", ] day_abbreviations = ["", "lun", "mar", "mer", "ĵaŭ", "ven", "sab", "dim"] meridians = {"am": "atm", "pm": "ptm", "AM": "ATM", "PM": "PTM"} ordinal_day_re = r"((?P<value>[1-3]?[0-9](?=a))a)" def _ordinal_number(self, n): return "{}a".format(n) class ThaiLocale(Locale): names = ["th", "th_th"] past = "{0}{1}ที่ผ่านมา" future = "ในอีก{1}{0}" timeframes = { "now": "ขณะนี้", "seconds": "ไม่กี่วินาที", "minute": "1 นาที", "minutes": "{0} นาที", "hour": "1 ชั่วโมง", "hours": "{0} ชั่วโมง", "day": "1 วัน", "days": "{0} วัน", "month": "1 เดือน", "months": "{0} เดือน", "year": "1 ปี", "years": "{0} ปี", } month_names = [ "", "มกราคม", "กุมภาพันธ์", "มีนาคม", "เมษายน", "พฤษภาคม", "มิถุนายน", "กรกฎาคม", "สิงหาคม", "กันยายน", "ตุลาคม", "พฤศจิกายน", "ธันวาคม", ] month_abbreviations = [ "", "ม.ค.", "ก.พ.", "มี.ค.", "เม.ย.", "พ.ค.", "มิ.ย.", "ก.ค.", "ส.ค.", "ก.ย.", "ต.ค.", "พ.ย.", "ธ.ค.", ] day_names = ["", "จันทร์", "อังคาร", "พุธ", "พฤหัสบดี", "ศุกร์", "เสาร์", "อาทิตย์"] day_abbreviations = ["", "จ", "อ", "พ", "พฤ", "ศ", "ส", "อา"] meridians = {"am": "am", "pm": "pm", "AM": "AM", "PM": "PM"} BE_OFFSET = 543 def year_full(self, year): """Thai always use Buddhist Era (BE) which is CE + 543""" year += self.BE_OFFSET return "{:04d}".format(year) def year_abbreviation(self, year): """Thai always use Buddhist Era (BE) which is CE + 543""" year += self.BE_OFFSET return "{:04d}".format(year)[2:] def _format_relative(self, humanized, timeframe, delta): """Thai normally doesn't have any space between words""" if timeframe == "now": return humanized space = "" if timeframe == "seconds" else " " direction = self.past if delta < 0 else self.future return direction.format(humanized, space) class BengaliLocale(Locale): names = ["bn", "bn_bd", "bn_in"] past = "{0} আগে" future = "{0} পরে" timeframes = { "now": "এখন", "seconds": "সেকেন্ড", "minute": "এক মিনিট", "minutes": "{0} মিনিট", "hour": "এক ঘণ্টা", "hours": "{0} ঘণ্টা", "day": "এক দিন", "days": "{0} দিন", "month": "এক মাস", "months": "{0} মাস ", "year": "এক বছর", "years": "{0} বছর", } meridians = {"am": "সকাল", "pm": "বিকাল", "AM": "সকাল", "PM": "বিকাল"} month_names = [ "", "জানুয়ারি", "ফেব্রুয়ারি", "মার্চ", "এপ্রিল", "মে", "জুন", "জুলাই", "আগস্ট", "সেপ্টেম্বর", "অক্টোবর", "নভেম্বর", "ডিসেম্বর", ] month_abbreviations = [ "", "জানু", "ফেব", "মার্চ", "এপ্রি", "মে", "জুন", "জুল", "অগা", "সেপ্ট", "অক্টো", "নভে", "ডিসে", ] day_names = [ "", "সোমবার", "মঙ্গলবার", "বুধবার", "বৃহস্পতিবার", "শুক্রবার", "শনিবার", "রবিবার", ] day_abbreviations = ["", "সোম", "মঙ্গল", "বুধ", "বৃহঃ", "শুক্র", "শনি", "রবি"] def _ordinal_number(self, n): if n > 10 or n == 0: return "{}তম".format(n) if n in [1, 5, 7, 8, 9, 10]: return "{}ম".format(n) if n in [2, 3]: return "{}য়".format(n) if n == 4: return "{}র্থ".format(n) if n == 6: return "{}ষ্ঠ".format(n) class RomanshLocale(Locale): names = ["rm", "rm_ch"] past = "avant {0}" future = "en {0}" timeframes = { "now": "en quest mument", "seconds": "secundas", "minute": "ina minuta", "minutes": "{0} minutas", "hour": "in'ura", "hours": "{0} ura", "day": "in di", "days": "{0} dis", "month": "in mais", "months": "{0} mais", "year": "in onn", "years": "{0} onns", } month_names = [ "", "schaner", "favrer", "mars", "avrigl", "matg", "zercladur", "fanadur", "avust", "settember", "october", "november", "december", ] month_abbreviations = [ "", "schan", "fav", "mars", "avr", "matg", "zer", "fan", "avu", "set", "oct", "nov", "dec", ] day_names = [ "", "glindesdi", "mardi", "mesemna", "gievgia", "venderdi", "sonda", "dumengia", ] day_abbreviations = ["", "gli", "ma", "me", "gie", "ve", "so", "du"] class SwissLocale(Locale): names = ["de", "de_ch"] past = "vor {0}" future = "in {0}" timeframes = { "now": "gerade eben", "seconds": "Sekunden", "minute": "einer Minute", "minutes": "{0} Minuten", "hour": "einer Stunde", "hours": "{0} Stunden", "day": "einem Tag", "days": "{0} Tagen", "week": "einer Woche", "weeks": "{0} Wochen", "month": "einem Monat", "months": "{0} Monaten", "year": "einem Jahr", "years": "{0} Jahren", } month_names = [ "", "Januar", "Februar", "März", "April", "Mai", "Juni", "Juli", "August", "September", "Oktober", "November", "Dezember", ] month_abbreviations = [ "", "Jan", "Feb", "Mär", "Apr", "Mai", "Jun", "Jul", "Aug", "Sep", "Okt", "Nov", "Dez", ] day_names = [ "", "Montag", "Dienstag", "Mittwoch", "Donnerstag", "Freitag", "Samstag", "Sonntag", ] day_abbreviations = ["", "Mo", "Di", "Mi", "Do", "Fr", "Sa", "So"] class RomanianLocale(Locale): names = ["ro", "ro_ro"] past = "{0} în urmă" future = "peste {0}" timeframes = { "now": "acum", "seconds": "câteva secunde", "minute": "un minut", "minutes": "{0} minute", "hour": "o oră", "hours": "{0} ore", "day": "o zi", "days": "{0} zile", "month": "o lună", "months": "{0} luni", "year": "un an", "years": "{0} ani", } month_names = [ "", "ianuarie", "februarie", "martie", "aprilie", "mai", "iunie", "iulie", "august", "septembrie", "octombrie", "noiembrie", "decembrie", ] month_abbreviations = [ "", "ian", "febr", "mart", "apr", "mai", "iun", "iul", "aug", "sept", "oct", "nov", "dec", ] day_names = [ "", "luni", "marți", "miercuri", "joi", "vineri", "sâmbătă", "duminică", ] day_abbreviations = ["", "Lun", "Mar", "Mie", "Joi", "Vin", "Sâm", "Dum"] class SlovenianLocale(Locale): names = ["sl", "sl_si"] past = "pred {0}" future = "čez {0}" timeframes = { "now": "zdaj", "seconds": "sekund", "minute": "minuta", "minutes": "{0} minutami", "hour": "uro", "hours": "{0} ur", "day": "dan", "days": "{0} dni", "month": "mesec", "months": "{0} mesecev", "year": "leto", "years": "{0} let", } meridians = {"am": "", "pm": "", "AM": "", "PM": ""} month_names = [ "", "Januar", "Februar", "Marec", "April", "Maj", "Junij", "Julij", "Avgust", "September", "Oktober", "November", "December", ] month_abbreviations = [ "", "Jan", "Feb", "Mar", "Apr", "Maj", "Jun", "Jul", "Avg", "Sep", "Okt", "Nov", "Dec", ] day_names = [ "", "Ponedeljek", "Torek", "Sreda", "Četrtek", "Petek", "Sobota", "Nedelja", ] day_abbreviations = ["", "Pon", "Tor", "Sre", "Čet", "Pet", "Sob", "Ned"] class IndonesianLocale(Locale): names = ["id", "id_id"] past = "{0} yang lalu" future = "dalam {0}" timeframes = { "now": "baru saja", "seconds": "detik", "minute": "1 menit", "minutes": "{0} menit", "hour": "1 jam", "hours": "{0} jam", "day": "1 hari", "days": "{0} hari", "month": "1 bulan", "months": "{0} bulan", "year": "1 tahun", "years": "{0} tahun", } meridians = {"am": "", "pm": "", "AM": "", "PM": ""} month_names = [ "", "Januari", "Februari", "Maret", "April", "Mei", "Juni", "Juli", "Agustus", "September", "Oktober", "November", "Desember", ] month_abbreviations = [ "", "Jan", "Feb", "Mar", "Apr", "Mei", "Jun", "Jul", "Ags", "Sept", "Okt", "Nov", "Des", ] day_names = ["", "Senin", "Selasa", "Rabu", "Kamis", "Jumat", "Sabtu", "Minggu"] day_abbreviations = [ "", "Senin", "Selasa", "Rabu", "Kamis", "Jumat", "Sabtu", "Minggu", ] class NepaliLocale(Locale): names = ["ne", "ne_np"] past = "{0} पहिले" future = "{0} पछी" timeframes = { "now": "अहिले", "seconds": "सेकण्ड", "minute": "मिनेट", "minutes": "{0} मिनेट", "hour": "एक घण्टा", "hours": "{0} घण्टा", "day": "एक दिन", "days": "{0} दिन", "month": "एक महिना", "months": "{0} महिना", "year": "एक बर्ष", "years": "बर्ष", } meridians = {"am": "पूर्वाह्न", "pm": "अपरान्ह", "AM": "पूर्वाह्न", "PM": "अपरान्ह"} month_names = [ "", "जनवरी", "फेब्रुअरी", "मार्च", "एप्रील", "मे", "जुन", "जुलाई", "अगष्ट", "सेप्टेम्बर", "अक्टोबर", "नोवेम्बर", "डिसेम्बर", ] month_abbreviations = [ "", "जन", "फेब", "मार्च", "एप्रील", "मे", "जुन", "जुलाई", "अग", "सेप", "अक्ट", "नोव", "डिस", ] day_names = [ "", "सोमवार", "मंगलवार", "बुधवार", "बिहिवार", "शुक्रवार", "शनिवार", "आइतवार", ] day_abbreviations = ["", "सोम", "मंगल", "बुध", "बिहि", "शुक्र", "शनि", "आइत"] class EstonianLocale(Locale): names = ["ee", "et"] past = "{0} tagasi" future = "{0} pärast" timeframes = { "now": {"past": "just nüüd", "future": "just nüüd"}, "second": {"past": "üks sekund", "future": "ühe sekundi"}, "seconds": {"past": "{0} sekundit", "future": "{0} sekundi"}, "minute": {"past": "üks minut", "future": "ühe minuti"}, "minutes": {"past": "{0} minutit", "future": "{0} minuti"}, "hour": {"past": "tund aega", "future": "tunni aja"}, "hours": {"past": "{0} tundi", "future": "{0} tunni"}, "day": {"past": "üks päev", "future": "ühe päeva"}, "days": {"past": "{0} päeva", "future": "{0} päeva"}, "month": {"past": "üks kuu", "future": "ühe kuu"}, "months": {"past": "{0} kuud", "future": "{0} kuu"}, "year": {"past": "üks aasta", "future": "ühe aasta"}, "years": {"past": "{0} aastat", "future": "{0} aasta"}, } month_names = [ "", "Jaanuar", "Veebruar", "Märts", "Aprill", "Mai", "Juuni", "Juuli", "August", "September", "Oktoober", "November", "Detsember", ] month_abbreviations = [ "", "Jan", "Veb", "Mär", "Apr", "Mai", "Jun", "Jul", "Aug", "Sep", "Okt", "Nov", "Dets", ] day_names = [ "", "Esmaspäev", "Teisipäev", "Kolmapäev", "Neljapäev", "Reede", "Laupäev", "Pühapäev", ] day_abbreviations = ["", "Esm", "Teis", "Kolm", "Nelj", "Re", "Lau", "Püh"] def _format_timeframe(self, timeframe, delta): form = self.timeframes[timeframe] if delta > 0: form = form["future"] else: form = form["past"] return form.format(abs(delta)) _locales = _map_locales()
the-stack_0_12624
# Copyright 2020 The MuLT Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from optimization import LightGBMOptimizer, SVMOptimizer, LogisticRegressionOptimizer from optimization import KNNOptimizer, MLPOptimizer, RFOptimizer from pipeline import SelectMarker from lightgbm import LGBMModel from sklearn.linear_model import LogisticRegression from sklearn.neighbors import KNeighborsClassifier from sklearn.neural_network import MLPClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.svm import SVC from sklearn.preprocessing import MinMaxScaler from sklearn.model_selection import train_test_split import numpy as np import pandas as pd import os class SMLA(SelectMarker): def __init__(self, predictor, optimizer_default_params=None, model_default_params=None, verbose=-1, random_state=None, use_gpu=False, test_size=.2, n_gene_limit=None, output_path='.', experiment_number=1, number_of_experiments=1, export_metadata=True ): assert isinstance(optimizer_default_params, dict) or optimizer_default_params is None assert isinstance(model_default_params, dict) or model_default_params is None self.output_path = output_path # self.predictor = predictor self.model_default_params = model_default_params # self.optimized_params = None self.optimizer_default_params = optimizer_default_params # self.model = None self.fitted_shape = None # self.random_state = random_state self.verbose = verbose self.use_gpu = use_gpu # self.test_size = test_size # self.scaler = MinMaxScaler() # self.n_gene_limit = n_gene_limit self.selected_clinical = None self.selected_genes = None # self.experiment_number = experiment_number self.number_of_experiments = number_of_experiments self.export_metadata = export_metadata # if self.predictor == 'lightgbm': self.optimizer = LightGBMOptimizer(**self.optimizer_default_params) elif self.predictor == 'svm': self.optimizer = SVMOptimizer(**self.optimizer_default_params) elif self.predictor == 'knn': self.optimizer = KNNOptimizer(**self.optimizer_default_params) elif self.predictor == 'lr': self.optimizer = LogisticRegressionOptimizer(**self.optimizer_default_params) elif self.predictor == 'mlp': self.optimizer = MLPOptimizer(**self.optimizer_default_params) elif self.predictor == 'rf': self.optimizer = RFOptimizer(**self.optimizer_default_params) else: raise ValueError('predictor should be one of the following: ' 'lightgbm, svm, knn, lr, or mlp') for subdir in ['selected_markers']: path = os.path.join(self.output_path, subdir) if not os.path.exists(path): os.makedirs(path) def fit(self, genes, outcome, clinical_markers=None, treatments=None, clinical_marker_selection_threshold=0.1, genes_marker_selection_threshold=0.1, early_stopping_rounds=100): # feature selection if clinical_markers is not None: self.selected_clinical = self.select_markers( clinical_markers, outcome, threshold=clinical_marker_selection_threshold) x = clinical_markers.loc[:, self.selected_clinical[0]] if treatments is not None: x = x.join(treatments) if x is not None else treatments self.selected_genes = self.select_markers( genes, outcome, threshold=genes_marker_selection_threshold, random_state=self.random_state) if self.export_metadata: if self.selected_clinical is not None: pd.DataFrame({'clinical_marker': self.selected_clinical[0], 'pvalue': self.selected_clinical[1], 'entropy': self.selected_clinical[2]}).to_csv( os.path.join( self.output_path, 'selected_markers', 'clinical_{0:03}_{1:03}.csv'.format( self.experiment_number, self.number_of_experiments)), index=False) pd.DataFrame({'gene': self.selected_genes[0], 'pvalue': self.selected_genes[1], 'entropy': self.selected_genes[2]}).to_csv( os.path.join( self.output_path, 'selected_markers', 'genes_{0:03}_{1:03}.csv'.format( self.experiment_number, self.number_of_experiments)), index=False) genes = genes.loc[:, self.selected_genes[0]] # join data sets x = x.join(genes, how='inner').fillna(0).values if x is not None else genes.fillna(0).values y = outcome.values x = self.scaler.fit_transform(x) ###### self.fitted_shape = x.shape self.optimized_params = self.optimizer.optimize(x, y) self.optimized_params['random_state'] = self.random_state self.optimized_params['n_jobs'] = -1 if self.model_default_params is not None: self.optimized_params.update(self.model_default_params) if self.predictor == 'lightgbm': self.fit_lightgbm(x, y, early_stopping_rounds) elif self.predictor == 'svm': self.fit_svm(x, y) elif self.predictor == 'knn': self.fit_knn(x, y) elif self.predictor == 'lr': self.fit_lr(x, y) elif self.predictor == 'mlp': self.fit_mlp(x, y, early_stopping_rounds) elif self.predictor == 'rf': self.fit_rf(x, y) def fit_rf(self, x, y): self.model = RandomForestClassifier(**self.optimized_params) self.model.fit(x, y) def fit_lightgbm(self, x, y, early_stopping_rounds): self.model = LGBMModel(**self.optimized_params) self.model.fit(x, y) if early_stopping_rounds is not None and early_stopping_rounds > 0: x_train, x_valid, y_train, y_valid = train_test_split(x, y, stratify=y, shuffle=True, test_size=self.test_size, random_state=self.random_state) self.model.fit(x_train, y_train, eval_set=[(x_valid, y_valid)], verbose=self.verbose) else: self.model.fit(x, y) def fit_svm(self, x, y): del self.optimized_params['n_jobs'] self.model = SVC(**self.optimized_params, probability=True) self.model.fit(x, y) def fit_lr(self, x, y): self.model = LogisticRegression(**self.optimized_params) self.model.fit(x, y) def fit_mlp(self, x, y, early_stopping_rounds): esr = early_stopping_rounds is not None and early_stopping_rounds > 0 del self.optimized_params['n_jobs'] self.model = MLPClassifier(**self.optimized_params, early_stopping=esr, validation_fraction=self.test_size) self.model.fit(x, y) def fit_knn(self, x, y): del self.optimized_params['random_state'] self.model = KNeighborsClassifier(**self.optimized_params) self.model.fit(x, y) def predict(self, genes, clinical_markers=None, treatments=None): assert isinstance(genes, pd.DataFrame), 'genes should a pd.DataFrame' if clinical_markers is not None: x = clinical_markers.loc[:, self.selected_clinical[0]] if treatments is not None: x = x.join(treatments) if x is not None else treatments genes = genes.loc[:, self.selected_genes[0]] x = x.join(genes, how='inner').fillna(0).values if x is not None else genes.fillna(0) x = np.maximum(0, np.minimum(1, self.scaler.transform(x))) assert x.shape[1] == self.fitted_shape[1], \ 'new data should have same number of features used to fit model' if self.predictor == 'lightgbm': result = self.model.predict(x) else: result = self.model.predict_proba(x) if len(result.shape) > 1: result = result[:, -1] return result
the-stack_0_12625
""" Программа для построения интегральных кривых дифференциального уравнения 3-го порядка, разрешенного относительно производной y''' = f(x, y, y', y''). Левая кнопка мыши - зафиксировать начальное условие или зафиксировать интегральную кривую. Правая кнопка мыши - сменить началные условия. """ import matplotlib matplotlib.use('TkAgg') from collections import namedtuple import numpy as np import matplotlib.pyplot as plt from matplotlib.patches import Circle from scipy.integrate import ode def f(x, y): """ Правая часть дифференциального уравнения y'''=(x, y, y', y'') Здесь y <--> y[0]; y' <--> y[1]; y'' <--> y[2] """ return [y[1], y[2], x + y[0] + y[1]+ y[2]] def on_move(event): global x0, y0, x1, y1, dy0 if not event.xdata or not event.ydata: # выход курсора за пределы области line.set_data([], []) dot.set_data([], []) tang.set_data([], []) circ.set_radius(0) ax.set_title("") fig.canvas.draw_idle() return if x0 is None: # инициализация 1-го начального условия dot.set_data([event.xdata], [event.ydata]) ax.set_title(f"y({event.xdata:.2f})={event.ydata:.2f}") if event.button == 1: x0 = event.xdata y0 = event.ydata elif x1 is None: # инициализация 2-го начального условия # восстановление доп. построений, если они были удалены при выходе # мыши за пределы области dot.set_data([x0], [y0]) tang.set_data([2*x0 - event.xdata, event.xdata], [2*y0 - event.ydata, event.ydata]) delta_x = event.xdata - x0 delta_y = event.ydata - y0 if delta_x == 0: # деление на ноль запрещено return ax.set_title(f"y({x0:.2f})={y0:.2f}, y'({x0:.2f})={delta_y/delta_x:.2f}") if event.button == 1: x1 = event.xdata y1 = event.ydata dy0 = delta_y / delta_x else: # инициализация 3-го начального условия и построение интегральной кривой x2 = event.xdata y2 = event.ydata # восстановление доп. построений, если они были удалены при выходе # мыши за пределы области dot.set_data([x0], [y0]) tang.set_data([2*x0 - x1, x1], [2*y0 - y1, y1]) if dy0 == 0: x_c = x0 y_c = 0.5*(y2+y0+(x2-x0)**2/(y2-y0)) R = abs(y0-y_c) else: # Угловой коэффициент прямой, на кот. должен лежать центр окр. k = -1/dy0 # Координаты центра окружности x_c = .5 * (y2**2 - y0**2 + x2**2 - x0**2 + 2 * (y0 - k*x0) * (y0 - y2)) / (k*(y2 - y0) + x2 - x0) y_c = k * (x_c - x0) + y0 # Радиус окружности R = np.hypot(y0 - y_c, x0 - x_c) # Отрисовка окружности circ.center = (x_c, y_c) circ.set_radius(R) # Начальное значение 2ой производной d2y0 = (1+dy0**2)**(3/2)/R*np.sign(y_c-y0) ax.set_title(f"y({x0:.2f})={y0:.2f}, y'({x0:.2f})={dy0:.2f}, y''({x0:.2f})={d2y0:.2f}") de = ode(f) de.set_integrator('dop853') # de.set_integrator('zvode', method='bdf') dt = 0.05 sol = [] de.set_initial_value([y0, dy0, d2y0], x0) while de.successful() and de.t <= xlim.end: de.integrate(de.t + dt) sol.append((de.t, de.y[0])) de.set_initial_value([y0, dy0, d2y0], x0) while de.successful() and de.t >= xlim.start: de.integrate(de.t - dt) sol.append((de.t, de.y[0])) sol.sort(key=lambda x: x[0]) sol = list(zip(*sol)) if event.button == 1: # зафиксировать интегральную кривую ax.plot(sol[0], sol[1], 'r') elif event.button == 3: # сменить начальную точку x0 = event.xdata y0 = event.ydata x1 = None y1 = None dy0 = None dot.set_data([x0], [y0]) tang.set_data([], []) circ.set_radius(0) line.set_data([], []) ax.set_title(f"y({x0:.2f})={y0:.2f}") else: # текущая интегральная кривая line.set_data(sol[0], sol[1]) print(f"y''({x0:.2f})={d2y0:.2f}") fig.canvas.draw_idle() Lim = namedtuple('Lim', ['start', 'end']) xlim = Lim(-5, 5) ylim = Lim(-5, 5) x0 = None y0 = None x1 = None y1 = None dy0 = None fig, ax = plt.subplots() ax.grid() ax.set_xlim(xlim) ax.set_ylim(ylim) ax.set_aspect('equal') ax.hlines(0, *xlim, lw=0.5) ax.vlines(0, *ylim, lw=0.5) fig.canvas.mpl_connect('button_press_event', on_move) fig.canvas.mpl_connect('motion_notify_event', on_move) line, = ax.plot([], [], 'm') dot, = ax.plot([], [], '.m') tang, = ax.plot([], [], 'g', lw=0.5) circ = Circle((0, 0), 0, color='g', lw=0.5, fill=False) ax.add_patch(circ) plt.show()
the-stack_0_12627
from typing import List from pyrep.objects.dummy import Dummy from pyrep.objects.joint import Joint from rlbench.backend.task import Task from rlbench.backend.conditions import JointCondition OPTIONS = ['left', 'right'] class TurnTap(Task): def init_task(self) -> None: self.left_start = Dummy('waypoint0') self.left_end = Dummy('waypoint1') self.right_start = Dummy('waypoint5') self.right_end = Dummy('waypoint6') self.left_joint = Joint('left_joint') self.right_joint = Joint('right_joint') def init_episode(self, index: int) -> List[str]: option = OPTIONS[index] if option == 'right': self.left_start.set_position(self.right_start.get_position()) self.left_start.set_orientation(self.right_start.get_orientation()) self.left_end.set_position(self.right_end.get_position()) self.left_end.set_orientation(self.right_end.get_orientation()) self.register_success_conditions( [JointCondition(self.right_joint, 1.57)]) else: self.register_success_conditions( [JointCondition(self.left_joint, 1.57)]) return ['turn %s tap' % option, 'rotate the %s tap' % option, 'grasp the %s tap and turn it' % option] def variation_count(self) -> int: return 2
the-stack_0_12628
import glob import os import ast import sys import json from collections import Counter sys.setrecursionlimit(1000000) CODE_DIR = "python_top_code" OUT_DIR = "stats" def make_dir_ignore_exists(d): try: return os.mkdir(d) except FileExistsError as E: pass def decode_data(data): try: data = data.decode("utf8") return data except UnicodeDecodeError: pass data = data.decode("ISO-8859-1") return data def gen_repo_asts(repo): ok = 0 bad = 0 for file in glob.glob(f"{CODE_DIR}/{repo}/*.py"): data = open(file, "rb").read() data = decode_data(data) if "generated" in data[:1024]: print(f"skipping file {file}: autogenerated") continue try: yield ast.parse(data) ok += 1 except Exception: bad += 1 print(f"ast generation finished: ok {ok}, bad {bad}") def gen_ast_subnodes(ast_node): for child in ast.iter_child_nodes(ast_node): yield child yield from gen_ast_subnodes(child) def save_counter(repo, filename, counter): make_dir_ignore_exists(OUT_DIR) make_dir_ignore_exists(f"{OUT_DIR}/{repo}") with open(f"{OUT_DIR}/{repo}/{filename}", "w") as f: for k, v in counter.most_common(): print(v, k, file=f) c = Counter() class_keywords_c = Counter() class_bases_c = Counter() class_decorators_c = Counter() function_decorators_c = Counter() async_function_decorators_c = Counter() exception_handlers_c = Counter() attributes_c = Counter() func_names_c = Counter() async_func_names_c = Counter() class_names_c = Counter() module_names_c = Counter() from_module_names_c = Counter() repo = sys.argv[1].replace("/", "_") for cur_ast in gen_repo_asts(repo): for ast_node in gen_ast_subnodes(cur_ast): name = type(ast_node).__name__ c[name] += 1 if isinstance(ast_node, ast.For): if ast_node.orelse: c["bay_for_with_else"] += 1 elif isinstance(ast_node, ast.While): if ast_node.orelse: c["bay_while_with_else"] += 1 elif isinstance(ast_node, ast.ClassDef): has_metaclass = False for keyword in ast_node.keywords: if keyword.arg == "metaclass": has_metaclass = True class_keywords_c[f"{keyword.arg}={ast.unparse(keyword.value)}"] += 1 if has_metaclass: c["bay_class_with_metaclass"] += 1 bases = [ast.unparse(b) for b in ast_node.bases] if bases and bases != ["object"]: c["bay_class_with_bases"] += 1 if bases: class_bases_c.update(bases) else: class_bases_c["<no_base_class>"] += 1 decorators = [ast.unparse(b) for b in ast_node.decorator_list] if decorators: c["bay_class_with_decorators"] += 1 if decorators: class_decorators_c.update(decorators) else: class_decorators_c["<no_decorators>"] += 1 if ast.get_docstring(ast_node): c["bay_class_with_docstring"] += 1 class_names_c[ast_node.name] += 1 elif isinstance(ast_node, ast.Try): has_handlers = ast_node.handlers has_final = ast_node.finalbody has_else = ast_node.orelse except_type = "bay_try" if has_handlers: except_type += "_except" if has_final: except_type += "_finally" if has_else: except_type += "_else" c[except_type] += 1 elif isinstance(ast_node, ast.FunctionDef): decorators = [ast.unparse(b) for b in ast_node.decorator_list] if decorators: c["bay_functions_with_decorators"] += 1 if decorators: function_decorators_c.update(decorators) else: function_decorators_c["<no_decorators>"] += 1 if ast.get_docstring(ast_node): c["bay_functions_with_docstring"] += 1 func_names_c[ast_node.name] += 1 if ast_node.returns: c["bay_functions_annotation_in_returns"] += 1 elif isinstance(ast_node, ast.AsyncFunctionDef): decorators = [ast.unparse(b) for b in ast_node.decorator_list] if decorators: c["bay_async_functions_with_decorators"] += 1 if decorators: async_function_decorators_c.update(decorators) else: async_function_decorators_c["<no_decorators>"] += 1 if ast.get_docstring(ast_node): c["bay_async_functions_with_docstring"] += 1 async_func_names_c[ast_node.name] += 1 if ast_node.returns: c["bay_async_functions_annotation_in_returns"] += 1 elif isinstance(ast_node, ast.Assign): if isinstance(ast_node.value, ast.Yield): c["bay_assign_yield"] += 1 if isinstance(ast_node.value, ast.YieldFrom): c["bay_assign_yield_from"] += 1 elif isinstance(ast_node, ast.ExceptHandler): except_type = ast_node.type try: exception_handlers_c[ast.unparse(except_type)] += 1 except Exception: pass elif isinstance(ast_node, ast.Attribute): attributes_c[ast_node.attr] += 1 elif isinstance(ast_node, ast.Import): modules = [ast.unparse(b) for b in ast_node.names] module_names_c.update(modules) elif isinstance(ast_node, ast.ImportFrom): from_module_names_c[ast_node.module] += 1 elif isinstance(ast_node, ast.arg): if ast_node.annotation: c["bay_arg_annotation"] += 1 save_counter(repo, "stat_ast.txt", c) save_counter(repo, "stat_class_keywords.txt", class_keywords_c) save_counter(repo, "stat_class_bases.txt", class_bases_c) save_counter(repo, "stat_class_decorators_c.txt", class_decorators_c) save_counter(repo, "stat_function_decorators_c.txt", function_decorators_c) save_counter(repo, "stat_async_function_decorators.txt", async_function_decorators_c) save_counter(repo, "stat_exception_handlers.txt", exception_handlers_c) save_counter(repo, "stat_attributes.txt", attributes_c) save_counter(repo, "stat_func_names.txt", func_names_c) save_counter(repo, "stat_async_func_names.txt", async_func_names_c) save_counter(repo, "stat_class_names.txt", class_names_c) save_counter(repo, "stat_module_names.txt", module_names_c) save_counter(repo, "stat_from_module_names.txt", from_module_names_c)
the-stack_0_12629
# qubit number=2 # total number=10 import cirq import qiskit from qiskit import IBMQ from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import BasicAer, execute, transpile from pprint import pprint from qiskit.test.mock import FakeVigo from math import log2,floor, sqrt, pi import numpy as np import networkx as nx def build_oracle(n: int, f) -> QuantumCircuit: # implement the oracle O_f^\pm # NOTE: use U1 gate (P gate) with \lambda = 180 ==> CZ gate # or multi_control_Z_gate (issue #127) controls = QuantumRegister(n, "ofc") target = QuantumRegister(1, "oft") oracle = QuantumCircuit(controls, target, name="Of") for i in range(2 ** n): rep = np.binary_repr(i, n) if f(rep) == "1": for j in range(n): if rep[j] == "0": oracle.x(controls[j]) oracle.mct(controls, target[0], None, mode='noancilla') for j in range(n): if rep[j] == "0": oracle.x(controls[j]) # oracle.barrier() # oracle.draw('mpl', filename='circuit/deutsch-oracle.png') return oracle def make_circuit(n:int,f) -> QuantumCircuit: # circuit begin input_qubit = QuantumRegister(n, "qc") target = QuantumRegister(1, "qt") prog = QuantumCircuit(input_qubit, target) # inverse last one (can be omitted if using O_f^\pm) prog.x(target) # apply H to get superposition for i in range(n): prog.h(input_qubit[i]) prog.h(input_qubit[1]) # number=1 prog.h(input_qubit[1]) # number=7 prog.cz(input_qubit[0],input_qubit[1]) # number=8 prog.h(input_qubit[1]) # number=9 prog.cx(input_qubit[0],input_qubit[1]) # number=5 prog.h(target) prog.barrier() # apply oracle O_f oracle = build_oracle(n, f) prog.append( oracle.to_gate(), [input_qubit[i] for i in range(n)] + [target]) # apply H back (QFT on Z_2^n) for i in range(n): prog.h(input_qubit[i]) prog.barrier() # measure prog.x(input_qubit[0]) # number=3 prog.y(input_qubit[1]) # number=6 prog.x(input_qubit[0]) # number=4 # circuit end return prog if __name__ == '__main__': n = 2 f = lambda rep: rep[-1] # f = lambda rep: "1" if rep[0:2] == "01" or rep[0:2] == "10" else "0" # f = lambda rep: "0" prog = make_circuit(n, f) sample_shot =2800 backend = BasicAer.get_backend('statevector_simulator') circuit1 = transpile(prog,FakeVigo()) circuit1.x(qubit=3) circuit1.x(qubit=3) prog = circuit1 info = execute(prog, backend=backend).result().get_statevector() qubits = round(log2(len(info))) info = { np.binary_repr(i, qubits): round((info[i]*(info[i].conjugate())).real,3) for i in range(2 ** qubits) } writefile = open("../data/startQiskit_Class150.csv","w") print(info,file=writefile) print("results end", file=writefile) print(circuit1.depth(),file=writefile) print(circuit1,file=writefile) writefile.close()
the-stack_0_12630
import logging import asyncio from .http_utils import Request, Response from .exceptions import ( BadRequestException, NotFoundException, TimeoutException, ) TIMEOUT = 5 # 一个 HTTPServer 对象,需要一个 Router 对象和一个 http_parser 模块,并使用它们来初始化 class HTTPServer(object): """ Contains objects that are shared by HTTPConnections and schedules async connections. :param router: An object that must expose the 'get_handler' interface. :param http_parser: An object that must expose the 'parse_into' interface, which works with a Request object and a bytearray. :param loop: An object that implements the 'asyncio.BaseEventLoop' interface. """ # HTTPServer(self.router, self.http_parser, self.loop) def __init__(self, router, http_parser, loop): self.router = router self.http_parser = http_parser self.loop = loop async def handle_connection(self, reader, writer): """ Creates and schedules a HTTPConnection given a set (reader, writer) objects. :param reader: An object that implements the 'asyncio.StreamReader' interface. :param writer: An object that implements the 'asyncio.StreamWriter' interface. """ connection = HTTPConnection(self, reader, writer) asyncio.ensure_future(connection.handle_request(), loop=self.loop) ''' HTTPConnection 对象,每一个对象表示一个单独的客户端 HTTP 连接,并且处理其请求-响应周期: 使用 http_parser 模块将收到的字节流解析为一个 Request 对象; 使用一个 Router 实例寻找并调用正确的函数来生成一个响应; 最后将这个响应发送回客户端。 ''' class HTTPConnection(object): """ Takes care of whole life cycle of a single TCP connection with a HTTP client. First reads incoming data, parses it with 'http_server.parser', generates as Response with 'http_server.router' and sends data back to client. :param http_server: An instance of HTTPServer. :param reader: An object that implements the 'asyncio.StreamReader' interface. :param writer: An object that implements the 'asyncio.StreamWriter' interface. """ def __init__(self, http_server, reader, writer): self.router = http_server.router # Router 实例寻找并调用正确的函数来生成一个响应 self.http_parser = http_server.http_parser # http_parser 模块将收到的字节流解析为一个 Request 对象 self.loop = http_server.loop self._reader = reader self._writer = writer self._buffer = bytearray() self._conn_timeout = None self.request = Request() async def handle_request(self): """ Reads bytes from a connection and attempts to parse them incrementally until it can issue a Response and close the connection. Also handles resetting the timeout counter for a connection. """ try: while not self.request.finished and not self._reader.at_eof(): data = await self._reader.read(1024) if data: self._reset_conn_timeout() await self.process_data(data) if self.request.finished: await self.reply() elif self._reader.at_eof(): raise BadRequestException() except (NotFoundException, BadRequestException) as e: self.error_reply(e.code, body=Response.reason_phrases[e.code]) except Exception as e: logging.error(e) logging.error(e.__traceback__) self.error_reply(500, body=Response.reason_phrases[500]) self.close_connection() async def process_data(self, data): """ Accumulates data inside of _buffer and attempts to parse the accumulated data. :param data: A bytearray object. """ self._buffer.extend(data) self._buffer = self.http_parser.parse_into( self.request, self._buffer) def close_connection(self): """ Cancels the timeout timer and closes the connection. """ logging.debug('Closing connection') self._cancel_conn_timeout() self._writer.close() def error_reply(self, code, body=''): """ Generates a simple error response. :param code: Integer signifying the HTTP error. :param body: A string that contains an error message. """ response = Response(code=code, body=body) self._writer.write(response.to_bytes()) self._writer.drain() async def reply(self): """ Obtains and applies the correct handler from 'self.router' and write the Response back to the client. """ logging.debug('Replying to request') request = self.request handler = self.router.get_handler(request.path) response = await handler.handle(request) if not isinstance(response, Response): response = Response(code=200, body=response) self._writer.write(response.to_bytes()) await self._writer.drain() def _conn_timeout_close(self): self.error_reply(500, 'timeout') self.close_connection() def _reset_conn_timeout(self, timeout=TIMEOUT): self._cancel_conn_timeout() self._conn_timeout = self.loop.call_later( timeout, self._conn_timeout_close) def _cancel_conn_timeout(self): if self._conn_timeout: self._conn_timeout.cancel()
the-stack_0_12631
# -*- coding: utf-8 -*- import logging from pyramid.interfaces import IRequest from openregistry.assets.core.includeme import IContentConfigurator from openregistry.assets.core.interfaces import IAssetManager from openregistry.assets.basic.models import Asset, IBasicAsset from openregistry.assets.basic.adapters import BasicAssetConfigurator, BasicAssetManagerAdapter from openregistry.assets.basic.constants import ( DEFAULT_ASSET_BASIC_TYPE, DEFAULT_LEVEL_OF_ACCREDITATION ) LOGGER = logging.getLogger(__name__) def includeme(config, plugin_config=None): config.scan("openregistry.assets.basic.views") config.scan("openregistry.assets.basic.subscribers") config.registry.registerAdapter(BasicAssetConfigurator, (IBasicAsset, IRequest), IContentConfigurator) config.registry.registerAdapter(BasicAssetManagerAdapter, (IBasicAsset, ), IAssetManager) asset_types = plugin_config.get('aliases', []) if plugin_config.get('use_default', False): asset_types.append(DEFAULT_ASSET_BASIC_TYPE) for at in asset_types: config.add_assetType(Asset, at) LOGGER.info("Included openregistry.assets.basic plugin", extra={'MESSAGE_ID': 'included_plugin'}) # add accreditation level if not plugin_config.get('accreditation'): config.registry.accreditation['asset'][Asset._internal_type] = DEFAULT_LEVEL_OF_ACCREDITATION else: config.registry.accreditation['asset'][Asset._internal_type] = plugin_config['accreditation']
the-stack_0_12632
import base64 import os import shutil import string import sys import tempfile import unittest from datetime import timedelta from django.conf import settings from django.contrib.sessions.backends.cache import SessionStore as CacheSession from django.contrib.sessions.backends.cached_db import \ SessionStore as CacheDBSession from django.contrib.sessions.backends.db import SessionStore as DatabaseSession from django.contrib.sessions.backends.file import SessionStore as FileSession from django.contrib.sessions.backends.signed_cookies import \ SessionStore as CookieSession from django.contrib.sessions.exceptions import InvalidSessionKey from django.contrib.sessions.middleware import SessionMiddleware from django.contrib.sessions.models import Session from django.contrib.sessions.serializers import ( JSONSerializer, PickleSerializer, ) from django.core import management from django.core.cache import caches from django.core.cache.backends.base import InvalidCacheBackendError from django.core.exceptions import ImproperlyConfigured from django.http import HttpResponse from django.test import ( RequestFactory, TestCase, ignore_warnings, override_settings, ) from django.test.utils import patch_logger from django.utils import six, timezone from django.utils.encoding import force_text from django.utils.six.moves import http_cookies from .custom_db_backend import SessionStore as CustomDatabaseSession class SessionTestsMixin(object): # This does not inherit from TestCase to avoid any tests being run with this # class, which wouldn't work, and to allow different TestCase subclasses to # be used. backend = None # subclasses must specify def setUp(self): self.session = self.backend() def tearDown(self): # NB: be careful to delete any sessions created; stale sessions fill up # the /tmp (with some backends) and eventually overwhelm it after lots # of runs (think buildbots) self.session.delete() def test_new_session(self): self.assertFalse(self.session.modified) self.assertFalse(self.session.accessed) def test_get_empty(self): self.assertEqual(self.session.get('cat'), None) def test_store(self): self.session['cat'] = "dog" self.assertTrue(self.session.modified) self.assertEqual(self.session.pop('cat'), 'dog') def test_pop(self): self.session['some key'] = 'exists' # Need to reset these to pretend we haven't accessed it: self.accessed = False self.modified = False self.assertEqual(self.session.pop('some key'), 'exists') self.assertTrue(self.session.accessed) self.assertTrue(self.session.modified) self.assertEqual(self.session.get('some key'), None) def test_pop_default(self): self.assertEqual(self.session.pop('some key', 'does not exist'), 'does not exist') self.assertTrue(self.session.accessed) self.assertFalse(self.session.modified) def test_setdefault(self): self.assertEqual(self.session.setdefault('foo', 'bar'), 'bar') self.assertEqual(self.session.setdefault('foo', 'baz'), 'bar') self.assertTrue(self.session.accessed) self.assertTrue(self.session.modified) def test_update(self): self.session.update({'update key': 1}) self.assertTrue(self.session.accessed) self.assertTrue(self.session.modified) self.assertEqual(self.session.get('update key', None), 1) def test_has_key(self): self.session['some key'] = 1 self.session.modified = False self.session.accessed = False self.assertIn('some key', self.session) self.assertTrue(self.session.accessed) self.assertFalse(self.session.modified) def test_values(self): self.assertEqual(list(self.session.values()), []) self.assertTrue(self.session.accessed) self.session['some key'] = 1 self.assertEqual(list(self.session.values()), [1]) def test_iterkeys(self): self.session['x'] = 1 self.session.modified = False self.session.accessed = False i = six.iterkeys(self.session) self.assertTrue(hasattr(i, '__iter__')) self.assertTrue(self.session.accessed) self.assertFalse(self.session.modified) self.assertEqual(list(i), ['x']) def test_itervalues(self): self.session['x'] = 1 self.session.modified = False self.session.accessed = False i = six.itervalues(self.session) self.assertTrue(hasattr(i, '__iter__')) self.assertTrue(self.session.accessed) self.assertFalse(self.session.modified) self.assertEqual(list(i), [1]) def test_iteritems(self): self.session['x'] = 1 self.session.modified = False self.session.accessed = False i = six.iteritems(self.session) self.assertTrue(hasattr(i, '__iter__')) self.assertTrue(self.session.accessed) self.assertFalse(self.session.modified) self.assertEqual(list(i), [('x', 1)]) def test_clear(self): self.session['x'] = 1 self.session.modified = False self.session.accessed = False self.assertEqual(list(self.session.items()), [('x', 1)]) self.session.clear() self.assertEqual(list(self.session.items()), []) self.assertTrue(self.session.accessed) self.assertTrue(self.session.modified) def test_save(self): if (hasattr(self.session, '_cache') and 'DummyCache' in settings.CACHES[settings.SESSION_CACHE_ALIAS]['BACKEND']): raise unittest.SkipTest("Session saving tests require a real cache backend") self.session.save() self.assertTrue(self.session.exists(self.session.session_key)) def test_delete(self): self.session.save() self.session.delete(self.session.session_key) self.assertFalse(self.session.exists(self.session.session_key)) def test_flush(self): self.session['foo'] = 'bar' self.session.save() prev_key = self.session.session_key self.session.flush() self.assertFalse(self.session.exists(prev_key)) self.assertNotEqual(self.session.session_key, prev_key) self.assertIsNone(self.session.session_key) self.assertTrue(self.session.modified) self.assertTrue(self.session.accessed) def test_cycle(self): self.session['a'], self.session['b'] = 'c', 'd' self.session.save() prev_key = self.session.session_key prev_data = list(self.session.items()) self.session.cycle_key() self.assertNotEqual(self.session.session_key, prev_key) self.assertEqual(list(self.session.items()), prev_data) def test_save_doesnt_clear_data(self): self.session['a'] = 'b' self.session.save() self.assertEqual(self.session['a'], 'b') def test_invalid_key(self): # Submitting an invalid session key (either by guessing, or if the db has # removed the key) results in a new key being generated. try: session = self.backend('1') try: session.save() except AttributeError: self.fail( "The session object did not save properly. " "Middleware may be saving cache items without namespaces." ) self.assertNotEqual(session.session_key, '1') self.assertEqual(session.get('cat'), None) session.delete() finally: # Some backends leave a stale cache entry for the invalid # session key; make sure that entry is manually deleted session.delete('1') def test_session_key_empty_string_invalid(self): """Falsey values (Such as an empty string) are rejected.""" self.session._session_key = '' self.assertIsNone(self.session.session_key) def test_session_key_too_short_invalid(self): """Strings shorter than 8 characters are rejected.""" self.session._session_key = '1234567' self.assertIsNone(self.session.session_key) def test_session_key_valid_string_saved(self): """Strings of length 8 and up are accepted and stored.""" self.session._session_key = '12345678' self.assertEqual(self.session.session_key, '12345678') def test_session_key_is_read_only(self): def set_session_key(session): session.session_key = session._get_new_session_key() self.assertRaises(AttributeError, set_session_key, self.session) # Custom session expiry def test_default_expiry(self): # A normal session has a max age equal to settings self.assertEqual(self.session.get_expiry_age(), settings.SESSION_COOKIE_AGE) # So does a custom session with an idle expiration time of 0 (but it'll # expire at browser close) self.session.set_expiry(0) self.assertEqual(self.session.get_expiry_age(), settings.SESSION_COOKIE_AGE) def test_custom_expiry_seconds(self): modification = timezone.now() self.session.set_expiry(10) date = self.session.get_expiry_date(modification=modification) self.assertEqual(date, modification + timedelta(seconds=10)) age = self.session.get_expiry_age(modification=modification) self.assertEqual(age, 10) def test_custom_expiry_timedelta(self): modification = timezone.now() # Mock timezone.now, because set_expiry calls it on this code path. original_now = timezone.now try: timezone.now = lambda: modification self.session.set_expiry(timedelta(seconds=10)) finally: timezone.now = original_now date = self.session.get_expiry_date(modification=modification) self.assertEqual(date, modification + timedelta(seconds=10)) age = self.session.get_expiry_age(modification=modification) self.assertEqual(age, 10) def test_custom_expiry_datetime(self): modification = timezone.now() self.session.set_expiry(modification + timedelta(seconds=10)) date = self.session.get_expiry_date(modification=modification) self.assertEqual(date, modification + timedelta(seconds=10)) age = self.session.get_expiry_age(modification=modification) self.assertEqual(age, 10) def test_custom_expiry_reset(self): self.session.set_expiry(None) self.session.set_expiry(10) self.session.set_expiry(None) self.assertEqual(self.session.get_expiry_age(), settings.SESSION_COOKIE_AGE) def test_get_expire_at_browser_close(self): # Tests get_expire_at_browser_close with different settings and different # set_expiry calls with override_settings(SESSION_EXPIRE_AT_BROWSER_CLOSE=False): self.session.set_expiry(10) self.assertFalse(self.session.get_expire_at_browser_close()) self.session.set_expiry(0) self.assertTrue(self.session.get_expire_at_browser_close()) self.session.set_expiry(None) self.assertFalse(self.session.get_expire_at_browser_close()) with override_settings(SESSION_EXPIRE_AT_BROWSER_CLOSE=True): self.session.set_expiry(10) self.assertFalse(self.session.get_expire_at_browser_close()) self.session.set_expiry(0) self.assertTrue(self.session.get_expire_at_browser_close()) self.session.set_expiry(None) self.assertTrue(self.session.get_expire_at_browser_close()) def test_decode(self): # Ensure we can decode what we encode data = {'a test key': 'a test value'} encoded = self.session.encode(data) self.assertEqual(self.session.decode(encoded), data) def test_decode_failure_logged_to_security(self): bad_encode = base64.b64encode(b'flaskdj:alkdjf') with patch_logger('django.security.SuspiciousSession', 'warning') as calls: self.assertEqual({}, self.session.decode(bad_encode)) # check that the failed decode is logged self.assertEqual(len(calls), 1) self.assertIn('corrupted', calls[0]) def test_actual_expiry(self): # this doesn't work with JSONSerializer (serializing timedelta) with override_settings(SESSION_SERIALIZER='django.contrib.sessions.serializers.PickleSerializer'): self.session = self.backend() # reinitialize after overriding settings # Regression test for #19200 old_session_key = None new_session_key = None try: self.session['foo'] = 'bar' self.session.set_expiry(-timedelta(seconds=10)) self.session.save() old_session_key = self.session.session_key # With an expiry date in the past, the session expires instantly. new_session = self.backend(self.session.session_key) new_session_key = new_session.session_key self.assertNotIn('foo', new_session) finally: self.session.delete(old_session_key) self.session.delete(new_session_key) def test_session_load_does_not_create_record(self): """ Loading an unknown session key does not create a session record. Creating session records on load is a DOS vulnerability. """ if self.backend is CookieSession: raise unittest.SkipTest("Cookie backend doesn't have an external store to create records in.") session = self.backend('someunknownkey') session.load() self.assertFalse(session.exists(session.session_key)) # provided unknown key was cycled, not reused self.assertNotEqual(session.session_key, 'someunknownkey') class DatabaseSessionTests(SessionTestsMixin, TestCase): backend = DatabaseSession session_engine = 'django.contrib.sessions.backends.db' @property def model(self): return self.backend.get_model_class() def test_session_str(self): "Session repr should be the session key." self.session['x'] = 1 self.session.save() session_key = self.session.session_key s = self.model.objects.get(session_key=session_key) self.assertEqual(force_text(s), session_key) def test_session_get_decoded(self): """ Test we can use Session.get_decoded to retrieve data stored in normal way """ self.session['x'] = 1 self.session.save() s = self.model.objects.get(session_key=self.session.session_key) self.assertEqual(s.get_decoded(), {'x': 1}) def test_sessionmanager_save(self): """ Test SessionManager.save method """ # Create a session self.session['y'] = 1 self.session.save() s = self.model.objects.get(session_key=self.session.session_key) # Change it self.model.objects.save(s.session_key, {'y': 2}, s.expire_date) # Clear cache, so that it will be retrieved from DB del self.session._session_cache self.assertEqual(self.session['y'], 2) def test_clearsessions_command(self): """ Test clearsessions command for clearing expired sessions. """ self.assertEqual(0, self.model.objects.count()) # One object in the future self.session['foo'] = 'bar' self.session.set_expiry(3600) self.session.save() # One object in the past other_session = self.backend() other_session['foo'] = 'bar' other_session.set_expiry(-3600) other_session.save() # Two sessions are in the database before clearsessions... self.assertEqual(2, self.model.objects.count()) with override_settings(SESSION_ENGINE=self.session_engine): management.call_command('clearsessions') # ... and one is deleted. self.assertEqual(1, self.model.objects.count()) @override_settings(USE_TZ=True) class DatabaseSessionWithTimeZoneTests(DatabaseSessionTests): pass class CustomDatabaseSessionTests(DatabaseSessionTests): backend = CustomDatabaseSession session_engine = 'sessions_tests.custom_db_backend' def test_extra_session_field(self): # Set the account ID to be picked up by a custom session storage # and saved to a custom session model database column. self.session['_auth_user_id'] = 42 self.session.save() # Make sure that the customized create_model_instance() was called. s = self.model.objects.get(session_key=self.session.session_key) self.assertEqual(s.account_id, 42) # Make the session "anonymous". self.session.pop('_auth_user_id') self.session.save() # Make sure that save() on an existing session did the right job. s = self.model.objects.get(session_key=self.session.session_key) self.assertEqual(s.account_id, None) class CacheDBSessionTests(SessionTestsMixin, TestCase): backend = CacheDBSession @unittest.skipIf('DummyCache' in settings.CACHES[settings.SESSION_CACHE_ALIAS]['BACKEND'], "Session saving tests require a real cache backend") def test_exists_searches_cache_first(self): self.session.save() with self.assertNumQueries(0): self.assertTrue(self.session.exists(self.session.session_key)) # Some backends might issue a warning @ignore_warnings(module="django.core.cache.backends.base") def test_load_overlong_key(self): self.session._session_key = (string.ascii_letters + string.digits) * 20 self.assertEqual(self.session.load(), {}) @override_settings(SESSION_CACHE_ALIAS='sessions') def test_non_default_cache(self): # 21000 - CacheDB backend should respect SESSION_CACHE_ALIAS. self.assertRaises(InvalidCacheBackendError, self.backend) @override_settings(USE_TZ=True) class CacheDBSessionWithTimeZoneTests(CacheDBSessionTests): pass # Don't need DB flushing for these tests, so can use unittest.TestCase as base class class FileSessionTests(SessionTestsMixin, unittest.TestCase): backend = FileSession def setUp(self): # Do file session tests in an isolated directory, and kill it after we're done. self.original_session_file_path = settings.SESSION_FILE_PATH self.temp_session_store = settings.SESSION_FILE_PATH = tempfile.mkdtemp() # Reset the file session backend's internal caches if hasattr(self.backend, '_storage_path'): del self.backend._storage_path super(FileSessionTests, self).setUp() def tearDown(self): super(FileSessionTests, self).tearDown() settings.SESSION_FILE_PATH = self.original_session_file_path shutil.rmtree(self.temp_session_store) @override_settings( SESSION_FILE_PATH="/if/this/directory/exists/you/have/a/weird/computer") def test_configuration_check(self): del self.backend._storage_path # Make sure the file backend checks for a good storage dir self.assertRaises(ImproperlyConfigured, self.backend) def test_invalid_key_backslash(self): # Ensure we don't allow directory-traversal. # This is tested directly on _key_to_file, as load() will swallow # a SuspiciousOperation in the same way as an IOError - by creating # a new session, making it unclear whether the slashes were detected. self.assertRaises(InvalidSessionKey, self.backend()._key_to_file, "a\\b\\c") def test_invalid_key_forwardslash(self): # Ensure we don't allow directory-traversal self.assertRaises(InvalidSessionKey, self.backend()._key_to_file, "a/b/c") @override_settings(SESSION_ENGINE="django.contrib.sessions.backends.file") def test_clearsessions_command(self): """ Test clearsessions command for clearing expired sessions. """ storage_path = self.backend._get_storage_path() file_prefix = settings.SESSION_COOKIE_NAME def count_sessions(): return len([session_file for session_file in os.listdir(storage_path) if session_file.startswith(file_prefix)]) self.assertEqual(0, count_sessions()) # One object in the future self.session['foo'] = 'bar' self.session.set_expiry(3600) self.session.save() # One object in the past other_session = self.backend() other_session['foo'] = 'bar' other_session.set_expiry(-3600) other_session.save() # Two sessions are in the filesystem before clearsessions... self.assertEqual(2, count_sessions()) management.call_command('clearsessions') # ... and one is deleted. self.assertEqual(1, count_sessions()) class CacheSessionTests(SessionTestsMixin, unittest.TestCase): backend = CacheSession # Some backends might issue a warning @ignore_warnings(module="django.core.cache.backends.base") def test_load_overlong_key(self): self.session._session_key = (string.ascii_letters + string.digits) * 20 self.assertEqual(self.session.load(), {}) def test_default_cache(self): self.session.save() self.assertNotEqual(caches['default'].get(self.session.cache_key), None) @override_settings(CACHES={ 'default': { 'BACKEND': 'django.core.cache.backends.dummy.DummyCache', }, 'sessions': { 'BACKEND': 'django.core.cache.backends.locmem.LocMemCache', 'LOCATION': 'session', }, }, SESSION_CACHE_ALIAS='sessions') def test_non_default_cache(self): # Re-initialize the session backend to make use of overridden settings. self.session = self.backend() self.session.save() self.assertEqual(caches['default'].get(self.session.cache_key), None) self.assertNotEqual(caches['sessions'].get(self.session.cache_key), None) class SessionMiddlewareTests(TestCase): @override_settings(SESSION_COOKIE_SECURE=True) def test_secure_session_cookie(self): request = RequestFactory().get('/') response = HttpResponse('Session test') middleware = SessionMiddleware() # Simulate a request the modifies the session middleware.process_request(request) request.session['hello'] = 'world' # Handle the response through the middleware response = middleware.process_response(request, response) self.assertTrue( response.cookies[settings.SESSION_COOKIE_NAME]['secure']) @override_settings(SESSION_COOKIE_HTTPONLY=True) def test_httponly_session_cookie(self): request = RequestFactory().get('/') response = HttpResponse('Session test') middleware = SessionMiddleware() # Simulate a request the modifies the session middleware.process_request(request) request.session['hello'] = 'world' # Handle the response through the middleware response = middleware.process_response(request, response) self.assertTrue( response.cookies[settings.SESSION_COOKIE_NAME]['httponly']) self.assertIn(http_cookies.Morsel._reserved['httponly'], str(response.cookies[settings.SESSION_COOKIE_NAME])) @override_settings(SESSION_COOKIE_HTTPONLY=False) def test_no_httponly_session_cookie(self): request = RequestFactory().get('/') response = HttpResponse('Session test') middleware = SessionMiddleware() # Simulate a request the modifies the session middleware.process_request(request) request.session['hello'] = 'world' # Handle the response through the middleware response = middleware.process_response(request, response) self.assertFalse(response.cookies[settings.SESSION_COOKIE_NAME]['httponly']) self.assertNotIn(http_cookies.Morsel._reserved['httponly'], str(response.cookies[settings.SESSION_COOKIE_NAME])) def test_session_save_on_500(self): request = RequestFactory().get('/') response = HttpResponse('Horrible error') response.status_code = 500 middleware = SessionMiddleware() # Simulate a request the modifies the session middleware.process_request(request) request.session['hello'] = 'world' # Handle the response through the middleware response = middleware.process_response(request, response) # Check that the value wasn't saved above. self.assertNotIn('hello', request.session.load()) def test_session_delete_on_end(self): request = RequestFactory().get('/') response = HttpResponse('Session test') middleware = SessionMiddleware() # Before deleting, there has to be an existing cookie request.COOKIES[settings.SESSION_COOKIE_NAME] = 'abc' # Simulate a request that ends the session middleware.process_request(request) request.session.flush() # Handle the response through the middleware response = middleware.process_response(request, response) # Check that the cookie was deleted, not recreated. # A deleted cookie header looks like: # Set-Cookie: sessionid=; expires=Thu, 01-Jan-1970 00:00:00 GMT; Max-Age=0; Path=/ self.assertEqual( 'Set-Cookie: {}={}; expires=Thu, 01-Jan-1970 00:00:00 GMT; ' 'Max-Age=0; Path=/'.format( settings.SESSION_COOKIE_NAME, '""' if sys.version_info >= (3, 5) else '', ), str(response.cookies[settings.SESSION_COOKIE_NAME]) ) @override_settings(SESSION_COOKIE_DOMAIN='.example.local') def test_session_delete_on_end_with_custom_domain(self): request = RequestFactory().get('/') response = HttpResponse('Session test') middleware = SessionMiddleware() # Before deleting, there has to be an existing cookie request.COOKIES[settings.SESSION_COOKIE_NAME] = 'abc' # Simulate a request that ends the session middleware.process_request(request) request.session.flush() # Handle the response through the middleware response = middleware.process_response(request, response) # Check that the cookie was deleted, not recreated. # A deleted cookie header with a custom domain looks like: # Set-Cookie: sessionid=; Domain=.example.local; # expires=Thu, 01-Jan-1970 00:00:00 GMT; Max-Age=0; Path=/ self.assertEqual( 'Set-Cookie: {}={}; Domain=.example.local; expires=Thu, ' '01-Jan-1970 00:00:00 GMT; Max-Age=0; Path=/'.format( settings.SESSION_COOKIE_NAME, '""' if sys.version_info >= (3, 5) else '', ), str(response.cookies[settings.SESSION_COOKIE_NAME]) ) def test_flush_empty_without_session_cookie_doesnt_set_cookie(self): request = RequestFactory().get('/') response = HttpResponse('Session test') middleware = SessionMiddleware() # Simulate a request that ends the session middleware.process_request(request) request.session.flush() # Handle the response through the middleware response = middleware.process_response(request, response) # A cookie should not be set. self.assertEqual(response.cookies, {}) # The session is accessed so "Vary: Cookie" should be set. self.assertEqual(response['Vary'], 'Cookie') def test_empty_session_saved(self): """" If a session is emptied of data but still has a key, it should still be updated. """ request = RequestFactory().get('/') response = HttpResponse('Session test') middleware = SessionMiddleware() # Set a session key and some data. middleware.process_request(request) request.session['foo'] = 'bar' # Handle the response through the middleware. response = middleware.process_response(request, response) self.assertEqual(tuple(request.session.items()), (('foo', 'bar'),)) # A cookie should be set, along with Vary: Cookie. self.assertIn( 'Set-Cookie: sessionid=%s' % request.session.session_key, str(response.cookies) ) self.assertEqual(response['Vary'], 'Cookie') # Empty the session data. del request.session['foo'] # Handle the response through the middleware. response = HttpResponse('Session test') response = middleware.process_response(request, response) self.assertEqual(dict(request.session.values()), {}) session = Session.objects.get(session_key=request.session.session_key) self.assertEqual(session.get_decoded(), {}) # While the session is empty, it hasn't been flushed so a cookie should # still be set, along with Vary: Cookie. self.assertGreater(len(request.session.session_key), 8) self.assertIn( 'Set-Cookie: sessionid=%s' % request.session.session_key, str(response.cookies) ) self.assertEqual(response['Vary'], 'Cookie') # Don't need DB flushing for these tests, so can use unittest.TestCase as base class class CookieSessionTests(SessionTestsMixin, unittest.TestCase): backend = CookieSession def test_save(self): """ This test tested exists() in the other session backends, but that doesn't make sense for us. """ pass def test_cycle(self): """ This test tested cycle_key() which would create a new session key for the same session data. But we can't invalidate previously signed cookies (other than letting them expire naturally) so testing for this behavior is meaningless. """ pass @unittest.expectedFailure def test_actual_expiry(self): # The cookie backend doesn't handle non-default expiry dates, see #19201 super(CookieSessionTests, self).test_actual_expiry() def test_unpickling_exception(self): # signed_cookies backend should handle unpickle exceptions gracefully # by creating a new session self.assertEqual(self.session.serializer, JSONSerializer) self.session.save() self.session.serializer = PickleSerializer self.session.load()
the-stack_0_12635
def math(): i_put = int(input()) if 5 < i_put < 2000: for i in range(1, i_put+1): if i % 2 == 0: print(str(i) + '^2 =', i*i) if __name__ == '__main__': math()
the-stack_0_12637
#! /usr/bin/env python3 # -*- coding: utf-8 -*- ''' ------------------------------------------------------------ Main entry for ImgReSizer. .. module:: `Main` :platform: Unix :synopsis: Takes configuration json with :py:class: imgresizer.CommandLine and run image processing .. moduleauthor:: Tumurtogtokh Davaakhuu <[email protected]> ------------------------------------------------------------ ''' # IMPORT STANDARD import sys import os # IMPORT Local from imgresizer import Img from imgresizer import ImageSizerController from imgresizer import CommandLine # ============================================================================= # MAIN def main(): cli = CommandLine() config = cli.load_configuration() if cli.exit: sys.exit(0) IMG_URLS = cli.process_img_url_file() TARGET = config['targets'] MAX_THREADS = config['num_threads'] DATA = config['data'] INCOMING = config['input_dir'] OUTGOING = config['output_dir'] img_sizer = ImageSizerController(Img(DATA, INCOMING, OUTGOING, MAX_THREADS), IMG_URLS, TARGET) # img_sizer.perform_resizing() img_sizer.make_imgs() if __name__ == '__main__': main()
the-stack_0_12640
from rest_framework.urlpatterns import format_suffix_patterns from django.urls import re_path from api.bookmarks import views as bookmark_views from api.experiment_groups import views from constants.urls import GROUP_ID_PATTERN, ID_PATTERN, NAME_PATTERN, USERNAME_PATTERN groups_urlpatterns = [ re_path(r'^{}/{}/groups/{}/?$'.format(USERNAME_PATTERN, NAME_PATTERN, ID_PATTERN), views.ExperimentGroupDetailView.as_view()), re_path(r'^{}/{}/groups/{}/statuses/?$'.format( USERNAME_PATTERN, NAME_PATTERN, GROUP_ID_PATTERN), views.ExperimentGroupStatusListView.as_view()), re_path(r'^{}/{}/groups/{}/stop/?$'.format(USERNAME_PATTERN, NAME_PATTERN, ID_PATTERN), views.ExperimentGroupStopView.as_view()), re_path( r'^{}/{}/groups/{}/bookmark/?$'.format(USERNAME_PATTERN, NAME_PATTERN, ID_PATTERN), bookmark_views.ExperimentGroupBookmarkCreateView.as_view()), re_path( r'^{}/{}/groups/{}/unbookmark/?$'.format(USERNAME_PATTERN, NAME_PATTERN, ID_PATTERN), bookmark_views.ExperimentGroupBookmarkDeleteView.as_view()), ] # Order is important, because the patterns could swallow other urls urlpatterns = format_suffix_patterns(groups_urlpatterns)
the-stack_0_12641
# coding:utf-8 import collections import csv import os from util.log import logger logger = logger() class Template(object): def __init__(self, base_dic, cmp_dic, base_cost, cmp_cost, base_call_times, cmp_call_times, base_method_thread, cmp_method_thread, base_theads_pid, cmp_theads_pid): self.base = base_dic # base_sorted_dic, cmp_sorted_dic, base_cost, cmp_cost,base_call_times,cmp_call_times self.cmp = cmp_dic self.base_cost = base_cost self.cmp_cost = cmp_cost self.base_call_times = base_call_times self.cmp_call_times = cmp_call_times self.order_base_dic = collections.OrderedDict() self.order_cmp_dic = collections.OrderedDict() self.order_base_keys, self.order_base_values = self.initObjDatas(self.base, self.order_base_dic) self.order_cmp_keys, self.order_cmp_values = self.initObjDatas(self.cmp, self.order_cmp_dic) self.base_method_thread = base_method_thread self.cmp_method_thread = cmp_method_thread self.base_theads_pid = base_theads_pid self.cmp_theads_pid = cmp_theads_pid def initObjDatas(self, obj, init_obj): _keys = [] _values = [] for each in obj: init_obj[each[0]] = each[1] for _k, _v in init_obj.items(): _keys.append(_k) _values.append(_v) return _keys, _values def generateTable(self, path, rows, data): if os.path.isfile(path): os.remove(path) csvfile = file(path, "wb") writer = csv.writer(csvfile) # writer.writerow(rows) writer.writerows(data) csvfile.close() def searchDictList(self, orderDict): keys = [] values = [] for k, v in orderDict.items(): keys.append(k) values.append(v) return keys, values def generateTableData(self, path, rows): ''' ['调用方法','隶属线程', '线程PID', '基准分支排名', '对比分支排名', '基准分支方法耗时', '对比分支方法耗时', '耗时差(对比分支-基准分支)', '耗时上涨比例(%)', '基准分支方法调用次数','对比分支方法调用次数','方法耗时排名变化'] ''' logger.debug("self.cmp_cost:\n" + str(self.cmp_cost)) logger.debug("self.base_cost:\n" + str(self.base_cost)) if self.base_cost != 0: ratio = format(float(self.cmp_cost - self.base_cost) / float(self.base_cost), '.2%') else: ratio = self.cmp_cost data = [] add_rows = rows add_rows[0] = add_rows[0] + "- 系数: " + str(ratio) add_flag = 0 for cmp_obj in self.order_cmp_keys: ''' 当cmp_obj有新增方法时 ''' if cmp_obj not in self.order_base_keys: add_flag = 1 method = cmp_obj base_index = "-" cmp_index = self.order_cmp_keys.index(cmp_obj) base_time = 0 cmp_time = self.order_cmp_values[cmp_index] cmp_call_times = self.cmp_call_times[cmp_obj] if self.cmp_call_times.has_key(cmp_obj) else "-" if self.cmp_method_thread.has_key(cmp_obj): cmp_thread = self.cmp_method_thread[cmp_obj] self.cmp_method_thread.pop(cmp_obj) else: cmp_thread = "-" base_call_times = 0 diff = cmp_time rate = format(float(1), '.2%') rank_change = cmp_index content = ( method, str(cmp_thread), str(base_index), str(cmp_index), str(base_time), str(cmp_time), str(diff), str(rate), str(base_call_times), str(cmp_call_times), str(rank_change)) data.append(content) if add_flag == 1: data.insert(0, add_rows) rows[0] = rows[0] + "- 系数: " + str(ratio) data.append(rows) for base_obj in self.order_base_keys: method = base_obj base_index = self.order_base_keys.index(base_obj) # 获取base_key的排名 if base_obj in self.order_cmp_keys: cmp_index = self.order_cmp_keys.index(base_obj) # 当base_obj方法还在cmp_obj方法中 base_call_times = self.base_call_times[base_obj] if self.base_call_times.has_key(base_obj) else "-" cmp_call_times = self.cmp_call_times[base_obj] if self.cmp_call_times.has_key(base_obj) else "-" else: cmp_index = "-" # 当base_obj方法在cmp_obj已经删减 base_call_times = self.base_call_times[base_obj] if self.base_call_times.has_key(base_obj) else "-" cmp_call_times = 0 if self.base_method_thread.has_key(base_obj): base_thread = self.base_method_thread[base_obj] self.base_method_thread.pop(base_obj) else: base_thread = "-" base_time = self.order_base_values[base_index] if cmp_index == "-": cmp_time = 0 rank_change = base_index else: cmp_time = self.order_cmp_values[cmp_index] rank_change = base_index - cmp_index diff = cmp_time - base_time try: rate = format(float(diff) / float(base_time), '.2%') # -100%:代表base_obj方法在cmp_obj已经删减的比率 except Exception as e: rate = "error" content = ( method, str(base_thread), str(base_index), str(cmp_index), str(base_time), str(cmp_time), str(diff), str(rate), str(base_call_times), str(cmp_call_times), str(rank_change)) data.append(content) self.generateTable(path, rows, data) logger.debug("self.base_cost-self.cmp_cost:\n" + str(self.base_cost - self.cmp_cost)) logger.debug("self.base_method_thread:\n" + str(self.base_method_thread)) logger.debug("self.cmp_method_thread:\n" + str(self.cmp_method_thread))
the-stack_0_12643
