filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_0_14306
# Copyright 2021 The Kubeflow Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Two step v2-compatible pipeline.""" from kfp import components, dsl from kfp.components import InputPath, OutputPath def preprocess(uri: str, some_int: int, output_parameter_one: OutputPath(int), output_dataset_one: OutputPath('Dataset')): """Dummy Preprocess Step.""" with open(output_dataset_one, 'w') as f: f.write('Output dataset') with open(output_parameter_one, 'w') as f: f.write("{}".format(1234)) preprocess_op = components.create_component_from_func( preprocess, base_image='python:3.9') @components.create_component_from_func def train_op(dataset: InputPath('Dataset'), model: OutputPath('Model'), num_steps: int = 100): """Dummy Training Step.""" with open(dataset, 'r') as input_file: input_string = input_file.read() with open(model, 'w') as output_file: for i in range(num_steps): output_file.write("Step {}\n{}\n=====\n".format( i, input_string)) @dsl.pipeline(name='two_step_pipeline') def two_step_pipeline(): preprocess_task = preprocess_op(uri='uri-to-import', some_int=12) train_task = train_op( num_steps=preprocess_task.outputs['output_parameter_one'], dataset=preprocess_task.outputs['output_dataset_one'])
the-stack_0_14307
# -*- coding: utf-8 -*- """ Django settings for nectR Tutoring project. For more information on this file, see https://docs.djangoproject.com/en/dev/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/dev/ref/settings/ """ from __future__ import absolute_import, unicode_literals import environ ROOT_DIR = environ.Path(__file__) - 3 # (nectr/config/settings/base.py - 3 = nectr/) APPS_DIR = ROOT_DIR.path('nectr') # Load operating system environment variables and then prepare to use them env = environ.Env() # .env file, should load only in development environment READ_DOT_ENV_FILE = env.bool('DJANGO_READ_DOT_ENV_FILE', default=False) if READ_DOT_ENV_FILE: # Operating System Environment variables have precedence over variables defined in the .env file, # that is to say variables from the .env files will only be used if not defined # as environment variables. env_file = str(ROOT_DIR.path('.env')) print('Loading : {}'.format(env_file)) env.read_env(env_file) print('The .env file has been loaded. See base.py for more information') # APP CONFIGURATION # ------------------------------------------------------------------------------ DJANGO_APPS = [ # Default Django apps: 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sites', 'django.contrib.messages', 'django.contrib.staticfiles', # Useful template tags: 'django.contrib.humanize', # Admin 'django.contrib.admin', ] THIRD_PARTY_APPS = [ 'crispy_forms', # Form layouts 'allauth', # registration 'allauth.account', # registration 'allauth.socialaccount', # registration # 'haystack', # search 'postman', # messaging 'channels' # chat ] # Apps specific for this project go here. LOCAL_APPS = [ # custom users app 'nectr.users.apps.UsersConfig', # Your stuff: custom apps go here 'nectr.student.apps.StudentConfig', 'nectr.tutor.apps.TutorConfig', 'nectr.dashboard.apps.DashboardConfig', 'nectr.courses.apps.CoursesConfig', 'nectr.skills.apps.SkillsConfig', 'nectr.chat.apps.ChatConfig', 'nectr.schedule.apps.ScheduleConfig' ] # See: https://docs.djangoproject.com/en/dev/ref/settings/#installed-apps INSTALLED_APPS = DJANGO_APPS + THIRD_PARTY_APPS + LOCAL_APPS # MIDDLEWARE CONFIGURATION # ------------------------------------------------------------------------------ MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] # MIGRATIONS CONFIGURATION # ------------------------------------------------------------------------------ MIGRATION_MODULES = { 'sites': 'nectr.contrib.sites.migrations' } # DEBUG # ------------------------------------------------------------------------------ # See: https://docs.djangoproject.com/en/dev/ref/settings/#debug DEBUG = env.bool('DJANGO_DEBUG', False) # FIXTURE CONFIGURATION # ------------------------------------------------------------------------------ # See: https://docs.djangoproject.com/en/dev/ref/settings/#std:setting-FIXTURE_DIRS FIXTURE_DIRS = ( str(APPS_DIR.path('fixtures')), ) # EMAIL CONFIGURATION # ------------------------------------------------------------------------------ EMAIL_BACKEND = env('DJANGO_EMAIL_BACKEND', default='django.core.mail.backends.smtp.EmailBackend') # MANAGER CONFIGURATION # ------------------------------------------------------------------------------ # See: https://docs.djangoproject.com/en/dev/ref/settings/#admins ADMINS = [ ('Brandon', '[email protected]'), ] # See: https://docs.djangoproject.com/en/dev/ref/settings/#managers MANAGERS = ADMINS # DATABASE CONFIGURATION # ------------------------------------------------------------------------------ # See: https://docs.djangoproject.com/en/dev/ref/settings/#databases DATABASES = { 'default': env.db('DATABASE_URL', default='postgres:///nectr'), } DATABASES['default']['ATOMIC_REQUESTS'] = True # GENERAL CONFIGURATION # ------------------------------------------------------------------------------ # Local time zone for this installation. Choices can be found here: # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name # although not all choices may be available on all operating systems. # In a Windows environment this must be set to your system time zone. TIME_ZONE = 'UTC' # See: https://docs.djangoproject.com/en/dev/ref/settings/#language-code LANGUAGE_CODE = 'en-us' # See: https://docs.djangoproject.com/en/dev/ref/settings/#site-id SITE_ID = 1 # See: https://docs.djangoproject.com/en/dev/ref/settings/#use-i18n USE_I18N = True # See: https://docs.djangoproject.com/en/dev/ref/settings/#use-l10n USE_L10N = True # See: https://docs.djangoproject.com/en/dev/ref/settings/#use-tz USE_TZ = True # TEMPLATE CONFIGURATION # ------------------------------------------------------------------------------ # See: https://docs.djangoproject.com/en/dev/ref/settings/#templates TEMPLATES = [ { # See: https://docs.djangoproject.com/en/dev/ref/settings/#std:setting-TEMPLATES-BACKEND 'BACKEND': 'django.template.backends.django.DjangoTemplates', # See: https://docs.djangoproject.com/en/dev/ref/settings/#template-dirs 'DIRS': [ str(APPS_DIR.path('templates')) ], 'OPTIONS': { # See: https://docs.djangoproject.com/en/dev/ref/settings/#template-debug 'debug': DEBUG, # See: https://docs.djangoproject.com/en/dev/ref/settings/#template-loaders # https://docs.djangoproject.com/en/dev/ref/templates/api/#loader-types 'loaders': [ 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', ], # See: https://docs.djangoproject.com/en/dev/ref/settings/#template-context-processors 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.template.context_processors.i18n', 'django.template.context_processors.media', 'django.template.context_processors.static', 'django.template.context_processors.tz', 'django.contrib.messages.context_processors.messages', # Your stuff: custom template context processors go here ], }, }, ] # See: http://django-crispy-forms.readthedocs.io/en/latest/install.html#template-packs CRISPY_TEMPLATE_PACK = 'bootstrap4' # STATIC FILE CONFIGURATION # ------------------------------------------------------------------------------ # See: https://docs.djangoproject.com/en/dev/ref/settings/#static-root STATIC_ROOT = str(ROOT_DIR('staticfiles')) # See: https://docs.djangoproject.com/en/dev/ref/settings/#static-url STATIC_URL = '/static/' # See: https://docs.djangoproject.com/en/dev/ref/contrib/staticfiles/#std:setting-STATICFILES_DIRS STATICFILES_DIRS = [ str(APPS_DIR.path('static')), ] # See: https://docs.djangoproject.com/en/dev/ref/contrib/staticfiles/#staticfiles-finders STATICFILES_FINDERS = [ 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', ] # MEDIA CONFIGURATION # ------------------------------------------------------------------------------ # See: https://docs.djangoproject.com/en/dev/ref/settings/#media-root MEDIA_ROOT = str(APPS_DIR('media')) # See: https://docs.djangoproject.com/en/dev/ref/settings/#media-url MEDIA_URL = '/media/' # URL Configuration # ------------------------------------------------------------------------------ ROOT_URLCONF = 'config.urls' # See: https://docs.djangoproject.com/en/dev/ref/settings/#wsgi-application WSGI_APPLICATION = 'config.wsgi.application' # PASSWORD VALIDATION # https://docs.djangoproject.com/en/dev/ref/settings/#auth-password-validators # ------------------------------------------------------------------------------ AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # AUTHENTICATION CONFIGURATION # ------------------------------------------------------------------------------ AUTHENTICATION_BACKENDS = [ 'django.contrib.auth.backends.ModelBackend', 'allauth.account.auth_backends.AuthenticationBackend', ] # Some really nice defaults ACCOUNT_AUTHENTICATION_METHOD = 'username' ACCOUNT_EMAIL_REQUIRED = True ACCOUNT_EMAIL_VERIFICATION = 'mandatory' ACCOUNT_ALLOW_REGISTRATION = env.bool('DJANGO_ACCOUNT_ALLOW_REGISTRATION', True) ACCOUNT_ADAPTER = 'nectr.users.adapters.AccountAdapter' SOCIALACCOUNT_ADAPTER = 'nectr.users.adapters.SocialAccountAdapter' # Custom user app defaults # Select the correct user model AUTH_USER_MODEL = 'users.User' LOGIN_REDIRECT_URL = 'users:redirect' LOGIN_URL = 'account_login' # SLUGLIFIER AUTOSLUG_SLUGIFY_FUNCTION = 'slugify.slugify' ########## CELERY INSTALLED_APPS += ['nectr.taskapp.celery.CeleryConfig'] # if you are not using the django database broker (e.g. rabbitmq, redis, memcached), you can remove the next line. INSTALLED_APPS += ['kombu.transport.django'] BROKER_URL = env('CELERY_BROKER_URL', default='django://') if BROKER_URL == 'django://': CELERY_RESULT_BACKEND = 'redis://' else: CELERY_RESULT_BACKEND = BROKER_URL ########## END CELERY # django-compressor # ------------------------------------------------------------------------------ INSTALLED_APPS += ['compressor'] STATICFILES_FINDERS += ['compressor.finders.CompressorFinder'] # Location of root django.contrib.admin URL, use {% url 'admin:index' %} ADMIN_URL = r'^admin/' # Your common stuff: Below this line define 3rd party library settings # ------------------------------------------------------------------------------ # Search Integration using Haystack HAYSTACK_CONNECTIONS = { 'default': { 'ENGINE': 'haystack.backends.solr_backend.SolrEngine', 'URL': 'http://127.0.0.1:8983/solr' # ...or for multicore... # 'URL': 'http://127.0.0.1:8983/solr/mysite', }, } # Basic channels configuration CHANNEL_LAYERS = { "default": { "BACKEND": "asgiref.inmemory.ChannelLayer", "ROUTING": "config.routing.channel_routing", }, }
the-stack_0_14309
# -*- coding: utf-8 -*- import argparse from functools import partial from moviepy.editor import VideoFileClip, CompositeVideoClip from multiprocessing import Pool from multiprocessing.dummy import Pool as ThreadPool import os from PIL import Image, ImageDraw, ImageFont from pprint import pprint import subprocess import sys from lib.collection_utils import * from lib.color_utils import * from lib.io_utils import * from lib.math_utils import * from lib.processing_utils import * from lib.text_utils import * from lib.video_utils import * # input parser = argparse.ArgumentParser() parser.add_argument('-in', dest="INPUT_FILE", default="path/to/item.mp4", help="Input media file") parser.add_argument('-sdata', dest="SAMPLE_DATA_FILE", default="path/to/sampledata.csv", help="Input csv sampldata file") parser.add_argument('-pdata', dest="PHRASE_DATA_FILE", default="", help="Input csv phrase data file; blank if none") parser.add_argument('-outframe', dest="OUTPUT_FRAME", default="tmp/item_viz/frame.%s.png", help="Temporary output frames pattern") parser.add_argument('-width', dest="WIDTH", default=1280, type=int, help="Output video width") parser.add_argument('-height', dest="HEIGHT", default=720, type=int, help="Output video height") parser.add_argument('-fsize', dest="FONT_SIZE", default=24, type=int, help="Font size of timecode") parser.add_argument('-speed', dest="SPEED", default=48.0, type=float, help="Speed of viz in pixels per second") parser.add_argument('-out', dest="OUTPUT_FILE", default="output/item_viz.mp4", help="Output media file") parser.add_argument('-quality', dest="QUALITY", default="high", help="High quality is slower") parser.add_argument('-threads', dest="THREADS", default=3, type=int, help="Amount of parallel frames to process") parser.add_argument('-probe', dest="PROBE", action="store_true", help="Just view statistics?") parser.add_argument('-overwrite', dest="OVERWRITE", action="store_true", help="Overwrite existing frames?") addTextArguments(parser) a = parser.parse_args() aa = vars(a) MARGIN = min(roundInt(a.HEIGHT * 0.1), 20) PHRASE_HEIGHT = MARGIN * 2 fieldNames, sampledata = readCsv(a.SAMPLE_DATA_FILE) phrasedata = [] if len(a.PHRASE_DATA_FILE) > 0: _, phrasedata = readCsv(a.PHRASE_DATA_FILE) phrasedata = addNormalizedValues(phrasedata, "clarity", "nclarity") hasPhrases = len(phrasedata) > 0 makeDirectories([a.OUTPUT_FRAME, a.OUTPUT_FILE]) # determine video properties from the first clip baseVideo = VideoFileClip(a.INPUT_FILE) width, height = baseVideo.size fps = round(baseVideo.fps, 2) duration = baseVideo.duration print("Base video: (%s x %s) %sfps %s" % (width, height, fps, formatSeconds(duration))) if a.PROBE: sys.exit() # Make the base video smaller and place in the center-ish vratio = 1.0 * width / height vh = roundInt(a.HEIGHT / 2.0) vw = roundInt(vh * vratio) vx = roundInt((a.WIDTH - vw) * 0.5) vy = roundInt((a.HEIGHT - vh) * 0.25) baseVideo = baseVideo.resize((vw, vh)).set_pos((vx, vy)) # Determine size/positioning of timecode text font = ImageFont.truetype(font=a.FONT_DIR+a.DEFAULT_FONT_FILE, size=a.FONT_SIZE, layout_engine=ImageFont.LAYOUT_RAQM) ftemplate = "00:00" if duration < 60 * 60 else "00:00:00" fwidth, fheight = font.getsize(ftemplate) tx = roundInt((a.WIDTH - fwidth) * 0.5) ty = vy + vh + MARGIN # Assign times, colors, and dimensions to sampledata sy = ty + fheight + MARGIN maxSHeight = a.HEIGHT - sy - MARGIN * 0.5 if hasPhrases: maxSHeight = a.HEIGHT - PHRASE_HEIGHT - sy - MARGIN if maxSHeight < 10: print("Data height too small") sys.exit() sampledata = addNormalizedValues(sampledata, "clarity", "nclarity") sampledata = addNormalizedValues(sampledata, "power", "npower") totalSequenceWidth = duration * a.SPEED cx = a.WIDTH * 0.5 seqX0 = cx seqX1 = cx - totalSequenceWidth for i, s in enumerate(sampledata): sampledata[i]["color"] = getColorGradientValue(s["nclarity"]) # determine pos and size nx = s["start"] / 1000.0 / duration nw = s["dur"] / 1000.0 / duration nh = s["npower"] myH = max(roundInt(maxSHeight * nh), 4) sampledata[i]["sY"] = roundInt(sy + (maxSHeight - myH)) sampledata[i]["sX"] = roundInt(totalSequenceWidth * nx) sampledata[i]["sW"] = roundInt(totalSequenceWidth * nw) sampledata[i]["sH"] = myH # calculate dimensions for phrase data for i, p in enumerate(phrasedata): nx = p["start"] / 1000.0 / duration nw = p["dur"] / 1000.0 / duration phrasedata[i]["sY"] = roundInt(sy + maxSHeight + MARGIN) phrasedata[i]["sW"] = roundInt(totalSequenceWidth * nw) phrasedata[i]["sX"] = roundInt(totalSequenceWidth * nx) phrasedata[i]["sH"] = roundInt(PHRASE_HEIGHT) phrasedata[i]["color"] = getColorGradientValue(lerp((0.5, 1.0), p["nclarity"])) # Generate annotation frames frameProps = [] totalFrames = msToFrame(roundInt(duration*1000), fps) for i in range(totalFrames): frame = i+1 filename = a.OUTPUT_FRAME % zeroPad(frame, totalFrames) frameProps.append({ "frame": frame, "filename": filename }) def doFrame(p, totalFrames, drawData): global a global MARGIN global cx global duration global seqX0 global seqX1 global font global tx global ty global sy global maxSHeight if os.path.isfile(p["filename"]): return im = Image.new(mode="RGB", size=(a.WIDTH, a.HEIGHT), color=(0, 0, 0)) draw = ImageDraw.Draw(im) nprogress = 1.0 * (p["frame"] - 1) / (totalFrames - 1) # draw text seconds = duration * nprogress timestring = formatSeconds(seconds) draw.text((tx, ty), timestring, font=font, fill=(255, 255, 255)) xoffset = lerp((seqX0, seqX1), nprogress) for s in drawData: if s["sH"] <= 0: continue x0 = s["sX"] + xoffset x1 = x0 + s["sW"] if x0 < a.WIDTH and x1 > 0: draw.rectangle([x0, s["sY"], x1, s["sY"]+s["sH"]], fill=s["color"], outline=(0,0,0), width=1) draw.line([(cx, sy), (cx, sy + maxSHeight)], fill=(255, 255, 255), width=1) del draw im.save(p["filename"]) sys.stdout.write('\r') sys.stdout.write("Wrote %s to file" % p["filename"]) sys.stdout.flush() if a.OVERWRITE: removeFiles(a.OUTPUT_FRAME % "*") drawData = sampledata + phrasedata threads = getThreadCount(a.THREADS) pool = ThreadPool(threads) pclipsToFrame = partial(doFrame, totalFrames=totalFrames, drawData=drawData) pool.map(pclipsToFrame, frameProps) pool.close() pool.join() annotationVideoFn = appendToBasename(a.OUTPUT_FILE, "_annotation") if a.OVERWRITE or not os.path.isfile(annotationVideoFn): compileFrames(a.OUTPUT_FRAME, fps, annotationVideoFn, getZeroPadding(totalFrames)) annotationVideo = VideoFileClip(annotationVideoFn, audio=False) clips = [annotationVideo, baseVideo] video = CompositeVideoClip(clips, size=(a.WIDTH, a.HEIGHT)) video = video.set_duration(duration) if a.QUALITY == "high": video.write_videofile(a.OUTPUT_FILE, preset="slow", audio_bitrate="256k", audio_fps=48000, bitrate="19820k") else: video.write_videofile(a.OUTPUT_FILE) print("Wrote %s to file" % a.OUTPUT_FILE)
the-stack_0_14311
""" Shortest path algorithms for unweighted graphs. """ import networkx as nx from multiprocessing import Pool __all__ = ['bidirectional_shortest_path', 'single_source_shortest_path', 'single_source_shortest_path_length', 'single_target_shortest_path', 'single_target_shortest_path_length', 'all_pairs_shortest_path', 'all_pairs_shortest_path_length', 'predecessor'] def single_source_shortest_path_length(G, source, cutoff=None): """Compute the shortest path lengths from source to all reachable nodes. Parameters ---------- G : NetworkX graph source : node Starting node for path cutoff : integer, optional Depth to stop the search. Only paths of length <= cutoff are returned. Returns ------- lengths : dict Dict keyed by node to shortest path length to source. Examples -------- >>> G = nx.path_graph(5) >>> length = nx.single_source_shortest_path_length(G, 0) >>> length[4] 4 >>> for node in length: ... print(f"{node}: {length[node]}") 0: 0 1: 1 2: 2 3: 3 4: 4 See Also -------- shortest_path_length """ if source not in G: raise nx.NodeNotFound(f'Source {source} is not in G') if cutoff is None: cutoff = float('inf') nextlevel = {source: 1} return dict(_single_shortest_path_length(G.adj, nextlevel, cutoff)) def _single_shortest_path_length(adj, firstlevel, cutoff): """Yields (node, level) in a breadth first search Shortest Path Length helper function Parameters ---------- adj : dict Adjacency dict or view firstlevel : dict starting nodes, e.g. {source: 1} or {target: 1} cutoff : int or float level at which we stop the process """ seen = {} # level (number of hops) when seen in BFS level = 0 # the current level nextlevel = set(firstlevel) # set of nodes to check at next level n = len(adj) while nextlevel and cutoff >= level: thislevel = nextlevel # advance to next level nextlevel = set() # and start a new set (fringe) found = [] for v in thislevel: if v not in seen: seen[v] = level # set the level of vertex v found.append(v) yield (v, level) if len(seen) == n: return for v in found: nextlevel.update(adj[v]) level += 1 del seen def single_target_shortest_path_length(G, target, cutoff=None): """Compute the shortest path lengths to target from all reachable nodes. Parameters ---------- G : NetworkX graph target : node Target node for path cutoff : integer, optional Depth to stop the search. Only paths of length <= cutoff are returned. Returns ------- lengths : iterator (source, shortest path length) iterator Examples -------- >>> G = nx.path_graph(5, create_using=nx.DiGraph()) >>> length = dict(nx.single_target_shortest_path_length(G, 4)) >>> length[0] 4 >>> for node in range(5): ... print(f"{node}: {length[node]}") 0: 4 1: 3 2: 2 3: 1 4: 0 See Also -------- single_source_shortest_path_length, shortest_path_length """ if target not in G: raise nx.NodeNotFound(f'Target {target} is not in G') if cutoff is None: cutoff = float('inf') # handle either directed or undirected adj = G.pred if G.is_directed() else G.adj nextlevel = {target: 1} return _single_shortest_path_length(adj, nextlevel, cutoff) def all_pairs_shortest_path_length(G, cutoff=None, parallel=False): """Computes the shortest path lengths between all nodes in `G`. Parameters ---------- G : NetworkX graph cutoff : integer, optional Depth at which to stop the search. Only paths of length at most `cutoff` are returned. Returns ------- lengths : iterator (source, dictionary) iterator with dictionary keyed by target and shortest path length as the key value. Notes ----- The iterator returned only has reachable node pairs. Examples -------- >>> G = nx.path_graph(5) >>> length = dict(nx.all_pairs_shortest_path_length(G)) >>> for node in [0, 1, 2, 3, 4]: ... print(f"1 - {node}: {length[1][node]}") 1 - 0: 1 1 - 1: 0 1 - 2: 1 1 - 3: 2 1 - 4: 3 >>> length[3][2] 1 >>> length[2][2] 0 """ length = single_source_shortest_path_length if parallel: with Pool() as pool: for n in G: yield (n, pool.apply(length, (G, n, cutoff))) else: for n in G: yield (n, length(G, n, cutoff=cutoff)) def bidirectional_shortest_path(G, source, target): """Returns a list of nodes in a shortest path between source and target. Parameters ---------- G : NetworkX graph source : node label starting node for path target : node label ending node for path Returns ------- path: list List of nodes in a path from source to target. Raises ------ NetworkXNoPath If no path exists between source and target. See Also -------- shortest_path Notes ----- This algorithm is used by shortest_path(G, source, target). """ if source not in G or target not in G: msg = f"Either source {source} or target {target} is not in G" raise nx.NodeNotFound(msg) # call helper to do the real work results = _bidirectional_pred_succ(G, source, target) pred, succ, w = results # build path from pred+w+succ path = [] # from source to w while w is not None: path.append(w) w = pred[w] path.reverse() # from w to target w = succ[path[-1]] while w is not None: path.append(w) w = succ[w] return path def _bidirectional_pred_succ(G, source, target): """Bidirectional shortest path helper. Returns (pred, succ, w) where pred is a dictionary of predecessors from w to the source, and succ is a dictionary of successors from w to the target. """ # does BFS from both source and target and meets in the middle if target == source: return ({target: None}, {source: None}, source) # handle either directed or undirected if G.is_directed(): Gpred = G.pred Gsucc = G.succ else: Gpred = G.adj Gsucc = G.adj # predecesssor and successors in search pred = {source: None} succ = {target: None} # initialize fringes, start with forward forward_fringe = [source] reverse_fringe = [target] while forward_fringe and reverse_fringe: if len(forward_fringe) <= len(reverse_fringe): this_level = forward_fringe forward_fringe = [] for v in this_level: for w in Gsucc[v]: if w not in pred: forward_fringe.append(w) pred[w] = v if w in succ: # path found return pred, succ, w else: this_level = reverse_fringe reverse_fringe = [] for v in this_level: for w in Gpred[v]: if w not in succ: succ[w] = v reverse_fringe.append(w) if w in pred: # found path return pred, succ, w raise nx.NetworkXNoPath(f"No path between {source} and {target}.") def single_source_shortest_path(G, source, cutoff=None): """Compute shortest path between source and all other nodes reachable from source. Parameters ---------- G : NetworkX graph source : node label Starting node for path cutoff : integer, optional Depth to stop the search. Only paths of length <= cutoff are returned. Returns ------- lengths : dictionary Dictionary, keyed by target, of shortest paths. Examples -------- >>> G = nx.path_graph(5) >>> path = nx.single_source_shortest_path(G, 0) >>> path[4] [0, 1, 2, 3, 4] Notes ----- The shortest path is not necessarily unique. So there can be multiple paths between the source and each target node, all of which have the same 'shortest' length. For each target node, this function returns only one of those paths. See Also -------- shortest_path """ if source not in G: raise nx.NodeNotFound(f"Source {source} not in G") def join(p1, p2): return p1 + p2 if cutoff is None: cutoff = float('inf') nextlevel = {source: 1} # list of nodes to check at next level paths = {source: [source]} # paths dictionary (paths to key from source) return dict(_single_shortest_path(G.adj, nextlevel, paths, cutoff, join)) def _single_shortest_path(adj, firstlevel, paths, cutoff, join): """Returns shortest paths Shortest Path helper function Parameters ---------- adj : dict Adjacency dict or view firstlevel : dict starting nodes, e.g. {source: 1} or {target: 1} paths : dict paths for starting nodes, e.g. {source: [source]} cutoff : int or float level at which we stop the process join : function function to construct a path from two partial paths. Requires two list inputs `p1` and `p2`, and returns a list. Usually returns `p1 + p2` (forward from source) or `p2 + p1` (backward from target) """ level = 0 # the current level nextlevel = firstlevel while nextlevel and cutoff > level: thislevel = nextlevel nextlevel = {} for v in thislevel: for w in adj[v]: if w not in paths: paths[w] = join(paths[v], [w]) nextlevel[w] = 1 level += 1 return paths def single_target_shortest_path(G, target, cutoff=None): """Compute shortest path to target from all nodes that reach target. Parameters ---------- G : NetworkX graph target : node label Target node for path cutoff : integer, optional Depth to stop the search. Only paths of length <= cutoff are returned. Returns ------- lengths : dictionary Dictionary, keyed by target, of shortest paths. Examples -------- >>> G = nx.path_graph(5, create_using=nx.DiGraph()) >>> path = nx.single_target_shortest_path(G, 4) >>> path[0] [0, 1, 2, 3, 4] Notes ----- The shortest path is not necessarily unique. So there can be multiple paths between the source and each target node, all of which have the same 'shortest' length. For each target node, this function returns only one of those paths. See Also -------- shortest_path, single_source_shortest_path """ if target not in G: raise nx.NodeNotFound(f"Target {target} not in G") def join(p1, p2): return p2 + p1 # handle undirected graphs adj = G.pred if G.is_directed() else G.adj if cutoff is None: cutoff = float('inf') nextlevel = {target: 1} # list of nodes to check at next level paths = {target: [target]} # paths dictionary (paths to key from source) return dict(_single_shortest_path(adj, nextlevel, paths, cutoff, join)) def all_pairs_shortest_path(G, cutoff=None, parallel=False): """Compute shortest paths between all nodes. Parameters ---------- G : NetworkX graph cutoff : integer, optional Depth at which to stop the search. Only paths of length at most `cutoff` are returned. Returns ------- lengths : dictionary Dictionary, keyed by source and target, of shortest paths. Examples -------- >>> G = nx.path_graph(5) >>> path = dict(nx.all_pairs_shortest_path(G)) >>> print(path[0][4]) [0, 1, 2, 3, 4] See Also -------- floyd_warshall() """ if parallel: with Pool() as pool: for n in G: yield (n, pool.apply(single_source_shortest_path, (G, n, cutoff))) else: for n in G: yield (n, single_source_shortest_path(G, n, cutoff=cutoff)) def predecessor(G, source, target=None, cutoff=None, return_seen=None): """Returns dict of predecessors for the path from source to all nodes in G Parameters ---------- G : NetworkX graph source : node label Starting node for path target : node label, optional Ending node for path. If provided only predecessors between source and target are returned cutoff : integer, optional Depth to stop the search. Only paths of length <= cutoff are returned. Returns ------- pred : dictionary Dictionary, keyed by node, of predecessors in the shortest path. Examples -------- >>> G = nx.path_graph(4) >>> list(G) [0, 1, 2, 3] >>> nx.predecessor(G, 0) {0: [], 1: [0], 2: [1], 3: [2]} """ if source not in G: raise nx.NodeNotFound(f"Source {source} not in G") level = 0 # the current level nextlevel = [source] # list of nodes to check at next level seen = {source: level} # level (number of hops) when seen in BFS pred = {source: []} # predecessor dictionary while nextlevel: level = level + 1 thislevel = nextlevel nextlevel = [] for v in thislevel: for w in G[v]: if w not in seen: pred[w] = [v] seen[w] = level nextlevel.append(w) elif (seen[w] == level): # add v to predecessor list if it pred[w].append(v) # is at the correct level if (cutoff and cutoff <= level): break if target is not None: if return_seen: if target not in pred: return ([], -1) # No predecessor return (pred[target], seen[target]) else: if target not in pred: return [] # No predecessor return pred[target] else: if return_seen: return (pred, seen) else: return pred
the-stack_0_14315
# -*- coding: utf-8 -*- """ Created on Wed May 20 12:30:52 2020 @author: nastavirs """ import tensorflow as tf import numpy as np def initialize_NN(self, layers): weights = [] biases = [] num_layers = len(layers) for l in range(0,num_layers-1): W = self.xavier_init(size=[layers[l], layers[l+1]]) b = tf.Variable(tf.zeros([1,layers[l+1]], dtype=tf.float32), dtype=tf.float32) weights.append(W) biases.append(b) return weights, biases
the-stack_0_14318
import glob, imp, os IPHONE_UA = "Mozilla/5.0 (iPhone; CPU iPhone OS 10_0_1 like Mac OS X) AppleWebKit/602.1.50 (KHTML, like Gecko) Version/10.0 Mobile/14A403 Safari/602.1" def discover_drivers(): cdir = os.path.dirname(os.path.realpath(__file__)) drivers = list(filter(lambda p: not os.path.basename(p).startswith('_'), glob.glob(os.path.join(cdir, '*.py')))) return dict([(os.path.basename(os.path.splitext(driver)[0]), driver) for driver in drivers]) def get_driver_by_name(name): for driver_name, driver_path in discover_drivers().items(): if driver_name == name: return imp.load_source(driver_name, driver_path) raise ModuleNotFoundError("%s driver not found", name)
the-stack_0_14319
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (c) 2021 the HERA Project # Licensed under the MIT License from hera_qm import utils from hera_qm.auto_metrics import auto_metrics_run import sys ap = utils.get_metrics_ArgumentParser('auto_metrics') args = ap.parse_args() history = ' '.join(sys.argv) auto_metrics_run(args.metric_outfile, args.raw_auto_files, median_round_modz_cut=args.median_round_modz_cut, mean_round_modz_cut=args.mean_round_modz_cut, edge_cut=args.edge_cut, Kt=args.Kt, Kf=args.Kf, sig_init=args.sig_init, sig_adj=args.sig_adj, chan_thresh_frac=args.chan_thresh_frac, history=history, overwrite=args.clobber)
the-stack_0_14325
#import dependencies import os import csv #declare csv file path data = os.path.join("..", "Resources", "budget_data.csv") #read csv file with open(data, newline="") as csvfile: csv_reader = csv.reader(csvfile, delimiter=",") csv_header = next(csvfile) #determine total months and net amount of profit/loss months = [] profit_loss = [] for rows in csv_reader: months.append(rows[0]) profit_loss.append(int(rows[1])) total_months = len(months) total_pl = sum(profit_loss) #determine change in profit/losses to determine average, min, max changes pl_change = [] for x in range(1, len(profit_loss)): pl_change.append(int(profit_loss[x]-int(profit_loss[x-1]))) pl_average = sum(pl_change) / len(pl_change) greatest_increase = max(pl_change) greatest_decrease = min(pl_change) #print results print("Financial Analysis") print("_____________________________") print("Total Months: " + str(total_months)) print("Total: " + "$" + str(total_pl)) print("Average Change: " + "$" + str(pl_average)) print("Greatest Increase In Profit: " + "$" + str(greatest_increase)) print("Greatest Decrease In Profit: " + "$" + str(greatest_decrease)) #export results to text file file = open("analysis.txt", "w") file.write("Financial Analysis" + "\n") file.write("_____________________________" + "\n") file.write("Total Months: " + str(total_months) + "\n") file.write("Total: " + "$" + str(total_pl) + "\n") file.write("Average Change: " + "$" + str(pl_average) + "\n") file.write("Greatest Increase In Profit: " + "$" + str(greatest_increase) + "\n") file.write("Greatest Decrease In Profit: " + "$" + str(greatest_decrease) + "\n")
the-stack_0_14326
from django.apps import apps from django.contrib import admin from django.utils.translation import ugettext_lazy as _ from django.conf import settings from .models import Mail, MailTemplate, Attachment, TemplateAttachment from .tasks import send_asynchronous_mail from .utils import create_and_send_mail from django.core.exceptions import ImproperlyConfigured class TemplateAttachmentInline(admin.TabularInline): model = TemplateAttachment @admin.register(Attachment) class AttachmentAdmin(admin.ModelAdmin): list_display = ('id', 'name') ordering = ('-time_created',) search_fields = ('name', ) readonly_fields = ('time_created', ) @admin.register(MailTemplate) class MailTemplateAdmin(admin.ModelAdmin): def test_mail_template(self, request, queryset): mails_sent = 0 if not settings.DJANGO_SAAS_TEST_EMAIL_ADDRESS: raise ImproperlyConfigured( "You need to add [email protected] to test emails.") for template in queryset: create_and_send_mail( template_name=template.name, context={}, to_address=settings.DJANGO_SAAS_TEST_EMAIL_ADDRESS) mails_sent += 1 if mails_sent == 1: message_bit = _("1 Mail template was") else: message_bit = _("%s Mail templates were") % mails_sent self.message_user(request, "%s tested" % message_bit) test_mail_template.short_description = "Send test mail now" list_display = ('name', 'subject') search_fields = [] ordering = ('name',) actions = [test_mail_template, ] inlines = [TemplateAttachmentInline, ] model_class_name = getattr(settings, "DJANGO_SAAS_EMAIL_MAIL_MODEL", "django_saas_email.mail") model_class = apps.get_model(*model_class_name.split()) @admin.register(model_class) class MailAdmin(admin.ModelAdmin): def send_mail_now(self, request, queryset): mails_sent = 0 for mail in queryset: send_asynchronous_mail(str(mail.id), settings.USE_SENDGRID) mails_sent += 1 if mails_sent == 1: message_bit = _("1 Mail was") else: message_bit = _("%s Mails were") % mails_sent self.message_user(request, "%s sent" % message_bit) send_mail_now.short_description = "Send mail now" list_display = ('id', 'time_created', 'from_address', 'to_address', 'cc_address', 'template', 'subject', 'context',) search_fields = ['from_address', 'to_address', 'cc_address', 'subject', 'context', ] ordering = ('-time_created',) list_filter = ('time_created', 'template') actions = [send_mail_now, ] readonly_fields = ( 'time_created', 'time_sent', 'time_delivered', 'used_backend', 'delivery_mail_id', 'delivery_status')
the-stack_0_14327
# ------------------------------------------------------------------------ # Copyright (c) 2021 megvii-model. All Rights Reserved. # ------------------------------------------------------------------------ # Modified from Deformable DETR (https://github.com/fundamentalvision/Deformable-DETR) # Copyright (c) 2020 SenseTime. All Rights Reserved. # ------------------------------------------------------------------------ # Modified from DETR (https://github.com/facebookresearch/detr) # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # ------------------------------------------------------------------------ """ Plotting utilities to visualize training logs. """ import torch import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from pathlib import Path, PurePath def plot_logs(logs, fields=('class_error', 'loss_bbox_unscaled', 'mAP'), ewm_col=0, log_name='log.txt'): ''' Function to plot specific fields from training log(s). Plots both training and test results. :: Inputs - logs = list containing Path objects, each pointing to individual dir with a log file - fields = which results to plot from each log file - plots both training and test for each field. - ewm_col = optional, which column to use as the exponential weighted smoothing of the plots - log_name = optional, name of log file if different than default 'log.txt'. :: Outputs - matplotlib plots of results in fields, color coded for each log file. - solid lines are training results, dashed lines are test results. ''' func_name = "plot_utils.py::plot_logs" # verify logs is a list of Paths (list[Paths]) or single Pathlib object Path, # convert single Path to list to avoid 'not iterable' error if not isinstance(logs, list): if isinstance(logs, PurePath): logs = [logs] print(f"{func_name} info: logs param expects a list argument, converted to list[Path].") else: raise ValueError(f"{func_name} - invalid argument for logs parameter.\n \ Expect list[Path] or single Path obj, received {type(logs)}") # verify valid dir(s) and that every item in list is Path object for i, dir in enumerate(logs): if not isinstance(dir, PurePath): raise ValueError(f"{func_name} - non-Path object in logs argument of {type(dir)}: \n{dir}") if dir.exists(): continue raise ValueError(f"{func_name} - invalid directory in logs argument:\n{dir}") # load log file(s) and plot dfs = [pd.read_json(Path(p) / log_name, lines=True) for p in logs] fig, axs = plt.subplots(ncols=len(fields), figsize=(16, 5)) for df, color in zip(dfs, sns.color_palette(n_colors=len(logs))): for j, field in enumerate(fields): if field == 'mAP': coco_eval = pd.DataFrame(pd.np.stack(df.test_coco_eval.dropna().values)[:, 1]).ewm(com=ewm_col).mean() axs[j].plot(coco_eval, c=color) else: df.interpolate().ewm(com=ewm_col).mean().plot( y=[f'train_{field}', f'test_{field}'], ax=axs[j], color=[color] * 2, style=['-', '--'] ) for ax, field in zip(axs, fields): ax.legend([Path(p).name for p in logs]) ax.set_title(field) def plot_precision_recall(files, naming_scheme='iter'): if naming_scheme == 'exp_id': # name becomes exp_id names = [f.parts[-3] for f in files] elif naming_scheme == 'iter': names = [f.stem for f in files] else: raise ValueError(f'not supported {naming_scheme}') fig, axs = plt.subplots(ncols=2, figsize=(16, 5)) for f, color, name in zip(files, sns.color_palette("Blues", n_colors=len(files)), names): data = torch.load(f) # precision is n_iou, n_points, n_cat, n_area, max_det precision = data['precision'] recall = data['params'].recThrs scores = data['scores'] # take precision for all classes, all areas and 100 detections precision = precision[0, :, :, 0, -1].mean(1) scores = scores[0, :, :, 0, -1].mean(1) prec = precision.mean() rec = data['recall'][0, :, 0, -1].mean() print(f'{naming_scheme} {name}: mAP@50={prec * 100: 05.1f}, ' + f'score={scores.mean():0.3f}, ' + f'f1={2 * prec * rec / (prec + rec + 1e-8):0.3f}' ) axs[0].plot(recall, precision, c=color) axs[1].plot(recall, scores, c=color) axs[0].set_title('Precision / Recall') axs[0].legend(names) axs[1].set_title('Scores / Recall') axs[1].legend(names) return fig, axs
the-stack_0_14328
""" Module of functions involving great circles (thus assuming spheroid model of the earth) with points given in longitudes and latitudes. """ from __future__ import print_function import math import numpy import numpy.random # Equatorial radius of the earth in kilometers EARTH_ER = 6378.137 # Authalic radius of the earth in kilometers EARTH_AR = 6371.007 # Meridional radius of the earth in kilometers EARTH_MR = 6367.449 # Polar radius of the earth in kilometers EARTH_PR = 6356.752 DEG2RAD = math.pi / 180.0 RAD2DEG = 180.0 / math.pi KM2MI = 0.6213712 MI2KM = 1.609344 def lonlatdistance(pt1lon, pt1lat, pt2lon, pt2lat): """ Compute the great circle distance between two points on a sphere using the haversine formula. Arguments: pt1lon - longitude(s) of the first point pt1lat - latitude(s) of the first point pt2lon - longitude(s) of the second point pt2lat - latitude(s) of the second point Returns: The great circle distance(s) in degrees [0.0, 180.0] """ lon1 = numpy.deg2rad(numpy.asarray(pt1lon, dtype=float)) lat1 = numpy.deg2rad(numpy.asarray(pt1lat, dtype=float)) lon2 = numpy.deg2rad(numpy.asarray(pt2lon, dtype=float)) lat2 = numpy.deg2rad(numpy.asarray(pt2lat, dtype=float)) dellat = numpy.power(numpy.sin(0.5 * (lat2 - lat1)), 2.0) dellon = numpy.cos(lat1) * numpy.cos(lat2) * \ numpy.power(numpy.sin(0.5 * (lon2 - lon1)), 2.0) dist = 2.0 * numpy.arcsin(numpy.power(dellon + dellat, 0.5)) return numpy.rad2deg(dist) def lonlatintersect(gc1lon1, gc1lat1, gc1lon2, gc1lat2, gc2lon1, gc2lat1, gc2lon2, gc2lat2): """ Compute the intersections of two great circles. Uses the line of intersection between the two planes of the great circles. Arguments: gc1lon1 - longitude(s) of the first point on the first great circle gc1lat1 - latitude(s) of the first point on the first great circle gc1lon2 - longitude(s) of the second point on the first great circle gc1lat2 - latitude(s) of the second point on the first great circle gc2lon1 - longitude(s) of the first point on the second great circle gc2lat1 - latitude(s) of the first point on the second great circle gc2lon2 - longitude(s) of the second point on the second great circle gc2lat2 - latitude(s) of the second point on the second great circle Returns: ( (pt1lon, pt1lat), (pt2lon, pt2lat) ) - the longitudes and latitudes of the two intersections of the two great circles. NaN will be returned for both longitudes and latitudes if a great circle is not well-defined, or the two great-circles coincide. """ # Minimum acceptable norm of a cross product # arcsin(1.0E-7) = 0.02" or 0.64 m on the Earth MIN_NORM = 1.0E-7 # Convert longitudes and latitudes to points on a unit sphere # The "+ 0.0 * ptlonr" is to broadcast gcz if needed ptlonr = numpy.deg2rad(numpy.asarray(gc1lon1, dtype=float)) ptlatr = numpy.deg2rad(numpy.asarray(gc1lat1, dtype=float)) gcz = numpy.sin(ptlatr) + 0.0 * ptlonr coslat = numpy.cos(ptlatr) gcy = coslat * numpy.sin(ptlonr) gcx = coslat * numpy.cos(ptlonr) gc1xyz1 = numpy.array([gcx, gcy, gcz]) # ptlonr = numpy.deg2rad(numpy.asarray(gc1lon2, dtype=float)) ptlatr = numpy.deg2rad(numpy.asarray(gc1lat2, dtype=float)) gcz = numpy.sin(ptlatr) + 0.0 * ptlonr coslat = numpy.cos(ptlatr) gcy = coslat * numpy.sin(ptlonr) gcx = coslat * numpy.cos(ptlonr) gc1xyz2 = numpy.array([gcx, gcy, gcz]) # ptlonr = numpy.deg2rad(numpy.asarray(gc2lon1, dtype=float)) ptlatr = numpy.deg2rad(numpy.asarray(gc2lat1, dtype=float)) gcz = numpy.sin(ptlatr) + 0.0 * ptlonr coslat = numpy.cos(ptlatr) gcy = coslat * numpy.sin(ptlonr) gcx = coslat * numpy.cos(ptlonr) gc2xyz1 = numpy.array([gcx, gcy, gcz]) # ptlonr = numpy.deg2rad(numpy.asarray(gc2lon2, dtype=float)) ptlatr = numpy.deg2rad(numpy.asarray(gc2lat2, dtype=float)) gcz = numpy.sin(ptlatr) + 0.0 * ptlonr coslat = numpy.cos(ptlatr) gcy = coslat * numpy.sin(ptlonr) gcx = coslat * numpy.cos(ptlonr) gc2xyz2 = numpy.array([gcx, gcy, gcz]) # Get the unit-perpendicular to the plane going through the # origin and the two points on each great circle. If the # norm of the cross product is too small, the great circle # is not well-defined, so zero it out so NaN is produced. gc1pp = numpy.cross(gc1xyz1, gc1xyz2, axis=0) norm = (gc1pp[0]**2 + gc1pp[1]**2 + gc1pp[2]**2)**0.5 if len(norm.shape) == 0: if numpy.fabs(norm) < MIN_NORM: norm = 0.0 else: norm[ numpy.fabs(norm) < MIN_NORM ] = 0.0 gc1pp /= norm gc2pp = numpy.cross(gc2xyz1, gc2xyz2, axis=0) norm = (gc2pp[0]**2 + gc2pp[1]**2 + gc2pp[2]**2)**0.5 if len(norm.shape) == 0: if numpy.fabs(norm) < MIN_NORM: norm = 0.0 else: norm[ numpy.fabs(norm) < MIN_NORM ] = 0.0 gc2pp /= norm # The line of intersection of the two planes is perpendicular # to the two plane-perpendiculars and goes through the origin. # Points of intersection are the points on this line one unit # from the origin. If the norm of the cross product is too # small, the two planes are practically indistinguishable from # each other (coincide). pt1xyz = numpy.cross(gc1pp, gc2pp, axis=0) norm = (pt1xyz[0]**2 + pt1xyz[1]**2 + pt1xyz[2]**2)**0.5 if len(norm.shape) == 0: if numpy.fabs(norm) < MIN_NORM: norm = 0.0 else: norm[ numpy.fabs(norm) < MIN_NORM ] = 0.0 pt1xyz /= norm pt2xyz = -1.0 * pt1xyz # Convert back to longitudes and latitudes pt1lats = numpy.rad2deg(numpy.arcsin(pt1xyz[2])) pt1lons = numpy.rad2deg(numpy.arctan2(pt1xyz[1], pt1xyz[0])) pt2lats = numpy.rad2deg(numpy.arcsin(pt2xyz[2])) pt2lons = numpy.rad2deg(numpy.arctan2(pt2xyz[1], pt2xyz[0])) return ( (pt1lons, pt1lats), (pt2lons, pt2lats) ) def lonlatfwdpt(origlon, origlat, endlon, endlat, fwdfact): """ Find the longitude and latitude of a point that is a given factor times the distance along the great circle from an origination point to an ending point. Note that the shorter great circle arc from the origination point to the ending point is always used. If O is the origination point, E is the ending point, and P is the point returned from this computation, a factor value of: 0.5: P bisects the great circle arc between O and E 2.0: E bisects the great circle arc between O and P -1.0: O bisects the great circle arc between P and E Arguments: origlon - longitude(s) of the origination point origlat - latitude(s) of the origination point endlon - longitude(s) of the ending point endlat - latitude(s) of the ending point fwdfact - forward distance factor(s) Returns: (ptlon, ptlat) - longitude and latitude of the computed point(s). NaN will be returned for both the longitude and latitude if the great circle is not well-defined. """ # Minimum acceptable norm of a cross product # arcsin(1.0E-7) = 0.02" or 0.64 m on the Earth MIN_NORM = 1.0E-7 # Convert longitudes and latitudes to points on a unit sphere # The "+ 0.0 * ptlonr" is to broadcast gcz if needed ptlonr = numpy.deg2rad(numpy.asarray(origlon, dtype=float)) ptlatr = numpy.deg2rad(numpy.asarray(origlat, dtype=float)) gcz = numpy.sin(ptlatr) + 0.0 * ptlonr coslat = numpy.cos(ptlatr) gcy = coslat * numpy.sin(ptlonr) gcx = coslat * numpy.cos(ptlonr) origxyz = numpy.array([gcx, gcy, gcz]) # ptlonr = numpy.deg2rad(numpy.asarray(endlon, dtype=float)) ptlatr = numpy.deg2rad(numpy.asarray(endlat, dtype=float)) gcz = numpy.sin(ptlatr) + 0.0 * ptlonr coslat = numpy.cos(ptlatr) gcy = coslat * numpy.sin(ptlonr) gcx = coslat * numpy.cos(ptlonr) endxyz = numpy.array([gcx, gcy, gcz]) # Determine the rotation matrix about the origin that takes # origxyz to (1,0,0) (equator and prime meridian) and endxyz # to (x,y,0) with y > 0 (equator in eastern hemisphere). # # The first row of the matrix is origxyz. # # The third row of the matrix is the normalized cross product # of origxyz and endxyz. (The great circle plane perpendicular.) # If the norm of this cross product is too small, the great # circle is not well-defined, so zero it out so NaN is produced. gcpp = numpy.cross(origxyz, endxyz, axis=0) norm = (gcpp[0]**2 + gcpp[1]**2 + gcpp[2]**2)**0.5 if len(norm.shape) == 0: if numpy.fabs(norm) < MIN_NORM: norm = 0.0 else: norm[ numpy.fabs(norm) < MIN_NORM ] = 0.0 gcpp /= norm # The second row of the matrix is the cross product of the # third row (gcpp) and the first row (origxyz). This will # have norm 1.0 since gcpp and origxyz are perpendicular # unit vectors. fwdax = numpy.cross(gcpp, origxyz, axis=0) # Get the coordinates of the rotated end point. endtrx = origxyz[0] * endxyz[0] + origxyz[1] * endxyz[1] + origxyz[2] * endxyz[2] endtry = fwdax[0] * endxyz[0] + fwdax[1] * endxyz[1] + fwdax[2] * endxyz[2] # Get the angle along the equator of the rotated end point, multiply # by the given factor, and convert this new angle back to coordinates. fwdang = numpy.arctan2(endtry, endtrx) fwdang *= numpy.asarray(fwdfact, dtype=float) fwdtrx = numpy.cos(fwdang) fwdtry = numpy.sin(fwdang) # Rotate the new point back to the original coordinate system # The inverse rotation matrix is the transpose of that matrix. fwdx = origxyz[0] * fwdtrx + fwdax[0] * fwdtry fwdy = origxyz[1] * fwdtrx + fwdax[1] * fwdtry fwdz = origxyz[2] * fwdtrx + fwdax[2] * fwdtry # Convert the point coordinates into longitudes and latitudes ptlat = numpy.rad2deg(numpy.arcsin(fwdz)) ptlon = numpy.rad2deg(numpy.arctan2(fwdy, fwdx)) return (ptlon, ptlat) def equidistscatter(min_lon, min_lat, max_lon, max_lat, min_gcdist, dfactor=5.0): """ Create a roughly equidistant set of points in a specified region. This is done by creating a dense "grid" of points, then repeatedly randomly selecting a point from that collection and eliminating points too close to that selected point. For the special cases where min_lon and max_lon, or min_lat and max_lat, are very close relative to min_gcdist, the maximum number of evenly spaced points that can be put on the line described is computed and assigned. Arguments: min_lon - minimum longitude of the region min_lat - minimum latitude of the region max_lon - maximum longitude of the region max_lat - maximum latitude of the region min_gcdist - minimum distance, in great circle degrees, between returned points dfactor - the number of axis points in the dense "grid" compared to the desired "grid". Larger value will generally increase the uniformity of the returned points but will also increase the time required for the calculation. Returns: (pt_lons, pt_lats) - ptlons is an array of longitudes and ptlats is an array of latitudes of (somewhat random) points in the specified region that are roughly equidistant from each other but not closer than min_gcdist to each other. """ lonmin = float(min_lon) lonmax = float(max_lon) if math.fabs(lonmax - lonmin) > 180.0: raise ValueError("Difference between max_lon and min_lon is more than 180.0") latmin = float(min_lat) if math.fabs(latmin) > 90.0: raise ValueError("min_lat is not in [-90.0,90.0]") latmax = float(max_lat) if math.fabs(latmax) > 90.0: raise ValueError("max_lat is not in [-90.0,90.0]") mindeg = float(min_gcdist) if (mindeg <= 0.0) or (mindeg >= 90.0): raise ValueError("min_gcdist is not in (0.0,90.0)") dfact = float(dfactor) if dfact < 1.0: raise ValueError("dfactor is less than one"); # If lonmin is relatively close to lonmax, directly # compute the points. Distance on a meridian is the # difference in latitudes. if math.fabs(lonmax - lonmin) < (0.05 * mindeg): lon = 0.5 * (lonmax + lonmin) dellat = mindeg numlats = int( (math.fabs(latmax - latmin) + dellat) / dellat ) if latmax < latmin: dellat *= -1.0 hdiff = 0.5 * ( (latmax - latmin) - (numlats - 1) * dellat ) latvals = numpy.linspace(latmin + hdiff, latmax - hdiff, numlats) lonvals = numpy.ones((numlats,), dtype=float) * lon return (lonvals, latvals) # If latmin is relatively close to latmax, directly # compute the points. Distance depends on the latitude # as well as the difference in longitudes. if math.fabs(latmax - latmin) < (0.05 * mindeg): lat = 0.5 * (latmax + latmin) numer = math.sin(0.5 * DEG2RAD * mindeg) denom = math.cos(lat * DEG2RAD) if numer < denom: dellon = math.asin(numer / denom) * 2.0 * RAD2DEG numlons = int( (math.fabs(lonmax - lonmin) + dellon) / dellon ) else: # everything too close to a pole - just select one point dellon = 180.0 numlons = 1 if lonmax < lonmin: dellon *= -1.0 hdiff = 0.5 * ( (lonmax - lonmin) - (numlons - 1) * dellon ) lonvals = numpy.linspace(lonmin + hdiff, lonmax - hdiff, numlons) latvals = numpy.ones((numlons,), dtype=float) * lat return (lonvals, latvals) # Get the number of latitudes for the dense grid # Always use latmin and latmax, even if they are too close dellat = mindeg / dfact numlats = int( (math.fabs(latmax - latmin) + dellat) / dellat ) if numlats < 2: numlats = 2 latvals = numpy.linspace(latmin, latmax, numlats) # Create the dense grid of longitudes and latitudes denslons = [ ] denslats = [ ] numer = math.sin(0.5 * DEG2RAD * mindeg / dfact) for lat in latvals: # Get the number of longitudes for the dense grid # Always use lonmin and lonmax, even if they are too close denom = math.cos(lat * DEG2RAD) if numer < denom: dellon = math.asin(numer / denom) * 2.0 * RAD2DEG numlons = int( (math.fabs(lonmax - lonmin) + dellon) / dellon ) if numlons < 2: numlons = 2 else: # too close to a pole numlons = 2 lonvals = numpy.linspace(lonmin, lonmax, numlons) # Add each lon,lat pair to the dense grid for lon in lonvals: denslons.append(lon) denslats.append(lat) denslons = numpy.asarray(denslons) denslats = numpy.asarray(denslats) # create a random permutation of the indices to use for the selection order availinds = numpy.random.permutation(len(denslats)) selectinds = [ ] while len(availinds) > 0: # Get the index of the next available point ind = availinds[0] selectinds.append(ind) # Compute the distance of the available points to the selected point gcdists = lonlatdistance(denslons[ind], denslats[ind], denslons[availinds], denslats[availinds]) # Remove indices of any available points too close to this point availinds = availinds[ gcdists >= mindeg ] # sort the selected indices so the longitudes and latitudes have some order selectinds = numpy.sort(selectinds) # get the selected longitudes and latitudes selectlons = denslons[selectinds] selectlats = denslats[selectinds] # return the selected longitudes and latitudes arrays return (selectlons, selectlats) # # The following is just for testing "by-hand" and to serve as examples. # if __name__ == "__main__": # Test lonlatdistance tenten = numpy.linspace(0.0,90.0,10) # On the equator, distance = delta longitude dists = lonlatdistance(0.0, 0.0, tenten, 0.0) if not numpy.allclose(dists, tenten): raise ValueError("Equatorial distances FAIL; expect: %s; found: %s" % (str(tenten), str(dists))) print("Equatorial distance: PASS") print() # On any meridian, distance = delta latitude dists = lonlatdistance(20.0, 0.0, 20.0, tenten) if not numpy.allclose(dists, tenten): raise ValueError("Meridional distances FAIL; expect: %s; found: %s" % (str(tenten), str(dists))) print("Meridional distance: PASS") print() # Play with some distances between cities (deg W, deg N) seattle = (122.0 + (20.0 / 60.0), 47.0 + (37.0 / 60.0)) portland = (122.0 + (41.0 / 60.0), 45.0 + (31.0 / 60.0)) spokane = (117.0 + (26.0 / 60.0), 47.0 + (40.0 / 60.0)) austin = ( 97.0 + (45.0 / 60.0), 30.0 + (15.0 / 60.0)) houston = ( 95.0 + (23.0 / 60.0), 29.0 + (46.0 / 60.0)) dallas = ( 96.0 + (48.0 / 60.0), 32.0 + (47.0 / 60.0)) lons = ( seattle[0], portland[0], spokane[0] ) lons1, lons2 = numpy.meshgrid(lons, lons) lats = ( seattle[1], portland[1], spokane[1] ) lats1, lats2 = numpy.meshgrid(lats, lats) dists = lonlatdistance(lons1, lats1, lons2, lats2) dists *= DEG2RAD * EARTH_MR * KM2MI expected = [ [ 0, 146, 228 ], [ 146, 0, 290 ], [ 228, 290, 0 ] ] if not numpy.allclose(dists, expected, rtol=0.01): raise ValueError("Seattle, Portland, Spokane distance matrix in miles\n" \ " expect: %s\n" " found: %s" % (str(expected), str(dists))) print("Seattle, Portland, Spokane distance matrix: PASS") print() lons = ( austin[0], houston[0], dallas[0] ) lons1, lons2 = numpy.meshgrid(lons, lons) lats = ( austin[1], houston[1], dallas[1] ) lats1, lats2 = numpy.meshgrid(lats, lats) dists = lonlatdistance(lons1, lats1, lons2, lats2) dists *= DEG2RAD * EARTH_MR * KM2MI expected = [ [ 0, 145, 184 ], [ 145, 0, 224 ], [ 184, 224, 0 ] ] if not numpy.allclose(dists, expected, rtol=0.01): raise ValueError("Austin, Houston, Dallas distance matrix in miles\n" \ " expect: %s\n" " found: %s" % (str(expected), str(dists))) print("Austin, Houston, Dallas distance matrix: PASS") print() # Test lonlatintersect # Intersections of the equator with meridians ((pt1lons, pt1lats), (pt2lons, pt2lats)) = \ lonlatintersect(0.0, 0.0, tenten, 0.0, \ 0.0, -90.0, tenten, tenten) # First of the first great circle and last of the second great circle are not well-defined expvalid = numpy.array([ True ] + ([ False ]*8) + [ True ]) validity = numpy.isnan(pt1lons) if not numpy.allclose(validity, expvalid): raise ValueError("Validity of pt1lons: expect: %s, found: %s" % \ (str(expvalid), str(validity))) validity = numpy.isnan(pt1lats) if not numpy.allclose(validity, expvalid): raise ValueError("Validity of pt1lats: expect: %s, found: %s" % \ (str(expvalid), str(validity))) validity = numpy.isnan(pt2lons) if not numpy.allclose(validity, expvalid): raise ValueError("Validity of pt2lons: expect: %s, found: %s" % \ (str(expvalid), str(validity))) validity = numpy.isnan(pt2lats) if not numpy.allclose(validity, expvalid): raise ValueError("Validity of pt2lats: expect: %s, found: %s" % \ (str(expvalid), str(validity))) if not numpy.allclose(pt1lons[1:-1], tenten[1:-1]): raise ValueError("Valid pt1lons: expect: %s, found: %s" %\ (str(tenten[1:-1]), str(pt1lons[1:-1]))) if not numpy.allclose(pt1lats[1:-1], 0.0): raise ValueError("Valid pt1lats: expect: all zeros, found: %s" %\ str(pt1lats[1:-1])) if not numpy.allclose(pt2lons[1:-1], tenten[1:-1]-180.0): raise ValueError("Valid pt2lons: expect: %s, found %s" %\ (str(tenten[1:-1]-180.0), str(pt2lons[1:-1]))) if not numpy.allclose(pt2lats[1:-1], 0.0): raise ValueError("Valid pt2lats: expect: all zeros, found %s" %\ str(pt2lats[1:-1])) print("Equator/meridian intersections: PASS") print() ((pt1lons, pt1lats), (pt2lons, pt2lats)) = \ lonlatintersect( 0.0, 89.99, 180.0, 89.99, 90.0, 89.99, -90.0, 89.99) # longitudes could actually be anything, but this algorithm gives 45.0 and -135.0 if (abs(pt1lons - 45.0) > 1.0E-8) or (abs(pt1lats - 90.0) > 1.0E-8) or \ (abs(pt2lons + 135.0) > 1.0E-8) or (abs(pt2lats + 90.0) > 1.0E-8): raise ValueError("Mini north pole cross intersections: expect: %s, found %s" % \ (str([45.0, 90.0, 135.0, -90.0]), str([float(pt1lons), float(pt1lats), float(pt2lons), float(pt2lats)]))) print("Mini north pole cross intersections: PASS") print() # Test lonlatfwdpt lons, lats = lonlatfwdpt(portland[0], portland[1], spokane[0], spokane[1], 0.0) if not ( numpy.allclose(lons, portland[0]) and numpy.allclose(lats, portland[1]) ): raise ValueError("Zero forward from portland to spokane: expect %s, found %s" % \ (str(portland), str((lons, lats)))) print("Zero forward: PASS") print() lons, lats = lonlatfwdpt(portland[0], portland[1], spokane[0], spokane[1], 1.0) if not ( numpy.allclose(lons, spokane[0]) and numpy.allclose(lats, spokane[1]) ): raise ValueError("One forward from portland to spokane: expect %s, found %s" % \ (str(spokane), str((lons, lats)))) print("One forward: PASS") print() lons, lats = lonlatfwdpt(0.0, 0.0, tenten, 0.0, 3.0) expectlons = 3.0 * tenten expectlons[ expectlons > 180.0 ] -= 360.0 # The first great circle is not well-defined expvalid = numpy.array([ True ] + ([ False ]*9)) validity = numpy.isnan(lons) if not numpy.allclose(validity, expvalid): raise ValueError("Validity of fwd equator lons: expect: %s, found: %s" % \ (str(expvalid), str(validity))) validity = numpy.isnan(lats) if not numpy.allclose(validity, expvalid): raise ValueError("Validity of fwd equator lats: expect: %s, found: %s" % \ (str(expvalid), str(validity))) if not numpy.allclose(lons[1:], expectlons[1:]): raise ValueError("Valid fwd equator lons: expect: %s, found: %s" %\ (str(expectlons[1:]), str(lons[1:]))) if not numpy.allclose(lats[1:], 0.0): raise ValueError("Valid fwd equator lats: expect: all zeros, found: %s" %\ str(lats[1:])) print("Fwd equator: PASS") print() lons, lats = lonlatfwdpt(0.0, -90.0, 0.0, tenten, 2.0) # First longitude could be anything, but this algorithm gives 0.0 expectlats = 90.0 - 2.0 * tenten # The last great circle is not well-defined expvalid = numpy.array(([ False ]*9) + [ True ]) validity = numpy.isnan(lons) if not numpy.allclose(validity, expvalid): raise ValueError("Validity of fwd prime meridian lons: expect: %s, found: %s" % \ (str(expvalid), str(validity))) validity = numpy.isnan(lats) if not numpy.allclose(validity, expvalid): raise ValueError("Validity of fwd prime meridian lats: expect: %s, found: %s" % \ (str(expvalid), str(validity))) # First longitude could be anything so ignore it # Others should be either 180 == -180 poslons = lons[1:-1] poslons[(poslons < 0.0)] += 360.0 if not numpy.allclose(poslons, 180.0): raise ValueError("Valid fwd prime meridian lons: expect: all 180.0 or -180.0, found: %s" %\ str(poslons)) if not numpy.allclose(lats[:-1], expectlats[:-1]): raise ValueError("Valid fwd prime meridian lats: expect: %s, found: %s" %\ (str(expectlats[:-1]), str(lats[:-1]))) print("Fwd prime meridian: PASS") print() lons, lats = lonlatfwdpt(0.0, 0.0, 45.0, 45.0, (2.0, 3.0, 4.0, 5.0)) expectlons = [ 135.0, 180.0, -135.0, -45.0 ] expectlats = [ 45.0, 0.0, -45.0, -45.0 ] if not numpy.allclose(lons, expectlons): raise ValueError("Fwd diagonal lons: expect: %s, found: %s" %\ (str(expectlons), str(lons))) if not numpy.allclose(lats, expectlats): raise ValueError("Fwd diagonal lats: expect: %s, found: %s" %\ (str(expectlats), str(lats))) print("Fwd diagonal: PASS") print() # Test equdistscatter lons, lats = equidistscatter(0.0, 0.0, 0.0, 0.0, 1.0) if (lons.shape != (1,)) or (lons[0] != 0.0) or \ (lats.shape != (1,)) or (lats[0] != 0.0): raise ValueError("Equidistscatter single-point FAIL; \n" \ " expect: ([0.0],[0.0]), \n" \ " found (%s,%s)" % (str(lons), str(lats))) print("Equidistscatter single-point PASS") print() lons, lats = equidistscatter(0.0, 90.0, 90.0, 90.0, 1.0) if (lons.shape != (1,)) or (lons[0] != 45.0) or \ (lats.shape != (1,)) or (lats[0] != 90.0): raise ValueError("Equidistscatter pole-point FAIL; \n" \ " expect: ([45.0],[90.0]), \n" \ " found (%s,%s)" % (str(lons), str(lats))) print("Equidistscatter pole-point PASS") print() lons, lats = equidistscatter(0.0, 0.0, 90.0, 0.0, 1.0) if not numpy.all( lats == 0.0 ): raise ValueError("Equidistscatter equatorial FAIL; \n" \ " expect: all zero latitudes, \n" \ " found %s" % str(lats)) deltas = lons[1:] - lons[:-1] if not numpy.all( deltas >= 1.0 ): raise ValueError("Equidistscatter equatorial FAIL; \n" \ " expect: longitudes monotonic increasing by at least 1.0 degrees, \n" \ " found %s" % str(lons)) if not numpy.all( deltas < 1.0001 ): raise ValueError("Equidistscatter equatorial FAIL; \n" \ " expect: longitudes monotonic increasing by less than 1.0001 degrees, \n" \ " found %s" % str(lons)) print("Equidistscatter equatorial PASS") print() lons, lats = equidistscatter(0.0, 0.0, 0.0, 90.0, 1.0) if not numpy.all( lons == 0.0 ): raise ValueError("Equidistscatter meridional FAIL; \n" \ " expect: all zero longitudes, \n" \ " found %s" % str(lons)) deltas = lats[1:] - lats[:-1] if not numpy.all( deltas >= 1.0 ): raise ValueError("Equidistscatter meridional FAIL; \n" \ " expect: latitudes monotonic increasing by at least 1.0 degrees, \n" \ " found %s" % str(lats)) if not numpy.all( deltas < 1.0001 ): raise ValueError("Equidistscatter meridional FAIL; \n" \ " expect: latitudes monotonic increasing by less than 1.0001 degrees, \n" \ " found %s" % str(lats)) print("Equidistscatter meridional PASS") print() lons, lats = equidistscatter(0.0, 0.0, 90.0, 90.0, 5.0, 15.0) nndists = [ ] for j in range(len(lons)): gcdists = lonlatdistance(lons[j], lats[j], lons, lats) gcdists[j] = 180.0 if not numpy.all( gcdists >= 5.0 ): raise ValueError("Equidistscatter region FAIL; \n" \ " expect distances[%d] >= 2.0, \n" \ " found %s" % (j, str(gcdists))) nndists.append(gcdists.min()) nndists = numpy.array(nndists) if not numpy.all( nndists < 10.0 ): raise ValueError("Equidistscatter region FAIL; \n" \ " expect nearest neighbor distances < 10.0, \n" \ " found %s" % str(nndists)) print("Nearest neighbor distances: \n" \ " min = %f, max = %f, mean = %f, stdev = %f" % \ (nndists.min(), nndists.max(), nndists.mean(), nndists.std())) print("Equidistscatter region PASS") print()
the-stack_0_14329
from django.conf import settings from django.db import models from django.db.models.signals import pre_save from django.dispatch import receiver from proso.django.models import disable_for_loaddata from proso_flashcards.models import Term, Context class ExtendedTerm(Term): extra_info = models.TextField() def to_json(self, nested=False): json = Term.to_json(self, nested) json["extra-info"] = self.extra_info return json @staticmethod def load_data(data, term): if 'extra-info' in data: term.extra_info = data["extra-info"] def dump_data(self, term): if self.extra_info: term["extra-info"] = self.extra_info class ExtendedContext(Context): extra_info = models.TextField() def to_json(self, **kwargs): json = Context.to_json(self, **kwargs) return json @staticmethod def load_data(data, context): if 'extra-info' in data: context.extra_info = data["extra-info"] def dump_data(self, context): if self.extra_info: context["extra-info"] = self.extra_info settings.PROSO_FLASHCARDS["term_extension"] = ExtendedTerm settings.PROSO_FLASHCARDS["context_extension"] = ExtendedContext @receiver(pre_save, sender=ExtendedTerm) @receiver(pre_save, sender=ExtendedContext) @disable_for_loaddata def create_items(sender, instance, **kwargs): pre_save.send(sender=sender.__bases__[0], instance=instance)
the-stack_0_14331
# https://github.com/wolny/pytorch-3dunet/tree/master/pytorch3dunet/unet3d import argparse import torch import torch.utils.data import torch.nn as nn import torch.optim as optim from torch.autograd import Variable from torchvision import datasets, transforms import torch.nn.functional as F import os import random import torch.utils.data import torchvision.utils as vutils import torch.backends.cudnn as cudnn import torch import torch.nn as nn import importlib import torch.nn as nn from model.unet3d.buildingblocks import Encoder, Decoder, DoubleConv, ExtResNetBlock from model.unet3d.utils import number_of_features_per_level class Abstract3DUNet(nn.Module): """ Base class for standard and residual UNet. Args: in_channels (int): number of input channels out_channels (int): number of output segmentation masks; Note that that the of out_channels might correspond to either different semantic classes or to different binary segmentation mask. It's up to the user of the class to interpret the out_channels and use the proper loss criterion during training (i.e. CrossEntropyLoss (multi-class) or BCEWithLogitsLoss (two-class) respectively) f_maps (int, tuple): number of feature maps at each level of the encoder; if it's an integer the number of feature maps is given by the geometric progression: f_maps ^ k, k=1,2,3,4 final_sigmoid (bool): if True apply element-wise nn.Sigmoid after the final 1x1 convolution, otherwise apply nn.Softmax. MUST be True if nn.BCELoss (two-class) is used to train the model. MUST be False if nn.CrossEntropyLoss (multi-class) is used to train the model. basic_module: basic model for the encoder/decoder (DoubleConv, ExtResNetBlock, ....) layer_order (string): determines the order of layers in `SingleConv` module. e.g. 'crg' stands for Conv3d+ReLU+GroupNorm3d. See `SingleConv` for more info f_maps (int, tuple): if int: number of feature maps in the first conv layer of the encoder (default: 64); if tuple: number of feature maps at each level num_groups (int): number of groups for the GroupNorm num_levels (int): number of levels in the encoder/decoder path (applied only if f_maps is an int) is_segmentation (bool): if True (semantic segmentation problem) Sigmoid/Softmax normalization is applied after the final convolution; if False (regression problem) the normalization layer is skipped at the end testing (bool): if True (testing mode) the `final_activation` (if present, i.e. `is_segmentation=true`) will be applied as the last operation during the forward pass; if False the model is in training mode and the `final_activation` (even if present) won't be applied; default: False conv_kernel_size (int or tuple): size of the convolving kernel in the basic_module pool_kernel_size (int or tuple): the size of the window conv_padding (int or tuple): add zero-padding added to all three sides of the input """ def __init__(self, in_channels, out_channels, final_sigmoid, basic_module, f_maps=64, layer_order='gcr', num_groups=8, num_levels=4, is_segmentation=True, testing=False, conv_kernel_size=3, pool_kernel_size=2, conv_padding=1, **kwargs): super(Abstract3DUNet, self).__init__() self.testing = testing if isinstance(f_maps, int): f_maps = number_of_features_per_level(f_maps, num_levels=num_levels) # create encoder path consisting of Encoder modules. Depth of the encoder is equal to `len(f_maps)` encoders = [] for i, out_feature_num in enumerate(f_maps): if i == 0: encoder = Encoder(in_channels, out_feature_num, apply_pooling=False, # skip pooling in the firs encoder basic_module=basic_module, conv_layer_order=layer_order, conv_kernel_size=conv_kernel_size, num_groups=num_groups, padding=conv_padding) else: # TODO: adapt for anisotropy in the data, i.e. use proper pooling kernel to make the data isotropic after 1-2 pooling operations encoder = Encoder(f_maps[i - 1], out_feature_num, basic_module=basic_module, conv_layer_order=layer_order, conv_kernel_size=conv_kernel_size, num_groups=num_groups, pool_kernel_size=pool_kernel_size, padding=conv_padding) encoders.append(encoder) self.encoders = nn.ModuleList(encoders) # create decoder path consisting of the Decoder modules. The length of the decoder is equal to `len(f_maps) - 1` decoders = [] reversed_f_maps = list(reversed(f_maps)) for i in range(len(reversed_f_maps) - 1): if basic_module == DoubleConv: in_feature_num = reversed_f_maps[i] + reversed_f_maps[i + 1] else: in_feature_num = reversed_f_maps[i] out_feature_num = reversed_f_maps[i + 1] # TODO: if non-standard pooling was used, make sure to use correct striding for transpose conv # currently strides with a constant stride: (2, 2, 2) decoder = Decoder(in_feature_num, out_feature_num, basic_module=basic_module, conv_layer_order=layer_order, conv_kernel_size=conv_kernel_size, num_groups=num_groups, padding=conv_padding) decoders.append(decoder) self.decoders = nn.ModuleList(decoders) # in the last layer a 1×1 convolution reduces the number of output # channels to the number of labels self.final_conv = nn.Conv3d(f_maps[0], out_channels, 1) if is_segmentation: # semantic segmentation problem if final_sigmoid: self.final_activation = nn.Sigmoid() else: self.final_activation = nn.Softmax(dim=1) else: # regression problem self.final_activation = None def forward(self, x): # encoder part encoders_features = [] for encoder in self.encoders: x = encoder(x) # reverse the encoder outputs to be aligned with the decoder encoders_features.insert(0, x) # remove the last encoder's output from the list # !!remember: it's the 1st in the list encoders_features = encoders_features[1:] # decoder part for decoder, encoder_features in zip(self.decoders, encoders_features): # pass the output from the corresponding encoder and the output # of the previous decoder x = decoder(encoder_features, x) x = self.final_conv(x) # apply final_activation (i.e. Sigmoid or Softmax) only during prediction. During training the network outputs # logits and it's up to the user to normalize it before visualising with tensorboard or computing validation metric if self.testing and self.final_activation is not None: x = self.final_activation(x) return x class UNet3D(Abstract3DUNet): """ 3DUnet model from `"3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation" <https://arxiv.org/pdf/1606.06650.pdf>`. Uses `DoubleConv` as a basic_module and nearest neighbor upsampling in the decoder """ def __init__(self, in_channels, out_channels, final_sigmoid=True, f_maps=64, layer_order='gcr', num_groups=8, num_levels=4, is_segmentation=True, conv_padding=1, **kwargs): super(UNet3D, self).__init__(in_channels=in_channels, out_channels=out_channels, final_sigmoid=final_sigmoid, basic_module=DoubleConv, f_maps=f_maps, layer_order=layer_order, num_groups=num_groups, num_levels=num_levels, is_segmentation=is_segmentation, conv_padding=conv_padding, **kwargs) class ResidualUNet3D(Abstract3DUNet): """ Residual 3DUnet model implementation based on https://arxiv.org/pdf/1706.00120.pdf. Uses ExtResNetBlock as a basic building block, summation joining instead of concatenation joining and transposed convolutions for upsampling (watch out for block artifacts). Since the model effectively becomes a residual net, in theory it allows for deeper UNet. """ def __init__(self, in_channels, out_channels, final_sigmoid=True, f_maps=64, layer_order='gcr', num_groups=8, num_levels=5, is_segmentation=True, conv_padding=1, **kwargs): super(ResidualUNet3D, self).__init__(in_channels=in_channels, out_channels=out_channels, final_sigmoid=final_sigmoid, basic_module=ExtResNetBlock, f_maps=f_maps, layer_order=layer_order, num_groups=num_groups, num_levels=num_levels, is_segmentation=is_segmentation, conv_padding=conv_padding, **kwargs) class UNet2D(Abstract3DUNet): """ Just a standard 2D Unet. Arises naturally by specifying conv_kernel_size=(1, 3, 3), pool_kernel_size=(1, 2, 2). """ def __init__(self, in_channels, out_channels, final_sigmoid=True, f_maps=64, layer_order='gcr', num_groups=8, num_levels=4, is_segmentation=True, conv_padding=1, **kwargs): if conv_padding == 1: conv_padding = (0, 1, 1) super(UNet2D, self).__init__(in_channels=in_channels, out_channels=out_channels, final_sigmoid=final_sigmoid, basic_module=DoubleConv, f_maps=f_maps, layer_order=layer_order, num_groups=num_groups, num_levels=num_levels, is_segmentation=is_segmentation, conv_kernel_size=(1, 3, 3), pool_kernel_size=(1, 2, 2), conv_padding=conv_padding, **kwargs) class First3D(nn.Module): def __init__(self, in_channels, middle_channels, out_channels, dropout=False): super(First3D, self).__init__() layers = [ nn.Conv3d(in_channels, middle_channels, kernel_size=3, padding=1), nn.BatchNorm3d(middle_channels), nn.ReLU(inplace=True), nn.Conv3d(middle_channels, out_channels, kernel_size=3, padding=1), nn.BatchNorm3d(out_channels), nn.ReLU(inplace=True) ] if dropout: assert 0 <= dropout <= 1, 'dropout must be between 0 and 1' layers.append(nn.Dropout3d(p=dropout)) self.first = nn.Sequential(*layers) def forward(self, x): return self.first(x) class Encoder3D(nn.Module): def __init__( self, in_channels, middle_channels, out_channels, dropout=False, downsample_kernel=2 ): super(Encoder3D, self).__init__() layers = [ nn.MaxPool3d(kernel_size=downsample_kernel), nn.Conv3d(in_channels, middle_channels, kernel_size=3, padding=1), nn.BatchNorm3d(middle_channels), nn.ReLU(inplace=True), nn.Conv3d(middle_channels, out_channels, kernel_size=3, padding=1), nn.BatchNorm3d(out_channels) # allow output neg # nn.ReLU(inplace=True) ] if dropout: assert 0 <= dropout <= 1, 'dropout must be between 0 and 1' layers.append(nn.Dropout3d(p=dropout)) self.encoder = nn.Sequential(*layers) def forward(self, x): return self.encoder(x) class Discriminator(nn.Module): def __init__(self, in_channels,conv_depths=(4,8, 16, 32,64,128,1)): assert len(conv_depths) > 2, 'conv_depths must have at least 3 members' super(Discriminator, self).__init__() # defining encoder layers encoder_layers = [] encoder_layers.append(First3D(in_channels, conv_depths[0], conv_depths[0])) encoder_layers.extend([Encoder3D(conv_depths[i], conv_depths[i + 1], conv_depths[i + 1]) for i in range(len(conv_depths)-1)]) # encoder, center and decoder layers self.encoder_layers = nn.Sequential(*encoder_layers) def forward(self, x, return_all=False): x_enc = [x] for enc_layer in self.encoder_layers: x_enc.append(enc_layer(x_enc[-1])) return F.sigmoid(x_enc[-1]) class RecGAN(nn.Module): def __init__(self): pass super(RecGAN, self).__init__() # create AE (3D-Unet) # input 64*64*64*1 output 64*64*64*1 self.unet = ResidualUNet3D(1,1,final_sigmoid=True, f_maps=64, layer_order='gcr',num_groups=8, num_levels=5, is_segmentation=False, conv_padding=1) # create discriminator (like the encoder) self.discriminator = Discriminator(1) def forward(self,X): Y_rec = self.unet(X) dis = self.discriminator(Y_rec) return F.sigmoid(Y_rec),dis if __name__ == '__main__': input_data = torch.rand([1,1,64,64,64]) recgan = RecGAN() output,dis = recgan(input_data) print(output.shape) print(dis.shape)
the-stack_0_14332
#!/usr/bin/env python3 # ==================================== # Copyright (c) Microsoft Corporation. All rights reserved. # ==================================== """Runtime module. Contains runtime base class and language specific runtime classes.""" import signal import subprocess import sys import time import os import serializerfactory import subprocessfactory import tracer from runbook import * from workerexception import * json = serializerfactory.get_serializer(sys.version_info) def find_executable(executable, path=None): """Tries to find 'executable' in the directories listed in 'path'. A string listing directories separated by 'os.pathsep'; defaults to os.environ['PATH']. Returns the complete filename or None if not found. """ _, ext = os.path.splitext(executable) if (sys.platform == 'win32') and (ext != '.exe'): executable = executable + '.exe' if os.path.isfile(executable): return executable if path is None: path = os.environ.get('PATH', None) if path is None: try: path = os.confstr("CS_PATH") except (AttributeError, ValueError): # os.confstr() or CS_PATH is not available path = os.defpath # bpo-35755: Don't use os.defpath if the PATH environment variable is # set to an empty string # PATH='' doesn't match, whereas PATH=':' looks in the current directory if not path: return None paths = path.split(os.pathsep) for p in paths: f = os.path.join(p, executable) if os.path.isfile(f): # the file exists, we have a shot at spawn working return f return None class Runtime(object): """Runtime base class.""" def __init__(self, job_data, runbook): """ :type job_data : jrdsclient.JobData" :type runbook : Runbook """ # should be overwritten by language runtime self.execution_alias = None self.base_cmd = None # used for actual runtime self.runbook = runbook self.runbook_subprocess = None self.job_data = job_data def initialize(self): self.runbook.write_to_disk() def start_runbook_subprocess(self): """Creates the runbook subprocess based on the script language and using properties set by the derived class. Requires self.base_cmd & self.runbook_file_path to be set by derived class. """ cmd = self.base_cmd + [self.runbook.runbook_file_path] job_parameters = self.job_data.parameters if job_parameters is not None and len(job_parameters) > 0: for parameter in job_parameters: tracer.log_debug_trace("Parameter is: \n" + str(parameter)) if self.runbook.definition_kind_str == "PowerShell" and parameter["Name"]: # Handle named parameters for PowerShell arriving out of order cmd += ["-%s" % parameter["Name"]] cmd += [str(json.loads(parameter["Value"]))] # Do not copy current process env var to the sandbox process env = os.environ.copy() env.update({"AUTOMATION_JOB_ID": str(self.job_data.job_id), "AUTOMATION_ACTIVITY_ID": str(tracer.u_activity_id), "PYTHONPATH": str(configuration.get_source_directory_path()), "HOME": str(os.getcwd())}) # windows env have to be str (not unicode) self.runbook_subprocess = subprocessfactory.create_subprocess(cmd=cmd, env=env, stdout=subprocess.PIPE, stderr=subprocess.PIPE) def kill_runbook_subprocess(self): """Attempts to kill the runbook subprocess. This method will attempt to kill the runbook subprocess [max_attempt_count] and will return if successful. Throws: SandboxRuntimeException : If runbook subprocess is still alive after [max_attempt_count]. """ attempt_count = 0 max_attempt_count = 3 while attempt_count < max_attempt_count: if self.runbook_subprocess is not None and self.runbook_subprocess.poll() is None: os.kill(self.runbook_subprocess.pid, signal.SIGTERM) runbook_proc_is_alive = self.is_process_alive(self.runbook_subprocess) if runbook_proc_is_alive is False: return attempt_count += 1 time.sleep(attempt_count) else: return raise SandboxRuntimeException() @staticmethod def is_process_alive(process): """Checks if the given process is still alive. Returns: boolean : True if the process [pid] is alive, False otherwise. """ if process.poll() is None: return True else: return False def is_runtime_supported(self): """Validates that the OS supports the language runtime by testing the executable file path. Returns: True : If executable exist. False : Otherwise. """ if find_executable(self.execution_alias) is None: return False else: return True class PowerShellRuntime(Runtime): """PowerShell runtime derived class.""" def __init__(self, job_data, runbook): Runtime.__init__(self, job_data, runbook) self.execution_alias = "pwsh" if linuxutil.is_posix_host() is False: self.execution_alias = "powershell" self.base_cmd = [self.execution_alias, "-File"] class Python2Runtime(Runtime): """Python 2 runtime derived class.""" def __init__(self, job_data, runbook): Runtime.__init__(self, job_data, runbook) self.execution_alias = "python2" if get_default_python_interpreter_major_version() == 2: self.execution_alias = "python" self.base_cmd = [self.execution_alias] class Python3Runtime(Runtime): """Python 3 runtime derived class.""" def __init__(self, job_data, runbook): Runtime.__init__(self, job_data, runbook) self.execution_alias = "python3" if get_default_python_interpreter_major_version() == 3: self.execution_alias = "python3" self.base_cmd = [self.execution_alias] class BashRuntime(Runtime): """Bash runtime derived class.""" def __init__(self, job_data, runbook): Runtime.__init__(self, job_data, runbook) self.execution_alias = "bash" self.base_cmd = [self.execution_alias] def get_default_python_interpreter_major_version(): """Return the default "python" alias interpreter version. Returns: int, the interpreter major version None, if the default interpreter version cannot be detected """ cmd = ["python3", "-c", "import sys;print(sys.version[0])"] # need to use print() for python3 compatibility p = subprocessfactory.create_subprocess(cmd=cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) default_interpreter_version, error = p.communicate() if p.returncode == 0: return int(default_interpreter_version.decode().strip()) else: return None
the-stack_0_14333
# Copyright (c) 2019, salesforce.com, inc. # All rights reserved. # SPDX-License-Identifier: MIT # For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/MIT import torch from base.learners.skill_discovery.base import BaseSkillDiscoveryLearner class BaseSMMLearner(BaseSkillDiscoveryLearner): AGENT_TYPE = 'SMM' def __init__(self, skill_n, **kwargs): self.skill_n = int(skill_n) # At least trigger the default usage for im and density modules if 'im_params' not in kwargs: kwargs['im_params'] = {} if 'density_params' not in kwargs: kwargs['density_params'] = {} super().__init__(**kwargs) self.im_type = 'reverse_mi' self.density_type = 'vae' def relabel_episode(self): super().relabel_episode() # Add density model reward self._add_density_reward() def relabel_batch(self, batch): batch = super().relabel_batch(batch) # Compute reward from density model with torch.no_grad(): new_density_rew = self.density.novelty(batch) # Make sure that weights for density rewards are not None density_nu = self.density_nu if self.density_nu is not None else 0. # Detach density rewards from computation graph new_density_rew = new_density_rew.detach() batch['reward'] = batch['reward'] + density_nu * new_density_rew batch['density_model_reward'] = new_density_rew return batch def _compute_novelty(self, batched_episode): return self.density.novelty(batched_episode) def _add_density_reward(self): if self.density is not None: for ep in self._compress_me: batched_episode = {key: torch.stack([e[key] for e in ep]) for key in ep[0].keys()} novelty = self._compute_novelty(batched_episode) if self.density_scale: self.train() _ = self._density_bn(novelty.view(-1, 1)) self.eval() novelty = novelty / torch.sqrt(self._density_bn.running_var[0]) for e, s in zip(ep, novelty): e['reward'] += (self.density_nu * s.detach()) e['density_model_reward'] = s.detach() def get_density_loss(self, batch): return self.density(batch)
the-stack_0_14334
# -*- coding: utf-8 -*- """ Created on Mon Feb 24 11:01:42 2020 @author: amarmore """ # Everything related to the segmentation of the autosimilarity. import numpy as np import math from scipy.sparse import diags import musicae.model.errors as err import warnings def get_autosimilarity(an_array, transpose = False, normalize = False): """ Encapsulates the autosimilarity generation of a matrix. Parameters ---------- an_array : numpy array The array/matrix seen as array which autosimilarity os to compute. transpose : boolean, optional Whether the array has to be transpose for computing the autosimilarity. The default is False. normalize : boolean, optional Whether to normalize the autosimilarity. The default is False. Returns ------- numpy array The autosimilarity of this array. """ if type(an_array) is list: this_array = np.array(an_array) else: this_array = an_array if transpose: this_array = this_array.T if normalize: with warnings.catch_warnings(): warnings.filterwarnings("ignore", message="invalid value encountered in true_divide") # Avoiding to show the warning, as it's handled, not te confuse the user. this_array = np.array([list(i/np.linalg.norm(i)) for i in this_array.T]).T this_array = np.where(np.isnan(this_array), 1e-10, this_array) # Replace null lines, avoiding best-path retrieval to fail return this_array.T@this_array def compute_all_kernels(max_size, convolution_type = "full"): """ Precomputes all kernels of size 0 ([0]) to max_size, and feed them to the Dynamic Progamming algorithm. Parameters ---------- max_size : integer The maximal size (included) for kernels. convolution_type: string The type of convolution. (to explicit) Possibilities are : - "full" : squared matrix entirely composed of one, except on the diagonal where it's zero. The associated convolution cost for a segment (b_1, b_2) will be .. math:: c_{b_1,b_2} = \\frac{1}{b_2 - b_1 + 1}\\sum_{i,j = 0, i \\ne j}^{n - 1} a_{i + b_1, j + b_1} - "eight_bands" : squared matrix where the only nonzero values are ones on the 8 subdiagonals surrounding the main diagonal. The associated convolution cost for a segment (b_1, b_2) will be .. math:: c_{b_1,b_2} = \\frac{1}{b_2 - b_1 + 1}\\sum_{i,j = 0, 1 \\leq |i - j| \\leq 4}^{n - 1} a_{i + b_1, j + b_1} - "mixed" : sum of both previous kernels, i.e. values are zero on the diagonal, 2 on the 8 subdiagonals surrounding the main diagonal, and 1 elsewhere. The associated convolution cost for a segment (b_1, b_2) will be .. math:: c_{b_1,b_2} = \\frac{1}{b_2 - b_1 + 1}(2*\\sum_{i,j = 0, 1 \\leq |i - j| \\leq 4}^{n - 1} a_{i + b_1, j + b_1} \\ + \sum_{i,j = 0, |i - j| > 4}^{n - 1} a_{i + b_1, j + b_1}) Returns ------- kernels : array of arrays (which are kernels) All the kernels, of size 0 ([0]) to max_size. """ kernels = [[0]] for p in range(1,max_size + 1): if p < 4: kern = np.ones((p,p)) - np.identity(p) else: if convolution_type == "full": # Full kernel (except for the diagonal) kern = np.ones((p,p)) - np.identity(p) elif convolution_type == "eight_bands": # Diagonal where only the eight subdiagonals surrounding the main diagonal is one k = np.array([np.ones(p-4),np.ones(p-3),np.ones(p-2),np.ones(p-1),np.zeros(p),np.ones(p-1),np.ones(p-2),np.ones(p-3),np.ones(p-4)]) offset = [-4,-3,-2,-1,0,1,2,3,4] kern = diags(k,offset).toarray() elif convolution_type == "mixed": # Sum of both previous kernels k = np.array([np.ones(p-4),np.ones(p-3),np.ones(p-2),np.ones(p-1),np.zeros(p),np.ones(p-1),np.ones(p-2),np.ones(p-3),np.ones(p-4)]) offset = [-4,-3,-2,-1,0,1,2,3,4] kern = np.ones((p,p)) - np.identity(p) + diags(k,offset).toarray() else: raise err.InvalidArgumentValueException(f"Convolution type not understood: {convolution_type}.") kernels.append(kern) return kernels def convolutionnal_cost(cropped_autosimilarity, kernels): """ The convolution measure on this part of the autosimilarity matrix. Parameters ---------- cropped_autosimilarity : list of list of floats or numpy array (matrix representation) The part of the autosimilarity which convolution measure is to compute. kernels : list of arrays Acceptable kernels. Returns ------- float The convolution measure. """ p = len(cropped_autosimilarity) kern = kernels[p] #return np.mean(np.multiply(kern,cropped_autosimilarity)) return np.sum(np.multiply(kern,cropped_autosimilarity)) / p**2 def convolution_entire_matrix_computation(autosimilarity_array, kernels, kernel_size = 8): """ Computes the convolution measure on the entire autosimilarity matrix, with a defined and fixed kernel size. Parameters ---------- autosimilarity_array : list of list of floats or numpy array (matrix representation) The autosimilarity matrix. kernels : list of arrays All acceptable kernels. kernel_size : integer The size of the kernel for this measure. Returns ------- cost : list of float List of convolution measures, at each bar of the autosimilarity. """ cost = np.zeros(len(autosimilarity_array)) for i in range(kernel_size, len(autosimilarity_array)): cost[i] = convolutionnal_cost(autosimilarity_array[i - kernel_size:i,i - kernel_size:i], kernels) return cost def dynamic_convolution_computation(autosimilarity, min_size = 1, max_size = 36, penalty_weight = 1, penalty_func = "modulo8", convolution_type = "mixed"): """ Dynamic programming algorithm, computing a maximization of a cost, sum of segments' costs on the autosimilarity. This cost is a combination of - the convolutionnal cost on the segment, with a dynamic size, - a penalty cost, function of the size of the segment, to enforce specific sizes (with prior knowledge), The penalty cost is computed in the function "penalty_cost_from_arg()". See this function for further details. It returns the optimal segmentation according to this cost. This algortihm is also desribed in [1]. Parameters ---------- autosimilarity : list of list of float (list of columns) The autosimilarity to segment. min_size : integer, optional The minimal length of segments. The default is 1. max_size : integer, optional The maximal length of segments. The default is 36. penalty_weight : float, optional The ponderation parameter for the penalty function penalty_func : string The type of penalty function to use. See "penalty_cost_from_arg()" for further details. convolution_type : string The type of convolution we want to use in this computation. See "compute_all_kernels()" for a detailed list of possibilities. Raises ------ ToDebugException If the program fails, generally meaning that the autosimilarity is incorrect. Returns ------- list of tuples The segments, as a list of tuples (start, end). integer Global cost (the minimal among all). References ---------- [1] Marmoret, A., Cohen, J., Bertin, N., & Bimbot, F. (2020, October). Uncovering Audio Patterns in Music with Nonnegative Tucker Decomposition for Structural Segmentation. In ISMIR 2020-21st International Society for Music Information Retrieval. """ costs = [-math.inf for i in range(len(autosimilarity))] segments_best_starts = [None for i in range(len(autosimilarity))] segments_best_starts[0] = 0 costs[0] = 0 kernels = compute_all_kernels(max_size, convolution_type = convolution_type) conv_eight = convolution_entire_matrix_computation(autosimilarity, kernels) for current_idx in range(1, len(autosimilarity)): # Parse all indexes of the autosimilarity for possible_start_idx in possible_segment_start(current_idx, min_size = min_size, max_size = max_size): if possible_start_idx < 0: raise err.ToDebugException("Invalid value of start index.") # Convolutionnal cost between the possible start of the segment and the current index (entire segment) conv_cost = convolutionnal_cost(autosimilarity[possible_start_idx:current_idx,possible_start_idx:current_idx], kernels) segment_length = current_idx - possible_start_idx penalty_cost = penalty_cost_from_arg(penalty_func, segment_length) this_segment_cost = conv_cost * segment_length - penalty_cost * penalty_weight * np.max(conv_eight) # Note: conv_eight is not normalized by its size (not a problem in itself as size is contant, but generally not specified in formulas). # Avoiding errors, as segment_cost are initially set to -inf. if possible_start_idx == 0: if this_segment_cost > costs[current_idx]: costs[current_idx] = this_segment_cost segments_best_starts[current_idx] = 0 else: if costs[possible_start_idx] + this_segment_cost > costs[current_idx]: costs[current_idx] = costs[possible_start_idx] + this_segment_cost segments_best_starts[current_idx] = possible_start_idx segments = [(segments_best_starts[len(autosimilarity) - 1], len(autosimilarity) - 1)] precedent_frontier = segments_best_starts[len(autosimilarity) - 1] # Because a segment's start is the previous one's end. while precedent_frontier > 0: segments.append((segments_best_starts[precedent_frontier], precedent_frontier)) precedent_frontier = segments_best_starts[precedent_frontier] if precedent_frontier == None: raise err.ToDebugException("Well... The dynamic programming algorithm took an impossible path, so it failed. Understand why.") from None return segments[::-1], costs[-1] def penalty_cost_from_arg(penalty_func, segment_length): """ Returns a penalty cost, function of the size of the segment. The penalty function has to be specified, and is bound to evolve in the near future, so this docstring won't explain it. Instead, you'll have to read the code, sorry! It is pretty straightforward though. The ``modulo'' functions are based on empirical prior knowledge, following the fact that pop music is generally composed of segments of 4 or 8 bars. Parameters ---------- penalty_func : string Identifier of the penalty function. segment_length : integer Size of the segment. Returns ------- float The penalty cost. """ if penalty_func == "modulo4": if segment_length %4 == 0: return 0 elif segment_length %2 == 0: return 1/2 else: return 1 if penalty_func == "modulo8": if segment_length == 8: return 0 elif segment_length %4 == 0: return 1/4 elif segment_length %2 == 0: return 1/2 else: return 1 if penalty_func == "moduloSmall8and4": if segment_length > 12: return 100 elif segment_length == 8: return 0 elif segment_length == 4: return 1/4 elif segment_length %2 == 0: return 1/2 else: return 1 if penalty_func == "sargentdemi": return abs(segment_length - 8) ** (1/2) if penalty_func == "sargentun": return abs(segment_length - 8) if penalty_func == "sargentdeux": return abs(segment_length - 8) ** 2 else: raise err.InvalidArgumentValueException(f"Penalty function not understood {penalty_func}.") def possible_segment_start(idx, min_size = 1, max_size = None): """ Generates the list of all possible starts of segments given the index of its end. Parameters ---------- idx: integer The end of a segment. min_size: integer Minimal length of a segment. max_size: integer Maximal length of a segment. Returns ------- list of integers All potentials starts of structural segments. """ if min_size < 1: # No segment should be allowed to be 0 size min_size = 1 if max_size == None: return range(0, idx - min_size + 1) else: if idx >= max_size: return range(idx - max_size, idx - min_size + 1) elif idx >= min_size: return range(0, idx - min_size + 1) else: return [] # %% Novelty cost, deprecated, but could be used in comparison tests. def novelty_cost(cropped_autosimilarity): """ Novelty measure on this part of the autosimilarity matrix. The size of the kernel will be the size of the parameter matrix. Parameters ---------- cropped_autosimilarity : list of list of floats or numpy array (matrix representation) The part of the autosimilarity which novelty measure is to compute. Raises ------ NotImplementedError If the size of the autosimilarity is odd (novlety kernel can't fit this matrix). Returns ------- float The novelty measure. """ # Kernel is of the size of cropped_autosimilarity if len(cropped_autosimilarity) == 0: return 0 if len(cropped_autosimilarity) % 2 == 1: raise NotImplementedError("Error") #return (novelty_cost(cropped_autosimilarity[:-1, :-1]) + novelty_cost(cropped_autosimilarity[1:, 1:])) / 2 kernel_size = int(len(cropped_autosimilarity) / 2) kernel = np.kron(np.array([[1,-1], [-1, 1]]), np.ones((kernel_size, kernel_size))) return np.mean(kernel*cropped_autosimilarity) def novelty_computation(autosimilarity_array, kernel_size): """ Computes the novelty measure of all of the autosimilarity matrix, with a defined and fixed kernel size. Parameters ---------- autosimilarity_array : list of list of floats or numpy array (matrix representation) The autosimilarity matrix. kernel_size : integer The size of the kernel. Raises ------ NotImplementedError If the kernel size is odd, can't compute the novelty measure. Returns ------- cost : list of float List of novelty measures, at each bar of the autosimilarity. """ if kernel_size % 2 == 1: raise NotImplementedError("The kernel should be even.") from None cost = np.zeros(len(autosimilarity_array)) half_kernel = int(kernel_size / 2) for i in range(half_kernel, len(autosimilarity_array) - half_kernel): cost[i] = novelty_cost(autosimilarity_array[i - half_kernel:i + half_kernel,i - half_kernel:i + half_kernel]) return cost # %% Related to the novelty computation, so deprecated. def peak_picking(tab, window_size = 1): """ Returns the indexes of peaks of values in the given list of values. A value is considered "peak" if it's a local maximum, and if all values in the window (defined by 'window_size) before and after are strictly monotonous. Used for peak picking in the novelty measure. Parameters ---------- tab : list of float The list of values to study. window_size : boolean, optional Size of the window around a possible peak to be considered "peak", ie number of consecutive values where the values should increase (before) and (decrease) after. The default is 1. Returns ------- to_return : list of integers The indexes where values are peaking. """ to_return = [] for current_idx in range(window_size, len(tab) - window_size): if is_increasing(tab[current_idx - window_size:current_idx + 1]) and is_increasing(tab[current_idx:current_idx + window_size + 1][::-1]): to_return.append(current_idx) return to_return def valley_picking(tab, window_size = 1): """ Returns the indexes of valleys of values in the desired list of values. A value is considered "valley" if it's a local minimum, and if all values in the window (defined by 'window_size) before and after are strictly monotonous. Used for peak picking in the novelty measure. Parameters ---------- tab : list of float The list of values to study. window_size : boolean, optional Size of the window around a possible valley to be considered "valley", ie number of consecutive values where the values should decrease (before) and increase (after). The default is 1. Returns ------- to_return : list of integers The indexes where values are valleys. """ to_return = [] for current_idx in range(window_size, len(tab) - window_size): if is_increasing(tab[current_idx - window_size:current_idx + 1][::-1]) and is_increasing(tab[current_idx:current_idx + window_size + 1]): to_return.append(current_idx) return to_return def is_increasing(tab): """ Tests if the tab values are increasing. Used for peak picking in the novelty measure. Parameters ---------- tab : list of float The values. Returns ------- boolean Whether the values are increasing or not. """ if len(tab) <= 1 or len(np.unique(tab)) == 1: return False for idx in range(len(tab) - 1): if tab[idx] > tab[idx+1]: return False return True def decreasing_peaks(data): """ Returns the peaks indexes of a list of values in their decreasing order of values. Used for peak picking in the novelty measure. Parameters ---------- data : list of float The values. Returns ------- list of integers The indexes of the peaks, sorted in their decreasing order of values. """ peaks_and_value = [] for idx in peak_picking(data, window_size = 1): peaks_and_value.append((idx, data[idx])) return sorted(peaks_and_value, key=lambda x:x[1], reverse = True) def select_highest_peaks_thresholded_indexes(data, percentage = 0.33): """ Returns the peaks higher than a percentage of the maximal peak from a list of values. Used for peak picking in the novelty measure. Parameters ---------- data : list of floats The values. percentage : float, optional The percentage of the maximal value for a peak to be valid. The default is 0.33. Returns ------- list of integers Indexes of the valid peaks. """ peaks = np.array(decreasing_peaks(data)) max_peak = peaks[0,1] for idx, peak in enumerate(peaks): if peak[1] < percentage * max_peak: return [int(i) for i in sorted(peaks[:idx, 0])] return [int(i) for i in sorted(peaks[:,0])] def mean(val_a, val_b): """ A function returning the mean of both values. This function is redeveloped so as to be called as choice_func in the function "values_as_slop()" (see below) in external projects. Parameters ---------- val_a : float First value. val_b : float Second value. Returns ------- float: mean of both values. """ return (val_a + val_b) / 2 def values_as_slop(value, choice_func = max): """ Compute peaks of a value (typically novelty measure) as the difference between absolute peaks and absolute valleys. Function choice_func determines the way of computing this gap. Typically, max will compute peaks as the maximum gap between a peaks and its two closest valleys, whereas min will select the minimal gap. This returns an array containing zeroes where there is no peak in absoluite value, and this new value as a gap computation where there was peaks before. Parameters ---------- value : array of float The absolute value of the measure. choice_func : function name, optional Type of the function selecting the difference between peaks and valleys. Classical values are "max" for selecting the maximum gap between the peak and both its closest valleys, "min" for the minimum of both gaps, and "mean" (called autosimilarity_segmentation.mean) for the mean of both gaps. The default is max. Returns ------- peak_valley_slop : array of floats The new values of peaks as gaps, and 0 everywhere else. """ peaks = peak_picking(value, window_size = 1) valleys = valley_picking(value, window_size = 1) peak_valley_slop = np.zeros(len(value)) for peak in peaks: i = 0 while i < len(valleys) and valleys[i] < peak: i+=1 if i == 0: left_valley = 0 right_valley = valleys[i] elif i == len(valleys): left_valley = valleys[i - 1] right_valley = 0 else: left_valley = valleys[i - 1] right_valley = valleys[i] chosen_valley_value = choice_func(value[left_valley], value[right_valley]) peak_valley_slop[peak] = value[peak] - chosen_valley_value return peak_valley_slop
the-stack_0_14335
from __future__ import print_function from colorama import * import webbrowser import sys import time # Initialize colored output and set colors init() # Get settings from file file = open('settings.txt', 'r') settings = file.readlines() file.close() # Set timer in seconds pomodoro = int(settings[1])*60 # Set URL to open url = settings[4] # Header print(" ----------------- ") print(Fore.GREEN + " MyPymodoro v1.0 " + Style.RESET_ALL) print(" ----------------- ") print(Fore.YELLOW + " http://dvt32.blogspot.com/\n" + Style.RESET_ALL) # Time left information print (" Timer started! Break coming up in " + Back.RED + str(pomodoro / 60) + " minutes" + Style.RESET_ALL + "!\n") # Print time elapsed for second in range(pomodoro): print (" Time left until break: " + Fore.YELLOW + str(pomodoro / 60) + " minute(s), " + str(pomodoro % 60) + " seconds" + " " + Style.RESET_ALL, end="\r") sys.stdout.flush() pomodoro -= 1 time.sleep(1) # Load video after time is up webbrowser.open(url)
the-stack_0_14336
""" source: https://stackoverflow.com/questions/37117878/generating-a-filled-polygon-inside-a-numpy-array """ import numpy as np import imageio def polygon(a, vertices): fill = np.ones(a.shape) * True idx = np.indices(a.shape) # loop over pairs of corner points for k in range(vertices.shape[0]): p1, p2 = vertices[k-1], vertices[k] dist = p2 - p1 max_idx = (idx[0] - p1[0]) / dist[0] * dist[1] + p1[1] sign = np.sign(dist[0]) check = idx[1] * sign <= max_idx * sign fill = np.all([fill, check], axis=0) a[fill] = 127 # clockwise! vertices = np.array([[50,120], [80,380], [230,240]]) a = np.zeros((400, 400), dtype=np.uint8) polygon(a, vertices) imageio.imsave('triangle.png', a)
the-stack_0_14339
#________INDEX____________. # | # 3 functions | # (6=3+2+1) | # | # -4 auxiliary | # -1 main) | # | # (if __name__==__main__) | #_________________________| import sys import re import matplotlib.pyplot as plt import numpy as np import seaborn as sns import pandas as pd from scipy.stats import dirichlet, beta, bernoulli from sklearn.metrics import precision_score, recall_score, f1_score from functools import partial #------------------------------------------------------- # First part: Four (4) auxiliary generic functions # # (1) "tags_dict" : mapping from numbers # to composers' names # # (2) "four_plots" : compare four classifiers # for a specific composer # in a specific axes # (humans, random, random forests & # neural network). It's # a dispatcher for 'plotter' # # (3) "plotter" : the actual plotter func # # (4) "measure_dispatcher": choose the comparison measure # #--------------------------------------------------------- # (1) def tags_dict(): with open('tags.dat','r') as f: tags_list = f.readlines() tags = {} key_pattern = re.compile('item:[ ]+([a-z]+)',re.I) item_pattern = re.compile('key:[ ]+([0-9]+)',re.I) for x in tags_list: tags[re.search( key_pattern, x ).group(1)] = re.search( item_pattern, x ).group(1) inverted_tags = {} for k,i in tags.items(): inverted_tags[i] = k return tags, inverted_tags # (2) def four_plots(name: str, axis, data: dict): plotter('humans',name, axis, data['humans']) plotter('network',name, axis, data['network']) plotter('random',name, axis, data['random']) plotter('forest',name, axis, data['forest']) # insert here visual specs! #--------------------------------------------- #ax.legend() #ax.set_title(f'{name}') props = dict(boxstyle='round', facecolor='lavender', alpha=0.3) ax.text(0.5, 0.95, name, transform=ax.transAxes, fontsize=12, verticalalignment='top', bbox=props) ax.set_xlim(0,100) ax.set_ylim(0,200) ax.set_yticklabels([]) ax.set_yticks([0,100,200]) ax.set_xticks([0,25,50,75,100]) #--------------------------------------------- return # (3) def plotter(being: str, name: str, axis, data: dict): # Color-blind friendly palette colors = {'forest':'#d7191c', 'network':'#fdae61', 'random':'#abd9e9', 'humans':'#2c7bb6',} # Beta Distribution generation from the measured predictive-quality ypred = beta.rvs( 1+data[f'total {name}'][0] * data[name][0], 1+data[f'total {name}'][0] * (1 - data[name][0]), size=4000, ) # plot with Seaborn that binnarizes automatically sns.distplot(100*ypred, bins=None, hist=True, kde=False, label = f'{being}', ax=axis, color=colors[being]) return # (4) def measure_dispatcher(measure: str,ytrue: np.ndarray, ypred:np.ndarray, optrand = 0): """ possible measures: 'recall' == TP / (TP + FN) 'precision' == TP / (TP + FP) 'f1' == 2 * TP / (2*TP + FP + FN) 'accuracy' = (TP + TN) / (TN + FN + TP + FP) """ # Random ytrue,ypred & Tags if optrand: ytrue_rand, ypred_rand = np.split( np.argmax( dirichlet.rvs( alpha = [1,1]*4, size = 2*optrand ), 1, ).reshape( #split 2 2,-1, ), 2,0, ) ytrue_rand = ytrue_rand.reshape(-1,) ypred_rand = ypred_rand.reshape(-1,) tags = {int(x):y for x,y in tags_dict()[1].items()} # Recall def recall(ytrue, ypred): nonlocal tags precision = recall_score(ytrue, ypred, average=None) data = {} for x in tags.keys(): data[tags[x]] = [precision[x]] #data[f'total {tags[x]}'] = [np.unique( # ypred, # return_counts=True, # )[1][x]] data[f'total {tags[x]}'] = [500] return data # Precision def precision(ytrue, ypred): nonlocal tags precision = precision_score(ytrue, ypred, average=None) data = {} for x in tags.keys(): data[tags[x]] = [precision[x]] data[f'total {tags[x]}'] = [np.unique( ypred, return_counts=True, )[1][x]] return data # F1 def f1(ytrue, ypred): nonlocal tags precision = f1_score(ytrue, ypred, average=None) data = {} for x in tags.keys(): data[tags[x]] = [precision[x]] data[f'total {tags[x]}'] = [np.unique( ypred, return_counts=True, )[1][x]] return data # Accuracy def accuracy(ytrue, ypred): nonlocal tags data = {} for x in tags.keys(): temp = [] for i,y in enumerate(ytrue): if ypred[i]==y and y==x: temp.append(1) elif ypred[i]==x: temp.append(0) elif y==x: temp.append(0) elif y!=x and ypred[i]!=x: temp.append(1) (data[tags[x]], data[f'total {tags[x]}']) = ([sum(temp)/len(temp)], [len(temp)]) return data func = {'accuracy': accuracy, 'f1':f1, 'precision': precision, 'recall':recall,} if optrand: return func[measure](ytrue_rand, ypred_rand) else: return func[measure](ytrue, ypred) #------------------------------------------------------------------ # M A I N #------------------------------------------------------------------ def main(measure): # Define the measure! # # (with TP: True Positive # TN: True Negative # ...etc) # # 'recall' == TP / (TP + FN) # # 'precision' == TP / (TP + FP) # # 'f1' == 2 * TP / (2*TP + FP + FN) # # 'accuracy' = (TP + TN) / (TN + FN + TP + FP) #____________________________________________ expand = partial(measure_dispatcher, measure) #-------------------------------------------- # 1) HUMAN answers are loaded #humans = pd.read_csv('human-predictions.csv').iloc[:,1:] a=pd.read_csv( 'human-predictions.csv' ).applymap( lambda x: int( tags_dict()[0][x] ) ).to_numpy() humans = pd.DataFrame(expand(a[:,0],a[:,1])) # 2) Random samples = 6000 random = expand(range(samples), range(samples), samples) # 3) if True: #----R-A-N-D-O-M--F-O-R-E-S-T---c-l-a-s-s-i-f-i-e-r----. # choose: | # 'val' == validation set (more points) | # | # 'test' == testing set (more comparable, only | # over the audio-samples| # humans answered on) | name = 'val' #------------------------------------------------------/ forest = pd.read_csv(name+'-forest-predictions.csv') forest = expand(forest.iloc[:,0].to_numpy(), forest.iloc[:,1].to_numpy()) # 4) if True: #----------N-E-U-R-A-L--N-E-T-W-O-R-K------------------. # choose: | # 'val' == validation set (more points) | # | # 'test' == testing set (more comparable, only | # over the audio-samples| # humans answered on) | name = 'val' #------------------------------------------------------/ network = pd.read_csv(name+'-network-predictions.csv') network = expand(network.iloc[:,0].to_numpy(), network.iloc[:,1].to_numpy()) return {'random':random, 'humans':humans, 'network':network, 'forest':forest} if __name__=='__main__': # Define a figure with 2x4=8 subplots nrow = 4; ncol = 2; alpha = 8 fig, axs = plt.subplots(nrows=nrow, ncols=ncol, figsize=(alpha*2,alpha),dpi=200) # Extract composers names from the quiz data names = ['Scarlatti', 'Sor', 'Bach', 'Vivaldi','Stravinsky', 'Haendel', 'Liszt', 'Haydn', ] # Generate a dictionary with results try: metric = sys.argv[1] except IndexError: metric = 'f1' data = main(metric) # Plot one composers' classification result in each subplot for i,ax in enumerate(axs.reshape(-1)): try: four_plots(names[i], ax, data) except IndexError: pass #------------------------------------------ # Visual specs, Save & View! #------------------------------------------ fig.text(0.5, 0.89, '(Probability Density Function of the True Positive Rate'\ ' conditioned to a positive observation)' ,ha='center',fontsize=11) fig.text(0.5,0.92, '$PDF(Recall)$', fontsize=14.5,ha='center') fig.text(0.5, 0.04, 'Probability of a positive being True Positive', ha='center') fig.text(0.1, 0.5, 'Probability Density', va='center', rotation='vertical') fig.set_facecolor('ivory') for i,ax in enumerate(axs.reshape(-1)): if i==7: ax.legend() #------------------------------------------ plt.savefig('../RESULTS/RESULTS.png', facecolor='ivory')
the-stack_0_14340
_base_ = [ '../swin/cascade_mask_rcnn_swin_small_patch4_window7_mstrain_480-800_giou_4conv1f_adamw_3x_coco.py' ] model = dict( backbone=dict( type='CBSwinTransformer', ), neck=dict( type='CBFPN', ), test_cfg = dict( rcnn=dict( score_thr=0.001, nms=dict(type='soft_nms'), ) ) ) img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) # augmentation strategy originates from HTC data_root = "datasets/objects365/" data = dict( train=dict( ann_file=data_root + 'annotations/instances_train.json', img_prefix=data_root + 'train/')) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='RandomFlip', flip_ratio=0.5), dict( type='Resize', img_scale=[(1600, 400), (1600, 1400)], #img_scale=[(256,256), (256,256)], multiscale_mode='range', keep_ratio=True), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1600, 1400), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] samples_per_gpu = 1 data = dict(samples_per_gpu=samples_per_gpu, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) optimizer = dict(lr=0.0001*(samples_per_gpu/2)) runner=dict(max_epochs=20) load_from = "/home/ubuntu/efs/pretrained_weight/cascade_mask_rcnn_cbv2_swin_small_patch4_window7_mstrain_400-1400_adamw_3x_coco.pth"
the-stack_0_14341
def strASCII(s): c = [] for x in s: c.append(format(ord(x), 'b').zfill(8)) c = "".join(c) return c def ascistr(l,r): joi = [l,r] joi = ''.join(joi) joi = list(map("".join, zip(*[iter(joi)] * 8))) #print joi for x in range(len(joi)): joi[x] = chr(int(joi[x],2)) joi = ''.join(joi) return joi
the-stack_0_14343
from django.conf import settings from django.db import models class PGPManager(models.Manager): use_for_related_fields = True use_in_migrations = True @staticmethod def _get_pgp_symmetric_decrypt_sql(field): """Decrypt sql for symmetric fields using the cast sql if required.""" sql = """pgp_sym_decrypt("{0}"."{1}", '{2}')""" if hasattr(field, 'cast_sql'): sql = field.cast_sql % sql return sql.format( field.model._meta.db_table, field.name, settings.PGCRYPTO_KEY, ) @staticmethod def _get_pgp_public_key_decrypt_sql(field): """Decrypt sql for public key fields using the cast sql if required.""" sql = """pgp_pub_decrypt("{0}"."{1}", dearmor('{2}'))""" if hasattr(field, 'cast_sql'): sql = field.cast_sql % sql return sql.format( field.model._meta.db_table, field.name, settings.PRIVATE_PGP_KEY, ) def get_queryset(self, *args, **kwargs): """Decryption in queryset through meta programming.""" # importing here otherwise there's a circular reference issue from pgcrypto.mixins import PGPSymmetricKeyFieldMixin, PGPPublicKeyFieldMixin skip_decrypt = kwargs.pop('skip_decrypt', None) qs = super().get_queryset(*args, **kwargs) # The Django admin skips this process because it's extremely slow if not skip_decrypt: select_sql = {} encrypted_fields = [] for field in self.model._meta.get_fields(): if isinstance(field, PGPSymmetricKeyFieldMixin): select_sql[field.name] = self._get_pgp_symmetric_decrypt_sql(field) encrypted_fields.append(field.name) elif isinstance(field, PGPPublicKeyFieldMixin): select_sql[field.name] = self._get_pgp_public_key_decrypt_sql(field) encrypted_fields.append(field.name) # Django queryset.extra() is used here to add decryption sql to query. qs = qs.defer( *encrypted_fields ).extra( select=select_sql ) return qs
the-stack_0_14345
#! /usr/bin/env python # -*- coding: utf-8 -*- # # vim: fenc=utf-8 # vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4 # # """ File name: image.py Author: dhilipsiva <[email protected]> Date created: 2017-02-10 """ from PIL import ImageFilter from PIL import Image size = (128, 128) im = Image.open("corgi.jpg") # print(im.format, im.size, im.mode) # im.thumbnail(size) # im.show() box = (1400, 500, 2000, 1000) region = im.crop(box) region = region.transpose(Image.ROTATE_90) # region = region.transpose(Image.FLIP_LEFT_RIGHT) # region.resize((128, 128)) # region = region.filter(ImageFilter.DETAIL) region = region.filter(ImageFilter.BLUR) region.show() # out = im.rotate(45) # degrees counter-clockwise
the-stack_0_14346
''' 2016 - 2017 ACSL American Computer Science League SENIOR DIVISION Contest #2 ASCENDING STRINGS ''' from unittest import TestCase def atFirst(snum): ''' First thoughts ''' h, r = 0, len(snum) res = [] while r > h: # forward res.append(int(snum[s:e])) # backward res.append(int(snum[s:e:-1])) return res def parsNums(snum): def cutforth(snum, h, r, maxn): if h >= r: return None, h l = 1 n = int(snum[h : h + l]) if not maxn: return n, h + 1 while n <= maxn and h + l < r: l += 1 n = int(snum[h : h + l]) return n if h + l <= r and n > maxn else None, h + l def cutback(snum, h, r, maxn): if h >= r: return None, r l = 1 n = int(snum[r - 1 : r - l - 1 : -1]) if not maxn: return n, r - 1 while n <= maxn and h + l < r: l += 1 n = int(snum[r - 1 : r - l - 1 : -1]) return n if h + l <= r and n > maxn else None, r - l h, r = 0, len(snum) res = [] n = None while r > h: # forward, backward n, h = cutforth(snum, h, r, n) if n == None: break res.append(n) n, r = cutback(snum, h, r, n) if n == None: break res.append(n) return res if __name__ == "__main__": t = TestCase() t.assertCountEqual([3, 8, 14, 35, 159], parsNums('31415926538')) t.assertCountEqual([3, 5, 14, 62, 159], parsNums('314159265')) t.assertCountEqual([2, 7, 16], parsNums('201617')) t.assertCountEqual([1, 9, 23, 87, 456], parsNums('123456789')) t.assertCountEqual([1, 4, 22, 44, 333], parsNums('1223334444')) t.assertCountEqual([2, 8, 71, 281, 828], parsNums('2718281828')) t.assertCountEqual([1, 12, 22, 23], parsNums('12233221')) t.assertCountEqual([5, 50], parsNums('5005')) t.assertCountEqual([2, 5], parsNums('250')) t.assertCountEqual([9], parsNums('9')) print('OK!')
