filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_0_14492
import numpy as np import tensorflow as tf def _to_int32(a): return np.int32(np.ceil(a)) def extract_patches(detector: tf.keras.models.Model, img: tf.TensorArray, min_score: float = 0.4, max_boxes: int = 10): shape = tf.shape(img) im_height, im_width = shape[0].numpy(), shape[1].numpy() result = detector(img[tf.newaxis, ...]) result = {key: value.numpy() for key, value in result.items()} boxes = result["detection_boxes"][0] # entities = result["detection_class_entities"] scores = result["detection_scores"][0] examples = [] for i in range(min(len(boxes), max_boxes)): if scores[i] >= min_score: example = {} ymin, xmin, ymax, xmax = tuple(boxes[i]) # class_name = entities[i].decode("ascii") xmin, xmax, ymin, ymax = _to_int32(xmin * im_width), _to_int32(xmax * im_width), _to_int32( ymin * im_height), _to_int32(ymax * im_height) tmp = tf.image.crop_to_bounding_box(img, ymin, xmin, ymax - ymin, xmax - xmin) # example["class_name"] = class_name example["arr"] = tmp.numpy() example["score"] = scores[i] example["bounding_box"] = (xmin, xmax, ymin, ymax) examples.append(example) return { "results": examples, "height": im_height, "width": im_width }
the-stack_0_14493
""" ## This script is for run tesing and test NYU dataset """ # %matplotlib inline """ ## This script is for run tesing and test MSRA dataset """ # %matplotlib inline "" import numpy as np import torch import torch.nn as nn import torch.optim as optim import torch.backends.cudnn as cudnn import argparse import os from lib.solver import train_epoch, val_epoch, test_epoch from lib.sampler import ChunkSampler from src.v2v_model import V2VModel from src.v2v_util import V2VVoxelization from datasets.nyu_hand import NYUDataset_train, NYUDataset ####################################################################################### # # Some helpers def parse_args(): parser = argparse.ArgumentParser(description='PyTorch Hand Keypoints Estimation Training') #parser.add_argument('--resume', 'r', action='store_true', help='resume from checkpoint') parser.add_argument('--resume', '-r', default=-1, type=int, help='resume after epoch') args = parser.parse_args() return args ####################################################################################### # # Configurations print('Warning: disable cudnn for batchnorm first, or just use only cuda instead!') # When we need to resume training, enable randomness to avoid seeing the determinstic # (agumented) samples many times. # np.random.seed(1) # torch.manual_seed(1) # torch.cuda.manual_seed(1) device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') dtype = torch.float # args = parse_args() resume_train = args.resume >= 0 resume_after_epoch = args.resume save_checkpoint = True checkpoint_per_epochs = 1 checkpoint_dir = r'./checkpoint_nyu' start_epoch = 0 epochs_num = 15 batch_size = 6 ############################################################################### # ls '/V2V-PoseNet/V2V-PoseNet-pytorch/datasets/train_bin/joint_data.mat' ############################################################################### # ls '/V2V-PoseNet/V2V-PoseNet-pytorch/datasets/nyu_center/center_train_refined.txt' ####################################################################################### # # Data, transform, dataset and loader # Data print('==> Preparing data ..') data_dir = '/V2V-PoseNet/V2V-PoseNet-pytorch/datasets/train_bin/' center_dir = '/V2V-PoseNet/V2V-PoseNet-pytorch/datasets/nyu_center/' keypoints_num = 21 test_subject_id = 3 cubic_size = 250 # Transform voxelization_train = V2VVoxelization(cubic_size=250, augmentation=True) voxelization_val = V2VVoxelization(cubic_size=250, augmentation=False) def transform_test(sample): points, refpoint = sample['points'], sample['refpoint'] input = voxelize_input(points, refpoint) return torch.from_numpy(input), torch.from_numpy(refpoint.reshape((1, -1))) def transform_train(sample): points, keypoints, refpoint = sample['points'], sample['joints'], sample['refpoint'] assert(keypoints.shape[0] == keypoints_num) input, heatmap = voxelization_train({'points': points, 'keypoints': keypoints, 'refpoint': refpoint}) return (torch.from_numpy(input), torch.from_numpy(heatmap)) def transform_val(sample): points, keypoints, refpoint = sample['points'], sample['joints'], sample['refpoint'] assert(keypoints.shape[0] == keypoints_num) input, heatmap = voxelization_val({'points': points, 'keypoints': keypoints, 'refpoint': refpoint}) return (torch.from_numpy(input), torch.from_numpy(heatmap)) # Dataset and loader train_set = NYUDataset_train(data_dir, center_dir ,transform_train) train_loader = torch.utils.data.DataLoader(train_set, batch_size=batch_size, shuffle=True, num_workers=3) #train_num = 1 #train_loader = torch.utils.data.DataLoader(train_set, batch_size=1, shuffle=False, num_workers=6,sampler=ChunkSampler(train_num, 0)) # No separate validation dataset, just use test dataset instead root = '/V2V-PoseNet/V2V-PoseNet-pytorch/datasets/test_bin' val_set = NYUDataset(root, center_dir, transform_test) val_loader = torch.utils.data.DataLoader(val_set, batch_size=batch_size, shuffle=False, num_workers=6) ####################################################################################### # # Model, criterion and optimizer print('==> Constructing model ..') net = V2VModel(input_channels=1, output_channels=keypoints_num) net = net.to(device, dtype) if device == torch.device('cuda'): torch.backends.cudnn.enabled = True cudnn.benchmark = True print('cudnn.enabled: ', torch.backends.cudnn.enabled) criterion = nn.MSELoss() optimizer = optim.Adam(net.parameters()) #optimizer = optim.RMSprop(net.parameters(), lr=2.5e-4) ####################################################################################### # # Resume if resume_train: # Load checkpoint epoch = resume_after_epoch checkpoint_file = os.path.join(checkpoint_dir, 'epoch'+str(epoch)+'.pth') print('==> Resuming from checkpoint after epoch {} ..'