import re import os import nltk import zlib import codecs import shutil import logging from unidecode import unidecode from indra.literature.pmc_client import extract_text from indra.resources.greek_alphabet import greek_alphabet logger = logging.getLogger(__name__) class IsiPreprocessor(object): """Preprocess a set of documents, one by one, and add the preprocessed text to a temporary directory in a format suitable for the ISI reader. The ISI reader requires plain text with one sentence per line. Attributes ---------- preprocessed_dir : str The directory holding the literature text preprocessed and sentence tokenized in a format suitable for the ISI reader next_file_id : int The next file with preprocessed text will be named next_file_id.txt pmids : dict A dictionary mapping file ids to the pmid of the text corresponding to that file, can be None if unknown extra_annotations : dict A dictionary mapping file ids to a (possibly empty) dictionary with additional annotations to include for statements extracted from this document """ def __init__(self, preprocessed_dir): preprocessed_dir = os.path.abspath(preprocessed_dir) self.preprocessed_dir = preprocessed_dir self.next_file_id = 1 self.pmids = {} self.extra_annotations = {} # This directory should be empty contents = os.listdir(preprocessed_dir) if len(contents) != 0: logger.warning('IsiPreprocessor should get an empty directory in' + ' which to store preprocessed files.') def register_preprocessed_file(self, infile, pmid, extra_annotations): """Set up already preprocessed text file for reading with ISI reader. This is essentially a mock function to "register" already preprocessed files and get an IsiPreprocessor object that can be passed to the IsiProcessor. Parameters ---------- infile : str Path to an already preprocessed text file (i.e. one ready to be sent for reading to ISI reader). pmid : str The PMID corresponding to the file extra_annotations : dict Extra annotations to be added to each statement, possibly including metadata about the source (annotations with the key "interaction" will be overridden) """ infile_base = os.path.basename(infile) outfile = os.path.join(self.preprocessed_dir, infile_base) shutil.copyfile(infile, outfile) infile_key = os.path.splitext(infile_base)[0] self.pmids[infile_key] = pmid self.extra_annotations[infile_key] = extra_annotations def preprocess_plain_text_string(self, text, pmid, extra_annotations): """Preprocess plain text string for use by ISI reader. Preprocessing is done by tokenizing into sentences and writing each sentence on its own line in a plain text file. All other preprocessing functions ultimately call this one. Parameters ---------- text : str The plain text of the article of abstract pmid : str The PMID from which it comes, or None if not specified extra_annotations : dict Extra annotations to be added to each statement, possibly including metadata about the source (annotations with the key "interaction" will be overridden) """ output_file = '%s.txt' % self.next_file_id output_file = os.path.join(self.preprocessed_dir, output_file) # Replace greek characters with corresponding strings for greek_letter, spelled_letter in greek_alphabet.items(): text = text.replace(greek_letter, spelled_letter) # Replace all other unicode characters with nearest ascii equivalents text = unidecode(text) # Tokenize sentence sentences = nltk.sent_tokenize(text) # Write sentences to text file first_sentence = True with codecs.open(output_file, 'w', encoding='utf-8') as f: for sentence in sentences: if not first_sentence: f.write('\n') f.write(sentence.rstrip()) first_sentence = False # Store annotations self.pmids[str(self.next_file_id)] = pmid self.extra_annotations[str(self.next_file_id)] = extra_annotations # Increment file id self.next_file_id += 1 def preprocess_plain_text_file(self, filename, pmid, extra_annotations): """Preprocess a plain text file for use with ISI reder. Preprocessing results in a new text file with one sentence per line. Parameters ---------- filename : str The name of the plain text file pmid : str The PMID from which it comes, or None if not specified extra_annotations : dict Extra annotations to be added to each statement, possibly including metadata about the source (annotations with the key "interaction" will be overridden) """ with codecs.open(filename, 'r', encoding='utf-8') as f: content = f.read() self.preprocess_plain_text_string(content, pmid, extra_annotations) def preprocess_nxml_file(self, filename, pmid, extra_annotations): """Preprocess an NXML file for use with the ISI reader. Preprocessing is done by extracting plain text from NXML and then creating a text file with one sentence per line. Parameters ---------- filename : str Filename (more specifically the file path) of an nxml file to process pmid : str The PMID from which it comes, or None if not specified extra_annotations : dict Extra annotations to be added to each statement, possibly including metadata about the source (annotations with the key "interaction" will be overridden) """ with open(filename, 'r') as fh: txt_content = extract_text(fh.read()) # We need to remove some common LaTEX commands from the converted text # or the reader will get confused cmd1 = r'[^ \{\}]+\{[^\{\}]+\}\{[^\{\}]+\}' cmd2 = r'[^ \{\}]+\{[^\{\}]+\}' txt_content = re.sub(cmd1, '', txt_content) txt_content = re.sub(cmd2, '', txt_content) # Prepocess text extracted from nxml self.preprocess_plain_text_string(txt_content, pmid, extra_annotations) def preprocess_abstract_list(self, abstract_list): """Preprocess abstracts in database pickle dump format for ISI reader. For each abstract, creates a plain text file with one sentence per line, and stores metadata to be included with each statement from that abstract. Parameters ---------- abstract_list : list[dict] Compressed abstracts with corresopnding metadata in INDRA database pickle dump format. """ for abstract_struct in abstract_list: abs_format = abstract_struct['format'] content_type = abstract_struct['text_type'] content_zipped = abstract_struct['content'] tcid = abstract_struct['tcid'] trid = abstract_struct['trid'] assert(abs_format == 'text') assert(content_type == 'abstract') pmid = None # Don't worry about pmid for now extra_annotations = {'tcid': tcid, 'trid': trid} # Uncompress content content = zlib.decompress(content_zipped, zlib.MAX_WBITS+16).decode('utf-8') self.preprocess_plain_text_string(content, pmid, extra_annotations) def iter_outputs(self, output_dir): """Iterate over the outputs in a given directory using stored metadata. For each of the output JSONs, retrieve the extra annotations for that file, and link the file with its corresponding PMID. Parameters ---------- output_dir : str The path to the directory where the JSON outputs were dumped. """ for basename, pmid in self.pmids.items(): fname = os.path.join(output_dir, '%s.json' % basename) extra_annotations = self.extra_annotations.get(fname, {}) yield fname, pmid, extra_annotations
the-stack_0_12644
import numpy as np import math from instrument.geometry.pml import weave from instrument.geometry import shapes, operations import os, sys class Clampcell(object): def __init__(self, total_height=False): self.sample_height=28.57 #mm if total_height is True: self.sample_height=95.758 ###### OUTER BODY ############# def outer_body(self): Al_OutDiameter = 32.05 # mm Al_OutRadius=Al_OutDiameter/2 Al_Height=self.sample_height #28.57 #mm (total height 95.758 mm) Al_InSmallestCone_Dia= 14.59 #mm (inner boundary is tappered cylinder, bottom Diameter ) Al_InSmallestCone_Rad=Al_InSmallestCone_Dia/2 Al_InconeAngle= 2 Al_InHeight=Al_Height+10 #mm (tappered cylinder height) (this should be same as Al_Height, but in constructive geometry the inner height has to be larger for correct subtraction) Al_InLargestCone_Dia= (2* np.tan(np.deg2rad(Al_InconeAngle/2))*Al_InHeight)+Al_InSmallestCone_Dia #( tappered cylinder top diameter) Al_InLargestCone_Rad=Al_InLargestCone_Dia/2 Al_InSmallest_ConeHeight=Al_InSmallestCone_Dia/(2*np.tan(np.deg2rad(Al_InconeAngle/2))) Al_InLargest_ConeHeight=Al_InSmallest_ConeHeight+Al_InHeight Al_boxHeightToSubtract=Al_InSmallest_ConeHeight*2 Al_boxthisckness= Al_InSmallestCone_Dia+20 Al_HalfHeight=Al_InHeight/2 Al_moving_height=Al_InSmallest_ConeHeight+Al_HalfHeight ### CReate the string for OUTER BODY ###### Al_OutRadius_str=str(Al_OutRadius)+r'*mm' Al_Height_str=str(Al_Height)+r'*mm' Al_InLargestCone_Rad_str=str(Al_InLargestCone_Rad)+r'*mm' Al_InLargest_ConeHeight_str=str(Al_InLargest_ConeHeight)+r'*mm' Al_InSmallest_ConeHeight_str=str(Al_InSmallest_ConeHeight)+r'*mm' Al_boxHeightToSubtract_str=str(Al_boxHeightToSubtract)+r'*mm' Al_boxthisckness_str=str(Al_boxthisckness)+r'*mm' Al_moving_height_str=str(-Al_moving_height)+r'*mm' #create the inner Al largest cone Al_largest_cone=shapes.cone(radius=Al_InLargestCone_Rad_str, height=Al_InLargest_ConeHeight_str) # upside down #rotation to make top wider Al_largest_cone_widertip=operations.rotate(Al_largest_cone, angle="180*deg",vertical="0",transversal="1",beam="0") #make a tapered cylinder Al_tapered_cylinder= operations.Difference(Al_largest_cone_widertip, shapes.block(thickness=Al_boxthisckness_str,height=Al_boxHeightToSubtract_str,width=Al_boxthisckness_str) ) #moving the center of the cylinder to the center of the coordinate Al_centered_taperedCylinder=operations.translate(Al_tapered_cylinder, vertical=Al_moving_height_str) #Creating the outer Al body outer_Al = operations.subtract( shapes.cylinder(radius=Al_OutRadius_str, height=Al_Height_str), Al_centered_taperedCylinder, ) return(outer_Al) ######## INNER SLEEVE ########## def inner_sleeve(self): CuBe_InDiameter = 4.74 # mm CuBe_InRadius=CuBe_InDiameter/2 CuBe_InHeight=self.sample_height+10 #mm (total height 95.758 mm) CuBe_Height=self.sample_height CuBe_OutSmallestCone_Dia=14.63 #(outer boundary is tappered cylinder, bottom diameter ) CuBe_OutSmallestCone_Rad=CuBe_OutSmallestCone_Dia/2 CuBe_OutconeAngle= 2 # the tappered angle CuBe_OutLargestCone_Dia= (2* np.tan(np.deg2rad(CuBe_OutconeAngle/2))*CuBe_Height)+CuBe_OutSmallestCone_Dia #( tappered cylinder top diamter) CuBe_OutLargestCone_Rad=CuBe_OutLargestCone_Dia/2 CuBe_OutSmallest_ConeHeight=CuBe_OutSmallestCone_Dia/(2*np.tan(np.deg2rad(CuBe_OutconeAngle/2))) CuBe_OutLargest_ConeHeight=CuBe_OutSmallest_ConeHeight+CuBe_Height CuBe_boxHeightToSubtract=CuBe_OutSmallest_ConeHeight*2 CuBe_boxthisckness= CuBe_OutSmallestCone_Dia+20 CuBe_HalfHeight=CuBe_Height/2 CuBe_moving_height=CuBe_OutSmallest_ConeHeight+CuBe_HalfHeight ### CReate the string for INNER SLEEVE ###### CuBe_InRadius_str=str(CuBe_InRadius)+r'*mm' CuBe_InHeight_str=str(CuBe_InHeight)+r'*mm' CuBe_Height_str=str(CuBe_Height)+r'*mm' CuBe_OutLargestCone_Rad_str=str(CuBe_OutLargestCone_Rad)+r'*mm' CuBe_OutLargest_ConeHeight_str=str(CuBe_OutLargest_ConeHeight)+r'*mm' CuBe_boxHeightToSubtract_str=str(CuBe_boxHeightToSubtract)+r'*mm' CuBe_boxthisckness_str=str(CuBe_boxthisckness)+r'*mm' CuBe_moving_height_str=str(-CuBe_moving_height)+r'*mm' #create the outer CuBe largest cone CuBe_largest_cone=shapes.cone(radius=CuBe_OutLargestCone_Rad_str, height=CuBe_OutLargest_ConeHeight_str) # upside down #rotation to make top wider CuBe_largest_cone_widertip=operations.rotate(CuBe_largest_cone, angle="180*deg",vertical="0",transversal="1",beam="0") #make a tapered cylinder CuBe_tapered_cylinder= operations.Difference(CuBe_largest_cone_widertip, shapes.block(thickness=CuBe_boxthisckness_str,height=CuBe_boxHeightToSubtract_str,width=CuBe_boxthisckness_str) ) #moving the center of the cylinder to the center of the coordinate CuBe_centered_taperedCylinder=operations.translate(CuBe_tapered_cylinder, vertical=CuBe_moving_height_str) #Creating the InnerSleeve CuBe_innerSleeve = operations.subtract( CuBe_centered_taperedCylinder, shapes.cylinder(radius=CuBe_InRadius_str, height=CuBe_InHeight_str), ) return(CuBe_innerSleeve) ####### SAMPLE ######### ( the sample is a cylinder) def sample(self): sample_Height=27.3 #mm sample_Diameter=4.16 #mm sample_Radius=sample_Diameter/2 ##covert to string### sample_Height_str=str(sample_Height)+r'*mm' sample_Radius_str=str(sample_Radius)+r'*mm' ##cylindrical sample## sample= shapes.cylinder(radius=sample_Radius_str, height=sample_Height_str) return(sample)
the-stack_0_12648
import tensorflow as tf import numpy as np import os import math import matplotlib.gridspec as gridspec import matplotlib.pyplot as plt @tf.function def one_hot(labels, class_size): """ Create one hot label matrix of size (N, C) Inputs: - labels: Labels Tensor of shape (N,) representing a ground-truth label for each MNIST image - class_size: Scalar representing of target classes our dataset Returns: - targets: One-hot label matrix of (N, C), where targets[i, j] = 1 when the ground truth label for image i is j, and targets[i, :j] & targets[i, j + 1:] are equal to 0 """ return tf.one_hot(labels, class_size) def save_model_weights(model, args): """ Save trained VAE model weights to model_ckpts/ Inputs: - model: Trained VAE model. - cfg: All arguments. """ model_flag = "cvae" if args.is_cvae else "vae" output_dir = os.path.join("model_ckpts", model_flag) output_path = os.path.join(output_dir, model_flag) os.makedirs("model_ckpts", exist_ok=True) os.makedirs(output_dir, exist_ok=True) model.save_weights(output_path) def show_vae_images(model, latent_size): """ Call this only if the model is VAE! Generate 10 images from random vectors. Show the generated images from your trained VAE. Image will be saved to outputs/show_vae_images.pdf Inputs: - model: Your trained model. - latent_size: Latent size of your model. """ # Generated images from vectors of random values. z = tf.random.normal(shape=[10, latent_size]) samples = model.decoder(z).numpy() # Visualize fig = plt.figure(figsize=(10, 1)) gspec = gridspec.GridSpec(1, 10) gspec.update(wspace=0.05, hspace=0.05) for i, sample in enumerate(samples): ax = plt.subplot(gspec[i]) plt.axis("off") ax.set_xticklabels([]) ax.set_yticklabels([]) ax.set_aspect("equal") plt.imshow(sample.reshape(28, 28), cmap="Greys_r") # Save the generated images os.makedirs("outputs", exist_ok=True) output_path = os.path.join("outputs", "show_vae_images.pdf") plt.savefig(output_path, bbox_inches="tight") plt.close(fig) def show_vae_interpolation(model, latent_size): """ Call this only if the model is VAE! Generate interpolation between two . Show the generated images from your trained VAE. Image will be saved to outputs/show_vae_interpolation.pdf Inputs: - model: Your trained model. - latent_size: Latent size of your model. """ def show_interpolation(images): """ A helper to visualize the interpolation. """ images = tf.reshape(images, [images.shape[0], -1]) # images reshape to (batch_size, D) sqrtn = int(math.ceil(math.sqrt(images.shape[0]))) sqrtimg = int(math.ceil(math.sqrt(images.shape[1]))) fig = plt.figure(figsize=(sqrtn, sqrtn)) gs = gridspec.GridSpec(sqrtn, sqrtn) gs.update(wspace=0.05, hspace=0.05) for i, img in enumerate(images): ax = plt.subplot(gs[i]) plt.axis('off') ax.set_xticklabels([]) ax.set_yticklabels([]) ax.set_aspect('equal') plt.imshow(tf.reshape(img, [sqrtimg, sqrtimg])) # Save the generated images os.makedirs("outputs", exist_ok=True) output_path = os.path.join("outputs", "show_vae_interpolation.pdf") plt.savefig(output_path, bbox_inches="tight") plt.close(fig) S = 12 z0 = tf.random.normal(shape=[S, latent_size], dtype=tf.dtypes.float32) # [S, latent_size] z1 = tf.random.normal(shape=[S, latent_size], dtype=tf.dtypes.float32) w = tf.linspace(0, 1, S) w = tf.cast(tf.reshape(w, (S, 1, 1)), dtype=tf.float32) # [S, 1, 1] z = tf.transpose(w * z0 + (1 - w) * z1, perm=[1, 0, 2]) z = tf.reshape(z, (S * S, latent_size)) # [S, S, latent_size] x = model.decoder(z) # [S*S, 1, 28, 28] show_interpolation(x) def show_cvae_images(model, latent_size): """ Call this only if the model is CVAE! Conditionally generate 10 images for each digit. Show the generated images from your trained CVAE. Image will be saved to outputs/show_cvae_images.pdf Inputs: - model: Your trained model. - latent_size: Latent size of your model. """ # Conditionally generated images from vectors of random values. num_generation = 100 num_classes = 10 num_per_class = num_generation // num_classes c = tf.eye(num_classes) # [one hot labels for 0-9] z = [] labels = [] for label in range(num_classes): curr_c = c[label] curr_c = tf.broadcast_to(curr_c, [num_per_class, len(curr_c)]) curr_z = tf.random.normal(shape=[num_per_class, latent_size]) curr_z = tf.concat([curr_z, curr_c], axis=-1) z.append(curr_z) labels.append([label] * num_per_class) z = np.concatenate(z) labels = np.concatenate(labels) samples = model.decoder(z).numpy() # Visualize rows = num_classes cols = num_generation // rows fig = plt.figure(figsize=(cols, rows)) gspec = gridspec.GridSpec(rows, cols) gspec.update(wspace=0.05, hspace=0.05) for i, sample in enumerate(samples): ax = plt.subplot(gspec[i]) plt.axis("off") ax.set_xticklabels([]) ax.set_yticklabels([]) ax.set_aspect("equal") plt.imshow(sample.reshape(28, 28), cmap="Greys_r") # Save the generated images os.makedirs("outputs", exist_ok=True) output_path = os.path.join("outputs", "show_cvae_images.pdf") plt.savefig(output_path, bbox_inches="tight") plt.close(fig) def load_weights(model, is_cvae): """ Load the trained model's weights. Inputs: - model: Your untrained model instance. Returns: - model: Trained model. """ num_classes = 10 inputs = tf.zeros([1, 1, 28, 28]) # Random data sample labels = tf.constant([[0]]) if is_cvae: weights_path = os.path.join("model_ckpts", "cvae", "cvae") one_hot_vec = one_hot(labels, num_classes) _ = model(inputs, one_hot_vec) model.load_weights(weights_path) else: weights_path = os.path.join("model_ckpts", "vae", "vae") _ = model(inputs) model.load_weights(weights_path) return model
the-stack_0_12649
import numpy as np import torch from gym import spaces from torch import nn as nn from torch.nn import functional as F def loss_function_factory(loss_function): if loss_function == "l2": return F.mse_loss elif loss_function == "l1": return F.l1_loss elif loss_function == "smooth_l1": return F.smooth_l1_loss elif loss_function == "bce": return F.binary_cross_entropy else: raise ValueError("Unknown loss function : {}".format(loss_function)) def optimizer_factory(params, optimizer_type="ADAM", **kwargs): if optimizer_type == "ADAM": return torch.optim.Adam(params=params, **kwargs) elif optimizer_type == "RMS_PROP": return torch.optim.RMSprop(params=params, **kwargs) else: raise ValueError("Unknown optimizer type: {}".format(optimizer_type)) def model_factory(type="MultiLayerPerceptron", **kwargs) -> nn.Module: from rlberry.agents.torch.utils.attention_models import EgoAttentionNetwork from rlberry.agents.torch.utils.models import ( MultiLayerPerceptron, DuelingNetwork, ConvolutionalNetwork, Table, ) if type == "MultiLayerPerceptron": return MultiLayerPerceptron(**kwargs) elif type == "DuelingNetwork": return DuelingNetwork(**kwargs) elif type == "ConvolutionalNetwork": return ConvolutionalNetwork(**kwargs) elif type == "EgoAttentionNetwork": return EgoAttentionNetwork(**kwargs) elif type == "Table": return Table(**kwargs) else: raise ValueError("Unknown model type") def model_factory_from_env(env, **kwargs): kwargs = size_model_config(env, **kwargs) return model_factory(**kwargs) def size_model_config(env, **model_config): """ Update the configuration of a model depending on the environment observation/action spaces. Typically, the input/output sizes. Parameters ---------- env : gym.Env An environment. model_config : dict A model configuration. """ if isinstance(env.observation_space, spaces.Box): obs_shape = env.observation_space.shape elif isinstance(env.observation_space, spaces.Tuple): obs_shape = env.observation_space.spaces[0].shape elif isinstance(env.observation_space, spaces.Discrete): return model_config # Assume CHW observation space if model_config["type"] == "ConvolutionalNetwork": model_config["in_channels"] = int(obs_shape[0]) model_config["in_height"] = int(obs_shape[1]) model_config["in_width"] = int(obs_shape[2]) else: model_config["in_size"] = int(np.prod(obs_shape)) if isinstance(env.action_space, spaces.Discrete): model_config["out_size"] = env.action_space.n elif isinstance(env.action_space, spaces.Tuple): model_config["out_size"] = env.action_space.spaces[0].n return model_config def activation_factory(activation_type): if activation_type == "RELU": return F.relu elif activation_type == "TANH": return torch.tanh elif activation_type == "ELU": return nn.ELU() else: raise ValueError("Unknown activation_type: {}".format(activation_type)) def trainable_parameters(model): return sum(p.numel() for p in model.parameters() if p.requires_grad)
the-stack_0_12651
# Copyright (c) 2016 Matt Davis, <[email protected]> # Chris Houseknecht, <[email protected]> # # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) import os import re import types import copy import inspect import traceback from os.path import expanduser from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.six.moves import configparser import ansible.module_utils.six.moves.urllib.parse as urlparse try: from ansible.release import __version__ as ANSIBLE_VERSION except ImportError: ANSIBLE_VERSION = 'unknown' AZURE_COMMON_ARGS = dict( auth_source=dict( type='str', choices=['auto', 'cli', 'env', 'credential_file'] ), profile=dict(type='str'), subscription_id=dict(type='str', no_log=True), client_id=dict(type='str', no_log=True), secret=dict(type='str', no_log=True), tenant=dict(type='str', no_log=True), ad_user=dict(type='str', no_log=True), password=dict(type='str', no_log=True), cloud_environment=dict(type='str'), cert_validation_mode=dict(type='str', choices=['validate', 'ignore']), api_profile=dict(type='str', default='latest') # debug=dict(type='bool', default=False), ) AZURE_CREDENTIAL_ENV_MAPPING = dict( profile='AZURE_PROFILE', subscription_id='AZURE_SUBSCRIPTION_ID', client_id='AZURE_CLIENT_ID', secret='AZURE_SECRET', tenant='AZURE_TENANT', ad_user='AZURE_AD_USER', password='AZURE_PASSWORD', cloud_environment='AZURE_CLOUD_ENVIRONMENT', cert_validation_mode='AZURE_CERT_VALIDATION_MODE', ) # FUTURE: this should come from the SDK or an external location. # For now, we have to copy from azure-cli AZURE_API_PROFILES = { 'latest': { 'ContainerInstanceManagementClient': '2018-02-01-preview', 'ComputeManagementClient': dict( default_api_version='2017-12-01', resource_skus='2017-09-01', disks='2017-03-30', snapshots='2017-03-30', virtual_machine_run_commands='2017-03-30' ), 'NetworkManagementClient': '2017-11-01', 'ResourceManagementClient': '2017-05-10', 'StorageManagementClient': '2017-10-01' }, '2017-03-09-profile': { 'ComputeManagementClient': '2016-03-30', 'NetworkManagementClient': '2015-06-15', 'ResourceManagementClient': '2016-02-01', 'StorageManagementClient': '2016-01-01' } } AZURE_TAG_ARGS = dict( tags=dict(type='dict'), append_tags=dict(type='bool', default=True), ) AZURE_COMMON_REQUIRED_IF = [ ('log_mode', 'file', ['log_path']) ] ANSIBLE_USER_AGENT = 'Ansible/{0}'.format(ANSIBLE_VERSION) CLOUDSHELL_USER_AGENT_KEY = 'AZURE_HTTP_USER_AGENT' VSCODEEXT_USER_AGENT_KEY = 'VSCODEEXT_USER_AGENT' CIDR_PATTERN = re.compile(r"(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1" r"[0-9]{2}|2[0-4][0-9]|25[0-5])(/([0-9]|[1-2][0-9]|3[0-2]))") AZURE_SUCCESS_STATE = "Succeeded" AZURE_FAILED_STATE = "Failed" HAS_AZURE = True HAS_AZURE_EXC = None HAS_AZURE_CLI_CORE = True HAS_MSRESTAZURE = True HAS_MSRESTAZURE_EXC = None try: import importlib except ImportError: # This passes the sanity import test, but does not provide a user friendly error message. # Doing so would require catching Exception for all imports of Azure dependencies in modules and module_utils. importlib = None try: from packaging.version import Version HAS_PACKAGING_VERSION = True HAS_PACKAGING_VERSION_EXC = None except ImportError as exc: Version = None HAS_PACKAGING_VERSION = False HAS_PACKAGING_VERSION_EXC = exc # NB: packaging issue sometimes cause msrestazure not to be installed, check it separately try: from msrest.serialization import Serializer except ImportError as exc: HAS_MSRESTAZURE_EXC = exc HAS_MSRESTAZURE = False try: from enum import Enum from msrestazure.azure_exceptions import CloudError from msrestazure.tools import resource_id, is_valid_resource_id from msrestazure import azure_cloud from azure.common.credentials import ServicePrincipalCredentials, UserPassCredentials from azure.mgmt.network.version import VERSION as network_client_version from azure.mgmt.storage.version import VERSION as storage_client_version from azure.mgmt.compute.version import VERSION as compute_client_version from azure.mgmt.resource.version import VERSION as resource_client_version from azure.mgmt.dns.version import VERSION as dns_client_version from azure.mgmt.web.version import VERSION as web_client_version from azure.mgmt.network import NetworkManagementClient from azure.mgmt.resource.resources import ResourceManagementClient from azure.mgmt.storage import StorageManagementClient from azure.mgmt.compute import ComputeManagementClient from azure.mgmt.dns import DnsManagementClient from azure.mgmt.web import WebSiteManagementClient from azure.mgmt.containerservice import ContainerServiceClient from azure.storage.cloudstorageaccount import CloudStorageAccount except ImportError as exc: HAS_AZURE_EXC = exc HAS_AZURE = False try: from azure.cli.core.util import CLIError from azure.common.credentials import get_azure_cli_credentials, get_cli_profile from azure.common.cloud import get_cli_active_cloud except ImportError: HAS_AZURE_CLI_CORE = False CLIError = Exception def azure_id_to_dict(id): pieces = re.sub(r'^\/', '', id).split('/') result = {} index = 0 while index < len(pieces) - 1: result[pieces[index]] = pieces[index + 1] index += 1 return result def format_resource_id(val, subscription_id, namespace, types, resource_group): return resource_id(name=val, resource_group=resource_group, namespace=namespace, type=types, subscription=subscription_id) if not is_valid_resource_id(val) else val # FUTURE: either get this from the requirements file (if we can be sure it's always available at runtime) # or generate the requirements files from this so we only have one source of truth to maintain... AZURE_PKG_VERSIONS = { 'StorageManagementClient': { 'package_name': 'storage', 'expected_version': '1.5.0' }, 'ComputeManagementClient': { 'package_name': 'compute', 'expected_version': '2.0.0' }, 'ContainerInstanceManagementClient': { 'package_name': 'containerinstance', 'expected_version': '0.3.1' }, 'NetworkManagementClient': { 'package_name': 'network', 'expected_version': '1.3.0' }, 'ResourceManagementClient': { 'package_name': 'resource', 'expected_version': '1.1.0' }, 'DnsManagementClient': { 'package_name': 'dns', 'expected_version': '1.0.1' }, 'WebSiteManagementClient': { 'package_name': 'web', 'expected_version': '0.32.0' }, } if HAS_AZURE else {} AZURE_MIN_RELEASE = '2.0.0' class AzureRMModuleBase(object): def __init__(self, derived_arg_spec, bypass_checks=False, no_log=False, check_invalid_arguments=None, mutually_exclusive=None, required_together=None, required_one_of=None, add_file_common_args=False, supports_check_mode=False, required_if=None, supports_tags=True, facts_module=False, skip_exec=False): merged_arg_spec = dict() merged_arg_spec.update(AZURE_COMMON_ARGS) if supports_tags: merged_arg_spec.update(AZURE_TAG_ARGS) if derived_arg_spec: merged_arg_spec.update(derived_arg_spec) merged_required_if = list(AZURE_COMMON_REQUIRED_IF) if required_if: merged_required_if += required_if self.module = AnsibleModule(argument_spec=merged_arg_spec, bypass_checks=bypass_checks, no_log=no_log, check_invalid_arguments=check_invalid_arguments, mutually_exclusive=mutually_exclusive, required_together=required_together, required_one_of=required_one_of, add_file_common_args=add_file_common_args, supports_check_mode=supports_check_mode, required_if=merged_required_if) if not HAS_PACKAGING_VERSION: self.fail("Do you have packaging installed? Try `pip install packaging`" "- {0}".format(HAS_PACKAGING_VERSION_EXC)) if not HAS_MSRESTAZURE: self.fail("Do you have msrestazure installed? Try `pip install msrestazure`" "- {0}".format(HAS_MSRESTAZURE_EXC)) if not HAS_AZURE: self.fail("Do you have azure>={1} installed? Try `pip install ansible[azure]`" "- {0}".format(HAS_AZURE_EXC, AZURE_MIN_RELEASE)) self._cloud_environment = None self._network_client = None self._storage_client = None self._resource_client = None self._compute_client = None self._dns_client = None self._web_client = None self._containerservice_client = None self.check_mode = self.module.check_mode self.api_profile = self.module.params.get('api_profile') self.facts_module = facts_module # self.debug = self.module.params.get('debug') # authenticate self.credentials = self._get_credentials(self.module.params) if not self.credentials: if HAS_AZURE_CLI_CORE: self.fail("Failed to get credentials. Either pass as parameters, set environment variables, " "define a profile in ~/.azure/credentials, or log in with Azure CLI (`az login`).") else: self.fail("Failed to get credentials. Either pass as parameters, set environment variables, " "define a profile in ~/.azure/credentials, or install Azure CLI and log in (`az login`).") # cert validation mode precedence: module-arg, credential profile, env, "validate" self._cert_validation_mode = self.module.params['cert_validation_mode'] or self.credentials.get('cert_validation_mode') or \ os.environ.get('AZURE_CERT_VALIDATION_MODE') or 'validate' if self._cert_validation_mode not in ['validate', 'ignore']: self.fail('invalid cert_validation_mode: {0}'.format(self._cert_validation_mode)) # if cloud_environment specified, look up/build Cloud object raw_cloud_env = self.credentials.get('cloud_environment') if self.credentials.get('credentials') is not None and raw_cloud_env is not None: self._cloud_environment = raw_cloud_env elif not raw_cloud_env: self._cloud_environment = azure_cloud.AZURE_PUBLIC_CLOUD # SDK default else: # try to look up "well-known" values via the name attribute on azure_cloud members all_clouds = [x[1] for x in inspect.getmembers(azure_cloud) if isinstance(x[1], azure_cloud.Cloud)] matched_clouds = [x for x in all_clouds if x.name == raw_cloud_env] if len(matched_clouds) == 1: self._cloud_environment = matched_clouds[0] elif len(matched_clouds) > 1: self.fail("Azure SDK failure: more than one cloud matched for cloud_environment name '{0}'".format(raw_cloud_env)) else: if not urlparse.urlparse(raw_cloud_env).scheme: self.fail("cloud_environment must be an endpoint discovery URL or one of {0}".format([x.name for x in all_clouds])) try: self._cloud_environment = azure_cloud.get_cloud_from_metadata_endpoint(raw_cloud_env) except Exception as e: self.fail("cloud_environment {0} could not be resolved: {1}".format(raw_cloud_env, e.message), exception=traceback.format_exc(e)) if self.credentials.get('subscription_id', None) is None and self.credentials.get('credentials') is None: self.fail("Credentials did not include a subscription_id value.") self.log("setting subscription_id") self.subscription_id = self.credentials['subscription_id'] if self.credentials.get('credentials') is not None: # AzureCLI credentials self.azure_credentials = self.credentials['credentials'] elif self.credentials.get('client_id') is not None and \ self.credentials.get('secret') is not None and \ self.credentials.get('tenant') is not None: self.azure_credentials = ServicePrincipalCredentials(client_id=self.credentials['client_id'], secret=self.credentials['secret'], tenant=self.credentials['tenant'], cloud_environment=self._cloud_environment, verify=self._cert_validation_mode == 'validate') elif self.credentials.get('ad_user') is not None and self.credentials.get('password') is not None: tenant = self.credentials.get('tenant') if not tenant: tenant = 'common' # SDK default self.azure_credentials = UserPassCredentials(self.credentials['ad_user'], self.credentials['password'], tenant=tenant, cloud_environment=self._cloud_environment, verify=self._cert_validation_mode == 'validate') else: self.fail("Failed to authenticate with provided credentials. Some attributes were missing. " "Credentials must include client_id, secret and tenant or ad_user and password or " "be logged using AzureCLI.") # common parameter validation if self.module.params.get('tags'): self.validate_tags(self.module.params['tags']) if not skip_exec: res = self.exec_module(**self.module.params) self.module.exit_json(**res) def check_client_version(self, client_type): # Ensure Azure modules are at least 2.0.0rc5. package_version = AZURE_PKG_VERSIONS.get(client_type.__name__, None) if package_version is not None: client_name = package_version.get('package_name') try: client_module = importlib.import_module(client_type.__module__) client_version = client_module.VERSION except RuntimeError: # can't get at the module version for some reason, just fail silently... return expected_version = package_version.get('expected_version') if Version(client_version) < Version(expected_version): self.fail("Installed azure-mgmt-{0} client version is {1}. The supported version is {2}. Try " "`pip install ansible[azure]`".format(client_name, client_version, expected_version)) def exec_module(self, **kwargs): self.fail("Error: {0} failed to implement exec_module method.".format(self.__class__.__name__)) def fail(self, msg, **kwargs): ''' Shortcut for calling module.fail() :param msg: Error message text. :param kwargs: Any key=value pairs :return: None ''' self.module.fail_json(msg=msg, **kwargs) def deprecate(self, msg, version=None): self.module.deprecate(msg, version) def log(self, msg, pretty_print=False): pass # Use only during module development # if self.debug: # log_file = open('azure_rm.log', 'a') # if pretty_print: # log_file.write(json.dumps(msg, indent=4, sort_keys=True)) # else: # log_file.write(msg + u'\n') def validate_tags(self, tags): ''' Check if tags dictionary contains string:string pairs. :param tags: dictionary of string:string pairs :return: None ''' if not self.facts_module: if not isinstance(tags, dict): self.fail("Tags must be a dictionary of string:string values.") for key, value in tags.items(): if not isinstance(value, str): self.fail("Tags values must be strings. Found {0}:{1}".format(str(key), str(value))) def update_tags(self, tags): ''' Call from the module to update metadata tags. Returns tuple with bool indicating if there was a change and dict of new tags to assign to the object. :param tags: metadata tags from the object :return: bool, dict ''' new_tags = copy.copy(tags) if isinstance(tags, dict) else dict() changed = False if isinstance(self.module.params.get('tags'), dict): for key, value in self.module.params['tags'].items(): if not new_tags.get(key) or new_tags[key] != value: changed = True new_tags[key] = value if isinstance(tags, dict): for key, value in tags.items(): if not self.module.params['tags'].get(key): new_tags.pop(key) changed = True return changed, new_tags def has_tags(self, obj_tags, tag_list): ''' Used in fact modules to compare object tags to list of parameter tags. Return true if list of parameter tags exists in object tags. :param obj_tags: dictionary of tags from an Azure object. :param tag_list: list of tag keys or tag key:value pairs :return: bool ''' if not obj_tags and tag_list: return False if not tag_list: return True matches = 0 result = False for tag in tag_list: tag_key = tag tag_value = None if ':' in tag: tag_key, tag_value = tag.split(':') if tag_value and obj_tags.get(tag_key) == tag_value: matches += 1 elif not tag_value and obj_tags.get(tag_key): matches += 1 if matches == len(tag_list): result = True return result def get_resource_group(self, resource_group): ''' Fetch a resource group. :param resource_group: name of a resource group :return: resource group object ''' try: return self.rm_client.resource_groups.get(resource_group) except CloudError as cloud_error: self.fail("Error retrieving resource group {0} - {1}".format(resource_group, cloud_error.message)) except Exception as exc: self.fail("Error retrieving resource group {0} - {1}".format(resource_group, str(exc))) def _get_profile(self, profile="default"): path = expanduser("~/.azure/credentials") try: config = configparser.ConfigParser() config.read(path) except Exception as exc: self.fail("Failed to access {0}. Check that the file exists and you have read " "access. {1}".format(path, str(exc))) credentials = dict() for key in AZURE_CREDENTIAL_ENV_MAPPING: try: credentials[key] = config.get(profile, key, raw=True) except: pass if credentials.get('subscription_id'): return credentials return None def _get_azure_cli_credentials(self): credentials, subscription_id = get_azure_cli_credentials() cloud_environment = get_cli_active_cloud() cli_credentials = { 'credentials': credentials, 'subscription_id': subscription_id, 'cloud_environment': cloud_environment } return cli_credentials def _get_env_credentials(self): env_credentials = dict() for attribute, env_variable in AZURE_CREDENTIAL_ENV_MAPPING.items(): env_credentials[attribute] = os.environ.get(env_variable, None) if env_credentials['profile']: credentials = self._get_profile(env_credentials['profile']) return credentials if env_credentials.get('subscription_id') is not None: return env_credentials return None def _get_credentials(self, params): # Get authentication credentials. self.log('Getting credentials') arg_credentials = dict() for attribute, env_variable in AZURE_CREDENTIAL_ENV_MAPPING.items(): arg_credentials[attribute] = params.get(attribute, None) auth_source = params.get('auth_source', None) if not auth_source: auth_source = os.environ.get('ANSIBLE_AZURE_AUTH_SOURCE', 'auto') if auth_source == 'cli': if not HAS_AZURE_CLI_CORE: self.fail("Azure auth_source is `cli`, but azure-cli package is not available. Try `pip install azure-cli --upgrade`") try: self.log('Retrieving credentials from Azure CLI profile') cli_credentials = self._get_azure_cli_credentials() return cli_credentials except CLIError as err: self.fail("Azure CLI profile cannot be loaded - {0}".format(err)) if auth_source == 'env': self.log('Retrieving credentials from environment') env_credentials = self._get_env_credentials() return env_credentials if auth_source == 'credential_file': self.log("Retrieving credentials from credential file") profile = params.get('profile', 'default') default_credentials = self._get_profile(profile) return default_credentials # auto, precedence: module parameters -> environment variables -> default profile in ~/.azure/credentials # try module params if arg_credentials['profile'] is not None: self.log('Retrieving credentials with profile parameter.') credentials = self._get_profile(arg_credentials['profile']) return credentials if arg_credentials['subscription_id']: self.log('Received credentials from parameters.') return arg_credentials # try environment env_credentials = self._get_env_credentials() if env_credentials: self.log('Received credentials from env.') return env_credentials # try default profile from ~./azure/credentials default_credentials = self._get_profile() if default_credentials: self.log('Retrieved default profile credentials from ~/.azure/credentials.') return default_credentials try: if HAS_AZURE_CLI_CORE: self.log('Retrieving credentials from AzureCLI profile') cli_credentials = self._get_azure_cli_credentials() return cli_credentials except CLIError as ce: self.log('Error getting AzureCLI profile credentials - {0}'.format(ce)) return None def serialize_obj(self, obj, class_name, enum_modules=None): ''' Return a JSON representation of an Azure object. :param obj: Azure object :param class_name: Name of the object's class :param enum_modules: List of module names to build enum dependencies from. :return: serialized result ''' enum_modules = [] if enum_modules is None else enum_modules dependencies = dict() if enum_modules: for module_name in enum_modules: mod = importlib.import_module(module_name) for mod_class_name, mod_class_obj in inspect.getmembers(mod, predicate=inspect.isclass): dependencies[mod_class_name] = mod_class_obj self.log("dependencies: ") self.log(str(dependencies)) serializer = Serializer(classes=dependencies) return serializer.body(obj, class_name, keep_readonly=True) def get_poller_result(self, poller, wait=5): ''' Consistent method of waiting on and retrieving results from Azure's long poller :param poller Azure poller object :return object resulting from the original request ''' try: delay = wait while not poller.done(): self.log("Waiting for {0} sec".format(delay)) poller.wait(timeout=delay) return poller.result() except Exception as exc: self.log(str(exc)) raise def check_provisioning_state(self, azure_object, requested_state='present'): ''' Check an Azure object's provisioning state. If something did not complete the provisioning process, then we cannot operate on it. :param azure_object An object such as a subnet, storageaccount, etc. Must have provisioning_state and name attributes. :return None ''' if hasattr(azure_object, 'properties') and hasattr(azure_object.properties, 'provisioning_state') and \ hasattr(azure_object, 'name'): # resource group object fits this model if isinstance(azure_object.properties.provisioning_state, Enum): if azure_object.properties.provisioning_state.value != AZURE_SUCCESS_STATE and \ requested_state != 'absent': self.fail("Error {0} has a provisioning state of {1}. Expecting state to be {2}.".format( azure_object.name, azure_object.properties.provisioning_state, AZURE_SUCCESS_STATE)) return if azure_object.properties.provisioning_state != AZURE_SUCCESS_STATE and \ requested_state != 'absent': self.fail("Error {0} has a provisioning state of {1}. Expecting state to be {2}.".format( azure_object.name, azure_object.properties.provisioning_state, AZURE_SUCCESS_STATE)) return if hasattr(azure_object, 'provisioning_state') or not hasattr(azure_object, 'name'): if isinstance(azure_object.provisioning_state, Enum): if azure_object.provisioning_state.value != AZURE_SUCCESS_STATE and requested_state != 'absent': self.fail("Error {0} has a provisioning state of {1}. Expecting state to be {2}.".format( azure_object.name, azure_object.provisioning_state, AZURE_SUCCESS_STATE)) return if azure_object.provisioning_state != AZURE_SUCCESS_STATE and requested_state != 'absent': self.fail("Error {0} has a provisioning state of {1}. Expecting state to be {2}.".format( azure_object.name, azure_object.provisioning_state, AZURE_SUCCESS_STATE)) def get_blob_client(self, resource_group_name, storage_account_name, storage_blob_type='block'): keys = dict() try: # Get keys from the storage account self.log('Getting keys') account_keys = self.storage_client.storage_accounts.list_keys(resource_group_name, storage_account_name) except Exception as exc: self.fail("Error getting keys for account {0} - {1}".format(storage_account_name, str(exc))) try: self.log('Create blob service') if storage_blob_type == 'page': return CloudStorageAccount(storage_account_name, account_keys.keys[0].value).create_page_blob_service() elif storage_blob_type == 'block': return CloudStorageAccount(storage_account_name, account_keys.keys[0].value).create_block_blob_service() else: raise Exception("Invalid storage blob type defined.") except Exception as exc: self.fail("Error creating blob service client for storage account {0} - {1}".format(storage_account_name, str(exc))) def create_default_pip(self, resource_group, location, public_ip_name, allocation_method='Dynamic'): ''' Create a default public IP address <public_ip_name> to associate with a network interface. If a PIP address matching <public_ip_name> exists, return it. Otherwise, create one. :param resource_group: name of an existing resource group :param location: a valid azure location :param public_ip_name: base name to assign the public IP address :param allocation_method: one of 'Static' or 'Dynamic' :return: PIP object ''' pip = None self.log("Starting create_default_pip {0}".format(public_ip_name)) self.log("Check to see if public IP {0} exists".format(public_ip_name)) try: pip = self.network_client.public_ip_addresses.get(resource_group, public_ip_name) except CloudError: pass if pip: self.log("Public ip {0} found.".format(public_ip_name)) self.check_provisioning_state(pip) return pip params = self.network_models.PublicIPAddress( location=location, public_ip_allocation_method=allocation_method, ) self.log('Creating default public IP {0}'.format(public_ip_name)) try: poller = self.network_client.public_ip_addresses.create_or_update(resource_group, public_ip_name, params) except Exception as exc: self.fail("Error creating {0} - {1}".format(public_ip_name, str(exc))) return self.get_poller_result(poller) def create_default_securitygroup(self, resource_group, location, security_group_name, os_type, open_ports): ''' Create a default security group <security_group_name> to associate with a network interface. If a security group matching <security_group_name> exists, return it. Otherwise, create one. :param resource_group: Resource group name :param location: azure location name :param security_group_name: base name to use for the security group :param os_type: one of 'Windows' or 'Linux'. Determins any default rules added to the security group. :param ssh_port: for os_type 'Linux' port used in rule allowing SSH access. :param rdp_port: for os_type 'Windows' port used in rule allowing RDP access. :return: security_group object ''' group = None self.log("Create security group {0}".format(security_group_name)) self.log("Check to see if security group {0} exists".format(security_group_name)) try: group = self.network_client.network_security_groups.get(resource_group, security_group_name) except CloudError: pass if group: self.log("Security group {0} found.".format(security_group_name)) self.check_provisioning_state(group) return group parameters = self.network_models.NetworkSecurityGroup() parameters.location = location if not open_ports: # Open default ports based on OS type if os_type == 'Linux': # add an inbound SSH rule parameters.security_rules = [ self.network_models.SecurityRule('Tcp', '*', '*', 'Allow', 'Inbound', description='Allow SSH Access', source_port_range='*', destination_port_range='22', priority=100, name='SSH') ] parameters.location = location else: # for windows add inbound RDP and WinRM rules parameters.security_rules = [ self.network_models.SecurityRule('Tcp', '*', '*', 'Allow', 'Inbound', description='Allow RDP port 3389', source_port_range='*', destination_port_range='3389', priority=100, name='RDP01'), self.network_models.SecurityRule('Tcp', '*', '*', 'Allow', 'Inbound', description='Allow WinRM HTTPS port 5986', source_port_range='*', destination_port_range='5986', priority=101, name='WinRM01'), ] else: # Open custom ports parameters.security_rules = [] priority = 100 for port in open_ports: priority += 1 rule_name = "Rule_{0}".format(priority) parameters.security_rules.append( self.network_models.SecurityRule(protocol='Tcp', source_address_prefix='*', destination_address_prefix='*', access='Allow', direction='Inbound', source_port_range='*', destination_port_range=str(port), priority=priority, name=rule_name) ) self.log('Creating default security group {0}'.format(security_group_name)) try: poller = self.network_client.network_security_groups.create_or_update(resource_group, security_group_name, parameters) except Exception as exc: self.fail("Error creating default security rule {0} - {1}".format(security_group_name, str(exc))) return self.get_poller_result(poller) @staticmethod def _validation_ignore_callback(session, global_config, local_config, **kwargs): session.verify = False def get_api_profile(self, client_type_name, api_profile_name): profile_all_clients = AZURE_API_PROFILES.get(api_profile_name) if not profile_all_clients: raise KeyError("unknown Azure API profile: {0}".format(api_profile_name)) profile_raw = profile_all_clients.get(client_type_name, None) if not profile_raw: self.module.warn("Azure API profile {0} does not define an entry for {1}".format(api_profile_name, client_type_name)) if isinstance(profile_raw, dict): if not profile_raw.get('default_api_version'): raise KeyError("Azure API profile {0} does not define 'default_api_version'".format(api_profile_name)) return profile_raw # wrap basic strings in a dict that just defines the default return dict(default_api_version=profile_raw) def get_mgmt_svc_client(self, client_type, base_url=None, api_version=None): self.log('Getting management service client {0}'.format(client_type.__name__)) self.check_client_version(client_type) client_argspec = inspect.getargspec(client_type.__init__) client_kwargs = dict(credentials=self.azure_credentials, subscription_id=self.subscription_id, base_url=base_url) api_profile_dict = {} if self.api_profile: api_profile_dict = self.get_api_profile(client_type.__name__, self.api_profile) if not base_url: # most things are resource_manager, don't make everyone specify base_url = self._cloud_environment.endpoints.resource_manager # unversioned clients won't accept profile; only send it if necessary # clients without a version specified in the profile will use the default if api_profile_dict and 'profile' in client_argspec.args: client_kwargs['profile'] = api_profile_dict # If the client doesn't accept api_version, it's unversioned. # If it does, favor explicitly-specified api_version, fall back to api_profile if 'api_version' in client_argspec.args: profile_default_version = api_profile_dict.get('default_api_version', None) if api_version or profile_default_version: client_kwargs['api_version'] = api_version or profile_default_version client = client_type(**client_kwargs) # FUTURE: remove this once everything exposes models directly (eg, containerinstance) try: getattr(client, "models") except AttributeError: def _ansible_get_models(self, *arg, **kwarg): return self._ansible_models setattr(client, '_ansible_models', importlib.import_module(client_type.__module__).models) client.models = types.MethodType(_ansible_get_models, client) # Add user agent for Ansible client.config.add_user_agent(ANSIBLE_USER_AGENT) # Add user agent when running from Cloud Shell if CLOUDSHELL_USER_AGENT_KEY in os.environ: client.config.add_user_agent(os.environ[CLOUDSHELL_USER_AGENT_KEY]) # Add user agent when running from VSCode extension if VSCODEEXT_USER_AGENT_KEY in os.environ: client.config.add_user_agent(os.environ[VSCODEEXT_USER_AGENT_KEY]) if self._cert_validation_mode == 'ignore': client.config.session_configuration_callback = self._validation_ignore_callback return client @property def storage_client(self): self.log('Getting storage client...') if not self._storage_client: self._storage_client = self.get_mgmt_svc_client(StorageManagementClient, base_url=self._cloud_environment.endpoints.resource_manager, api_version='2017-10-01') return self._storage_client @property def storage_models(self): self.log('Getting storage models...') return StorageManagementClient.models("2017-10-01") @property def network_client(self): self.log('Getting network client') if not self._network_client: self._network_client = self.get_mgmt_svc_client(NetworkManagementClient, base_url=self._cloud_environment.endpoints.resource_manager, api_version='2017-06-01') return self._network_client @property def network_models(self): self.log("Getting network models...") return NetworkManagementClient.models("2017-06-01") @property def rm_client(self): self.log('Getting resource manager client') if not self._resource_client: self._resource_client = self.get_mgmt_svc_client(ResourceManagementClient, base_url=self._cloud_environment.endpoints.resource_manager, api_version='2017-05-10') return self._resource_client @property def rm_models(self): self.log("Getting resource manager models") return ResourceManagementClient.models("2017-05-10") @property def compute_client(self): self.log('Getting compute client') if not self._compute_client: self._compute_client = self.get_mgmt_svc_client(ComputeManagementClient, base_url=self._cloud_environment.endpoints.resource_manager, api_version='2017-03-30') return self._compute_client @property def compute_models(self): self.log("Getting compute models") return ComputeManagementClient.models("2017-03-30") @property def dns_client(self): self.log('Getting dns client') if not self._dns_client: self._dns_client = self.get_mgmt_svc_client(DnsManagementClient, base_url=self._cloud_environment.endpoints.resource_manager) return self._dns_client @property def web_client(self): self.log('Getting web client') if not self._web_client: self._web_client = self.get_mgmt_svc_client(WebSiteManagementClient, base_url=self._cloud_environment.endpoints.resource_manager) return self._web_client @property def containerservice_client(self): self.log('Getting container service client') if not self._containerservice_client: self._containerservice_client = self.get_mgmt_svc_client(ContainerServiceClient, base_url=self._cloud_environment.endpoints.resource_manager) return self._containerservice_client
the-stack_0_12655
""""Example usage of BayesianDense layer on MNIST dataset (~1.5% test error). """ import os import logging import logging.config from sklearn.utils import shuffle from keras.layers import Dense, Input from keras.models import Model from keras.datasets import mnist from keras.optimizers import Adam import numpy as np import pickle import keras.backend as K from tqdm import tqdm from bayesian_dense.bayesian_dense import BayesianDense, VariationalRegularizer from keras.regularizers import WeightRegularizer def accuracy(model, x, label_true, batch_size): """Calculate accuracy of a model""" y_pred = model.predict(x, batch_size=batch_size) label_pred = np.argmax(y_pred,axis=1) correct = np.count_nonzero(label_true == label_pred) return 1.0-(float(correct)/float(x.shape[0])) def one_hot(labels, m): """Convert labels to one-hot representations""" n = labels.shape[0] y = np.zeros((n,m)) y[np.arange(n),labels.ravel()]=1 return y def model(hidden_dim=512, input_dim=28*28, sigma_regularization=1e-3, mu_regularization=1e-5, k=10, activation = lambda x: K.relu(x, 1.0 / 5.5)): """Create two layer MLP with softmax output""" _x = Input(shape=(input_dim,)) layer = lambda output_dim, activation: BayesianDense(output_dim, activation=activation, W_sigma_regularizer=VariationalRegularizer(weight=sigma_regularization), b_sigma_regularizer=VariationalRegularizer(weight=sigma_regularization), W_regularizer=WeightRegularizer(l1=mu_regularization)) h1 = layer(hidden_dim, activation) h2 = layer(hidden_dim, activation) y = layer(k, 'softmax') _y = y(h2(h1(_x))) m = Model(_x, _y) m.compile(Adam(1e-3),loss='categorical_crossentropy') return m def mnist_data(): """Rescale and reshape MNIST data""" (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train.astype(np.float32) / 255. x_test = x_test.astype(np.float32) / 255. x_train = x_train.reshape((x_train.shape[0], -1)) x_test = x_test.reshape((x_test.shape[0], -1)) return (x_train, y_train, x_test, y_test) if __name__ == "__main__": logging.config.fileConfig('logging.conf') path = "output/bayesian_dense/test" if not os.path.exists(path): os.makedirs(path) x_train, y_train, x_test, y_test = mnist_data() nb_epoch = 100 batch_size = 128 k = 10 decay = 0.96 lr = 1e-3 m=model() m.summary() log = [] for epoch in tqdm(range(nb_epoch)): acc_train = accuracy(m, x_train, y_train, batch_size=batch_size) acc_test = accuracy(m, x_test, y_test, batch_size=batch_size) log.append([acc_train, acc_test]) m.optimizer.lr.set_value(np.float32(lr)) logging.info("Epoch: %i/%i, Train: %f, Test: %f, LR: %f"%(epoch, nb_epoch, acc_train, acc_test, lr)) x_train, y_train = shuffle(x_train, y_train) m.fit(x_train, one_hot(y_train,k), nb_epoch=1, batch_size=batch_size, shuffle=True, validation_data=(x_test, one_hot(y_test,k))) lr *= decay if epoch%10 == 0: m.save_weights("%s/checkpoint-%03i.hd5"%(path,epoch)) m.save_weights('%s/model.hd5'%path) with open("%s/log.pkl"%path, "w") as f: pickle.dump(log, f)
the-stack_0_12656
__author__ = 'yuxiang' import datasets import datasets.kitti_tracking import os import PIL import datasets.imdb import numpy as np import scipy.sparse from utils.cython_bbox import bbox_overlaps from utils.boxes_grid import get_boxes_grid import subprocess import pickle as cPickle from fast_rcnn.config import cfg import math from rpn_msr.generate_anchors import generate_anchors class kitti_tracking(datasets.imdb): def __init__(self, image_set, seq_name, kitti_tracking_path=None): datasets.imdb.__init__(self, 'kitti_tracking_' + image_set + '_' + seq_name) self._image_set = image_set self._seq_name = seq_name self._kitti_tracking_path = self._get_default_path() if kitti_tracking_path is None \ else kitti_tracking_path self._data_path = os.path.join(self._kitti_tracking_path, image_set, 'image_02') self._classes = ('__background__', 'Car', 'Pedestrian', 'Cyclist') self._class_to_ind = dict(zip(self.classes, xrange(self.num_classes))) self._image_ext = '.png' self._image_index = self._load_image_set_index() # Default to roidb handler if cfg.IS_RPN: self._roidb_handler = self.gt_roidb else: self._roidb_handler = self.region_proposal_roidb # num of subclasses if image_set == 'training' and seq_name != 'trainval': self._num_subclasses = 220 + 1 else: self._num_subclasses = 472 + 1 # load the mapping for subcalss to class if image_set == 'training' and seq_name != 'trainval': filename = os.path.join(self._kitti_tracking_path, 'voxel_exemplars', 'train', 'mapping.txt') else: filename = os.path.join(self._kitti_tracking_path, 'voxel_exemplars', 'trainval', 'mapping.txt') assert os.path.exists(filename), 'Path does not exist: {}'.format(filename) mapping = np.zeros(self._num_subclasses, dtype=np.int) with open(filename) as f: for line in f: words = line.split() subcls = int(words[0]) mapping[subcls] = self._class_to_ind[words[1]] self._subclass_mapping = mapping self.config = {'top_k': 100000} # statistics for computing recall self._num_boxes_all = np.zeros(self.num_classes, dtype=np.int) self._num_boxes_covered = np.zeros(self.num_classes, dtype=np.int) self._num_boxes_proposal = 0 assert os.path.exists(self._kitti_tracking_path), \ 'kitti_tracking path does not exist: {}'.format(self._kitti_tracking_path) assert os.path.exists(self._data_path), \ 'Path does not exist: {}'.format(self._data_path) def image_path_at(self, i): """ Return the absolute path to image i in the image sequence. """ return self.image_path_from_index(self.image_index[i]) def image_path_from_index(self, index): """ Construct an image path from the image's "index" identifier. """ image_path = os.path.join(self._data_path, index + self._image_ext) assert os.path.exists(image_path), \ 'Path does not exist: {}'.format(image_path) return image_path def _load_image_set_index(self): """ Load the indexes listed in this dataset's image set file. """ kitti_train_nums = [154, 447, 233, 144, 314, 297, 270, 800, 390, 803, 294, \ 373, 78, 340, 106, 376, 209, 145, 339, 1059, 837] kitti_test_nums = [465, 147, 243, 257, 421, 809, 114, 215, 165, 349, 1176, \ 774, 694, 152, 850, 701, 510, 305, 180, 404, 173, 203, \ 436, 430, 316, 176, 170, 85, 175] if self._seq_name == 'train' or self._seq_name == 'trainval': assert self._image_set == 'training', 'Use train set or trainval set in testing' if self._seq_name == 'train': seq_index = [0, 1, 2, 3, 4, 5, 12, 13, 14, 15, 16] else: seq_index = range(0, 21) # for each sequence image_index = [] for i in xrange(len(seq_index)): seq_idx = seq_index[i] num = kitti_train_nums[seq_idx] for j in xrange(num): image_index.append('{:04d}/{:06d}'.format(seq_idx, j)) else: # a single sequence seq_num = int(self._seq_name) if self._image_set == 'training': num = kitti_train_nums[seq_num] else: num = kitti_test_nums[seq_num] image_index = [] for i in xrange(num): image_index.append('{:04d}/{:06d}'.format(seq_num, i)) return image_index def _get_default_path(self): """ Return the default path where kitti_tracking is expected to be installed. """ return os.path.join(datasets.ROOT_DIR, 'data', 'KITTI_Tracking') def gt_roidb(self): """ Return the database of ground-truth regions of interest. """ cache_file = os.path.join(self.cache_path, self.name + '_' + cfg.SUBCLS_NAME + '_gt_roidb.pkl') if os.path.exists(cache_file): with open(cache_file, 'rb') as fid: roidb = cPickle.load(fid) print('{} gt roidb loaded from {}'.format(self.name, cache_file)) return roidb gt_roidb = [self._load_kitti_voxel_exemplar_annotation(index) for index in self.image_index] if cfg.IS_RPN: # print out recall for i in xrange(1, self.num_classes): print('{}: Total number of boxes {:d}'.format(self.classes[i], self._num_boxes_all[i])) print('{}: Number of boxes covered {:d}'.format(self.classes[i], self._num_boxes_covered[i])) print('{}: Recall {:f}'.format(self.classes[i], float(self._num_boxes_covered[i]) / float(self._num_boxes_all[i]))) with open(cache_file, 'wb') as fid: cPickle.dump(gt_roidb, fid, cPickle.HIGHEST_PROTOCOL) print('wrote gt roidb to {}'.format(cache_file)) return gt_roidb def _load_kitti_voxel_exemplar_annotation(self, index): """ Load image and bounding boxes info from txt file in the KITTI voxel exemplar format. """ if self._image_set == 'training' and self._seq_name != 'trainval': prefix = 'train' elif self._image_set == 'training': prefix = 'trainval' else: prefix = '' if prefix == '': lines = [] lines_flipped = [] else: filename = os.path.join(self._kitti_tracking_path, cfg.SUBCLS_NAME, prefix, index + '.txt') if os.path.exists(filename): print(filename) # the annotation file contains flipped objects lines = [] lines_flipped = [] with open(filename) as f: for line in f: words = line.split() subcls = int(words[1]) is_flip = int(words[2]) if subcls != -1: if is_flip == 0: lines.append(line) else: lines_flipped.append(line) else: lines = [] lines_flipped = [] num_objs = len(lines) # store information of flipped objects assert (num_objs == len(lines_flipped)), 'The number of flipped objects is not the same!' gt_subclasses_flipped = np.zeros((num_objs), dtype=np.int32) for ix, line in enumerate(lines_flipped): words = line.split() subcls = int(words[1]) gt_subclasses_flipped[ix] = subcls boxes = np.zeros((num_objs, 4), dtype=np.float32) gt_classes = np.zeros((num_objs), dtype=np.int32) gt_subclasses = np.zeros((num_objs), dtype=np.int32) overlaps = np.zeros((num_objs, self.num_classes), dtype=np.float32) subindexes = np.zeros((num_objs, self.num_classes), dtype=np.int32) subindexes_flipped = np.zeros((num_objs, self.num_classes), dtype=np.int32) for ix, line in enumerate(lines): words = line.split() cls = self._class_to_ind[words[0]] subcls = int(words[1]) boxes[ix, :] = [float(n) for n in words[3:7]] gt_classes[ix] = cls gt_subclasses[ix] = subcls overlaps[ix, cls] = 1.0 subindexes[ix, cls] = subcls subindexes_flipped[ix, cls] = gt_subclasses_flipped[ix] overlaps = scipy.sparse.csr_matrix(overlaps) subindexes = scipy.sparse.csr_matrix(subindexes) subindexes_flipped = scipy.sparse.csr_matrix(subindexes_flipped) if cfg.IS_RPN: if cfg.IS_MULTISCALE: # compute overlaps between grid boxes and gt boxes in multi-scales # rescale the gt boxes boxes_all = np.zeros((0, 4), dtype=np.float32) for scale in cfg.TRAIN.SCALES: boxes_all = np.vstack((boxes_all, boxes * scale)) gt_classes_all = np.tile(gt_classes, len(cfg.TRAIN.SCALES)) # compute grid boxes s = PIL.Image.open(self.image_path_from_index(index)).size image_height = s[1] image_width = s[0] boxes_grid, _, _ = get_boxes_grid(image_height, image_width) # compute overlap overlaps_grid = bbox_overlaps(boxes_grid.astype(np.float), boxes_all.astype(np.float)) # check how many gt boxes are covered by grids if num_objs != 0: index = np.tile(range(num_objs), len(cfg.TRAIN.SCALES)) max_overlaps = overlaps_grid.max(axis = 0) fg_inds = [] for k in xrange(1, self.num_classes): fg_inds.extend(np.where((gt_classes_all == k) & (max_overlaps >= cfg.TRAIN.FG_THRESH[k-1]))[0]) index_covered = np.unique(index[fg_inds]) for i in xrange(self.num_classes): self._num_boxes_all[i] += len(np.where(gt_classes == i)[0]) self._num_boxes_covered[i] += len(np.where(gt_classes[index_covered] == i)[0]) else: assert len(cfg.TRAIN.SCALES_BASE) == 1 scale = cfg.TRAIN.SCALES_BASE[0] feat_stride = 16 # faster rcnn region proposal base_size = 16 ratios = [3.0, 2.0, 1.5, 1.0, 0.75, 0.5, 0.25] scales = 2**np.arange(1, 6, 0.5) anchors = generate_anchors(base_size, ratios, scales) num_anchors = anchors.shape[0] # image size s = PIL.Image.open(self.image_path_from_index(index)).size image_height = s[1] image_width = s[0] # height and width of the heatmap height = np.round((image_height * scale - 1) / 4.0 + 1) height = np.floor((height - 1) / 2 + 1 + 0.5) height = np.floor((height - 1) / 2 + 1 + 0.5) width = np.round((image_width * scale - 1) / 4.0 + 1) width = np.floor((width - 1) / 2.0 + 1 + 0.5) width = np.floor((width - 1) / 2.0 + 1 + 0.5) # gt boxes gt_boxes = boxes * scale # 1. Generate proposals from bbox deltas and shifted anchors shift_x = np.arange(0, width) * feat_stride shift_y = np.arange(0, height) * feat_stride shift_x, shift_y = np.meshgrid(shift_x, shift_y) shifts = np.vstack((shift_x.ravel(), shift_y.ravel(), shift_x.ravel(), shift_y.ravel())).transpose() # add A anchors (1, A, 4) to # cell K shifts (K, 1, 4) to get # shift anchors (K, A, 4) # reshape to (K*A, 4) shifted anchors A = num_anchors K = shifts.shape[0] all_anchors = (anchors.reshape((1, A, 4)) + shifts.reshape((1, K, 4)).transpose((1, 0, 2))) all_anchors = all_anchors.reshape((K * A, 4)) # compute overlap overlaps_grid = bbox_overlaps(all_anchors.astype(np.float), gt_boxes.astype(np.float)) # check how many gt boxes are covered by anchors if num_objs != 0: max_overlaps = overlaps_grid.max(axis = 0) fg_inds = [] for k in xrange(1, self.num_classes): fg_inds.extend(np.where((gt_classes == k) & (max_overlaps >= cfg.TRAIN.FG_THRESH[k-1]))[0]) for i in xrange(self.num_classes): self._num_boxes_all[i] += len(np.where(gt_classes == i)[0]) self._num_boxes_covered[i] += len(np.where(gt_classes[fg_inds] == i)[0]) return {'boxes' : boxes, 'gt_classes': gt_classes, 'gt_subclasses': gt_subclasses, 'gt_subclasses_flipped': gt_subclasses_flipped, 'gt_overlaps': overlaps, 'gt_subindexes': subindexes, 'gt_subindexes_flipped': subindexes_flipped, 'flipped' : False} def region_proposal_roidb(self): """ Return the database of regions of interest. Ground-truth ROIs are also included. This function loads/saves from/to a cache file to speed up future calls. """ cache_file = os.path.join(self.cache_path, self.name + '_' + cfg.SUBCLS_NAME + '_' + cfg.REGION_PROPOSAL + '_region_proposal_roidb.pkl') if os.path.exists(cache_file): with open(cache_file, 'rb') as fid: roidb = cPickle.load(fid) print('{} roidb loaded from {}'.format(self.name, cache_file)) return roidb if self._image_set != 'testing': gt_roidb = self.gt_roidb() print('Loading region proposal network boxes...') if self._image_set == 'trainval': model = cfg.REGION_PROPOSAL + '_trainval/' else: model = cfg.REGION_PROPOSAL + '_train/' rpn_roidb = self._load_rpn_roidb(gt_roidb, model) print('Region proposal network boxes loaded') roidb = datasets.imdb.merge_roidbs(rpn_roidb, gt_roidb) else: print('Loading region proposal network boxes...') model = cfg.REGION_PROPOSAL + '_trainval/' roidb = self._load_rpn_roidb(None, model) print('Region proposal network boxes loaded') print('{} region proposals per image'.format(self._num_boxes_proposal / len(self.image_index))) with open(cache_file, 'wb') as fid: cPickle.dump(roidb, fid, cPickle.HIGHEST_PROTOCOL) print('wrote roidb to {}'.format(cache_file)) return roidb def _load_rpn_roidb(self, gt_roidb, model): # set the prefix prefix = model box_list = [] for index in self.image_index: filename = os.path.join(self._kitti_tracking_path, 'region_proposals', prefix, self._image_set, index + '.txt') assert os.path.exists(filename), \ 'RPN data not found at: {}'.format(filename) print(filename) raw_data = np.loadtxt(filename, dtype=float) if len(raw_data.shape) == 1: if raw_data.size == 0: raw_data = raw_data.reshape((0, 5)) else: raw_data = raw_data.reshape((1, 5)) x1 = raw_data[:, 0] y1 = raw_data[:, 1] x2 = raw_data[:, 2] y2 = raw_data[:, 3] score = raw_data[:, 4] inds = np.where((x2 > x1) & (y2 > y1))[0] raw_data = raw_data[inds,:4] self._num_boxes_proposal += raw_data.shape[0] box_list.append(raw_data) return self.create_roidb_from_box_list(box_list, gt_roidb) def evaluate_detections(self, all_boxes, output_dir): # load the mapping for subcalss the alpha (viewpoint) if self._image_set == 'training' and self._seq_name != 'trainval': filename = os.path.join(self._kitti_tracking_path, 'voxel_exemplars', 'train', 'mapping.txt') else: filename = os.path.join(self._kitti_tracking_path, 'voxel_exemplars', 'trainval', 'mapping.txt') assert os.path.exists(filename), 'Path does not exist: {}'.format(filename) mapping = np.zeros(self._num_subclasses, dtype=np.float) with open(filename) as f: for line in f: words = line.split() subcls = int(words[0]) mapping[subcls] = float(words[3]) # for each image for im_ind, index in enumerate(self.image_index): filename = os.path.join(output_dir, index[5:] + '.txt') print('Writing kitti_tracking results to file ' + filename) with open(filename, 'wt') as f: # for each class for cls_ind, cls in enumerate(self.classes): if cls == '__background__': continue dets = all_boxes[cls_ind][im_ind] if dets == []: continue for k in xrange(dets.shape[0]): subcls = int(dets[k, 5]) cls_name = self.classes[self.subclass_mapping[subcls]] assert (cls_name == cls), 'subclass not in class' alpha = mapping[subcls] f.write('{:s} -1 -1 {:f} {:f} {:f} {:f} {:f} -1 -1 -1 -1 -1 -1 -1 {:.32f}\n'.format(\ cls, alpha, dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4])) # write detection results into one file def evaluate_detections_one_file(self, all_boxes, output_dir): # load the mapping for subcalss the alpha (viewpoint) if self._image_set == 'training' and self._seq_name != 'trainval': filename = os.path.join(self._kitti_tracking_path, 'voxel_exemplars', 'train', 'mapping.txt') else: filename = os.path.join(self._kitti_tracking_path, 'voxel_exemplars', 'trainval', 'mapping.txt') assert os.path.exists(filename), 'Path does not exist: {}'.format(filename) mapping = np.zeros(self._num_subclasses, dtype=np.float) with open(filename) as f: for line in f: words = line.split() subcls = int(words[0]) mapping[subcls] = float(words[3]) # open results file filename = os.path.join(output_dir, self._seq_name+'.txt') print('Writing all kitti_tracking results to file ' + filename) with open(filename, 'wt') as f: # for each image for im_ind, index in enumerate(self.image_index): # for each class for cls_ind, cls in enumerate(self.classes): if cls == '__background__': continue dets = all_boxes[cls_ind][im_ind] if dets == []: continue for k in xrange(dets.shape[0]): subcls = int(dets[k, 5]) cls_name = self.classes[self.subclass_mapping[subcls]] assert (cls_name == cls), 'subclass not in class' alpha = mapping[subcls] f.write('{:d} -1 {:s} -1 -1 {:f} {:f} {:f} {:f} {:f} -1 -1 -1 -1000 -1000 -1000 -10 {:f}\n'.format(\ im_ind, cls, alpha, dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4])) def evaluate_proposals(self, all_boxes, output_dir): # for each image for im_ind, index in enumerate(self.image_index): filename = os.path.join(output_dir, index[5:] + '.txt') print('Writing kitti_tracking results to file ' + filename) with open(filename, 'wt') as f: # for each class for cls_ind, cls in enumerate(self.classes): if cls == '__background__': continue dets = all_boxes[cls_ind][im_ind] if dets == []: continue for k in xrange(dets.shape[0]): f.write('{:f} {:f} {:f} {:f} {:.32f}\n'.format(\ dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4])) def evaluate_proposals_msr(self, all_boxes, output_dir): # for each image for im_ind, index in enumerate(self.image_index): filename = os.path.join(output_dir, index + '.txt') print('Writing kitti_tracking results to file ' + filename) with open(filename, 'wt') as f: dets = all_boxes[im_ind] if dets == []: continue for k in xrange(dets.shape[0]): f.write('{:f} {:f} {:f} {:f} {:.32f}\n'.format(dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4])) if __name__ == '__main__': d = datasets.kitti_tracking('training', '0000') res = d.roidb from IPython import embed; embed()
the-stack_0_12658