the-stack_0_14348
import numpy as np import os import torch class Dataset(torch.utils.data.Dataset): 'Characterizes a dataset for PyTorch' def __init__(self, trajs, device, steps=20): 'Initialization' dim = trajs[0].shape[1] self.x = [] self.x_n = np.zeros((0, dim)) for i in range(steps): tr_i_all = np.zeros((0,dim)) for tr_i in trajs: _trj = tr_i[i:i-steps,:] tr_i_all = np.concatenate((tr_i_all, _trj), 0) self.x_n = np.concatenate((self.x_n, tr_i[-1:,:]),0) self.x.append(tr_i_all) self.x = torch.from_numpy(np.array(self.x)).float().to(device) self.x_n = torch.from_numpy(np.array(self.x_n)).float().to(device) self.len_n = self.x_n.shape[0] self.len = self.x.shape[1] self.steps_length = steps self.step = steps - 1
the-stack_0_14350
#!/usr/bin/env python # coding: utf-8 # Copyright (c) Jupyter Development Team. # Distributed under the terms of the Modified BSD License. from __future__ import print_function # the name of the project name = 'nbformat' #----------------------------------------------------------------------------- # Minimal Python version sanity check #----------------------------------------------------------------------------- import sys #----------------------------------------------------------------------------- # get on with it #----------------------------------------------------------------------------- import os from glob import glob from distutils.core import setup pjoin = os.path.join here = os.path.abspath(os.path.dirname(__file__)) pkg_root = pjoin(here, name) packages = [] for d, _, _ in os.walk(pjoin(here, name)): if os.path.exists(pjoin(d, '__init__.py')): packages.append(d[len(here)+1:].replace(os.path.sep, '.')) package_data = { 'nbformat.tests' : [ '*.ipynb', ], 'nbformat.v3' : [ 'nbformat.v3*.schema.json', ], 'nbformat.v4' : [ 'nbformat.v4*.schema.json', ], } version_ns = {} with open(pjoin(here, name, '_version.py')) as f: exec(f.read(), {}, version_ns) setup_args = dict( name = name, version = version_ns['__version__'], scripts = glob(pjoin('scripts', '*')), packages = packages, package_data = package_data, include_package_data = True, description = "The Jupyter Notebook format", long_description= """ This package contains the base implementation of the Jupyter Notebook format, and Python APIs for working with notebooks. """, author = 'Jupyter Development Team', author_email = '[email protected]', url = 'http://jupyter.org', license = 'BSD', python_requires = '>=3.5', platforms = "Linux, Mac OS X, Windows", keywords = ['Interactive', 'Interpreter', 'Shell', 'Web'], classifiers = [ 'Intended Audience :: Developers', 'Intended Audience :: System Administrators', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: BSD License', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', ], ) if 'develop' in sys.argv or any(a.startswith('bdist') for a in sys.argv): import setuptools setuptools_args = {} install_requires = setuptools_args['install_requires'] = [ 'ipython_genutils', 'traitlets>=4.1', 'jsonschema>=2.4,!=2.5.0', 'jupyter_core', ] extras_require = setuptools_args['extras_require'] = { 'fast': ['fastjsonschema'], 'test': ['check-manifest', 'fastjsonschema', 'testpath', 'pytest', 'pytest-cov'], } if 'setuptools' in sys.modules: setup_args.update(setuptools_args) setup_args['entry_points'] = { 'console_scripts': [ 'jupyter-trust = nbformat.sign:TrustNotebookApp.launch_instance', ] } setup_args.pop('scripts', None) if __name__ == '__main__': setup(**setup_args)
the-stack_0_14351
#!/usr/bin/env python # -*- coding: utf-8 -*- # ************************************** # @Time : 2018/9/9 15:52 # @Author : Xiang Ling # @Lab : nesa.zju.edu.cn # @File : defenses.py # ************************************** import os from abc import ABCMeta from abc import abstractmethod class Defense(object): __metaclass__ = ABCMeta def __init__(self, model=None, defense_name=None): self.model = model self.defense_name = defense_name defense_dir = '../DefenseEnhancedModels/{}'.format(self.defense_name) if self.defense_name not in os.listdir('../DefenseEnhancedModels/'): os.mkdir(defense_dir) print('creating the {} folder for storing the {} defense'.format(defense_dir, self.defense_name)) else: print('the storing {} folder is already existing'.format(defense_dir)) @abstractmethod def defense(self): print("abstract method of 'Defenses' is not implemented") raise NotImplementedError
the-stack_0_14353
import argparse import configparser from collections import defaultdict import itertools import logging logger = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) import os import random import time import numpy as np import chainer if chainer.backends.cuda.available: import cupy as xp else: xp = np from chainercv.utils import non_maximum_suppression from PIL import ImageDraw, Image from coco_dataset import get_coco_dataset from mpii_dataset import get_mpii_dataset from model import PoseProposalNet from network_resnet import ResNet50 from utils import parse_size COLOR_MAP = {} DIRECTED_GRAPHS = [[]] DATA_MODULE = None def get_feature(model, image): global inference_time start = time.time() image = xp.asarray(image) processed_image = model.feature_layer.prepare(image) resp, conf, x, y, w, h, e = model.predict(xp.expand_dims(processed_image, axis=0)) resp = chainer.backends.cuda.to_cpu(resp.array) conf = chainer.backends.cuda.to_cpu(conf.array) w = chainer.backends.cuda.to_cpu(w.array) h = chainer.backends.cuda.to_cpu(h.array) x = chainer.backends.cuda.to_cpu(x.array) y = chainer.backends.cuda.to_cpu(y.array) e = chainer.backends.cuda.to_cpu(e.array) resp = np.squeeze(resp, axis=0) conf = np.squeeze(conf, axis=0) x = np.squeeze(x, axis=0) y = np.squeeze(y, axis=0) w = np.squeeze(w, axis=0) h = np.squeeze(h, axis=0) e = np.squeeze(e, axis=0) inference_time=time.time() - start logger.info('inference time {:.5f}'.format(inference_time)) return resp, conf, x, y, w, h, e def estimate(model, image, detection_thresh=0.15, min_num_keypoints=-1): feature_map = get_feature(model, image) return get_humans_by_feature(model, feature_map, detection_thresh, min_num_keypoints) def get_humans_by_feature(model, feature_map, detection_thresh=0.15, min_num_keypoints=-1): resp, conf, x, y, w, h, e = feature_map start = time.time() delta = resp * conf K = len(model.keypoint_names) outW, outH = model.outsize ROOT_NODE = 0 # instance start = time.time() rx, ry = model.restore_xy(x, y) rw, rh = model.restore_size(w, h) ymin, ymax = ry - rh / 2, ry + rh / 2 xmin, xmax = rx - rw / 2, rx + rw / 2 bbox = np.array([ymin, xmin, ymax, xmax]) bbox = bbox.transpose(1, 2, 3, 0) root_bbox = bbox[ROOT_NODE] score = delta[ROOT_NODE] candidate = np.where(score > detection_thresh) score = score[candidate] root_bbox = root_bbox[candidate] selected = non_maximum_suppression( bbox=root_bbox, thresh=0.3, score=score) root_bbox = root_bbox[selected] logger.info('detect instance {:.5f}'.format(time.time() - start)) start = time.time() humans = [] e = e.transpose(0, 3, 4, 1, 2) ei = 0 # index of edges which contains ROOT_NODE as begin # alchemy_on_humans for hxw in zip(candidate[0][selected], candidate[1][selected]): human = {ROOT_NODE: bbox[(ROOT_NODE, hxw[0], hxw[1])]} # initial for graph in DIRECTED_GRAPHS: eis, ts = graph i_h, i_w = hxw for ei, t in zip(eis, ts): index = (ei, i_h, i_w) # must be tuple u_ind = np.unravel_index(np.argmax(e[index]), e[index].shape) j_h = i_h + u_ind[0] - model.local_grid_size[1] // 2 j_w = i_w + u_ind[1] - model.local_grid_size[0] // 2 if j_h < 0 or j_w < 0 or j_h >= outH or j_w >= outW: break if delta[t, j_h, j_w] < detection_thresh: break human[t] = bbox[(t, j_h, j_w)] i_h, i_w = j_h, j_w if min_num_keypoints <= len(human) - 1: humans.append(human) logger.info('alchemy time {:.5f}'.format(time.time() - start)) logger.info('num humans = {}'.format(len(humans))) return humans def draw_humans(keypoint_names, edges, pil_image, humans, mask=None, visbbox=True): """ This is what happens when you use alchemy on humans... note that image should be PIL object """ start = time.time() drawer = ImageDraw.Draw(pil_image) for human in humans: for k, b in human.items(): if mask: fill = (255, 255, 255) if k == 0 else None else: fill = None ymin, xmin, ymax, xmax = b if k == 0: # human instance # adjust size t = 1 xmin = int(xmin * t + xmax * (1 - t)) xmax = int(xmin * (1 - t) + xmax * t) ymin = int(ymin * t + ymax * (1 - t)) ymax = int(ymin * (1 - t) + ymax * t) if mask: resized = mask.resize(((xmax - xmin), (ymax - ymin))) pil_image.paste(resized, (xmin, ymin), mask=resized) else: drawer.rectangle(xy=[xmin, ymin, xmax, ymax], fill=fill, outline=COLOR_MAP[keypoint_names[k]]) else: if visbbox: drawer.rectangle(xy=[xmin, ymin, xmax, ymax], fill=fill, outline=COLOR_MAP[keypoint_names[k]]) else: r = 2 x = (xmin + xmax) / 2 y = (ymin + ymax) / 2 drawer.ellipse((x - r, y - r, x + r, y + r), fill=COLOR_MAP[keypoint_names[k]]) for s, t in edges: if s in human and t in human: by = (human[s][0] + human[s][2]) / 2 bx = (human[s][1] + human[s][3]) / 2 ey = (human[t][0] + human[t][2]) / 2 ex = (human[t][1] + human[t][3]) / 2 drawer.line([bx, by, ex, ey], fill=COLOR_MAP[keypoint_names[s]], width=3) logger.info('draw humans {: .5f}'.format(time.time() - start)) return pil_image def create_model(args, config): global DIRECTED_GRAPHS, COLOR_MAP dataset_type = config.get('dataset', 'type') if dataset_type == 'mpii': import mpii_dataset as x_dataset elif dataset_type == 'coco': import coco_dataset as x_dataset else: raise Exception('Unknown dataset {}'.format(dataset_type)) KEYPOINT_NAMES = x_dataset.KEYPOINT_NAMES EDGES = x_dataset.EDGES DIRECTED_GRAPHS = x_dataset.DIRECTED_GRAPHS COLOR_MAP = x_dataset.COLOR_MAP model = PoseProposalNet( model_name=config.get('model_param', 'model_name'), insize=parse_size(config.get('model_param', 'insize')), keypoint_names=KEYPOINT_NAMES, edges=np.array(EDGES), local_grid_size=parse_size(config.get('model_param', 'local_grid_size')), parts_scale=parse_size(config.get(dataset_type, 'parts_scale')), instance_scale=parse_size(config.get(dataset_type, 'instance_scale')), width_multiplier=config.getfloat('model_param', 'width_multiplier'), ) logger.info('input size = {}'.format(model.insize)) logger.info('output size = {}'.format(model.outsize)) try: result_dir = args.model except: result_dir = args chainer.serializers.load_npz( os.path.join(result_dir, 'bestmodel.npz'), model ) logger.info('cuda enable {}'.format(chainer.backends.cuda.available)) logger.info('ideep enable {}'.format(chainer.backends.intel64.is_ideep_available())) if chainer.backends.cuda.available: logger.info('gpu mode') model.to_gpu() elif chainer.backends.intel64.is_ideep_available(): logger.info('Indel64 mode') model.to_intel64() return model def load_config(args): config = configparser.ConfigParser() config_path = os.path.join(args.model, 'src', 'config.ini') logger.info(config_path) config.read(config_path, 'UTF-8') return config def predict(args): config = load_config(args) detection_thresh = config.getfloat('predict', 'detection_thresh') min_num_keypoints = config.getint('predict', 'min_num_keypoints') dataset_type = config.get('dataset', 'type') logger.info('loading {}'.format(dataset_type)) if dataset_type == 'mpii': _, test_set = get_mpii_dataset( insize=parse_size(config.get('model_param', 'insize')), image_root=config.get(dataset_type, 'images'), annotations=config.get(dataset_type, 'annotations'), train_size=config.getfloat(dataset_type, 'train_size'), min_num_keypoints=config.getint(dataset_type, 'min_num_keypoints'), seed=config.getint('training_param', 'seed'), ) elif dataset_type == 'coco': test_set = get_coco_dataset( insize=parse_size(config.get('model_param', 'insize')), image_root=config.get(dataset_type, 'val_images'), annotations=config.get(dataset_type, 'val_annotations'), min_num_keypoints=config.getint(dataset_type, 'min_num_keypoints'), ) else: raise Exception('Unknown dataset {}'.format(dataset_type)) model = create_model(args, config) # choose specific image idx = random.choice(range(len(test_set))) idx = 50 image = test_set.get_example(idx)['image'] humans = estimate( model, image.astype(np.float32), detection_thresh, min_num_keypoints, ) pil_image = Image.fromarray(image.transpose(1, 2, 0).astype(np.uint8)) pil_image = draw_humans( keypoint_names=model.keypoint_names, edges=model.edges, pil_image=pil_image, humans=humans, visbbox=config.getboolean('predict', 'visbbox') ) #pil_image.save('result.png', 'PNG') pil_image.save('result_' + 'X'.join((str(_.insize[0]), str(_.insize[1]))) + '_idx_' + str(idx) + '_time_' + str(round(inference_time, 3)) + 's.png', 'PNG') def parse_arguments(): parser = argparse.ArgumentParser() parser.add_argument('model', help='path/to/model', type=str) return parser.parse_args() def main(): args = parse_arguments() predict(args) if __name__ == '__main__': main()
the-stack_0_14355
import scipy as sp from timer import timer def entropy(values): """A slow way to calculate the entropy of the input values""" values = sp.asarray(values).flatten() #calculate the probablility of a value in a vector vUni = sp.unique(values) lenval = float(values.size) FreqData = sp.zeros(vUni.shape, dtype=float) for i in xrange(FreqData.size): FreqData[i] = sum(values==vUni[i])/lenval return -sum([FreqData[i]*sp.math.log(FreqData[i],2) for i in xrange(FreqData.size)]) def entropy2(values): """Calculate the entropy of vector values. values will be flattened to a 1d ndarray.""" values = sp.asarray(values).flatten() p = sp.diff(sp.c_[0,sp.diff(sp.sort(values)).nonzero(), values.size])/float(values.size) H = (p*sp.log2(p)).sum() return -H def chebyshev2(values, degree=1): """Calculate the Chebyshev Polynomials using previous results""" values = sp.asarray(values) A = sp.zeros((degree, len(values))) A[0,:]=1 try: A[1,:]=values except IndexError: return A for i in range(2,degree): for x in range(len(values)): A[i,x] = 2*values[x]*A[i-1,x]-A[i-2,x] return A def chebyshev2_lc(values, degree=1): """Calculate the Chebyshev Polynomials using previous results""" values = sp.asarray(values) A = sp.zeros((degree, len(values))) A[0,:]=1 try: A[1,:]=values except IndexError: return A for i in range(2,degree): A[i,:] = [2*x for x in values]*A[i-1,:]-A[i-2,:] return A def chebyshev_sp(values, degree=1): """Calculate the Chebyshev Polynomials using the scipy functions""" values = sp.asarray(values) A = sp.zeros((degree, len(values))) A[0,:]=1 try: A[1,:]=values except IndexError: return A for i in range(2,degree): A[i,:] = sp.cos(i*sp.arccos(values)) return A def chebyshev_vec(values, degree=1): """Calculate the Chebyshev Polynobials This implementation uses sp.vectorize to vectorize python's math functions)""" values = sp.asarray(values) A = sp.zeros((degree, len(values))) A[0,:]=1 try: A[1,:]=values except IndexError: return A cos = sp.vectorize(sp.math.cos) acos = sp.vectorize(sp.math.acos) for i in range(2,degree): A[i,:] = cos(i*acos(values)) return A def chebyshev_lc(values, degree=1): """Calculate the Chebyshev Polynomials using list comprehensions""" values = sp.asarray(values) A = sp.zeros((degree, len(values))) A[0,:]=1 try: A[1,:]=values except IndexError: return A for i in range(2,degree): A[i,:] = [sp.math.cos(y) for y in [i*sp.math.acos(x) for x in values]] return A def chebyshev(values, degree=1): """Calculate the Chebyshev Polynomial using Tn(x) = cos(n*cosh(x))""" values = sp.asarray(values) A = sp.zeros((degree, len(values))) A[0,:]=1 try: A[1,:]=values except IndexError: return A for i in range(2,degree): for x in values: A[i,:] = sp.math.cos(i*sp.math.acos(x)) return A if __name__ == '__main__': from timer import timer testvals = sp.linspace(-1,1,500) funcs = [chebyshev, chebyshev_lc, chebyshev_vec, chebyshev_sp, chebyshev2, chebyshev2_lc] with timer(loops=5) as t: for f in funcs: t.time(f, testvals, 100) t.printTimes()
the-stack_0_14356
""" Django settings for {{ project_name }} project. For more information on this file, see https://docs.djangoproject.com/en/2.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.0/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os import dj_database_url import django_heroku from decouple import config PROJECT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) BASE_DIR = os.path.dirname(PROJECT_DIR) ENVIRONMENT = config('ENVIRONMENT', default='local') # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = config('SECRET_KEY', default='SECRET_KEY') # SECURITY WARNING: define the correct hosts in production! ALLOWED_HOSTS = config('ALLOWED_HOSTS', cast=lambda v: [ s.strip() for s in v.split(',')], default='*') INSTALLED_APPS = [ 'home', 'search', 'wagtail.contrib.forms', 'wagtail.contrib.redirects', 'wagtail.embeds', 'wagtail.sites', 'wagtail.users', 'wagtail.snippets', 'wagtail.documents', 'wagtail.images', 'wagtail.search', 'wagtail.admin', 'wagtail.core', 'wagtail.contrib.modeladmin', 'wagtail.contrib.styleguide', 'modelcluster', 'taggit', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'whitenoise.runserver_nostatic', 'django.contrib.staticfiles', 'django.contrib.sites', ] SITE_ID = 1 MIDDLEWARE = [ 'django.contrib.sessions.middleware.SessionMiddleware', 'whitenoise.middleware.WhiteNoiseMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'django.middleware.security.SecurityMiddleware', 'wagtail.core.middleware.SiteMiddleware', 'wagtail.contrib.redirects.middleware.RedirectMiddleware', ] ROOT_URLCONF = '{{ project_name }}.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [ os.path.join(PROJECT_DIR, 'templates'), ], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = '{{ project_name }}.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Change 'default' database configuration with $DATABASE_URL. DATABASES['default'].update(dj_database_url.config(conn_max_age=500, ssl_require=True)) # Honor the 'X-Forwarded-Proto' header for request.is_secure() SECURE_PROXY_SSL_HEADER = ('HTTP_X_FORWARDED_PROTO', 'https') # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.0/howto/static-files/ STATICFILES_FINDERS = [ 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', ] STATIC_ROOT = os.path.join(PROJECT_DIR, 'staticfiles') STATIC_URL = '/static/' # Extra places for collectstatic to find static files. STATICFILES_DIRS = [ os.path.join(PROJECT_DIR, 'static'), ] # Simplified static file serving. # https://warehouse.python.org/project/whitenoise/ STATICFILES_STORAGE = 'whitenoise.storage.CompressedManifestStaticFilesStorage' # Activate Django-Heroku. django_heroku.settings(locals()) MEDIA_ROOT = os.path.join(BASE_DIR, 'media') MEDIA_URL = '/media/' DATA_UPLOAD_MAX_NUMBER_FIELDS = 100000 # Wagtail settings WAGTAIL_SITE_NAME = "{{ project_name }}" # Base URL to use when referring to full URLs within the Wagtail admin backend - # e.g. in notification emails. Don't include '/admin' or a trailing slash BASE_URL = config('BASE_URL', default='BASE_URL') AUTHENTICATION_BACKENDS = ( 'django.contrib.auth.backends.ModelBackend', ) if ENVIRONMENT != 'local': SECURE_CONTENT_TYPE_NOSNIFF = True SECURE_BROWSER_XSS_FILTER = True SECURE_SSL_REDIRECT = True SESSION_COOKIE_SECURE = True CSRF_COOKIE_SECURE = True CSRF_COOKIE_HTTPONLY = True X_FRAME_OPTIONS = 'DENY' USER_AGENTS_CACHE = None
the-stack_0_14360
import sys import time from typing import Any, List, Optional import tempfile import pytest import inspect import requests from fastapi import (Cookie, Depends, FastAPI, Header, Query, Request, APIRouter, BackgroundTasks) from fastapi.middleware.cors import CORSMiddleware from fastapi.responses import JSONResponse from pydantic import BaseModel, Field import ray from ray import serve from ray.serve.http_util import make_fastapi_class_based_view def test_fastapi_function(serve_instance): app = FastAPI() @app.get("/{a}") def func(a: int): return {"result": a} @serve.deployment(name="f") @serve.ingress(app) class FastAPIApp: pass FastAPIApp.deploy() resp = requests.get("http://localhost:8000/f/100") assert resp.json() == {"result": 100} resp = requests.get("http://localhost:8000/f/not-number") assert resp.status_code == 422 # Unprocessable Entity assert resp.json()["detail"][0]["type"] == "type_error.integer" def test_ingress_prefix(serve_instance): app = FastAPI() @app.get("/{a}") def func(a: int): return {"result": a} @serve.deployment(route_prefix="/api") @serve.ingress(app) class App: pass App.deploy() resp = requests.get("http://localhost:8000/api/100") assert resp.json() == {"result": 100} def test_class_based_view(serve_instance): app = FastAPI() @app.get("/other") def hello(): return "hello" @serve.deployment(name="f") @serve.ingress(app) class A: def __init__(self): self.val = 1 @app.get("/calc/{i}") def b(self, i: int): return i + self.val @app.post("/calc/{i}") def c(self, i: int): return i - self.val def other(self, msg: str): return msg A.deploy() # Test HTTP calls. resp = requests.get("http://localhost:8000/f/calc/41") assert resp.json() == 42 resp = requests.post("http://localhost:8000/f/calc/41") assert resp.json() == 40 resp = requests.get("http://localhost:8000/f/other") assert resp.json() == "hello" # Test handle calls. handle = A.get_handle() assert ray.get(handle.b.remote(41)) == 42 assert ray.get(handle.c.remote(41)) == 40 assert ray.get(handle.other.remote("world")) == "world" def test_make_fastapi_cbv_util(): app = FastAPI() class A: @app.get("/{i}") def b(self, i: int): pass # before, "self" is treated as a query params assert app.routes[-1].endpoint == A.b assert app.routes[-1].dependant.query_params[0].name == "self" assert len(app.routes[-1].dependant.dependencies) == 0 make_fastapi_class_based_view(app, A) # after, "self" is treated as a dependency instead of query params assert app.routes[-1].endpoint == A.b assert len(app.routes[-1].dependant.query_params) == 0 assert len(app.routes[-1].dependant.dependencies) == 1 self_dep = app.routes[-1].dependant.dependencies[0] assert self_dep.name == "self" assert inspect.isfunction(self_dep.call) assert "get_current_servable" in str(self_dep.call) def test_fastapi_features(serve_instance): app = FastAPI(openapi_url="/my_api.json") @app.on_event("startup") def inject_state(): app.state.state_one = "app.state" @app.middleware("http") async def add_process_time_header(request: Request, call_next): start_time = time.time() response = await call_next(request) process_time = time.time() - start_time response.headers["X-Process-Time"] = str(process_time) return response class Nested(BaseModel): val: int class BodyType(BaseModel): name: str price: float = Field(None, gt=1.0, description="High price!") nests: Nested class RespModel(BaseModel): ok: bool vals: List[Any] file_path: str async def yield_db(): yield "db" async def common_parameters(q: Optional[str] = None): return {"q": q} @app.exception_handler(ValueError) async def custom_handler(_: Request, exc: ValueError): return JSONResponse( status_code=500, content={ "custom_error": "true", "message": str(exc) }) def run_background(background_tasks: BackgroundTasks): path = tempfile.mktemp() def write_to_file(p): with open(p, "w") as f: f.write("hello") background_tasks.add_task(write_to_file, path) return path app.add_middleware(CORSMiddleware, allow_origins="*") @app.get("/{path_arg}", response_model=RespModel, status_code=201) async def func( path_arg: str, query_arg: str, body_val: BodyType, backgrounds_tasks: BackgroundTasks, do_error: bool = False, query_arg_valid: Optional[str] = Query(None, min_length=3), cookie_arg: Optional[str] = Cookie(None), user_agent: Optional[str] = Header(None), commons: dict = Depends(common_parameters), db=Depends(yield_db), ): if do_error: raise ValueError("bad input") path = run_background(backgrounds_tasks) return RespModel( ok=True, vals=[ path_arg, query_arg, body_val.price, body_val.nests.val, do_error, query_arg_valid, cookie_arg, user_agent.split("/")[0], # returns python-requests commons, db, app.state.state_one, ], file_path=path, ) router = APIRouter(prefix="/prefix") @router.get("/subpath") def router_path(): return "ok" app.include_router(router) @serve.deployment(name="fastapi") @serve.ingress(app) class Worker: pass Worker.deploy() url = "http://localhost:8000/fastapi" resp = requests.get(f"{url}/") assert resp.status_code == 404 assert "x-process-time" in resp.headers resp = requests.get(f"{url}/my_api.json") assert resp.status_code == 200 assert resp.json() # it returns a well-formed json. resp = requests.get(f"{url}/docs") assert resp.status_code == 200 assert "<!DOCTYPE html>" in resp.text resp = requests.get(f"{url}/redoc") assert resp.status_code == 200 assert "<!DOCTYPE html>" in resp.text resp = requests.get(f"{url}/path_arg") assert resp.status_code == 422 # Malformed input resp = requests.get( f"{url}/path_arg", json={ "name": "serve", "price": 12, "nests": { "val": 1 } }, params={ "query_arg": "query_arg", "query_arg_valid": "at-least-three-chars", "q": "common_arg", }) assert resp.status_code == 201, resp.text assert resp.json()["ok"] assert resp.json()["vals"] == [ "path_arg", "query_arg", 12.0, 1, False, "at-least-three-chars", None, "python-requests", { "q": "common_arg" }, "db", "app.state", ] assert open(resp.json()["file_path"]).read() == "hello" resp = requests.get( f"{url}/path_arg", json={ "name": "serve", "price": 12, "nests": { "val": 1 } }, params={ "query_arg": "query_arg", "query_arg_valid": "at-least-three-chars", "q": "common_arg", "do_error": "true" }) assert resp.status_code == 500 assert resp.json()["custom_error"] == "true" resp = requests.get(f"{url}/prefix/subpath") assert resp.status_code == 200 resp = requests.get( f"{url}/docs", headers={ "Access-Control-Request-Method": "GET", "Origin": "https://googlebot.com" }) assert resp.headers["access-control-allow-origin"] == "*", resp.headers def test_fast_api_mounted_app(serve_instance): app = FastAPI() subapp = FastAPI() @subapp.get("/hi") def hi(): return "world" app.mount("/mounted", subapp) @serve.deployment(route_prefix="/api") @serve.ingress(app) class A: pass A.deploy() assert requests.get( "http://localhost:8000/api/mounted/hi").json() == "world" def test_fastapi_init_lifespan_should_not_shutdown(serve_instance): app = FastAPI() @app.on_event("shutdown") async def shutdown(): 1 / 0 @serve.deployment @serve.ingress(app) class A: def f(self): return 1 A.deploy() # Without a proper fix, the actor won't be initialized correctly. # Because it will crash on each startup. assert ray.get(A.get_handle().f.remote()) == 1 def test_fastapi_duplicate_routes(serve_instance): app = FastAPI() @serve.deployment(route_prefix="/api/v1") @serve.ingress(app) class App1: @app.get("/") def func_v1(self): return "first" @serve.deployment(route_prefix="/api/v2") @serve.ingress(app) class App2: @app.get("/") def func_v2(self): return "second" @app.get("/ignored") def ignored(): pass App1.deploy() App2.deploy() resp = requests.get("http://localhost:8000/api/v1") assert resp.json() == "first" resp = requests.get("http://localhost:8000/api/v2") assert resp.json() == "second" for version in ["v1", "v2"]: resp = requests.get(f"http://localhost:8000/api/{version}/ignored") assert resp.status_code == 404 @pytest.mark.skipif(sys.platform == "win32", reason="Failing on Windows") @pytest.mark.parametrize("route_prefix", [None, "/", "/subpath"]) def test_doc_generation(serve_instance, route_prefix): app = FastAPI() @serve.deployment(route_prefix=route_prefix) @serve.ingress(app) class App: @app.get("/") def func1(self, arg: str): return "hello" App.deploy() if route_prefix is None: prefix = "/App" else: prefix = route_prefix if not prefix.endswith("/"): prefix += "/" r = requests.get(f"http://localhost:8000{prefix}openapi.json") assert r.status_code == 200 assert len(r.json()["paths"]) == 1 assert "/" in r.json()["paths"] assert len(r.json()["paths"]["/"]) == 1 assert "get" in r.json()["paths"]["/"] r = requests.get(f"http://localhost:8000{prefix}docs") assert r.status_code == 200 @serve.deployment(route_prefix=route_prefix) @serve.ingress(app) class App: @app.get("/") def func1(self, arg: str): return "hello" @app.post("/hello") def func2(self, arg: int): return "hello" App.deploy() r = requests.get(f"http://localhost:8000{prefix}openapi.json") assert r.status_code == 200 assert len(r.json()["paths"]) == 2 assert "/" in r.json()["paths"] assert len(r.json()["paths"]["/"]) == 1 assert "get" in r.json()["paths"]["/"] assert "/hello" in r.json()["paths"] assert len(r.json()["paths"]["/hello"]) == 1 assert "post" in r.json()["paths"]["/hello"] r = requests.get(f"http://localhost:8000{prefix}docs") assert r.status_code == 200 if __name__ == "__main__": import sys sys.exit(pytest.main(["-v", "-s", __file__]))
the-stack_0_14362
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models from django.conf import settings class Migration(migrations.Migration): dependencies = [ ('settings', '0003_settings_action_delete_confirm'), ] operations = [ migrations.RemoveField( model_name='settings', name='id', ), migrations.AlterField( model_name='settings', name='user', field=models.OneToOneField(default=None, primary_key=True, to=settings.AUTH_USER_MODEL, related_name='settings', serialize=False), ), ]
the-stack_0_14363
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # MicroPython documentation build configuration file, created by # sphinx-quickstart on Sun Sep 21 11:42:03 2014. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, os.path.abspath('.')) # Work out the port to generate the docs for from collections import OrderedDict micropy_port = os.getenv('MICROPY_PORT') or 'pyboard' tags.add('port_' + micropy_port) ports = OrderedDict(( ('unix', 'unix'), ('pyboard', 'the pyboard'), ('wipy', 'the WiPy'), ('esp8266', 'the ESP8266'), )) # The members of the html_context dict are available inside topindex.html micropy_version = os.getenv('MICROPY_VERSION') or 'latest' micropy_all_versions = (os.getenv('MICROPY_ALL_VERSIONS') or 'latest').split(',') url_pattern = '%s/en/%%s/%%s' % (os.getenv('MICROPY_URL_PREFIX') or '/',) html_context = { 'port':micropy_port, 'port_name':ports[micropy_port], 'port_version':micropy_version, 'all_ports':[ (port_id, url_pattern % (micropy_version, port_id)) for port_id, port_name in ports.items() ], 'all_versions':[ (ver, url_pattern % (ver, micropy_port)) for ver in micropy_all_versions ], 'downloads':[ ('PDF', url_pattern % (micropy_version, 'micropython-%s.pdf' % micropy_port)), ], } # Specify a custom master document based on the port name master_doc = micropy_port + '_' + 'index' # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.doctest', 'sphinx.ext.intersphinx', 'sphinx.ext.todo', 'sphinx.ext.coverage', 'sphinx_selective_exclude.modindex_exclude', 'sphinx_selective_exclude.eager_only', 'sphinx_selective_exclude.search_auto_exclude', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. #master_doc = 'index' # General information about the project. project = 'MicroPython' copyright = '2014-2017, Damien P. George, Paul Sokolovsky, and contributors' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '1.8' # The full version, including alpha/beta/rc tags. release = '1.8.7' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['build'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # -- Options for HTML output ---------------------------------------------- # on_rtd is whether we are on readthedocs.org on_rtd = os.environ.get('READTHEDOCS', None) == 'True' if not on_rtd: # only import and set the theme if we're building docs locally try: import sphinx_rtd_theme html_theme = 'sphinx_rtd_theme' html_theme_path = [sphinx_rtd_theme.get_html_theme_path(), '.'] except: html_theme = 'default' html_theme_path = ['.'] else: html_theme_path = ['.'] # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = ['.'] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = '../../logo/trans-logo.png' # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. html_last_updated_fmt = '%d %b %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. html_additional_pages = {"index": "topindex.html"} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'MicroPythondoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'MicroPython.tex', 'MicroPython Documentation', 'Damien P. George, Paul Sokolovsky, and contributors', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'micropython', 'MicroPython Documentation', ['Damien P. George, Paul Sokolovsky, and contributors'], 1), ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'MicroPython', 'MicroPython Documentation', 'Damien P. George, Paul Sokolovsky, and contributors', 'MicroPython', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = {'http://docs.python.org/': None} # Append the other ports' specific folders/files to the exclude pattern exclude_patterns.extend([port + '*' for port in ports if port != micropy_port]) modules_port_specific = { 'pyboard': ['pyb'], 'wipy': ['wipy'], 'esp8266': ['esp'], } modindex_exclude = [] for p, l in modules_port_specific.items(): if p != micropy_port: modindex_exclude += l # Exclude extra modules per port modindex_exclude += { 'esp8266': ['cmath', 'select'], 'wipy': ['cmath'], }.get(micropy_port, [])
the-stack_0_14367
import sys import discord token = sys.argv[1] client = discord.Client() @client.event async def on_ready(): for server in client.guilds: await server.leave() await client.close() client.run(token, bot=False)
the-stack_0_14368
import hashlib from scapy.all import IP, TCP, PcapReader, rdpcap, wrpcap from tcp_reliable.packet_helper import getPacketTimestamp, changeTimestamp, writePcap, genKey class Extractor: def __init__(self, pcapConfig, BUFFER_SIZE): self.pcapConfig = pcapConfig self.BUFFER_SIZE = BUFFER_SIZE def extract(self): serverPcap = rdpcap(self.pcapConfig['CLIENT_PCAP_PATH_OUTPUT']) output = [] lastTimestamp = 0 serverPcap.sort(key=self.getKeySort) last_seq = 0 limit = 0 buff = [None]* self.BUFFER_SIZE sol = [] for pkt in serverPcap: if pkt[TCP].dport == self.pcapConfig['CLIENT_PORT']: timestamp = getPacketTimestamp(pkt)[0] if timestamp == None: continue seq = pkt[TCP].seq if lastTimestamp != timestamp and limit < timestamp and seq!= last_seq: # if count >= 179 and count <= 281: # print('seq:', pkt[TCP].seq, 'timestamp', timestamp, 'value', timestamp%2,'last_tm:', lastTimestamp) # text+=str(timestamp%2) # print("seq:", seq, "timestamp:", timestamp, "bit:", timestamp%2) output.append(timestamp%2) idx = self.getBufferIdx(seq) buff[idx] = timestamp%2 # print("******",len(sol)+1,"***** seq",seq,"*****","idx",idx,"******* bit:",timestamp%2) if idx == 0 and timestamp%2 == 1: has_none = False for i in buff[1:]: if i == None: has_none = True if not has_none: sol.append(buff[1:]) buff = [None]* self.BUFFER_SIZE lastTimestamp = timestamp limit = max(limit, timestamp) last_seq = seq return sol def getKeySort(self, pkt): seq = pkt[TCP].seq timestamp = getPacketTimestamp(pkt)[0] if timestamp == None: return int(str(seq)+'0') return int(str(timestamp)+str(seq)) def genHashNumber(self, num): return int(hashlib.sha256(str(num).encode()).hexdigest(), base=16) def getBufferIdx(self, seq): return self.genHashNumber(seq) % self.BUFFER_SIZE # if __name__ == '__main__': # readMessage()
the-stack_0_14369
""" Submodule for working with geochemical data. """ import logging import pandas as pd import numpy as np logging.getLogger(__name__).addHandler(logging.NullHandler()) logger = logging.getLogger(__name__) from ..util.meta import update_docstring_references from ..util import units from . import parse from . import transform from . import norm from .ind import ( common_elements, common_oxides, __common_elements__, __common_oxides__, REE, ) # note that only some of these methods will be valid for series @pd.api.extensions.register_series_accessor("pyrochem") @pd.api.extensions.register_dataframe_accessor("pyrochem") class pyrochem(object): """ Custom dataframe accessor for pyrolite geochemistry. """ def __init__(self, obj): self._validate(obj) self._obj = obj @staticmethod def _validate(obj): pass # pyrolite.geochem.ind functions @property def list_elements(self): """ Get the subset of columns which are element names. Returns -------- :class:`list` Notes ------- The list will have the same ordering as the source DataFrame. """ fltr = self._obj.columns.isin(__common_elements__) return self._obj.columns[fltr].tolist() @property def list_REE(self): """ Get the subset of columns which are Rare Earth Element names. Returns -------- :class:`list` Notes ------- The returned list will reorder REE based on atomic number. """ return [i for i in REE() if i in self._obj.columns] @property def list_oxides(self): """ Get the subset of columns which are oxide names. Returns -------- :class:`list` Notes ------- The list will have the same ordering as the source DataFrame. """ fltr = self._obj.columns.isin(__common_oxides__) return self._obj.columns[fltr].tolist() @property def list_compositional(self): return list(self.list_oxides + self.list_elements) @property def elements(self): """ Get an elemental subset of a DataFrame. Returns -------- :class:`pandas.Dataframe` """ return self._obj[self.list_elements] @elements.setter def elements(self, df): self._obj.loc[:, self.list_elements] = df @property def REE(self): """ Get a Rare Earth Element subset of a DataFrame. Returns -------- :class:`pandas.Dataframe` """ return self._obj[self.list_REE] @REE.setter def REE(self, df): self._obj.loc[:, self.list_REE] = df @property def oxides(self): """ Get an oxide subset of a DataFrame. Returns -------- :class:`pandas.Dataframe` """ return self._obj.loc[:, self.list_oxides] @oxides.setter def oxides(self, df): self._obj.loc[:, self.list_oxides] = df @property def compositional(self): """ Get an oxide & elemental subset of a DataFrame. Returns -------- :class:`pandas.Dataframe` """ return self._obj.loc[:, self.list_compositional] @compositional.setter def compositional(self, df): self._obj.loc[:, self.list_compositional] = df # pyrolite.geochem.parse functions def check_multiple_cation_inclusion(self, exclude=["LOI", "FeOT", "Fe2O3T"]): """ Returns cations which are present in both oxide and elemental form. Parameters ----------- exclude : :class:`list`, :code:`["LOI", "FeOT", "Fe2O3T"]` List of components to exclude from the duplication check. Returns -------- :class:`set` Set of elements for which multiple components exist in the dataframe. """ return parse.check_multiple_cation_inclusion(self._obj, exclude=exclude) # pyrolite.geochem.transform functions def to_molecular(self, renorm=True): """ Converts mass quantities to molar quantities. Parameters ----------- renorm : :class:`bool`, :code:`True` Whether to renormalise the dataframe after converting to relative moles. Notes ------ Does not convert units (i.e. mass% --> mol%; mass-ppm --> mol-ppm). Returns ------- :class:`pandas.DataFrame` Transformed dataframe. """ self._obj = transform.to_molecular(self._obj, renorm=renorm) return self._obj def to_weight(self, renorm=True): """ Converts molar quantities to mass quantities. Parameters ----------- renorm : :class:`bool`, :code:`True` Whether to renormalise the dataframe after converting to relative moles. Notes ------ Does not convert units (i.e. mol% --> mass%; mol-ppm --> mass-ppm). Returns ------- :class:`pandas.DataFrame` Transformed dataframe. """ self._obj = transform.to_weight(self._obj, renorm=renorm) return self._obj def devolatilise( self, exclude=["H2O", "H2O_PLUS", "H2O_MINUS", "CO2", "LOI"], renorm=True ): """ Recalculates components after exclusion of volatile phases (e.g. H2O, CO2). Parameters ----------- exclude : :class:`list` Components to exclude from the dataset. renorm : :class:`bool`, :code:`True` Whether to renormalise the dataframe after devolatilisation. Returns ------- :class:`pandas.DataFrame` Transformed dataframe. """ self._obj = transform.devolatilise(self._obj, exclude=exclude, renorm=renorm) return self._obj def elemental_sum( self, component=None, to=None, total_suffix="T", logdata=False, molecular=False ): """ Sums abundance for a cation to a single series, starting from a dataframe containing multiple componnents with a single set of units. Parameters ---------- component : :class:`str` Component indicating which element to aggregate. to : :class:`str` Component to cast the output as. logdata : :class:`bool`, :code:`False` Whether data has been log transformed. molecular : :class:`bool`, :code:`False` Whether to perform a sum of molecular data. Returns ------- :class:`pandas.Series` Series with cation aggregated. """ return transform.elemental_sum( self._obj, component=component, to=to, total_suffix=total_suffix, logdata=logdata, molecular=molecular, ) def aggregate_element( self, to, total_suffix="T", logdata=False, renorm=False, molecular=False ): """ Aggregates cation information from oxide and elemental components to either a single species or a designated mixture of species. Parameters ---------- to : :class:`str` | :class:`~periodictable.core.Element` | :class:`~periodictable.formulas.Formula` | :class:`dict` Component(s) to convert to. If one component is specified, the element will be converted to the target species. If more than one component is specified with proportions in a dictionary (e.g. :code:`{'FeO': 0.9, 'Fe2O3': 0.1}`), the components will be split as a fraction of the elemental sum. renorm : :class:`bool`, :code:`True` Whether to renormalise the dataframe after recalculation. total_suffix : :class:`str`, 'T' Suffix of 'total' variables. E.g. 'T' for FeOT, Fe2O3T. logdata : :class:`bool`, :code:`False` Whether the data has been log transformed. molecular : :class:`bool`, :code:`False` Whether to perform a sum of molecular data. Notes ------- This won't convert units, so need to start from single set of units. Returns ------- :class:`pandas.Series` Series with cation aggregated. """ return transform.aggregate_element( self._obj, to, total_suffix=total_suffix, logdata=logdata, renorm=renorm, molecular=molecular, ) def recalculate_Fe( self, to="FeOT", renorm=False, total_suffix="T", logdata=False, molecular=False ): """ Recalculates abundances of iron, and normalises a dataframe to contain either a single species, or multiple species in certain proportions. Parameters ----------- to : :class:`str` | :class:`~periodictable.core.Element` | :class:`~periodictable.formulas.Formula` | :class:`dict` Component(s) to convert to. If one component is specified, all iron will be converted to the target species. If more than one component is specified with proportions in a dictionary (e.g. :code:`{'FeO': 0.9, 'Fe2O3': 0.1}`), the components will be split as a fraction of Fe. renorm : :class:`bool`, :code:`False` Whether to renormalise the dataframe after recalculation. total_suffix : :class:`str`, 'T' Suffix of 'total' variables. E.g. 'T' for FeOT, Fe2O3T. logdata : :class:`bool`, :code:`False` Whether the data has been log transformed. molecular : :class:`bool`, :code:`False` Flag that data is in molecular units, rather than weight units. Returns ------- :class:`pandas.DataFrame` Transformed dataframe. """ self._obj = transform.recalculate_Fe( self._obj, to, total_suffix=total_suffix, logdata=logdata, renorm=renorm, molecular=molecular, ) return self._obj def get_ratio(self, ratio: str, alias: str = None, norm_to=None, molecular=False): """ Add a ratio of components A and B, given in the form of string 'A/B'. Returned series be assigned an alias name. Parameters ----------- ratio : :class:`str` String decription of ratio in the form A/B[_n]. alias : :class:`str` Alternate name for ratio to be used as column name. norm_to : :class:`str` | :class:`pyrolite.geochem.norm.Composition`, `None` Reference composition to normalise to. molecular : :class:`bool`, :code:`False` Flag that data is in molecular units, rather than weight units. Returns ------- :class:`pandas.DataFrame` Dataframe with ratio appended. See Also -------- :func:`~pyrolite.geochem.transform.add_MgNo` """ return transform.get_ratio( self._obj, ratio, alias, norm_to=norm_to, molecular=molecular ) def add_ratio(self, ratio: str, alias: str = None, norm_to=None, molecular=False): """ Add a ratio of components A and B, given in the form of string 'A/B'. Returned series be assigned an alias name. Parameters ----------- ratio : :class:`str` String decription of ratio in the form A/B[_n]. alias : :class:`str` Alternate name for ratio to be used as column name. norm_to : :class:`str` | :class:`pyrolite.geochem.norm.Composition`, `None` Reference composition to normalise to. molecular : :class:`bool`, :code:`False` Flag that data is in molecular units, rather than weight units. Returns ------- :class:`pandas.DataFrame` Dataframe with ratio appended. See Also -------- :func:`~pyrolite.geochem.transform.add_MgNo` """ r = self.get_ratio(ratio, alias, norm_to=norm_to, molecular=molecular) self._obj[r.name] = r return self._obj def add_MgNo( self, molecular=False, use_total_approx=False, approx_Fe203_frac=0.1, name="Mg#" ): """ Append the magnesium number to a dataframe. Parameters ---------- molecular : :class:`bool`, :code:`False` Whether the input data is molecular. use_total_approx : :class:`bool`, :code:`False` Whether to use an approximate calculation using total iron rather than just FeO. approx_Fe203_frac : :class:`float` Fraction of iron which is oxidised, used in approximation mentioned above. name : :class:`str` Name to use for the Mg Number column. Returns ------- :class:`pandas.DataFrame` Dataframe with ratio appended. See Also -------- :func:`~pyrolite.geochem.transform.add_ratio` """ transform.add_MgNo( self._obj, molecular=molecular, use_total_approx=use_total_approx, approx_Fe203_frac=approx_Fe203_frac, name=name, ) return self._obj def lambda_lnREE( self, norm_to="Chondrite_PON", exclude=["Pm", "Eu"], params=None, degree=4, append=[], scale="ppm", **kwargs ): """ Calculates orthogonal polynomial coefficients (lambdas) for a given set of REE data, normalised to a specific composition [#localref_1]_. Lambda factors are given for the radii vs. ln(REE/NORM) polynomial combination. Parameters ------------ norm_to : :class:`str` | :class:`~pyrolite.geochem.norm.Composition` | :class:`numpy.ndarray` Which reservoir to normalise REE data to (defaults to :code:`"Chondrite_PON"`). exclude : :class:`list`, :code:`["Pm", "Eu"]` Which REE elements to exclude from the fit. May wish to include Ce for minerals in which Ce anomalies are common. params : :class:`list`, :code:`None` Set of predetermined orthagonal polynomial parameters. degree : :class:`int`, 5 Maximum degree polynomial fit component to include. append : :class:`list`, :code:`None` Whether to append lambda function (i.e. :code:`["function"]`). scale : :class:`str` Current units for the REE data, used to scale the reference dataset. References ----------- .. [#localref_1] O’Neill HSC (2016) The Smoothness and Shapes of Chondrite-normalized Rare Earth Element Patterns in Basalts. J Petrology 57:1463–1508. doi: `10.1093/petrology/egw047 <https://dx.doi.org/10.1093/petrology/egw047>`__ See Also --------- :func:`~pyrolite.geochem.ind.get_ionic_radii` :func:`~pyrolite.util.math.lambdas` :func:`~pyrolite.util.math.OP_constants` :func:`~pyrolite.plot.REE_radii_plot` """ return transform.lambda_lnREE( self._obj, norm_to=norm_to, exclude=exclude, params=params, degree=degree, append=append, scale=scale, **kwargs ) def convert_chemistry(self, to=[], logdata=False, renorm=False, molecular=False): """ Attempts to convert a dataframe with one set of components to another. Parameters ----------- to : :class:`list` Set of columns to try to extract from the dataframe. Can also include a dictionary for iron speciation. See :func:`pyrolite.geochem.recalculate_Fe`. logdata : :class:`bool`, :code:`False` Whether chemical data has been log transformed. Necessary for aggregation functions. renorm : :class:`bool`, :code:`False` Whether to renormalise the data after transformation. molecular : :class:`bool`, :code:`False` Flag that data is in molecular units, rather than weight units. Returns -------- :class:`pandas.DataFrame` Dataframe with converted chemistry. Todo ------ * Check for conflicts between oxides and elements * Aggregator for ratios * Implement generalised redox transformation. * Add check for dicitonary components (e.g. Fe) in tests """ return transform.convert_chemistry( self._obj, to=to, logdata=logdata, renorm=renorm, molecular=molecular ) # can't update the source nicely here, need to assign output # pyrolite.geochem.norm functions def normalize_to(self, reference=None, units=None, convert_first=False): """ Normalise a dataframe to a given reference composition. Parameters ----------- reference : :class:`str` | :class:`~pyrolite.geochem.norm.Composition` | :class:`numpy.ndarray` Reference composition to normalise to. units : :class:`str` Units of the input dataframe, to convert the reference composition. convert_first : :class:`bool` Whether to first convert the referenece compostion before normalisation. This is useful where elements are presented as different components (e.g. Ti, TiO2). Returns -------- :class:`pandas.DataFrame` Dataframe with normalised chemistry. Notes ------ This assumes that dataframes have a single set of units. """ if isinstance(reference, (str, norm.Composition)): if not isinstance(reference, norm.Composition): N = norm.get_reference_composition(reference) else: N = reference if units is not None: N.set_units(units) if convert_first: N.comp = transform.convert_chemistry(N.comp, self.list_compositional) norm_abund = N[self.list_compositional] else: # list, iterable, pd.Index etc norm_abund = np.array(reference) assert len(norm_abund) == len(self.list_compositional) # this list should have the same ordering as the input dataframe return self._obj[self.list_compositional].div(norm_abund) def denormalize_from(self, reference=None, units=None): """ De-normalise a dataframe from a given reference composition. Parameters ----------- reference : :class:`str` | :class:`~pyrolite.geochem.norm.Composition` | :class:`numpy.ndarray` Reference composition which the composition is normalised to. units : :class:`str` Units of the input dataframe, to convert the reference composition. Returns -------- :class:`pandas.DataFrame` Dataframe with normalised chemistry. Notes ------ This assumes that dataframes have a single set of units. """ if isinstance(reference, (str, norm.Composition)): if not isinstance(reference, norm.Composition): N = norm.get_reference_composition(reference) else: N = reference if units is not None: N.set_units(units) N.comp = transform.convert_chemistry(N.comp, self.list_compositional) norm_abund = N[self.list_compositional] else: # list, iterable, pd.Index etc norm_abund = np.array(reference) assert len(norm_abund) == len(self.list_compositional) return self._obj[self.list_compositional] * norm_abund def scale(self, in_unit, target_unit="ppm"): """ Scale a dataframe from one set of units to another. Parameters ----------- in_unit : :class:`str` Units to be converted from target_unit : :class:`str`, :code:`"ppm"` Units to scale to. Returns -------- :class:`pandas.DataFrame` Dataframe with new scale. """ return self._obj * units.scale(in_unit, target_unit) pyrochem.lambda_lnREE = update_docstring_references( pyrochem.lambda_lnREE, ref="localref" )
the-stack_0_14370
# -*- coding: utf-8 -*- import scrapy from scrapy.spider import SitemapSpider from scrapy.http.request import Request import json from urllib.parse import urlencode class BibaSpider(scrapy.Spider): name = 'biba' allowed_domains = ['www.biba.in'] start_urls = [ 'https://www.biba.in/new-arrivals', 'https://www.biba.in/mix-and-match', 'https://www.biba.in/suit-sets', 'https://www.biba.in/girls', 'https://www.biba.in/easy-stitch', 'https://www.biba.in/jewellery', 'https://www.biba.in/factory-outlet', 'https://www.biba.in/factory-outlet' ] def parse(self, response): ignore_paths = [ '/registration/', '/careers', 'sitemap', 'privacy', 'terms-of-use', 'about-us' '/payments-options', 'help-faq', 'delivery-and-shipping-policy', 'business-enquiries' '/returns-and-cancellation-policy', 'contact-us', 'trackorder', 'store-locator', '/faq/' ] pages = len(response.xpath(".//*[@class='pager']/text()").extract()) if pages: # print(pages) pattern_match_text = r"var\sobjShowCaseInputs\s=\s({.*});" try: data = json.loads(response.xpath(".//script[@type='text/javascript']/text()").re_first(pattern_match_text)) for i in range(1, pages + 1): data['PageNo'] = i # print(data) encoded_url = "https://www.biba.in/Handler/ProductShowcaseHandler.ashx?ProductShowcaseInput=" + \ json.dumps(data) # print(encoded_url) yield Request( encoded_url, callback=self.parse ) except Exception as e: print(e) links = set([link for link in response.xpath(".//a/@href").extract()]) links = [link for ipath in ignore_paths for link in links if (ipath not in str(link).lower().strip()) and self.allowed_domains[0] in link] for link in links: # print(link) if '/p/' in link: yield Request(link, callback=self.extract_items) if self.allowed_domains[0] in link: yield Request(link, callback=self.parse) def extract_items(self, response): pattern_match_text = r"MartJack\s=({.*})" data = response.xpath(".//script[@type='text/javascript']/text()").re_first(pattern_match_text) product = json.loads(data)['PageInfo'] if product['PageType'] == 'product': product['url'] = response.url yield product
the-stack_0_14374
# This file contains dictionaries used in the Dalvik Format. # https://source.android.com/devices/tech/dalvik/dex-format#type-codes TYPE_MAP_ITEM = { 0x0: "TYPE_HEADER_ITEM", 0x1: "TYPE_STRING_ID_ITEM", 0x2: "TYPE_TYPE_ID_ITEM", 0x3: "TYPE_PROTO_ID_ITEM", 0x4: "TYPE_FIELD_ID_ITEM", 0x5: "TYPE_METHOD_ID_ITEM", 0x6: "TYPE_CLASS_DEF_ITEM", 0x1000: "TYPE_MAP_LIST", 0x1001: "TYPE_TYPE_LIST", 0x1002: "TYPE_ANNOTATION_SET_REF_LIST", 0x1003: "TYPE_ANNOTATION_SET_ITEM", 0x2000: "TYPE_CLASS_DATA_ITEM", 0x2001: "TYPE_CODE_ITEM", 0x2002: "TYPE_STRING_DATA_ITEM", 0x2003: "TYPE_DEBUG_INFO_ITEM", 0x2004: "TYPE_ANNOTATION_ITEM", 0x2005: "TYPE_ENCODED_ARRAY_ITEM", 0x2006: "TYPE_ANNOTATIONS_DIRECTORY_ITEM", } # https://source.android.com/devices/tech/dalvik/dex-format#access-flags ACCESS_FLAGS = { 0x1: 'public', 0x2: 'private', 0x4: 'protected', 0x8: 'static', 0x10: 'final', 0x20: 'synchronized', 0x40: 'bridge', 0x80: 'varargs', 0x100: 'native', 0x200: 'interface', 0x400: 'abstract', 0x800: 'strictfp', 0x1000: 'synthetic', 0x4000: 'enum', 0x8000: 'unused', 0x10000: 'constructor', 0x20000: 'synchronized', } # https://source.android.com/devices/tech/dalvik/dex-format#typedescriptor TYPE_DESCRIPTOR = { 'V': 'void', 'Z': 'boolean', 'B': 'byte', 'S': 'short', 'C': 'char', 'I': 'int', 'J': 'long', 'F': 'float', 'D': 'double', }
the-stack_0_14384
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.paging import Paged class ProviderPaged(Paged): """ A paging container for iterating over a list of :class:`Provider <azure.mgmt.resource.resources.v2017_05_10.models.Provider>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[Provider]'} } def __init__(self, *args, **kwargs): super(ProviderPaged, self).__init__(*args, **kwargs)
the-stack_0_14387
from ROAR.agent_module.agent import Agent from pathlib import Path from ROAR.control_module.pid_controller import PIDController from ROAR.planning_module.local_planner.rl_local_planner import RLLocalPlanner from ROAR.planning_module.behavior_planner.behavior_planner import BehaviorPlanner from ROAR.planning_module.mission_planner.waypoint_following_mission_planner import WaypointFollowingMissionPlanner from ROAR.utilities_module.data_structures_models import SensorsData from ROAR.utilities_module.vehicle_models import VehicleControl, Vehicle import logging from ROAR.utilities_module.occupancy_map import OccupancyGridMap from ROAR.perception_module.obstacle_from_depth import ObstacleFromDepth from ROAR.planning_module.local_planner.simple_waypoint_following_local_planner import \ SimpleWaypointFollowingLocalPlanner import numpy as np from typing import Any class RLLocalPlannerAgent(Agent): def __init__(self, target_speed=40, **kwargs): super().__init__(**kwargs) self.target_speed = target_speed self.logger = logging.getLogger("PID Agent") self.route_file_path = Path(self.agent_settings.waypoint_file_path) self.pid_controller = PIDController(agent=self, steering_boundary=(-1, 1), throttle_boundary=(0, 1)) self.mission_planner = WaypointFollowingMissionPlanner(agent=self) # initiated right after mission plan self.behavior_planner = BehaviorPlanner(agent=self) self.local_planner = RLLocalPlanner( agent=self, controller=self.pid_controller) self.traditional_local_planner = SimpleWaypointFollowingLocalPlanner( agent=self, controller=self.pid_controller, mission_planner=self.mission_planner, behavior_planner=self.behavior_planner, closeness_threshold=1.5 ) self.absolute_maximum_map_size, self.map_padding = 1000, 40 self.occupancy_map = OccupancyGridMap(agent=self, threaded=True) self.obstacle_from_depth_detector = ObstacleFromDepth(agent=self,threaded=True) self.add_threaded_module(self.obstacle_from_depth_detector) # self.add_threaded_module(self.occupancy_map) self.logger.debug( f"Waypoint Following Agent Initiated. Reading f" f"rom {self.route_file_path.as_posix()}") def run_step(self, vehicle: Vehicle, sensors_data: SensorsData) -> VehicleControl: super(RLLocalPlannerAgent, self).run_step(vehicle=vehicle, sensors_data=sensors_data) self.traditional_local_planner.run_in_series() self.transform_history.append(self.vehicle.transform) option = "obstacle_coords" # ground_coords, point_cloud_obstacle_from_depth if self.kwargs.get(option, None) is not None: points = self.kwargs[option] self.occupancy_map.update(points) control = self.local_planner.run_in_series() return control def get_obs(self): ch1 = self.occupancy_map.get_map(transform=self.vehicle.transform, view_size=(100, 100)) ch1 = np.expand_dims((ch1 * 255).astype(np.uint8), -1) ch2 = np.zeros(shape=(100, 100, 1)) ch3 = np.zeros(shape=ch2.shape) obs = np.concatenate([ch1, ch2, ch3], axis=2) print(np.shape(obs)) return obs
the-stack_0_14390
# coding=utf-8 # Copyright 2019 SK T-Brain Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import requests import hashlib import torch from transformers import BertModel, BertConfig import gluonnlp as nlp from .utils import download as _download from .utils import tokenizer pytorch_kobert = { 'url': 'https://kobert.blob.core.windows.net/models/kobert/pytorch/pytorch_kobert_2439f391a6.params', 'fname': 'pytorch_kobert_2439f391a6.params', 'chksum': '2439f391a6' } bert_config = { 'attention_probs_dropout_prob': 0.1, 'hidden_act': 'gelu', 'hidden_dropout_prob': 0.1, 'hidden_size': 768, 'initializer_range': 0.02, 'intermediate_size': 3072, 'max_position_embeddings': 512, 'num_attention_heads': 12, 'num_hidden_layers': 12, 'type_vocab_size': 2, 'vocab_size': 8002 } def get_pytorch_kobert_model(ctx='cpu', cachedir='~/kobert/'): # download model model_info = pytorch_kobert model_path = _download(model_info['url'], model_info['fname'], model_info['chksum'], cachedir=cachedir) # download vocab vocab_info = tokenizer vocab_path = _download(vocab_info['url'], vocab_info['fname'], vocab_info['chksum'], cachedir=cachedir) return get_kobert_model(model_path, vocab_path, ctx) def get_kobert_model(model_file, vocab_file, ctx="cpu"): bertmodel = BertModel(config=BertConfig.from_dict(bert_config)) bertmodel.load_state_dict(torch.load(model_file)) device = torch.device(ctx) bertmodel.to(device) bertmodel.eval() vocab_b_obj = nlp.vocab.BERTVocab.from_sentencepiece(vocab_file, padding_token='[PAD]') return bertmodel, vocab_b_obj
the-stack_0_14391
import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras import layers, models from tensorflow.keras.layers import Dense, Conv2D, Flatten, Dropout, MaxPooling2D from tensorflow.keras.preprocessing.image import ImageDataGenerator from PIL import Image import os import string import numpy as np from utils.convert import Convert from conf.config import Config def get_sample_data(path, size=500, height=70, width=130, cap_len=4, characters=""): sample_dir = os.path.join(os.getcwd(), "img", path) file_names = os.listdir(sample_dir) sample_x = np.zeros([size, height*width]) sample_y = np.zeros([size, cap_len*len(characters)]) for seq in range(size): captcha_image = np.array(Image.open(os.path.join(sample_dir, file_names[seq]))) captcha_text = file_names[seq].split(".png")[0] image = Convert.convert_to_gray(captcha_image) sample_x[seq, :] = image.flatten() / 255 sample_y[seq, :] = Convert.convert_to_vector(captcha_text, cap_len, characters) return sample_x, sample_y if __name__ == "__main__": batch_size = 128 epochs = 15 IMG_HEIGHT = 70 IMG_WIDTH = 130 env_config = Config.load_env() captcha_str_length = env_config["captcha_length"] chars = "" if env_config["captcha_has_number"]: chars += string.digits if env_config["captcha_has_lowercase"]: chars += string.ascii_lowercase if env_config["captcha_has_uppercase"]: chars += string.ascii_uppercase train_dir = os.path.join(os.getcwd(), "img", "train") test_dir = os.path.join(os.getcwd(), "img", "test") sample_images, sample_labels = get_sample_data(train_dir, size=500, height=IMG_HEIGHT, width=IMG_WIDTH, cap_len=captcha_str_length, characters=chars) input_layer = tf.keras.Input() x = layers.Conv2D(32, 3, activation='relu')(input_layer) x = layers.MaxPooling2D((2, 2))(x) x = layers.Conv2D(64, 3, activation='relu')(x) x = layers.MaxPooling2D((2, 2))(x) x = layers.Conv2D(64, 3, activation='relu')(x) x = layers.MaxPooling2D((2, 2))(x) # x = layers.Flatten()(x) # x = layers.Dense(1024, activation='relu')(x) # # x = layers.Dropout(0.5)(x) # # x = layers.Dense(D * N_LABELS, activation='softmax')(x) # x = layers.Reshape((D, N_LABELS))(x) model = models.Model(inputs=input_layer, outputs=x) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) model.summary()
the-stack_0_14392
# Copyright 2013-2021 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack.package import * class RktCompilerLib(RacketPackage): """Stub package for packages which are currently part of core Racket installation (but which may change in the future).""" git = "ssh://[email protected]/racket/racket.git" maintainers = ['elfprince13'] version('8.3', commit='cab83438422bfea0e4bd74bc3e8305e6517cf25f') # tag='v8.3' depends_on('[email protected]', type=('build', 'run'), when='@8.3') depends_on('[email protected]', type=('build', 'run'), when='@8.3') depends_on('[email protected]', type=('build', 'run'), when='@8.3') depends_on('[email protected]', type=('build', 'run'), when='@8.3') name = 'compiler-lib' pkgs = True subdirectory = "pkgs/{0}".format(name)
the-stack_0_14394
#! /usr/bin/env python3 """Interfaces for launching and remotely controlling Web browsers.""" # Maintained by Georg Brandl. import os import shlex import shutil import sys import subprocess __all__ = ["Error", "open", "open_new", "open_new_tab", "get", "register"] class Error(Exception): pass _browsers = {} # Dictionary of available browser controllers _tryorder = [] # Preference order of available browsers def register(name, klass, instance=None, update_tryorder=1): """Register a browser connector and, optionally, connection.""" _browsers[name.lower()] = [klass, instance] if update_tryorder > 0: _tryorder.append(name) elif update_tryorder < 0: _tryorder.insert(0, name) def get(using=None): """Return a browser launcher instance appropriate for the environment.""" if using is not None: alternatives = [using] else: alternatives = _tryorder for browser in alternatives: if '%s' in browser: # User gave us a command line, split it into name and args browser = shlex.split(browser) if browser[-1] == '&': return BackgroundBrowser(browser[:-1]) else: return GenericBrowser(browser) else: # User gave us a browser name or path. try: command = _browsers[browser.lower()] except KeyError: command = _synthesize(browser) if command[1] is not None: return command[1] elif command[0] is not None: return command[0]() raise Error("could not locate runnable browser") # Please note: the following definition hides a builtin function. # It is recommended one does "import webbrowser" and uses webbrowser.open(url) # instead of "from webbrowser import *". def open(url, new=0, autoraise=True): for name in _tryorder: browser = get(name) if browser.open(url, new, autoraise): return True return False def open_new(url): return open(url, 1) def open_new_tab(url): return open(url, 2) def _synthesize(browser, update_tryorder=1): """Attempt to synthesize a controller base on existing controllers. This is useful to create a controller when a user specifies a path to an entry in the BROWSER environment variable -- we can copy a general controller to operate using a specific installation of the desired browser in this way. If we can't create a controller in this way, or if there is no executable for the requested browser, return [None, None]. """ cmd = browser.split()[0] if not shutil.which(cmd): return [None, None] name = os.path.basename(cmd) try: command = _browsers[name.lower()] except KeyError: return [None, None] # now attempt to clone to fit the new name: controller = command[1] if controller and name.lower() == controller.basename: import copy controller = copy.copy(controller) controller.name = browser controller.basename = os.path.basename(browser) register(browser, None, controller, update_tryorder) return [None, controller] return [None, None] # General parent classes class BaseBrowser(object): """Parent class for all browsers. Do not use directly.""" args = ['%s'] def __init__(self, name=""): self.name = name self.basename = name def open(self, url, new=0, autoraise=True): raise NotImplementedError def open_new(self, url): return self.open(url, 1) def open_new_tab(self, url): return self.open(url, 2) class GenericBrowser(BaseBrowser): """Class for all browsers started with a command and without remote functionality.""" def __init__(self, name): if isinstance(name, str): self.name = name self.args = ["%s"] else: # name should be a list with arguments self.name = name[0] self.args = name[1:] self.basename = os.path.basename(self.name) def open(self, url, new=0, autoraise=True): cmdline = [self.name] + [arg.replace("%s", url) for arg in self.args] try: if sys.platform[:3] == 'win': p = subprocess.Popen(cmdline) else: p = subprocess.Popen(cmdline, close_fds=True) return not p.wait() except OSError: return False class BackgroundBrowser(GenericBrowser): """Class for all browsers which are to be started in the background.""" def open(self, url, new=0, autoraise=True): cmdline = [self.name] + [arg.replace("%s", url) for arg in self.args] try: if sys.platform[:3] == 'win': p = subprocess.Popen(cmdline) else: p = subprocess.Popen(cmdline, close_fds=True, start_new_session=True) return (p.poll() is None) except OSError: return False class UnixBrowser(BaseBrowser): """Parent class for all Unix browsers with remote functionality.""" raise_opts = None background = False redirect_stdout = True # In remote_args, %s will be replaced with the requested URL. %action will # be replaced depending on the value of 'new' passed to open. # remote_action is used for new=0 (open). If newwin is not None, it is # used for new=1 (open_new). If newtab is not None, it is used for # new=3 (open_new_tab). After both substitutions are made, any empty # strings in the transformed remote_args list will be removed. remote_args = ['%action', '%s'] remote_action = None remote_action_newwin = None remote_action_newtab = None def _invoke(self, args, remote, autoraise): raise_opt = [] if remote and self.raise_opts: # use autoraise argument only for remote invocation autoraise = int(autoraise) opt = self.raise_opts[autoraise] if opt: raise_opt = [opt] cmdline = [self.name] + raise_opt + args if remote or self.background: inout = subprocess.DEVNULL else: # for TTY browsers, we need stdin/out inout = None p = subprocess.Popen(cmdline, close_fds=True, stdin=inout, stdout=(self.redirect_stdout and inout or None), stderr=inout, start_new_session=True) if remote: # wait at most five seconds. If the subprocess is not finished, the # remote invocation has (hopefully) started a new instance. try: rc = p.wait(5) # if remote call failed, open() will try direct invocation return not rc except subprocess.TimeoutExpired: return True elif self.background: if p.poll() is None: return True else: return False else: return not p.wait() def open(self, url, new=0, autoraise=True): if new == 0: action = self.remote_action elif new == 1: action = self.remote_action_newwin elif new == 2: if self.remote_action_newtab is None: action = self.remote_action_newwin else: action = self.remote_action_newtab else: raise Error("Bad 'new' parameter to open(); " + "expected 0, 1, or 2, got %s" % new) args = [arg.replace("%s", url).replace("%action", action) for arg in self.remote_args] args = [arg for arg in args if arg] success = self._invoke(args, True, autoraise) if not success: # remote invocation failed, try straight way args = [arg.replace("%s", url) for arg in self.args] return self._invoke(args, False, False) else: return True class Mozilla(UnixBrowser): """Launcher class for Mozilla browsers.""" remote_args = ['%action', '%s'] remote_action = "" remote_action_newwin = "-new-window" remote_action_newtab = "-new-tab" background = True class Netscape(UnixBrowser): """Launcher class for Netscape browser.""" raise_opts = ["-noraise", "-raise"] remote_args = ['-remote', 'openURL(%s%action)'] remote_action = "" remote_action_newwin = ",new-window" remote_action_newtab = ",new-tab" background = True class Galeon(UnixBrowser): """Launcher class for Galeon/Epiphany browsers.""" raise_opts = ["-noraise", ""] remote_args = ['%action', '%s'] remote_action = "-n" remote_action_newwin = "-w" background = True class Chrome(UnixBrowser): "Launcher class for Google Chrome browser." remote_args = ['%action', '%s'] remote_action = "" remote_action_newwin = "--new-window" remote_action_newtab = "" background = True Chromium = Chrome class Opera(UnixBrowser): "Launcher class for Opera browser." remote_args = ['%action', '%s'] remote_action = "" remote_action_newwin = "--new-window" remote_action_newtab = "" background = True class Elinks(UnixBrowser): "Launcher class for Elinks browsers." remote_args = ['-remote', 'openURL(%s%action)'] remote_action = "" remote_action_newwin = ",new-window" remote_action_newtab = ",new-tab" background = False # elinks doesn't like its stdout to be redirected - # it uses redirected stdout as a signal to do -dump redirect_stdout = False class Konqueror(BaseBrowser): """Controller for the KDE File Manager (kfm, or Konqueror). See the output of ``kfmclient --commands`` for more information on the Konqueror remote-control interface. """ def open(self, url, new=0, autoraise=True): # XXX Currently I know no way to prevent KFM from opening a new win. if new == 2: action = "newTab" else: action = "openURL" devnull = subprocess.DEVNULL try: p = subprocess.Popen(["kfmclient", action, url], close_fds=True, stdin=devnull, stdout=devnull, stderr=devnull) except OSError: # fall through to next variant pass else: p.wait() # kfmclient's return code unfortunately has no meaning as it seems return True try: p = subprocess.Popen(["konqueror", "--silent", url], close_fds=True, stdin=devnull, stdout=devnull, stderr=devnull, start_new_session=True) except OSError: # fall through to next variant pass else: if p.poll() is None: # Should be running now. return True try: p = subprocess.Popen(["kfm", "-d", url], close_fds=True, stdin=devnull, stdout=devnull, stderr=devnull, start_new_session=True) except OSError: return False else: return (p.poll() is None) class Grail(BaseBrowser): # There should be a way to maintain a connection to Grail, but the # Grail remote control protocol doesn't really allow that at this # point. It probably never will! def _find_grail_rc(self): import glob import pwd import socket import tempfile tempdir = os.path.join(tempfile.gettempdir(), ".grail-unix") user = pwd.getpwuid(os.getuid())[0] filename = os.path.join(tempdir, user + "-*") maybes = glob.glob(filename) if not maybes: return None s = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) for fn in maybes: # need to PING each one until we find one that's live try: s.connect(fn) except OSError: # no good; attempt to clean it out, but don't fail: try: os.unlink(fn) except OSError: pass else: return s def _remote(self, action): s = self._find_grail_rc() if not s: return 0 s.send(action) s.close() return 1 def open(self, url, new=0, autoraise=True): if new: ok = self._remote("LOADNEW " + url) else: ok = self._remote("LOAD " + url) return ok # # Platform support for Unix # # These are the right tests because all these Unix browsers require either # a console terminal or an X display to run. def register_X_browsers(): # use xdg-open if around if shutil.which("xdg-open"): register("xdg-open", None, BackgroundBrowser("xdg-open")) # The default GNOME3 browser if "GNOME_DESKTOP_SESSION_ID" in os.environ and shutil.which("gvfs-open"): register("gvfs-open", None, BackgroundBrowser("gvfs-open")) # The default GNOME browser if "GNOME_DESKTOP_SESSION_ID" in os.environ and shutil.which("gnome-open"): register("gnome-open", None, BackgroundBrowser("gnome-open")) # The default KDE browser if "KDE_FULL_SESSION" in os.environ and shutil.which("kfmclient"): register("kfmclient", Konqueror, Konqueror("kfmclient")) if shutil.which("x-www-browser"): register("x-www-browser", None, BackgroundBrowser("x-www-browser")) # The Mozilla browsers for browser in ("firefox", "iceweasel", "iceape", "seamonkey"): if shutil.which(browser): register(browser, None, Mozilla(browser)) # The Netscape and old Mozilla browsers for browser in ("mozilla-firefox", "mozilla-firebird", "firebird", "mozilla", "netscape"): if shutil.which(browser): register(browser, None, Netscape(browser)) # Konqueror/kfm, the KDE browser. if shutil.which("kfm"): register("kfm", Konqueror, Konqueror("kfm")) elif shutil.which("konqueror"): register("konqueror", Konqueror, Konqueror("konqueror")) # Gnome's Galeon and Epiphany for browser in ("galeon", "epiphany"): if shutil.which(browser): register(browser, None, Galeon(browser)) # Skipstone, another Gtk/Mozilla based browser if shutil.which("skipstone"): register("skipstone", None, BackgroundBrowser("skipstone")) # Google Chrome/Chromium browsers for browser in ("google-chrome", "chrome", "chromium", "chromium-browser"): if shutil.which(browser): register(browser, None, Chrome(browser)) # Opera, quite popular if shutil.which("opera"): register("opera", None, Opera("opera")) # Next, Mosaic -- old but still in use. if shutil.which("mosaic"): register("mosaic", None, BackgroundBrowser("mosaic")) # Grail, the Python browser. Does anybody still use it? if shutil.which("grail"): register("grail", Grail, None) # Prefer X browsers if present if os.environ.get("DISPLAY"): register_X_browsers() # Also try console browsers if os.environ.get("TERM"): if shutil.which("www-browser"): register("www-browser", None, GenericBrowser("www-browser")) # The Links/elinks browsers <http://artax.karlin.mff.cuni.cz/~mikulas/links/> if shutil.which("links"): register("links", None, GenericBrowser("links")) if shutil.which("elinks"): register("elinks", None, Elinks("elinks")) # The Lynx browser <http://lynx.isc.org/>, <http://lynx.browser.org/> if shutil.which("lynx"): register("lynx", None, GenericBrowser("lynx")) # The w3m browser <http://w3m.sourceforge.net/> if shutil.which("w3m"): register("w3m", None, GenericBrowser("w3m")) # # Platform support for Windows # if sys.platform[:3] == "win": class WindowsDefault(BaseBrowser): def open(self, url, new=0, autoraise=True): try: os.startfile(url) except OSError: # [Error 22] No application is associated with the specified # file for this operation: '<URL>' return False else: return True _tryorder = [] _browsers = {} # First try to use the default Windows browser register("windows-default", WindowsDefault) # Detect some common Windows browsers, fallback to IE iexplore = os.path.join(os.environ.get("PROGRAMFILES", "C:\\Program Files"), "Internet Explorer\\IEXPLORE.EXE") for browser in ("firefox", "firebird", "seamonkey", "mozilla", "netscape", "opera", iexplore): if shutil.which(browser): register(browser, None, BackgroundBrowser(browser)) # # Platform support for MacOS # if sys.platform == 'darwin': # Adapted from patch submitted to SourceForge by Steven J. Burr class MacOSX(BaseBrowser): """Launcher class for Aqua browsers on Mac OS X Optionally specify a browser name on instantiation. Note that this will not work for Aqua browsers if the user has moved the application package after installation. If no browser is specified, the default browser, as specified in the Internet System Preferences panel, will be used. """ def __init__(self, name): self.name = name def open(self, url, new=0, autoraise=True): assert "'" not in url # hack for local urls if not ':' in url: url = 'file:'+url # new must be 0 or 1 new = int(bool(new)) if self.name == "default": # User called open, open_new or get without a browser parameter script = 'open location "%s"' % url.replace('"', '%22') # opens in default browser else: # User called get and chose a browser if self.name == "OmniWeb": toWindow = "" else: # Include toWindow parameter of OpenURL command for browsers # that support it. 0 == new window; -1 == existing toWindow = "toWindow %d" % (new - 1) cmd = 'OpenURL "%s"' % url.replace('"', '%22') script = '''tell application "%s" activate %s %s end tell''' % (self.name, cmd, toWindow) # Open pipe to AppleScript through osascript command osapipe = os.popen("osascript", "w") if osapipe is None: return False # Write script to osascript's stdin osapipe.write(script) rc = osapipe.close() return not rc class MacOSXOSAScript(BaseBrowser): def __init__(self, name): self._name = name def open(self, url, new=0, autoraise=True): if self._name == 'default': script = 'open location "%s"' % url.replace('"', '%22') # opens in default browser else: script = ''' tell application "%s" activate open location "%s" end '''%(self._name, url.replace('"', '%22')) osapipe = os.popen("osascript", "w") if osapipe is None: return False osapipe.write(script) rc = osapipe.close() return not rc # Don't clear _tryorder or _browsers since OS X can use above Unix support # (but we prefer using the OS X specific stuff) register("safari", None, MacOSXOSAScript('safari'), -1) register("firefox", None, MacOSXOSAScript('firefox'), -1) register("chrome", None, MacOSXOSAScript('chrome'), -1) register("MacOSX", None, MacOSXOSAScript('default'), -1) # OK, now that we know what the default preference orders for each # platform are, allow user to override them with the BROWSER variable. if "BROWSER" in os.environ: _userchoices = os.environ["BROWSER"].split(os.pathsep) _userchoices.reverse() # Treat choices in same way as if passed into get() but do register # and prepend to _tryorder for cmdline in _userchoices: if cmdline != '': cmd = _synthesize(cmdline, -1) if cmd[1] is None: register(cmdline, None, GenericBrowser(cmdline), -1) cmdline = None # to make del work if _userchoices was empty del cmdline del _userchoices # what to do if _tryorder is now empty? def main(): import getopt usage = """Usage: %s [-n | -t] url -n: open new window -t: open new tab""" % sys.argv[0] try: opts, args = getopt.getopt(sys.argv[1:], 'ntd') except getopt.error as msg: print(msg, file=sys.stderr) print(usage, file=sys.stderr) sys.exit(1) new_win = 0 for o, a in opts: if o == '-n': new_win = 1 elif o == '-t': new_win = 2 if len(args) != 1: print(usage, file=sys.stderr) sys.exit(1) url = args[0] open(url, new_win) print("\a") if __name__ == "__main__": main()
the-stack_0_14397
import argparse import imp import os import re from functools import wraps from operator import methodcaller import orca from flask import ( Flask, abort, jsonify, request, render_template, redirect, url_for) from pygments import highlight from pygments.lexers import PythonLexer from pygments.formatters import HtmlFormatter from six import StringIO app = Flask(__name__) _GROUPBY_AGG_MAP = { 'sum': methodcaller('sum'), 'mean': methodcaller('mean'), 'median': methodcaller('median'), 'std': methodcaller('std'), 'size': methodcaller('size') } def import_file(filename): """ Import a file that will trigger the population of Orca. Parameters ---------- filename : str """ pathname, filename = os.path.split(filename) modname = re.match( r'(?P<modname>\w+)\.py', filename).group('modname') file, path, desc = imp.find_module(modname, [pathname]) try: imp.load_module(modname, file, path, desc) finally: file.close() def check_is_table(func): """ Decorator that will check whether the "table_name" keyword argument to the wrapped function matches a registered Orca table. """ @wraps(func) def wrapper(**kwargs): if not orca.is_table(kwargs['table_name']): abort(404) return func(**kwargs) return wrapper def check_is_column(func): """ Decorator that will check whether the "table_name" and "col_name" keyword arguments to the wrapped function match a registered Orca table and column. """ @wraps(func) def wrapper(**kwargs): table_name = kwargs['table_name'] col_name = kwargs['col_name'] if not orca.is_table(table_name): abort(404) if col_name not in orca.get_table(table_name).columns: abort(404) return func(**kwargs) return wrapper def check_is_injectable(func): """ Decorator that will check whether the "inj_name" keyword argument to the wrapped function matches a registered Orca injectable. """ @wraps(func) def wrapper(**kwargs): name = kwargs['inj_name'] if not orca.is_injectable(name): abort(404) return func(**kwargs) return wrapper @app.route('/schema') def schema(): """ All tables, columns, steps, injectables and broadcasts registered with Orca. Includes local columns on tables. """ tables = orca.list_tables() cols = {t: orca.get_table(t).columns for t in tables} steps = orca.list_steps() injectables = orca.list_injectables() broadcasts = orca.list_broadcasts() return jsonify( tables=tables, columns=cols, steps=steps, injectables=injectables, broadcasts=broadcasts) @app.route('/tables') def list_tables(): """ List all registered tables. """ tables = orca.list_tables() return jsonify(tables=tables) @app.route('/tables/<table_name>/info') @check_is_table def table_info(table_name): """ Return the text result of table.info(verbose=True). """ table = orca.get_table(table_name).to_frame() buf = StringIO() table.info(verbose=True, buf=buf) info = buf.getvalue() return info, 200, {'Content-Type': 'text/plain'} @app.route('/tables/<table_name>/preview') @check_is_table def table_preview(table_name): """ Returns the first five rows of a table as JSON. Inlcudes all columns. Uses Pandas' "split" JSON format. """ preview = orca.get_table(table_name).to_frame().head() return ( preview.to_json(orient='split', date_format='iso'), 200, {'Content-Type': 'application/json'}) @app.route('/tables/<table_name>/describe') @check_is_table def table_describe(table_name): """ Return summary statistics of a table as JSON. Includes all columns. Uses Pandas' "split" JSON format. """ desc = orca.get_table(table_name).to_frame().describe() return ( desc.to_json(orient='split', date_format='iso'), 200, {'Content-Type': 'application/json'}) @app.route('/tables/<table_name>/definition') @check_is_table def table_definition(table_name): """ Get the source of a table function. If a table is registered DataFrame and not a function then all that is returned is {'type': 'dataframe'}. If the table is a registered function then the JSON returned has keys "type", "filename", "lineno", "text", and "html". "text" is the raw text of the function, "html" has been marked up by Pygments. """ if orca.table_type(table_name) == 'dataframe': return jsonify(type='dataframe') filename, lineno, source = \ orca.get_raw_table(table_name).func_source_data() html = highlight(source, PythonLexer(), HtmlFormatter()) return jsonify( type='function', filename=filename, lineno=lineno, text=source, html=html) @app.route('/tables/<table_name>/csv') @check_is_table def table_csv(table_name): """ Returns a table as text/csv using Pandas default csv output. """ csv = orca.get_table(table_name).to_frame().to_csv() return csv, 200, {'Content-Type': 'text/csv'} @app.route('/tables/<table_name>/groupbyagg') @check_is_table def table_groupbyagg(table_name): """ Perform a groupby on a table and return an aggregation on a single column. This depends on some request parameters in the URL. "column" and "agg" must always be present, and one of "by" or "level" must be present. "column" is the table column on which aggregation will be performed, "agg" is the aggregation that will be performed, and "by"/"level" define how to group the data. Supported "agg" parameters are: mean, median, std, sum, and size. """ table = orca.get_table(table_name) # column to aggregate column = request.args.get('column', None) if not column or column not in table.columns: abort(400) # column or index level to group by by = request.args.get('by', None) level = request.args.get('level', None) if (not by and not level) or (by and level): abort(400) # aggregation type agg = request.args.get('agg', None) if not agg or agg not in _GROUPBY_AGG_MAP: abort(400) column = table.get_column(column) # level can either be an integer level number or a string level name. # try converting to integer, but if that doesn't work # we go ahead with the string. if level: try: level = int(level) except ValueError: pass gby = column.groupby(level=level) else: by = table.get_column(by) gby = column.groupby(by) result = _GROUPBY_AGG_MAP[agg](gby) return ( result.to_json(orient='split', date_format='iso'), 200, {'Content-Type': 'application/json'}) @app.route('/tables/<table_name>/columns') @check_is_table def list_table_columns(table_name): """ List columns for a specific table. """ return jsonify(columns=orca.get_table(table_name).columns) @app.route('/tables/<table_name>/columns/<col_name>/preview') @check_is_column def column_preview(table_name, col_name): """ Return the first ten elements of a column as JSON in Pandas' "split" format. """ col = orca.get_table(table_name).get_column(col_name).head(10) return ( col.to_json(orient='split', date_format='iso'), 200, {'Content-Type': 'application/json'}) @app.route('/tables/<table_name>/columns/<col_name>/definition') @check_is_column def column_definition(table_name, col_name): """ Get the source of a column function. If a column is a registered Series and not a function then all that is returned is {'type': 'series'}. If the column is a registered function then the JSON returned has keys "type", "filename", "lineno", "text", and "html". "text" is the raw text of the function, "html" has been marked up by Pygments. """ col_type = orca.get_table(table_name).column_type(col_name) if col_type != 'function': return jsonify(type=col_type) filename, lineno, source = \ orca.get_raw_column(table_name, col_name).func_source_data() html = highlight(source, PythonLexer(), HtmlFormatter()) return jsonify( type='function', filename=filename, lineno=lineno, text=source, html=html) @app.route('/tables/<table_name>/columns/<col_name>/describe') @check_is_column def column_describe(table_name, col_name): """ Return summary statistics of a column as JSON. Uses Pandas' "split" JSON format. """ col_desc = orca.get_table(table_name).get_column(col_name).describe() return ( col_desc.to_json(orient='split'), 200, {'Content-Type': 'application/json'}) @app.route('/tables/<table_name>/columns/<col_name>/csv') @check_is_column def column_csv(table_name, col_name): """ Return a column as CSV using Pandas' default CSV output. """ csv = orca.get_table(table_name).get_column(col_name).to_csv(path_or_buf=None) return csv, 200, {'Content-Type': 'text/csv'} @app.route('/injectables') def list_injectables(): """ List all registered injectables. """ return jsonify(injectables=orca.list_injectables()) @app.route('/injectables/<inj_name>/repr') @check_is_injectable def injectable_repr(inj_name): """ Returns the type and repr of an injectable. JSON response has "type" and "repr" keys. """ i = orca.get_injectable(inj_name) return jsonify(type=str(type(i)), repr=repr(i)) @app.route('/injectables/<inj_name>/definition') @check_is_injectable def injectable_definition(inj_name): """ Get the source of an injectable function. If an injectable is a registered Python variable and not a function then all that is returned is {'type': 'variable'}. If the column is a registered function then the JSON returned has keys "type", "filename", "lineno", "text", and "html". "text" is the raw text of the function, "html" has been marked up by Pygments. """ inj_type = orca.injectable_type(inj_name) if inj_type == 'variable': return jsonify(type='variable') else: filename, lineno, source = \ orca.get_injectable_func_source_data(inj_name) html = highlight(source, PythonLexer(), HtmlFormatter()) return jsonify( type='function', filename=filename, lineno=lineno, text=source, html=html) @app.route('/broadcasts') def list_broadcasts(): """ List all registered broadcasts as a list of objects with keys "cast" and "onto". """ casts = [{'cast': b[0], 'onto': b[1]} for b in orca.list_broadcasts()] return jsonify(broadcasts=casts) @app.route('/broadcasts/<cast_name>/<onto_name>/definition') def broadcast_definition(cast_name, onto_name): """ Return the definition of a broadcast as an object with keys "cast", "onto", "cast_on", "onto_on", "cast_index", and "onto_index". These are the same as the arguments to the ``broadcast`` function. """ if not orca.is_broadcast(cast_name, onto_name): abort(404) b = orca.get_broadcast(cast_name, onto_name) return jsonify( cast=b.cast, onto=b.onto, cast_on=b.cast_on, onto_on=b.onto_on, cast_index=b.cast_index, onto_index=b.onto_index) @app.route('/steps') def list_steps(): """ List all registered Orca steps. """ return jsonify(steps=orca.list_steps()) @app.route('/steps/<step_name>/definition') def step_definition(step_name): """ Get the source of a step function. Returned object has keys "filename", "lineno", "text" and "html". "text" is the raw text of the function, "html" has been marked up by Pygments. """ if not orca.is_step(step_name): abort(404) filename, lineno, source = \ orca.get_step(step_name).func_source_data() html = highlight(source, PythonLexer(), HtmlFormatter()) return jsonify(filename=filename, lineno=lineno, text=source, html=html) @app.route('/ui') def ui(): return render_template('ui.html') @app.route('/') def root(): return redirect(url_for('ui')) def parse_args(args=None): parser = argparse.ArgumentParser( description=( 'Start a Flask server that has HTTP endpoints that provide data ' 'about an Orca configuration and data registered with Orca.')) parser.add_argument( '-d', '--debug', action='store_true', help='Enable Flask\'s debug mode') parser.add_argument( '-H', '--host', type=str, help='Hostname on which to run the server') parser.add_argument( '-p', '--port', type=int, help='Port on which to run server') parser.add_argument('filename', type=str, help='File with Orca config') return parser.parse_args(args) def main(args=None): args = parse_args(args) import_file(args.filename) app.run(host=args.host, port=args.port, debug=args.debug)
the-stack_0_14398
import turtle # -- Function Definitions def draw_board(x, y, size): color = "red" turtle.color("red") start = 1 turtle.penup() turtle.goto(x, y) turtle.pendown() for n in range(8): for n in range(8): if start == 0: if color == "red": color = "black" turtle.color("black") elif color == "black": color = "red" turtle.color("red") else: start = 0 turtle.begin_fill() for n in range(4): turtle.forward(size) turtle.right(90) turtle.end_fill() turtle.forward(size) if color == "red": turtle.color("black") color="black" elif color == "black": turtle.color("red") color="red" turtle.right(90) turtle.forward(size) turtle.right(90) turtle.forward(size * 8) turtle.right(180) def main(): turtle.speed(0) draw_board(-100, 100, 50) def gotomain(): main() gotomain()
the-stack_0_14401
#!/usr/bin/env python # coding=utf-8 from setuptools import setup, find_packages from setuptools.extension import Extension from codecs import open import os import re import sys from Cython.Build import cythonize here = os.path.abspath(os.path.dirname(__file__)) sys.path.append(here) import versioneer # noqa: E402 import cuda_ext # noqa: E402 CLASSIFIERS = """ Development Status :: 4 - Beta Intended Audience :: Science/Research License :: OSI Approved :: MIT License Programming Language :: Python :: 3 Programming Language :: Python :: 3.7 Programming Language :: Python :: 3.8 Programming Language :: Python :: 3.9 Programming Language :: Python :: 3.10 Programming Language :: Python :: Implementation :: CPython Topic :: Scientific/Engineering Operating System :: Microsoft :: Windows Operating System :: POSIX Operating System :: Unix Operating System :: MacOS """ MINIMUM_VERSIONS = { "numpy": "1.13", "requests": "2.18", "jax": "0.2.10", } CONSOLE_SCRIPTS = [ "veros = veros.cli.veros:cli", "veros-run = veros.cli.veros_run:cli", "veros-copy-setup = veros.cli.veros_copy_setup:cli", "veros-resubmit = veros.cli.veros_resubmit:cli", "veros-create-mask = veros.cli.veros_create_mask:cli", ] PACKAGE_DATA = ["setups/*/assets.json", "setups/*/*.npy", "setups/*/*.png"] with open(os.path.join(here, "README.md"), encoding="utf-8") as f: long_description = f.read() def parse_requirements(reqfile): requirements = [] with open(os.path.join(here, reqfile), encoding="utf-8") as f: for line in f: line = line.strip() pkg = re.match(r"(\w+)\b.*", line).group(1) if pkg in MINIMUM_VERSIONS: line = "".join([line, ",>=", MINIMUM_VERSIONS[pkg]]) line = line.replace("==", "<=") requirements.append(line) return requirements INSTALL_REQUIRES = parse_requirements("requirements.txt") EXTRAS_REQUIRE = { "test": ["pytest", "pytest-cov", "pytest-forked", "codecov", "xarray"], } EXTRAS_REQUIRE["jax"] = parse_requirements("requirements_jax.txt") def get_extensions(require_cython_ext, require_cuda_ext): cuda_info = cuda_ext.cuda_info extension_modules = { "veros.core.special.tdma_cython_": ["tdma_cython_.pyx"], "veros.core.special.tdma_cuda_": ["tdma_cuda_.pyx", "cuda_tdma_kernels.cu"], } def is_cuda_ext(sources): return any(source.endswith(".cu") for source in sources) extensions = [] for module, sources in extension_modules.items(): extension_dir = os.path.join(*module.split(".")[:-1]) kwargs = dict() if is_cuda_ext(sources): kwargs.update( library_dirs=cuda_info["lib64"], libraries=["cudart"], runtime_library_dirs=cuda_info["lib64"], include_dirs=cuda_info["include"], ) ext = Extension( name=module, sources=[os.path.join(extension_dir, f) for f in sources], extra_compile_args={ "gcc": [], "nvcc": cuda_info["cflags"], }, **kwargs, ) extensions.append(ext) extensions = cythonize(extensions, language_level=3, exclude_failures=True) for ext in extensions: is_required = (not is_cuda_ext(ext.sources) and require_cython_ext) or ( is_cuda_ext(ext.sources) and require_cuda_ext ) if not is_required: ext.optional = True return extensions cmdclass = versioneer.get_cmdclass() cmdclass.update(build_ext=cuda_ext.custom_build_ext) def _env_to_bool(envvar): return os.environ.get(envvar, "").lower() in ("1", "true", "on") extensions = get_extensions( require_cython_ext=_env_to_bool("VEROS_REQUIRE_CYTHON_EXT"), require_cuda_ext=_env_to_bool("VEROS_REQUIRE_CUDA_EXT"), ) setup( name="veros", license="MIT", author="Dion Häfner (NBI Copenhagen)", author_email="[email protected]", keywords="oceanography python parallel numpy multi-core geophysics ocean-model mpi4py jax", description="The versatile ocean simulator, in pure Python, powered by JAX.", long_description=long_description, long_description_content_type="text/markdown", url="https://veros.readthedocs.io", python_requires=">=3.7", version=versioneer.get_version(), cmdclass=cmdclass, packages=find_packages(), install_requires=INSTALL_REQUIRES, extras_require=EXTRAS_REQUIRE, ext_modules=extensions, entry_points={"console_scripts": CONSOLE_SCRIPTS, "veros.setup_dirs": ["base = veros.setups"]}, package_data={"veros": PACKAGE_DATA}, classifiers=[c for c in CLASSIFIERS.split("\n") if c], zip_safe=False, )
the-stack_0_14402
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import peforth import argparse import sys import time import numpy as np import tensorflow as tf def load_graph(model_file): graph = tf.Graph() graph_def = tf.GraphDef() with open(model_file, "rb") as f: graph_def.ParseFromString(f.read()) with graph.as_default(): tf.import_graph_def(graph_def) return graph def read_tensor_from_image_file(file_name, input_height=299, input_width=299, input_mean=0, input_std=255): input_name = "file_reader" output_name = "normalized" file_reader = tf.read_file(file_name, input_name) if file_name.endswith(".png"): image_reader = tf.image.decode_png(file_reader, channels = 3, name='png_reader') elif file_name.endswith(".gif"): image_reader = tf.squeeze(tf.image.decode_gif(file_reader, name='gif_reader')) elif file_name.endswith(".bmp"): image_reader = tf.image.decode_bmp(file_reader, name='bmp_reader') else: image_reader = tf.image.decode_jpeg(file_reader, channels = 3, name='jpeg_reader') float_caster = tf.cast(image_reader, tf.float32) dims_expander = tf.expand_dims(float_caster, 0); resized = tf.image.resize_bilinear(dims_expander, [input_height, input_width]) normalized = tf.divide(tf.subtract(resized, [input_mean]), [input_std]) sess = tf.Session() result = sess.run(normalized) return result def load_labels(label_file): label = [] proto_as_ascii_lines = tf.gfile.GFile(label_file).readlines() for l in proto_as_ascii_lines: label.append(l.rstrip()) return label # peforth.ok('11> ',loc=locals(),cmd=":> [0] value locals cr") if __name__ == "__main__": file_name = "tf_files/flower_photos/daisy/3475870145_685a19116d.jpg" model_file = "tf_files/retrained_graph.pb" label_file = "tf_files/retrained_labels.txt" input_height = 224 input_width = 224 input_mean = 128 input_std = 128 input_layer = "input" output_layer = "final_result" parser = argparse.ArgumentParser() parser.add_argument("--image", help="image to be processed") parser.add_argument("--graph", help="graph/model to be executed") parser.add_argument("--labels", help="name of file containing labels") parser.add_argument("--input_height", type=int, help="input height") parser.add_argument("--input_width", type=int, help="input width") parser.add_argument("--input_mean", type=int, help="input mean") parser.add_argument("--input_std", type=int, help="input std") parser.add_argument("--input_layer", help="name of input layer") parser.add_argument("--output_layer", help="name of output layer") args = parser.parse_args() if args.graph: model_file = args.graph if args.image: file_name = args.image if args.labels: label_file = args.labels if args.input_height: input_height = args.input_height if args.input_width: input_width = args.input_width if args.input_mean: input_mean = args.input_mean if args.input_std: input_std = args.input_std if args.input_layer: input_layer = args.input_layer if args.output_layer: output_layer = args.output_layer graph = load_graph(model_file) t = read_tensor_from_image_file(file_name, input_height=input_height, input_width=input_width, input_mean=input_mean, input_std=input_std) input_name = "import/" + input_layer output_name = "import/" + output_layer input_operation = graph.get_operation_by_name(input_name); output_operation = graph.get_operation_by_name(output_name); with tf.Session(graph=graph) as sess: start = time.time() results = sess.run(output_operation.outputs[0], {input_operation.outputs[0]: t}) end=time.time() results = np.squeeze(results) top_k = results.argsort()[-5:][::-1] labels = load_labels(label_file) print('\nEvaluation time (1-image): {:.3f}s\n'.format(end-start)) for i in top_k: print(labels[i], results[i]) peforth.ok('22> ',loc=locals(),cmd=":> [0] value locals cr")
the-stack_0_14403