.format(epoch)) assert os.path.isdir(checkpoint_dir), 'Error: no checkpoint directory found!' assert os.path.isfile(checkpoint_file), 'Error: no checkpoint file of epoch {}'.format(epoch) checkpoint = torch.load(os.path.join(checkpoint_dir, 'epoch'+str(epoch)+'.pth')) net.load_state_dict(checkpoint['model_state_dict']) optimizer.load_state_dict(checkpoint['optimizer_state_dict']) start_epoch = checkpoint['epoch'] + 1 ####################################################################################### # # Train and Validate print('==> Training ..') for epoch in range(start_epoch, start_epoch + epochs_num): print('Epoch: {}'.format(epoch)) train_epoch(net, criterion, optimizer, train_loader, device=device, dtype=dtype) val_epoch(net, criterion, val_loader, device=device, dtype=dtype) if save_checkpoint and epoch % checkpoint_per_epochs == 0: if not os.path.exists(checkpoint_dir): os.mkdir(checkpoint_dir) checkpoint_file = os.path.join(checkpoint_dir, 'epoch'+str(epoch)+'.pth') checkpoint = { 'model_state_dict': net.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), 'epoch': epoch } torch.save(checkpoint, checkpoint_file) "" # # Test # print('==> Testing ..') # voxelize_input = voxelization_train.voxelize # evaluate_keypoints = voxelization_train.evaluate "" # def transform_test(sample): # points, refpoint = sample['points'], sample['refpoint'] # input = voxelize_input(points, refpoint) # return torch.from_numpy(input), torch.from_numpy(refpoint.reshape((1, -1))) # def transform_output(heatmaps, refpoints): # keypoints = evaluate_keypoints(heatmaps, refpoints) # return keypoints # class BatchResultCollector(): # def __init__(self, samples_num, transform_output): # self.samples_num = samples_num # self.transform_output = transform_output # self.keypoints = None # self.idx = 0 # def __call__(self, data_batch): # inputs_batch, outputs_batch, extra_batch = data_batch # outputs_batch = outputs_batch.cpu().numpy() # refpoints_batch = extra_batch.cpu().numpy() # keypoints_batch = self.transform_output(outputs_batch, refpoints_batch) # if self.keypoints is None: # # Initialize keypoints until dimensions awailable now # self.keypoints = np.zeros((self.samples_num, *keypoints_batch.shape[1:])) # batch_size = keypoints_batch.shape[0] # self.keypoints[self.idx:self.idx+batch_size] = keypoints_batch # self.idx += batch_size # def get_result(self): # return self.keypoints # print('Test on test dataset ..') # def save_keypoints(filename, keypoints): # # Reshape one sample keypoints into one line # keypoints = keypoints.reshape(keypoints.shape[0], -1) # np.savetxt(filename, keypoints, fmt='%0.4f') # test_set = MARAHandDataset(data_dir, center_dir, 'test', test_subject_id, transform_test) # test_loader = torch.utils.data.DataLoader(test_set, batch_size=batch_size, shuffle=False, num_workers=6) # test_res_collector = BatchResultCollector(len(test_set), transform_output) # test_epoch(net, test_loader, test_res_collector, device, dtype) # keypoints_test = test_res_collector.get_result() # save_keypoints('./test_res.txt', keypoints_test) # print('Fit on train dataset ..') # fit_set = MARAHandDataset(data_dir, center_dir, 'train', test_subject_id, transform_test) # fit_loader = torch.utils.data.DataLoader(fit_set, batch_size=batch_size, shuffle=False, num_workers=6) # fit_res_collector = BatchResultCollector(len(fit_set), transform_output) # test_epoch(net, fit_loader, fit_res_collector, device, dtype) # keypoints_fit = fit_res_collector.get_result() # save_keypoints('./fit_res.txt', keypoints_fit) # print('All done ..') ############################################################################### # import os # import numpy as np # import sys # import struct # from torch.utils.data import Dataset # import scipy.io as scio ############################################################################### # num_samples = 72757 # world_dim = 3 # joint_num = 21 ############################################################################### # joints_world = np.zeros((num_samples, joint_num, world_dim)) ############################################################################### # = '/V2V-PoseNet/V2V-PoseNet-pytorch/datasets/train_bin/joint_data.mat' ############################################################################### # root = '/V2V-PoseNet/V2V-PoseNet-pytorch/datasets/train_bin/' ############################################################################### # keypointsXYZ_test = scio.loadmat(keypoint_file)["joint_xyz"].astype(np.float32)[0] ############################################################################### # EVAL_JOINTS = np.array([ # 0, 6, 12, 18, 24, # 1, 7, 13, 19, 25, # 4, 10, 15, 21, 26, # 5, 11, 17, 23, 28, # 29 ]) ############################################################################### # keypointsXYZ_test = keypointsXYZ_test[::][:,EVAL_JOINTS,:] ############################################################################### # np.shape(keypointsXYZ_test) ############################################################################### # np.shape(joints_world) ############################################################################### # for fileID in range(0, 72757): # joints_world[fileID] = keypointsXYZ_test[fileID] # print(os.path.join(root, 'depth_1_{:0>7d}.bin'.format(fileID+1))) ############################################################################### # ls /V2V-PoseNet/V2V-PoseNet-pytorch/datasets/train_bin/depth_1_0000001.bin ""
the-stack_0_14494
import os import signal import time from dataclasses import dataclass, field from typing import Any, List, Optional import gevent import gevent.util import structlog from gevent._tracer import GreenletTracer from gevent.hub import Hub from raiden.exceptions import RaidenUnrecoverableError LIBEV_LOW_PRIORITY = -2 LIBEV_HIGH_PRIORITY = 2 log = structlog.get_logger(__name__) def enable_gevent_monitoring_signal() -> None: """Install a signal handler for SIGUSR1 that executes gevent.util.print_run_info(). This can help evaluating the gevent greenlet tree. See http://www.gevent.org/monitoring.html for more information. Usage: pytest [...] # while test is running (or stopped in a pdb session): kill -SIGUSR1 $(pidof -x pytest) """ def on_signal(signalnum: Any, stack_frame: Any) -> None: # pylint: disable=unused-argument gevent.util.print_run_info() if os.name == "nt": # SIGUSR1 not supported on Windows return signal.signal(signal.SIGUSR1, on_signal) def limit_thread_cpu_usage_by_time() -> None: """This will enable Gevent's monitoring thread, and if a Greenlet uses the CPU for longer than `max_blocking_time` it will be killed. This will result in the whole process being killed, since exceptions are propagate to the top-level. The goal here is to detect slow functions that have to be optimized. """ gevent.config.monitor_thread = True gevent.config.max_blocking_time = 10.0 # The monitoring thread will use the trace api just like the TraceSampler # and the SwitchMonitoring. Sadly there is no API to uninstall the thread, # but this should not be a problem. monitor_thread = gevent.get_hub().start_periodic_monitoring_thread() # This code must not use the tracer from the monitor_thread because calls # to `did_block_hub` will reset its internal state. If two threads use the # same underlying tracer false positives will happen, because the switch # counter will be artifically reset. greenlet_tracer = GreenletTracer() def kill_offender(hub: Hub) -> None: if greenlet_tracer.did_block_hub(hub): active_greenlet = greenlet_tracer.active_greenlet msg = "" if monitor_thread._tracer.active_greenlet != active_greenlet: msg = ( f"Mismatch values for the active_greenlet among the " f"monitor_thread and deubgging tracer, this either means " f"there is a bug in the trace chain (the wrong values are " f"forwarded), or that one of the trace functions was wrongly " f"uninstalled. Active greenlets " f"monitor_thread={monitor_thread._tracer.active_greenlet} " f"debug_tracer={active_greenlet}." ) hub.loop.run_callback( lambda: active_greenlet.throw( RaidenUnrecoverableError( f"A greenlet used the CPU for longer than " f"{gevent.config.max_blocking_time} seconds, killing it.{msg}" ) ) ) monitor_thread.add_monitoring_function(kill_offender, gevent.config.max_blocking_time) @dataclass class IdleMeasurement: before_poll: float after_poll: float @dataclass class Idle: """ Measures how much time the thread waited on the libev backend. """ measurement_interval: float before_poll: Optional[float] = None last_print: float = field(init=False, default_factory=time.time) measurements: List[IdleMeasurement] = field(init=False, default_factory=list) def prepare_handler(self) -> None: """The prepare handler executed before the call to the polling backend (e.g. select/epoll). Note: - Gevent uses a prepare handler to execute deferred callbacks. This means there will be some work done on with this type of handler that must not added to the idle time. To avoid counting the time spent on the deferred callbacks the prepare_handler must be installed with a low priority, so that it executes after the gevent's callbacks. """ self.before_poll = time.time() def check_handler(self) -> None: """Check handler executed after the poll backend returns. Note: - For each of the watchers in the ready state there will be a callback, which will do work related to the watcher (e.g. read from a socket). This time must not be accounted for in the Idle timeout, therefore this handler must have a high priority. """ curr_time = time.time() # It is possible for the check_handler to be executed before the # prepare_handler, this happens when the watchers are installed by a # greenlet that was switched onto because of IO (IOW, Idle.enable is # called while the event loop is executing watchers, after the `poll`) if self.before_poll is not None: self.measurements.append( # pylint: disable=no-member IdleMeasurement(self.before_poll, curr_time) ) # keep at least one measurement, this will tell if the code is # blocking for an extended period of time. while len(self.measurements) > 1 and self.running_interval > self.measurement_interval: self.measurements.pop() # pylint: disable=no-member if curr_time - self.last_print >= self.measurement_interval: self.log() self.last_print = curr_time def enable(self) -> None: loop = gevent.get_hub().loop loop.prepare(priority=LIBEV_LOW_PRIORITY).start(self.prepare_handler) loop.check(priority=LIBEV_HIGH_PRIORITY).start(self.check_handler) @property def measurements_start(self) -> float: return self.measurements[0].before_poll @property def measurements_end(self) -> float: return self.measurements[-1].after_poll @property def running_interval(self) -> float: """The number of seconds idled by this thread. This will take into account the measurements frequency. Ideally the measurements would happen exactly every `measurement_interval` seconds, however that dependends on the existing load for the given thread, if the event loop doesn't run often enough the running_interval will be larger than the target `measurement_interval`. """ return self.measurements_end - self.measurements_start @property def idled(self) -> float: """ The amount of seconds the thread idled. """ return sum(interval.after_poll - interval.before_poll for interval in self.measurements) @property def idled_pct(self) -> float: """ The percentage of time the thread idled, waiting on the event loop. """ return self.idled / self.running_interval @property def context_switches(self) -> int: """ The number of context switches done for the past `measurement_interval`. """ return len(IDLE.measurements) def log(self) -> None: if not self.measurements: log.debug("No idle data", context_switches=self.context_switches) return is_blocking = ( len(self.measurements) == 1 and self.running_interval > self.measurement_interval ) if is_blocking: msg = "Blocking function, there is not a lot of idle time" else: msg = "Idle" log.debug( msg, start=self.measurements_start, context_switches=self.context_switches, idled=self.idled, interval=self.running_interval, idle_pct=self.idled_pct, ) def __bool__(self) -> bool: return bool(self.measurements) def __str__(self) -> str: if not self.measurements: return "" return ( f"The thread had {self.context_switches} context_switches, and " f"idled {self.idled_pct}% of the time." ) IDLE = Idle(10)
the-stack_0_14499