import DAO def show_my_courses(student, course_list): print('\nMy Courses:') print('#\tCOURSE NAME\tINSTRUCTOR NAME') attending_dao = DAO.AttendingDAO() my_courses = attending_dao.get_student_courses(course_list, student.get_email()) i = 1 for course in my_courses: print(f'{i}\t{course.get_name()}\t{course.get_instructor()}') i+=1 def show_all_courses(course_list): print('\nAll Courses:') print('ID\tCOURSE NAME\tINSTRUCTOR NAME') for course in course_list: print(f'{course.get_id()}\t{course.get_name()}\t{course.get_instructor()}') def main(): print('Welcome!') entry=None while entry!='2': entry = input('\n1. Current Student\n2. New Student\n3. Quit\nPlease, enter 1, 2 or 3: ') if entry=='1': student_dao = DAO.StudentDAO() email = input('\nEnter Your Email: ') pw = input('Enter Your Password: ') if student_dao.validate_user(email, pw): course_dao = DAO.CourseDAO() attending_dao = DAO.AttendingDAO() student = student_dao.get_student_by_email(email) course_list = course_dao.get_courses() print(type(student)) show_my_courses(student, course_list) print('\nWhat Would You Like To Do?') while entry!='2': entry = input('\n1. Register To Course\n2. Logout\nPlease, enter 1 or 2: ') if entry=='1': show_all_courses(course_list) course_id = input('\nSelect Course By ID Number: ') print("\nAttempting to Register...") if attending_dao.register_student_to_course(email, course_id, course_list): show_my_courses(student, course_list) elif entry=='2': print('\nYou Have Been Logged Out.') else: print('\nInvalid Option...') else: print('\nWrong Credentials!') elif entry=='2': print("Welcome to the school!") student_dao = DAO.StudentDAO() email = input('Please provide your email : ') if not student_dao.get_student_by_email(email): name = input("What is your full name? : ") password = input("What would you like your password to be? : ") student_dao.add_new_student(email, name, password) entry = '-1' continue; else: print("That email is already taken") elif entry=='3': print("Programming is closing, ") break; else: print('Invalid Option...') print('\nClosing Program. Goodbye.') if __name__=='__main__': main()
the-stack_0_12661
''' Copyright 2017 The Regents of the University of Colorado Licensed under the Apache License, Version 2.0 (the "License") you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' ''' events_mapping.py Python Version: 3.6.3 Queries the study by the events_mapping table and populates OHDSI tables Death, visit_occurrence and procedure_occurrence. This is research code for demonstration purposes only. croeder 8/2017 [email protected] ''' import logging from HeartData import migrate #import datetime #import sys #import re import psycopg2 from psycopg2.extras import RealDictCursor from HeartData.person import BasePerson from ui.models import Concept logger = logging.getLogger(__name__) NULL_PLACEHOLDER='no_column' def _read_event_mappings(con, study_id): event_mappings={} cur = con.cursor(cursor_factory=RealDictCursor) cur.execute( ("SELECT study_id, from_table, from_column, to_table, value_vocabulary_id, value_concept_code, addl_column, addl_value, from_date_column, where_clause" " FROM events_mapping " " WHERE study_id = %s"), (study_id,) ) rows = cur.fetchall() cur.close() return rows def populate(con, person_id_list, study): """ populate the ohdsi person table. Be wary of the fact that the list of person_ids is a list of ohdsi_ids, and that when you query study tables those ids need converted. """ personObj = BasePerson.factory(study) id_col = personObj.get_id_field_name() cur = con.cursor() event_mappings = _read_event_mappings(con, study.study_id) procedure_id=0 visit_id=0 for row in event_mappings: logger.info("XX events_mapping.populate() %s", row) from_table_name=row['from_table'] prefix = from_table_name.split('_')[0] for person_id in person_id_list: query="" # QUERY FOR THE VALUES, BEST SPECIFIC? TODO if (row['from_column'] != NULL_PLACEHOLDER): # a value and a date, like the Death table if (row['where_clause'] != NULL_PLACEHOLDER) : query = ("SELECT {0}, {1} from {2} where " + id_col + " = %s and ( {3} )").format(row['from_date_column'], row['from_column'], row['from_table'], row['where_clause']) #logger.debug("QUERY1:%s %s", query, person_id) logger.info("QUERY1:%s %s", query, person_id) cur.execute(query, (personObj.convert_person_id_to_study(person_id),)) else: query = ("SELECT {0}, {1} from {2} where " + id_col + " = %s").format(row['from_date_column'], row['from_column'], row['from_table']) #logger.debug("QUERY2: %s, %s", query, row) logger.info("QUERY2: %s, %s", query, row) cur.execute(query, (personObj.convert_person_id_to_study(person_id),)) else: # just a date, like the Occurrence tables: if (row['where_clause'] != NULL_PLACEHOLDER) : query = ("SELECT {0} from {1} where " + id_col + " = %s and ( {2} )").format(row['from_date_column'], row['from_table'], row['where_clause']) #logger.debug("QUERY3: %s %s", query, row) logger.info("QUERY3: %s %s", query, row) cur.execute(query, (personObj.convert_person_id_to_study(person_id),)) else: query = ("SELECT {0} from {1} where " + id_col + " = %s").format(row['from_date_column'], row['from_table']) #logger.debug("QUERY4: %s %s", query, row) logger.info("QUERY4: %s %s", query, row) cur.execute(query, (personObj.convert_person_id_to_study(person_id),)) value_rows = cur.fetchall() logger.debug("events.populate() from:%s to:%s rows:%d", from_table_name, row['to_table'], len(value_rows)) # LOOKUP the id (vocab, concept) from the mappings row concept_id = Concept.objects.get(vocabulary_id=row['value_vocabulary_id'], concept_code=row['value_concept_code']).concept_id # INSERT if (len(value_rows) == 0): logger.warn("no rows back from %s person:%s, with %s", query, person_id, row) elif (concept_id == None) : logger.error("No concept %s, %s", row['value_vocabulary_id'], row['value_concept_code']) else: for value_row in value_rows: if value_row[0] != None : logger.debug("VALUE ROWS pid:%s query:%s value:%s num-rows:%d", person_id, query, value_row, len(value_rows)) to_table_name=row['to_table'] # sometimes this is a date, sometimes a string. Use string, the lowest-common denominator, works for all sources the_date_value='' try: date_time_string = str(value_row[0]) (year, month, day) = date_time_string.split(' ')[0].split('-') the_date_value = "{0}/{1}/{2}".format(month, day, year) except: logger.error("populate raised on {}".format(date_time_string)) the_date_value = date_time_string # INSERT DEATH if to_table_name == 'Death': statement = "INSERT into death (person_id, death_date, death_datetime, death_type_concept_id, cause_concept_id)" \ + " values ( %s, %s, %s, %s, %s)" logger.debug("death: %s, %s, %s, %s, %s %s %s %s); ", statement, person_id, the_date_value, row['addl_value'], concept_id, row['value_vocabulary_id'], row['value_concept_code'], value_row[0] ) cur.execute(statement, (person_id, the_date_value, the_date_value, row['addl_value'], concept_id)) # INSERT VISIT OCCURRENCE elif to_table_name == 'visit_occurrence': statement = ("INSERT into visit_occurrence " "(visit_occurrence_id, person_id, visit_concept_id, visit_start_date, " " visit_start_datetime, visit_end_date, visit_type_concept_id)" " values ( %s, %s, %s, %s, %s, %s, %s)") logger.debug("visit %s %s %s %s %s %s %s %s", statement, visit_id, person_id, concept_id, the_date_value, row['addl_value'], row['value_vocabulary_id'], row['value_concept_code']) cur.execute(statement, (visit_id, person_id, concept_id, the_date_value, the_date_value, the_date_value, row['addl_value'])) visit_id += 1 # INSERT PROCEDURE OCCURRENCE elif to_table_name == 'procedure_occurrence': statement = ("INSERT into procedure_occurrence" " (procedure_occurrence_id, person_id, procedure_concept_id, " " procedure_date, procedure_datetime, procedure_type_concept_id)"\ " values ( %s, %s, %s, %s, %s, %s)") logger.debug("proc: %s %s %s %s *%s* %s %s %s %s", statement, procedure_id, person_id, concept_id, the_date_value, row['addl_value'], row['value_vocabulary_id'], row['value_concept_code'], value_row[0] ) cur.execute(statement, (procedure_id, person_id, concept_id, the_date_value, the_date_value, row['addl_value'])) procedure_id += 1 else: logger.error("unknown table name %s in events.populate() %s", to_table_name, row) else: logger.warn("None value in events_mapping.populate() with %s", value_row) value_rows=None cur.close() con.commit()
the-stack_0_12662
import unittest import requests class UnitTestsIbanAPI(unittest.TestCase): # https://ibanapi.com/get-api def test_get_get_api(self): print('test_get_get_api') params = ( ('api_key', 'API_KEY'), ) iban = "EE471000001020145685" url = "https://api.ibanapi.com/v1/validate/" + iban response = requests.get(url, params=params) print(response.text) if __name__ == '__main__': unittest.main()
the-stack_0_12663
""" formatting.py """ import math from enum import Enum, unique from typing import Dict, Iterable, List from .layer_info import LayerInfo @unique class Verbosity(Enum): """ Contains verbosity levels. """ QUIET, DEFAULT, VERBOSE = 0, 1, 2 class FormattingOptions: """ Class that holds information about formatting the table output. """ def __init__( self, max_depth: int, verbose: int, col_names: Iterable[str], col_width: int, ): self.max_depth = max_depth self.verbose = verbose self.col_names = col_names self.col_width = col_width self.layer_name_width = 40 def set_layer_name_width( self, summary_list: List[LayerInfo], align_val: int = 5 ) -> None: """ Set layer name width by taking the longest line length and rounding up to the nearest multiple of align_val. """ max_length = 0 for info in summary_list: depth_indent = info.depth * align_val + 1 max_length = max(max_length, len(str(info)) + depth_indent) if max_length >= self.layer_name_width: self.layer_name_width = math.ceil(max_length / align_val) * align_val def get_total_width(self) -> int: """ Calculate the total width of all lines in the table. """ return len(tuple(self.col_names)) * self.col_width + self.layer_name_width def format_row(self, layer_name: str, row_values: Dict[str, str]) -> str: """ Get the string representation of a single layer of the model. """ info_to_use = [row_values.get(row_type, "") for row_type in self.col_names] new_line = f"{layer_name:<{self.layer_name_width}} " for info in info_to_use: new_line += f"{info:<{self.col_width}} " return new_line.rstrip() + "\n"
the-stack_0_12664
import time import torch import functools import argparse import pyaudio import wave import torch.nn.functional as F from utils import data from ctcdecode import CTCBeamDecoder from data.utility import add_arguments, print_arguments parser = argparse.ArgumentParser(description=__doc__) add_arg = functools.partial(add_arguments, argparser=parser) parser.add_argument("--model_path", default="save_model/model.pth", type=str, help="trained model path. (default: %(default)s)") parser.add_argument("--lm_path", default="lm/zh_giga.no_cna_cmn.prune01244.klm", type=str, help="language model path. (default: %(default)s)") parser.add_argument("--record_time", default=5, type=int, help="record time for second. (default: %(default)s)") args = parser.parse_args() print_arguments(args) alpha = 0.8 beta = 0.3 cutoff_top_n = 40 cutoff_prob = 1.0 beam_width = 32 num_processes = 4 blank_index = 0 model = torch.load(args.model_path) model = model.cuda() model.eval() decoder = CTCBeamDecoder(model.vocabulary, args.lm_path, alpha, beta, cutoff_top_n, cutoff_prob, beam_width, num_processes, blank_index) def translate(vocab, out, out_len): return "".join([vocab[x] for x in out[0:out_len]]) def predict(wav_path): wav = data.load_audio(wav_path) spec = data.spectrogram(wav) spec.unsqueeze_(0) with torch.no_grad(): spec = spec.cuda() y = model.cnn(spec) y = F.softmax(y, 1) y_len = torch.tensor([y.size(-1)]) y = y.permute(0, 2, 1) # B * T * V print("decoding...") out, score, offset, out_len = decoder.decode(y, y_len) return translate(model.vocabulary, out[0][0], out_len[0][0]) def save_wave_file(filename, data): wf = wave.open(filename, "wb") wf.setnchannels(CHANNELS) wf.setsampwidth(SAMPWIDTH) wf.setframerate(RATE) wf.writeframes(b"".join(data)) wf.close() def record(wav_path, time=5): p = pyaudio.PyAudio() stream = p.open(format=pyaudio.paInt16, channels=CHANNELS, rate=RATE, input=True, frames_per_buffer=CHUNK) my_buf = [] print("录音中(%ds)" % time) for i in range(0, int(RATE / CHUNK * time)): data = stream.read(CHUNK) my_buf.append(data) print(".", end="", flush=True) save_wave_file(wav_path, my_buf) stream.close() if __name__ == '__main__': # 录音格式 RATE = 16000 CHUNK = 1024 CHANNELS = 1 SAMPWIDTH = 2 # 临时保存路径 save_path = 'dataset/record.wav' while True: _ = input("按下回车键开机录音,录音%s秒中:" % args.record_time) record(save_path, time=args.record_time) start = time.time() result_text = predict(save_path) end = time.time() print("识别时间:%dms,识别结果:%s" % (round((end - start) * 1000), result_text))
the-stack_0_12665
""" Put files into the LeoShadow subfolder. Usage: 1. convert.py <filename> LeoShadow x This copy file <filename> into the subfolder leoShadow, adds the prefix, and creates an empty file at the current location. After restarting Leo, <filename> will be re-created without annotations. 2. convert -all LeoShadow x Apply 'convert.py <filename> LeoShadow x' to all .py files. Must be run in the directory with the .py files. x is the prefix specified the for mod_shadow plugin. """ import os, sys, shutil def convert(filename, leoFolder, prefix): if not os.path.exists(leoFolder): os.mkdir(leoFolder) assert os.path.exists(leoFolder) else: assert os.path.isdir(leoFolder) dir, name = os.path.split(filename) newname = os.path.join(dir, leoFolder, prefix + name) if os.path.exists(newname): return print("Putting", filename, "into the shadow folder", leoFolder) os.rename(filename, newname) f = open(filename, "w") f.close() if __name__ == '__main__': scriptname, filename, leoFolder, prefix = sys.argv if filename == '-all': for filename in os.listdir("."): rest, extension = os.path.splitext(filename) if extension == '.py': if (extension not in ['.leo', '.pyc'] and not filename.startswith("convert")): if os.path.isfile(filename): convert(filename, leoFolder, prefix) else: convert(filename, leoFolder, prefix)
the-stack_0_12666
""" Helpers for plugin app """ import os import subprocess import pathlib import sysconfig import traceback import inspect import pkgutil from django.conf import settings from django.core.exceptions import AppRegistryNotReady # region logging / errors class IntegrationPluginError(Exception): """ Error that encapsulates another error and adds the path / reference of the raising plugin """ def __init__(self, path, message): self.path = path self.message = message def __str__(self): return self.message # pragma: no cover class MixinImplementationError(ValueError): """ Error if mixin was implemented wrong in plugin Mostly raised if constant is missing """ pass class MixinNotImplementedError(NotImplementedError): """ Error if necessary mixin function was not overwritten """ pass def log_error(error, reference: str = 'general'): """ Log an plugin error """ from plugin import registry # make sure the registry is set up if reference not in registry.errors: registry.errors[reference] = [] # add error to stack registry.errors[reference].append(error) def handle_error(error, do_raise: bool = True, do_log: bool = True, log_name: str = ''): """ Handles an error and casts it as an IntegrationPluginError """ package_path = traceback.extract_tb(error.__traceback__)[-1].filename install_path = sysconfig.get_paths()["purelib"] try: package_name = pathlib.Path(package_path).relative_to(install_path).parts[0] except ValueError: # is file - loaded -> form a name for that path_obj = pathlib.Path(package_path).relative_to(settings.BASE_DIR) path_parts = [*path_obj.parts] path_parts[-1] = path_parts[-1].replace(path_obj.suffix, '') # remove suffix # remove path prefixes if path_parts[0] == 'plugin': path_parts.remove('plugin') path_parts.pop(0) else: path_parts.remove('plugins') package_name = '.'.join(path_parts) if do_log: log_kwargs = {} if log_name: log_kwargs['reference'] = log_name log_error({package_name: str(error)}, **log_kwargs) if do_raise: raise IntegrationPluginError(package_name, str(error)) # endregion # region git-helpers def get_git_log(path): """ Get dict with info of the last commit to file named in path """ from plugin import registry output = None if registry.git_is_modern: path = path.replace(os.path.dirname(settings.BASE_DIR), '')[1:] command = ['git', 'log', '-n', '1', "--pretty=format:'%H%n%aN%n%aE%n%aI%n%f%n%G?%n%GK'", '--follow', '--', path] try: output = str(subprocess.check_output(command, cwd=os.path.dirname(settings.BASE_DIR)), 'utf-8')[1:-1] if output: output = output.split('\n') except subprocess.CalledProcessError: # pragma: no cover pass if not output: output = 7 * [''] # pragma: no cover return {'hash': output[0], 'author': output[1], 'mail': output[2], 'date': output[3], 'message': output[4], 'verified': output[5], 'key': output[6]} def check_git_version(): """returns if the current git version supports modern features""" # get version string try: output = str(subprocess.check_output(['git', '--version'], cwd=os.path.dirname(settings.BASE_DIR)), 'utf-8') except subprocess.CalledProcessError: # pragma: no cover return False # process version string try: version = output[12:-1].split(".") if len(version) > 1 and version[0] == '2': if len(version) > 2 and int(version[1]) >= 22: return True except ValueError: # pragma: no cover pass return False class GitStatus: """ Class for resolving git gpg singing state """ class Definition: """ Definition of a git gpg sing state """ key: str = 'N' status: int = 2 msg: str = '' def __init__(self, key: str = 'N', status: int = 2, msg: str = '') -> None: self.key = key self.status = status self.msg = msg N = Definition(key='N', status=2, msg='no signature',) G = Definition(key='G', status=0, msg='valid signature',) B = Definition(key='B', status=2, msg='bad signature',) U = Definition(key='U', status=1, msg='good signature, unknown validity',) X = Definition(key='X', status=1, msg='good signature, expired',) Y = Definition(key='Y', status=1, msg='good signature, expired key',) R = Definition(key='R', status=2, msg='good signature, revoked key',) E = Definition(key='E', status=1, msg='cannot be checked',) # endregion # region plugin finders def get_modules(pkg): """get all modules in a package""" context = {} for loader, name, ispkg in pkgutil.walk_packages(pkg.__path__): try: module = loader.find_module(name).load_module(name) pkg_names = getattr(module, '__all__', None) for k, v in vars(module).items(): if not k.startswith('_') and (pkg_names is None or k in pkg_names): context[k] = v context[name] = module except AppRegistryNotReady: # pragma: no cover pass except Exception as error: # this 'protects' against malformed plugin modules by more or less silently failing # log to stack log_error({name: str(error)}, 'discovery') return [v for k, v in context.items()] def get_classes(module): """get all classes in a given module""" return inspect.getmembers(module, inspect.isclass) def get_plugins(pkg, baseclass): """ Return a list of all modules under a given package. - Modules must be a subclass of the provided 'baseclass' - Modules must have a non-empty PLUGIN_NAME parameter """ plugins = [] modules = get_modules(pkg) # Iterate through each module in the package for mod in modules: # Iterate through each class in the module for item in get_classes(mod): plugin = item[1] if issubclass(plugin, baseclass) and plugin.PLUGIN_NAME: plugins.append(plugin) return plugins # endregion
the-stack_0_12667
import logging from botocore import exceptions import json import sys from utils.utils import get_region_name, get_price1, get_price2, handle_limit_exceeded_exception class Pricing: """For getting and returning the price of the Elastic IP's.""" #Filter for get_products pricing api call used to fetch EIP price. eip_filter = '[{{"Field": "location", "Value": "{r}", "Type": "TERM_MATCH"}},' \ ' {{"Field": "group", "Value": "ElasticIP:Address", "Type": "TERM_MATCH"}},' \ '{{"Field": "productFamily", "Value": "IP Address", "Type": "TERM_MATCH"}}]' def __init__(self, pricing_client=None, region=None): self.pricing_client = pricing_client self.region = region self.formatted_region = get_region_name(region) logging.basicConfig(level=logging.WARNING) self.logger = logging.getLogger() def get_eip_price(self): """Returns EIP price.""" try: f = self.eip_filter.format(r=self.formatted_region) data = self.pricing_client.get_products(ServiceCode='AmazonEC2', Filters=json.loads(f)) if "eu-west-1" in self.region: price = get_price2(data) return float(price) price = get_price1(data) return float(price) except exceptions.ClientError as error: handle_limit_exceeded_exception(error, 'eip pricing.py') sys.exit(1) except Exception as e: print("Error on line {} in eip pricing.py".format(sys.exc_info()[-1].tb_lineno) + " | Message: " + str(e)) sys.exit(1)
the-stack_0_12668
from collections import deque d = deque() for _ in range(int(input())): line = input().split() if line[0] == 'append': d.append(line[1]) elif line[0] == 'pop': d.pop() elif line[0] == 'popleft': d.popleft() elif line[0] == 'appendleft': d.appendleft(line[1]) print(*d)
the-stack_0_12669
from typing import List, Optional from enum import IntEnum import numpy as np import logging from numpy import random # The two following classes just make it convenient to select which mutation/recombination/selectoin to use with EA class Recombination(IntEnum): NONE = -1 # can be used when only mutation is required UNIFORM = 0 # uniform crossover (only really makes sense for function dimension > 1) INTERMEDIATE = 1 # intermediate recombination class Mutation(IntEnum): NONE = -1 # Can be used when only recombination is required UNIFORM = 0 # Uniform mutation GAUSSIAN = 1 # Gaussian mutation class ParentSelection(IntEnum): NEUTRAL = 0 FITNESS = 1 TOURNAMENT = 2 class Member: """ Class to simplify member handling. """ def __init__(self, initial_x: np.ndarray, target_function: callable, bounds: List[float], mutation: Mutation, recombination: Recombination, sigma: Optional[float] = None, recom_prob: Optional[float] = None) -> None: """ Init :param initial_x: Initial coordinate of the member :param target_function: The target function that determines the fitness value :param bounds: Allowed bounds. For simplicities sake we assume that all elements in initial_x have the same bounds -> bounds[0] lower bound && bounds[1] upper bounds :param mutation: hyperparameter that determines which mutation type use :param recombination: hyperparameter that determines which recombination type to use :param sigma: Optional hyperparameter that is only active if mutation is gaussian :param recom_prob: Optional hyperparameter that is only active if recombination is uniform """ self._x = initial_x.astype(float) # astype is crucial here. Otherwise numpy might cast everything to int self._f = target_function self.__bounds = bounds self._age = 0 # basically indicates how many offspring were generated from this member self._mutation = mutation self._recombination = recombination self._x_changed = True self._fit = None self._sigma = sigma self._recom_prob = recom_prob self.logger = logging.getLogger(self.__class__.__name__) @property # fitness can only be queried never set def fitness(self): if self._x_changed: # Only if the x_coordinate has changed we need to evaluate the fitness. self._x_changed = False self._fit = self._f(self._x) return self._fit # otherwise we can return the cached value @property # properties let us easily handle getting and setting without exposing our private variables def x_coordinate(self): return self._x @x_coordinate.setter def x_coordinate(self, value): assert np.all((self.__bounds[0] <= value) & (value <= self.__bounds[1])), 'Member out of bounds' self._x_changed = True self._x = value def mutate(self): """ Mutation which creates a new offspring :return: new member who is based on this member """ new_x = self.x_coordinate.copy() self.logger.debug('new point before mutation:') self.logger.debug(new_x) # modify new_x either through uniform or gaussian mutation if self._mutation == Mutation.UNIFORM: new_x = np.random.uniform(self.__bounds[0], self.__bounds[1], new_x.size) elif self._mutation == Mutation.GAUSSIAN: assert self._sigma, 'Sigma has to be set when gaussian mutation is used' new_x = new_x + self._sigma*np.random.randn() new_x[new_x < self.__bounds[0]] = self.__bounds[0] new_x[new_x > self.__bounds[1]] = self.__bounds[1] elif self._mutation != Mutation.NONE: # We won't consider any other mutation types raise NotImplementedError self.logger.debug('new point after mutation:') self.logger.debug(new_x) child = Member(new_x, self._f, self.__bounds, self._mutation, self._recombination, self._sigma, self._recom_prob) self._age += 1 return child def recombine(self, partner): """ Recombination of this member with a partner :param partner: Member :return: new offspring based on this member and partner """ if self._recombination == Recombination.INTERMEDIATE: new_x = 0.5*(self.x_coordinate + partner.x_coordinate) elif self._recombination == Recombination.UNIFORM: assert self._recom_prob is not None, \ 'for this recombination type you have to specify the recombination probability' cross = np.random.binomial(1,self._recom_prob,self.x_coordinate.size) new_x = self.x_coordinate*cross + partner.x_coordinate*(1-cross) elif self._recombination == Recombination.NONE: new_x = self.x_coordinate.copy() # copy is important here to not only get a reference else: raise NotImplementedError self.logger.debug('new point after recombination:') self.logger.debug(new_x) child = Member(new_x, self._f, self.__bounds, self._mutation, self._recombination, self._sigma, self._recom_prob) self._age += 1 return child def __str__(self): """Makes the class easily printable""" str = "Population member: Age={}, x={}, f(x)={}".format(self._age, self.x_coordinate, self.fitness) return str def __repr__(self): """Will also make it printable if it is an entry in a list""" return self.__str__() + '\n' class EA: def __init__(self, target_func: callable, population_size: int = 10, problem_dim: int = 2, problem_bounds: List = [-30, 30], mutation_type: Mutation = Mutation.UNIFORM, recombination_type: Recombination = Recombination.INTERMEDIATE, sigma: float = 1., recom_proba: float = 0.5, selection_type: ParentSelection = ParentSelection.NEUTRAL, total_number_of_function_evaluations: int = 200, children_per_step: int = 5, fraction_mutation: float = .5 ): """ Simple evolutionary algorithm :param target_func: callable target function we optimize :param population_size: int :param problem_dim: int :param problem_bounds: list[int] used to make sure population members are valid :param mutation_type: hyperparameter to set mutation strategy :param recombination_type: hyperparameter to set recombination strategy :param sigma: conditional hyperparameter dependent on mutation_type GAUSSIAN :param recom_proba: conditional hyperparameter dependent on recombination_type UNIFORM :param selection_type: hyperparameter to set selection strategy :param total_number_of_function_evaluations: maximum allowed function evaluations :param children_per_step: how many children to produce per step :param fraction_mutation: balance between sexual and asexual reproduction """ assert 0 <= fraction_mutation <= 1 assert 0 < children_per_step assert 0 < total_number_of_function_evaluations assert 0 < sigma assert 0 < problem_dim assert 0 < population_size # Step 1: initialize Population self.population = [ Member(np.random.uniform(*problem_bounds, problem_dim), target_func, problem_bounds, mutation_type, recombination_type, sigma, recom_proba ) for _ in range(population_size)] self.population.sort(key=lambda x: x.fitness) # sort population by fitness for easier handling downstream self.pop_size = population_size self.selection = selection_type self.logger = logging.getLogger(self.__class__.__name__) self.logger.info('Initial average fitness of population: %f', self.get_average_fitness()) self.max_func_evals = total_number_of_function_evaluations self._func_evals = population_size self.num_children = children_per_step self.frac_mutants = fraction_mutation # will store the optimization trajectory and lets you easily observe how often self.trajectory = [self.population[0]] # a new best member was generated def get_average_fitness(self) -> float: """Helper to quickly access average population fitness""" return np.mean(list(map(lambda x: x.fitness, self.population))) def select_parents(self): """ Method that implements all selection mechanism. For ease of computation we assume that the population members are sorted according to their fitness :return: list of ids of selected parents. """ parent_ids = [] mu = self.num_children if self.selection == ParentSelection.NEUTRAL: for i in range(mu): id = random.randint(0, self.pop_size) parent_ids.append(id) elif self.selection == ParentSelection.FITNESS: for i in range(mu): max = sum([c.fitness for c in self.population]) pick = random.uniform(0, max) current = 0 for id, member in zip(range(self.pop_size), self.population): current+= member.fitness if current > pick: parent_ids.append(self.pop_size-1-id) break elif self.selection == ParentSelection.TOURNAMENT: for i in range(mu): tournament_size = 5 if self.pop_size <= tournament_size: parent_ids.append(0) else: arr = np.array([1]*tournament_size + [0] * (self.pop_size-tournament_size)) np.random.shuffle(arr) one_idx= np.where(arr==1) parent_ids.append(one_idx[0][0]) else: raise NotImplementedError self.logger.debug('Selected parents:') self.logger.debug(parent_ids) return parent_ids def step(self) -> float: """ Performs one step of parent selection -> offspring creation -> survival selection :return: average population fittness """ # Step 2: Parent selection parent_ids = self.select_parents() # Step 3: Variation / create offspring children = [] for id in parent_ids: # for each parent create exactly one offspring (use the frac_mutants) parameter to determine # if more recombination or mutation should be performed parent = self.population[id] new_pop = parent.mutate() if np.random.uniform(0., 1., 1) < self.frac_mutants: new_pop = parent.recombine(new_pop) children.append(new_pop) self._func_evals += 1 self.logger.debug('Children:') self.logger.debug(children) # Step 4: Survival selection # (\mu + \lambda)-selection i.e. combine offspring and parents in one sorted list, keep the #pop_size best self.population.extend(children) self.population.sort(key=lambda x: x.fitness) self.population = self.population[:self.pop_size] self.trajectory.append(self.population[0]) return self.get_average_fitness() def optimize(self): """ Simple optimization loop that stops after a predetermined number of function evaluations :return: """ step = 1 while self._func_evals < self.max_func_evals: avg_fitness = self.step() self.logger.info( 'Step {:>3d} | Average fitness {:>10.7f} | Best fitness {:>10.7f} | #Func Evals: {:>4d}'.format( step, avg_fitness, self.population[0].fitness, self._func_evals)) step += 1 return self.population[0] if __name__ == '__main__': """ Simple main to give an example of how to use the EA """ from target_function import ackley np.random.seed(0) # fix seed for comparisons sake logging.basicConfig(level=logging.INFO) dimensionality = 2 max_func_evals = 500 * dimensionality pop_size = 20 ea = EA(ackley, pop_size, dimensionality, selection_type=ParentSelection.TOURNAMENT, total_number_of_function_evaluations=max_func_evals) optimum = ea.optimize() # print(ea.trajectory) print(optimum) print('#' * 120) ea = EA(ackley, pop_size, dimensionality, selection_type=ParentSelection.FITNESS, total_number_of_function_evaluations=max_func_evals) optimum = ea.optimize() # print(ea.trajectory) print(optimum) print('#' * 120) ea = EA(ackley, pop_size, dimensionality, selection_type=ParentSelection.NEUTRAL, total_number_of_function_evaluations=max_func_evals) optimum = ea.optimize() # print(ea.trajectory) print(optimum) print('#' * 120)
the-stack_0_12670
# Copyright Amazon.com Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may # not use this file except in compliance with the License. A copy of the # License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. """Integration tests for the SageMaker TrainingJob API. """ import botocore import pytest import logging from typing import Dict from acktest.resources import random_suffix_name from acktest.k8s import resource as k8s from e2e import ( service_marker, create_sagemaker_resource, wait_for_status, sagemaker_client, ) from e2e.replacement_values import REPLACEMENT_VALUES from e2e.bootstrap_resources import get_bootstrap_resources from e2e.common import config as cfg from time import sleep RESOURCE_PLURAL = "trainingjobs" @pytest.fixture(scope="function") def xgboost_training_job_debugger(): resource_name = random_suffix_name("xgboost-trainingjob-debugger", 32) replacements = REPLACEMENT_VALUES.copy() replacements["TRAINING_JOB_NAME"] = resource_name reference, _, resource = create_sagemaker_resource( resource_plural=RESOURCE_PLURAL, resource_name=resource_name, spec_file="xgboost_trainingjob_debugger", replacements=replacements, ) assert resource is not None assert k8s.get_resource_arn(resource) is not None yield (reference, resource) if k8s.get_resource_exists(reference): _, deleted = k8s.delete_custom_resource(reference, 3, 10) assert deleted def get_sagemaker_training_job(training_job_name: str): try: training_job = sagemaker_client().describe_training_job( TrainingJobName=training_job_name ) return training_job except botocore.exceptions.ClientError as error: logging.error( f"SageMaker could not find a training debugger job with the name {training_job_name}. Error {error}" ) return None # TODO: Move to __init__.py def get_training_sagemaker_status(training_job_name: str): training_sm_desc = get_sagemaker_training_job(training_job_name) return training_sm_desc["TrainingJobStatus"] def get_training_resource_status(reference: k8s.CustomResourceReference): resource = k8s.get_resource(reference) assert "trainingJobStatus" in resource["status"] return resource["status"]["trainingJobStatus"] def get_training_debugger_sagemaker_status(training_job_name: str): training_sm_desc = get_sagemaker_training_job(training_job_name) return training_sm_desc["DebugRuleEvaluationStatuses"][0]["RuleEvaluationStatus"] def get_training_debugger_resource_status(reference: k8s.CustomResourceReference): resource = k8s.get_resource(reference) resource_status = resource["status"]["debugRuleEvaluationStatuses"][0][ "ruleEvaluationStatus" ] assert resource_status is not None return resource_status @service_marker class TestTrainingDebuggerJob: def _wait_sagemaker_training_status( self, training_job_name, expected_status: str, wait_periods: int = 30, period_length: int = 30, ): return wait_for_status( expected_status, wait_periods, period_length, get_training_sagemaker_status, training_job_name, ) def _wait_resource_training_status( self, reference: k8s.CustomResourceReference, expected_status: str, wait_periods: int = 30, period_length: int = 30, ): return wait_for_status( expected_status, wait_periods, period_length, get_training_resource_status, reference, ) def _assert_training_status_in_sync( self, training_job_name, reference, expected_status ): assert ( self._wait_sagemaker_training_status(training_job_name, expected_status) == self._wait_resource_training_status(reference, expected_status) == expected_status ) def _wait_sagemaker_training_debugger_status( self, training_job_name, expected_status: str, wait_periods: int = 30, period_length: int = 30, ): return wait_for_status( expected_status, wait_periods, period_length, get_training_debugger_sagemaker_status, training_job_name, ) def _wait_resource_training_debugger_status( self, reference: k8s.CustomResourceReference, expected_status: str, wait_periods: int = 30, period_length: int = 30, ): return wait_for_status( expected_status, wait_periods, period_length, get_training_debugger_resource_status, reference, ) def _assert_training_debugger_status_in_sync( self, training_job_name, reference, expected_status ): assert ( self._wait_sagemaker_training_debugger_status( training_job_name, expected_status ) == self._wait_resource_training_debugger_status(reference, expected_status) == expected_status ) def test_completed(self, xgboost_training_job_debugger): (reference, resource) = xgboost_training_job_debugger assert k8s.get_resource_exists(reference) training_job_name = resource["spec"].get("trainingJobName", None) assert training_job_name is not None training_job_desc = get_sagemaker_training_job(training_job_name) assert k8s.get_resource_arn(resource) == training_job_desc["TrainingJobArn"] assert training_job_desc["TrainingJobStatus"] == cfg.JOB_STATUS_INPROGRESS assert k8s.wait_on_condition(reference, "ACK.ResourceSynced", "False") self._assert_training_status_in_sync( training_job_name, reference, cfg.JOB_STATUS_COMPLETED ) # TODO: This test is failing assert k8s.wait_on_condition(reference, "ACK.ResourceSynced", "False") self._assert_training_debugger_status_in_sync( training_job_name, reference, cfg.DEBUGGERJOB_STATUS_COMPLETED ) assert k8s.wait_on_condition(reference, "ACK.ResourceSynced", "True") # Check that you can delete a completed resource from k8s _, deleted = k8s.delete_custom_resource(reference, 3, 10) assert deleted is True
the-stack_0_12671
import setuptools with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup( name='scrapy-autounit', version='0.0.22', author='', author_email='', description='Automatic unit test generation for Scrapy.', long_description=long_description, long_description_content_type='text/markdown', url='https://github.com/fcanobrash/scrapy-autounit', packages=setuptools.find_packages(), classifiers=[ 'Programming Language :: Python :: 3', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', ], install_requires=[ 'pathlib', 'datadiff==2.0.0', ], entry_points = { 'console_scripts': ['autounit-inspect=scrapy_autounit.inspect:main'], }, )
the-stack_0_12673
# find the minimum number of coins needed to make up a given amount # greedy version, not dynamic programming version denominations = [1, 2, 5, 10, 20, 50, 100, 1000] # add the largest coin that does not exceed the target amount to the total def coins_required(amount): total = 0 coins = [] for denomination in denominations[::-1]: while total + denomination <= amount: total += denomination coins.append(denomination) return coins print(coins_required(2035))
the-stack_0_12675
from typing import List from secrets import choice from discord.ext import commands from .. import config keywords = ["dm"] reply = ( "SCAM ALERT! Never accept any trade on DEVNET, SOL on this network are fake and unlimited.", "SCAM ALERT! PLEASE ONLY DO BUSINESS ON MAGICEDEN OR SOLANART.", "SCAM ALERT! TO STAY SAFE, PLEASE TURN OFF YOUR DMS!!.", ) def check(word, list): return True if word in list else False class ScamAlert(commands.Cog): bot: commands.Bot allowed_channels: List[str] def __init__(self, bot): self.bot = bot self.allowed_channels = config.allowed_check_scam_channels @commands.Cog.listener() async def on_message(self, message): if message.author.bot: return if not message.content: return if message.channel.name in self.allowed_channels: msg_to_list = message.content.split() msg_to_list = [x.lower() for x in msg_to_list] for word in keywords: if check(word.lower(), msg_to_list): await message.channel.send(choice(reply))
the-stack_0_12676
# Copyright 2020 . All Rights Reserved. # Author : Lei Sha from Hyperparameters import args import argparse parser = argparse.ArgumentParser() parser.add_argument('--gpu', '-g') parser.add_argument('--modelarch', '-m') parser.add_argument('--aspect', '-a') parser.add_argument('--choose', '-c') cmdargs = parser.parse_args() print(cmdargs) usegpu = True if cmdargs.gpu is None: usegpu = False args['device'] = 'cpu' else: usegpu = True args['device'] = 'cuda:' + str(cmdargs.gpu) if cmdargs.modelarch is None: args['model_arch'] = 'lstm' else: args['model_arch'] = cmdargs.modelarch if cmdargs.aspect is None: args['aspect'] = 0 else: args['aspect'] = int(cmdargs.aspect) if cmdargs.choose is None: args['choose'] = 0 else: args['choose'] = int(cmdargs.aspect) import functools print = functools.partial(print, flush=True) import os from textdataBeer import TextDataBeer import time, sys import torch import torch.autograd as autograd import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from tqdm import tqdm import time, datetime import math, random import nltk import pickle from nltk.translate.bleu_score import corpus_bleu, SmoothingFunction # import matplotlib.pyplot as plt import numpy as np import copy from LanguageModel_beer import LanguageModel import LSTM_IB_GAN_beer def asMinutes(s): m = math.floor(s / 60) s -= m * 60 return '%dm %ds' % (m, s) def timeSince(since, percent): now = time.time() s = now - since es = s / (percent) rs = es - s return '%s (%s)' % (asMinutes(s), datetime.datetime.now()) class Runner: def __init__(self): self.model_path = args['rootDir'] + '/chargemodel_' + args['model_arch'] + '.mdl' def main(self): if args['model_arch'] in ['lstmibgan']: args['classify_type'] = 'single' args['batchSize'] = 256 self.textData = TextDataBeer('beer') # self.start_token = self.textData.word2index['START_TOKEN'] # self.end_token = self.textData.word2index['END_TOKEN'] args['vocabularySize'] = self.textData.getVocabularySize() args['chargenum'] = 5 args['embeddingSize'] = self.textData.index2vector.shape[1] print(self.textData.getVocabularySize()) args['model_arch'] = 'lstmibgan' # args['aspect'] = 0 args['hiddenSize'] = 200 print(args) if args['model_arch'] == 'lstmibgan': print('Using LSTM information bottleneck GAN model for Beer.') LM = torch.load(args['rootDir']+'/LMbeer.pkl', map_location=args['device']) for param in LM.parameters(): param.requires_grad = False ppl = self.CalPPL(LM) print('PPL=',ppl) # LM=0 LSTM_IB_GAN_beer.train(self.textData, LM, self.textData.index2vector) def indexesFromSentence(self, sentence): return [self.textData.word2index[word] if word in self.textData.word2index else self.textData.word2index['UNK'] for word in sentence] def tensorFromSentence(self, sentence): indexes = self.indexesFromSentence(sentence) # indexes.append(self.textData.word2index['END_TOKEN']) return torch.tensor(indexes, dtype=torch.long, device=device).view(-1, 1) def evaluate(self, sentence, correctlabel, max_length=20): with torch.no_grad(): input_tensor = self.tensorFromSentence(sentence) input_length = input_tensor.size()[0] # encoder_hidden = encoder.initHidden() # encoder_outputs = torch.zeros(max_length, encoder.hidden_size, device=device) x = {} # print(input_tensor) x['enc_input'] = torch.transpose(input_tensor, 0, 1) x['enc_len'] = [input_length] x['labels'] = [correctlabel] # print(x['enc_input'], x['enc_len']) # print(x['enc_input'].shape) decoded_words, label, _ = self.model.predict(x, True) return decoded_words, label def evaluateRandomly(self, n=10): for i in range(n): sample = random.choice(self.textData.datasets['train']) print('>', sample) output_words, label = self.evaluate(sample[2], sample[1]) output_sentence = ' '.join(output_words[0]) # batch=1 print('<', output_sentence, label) print('') def CalPPL(self, LM): batches = self.textData.getBatches('dev') total = 0 loss_sum = 0 for index, batch in enumerate(batches): x = {} x['dec_input'] = autograd.Variable(torch.LongTensor(batch.decoderSeqs)).to(args['device']) x['dec_len'] = batch.decoder_lens x['dec_target'] = autograd.Variable(torch.LongTensor(batch.targetSeqs)).to(args['device']) total += x['dec_input'].size()[0] print(x['dec_input'].size()) embedding = nn.Embedding.from_pretrained(torch.FloatTensor(self.textData.index2vector)) decoderTargetsEmbeddings = embedding(x['dec_target']) _, recon_loss = LM.getloss(x['dec_input'],decoderTargetsEmbeddings, x['dec_target'] ) loss_sum += recon_loss.sum() loss_mean = loss_sum / total return torch.exp(loss_mean) if __name__ == '__main__': r = Runner() r.main()
the-stack_0_12678
import skimage.transform as st import numpy as np import matplotlib.pyplot as plt from skimage import data, feature def ex_1(): # Hough Transform image = np.zeros((100, 100)) idx = np.arange(25, 75) image[idx[::-1], idx] = 255 image[idx, idx] = 255 h, theta, d = st.hough_line(image) fig, (ax0, ax1) = plt.subplots(1, 2) plt.tight_layout() ax0.imshow(image, plt.cm.gray) ax0.set_title('input') ax0.set_axis_off() ax1.imshow(np.log(1 + h)) ax1.set_title('Hough') ax1.set_xlabel('Angles (degrees)') ax1.set_ylabel('Distance (pixels)') ax1.axis('image') plt.show() def ex_2(): # Hough Transform Line Detection image = np.zeros((100, 100)) idx = np.arange(25, 75) image[idx[::-1], idx] = 255 image[idx, idx] = 255 h, theta, d = st.hough_line(image) fig, (ax0, ax1, ax2) = plt.subplots(1, 3) plt.tight_layout() ax0.imshow(image, plt.cm.gray) ax0.set_title('input image') ax0.set_axis_off() ax1.imshow(np.log(1 + h)) ax1.set_title('Hough transform') ax1.set_xlabel('Angles (degrees)') ax1.set_ylabel('Distance (pixels)') ax1.axis('image') ax2.imshow(image, plt.cm.gray) row1, col1 = image.shape for _, angle, dist in zip(*st.hough_line_peaks(h, theta, d)): y0 = (dist - 0 * np.cos(angle)) / np.sin(angle) y1 = (dist - col1 * np.cos(angle)) / np.sin(angle) ax2.plot((0, col1), (y0, y1), '-r') ax2.axis((0, col1, row1, 0)) ax2.set_title('Detected') ax2.set_axis_off() plt.show() def ex_3(): # Probabilistic Hough Transform image = data.camera() edges = feature.canny(image, sigma=2, low_threshold=1, high_threshold=25) lines = st.probabilistic_hough_line(edges, threshold=10, line_length=5, line_gap=3) fig, (ax0, ax1, ax2) = plt.subplots(1, 3) plt.tight_layout() ax0.imshow(image, plt.cm.gray) ax0.set_title('input') ax0.set_axis_off() ax1.imshow(edges, plt.cm.gray) ax1.set_title('canny edges') ax1.set_axis_off() ax2.imshow(edges * 0) for line in lines: p0, p1 = line ax2.plot((p0[0], p1[0]), (p0[1], p1[1])) row2, col2 = image.shape ax2.axis((0, col2, row2, 0)) ax2.set_title('probabilistic') ax2.set_axis_off() plt.show() if __name__ == '__main__': ex_3()
the-stack_0_12682
from django.utils.encoding import force_unicode from django.forms.forms import BoundField from django.utils.html import conditional_escape def as_p(instance=None, cls=None): "Returns this form rendered as HTML <p>s." if not instance and not cls: return TypeError('as_p takes at least 1 argument (0 given)') elif instance and cls: return TypeError('as_p takes at most 1 argument (2 given)') elif cls: # This might not always work, if your form requires params, # pass an instance instead of a class! instance = cls() return html_output( instance, normal_row = u'<p%(html_class_attr)s>%(label)s %(field)s%(help_text)s</p>', error_row = u'%s', row_ender = '</p>', help_text_html = u' %s', errors_on_separate_row = True) def as_div(instance=None, cls=None): "Returns this form rendered as HTML <div>s." if not instance and not cls: return TypeError('as_div takes at least 1 argument (0 given)') elif instance and cls: return TypeError('as_div takes at most 1 argument (2 given)') elif cls: # This might not always work, if your form requires params, # pass an instance instead of a class! instance = cls() return html_output( instance, normal_row = u'<div%(html_class_attr)s>%(label)s %(field)s%(help_text)s</div>', error_row = u'%s', row_ender = '</div>', help_text_html = u' %s', errors_on_separate_row = True) def as_table(instance=None, cls=None): "Returns this form rendered as HTML <tr>s -- excluding the <table></table>." if not instance and not cls: return TypeError('as_table takes at least 1 argument (0 given)') elif instance and cls: return TypeError('as_table takes at most 1 argument (2 given)') elif cls: # This might not always work, if your form requires params, # pass an instance instead of a class! instance = cls() return html_output( instance, normal_row = u'<tr%(html_class_attr)s><th>%(label)s</th><td>%(errors)s%(field)s%(help_text)s</td></tr>', error_row = u'<tr><td colspan="2">%s</td></tr>', row_ender = u'</td></tr>', help_text_html = u'<br />%s', errors_on_separate_row = False) def as_ul(instance=None, cls=None): "Returns this form rendered as HTML <li>s -- excluding the <ul></ul>." if not instance and not cls: return TypeError('as_ul takes at least 1 argument (0 given)') elif instance and cls: return TypeError('as_ul takes at most 1 argument (2 given)') elif cls: # This might not always work, if your form requires params, # pass an instance instead of a class! instance = cls() return html_output( instance, normal_row = u'<li%(html_class_attr)s>%(errors)s%(label)s %(field)s%(help_text)s</li>', error_row = u'<li>%s</li>', row_ender = '</li>', help_text_html = u' %s', errors_on_separate_row = False) def html_output(form, normal_row, error_row, row_ender, help_text_html, errors_on_separate_row): "Helper function for outputting HTML. Used by as_table(), as_ul(), as_p()." top_errors = form.non_field_errors() # Errors that should be displayed above all fields. output, hidden_fields = [], [] for name, field in form.fields.items(): html_class_attr = '' bf = BoundField(form, field, name) bf_errors = form.error_class([conditional_escape(error) for error in bf.errors]) # Escape and cache in local variable. if bf.is_hidden: if bf_errors: top_errors.extend([u'(Hidden field %s) %s' % (name, force_unicode(e)) for e in bf_errors]) hidden_fields.append(unicode(bf)) else: # Create a 'class="..."' atribute if the row should have any # CSS classes applied. css_classes = bf.css_classes() if css_classes: html_class_attr = ' class="%s"' % css_classes if errors_on_separate_row: output.append(error_row % \ '{%% if form.%s.errors %%}{%% for error in form.%s.errors %%}{{ error }}{%% endfor %%}{%% endif %%}' \ % (name, name,)) output.append(normal_row % { 'errors': \ '{%% if form.%s.errors %%}{%% for error in form.%s.errors %%}{{ error }}{%% endfor %%}{%% endif %%}' \ % (name, name,), 'label': '{{ form.%s.label_tag }}' % (name,), 'field': '{{ form.%s }}' % (name,), 'help_text': '', 'html_class_attr': html_class_attr }) if top_errors: output.insert(0, r'{% if form.errors %}{% for field, error in form.errors %}(Hidden field {{ field }}) {{ error }}{% endfor %}{% end if %}' ) if hidden_fields: # Insert any hidden fields in the last row. str_hidden = u'{%% for field in form.hidden_fields %%}{{ field }}{%% endfor %%}' if output: last_row = output[-1] # Chop off the trailing row_ender (e.g. '</td></tr>') and # insert the hidden fields. if not last_row.endswith(row_ender): # This can happen in the as_p() case (and possibly others # that users write): if there are only top errors, we may # not be able to conscript the last row for our purposes, # so insert a new, empty row. last_row = (normal_row % {'errors': '', 'label': '', 'field': '', 'help_text':'', 'html_class_attr': html_class_attr}) output.append(last_row) output[-1] = last_row[:-len(row_ender)] + str_hidden + row_ender else: # If there aren't any rows in the output, just append the # hidden fields. output.append(str_hidden) return u'\n'.join(output)
the-stack_0_12683
import numpy as np import statistics as stat from config import * def process_info(info): """ Process a line of info from data source and extract distance :param info: a line of info. See below for format sample :return: directory of {node_id (str): distance} """ dist = {} rough_split = info.split('[') if len(rough_split) <= 2: return None dis_list = rough_split[1].split(']')[0].split(',') if len(dis_list) < 4: return None id_list = rough_split[2].split(']')[0].split(',') if len(id_list) < 4: return None if (len(dis_list) != len(id_list)) | (len(dis_list) < 4): return None for i in range(0, len(dis_list)): id_list[i] = id_list[i].strip('"') if id_list[i] in ref_nodes: dist[id_list[i]] = float(dis_list[i].strip('"')) if len(dist) < 4: return None return dist pre_process_threshold = 0.5 def pre_process_data(ranges): """ Pre-process a list of ranges from one reference node and eliminate points that are away from the medium by pre_process_threshold :param ranges: a list of ranges :return average range after filtering """ median = stat.median(ranges) s = 0 # sum c = 0 # count for r in ranges: if median - pre_process_threshold < r < median + pre_process_threshold: s += r c += 1 if c == 0: return None else: return s / c def calc_position(dist): """ Calculate position based on distances to reference point :param dist: directory of {node_id (str): distance} :return: 1D np.array of position [x, y, z] """ A = np.array([0, 0, 0]) B = np.array([0]) for i in dist.keys(): if i == base_node: continue A = np.vstack((A, ref_nodes[i] - ref_nodes[base_node])) B = np.vstack( (B, dist[i] ** 2 - dist[base_node] ** 2 - np.dot(ref_nodes[i] ** 2 - ref_nodes[base_node] ** 2, np.array([1, 1, 1])))) A = A[1:len(dist)] B = B[1:len(dist)] * (-0.5) AT = np.transpose(A) B = np.dot(AT, B) rev = np.linalg.inv(np.dot(AT, A)) pos = np.dot(rev, B) posT = np.transpose(pos) return posT[0] if __name__ == '__main__': dist = process_info( '{"utime": 2157172559,"survey": {"seq": 26,"mask": 15,"nrngs": [{"mask": 14,"nrng": ["2.495","3.583","2.443"]},{"mask": 13,"nrng": ["1.613","5.014","3.034"]},{"mask": 11,"nrng": ["3.550","4.971","5.377"]},{"mask": 7,"nrng": ["4.971","3.018","5.377"]}]}}') if dist is not None: print(dist) pos = calc_position(dist) if pos is not None: print(pos) else: print("Fail to calculate position") else: print("Fail to process info")
the-stack_0_12685
# Copyright (c) 2013, Yanky and contributors # For license information, please see license.txt import frappe def execute(filters=None): columns, data = [], [] columns = get_columns() article_data = get_article_data(filters) for article in article_data: temp_dict = { "title":article.get("title"), "isbn":article.get("isbn"), "stock":article.get("stock"), "total_quantity":article.get("total_quantity"), "issued_count":article.get("total_quantity") - article.get("stock") } data.append(temp_dict) chart = get_chart() return columns, data, None, chart def get_columns(): columns = ["" for column in range(5)] columns[0] = { "label": ("Title"), "fieldname": "title", "fieldtype": "Link", "options": "Article", "width": 200 } columns[1] = { "label": ("Isbn"), "fieldname": "isbn", "width": 200 } columns[2] = { "label": ("Stock"), "fieldname": "stock", "width": 150 } columns[3] = { "label": ("Total Quantity"), "fieldname": "total_quantity", "width": 150 } columns[4] = { "label": ("Issued Count"), "fieldname": "issued_count", "width": 150 } return columns def get_article_data(filters) : if filters: query = "select title, isbn, stock, total_quantity from tabArticle where title = '" + str(filters.get("title_filter")) + "'" article_data = frappe.db.sql(query, as_dict=1) else: article_data = frappe.db.sql("""select title, isbn, stock, total_quantity from tabArticle """, as_dict=1) return article_data def get_chart(): chart_data = { "labels": frappe.db.get_list('Article', fields=['title'],as_list=True), "datasets": [ { 'name': "Stock", 'values': frappe.db.get_list('Article',fields=['stock'],as_list=True) }, { 'name': "Total Quantity", 'values': frappe.db.get_list('Article',fields=['total_quantity'],as_list=True) } ] } chart = { "title": "Book Avialability", "data": chart_data, "type": 'bar', "height": 250, "color": ['#4463F0', '#7cd6fd'] } return chart
the-stack_0_12686
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import atexit import bisect import multiprocessing as mp from collections import deque import cv2 import torch from detectron2.data import MetadataCatalog from detectron2.engine.defaults import DefaultPredictor from detectron2.utils.video_visualizer import VideoVisualizer from detectron2.utils.visualizer import ColorMode, Visualizer class VisualizationDemo(object): def __init__(self, cfg, instance_mode=ColorMode.IMAGE, parallel=False): """ Args: cfg (CfgNode): instance_mode (ColorMode): parallel (bool): whether to run the model in different processes from visualization. Useful since the visualization logic can be slow. """ self.metadata = MetadataCatalog.get( cfg.DATASETS.TEST[0] if len(cfg.DATASETS.TEST) else "__unused" ) self.cpu_device = torch.device("cpu") self.instance_mode = instance_mode self.parallel = parallel if parallel: num_gpu = torch.cuda.device_count() self.predictor = AsyncPredictor(cfg, num_gpus=num_gpu) else: self.predictor = DefaultPredictor(cfg) self.metadata.thing_classes.append("object") def run_on_image(self, image): """ Args: image (np.ndarray): an image of shape (H, W, C) (in BGR order). This is the format used by OpenCV. Returns: predictions (dict): the output of the model. vis_output (VisImage): the visualized image output. """ vis_output = None predictions = self.predictor(image) # Convert image from OpenCV BGR format to Matplotlib RGB format. image = image[:, :, ::-1] visualizer = Visualizer(image, self.metadata, instance_mode=self.instance_mode) if "panoptic_seg" in predictions: panoptic_seg, segments_info = predictions["panoptic_seg"] vis_output = visualizer.draw_panoptic_seg_predictions( panoptic_seg.to(self.cpu_device), segments_info ) else: if "sem_seg" in predictions: vis_output = visualizer.draw_sem_seg( predictions["sem_seg"].argmax(dim=0).to(self.cpu_device) ) if "instances" in predictions: instances = predictions["instances"].to(self.cpu_device) vis_output = visualizer.draw_instance_predictions(predictions=instances) return predictions, vis_output def _frame_from_video(self, video): while video.isOpened(): success, frame = video.read() if success: yield frame else: break def run_on_video(self, video): """ Visualizes predictions on frames of the input video. Args: video (cv2.VideoCapture): a :class:`VideoCapture` object, whose source can be either a webcam or a video file. Yields: ndarray: BGR visualizations of each video frame. """ video_visualizer = VideoVisualizer(self.metadata, self.instance_mode) def process_predictions(frame, predictions): frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR) if "panoptic_seg" in predictions: panoptic_seg, segments_info = predictions["panoptic_seg"] vis_frame = video_visualizer.draw_panoptic_seg_predictions( frame, panoptic_seg.to(self.cpu_device), segments_info ) elif "instances" in predictions: predictions = predictions["instances"].to(self.cpu_device) vis_frame = video_visualizer.draw_instance_predictions(frame, predictions) elif "sem_seg" in predictions: vis_frame = video_visualizer.draw_sem_seg( frame, predictions["sem_seg"].argmax(dim=0).to(self.cpu_device) ) # Converts Matplotlib RGB format to OpenCV BGR format vis_frame = cv2.cvtColor(vis_frame.get_image(), cv2.COLOR_RGB2BGR) return vis_frame frame_gen = self._frame_from_video(video) if self.parallel: buffer_size = self.predictor.default_buffer_size frame_data = deque() for cnt, frame in enumerate(frame_gen): frame_data.append(frame) self.predictor.put(frame) if cnt >= buffer_size: frame = frame_data.popleft() predictions = self.predictor.get() yield process_predictions(frame, predictions) while len(frame_data): frame = frame_data.popleft() predictions = self.predictor.get() yield process_predictions(frame, predictions) else: for frame in frame_gen: yield process_predictions(frame, self.predictor(frame)) class AsyncPredictor: """ A predictor that runs the model asynchronously, possibly on >1 GPUs. Because rendering the visualization takes considerably amount of time, this helps improve throughput a little bit when rendering videos. """ class _StopToken: pass class _PredictWorker(mp.Process): def __init__(self, cfg, task_queue, result_queue): self.cfg = cfg self.task_queue = task_queue self.result_queue = result_queue super().__init__() def run(self): predictor = DefaultPredictor(self.cfg) while True: task = self.task_queue.get() if isinstance(task, AsyncPredictor._StopToken): break idx, data = task result = predictor(data) self.result_queue.put((idx, result)) def __init__(self, cfg, num_gpus: int = 1): """ Args: cfg (CfgNode): num_gpus (int): if 0, will run on CPU """ num_workers = max(num_gpus, 1) self.task_queue = mp.Queue(maxsize=num_workers * 3) self.result_queue = mp.Queue(maxsize=num_workers * 3) self.procs = [] for gpuid in range(max(num_gpus, 1)): cfg = cfg.clone() cfg.defrost() cfg.MODEL.DEVICE = "cuda:{}".format(gpuid) if num_gpus > 0 else "cpu" self.procs.append( AsyncPredictor._PredictWorker(cfg, self.task_queue, self.result_queue) ) self.put_idx = 0 self.get_idx = 0 self.result_rank = [] self.result_data = [] for p in self.procs: p.start() atexit.register(self.shutdown) def put(self, image): self.put_idx += 1 self.task_queue.put((self.put_idx, image)) def get(self): self.get_idx += 1 # the index needed for this request if len(self.result_rank) and self.result_rank[0] == self.get_idx: res = self.result_data[0] del self.result_data[0], self.result_rank[0] return res while True: # make sure the results are returned in the correct order idx, res = self.result_queue.get() if idx == self.get_idx: return res insert = bisect.bisect(self.result_rank, idx) self.result_rank.insert(insert, idx) self.result_data.insert(insert, res) def __len__(self): return self.put_idx - self.get_idx def __call__(self, image): self.put(image) return self.get() def shutdown(self): for _ in self.procs: self.task_queue.put(AsyncPredictor._StopToken()) @property def default_buffer_size(self): return len(self.procs) * 5
the-stack_0_12687