import os import numpy as np import torch import torch.nn as nn from sklearn.metrics import precision_score, recall_score from torch.utils.tensorboard import SummaryWriter from datetime import datetime from transformers import BertModel class RNN_RNN(nn.Module): def __init__(self, device, hps, loss_weights): super(RNN_RNN, self).__init__() self._hps = hps self._device = device self._loss_weight = loss_weights now = datetime.now() dt_str = now.strftime("%d-%m-%Y-%H-%M-%S") comment = '__'.join([k + '_' + str(v) for k, v in self._hps.items()]) path = os.path.join(self._hps["path"], 'runs') if not os.path.exists(path): os.makedirs(path) self._summary_writer = SummaryWriter(os.path.join(path, dt_str), comment=comment) self._define_model() self._optimizer = self._define_optimizer() self._global_step = 0 def _define_model(self): self._bert = BertModel.from_pretrained(self._hps['bert'], output_hidden_states=True) self._emb_bert_dim = 768 * (4 if self._hps['emb_layers'] == 'concat' else 1) self._fc_emb = nn.Linear(self._emb_bert_dim, self._hps['emb_dim']) self._fc_emb_relu = nn.ReLU() if self._hps['units'] == 'lstm': self._net_1 = nn.LSTM(self._hps['emb_dim'], self._hps['hidden1'], bidirectional=True) self._net_2 = nn.LSTM(self._hps['hidden1'] * 2, self._hps['hidden2'], bidirectional=False) else: self._net_1 = nn.GRU(self._hps['emb_dim'], self._hps['hidden1'], bidirectional=True) self._net_2 = nn.GRU(self._hps['hidden1'] * 2, self._hps['hidden2'], bidirectional=False) self._fc = nn.Linear(self._hps['hidden2'], 3) self._dropout_emb = nn.Dropout(self._hps['prob_emb']) self._dropout1 = nn.Dropout(self._hps['prob1']) self._dropout2 = nn.Dropout(self._hps['prob2']) self._softmax = nn.LogSoftmax(dim=1) self._criterion = nn.NLLLoss(ignore_index=-1, reduction='mean', weight=self._loss_weight) def _define_optimizer(self): opt = torch.optim.SGD(self.parameters(), self._hps['lr']) if self._hps['optimizer'] == 'ADAM': opt = torch.optim.Adam(self.parameters(), self._hps['lr'], weight_decay=self._hps['weight']) elif self._hps['optimizer'] == 'Adadelta': opt = torch.optim.Adadelta(self.parameters(), self._hps['lr'], weight_decay=self._hps['weight']) elif self._hps['optimizer'] == 'Adagrad': opt = torch.optim.Adagrad(self.parameters(), self._hps['lr'], weight_decay=self._hps['weight']) elif self._hps['optimizer'] == 'RSMProp': opt = torch.optim.RMSprop(self.parameters(), self._hps['lr'], weight_decay=self._hps['weight']) return opt def _pointwise_max(self, tensors): tensors = tensors.view(self._hps['msg_len'], -1, self._hps['batch_size'] * self._hps['conv_len']) t_prev = tensors[0] for t in tensors: t_prev = torch.max(t_prev, t) t_prev = t_prev.view(self._hps['batch_size'] * self._hps['conv_len'], -1) return t_prev def _extract_layer(self, hidden_states): if self._hps['emb_layers'] == 'last': return hidden_states[-1] elif self._hps['emb_layers'] == 'second': return hidden_states[-2] elif self._hps['emb_layers'] == 'sum_all': return torch.sum(torch.stack(hidden_states[1:]), dim=0) # exclude first layer (embedding) elif self._hps['emb_layers'] == 'sum_four': return torch.sum(torch.stack(hidden_states[-4:]), dim=0) elif self._hps['emb_layers'] == 'concat': return torch.cat(hidden_states[-4:], dim=2) else: return hidden_states[-1] def _decode_softmax(self, pred, msk_conv): pred = pred.view(self._hps['batch_size'] * self._hps['conv_len'], -1) msk_conv = msk_conv.view(self._hps['batch_size'] * self._hps['conv_len']) indeces = torch.nonzero(msk_conv, as_tuple=True) preds = pred[indeces] return list(map(lambda x: np.argmax(x), preds.tolist())) def close_writer(self): self._summary_writer.close() def get_states(self): return self.state_dict(), self._optimizer.state_dict(), self._global_step def load_state(self, checkpoint): self.load_model(checkpoint['state_dict']) self._optimizer.load_state_dict(checkpoint['optimizer']) self._global_step = checkpoint['step'] def forward(self, x, msk_conv, msk_msg): """ :param x: (batch, conv_len, msg_len+2) :param msk_conv: (batch, conv_len) :param msk_msg: (batch, conv_len, msg_len+2) :return: (conv_len, batch, classes) """ input_ids = x.view(self._hps['batch_size'] * self._hps['conv_len'], -1) # batch * conv_len, sequence_length attention_mask = msk_msg.view(self._hps['batch_size'] * self._hps['conv_len'], -1) self._bert.eval() with torch.no_grad(): bert_emb_out = self._bert(input_ids, attention_mask) # word embeddings bert_emb_states = bert_emb_out[2] # (batch * conv_len, sequence_length, hidden_size) for each layer (13) bert_emb = self._extract_layer(bert_emb_states) bert_emb = bert_emb[:, 1:-1, :] # discard special tokens msk_msg = msk_msg[:, :, 1:-1] if self._hps['emb_dim'] != self._emb_bert_dim: bert_emb = self._fc_emb_relu(self._fc_emb(bert_emb)) # reduce dimensions embed_x = self._dropout_emb(bert_emb) # reshape x embed_x = embed_x.reshape(self._hps['msg_len'], # msg_len self._hps['batch_size'] * self._hps['conv_len'], # batch * conv_len self._hps['emb_dim']) # hid_dim # first net net_in, _ = self._net_1(embed_x) # (msg_len, batch * conv_len, hidden) msk_msg = msk_msg.reshape(self._hps['msg_len'], self._hps['batch_size'] * self._hps['conv_len']).unsqueeze(-1) net_in = net_in * msk_msg # remove padding dropped = self._dropout1(net_in) first_net = self._pointwise_max(dropped) first_net = first_net.view(self._hps['conv_len'], self._hps['batch_size'], self._hps['hidden1'] * 2) # second net net_out, _ = self._net_2(first_net) # conv_len, batch, hidden second_net = self._dropout2(net_out) # prediction msgs = [] for msg in second_net: out = self._fc(msg) # batch, classes out = self._softmax(out) msgs.append(out) output = torch.stack(msgs) # conv_len, batch, classes msk_conv = msk_conv.view(self._hps['conv_len'], self._hps['batch_size']).unsqueeze(-1) output = output * msk_conv return output def fit(self, x, y, msk_conv, msk_msg): """ Train the model :param x: input sequence (batch, conv_len, msg_len+2) :param y: target sequence (batch, conv_len) :param msk_conv: conversation mask (batch, conv_len) :param msk_msg: message mask (batch, conv_len, msg_len+2) :return: loss value, step """ self.train() self._optimizer.zero_grad() preds = self(x, msk_conv, msk_msg) # conv_len, batch, classes # compute average loss avg_loss = [] pred_y = preds.view(self._hps['batch_size'], self._hps['conv_len'], -1) true_y = y.view(self._hps['batch_size'], self._hps['conv_len']) for i in range(self._hps['batch_size']): avg_loss.append(self._criterion(pred_y[i], true_y[i])) loss = torch.mean(torch.stack(avg_loss)) loss_value = loss.item() # optimization step loss.backward() if self._hps['clip'] != -1: nn.utils.clip_grad_norm_(self.parameters(), self._hps['clip']) self._optimizer.step() # compute metrics if self._global_step % self._hps['save'] == 0: y_pred = self._decode_softmax(preds, msk_conv) y_test = y.view(self._hps['batch_size'] * self._hps['conv_len']).tolist() y_test = list(filter(lambda z: z != -1, y_test)) # ignore padding parameters = [p for p in self.parameters() if p.grad is not None] total_norm = torch.norm( torch.stack([torch.norm(p.grad.detach()).to(self._device) for p in parameters])) # L2 norm prec = precision_score(y_test, y_pred, average='macro', zero_division=0) rec = recall_score(y_test, y_pred, average='macro', zero_division=0) self._summary_writer.add_scalar('Loss/train', loss_value, self._global_step) self._summary_writer.add_scalar('Precision/train', prec, self._global_step) self._summary_writer.add_scalar('Recall/train', rec, self._global_step) self._summary_writer.add_scalar('Grad norm/train', total_norm, self._global_step) if self._hps['emb_dim'] != self._emb_bert_dim: self._summary_writer.add_histogram('fc_emb/bias', self._fc_emb.bias, self._global_step) self._summary_writer.add_histogram('fc_emb/weight', self._fc_emb.weight, self._global_step) self._summary_writer.add_histogram('net_1/bias', self._net_1.bias_hh_l0, self._global_step) self._summary_writer.add_histogram('net_1/weight', self._net_1.weight_hh_l0, self._global_step) self._summary_writer.add_histogram('net_2/bias', self._net_2.bias_hh_l0, self._global_step) self._summary_writer.add_histogram('net_2/weight', self._net_2.weight_hh_l0, self._global_step) self._summary_writer.add_histogram('fc/bias', self._fc.bias, self._global_step) self._summary_writer.add_histogram('fc/weight', self._fc.weight, self._global_step) self._summary_writer.flush() self._global_step += 1 return loss_value, self._global_step def valid(self, x, y, msk_conv, msk_msg): """ Validate the model :param x: input sequence (batch, conv_len, msg_len+2) :param y: target sequence (batch, conv_len) :param msk_conv: conversation mask (batch, conv_len) :param msk_msg: message mask (batch, conv_len, msg_len+2) :return: loss value, step """ with torch.no_grad(): self.eval() preds = self(x, msk_conv, msk_msg) # conv_len, batch, classes # compute average loss avg_loss = [] pred_y = preds.view(self._hps['batch_size'], self._hps['conv_len'], -1) true_y = y.view(self._hps['batch_size'], self._hps['conv_len']) for i in range(self._hps['batch_size']): avg_loss.append(self._criterion(pred_y[i], true_y[i])) loss = torch.mean(torch.stack(avg_loss)) loss_value = loss.item() # compute metrics if self._global_step % self._hps['save'] == 0: y_pred = self._decode_softmax(preds, msk_conv) y_test = y.view(self._hps['batch_size'] * self._hps['conv_len']).tolist() y_test = list(filter(lambda z: z != -1, y_test)) # ignore padding prec = precision_score(y_test, y_pred, average='macro', zero_division=0) rec = recall_score(y_test, y_pred, average='macro', zero_division=0) self._summary_writer.add_scalar('Loss/valid', loss_value, self._global_step) self._summary_writer.add_scalar('Precision/valid', prec, self._global_step) self._summary_writer.add_scalar('Recall/valid', rec, self._global_step) self._summary_writer.flush() self._global_step += 1 return loss_value, self._global_step def predict(self, x, msk_conv, msk_msg, no_batch=False): """ Use the model for prediction :param x: input sequence (batch, conv_len, msg_len+2) :param msk_conv: conversation mask (batch, conv_len) :param msk_msg: message mask (batch, conv_len, msg_len+2) :param no_batch: true if there is only 1 batch :return: [unpad_conv_len] """ if no_batch: self._hps['batch_size'] = 1 with torch.no_grad(): self.eval() preds = self(x, msk_conv, msk_msg) # conv_len, batch, classes return self._decode_softmax(preds, msk_conv)
the-stack_0_14405
#!/usr/bin/env python # -*- coding: utf-8 -*- import asyncio from epicteller.core.dao.message import MessageDAO from epicteller.core.model.message import TextMessageContent from epicteller.core.util.enum import MessageType async def main(): start = 0 limit = 1000 while messages := await MessageDAO.scan_messages(start, limit): for message in messages: print(f'message {message.id}', end='') if message.type != MessageType.TEXT: print(f'...skip, not text') continue assert isinstance(message.content, TextMessageContent) print(f'[{message.content.text[:30]}]', end='') replaced_text = message.content.text.replace('\r\n', '\n') if replaced_text == message.content.text: print(f'...skip, equally') continue content = TextMessageContent(text=replaced_text) await MessageDAO.update_message(message.id, content=content.dict(), updated=message.created) print(f'...replaced') start += limit print('Done') if __name__ == '__main__': asyncio.run(main())
the-stack_0_14407
# -*- coding: utf-8 -*- """ Parse Excel table to output compact JSON. Always outputs to terms.json Usage: python TermExtractor.py <inputfile.xlsx> Dependencies: pandas """ # Importing the libraries import argparse import json import sys from collections import namedtuple import pandas as pd # Requires filename to read from parser = argparse.ArgumentParser() parser.add_argument("inputfile") args = parser.parse_args() # Importing the excel data try: workbook = pd.read_excel(args.inputfile, sheet_name=None, encoding="utf-8") except: sys.exit("ERROR: file could not be read") # Create list of named tuples for matching terms termlist = [] Term = namedtuple("Term", "default yen alts") for sheet in workbook.values(): height, width = sheet.shape for y in range(0, height): for x in range(0, width): # Detect cells marked with # or % as the first letter cell = sheet.iat[y, x] if isinstance(cell, str): # Regular term inclusion if cell[0] == '#' or cell[0] == '%': xpos = x + 1 default = cell[1:].strip() # Grab primary replacement if valid if (xpos < width) and (isinstance(sheet.iat[y, xpos], str)): yen = sheet.iat[y, xpos].strip() else: yen = "" alts = [] while True: # Add optional alts xpos += 1 if (xpos < width) and (isinstance(sheet.iat[y, xpos], str)): alts.append(sheet.iat[y, xpos].strip()) else: break # Have at least one replacement, otherwise discard if yen or alts: termlist.append(Term(default=default, yen=yen, alts=alts)) # Automatically add a capitalized version only if starting with % if cell[0] == '%': xpos = x + 1 default = cell[1:].strip().capitalize() # Grab primary replacement if valid if (xpos < width) and (isinstance(sheet.iat[y, xpos], str)): yen = sheet.iat[y, xpos].strip().capitalize() else: yen = "" alts = [] while True: # Add optional alts xpos += 1 if (xpos < width) and (isinstance(sheet.iat[y, xpos], str)): alts.append(sheet.iat[y, xpos].strip().capitalize()) else: break # Have at least one replacement, otherwise discard if yen or alts: termlist.append(Term(default=default, yen=yen, alts=alts)) # Sort by length, descending termlist.sort(key=lambda term: len(getattr(term, "default")), reverse=True) # Export JSON jset = {} # Add every term in form: "Default name": ["Default name", "yen name", "alts"] for t in termlist: # Add the Default name, then yen name. Repeat Default if no yen name is given jset[t.default] = [t.default] jset[t.default].append(t.yen if t.yen else t.default) for a in t.alts: jset[t.default].append(a) try: with open('terms.json', 'w', encoding="utf-8") as outfile: json.dump(jset, outfile, indent=4, ensure_ascii=False) except: print("ERROR: Writing the file has failed!") else: print("terms.json written successfully")
the-stack_0_14408
#!/bin/python3.5 # call it the regression testing file # @DEVI-if you wanna pipe the output, run with python -u. buffered output # screws up the output import sys import os from test_LEB128 import test_signed_LEB128 from test_LEB128 import test_unsigned_LEB128 from leb128s import leb128sencodedecodeexhaustive from leb128s import leb128uencodedecodeexhaustive from abc import ABCMeta, abstractmethod sys.path.append('../') from utils import Colors from argparser import * from TBInit import * total_test_cnt = int() expected_pass_cnt = int() expected_fail_cnt = int() success = Colors.green + "SUCCESS: " + Colors.ENDC fail = Colors.red + "FAIL: " + Colors.ENDC # in order to keep the regression test script clean, the tests will need to # inherit from this test class, implement the two virtual methods and then call # it inside the main. class Void_Spwner(): __metaclass__ = ABCMeta def __init__(self): pass # this is the method that runs your tests @abstractmethod def Legacy(self): pass # this tells the class what name to use to display your test results @abstractmethod def GetName(self): return(str()) def Spwn(self): pid = os.fork() # I don't have a bellybutton if pid == 0: self.Legacy() sys.exit() elif pid > 0: cpid, status = os.waitpid(pid, 0) if status == 0: print(success + ': ' + self.GetName()) else: print(fail + ': ' + self.GetName()) else: # basically we couldnt fork a child print(fail + 'return code:' + pid) raise Exception("could not fork child") def ObjectList(): obj_list = [] cwd = os.getcwd() for file in os.listdir(cwd + "/testsuite"): if file.endswith(".wasm"): obj_list.append(cwd + "/testsuite/" + file) return(obj_list) ################################################################################ class LEB128EncodeTest(Void_Spwner): def Legacy(self): test_unsigned_LEB128() test_signed_LEB128() def GetName(self): return('leb128encodetest') class LEB128Exhaustive(Void_Spwner): def Legacy(self): leb128sencodedecodeexhaustive() leb128uencodedecodeexhaustive() def GetName(self): return('leb128exhaustive') ################################################################################ def main(): return_list = [] # LEB128 tests leb128encodetest = LEB128EncodeTest() leb128encodetest.Spwn() # leb128s exhaustive leb128sex = LEB128Exhaustive() leb128sex.Spwn() # parser test on the WASM testsuite obj_list = ObjectList() for testfile in obj_list: pid = os.fork() # I dont have a bellybutton if pid == 0: # @DEVI-FIXME-pipe stdout and stderr to a file instead of the # bitbucket sys.stdout = open('/dev/null', 'w') sys.stderr = open('/dev/null', 'w') interpreter = PythonInterpreter() module = interpreter.parse(testfile) interpreter.appendmodule(module) interpreter.dump_sections(module) interpreter.runValidations() vm = VM(interpreter.getmodules()) ms = vm.getState() # interpreter.dump_sections(module) DumpIndexSpaces(ms) DumpLinearMems(ms.Linear_Memory, 1000) sys.exit() # the parent process elif pid > 0: # @DEVI-FIXME-we are intentionally blocking. later i will fix this # so we can use multicores to run our reg tests faster. cpid, status = os.waitpid(pid, 0) return_list.append(status) if status == 0: print(success + testfile) else: print(fail + testfile) else: # basically we couldnt fork a child print(fail + 'return code:' + pid) raise Exception("could not fork child") if __name__ == '__main__': main()
the-stack_0_14411
try: from Tkinter import * except: from tkinter import * win = Tk() win.title('Reality - Game') win.iconbitmap('C:\Windows\System32') win.geometry('400x200+100+100') from os import startfile as s fungtion_0 = lambda : s('R프롤로그') fungtion_1 = lambda : s('R1화') fungtion_2 = lambda : s('R2화') fungtion_3 = lambda : s('R3화') fungtion_4 = lambda : s('R4화') fungtion_5 = lambda : s('R5화') fungtion_6 = lambda : s('R6화') fungtion_7 = lambda : s('R7화') fungtion_8 = lambda : s('R8화') fungtion_9 = lambda : s('R에필로그') btn_0 = Button(win, text = '프롤로그', command = fungtion_0) btn_0.pack() btn_1 = Button(win, text = '1화', command = fungtion_1) btn_1.pack() btn_2 = Button(win, text = '2화', command = fungtion_2) btn_2.pack() btn_3 = Button(win, text = '3화', command = fungtion_3) btn_3.pack() btn_4 = Button(win, text = '4화', command = fungtion_4) btn_4.pack() btn_5 = Button(win, text = '5화', command = fungtion_5) btn_5.pack() btn_6 = Button(win, text = '6화', command = fungtion_6) btn_6.pack() btn_7 = Button(win, text = '7화', command = fungtion_7) btn_7.pack() btn_8 = Button(win, text = '8화', command = fungtion_8) btn_8.pack() btn_9 = Button(win, text = '에필로그', command = fungtion_9) btn_9.pack() win.mainloop()
the-stack_0_14412
from gym.spaces import Discrete, Box, MultiDiscrete, Space import numpy as np import tree from typing import Union, Optional from ray.rllib.models.action_dist import ActionDistribution from ray.rllib.models.modelv2 import ModelV2 from ray.rllib.utils.annotations import override from ray.rllib.utils.exploration.exploration import Exploration from ray.rllib.utils import force_tuple from ray.rllib.utils.framework import try_import_tf, try_import_torch, \ TensorType from ray.rllib.utils.spaces.space_utils import get_base_struct_from_space tf1, tf, tfv = try_import_tf() torch, _ = try_import_torch() class Random(Exploration): """A random action selector (deterministic/greedy for explore=False). If explore=True, returns actions randomly from `self.action_space` (via Space.sample()). If explore=False, returns the greedy/max-likelihood action. """ def __init__(self, action_space: Space, *, model: ModelV2, framework: Optional[str], **kwargs): """Initialize a Random Exploration object. Args: action_space (Space): The gym action space used by the environment. framework (Optional[str]): One of None, "tf", "tfe", "torch". """ super().__init__( action_space=action_space, model=model, framework=framework, **kwargs) self.action_space_struct = get_base_struct_from_space( self.action_space) @override(Exploration) def get_exploration_action(self, *, action_distribution: ActionDistribution, timestep: Union[int, TensorType], explore: bool = True): # Instantiate the distribution object. if self.framework in ["tf2", "tf", "tfe"]: return self.get_tf_exploration_action_op(action_distribution, explore) else: return self.get_torch_exploration_action(action_distribution, explore) def get_tf_exploration_action_op( self, action_dist: ActionDistribution, explore: Optional[Union[bool, TensorType]]): def true_fn(): batch_size = 1 req = force_tuple( action_dist.required_model_output_shape( self.action_space, self.model.model_config)) # Add a batch dimension? if len(action_dist.inputs.shape) == len(req) + 1: batch_size = tf.shape(action_dist.inputs)[0] # Function to produce random samples from primitive space # components: (Multi)Discrete or Box. def random_component(component): if isinstance(component, Discrete): return tf.random.uniform( shape=(batch_size, ) + component.shape, maxval=component.n, dtype=component.dtype) elif isinstance(component, MultiDiscrete): return tf.concat( [ tf.random.uniform( shape=(batch_size, 1), maxval=n, dtype=component.dtype) for n in component.nvec ], axis=1) elif isinstance(component, Box): if component.bounded_above.all() and \ component.bounded_below.all(): return tf.random.uniform( shape=(batch_size, ) + component.shape, minval=component.low, maxval=component.high, dtype=component.dtype) else: return tf.random.normal( shape=(batch_size, ) + component.shape, dtype=component.dtype) actions = tree.map_structure(random_component, self.action_space_struct) return actions def false_fn(): return action_dist.deterministic_sample() action = tf.cond( pred=tf.constant(explore, dtype=tf.bool) if isinstance(explore, bool) else explore, true_fn=true_fn, false_fn=false_fn) # TODO(sven): Move into (deterministic_)sample(logp=True|False) batch_size = tf.shape(tree.flatten(action)[0])[0] logp = tf.zeros(shape=(batch_size, ), dtype=tf.float32) return action, logp def get_torch_exploration_action(self, action_dist: ActionDistribution, explore: bool): if explore: req = force_tuple( action_dist.required_model_output_shape( self.action_space, self.model.model_config)) # Add a batch dimension? if len(action_dist.inputs.shape) == len(req) + 1: batch_size = action_dist.inputs.shape[0] a = np.stack( [self.action_space.sample() for _ in range(batch_size)]) else: a = self.action_space.sample() # Convert action to torch tensor. action = torch.from_numpy(a).to(self.device) else: action = action_dist.deterministic_sample() logp = torch.zeros( (action.size()[0], ), dtype=torch.float32, device=self.device) return action, logp
the-stack_0_14416
import logging import time from xml.etree.ElementTree import fromstring import declxml as xml import requests from requests_cache import CachedSession logger = logging.getLogger(__name__) class BGGClient: BASE_URL = "https://www.boardgamegeek.com/xmlapi2" def __init__(self, cache=None, debug=False): if not cache: self.requester = requests.Session() else: self.requester = cache.cache if debug: logging.basicConfig(level=logging.DEBUG) def collection(self, user_name, **kwargs): params = kwargs.copy() params["username"] = user_name data = self._make_request("/collection?version=1", params) collection = self._collection_to_games(data) return collection def plays(self, user_name): params = { "username": user_name, "page": 1, } all_plays = [] data = self._make_request("/plays?version=1", params) new_plays = self._plays_to_games(data) while (len(new_plays) > 0): all_plays = all_plays + new_plays params["page"] += 1 data = self._make_request("/plays?version=1", params) new_plays = self._plays_to_games(data) return all_plays def game_list(self, game_ids): if not game_ids: return [] # Split game_ids into smaller chunks to avoid "414 URI too long" def chunks(l, n): for i in range(0, len(l), n): yield l[i:i + n] games = [] for game_ids_subset in chunks(game_ids, 100): url = "/thing/?stats=1&id=" + ",".join([str(id_) for id_ in game_ids_subset]) data = self._make_request(url) games += self._games_list_to_games(data) return games def _make_request(self, url, params={}, tries=0): try: response = self.requester.get(BGGClient.BASE_URL + url, params=params) except requests.exceptions.ConnectionError: if tries < 3: time.sleep(2) return self._make_request(url, params=params, tries=tries + 1) raise BGGException("BGG API closed the connection prematurely, please try again...") logger.debug("REQUEST: " + response.url) logger.debug("RESPONSE: \n" + prettify_if_xml(response.text)) if response.status_code != 200: # Handle 202 Accepted if response.status_code == 202: if tries < 10: time.sleep(5) return self._make_request(url, params=params, tries=tries + 1) # Handle 504 Gateway Timeout if response.status_code == 540: if tries < 3: time.sleep(2) return self._make_request(url, params=params, tries=tries + 1) raise BGGException( f"BGG returned status code {response.status_code} when " f"requesting {response.url}" ) tree = fromstring(response.text) if tree.tag == "errors": raise BGGException( f"BGG returned errors while requesting {response.url} - " + str([subnode.text for node in tree for subnode in node]) ) return response.text def _plays_to_games(self, data): def after_players_hook(_, status): return status["name"] plays_processor = xml.dictionary("plays", [ xml.array( xml.dictionary('play', [ xml.integer(".", attribute="id", alias="playid"), xml.dictionary('item', [ xml.string(".", attribute="name", alias="gamename"), xml.integer(".", attribute="objectid", alias="gameid") ], alias='game'), xml.array( xml.dictionary('players/player', [ xml.string(".", attribute="name") ], required=False, alias='players', hooks=xml.Hooks(after_parse=after_players_hook)) ) ], required=False, alias="plays") ) ]) plays = xml.parse_from_string(plays_processor, data) plays = plays["plays"] return plays def _collection_to_games(self, data): def after_status_hook(_, status): return [tag for tag, value in status.items() if value == "1"] game_in_collection_processor = xml.dictionary("items", [ xml.array( xml.dictionary('item', [ xml.integer(".", attribute="objectid", alias="id"), xml.string("name"), xml.string("thumbnail", required=False, alias="image"), xml.string("version/item/thumbnail", required=False, alias="image_version"), xml.dictionary("status", [ xml.string(".", attribute="fortrade"), xml.string(".", attribute="own"), xml.string(".", attribute="preordered"), xml.string(".", attribute="prevowned"), xml.string(".", attribute="want"), xml.string(".", attribute="wanttobuy"), xml.string(".", attribute="wanttoplay"), xml.string(".", attribute="wishlist"), ], alias='tags', hooks=xml.Hooks(after_parse=after_status_hook)), xml.string("status", attribute="lastmodified", alias="lastmodified"), xml.integer("numplays"), ], required=False, alias="items"), ) ]) collection = xml.parse_from_string(game_in_collection_processor, data) collection = collection["items"] return collection def _games_list_to_games(self, data): def numplayers_to_result(_, results): result = {result["value"].lower().replace(" ", "_"): int(result["numvotes"]) for result in results} if not result: result = {'best': 0, 'recommended': 0, 'not_recommended': 0} is_recommended = result['best'] + result['recommended'] > result['not_recommended'] if not is_recommended: return "not_recommended" is_best = result['best'] > 10 and result['best'] > result['recommended'] if is_best: return "best" return "recommended" def suggested_numplayers(_, numplayers): # Remove not_recommended player counts numplayers = [players for players in numplayers if players["result"] != "not_recommended"] # If there's only one player count, that's the best one if len(numplayers) == 1: numplayers[0]["result"] = "best" # Just return the numbers return [ (players["numplayers"], players["result"]) for players in numplayers ] def log_item(_, item): logger.debug("Successfully parsed: {} (id: {}).".format(item["name"], item["id"])) return item game_processor = xml.dictionary("items", [ xml.array( xml.dictionary( "item", [ xml.integer(".", attribute="id"), xml.string(".", attribute="type"), xml.string("name[@type='primary']", attribute="value", alias="name"), xml.string("description"), xml.array( xml.string( "link[@type='boardgamecategory']", attribute="value", required=False ), alias="categories", ), xml.array( xml.string( "link[@type='boardgamemechanic']", attribute="value", required=False ), alias="mechanics", ), xml.array( xml.dictionary( "link[@type='boardgameexpansion']", [ xml.integer(".", attribute="id"), xml.boolean(".", attribute="inbound", required=False), ], required=False ), alias="expansions", ), xml.array( xml.dictionary("poll[@name='suggested_numplayers']/results", [ xml.string(".", attribute="numplayers"), xml.array( xml.dictionary("result", [ xml.string(".", attribute="value"), xml.integer(".", attribute="numvotes"), ], required=False), hooks=xml.Hooks(after_parse=numplayers_to_result) ) ]), alias="suggested_numplayers", hooks=xml.Hooks(after_parse=suggested_numplayers), ), xml.string( "statistics/ratings/averageweight", attribute="value", alias="weight" ), xml.string( "statistics/ratings/ranks/rank[@friendlyname='Board Game Rank']", attribute="value", required=False, alias="rank" ), xml.string( "statistics/ratings/usersrated", attribute="value", alias="usersrated" ), xml.string( "statistics/ratings/owned", attribute="value", alias="numowned" ), xml.string( "statistics/ratings/bayesaverage", attribute="value", alias="rating" ), xml.string("playingtime", attribute="value", alias="playing_time"), ], required=False, alias="items", hooks=xml.Hooks(after_parse=log_item), ) ) ]) games = xml.parse_from_string(game_processor, data) games = games["items"] return games class CacheBackendSqlite: def __init__(self, path, ttl): self.cache = CachedSession( cache_name=path, backend="sqlite", expire_after=ttl, extension="", fast_save=True, allowable_codes=(200,) ) class BGGException(Exception): pass def prettify_if_xml(xml_string): import xml.dom.minidom import re xml_string = re.sub(r"\s+<", "<", re.sub(r">\s+", ">", re.sub(r"\s+", " ", xml_string))) if not xml_string.startswith("<?xml"): return xml_string parsed = xml.dom.minidom.parseString(xml_string) return parsed.toprettyxml()
the-stack_0_14417
# Copyright 2011 OpenStack Foundation # Copyright (c) 2011 X.commerce, a business unit of eBay Inc. # Copyright 2011 Grid Dynamics # Copyright 2011 Eldar Nugaev, Kirill Shileev, Ilya Alekseyev # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import netaddr from oslo_log import log as logging from oslo_utils import uuidutils import webob from nova.api.openstack import common from nova.api.openstack import extensions from nova.api.openstack import wsgi from nova import compute from nova.compute import utils as compute_utils from nova import exception from nova.i18n import _ from nova.i18n import _LW from nova import network LOG = logging.getLogger(__name__) authorize = extensions.extension_authorizer('compute', 'floating_ips') def _translate_floating_ip_view(floating_ip): result = { 'id': floating_ip['id'], 'ip': floating_ip['address'], 'pool': floating_ip['pool'], } try: result['fixed_ip'] = floating_ip['fixed_ip']['address'] except (TypeError, KeyError, AttributeError): result['fixed_ip'] = None try: result['instance_id'] = floating_ip['fixed_ip']['instance_uuid'] except (TypeError, KeyError, AttributeError): result['instance_id'] = None return {'floating_ip': result} def _translate_floating_ips_view(floating_ips): return {'floating_ips': [_translate_floating_ip_view(ip)['floating_ip'] for ip in floating_ips]} def get_instance_by_floating_ip_addr(self, context, address): snagiibfa = self.network_api.get_instance_id_by_floating_address instance_id = snagiibfa(context, address) if instance_id: return common.get_instance(self.compute_api, context, instance_id) def disassociate_floating_ip(self, context, instance, address): try: self.network_api.disassociate_floating_ip(context, instance, address) except exception.Forbidden: raise webob.exc.HTTPForbidden() except exception.CannotDisassociateAutoAssignedFloatingIP: msg = _('Cannot disassociate auto assigned floating ip') raise webob.exc.HTTPForbidden(explanation=msg) class FloatingIPController(object): """The Floating IPs API controller for the OpenStack API.""" def __init__(self): self.compute_api = compute.API() self.network_api = network.API() super(FloatingIPController, self).__init__() def show(self, req, id): """Return data about the given floating ip.""" context = req.environ['nova.context'] authorize(context) try: floating_ip = self.network_api.get_floating_ip(context, id) except (exception.NotFound, exception.InvalidID): msg = _("Floating ip not found for id %s") % id raise webob.exc.HTTPNotFound(explanation=msg) return _translate_floating_ip_view(floating_ip) def index(self, req): """Return a list of floating ips allocated to a project.""" context = req.environ['nova.context'] authorize(context) floating_ips = self.network_api.get_floating_ips_by_project(context) return _translate_floating_ips_view(floating_ips) def create(self, req, body=None): context = req.environ['nova.context'] authorize(context) pool = None if body and 'pool' in body: pool = body['pool'] try: address = self.network_api.allocate_floating_ip(context, pool) ip = self.network_api.get_floating_ip_by_address(context, address) except exception.NoMoreFloatingIps: if pool: msg = _("No more floating ips in pool %s.") % pool else: msg = _("No more floating ips available.") raise webob.exc.HTTPNotFound(explanation=msg) except exception.FloatingIpLimitExceeded: if pool: msg = _("IP allocation over quota in pool %s.") % pool else: msg = _("IP allocation over quota.") raise webob.exc.HTTPForbidden(explanation=msg) except exception.FloatingIpPoolNotFound as e: raise webob.exc.HTTPNotFound(explanation=e.format_message()) return _translate_floating_ip_view(ip) def delete(self, req, id): context = req.environ['nova.context'] authorize(context) # get the floating ip object try: floating_ip = self.network_api.get_floating_ip(context, id) except (exception.NotFound, exception.InvalidID): msg = _("Floating ip not found for id %s") % id raise webob.exc.HTTPNotFound(explanation=msg) address = floating_ip['address'] # get the associated instance object (if any) instance = get_instance_by_floating_ip_addr(self, context, address) try: self.network_api.disassociate_and_release_floating_ip( context, instance, floating_ip) except exception.Forbidden: raise webob.exc.HTTPForbidden() except exception.CannotDisassociateAutoAssignedFloatingIP: msg = _('Cannot disassociate auto assigned floating ip') raise webob.exc.HTTPForbidden(explanation=msg) return webob.Response(status_int=202) class FloatingIPActionController(wsgi.Controller): def __init__(self, ext_mgr=None, *args, **kwargs): super(FloatingIPActionController, self).__init__(*args, **kwargs) self.compute_api = compute.API() self.network_api = network.API() self.ext_mgr = ext_mgr @wsgi.action('addFloatingIp') def _add_floating_ip(self, req, id, body): """Associate floating_ip to an instance.""" context = req.environ['nova.context'] authorize(context) try: address = body['addFloatingIp']['address'] except TypeError: msg = _("Missing parameter dict") raise webob.exc.HTTPBadRequest(explanation=msg) except KeyError: msg = _("Address not specified") raise webob.exc.HTTPBadRequest(explanation=msg) instance = common.get_instance(self.compute_api, context, id) cached_nwinfo = compute_utils.get_nw_info_for_instance(instance) if not cached_nwinfo: LOG.warning( _LW('Info cache is %r during associate') % instance.info_cache, instance=instance) msg = _('No nw_info cache associated with instance') raise webob.exc.HTTPBadRequest(explanation=msg) fixed_ips = cached_nwinfo.fixed_ips() if not fixed_ips: msg = _('No fixed ips associated to instance') raise webob.exc.HTTPBadRequest(explanation=msg) fixed_address = None if self.ext_mgr.is_loaded('os-extended-floating-ips'): if 'fixed_address' in body['addFloatingIp']: fixed_address = body['addFloatingIp']['fixed_address'] for fixed in fixed_ips: if fixed['address'] == fixed_address: break else: msg = _('Specified fixed address not assigned to instance') raise webob.exc.HTTPBadRequest(explanation=msg) if not fixed_address: try: fixed_address = next(ip['address'] for ip in fixed_ips if netaddr.valid_ipv4(ip['address'])) except StopIteration: msg = _('Unable to associate floating ip %(address)s ' 'to any fixed IPs for instance %(id)s. ' 'Instance has no fixed IPv4 addresses to ' 'associate.') % ( {'address': address, 'id': id}) raise webob.exc.HTTPBadRequest(explanation=msg) if len(fixed_ips) > 1: LOG.warning(_LW('multiple fixed_ips exist, using the first ' 'IPv4 fixed_ip: %s'), fixed_address) try: self.network_api.associate_floating_ip(context, instance, floating_address=address, fixed_address=fixed_address) except exception.FloatingIpAssociated: msg = _('floating ip is already associated') raise webob.exc.HTTPBadRequest(explanation=msg) except exception.NoFloatingIpInterface: msg = _('l3driver call to add floating ip failed') raise webob.exc.HTTPBadRequest(explanation=msg) except exception.FloatingIpNotFoundForAddress: msg = _('floating ip not found') raise webob.exc.HTTPNotFound(explanation=msg) except exception.Forbidden as e: raise webob.exc.HTTPForbidden(explanation=e.format_message()) except Exception as e: msg = _('Unable to associate floating ip %(address)s to ' 'fixed ip %(fixed_address)s for instance %(id)s. ' 'Error: %(error)s') % ( {'address': address, 'fixed_address': fixed_address, 'id': id, 'error': e}) LOG.exception(msg) raise webob.exc.HTTPBadRequest(explanation=msg) return webob.Response(status_int=202) @wsgi.action('removeFloatingIp') def _remove_floating_ip(self, req, id, body): """Dissociate floating_ip from an instance.""" context = req.environ['nova.context'] authorize(context) try: address = body['removeFloatingIp']['address'] except TypeError: msg = _("Missing parameter dict") raise webob.exc.HTTPBadRequest(explanation=msg) except KeyError: msg = _("Address not specified") raise webob.exc.HTTPBadRequest(explanation=msg) # get the floating ip object try: floating_ip = self.network_api.get_floating_ip_by_address(context, address) except exception.FloatingIpNotFoundForAddress: msg = _("floating ip not found") raise webob.exc.HTTPNotFound(explanation=msg) # get the associated instance object (if any) instance = get_instance_by_floating_ip_addr(self, context, address) # disassociate if associated if (instance and floating_ip.get('fixed_ip_id') and (uuidutils.is_uuid_like(id) and [instance.uuid == id] or [instance.id == id])[0]): try: disassociate_floating_ip(self, context, instance, address) except exception.FloatingIpNotAssociated: msg = _('Floating ip is not associated') raise webob.exc.HTTPBadRequest(explanation=msg) return webob.Response(status_int=202) else: msg = _("Floating ip %(address)s is not associated with instance " "%(id)s.") % {'address': address, 'id': id} raise webob.exc.HTTPConflict(explanation=msg) class Floating_ips(extensions.ExtensionDescriptor): """Floating IPs support.""" name = "FloatingIps" alias = "os-floating-ips" namespace = "http://docs.openstack.org/compute/ext/floating_ips/api/v1.1" updated = "2011-06-16T00:00:00Z" def get_resources(self): resources = [] res = extensions.ResourceExtension('os-floating-ips', FloatingIPController(), member_actions={}) resources.append(res) return resources def get_controller_extensions(self): controller = FloatingIPActionController(self.ext_mgr) extension = extensions.ControllerExtension(self, 'servers', controller) return [extension]
the-stack_0_14418
import numpy as np import pytest from pandas._libs import iNaT from pandas.core.dtypes.common import is_datetime64tz_dtype, needs_i8_conversion import pandas as pd import pandas._testing as tm from pandas.tests.base.common import allow_na_ops def test_unique(index_or_series_obj): obj = index_or_series_obj obj = np.repeat(obj, range(1, len(obj) + 1)) result = obj.unique() # dict.fromkeys preserves the order unique_values = list(dict.fromkeys(obj.values)) if isinstance(obj, pd.MultiIndex): expected = pd.MultiIndex.from_tuples(unique_values) expected.names = obj.names tm.assert_index_equal(result, expected) elif isinstance(obj, pd.Index): expected = pd.Index(unique_values, dtype=obj.dtype) if is_datetime64tz_dtype(obj.dtype): expected = expected.normalize() tm.assert_index_equal(result, expected) else: expected = np.array(unique_values) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("null_obj", [np.nan, None]) def test_unique_null(null_obj, index_or_series_obj): obj = index_or_series_obj if not allow_na_ops(obj): pytest.skip("type doesn't allow for NA operations") elif len(obj) < 1: pytest.skip("Test doesn't make sense on empty data") elif isinstance(obj, pd.MultiIndex): pytest.skip(f"MultiIndex can't hold '{null_obj}'") values = obj.values if needs_i8_conversion(obj.dtype): values[0:2] = iNaT else: values[0:2] = null_obj klass = type(obj) repeated_values = np.repeat(values, range(1, len(values) + 1)) obj = klass(repeated_values, dtype=obj.dtype) result = obj.unique() unique_values_raw = dict.fromkeys(obj.values) # because np.nan == np.nan is False, but None == None is True # np.nan would be duplicated, whereas None wouldn't unique_values_not_null = [val for val in unique_values_raw if not pd.isnull(val)] unique_values = [null_obj] + unique_values_not_null if isinstance(obj, pd.Index): expected = pd.Index(unique_values, dtype=obj.dtype) if is_datetime64tz_dtype(obj.dtype): result = result.normalize() expected = expected.normalize() elif isinstance(obj, pd.CategoricalIndex): expected = expected.set_categories(unique_values_not_null) tm.assert_index_equal(result, expected) else: expected = np.array(unique_values, dtype=obj.dtype) tm.assert_numpy_array_equal(result, expected) def test_nunique(index_or_series_obj): obj = index_or_series_obj obj = np.repeat(obj, range(1, len(obj) + 1)) expected = len(obj.unique()) assert obj.nunique(dropna=False) == expected @pytest.mark.parametrize("null_obj", [np.nan, None]) def test_nunique_null(null_obj, index_or_series_obj): obj = index_or_series_obj if not allow_na_ops(obj): pytest.skip("type doesn't allow for NA operations") elif isinstance(obj, pd.MultiIndex): pytest.skip(f"MultiIndex can't hold '{null_obj}'") values = obj.values if needs_i8_conversion(obj.dtype): values[0:2] = iNaT else: values[0:2] = null_obj klass = type(obj) repeated_values = np.repeat(values, range(1, len(values) + 1)) obj = klass(repeated_values, dtype=obj.dtype) if isinstance(obj, pd.CategoricalIndex): assert obj.nunique() == len(obj.categories) assert obj.nunique(dropna=False) == len(obj.categories) + 1 else: num_unique_values = len(obj.unique()) assert obj.nunique() == max(0, num_unique_values - 1) assert obj.nunique(dropna=False) == max(0, num_unique_values) @pytest.mark.parametrize( "idx_or_series_w_bad_unicode", [pd.Index(["\ud83d"] * 2), pd.Series(["\ud83d"] * 2)] ) def test_unique_bad_unicode(idx_or_series_w_bad_unicode): # regression test for #34550 obj = idx_or_series_w_bad_unicode result = obj.unique() if isinstance(obj, pd.Index): expected = pd.Index(["\ud83d"], dtype=object) tm.assert_index_equal(result, expected) else: expected = np.array(["\ud83d"], dtype=object) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("dropna", [True, False]) def test_nunique_dropna(dropna): # GH37566 s = pd.Series(["yes", "yes", pd.NA, np.nan, None, pd.NaT]) res = s.nunique(dropna) assert res == 1 if dropna else 5
the-stack_0_14419
""" Обрабатываем/отправляем сообщения согласно протоколу: сообщения разделены нулевым байтом \0. """ import select import socket HOST = "127.0.0.1" PORT = 9999 clients = {} SEP = b"\0" class Client: def __init__(self, sock): self.sock = sock self._out_stream = bytes() self._accumulated_data = bytes() def send(self, message): self._out_stream += message + SEP def recv(self): data = self.sock.recv(1) if not data: self.sock.close() return None self._accumulated_data += data messages = [] while True: if SEP in self._accumulated_data: msg, rest = self._accumulated_data.split(SEP, 1) self._accumulated_data = rest messages.append(msg) else: break return messages def flush(self): sent = self.sock.send(self._out_stream) self._out_stream = self._out_stream[sent:] return len(self._out_stream) == 0 def broadcast(poll, message): for client in clients.values(): client.send(message) poll.register(client.sock, select.POLLOUT) def main(): listen_sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) listen_sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) listen_sock.bind((HOST, PORT)) listen_sock.listen(5) poll = select.poll() poll.register(listen_sock, select.POLLIN) while True: for fd, event in poll.poll(): # сокет с ошибкой или соединение было закрыто if event & (select.POLLHUP | select.POLLERR | select.POLLNVAL): poll.unregister(fd) client = clients[fd] print('Client {} disconnected'.format(client.sock.getpeername())) del clients[fd] # слушающий сокет elif fd == listen_sock.fileno(): client_sock, addr = listen_sock.accept() client_sock.setblocking(0) fd = client_sock.fileno() clients[fd] = Client(client_sock) poll.register(fd, select.POLLIN) print('Connection from {}'.format(addr)) # новые данные от клиента elif event & select.POLLIN: client = clients[fd] messages = client.recv() if messages: for message in messages: broadcast(poll, message) # сокет клиента готов к записи elif event & select.POLLOUT: client = clients[fd] is_empty = client.flush() if is_empty: poll.modify(client.sock, select.POLLIN) if __name__ == '__main__': main()
the-stack_0_14420
#! /usr/bin/env python """ Module containing functions for cubes frame registration. """ __author__ = 'C. A. Gomez Gonzalez, V. Christiaens, G. Ruane, R. Farkas' __all__ = ['frame_shift', 'cube_shift', 'shift_fft', 'frame_center_radon', 'frame_center_satspots', 'cube_recenter_satspots', 'cube_recenter_radon', 'cube_recenter_dft_upsampling', 'cube_recenter_2dfit', 'cube_recenter_via_speckles'] import numpy as np import warnings from packaging import version try: import cv2 no_opencv = False except ImportError: msg = "Opencv python bindings are missing." warnings.warn(msg, ImportWarning) no_opencv = True from hciplot import plot_frames from scipy.ndimage import fourier_shift from scipy.ndimage import shift import skimage from skimage.transform import radon if version.parse(skimage.__version__) <= version.parse('0.17.0'): from skimage.feature import register_translation as cc_center else: from skimage.registration import phase_cross_correlation as cc_center from multiprocessing import cpu_count from matplotlib import pyplot as plt from . import frame_crop from ..conf import time_ini, timing, Progressbar from ..conf.utils_conf import vip_figsize, check_array from ..conf.utils_conf import pool_map, iterable from ..stats import frame_basic_stats from ..var import (get_square, frame_center, get_annulus_segments, fit_2dmoffat, fit_2dgaussian, fit_2dairydisk, fit_2d2gaussian, cube_filter_lowpass, cube_filter_highpass) from ..preproc import cube_crop_frames def frame_shift(array, shift_y, shift_x, imlib='vip-fft', interpolation='lanczos4', border_mode='reflect'): """ Shifts a 2D array by shift_y, shift_x. Boundaries are filled with zeros. Parameters ---------- array : numpy ndarray Input 2d array. shift_y, shift_x: float Shifts in y and x directions. imlib : {'opencv', 'ndimage-fourier', 'ndimage-interp', 'vip-fft'}, str opt Library or method used for performing the image shift. 'ndimage-fourier', does a fourier shift operation and preserves better the pixel values (therefore the flux and photometry). Interpolation based shift ('opencv' and 'ndimage-interp') is faster than the fourier shift. 'opencv' is recommended when speed is critical. interpolation : str, optional Only used in case of imlib is set to 'opencv' or 'ndimage-interp' (Scipy.ndimage), where the images are shifted via interpolation. For Scipy.ndimage the options are: 'nearneig', bilinear', 'biquadratic', 'bicubic', 'biquartic' or 'biquintic'. The 'nearneig' interpolation is the fastest and the 'biquintic' the slowest. The 'nearneig' is the poorer option for interpolation of noisy astronomical images. For Opencv the options are: 'nearneig', 'bilinear', 'bicubic' or 'lanczos4'. The 'nearneig' interpolation is the fastest and the 'lanczos4' the slowest and accurate. 'lanczos4' is the default for Opencv and 'biquartic' for Scipy.ndimage. border_mode : {'reflect', 'nearest', 'constant', 'mirror', 'wrap'} Points outside the boundaries of the input are filled accordingly. With 'reflect', the input is extended by reflecting about the edge of the last pixel. With 'nearest', the input is extended by replicating the last pixel. With 'constant', the input is extended by filling all values beyond the edge with zeros. With 'mirror', the input is extended by reflecting about the center of the last pixel. With 'wrap', the input is extended by wrapping around to the opposite edge. Default is 'reflect'. Returns ------- array_shifted : numpy ndarray Shifted 2d array. """ check_array(array, dim=2) image = array.copy() if imlib == 'ndimage-fourier': shift_val = (shift_y, shift_x) array_shifted = fourier_shift(np.fft.fftn(image), shift_val) array_shifted = np.fft.ifftn(array_shifted) array_shifted = array_shifted.real elif imlib == 'ndimage-interp': if interpolation == 'nearneig': order = 0 elif interpolation == 'bilinear': order = 1 elif interpolation == 'biquadratic': order = 2 elif interpolation == 'bicubic': order = 3 elif interpolation == 'biquartic' or interpolation == 'lanczos4': order = 4 elif interpolation == 'biquintic': order = 5 else: raise ValueError('Scipy.ndimage interpolation method not ' 'recognized') if border_mode not in ['reflect', 'nearest', 'constant', 'mirror', 'wrap']: raise ValueError('`border_mode` not recognized') array_shifted = shift(image, (shift_y, shift_x), order=order, mode=border_mode) elif imlib == 'opencv': if no_opencv: msg = 'Opencv python bindings cannot be imported. Install opencv or' msg += ' set imlib to ndimage-fourier or ndimage-interp' raise RuntimeError(msg) if interpolation == 'bilinear': intp = cv2.INTER_LINEAR elif interpolation == 'bicubic': intp = cv2.INTER_CUBIC elif interpolation == 'nearneig': intp = cv2.INTER_NEAREST elif interpolation == 'lanczos4': intp = cv2.INTER_LANCZOS4 else: raise ValueError('Opencv interpolation method not recognized') if border_mode == 'mirror': bormo = cv2.BORDER_REFLECT_101 # gfedcb|abcdefgh|gfedcba elif border_mode == 'reflect': bormo = cv2.BORDER_REFLECT # fedcba|abcdefgh|hgfedcb elif border_mode == 'wrap': bormo = cv2.BORDER_WRAP # cdefgh|abcdefgh|abcdefg elif border_mode == 'constant': bormo = cv2.BORDER_CONSTANT # iiiiii|abcdefgh|iiiiiii elif border_mode == 'nearest': bormo = cv2.BORDER_REPLICATE # aaaaaa|abcdefgh|hhhhhhh else: raise ValueError('`border_mode` not recognized') image = np.float32(image) y, x = image.shape M = np.float32([[1, 0, shift_x], [0, 1, shift_y]]) array_shifted = cv2.warpAffine(image, M, (x, y), flags=intp, borderMode=bormo) elif imlib == 'vip-fft': array_shifted = shift_fft(array, shift_x, shift_y) else: raise ValueError('Image transformation library not recognized') return array_shifted def cube_shift(cube, shift_y, shift_x, imlib='vip-fft', interpolation='lanczos4'): """ Shifts the X-Y coordinates of a cube or 3D array by x and y values. Parameters ---------- cube : numpy ndarray, 3d Input cube. shift_y, shift_x: float, list of floats or np.ndarray of floats Shifts in y and x directions for each frame. If the a single value is given then all the frames will be shifted by the same amount. imlib : str, optional See the documentation of the ``vip_hci.preproc.frame_shift`` function. interpolation : str, optional See the documentation of the ``vip_hci.preproc.frame_shift`` function. Returns ------- cube_out : numpy ndarray, 3d Cube with shifted frames. """ check_array(cube, dim=3) nfr = cube.shape[0] cube_out = np.zeros_like(cube) if isinstance(shift_x, (int, float)): shift_x = np.ones((nfr)) * shift_x if isinstance(shift_y, (int, float)): shift_y = np.ones((nfr)) * shift_y for i in range(cube.shape[0]): cube_out[i] = frame_shift(cube[i], shift_y[i], shift_x[i], imlib, interpolation) return cube_out def frame_center_satspots(array, xy, subi_size=19, sigfactor=6, shift=False, imlib='vip-fft', interpolation='lanczos4', fit_type='moff', debug=False, verbose=True): """ Finds the center of a frame with waffle/satellite spots (e.g. for VLT/SPHERE). The method used to determine the center is by centroiding the 4 spots via a 2d Gaussian fit and finding the intersection of the lines they create (see Notes). This method is very sensitive to the SNR of the satellite spots, therefore thresholding of the background pixels is performed. If the results are too extreme, the debug parameter will allow to see in depth what is going on with the fit (maybe you'll need to adjust the sigfactor for the background pixels thresholding). Parameters ---------- array : numpy ndarray, 2d Image or frame. xy : tuple of 4 tuples of 2 elements Tuple with coordinates X,Y of the 4 satellite spots. When the spots are in an X configuration, the order is the following: top-left, top-right, bottom-left and bottom-right. When the spots are in an + (cross-like) configuration, the order is the following: top, right, left, bottom. subi_size : int, optional Size of subimage where the fitting is done. sigfactor : int, optional The background pixels will be thresholded before fitting a 2d Gaussian to the data using sigma clipped statistics. All values smaller than (MEDIAN + sigfactor*STDDEV) will be replaced by small random Gaussian noise. shift : bool, optional If True the image is shifted. imlib : str, optional See the documentation of the ``vip_hci.preproc.frame_shift`` function. interpolation : str, optional See the documentation of the ``vip_hci.preproc.frame_shift`` function. fit_type: str, optional {'gaus','moff'} Type of 2d fit to infer the centroid of the satellite spots. debug : bool, optional If True debug information is printed and plotted. verbose : bool, optional If True the intersection and shifts information is printed out. Returns ------- array_rec Shifted images. *Only returned if ``shift=True``.* shifty, shiftx Shift Y,X to get to the true center. Notes ----- linear system: .. code-block: none A1 * x + B1 * y = C1 A2 * x + B2 * y = C2 Cramer's rule - solution can be found in determinants: .. code-block: none x = Dx/D y = Dy/D where D is main determinant of the system: .. code-block: none A1 B1 A2 B2 and Dx and Dy can be found from matrices: .. code-block: none C1 B1 C2 B2 and .. code-block: none A1 C1 A2 C2 C column consequently substitutes the coef. columns of x and y L stores our coefs A, B, C of the line equations. .. code-block: none For D: L1[0] L1[1] for Dx: L1[2] L1[1] for Dy: L1[0] L1[2] L2[0] L2[1] L2[2] L2[1] L2[0] L2[2] """ def line(p1, p2): """ produces coefs A, B, C of line equation by 2 points """ A = (p1[1] - p2[1]) B = (p2[0] - p1[0]) C = (p1[0] * p2[1] - p2[0] * p1[1]) return A, B, -C def intersection(L1, L2): """ finds intersection point (if any) of 2 lines provided by coefs """ D = L1[0] * L2[1] - L1[1] * L2[0] Dx = L1[2] * L2[1] - L1[1] * L2[2] Dy = L1[0] * L2[2] - L1[2] * L2[0] if D != 0: x = Dx / D y = Dy / D return x, y else: return None # -------------------------------------------------------------------------- check_array(array, dim=2) if fit_type not in ['gaus','moff']: raise TypeError('fit_type is not recognized') if not isinstance(xy, (tuple, list)) or len(xy) != 4: raise TypeError('Input waffle spot coordinates in wrong format (must ' 'be a tuple of 4 tuples') cy, cx = frame_center(array) centx = [] centy = [] subims = [] for i in range(len(xy)): sim, y, x = get_square(array, subi_size, xy[i][1], xy[i][0], position=True, verbose=False) if fit_type=='gaus': cent2dgy, cent2dgx = fit_2dgaussian(sim, crop=False, threshold=True, sigfactor=sigfactor, debug=debug, full_output=False) else: cent2dgy, cent2dgx = fit_2dmoffat(sim, crop=False, threshold=True, sigfactor=sigfactor, debug=debug, full_output=False) centx.append(cent2dgx + x) centy.append(cent2dgy + y) subims.append(sim) cent2dgx_1, cent2dgx_2, cent2dgx_3, cent2dgx_4 = centx cent2dgy_1, cent2dgy_2, cent2dgy_3, cent2dgy_4 = centy si1, si2, si3, si4 = subims if debug: plot_frames((si1, si2, si3, si4), colorbar=True) print('Centroids X,Y:') print(cent2dgx_1, cent2dgy_1) print(cent2dgx_2, cent2dgy_2) print(cent2dgx_3, cent2dgy_3) print(cent2dgx_4, cent2dgy_4) L1 = line([cent2dgx_1, cent2dgy_1], [cent2dgx_4, cent2dgy_4]) L2 = line([cent2dgx_2, cent2dgy_2], [cent2dgx_3, cent2dgy_3]) R = intersection(L1, L2) msgerr = "Check that the order of the tuples in `xy` is correct and" msgerr += " the satellite spots have good S/N" if R is not None: shiftx = cx - R[0] shifty = cy - R[1] if np.abs(shiftx) < cx * 2 and np.abs(shifty) < cy * 2: if debug or verbose: print('Intersection coordinates (X,Y):', R[0], R[1], '\n') print('Shifts (X,Y): {:.3f}, {:.3f}'.format(shiftx, shifty)) if shift: array_rec = frame_shift(array, shifty, shiftx, imlib=imlib, interpolation=interpolation) return array_rec, shifty, shiftx, centy, centx else: return shifty, shiftx else: raise RuntimeError("Too large shifts. " + msgerr) else: raise RuntimeError("Something went wrong, no intersection found. " + msgerr) def shift_fft(array, xshift, yshift): """ Subpixel shifting of ``image`` using Fourier transformation. Parameters ---------- array : 2d numpy ndarray The image to be shifted. xshift : float Amount of desired shift in X direction. yshift : float Amount of desired shift in Y direction. Returns ------- shifted_array : 2d ndarray Input ``image`` shifted by ``xshift`` and ``yshift``. Notes ----- based on ``LibAndromeda/oneralib/subpixel_shift.pro``, v1.3 2009/05/28 """ npix = array.shape[0] if npix != array.shape[1]: raise ValueError("Input array must be square") if npix%2: cte = npix/2-0.5 else: cte = npix/2 ramp = np.outer(np.ones(npix), np.arange(npix) - cte) tilt = (-2*np.pi / npix) * (xshift*ramp + yshift*ramp.T) fact = np.fft.fftshift(np.cos(tilt) + 1j*np.sin(tilt)) array_ft = np.fft.fft2(array) # no np.fft.fftshift applied! shifted_array = np.fft.ifft2(array_ft * fact).real return shifted_array def cube_recenter_satspots(array, xy, subi_size=19, sigfactor=6, plot=True, fit_type='moff', lbda=None, debug=False, verbose=True, full_output=False): """ Function analog to frame_center_satspots but for image sequences. It actually will call frame_center_satspots for each image in the cube. The function also returns the shifted images (not recommended to use when the shifts are of a few percents of a pixel) and plots the histogram of the shifts and calculate its statistics. This is important to assess the dispersion of the star center by using artificial waffle/satellite spots (like those in VLT/SPHERE images) and evaluate the uncertainty of the position of the center. The use of the shifted images is not recommended. Parameters ---------- array : numpy ndarray, 3d Input cube. xy : tuple of 4 tuples of 2 elements Tuple with coordinates X,Y of the 4 satellite spots. When the spots are in an X configuration, the order is the following: top-left, top-right, bottom-left and bottom-right. When the spots are in an + (cross-like) configuration, the order is the following: top, right, left, bottom. If wavelength vector is not provided, assumes all sat spots of the cube are at a similar location. If wavelength is provided, only coordinates of the sat spots in the first channel should be provided. The boxes location in other channels will be scaled accordingly. subi_size : int, optional Size of subimage where the fitting is done. sigfactor : int, optional The background pixels will be thresholded before fitting a 2d Gaussian to the data using sigma clipped statistics. All values smaller than (MEDIAN + sigfactor*STDDEV) will be replaced by small random Gaussian noise. plot : bool, optional Whether to plot the shifts. fit_type: str, optional {'gaus','moff'} Type of 2d fit to infer the centroid of the satellite spots. lbda: 1d array or list, opt Wavelength vector. If provided, the subimages will be scaled accordingly to follow the motion of the satellite spots. debug : bool, optional If True debug information is printed and plotted (fit and residuals, intersections and shifts). This has to be used carefully as it can produce too much output and plots. verbose : bool, optional Whether to print to stdout the timing and additional info. full_output : bool, optional Whether to return 2 1d arrays of shifts along with the recentered cube or not. Returns ------- array_rec The shifted cube. shift_y, shift_x [full_output==True] Shifts Y,X to get to the true center for each image. sat_y, sat_x [full_output==True] Y,X positions of the satellite spots in each image. Order: top-left, top-right, bottom-left and bottom-right. """ check_array(array, dim=3) if verbose: start_time = time_ini() n_frames = array.shape[0] shift_x = np.zeros((n_frames)) shift_y = np.zeros((n_frames)) sat_y = np.zeros([n_frames,4]) sat_x = np.zeros([n_frames,4]) array_rec = [] if lbda is not None: cy, cx = frame_center(array[0]) final_xy = [] rescal = lbda/lbda[0] for i in range(n_frames): xy_new = [] for s in range(4): xy_new.append((cx+rescal[i]*(xy[s][0]-cx),cy+rescal[i]*(xy[s][1]-cy))) xy_new = tuple(xy_new) final_xy.append(xy_new) else: final_xy = [xy for i in range(n_frames)] if verbose: print("Final xy positions for sat spots:", final_xy) print('Looping through the frames, fitting the intersections:') for i in Progressbar(range(n_frames), verbose=verbose): res = frame_center_satspots(array[i], final_xy[i], debug=debug, shift=True, subi_size=subi_size, sigfactor=sigfactor, fit_type=fit_type, verbose=False) array_rec.append(res[0]) shift_y[i] = res[1] shift_x[i] = res[2] sat_y[i] = res[3] sat_x[i] = res[4] if verbose: timing(start_time) if plot: plt.figure(figsize=vip_figsize) plt.plot(shift_x, 'o-', label='Shifts in x', alpha=0.5) plt.plot(shift_y, 'o-', label='Shifts in y', alpha=0.5) plt.legend(loc='best') plt.grid('on', alpha=0.2) plt.ylabel('Pixels') plt.xlabel('Frame number') plt.figure(figsize=vip_figsize) b = int(np.sqrt(n_frames)) la = 'Histogram' _ = plt.hist(shift_x, bins=b, alpha=0.5, label=la + ' shifts X') _ = plt.hist(shift_y, bins=b, alpha=0.5, label=la + ' shifts Y') plt.legend(loc='best') plt.ylabel('Bin counts') plt.xlabel('Pixels') if verbose: msg1 = 'MEAN X,Y: {:.3f}, {:.3f}' print(msg1.format(np.mean(shift_x), np.mean(shift_y))) msg2 = 'MEDIAN X,Y: {:.3f}, {:.3f}' print(msg2.format(np.median(shift_x), np.median(shift_y))) msg3 = 'STDDEV X,Y: {:.3f}, {:.3f}' print(msg3.format(np.std(shift_x), np.std(shift_y))) array_rec = np.array(array_rec) if full_output: return array_rec, shift_y, shift_x, sat_y, sat_x else: return array_rec def frame_center_radon(array, cropsize=None, hsize=0.4, step=0.01, mask_center=None, nproc=None, satspots_cfg=None, full_output=False, verbose=True, plot=True, debug=False): """ Finding the center of a broadband (co-added) frame with speckles and satellite spots elongated towards the star (center). We use the radon transform implementation from scikit-image. Parameters ---------- array : numpy ndarray Input 2d array or image. cropsize : None or odd int, optional Size in pixels of the cropped central area of the input array that will be used. It should be large enough to contain the bright elongated speckle or satellite spots. hsize : float, optional Size of the box for the grid search. The frame is shifted to each direction from the center in a hsize length with a given step. step : float, optional The step of the coordinates change. mask_center : None or int, optional If None the central area of the frame is kept. If int a centered zero mask will be applied to the frame. By default the center isn't masked. nproc : int, optional Number of processes for parallel computing. If None the number of processes will be set to cpu_count()/2. satspots_cfg: None or str ('x' or '+'), opt If satellite spots are present, provide a string corresponding to the configuration of the satellite spots: either as a cross ('x') or as a plus sign ('+'). Leave to None if no satellite spots present. Usually the Radon transform centering works better if bright satellite spots are present. verbose : bool optional Whether to print to stdout some messages and info. plot : bool, optional Whether to plot the radon cost function. debug : bool, optional Whether to print and plot intermediate info. Returns ------- [full_output=True] 2d np array Radon cost function surface is returned if full_output set to True optimy, optimx : float Values of the Y, X coordinates of the center of the frame based on the radon optimization. (always returned) Notes ----- Based on Pueyo et al. 2014: http://arxiv.org/abs/1409.6388 """ from .cosmetics import frame_crop if array.ndim != 2: raise TypeError('Input array is not a frame or 2d array') if verbose: start_time = time_ini() frame = array.copy() ori_cent, _ = frame_center(frame) if cropsize is not None: if not cropsize%2: raise TypeError("If not None, cropsize should be odd integer") frame = frame_crop(frame, cropsize, verbose=False) listyx = np.linspace(start=-hsize, stop=hsize, num=int(2*hsize/step)+1, endpoint=True) if not mask_center: radint = 0 else: if not isinstance(mask_center, int): raise TypeError radint = mask_center coords = [(y, x) for y in listyx for x in listyx] cent, _ = frame_center(frame) frame = get_annulus_segments(frame, radint, cent-radint, mode="mask")[0] if debug: if satspots_cfg is not None: samples = 10 if satspots_cfg == 'x': theta = np.hstack((np.linspace(start=40, stop=50, num=samples, endpoint=False), np.linspace(start=130, stop=140, num=samples, endpoint=False), np.linspace(start=220, stop=230, num=samples, endpoint=False), np.linspace(start=310, stop=320, num=samples, endpoint=False))) elif satspots_cfg == '+': theta = np.hstack((np.linspace(start=-5, stop=5, num=samples, endpoint=False), np.linspace(start=85, stop=95, num=samples, endpoint=False), np.linspace(start=175, stop=185, num=samples, endpoint=False), np.linspace(start=265, stop=275, num=samples, endpoint=False))) else: msg = "If not None, satspots_cfg can only be 'x' or '+'." raise ValueError(msg) sinogram = radon(frame, theta=theta, circle=True) plot_frames((frame, sinogram)) print(np.sum(np.abs(sinogram[int(cent), :]))) else: theta = np.linspace(start=0, stop=360, num=int(cent*2), endpoint=False) sinogram = radon(frame, theta=theta, circle=True) plot_frames((frame, sinogram)) print(np.sum(np.abs(sinogram[int(cent), :]))) if nproc is None: nproc = cpu_count() // 2 # Hyper-threading doubles the # of cores if nproc == 1: costf = [] for coord in coords: res = _radon_costf(frame, cent, radint, coord, satspots_cfg) costf.append(res) costf = np.array(costf) elif nproc > 1: res = pool_map(nproc, _radon_costf, frame, cent, radint, iterable(coords), satspots_cfg) costf = np.array(res) if verbose: msg = 'Done {} radon transform calls distributed in {} processes' print(msg.format(len(coords), nproc)) cost_bound = costf.reshape(listyx.shape[0], listyx.shape[0]) if plot: plt.contour(cost_bound, cmap='CMRmap', origin='lower', lw=1, hold='on') plt.imshow(cost_bound, cmap='CMRmap', origin='lower', interpolation='nearest') plt.colorbar() plt.grid('off') plt.show() # argm = np.argmax(costf) # index of 1st max in 1d cost function 'surface' # optimy, optimx = coords[argm] # maxima in the 2d cost function surface num_max = np.where(cost_bound == cost_bound.max())[0].shape[0] ind_maximay, ind_maximax = np.where(cost_bound == cost_bound.max()) argmy = ind_maximay[int(np.ceil(num_max/2)) - 1] argmx = ind_maximax[int(np.ceil(num_max/2)) - 1] y_grid = np.array(coords)[:, 0].reshape(listyx.shape[0], listyx.shape[0]) x_grid = np.array(coords)[:, 1].reshape(listyx.shape[0], listyx.shape[0]) optimy = y_grid[argmy, 0]+(ori_cent-cent)/2 optimx = x_grid[0, argmx]+(ori_cent-cent)/2 if verbose: print('Cost function max: {}'.format(costf.max())) print('Cost function # maxima: {}'.format(num_max)) msg = 'Finished grid search radon optimization. Y={:.5f}, X={:.5f}' print(msg.format(optimy, optimx)) timing(start_time) if full_output: return cost_bound, optimy, optimx else: return optimy, optimx def _radon_costf(frame, cent, radint, coords, satspots_cfg=None): """ Radon cost function used in frame_center_radon(). """ frame_shifted = frame_shift(frame, coords[0], coords[1]) frame_shifted_ann = get_annulus_segments(frame_shifted, radint, cent-radint, mode="mask")[0] if satspots_cfg is None: theta = np.linspace(start=0, stop=360, num=frame_shifted_ann.shape[0], endpoint=False) elif satspots_cfg == 'x': samples = 10 theta = np.hstack((np.linspace(start=40, stop=50, num=samples, endpoint=False), np.linspace(start=130, stop=140, num=samples, endpoint=False), np.linspace(start=220, stop=230, num=samples, endpoint=False), np.linspace(start=310, stop=320, num=samples, endpoint=False))) else: samples = 10 theta = np.hstack((np.linspace(start=-5, stop=5, num=samples, endpoint=False), np.linspace(start=85, stop=95, num=samples, endpoint=False), np.linspace(start=175, stop=185, num=samples, endpoint=False), np.linspace(start=265, stop=275, num=samples, endpoint=False))) sinogram = radon(frame_shifted_ann, theta=theta, circle=True) costf = np.sum(np.abs(sinogram[int(cent), :])) return costf def cube_recenter_radon(array, full_output=False, verbose=True, imlib='vip-fft', interpolation='lanczos4', **kwargs): """ Recenters a cube looping through its frames and calling the ``frame_center_radon`` function. Parameters ---------- array : numpy ndarray Input 3d array or cube. full_output : {False, True}, bool optional If True the recentered cube is returned along with the y and x shifts. verbose : {True, False}, bool optional Whether to print timing and intermediate information to stdout. imlib : str, optional See the documentation of the ``vip_hci.preproc.frame_shift`` function. interpolation : str, optional See the documentation of the ``vip_hci.preproc.frame_shift`` function. cropsize : odd int, optional Size in pixels of the cropped central area of the input array that will be used. It should be large enough to contain the satellite spots. hsize : float, optional Size of the box for the grid search. The frame is shifted to each direction from the center in a hsize length with a given step. step : float, optional The step of the coordinates change. mask_center : None or int, optional If None the central area of the frame is kept. If int a centered zero mask will be applied to the frame. By default the center isn't masked. nproc : int, optional Number of processes for parallel computing. If None the number of processes will be set to cpu_count()/2. debug : bool, optional Whether to print and plot intermediate info from ``frame_center_radon``. Returns ------- array_rec : 3d ndarray Recentered cube. y, x : 1d arrays of floats [full_output] Shifts in y and x. """ check_array(array, dim=3) if verbose: start_time = time_ini() n_frames = array.shape[0] x = np.zeros((n_frames)) y = np.zeros((n_frames)) array_rec = array.copy() for i in Progressbar(range(n_frames), desc="frames", verbose=verbose): y[i], x[i] = frame_center_radon(array[i], verbose=False, plot=False, **kwargs) array_rec[i] = frame_shift(array[i], y[i], x[i], imlib=imlib, interpolation=interpolation) if verbose: timing(start_time) if full_output: return array_rec, y, x else: return array_rec def cube_recenter_dft_upsampling(array, center_fr1=None, negative=False, fwhm=4, subi_size=None, upsample_factor=100, imlib='vip-fft', interpolation='lanczos4', mask=None, full_output=False, verbose=True, nproc=1, save_shifts=False, debug=False, plot=True): """ Recenters a cube of frames using the DFT upsampling method as proposed in Guizar et al. 2008 and implemented in the ``register_translation`` function from scikit-image. The algorithm (DFT upsampling) obtains an initial estimate of the cross-correlation peak by an FFT and then refines the shift estimation by upsampling the DFT only in a small neighborhood of that estimate by means of a matrix-multiply DFT. Parameters ---------- array : numpy ndarray Input cube. center_fr1 = (cy_1, cx_1) : Tuple, optional Coordinates of the center of the subimage for fitting a 2d Gaussian and centroiding the 1st frame. negative : bool, optional If True the centroiding of the 1st frames is done with a negative 2d Gaussian fit. fwhm : float, optional FWHM size in pixels. subi_size : int or None, optional Size of the square subimage sides in pixels, used to centroid to first frame. If subi_size is None then the first frame is assumed to be centered already. nproc : int or None, optional Number of processes (>1) for parallel computing. If 1 then it runs in serial. If None the number of processes will be set to (cpu_count()/2). upsample_factor : int, optional Upsampling factor (default 100). Images will be registered to within 1/upsample_factor of a pixel. imlib : str, optional See the documentation of the ``vip_hci.preproc.frame_shift`` function. interpolation : str, optional See the documentation of the ``vip_hci.preproc.frame_shift`` function. mask: 2D np.ndarray, optional Binary mask indicating where the cross-correlation should be calculated in the images. If provided, should be the same size as array frames. [Note: only ysed uf version of skimage >= 0.18.0] full_output : bool, optional Whether to return 2 1d arrays of shifts along with the recentered cube or not. verbose : bool, optional Whether to print to stdout the timing or not. save_shifts : bool, optional Whether to save the shifts to a file in disk. debug : bool, optional Whether to print to stdout the shifts or not. plot : bool, optional If True, the shifts are plotted. Returns ------- array_recentered : numpy ndarray The recentered cube. y : numpy ndarray [full_output=True] 1d array with the shifts in y. x : numpy ndarray [full_output=True] 1d array with the shifts in x. Notes ----- Using the implementation from scikit-image of the algorithm described in Guizar-Sicairos et al. "Efficient subpixel image registration algorithms," Opt. Lett. 33, 156-158 (2008). This algorithm registers two images (2-D rigid translation) within a fraction of a pixel specified by the user. Instead of computing a zero-padded FFT (fast Fourier transform), this code uses selective upsampling by a matrix-multiply DFT (discrete FT) to dramatically reduce computation time and memory without sacrificing accuracy. With this procedure all the image points are used to compute the upsampled cross-correlation in a very small neighborhood around its peak. """ if verbose: start_time = time_ini() check_array(array, dim=3) if mask is not None: if mask.shape[-1]!=array.shape[-1] or mask.shape[-2]!=array.shape[-2]: msg = "If provided, mask should have same shape as frames" raise TypeError(msg) n_frames, sizey, sizex = array.shape if subi_size is not None: if center_fr1 is None: print('`cx_1` or `cy_1` not be provided') print('Using the coordinated of the 1st frame center for ' 'the Gaussian 2d fit') cy_1, cx_1 = frame_center(array[0]) else: cy_1, cx_1 = center_fr1 if not isinstance(subi_size, int): raise ValueError('subi_size must be an integer or None') if subi_size < fwhm: raise ValueError('`subi_size` (value in pixels) is too small') if sizey % 2 == 0: if subi_size % 2 != 0: subi_size += 1 print('`subi_size` is odd (while frame size is even)') print('Setting `subi_size` to {} pixels'.format(subi_size)) else: if subi_size % 2 == 0: subi_size += 1 print('`subi_size` is even (while frame size is odd)') print('Setting `subi_size` to {} pixels'.format(subi_size)) n_frames = array.shape[0] x = np.zeros((n_frames)) y = np.zeros((n_frames)) array_rec = array.copy() cy, cx = frame_center(array[0]) # Centroiding first frame with 2d gaussian and shifting msg0 = "The rest of the frames will be shifted by cross-correlation wrt the" \ " 1st" if subi_size is not None: y1, x1 = _centroid_2dg_frame(array_rec, 0, subi_size, cy_1, cx_1, negative, debug, fwhm) x[0] = cx - x1 y[0] = cy - y1 array_rec[0] = frame_shift(array_rec[0], shift_y=y[0], shift_x=x[0], imlib=imlib, interpolation=interpolation) if verbose: msg = "Shift for first frame X,Y=({:.3f}, {:.3f})" print(msg.format(x[0], y[0])) print(msg0) if debug: titd = "original / shifted 1st frame subimage" plot_frames((frame_crop(array[0], subi_size, verbose=False), frame_crop(array_rec[0], subi_size, verbose=False)), grid=True, title=titd) else: if verbose: print("The first frame is assumed to be well centered wrt the" "center of the array") print(msg0) x[0] = 0 y[0] = 0 # Finding the shifts with DTF upsampling of each frame wrt the first if nproc == 1: for i in Progressbar(range(1, n_frames), desc="frames", verbose=verbose): y[i], x[i], array_rec[i] = _shift_dft(array_rec, array, i, upsample_factor, mask, interpolation, imlib) elif nproc > 1: res = pool_map(nproc, _shift_dft, array_rec, array, iterable(range(1, n_frames)), upsample_factor, interpolation, imlib) res = np.array(res) y[1:] = res[:,0] x[1:] = res[:,1] array_rec[1:] = [frames for frames in res[:,2]] if debug: print("\nShifts in X and Y") for i in range(n_frames): print(x[i], y[i]) if verbose: timing(start_time) if plot: plt.figure(figsize=vip_figsize) plt.plot(y, 'o-', label='shifts in y', alpha=0.5) plt.plot(x, 'o-', label='shifts in x', alpha=0.5) plt.legend(loc='best') plt.grid('on', alpha=0.2) plt.ylabel('Pixels') plt.xlabel('Frame number') plt.figure(figsize=vip_figsize) b = int(np.sqrt(n_frames)) la = 'Histogram' _ = plt.hist(x, bins=b, alpha=0.5, label=la + ' shifts X') _ = plt.hist(y, bins=b, alpha=0.5, label=la + ' shifts Y') plt.legend(loc='best') plt.ylabel('Bin counts') plt.xlabel('Pixels') if save_shifts: np.savetxt('recent_dft_shifts.txt', np.transpose([y, x]), fmt='%f') if full_output: return array_rec, y, x else: return array_rec def _shift_dft(array_rec, array, frnum, upsample_factor, mask, interpolation, imlib): """ function used in recenter_dft_unsampling """ if version.parse(skimage.__version__) > version.parse('0.17.0'): shift_yx = cc_center(array_rec[0], array[frnum], upsample_factor=upsample_factor, reference_mask=mask, return_error=False) else: shift_yx = cc_center(array_rec[0], array[frnum], upsample_factor=upsample_factor) y_i, x_i = shift_yx array_rec_i = frame_shift(array[frnum], shift_y=y_i, shift_x=x_i, imlib=imlib, interpolation=interpolation) return y_i, x_i, array_rec_i def cube_recenter_2dfit(array, xy=None, fwhm=4, subi_size=5, model='gauss', nproc=1, imlib='vip-fft', interpolation='lanczos4', offset=None, negative=False, threshold=False, sigfactor=2, fix_neg=False, params_2g=None, save_shifts=False, full_output=False, verbose=True, debug=False, plot=True): """ Recenters the frames of a cube. The shifts are found by fitting a 2d Gaussian or Moffat to a subimage centered at ``xy``. This assumes the frames don't have too large shifts (>5px). The frames are shifted using the function frame_shift(). Parameters ---------- array : numpy ndarray Input cube. xy : tuple of integers or floats Integer coordinates of the center of the subimage (wrt the original frame). For the double gaussian fit with fixed negative gaussian, this should correspond to the exact location of the center of the negative gaussiam (e.g. the center of the coronagraph mask) - in that case a tuple of floats is also accepted. fwhm : float or numpy ndarray FWHM size in pixels, either one value (float) that will be the same for the whole cube, or an array of floats with the same dimension as the 0th dim of array, containing the fwhm for each channel (e.g. in the case of an ifs cube, where the fwhm varies with wavelength) subi_size : int, optional Size of the square subimage sides in pixels. model : str, optional Sets the type of fit to be used. 'gauss' for a 2d Gaussian fit, 'moff' for a 2d Moffat fit, 'airy' for a 2d Airy disk fit, and '2gauss' for a 2d double Gaussian (positive+negative) fit. nproc : int or None, optional Number of processes (>1) for parallel computing. If 1 then it runs in serial. If None the number of processes will be set to (cpu_count()/2). imlib : str, optional See the documentation of the ``vip_hci.preproc.frame_shift`` function. interpolation : str, optional See the documentation of the ``vip_hci.preproc.frame_shift`` function. offset : tuple of floats, optional If None the region of the frames used for the 2d Gaussian/Moffat fit is shifted to the center of the images (2d arrays). If a tuple is given it serves as the offset of the fitted area wrt the center of the 2d arrays. negative : bool, optional If True a negative 2d Gaussian/Moffat fit is performed. fix_neg: bool, optional In case of a double gaussian fit, whether to fix the parameters of the megative gaussian. If True, they should be provided in params_2g. params_2g: None or dictionary, optional In case of a double gaussian fit, dictionary with either fixed or first guess parameters for the double gaussian. E.g.: params_2g = {'fwhm_neg': 3.5, 'fwhm_pos': (3.5,4.2), 'theta_neg': 48., 'theta_pos':145., 'neg_amp': 0.5} fwhm_neg: float or tuple with fwhm of neg gaussian fwhm_pos: can be a tuple for x and y axes of pos gaussian (replaces fwhm) theta_neg: trigonometric angle of the x axis of the neg gaussian (deg) theta_pos: trigonometric angle of the x axis of the pos gaussian (deg) neg_amp: amplitude of the neg gaussian wrt the amp of the positive one Note: it is always recommended to provide theta_pos and theta_neg for a better fit. threshold : bool, optional If True the background pixels (estimated using sigma clipped statistics) will be replaced by small random Gaussian noise (recommended for 2g). sigfactor: float, optional If thresholding is performed, set the the threshold in terms of gaussian sigma in the subimage (will depend on your cropping size). save_shifts : bool, optional Whether to save the shifts to a file in disk. full_output : bool, optional Whether to return 2 1d arrays of shifts along with the recentered cube or not. verbose : bool, optional Whether to print to stdout the timing or not. debug : bool, optional If True the details of the fitting are shown. Won't work when the cube contains >20 frames (as it might produce an extremely long output). plot : bool, optional If True, the shifts are plotted. Returns ------- array_rec: numpy ndarray The recentered cube. y : numpy ndarray [full_output=True] 1d array with the shifts in y. x : numpy ndarray [full_output=True] 1d array with the shifts in x. """ if verbose: start_time = time_ini() check_array(array, dim=3) n_frames, sizey, sizex = array.shape if not isinstance(subi_size, int): raise ValueError('`subi_size` must be an integer') if sizey % 2 == 0: if subi_size % 2 != 0: subi_size += 1 print('`subi_size` is odd (while frame size is even)') print('Setting `subi_size` to {} pixels'.format(subi_size)) else: if subi_size % 2 == 0: subi_size += 1 print('`subi_size` is even (while frame size is odd)') print('Setting `subi_size` to {} pixels'.format(subi_size)) if isinstance(fwhm, (float, int, np.float32, np.float64)): fwhm = np.ones(n_frames) * fwhm if debug and array.shape[0] > 20: msg = 'Debug with a big array will produce a very long output. ' msg += 'Try with less than 20 frames in debug mode' raise RuntimeWarning(msg) if xy is not None: pos_x, pos_y = xy cond = model != '2gauss' if (not isinstance(pos_x, int) or not isinstance(pos_y, int)) and cond: raise TypeError('`xy` must be a tuple of integers') else: pos_y, pos_x = frame_center(array[0]) cy, cx = frame_center(array[0]) array_rec = np.empty_like(array) if model == 'gauss': func = _centroid_2dg_frame elif model == 'moff': func = _centroid_2dm_frame elif model == 'airy': func = _centroid_2da_frame elif model == '2gauss': func = _centroid_2d2g_frame else: raise ValueError('model not recognized') if nproc is None: nproc = cpu_count() // 2 # Hyper-threading doubles the # of cores if nproc == 1: res = [] print('2d {}-fitting'.format(model)) for i in Progressbar(range(n_frames), desc="frames", verbose=verbose): if model == "2gauss": args = [array, i, subi_size, pos_y, pos_x, debug, fwhm[i], fix_neg, params_2g, threshold, sigfactor] else: args = [array, i, subi_size, pos_y, pos_x, negative, debug, fwhm[i], threshold, sigfactor] res.append(func(*args)) res = np.array(res) elif nproc > 1: if model == "2gauss": args = [array, iterable(range(n_frames)), subi_size, pos_y, pos_x, debug, iterable(fwhm), fix_neg, params_2g, threshold, sigfactor] else: args = [array, iterable(range(n_frames)), subi_size, pos_y, pos_x, negative, debug, iterable(fwhm), threshold, sigfactor] res = pool_map(nproc, func, *args) res = np.array(res) y = cy - res[:, 0] x = cx - res[:, 1] if model == "2gauss" and not fix_neg: y_neg = res[:, 2] x_neg = res[:, 3] fwhm_x = res[:, 4] fwhm_y = res[:, 5] fwhm_neg_x = res[:, 6] fwhm_neg_y = res[:, 7] theta = res[:, 8] theta_neg = res[:, 9] amp_pos = res[:,10] amp_neg = res[:, 11] if offset is not None: offx, offy = offset y -= offy x -= offx for i in Progressbar(range(n_frames), desc="Shifting", verbose=verbose): if debug: print("\nShifts in X and Y") print(x[i], y[i]) array_rec[i] = frame_shift(array[i], y[i], x[i], imlib=imlib, interpolation=interpolation) if verbose: timing(start_time) if plot: plt.figure(figsize=vip_figsize) plt.plot(y, 'o-', label='shifts in y', alpha=0.5) plt.plot(x, 'o-', label='shifts in x', alpha=0.5) plt.legend(loc='best') plt.grid('on', alpha=0.2) plt.ylabel('Pixels') plt.xlabel('Frame number') plt.figure(figsize=vip_figsize) b = int(np.sqrt(n_frames)) la = 'Histogram' _ = plt.hist(x, bins=b, alpha=0.5, label=la + ' shifts X') _ = plt.hist(y, bins=b, alpha=0.5, label=la + ' shifts Y') if model == "2gauss" and not fix_neg: _ = plt.hist(cx-x_neg, bins=b, alpha=0.5, label=la + ' shifts X (neg gaussian)') _ = plt.hist(cy-y_neg, bins=b, alpha=0.5, label=la + ' shifts Y (neg gaussian)') plt.legend(loc='best') plt.ylabel('Bin counts') plt.xlabel('Pixels') if save_shifts: np.savetxt('recent_gauss_shifts.txt', np.transpose([y, x]), fmt='%f') if full_output: if model == "2gauss" and not fix_neg: return (array_rec, y, x, y_neg, x_neg, fwhm_x, fwhm_y, fwhm_neg_x, fwhm_neg_y, theta, theta_neg, amp_pos, amp_neg) return array_rec, y, x else: return array_rec def _centroid_2dg_frame(cube, frnum, size, pos_y, pos_x, negative, debug, fwhm, threshold=False, sigfactor=1): """ Finds the centroid by using a 2d gaussian fitting in one frame from a cube. """ sub_image, y1, x1 = get_square(cube[frnum], size=size, y=pos_y, x=pos_x, position=True) # negative gaussian fit if negative: sub_image = -sub_image + np.abs(np.min(-sub_image)) y_i, x_i = fit_2dgaussian(sub_image, crop=False, fwhmx=fwhm, fwhmy=fwhm, threshold=threshold, sigfactor=sigfactor, debug=debug, full_output=False) y_i = y1 + y_i x_i = x1 + x_i return y_i, x_i def _centroid_2dm_frame(cube, frnum, size, pos_y, pos_x, negative, debug, fwhm, threshold=False, sigfactor=1): """ Finds the centroid by using a 2d moffat fitting in one frame from a cube. """ sub_image, y1, x1 = get_square(cube[frnum], size=size, y=pos_y, x=pos_x, position=True) # negative fit if negative: sub_image = -sub_image + np.abs(np.min(-sub_image)) y_i, x_i = fit_2dmoffat(sub_image, crop=False, fwhm=fwhm, debug=debug, threshold=threshold, sigfactor=sigfactor, full_output=False) y_i = y1 + y_i x_i = x1 + x_i return y_i, x_i def _centroid_2da_frame(cube, frnum, size, pos_y, pos_x, negative, debug, fwhm, threshold=False, sigfactor=1): """ Finds the centroid by using a 2d Airy disk fitting in one frame from a cube. """ sub_image, y1, x1 = get_square(cube[frnum], size=size, y=pos_y, x=pos_x, position=True) # negative fit if negative: sub_image = -sub_image + np.abs(np.min(-sub_image)) y_i, x_i = fit_2dairydisk(sub_image, crop=False, fwhm=fwhm, threshold=threshold, sigfactor=sigfactor, full_output=False, debug=debug) y_i = y1 + y_i x_i = x1 + x_i return y_i, x_i def _centroid_2d2g_frame(cube, frnum, size, pos_y, pos_x, debug=False, fwhm=4, fix_neg=True, params_2g=None, threshold=False, sigfactor=1): """ Finds the centroid by using a 2d double gaussian (positive+negative) fitting in one frame from a cube. To be called from within cube_recenter_doublegauss2d_fit(). """ size = min(cube[frnum].shape[0],cube[frnum].shape[1],size) #sub_image, y1, x1 = get_square_robust(cube[frnum], size=size, y=pos_y, # x=pos_x, position=True) if isinstance(params_2g,dict): fwhm_neg = params_2g.get('fwhm_neg', 0.8*fwhm) fwhm_pos = params_2g.get('fwhm_pos', 2*fwhm) theta_neg = params_2g.get('theta_neg', 0.) theta_pos = params_2g.get('theta_pos', 0.) neg_amp = params_2g.get('neg_amp', 1) res_DF = fit_2d2gaussian(cube[frnum], crop=True, cent=(pos_x,pos_y), cropsize=size, fwhm_neg=fwhm_neg, fwhm_pos=fwhm_pos, neg_amp=neg_amp, fix_neg=fix_neg, theta_neg=theta_neg, theta_pos=theta_pos, threshold=threshold, sigfactor=sigfactor, full_output=True, debug=debug) y_i = res_DF['centroid_y'] x_i = res_DF['centroid_x'] if not fix_neg: y_neg = res_DF['centroid_y_neg'] x_neg = res_DF['centroid_x_neg'] fwhm_x = res_DF['fwhm_x'] fwhm_y = res_DF['fwhm_y'] fwhm_neg_x = res_DF['fwhm_x_neg'] fwhm_neg_y = res_DF['fwhm_y_neg'] theta = res_DF['theta'] theta_neg = res_DF['theta_neg'] amp_pos = res_DF['amplitude'] amp_neg = res_DF['amplitude_neg'] return (y_i, x_i, y_neg, x_neg, fwhm_x, fwhm_y, fwhm_neg_x, fwhm_neg_y, theta, theta_neg, amp_pos, amp_neg) return y_i, x_i # TODO: make parameter names match the API def cube_recenter_via_speckles(cube_sci, cube_ref=None, alignment_iter=5, gammaval=1, min_spat_freq=0.5, max_spat_freq=3, fwhm=4, debug=False, recenter_median=False, fit_type='gaus', negative=True, crop=True, subframesize=21, mask=None, imlib='vip-fft', interpolation='lanczos4', plot=True, full_output=False): """ Registers frames based on the median speckle pattern. Optionally centers based on the position of the vortex null in the median frame. Images are filtered to isolate speckle spatial frequencies. Parameters ---------- cube_sci : numpy ndarray Science cube. cube_ref : numpy ndarray Reference cube (e.g. for NIRC2 data in RDI mode). alignment_iter : int, optional Number of alignment iterations (recomputes median after each iteration). gammaval : int, optional Applies a gamma correction to emphasize speckles (useful for faint stars). min_spat_freq : float, optional Spatial frequency for low pass filter. max_spat_freq : float, optional Spatial frequency for high pass filter. fwhm : float, optional Full width at half maximum. debug : bool, optional Outputs extra info. recenter_median : bool, optional Recenter the frames at each iteration based on a 2d fit. fit_type : str, optional If recenter_median is True, this is the model to which the image is fitted to for recentering. 'gaus' works well for NIRC2_AGPM data. 'ann' works better for NACO+AGPM data. negative : bool, optional If True, uses a negative gaussian fit to determine the center of the median frame. crop: bool, optional Whether to calculate the recentering on a cropped version of the cube that is speckle-dominated (recommended). subframesize : int, optional Sub-frame window size used. Should cover the region where speckles are the dominant noise source. mask: 2D np.ndarray, optional Binary mask indicating where the cross-correlation should be calculated in the images. If provided, should be the same size as array frames. imlib : str, optional Image processing library to use. interpolation : str, optional Interpolation method to use. plot : bool, optional If True, the shifts are plotted. full_ouput: bool, optional Whether to return more varibales, useful for debugging. Returns ------- if full_output is False, returns: cube_reg_sci: Registered science cube (numpy 3d ndarray) If cube_ref is not None, also returns: cube_reg_ref: Ref. cube registered to science frames (np 3d ndarray) If full_output is True, returns in addition to the above: cube_sci_lpf: Low+high-pass filtered science cube (np 3d ndarray) cube_stret: Cube with stretched values used for cross-corr (np 3d ndarray) cum_x_shifts_sci: Vector of x shifts for science frames (np 1d array) cum_y_shifts_sci: Vector of y shifts for science frames (np 1d array) And if cube_ref is not None, also returns: cum_x_shifts_ref: Vector of x shifts for ref. frames. cum_y_shifts_ref: Vector of y shifts for ref. frames. """ n, y, x = cube_sci.shape check_array(cube_sci, dim=3) if recenter_median and fit_type not in {'gaus','ann'}: raise TypeError("fit type not recognized. Should be 'ann' or 'gaus'") if crop and not subframesize < y/2.: raise ValueError('`Subframesize` is too large') if cube_ref is not None: ref_star = True nref = cube_ref.shape[0] else: ref_star = False if crop: cube_sci_subframe = cube_crop_frames(cube_sci, subframesize, verbose=False) if ref_star: cube_ref_subframe = cube_crop_frames(cube_ref, subframesize, verbose=False) else: subframesize = cube_sci.shape[-1] cube_sci_subframe = cube_sci.copy() if ref_star: cube_ref_subframe = cube_ref.copy() ceny, cenx = frame_center(cube_sci_subframe[0]) print('Sub frame shape: {}'.format(cube_sci_subframe.shape)) print('Center pixel: ({}, {})'.format(ceny, cenx)) # Filtering cubes. Will be used for alignment purposes cube_sci_lpf = cube_sci_subframe.copy() if ref_star: cube_ref_lpf = cube_ref_subframe.copy() cube_sci_lpf = cube_sci_lpf + np.abs(np.min(cube_sci_lpf)) if ref_star: cube_ref_lpf = cube_ref_lpf + np.abs(np.min(cube_ref_lpf)) median_size = int(fwhm * max_spat_freq) # Remove spatial frequencies <0.5 lam/D and >3lam/D to isolate speckles cube_sci_hpf = cube_filter_highpass(cube_sci_lpf, 'median-subt', median_size=median_size, verbose=False) if min_spat_freq>0: cube_sci_lpf = cube_filter_lowpass(cube_sci_hpf, 'gauss', fwhm_size=min_spat_freq * fwhm, verbose=False) else: cube_sci_lpf = cube_sci_hpf if ref_star: cube_ref_hpf = cube_filter_highpass(cube_ref_lpf, 'median-subt', median_size=median_size, verbose=False) if min_spat_freq>0: cube_ref_lpf = cube_filter_lowpass(cube_ref_hpf, 'gauss', fwhm_size=min_spat_freq * fwhm, verbose=False) else: cube_ref_lpf = cube_ref_hpf if ref_star: alignment_cube = np.zeros((1 + n + nref, subframesize, subframesize)) alignment_cube[1:(n + 1), :, :] = cube_sci_lpf alignment_cube[(n + 1):(n + 2 + nref), :, :] = cube_ref_lpf else: alignment_cube = np.zeros((1 + n, subframesize, subframesize)) alignment_cube[1:(n + 1), :, :] = cube_sci_lpf n_frames = alignment_cube.shape[0] # 1+n or 1+n+nref cum_y_shifts = 0 cum_x_shifts = 0 for i in range(alignment_iter): alignment_cube[0] = np.median(alignment_cube[1:(n + 1)], axis=0) if recenter_median: # Recenter the median frame using a 2d fit if fit_type == 'gaus': crop_sz = int(fwhm) else: crop_sz = int(6*fwhm) if not crop_sz%2: crop_sz+=1 sub_image, y1, x1 = get_square(alignment_cube[0], size=crop_sz, y=ceny, x=cenx, position=True) if fit_type == 'gaus': if negative: sub_image = -sub_image + np.abs(np.min(-sub_image)) y_i, x_i = fit_2dgaussian(sub_image, crop=False, threshold=False, sigfactor=1, debug=debug, full_output=False) elif fit_type == 'ann': y_i, x_i, rad = _fit_2dannulus(sub_image, fwhm=fwhm, crop=False, hole_rad=0.5, sampl_cen=0.1, sampl_rad=0.2, ann_width=0.5, unc_in=2.) yshift = ceny - (y1 + y_i) xshift = cenx - (x1 + x_i) alignment_cube[0] = frame_shift(alignment_cube[0, :, :], yshift, xshift, imlib=imlib, interpolation=interpolation) # center the cube with stretched values cube_stret = np.log10((np.abs(alignment_cube) + 1) ** gammaval) if mask is not None and crop: mask_tmp = frame_crop(mask, subframesize) else: mask_tmp = mask res = cube_recenter_dft_upsampling(cube_stret, (ceny, cenx), fwhm=fwhm, subi_size=None, full_output=True, verbose=False, plot=False, mask=mask_tmp, imlib=imlib, interpolation=interpolation) _, y_shift, x_shift = res sqsum_shifts = np.sum(np.sqrt(y_shift ** 2 + x_shift ** 2)) print('Square sum of shift vecs: ' + str(sqsum_shifts)) for j in range(1, n_frames): alignment_cube[j] = frame_shift(alignment_cube[j], y_shift[j], x_shift[j], imlib=imlib, interpolation=interpolation) cum_y_shifts += y_shift cum_x_shifts += x_shift cube_reg_sci = cube_sci.copy() cum_y_shifts_sci = cum_y_shifts[1:(n + 1)] cum_x_shifts_sci = cum_x_shifts[1:(n + 1)] for i in range(n): cube_reg_sci[i] = frame_shift(cube_sci[i], cum_y_shifts_sci[i], cum_x_shifts_sci[i], imlib=imlib, interpolation=interpolation) if plot: plt.figure(figsize=vip_figsize) plt.plot(cum_x_shifts_sci, 'o-', label='Shifts in x', alpha=0.5) plt.plot(cum_y_shifts_sci, 'o-', label='Shifts in y', alpha=0.5) plt.legend(loc='best') plt.grid('on', alpha=0.2) plt.ylabel('Pixels') plt.xlabel('Frame number') plt.figure(figsize=vip_figsize) b = int(np.sqrt(n)) la = 'Histogram' _ = plt.hist(cum_x_shifts_sci, bins=b, alpha=0.5, label=la+' shifts X') _ = plt.hist(cum_y_shifts_sci, bins=b, alpha=0.5, label=la+' shifts Y') plt.legend(loc='best') plt.ylabel('Bin counts') plt.xlabel('Pixels') if ref_star: cube_reg_ref = cube_ref.copy() cum_y_shifts_ref = cum_y_shifts[(n + 1):] cum_x_shifts_ref = cum_x_shifts[(n + 1):] for i in range(nref): cube_reg_ref[i] = frame_shift(cube_ref[i], cum_y_shifts_ref[i], cum_x_shifts_ref[i], imlib=imlib, interpolation=interpolation) if ref_star: if full_output: return (cube_reg_sci, cube_reg_ref, cube_sci_lpf, cube_stret, cum_x_shifts_sci, cum_y_shifts_sci, cum_x_shifts_ref, cum_y_shifts_ref) else: return (cube_reg_sci, cube_reg_ref) else: if full_output: return (cube_reg_sci, cube_sci_lpf, cube_stret, cum_x_shifts_sci, cum_y_shifts_sci) else: return cube_reg_sci def _fit_2dannulus(array, fwhm=4, crop=False, cent=None, cropsize=15, hole_rad=0.5, sampl_cen=0.1, sampl_rad=None, ann_width=0.5, unc_in=2.): """Finds the center the center of a donut-shape signal (e.g. a coronagraphic PSF) by fitting an annulus, using a grid of positions for the center and radius of the annulus. The best fit is found by maximizing the mean flux measured in the annular mask. Requires the image to be already roughly centered (by an uncertainty provided by unc_in). Parameters ---------- array : array_like Image with a single donut-like source, already approximately at the center of the frame. fwhm : float Gaussian PSF full width half maximum from fitting (in pixels). hole_rad: float, opt First estimate of the hole radius (in terms of fwhm). The grid search on the radius of the optimal annulus goes from 0.5 to 2 times hole_rad. Note: for the AGPM PSF of VLT/NACO, the optimal hole_rad ~ 0.5FWHM. sampl_cen: float, opt Precision of the grid sampling to find the center of the annulus (in pixels) sampl_rad: float, opt or None. Precision of the grid sampling to find the optimal radius of the annulus (in pixels). If set to None, there is no grid search for the optimal radius of the annulus, the value given by hole_rad is used. ann_width: float, opt Width of the annulus in FWHM; default is 0.5 FWHM. unc_in: float, opt Initial uncertainty on the center location (with respect to center of input subframe) in pixels; this will set the grid width. Returns ------- mean_y : float Source centroid y position on the full image from fitting. mean_x : float Source centroid x position on the full image from fitting. if sampl_rad is not None, also returns final_hole_rad: final_hole_rad : float Best fit radius of the hole, in terms of fwhm. """ if cent is None: ceny, cenx = frame_center(array) else: cenx, ceny = cent if crop: x_sub_px = cenx%1 y_sub_px = ceny%1 imside = array.shape[0] psf_subimage, suby, subx = get_square(array, min(cropsize, imside), int(ceny), int(cenx), position=True) ceny, cenx = frame_center(psf_subimage) ceny+=y_sub_px cenx+=x_sub_px else: psf_subimage = array.copy() ann_sz = ann_width*fwhm grid_sh_x = np.arange(-unc_in,unc_in,sampl_cen) grid_sh_y = np.arange(-unc_in,unc_in,sampl_cen) if sampl_rad is None: rads = [hole_rad*fwhm] else: rads = np.arange(0.5*hole_rad*fwhm,2*hole_rad*fwhm,sampl_rad) flux_ann = np.zeros([grid_sh_x.shape[0],grid_sh_y.shape[0]]) best_rad = np.zeros([grid_sh_x.shape[0],grid_sh_y.shape[0]]) for ii, xx in enumerate(grid_sh_x): for jj, yy in enumerate(grid_sh_y): tmp_tmp = frame_shift(array,yy,xx) for rr, rad in enumerate(rads): # mean flux in the annulus tmp = frame_basic_stats(tmp_tmp, 'annulus',inner_radius=rad, size=ann_sz, plot=False) if tmp > flux_ann[ii,jj]: flux_ann[ii,jj] = tmp best_rad[ii,jj] = rad i_max,j_max = np.unravel_index(np.argmax(flux_ann),flux_ann.shape) mean_x = cenx - grid_sh_x[i_max] mean_y = ceny - grid_sh_y[j_max] if sampl_rad is None: return mean_y, mean_x else: final_hole_rad = best_rad[i_max,j_max]/fwhm return mean_y, mean_x, final_hole_rad
the-stack_0_14421
#!/bin/env python """Log file Author: Friedrich Schotte, Mar 2, 2016 - Oct 7, 2017 """ __version__ = "1.1.5" # caching from logging import debug,warn,info,error class LogFile(object): name = "logfile" from persistent_property3 import persistent_property filename = persistent_property("filename","") def __init__(self,name="logfile",columns=["date time","value"],filename=None): """filename: where to save columns: list of strings""" self.name = name self.columns = columns if filename is not None: self.filename = filename from _thread import allocate_lock self.lock = allocate_lock() def log(self,*args,**kwargs): """Append to logfile time: time in seconds since 1970-01-01 00:00:00 UTC """ from time import time from time_string import date_time from normpath3 import normpath from os.path import exists,dirname; from os import makedirs values = args if "time" in kwargs: timestamp = kwargs["time"] else: timestamp = time() with self.lock: # Allow only one thread at a time inside this function. filename = normpath(self.filename) if not exists(dirname(filename)): makedirs(dirname(filename)) if not exists(filename): header = "#"+"\t".join(self.columns)+"\n" else: header = "" fields = [date_time(timestamp)]+[str(v) for v in values] line = "\t".join(fields)+"\n" file(filename,"ab").write(header+line) def history(self,*args,**kwargs): """time_range: tmin,tmax: time in seconds since 1970-01-01 00:00:00 UTC range: imin,imax: all vaues from imin to imax, including imax (Negative integers count from the end, -1 = last.) count: last N *args: column names""" from numpy import nan if "count" in kwargs: count = kwargs["count"] lines = self.lines(self.last_lines_range(count)) if "time_range" in kwargs: time_range = kwargs["time_range"] lines = self.lines(self.timestamp_range(time_range)) column_names = args column_indices = [self.columns.index(name) for name in column_names] values = [] for i in range(0,len(lines)): if len(lines[i]) == len(column_names): try: row_values = [convert(lines[i][j],name) for (j,name) in zip(column_indices,column_names)] values += [row_values] except Exception as msg: warn("logfile: line %d/%d %r: %s" % (i+1,len(lines),lines[i],msg)) values = zip(*values) # organize data in rows if values == []: values = [[]]*len(column_names) return values def lines(self,start_end): """Part of the file. start: byte offset (self.contents[start] is the first character included) end: byte offset (self.contents[end] will not be included) Return value: list of lists of strings, each list representing a line """ start = int(start_end[0]) # for the Python 3 competability end = int(start_end[1]) # for the Python 3 competability lines = self.content[start:end].split("\n") # Get rid of empty lines. if lines[:1] == ['']: lines = lines[1:] if lines[-1:] == ['']: lines = lines[:-1] # Get rid of comment lines. while len(lines)>0 and lines[0].startswith("#"): lines = lines[1:] lines = [l.split("\t") for l in lines] return lines def last_lines_range(self,count): """Where are the last n lines from the end of the file? Return value: tuple of byte offsets: begin,end """ content = self.content j = len(content) if content[j-1:j] == "\n": j -= 1 i = j for n in range(0,count): i2 = content.rfind("\n",0,i) if i2<0: break i = i2 i += 1 return i,j def timestamp_range(self,t): # (t1,t2) -> t for python 3 """Start and end byte offsets of a time range t1: seconds since 1970-01-01T00:00:00+00 t2: seconds since 1970-01-01T00:00:00+00 """ t1 = t[0] t2 = t[1] return [self.timestamp_location(t) for t in (t1,t2)] def timestamp_location(self,timestamp): """First line with a time stamp later to the given time stamp. Return value: byte offset from the beginning of the file. Length of file if all timestamp in the file are earlier timestamp: seconds since 1970-01-01T00:00:00+00""" from numpy import isnan,clip text = self.content offset = len(text)/2 step = len(text)/4 while step > 0: ##debug("offset %r, step %r" % (offset,step)) t = self.next_timestamp(text,offset) if isnan(t): offset = len(text); break if t <= timestamp: offset += step else: offset -= step offset = clip(offset,0,len(text)) step = (step+1)/2 if step > 1 else 0 return offset @staticmethod def next_timestamp(text,offset): from time_string import timestamp from numpy import nan i = text.find("\n",offset)+1 if i < 0: t = nan else: j = text.find("\t",i) if j < 0: t = nan else: t = timestamp(text[i:j]) return t @property def content(self): from normpath3 import normpath filename = normpath(self.filename) from mmap import mmap,ACCESS_READ try: f = file(filename) content = mmap(f.fileno(),0,access=ACCESS_READ) except IOError: content = "" return content @property def content(self): from os.path import exists,getsize from normpath3 import normpath filename = normpath(self.filename) if exists(filename): size_change = getsize(filename) - len(self.cached_content) if size_change > 0: ##debug("Logfile: Reading %d bytes" % size_change) f = file(filename) f.seek(len(self.cached_content)) self.cached_content += f.read() elif size_change < 0: ##debug("Logfile: Reading %d bytes" % getsize(filename)) self.cached_content = file(filename).read() else: self.cached_content = "" return self.cached_content def get_cached_content(self): if self.filename in self.file_cache: content = self.file_cache[self.filename] else: content = "" return content def set_cached_content(self,content): self.file_cache[self.filename] = content cached_content = property(get_cached_content,set_cached_content) file_cache = {} @property def start_time(self): from time_string import timestamp from time import time lines = self.lines((0,80)) try: t = timestamp(lines[0][0]) except: t = time() return t def __len__(self): return self.content[:].count("\n")-1 logfile = LogFile def convert(x,name): """Try to convert string to a Python object. if not possible return a string name: if "date time", force conversion from string to seconds""" if name == "date time": return timestamp(x) try: return float(x) except: pass try: return timestamp(x) except: pass return x def timestamp(date_time): """Convert a date string to number of seconds since 1 Jan 1970 00:00 UTC date_time: e.g. "2017-10-04 20:17:34.286479-0500" or "2017-10-04 20:17:34-0500" """ from datetime import datetime if date_time[-5] in "+-": date_time,TZ = date_time[:-5],date_time[-5:] else: TZ = "+0000" if "." in date_time: format = "%Y-%m-%d %H:%M:%S.%f" else: format = "%Y-%m-%d %H:%M:%S" utc_dt = datetime.strptime(date_time,format) timestamp = (utc_dt - datetime(1970, 1, 1)).total_seconds() TZ_offset = int(TZ[0:3])*3600 timestamp -= TZ_offset return timestamp ##from time_string import timestamp if __name__ == "__main__": from pdb import pm # for debugging import logging; logging.basicConfig(level=logging.DEBUG) from channel_archiver3 import channel_archiver from time import time self = channel_archiver.logfile("NIH:TEMP.RBV") print('t=time(); x=self.history("date time","value",time_range=(time()-10*60,time())); time()-t') print('len(self.content)') print('t=time(); x=self.content; time()-t')