import battlecode as bc import behaviour_tree as bt import random import units class Knight(units.Unit): """The container for the knight unit.""" def __init__(self, unit, gc): super().__init__(unit, gc) self._targeted_enemy = None def generate_tree(self): """Generates the tree for the knight.""" tree = bt.FallBack() # Attack or chase enemies enemy_handling = bt.Sequence() enemy_visible = self.EnemyVisible(self) enemy_fallback = bt.FallBack() enemy_attack = bt.Sequence() enemy_adjacent = self.EnemyAdjacent(self) attack = self.Attack(self) enemy_attack.add_child(enemy_adjacent) enemy_attack.add_child(attack) enemy_javelin = bt.Sequence() can_javelin = self.CanJavelin(self) javelin = self.Javelin(self) move_towards_enemy = self.MoveTowardsEnemy(self) enemy_javelin.add_child(can_javelin) enemy_javelin.add_child(javelin) enemy_javelin.add_child(move_towards_enemy) enemy_chase = bt.Sequence() enemy_chase.add_child(move_towards_enemy) enemy_chase.add_child(enemy_attack) enemy_fallback.add_child(enemy_attack) enemy_fallback.add_child(enemy_javelin) enemy_fallback.add_child(enemy_chase) enemy_handling.add_child(enemy_visible) enemy_handling.add_child(enemy_fallback) tree.add_child(enemy_handling) # Random movement move_randomly = self.MoveRandomly(self) tree.add_child(move_randomly) return tree ################## # ENEMY HANDLING # ################## class EnemyVisible(bt.Condition): """Check if there is an enemy close to the knight.""" def __init__(self, outer): super().__init__() self.__outer = outer def condition(self): knight = self.__outer.unit() range = knight.vision_range location = knight.location.map_location() team = knight.team enemy_team = bc.Team.Red if team == bc.Team.Blue else bc.Team.Blue nearby_units = self.__outer._gc.sense_nearby_units_by_team(location, range, enemy_team) # No enemy visible if not nearby_units: return False # Look for the enemy closest to the knight with lowest health best_enemy = nearby_units[0] best_enemy_distance = location.distance_squared_to(best_enemy.location.map_location()) for unit in nearby_units: enemy_distance = location.distance_squared_to(unit.location.map_location()) if enemy_distance < best_enemy_distance: best_enemy = unit best_enemy_distance = enemy_distance elif enemy_distance == best_enemy_distance: if unit.health < best_enemy.health: best_enemy = unit best_enemy_distance = enemy_distance self.__outer._targeted_enemy = best_enemy.id return True class EnemyAdjacent(bt.Condition): """Check if there is an enemy adjacent to the knight.""" def __init__(self, outer): super().__init__() self.__outer = outer def condition(self): location = self.__outer.unit().location enemy_location = self.__outer.get_enemy_unit(self.__outer._targeted_enemy).location return location.is_adjacent_to(enemy_location) class Attack(bt.Action): """Attacks the adjacent enemy.""" def __init__(self, outer): super().__init__() self.__outer = outer def action(self): enemy = self.__outer.get_enemy_unit(self.__outer._targeted_enemy) knight = self.__outer.unit() if not enemy: self._status = bt.Status.FAIL else: if self.__outer._gc.is_attack_ready(knight.id) and self.__outer._gc.can_attack(knight.id, enemy.id): self.__outer._gc.attack(knight.id, enemy.id) self._status = bt.Status.SUCCESS else: self._status = bt.Status.RUNNING class CanJavelin(bt.Condition): """Check if the knight can perform a javelin attack.""" def __init__(self, outer): super().__init__() self.__outer = outer def condition(self): knight = self.__outer.unit() enemy = self.__outer.get_enemy_unit(self.__outer._targeted_enemy) if knight.research_level < 3: return False if not enemy: return False distance = knight.location.map_location().distance_squared_to(enemy.location.map_location()) return distance <= knight.ability_range() class Javelin(bt.Action): """Perform the javelin attack.""" def __init__(self, outer): super().__init__() self.__outer = outer def action(self): enemy = self.__outer.get_enemy_unit(self.__outer._targeted_enemy) knight = self.__outer.unit() if not enemy: self._status = bt.Status.FAIL else: if self.__outer._gc.is_javelin_ready(knight.id) and self.__outer._gc.can_javelin(knight.id, enemy.id): self.__outer._gc.javelin(knight.id, enemy.id) self._status = bt.Status.SUCCESS else: self._status = bt.Status.RUNNING class MoveTowardsEnemy(bt.Action): """Moves in the direction of the visible enemy.""" def __init__(self, outer): super().__init__() self.__outer = outer def action(self): enemy = self.__outer.get_enemy_unit(self.__outer._targeted_enemy) knight = self.__outer.unit() if not enemy: self._status = bt.Status.FAIL else: enemy_direction = knight.location.map_location().direction_to(enemy.location.map_location()) if self.__outer._gc.is_move_ready(knight.id) and self.__outer._gc.can_move(knight.id, enemy_direction): self.__outer._gc.move_robot(knight.id, enemy_direction) self._status = bt.Status.SUCCESS else: self._status = bt.Status.FAIL ################# # MOVE RANDOMLY # ################# class MoveRandomly(bt.Action): """Move in some random direction.""" def __init__(self, outer): super().__init__() self.__outer = outer def action(self): random_dir = random.choice(list(bc.Direction)) knight = self.__outer.unit() if self.__outer._gc.is_move_ready(knight.id) and self.__outer._gc.can_move(knight.id, random_dir): self.__outer._gc.move_robot(knight.id, random_dir) self._status = bt.Status.SUCCESS else: self._status = bt.Status.FAIL
the-stack_0_14503
import ast import os import shutil from distutils.dir_util import copy_tree import matplotlib.pyplot as plt import numpy as np import pandas as pd import tensorflow as tf from tensorflow.keras.models import load_model import tensorflow_hub as hub from tqdm import tqdm class PseudoLabelGenerator: """ Class to generate pseudo labels for unlabeled images using a trained model. Arguments: model_path (str): location of the h5 tensorflow model to use train_data_path (str): folder which holds training data unlabeled_path (str): folder which holds unlabeled data pseudo_data_path (str): folder to store training data and pseudo data combined output_folder (str): folder to store outputs csv_filename (str): name of csv file """ def __init__(self, model_path="model.h5", train_data_path="data/image_dataset/train", unlabeled_path="data/unlabeled", pseudo_data_path="data/train_ssl", output_folder="outputs", csv_filename="data.csv"): self.train_data_path = train_data_path self.unlabeled_path = unlabeled_path self.pseudo_data_path = pseudo_data_path self.output_folder = output_folder self.csv_path = os.path.join(self.output_folder, csv_filename) # Load