from torch.utils.data import TensorDataset import numpy as np import logging import os import random import torch import time from tqdm import tqdm from _utils import * logger = logging.getLogger(__name__) def load_and_cache_gen_data(args, filename, pool, tokenizer, split_tag, only_src=False, is_sample=False): # cache the data into args.cache_path except it is sampled # only_src: control whether to return only source ids for bleu evaluating (dev/test) # return: examples (Example object), data (TensorDataset) data_tag = '_all' if args.data_num == -1 else '_%d' % args.data_num cache_fn = '{}/{}.pt'.format(args.cache_path, split_tag + ('_src' if only_src else '') + data_tag) examples = read_examples(filename, args.data_num, args.task) if is_sample: examples = random.sample(examples, min(5000, len(examples))) if split_tag == 'train': calc_stats(examples, tokenizer, is_tokenize=True) else: calc_stats(examples) if os.path.exists(cache_fn) and not is_sample: logger.info("Load cache data from %s", cache_fn) data = torch.load(cache_fn) else: if is_sample: logger.info("Sample 5k data for computing bleu from %s", filename) else: logger.info("Create cache data into %s", cache_fn) tuple_examples = [(example, idx, tokenizer, args, split_tag) for idx, example in enumerate(examples)] features = pool.map(convert_examples_to_features, tqdm(tuple_examples, total=len(tuple_examples))) all_source_ids = torch.tensor([f.source_ids for f in features], dtype=torch.long) if split_tag == 'test' or only_src: data = TensorDataset(all_source_ids) else: all_target_ids = torch.tensor([f.target_ids for f in features], dtype=torch.long) data = TensorDataset(all_source_ids, all_target_ids) if args.local_rank in [-1, 0] and not is_sample: torch.save(data, cache_fn) return examples, data def load_and_cache_clone_data(args, filename, pool, tokenizer, split_tag, is_sample=False): cache_fn = '{}/{}.pt'.format(args.cache_path, split_tag + '_all' if args.data_num == -1 else '_%d' % args.data_num) examples = read_examples(filename, args.data_num, args.task) if is_sample: examples = random.sample(examples, int(len(examples) * 0.1)) calc_stats(examples, tokenizer, is_tokenize=True) if os.path.exists(cache_fn): logger.info("Load cache data from %s", cache_fn) data = torch.load(cache_fn) else: if is_sample: logger.info("Sample 10 percent of data from %s", filename) elif args.data_num == -1: logger.info("Create cache data into %s", cache_fn) tuple_examples = [(example, idx, tokenizer, args) for idx, example in enumerate(examples)] features = pool.map(convert_clone_examples_to_features, tqdm(tuple_examples, total=len(tuple_examples))) all_source_ids = torch.tensor([f.source_ids for f in features], dtype=torch.long) all_labels = torch.tensor([f.label for f in features], dtype=torch.long) data = TensorDataset(all_source_ids, all_labels) if args.local_rank in [-1, 0] and args.data_num == -1: torch.save(data, cache_fn) return examples, data def load_and_cache_defect_data(args, filename, pool, tokenizer, split_tag, is_sample=False): cache_fn = os.path.join(args.cache_path, split_tag) examples = read_examples(filename, args.data_num, args.task) if is_sample: examples = random.sample(examples, int(len(examples) * 0.1)) calc_stats(examples, tokenizer, is_tokenize=True) if os.path.exists(cache_fn): logger.info("Load cache data from %s", cache_fn) data = torch.load(cache_fn) else: if is_sample: logger.info("Sample 10 percent of data from %s", filename) elif args.data_num == -1: logger.info("Create cache data into %s", cache_fn) tuple_examples = [(example, idx, tokenizer, args) for idx, example in enumerate(examples)] features = pool.map(convert_defect_examples_to_features, tqdm(tuple_examples, total=len(tuple_examples))) # features = [convert_clone_examples_to_features(x) for x in tuple_examples] all_source_ids = torch.tensor([f.source_ids for f in features], dtype=torch.long) all_labels = torch.tensor([f.label for f in features], dtype=torch.long) data = TensorDataset(all_source_ids, all_labels) if args.local_rank in [-1, 0] and args.data_num == -1: torch.save(data, cache_fn) return examples, data def load_and_cache_multi_gen_data(args, pool, tokenizer, split_tag, only_src=False, is_sample=False): cache_fn = os.path.join(args.cache_path, split_tag) if os.path.exists(cache_fn) and not is_sample: logger.info("Load cache data from %s", cache_fn) examples_data_dict = torch.load(cache_fn) else: examples_data_dict = {} task_list = ['summarize', 'translate', 'refine', 'concode', 'defect'] for task in task_list: if task == 'summarize': sub_tasks = ['ruby', 'javascript', 'go', 'python', 'java', 'php'] elif task == 'translate': sub_tasks = ['java-cs', 'cs-java'] elif task == 'refine': sub_tasks = ['small', 'medium'] else: sub_tasks = ['none'] args.task = task for sub_task in sub_tasks: args.sub_task = sub_task if task == 'summarize': args.max_source_length = 256 args.max_target_length = 128 elif task == 'translate': args.max_source_length = 320 args.max_target_length = 256 elif task == 'refine': if sub_task == 'small': args.max_source_length = 130 args.max_target_length = 120 else: args.max_source_length = 240 args.max_target_length = 240 elif task == 'concode': args.max_source_length = 320 args.max_target_length = 150 elif task == 'defect': args.max_source_length = 512 args.max_target_length = 3 # as do not need to add lang ids filename = get_filenames(args.data_dir, args.task, args.sub_task, split_tag) examples = read_examples(filename, args.data_num, args.task) if is_sample: examples = random.sample(examples, min(5000, len(examples))) if split_tag == 'train': calc_stats(examples, tokenizer, is_tokenize=True) else: calc_stats(examples) tuple_examples = [(example, idx, tokenizer, args, split_tag) for idx, example in enumerate(examples)] if args.data_num == -1: features = pool.map(convert_examples_to_features, tqdm(tuple_examples, total=len(tuple_examples))) else: features = [convert_examples_to_features(x) for x in tuple_examples] all_source_ids = torch.tensor([f.source_ids for f in features], dtype=torch.long) if only_src: data = TensorDataset(all_source_ids) else: all_target_ids = torch.tensor([f.target_ids for f in features], dtype=torch.long) data = TensorDataset(all_source_ids, all_target_ids) examples_data_dict['{}_{}'.format(task, sub_task) if sub_task != 'none' else task] = (examples, data) if args.local_rank in [-1, 0] and not is_sample: torch.save(examples_data_dict, cache_fn) logger.info("Save data into %s", cache_fn) return examples_data_dict def get_filenames(data_root, task, sub_task, split=''): if task == 'generation': data_dir = '{}/{}'.format(data_root, task) train_fn = '{}/train.json'.format(data_dir) dev_fn = '{}/dev.json'.format(data_dir) test_fn = '{}/test.json'.format(data_dir) elif task == 'concode': data_dir = '{}/{}'.format(data_root, task) train_fn = '{}/train.json'.format(data_dir) dev_fn = '{}/dev.json'.format(data_dir) test_fn = '{}/test.json'.format(data_dir) elif task == 'summarize': data_dir = '{}/{}/{}'.format(data_root, task, sub_task) train_fn = '{}/train.jsonl'.format(data_dir) dev_fn = '{}/valid.jsonl'.format(data_dir) test_fn = '{}/test.jsonl'.format(data_dir) elif task == 'refine': data_dir = '{}/{}/{}'.format(data_root, task, sub_task) train_fn = '{}/train.buggy-fixed.buggy,{}/train.buggy-fixed.fixed'.format(data_dir, data_dir) dev_fn = '{}/valid.buggy-fixed.buggy,{}/valid.buggy-fixed.fixed'.format(data_dir, data_dir) test_fn = '{}/test.buggy-fixed.buggy,{}/test.buggy-fixed.fixed'.format(data_dir, data_dir) elif task == 'translate': data_dir = '{}/{}'.format(data_root, task) if sub_task == 'cs-java': train_fn = '{}/train.java-cs.txt.cs,{}/train.java-cs.txt.java'.format(data_dir, data_dir) dev_fn = '{}/valid.java-cs.txt.cs,{}/valid.java-cs.txt.java'.format(data_dir, data_dir) test_fn = '{}/test.java-cs.txt.cs,{}/test.java-cs.txt.java'.format(data_dir, data_dir) else: train_fn = '{}/train.java-cs.txt.java,{}/train.java-cs.txt.cs'.format(data_dir, data_dir) dev_fn = '{}/valid.java-cs.txt.java,{}/valid.java-cs.txt.cs'.format(data_dir, data_dir) test_fn = '{}/test.java-cs.txt.java,{}/test.java-cs.txt.cs'.format(data_dir, data_dir) elif task == 'clone': data_dir = '{}/{}'.format(data_root, task) train_fn = '{}/train.txt'.format(data_dir) dev_fn = '{}/valid.txt'.format(data_dir) test_fn = '{}/test.txt'.format(data_dir) elif task == 'defect': data_dir = '{}/{}'.format(data_root, task) train_fn = '{}/train.jsonl'.format(data_dir) dev_fn = '{}/valid.jsonl'.format(data_dir) test_fn = '{}/test.jsonl'.format(data_dir) if split == 'train': return train_fn elif split == 'dev': return dev_fn elif split == 'test': return test_fn else: return train_fn, dev_fn, test_fn def read_examples(filename, data_num, task): read_example_dict = { 'summarize': read_summarize_examples, 'refine': read_refine_examples, 'translate': read_translate_examples, 'generation': read_generation_examples, 'concode': read_concode_examples, 'clone': read_clone_examples, 'defect': read_defect_examples, } return read_example_dict[task](filename, data_num) def calc_stats(examples, tokenizer=None, is_tokenize=False): avg_src_len = [] avg_trg_len = [] avg_src_len_tokenize = [] avg_trg_len_tokenize = [] for ex in examples: if is_tokenize: avg_src_len.append(len(ex.source.split())) avg_trg_len.append(len(str(ex.target).split())) avg_src_len_tokenize.append(len(tokenizer.tokenize(ex.source))) avg_trg_len_tokenize.append(len(tokenizer.tokenize(str(ex.target)))) else: avg_src_len.append(len(ex.source.split())) avg_trg_len.append(len(str(ex.target).split())) if is_tokenize: logger.info("Read %d examples, avg src len: %d, avg trg len: %d, max src len: %d, max trg len: %d", len(examples), np.mean(avg_src_len), np.mean(avg_trg_len), max(avg_src_len), max(avg_trg_len)) logger.info("[TOKENIZE] avg src len: %d, avg trg len: %d, max src len: %d, max trg len: %d", np.mean(avg_src_len_tokenize), np.mean(avg_trg_len_tokenize), max(avg_src_len_tokenize), max(avg_trg_len_tokenize)) else: logger.info("Read %d examples, avg src len: %d, avg trg len: %d, max src len: %d, max trg len: %d", len(examples), np.mean(avg_src_len), np.mean(avg_trg_len), max(avg_src_len), max(avg_trg_len)) def get_elapse_time(t0): elapse_time = time.time() - t0 if elapse_time > 3600: hour = int(elapse_time // 3600) minute = int((elapse_time % 3600) // 60) return "{}h{}m".format(hour, minute) else: minute = int((elapse_time % 3600) // 60) return "{}m".format(minute)
the-stack_0_12689
import os from conans import CMake, ConanFile, tools class QtXlsxWriterConan(ConanFile): name = "qtxlsxwriter" license = "MIT" url = "https://github.com/conan-io/conan-center-index" homepage = "https://github.com/dbzhang800/QtXlsxWriter" description = ".xlsx file reader and writer for Qt5" topics = ("qtxlsxwriter", "excel", "xlsx", "conan-recipe") settings = "os", "compiler", "build_type", "arch" options = { "shared": [True, False], "fPIC": [True, False] } default_options = { "shared": False, "fPIC": True } generators = "cmake" exports_sources = "CMakeLists.txt", "patches/**" _cmake = None @property def _source_subfolder(self): return "source_subfolder" def _configure_cmake(self): if self._cmake: return self._cmake self._cmake = CMake(self) self._cmake.definitions["QT_ROOT"] = self.deps_cpp_info["qt"].rootpath.replace("\\", "/") self._cmake.configure() return self._cmake def config_options(self): if self.settings.os == "Windows": del self.options.fPIC def configure(self): if self.options.shared: del self.options.fPIC def requirements(self): self.requires("qt/5.15.2") def source(self): for source in self.conan_data["sources"][self.version]: url = source["url"] filename = url.rsplit("/", 1)[-1] tools.download(url, filename, sha256=source["sha256"]) tools.unzip(os.path.join(self.source_folder, "v0.3.0.zip"), self._source_subfolder, strip_root=True) def build(self): for patch in self.conan_data.get("patches", {}).get(self.version, []): tools.patch(**patch) cmake = self._configure_cmake() cmake.build() def package(self): cmake = self._configure_cmake() cmake.install() self.copy("LICENSE", dst="licenses") def package_info(self): if not self.options.shared: self.cpp_info.defines = ["QTXLSX_STATIC"] self.cpp_info.libs = tools.collect_libs(self)
the-stack_0_12690
"""Viessmann ViCare climate device.""" import logging from homeassistant.components.climate import ClimateDevice from homeassistant.components.climate.const import ( SUPPORT_PRESET_MODE, SUPPORT_TARGET_TEMPERATURE, PRESET_ECO, PRESET_COMFORT, HVAC_MODE_OFF, HVAC_MODE_HEAT, HVAC_MODE_AUTO, ) from homeassistant.const import TEMP_CELSIUS, ATTR_TEMPERATURE, PRECISION_WHOLE from . import DOMAIN as VICARE_DOMAIN from . import VICARE_API from . import VICARE_NAME _LOGGER = logging.getLogger(__name__) VICARE_MODE_DHW = "dhw" VICARE_MODE_DHWANDHEATING = "dhwAndHeating" VICARE_MODE_FORCEDREDUCED = "forcedReduced" VICARE_MODE_FORCEDNORMAL = "forcedNormal" VICARE_MODE_OFF = "standby" VICARE_PROGRAM_ACTIVE = "active" VICARE_PROGRAM_COMFORT = "comfort" VICARE_PROGRAM_ECO = "eco" VICARE_PROGRAM_EXTERNAL = "external" VICARE_PROGRAM_HOLIDAY = "holiday" VICARE_PROGRAM_NORMAL = "normal" VICARE_PROGRAM_REDUCED = "reduced" VICARE_PROGRAM_STANDBY = "standby" VICARE_HOLD_MODE_AWAY = "away" VICARE_HOLD_MODE_HOME = "home" VICARE_HOLD_MODE_OFF = "off" VICARE_TEMP_HEATING_MIN = 3 VICARE_TEMP_HEATING_MAX = 37 SUPPORT_FLAGS_HEATING = SUPPORT_TARGET_TEMPERATURE | SUPPORT_PRESET_MODE VICARE_TO_HA_HVAC_HEATING = { VICARE_MODE_DHW: HVAC_MODE_OFF, VICARE_MODE_DHWANDHEATING: HVAC_MODE_AUTO, VICARE_MODE_FORCEDREDUCED: HVAC_MODE_OFF, VICARE_MODE_FORCEDNORMAL: HVAC_MODE_HEAT, VICARE_MODE_OFF: HVAC_MODE_OFF, } HA_TO_VICARE_HVAC_HEATING = { HVAC_MODE_HEAT: VICARE_MODE_FORCEDNORMAL, HVAC_MODE_OFF: VICARE_MODE_FORCEDREDUCED, HVAC_MODE_AUTO: VICARE_MODE_DHWANDHEATING, } VICARE_TO_HA_PRESET_HEATING = { VICARE_PROGRAM_COMFORT: PRESET_COMFORT, VICARE_PROGRAM_ECO: PRESET_ECO, } HA_TO_VICARE_PRESET_HEATING = { PRESET_COMFORT: VICARE_PROGRAM_COMFORT, PRESET_ECO: VICARE_PROGRAM_ECO, } PYVICARE_ERROR = "error" def setup_platform(hass, config, add_entities, discovery_info=None): """Create the ViCare climate devices.""" if discovery_info is None: return vicare_api = hass.data[VICARE_DOMAIN][VICARE_API] add_entities( [ViCareClimate(f"{hass.data[VICARE_DOMAIN][VICARE_NAME]} Heating", vicare_api)] ) class ViCareClimate(ClimateDevice): """Representation of the ViCare heating climate device.""" def __init__(self, name, api): """Initialize the climate device.""" self._name = name self._state = None self._api = api self._target_temperature = None self._current_mode = None self._current_temperature = None self._current_program = None def update(self): """Let HA know there has been an update from the ViCare API.""" _room_temperature = self._api.getRoomTemperature() _supply_temperature = self._api.getSupplyTemperature() if _room_temperature is not None and _room_temperature != PYVICARE_ERROR: self._current_temperature = _room_temperature elif _supply_temperature != PYVICARE_ERROR: self._current_temperature = _supply_temperature else: self._current_temperature = None self._current_program = self._api.getActiveProgram() # The getCurrentDesiredTemperature call can yield 'error' (str) when the system is in standby desired_temperature = self._api.getCurrentDesiredTemperature() if desired_temperature == PYVICARE_ERROR: desired_temperature = None self._target_temperature = desired_temperature self._current_mode = self._api.getActiveMode() @property def supported_features(self): """Return the list of supported features.""" return SUPPORT_FLAGS_HEATING @property def name(self): """Return the name of the climate device.""" return self._name @property def temperature_unit(self): """Return the unit of measurement.""" return TEMP_CELSIUS @property def current_temperature(self): """Return the current temperature.""" return self._current_temperature @property def target_temperature(self): """Return the temperature we try to reach.""" return self._target_temperature @property def hvac_mode(self): """Return current hvac mode.""" return VICARE_TO_HA_HVAC_HEATING.get(self._current_mode) def set_hvac_mode(self, hvac_mode): """Set a new hvac mode on the ViCare API.""" vicare_mode = HA_TO_VICARE_HVAC_HEATING.get(hvac_mode) if vicare_mode is None: _LOGGER.error( "Cannot set invalid vicare mode: %s / %s", hvac_mode, vicare_mode ) return _LOGGER.debug("Setting hvac mode to %s / %s", hvac_mode, vicare_mode) self._api.setMode(vicare_mode) @property def hvac_modes(self): """Return the list of available hvac modes.""" return list(HA_TO_VICARE_HVAC_HEATING) @property def min_temp(self): """Return the minimum temperature.""" return VICARE_TEMP_HEATING_MIN @property def max_temp(self): """Return the maximum temperature.""" return VICARE_TEMP_HEATING_MAX @property def precision(self): """Return the precision of the system.""" return PRECISION_WHOLE def set_temperature(self, **kwargs): """Set new target temperatures.""" temp = kwargs.get(ATTR_TEMPERATURE) if temp is not None: self._api.setProgramTemperature( self._current_program, self._target_temperature ) @property def preset_mode(self): """Return the current preset mode, e.g., home, away, temp.""" return VICARE_TO_HA_PRESET_HEATING.get(self._current_program) @property def preset_modes(self): """Return the available preset mode.""" return list(VICARE_TO_HA_PRESET_HEATING) def set_preset_mode(self, preset_mode): """Set new preset mode and deactivate any existing programs.""" vicare_program = HA_TO_VICARE_PRESET_HEATING.get(preset_mode) if vicare_program is None: _LOGGER.error( "Cannot set invalid vicare program: %s / %s", preset_mode, vicare_program, ) return _LOGGER.debug("Setting preset to %s / %s", preset_mode, vicare_program) self._api.deactivateProgram(self._current_program) self._api.activateProgram(vicare_program)
the-stack_0_12691
#!/usr/bin/env python3 import argparse import curses import sys import threading import traceback from .source_handler import CandumpHandler, InvalidFrame, SerialHandler should_redraw = threading.Event() stop_reading = threading.Event() can_messages = {} can_messages_lock = threading.Lock() thread_exception = None def reading_loop(source_handler, blacklist): """Background thread for reading.""" try: while not stop_reading.is_set(): try: frame_id, data = source_handler.get_message() except InvalidFrame: continue except EOFError: break if frame_id in blacklist: continue # Add the frame to the can_messages dict and tell the main thread to refresh its content with can_messages_lock: can_messages[frame_id] = data should_redraw.set() stop_reading.wait() except: if not stop_reading.is_set(): # Only log exception if we were not going to stop the thread # When quitting, the main thread calls close() on the serial device # and read() may throw an exception. We don't want to display it as # we're stopping the script anyway global thread_exception thread_exception = sys.exc_info() def init_window(stdscr): """Init a window filling the entire screen with a border around it.""" stdscr.clear() stdscr.refresh() max_y, max_x = stdscr.getmaxyx() root_window = stdscr.derwin(max_y, max_x, 0, 0) root_window.box() return root_window def format_data_hex(data): """Convert the bytes array to an hex representation.""" # Bytes are separated by spaces. return ' '.join('%02X' % byte for byte in data) def format_data_ascii(data): """Try to make an ASCII representation of the bytes. Non printable characters are replaced by '?' except null character which is replaced by '.'. """ msg_str = '' for byte in data: char = chr(byte) if char == '\0': msg_str = msg_str + '.' elif ord(char) < 32 or ord(char) > 126: msg_str = msg_str + '?' else: msg_str = msg_str + char return msg_str def main(stdscr, reading_thread): """Main function displaying the UI.""" # Don't print typed character curses.noecho() curses.cbreak() curses.curs_set(0) # set cursor state to invisible # Set getch() to non-blocking stdscr.nodelay(True) win = init_window(stdscr) while True: # should_redraw is set by the serial thread when new data is available if should_redraw.wait(timeout=0.05): # Timeout needed in order to react to user input max_y, max_x = win.getmaxyx() column_width = 100 id_column_start = 2 bytes_column_start = 13 text_column_start = 38 # Compute row/column counts according to the window size and borders row_start = 3 lines_per_column = max_y - (1 + row_start) num_columns = (max_x - 2) // column_width # Setting up column headers for i in range(0, num_columns): win.addstr(1, id_column_start + i * column_width, 'ID') win.addstr(1, 25 + bytes_column_start + i * column_width, 'Bytes') win.addstr(1, 30 + text_column_start + i * column_width, 'Text') win.addstr(3, id_column_start, "Press 'q' to quit") row = row_start + 2 # The first column starts a bit lower to make space for the 'press q to quit message' current_column = 0 # Make sure we don't read the can_messages dict while it's being written to in the reading thread with can_messages_lock: for frame_id in sorted(can_messages.keys()): msg = can_messages[frame_id] msg_bytes = format_data_hex(msg) msg_str = format_data_ascii(msg) # print frame ID in decimal and hex win.addstr(row, id_column_start + current_column * column_width, '%s' % str(frame_id).ljust(5)) win.addstr(row, id_column_start + 18 + current_column * column_width, '%X'.ljust(5) % frame_id) # print frame bytes win.addstr(row, 25 + bytes_column_start + current_column * column_width, msg_bytes.ljust(23)) # print frame text win.addstr(row, 30 + text_column_start + current_column * column_width, msg_str.ljust(8)) row = row + 1 if row >= lines_per_column + row_start: # column full, switch to the next one row = row_start current_column = current_column + 1 if current_column >= num_columns: break win.refresh() should_redraw.clear() c = stdscr.getch() if c == ord('q') or not reading_thread.is_alive(): break elif c == curses.KEY_RESIZE: win = init_window(stdscr) should_redraw.set() def parse_ints(string_list): int_set = set() for line in string_list: try: int_set.add(int(line, 0)) except ValueError: continue return int_set def run(): parser = argparse.ArgumentParser(description='Process CAN data from a serial device or from a file.') parser.add_argument('serial_device', type=str, nargs='?') parser.add_argument('baud_rate', type=int, default=115200, nargs='?', help='Serial baud rate in bps (default: 115200)') parser.add_argument('-f', '--candump-file', metavar='CANDUMP_FILE', help="File (of 'candump' format) to read from") parser.add_argument('-s', '--candump-speed', type=float, metavar='CANDUMP_SPEED', help="Speed scale of file read") parser.add_argument('--blacklist', '-b', nargs='+', metavar='BLACKLIST', help="Ids that must be ignored") parser.add_argument( '--blacklist-file', '-bf', metavar='BLACKLIST_FILE', help="File containing ids that must be ignored", ) args = parser.parse_args() # checks arguments if not args.serial_device and not args.candump_file: print("Please specify serial device or file name") print() parser.print_help() return if args.serial_device and args.candump_file: print("You cannot specify a serial device AND a file name") print() parser.print_help() return # --blacklist-file prevails over --blacklist if args.blacklist_file: with open(args.blacklist_file) as f_obj: blacklist = parse_ints(f_obj) elif args.blacklist: blacklist = parse_ints(args.blacklist) else: blacklist = set() if args.serial_device: source_handler = SerialHandler(args.serial_device, baudrate=args.baud_rate) elif args.candump_file: source_handler = CandumpHandler(args.candump_file, args.candump_speed) reading_thread = None try: # If reading from a serial device, it will be opened with timeout=0 (non-blocking read()) source_handler.open() # Start the reading background thread reading_thread = threading.Thread(target=reading_loop, args=(source_handler, blacklist,)) reading_thread.start() # Make sure to draw the UI the first time even if no data has been read should_redraw.set() # Start the main loop curses.wrapper(main, reading_thread) finally: # Cleanly stop reading thread before exiting if reading_thread: stop_reading.set() if source_handler: source_handler.close() reading_thread.join() # If the thread returned an exception, print it if thread_exception: traceback.print_exception(*thread_exception) sys.stderr.flush() if __name__ == '__main__': run()
the-stack_0_12692
# -*- coding: utf-8 -*- """ Class definition of YOLO_v3 style detection model on image and video """ import os import time import logging import colorsys import numpy as np import tensorflow.keras.backend as K from tensorflow.keras.models import load_model from tensorflow.keras.layers import Input from tensorflow.keras.utils import multi_gpu_model from tensorflow.compat.v1.keras.backend import get_session from tensorflow.compat.v1 import disable_eager_execution from .model import yolo_eval, yolo_body_full, yolo_body_tiny from .utils import letterbox_image, update_path, get_anchors, get_class_names from .visual import draw_bounding_box # swap X-Y axis PREDICT_FIELDS = ('class', 'label', 'confidence', 'ymin', 'xmin', 'ymax', 'xmax') class YOLO(object): """YOLO detector with tiny alternative Example ------- >>> # prepare EMPTY model since download and convert existing is a bit complicated >>> anchors = get_anchors(YOLO.get_defaults('anchors_path')) >>> classes = get_class_names(YOLO.get_defaults('classes_path')) >>> yolo_empty = yolo_body_tiny(Input(shape=(None, None, 3)), len(anchors) // 2, len(classes)) >>> path_model = os.path.join(update_path('model_data'), 'yolo_empty.h5') >>> yolo_empty.save(path_model) >>> # use the empty one, so no reasonable detections are expected >>> from keras_yolo3.utils import image_open >>> yolo = YOLO(weights_path=path_model, ... anchors_path=YOLO.get_defaults('anchors_path'), ... classes_path=YOLO.get_defaults('classes_path'), ... model_image_size=YOLO.get_defaults('model_image_size')) >>> img = image_open(os.path.join(update_path('model_data'), 'bike-car-dog.jpg')) >>> yolo.detect_image(img) # doctest: +ELLIPSIS (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=520x518 at ...>, [...]) """ _DEFAULT_PARAMS = { "weights_path": os.path.join(update_path('model_data'), 'tiny-yolo.h5'), "anchors_path": os.path.join(update_path('model_data'), 'tiny-yolo_anchors.csv'), "classes_path": os.path.join(update_path('model_data'), 'coco_classes.txt'), "score": 0.3, "iou": 0.45, # "model_image_size": (416, 416), "nb_gpu": 1, } @classmethod def get_defaults(cls, name): if name not in cls._DEFAULT_PARAMS: logging.warning('Unrecognized attribute name "%s"', name) return cls._DEFAULT_PARAMS.get(name) def __init__(self, weights_path, anchors_path, classes_path, model_image_size=(None, None), score=0.3, iou=0.45, nb_gpu=1, **kwargs): """ :param str weights_path: path to loaded model weights, e.g. 'model_data/tiny-yolo.h5' :param str anchors_path: path to loaded model anchors, e.g. 'model_data/tiny-yolo_anchors.csv' :param str classes_path: path to loaded trained classes, e.g. 'model_data/coco_classes.txt' :param float score: confidence score :param float iou: :param tuple(int,int) model_image_size: e.g. for tiny (416, 416) :param int nb_gpu: :param kwargs: """ self.__dict__.update(kwargs) # and update with user overrides self.weights_path = update_path(weights_path) self.anchors_path = update_path(anchors_path) self.classes_path = update_path(classes_path) self.score = score self.iou = iou self.nb_gpu = nb_gpu if not self.nb_gpu: # disable all GPUs os.environ["CUDA_VISIBLE_DEVICES"] = "-1" self.class_names = get_class_names(self.classes_path) self.anchors = get_anchors(self.anchors_path) self._open_session() disable_eager_execution() self.boxes, self.scores, self.classes = self._create_model(model_image_size) self._generate_class_colors() def _open_session(self): logging.warning('Using %s backend.', K.backend()) self.sess = get_session() def _create_model(self, model_image_size=(None, None)): # weights_path = update_path(self.weights_path) logging.debug('loading model from "%s"', self.weights_path) assert self.weights_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.' # Load model, or construct model and load weights. num_anchors = len(self.anchors) num_classes = len(self.class_names) try: self.yolo_model = load_model(self.weights_path, compile=False) except Exception: logging.warning('Loading weights from "%s"', self.weights_path) is_tiny_version = (num_anchors == 6) # default setting cnn_h, cnn_w = model_image_size input = Input(shape=(cnn_h, cnn_w, 3)) if is_tiny_version: self.yolo_model = yolo_body_tiny(input, num_anchors // 2, num_classes) else: self.yolo_model = yolo_body_full(input, num_anchors // 3, num_classes) # make sure model, anchors and classes match self.yolo_model.load_weights(self.weights_path, by_name=True, skip_mismatch=True) else: out_shape = self.yolo_model.layers[-1].output_shape[-1] ration_anchors = num_anchors / len(self.yolo_model.output) * (num_classes + 5) assert out_shape == ration_anchors, \ 'Mismatch between model and given anchor %r and class %r sizes' \ % (ration_anchors, out_shape) logging.info('loaded model, anchors (%i), and classes (%i) from %s', num_anchors, num_classes, self.weights_path) # Generate output tensor targets for filtered bounding boxes. self.input_image_shape = K.placeholder(shape=(2,)) if self.nb_gpu >= 2: self.yolo_model = multi_gpu_model(self.yolo_model, gpus=self.nb_gpu) boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors, len(self.class_names), self.input_image_shape, score_threshold=self.score, iou_threshold=self.iou) return boxes, scores, classes def _generate_class_colors(self): """Generate colors for drawing bounding boxes.""" hsv_tuples = [(x / len(self.class_names), 1., 1.) for x in range(len(self.class_names))] self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples)) _fn_colorr = lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)) self.colors = list(map(_fn_colorr, self.colors)) np.random.seed(10101) # Fixed seed for consistent colors across runs. # Shuffle colors to decorrelate adjacent classes. np.random.shuffle(self.colors) np.random.seed(None) # Reset seed to default. def detect_image(self, image): start = time.time() # this should be taken from the model model_image_size = self.yolo_model._input_layers[0].input_shape[0][1:3] if all(model_image_size): for size in model_image_size: assert size % 32 == 0, 'Multiples of 32 required' boxed_image = letterbox_image(image, tuple(reversed(model_image_size))) else: new_image_size = (image.width - (image.width % 32), image.height - (image.height % 32)) boxed_image = letterbox_image(image, new_image_size) image_data = np.array(boxed_image, dtype='float32') logging.debug('image shape: %s', repr(image_data.shape)) if image_data.max() > 1.5: image_data /= 255. image_data = np.expand_dims(image_data, 0) # Add batch dimension. out_boxes, out_scores, out_classes = self.sess.run( [self.boxes, self.scores, self.classes], feed_dict={ self.yolo_model.input: image_data, self.input_image_shape: [image.size[1], image.size[0]], K.learning_phase(): 0 }) end = time.time() logging.debug('Found %i boxes in %f sec.', len(out_boxes), (end - start)) thickness = (image.size[0] + image.size[1]) // 500 predicts = [] for i, c in reversed(list(enumerate(out_classes))): draw_bounding_box(image, self.class_names[c], out_boxes[i], out_scores[i], self.colors[c], thickness) pred = dict(zip( PREDICT_FIELDS, (int(c), self.class_names[c], float(out_scores[i]), *[int(x) for x in out_boxes[i]]) )) predicts.append(pred) return image, predicts def _close_session(self): self.sess.close() def __del__(self): self._close_session()
the-stack_0_12694
import pygame pygame.init() def drawGrid(window, cell_width): for i in range(1,9): if i%3 == 0: stroke = 3 else: stroke = 1 pygame.draw.line(window, (60,113,210), (0, i*cell_width), (WIDTH, i*cell_width), stroke) pygame.draw.line(window, (69,113,210), (i*cell_width, 0), (i*cell_width, HEIGHT), stroke) def displayBoard(board): number_font = pygame.font.SysFont("Century Gothic", 30) for i in range(len(board)): for j in range(len(board[0])): if board[i][j] == 0: number = number_font.render(" ", 1, (203,217,243)) else: number = number_font.render(str(board[i][j]), 1, (203,217,243)) WIN.blit(number, ((j*CELL_WIDTH)+int(CELL_WIDTH/2.5), (i*CELL_WIDTH)+int(CELL_WIDTH/3))) def findEmpty(board): for i in range(9): for j in range(9): if board[i][j] == 0: return (i, j) return False def valid(board, pos , n): # Check row for j in range(9): if board[pos[0]][j] == n: return False # Check column for i in range(9): if board[i][pos[1]] == n: return False # Check square row_index = pos[0]//3 col_index = pos[1]//3 for i in range(row_index*3, row_index*3 + 3): for j in range(col_index*3, col_index*3 + 3): if board[i][j] == n: return False return True def solve(): global grid pos = findEmpty(grid) if pos == False: return True for i in range(1, 10): if valid(grid, pos, i): grid[pos[0]][pos[1]] = i displayBoard(grid) pygame.display.update() if solve(): return True grid[pos[0]][pos[1]] = 0 return False if __name__ == "__main__": WIDTH, HEIGHT = 540, 540 WIN = pygame.display.set_mode((WIDTH, HEIGHT)) CELL_WIDTH = WIDTH/9 grid = [ [7,8,0,4,0,0,1,2,0], [6,0,0,0,7,5,0,0,9], [0,0,0,6,0,1,0,7,8], [0,0,7,0,4,0,2,6,0], [0,0,1,0,5,0,9,3,0], [9,0,4,0,6,0,0,0,5], [0,7,0,3,0,0,0,1,2], [1,2,0,0,0,7,4,0,0], [0,4,9,2,0,6,0,0,7] ] running = True while running: drawGrid(WIN, CELL_WIDTH) displayBoard(grid) for event in pygame.event.get(): if event.type == pygame.QUIT: running = False if event.type == pygame.MOUSEBUTTONDOWN: solve() pygame.display.update() WIN.fill((50,50,50))
the-stack_0_12695
# QR Code Reader # Author: Johnjimy Som # Created: June 3, 2021 import math # Initialising hex string ini_string = "11109D6B2700A000200000E000000000" #sample #ini_string = input('Please insert a hexcode: ')#import the hex here # Printing initial string # Step 1 Step1 QR code(16進数)を読み取る print ("Initial string:", ini_string) # Code to convert hex to binary #Step2 読み取ったQR code(16進数)を2進数へ変換する n = int(ini_string, 16) binaryStr = '' while n > 0: binaryStr = str(n % 2) + binaryStr n = n >> 1 result = binaryStr # Print the resultant string print ("\nResultant string [Binary]:", str(result)) #00010001000100001001110101101011001001110000000010100000000000000010000000000000000000001110000000000000000000000000000000000000 # Print binary characters start[9]-[34]length should be : 00010000100111010110101100 print ("\nResultant string [9-34] [Binary]:", str(result[1:])) #Step3 2進数に変換した結果を、項目毎にデータを区切る # import module from tabulate import tabulate #unresolved import <'from tabulate'> # assigned binaryStr data mydata = [{"Encode Version", "x","x","y"}, {"Print Area", "wololo","xxx","yyyu"}, {"Item Code", "xx","yy","zz"}] # create header head = [" ", "City", "Binary", "Value(Decimal)"] # display table print(tabulate(mydata, headers=head, tablefmt="pretty"))
the-stack_0_12696
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tensorflow.ops.tf.Cholesky.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from six.moves import xrange # pylint: disable=redefined-builtin from tensorflow.python.client import session from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes as dtypes_lib from tensorflow.python.framework import errors_impl from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import gen_linalg_ops from tensorflow.python.ops import gradient_checker from tensorflow.python.ops import gradients_impl from tensorflow.python.ops import linalg_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import variables from tensorflow.python.ops.linalg import linalg from tensorflow.python.platform import benchmark from tensorflow.python.platform import test from tensorflow.python.platform import tf_logging # Different gradient implementations for benchmark purposes def SpecializedGrad(l, grad): return gen_linalg_ops.cholesky_grad(l, grad) def _GradWithInverseL(l, l_inverse, grad): middle = math_ops.matmul(l, grad, adjoint_a=True) middle = array_ops.matrix_set_diag(middle, 0.5 * array_ops.matrix_diag_part(middle)) middle = array_ops.matrix_band_part(middle, -1, 0) grad_a = math_ops.matmul( math_ops.matmul(l_inverse, middle, adjoint_a=True), l_inverse) grad_a += math_ops.conj(array_ops.matrix_transpose(grad_a)) return grad_a * 0.5 def TriAngSolveCompositeGrad(l, grad): # Gradient is l^{-H} @ ((l^{H} @ grad) * (tril(ones)-1/2*eye)) @ l^{-1} # Compute ((l^{H} @ grad) * (tril(ones)-1/2*eye)) = middle middle = math_ops.matmul(l, grad, adjoint_a=True) middle = array_ops.matrix_set_diag(middle, 0.5 * array_ops.matrix_diag_part(middle)) middle = array_ops.matrix_band_part(middle, -1, 0) # Compute l^{-H} @ middle = z l_inverse_middle = linalg_ops.matrix_triangular_solve(l, middle, adjoint=True) # We need to compute z @ l^{-1}. With matrix_triangular_solve we # actually compute l^{-H} @ z^{H} = grad. Since we later add grad^{H} # we can ommit the conjugate transpose here. z_h = math_ops.conj(array_ops.matrix_transpose(l_inverse_middle)) grad_a = linalg_ops.matrix_triangular_solve(l, z_h, adjoint=True) grad_a += linalg.adjoint(grad_a) return grad_a * 0.5 def MatrixInverseCompositeGrad(l, grad): l_inverse = linalg_ops.matrix_inverse(l) return _GradWithInverseL(l, l_inverse, grad) def TriAngInvCompositeGrad(l, grad): num_rows = array_ops.shape(l)[-1] batch_shape = array_ops.shape(l)[:-2] l_inverse = linalg_ops.matrix_triangular_solve(l, linalg_ops.eye( num_rows, batch_shape=batch_shape, dtype=l.dtype)) return _GradWithInverseL(l, l_inverse, grad) class CholeskyOpTest(test.TestCase): def _verifyCholeskyBase(self, sess, x, chol, verification): chol_np, verification_np = self.evaluate([chol, verification]) self.assertAllClose(x, verification_np) self.assertShapeEqual(x, chol) # Check that the cholesky is lower triangular, and has positive diagonal # elements. if chol_np.shape[-1] > 0: chol_reshaped = np.reshape(chol_np, (-1, chol_np.shape[-2], chol_np.shape[-1])) for chol_matrix in chol_reshaped: self.assertAllClose(chol_matrix, np.tril(chol_matrix)) self.assertTrue((np.diag(chol_matrix) > 0.0).all()) def _verifyCholesky(self, x): # Verify that LL^T == x. with self.cached_session(use_gpu=True) as sess: chol = linalg_ops.cholesky(x) verification = math_ops.matmul(chol, chol, adjoint_b=True) self._verifyCholeskyBase(sess, x, chol, verification) def testBasic(self): data = np.array([[4., -1., 2.], [-1., 6., 0], [2., 0., 5.]]) for dtype in (np.float32, np.float64): self._verifyCholesky(data.astype(dtype)) for dtype in (np.complex64, np.complex128): complex_data = np.tril(1j * data, -1).astype(dtype) complex_data += np.triu(-1j * data, 1).astype(dtype) complex_data += data self._verifyCholesky(complex_data) def testBatch(self): simple_array = np.array([[[1., 0.], [0., 5.]]]) # shape (1, 2, 2) self._verifyCholesky(simple_array) self._verifyCholesky(np.vstack((simple_array, simple_array))) odd_sized_array = np.array([[[4., -1., 2.], [-1., 6., 0], [2., 0., 5.]]]) self._verifyCholesky(np.vstack((odd_sized_array, odd_sized_array))) # Generate random positive-definite matrices. matrices = np.random.rand(10, 5, 5) for i in xrange(10): matrices[i] = np.dot(matrices[i].T, matrices[i]) self._verifyCholesky(matrices) # Generate random complex valued positive-definite matrices. matrices = np.random.rand(10, 5, 5) + 1j * np.random.rand(10, 5, 5) for i in xrange(10): matrices[i] = np.dot(matrices[i].T.conj(), matrices[i]) self._verifyCholesky(matrices) def testNonSquareMatrix(self): with self.assertRaises(ValueError): linalg_ops.cholesky(np.array([[1., 2., 3.], [3., 4., 5.]])) with self.assertRaises(ValueError): linalg_ops.cholesky( np.array([[[1., 2., 3.], [3., 4., 5.]], [[1., 2., 3.], [3., 4., 5.]] ])) def testWrongDimensions(self): tensor3 = constant_op.constant([1., 2.]) with self.assertRaises(ValueError): linalg_ops.cholesky(tensor3) with self.assertRaises(ValueError): linalg_ops.cholesky(tensor3) def testNotInvertibleCPU(self): # The input should be invertible. with self.session(use_gpu=True): with self.assertRaisesRegexp( errors_impl.InvalidArgumentError, "Cholesky decomposition was not successful. The" " input might not be valid."): # All rows of the matrix below add to zero self._verifyCholesky( np.array([[1., -1., 0.], [-1., 1., -1.], [0., -1., 1.]])) def testEmpty(self): self._verifyCholesky(np.empty([0, 2, 2])) self._verifyCholesky(np.empty([2, 0, 0])) def testConcurrentExecutesWithoutError(self): with self.session(use_gpu=True) as sess: matrix1 = random_ops.random_normal([5, 5], seed=42) matrix2 = random_ops.random_normal([5, 5], seed=42) matrix1 = math_ops.matmul(matrix1, matrix1, adjoint_a=True) matrix2 = math_ops.matmul(matrix2, matrix2, adjoint_a=True) c1 = linalg_ops.cholesky(matrix1) c2 = linalg_ops.cholesky(matrix2) c1_val, c2_val = self.evaluate([c1, c2]) self.assertAllClose(c1_val, c2_val) class CholeskyGradTest(test.TestCase): _backprop_block_size = 32 def getShapes(self, shapeList): return ((elem, int(np.floor(1.2 * elem))) for elem in shapeList) def testSmallMatrices(self): np.random.seed(0) shapes = self.getShapes([1, 2, 10]) self.runFiniteDifferences( shapes, dtypes=(dtypes_lib.float32, dtypes_lib.float64)) def testSmallMatricesComplex(self): np.random.seed(0) shapes = self.getShapes([1, 2, 10]) self.runFiniteDifferences( shapes, dtypes=(dtypes_lib.complex64, dtypes_lib.complex128)) def testOneBlockMatrices(self): np.random.seed(0) shapes = self.getShapes([self._backprop_block_size + 1]) self.runFiniteDifferences( shapes, dtypes=(dtypes_lib.float32, dtypes_lib.float64), scalarTest=True) def testTwoBlockMatrixFloat(self): np.random.seed(0) shapes = self.getShapes([2 * self._backprop_block_size + 1]) self.runFiniteDifferences( shapes, dtypes=(dtypes_lib.float32,), scalarTest=True) def testTwoBlockMatrixDouble(self): np.random.seed(0) shapes = self.getShapes([2 * self._backprop_block_size + 1]) self.runFiniteDifferences( shapes, dtypes=(dtypes_lib.float64,), scalarTest=True) def testTwoBlockMatrixComplexFloat(self): np.random.seed(0) shapes = self.getShapes([2 * self._backprop_block_size + 1]) self.runFiniteDifferences( shapes, dtypes=(dtypes_lib.complex64,), scalarTest=True) def testTwoBlockMatrixComplexDouble(self): np.random.seed(0) shapes = self.getShapes([2 * self._backprop_block_size + 1]) self.runFiniteDifferences( shapes, dtypes=(dtypes_lib.complex128,), scalarTest=True) def testAgainstSpecialized(self): np.random.seed(0) data = np.random.randn(33, 33).astype(np.float32) data = np.matmul(data, data.T) grad_data = np.random.randn(*data.shape).astype(np.float32) with ops.Graph().as_default(), self.session(use_gpu=False) as s: x = constant_op.constant(data, dtypes_lib.float32) chol = linalg_ops.cholesky(x) composite_grad = gradients_impl.gradients(chol, x, grad_data)[0] specialized_grad = SpecializedGrad(chol, grad_data) reference, actual = s.run([specialized_grad, composite_grad]) self.assertAllClose(reference, actual) def runFiniteDifferences(self, shapes, dtypes=(dtypes_lib.float32, dtypes_lib.float64, dtypes_lib.complex64, dtypes_lib.complex128), scalarTest=False): with self.session(use_gpu=True): for shape in shapes: for batch in False, True: for dtype in dtypes: if not scalarTest: data = np.random.randn(shape[0], shape[1]) if dtype.is_complex: data = data.astype(np.complex64) data += 1j * np.random.randn(shape[0], shape[1]) x = constant_op.constant(data, dtype) tensor = math_ops.matmul( x, math_ops.conj(array_ops.transpose(x))) / shape[0] else: # This is designed to be a faster test for larger matrices. data = np.random.randn() if dtype.is_complex: data = np.complex64(data) data += 1j * np.random.randn() x = constant_op.constant(data, dtype) R = constant_op.constant( np.random.randn(shape[0], shape[1]), dtype) e = math_ops.multiply(R, x) tensor = math_ops.matmul( e, math_ops.conj(array_ops.transpose(e))) / shape[0] # Inner-most matrices in tensor are positive definite. if batch: tensor = array_ops.tile( array_ops.expand_dims(tensor, 0), [4, 1, 1]) y = linalg_ops.cholesky(tensor) if scalarTest: y = math_ops.reduce_mean(y) error = gradient_checker.compute_gradient_error( x, x._shape_as_list(), y, y._shape_as_list()) tf_logging.info("error = %f", error) if dtype == dtypes_lib.float64: self.assertLess(error, 1e-5) elif dtype == dtypes_lib.complex128: self.assertLess(error, 5e-5) else: self.assertLess(error, 5e-3) class CholeskyBenchmark(test.Benchmark): shapes = [ (4, 4), (10, 10), (16, 16), (101, 101), (256, 256), (1000, 1000), (1024, 1024), (2048, 2048), (513, 2, 2), (513, 8, 8), (513, 256, 256), (4, 513, 2, 2), ] def _GenerateMatrix(self, shape): batch_shape = shape[:-2] shape = shape[-2:] assert shape[0] == shape[1] n = shape[0] matrix = np.ones(shape).astype(np.float32) / ( 2.0 * n) + np.diag(np.ones(n).astype(np.float32)) return np.tile(matrix, batch_shape + (1, 1)) def benchmarkCholeskyOp(self): for shape in self.shapes: with ops.Graph().as_default(), \ session.Session(config=benchmark.benchmark_config()) as sess, \ ops.device("/cpu:0"): matrix = variables.Variable(self._GenerateMatrix(shape)) l = linalg_ops.cholesky(matrix) variables.global_variables_initializer().run() self.run_op_benchmark( sess, control_flow_ops.group( l,), min_iters=25, name="cholesky_cpu_{shape}".format(shape=shape)) if test.is_gpu_available(True): with ops.Graph().as_default(), \ session.Session(config=benchmark.benchmark_config()) as sess, \ ops.device("/device:GPU:0"): matrix = variables.Variable(self._GenerateMatrix(shape)) l = linalg_ops.cholesky(matrix) variables.global_variables_initializer().run() self.run_op_benchmark( sess, control_flow_ops.group( l,), min_iters=25, name="cholesky_gpu_{shape}".format(shape=shape)) def benchmarkGradVariants(self): def _BenchmarkGrad(grad_fn, name, device): for shape in self.shapes: matrix = self._GenerateMatrix(shape) with ops.Graph().as_default(), \ session.Session(config=benchmark.benchmark_config()) as sess, \ ops.device(device): l = variables.Variable(np.linalg.cholesky(matrix)) grad_matrix = variables.Variable( np.random.randn(*matrix.shape).astype(np.float32)) grad = grad_fn(l, grad_matrix) variables.global_variables_initializer().run() self.run_op_benchmark( sess, control_flow_ops.group( grad,), min_iters=25, name="{name}_{dev}_{shape}".format( name=name, dev=grad.device, shape=shape)) if test.is_gpu_available(True): _BenchmarkGrad(MatrixInverseCompositeGrad, "composite_matrix_inverse", "/device:GPU:0") _BenchmarkGrad(TriAngInvCompositeGrad, "composite_tri_ang_inverse", "/device:GPU:0") _BenchmarkGrad(TriAngSolveCompositeGrad, "composite_triangular_solve", "/device:GPU:0") _BenchmarkGrad(MatrixInverseCompositeGrad, "composite_matrix_inverse", "/cpu:0") _BenchmarkGrad(TriAngInvCompositeGrad, "composite_tri_ang_inverse", "/cpu:0") _BenchmarkGrad(TriAngSolveCompositeGrad, "composite_triangular_solve", "/cpu:0") _BenchmarkGrad(SpecializedGrad, "specialized", "/cpu:0") if __name__ == "__main__": test.main()
the-stack_0_12698
import os from bootstrapbase import BootstrapBase from common.const import Constants from common.mapr_logger.log import Log from operations.operationsbase import OperationsBase from operations.shared import SharedSystem from operations.csi import CSI from operations.csinfs import CSINFS from operations.dataplatform import DataPlatform from operations.compute import Compute from operations.drill import Drill from operations.ldap import LDAP from operations.kubeflow import Kubeflow from operations.nodesvc import Nodesvc from operations.spark import Spark from operations.autoticket_generator import AutoTicketGenerator from operations.dataplatform_validator import DataPlatformValidator from operations.tenant_validator import TenantValidator from cluster_info import ClusterInfo class BootstrapUninstall(BootstrapBase): def __init__(self): super(BootstrapUninstall, self).__init__(BootstrapBase.UNINSTALL) self.cloud_instance = None self.cloud_created = False self._parse_args() def run(self): super(BootstrapUninstall, self).run() k8s = OperationsBase() k8s.load_replace_dict() shared = SharedSystem() nodesvc = Nodesvc() csi = CSI() csinfs = CSINFS() ldap = LDAP(self._prompts) dataplatform = DataPlatform() compute = Compute() spark = Spark() autoticket_generator = AutoTicketGenerator() dataplatform_validator = DataPlatformValidator() tenant_validator = TenantValidator() kubeflow = Kubeflow() # openshift = OpenShift() drill = Drill() cluster_info = ClusterInfo() self.prologue() self.python_check() if dataplatform.dataplatform_operation(self.parsed_args, False): return self.check_laptop_tools() self.confirm_delete_installation() if self.core_install_enabled: do_storage = True else: do_storage = self.parsed_args.core_uninstall do_compute = True do_drill = self.parsed_args.drill_uninstall do_csi = True uninstall_csi = False uninstall_compute = False # uninstall_autoticket_generator = False uninstall_compute_templates = False uninstall_storage = False uninstall_storage_templates = False do_kubeflow = True uninstall_kubeflow = True do_spark = False uninstall_spark = True do_external = True uninstall_external = False do_secure = True uninstall_secure = False do_exampleldap = True uninstall_exampleldap = False uninstall_drill = False str_tolerations = "" if cluster_info.schedule_pods_on_master: str_tolerations = "\n - key: node-role.kubernetes.io/master\n operator: Exists\n effect: NoSchedule" OperationsBase.replace_dict["{tolerate-master-node}"] = str_tolerations OperationsBase.replace_dict["{operator-repo}"] = Constants.OPERATOR_REPO OperationsBase.replace_dict["{csi-repo}"] = Constants.CSI_REPO OperationsBase.replace_dict["{kdf-repo}"] = Constants.KDF_REPO OperationsBase.replace_dict["{kubeflow-repo}"] = Constants.KUBEFLOW_REPO OperationsBase.replace_dict["{local-path-provisioner-repo}"] = Constants.LOCAL_PATH_PROVISIONER_REPO OperationsBase.replace_dict["{kfctl-hcp-istio-repo}"] = Constants.KFCTL_HSP_ISTIO_REPO OperationsBase.replace_dict["{busybox-repo}"] = Constants.BUSYBOX_REPO OperationsBase.replace_dict["{fake-labels}"] = "true" if do_csi: uninstall_csi = self.check_remove_csi() if do_storage: uninstall_storage = self.check_remove_storage() uninstall_storage_templates = self.check_remove_storage_templates() if do_external: uninstall_external = self.check_remove_external() if do_secure: uninstall_secure = self.check_remove_secure() if do_exampleldap: uninstall_exampleldap = self.check_remove_exampleldap(k8s) if do_compute: uninstall_compute = self.check_remove_compute() # uninstall_autoticket_generator = uninstall_compute if uninstall_compute: uninstall_compute_templates = self.check_remove_compute_templates() if cluster_info.is_spark_installed(): uninstall_spark = self.check_remove_spark() uninstall_drill = do_drill if do_kubeflow: uninstall_kubeflow = self.check_remove_kubeflow() # Check if the connected k8s environment is Openshift # if k8s.is_openshift_connected(): # k8s.is_openshift = True # k8s.switch_to_oc() if uninstall_external: shared.uninstall_external_components() if uninstall_storage: dataplatform.uninstall_dataplatform(uninstall_templates=uninstall_storage_templates) dataplatform_validator.run_uninstall() if uninstall_compute: compute.uninstall_compute_components(uninstall_templates=uninstall_compute_templates) autoticket_generator.run_uninstall() tenant_validator.run_uninstall() # uninstall_autoticket_generator = uninstall_compute if uninstall_spark: spark.uninstall_spark_components() if uninstall_drill: drill.uninstall_drill_components() if uninstall_compute or uninstall_storage: shared.uninstall_common_components() nodesvc.uninstall_nodesvc() elif uninstall_kubeflow: shared.uninstall_common_components() if uninstall_secure: shared.uninstall_secure_components() if uninstall_exampleldap: ldap.uninstall_exampleldap() if uninstall_kubeflow: kubeflow.uninstall_kubeflow_components() if uninstall_csi: csi.uninstall_csi_components() csinfs.uninstall_csi_components() self.complete_uninstallation() def confirm_delete_installation(self): print(os.linesep) Log.info("This will uninstall ALL Ezmeral Data Fabric for Kubernetes operators from your Kubernetes environment. This will cause all " "Tenants to be destroyed. They cannot be recovered!", True) agree = self._prompts.prompt_boolean("Do you agree?", False, key_name="AGREEMENT") if not agree: Log.info("Very wise decision. Exiting uninstall...", True) BootstrapBase.exit_application(2) def check_remove_csi(self): choice = self._prompts.prompt_boolean("Remove the Ezmeral Data Fabric CSI driver?", False, key_name="REMOVE_CSI") return choice def check_remove_spark(self): choice = self._prompts.prompt_boolean("Remove the Spark Operator?", False, key_name="REMOVE_SPARK") return choice def check_remove_drill(self): choice = self._prompts.prompt_boolean("Remove the Drill Operator?", False, key_name="REMOVE_DRILL") return choice def check_remove_kubeflow(self): choice = self._prompts.prompt_boolean("Remove the Kubeflow Operator?", False, key_name="REMOVE_KUBEFLOW") return choice def check_remove_compute(self): choice = self._prompts.prompt_boolean("Remove Compute components?", False, key_name="REMOVE_COMPUTE") return choice def check_remove_compute_templates(self): choice = self._prompts.prompt_boolean("Remove the Compute templates? Note: You will lose your template changes!", False, key_name="REMOVE_COMPUTE_TEMPLATES") return choice def check_remove_storage(self): choice = self._prompts.prompt_boolean("Remove Data Platform?", False, key_name="REMOVE_STORAGE") return choice def check_remove_storage_templates(self): choice = self._prompts.prompt_boolean("Remove the Data Platform Templates? Note: You will lose your template changes!", False, key_name="REMOVE_STORAGE_TEMPLATES") return choice def check_remove_external(self): choice = self._prompts.prompt_boolean("Remove the External Cluster Info? Note: You will lose your imported cluster info!", False, key_name="REMOVE_EXTERNAL_INFO") return choice def check_remove_secure(self): choice = self._prompts.prompt_boolean("Remove the Secure Namespace? Note: You will lose your template changes!", False, key_name="REMOVE_SECURE") return choice @staticmethod def check_remove_exampleldap(k8s): get_str = "namespace {0}".format(Constants.EXAMPLE_LDAP_NAMESPACE) response, status = k8s.run_get(get_str, False) result = (status == 0) return result def is_cloud_env(self): print(os.linesep) is_cloud = self._prompts.prompt_boolean("Is this a cloud env?", True, key_name="CLOUD_ENV") if is_cloud: return True return False @staticmethod def complete_uninstallation(): print(os.linesep) msg = "This Kubernetes environment" warnings = Log.get_warning_count() errors = Log.get_error_count() if errors > 0 and warnings > 0: msg = "{0} had {1} error(s) and {2} warning(s) during the uninstall process for selected components".format(msg, errors, warnings) Log.error(msg) elif errors > 0 and warnings == 0: msg = "{0} had {1} error(s) during the uninstall process for selected components".format(msg, errors) Log.error(msg) elif errors == 0 and warnings > 0: msg = "{0} had {1} warnings(s) during the uninstall process for selected components".format(msg, warnings) Log.warning(msg) else: msg = "{0} has had selected components successfully uninstalled".format(msg) Log.info(msg, True) if errors > 0 or warnings > 0: msg = "Please check the bootstrap log file for this session here: {0}".format(Log.get_log_filename()) Log.warning(msg) Log.info("") if __name__ == '__main__': bootstrap_uninstall = BootstrapUninstall() try: bootstrap_uninstall.run() except Exception as e: Log.exception(e) raise e BootstrapBase.exit_application(0)
the-stack_0_12700
# Copyright 2021 UW-IT, University of Washington # SPDX-License-Identifier: Apache-2.0 from django.test import TestCase from prereq_map.models.course_title import CourseTitle from prereq_map.utils.typeahead import get_course_typeahead import pandas as pd class TestCourseTitle(TestCase): def test_titles(self): dataframe = pd.DataFrame( {'department_abbrev': ['CSE', 'LAW'], 'course_number': [142, 354], 'course_college': ['School of Arts and Sci', 'Law School'], 'long_course_title': ['Intro To Java', 'Bird Law'] } ) CourseTitle.update_titles(dataframe) self.assertEqual(len(CourseTitle.objects.all()), 2) title = CourseTitle().get_course_title("CSE 142") self.assertEqual(title, "Intro To Java") with self.assertRaises(CourseTitle.DoesNotExist): CourseTitle.get_course_title("CSE 500") def test_typeahead(self): CourseTitle(department_abbrev="CSE", course_number="142", long_course_title="Intro to Comp Sci").save() CourseTitle(department_abbrev="MATH", course_number="123", long_course_title="Counting by Numbers").save() ct_typeahead = get_course_typeahead() self.assertEqual(len(ct_typeahead), 2) self.assertEqual(ct_typeahead[0], "CSE 142: Intro to Comp Sci")
the-stack_0_12702
import random from perf_load.perf_req_gen import RequestGenerator class RGSeqReqs(RequestGenerator): def __init__(self, *args, reqs=list(), next_random: bool=False, **kwargs): super().__init__(*args, **kwargs) self._req_idx = -1 self._next_idx = self._rand_idx if next_random else self._seq_idx if not isinstance(reqs, list): raise RuntimeError("Bad Requests sequence provided") self._reqs_collection = [] for reqc, prms in reqs: if not issubclass(reqc, RequestGenerator): raise RuntimeError("Bad Request class provided") cnt = 1 param = {} if isinstance(prms, int) and prms > 0: cnt = prms elif isinstance(prms, dict): cnt = prms.get('count', 1) param = prms else: raise RuntimeError("Bad Request params provided") new_req = reqc(*args, **param, **kwargs) for i in range(0, cnt): self._reqs_collection.append(new_req) if len(self._reqs_collection) == 0: raise RuntimeError("At least one class should be provided") async def on_pool_create(self, pool_handle, wallet_handle, submitter_did, sign_req_f, send_req_f, *args, **kwargs): for req_builder in set(self._reqs_collection): await req_builder.on_pool_create(pool_handle, wallet_handle, submitter_did, sign_req_f, send_req_f, *args, **kwargs) def _seq_idx(self): return (self._req_idx + 1) % len(self._reqs_collection) def _rand_idx(self): return random.randint(0, len(self._reqs_collection) - 1) def _gen_req_data(self): self._req_idx = self._next_idx() return self._reqs_collection[self._req_idx]._gen_req_data() def get_label(self): return self._reqs_collection[self._req_idx].get_label() async def _gen_req(self, submit_did, req_data): req_gen = self._reqs_collection[self._req_idx] return await req_gen._gen_req(submit_did, req_data) async def on_request_generated(self, req_data, gen_req): for r in self._reqs_collection: await r.on_request_generated(req_data, gen_req) async def on_request_replied(self, req_data, req, resp_or_exp): for r in self._reqs_collection: await r.on_request_replied(req_data, req, resp_or_exp) def req_did(self): return self._reqs_collection[self._req_idx].req_did()
the-stack_0_12703
"""Tests that the config singleton is working properly """ from os.path import expanduser from os.path import join from unittest import TestCase from mock import patch from testfixtures import TempDirectory from nose.tools import eq_ from nose.tools import raises from ..config import get_config_files from ..config import load_yaml class TestConfig(TestCase): """Tests for config singleton """ def setUp(self): self.test_yaml_file = '\n'.join([ 'test:', ' test_sub:', ' - test_sub1: foo', ' test_sub1_other: bar', ' - test_sub2: foobar', ]) self.test_config_dict = { 'test': { 'test_sub': [ { 'test_sub1': 'foo', 'test_sub1_other': 'bar', }, { 'test_sub2': 'foobar', } ] } } @staticmethod @patch.dict('os.environ', {}, clear=True) def test_get_config_files_no_enviroment_variable(): """Tests that correct config file paths are returned when there's no enviroment variable """ expected = [ '/etc/dataduct.cfg', expanduser('~/.dataduct/dataduct.cfg'), ] result = get_config_files() eq_(result, expected) @staticmethod @patch.dict('os.environ', {'DATADUCT_CONFIG_PATH': '/test/test.cfg'}) def test_get_config_files_with_enviroment_variable(): """Tests that correct config file paths are returned when there is an enviroment variable """ expected = [ '/etc/dataduct.cfg', expanduser('~/.dataduct/dataduct.cfg'), '/test/test.cfg', ] result = get_config_files() eq_(result, expected) def test_load_yaml_works_correctly(self): """Tests that the yaml file can be loaded correctly """ with TempDirectory() as d: d.write('test.yaml', self.test_yaml_file.encode('utf8')) result = load_yaml([join(d.path, 'test.yaml')]) eq_(result, self.test_config_dict) @staticmethod @raises(IOError) def test_no_config_file_raises(): """Tests that an exception is raised if no yaml file path is passed in """ load_yaml([]) @staticmethod @raises(IOError) def test_cannot_find_config_file_raises(): """Tests that an exception is raised if it cannot find any yaml files """ with TempDirectory() as d: with TempDirectory() as d2: load_yaml([join(d.path, 'test.cfg'), join(d2.path, 'test.cfg')])
the-stack_0_12705
from azureml.core.webservice import AciWebservice from azureml.core.webservice import Webservice from azureml.core.image import Image from azureml.core import Workspace import sys import json # Get workspace ws = Workspace.from_config() # Get the Image to deploy details try: with open("aml_config/image.json") as f: config = json.load(f) except: print('No new model, thus no deployment on ACI') sys.exit(0) image_name = config['image_name'] image_version = config['image_version'] images = Image.list(workspace=ws) image, = (m for m in images if m.version==image_version and m.name == image_name) print('From image.json, Image used to deploy webservice on ACI: {}\nImage Version: {}\nImage Location = {}'.format(image.name, image.version, image.image_location)) aciconfig = AciWebservice.deploy_configuration(cpu_cores=1, auth_enabled=True, # this flag generates API keys to secure access memory_gb=1, tags={'name':'prednet', 'framework': 'Keras'}, description='Prednet') aci_service_name = image_name print(aci_service_name) service = Webservice.deploy_from_image(deployment_config = aciconfig, image = image, name = aci_service_name, workspace = ws) service.wait_for_deployment(True) print('Deployed ACI Webservice: {} \nWebservice Uri: {}'.format(service.name, service.scoring_uri)) #service=Webservice(name ='aciws0622', workspace =ws) # Writing the ACI details to /aml_config/aci_webservice.json aci_webservice = {} aci_webservice['aci_name'] = service.name aci_webservice['aci_url'] = service.scoring_uri with open('aml_config/aci_webservice.json', 'w') as outfile: json.dump(aci_webservice,outfile)
the-stack_0_12706