the-stack_0_14422
from WMCore.Configuration import Configuration import os,sys config = Configuration() reqNamedFromArg = [ arg for arg in sys.argv if arg.startswith( 'General.requestName=' ) ][0].split( '=' )[-1] puFromArg = reqNamedFromArg[ reqNamedFromArg.find('PU')+2:] generationInfo = {'0p5':[0.5 , 200 , 500] , '1' : [1.0 , 200 , 500] , '1p5' : [1.5 , 200 , 500 ] , '10' : [10 , 200 , 500 ] , '50' : [50 , 200 , 200 ] , '100' : [100 , 500 , 100], '140' : [140 , 600 , 80 ] , '200' : [200 , 1000 , 50 ] } config.section_('General') config.General.requestName = '' config.General.workArea = 'crab_projects' config.General.transferOutputs = True config.section_('JobType') config.JobType.pluginName = 'PrivateMC' config.JobType.psetName = 'GEN_SIM_DIGI_cfg.py' config.JobType.allowUndistributedCMSSW = True config.JobType.maxJobRuntimeMin = 3000 config.JobType.sendPythonFolder = True config.JobType.numCores = 2 config.JobType.maxMemoryMB = 5000 config.JobType.maxJobRuntimeMin = 5000 config.JobType.pyCfgParams = ["pu={0}".format(generationInfo[puFromArg][0])] config.section_('Data') config.Data.outputPrimaryDataset = 'NuGun' config.Data.splitting = 'EventBased' config.Data.unitsPerJob = generationInfo[puFromArg][2] config.Data.totalUnits = generationInfo[puFromArg][2] * generationInfo[puFromArg][1] config.Data.publication = True config.Data.outputDatasetTag = 'FBCMNuGunPU{0}'.format(puFromArg) config.Data.outLFNDirBase = '/store/group/dpg_bril/comm_bril/phase2-sim/FBCM/' config.section_("Site") config.Site.storageSite = "T2_CH_CERN" config.Site.whitelist = ["T2_CH_CERN"]
the-stack_0_14423
import sublime from .event_handler import EventHandler from .settings import Settings package_control_installed = False LOCAL_PACKAGES_VERSION = "0.1.3" evaluating = False already_evaluate = False retry_times = 3 def plugin_loaded(): Settings.reset() Settings.startup() print("[Local Packages] v%s" % (LOCAL_PACKAGES_VERSION)) check_package_control() def check_package_control(): try: __import__("Package Control").package_control global package_control_installed package_control_installed = True except: global retry_times if retry_times > 0: retry_times -= 1 sublime.set_timeout(check_package_control, 3000) else: sublime.error_message( "Package Control is not found.\n\n" + "Local Packages will now disabled" ) return EventHandler().register_handler( evaluate_install, EventHandler().ON_LOAD ) evaluate_install() def evaluate_install(view=None): global evaluating, already_evaluate if evaluating: return if not already_evaluate: print("[Local Packages] Evaluating missing packages") from .package_evaluator import PackageEvaluatorThread evaluating = True PackageEvaluatorThread( window=sublime.active_window(), callback=on_installed ).start() def on_installed(failed_packages=[]): global evaluating, already_evaluate evaluating = False if already_evaluate: return if len(failed_packages) > 0: msg = "Local Packages failed to install %s missing packages...\n" % ( len(failed_packages) ) limit = 10 for package in failed_packages: limit -= 1 if limit < 0: break msg += " - %s\n" % (package) if limit < 0: msg += "and more..." sublime.error_message(msg) else: print("[Local Packages] Dependencies already installed") already_evaluate = True
the-stack_0_14424
""" Authorization for Admin API """ import re from shared.models.dashboard_entities import AdminDashboardUser from shared.service.jwt_auth_wrapper import JWTAuthManager SCHOOL_REGEX: re.Pattern = re.compile('(?P<school>.+)-admin', flags=re.I) # JWT Authentication Manager AUTH_MANAGER = JWTAuthManager(oidc_vault_secret="oidc/admin-jwt", object_creator=lambda claims, assumed_role, user_roles: AdminDashboardUser( last_name=claims['family_name'], first_name=claims['given_name'], email=claims['email'], roles=user_roles, school=SCHOOL_REGEX.match(assumed_role).group('school') )) OIDC_COOKIE = AUTH_MANAGER.auth_cookie('kc-access', allow_role_switching=True) # KeyCloak Access Token set by OIDC Proxy (Auth0 Lock)
the-stack_0_14425
from urllib.robotparser import RobotFileParser from urllib.request import urlopen, Request import ssl ssl._create_default_https_context = ssl._create_unverified_context rp = RobotFileParser() headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.13; rv:67.0) Gecko/20100101 Firefox/67.0'} req = Request(url='https://www.jianshu.com/robots.txt', headers=headers) rp.parse(urlopen(req).read().decode('utf-8').split('\n')) print(rp.can_fetch('*', 'https://www.jianshu.com/p/b67554025d7d')) print(rp.can_fetch('*', "https://www.jianshu.com/search?q=python&page=1&type=collections"))
the-stack_0_14427
# Import Python Libs from __future__ import absolute_import import os import logging import shutil # Local imports from . import constants from . import util_which from . import keyring from . import ops_pool from . import rados_client log = logging.getLogger(__name__) class Error(Exception): """ Error """ def __str__(self): doc = self.__doc__.strip() return ': '.join([doc] + [str(a) for a in self.args]) class rgw_ctrl(rados_client.ctrl_rados_client): def __init__(self, **kwargs): super(rgw_ctrl, self).__init__(**kwargs) self.service_name = "ceph-radosgw" # Set path to rgw binary self.path_service_bin = util_which.which_ceph_rgw.path self.bootstrap_keyring_type = 'rgw' self.keyring_service_name = 'client.{name}'.format(name=self.ceph_client_id) self.keyring_service_capabilities = [ 'osd', 'allow rwx', 'mon', 'allow rw' ] def _set_rgw_path_lib(self): if self.ceph_client_id == None: raise Error("rgw name not specified") self.rgw_path_lib = '{path}/{cluster}-{name}'.format( path=constants._path_ceph_lib_rgw, cluster=self.model.cluster_name, name=self.ceph_client_id ) def rgw_pools_missing(self): requiredPools = set([".rgw", ".rgw.control", ".rgw.gc", ".log", ".intent-log", ".usage", ".users", ".users.email", ".users.swift", ".users.uid" ]) pool_ops = ops_pool.ops_pool(self.model) pool_ops.pool_list() if self.model.pool_list == None: log.error("Failed to list available pools") return False foundnames = set() for pool in self.model.pool_list: foundnames.add(pool) return list(requiredPools.difference(foundnames)) def rgw_pools_create(self): rc = True pool_ops = ops_pool.ops_pool(self.model) pool_ops.pool_list() for name in self.rgw_pools_missing(): log.info("Adding missing pool:%s" % (name)) try: pool_ops.pool_add(name, pg_num=16) except (ops_pool.Error) as err: log.error(err) log.error("Failed to add pool '%s'" % (name)) rc = False return rc def prepare(self): # Due to the way keyring profiles work and the init scripts for rgw we need to # force users to only create rgw with a 'rgw.' prefix. The reason we dont hide # this from the user is due to both the systemd files and rgw deployments may # exist without the prefix if the bootstrap keyring was not used in the key # creation for the rgw service. if not self.ceph_client_id.startswith("rgw."): raise Error("rgw name must start with 'rgw.'") self.service_available() self._set_rgw_path_lib() path_bootstrap_keyring = keyring._get_path_keyring_rgw(self.model.cluster_name) if not os.path.isfile(path_bootstrap_keyring): raise Error("Keyring not found at %s" % (path_bootstrap_keyring)) if not os.path.isdir(self.rgw_path_lib): log.info("Make missing directory:%s" % (self.rgw_path_lib)) os.makedirs(self.rgw_path_lib) self.keyring_service_path = os.path.join(self.rgw_path_lib, 'keyring') self.keyring_service_create() def remove(self): self._set_rgw_path_lib() if not os.path.isdir(self.rgw_path_lib): return rgw_path_keyring = os.path.join(self.rgw_path_lib, 'keyring') if os.path.isfile(rgw_path_keyring): log.info("Remove from auth list keyring:%s" % (rgw_path_keyring)) try: self.keyring_auth_remove() except Error: log.error("Failed to remote from auth list") removetree = "%s/" % (self.rgw_path_lib) log.info("Remove directory content:%s" % (removetree)) shutil.rmtree(removetree)
the-stack_0_14428
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Simple endpoint that returns an email or an attachment from one""" """ THIS ONLY DEALS WITH PUBLIC EMAILS FOR NOW - AAA IS BEING WORKED ON""" import plugins.server import plugins.session import plugins.messages import plugins.database import aiohttp.web import plugins.aaa import base64 import typing async def process( server: plugins.server.BaseServer, session: plugins.session.SessionObject, indata: dict, ) -> typing.Union[dict, aiohttp.web.Response]: # First, assume permalink and look up the email based on that email = await plugins.messages.get_email(session, permalink=indata.get("id")) # If not found via permalink, it might be message-id instead, so try that if email is None: email = await plugins.messages.get_email(session, messageid=indata.get("id")) # If email was found, process the request if we are allowed to display it if email and isinstance(email, dict) and not email.get("deleted"): if plugins.aaa.can_access_email(session, email): # Are we fetching an attachment? if not indata.get("attachment"): email["gravatar"] = plugins.messages.gravatar(email) return email else: fid = indata.get("file") for entry in email.get("attachments", []): if entry.get("hash") == fid: ct = entry.get("content_type") or "application/binary" headers = { "Content-Type": ct, "Content-Length": str(entry.get("size")), } if "image/" not in ct and "text/" not in ct: headers["Content-Disposition"] = f"attachment; filename=\"{entry.get('filename')}\"" try: assert session.database, "Database not connected!" attachment = await session.database.get( index=session.database.dbs.attachment, id=indata.get("file") ) if attachment: blob = base64.decodebytes(attachment["_source"].get("source").encode("utf-8")) return aiohttp.web.Response(headers=headers, status=200, body=blob) except plugins.database.DBError: pass # attachment not found return aiohttp.web.Response(headers={}, status=404, text="Attachment not found") return aiohttp.web.Response(headers={}, status=404, text="Email not found") def register(server: plugins.server.BaseServer): return plugins.server.Endpoint(process)
the-stack_0_14430
# -*- coding: utf-8 -*- # Radproc - A GIS-compatible Python-Package for automated RADOLAN Composite Processing and Analysis. # Copyright (c) 2018, Jennifer Kreklow. # DOI: https://doi.org/10.5281/zenodo.1313701 # # Distributed under the MIT License (see LICENSE.txt for more information), complemented with the following provision: # For the scientific transparency and verification of results obtained and communicated to the public after # using a modified version of the work, You (as the recipient of the source code and author of this modified version, # used to produce the published results in scientific communications) commit to make this modified source code available # in a repository that is easily and freely accessible for a duration of five years after the communication of the obtained results. """ ================================ DWD MR90 Gauge Data Processing ================================ Collection of functions for processing DWD rain gauge data in MR90 format. Convert gauge data to pandas DataFrames with same format as RADOLAN data and saves them as HDF5 datasets. .. autosummary:: :nosignatures: :toctree: generated/ stationfile_to_df summarize_metadata_files dwd_gauges_to_hdf5 .. module:: radproc.dwd_gauge :platform: Windows :synopsis: Python package radproc (Radar data processing), Module arcgis .. moduleauthor:: Jennifer Kreklow """ import numpy as np import pandas as pd import os, gc from datetime import datetime from multiprocessing import Pool import warnings, tables def _read_line(line): """ Read in one line (= 1 hour) of gauge data according to MR90 format description. 10-minute-blocks are merged to 60-minute-blocks and time index is shifted to make data hours begin at hh:50 and convert time zone from MEZ to UTC. :Parameters: ------------ line : string data line containing station number, date and minute measurement data of weighing (Tropfer) and seesaw (Wippe) method in 10-minute-blocks. :Returns: --------- data : dictionary with data collected from line. keys: statnr, startdatum_dt (datetime-object), startdatum (string), dateIndex_UTC, wippe, tropfer, N_gefallen und qualitaetsbyte """ data = dict(wippe = "", tropfer = "") #data['kennung'] = line[0:2] data['statnr'] = line[2:7].strip() year = int(line[7:11]) month = int(line[11:13]) day = int(line[13:15]) hour = int(line[15:17]) data['startdatum_dt'] = datetime(year, month, day, hour) data['startdatum'] = data['startdatum_dt'].strftime("%Y-%m-%d %H:%M") # Erstellen einer einstündigen pandas TimeSeries mit fester minütlicher Frequenz # shift -70, da Beginn um xx:50 der Vorstunde und MEZ-1h = UTC data['dateIndex_UTC'] = pd.date_range(start = data['startdatum'], periods = 60, freq = '1min').shift(-70).tolist() #leerfeld = line[17:19] # Zusammenfügen der Messwerte aus den 10-Min-Blöcken zu einem 60-Min-String # Positionen der Liste (kennzeichnen jew. den Beginn eines Blocks) gem. Formatbeschreibung des DWD for wippe_start in [19, 100, 181, 262, 343, 424]: tropfer_start = wippe_start + 30 #Datensatz Wippe: 30 Zeichen N_gefallen_start = wippe_start + 70 # Datensatz Tropfer: 40 Zeichen #qualitaetsbyte = wippe_start + 80 #Datensatz Indikator: 10 Zeichen, Qualitätsbyte = 1 Zeichen --> gesamt: 81 Zeichen data['wippe'] = data['wippe'] + line[wippe_start:tropfer_start] data['tropfer'] = data['tropfer'] + line[tropfer_start:N_gefallen_start] #daten['N_gefallen'] = daten['N_gefallen'] + line[N_gefallen_start:qualitaetsbyte] #daten['qualitaetsbyte'] = daten['qualitaetsbyte'] + line[qualitaetsbyte] return data def _interpret_line(data_dict): """ Convert and decode data line of one hour from dictionary to pandas DataFrame. Decode data to precipitation values in mm, insert np.nan as NoData value where necessary and convert data to one-column DataFrame with time index :Parameters: ------------ data_dict : dictionary with data collected from data line. necessary keys: statnr, dateIndex_UTC, wippe, tropfer dictionary can be read in with function _read_line() :Returns: --------- df : one-column pandas DataFrame with precipitation data of one hour in mm """ wippe = data_dict['wippe'] tropfer = data_dict['tropfer'] dateIndex = data_dict['dateIndex_UTC'] arr = np.zeros(60, dtype = np.float32) arr.fill(np.nan) s = pd.Series(arr, index = dateIndex) tropferNoData = 60 * "-999" #wippeNoData = 60 * "-99" # Interpretation der Daten: # Standardmäßig werden die Tropfermessungen ausgewertet und in pandas Series s eingefügt. # Ausnahme: alle 60 Zeitpunkte haben den Wert -999, also NoData. Nur dann wird auf die Wippenwerte zugegriffen. # Jeder Tropferwert besteht aus vier Zeichen. Diese werden nacheinander abgerufen und interpretiert. # -999 = Fehlkennung --> np.nan --> pass, da Series s bereits mit NaN initialisiert wurde # -001 = kein Niederschlag --> 0.0 # xx = xx * 0.01 mm Niederschlag # einige Zeitpunkte sind fehlerhaft und haben den Wert "0000". Diesen wird der Niederschalg 0.0 zugewiesen. if tropfer != tropferNoData: # Tropfermessung vorhanden k = 0 for i in range(0, len(tropfer), 4): value = tropfer[i:i+4] if value == "-999": pass elif value == "-001" or value == "0000": s[dateIndex[k]] = 0.0 else: try: s[dateIndex[k]] = float(value)*0.01 except: s[dateIndex[k]] = np.nan k += 1 else: # Wippenmessung vorhanden. # Jeder Wippenwert besteht aus drei Zeichen. Diese werden nacheinander abgerufen und interpretiert. # -99 = Fehlkennung --> np.nan # -01 = kein Niederschlag --> 0.0 # xx = xx * 0.1 mm Niederschlag # einige Zeitpunkte sind fehlerhaft und haben den Wert "000". Diesen wird der Niederschalg 0.0 zugewiesen. k = 0 for i in range(0, len(wippe), 3): value = wippe[i:i+3] if value == "-99": pass elif value == "-01" or value == "000": s[dateIndex[k]] = 0.0 else: try: s[dateIndex[k]] = float(value)*0.1 except: s[dateIndex[k]] = np.nan k += 1 # Umwandlung der Series in einen einspaltigen DataFrame. # Notwendig, um den Spaltennamen mit der Stationsnummer speichern zu können. df = pd.DataFrame(s.values, index = s.index, columns = [data_dict['statnr']]) return df def stationfile_to_df(stationfile): """ Import a textfile with DWD rain gauge data in MR90 format into a one-column pandas DataFrame. Downsample frequency from 1 to 5-minute intervals to adjust temporal resolution to best-resolved RADOLAN data produt YW. Convert time zone to UTC. :Parameters: ------------ stationfile : string Path and name of textfile containing rain gauge measurements. :Returns: --------- df : one-column pandas DataFrame with data imported from stationfile downsampled to 5-minute intervals. """ #fails = [] #for stationfile in stationfiles: --> unnötig, da map() beim parallel processing die Schleife ersetzt f = open(stationfile, "r") lines = f.readlines() f.close() df = pd.DataFrame() for line in lines: dataline = _read_line(line) #erstelle Dictionary try: df_hour = _interpret_line(dataline) df_5min = df_hour.resample('5min', how = 'sum', closed = 'left', label = 'left') df = pd.concat([df,df_5min], axis = 0) except: # Hinweis: Ausgabe der Fehler funktioniert nicht bei Verwendung von Parallel Processing. Daher auskommentiert. #print "Problem bei Stunde beginnend um %s UTC in Station %s." % (str(daten['dateIndex_UTC'][0]), daten['statnr']) #fails.append((str(daten['dateIndex_UTC'][0]), daten['statnr'])) continue del lines, df_hour, df_5min gc.collect() df = df.tz_localize('UTC') #print "Datei %s erfolgreich bearbeitet. Dauer: %.2f Minuten" % (stationfile, (time.time() - t0)/60) return df def summarize_metadata_files(inFolder): """ Import all metafiles and summarizes metadata in a single textfile. Metadata include information on station number and name, geographic coordinates and height above sea level. :Parameters: ------------ inFolder : string Path of directory containing metadata files for DWD gauges. :Returns: --------- summaryFile : string Path and name of output summary file created. """ metaFiles = [os.path.join(inFolder, mf) for mf in os.listdir(inFolder)] summaryFile = os.path.join(os.path.split(inFolder)[0], "metadata_summary.txt") outFile = open(summaryFile, "w") i = 0 for f in metaFiles: infile = open(f, "r") while True: line = infile.readline().strip() if line.startswith("Station="): break #print line line = line.replace(":", " ") outFile.write(line[:-1] + "\n") infile.close() i += 1 outFile.close() return summaryFile def dwd_gauges_to_hdf5(inFolder, HDFFile): """ Import all textfiles containing DWD rain gauge data in MR90 format from input folder into a DataFrame and save it as monthly HDF5 datasets. Frequency is downsampled from 1 to 5-minute intervals to adjust temporal resolution to RADOLAN product YW. Time zone is converted from MEZ to UTC. :Parameters: ------------ inFolder : string Path of directory containing textfiles with DWD rain gauge data in MR90 format. HDFFile : string Path and name of the HDF5 file. If the specified HDF5 file already exists, the new dataset will be appended; if the HDF5 file doesn't exist, it will be created. :Returns: --------- None Save monthly DataFrames to specified HDF5 file. :Note: ------ To import gauge data from HDF5, you can use the same functions from radproc.core as for RADOLAN data since both are stored the same data format and structure. """ stationfiles = [os.path.join(inFolder, f) for f in os.listdir(inFolder)] #stationframes = [] # Prozessierung der Stationsdateien mit Parallel Processing, um die Geschwindigkeit zu erhöhen. # Die Funktion Pool() aus dem Modul multiprocessing erzeugt mehrere Subprozesse auf unterschiedlichen Prozessorkernen, # welche die Multiprocessing-Sperre (GIL) umgehen, die normalerweise bei Python besteht. # map() nimmt eine Funktion und eine Liste als Eingabeargumente entgegen und gibt eine Liste # als Ausgabe zurück. Die Funktion wird auf unterschiedlichen Prozessorkernen für jedes Listenelement ausgeführt. # optional kann mit Pool(x) die Anzahl x der zu verwendenden Kerne übergeben werden. # Das Ergebnis stationframes ist eine Liste mit einspaltigen DataFrames der Ombrometerstationen. p = Pool() stationframes = p.map(stationfile_to_df, stationfiles) # Zusammenfügen der Dataframes zu einem DF mit einer Spalte pro Station gaugeDF = pd.concat(stationframes, axis = 1, join = 'outer', copy=False) #ombroDF = ombroDF.asfreq('5min') gaugeDF.columns.name = 'DWD gauges' gaugeDF.index.name = 'Date (UTC)' #summaryFile = summarize_metadata_files(inFolder_metadata) warnings.filterwarnings('ignore', category=tables.NaturalNameWarning) hdf = pd.HDFStore(HDFFile, mode = "a") for year in np.unique(gaugeDF.index.year): for month in range(1, 13): try: ind = "%i-%02i" %(year, month) HDFDataset = "%i/%i" %(year, month) hdf.put(HDFDataset, gaugeDF.loc[ind], data_columns = True, index = True) except: # in case of unavailable months continue hdf.close()
the-stack_0_14431
import random # СЛОВАРИ # Это структура данных, которая содержит неупорядоченную последовательность. # Если в списках элементы упорядочены по индексам, то в Словарях объекты распалагаются в парах: ключ-значение # Словари напоминают списки, но есть одно принцимпиальное различие: они состоят из ключей и значений. # Ключ, это тот элемент, по котрому мы получаем значение dictionaty_list = {'name': 'Ariel'} # сначала ключ 'name', потом значение 'Ariel' в фигурных скобках # ключ является не изменяемым объектом, тогда как значение может быть любым объектом. # В словаре не может быть одинаковых ключей, тогда как их значения могут повторяться (совпадать). # в качестве значения можно использовать объекты любого типа, в том числе списки и сами словари. # В словаре доступ к значениям происходит по ключам, тогда как в списках - по индексам. # Марка автомобиля - ключ, цена автомобиля - значение car_prices = {'opel': 5000, 'toyota': 7000, 'bmw': 10000} # Все как в книжном словаре - находим слово(ключ) и получаем его значение. print('Выводим цены на автомобили', car_prices) # Вывод {'opel': 5000, 'toyota': 7000, 'bmw': 10000} # Такая структура данных называется dictionaty / словарь # Все операции в словаре происходят очень быстро. Это эффективно реализованная конструкция. # ---------------------- Способы инициализации словарей ---------------------- # 1 Способ # Словари объявляются (инициализируются) фигурными скобками {} # dict_temp = {} # Заполняем словарь ключ-значение dict_temp = {'dict1': 1, 'dict2': 2.1, 'dict3': 'name', 'dict4': [1, 2, 3]} print(type(dict_temp), dict_temp) # выводим тип словаря и сам словарь # 2 Способ # с помощью метода fromkeys() dict_temp = dict.fromkeys(['a', 'b']) # dict - указание класса # Здесь создан словарь, где указаны ключи a и b с пустыми значениями. print(type(dict_temp), dict_temp) # получаем на выходе <class 'dict'> {'a': None, 'b': None} # для установки значений нужно подать еще один список dict_temp = dict.fromkeys(['a', 'b'], [12, '2020']) # dict - указание класса print('C помощью метода fromkeys()', type(dict_temp), dict_temp) # получаем на выходе <class 'dict'> {'a': [12, '2020'], 'b': [12, '2020']} # 3 Способ # Инициализация словаря с помощью генератора dict_temp = {a: a ** 2 for a in range(10)} # конструкция такая же, как и в списках. # a - ключ, a**2 - значение, далее конструкция цикла print('Инициализация с помощью генератора', type(dict_temp), dict_temp) # получаем на выходе <class 'dict'> {0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49, 8: 64, 9: 81} # 4 Способ (редко используется, так как все ключи-значения надо вносить вручную) dict_temp = dict(brend='volvo', price=5000) print(type(dict_temp), dict_temp) # получаем на выходе <class 'dict'> {'brend': 'volvo', 'price': 5000} # 5 ак же существует функциональность создания Словаря из списков # Есть такой класс славаря dict. Это встроенный класс, поэтому он пишется с маленькой буквы. # Свои собственные классы мы должны записывать с Большой буквы. # У этого класса dict есть свой собственный метод уровня класса fromkeys() # С помощью этого метода мы можем создать из двух последовательностей какой-то словарь. # Например, мы можем передать в него два списка my_dict = dict.fromkeys((1, 2, 3), ('apple', 'orange', 'banana')) print(my_dict) # Получаем словарь, где каждому ключу присваивается второй параметр # {1: ('apple', 'orange', 'banana'), 2: ('apple', 'orange', 'banana'), 3: ('apple', 'orange', 'banana')} # То есть, здесь автоматизировано создание словаря, чтобы мы не прописывали его в ручную каждый раз. # ----------------------- Обращение к содержимому словаря -------------------------- # Обращение к содержимому происходит по ключу, который указываем в квадратых скобках. print("Выводим марку автомобиля: ", dict_temp['brend']) # выводим значение, указывая ключ print('Выводим цену Тойоты: ', car_prices['toyota']) # ------------------ Функции со словарями ------------------------------ # Часто необходимо знать все ключи словаря и все значения # Получим все ключи словаря print(dict_temp.keys()) # Возвращается специальный тип dict_keys # на выходе имеем dict_keys(['brend', 'price']) # Но, как правило, с этим типом не работают. Его приводят к листу: print(list(dict_temp.keys())) # на выходе получаем ['brend', 'price'] # И дальше, все операции, которые необходимо проверсти с ключами, делают с типом list # Значения получают через ф-ю value print(list(dict_temp.values())) # на выходе имеем ['volvo', 5000] # В таком формате вывода,при работе с коючами и со значениями можно использовать все методы, которые имеются в листах. # Также можно работать с парами ключ-значение. Для этого нужно использовать метод items() # items() возвращает лист из картежей - пара ключ-значение (Картеж, это тот же самый лист, только неизменяемый) print(list(dict_temp.items())) # на выходе имеем [('brend', 'volvo'), ('price', 5000)] # ------------------------ Работа с элементами --------------------------------- # Нам необходимо получать значения, изменять их (потому что словарь, это изменяемый тип) и добавлять новые # Переинициализируем переменную для рассмотрения следующих задач dict_temp = {a: a for a in range(10)} print('Переинициализация', dict_temp) # На выходе: {0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7, 8: 8, 9: 9} # МЕНЯЕМ значение. # Какому-то ключу присвоим другое значение dict_temp[0] = 100 print(dict_temp) # на выходе имеем {0: 100, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7, 8: 8, 9: 9} # Нулевому ключу теперь соответствует значение 100 # ДОБАВЛЯЕМ пары ключ-значение dict_temp['name'] = 'Alex' # Создаем новый ключ и присваиваем ему значение. print(dict_temp) # Вывод на экран: {0: 100, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7, 8: 8, 9: 9, 'name': 'Alex'} car_prices['mazda'] = 4000 print('Добавление нового Ключа \'mazda\' в список автомобилей: ', car_prices) # Вывод: {'opel': 5000, 'toyota': 7000, 'bmw': 10000, 'mazda': 4000} # В словаре можно изменить Значение, но нельзя изменить Ключ car_prices['opel'] = 2000 # Здесь мы пытаемся добавить элемент с Ключом 'opel', который уже есть в словаре print('Пытаемся добавить второй колюч \'opel\' в словарь ', car_prices) # Вывод: {'opel': 2000, 'toyota': 7000, 'bmw': 10000, 'mazda': 4000} # Но добавления не происходит. Происходит изменение значения старого на новое # Это способ изменения значения в словаре # Удаление значений из Словаря происходит при помощи команды del # ----------------------- МЕТОДЫ СЛОВАРЕЙ --------------------------------- # У словарей большое количество методов. Какие-то мы уже рассмотрели, это keys(), values(), items() # C помощью методов словарь можно очищать, копировать, удалять # -------------------- del ----------------------- # Удаляет значение в словаре по ключу del car_prices['toyota'] print('Удалиил из списка машин Тойоту ', car_prices) # Вывод: {'opel': 2000, 'bmw': 10000, 'mazda': 4000} # Но, с командой del надо быть осторожным. Если вы забудите указать Ключ, значение которого хотите удалить, # то эта команда УДАЛИТ ВЕСЬ СЛОВАРЬ ВМЕСТЕ С ПЕРЕМЕННОЙ! # Значение при этом не возвращается. Если нужно получить удаленное значение, тогда надо использовать метод pop() # --------------------------- pop() ------------------------ # Удаляет значение по Ключу temp = dict_temp.pop('name') # удаляем ключ 'name', в месте с ним удаляется и его значение 'Alex' # При этом он возвращает удаленное ключ-значение через новую пересенную print(dict_temp) # Вывод на экран: {0: 100, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7, 8: 8, 9: 9} print(temp) # Вывод на экран: Alex # Если такого ключа нет, будет возвращено default без выбрасывания каких-то исключений # ------------------ clear() ---------------------- # Метод clear() очищает Словарь с сохранением переменной car_prices.clear() print('Очищаем словарь car_prices ', car_prices) # Вывод: {} # ------------------------- Многоструктурность словарей ----------------------------- # Словари могут содержать не просто парв Ключ - Значение, но и более сложные структуры, # как, например, другой Словарь. # Словари часто используются для описания каких-то объектов. # Для удобства, их можно записывать в несколько строк person = { 'first name': 'Jack', 'second name': "Brown", 'age': 23, 'hobbies': ['footbal', 'singing', 'photo'], # Список 'children': {'son': 'Alex', 'daugter': 'Marry'} # Другой Словарь } # Как получить доступ к содержимому этого словаря? print('Получаем информацию из словаря: возраст человека ', person['age']) # Вывод: 23 # То есть указываем Ключ и по Ключу получаем его значение. # Как получить список/list значений? print('Получаем Список значений из Словаря ', person['hobbies']) # Вывод: ['footbal', 'singing', 'photo'] # Здесь получаем весь список, Но, что делать, если мы хотим получить одно из значений в списке? # Например к последнему - 'photo'? Это можно сделать в два этапа. # 1 этап - передача списка в новую переменную hobbies = person['hobbies'] # Передаем в переменную весь список # 2 этап - получаем значение из переменной по индексу print('Получаем значение из переменной по индексу', hobbies[2]) # Вывод: photo # Это можно сделать и более короткой записью print('Получаем значение из вложенного Списка коротким спосбом ', person['hobbies'][2]) # Как получить доступ к вложенному Словарю? # Также в два этапа: # 1 этап - объявляем новый Список и присваиваем ему значения из вложенного Словаря childrens = person['children'] # # 2 этап - выводим на экран значение, указывая нужное поля из вложенного Словаря print('Получаем доступ к вложенному Словарю ', childrens['son']) # указываем объявленную до этого переменную # Более короткий способ записи: print('Получаем значение из вложенного Словаря коротким способом ', person['children']['son']) # Добавление данных в Многоструктурный Словарь person['car'] = 'Mazda' # добавляем новые Ключ-Значение print('Выводим на экран весь Многоструктурный Словарь', person) # Вывод: {'first name': 'Jack', 'second name': 'Brown', 'age': 23, 'hobbies': ['footbal', 'singing', 'photo'], # 'children': {'son': 'Alex', 'daugter': 'Marry'}, 'car': 'Mazda'} # в конце добавлена информация о машине. # Добавляем данные через цикл lst_name = ['Marry', 'Alex', 'Kate', 'Jack', 'Anna', 'Kate', 'Ronald', 'Maria', 'Tatyana', 'Evgeniy', 'Alex', 'Maria', 'Svetlana', 'Artem', 'Igor', 'Ilya'] names_dict = {} for i in range(len(lst_name)): names_dict[lst_name[i]] = lst_name.count(lst_name[i]) # "Marry" 1 # "Alex" 2 # "Kate" 2 # "Jack" 1 # "Anna" 1 # "Ronald" 1 # "Maria" 2 # "Tatyana" 1 # "Evgeniy" 1 # "Svetlana" 1 # "Artem" 1 # "Igor" 1 # "Ilya" 1 # Изменение данных в Многоструктурном Словаре # Допусти, мы хотим поменять информацию во Вложенном Списке - 'footbal' на 'basketbal' person['hobbies'][0] = 'basketbal' # получаем доступ к Вложенному Списку и по индексу меняем его значение print('Меняем значение во Вложенном Списке', person) # Вывод: {'first name': 'Jack', 'second name': 'Brown', 'age': 23, 'hobbies': ['basketbal', 'singing', 'photo'], # 'children': {'son': 'Alex', 'daugter': 'Marry'}, 'car': 'Mazda'} # Еще один метод доступа к Многоструктурному Словарю print('Получаем список ключей Многостр. Словаря', person.keys()) # С помощью ф-и keys() # Вывод: dict_keys(['first name', 'second name', 'age', 'hobbies', 'children', 'car']) print('Получаем список значений Многостр. Словаря', person.values()) # С помощью ф-и values() # Вывод: # dict_values(['Jack', 'Brown', 23, ['basketbal', 'singing', 'photo'], {'son': 'Alex', 'daugter': 'Marry'}, 'Mazda']) print('Получаем список элементов Многостр. Словаря', person.items()) # С помощью ф-и items() # Вывод: dict_items([('first name', 'Jack'), ('second name', 'Brown'), ('age', 23), # ('hobbies', ['basketbal', 'singing', 'photo']), ('children', {'son': 'Alex', 'daugter': 'Marry'}), ('car', 'Mazda')]) # Вот такая струтура в скобках ('first name', 'Jack') называесят Tiple - Картеж. # --------------------- Итерирование по словарю ------------------------------------ # Итерация по Словарям происходит также, как и по Спискам for pair in dict_temp.items(): print(pair) # На выходе получаем список пар ключ-значение: # (0, 100) # (1, 1) # (2, 2) # (3, 3) # (4, 4) # (5, 5) # (6, 6) # (7, 7) # (8, 8) # (9, 9) # Также можно итерироваться, работая с комплектными элементами for key, value in dict_temp.items(): # key - первое значение в паре, value - второе значение в паре print(key, value) # На выходе: # 0 100 # 1 1 # 2 2 # 3 3 # 4 4 # 5 5 # 6 6 # 7 7 # 8 8 # 9 9 # Можно тем же способом итерироваться по отдельным элементам конструкции # По ключам: for key in dict_temp.keys(): print(key) # По значениям: for value in dict_temp.values(): print(value) # Операции со значениями for value in dict_temp.values(): print(value + 10, end=' ') # 110 11 12 13 14 15 16 17 18 19 # По нескольким словарям одновременно jack = { 'name': 'jack', 'car': 'bmw' } john = { 'name': 'john', 'car': 'audi' } # Нам надо собрать, например, информацию о машинах. # создаем список словарей drivers = [jack, john] cars = [] for persons in drivers: cars.append(persons['car']) print(cars) # Более короткая запись через list comprehension new_cars = [persons['car'] for persons in drivers] print(new_cars) # Такая запись person['car'] по сути - антипатерн. То есть, мы обращаеся к ключу 'car' резюмируя, что он есть. # Но, а вдруг его там нет? Вдруг в списке есть человек, у которого нет машины? Тогда обращение к несуществующему # ключу приведет к исключению и скрипт прекратит свою работу. Поэтому считается, что хорошей практикой использование # специального метода get() у словарей, который первым аргументом достает нам нужные данные по ключу. new_cars = [person.get('car', '') for persons in drivers] # То есть, мы знаем или предполагаем, что у словаря есть ключ 'car' и нам надо его получить. # Тогда мы методу get() передаем название этого ключа, а вторым аргументом '' мы передаем значение по умолчаню # на тот случаей, если нужного ключа там не осатнется. Чтобы не возникало исключение, он вернет нам пустую строку. # ------------------------- Сортировка словаря ------------------------------------- # На самом деле содержимое словаря отсортировать нельзя, так как словарь в Python - это неупорядоченная структура данных. # Даже если вы будете добавлять в словарь элементы упорядоченно, например по алфавиту, # при выводе они могут отобразится по-другому. # # Однако при извлечении элементов из словаря можно сделать так, чтобы это происходило согласно определенному порядку. # Для этого дополнительно используется упорядоченная структура, которую можно отсортировать. Например, список. # # Сортировка по ключам # Проще всего выполнить сортировку словаря по ключам. Алгоритм вывода содержимого словаря: # # Создать список ключей словаря. # Отсортировать его. # В цикле for перебрать элементы списка, используя элемент списка как ключ словаря. d = {'a': 10, 'b': 15, 'c': 4} list_keys = list(d.keys()) list_keys.sort() for i in list_keys: print(i, ':', d[i]) a : 10 b : 15 c : 4 # Сортировка по значениям # Отсортировать словарь по значениям сложнее, так как обращаться к элементам словаря можно только по ключам. # Однако можно создать список кортежей ("ключ", "значение") и отсортировать его по вторым элементам пар. # Далее в программе используется именно данная упорядоченная структура, а не сам оригинальный словарь. d = {'a': 10, 'b': 15, 'c': 4} list_d = list(d.items()) print(list_d) # [('a', 10), ('b', 15), ('c', 4)] list_d.sort(key=lambda i: i[1]) print(list_d) # [('c', 4), ('a', 10), ('b', 15)] for i in list_d: print(i[0], ':', i[1]) c : 4 a : 10 b : 15 # Если бы мы использовали метод sort() без параметра key, то сортировка была бы выполнена по первым элементам кортежей. # В качестве значения для key указывается функция. В данном случае используется lambda-функция, что уменьшает объем кода. # В функцию передаются кортежи, а возвращаются их вторые элементы, по которым происходит сортировка. # # Класс OrderedDict модуля collections # В модуле collections имеется класс OrderedDict, который является подклассом класса dict, то есть обычного встроенного # в Python словаря. OrderedDict позволяет создавать объекты-словари, которые помнят порядок своих элементов. Также класс имеет ряд методов, которые могут изменять порядок элементов в словаре. from collections import OrderedDict a = OrderedDict({1: 10, 0: 5}) print(a) OrderedDict([(1, 10), (0, 5)]) a[2] = 20 print(a) OrderedDict([(1, 10), (0, 5), (2, 20)]) for i in a: print(i, ':', a[i]) # 1 : 10 # 0 : 5 # 2 : 20 # ---------------------------- Решение задачь с помощью Словарей ------------------------------ # Как подсчитать количество повторений одинаковых элементов в списке text = "Ну и деревня! С роду таких деревень не видел и не знал, что такие такие деревни бывают." count_dict = {} # В первом цикле инициализируем словарь for i in range(len(text)): count_dict[text[i]] = 0 # Каждому ключу в виде буквы присваиваем значение 0 # Во втором цикле заполняем занчениями (Первый вариант) # for i in range(len(text)): # count_dict[text[i]] += 1 # # print(count_dict) # {'Н': 1, 'у': 2, ' ': 16, 'и': 7, 'д': 5, 'е': 12, 'р': 4, 'в': 5, 'н': 6, 'я': 1, '!': 1, 'С': 1, 'о': 2, 'т': 5, # 'а': 5, 'к': 3, 'х': 1, 'ь': 1, 'л': 2, 'з': 1, ',': 1, 'ч': 1, 'б': 1, 'ы': 1, 'ю': 1, '.': 1} # Второй вариант for i in text: # здесь проходимся по самому тексту и подмещяем в i конкретную букву count_dict[i] += 1 print(count_dict) # Выводим конкретный символ на экран sym = input('Введите символ: ') if sym in count_dict: print('Символ', sym, 'встречается в тексте', count_dict[sym], 'раз.') else: print('Такого символа в тексте нет.') # Как посмотреть список ключей keys_dict = count_dict.keys() print('Список ключей ', keys_dict) # Список ключей dict_keys(['Н', 'у', ' ', 'и', 'д', 'е', 'р', 'в', 'н', 'я', '!', 'С', 'о', 'т', 'а', 'к', 'х', 'ь', # 'л', 'з', ',', 'ч', 'б', 'ы', 'ю', '.']) # Список значений val_dict = count_dict.values() print('Список значений', val_dict) # Список значений dict_values([1, 2, 16, 7, 5, 12, 4, 5, 6, 1, 1, 1, 2, 5, 5, 3, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1]) # Напишите функцию (F): на вход список имен и целое число N; # # на выходе список длины N случайных имен из первого списка (могут повторяться, # # можно взять значения: количество имен 20, N = 100, # # рекомендуется использовать функцию random); lst_name = ['Nancy', 'Alice', 'Mary', 'Hanna', 'Dolores', 'Brian', 'Stanley', 'Andrew', 'Michael', 'Nickolas', 'Johnathan', 'Angeline'] N = 100 def f(lst, n): rand_list = [] # пустой список для вывода результата for i in range(n): # запускаем цикл на n итераций # rand_name = random.choice(lst) # выбираем случайное имя из списка и присваиваем ее переменной # rand_list.append(rand_name) # добавляем случайное имя в результирующий список rand_list.append(random.choice(lst)) # объединил две предыдущие строки в одну return rand_list # возвращаем список с количеством случайных имен n fin_list = f(lst_name, N) # вызываем ф-ю с передачей в нее параметров print(fin_list) # выводим результат # Получили результирующий список fin_list, с которомы будем работать дальше # Напишите функцию вывода самого частого имени из списка на выходе функции F (список fin_list); # Решение с помощью цикла names_dict = {} for i in range(len(fin_list)): names_dict[fin_list[i]] = fin_list.count(fin_list[i]) # в цикле загоняем значения в словарь top_names_list = list(names_dict.items()) # перекидываем инфу из Словаря в Лист top_names_list.sort(key=lambda i: i[1], reverse=True) # сортируем Список по значениям # и переворачиваем от большего к меньшим print(f'Имя {top_names_list[0][0]} встречается чаще других, а именно {top_names_list[0][1]} раз.') # Решение с помощью функции def top(fin_list): # Получаем уникальные значения списка через обертку set # Через обертку Словарь листаем в цикле список и считаем количество повторений каждого слова pop_name = dict((fin_list.count(i), i) for i in set(fin_list)) return pop_name[max(pop_name.keys())] print(f'Имя {top(fin_list)} встречается чаще других, а именно {fin_list.count(top(fin_list))} раз.') # 3. Напишите функцию вывода самой редкой буквы, с которого начинаются имена в списке на выходе функции F. # Решение с помощью цикла letters_dict = {} for i in range(len(fin_list)): letters_dict[fin_list[i][0]] = fin_list.count(fin_list[i]) letters_list = sorted(letters_dict.items(), key=lambda i: i[1]) # print(letters_list) print('Первая буква', letters_list[0][0], 'в именах встречается реже других, а именно', letters_list[0][1], 'раз.') # решение с помощью функции letters_list = [fin_list[i][0] for i in range(len(fin_list))] # print(letters_list) def rare(letters_list): letters_dict = dict((letters_list[i], letters_list.count(letters_list[i])) for i in range(len(letters_list))) letters_dict_sort = sorted(letters_dict.items(), key = lambda i: i[1]) return letters_dict_sort[0] # print(rare(letters_list)) print(f'Первая буква {(rare(letters_list))[0]} в именах встречается реже других, а именно {(rare(letters_list))[1]} раз.')
the-stack_0_14433
import pytest import os from g_code_parsing.g_code_engine import GCodeEngine from g_code_parsing.g_code_program.supported_text_modes import ( SupportedTextModes, ) from opentrons.hardware_control.emulation.settings import ( Settings, SmoothieSettings, PipetteSettings, ) from g_code_parsing.utils import get_configuration_dir CONFIG = Settings( host="0.0.0.0", smoothie=SmoothieSettings( left=PipetteSettings(model="p20_single_v2.0", id="P20SV202020070101"), right=PipetteSettings(model="p20_single_v2.0", id="P20SV202020070101"), ), ) PROTOCOL_PATH = os.path.join( get_configuration_dir(), "protocol", "protocols", "smoothie_protocol.py" ) @pytest.fixture def protocol_g_code_engine() -> GCodeEngine: return GCodeEngine(CONFIG) async def test_watcher_command_list_is_cleared(protocol_g_code_engine: GCodeEngine): """ If everything is cleaning up correctly then 2 runs of the same protocol should return the same exact G-Code """ with protocol_g_code_engine.run_protocol(PROTOCOL_PATH) as run_1: run_1_desc = run_1.get_text_explanation(SupportedTextModes.G_CODE) with protocol_g_code_engine.run_protocol(PROTOCOL_PATH) as run_2: run_2_desc = run_2.get_text_explanation(SupportedTextModes.G_CODE) assert run_1_desc == run_2_desc
the-stack_0_14436
# -*- coding: utf-8 -*- """Plugin to create a Quantum Espresso neb.x input file.""" import copy import os from aiida import orm from aiida.common import InputValidationError, CalcInfo, CodeInfo from aiida.common.lang import classproperty from aiida_quantumespresso.calculations.pw import PwCalculation from aiida_quantumespresso.calculations import _lowercase_dict, _uppercase_dict, _pop_parser_options from aiida_quantumespresso.utils.convert import convert_input_to_namelist_entry from .base import CalcJob class NebCalculation(CalcJob): """Nudged Elastic Band code (neb.x) of Quantum ESPRESSO distribution.""" _PREFIX = 'aiida' # in restarts, will not copy but use symlinks _default_symlink_usage = False # Default input and output file names _DEFAULT_INPUT_FILE = 'neb.dat' _DEFAULT_OUTPUT_FILE = 'aiida.out' _PSEUDO_SUBFOLDER = PwCalculation._PSEUDO_SUBFOLDER # pylint: disable=protected-access _OUTPUT_SUBFOLDER = PwCalculation._OUTPUT_SUBFOLDER # pylint: disable=protected-access # Keywords that cannot be set (for the PW input) _blocked_keywords = [] _use_kpoints = True @classproperty def _internal_retrieve_list(cls): # pylint: disable=no-self-argument # I retrieve them all, even if I don't parse all of them _neb_ext_list = ['path', 'dat', 'int'] return ['{}.{}'.format(cls._PREFIX, ext) for ext in _neb_ext_list] @classproperty def xml_filepaths(cls): """Return a list of relative filepaths of XML files.""" # pylint: disable=no-self-argument,not-an-iterable filepaths = [] for filename in PwCalculation.xml_filenames: filepath = os.path.join(cls._OUTPUT_SUBFOLDER, cls._PREFIX + '_*[0-9]', cls._PREFIX + '.save', filename) filepaths.append(filepath) return filepaths @classmethod def define(cls, spec): """Define the process specification.""" # yapf: disable super().define(spec) spec.input('metadata.options.input_filename', valid_type=str, default=cls._DEFAULT_INPUT_FILE) spec.input('metadata.options.output_filename', valid_type=str, default=cls._DEFAULT_OUTPUT_FILE) spec.input('metadata.options.parser_name', valid_type=str, default='quantumespresso.neb') spec.input('first_structure', valid_type=orm.StructureData, help='Initial structure') spec.input('last_structure', valid_type=orm.StructureData, help='Final structure') spec.input('parameters', valid_type=orm.Dict, help='NEB-specific input parameters') spec.input('settings', valid_type=orm.Dict, required=False, help='Optional parameters to affect the way the calculation job and the parsing are performed.') spec.input('parent_folder', valid_type=orm.RemoteData, required=False, help='An optional working directory of a previously completed calculation to restart from.') # We reuse some inputs from PwCalculation to construct the PW-specific parts of the input files spec.expose_inputs(PwCalculation, namespace='pw', include=('parameters', 'pseudos', 'kpoints', 'vdw_table')) spec.output('output_parameters', valid_type=orm.Dict, help='The output parameters dictionary of the NEB calculation') spec.output('output_trajectory', valid_type=orm.TrajectoryData) spec.output('iteration_array', valid_type=orm.ArrayData, required=False) spec.output('output_mep', valid_type=orm.ArrayData, help='The original and interpolated energy profiles along the minimum-energy path (mep)') spec.default_output_node = 'output_parameters' spec.exit_code(300, 'ERROR_NO_RETRIEVED_FOLDER', message='The retrieved folder data node could not be accessed.') spec.exit_code(303, 'ERROR_MISSING_XML_FILE', message='The required XML file is not present in the retrieved folder.') spec.exit_code(310, 'ERROR_OUTPUT_STDOUT_READ', message='The stdout output file could not be read.') spec.exit_code(311, 'ERROR_OUTPUT_STDOUT_PARSE', message='The output file contains invalid output.') spec.exit_code(312, 'ERROR_OUTPUT_STDOUT_INCOMPLETE', message='The stdout output file was incomplete probably because the calculation got interrupted.') spec.exit_code(320, 'ERROR_OUTPUT_XML_READ', message='The XML output file could not be read.') spec.exit_code(321, 'ERROR_OUTPUT_XML_PARSE', message='The XML output file could not be parsed.') spec.exit_code(322, 'ERROR_OUTPUT_XML_FORMAT', message='The XML output file has an unsupported format.') spec.exit_code(350, 'ERROR_UNEXPECTED_PARSER_EXCEPTION', message='The parser raised an unexpected exception.') @classmethod def _generate_input_files(cls, neb_parameters, settings_dict): """Generate the input data for the NEB part of the calculation.""" # I put the first-level keys as uppercase (i.e., namelist and card names) # and the second-level keys as lowercase # (deeper levels are unchanged) input_params = _uppercase_dict(neb_parameters.get_dict(), dict_name='parameters') input_params = {k: _lowercase_dict(v, dict_name=k) for k, v in input_params.items()} # Force default values for blocked keywords. NOTE: this is different from PW/CP for blocked in cls._blocked_keywords: namelist = blocked[0].upper() key = blocked[1].lower() value = blocked[2] if namelist in input_params: if key in input_params[namelist]: raise InputValidationError( "You cannot specify explicitly the '{}' key in the '{}' namelist.".format(key, namelist) ) else: input_params[namelist] = {} input_params[namelist][key] = value # Create an empty dictionary for the compulsory namelist 'PATH' if not present if 'PATH' not in input_params: input_params['PATH'] = {} # In case of climbing image, we need the corresponding card ci_scheme = input_params['PATH'].get('ci_scheme', 'no-ci').lower() climbing_image_list = settings_dict.pop('CLIMBING_IMAGES', None) if ci_scheme == 'manual': manual_climbing_image = True if climbing_image_list is None: raise InputValidationError("'ci_scheme' is {}, but no climbing images were specified for this " 'calculation.'.format(ci_scheme)) if not isinstance(climbing_image_list, list): raise InputValidationError('Climbing images should be provided as a list.') num_of_images = input_params['PATH'].get('num_of_images', 2) if any([(i < 2 or i >= num_of_images) for i in climbing_image_list]): raise InputValidationError('The climbing images should be in the range between the first ' 'and the last image (excluded).') climbing_image_card = 'CLIMBING_IMAGES\n' climbing_image_card += ', '.join([str(_) for _ in climbing_image_list]) + '\n' else: manual_climbing_image = False if climbing_image_list is not None: raise InputValidationError("Climbing images are not accepted when 'ci_scheme' is {}.".format(ci_scheme)) input_data = '&PATH\n' # namelist content; set to {} if not present, so that we leave an empty namelist namelist = input_params.pop('PATH', {}) for key, value in sorted(namelist.items()): input_data += convert_input_to_namelist_entry(key, value) input_data += '/\n' # Write CI cards now if manual_climbing_image: input_data += climbing_image_card if input_params: raise InputValidationError( 'The following namelists are specified in input_params, but are ' 'not valid namelists for the current type of calculation: ' '{}'.format(','.join(list(input_params.keys())))) return input_data def prepare_for_submission(self, folder): """Prepare the calculation job for submission by transforming input nodes into input files. In addition to the input files being written to the sandbox folder, a `CalcInfo` instance will be returned that contains lists of files that need to be copied to the remote machine before job submission, as well as file lists that are to be retrieved after job completion. :param folder: a sandbox folder to temporarily write files on disk. :return: :py:`~aiida.common.datastructures.CalcInfo` instance. """ # pylint: disable=too-many-branches,too-many-statements import numpy as np local_copy_list = [] remote_copy_list = [] remote_symlink_list = [] # Convert settings dictionary to have uppercase keys, or create an empty one if none was given. if 'settings' in self.inputs: settings_dict = _uppercase_dict(self.inputs.settings.get_dict(), dict_name='settings') else: settings_dict = {} first_structure = self.inputs.first_structure last_structure = self.inputs.last_structure # Check that the first and last image have the same cell if abs(np.array(first_structure.cell)- np.array(last_structure.cell)).max() > 1.e-4: raise InputValidationError('Different cell in the fist and last image') # Check that the first and last image have the same number of sites if len(first_structure.sites) != len(last_structure.sites): raise InputValidationError('Different number of sites in the fist and last image') # Check that sites in the initial and final structure have the same kinds if first_structure.get_site_kindnames() != last_structure.get_site_kindnames(): raise InputValidationError('Mismatch between the kind names and/or order between ' 'the first and final image') # Check that a pseudo potential was specified for each kind present in the `StructureData` # self.inputs.pw.pseudos is a plumpy.utils.AttributesFrozendict kindnames = [kind.name for kind in first_structure.kinds] if set(kindnames) != set(self.inputs.pw.pseudos.keys()): raise InputValidationError( 'Mismatch between the defined pseudos and the list of kinds of the structure.\nPseudos: {};\n' 'Kinds: {}'.format(', '.join(list(self.inputs.pw.pseudos.keys())), ', '.join(list(kindnames)))) ############################## # END OF INITIAL INPUT CHECK # ############################## # Create the subfolder that will contain the pseudopotentials folder.get_subfolder(self._PSEUDO_SUBFOLDER, create=True) # Create the subfolder for the output data (sometimes Quantum ESPRESSO codes crash if the folder does not exist) folder.get_subfolder(self._OUTPUT_SUBFOLDER, create=True) # We first prepare the NEB-specific input file. neb_input_filecontent = self._generate_input_files(self.inputs.parameters, settings_dict) with folder.open(self.inputs.metadata.options.input_filename, 'w') as handle: handle.write(neb_input_filecontent) # We now generate the PW input files for each input structure local_copy_pseudo_list = [] for i, structure in enumerate([first_structure, last_structure]): # We need to a pass a copy of the settings_dict for each structure this_settings_dict = copy.deepcopy(settings_dict) pw_input_filecontent, this_local_copy_pseudo_list = PwCalculation._generate_PWCPinputdata( # pylint: disable=protected-access self.inputs.pw.parameters, this_settings_dict, self.inputs.pw.pseudos, structure, self.inputs.pw.kpoints ) local_copy_pseudo_list += this_local_copy_pseudo_list with folder.open('pw_{}.in'.format(i + 1), 'w') as handle: handle.write(pw_input_filecontent) # We need to pop the settings that were used in the PW calculations for key in list(settings_dict.keys()): if key not in list(this_settings_dict.keys()): settings_dict.pop(key) # We avoid to copy twice the same pseudopotential to the same filename local_copy_pseudo_list = set(local_copy_pseudo_list) # We check that two different pseudopotentials are not copied # with the same name (otherwise the first is overwritten) if len({filename for (uuid, filename, local_path) in local_copy_pseudo_list}) < len(local_copy_pseudo_list): raise InputValidationError('Same filename for two different pseudopotentials') local_copy_list += local_copy_pseudo_list # If present, add also the Van der Waals table to the pseudo dir. Note that the name of the table is not checked # but should be the one expected by Quantum ESPRESSO. vdw_table = self.inputs.get('pw.vdw_table', None) if vdw_table: local_copy_list.append(( vdw_table.uuid, vdw_table.filename, os.path.join(self._PSEUDO_SUBFOLDER, vdw_table.filename) )) # operations for restart parent_calc_folder = self.inputs.get('parent_folder', None) symlink = settings_dict.pop('PARENT_FOLDER_SYMLINK', self._default_symlink_usage) # a boolean if symlink: if parent_calc_folder is not None: # I put the symlink to the old parent ./out folder remote_symlink_list.append(( parent_calc_folder.computer.uuid, os.path.join(parent_calc_folder.get_remote_path(), self._OUTPUT_SUBFOLDER, '*'), # asterisk: make individual symlinks for each file self._OUTPUT_SUBFOLDER )) # and to the old parent prefix.path remote_symlink_list.append(( parent_calc_folder.computer.uuid, os.path.join(parent_calc_folder.get_remote_path(), '{}.path'.format(self._PREFIX)), '{}.path'.format(self._PREFIX) )) else: # copy remote output dir and .path file, if specified if parent_calc_folder is not None: remote_copy_list.append(( parent_calc_folder.computer.uuid, os.path.join(parent_calc_folder.get_remote_path(), self._OUTPUT_SUBFOLDER, '*'), self._OUTPUT_SUBFOLDER )) # and copy the old parent prefix.path remote_copy_list.append(( parent_calc_folder.computer.uuid, os.path.join(parent_calc_folder.get_remote_path(), '{}.path'.format(self._PREFIX)), '{}.path'.format(self._PREFIX) )) # here we may create an aiida.EXIT file create_exit_file = settings_dict.pop('ONLY_INITIALIZATION', False) if create_exit_file: exit_filename = '{}.EXIT'.format(self._PREFIX) with folder.open(exit_filename, 'w') as handle: handle.write('\n') calcinfo = CalcInfo() codeinfo = CodeInfo() calcinfo.uuid = self.uuid cmdline_params = settings_dict.pop('CMDLINE', []) calcinfo.local_copy_list = local_copy_list calcinfo.remote_copy_list = remote_copy_list calcinfo.remote_symlink_list = remote_symlink_list # In neb calculations there is no input read from standard input!! codeinfo.cmdline_params = (['-input_images', '2'] + list(cmdline_params)) codeinfo.stdout_name = self.inputs.metadata.options.output_filename codeinfo.code_uuid = self.inputs.code.uuid calcinfo.codes_info = [codeinfo] # Retrieve the output files and the xml files calcinfo.retrieve_list = [] calcinfo.retrieve_list.append(self.inputs.metadata.options.output_filename) calcinfo.retrieve_list.append(( os.path.join(self._OUTPUT_SUBFOLDER, self._PREFIX + '_*[0-9]', 'PW.out'), # source relative path (globbing) '.', # destination relative path 2 # depth to preserve )) for xml_filepath in self.xml_filepaths: # pylint: disable=not-an-iterable calcinfo.retrieve_list.append([xml_filepath, '.', 3]) calcinfo.retrieve_list += settings_dict.pop('ADDITIONAL_RETRIEVE_LIST', []) calcinfo.retrieve_list += self._internal_retrieve_list # We might still have parser options in the settings dictionary: pop them. _pop_parser_options(self, settings_dict) if settings_dict: unknown_keys = ', '.join(list(settings_dict.keys())) raise InputValidationError('`settings` contained unexpected keys: {}'.format(unknown_keys)) return calcinfo
the-stack_0_14440
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- """Defines an explainable lightgbm model.""" import inspect import json import logging from packaging import version from scipy.sparse import issparse from ...common.constants import (ExplainableModelType, Extension, LightGBMSerializationConstants, ShapValuesOutput) from ...common.warnings_suppressor import shap_warnings_suppressor from .explainable_model import (BaseExplainableModel, _clean_doc, _get_initializer_args) from .tree_model_utils import (_expected_values_tree_surrogate, _explain_local_tree_surrogate) with shap_warnings_suppressor(): import shap try: import lightgbm from lightgbm import Booster, LGBMClassifier, LGBMRegressor if (version.parse(lightgbm.__version__) <= version.parse('2.2.1')): print("Using older than supported version of lightgbm, please upgrade to version greater than 2.2.1") except ImportError: print("Could not import lightgbm, required if using LGBMExplainableModel") DEFAULT_RANDOM_STATE = 123 _N_FEATURES = '_n_features' _N_CLASSES = '_n_classes' NUM_ITERATIONS = 'num_iterations' _FITTED = 'fitted_' class _LGBMFunctionWrapper(object): """Decorate the predict method, temporary workaround for sparse case until TreeExplainer support is added. :param function: The prediction function to wrap. :type function: function """ def __init__(self, function): """Wraps a function to reshape the input data. :param function: The prediction function to wrap. :type function: function """ self._function = function def predict_wrapper(self, X, *args, **kwargs): """Wraps a prediction function from lightgbm learner. If version is ==3.0.0, densifies the input dataset. :param X: The model evaluation examples. :type X: numpy.ndarray :return: Prediction result. :rtype: numpy.ndarray """ if issparse(X): X = X.toarray() return self._function(X, *args, **kwargs) class _SparseTreeExplainer(object): """Wraps the lightgbm model to enable sparse feature contributions. If version is >=3.1.0, runs on sparse input data by calling predict function directly. :param lgbm: The lightgbm model to wrap. :type lgbm: LGBMModel :param tree_explainer: The tree_explainer used for dense data. :type tree_explainer: shap.TreeExplainer """ def __init__(self, lgbm, tree_explainer): """Wraps the lightgbm model to enable sparse feature contributions. :param lgbm: The lightgbm model to wrap. :type lgbm: LGBMModel :param tree_explainer: The tree_explainer used for dense data. :type tree_explainer: shap.TreeExplainer """ self._lgbm = lgbm self._tree_explainer = tree_explainer self._num_iters = -1 # Get the number of iterations trained for from the booster if hasattr(self._lgbm._Booster, 'params'): if NUM_ITERATIONS in self._lgbm._Booster.params: self._num_iters = self._lgbm._Booster.params[NUM_ITERATIONS] # If best iteration specified, use that if self._lgbm._best_iteration is not None: self._num_iters = self._lgbm._best_iteration self.expected_value = None def shap_values(self, X): """Calls lightgbm predict directly for sparse case. If lightgbm version is >=3.1.0, runs on sparse input data by calling predict function directly with pred_contrib=True. Uses tree explainer for dense input data. :param X: The model evaluation examples. :type X: numpy.ndarray or scipy.sparse.csr_matrix :return: The feature importance values. :rtype: numpy.ndarray, scipy.sparse or list of scipy.sparse """ if issparse(X): shap_values = self._lgbm.predict(X, num_iteration=self._num_iters, pred_contrib=True) if isinstance(shap_values, list): shape = shap_values[0].shape self.expected_value = shap_values[0][0, shape[1] - 1] for idx, class_values in enumerate(shap_values): shap_values[idx] = class_values[:, :shape[1] - 1] else: shape = shap_values.shape self.expected_value = shap_values[0, shape[1] - 1] shap_values = shap_values[:, :shape[1] - 1] else: shap_values = self._tree_explainer.shap_values(X) self.expected_value = self._tree_explainer.expected_value return shap_values class LGBMExplainableModel(BaseExplainableModel): available_explanations = [Extension.GLOBAL, Extension.LOCAL] explainer_type = Extension.GLASSBOX """LightGBM (fast, high performance framework based on decision tree) explainable model. Please see documentation for more details: https://github.com/Microsoft/LightGBM Additional arguments to LightGBMClassifier and LightGBMRegressor can be passed through kwargs. :param multiclass: Set to true to generate a multiclass model. :type multiclass: bool :param random_state: Int to seed the model. :type random_state: int :param shap_values_output: The type of the output from explain_local when using TreeExplainer. Currently only types 'default', 'probability' and 'teacher_probability' are supported. If 'probability' is specified, then we approximately scale the raw log-odds values from the TreeExplainer to probabilities. :type shap_values_output: interpret_community.common.constants.ShapValuesOutput :param classification: Indicates if this is a classification or regression explanation. :type classification: bool """ def __init__(self, multiclass=False, random_state=DEFAULT_RANDOM_STATE, shap_values_output=ShapValuesOutput.DEFAULT, classification=True, **kwargs): """Initialize the LightGBM Model. Additional arguments to LightGBMClassifier and LightGBMRegressor can be passed through kwargs. :param multiclass: Set to true to generate a multiclass model. :type multiclass: bool :param random_state: Int to seed the model. :type random_state: int :param shap_values_output: The type of the output from explain_local when using TreeExplainer. Currently only types 'default', 'probability' and 'teacher_probability' are supported. If 'probability' is specified, then we approximately scale the raw log-odds values from the TreeExplainer to probabilities. :type shap_values_output: interpret_community.common.constants.ShapValuesOutput :param classification: Indicates if this is a classification or regression explanation. :type classification: bool """ self.multiclass = multiclass initializer_args = _get_initializer_args(kwargs) if self.multiclass: initializer = LGBMClassifier else: initializer = LGBMRegressor self._lgbm = initializer(random_state=random_state, **initializer_args) super(LGBMExplainableModel, self).__init__(**kwargs) self._logger.debug('Initializing LGBMExplainableModel') self._method = 'lightgbm' self._tree_explainer = None self._shap_values_output = shap_values_output self._classification = classification try: __init__.__doc__ = (__init__.__doc__ + '\nIf multiclass=True, uses the parameters for LGBMClassifier:\n' + _clean_doc(LGBMClassifier.__init__.__doc__) + '\nOtherwise, if multiclass=False, uses the parameters for LGBMRegressor:\n' + _clean_doc(LGBMRegressor.__init__.__doc__)) except Exception: pass def fit(self, dataset, labels, **kwargs): """Call lightgbm fit to fit the explainable model. :param dataset: The dataset to train the model on. :type dataset: numpy.ndarray or pandas.DataFrame or scipy.sparse.csr_matrix :param labels: The labels to train the model on. :type labels: numpy.ndarray """ self._lgbm.fit(dataset, labels, **kwargs) try: fit.__doc__ = (fit.__doc__ + '\nIf multiclass=True, uses the parameters for LGBMClassifier:\n' + _clean_doc(LGBMClassifier.fit.__doc__) + '\nOtherwise, if multiclass=False, uses the parameters for LGBMRegressor:\n' + _clean_doc(LGBMRegressor.fit.__doc__)) except Exception: pass def predict(self, dataset, **kwargs): """Call lightgbm predict to predict labels using the explainable model. :param dataset: The dataset to predict on. :type dataset: numpy.ndarray or pandas.DataFrame or scipy.sparse.csr_matrix :return: The predictions of the model. :rtype: list """ return self._lgbm.predict(dataset, **kwargs) try: predict.__doc__ = (predict.__doc__ + '\nIf multiclass=True, uses the parameters for LGBMClassifier:\n' + _clean_doc(LGBMClassifier.predict.__doc__) + '\nOtherwise, if multiclass=False, uses the parameters for LGBMRegressor:\n' + _clean_doc(LGBMRegressor.predict.__doc__)) except Exception: pass def predict_proba(self, dataset, **kwargs): """Call lightgbm predict_proba to predict probabilities using the explainable model. :param dataset: The dataset to predict probabilities on. :type dataset: numpy.ndarray or pandas.DataFrame or scipy.sparse.csr_matrix :return: The predictions of the model. :rtype: list """ if self.multiclass: return self._lgbm.predict_proba(dataset, **kwargs) else: raise Exception("predict_proba not supported for regression or binary classification dataset") try: predict_proba.__doc__ = (predict_proba.__doc__ + '\nIf multiclass=True, uses the parameters for LGBMClassifier:\n' + _clean_doc(LGBMClassifier.predict_proba.__doc__) + '\nOtherwise predict_proba is not supported for ' + 'regression or binary classification.\n') except Exception: pass def explain_global(self, **kwargs): """Call lightgbm feature importances to get the global feature importances from the explainable model. :return: The global explanation of feature importances. :rtype: numpy.ndarray """ return self._lgbm.feature_importances_ def _init_tree_explainer(self): """Creates the TreeExplainer. Includes a temporary fix for lightgbm 3.0 by wrapping predict method for sparse case to output dense data. Includes another temporary fix for lightgbm >= 3.1 to call predict function directly for sparse input data until shap TreeExplainer support is added. """ if self._tree_explainer is None: self._tree_explainer = shap.TreeExplainer(self._lgbm) if version.parse('3.1.0') <= version.parse(lightgbm.__version__): self._tree_explainer = _SparseTreeExplainer(self._lgbm, self._tree_explainer) elif version.parse('3.0.0') == version.parse(lightgbm.__version__): wrapper = _LGBMFunctionWrapper(self._tree_explainer.model.original_model.predict) self._tree_explainer.model.original_model.predict = wrapper.predict_wrapper def explain_local(self, evaluation_examples, probabilities=None, **kwargs): """Use TreeExplainer to get the local feature importances from the trained explainable model. :param evaluation_examples: The evaluation examples to compute local feature importances for. :type evaluation_examples: numpy.ndarray or pandas.DataFrame or scipy.sparse.csr_matrix :param probabilities: If output_type is probability, can specify the teacher model's probability for scaling the shap values. :type probabilities: numpy.ndarray :return: The local explanation of feature importances. :rtype: Union[list, numpy.ndarray] """ self._init_tree_explainer() return _explain_local_tree_surrogate(self._lgbm, evaluation_examples, self._tree_explainer, self._shap_values_output, self._classification, probabilities, self.multiclass) @property def expected_values(self): """Use TreeExplainer to get the expected values. :return: The expected values of the LightGBM tree model. :rtype: list """ self._init_tree_explainer() return _expected_values_tree_surrogate(self._lgbm, self._tree_explainer, self._shap_values_output, self._classification, self.multiclass) @property def model(self): """Retrieve the underlying model. :return: The lightgbm model, either classifier or regressor. :rtype: Union[LGBMClassifier, LGBMRegressor] """ return self._lgbm @staticmethod def explainable_model_type(): """Retrieve the model type. :return: Tree explainable model type. :rtype: ExplainableModelType """ return ExplainableModelType.TREE_EXPLAINABLE_MODEL_TYPE def _save(self): """Return a string dictionary representation of the LGBMExplainableModel. :return: A serialized dictionary representation of the LGBMExplainableModel. :rtype: dict """ properties = {} # Save all of the properties for key, value in self.__dict__.items(): if key in LightGBMSerializationConstants.nonify_properties: properties[key] = None elif key in LightGBMSerializationConstants.save_properties: # Save booster model to string representation # This is not recommended but can be necessary to get around pickle being not secure # See here for more info: # https://github.com/Microsoft/LightGBM/issues/1942 # https://github.com/Microsoft/LightGBM/issues/1217 properties[key] = value.booster_.model_to_string() else: properties[key] = json.dumps(value) # Need to add _n_features properties[_N_FEATURES] = self._lgbm._n_features # And if classification case need to add _n_classes if self.multiclass: properties[_N_CLASSES] = self._lgbm._n_classes if hasattr(self._lgbm, _FITTED): properties[_FITTED] = json.dumps(getattr(self._lgbm, _FITTED)) return properties @staticmethod def _load(properties): """Load a LGBMExplainableModel from the given properties. :param properties: A serialized dictionary representation of the LGBMExplainableModel. :type properties: dict :return: The deserialized LGBMExplainableModel. :rtype: interpret_community.mimic.models.LGBMExplainableModel """ # create the LGBMExplainableModel without any properties using the __new__ function, similar to pickle lgbm_model = LGBMExplainableModel.__new__(LGBMExplainableModel) # Get _n_features _n_features = properties.pop(_N_FEATURES) # If classification case get _n_classes if json.loads(properties[LightGBMSerializationConstants.MULTICLASS]): _n_classes = properties.pop(_N_CLASSES) fitted_ = None if _FITTED in properties: fitted_ = json.loads(properties[_FITTED]) elif version.parse('3.3.1') <= version.parse(lightgbm.__version__): # If deserializing older model in newer version set this to true to prevent errors on calls fitted_ = True # load all of the properties for key, value in properties.items(): # Regenerate the properties on the fly if key in LightGBMSerializationConstants.nonify_properties: if key == LightGBMSerializationConstants.LOGGER: parent = logging.getLogger(__name__) lightgbm_identity = json.loads(properties[LightGBMSerializationConstants.IDENTITY]) lgbm_model.__dict__[key] = parent.getChild(lightgbm_identity) elif key == LightGBMSerializationConstants.TREE_EXPLAINER: lgbm_model.__dict__[key] = None else: raise Exception("Unknown nonify key on deserialize in LightGBMExplainableModel: {}".format(key)) elif key in LightGBMSerializationConstants.save_properties: # Load the booster from file and re-create the LGBMClassifier or LGBMRegressor # This is not recommended but can be necessary to get around pickle being not secure # See here for more info: # https://github.com/Microsoft/LightGBM/issues/1942 # https://github.com/Microsoft/LightGBM/issues/1217 booster_args = {LightGBMSerializationConstants.MODEL_STR: value} is_multiclass = json.loads(properties[LightGBMSerializationConstants.MULTICLASS]) if is_multiclass: objective = LightGBMSerializationConstants.MULTICLASS else: objective = LightGBMSerializationConstants.REGRESSION if LightGBMSerializationConstants.MODEL_STR in inspect.getargspec(Booster).args: extras = {LightGBMSerializationConstants.OBJECTIVE: objective} lgbm_booster = Booster(**booster_args, params=extras) else: # For backwards compatibility with older versions of lightgbm booster_args[LightGBMSerializationConstants.OBJECTIVE] = objective lgbm_booster = Booster(params=booster_args) if is_multiclass: new_lgbm = LGBMClassifier() new_lgbm._Booster = lgbm_booster new_lgbm._n_classes = _n_classes else: new_lgbm = LGBMRegressor() new_lgbm._Booster = lgbm_booster # Specify fitted_ for newer versions of lightgbm on deserialize if fitted_ is not None: new_lgbm.fitted_ = fitted_ new_lgbm._n_features = _n_features lgbm_model.__dict__[key] = new_lgbm elif key in LightGBMSerializationConstants.enum_properties: # NOTE: If more enums added in future, will need to handle this differently lgbm_model.__dict__[key] = ShapValuesOutput(json.loads(value)) else: lgbm_model.__dict__[key] = json.loads(value) return lgbm_model
the-stack_0_14442
import datetime def printAppBanner(): print("--------------------------------------") print(" BIRTHDAY APP ") print("--------------------------------------") def getBirthday(): print("What is your birth date?") year = int(input("Year [YYY]? ")) month = int(input("Month [MM]? ")) day = int(input("Day [DD]? ")) return datetime.date(year, month, day) def currDate(): return datetime.date.today() def get_days_difference(current_date, birthday): #print(current_date) #print(birthday) this_year_birthday = datetime.date(current_date.year, birthday.month, birthday.day) next_year_birthday = datetime.date(current_date.year+1, birthday.month, birthday.day) #print(this_year_birthday) diffT = this_year_birthday - current_date diffN = next_year_birthday - current_date if (abs(diffT.days) > diffN.days): return diffN.days return diffT.days def printMessage(days_difference): if days_difference == 0: print("Today is your birthday, Happy Birthday!!!") elif days_difference > 0: print("Looks like your birthday is in {} days".format(days_difference)) else: print("Looks like your birthday was {} days before".format(abs(days_difference))) def main(): printAppBanner() birthday = getBirthday() current_date = currDate() days_difference = get_days_difference(current_date, birthday) printMessage(days_difference) main()
the-stack_0_14444
''' Trains a convolutional neural network, using a pre-trained ImageNet model, to infer the name of a flower given its image. ''' # -------------------- IMPORT PACKAGES -------------------- import argparse import os from copy import deepcopy from time import time import torch from torch import nn, optim from torchvision import datasets, transforms, models # -------------------- SETUP MAJOR INPUT VALUES -------------------- # Setup major inputs required from command line parser = argparse.ArgumentParser(description='Trains a neural network') parser.add_argument('data_directory', type=str, help='Filepath for input data of format "data_dir/". \ Expected to be the parent directory with \ folders "train", "validation", and "test" inside, with each structured \ according to torchivision.datasets.ImageFolder requirements') # Setup optional parameters that can be entered from the command line parser.add_argument('-s', '--save_dir', type=str, metavar='', default = 'model_checkpoints/', help = 'Filepath indicating where trained model checkpoint files \ should be stored') parser.add_argument('-a', '--arch', type=str, metavar='', default = 'inception', help = 'Pre-trained model from torchivision.models to use \ for the feature detector layers of your model') parser.add_argument('-l', '--learning_rate', type=float, default = 0.0005, metavar='', help = 'Learning rate to use for the Adam optimizer') parser.add_argument('-u', '--hidden_units', nargs='+', type=int, default = [512, 256], metavar='', help = 'Number of nodes to use in each hidden layer, ordered from \ earliest to latest layer. Not inclusive of the input layer \ (node count dictated by model architecture chosen) and \ output layer (always 102 = number of flower labels). \ Note that usage is --hidden_units count1 count2 count3...') parser.add_argument('-d', '--dropout', type=bool, default = True, metavar='', help = 'Determines if dropout with p=0.2 will be used for \ each hidden layer') parser.add_argument('-e', '--epochs', type=int, default = 30, metavar='', help = 'Number of epochs to use for training and validation') parser.add_argument('-g', '--gpu', type=bool, default = True, metavar='', help = 'If GPU is available, indicates that it should be used') parser.add_argument('-t', '--quick_test', type=bool, default = False, metavar='', help = 'If you just want to test the base code functionality quickly, \ set this to True. Will only load first batch for all training \ and testing.') args = parser.parse_args() # -------------------- ARCHITECTURE-SPECIFIC SETUP -------------------- # Sets parameters for various items that are not model-architecture-agnostic # torchvision.models.inception_v3() if args.arch == 'inception': crop_size = 299 model = models.inception_v3(pretrained=True) #classifier = model.fc input_nodes = 2048 elif args.arch == 'densenet': crop_size = 224 model = models.densenet161(pretrained=True) #classifier = model.classifier input_nodes = 2208 else: print("An unsupported model architecture was supplied. \ Program terminating...") exit() # Freeze parameters so we don't backprop through the pre-trained # feature detector for param in model.parameters(): param.requires_grad = False # -------------------- DATA LOADING AND TRANSFORMATIONS -------------------- # Initial transformations for cropping should be dictated by # model architecture chosen (resize should always be the same 512) # Means and stdevs common for pre-trained networks means = [0.485, 0.456, 0.406] stdevs = [0.229, 0.224, 0.225] data_dir = args.data_directory # Code here adapted from https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html image_transforms = {'train': \ transforms.Compose([transforms.RandomResizedCrop(crop_size), transforms.ColorJitter(brightness=0.15, contrast=0.15, saturation=0.15, hue=0), transforms.RandomAffine(30), transforms.RandomVerticalFlip(), transforms.ToTensor(), transforms.Normalize(means, stdevs)]), 'valid': transforms.Compose([transforms.Resize(512), transforms.CenterCrop(crop_size), transforms.ToTensor(), transforms.Normalize(means, stdevs)]), 'test': transforms.Compose([transforms.Resize(512), transforms.CenterCrop(crop_size), transforms.ToTensor(), transforms.Normalize(means, stdevs)]) } phases = ['train', 'valid', 'test'] data = {phase: datasets.ImageFolder(os.path.join(data_dir, phase), image_transforms[phase]) for phase in phases} dataloaders = {phase: torch.utils.data.DataLoader(data[phase], batch_size=64) for phase in phases} # Set training dataloader to have shuffle = True dataloaders['train'] = torch.utils.data.DataLoader(data['train'], batch_size=64, shuffle = True) # -------------------- CLASSIFIER BUILDING -------------------- # Build classifier portion of convolutional neural net to replace # original ImageNet classifier classifier = nn.Sequential() nodes = args.hidden_units classifier.add_module('hidden1', nn.Linear(input_nodes, nodes[0])) for i, _ in enumerate(nodes): if i+1 >= len(nodes): break classifier.add_module('activation' + str(i+1), nn.ReLU()) if args.dropout: classifier.add_module('dropout' + str(i+1), nn.Dropout(0.2)) classifier.add_module('hidden' + str(i+2), nn.Linear(nodes[i], nodes[i+1])) classifier.add_module('activation' + str(i+1), nn.ReLU()) classifier.add_module('output', nn.Linear(nodes[-1], 102)) classifier.add_module('activation_output', nn.LogSoftmax(dim=1)) if args.arch == 'inception': model.fc = classifier model_params = model.fc.parameters() print(f"Classifier architecture:") print(model.fc) elif args.arch == 'densenet': model.classifier = classifier model_params = model.classifier.parameters() print(f"Classifier architecture:") print(model.classifier) # -------------------- START EPOCHS -------------------- # If GPU is enabled, set device = 'cuda'. Otherwise use CPU if torch.cuda.is_available() and args.gpu: device = torch.device("cuda:0") elif args.gpu and not torch.cuda.is_available(): print("\nGPU unavailable, using CPU\n") device = torch.device("cpu") else: device = torch.device("cpu") model.to(device) # Good loss function to use for LogSoftMax activation layer criterion = nn.NLLLoss() # Only train the classifier parameters, feature parameters are frozen optimizer = optim.Adam(model_params, lr=args.learning_rate) t0 = time() # Prep for saving the best epoch's model weights # Code for this adapted from https://medium.com/datadriveninvestor/creating-a-pytorch-image-classifier-da9db139ba80 from copy import deepcopy best = {'acc': 0.0, 'epoch': 0, 'weights': deepcopy(model.state_dict())} epochs = args.epochs # Used to keep the Udacity online workspace from # disconnecting/going to sleep from workspace_utils import keep_awake # Keep GPU session awake in Udacity workspace until done training epoch_iter = keep_awake(range(epochs)) #epoch_iter = range(epochs) for e in epoch_iter: # -------------------- TRAINING -------------------- # Make sure model is in training mode model.train() training_loss = 0 training_batch_counter = 0 for images, labels in dataloaders['train']: # Move input and label tensors to the GPU or CPU images, labels = images.to(device), labels.to(device) optimizer.zero_grad() outputs = model(images) if args.arch == 'inception': loss = criterion(outputs.logits, labels) elif args.arch == 'densenet': loss = criterion(outputs, labels) loss.backward() optimizer.step() training_loss += loss.item() # Monitor every 10 batches and final batch if training_batch_counter % 10 == 0 or \ training_batch_counter == (len(dataloaders['train']) - 1): print(f"Training batch {training_batch_counter}\nLoss = \ {training_loss/(training_batch_counter + 1)}\n") training_batch_counter += 1 if args.quick_test: break # -------------------- VALIDATION -------------------- # turn off gradients for speedup in validation with torch.no_grad(): # set model to evaluation mode and remove un-needed things # like Dropout layers model.eval() accuracy = 0 valid_loss = 0 val_batch_counter = 0 for images, labels in dataloaders['valid']: # Move input and label tensors to the GPU or CPU images, labels = images.to(device), labels.to(device) outputs = model(images) loss = criterion(outputs, labels) probs = torch.exp(outputs) _, top_class = probs.topk(1, dim = 1) equals = top_class == labels.view(*top_class.shape) valid_loss += loss.item() accuracy += torch.mean(equals.type(torch.FloatTensor)).item() # Monitor every 3 batches and final batch if val_batch_counter % 3 == 0 or \ val_batch_counter == (len(dataloaders['valid']) - 1): print(f"Validation batch {val_batch_counter}\nLoss = \ {valid_loss/(val_batch_counter + 1)}\n and \ accuracy = {accuracy/(val_batch_counter + 1)}\n") val_batch_counter += 1 if args.quick_test: break # -------------------- EPOCH REPORTING -------------------- # Note that normalizing to train/validloader length is due to # need to divide by batch size to effectively average the # quantity in question training_loss /= len(dataloaders['train']) valid_loss /= len(dataloaders['valid']) accuracy /= len(dataloaders['valid']) print(f"For epoch {e+1}/{epochs}...") print(f"{round((time()-t0)/60, 3)} minutes since training started") print(f"Training loss = {training_loss}") print(f"Validation loss = {valid_loss}") print(f"Accuracy = {accuracy}\n\n") # Update best accuracy and weights if new superior model is found if accuracy > best['acc']: best['acc'] = accuracy best['epoch'] = e+1 best['weights'] = deepcopy(model.state_dict()) print("Best accuracy updated this epoch \ to {}\n\n\n".format(best['acc'])) if args.quick_test: break # -------------------- END EPOCHS -------------------- print("Best accuracy found was {} in epoch {}".format(best['acc'], best['epoch'])) # Set model weights to the optimal ones found across all epochs # NOTE: you may get an error # IncompatibleKeys(missing_keys=[], unexpected_keys=[]) # This error can be ignored. Model weights were still set properly. model.load_state_dict(best['weights']) # -------------------- TESTING -------------------- # turn off gradients for speedup in testing with torch.no_grad(): # set model to evaluation mode and remove # un-needed things like Dropout layers model.eval() test_accuracy = 0 test_loss = 0 for images, labels in dataloaders['test']: # Move input and label tensors to the GPU or CPU images, labels = images.to(device), labels.to(device) outputs = model(images) loss = criterion(outputs, labels) probs = torch.exp(outputs) _, top_class = probs.topk(1, dim = 1) equals = top_class == labels.view(*top_class.shape) test_loss += loss.item() test_accuracy += torch.mean(equals.type(torch.FloatTensor)).item() if args.quick_test: break # Note that normalizing to train/validloader length is due to need to # divide by batch size to effectively average the quantity in question test_loss /= len(dataloaders['test']) test_accuracy /= len(dataloaders['test']) print(f"Testing loss = {test_loss}") print(f"Testing accuracy = {test_accuracy}\n\n") # -------------------- SAVING THE MODEL -------------------- # Note that class_to_idx provides the mapping of my folder names to the # index used in the model if args.arch == 'inception': model_arch = models.inception_v3(pretrained=True) elif args.arch == 'densenet': model_arch = models.densenet161(pretrained=True) checkpoint = { 'arch': model_arch, 'classifier': classifier, 'model_state': model.state_dict(), 'epoch_count': best['epoch'], 'training_loss': training_loss, 'validation_accuracy': best['acc'], 'test_loss': test_loss, 'test_accuracy': test_accuracy, 'opt_state': optimizer.state_dict(), 'class_to_idx': data['train'].class_to_idx, 'idx_to_class': {v: k for k,v \ in data['train'].class_to_idx.items()}} # Determine the highest number X among the existing checkpoints # which are assumed to have filenames of the format checkpointX.pth # Code adapted from # https://stackoverflow.com/questions/3207219/how-do-i-list-all-files-of-a-directory from os import listdir from os.path import isfile, join existing_chkpts = [f for f in listdir(args.save_dir) \ if isfile(join(args.save_dir, f))] # Code adapted from # https://stackoverflow.com/questions/4666973/how-to-extract-the-substring-between-two-markers # Take list of existing checkpoint filenames and # generate string "checkpointn+1" where n is the highest # value used for checkpoint filenames. Guarantees we won't # overwrite an existing checkpoint import re file_indices = [] for e in existing_chkpts: m = re.search('checkpoint(.+).pth', e) if m: file_indices.append(int(m.group(1))) # Check that there are any files of proper name scheme in there at all if file_indices: file_n = max(file_indices) + 1 else: file_n = 0 save_path = args.save_dir + 'checkpoint' + str(file_n) + '.pth' torch.save(checkpoint, save_path)
the-stack_0_14446