model self.model = load_model(model_path, compile=False, custom_objects={"KerasLayer": hub.KerasLayer}) print("Loaded model.") # Make new output folder if not os.path.exists(self.output_folder): os.mkdir(self.output_folder) # Make dictionary for classes and their index self.class_names = sorted(os.listdir(self.train_data_path)) self.class_dict = {cat: i for (i, cat) in enumerate(self.class_names)} def _load_img(self, path, target_size=(299, 299)): """ Load an image from a given path and normalize it Arguments: path (list): Input image path target_size (tuple): Size of image Returns: np.array: Numpy array of the data """ # Read image bits = tf.io.read_file(path) image = tf.image.decode_jpeg(bits, channels=3) # Resize image = tf.image.resize(image, size=[*target_size]) image = tf.reshape(image, [*target_size, 3]) image = tf.cast(image, tf.uint8) # Normalize [0, 1] image = tf.image.convert_image_dtype(image, dtype=tf.float32) image = image.numpy() return image def _plot_data(self, predictions, name, output_path): """ Plots a bar plot and saves it to a file. Arguments: predictions (list): List of predictions name (str): Title of the plot output_path (str): Save file using this name """ predictions = sorted(predictions) samples = list(range(len(predictions))) plt.bar(samples, predictions, color='g') plt.axhline(y=0.5, color='r', linestyle='--') plt.title(name, size=16) plt.xlabel("Number of unlabelled images", size=16) plt.ylim([0.0, 1.0]) plt.ylabel("Probability", size=16) plt.tick_params(labelright=True) plt.savefig(output_path, dpi=100) plt.clf() # clear buffer, otherwise plot overlap! def plot_confidence_scores(self, per_class=True, overall=True): """ Generate bar plots for highest confidence predictions per class and overall and save them. Arguments: per_class (bool): make bar plots per class or not overall (bool): make overall bar plot or not """ dt = pd.read_csv(self.csv_path) dt['All Class Predictions List'] = dt['All Class Predictions'].apply( lambda x: ast.literal_eval(x)) raw_predictions_ = dt[["Highest Confidence"]].values raw_predictions = [pred[0] for pred in raw_predictions_] raw_predictions_all_ = dt[['All Class Predictions List']].values raw_predictions_all = [pred[0] for pred in raw_predictions_all_] # Plot graph for highest confidence pseudo labels for each class if per_class: for idx, cat in enumerate(self.class_names): predictions = [pred[idx] for pred in raw_predictions_all] title = "Confidences for the class: {}".format(cat) path = "{}/{}_confidences.png".format( self.output_folder, cat) self._plot_data(predictions, title, path) # Plot graph for highest confidence pseudo labels for all unlabeled images if overall: self._plot_data(raw_predictions, name="Highest confidence pseudo labels", output_path="{}/highest_confidence_predictions.png".format( self.output_folder)) def _make_dataset(self, filenames, batch_size): def parse_image(filename): image = tf.io.read_file(filename) image = tf.image.decode_jpeg(image, channels=3) image = tf.image.resize(image, [299, 299]) image = tf.cast(image, tf.uint8) image = tf.image.convert_image_dtype(image, dtype=tf.float32) return image def configure_for_performance(ds): ds = ds.batch(batch_size) ds = ds.prefetch(buffer_size=tf.data.experimental.AUTOTUNE) return ds filenames_ds = tf.data.Dataset.from_tensor_slices(filenames) images_ds = filenames_ds.map(parse_image, num_parallel_calls=tf.data.experimental.AUTOTUNE) ds = configure_for_performance(images_ds) return ds def move_unlabeled_images(self, threshold=None): """ Split unlabeled images into folders of the training data based on pseudo labels. A new training dataset is created with the labeled and pseudo labeled data. Arguments: threshold (float): Discard images with prediction below this confidence, default is None. """ # Copy the training/labeled data to the destination folder where # we will also store the pseudo labels. copy_tree(self.train_data_path, self.pseudo_data_path) dt = pd.read_csv(self.csv_path) filepaths = dt[["Filepaths"]].values predicted_class = dt[["Predicted Class"]].values raw_predictions = dt[["Highest Confidence"]].values for proba, y, path in zip(raw_predictions, predicted_class, filepaths): # The results variable should be the same as the class category for class_name, index in self.class_dict.items(): if threshold: # For thresholding predictions if index == y and proba >= threshold: shutil.copy(os.path.join(self.unlabeled_path, str(path[0])), os.path.join(self.pseudo_data_path, class_name)) else: # For hard predictions if index == y: shutil.copy(os.path.join(self.unlabeled_path, str(path[0])), os.path.join(self.pseudo_data_path, class_name)) print("Moved unlabeled images to their pseudo label categories.") def generate_pseudolabel_data(self, plot_confidences=False, threshold=None, move_images=False, batch_size=32): """ Use trained model to make pseudo labels and save them into a csv file. Also possible to plot the results and move the unlabeled images directly to the category corresponding to their pseudo label. Arguments: plot_confidences (boolean): Whether to plot confidence graphs for raw confidences and per class confidences. threshold (float): Discard images with prediction below this confidence, default is None. Only used if move_images is True. move_images (bool): Move images into categories or not batch_size (int): Batch size while making predictions Returns: pseudo_data_path: A folder with both labeled and pseudo labeled images. """ print("Generating pseudo labels...") # Generate pseudo labels unlabeled_image_paths = os.listdir(self.unlabeled_path) print("There are {} unlabeled images.".format( len(unlabeled_image_paths))) raw_predictions = [] # single confidence value of predicted class predicted_class = [] # predicted class index raw_predictions_all = [] # confidences for all classes unlabeled_filenames = [os.path.join(self.unlabeled_path, path) for path in unlabeled_image_paths] ds = self._make_dataset(unlabeled_filenames, batch_size) y_preds = [] for batch in tqdm(ds): y_preds_ = self.model.predict(batch) y_preds.extend(list(y_preds_)) for y_pred in y_preds: y = np.argmax(y_pred) # Get probability score proba = y_pred[y] predicted_class.append(y) raw_predictions.append(proba) raw_predictions_all.append(list(y_pred)) raw_predictions_paths = [path for path in unlabeled_image_paths] # 'Pseudo Class Names': pseudo_class_names, print("Saving CSV with pseudo predictions.") data = {'Filepaths': raw_predictions_paths, 'Predicted Class': predicted_class, 'Highest Confidence': raw_predictions, 'All Class Predictions': raw_predictions_all} df = pd.DataFrame(data) df.to_csv(self.csv_path, index=False) # move pseudo labeled images if move_images: self.move_unlabeled_images(threshold=threshold) if plot_confidences: print("Plotting data.") self.plot_confidence_scores()