#! /usr/bin/env python """ Module with contrast curve generation function. """ __author__ = 'C. Gomez, O. Absil @ ULg' __all__ = ['contrast_curve', 'noise_per_annulus', 'throughput', 'aperture_flux'] import numpy as np import pandas as pd import photutils import inspect from scipy.interpolate import InterpolatedUnivariateSpline from scipy import stats from scipy.signal import savgol_filter from skimage.draw import disk from matplotlib import pyplot as plt from .fakecomp import (cube_inject_companions, frame_inject_companion, normalize_psf) from ..conf import time_ini, timing from ..conf.utils_conf import sep from ..var import frame_center, dist def contrast_curve(cube, angle_list, psf_template, fwhm, pxscale, starphot, algo, sigma=5, nbranch=1, theta=0, inner_rad=1, wedge=(0,360), fc_snr=100, student=True, transmission=None, smooth=True, interp_order=2, plot=True, dpi=100, debug=False, verbose=True, full_output=False, save_plot=None, object_name=None, frame_size=None, fix_y_lim=(), figsize=(8, 4), **algo_dict): """ Computes the contrast curve at a given SIGMA (``sigma``) level for an ADI cube or ADI+IFS cube. The contrast is calculated as sigma*noise/throughput. This implementation takes into account the small sample statistics correction proposed in Mawet et al. 2014. Parameters ---------- cube : numpy ndarray The input cube, 3d (ADI data) or 4d array (IFS data), without fake companions. angle_list : numpy ndarray Vector with the parallactic angles. psf_template : numpy ndarray Frame with the psf template for the fake companion(s). PSF must be centered in array. Normalization is done internally. fwhm: int or float or 1d array, optional The the Full Width Half Maximum in pixels. It can handle a different FWHM value for different wavelengths (IFS data). pxscale : float Plate scale or pixel scale of the instrument. starphot : int or float or 1d array If int or float it corresponds to the aperture photometry of the non-coronagraphic PSF which we use to scale the contrast. If a vector is given it must contain the photometry correction for each frame. algo : callable or function The post-processing algorithm, e.g. vip_hci.pca.pca. sigma : int Sigma level for contrast calculation. Note this is a "Gaussian sigma" regardless of whether Student t correction is performed (set by the 'student' parameter). E.g. setting sigma to 5 will yield the contrast curve corresponding to a false alarm probability of 3e-7. nbranch : int, optional Number of branches on which to inject fakes companions. Each branch is tested individually. theta : float, optional Angle in degrees for rotating the position of the first branch that by default is located at zero degrees. Theta counts counterclockwise from the positive x axis. When working on a wedge, make sure that theta is located inside of it. inner_rad : int, optional Innermost radial distance to be considered in terms of FWHM. wedge : tuple of floats, optional Initial and Final angles for using a wedge. For example (-90,90) only considers the right side of an image. fc_snr: float optional Signal to noise ratio of injected fake companions (w.r.t a Gaussian distribution). student : bool, optional If True uses Student t correction to inject fake companion. transmission : tuple of 2 1d arrays, optional If not None, then the tuple contains a vector with the factors to be applied to the sensitivity and a vector of the radial distances [px] where it is sampled (in this order). smooth : bool, optional If True the radial noise curve is smoothed with a Savitzky-Golay filter of order 2. interp_order : int or None, optional If True the throughput vector is interpolated with a spline of order ``interp_order``. Takes values from 1 to 5. If None, then the throughput is not interpolated. plot : bool, optional Whether to plot the final contrast curve or not. True by default. dpi : int optional Dots per inch for the plots. 100 by default. 300 for printing quality. imlib : {'opencv', 'ndimage-fourier', 'ndimage-interp', 'vip-fft'}, str opt Library or method used for image operations (rotations). Opencv is the default for being the fastest. See description of `vip_hci.preproc.frame_rotate`. interpolation: str, opt See description of ``vip_hci.preproc.frame_rotate`` function debug : bool, optional Whether to print and plot additional info such as the noise, throughput, the contrast curve with different X axis and the delta magnitude instead of contrast. verbose : {True, False, 0, 1, 2}, optional If True or 1 the function prints to stdout intermediate info and timing, if set to 2 more output will be shown. full_output : bool, optional If True returns intermediate arrays. save_plot: string If provided, the contrast curve will be saved to this path. object_name: string Target name, used in the plot title. frame_size: int Frame size used for generating the contrast curve, used in the plot title. fix_y_lim: tuple If provided, the y axis limits will be fixed, for easier comparison between plots. **algo_dict Any other valid parameter of the post-processing algorithms can be passed here, including e.g. imlib and interpolation. Returns ------- datafr : pandas dataframe Dataframe containing the sensitivity (Gaussian and Student corrected if Student parameter is True), the interpolated throughput, the distance in pixels, the noise and the sigma corrected (if Student is True). If full_output is True then the function returns: datafr, cube_fc_all, frame_fc_all, frame_nofc and fc_map_all. frame_fc_all : numpy ndarray 3d array with the 3 frames of the 3 (patterns) processed cubes with companions. frame_nofc : numpy ndarray 2d array, PCA processed frame without companions. fc_map_all : numpy ndarray 3d array with 3 frames containing the position of the companions in the 3 patterns. """ if cube.ndim != 3 and cube.ndim != 4: raise TypeError('The input array is not a 3d or 4d cube') if cube.ndim == 3 and (cube.shape[0] != angle_list.shape[0]): raise TypeError('Input parallactic angles vector has wrong length') if cube.ndim == 4 and (cube.shape[1] != angle_list.shape[0]): raise TypeError('Input parallactic angles vector has wrong length') if cube.ndim == 3 and psf_template.ndim != 2: raise TypeError('Template PSF is not a frame (for ADI case)') if cube.ndim == 4 and psf_template.ndim != 3: raise TypeError('Template PSF is not a cube (for ADI+IFS case)') if transmission is not None: if not isinstance(transmission, tuple) or not len(transmission) == 2: raise TypeError('transmission must be a tuple with 2 1d vectors') if isinstance(fwhm, (np.ndarray,list)): fwhm_med = np.median(fwhm) else: fwhm_med = fwhm if verbose: start_time = time_ini() if isinstance(starphot, float) or isinstance(starphot, int): msg0 = 'ALGO : {}, FWHM = {}, # BRANCHES = {}, SIGMA = {},' msg0 += ' STARPHOT = {}' print(msg0.format(algo.__name__, fwhm_med, nbranch, sigma, starphot)) else: msg0 = 'ALGO : {}, FWHM = {}, # BRANCHES = {}, SIGMA = {}' print(msg0.format(algo.__name__, fwhm_med, nbranch, sigma)) print(sep) # throughput verbose_thru = False if verbose == 2: verbose_thru = True res_throug = throughput(cube, angle_list, psf_template, fwhm, pxscale, nbranch=nbranch, theta=theta, inner_rad=inner_rad, wedge=wedge, fc_snr=fc_snr, full_output=True, algo=algo, verbose=verbose_thru, **algo_dict) vector_radd = res_throug[3] if res_throug[0].shape[0] > 1: thruput_mean = np.nanmean(res_throug[0], axis=0) else: thruput_mean = res_throug[0][0] frame_fc_all = res_throug[4] frame_nofc = res_throug[5] fc_map_all = res_throug[6] if verbose: print('Finished the throughput calculation') timing(start_time) if interp_order is not None: # noise measured in the empty frame with better sampling, every px # starting from 1*FWHM noise_samp, res_lev_samp, rad_samp = noise_per_annulus(frame_nofc, separation=1, fwhm=fwhm_med, init_rad=fwhm_med, wedge=wedge) radmin = vector_radd.astype(int).min() cutin1 = np.where(rad_samp.astype(int) == radmin)[0][0] noise_samp = noise_samp[cutin1:] res_lev_samp = res_lev_samp[cutin1:] rad_samp = rad_samp[cutin1:] radmax = vector_radd.astype(int).max() cutin2 = np.where(rad_samp.astype(int) == radmax)[0][0] noise_samp = noise_samp[:cutin2 + 1] res_lev_samp = res_lev_samp[:cutin2 + 1] rad_samp = rad_samp[:cutin2 + 1] # interpolating the throughput vector, spline order 2 f = InterpolatedUnivariateSpline(vector_radd, thruput_mean, k=interp_order) thruput_interp = f(rad_samp) # interpolating the transmission vector, spline order 1 if transmission is not None: trans = transmission[0] radvec_trans = transmission[1] f2 = InterpolatedUnivariateSpline(radvec_trans, trans, k=1) trans_interp = f2(rad_samp) thruput_interp *= trans_interp else: rad_samp = vector_radd noise_samp = res_throug[1] res_lev_samp = res_throug[2] thruput_interp = thruput_mean if transmission is not None: if not transmission[0].shape == thruput_interp.shape[0]: msg = 'Transmiss. and throughput vectors have different length' raise ValueError(msg) thruput_interp *= transmission[0] rad_samp_arcsec = rad_samp * pxscale # take abs value of the mean residual fluxes otherwise the more # oversubtraction (negative res_lev_samp), the better the contrast!! res_lev_samp = np.abs(res_lev_samp) if smooth: # smoothing the noise vector using a Savitzky-Golay filter win = min(noise_samp.shape[0]-2, int(2*fwhm_med)) if win % 2 == 0: win += 1 noise_samp_sm = savgol_filter(noise_samp, polyorder=2, mode='nearest', window_length=win) res_lev_samp_sm = savgol_filter(res_lev_samp, polyorder=2, mode='nearest', window_length=win) else: noise_samp_sm = noise_samp res_lev_samp_sm = res_lev_samp # calculating the contrast if isinstance(starphot, float) or isinstance(starphot, int): cont_curve_samp = ((sigma * noise_samp_sm + res_lev_samp_sm )/ thruput_interp) / starphot else: cont_curve_samp = ((sigma * noise_samp_sm + res_lev_samp_sm ) / thruput_interp) / np.median(starphot) cont_curve_samp[np.where(cont_curve_samp < 0)] = 1 cont_curve_samp[np.where(cont_curve_samp > 1)] = 1 # calculating the Student corrected contrast if student: n_res_els = np.floor(rad_samp/fwhm_med*2*np.pi) ss_corr = np.sqrt(1 + 1/n_res_els) sigma_corr = stats.t.ppf(stats.norm.cdf(sigma), n_res_els-1)*ss_corr if isinstance(starphot, float) or isinstance(starphot, int): cont_curve_samp_corr = ((sigma_corr*noise_samp_sm + res_lev_samp_sm )/thruput_interp)/starphot else: cont_curve_samp_corr = ((sigma_corr*noise_samp_sm + res_lev_samp_sm )/thruput_interp) / np.median(starphot) cont_curve_samp_corr[np.where(cont_curve_samp_corr < 0)] = 1 cont_curve_samp_corr[np.where(cont_curve_samp_corr > 1)] = 1 if debug: plt.rc("savefig", dpi=dpi) plt.figure(figsize=figsize, dpi=dpi) # throughput plt.plot(vector_radd * pxscale, thruput_mean, '.', label='computed', alpha=0.6) plt.plot(rad_samp_arcsec, thruput_interp, ',-', label='interpolated', lw=2, alpha=0.5) plt.grid('on', which='both', alpha=0.2, linestyle='solid') plt.xlabel('Angular separation [arcsec]') plt.ylabel('Throughput') plt.legend(loc='best') plt.xlim(0, np.max(rad_samp*pxscale)) # noise plt.figure(figsize=figsize, dpi=dpi) plt.plot(rad_samp_arcsec, noise_samp, '.', label='computed', alpha=0.6) if smooth: plt.plot(rad_samp_arcsec, noise_samp_sm, ',-', label='noise smoothed', lw=2, alpha=0.5) plt.grid('on', alpha=0.2, linestyle='solid') plt.xlabel('Angular separation [arcsec]') plt.ylabel('Noise') plt.legend(loc='best') plt.xlim(0, np.max(rad_samp_arcsec)) # mean residual level plt.figure(figsize=figsize, dpi=dpi) plt.plot(rad_samp_arcsec, res_lev_samp, '.', label='computed residual level', alpha=0.6) if smooth: plt.plot(rad_samp_arcsec, res_lev_samp_sm, ',-', label='smoothed residual level', lw=2, alpha=0.5) plt.grid('on', alpha=0.2, linestyle='solid') plt.xlabel('Angular separation [arcsec]') plt.ylabel('Mean residual level') plt.legend(loc='best') plt.xlim(0, np.max(rad_samp_arcsec)) # plotting if plot or debug: if student: label = ['Sensitivity (Gaussian)', 'Sensitivity (Student-t correction)'] else: label = ['Sensitivity (Gaussian)'] plt.rc("savefig", dpi=dpi) fig = plt.figure(figsize=figsize, dpi=dpi) ax1 = fig.add_subplot(111) con1, = ax1.plot(rad_samp_arcsec, cont_curve_samp, '-', alpha=0.2, lw=2, color='green') con2, = ax1.plot(rad_samp_arcsec, cont_curve_samp, '.', alpha=0.2, color='green') if student: con3, = ax1.plot(rad_samp_arcsec, cont_curve_samp_corr, '-', alpha=0.4, lw=2, color='blue') con4, = ax1.plot(rad_samp_arcsec, cont_curve_samp_corr, '.', alpha=0.4, color='blue') lege = [(con1, con2), (con3, con4)] else: lege = [(con1, con2)] plt.legend(lege, label, fancybox=True, fontsize='medium') plt.xlabel('Angular separation [arcsec]') plt.ylabel(str(sigma)+' sigma contrast') plt.grid('on', which='both', alpha=0.2, linestyle='solid') ax1.set_yscale('log') ax1.set_xlim(0, np.max(rad_samp_arcsec)) # Give a title to the contrast curve plot if object_name is not None and frame_size is not None: # Retrieve ncomp and pca_type info to use in title ncomp = algo_dict['ncomp'] if algo_dict['cube_ref'] is None: pca_type = 'ADI' else: pca_type = 'RDI' title = "{} {} {}pc {} + {}".format(pca_type, object_name, ncomp, frame_size, inner_rad) plt.title(title, fontsize=14) # Option to fix the y-limit if len(fix_y_lim) == 2: min_y_lim = min(fix_y_lim[0], fix_y_lim[1]) max_y_lim = max(fix_y_lim[0], fix_y_lim[1]) ax1.set_ylim(min_y_lim, max_y_lim) # Optionally, save the figure to a path if save_plot is not None: fig.savefig(save_plot, dpi=dpi) if debug: fig2 = plt.figure(figsize=figsize, dpi=dpi) ax3 = fig2.add_subplot(111) cc_mags = -2.5*np.log10(cont_curve_samp) con4, = ax3.plot(rad_samp_arcsec, cc_mags, '-', alpha=0.2, lw=2, color='green') con5, = ax3.plot(rad_samp_arcsec, cc_mags, '.', alpha=0.2, color='green') if student: cc_mags_corr = -2.5*np.log10(cont_curve_samp_corr) con6, = ax3.plot(rad_samp_arcsec, cc_mags_corr, '-', alpha=0.4, lw=2, color='blue') con7, = ax3.plot(rad_samp_arcsec, cc_mags_corr, '.', alpha=0.4, color='blue') lege = [(con4, con5), (con6, con7)] else: lege = [(con4, con5)] plt.legend(lege, label, fancybox=True, fontsize='medium') plt.xlabel('Angular separation [arcsec]') plt.ylabel('Delta magnitude') plt.gca().invert_yaxis() plt.grid('on', which='both', alpha=0.2, linestyle='solid') ax3.set_xlim(0, np.max(rad_samp*pxscale)) ax4 = ax3.twiny() ax4.set_xlabel('Distance [pixels]') ax4.plot(rad_samp, cc_mags, '', alpha=0.) ax4.set_xlim(0, np.max(rad_samp)) if student: datafr = pd.DataFrame({'sensitivity_gaussian': cont_curve_samp, 'sensitivity_student': cont_curve_samp_corr, 'throughput': thruput_interp, 'distance': rad_samp, 'distance_arcsec': rad_samp_arcsec, 'noise': noise_samp_sm, 'residual_level': res_lev_samp_sm, 'sigma corr': sigma_corr}) else: datafr = pd.DataFrame({'sensitivity_gaussian': cont_curve_samp, 'throughput': thruput_interp, 'distance': rad_samp, 'distance_arcsec': rad_samp_arcsec, 'noise': noise_samp_sm, 'residual_level': res_lev_samp_sm}) if full_output: return datafr, frame_fc_all, frame_nofc, fc_map_all else: return datafr def throughput(cube, angle_list, psf_template, fwhm, pxscale, algo, nbranch=1, theta=0, inner_rad=1, fc_rad_sep=3, wedge=(0,360), fc_snr=100, full_output=False, verbose=True, **algo_dict): """ Measures the throughput for chosen algorithm and input dataset (ADI or ADI+mSDI). The final throughput is the average of the same procedure measured in ``nbranch`` azimutally equidistant branches. Parameters ---------_ cube : numpy ndarray The input cube, 3d (ADI data) or 4d array (IFS data), without fake companions. angle_list : numpy ndarray Vector with the parallactic angles. psf_template : numpy ndarray Frame with the psf template for the fake companion(s). PSF must be centered in array. Normalization is done internally. fwhm: int or float or 1d array, optional The the Full Width Half Maximum in pixels. It can handle a different FWHM value for different wavelengths (IFS data). pxscale : float Plate scale in arcsec/px. algo : callable or function The post-processing algorithm, e.g. vip_hci.pca.pca. Third party Python algorithms can be plugged here. They must have the parameters: 'cube', 'angle_list' and 'verbose'. Optionally a wrapper function can be used. nbranch : int optional Number of branches on which to inject fakes companions. Each branch is tested individually. theta : float, optional Angle in degrees for rotating the position of the first branch that by default is located at zero degrees. Theta counts counterclockwise from the positive x axis. inner_rad : int, optional Innermost radial distance to be considered in terms of FWHM. fc_rad_sep : int optional Radial separation between the injected companions (in each of the patterns) in FWHM. Must be large enough to avoid overlapping. With the maximum possible value, a single fake companion will be injected per cube and algorithm post-processing (which greatly affects computation time). wedge : tuple of floats, optional Initial and Final angles for using a wedge. For example (-90,90) only considers the right side of an image. fc_snr: float optional Signal to noise ratio of injected fake companions (w.r.t a Gaussian distribution). full_output : bool, optional If True returns intermediate arrays. verbose : bool, optional If True prints out timing and information. **algo_dict Parameters of the post-processing algorithms must be passed here, including imlib and interpolation. Returns ------- thruput_arr : numpy ndarray 2d array whose rows are the annulus-wise throughput values for each branch. vector_radd : numpy ndarray 1d array with the distances in FWHM (the positions of the annuli). If full_output is True then the function returns: thruput_arr, noise, vector_radd, cube_fc_all, frame_fc_all, frame_nofc and fc_map_all. noise : numpy ndarray 1d array with the noise per annulus. frame_fc_all : numpy ndarray 3d array with the 3 frames of the 3 (patterns) processed cubes with companions. frame_nofc : numpy ndarray 2d array, PCA processed frame without companions. fc_map_all : numpy ndarray 3d array with 3 frames containing the position of the companions in the 3 patterns. """ array = cube parangles = angle_list imlib = algo_dict.get('imlib', 'vip-fft') interpolation = algo_dict.get('interpolation', 'lanczos4') if array.ndim != 3 and array.ndim != 4: raise TypeError('The input array is not a 3d or 4d cube') else: if array.ndim == 3: if array.shape[0] != parangles.shape[0]: msg = 'Input parallactic angles vector has wrong length' raise TypeError(msg) if psf_template.ndim != 2: raise TypeError('Template PSF is not a frame or 2d array') maxfcsep = int((array.shape[1]/2.)/fwhm)-1 if fc_rad_sep < 3 or fc_rad_sep > maxfcsep: msg = 'Too large separation between companions in the radial ' msg += 'patterns. Should lie between 3 and {}' raise ValueError(msg.format(maxfcsep)) elif array.ndim == 4: if array.shape[1] != parangles.shape[0]: msg = 'Input vector or parallactic angles has wrong length' raise TypeError(msg) if psf_template.ndim != 3: raise TypeError('Template PSF is not a frame, 3d array') if 'scale_list' not in algo_dict: raise ValueError('Vector of wavelength not found') else: if algo_dict['scale_list'].shape[0] != array.shape[0]: raise TypeError('Input wavelength vector has wrong length') if isinstance(fwhm, float) or isinstance(fwhm, int): maxfcsep = int((array.shape[2] / 2.) / fwhm) - 1 else: maxfcsep = int((array.shape[2] / 2.) / np.amin(fwhm)) - 1 if fc_rad_sep < 3 or fc_rad_sep > maxfcsep: msg = 'Too large separation between companions in the ' msg += 'radial patterns. Should lie between 3 and {}' raise ValueError(msg.format(maxfcsep)) if psf_template.shape[1] % 2 == 0: raise ValueError("Only odd-sized PSF is accepted") if not hasattr(algo, '__call__'): raise TypeError('Parameter `algo` must be a callable function') if not isinstance(inner_rad, int): raise TypeError('inner_rad must be an integer') angular_range = wedge[1] - wedge[0] if nbranch > 1 and angular_range < 360: msg = 'Only a single branch is allowed when working on a wedge' raise RuntimeError(msg) if isinstance(fwhm, (np.ndarray,list)): fwhm_med = np.median(fwhm) else: fwhm_med = fwhm if verbose: start_time = time_ini() #*************************************************************************** # Compute noise in concentric annuli on the "empty frame" argl = inspect.getargspec(algo).args if 'cube' in argl and 'angle_list' in argl and 'verbose' in argl: if 'fwhm' in argl: frame_nofc = algo(cube=array, angle_list=parangles, fwhm=fwhm_med, verbose=False, **algo_dict) if algo_dict.pop('scaling',None): new_algo_dict = algo_dict.copy() new_algo_dict['scaling'] = None frame_nofc_noscal = algo(cube=array, angle_list=parangles, fwhm=fwhm_med, verbose=False, **new_algo_dict) else: frame_nofc_noscal = frame_nofc else: frame_nofc = algo(array, angle_list=parangles, verbose=False, **algo_dict) if algo_dict.pop('scaling',None): new_algo_dict = algo_dict.copy() new_algo_dict['scaling'] = None frame_nofc_noscal = algo(cube=array, angle_list=parangles, verbose=False, **new_algo_dict) else: frame_nofc_noscal = frame_nofc if verbose: msg1 = 'Cube without fake companions processed with {}' print(msg1.format(algo.__name__)) timing(start_time) noise, res_level, vector_radd = noise_per_annulus(frame_nofc, separation=fwhm_med, fwhm=fwhm_med, wedge=wedge) noise_noscal, _, _ = noise_per_annulus(frame_nofc_noscal, separation=fwhm_med, fwhm=fwhm_med, wedge=wedge) vector_radd = vector_radd[inner_rad-1:] noise = noise[inner_rad-1:] res_level = res_level[inner_rad-1:] noise_noscal = noise_noscal[inner_rad-1:] if verbose: print('Measured annulus-wise noise in resulting frame') timing(start_time) # We crop the PSF and check if PSF has been normalized (so that flux in # 1*FWHM aperture = 1) and fix if needed new_psf_size = int(round(3 * fwhm_med)) if new_psf_size % 2 == 0: new_psf_size += 1 if cube.ndim == 3: n, y, x = array.shape psf_template = normalize_psf(psf_template, fwhm=fwhm, verbose=verbose, size=min(new_psf_size, psf_template.shape[1])) # Initialize the fake companions angle_branch = angular_range / nbranch thruput_arr = np.zeros((nbranch, noise.shape[0])) fc_map_all = np.zeros((nbranch * fc_rad_sep, y, x)) frame_fc_all = np.zeros((nbranch * fc_rad_sep, y, x)) cy, cx = frame_center(array[0]) # each branch is computed separately for br in range(nbranch): # each pattern is computed separately. For each one the companions # are separated by "fc_rad_sep * fwhm", interleaving the injections for irad in range(fc_rad_sep): radvec = vector_radd[irad::fc_rad_sep] cube_fc = array.copy() # filling map with small numbers fc_map = np.ones_like(array[0]) * 1e-6 fcy = [] fcx = [] for i in range(radvec.shape[0]): flux = fc_snr * noise_noscal[irad + i * fc_rad_sep] cube_fc = cube_inject_companions(cube_fc, psf_template, parangles, flux, pxscale, rad_dists=[radvec[i]], theta=br*angle_branch + theta, imlib=imlib, verbose=False, interpolation= interpolation) y = cy + radvec[i] * np.sin(np.deg2rad(br * angle_branch + theta)) x = cx + radvec[i] * np.cos(np.deg2rad(br * angle_branch + theta)) fc_map = frame_inject_companion(fc_map, psf_template, y, x, flux, imlib, interpolation) fcy.append(y) fcx.append(x) if verbose: msg2 = 'Fake companions injected in branch {} ' msg2 += '(pattern {}/{})' print(msg2.format(br+1, irad+1, fc_rad_sep)) timing(start_time) #*************************************************************** arg = inspect.getargspec(algo).args if 'cube' in arg and 'angle_list' in arg and 'verbose' in arg: if 'fwhm' in arg: frame_fc = algo(cube=cube_fc, angle_list=parangles, fwhm=fwhm_med, verbose=False, **algo_dict) else: frame_fc = algo(cube=cube_fc, angle_list=parangles, verbose=False, **algo_dict) else: msg = 'Input algorithm must have at least 3 parameters: ' msg += 'cube, angle_list and verbose' raise ValueError(msg) if verbose: msg3 = 'Cube with fake companions processed with {}' msg3 += '\nMeasuring its annulus-wise throughput' print(msg3.format(algo.__name__)) timing(start_time) #************************************************************** injected_flux = aperture_flux(fc_map, fcy, fcx, fwhm_med) recovered_flux = aperture_flux((frame_fc - frame_nofc), fcy, fcx, fwhm_med) thruput = recovered_flux / injected_flux thruput[np.where(thruput < 0)] = 0 thruput_arr[br, irad::fc_rad_sep] = thruput fc_map_all[br*fc_rad_sep+irad, :, :] = fc_map frame_fc_all[br*fc_rad_sep+irad, :, :] = frame_fc elif cube.ndim == 4: w, n, y, x = array.shape if isinstance(fwhm, (int, float)): fwhm = [fwhm] * w psf_template = normalize_psf(psf_template, fwhm=fwhm, verbose=verbose, size=min(new_psf_size, psf_template.shape[1])) # Initialize the fake companions angle_branch = angular_range / nbranch thruput_arr = np.zeros((nbranch, noise.shape[0])) fc_map_all = np.zeros((nbranch * fc_rad_sep, w, y, x)) frame_fc_all = np.zeros((nbranch * fc_rad_sep, y, x)) cy, cx = frame_center(array[0, 0]) # each branch is computed separately for br in range(nbranch): # each pattern is computed separately. For each pattern the # companions are separated by "fc_rad_sep * fwhm" # radius = vector_radd[irad::fc_rad_sep] for irad in range(fc_rad_sep): radvec = vector_radd[irad::fc_rad_sep] thetavec = range(int(theta), int(theta) + 360, 360 // len(radvec)) cube_fc = array.copy() # filling map with small numbers fc_map = np.ones_like(array[:, 0]) * 1e-6 fcy = [] fcx = [] for i in range(radvec.shape[0]): flux = fc_snr * noise_noscal[irad + i * fc_rad_sep] cube_fc = cube_inject_companions(cube_fc, psf_template, parangles, flux, pxscale, rad_dists=[radvec[i]], theta=thetavec[i], verbose=False, imlib=imlib, interpolation= interpolation) y = cy + radvec[i] * np.sin(np.deg2rad(br * angle_branch + thetavec[i])) x = cx + radvec[i] * np.cos(np.deg2rad(br * angle_branch + thetavec[i])) fc_map = frame_inject_companion(fc_map, psf_template, y, x, flux) fcy.append(y) fcx.append(x) if verbose: msg2 = 'Fake companions injected in branch {} ' msg2 += '(pattern {}/{})' print(msg2.format(br + 1, irad + 1, fc_rad_sep)) timing(start_time) # ************************************************************** arg = inspect.getargspec(algo).args if 'cube' in arg and 'angle_list' in arg and 'verbose' in arg: if 'fwhm' in arg: frame_fc = algo(cube=cube_fc, angle_list=parangles, fwhm=fwhm_med, verbose=False, **algo_dict) else: frame_fc = algo(cube=cube_fc, angle_list=parangles, verbose=False, **algo_dict) if verbose: msg3 = 'Cube with fake companions processed with {}' msg3 += '\nMeasuring its annulus-wise throughput' print(msg3.format(algo.__name__)) timing(start_time) # ************************************************************* injected_flux = [aperture_flux(fc_map[i], fcy, fcx, fwhm[i]) for i in range(array.shape[0])] injected_flux = np.mean(injected_flux, axis=0) recovered_flux = aperture_flux((frame_fc - frame_nofc), fcy, fcx, fwhm_med) thruput = recovered_flux / injected_flux thruput[np.where(thruput < 0)] = 0 thruput_arr[br, irad::fc_rad_sep] = thruput fc_map_all[br * fc_rad_sep + irad, :, :] = fc_map frame_fc_all[br * fc_rad_sep + irad, :, :] = frame_fc if verbose: msg = 'Finished measuring the throughput in {} branches' print(msg.format(nbranch)) timing(start_time) if full_output: return (thruput_arr, noise, res_level, vector_radd, frame_fc_all, frame_nofc, fc_map_all) else: return thruput_arr, vector_radd def noise_per_annulus(array, separation, fwhm, init_rad=None, wedge=(0, 360), verbose=False, debug=False): """ Measures the noise and mean residual level as the standard deviation and mean, respectively, of apertures defined in each annulus with a given separation. The annuli start at init_rad (== fwhm by default) and stop 2*separation before the edge of the frame. Parameters ---------- array : numpy ndarray Input frame. separation : float Separation in pixels of the centers of the annuli measured from the center of the frame. fwhm : float FWHM in pixels. init_rad : float Initial radial distance to be used. If None then the init_rad = FWHM. wedge : tuple of floats, optional Initial and Final angles for using a wedge. For example (-90,90) only considers the right side of an image. Be careful when using small wedges, this leads to computing a standard deviation of very small samples (<10 values). verbose : bool, optional If True prints information. debug : bool, optional If True plots the positioning of the apertures. Returns ------- noise : numpy ndarray Vector with the noise value per annulus. res_level : numpy ndarray Vector with the mean residual level per annulus. vector_radd : numpy ndarray Vector with the radial distances values. """ def find_coords(rad, sep, init_angle, fin_angle): angular_range = fin_angle-init_angle npoints = (np.deg2rad(angular_range)*rad)/sep #(2*np.pi*rad)/sep ang_step = angular_range/npoints #360/npoints x = [] y = [] for i in range(int(npoints)): newx = rad * np.cos(np.deg2rad(ang_step * i + init_angle)) newy = rad * np.sin(np.deg2rad(ang_step * i + init_angle)) x.append(newx) y.append(newy) return np.array(y), np.array(x) ### if array.ndim != 2: raise TypeError('Input array is not a frame or 2d array') if not isinstance(wedge, tuple): raise TypeError('Wedge must be a tuple with the initial and final ' 'angles') if init_rad is None: init_rad = fwhm init_angle, fin_angle = wedge centery, centerx = frame_center(array) n_annuli = int(np.floor((centery - init_rad)/separation)) - 1 noise = [] res_level = [] vector_radd = [] if verbose: print('{} annuli'.format(n_annuli)) if debug: _, ax = plt.subplots(figsize=(6, 6)) ax.imshow(array, origin='lower', interpolation='nearest', alpha=0.5, cmap='gray') for i in range(n_annuli): y = centery + init_rad + separation * i rad = dist(centery, centerx, y, centerx) yy, xx = find_coords(rad, fwhm, init_angle, fin_angle) yy += centery xx += centerx apertures = photutils.CircularAperture(np.array((xx, yy)).T, fwhm/2) fluxes = photutils.aperture_photometry(array, apertures) fluxes = np.array(fluxes['aperture_sum']) noise_ann = np.std(fluxes) mean_ann = np.mean(fluxes) noise.append(noise_ann) res_level.append(mean_ann) vector_radd.append(rad) if debug: for j in range(xx.shape[0]): # Circle takes coordinates as (X,Y) aper = plt.Circle((xx[j], yy[j]), radius=fwhm/2, color='r', fill=False, alpha=0.8) ax.add_patch(aper) cent = plt.Circle((xx[j], yy[j]), radius=0.8, color='r', fill=True, alpha=0.5) ax.add_patch(cent) if verbose: print('Radius(px) = {}, Noise = {:.3f} '.format(rad, noise_ann)) return np.array(noise), np.array(res_level), np.array(vector_radd) def aperture_flux(array, yc, xc, fwhm, ap_factor=1, mean=False, verbose=False): """ Returns the sum of pixel values in a circular aperture centered on the input coordinates. The radius of the aperture is set as (ap_factor*fwhm)/2. Parameters ---------- array : numpy ndarray Input frame. yc, xc : list or 1d arrays List of y and x coordinates of sources. fwhm : float FWHM in pixels. ap_factor : int, optional Diameter of aperture in terms of the FWHM. Returns ------- flux : list of floats List of fluxes. Note ---- From Photutils documentation, the aperture photometry defines the aperture using one of 3 methods: 'center': A pixel is considered to be entirely in or out of the aperture depending on whether its center is in or out of the aperture. 'subpixel': A pixel is divided into subpixels and the center of each subpixel is tested (as above). 'exact': (default) The exact overlap between the aperture and each pixel is calculated. """ n_obj = len(yc) flux = np.zeros((n_obj)) for i, (y, x) in enumerate(zip(yc, xc)): if mean: ind = disk((y, x), (ap_factor*fwhm)/2) values = array[ind] obj_flux = np.mean(values) else: aper = photutils.CircularAperture((x, y), (ap_factor*fwhm)/2) obj_flux = photutils.aperture_photometry(array, aper, method='exact') obj_flux = np.array(obj_flux['aperture_sum']) flux[i] = obj_flux if verbose: print('Coordinates of object {} : ({},{})'.format(i, y, x)) print('Object Flux = {:.2f}'.format(flux[i])) return flux
the-stack_0_12707
import tensorflow as tf from keras.utils.np_utils import to_categorical from models import Models from utils import plot from parameters import batch_size, epochs, batch_size, validation_split, verbose def main(): # load data # in the first time, it will be downloaded. fashion_mnist = tf.keras.datasets.fashion_mnist (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data() # print dimentions print("shape of train-set is: ", train_images.shape) print("shape of test-set is: ", test_images.shape) print("The number of classes is ", len(set(test_labels))) # change lables to catagory y_train = [] for i in train_labels: y_train.append(int(i)) y_train = to_categorical(y_train) y_test = [] for i in test_labels: y_test.append(int(i)) y_test = to_categorical(y_test) # reshape images to 28*28*1 # convert to 3-D X_train = train_images.reshape( train_images.shape[0], train_images.shape[1], train_images.shape[2], 1 ) X_test = test_images.reshape( test_images.shape[0], test_images.shape[1], test_images.shape[2], 1 ) # parameters input_shape = X_train.shape[1:] num_class = len(set(test_labels)) # initiate the models Model = Models() model = Model.MLP(input_shape, num_class) # fit model histoey = model.fit( X_train, y_train, epochs=epochs, verbose=verbose, batch_size=batch_size, validation_split= validation_split, ) # plot training phase plot(histoey, "MLP") # print accuracy and loss out = model.evaluate(X_test, y_test) if __name__ == '__main__': main()
the-stack_0_12710
"""Methods based on Newton's method.""" import numpy as np from optimus.types import DirectionMethod from optimus.types import Function class Newton(DirectionMethod): """Classic Netwon's method. Direction is the inverse hessian times gradient.""" def __call__( self, parameters: np.ndarray, objective_function: Function ) -> np.ndarray: return np.linalg.inv(objective_function.hessian(parameters)).dot( objective_function.gradient(parameters) )
the-stack_0_12711
import torch from tvl_backends.nvdec import nv12_to_rgb def test_nv12_to_rgb(): w = 3840 h = 2160 nv12 = torch.empty(int(w * h * 1.5), device='cuda:0', dtype=torch.uint8) for i in range(100): nv12.random_(0, 256) rgb = nv12_to_rgb(nv12, h, w) assert rgb.shape == (3, h, w)
the-stack_0_12713
# Copyright 2014 Cloudbase Solutions Srl # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import importlib import mock import unittest from cloudbaseinit import exception as cbinit_exception class WindowsNetworkUtilsTests(unittest.TestCase): def setUp(self): self._ctypes_mock = mock.MagicMock() self._moves_mock = mock.MagicMock() self._module_patcher = mock.patch.dict( 'sys.modules', {'ctypes': self._ctypes_mock, 'six.moves': self._moves_mock}) self._module_patcher.start() self.network = importlib.import_module( 'cloudbaseinit.utils.windows.network') self.network.iphlpapi = mock.MagicMock() self.network.kernel32 = mock.MagicMock() self.network.ws2_32 = mock.MagicMock() def tearDown(self): self._module_patcher.stop() def test_format_mac_address(self): phys_address = [00, 00, 00, 00] response = self.network._format_mac_address(phys_address=phys_address, phys_address_len=4) self.assertEqual("00:00:00:00", response) def _test_socket_addr_to_str(self, ret_val): mock_socket_addr = mock.MagicMock() mock_create_unicode_buffer = self._ctypes_mock.create_unicode_buffer mock_byref = self._ctypes_mock.byref self.network.ws2_32.WSAAddressToStringW.return_value = ret_val if ret_val: self.assertRaises(cbinit_exception.CloudbaseInitException, self.network._socket_addr_to_str, mock_socket_addr) self.network.ws2_32.WSAGetLastError.assert_called_once_with() else: response = self.network._socket_addr_to_str(mock_socket_addr) self.assertEqual(mock_create_unicode_buffer.return_value.value, response) self._ctypes_mock.wintypes.DWORD.assert_called_once_with(256) mock_create_unicode_buffer.assert_called_once_with(256) self.network.ws2_32.WSAAddressToStringW.assert_called_once_with( mock_socket_addr.lpSockaddr, mock_socket_addr.iSockaddrLength, None, mock_create_unicode_buffer.return_value, mock_byref.return_value) mock_byref.assert_called_once_with( self._ctypes_mock.wintypes.DWORD.return_value) def test_socket_addr_to_str(self): self._test_socket_addr_to_str(ret_val=None) def test_socket_addr_to_str_fail(self): self._test_socket_addr_to_str(ret_val=1) def _test_get_registry_dhcp_server(self, dhcp_server, exception=None): fake_adapter = mock.sentinel.fake_adapter_name self._moves_mock.winreg.QueryValueEx.return_value = [dhcp_server] if exception: self._moves_mock.winreg.QueryValueEx.side_effect = [exception] if exception.errno != 2: self.assertRaises(cbinit_exception.CloudbaseInitException, self.network._get_registry_dhcp_server, fake_adapter) else: response = self.network._get_registry_dhcp_server(fake_adapter) if dhcp_server == "255.255.255.255": self.assertEqual(None, response) else: self.assertEqual(dhcp_server, response) self._moves_mock.winreg.OpenKey.assert_called_once_with( self._moves_mock.winreg.HKEY_LOCAL_MACHINE, "SYSTEM\\CurrentControlSet\\Services\\Tcpip\\Parameters\\" "Interfaces\\%s" % fake_adapter, 0, self._moves_mock.winreg.KEY_READ) self._moves_mock.winreg.QueryValueEx.assert_called_once_with( self._moves_mock.winreg.OpenKey.return_value.__enter__(), "DhcpServer") def test_get_registry_dhcp_server(self): self._test_get_registry_dhcp_server( dhcp_server=mock.sentinel.dhcp_server) def test_get_registry_dhcp_server_expected(self): self._test_get_registry_dhcp_server(dhcp_server="255.255.255.255") def test_get_registry_dhcp_server_expeption_not_found(self): ex = cbinit_exception.CloudbaseInitException() ex.errno = 2 self._test_get_registry_dhcp_server(dhcp_server="", exception=ex) def test_get_registry_dhcp_server_expeption_other(self): ex = cbinit_exception.CloudbaseInitException() ex.errno = 3 self._test_get_registry_dhcp_server(dhcp_server="", exception=ex) @mock.patch('cloudbaseinit.utils.windows.network._format_mac_address') @mock.patch('cloudbaseinit.utils.windows.network._socket_addr_to_str') @mock.patch('cloudbaseinit.utils.windows.network' '._get_registry_dhcp_server') def _test_get_adapter_addresses(self, mock_get_registry_dhcp_server, mock_socket_addr_to_str, mock_format_mac_address, ret_val, p, ret_val2, xp_data_length): self.maxDiff = None mock_byref = self._ctypes_mock.byref mock_cast = self._ctypes_mock.cast mock_POINTER = self._ctypes_mock.POINTER self.network.iphlpapi.GetAdaptersAddresses.side_effect = [ret_val, ret_val2] self.network.kernel32.HeapAlloc.return_value = p self.network.iphlpapi.IP_ADAPTER_DHCP_ENABLED = True self.network.iphlpapi.IP_ADAPTER_IPV4_ENABLED = True self.network.iphlpapi.IP_ADAPTER_ADDRESSES_SIZE_2003 = xp_data_length p_curr_addr = mock.MagicMock() compare_cast = [] net_adapters = [] compare_socket_addr_to_str = [] mock_cast.side_effect = [p_curr_addr, None, None] curr_addr = p_curr_addr.contents curr_addr.Flags = True curr_addr.Union1.Struct1.Length = 2 curr_addr.Dhcpv4Server.iSockaddrLength = True p_unicast_addr = curr_addr.FirstUnicastAddress unicast_addr = p_unicast_addr.contents unicast_addresses = [ (mock_socket_addr_to_str.return_value, unicast_addr.Address.lpSockaddr.contents.sa_family)] compare_GetAdaptersAddresses = [mock.call( self.network.ws2_32.AF_UNSPEC, self.network.iphlpapi.GAA_FLAG_SKIP_ANYCAST, None, None, mock_byref.return_value)] if not p: self.assertRaises(cbinit_exception.CloudbaseInitException, self.network.get_adapter_addresses) if ret_val2 and ret_val2 != self.network.kernel32.ERROR_NO_DATA: self.assertRaises(cbinit_exception.CloudbaseInitException, self.network.get_adapter_addresses) compare_cast.append(mock.call(p, mock_POINTER.return_value)) compare_GetAdaptersAddresses.append(mock.call( self.network.ws2_32.AF_UNSPEC, self.network.iphlpapi.GAA_FLAG_SKIP_ANYCAST, None, p_curr_addr, mock_byref.return_value)) else: response = self.network.get_adapter_addresses() if ret_val == self.network.kernel32.ERROR_NO_DATA: self.assertEqual([], response) elif ret_val == self.network.kernel32.ERROR_BUFFER_OVERFLOW: self.network.kernel32.GetProcessHeap.assert_called_once_with() self.network.kernel32.HeapAlloc.assert_called_once_with( self.network.kernel32.GetProcessHeap.return_value, 0, self._ctypes_mock.wintypes.ULONG.return_value.value) self.network.ws2_32.init_wsa.assert_called_once_with() compare_cast.append(mock.call(p, mock_POINTER.return_value)) compare_GetAdaptersAddresses.append(mock.call( self.network.ws2_32.AF_UNSPEC, self.network.iphlpapi.GAA_FLAG_SKIP_ANYCAST, None, p_curr_addr, mock_byref.return_value)) if ret_val2 == self.network.kernel32.ERROR_NO_DATA: self.assertEqual([], response) else: compare_cast.append(mock.call(p_unicast_addr.contents.Next, mock_POINTER.return_value)) mock_format_mac_address.assert_called_once_with( p_curr_addr.contents.PhysicalAddress, p_curr_addr.contents.PhysicalAddressLength) if not curr_addr.Union1.Struct1.Length <= xp_data_length: dhcp_server = mock_socket_addr_to_str.return_value compare_socket_addr_to_str.append( mock.call(curr_addr.Dhcpv4Server | curr_addr.Dhcpv6Server)) else: dhcp_server = \ mock_get_registry_dhcp_server.return_value mock_get_registry_dhcp_server.assert_called_once_with( curr_addr.AdapterName) compare_cast.append(mock.call(curr_addr.Next, mock_POINTER.return_value)) self.network.kernel32.HeapFree.assert_called_once_with( self.network.kernel32.GetProcessHeap.return_value, 0, p) self.network.ws2_32.WSACleanup.assert_called_once_with() compare_socket_addr_to_str.append(mock.call( unicast_addr.Address)) net_adapters.append( {"interface_index": curr_addr.Union1.Struct1.IfIndex, "adapter_name": curr_addr.AdapterName, "friendly_name": curr_addr.FriendlyName, "description": curr_addr.Description, "mtu": curr_addr.Mtu, "mac_address": mock_format_mac_address.return_value, "dhcp_enabled": True, "dhcp_server": dhcp_server, "interface_type": curr_addr.IfType, "unicast_addresses": unicast_addresses}) self.assertEqual(net_adapters, response) self.assertEqual(compare_cast, mock_cast.call_args_list) self.assertEqual( compare_GetAdaptersAddresses, self.network.iphlpapi.GetAdaptersAddresses.call_args_list) def test_get_adapter_addresses_no_data(self): self._test_get_adapter_addresses( ret_val=self.network.kernel32.ERROR_NO_DATA, p=True, ret_val2=self.network.kernel32.ERROR_NO_DATA, xp_data_length=3) def test_get_adapter_addresses_overflow_and_no_data(self): self._test_get_adapter_addresses( ret_val=self.network.kernel32.ERROR_BUFFER_OVERFLOW, p=True, ret_val2=self.network.kernel32.ERROR_NO_DATA, xp_data_length=3) def test_get_adapter_addresses_overflow_other_ret_val(self): self._test_get_adapter_addresses( ret_val=self.network.kernel32.ERROR_BUFFER_OVERFLOW, p=True, ret_val2=mock.sentinel.other_return_value, xp_data_length=3) def test_get_adapter_addresses_overflow(self): self._test_get_adapter_addresses( ret_val=self.network.kernel32.ERROR_BUFFER_OVERFLOW, p=True, ret_val2=None, xp_data_length=3) def test_get_adapter_addresses_overflow_xp_data(self): self._test_get_adapter_addresses( ret_val=self.network.kernel32.ERROR_BUFFER_OVERFLOW, p=True, ret_val2=None, xp_data_length=0)
the-stack_0_12714
import repoInfo from filechange import ischanged from colors import logcolors import pyfiglet import logger from utils import initCommands def init(): info = repoInfo.checkinfoInDir() url, branch = info logger.checkdata(url , branch) if('n' in info): initCommands(info) else: print(f'{logcolors.BOLD}Retrieving info from git directory{logcolors.ENDC}') print(f'{logcolors.CYAN}URL:{logcolors.ENDC} {url} , {logcolors.CYAN}Branch:{logcolors.ENDC} {branch}') ischanged(url,branch) if __name__ == '__main__': f = pyfiglet.figlet_format('G - AUTO', font='5lineoblique') print(f"{logcolors.BOLD}{f}{logcolors.ENDC}") init()
the-stack_0_12718
# -*- coding: utf-8 -*- # Upside Travel, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import os import boto3 import botocore.session from botocore.stub import Stubber from common import AV_SIGNATURE_METADATA from common import AV_SIGNATURE_OK from common import AV_STATUS_METADATA from common import AV_TIMESTAMP_METADATA from common import get_timestamp import scan from moto import mock_sqs from moto import mock_s3 from publish import send_to_queue class TestScan(unittest.TestCase): def setUp(self): # Common data self.s3_bucket_name = "test_bucket" self.s3_key_name = "test_key" # Clients and Resources self.s3 = boto3.resource("s3") self.s3_client = botocore.session.get_session().create_client("s3") self.s3_obj = self.s3.Object(self.s3_bucket_name, self.s3_key_name) @mock_sqs def test_get_objects_from_sqs(self): sqs = boto3.client("sqs") queue = sqs.create_queue(QueueName="test-queue") queue_url = queue["QueueUrl"] # Stage SQS queue with a message message = self.s3_key_name send_to_queue(message, queue_url) all_objects = scan.get_objects_from_sqs(queue_url, self.s3_bucket_name) self.assertEquals(len(all_objects), 1) self.assertEquals(all_objects[0], self.s3_obj) def test_set_av_tags(self): scan_result = "not_malicious" scan_signature = AV_SIGNATURE_OK timestamp = get_timestamp() tag_set = { "TagSet": [ {"Key": "Arbitrary", "Value": "arbitrary"}, {"Key": AV_SIGNATURE_METADATA, "Value": scan_signature}, {"Key": AV_STATUS_METADATA, "Value": scan_result}, {"Key": AV_TIMESTAMP_METADATA, "Value": timestamp}, ] } s3_stubber = Stubber(self.s3_client) get_object_tagging_response = tag_set get_object_tagging_expected_params = { "Bucket": self.s3_bucket_name, "Key": self.s3_key_name, } s3_stubber.add_response( "get_object_tagging", get_object_tagging_response, get_object_tagging_expected_params, ) put_object_tagging_response = {} put_object_tagging_expected_params = { "Bucket": self.s3_bucket_name, "Key": self.s3_key_name, "Tagging": tag_set, } s3_stubber.add_response( "put_object_tagging", put_object_tagging_response, put_object_tagging_expected_params, ) with s3_stubber: response = scan.set_av_tags( self.s3_client, self.s3_obj, scan_result, scan_signature, timestamp ) assert response == tag_set["TagSet"] def test_str_to_bool(self): string = "True" result = scan.str_to_bool(string) assert result is True @mock_s3 def test_download_file(self): s3 = boto3.resource("s3") s3_client = botocore.session.get_session().create_client("s3") s3_client.create_bucket(Bucket=self.s3_bucket_name) s3_client.put_object(Bucket=self.s3_bucket_name, Key=self.s3_key_name, Body="") s3_obj = s3.Object(self.s3_bucket_name, self.s3_key_name) scan.download_file(s3_obj) assert os.path.isfile(f"/tmp/scandir/{s3_obj.key}")
the-stack_0_12719
"""Config flow for OpenWeatherMap.""" import logging from pyowm import OWM from pyowm.exceptions.api_call_error import APICallError from pyowm.exceptions.api_response_error import UnauthorizedError import voluptuous as vol from homeassistant import config_entries from homeassistant.const import ( CONF_API_KEY, CONF_LATITUDE, CONF_LONGITUDE, CONF_MODE, CONF_NAME, ) from homeassistant.core import callback import homeassistant.helpers.config_validation as cv from .const import ( CONF_LANGUAGE, DEFAULT_FORECAST_MODE, DEFAULT_LANGUAGE, DEFAULT_NAME, FORECAST_MODES, LANGUAGES, ) from .const import DOMAIN # pylint:disable=unused-import SCHEMA = vol.Schema( { vol.Required(CONF_API_KEY): str, vol.Optional(CONF_NAME, default=DEFAULT_NAME): str, vol.Optional(CONF_LATITUDE): cv.latitude, vol.Optional(CONF_LONGITUDE): cv.longitude, vol.Optional(CONF_MODE, default=DEFAULT_FORECAST_MODE): vol.In(FORECAST_MODES), vol.Optional(CONF_LANGUAGE, default=DEFAULT_LANGUAGE): vol.In(LANGUAGES), } ) _LOGGER = logging.getLogger(__name__) class OpenWeatherMapConfigFlow(config_entries.ConfigFlow, domain=DOMAIN): """Config flow for OpenWeatherMap.""" VERSION = 1 CONNECTION_CLASS = config_entries.CONN_CLASS_CLOUD_POLL @staticmethod @callback def async_get_options_flow(config_entry): """Get the options flow for this handler.""" return OpenWeatherMapOptionsFlow(config_entry) async def async_step_user(self, user_input=None): """Handle a flow initialized by the user.""" errors = {} if user_input is not None: latitude = user_input[CONF_LATITUDE] longitude = user_input[CONF_LONGITUDE] await self.async_set_unique_id(f"{latitude}-{longitude}") self._abort_if_unique_id_configured() try: api_online = await _is_owm_api_online( self.hass, user_input[CONF_API_KEY] ) if not api_online: errors["base"] = "invalid_api_key" except UnauthorizedError: errors["base"] = "invalid_api_key" except APICallError: errors["base"] = "cannot_connect" if not errors: return self.async_create_entry( title=user_input[CONF_NAME], data=user_input ) return self.async_show_form(step_id="user", data_schema=SCHEMA, errors=errors) async def async_step_import(self, import_input=None): """Set the config entry up from yaml.""" config = import_input.copy() if CONF_NAME not in config: config[CONF_NAME] = DEFAULT_NAME if CONF_LATITUDE not in config: config[CONF_LATITUDE] = self.hass.config.latitude if CONF_LONGITUDE not in config: config[CONF_LONGITUDE] = self.hass.config.longitude if CONF_MODE not in config: config[CONF_MODE] = DEFAULT_FORECAST_MODE if CONF_LANGUAGE not in config: config[CONF_LANGUAGE] = DEFAULT_LANGUAGE return await self.async_step_user(config) class OpenWeatherMapOptionsFlow(config_entries.OptionsFlow): """Handle options.""" def __init__(self, config_entry): """Initialize options flow.""" self.config_entry = config_entry async def async_step_init(self, user_input=None): """Manage the options.""" if user_input is not None: return self.async_create_entry(title="", data=user_input) return self.async_show_form( step_id="init", data_schema=self._get_options_schema(), ) def _get_options_schema(self): return vol.Schema( { vol.Optional( CONF_MODE, default=self.config_entry.options.get( CONF_MODE, DEFAULT_FORECAST_MODE ), ): vol.In(FORECAST_MODES), vol.Optional( CONF_LANGUAGE, default=self.config_entry.options.get( CONF_LANGUAGE, DEFAULT_LANGUAGE ), ): vol.In(LANGUAGES), } ) async def _is_owm_api_online(hass, api_key): owm = OWM(api_key) return await hass.async_add_executor_job(owm.is_API_online)
the-stack_0_12724
# Copyright 2016 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import OrderedDict from abc import ABC, abstractmethod import numpy as np import pandas as pd from zipline.data._resample import ( _minute_to_session_open, _minute_to_session_high, _minute_to_session_low, _minute_to_session_close, _minute_to_session_volume, ) from zipline.data.bar_reader import NoDataOnDate from zipline.data.minute_bars import MinuteBarReader from zipline.data.session_bars import SessionBarReader from zipline.utils.memoize import lazyval _MINUTE_TO_SESSION_OHCLV_HOW = OrderedDict(( ('open', 'first'), ('high', 'max'), ('low', 'min'), ('close', 'last'), ('volume', 'sum'), )) def minute_frame_to_session_frame(minute_frame, calendar): """ Resample a DataFrame with minute data into the frame expected by a BcolzDailyBarWriter. Parameters ---------- minute_frame : pd.DataFrame A DataFrame with the columns `open`, `high`, `low`, `close`, `volume`, and `dt` (minute dts) calendar : trading_calendars.trading_calendar.TradingCalendar A TradingCalendar on which session labels to resample from minute to session. Return ------ session_frame : pd.DataFrame A DataFrame with the columns `open`, `high`, `low`, `close`, `volume`, and `day` (datetime-like). """ how = OrderedDict((c, _MINUTE_TO_SESSION_OHCLV_HOW[c]) for c in minute_frame.columns) labels = calendar.minute_index_to_session_labels(minute_frame.index) return minute_frame.groupby(labels).agg(how) def minute_to_session(column, close_locs, data, out): """ Resample an array with minute data into an array with session data. This function assumes that the minute data is the exact length of all minutes in the sessions in the output. Parameters ---------- column : str The `open`, `high`, `low`, `close`, or `volume` column. close_locs : array[intp] The locations in `data` which are the market close minutes. data : array[float64|uint32] The minute data to be sampled into session data. The first value should align with the market open of the first session, containing values for all minutes for all sessions. With the last value being the market close of the last session. out : array[float64|uint32] The output array into which to write the sampled sessions. """ if column == 'open': _minute_to_session_open(close_locs, data, out) elif column == 'high': _minute_to_session_high(close_locs, data, out) elif column == 'low': _minute_to_session_low(close_locs, data, out) elif column == 'close': _minute_to_session_close(close_locs, data, out) elif column == 'volume': _minute_to_session_volume(close_locs, data, out) return out class DailyHistoryAggregator: """ Converts minute pricing data into a daily summary, to be used for the last slot in a call to history with a frequency of `1d`. This summary is the same as a daily bar rollup of minute data, with the distinction that the summary is truncated to the `dt` requested. i.e. the aggregation slides forward during a the course of simulation day. Provides aggregation for `open`, `high`, `low`, `close`, and `volume`. The aggregation rules for each price type is documented in their respective """ def __init__(self, market_opens, minute_reader, trading_calendar): self._market_opens = market_opens self._minute_reader = minute_reader self._trading_calendar = trading_calendar # The caches are structured as (date, market_open, entries), where # entries is a dict of asset -> (last_visited_dt, value) # # Whenever an aggregation method determines the current value, # the entry for the respective asset should be overwritten with a new # entry for the current dt.value (int) and aggregation value. # # When the requested dt's date is different from date the cache is # flushed, so that the cache entries do not grow unbounded. # # Example cache: # cache = (date(2016, 3, 17), # pd.Timestamp('2016-03-17 13:31', tz='UTC'), # { # 1: (1458221460000000000, np.nan), # 2: (1458221460000000000, 42.0), # }) self._caches = { 'open': None, 'high': None, 'low': None, 'close': None, 'volume': None } # The int value is used for deltas to avoid extra computation from # creating new Timestamps. self._one_min = pd.Timedelta('1 min').value def _prelude(self, dt, field): session = self._trading_calendar.minute_to_session_label(dt) dt_value = dt.value cache = self._caches[field] if cache is None or cache[0] != session: market_open = self._market_opens.loc[session] cache = self._caches[field] = (session, market_open, {}) _, market_open, entries = cache market_open = market_open.tz_localize('UTC') if dt != market_open: prev_dt = dt_value - self._one_min else: prev_dt = None return market_open, prev_dt, dt_value, entries def opens(self, assets, dt): """ The open field's aggregation returns the first value that occurs for the day, if there has been no data on or before the `dt` the open is `nan`. Once the first non-nan open is seen, that value remains constant per asset for the remainder of the day. Returns ------- np.array with dtype=float64, in order of assets parameter. """ market_open, prev_dt, dt_value, entries = self._prelude(dt, 'open') opens = [] session_label = self._trading_calendar.minute_to_session_label(dt) for asset in assets: if not asset.is_alive_for_session(session_label): opens.append(np.NaN) continue if prev_dt is None: val = self._minute_reader.get_value(asset, dt, 'open') entries[asset] = (dt_value, val) opens.append(val) continue else: try: last_visited_dt, first_open = entries[asset] if last_visited_dt == dt_value: opens.append(first_open) continue elif not pd.isnull(first_open): opens.append(first_open) entries[asset] = (dt_value, first_open) continue else: after_last = pd.Timestamp( last_visited_dt + self._one_min, tz='UTC') window = self._minute_reader.load_raw_arrays( ['open'], after_last, dt, [asset], )[0] nonnan = window[~pd.isnull(window)] if len(nonnan): val = nonnan[0] else: val = np.nan entries[asset] = (dt_value, val) opens.append(val) continue except KeyError: window = self._minute_reader.load_raw_arrays( ['open'], market_open, dt, [asset], )[0] nonnan = window[~pd.isnull(window)] if len(nonnan): val = nonnan[0] else: val = np.nan entries[asset] = (dt_value, val) opens.append(val) continue return np.array(opens) def highs(self, assets, dt): """ The high field's aggregation returns the largest high seen between the market open and the current dt. If there has been no data on or before the `dt` the high is `nan`. Returns ------- np.array with dtype=float64, in order of assets parameter. """ market_open, prev_dt, dt_value, entries = self._prelude(dt, 'high') highs = [] session_label = self._trading_calendar.minute_to_session_label(dt) for asset in assets: if not asset.is_alive_for_session(session_label): highs.append(np.NaN) continue if prev_dt is None: val = self._minute_reader.get_value(asset, dt, 'high') entries[asset] = (dt_value, val) highs.append(val) continue else: try: last_visited_dt, last_max = entries[asset] if last_visited_dt == dt_value: highs.append(last_max) continue elif last_visited_dt == prev_dt: curr_val = self._minute_reader.get_value( asset, dt, 'high') if pd.isnull(curr_val): val = last_max elif pd.isnull(last_max): val = curr_val else: val = max(last_max, curr_val) entries[asset] = (dt_value, val) highs.append(val) continue else: after_last = pd.Timestamp( last_visited_dt + self._one_min, tz='UTC') window = self._minute_reader.load_raw_arrays( ['high'], after_last, dt, [asset], )[0].T val = np.nanmax(np.append(window, last_max)) entries[asset] = (dt_value, val) highs.append(val) continue except KeyError: window = self._minute_reader.load_raw_arrays( ['high'], market_open, dt, [asset], )[0].T val = np.nanmax(window) entries[asset] = (dt_value, val) highs.append(val) continue return np.array(highs) def lows(self, assets, dt): """ The low field's aggregation returns the smallest low seen between the market open and the current dt. If there has been no data on or before the `dt` the low is `nan`. Returns ------- np.array with dtype=float64, in order of assets parameter. """ market_open, prev_dt, dt_value, entries = self._prelude(dt, 'low') lows = [] session_label = self._trading_calendar.minute_to_session_label(dt) for asset in assets: if not asset.is_alive_for_session(session_label): lows.append(np.NaN) continue if prev_dt is None: val = self._minute_reader.get_value(asset, dt, 'low') entries[asset] = (dt_value, val) lows.append(val) continue else: try: last_visited_dt, last_min = entries[asset] if last_visited_dt == dt_value: lows.append(last_min) continue elif last_visited_dt == prev_dt: curr_val = self._minute_reader.get_value( asset, dt, 'low') val = np.nanmin([last_min, curr_val]) entries[asset] = (dt_value, val) lows.append(val) continue else: after_last = pd.Timestamp( last_visited_dt + self._one_min, tz='UTC') window = self._minute_reader.load_raw_arrays( ['low'], after_last, dt, [asset], )[0].T val = np.nanmin(np.append(window, last_min)) entries[asset] = (dt_value, val) lows.append(val) continue except KeyError: window = self._minute_reader.load_raw_arrays( ['low'], market_open, dt, [asset], )[0].T val = np.nanmin(window) entries[asset] = (dt_value, val) lows.append(val) continue return np.array(lows) def closes(self, assets, dt): """ The close field's aggregation returns the latest close at the given dt. If the close for the given dt is `nan`, the most recent non-nan `close` is used. If there has been no data on or before the `dt` the close is `nan`. Returns ------- np.array with dtype=float64, in order of assets parameter. """ market_open, prev_dt, dt_value, entries = self._prelude(dt, 'close') closes = [] session_label = self._trading_calendar.minute_to_session_label(dt) def _get_filled_close(asset): """ Returns the most recent non-nan close for the asset in this session. If there has been no data in this session on or before the `dt`, returns `nan` """ window = self._minute_reader.load_raw_arrays( ['close'], market_open, dt, [asset], )[0] try: return window[~np.isnan(window)][-1] except IndexError: return np.NaN for asset in assets: if not asset.is_alive_for_session(session_label): closes.append(np.NaN) continue if prev_dt is None: val = self._minute_reader.get_value(asset, dt, 'close') entries[asset] = (dt_value, val) closes.append(val) continue else: try: last_visited_dt, last_close = entries[asset] if last_visited_dt == dt_value: closes.append(last_close) continue elif last_visited_dt == prev_dt: val = self._minute_reader.get_value( asset, dt, 'close') if pd.isnull(val): val = last_close entries[asset] = (dt_value, val) closes.append(val) continue else: val = self._minute_reader.get_value( asset, dt, 'close') if pd.isnull(val): val = _get_filled_close(asset) entries[asset] = (dt_value, val) closes.append(val) continue except KeyError: val = self._minute_reader.get_value( asset, dt, 'close') if pd.isnull(val): val = _get_filled_close(asset) entries[asset] = (dt_value, val) closes.append(val) continue return np.array(closes) def volumes(self, assets, dt): """ The volume field's aggregation returns the sum of all volumes between the market open and the `dt` If there has been no data on or before the `dt` the volume is 0. Returns ------- np.array with dtype=int64, in order of assets parameter. """ market_open, prev_dt, dt_value, entries = self._prelude(dt, 'volume') volumes = [] session_label = self._trading_calendar.minute_to_session_label(dt) for asset in assets: if not asset.is_alive_for_session(session_label): volumes.append(0) continue if prev_dt is None: val = self._minute_reader.get_value(asset, dt, 'volume') entries[asset] = (dt_value, val) volumes.append(val) continue else: try: last_visited_dt, last_total = entries[asset] if last_visited_dt == dt_value: volumes.append(last_total) continue elif last_visited_dt == prev_dt: val = self._minute_reader.get_value( asset, dt, 'volume') val += last_total entries[asset] = (dt_value, val) volumes.append(val) continue else: after_last = pd.Timestamp( last_visited_dt + self._one_min, tz='UTC') window = self._minute_reader.load_raw_arrays( ['volume'], after_last, dt, [asset], )[0] val = np.nansum(window) + last_total entries[asset] = (dt_value, val) volumes.append(val) continue except KeyError: window = self._minute_reader.load_raw_arrays( ['volume'], market_open, dt, [asset], )[0] val = np.nansum(window) entries[asset] = (dt_value, val) volumes.append(val) continue return np.array(volumes) class MinuteResampleSessionBarReader(SessionBarReader): def __init__(self, calendar, minute_bar_reader): self._calendar = calendar self._minute_bar_reader = minute_bar_reader def _get_resampled(self, columns, start_session, end_session, assets): range_open = self._calendar.session_open(start_session) range_close = self._calendar.session_close(end_session) minute_data = self._minute_bar_reader.load_raw_arrays( columns, range_open, range_close, assets, ) # Get the index of the close minute for each session in the range. # If the range contains only one session, the only close in the range # is the last minute in the data. Otherwise, we need to get all the # session closes and find their indices in the range of minutes. if start_session == end_session: close_ilocs = np.array([len(minute_data[0]) - 1], dtype=np.int64) else: minutes = self._calendar.minutes_in_range( range_open, range_close, ) session_closes = self._calendar.session_closes_in_range( start_session, end_session, ) close_ilocs = minutes.searchsorted(session_closes.values) results = [] shape = (len(close_ilocs), len(assets)) for col in columns: if col != 'volume': out = np.full(shape, np.nan) else: out = np.zeros(shape, dtype=np.uint32) results.append(out) for i in range(len(assets)): for j, column in enumerate(columns): data = minute_data[j][:, i] minute_to_session(column, close_ilocs, data, results[j][:, i]) return results @property def trading_calendar(self): return self._calendar def load_raw_arrays(self, columns, start_dt, end_dt, sids): return self._get_resampled(columns, start_dt, end_dt, sids) def get_value(self, sid, session, colname): # WARNING: This will need caching or other optimization if used in a # tight loop. # This was developed to complete interface, but has not been tuned # for real world use. return self._get_resampled([colname], session, session, [sid])[0][0][0] @lazyval def sessions(self): cal = self._calendar first = self._minute_bar_reader.first_trading_day last = cal.minute_to_session_label( self._minute_bar_reader.last_available_dt) return cal.sessions_in_range(first, last) @lazyval def last_available_dt(self): return self.trading_calendar.minute_to_session_label( self._minute_bar_reader.last_available_dt ) @property def first_trading_day(self): return self._minute_bar_reader.first_trading_day def get_last_traded_dt(self, asset, dt): return self.trading_calendar.minute_to_session_label( self._minute_bar_reader.get_last_traded_dt(asset, dt)) class ReindexBarReader(ABC): """ A base class for readers which reindexes results, filling in the additional indices with empty data. Used to align the reading assets which trade on different calendars. Currently only supports a ``trading_calendar`` which is a superset of the ``reader``'s calendar. Parameters ---------- - trading_calendar : zipline.utils.trading_calendar.TradingCalendar The calendar to use when indexing results from the reader. - reader : MinuteBarReader|SessionBarReader The reader which has a calendar that is a subset of the desired ``trading_calendar``. - first_trading_session : pd.Timestamp The first trading session the reader should provide. Must be specified, since the ``reader``'s first session may not exactly align with the desired calendar. Specifically, in the case where the first session on the target calendar is a holiday on the ``reader``'s calendar. - last_trading_session : pd.Timestamp The last trading session the reader should provide. Must be specified, since the ``reader``'s last session may not exactly align with the desired calendar. Specifically, in the case where the last session on the target calendar is a holiday on the ``reader``'s calendar. """ def __init__(self, trading_calendar, reader, first_trading_session, last_trading_session): self._trading_calendar = trading_calendar self._reader = reader self._first_trading_session = first_trading_session self._last_trading_session = last_trading_session @property def last_available_dt(self): return self._reader.last_available_dt def get_last_traded_dt(self, sid, dt): return self._reader.get_last_traded_dt(sid, dt) @property def first_trading_day(self): return self._reader.first_trading_day def get_value(self, sid, dt, field): # Give an empty result if no data is present. try: return self._reader.get_value(sid, dt, field) except NoDataOnDate: if field == 'volume': return 0 else: return np.nan @abstractmethod def _outer_dts(self, start_dt, end_dt): raise NotImplementedError @abstractmethod def _inner_dts(self, start_dt, end_dt): raise NotImplementedError @property def trading_calendar(self): return self._trading_calendar @lazyval def sessions(self): return self.trading_calendar.sessions_in_range( self._first_trading_session, self._last_trading_session ) def load_raw_arrays(self, fields, start_dt, end_dt, sids): outer_dts = self._outer_dts(start_dt, end_dt) inner_dts = self._inner_dts(start_dt, end_dt) indices = outer_dts.searchsorted(inner_dts) shape = len(outer_dts), len(sids) outer_results = [] if len(inner_dts) > 0: inner_results = self._reader.load_raw_arrays( fields, inner_dts[0], inner_dts[-1], sids) else: inner_results = None for i, field in enumerate(fields): if field != 'volume': out = np.full(shape, np.nan) else: out = np.zeros(shape, dtype=np.uint32) if inner_results is not None: out[indices] = inner_results[i] outer_results.append(out) return outer_results class ReindexMinuteBarReader(ReindexBarReader, MinuteBarReader): """ See: ``ReindexBarReader`` """ def _outer_dts(self, start_dt, end_dt): return self._trading_calendar.minutes_in_range(start_dt, end_dt) def _inner_dts(self, start_dt, end_dt): return self._reader.calendar.minutes_in_range(start_dt, end_dt) class ReindexSessionBarReader(ReindexBarReader, SessionBarReader): """ See: ``ReindexBarReader`` """ def _outer_dts(self, start_dt, end_dt): return self.trading_calendar.sessions_in_range(start_dt, end_dt) def _inner_dts(self, start_dt, end_dt): return self._reader.trading_calendar.sessions_in_range( start_dt, end_dt)
the-stack_0_12725
# coding: utf-8 import copy import random from models.judge import Judge from logger.log import logger from protocol.serialize import send from common.roomConfig import roomCfg from common.constDefine import * class Room: room_id = -1 # 房间ID master_id = -1 # 房主ID room_type = -1 # 房间类型 users = None # 房间的玩家 judge = None # 法官 max_num = 0 # 房间最大玩家数量 user_role = None # 玩家角色 user_role_num = None # 玩家角色数量 interrupt_flag = False # 是否允许其他玩家在某个玩家发言过程中插话 speak_time = 0 # 玩家发言时长 status = None # 房间状态 def __init__(self, room_id, room_type, master_id): self.room_id = room_id self.room_type = room_type self.master_id = master_id self.users = {} self.status = ROOM_STATUS_READY if roomCfg[self.room_type] is not None: self.max_num = roomCfg[self.room_type].max_num self.user_role = roomCfg[self.room_type].user_role self.interrupt_flag = roomCfg[self.room_type].interrupt_flag self.speak_time = roomCfg[self.room_type].speak_time from collections import Counter self.user_role_num = Counter(self.user_role) else: logger.error("room config is not exists ! {0}".format(self.room_type)) def dump(self): return {k: v for k, v in self.__dict__} def get_number_by_identity(self, identity): """获取指定类型玩家的数量""" if identity in self.user_role_num.keys(): return self.user_role_num[identity] else: return None def is_full(self): """房间是否满员""" if len(self.users) >= self.max_num: return True else: return False # 发送消息给所有玩家 # cmd 命令码 # proto 内容 # flag 默认True为给全部玩家发送, False为给除自己外的所有玩家发送 def send_msg_to_all_users(self, cmd, proto, session, flag=True): for user in self.users.values(): if not flag and user.uuid == session.uuid: continue else: send(cmd, proto, user) def send_msg_to_identity_users(self, identity, cmd, proto): """发送消息给指定身份的玩家""" for user in self.users.values(): if user.role is not None and user.role.identity == identity: send(cmd, proto, user) break def add_user(self, user): """添加玩家""" ret = False if user.uuid in self.users.keys(): logger.error("addUser error ! uuid {0} is exists!".format(user.uuid)) else: self.users[user.uuid] = user ret = True return ret def del_user(self, uuid): """删除玩家""" ret = False if uuid in self.users.keys(): del self.users[uuid] ret = True else: logger.error("delUser error ! uuid {0} is not exists!".format(uuid)) return ret def alloc_role_by_index(self, index): if index in USER_ROLE_CLASS_DICT.keys(): cls = USER_ROLE_CLASS_DICT[index] return cls() else: logger.error("alloc role error ! {0}".format(index)) return None def allot_role(self): """分配身份""" tmp_role = copy.deepcopy(self.user_role) for user in self.users.values(): if user.role is None: index = random.randint(0, len(tmp_role)) user.role = self.alloc_role_by_index(tmp_role[index]) if user.role is not None: del tmp_role[index] def dismiss(self): """解散房间""" for user in self.users.values(): user.room_id = 0 self.users.clear() def speak(self, user_id, type, msg): """玩家发言""" logger.info("user {0} speak {1} type:{2}".format(user_id, msg, type)) pass def vote(self, user_id, other_id): """玩家投票""" logger.info("user {0} vote id {1}".format(user_id, other_id)) pass def do_skill(self, user_id, sid, target_id): """玩家使用技能""" logger.info("user {0} use skill {1} target is {2}".format(user_id, sid, target_id)) pass def ready(self): """玩家准备""" flag = True for user in self.users.values(): if user.status == 0: flag = False break if flag: # 全部玩家准备好,则开始游戏 self.start_game() def start_game(self): """开始游戏""" self.judge = Judge(self) self.judge.start() def end_game(self): """结束游戏""" pass
the-stack_0_12726
from abc import abstractmethod from typing import AsyncContextManager, Collection, Container, ContextManager from eth_typing import BLSPubkey, BLSSignature from eth2.beacon.types.attestations import Attestation from eth2.beacon.types.blocks import BeaconBlock from eth2.beacon.typing import CommitteeIndex, Epoch, Operation, SignedOperation, Slot from eth2.clock import Tick from eth2.validator_client.duty import Duty from eth2.validator_client.typing import BLSPrivateKey class BeaconNodeAPI(AsyncContextManager["BeaconNodeAPI"]): """ ``BeaconNodeAPI`` represents a remote beacon node the validator client can query for information about the beacon state and supply signed messages to. """ @abstractmethod async def fetch_duties( self, current_tick: Tick, public_keys: Collection[BLSPubkey], target_epoch: Epoch, ) -> Collection[Duty]: ... @abstractmethod async def fetch_attestation( self, public_key: BLSPubkey, slot: Slot, committee_index: CommitteeIndex ) -> Attestation: ... @abstractmethod async def fetch_block_proposal( self, slot: Slot, randao_reveal: BLSSignature ) -> BeaconBlock: ... @abstractmethod async def publish(self, duty: Duty, signed_operation: SignedOperation) -> None: ... class SignatoryDatabaseAPI(Container[bytes]): """ Provides persistence for actions of the client to prevent the publishing of slashable signatures. """ @abstractmethod async def record_signature_for(self, duty: Duty, operation: Operation) -> None: ... @abstractmethod async def is_slashable(self, duty: Duty, operation: Operation) -> bool: ... @abstractmethod def insert(self, key: bytes, value: bytes) -> None: ... class KeyStoreAPI(ContextManager["KeyStoreAPI"]): @property @abstractmethod def public_keys(self) -> Collection[BLSPubkey]: ... @abstractmethod def import_private_key(self, encoded_private_key: str) -> None: ... @abstractmethod def private_key_for(self, public_key: BLSPubkey) -> BLSPrivateKey: ...