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import dataclasses import json import logging import re from collections import defaultdict, OrderedDict from dataclasses import dataclass, field # pylint: disable=wrong-import-order from datetime import datetime, timedelta from typing import ( Any, cast, Dict, Hashable, List, NamedTuple, Optional, Tuple, Type, Union, ) import pandas as pd import sqlalchemy as sa import sqlparse from flask import escape, Markup from flask_appbuilder import Model from flask_babel import lazy_gettext as _ from jinja2.exceptions import TemplateError from sqlalchemy import ( and_, asc, Boolean, Column, DateTime, desc, Enum, ForeignKey, Integer, or_, select, String, Table, Text, update, ) from sqlalchemy.engine.base import Connection from sqlalchemy.orm import backref, Query, relationship, RelationshipProperty, Session from sqlalchemy.orm.mapper import Mapper from sqlalchemy.schema import UniqueConstraint from sqlalchemy.sql import column, ColumnElement, literal_column, table, text from sqlalchemy.sql.elements import ColumnClause from sqlalchemy.sql.expression import Label, Select, TextAsFrom, TextClause from sqlalchemy.sql.selectable import Alias, TableClause from superset import app, db, is_feature_enabled, security_manager from superset.connectors.base.models import BaseColumn, BaseDatasource, BaseMetric from superset.connectors.sqla.utils import ( get_physical_table_metadata, get_virtual_table_metadata, ) from superset.db_engine_specs.base import BaseEngineSpec, TimestampExpression from superset.exceptions import QueryObjectValidationError from superset.jinja_context import ( BaseTemplateProcessor, ExtraCache, get_template_processor, ) from superset.models.annotations import Annotation from superset.models.core import Database from superset.models.helpers import AuditMixinNullable, QueryResult from superset.sql_parse import ParsedQuery from superset.typing import AdhocMetric, Metric, OrderBy, QueryObjectDict from superset.utils import core as utils from superset.utils.core import GenericDataType, remove_duplicates config = app.config metadata = Model.metadata # pylint: disable=no-member logger = logging.getLogger(__name__) VIRTUAL_TABLE_ALIAS = "virtual_table" class SqlaQuery(NamedTuple): extra_cache_keys: List[Any] labels_expected: List[str] prequeries: List[str] sqla_query: Select class QueryStringExtended(NamedTuple): labels_expected: List[str] prequeries: List[str] sql: str @dataclass class MetadataResult: added: List[str] = field(default_factory=list) removed: List[str] = field(default_factory=list) modified: List[str] = field(default_factory=list) class AnnotationDatasource(BaseDatasource): """Dummy object so we can query annotations using 'Viz' objects just like regular datasources. """ cache_timeout = 0 changed_on = None type = "annotation" column_names = [ "created_on", "changed_on", "id", "start_dttm", "end_dttm", "layer_id", "short_descr", "long_descr", "json_metadata", "created_by_fk", "changed_by_fk", ] def query(self, query_obj: QueryObjectDict) -> QueryResult: error_message = None qry = db.session.query(Annotation) qry = qry.filter(Annotation.layer_id == query_obj["filter"][0]["val"]) if query_obj["from_dttm"]: qry = qry.filter(Annotation.start_dttm >= query_obj["from_dttm"]) if query_obj["to_dttm"]: qry = qry.filter(Annotation.end_dttm <= query_obj["to_dttm"]) status = utils.QueryStatus.SUCCESS try: df = pd.read_sql_query(qry.statement, db.engine) except Exception as ex: # pylint: disable=broad-except df = pd.DataFrame() status = utils.QueryStatus.FAILED logger.exception(ex) error_message = utils.error_msg_from_exception(ex) return QueryResult( status=status, df=df, duration=timedelta(0), query="", error_message=error_message, ) def get_query_str(self, query_obj: QueryObjectDict) -> str: raise NotImplementedError() def values_for_column(self, column_name: str, limit: int = 10000) -> List[Any]: raise NotImplementedError() class TableColumn(Model, BaseColumn): """ORM object for table columns, each table can have multiple columns""" __tablename__ = "table_columns" __table_args__ = (UniqueConstraint("table_id", "column_name"),) table_id = Column(Integer, ForeignKey("tables.id")) table = relationship( "SqlaTable", backref=backref("columns", cascade="all, delete-orphan"), foreign_keys=[table_id], ) is_dttm = Column(Boolean, default=False) expression = Column(Text) python_date_format = Column(String(255)) export_fields = [ "table_id", "column_name", "verbose_name", "is_dttm", "is_active", "type", "groupby", "filterable", "expression", "description", "python_date_format", ] update_from_object_fields = [s for s in export_fields if s not in ("table_id",)] export_parent = "table" @property def is_boolean(self) -> bool: """ Check if the column has a boolean datatype. """ return self.type_generic == GenericDataType.BOOLEAN @property def is_numeric(self) -> bool: """ Check if the column has a numeric datatype. """ return self.type_generic == GenericDataType.NUMERIC @property def is_string(self) -> bool: """ Check if the column has a string datatype. """ return self.type_generic == GenericDataType.STRING @property def is_temporal(self) -> bool: """ Check if the column has a temporal datatype. If column has been set as temporal/non-temporal (`is_dttm` is True or False respectively), return that value. This usually happens during initial metadata fetching or when a column is manually set as temporal (for this `python_date_format` needs to be set). """ if self.is_dttm is not None: return self.is_dttm return self.type_generic == GenericDataType.TEMPORAL @property def db_engine_spec(self) -> Type[BaseEngineSpec]: return self.table.db_engine_spec @property def type_generic(self) -> Optional[utils.GenericDataType]: if self.is_dttm: return GenericDataType.TEMPORAL column_spec = self.db_engine_spec.get_column_spec(self.type) return column_spec.generic_type if column_spec else None def get_sqla_col(self, label: Optional[str] = None) -> Column: label = label or self.column_name db_engine_spec = self.db_engine_spec column_spec = db_engine_spec.get_column_spec(self.type) type_ = column_spec.sqla_type if column_spec else None if self.expression: tp = self.table.get_template_processor() expression = tp.process_template(self.expression) col = literal_column(expression, type_=type_) else: col = column(self.column_name, type_=type_) col = self.table.make_sqla_column_compatible(col, label) return col @property def datasource(self) -> RelationshipProperty: return self.table def get_time_filter( self, start_dttm: DateTime, end_dttm: DateTime, time_range_endpoints: Optional[ Tuple[utils.TimeRangeEndpoint, utils.TimeRangeEndpoint] ], ) -> ColumnElement: col = self.get_sqla_col(label="__time") l = [] if start_dttm: l.append( col >= text(self.dttm_sql_literal(start_dttm, time_range_endpoints)) ) if end_dttm: if ( time_range_endpoints and time_range_endpoints[1] == utils.TimeRangeEndpoint.EXCLUSIVE ): l.append( col < text(self.dttm_sql_literal(end_dttm, time_range_endpoints)) ) else: l.append(col <= text(self.dttm_sql_literal(end_dttm, None))) return and_(*l) def get_timestamp_expression( self, time_grain: Optional[str], label: Optional[str] = None ) -> Union[TimestampExpression, Label]: """ Return a SQLAlchemy Core element representation of self to be used in a query. :param time_grain: Optional time grain, e.g. P1Y :param label: alias/label that column is expected to have :return: A TimeExpression object wrapped in a Label if supported by db """ label = label or utils.DTTM_ALIAS pdf = self.python_date_format is_epoch = pdf in ("epoch_s", "epoch_ms") if not self.expression and not time_grain and not is_epoch: sqla_col = column(self.column_name, type_=DateTime) return self.table.make_sqla_column_compatible(sqla_col, label) if self.expression: col = literal_column(self.expression) else: col = column(self.column_name) time_expr = self.db_engine_spec.get_timestamp_expr( col, pdf, time_grain, self.type ) return self.table.make_sqla_column_compatible(time_expr, label) def dttm_sql_literal( self, dttm: DateTime, time_range_endpoints: Optional[ Tuple[utils.TimeRangeEndpoint, utils.TimeRangeEndpoint] ], ) -> str: """Convert datetime object to a SQL expression string""" dttm_type = self.type or ("DATETIME" if self.is_dttm else None) sql = self.db_engine_spec.convert_dttm(dttm_type, dttm) if dttm_type else None if sql: return sql tf = self.python_date_format # Fallback to the default format (if defined) only if the SIP-15 time range # endpoints, i.e., [start, end) are enabled. if not tf and time_range_endpoints == ( utils.TimeRangeEndpoint.INCLUSIVE, utils.TimeRangeEndpoint.EXCLUSIVE, ): tf = ( self.table.database.get_extra() .get("python_date_format_by_column_name", {}) .get(self.column_name) ) if tf: if tf in ["epoch_ms", "epoch_s"]: seconds_since_epoch = int(dttm.timestamp()) if tf == "epoch_s": return str(seconds_since_epoch) return str(seconds_since_epoch * 1000) return f"'{dttm.strftime(tf)}'" # TODO(john-bodley): SIP-15 will explicitly require a type conversion. return f"""'{dttm.strftime("%Y-%m-%d %H:%M:%S.%f")}'""" @property def data(self) -> Dict[str, Any]: attrs = ( "id", "column_name", "verbose_name", "description", "expression", "filterable", "groupby", "is_dttm", "type", "type_generic", "python_date_format", ) return {s: getattr(self, s) for s in attrs if hasattr(self, s)} class SqlMetric(Model, BaseMetric): """ORM object for metrics, each table can have multiple metrics""" __tablename__ = "sql_metrics" __table_args__ = (UniqueConstraint("table_id", "metric_name"),) table_id = Column(Integer, ForeignKey("tables.id")) table = relationship( "SqlaTable", backref=backref("metrics", cascade="all, delete-orphan"), foreign_keys=[table_id], ) expression = Column(Text, nullable=False) extra = Column(Text) export_fields = [ "metric_name", "verbose_name", "metric_type", "table_id", "expression", "description", "d3format", "extra", "warning_text", ] update_from_object_fields = list( [s for s in export_fields if s not in ("table_id",)] ) export_parent = "table" def get_sqla_col(self, label: Optional[str] = None) -> Column: label = label or self.metric_name tp = self.table.get_template_processor() sqla_col: ColumnClause = literal_column(tp.process_template(self.expression)) return self.table.make_sqla_column_compatible(sqla_col, label) @property def perm(self) -> Optional[str]: return ( ("{parent_name}.[{obj.metric_name}](id:{obj.id})").format( obj=self, parent_name=self.table.full_name ) if self.table else None ) def get_perm(self) -> Optional[str]: return self.perm def get_extra_dict(self) -> Dict[str, Any]: try: return json.loads(self.extra) except (TypeError, json.JSONDecodeError): return {} @property def is_certified(self) -> bool: return bool(self.get_extra_dict().get("certification")) @property def certified_by(self) -> Optional[str]: return self.get_extra_dict().get("certification", {}).get("certified_by") @property def certification_details(self) -> Optional[str]: return self.get_extra_dict().get("certification", {}).get("details") @property def warning_markdown(self) -> Optional[str]: return self.get_extra_dict().get("warning_markdown") @property def data(self) -> Dict[str, Any]: attrs = ( "is_certified", "certified_by", "certification_details", "warning_markdown", ) attr_dict = {s: getattr(self, s) for s in attrs} attr_dict.update(super().data) return attr_dict sqlatable_user = Table( "sqlatable_user", metadata, Column("id", Integer, primary_key=True), Column("user_id", Integer, ForeignKey("ab_user.id")), Column("table_id", Integer, ForeignKey("tables.id")), ) class SqlaTable( # pylint: disable=too-many-public-methods,too-many-instance-attributes Model, BaseDatasource ): """An ORM object for SqlAlchemy table references""" type = "table" query_language = "sql" is_rls_supported = True columns: List[TableColumn] = [] metrics: List[SqlMetric] = [] metric_class = SqlMetric column_class = TableColumn owner_class = security_manager.user_model __tablename__ = "tables" # Note this uniqueness constraint is not part of the physical schema, i.e., it does # not exist in the migrations, but is required by `import_from_dict` to ensure the # correct filters are applied in order to identify uniqueness. # # The reason it does not physically exist is MySQL, PostgreSQL, etc. have a # different interpretation of uniqueness when it comes to NULL which is problematic # given the schema is optional. __table_args__ = (UniqueConstraint("database_id", "schema", "table_name"),) table_name = Column(String(250), nullable=False) main_dttm_col = Column(String(250)) database_id = Column(Integer, ForeignKey("dbs.id"), nullable=False) fetch_values_predicate = Column(String(1000)) owners = relationship(owner_class, secondary=sqlatable_user, backref="tables") database: Database = relationship( "Database", backref=backref("tables", cascade="all, delete-orphan"), foreign_keys=[database_id], ) schema = Column(String(255)) sql = Column(Text) is_sqllab_view = Column(Boolean, default=False) template_params = Column(Text) extra = Column(Text) baselink = "tablemodelview" export_fields = [ "table_name", "main_dttm_col", "description", "default_endpoint", "database_id", "offset", "cache_timeout", "schema", "sql", "params", "template_params", "filter_select_enabled", "fetch_values_predicate", "extra", ] update_from_object_fields = [f for f in export_fields if f != "database_id"] export_parent = "database" export_children = ["metrics", "columns"] sqla_aggregations = { "COUNT_DISTINCT": lambda column_name: sa.func.COUNT(sa.distinct(column_name)), "COUNT": sa.func.COUNT, "SUM": sa.func.SUM, "AVG": sa.func.AVG, "MIN": sa.func.MIN, "MAX": sa.func.MAX, } def __repr__(self) -> str: return self.name @property def db_engine_spec(self) -> Type[BaseEngineSpec]: return self.database.db_engine_spec @property def changed_by_name(self) -> str: if not self.changed_by: return "" return str(self.changed_by) @property def changed_by_url(self) -> str: if not self.changed_by: return "" return f"/superset/profile/{self.changed_by.username}" @property def connection(self) -> str: return str(self.database) @property def description_markeddown(self) -> str: return utils.markdown(self.description) @property def datasource_name(self) -> str: return self.table_name @property def datasource_type(self) -> str: return self.type @property def database_name(self) -> str: return self.database.name @classmethod def get_datasource_by_name( cls, session: Session, datasource_name: str, schema: Optional[str], database_name: str, ) -> Optional["SqlaTable"]: schema = schema or None query = ( session.query(cls) .join(Database) .filter(cls.table_name == datasource_name) .filter(Database.database_name == database_name) ) # Handling schema being '' or None, which is easier to handle # in python than in the SQLA query in a multi-dialect way for tbl in query.all(): if schema == (tbl.schema or None): return tbl return None @property def link(self) -> Markup: name = escape(self.name) anchor = f'<a target="_blank" href="{self.explore_url}">{name}</a>' return Markup(anchor) def get_schema_perm(self) -> Optional[str]: """Returns schema permission if present, database one otherwise.""" return security_manager.get_schema_perm(self.database, self.schema) def get_perm(self) -> str: return f"[{self.database}].[{self.table_name}](id:{self.id})" @property def name(self) -> str: if not self.schema: return self.table_name return "{}.{}".format(self.schema, self.table_name) @property def full_name(self) -> str: return utils.get_datasource_full_name( self.database, self.table_name, schema=self.schema ) @property def dttm_cols(self) -> List[str]: l = [c.column_name for c in self.columns if c.is_dttm] if self.main_dttm_col and self.main_dttm_col not in l: l.append(self.main_dttm_col) return l @property def num_cols(self) -> List[str]: return [c.column_name for c in self.columns if c.is_numeric] @property def any_dttm_col(self) -> Optional[str]: cols = self.dttm_cols return cols[0] if cols else None @property def html(self) -> str: df = pd.DataFrame((c.column_name, c.type) for c in self.columns) df.columns = ["field", "type"] return df.to_html( index=False, classes=("dataframe table table-striped table-bordered " "table-condensed"), ) @property def sql_url(self) -> str: return self.database.sql_url + "?table_name=" + str(self.table_name) def external_metadata(self) -> List[Dict[str, str]]: if self.sql: return get_virtual_table_metadata(dataset=self) return get_physical_table_metadata( database=self.database, table_name=self.table_name, schema_name=self.schema, ) @property def time_column_grains(self) -> Dict[str, Any]: return { "time_columns": self.dttm_cols, "time_grains": [grain.name for grain in self.database.grains()], } @property def select_star(self) -> Optional[str]: # show_cols and latest_partition set to false to avoid # the expensive cost of inspecting the DB return self.database.select_star( self.table_name, schema=self.schema, show_cols=False, latest_partition=False ) @property def health_check_message(self) -> Optional[str]: check = config["DATASET_HEALTH_CHECK"] return check(self) if check else None @property def data(self) -> Dict[str, Any]: data_ = super().data if self.type == "table": data_["granularity_sqla"] = utils.choicify(self.dttm_cols) data_["time_grain_sqla"] = [ (g.duration, g.name) for g in self.database.grains() or [] ] data_["main_dttm_col"] = self.main_dttm_col data_["fetch_values_predicate"] = self.fetch_values_predicate data_["template_params"] = self.template_params data_["is_sqllab_view"] = self.is_sqllab_view data_["health_check_message"] = self.health_check_message data_["extra"] = self.extra return data_ @property def extra_dict(self) -> Dict[str, Any]: try: return json.loads(self.extra) except (TypeError, json.JSONDecodeError): return {} def get_fetch_values_predicate(self) -> TextClause: tp = self.get_template_processor() try: return text(tp.process_template(self.fetch_values_predicate)) except TemplateError as ex: raise QueryObjectValidationError( _( "Error in jinja expression in fetch values predicate: %(msg)s", msg=ex.message, ) ) def values_for_column(self, column_name: str, limit: int = 10000) -> List[Any]: """Runs query against sqla to retrieve some sample values for the given column. """ cols = {col.column_name: col for col in self.columns} target_col = cols[column_name] tp = self.get_template_processor() qry = ( select([target_col.get_sqla_col()]) .select_from(self.get_from_clause(tp)) .distinct() ) if limit: qry = qry.limit(limit) if self.fetch_values_predicate: qry = qry.where(self.get_fetch_values_predicate()) engine = self.database.get_sqla_engine() sql = "{}".format(qry.compile(engine, compile_kwargs={"literal_binds": True})) sql = self.mutate_query_from_config(sql) df = pd.read_sql_query(sql=sql, con=engine) return df[column_name].to_list() def mutate_query_from_config(self, sql: str) -> str: """Apply config's SQL_QUERY_MUTATOR Typically adds comments to the query with context""" sql_query_mutator = config["SQL_QUERY_MUTATOR"] if sql_query_mutator: username = utils.get_username() sql = sql_query_mutator(sql, username, security_manager, self.database) return sql def get_template_processor(self, **kwargs: Any) -> BaseTemplateProcessor: return get_template_processor(table=self, database=self.database, **kwargs) def get_query_str_extended(self, query_obj: QueryObjectDict) -> QueryStringExtended: sqlaq = self.get_sqla_query(**query_obj) sql = self.database.compile_sqla_query(sqlaq.sqla_query) sql = sqlparse.format(sql, reindent=True) sql = self.mutate_query_from_config(sql) return QueryStringExtended( labels_expected=sqlaq.labels_expected, sql=sql, prequeries=sqlaq.prequeries ) def get_query_str(self, query_obj: QueryObjectDict) -> str: query_str_ext = self.get_query_str_extended(query_obj) all_queries = query_str_ext.prequeries + [query_str_ext.sql] return ";\n\n".join(all_queries) + ";" def get_sqla_table(self) -> TableClause: tbl = table(self.table_name) if self.schema: tbl.schema = self.schema return tbl def get_from_clause( self, template_processor: Optional[BaseTemplateProcessor] = None ) -> Union[TableClause, Alias]: """ Return where to select the columns and metrics from. Either a physical table or a virtual table with it's own subquery. """ if not self.is_virtual: return self.get_sqla_table() from_sql = self.get_rendered_sql(template_processor) parsed_query = ParsedQuery(from_sql) if not ( parsed_query.is_unknown() or self.db_engine_spec.is_readonly_query(parsed_query) ): raise QueryObjectValidationError( _("Virtual dataset query must be read-only") ) return TextAsFrom(sa.text(from_sql), []).alias(VIRTUAL_TABLE_ALIAS) def get_rendered_sql( self, template_processor: Optional[BaseTemplateProcessor] = None ) -> str: """ Render sql with template engine (Jinja). """ sql = self.sql if template_processor: try: sql = template_processor.process_template(sql) except TemplateError as ex: raise QueryObjectValidationError( _( "Error while rendering virtual dataset query: %(msg)s", msg=ex.message, ) ) sql = sqlparse.format(sql.strip("\t\r\n; "), strip_comments=True) if not sql: raise QueryObjectValidationError(_("Virtual dataset query cannot be empty")) if len(sqlparse.split(sql)) > 1: raise QueryObjectValidationError( _("Virtual dataset query cannot consist of multiple statements") ) return sql def adhoc_metric_to_sqla( self, metric: AdhocMetric, columns_by_name: Dict[str, TableColumn] ) -> ColumnElement: """ Turn an adhoc metric into a sqlalchemy column. :param dict metric: Adhoc metric definition :param dict columns_by_name: Columns for the current table :returns: The metric defined as a sqlalchemy column :rtype: sqlalchemy.sql.column """ expression_type = metric.get("expressionType") label = utils.get_metric_name(metric) if expression_type == utils.AdhocMetricExpressionType.SIMPLE: column_name = cast(str, metric["column"].get("column_name")) table_column: Optional[TableColumn] = columns_by_name.get(column_name) if table_column: sqla_column = table_column.get_sqla_col() else: sqla_column = column(column_name) sqla_metric = self.sqla_aggregations[metric["aggregate"]](sqla_column) elif expression_type == utils.AdhocMetricExpressionType.SQL: tp = self.get_template_processor() expression = tp.process_template(cast(str, metric["sqlExpression"])) sqla_metric = literal_column(expression) else: raise QueryObjectValidationError("Adhoc metric expressionType is invalid") return self.make_sqla_column_compatible(sqla_metric, label) def make_sqla_column_compatible( self, sqla_col: ColumnElement, label: Optional[str] = None ) -> ColumnElement: """Takes a sqlalchemy column object and adds label info if supported by engine. :param sqla_col: sqlalchemy column instance :param label: alias/label that column is expected to have :return: either a sql alchemy column or label instance if supported by engine """ label_expected = label or sqla_col.name db_engine_spec = self.db_engine_spec # add quotes to tables if db_engine_spec.allows_alias_in_select: label = db_engine_spec.make_label_compatible(label_expected) sqla_col = sqla_col.label(label) sqla_col.key = label_expected return sqla_col def make_orderby_compatible( self, select_exprs: List[ColumnElement], orderby_exprs: List[ColumnElement] ) -> None: """ If needed, make sure aliases for selected columns are not used in `ORDER BY`. In some databases (e.g. Presto), `ORDER BY` clause is not able to automatically pick the source column if a `SELECT` clause alias is named the same as a source column. In this case, we update the SELECT alias to another name to avoid the conflict. """ if self.db_engine_spec.allows_alias_to_source_column: return def is_alias_used_in_orderby(col: ColumnElement) -> bool: if not isinstance(col, Label): return False regexp = re.compile(f"\\(.*\\b{re.escape(col.name)}\\b.*\\)", re.IGNORECASE) return any(regexp.search(str(x)) for x in orderby_exprs) # Iterate through selected columns, if column alias appears in orderby # use another `alias`. The final output columns will still use the # original names, because they are updated by `labels_expected` after # querying. for col in select_exprs: if is_alias_used_in_orderby(col): col.name = f"{col.name}__" def _get_sqla_row_level_filters( self, template_processor: BaseTemplateProcessor ) -> List[str]: """ Return the appropriate row level security filters for this table and the current user. :param BaseTemplateProcessor template_processor: The template processor to apply to the filters. :returns: A list of SQL clauses to be ANDed together. :rtype: List[str] """ filters_grouped: Dict[Union[int, str], List[str]] = defaultdict(list) try: for filter_ in security_manager.get_rls_filters(self): clause = text( f"({template_processor.process_template(filter_.clause)})" ) filters_grouped[filter_.group_key or filter_.id].append(clause) return [or_(*clauses) for clauses in filters_grouped.values()] except TemplateError as ex: raise QueryObjectValidationError( _("Error in jinja expression in RLS filters: %(msg)s", msg=ex.message,) ) def get_sqla_query( # pylint: disable=too-many-arguments,too-many-locals,too-many-branches,too-many-statements self, metrics: Optional[List[Metric]] = None, granularity: Optional[str] = None, from_dttm: Optional[datetime] = None, to_dttm: Optional[datetime] = None, columns: Optional[List[str]] = None, groupby: Optional[List[str]] = None, filter: Optional[ # pylint: disable=redefined-builtin List[Dict[str, Any]] ] = None, is_timeseries: bool = True, timeseries_limit: int = 15, timeseries_limit_metric: Optional[Metric] = None, row_limit: Optional[int] = None, row_offset: Optional[int] = None, inner_from_dttm: Optional[datetime] = None, inner_to_dttm: Optional[datetime] = None, orderby: Optional[List[OrderBy]] = None, extras: Optional[Dict[str, Any]] = None, order_desc: bool = True, is_rowcount: bool = False, apply_fetch_values_predicate: bool = False, ) -> SqlaQuery: """Querying any sqla table from this common interface""" template_kwargs = { "from_dttm": from_dttm.isoformat() if from_dttm else None, "groupby": groupby, "metrics": metrics, "row_limit": row_limit, "row_offset": row_offset, "to_dttm": to_dttm.isoformat() if to_dttm else None, "filter": filter, "columns": [col.column_name for col in self.columns], } template_kwargs.update(self.template_params_dict) extra_cache_keys: List[Any] = [] template_kwargs["extra_cache_keys"] = extra_cache_keys removed_filters: List[str] = [] template_kwargs["removed_filters"] = removed_filters template_processor = self.get_template_processor(**template_kwargs) db_engine_spec = self.db_engine_spec prequeries: List[str] = [] orderby = orderby or [] extras = extras or {} need_groupby = bool(metrics is not None or groupby) metrics = metrics or [] # For backward compatibility if granularity not in self.dttm_cols and granularity is not None: granularity = self.main_dttm_col # Database spec supports join-free timeslot grouping time_groupby_inline = db_engine_spec.time_groupby_inline columns_by_name: Dict[str, TableColumn] = { col.column_name: col for col in self.columns } metrics_by_name: Dict[str, SqlMetric] = {m.metric_name: m for m in self.metrics} if not granularity and is_timeseries: raise QueryObjectValidationError( _( "Datetime column not provided as part table configuration " "and is required by this type of chart" ) ) if not metrics and not columns and not groupby: raise QueryObjectValidationError(_("Empty query?")) metrics_exprs: List[ColumnElement] = [] for metric in metrics: if utils.is_adhoc_metric(metric): assert isinstance(metric, dict) metrics_exprs.append(self.adhoc_metric_to_sqla(metric, columns_by_name)) elif isinstance(metric, str) and metric in metrics_by_name: metrics_exprs.append(metrics_by_name[metric].get_sqla_col()) else: raise QueryObjectValidationError( _("Metric '%(metric)s' does not exist", metric=metric) ) if metrics_exprs: main_metric_expr = metrics_exprs[0] else: main_metric_expr, label = literal_column("COUNT(*)"), "ccount" main_metric_expr = self.make_sqla_column_compatible(main_metric_expr, label) # To ensure correct handling of the ORDER BY labeling we need to reference the # metric instance if defined in the SELECT clause. # use the key of the ColumnClause for the expected label metrics_exprs_by_label = {m.key: m for m in metrics_exprs} metrics_exprs_by_expr = {str(m): m for m in metrics_exprs} # Since orderby may use adhoc metrics, too; we need to process them first orderby_exprs: List[ColumnElement] = [] for orig_col, ascending in orderby: col: Union[AdhocMetric, ColumnElement] = orig_col if isinstance(col, dict): col = cast(AdhocMetric, col) if utils.is_adhoc_metric(col): # add adhoc sort by column to columns_by_name if not exists col = self.adhoc_metric_to_sqla(col, columns_by_name) # if the adhoc metric has been defined before # use the existing instance. col = metrics_exprs_by_expr.get(str(col), col) need_groupby = True elif col in columns_by_name: col = columns_by_name[col].get_sqla_col() elif col in metrics_exprs_by_label: col = metrics_exprs_by_label[col] need_groupby = True elif col in metrics_by_name: col = metrics_by_name[col].get_sqla_col() need_groupby = True if isinstance(col, ColumnElement): orderby_exprs.append(col) else: # Could not convert a column reference to valid ColumnElement raise QueryObjectValidationError( _("Unknown column used in orderby: %(col)s", col=orig_col) ) select_exprs: List[Union[Column, Label]] = [] groupby_exprs_sans_timestamp = OrderedDict() # filter out the pseudo column __timestamp from columns columns = columns or [] columns = [col for col in columns if col != utils.DTTM_ALIAS] if need_groupby: # dedup columns while preserving order columns = groupby or columns for selected in columns: # if groupby field/expr equals granularity field/expr if selected == granularity: time_grain = extras.get("time_grain_sqla") sqla_col = columns_by_name[selected] outer = sqla_col.get_timestamp_expression(time_grain, selected) # if groupby field equals a selected column elif selected in columns_by_name: outer = columns_by_name[selected].get_sqla_col() else: outer = literal_column(f"({selected})") outer = self.make_sqla_column_compatible(outer, selected) groupby_exprs_sans_timestamp[outer.name] = outer select_exprs.append(outer) elif columns: for selected in columns: select_exprs.append( columns_by_name[selected].get_sqla_col() if selected in columns_by_name else self.make_sqla_column_compatible(literal_column(selected)) ) metrics_exprs = [] time_range_endpoints = extras.get("time_range_endpoints") groupby_exprs_with_timestamp = OrderedDict(groupby_exprs_sans_timestamp.items()) if granularity: if granularity not in columns_by_name: raise QueryObjectValidationError( _( 'Time column "%(col)s" does not exist in dataset', col=granularity, ) ) dttm_col = columns_by_name[granularity] time_grain = extras.get("time_grain_sqla") time_filters = [] if is_timeseries: timestamp = dttm_col.get_timestamp_expression(time_grain) # always put timestamp as the first column select_exprs.insert(0, timestamp) groupby_exprs_with_timestamp[timestamp.name] = timestamp # Use main dttm column to support index with secondary dttm columns. if ( db_engine_spec.time_secondary_columns and self.main_dttm_col in self.dttm_cols and self.main_dttm_col != dttm_col.column_name ): time_filters.append( columns_by_name[self.main_dttm_col].get_time_filter( from_dttm, to_dttm, time_range_endpoints ) ) time_filters.append( dttm_col.get_time_filter(from_dttm, to_dttm, time_range_endpoints) ) # Always remove duplicates by column name, as sometimes `metrics_exprs` # can have the same name as a groupby column (e.g. when users use # raw columns as custom SQL adhoc metric). select_exprs = remove_duplicates( select_exprs + metrics_exprs, key=lambda x: x.name ) # Expected output columns labels_expected = [c.key for c in select_exprs] # Order by columns are "hidden" columns, some databases require them # always be present in SELECT if an aggregation function is used if not db_engine_spec.allows_hidden_ordeby_agg: select_exprs = remove_duplicates(select_exprs + orderby_exprs) qry = sa.select(select_exprs) tbl = self.get_from_clause(template_processor) if groupby_exprs_with_timestamp: qry = qry.group_by(*groupby_exprs_with_timestamp.values()) where_clause_and = [] having_clause_and = [] for flt in filter: # type: ignore if not all([flt.get(s) for s in ["col", "op"]]): continue col = flt["col"] val = flt.get("val") op = flt["op"].upper() col_obj = columns_by_name.get(col) if is_feature_enabled("ENABLE_TEMPLATE_REMOVE_FILTERS"): if col in removed_filters: # Skip generating SQLA filter when the jinja template handles it. continue if col_obj: col_spec = db_engine_spec.get_column_spec(col_obj.type) is_list_target = op in ( utils.FilterOperator.IN.value, utils.FilterOperator.NOT_IN.value, ) if col_spec: target_type = col_spec.generic_type else: target_type = GenericDataType.STRING eq = self.filter_values_handler( values=val, target_column_type=target_type, is_list_target=is_list_target, ) if is_list_target: assert isinstance(eq, (tuple, list)) if len(eq) == 0: raise QueryObjectValidationError( _("Filter value list cannot be empty") ) if None in eq: eq = [x for x in eq if x is not None] is_null_cond = col_obj.get_sqla_col().is_(None) if eq: cond = or_(is_null_cond, col_obj.get_sqla_col().in_(eq)) else: cond = is_null_cond else: cond = col_obj.get_sqla_col().in_(eq) if op == utils.FilterOperator.NOT_IN.value: cond = ~cond where_clause_and.append(cond) elif op == utils.FilterOperator.IS_NULL.value: where_clause_and.append(col_obj.get_sqla_col().is_(None)) elif op == utils.FilterOperator.IS_NOT_NULL.value: where_clause_and.append(col_obj.get_sqla_col().isnot(None)) elif op == utils.FilterOperator.IS_TRUE.value: where_clause_and.append(col_obj.get_sqla_col().is_(True)) elif op == utils.FilterOperator.IS_FALSE.value: where_clause_and.append(col_obj.get_sqla_col().is_(False)) else: if eq is None: raise QueryObjectValidationError( _( "Must specify a value for filters " "with comparison operators" ) ) if op == utils.FilterOperator.EQUALS.value: where_clause_and.append(col_obj.get_sqla_col() == eq) elif op == utils.FilterOperator.NOT_EQUALS.value: where_clause_and.append(col_obj.get_sqla_col() != eq) elif op == utils.FilterOperator.GREATER_THAN.value: where_clause_and.append(col_obj.get_sqla_col() > eq) elif op == utils.FilterOperator.LESS_THAN.value: where_clause_and.append(col_obj.get_sqla_col() < eq) elif op == utils.FilterOperator.GREATER_THAN_OR_EQUALS.value: where_clause_and.append(col_obj.get_sqla_col() >= eq) elif op == utils.FilterOperator.LESS_THAN_OR_EQUALS.value: where_clause_and.append(col_obj.get_sqla_col() <= eq) elif op == utils.FilterOperator.LIKE.value: where_clause_and.append(col_obj.get_sqla_col().like(eq)) elif op == utils.FilterOperator.ILIKE.value: where_clause_and.append(col_obj.get_sqla_col().ilike(eq)) else: raise QueryObjectValidationError( _("Invalid filter operation type: %(op)s", op=op) ) if is_feature_enabled("ROW_LEVEL_SECURITY"): where_clause_and += self._get_sqla_row_level_filters(template_processor) if extras: where = extras.get("where") if where: try: where = template_processor.process_template(where) except TemplateError as ex: raise QueryObjectValidationError( _( "Error in jinja expression in WHERE clause: %(msg)s", msg=ex.message, ) ) where_clause_and += [sa.text("({})".format(where))] having = extras.get("having") if having: try: having = template_processor.process_template(having) except TemplateError as ex: raise QueryObjectValidationError( _( "Error in jinja expression in HAVING clause: %(msg)s", msg=ex.message, ) ) having_clause_and += [sa.text("({})".format(having))] if apply_fetch_values_predicate and self.fetch_values_predicate: qry = qry.where(self.get_fetch_values_predicate()) if granularity: qry = qry.where(and_(*(time_filters + where_clause_and))) else: qry = qry.where(and_(*where_clause_and)) qry = qry.having(and_(*having_clause_and)) self.make_orderby_compatible(select_exprs, orderby_exprs) for col, (orig_col, ascending) in zip(orderby_exprs, orderby): if not db_engine_spec.allows_alias_in_orderby and isinstance(col, Label): # if engine does not allow using SELECT alias in ORDER BY # revert to the underlying column col = col.element direction = asc if ascending else desc qry = qry.order_by(direction(col)) if row_limit: qry = qry.limit(row_limit) if row_offset: qry = qry.offset(row_offset) if ( is_timeseries # pylint: disable=too-many-boolean-expressions and timeseries_limit and not time_groupby_inline and groupby_exprs_sans_timestamp ): if db_engine_spec.allows_joins: # some sql dialects require for order by expressions # to also be in the select clause -- others, e.g. vertica, # require a unique inner alias inner_main_metric_expr = self.make_sqla_column_compatible( main_metric_expr, "mme_inner__" ) inner_groupby_exprs = [] inner_select_exprs = [] for gby_name, gby_obj in groupby_exprs_sans_timestamp.items(): inner = self.make_sqla_column_compatible(gby_obj, gby_name + "__") inner_groupby_exprs.append(inner) inner_select_exprs.append(inner) inner_select_exprs += [inner_main_metric_expr] subq = select(inner_select_exprs).select_from(tbl) inner_time_filter = dttm_col.get_time_filter( inner_from_dttm or from_dttm, inner_to_dttm or to_dttm, time_range_endpoints, ) subq = subq.where(and_(*(where_clause_and + [inner_time_filter]))) subq = subq.group_by(*inner_groupby_exprs) ob = inner_main_metric_expr if timeseries_limit_metric: ob = self._get_timeseries_orderby( timeseries_limit_metric, metrics_by_name, columns_by_name ) direction = desc if order_desc else asc subq = subq.order_by(direction(ob)) subq = subq.limit(timeseries_limit) on_clause = [] for gby_name, gby_obj in groupby_exprs_sans_timestamp.items(): # in this case the column name, not the alias, needs to be # conditionally mutated, as it refers to the column alias in # the inner query col_name = db_engine_spec.make_label_compatible(gby_name + "__") on_clause.append(gby_obj == column(col_name)) tbl = tbl.join(subq.alias(), and_(*on_clause)) else: if timeseries_limit_metric: orderby = [ ( self._get_timeseries_orderby( timeseries_limit_metric, metrics_by_name, columns_by_name, ), False, ) ] # run prequery to get top groups prequery_obj = { "is_timeseries": False, "row_limit": timeseries_limit, "metrics": metrics, "granularity": granularity, "groupby": groupby, "from_dttm": inner_from_dttm or from_dttm, "to_dttm": inner_to_dttm or to_dttm, "filter": filter, "orderby": orderby, "extras": extras, "columns": columns, "order_desc": True, } result = self.query(prequery_obj) prequeries.append(result.query) dimensions = [ c for c in result.df.columns if c not in metrics and c in groupby_exprs_sans_timestamp ] top_groups = self._get_top_groups( result.df, dimensions, groupby_exprs_sans_timestamp ) qry = qry.where(top_groups) qry = qry.select_from(tbl) if is_rowcount: if not db_engine_spec.allows_subqueries: raise QueryObjectValidationError( _("Database does not support subqueries") ) label = "rowcount" col = self.make_sqla_column_compatible(literal_column("COUNT(*)"), label) qry = select([col]).select_from(qry.alias("rowcount_qry")) labels_expected = [label] return SqlaQuery( extra_cache_keys=extra_cache_keys, labels_expected=labels_expected, sqla_query=qry, prequeries=prequeries, ) def _get_timeseries_orderby( self, timeseries_limit_metric: Metric, metrics_by_name: Dict[str, SqlMetric], columns_by_name: Dict[str, TableColumn], ) -> Column: if utils.is_adhoc_metric(timeseries_limit_metric): assert isinstance(timeseries_limit_metric, dict) ob = self.adhoc_metric_to_sqla(timeseries_limit_metric, columns_by_name) elif ( isinstance(timeseries_limit_metric, str) and timeseries_limit_metric in metrics_by_name ): ob = metrics_by_name[timeseries_limit_metric].get_sqla_col() else: raise QueryObjectValidationError( _("Metric '%(metric)s' does not exist", metric=timeseries_limit_metric) ) return ob def _get_top_groups( # pylint: disable=no-self-use self, df: pd.DataFrame, dimensions: List[str], groupby_exprs: "OrderedDict[str, Any]", ) -> ColumnElement: groups = [] for _unused, row in df.iterrows(): group = [] for dimension in dimensions: group.append(groupby_exprs[dimension] == row[dimension]) groups.append(and_(*group)) return or_(*groups) def query(self, query_obj: QueryObjectDict) -> QueryResult: qry_start_dttm = datetime.now() query_str_ext = self.get_query_str_extended(query_obj) sql = query_str_ext.sql status = utils.QueryStatus.SUCCESS errors = None error_message = None def assign_column_label(df: pd.DataFrame) -> Optional[pd.DataFrame]: """ Some engines change the case or generate bespoke column names, either by default or due to lack of support for aliasing. This function ensures that the column names in the DataFrame correspond to what is expected by the viz components. Sometimes a query may also contain only order by columns that are not used as metrics or groupby columns, but need to present in the SQL `select`, filtering by `labels_expected` make sure we only return columns users want. :param df: Original DataFrame returned by the engine :return: Mutated DataFrame """ labels_expected = query_str_ext.labels_expected if df is not None and not df.empty: if len(df.columns) < len(labels_expected): raise QueryObjectValidationError( _("Db engine did not return all queried columns") ) if len(df.columns) > len(labels_expected): df = df.iloc[:, 0 : len(labels_expected)] df.columns = labels_expected return df try: df = self.database.get_df(sql, self.schema, mutator=assign_column_label) except Exception as ex: # pylint: disable=broad-except df = pd.DataFrame() status = utils.QueryStatus.FAILED logger.warning( "Query %s on schema %s failed", sql, self.schema, exc_info=True ) db_engine_spec = self.db_engine_spec errors = [ dataclasses.asdict(error) for error in db_engine_spec.extract_errors(ex) ] error_message = utils.error_msg_from_exception(ex) return QueryResult( status=status, df=df, duration=datetime.now() - qry_start_dttm, query=sql, errors=errors, error_message=error_message, ) def get_sqla_table_object(self) -> Table: return self.database.get_table(self.table_name, schema=self.schema) def fetch_metadata(self, commit: bool = True) -> MetadataResult: """ Fetches the metadata for the table and merges it in :param commit: should the changes be committed or not. :return: Tuple with lists of added, removed and modified column names. """ new_columns = self.external_metadata() metrics = [] any_date_col = None db_engine_spec = self.db_engine_spec old_columns = db.session.query(TableColumn).filter(TableColumn.table == self) old_columns_by_name: Dict[str, TableColumn] = { col.column_name: col for col in old_columns } results = MetadataResult( removed=[ col for col in old_columns_by_name if col not in {col["name"] for col in new_columns} ] ) # clear old columns before adding modified columns back self.columns = [] for col in new_columns: old_column = old_columns_by_name.pop(col["name"], None) if not old_column: results.added.append(col["name"]) new_column = TableColumn( column_name=col["name"], type=col["type"], table=self ) new_column.is_dttm = new_column.is_temporal db_engine_spec.alter_new_orm_column(new_column) else: new_column = old_column if new_column.type != col["type"]: results.modified.append(col["name"]) new_column.type = col["type"] new_column.expression = "" new_column.groupby = True new_column.filterable = True self.columns.append(new_column) if not any_date_col and new_column.is_temporal: any_date_col = col["name"] self.columns.extend( [col for col in old_columns_by_name.values() if col.expression] ) metrics.append( SqlMetric( metric_name="count", verbose_name="COUNT(*)", metric_type="count", expression="COUNT(*)", ) ) if not self.main_dttm_col: self.main_dttm_col = any_date_col self.add_missing_metrics(metrics) # Apply config supplied mutations. config["SQLA_TABLE_MUTATOR"](self) db.session.merge(self) if commit: db.session.commit() return results @classmethod def query_datasources_by_name( cls, session: Session, database: Database, datasource_name: str, schema: Optional[str] = None, ) -> List["SqlaTable"]: query = ( session.query(cls) .filter_by(database_id=database.id) .filter_by(table_name=datasource_name) ) if schema: query = query.filter_by(schema=schema) return query.all() @staticmethod def default_query(qry: Query) -> Query: return qry.filter_by(is_sqllab_view=False) def has_extra_cache_key_calls(self, query_obj: QueryObjectDict) -> bool: """ Detects the presence of calls to `ExtraCache` methods in items in query_obj that can be templated. If any are present, the query must be evaluated to extract additional keys for the cache key. This method is needed to avoid executing the template code unnecessarily, as it may contain expensive calls, e.g. to extract the latest partition of a database. :param query_obj: query object to analyze :return: True if there are call(s) to an `ExtraCache` method, False otherwise """ templatable_statements: List[str] = [] if self.sql: templatable_statements.append(self.sql) if self.fetch_values_predicate: templatable_statements.append(self.fetch_values_predicate) extras = query_obj.get("extras", {}) if "where" in extras: templatable_statements.append(extras["where"]) if "having" in extras: templatable_statements.append(extras["having"]) if is_feature_enabled("ROW_LEVEL_SECURITY") and self.is_rls_supported: templatable_statements += [ f.clause for f in security_manager.get_rls_filters(self) ] for statement in templatable_statements: if ExtraCache.regex.search(statement): return True return False def get_extra_cache_keys(self, query_obj: QueryObjectDict) -> List[Hashable]: """ The cache key of a SqlaTable needs to consider any keys added by the parent class and any keys added via `ExtraCache`. :param query_obj: query object to analyze :return: The extra cache keys """ extra_cache_keys = super().get_extra_cache_keys(query_obj) if self.has_extra_cache_key_calls(query_obj): sqla_query = self.get_sqla_query(**query_obj) extra_cache_keys += sqla_query.extra_cache_keys return extra_cache_keys @staticmethod def before_update( mapper: Mapper, # pylint: disable=unused-argument connection: Connection, # pylint: disable=unused-argument target: "SqlaTable", ) -> None: """ Check whether before update if the target table already exists. Note this listener is called when any fields are being updated and thus it is necessary to first check whether the reference table is being updated. Note this logic is temporary, given uniqueness is handled via the dataset DAO, but is necessary until both the legacy datasource editor and datasource/save endpoints are deprecated. :param mapper: The table mapper :param connection: The DB-API connection :param target: The mapped instance being persisted :raises Exception: If the target table is not unique """ from superset.datasets.commands.exceptions import get_dataset_exist_error_msg from superset.datasets.dao import DatasetDAO # Check whether the relevant attributes have changed. state = db.inspect(target) # pylint: disable=no-member for attr in ["database_id", "schema", "table_name"]: history = state.get_history(attr, True) if history.has_changes(): break else: return None if not DatasetDAO.validate_uniqueness( target.database_id, target.schema, target.table_name ): raise Exception(get_dataset_exist_error_msg(target.full_name)) @staticmethod def update_table( _mapper: Mapper, _connection: Connection, obj: Union[SqlMetric, TableColumn] ) -> None: """ Forces an update to the table's changed_on value when a metric or column on the table is updated. This busts the cache key for all charts that use the table. :param _mapper: Unused. :param _connection: Unused. :param obj: The metric or column that was updated. """ db.session.execute(update(SqlaTable).where(SqlaTable.id == obj.table.id)) sa.event.listen(SqlaTable, "after_insert", security_manager.set_perm) sa.event.listen(SqlaTable, "after_update", security_manager.set_perm) sa.event.listen(SqlaTable, "before_update", SqlaTable.before_update) sa.event.listen(SqlMetric, "after_update", SqlaTable.update_table) sa.event.listen(TableColumn, "after_update", SqlaTable.update_table) RLSFilterRoles = Table( "rls_filter_roles", metadata, Column("id", Integer, primary_key=True), Column("role_id", Integer, ForeignKey("ab_role.id"), nullable=False), Column("rls_filter_id", Integer, ForeignKey("row_level_security_filters.id")), ) RLSFilterTables = Table( "rls_filter_tables", metadata, Column("id", Integer, primary_key=True), Column("table_id", Integer, ForeignKey("tables.id")), Column("rls_filter_id", Integer, ForeignKey("row_level_security_filters.id")), ) class RowLevelSecurityFilter(Model, AuditMixinNullable): """ Custom where clauses attached to Tables and Roles. """ __tablename__ = "row_level_security_filters" id = Column(Integer, primary_key=True) filter_type = Column( Enum(*[filter_type.value for filter_type in utils.RowLevelSecurityFilterType]) ) group_key = Column(String(255), nullable=True) roles = relationship( security_manager.role_model, secondary=RLSFilterRoles, backref="row_level_security_filters", ) tables = relationship( SqlaTable, secondary=RLSFilterTables, backref="row_level_security_filters" ) clause = Column(Text, nullable=False)
the-stack_0_14448
import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import numpy as np def _add_classification(df): i = pd.read_csv("inputs.csv") frags = set(i['fragment']) leads = set(i['lead']) classification = [] for a in list(df['other_id']): if a in frags: classification.append("fragment") elif a in leads: classification.append("lead") df["classification"] = classification return df def barplot1(df): ligs = set(df["apo"]) order_dic = {np.mean([float(a) for a in list(df.loc[df["apo"] == l]["volume_overlap"])]): l for l in ligs} ks = sorted(order_dic.keys(), reverse=True) ord = [order_dic[k] for k in ks] g = sns.FacetGrid(df, col="buriedness_method", height=7, aspect=1, legend_out=True) g = (g.map(sns.barplot, 'apo', 'volume_overlap', 'lig_class', order=ord, hue_order=["fragment", "lead"], ci=None, palette="Reds").add_legend()) g.set_xticklabels(rotation=45) g.set(xlabel='', ylabel="", title="") plt.savefig("barplot1.png") plt.close() def barplot2(df, clas = "fragment"): def over_threshold(l, threshold): return [l for item in l if item >= threshold] df = df.loc[df["atom_type"] != 'apolar'] df = df.loc[df["classification"] == clas] buriedness_method = ["ligsite", "ghecom", "ghecom_internal"] data = {} for b in buriedness_method: x = df.loc[df["buriedness_method"] == b] x = x.loc[x["atom_type"] != "apolar"] data.update({b: list(x["atomic_overlap"])}) total = max([len(k) for k in data.keys()]) bm = [] perc = [] thres = [] thresholds = [1, 5, 10, 50, 100] for t in thresholds: for b, d in data.items(): bm.append(b) thres.append(t) perc.append((len(over_threshold(d, t)) / total) * 100) ndf = pd.DataFrame({"thresholds": thres, "passed": perc, "buriedness_method": bm}) ax = sns.barplot(x=ndf["thresholds"], y=ndf["passed"], hue=ndf["buriedness_method"], hue_order= ['ligsite', 'ghecom', 'ghecom_internal'], palette='Reds') ax.set(xlabel="Overlap threshold (%)", ylabel="Atomic overlap greater than threshold (%)", title="", ylim=[0, 100]) plt.savefig("barplot2_{}.png".format(clas)) plt.close() def boxplot1(df): ax = sns.boxplot(x='buriedness_method', y='volume_overlap', hue="classification", data=df, order=["ligsite", "ghecom", "ghecom_internal"], palette="Reds") ax.set(xlabel='Buriedness Method', ylabel="Percentage Volume Overlap", title="", ylim=[-5,100]) plt.savefig("boxplot1.png") plt.close() if __name__ == "__main__": sns.set(style="ticks", color_codes=True) df = pd.read_csv("analysis.csv") df = df.loc[df["ligand_cavity"] == True] # barplot1(df) # barplot1(df) barplot2(df, clas="fragment") barplot2(df, clas="lead")
the-stack_0_14450
from newton.db.seed import Trades from .base import DaoBase class TradesDao(DaoBase): def _get_model(self): return Trades def history(self, from_datetime, to_datetime, filters=None): with self._session() as s: q = s.query(self._Model) if from_datetime is not None: q = q.filter(self._Model.entry_datetime >= from_datetime) if to_datetime is not None: q = q.filter(self._Model.exit_datetime <= to_datetime) if filters is None: return q.all() if not isinstance(filters, dict): raise TypeError("params should be 'dict'") q = self._custom_filters(q, filters) return q.all()
the-stack_0_14451
from __future__ import division, print_function from astropy.io import fits as pyfits from astropy.utils.data import get_pkg_data_filename from astropy import units as u import matplotlib.pyplot as plt import numpy as np from numpy.testing import (assert_almost_equal, assert_array_equal, assert_allclose) import pytest import tempfile import warnings from ..lightcurve import LightCurve, KeplerLightCurve, TessLightCurve from ..lightcurvefile import LightCurveFile, KeplerLightCurveFile, TessLightCurveFile from ..targetpixelfile import KeplerTargetPixelFile, TessTargetPixelFile from ..utils import LightkurveWarning from .test_targetpixelfile import TABBY_TPF # 8th Quarter of Tabby's star TABBY_Q8 = ("https://archive.stsci.edu/missions/kepler/lightcurves" "/0084/008462852/kplr008462852-2011073133259_llc.fits") K2_C08 = ("https://archive.stsci.edu/missions/k2/lightcurves/c8/" "220100000/39000/ktwo220139473-c08_llc.fits") KEPLER10 = ("https://archive.stsci.edu/missions/kepler/lightcurves/" "0119/011904151/kplr011904151-2010009091648_llc.fits") TESS_SIM = ("https://archive.stsci.edu/missions/tess/ete-6/tid/00/000/" "004/104/tess2019128220341-0000000410458113-0016-s_lc.fits") filename_tess = get_pkg_data_filename("data/tess25155310-s01-first-cadences.fits.gz") filename_tess_custom = get_pkg_data_filename("data/test_TESS_interact_generated_custom-lc.fits") filename_K2_custom = get_pkg_data_filename("data/test_K2_interact_generated_custom-lc.fits") def test_invalid_lightcurve(): """Invalid LightCurves should not be allowed.""" err_string = ("Input arrays have different lengths." " len(time)=5, len(flux)=4") time = np.array([1, 2, 3, 4, 5]) flux = np.array([1, 2, 3, 4]) with pytest.raises(ValueError) as err: LightCurve(time=time, flux=flux) assert err_string == err.value.args[0] def test_empty_lightcurve(): """LightCurves with no data should not be allowed.""" err_string = ("either time or flux must be given") with pytest.raises(ValueError) as err: LightCurve() assert err_string == err.value.args[0] def test_lc_nan_time(): time = np.array([1, 2, 3, np.nan]) flux = np.array([1, 2, 3, 4]) with pytest.warns(LightkurveWarning, match='contains NaN times'): LightCurve(time=time, flux=flux) def test_math_operators(): lc = LightCurve(time=np.arange(1, 5), flux=np.arange(1, 5), flux_err=np.arange(1, 5)) lc_add = lc + 1 lc_sub = lc - 1 lc_mul = lc * 2 lc_div = lc / 2 assert_array_equal(lc_add.flux, lc.flux + 1) assert_array_equal(lc_sub.flux, lc.flux - 1) assert_array_equal(lc_mul.flux, lc.flux * 2) assert_array_equal(lc_div.flux, lc.flux / 2) def test_rmath_operators(): lc = LightCurve(time=np.arange(1, 5), flux=np.arange(1, 5), flux_err=np.arange(1, 5)) lc_add = 1 + lc lc_sub = 1 - lc lc_mul = 2 * lc lc_div = 2 / lc assert_array_equal(lc_add.flux, lc.flux + 1) assert_array_equal(lc_sub.flux, 1 - lc.flux) assert_array_equal(lc_mul.flux, lc.flux * 2) assert_array_equal(lc_div.flux, 2 / lc.flux) @pytest.mark.remote_data @pytest.mark.parametrize("path, mission", [(TABBY_Q8, "Kepler"), (K2_C08, "K2")]) def test_KeplerLightCurveFile(path, mission): lcf = KeplerLightCurveFile(path, quality_bitmask=None) assert lcf.obsmode == 'long cadence' assert len(lcf.pos_corr1) == len(lcf.pos_corr2) # The liberal bitmask will cause the lightcurve to contain NaN times with pytest.warns(LightkurveWarning, match='NaN times'): lc = lcf.get_lightcurve('SAP_FLUX') assert lc.channel == lcf.channel assert lc.mission.lower() == mission.lower() if lc.mission.lower() == 'kepler': assert lc.campaign is None assert lc.quarter == 8 elif lc.mission.lower() == 'k2': assert lc.campaign == 8 assert lc.quarter is None assert lc.time_format == 'bkjd' assert lc.time_scale == 'tdb' assert lc.astropy_time.scale == 'tdb' # Does the data match what one would obtain using pyfits.open? hdu = pyfits.open(path) assert lc.label == hdu[0].header['OBJECT'] assert_array_equal(lc.time, hdu[1].data['TIME']) assert_array_equal(lc.flux, hdu[1].data['SAP_FLUX'] / ((hdu[1].header['CROWDSAP'] * hdu[1].header['FLFRCSAP']))) with pytest.raises(KeyError): lcf.get_lightcurve('BLABLA') @pytest.mark.remote_data @pytest.mark.parametrize("quality_bitmask", ['hardest', 'hard', 'default', None, 1, 100, 2096639]) def test_TessLightCurveFile(quality_bitmask): tess_file = TessLightCurveFile(TESS_SIM, quality_bitmask=quality_bitmask) hdu = pyfits.open(TESS_SIM) lc = tess_file.SAP_FLUX assert lc.mission == 'TESS' assert lc.label == hdu[0].header['OBJECT'] assert lc.time_format == 'btjd' assert lc.time_scale == 'tdb' assert_array_equal(lc.time[0:10], hdu[1].data['TIME'][0:10]) assert_array_equal(lc.flux[0:10], hdu[1].data['SAP_FLUX'][0:10]) # Regression test for https://github.com/KeplerGO/lightkurve/pull/236 assert np.isnan(lc.time).sum() == 0 with pytest.raises(KeyError): tess_file.get_lightcurve('DOESNOTEXIST') @pytest.mark.remote_data @pytest.mark.parametrize("quality_bitmask, answer", [('hardest', 2661), ('hard', 2706), ('default', 3113), (None, 3279), (1, 3279), (100, 3252), (2096639, 2661)]) def test_bitmasking(quality_bitmask, answer): """Test whether the bitmasking behaves like it should""" lcf = KeplerLightCurveFile(TABBY_Q8, quality_bitmask=quality_bitmask) with warnings.catch_warnings(): # Ignore "LightCurve contains NaN times" warnings triggered by liberal masks warnings.simplefilter("ignore", LightkurveWarning) flux = lcf.get_lightcurve('SAP_FLUX').flux assert len(flux) == answer def test_lightcurve_fold(): """Test the ``LightCurve.fold()`` method.""" lc = LightCurve(time=np.linspace(0, 10, 100), flux=np.zeros(100)+1, targetid=999, label='mystar', meta={'ccd': 2}, time_format='bkjd') fold = lc.fold(period=1) assert_almost_equal(fold.phase[0], -0.5, 2) assert_almost_equal(np.min(fold.phase), -0.5, 2) assert_almost_equal(np.max(fold.phase), 0.5, 2) assert fold.targetid == lc.targetid assert fold.label == lc.label assert fold.meta == lc.meta assert_array_equal(np.sort(fold.time_original), lc.time) assert len(fold.time_original) == len(lc.time) fold = lc.fold(period=1, t0=-0.1) assert_almost_equal(fold.time[0], -0.5, 2) assert_almost_equal(np.min(fold.phase), -0.5, 2) assert_almost_equal(np.max(fold.phase), 0.5, 2) with warnings.catch_warnings(): # `transit_midpoint` is deprecated and its use will emit a warning warnings.simplefilter("ignore", LightkurveWarning) fold = lc.fold(period=1, transit_midpoint=-0.1) assert_almost_equal(fold.time[0], -0.5, 2) ax = fold.plot() assert (ax.get_xlabel() == 'Phase') ax = fold.scatter() assert (ax.get_xlabel() == 'Phase') ax = fold.errorbar() assert (ax.get_xlabel() == 'Phase') plt.close('all') # bad transit midpoint should give a warning # if user tries a t0 in JD but time is in BKJD with pytest.warns(LightkurveWarning, match='appears to be given in JD'): lc.fold(10, 2456600) def test_lightcurve_fold_issue520(): """Regression test for #520; accept quantities in `fold()`.""" lc = LightCurve(time=np.linspace(0, 10, 100), flux=np.zeros(100)+1) lc.fold(period=1*u.day, t0=5*u.day) def test_lightcurve_append(): """Test ``LightCurve.append()``.""" lc = LightCurve(time=[1, 2, 3], flux=[1, .5, 1], flux_err=[0.1, 0.2, 0.3]) lc = lc.append(lc) assert_array_equal(lc.time, 2*[1, 2, 3]) assert_array_equal(lc.flux, 2*[1, .5, 1]) assert_array_equal(lc.flux_err, 2*[0.1, 0.2, 0.3]) # KeplerLightCurve has extra data lc = KeplerLightCurve(time=[1, 2, 3], flux=[1, .5, 1], centroid_col=[4, 5, 6], centroid_row=[7, 8, 9], cadenceno=[10, 11, 12], quality=[10, 20, 30]) lc = lc.append(lc) assert_array_equal(lc.time, 2*[1, 2, 3]) assert_array_equal(lc.flux, 2*[1, .5, 1]) assert_array_equal(lc.centroid_col, 2*[4, 5, 6]) assert_array_equal(lc.centroid_row, 2*[7, 8, 9]) assert_array_equal(lc.cadenceno, 2*[10, 11, 12]) assert_array_equal(lc.quality, 2*[10, 20, 30]) def test_lightcurve_append_multiple(): """Test ``LightCurve.append()`` for multiple lightcurves at once.""" lc = LightCurve(time=[1, 2, 3], flux=[1, .5, 1]) lc = lc.append([lc, lc, lc]) assert_array_equal(lc.flux, 4*[1, .5, 1]) assert_array_equal(lc.time, 4*[1, 2, 3]) def test_lightcurve_copy(): """Test ``LightCurve.copy()``.""" time = np.array([1, 2, 3, 4]) flux = np.array([1, 2, 3, 4]) error = np.array([0.1, 0.2, 0.3, 0.4]) lc = LightCurve(time=time, flux=flux, flux_err=error) nlc = lc.copy() assert_array_equal(lc.time, nlc.time) assert_array_equal(lc.flux, nlc.flux) assert_array_equal(lc.flux_err, nlc.flux_err) nlc.time[1] = 5 nlc.flux[1] = 6 nlc.flux_err[1] = 7 # By changing 1 of the 4 data points in the new lightcurve's array-like # attributes, we expect assert_array_equal to raise an AssertionError # indicating a mismatch of 1/4 (or 25%). with pytest.raises(AssertionError, match=r'ismatch.* 25'): assert_array_equal(lc.time, nlc.time) with pytest.raises(AssertionError, match=r'ismatch.* 25'): assert_array_equal(lc.flux, nlc.flux) with pytest.raises(AssertionError, match=r'ismatch.* 25'): assert_array_equal(lc.flux_err, nlc.flux_err) # KeplerLightCurve has extra data lc = KeplerLightCurve(time=[1, 2, 3], flux=[1, .5, 1], centroid_col=[4, 5, 6], centroid_row=[7, 8, 9], cadenceno=[10, 11, 12], quality=[10, 20, 30]) nlc = lc.copy() assert_array_equal(lc.time, nlc.time) assert_array_equal(lc.flux, nlc.flux) assert_array_equal(lc.centroid_col, nlc.centroid_col) assert_array_equal(lc.centroid_row, nlc.centroid_row) assert_array_equal(lc.cadenceno, nlc.cadenceno) assert_array_equal(lc.quality, nlc.quality) nlc.time[1] = 6 nlc.flux[1] = 7 nlc.centroid_col[1] = 8 nlc.centroid_row[1] = 9 nlc.cadenceno[1] = 10 nlc.quality[1] = 11 # As before, by changing 1/3 data points, we expect a mismatch of 33.3% # with a repeating decimal. However, float precision for python 2.7 is 10 # decimal digits, while python 3.6's is 13 decimal digits. Therefore, # a regular expression is needed for both versions. with pytest.raises(AssertionError, match=r'ismatch.* 33\.3+'): assert_array_equal(lc.time, nlc.time) with pytest.raises(AssertionError, match=r'ismatch.* 33\.3+'): assert_array_equal(lc.flux, nlc.flux) with pytest.raises(AssertionError, match=r'ismatch.* 33\.3+'): assert_array_equal(lc.centroid_col, nlc.centroid_col) with pytest.raises(AssertionError, match=r'ismatch.* 33\.3+'): assert_array_equal(lc.centroid_row, nlc.centroid_row) with pytest.raises(AssertionError, match=r'ismatch.* 33\.3+'): assert_array_equal(lc.cadenceno, nlc.cadenceno) with pytest.raises(AssertionError, match=r'ismatch.* 33\.3+'): assert_array_equal(lc.quality, nlc.quality) @pytest.mark.parametrize("path, mission", [(filename_tess_custom, "TESS"), (filename_K2_custom, "K2")]) def test_custom_lightcurve_file(path, mission): """Test whether we can read in custom interact()-produced lightcurvefiles""" if mission == "K2": lcf_custom = KeplerLightCurveFile(path) elif mission == "TESS": lcf_custom = TessLightCurveFile(path) assert lcf_custom.hdu[2].name == 'APERTURE' assert lcf_custom.cadenceno[0] >= 0 assert lcf_custom.dec == lcf_custom.dec assert lcf_custom.time[-1] > lcf_custom.time[0] # .interact() files currently define FLUX, and not SAP_FLUX nor PDCSAP_FLUX lc = lcf_custom.get_lightcurve('FLUX') assert len(lc.flux) > 0 with pytest.raises(KeyError): lcf_custom.get_lightcurve('BLABLA') with pytest.raises(KeyError): lcf_custom.SAP_FLUX with pytest.raises(KeyError): lcf_custom.PDCSAP_FLUX assert lc.mission.lower() == mission.lower() # Does the data match what one would obtain using pyfits.open? hdu = pyfits.open(path) assert lc.label == hdu[0].header['OBJECT'] assert_array_equal(lc.time, hdu[1].data['TIME']) assert_array_equal(lc.flux, hdu[1].data['FLUX']) # TESS has QUALITY while Kepler/K2 has SAP_QUALITY: if mission == "TESS": assert "QUALITY" in lcf_custom.hdu[1].columns.names assert_array_equal(lc.quality, hdu[1].data['QUALITY']) if mission in ["K2", "Kepler"]: assert "SAP_QUALITY" in lcf_custom.hdu[1].columns.names assert_array_equal(lc.quality, hdu[1].data['SAP_QUALITY']) @pytest.mark.remote_data def test_lightcurve_plots(): """Sanity check to verify that lightcurve plotting works""" for lcf in [KeplerLightCurveFile(TABBY_Q8), TessLightCurveFile(TESS_SIM)]: lcf.plot() lcf.plot(flux_types=['SAP_FLUX', 'PDCSAP_FLUX']) lcf.scatter() lcf.errorbar() lcf.SAP_FLUX.plot() lcf.SAP_FLUX.plot(normalize=False, title="Not the default") lcf.SAP_FLUX.scatter() lcf.SAP_FLUX.scatter(c='C3') lcf.SAP_FLUX.scatter(c=lcf.SAP_FLUX.time, show_colorbar=True, colorbar_label='Time') lcf.SAP_FLUX.errorbar() plt.close('all') @pytest.mark.remote_data def test_lightcurve_scatter(): """Sanity check to verify that lightcurve scatter plotting works""" lcf = KeplerLightCurveFile(KEPLER10) lc = lcf.PDCSAP_FLUX.flatten() # get an array of original times, in the same order as the folded lightcurve foldkw = dict(period=0.837491) originaltime = LightCurve(lc.time, lc.time) foldedtimeinorder = originaltime.fold(**foldkw).flux # plot a grid of phase-folded and not, with colors fi, ax = plt.subplots(2, 2, figsize=(10,6), sharey=True, sharex='col') scatterkw = dict( s=5, cmap='winter') lc.scatter(ax=ax[0,0]) lc.fold(**foldkw).scatter(ax=ax[0,1]) lc.scatter(ax=ax[1,0], c=lc.time, **scatterkw) lc.fold(**foldkw).scatter(ax=ax[1,1], c=foldedtimeinorder, **scatterkw) plt.ylim(0.999, 1.001) def test_cdpp(): """Test the basics of the CDPP noise metric.""" # A flat lightcurve should have a CDPP close to zero assert_almost_equal(LightCurve(np.arange(200), np.ones(200)).estimate_cdpp(), 0) # An artificial lightcurve with sigma=100ppm should have cdpp=100ppm lc = LightCurve(np.arange(10000), np.random.normal(loc=1, scale=100e-6, size=10000)) assert_almost_equal(lc.estimate_cdpp(transit_duration=1), 100, decimal=-0.5) # Transit_duration must be an integer (cadences) with pytest.raises(ValueError): lc.estimate_cdpp(transit_duration=6.5) @pytest.mark.remote_data def test_cdpp_tabby(): """Compare the cdpp noise metric against the pipeline value.""" lcf = KeplerLightCurveFile(TABBY_Q8) # Tabby's star shows dips after cadence 1000 which increase the cdpp lc = LightCurve(lcf.PDCSAP_FLUX.time[:1000], lcf.PDCSAP_FLUX.flux[:1000]) assert(np.abs(lc.estimate_cdpp() - lcf.header(ext=1)['CDPP6_0']) < 30) def test_bin(): """Does binning work?""" lc = LightCurve(time=np.arange(10), flux=2*np.ones(10), flux_err=2**.5*np.ones(10)) binned_lc = lc.bin(binsize=2) assert_allclose(binned_lc.flux, 2*np.ones(5)) assert_allclose(binned_lc.flux_err, np.ones(5)) assert len(binned_lc.time) == 5 with pytest.raises(ValueError): lc.bin(method='doesnotexist') # If `flux_err` is missing, the errors on the bins should be the stddev lc = LightCurve(time=np.arange(10), flux=2*np.ones(10)) binned_lc = lc.bin(binsize=2) assert_allclose(binned_lc.flux_err, np.zeros(5)) # Regression test for #377 lc = KeplerLightCurve(time=np.arange(10), flux=2*np.ones(10)) lc.bin(5).remove_outliers() # Second regression test for #377 lc = KeplerLightCurve(time=np.arange(1000) * 0.02, flux=1*np.ones(1000) + np.random.normal(0, 1e-6, 1000), cadenceno=np.arange(1000)) assert np.isclose(lc.bin(2).estimate_cdpp(), 1, rtol=1) # Regression test for #500 lc = LightCurve(time=np.arange(2000), flux=np.random.normal(loc=42, scale=0.01, size=2000)) assert np.round(lc.bin(2000).flux_err[0], 2) == 0.01 def test_bin_quality(): """Binning must also revise the quality and centroid columns.""" lc = KeplerLightCurve(time=[1, 2, 3, 4], flux=[1, 1, 1, 1], quality=[0, 1, 2, 3], centroid_col=[0, 1, 0, 1], centroid_row=[0, 2, 0, 2]) binned_lc = lc.bin(binsize=2) assert_allclose(binned_lc.quality, [1, 3]) # Expect bitwise or assert_allclose(binned_lc.centroid_col, [0.5, 0.5]) # Expect mean assert_allclose(binned_lc.centroid_row, [1, 1]) # Expect mean def test_normalize(): """Does the `LightCurve.normalize()` method normalize the flux?""" lc = LightCurve(time=np.arange(10), flux=5*np.ones(10), flux_err=0.05*np.ones(10)) assert_allclose(np.median(lc.normalize().flux), 1) assert_allclose(np.median(lc.normalize().flux_err), 0.05/5) def test_to_pandas(): """Test the `LightCurve.to_pandas()` method.""" time, flux, flux_err = range(3), np.ones(3), np.zeros(3) lc = LightCurve(time, flux, flux_err) try: df = lc.to_pandas() assert_allclose(df.index, time) assert_allclose(df.flux, flux) assert_allclose(df.flux_err, flux_err) df.describe() # Will fail if for Endianness bugs except ImportError: # pandas is an optional dependency pass def test_to_pandas_kepler(): """When to_pandas() is executed on a KeplerLightCurve, it should include extra columns such as `quality`.""" time, flux, quality = range(3), np.ones(3), np.zeros(3) lc = KeplerLightCurve(time, flux, quality=quality) try: df = lc.to_pandas() assert_allclose(df.quality, quality) except ImportError: # pandas is an optional dependency pass def test_to_table(): """Test the `LightCurve.to_table()` method.""" time, flux, flux_err = range(3), np.ones(3), np.zeros(3) lc = LightCurve(time, flux, flux_err) tbl = lc.to_table() assert_allclose(tbl['time'], time) assert_allclose(tbl['flux'], flux) assert_allclose(tbl['flux_err'], flux_err) def test_to_csv(): """Test the `LightCurve.to_csv()` method.""" time, flux, flux_err = range(3), np.ones(3), np.zeros(3) try: lc = LightCurve(time, flux, flux_err) assert(lc.to_csv(index=False, line_terminator='\n') == 'time,flux,flux_err\n0,1.0,0.0\n1,1.0,0.0\n2,1.0,0.0\n') except ImportError: # pandas is an optional dependency pass @pytest.mark.remote_data def test_to_fits(): """Test the KeplerLightCurve.to_fits() method""" lcf = KeplerLightCurveFile(TABBY_Q8) hdu = lcf.PDCSAP_FLUX.to_fits() KeplerLightCurveFile(hdu) # Regression test for #233 assert type(hdu).__name__ is 'HDUList' assert len(hdu) == 2 assert hdu[0].header['EXTNAME'] == 'PRIMARY' assert hdu[1].header['EXTNAME'] == 'LIGHTCURVE' assert hdu[1].header['TTYPE1'] == 'TIME' assert hdu[1].header['TTYPE2'] == 'FLUX' assert hdu[1].header['TTYPE3'] == 'FLUX_ERR' assert hdu[1].header['TTYPE4'] == 'CADENCENO' hdu = LightCurve([0, 1, 2, 3, 4], [1, 1, 1, 1, 1]).to_fits() # Test "round-tripping": can we read-in what we write lcf_new = LightCurveFile(hdu) # Regression test for #233 assert hdu[0].header['EXTNAME'] == 'PRIMARY' assert hdu[1].header['EXTNAME'] == 'LIGHTCURVE' assert hdu[1].header['TTYPE1'] == 'TIME' assert hdu[1].header['TTYPE2'] == 'FLUX' # Test aperture mask support in to_fits for tpf in [KeplerTargetPixelFile(TABBY_TPF), TessTargetPixelFile(filename_tess)]: random_mask = np.random.randint(0, 2, size=tpf.flux[0].shape, dtype=bool) thresh_mask = tpf.create_threshold_mask(threshold=3) lc = tpf.to_lightcurve(aperture_mask=random_mask) lc.to_fits(path=tempfile.NamedTemporaryFile().name, aperture_mask=random_mask) lc.to_fits(path=tempfile.NamedTemporaryFile().name, overwrite=True, flux_column_name='SAP_FLUX') lc = tpf[0:2].to_lightcurve(aperture_mask=thresh_mask) lc.to_fits(aperture_mask=thresh_mask, path=tempfile.NamedTemporaryFile().name) # Test the extra data kwargs bkg_mask = ~tpf.create_threshold_mask(threshold=0.1) bkg_lc = tpf.to_lightcurve(aperture_mask=bkg_mask) lc = tpf.to_lightcurve(aperture_mask=tpf.hdu['APERTURE'].data) lc = tpf.to_lightcurve(aperture_mask=None) lc = tpf.to_lightcurve(aperture_mask=thresh_mask) lc_out = lc - bkg_lc.flux * (thresh_mask.sum()/bkg_mask.sum()) lc_out.to_fits(aperture_mask=thresh_mask, path=tempfile.NamedTemporaryFile().name, overwrite=True, extra_data={'BKG': bkg_lc.flux}) @pytest.mark.remote_data def test_astropy_time(): '''Test the `astropy_time` property''' lcf = KeplerLightCurveFile(TABBY_Q8) astropy_time = lcf.astropy_time iso = astropy_time.iso assert astropy_time.scale == 'tdb' assert len(iso) == len(lcf.time) #assert iso[0] == '2011-01-06 20:45:08.811' #assert iso[-1] == '2011-03-14 20:18:16.734' def test_astropy_time_bkjd(): """Does `LightCurve.astropy_time` support bkjd?""" bkjd = np.array([100, 200]) lc = LightCurve(time=[100, 200], time_format='bkjd') assert_allclose(lc.astropy_time.jd, bkjd + 2454833.) def test_lightcurve_repr(): """Do __str__ and __repr__ work?""" time, flux = range(3), np.ones(3) str(LightCurve(time, flux)) str(KeplerLightCurve(time, flux)) str(TessLightCurve(time, flux)) repr(LightCurve(time, flux)) repr(KeplerLightCurve(time, flux)) repr(TessLightCurve(time, flux)) @pytest.mark.remote_data def test_lightcurvefile_repr(): """Do __str__ and __repr__ work?""" lcf = KeplerLightCurveFile(TABBY_Q8) str(lcf) repr(lcf) lcf = TessLightCurveFile(TESS_SIM) str(lcf) repr(lcf) def test_slicing(): """Does LightCurve.__getitem__() allow slicing?""" time = np.linspace(0, 10, 10) flux = np.linspace(100, 200, 10) flux_err = np.linspace(5, 50, 10) lc = LightCurve(time, flux, flux_err) assert_array_equal(lc[0:5].time, time[0:5]) assert_array_equal(lc[2::2].flux, flux[2::2]) assert_array_equal(lc[5:9:-1].flux_err, flux_err[5:9:-1]) # KeplerLightCurves contain additional data arrays that need to be sliced centroid_col = np.linspace(40, 50, 10) centroid_row = np.linspace(50, 60, 10) quality = np.linspace(70, 80, 10) cadenceno = np.linspace(90, 100, 10) lc = KeplerLightCurve(time, flux, flux_err, centroid_col=centroid_col, centroid_row=centroid_row, cadenceno=cadenceno, quality=quality) assert_array_equal(lc[::3].centroid_col, centroid_col[::3]) assert_array_equal(lc[4:].centroid_row, centroid_row[4:]) assert_array_equal(lc[10:2].quality, quality[10:2]) assert_array_equal(lc[3:6].cadenceno, cadenceno[3:6]) # The same is true for TessLightCurve lc = TessLightCurve(time, flux, flux_err, centroid_col=centroid_col, centroid_row=centroid_row, cadenceno=cadenceno, quality=quality) assert_array_equal(lc[::4].centroid_col, centroid_col[::4]) assert_array_equal(lc[5:].centroid_row, centroid_row[5:]) assert_array_equal(lc[10:3].quality, quality[10:3]) assert_array_equal(lc[4:6].cadenceno, cadenceno[4:6]) def test_boolean_masking(): lc = KeplerLightCurve(time=[1, 2, 3], flux=[1, 1, 10], quality=[0, 0, 200], cadenceno=[5, 6, 7]) assert_array_equal(lc[lc.flux < 5].time, [1, 2]) assert_array_equal(lc[lc.flux < 5].flux, [1, 1]) assert_array_equal(lc[lc.flux < 5].quality, [0, 0]) assert_array_equal(lc[lc.flux < 5].cadenceno, [5, 6]) def test_remove_nans(): """Does LightCurve.__getitem__() allow slicing?""" time, flux = [1, 2, 3, 4], [100, np.nan, 102, np.nan] lc_clean = LightCurve(time, flux).remove_nans() assert_array_equal(lc_clean.time, [1, 3]) assert_array_equal(lc_clean.flux, [100, 102]) def test_remove_outliers(): # Does `remove_outliers()` remove outliers? lc = LightCurve([1, 2, 3, 4], [1, 1, 1000, 1]) lc_clean = lc.remove_outliers(sigma=1) assert_array_equal(lc_clean.time, [1, 2, 4]) assert_array_equal(lc_clean.flux, [1, 1, 1]) # It should also be possible to return the outlier mask lc_clean, outlier_mask = lc.remove_outliers(sigma=1, return_mask=True) assert(len(outlier_mask) == len(lc.flux)) assert(outlier_mask.sum() == 1) # Can we set sigma_lower and sigma_upper? lc = LightCurve(time=[1, 2, 3, 4, 5], flux=[1, 1000, 1, -1000, 1]) lc_clean = lc.remove_outliers(sigma_lower=float('inf'), sigma_upper=1) assert_array_equal(lc_clean.time, [1, 3, 4, 5]) assert_array_equal(lc_clean.flux, [1, 1, -1000, 1]) @pytest.mark.remote_data def test_properties(capfd): '''Test if the describe function produces an output. The output is 624 characters at the moment, but we might add more properties.''' lcf = KeplerLightCurveFile(TABBY_Q8) kplc = lcf.get_lightcurve('SAP_FLUX') kplc.show_properties() out, _ = capfd.readouterr() assert len(out) > 500 def test_flatten_with_nans(): """Flatten should not remove NaNs.""" lc = LightCurve(time=[1, 2, 3, 4, 5], flux=[np.nan, 1.1, 1.2, np.nan, 1.4], flux_err=[1.0, np.nan, 1.2, 1.3, np.nan]) flat_lc = lc.flatten(window_length=3) assert(len(flat_lc.time) == 5) assert(np.isfinite(flat_lc.flux).sum() == 3) assert(np.isfinite(flat_lc.flux_err).sum() == 3) def test_flatten_robustness(): """Test various special cases for flatten().""" # flatten should work with integer fluxes lc = LightCurve([1, 2, 3, 4, 5, 6], [10, 20, 30, 40, 50, 60]) expected_result = np.array([1., 1., 1., 1., 1., 1.]) flat_lc = lc.flatten(window_length=3, polyorder=1) assert_allclose(flat_lc.flux, expected_result) # flatten should work even if `window_length > len(flux)` flat_lc = lc.flatten(window_length=7, polyorder=1) assert_allclose(flat_lc.flux, flat_lc.flux / np.median(flat_lc.flux)) # flatten should work even if `polyorder >= window_length` flat_lc = lc.flatten(window_length=3, polyorder=3) assert_allclose(flat_lc.flux, expected_result) flat_lc = lc.flatten(window_length=3, polyorder=5) assert_allclose(flat_lc.flux, expected_result) # flatten should work even if `break_tolerance = None` flat_lc = lc.flatten(window_length=3, break_tolerance=None) assert_allclose(flat_lc.flux, expected_result) flat_lc, trend_lc = lc.flatten(return_trend=True) assert_allclose(flat_lc.time, trend_lc.time) assert_allclose(lc.flux, flat_lc.flux * trend_lc.flux) def test_iterative_flatten(): '''Test the iterative sigma clipping in flatten ''' # Test a light curve with a single, buried outlier. x = np.arange(2000) y = np.sin(x/200)/100 + 1 y[250] -= 0.01 lc = LightCurve(x, y) # Flatten it c, f = lc.flatten(window_length=25, niters=2, sigma=3, return_trend=True) # Only one outlier should remain. assert np.isclose(c.flux, 1, rtol=0.00001).sum() == 1999 mask = np.zeros(2000, dtype=bool) mask[250] = True # Flatten it using a mask to remove the bad data point. c, f = lc.flatten(window_length=25, niters=1, sigma=3, mask=mask, return_trend=True) # Only one outlier should remain. assert np.isclose(c.flux, 1, rtol=0.00001).sum() == 1999 def test_fill_gaps(): lc = LightCurve([1,2,3,4,6,7,8], [1,1,1,1,1,1,1]) nlc = lc.fill_gaps() assert(len(lc.time) < len(nlc.time)) assert(np.any(nlc.time == 5)) assert(np.all(nlc.flux == 1)) lc = LightCurve([1,2,3,4,6,7,8], [1,1,np.nan,1,1,1,1]) nlc = lc.fill_gaps() assert(len(lc.time) < len(nlc.time)) assert(np.any(nlc.time == 5)) assert(np.all(nlc.flux == 1)) assert(np.all(np.isfinite(nlc.flux))) # Because fill_gaps() uses pandas, check that it works regardless of endianness # For details see https://github.com/KeplerGO/lightkurve/issues/188 lc = LightCurve(np.array([1, 2, 3, 4, 6, 7, 8], dtype='>f8'), np.array([1, 1, 1, np.nan, np.nan, 1, 1], dtype='>f8')) lc.fill_gaps() lc = LightCurve(np.array([1, 2, 3, 4, 6, 7, 8], dtype='<f8'), np.array([1, 1, 1, np.nan, np.nan, 1, 1], dtype='<f8')) lc.fill_gaps() def test_targetid(): """Is a generic targetid available on each type of LighCurve object?""" lc = LightCurve(time=[], targetid=5) assert lc.targetid == 5 # Can we assign a new value? lc.targetid = 99 assert lc.targetid == 99 # Does it work for Kepler? lc = KeplerLightCurve(time=[], targetid=10) assert lc.targetid == 10 # Can we assign a new value? lc.targetid = 99 assert lc.targetid == 99 # Does it work for TESS? lc = TessLightCurve(time=[], targetid=20) assert lc.targetid == 20 def test_regression_346(): """Regression test for https://github.com/KeplerGO/lightkurve/issues/346""" # This previously triggered an IndexError: KeplerLightCurveFile(K2_C08).PDCSAP_FLUX.to_corrector().correct().estimate_cdpp() def test_to_timeseries(): """Test the `LightCurve.to_timeseries()` method.""" time, flux, flux_err = range(3), np.ones(3), np.zeros(3) lc = LightCurve(time, flux, flux_err, time_format="jd") try: ts = lc.to_timeseries() assert_allclose(ts['time'].value, time) assert_allclose(ts['flux'], flux) assert_allclose(ts['flux_err'], flux_err) except ImportError: # Requires AstroPy v3.2 or later pass
the-stack_0_14452
"""empty message Revision ID: 5b4a3e3232c8 Revises: 6b071c7c748f Create Date: 2021-03-13 23:07:54.586777 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '5b4a3e3232c8' down_revision = '6b071c7c748f' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('predictions', sa.Column('confidence', sa.Float(), nullable=True)) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column('predictions', 'confidence') # ### end Alembic commands ###
the-stack_0_14455
# engine/base.py # Copyright (C) 2005-2020 the SQLAlchemy authors and contributors # <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php from __future__ import with_statement import contextlib import sys from .interfaces import Connectable from .interfaces import ExceptionContext from .util import _distill_params from .. import exc from .. import inspection from .. import log from .. import util from ..sql import compiler from ..sql import util as sql_util """Defines :class:`.Connection` and :class:`.Engine`. """ class Connection(Connectable): """Provides high-level functionality for a wrapped DB-API connection. Provides execution support for string-based SQL statements as well as :class:`.ClauseElement`, :class:`.Compiled` and :class:`.DefaultGenerator` objects. Provides a :meth:`begin` method to return :class:`.Transaction` objects. The Connection object is **not** thread-safe. While a Connection can be shared among threads using properly synchronized access, it is still possible that the underlying DBAPI connection may not support shared access between threads. Check the DBAPI documentation for details. The Connection object represents a single dbapi connection checked out from the connection pool. In this state, the connection pool has no affect upon the connection, including its expiration or timeout state. For the connection pool to properly manage connections, connections should be returned to the connection pool (i.e. ``connection.close()``) whenever the connection is not in use. .. index:: single: thread safety; Connection """ _schema_translate_map = None def __init__( self, engine, connection=None, close_with_result=False, _branch_from=None, _execution_options=None, _dispatch=None, _has_events=None, ): """Construct a new Connection. """ self.engine = engine self.dialect = engine.dialect self.__branch_from = _branch_from self.__branch = _branch_from is not None if _branch_from: self.__connection = connection self._execution_options = _execution_options self._echo = _branch_from._echo self.should_close_with_result = False self.dispatch = _dispatch self._has_events = _branch_from._has_events self._schema_translate_map = _branch_from._schema_translate_map else: self.__connection = ( connection if connection is not None else engine.raw_connection() ) self.__transaction = None self.__savepoint_seq = 0 self.should_close_with_result = close_with_result self.__invalid = False self.__can_reconnect = True self._echo = self.engine._should_log_info() if _has_events is None: # if _has_events is sent explicitly as False, # then don't join the dispatch of the engine; we don't # want to handle any of the engine's events in that case. self.dispatch = self.dispatch._join(engine.dispatch) self._has_events = _has_events or ( _has_events is None and engine._has_events ) assert not _execution_options self._execution_options = engine._execution_options if self._has_events or self.engine._has_events: self.dispatch.engine_connect(self, self.__branch) def schema_for_object(self, obj): """return the schema name for the given schema item taking into account current schema translate map. """ name = obj.schema schema_translate_map = self._schema_translate_map if ( schema_translate_map and name in schema_translate_map and obj._use_schema_map ): return schema_translate_map[name] else: return name def _branch(self): """Return a new Connection which references this Connection's engine and connection; but does not have close_with_result enabled, and also whose close() method does nothing. The Core uses this very sparingly, only in the case of custom SQL default functions that are to be INSERTed as the primary key of a row where we need to get the value back, so we have to invoke it distinctly - this is a very uncommon case. Userland code accesses _branch() when the connect() method is called. The branched connection acts as much as possible like the parent, except that it stays connected when a close() event occurs. """ if self.__branch_from: return self.__branch_from._branch() else: return self.engine._connection_cls( self.engine, self.__connection, _branch_from=self, _execution_options=self._execution_options, _has_events=self._has_events, _dispatch=self.dispatch, ) @property def _root(self): """return the 'root' connection. Returns 'self' if this connection is not a branch, else returns the root connection from which we ultimately branched. """ if self.__branch_from: return self.__branch_from else: return self def _clone(self): """Create a shallow copy of this Connection. """ c = self.__class__.__new__(self.__class__) c.__dict__ = self.__dict__.copy() return c def __enter__(self): return self def __exit__(self, type_, value, traceback): self.close() def execution_options(self, **opt): r""" Set non-SQL options for the connection which take effect during execution. The method returns a copy of this :class:`.Connection` which references the same underlying DBAPI connection, but also defines the given execution options which will take effect for a call to :meth:`execute`. As the new :class:`.Connection` references the same underlying resource, it's usually a good idea to ensure that the copies will be discarded immediately, which is implicit if used as in:: result = connection.execution_options(stream_results=True).\ execute(stmt) Note that any key/value can be passed to :meth:`.Connection.execution_options`, and it will be stored in the ``_execution_options`` dictionary of the :class:`.Connection`. It is suitable for usage by end-user schemes to communicate with event listeners, for example. The keywords that are currently recognized by SQLAlchemy itself include all those listed under :meth:`.Executable.execution_options`, as well as others that are specific to :class:`.Connection`. :param autocommit: Available on: Connection, statement. When True, a COMMIT will be invoked after execution when executed in 'autocommit' mode, i.e. when an explicit transaction is not begun on the connection. Note that DBAPI connections by default are always in a transaction - SQLAlchemy uses rules applied to different kinds of statements to determine if COMMIT will be invoked in order to provide its "autocommit" feature. Typically, all INSERT/UPDATE/DELETE statements as well as CREATE/DROP statements have autocommit behavior enabled; SELECT constructs do not. Use this option when invoking a SELECT or other specific SQL construct where COMMIT is desired (typically when calling stored procedures and such), and an explicit transaction is not in progress. :param compiled_cache: Available on: Connection. A dictionary where :class:`.Compiled` objects will be cached when the :class:`.Connection` compiles a clause expression into a :class:`.Compiled` object. It is the user's responsibility to manage the size of this dictionary, which will have keys corresponding to the dialect, clause element, the column names within the VALUES or SET clause of an INSERT or UPDATE, as well as the "batch" mode for an INSERT or UPDATE statement. The format of this dictionary is not guaranteed to stay the same in future releases. Note that the ORM makes use of its own "compiled" caches for some operations, including flush operations. The caching used by the ORM internally supersedes a cache dictionary specified here. :param isolation_level: Available on: :class:`.Connection`. Set the transaction isolation level for the lifespan of this :class:`.Connection` object. Valid values include those string values accepted by the :paramref:`.create_engine.isolation_level` parameter passed to :func:`.create_engine`. These levels are semi-database specific; see individual dialect documentation for valid levels. The isolation level option applies the isolation level by emitting statements on the DBAPI connection, and **necessarily affects the original Connection object overall**, not just the copy that is returned by the call to :meth:`.Connection.execution_options` method. The isolation level will remain at the given setting until the DBAPI connection itself is returned to the connection pool, i.e. the :meth:`.Connection.close` method on the original :class:`.Connection` is called, where an event handler will emit additional statements on the DBAPI connection in order to revert the isolation level change. .. warning:: The ``isolation_level`` execution option should **not** be used when a transaction is already established, that is, the :meth:`.Connection.begin` method or similar has been called. A database cannot change the isolation level on a transaction in progress, and different DBAPIs and/or SQLAlchemy dialects may implicitly roll back or commit the transaction, or not affect the connection at all. .. note:: The ``isolation_level`` execution option is implicitly reset if the :class:`.Connection` is invalidated, e.g. via the :meth:`.Connection.invalidate` method, or if a disconnection error occurs. The new connection produced after the invalidation will not have the isolation level re-applied to it automatically. .. seealso:: :paramref:`.create_engine.isolation_level` - set per :class:`.Engine` isolation level :meth:`.Connection.get_isolation_level` - view current level :ref:`SQLite Transaction Isolation <sqlite_isolation_level>` :ref:`PostgreSQL Transaction Isolation <postgresql_isolation_level>` :ref:`MySQL Transaction Isolation <mysql_isolation_level>` :ref:`SQL Server Transaction Isolation <mssql_isolation_level>` :ref:`session_transaction_isolation` - for the ORM :param no_parameters: When ``True``, if the final parameter list or dictionary is totally empty, will invoke the statement on the cursor as ``cursor.execute(statement)``, not passing the parameter collection at all. Some DBAPIs such as psycopg2 and mysql-python consider percent signs as significant only when parameters are present; this option allows code to generate SQL containing percent signs (and possibly other characters) that is neutral regarding whether it's executed by the DBAPI or piped into a script that's later invoked by command line tools. :param stream_results: Available on: Connection, statement. Indicate to the dialect that results should be "streamed" and not pre-buffered, if possible. This is a limitation of many DBAPIs. The flag is currently understood only by the psycopg2, mysqldb and pymysql dialects. :param schema_translate_map: Available on: Connection, Engine. A dictionary mapping schema names to schema names, that will be applied to the :paramref:`.Table.schema` element of each :class:`.Table` encountered when SQL or DDL expression elements are compiled into strings; the resulting schema name will be converted based on presence in the map of the original name. .. versionadded:: 1.1 .. seealso:: :ref:`schema_translating` .. seealso:: :meth:`.Engine.execution_options` :meth:`.Executable.execution_options` :meth:`.Connection.get_execution_options` """ # noqa c = self._clone() c._execution_options = c._execution_options.union(opt) if self._has_events or self.engine._has_events: self.dispatch.set_connection_execution_options(c, opt) self.dialect.set_connection_execution_options(c, opt) return c def get_execution_options(self): """ Get the non-SQL options which will take effect during execution. .. versionadded:: 1.3 .. seealso:: :meth:`.Connection.execution_options` """ return self._execution_options @property def closed(self): """Return True if this connection is closed.""" return ( "_Connection__connection" not in self.__dict__ and not self.__can_reconnect ) @property def invalidated(self): """Return True if this connection was invalidated.""" return self._root.__invalid @property def connection(self): """The underlying DB-API connection managed by this Connection. .. seealso:: :ref:`dbapi_connections` """ try: return self.__connection except AttributeError: # escape "except AttributeError" before revalidating # to prevent misleading stacktraces in Py3K pass try: return self._revalidate_connection() except BaseException as e: self._handle_dbapi_exception(e, None, None, None, None) def get_isolation_level(self): """Return the current isolation level assigned to this :class:`.Connection`. This will typically be the default isolation level as determined by the dialect, unless if the :paramref:`.Connection.execution_options.isolation_level` feature has been used to alter the isolation level on a per-:class:`.Connection` basis. This attribute will typically perform a live SQL operation in order to procure the current isolation level, so the value returned is the actual level on the underlying DBAPI connection regardless of how this state was set. Compare to the :attr:`.Connection.default_isolation_level` accessor which returns the dialect-level setting without performing a SQL query. .. versionadded:: 0.9.9 .. seealso:: :attr:`.Connection.default_isolation_level` - view default level :paramref:`.create_engine.isolation_level` - set per :class:`.Engine` isolation level :paramref:`.Connection.execution_options.isolation_level` - set per :class:`.Connection` isolation level """ try: return self.dialect.get_isolation_level(self.connection) except BaseException as e: self._handle_dbapi_exception(e, None, None, None, None) @property def default_isolation_level(self): """The default isolation level assigned to this :class:`.Connection`. This is the isolation level setting that the :class:`.Connection` has when first procured via the :meth:`.Engine.connect` method. This level stays in place until the :paramref:`.Connection.execution_options.isolation_level` is used to change the setting on a per-:class:`.Connection` basis. Unlike :meth:`.Connection.get_isolation_level`, this attribute is set ahead of time from the first connection procured by the dialect, so SQL query is not invoked when this accessor is called. .. versionadded:: 0.9.9 .. seealso:: :meth:`.Connection.get_isolation_level` - view current level :paramref:`.create_engine.isolation_level` - set per :class:`.Engine` isolation level :paramref:`.Connection.execution_options.isolation_level` - set per :class:`.Connection` isolation level """ return self.dialect.default_isolation_level def _revalidate_connection(self): if self.__branch_from: return self.__branch_from._revalidate_connection() if self.__can_reconnect and self.__invalid: if self.__transaction is not None: raise exc.InvalidRequestError( "Can't reconnect until invalid " "transaction is rolled back" ) self.__connection = self.engine.raw_connection(_connection=self) self.__invalid = False return self.__connection raise exc.ResourceClosedError("This Connection is closed") @property def _connection_is_valid(self): # use getattr() for is_valid to support exceptions raised in # dialect initializer, where the connection is not wrapped in # _ConnectionFairy return getattr(self.__connection, "is_valid", False) @property def _still_open_and_connection_is_valid(self): return ( not self.closed and not self.invalidated and getattr(self.__connection, "is_valid", False) ) @property def info(self): """Info dictionary associated with the underlying DBAPI connection referred to by this :class:`.Connection`, allowing user-defined data to be associated with the connection. The data here will follow along with the DBAPI connection including after it is returned to the connection pool and used again in subsequent instances of :class:`.Connection`. """ return self.connection.info @util.deprecated_20(":meth:`.Connection.connect`") def connect(self, close_with_result=False): """Returns a branched version of this :class:`.Connection`. The :meth:`.Connection.close` method on the returned :class:`.Connection` can be called and this :class:`.Connection` will remain open. This method provides usage symmetry with :meth:`.Engine.connect`, including for usage with context managers. """ return self._branch() def invalidate(self, exception=None): """Invalidate the underlying DBAPI connection associated with this :class:`.Connection`. The underlying DBAPI connection is literally closed (if possible), and is discarded. Its source connection pool will typically lazily create a new connection to replace it. Upon the next use (where "use" typically means using the :meth:`.Connection.execute` method or similar), this :class:`.Connection` will attempt to procure a new DBAPI connection using the services of the :class:`.Pool` as a source of connectivity (e.g. a "reconnection"). If a transaction was in progress (e.g. the :meth:`.Connection.begin` method has been called) when :meth:`.Connection.invalidate` method is called, at the DBAPI level all state associated with this transaction is lost, as the DBAPI connection is closed. The :class:`.Connection` will not allow a reconnection to proceed until the :class:`.Transaction` object is ended, by calling the :meth:`.Transaction.rollback` method; until that point, any attempt at continuing to use the :class:`.Connection` will raise an :class:`~sqlalchemy.exc.InvalidRequestError`. This is to prevent applications from accidentally continuing an ongoing transactional operations despite the fact that the transaction has been lost due to an invalidation. The :meth:`.Connection.invalidate` method, just like auto-invalidation, will at the connection pool level invoke the :meth:`.PoolEvents.invalidate` event. .. seealso:: :ref:`pool_connection_invalidation` """ if self.invalidated: return if self.closed: raise exc.ResourceClosedError("This Connection is closed") if self._root._connection_is_valid: self._root.__connection.invalidate(exception) del self._root.__connection self._root.__invalid = True def detach(self): """Detach the underlying DB-API connection from its connection pool. E.g.:: with engine.connect() as conn: conn.detach() conn.execute(text("SET search_path TO schema1, schema2")) # work with connection # connection is fully closed (since we used "with:", can # also call .close()) This :class:`.Connection` instance will remain usable. When closed (or exited from a context manager context as above), the DB-API connection will be literally closed and not returned to its originating pool. This method can be used to insulate the rest of an application from a modified state on a connection (such as a transaction isolation level or similar). """ self.__connection.detach() def begin(self): """Begin a transaction and return a transaction handle. The returned object is an instance of :class:`.Transaction`. This object represents the "scope" of the transaction, which completes when either the :meth:`.Transaction.rollback` or :meth:`.Transaction.commit` method is called. Nested calls to :meth:`.begin` on the same :class:`.Connection` will return new :class:`.Transaction` objects that represent an emulated transaction within the scope of the enclosing transaction, that is:: trans = conn.begin() # outermost transaction trans2 = conn.begin() # "nested" trans2.commit() # does nothing trans.commit() # actually commits Calls to :meth:`.Transaction.commit` only have an effect when invoked via the outermost :class:`.Transaction` object, though the :meth:`.Transaction.rollback` method of any of the :class:`.Transaction` objects will roll back the transaction. .. seealso:: :meth:`.Connection.begin_nested` - use a SAVEPOINT :meth:`.Connection.begin_twophase` - use a two phase /XID transaction :meth:`.Engine.begin` - context manager available from :class:`.Engine` """ if self.__branch_from: return self.__branch_from.begin() if self.__transaction is None: self.__transaction = RootTransaction(self) return self.__transaction else: return Transaction(self, self.__transaction) def begin_nested(self): """Begin a nested transaction and return a transaction handle. The returned object is an instance of :class:`.NestedTransaction`. Nested transactions require SAVEPOINT support in the underlying database. Any transaction in the hierarchy may ``commit`` and ``rollback``, however the outermost transaction still controls the overall ``commit`` or ``rollback`` of the transaction of a whole. .. seealso:: :meth:`.Connection.begin` :meth:`.Connection.begin_twophase` """ if self.__branch_from: return self.__branch_from.begin_nested() if self.__transaction is None: self.__transaction = RootTransaction(self) else: self.__transaction = NestedTransaction(self, self.__transaction) return self.__transaction def begin_twophase(self, xid=None): """Begin a two-phase or XA transaction and return a transaction handle. The returned object is an instance of :class:`.TwoPhaseTransaction`, which in addition to the methods provided by :class:`.Transaction`, also provides a :meth:`~.TwoPhaseTransaction.prepare` method. :param xid: the two phase transaction id. If not supplied, a random id will be generated. .. seealso:: :meth:`.Connection.begin` :meth:`.Connection.begin_twophase` """ if self.__branch_from: return self.__branch_from.begin_twophase(xid=xid) if self.__transaction is not None: raise exc.InvalidRequestError( "Cannot start a two phase transaction when a transaction " "is already in progress." ) if xid is None: xid = self.engine.dialect.create_xid() self.__transaction = TwoPhaseTransaction(self, xid) return self.__transaction def recover_twophase(self): return self.engine.dialect.do_recover_twophase(self) def rollback_prepared(self, xid, recover=False): self.engine.dialect.do_rollback_twophase(self, xid, recover=recover) def commit_prepared(self, xid, recover=False): self.engine.dialect.do_commit_twophase(self, xid, recover=recover) def in_transaction(self): """Return True if a transaction is in progress.""" return ( self._root.__transaction is not None and self._root.__transaction.is_active ) def _begin_impl(self, transaction): assert not self.__branch_from if self._echo: self.engine.logger.info("BEGIN (implicit)") if self._has_events or self.engine._has_events: self.dispatch.begin(self) try: self.engine.dialect.do_begin(self.connection) if self.connection._reset_agent is None: self.connection._reset_agent = transaction except BaseException as e: self._handle_dbapi_exception(e, None, None, None, None) def _rollback_impl(self, deactivate_only=False): assert not self.__branch_from if self._has_events or self.engine._has_events: self.dispatch.rollback(self) if self._still_open_and_connection_is_valid: if self._echo: self.engine.logger.info("ROLLBACK") try: self.engine.dialect.do_rollback(self.connection) except BaseException as e: self._handle_dbapi_exception(e, None, None, None, None) finally: if ( not self.__invalid and self.connection._reset_agent is self.__transaction ): self.connection._reset_agent = None def _commit_impl(self, autocommit=False): assert not self.__branch_from if self._has_events or self.engine._has_events: self.dispatch.commit(self) if self._echo: self.engine.logger.info("COMMIT") try: self.engine.dialect.do_commit(self.connection) except BaseException as e: self._handle_dbapi_exception(e, None, None, None, None) finally: if ( not self.__invalid and self.connection._reset_agent is self.__transaction ): self.connection._reset_agent = None self.__transaction = None def _savepoint_impl(self, name=None): assert not self.__branch_from if self._has_events or self.engine._has_events: self.dispatch.savepoint(self, name) if name is None: self.__savepoint_seq += 1 name = "sa_savepoint_%s" % self.__savepoint_seq if self._still_open_and_connection_is_valid: self.engine.dialect.do_savepoint(self, name) return name def _discard_transaction(self, trans): if trans is self.__transaction: if trans._is_root: assert trans._parent is trans self.__transaction = None else: assert trans._parent is not trans self.__transaction = trans._parent def _rollback_to_savepoint_impl( self, name, context, deactivate_only=False ): assert not self.__branch_from if self._has_events or self.engine._has_events: self.dispatch.rollback_savepoint(self, name, context) if self._still_open_and_connection_is_valid: self.engine.dialect.do_rollback_to_savepoint(self, name) def _release_savepoint_impl(self, name, context): assert not self.__branch_from if self._has_events or self.engine._has_events: self.dispatch.release_savepoint(self, name, context) if self._still_open_and_connection_is_valid: self.engine.dialect.do_release_savepoint(self, name) self.__transaction = context def _begin_twophase_impl(self, transaction): assert not self.__branch_from if self._echo: self.engine.logger.info("BEGIN TWOPHASE (implicit)") if self._has_events or self.engine._has_events: self.dispatch.begin_twophase(self, transaction.xid) if self._still_open_and_connection_is_valid: self.engine.dialect.do_begin_twophase(self, transaction.xid) if self.connection._reset_agent is None: self.connection._reset_agent = transaction def _prepare_twophase_impl(self, xid): assert not self.__branch_from if self._has_events or self.engine._has_events: self.dispatch.prepare_twophase(self, xid) if self._still_open_and_connection_is_valid: assert isinstance(self.__transaction, TwoPhaseTransaction) self.engine.dialect.do_prepare_twophase(self, xid) def _rollback_twophase_impl(self, xid, is_prepared): assert not self.__branch_from if self._has_events or self.engine._has_events: self.dispatch.rollback_twophase(self, xid, is_prepared) if self._still_open_and_connection_is_valid: assert isinstance(self.__transaction, TwoPhaseTransaction) try: self.engine.dialect.do_rollback_twophase( self, xid, is_prepared ) finally: if self.connection._reset_agent is self.__transaction: self.connection._reset_agent = None self.__transaction = None else: self.__transaction = None def _commit_twophase_impl(self, xid, is_prepared): assert not self.__branch_from if self._has_events or self.engine._has_events: self.dispatch.commit_twophase(self, xid, is_prepared) if self._still_open_and_connection_is_valid: assert isinstance(self.__transaction, TwoPhaseTransaction) try: self.engine.dialect.do_commit_twophase(self, xid, is_prepared) finally: if self.connection._reset_agent is self.__transaction: self.connection._reset_agent = None self.__transaction = None else: self.__transaction = None def _autorollback(self): if not self._root.in_transaction(): self._root._rollback_impl() def close(self): """Close this :class:`.Connection`. This results in a release of the underlying database resources, that is, the DBAPI connection referenced internally. The DBAPI connection is typically restored back to the connection-holding :class:`.Pool` referenced by the :class:`.Engine` that produced this :class:`.Connection`. Any transactional state present on the DBAPI connection is also unconditionally released via the DBAPI connection's ``rollback()`` method, regardless of any :class:`.Transaction` object that may be outstanding with regards to this :class:`.Connection`. After :meth:`~.Connection.close` is called, the :class:`.Connection` is permanently in a closed state, and will allow no further operations. """ if self.__branch_from: util.warn_deprecated_20( "The .close() method on a so-called 'branched' connection is " "deprecated as of 1.4, as are 'branched' connections overall, " "and will be removed in a future release. If this is a " "default-handling function, don't close the connection." ) try: del self.__connection except AttributeError: pass finally: self.__can_reconnect = False return try: conn = self.__connection except AttributeError: pass else: conn.close() if conn._reset_agent is self.__transaction: conn._reset_agent = None # the close() process can end up invalidating us, # as the pool will call our transaction as the "reset_agent" # for rollback(), which can then cause an invalidation if not self.__invalid: del self.__connection self.__can_reconnect = False self.__transaction = None def scalar(self, object_, *multiparams, **params): """Executes and returns the first column of the first row. The underlying result/cursor is closed after execution. """ return self.execute(object_, *multiparams, **params).scalar() def execute(self, object_, *multiparams, **params): r"""Executes a SQL statement construct and returns a :class:`.ResultProxy`. :param object: The statement to be executed. May be one of: * a plain string (deprecated) * any :class:`.ClauseElement` construct that is also a subclass of :class:`.Executable`, such as a :func:`~.expression.select` construct * a :class:`.FunctionElement`, such as that generated by :data:`.func`, will be automatically wrapped in a SELECT statement, which is then executed. * a :class:`.DDLElement` object * a :class:`.DefaultGenerator` object * a :class:`.Compiled` object .. deprecated:: 2.0 passing a string to :meth:`.Connection.execute` is deprecated and will be removed in version 2.0. Use the :func:`~.expression.text` construct with :meth:`.Connection.execute`, or the :meth:`.Connection.exec_driver_sql` method to invoke a driver-level SQL string. :param \*multiparams/\**params: represent bound parameter values to be used in the execution. Typically, the format is either a collection of one or more dictionaries passed to \*multiparams:: conn.execute( table.insert(), {"id":1, "value":"v1"}, {"id":2, "value":"v2"} ) ...or individual key/values interpreted by \**params:: conn.execute( table.insert(), id=1, value="v1" ) In the case that a plain SQL string is passed, and the underlying DBAPI accepts positional bind parameters, a collection of tuples or individual values in \*multiparams may be passed:: conn.execute( "INSERT INTO table (id, value) VALUES (?, ?)", (1, "v1"), (2, "v2") ) conn.execute( "INSERT INTO table (id, value) VALUES (?, ?)", 1, "v1" ) Note above, the usage of a question mark "?" or other symbol is contingent upon the "paramstyle" accepted by the DBAPI in use, which may be any of "qmark", "named", "pyformat", "format", "numeric". See `pep-249 <http://www.python.org/dev/peps/pep-0249/>`_ for details on paramstyle. To execute a textual SQL statement which uses bound parameters in a DBAPI-agnostic way, use the :func:`~.expression.text` construct. .. deprecated:: 2.0 use of tuple or scalar positional parameters is deprecated. All params should be dicts or sequences of dicts. Use :meth:`.exec_driver_sql` to execute a plain string with tuple or scalar positional parameters. """ if isinstance(object_, util.string_types): util.warn_deprecated_20( "Passing a string to Connection.execute() is " "deprecated and will be removed in version 2.0. Use the " "text() construct, " "or the Connection.exec_driver_sql() method to invoke a " "driver-level SQL string." ) distilled_params = _distill_params(multiparams, params) return self._exec_driver_sql_distilled(object_, distilled_params) try: meth = object_._execute_on_connection except AttributeError as err: util.raise_( exc.ObjectNotExecutableError(object_), replace_context=err ) else: return meth(self, multiparams, params) def _execute_function(self, func, multiparams, params): """Execute a sql.FunctionElement object.""" return self._execute_clauseelement(func.select(), multiparams, params) def _execute_default(self, default, multiparams, params): """Execute a schema.ColumnDefault object.""" if self._has_events or self.engine._has_events: for fn in self.dispatch.before_execute: default, multiparams, params = fn( self, default, multiparams, params ) try: try: conn = self.__connection except AttributeError: # escape "except AttributeError" before revalidating # to prevent misleading stacktraces in Py3K conn = None if conn is None: conn = self._revalidate_connection() dialect = self.dialect ctx = dialect.execution_ctx_cls._init_default(dialect, self, conn) except BaseException as e: self._handle_dbapi_exception(e, None, None, None, None) ret = ctx._exec_default(None, default, None) if self.should_close_with_result: self.close() if self._has_events or self.engine._has_events: self.dispatch.after_execute( self, default, multiparams, params, ret ) return ret def _execute_ddl(self, ddl, multiparams, params): """Execute a schema.DDL object.""" if self._has_events or self.engine._has_events: for fn in self.dispatch.before_execute: ddl, multiparams, params = fn(self, ddl, multiparams, params) dialect = self.dialect compiled = ddl.compile( dialect=dialect, schema_translate_map=self._schema_translate_map ) ret = self._execute_context( dialect, dialect.execution_ctx_cls._init_ddl, compiled, None, compiled, ) if self._has_events or self.engine._has_events: self.dispatch.after_execute(self, ddl, multiparams, params, ret) return ret def _execute_clauseelement(self, elem, multiparams, params): """Execute a sql.ClauseElement object.""" if self._has_events or self.engine._has_events: for fn in self.dispatch.before_execute: elem, multiparams, params = fn(self, elem, multiparams, params) distilled_params = _distill_params(multiparams, params) if distilled_params: # ensure we don't retain a link to the view object for keys() # which links to the values, which we don't want to cache keys = list(distilled_params[0].keys()) else: keys = [] dialect = self.dialect if "compiled_cache" in self._execution_options: elem_cache_key, extracted_params = elem._generate_cache_key() key = ( dialect, elem_cache_key, tuple(sorted(keys)), bool(self._schema_translate_map), len(distilled_params) > 1, ) cache = self._execution_options["compiled_cache"] compiled_sql = cache.get(key) if compiled_sql is None: compiled_sql = elem.compile( dialect=dialect, cache_key=(elem_cache_key, extracted_params), column_keys=keys, inline=len(distilled_params) > 1, schema_translate_map=self._schema_translate_map, linting=self.dialect.compiler_linting | compiler.WARN_LINTING, ) cache[key] = compiled_sql else: extracted_params = None compiled_sql = elem.compile( dialect=dialect, column_keys=keys, inline=len(distilled_params) > 1, schema_translate_map=self._schema_translate_map, linting=self.dialect.compiler_linting | compiler.WARN_LINTING, ) ret = self._execute_context( dialect, dialect.execution_ctx_cls._init_compiled, compiled_sql, distilled_params, compiled_sql, distilled_params, elem, extracted_params, ) if self._has_events or self.engine._has_events: self.dispatch.after_execute(self, elem, multiparams, params, ret) return ret def _execute_compiled(self, compiled, multiparams, params): """Execute a sql.Compiled object.""" if self._has_events or self.engine._has_events: for fn in self.dispatch.before_execute: compiled, multiparams, params = fn( self, compiled, multiparams, params ) dialect = self.dialect parameters = _distill_params(multiparams, params) ret = self._execute_context( dialect, dialect.execution_ctx_cls._init_compiled, compiled, parameters, compiled, parameters, None, None, ) if self._has_events or self.engine._has_events: self.dispatch.after_execute( self, compiled, multiparams, params, ret ) return ret def _exec_driver_sql_distilled(self, statement, parameters): if self._has_events or self.engine._has_events: for fn in self.dispatch.before_execute: statement, multiparams, params = fn( self, statement, parameters, {} ) dialect = self.dialect ret = self._execute_context( dialect, dialect.execution_ctx_cls._init_statement, statement, parameters, statement, parameters, ) if self._has_events or self.engine._has_events: self.dispatch.after_execute(self, statement, parameters, {}) return ret def exec_driver_sql(self, statement, parameters=None): r"""Executes a SQL statement construct and returns a :class:`.ResultProxy`. :param statement: The statement str to be executed. Bound parameters must use the underlying DBAPI's paramstyle, such as "qmark", "pyformat", "format", etc. :param parameters: represent bound parameter values to be used in the execution. The format is one of: a dictionary of named parameters, a tuple of positional parameters, or a list containing either dictionaries or tuples for multiple-execute support. E.g. multiple dictionaries:: conn.exec_driver_sql( "INSERT INTO table (id, value) VALUES (%(id)s, %(value)s)", [{"id":1, "value":"v1"}, {"id":2, "value":"v2"}] ) Single dictionary:: conn.exec_driver_sql( "INSERT INTO table (id, value) VALUES (%(id)s, %(value)s)", dict(id=1, value="v1") ) Single tuple:: conn.exec_driver_sql( "INSERT INTO table (id, value) VALUES (?, ?)", (1, 'v1') ) .. seealso:: :pep:`249` """ if isinstance(parameters, list) and parameters: if not isinstance(parameters[0], (dict, tuple)): raise exc.ArgumentError( "List argument must consist only of tuples or dictionaries" ) elif isinstance(parameters, (dict, tuple)): parameters = [parameters] return self._exec_driver_sql_distilled(statement, parameters or ()) def _execute_context( self, dialect, constructor, statement, parameters, *args ): """Create an :class:`.ExecutionContext` and execute, returning a :class:`.ResultProxy`.""" try: try: conn = self.__connection except AttributeError: # escape "except AttributeError" before revalidating # to prevent misleading stacktraces in Py3K conn = None if conn is None: conn = self._revalidate_connection() context = constructor(dialect, self, conn, *args) except BaseException as e: self._handle_dbapi_exception( e, util.text_type(statement), parameters, None, None ) if self._root.__transaction and not self._root.__transaction.is_active: raise exc.InvalidRequestError( "This connection is on an inactive %stransaction. " "Please rollback() fully before proceeding." % ( "savepoint " if isinstance(self.__transaction, NestedTransaction) else "" ), code="8s2a", ) if context.compiled: context.pre_exec() cursor, statement, parameters = ( context.cursor, context.statement, context.parameters, ) if not context.executemany: parameters = parameters[0] if self._has_events or self.engine._has_events: for fn in self.dispatch.before_cursor_execute: statement, parameters = fn( self, cursor, statement, parameters, context, context.executemany, ) if self._echo: self.engine.logger.info(statement) if not self.engine.hide_parameters: self.engine.logger.info( "%r", sql_util._repr_params( parameters, batches=10, ismulti=context.executemany ), ) else: self.engine.logger.info( "[SQL parameters hidden due to hide_parameters=True]" ) evt_handled = False try: if context.executemany: if self.dialect._has_events: for fn in self.dialect.dispatch.do_executemany: if fn(cursor, statement, parameters, context): evt_handled = True break if not evt_handled: self.dialect.do_executemany( cursor, statement, parameters, context ) elif not parameters and context.no_parameters: if self.dialect._has_events: for fn in self.dialect.dispatch.do_execute_no_params: if fn(cursor, statement, context): evt_handled = True break if not evt_handled: self.dialect.do_execute_no_params( cursor, statement, context ) else: if self.dialect._has_events: for fn in self.dialect.dispatch.do_execute: if fn(cursor, statement, parameters, context): evt_handled = True break if not evt_handled: self.dialect.do_execute( cursor, statement, parameters, context ) if self._has_events or self.engine._has_events: self.dispatch.after_cursor_execute( self, cursor, statement, parameters, context, context.executemany, ) if context.compiled: context.post_exec() result = context._setup_result_proxy() if context.should_autocommit and self._root.