the-stack_0_14504
import subprocess import tempfile import inspect import random import shutil import time import json import sys import os KWARGS = "k" RESULT = "r" VALUE = "v" ARGS = "a" # !!! Dekoratörde, fonksiyon okunduktan sonra dosyalarını silebilirsin aslında # Ya da aradan belli bir süre geçtiyse, dosyayı sil gitsin, loop'tan silebilirisn """ Dosyalama Şekli; +/tmp |---> -/dirio |---> +/12345 |---> -/67891 |-----> __main__.py -> Sadece ilk çalıştırılırken vardır. |-----> +/func1 |-----> -/func2 | |-------> 11 | |-------> 12 | |-------> 13 | |-> {"a": ["Func args"], "k": {"Func kwargs"}, "r": "Dönüş değeri"} |-----> variable1 |-----> variable2 |-----> variable3 |-------> "Değişkendeki değer" """ # import fcntl # # # # ################################ File LOCK - Henüz kullanmadık # # https://stackoverflow.com/questions/4843359/python-lock-a-file # def lock_to_file(filename): # """ acquire exclusive lock file access """ # locked_file_descriptor = open(filename, 'w+') # fcntl.lockf(locked_file_descriptor, fcntl.LOCK_EX) # return locked_file_descriptor # # # def lock_to_release(locked_file_descriptor): # """ release exclusive lock file access """ # locked_file_descriptor.close() # # # # ############################################################## def new_dir(tempdir, module, class_name, args, kwargs): """/Tempdir/353464325""" # Dizini oluşturuyoruz dir_path = os.path.join(tempdir or tempfile.gettempdir(), "dirio") if not os.path.exists(dir_path): os.mkdir(dir_path) no = 111 while str(no) in os.listdir(dir_path): no = random.randint(111, 9999999999) new_path = os.path.join(dir_path, str(no)) os.mkdir(new_path) # ####################### # ####################### # Scripti oluşturuyoruz # Önce bu dosya okunur. with open(__file__) as f: script_body = f.read() # İçe aktarılacak modülün yolu bulunur. module_name = os.path.basename(module).split(".")[0] module_path = os.path.dirname(module) if module_name in ("__init__", "__main__"): module_name = os.path.basename(module_path) module_path = os.path.dirname(module_path) # Scriptin parçaları oluşturulur # script_head = f"import sys\nsys.path.append('{module_path}')\nfrom {module_name} import {class_name}" script_head = f""" import sys sys.path.append('{module_path}') from {module_name} import {class_name} """ # script_footer = f"new = Dirio(target={class_name}, args={args}, kwargs={kwargs}, worker=True)\nnew._dr_loop()" script_footer = f""" try: new = Dirio(target={class_name}, args={args}, kwargs={kwargs}, worker=True) new._dr_loop() except: pass # Çıkışta dosyaları sil dirname = os.path.dirname(__file__) if os.path.exists(dirname): shutil.rmtree(dirname) sys.exit() """ script = "\n".join([script_head, script_body, script_footer]) # Script yazılır with open(os.path.join(new_path, "__main__.py"), "w") as f: f.write(script) # Burada da Process olarak başlatsan iyi olur subprocess.Popen([ sys.executable, new_path ], # close_fds=True ) print("Dirio -> New Path ->", new_path) return new_path def check_type(value): tip = type(value) check = True if tip in (dict, list, tuple, int, str, float, bool, type(None)): if tip is dict: for k, v in value.items(): if not (check_type(k) and check_type(v)): return False elif tip in (list, tuple): for i in value: if not check_type(i): return False else: return False return check def set_decorator(self): # Class'daki tüm değerleri alıyoruz for attr in self.__dict__: # Bu isimlerdeyse, dekoratör ekleme, boşver. # if attr in ("__getattribute__", "__setattr__", "__new__"): if (attr.startswith("__") and attr.endswith("__")) or attr in ("dr_terminate", "dr_code", "dr_bind", "dr_binds_check", "dr_isactive"): continue # Eğer çağrılabilir fonksiyon ise dekorator ekliyoruz attribute = getattr(self, attr) if callable(attribute): setattr(self, attr, get_decorator(self, attribute)) def get_result(path_code, dr_wait): start_time = time.time() wait_time = 1 # Cevabı okurken bekle while wait_time: if os.path.exists(path_code): try: with open(path_code) as f: data = json.load(f) if RESULT in data: return data.get(RESULT) except: pass # -1 ise cevap gelene kadar bekle # 0 ise sadece bir kere kontrol et # 5 gibi değer ise, 5 sn kadar bekle if dr_wait >= 0: wait_time = time.time() - start_time < dr_wait return None def get_decorator(self, func): def wrapper(*args, **kwargs): # kwargs'ın içinde, # dr_code=True varsa; Okuma kodu döndürür. # dr_code=2345 gibi ; # İstemci ise, bu kodun dönüşü varsa, onu döndürür. Yoksa None döndürsün. # Sunucu ise, o değerdeki dosyaya RESULT değerini kayıt yap demek oluyor # Hiçbiri yoksa ; En son herhangi bir cevabı döndürür dr_code = kwargs.pop("dr_code", False) dr_wait = kwargs.pop("dr_wait", 0) # Fonksiyonun klasörü path = os.path.join(self._dr_dir, func.__name__) # Yoksa oluştur if not os.path.exists(path): os.mkdir(path) # Temel metodlar derhal işletilir. !!! Burayı kullanmak istiyorsan, set_decorator kısmını da düzenle # if func.__name__.startswith("__") and func.