the-stack_0_12728
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import torch import tests.helpers.pipelines as tpipes import tests.helpers.utils as tutils from pytorch_lightning import Trainer from pytorch_lightning.callbacks import Callback, EarlyStopping, ModelCheckpoint from tests.helpers import BoringModel from tests.helpers.datamodules import ClassifDataModule from tests.helpers.runif import RunIf from tests.helpers.simple_models import ClassificationModel def test_cpu_slurm_save_load(tmpdir): """Verify model save/load/checkpoint on CPU.""" model = BoringModel() # logger file to get meta logger = tutils.get_default_logger(tmpdir) version = logger.version # fit model trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, logger=logger, limit_train_batches=0.2, limit_val_batches=0.2, callbacks=[ModelCheckpoint(dirpath=tmpdir)], ) trainer.fit(model) real_global_step = trainer.global_step # traning complete assert trainer.state.finished, "cpu model failed to complete" # predict with trained model before saving # make a prediction dataloaders = model.test_dataloader() if not isinstance(dataloaders, list): dataloaders = [dataloaders] for dataloader in dataloaders: for batch in dataloader: break model.eval() pred_before_saving = model(batch) # test HPC saving # simulate snapshot on slurm # save logger to make sure we get all the metrics if logger: logger.finalize("finished") hpc_save_path = trainer._checkpoint_connector.hpc_save_path(trainer.weights_save_path) trainer.save_checkpoint(hpc_save_path) assert os.path.exists(hpc_save_path) # new logger file to get meta logger = tutils.get_default_logger(tmpdir, version=version) model = BoringModel() class _StartCallback(Callback): # set the epoch start hook so we can predict before the model does the full training def on_train_epoch_start(self, trainer, model): assert trainer.global_step == real_global_step and trainer.global_step > 0 # predict with loaded model to make sure answers are the same mode = model.training model.eval() new_pred = model(batch) assert torch.eq(pred_before_saving, new_pred).all() model.train(mode) trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, logger=logger, callbacks=[_StartCallback(), ModelCheckpoint(dirpath=tmpdir)], ) # by calling fit again, we trigger training, loading weights from the cluster # and our hook to predict using current model before any more weight updates trainer.fit(model) def test_early_stopping_cpu_model(tmpdir): class ModelTrainVal(BoringModel): def validation_step(self, *args, **kwargs): output = super().validation_step(*args, **kwargs) self.log("val_loss", output["x"]) return output tutils.reset_seed() stopping = EarlyStopping(monitor="val_loss", min_delta=0.1) trainer_options = dict( callbacks=[stopping], default_root_dir=tmpdir, gradient_clip_val=1.0, track_grad_norm=2, enable_progress_bar=False, accumulate_grad_batches=2, limit_train_batches=0.1, limit_val_batches=0.1, ) model = ModelTrainVal() tpipes.run_model_test(trainer_options, model, on_gpu=False) # test freeze on cpu model.freeze() model.unfreeze() @RunIf(skip_windows=True, skip_49370=True) def test_multi_cpu_model_ddp(tmpdir): """Make sure DDP works.""" tutils.set_random_main_port() trainer_options = dict( default_root_dir=tmpdir, enable_progress_bar=False, max_epochs=1, limit_train_batches=0.4, limit_val_batches=0.2, gpus=None, num_processes=2, strategy="ddp_spawn", ) dm = ClassifDataModule() model = ClassificationModel() tpipes.run_model_test(trainer_options, model, data=dm, on_gpu=False) def test_lbfgs_cpu_model(tmpdir): """Test each of the trainer options. Testing LBFGS optimizer """ class ModelSpecifiedOptimizer(BoringModel): def __init__(self, optimizer_name, learning_rate): super().__init__() self.optimizer_name = optimizer_name self.learning_rate = learning_rate self.save_hyperparameters() trainer_options = dict( default_root_dir=tmpdir, max_epochs=1, enable_progress_bar=False, limit_train_batches=0.2, limit_val_batches=0.2, ) model = ModelSpecifiedOptimizer(optimizer_name="LBFGS", learning_rate=0.004) tpipes.run_model_test_without_loggers(trainer_options, model, min_acc=0.01) def test_default_logger_callbacks_cpu_model(tmpdir): """Test each of the trainer options.""" trainer_options = dict( default_root_dir=tmpdir, max_epochs=1, gradient_clip_val=1.0, overfit_batches=0.20, enable_progress_bar=False, limit_train_batches=0.01, limit_val_batches=0.01, ) model = BoringModel() tpipes.run_model_test_without_loggers(trainer_options, model, min_acc=0.01) # test freeze on cpu model.freeze() model.unfreeze() def test_running_test_after_fitting(tmpdir): """Verify test() on fitted model.""" class ModelTrainValTest(BoringModel): def validation_step(self, *args, **kwargs): output = super().validation_step(*args, **kwargs) self.log("val_loss", output["x"]) return output def test_step(self, *args, **kwargs): output = super().test_step(*args, **kwargs) self.log("test_loss", output["y"]) return output model = ModelTrainValTest() # logger file to get meta logger = tutils.get_default_logger(tmpdir) # logger file to get weights checkpoint = tutils.init_checkpoint_callback(logger) # fit model trainer = Trainer( default_root_dir=tmpdir, enable_progress_bar=False, max_epochs=2, limit_train_batches=0.4, limit_val_batches=0.2, limit_test_batches=0.2, callbacks=[checkpoint], logger=logger, ) trainer.fit(model) assert trainer.state.finished, f"Training failed with {trainer.state}" trainer.test() # test we have good test accuracy tutils.assert_ok_model_acc(trainer, key="test_loss", thr=0.5) def test_running_test_no_val(tmpdir): """Verify `test()` works on a model with no `val_dataloader`. It performs train and test only """ class ModelTrainTest(BoringModel): def val_dataloader(self): pass def test_step(self, *args, **kwargs): output = super().test_step(*args, **kwargs) self.log("test_loss", output["y"]) return output model = ModelTrainTest() # logger file to get meta logger = tutils.get_default_logger(tmpdir) # logger file to get weights checkpoint = tutils.init_checkpoint_callback(logger) # fit model trainer = Trainer( default_root_dir=tmpdir, enable_progress_bar=False, max_epochs=1, limit_train_batches=0.4, limit_val_batches=0.2, limit_test_batches=0.2, callbacks=[checkpoint], logger=logger, ) trainer.fit(model) assert trainer.state.finished, f"Training failed with {trainer.state}" trainer.test() # test we have good test accuracy tutils.assert_ok_model_acc(trainer, key="test_loss") def test_simple_cpu(tmpdir): """Verify continue training session on CPU.""" model = BoringModel() # fit model trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, limit_val_batches=0.1, limit_train_batches=20) trainer.fit(model) # traning complete assert trainer.state.finished, "amp + ddp model failed to complete" def test_cpu_model(tmpdir): """Make sure model trains on CPU.""" trainer_options = dict( default_root_dir=tmpdir, enable_progress_bar=False, max_epochs=1, limit_train_batches=4, limit_val_batches=4 ) model = BoringModel() tpipes.run_model_test(trainer_options, model, on_gpu=False) def test_all_features_cpu_model(tmpdir): """Test each of the trainer options.""" trainer_options = dict( default_root_dir=tmpdir, gradient_clip_val=1.0, overfit_batches=0.20, track_grad_norm=2, enable_progress_bar=False, accumulate_grad_batches=2, max_epochs=1, limit_train_batches=0.4, limit_val_batches=0.4, ) model = BoringModel() tpipes.run_model_test(trainer_options, model, on_gpu=False, min_acc=0.01)
the-stack_0_12729
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This code is based on https://github.com/nwojke/deep_sort/tree/master/deep_sort """ import numpy as np from scipy.optimize import linear_sum_assignment from ..motion import kalman_filter INFTY_COST = 1e+5 __all__ = [ 'iou_1toN', 'iou_cost', '_nn_euclidean_distance', '_nn_cosine_distance', 'NearestNeighborDistanceMetric', 'min_cost_matching', 'matching_cascade', 'gate_cost_matrix', ] def iou_1toN(bbox, candidates): """ Computer intersection over union (IoU) by one box to N candidates. Args: bbox (ndarray): A bounding box in format `(top left x, top left y, width, height)`. candidates (ndarray): A matrix of candidate bounding boxes (one per row) in the same format as `bbox`. Returns: ious (ndarray): The intersection over union in [0, 1] between the `bbox` and each candidate. A higher score means a larger fraction of the `bbox` is occluded by the candidate. """ bbox_tl = bbox[:2] bbox_br = bbox[:2] + bbox[2:] candidates_tl = candidates[:, :2] candidates_br = candidates[:, :2] + candidates[:, 2:] tl = np.c_[np.maximum(bbox_tl[0], candidates_tl[:, 0])[:, np.newaxis], np.maximum(bbox_tl[1], candidates_tl[:, 1])[:, np.newaxis]] br = np.c_[np.minimum(bbox_br[0], candidates_br[:, 0])[:, np.newaxis], np.minimum(bbox_br[1], candidates_br[:, 1])[:, np.newaxis]] wh = np.maximum(0., br - tl) area_intersection = wh.prod(axis=1) area_bbox = bbox[2:].prod() area_candidates = candidates[:, 2:].prod(axis=1) ious = area_intersection / (area_bbox + area_candidates - area_intersection) return ious def iou_cost(tracks, detections, track_indices=None, detection_indices=None): """ IoU distance metric. Args: tracks (list[Track]): A list of tracks. detections (list[Detection]): A list of detections. track_indices (Optional[list[int]]): A list of indices to tracks that should be matched. Defaults to all `tracks`. detection_indices (Optional[list[int]]): A list of indices to detections that should be matched. Defaults to all `detections`. Returns: cost_matrix (ndarray): A cost matrix of shape len(track_indices), len(detection_indices) where entry (i, j) is `1 - iou(tracks[track_indices[i]], detections[detection_indices[j]])`. """ if track_indices is None: track_indices = np.arange(len(tracks)) if detection_indices is None: detection_indices = np.arange(len(detections)) cost_matrix = np.zeros((len(track_indices), len(detection_indices))) for row, track_idx in enumerate(track_indices): if tracks[track_idx].time_since_update > 1: cost_matrix[row, :] = 1e+5 continue bbox = tracks[track_idx].to_tlwh() candidates = np.asarray([detections[i].tlwh for i in detection_indices]) cost_matrix[row, :] = 1. - iou_1toN(bbox, candidates) return cost_matrix def _nn_euclidean_distance(s, q): """ Compute pair-wise squared (Euclidean) distance between points in `s` and `q`. Args: s (ndarray): Sample points: an NxM matrix of N samples of dimensionality M. q (ndarray): Query points: an LxM matrix of L samples of dimensionality M. Returns: distances (ndarray): A vector of length M that contains for each entry in `q` the smallest Euclidean distance to a sample in `s`. """ s, q = np.asarray(s), np.asarray(q) if len(s) == 0 or len(q) == 0: return np.zeros((len(s), len(q))) s2, q2 = np.square(s).sum(axis=1), np.square(q).sum(axis=1) distances = -2. * np.dot(s, q.T) + s2[:, None] + q2[None, :] distances = np.clip(distances, 0., float(np.inf)) return np.maximum(0.0, distances.min(axis=0)) def _nn_cosine_distance(s, q): """ Compute pair-wise cosine distance between points in `s` and `q`. Args: s (ndarray): Sample points: an NxM matrix of N samples of dimensionality M. q (ndarray): Query points: an LxM matrix of L samples of dimensionality M. Returns: distances (ndarray): A vector of length M that contains for each entry in `q` the smallest Euclidean distance to a sample in `s`. """ s = np.asarray(s) / np.linalg.norm(s, axis=1, keepdims=True) q = np.asarray(q) / np.linalg.norm(q, axis=1, keepdims=True) distances = 1. - np.dot(s, q.T) return distances.min(axis=0) class NearestNeighborDistanceMetric(object): """ A nearest neighbor distance metric that, for each target, returns the closest distance to any sample that has been observed so far. Args: metric (str): Either "euclidean" or "cosine". matching_threshold (float): The matching threshold. Samples with larger distance are considered an invalid match. budget (Optional[int]): If not None, fix samples per class to at most this number. Removes the oldest samples when the budget is reached. Attributes: samples (Dict[int -> List[ndarray]]): A dictionary that maps from target identities to the list of samples that have been observed so far. """ def __init__(self, metric, matching_threshold, budget=None): if metric == "euclidean": self._metric = _nn_euclidean_distance elif metric == "cosine": self._metric = _nn_cosine_distance else: raise ValueError( "Invalid metric; must be either 'euclidean' or 'cosine'") self.matching_threshold = matching_threshold self.budget = budget self.samples = {} def partial_fit(self, features, targets, active_targets): """ Update the distance metric with new data. Args: features (ndarray): An NxM matrix of N features of dimensionality M. targets (ndarray): An integer array of associated target identities. active_targets (List[int]): A list of targets that are currently present in the scene. """ for feature, target in zip(features, targets): self.samples.setdefault(target, []).append(feature) if self.budget is not None: self.samples[target] = self.samples[target][-self.budget:] self.samples = {k: self.samples[k] for k in active_targets} def distance(self, features, targets): """ Compute distance between features and targets. Args: features (ndarray): An NxM matrix of N features of dimensionality M. targets (list[int]): A list of targets to match the given `features` against. Returns: cost_matrix (ndarray): a cost matrix of shape len(targets), len(features), where element (i, j) contains the closest squared distance between `targets[i]` and `features[j]`. """ cost_matrix = np.zeros((len(targets), len(features))) for i, target in enumerate(targets): cost_matrix[i, :] = self._metric(self.samples[target], features) return cost_matrix def min_cost_matching(distance_metric, max_distance, tracks, detections, track_indices=None, detection_indices=None): """ Solve linear assignment problem. Args: distance_metric : Callable[List[Track], List[Detection], List[int], List[int]) -> ndarray The distance metric is given a list of tracks and detections as well as a list of N track indices and M detection indices. The metric should return the NxM dimensional cost matrix, where element (i, j) is the association cost between the i-th track in the given track indices and the j-th detection in the given detection_indices. max_distance (float): Gating threshold. Associations with cost larger than this value are disregarded. tracks (list[Track]): A list of predicted tracks at the current time step. detections (list[Detection]): A list of detections at the current time step. track_indices (list[int]): List of track indices that maps rows in `cost_matrix` to tracks in `tracks`. detection_indices (List[int]): List of detection indices that maps columns in `cost_matrix` to detections in `detections`. Returns: A tuple (List[(int, int)], List[int], List[int]) with the following three entries: * A list of matched track and detection indices. * A list of unmatched track indices. * A list of unmatched detection indices. """ if track_indices is None: track_indices = np.arange(len(tracks)) if detection_indices is None: detection_indices = np.arange(len(detections)) if len(detection_indices) == 0 or len(track_indices) == 0: return [], track_indices, detection_indices # Nothing to match. cost_matrix = distance_metric(tracks, detections, track_indices, detection_indices) cost_matrix[cost_matrix > max_distance] = max_distance + 1e-5 indices = linear_sum_assignment(cost_matrix) matches, unmatched_tracks, unmatched_detections = [], [], [] for col, detection_idx in enumerate(detection_indices): if col not in indices[1]: unmatched_detections.append(detection_idx) for row, track_idx in enumerate(track_indices): if row not in indices[0]: unmatched_tracks.append(track_idx) for row, col in zip(indices[0], indices[1]): track_idx = track_indices[row] detection_idx = detection_indices[col] if cost_matrix[row, col] > max_distance: unmatched_tracks.append(track_idx) unmatched_detections.append(detection_idx) else: matches.append((track_idx, detection_idx)) return matches, unmatched_tracks, unmatched_detections def matching_cascade(distance_metric, max_distance, cascade_depth, tracks, detections, track_indices=None, detection_indices=None): """ Run matching cascade. Args: distance_metric : Callable[List[Track], List[Detection], List[int], List[int]) -> ndarray The distance metric is given a list of tracks and detections as well as a list of N track indices and M detection indices. The metric should return the NxM dimensional cost matrix, where element (i, j) is the association cost between the i-th track in the given track indices and the j-th detection in the given detection_indices. max_distance (float): Gating threshold. Associations with cost larger than this value are disregarded. cascade_depth (int): The cascade depth, should be se to the maximum track age. tracks (list[Track]): A list of predicted tracks at the current time step. detections (list[Detection]): A list of detections at the current time step. track_indices (list[int]): List of track indices that maps rows in `cost_matrix` to tracks in `tracks`. detection_indices (List[int]): List of detection indices that maps columns in `cost_matrix` to detections in `detections`. Returns: A tuple (List[(int, int)], List[int], List[int]) with the following three entries: * A list of matched track and detection indices. * A list of unmatched track indices. * A list of unmatched detection indices. """ if track_indices is None: track_indices = list(range(len(tracks))) if detection_indices is None: detection_indices = list(range(len(detections))) unmatched_detections = detection_indices matches = [] for level in range(cascade_depth): if len(unmatched_detections) == 0: # No detections left break track_indices_l = [ k for k in track_indices if tracks[k].time_since_update == 1 + level ] if len(track_indices_l) == 0: # Nothing to match at this level continue matches_l, _, unmatched_detections = \ min_cost_matching( distance_metric, max_distance, tracks, detections, track_indices_l, unmatched_detections) matches += matches_l unmatched_tracks = list(set(track_indices) - set(k for k, _ in matches)) return matches, unmatched_tracks, unmatched_detections def gate_cost_matrix(kf, cost_matrix, tracks, detections, track_indices, detection_indices, gated_cost=INFTY_COST, only_position=False): """ Invalidate infeasible entries in cost matrix based on the state distributions obtained by Kalman filtering. Args: kf (object): The Kalman filter. cost_matrix (ndarray): The NxM dimensional cost matrix, where N is the number of track indices and M is the number of detection indices, such that entry (i, j) is the association cost between `tracks[track_indices[i]]` and `detections[detection_indices[j]]`. tracks (list[Track]): A list of predicted tracks at the current time step. detections (list[Detection]): A list of detections at the current time step. track_indices (List[int]): List of track indices that maps rows in `cost_matrix` to tracks in `tracks`. detection_indices (List[int]): List of detection indices that maps columns in `cost_matrix` to detections in `detections`. gated_cost (Optional[float]): Entries in the cost matrix corresponding to infeasible associations are set this value. Defaults to a very large value. only_position (Optional[bool]): If True, only the x, y position of the state distribution is considered during gating. Default False. """ gating_dim = 2 if only_position else 4 gating_threshold = kalman_filter.chi2inv95[gating_dim] measurements = np.asarray( [detections[i].to_xyah() for i in detection_indices]) for row, track_idx in enumerate(track_indices): track = tracks[track_idx] gating_distance = kf.gating_distance(track.mean, track.covariance, measurements, only_position) cost_matrix[row, gating_distance > gating_threshold] = gated_cost return cost_matrix
the-stack_0_12730
"""Trains a ResNet on the CIFAR10 dataset. ResNet v1 [a] Deep Residual Learning for Image Recognition https://arxiv.org/pdf/1512.03385.pdf ResNet v2 [b] Identity Mappings in Deep Residual Networks https://arxiv.org/pdf/1603.05027.pdf """ from __future__ import print_function import keras from keras.layers import Dense, Conv2D, BatchNormalization, Activation from keras.layers import AveragePooling2D, Input, Flatten from keras.optimizers import Adam from keras.callbacks import ModelCheckpoint, LearningRateScheduler from keras.callbacks import ReduceLROnPlateau from keras.preprocessing.image import ImageDataGenerator from keras.regularizers import l2 from keras.models import Model from keras.datasets import cifar10 from keras.utils import plot_model import numpy as np import os # Training parameters batch_size = 32 # orig paper trained all networks with batch_size=128 epochs = 200 data_augmentation = True num_classes = 10 # Subtracting pixel mean improves accuracy subtract_pixel_mean = True # Model parameter # ---------------------------------------------------------------------------- # | | 200-epoch | Orig Paper| 200-epoch | Orig Paper| sec/epoch # Model | n | ResNet v1 | ResNet v1 | ResNet v2 | ResNet v2 | GTX1080Ti # |v1(v2)| %Accuracy | %Accuracy | %Accuracy | %Accuracy | v1 (v2) # ---------------------------------------------------------------------------- # ResNet20 | 3 (2)| 92.16 | 91.25 | ----- | ----- | 35 (---) # ResNet32 | 5(NA)| 92.46 | 92.49 | NA | NA | 50 ( NA) # ResNet44 | 7(NA)| 92.50 | 92.83 | NA | NA | 70 ( NA) # ResNet56 | 9 (6)| 92.71 | 93.03 | 93.01 | NA | 90 (100) # ResNet110 |18(12)| 92.65 | 93.39+-.16| 93.15 | 93.63 | 165(180) # ResNet164 |27(18)| ----- | 94.07 | ----- | 94.54 | ---(---) # ResNet1001| (111)| ----- | 92.39 | ----- | 95.08+-.14| ---(---) # --------------------------------------------------------------------------- n = 3 # Model version # Orig paper: version = 1 (ResNet v1), Improved ResNet: version = 2 (ResNet v2) version = 1 # Computed depth from supplied model parameter n if version == 1: depth = n * 6 + 2 elif version == 2: depth = n * 9 + 2 # Model name, depth and version model_type = 'ResNet%dv%d' % (depth, version) # Load the CIFAR10 data. (x_train, y_train), (x_test, y_test) = cifar10.load_data() # Input image dimensions. input_shape = x_train.shape[1:] # Normalize data. x_train = x_train.astype('float32') / 255 x_test = x_test.astype('float32') / 255 # If subtract pixel mean is enabled if subtract_pixel_mean: x_train_mean = np.mean(x_train, axis=0) x_train -= x_train_mean x_test -= x_train_mean print('x_train shape:', x_train.shape) print(x_train.shape[0], 'train samples') print(x_test.shape[0], 'test samples') print('y_train shape:', y_train.shape) # Convert class vectors to binary class matrices. y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) def lr_schedule(epoch): """Learning Rate Schedule Learning rate is scheduled to be reduced after 80, 120, 160, 180 epochs. Called automatically every epoch as part of callbacks during training. # Arguments epoch (int): The number of epochs # Returns lr (float32): learning rate """ lr = 1e-3 if epoch > 180: lr *= 0.5e-3 elif epoch > 160: lr *= 1e-3 elif epoch > 120: lr *= 1e-2 elif epoch > 80: lr *= 1e-1 print('Learning rate: ', lr) return lr def resnet_layer(inputs, num_filters=16, kernel_size=3, strides=1, activation='relu', batch_normalization=True, conv_first=True): """2D Convolution-Batch Normalization-Activation stack builder # Arguments inputs (tensor): input tensor from input image or previous layer num_filters (int): Conv2D number of filters kernel_size (int): Conv2D square kernel dimensions strides (int): Conv2D square stride dimensions activation (string): activation name batch_normalization (bool): whether to include batch normalization conv_first (bool): conv-bn-activation (True) or activation-bn-conv (False) # Returns x (tensor): tensor as input to the next layer """ conv = Conv2D(num_filters, kernel_size=kernel_size, strides=strides, padding='same', kernel_initializer='he_normal', kernel_regularizer=l2(1e-4)) x = inputs if conv_first: x = conv(x) if batch_normalization: x = BatchNormalization()(x) if activation is not None: x = Activation(activation)(x) else: if batch_normalization: x = BatchNormalization()(x) if activation is not None: x = Activation(activation)(x) x = conv(x) return x def resnet_v1(input_shape, depth, num_classes=10): """ResNet Version 1 Model builder [a] Stacks of 2 x (3 x 3) Conv2D-BN-ReLU Last ReLU is after the shortcut connection. At the beginning of each stage, the feature map size is halved (downsampled) by a convolutional layer with strides=2, while the number of filters is doubled. Within each stage, the layers have the same number filters and the same number of filters. Features maps sizes: stage 0: 32x32, 16 stage 1: 16x16, 32 stage 2: 8x8, 64 The Number of parameters is approx the same as Table 6 of [a]: ResNet20 0.27M ResNet32 0.46M ResNet44 0.66M ResNet56 0.85M ResNet110 1.7M # Arguments input_shape (tensor): shape of input image tensor depth (int): number of core convolutional layers num_classes (int): number of classes (CIFAR10 has 10) # Returns model (Model): Keras model instance """ if (depth - 2) % 6 != 0: raise ValueError('depth should be 6n+2 (eg 20, 32, 44 in [a])') # Start model definition. num_filters = 16 num_res_blocks = int((depth - 2) / 6) inputs = Input(shape=input_shape) x = resnet_layer(inputs=inputs) # Instantiate the stack of residual units for stack in range(3): for res_block in range(num_res_blocks): strides = 1 if stack > 0 and res_block == 0: # first layer but not first stack strides = 2 # downsample y = resnet_layer(inputs=x, num_filters=num_filters, strides=strides) y = resnet_layer(inputs=y, num_filters=num_filters, activation=None) if stack > 0 and res_block == 0: # first layer but not first stack # linear projection residual shortcut connection to match # changed dims x = resnet_layer(inputs=x, num_filters=num_filters, kernel_size=1, strides=strides, activation=None, batch_normalization=False) x = keras.layers.add([x, y]) x = Activation('relu')(x) num_filters *= 2 # Add classifier on top. # v1 does not use BN after last shortcut connection-ReLU x = AveragePooling2D(pool_size=8)(x) y = Flatten()(x) outputs = Dense(num_classes, activation='softmax', kernel_initializer='he_normal')(y) # Instantiate model. model = Model(inputs=inputs, outputs=outputs) return model def resnet_v2(input_shape, depth, num_classes=10): """ResNet Version 2 Model builder [b] Stacks of (1 x 1)-(3 x 3)-(1 x 1) BN-ReLU-Conv2D or also known as bottleneck layer First shortcut connection per layer is 1 x 1 Conv2D. Second and onwards shortcut connection is identity. At the beginning of each stage, the feature map size is halved (downsampled) by a convolutional layer with strides=2, while the number of filter maps is doubled. Within each stage, the layers have the same number filters and the same filter map sizes. Features maps sizes: conv1 : 32x32, 16 stage 0: 32x32, 64 stage 1: 16x16, 128 stage 2: 8x8, 256 # Arguments input_shape (tensor): shape of input image tensor depth (int): number of core convolutional layers num_classes (int): number of classes (CIFAR10 has 10) # Returns model (Model): Keras model instance """ if (depth - 2) % 9 != 0: raise ValueError('depth should be 9n+2 (eg 56 or 110 in [b])') # Start model definition. num_filters_in = 16 num_res_blocks = int((depth - 2) / 9) inputs = Input(shape=input_shape) # v2 performs Conv2D with BN-ReLU on input before splitting into 2 paths x = resnet_layer(inputs=inputs, num_filters=num_filters_in, conv_first=True) # Instantiate the stack of residual units for stage in range(3): for res_block in range(num_res_blocks): activation = 'relu' batch_normalization = True strides = 1 if stage == 0: num_filters_out = num_filters_in * 4 if res_block == 0: # first layer and first stage activation = None batch_normalization = False else: num_filters_out = num_filters_in * 2 if res_block == 0: # first layer but not first stage strides = 2 # downsample # bottleneck residual unit y = resnet_layer(inputs=x, num_filters=num_filters_in, kernel_size=1, strides=strides, activation=activation, batch_normalization=batch_normalization, conv_first=False) y = resnet_layer(inputs=y, num_filters=num_filters_in, conv_first=False) y = resnet_layer(inputs=y, num_filters=num_filters_out, kernel_size=1, conv_first=False) if res_block == 0: # linear projection residual shortcut connection to match # changed dims x = resnet_layer(inputs=x, num_filters=num_filters_out, kernel_size=1, strides=strides, activation=None, batch_normalization=False) x = keras.layers.add([x, y]) num_filters_in = num_filters_out # Add classifier on top. # v2 has BN-ReLU before Pooling x = BatchNormalization()(x) x = Activation('relu')(x) x = AveragePooling2D(pool_size=8)(x) y = Flatten()(x) outputs = Dense(num_classes, activation='softmax', kernel_initializer='he_normal')(y) # Instantiate model. model = Model(inputs=inputs, outputs=outputs) return model if version == 2: model = resnet_v2(input_shape=input_shape, depth=depth) else: model = resnet_v1(input_shape=input_shape, depth=depth) model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=lr_schedule(0)), metrics=['accuracy']) model.summary() plot_model(model, to_file="%s.png" % model_type, show_shapes=True) print(model_type) # Prepare model model saving directory. save_dir = os.path.join(os.getcwd(), 'saved_models') model_name = 'cifar10_%s_model.{epoch:03d}.h5' % model_type if not os.path.isdir(save_dir): os.makedirs(save_dir) filepath = os.path.join(save_dir, model_name) # Prepare callbacks for model saving and for learning rate adjustment. checkpoint = ModelCheckpoint(filepath=filepath, monitor='val_acc', verbose=1, save_best_only=True) lr_scheduler = LearningRateScheduler(lr_schedule) lr_reducer = ReduceLROnPlateau(factor=np.sqrt(0.1), cooldown=0, patience=5, min_lr=0.5e-6) callbacks = [checkpoint, lr_reducer, lr_scheduler] # Run training, with or without data augmentation. if not data_augmentation: print('Not using data augmentation.') model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_data=(x_test, y_test), shuffle=True, callbacks=callbacks) else: print('Using real-time data augmentation.') # This will do preprocessing and realtime data augmentation: datagen = ImageDataGenerator( # set input mean to 0 over the dataset featurewise_center=False, # set each sample mean to 0 samplewise_center=False, # divide inputs by std of dataset featurewise_std_normalization=False, # divide each input by its std samplewise_std_normalization=False, # apply ZCA whitening zca_whitening=False, # randomly rotate images in the range (deg 0 to 180) rotation_range=0, # randomly shift images horizontally width_shift_range=0.1, # randomly shift images vertically height_shift_range=0.1, # randomly flip images horizontal_flip=True, # randomly flip images vertical_flip=False) # Compute quantities required for featurewise normalization # (std, mean, and principal components if ZCA whitening is applied). datagen.fit(x_train) # Fit the model on the batches generated by datagen.flow(). model.fit_generator(datagen.flow(x_train, y_train, batch_size=batch_size), validation_data=(x_test, y_test), epochs=epochs, verbose=1, workers=4, callbacks=callbacks) # Score trained model. scores = model.evaluate(x_test, y_test, verbose=1) print('Test loss:', scores[0]) print('Test accuracy:', scores[1])
the-stack_0_12735
import sqlite3 import csv import os os.chdir('C:\OLGA\Python CS50\import_csv_db') #currentDir = os.getcwd() #currentFileCSV = currentDir +"\\" + csvFilename #print(currentFileCSV) conn = sqlite3.connect('db.sqlite3') c = conn.cursor() c.execute("delete from auth_user_customuser") c.execute("delete from api_title") c.execute("delete from api_review") c.execute("delete from api_title_genre") c.execute("delete from api_genre") c.execute("delete from api_comment") c.execute("delete from api_category") csvFilename = 'users.csv' with open(csvFilename, "r", encoding='utf-8') as file: reader = csv.DictReader(file) for row in reader: username = row['username'] email = row['email'] role = row['role'] desc = row['description'] first_name = row['first_name'] last_name = row['last_name'] c.execute("INSERT INTO auth_user_customuser(username, email, role, bio, first_name, last_name, password, is_superuser, is_staff, is_active, date_joined) \ VALUES(?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)", (username, email, role, desc, first_name, last_name, '111', 0, 0, 1, 0)) csvFilename = 'titles.csv' with open(csvFilename, "r", encoding='utf-8') as file: reader = csv.DictReader(file) for row in reader: name = row['name'] year = row['year'] cat = row['category'] c.execute("INSERT INTO api_title(name, year, category_id) \ VALUES(?, ?, ?)", (name, year, cat)) csvFilename = 'review.csv' with open(csvFilename, "r", encoding='utf-8') as file: reader = csv.DictReader(file) for row in reader: title = row['title_id'] text = row['text'] author = row['author'] score = row['score'] pub_date = row['pub_date'] c.execute("INSERT INTO api_review(title_id, text, author_id, score, pub_date) \ VALUES(?, ?, ?, ?, ?)", (title, text, author, score, pub_date)) csvFilename = 'genre_title.csv' with open(csvFilename, "r") as file: reader = csv.DictReader(file) for row in reader: title = row['title_id'] text = row['genre_id'] c.execute("INSERT INTO api_title_genre(title_id, genre_id) \ VALUES(?, ?)", (title, text)) csvFilename = 'genre.csv' with open(csvFilename, "r", encoding='utf-8') as file: reader = csv.DictReader(file) for row in reader: name = row['name'] slug = row['slug'] c.execute("INSERT INTO api_genre(name, slug) \ VALUES(?, ?)", (name, slug)) csvFilename = 'comments.csv' with open(csvFilename, "r", encoding='utf-8') as file: reader = csv.DictReader(file) for row in reader: review_id = row['review_id'] text = row['text'] author = row['author'] pub_date = row['pub_date'] c.execute("INSERT INTO api_comment(review_id, text, author_id, pub_date) \ VALUES(?, ?, ?, ?)", (review_id, text, author, pub_date)) csvFilename = 'category.csv' with open(csvFilename, "r", encoding='utf-8') as file: reader = csv.DictReader(file) for row in reader: name = row['name'] slug = row['slug'] c.execute("INSERT INTO api_category(name, slug) \ VALUES(?, ?)", (name, slug)) conn.commit() conn.close()
the-stack_0_12738
# For example if user wants to input two equations like # x1 + 2x2 = 3 # 2x1 + x2 = 3 # it will return a list like [[1,2,3],[2,1,3]] def get_coefficients_as_list(no_of_unknowns): all_coefficients = [] for i in range(1,no_of_unknowns+1): coefficient = [] print("Enter the coefficients for equation ",i) for j in range(1,no_of_unknowns+1): num = int(input("Enter the coefficient of x"+str(j)+":- ")) coefficient.append(num) coefficient.append(int(input("Enter the RHS constant :- "))) all_coefficients.append(coefficient) return all_coefficients
the-stack_0_12739
from dcmrtstruct2nii.adapters.convert.rtstructcontour2mask import DcmPatientCoords2Mask from dcmrtstruct2nii.adapters.convert.filenameconverter import FilenameConverter from dcmrtstruct2nii.adapters.input.contours.rtstructinputadapter import RtStructInputAdapter from dcmrtstruct2nii.adapters.input.image.dcminputadapter import DcmInputAdapter import os.path from dcmrtstruct2nii.adapters.output.niioutputadapter import NiiOutputAdapter from dcmrtstruct2nii.exceptions import PathDoesNotExistException, ContourOutOfBoundsException import logging def list_rt_structs(rtstruct_file): """ Lists the structures in an DICOM RT Struct file by name. :param rtstruct_file: Path to the rtstruct file :return: A list of names, if any structures are found """ if not os.path.exists(rtstruct_file): raise PathDoesNotExistException(f'rtstruct path does not exist: {rtstruct_file}') rtreader = RtStructInputAdapter() rtstructs = rtreader.ingest(rtstruct_file, True) return [struct['name'] for struct in rtstructs] def dcmrtstruct2nii(rtstruct_file, dicom_file, output_path, structures=None, gzip=True, mask_background_value=0, mask_foreground_value=255, convert_original_dicom=True, series_id=None): # noqa: C901 E501 """ Converts A DICOM and DICOM RT Struct file to nii :param rtstruct_file: Path to the rtstruct file :param dicom_file: Path to the dicom file :param output_path: Output path where the masks are written to :param structures: Optional, list of structures to convert :param gzip: Optional, output .nii.gz if set to True, default: True :param series_id: Optional, the Series Instance UID. Use to specify the ID corresponding to the image if there are dicoms from more than one series in `dicom_file` folder :raise InvalidFileFormatException: Raised when an invalid file format is given. :raise PathDoesNotExistException: Raised when the given path does not exist. :raise UnsupportedTypeException: Raised when conversion is not supported. :raise ValueError: Raised when mask_background_value or mask_foreground_value is invalid. """ output_path = os.path.join(output_path, '') # make sure trailing slash is there if not os.path.exists(rtstruct_file): raise PathDoesNotExistException(f'rtstruct path does not exist: {rtstruct_file}') if not os.path.exists(dicom_file): raise PathDoesNotExistException(f'DICOM path does not exists: {dicom_file}') if mask_background_value < 0 or mask_background_value > 255: raise ValueError(f'Invalid value for mask_background_value: {mask_background_value}, must be between 0 and 255') if mask_foreground_value < 0 or mask_foreground_value > 255: raise ValueError(f'Invalid value for mask_foreground_value: {mask_foreground_value}, must be between 0 and 255') if structures is None: structures = [] os.makedirs(output_path, exist_ok=True) filename_converter = FilenameConverter() rtreader = RtStructInputAdapter() rtstructs = rtreader.ingest(rtstruct_file) dicom_image = DcmInputAdapter().ingest(dicom_file, series_id=series_id) dcm_patient_coords_to_mask = DcmPatientCoords2Mask() nii_output_adapter = NiiOutputAdapter() for rtstruct in rtstructs: if len(structures) == 0 or rtstruct['name'] in structures: if 'sequence' not in rtstruct: logging.info('Skipping mask {} no shape/polygon found'.format(rtstruct['name'])) continue logging.info('Working on mask {}'.format(rtstruct['name'])) try: mask = dcm_patient_coords_to_mask.convert(rtstruct['sequence'], dicom_image, mask_background_value, mask_foreground_value) except ContourOutOfBoundsException: logging.warning(f'Structure {rtstruct["name"]} is out of bounds, ignoring contour!') continue mask.CopyInformation(dicom_image) mask_filename = filename_converter.convert(f'mask_{rtstruct["name"]}') nii_output_adapter.write(mask, f'{output_path}{mask_filename}', gzip) if convert_original_dicom: logging.info('Converting original DICOM to nii') nii_output_adapter.write(dicom_image, f'{output_path}image', gzip) logging.info('Success!')
the-stack_0_12742
# Copyright 2022 Aprendizaje Profundo, All rights reserved. # # Licensed under the MIT License; # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://opensource.org/licenses/MIT # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Developed by Alvaro Mauricio Montenegro Reyes and Daniel Mauricio Montenegro Reyes # ================================================================================== from collections import Counter import re def coincidence_parser(datos,column_name='Coincidencias_iniciales', verbose = True,kind = 'ruleId'): coincidencias = datos[column_name].values size = coincidencias.shape[0] #list for the dictionaries clist = [] # counter for rules rules = Counter() for i, index in enumerate(datos.index): if i % 100 == 0 and verbose: print(i,end=' ') # extract coincidences from row i # split the rules, according to the data structure c = coincidencias[i] c = re.sub('Match\({','MatchXXXX({',c) l = c.split('MatchXXXX') # create a list with each dictionary obtained clist.clear() for k in range(1, len(l)): dictionary = l[k] try: val = dict(eval(dictionary[1:-3])) except: val = dict(eval(dictionary[1:-2])) clist.append(val) # count the rules found by type of rule rules.clear() for j in range(len(clist)): # Posibles: ruleId, ruleIssueType, category rules[clist[j][kind]] += 1 # to the dataframe for key, value in rules.items(): datos.at[index, key] = value from collections import Counter def spacy_column_parser(column_name, verbose=True): # start size = datos.shape[0] print('¡¡Empezando...!! Se procesaran ', size, ' registros de la columna ', column_name) # counter for rules rules = Counter() # working bucle for i, index in enumerate(datos.index): if i % 100 == 0 and verbose: print(i, end=' ') # read column value in this register (index) values = eval(datos.at[index, column_name]) # extract the rules rules.clear() for value in values: rules[value] += 1 # to the dataframe for key, value in rules.items(): datos.at[index, key] = value print('\n¡¡Hecho!!.... Se procesaron ', i+1, ' registros de la columna ', column_name) def spacy_parser( column_names=['Upos', 'Dep', 'Ner_type'], verbose = True): for column_name in column_names: spacy_column_parser(column_name, verbose=True)
the-stack_0_12743
#!/usr/bin/env python2 # test case courtesy of William Schaub ([email protected]) import os, sys from socket import * UNIXSOCKET = sys.argv[1] server = socket(AF_UNIX,SOCK_STREAM) server.connect(UNIXSOCKET) while 1: data = sys.stdin.readline() if not data: break server.sendall(data) server.close()
the-stack_0_12746
""" dxagent.py This file contains the core of dxagent @author: K.Edeline """ import sched import time import signal import importlib from .constants import AGENT_INPUT_PERIOD from .core.ios import IOManager from .core.daemon import Daemon from .input.sysinfo import SysInfo from .input.bm_input import BMWatcher from .input.vm_input import VMWatcher from .input.vpp_input import VPPWatcher from .assurance.health import HealthEngine from .gnmi.exporter import DXAgentExporter class DXAgent(Daemon, IOManager): """ DXAgent """ def __init__(self, parse_args=True): Daemon.__init__(self, pidfile='/var/run/dxagent.pid', stdout='/var/log/dxagent.log', stderr='/var/log/dxagent.log', name='dxagent', input_rate=AGENT_INPUT_PERIOD) IOManager.__init__(self, child=self, parse_args=parse_args) self.load_ios() if not parse_args: return def _init(self): self.sysinfo = SysInfo() self.scheduler = sched.scheduler() # ringbuffers are stored here self._data = {} # SharedMemory with dxtop. # Drop privileges to avoid dxtop root requirements if not self.args.disable_shm: mod = importlib.import_module("agent.core.shareablebuffer") with self.drop(): self.sbuffer = getattr(mod, "ShareableBuffer")(create=True) # watchers. self.bm_watcher = BMWatcher(self._data, self.info, self) self.vm_watcher = VMWatcher(self._data, self.info, self) self.vpp_watcher = VPPWatcher(self._data, self.info, self) # health engine self.engine = HealthEngine(self._data, self.info, self) # exporter if self.gnmi_target: self.exporter = DXAgentExporter(self._data, self.info, self, target_url=self.gnmi_target) self.exporter.run() # catch signal for cleanup signal.signal(signal.SIGTERM, self.exit) def _input(self): self.bm_watcher.input() self.vm_watcher.input() self.vpp_watcher.input() def process(self): """ read input data, process and write it to shmem. re-schedule itself. """ # fetch input self._input() # compute metrics&symptoms from input self.engine.update_health() # write to shmem if not self.args.disable_shm: skip=["stats"] if not self.args.verbose else [] self.sbuffer.write(self._data, skip=skip, info=self.info) #self.info(list(self.exporter._iterate_data())) self.scheduler.enter(AGENT_INPUT_PERIOD,0,self.process) def exit(self, signum=None, stackframe=None): """ cleanup before exiting """ self.running = False time.sleep(AGENT_INPUT_PERIOD) self.bm_watcher.exit() self.vm_watcher.exit() self.vpp_watcher.exit() if not self.args.disable_shm: self.sbuffer.unlink() del self.sbuffer def run(self): """ main function """ self._init() self.running = True self.info(self.sysinfo) self.process() while self.running: self.scheduler.run(blocking=False) time.sleep(AGENT_INPUT_PERIOD)
the-stack_0_12748
from googlesearch import search from pyppeteer import launch from wplay.utils.helpers import chatbot_image_folder_path async def Bot(last_Message): """ Function to perform instruction as instructed to bot. """ print('\n Bot activated') first_last_Message = "".join(last_Message.split()) simple_menu = { "hi": say_hi, "help": _help_commands, "goodmorning": say_goodmorning, "goodnight": say_goodnight, "howareyou?": say_fine, } simple_menu_keys = simple_menu.keys() result = [] try: command_args = first_last_Message[1:].split(" ", 1) command_arg = last_Message[1:].split(" ", 1) if len(command_args) == 1 and command_args[0] in simple_menu_keys: return simple_menu[command_args[0]]() elif command_arg[0] == 'google': query = "".join(command_arg[1]) for j in search(query, tld="co.in", num=10, stop=10, pause=2): result.append(j) print("Sending links for query") return result elif command_arg[0] == "image": query = "".join(command_arg[1]) await takeScreenshot(query) print("Taking screenshot of google image for query") return "Sending you screenshot" elif command_arg[0] == "maps": query = "".join(command_arg[1]) map_parameters_list = query.replace(" ", "") map_parameters = map_parameters_list.split(',') base_url = "https://www.google.com/maps/dir/?api=1&" custom_url = base_url + "origin={ori}&destination={dest}&travelmode={t_mode}".format(ori=map_parameters[0], dest=map_parameters[1], t_mode=map_parameters[2]) print("Sending link for google maps") return custom_url else: return "Wrong command. Send me /help to see a list of valid commands" except KeyError as e: print("Key Error Exception: {err}".format(err=str(e))) def say_hi(): print("Saying hi") return "Wplay chatbot says hi! Hope you are having a nice day..." def say_goodmorning(): print("Saying good morning") return "Bot says Good Morning! Have a Good Day..." def say_goodnight(): print("Saying good night") return "Bot says Good Night! Sweet Dreams..." def say_fine(): print("Saying I am Fine!") return "Bot says I am Fine Thank You! How are you?" def _help_commands(): print("Asking for help") return "How may I assist you with help\n"\ "List of commands:\n" \ "/hi (bot says hi), " \ "/all_commands (ist of all commands), " \ "/good morning, " \ "/good night, " \ "/how are you? " \ "/google {query} " \ "/image {query} " \ "/maps {origin}, {destination}, {mode:driving/bicycling/transit/two-wheeler/walking}" async def takeScreenshot(qry): browser = await launch() page = await browser.newPage() await page.goto('https://www.google.com/search?q={}&source=lnms&tbm=isch'.format(qry)) image_path = str(chatbot_image_folder_path / '{}.png'.format(qry)) await page.screenshot({'path': image_path}) await browser.close()
the-stack_0_12749
import copy import pytest from ckan_api_client.exceptions import HTTPError from ckan_api_client.objects import CkanDataset from ckan_api_client.tests.utils.diff import diff_mappings from ckan_api_client.tests.utils.generate import generate_dataset from ckan_api_client.tests.utils.validation import MutableCheckpoint def test_dataset_create(ckan_client_hl): client = ckan_client_hl dataset_dict = generate_dataset() dataset = CkanDataset(dataset_dict) created = client.create_dataset(dataset) assert created.is_equivalent(dataset) def test_dataset_get_by_name(ckan_client_hl): client = ckan_client_hl dataset_dict = generate_dataset() dataset_dict['name'] = 'example-dataset-name' dataset = CkanDataset(dataset_dict) created = client.create_dataset(dataset) assert created.is_equivalent(dataset) dataset_id = created.id # Try getting by id dataset_1 = client.get_dataset(dataset_id) assert created == dataset_1 # Try getting by name dataset_2 = client.get_dataset_by_name('example-dataset-name') assert created == dataset_2 # Try getting by id, but passing name instead with pytest.raises(HTTPError) as excinfo: client.get_dataset('example-dataset-name') assert excinfo.value.status_code == 404 # Try getting by name, but passing id instead with pytest.raises(HTTPError) as excinfo: client.get_dataset_by_name(dataset_id) assert excinfo.value.status_code == 404 def test_dataset_update_base_fields(ckan_client_hl): client = ckan_client_hl # shortcut ckp = MutableCheckpoint() # to check objects mutation # Create our dataset dataset_dict = generate_dataset() ckp.add(dataset_dict) dataset = CkanDataset(generate_dataset()) dataset.author = 'original author' dataset.author_email = '[email protected]' dataset.license_id = 'cc-zero' created = client.create_dataset(dataset) # Store a copy of the original dataset original_dataset = client.get_dataset(created.id) assert created.is_equivalent(original_dataset) ckp.add(original_dataset) # Update some base fields, send back & check to_be_updated = copy.deepcopy(original_dataset) to_be_updated.author = 'NEW_AUTHOR' to_be_updated.author_email = 'NEW_AUTHOR_EMAIL' to_be_updated.license_id = 'cc-by-sa' assert to_be_updated.is_modified() # Update, get back, check updated = client.update_dataset(to_be_updated) updated_2 = client.get_dataset(created.id) assert updated.is_equivalent(to_be_updated) assert updated.is_equivalent(updated_2) diffs = diff_mappings( original_dataset.serialize(), updated.serialize()) assert diffs['differing'] == set([ 'author', 'author_email', 'license_id', ]) assert diffs['left'] == set() assert diffs['right'] == set() # Make sure dicts did not mutate ckp.check() def test_dataset_update_extras(ckan_client_hl): client = ckan_client_hl # shortcut ds_dict = generate_dataset() ds_dict['extras'] = { 'key-0': 'value-0', 'key-1': 'value-1', 'key-2': 'value-2', 'key-3': 'value-3', 'key-4': 'value-4', 'key-5': 'value-5', 'key-6': 'value-6', 'key-7': 'value-7', 'key-8': 'value-8', 'key-9': 'value-9', } stage_1pre = CkanDataset(ds_dict) stage_1 = client.create_dataset(stage_1pre) # -------------------------------------------------- # Try adding a new record stage_1b = client.get_dataset(stage_1.id) stage_2pre = copy.deepcopy(stage_1b) stage_2pre.extras['NEW_FIELD_NAME'] = 'NEW_FIELD_VALUE' stage_2 = client.update_dataset(stage_2pre) assert stage_2.is_equivalent(client.get_dataset(stage_1.id)) diffs = diff_mappings(stage_1b.serialize(), stage_2.serialize()) assert diffs['left'] == diffs['right'] == set() assert diffs['differing'] == set(['extras']) del stage_1b, stage_2pre, stage_2, diffs # -------------------------------------------------- # Try removing the custom field stage_2pre = client.get_dataset(stage_1.id) del stage_2pre.extras['NEW_FIELD_NAME'] stage_2 = client.update_dataset(stage_2pre) assert stage_2.is_equivalent(client.get_dataset(stage_1.id)) assert 'NEW_FIELD_NAME' not in stage_2.extras stage_2b = client.get_dataset(stage_1.id) assert stage_2 == stage_2b # Make sure we brought it back to its original state assert stage_1.is_equivalent(stage_2) del stage_2pre, stage_2 def test_dataset_update_resources(ckan_client_hl): client = ckan_client_hl # shortcut ds_dict = generate_dataset() ds_dict['resources'] = [ {'name': 'example-csv-1', 'url': 'http://example.com/dataset-1.csv', 'format': 'CSV'}, {'name': 'example-json-1', 'url': 'http://example.com/dataset-1.json', 'format': 'JSON'}, ] stage_1pre = CkanDataset(ds_dict) stage_1 = client.create_dataset(stage_1pre) # -------------------------------------------------- # Try adding a new resource stage_2pre = client.get_dataset(stage_1.id) stage_2pre.resources.append({ 'name': 'example-csv-2', 'url': 'http://example.com/dataset-2.csv', 'format': 'CSV'}) assert len(stage_2pre.resources) == 3 assert len(stage_2pre.serialize()['resources']) == 3 stage_2 = client.update_dataset(stage_2pre) assert len(stage_2.resources) == 3 assert len(stage_2.serialize()['resources']) == 3 # -------------------------------------------------- # Try prepending adding a new resource stage_3pre = client.get_dataset(stage_1.id) stage_3pre.resources.insert(0, { 'url': 'http://example.com/dataset-2.json', 'format': 'JSON'}) assert len(stage_3pre.resources) == 4 assert len(stage_3pre.serialize()['resources']) == 4 stage_3 = client.update_dataset(stage_3pre) assert len(stage_3.resources) == 4 assert len(stage_3.serialize()['resources']) == 4 def test_dataset_delete(ckan_client_hl): client = ckan_client_hl dataset_dict = generate_dataset() dataset = CkanDataset(dataset_dict) created = client.create_dataset(dataset) assert created.is_equivalent(dataset) # Make sure it is in lists assert created.id in client.list_datasets() # Delete it client.delete_dataset(created.id) assert created.id not in client.list_datasets() # Test that our workarounds work as expected.. with pytest.raises(HTTPError) as excinfo: client.get_dataset(created.id) assert excinfo.value.status_code == 404 retrieved = client.get_dataset(created.id, allow_deleted=True) assert retrieved.state == 'deleted' def test_dataset_wipe(ckan_client_hl): client = ckan_client_hl # ------------------------------------------------------------ # Now delete normally and try inserting another # one with the same name. Should fail with 409 dataset = CkanDataset(generate_dataset()) dataset.name = 'dataset-to-delete' created = client.create_dataset(dataset) assert created.is_equivalent(dataset) client.delete_dataset(created.id) new_dataset = CkanDataset(generate_dataset()) new_dataset.name = 'dataset-to-delete' with pytest.raises(HTTPError) as excinfo: client.create_dataset(new_dataset) assert excinfo.value.status_code == 409 del dataset, created, new_dataset, excinfo # ------------------------------------------------------------ # Now let's try updating + deleting dataset = CkanDataset(generate_dataset()) dataset.name = 'dataset-to-delete-2' created = client.create_dataset(dataset) assert created.is_equivalent(dataset) client.wipe_dataset(created.id) new_dataset = CkanDataset(generate_dataset()) new_dataset.name = 'dataset-to-delete-2' # Should not fail anymore created = client.create_dataset(new_dataset) assert created.name == 'dataset-to-delete-2'
the-stack_0_12753
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright 2015 Cristian van Ee <cristian at cvee.org> # Copyright 2015 Igor Gnatenko <[email protected]> # Copyright 2018 Adam Miller <[email protected]> # # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['stableinterface'], 'supported_by': 'core'} DOCUMENTATION = ''' --- module: dnf version_added: 1.9 short_description: Manages packages with the I(dnf) package manager description: - Installs, upgrade, removes, and lists packages and groups with the I(dnf) package manager. options: name: description: - "A list of package names, or package specifier with version, like C(name-1.0) When using state=latest, this can be '*' which means run: dnf -y update. You can also pass a url or a local path to a rpm file." required: true aliases: - pkg list: description: - Various (non-idempotent) commands for usage with C(/usr/bin/ansible) and I(not) playbooks. See examples. state: description: - Whether to install (C(present), C(latest)), or remove (C(absent)) a package. choices: ['absent', 'present', 'installed', 'removed', 'latest'] default: "present" enablerepo: description: - I(Repoid) of repositories to enable for the install/update operation. These repos will not persist beyond the transaction. When specifying multiple repos, separate them with a ",". disablerepo: description: - I(Repoid) of repositories to disable for the install/update operation. These repos will not persist beyond the transaction. When specifying multiple repos, separate them with a ",". conf_file: description: - The remote dnf configuration file to use for the transaction. disable_gpg_check: description: - Whether to disable the GPG checking of signatures of packages being installed. Has an effect only if state is I(present) or I(latest). type: bool default: 'no' installroot: description: - Specifies an alternative installroot, relative to which all packages will be installed. version_added: "2.3" default: "/" releasever: description: - Specifies an alternative release from which all packages will be installed. required: false version_added: "2.6" default: null autoremove: description: - If C(yes), removes all "leaf" packages from the system that were originally installed as dependencies of user-installed packages but which are no longer required by any such package. Should be used alone or when state is I(absent) type: bool default: false version_added: "2.4" exclude: description: - Package name(s) to exclude when state=present, or latest. This can be a list or a comma separated string. version_added: "2.7" skip_broken: description: - Skip packages with broken dependencies(devsolve) and are causing problems. type: bool default: "no" version_added: "2.7" update_cache: description: - Force yum to check if cache is out of date and redownload if needed. Has an effect only if state is I(present) or I(latest). type: bool default: "no" aliases: [ expire-cache ] version_added: "2.7" update_only: description: - When using latest, only update installed packages. Do not install packages. - Has an effect only if state is I(latest) required: false default: "no" type: bool version_added: "2.7" security: description: - If set to C(yes), and C(state=latest) then only installs updates that have been marked security related. type: bool default: "no" version_added: "2.7" bugfix: description: - If set to C(yes), and C(state=latest) then only installs updates that have been marked bugfix related. required: false default: "no" type: bool version_added: "2.7" enable_plugin: description: - I(Plugin) name to enable for the install/update operation. The enabled plugin will not persist beyond the transaction. required: false version_added: "2.7" disable_plugin: description: - I(Plugin) name to disable for the install/update operation. The disabled plugins will not persist beyond the transaction. required: false version_added: "2.7" disable_excludes: description: - Disable the excludes defined in DNF config files. - If set to C(all), disables all excludes. - If set to C(main), disable excludes defined in [main] in yum.conf. - If set to C(repoid), disable excludes defined for given repo id. required: false choices: [ all, main, repoid ] version_added: "2.7" validate_certs: description: - This only applies if using a https url as the source of the rpm. e.g. for localinstall. If set to C(no), the SSL certificates will not be validated. - This should only set to C(no) used on personally controlled sites using self-signed certificates as it avoids verifying the source site. type: bool default: "yes" version_added: "2.7" allow_downgrade: description: - Specify if the named package and version is allowed to downgrade a maybe already installed higher version of that package. Note that setting allow_downgrade=True can make this module behave in a non-idempotent way. The task could end up with a set of packages that does not match the complete list of specified packages to install (because dependencies between the downgraded package and others can cause changes to the packages which were in the earlier transaction). type: bool default: False version_added: "2.7" install_repoquery: description: - This is effectively a no-op in DNF as it is not needed with DNF, but is an accepted parameter for feature parity/compatibility with the I(yum) module. type: bool default: True version_added: "2.7" download_only: description: - Only download the packages, do not install them. required: false default: "no" type: bool version_added: "2.7" notes: - When used with a `loop:` each package will be processed individually, it is much more efficient to pass the list directly to the `name` option. - Group removal doesn't work if the group was installed with Ansible because upstream dnf's API doesn't properly mark groups as installed, therefore upon removal the module is unable to detect that the group is installed (https://bugzilla.redhat.com/show_bug.cgi?id=1620324) requirements: - "python >= 2.6" - python-dnf - for the autoremove option you need dnf >= 2.0.1" author: - Igor Gnatenko (@ignatenkobrain) <[email protected]> - Cristian van Ee (@DJMuggs) <cristian at cvee.org> - Berend De Schouwer (@berenddeschouwer) - Adam Miller (@maxamillion) <[email protected]> ''' EXAMPLES = ''' - name: install the latest version of Apache dnf: name: httpd state: latest - name: remove the Apache package dnf: name: httpd state: absent - name: install the latest version of Apache from the testing repo dnf: name: httpd enablerepo: testing state: present - name: upgrade all packages dnf: name: "*" state: latest - name: install the nginx rpm from a remote repo dnf: name: 'http://nginx.org/packages/centos/6/noarch/RPMS/nginx-release-centos-6-0.el6.ngx.noarch.rpm' state: present - name: install nginx rpm from a local file dnf: name: /usr/local/src/nginx-release-centos-6-0.el6.ngx.noarch.rpm state: present - name: install the 'Development tools' package group dnf: name: '@Development tools' state: present - name: Autoremove unneeded packages installed as dependencies dnf: autoremove: yes - name: Uninstall httpd but keep its dependencies dnf: name: httpd state: absent autoremove: no ''' import os import re import tempfile try: import dnf import dnf.cli import dnf.const import dnf.exceptions import dnf.subject import dnf.util HAS_DNF = True except ImportError: HAS_DNF = False from ansible.module_utils._text import to_native, to_text from ansible.module_utils.urls import fetch_url from ansible.module_utils.six import PY2, text_type from distutils.version import LooseVersion from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.yumdnf import YumDnf, yumdnf_argument_spec # 64k. Number of bytes to read at a time when manually downloading pkgs via a url BUFSIZE = 65536 class DnfModule(YumDnf): """ DNF Ansible module back-end implementation """ def __init__(self, module): # This populates instance vars for all argument spec params super(DnfModule, self).__init__(module) self._ensure_dnf() def _sanitize_dnf_error_msg(self, spec, error): """ For unhandled dnf.exceptions.Error scenarios, there are certain error messages we want to filter. Do that here. """ if to_text("no package matched") in to_text(error): return "No package {0} available.".format(spec) return error def _package_dict(self, package): """Return a dictionary of information for the package.""" # NOTE: This no longer contains the 'dnfstate' field because it is # already known based on the query type. result = { 'name': package.name, 'arch': package.arch, 'epoch': str(package.epoch), 'release': package.release, 'version': package.version, 'repo': package.repoid} result['nevra'] = '{epoch}:{name}-{version}-{release}.{arch}'.format( **result) # Added for YUM3/YUM4 compat if package.repoid == 'installed': result['yumstate'] = 'installed' else: result['yumstate'] = 'available' return result def _packagename_dict(self, packagename): """ Return a dictionary of information for a package name string or None if the package name doesn't contain at least all NVR elements """ if packagename[-4:] == '.rpm': packagename = packagename[:-4] # This list was auto generated on a Fedora 28 system with the following one-liner # printf '[ '; for arch in $(ls /usr/lib/rpm/platform); do printf '"%s", ' ${arch%-linux}; done; printf ']\n' redhat_rpm_arches = [ "aarch64", "alphaev56", "alphaev5", "alphaev67", "alphaev6", "alpha", "alphapca56", "amd64", "armv3l", "armv4b", "armv4l", "armv5tejl", "armv5tel", "armv5tl", "armv6hl", "armv6l", "armv7hl", "armv7hnl", "armv7l", "athlon", "geode", "i386", "i486", "i586", "i686", "ia32e", "ia64", "m68k", "mips64el", "mips64", "mips64r6el", "mips64r6", "mipsel", "mips", "mipsr6el", "mipsr6", "noarch", "pentium3", "pentium4", "ppc32dy4", "ppc64iseries", "ppc64le", "ppc64", "ppc64p7", "ppc64pseries", "ppc8260", "ppc8560", "ppciseries", "ppc", "ppcpseries", "riscv64", "s390", "s390x", "sh3", "sh4a", "sh4", "sh", "sparc64", "sparc64v", "sparc", "sparcv8", "sparcv9", "sparcv9v", "x86_64" ] rpm_arch_re = re.compile(r'(.*)\.(.*)') rpm_nevr_re = re.compile(r'(\S+)-(?:(\d*):)?(.*)-(~?\w+[\w.]*)') try: arch = None rpm_arch_match = rpm_arch_re.match(packagename) if rpm_arch_match: nevr, arch = rpm_arch_match.groups() if arch in redhat_rpm_arches: packagename = nevr rpm_nevr_match = rpm_nevr_re.match(packagename) if rpm_nevr_match: name, epoch, version, release = rpm_nevr_re.match(packagename).groups() if not version or not version.split('.')[0].isdigit(): return None else: return None except AttributeError as e: self.module.fail_json( msg='Error attempting to parse package: %s, %s' % (packagename, to_native(e)), rc=1, results=[] ) if not epoch: epoch = "0" if ':' in name: epoch_name = name.split(":") epoch = epoch_name[0] name = ''.join(epoch_name[1:]) result = { 'name': name, 'epoch': epoch, 'release': release, 'version': version, } return result # Original implementation from yum.rpmUtils.miscutils (GPLv2+) # http://yum.baseurl.org/gitweb?p=yum.git;a=blob;f=rpmUtils/miscutils.py def _compare_evr(self, e1, v1, r1, e2, v2, r2): # return 1: a is newer than b # 0: a and b are the same version # -1: b is newer than a if e1 is None: e1 = '0' else: e1 = str(e1) v1 = str(v1) r1 = str(r1) if e2 is None: e2 = '0' else: e2 = str(e2) v2 = str(v2) r2 = str(r2) # print '%s, %s, %s vs %s, %s, %s' % (e1, v1, r1, e2, v2, r2) rc = dnf.rpm.rpm.labelCompare((e1, v1, r1), (e2, v2, r2)) # print '%s, %s, %s vs %s, %s, %s = %s' % (e1, v1, r1, e2, v2, r2, rc) return rc def fetch_rpm_from_url(self, spec): # FIXME: Remove this once this PR is merged: # https://github.com/ansible/ansible/pull/19172 # download package so that we can query it package_name, dummy = os.path.splitext(str(spec.rsplit('/', 1)[1])) package_file = tempfile.NamedTemporaryFile(dir=self.module.tmpdir, prefix=package_name, suffix='.rpm', delete=False) self.module.add_cleanup_file(package_file.name) try: rsp, info = fetch_url(self.module, spec) if not rsp: self.module.fail_json( msg="Failure downloading %s, %s" % (spec, info['msg']), results=[], ) data = rsp.read(BUFSIZE) while data: package_file.write(data) data = rsp.read(BUFSIZE) package_file.close() except Exception as e: self.module.fail_json( msg="Failure downloading %s, %s" % (spec, to_native(e)), results=[], ) return package_file.name def _ensure_dnf(self): if not HAS_DNF: if PY2: package = 'python2-dnf' else: package = 'python3-dnf' if self.module.check_mode: self.module.fail_json( msg="`{0}` is not installed, but it is required" "for the Ansible dnf module.".format(package), results=[], ) self.module.run_command(['dnf', 'install', '-y', package], check_rc=True) global dnf try: import dnf import dnf.cli import dnf.const import dnf.exceptions import dnf.subject import dnf.util except ImportError: self.module.fail_json( msg="Could not import the dnf python module. " "Please install `{0}` package.".format(package), results=[], ) def _configure_base(self, base, conf_file, disable_gpg_check, installroot='/'): """Configure the dnf Base object.""" if self.enable_plugin and self.disable_plugin: base.init_plugins(self.disable_plugin, self.enable_plugin) elif self.enable_plugin: base.init_plugins(enable_plugins=self.enable_plugin) elif self.disable_plugin: base.init_plugins(self.disable_plugin) conf = base.conf # Turn off debug messages in the output conf.debuglevel = 0 # Set whether to check gpg signatures conf.gpgcheck = not disable_gpg_check # Don't prompt for user confirmations conf.assumeyes = True # Set installroot conf.installroot = installroot # Set excludes if self.exclude: conf.exclude(self.exclude) # Set disable_excludes if self.disable_excludes: conf.disable_excludes.append(self.disable_excludes) # Set releasever if self.releasever is not None: conf.substitutions['releasever'] = self.releasever # Set skip_broken (in dnf this is strict=0) if self.skip_broken: conf.strict = 0 if self.download_only: conf.downloadonly = True # Change the configuration file path if provided if conf_file: # Fail if we can't read the configuration file. if not os.access(conf_file, os.R_OK): self.module.fail_json( msg="cannot read configuration file", conf_file=conf_file, results=[], ) else: conf.config_file_path = conf_file # Default in dnf upstream is true conf.clean_requirements_on_remove = self.autoremove # Read the configuration file conf.read() def _specify_repositories(self, base, disablerepo, enablerepo): """Enable and disable repositories matching the provided patterns.""" base.read_all_repos() repos = base.repos # Disable repositories for repo_pattern in disablerepo: for repo in repos.get_matching(repo_pattern): repo.disable() # Enable repositories for repo_pattern in enablerepo: for repo in repos.get_matching(repo_pattern): repo.enable() def _base(self, conf_file, disable_gpg_check, disablerepo, enablerepo, installroot): """Return a fully configured dnf Base object.""" base = dnf.Base() self._configure_base(base, conf_file, disable_gpg_check, installroot) self._specify_repositories(base, disablerepo, enablerepo) base.fill_sack(load_system_repo='auto') if self.bugfix: key = {'advisory_type__eq': 'bugfix'} base._update_security_filters = [base.sack.query().filter(**key)] if self.security: key = {'advisory_type__eq': 'security'} base._update_security_filters = [base.sack.query().filter(**key)] if self.update_cache: base.update_cache() return base def list_items(self, command): """List package info based on the command.""" # Rename updates to upgrades if command == 'updates': command = 'upgrades' # Return the corresponding packages if command in ['installed', 'upgrades', 'available']: results = [ self._package_dict(package) for package in getattr(self.base.sack.query(), command)()] # Return the enabled repository ids elif command in ['repos', 'repositories']: results = [ {'repoid': repo.id, 'state': 'enabled'} for repo in self.base.repos.iter_enabled()] # Return any matching packages else: packages = dnf.subject.Subject(command).get_best_query(self.base.sack) results = [self._package_dict(package) for package in packages] self.module.exit_json(msg="", results=results) def _is_installed(self, pkg): installed = self.base.sack.query().installed() if installed.filter(name=pkg): return True else: return False def _is_newer_version_installed(self, pkg_name): candidate_pkg = self._packagename_dict(pkg_name) if not candidate_pkg: # The user didn't provide a versioned rpm, so version checking is # not required return False installed = self.base.sack.query().installed() installed_pkg = installed.filter(name=candidate_pkg['name']).run() if installed_pkg: installed_pkg = installed_pkg[0] # this looks weird but one is a dict and the other is a dnf.Package evr_cmp = self._compare_evr( installed_pkg.epoch, installed_pkg.version, installed_pkg.release, candidate_pkg['epoch'], candidate_pkg['version'], candidate_pkg['release'], ) if evr_cmp == 1: return True else: return False else: return False def _mark_package_install(self, pkg_spec, upgrade=False): """Mark the package for install.""" is_newer_version_installed = self._is_newer_version_installed(pkg_spec) is_installed = self._is_installed(pkg_spec) try: if self.allow_downgrade: # dnf only does allow_downgrade, we have to handle this ourselves # because it allows a possibility for non-idempotent transactions # on a system's package set (pending the yum repo has many old # NVRs indexed) if upgrade: if is_installed: self.base.upgrade(pkg_spec) else: self.base.install(pkg_spec) else: self.base.install(pkg_spec) elif not self.allow_downgrade and is_newer_version_installed: return {'failed': False, 'msg': '', 'failure': '', 'rc': 0} elif not is_newer_version_installed: if upgrade: if is_installed: self.base.upgrade(pkg_spec) else: self.base.install(pkg_spec) else: self.base.install(pkg_spec) else: if upgrade: if is_installed: self.base.upgrade(pkg_spec) else: self.base.install(pkg_spec) else: self.base.install(pkg_spec) return {'failed': False, 'msg': 'Installed: {0}'.format(pkg_spec), 'failure': '', 'rc': 0} except dnf.exceptions.MarkingError as e: return { 'failed': True, 'msg': "No package {0} available.".format(pkg_spec), 'failure': " ".join((pkg_spec, to_native(e))), 'rc': 1, "results": [] } except dnf.exceptions.DepsolveError as e: return { 'failed': True, 'msg': "Depsolve Error occured for package {0}.".format(pkg_spec), 'failure': " ".join((pkg_spec, to_native(e))), 'rc': 1, "results": [] } except dnf.exceptions.Error as e: if to_text("already installed") in to_text(e): return {'failed': False, 'msg': '', 'failure': ''} else: return { 'failed': True, 'msg': "Unknown Error occured for package {0}.".format(pkg_spec), 'failure': " ".join((pkg_spec, to_native(e))), 'rc': 1, "results": [] } def _parse_spec_group_file(self): pkg_specs, grp_specs, filenames = [], [], [] for name in self.names: if name.endswith(".rpm"): if '://' in name: name = self.fetch_rpm_from_url(name) filenames.append(name) elif name.startswith("@"): grp_specs.append(name[1:]) else: pkg_specs.append(name) return pkg_specs, grp_specs, filenames def _update_only(self, pkgs): not_installed = [] for pkg in pkgs: if self._is_installed(pkg): try: if isinstance(to_text(pkg), text_type): self.base.upgrade(pkg) else: self.base.package_upgrade(pkg) except Exception as e: self.module.fail_json( msg="Error occured attempting update_only operation: {0}".format(to_native(e)), results=[], rc=1, ) else: not_installed.append(pkg) return not_installed def _install_remote_rpms(self, filenames): if int(dnf.