__transaction is None: self._root._commit_impl(autocommit=True) # for "connectionless" execution, we have to close this # Connection after the statement is complete. if self.should_close_with_result: assert not context._is_future_result # ResultProxy already exhausted rows / has no rows. # close us now if result._soft_closed: self.close() else: # ResultProxy will close this Connection when no more # rows to fetch. result._autoclose_connection = True except BaseException as e: self._handle_dbapi_exception( e, statement, parameters, cursor, context ) return result def _cursor_execute(self, cursor, statement, parameters, context=None): """Execute a statement + params on the given cursor. Adds appropriate logging and exception handling. This method is used by DefaultDialect for special-case executions, such as for sequences and column defaults. The path of statement execution in the majority of cases terminates at _execute_context(). """ if self._has_events or self.engine._has_events: for fn in self.dispatch.before_cursor_execute: statement, parameters = fn( self, cursor, statement, parameters, context, False ) if self._echo: self.engine.logger.info(statement) self.engine.logger.info("%r", parameters) try: for fn in ( () if not self.dialect._has_events else self.dialect.dispatch.do_execute ): if fn(cursor, statement, parameters, context): break else: self.dialect.do_execute(cursor, statement, parameters, context) except BaseException as e: self._handle_dbapi_exception( e, statement, parameters, cursor, context ) if self._has_events or self.engine._has_events: self.dispatch.after_cursor_execute( self, cursor, statement, parameters, context, False ) def _safe_close_cursor(self, cursor): """Close the given cursor, catching exceptions and turning into log warnings. """ try: cursor.close() except Exception: # log the error through the connection pool's logger. self.engine.pool.logger.error( "Error closing cursor", exc_info=True ) _reentrant_error = False _is_disconnect = False def _handle_dbapi_exception( self, e, statement, parameters, cursor, context ): exc_info = sys.exc_info() is_exit_exception = not isinstance(e, Exception) if not self._is_disconnect: self._is_disconnect = ( isinstance(e, self.dialect.dbapi.Error) and not self.closed and self.dialect.is_disconnect( e, self.__connection if not self.invalidated else None, cursor, ) ) or (is_exit_exception and not self.closed) invalidate_pool_on_disconnect = not is_exit_exception if self._reentrant_error: util.raise_( exc.DBAPIError.instance( statement, parameters, e, self.dialect.dbapi.Error, hide_parameters=self.engine.hide_parameters, dialect=self.dialect, ismulti=context.executemany if context is not None else None, ), with_traceback=exc_info[2], from_=e, ) self._reentrant_error = True try: # non-DBAPI error - if we already got a context, # or there's no string statement, don't wrap it should_wrap = isinstance(e, self.dialect.dbapi.Error) or ( statement is not None and context is None and not is_exit_exception ) if should_wrap: sqlalchemy_exception = exc.DBAPIError.instance( statement, parameters, e, self.dialect.dbapi.Error, hide_parameters=self.engine.hide_parameters, connection_invalidated=self._is_disconnect, dialect=self.dialect, ismulti=context.executemany if context is not None else None, ) else: sqlalchemy_exception = None newraise = None if ( self._has_events or self.engine._has_events ) and not self._execution_options.get( "skip_user_error_events", False ): ctx = ExceptionContextImpl( e, sqlalchemy_exception, self.engine, self, cursor, statement, parameters, context, self._is_disconnect, invalidate_pool_on_disconnect, ) for fn in self.dispatch.handle_error: try: # handler returns an exception; # call next handler in a chain per_fn = fn(ctx) if per_fn is not None: ctx.chained_exception = newraise = per_fn except Exception as _raised: # handler raises an exception - stop processing newraise = _raised break if self._is_disconnect != ctx.is_disconnect: self._is_disconnect = ctx.is_disconnect if sqlalchemy_exception: sqlalchemy_exception.connection_invalidated = ( ctx.is_disconnect ) # set up potentially user-defined value for # invalidate pool. invalidate_pool_on_disconnect = ( ctx.invalidate_pool_on_disconnect ) if should_wrap and context: context.handle_dbapi_exception(e) if not self._is_disconnect: if cursor: self._safe_close_cursor(cursor) with util.safe_reraise(warn_only=True): self._autorollback() if newraise: util.raise_(newraise, with_traceback=exc_info[2], from_=e) elif should_wrap: util.raise_( sqlalchemy_exception, with_traceback=exc_info[2], from_=e ) else: util.raise_(exc_info[1], with_traceback=exc_info[2]) finally: del self._reentrant_error if self._is_disconnect: del self._is_disconnect if not self.invalidated: dbapi_conn_wrapper = self.__connection if invalidate_pool_on_disconnect: self.engine.pool._invalidate(dbapi_conn_wrapper, e) self.invalidate(e) if self.should_close_with_result: self.close() @classmethod def _handle_dbapi_exception_noconnection(cls, e, dialect, engine): exc_info = sys.exc_info() is_disconnect = dialect.is_disconnect(e, None, None) should_wrap = isinstance(e, dialect.dbapi.Error) if should_wrap: sqlalchemy_exception = exc.DBAPIError.instance( None, None, e, dialect.dbapi.Error, hide_parameters=engine.hide_parameters, connection_invalidated=is_disconnect, ) else: sqlalchemy_exception = None newraise = None if engine._has_events: ctx = ExceptionContextImpl( e, sqlalchemy_exception, engine, None, None, None, None, None, is_disconnect, True, ) for fn in engine.dispatch.handle_error: try: # handler returns an exception; # call next handler in a chain per_fn = fn(ctx) if per_fn is not None: ctx.chained_exception = newraise = per_fn except Exception as _raised: # handler raises an exception - stop processing newraise = _raised break if sqlalchemy_exception and is_disconnect != ctx.is_disconnect: sqlalchemy_exception.connection_invalidated = ( is_disconnect ) = ctx.is_disconnect if newraise: util.raise_(newraise, with_traceback=exc_info[2], from_=e) elif should_wrap: util.raise_( sqlalchemy_exception, with_traceback=exc_info[2], from_=e ) else: util.raise_(exc_info[1], with_traceback=exc_info[2]) def _run_ddl_visitor(self, visitorcallable, element, **kwargs): """run a DDL visitor. This method is only here so that the MockConnection can change the options given to the visitor so that "checkfirst" is skipped. """ visitorcallable(self.dialect, self, **kwargs).traverse_single(element) @util.deprecated( "1.4", "The :meth:`.Connection.transaction` method is deprecated and will be " "removed in a future release. Use the :meth:`.Engine.begin` " "context manager instead.", ) def transaction(self, callable_, *args, **kwargs): r"""Execute the given function within a transaction boundary. The function is passed this :class:`.Connection` as the first argument, followed by the given \*args and \**kwargs, e.g.:: def do_something(conn, x, y): conn.execute(text("some statement"), {'x':x, 'y':y}) conn.transaction(do_something, 5, 10) The operations inside the function are all invoked within the context of a single :class:`.Transaction`. Upon success, the transaction is committed. If an exception is raised, the transaction is rolled back before propagating the exception. .. note:: The :meth:`.transaction` method is superseded by the usage of the Python ``with:`` statement, which can be used with :meth:`.Connection.begin`:: with conn.begin(): conn.execute(text("some statement"), {'x':5, 'y':10}) As well as with :meth:`.Engine.begin`:: with engine.begin() as conn: conn.execute(text("some statement"), {'x':5, 'y':10}) .. seealso:: :meth:`.Engine.begin` - engine-level transactional context :meth:`.Engine.transaction` - engine-level version of :meth:`.Connection.transaction` """ kwargs["_sa_skip_warning"] = True trans = self.begin() try: ret = self.run_callable(callable_, *args, **kwargs) trans.commit() return ret except: with util.safe_reraise(): trans.rollback() @util.deprecated( "1.4", "The :meth:`.Connection.run_callable` method is deprecated and will " "be removed in a future release. Use a context manager instead.", ) def run_callable(self, callable_, *args, **kwargs): r"""Given a callable object or function, execute it, passing a :class:`.Connection` as the first argument. The given \*args and \**kwargs are passed subsequent to the :class:`.Connection` argument. This function, along with :meth:`.Engine.run_callable`, allows a function to be run with a :class:`.Connection` or :class:`.Engine` object without the need to know which one is being dealt with. """ return callable_(self, *args, **kwargs) class ExceptionContextImpl(ExceptionContext): """Implement the :class:`.ExceptionContext` interface.""" def __init__( self, exception, sqlalchemy_exception, engine, connection, cursor, statement, parameters, context, is_disconnect, invalidate_pool_on_disconnect, ): self.engine = engine self.connection = connection self.sqlalchemy_exception = sqlalchemy_exception self.original_exception = exception self.execution_context = context self.statement = statement self.parameters = parameters self.is_disconnect = is_disconnect self.invalidate_pool_on_disconnect = invalidate_pool_on_disconnect class Transaction(object): """Represent a database transaction in progress. The :class:`.Transaction` object is procured by calling the :meth:`~.Connection.begin` method of :class:`.Connection`:: from sqlalchemy import create_engine engine = create_engine("postgresql://scott:tiger@localhost/test") connection = engine.connect() trans = connection.begin() connection.execute(text("insert into x (a, b) values (1, 2)")) trans.commit() The object provides :meth:`.rollback` and :meth:`.commit` methods in order to control transaction boundaries. It also implements a context manager interface so that the Python ``with`` statement can be used with the :meth:`.Connection.begin` method:: with connection.begin(): connection.execute(text("insert into x (a, b) values (1, 2)")) The Transaction object is **not** threadsafe. .. seealso:: :meth:`.Connection.begin` :meth:`.Connection.begin_twophase` :meth:`.Connection.begin_nested` .. index:: single: thread safety; Transaction """ _is_root = False def __init__(self, connection, parent): self.connection = connection self._actual_parent = parent self.is_active = True def _deactivate(self): self.is_active = False @property def _parent(self): return self._actual_parent or self def close(self): """Close this :class:`.Transaction`. If this transaction is the base transaction in a begin/commit nesting, the transaction will rollback(). Otherwise, the method returns. This is used to cancel a Transaction without affecting the scope of an enclosing transaction. """ if not self._parent.is_active: return if self._parent is self: self.rollback() def rollback(self): """Roll back this :class:`.Transaction`. """ if self._parent.is_active: self._do_rollback() self.is_active = False self.connection._discard_transaction(self) def _do_rollback(self): self._parent._deactivate() def commit(self): """Commit this :class:`.Transaction`.""" if not self._parent.is_active: raise exc.InvalidRequestError("This transaction is inactive") self._do_commit() self.is_active = False def _do_commit(self): pass def __enter__(self): return self def __exit__(self, type_, value, traceback): if type_ is None and self.is_active: try: self.commit() except: with util.safe_reraise(): self.rollback() else: self.rollback() class RootTransaction(Transaction): _is_root = True def __init__(self, connection): super(RootTransaction, self).__init__(connection, None) self.connection._begin_impl(self) def _deactivate(self): self._do_rollback(deactivate_only=True) self.is_active = False def _do_rollback(self, deactivate_only=False): if self.is_active: self.connection._rollback_impl(deactivate_only=deactivate_only) def _do_commit(self): if self.is_active: self.connection._commit_impl() class NestedTransaction(Transaction): """Represent a 'nested', or SAVEPOINT transaction. A new :class:`.NestedTransaction` object may be procured using the :meth:`.Connection.begin_nested` method. The interface is the same as that of :class:`.Transaction`. """ def __init__(self, connection, parent): super(NestedTransaction, self).__init__(connection, parent) self._savepoint = self.connection._savepoint_impl() def _deactivate(self): self._do_rollback(deactivate_only=True) self.is_active = False def _do_rollback(self, deactivate_only=False): if self.is_active: self.connection._rollback_to_savepoint_impl( self._savepoint, self._parent ) def _do_commit(self): if self.is_active: self.connection._release_savepoint_impl( self._savepoint, self._parent ) class TwoPhaseTransaction(Transaction): """Represent a two-phase transaction. A new :class:`.TwoPhaseTransaction` object may be procured using the :meth:`.Connection.begin_twophase` method. The interface is the same as that of :class:`.Transaction` with the addition of the :meth:`prepare` method. """ def __init__(self, connection, xid): super(TwoPhaseTransaction, self).__init__(connection, None) self._is_prepared = False self.xid = xid self.connection._begin_twophase_impl(self) def prepare(self): """Prepare this :class:`.TwoPhaseTransaction`. After a PREPARE, the transaction can be committed. """ if not self._parent.is_active: raise exc.InvalidRequestError("This transaction is inactive") self.connection._prepare_twophase_impl(self.xid) self._is_prepared = True def _do_rollback(self): self.connection._rollback_twophase_impl(self.xid, self._is_prepared) def _do_commit(self): self.connection._commit_twophase_impl(self.xid, self._is_prepared) class Engine(Connectable, log.Identified): """ Connects a :class:`~sqlalchemy.pool.Pool` and :class:`~sqlalchemy.engine.interfaces.Dialect` together to provide a source of database connectivity and behavior. An :class:`.Engine` object is instantiated publicly using the :func:`~sqlalchemy.create_engine` function. .. seealso:: :doc:`/core/engines` :ref:`connections_toplevel` """ _execution_options = util.immutabledict() _has_events = False _connection_cls = Connection _schema_translate_map = None def __init__( self, pool, dialect, url, logging_name=None, echo=None, execution_options=None, hide_parameters=False, ): self.pool = pool self.url = url self.dialect = dialect if logging_name: self.logging_name = logging_name self.echo = echo self.hide_parameters = hide_parameters log.instance_logger(self, echoflag=echo) if execution_options: self.update_execution_options(**execution_options) @property def engine(self): return self def update_execution_options(self, **opt): r"""Update the default execution_options dictionary of this :class:`.Engine`. The given keys/values in \**opt are added to the default execution options that will be used for all connections. The initial contents of this dictionary can be sent via the ``execution_options`` parameter to :func:`.create_engine`. .. seealso:: :meth:`.Connection.execution_options` :meth:`.Engine.execution_options` """ self._execution_options = self._execution_options.union(opt) self.dispatch.set_engine_execution_options(self, opt) self.dialect.set_engine_execution_options(self, opt) def execution_options(self, **opt): """Return a new :class:`.Engine` that will provide :class:`.Connection` objects with the given execution options. The returned :class:`.Engine` remains related to the original :class:`.Engine` in that it shares the same connection pool and other state: * The :class:`.Pool` used by the new :class:`.Engine` is the same instance. The :meth:`.Engine.dispose` method will replace the connection pool instance for the parent engine as well as this one. * Event listeners are "cascaded" - meaning, the new :class:`.Engine` inherits the events of the parent, and new events can be associated with the new :class:`.Engine` individually. * The logging configuration and logging_name is copied from the parent :class:`.Engine`. The intent of the :meth:`.Engine.execution_options` method is to implement "sharding" schemes where multiple :class:`.Engine` objects refer to the same connection pool, but are differentiated by options that would be consumed by a custom event:: primary_engine = create_engine("mysql://") shard1 = primary_engine.execution_options(shard_id="shard1") shard2 = primary_engine.execution_options(shard_id="shard2") Above, the ``shard1`` engine serves as a factory for :class:`.Connection` objects that will contain the execution option ``shard_id=shard1``, and ``shard2`` will produce :class:`.Connection` objects that contain the execution option ``shard_id=shard2``. An event handler can consume the above execution option to perform a schema switch or other operation, given a connection. Below we emit a MySQL ``use`` statement to switch databases, at the same time keeping track of which database we've established using the :attr:`.Connection.info` dictionary, which gives us a persistent storage space that follows the DBAPI connection:: from sqlalchemy import event from sqlalchemy.engine import Engine shards = {"default": "base", shard_1: "db1", "shard_2": "db2"} @event.listens_for(Engine, "before_cursor_execute") def _switch_shard(conn, cursor, stmt, params, context, executemany): shard_id = conn._execution_options.get('shard_id', "default") current_shard = conn.info.get("current_shard", None) if current_shard != shard_id: cursor.execute("use %s" % shards[shard_id]) conn.info["current_shard"] = shard_id .. seealso:: :meth:`.Connection.execution_options` - update execution options on a :class:`.Connection` object. :meth:`.Engine.update_execution_options` - update the execution options for a given :class:`.Engine` in place. :meth:`.Engine.get_execution_options` """ return OptionEngine(self, opt) def get_execution_options(self): """ Get the non-SQL options which will take effect during execution. .. versionadded: 1.3 .. seealso:: :meth:`.Engine.execution_options` """ return self._execution_options @property def name(self): """String name of the :class:`~sqlalchemy.engine.interfaces.Dialect` in use by this :class:`Engine`.""" return self.dialect.name @property def driver(self): """Driver name of the :class:`~sqlalchemy.engine.interfaces.Dialect` in use by this :class:`Engine`.""" return self.dialect.driver echo = log.echo_property() def __repr__(self): return "Engine(%r)" % self.url def dispose(self): """Dispose of the connection pool used by this :class:`.Engine`. This has the effect of fully closing all **currently checked in** database connections. Connections that are still checked out will **not** be closed, however they will no longer be associated with this :class:`.Engine`, so when they are closed individually, eventually the :class:`.Pool` which they are associated with will be garbage collected and they will be closed out fully, if not already closed on checkin. A new connection pool is created immediately after the old one has been disposed. This new pool, like all SQLAlchemy connection pools, does not make any actual connections to the database until one is first requested, so as long as the :class:`.Engine` isn't used again, no new connections will be made. .. seealso:: :ref:`engine_disposal` """ self.pool.dispose() self.pool = self.pool.recreate() self.dispatch.engine_disposed(self) def _execute_default(self, default): with self.connect() as conn: return conn._execute_default(default, (), {}) @contextlib.contextmanager def _optional_conn_ctx_manager(self, connection=None): if connection is None: with self.connect() as conn: yield conn else: yield connection class _trans_ctx(object): def __init__(self, conn, transaction, close_with_result): self.conn = conn self.transaction = transaction self.close_with_result = close_with_result def __enter__(self): return self.conn def __exit__(self, type_, value, traceback): if type_ is not None: self.transaction.rollback() else: self.transaction.commit() if not self.close_with_result: self.conn.close() def begin(self, close_with_result=False): """Return a context manager delivering a :class:`.Connection` with a :class:`.Transaction` established. E.g.:: with engine.begin() as conn: conn.execute( text("insert into table (x, y, z) values (1, 2, 3)") ) conn.execute(text("my_special_procedure(5)")) Upon successful operation, the :class:`.Transaction` is committed. If an error is raised, the :class:`.Transaction` is rolled back. The ``close_with_result`` flag is normally ``False``, and indicates that the :class:`.Connection` will be closed when the operation is complete. When set to ``True``, it indicates the :class:`.Connection` is in "single use" mode, where the :class:`.ResultProxy` returned by the first call to :meth:`.Connection.execute` will close the :class:`.Connection` when that :class:`.ResultProxy` has exhausted all result rows. .. seealso:: :meth:`.Engine.connect` - procure a :class:`.Connection` from an :class:`.Engine`. :meth:`.Connection.begin` - start a :class:`.Transaction` for a particular :class:`.Connection`. """ conn = self.connect(close_with_result=close_with_result) try: trans = conn.begin() except: with util.safe_reraise(): conn.close() return Engine._trans_ctx(conn, trans, close_with_result) @util.deprecated( "1.4", "The :meth:`.Engine.transaction` method is deprecated and will be " "removed in a future release. Use the :meth:`.Engine.begin` context " "manager instead.", ) def transaction(self, callable_, *args, **kwargs): r"""Execute the given function within a transaction boundary. The function is passed a :class:`.Connection` newly procured from :meth:`.Engine.connect` as the first argument, followed by the given \*args and \**kwargs. e.g.:: def do_something(conn, x, y): conn.execute(text("some statement"), {'x':x, 'y':y}) engine.transaction(do_something, 5, 10) The operations inside the function are all invoked within the context of a single :class:`.Transaction`. Upon success, the transaction is committed. If an exception is raised, the transaction is rolled back before propagating the exception. .. note:: The :meth:`.transaction` method is superseded by the usage of the Python ``with:`` statement, which can be used with :meth:`.Engine.begin`:: with engine.begin() as conn: conn.execute(text("some statement"), {'x':5, 'y':10}) .. seealso:: :meth:`.Engine.begin` - engine-level transactional context :meth:`.Connection.transaction` - connection-level version of :meth:`.Engine.transaction` """ kwargs["_sa_skip_warning"] = True with self.connect() as conn: return conn.transaction(callable_, *args, **kwargs) @util.deprecated( "1.4", "The :meth:`.Engine.run_callable` method is deprecated and will be " "removed in a future release. Use the :meth:`.Engine.connect` " "context manager instead.", ) def run_callable(self, callable_, *args, **kwargs): r"""Given a callable object or function, execute it, passing a :class:`.Connection` as the first argument. The given \*args and \**kwargs are passed subsequent to the :class:`.Connection` argument. This function, along with :meth:`.Connection.run_callable`, allows a function to be run with a :class:`.Connection` or :class:`.Engine` object without the need to know which one is being dealt with. """ kwargs["_sa_skip_warning"] = True with self.connect() as conn: return conn.run_callable(callable_, *args, **kwargs) def _run_ddl_visitor(self, visitorcallable, element, **kwargs): with self.connect() as conn: conn._run_ddl_visitor(visitorcallable, element, **kwargs) @util.deprecated_20( ":meth:`.Engine.execute`", alternative="All statement execution in SQLAlchemy 2.0 is performed " "by the :meth:`.Connection.execute` method of :class:`.Connection`, " "or in the ORM by the :meth:`.Session.execute` method of " ":class:`.Session`.", ) def execute(self, statement, *multiparams, **params): """Executes the given construct and returns a :class:`.ResultProxy`. The arguments are the same as those used by :meth:`.Connection.execute`. Here, a :class:`.Connection` is acquired using the :meth:`~.Engine.connect` method, and the statement executed with that connection. The returned :class:`.ResultProxy` is flagged such that when the :class:`.ResultProxy` is exhausted and its underlying cursor is closed, the :class:`.Connection` created here will also be closed, which allows its associated DBAPI connection resource to be returned to the connection pool. """ connection = self.connect(close_with_result=True) return connection.execute(statement, *multiparams, **params) @util.deprecated_20( ":meth:`.Engine.scalar`", alternative="All statement execution in SQLAlchemy 2.0 is performed " "by the :meth:`.Connection.execute` method of :class:`.Connection`, " "or in the ORM by the :meth:`.Session.execute` method of " ":class:`.Session`; the :meth:`.Result.scalar` method can then be " "used to return a scalar result.", ) def scalar(self, statement, *multiparams, **params): """Executes and returns the first column of the first row. The underlying result/cursor is closed after execution. """ return self.execute(statement, *multiparams, **params).scalar() def _execute_clauseelement(self, elem, multiparams=None, params=None): connection = self.connect(close_with_result=True) return connection._execute_clauseelement(elem, multiparams, params) def _execute_compiled(self, compiled, multiparams, params): connection = self.connect(close_with_result=True) return connection._execute_compiled(compiled, multiparams, params) def connect(self, close_with_result=False): """Return a new :class:`.Connection` object. The :class:`.Connection` object is a facade that uses a DBAPI connection internally in order to communicate with the database. This connection is procured from the connection-holding :class:`.Pool` referenced by this :class:`.Engine`. When the :meth:`~.Connection.close` method of the :class:`.Connection` object is called, the underlying DBAPI connection is then returned to the connection pool, where it may be used again in a subsequent call to :meth:`~.Engine.connect`. """ return self._connection_cls(self, close_with_result=close_with_result) @util.deprecated( "1.4", "The :meth:`.Engine.table_names` method is deprecated and will be " "removed in a future release. Please refer to " ":meth:`.Inspector.get_table_names`.", ) def table_names(self, schema=None, connection=None): """Return a list of all table names available in the database. :param schema: Optional, retrieve names from a non-default schema. :param connection: Optional, use a specified connection. """ with self._optional_conn_ctx_manager(connection) as conn: insp = inspection.inspect(conn) return insp.get_table_names(schema) @util.deprecated( "1.4", "The :meth:`.Engine.has_table` method is deprecated and will be " "removed in a future release. Please refer to " ":meth:`.Inspector.has_table`.", ) def has_table(self, table_name, schema=None): """Return True if the given backend has a table of the given name. .. seealso:: :ref:`metadata_reflection_inspector` - detailed schema inspection using the :class:`.Inspector` interface. :class:`.quoted_name` - used to pass quoting information along with a schema identifier. """ with self._optional_conn_ctx_manager(None) as conn: insp = inspection.inspect(conn) return insp.has_table(table_name, schema=schema) def _wrap_pool_connect(self, fn, connection): dialect = self.dialect try: return fn() except dialect.dbapi.Error as e: if connection is None: Connection._handle_dbapi_exception_noconnection( e, dialect, self ) else: util.raise_( sys.exc_info()[1], with_traceback=sys.exc_info()[2] ) def raw_connection(self, _connection=None): """Return a "raw" DBAPI connection from the connection pool. The returned object is a proxied version of the DBAPI connection object used by the underlying driver in use. The object will have all the same behavior as the real DBAPI connection, except that its ``close()`` method will result in the connection being returned to the pool, rather than being closed for real. This method provides direct DBAPI connection access for special situations when the API provided by :class:`.Connection` is not needed. When a :class:`.Connection` object is already present, the DBAPI connection is available using the :attr:`.Connection.connection` accessor. .. seealso:: :ref:`dbapi_connections` """ return self._wrap_pool_connect(self.pool.connect, _connection) class OptionEngine(Engine): _sa_propagate_class_events = False def __init__(self, proxied, execution_options): self._proxied = proxied self.url = proxied.url self.dialect = proxied.dialect self.logging_name = proxied.logging_name self.echo = proxied.echo self.hide_parameters = proxied.hide_parameters log.instance_logger(self, echoflag=self.echo) # note: this will propagate events that are assigned to the parent # engine after this OptionEngine is created. Since we share # the events of the parent we also disallow class-level events # to apply to the OptionEngine class directly. # # the other way this can work would be to transfer existing # events only, using: # self.dispatch._update(proxied.dispatch) # # that might be more appropriate however it would be a behavioral # change for logic that assigns events to the parent engine and # would like it to take effect for the already-created sub-engine. self.dispatch = self.dispatch._join(proxied.dispatch) self._execution_options = proxied._execution_options self.update_execution_options(**execution_options) def _get_pool(self): return self._proxied.pool def _set_pool(self, pool): self._proxied.pool = pool pool = property(_get_pool, _set_pool) def _get_has_events(self): return self._proxied._has_events or self.__dict__.get( "_has_events", False ) def _set_has_events(self, value): self.__dict__["_has_events"] = value _has_events = property(_get_has_events, _set_has_events)
the-stack_0_14456
"""Test the TcEx API Module.""" # standard library import datetime import os import time from random import randint # third-party import pytest from pytest import FixtureRequest # first-party from tcex.api.tc.v3.tql.tql_operator import TqlOperator from tests.api.tc.v3.v3_helpers import TestV3, V3Helper class TestNotes(TestV3): """Test TcEx API Interface.""" v3 = None def setup_method(self): """Configure setup before all tests.""" print('') # ensure any following print statements will be on new line self.v3_helper = V3Helper('notes') self.v3 = self.v3_helper.v3 self.tcex = self.v3_helper.tcex def teardown_method(self): """Configure teardown before all tests.""" if os.getenv('TEARDOWN_METHOD') is None: self.v3_helper.cleanup() def test_note_api_options(self): """Test filter keywords.""" super().obj_api_options() def test_note_filter_keywords(self): """Test filter keywords.""" super().obj_filter_keywords() def test_note_object_properties(self): """Test properties.""" super().obj_properties() def test_note_object_properties_extra(self): """Test properties.""" super().obj_properties_extra() def _test_note_on_obj(self, request, cm_object): common_note_data = { 'text': 'Generic Note Data. This is auto generated to ensure that adding a note ' 'does not remove already existing notes.' } notes = self.v3.notes() # [Pre-Requisite] - Add a note to the provided cm object to ensure that it does not get # replaced/removed cm_object.stage_note(common_note_data) cm_object.update() # [Pre-Requisite] - Add the note data to the appropriate object note_data = {'text': f'sample note for {request.node.name} test.'} # [Pre-Requisite] - Add the appropriate filter for the notes object if cm_object.type_.lower() == 'artifact': notes.filter.artifact_id(TqlOperator.EQ, cm_object.model.id) elif cm_object.type_.lower() == 'case': notes.filter.case_id(TqlOperator.EQ, cm_object.model.id) elif cm_object.type_.lower() == 'task': notes.filter.task_id(TqlOperator.EQ, cm_object.model.id) else: assert False, f'Invalid value {cm_object.type_} passed into _test_note_on_obj.' # [Create Testing] create the object note = self._stage_note(cm_object, note_data, specify_type=True) note = self.v3.note(id=note.model.id) note.get() # [Retrieve Testing] validate the object returned is the same object assert note.model.text == note_data.get('text') # [Retrieve Testing] validate the object got added to the object assert len(notes) == 2 for note in cm_object.notes: if note.model.text == note_data.get('text'): break else: assert False, f'No note found -> {note.model.id}' # [Update Testing] validate the object got updated note.model.text = 'updated note value' note.update() assert len(notes) == 2 for note in cm_object.notes: if note.model.text == 'updated note value': break else: assert False, f'Note on {cm_object.type_} not updated -> {note.model.id}' note.delete() # [Delete Testing] validate the object got deleted to the object assert len(notes) == 1 for remaining_note in cm_object.notes: if remaining_note.model.id == note.model.id: assert ( False ), f'Note found on {cm_object.type_} when it should not have been present.' # [Delete Testing] validate the object is removed with pytest.raises(RuntimeError) as exc_info: note.get() # [Delete Testing] assert error message contains the correct code # error -> "(952, 'Error during GET. API status code: 404, ..." assert '952' in str(exc_info.value) def test_note_on_case(self, request: FixtureRequest): """Test Note functions on a Case Object""" # [Pre-Requisite] - create case case = self.v3_helper.create_case() self._test_note_on_obj(request, case) def test_note_on_artifact(self, request: FixtureRequest): """Test Note functions on a Artifact Object""" # [Pre-Requisite] - create case case = self.v3_helper.create_case() # [Pre-Requisite] - create artifact artifact_data = { 'case_id': case.model.id, 'intel_type': 'indicator-ASN', 'summary': f'asn{randint(100, 999)}', 'type': 'ASN', } artifact = self.v3.artifact(**artifact_data) artifact.create() self._test_note_on_obj(request, artifact) def test_note_on_task(self, request: FixtureRequest): """Test Note functions on a Task Object""" # [Pre-Requisite] - create case case = self.v3_helper.create_case() # [Pre-Requisite] - create task task_data = { 'case_id': case.model.id, 'description': f'a description from {request.node.name}', 'name': f'name-{request.node.name}', 'workflow_phase': 0, 'workflow_step': 1, 'xid': f'{request.node.name}-{time.time()}', } task = self.v3.task(**task_data) task.create() self._test_note_on_obj(request, task) def test_note_get_many(self): """Test Artifact Get Many""" # [Pre-Requisite] - create case case = self.v3_helper.create_case() note_count = 10 note_ids = [] for _ in range(0, note_count): # [Create Testing] define object data note_data = { 'case_id': case.model.id, 'text': f'sample note randomint - {randint(100, 999)}', } # [Create Testing] create the object note = self.v3.note(**note_data) # [Create Testing] create the object to the TC API note.create() note_ids.append(note.model.id) # [Retrieve Testing] iterate over all object looking for needle notes = self.v3.notes(params={'resultLimit': 5}) notes.filter.case_id(TqlOperator.EQ, case.model.id) assert len(notes) == note_count for note in notes: assert note.model.id in note_ids note_ids.remove(note.model.id) assert not note_ids, 'Not all artifacts were returned.' def test_note_get_by_tql_filter_fail_tql(self): """Test Artifact Get by TQL""" # retrieve object using TQL notes = self.v3.notes() notes.filter.tql = 'Invalid TQL' # [Fail Testing] validate the object is removed with pytest.raises(RuntimeError) as exc_info: for _ in notes: pass # [Fail Testing] assert error message contains the correct code # error -> "(950, 'Error during pagination. API status code: 400, ..." assert '950' in str(exc_info.value) assert notes.request.status_code == 400 def _stage_note(self, cm_object, note_data, specify_type=False): """Update the note object to include either the artifact/case/task/workflow_event field.""" keys = ['artifact_id', 'case_id', 'task_id', 'workflow_event_id'] for key in keys: if key in note_data: note_data.pop(key) if specify_type: note_data['text'] = note_data['text'] + f'Type -> {cm_object.type_}' if cm_object.type_.lower() == 'artifact': note_data['artifact_id'] = cm_object.model.id elif cm_object.type_.lower() == 'case': note_data['case_id'] = cm_object.model.id elif cm_object.type_.lower() == 'task': note_data['task_id'] = cm_object.model.id elif cm_object.type_.lower() == 'workflow event': note_data['workflow_event_id'] = cm_object.model.id else: assert False, f'Invalid value {cm_object.type_} passed into _test_note_on_obj' note = self.v3.note(**note_data) note.create() return note def test_note_all_filters(self, request: FixtureRequest): """Test TQL Filters for Notes""" # [Pre-Requisite] - create case note_data = {'text': f'sample note for {request.node.name} test.'} case = self.v3_helper.create_case() # [Pre-Requisite] - create workflow_event workflow_event_data = { 'case_id': case.model.id, 'summary': 'pytest test workflow event', } workflow_event = self.v3.workflow_event(**workflow_event_data) workflow_event.create() # [Pre-Requisite] - create task task_data = { 'case_id': case.model.id, 'description': f'a description from {request.node.name}', 'name': f'name-{request.node.name}', 'workflow_phase': 0, 'workflow_step': 1, 'xid': f'{request.node.name}-{time.time()}', } task = self.v3.task(**task_data) task.create() # [Pre-Requisite] - create artifact artifact_data = { 'case_id': case.model.id, 'intel_type': 'indicator-ASN', 'summary': f'asn{randint(100, 999)}', 'type': 'ASN', } artifact = self.v3.artifact(**artifact_data) artifact.create() note = self._stage_note(case, note_data, specify_type=True) notes = self.v3.notes() future = datetime.datetime.now() + datetime.timedelta(days=10) future = future.strftime('%Y-%m-%dT%H:%M:%S') past = datetime.datetime.now() + datetime.timedelta(days=-10) past = past.strftime('%Y-%m-%dT%H:%M:%S') # [Filter Testing] case_id notes.filter.case_id(TqlOperator.EQ, case.model.id) # [Filter Testing] author # TODO: [PLAT-????] This fails if the user does not exist on the system # notes.filter.author(TqlOperator.NE, 'Invalid Author') # [Filter Testing] date_added notes.filter.date_added(TqlOperator.GT, past) # [Filter Testing] has_case -> using id since it's available notes.filter.has_case.id(TqlOperator.EQ, case.model.id) # [Filter Testing] id notes.filter.id(TqlOperator.EQ, note.model.id) # [Filter Testing] last_modified notes.filter.last_modified(TqlOperator.LT, future) # [Filter Testing] summary notes.filter.summary(TqlOperator.NE, 'Invalid Summary') for retrieved_note in notes: assert retrieved_note.model.text == note.model.text break else: assert False, f'No note found for tql -> {notes.tql.as_str}' notes = self.v3.notes() note = self._stage_note(artifact, note_data, specify_type=True) notes.filter.artifact_id(TqlOperator.EQ, artifact.model.id) notes.filter.has_artifact.id(TqlOperator.EQ, artifact.model.id) for retrieved_note in notes: assert retrieved_note.model.text == note.model.text break else: assert False, f'No note found for tql -> {notes.tql.as_str}' notes = self.v3.notes() note = self._stage_note(task, note_data, specify_type=True) notes.filter.task_id(TqlOperator.EQ, task.model.id) notes.filter.has_task.id(TqlOperator.EQ, task.model.id) assert len(notes) == 1, f'Invalid amount of notes retried for tql -> {notes.tql.as_str}' for retrieved_note in notes: assert retrieved_note.model.text == note.model.text break else: assert False, f'No note found for tql -> {notes.tql.as_str}' notes = self.v3.notes() note = self._stage_note(workflow_event, note_data, specify_type=True) notes.filter.workflow_event_id(TqlOperator.EQ, workflow_event.model.id) for retrieved_note in notes: assert retrieved_note.model.text == note.model.text break else: assert False, f'No note found for tql -> {notes.tql.as_str}'
the-stack_0_14458
from collections import Counter import logging from .kad_peerinfo import KadPeerHeap, create_kad_peerinfo from .utils import gather_dict log = logging.getLogger(__name__) class SpiderCrawl: """Crawl the network and look for given 160-bit keys.""" def __init__(self, protocol, node, peers, ksize, alpha): """ Create a new C{SpiderCrawl}er. Args: protocol: A :class:`~kademlia.protocol.KademliaProtocol` instance. node: A :class:`~kademlia.node.Node` representing the key we're looking for peers: A list of :class:`~kademlia.node.Node` instances that provide the entry point for the network ksize: The value for k based on the paper alpha: The value for alpha based on the paper """ self.protocol = protocol self.ksize = ksize self.alpha = alpha self.node = node self.nearest = KadPeerHeap(self.node, self.ksize) self.last_ids_crawled = [] log.info("creating spider with peers: %s", peers) self.nearest.push(peers) async def _find(self, rpcmethod): """ Get either a value or list of nodes. Args: rpcmethod: The protocol's callfindValue or call_find_node. The process: 1. calls find_* to current ALPHA nearest not already queried nodes, adding results to current nearest list of k nodes. 2. current nearest list needs to keep track of who has been queried already sort by nearest, keep KSIZE 3. if list is same as last time, next call should be to everyone not yet queried 4. repeat, unless nearest list has all been queried, then ur done """ log.info("crawling network with nearest: %s", str(tuple(self.nearest))) count = self.alpha if self.nearest.get_ids() == self.last_ids_crawled: count = len(self.nearest) self.last_ids_crawled = self.nearest.get_ids() dicts = {} for peer in self.nearest.get_uncontacted()[:count]: dicts[peer.peer_id_bytes] = rpcmethod(peer, self.node) self.nearest.mark_contacted(peer) found = await gather_dict(dicts) return await self._nodes_found(found) async def _nodes_found(self, responses): raise NotImplementedError class ValueSpiderCrawl(SpiderCrawl): def __init__(self, protocol, node, peers, ksize, alpha): SpiderCrawl.__init__(self, protocol, node, peers, ksize, alpha) # keep track of the single nearest node without value - per # section 2.3 so we can set the key there if found self.nearest_without_value = KadPeerHeap(self.node, 1) async def find(self): """Find either the closest nodes or the value requested.""" return await self._find(self.protocol.call_find_value) async def _nodes_found(self, responses): """Handle the result of an iteration in _find.""" toremove = [] found_values = [] for peerid, response in responses.items(): response = RPCFindResponse(response) if not response.happened(): toremove.append(peerid) elif response.has_value(): found_values.append(response.get_value()) else: peer = self.nearest.get_node(peerid) self.nearest_without_value.push(peer) self.nearest.push(response.get_node_list()) self.nearest.remove(toremove) if found_values: return await self._handle_found_values(found_values) if self.nearest.have_contacted_all(): # not found! return None return await self.find() async def _handle_found_values(self, values): """ We got some values! Exciting. But let's make sure they're all the same or freak out a little bit. Also, make sure we tell the nearest node that *didn't* have the value to store it. """ value_counts = Counter(values) if len(value_counts) != 1: log.warning( "Got multiple values for key %i: %s", self.node.xor_id, str(values) ) value = value_counts.most_common(1)[0][0] peer = self.nearest_without_value.popleft() if peer: await self.protocol.call_store(peer, self.node.peer_id_bytes, value) return value class NodeSpiderCrawl(SpiderCrawl): async def find(self): """Find the closest nodes.""" return await self._find(self.protocol.call_find_node) async def _nodes_found(self, responses): """Handle the result of an iteration in _find.""" toremove = [] for peerid, response in responses.items(): response = RPCFindResponse(response) if not response.happened(): toremove.append(peerid) else: self.nearest.push(response.get_node_list()) self.nearest.remove(toremove) if self.nearest.have_contacted_all(): return list(self.nearest) return await self.find() class RPCFindResponse: def __init__(self, response): """ A wrapper for the result of a RPC find. Args: response: This will be a tuple of (<response received>, <value>) where <value> will be a list of tuples if not found or a dictionary of {'value': v} where v is the value desired """ self.response = response def happened(self): """Did the other host actually respond?""" return self.response[0] def has_value(self): return isinstance(self.response[1], dict) def get_value(self): return self.response[1]["value"] def get_node_list(self): """ Get the node list in the response. If there's no value, this should be set. """ nodelist = self.response[1] or [] return [create_kad_peerinfo(*nodeple) for nodeple in nodelist]
the-stack_0_14459
from __future__ import division, unicode_literals, print_function, absolute_import # Ease the transition to Python 3 import os import labscript_utils.excepthook try: from labscript_utils import check_version except ImportError: raise ImportError('Require labscript_utils > 2.1.0') check_version('labscript_utils', '2.10.0', '3') # Splash screen from labscript_utils.splash import Splash splash = Splash(os.path.join(os.path.dirname(__file__), 'lyse.svg')) splash.show() splash.update_text('importing standard library modules') # stdlib imports import sys import socket import logging import threading import signal import subprocess import time import traceback import pprint import ast # 3rd party imports: splash.update_text('importing numpy') import numpy as np splash.update_text('importing h5_lock and h5py') import labscript_utils.h5_lock import h5py splash.update_text('importing pandas') import pandas splash.update_text('importing Qt') check_version('qtutils', '2.2.2', '3.0.0') splash.update_text('importing labscript suite modules') check_version('labscript_utils', '2.12.4', '3') from labscript_utils.ls_zprocess import ZMQServer, ProcessTree import zprocess from labscript_utils.labconfig import LabConfig, config_prefix from labscript_utils.setup_logging import setup_logging from labscript_utils.qtwidgets.headerview_with_widgets import HorizontalHeaderViewWithWidgets from labscript_utils.qtwidgets.outputbox import OutputBox import labscript_utils.shared_drive as shared_drive from lyse.dataframe_utilities import (concat_with_padding, get_dataframe_from_shot, replace_with_padding) from qtutils.qt import QtCore, QtGui, QtWidgets from qtutils.qt.QtCore import pyqtSignal as Signal from qtutils import inmain_decorator, inmain, UiLoader, DisconnectContextManager from qtutils.auto_scroll_to_end import set_auto_scroll_to_end import qtutils.icons from labscript_utils import PY2 if PY2: str = unicode import Queue as queue else: import queue from lyse import LYSE_DIR process_tree = ProcessTree.instance() # Set a meaningful name for zlock client id: process_tree.zlock_client.set_process_name('lyse') def set_win_appusermodel(window_id): from labscript_utils.winshell import set_appusermodel, appids, app_descriptions icon_path = os.path.join(LYSE_DIR, 'lyse.ico') executable = sys.executable.lower() if not executable.endswith('w.exe'): executable = executable.replace('.exe', 'w.exe') relaunch_command = executable + ' ' + os.path.join(LYSE_DIR, '__main__.py') relaunch_display_name = app_descriptions['lyse'] set_appusermodel(window_id, appids['lyse'], icon_path, relaunch_command, relaunch_display_name) @inmain_decorator() def error_dialog(message): QtWidgets.QMessageBox.warning(app.ui, 'lyse', message) @inmain_decorator() def question_dialog(message): reply = QtWidgets.QMessageBox.question(app.ui, 'lyse', message, QtWidgets.QMessageBox.Yes | QtWidgets.QMessageBox.No) return (reply == QtWidgets.QMessageBox.Yes) def scientific_notation(x, sigfigs=4, mode='eng'): """Returns a unicode string of the float f in scientific notation""" times = u'\u00d7' thinspace = u'\u2009' hairspace = u'\u200a' sups = {u'-': u'\u207b', u'0': u'\u2070', u'1': u'\xb9', u'2': u'\xb2', u'3': u'\xb3', u'4': u'\u2074', u'5': u'\u2075', u'6': u'\u2076', u'7': u'\u2077', u'8': u'\u2078', u'9': u'\u2079'} prefixes = { -24: u"y", -21: u"z", -18: u"a", -15: u"f", -12: u"p", -9: u"n", -6: u"\u03bc", -3: u"m", 0: u"", 3: u"k", 6: u"M", 9: u"G", 12: u"T", 15: u"P", 18: u"E", 21: u"Z", 24: u"Y" } if not isinstance(x, float): raise TypeError('x must be floating point number') if np.isnan(x) or np.isinf(x): return str(x) if x != 0: exponent = int(np.floor(np.log10(np.abs(x)))) # Only multiples of 10^3 exponent = int(np.floor(exponent / 3) * 3) else: exponent = 0 significand = x / 10 ** exponent pre_decimal, post_decimal = divmod(significand, 1) digits = sigfigs - len(str(int(pre_decimal))) significand = round(significand, digits) result = str(significand) if exponent: if mode == 'exponential': superscript = ''.join(sups.get(char, char) for char in str(exponent)) result += thinspace + times + thinspace + '10' + superscript elif mode == 'eng': try: # If our number has an SI prefix then use it prefix = prefixes[exponent] result += hairspace + prefix except KeyError: # Otherwise display in scientific notation superscript = ''.join(sups.get(char, char) for char in str(exponent)) result += thinspace + times + thinspace + '10' + superscript return result def get_screen_geometry(): """Return the a list of the geometries of each screen: each a tuple of left, top, width and height""" geoms = [] desktop = qapplication.desktop() for i in range(desktop.screenCount()): sg = desktop.screenGeometry(i) geoms.append((sg.left(), sg.top(), sg.width(), sg.height())) return geoms class WebServer(ZMQServer): def handler(self, request_data): logger.info('WebServer request: %s' % str(request_data)) if request_data == 'hello': return 'hello' elif request_data == 'get dataframe': # infer_objects() picks fixed datatypes for columns that are compatible with # fixed datatypes, dramatically speeding up pickling. It is called here # rather than when updating the dataframe as calling it during updating may # call it needlessly often, whereas it only needs to be called prior to # sending the dataframe to a client requesting it, as we're doing now. app.filebox.shots_model.infer_objects() return app.filebox.shots_model.dataframe elif isinstance(request_data, dict): if 'filepath' in request_data: h5_filepath = shared_drive.path_to_local(request_data['filepath']) if isinstance(h5_filepath, bytes): h5_filepath = h5_filepath.decode('utf8') if not isinstance(h5_filepath, str): raise AssertionError(str(type(h5_filepath)) + ' is not str or bytes') app.filebox.incoming_queue.put(h5_filepath) return 'added successfully' elif isinstance(request_data, str): # Just assume it's a filepath: app.filebox.incoming_queue.put(shared_drive.path_to_local(request_data)) return "Experiment added successfully\n" return ("error: operation not supported. Recognised requests are:\n " "'get dataframe'\n 'hello'\n {'filepath': <some_h5_filepath>}") class LyseMainWindow(QtWidgets.QMainWindow): # A signal to show that the window is shown and painted. firstPaint = Signal() # A signal for when the window manager has created a new window for this widget: newWindow = Signal(int) def __init__(self, *args, **kwargs): QtWidgets.QMainWindow.__init__(self, *args, **kwargs) self._previously_painted = False self.closing = False def closeEvent(self, event): if self.closing: return QtWidgets.QMainWindow.closeEvent(self, event) if app.on_close_event(): self.closing = True timeout_time = time.time() + 2 self.delayedClose(timeout_time) event.ignore() def delayedClose(self, timeout_time): if not all(app.workers_terminated().values()) and time.time() < timeout_time: QtCore.QTimer.singleShot(50, lambda: self.delayedClose(timeout_time)) else: QtCore.QTimer.singleShot(0, self.close) def event(self, event): result = QtWidgets.QMainWindow.event(self, event) if event.type() == QtCore.QEvent.WinIdChange: self.newWindow.emit(self.effectiveWinId()) return result def paintEvent(self, event): result = QtWidgets.QMainWindow.paintEvent(self, event) if not self._previously_painted: self._previously_painted = True self.firstPaint.emit() return result class AnalysisRoutine(object): def __init__(self, filepath, model, output_box_port, checked=QtCore.Qt.Checked): self.filepath = filepath self.shortname = os.path.basename(self.filepath) self.model = model self.output_box_port = output_box_port self.COL_ACTIVE = RoutineBox.COL_ACTIVE self.COL_STATUS = RoutineBox.COL_STATUS self.COL_NAME = RoutineBox.COL_NAME self.ROLE_FULLPATH = RoutineBox.ROLE_FULLPATH self.error = False self.done = False self.to_worker, self.from_worker, self.worker = self.start_worker() # Make a row to put into the model: active_item = QtGui.QStandardItem() active_item.setCheckable(True) active_item.setCheckState(checked) info_item = QtGui.QStandardItem() name_item = QtGui.QStandardItem(self.shortname) name_item.setToolTip(self.filepath) name_item.setData(self.filepath, self.ROLE_FULLPATH) self.model.appendRow([active_item, info_item, name_item]) self.exiting = False def start_worker(self): # Start a worker process for this analysis routine: worker_path = os.path.join(LYSE_DIR, 'analysis_subprocess.py') child_handles = process_tree.subprocess( worker_path, output_redirection_port=self.output_box_port, startup_timeout=30, ) to_worker, from_worker, worker = child_handles # Tell the worker what script it with be executing: to_worker.put(self.filepath) return to_worker, from_worker, worker def do_analysis(self, filepath): self.to_worker.put(['analyse', filepath]) signal, data = self.from_worker.get() if signal == 'error': return False, data elif signal == 'done': return True, data else: raise ValueError('invalid signal %s'%str(signal)) @inmain_decorator() def set_status(self, status): index = self.get_row_index() if index is None: # Yelp, we've just been deleted. Nothing to do here. return status_item = self.model.item(index, self.COL_STATUS) if status == 'done': status_item.setIcon(QtGui.QIcon(':/qtutils/fugue/tick')) self.done = True self.error = False elif status == 'working': status_item.setIcon(QtGui.QIcon(':/qtutils/fugue/hourglass')) self.done = False self.error = False elif status == 'error': status_item.setIcon(QtGui.QIcon(':/qtutils/fugue/exclamation')) self.error = True self.done = False elif status == 'clear': status_item.setData(None, QtCore.Qt.DecorationRole) self.done = False self.error = False else: raise ValueError(status) @inmain_decorator() def enabled(self): index = self.get_row_index() if index is None: # Yelp, we've just been deleted. return False enabled_item = self.model.item(index, self.COL_ACTIVE) return (enabled_item.checkState() == QtCore.Qt.Checked) def get_row_index(self): """Returns the row index for this routine's row in the model""" for row in range(self.model.rowCount()): name_item = self.model.item(row, self.COL_NAME) fullpath = name_item.data(self.ROLE_FULLPATH) if fullpath == self.filepath: return row def restart(self): # TODO set status to 'restarting' or an icon or something, and gray out the item? self.end_child(restart=True) def remove(self): """End the child process and remove from the treeview""" self.end_child() index = self.get_row_index() if index is None: # Already gone return self.model.removeRow(index) def end_child(self, restart=False): self.to_worker.put(['quit', None]) timeout_time = time.time() + 2 self.exiting = True QtCore.QTimer.singleShot(50, lambda: self.check_child_exited(self.worker, timeout_time, kill=False, restart=restart)) def check_child_exited(self, worker, timeout_time, kill=False, restart=False): worker.poll() if worker.returncode is None and time.time() < timeout_time: QtCore.QTimer.singleShot(50, lambda: self.check_child_exited(worker, timeout_time, kill, restart)) return elif worker.returncode is None: if not kill: worker.terminate() app.output_box.output('%s worker not responding.\n'%self.shortname) timeout_time = time.time() + 2 QtCore.QTimer.singleShot(50, lambda: self.check_child_exited(worker, timeout_time, kill=True, restart=restart)) return else: worker.kill() app.output_box.output('%s worker killed\n'%self.shortname, red=True) elif kill: app.output_box.output('%s worker terminated\n'%self.shortname, red=True) else: app.output_box.output('%s worker exited cleanly\n'%self.shortname) # if analysis was running notify analysisloop that analysis has failed self.from_worker.put(('error', {})) if restart: self.to_worker, self.from_worker, self.worker = self.start_worker() app.output_box.output('%s worker restarted\n'%self.shortname) self.exiting = False class TreeView(QtWidgets.QTreeView): leftClicked = Signal(QtCore.QModelIndex) doubleLeftClicked = Signal(QtCore.QModelIndex) """A QTreeView that emits a custom signal leftClicked(index) after a left click on a valid index, and doubleLeftClicked(index) (in addition) on double click.""" def __init__(self, *args): QtWidgets.QTreeView.__init__(self, *args) self._pressed_index = None self._double_click = False def mousePressEvent(self, event): result = QtWidgets.QTreeView.mousePressEvent(self, event) index = self.indexAt(event.pos()) if event.button() == QtCore.Qt.LeftButton and index.isValid(): self._pressed_index = self.indexAt(event.pos()) return result def leaveEvent(self, event): result = QtWidgets.QTreeView.leaveEvent(self, event) self._pressed_index = None self._double_click = False return result def mouseDoubleClickEvent(self, event): # Ensure our left click event occurs regardless of whether it is the # second click in a double click or not result = QtWidgets.QTreeView.mouseDoubleClickEvent(self, event) index = self.indexAt(event.pos()) if event.button() == QtCore.Qt.LeftButton and index.isValid(): self._pressed_index = self.indexAt(event.pos()) self._double_click = True return result def mouseReleaseEvent(self, event): result = QtWidgets.QTreeView.mouseReleaseEvent(self, event) index = self.indexAt(event.pos()) if event.button() == QtCore.Qt.LeftButton and index.isValid() and index == self._pressed_index: self.leftClicked.emit(index) if self._double_click: self.doubleLeftClicked.emit(index) self._pressed_index = None self._double_click = False return result class RoutineBox(object): COL_ACTIVE = 0 COL_STATUS = 1 COL_NAME = 2 ROLE_FULLPATH = QtCore.Qt.UserRole + 1 # This data (stored in the name item) does not necessarily match # the position in the model. It will be set just # prior to sort() being called with this role as the sort data. # This is how we will reorder the model's rows instead of # using remove/insert. ROLE_SORTINDEX = QtCore.Qt.UserRole + 2 def __init__(self, container, exp_config, filebox, from_filebox, to_filebox, output_box_port, multishot=False): self.multishot = multishot self.filebox = filebox self.exp_config = exp_config self.from_filebox = from_filebox self.to_filebox = to_filebox self.output_box_port = output_box_port self.logger = logging.getLogger('lyse.RoutineBox.%s'%('multishot' if multishot else 'singleshot')) loader = UiLoader() loader.registerCustomWidget(TreeView) self.ui = loader.load(os.path.join(LYSE_DIR, 'routinebox.ui')) container.addWidget(self.ui) if multishot: self.ui.groupBox.setTitle('Multishot routines') else: self.ui.groupBox.setTitle('Singleshot routines') self.model = UneditableModel() self.header = HorizontalHeaderViewWithWidgets(self.model) self.ui.treeView.setHeader(self.header) self.ui.treeView.setModel(self.model) active_item = QtGui.QStandardItem() active_item.setToolTip('Whether the analysis routine should run') status_item = QtGui.QStandardItem() status_item.setIcon(QtGui.QIcon(':qtutils/fugue/information')) status_item.setToolTip('The status of this analyis routine\'s execution') name_item = QtGui.QStandardItem('name') name_item.setToolTip('The name of the python script for the analysis routine') self.select_all_checkbox = QtWidgets.QCheckBox() self.select_all_checkbox.setToolTip('whether the analysis routine should run') self.header.setWidget(self.COL_ACTIVE, self.select_all_checkbox) self.header.setStretchLastSection(True) self.select_all_checkbox.setTristate(False) self.model.setHorizontalHeaderItem(self.COL_ACTIVE, active_item) self.model.setHorizontalHeaderItem(self.COL_STATUS, status_item) self.model.setHorizontalHeaderItem(self.COL_NAME, name_item) self.model.setSortRole(self.ROLE_SORTINDEX) self.ui.treeView.resizeColumnToContents(self.COL_ACTIVE) self.ui.treeView.resizeColumnToContents(self.COL_STATUS) self.ui.treeView.setColumnWidth(self.COL_NAME, 200) self.ui.treeView.setContextMenuPolicy(QtCore.Qt.CustomContextMenu) # Make the actions for the context menu: self.action_set_selected_active = QtWidgets.QAction( QtGui.QIcon(':qtutils/fugue/ui-check-box'), 'set selected routines active', self.ui) self.action_set_selected_inactive = QtWidgets.QAction( QtGui.QIcon(':qtutils/fugue/ui-check-box-uncheck'), 'set selected routines inactive', self.ui) self.action_restart_selected = QtWidgets.QAction( QtGui.QIcon(':qtutils/fugue/arrow-circle'), 'restart worker process for selected routines', self.ui) self.action_remove_selected = QtWidgets.QAction( QtGui.QIcon(':qtutils/fugue/minus'), 'Remove selected routines', self.ui) self.last_opened_routine_folder = self.exp_config.get('paths', 'analysislib') self.routines = [] self.connect_signals() self.analysis = threading.Thread(target = self.analysis_loop) self.analysis.daemon = True self.analysis.start() def connect_signals(self): self.ui.toolButton_add_routines.clicked.connect(self.on_add_routines_clicked) self.ui.toolButton_remove_routines.clicked.connect(self.on_remove_selection) self.model.itemChanged.connect(self.on_model_item_changed) self.ui.treeView.doubleLeftClicked.connect(self.on_treeview_double_left_clicked) # A context manager with which we can temporarily disconnect the above connection. self.model_item_changed_disconnected = DisconnectContextManager( self.model.itemChanged, self.on_model_item_changed) self.select_all_checkbox.stateChanged.connect(self.on_select_all_state_changed) self.select_all_checkbox_state_changed_disconnected = DisconnectContextManager( self.select_all_checkbox.stateChanged, self.on_select_all_state_changed) self.ui.treeView.customContextMenuRequested.connect(self.on_treeView_context_menu_requested) self.action_set_selected_active.triggered.connect( lambda: self.on_set_selected_triggered(QtCore.Qt.Checked)) self.action_set_selected_inactive.triggered.connect( lambda: self.on_set_selected_triggered(QtCore.Qt.Unchecked)) self.action_restart_selected.triggered.connect(self.on_restart_selected_triggered) self.action_remove_selected.triggered.connect(self.on_remove_selection) self.ui.toolButton_move_to_top.clicked.connect(self.on_move_to_top_clicked) self.ui.toolButton_move_up.clicked.connect(self.on_move_up_clicked) self.ui.toolButton_move_down.clicked.connect(self.on_move_down_clicked) self.ui.toolButton_move_to_bottom.clicked.connect(self.on_move_to_bottom_clicked) def on_add_routines_clicked(self): routine_files = QtWidgets.QFileDialog.getOpenFileNames(self.ui, 'Select analysis routines', self.last_opened_routine_folder, "Python scripts (*.py)") if type(routine_files) is tuple: routine_files, _ = routine_files if not routine_files: # User cancelled selection return # Convert to standard platform specific path, otherwise Qt likes forward slashes: routine_files = [os.path.abspath(routine_file) for routine_file in routine_files] # Save the containing folder for use next time we open the dialog box: self.last_opened_routine_folder = os.path.dirname(routine_files[0]) self.add_routines([(routine_file, QtCore.Qt.Checked) for routine_file in routine_files]) def add_routines(self, routine_files, clear_existing=False): """Add routines to the routine box, where routine_files is a list of tuples containing the filepath and whether the routine is enabled or not when it is added. if clear_existing == True, then any existing analysis routines will be cleared before the new ones are added.""" if clear_existing: for routine in self.routines[:]: routine.remove() self.routines.remove(routine) # Queue the files to be opened: for filepath, checked in routine_files: if filepath in [routine.filepath for routine in self.routines]: app.output_box.output('Warning: Ignoring duplicate analysis routine %s\n'%filepath, red=True) continue routine = AnalysisRoutine(filepath, self.model, self.output_box_port, checked) self.routines.append(routine) self.update_select_all_checkstate() def on_treeview_double_left_clicked(self, index): # If double clicking on the the name item, open # the routine in the specified text editor: if index.column() != self.COL_NAME: return name_item = self.model.item(index.row(), self.COL_NAME) routine_filepath = name_item.data(self.ROLE_FULLPATH) # get path to text editor editor_path = self.exp_config.get('programs', 'text_editor') editor_args = self.exp_config.get('programs', 'text_editor_arguments') # Get the current labscript file: if not editor_path: error_dialog("No editor specified in the labconfig.") if '{file}' in editor_args: # Split the args on spaces into a list, replacing {file} with the labscript file editor_args = [arg if arg != '{file}' else routine_filepath for arg in editor_args.split()] else: # Otherwise if {file} isn't already in there, append it to the other args: editor_args = [routine_filepath] + editor_args.split() try: subprocess.Popen([editor_path] + editor_args) except Exception as e: error_dialog("Unable to launch text editor specified in %s. Error was: %s" % (self.exp_config.config_path, str(e))) def on_remove_selection(self): self.remove_selection() def remove_selection(self, confirm=True): selected_indexes = self.ui.treeView.selectedIndexes() selected_rows = set(index.row() for index in selected_indexes) if not selected_rows: return if confirm and not question_dialog("Remove %d routines?" % len(selected_rows)): return name_items = [self.model.item(row, self.COL_NAME) for row in selected_rows] filepaths = [item.data(self.ROLE_FULLPATH) for item in name_items] for routine in self.routines[:]: if routine.filepath in filepaths: routine.remove() self.routines.remove(routine) self.update_select_all_checkstate() def on_model_item_changed(self, item): if item.column() == self.COL_ACTIVE: self.update_select_all_checkstate() def on_select_all_state_changed(self, state): with self.select_all_checkbox_state_changed_disconnected: # Do not allow a switch *to* a partially checked state: self.select_all_checkbox.setTristate(False) state = self.select_all_checkbox.checkState() with self.model_item_changed_disconnected: for row in range(self.model.rowCount()): active_item = self.model.item(row, self.COL_ACTIVE) active_item.setCheckState(state) def on_treeView_context_menu_requested(self, point): menu = QtWidgets.QMenu(self.ui.treeView) menu.addAction(self.action_set_selected_active) menu.addAction(self.action_set_selected_inactive) menu.addAction(self.action_restart_selected) menu.addAction(self.action_remove_selected) menu.exec_(QtGui.QCursor.pos()) def on_set_selected_triggered(self, active): selected_indexes = self.ui.treeView.selectedIndexes() selected_rows = set(index.row() for index in selected_indexes) for row in selected_rows: active_item = self.model.item(row, self.COL_ACTIVE) active_item.setCheckState(active) self.update_select_all_checkstate() def on_move_to_top_clicked(self): selected_indexes = self.ui.treeView.selectedIndexes() selected_rows = set(index.row() for index in selected_indexes) n = self.model.rowCount() i_selected = 0 i_unselected = len(selected_rows) order = [] for i in range(n): if i in selected_rows: order.append(i_selected) i_selected += 1 else: order.append(i_unselected) i_unselected += 1 self.reorder(order) def on_move_up_clicked(self): selected_indexes = self.ui.treeView.selectedIndexes() selected_rows = set(index.row() for index in selected_indexes) n = self.model.rowCount() order = [] last_unselected_index = None for i in range(n): if i in selected_rows: if last_unselected_index is None: order.append(i) else: order.append(i - 1) order[last_unselected_index] += 1 else: last_unselected_index = i order.append(i) self.reorder(order) def on_move_down_clicked(self): selected_indexes = self.ui.treeView.selectedIndexes() selected_rows = set(index.row() for index in selected_indexes) n = self.model.rowCount() order = [] last_unselected_index = None for i in reversed(range(n)): if i in selected_rows: if last_unselected_index is None: order.insert(0, i) else: order.insert(0, i + 1) order[last_unselected_index - n] -= 1 else: last_unselected_index = i order.insert(0, i) self.reorder(order) def on_move_to_bottom_clicked(self): selected_indexes = self.ui.treeView.selectedIndexes() selected_rows = set(index.row() for index in selected_indexes) n = self.model.rowCount() i_selected = n - len(selected_rows) i_unselected = 0 order = [] for i in range(n): if i in selected_rows: order.append(i_selected) i_selected += 1 else: order.append(i_unselected) i_unselected += 1 self.reorder(order) def on_restart_selected_triggered(self): selected_indexes = self.ui.treeView.selectedIndexes() selected_rows = set(index.row() for index in selected_indexes) name_items = [self.model.item(row, self.COL_NAME) for row in selected_rows] filepaths = [item.data(self.ROLE_FULLPATH) for item in name_items] for routine in self.routines: if routine.filepath in filepaths: routine.restart() self.update_select_all_checkstate() def analysis_loop(self): while True: filepath = self.from_filebox.get() if self.multishot: assert filepath is None # TODO: get the filepath of the output h5 file: # filepath = self.filechooserentry.get_text() self.logger.info('got a file to process: %s'%filepath) self.do_analysis(filepath) def todo(self): """How many analysis routines are not done?""" return len([r for r in self.routines if r.enabled() and not r.done]) def do_analysis(self, filepath): """Run all analysis routines once on the given filepath, which is a shot file if we are a singleshot routine box""" for routine in self.routines: routine.set_status('clear') remaining = self.todo() error = False updated_data = {} while remaining: self.logger.debug('%d routines left to do'%remaining) for routine in self.routines: if routine.enabled() and not routine.done: break else: routine = None if routine is not None: self.logger.info('running analysis routine %s'%routine.shortname) routine.set_status('working') success, updated_data = routine.do_analysis(filepath) if success: routine.set_status('done') self.logger.debug('success') else: routine.set_status('error') self.logger.debug('failure') error = True break # Race conditions here, but it's only for reporting percent done # so it doesn't matter if it's wrong briefly: remaining = self.todo() total = len([r for r in self.routines if r.enabled()]) done = total - remaining try: status_percent = 100*float(done)/(remaining + done) except ZeroDivisionError: # All routines got deleted mid-analysis, we're done here: status_percent = 100.0 self.to_filebox.put(['progress', status_percent, updated_data]) if error: self.to_filebox.put(['error', None, updated_data]) else: self.to_filebox.put(['done', 100.0, {}]) self.logger.debug('completed analysis of %s'%filepath) def reorder(self, order): assert len(order) == len(set(order)), 'ordering contains non-unique elements' # Apply the reordering to the liststore: for old_index, new_index in enumerate(order): name_item = self.model.item(old_index, self.COL_NAME) name_item.setData(new_index, self.ROLE_SORTINDEX) self.ui.treeView.sortByColumn(self.COL_NAME, QtCore.Qt.AscendingOrder) # Apply new order to our list of routines too: self.routines = [self.routines[order.index(i)] for i in range(len(order))] def update_select_all_checkstate(self): with self.select_all_checkbox_state_changed_disconnected: all_states = [] for row in range(self.model.rowCount()): active_item = self.model.item(row, self.COL_ACTIVE) all_states.append(active_item.checkState()) if all(state == QtCore.Qt.Checked for state in all_states): self.select_all_checkbox.setCheckState(QtCore.Qt.Checked) elif all(state == QtCore.Qt.Unchecked for state in all_states): self.select_all_checkbox.setCheckState(QtCore.Qt.Unchecked) else: self.select_all_checkbox.setCheckState(QtCore.Qt.PartiallyChecked) class EditColumnsDialog(QtWidgets.QDialog): # A signal for when the window manager has created a new window for this widget: newWindow = Signal(int) close_signal = Signal() def __init__(self): QtWidgets.QDialog.__init__(self, None, QtCore.Qt.WindowSystemMenuHint | QtCore.Qt.WindowTitleHint) def event(self, event): result = QtWidgets.QDialog.event(self, event) if event.type() == QtCore.QEvent.WinIdChange: self.newWindow.emit(self.effectiveWinId()) return result def closeEvent(self, event): self.close_signal.emit() event.ignore() class EditColumns(object): ROLE_SORT_DATA = QtCore.Qt.UserRole + 1 COL_VISIBLE = 0 COL_NAME = 1 def __init__(self, filebox, column_names, columns_visible): self.filebox = filebox self.column_names = column_names.copy() self.columns_visible = columns_visible.copy() self.old_columns_visible = columns_visible.copy() loader = UiLoader() self.ui = loader.load(os.path.join(LYSE_DIR, 'edit_columns.ui'), EditColumnsDialog()) self.model = UneditableModel() self.header = HorizontalHeaderViewWithWidgets(self.model) self.select_all_checkbox = QtWidgets.QCheckBox() self.select_all_checkbox.setTristate(False) self.ui.treeView.setHeader(self.header) self.proxy_model = QtCore.QSortFilterProxyModel() self.proxy_model.setSourceModel(self.model) self.proxy_model.setFilterCaseSensitivity(QtCore.Qt.CaseInsensitive) self.proxy_model.setFilterKeyColumn(self.COL_NAME) self.ui.treeView.setSortingEnabled(True) self.header.setStretchLastSection(True) self.proxy_model.setSortRole(self.ROLE_SORT_DATA) self.ui.treeView.setModel(self.proxy_model) self.ui.setWindowModality(QtCore.Qt.ApplicationModal) self.ui.treeView.setContextMenuPolicy(QtCore.Qt.CustomContextMenu) # Make the actions for the context menu: self.action_set_selected_visible = QtWidgets.QAction( QtGui.QIcon(':qtutils/fugue/ui-check-box'), 'Show selected columns', self.ui) self.action_set_selected_hidden = QtWidgets.QAction( QtGui.QIcon(':qtutils/fugue/ui-check-box-uncheck'), 'Hide selected columns', self.ui) self.connect_signals() self.populate_model(column_names, self.columns_visible) def connect_signals(self): if os.name == 'nt': self.ui.newWindow.connect(set_win_appusermodel) self.ui.close_signal.connect(self.close) self.ui.lineEdit_filter.textEdited.connect(self.on_filter_text_edited) self.ui.pushButton_make_it_so.clicked.connect(self.make_it_so) self.ui.pushButton_cancel.clicked.connect(self.cancel) self.model.itemChanged.connect(self.on_model_item_changed) # A context manager with which we can temporarily disconnect the above connection. self.model_item_changed_disconnected = DisconnectContextManager( self.model.itemChanged, self.on_model_item_changed) self.select_all_checkbox.stateChanged.connect(self.on_select_all_state_changed) self.select_all_checkbox_state_changed_disconnected = DisconnectContextManager( self.select_all_checkbox.stateChanged, self.on_select_all_state_changed) self.ui.treeView.customContextMenuRequested.connect(self.on_treeView_context_menu_requested) self.action_set_selected_visible.triggered.connect( lambda: self.on_set_selected_triggered(QtCore.Qt.Checked)) self.action_set_selected_hidden.triggered.connect( lambda: self.on_set_selected_triggered(QtCore.Qt.Unchecked)) def populate_model(self, column_names, columns_visible): self.model.clear() self.model.setHorizontalHeaderLabels(['', 'Name']) self.header.setWidget(self.COL_VISIBLE, self.select_all_checkbox) self.ui.treeView.resizeColumnToContents(self.COL_VISIBLE) # Which indices in self.columns_visible the row numbers correspond to self.column_indices = {} # Remove our special columns from the dict of column names by keeping only tuples: column_names = {i: name for i, name in column_names.items() if isinstance(name, tuple)} # Sort the column names as comma separated values, converting to lower case: sortkey = lambda item: ', '.join(item[1]).lower().strip(', ') for column_index, name in sorted(column_names.items(), key=sortkey): visible = columns_visible[column_index] visible_item = QtGui.QStandardItem() visible_item.setCheckable(True) if visible: visible_item.setCheckState(QtCore.Qt.Checked) visible_item.setData(QtCore.Qt.Checked, self.ROLE_SORT_DATA) else: visible_item.setCheckState(QtCore.Qt.Unchecked) visible_item.setData(QtCore.Qt.Unchecked, self.ROLE_SORT_DATA) name_as_string = ', '.join(name).strip(', ') name_item = QtGui.QStandardItem(name_as_string) name_item.setData(sortkey((column_index, name)), self.ROLE_SORT_DATA) self.model.appendRow([visible_item, name_item]) self.column_indices[self.model.rowCount() - 1] = column_index self.ui.treeView.resizeColumnToContents(self.COL_NAME) self.update_select_all_checkstate() self.ui.treeView.sortByColumn(self.COL_NAME, QtCore.Qt.AscendingOrder) def on_treeView_context_menu_requested(self, point): menu = QtWidgets.QMenu(self.ui) menu.addAction(self.action_set_selected_visible) menu.addAction(self.action_set_selected_hidden) menu.exec_(QtGui.QCursor.pos()) def on_set_selected_triggered(self, visible): selected_indexes = self.ui.treeView.selectedIndexes() selected_rows = set(self.proxy_model.mapToSource(index).row() for index in selected_indexes) for row in selected_rows: visible_item = self.model.item(row, self.COL_VISIBLE) self.update_visible_state(visible_item, visible) self.update_select_all_checkstate() self.do_sort() self.filebox.set_columns_visible(self.columns_visible) def on_filter_text_edited(self, text): self.proxy_model.setFilterWildcard(text) def on_select_all_state_changed(self, state): with self.select_all_checkbox_state_changed_disconnected: # Do not allow a switch *to* a partially checked state: self.select_all_checkbox.setTristate(False) state = self.select_all_checkbox.checkState() for row in range(self.model.rowCount()): visible_item = self.model.item(row, self.COL_VISIBLE) self.update_visible_state(visible_item, state) self.do_sort() self.filebox.set_columns_visible(self.columns_visible) def update_visible_state(self, item, state): assert item.column() == self.COL_VISIBLE, "unexpected column" row = item.row() with self.model_item_changed_disconnected: item.setCheckState(state) item.setData(state, self.ROLE_SORT_DATA) if state == QtCore.Qt.Checked: self.columns_visible[self.column_indices[row]] = True else: self.columns_visible[self.column_indices[row]] = False def update_select_all_checkstate(self): with self.select_all_checkbox_state_changed_disconnected: all_states = [] for row in range(self.model.rowCount()): visible_item = self.model.item(row, self.COL_VISIBLE) all_states.append(visible_item.checkState()) if all(state == QtCore.Qt.Checked for state in all_states): self.select_all_checkbox.setCheckState(QtCore.Qt.Checked) elif all(state == QtCore.Qt.Unchecked for state in all_states): self.select_all_checkbox.setCheckState(QtCore.Qt.Unchecked) else: self.select_all_checkbox.setCheckState(QtCore.Qt.PartiallyChecked) def on_model_item_changed(self, item): state = item.checkState() self.update_visible_state(item, state) self.update_select_all_checkstate() self.do_sort() self.filebox.set_columns_visible(self.columns_visible) def do_sort(self): header = self.ui.treeView.header() sort_column = header.sortIndicatorSection() sort_order = header.sortIndicatorOrder() self.ui.treeView.sortByColumn(sort_column, sort_order) def update_columns(self, column_names, columns_visible): # Index/name mapping may have changed. Get a mapping by *name* of # which columns were previously visible, so we can update our by-index # mapping in a moment: old_columns_visible_by_name = {} for old_column_number, visible in self.old_columns_visible.items(): column_name = self.column_names[old_column_number] old_columns_visible_by_name[column_name] = visible self.columns_visible = columns_visible.copy() self.column_names = column_names.copy() # Update the by-index mapping of which columns were visible before editing: self.old_columns_visible = {} for index, name in self.column_names.items(): try: self.old_columns_visible[index] = old_columns_visible_by_name[name] except KeyError: # A new column. If editing is cancelled, any new columns # should be set to visible: self.old_columns_visible[index] = True self.populate_model(column_names, self.columns_visible) def show(self): self.old_columns_visible = self.columns_visible.copy() self.ui.show() def close(self): self.columns_visible = self.old_columns_visible.copy() self.filebox.set_columns_visible(self.columns_visible) self.populate_model(self.column_names, self.columns_visible) self.ui.hide() def cancel(self): self.ui.close() def make_it_so(self): self.ui.hide() class ItemDelegate(QtWidgets.QStyledItemDelegate): """An item delegate with a fixed height and a progress bar in one column""" EXTRA_ROW_HEIGHT = 2 def __init__(self, view, model, col_status, role_status_percent): self.view = view self.model = model self.COL_STATUS = col_status self.ROLE_STATUS_PERCENT = role_status_percent QtWidgets.QStyledItemDelegate.__init__(self) def sizeHint(self, *args): fontmetrics = QtGui.QFontMetrics(self.view.font()) text_height = fontmetrics.height() row_height = text_height + self.EXTRA_ROW_HEIGHT size = QtWidgets.QStyledItemDelegate.sizeHint(self, *args) return QtCore.QSize(size.width(), row_height) def paint(self, painter, option, index): if index.column() == self.COL_STATUS: status_percent = self.model.data(index, self.ROLE_STATUS_PERCENT) if status_percent == 100: # Render as a normal item - this shows whatever icon is set instead of a progress bar. return QtWidgets.QStyledItemDelegate.paint(self, painter, option, index) else: # Method of rendering a progress bar into the view copied from # Qt's 'network-torrent' example: # http://qt-project.org/doc/qt-4.8/network-torrent-torrentclient-cpp.html # Set up a QStyleOptionProgressBar to precisely mimic the # environment of a progress bar. progress_bar_option = QtWidgets.QStyleOptionProgressBar() progress_bar_option.state = QtWidgets.QStyle.State_Enabled progress_bar_option.direction = qapplication.layoutDirection() progress_bar_option.rect = option.rect progress_bar_option.fontMetrics = qapplication.fontMetrics() progress_bar_option.minimum = 0 progress_bar_option.maximum = 100 progress_bar_option.textAlignment = QtCore.Qt.AlignCenter progress_bar_option.textVisible = True # Set the progress and text values of the style option. progress_bar_option.progress = status_percent progress_bar_option.text = '%d%%' % status_percent # Draw the progress bar onto the view. qapplication.style().drawControl(QtWidgets.QStyle.CE_ProgressBar, progress_bar_option, painter) else: return QtWidgets.QStyledItemDelegate.paint(self, painter, option, index) class UneditableModel(QtGui.QStandardItemModel): def flags(self, index): """Return flags as normal except that the ItemIsEditable flag is always False""" result = QtGui.QStandardItemModel.flags(self, index) return result & ~QtCore.Qt.ItemIsEditable class TableView(QtWidgets.QTableView): leftClicked = Signal(QtCore.QModelIndex) doubleLeftClicked = Signal(QtCore.QModelIndex) """A QTableView that emits a custom signal leftClicked(index) after a left click on a valid index, and doubleLeftClicked(index) (in addition) on double click. Multiple inheritance of QObjects is not possible, so we are forced to duplicate code instead of sharing code with the extremely similar TreeView class in this module""" def __init__(self, *args): QtWidgets.QTableView.__init__(self, *args) self._pressed_index = None self._double_click = False def mousePressEvent(self, event): result = QtWidgets.QTableView.mousePressEvent(self, event) index = self.indexAt(event.pos()) if event.button() == QtCore.Qt.LeftButton and index.isValid(): self._pressed_index = self.indexAt(event.pos()) return result def leaveEvent(self, event): result = QtWidgets.QTableView.leaveEvent(self, event) self._pressed_index = None self._double_click = False return result def mouseDoubleClickEvent(self, event): # Ensure our left click event occurs regardless of whether it is the # second click in a double click or not result = QtWidgets.QTableView.mouseDoubleClickEvent(self, event) index = self.indexAt(event.pos()) if event.button() == QtCore.Qt.LeftButton and index.isValid(): self._pressed_index = self.indexAt(event.pos()) self._double_click = True return result def mouseReleaseEvent(self, event): result = QtWidgets.QTableView.mouseReleaseEvent(self, event) index = self.indexAt(event.pos()) if event.button() == QtCore.Qt.LeftButton and index.isValid() and index == self._pressed_index: self.leftClicked.emit(index) if self._double_click: self.doubleLeftClicked.emit(index) self._pressed_index = None self._double_click = False return result class DataFrameModel(QtCore.QObject): COL_STATUS = 0 COL_FILEPATH = 1 ROLE_STATUS_PERCENT = QtCore.Qt.UserRole + 1 ROLE_DELETED_OFF_DISK = QtCore.Qt.UserRole + 2 columns_changed = Signal() def __init__(self, view, exp_config): QtCore.QObject.__init__(self) self._view = view self.exp_config = exp_config self._model = UneditableModel() self.row_number_by_filepath = {} self._previous_n_digits = 0 self._header = HorizontalHeaderViewWithWidgets(self._model) self._vertheader = QtWidgets.QHeaderView(QtCore.Qt.Vertical) self._vertheader.setSectionResizeMode(QtWidgets.QHeaderView.Fixed) # Smaller font for headers: font = self._vertheader.font() font.setPointSize(10 if sys.platform == 'darwin' else 8) self._header.setFont(font) font.setFamily('Ubuntu Mono') self._vertheader.setFont(font) self._vertheader.setHighlightSections(True) self._vertheader.setSectionsClickable(True) self._view.setModel(self._model) self._view.setHorizontalHeader(self._header) self._view.setVerticalHeader(self._vertheader) self._delegate = ItemDelegate(self._view, self._model, self.COL_STATUS, self.ROLE_STATUS_PERCENT) self._view.setItemDelegate(self._delegate) self._view.setSelectionBehavior(QtWidgets.QTableView.SelectRows) self._view.setContextMenuPolicy(QtCore.Qt.CustomContextMenu) # Check if integer indexing is to be used try: self.integer_indexing = self.exp_config.getboolean('lyse', 'integer_indexing') except (LabConfig.NoOptionError, LabConfig.NoSectionError): self.integer_indexing = False # This dataframe will contain all the scalar data # from the shot files that are currently open: index = pandas.MultiIndex.from_tuples([('filepath', '')]) self.dataframe = pandas.DataFrame({'filepath': []}, columns=index) # How many levels the dataframe's multiindex has: self.nlevels = self.dataframe.columns.nlevels status_item = QtGui.QStandardItem() status_item.setIcon(QtGui.QIcon(':qtutils/fugue/information')) status_item.setToolTip('status/progress of single-shot analysis') self._model.setHorizontalHeaderItem(self.COL_STATUS, status_item) filepath_item = QtGui.QStandardItem('filepath') filepath_item.setToolTip('filepath') self._model.setHorizontalHeaderItem(self.COL_FILEPATH, filepath_item) self._view.setColumnWidth(self.COL_STATUS, 70) self._view.setColumnWidth(self.COL_FILEPATH, 100) # Column indices to names and vice versa for fast lookup: self.column_indices = {'__status': self.COL_STATUS, ('filepath', ''): self.COL_FILEPATH} self.column_names = {self.COL_STATUS: '__status', self.COL_FILEPATH: ('filepath', '')} self.columns_visible = {self.COL_STATUS: True, self.COL_FILEPATH: True} # Whether or not a deleted column was visible at the time it was deleted (by name): self.deleted_columns_visible = {} # Make the actions for the context menu: self.action_remove_selected = QtWidgets.QAction( QtGui.QIcon(':qtutils/fugue/minus'), 'Remove selected shots', self._view) self.connect_signals() def connect_signals(self): self._view.customContextMenuRequested.connect(self.on_view_context_menu_requested) self.action_remove_selected.triggered.connect(self.on_remove_selection) def on_remove_selection(self): self.remove_selection() def remove_selection(self, confirm=True): selection_model = self._view.selectionModel() selected_indexes = selection_model.selectedRows() selected_name_items = [self._model.itemFromIndex(index) for index in selected_indexes] if not selected_name_items: return if confirm and not question_dialog("Remove %d shots?" % len(selected_name_items)): return # Remove from DataFrame first: self.dataframe = self.dataframe.drop(index.row() for index in selected_indexes) self.dataframe.index = pandas.Index(range(len(self.dataframe))) # Delete one at a time from Qt model: for name_item in selected_name_items: row = name_item.row() self._model.removeRow(row) self.renumber_rows() def mark_selection_not_done(self): selected_indexes = self._view.selectedIndexes() selected_rows = set(index.row() for index in selected_indexes) for row in selected_rows: status_item = self._model.item(row, self.COL_STATUS) if status_item.data(self.ROLE_DELETED_OFF_DISK): # If the shot was previously not readable on disk, check to # see if it's readable now. It may have been undeleted or # perhaps it being unreadable before was due to a network # glitch or similar. filepath = self._model.item(row, self.COL_FILEPATH).text() if not os.path.exists(filepath): continue # Shot file is accesible again: status_item.setData(False, self.ROLE_DELETED_OFF_DISK) status_item.setIcon(QtGui.QIcon(':qtutils/fugue/tick')) status_item.setToolTip(None) status_item.setData(0, self.ROLE_STATUS_PERCENT) def on_view_context_menu_requested(self, point): menu = QtWidgets.QMenu(self._view) menu.addAction(self.action_remove_selected) menu.exec_(QtGui.QCursor.pos()) def on_double_click(self, index): filepath_item = self._model.item(index.row(), self.COL_FILEPATH) shot_filepath = filepath_item.text() # get path to text editor viewer_path = self.exp_config.get('programs', 'hdf5_viewer') viewer_args = self.exp_config.get('programs', 'hdf5_viewer_arguments') # Get the current labscript file: if not viewer_path: error_dialog("No hdf5 viewer specified in the labconfig.") if '{file}' in viewer_args: # Split the args on spaces into a list, replacing {file} with the labscript file viewer_args = [arg if arg != '{file}' else shot_filepath for arg in viewer_args.split()] else: # Otherwise if {file} isn't already in there, append it to the other args: viewer_args = [shot_filepath] + viewer_args.split() try: subprocess.Popen([viewer_path] + viewer_args) except Exception as e: error_dialog("Unable to launch hdf5 viewer specified in %s. Error was: %s" % (self.exp_config.config_path, str(e))) def set_columns_visible(self, columns_visible): self.columns_visible = columns_visible for column_index, visible in columns_visible.items(): self._view.setColumnHidden(column_index, not visible) def update_column_levels(self): """Pads the keys and values of our lists of column names so that they still match those in the dataframe after the number of levels in its multiindex has increased (the number of levels never decreases, given the current implementation of concat_with_padding())""" extra_levels = self.dataframe.columns.nlevels - self.nlevels if extra_levels > 0: self.nlevels = self.dataframe.columns.nlevels column_indices = {} column_names = {} for column_name in self.column_indices: if not isinstance(column_name, tuple): # It's one of our special columns new_column_name = column_name else: new_column_name = column_name + ('',) * extra_levels column_index = self.column_indices[column_name] column_indices[new_column_name] = column_index column_names[column_index] = new_column_name self.column_indices = column_indices self.column_names = column_names @inmain_decorator() def mark_as_deleted_off_disk(self, filepath): # Confirm the shot hasn't been removed from lyse (we are in the main # thread so there is no race condition in checking first) if not filepath in self.dataframe['filepath'].values: # Shot has been removed from FileBox, nothing to do here: return row_number = self.row_number_by_filepath[filepath] status_item = self._model.item(row_number, self.COL_STATUS) already_marked_as_deleted = status_item.data(self.ROLE_DELETED_OFF_DISK) if already_marked_as_deleted: return # Icon only displays if percent completion is 100. This is also # important so that the shot is not picked up as analysis # incomplete and analysis re-attempted on it. status_item.setData(True, self.ROLE_DELETED_OFF_DISK) status_item.setData(100, self.ROLE_STATUS_PERCENT) status_item.setToolTip("Shot has been deleted off disk or is unreadable") status_item.setIcon(QtGui.QIcon(':qtutils/fugue/drive--minus')) app.output_box.output('Warning: Shot deleted from disk or no longer readable %s\n' % filepath, red=True) @inmain_decorator() def infer_objects(self): """Convert columns in the dataframe with dtype 'object' into compatible, more specific types, if possible. This improves pickling performance and ensures multishot analysis code does not encounter columns with dtype 'object' for non-mixed numerical data, which it might choke on. """ self.dataframe = self.dataframe.infer_objects() @inmain_decorator() def update_row(self, filepath, dataframe_already_updated=False, status_percent=None, new_row_data=None, updated_row_data=None): """"Updates a row in the dataframe and Qt model to the data in the HDF5 file for that shot. Also sets the percent done, if specified""" # To speed things up block signals to the model during update self._model.blockSignals(True) # Update the row in the dataframe first: if (new_row_data is None) == (updated_row_data is None) and not dataframe_already_updated: raise ValueError('Exactly one of new_row_data or updated_row_data must be provided') try: row_number = self.row_number_by_filepath[filepath] except KeyError: # Row has been deleted, nothing to do here: return filepath_colname = ('filepath',) + ('',) * (self.nlevels - 1) assert filepath == self.dataframe.at[row_number, filepath_colname] if updated_row_data is not None and not dataframe_already_updated: for group, name in updated_row_data: column_name = (group, name) + ('',) * (self.nlevels - 2) value = updated_row_data[group, name] try: self.dataframe.at[row_number, column_name] = value except ValueError: # did the column not already exist when we tried to set an iterable? if not column_name in self.dataframe.columns: # create it with a non-iterable and then overwrite with the iterable value: self.dataframe.at[row_number, column_name] = None else: # Incompatible datatype - convert the datatype of the column to # 'object' self.dataframe[column_name] = self.dataframe[column_name].astype('object') # Now that the column exists and has dtype object, we can set the value: self.dataframe.at[row_number, column_name] = value dataframe_already_updated = True if not dataframe_already_updated: if new_row_data is None: raise ValueError("If dataframe_already_updated is False, then new_row_data, as returned " "by dataframe_utils.get_dataframe_from_shot(filepath) must be provided.") self.dataframe = replace_with_padding(self.dataframe, new_row_data, row_number) self.update_column_levels() # Check and create necessary new columns in the Qt model: new_column_names = set(self.dataframe.columns) - set(self.column_names.values()) new_columns_start = self._model.columnCount() self._model.insertColumns(new_columns_start, len(new_column_names)) for i, column_name in enumerate(sorted(new_column_names)): # Set the header label of the new column: column_number = new_columns_start + i self.column_names[column_number] = column_name self.column_indices[column_name] = column_number if column_name in self.deleted_columns_visible: # Restore the former visibility of this column if we've # seen one with its name before: visible = self.deleted_columns_visible[column_name] self.columns_visible[column_number] = visible self._view.setColumnHidden(column_number, not visible) else: # new columns are visible by default: self.columns_visible[column_number] = True column_name_as_string = '\n'.join(column_name).strip() header_item = QtGui.QStandardItem(column_name_as_string) header_item.setToolTip(column_name_as_string) self._model.setHorizontalHeaderItem(column_number, header_item) # Check and remove any no-longer-needed columns in the Qt model: defunct_column_names = (set(self.column_names.values()) - set(self.dataframe.columns) - {self.column_names[self.COL_STATUS], self.column_names[self.COL_FILEPATH]}) defunct_column_indices = [self.column_indices[column_name] for column_name in defunct_column_names] for column_number in sorted(defunct_column_indices, reverse=True): # Remove columns from the Qt model. In reverse order so that # removals do not change the position of columns yet to be # removed. self._model.removeColumn(column_number) # Save whether or not the column was visible when it was # removed (so that if it is re-added the visibility will be retained): self.deleted_columns_visible[self.column_names[column_number]] = self.columns_visible[column_number] del self.column_names[column_number] del self.columns_visible[column_number] if defunct_column_indices: # Renumber the keys of self.columns_visible and self.column_names to reflect deletions: self.column_names = {newindex: name for newindex, (oldindex, name) in enumerate(sorted(self.column_names.items()))} self.columns_visible = {newindex: visible for newindex, (oldindex, visible) in enumerate(sorted(self.columns_visible.items()))} # Update the inverse mapping of self.column_names: self.column_indices = {name: index for index, name in self.column_names.items()} # Update the data in the Qt model: dataframe_row = self.dataframe.iloc[row_number].to_dict() for column_number, column_name in self.column_names.items(): if not isinstance(column_name, tuple): # One of our special columns, does not correspond to a column in the dataframe: continue if updated_row_data is not None and column_name not in updated_row_data: continue value = dataframe_row[column_name] if isinstance(value, float): value_str = scientific_notation(value) else: value_str = str(value) lines = value_str.splitlines() if len(lines) > 1: short_value_str = lines[0] + ' ...' else: short_value_str = value_str item = self._model.item(row_number, column_number) if item is None: # This is the first time we've written a value to this part of the model: item = QtGui.QStandardItem(short_value_str) item.setData(QtCore.Qt.AlignCenter, QtCore.Qt.TextAlignmentRole) self._model.setItem(row_number, column_number, item) else: item.setText(short_value_str) item.setToolTip(repr(value)) for i, column_name in enumerate(sorted(new_column_names)): # Resize any new columns to fit contents: column_number = new_columns_start + i self._view.resizeColumnToContents(column_number) if status_percent is not None: status_item = self._model.item(row_number, self.COL_STATUS) status_item.setData(status_percent, self.ROLE_STATUS_PERCENT) if new_column_names or defunct_column_names: self.columns_changed.emit() # unblock signals to the model and tell it to update self._model.blockSignals(False) self._model.layoutChanged.emit() def new_row(self, filepath, done=False): status_item = QtGui.QStandardItem() if done: status_item.setData(100, self.ROLE_STATUS_PERCENT) status_item.setIcon(QtGui.QIcon(':/qtutils/fugue/tick')) else: status_item.setData(0, self.ROLE_STATUS_PERCENT) status_item.setIcon(QtGui.QIcon(':qtutils/fugue/tick')) name_item = QtGui.QStandardItem(filepath) return [status_item, name_item] def renumber_rows(self, add_from=0): """Add/update row indices - the rows are numbered in simple sequential order for easy comparison with the dataframe. add_from allows you to only add numbers for new rows from the given index as a performance optimisation, though if the number of digits changes, all rows will still be renumbered. add_from should not be used if rows have been deleted.""" n_digits = len(str(self._model.rowCount())) if n_digits != self._previous_n_digits: # All labels must be updated: add_from = 0 self._previous_n_digits = n_digits if add_from == 0: self.row_number_by_filepath = {} for row_number in range(add_from, self._model.rowCount()): vertical_header_item = self._model.verticalHeaderItem(row_number) row_number_str = str(row_number).rjust(n_digits) vert_header_text = '{}. '.format(row_number_str) filepath_item = self._model.item(row_number, self.COL_FILEPATH) filepath = filepath_item.text() self.row_number_by_filepath[filepath] = row_number if self.integer_indexing: header_cols = ['sequence_index', 'run number', 'run repeat'] header_strings = [] for col in header_cols: val = self.dataframe[col].values[row_number] if pandas.notna(val): header_strings.append('{:04d}'.format(val)) else: header_strings.append('----') vert_header_text += ' | '.join(header_strings) else: basename = os.path.splitext(os.path.basename(filepath))[0] vert_header_text += basename vertical_header_item.setText(vert_header_text) @inmain_decorator() def add_files(self, filepaths, new_row_data, done=False): """Add files to the dataframe model. New_row_data should be a dataframe containing the new rows.""" to_add = [] # Check for duplicates: for filepath in filepaths: if filepath in self.row_number_by_filepath or filepath in to_add: app.output_box.output('Warning: Ignoring duplicate shot %s\n' % filepath, red=True) if new_row_data is not None: df_row_index = np.where(new_row_data['filepath'].values == filepath) new_row_data = new_row_data.drop(df_row_index[0]) new_row_data.index = pandas.Index(range(len(new_row_data))) else: to_add.append(filepath) assert len(new_row_data) == len(to_add) if to_add: # Update the dataframe: self.dataframe = concat_with_padding(self.dataframe, new_row_data) self.update_column_levels() app.filebox.set_add_shots_progress(None, None, "updating filebox") for filepath in to_add: # Add the new rows to the Qt model: self._model.appendRow(self.new_row(filepath, done=done)) vert_header_item = QtGui.QStandardItem('...loading...') self._model.setVerticalHeaderItem(self._model.rowCount() - 1, vert_header_item) self._view.resizeRowToContents(self._model.rowCount() - 1) self.renumber_rows(add_from=self._model.rowCount()-len(to_add)) # Update the Qt model: for filepath in to_add: self.update_row(filepath, dataframe_already_updated=True) @inmain_decorator() def get_first_incomplete(self): """Returns the filepath of the first shot in the model that has not been analysed""" for row in range(self._model.rowCount()): status_item = self._model.item(row, self.COL_STATUS) if status_item.data(self.ROLE_STATUS_PERCENT) != 100: filepath_item = self._model.item(row, self.COL_FILEPATH) return filepath_item.text() class FileBox(object): def __init__(self, container, exp_config, to_singleshot, from_singleshot, to_multishot, from_multishot): self.exp_config = exp_config self.to_singleshot = to_singleshot self.to_multishot = to_multishot self.from_singleshot = from_singleshot self.from_multishot = from_multishot self.logger = logging.getLogger('lyse.FileBox') self.logger.info('starting') loader = UiLoader() loader.registerCustomWidget(TableView) self.ui = loader.load(os.path.join(LYSE_DIR, 'filebox.ui')) self.ui.progressBar_add_shots.hide() container.addWidget(self.ui) self.shots_model = DataFrameModel(self.ui.tableView, self.exp_config) set_auto_scroll_to_end(self.ui.tableView.verticalScrollBar()) self.edit_columns_dialog = EditColumns(self, self.shots_model.column_names, self.shots_model.columns_visible) self.last_opened_shots_folder = self.exp_config.get('paths', 'experiment_shot_storage') self.connect_signals() self.analysis_paused = False self.multishot_required = False # An Event to let the analysis thread know to check for shots that # need analysing, rather than using a time.sleep: self.analysis_pending = threading.Event() # The folder that the 'add shots' dialog will open to: self.current_folder = self.exp_config.get('paths', 'experiment_shot_storage') # A queue for storing incoming files from the ZMQ server so # the server can keep receiving files even if analysis is slow # or paused: self.incoming_queue = queue.Queue() # Start the thread to handle incoming files, and store them in # a buffer if processing is paused: self.incoming = threading.Thread(target=self.incoming_buffer_loop) self.incoming.daemon = True self.incoming.start() self.analysis = threading.Thread(target = self.analysis_loop) self.analysis.daemon = True self.analysis.start() def connect_signals(self): self.ui.pushButton_edit_columns.clicked.connect(self.on_edit_columns_clicked) self.shots_model.columns_changed.connect(self.on_columns_changed) self.ui.toolButton_add_shots.clicked.connect(self.on_add_shot_files_clicked) self.ui.toolButton_remove_shots.clicked.connect(self.shots_model.on_remove_selection) self.ui.tableView.doubleLeftClicked.connect(self.shots_model.on_double_click) self.ui.pushButton_analysis_running.toggled.connect(self.on_analysis_running_toggled) self.ui.pushButton_mark_as_not_done.clicked.connect(self.on_mark_selection_not_done_clicked) self.ui.pushButton_run_multishot_analysis.clicked.connect(self.on_run_multishot_analysis_clicked) def on_edit_columns_clicked(self): self.edit_columns_dialog.show() def on_columns_changed(self): column_names = self.shots_model.column_names columns_visible = self.shots_model.columns_visible self.edit_columns_dialog.update_columns(column_names, columns_visible) def on_add_shot_files_clicked(self): shot_files = QtWidgets.QFileDialog.getOpenFileNames(self.ui, 'Select shot files', self.last_opened_shots_folder, "HDF5 files (*.h5)") if type(shot_files) is tuple: shot_files, _ = shot_files if not shot_files: # User cancelled selection return # Convert to standard platform specific path, otherwise Qt likes forward slashes: shot_files = [os.path.abspath(shot_file) for shot_file in shot_files] # Save the containing folder for use next time we open the dialog box: self.last_opened_shots_folder = os.path.dirname(shot_files[0]) # Queue the files to be opened: for filepath in shot_files: self.incoming_queue.put(filepath) def on_analysis_running_toggled(self, pressed): if pressed: self.analysis_paused = True self.ui.pushButton_analysis_running.setIcon(QtGui.QIcon(':qtutils/fugue/control')) self.ui.pushButton_analysis_running.setText('Analysis paused') else: self.analysis_paused = False self.ui.pushButton_analysis_running.setIcon(QtGui.QIcon(':qtutils/fugue/control')) self.ui.pushButton_analysis_running.setText('Analysis running') self.analysis_pending.set() def on_mark_selection_not_done_clicked(self): self.shots_model.mark_selection_not_done() # Let the analysis loop know to look for these shots: self.analysis_pending.set() def on_run_multishot_analysis_clicked(self): self.multishot_required = True self.analysis_pending.set() def set_columns_visible(self, columns_visible): self.shots_model.set_columns_visible(columns_visible) @inmain_decorator() def set_add_shots_progress(self, completed, total, message): self.ui.progressBar_add_shots.setFormat("Adding shots: [{}] %v/%m (%p%)".format(message)) if completed == total and message is None: self.ui.progressBar_add_shots.hide() else: if total is not None: self.ui.progressBar_add_shots.setMaximum(total) if completed is not None: self.ui.progressBar_add_shots.setValue(completed) if self.ui.progressBar_add_shots.isHidden(): self.ui.progressBar_add_shots.show() if completed is None and total is None and message is not None: # Ensure a repaint when only the message changes: self.ui.progressBar_add_shots.repaint() def incoming_buffer_loop(self): """We use a queue as a buffer for incoming shots. We don't want to hang and not respond to a client submitting shots, so we just let shots pile up here until we can get to them. The downside to this is that we can't return errors to the client if the shot cannot be added, but the suggested workflow is to handle errors here anyway. A client running shots shouldn't stop the experiment on account of errors from the analyis stage, so what's the point of passing errors to it? We'll just raise errors here and the user can decide what to do with them.""" logger = logging.getLogger('lyse.FileBox.incoming') # HDF5 prints lots of errors by default, for things that aren't # actually errors. These are silenced on a per thread basis, # and automatically silenced in the main thread when h5py is # imported. So we'll silence them in this thread too: h5py._errors.silence_errors() n_shots_added = 0 while True: try: filepaths = [] filepath = self.incoming_queue.get() filepaths.append(filepath) if self.incoming_queue.qsize() == 0: # Wait momentarily in case more arrive so we can batch process them: time.sleep(0.1) # Batch process to decrease number of dataframe concatenations: batch_size = len(self.shots_model.dataframe) // 3 + 1 while True: try: filepath = self.incoming_queue.get(False) except queue.Empty: break else: filepaths.append(filepath) if len(filepaths) >= batch_size: break logger.info('adding:\n%s' % '\n'.join(filepaths)) if n_shots_added == 0: total_shots = self.incoming_queue.qsize() + len(filepaths) self.set_add_shots_progress(1, total_shots, "reading shot files") # Remove duplicates from the list (preserving order) in case the # client sent the same filepath multiple times: filepaths = sorted(set(filepaths), key=filepaths.index) # Inefficient but readable # We open the HDF5 files here outside the GUI thread so as not to hang the GUI: dataframes = [] indices_of_files_not_found = [] for i, filepath in enumerate(filepaths): try: dataframe = get_dataframe_from_shot(filepath) dataframes.append(dataframe) except IOError: app.output_box.output('Warning: Ignoring shot file not found or not readable %s\n' % filepath, red=True) indices_of_files_not_found.append(i) n_shots_added += 1 shots_remaining = self.incoming_queue.qsize() total_shots = n_shots_added + shots_remaining + len(filepaths) - (i + 1) self.set_add_shots_progress(n_shots_added, total_shots, "reading shot files") self.set_add_shots_progress(n_shots_added, total_shots, "concatenating dataframes") if dataframes: new_row_data = concat_with_padding(*dataframes) else: new_row_data = None # Do not add the shots that were not found on disk. Reverse # loop so that removing an item doesn't change the indices of # subsequent removals: for i in reversed(indices_of_files_not_found): del filepaths[i] if filepaths: self.shots_model.add_files(filepaths, new_row_data) # Let the analysis loop know to look for new shots: self.analysis_pending.set() if shots_remaining == 0: self.set_add_shots_progress(n_shots_added, total_shots, None) n_shots_added = 0 # reset our counter for the next batch except Exception: # Keep this incoming loop running at all costs, but make the # otherwise uncaught exception visible to the user: zprocess.raise_exception_in_thread(sys.exc_info()) def analysis_loop(self): logger = logging.getLogger('lyse.FileBox.analysis_loop') # HDF5 prints lots of errors by default, for things that aren't # actually errors. These are silenced on a per thread basis, # and automatically silenced in the main thread when h5py is # imported. So we'll silence them in this thread too: h5py._errors.silence_errors() while True: try: self.analysis_pending.wait() self.analysis_pending.clear() at_least_one_shot_analysed = False while True: if not self.analysis_paused: # Find the first shot that has not finished being analysed: filepath = self.shots_model.get_first_incomplete() if filepath is not None: logger.info('analysing: %s'%filepath) self.do_singleshot_analysis(filepath) at_least_one_shot_analysed = True if filepath is None and at_least_one_shot_analysed: self.multishot_required = True if filepath is None: break if self.multishot_required: logger.info('doing multishot analysis') self.do_multishot_analysis() else: logger.info('analysis is paused') break if self.multishot_required: logger.info('doing multishot analysis') self.do_multishot_analysis() except Exception: etype, value, tb = sys.exc_info() orig_exception = ''.join(traceback.format_exception_only(etype, value)) message = ('Analysis loop encountered unexpected exception. ' + 'This is a bug and should be reported. The analysis ' + 'loop is continuing, but lyse may be in an inconsistent state. ' 'Restart lyse, or continue at your own risk. ' 'Original exception was:\n\n' + orig_exception) # Raise the exception in a thread so we can keep running zprocess.raise_exception_in_thread((RuntimeError, RuntimeError(message), tb)) self.pause_analysis() @inmain_decorator() def pause_analysis(self): # This automatically triggers the slot that sets self.analysis_paused self.ui.pushButton_analysis_running.setChecked(True) def do_singleshot_analysis(self, filepath): # Check the shot file exists before sending it to the singleshot # routinebox. This does not guarantee it won't have been deleted by # the time the routinebox starts running analysis on it, but by # detecting it now we can most of the time avoid the user code # coughing exceptions due to the file not existing. Which would also # not be a problem, but this way we avoid polluting the outputbox with # more errors than necessary. if not os.path.exists(filepath): self.shots_model.mark_as_deleted_off_disk(filepath) return self.to_singleshot.put(filepath) while True: signal, status_percent, updated_data = self.from_singleshot.get() for file in updated_data: # Update the data for all the rows with new data: self.shots_model.update_row(file, updated_row_data=updated_data[file]) # Update the status percent for the the row on which analysis is actually running: self.shots_model.update_row(filepath, status_percent=status_percent, dataframe_already_updated=True) if signal == 'done': return if signal == 'error': if not os.path.exists(filepath): # Do not pause if the file has been deleted. An error is # no surprise there: self.shots_model.mark_as_deleted_off_disk(filepath) else: self.pause_analysis() return if signal == 'progress': continue raise ValueError('invalid signal %s' % str(signal)) def do_multishot_analysis(self): self.to_multishot.put(None) while True: signal, _, updated_data = self.from_multishot.get() for file in updated_data: self.shots_model.update_row(file, updated_row_data=updated_data[file]) if signal == 'done': self.multishot_required = False return elif signal == 'error': self.pause_analysis() return class Lyse(object): def __init__(self): splash.update_text('loading graphical interface') loader = UiLoader() self.ui = loader.load(os.path.join(LYSE_DIR, 'main.ui'), LyseMainWindow()) self.connect_signals() self.setup_config() self.port = int(self.exp_config.get('ports', 'lyse')) # The singleshot routinebox will be connected to the filebox # by queues: to_singleshot = queue.Queue() from_singleshot = queue.Queue() # So will the multishot routinebox: to_multishot = queue.Queue() from_multishot = queue.Queue() self.output_box = OutputBox(self.ui.verticalLayout_output_box) self.singleshot_routinebox = RoutineBox(self.ui.verticalLayout_singleshot_routinebox, self.exp_config, self, to_singleshot, from_singleshot, self.output_box.port) self.multishot_routinebox = RoutineBox(self.ui.verticalLayout_multishot_routinebox, self.exp_config, self, to_multishot, from_multishot, self.output_box.port, multishot=True) self.filebox = FileBox(self.ui.verticalLayout_filebox, self.exp_config, to_singleshot, from_singleshot, to_multishot, from_multishot) self.last_save_config_file = None self.last_save_data = None self.ui.actionLoad_configuration.triggered.connect(self.on_load_configuration_triggered) self.ui.actionRevert_configuration.triggered.connect(self.on_revert_configuration_triggered) self.ui.actionSave_configuration.triggered.connect(self.on_save_configuration_triggered) self.ui.actionSave_configuration_as.triggered.connect(self.on_save_configuration_as_triggered) self.ui.actionSave_dataframe_as.triggered.connect(lambda: self.on_save_dataframe_triggered(True)) self.ui.actionSave_dataframe.triggered.connect(lambda: self.on_save_dataframe_triggered(False)) self.ui.actionLoad_dataframe.triggered.connect(self.on_load_dataframe_triggered) self.ui.resize(1600, 900) # Set the splitters to appropriate fractions of their maximum size: self.ui.splitter_horizontal.setSizes([1000, 600]) self.ui.splitter_vertical.setSizes([300, 600]) # autoload a config file, if labconfig is set to do so: try: autoload_config_file = self.exp_config.get('lyse', 'autoload_config_file') except (LabConfig.NoOptionError, LabConfig.NoSectionError): self.output_box.output('Ready.