__name__.endswith("__"): # return func(*args, **kwargs) # İstemci ise veya self.metod değilse, (@class veya @static ise) baştaki self parametresini sil if not self._dr_active or "self" not in inspect.getfullargspec(func).args: args = args[1:] # ################################ # İstemci ise ve Parametreler uygunsa, dosyaya kaydeder. if not self._dr_active and check_type(args) and check_type(kwargs): # dr_code -> int -> Bu kodla olan veri varsa döndür. Belirtilen süre kadar cevabı bekle if type(dr_code) is int and dr_code > 1: return get_result(os.path.join(path, str(dr_code)), dr_wait) # Func dizinindeki dosyaların isimlerini int olarak alır ve # ["1", "2", ... ] String listesinde en büyük sayıyı verir. Yoksa 10 değerini verir son_code = self._dr_last_code new_code = son_code + 1 full_path = os.path.join(path, str(new_code)) while os.path.exists(full_path): new_code += 1 full_path = os.path.join(path, str(new_code)) # Datayı dosyaya yaz with open(full_path, 'w') as f: json.dump({ARGS: args, KWARGS: kwargs}, f) self._dr_last_code = new_code # Cevabı bu süre kadar bekle ve dön if dr_wait: return get_result(full_path, dr_wait) # dr_code -> True -> Kodu döndür if dr_code is True: return new_code # dr_code -> False -> Default, Son dosyada cevap varsa döndür if son_code != 10: try: with open(os.path.join(path, str(son_code))) as f: return json.load(f).get(RESULT) except: pass # Hiçbiri uymuyorsa, boş dön return None # ################################ # Kod varsa datayı koddaki dosyaya yaz. Tabi tipler uygunsa yaz. if type(dr_code) is str: file = os.path.join(path, dr_code) try: with open(file) as f: data = json.load(f) except: return # Clas fonksiyonu veya self fonksiyon olmasına göre fazla parametre hatası verebildiğinden böyle yapıldı if "self" not in inspect.getfullargspec(func).args: result = func(*data.get(ARGS, ()), **data.get(KWARGS, {})) else: result = func(args[0], *data.get(ARGS, ()), **data.get(KWARGS, {})) data[RESULT] = result if check_type(result) else None with open(file, "w") as f: json.dump(data, f) # Zaman kaydedicide, fonksiyonun ismi yoksa, oluştur if func.__name__ not in self._dr_last_times: self._dr_last_times[func.__name__] = {} # Func dosyasını değiştirdiğimiz için, değişim zamanını kaydediyoruz ki, sonradan başkası değişti sanılmasın self._dr_last_times[func.__name__][dr_code] = os.stat(file).st_mtime else: # Sunucuysa, direkt fonksiyonu işle result = func(*args, **kwargs) return result return wrapper class Dirio: _dr_inwork = False _dr_binds = {} def __init__(self, target=None, args=(), kwargs={}, tempdir="", keeperiod=10, looperiod=.05, worker=False): """ :param target: class: Hedef Class :param args: tuple: Class'ın argümanları :param kwargs: dict: Class'ın keyword'lü argümanları :param tempdir: str: Temporary klasörü. Girilmediyse, standart sistemdeki klasör kullanılır. :param keeperiod: int: Geçmişi tutma süresi. Default: 10 sn boyunca geçmişi saklar. :param looperiod: int: Sunucu için, döngüde bekleme süresi. Küçük olursa işlemciden, büyük olursa işlemden zarar :param worker: bool: Read Only. Değiştirme. Sınıfın kendine has kullanımına dahildir. """ self._dr_bind = {} self._dr_active = worker self._dr_last_code = 10 self._dr_last_times = {} self._dr_keep_period = keeperiod self._dr_loop_period = looperiod # Önce kopyalıyoruz, Çünkü üstünde değişiklik yaptığımızda kalıcı olmasın target = type(target.__name__, target.__bases__, dict(target.__dict__)) set_decorator(target) if worker: # Sunucu kısmıdır. Bu kısım sadece temp klasöründen başlatıldığında çalışır self._dr_dir = os.path.dirname(__file__) else: # İstemci kısmıdır.Sunucu oluşturulur ve başlatılır self._dr_dir = new_dir(tempdir, inspect.getfile(target), target.__name__, args, kwargs) # target = type(f'gecis.{target.__name__}', tuple(target.__bases__), dict(target.__dict__)) # Dirio özelliklerini diğer sınıfa ekliyoruz for attr in self.__dict__: if attr.startswith("_dr_") or attr.startswith("dr_"): # or attr in ("__getattribute__", "__setattr__"): setattr(target, attr, self.__getattribute__(attr)) # Kendimizi, Clasın kopyasına çeviriyoruz self.__class__ = type(f'dirio.{target.__name__}', tuple([Dirio, target]), dict(self.__dict__)) self._dr_inwork = True super().__init__(*args, **kwargs) def __getattribute__(self, name): # _dr_ ile başlıyorsa veya __xxx__ gibi bir değişkense hemen döndürülür if name.startswith("_dr_") or (name.startswith("__") and name.endswith("__")): return super().__getattribute__(name) in_class = name in dir(self) # print("__getattribute__\t<--\t\t\t", name) # Fonksiyon ise, direkt döndürülür. ############### if in_class: value = super().__getattribute__(name) if callable(value): return value # Değişken ise; ############### # Değer dosyada varsa, oradan okunur if name in os.listdir(self._dr_dir): with open(os.path.join(self._dr_dir, name)) as f: value = json.load(f).get(VALUE) return value if in_class: value = super().__getattribute__(name) # Demekki dosyada yok ki buraya kadar geldik, dosyaya da kaydedelim. self.__setattr__(name, value) return value return lambda *args, **kwargs: None def __setattr__(self, key, value): # print("__setattribute__\t\t\t-->\t", key, value) # Eğer value, çağrılabilir ise, ona özelliklerimizi ver. # Value uygunsa, key isimli dosyaya yaz # İstemci ve sunucu için de geçerli if self._dr_inwork: file = os.path.join(self._dr_dir, key) if check_type(value): with open(file, "w") as f: json.dump({VALUE: value}, f) else: # Eğer kaydedilemeyen bir tip ise, dosyada var olanı da sil ki, çağırırken sorun yaşanmasın if os.path.exists(file): os.remove(file) # !!! Aslında değişkenler için bu işleme gerek yok. Sadece fonksiyonlar için yapsak yeterli olur # Eğer Sunucu ise, dosyanın son değişme zamanını güncelle ki, onu değişti zannetmesin. # if self._dr_active: # self._dr_last_times[key] = os.stat(file).st_mtime super().__setattr__(key, value) def _dr_loop(self): # Script dosyasını siliyoruz if os.path.exists(__file__): os.remove(__file__) # Kaydedilmiş değerler varsa önce onları okur # Daha sonra tüm değerleri dosyaya kaydet for i in dir(self): if not (i.startswith("__") and i.endswith("__")): getattr(self, i) # Böyle yapıyoruz ki, çağırırken her seferinde class.getattr'e yük olmasın _dr_dir = self._dr_dir _dr_last_times = self._dr_last_times while os.path.exists(_dr_dir): # Dizindeki, fonksiyon klasörlerinin isimleri alınır. func_dirs = [i for i in os.listdir(_dr_dir) if os.path.isdir(os.path.join(_dr_dir, i))] # Tüm fonk dizinlerini gez for func_dir in func_dirs: func_full_path = os.path.join(_dr_dir, func_dir) # last'ta fonk yoksa al if func_dir not in _dr_last_times: _dr_last_times[func_dir] = {} lasts = _dr_last_times[func_dir] for func_code in os.listdir(func_full_path): if not func_code.isdigit(): continue func_code_full_path = os.path.join(func_full_path, func_code) st = os.stat(func_code_full_path).st_mtime # Daha önce çalıştırdıysak ve son çalışma zamanı aynıysa geç if