__version__.split(".")[0]) >= 2: pkgs = list(sorted(self.base.add_remote_rpms(list(filenames)), reverse=True)) else: pkgs = [] try: for filename in filenames: pkgs.append(self.base.add_remote_rpm(filename)) except IOError as e: if to_text("Can not load RPM file") in to_text(e): self.module.fail_json( msg="Error occured attempting remote rpm install of package: {0}. {1}".format(filename, to_native(e)), results=[], rc=1, ) if self.update_only: self._update_only(pkgs) else: for pkg in pkgs: try: if self._is_newer_version_installed(self._package_dict(pkg)['nevra']): if self.allow_downgrade: self.base.package_install(pkg) else: self.base.package_install(pkg) except Exception as e: self.module.fail_json( msg="Error occured attempting remote rpm operation: {0}".format(to_native(e)), results=[], rc=1, ) def ensure(self): allow_erasing = False response = { 'msg': "", 'changed': False, 'results': [], 'rc': 0 } # Accumulate failures. Package management modules install what they can # and fail with a message about what they can't. failure_response = { 'msg': "", 'failures': [], 'results': [], 'rc': 1 } # Autoremove is called alone # Jump to remove path where base.autoremove() is run if not self.names and self.autoremove: self.names = [] self.state = 'absent' if self.names == ['*'] and self.state == 'latest': try: self.base.upgrade_all() except dnf.exceptions.DepsolveError as e: failure_response['msg'] = "Depsolve Error occured attempting to upgrade all packages" self.module.fail_json(**failure_response) else: pkg_specs, group_specs, filenames = self._parse_spec_group_file() if group_specs: self.base.read_comps() pkg_specs = [p.strip() for p in pkg_specs] filenames = [f.strip() for f in filenames] groups = [] environments = [] for group_spec in (g.strip() for g in group_specs): group = self.base.comps.group_by_pattern(group_spec) if group: groups.append(group.id) else: environment = self.base.comps.environment_by_pattern(group_spec) if environment: environments.append(environment.id) else: self.module.fail_json( msg="No group {0} available.".format(group_spec), results=[], ) if self.state in ['installed', 'present']: # Install files. self._install_remote_rpms(filenames) for filename in filenames: response['results'].append("Installed {0}".format(filename)) # Install groups. for group in groups: try: group_pkg_count_installed = self.base.group_install(group, dnf.const.GROUP_PACKAGE_TYPES) if group_pkg_count_installed == 0: response['results'].append("Group {0} already installed.".format(group)) else: response['results'].append("Group {0} installed.".format(group)) except dnf.exceptions.DepsolveError as e: failure_response['msg'] = "Depsolve Error occured attempting to install group: {0}".format(group) self.module.fail_json(**failure_response) except dnf.exceptions.Error as e: # In dnf 2.0 if all the mandatory packages in a group do # not install, an error is raised. We want to capture # this but still install as much as possible. failure_response['failures'].append(" ".join((group, to_native(e)))) for environment in environments: try: self.base.environment_install(environment, dnf.const.GROUP_PACKAGE_TYPES) except dnf.exceptions.DepsolveError as e: failure_response['msg'] = "Depsolve Error occured attempting to install environment: {0}".format(environment) self.module.fail_json(**failure_response) except dnf.exceptions.Error as e: failure_response['failures'].append(" ".join((environment, to_native(e)))) # Install packages. if self.update_only: not_installed = self._update_only(pkg_specs) for spec in not_installed: response['results'].append("Packages providing %s not installed due to update_only specified" % spec) else: for pkg_spec in pkg_specs: install_result = self._mark_package_install(pkg_spec) if install_result['failed']: failure_response['msg'] += install_result['msg'] failure_response['failures'].append(self._sanitize_dnf_error_msg(pkg_spec, install_result['failure'])) else: response['results'].append(install_result['msg']) elif self.state == 'latest': # "latest" is same as "installed" for filenames. self._install_remote_rpms(filenames) for filename in filenames: response['results'].append("Installed {0}".format(filename)) for group in groups: try: try: self.base.group_upgrade(group) response['results'].append("Group {0} upgraded.".format(group)) except dnf.exceptions.CompsError: if not self.update_only: # If not already installed, try to install. group_pkg_count_installed = self.base.group_install(group, dnf.const.GROUP_PACKAGE_TYPES) if group_pkg_count_installed == 0: response['results'].append("Group {0} already installed.".format(group)) else: response['results'].append("Group {0} installed.".format(group)) except dnf.exceptions.Error as e: failure_response['failures'].append(" ".join((group, to_native(e)))) for environment in environments: try: try: self.base.environment_upgrade(environment) except dnf.exceptions.CompsError: # If not already installed, try to install. self.base.environment_install(environment, dnf.const.GROUP_PACKAGE_TYPES) except dnf.exceptions.DepsolveError as e: failure_response['msg'] = "Depsolve Error occured attempting to install environment: {0}".format(environment) except dnf.exceptions.Error as e: failure_response['failures'].append(" ".join((environment, to_native(e)))) if self.update_only: not_installed = self._update_only(pkg_specs) for spec in not_installed: response['results'].append("Packages providing %s not installed due to update_only specified" % spec) else: for pkg_spec in pkg_specs: # best effort causes to install the latest package # even if not previously installed self.base.conf.best = True install_result = self._mark_package_install(pkg_spec, upgrade=True) if install_result['failed']: failure_response['msg'] += install_result['msg'] failure_response['failures'].append(self._sanitize_dnf_error_msg(pkg_spec, install_result['failure'])) else: response['results'].append(install_result['msg']) else: # state == absent if filenames: self.module.fail_json( msg="Cannot remove paths -- please specify package name.", results=[], ) for group in groups: try: self.base.group_remove(group) except dnf.exceptions.CompsError: # Group is already uninstalled. pass except AttributeError: # Group either isn't installed or wasn't marked installed at install time # because of DNF bug # # This is necessary until the upstream dnf API bug is fixed where installing # a group via the dnf API doesn't actually mark the group as installed # https://bugzilla.redhat.com/show_bug.cgi?id=1620324 pass for environment in environments: try: self.base.environment_remove(environment) except dnf.exceptions.CompsError: # Environment is already uninstalled. pass installed = self.base.sack.query().installed() for pkg_spec in pkg_specs: if installed.filter(name=pkg_spec): self.base.remove(pkg_spec) # Like the dnf CLI we want to allow recursive removal of dependent # packages allow_erasing = True if self.autoremove: self.base.autoremove() try: if not self.base.resolve(allow_erasing=allow_erasing): if failure_response['failures']: failure_response['msg'] = 'Failed to install some of the specified packages' self.module.fail_json(**failure_response) response['msg'] = "Nothing to do" self.module.exit_json(**response) else: response['changed'] = True if self.module.check_mode: if failure_response['failures']: failure_response['msg'] = 'Failed to install some of the specified packages', self.module.fail_json(**failure_response) response['msg'] = "Check mode: No changes made, but would have if not in check mode" self.module.exit_json(**response) try: self.base.download_packages(self.base.transaction.install_set) except dnf.exceptions.DownloadError as e: self.module.fail_json( msg="Failed to download packages: {0}".format(to_text(e)), results=[], ) if self.download_only: for package in self.base.transaction.install_set: response['results'].append("Downloaded: {0}".format(package)) self.module.exit_json(**response) else: self.base.do_transaction() for package in self.base.transaction.install_set: response['results'].append("Installed: {0}".format(package)) for package in self.base.transaction.remove_set: response['results'].append("Removed: {0}".format(package)) if failure_response['failures']: failure_response['msg'] = 'Failed to install some of the specified packages', self.module.exit_json(**response) self.module.exit_json(**response) except dnf.exceptions.DepsolveError as e: failure_response['msg'] = "Depsolve Error occured: {0}".format(to_native(e)) self.module.fail_json(**failure_response) except dnf.exceptions.Error as e: if to_text("already installed") in to_text(e): response['changed'] = False response['results'].append("Package already installed: {0}".format(to_native(e))) self.module.exit_json(**response) else: failure_response['msg'] = "Unknown Error occured: {0}".format(to_native(e)) self.module.fail_json(**failure_response) @staticmethod def has_dnf(): return HAS_DNF def run(self): """The main function.""" # Check if autoremove is called correctly if self.autoremove: if LooseVersion(dnf.__version__) < LooseVersion('2.0.1'): self.module.fail_json( msg="Autoremove requires dnf>=2.0.1. Current dnf version is %s" % dnf.__version__, results=[], ) if self.state not in ["absent", None]: self.module.fail_json( msg="Autoremove should be used alone or with state=absent", results=[], ) # Set state as installed by default # This is not set in AnsibleModule() because the following shouldn't happend # - dnf: autoremove=yes state=installed if self.state is None: self.state = 'installed' if self.list: self.base = self._base( self.conf_file, self.disable_gpg_check, self.disablerepo, self.enablerepo, self.installroot ) self.list_items(self.list) else: # Note: base takes a long time to run so we want to check for failure # before running it. if not dnf.util.am_i_root(): self.module.fail_json( msg="This command has to be run under the root user.", results=[], ) self.base = self._base( self.conf_file, self.disable_gpg_check, self.disablerepo, self.enablerepo, self.installroot ) self.ensure() def main(): # state=installed name=pkgspec # state=removed name=pkgspec # state=latest name=pkgspec # # informational commands: # list=installed # list=updates # list=available # list=repos # list=pkgspec module = AnsibleModule( **yumdnf_argument_spec ) module_implementation = DnfModule(module) try: module_implementation.run() except dnf.exceptions.RepoError as de: module.fail_json( msg="Failed to synchronize repodata: {0}".format(to_native(de)), rc=1, results=[], changed=False ) if __name__ == '__main__': main()
the-stack_0_12754
# -*- coding: utf-8 -*- """Defines several tools for monitoring net activity.""" # pylint: disable=F0401, E1101, too-many-lines, wrong-import-order import logging as _logging import os as _os import subprocess as _subprocess import collections as _collections import numpy as _np # pylint: disable=no-name-in-module from scipy.stats import bernoulli as _bernoulli from scipy.ndimage.interpolation import rotate as _rotate from sklearn.decomposition import PCA as _PCA from .tools import pad as _pad # CAREFUL! This must be imported before any caffe-related import! from .initialization import init as _init import caffe as _caffe try: # pragma: no cover import cv2 as _cv2 _cv2INTER_CUBIC = _cv2.INTER_CUBIC # pylint: disable=invalid-name _cv2INTER_LINEAR = _cv2.INTER_LINEAR # pylint: disable=invalid-name _cv2INTER_NEAREST = _cv2.INTER_NEAREST # pylint: disable=invalid-name _cv2resize = _cv2.resize # pylint: disable=invalid-name except ImportError: # pragma: no cover _cv2 = None _cv2INTER_CUBIC = None # pylint: disable=invalid-name _cv2INTER_LINEAR = None # pylint: disable=invalid-name _cv2INTER_NEAREST = None # pylint: disable=invalid-name _cv2resize = None # pylint: disable=invalid-name try: # pragma: no cover import matplotlib.pyplot as _plt import matplotlib.ticker as _tkr import matplotlib.colorbar as _colorbar from mpl_toolkits.axes_grid1 import make_axes_locatable as _make_axes_locatable _PLT_AVAILABLE = True except ImportError: # pragma: no cover _PLT_AVAILABLE = False _init() _LOGGER = _logging.getLogger(__name__) class Monitor(object): # pylint: disable=R0903 """ The monitor interface. Should be implemented by any monitor class. The method :py:func:`barrista.monitoring.Monitor.__call__` must be specified, the function :py:func:`barrista.monitoring.Monitor.finalize` may optionally be specified. """ def __call__(self, kwargs): """ The call implementation. For available keyword arguments, see the documentation of :py:class:`barrista.solver.SolverInterface.Fit`. The callback signals are used as follows: * initialize_train: called once before training starts, * initialize_test: called once before training starts (if training with a validation set is used) or once before testing, * pre_fit: called before fitting mode is used (e.g., before going back to fitting during training after a validation run), * pre_test: called before testing mode is used (e.g., during training before validation starts), * post_test: called when testing finished, * pre_train_batch: before a training batch is fed to the network, * post_train_batch: after forwarding a training batch, * pre_test_batch: before a test batch is fed to the network, * post_test_batch: after a test batch was forwarded through the network. """ if kwargs['callback_signal'] == 'initialize_train': self._initialize_train(kwargs) elif kwargs['callback_signal'] == 'initialize_test': self._initialize_test(kwargs) elif kwargs['callback_signal'] == 'pre_fit': self._pre_fit(kwargs) elif kwargs['callback_signal'] == 'pre_test': self._pre_test(kwargs) elif kwargs['callback_signal'] == 'post_test': self._post_test(kwargs) elif kwargs['callback_signal'] == 'pre_test_batch': self._pre_test_batch(kwargs) elif kwargs['callback_signal'] == 'post_test_batch': self._post_test_batch(kwargs) elif kwargs['callback_signal'] == 'pre_train_batch': self._pre_train_batch(kwargs) elif kwargs['callback_signal'] == 'post_train_batch': self._post_train_batch(kwargs) def _initialize_train(self, kwargs): # pylint: disable=C0111 pass def _initialize_test(self, kwargs): # pylint: disable=C0111 pass def _pre_fit(self, kwargs): # pylint: disable=C0111 pass def _pre_test(self, kwargs): # pylint: disable=C0111 pass def _post_test(self, kwargs): # pylint: disable=C0111 pass def _pre_test_batch(self, kwargs): # pylint: disable=C0111 pass def _post_test_batch(self, kwargs): # pylint: disable=C0111 pass def _pre_train_batch(self, kwargs): # pylint: disable=C0111 pass def _post_train_batch(self, kwargs): # pylint: disable=C0111 pass def finalize(self, kwargs): """Will be called at the end of a training/fitting process.""" pass class DataMonitor(Monitor): # pylint: disable=R0903 r""" Monitor interface for filling the blobs of a network. This is a specific monitor which will fill the blobs of the network for the forward pass or solver step. Ideally, there should only be one such monitor per callback, but multiple ones are possible. """ pass class ParallelMonitor(Monitor): r""" Monitor interface for monitors executed parallel to processing a batch. The order of all monitors implementing this interface is respected. They will work on a dummy network object with dummy blobs and prepare their data. The dummy blob content is then copied to the real network prior to the next batch execution. """ def get_parallel_blob_names(self): # pragma: no cover """Get the names of all blobs that must be provided for the dummy.""" raise NotImplementedError() # pylint: disable=too-few-public-methods class StaticDataMonitor(DataMonitor, ParallelMonitor): r""" Always provides the same data for a specific net input blob. Parameters ========== :param X: dict(string, np.ndarray) The static input blobs to use. """ def __init__(self, X): self._X = X # pylint: disable=C0103 def _initialize_train(self, kwargs): self._initialize(kwargs) def _initialize_test(self, kwargs): self._initialize(kwargs) def _initialize(self, kwargs): if 'test' in kwargs['callback_signal']: net = kwargs['testnet'] else: net = kwargs['net'] for key, value in list(self._X.items()): assert key in list(net.blobs.keys()), ( 'data key has no corresponding network blob {} {}'.format( key, str(list(net.blobs.keys())))) assert isinstance(value, _np.ndarray), ( 'data must be a numpy nd array ({})'.format(type(value)) ) def _pre_train_batch(self, kwargs): self._pre_batch(kwargs['net'], kwargs) def _pre_test_batch(self, kwargs): self._pre_batch(kwargs['testnet'], kwargs) def _pre_batch(self, net, kwargs): # pylint: disable=unused-argument for key in list(self._X.keys()): net.blobs[key].data[...] = self._X[key] def get_parallel_blob_names(self): """Get the names of all blobs that must be provided for the dummy.""" return list(self._X.keys()) # pylint: disable=too-few-public-methods class OversamplingDataMonitor(DataMonitor, ParallelMonitor): r""" Provides oversampled data. Parameters ========== :param blobinfos: dict(string, string|None). Associates blob name to oversample and optional the interpolation method to use for resize. This may be 'n' (nearest neighbour), 'c' (cubic), 'l' (linear) or None (no interpolation). If an interpolation method is selected, `before_oversample_resize_to` must be not None and provide a size. :param before_oversample_resize_to: dict(string, 2-tuple). Specifies a size to which the image inputs will be resized before the oversampling is invoked. """ def __init__(self, blobinfos, before_oversample_resize_to=None): for val in blobinfos.values(): assert val in ['n', 'c', 'l', None] self._blobinfos = blobinfos for key, val in blobinfos.items(): if val is not None: assert key in list(before_oversample_resize_to.keys()) self._before_oversample_resize_to = before_oversample_resize_to self._batch_size = None def get_parallel_blob_names(self): """Get the names of all blobs that must be provided for the dummy.""" return list(self._blobinfos.keys()) def _initialize_train(self, kwargs): raise Exception("The OversamplingDataMonitor can only be used during " "testing!") def _initialize_test(self, kwargs): if 'test' in kwargs['callback_signal']: net = kwargs['testnet'] else: net = kwargs['net'] for key in list(self._blobinfos.keys()): assert key in list(net.blobs.keys()), ( 'data key has no corresponding network blob {} {}'.format( key, str(list(net.blobs.keys())))) def _pre_test(self, kwargs): # pragma: no cover net = kwargs['testnet'] self._batch_size = net.blobs[ list(self._blobinfos.keys())[0]].data.shape[0] def _pre_test_batch(self, kwargs): # pragma: no cover for blob_name in list(self._blobinfos): assert blob_name in kwargs['data_orig'], ( "The unchanged data must be provided by another DataProvider, " "e.g., CyclingDataMonitor with `only_preload`!") assert (len(kwargs['data_orig'][blob_name]) * 10 == self._batch_size), ( "The number of provided images * 10 must be the batch " "size!") # pylint: disable=invalid-name for im_idx, im in enumerate(kwargs['data_orig'][blob_name]): if self._blobinfos[blob_name] is not None: if self._blobinfos[blob_name] == 'n': interpolation = _cv2INTER_NEAREST elif self._blobinfos[blob_name] == 'c': interpolation = _cv2INTER_CUBIC elif self._blobinfos[blob_name] == 'l': interpolation = _cv2INTER_LINEAR oversampling_prep = _cv2resize( _np.transpose(im, (1, 2, 0)), (self._before_oversample_resize_to[blob_name][1], self._before_oversample_resize_to[blob_name][0]), interpolation=interpolation) else: oversampling_prep = _np.transpose(im, (1, 2, 0)) imshape = kwargs['testnet'].blobs[blob_name].data.shape[2:4] kwargs['testnet'].blobs[blob_name].data[ im_idx * 10:(im_idx+1) * 10] =\ _np.transpose( _caffe.io.oversample( [oversampling_prep], imshape), (0, 3, 1, 2)) # pylint: disable=too-many-instance-attributes, R0903 class CyclingDataMonitor(DataMonitor, ParallelMonitor): r""" Uses the data sequentially. This monitor maps data to the network an cycles through the data sequentially. It is the default monitor used if a user provides X or X_val to the barrista.solver.fit method. If further processing of the original data is intended, by using the flag ``only_preload``, the following monitors find a dictionary of lists of the original datapoints with the name 'data_orig' in their ``kwargs``. The data is in this case NOT written to the network input layers! This can make sense, e.g., for the ``ResizingMonitor``. :param X: dict of numpy.ndarray or list, or None. If specified, is used as input data. It is used sequentially, so shuffle it pre, if required. The keys of the dict must have a corresponding layer name in the net. The values must be provided already in network dimension order, i.e., usually channels, height, width. :param only_preload: list(string). List of blobs for which the data will be loaded and stored in a dict of (name: list) for further processing with other monitors. :param input_processing_flags: dict(string, string). Dictionary associating input blob names with intended preprocessing methods. Valid values are: * n: none, * rn: resize, nearest neighbour, * rc: resize, cubic, * rl: resize, linear, * pX: padding, with value X. :param virtual_batch_size: int or None. Override the network batch size. May only be used if ``only_preload`` is set to True. Only makes sense with another DataMonitor in succession. :param color_data_augmentation_sigmas: dict(string, float) or None. Enhance the color of the samples as described in (Krizhevsky et al., 2012). The parameter gives the sigma for the normal distribution that is sampled to obtain the weights for scaled pixel principal components per blob. :param shuffle: Bool. If set to True, shuffle the data every epoch. Default: False. """ # pylint: disable=too-many-arguments def __init__(self, X, only_preload=None, input_processing_flags=None, virtual_batch_size=None, color_data_augmentation_sigmas=None, shuffle=False): """See class documentation.""" if only_preload is None: only_preload = [] self.only_preload = only_preload self._X = X # pylint: disable=C0103 assert X is not None if input_processing_flags is None: input_processing_flags = dict() self._input_processing_flags = input_processing_flags for key in input_processing_flags.keys(): assert key in self._X.keys() self._padvals = dict() for key, val in input_processing_flags.items(): assert (val in ['n', 'rn', 'rc', 'rl'] or val.startswith('p')), ( "The input processing flags for the CyclingDataMonitor " "must be in ['n', 'rn', 'rc', 'rl', 'p']: {}!".format( val)) if val.startswith('p'): self._padvals[key] = int(val[1:]) for key in self.only_preload: assert key in self._X.keys() self._sample_pointer = 0 self._len_data = None self._initialized = False self._batch_size = None assert virtual_batch_size is None or self.only_preload, ( "If the virtual_batch_size is set, `only_preload` must be used!") if virtual_batch_size is not None: assert virtual_batch_size > 0 self._virtual_batch_size = virtual_batch_size if color_data_augmentation_sigmas is None: color_data_augmentation_sigmas = dict() self._color_data_augmentation_sigmas = color_data_augmentation_sigmas for key in list(self._color_data_augmentation_sigmas.keys()): assert key in list(self._X.keys()) for key in list(self._X.keys()): if key not in list(self._color_data_augmentation_sigmas.keys()): self._color_data_augmentation_sigmas[key] = 0. # pylint: disable=invalid-name self._color_data_augmentation_weights = dict() # pylint: disable=invalid-name self._color_data_augmentation_components = dict() self._shuffle = shuffle self._sample_order = None def get_parallel_blob_names(self): return list(self._X.keys()) def _initialize_train(self, kwargs): self._initialize(kwargs) # Calculate the color channel PCA per blob if required. for bname, sigma in self._color_data_augmentation_sigmas.items(): if sigma > 0.: _LOGGER.info("Performing PCA for color data augmentation for " "blob '%s'...", bname) for im in self._X[bname]: # pylint: disable=invalid-name assert im.ndim == 3 and im.shape[0] == 3, ( "To perform the color data augmentation, images must " "be provided in shape (3, height, width).") flldta = _np.vstack( [im.reshape((3, im.shape[1] * im.shape[2])).T for im in self._X[bname]]) # No need to copy the data another time, since `vstack` already # copied it. pca = _PCA(copy=False, whiten=False) pca.fit(flldta) self._color_data_augmentation_weights[bname] = _np.sqrt( pca.explained_variance_.astype('float32')) self._color_data_augmentation_components[bname] = \ pca.components_.T.astype('float32') def _initialize_test(self, kwargs): self._initialize(kwargs) def _initialize(self, kwargs): # we make sure, now that the network is available, that # all names in the provided data dict has a corresponding match # in the network if self._initialized: raise Exception("This DataProvider has already been intialized! " "Did you maybe try to use it for train and test? " "This is not possible!") if 'test' in kwargs['callback_signal']: net = kwargs['testnet'] else: net = kwargs['net'] self._len_data = len(list(self._X.values())[0]) for key, value in list(self._X.items()): if key not in self._input_processing_flags: self._input_processing_flags[key] = 'n' assert key in list(net.blobs.keys()), ( 'data key has no corresponding network blob {} {}'.format( key, str(list(net.blobs.keys())))) assert len(value) == self._len_data, ( 'all items need to have the same length {} vs {}'.format( len(value), self._len_data)) assert isinstance(value, _np.ndarray) or isinstance(value, list), ( 'data must be a numpy nd array or list ({})'.format(type(value)) ) self._sample_order = list(range(self._len_data)) if self._shuffle: _np.random.seed(1) self._sample_order = _np.random.permutation(self._sample_order) self._initialized = True def _pre_fit(self, kwargs): if 'test' in kwargs['callback_signal']: net = kwargs['testnet'] else: net = kwargs['net'] if self._virtual_batch_size is not None: self._batch_size = self._virtual_batch_size else: self._batch_size = net.blobs[list(self._X.keys())[0]].data.shape[0] assert self._batch_size > 0 def _pre_test(self, kwargs): self._pre_fit(kwargs) self._sample_pointer = 0 def _pre_train_batch(self, kwargs): self._pre_batch(kwargs['net'], kwargs) def _pre_test_batch(self, kwargs): self._pre_batch(kwargs['testnet'], kwargs) def _color_augment(self, bname, sample): sigma = self._color_data_augmentation_sigmas[bname] if sigma == 0.: if isinstance(sample, (int, float)): return float(sample) else: return sample.astype('float32') else: comp_weights = _np.random.normal(0., sigma, 3).astype('float32') *\ self._color_data_augmentation_weights[bname] noise = _np.dot(self._color_data_augmentation_components[bname], comp_weights.T) return (sample.astype('float32').transpose((1, 2, 0)) + noise)\ .transpose((2, 0, 1)) def _pre_batch(self, net, kwargs): # pylint: disable=C0111, W0613, R0912 # this will simply cycle through the data. samples_ids = [self._sample_order[idx % self._len_data] for idx in range(self._sample_pointer, self._sample_pointer + self._batch_size)] # updating the sample pointer for the next time old_sample_pointer = self._sample_pointer self._sample_pointer = ( (self._sample_pointer + len(samples_ids)) % self._len_data) if self._shuffle and old_sample_pointer > self._sample_pointer: # Epoch ended. Reshuffle. self._sample_order = _np.random.permutation(self._sample_order) if len(self.only_preload) > 0: sample_dict = dict() for key in list(self._X.keys()): # pylint: disable=too-many-nested-blocks if key in self.only_preload: sample_dict[key] = [] # this will actually fill the data for the network for sample_idx in range(self._batch_size): augmented_sample = self._color_augment( key, self._X[key][samples_ids[sample_idx]]) if key in self.only_preload: sample_dict[key].append(augmented_sample) else: if (net.blobs[key].data[sample_idx].size == 1 and ( isinstance(self._X[key][samples_ids[sample_idx]], (int, float)) or self._X[key][samples_ids[sample_idx]].size == 1) or self._X[key][samples_ids[sample_idx]].size == net.blobs[key].data[sample_idx].size): if net.blobs[key].data[sample_idx].size == 1: net.blobs[key].data[sample_idx] =\ augmented_sample else: net.blobs[key].data[sample_idx] = ( augmented_sample.reshape( net.blobs[key].data.shape[1:])) else: if self._input_processing_flags[key] == 'n': # pragma: no cover raise Exception(("Sample size {} does not match " + "network input size {} and no " + "preprocessing is allowed!") .format( augmented_sample.size, net.blobs[key].data[sample_idx].size)) elif self._input_processing_flags[key] in ['rn', 'rc', 'rl']: assert ( augmented_sample.shape[0] == net.blobs[key].data.shape[1]) if self._input_processing_flags == 'rn': interp_method = _cv2INTER_NEAREST elif self._input_processing_flags == 'rc': interp_method = _cv2INTER_CUBIC else: interp_method = _cv2INTER_LINEAR for channel_idx in range( net.blobs[key].data.shape[1]): net.blobs[key].data[sample_idx, channel_idx] =\ _cv2resize( augmented_sample[channel_idx], (net.blobs[key].data.shape[3], net.blobs[key].data.shape[2]), interpolation=interp_method) else: # Padding. net.blobs[key].data[sample_idx] = _pad( augmented_sample, net.blobs[key].data.shape[2:4], val=self._padvals[key]) if len(self.only_preload) > 0: kwargs['data_orig'] = sample_dict class ResizingMonitor(ParallelMonitor, Monitor): # pylint: disable=R0903 r""" Optionally resizes input data and adjusts the network input shape. This monitor optionally resizes the input data randomly and adjusts the network input size accordingly (this works only for batch size 1 and fully convolutional networks). For this to work, it must be used with the ``CyclingDataMonitor`` with ``only_preload`` set. :param blobinfos: dict(string, int). Describes which blobs to apply the resizing operation to, and which padding value to use for the remaining space. :param base_scale: float. If set to a value different than 1., apply the given base scale first to images. If set to a value different than 1., the parameter ``interp_methods`` must be set. :param random_change_up_to: float. If set to a value different than 0., the scale change is altered randomly with a uniformly drawn value from -``random_change_up_to`` to ``random_change_up_to``, that is being added to the base value. :param net_input_size_adjustment_multiple_of: int. If set to a value greater than 0, the blobs shape is adjusted from its initial value (which is used as minimal one) in multiples of the given one. :param interp_methods: dict(string, string). Dictionary which stores for every blob the interpolation method. The string must be for each blob in ['n', 'c', 'l'] (nearest neighbour, cubic, linear). """ def __init__(self, # pylint: disable=R0913 blobinfos, base_scale=1., random_change_up_to=0., net_input_size_adjustment_multiple_of=0, interp_methods=None): """See class documentation.""" self._blobinfos = blobinfos self._base_scale = base_scale self._random_change_up_to = random_change_up_to if self._base_scale != 1. or self._random_change_up_to != 0.: assert interp_methods is not None for key in self._blobinfos.keys(): assert key in interp_methods.keys() assert interp_methods[key] in ['n', 'c', 'l'] self._interp_methods = interp_methods self._adjustment_multiple_of = net_input_size_adjustment_multiple_of self._min_input_size = None self._batch_size = None def _initialize_train(self, kwargs): self._initialize(kwargs) def _initialize_test(self, kwargs): self._initialize(kwargs) def _initialize(self, kwargs): # we make sure, now that the network is available, that # all names in the provided data dict have a corresponding match # in the network if 'test' in kwargs['callback_signal']: net = kwargs['testnet'] else: net = kwargs['net'] for key in list(self._blobinfos.keys()): assert key in list(net.blobs.keys()), ( 'data key has no corresponding network blob {} {}'.format( key, str(list(net.blobs.keys())))) assert net.blobs[key].data.ndim == 4 if self._adjustment_multiple_of > 0: if self._min_input_size is None: self._min_input_size = net.blobs[key].data.shape[2:4] else: assert (net.blobs[key].data.shape[2:4] == self._min_input_size), ( 'if automatic input size adjustment is ' 'activated, all inputs must be of same size ' '(first: {}, {}: {})'.format( self._min_input_size, key, net.blobs[key].data.shape[2:4])) def _pre_fit(self, kwargs): if 'test' in kwargs['callback_signal']: net = kwargs['testnet'] else: net = kwargs['net'] self._batch_size = net.blobs[ list(self._blobinfos.keys())[0]].data.shape[0] if self._adjustment_multiple_of > 0: assert self._batch_size == 1, ( "If size adjustment is activated, the batch size must be one!") def _pre_test(self, kwargs): self._pre_fit(kwargs) def _pre_train_batch(self, kwargs): self._pre_batch(kwargs['net'], kwargs) def _pre_test_batch(self, kwargs): self._pre_batch(kwargs['testnet'], kwargs) # pylint: disable=C0111, W0613, R0912, too-many-locals def _pre_batch(self, net, kwargs): scales = None sizes = None if not 'data_orig' in kwargs.keys(): raise Exception( "This data monitor needs a data providing monitor " "to run in advance (e.g., a CyclingDataMonitor with " "`only_preload`)!") for key, value in kwargs['data_orig'].items(): assert len(value) == self._batch_size if sizes is None: sizes = [] for img in value: sizes.append(img.shape[1:3]) else: for img_idx, img in enumerate(value): # pylint: disable=unsubscriptable-object assert img.shape[1:3] == sizes[img_idx] for key, padval in self._blobinfos.items(): if scales is None: scales = [] for sample_idx in range(self._batch_size): if self._random_change_up_to > 0: scales.append( self._base_scale + _np.random.uniform(low=-self._random_change_up_to, high=self._random_change_up_to)) else: scales.append(self._base_scale) for sample_idx in range(self._batch_size): # Get the scaled data. scaled_sample = kwargs['data_orig'][key][sample_idx] if scales[sample_idx] != 1.: scaled_sample = _np.empty((scaled_sample.shape[0], int(scaled_sample.shape[1] * scales[sample_idx]), int(scaled_sample.shape[2] * scales[sample_idx])), dtype='float32') if self._interp_methods[key] == 'n': interpolation_method = _cv2INTER_NEAREST elif self._interp_methods[key] == 'l': interpolation_method = _cv2INTER_LINEAR else: interpolation_method = _cv2INTER_CUBIC for layer_idx in range(scaled_sample.shape[0]): scaled_sample[layer_idx] = _cv2resize( kwargs['data_orig'][key][sample_idx][layer_idx], (scaled_sample.shape[2], scaled_sample.shape[1]), interpolation=interpolation_method) # If necessary, adjust the network input size. if self._adjustment_multiple_of > 0: image_height, image_width = scaled_sample.shape[1:3] netinput_height = int(max( self._min_input_size[0] + _np.ceil( float(image_height - self._min_input_size[0]) / self._adjustment_multiple_of) * self._adjustment_multiple_of, self._min_input_size[0])) netinput_width = int(max( self._min_input_size[1] + _np.ceil( float(image_width - self._min_input_size[1]) / self._adjustment_multiple_of) * self._adjustment_multiple_of, self._min_input_size[1])) net.blobs[key].reshape(1, scaled_sample.shape[0], netinput_height, netinput_width) # Put the data in place. net.blobs[key].data[sample_idx] = _pad( scaled_sample, net.blobs[key].data.shape[2:4], val=padval) def get_parallel_blob_names(self): """Get the names of all blobs that must be provided for the dummy.""" return list(self._blobinfos.keys()) # pylint: disable=too-few-public-methods class RotatingMirroringMonitor(ParallelMonitor, Monitor): r""" Rotate and/or horizontally mirror samples within blobs. For every sample, the rotation and mirroring will be consistent across the blobs. :param blobinfos: dict(string, int). A dictionary containing the blob names and the padding values that will be applied. :param max_rotation_degrees: float. The rotation will be sampled uniformly from the interval [-rotation_degrees, rotation_degrees[ for each sample. :param mirror_prob: float. The probability that horizontal mirroring occurs. Is as well sampled individually for every sample. :param mirror_value_swaps: dict(string, dict(int, list(2-tuples))). Specifies for every blob for every layer whether any values must be swapped if mirroring is applied. This is important when, e.g., mirroring annotation maps with left-right information. Every 2-tuple contains (original value, new value). The locations of the swaps are determined before any change is applied, so the order of tuples does not play a role. :param mirror_layer_swaps: dict(string, list(2-tuples)). Specifies for every blob whether any layers must be swapped if mirroring is applied. Can be used together with mirror_value_swaps: in this case, the `mirror_value_swaps` are applied first, then the layers are swapped. """ # pylint: disable=too-many-arguments def __init__(self, blobinfos, max_rotation_degrees, mirror_prob=0., mirror_value_swaps=None, mirror_layer_swaps=None): """See class documentation.""" self._blobinfos = blobinfos self._rotation_degrees = max_rotation_degrees self._mirror_prob = mirror_prob self._batch_size = None if mirror_value_swaps is None: mirror_value_swaps = dict() for key in list(mirror_value_swaps.keys()): assert key in self._blobinfos, ("Blob not in handled: {}!"\ .format(key)) for layer_idx in list(mirror_value_swaps[key].keys()): m_tochange = [] for swappair in mirror_value_swaps[key][layer_idx]: assert len(swappair) == 2, ( "Swaps must be specified as (from_value, to_value): {}"\ .format(mirror_value_swaps[key][layer_idx])) assert swappair[0] not in m_tochange, ( "Every value may change only to one new: {}."\ .format(mirror_value_swaps[key][layer_idx])) m_tochange.append(swappair[0]) assert blobinfos[key] not in swappair, ( "A specified swap value is the fill value for this " "blob: {}, {}, {}.".format(key, blobinfos[key][layer_idx], swappair)) if mirror_layer_swaps is None: mirror_layer_swaps = dict() for key in list(mirror_layer_swaps.keys()): assert key in self._blobinfos, ("Blob not handled: {}!"\ .format(key)) idx_tochange = [] for swappair in mirror_layer_swaps[key]: assert len(swappair) == 2, ( "Swaps must be specified as (from_value, to_value): {}"\ .format(swappair)) assert (swappair[0] not in idx_tochange and swappair[1] not in idx_tochange), ( "Every value may only be swapped to or from one " "position!") idx_tochange.extend(swappair) for key in list(self._blobinfos): if key not in list(mirror_value_swaps.keys()): mirror_value_swaps[key] = dict() if key not in list(mirror_layer_swaps.keys()): mirror_layer_swaps[key] = [] self._mirror_value_swaps = mirror_value_swaps self._mirror_layer_swaps = mirror_layer_swaps def get_parallel_blob_names(self): """Get the names of all blobs that must be provided for the dummy.""" return list(self._blobinfos.keys()) def _initialize_train(self, kwargs): self._initialize(kwargs) def _initialize_test(self, kwargs): self._initialize(kwargs) def _initialize(self, kwargs): # we make sure, now that the network is available, that # all names in the provided data dict have a corresponding match # in the network if 'test' in kwargs['callback_signal']: net = kwargs['testnet'] else: net = kwargs['net'] for key in list(self._blobinfos.keys()): assert key in list(net.blobs.keys()), ( 'data key has no corresponding network blob {} {}'.format( key, str(list(net.blobs.keys())))) assert net.blobs[key].data.ndim == 4 for layer_idx in self._mirror_value_swaps[key].keys(): assert layer_idx < net.blobs[key].data.shape[1], (( "The data for blob {} has not enough layers for swapping " "{}!").format(key, layer_idx)) for swappair in self._mirror_layer_swaps[key]: assert (swappair[0] < net.blobs[key].data.shape[1] and swappair[1] < net.blobs[key].data.shape[1]), ( "Not enough layers in blob {} to swap {}!".format( key, swappair)) def _pre_fit(self, kwargs): if 'test' in kwargs['callback_signal']: net = kwargs['testnet'] else: net = kwargs['net'] self._batch_size = net.blobs[ list(self._blobinfos.keys())[0]].data.shape[0] def _pre_test(self, kwargs): self._pre_fit(kwargs) def _pre_train_batch(self, kwargs): self._pre_batch(kwargs['net'], kwargs) def _pre_test_batch(self, kwargs): self._pre_batch(kwargs['testnet'], kwargs) # pylint: disable=C0111, W0613, R0912, too-many-locals def _pre_batch(self, net, kwargs): rotations = None mirrorings = None spline_interpolation_order = 0 prefilter = False for key, padval in self._blobinfos.items(): if rotations is None: rotations = [] if self._rotation_degrees > 0.: rotations = _np.random.uniform(low=-self._rotation_degrees, high=self._rotation_degrees, size=self._batch_size) else: rotations = [0.] * self._batch_size if mirrorings is None: mirrorings = [] if self._mirror_prob > 0.: mirrorings = _bernoulli.rvs(self._mirror_prob, size=self._batch_size) else: mirrorings = [0] * self._batch_size for sample_idx in range(self._batch_size): if rotations[sample_idx] != 0.: net.blobs[key].data[sample_idx] = _rotate( net.blobs[key].data[sample_idx], rotations[sample_idx], (1, 2), reshape=False, order=spline_interpolation_order, mode='constant', cval=padval, prefilter=prefilter) if mirrorings[sample_idx] == 1.: net.blobs[key].data[sample_idx] = \ net.blobs[key].data[sample_idx, :, :, ::-1] for layer_idx in range(net.blobs[key].data.shape[1]): if (layer_idx not in self._mirror_value_swaps[key].keys()): continue swap_indices = dict() swap_tuples = self._mirror_value_swaps[key][layer_idx] # Swaps. for swappair in swap_tuples: swap_indices[swappair[0]] = ( net.blobs[key].data[sample_idx, layer_idx] ==\ swappair[0]) for swappair in swap_tuples: net.blobs[key].data[sample_idx, layer_idx][ swap_indices[swappair[0]]] = swappair[1] if len(self._mirror_layer_swaps[key]) > 0: new_layer_order = list( range(net.blobs[key].data.shape[1])) for swappair in self._mirror_layer_swaps[key]: new_layer_order[swappair[0]],\ new_layer_order[swappair[1]] = \ new_layer_order[swappair[1]],\ new_layer_order[swappair[0]] net.blobs[key].data[...] = net.blobs[key].data[ :, tuple(new_layer_order)] class ResultExtractor(Monitor): # pylint: disable=R0903 r""" This monitor is designed for monitoring scalar layer results. The main use case are salar outputs such as loss and accuracy. IMPORTANT: this monitor will change cbparams and add new values to it, most likely other monitors will depend on this, thus, ResultExtractors should be among the first monitors in the callback list, e.g. by insert them always in the beginning. It will extract the value of a layer and add the value to the cbparam. :param cbparam_key: string. The key we will overwrite/set in the cbparams dict. :param layer_name: string. The layer to extract the value from. """ def __init__(self, cbparam_key, layer_name): """See class documentation.""" self._layer_name = layer_name self._cbparam_key = cbparam_key self._init = False self._not_layer_available = True self._test_data = None def __call__(self, kwargs): """Callback implementation.""" if self._not_layer_available and self._init: return Monitor.__call__(self, kwargs) def _initialize_train(self, kwargs): self._initialize(kwargs) def _initialize_test(self, kwargs): self._initialize(kwargs) def _initialize(self, kwargs): if self._init: raise Exception("This ResultExtractor is already initialized! " "Did you try to use it for train and test?") if 'test' in kwargs['callback_signal']: tmp_net = kwargs['testnet'] else: tmp_net = kwargs['net'] if self._layer_name in list(tmp_net.blobs.keys()): self._not_layer_available = False self._init = True assert self._cbparam_key not in kwargs, ( 'it is only allowed to add keys to the cbparam,', 'not overwrite them {} {}'.format(self._cbparam_key, list(kwargs.keys()))) def _pre_train_batch(self, kwargs): kwargs[self._cbparam_key] = 0.0 def _post_train_batch(self, kwargs): kwargs[self._cbparam_key] = float( kwargs['net'].blobs[self._layer_name].data[...].ravel()[0]) def _pre_test(self, kwargs): self._test_data = [] def _post_test(self, kwargs): kwargs[self._cbparam_key] = _np.mean(self._test_data) def _post_test_batch(self, kwargs): # need to multiply by batch_size since it is normalized # internally self._test_data.append(float( kwargs['testnet'].blobs[self._layer_name].data[...].ravel()[0])) kwargs[self._cbparam_key] = self._test_data[-1] # Again, tested in a subprocess and not discovered. # pylint: disable=R0903 class ProgressIndicator(Monitor): # pragma: no cover r""" Generates a progress bar with current information about the process. The progress bar always displays completion percentage and ETA. If available, it also displays loss, accuracy, test loss and test accuracy. It makes use of the following keyword arguments (\* indicates required): * ``iter``\*, * ``max_iter``\*, * ``train_loss``, * ``test_loss``, * ``train_accuracy``, * ``test_accuracy``. """ def __init__(self): """See class documentation.""" self.loss = None self.test_loss = None self.accuracy = None self.test_accuracy = None import tqdm self.pbarclass = tqdm.tqdm self.pbar = None self.last_iter = 0 def _perf_string(self): pstr = '' if self.loss is not None: pstr += 'ls: {0:.4f}|'.format(self.loss) if self.accuracy is not None: pstr += 'ac: {0:.4f}|'.format(self.accuracy) if self.test_loss is not None: pstr += 'tls: {0:.4f}|'.format(self.test_loss) if self.test_accuracy is not None: pstr += 'tac: {0:.4f}|'.format(self.test_accuracy) return pstr def _post_train_batch(self, kwargs): if self.pbar is None: self.pbar = self.pbarclass(total=kwargs['max_iter']) if 'train_loss' in list(kwargs.keys()): self.loss = kwargs['train_loss'] if 'train_accuracy' in list(kwargs.keys()): self.accuracy = kwargs['train_accuracy'] self.pbar.set_description(self._perf_string()) self.pbar.update(kwargs['iter'] + kwargs['batch_size'] - self.last_iter) self.last_iter = kwargs['iter'] + kwargs['batch_size'] def _post_test_batch(self, kwargs): if self.pbar is None: self.pbar = self.pbarclass(total=kwargs['max_iter']) if 'test_loss' in list(kwargs.keys()): self.test_loss = kwargs['test_loss'] if 'test_accuracy' in list(kwargs.keys()): self.test_accuracy = kwargs['test_accuracy'] self.pbar.set_description(self._perf_string()) self.pbar.update(kwargs['iter'] - self.last_iter) self.last_iter = kwargs['iter'] def _post_test(self, kwargs): # Write the mean if possible. if self.pbar is not None: if 'test_loss' in list(kwargs.keys()): self.test_loss = kwargs['test_loss'] if 'test_accuracy' in list(kwargs.keys()): self.test_accuracy = kwargs['test_accuracy'] self.pbar.set_description(self._perf_string()) self.pbar.update(kwargs['iter'] - self.last_iter) self.last_iter = kwargs['iter'] def finalize(self, kwargs): # pylint: disable=W0613 """Call ``progressbar.finish()``.""" if self.pbar is not None: self.pbar.close() def _sorted_ar_from_dict(inf, key): # pragma: no cover iters = [] vals = [] for values in inf: if values.has_key(key): iters.append(int(values['NumIters'])) vals.append(float(values[key])) sortperm = _np.argsort(iters) arr = _np.array([iters, vals]).T return arr[sortperm, :] def _draw_perfplot(phases, categories, ars, outfile): # pragma: no cover """Draw the performance plots.""" fig, axes = _plt.subplots(nrows=len(categories), sharex=True) for category_idx, category in enumerate(categories): ax = axes[category_idx] # pylint: disable=invalid-name ax.set_title(category.title()) for phase in phases: if phase + '_' + category not in ars.keys(): continue ar = ars[phase + '_' + category] # pylint: disable=invalid-name alpha = 0.7 color = 'b' if phase == 'test': alpha = 1.0 color = 'g' ax.plot(ar[:, 0], ar[:, 1], label=phase.title(), c=color, alpha=alpha) if phase == 'test': ax.scatter(ar[:, 0], ar[:, 1], c=color, s=50) ax.set_ylabel(category.title()) ax.grid() ax.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) _plt.savefig(outfile, bbox_inches='tight') _plt.close(fig) class JSONLogger(Monitor): # pylint: disable=R0903 r""" Logs available information to a JSON file. The information is stored in a dictionary of lists. The lists contain score information and the iteration at which it was obtained. The currently logged scores are loss, accuracy, test loss and test accuracy. The logger makes use of the following keyword arguments (\* indicates required): * ``iter``\*, :param path: string. The path to store the file in. :param name: string. The filename. Will be prefixed with 'barrista_' and '.json' will be appended. :param logging: dict of lists. The two keys in the dict which are used are test, train. For each of those a list of keys can be provided, those keys have to be available in the kwargs/cbparams structure. Usually the required data is provided by the ResultExtractor. :param base_iter: int or None. If provided, add this value to the number of iterations. This overrides the number of iterations retrieved from a loaded JSON log to append to. :param write_every: int or None. Write the JSON log every `write_every` iterations. The log is always written upon completion of the training. If it is None, the log is only written on completion. :param create_plot: bool. If set to True, create a plot at `path` when the JSON log is written with the name of the JSON file + `_plot.png`. Default: False. """ # pylint: disable=too-many-arguments def __init__(self, path, name, logging, base_iter=None, write_every=None, create_plot=False): """See class documentation.""" import json self.json_package = json self.json_filename = str(_os.path.join( path, 'barrista_' + name + '.json')) if base_iter is None: self.base_iter = 0 else: self.base_iter = base_iter if _os.path.exists(self.json_filename): with open(self.json_filename, 'r') as infile: self.dict = self.json_package.load(infile) if base_iter is None: for key in ['train', 'test']: for infdict in self.dict[key]: if infdict.has_key('NumIters'): self.base_iter = max(self.base_iter, infdict['NumIters']) _LOGGER.info("Appending to JSON log at %s from iteration %d.", self.json_filename, self.base_iter) else: self.dict = {'train': [], 'test': [], 'barrista_produced': True} assert write_every is None or write_every > 0 self._write_every = write_every self._logging = logging self._create_plot = create_plot if self._create_plot: assert _PLT_AVAILABLE, ( "Matplotlib must be available to use plotting!") def _initialize_train(self, kwargs): self._initialize(kwargs) def _initialize_test(self, kwargs): self._initialize(kwargs) def _initialize(self, kwargs): # pylint: disable=unused-argument for key in list(self._logging.keys()): assert key in ['train', 'test'], ( 'only train and test is supported by this logger') def _post_test(self, kwargs): self._post('test', kwargs) def _post_train_batch(self, kwargs): self._post('train', kwargs) def _post(self, phase_name, kwargs): # pylint: disable=C0111 if phase_name not in self._logging: # pragma: no cover return if phase_name == 'train': kwargs['iter'] += kwargs['batch_size'] if (self._write_every is not None and kwargs['iter'] % self._write_every == 0): with open(self.json_filename, 'w') as outf: self.json_package.dump(self.dict, outf) if self._create_plot: # pragma: no cover categories = set() arrs = dict() for plot_phase_name in ['train', 'test']: for key in self._logging[plot_phase_name]: categories.add(key[len(plot_phase_name) + 1:]) arrs[key] = _sorted_ar_from_dict(self.dict[plot_phase_name], key) _draw_perfplot(['train', 'test'], categories, arrs, self.json_filename + '_plot.png') for key in self._logging[phase_name]: if key in kwargs: self.dict[phase_name].append({'NumIters': kwargs['iter'] + self.base_iter, key: kwargs[key]}) if phase_name == 'train': kwargs['iter'] -= kwargs['batch_size'] def finalize(self, kwargs): # pylint: disable=W0613 """Write the json file.""" with open(self.json_filename, 'w') as outf: self.json_package.dump(self.dict, outf) if self._create_plot: # pragma: no cover categories = set() arrs = dict() for phase_name in ['train', 'test']: for key in self._logging[phase_name]: categories.add(key[len(phase_name) + 1:]) arrs[key] = _sorted_ar_from_dict(self.dict[phase_name], key) _draw_perfplot(['train', 'test'], categories, arrs, self.json_filename + '_plot.png') class Checkpointer(Monitor): # pylint: disable=R0903 r""" Writes the network blobs to disk at certain iteration intervals. The logger makes use of the following keyword arguments (\* indicates required): * ``iter``\*, * ``net``\*, * ``batch_size``\*. :param name_prefix: string or None. The first part of the output filenames to generate. The prefix '_iter_, the current iteration, as well as '.caffemodel' is added. If you are using a caffe version from later than Dec. 2015, caffe's internal snapshot method is exposed to Python and also snapshots the solver. If it's available, then this method will be used. However, in that case, it's not possible to influence the storage location from Python. Please use the solver parameter ``snapshot_prefix`` when constructing the solver instead (this parameter may be None and is unused then). :param iterations: int > 0. Always if the current number of iterations is divisible by iterations, the network blobs are written to disk. Hence, this value must be a multiple of the batch size! """ def __init__(self, name_prefix, iterations, base_iterations=0): """See class documentation.""" assert iterations > 0 _LOGGER.info('Setting up checkpointing with name prefix %s every ' + '%d iterations.', name_prefix, iterations) self.name_prefix = name_prefix self.iterations = iterations self.created_checkpoints = [] self._base_iterations = base_iterations # pylint: disable=arguments-differ def _post_train_batch(self, kwargs, finalize=False): assert self.iterations % kwargs['batch_size'] == 0, ( 'iterations not multiple of batch_size, {} vs {}'.format( self.iterations, kwargs['batch_size'])) # Prevent double-saving. if kwargs['iter'] in self.created_checkpoints: return if ((kwargs['iter'] + self._base_iterations + kwargs['batch_size']) % self.iterations == 0 or finalize): self.created_checkpoints.append(kwargs['iter']) # pylint: disable=protected-access if not hasattr(kwargs['solver']._solver, 'snapshot'): # pragma: no cover checkpoint_filename = ( self.name_prefix + '_iter_' + str(int((kwargs['iter'] + self._base_iterations) / kwargs['batch_size']) + 1) + '.caffemodel') _LOGGER.debug("Writing checkpoint to file '%s'.", checkpoint_filename) kwargs['net'].save(checkpoint_filename) else: # pylint: disable=protected-access kwargs['solver']._solver.snapshot() caffe_checkpoint_filename = (self.name_prefix + '_iter_' + str((kwargs['iter'] + self._base_iterations) / kwargs['batch_size'] + 1) + '.caffemodel') caffe_sstate_filename = (self.name_prefix + '_iter_' + str((kwargs['iter'] + self._base_iterations) / kwargs['batch_size'] + 1) + '.solverstate') _LOGGER.debug('Writing checkpoint to file "[solverprefix]%s" ' + 'and "[solverprefix]%s".', caffe_checkpoint_filename, caffe_sstate_filename) assert _os.path.exists(caffe_checkpoint_filename), ( "An error occured checkpointing to {}. File not found. " "Make sure the `base_iterations` and the `name_prefix` " "are correct.").format(caffe_checkpoint_filename) assert _os.path.exists(caffe_sstate_filename), ( "An error occured checkpointing to {}. File not found. " "Make sure the `base_iterations` and the `name_prefix` " "are correct.").format(caffe_sstate_filename) def finalize(self, kwargs): """Write a final checkpoint.""" # Account for the counting on iteration increase for the last batch. kwargs['iter'] -= kwargs['batch_size'] self._post_train_batch(kwargs, finalize=True) kwargs['iter'] += kwargs['batch_size'] class GradientMonitor(Monitor): """ Tools to keep an eye on the gradient. Create plots of the gradient. Creates histograms of the gradient for all ``selected_parameters`` and creates an overview plot with the maximum absolute gradient per layer. If ``create_videos`` is set and ffmpeg is available, automatically creates videos. :param write_every: int. Write every x iterations. Since matplotlib takes some time to run, choose with care. :param output_folder: string. Where to store the outputs. :param selected_parameters: dict(string, list(int)) or None. Which parameters to include in the plots. The string is the name of the layer, the list of integers contains the parts to include, e.g., for a convolution layer, specify the name of the layer as key and 0 for the parameters of the convolution weights, 1 for the biases per channel. The order and meaning of parameter blobs is determined by caffe. If None, then all parameters are plotted. Default: None. :param relative: Bool. If set to True, will give the weights relative to the max absolute weight in the target parameter blob. Default: False. :param iteroffset: int. An iteration offset if training is resumed to not overwrite existing output. Default: 0. :param create_videos: Bool. If set to True, try to create a video using ffmpeg. Default: True. :param video_frame_rate: int. The video frame rate. """ def __init__(self, # pylint: disable=too-many-arguments write_every, output_folder, selected_parameters=None, relative=False, iteroffset=0, create_videos=True, video_frame_rate=1): assert write_every > 0 self._write_every = write_every self._output_folder = output_folder self._selected_parameters = selected_parameters self._relative = relative self._n_parameters = None self._iteroffset = iteroffset self._create_videos = create_videos self._video_frame_rate = video_frame_rate def _initialize_train(self, kwargs): # pragma: no cover assert _PLT_AVAILABLE, ( "Matplotlib must be available to use the GradientMonitor!") assert self._write_every % kwargs['batch_size'] == 0, ( "`write_every` must be a multiple of the batch size!") self._n_parameters = 0 if self._selected_parameters is not None: for name in self._selected_parameters.keys(): assert name in kwargs['net'].params.keys() for p_idx in self._selected_parameters[name]: assert p_idx >= 0 assert len(kwargs['net'].params[name]) > p_idx self._n_parameters += 1 else: self._selected_parameters = _collections.OrderedDict() for name in kwargs['net'].params.keys(): self._selected_parameters[name] = range(len( kwargs['net'].params[name])) self._n_parameters += len(kwargs['net'].params[name]) # pylint: disable=too-many-locals def _post_train_batch(self, kwargs): # pragma: no cover if kwargs['iter'] % self._write_every == 0: net = kwargs['net'] maxabsupdates = {} maxabsupdates_flat = [] # Create histograms. fig, axes = _plt.subplots(nrows=1, ncols=self._n_parameters, figsize=(self._n_parameters * 3, 3)) ax_idx = 0 xfmt = _tkr.FormatStrFormatter('%.1e') for lname in self._selected_parameters.keys(): maxabsupdates[lname] = [] for p_idx in self._selected_parameters[lname]: if self._relative: lgradient = (net.params[lname][p_idx].diff / net.params[lname][p_idx].data.max()) else: lgradient = net.params[lname][p_idx].diff maxabsupdates[lname].append(_np.max(_np.abs(lgradient))) maxabsupdates_flat.append(_np.max(_np.abs(lgradient))) axes[ax_idx].set_title(lname + ', p%d' % (p_idx)) axes[ax_idx].hist(list(lgradient.flat), 25, normed=1, alpha=0.5) axes[ax_idx].set_xticks(_np.linspace(-maxabsupdates_flat[-1], maxabsupdates_flat[-1], num=3)) axes[ax_idx].yaxis.set_visible(False) axes[ax_idx].xaxis.set_major_formatter(xfmt) ax_idx += 1 _plt.tight_layout(rect=[0, 0.03, 1, 0.95]) _plt.suptitle("Gradient histograms for iteration %d" % ( kwargs['iter'] + self._iteroffset)) if self._relative: ghname = self._output_folder + 'gradient_hists_rel_%d.png' % ( (self._iteroffset + kwargs['iter']) / self._write_every) else: ghname = self._output_folder + 'gradient_hists_%d.png' % ( (self._iteroffset + kwargs['iter']) / self._write_every) _plt.savefig(ghname) _plt.close(fig) # Create the magnitude overview plot. fig = _plt.figure(figsize=(self._n_parameters * 1, 1.5)) _plt.title("Maximum absolute gradient per layer (iteration %d)" % ( kwargs['iter'] + self._iteroffset)) ax = _plt.gca() # pylint: disable=invalid-name # pylint: disable=invalid-name im = ax.imshow(_np.atleast_2d(_np.array(maxabsupdates_flat)), interpolation='none') ax.yaxis.set_visible(False) divider = _make_axes_locatable(ax) cax = divider.append_axes("right", size="10%", pad=0.05) _plt.colorbar(im, cax=cax, ticks=_np.linspace(_np.min(maxabsupdates_flat), _np.max(maxabsupdates_flat), 5)) _plt.tight_layout(rect=[0, 0.03, 1, 0.95]) if self._relative: gmname = self._output_folder + 'gradient_magnitude_rel_%d.png' % ( (self._iteroffset + kwargs['iter']) / self._write_every) else: gmname = self._output_folder + 'gradient_magnitude_%d.png' % ( (self._iteroffset + kwargs['iter']) / self._write_every) _plt.savefig(gmname) _plt.close(fig) def finalize(self, kwargs): # pragma: no cover if self._create_videos: _LOGGER.debug("Creating gradient videos...") try: if not _os.path.exists(_os.path.join(self._output_folder, 'videos')): _os.mkdir(_os.path.join(self._output_folder, 'videos')) if self._relative: rel_add = '_rel' else: rel_add = '' with open(_os.devnull, 'w') as quiet: _subprocess.check_call([ 'ffmpeg', '-y', '-start_number', str(0), '-r', str(self._video_frame_rate), '-i', _os.path.join(self._output_folder, 'gradient_hists' + rel_add + '_%d.png'), _os.path.join(self._output_folder, 'videos', 'gradient_hists' + rel_add + '.mp4') ], stdout=quiet, stderr=quiet) _subprocess.check_call([ 'ffmpeg', '-y', '-start_number', str(0), '-r', str(self._video_frame_rate), '-i', _os.path.join(self._output_folder, 'gradient_magnitude' + rel_add + '_%d.png'), _os.path.join(self._output_folder, 'videos', 'gradient_magnitude' + rel_add + '.mp4') ], stdout=quiet, stderr=quiet) except Exception as ex: # pylint: disable=broad-except _LOGGER.error( "Could not create videos! Error: %s. Is " + "ffmpeg available on the command line?", str(ex)) _LOGGER.debug("Done.") class ActivationMonitor(Monitor): """ Tools to keep an eye on the net activations. Create plots of the net activations. If ``create_videos`` is set and ffmpeg is available, automatically creates videos. :param write_every: int. Write every x iterations. Since matplotlib takes some time to run, choose with care. :param output_folder: string. Where to store the outputs. :param selected_blobs: list(string) or None. Which blobs to include in the plots. If None, then all parameters are plotted. Default: None. :param iteroffset: int. An iteration offset if training is resumed to not overwrite existing output. Default: 0. :param sample: dict(string, NDarray(3D)). A sample to use that will be forward propagated to obtain the activations. Must contain one for every input layer of the network. Each sample is not preprocessed and must fit the input. If None, use the existing values from the blobs. :param create_videos: Bool. If set to True, try to create a video using ffmpeg. Default: True. :param video_frame_rate: int. The video frame rate. """ # pylint: disable=too-many-arguments def __init__(self, # pragma: no cover write_every, output_folder, selected_blobs=None, iteroffset=0, sample=None, create_videos=True, video_frame_rate=1): assert write_every > 0 self._write_every = write_every self._output_folder = output_folder self._selected_blobs = selected_blobs self._n_parameters = None self._iteroffset = iteroffset self._create_videos = create_videos self._video_frame_rate = video_frame_rate self._sample = sample def _initialize_train(self, kwargs): # pragma: no cover assert _PLT_AVAILABLE, ( "Matplotlib must be available to use the ActivationMonitor!") assert self._write_every % kwargs['batch_size'] == 0, ( "`write_every` must be a multiple of the batch size!") self._n_parameters = 0 if self._selected_blobs is not None: for name in self._selected_blobs: assert name in kwargs['net'].blobs.keys(), ( "The activation monitor should monitor {}, which is not " "part of the net!").format(name) self._n_parameters += 1 else: self._selected_blobs = [] for name in kwargs['net'].blobs.keys(): bshape = kwargs['net'].blobs[name].data.shape if len(bshape) == 4: self._selected_blobs.append(name) self._n_parameters += 1 if self._sample is not None: for inp_name in self._sample.keys(): assert (kwargs['net'].blobs[inp_name].data.shape[1:] == self._sample[inp_name].shape), ( "All provided inputs as `sample` must have the shape " "of an input blob, starting from its sample " "dimension. Does not match for %s: %s vs. %s." % ( inp_name, str(kwargs['net'].blobs[inp_name].data.shape[1:]), str(self._sample[inp_name].shape))) # pylint: disable=too-many-locals def _post_train_batch(self, kwargs): # pragma: no cover if kwargs['iter'] % self._write_every == 0: net = kwargs['net'] if self._sample is not None: for bname in self._sample.keys(): net.blobs[bname].data[-1, ...] = self._sample[bname] net.forward() for bname in self._selected_blobs: blob = net.blobs[bname].data nchannels = blob.shape[1] gridlen = int(_np.ceil(_np.sqrt(nchannels))) fig, axes = _plt.subplots(nrows=gridlen, ncols=gridlen, squeeze=False) bmin = blob[-1].min() bmax = blob[-1].max() for c_idx in range(nchannels): ax = axes.flat[c_idx] # pylint: disable=invalid-name im = ax.imshow(blob[-1, c_idx], # pylint: disable=invalid-name vmin=bmin, vmax=bmax, cmap='Greys_r', interpolation='none') ax.set_title('C%d' % (c_idx)) ax.yaxis.set_visible(False) ax.xaxis.set_visible(False) # pylint: disable=undefined-loop-variable for blank_idx in range(c_idx + 1, gridlen * gridlen): ax = axes.flat[blank_idx] # pylint: disable=invalid-name ax.axis('off') _plt.tight_layout(rect=[0, 0.03, 1, 0.95]) _plt.suptitle("Activations in blob %s (iteration %d)" % ( bname, self._iteroffset + kwargs['iter'])) cbax, cbkw = _colorbar.make_axes([ax for ax in axes.flat]) fig.colorbar(im, cax=cbax, **cbkw) _plt.savefig(self._output_folder + 'activations_%s_%d.png' % ( bname, (self._iteroffset + kwargs['iter']) / self._write_every)) _plt.close(fig) def finalize(self, kwargs): # pragma: no cover if self._create_videos: _LOGGER.debug("Creating activation videos...") try: if not _os.path.exists(_os.path.join(self._output_folder, 'videos')): _os.mkdir(_os.path.join(self._output_folder, 'videos')) for bname in self._selected_blobs: with open(_os.devnull, 'w') as quiet: _subprocess.check_call([ 'ffmpeg', '-y', '-start_number', str(0), '-r', str(self._video_frame_rate), '-i', _os.path.join(self._output_folder, 'activations_' + bname + '_%d.png'), _os.path.join(self._output_folder, 'videos', 'activations_' + bname + '.mp4') ], stdout=quiet, stderr=quiet) except Exception as ex: # pylint: disable=broad-except _LOGGER.error( "Could not create videos! Error: %s. Is " + "ffmpeg available on the command line?", str(ex)) _LOGGER.debug("Done.") class FilterMonitor(Monitor): """ Tools to keep an eye on the filters. Create plots of the network filters. Creates filter plots for all ``selected_parameters``. If ``create_videos`` is set and ffmpeg is available, automatically creates videos. :param write_every: int. Write every x iterations. Since matplotlib takes some time to run, choose with care. :param output_folder: string. Where to store the outputs. :param selected_parameters: dict(string, list(int)) or None. Which parameters to include in the plots. The string is the name of the layer, the list of integers contains the parts to include, e.g., for a convolution layer, specify the name of the layer as key and 0 for the parameters of the convolution weights, 1 for the biases per channel. The order and meaning of parameter blobs is determined by caffe. If None, then all parameters are plotted. **Only 4D blobs can be plotted!** Default: None. :param iteroffset: int. An iteration offset if training is resumed to not overwrite existing output. Default: 0. :param create_videos: Bool. If set to True, try to create a video using ffmpeg. Default: True. :param video_frame_rate: int. The video frame rate. """ # pylint: disable=too-many-arguments def __init__(self, # pragma: no cover write_every, output_folder, selected_parameters=None, iteroffset=0, create_videos=True, video_frame_rate=1): assert write_every > 0 self._write_every = write_every self._output_folder = output_folder self._selected_parameters = selected_parameters self._n_parameters = None self._iteroffset = iteroffset self._create_videos = create_videos self._video_frame_rate = video_frame_rate def _initialize_train(self, kwargs): # pragma: no cover assert _PLT_AVAILABLE, ( "Matplotlib must be available to use the FilterMonitor!") assert self._write_every % kwargs['batch_size'] == 0, ( "`write_every` must be a multiple of the batch size!") self._n_parameters = 0 if self._selected_parameters is not None: for name in self._selected_parameters.keys(): assert name in kwargs['net'].params.keys() for p_idx in self._selected_parameters[name]: assert p_idx >= 0 assert len(kwargs['net'].params[name][p_idx].data.shape) == 4 self._n_parameters += 1 else: self._selected_parameters = _collections.OrderedDict() for name in kwargs['net'].params.keys(): self._selected_parameters[name] = [] for pindex in range(len(kwargs['net'].params[name])): if len(kwargs['net'].params[name][pindex].data.shape) == 4: self._selected_parameters[name].append(pindex) self._n_parameters += 1 def _post_train_batch(self, kwargs): # pragma: no cover if kwargs['iter'] % self._write_every == 0: net = kwargs['net'] for pname in self._selected_parameters.keys(): for pindex in self._selected_parameters[pname]: fig = _plt.figure() param = net.params[pname][pindex].data border = 2 collected_weights = _np.zeros((param.shape[0] * (param.shape[2] + border) + border, param.shape[1] * (param.shape[3] + border) + border), dtype='float32') pmin = param.min() pmax = param.max() # Build up the plot manually because matplotlib is too slow. for filter_idx in range(param.shape[0]): for layer_idx in range(param.shape[1]): collected_weights[border + filter_idx * (param.shape[2] + border): border + filter_idx * (param.shape[2] + border) + param.shape[2], border + layer_idx * (param.shape[3] + border): border + layer_idx * (param.shape[3] + border) + param.shape[3]] = ( (param[filter_idx, layer_idx] - pmin) / (pmax - pmin)) _plt.imshow(collected_weights, cmap='Greys_r', interpolation='none') ax = _plt.gca() # pylint: disable=invalid-name ax.yaxis.set_visible(False) ax.xaxis.set_visible(False) ax.set_title(( "Values of layer %s, param %d\n" + "(iteration %d, min %.1e, max %.1e)") % ( pname, pindex, self._iteroffset + kwargs['iter'], pmin, pmax)) _plt.savefig(self._output_folder + 'parameters_%s_%d_%d.png' % ( pname, pindex, (self._iteroffset + kwargs['iter']) / self._write_every)) _plt.close(fig) def finalize(self, kwargs): # pragma: no cover if self._create_videos: _LOGGER.debug("Creating filter videos...") try: if not _os.path.exists(_os.path.join(self._output_folder, 'videos')): _os.mkdir(_os.path.join(self._output_folder, 'videos')) for pname in self._selected_parameters.keys(): for pindex in self._selected_parameters[pname]: with open(_os.devnull, 'w') as quiet: _subprocess.check_call([ 'ffmpeg', '-y', '-start_number', str(0), '-r', str(self._video_frame_rate), '-i', _os.path.join(self._output_folder, 'parameters_' + pname + '_' + str(pindex) + '_' + '%d.png'), _os.path.join(self._output_folder, 'videos', 'parameters_' + pname + '_' + str(pindex) + '.mp4') ], stdout=quiet, stderr=quiet) except Exception as ex: # pylint: disable=broad-except _LOGGER.error( "Could not create videos! Error: %s. Is " + "ffmpeg available on the command line?", str(ex)) _LOGGER.debug("Done.")