\n\n') else: self.ui.setEnabled(False) self.output_box.output('Loading default config file %s...' % autoload_config_file) def load_the_config_file(): try: self.load_configuration(autoload_config_file, restore_window_geometry) self.output_box.output('done.\n') except Exception as e: self.output_box.output('\nCould not load config file: %s: %s\n\n' % (e.__class__.__name__, str(e)), red=True) else: self.output_box.output('Ready.\n\n') finally: self.ui.setEnabled(True) # Load the window geometry now, but then defer the other loading until 50ms # after the window has shown, so that the GUI pops up faster in the meantime. try: self.load_window_geometry_configuration(autoload_config_file) except Exception: # ignore error for now and let it be raised again in the call to load_configuration: restore_window_geometry = True else: # Success - skip loading window geometry in load_configuration: restore_window_geometry = False self.ui.firstPaint.connect(lambda: QtCore.QTimer.singleShot(50, load_the_config_file)) self.ui.show() # self.ui.showMaximized() def terminate_all_workers(self): for routine in self.singleshot_routinebox.routines + self.multishot_routinebox.routines: routine.end_child() def workers_terminated(self): terminated = {} for routine in self.singleshot_routinebox.routines + self.multishot_routinebox.routines: routine.worker.poll() terminated[routine.filepath] = routine.worker.returncode is not None return terminated def are_you_sure(self): message = ('Current configuration (which scripts are loaded and other GUI state) ' 'has changed: save config file \'%s\'?' % self.last_save_config_file) reply = QtWidgets.QMessageBox.question(self.ui, 'Quit lyse', message, QtWidgets.QMessageBox.Yes | QtWidgets.QMessageBox.No | QtWidgets.QMessageBox.Cancel) if reply == QtWidgets.QMessageBox.Cancel: return False if reply == QtWidgets.QMessageBox.Yes: self.save_configuration(self.last_save_config_file) return True def on_close_event(self): save_data = self.get_save_data() if self.last_save_data is not None and save_data != self.last_save_data: if self.only_window_geometry_is_different(save_data, self.last_save_data): self.save_configuration(self.last_save_config_file) self.terminate_all_workers() return True elif not self.are_you_sure(): return False self.terminate_all_workers() return True def on_save_configuration_triggered(self): if self.last_save_config_file is None: self.on_save_configuration_as_triggered() self.ui.actionSave_configuration_as.setEnabled(True) self.ui.actionRevert_configuration.setEnabled(True) else: self.save_configuration(self.last_save_config_file) def on_revert_configuration_triggered(self): save_data = self.get_save_data() if self.last_save_data is not None and save_data != self.last_save_data: message = 'Revert configuration to the last saved state in \'%s\'?' % self.last_save_config_file reply = QtWidgets.QMessageBox.question(self.ui, 'Load configuration', message, QtWidgets.QMessageBox.Yes | QtWidgets.QMessageBox.Cancel) if reply == QtWidgets.QMessageBox.Cancel: return elif reply == QtWidgets.QMessageBox.Yes: self.load_configuration(self.last_save_config_file) else: error_dialog('no changes to revert') def on_save_configuration_as_triggered(self): if self.last_save_config_file is not None: default = self.last_save_config_file else: try: default_path = os.path.join(self.exp_config.get('DEFAULT', 'app_saved_configs'), 'lyse') except LabConfig.NoOptionError: self.exp_config.set('DEFAULT', 'app_saved_configs', os.path.join('%(labscript_suite)s', 'userlib', 'app_saved_configs', '%(experiment_name)s')) default_path = os.path.join(self.exp_config.get('DEFAULT', 'app_saved_configs'), 'lyse') if not os.path.exists(default_path): os.makedirs(default_path) default = os.path.join(default_path, 'lyse.ini') save_file = QtWidgets.QFileDialog.getSaveFileName(self.ui, 'Select file to save current lyse configuration', default, "config files (*.ini)") if type(save_file) is tuple: save_file, _ = save_file if not save_file: # User cancelled return # Convert to standard platform specific path, otherwise Qt likes # forward slashes: save_file = os.path.abspath(save_file) self.save_configuration(save_file) def only_window_geometry_is_different(self, current_data, old_data): ui_keys = ['window_size', 'window_pos', 'splitter', 'splitter_vertical', 'splitter_horizontal'] compare = [current_data[key] == old_data[key] for key in current_data.keys() if key not in ui_keys] return all(compare) def get_save_data(self): save_data = {} box = self.singleshot_routinebox save_data['SingleShot'] = list(zip([routine.filepath for routine in box.routines], [box.model.item(row, box.COL_ACTIVE).checkState() for row in range(box.model.rowCount())])) save_data['LastSingleShotFolder'] = box.last_opened_routine_folder box = self.multishot_routinebox save_data['MultiShot'] = list(zip([routine.filepath for routine in box.routines], [box.model.item(row, box.COL_ACTIVE).checkState() for row in range(box.model.rowCount())])) save_data['LastMultiShotFolder'] = box.last_opened_routine_folder save_data['LastFileBoxFolder'] = self.filebox.last_opened_shots_folder save_data['analysis_paused'] = self.filebox.analysis_paused window_size = self.ui.size() save_data['window_size'] = (window_size.width(), window_size.height()) window_pos = self.ui.pos() save_data['window_pos'] = (window_pos.x(), window_pos.y()) save_data['screen_geometry'] = get_screen_geometry() save_data['splitter'] = self.ui.splitter.sizes() save_data['splitter_vertical'] = self.ui.splitter_vertical.sizes() save_data['splitter_horizontal'] = self.ui.splitter_horizontal.sizes() return save_data def save_configuration(self, save_file): lyse_config = LabConfig(save_file) save_data = self.get_save_data() self.last_save_config_file = save_file self.last_save_data = save_data for key, value in save_data.items(): lyse_config.set('lyse_state', key, pprint.pformat(value)) def on_load_configuration_triggered(self): save_data = self.get_save_data() if self.last_save_data is not None and save_data != self.last_save_data: message = ('Current configuration (which groups are active/open and other GUI state) ' 'has changed: save config file \'%s\'?' % self.last_save_config_file) reply = QtWidgets.QMessageBox.question(self.ui, 'Load configuration', message, QtWidgets.QMessageBox.Yes | QtWidgets.QMessageBox.No | QtWidgets.QMessageBox.Cancel) if reply == QtWidgets.QMessageBox.Cancel: return if reply == QtWidgets.QMessageBox.Yes: self.save_configuration(self.last_save_config_file) if self.last_save_config_file is not None: default = self.last_save_config_file else: default = os.path.join(self.exp_config.get('paths', 'experiment_shot_storage'), 'lyse.ini') file = QtWidgets.QFileDialog.getOpenFileName(self.ui, 'Select lyse configuration file to load', default, "config files (*.ini)") if type(file) is tuple: file, _ = file if not file: # User cancelled return # Convert to standard platform specific path, otherwise Qt likes # forward slashes: file = os.path.abspath(file) self.load_configuration(file) def load_configuration(self, filename, restore_window_geometry=True): self.last_save_config_file = filename self.ui.actionSave_configuration.setText('Save configuration %s' % filename) lyse_config = LabConfig(filename) try: self.singleshot_routinebox.add_routines(ast.literal_eval(lyse_config.get('lyse_state', 'SingleShot')), clear_existing=True) except (LabConfig.NoOptionError, LabConfig.NoSectionError): pass try: self.singleshot_routinebox.last_opened_routine_folder = ast.literal_eval(lyse_config.get('lyse_state', 'LastSingleShotFolder')) except (LabConfig.NoOptionError, LabConfig.NoSectionError): pass try: self.multishot_routinebox.add_routines(ast.literal_eval(lyse_config.get('lyse_state', 'MultiShot')), clear_existing=True) except (LabConfig.NoOptionError, LabConfig.NoSectionError): pass try: self.multishot_routinebox.last_opened_routine_folder = ast.literal_eval(lyse_config.get('lyse_state', 'LastMultiShotFolder')) except (LabConfig.NoOptionError, LabConfig.NoSectionError): pass try: self.filebox.last_opened_shots_folder = ast.literal_eval(lyse_config.get('lyse_state', 'LastFileBoxFolder')) except (LabConfig.NoOptionError, LabConfig.NoSectionError): pass try: if ast.literal_eval(lyse_config.get('lyse_state', 'analysis_paused')): self.filebox.pause_analysis() except (LabConfig.NoOptionError, LabConfig.NoSectionError): pass if restore_window_geometry: self.load_window_geometry_configuration(filename) # Set as self.last_save_data: save_data = self.get_save_data() self.last_save_data = save_data self.ui.actionSave_configuration_as.setEnabled(True) self.ui.actionRevert_configuration.setEnabled(True) def load_window_geometry_configuration(self, filename): """Load only the window geometry from the config file. It's useful to have this separate from the rest of load_configuration so that it can be called before the window is shown.""" lyse_config = LabConfig(filename) try: screen_geometry = ast.literal_eval(lyse_config.get('lyse_state', 'screen_geometry')) except (LabConfig.NoOptionError, LabConfig.NoSectionError): pass else: # Only restore the window size and position, and splitter # positions if the screen is the same size/same number of monitors # etc. This prevents the window moving off the screen if say, the # position was saved when 2 monitors were plugged in but there is # only one now, and the splitters may not make sense in light of a # different window size, so better to fall back to defaults: current_screen_geometry = get_screen_geometry() if current_screen_geometry == screen_geometry: try: self.ui.resize(*ast.literal_eval(lyse_config.get('lyse_state', 'window_size'))) except (LabConfig.NoOptionError, LabConfig.NoSectionError): pass try: self.ui.move(*ast.literal_eval(lyse_config.get('lyse_state', 'window_pos'))) except (LabConfig.NoOptionError, LabConfig.NoSectionError): pass try: self.ui.splitter.setSizes(ast.literal_eval(lyse_config.get('lyse_state', 'splitter'))) except (LabConfig.NoOptionError, LabConfig.NoSectionError): pass try: self.ui.splitter_vertical.setSizes(ast.literal_eval(lyse_config.get('lyse_state', 'splitter_vertical'))) except (LabConfig.NoOptionError, LabConfig.NoSectionError): pass try: self.ui.splitter_horizontal.setSizes(ast.literal_eval(lyse_config.get('lyse_state', 'splitter_horizontal'))) except (LabConfig.NoOptionError, LabConfig.NoSectionError): pass def setup_config(self): required_config_params = {"DEFAULT": ["experiment_name"], "programs": ["text_editor", "text_editor_arguments", "hdf5_viewer", "hdf5_viewer_arguments"], "paths": ["shared_drive", "experiment_shot_storage", "analysislib"], "ports": ["lyse"] } self.exp_config = LabConfig(required_params=required_config_params) def connect_signals(self): if os.name == 'nt': self.ui.newWindow.connect(set_win_appusermodel) # Keyboard shortcuts: QtWidgets.QShortcut('Del', self.ui, lambda: self.delete_items(True)) QtWidgets.QShortcut('Shift+Del', self.ui, lambda: self.delete_items(False)) def on_save_dataframe_triggered(self, choose_folder=True): df = self.filebox.shots_model.dataframe.copy() if len(df) > 0: default = self.exp_config.get('paths', 'experiment_shot_storage') if choose_folder: save_path = QtWidgets.QFileDialog.getExistingDirectory(self.ui, 'Select a Folder for the Dataframes', default) if type(save_path) is tuple: save_path, _ = save_path if not save_path: # User cancelled return sequences = df.sequence.unique() for sequence in sequences: sequence_df = pandas.DataFrame(df[df['sequence'] == sequence], columns=df.columns).dropna(axis=1, how='all') labscript = sequence_df['labscript'].iloc[0] filename = "dataframe_{}_{}.msg".format(sequence.to_pydatetime().strftime("%Y%m%dT%H%M%S"),labscript[:-3]) if not choose_folder: save_path = os.path.dirname(sequence_df['filepath'].iloc[0]) sequence_df.infer_objects() for col in sequence_df.columns : if sequence_df[col].dtype == object: sequence_df[col] = pandas.to_numeric(sequence_df[col], errors='ignore') sequence_df.to_msgpack(os.path.join(save_path, filename)) else: error_dialog('Dataframe is empty') def on_load_dataframe_triggered(self): default = os.path.join(self.exp_config.get('paths', 'experiment_shot_storage'), 'dataframe.msg') file = QtWidgets.QFileDialog.getOpenFileName(self.ui, 'Select dataframe file to load', default, "dataframe files (*.msg)") if type(file) is tuple: file, _ = file if not file: # User cancelled return # Convert to standard platform specific path, otherwise Qt likes # forward slashes: file = os.path.abspath(file) df = pandas.read_msgpack(file).sort_values("run time").reset_index() # Check for changes in the shot files since the dataframe was exported def changed_since(filepath, time): if os.path.isfile(filepath): return os.path.getmtime(filepath) > time else: return False filepaths = df["filepath"].tolist() changetime_cache = os.path.getmtime(file) need_updating = np.where(map(lambda x: changed_since(x, changetime_cache), filepaths))[0] need_updating = np.sort(need_updating)[::-1] # sort in descending order to not remove the wrong items with pop # Reload the files where changes where made since exporting for index in need_updating: filepath = filepaths.pop(index) self.filebox.incoming_queue.put(filepath) df = df.drop(need_updating) self.filebox.shots_model.add_files(filepaths, df, done=True) def delete_items(self, confirm): """Delete items from whichever box has focus, with optional confirmation dialog""" if self.filebox.ui.tableView.hasFocus(): self.filebox.shots_model.remove_selection(confirm) if self.singleshot_routinebox.ui.treeView.hasFocus(): self.singleshot_routinebox.remove_selection(confirm) if self.multishot_routinebox.ui.treeView.hasFocus(): self.multishot_routinebox.remove_selection(confirm) if __name__ == "__main__": logger = setup_logging('lyse') labscript_utils.excepthook.set_logger(logger) logger.info('\n\n===============starting===============\n') qapplication = QtWidgets.QApplication(sys.argv) qapplication.setAttribute(QtCore.Qt.AA_DontShowIconsInMenus, False) app = Lyse() # Start the web server: splash.update_text('starting analysis server') server = WebServer(app.port) splash.update_text('done') # Let the interpreter run every 500ms so it sees Ctrl-C interrupts: timer = QtCore.QTimer() timer.start(500) timer.timeout.connect(lambda: None) # Let the interpreter run each 500 ms. # Upon seeing a ctrl-c interrupt, quit the event loop signal.signal(signal.SIGINT, lambda *args: qapplication.exit()) splash.hide() qapplication.exec_() server.shutdown()
the-stack_0_14460
#!/usr/bin/python # -*- coding: utf-8 -*- #------------------------------------------------------------------------------------------# # This file is part of Pyccel which is released under MIT License. See the LICENSE file or # # go to https://github.com/pyccel/pyccel/blob/master/LICENSE for full license details. # #------------------------------------------------------------------------------------------# import os from pyccel.codegen.printing.fcode import FCodePrinter from pyccel.codegen.printing.ccode import CCodePrinter from pyccel.codegen.printing.pycode import PythonCodePrinter from pyccel.ast.core import FunctionDef, Interface, ModuleHeader from pyccel.errors.errors import Errors from pyccel.utilities.stage import PyccelStage _extension_registry = {'fortran': 'f90', 'c':'c', 'python':'py'} _header_extension_registry = {'fortran': None, 'c':'h', 'python':None} printer_registry = { 'fortran':FCodePrinter, 'c':CCodePrinter, 'python':PythonCodePrinter } pyccel_stage = PyccelStage() class Codegen(object): """Abstract class for code generator.""" def __init__(self, parser, name): """Constructor for Codegen. parser: pyccel parser name: str name of the generated module or program. """ pyccel_stage.set_stage('codegen') self._parser = parser self._ast = parser.ast self._name = name self._printer = None self._language = None #TODO verify module name != function name #it generates a compilation error self._stmts = {} _structs = [ 'imports', 'body', 'routines', 'classes', 'modules', 'variables', 'interfaces', ] for key in _structs: self._stmts[key] = [] self._collect_statements() self._is_program = self.ast.program is not None @property def parser(self): return self._parser @property def name(self): """Returns the name associated to the source code""" return self._name @property def imports(self): """Returns the imports of the source code.""" return self._stmts['imports'] @property def variables(self): """Returns the variables of the source code.""" return self._stmts['variables'] @property def body(self): """Returns the body of the source code, if it is a Program or Module.""" return self._stmts['body'] @property def routines(self): """Returns functions/subroutines.""" return self._stmts['routines'] @property def classes(self): """Returns the classes if Module.""" return self._stmts['classes'] @property def interfaces(self): """Returns the interfaces.""" return self._stmts['interfaces'] @property def modules(self): """Returns the modules if Program.""" return self._stmts['modules'] @property def is_program(self): """Returns True if a Program.""" return self._is_program @property def ast(self): """Returns the AST.""" return self._ast @property def language(self): """Returns the used language""" return self._language def set_printer(self, **settings): """ Set the current codeprinter instance""" # Get language used (default language used is fortran) language = settings.pop('language', 'fortran') # Set language if not language in ['fortran', 'c', 'python']: raise ValueError('{} language is not available'.format(language)) self._language = language # instantiate codePrinter code_printer = printer_registry[language] errors = Errors() errors.set_parser_stage('codegen') # set the code printer self._printer = code_printer(self.parser.filename, **settings) def get_printer_imports(self): """return the imports of the current codeprinter""" return self._printer.get_additional_imports() def _collect_statements(self): """Collects statements and split them into routines, classes, etc.""" scope = self.parser.scope funcs = [] interfaces = [] for i in scope.functions.values(): if isinstance(i, FunctionDef) and not i.is_header: funcs.append(i) elif isinstance(i, Interface): interfaces.append(i) self._stmts['imports' ] = list(scope.imports['imports'].values()) self._stmts['variables' ] = list(self.parser.get_variables(scope)) self._stmts['routines' ] = funcs self._stmts['classes' ] = list(scope.classes.values()) self._stmts['interfaces'] = interfaces self._stmts['body'] = self.ast def doprint(self, **settings): """Prints the code in the target language.""" if not self._printer: self.set_printer(**settings) return self._printer.doprint(self.ast) def export(self, filename=None, **settings): """Export code in filename""" self.set_printer(**settings) ext = _extension_registry[self._language] header_ext = _header_extension_registry[self._language] if filename is None: filename = self.name header_filename = '{name}.{ext}'.format(name=filename, ext=header_ext) filename = '{name}.{ext}'.format(name=filename, ext=ext) # print module header if header_ext is not None: code = self._printer.doprint(ModuleHeader(self.ast)) with open(header_filename, 'w') as f: for line in code: f.write(line) # print module code = self._printer.doprint(self.ast) with open(filename, 'w') as f: for line in code: f.write(line) # print program prog_filename = None if self.is_program and self.language != 'python': folder = os.path.dirname(filename) fname = os.path.basename(filename) prog_filename = os.path.join(folder,"prog_"+fname) code = self._printer.doprint(self.ast.program) with open(prog_filename, 'w') as f: for line in code: f.write(line) return filename, prog_filename
the-stack_0_14461
from dataclasses import dataclass, asdict, field from typing import ( Union, Dict, Optional, TYPE_CHECKING, Iterable, ) import numpy as np from ..base.backend import BaseBackendMixin from ....helper import dataclass_from_dict if TYPE_CHECKING: from ....typing import DocumentArraySourceType, ArrayType @dataclass class AnnliteConfig: n_dim: int metric: str = 'cosine' serialize_config: Dict = field(default_factory=dict) data_path: Optional[str] = None class BackendMixin(BaseBackendMixin): """Provide necessary functions to enable this storage backend.""" def _map_embedding(self, embedding: 'ArrayType') -> 'ArrayType': if embedding is None: embedding = np.zeros(self.n_dim, dtype=np.float32) elif isinstance(embedding, list): from ....math.ndarray import to_numpy_array embedding = to_numpy_array(embedding) if embedding.ndim > 1: embedding = np.asarray(embedding).squeeze() return embedding def _init_storage( self, _docs: Optional['DocumentArraySourceType'] = None, config: Optional[Union[AnnliteConfig, Dict]] = None, **kwargs, ): if not config: raise ValueError('Config object must be specified') elif isinstance(config, dict): config = dataclass_from_dict(AnnliteConfig, config) self._persist = bool(config.data_path) if not self._persist: from tempfile import TemporaryDirectory config.data_path = TemporaryDirectory().name self._config = config config = asdict(config) self.n_dim = config.pop('n_dim') from annlite import AnnLite self._annlite = AnnLite(self.n_dim, lock=False, **config) from .... import Document super()._init_storage() if _docs is None: return self.clear() if isinstance(_docs, Iterable): self.extend(_docs) elif isinstance(_docs, Document): self.append(_docs) def __getstate__(self): state = dict(self.__dict__) del state['_annlite'] del state['_offsetmapping'] return state def __setstate__(self, state): self.__dict__ = state config = state['_config'] config = asdict(config) n_dim = config.pop('n_dim') from annlite import AnnLite self._annlite = AnnLite(n_dim, lock=False, **config)
the-stack_0_14462
# -*- coding: utf-8 -*- # # Copyright © Spyder Project Contributors # Licensed under the terms of the MIT License # (see spyder/__init__.py for details) """Editor Widget""" # pylint: disable=C0103 # pylint: disable=R0903 # pylint: disable=R0911 # pylint: disable=R0201 # Standard library imports import logging import os import os.path as osp import sys import functools import unicodedata # Third party imports import qstylizer from qtpy.compat import getsavefilename from qtpy.QtCore import (QByteArray, QFileInfo, QPoint, QSize, Qt, QTimer, Signal, Slot) from qtpy.QtGui import QFont from qtpy.QtWidgets import (QAction, QApplication, QFileDialog, QHBoxLayout, QLabel, QMainWindow, QMessageBox, QMenu, QSplitter, QVBoxLayout, QWidget, QListWidget, QListWidgetItem, QSizePolicy, QToolBar) # Local imports from spyder.api.panel import Panel from spyder.config.base import _, running_under_pytest from spyder.config.manager import CONF from spyder.config.utils import (get_edit_filetypes, get_edit_filters, get_filter, is_kde_desktop, is_anaconda) from spyder.plugins.editor.utils.autosave import AutosaveForStack from spyder.plugins.editor.utils.editor import get_file_language from spyder.plugins.editor.utils.switcher import EditorSwitcherManager from spyder.plugins.editor.widgets import codeeditor from spyder.plugins.editor.widgets.editorstack_helpers import ( ThreadManager, FileInfo, StackHistory) from spyder.plugins.editor.widgets.status import (CursorPositionStatus, EncodingStatus, EOLStatus, ReadWriteStatus, VCSStatus) from spyder.plugins.explorer.widgets.explorer import ( show_in_external_file_explorer) from spyder.plugins.outlineexplorer.widgets import OutlineExplorerWidget from spyder.plugins.outlineexplorer.editor import OutlineExplorerProxyEditor from spyder.plugins.outlineexplorer.api import cell_name from spyder.py3compat import qbytearray_to_str, to_text_string from spyder.utils import encoding, sourcecode, syntaxhighlighters from spyder.utils.icon_manager import ima from spyder.utils.palette import QStylePalette from spyder.utils.qthelpers import (add_actions, create_action, create_toolbutton, MENU_SEPARATOR, mimedata2url, set_menu_icons, create_waitspinner) from spyder.utils.stylesheet import ( APP_STYLESHEET, APP_TOOLBAR_STYLESHEET, PANES_TABBAR_STYLESHEET) from spyder.widgets.findreplace import FindReplace from spyder.widgets.tabs import BaseTabs logger = logging.getLogger(__name__) class TabSwitcherWidget(QListWidget): """Show tabs in mru order and change between them.""" def __init__(self, parent, stack_history, tabs): QListWidget.__init__(self, parent) self.setWindowFlags(Qt.FramelessWindowHint | Qt.Dialog) self.editor = parent self.stack_history = stack_history self.tabs = tabs self.setSelectionMode(QListWidget.SingleSelection) self.itemActivated.connect(self.item_selected) self.id_list = [] self.load_data() size = CONF.get('main', 'completion/size') self.resize(*size) self.set_dialog_position() self.setCurrentRow(0) CONF.config_shortcut(lambda: self.select_row(-1), context='Editor', name='Go to previous file', parent=self) CONF.config_shortcut(lambda: self.select_row(1), context='Editor', name='Go to next file', parent=self) def load_data(self): """Fill ListWidget with the tabs texts. Add elements in inverse order of stack_history. """ for index in reversed(self.stack_history): text = self.tabs.tabText(index) text = text.replace('&', '') item = QListWidgetItem(ima.icon('TextFileIcon'), text) self.addItem(item) def item_selected(self, item=None): """Change to the selected document and hide this widget.""" if item is None: item = self.currentItem() # stack history is in inverse order try: index = self.stack_history[-(self.currentRow()+1)] except IndexError: pass else: self.editor.set_stack_index(index) self.editor.current_changed(index) self.hide() def select_row(self, steps): """Move selected row a number of steps. Iterates in a cyclic behaviour. """ row = (self.currentRow() + steps) % self.count() self.setCurrentRow(row) def set_dialog_position(self): """Positions the tab switcher in the top-center of the editor.""" left = self.editor.geometry().width()/2 - self.width()/2 top = (self.editor.tabs.tabBar().geometry().height() + self.editor.fname_label.geometry().height()) self.move(self.editor.mapToGlobal(QPoint(left, top))) def keyReleaseEvent(self, event): """Reimplement Qt method. Handle "most recent used" tab behavior, When ctrl is released and tab_switcher is visible, tab will be changed. """ if self.isVisible(): qsc = CONF.get_shortcut(context='Editor', name='Go to next file') for key in qsc.split('+'): key = key.lower() if ((key == 'ctrl' and event.key() == Qt.Key_Control) or (key == 'alt' and event.key() == Qt.Key_Alt)): self.item_selected() event.accept() def keyPressEvent(self, event): """Reimplement Qt method to allow cyclic behavior.""" if event.key() == Qt.Key_Down: self.select_row(1) elif event.key() == Qt.Key_Up: self.select_row(-1) def focusOutEvent(self, event): """Reimplement Qt method to close the widget when loosing focus.""" event.ignore() if sys.platform == "darwin": if event.reason() != Qt.ActiveWindowFocusReason: self.close() else: self.close() class EditorStack(QWidget): reset_statusbar = Signal() readonly_changed = Signal(bool) encoding_changed = Signal(str) sig_editor_cursor_position_changed = Signal(int, int) sig_refresh_eol_chars = Signal(str) sig_refresh_formatting = Signal(bool) starting_long_process = Signal(str) ending_long_process = Signal(str) redirect_stdio = Signal(bool) exec_in_extconsole = Signal(str, bool) run_cell_in_ipyclient = Signal(str, object, str, bool) debug_cell_in_ipyclient = Signal(str, object, str, bool) update_plugin_title = Signal() editor_focus_changed = Signal() zoom_in = Signal() zoom_out = Signal() zoom_reset = Signal() sig_open_file = Signal(dict) sig_close_file = Signal(str, str) file_saved = Signal(str, str, str) file_renamed_in_data = Signal(str, str, str) opened_files_list_changed = Signal() active_languages_stats = Signal(set) todo_results_changed = Signal() update_code_analysis_actions = Signal() refresh_file_dependent_actions = Signal() refresh_save_all_action = Signal() sig_breakpoints_saved = Signal() text_changed_at = Signal(str, int) current_file_changed = Signal(str, int, int, int) plugin_load = Signal((str,), ()) edit_goto = Signal(str, int, str) sig_split_vertically = Signal() sig_split_horizontally = Signal() sig_new_file = Signal((str,), ()) sig_save_as = Signal() sig_prev_edit_pos = Signal() sig_prev_cursor = Signal() sig_next_cursor = Signal() sig_prev_warning = Signal() sig_next_warning = Signal() sig_go_to_definition = Signal(str, int, int) sig_perform_completion_request = Signal(str, str, dict) sig_option_changed = Signal(str, object) # config option needs changing sig_save_bookmark = Signal(int) sig_load_bookmark = Signal(int) sig_save_bookmarks = Signal(str, str) sig_help_requested = Signal(dict) """ This signal is emitted to request help on a given object `name`. Parameters ---------- help_data: dict Dictionary required by the Help pane to render a docstring. Examples -------- >>> help_data = { 'obj_text': str, 'name': str, 'argspec': str, 'note': str, 'docstring': str, 'force_refresh': bool, 'path': str, } See Also -------- :py:meth:spyder.plugins.editor.widgets.editor.EditorStack.send_to_help """ def __init__(self, parent, actions): QWidget.__init__(self, parent) self.setAttribute(Qt.WA_DeleteOnClose) self.threadmanager = ThreadManager(self) self.new_window = False self.horsplit_action = None self.versplit_action = None self.close_action = None self.__get_split_actions() layout = QVBoxLayout() layout.setContentsMargins(0, 0, 0, 0) self.setLayout(layout) self.menu = None self.switcher_dlg = None self.switcher_manager = None self.tabs = None self.tabs_switcher = None self.stack_history = StackHistory(self) # External panels self.external_panels = [] self.setup_editorstack(parent, layout) self.find_widget = None self.data = [] switcher_action = create_action( self, _("File switcher..."), icon=ima.icon('filelist'), triggered=self.open_switcher_dlg) symbolfinder_action = create_action( self, _("Find symbols in file..."), icon=ima.icon('symbol_find'), triggered=self.open_symbolfinder_dlg) copy_to_cb_action = create_action(self, _("Copy path to clipboard"), icon=ima.icon('editcopy'), triggered=lambda: QApplication.clipboard().setText(self.get_current_filename())) close_right = create_action(self, _("Close all to the right"), triggered=self.close_all_right) close_all_but_this = create_action(self, _("Close all but this"), triggered=self.close_all_but_this) sort_tabs = create_action(self, _("Sort tabs alphabetically"), triggered=self.sort_file_tabs_alphabetically) if sys.platform == 'darwin': text = _("Show in Finder") else: text = _("Show in external file explorer") external_fileexp_action = create_action( self, text, triggered=self.show_in_external_file_explorer, shortcut=CONF.get_shortcut(context="Editor", name="show in external file explorer"), context=Qt.WidgetShortcut) self.menu_actions = actions + [external_fileexp_action, None, switcher_action, symbolfinder_action, copy_to_cb_action, None, close_right, close_all_but_this, sort_tabs] self.outlineexplorer = None self.is_closable = False self.new_action = None self.open_action = None self.save_action = None self.revert_action = None self.tempfile_path = None self.title = _("Editor") self.todolist_enabled = True self.is_analysis_done = False self.linenumbers_enabled = True self.blanks_enabled = False self.scrollpastend_enabled = False self.edgeline_enabled = True self.edgeline_columns = (79,) self.close_parentheses_enabled = True self.close_quotes_enabled = True self.add_colons_enabled = True self.auto_unindent_enabled = True self.indent_chars = " "*4 self.tab_stop_width_spaces = 4 self.show_class_func_dropdown = False self.help_enabled = False self.default_font = None self.wrap_enabled = False self.tabmode_enabled = False self.stripmode_enabled = False self.intelligent_backspace_enabled = True self.automatic_completions_enabled = True self.automatic_completion_chars = 3 self.automatic_completion_ms = 300 self.completions_hint_enabled = True self.completions_hint_after_ms = 500 self.hover_hints_enabled = True self.format_on_save = False self.code_snippets_enabled = True self.code_folding_enabled = True self.underline_errors_enabled = False self.highlight_current_line_enabled = False self.highlight_current_cell_enabled = False self.occurrence_highlighting_enabled = True self.occurrence_highlighting_timeout = 1500 self.checkeolchars_enabled = True self.always_remove_trailing_spaces = False self.add_newline = False self.remove_trailing_newlines = False self.convert_eol_on_save = False self.convert_eol_on_save_to = 'LF' self.focus_to_editor = True self.run_cell_copy = False self.create_new_file_if_empty = True self.indent_guides = False ccs = 'spyder/dark' if ccs not in syntaxhighlighters.COLOR_SCHEME_NAMES: ccs = syntaxhighlighters.COLOR_SCHEME_NAMES[0] self.color_scheme = ccs self.__file_status_flag = False # Real-time code analysis self.analysis_timer = QTimer(self) self.analysis_timer.setSingleShot(True) self.analysis_timer.setInterval(1000) self.analysis_timer.timeout.connect(self.analyze_script) # Update filename label self.editor_focus_changed.connect(self.update_fname_label) # Accepting drops self.setAcceptDrops(True) # Local shortcuts self.shortcuts = self.create_shortcuts() # For opening last closed tabs self.last_closed_files = [] # Reference to save msgbox and avoid memory to be freed. self.msgbox = None # File types and filters used by the Save As dialog self.edit_filetypes = None self.edit_filters = None # For testing self.save_dialog_on_tests = not running_under_pytest() # Autusave component self.autosave = AutosaveForStack(self) self.last_cell_call = None @Slot() def show_in_external_file_explorer(self, fnames=None): """Show file in external file explorer""" if fnames is None: fnames = self.get_current_filename() try: show_in_external_file_explorer(fnames) except FileNotFoundError as error: file = str(error).split("'")[1] if "xdg-open" in file: msg_title = _("Warning") msg = _("Spyder can't show this file in the external file " "explorer because the <tt>xdg-utils</tt> package is " "not available on your system.") QMessageBox.information(self, msg_title, msg, QMessageBox.Ok) def create_shortcuts(self): """Create local shortcuts""" # --- Configurable shortcuts inspect = CONF.config_shortcut( self.inspect_current_object, context='Editor', name='Inspect current object', parent=self) set_breakpoint = CONF.config_shortcut( self.set_or_clear_breakpoint, context='Editor', name='Breakpoint', parent=self) set_cond_breakpoint = CONF.config_shortcut( self.set_or_edit_conditional_breakpoint, context='Editor', name='Conditional breakpoint', parent=self) gotoline = CONF.config_shortcut( self.go_to_line, context='Editor', name='Go to line', parent=self) tab = CONF.config_shortcut( lambda: self.tab_navigation_mru(forward=False), context='Editor', name='Go to previous file', parent=self) tabshift = CONF.config_shortcut( self.tab_navigation_mru, context='Editor', name='Go to next file', parent=self) prevtab = CONF.config_shortcut( lambda: self.tabs.tab_navigate(-1), context='Editor', name='Cycle to previous file', parent=self) nexttab = CONF.config_shortcut( lambda: self.tabs.tab_navigate(1), context='Editor', name='Cycle to next file', parent=self) run_selection = CONF.config_shortcut( self.run_selection, context='Editor', name='Run selection', parent=self) new_file = CONF.config_shortcut( lambda: self.sig_new_file[()].emit(), context='Editor', name='New file', parent=self) open_file = CONF.config_shortcut( lambda: self.plugin_load[()].emit(), context='Editor', name='Open file', parent=self) save_file = CONF.config_shortcut( self.save, context='Editor', name='Save file', parent=self) save_all = CONF.config_shortcut( self.save_all, context='Editor', name='Save all', parent=self) save_as = CONF.config_shortcut( lambda: self.sig_save_as.emit(), context='Editor', name='Save As', parent=self) close_all = CONF.config_shortcut( self.close_all_files, context='Editor', name='Close all', parent=self) prev_edit_pos = CONF.config_shortcut( lambda: self.sig_prev_edit_pos.emit(), context="Editor", name="Last edit location", parent=self) prev_cursor = CONF.config_shortcut( lambda: self.sig_prev_cursor.emit(), context="Editor", name="Previous cursor position", parent=self) next_cursor = CONF.config_shortcut( lambda: self.sig_next_cursor.emit(), context="Editor", name="Next cursor position", parent=self) zoom_in_1 = CONF.config_shortcut( lambda: self.zoom_in.emit(), context="Editor", name="zoom in 1", parent=self) zoom_in_2 = CONF.config_shortcut( lambda: self.zoom_in.emit(), context="Editor", name="zoom in 2", parent=self) zoom_out = CONF.config_shortcut( lambda: self.zoom_out.emit(), context="Editor", name="zoom out", parent=self) zoom_reset = CONF.config_shortcut( lambda: self.zoom_reset.emit(), context="Editor", name="zoom reset", parent=self) close_file_1 = CONF.config_shortcut( self.close_file, context="Editor", name="close file 1", parent=self) close_file_2 = CONF.config_shortcut( self.close_file, context="Editor", name="close file 2", parent=self) run_cell = CONF.config_shortcut( self.run_cell, context="Editor", name="run cell", parent=self) debug_cell = CONF.config_shortcut( self.debug_cell, context="Editor", name="debug cell", parent=self) run_cell_and_advance = CONF.config_shortcut( self.run_cell_and_advance, context="Editor", name="run cell and advance", parent=self) go_to_next_cell = CONF.config_shortcut( self.advance_cell, context="Editor", name="go to next cell", parent=self) go_to_previous_cell = CONF.config_shortcut( lambda: self.advance_cell(reverse=True), context="Editor", name="go to previous cell", parent=self) re_run_last_cell = CONF.config_shortcut( self.re_run_last_cell, context="Editor", name="re-run last cell", parent=self) prev_warning = CONF.config_shortcut( lambda: self.sig_prev_warning.emit(), context="Editor", name="Previous warning", parent=self) next_warning = CONF.config_shortcut( lambda: self.sig_next_warning.emit(), context="Editor", name="Next warning", parent=self) split_vertically = CONF.config_shortcut( lambda: self.sig_split_vertically.emit(), context="Editor", name="split vertically", parent=self) split_horizontally = CONF.config_shortcut( lambda: self.sig_split_horizontally.emit(), context="Editor", name="split horizontally", parent=self) close_split = CONF.config_shortcut( self.close_split, context="Editor", name="close split panel", parent=self) external_fileexp = CONF.config_shortcut( self.show_in_external_file_explorer, context="Editor", name="show in external file explorer", parent=self) # Return configurable ones return [inspect, set_breakpoint, set_cond_breakpoint, gotoline, tab, tabshift, run_selection, new_file, open_file, save_file, save_all, save_as, close_all, prev_edit_pos, prev_cursor, next_cursor, zoom_in_1, zoom_in_2, zoom_out, zoom_reset, close_file_1, close_file_2, run_cell, debug_cell, run_cell_and_advance, go_to_next_cell, go_to_previous_cell, re_run_last_cell, prev_warning, next_warning, split_vertically, split_horizontally, close_split, prevtab, nexttab, external_fileexp] def get_shortcut_data(self): """ Returns shortcut data, a list of tuples (shortcut, text, default) shortcut (QShortcut or QAction instance) text (string): action/shortcut description default (string): default key sequence """ return [sc.data for sc in self.shortcuts] def setup_editorstack(self, parent, layout): """Setup editorstack's layout""" layout.setSpacing(0) # Create filename label, spinner and the toolbar that contains them self.create_top_widgets() # Add top toolbar layout.addWidget(self.top_toolbar) # Tabbar menu_btn = create_toolbutton(self, icon=ima.icon('tooloptions'), tip=_('Options')) menu_btn.setStyleSheet(str(PANES_TABBAR_STYLESHEET)) self.menu = QMenu(self) menu_btn.setMenu(self.menu) menu_btn.setPopupMode(menu_btn.InstantPopup) self.menu.aboutToShow.connect(self.__setup_menu) corner_widgets = {Qt.TopRightCorner: [menu_btn]} self.tabs = BaseTabs(self, menu=self.menu, menu_use_tooltips=True, corner_widgets=corner_widgets) self.tabs.set_close_function(self.close_file) self.tabs.tabBar().tabMoved.connect(self.move_editorstack_data) self.tabs.setMovable(True) self.stack_history.refresh() if hasattr(self.tabs, 'setDocumentMode') \ and not sys.platform == 'darwin': # Don't set document mode to true on OSX because it generates # a crash when the editor is detached from the main window # Fixes spyder-ide/spyder#561. self.tabs.setDocumentMode(True) self.tabs.currentChanged.connect(self.current_changed) tab_container = QWidget() tab_container.setObjectName('tab-container') tab_layout = QHBoxLayout(tab_container) tab_layout.setContentsMargins(0, 0, 0, 0) tab_layout.addWidget(self.tabs) layout.addWidget(tab_container) # Show/hide icons in plugin menus for Mac if sys.platform == 'darwin': self.menu.aboutToHide.connect( lambda menu=self.menu: set_menu_icons(menu, False)) def create_top_widgets(self): # Filename label self.fname_label = QLabel() # Spacer spacer = QWidget() spacer.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Preferred) # Spinner self.spinner = create_waitspinner(size=16, parent=self.fname_label) # Add widgets to toolbar self.top_toolbar = QToolBar(self) self.top_toolbar.addWidget(self.fname_label) self.top_toolbar.addWidget(spacer) self.top_toolbar.addWidget(self.spinner) # Set toolbar style css = qstylizer.style.StyleSheet() css.QToolBar.setValues( margin='0px', padding='4px', borderBottom=f'1px solid {QStylePalette.COLOR_BACKGROUND_4}' ) self.top_toolbar.setStyleSheet(css.toString()) def hide_tooltip(self): """Hide any open tooltips.""" for finfo in self.data: finfo.editor.hide_tooltip() @Slot() def update_fname_label(self): """Update file name label.""" filename = to_text_string(self.get_current_filename()) if len(filename) > 100: shorten_filename = u'...' + filename[-100:] else: shorten_filename = filename self.fname_label.setText(shorten_filename) def add_corner_widgets_to_tabbar(self, widgets): self.tabs.add_corner_widgets(widgets) @Slot() def close_split(self): """Closes the editorstack if it is not the last one opened.""" if self.is_closable: self.close() def closeEvent(self, event): """Overrides QWidget closeEvent().""" self.threadmanager.close_all_threads() self.analysis_timer.timeout.disconnect(self.analyze_script) # Remove editor references from the outline explorer settings if self.outlineexplorer is not None: for finfo in self.data: self.outlineexplorer.remove_editor(finfo.editor.oe_proxy) for finfo in self.data: if not finfo.editor.is_cloned: finfo.editor.notify_close() QWidget.closeEvent(self, event) def clone_editor_from(self, other_finfo, set_current): fname = other_finfo.filename enc = other_finfo.encoding new = other_finfo.newly_created finfo = self.create_new_editor(fname, enc, "", set_current=set_current, new=new, cloned_from=other_finfo.editor) finfo.set_todo_results(other_finfo.todo_results) return finfo.editor def clone_from(self, other): """Clone EditorStack from other instance""" for other_finfo in other.data: self.clone_editor_from(other_finfo, set_current=True) self.set_stack_index(other.get_stack_index()) @Slot() @Slot(str) def open_switcher_dlg(self, initial_text=''): """Open file list management dialog box""" if not self.tabs.count(): return if self.switcher_dlg is not None and self.switcher_dlg.isVisible(): self.switcher_dlg.hide() self.switcher_dlg.clear() return if self.switcher_dlg is None: from spyder.widgets.switcher import Switcher self.switcher_dlg = Switcher(self) self.switcher_manager = EditorSwitcherManager( self.get_plugin(), self.switcher_dlg, lambda: self.get_current_editor(), lambda: self, section=self.get_plugin_title()) self.switcher_dlg.set_search_text(initial_text) self.switcher_dlg.setup() self.switcher_dlg.show() # Note: the +1 pixel on the top makes it look better delta_top = (self.tabs.tabBar().geometry().height() + self.fname_label.geometry().height() + 1) self.switcher_dlg.set_position(delta_top) @Slot() def open_symbolfinder_dlg(self): self.open_switcher_dlg(initial_text='@') def get_plugin(self): """Get the plugin of the parent widget.""" # Needed for the editor stack to use its own switcher instance. # See spyder-ide/spyder#10684. return self.parent().plugin def get_plugin_title(self): """Get the plugin title of the parent widget.""" # Needed for the editor stack to use its own switcher instance. # See spyder-ide/spyder#9469. return self.get_plugin().get_plugin_title() def go_to_line(self, line=None): """Go to line dialog""" if line is not None: # When this method is called from the flileswitcher, a line # number is specified, so there is no need for the dialog. self.get_current_editor().go_to_line(line) else: if self.data: self.get_current_editor().exec_gotolinedialog() def set_or_clear_breakpoint(self): """Set/clear breakpoint""" if self.data: editor = self.get_current_editor() editor.debugger.toogle_breakpoint() def set_or_edit_conditional_breakpoint(self): """Set conditional breakpoint""" if self.data: editor = self.get_current_editor() editor.debugger.toogle_breakpoint(edit_condition=True) def set_bookmark(self, slot_num): """Bookmark current position to given slot.""" if self.data: editor = self.get_current_editor() editor.add_bookmark(slot_num) def inspect_current_object(self, pos=None): """Inspect current object in the Help plugin""" editor = self.get_current_editor() editor.sig_display_object_info.connect(self.display_help) cursor = None offset = editor.get_position('cursor') if pos: cursor = editor.get_last_hover_cursor() if cursor: offset = cursor.position() else: return line, col = editor.get_cursor_line_column(cursor) editor.request_hover(line, col, offset, show_hint=False, clicked=bool(pos)) @Slot(str, bool) def display_help(self, help_text, clicked): editor = self.get_current_editor() if clicked: name = editor.get_last_hover_word() else: name = editor.get_current_word(help_req=True) try: editor.sig_display_object_info.disconnect(self.display_help) except TypeError: # Needed to prevent an error after some time in idle. # See spyder-ide/spyder#11228 pass self.send_to_help(name, help_text, force=True) # ------ Editor Widget Settings def set_closable(self, state): """Parent widget must handle the closable state""" self.is_closable = state def set_io_actions(self, new_action, open_action, save_action, revert_action): self.new_action = new_action self.open_action = open_action self.save_action = save_action self.revert_action = revert_action def set_find_widget(self, find_widget): self.find_widget = find_widget def set_outlineexplorer(self, outlineexplorer): self.outlineexplorer = outlineexplorer def add_outlineexplorer_button(self, editor_plugin): oe_btn = create_toolbutton(editor_plugin) oe_btn.setDefaultAction(self.outlineexplorer.visibility_action) self.add_corner_widgets_to_tabbar([5, oe_btn]) def set_tempfile_path(self, path): self.tempfile_path = path def set_title(self, text): self.title = text def set_classfunc_dropdown_visible(self, state): self.show_class_func_dropdown = state if self.data: for finfo in self.data: if finfo.editor.is_python_like(): finfo.editor.classfuncdropdown.setVisible(state) def __update_editor_margins(self, editor): editor.linenumberarea.setup_margins( linenumbers=self.linenumbers_enabled, markers=self.has_markers()) def has_markers(self): """Return True if this editorstack has a marker margin for TODOs or code analysis""" return self.todolist_enabled def set_todolist_enabled(self, state, current_finfo=None): # CONF.get(self.CONF_SECTION, 'todo_list') self.todolist_enabled = state if self.data: for finfo in self.data: self.__update_editor_margins(finfo.editor) finfo.cleanup_todo_results() if state and current_finfo is not None: if current_finfo is not finfo: finfo.run_todo_finder() def set_linenumbers_enabled(self, state, current_finfo=None): # CONF.get(self.CONF_SECTION, 'line_numbers') self.linenumbers_enabled = state if self.data: for finfo in self.data: self.__update_editor_margins(finfo.editor) def set_blanks_enabled(self, state): self.blanks_enabled = state if self.data: for finfo in self.data: finfo.editor.set_blanks_enabled(state) def set_scrollpastend_enabled(self, state): self.scrollpastend_enabled = state if self.data: for finfo in self.data: finfo.editor.set_scrollpastend_enabled(state) def set_edgeline_enabled(self, state): # CONF.get(self.CONF_SECTION, 'edge_line') self.edgeline_enabled = state if self.data: for finfo in self.data: finfo.editor.edge_line.set_enabled(state) def set_edgeline_columns(self, columns): # CONF.get(self.CONF_SECTION, 'edge_line_column') self.edgeline_columns = columns if self.data: for finfo in self.data: finfo.editor.edge_line.set_columns(columns) def set_indent_guides(self, state): self.indent_guides = state if self.data: for finfo in self.data: finfo.editor.toggle_identation_guides(state) def set_close_parentheses_enabled(self, state): # CONF.get(self.CONF_SECTION, 'close_parentheses') self.close_parentheses_enabled = state if self.data: for finfo in self.data: finfo.editor.set_close_parentheses_enabled(state) def set_close_quotes_enabled(self, state): # CONF.get(self.CONF_SECTION, 'close_quotes') self.close_quotes_enabled = state if self.data: for finfo in self.data: finfo.editor.set_close_quotes_enabled(state) def set_add_colons_enabled(self, state): # CONF.get(self.CONF_SECTION, 'add_colons') self.add_colons_enabled = state if self.data: for finfo in self.data: finfo.editor.set_add_colons_enabled(state) def set_auto_unindent_enabled(self, state): # CONF.get(self.CONF_SECTION, 'auto_unindent') self.auto_unindent_enabled = state if self.data: for finfo in self.data: finfo.editor.set_auto_unindent_enabled(state) def set_indent_chars(self, indent_chars): # CONF.get(self.CONF_SECTION, 'indent_chars') indent_chars = indent_chars[1:-1] # removing the leading/ending '*' self.indent_chars = indent_chars if self.data: for finfo in self.data: finfo.editor.set_indent_chars(indent_chars) def set_tab_stop_width_spaces(self, tab_stop_width_spaces): # CONF.get(self.CONF_SECTION, 'tab_stop_width') self.tab_stop_width_spaces = tab_stop_width_spaces if self.data: for finfo in self.data: finfo.editor.tab_stop_width_spaces = tab_stop_width_spaces finfo.editor.update_tab_stop_width_spaces() def set_help_enabled(self, state): self.help_enabled = state def set_default_font(self, font, color_scheme=None): self.default_font = font if color_scheme is not None: self.color_scheme = color_scheme if self.data: for finfo in self.data: finfo.editor.set_font(font, color_scheme) def set_color_scheme(self, color_scheme): self.color_scheme = color_scheme if self.data: for finfo in self.data: finfo.editor.set_color_scheme(color_scheme) def set_wrap_enabled(self, state): # CONF.get(self.CONF_SECTION, 'wrap') self.wrap_enabled = state if self.data: for finfo in self.data: finfo.editor.toggle_wrap_mode(state) def set_tabmode_enabled(self, state): # CONF.get(self.CONF_SECTION, 'tab_always_indent') self.tabmode_enabled = state if self.data: for finfo in self.data: finfo.editor.set_tab_mode(state) def set_stripmode_enabled(self, state): # CONF.get(self.CONF_SECTION, 'strip_trailing_spaces_on_modify') self.stripmode_enabled = state if self.data: for finfo in self.data: finfo.editor.set_strip_mode(state) def set_intelligent_backspace_enabled(self, state): # CONF.get(self.CONF_SECTION, 'intelligent_backspace') self.intelligent_backspace_enabled = state if self.data: for finfo in self.data: finfo.editor.toggle_intelligent_backspace(state) def set_code_snippets_enabled(self, state): self.code_snippets_enabled = state if self.data: for finfo in self.data: finfo.editor.toggle_code_snippets(state) def set_code_folding_enabled(self, state): self.code_folding_enabled = state if self.data: for finfo in self.data: finfo.editor.toggle_code_folding(state) def set_automatic_completions_enabled(self, state): self.automatic_completions_enabled = state if self.data: for finfo in self.data: finfo.editor.toggle_automatic_completions(state) def set_automatic_completions_after_chars(self, chars): self.automatic_completion_chars = chars if self.data: for finfo in self.data: finfo.editor.set_automatic_completions_after_chars(chars) def set_automatic_completions_after_ms(self, ms): self.automatic_completion_ms = ms if self.data: for finfo in self.data: finfo.editor.set_automatic_completions_after_ms(ms) def set_completions_hint_enabled(self, state): self.completions_hint_enabled = state if self.data: for finfo in self.data: finfo.editor.toggle_completions_hint(state) def set_completions_hint_after_ms(self, ms): self.completions_hint_after_ms = ms if self.data: for finfo in self.data: finfo.editor.set_completions_hint_after_ms(ms) def set_hover_hints_enabled(self, state): self.hover_hints_enabled = state if self.data: for finfo in self.data: finfo.editor.toggle_hover_hints(state) def set_format_on_save(self, state): self.format_on_save = state if self.data: for finfo in self.data: finfo.editor.toggle_format_on_save(state) def set_occurrence_highlighting_enabled(self, state): # CONF.get(self.CONF_SECTION, 'occurrence_highlighting') self.occurrence_highlighting_enabled = state if self.data: for finfo in self.data: finfo.editor.set_occurrence_highlighting(state) def set_occurrence_highlighting_timeout(self, timeout): # CONF.get(self.CONF_SECTION, 'occurrence_highlighting/timeout') self.occurrence_highlighting_timeout = timeout if self.data: for finfo in self.data: finfo.editor.set_occurrence_timeout(timeout) def set_underline_errors_enabled(self, state): self.underline_errors_enabled = state if self.data: for finfo in self.data: finfo.editor.set_underline_errors_enabled(state) def set_highlight_current_line_enabled(self, state): self.highlight_current_line_enabled = state if self.data: for finfo in self.data: finfo.editor.set_highlight_current_line(state) def set_highlight_current_cell_enabled(self, state): self.highlight_current_cell_enabled = state if self.data: for finfo in self.data: finfo.editor.set_highlight_current_cell(state) def set_checkeolchars_enabled(self, state): # CONF.get(self.CONF_SECTION, 'check_eol_chars') self.checkeolchars_enabled = state def set_always_remove_trailing_spaces(self, state): # CONF.get(self.CONF_SECTION, 'always_remove_trailing_spaces') self.always_remove_trailing_spaces = state if self.data: for finfo in self.data: finfo.editor.set_remove_trailing_spaces(state) def set_add_newline(self, state): self.add_newline = state if self.data: for finfo in self.data: finfo.editor.set_add_newline(state) def set_remove_trailing_newlines(self, state): self.remove_trailing_newlines = state if self.data: for finfo in self.data: finfo.editor.set_remove_trailing_newlines(state) def set_convert_eol_on_save(self, state): """If `state` is `True`, saving files will convert line endings.""" # CONF.get(self.CONF_SECTION, 'convert_eol_on_save') self.convert_eol_on_save = state def set_convert_eol_on_save_to(self, state): """`state` can be one of ('LF', 'CRLF', 'CR')""" # CONF.get(self.CONF_SECTION, 'convert_eol_on_save_to') self.convert_eol_on_save_to = state def set_focus_to_editor(self, state): self.focus_to_editor = state def set_run_cell_copy(self, state): """If `state` is ``True``, code cells will be copied to the console.""" self.run_cell_copy = state def set_current_project_path(self, root_path=None): """ Set the current active project root path. Parameters ---------- root_path: str or None, optional Path to current project root path. Default is None. """ for finfo in self.data: finfo.editor.set_current_project_path(root_path) # ------ Stacked widget management def get_stack_index(self): return self.tabs.currentIndex() def get_current_finfo(self): if self.data: return self.data[self.get_stack_index()] def get_current_editor(self): return self.tabs.currentWidget() def get_stack_count(self): return self.tabs.count() def set_stack_index(self, index, instance=None): if instance == self or instance == None: self.tabs.setCurrentIndex(index) def set_tabbar_visible(self, state): self.tabs.tabBar().setVisible(state) def remove_from_data(self, index): self.tabs.blockSignals(True) self.tabs.removeTab(index) self.data.pop(index) self.tabs.blockSignals(False) self.update_actions() def __modified_readonly_title(self, title, is_modified, is_readonly): if is_modified is not None and is_modified: title += "*" if is_readonly is not None and is_readonly: title = "(%s)" % title return title def get_tab_text(self, index, is_modified=None, is_readonly=None): """Return tab title.""" files_path_list = [finfo.filename for finfo in self.data] fname = self.data[index].filename fname = sourcecode.disambiguate_fname(files_path_list, fname) return self.__modified_readonly_title(fname, is_modified, is_readonly) def get_tab_tip(self, filename, is_modified=None, is_readonly=None): """Return tab menu title""" text = u"%s — %s" text = self.__modified_readonly_title(text, is_modified, is_readonly) if self.tempfile_path is not None\ and filename == encoding.to_unicode_from_fs(self.tempfile_path): temp_file_str = to_text_string(_("Temporary file")) return text % (temp_file_str, self.tempfile_path) else: return text % (osp.basename(filename), osp.dirname(filename)) def add_to_data(self, finfo, set_current, add_where='end'): finfo.editor.oe_proxy = None index = 0 if add_where == 'start' else len(self.data) self.data.insert(index, finfo) index = self.data.index(finfo) editor = finfo.editor self.tabs.insertTab(index, editor, self.get_tab_text(index)) self.set_stack_title(index, False) if set_current: self.set_stack_index(index) self.current_changed(index) self.update_actions() def __repopulate_stack(self): self.tabs.blockSignals(True) self.tabs.clear() for finfo in self.data: if finfo.newly_created: is_modified = True else: is_modified = None index = self.data.index(finfo) tab_text = self.get_tab_text(index, is_modified) tab_tip = self.get_tab_tip(finfo.filename) index = self.tabs.addTab(finfo.editor, tab_text) self.tabs.setTabToolTip(index, tab_tip) self.tabs.blockSignals(False) def rename_in_data(self, original_filename, new_filename): index = self.has_filename(original_filename) if index is None: return finfo = self.data[index] # Send close request to LSP finfo.editor.notify_close() # Set new filename finfo.filename = new_filename finfo.editor.filename = new_filename # File type has changed! original_ext = osp.splitext(original_filename)[1] new_ext = osp.splitext(new_filename)[1] if original_ext != new_ext: # Set file language and re-run highlighter txt = to_text_string(finfo.editor.get_text_with_eol()) language = get_file_language(new_filename, txt) finfo.editor.set_language(language, new_filename) finfo.editor.run_pygments_highlighter() # If the user renamed the file to a different language, we # need to emit sig_open_file to see if we can start a # language server for it. options = { 'language': language, 'filename': new_filename, 'codeeditor': finfo.editor } self.sig_open_file.emit(options) # Update panels finfo.editor.set_debug_panel( show_debug_panel=True, language=language) finfo.editor.cleanup_code_analysis() finfo.editor.cleanup_folding() else: # If there's no language change, we simply need to request a # document_did_open for the new file. finfo.editor.document_did_open() set_new_index = index == self.get_stack_index() current_fname = self.get_current_filename() finfo.editor.filename = new_filename new_index = self.data.index(finfo) self.__repopulate_stack() if set_new_index: self.set_stack_index(new_index) else: # Fixes spyder-ide/spyder#1287. self.set_current_filename(current_fname) if self.outlineexplorer is not None: self.outlineexplorer.file_renamed( finfo.editor.oe_proxy, finfo.filename) return new_index def set_stack_title(self, index, is_modified): finfo = self.data[index] fname = finfo.filename is_modified = (is_modified or finfo.newly_created) and not finfo.default is_readonly = finfo.editor.isReadOnly() tab_text = self.get_tab_text(index, is_modified, is_readonly) tab_tip = self.get_tab_tip(fname, is_modified, is_readonly) # Only update tab text if have changed, otherwise an unwanted scrolling # will happen when changing tabs. See spyder-ide/spyder#1170. if tab_text != self.tabs.tabText(index): self.tabs.setTabText(index, tab_text) self.tabs.setTabToolTip(index, tab_tip) # ------ Context menu def __setup_menu(self): """Setup tab context menu before showing it""" self.menu.clear() if self.data: actions = self.menu_actions else: actions = (self.new_action, self.open_action) self.setFocus() # --> Editor.__get_focus_editortabwidget add_actions(self.menu, list(actions) + self.__get_split_actions()) self.close_action.setEnabled(self.is_closable) if sys.platform == 'darwin': set_menu_icons(self.menu, True) # ------ Hor/Ver splitting def __get_split_actions(self): if self.parent() is not None: plugin = self.parent().plugin else: plugin = None # New window if plugin is not None: self.new_window_action = create_action( self, _("New window"), icon=ima.icon('newwindow'), tip=_("Create a new editor window"), triggered=plugin.create_new_window) # Splitting self.versplit_action = create_action( self, _("Split vertically"), icon=ima.icon('versplit'), tip=_("Split vertically this editor window"), triggered=lambda: self.sig_split_vertically.emit(), shortcut=CONF.get_shortcut(context='Editor', name='split vertically'), context=Qt.WidgetShortcut) self.horsplit_action = create_action( self, _("Split horizontally"), icon=ima.icon('horsplit'), tip=_("Split horizontally this editor window"), triggered=lambda: self.sig_split_horizontally.emit(), shortcut=CONF.get_shortcut(context='Editor', name='split horizontally'), context=Qt.WidgetShortcut) self.close_action = create_action( self, _("Close this panel"), icon=ima.icon('close_panel'), triggered=self.close_split, shortcut=CONF.get_shortcut(context='Editor', name='close split panel'), context=Qt.WidgetShortcut) # Regular actions actions = [MENU_SEPARATOR, self.versplit_action, self.horsplit_action, self.close_action] if self.new_window: window = self.window() close_window_action = create_action( self, _("Close window"), icon=ima.icon('close_pane'), triggered=window.close) actions += [MENU_SEPARATOR, self.new_window_action, close_window_action] elif plugin is not None: if plugin._undocked_window is not None: actions += [MENU_SEPARATOR, plugin._dock_action] else: actions += [MENU_SEPARATOR, self.new_window_action, plugin._undock_action, plugin._close_plugin_action] return actions def reset_orientation(self): self.horsplit_action.setEnabled(True) self.versplit_action.setEnabled(True) def set_orientation(self, orientation): self.horsplit_action.setEnabled(orientation == Qt.Horizontal) self.versplit_action.setEnabled(orientation == Qt.Vertical) def update_actions(self): state = self.get_stack_count() > 0 self.horsplit_action.setEnabled(state) self.versplit_action.setEnabled(state) # ------ Accessors def get_current_filename(self): if self.data: return self.data[self.get_stack_index()].filename def get_current_language(self): if self.data: return self.data[self.get_stack_index()].editor.language def get_filenames(self): """ Return a list with the names of all the files currently opened in the editorstack. """ return [finfo.filename for finfo in self.data] def has_filename(self, filename): """Return the self.data index position for the filename. Args: filename: Name of the file to search for in self.data. Returns: The self.data index for the filename. Returns None if the filename is not found in self.data. """ fixpath = lambda path: osp.normcase(osp.realpath(path)) for index, finfo in enumerate(self.data): if fixpath(filename) == fixpath(finfo.filename): return index return None def set_current_filename(self, filename, focus=True): """Set current filename and return the associated editor instance.""" index = self.has_filename(filename) if index is not None: if focus: self.set_stack_index(index) editor = self.data[index].editor if focus: editor.setFocus() else: self.stack_history.remove_and_append(index) return editor def is_file_opened(self, filename=None): """Return if filename is in the editor stack. Args: filename: Name of the file to search for. If filename is None, then checks if any file is open. Returns: True: If filename is None and a file is open. False: If filename is None and no files are open. None: If filename is not None and the file isn't found. integer: Index of file name in editor stack. """ if filename is None: # Is there any file opened? return len(self.data) > 0 else: return self.has_filename(filename) def get_index_from_filename(self, filename): """ Return the position index of a file in the tab bar of the editorstack from its name. """ filenames = [d.filename for d in self.data] return filenames.index(filename) @Slot(int, int) def move_editorstack_data(self, start, end): """Reorder editorstack.data so it is synchronized with the tab bar when tabs are moved.""" if start < 0 or end < 0: return else: steps = abs(end - start) direction = (end-start) // steps # +1 for right, -1 for left data = self.data self.blockSignals(True) for i in range(start, end, direction): data[i], data[i+direction] = data[i+direction], data[i] self.blockSignals(False) self.refresh() # ------ Close file, tabwidget... def close_file(self, index=None, force=False): """Close file (index=None -> close current file) Keep current file index unchanged (if current file that is being closed)""" current_index = self.get_stack_index() count = self.get_stack_count() if index is None: if count > 0: index = current_index else: self.find_widget.set_editor(None) return new_index = None if count > 1: if current_index == index: new_index = self._get_previous_file_index() else: new_index = current_index can_close_file = self.parent().plugin.can_close_file( self.data[index].filename) if self.parent() else True is_ok = (force or self.save_if_changed(cancelable=True, index=index) and can_close_file) if is_ok: finfo = self.data[index] self.threadmanager.close_threads(finfo) # Removing editor reference from outline explorer settings: if self.outlineexplorer is not None: self.outlineexplorer.remove_editor(finfo.editor.oe_proxy) filename = self.data[index].filename self.remove_from_data(index) finfo.editor.notify_close() # We pass self object ID as a QString, because otherwise it would # depend on the platform: long for 64bit, int for 32bit. Replacing # by long all the time is not working on some 32bit platforms. # See spyder-ide/spyder#1094 and spyder-ide/spyder#1098. self.sig_close_file.emit(str(id(self)), filename) self.opened_files_list_changed.emit() self.update_code_analysis_actions.emit() self.refresh_file_dependent_actions.emit() self.update_plugin_title.emit() editor = self.get_current_editor() if editor: editor.setFocus() if new_index is not None: if index < new_index: new_index -= 1 self.set_stack_index(new_index) self.add_last_closed_file(finfo.filename) if finfo.filename in self.autosave.file_hashes: del self.autosave.file_hashes[finfo.filename] if self.get_stack_count() == 0 and self.create_new_file_if_empty: self.sig_new_file[()].emit() return False self.__modify_stack_title() return is_ok def register_completion_capabilities(self, capabilities, language): """ Register completion server capabilities across all editors. Parameters ---------- capabilities: dict Capabilities supported by a language server. language: str Programming language for the language server (it has to be in small caps). """ for index in range(self.get_stack_count()): editor = self.tabs.widget(index) if editor.language.lower() == language: editor.register_completion_capabilities(capabilities) def start_completion_services(self, language): """Notify language server availability to code editors.""" for index in range(self.get_stack_count()): editor = self.tabs.widget(index) if editor.language.lower() == language: editor.start_completion_services() def stop_completion_services(self, language): """Notify language server unavailability to code editors.""" for index in range(self.get_stack_count()): editor = self.tabs.widget(index) if editor.language.lower() == language: editor.stop_completion_services() def close_all_files(self): """Close all opened scripts""" while self.close_file(): pass def close_all_right(self): """ Close all files opened to the right """ num = self.get_stack_index() n = self.get_stack_count() for __ in range(num, n-1): self.close_file(num+1) def close_all_but_this(self): """Close all files but the current one""" self.close_all_right() for __ in range(0, self.get_stack_count() - 1): self.close_file(0) def sort_file_tabs_alphabetically(self): """Sort open tabs alphabetically.""" while self.sorted() is False: for i in range(0, self.tabs.tabBar().count()): if(self.tabs.tabBar().tabText(i) > self.tabs.tabBar().tabText(i + 1)): self.tabs.tabBar().moveTab(i, i + 1) def sorted(self): """Utility function for sort_file_tabs_alphabetically().""" for i in range(0, self.tabs.tabBar().count() - 1): if (self.tabs.tabBar().tabText(i) > self.tabs.tabBar().tabText(i + 1)): return False return True def add_last_closed_file(self, fname): """Add to last closed file list.""" if fname in self.last_closed_files: self.last_closed_files.remove(fname) self.last_closed_files.insert(0, fname) if len(self.last_closed_files) > 10: self.last_closed_files.pop(-1) def get_last_closed_files(self): return self.last_closed_files def set_last_closed_files(self, fnames): self.last_closed_files = fnames # ------ Save def save_if_changed(self, cancelable=False, index=None): """Ask user to save file if modified. Args: cancelable: Show Cancel button. index: File to check for modification. Returns: False when save() fails or is cancelled. True when save() is successful, there are no modifications, or user selects No or NoToAll. This function controls the message box prompt for saving changed files. The actual save is performed in save() for each index processed. This function also removes autosave files corresponding to files the user chooses not to save. """ if index is None: indexes = list(range(self.get_stack_count())) else: indexes = [index] buttons = QMessageBox.Yes | QMessageBox.No if cancelable: buttons |= QMessageBox.Cancel unsaved_nb = 0 for index in indexes: if self.data[index].editor.document().isModified(): unsaved_nb += 1 if not unsaved_nb: # No file to save return True if unsaved_nb > 1: buttons |= int(QMessageBox.YesToAll | QMessageBox.NoToAll) yes_all = no_all = False for index in indexes: self.set_stack_index(index) finfo = self.data[index] if finfo.filename == self.tempfile_path or yes_all: if not self.save(index): return False elif no_all: self.autosave.remove_autosave_file(finfo) elif (finfo.editor.document().isModified() and self.save_dialog_on_tests): self.msgbox = QMessageBox( QMessageBox.Question, self.title, _("<b>%s</b> has been modified." "<br>Do you want to save changes?" ) % osp.basename(finfo.filename), buttons, parent=self) answer = self.msgbox.exec_() if answer == QMessageBox.Yes: if not self.save(index): return False elif answer == QMessageBox.No: self.autosave.remove_autosave_file(finfo.filename) elif answer == QMessageBox.YesToAll: if not self.save(index): return False yes_all = True elif answer == QMessageBox.NoToAll: self.autosave.remove_autosave_file(finfo.filename) no_all = True elif answer == QMessageBox.Cancel: return False return True def compute_hash(self, fileinfo): """Compute hash of contents of editor. Args: fileinfo: FileInfo object associated to editor whose hash needs to be computed. Returns: int: computed hash. """ txt = fileinfo.editor.get_text_with_eol() return hash(txt) def _write_to_file(self, fileinfo, filename): """Low-level function for writing text of editor to file. Args: fileinfo: FileInfo object associated to editor to be saved filename: str with filename to save to This is a low-level function that only saves the text to file in the correct encoding without doing any error handling. """ txt = fileinfo.editor.get_text_with_eol() fileinfo.encoding = encoding.write(txt, filename, fileinfo.encoding) def save(self, index=None, force=False, save_new_files=True): """Write text of editor to a file. Args: index: self.data index to save. If None, defaults to currentIndex(). force: Force save regardless of file state. Returns: True upon successful save or when file doesn't need to be saved. False if save failed. If the text isn't modified and it's not newly created, then the save is aborted. If the file hasn't been saved before, then save_as() is invoked. Otherwise, the file is written using the file name currently in self.data. This function doesn't change the file name. """ if index is None: # Save the currently edited file if not self.get_stack_count(): return index = self.get_stack_index() finfo = self.data[index] if not (finfo.editor.document().isModified() or finfo.newly_created) and not force: return True if not osp.isfile(finfo.filename) and not force: # File has not been saved yet if save_new_files: return self.save_as(index=index) # The file doesn't need to be saved return True if self.always_remove_trailing_spaces: self.remove_trailing_spaces(index) if self.remove_trailing_newlines: self.trim_trailing_newlines(index) if self.add_newline: self.add_newline_to_file(index) if self.convert_eol_on_save: # hack to account for the fact that the config file saves # CR/LF/CRLF while set_os_eol_chars wants the os.name value. osname_lookup = {'LF': 'posix', 'CRLF': 'nt', 'CR': 'mac'} osname = osname_lookup[self.convert_eol_on_save_to] self.set_os_eol_chars(osname=osname) try: if self.format_on_save and finfo.editor.formatting_enabled: # Autoformat document and then save finfo.editor.sig_stop_operation_in_progress.connect( functools.partial(self._save_file, finfo, index)) finfo.editor.format_document() else: self._save_file(finfo, index) return True except EnvironmentError as error: self.msgbox = QMessageBox( QMessageBox.Critical, _("Save Error"), _("<b>Unable to save file '%s'</b>" "<br><br>Error message:<br>%s" ) % (osp.basename(finfo.filename), str(error)), parent=self) self.msgbox.exec_() return False def _save_file(self, finfo, index): self._write_to_file(finfo, finfo.filename) file_hash = self.compute_hash(finfo) self.autosave.file_hashes[finfo.filename] = file_hash self.autosave.remove_autosave_file(finfo.filename) finfo.newly_created = False self.encoding_changed.emit(finfo.encoding) finfo.lastmodified = QFileInfo(finfo.filename).lastModified() # We pass self object ID as a QString, because otherwise it would # depend on the platform: long for 64bit, int for 32bit. Replacing # by long all the time is not working on some 32bit platforms. # See spyder-ide/spyder#1094 and spyder-ide/spyder#1098. # The filename is passed instead of an index in case the tabs # have been rearranged. See spyder-ide/spyder#5703. self.file_saved.emit(str(id(self)), finfo.filename, finfo.filename) finfo.editor.document().setModified(False) self.modification_changed(index=index) self.analyze_script(index) finfo.editor.notify_save() def file_saved_in_other_editorstack(self, original_filename, filename): """ File was just saved in another editorstack, let's synchronize! This avoids file being automatically reloaded. The original filename is passed instead of an index in case the tabs on the editor stacks were moved and are now in a different order - see spyder-ide/spyder#5703. Filename is passed in case file was just saved as another name. """ index = self.has_filename(original_filename) if index is None: return finfo = self.data[index] finfo.newly_created = False finfo.filename = to_text_string(filename) finfo.lastmodified = QFileInfo(finfo.filename).lastModified() def select_savename(self, original_filename): """Select a name to save a file. Args: original_filename: Used in the dialog to display the current file path and name. Returns: Normalized path for the selected file name or None if no name was selected. """ if self.edit_filetypes is None: self.edit_filetypes = get_edit_filetypes() if self.edit_filters is None: self.edit_filters = get_edit_filters() # Don't use filters on KDE to not make the dialog incredible # slow # Fixes spyder-ide/spyder#4156. if is_kde_desktop() and not is_anaconda(): filters = '' selectedfilter = '' else: filters = self.edit_filters selectedfilter = get_filter(self.edit_filetypes, osp.splitext(original_filename)[1]) self.redirect_stdio.emit(False) filename, _selfilter = getsavefilename(self, _("Save file"), original_filename, filters=filters, selectedfilter=selectedfilter, options=QFileDialog.HideNameFilterDetails) self.redirect_stdio.emit(True) if filename: return osp.normpath(filename) return None def save_as(self, index=None): """Save file as... Args: index: self.data index for the file to save. Returns: False if no file name was selected or if save() was unsuccessful. True is save() was successful. Gets the new file name from select_savename(). If no name is chosen, then the save_as() aborts. Otherwise, the current stack is checked to see if the selected name already exists and, if so, then the tab with that name is closed. The current stack (self.data) and current tabs are updated with the new name and other file info. The text is written with the new name using save() and the name change is propagated to the other stacks via the file_renamed_in_data signal. """ if index is None: # Save the currently edited file index = self.get_stack_index() finfo = self.data[index] original_newly_created = finfo.newly_created # The next line is necessary to avoid checking if the file exists # While running __check_file_status # See spyder-ide/spyder#3678 and spyder-ide/spyder#3026. finfo.newly_created = True original_filename = finfo.filename filename = self.select_savename(original_filename) if filename: ao_index = self.has_filename(filename) # Note: ao_index == index --> saving an untitled file if ao_index is not None and ao_index != index: if not self.close_file(ao_index): return if ao_index < index: index -= 1 new_index = self.rename_in_data(original_filename, new_filename=filename) # We pass self object ID as a QString, because otherwise it would # depend on the platform: long for 64bit, int for 32bit. Replacing # by long all the time is not working on some 32bit platforms # See spyder-ide/spyder#1094 and spyder-ide/spyder#1098. self.file_renamed_in_data.emit(str(id(self)), original_filename, filename) ok = self.save(index=new_index, force=True) self.refresh(new_index) self.set_stack_index(new_index) return ok else: finfo.newly_created = original_newly_created return False def save_copy_as(self, index=None): """Save copy of file as... Args: index: self.data index for the file to save. Returns: False if no file name was selected or if save() was unsuccessful. True is save() was successful. Gets the new file name from select_savename(). If no name is chosen, then the save_copy_as() aborts. Otherwise, the current stack is checked to see if the selected name already exists and, if so, then the tab with that name is closed. Unlike save_as(), this calls write() directly instead of using save(). The current file and tab aren't changed at all. The copied file is opened in a new tab. """ if index is None: # Save the currently edited file index = self.get_stack_index() finfo = self.data[index] original_filename = finfo.filename filename = self.select_savename(original_filename) if filename: ao_index = self.has_filename(filename) # Note: ao_index == index --> saving an untitled file if ao_index is not None and ao_index != index: if not self.close_file(ao_index): return if ao_index < index: index -= 1 try: self._write_to_file(finfo, filename) # open created copy file self.plugin_load.emit(filename) return True except EnvironmentError as error: self.msgbox = QMessageBox( QMessageBox.Critical, _("Save Error"), _("<b>Unable to save file '%s'</b>" "<br><br>Error message:<br>%s" ) % (osp.basename(finfo.filename), str(error)), parent=self) self.msgbox.exec_() else: return False def save_all(self, save_new_files=True): """Save all opened files. Iterate through self.data and call save() on any modified files. """ all_saved = True for index in range(self.get_stack_count()): if self.data[index].editor.document().isModified(): all_saved &= self.save(index, save_new_files=save_new_files) return all_saved #------ Update UI def start_stop_analysis_timer(self): self.is_analysis_done = False self.analysis_timer.stop() self.analysis_timer.start() def analyze_script(self, index=None): """Analyze current script for TODOs.""" if self.is_analysis_done: return if index is None: index = self.get_stack_index() if self.data and len(self.data) > index: finfo = self.data[index] if self.todolist_enabled: finfo.run_todo_finder() self.is_analysis_done = True def set_todo_results(self, filename, todo_results): """Synchronize todo results between editorstacks""" index = self.has_filename(filename) if index is None: return self.data[index].set_todo_results(todo_results) def get_todo_results(self): if self.data: return self.data[self.get_stack_index()].todo_results def current_changed(self, index): """Stack index has changed""" editor = self.get_current_editor() if index != -1: editor.setFocus() logger.debug("Set focus to: %s" % editor.filename) else: self.reset_statusbar.emit() self.opened_files_list_changed.emit() self.stack_history.refresh() self.stack_history.remove_and_append(index) # Needed to avoid an error generated after moving/renaming # files outside Spyder while in debug mode. # See spyder-ide/spyder#8749. try: logger.debug("Current changed: %d - %s" % (index, self.data[index].editor.filename)) except IndexError: pass self.update_plugin_title.emit() # Make sure that any replace happens in the editor on top # See spyder-ide/spyder#9688. self.find_widget.set_editor(editor, refresh=False) if editor is not None: # Needed in order to handle the close of files open in a directory # that has been renamed. See spyder-ide/spyder#5157. try: line, col = editor.get_cursor_line_column() self.current_file_changed.emit(self.data[index].filename, editor.get_position('cursor'), line, col) except IndexError: pass def _get_previous_file_index(self): """Return the penultimate element of the stack history.""" try: return self.stack_history[-2] except IndexError: return None def tab_navigation_mru(self, forward=True): """ Tab navigation with "most recently used" behaviour. It's fired when pressing 'go to previous file' or 'go to next file' shortcuts. forward: True: move to next file False: move to previous file """ self.tabs_switcher = TabSwitcherWidget(self, self.stack_history, self.tabs) self.tabs_switcher.show() self.tabs_switcher.select_row(1 if forward else -1) self.tabs_switcher.setFocus() def focus_changed(self): """Editor focus has changed""" fwidget = QApplication.focusWidget() for finfo in self.data: if fwidget is finfo.editor: if finfo.editor.operation_in_progress: self.spinner.start() else: self.spinner.stop() self.refresh() self.editor_focus_changed.emit() def _refresh_outlineexplorer(self, index=None, update=True, clear=False): """Refresh outline explorer panel""" oe = self.outlineexplorer if oe is None: return if index is None: index = self.get_stack_index() if self.data and len(self.data) > index: finfo = self.data[index] oe.setEnabled(True) oe.set_current_editor(finfo.editor.oe_proxy, update=update, clear=clear) if index != self.get_stack_index(): # The last file added to the outline explorer is not the # currently focused one in the editor stack. Therefore, # we need to force a refresh of the outline explorer to set # the current editor to the currently focused one in the # editor stack. See spyder-ide/spyder#8015. self._refresh_outlineexplorer(update=False) return self._sync_outlineexplorer_file_order() def _sync_outlineexplorer_file_order(self): """ Order the root file items of the outline explorer as in the tabbar of the current EditorStack. """ if self.outlineexplorer is not None: self.outlineexplorer.treewidget.set_editor_ids_order( [finfo.editor.get_document_id() for finfo in self.data]) def __refresh_statusbar(self, index): """Refreshing statusbar widgets""" if self.data and len(self.data) > index: finfo = self.data[index] self.encoding_changed.emit(finfo.encoding) # Refresh cursor position status: line, index = finfo.editor.get_cursor_line_column() self.sig_editor_cursor_position_changed.emit(line, index) def __refresh_readonly(self, index): if self.data and len(self.data) > index: finfo = self.data[index] read_only = not QFileInfo(finfo.filename).isWritable() if not osp.isfile(finfo.filename): # This is an 'untitledX.py' file (newly created) read_only = False elif os.name == 'nt': try: # Try to open the file to see if its permissions allow # to write on it # Fixes spyder-ide/spyder#10657 fd = os.open(finfo.filename, os.O_RDWR) os.close(fd) except (IOError, OSError): read_only = True finfo.editor.setReadOnly(read_only) self.readonly_changed.emit(read_only) def __check_file_status(self, index): """Check if file has been changed in any way outside Spyder: 1. removed, moved or renamed outside Spyder 2. modified outside Spyder""" if self.__file_status_flag: # Avoid infinite loop: when the QMessageBox.question pops, it # gets focus and then give it back to the CodeEditor instance, # triggering a refresh cycle which calls this method return self.__file_status_flag = True if len(self.data) <= index: index = self.get_stack_index() finfo = self.data[index] name = osp.basename(finfo.filename) if finfo.newly_created: # File was just created (not yet saved): do nothing # (do not return because of the clean-up at the end of the method) pass elif not osp.isfile(finfo.filename): # File doesn't exist (removed, moved or offline): self.msgbox = QMessageBox( QMessageBox.Warning, self.title, _("<b>%s</b> is unavailable " "(this file may have been removed, moved " "or renamed outside Spyder)." "<br>Do you want to close it?") % name, QMessageBox.Yes | QMessageBox.No, self) answer = self.msgbox.exec_() if answer == QMessageBox.Yes: self.close_file(index) else: finfo.newly_created = True finfo.editor.document().setModified(True) self.modification_changed(index=index) else: # Else, testing if it has been modified elsewhere: lastm = QFileInfo(finfo.filename).lastModified() if to_text_string(lastm.toString()) \ != to_text_string(finfo.lastmodified.toString()): if finfo.editor.document().isModified(): self.msgbox = QMessageBox( QMessageBox.Question, self.title, _("<b>%s</b> has been modified outside Spyder." "<br>Do you want to reload it and lose all " "your changes?") % name, QMessageBox.Yes | QMessageBox.No, self) answer = self.msgbox.exec_() if answer == QMessageBox.Yes: self.reload(index) else: finfo.lastmodified = lastm else: self.reload(index) # Finally, resetting temporary flag: self.__file_status_flag = False def __modify_stack_title(self): for index, finfo in enumerate(self.data): state = finfo.editor.document().isModified() self.set_stack_title(index, state) def refresh(self, index=None): """Refresh tabwidget""" if index is None: index = self.get_stack_index() # Set current editor if self.get_stack_count(): index = self.get_stack_index() finfo = self.data[index] editor = finfo.editor editor.setFocus() self._refresh_outlineexplorer(index, update=False) self.update_code_analysis_actions.emit() self.__refresh_statusbar(index) self.__refresh_readonly(index) self.__check_file_status(index) self.