the-stack_0_12755
from nets.segnet import convnet_segnet from PIL import Image import numpy as np import random import copy import os class_colors = [[0,0,0],[0,255,0]] NCLASSES = 2 HEIGHT = 416 WIDTH = 416 model = convnet_segnet(n_classes=NCLASSES,input_height=HEIGHT, input_width=WIDTH) model.load_weights("logs/ep021-loss0.083-val_loss0.143.h5") imgs = os.listdir("./img/") for jpg in imgs: img = Image.open("./img/"+jpg) old_img = copy.deepcopy(img) orininal_h = np.array(img).shape[0] orininal_w = np.array(img).shape[1] img = img.resize((WIDTH,HEIGHT)) img = np.array(img) img = img/255 img = img.reshape(-1,HEIGHT,WIDTH,3) pr = model.predict(img)[0] pr = pr.reshape((int(HEIGHT/2), int(WIDTH/2),NCLASSES)).argmax(axis=-1) seg_img = np.zeros((int(HEIGHT/2), int(WIDTH/2),3)) colors = class_colors for c in range(NCLASSES): seg_img[:,:,0] += ( (pr[:,: ] == c )*( colors[c][0] )).astype('uint8') seg_img[:,:,1] += ((pr[:,: ] == c )*( colors[c][1] )).astype('uint8') seg_img[:,:,2] += ((pr[:,: ] == c )*( colors[c][2] )).astype('uint8') seg_img = Image.fromarray(np.uint8(seg_img)).resize((orininal_w,orininal_h)) image = Image.blend(old_img,seg_img,0.3) image.save("./img_out/"+jpg)
the-stack_0_12756
rhacm_versions = [ ('1.0', '7'), ('2.0', '7'), ('2.1', '7'), ('2.2', '7'), ('2.3', '7'), ('1.0', '8'), ('2.0', '8'), ('2.1', '8'), ('2.2', '8'), ('2.3', '8'), ] def test_rhacm_product_version_count(rhacm_product): assert len(rhacm_product.product_versions()) == 10 def test_rhacm_product_version_names(rhacm_product): for index, product_version in enumerate(rhacm_product.product_versions()): version, release = rhacm_versions[index] assert product_version.name == 'RHEL-%s-RHACM-%s' % (release, version) def test_rhacm_product_version_descriptions(rhacm_product): for index, product_version in enumerate(rhacm_product.product_versions()): version, release = rhacm_versions[index] assert product_version.description == 'Red Hat Advanced Cluster ' + \ 'Management for Kubernetes %s for RHEL %s' % (version, release) def test_rhacm_product_version_default_brew_tags(rhacm_product): for index, product_version in enumerate(rhacm_product.product_versions()): version, release = rhacm_versions[index] assert product_version.default_brew_tag == \ 'rhacm-%s-rhel-%s-container-candidate' % (version, release)
the-stack_0_12757
# BSD 3-Clause License; see https://github.com/scikit-hep/awkward-1.0/blob/main/LICENSE import awkward as ak np = ak.nplike.NumpyMetadata.instance() def flatten(array, axis=1, highlevel=True, behavior=None): """ Args: array: Data containing nested lists to flatten. axis (None or int): If None, the operation flattens all levels of nesting, returning a 1-dimensional array. Otherwise, it flattens at a specified depth. The outermost dimension is `0`, followed by `1`, etc., and negative values count backward from the innermost: `-1` is the innermost dimension, `-2` is the next level up, etc. highlevel (bool): If True, return an #ak.Array; otherwise, return a low-level #ak.layout.Content subclass. behavior (None or dict): Custom #ak.behavior for the output array, if high-level. Returns an array with one level of nesting removed by erasing the boundaries between consecutive lists. Since this operates on a level of nesting, `axis=0` is a special case that only removes values at the top level that are equal to None. Consider the following doubly nested `array`. ak.Array([[ [1.1, 2.2, 3.3], [], [4.4, 5.5], [6.6]], [], [ [7.7], [8.8, 9.9] ]]) At `axis=1`, the outer lists (length 4, length 0, length 2) become a single list (of length 6). >>> print(ak.flatten(array, axis=1)) [[1.1, 2.2, 3.3], [], [4.4, 5.5], [6.6], [7.7], [8.8, 9.9]] At `axis=2`, the inner lists (lengths 3, 0, 2, 1, 1, and 2) become three lists (of lengths 6, 0, and 3). >>> print(ak.flatten(array, axis=2)) [[1.1, 2.2, 3.3, 4.4, 5.5, 6.6], [], [7.7, 8.8, 9.9]] There's also an option to completely flatten the array with `axis=None`. This is useful for passing the data to a function that doesn't care about nested structure, such as a plotting routine. >>> print(ak.flatten(array, axis=None)) [1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8, 9.9] Missing values are eliminated by flattening: there is no distinction between an empty list and a value of None at the level of flattening. >>> array = ak.Array([[1.1, 2.2, 3.3], None, [4.4], [], [5.5]]) >>> ak.flatten(array, axis=1) <Array [1.1, 2.2, 3.3, 4.4, 5.5] type='5 * float64'> As a consequence, flattening at `axis=0` does only one thing: it removes None values from the top level. >>> ak.flatten(array, axis=0) <Array [[1.1, 2.2, 3.3], [4.4], [], [5.5]] type='4 * var * float64'> As a technical detail, the flattening operation can be trivial in a common case, #ak.layout.ListOffsetArray in which the first `offset` is `0`. In that case, the flattened data is simply the array node's `content`. >>> array.layout <ListOffsetArray64> <offsets><Index64 i="[0 4 4 6]" offset="0" length="4"/></offsets> <content><ListOffsetArray64> <offsets><Index64 i="[0 3 3 5 6 7 9]" offset="0" length="7"/></offsets> <content> <NumpyArray format="d" shape="9" data="1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9"/> </content> </ListOffsetArray64></content> </ListOffsetArray64> >>> np.asarray(array.layout.content.content) array([1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8, 9.9]) However, it is important to keep in mind that this is a special case: #ak.flatten and `content` are not interchangeable! """ with ak._v2._util.OperationErrorContext( "ak._v2.flatten", dict(array=array, axis=axis, highlevel=highlevel, behavior=behavior), ): return _impl(array, axis, highlevel, behavior) def _impl(array, axis, highlevel, behavior): layout = ak._v2.operations.convert.to_layout( array, allow_record=False, allow_other=False ) nplike = ak.nplike.of(layout) if axis is None: out = layout.completely_flatten(function_name="ak.flatten") assert isinstance(out, tuple) and all( isinstance(x, nplike.ndarray) for x in out ) out = ak._v2.contents.NumpyArray(nplike.concatenate(out)) elif axis == 0 or layout.axis_wrap_if_negative(axis) == 0: def apply(layout): if layout.is_UnknownType: return apply(ak._v2.contents.NumpyArray(nplike.array([]))) elif layout.is_IndexedType: return apply(layout.project()) elif layout.is_UnionType: if not any( x.is_OptionType and not isinstance(x, ak._v2.contents.UnmaskedArray) for x in layout.contents ): return layout tags = nplike.asarray(layout.tags) index = nplike.array(nplike.asarray(layout.index), copy=True) bigmask = nplike.empty(len(index), dtype=np.bool_) for tag, content in enumerate(layout.contents): if content.is_OptionType and not isinstance( content, ak._v2.contents.UnmaskedArray ): bigmask[:] = False bigmask[tags == tag] = nplike.asarray( content.mask_as_bool(valid_when=False) ).view(np.bool_) index[bigmask] = -1 good = index >= 0 return ak._v2.contents.UnionArray( ak._v2.index.Index8(tags[good]), ak._v2.index.Index64(index[good]), layout.contents, ) elif layout.is_OptionType: return layout.project() else: return layout out = apply(layout) return ak._v2._util.wrap(out, behavior, highlevel) else: out = layout.flatten(axis) return ak._v2._util.wrap(out, behavior, highlevel)
the-stack_0_12758
''' @Author: Kai Song, ks838 _at_ cam.ac.uk @Notes : This part gives the constants and parameters. ''' import numpy as np # parameters for the system #the inverse temperature beta = 0.05 # a.u. mass = 1.0 # ------ params for propagation ------ dt = 2 * pow(10,-3) # time step # F is displacement of harmonic oscillator : Fx F = 6 # frequency of nuclear motion omega = 1 # coupling between electronic state. Delta = 1 # displacement (1/2 M omega^2 (R + R0 * sigma_z )^2 ) in Hamiltonian H0 . initial state is sampled from e^{-\beta H0} # R0 = 0 # displacement for initial Hamiltonian R0 = F / ( mass * np.power(omega,2) ) equil_dt = pow(10,-2) # time step for thermalization of initial state equil_time = 10 # steps for the equilibrating part nsteps_equil = int(equil_time / equil_dt ) # steps for the dynamics dynamics_time = 10 nsteps_dynamics = int(dynamics_time / dt ) print_time = 0.1 nsteps_print = int(print_time / dt ) # --------- for electronic state -------- n_electronic_state = 2 # -------- for the n beads ---------- # for simple potential forms (e.g., a double-well form), n_beads <10 are # engough. And, for harmonic form, n_beads = 1 is engough n_beads = 16 # should be an even number in our settings omega_N = n_beads/beta # we have used hbar = 1 . omega_N = 1/(beta_N * hbar) beta_N = beta/n_beads # Normal mode frequency for free ring polymer. See eq.(36) in Ceriotti et al. J. Chem. Phys. 133, 124104 2010. omegak = np.zeros(n_beads) for i_bead in range(n_beads): omegak[i_bead] = 2* omega_N * np.sin(i_bead*np.pi/n_beads) #------ parameter for Ceriotti thermostatting----- tau0 = 0.7 # an input parameter for tuning the efficiency # The number of samplings (from the thermostatting). # Typically, we need ~10^4 to get converged results. # We started using a small number for testing n_samplings = 100 # sampling initial momentum and coordinate. mu_p = 0.0 sigma_p = np.sqrt(mass*n_beads/beta) mu_q = 0.0
the-stack_0_12759
import os,time,math,sys,json,re,string,json import importlib import get_dataflow import pandas as pd import joblib import json import requests import bs4 import lxml from sklearn.ensemble import RandomForestClassifier from nltk.tokenize import word_tokenize stdlib=['string','re','difflib','textwrap','unicodedata','stringprep','readline','rlcompleter', 'struct','codecs','datatime','calendar','collections','collections.abc','heapq','bisect', 'array','weakref','types','copy','pprint','reprlib','enum','numbers','math','cmath', 'decimal','fractions','random','statistics','itertools','functools','operator','pathlib', 'os.path','fileinput','stat','filecmp','tempfile','glob','fnmatch','linecache','shutil', 'pickle','copyreg','shelve','marshal','dbm','sqlite3','zlib','gzip','bz2','lzma','zipfile', 'tarfile','csv','configparser','netrc','xdrlib','plistlib','hashlib','hmac','secrets', 'os','io','time','argparse','getopt','logging','logging.config','logging.handlers', 'getpass','curses','curses.textpad','curses.ascii','curses.panel','platform','errno', 'ctypes','threading','multiprocessing','multiprocessing.shared_memory','concurrent', 'concurrent.futures','subprocess','sched','queue','_thread','_dummy_thread','dummy_threading', 'contextvars','asyncio','socket','ssl','select','selectors','asyncore','asynchat','signal', 'mmap','email','json','mailcap','mailbox','mimetypes','base64','binhex','binascii', 'quopri','uu','html','html.parser','html.entities','xml','webbrowser','xml.etree.ElementTree', 'xml.dom','xml.dom.minidom','xml.dom.pulldom','xml.sax','xml.sax.handler','xml.sax.saxutils', 'xml.sax.xmlreader','xml.parsers.expat','cgi','cgitb','wsgiref','urllib','urllib.request', 'urllib.response','urllib.parse','urllib.error','urllib.robotparser','http','http.client', 'ftplib','poplib','imaplib','nntplib','smtplib','smtpd','telnetlib','uuid','socketserver', 'http.server','http.cookies','http.cookiejar','xmlrpc','xmlrpc.client','xmlrpc.server', 'ipaddress','audioop','aifc','sunau','wave','chunk','colorsys','imghdr','sndhdr','ossaudiodev', 'gettext','locale','turtle','cmd','shlex','tkinter','tkinter.ttk','tkinter.tix','tkinter.scrolledtext', 'typing','pydoc','doctest','unittest','unittest.mock','unittest.mock','test','test.support', 'test.support.script_helper','bdb','faulthandler','pdb','timeit','trace','tracemalloc','distutils', 'ensurepip','venv','zipapp','sys','sysconfig','builtins','__main__','warnings','dataclasses', 'contextlib','abc','atexit','traceback','__future__','gc','inspect','site','code','codeop','zipimport', 'pkgutil','modulefinder','runpy','importlib','ast','symtable','symbol','token','keyword', 'tokenize','tabnanny','pyclbr','py_compile','compileall','dis','pickletools','formatter','msilib', 'msvcrt','winreg','winsound','posix','pwd','spwd','grp','crypt','termios','tty','pty','fcntl','pipes', 'resource','nis','optparse','imp'] topk_array = [0,0,0,0,0,0,0] num_of_apis = 0 class ShowProcess(): i = 0 max_steps = 0 max_arrow = 50 infoDone = 'done' def __init__(self, max_steps, infoDone = 'Done'): self.max_steps = max_steps self.i = 0 self.infoDone = infoDone def show_process(self, i=None): if i is not None: self.i = i else: self.i += 1 num_arrow = int(self.i * self.max_arrow / self.max_steps) num_line = self.max_arrow - num_arrow percent = self.i * 100.0 / self.max_steps process_bar = '[' + '>' * num_arrow + '-' * num_line + ']'\ + '%.2f' % percent + '%' + '\r' sys.stdout.write(process_bar) sys.stdout.flush() if self.i >= self.max_steps: self.close() def close(self): print('') print(self.infoDone) self.i = 0 def get_file_path(root_path,file_list,dir_list): global ret_list dir_or_files = os.listdir(root_path) for dir_file in dir_or_files: dir_file_path = os.path.join(root_path,dir_file) if os.path.isdir(dir_file_path): dir_list.append(dir_file_path) get_file_path(dir_file_path,file_list,dir_list) elif dir_file_path.endswith('.py') and not dir_file_path.endswith('tmp.py'): #print(dir_file_path) ret_list.append(dir_file_path) file_list.append(dir_file_path) def GetMiddleStr(content,startStr,endStr): startIndex = content.index(startStr) if startIndex>=0: startIndex += len(startStr) endIndex = content.index(endStr) return content[startIndex:endIndex] def get_module_funcs(modulename): modulename=modulename.strip() flag=0 ms=[] for curapi in cur_apis: items=curapi.split('.') if modulename+'.' in curapi or curapi.startswith(modulename+'.'): #print('yes!',curapi) api=items[-1] ms.append(api) flag=1 if flag==1: ms=list(set(ms)) return {modulename:ms} #print(modulename) rootmodule='' try: module=importlib.import_module(modulename) except Exception: if '.' in modulename: index=modulename.find('.') rootmodule=modulename[:index] os.system('pip3 install '+rootmodule) else: os.system('pip3 install '+modulename) try: module=importlib.import_module(modulename) except Exception as err: print(err) return {} ms=dir(module) return {modulename:ms} def get_alias_funcs(modulename,alias): modulename=modulename.strip() flag=0 ms=[] for curapi in cur_apis: items=curapi.split('.') if modulename+'.' in curapi or curapi.startswith(modulename+'.'): #print('yes!',curapi) api=items[-1] ms.append(api) flag=1 if flag==1: ms=list(set(ms)) return {alias:ms} #print(modulename) rootmodule='' try: module=importlib.import_module(modulename) except Exception: if '.' in modulename: index=modulename.find('.') rootmodule=modulename[:index] os.system('pip3 install '+rootmodule) else: os.system('pip3 install '+modulename) try: module=importlib.import_module(modulename) except Exception as err: print(err) return {} ms=dir(module) return {alias:ms} def GetMiddleStr(content,startStr,endStr): startIndex = content.index(startStr) if startIndex>=0: startIndex += len(startStr) endIndex = content.index(endStr) return content[startIndex:endIndex] def get_alias_item(modulename,itname,aliasname): modulename=modulename.strip() flag=0 ms=[] for curapi in cur_apis: items=curapi.split('.') if modulename+'.'+itname in curapi or curapi.startswith(modulename+'.'+itname): #print('yes!',curapi) api=items[-1] ms.append(api) flag=1 if flag==1: ms=list(set(ms)) return {aliasname:ms} #print(modulename,itname) rootmodule='' submodule='' try: module=importlib.import_module(modulename) except Exception: try: if '.' in modulename: index=modulename.find('.') rootmodule=modulename[:index] os.system('pip3 install '+rootmodule) else: os.system('pip3 install '+modulename) module=importlib.import_module(modulename) except Exception: try: submodule=importlib.import_module(modulename+'.'+itname) return {aliasname:dir(submodule)} except Exception as err: print(err) return {} try: item=getattr(module,itname) return {aliasname:dir(item)} except Exception: try: submodule=importlib.import_module(modulename+'.'+itname) return {aliasname:dir(submodule)} except Exception as err: print(err) return {} def get_item_methods(modulename,itname): modulename=modulename.strip() flag=0 ms=[] for curapi in cur_apis: items=curapi.split('.') if modulename+'.'+itname in curapi or curapi.startswith(modulename+'.'+itname): #print('yes!',curapi) api=items[-1] ms.append(api) flag=1 if flag==1: ms=list(set(ms)) return {modulename:ms} #print(modulename,itname) rootmodule='' submodule='' try: module=importlib.import_module(modulename) except Exception: try: if '.' in modulename: index=modulename.find('.') rootmodule=modulename[:index] os.system('pip3 install '+rootmodule) else: os.system('pip3 install '+modulename) module=importlib.import_module(modulename) except Exception: try: submodule=importlib.import_module(modulename+'.'+itname) return {itname:dir(submodule)} except Exception as err: print(err) return {} try: item=getattr(module,itname) return {itname:dir(item)} except Exception: try: submodule=importlib.import_module(modulename+'.'+itname) return {itname:dir(submodule)} except Exception as err: print(err) return {} def deal_with_current_module(modulename,file,names): modulename=modulename.strip() #current_file='/home/user/PRIAN/targetProj/abu/abupy/TLineBu/ABuTLExecute.py' current_file=file layer=0 for c in modulename: if c=='.': layer+=1 else: break #print(layer) ls7=current_file.split('/') newdirs=ls7[:(0-layer)] newdir='' for d in newdirs: newdir+=d+'/' realdir=newdir #print(realdir) newdir=newdir+'end' rootdir=GetMiddleStr(newdir,root_path,'/end') if modulename=='.': rootmodule=re.sub('/','.',rootdir) else: rootmodule=re.sub('/','.',rootdir)+'.'+modulename[layer:] #print("Note!",rootmodule) ret={} for n in names: x=get_item_methods(rootmodule,n) ret.update(x) return ret def get_item_funcs(rootmodule,module,item): try: module1=importlib.import_module(module) except Exception: try: os.system('pip3 install '+rootmodule) module1=importlib.import_module(module) except Exception: try: submodule=importlib.import_module(module+'.'+item) return {item:dir(submodule)} except Exception as err: print(err) return {} try: it=getattr(module1,item) return {item:dir(it)} except Exception: try: submodule=importlib.import_module(module+'.'+item) return {item:dir(submodule)} except Exception as err: print(err) return {} def get_real_module(modulename,file): current_file=file layer=0 for c in modulename: if c=='.': layer+=1 else: break #print(layer) ls7=current_file.split('/') newdirs=ls7[:(0-layer)] newdir='' for d in newdirs: newdir+=d+'/' realdir=newdir #print(realdir) newdir=newdir+'end' rootdir=GetMiddleStr(newdir,root_path,'/end') if modulename=='.': rootmodule=re.sub('/','.',rootdir) else: rootmodule=re.sub('/','.',rootdir)+'.'+modulename[layer:] #print("Note!",rootmodule) return rootmodule def get_module_methods(file): modulemethods=[] all_candidates={} with open(file) as f: lines=f.readlines() for line in lines: line=line.strip() #in most cases, we choose to get all fuctions of the module imported directly using inspect #maybe need all classes and all methods of the classes in the module if re.match('import [a-zA-Z0-9\.\_\,\s]+$',line) and ' as ' not in line: #print(1,line) modulename=line.split('import')[-1].strip() if ',' not in modulename: x1=get_module_funcs(modulename) all_candidates.update(x1) else: ls3=modulename.split(',') #global all_candidates for j in ls3: itemname=j.strip() x2=get_module_funcs(itemname) all_candidates.update(x2) #should choose another example elif re.match('import [a-zA-Z0-9\.\_\,]+ as [a-zA-Z0-9\.\_\,\s]+$',line): #print(2,line) if ',' not in line: modulename=GetMiddleStr(line,'import',' as ').strip() alias=line.split(' as ')[-1].strip() #print(modulename,alias) x3=get_alias_funcs(modulename,alias) #global all_candidates all_candidates.update(x3) #many combing methods, checked by ',' else: body=line.split('import')[-1].strip() #print("multias:",body) mas=body.split(',') #print(mas) for ma in mas: if ' as ' in ma: ls4=ma.split(' as ') maname=ls4[0].strip() aliasname=ls4[1].strip() #print(maname,aliasname) x4=get_alias_funcs(maname,aliasname) #global all_candidates all_candidates.update(x4) else: maname=ma.strip() #print(maname) x5=get_module_funcs(maname) #global all_candidates all_candidates.update(x5) elif re.match('from [a-zA-Z0-9\.\_]+ import [a-zA-Z0-9\_\.\*\,\s]+$',line) and 'as' not in line: #print(3,line) modulename=GetMiddleStr(line,'from','import').strip() itemname=line.split('import')[-1].strip() names=[] if ',' in itemname: ns=itemname.split(',') for n in ns: names.append(n.strip()) else: names.append(itemname) #print(modulename,names) if modulename.startswith('.'): #print(modulename) #print(file) x6=deal_with_current_module(modulename,file,names) #global all_candidates all_candidates.update(x6) continue ''' firmname=modulename.split('.')[0] if firmname==curmodule: print("current module:",modulename) deal_with_current_module(modulename,names) continue #need other ops get all methods defined in modules #try1:copy the current proj to root path ''' for n in names: x7=get_item_methods(modulename,n) #global all_candidates all_candidates.update(x7) elif re.match('from [a-zA-Z0-9\.\_]+ import [a-zA-Z0-9\_\.\*\,]+ as [a-zA-Z0-9\_\.\*\,\s]+$',line): #print(4,line) modulename=GetMiddleStr(line,'from','import').strip() if modulename.startswith('.'): #print(modulename) #print(4,file) modulename=get_real_module(modulename,file) #continue #print(modulename) #need other ops to change the modulename as absmodule itemname=line.split('import')[-1] #print(modulename,itemname) if ',' not in itemname: lsx=itemname.split(' as ') if len(lsx)<2: continue itname=lsx[0].strip() aliasname=lsx[1].strip() x8=get_alias_item(modulename,itname,aliasname) #global all_candidates all_candidates.update(x8) else: ls5=itemname.split(',') for it in ls5: if ' as ' not in it: itname=it.strip() x9=get_item_methods(modulename,itname) #global all_candidates all_candidates.update(x9) else: itname=it.split(' as ')[0].strip() aliasname=it.split(' as ')[1].strip() x10=get_alias_item(modulename,itname,aliasname) #global all_candidates all_candidates.update(x10) #pass #else: #print('SyntaxError: invalid syntax') #print(all_candidates) return all_candidates def get_caller(rec): nrec=re.sub('\(.*\)','',rec) pindex=nrec.rfind('.') return nrec[:pindex] def check(newcontext): ls=newcontext.split('\n') i=0 for i in range(len(ls)-1,-1,-1): if ls[i].strip().startswith('def'): break nc='' for j in range(i,len(ls)): nc+=ls[j]+'\n' #nc=newcontext #print(nc) nc=re.sub('\'[\\\[\]\(\)\{\}A-Za-z0-9_\,\:]+\'','',nc) nc=re.sub('\"[\\\[\]\(\)\{\}A-Za-z0-9_\,\:]+\"','',nc) lk=nc.count('(') rk=nc.count(')') ll=nc.count('[') rl=nc.count(']') ld=nc.count('{') rd=nc.count('}') kc=lk-rk lc=ll-rl dc=ld-rd addc='' #print(kc,lc,dc) if kc==lc==dc==0: return newcontext else: ks='' #print(nc) for i in range(0,len(nc)): c=nc[i] if re.match('[\(\)\[\]\{\}]',c): ks+=c #print(ks) while('{}' in ks or '[]' in ks or '()' in ks): while '()' in ks: ks=re.sub('\[\]','',ks) ks=re.sub('\{\}','',ks) ks=re.sub('\(\)','',ks) while '[]' in ks: ks=re.sub('\{\}','',ks) ks=re.sub('\(\)','',ks) ks=re.sub('\[\]','',ks) while '{}' in ks: ks=re.sub('\[\]','',ks) ks=re.sub('\(\)','',ks) ks=re.sub('\{\}','',ks) #print(ks) for i in range(len(ks)-1,-1,-1): if ks[i]=='(': addc+=')' elif ks[i]=='[': addc+=']' else: addc+='}' #print(newcontext) #sys.exit(0) #x=re.sub('return ','',newcontext+addc) return newcontext+addc def get_type(finalc,file): lindex=file.rfind('/') tmp=file[:lindex]+'/tmp.py' with open(tmp,'w+') as f: f.write(finalc) #with open(tmp2,'w+') as f2: #f2.write(finalc) try: #os.system('pytype '+tmp) os.system('pytype '+tmp+' > log.txt') #os.system('rm '+tmp) except Exception: sys.exit() with open('log.txt') as f: lines=f.readlines() vtype='None' for line in lines: if '[reveal-type]' in line: tp=line.split(':')[1] vtype=re.sub('\[reveal\-type\]','',tp) #print(vtype) break #if '[python-compiler-error]' in line: #sys.exit() global Nonenum,Anynum,OKnum if vtype=='None': #print(tmp) #sys.exit() Nonenum+=1 elif vtype=='Any' or vtype=='nothing': Anynum+=1 else: OKnum+=1 return vtype def get_bank(line): ip=0 for ip in range(0,len(line)): if line[ip]!=' ': break return (line[:ip],ip) def check_try(code,trycache): #print(trycache) ret=code #l=sorted(trycache) #print(l) for i in range(len(trycache)-1,-1,-1): ret+='\n'+trycache[i][0]+'except Exception:\n'+trycache[i][0]+' '+'pass' return ret def get_curr_apis(ft,file): #print('Note! ',ft,file) tmp_file=re.sub(root_path,'',file) rmodule=re.sub('\/','.',tmp_file) rmodule=rmodule[:-3] #print("Note!",rmodule) ret=get_item_methods(rmodule,ft) #print('Note! ',ret) return ret def get_typeshed_apis(ft): ret=[] ft=ft.strip() ft=re.sub('\[.*\]','',ft) with open('typeshed.txt') as f: lines=f.readlines() s1='.'+ft+'.' s2=ft+'.' for line in lines: if s1 in line or line.startswith(s2): #print('Find typeshed: '+line.strip()) s3=line.strip() index=s3.rfind('.') s4=s3[index+1:] if not s4 in ret: ret.append(s4) return ret #inferred type, caller def get_candidates(ft,caller,file): if ft.startswith('Type['): ft=ft[5:-1] print('type:',ft) candidates={} global if_from_current_proj if_from_current_proj=1 if ft=='module': for k,v in module_apis.items(): if k==caller: candidates={caller:v} #print(candidates) return candidates candidates=get_module_funcs(caller) elif ft=='str': candidates={caller:dir(str)} elif re.match('List\[.*\]',ft): candidates={caller:dir(list)} elif re.match('Dict\[.*\]',ft): apsx=dir(dict) apsx.append('iteritems') candidates={caller:apsx} elif ft=='set' or re.match('Set\[.*\]',ft): candidates={caller:dir(set)} elif ft.endswith('[str]'): candidates=get_candidates(ft[:-5],caller,file) elif ft=='bool': candidates={caller:dir(bool)} elif re.match('Union\[.*\]',ft): ft=ft+'end' contents=GetMiddleStr(ft,'Union[',']end') contents=re.sub('\[.*\]','',contents) lss=contents.split(',') tmp=[] for k in lss: #print('Note!!') k=k.strip() #print(k) if k=='Any' or k=='nothing': continue tpdic=get_candidates(k,caller,file) for k,v in tpdic.items(): tmp.extend(v) if_from_current_proj=0 candidates={caller:tmp} elif re.match('Optional\[.*\]',ft): #ft=ft+'end' #contents=GetMiddleStr(ft,'Optional[',']end') #contents=re.sub('\[.*\]','',contents) #candidates=get_candidates(ft,caller,file) candidates={} if_from_current_proj=0 #elif tuple int float since we haven't found these kinds of caller templely ignore. #elif re.match('Pattern\[.*\]',ft): #candidates={caller:dir(re.Pattern)} #elif re.match('Match\[.*\]',ft): #candidates={caller:dir(re.Match)} elif '.' in ft: index=ft.rfind('.') module=ft[:index] item=ft[index+1:] rindex=ft.find('.') rootmodule=ft[:rindex] candidates=get_item_funcs(rootmodule,module,item) elif ft=='Any' or ft=='None' or ft=='nothing': candidates=get_all_apis() if_from_current_proj=0 #print('Note!All types:') #print(candidates) return candidates elif re.match('[a-zA-Z0-9_]+',ft): #since in many case, the caller calls funcs defined behind the caller, we copy the original file into python lib to get candidates. candidates=get_curr_apis(ft,file) #print('Other types: '+ft) if len(candidates)==0: typeshed_apis=get_typeshed_apis(ft) candidates.update({caller:typeshed_apis}) #else: #if_from_current_proj=1 for k,v in candidates.items(): dag=[] #print('yes') #print(v,len(v)) for j in range(0,len(v)): #print(j) if not v[j].startswith('__'): dag.append(v[j]) #print("yes") #print(dag) candidates[k]=dag #print(candidates) return candidates def get_callee(rec): nrec=re.sub('\(.*\)','',rec) pindex=nrec.rfind('.') return nrec[pindex+1:],rec[pindex+1:] def get_total(w,naming_context,files): ret=0.0 #print(w) for fi in files: key=w+'##'+fi if key in proj_token_count: ret+=proj_token_count[key] ret+=naming_context.count(w) #print(ret) #sys.exit(0) return ret def get_conum(w,n,naming_context,files): ret=0.0 for fi in files: k1=w+'##'+fi k2=n+'##'+fi if k1 in proj_token_no and k2 in proj_token_no: x1=proj_token_no[k1] y1=proj_token_no[k2] ctis=[x for x in x1 if x in y1] ret+=float(len(ctis)) return ret def get_conum_of_line(api,naming_line,naming_context,files): del_estr = string.punctuation + string.digits replace = " "*len(del_estr) tran_tab = str.maketrans(del_estr, replace) tmp=naming_line.translate(tran_tab) nl=word_tokenize(tmp) cs=api.translate(tran_tab) wcs=word_tokenize(cs) #print(api,wcs,naming_line,nl) #sys.exit(0) total=0.0 conum=0.0 score=0.0 #print(wcs,nl) #TODO:gao fan le !!!! for w in wcs: total=total+get_total(w,naming_context,files) #print(1) for n in nl: conum+=get_conum(w,n,naming_context,files) if total!=0: total=float(total) conum=float(conum) score=float( conum / total ) return score #proj_tokens #proj_depends def get_line_scores(aps,naming_line,naming_context,file): line_scores={} tokens=[] fi=re.sub('\.py','',file) index=fi.rfind('/') curname=fi[index+1:] #print(curname) files=[] for k,v in proj_depends.items(): if k==file: continue #print(k) flag=0 for imports in v: #print if curname in imports: #print(imports) flag=1 break if flag==0: #print(proj_tokens[k]) #sys.exit(0) files.append(k) #print(tokens) for api in aps: if api.startswith('__') or re.match('[A-Z0-9_]+$',api) or api.strip()=='_': #process_bar.show_process() continue line_ret=get_conum_of_line(api,naming_line,naming_context,files) line_scores[api]=line_ret return line_scores def get_total_infile(w,files): ret=0.0 for fi in files: key=w+'##'+fi if key in proj_token_count: ret+=1.0 return ret def get_conum_infile(w,item,files): ret=0.0 for fi in files: k1=w+'##'+fi k2=item+'##'+fi if k1 in proj_token_no and k2 in proj_token_no: ret+=1.0 return ret def get_conum_of_con(api,naming_context,files): code=naming_context.strip() lines=code.split('\n') del_estr = string.punctuation + string.digits replace = " "*len(del_estr) tran_tab = str.maketrans(del_estr, replace) rets=0.0 for i in range(0,len(lines)): tmp=lines[i].translate(tran_tab) nl=word_tokenize(tmp) cs=api.translate(tran_tab) wcs=word_tokenize(cs) total=0.0 #print(wcs,nl) for w in wcs: total=total+get_total_infile(w,files) conum=0.0 for w in wcs: for item in nl: conum=conum+get_conum_infile(w,item,files) if total!=0: total=float(total) conum=float(conum) score=float( conum / total ) rets+=float(i+1)*score context_ret=float(float(rets) / float(len(lines)+1.0)) return context_ret def get_conum_scores(aps,naming_context,file): conum_scores={} fi=re.sub('\.py','',file) index=fi.rfind('/') curname=fi[index+1:] #print(curname) files=[] for k,v in proj_depends.items(): if k==file: continue #print(k) flag=0 for imports in v: #print if curname in imports: #print(imports) flag=1 break if flag==0: files.append(k) for api in aps: if api.startswith('__') or re.match('[A-Z0-9_]+$',api) or api.strip()=='_': continue con_ret=get_conum_of_con(api,naming_context,files) conum_scores[api]=con_ret return conum_scores def get_results(arr): print('Ranks :'+str(arr)) mrr=0.0 top1=0 top2=0 top3=0 top4=0 top5=0 top10=0 top20=0 for i in range(0,len(arr)): mrr+=float(1.0/float(arr[i])) if arr[i]==1: top1+=1 top2+=1 top3+=1 top4+=1 top5+=1 top10+=1 top20+=1 elif arr[i]==2: top2+=1 top3+=1 top4+=1 top5+=1 top10+=1 top20+=1 elif arr[i]==3: top3+=1 top4+=1 top5+=1 top10+=1 top20+=1 elif arr[i]==4: top4+=1 top5+=1 top10+=1 top20+=1 elif arr[i]==5: top5+=1 top10+=1 top20+=1 elif arr[i]<=10: top10+=1 top20+=1 elif arr[i]<=20: top20+=1 tp1=float(top1/len(arr)) tp2=float(top2/len(arr)) tp3=float(top3/len(arr)) tp4=float(top4/len(arr)) tp5=float(top5/len(arr)) tp10=float(top10/len(arr)) tp20=float(top20/len(arr)) mrr=float(mrr/float(len(arr))) print("Top-k:",top1,top2,top3,top4,top5,top10,top20,len(arr)) print("Top-k+mrr:",tp1,tp2,tp3,tp4,tp5,tp10,tp20,mrr) return [tp1,tp2,tp3,tp4,tp5,tp10, mrr] s=str(tp1)+','+str(tp2)+','+str(tp3)+','+str(tp4)+','+str(tp5)+','+str(tp10)+','+str(tp20)+','+str(mrr)+'\n' with open('testdata/'+CURRENT_PROJ+'_result.txt','w+') as ft: ft.write(s) def get_time(ts): totalt=0.0 for t in ts: totalt+=t ret=float(totalt/float(len(ts))) print('Average time: ',ret) with open('testdata/'+CURRENT_PROJ+'_result.txt','a+') as ft: ft.write(str(ret)+'\n') def get_rec_point(file): print('DEAL-WITH:'+file) #with open('types/types.txt','a+') as ff: #ff.write('FILE:'+file) with open(file) as f: lines=f.readlines() #print(lines) precode='' trynum=0 trycache=[] kflag=0 lno=0 #s='' comment_flag=0 calls=[] for line in lines: #print(line) lno+=1 if line.strip().startswith('#'): continue if re.match('[bru]*\'\'\'$',line.strip()) or re.match('[bru]*\"\"\"$',line.strip()): if comment_flag==0: comment_flag=1 else: comment_flag=0 continue elif (re.match('[bru]*\'\'\'',line.strip()) or re.match('[bru]*\"\"\"',line.strip())) and (re.match('.*[bru]*\'\'\'$',line.strip()) or re.match('.*[bru]*\"\"\"$',line.strip())): continue elif re.match('[bru]*\'\'\'',line.strip()) or re.match('[bru]*\"\"\"',line.strip()) or re.match('.*[bru]*\'\'\'$',line.strip()) or re.match('.*[bru]*\"\"\"$',line.strip()): if comment_flag==0: comment_flag=1 else: comment_flag=0 continue if comment_flag==1: continue if 'try:' in line: trynum+=1 trycache.append(get_bank(line)) elif trynum>0 and ('except' in line or 'finally:' in line): (bank,lenth)=get_bank(line) for i in range(len(trycache)-1,-1,-1): if trycache[i][1]==lenth: trynum-=1 del trycache[i] recobj=re.findall('[a-zA-Z0-9_\.\[\]]+\.[a-zA-Z0-9\_]+\(.*\)',line) #print(recobj) if len(recobj)==0: precode+=line continue #print(file) #print(recobj) rec=recobj[0] caller=get_caller(rec) if caller.startswith('['): caller=caller[1:] callee,rcallee=get_callee(rec) if callee.startswith('_') or re.match('[A-Z0-9_]+$',callee) or callee.strip()=='_': precode+=line continue cp=caller+'.'+callee if cp in calls: precode+=line continue else: calls.append(cp) i=0 latest_line=line.replace(rcallee,'unknown_api()') #print('NOTE!',latest_line) tpp=precode.strip() if tpp.endswith(','): newcontext=tpp[:-1] finalc=check(newcontext) #print(finalc) current_context=finalc+'\n'+latest_line prelast=precode.strip().split('\n')[-1] for i in range(0,len(prelast)): if prelast[i]!=' ': break finalc+='\n'+line[:i-4]+'reveal_type('+caller+')' elif tpp.endswith('(') or tpp.endswith('{') or tpp.endswith('['): newcontext=tpp finalc=check(newcontext) current_context=finalc+'\n'+latest_line #print(finalc) prelast=precode.strip().split('\n')[-1] for i in range(0,len(prelast)): if prelast[i]!=' ': break finalc+='\n'+line[:i]+'reveal_type('+caller+')' else: for i in range(0,len(line)): if line[i]!=' ': break #print(i) #print(line) newcontext=tpp finalc=check(newcontext) finalc+='\n'+line[:i]+'reveal_type('+caller+')' current_context=precode+latest_line if len(trycache)>0: finalc=check_try(finalc,trycache) #print(finalc) #print('[Process[1] : Preprocessing # Getting reommendation point, simple type inference, possible API candidates and current incomplete code context.]') #print(file+'#'+str(lno)+'#'+caller+'#'+callee) #if '.' in caller: #ft='Any' #else: ft=get_type(finalc,file) ft=ft.strip() print(line.strip()) print(file+'#'+str(lno)+'#'+caller+':'+ft+'#'+callee) #print(Nonenum,Anynum,OKnum) aps=[] if ft=='None' or ft=='Any': if caller=='self': for d in all_defs: dname=d.strip().split(' ')[1] aps.append(dname) elif caller=='str' or caller=='s' or caller=='string': ft='str' elif caller=='sys.stderr' or caller=='sys.stdout' or caller=='sys.stdin': ft='module' elif caller=='log': ft='logging.Logger' caller=ft elif re.match('for .* in .*\..*\(.*\).*\:',line.strip()): aps=dir(dict) aps.append('iteritems') else: #tp=caller.split('.') #fc=tp[0] if '.' in caller: xindex=caller.find('.') fc=caller[:xindex] xattr=caller[xindex+1:] else: xattr=caller fc=caller #print('check module:',fc) #print('check attr:',xattr) if fc in stdlib: ft='module' print('stdlib!',fc) #print('module!',caller) try: module1=importlib.import_module(caller) aps=dir(module1) except Exception: try: module2=importlib.import_module(fc) attr=getattr(module2,xattr) aps=dir(attr) except Exception: aps=[] else: for curapi in cur_apis: if '.'+caller+'.' in curapi: idx=curapi.find('.'+caller+'.') canapi=curapi[idx+1:] if not '.' in canapi: aps.append(canapi) print('get api form json!') print(canapi) if len(aps)==0: apis = get_candidates(ft,caller,file) for k,v in apis.items(): aps.extend(v) if len(aps)==0: precode+=line continue global pranks,ptimes,pinranks if re.match('[A-Z]+[A-Za-z]+',callee) or callee.startswith('_'): print('CONSTRUCTOR,IGNORE') precode+=line continue if callee in aps: print('API IV') else: print('API OOV') pranks.append(100) global all_apis_add,all_apis all_apis_add.append(callee) tmpx=all_apis['all_apis'] tmpx.extend(all_apis_add) tmpx=list(set(tmpx)) all_apis['all_apis']=tmpx ptimes.append(0.0) precode+=line continue #ss='' #for ap in aps: #ss=ss+ap+',' #ss=ss[:-1]+'\n' #s=caller+':'+ft+'#'+callee+'\n' s1=time.time() #print('[Process[2] : Constructing dataflow hints.]') current_dataflow=get_dataflow.get_current_dataflow2(current_context,caller) #print(maxflow) if len(current_dataflow)==0: precode+=line continue maxflow=max(current_dataflow,key=len) #print(maxflow) dataflow_scores=get_dataflow.get_dataflow_scores(aps,maxflow,current_dataflow,ft,callee) tosim_scores=get_dataflow.get_tosim_scores(aps,maxflow,current_dataflow,ft,callee) try: naming_line=re.sub(callee,'',line) except Exception as err: print(err) print(line) sys.exit() precode+=line continue naming_context=precode line_scores=get_line_scores(aps,naming_line,naming_context,file) e1=time.time() print(e1-s1) label=0 apis=[] with open('test.csv','w+') as f: f.write('f1,f2,f3,f4\n') start=time.time() if ft=='None' or ft=='Any' or ft=='nothing': for api in aps: if api.startswith('__') or re.match('[A-Z0-9_]+$',api) or api.strip()=='_': continue if api==callee: label=1 else: label=0 apis.append(api) try: s=str(dataflow_scores[api])+','+str(tosim_scores[api])+','+str(line_scores[api])+',0.0\n' with open('test.csv','a+') as f: f.write(s) except Exception as err: print(err) sys.exit(0) else: flag=0 conum_scores=get_conum_scores(aps,naming_context,file) for api in aps: if api.startswith('__') or re.match('[A-Z0-9_]+$',api) or api.strip()=='_': continue if api==callee: label=1 else: label=0 apis.append(api) try: s=str(dataflow_scores[api])+','+str(tosim_scores[api])+','+str(line_scores[api])+','+str(conum_scores[api])+'\n' with open('test.csv','a+') as f: f.write(s) except Exception as err: print(err) sys.exit(0) test_data=pd.read_csv('test.csv') #print(apis) #print(len(apis)) #print(test_data) clf=joblib.load('traincsv/'+CURRENT_PROJ+'_svm.pkl') result=clf.predict_proba(test_data) candidates={} for i in range(0,len(apis)): candidates[apis[i]]=result[i][1] cans=sorted(candidates.items(), key=lambda x: x[1], reverse=True) #print(cans) end = time.time() ts=end - start print(ts) print('--------------------------------------------------------------------------------------------------') print('Recommended Functions for Caller: ' + caller) print('--------------------------------------------------------------------------------------------------') lenthk=len(cans) exists_rec = [] if lenthk > 10: lenthk = 10 for i in range(0,lenthk): print(str(i+1)+' : ' + caller + '.' + cans[i][0] + '()') exists_rec.append(cans[i][0]) rev_cans = sorted(candidates.items(), key=lambda x: x[1]) print('--------------------------------------------------------------------------------------------------') print('Functions not Reccomended for Caller: ' + caller) print('--------------------------------------------------------------------------------------------------') lenghk=len(rev_cans) if lenthk > 5: lenthk = 5 for i in range(0,lenthk): if rev_cans[i][0] not in exists_rec: print(str(i+1)+' : ' + caller + '.' + rev_cans[i][0] + '()') # Temporarily commented out Google search feature for faster testing of accuracy. Uncomment to reimplement. """ print('--------------------------------------------------------------------------------------------------') print('Press c to continue or type a number from the reccomended function list to search google for more information about the function: ') google_input = input() while google_input != 'c': if google_input == '1': req_result = requests.get('https://www.google.com/search?q=python+' + cans[0][0]).text soup = bs4.BeautifulSoup(req_result, 'html.parser') headings = soup.find_all('h3') links = soup.find_all('a') print('Top google search result for function: ') print('--------------------------------------------------------------------------------------------------') for heading in headings: if 'python' in heading.getText().lower(): print(heading.getText()) break for link in links: link_string = link.get('href').lower() if 'python' in link_string and 'www' in link_string and 'google' not in link_string: print(link.get('href').replace('/url?q=', '').split('&', 1)[0]) break elif google_input == '2': req_result = requests.get('https://www.google.com/search?q=python+' + cans[1][0]).text soup = bs4.BeautifulSoup(req_result, 'html.parser') headings = soup.find_all('h3') links = soup.find_all('a') print('Top google search result for function: ') print('--------------------------------------------------------------------------------------------------') for heading in headings: if 'python' in heading.getText().lower(): print(heading.getText()) break for link in links: link_string = link.get('href').lower() if 'python' in link_string and 'www' in link_string and 'google' not in link_string: print(link.get('href').replace('/url?q=', '').split('&', 1)[0]) break elif google_input == '3': req_result = requests.get('https://www.google.com/search?q=python+' + cans[2][0]).text soup = bs4.BeautifulSoup(req_result, 'html.parser') headings = soup.find_all('h3') links = soup.find_all('a') print('Top google search result for function: ') print('--------------------------------------------------------------------------------------------------') for heading in headings: if 'python' in heading.getText().lower(): print(heading.getText()) break for link in links: link_string = link.get('href').lower() if 'python' in link_string and 'www' in link_string and 'google' not in link_string: print(link.get('href').replace('/url?q=', '').split('&', 1)[0]) break elif google_input == '4': req_result = requests.get('https://www.google.com/search?q=python+' + cans[3][0]).text soup = bs4.BeautifulSoup(req_result, 'html.parser') headings = soup.find_all('h3') links = soup.find_all('a') print('Top google search result for function: ') print('--------------------------------------------------------------------------------------------------') for heading in headings: if 'python' in heading.getText().lower(): print(heading.getText()) break for link in links: link_string = link.get('href').lower() if 'python' in link_string and 'www' in link_string and 'google' not in link_string: print(link.get('href').replace('/url?q=', '').split('&', 1)[0]) break elif google_input == '5': req_result = requests.get('https://www.google.com/search?q=python+' + cans[4][0]).text soup = bs4.BeautifulSoup(req_result, 'html.parser') headings = soup.find_all('h3') links = soup.find_all('a') print('Top google search result for function: ') print('--------------------------------------------------------------------------------------------------') for heading in headings: if 'python' in heading.getText().lower(): print(heading.getText()) break for link in links: link_string = link.get('href').lower() if 'python' in link_string and 'www' in link_string and 'google' not in link_string: print(link.get('href').replace('/url?q=', '').split('&', 1)[0]) break elif google_input == '6': req_result = requests.get('https://www.google.com/search?q=python+' + cans[5][0]).text soup = bs4.BeautifulSoup(req_result, 'html.parser') headings = soup.find_all('h3') links = soup.find_all('a') print('Top google search result for function: ') print('--------------------------------------------------------------------------------------------------') for heading in headings: if 'python' in heading.getText().lower(): print(heading.getText()) break for link in links: link_string = link.get('href').lower() if 'python' in link_string and 'www' in link_string and 'google' not in link_string: print(link.get('href').replace('/url?q=', '').split('&', 1)[0]) break elif google_input == '7': req_result = requests.get('https://www.google.com/search?q=python+' + cans[6][0]).text soup = bs4.BeautifulSoup(req_result, 'html.parser') headings = soup.find_all('h3') links = soup.find_all('a') print('Top google search result for function: ') print('--------------------------------------------------------------------------------------------------') for heading in headings: if 'python' in heading.getText().lower(): print(heading.getText()) break for link in links: link_string = link.get('href').lower() if 'python' in link_string and 'www' in link_string and 'google' not in link_string: print(link.get('href').replace('/url?q=', '').split('&', 1)[0]) break elif google_input == '8': req_result = requests.get('https://www.google.com/search?q=python+' + cans[7][0]).text soup = bs4.BeautifulSoup(req_result, 'html.parser') headings = soup.find_all('h3') links = soup.find_all('a') print('Top google search result for function: ') print('--------------------------------------------------------------------------------------------------') for heading in headings: if 'python' in heading.getText().lower(): print(heading.getText()) break for link in links: link_string = link.get('href').lower() if 'python' in link_string and 'www' in link_string and 'google' not in link_string: print(link.get('href').replace('/url?q=', '').split('&', 1)[0]) break elif google_input == '9': req_result = requests.get('https://www.google.com/search?q=python+' + cans[8][0]).text soup = bs4.BeautifulSoup(req_result, 'html.parser') headings = soup.find_all('h3') links = soup.find_all('a') print('Top google search result for function: ') print('--------------------------------------------------------------------------------------------------') for heading in headings: if 'python' in heading.getText().lower(): print(heading.getText()) break for link in links: link_string = link.get('href').lower() if 'python' in link_string and 'www' in link_string and 'google' not in link_string: print(link.get('href').replace('/url?q=', '').split('&', 1)[0]) break elif google_input == '10': req_result = requests.get('https://www.google.com/search?q=python+' + cans[9][0]).text soup = bs4.BeautifulSoup(req_result, 'html.parser') headings = soup.find_all('h3') links = soup.find_all('a') print('Top google search result for function: ') print('--------------------------------------------------------------------------------------------------') for heading in headings: if 'python' in heading.getText().lower(): print(heading.getText()) break for link in links: link_string = link.get('href').lower() if 'python' in link_string and 'www' in link_string and 'google' not in link_string: print(link.get('href').replace('/url?q=', '').split('&', 1)[0]) break print('--------------------------------------------------------------------------------------------------') print('Type another number to search google or press c to continue') google_input = input() """ rank=21 for k in range(0,len(cans)): if cans[k][0]==callee: rank=k+1 #print('Ranked '+str(rank)) if rank > 20: pranks.append(rank) #if atag==1: #aranks.append(rank) # Record: PRIAN cannot recommend, jumo to next recommendation. else: # PRIAN successfully recommends. pranks.append(rank) #if atag==1: #aranks.append(rank) ptimes.append(ts) #alltimes+=ts+'\n' pinranks.append(rank) precode+=line temp_arr = get_results(pinranks) topk_array[0] += temp_arr[0] topk_array[1] += temp_arr[1] topk_array[2] += temp_arr[2] topk_array[3] += temp_arr[3] topk_array[4] += temp_arr[4] topk_array[5] += temp_arr[5] topk_array[6] += temp_arr[6] global num_of_apis if topk_array[5] != 0: num_of_apis += 1 get_results(pranks) #get_time(ptimes) def count_all_apis(): #TODO:count all apis,including module_apis,builtin_apis,proj_apis ret=[] for k,v in module_apis.items(): for f in v: if (not f.startswith('__')) and (not re.match('[A-Z0-9]+',f)) and (not f in ret): ret.append(f) #print(ret) with open('testJson/'+CURRENT_PROJ+'.json') as f: lines=f.readlines() for line in lines: line=line.strip() index=line.rfind('.') item=line[index+1:] if (not item.startswith('__')) and (not item in ret): ret.append(item) with open('builtin.txt') as f2: l2=f2.readlines() for line2 in l2: it=line2.strip() if not it in ret: ret.append(it) return {'all_apis':ret} def dealwith(curfile): global module_apis,all_apis module_apis={} all_apis={} module_apis=get_module_methods(curfile) all_apis=count_all_apis() tmpx=all_apis['all_apis'] tmpx.extend(all_apis_add) tmpx=list(set(tmpx)) all_apis['all_apis']=tmpx get_rec_point(curfile) def get_all_apis(): return all_apis def get_proj_tokens(iret_list): global proj_token_count,proj_token_no,proj_depends del_estr = string.punctuation + string.digits replace = " "*len(del_estr) tran_tab = str.maketrans(del_estr, replace) #tmp=lines[i].strip().translate(tran_tab) #file_label=0 for file in iret_list: #file_label+=1 with open(file,encoding='ISO-8859-1') as f: lines=f.readlines() line_label=0 for i in range(0,len(lines)): line_label+=1 if lines[i].strip()=='': continue elif re.sub(' ','',lines[i].strip())=='': continue elif 'import ' in lines[i]: if file in proj_depends: imports=proj_depends[file] else: imports=[] imports.append(lines[i]) proj_depends[file]=imports tmp=lines[i].strip().translate(tran_tab) tokens=word_tokenize(tmp) for tk in tokens: token=tk+'##'+file if token in proj_token_count: tcount=proj_token_count[token] else: tcount=0 tcount+=lines[i].count(tk) proj_token_count[token]=tcount if token in proj_token_no: no=proj_token_no[token] else: no=[] no.append(line_label) proj_token_no[token]=no ###main entry### # if __name__=="main": # __main__(CURRENT_PROJ,filePath) ret_list=[] proj_token_count={} proj_token_no={} proj_depends={} cur_apis=[] module_apis={} all_apis={} pranks=[] ptimes=[] pinranks=[] all_apis_add=[] root_path='' Nonenum=Anynum=OKnum=0 all_defs=[] all_recs='' #alltimes='' CURRENT_PROJ='pyspider' filePath='testdata/' with open('test.csv','w+') as f: f.write('') Nonenum=Anynum=OKnum=0 pranks=[] ptimes=[] pinranks=[] all_apis_add=[] root_path = filePath+CURRENT_PROJ print('LOAD-PROJ:',root_path) file_list = dir_list = [] ret_list=[] get_file_path(root_path,file_list,dir_list) #ret_list=list(set(ret_list)) print(len(ret_list)) trainlen=int(len(ret_list)/10*9) #print(trainlen) train_list=ret_list[:trainlen] test_list=ret_list[trainlen:] print(train_list) print(test_list) #sys.exit() #proj_tokens={} proj_token_count={} proj_token_no={} proj_depends={} get_proj_tokens(ret_list) module_apis={} id=0 special_flag=0 if_from_current_proj=0 callps=[] all_apis={} #======MAIN FUNC ENTRY====== for ifile in test_list: dealwith(ifile) #with open('/home/user/PyART/testdatak/'+CURRENT_PROJ+'_time.txt','w+') as f: #f.write(str(ptimes)) for x, y in enumerate(topk_array): topk_array[x] = y/num_of_apis print("Top K Averages for SVM: Top 1: " + str(topk_array[0]) + " Top 2: " + str(topk_array[1]) + " Top 3: " + str(topk_array[2]) + " Top 4: " + str(topk_array[3]) + " Top 5: " + str(topk_array[4]) + " Top 10: " + str(topk_array[5]) + " MRR: " + str(topk_array[6]))
the-stack_0_12760
""" Copyright (c) 2022 Huawei Technologies Co.,Ltd. openGauss is licensed under Mulan PSL v2. You can use this software according to the terms and conditions of the Mulan PSL v2. You may obtain a copy of Mulan PSL v2 at: http://license.coscl.org.cn/MulanPSL2 THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. See the Mulan PSL v2 for more details. """ """ Case Type : 系统内部使用工具 Case Name : pssh工具远程连接备机并输出备节点主机名 Description : 1.pssh -H 添加所有参数,远程连接备节点并输出备节点主机名 2.查看执行结果文件 3.查看错误结果文件 4.pssh -H 添加所有参数,远程连接备节点并输出备节点主机名,命令错误 5.查看执行结果文件 6.查看错误结果文件 7.清理环境 Expect : 1.执行成功;屏幕显示备1节点主机名 2.结果文件显示备节点主机名 3.错误结果文件为空 4.合理报错 5.结果文件为空 6.错误结果文件显示报错提示信息 7.清理环境完成 History : """ import os import unittest from testcase.utils.CommonSH import CommonSH from testcase.utils.Logger import Logger from yat.test import Node from yat.test import macro COMMONSH = CommonSH("PrimaryDbUser") @unittest.skipIf(1 == COMMONSH.get_node_num(), "单机不执行") class SystemInternalTools(unittest.TestCase): def setUp(self): self.log = Logger() self.log.info('-Opengauss_Function_Tools_Pssh_Case0002开始执行-') self.PrimaryNode = Node('PrimaryDbUser') self.Standby_User_Node = Node('Standby1DbUser') self.IP1 = self.Standby_User_Node.db_host self.parent_path = os.path.dirname(macro.DB_INSTANCE_PATH) self.pssh_path = os.path.join(self.parent_path, 'tool', 'script', 'gspylib', 'pssh', 'bin') self.output_file = os.path.join(self.parent_path, 'output.log') self.generate_file = os.path.join(self.output_file, self.IP1) self.err_output_file = os.path.join(self.parent_path, 'err_output.log') self.generate_err_file = os.path.join(self.err_output_file, self.IP1) self.expect_result = "bash: hostname123: command not found" def test_pssh(self): text = '--step1:pssh -H 添加所有参数,远程连接备节点并输出备节点' \ '主机名;expect:执行成功;屏幕显示备1节点主机名--' self.log.info(text) cmd = 'hostname' check_hostname = self.Standby_User_Node.sh(cmd).result() self.log.info(check_hostname) pssh_cmd = f" cd {self.pssh_path};" \ f"source {macro.DB_ENV_PATH};" \ f"python3 pssh " \ f"-H {self.Standby_User_Node.db_host} " \ f"-t 5 " \ f"-p 2 " \ f"-o {self.output_file} " \ f"-e {self.err_output_file} " \ f"-P " \ f"-s " \ f"-i 'echo $HOSTNAME';" self.log.info(pssh_cmd) msg = self.PrimaryNode.sh(pssh_cmd).result() self.log.info(msg) self.assertEqual(check_hostname, msg.splitlines()[-1].strip(), '执行失败:' + text) text = '--step2:查看执行结果文件;expect:结果文件显示备节点主机名--' self.log.info(text) cat_cmd = f"cat {self.generate_file}" self.log.info(cat_cmd) msg = self.PrimaryNode.sh(cat_cmd).result() self.log.info(msg) self.assertEqual(check_hostname, msg, '执行失败:' + text) text = '--step3:查看错误结果文件;expect:错误结果文件为空--' self.log.info(text) cat_cmd = f"cat {self.generate_err_file}" self.log.info(cat_cmd) msg = self.PrimaryNode.sh(cat_cmd).result() self.log.info(msg) self.assertEqual('', msg, '执行失败:' + text) text = '--step4:pssh -H 添加所有参数,远程连接备节点并输出备节点' \ '主机名,命令错误;expect:合理报错--' self.log.info(text) pssh_cmd = f" cd {self.pssh_path};" \ f"source {macro.DB_ENV_PATH};" \ f"python3 pssh " \ f"-H {self.Standby_User_Node.db_host} " \ f"-t 5 " \ f"-p 2 " \ f"-o {self.output_file} " \ f"-e {self.err_output_file} " \ f"-P " \ f"-s " \ f"-i hostname123;" self.log.info(pssh_cmd) msg = self.PrimaryNode.sh(pssh_cmd).result() self.log.info(msg) self.assertTrue(self.expect_result in msg, '执行失败:' + text) text = '--step5:查看执行结果文件;expect:结果文件为空--' self.log.info(text) cat_cmd = f"cat {self.generate_file}" self.log.info(cat_cmd) msg = self.PrimaryNode.sh(cat_cmd).result() self.log.info(msg) self.assertEqual('', msg, '执行失败:' + text) text = '--step6:查看错误结果文件;expect:错误结果文件显示报错提示信息--' self.log.info(text) cat_cmd = f"cat {self.generate_err_file}" self.log.info(cat_cmd) msg = self.PrimaryNode.sh(cat_cmd).result() self.log.info(msg) self.assertTrue(self.expect_result in msg, '执行失败:' + text) def tearDown(self): text = '--step7:清理环境;expect:清理环境完成--' self.log.info(text) rm_cmd = f"rm -rf {self.output_file};" \ f"rm -rf {self.err_output_file}" self.log.info(rm_cmd) msg = self.PrimaryNode.sh(rm_cmd).result() self.log.info(msg) self.log.info('断言teardown执行成功') self.assertEqual('', msg, '执行失败:' + text) self.log.info('-Opengauss_Function_Tools_Pssh_Case0002执行完成-')
the-stack_0_12761
# coding=utf8 """ Test that the expression parser returns proper Unicode strings. """ from __future__ import print_function import os import time import lldb from lldbsuite.test.decorators import * from lldbsuite.test.lldbtest import * from lldbsuite.test import lldbutil # this test case fails because of rdar://12991846 # the expression parser does not deal correctly with Unicode expressions # e.g. #(lldb) expr L"Hello" #(const wchar_t [6]) $0 = { # [0] = \0\0\0\0 # [1] = \0\0\0\0 # [2] = \0\0\0\0 # [3] = \0\0\0\0 # [4] = H\0\0\0 # [5] = e\0\0\0 #} class UnicodeLiteralsTestCase(TestBase): mydir = TestBase.compute_mydir(__file__) def test_expr1(self): """Test that the expression parser returns proper Unicode strings.""" self.build() self.rdar12991846(expr=1) def test_expr2(self): """Test that the expression parser returns proper Unicode strings.""" self.build() self.rdar12991846(expr=2) def test_expr3(self): """Test that the expression parser returns proper Unicode strings.""" self.build() self.rdar12991846(expr=3) def setUp(self): # Call super's setUp(). TestBase.setUp(self) # Find the line number to break for main.cpp. self.source = 'main.cpp' self.line = line_number( self.source, '// Set break point at this line.') def rdar12991846(self, expr=None): """Test that the expression parser returns proper Unicode strings.""" if self.getArchitecture() in ['i386']: self.skipTest( "Skipping because this test is known to crash on i386") exe = self.getBuildArtifact("a.out") # Create a target by the debugger. target = self.dbg.CreateTarget(exe) self.assertTrue(target, VALID_TARGET) # Break on the struct declration statement in main.cpp. lldbutil.run_break_set_by_file_and_line(self, "main.cpp", self.line) # Now launch the process, and do not stop at entry point. process = target.LaunchSimple( None, None, self.get_process_working_directory()) if not process: self.fail("SBTarget.Launch() failed") if expr == 1: self.expect('expression L"hello"', substrs=['hello']) if expr == 2: self.expect('expression u"hello"', substrs=['hello']) if expr == 3: self.expect('expression U"hello"', substrs=['hello'])
the-stack_0_12762
from django.contrib.auth import get_user_model from django.urls import reverse from django.test import TestCase from rest_framework.test import APIClient from core.models import Ingredient from recipe.serializers import IngredientSerializer INGREDIENTS_URL = reverse('recipe:ingredient-list') class PublicIngredientsApiTest(TestCase): def setUp(self): self.client = APIClient() def test_login_required(self): res = self.client.get(INGREDIENTS_URL) self.assertEqual(res.status_code, 401) class PrivateIngredientsApiTest(TestCase): def setUp(self): self.client = APIClient() self.user = get_user_model().objects.create_user( '[email protected]', 'password' ) self.client.force_authenticate(self.user) def test_retrieve_ingredients_list(self): Ingredient.objects.create(user=self.user, name='Kale') Ingredient.objects.create(user=self.user, name='Salt') res = self.client.get(INGREDIENTS_URL) ingredients = Ingredient.objects.all().order_by('-name') serializer = IngredientSerializer(ingredients, many=True) self.assertEqual(res.status_code, 200) self.assertEqual(res.data, serializer.data) def test_ingredients_limited_to_user(self): user2 = get_user_model().objects.create_user( '[email protected]', 'password' ) Ingredient.objects.create(user=user2, name='Vinegar') ingredient = Ingredient.objects.create(user=self.user, name='Turmeric') res = self.client.get(INGREDIENTS_URL) self.assertEqual(res.status_code, 200) self.assertEqual(len(res.data), 1) self.assertEqual(res.data[0]['name'], ingredient.name) def test_create_ingredient_successful(self): payload = {'name': 'Cabbage'} self.client.post(INGREDIENTS_URL, payload) exists = Ingredient.objects.filter( user=self.user, name=payload['name'] ).exists() self.assertTrue(exists) def test_create_ingredient_invalid(self): payload = {'name': ''} res = self.client.post(INGREDIENTS_URL, payload) self.assertEqual(res.status_code, 400)
the-stack_0_12763
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any from azure.core import AsyncPipelineClient from msrest import Deserializer, Serializer from ._configuration import AzureCommunicationSMSServiceConfiguration from .operations import SmsOperations from .. import models class AzureCommunicationSMSService(object): """Azure Communication SMS Service. :ivar sms: SmsOperations operations :vartype sms: azure.communication.sms.aio.operations.SmsOperations :param endpoint: The communication resource, for example https://my-resource.communication.azure.com. :type endpoint: str """ def __init__( self, endpoint: str, **kwargs: Any ) -> None: base_url = '{endpoint}' self._config = AzureCommunicationSMSServiceConfiguration(endpoint, **kwargs) self._client = AsyncPipelineClient(base_url=base_url, config=self._config, **kwargs) client_models = {k: v for k, v in models.__dict__.items() if isinstance(v, type)} self._serialize = Serializer(client_models) self._serialize.client_side_validation = False self._deserialize = Deserializer(client_models) self.sms = SmsOperations( self._client, self._config, self._serialize, self._deserialize) async def close(self) -> None: await self._client.close() async def __aenter__(self) -> "AzureCommunicationSMSService": await self._client.__aenter__() return self async def __aexit__(self, *exc_details) -> None: await self._client.__aexit__(*exc_details)
the-stack_0_12764
#!/usr/bin/env python ############################################################################# ## ## Copyright (C) 2013 Riverbank Computing Limited. ## Copyright (C) 2010 Nokia Corporation and/or its subsidiary(-ies). ## All rights reserved. ## ## This file is part of the examples of PyQt. ## ## $QT_BEGIN_LICENSE:BSD$ ## You may use this file under the terms of the BSD license as follows: ## ## "Redistribution and use in source and binary forms, with or without ## modification, are permitted provided that the following conditions are ## met: ## * Redistributions of source code must retain the above copyright ## notice, this list of conditions and the following disclaimer. ## * Redistributions in binary form must reproduce the above copyright ## notice, this list of conditions and the following disclaimer in ## the documentation and/or other materials provided with the ## distribution. ## * Neither the name of Nokia Corporation and its Subsidiary(-ies) nor ## the names of its contributors may be used to endorse or promote ## products derived from this software without specific prior written ## permission. ## ## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ## "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT ## LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ## A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT ## OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, ## SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT ## LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ## DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ## THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ## (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE ## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE." ## $QT_END_LICENSE$ ## ############################################################################# import random from PyQt5.QtCore import (pyqtSignal, QByteArray, QDataStream, QIODevice, QMimeData, QPoint, QRect, QSize, Qt) from PyQt5.QtGui import QDrag, QColor, QCursor, QIcon, QPainter, QPixmap from PyQt5.QtWidgets import (QApplication, QFileDialog, QFrame, QHBoxLayout, QListView, QListWidget, QListWidgetItem, QMainWindow, QMessageBox, QSizePolicy, QWidget) import puzzle_rc class PuzzleWidget(QWidget): puzzleCompleted = pyqtSignal() def __init__(self, parent=None): super(PuzzleWidget, self).__init__(parent) self.piecePixmaps = [] self.pieceRects = [] self.pieceLocations = [] self.highlightedRect = QRect() self.inPlace = 0 self.setAcceptDrops(True) self.setMinimumSize(400, 400) self.setMaximumSize(400, 400) def clear(self): self.pieceLocations = [] self.piecePixmaps = [] self.pieceRects = [] self.highlightedRect = QRect() self.inPlace = 0 self.update() def dragEnterEvent(self, event): if event.mimeData().hasFormat('image/x-puzzle-piece'): event.accept() else: event.ignore() def dragLeaveEvent(self, event): updateRect = self.highlightedRect self.highlightedRect = QRect() self.update(updateRect) event.accept() def dragMoveEvent(self, event): updateRect = self.highlightedRect.united(self.targetSquare(event.pos())) if event.mimeData().hasFormat('image/x-puzzle-piece') and self.findPiece(self.targetSquare(event.pos())) == -1: self.highlightedRect = self.targetSquare(event.pos()) event.setDropAction(Qt.MoveAction) event.accept() else: self.highlightedRect = QRect() event.ignore() self.update(updateRect) def dropEvent(self, event): if event.mimeData().hasFormat('image/x-puzzle-piece') and self.findPiece(self.targetSquare(event.pos())) == -1: pieceData = event.mimeData().data('image/x-puzzle-piece') dataStream = QDataStream(pieceData, QIODevice.ReadOnly) square = self.targetSquare(event.pos()) pixmap = QPixmap() location = QPoint() dataStream >> pixmap >> location self.pieceLocations.append(location) self.piecePixmaps.append(pixmap) self.pieceRects.append(square) self.hightlightedRect = QRect() self.update(square) event.setDropAction(Qt.MoveAction) event.accept() if location == QPoint(square.x() / 80, square.y() / 80): self.inPlace += 1 if self.inPlace == 25: self.puzzleCompleted.emit() else: self.highlightedRect = QRect() event.ignore() def findPiece(self, pieceRect): try: return self.pieceRects.index(pieceRect) except ValueError: return -1 def mousePressEvent(self, event): square = self.targetSquare(event.pos()) found = self.findPiece(square) if found == -1: return location = self.pieceLocations[found] pixmap = self.piecePixmaps[found] del self.pieceLocations[found] del self.piecePixmaps[found] del self.pieceRects[found] if location == QPoint(square.x() / 80, square.y() / 80): self.inPlace -= 1 self.update(square) itemData = QByteArray() dataStream = QDataStream(itemData, QIODevice.WriteOnly) dataStream << pixmap << location mimeData = QMimeData() mimeData.setData('image/x-puzzle-piece', itemData) drag = QDrag(self) drag.setMimeData(mimeData) drag.setHotSpot(event.pos() - square.topLeft()) drag.setPixmap(pixmap) if drag.exec_(Qt.MoveAction) != Qt.MoveAction: self.pieceLocations.insert(found, location) self.piecePixmaps.insert(found, pixmap) self.pieceRects.insert(found, square) self.update(self.targetSquare(event.pos())) if location == QPoint(square.x() / 80, square.y() / 80): self.inPlace += 1 def paintEvent(self, event): painter = QPainter() painter.begin(self) painter.fillRect(event.rect(), Qt.white) if self.highlightedRect.isValid(): painter.setBrush(QColor("#ffcccc")) painter.setPen(Qt.NoPen) painter.drawRect(self.highlightedRect.adjusted(0, 0, -1, -1)) for rect, pixmap in zip(self.pieceRects, self.piecePixmaps): painter.drawPixmap(rect, pixmap) painter.end() def targetSquare(self, position): return QRect(position.x() // 80 * 80, position.y() // 80 * 80, 80, 80) class PiecesList(QListWidget): def __init__(self, parent=None): super(PiecesList, self).__init__(parent) self.setDragEnabled(True) self.setViewMode(QListView.IconMode) self.setIconSize(QSize(60, 60)) self.setSpacing(10) self.setAcceptDrops(True) self.setDropIndicatorShown(True) def dragEnterEvent(self, event): if event.mimeData().hasFormat('image/x-puzzle-piece'): event.accept() else: event.ignore() def dragMoveEvent(self, event): if event.mimeData().hasFormat('image/x-puzzle-piece'): event.setDropAction(Qt.MoveAction) event.accept() else: event.ignore() def dropEvent(self, event): if event.mimeData().hasFormat('image/x-puzzle-piece'): pieceData = event.mimeData().data('image/x-puzzle-piece') dataStream = QDataStream(pieceData, QIODevice.ReadOnly) pixmap = QPixmap() location = QPoint() dataStream >> pixmap >> location self.addPiece(pixmap, location) event.setDropAction(Qt.MoveAction) event.accept() else: event.ignore() def addPiece(self, pixmap, location): pieceItem = QListWidgetItem(self) pieceItem.setIcon(QIcon(pixmap)) pieceItem.setData(Qt.UserRole, pixmap) pieceItem.setData(Qt.UserRole+1, location) pieceItem.setFlags(Qt.ItemIsEnabled | Qt.ItemIsSelectable | Qt.ItemIsDragEnabled) def startDrag(self, supportedActions): item = self.currentItem() itemData = QByteArray() dataStream = QDataStream(itemData, QIODevice.WriteOnly) pixmap = QPixmap(item.data(Qt.UserRole)) location = item.data(Qt.UserRole+1) dataStream << pixmap << location mimeData = QMimeData() mimeData.setData('image/x-puzzle-piece', itemData) drag = QDrag(self) drag.setMimeData(mimeData) drag.setHotSpot(QPoint(pixmap.width()/2, pixmap.height()/2)) drag.setPixmap(pixmap) if drag.exec_(Qt.MoveAction) == Qt.MoveAction: if self.currentItem() is not None: self.takeItem(self.row(item)) class MainWindow(QMainWindow): def __init__(self, parent=None): super(MainWindow, self).__init__(parent) self.puzzleImage = QPixmap() self.setupMenus() self.setupWidgets() self.setSizePolicy(QSizePolicy(QSizePolicy.Fixed, QSizePolicy.Fixed)) self.setWindowTitle("Puzzle") def openImage(self, path=None): if not path: path, _ = QFileDialog.getOpenFileName(self, "Open Image", '', "Image Files (*.png *.jpg *.bmp)") if path: newImage = QPixmap() if not newImage.load(path): QMessageBox.warning(self, "Open Image", "The image file could not be loaded.", QMessageBox.Cancel) return self.puzzleImage = newImage self.setupPuzzle() def setCompleted(self): QMessageBox.information(self, "Puzzle Completed", "Congratulations! You have completed the puzzle!\nClick OK " "to start again.", QMessageBox.Ok) self.setupPuzzle() def setupPuzzle(self): size = min(self.puzzleImage.width(), self.puzzleImage.height()) self.puzzleImage = self.puzzleImage.copy( (self.puzzleImage.width() - size)/2, (self.puzzleImage.height() - size)/2, size, size).scaled(400, 400, Qt.IgnoreAspectRatio, Qt.SmoothTransformation) self.piecesList.clear() for y in range(5): for x in range(5): pieceImage = self.puzzleImage.copy(x*80, y*80, 80, 80) self.piecesList.addPiece(pieceImage, QPoint(x,y)) random.seed(QCursor.pos().x() ^ QCursor.pos().y()) for i in range(self.piecesList.count()): if random.random() < 0.5: item = self.piecesList.takeItem(i) self.piecesList.insertItem(0, item) self.puzzleWidget.clear() def setupMenus(self): fileMenu = self.menuBar().addMenu("&File") openAction = fileMenu.addAction("&Open...") openAction.setShortcut("Ctrl+O") exitAction = fileMenu.addAction("E&xit") exitAction.setShortcut("Ctrl+Q") gameMenu = self.menuBar().addMenu("&Game") restartAction = gameMenu.addAction("&Restart") openAction.triggered.connect(self.openImage) exitAction.triggered.connect(QApplication.instance().quit) restartAction.triggered.connect(self.setupPuzzle) def setupWidgets(self): frame = QFrame() frameLayout = QHBoxLayout(frame) self.piecesList = PiecesList() self.puzzleWidget = PuzzleWidget() self.puzzleWidget.puzzleCompleted.connect(self.setCompleted, Qt.QueuedConnection) frameLayout.addWidget(self.piecesList) frameLayout.addWidget(self.puzzleWidget) self.setCentralWidget(frame) if __name__ == '__main__': import sys app = QApplication(sys.argv) window = MainWindow() window.openImage(':/images/example.jpg') window.show() sys.exit(app.exec_())
the-stack_0_12768
#!/usr/bin/env python3 """Combine logs from multiple compchain nodes as well as the test_framework log. This streams the combined log output to stdout. Use combine_logs.py > outputfile to write to an outputfile.""" import argparse from collections import defaultdict, namedtuple import heapq import itertools import os import re import sys # Matches on the date format at the start of the log event TIMESTAMP_PATTERN = re.compile(r"^\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}\.\d{6}Z") LogEvent = namedtuple('LogEvent', ['timestamp', 'source', 'event']) def main(): """Main function. Parses args, reads the log files and renders them as text or html.""" parser = argparse.ArgumentParser(usage='%(prog)s [options] <test temporary directory>', description=__doc__) parser.add_argument('-c', '--color', dest='color', action='store_true', help='outputs the combined log with events colored by source (requires posix terminal colors. Use less -r for viewing)') parser.add_argument('--html', dest='html', action='store_true', help='outputs the combined log as html. Requires jinja2. pip install jinja2') args, unknown_args = parser.parse_known_args() if args.color and os.name != 'posix': print("Color output requires posix terminal colors.") sys.exit(1) if args.html and args.color: print("Only one out of --color or --html should be specified") sys.exit(1) # There should only be one unknown argument - the path of the temporary test directory if len(unknown_args) != 1: print("Unexpected arguments" + str(unknown_args)) sys.exit(1) log_events = read_logs(unknown_args[0]) print_logs(log_events, color=args.color, html=args.html) def read_logs(tmp_dir): """Reads log files. Delegates to generator function get_log_events() to provide individual log events for each of the input log files.""" files = [("test", "%s/test_framework.log" % tmp_dir)] for i in itertools.count(): logfile = "{}/node{}/regtest/debug.log".format(tmp_dir, i) if not os.path.isfile(logfile): break files.append(("node%d" % i, logfile)) return heapq.merge(*[get_log_events(source, f) for source, f in files]) def get_log_events(source, logfile): """Generator function that returns individual log events. Log events may be split over multiple lines. We use the timestamp regex match as the marker for a new log event.""" try: with open(logfile, 'r', encoding='utf-8') as infile: event = '' timestamp = '' for line in infile: # skip blank lines if line == '\n': continue # if this line has a timestamp, it's the start of a new log event. time_match = TIMESTAMP_PATTERN.match(line) if time_match: if event: yield LogEvent(timestamp=timestamp, source=source, event=event.rstrip()) event = line timestamp = time_match.group() # if it doesn't have a timestamp, it's a continuation line of the previous log. else: event += "\n" + line # Flush the final event yield LogEvent(timestamp=timestamp, source=source, event=event.rstrip()) except FileNotFoundError: print("File %s could not be opened. Continuing without it." % logfile, file=sys.stderr) def print_logs(log_events, color=False, html=False): """Renders the iterator of log events into text or html.""" if not html: colors = defaultdict(lambda: '') if color: colors["test"] = "\033[0;36m" # CYAN colors["node0"] = "\033[0;34m" # BLUE colors["node1"] = "\033[0;32m" # GREEN colors["node2"] = "\033[0;31m" # RED colors["node3"] = "\033[0;33m" # YELLOW colors["reset"] = "\033[0m" # Reset font color for event in log_events: print("{0} {1: <5} {2} {3}".format(colors[event.source.rstrip()], event.source, event.event, colors["reset"])) else: try: import jinja2 except ImportError: print("jinja2 not found. Try `pip install jinja2`") sys.exit(1) print(jinja2.Environment(loader=jinja2.FileSystemLoader('./')) .get_template('combined_log_template.html') .render(title="Combined Logs from testcase", log_events=[event._asdict() for event in log_events])) if __name__ == '__main__': main()