__modify_stack_title() self.update_plugin_title.emit() else: editor = None # Update the modification-state-dependent parameters self.modification_changed() # Update FindReplace binding self.find_widget.set_editor(editor, refresh=False) def modification_changed(self, state=None, index=None, editor_id=None): """ Current editor's modification state has changed --> change tab title depending on new modification state --> enable/disable save/save all actions """ if editor_id is not None: for index, _finfo in enumerate(self.data): if id(_finfo.editor) == editor_id: break # This must be done before refreshing save/save all actions: # (otherwise Save/Save all actions will always be enabled) self.opened_files_list_changed.emit() # -- if index is None: index = self.get_stack_index() if index == -1: return finfo = self.data[index] if state is None: state = finfo.editor.document().isModified() or finfo.newly_created self.set_stack_title(index, state) # Toggle save/save all actions state self.save_action.setEnabled(state) self.refresh_save_all_action.emit() # Refreshing eol mode eol_chars = finfo.editor.get_line_separator() self.refresh_eol_chars(eol_chars) self.stack_history.refresh() def refresh_eol_chars(self, eol_chars): os_name = sourcecode.get_os_name_from_eol_chars(eol_chars) self.sig_refresh_eol_chars.emit(os_name) # ------ Load, reload def reload(self, index): """Reload file from disk.""" finfo = self.data[index] logger.debug("Reloading {}".format(finfo.filename)) txt, finfo.encoding = encoding.read(finfo.filename) finfo.lastmodified = QFileInfo(finfo.filename).lastModified() position = finfo.editor.get_position('cursor') finfo.editor.set_text(txt) finfo.editor.document().setModified(False) self.autosave.file_hashes[finfo.filename] = hash(txt) finfo.editor.set_cursor_position(position) #XXX CodeEditor-only: re-scan the whole text to rebuild outline # explorer data from scratch (could be optimized because # rehighlighting text means searching for all syntax coloring # patterns instead of only searching for class/def patterns which # would be sufficient for outline explorer data. finfo.editor.rehighlight() def revert(self): """Revert file from disk.""" index = self.get_stack_index() finfo = self.data[index] logger.debug("Reverting {}".format(finfo.filename)) filename = finfo.filename if finfo.editor.document().isModified(): self.msgbox = QMessageBox( QMessageBox.Warning, self.title, _("All changes to <b>%s</b> will be lost." "<br>Do you want to revert file from disk?" ) % osp.basename(filename), QMessageBox.Yes | QMessageBox.No, self) answer = self.msgbox.exec_() if answer != QMessageBox.Yes: return self.reload(index) def create_new_editor(self, fname, enc, txt, set_current, new=False, cloned_from=None, add_where='end'): """ Create a new editor instance Returns finfo object (instead of editor as in previous releases) """ editor = codeeditor.CodeEditor(self) editor.go_to_definition.connect( lambda fname, line, column: self.sig_go_to_definition.emit( fname, line, column)) finfo = FileInfo(fname, enc, editor, new, self.threadmanager) self.add_to_data(finfo, set_current, add_where) finfo.sig_send_to_help.connect(self.send_to_help) finfo.sig_show_object_info.connect(self.inspect_current_object) finfo.todo_results_changed.connect( lambda: self.todo_results_changed.emit()) finfo.edit_goto.connect(lambda fname, lineno, name: self.edit_goto.emit(fname, lineno, name)) finfo.sig_save_bookmarks.connect(lambda s1, s2: self.sig_save_bookmarks.emit(s1, s2)) editor.sig_run_selection.connect(self.run_selection) editor.sig_run_cell.connect(self.run_cell) editor.sig_debug_cell.connect(self.debug_cell) editor.sig_run_cell_and_advance.connect(self.run_cell_and_advance) editor.sig_re_run_last_cell.connect(self.re_run_last_cell) editor.sig_new_file.connect(self.sig_new_file.emit) editor.sig_breakpoints_saved.connect(self.sig_breakpoints_saved) editor.sig_process_code_analysis.connect( lambda: self.update_code_analysis_actions.emit()) editor.sig_refresh_formatting.connect(self.sig_refresh_formatting) language = get_file_language(fname, txt) editor.setup_editor( linenumbers=self.linenumbers_enabled, show_blanks=self.blanks_enabled, underline_errors=self.underline_errors_enabled, scroll_past_end=self.scrollpastend_enabled, edge_line=self.edgeline_enabled, edge_line_columns=self.edgeline_columns, language=language, markers=self.has_markers(), font=self.default_font, color_scheme=self.color_scheme, wrap=self.wrap_enabled, tab_mode=self.tabmode_enabled, strip_mode=self.stripmode_enabled, intelligent_backspace=self.intelligent_backspace_enabled, automatic_completions=self.automatic_completions_enabled, automatic_completions_after_chars=self.automatic_completion_chars, automatic_completions_after_ms=self.automatic_completion_ms, code_snippets=self.code_snippets_enabled, completions_hint=self.completions_hint_enabled, completions_hint_after_ms=self.completions_hint_after_ms, hover_hints=self.hover_hints_enabled, highlight_current_line=self.highlight_current_line_enabled, highlight_current_cell=self.highlight_current_cell_enabled, occurrence_highlighting=self.occurrence_highlighting_enabled, occurrence_timeout=self.occurrence_highlighting_timeout, close_parentheses=self.close_parentheses_enabled, close_quotes=self.close_quotes_enabled, add_colons=self.add_colons_enabled, auto_unindent=self.auto_unindent_enabled, indent_chars=self.indent_chars, tab_stop_width_spaces=self.tab_stop_width_spaces, cloned_from=cloned_from, filename=fname, show_class_func_dropdown=self.show_class_func_dropdown, indent_guides=self.indent_guides, folding=self.code_folding_enabled, remove_trailing_spaces=self.always_remove_trailing_spaces, remove_trailing_newlines=self.remove_trailing_newlines, add_newline=self.add_newline, format_on_save=self.format_on_save ) if cloned_from is None: editor.set_text(txt) editor.document().setModified(False) finfo.text_changed_at.connect( lambda fname, position: self.text_changed_at.emit(fname, position)) editor.sig_cursor_position_changed.connect( self.editor_cursor_position_changed) editor.textChanged.connect(self.start_stop_analysis_timer) # Register external panels for panel_class, args, kwargs, position in self.external_panels: self.register_panel( panel_class, *args, position=position, **kwargs) def perform_completion_request(lang, method, params): self.sig_perform_completion_request.emit(lang, method, params) editor.sig_perform_completion_request.connect( perform_completion_request) editor.sig_start_operation_in_progress.connect(self.spinner.start) editor.sig_stop_operation_in_progress.connect(self.spinner.stop) editor.modificationChanged.connect( lambda state: self.modification_changed( state, editor_id=id(editor))) editor.focus_in.connect(self.focus_changed) editor.zoom_in.connect(lambda: self.zoom_in.emit()) editor.zoom_out.connect(lambda: self.zoom_out.emit()) editor.zoom_reset.connect(lambda: self.zoom_reset.emit()) editor.sig_eol_chars_changed.connect( lambda eol_chars: self.refresh_eol_chars(eol_chars)) self.find_widget.set_editor(editor) self.refresh_file_dependent_actions.emit() self.modification_changed(index=self.data.index(finfo)) # To update the outline explorer. editor.oe_proxy = OutlineExplorerProxyEditor(editor, editor.filename) if self.outlineexplorer is not None: self.outlineexplorer.register_editor(editor.oe_proxy) # Needs to reset the highlighting on startup in case the PygmentsSH # is in use editor.run_pygments_highlighter() options = { 'language': editor.language, 'filename': editor.filename, 'codeeditor': editor } self.sig_open_file.emit(options) if self.get_stack_index() == 0: self.current_changed(0) return finfo def editor_cursor_position_changed(self, line, index): """Cursor position of one of the editor in the stack has changed""" self.sig_editor_cursor_position_changed.emit(line, index) @Slot(str, str, bool) def send_to_help(self, name, signature, force=False): """qstr1: obj_text, qstr2: argpspec, qstr3: note, qstr4: doc_text""" if not force and not self.help_enabled: return editor = self.get_current_editor() language = editor.language.lower() signature = to_text_string(signature) signature = unicodedata.normalize("NFKD", signature) parts = signature.split('\n\n') definition = parts[0] documentation = '\n\n'.join(parts[1:]) args = '' if '(' in definition and language == 'python': args = definition[definition.find('('):] else: documentation = signature doc = { 'obj_text': '', 'name': name, 'argspec': args, 'note': '', 'docstring': documentation, 'force_refresh': force, 'path': editor.filename } self.sig_help_requested.emit(doc) def new(self, filename, encoding, text, default_content=False, empty=False): """ Create new filename with *encoding* and *text* """ finfo = self.create_new_editor(filename, encoding, text, set_current=False, new=True) finfo.editor.set_cursor_position('eof') if not empty: finfo.editor.insert_text(os.linesep) if default_content: finfo.default = True finfo.editor.document().setModified(False) return finfo def load(self, filename, set_current=True, add_where='end', processevents=True): """ Load filename, create an editor instance and return it This also sets the hash of the loaded file in the autosave component. *Warning* This is loading file, creating editor but not executing the source code analysis -- the analysis must be done by the editor plugin (in case multiple editorstack instances are handled) """ filename = osp.abspath(to_text_string(filename)) if processevents: self.starting_long_process.emit(_("Loading %s...") % filename) text, enc = encoding.read(filename) self.autosave.file_hashes[filename] = hash(text) finfo = self.create_new_editor(filename, enc, text, set_current, add_where=add_where) index = self.data.index(finfo) if processevents: self.ending_long_process.emit("") if self.isVisible() and self.checkeolchars_enabled \ and sourcecode.has_mixed_eol_chars(text): name = osp.basename(filename) self.msgbox = QMessageBox( QMessageBox.Warning, self.title, _("<b>%s</b> contains mixed end-of-line " "characters.<br>Spyder will fix this " "automatically.") % name, QMessageBox.Ok, self) self.msgbox.exec_() self.set_os_eol_chars(index) self.is_analysis_done = False self.analyze_script(index) return finfo def set_os_eol_chars(self, index=None, osname=None): """Sets the EOL character(s) based on the operating system. If `osname` is None, then the default line endings for the current operating system (`os.name` value) will be used. `osname` can be one of: ('posix', 'nt', 'java') """ if osname is None: osname = os.name if index is None: index = self.get_stack_index() finfo = self.data[index] eol_chars = sourcecode.get_eol_chars_from_os_name(osname) finfo.editor.set_eol_chars(eol_chars) finfo.editor.document().setModified(True) def remove_trailing_spaces(self, index=None): """Remove trailing spaces""" if index is None: index = self.get_stack_index() finfo = self.data[index] finfo.editor.trim_trailing_spaces() def trim_trailing_newlines(self, index=None): if index is None: index = self.get_stack_index() finfo = self.data[index] finfo.editor.trim_trailing_newlines() def add_newline_to_file(self, index=None): if index is None: index = self.get_stack_index() finfo = self.data[index] finfo.editor.add_newline_to_file() def fix_indentation(self, index=None): """Replace tab characters by spaces""" if index is None: index = self.get_stack_index() finfo = self.data[index] finfo.editor.fix_indentation() def format_document_or_selection(self, index=None): if index is None: index = self.get_stack_index() finfo = self.data[index] finfo.editor.format_document_or_range() # ------ Run def run_selection(self): """ Run selected text or current line in console. If some text is selected, then execute that text in console. If no text is selected, then execute current line, unless current line is empty. Then, advance cursor to next line. If cursor is on last line and that line is not empty, then add a new blank line and move the cursor there. If cursor is on last line and that line is empty, then do not move cursor. """ text = self.get_current_editor().get_selection_as_executable_code() if text: self.exec_in_extconsole.emit(text.rstrip(), self.focus_to_editor) return editor = self.get_current_editor() line = editor.get_current_line() text = line.lstrip() if text: self.exec_in_extconsole.emit(text, self.focus_to_editor) if editor.is_cursor_on_last_line() and text: editor.append(editor.get_line_separator()) editor.move_cursor_to_next('line', 'down') def run_cell(self, debug=False): """Run current cell.""" text, block = self.get_current_editor().get_cell_as_executable_code() finfo = self.get_current_finfo() editor = self.get_current_editor() name = cell_name(block) filename = finfo.filename self._run_cell_text(text, editor, (filename, name), debug) def debug_cell(self): """Debug current cell.""" self.run_cell(debug=True) def run_cell_and_advance(self): """Run current cell and advance to the next one""" self.run_cell() self.advance_cell() def advance_cell(self, reverse=False): """Advance to the next cell. reverse = True --> go to previous cell. """ if not reverse: move_func = self.get_current_editor().go_to_next_cell else: move_func = self.get_current_editor().go_to_previous_cell if self.focus_to_editor: move_func() else: term = QApplication.focusWidget() move_func() term.setFocus() term = QApplication.focusWidget() move_func() term.setFocus() def re_run_last_cell(self): """Run the previous cell again.""" if self.last_cell_call is None: return filename, cell_name = self.last_cell_call index = self.has_filename(filename) if index is None: return editor = self.data[index].editor try: text = editor.get_cell_code(cell_name) except RuntimeError: return self._run_cell_text(text, editor, (filename, cell_name)) def _run_cell_text(self, text, editor, cell_id, debug=False): """Run cell code in the console. Cell code is run in the console by copying it to the console if `self.run_cell_copy` is ``True`` otherwise by using the `run_cell` function. Parameters ---------- text : str The code in the cell as a string. line : int The starting line number of the cell in the file. """ (filename, cell_name) = cell_id if editor.is_python_or_ipython(): args = (text, cell_name, filename, self.run_cell_copy) if debug: self.debug_cell_in_ipyclient.emit(*args) else: self.run_cell_in_ipyclient.emit(*args) if self.focus_to_editor: editor.setFocus() else: console = QApplication.focusWidget() console.setFocus() # ------ Drag and drop def dragEnterEvent(self, event): """ Reimplemented Qt method. Inform Qt about the types of data that the widget accepts. """ logger.debug("dragEnterEvent was received") source = event.mimeData() # The second check is necessary on Windows, where source.hasUrls() # can return True but source.urls() is [] # The third check is needed since a file could be dropped from # compressed files. In Windows mimedata2url(source) returns None # Fixes spyder-ide/spyder#5218. has_urls = source.hasUrls() has_text = source.hasText() urls = source.urls() all_urls = mimedata2url(source) logger.debug("Drag event source has_urls: {}".format(has_urls)) logger.debug("Drag event source urls: {}".format(urls)) logger.debug("Drag event source all_urls: {}".format(all_urls)) logger.debug("Drag event source has_text: {}".format(has_text)) if has_urls and urls and all_urls: text = [encoding.is_text_file(url) for url in all_urls] logger.debug("Accept proposed action?: {}".format(any(text))) if any(text): event.acceptProposedAction() else: event.ignore() elif source.hasText(): event.acceptProposedAction() elif os.name == 'nt': # This covers cases like dragging from compressed files, # which can be opened by the Editor if they are plain # text, but doesn't come with url info. # Fixes spyder-ide/spyder#2032. logger.debug("Accept proposed action on Windows") event.acceptProposedAction() else: logger.debug("Ignore drag event") event.ignore() def dropEvent(self, event): """ Reimplement Qt method. Unpack dropped data and handle it. """ logger.debug("dropEvent was received") source = event.mimeData() # The second check is necessary when mimedata2url(source) # returns None. # Fixes spyder-ide/spyder#7742. if source.hasUrls() and mimedata2url(source): files = mimedata2url(source) files = [f for f in files if encoding.is_text_file(f)] files = set(files or []) for fname in files: self.plugin_load.emit(fname) elif source.hasText(): editor = self.get_current_editor() if editor is not None: editor.insert_text(source.text()) else: event.ignore() event.acceptProposedAction() def register_panel(self, panel_class, *args, position=Panel.Position.LEFT, **kwargs): """Register a panel in all codeeditors.""" if (panel_class, args, kwargs, position) not in self.external_panels: self.external_panels.append((panel_class, args, kwargs, position)) for finfo in self.data: cur_panel = finfo.editor.panels.register( panel_class(*args, **kwargs), position=position) if not cur_panel.isVisible(): cur_panel.setVisible(True) class EditorSplitter(QSplitter): """QSplitter for editor windows.""" def __init__(self, parent, plugin, menu_actions, first=False, register_editorstack_cb=None, unregister_editorstack_cb=None): """Create a splitter for dividing an editor window into panels. Adds a new EditorStack instance to this splitter. If it's not the first splitter, clones the current EditorStack from the plugin. Args: parent: Parent widget. plugin: Plugin this widget belongs to. menu_actions: QActions to include from the parent. first: Boolean if this is the first splitter in the editor. register_editorstack_cb: Callback to register the EditorStack. Defaults to plugin.register_editorstack() to register the EditorStack with the Editor plugin. unregister_editorstack_cb: Callback to unregister the EditorStack. Defaults to plugin.unregister_editorstack() to unregister the EditorStack with the Editor plugin. """ QSplitter.__init__(self, parent) self.setAttribute(Qt.WA_DeleteOnClose) self.setChildrenCollapsible(False) self.toolbar_list = None self.menu_list = None self.plugin = plugin if register_editorstack_cb is None: register_editorstack_cb = self.plugin.register_editorstack self.register_editorstack_cb = register_editorstack_cb if unregister_editorstack_cb is None: unregister_editorstack_cb = self.plugin.unregister_editorstack self.unregister_editorstack_cb = unregister_editorstack_cb self.menu_actions = menu_actions self.editorstack = EditorStack(self, menu_actions) self.register_editorstack_cb(self.editorstack) if not first: self.plugin.clone_editorstack(editorstack=self.editorstack) self.editorstack.destroyed.connect(lambda: self.editorstack_closed()) self.editorstack.sig_split_vertically.connect( lambda: self.split(orientation=Qt.Vertical)) self.editorstack.sig_split_horizontally.connect( lambda: self.split(orientation=Qt.Horizontal)) self.addWidget(self.editorstack) if not running_under_pytest(): self.editorstack.set_color_scheme(plugin.get_color_scheme()) self.setStyleSheet(self._stylesheet) def closeEvent(self, event): """Override QWidget closeEvent(). This event handler is called with the given event when Qt receives a window close request from a top-level widget. """ QSplitter.closeEvent(self, event) def __give_focus_to_remaining_editor(self): focus_widget = self.plugin.get_focus_widget() if focus_widget is not None: focus_widget.setFocus() def editorstack_closed(self): logger.debug("method 'editorstack_closed':") logger.debug(" self : %r" % self) try: self.unregister_editorstack_cb(self.editorstack) self.editorstack = None close_splitter = self.count() == 1 except (RuntimeError, AttributeError): # editorsplitter has been destroyed (happens when closing a # EditorMainWindow instance) return if close_splitter: # editorstack just closed was the last widget in this QSplitter self.close() return self.__give_focus_to_remaining_editor() def editorsplitter_closed(self): logger.debug("method 'editorsplitter_closed':") logger.debug(" self : %r" % self) try: close_splitter = self.count() == 1 and self.editorstack is None except RuntimeError: # editorsplitter has been destroyed (happens when closing a # EditorMainWindow instance) return if close_splitter: # editorsplitter just closed was the last widget in this QSplitter self.close() return elif self.count() == 2 and self.editorstack: # back to the initial state: a single editorstack instance, # as a single widget in this QSplitter: orientation may be changed self.editorstack.reset_orientation() self.__give_focus_to_remaining_editor() def split(self, orientation=Qt.Vertical): """Create and attach a new EditorSplitter to the current EditorSplitter. The new EditorSplitter widget will contain an EditorStack that is a clone of the current EditorStack. A single EditorSplitter instance can be split multiple times, but the orientation will be the same for all the direct splits. If one of the child splits is split, then that split can have a different orientation. """ self.setOrientation(orientation) self.editorstack.set_orientation(orientation) editorsplitter = EditorSplitter(self.parent(), self.plugin, self.menu_actions, register_editorstack_cb=self.register_editorstack_cb, unregister_editorstack_cb=self.unregister_editorstack_cb) self.addWidget(editorsplitter) editorsplitter.destroyed.connect(self.editorsplitter_closed) current_editor = editorsplitter.editorstack.get_current_editor() if current_editor is not None: current_editor.setFocus() def iter_editorstacks(self): """Return the editor stacks for this splitter and every first child. Note: If a splitter contains more than one splitter as a direct child, only the first child's editor stack is included. Returns: List of tuples containing (EditorStack instance, orientation). """ editorstacks = [(self.widget(0), self.orientation())] if self.count() > 1: editorsplitter = self.widget(1) editorstacks += editorsplitter.iter_editorstacks() return editorstacks def get_layout_settings(self): """Return the layout state for this splitter and its children. Record the current state, including file names and current line numbers, of the splitter panels. Returns: A dictionary containing keys {hexstate, sizes, splitsettings}. hexstate: String of saveState() for self. sizes: List for size() for self. splitsettings: List of tuples of the form (orientation, cfname, clines) for each EditorSplitter and its EditorStack. orientation: orientation() for the editor splitter (which may be a child of self). cfname: EditorStack current file name. clines: Current line number for each file in the EditorStack. """ splitsettings = [] for editorstack, orientation in self.iter_editorstacks(): clines = [] cfname = '' # XXX - this overrides value from the loop to always be False? orientation = False if hasattr(editorstack, 'data'): clines = [finfo.editor.get_cursor_line_number() for finfo in editorstack.data] cfname = editorstack.get_current_filename() splitsettings.append((orientation == Qt.Vertical, cfname, clines)) return dict(hexstate=qbytearray_to_str(self.saveState()), sizes=self.sizes(), splitsettings=splitsettings) def set_layout_settings(self, settings, dont_goto=None): """Restore layout state for the splitter panels. Apply the settings to restore a saved layout within the editor. If the splitsettings key doesn't exist, then return without restoring any settings. The current EditorSplitter (self) calls split() for each element in split_settings, thus recreating the splitter panels from the saved state. split() also clones the editorstack, which is then iterated over to restore the saved line numbers on each file. The size and positioning of each splitter panel is restored from hexstate. Args: settings: A dictionary with keys {hexstate, sizes, orientation} that define the layout for the EditorSplitter panels. dont_goto: Defaults to None, which positions the cursor to the end of the editor. If there's a value, positions the cursor on the saved line number for each editor. """ splitsettings = settings.get('splitsettings') if splitsettings is None: return splitter = self editor = None for i, (is_vertical, cfname, clines) in enumerate(splitsettings): if i > 0: splitter.split(Qt.Vertical if is_vertical else Qt.Horizontal) splitter = splitter.widget(1) editorstack = splitter.widget(0) for j, finfo in enumerate(editorstack.data): editor = finfo.editor # TODO: go_to_line is not working properly (the line it jumps # to is not the corresponding to that file). This will be fixed # in a future PR (which will fix spyder-ide/spyder#3857). if dont_goto is not None: # Skip go to line for first file because is already there. pass else: try: editor.go_to_line(clines[j]) except IndexError: pass hexstate = settings.get('hexstate') if hexstate is not None: self.restoreState( QByteArray().fromHex( str(hexstate).encode('utf-8')) ) sizes = settings.get('sizes') if sizes is not None: self.setSizes(sizes) if editor is not None: editor.clearFocus() editor.setFocus() @property def _stylesheet(self): css = qstylizer.style.StyleSheet() css.QSplitter.setValues( background=QStylePalette.COLOR_BACKGROUND_1 ) return css.toString() class EditorWidget(QSplitter): CONF_SECTION = 'editor' def __init__(self, parent, plugin, menu_actions): QSplitter.__init__(self, parent) self.setAttribute(Qt.WA_DeleteOnClose) statusbar = parent.statusBar() # Create a status bar self.vcs_status = VCSStatus(self) self.cursorpos_status = CursorPositionStatus(self) self.encoding_status = EncodingStatus(self) self.eol_status = EOLStatus(self) self.readwrite_status = ReadWriteStatus(self) statusbar.insertPermanentWidget(0, self.readwrite_status) statusbar.insertPermanentWidget(0, self.eol_status) statusbar.insertPermanentWidget(0, self.encoding_status) statusbar.insertPermanentWidget(0, self.cursorpos_status) statusbar.insertPermanentWidget(0, self.vcs_status) self.editorstacks = [] self.plugin = plugin self.find_widget = FindReplace(self, enable_replace=True) self.plugin.register_widget_shortcuts(self.find_widget) self.find_widget.hide() # TODO: Check this initialization once the editor is migrated to the # new API self.outlineexplorer = OutlineExplorerWidget( 'outline_explorer', plugin, self, context=f'editor_window_{str(id(self))}' ) self.outlineexplorer.edit_goto.connect( lambda filenames, goto, word: plugin.load(filenames=filenames, goto=goto, word=word, editorwindow=self.parent())) editor_widgets = QWidget(self) editor_layout = QVBoxLayout() editor_layout.setContentsMargins(0, 0, 0, 0) editor_widgets.setLayout(editor_layout) editorsplitter = EditorSplitter(self, plugin, menu_actions, register_editorstack_cb=self.register_editorstack, unregister_editorstack_cb=self.unregister_editorstack) self.editorsplitter = editorsplitter editor_layout.addWidget(editorsplitter) editor_layout.addWidget(self.find_widget) splitter = QSplitter(self) splitter.setContentsMargins(0, 0, 0, 0) splitter.addWidget(editor_widgets) splitter.addWidget(self.outlineexplorer) splitter.setStretchFactor(0, 5) splitter.setStretchFactor(1, 1) def register_editorstack(self, editorstack): self.editorstacks.append(editorstack) logger.debug("EditorWidget.register_editorstack: %r" % editorstack) self.__print_editorstacks() self.plugin.last_focused_editorstack[self.parent()] = editorstack editorstack.set_closable(len(self.editorstacks) > 1) editorstack.set_outlineexplorer(self.outlineexplorer) editorstack.set_find_widget(self.find_widget) editorstack.reset_statusbar.connect(self.readwrite_status.hide) editorstack.reset_statusbar.connect(self.encoding_status.hide) editorstack.reset_statusbar.connect(self.cursorpos_status.hide) editorstack.readonly_changed.connect( self.readwrite_status.update_readonly) editorstack.encoding_changed.connect( self.encoding_status.update_encoding) editorstack.sig_editor_cursor_position_changed.connect( self.cursorpos_status.update_cursor_position) editorstack.sig_refresh_eol_chars.connect(self.eol_status.update_eol) self.plugin.register_editorstack(editorstack) def __print_editorstacks(self): logger.debug("%d editorstack(s) in editorwidget:" % len(self.editorstacks)) for edst in self.editorstacks: logger.debug(" %r" % edst) def unregister_editorstack(self, editorstack): logger.debug("EditorWidget.unregister_editorstack: %r" % editorstack) self.plugin.unregister_editorstack(editorstack) self.editorstacks.pop(self.editorstacks.index(editorstack)) self.__print_editorstacks() class EditorMainWindow(QMainWindow): def __init__(self, plugin, menu_actions, toolbar_list, menu_list): QMainWindow.__init__(self) self.setAttribute(Qt.WA_DeleteOnClose) self.plugin = plugin self.window_size = None self.editorwidget = EditorWidget(self, plugin, menu_actions) self.setCentralWidget(self.editorwidget) # Setting interface theme self.setStyleSheet(str(APP_STYLESHEET)) # Give focus to current editor to update/show all status bar widgets editorstack = self.editorwidget.editorsplitter.editorstack editor = editorstack.get_current_editor() if editor is not None: editor.setFocus() self.setWindowTitle("Spyder - %s" % plugin.windowTitle()) self.setWindowIcon(plugin.windowIcon()) if toolbar_list: self.toolbars = [] for title, object_name, actions in toolbar_list: toolbar = self.addToolBar(title) toolbar.setObjectName(object_name) toolbar.setStyleSheet(str(APP_TOOLBAR_STYLESHEET)) toolbar.setMovable(False) add_actions(toolbar, actions) self.toolbars.append(toolbar) if menu_list: quit_action = create_action(self, _("Close window"), icon=ima.icon("close_pane"), tip=_("Close this window"), triggered=self.close) self.menus = [] for index, (title, actions) in enumerate(menu_list): menu = self.menuBar().addMenu(title) if index == 0: # File menu add_actions(menu, actions+[None, quit_action]) else: add_actions(menu, actions) self.menus.append(menu) def get_toolbars(self): """Get the toolbars.""" return self.toolbars def add_toolbars_to_menu(self, menu_title, actions): """Add toolbars to a menu.""" # Six is the position of the view menu in menus list # that you can find in plugins/editor.py setup_other_windows. view_menu = self.menus[6] view_menu.setObjectName('checkbox-padding') if actions == self.toolbars and view_menu: toolbars = [] for toolbar in self.toolbars: action = toolbar.toggleViewAction() toolbars.append(action) add_actions(view_menu, toolbars) def load_toolbars(self): """Loads the last visible toolbars from the .ini file.""" toolbars_names = CONF.get('main', 'last_visible_toolbars', default=[]) if toolbars_names: dic = {} for toolbar in self.toolbars: dic[toolbar.objectName()] = toolbar toolbar.toggleViewAction().setChecked(False) toolbar.setVisible(False) for name in toolbars_names: if name in dic: dic[name].toggleViewAction().setChecked(True) dic[name].setVisible(True) def resizeEvent(self, event): """Reimplement Qt method""" if not self.isMaximized() and not self.isFullScreen(): self.window_size = self.size() QMainWindow.resizeEvent(self, event) def closeEvent(self, event): """Reimplement Qt method""" if self.plugin._undocked_window is not None: self.plugin.dockwidget.setWidget(self.plugin) self.plugin.dockwidget.setVisible(True) self.plugin.switch_to_plugin() QMainWindow.closeEvent(self, event) if self.plugin._undocked_window is not None: self.plugin._undocked_window = None def get_layout_settings(self): """Return layout state""" splitsettings = self.editorwidget.editorsplitter.get_layout_settings() return dict(size=(self.window_size.width(), self.window_size.height()), pos=(self.pos().x(), self.pos().y()), is_maximized=self.isMaximized(), is_fullscreen=self.isFullScreen(), hexstate=qbytearray_to_str(self.saveState()), splitsettings=splitsettings) def set_layout_settings(self, settings): """Restore layout state""" size = settings.get('size') if size is not None: self.resize( QSize(*size) ) self.window_size = self.size() pos = settings.get('pos') if pos is not None: self.move( QPoint(*pos) ) hexstate = settings.get('hexstate') if hexstate is not None: self.restoreState( QByteArray().fromHex( str(hexstate).encode('utf-8')) ) if settings.get('is_maximized'): self.setWindowState(Qt.WindowMaximized) if settings.get('is_fullscreen'): self.setWindowState(Qt.WindowFullScreen) splitsettings = settings.get('splitsettings') if splitsettings is not None: self.editorwidget.editorsplitter.set_layout_settings(splitsettings) class EditorPluginExample(QSplitter): def __init__(self): QSplitter.__init__(self) self._dock_action = None self._undock_action = None self._close_plugin_action = None self._undocked_window = None menu_actions = [] self.editorstacks = [] self.editorwindows = [] self.last_focused_editorstack = {} # fake self.find_widget = FindReplace(self, enable_replace=True) self.outlineexplorer = OutlineExplorerWidget(None, self, self) self.outlineexplorer.edit_goto.connect(self.go_to_file) self.editor_splitter = EditorSplitter(self, self, menu_actions, first=True) editor_widgets = QWidget(self) editor_layout = QVBoxLayout() editor_layout.setContentsMargins(0, 0, 0, 0) editor_widgets.setLayout(editor_layout) editor_layout.addWidget(self.editor_splitter) editor_layout.addWidget(self.find_widget) self.setContentsMargins(0, 0, 0, 0) self.addWidget(editor_widgets) self.addWidget(self.outlineexplorer) self.setStretchFactor(0, 5) self.setStretchFactor(1, 1) self.menu_actions = menu_actions self.toolbar_list = None self.menu_list = None self.setup_window([], []) def go_to_file(self, fname, lineno, text='', start_column=None): editorstack = self.editorstacks[0] editorstack.set_current_filename(to_text_string(fname)) editor = editorstack.get_current_editor() editor.go_to_line(lineno, word=text, start_column=start_column) def closeEvent(self, event): for win in self.editorwindows[:]: win.close() logger.debug("%d: %r" % (len(self.editorwindows), self.editorwindows)) logger.debug("%d: %r" % (len(self.editorstacks), self.editorstacks)) event.accept() def load(self, fname): QApplication.processEvents() editorstack = self.editorstacks[0] editorstack.load(fname) editorstack.analyze_script() def register_editorstack(self, editorstack): logger.debug("FakePlugin.register_editorstack: %r" % editorstack) self.editorstacks.append(editorstack) if self.isAncestorOf(editorstack): # editorstack is a child of the Editor plugin editorstack.set_closable(len(self.editorstacks) > 1) editorstack.set_outlineexplorer(self.outlineexplorer) editorstack.set_find_widget(self.find_widget) oe_btn = create_toolbutton(self) editorstack.add_corner_widgets_to_tabbar([5, oe_btn]) action = QAction(self) editorstack.set_io_actions(action, action, action, action) font = QFont("Courier New") font.setPointSize(10) editorstack.set_default_font(font, color_scheme='Spyder') editorstack.sig_close_file.connect(self.close_file_in_all_editorstacks) editorstack.file_saved.connect(self.file_saved_in_editorstack) editorstack.file_renamed_in_data.connect( self.file_renamed_in_data_in_editorstack) editorstack.plugin_load.connect(self.load) def unregister_editorstack(self, editorstack): logger.debug("FakePlugin.unregister_editorstack: %r" % editorstack) self.editorstacks.pop(self.editorstacks.index(editorstack)) def clone_editorstack(self, editorstack): editorstack.clone_from(self.editorstacks[0]) def setup_window(self, toolbar_list, menu_list): self.toolbar_list = toolbar_list self.menu_list = menu_list def create_new_window(self): window = EditorMainWindow(self, self.menu_actions, self.toolbar_list, self.menu_list, show_fullpath=False, show_all_files=False, group_cells=True, show_comments=True, sort_files_alphabetically=False) window.resize(self.size()) window.show() self.register_editorwindow(window) window.destroyed.connect(lambda: self.unregister_editorwindow(window)) def register_editorwindow(self, window): logger.debug("register_editorwindowQObject*: %r" % window) self.editorwindows.append(window) def unregister_editorwindow(self, window): logger.debug("unregister_editorwindow: %r" % window) self.editorwindows.pop(self.editorwindows.index(window)) def get_focus_widget(self): pass @Slot(str, str) def close_file_in_all_editorstacks(self, editorstack_id_str, filename): for editorstack in self.editorstacks: if str(id(editorstack)) != editorstack_id_str: editorstack.blockSignals(True) index = editorstack.get_index_from_filename(filename) editorstack.close_file(index, force=True) editorstack.blockSignals(False) # This method is never called in this plugin example. It's here only # to show how to use the file_saved signal (see above). @Slot(str, str, str) def file_saved_in_editorstack(self, editorstack_id_str, original_filename, filename): """A file was saved in editorstack, this notifies others""" for editorstack in self.editorstacks: if str(id(editorstack)) != editorstack_id_str: editorstack.file_saved_in_other_editorstack(original_filename, filename) # This method is never called in this plugin example. It's here only # to show how to use the file_saved signal (see above). @Slot(str, str, str) def file_renamed_in_data_in_editorstack(self, editorstack_id_str, original_filename, filename): """A file was renamed in data in editorstack, this notifies others""" for editorstack in self.editorstacks: if str(id(editorstack)) != editorstack_id_str: editorstack.rename_in_data(original_filename, filename) def register_widget_shortcuts(self, widget): """Fake!""" pass def get_color_scheme(self): pass def test(): from spyder.utils.qthelpers import qapplication from spyder.config.base import get_module_path spyder_dir = get_module_path('spyder') app = qapplication(test_time=8) test = EditorPluginExample() test.resize(900, 700) test.show() import time t0 = time.time() test.load(osp.join(spyder_dir, "widgets", "collectionseditor.py")) test.load(osp.join(spyder_dir, "plugins", "editor", "widgets", "editor.py")) test.load(osp.join(spyder_dir, "plugins", "explorer", "widgets", 'explorer.py')) test.load(osp.join(spyder_dir, "plugins", "editor", "widgets", "codeeditor.py")) print("Elapsed time: %.3f s" % (time.time()-t0)) # spyder: test-skip sys.exit(app.exec_()) if __name__ == "__main__": test()
the-stack_0_14464
import collections import cv2 import face_recognition.detect_face as detect_face import face_recognition.facenet as facenet import math import numpy as np import os import pickle import sys import tensorflow as tf import time import urllib.request as ur from datetime import datetime from object_detection.utils import label_map_util from object_detection.utils import visualization_utils as vis_util from timeit import default_timer as timer from sklearn.svm import SVC # path to the user setting file SETTING_PATH = 'setting.txt' # read user settings from the setting text file setting_file = open(SETTING_PATH, 'r') # define the IP webcam to be used as the input setting_file.readline() URL = str(setting_file.readline()) # program starting time start_time = datetime.now() # path to the object detection log file, making sure there's no invalid characters in the file name OBJECT_DETECTION_LOG_PATH = 'object_detection/object-' + str(start_time.date()) + '-' + str(start_time.time()).replace(':', '-') + '.txt' # path to the face recognition log file, making sure there's no invalid characters in the file name FACE_RECOGNITION_LOG_PATH = 'face_recognition/face-' + str(start_time.date()) + '-' + str(start_time.time()).replace(':', '-') + '.txt' # variables for calculating fps fps_count_started = False fps_count_start_time = 0.0 fps_count_end_time = 0.0 fps_count_num_of_frames = 0 """ Object detection. Variables. """ object_detection_initialised = False object_detection_on = False # path to the user setting file for object detection OBJECT_DETECTION_SETTING_PATH = 'object_detection/object_detection_setting.txt' # path to object detection models OBJECT_DETECTION_MODEL_PATH = 'models/object_detection/' # user setting # read user settings from the setting text file object_detection_setting_file = open(OBJECT_DETECTION_SETTING_PATH, 'r') # define the object detection model to be used object_detection_setting_file.readline() object_detection_model_name = object_detection_setting_file.readline() # get rid of the line break at the end of the line just read object_detection_model_name = object_detection_model_name.rstrip('\n') # path to the frozen detection graph, which is the actual model used to perform object detection OBJECT_DETECTION_CKPT_PATH = OBJECT_DETECTION_MODEL_PATH + object_detection_model_name + '/frozen_inference_graph.pb' # path to the label map consisting of labels to be added to corresponding detection boxes OBJECT_DETECTION_LABELS_PATH = OBJECT_DETECTION_MODEL_PATH + object_detection_model_name + '/oid_v5_label_map_customised.pbtxt' # define the max number of classes of objects to be detected object_detection_setting_file.readline() max_num_classes_object = int(object_detection_setting_file.readline()) # define which classes of objects to be detected selected_classes_object = [] object_detection_setting_file.readline() for i in range(max_num_classes_object): object_detection_setting_file.readline() class_setting = int(object_detection_setting_file.readline()) if class_setting == 1: selected_classes_object.append(i+1) label_map_object = label_map_util.load_labelmap(OBJECT_DETECTION_LABELS_PATH) categories_object = label_map_util.convert_label_map_to_categories(label_map_object, max_num_classes=max_num_classes_object, use_display_name=True) category_index_object = label_map_util.create_category_index(categories_object) # load the object detection model into memory detection_graph = tf.Graph() with detection_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(OBJECT_DETECTION_CKPT_PATH, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') sess_object = tf.Session(graph=detection_graph) detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0') detection_scores = detection_graph.get_tensor_by_name('detection_scores:0') detection_classes = detection_graph.get_tensor_by_name('detection_classes:0') num_detections = detection_graph.get_tensor_by_name('num_detections:0') image_tensor = detection_graph.get_tensor_by_name('image_tensor:0') """ Face recognition. Variables. """ face_recognition_on = False # path to the user setting file for face recognition FACE_RECOGNITION_SETTING_PATH = 'face_recognition/face_recognition_setting.txt' # path to face recognition models. FACE_RECOGNITION_MODEL_PATH = 'models/face_recognition/' # path to the model used to perform face detection. FACE_RECOGNITION_CKPT_PATH = FACE_RECOGNITION_MODEL_PATH + '20180402-114759.pb' # path to the model used to perform face recognition. FACE_RECOGNITION_CLASSIFIER_PATH = FACE_RECOGNITION_MODEL_PATH + 'my_classifier.pkl' # path to the label map consisting of labels to be added to corresponding detection boxes. FACE_RECOGNITION_LABELS_PATH = FACE_RECOGNITION_MODEL_PATH + 'facenet_label_map.pbtxt' # user setting # read user settings from the setting text file face_recognition_setting_file = open(FACE_RECOGNITION_SETTING_PATH, 'r') # define the max number of classes of faces to be detected face_recognition_setting_file.readline() max_num_classes_face = int(face_recognition_setting_file.readline()) # define the size of the input to be resized to face_recognition_setting_file.readline() input_image_size_face = int(face_recognition_setting_file.readline()) # define the minimum face size to be detected face_recognition_setting_file.readline() minsize_face = int(face_recognition_setting_file.readline()) # define the three steps face detection threshold threshold_detection_face = [0.0, 0.0, 0.0] face_recognition_setting_file.readline() for i in range(3): threshold_detection_face[i] = float(face_recognition_setting_file.readline()) # define the factor used to create a scaling pyramid of face sizes to detect in the image face_recognition_setting_file.readline() factor_face = float(face_recognition_setting_file.readline()) # define the face recognition threshold face_recognition_setting_file.readline() threshold_recognition_face = float(face_recognition_setting_file.readline()) label_map_face = label_map_util.load_labelmap(FACE_RECOGNITION_LABELS_PATH) categories_face = label_map_util.convert_label_map_to_categories(label_map_face, max_num_classes=max_num_classes_face, use_display_name=True) category_index_face = label_map_util.create_category_index(categories_face) # load The Custom Classifier with open(FACE_RECOGNITION_CLASSIFIER_PATH, 'rb') as file: model, class_names = pickle.load(file) gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.6) sess_face = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) # load the model facenet.load_model(FACE_RECOGNITION_CKPT_PATH) # get input and output tensors images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0") embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0") phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0") embedding_size = embeddings.get_shape()[1] pnet, rnet, onet = detect_face.create_mtcnn(sess_face, "./face_recognition") while(True): image = ur.urlopen(URL) image_array = np.array(bytearray(image.read()),dtype=np.uint8) frame = cv2.imdecode(image_array,-1) # dimension of the input image frame_shape = frame.shape """ Object detection. Runtime. """ if object_detection_initialised == False or object_detection_on == True: frame_expanded = np.expand_dims(frame, axis=0) (boxes_object, scores_object, classes_object, num_object) = sess_object.run( [detection_boxes, detection_scores, detection_classes, num_detections], feed_dict={image_tensor: frame_expanded}) if object_detection_initialised == True: num_of_objects_detected = int(num_object[0]) for i in range(0, num_of_objects_detected): # only draw objects of selected classes if int(classes_object[0][i]) not in selected_classes_object: boxes_object[0][i] = [float(0), float(0), float(0), float(0)] scores_object[0][i] = float(0) classes_object[0][i] = float(1) num_object[0] = num_object[0] - 1 # report objects of selected classes once detected else: with open(OBJECT_DETECTION_LOG_PATH, 'a') as log_file: log_file.write('Time: ' + str(datetime.now()) + '\tCategory: ' + str(int(classes_object[0][i])) + '\tScore: ' + str(scores_object[0][i]) + '\n') # visualise the detection results. vis_util.visualize_boxes_and_labels_on_image_array( frame, np.squeeze(boxes_object), np.squeeze(classes_object).astype(np.int32), np.squeeze(scores_object), category_index_object, use_normalized_coordinates=True, line_thickness=8, min_score_thresh=0.60) # only run initialisation once. if object_detection_initialised == False: object_detection_initialised = True """ Face recognition. Runtime. """ if face_recognition_on == True: bounding_boxes_face, _ = detect_face.detect_face(frame, minsize_face, pnet, rnet, onet, threshold_detection_face, factor_face) faces_found = bounding_boxes_face.shape[0] boxes_face = [[[float(0),float(0),float(0),float(0)]] * (faces_found+1)] scores_face = [[float(0)] * (faces_found+1)] classes_face = [[float(0)] * (faces_found+1)] try: if faces_found > 0: det_face = bounding_boxes_face[:, 0:4] bb_face = np.zeros((faces_found, 4), dtype=np.int32) for i in range(faces_found): bb_face[i][0] = det_face[i][0] bb_face[i][1] = det_face[i][1] bb_face[i][2] = det_face[i][2] bb_face[i][3] = det_face[i][3] cropped_face = frame[bb_face[i][1]:bb_face[i][3], bb_face[i][0]:bb_face[i][2], :] scaled_face = cv2.resize(cropped_face, (input_image_size_face, input_image_size_face), interpolation=cv2.INTER_CUBIC) scaled_face = facenet.prewhiten(scaled_face) reshaped_face = scaled_face.reshape(-1, input_image_size_face, input_image_size_face, 3) embed_array_face = sess_face.run(embeddings, feed_dict={images_placeholder: reshaped_face, phase_train_placeholder: False}) predictions_face = model.predict_proba(embed_array_face) best_class_indices_face = np.argmax(predictions_face, axis=1) best_class_score_face = predictions_face[np.arange(len(best_class_indices_face)), best_class_indices_face] best_name_face = class_names[best_class_indices_face[0]] # get relative coordinates of detection boxes boxes_face[0][i] = [float(bb_face[i][1])/frame_shape[0], float(bb_face[i][0])/frame_shape[1], float(bb_face[i][3])/frame_shape[0], float(bb_face[i][2])/frame_shape[1]] # the confidence score of a face is the one of its best match scores_face[0][i] = float(best_class_score_face) # a face is considered being recognised as someone when the best match has a score higher than the threshold if best_class_score_face > threshold_recognition_face: classes_face[0][i] = float(best_class_indices_face[0] + 2) # otherwise the face detected is considered unknown else: classes_face[0][i] = float(1) # report unknown faces once detected with open(FACE_RECOGNITION_LOG_PATH, 'a') as log_file: log_file.write('Time: ' + str(datetime.now()) + '\tScore: ' + str(scores_face[0][i]) + '\n') # visualise the detection and recognition results. vis_util.visualize_boxes_and_labels_on_image_array( frame, np.squeeze(boxes_face), np.squeeze(classes_face).astype(np.int32), np.squeeze(scores_face), category_index_face, use_normalized_coordinates=True, line_thickness=8) except: pass # display the result image cv2.imshow('Smart Surveillance Camera', frame) # increment number of frames being processed by one for calculating FPS fps_count_num_of_frames = fps_count_num_of_frames + 1 # handle user input key = cv2.waitKey(1) # press 'q' to exit if key == ord('q'): break # press 'o' to switch object detection on and off elif key == ord('o'): object_detection_on = not object_detection_on # press 'f' to switch face recognition on and off elif key == ord('f'): face_recognition_on = not face_recognition_on # press 'p' to switch fps calculation on and off elif key == ord('p'): # initialise and start the fps calculation if it's not already started if fps_count_started == False: fps_count_num_of_frames = 0 fps_count_start_time = timer() fps_count_started = True # stop, calculate and display the fps if it's already started else: fps_count_started = False fps_count_end_time = timer() fps = fps_count_num_of_frames / (fps_count_end_time - fps_count_start_time) print('FPS:' + str(fps)) cv2.destroyAllWindows()
the-stack_0_14466
from .utils import methods DEBUG_MODE = False class Router(): def __init__(self): self.routes = {} self.num_middleware = 0 for method in methods: self._generate_add_route_method(method) # helper method for adding routes. # if middleware is provided, mount the middleware at the path. # if not, return a decorator that mounts the function as middleware at path. def _add_route(self, path, middleware=None, method='*'): if path not in self.routes: self.routes[path] = {} method = method.upper() if method not in self.routes[path]: self.routes[path][method] = [] # the actual method that mounts the middleware to the route and method. # may be returned as a decorator. def add_route(f): f.index = self.num_middleware self.num_middleware += 1 self.routes[path][method].append(f) if DEBUG_MODE: print('mounting middleware %s at path %s' % (middleware, path)) if middleware: for m in middleware: add_route(m) else: return add_route # generates an add_route method for EVERY HTTP method. # this is for app.get, app.post, app.trace, app.mkactivity, etc. def _generate_add_route_method(self, method): add_route = self._add_route if DEBUG_MODE: print('registering app.%s' % (method)) def add_route_method(path='*', *middleware): if not isinstance(path, str): middleware = [path] + [m for m in middleware] path = '*' return add_route(path, middleware, method) # temporary solution ?? ? ? ? setattr(self, method, add_route_method) return getattr(self, method) # mount the middleware for all requests to the path. def use(self, path='*', *middleware): # path can be a piece of middleware # if so, append it to middleware if not isinstance(path, str): middleware = [path] + [m for m in middleware] path = '*' return self._add_route(path, middleware) def route(self, path='*'): pass
the-stack_0_14467
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for lstm_object_detection.tf_sequence_example_decoder.""" import numpy as np import tensorflow as tf from lstm_object_detection.inputs import tf_sequence_example_decoder from object_detection.core import standard_fields as fields from tensorflow.core.example import example_pb2 from tensorflow.core.example import feature_pb2 class TFSequenceExampleDecoderTest(tf.test.TestCase): """Tests for sequence example decoder.""" def _EncodeImage(self, image_tensor, encoding_type='jpeg'): with self.test_session(): if encoding_type == 'jpeg': image_encoded = tf.image.encode_jpeg(tf.constant(image_tensor)).eval() else: raise ValueError('Invalid encoding type.') return image_encoded def _DecodeImage(self, image_encoded, encoding_type='jpeg'): with self.test_session(): if encoding_type == 'jpeg': image_decoded = tf.image.decode_jpeg(tf.constant(image_encoded)).eval() else: raise ValueError('Invalid encoding type.') return image_decoded def testDecodeJpegImageAndBoundingBox(self): """Test if the decoder can correctly decode the image and bounding box. A set of random images (represented as an image tensor) is first decoded as the groundtrue image. Meanwhile, the image tensor will be encoded and pass through the sequence example, and then decoded as images. The groundtruth image and the decoded image are expected to be equal. Similar tests are also applied to labels such as bounding box. """ image_tensor = np.random.randint(256, size=(256, 256, 3)).astype(np.uint8) encoded_jpeg = self._EncodeImage(image_tensor) decoded_jpeg = self._DecodeImage(encoded_jpeg) sequence_example = example_pb2.SequenceExample( feature_lists=feature_pb2.FeatureLists( feature_list={ 'image/encoded': feature_pb2.FeatureList(feature=[ feature_pb2.Feature( bytes_list=feature_pb2.BytesList( value=[encoded_jpeg])), ]), 'bbox/xmin': feature_pb2.FeatureList(feature=[ feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[0.0])), ]), 'bbox/xmax': feature_pb2.FeatureList(feature=[ feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[1.0])) ]), 'bbox/ymin': feature_pb2.FeatureList(feature=[ feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[0.0])), ]), 'bbox/ymax': feature_pb2.FeatureList(feature=[ feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[1.0])) ]), })).SerializeToString() example_decoder = tf_sequence_example_decoder.TFSequenceExampleDecoder() tensor_dict = example_decoder.decode(tf.convert_to_tensor(sequence_example)) # Test tensor dict image dimension. self.assertAllEqual( (tensor_dict[fields.InputDataFields.image].get_shape().as_list()), [None, None, None, 3]) with self.test_session() as sess: tensor_dict[fields.InputDataFields.image] = tf.squeeze( tensor_dict[fields.InputDataFields.image]) tensor_dict[fields.InputDataFields.groundtruth_boxes] = tf.squeeze( tensor_dict[fields.InputDataFields.groundtruth_boxes]) tensor_dict = sess.run(tensor_dict) # Test decoded image. self.assertAllEqual(decoded_jpeg, tensor_dict[fields.InputDataFields.image]) # Test decoded bounding box. self.assertAllEqual([0.0, 0.0, 1.0, 1.0], tensor_dict[fields.InputDataFields.groundtruth_boxes]) if __name__ == '__main__': tf.test.main()
the-stack_0_14468
"""Module for intervention access strategy functions Determining whether or not to provide access to a given intervention for a user is occasionally tricky business. By way of the access_strategies property on all interventions, one can add additional criteria by defining a function here (or elsewhere) and adding it to the desired intervention. function signature: takes named parameters (intervention, user) and returns a boolean - True grants access (and short circuits further access tests), False does not. NB - several functions are closures returning access_strategy functions with the parameters given to the closures. """ from datetime import datetime import json import sys from flask import current_app, url_for from flask_babel import gettext as _ from sqlalchemy import UniqueConstraint, and_ from sqlalchemy.dialects.postgresql import JSONB from sqlalchemy.orm.exc import MultipleResultsFound, NoResultFound from ..database import db from ..date_tools import localize_datetime from ..system_uri import DECISION_SUPPORT_GROUP, TRUENTH_CLINICAL_CODE_SYSTEM from .clinical_constants import CC from .codeable_concept import CodeableConcept from .coding import Coding from .identifier import Identifier from .intervention import INTERVENTION, Intervention, UserIntervention from .organization import Organization, OrganizationIdentifier, OrgTree from .overall_status import OverallStatus from .procedure_codes import known_treatment_started from .role import Role # ## # # functions implementing the 'access_strategy' API # ## __log_strats = None def _log(**kwargs): """Wrapper to log all the access lookup results within""" # get config value if haven't yet global __log_strats if __log_strats is None: __log_strats = current_app.config.get("LOG_DEBUG_STRATS", False) if __log_strats: msg = kwargs.get('message', '') # optional current_app.logger.debug( "{func_name} returning {result} for {user} on intervention " "{intervention}".format(**kwargs) + msg) def limit_by_clinic_w_id( identifier_value, identifier_system=DECISION_SUPPORT_GROUP, combinator='any', include_children=True): """Requires user is associated with {any,all} clinics with identifier :param identifier_value: value string for identifer associated with org(s) :param identifier_system: system string for identifier, defaults to DECISION_SUPPORT_GROUP :param combinator: determines if the user must be in 'any' (default) or 'all' of the clinics in the given list. NB combining 'all' with include_children=True would mean all orgs in the list AND all chidren of all orgs in list must be associated with the user for a true result. :param include_children: include children in the organization tree if set (default), otherwise, only include the organizations in the list """ try: identifier = Identifier.query.filter_by( _value=identifier_value, system=identifier_system).one() except NoResultFound: raise ValueError( "strategy names non-existing Identifier({}, {})".format( identifier_value, identifier_system)) orgs = Organization.query.join(OrganizationIdentifier).filter(and_( Organization.id == OrganizationIdentifier.organization_id, OrganizationIdentifier.identifier_id == identifier.id)).all() if include_children: ot = OrgTree() required = {o for og in orgs for o in ot.here_and_below_id(og.id)} else: required = set((o.id for o in orgs)) if combinator not in ('any', 'all'): raise ValueError("unknown value {} for combinator, must be any or all") def user_registered_with_all_clinics(intervention, user): has = set((o.id for o in user.organizations)) if required.intersection(has) == required: _log(result=True, func_name='limit_by_clinic_list', user=user, intervention=intervention.name) return True def user_registered_with_any_clinics(intervention, user): has = set((o.id for o in user.organizations)) if not required.isdisjoint(has): _log(result=True, func_name='limit_by_clinic_list', user=user, intervention=intervention.name) return True return ( user_registered_with_all_clinics if combinator == 'all' else user_registered_with_any_clinics) def not_in_clinic_w_id( identifier_value, identifier_system=DECISION_SUPPORT_GROUP, include_children=True): """Requires user isn't associated with any clinic in the list :param identifier_value: value string for identifer associated with org(s) :param identifier_system: system string for identifier, defaults to DECISION_SUPPORT_GROUP :param include_children: include children in the organization tree if set (default), otherwise, only include the organizations directly associated with the identifier """ try: identifier = Identifier.query.filter_by( _value=identifier_value, system=identifier_system).one() except NoResultFound: raise ValueError( "strategy names non-existing Identifier({}, {})".format( identifier_value, identifier_system)) orgs = Organization.query.join(OrganizationIdentifier).filter(and_( Organization.id == OrganizationIdentifier.organization_id, OrganizationIdentifier.identifier_id == identifier.id)).all() if include_children: ot = OrgTree() dont_want = {o for og in orgs for o in ot.here_and_below_id(og.id)} else: dont_want = set((o.id for o in orgs)) def user_not_registered_with_clinics(intervention, user): has = set((o.id for o in user.organizations)) if has.isdisjoint(dont_want): _log(result=True, func_name='not_in_clinic_list', user=user, intervention=intervention.name) return True return user_not_registered_with_clinics def in_role_list(role_list): """Requires user is associated with any role in the list""" roles = [] for role in role_list: try: role = Role.query.filter_by( name=role).one() roles.append(role) except NoResultFound: raise ValueError("role '{}' not found".format(role)) except MultipleResultsFound: raise ValueError("more than one role named '{}'" "found".format(role)) required = set(roles) def user_has_given_role(intervention, user): has = set(user.roles) if has.intersection(required): _log(result=True, func_name='in_role_list', user=user, intervention=intervention.name) return True return user_has_given_role def not_in_role_list(role_list): """Requires user isn't associated with any role in the list""" roles = [] for role in role_list: try: role = Role.query.filter_by( name=role).one() roles.append(role) except NoResultFound: raise ValueError("role '{}' not found".format(role)) except MultipleResultsFound: raise ValueError("more than one role named '{}'" "found".format(role)) dont_want = set(roles) def user_not_given_role(intervention, user): has = set(user.roles) if has.isdisjoint(dont_want): _log(result=True, func_name='not_in_role_list', user=user, intervention=intervention.name) return True return user_not_given_role def allow_if_not_in_intervention(intervention_name): """Strategy API checks user does not belong to named intervention""" exclusive_intervention = getattr(INTERVENTION, intervention_name) def user_not_in_intervention(intervention, user): if not exclusive_intervention.quick_access_check(user): _log(result=True, func_name='user_not_in_intervention', user=user, intervention=intervention.name) return True return user_not_in_intervention def tx_begun(boolean_value): """Returns strategy function testing if user is known to have started Tx :param boolean_value: true for known treatment started (i.e. procedure indicating tx has begun), false to confirm a user doesn't have a procedure indicating tx has begun """ if boolean_value == 'true': check_func = known_treatment_started elif boolean_value == 'false': def check_func(u): return not known_treatment_started(u) else: raise ValueError("expected 'true' or 'false' for boolean_value") def user_has_desired_tx(intervention, user): return check_func(user) return user_has_desired_tx def observation_check(display, boolean_value, invert_logic=False): """Returns strategy function for a particular observation and logic value :param display: observation coding.display from TRUENTH_CLINICAL_CODE_SYSTEM :param boolean_value: ValueQuantity boolean true or false expected :param invert_logic: Effective binary ``not`` to apply to test. If set, will return True only if given observation with boolean_value is NOT defined for user NB a history of observations is maintained, with the most recent taking precedence. """ try: coding = Coding.query.filter_by( system=TRUENTH_CLINICAL_CODE_SYSTEM, display=display).one() except NoResultFound: raise ValueError("coding.display '{}' not found".format(display)) try: cc = CodeableConcept.query.filter( CodeableConcept.codings.contains(coding)).one() except NoResultFound: raise ValueError("codeable_concept'{}' not found".format(coding)) if boolean_value == 'true': vq = CC.TRUE_VALUE elif boolean_value == 'false': vq = CC.FALSE_VALUE else: raise ValueError("boolean_value must be 'true' or 'false'") def user_has_matching_observation(intervention, user): value, status = user.fetch_value_status_for_concept( codeable_concept=cc) if value == vq: _log(result=True, func_name='observation_check', user=user, intervention=intervention.name, message='{}:{}'.format(coding.display, vq.value)) return True if not invert_logic else False return False if not invert_logic else True return user_has_matching_observation def combine_strategies(**kwargs): """Make multiple strategies into a single statement The nature of the access lookup returns True for the first success in the list of strategies for an intervention. Use this method to chain multiple strategies together into a logical **and** fashion rather than the built in locical **or**. NB - kwargs must have keys such as 'strategy_n', 'strategy_n_kwargs' for every 'n' strategies being combined, starting at 1. Set arbitrary limit of 6 strategies for time being. Nested strategies may actually want a logical 'OR'. Optional kwarg `combinator` takes values {'any', 'all'} - default 'all' means all strategies must evaluate true. 'any' means just one must eval true for a positive result. """ strats = [] arbitrary_limit = 7 if 'strategy_{}'.format(arbitrary_limit) in kwargs: raise ValueError( "only supporting %d combined strategies", arbitrary_limit - 1) for i in range(1, arbitrary_limit): if 'strategy_{}'.format(i) not in kwargs: break func_name = kwargs['strategy_{}'.format(i)] func_kwargs = {} for argset in kwargs['strategy_{}_kwargs'.format(i)]: func_kwargs[argset['name']] = argset['value'] func = getattr(sys.modules[__name__], func_name) strats.append(func(**func_kwargs)) def call_all_combined(intervention, user): """Returns True if ALL of the combined strategies return True""" for strategy in strats: if not strategy(intervention, user): _log( result=False, func_name='combine_strategies', user=user, intervention=intervention.name) return # still here? effective AND passed as all returned true _log( result=True, func_name='combine_strategies', user=user, intervention=intervention.name) return True def call_any_combined(intervention, user): """Returns True if ANY of the combined strategies return True""" for strategy in strats: if strategy(intervention, user): _log( result=True, func_name='combine_strategies', user=user, intervention=intervention.name) return True # still here? effective ANY failed as none returned true _log( result=False, func_name='combine_strategies', user=user, intervention=intervention.name) return combinator = kwargs.get('combinator', 'all') if combinator == 'any': return call_any_combined elif combinator == 'all': return call_all_combined else: raise ValueError("unrecognized value {} for `combinator`, " "limited to {'any', 'all'}").format(combinator) class AccessStrategy(db.Model): """ORM to persist access strategies on an intervention The function_details field contains JSON defining which strategy to use and how it should be instantiated by one of the closures implementing the access_strategy interface. Said closures must be defined in this module (a security measure to keep unsanitized code out). """ __tablename__ = 'access_strategies' id = db.Column(db.Integer, primary_key=True) name = db.Column(db.Text, nullable=False) description = db.Column(db.Text) intervention_id = db.Column( db.ForeignKey('interventions.id'), nullable=False) rank = db.Column(db.Integer) function_details = db.Column(JSONB, nullable=False) __table_args__ = (UniqueConstraint('intervention_id', 'rank', name='rank_per_intervention'),) def __str__(self): """Log friendly string format""" return ( "AccessStrategy: {0.name} {0.description} {0.rank}" "{0.function_details}").format(self) @classmethod def from_json(cls, data): strat = cls() return strat.update_from_json(data) def update_from_json(self, data): try: self.name = data['name'] if 'id' in data: self.id = data['id'] if 'intervention_name' in data: intervention = Intervention.query.filter_by( name=data['intervention_name']).first() if not intervention: raise ValueError( 'Intervention not found {}. (NB: new interventions ' 'require `seed -i` to import)'.format( data['intervention_name'])) self.intervention_id = intervention.id if 'description' in data: self.description = data['description'] if 'rank' in data: self.rank = data['rank'] self.function_details = json.dumps(data['function_details']) # validate the given details by attempting to instantiate self.instantiate() except Exception as e: raise ValueError("AccessStrategy instantiation error: {}".format( e)) return self def as_json(self): """Return self in JSON friendly dictionary""" d = { "name": self.name, "resourceType": 'AccessStrategy' } d["function_details"] = ( json.loads(self.function_details) if self.function_details else None) d['intervention_name'] = ( Intervention.query.get(self.intervention_id).name if self.intervention_id else None) if self.id: d['id'] = self.id if self.rank: d['rank'] = self.rank if self.description: d['description'] = self.description return d def instantiate(self): """Bring the serialized access strategy function to life Using the JSON in self.function_details, instantiate the function and return it ready to use. """ details = json.loads(self.function_details) if 'function' not in details: raise ValueError("'function' not found in function_details") if 'kwargs' not in details: raise ValueError("'kwargs' not found in function_details") func_name = details['function'] # limit to this module func = getattr(sys.modules[__name__], func_name) kwargs = {} for argset in details['kwargs']: kwargs[argset['name']] = argset['value'] return func(**kwargs)
the-stack_0_14469
# Copyright 2016 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). import hashlib import os from pex.interpreter import PythonInterpreter from pants.backend.python.interpreter_cache import PythonInterpreterCache from pants.backend.python.targets.python_requirement_library import PythonRequirementLibrary from pants.backend.python.targets.python_target import PythonTarget from pants.base.fingerprint_strategy import DefaultFingerprintHashingMixin, FingerprintStrategy from pants.invalidation.cache_manager import VersionedTargetSet from pants.task.task import Task from pants.util.dirutil import safe_mkdir_for class PythonInterpreterFingerprintStrategy(DefaultFingerprintHashingMixin, FingerprintStrategy): def __init__(self, python_setup): self.python_setup = python_setup def compute_fingerprint(self, python_target): # Consider the target's compatibility requirements, and if those are missing then fall back # to the global interpreter constraints. Only these two values can affect the selected interpreter. hash_elements_for_target = sorted( self.python_setup.compatibility_or_constraints(python_target.compatibility) ) if not hash_elements_for_target: return None hasher = hashlib.sha1() for element in hash_elements_for_target: hasher.update(element.encode()) return hasher.hexdigest() class SelectInterpreter(Task): """Select an Python interpreter that matches the constraints of all targets in the working set.""" @classmethod def implementation_version(cls): # TODO(John Sirois): Fixup this task to use VTS results_dirs. Right now version bumps aren't # effective in dealing with workdir data format changes. return super().implementation_version() + [("SelectInterpreter", 4)] @classmethod def subsystem_dependencies(cls): return super().subsystem_dependencies() + (PythonInterpreterCache,) @classmethod def product_types(cls): return [PythonInterpreter] @property def _interpreter_cache(self): return PythonInterpreterCache.global_instance() def execute(self): # NB: Downstream product consumers may need the selected interpreter for use with # any type of importable Python target, including `PythonRequirementLibrary` targets # (for use with the `repl` goal, for instance). For interpreter selection, # we only care about targets with compatibility constraints. python_tgts_and_reqs = self.context.targets( lambda tgt: isinstance(tgt, (PythonTarget, PythonRequirementLibrary)) ) if not python_tgts_and_reqs: return python_tgts = [tgt for tgt in python_tgts_and_reqs if isinstance(tgt, PythonTarget)] fs = PythonInterpreterFingerprintStrategy(python_setup=self._interpreter_cache.python_setup) with self.invalidated(python_tgts, fingerprint_strategy=fs) as invalidation_check: # If there are no constraints, meaning no global constraints nor compatibility requirements on # the targets, we still go through the motions of selecting an interpreter, to prevent # downstream tasks from having to check for this special case. target_set_id = ( "no_constraints" if not invalidation_check.all_vts else VersionedTargetSet.from_versioned_targets( invalidation_check.all_vts ).cache_key.hash ) interpreter_path_file = self._interpreter_path_file(target_set_id) interpreter = self._get_interpreter(interpreter_path_file, python_tgts) self.context.products.register_data(PythonInterpreter, interpreter) def _select_interpreter(self, interpreter_path_file, targets): interpreter = self._interpreter_cache.select_interpreter_for_targets(targets) safe_mkdir_for(interpreter_path_file) with open(interpreter_path_file, "w") as outfile: outfile.write(f"{interpreter.binary}\n") return interpreter def _interpreter_path_file(self, target_set_id): # NB: The file name must be changed when its format changes. See the TODO in # `implementation_version` above for more. # # The historical names to avoid: # - interpreter.path # - interpreter.info return os.path.join(self.workdir, target_set_id, "interpreter.binary") def _get_interpreter(self, interpreter_path_file, targets): if os.path.exists(interpreter_path_file): with open(interpreter_path_file, "r") as infile: binary = infile.read().strip() try: return PythonInterpreter.from_binary(binary) except PythonInterpreter.Error: self.context.log.info( "Stale interpreter reference detected: {}, removing reference and " "selecting a new interpreter.".format(binary) ) os.remove(interpreter_path_file) return self._select_interpreter(interpreter_path_file, targets)
the-stack_0_14473
from pathlib import Path new_keys = set() for file in Path('/').glob('*.txt'): with file.open('r') as f: for line in f.readlines(): new_keys.add(line.strip('\n')) with open('condenced.txt', 'w') as f: for key in new_keys: f.write(key + '\n')
the-stack_0_14474
import FWCore.ParameterSet.Config as cms from Configuration.Generator.Pythia8CommonSettings_cfi import * from Configuration.Generator.Pythia8CUEP8M1Settings_cfi import * generator = cms.EDFilter("Pythia8GeneratorFilter", comEnergy = cms.double(13000.0), pythiaHepMCVerbosity = cms.untracked.bool(False), pythiaPylistVerbosity = cms.untracked.int32(1), filterEfficiency = cms.untracked.double(1.0), SLHAFileForPythia8 = cms.string('Configuration/Generator/data/GMSB/GMSB_Lambda100TeV_CTau1200cm.slha'), PythiaParameters = cms.PSet( pythia8CommonSettingsBlock, pythia8CUEP8M1SettingsBlock, processParameters = cms.vstring( 'ParticleDecays:limitTau0 = off', 'ParticleDecays:tau0Max = 10000000', 'SUSY:all on', ), parameterSets = cms.vstring('pythia8CommonSettings', 'pythia8CUEP8M1Settings', 'processParameters') ) ) ProductionFilterSequence = cms.Sequence(generator)
the-stack_0_14475
#!/usr/bin/env python3 # Copyright (c) 2015-2016 The Sarielsaz Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test a node with the -disablewallet option. - Test that validateaddress RPC works when running with -disablewallet - Test that it is not possible to mine to an invalid address. """ from test_framework.test_framework import SarielsazTestFramework from test_framework.util import * class DisableWalletTest (SarielsazTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 1 self.extra_args = [["-disablewallet"]] def run_test (self): # Make sure wallet is really disabled assert_raises_rpc_error(-32601, 'Method not found', self.nodes[0].getwalletinfo) x = self.nodes[0].validateaddress('3J98t1WpEZ73CNmQviecrnyiWrnqRhWNLy') assert(x['isvalid'] == False) x = self.nodes[0].validateaddress('mneYUmWYsuk7kySiURxCi3AGxrAqZxLgPZ') assert(x['isvalid'] == True) # Checking mining to an address without a wallet. Generating to a valid address should succeed # but generating to an invalid address will fail. self.nodes[0].generatetoaddress(1, 'mneYUmWYsuk7kySiURxCi3AGxrAqZxLgPZ') assert_raises_rpc_error(-5, "Invalid address", self.nodes[0].generatetoaddress, 1, '3J98t1WpEZ73CNmQviecrnyiWrnqRhWNLy') if __name__ == '__main__': DisableWalletTest ().main ()
the-stack_0_14476
from cachelib import SimpleCache from slickqaweb.api.project import get_project, get_release, get_build cache = SimpleCache() def get_project_release_build_ids(project_name, release_name, build_name): retval = [] project = None release = None build = None if project_name is None: retval.append(None) else: cache_key = "project-{}".format(project_name) if cache.has(cache_key): retval.append(cache.get(cache_key)) else: project = get_project(project_name) if project is not None: retval.append(project.id) cache.set(cache_key, project.id) else: retval.append(None) if release_name is None: retval.append(None) else: cache_key = "release-{}".format(release_name) if cache.has(cache_key): retval.append(cache.get(cache_key)) else: if project is not None: release = get_release(project, release_name) if release is not None: retval.append(release.id) cache.set(cache_key, release.id) else: retval.append(None) if build_name is None: retval.append(None) else: cache_key = "build-{}".format(build_name) if cache.has(cache_key): retval.append(cache.get(cache_key)) else: if release is not None: build = get_build(release, build_name) if build is not None: retval.append(build.id) cache.set(cache_key, build.id) else: retval.append(None) return retval
the-stack_0_14484
import os from tqdm import tqdm import numpy as np import pandas as pd import cv2 import time import re import warnings warnings.filterwarnings("ignore") import numpy as np import torch.utils.data as data from torchvision import transforms import torch import pdb import argparse from src import Networks from sklearn.metrics import confusion_matrix import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' backends = ['opencv', 'ssd', 'dlib', 'mtcnn', 'retinaface'] from deepface import DeepFace from deepface.extendedmodels import Age from deepface.commons import functions, realtime, distance as dst from deepface.detectors import OpenCvWrapper input_shape = (224, 224); input_shape_x = input_shape[0]; input_shape_y = input_shape[1] text_color = (255, 255, 255) frame_threshold = 1 time_threshold = 0.1 tic = time.time() data_transforms_test = transforms.Compose([ transforms.ToPILImage(), transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) #emotion_model = DeepFace.build_model('Emotion') emotion_model = Networks.ResNet18_ARM___RAF() print("Loading pretrained weights...models/RAF-DB/epoch59_acc0.9205.pth") checkpoint = torch.load('./models/RAF-DB/epoch59_acc0.9205.pth') emotion_model.load_state_dict(checkpoint["model_state_dict"], strict=False) emotion_model = emotion_model.cuda() print("Emotion model loaded") toc = time.time() print("Facial attibute analysis models loaded in ", toc - tic, " seconds") pivot_img_size = 112 # face recognition result image # ----------------------- opencv_path = OpenCvWrapper.get_opencv_path() face_detector_path = opencv_path + "haarcascade_frontalface_default.xml" face_cascade = cv2.CascadeClassifier(face_detector_path) # ----------------------- freeze = False face_detected = False face_included_frames = 0 # freeze screen if face detected sequantially 5 frames freezed_frame = 0 tic = time.time() cap = cv2.VideoCapture(0) # webcam _cnt_frame = 0 emotion_model.eval() while (True): _start = time.time() ret, img = cap.read() _cnt_frame += 1 if img is None: break raw_img = img.copy() resolution = img.shape resolution_x = img.shape[1]; resolution_y = img.shape[0] if freeze == False: faces = face_cascade.detectMultiScale(img, 1.3, 5) fc_img, faces = DeepFace.detectFace(img, detector_backend = backends[1]) if len(faces) == 0: face_included_frames = 0 else: faces = [] detected_faces = [] face_index = 0 if len(faces)==0: faces = faces else: faces = [faces] for (x, y, w, h) in faces: if w > 130: # discard small detected faces face_detected = True if face_index == 0: face_included_frames = face_included_frames + 1 # increase frame for a single face cv2.rectangle(img, (x, y), (x + w, y + h), (67, 67, 67), 1) # draw rectangle to main image cv2.putText(img, str(frame_threshold - face_included_frames), (int(x + w / 4), int(y + h / 1.5)), cv2.FONT_HERSHEY_SIMPLEX, 4, (255, 255, 255), 2) detected_face = img[int(y):int(y + h), int(x):int(x + w)] # crop detected face # ------------------------------------- detected_faces.append((x, y, w, h)) face_index = face_index + 1 # ------------------------------------- if face_detected == True and face_included_frames == frame_threshold and freeze == False: freeze = True # base_img = img.copy() base_img = raw_img.copy() detected_faces_final = detected_faces.copy() tic = time.time() if freeze == True: toc = time.time() if (toc - tic) < time_threshold: # # if freezed_frame == 0: freeze_img = base_img.copy() # freeze_img = np.zeros(resolution, np.uint8) #here, np.uint8 handles showing white area issue emotion_predictions = np.zeros((7), dtype=float) for detected_face in detected_faces_final: x = detected_face[0]; y = detected_face[1] w = detected_face[2]; h = detected_face[3] cv2.rectangle(freeze_img, (x, y), (x + w, y + h), (67, 67, 67), 1) # draw rectangle to main image # ------------------------------- # apply deep learning for custom_face custom_face = base_img[y:y + h, x:x + w] # ------------------------------- # facial attribute analysis gray_img = torch.unsqueeze(data_transforms_test(custom_face),0) # emotion_labels = ['Angry', 'Disgust', 'Fear', 'Happy', 'Sad', 'Surprise', 'Neutral'] #Original emotion_labels = ['Surprise', 'Fear', 'Disgust', 'Happy', 'Sad','Angry','Neutral'] outputs, _ = emotion_model(gray_img.cuda()) _emotion_predictions = torch.softmax(outputs,1) # _emotion_predictions = emotion_model.predict(gray_img)[0, :] emotion_predictions = torch.squeeze(_emotion_predictions).detach().cpu().numpy() sum_of_predictions = emotion_predictions.sum() mood_items = [] print('===================================================================================') print('%d of frames' % (_cnt_frame)) for i in range(0, len(emotion_labels)): mood_item = [] emotion_label = emotion_labels[i] emotion_prediction = 100 * emotion_predictions[i] / sum_of_predictions mood_item.append(emotion_label) mood_item.append(emotion_prediction) mood_items.append(mood_item) print('Emotion: %s - Confidence: %f' % (emotion_labels[i], emotion_prediction)) print('===================================================================================') emotion_df = pd.DataFrame(mood_items, columns=["emotion", "score"]) # pd Dataset emotion dataset. emotion_df = emotion_df.sort_values(by=["score"], ascending=False).reset_index( drop=True) # pd Dataset emotion dataset. ''' 'emotion_df' contains emotion labels and the scores of each emotion class. ''' overlay = freeze_img.copy() opacity = 0.4 if x + w + pivot_img_size < resolution_x: # right cv2.rectangle(freeze_img # , (x+w,y+20) , (x + w, y) , (x + w + pivot_img_size, y + h) , (64, 64, 64), cv2.FILLED) cv2.addWeighted(overlay, opacity, freeze_img, 1 - opacity, 0, freeze_img) elif x - pivot_img_size > 0: # left cv2.rectangle(freeze_img # , (x-pivot_img_size,y+20) , (x - pivot_img_size, y) , (x, y + h) , (64, 64, 64), cv2.FILLED) cv2.addWeighted(overlay, opacity, freeze_img, 1 - opacity, 0, freeze_img) assert isinstance(emotion_df.iterrows, object) for index, instance in emotion_df.iterrows(): emotion_label = "%s " % (instance['emotion']) emotion_score = instance['score'] / 100 bar_x = 35 # this is the size if an emotion is 100% bar_x = int(bar_x * emotion_score) if x + w + pivot_img_size < resolution_x: text_location_y = y + 20 + (index + 1) * 20 text_location_x = x + w if text_location_y < y + h: cv2.putText(freeze_img, emotion_label, (text_location_x, text_location_y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1) cv2.rectangle(freeze_img , (x + w + 70, y + 13 + (index + 1) * 20) , (x + w + 70 + bar_x, y + 13 + (index + 1) * 20 + 5) , (255, 255, 255), cv2.FILLED) elif x - pivot_img_size > 0: text_location_y = y + 20 + (index + 1) * 20 text_location_x = x - pivot_img_size if text_location_y <= y + h: cv2.putText(freeze_img, emotion_label, (text_location_x, text_location_y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1) cv2.rectangle(freeze_img , (x - pivot_img_size + 70, y + 13 + (index + 1) * 20) , (x - pivot_img_size + 70 + bar_x, y + 13 + (index + 1) * 20 + 5) , (255, 255, 255), cv2.FILLED) # ------------------------------- # face_224 = functions.preprocess_face(img = custom_face, target_size = (224, 224), grayscale = False, enforce_detection = False) tic = time.time() # in this way, freezed image can show 5 seconds cv2.imshow('img', freeze_img) freezed_frame = freezed_frame + 1 face_detected = False face_included_frames = 0 freeze = False freezed_frame = 0 else: cv2.imshow('img', img) print('Execution speed: %f sec' % (time.time() - _start)) if cv2.waitKey(1) & 0xFF == ord('q'): # press q to quit break # kill open cv things cap.release() cv2.destroyAllWindows()
the-stack_0_14485
from itertools import product import numpy as np import pandas as pd from pandas.testing import assert_series_equal from numpy.testing import assert_array_equal, assert_array_almost_equal from seaborn._core.moves import Dodge, Jitter, Shift, Stack from seaborn._core.rules import categorical_order from seaborn._core.groupby import GroupBy import pytest class MoveFixtures: @pytest.fixture def df(self, rng): n = 50 data = { "x": rng.choice([0., 1., 2., 3.], n), "y": rng.normal(0, 1, n), "grp2": rng.choice(["a", "b"], n), "grp3": rng.choice(["x", "y", "z"], n), "width": 0.8, "baseline": 0, } return pd.DataFrame(data) @pytest.fixture def toy_df(self): data = { "x": [0, 0, 1], "y": [1, 2, 3], "grp": ["a", "b", "b"], "width": .8, "baseline": 0, } return pd.DataFrame(data) @pytest.fixture def toy_df_widths(self, toy_df): toy_df["width"] = [.8, .2, .4] return toy_df @pytest.fixture def toy_df_facets(self): data = { "x": [0, 0, 1, 0, 1, 2], "y": [1, 2, 3, 1, 2, 3], "grp": ["a", "b", "a", "b", "a", "b"], "col": ["x", "x", "x", "y", "y", "y"], "width": .8, "baseline": 0, } return pd.DataFrame(data) class TestJitter(MoveFixtures): def get_groupby(self, data, orient): other = {"x": "y", "y": "x"}[orient] variables = [v for v in data if v not in [other, "width"]] return GroupBy(variables) def check_same(self, res, df, *cols): for col in cols: assert_series_equal(res[col], df[col]) def check_pos(self, res, df, var, limit): assert (res[var] != df[var]).all() assert (res[var] < df[var] + limit / 2).all() assert (res[var] > df[var] - limit / 2).all() def test_width(self, df): width = .4 orient = "x" groupby = self.get_groupby(df, orient) res = Jitter(width=width)(df, groupby, orient) self.check_same(res, df, "y", "grp2", "width") self.check_pos(res, df, "x", width * df["width"]) def test_x(self, df): val = .2 orient = "x" groupby = self.get_groupby(df, orient) res = Jitter(x=val)(df, groupby, orient) self.check_same(res, df, "y", "grp2", "width") self.check_pos(res, df, "x", val) def test_y(self, df): val = .2 orient = "x" groupby = self.get_groupby(df, orient) res = Jitter(y=val)(df, groupby, orient) self.check_same(res, df, "x", "grp2", "width") self.check_pos(res, df, "y", val) def test_seed(self, df): kws = dict(width=.2, y=.1, seed=0) orient = "x" groupby = self.get_groupby(df, orient) res1 = Jitter(**kws)(df, groupby, orient) res2 = Jitter(**kws)(df, groupby, orient) for var in "xy": assert_series_equal(res1[var], res2[var]) class TestDodge(MoveFixtures): # First some very simple toy examples def test_default(self, toy_df): groupby = GroupBy(["x", "grp"]) res = Dodge()(toy_df, groupby, "x") assert_array_equal(res["y"], [1, 2, 3]), assert_array_almost_equal(res["x"], [-.2, .2, 1.2]) assert_array_almost_equal(res["width"], [.4, .4, .4]) def test_fill(self, toy_df): groupby = GroupBy(["x", "grp"]) res = Dodge(empty="fill")(toy_df, groupby, "x") assert_array_equal(res["y"], [1, 2, 3]), assert_array_almost_equal(res["x"], [-.2, .2, 1]) assert_array_almost_equal(res["width"], [.4, .4, .8]) def test_drop(self, toy_df): groupby = GroupBy(["x", "grp"]) res = Dodge("drop")(toy_df, groupby, "x") assert_array_equal(res["y"], [1, 2, 3]) assert_array_almost_equal(res["x"], [-.2, .2, 1]) assert_array_almost_equal(res["width"], [.4, .4, .4]) def test_gap(self, toy_df): groupby = GroupBy(["x", "grp"]) res = Dodge(gap=.25)(toy_df, groupby, "x") assert_array_equal(res["y"], [1, 2, 3]) assert_array_almost_equal(res["x"], [-.2, .2, 1.2]) assert_array_almost_equal(res["width"], [.3, .3, .3]) def test_widths_default(self, toy_df_widths): groupby = GroupBy(["x", "grp"]) res = Dodge()(toy_df_widths, groupby, "x") assert_array_equal(res["y"], [1, 2, 3]) assert_array_almost_equal(res["x"], [-.08, .32, 1.1]) assert_array_almost_equal(res["width"], [.64, .16, .2]) def test_widths_fill(self, toy_df_widths): groupby = GroupBy(["x", "grp"]) res = Dodge(empty="fill")(toy_df_widths, groupby, "x") assert_array_equal(res["y"], [1, 2, 3]) assert_array_almost_equal(res["x"], [-.08, .32, 1]) assert_array_almost_equal(res["width"], [.64, .16, .4]) def test_widths_drop(self, toy_df_widths): groupby = GroupBy(["x", "grp"]) res = Dodge(empty="drop")(toy_df_widths, groupby, "x") assert_array_equal(res["y"], [1, 2, 3]) assert_array_almost_equal(res["x"], [-.08, .32, 1]) assert_array_almost_equal(res["width"], [.64, .16, .2]) def test_faceted_default(self, toy_df_facets): groupby = GroupBy(["x", "grp", "col"]) res = Dodge()(toy_df_facets, groupby, "x") assert_array_equal(res["y"], [1, 2, 3, 1, 2, 3]) assert_array_almost_equal(res["x"], [-.2, .2, .8, .2, .8, 2.2]) assert_array_almost_equal(res["width"], [.4] * 6) def test_faceted_fill(self, toy_df_facets): groupby = GroupBy(["x", "grp", "col"]) res = Dodge(empty="fill")(toy_df_facets, groupby, "x") assert_array_equal(res["y"], [1, 2, 3, 1, 2, 3]) assert_array_almost_equal(res["x"], [-.2, .2, 1, 0, 1, 2]) assert_array_almost_equal(res["width"], [.4, .4, .8, .8, .8, .8]) def test_faceted_drop(self, toy_df_facets): groupby = GroupBy(["x", "grp", "col"]) res = Dodge(empty="drop")(toy_df_facets, groupby, "x") assert_array_equal(res["y"], [1, 2, 3, 1, 2, 3]) assert_array_almost_equal(res["x"], [-.2, .2, 1, 0, 1, 2]) assert_array_almost_equal(res["width"], [.4] * 6) def test_orient(self, toy_df): df = toy_df.assign(x=toy_df["y"], y=toy_df["x"]) groupby = GroupBy(["y", "grp"]) res = Dodge("drop")(df, groupby, "y") assert_array_equal(res["x"], [1, 2, 3]) assert_array_almost_equal(res["y"], [-.2, .2, 1]) assert_array_almost_equal(res["width"], [.4, .4, .4]) # Now tests with slightly more complicated data @pytest.mark.parametrize("grp", ["grp2", "grp3"]) def test_single_semantic(self, df, grp): groupby = GroupBy(["x", grp]) res = Dodge()(df, groupby, "x") levels = categorical_order(df[grp]) w, n = 0.8, len(levels) shifts = np.linspace(0, w - w / n, n) shifts -= shifts.mean() assert_series_equal(res["y"], df["y"]) assert_series_equal(res["width"], df["width"] / n) for val, shift in zip(levels, shifts): rows = df[grp] == val assert_series_equal(res.loc[rows, "x"], df.loc[rows, "x"] + shift) def test_two_semantics(self, df): groupby = GroupBy(["x", "grp2", "grp3"]) res = Dodge()(df, groupby, "x") levels = categorical_order(df["grp2"]), categorical_order(df["grp3"]) w, n = 0.8, len(levels[0]) * len(levels[1]) shifts = np.linspace(0, w - w / n, n) shifts -= shifts.mean() assert_series_equal(res["y"], df["y"]) assert_series_equal(res["width"], df["width"] / n) for (v2, v3), shift in zip(product(*levels), shifts): rows = (df["grp2"] == v2) & (df["grp3"] == v3) assert_series_equal(res.loc[rows, "x"], df.loc[rows, "x"] + shift) class TestStack(MoveFixtures): def test_basic(self, toy_df): groupby = GroupBy(["color", "group"]) res = Stack()(toy_df, groupby, "x") assert_array_equal(res["x"], [0, 0, 1]) assert_array_equal(res["y"], [1, 3, 3]) assert_array_equal(res["baseline"], [0, 1, 0]) def test_faceted(self, toy_df_facets): groupby = GroupBy(["color", "group"]) res = Stack()(toy_df_facets, groupby, "x") assert_array_equal(res["x"], [0, 0, 1, 0, 1, 2]) assert_array_equal(res["y"], [1, 3, 3, 1, 2, 3]) assert_array_equal(res["baseline"], [0, 1, 0, 0, 0, 0]) def test_misssing_data(self, toy_df): df = pd.DataFrame({ "x": [0, 0, 0], "y": [2, np.nan, 1], "baseline": [0, 0, 0], }) res = Stack()(df, None, "x") assert_array_equal(res["y"], [2, np.nan, 3]) assert_array_equal(res["baseline"], [0, np.nan, 2]) def test_baseline_homogeneity_check(self, toy_df): toy_df["baseline"] = [0, 1, 2] groupby = GroupBy(["color", "group"]) move = Stack() err = "Stack move cannot be used when baselines" with pytest.raises(RuntimeError, match=err): move(toy_df, groupby, "x") class TestShift(MoveFixtures): def test_default(self, toy_df): gb = GroupBy(["color", "group"]) res = Shift()(toy_df, gb, "x") for col in toy_df: assert_series_equal(toy_df[col], res[col]) @pytest.mark.parametrize("x,y", [(.3, 0), (0, .2), (.1, .3)]) def test_moves(self, toy_df, x, y): gb = GroupBy(["color", "group"]) res = Shift(x=x, y=y)(toy_df, gb, "x") assert_array_equal(res["x"], toy_df["x"] + x) assert_array_equal(res["y"], toy_df["y"] + y)
the-stack_0_14487
""" Plotting model residuals ======================== """ import numpy as np import seaborn as sns sns.set(style="whitegrid") # Make an example dataset with y ~ x rs = np.random.RandomState(7) x = rs.normal(2, 1, 75) y = 2 + 1.5 * x + rs.normal(0, 2, 75) # Plot the residuals after fitting a linear model sns.residplot(x, y, lowess=True, color="g")
the-stack_0_14488
import logging from moneywagon import ( get_unspent_outputs, CurrentPrice, get_optimal_fee, PushTx, get_onchain_exchange_rates, get_current_price) from moneywagon.core import get_optimal_services, get_magic_bytes from bitcoin import mktx, sign, pubtoaddr, privtopub from .crypto_data import crypto_data from .currency_support import CurrencySupport class Transaction(object): def __init__(self, crypto, hex=None, verbose=False): c = CurrencySupport() if crypto not in c.supported_currencies('moneywagon', 'transaction'): form = crypto_data[crypto]['transaction_form'] raise NotImplementedError("%s not yet supported (tx form: %s)" % ( crypto.upper(), form )) self.change_address = None self.crypto = crypto self.fee_satoshi = None self.outs = [] self.ins = [] self.onchain_rate = None self.verbose = verbose if hex: self.hex = hex def from_unit_to_satoshi(self, value, unit='satoshi'): """ Convert a value to satoshis. units can be any fiat currency. By default the unit is satoshi. """ logging.info("from_unit_to_satoshi : Value: {}, unit: {}".format(value, unit)) if not unit or unit == 'satoshi': return value if unit == 'bitcoin' or unit == 'btc': return value * 1e8 # assume fiat currency that we can convert convert = get_current_price(self.crypto, unit) if isinstance(convert, tuple): convert = convert[0] logging.info("from_unit_to_satoshi : Convert: {}".format(convert)) return int(value / convert * 1e8) def add_raw_inputs(self, inputs, private_key=None): """ Add a set of utxo's to this transaction. This method is better to use if you want more fine control of which inputs get added to a transaction. `inputs` is a list of "unspent outputs" (they were 'outputs' to previous transactions, and 'inputs' to subsiquent transactions). `private_key` - All inputs will be signed by the passed in private key. """ for i in inputs: self.ins.append(dict(input=i, private_key=private_key)) self.change_address = i['address'] def _get_utxos(self, address, services, **modes): """ Using the service fallback engine, get utxos from remote service. """ return get_unspent_outputs( self.crypto, address, services=services, **modes ) def private_key_to_address(self, pk): """ Convert a private key (in hex format) into an address. """ pub = privtopub(pk) pub_byte, priv_byte = get_magic_bytes(self.crypto) if priv_byte >= 128: priv_byte -= 128 #pybitcointools bug return pubtoaddr(pub, pub_byte) def add_inputs(self, private_key=None, address=None, amount='all', max_ins=None, password=None, services=None, **modes): """ Make call to external service to get inputs from an address and/or private_key. `amount` is the amount of [currency] worth of inputs (in satoshis) to add from this address. Pass in 'all' (the default) to use *all* inputs found for this address. Returned is the number of units (in satoshis) that were added as inputs to this tx. """ if private_key: if private_key.startswith('6P'): if not password: raise Exception("Password required for BIP38 encoded private keys") from .bip38 import Bip38EncryptedPrivateKey private_key = Bip38EncryptedPrivateKey(self.crypto, private_key).decrypt(password) address_from_priv = self.private_key_to_address(private_key) if address and address != address_from_priv: raise Exception("Invalid Private key") address = address_from_priv self.change_address = address if not services: services = get_optimal_services(self.crypto, 'unspent_outputs') total_added_satoshi = 0 ins = 0 for utxo in self._get_utxos(address, services, **modes): if max_ins and ins >= max_ins: break if (amount == 'all' or total_added_satoshi < amount): ins += 1 self.ins.append( dict(input=utxo, private_key=private_key) ) total_added_satoshi += utxo['amount'] return total_added_satoshi, ins def total_input_satoshis(self): """ Add up all the satoshis coming from all input tx's. """ just_inputs = [x['input'] for x in self.ins] return sum([x['amount'] for x in just_inputs]) def select_inputs(self, amount): '''Maximize transaction priority. Select the oldest inputs, that are sufficient to cover the spent amount. Then, remove any unneeded inputs, starting with the smallest in value. Returns sum of amounts of inputs selected''' sorted_txin = sorted(self.ins, key=lambda x:-x['input']['confirmations']) total_amount = 0 for (idx, tx_in) in enumerate(sorted_txin): total_amount += tx_in['input']['amount'] if (total_amount >= amount): break sorted_txin = sorted(sorted_txin[:idx+1], key=lambda x:x['input']['amount']) for (idx, tx_in) in enumerate(sorted_txin): value = tx_in['input']['amount'] if (total_amount - value < amount): break else: total_amount -= value self.ins = sorted_txin[idx:] return total_amount def add_output(self, address, value, unit='satoshi'): """ Add an output (a person who will receive funds via this tx). If no unit is specified, satoshi is implied. """ value_satoshi = self.from_unit_to_satoshi(value, unit) if self.verbose: print("Adding output of: %s satoshi (%.8f)" % ( value_satoshi, (value_satoshi / 1e8) )) self.outs.append({ 'address': address, 'value': value_satoshi }) def onchain_exchange(self, withdraw_crypto, withdraw_address, value, unit='satoshi'): """ This method is like `add_output` but it sends to another """ self.onchain_rate = get_onchain_exchange_rates( self.crypto, withdraw_crypto, best=True, verbose=self.verbose ) exchange_rate = float(self.onchain_rate['rate']) result = self.onchain_rate['service'].get_onchain_exchange_address( self.crypto, withdraw_crypto, withdraw_address ) address = result['deposit'] value_satoshi = self.from_unit_to_satoshi(value, unit) if self.verbose: print("Adding output of: %s satoshi (%.8f) via onchain exchange, converting to %s %s" % ( value_satoshi, (value_satoshi / 1e8), exchange_rate * value_satoshi / 1e8, withdraw_crypto.upper() )) self.outs.append({ 'address': address, 'value': value_satoshi }) def fee(self, value=None, unit='satoshi'): """ Set the miner fee, if unit is not set, assumes value is satoshi. If using 'optimal', make sure you have already added all outputs. """ convert = None if not value: # no fee was specified, use $0.02 as default. # convert = get_current_price(self.crypto, "usd") # self.fee_satoshi = int(0.02 / convert * 1e8) self.fee_satoshi = int(2000) verbose = "Using default fee of:" elif value == 'optimal': # self.fee_satoshi = get_optimal_fee( # self.crypto, self.estimate_size(), verbose=self.verbose # ) self.fee_satoshi = int(2000) verbose = "Using optimal fee of:" else: self.fee_satoshi = self.from_unit_to_satoshi(value, unit) verbose = "Using manually set fee of:" if self.verbose: if not convert: convert = get_current_price(self.crypto, "usd") fee_dollar = convert * self.fee_satoshi / 1e8 print(verbose + " %s satoshis ($%.2f)" % (self.fee_satoshi, fee_dollar)) def estimate_size(self): """ Estimate how many bytes this transaction will be by countng inputs and outputs. Formula taken from: http://bitcoin.stackexchange.com/a/3011/18150 """ # if there are no outs use 1 (because the change will be an out) outs = len(self.outs) or 1 return outs * 34 + 148 * len(self.ins) + 10 def get_hex(self, signed=True): """ Given all the data the user has given so far, make the hex using pybitcointools """ logging.info('2') total_ins_satoshi = self.total_input_satoshis() logging.info('3') if total_ins_satoshi == 0: raise ValueError("Can't make transaction, there are zero inputs") logging.info('4') # Note: there can be zero outs (sweep or coalesc transactions) total_outs_satoshi = sum([x['value'] for x in self.outs]) logging.info('5') if not self.fee_satoshi: self.fee() # use default of $0.02 logging.info('6') change_satoshi = total_ins_satoshi - (total_outs_satoshi + self.fee_satoshi) logging.info('7') if change_satoshi < 0: raise ValueError( "Input amount (%s) must be more than all output amounts (%s) plus fees (%s). You need more %s." % (total_ins_satoshi, total_outs_satoshi, self.fee_satoshi, self.crypto.upper()) ) logging.info('8') ins = [x['input'] for x in self.ins] logging.info('9') if change_satoshi > 0: if self.verbose: print("Adding change address of %s satoshis to %s" % (change_satoshi, self.change_address)) change = [{'value': change_satoshi, 'address': self.change_address}] logging.info('10') else: change = [] # no change ?! if self.verbose: print("Inputs == Outputs, no change address needed.") logging.info('11') tx = mktx(ins, self.outs + change) logging.info('12') if signed: for i, input_data in enumerate(self.ins): logging.info('13') if not input_data['private_key']: raise Exception("Can't sign transaction, missing private key for input %s" % i) tx = sign(tx, i, input_data['private_key']) logging.info('14') return tx def push(self, services=None, redundancy=1): if not services: services = get_optimal_services(self.crypto, "push_tx") self.pushers = [] pusher = PushTx(services=services, verbose=self.verbose) results = [pusher.action(self.crypto, self.get_hex())] try: for service in services[1:redundancy-1]: pusher = PushTx(services=[service], verbose=self.verbose) results.append(self.pusher.action(self.crypto, self.get_hex())) self.pushers.append(pusher) except: raise Exception("Partial push. Some services returned success, some failed.") return results
the-stack_0_14489
# Copyright (c) 2014-2017, NVIDIA CORPORATION. All rights reserved. import hashlib import os.path import platform import re import shutil from flask_babel import lazy_gettext as _ def get_tree_size(start_path): """ return size (in bytes) of filesystem tree """ if not os.path.exists(start_path): raise ValueError(_("Incorrect path: %(start_path)s", start_path=start_path)) total_size = 0 for dirpath, dirnames, filenames in os.walk(start_path): for f in filenames: fp = os.path.join(dirpath, f) total_size += os.path.getsize(fp) return total_size def get_python_file_dst(dirname, basename): basename = os.path.basename(basename) (root, ext) = os.path.splitext(basename) if ext != '.py' and ext != '.pyc': ValueError(_('Python file, %(basename)s, needs .py or .pyc extension.', basename=basename)) filename = os.path.join(dirname, 'digits_python_layers' + ext) if os.path.isfile(filename): ValueError(_('Python file, %(filename)s, already exists.', filename=filename)) return filename def copy_python_layer_file(from_client, job_dir, client_file, server_file): if from_client and client_file: filename = get_python_file_dst(job_dir, client_file.filename) client_file.save(filename) elif server_file and len(server_file) > 0: filename = get_python_file_dst(job_dir, server_file) shutil.copy(server_file, filename) def tail(file, n=40): """ Returns last n lines of text file (or all lines if the file has fewer lines) Arguments: file -- full path of that file, calling side must ensure its existence n -- the number of tailing lines to return """ if platform.system() in ['Linux', 'Darwin']: import subprocess output = subprocess.check_output(['tail', '-n{}'.format(n), file]) else: from collections import deque tailing_lines = deque() with open(file) as f: for line in f: tailing_lines.append(line) if len(tailing_lines) > n: tailing_lines.popleft() output = ''.join(tailing_lines) return output def dir_hash(dir_name): """ Return a hash for the files in a directory tree, excluding hidden files and directoies. If any files are renamed, added, removed, or modified the hash will change. """ if not os.path.isdir(dir_name): raise TypeError(_('%(dir_name)s is not a directory.', dir_name=dir_name)) md5 = hashlib.md5() for root, dirs, files in os.walk(dir_name, topdown=True): # Skip if the root has a hidden directory in its path if not re.search(r'/\.', root): for f in files: # Skip if the file is hidden if not f.startswith('.') and not re.search(r'/\.', f): # Change the hash if the file name changes file_name = os.path.join(root, f).encode('utf-8') md5.update(hashlib.md5(file_name).hexdigest().encode('utf-8')) # Change the hash if the file content changes data = open(file_name, 'rb').read() md5.update(hashlib.md5(data).hexdigest().encode('utf-8')) return md5.hexdigest()
the-stack_0_14490
#!/usr/bin/env python3 # Write a Shannon entropy calculator: H = -sum(pi * log(pi)) # The values should come from the command line # E.g. python3 entropy.py 0.4 0.3 0.2 0.1 # Put the probabilities into a new list # Don't forget to convert them to numbers import math import sys numbers = [] for item in sys.argv[1:]: numbers.append(float(item)) print(numbers) H = 0 H += numbers[0] * math.log2(numbers[0]) H += numbers[1] * math.log2(numbers[1]) H += numbers[2] * math.log2(numbers[2]) H += numbers[3] * math.log2(numbers[3]) print(-H) H = 0 for i in range(len(numbers)): H += numbers[i] * math.log2(numbers[i]) print(H) H = 0 for p in numbers: H += p * math.log2(p) print(-H) """ python3 31entropy.py 0.1 0.2 0.3 0.4 1.846 """