func_code in lasts and st == lasts.get(func_code): # Saklama zamanı geçtiyse, geçmiş klasörüne aktar ve last_timesden'de kaldır # if time.time() - st > self._dr_keep_period: # pass # # lasts'dan kaldır. continue # İlk defa çağrılıyorsa veya son çalışma zamanı farklıysa yap # Fonksiyon işlenir ve dönüşü kaydedilir. Üstelik zamanı da.. # print("Fonksiyonu çağıtıruz", func_dir, func_code) getattr(self, func_dir)(dr_code=func_code) # self.deger += 5 # print(self.deger, self) # print("Bu da dönüyor", getattr(self, "deger")) time.sleep(self._dr_loop_period) def dr_terminate(self): """İşlemi bitirir""" if os.path.exists(self._dr_dir): shutil.rmtree(self._dr_dir) def dr_code(self, code, wait=0): """Dönüşü koddan direkt olarak okumayı sağlar.""" if type(code) is int: code = str(code) # Tüm fonksiyon klasörlerini gezer, eğer içinde elimizdeki koddan dosya varsa onu okur for func_name in [j for j in os.listdir(self._dr_dir) if os.path.isdir(os.path.join(self._dr_dir, j))]: func_path = os.path.join(self._dr_dir, func_name) if code in os.listdir(func_path): return get_result(os.path.join(func_path, code), wait) return None def dr_bind(self, code, func, args=(), kwargs={}): """Girilen kod ile sonuç alındığında, 'func'u çağırır. Parametrelerini de girer. Sonuçları arayabilmesi için, arada 'dr_binds_check'in çalıştırılması gerekir. Fonksiyonun alacağı ilk parametre, code'un dönüş değeri olmalı""" self._dr_binds[code] = [func, args, kwargs] def dr_binds_check(self): """Sonuçları kontrol eder. Sonuçlar geldiyse, Bind'leri çalıştırır""" event = False for code, vals in self._dr_binds.copy().items(): result = self.dr_code(code) if result is not None: func = vals[0] args = vals[1] kwargs = vals[2] func(*args, **kwargs, result=result) self._dr_binds.pop(code) event = True return event def dr_isactive(self): return self._dr_inwork and os.path.exists(self._dr_dir)
the-stack_0_14505
import urllib.request import urllib.error import urllib.parse import json from arbitrage.public_markets.market import Market class GDAX(Market): def __init__(self, currency, code): super().__init__(currency) self.code = code self.update_rate = 30 def update_depth(self): url = 'https://api.gdax.com/products/%s/book?level=2' % self.code req = urllib.request.Request(url, headers={ "Content-Type": "application/x-www-form-urlencoded", "Accept": "*/*", "User-Agent": "curl/7.24.0 (x86_64-apple-darwin12.0)"}) res = urllib.request.urlopen(req) depth = json.loads(res.read().decode('utf8')) self.depth = self.format_depth(depth) def sort_and_format(self, l, reverse=False): l.sort(key=lambda x: float(x[0]), reverse=reverse) r = [] for i in l: r.append({'price': float(i[0]), 'amount': float(i[1])}) return r def format_depth(self, depth): bids = self.sort_and_format(depth['bids'], True) asks = self.sort_and_format(depth['asks'], False) return {'asks': asks, 'bids': bids}
the-stack_0_14507
"""Tensorflow trainer class.""" import logging import math import os from typing import Callable, Dict, Optional import numpy as np import tensorflow as tf from .modeling_tf_utils import TFPreTrainedModel, shape_list from .optimization_tf import GradientAccumulator, create_optimizer from .trainer_utils import PREFIX_CHECKPOINT_DIR, EvalPrediction, PredictionOutput from .training_args_tf import TFTrainingArguments logger = logging.getLogger(__name__) class TFTrainer: model: TFPreTrainedModel args: TFTrainingArguments # something similar to a PT Dataset. # This is just temporary before to have # a framework-agnostic approach for datasets. train_dataset: Optional[tf.data.Dataset] eval_dataset: Optional[tf.data.Dataset] compute_metrics: Optional[Callable[[EvalPrediction], Dict]] = None prediction_loss_only: bool def __init__( self, model: TFPreTrainedModel, args: TFTrainingArguments, train_dataset: Optional[tf.data.Dataset] = None, eval_dataset: Optional[tf.data.Dataset] = None, compute_metrics: Optional[Callable[[EvalPrediction], Dict]] = None, prediction_loss_only=False, ): self.model = model self.args = args self.train_dataset = train_dataset self.eval_dataset = eval_dataset self.compute_metrics = compute_metrics self.prediction_loss_only = prediction_loss_only self.gradient_accumulator = GradientAccumulator() self._setup_training() def _setup_training(self) -> None: """ Setup the different steps to train a model: - check if all the data are given - create the proper strategy - create the features - prepare the model settings """ self._prepare_dataset() with self.args.strategy.scope(): self._create_optimizer() _ = self.optimizer.iterations self._set_loss_and_metric() self._create_checkpoint_manager() self._create_summary_writer() def _set_loss_and_metric(self) -> None: """ Create the training loss and metric with their name. Allowed names are those listed in the Tensorflow documentation and those contained in the transformers library. """ try: self.loss = tf.keras.losses.get( { "class_name": self.args.loss_name, "config": {"from_logits": True, "reduction": tf.keras.losses.Reduction.NONE}, } ) except TypeError: self.loss = tf.keras.losses.get( {"class_name": self.args.loss_name, "config": {"reduction": tf.keras.losses.Reduction.NONE}} ) def _create_summary_writer(self) -> None: """ Create a summary writer to be able to read the logs in Tensorboard. """ self.writer = tf.summary.create_file_writer(self.args.logging_dir) def _prepare_dataset(self) -> None: """ Prepare the training, validation and test data. """ if self.train_dataset is not None: self.num_train_examples = self.train_dataset.reduce(tf.constant(0), lambda x, _: x + 1).numpy() if self.args.max_steps > 0: self.train_steps = self.args.max_steps else: self.train_steps: int = math.ceil(self.num_train_examples / self.args.train_batch_size) self.train_dataset = ( self.train_dataset.cache() .shuffle(self.num_train_examples) .batch(self.args.train_batch_size) .prefetch(tf.data.experimental.AUTOTUNE) ) if self.args.max_steps > 0: self.train_dataset = self.train_dataset.repeat(-1) self.train_dataset = self.args.strategy.experimental_distribute_dataset(self.train_dataset) else: self.train_steps = 0 if self.eval_dataset is not None: self.eval_dataset = ( self.eval_dataset.batch(self.args.eval_batch_size).cache().prefetch(tf.data.experimental.AUTOTUNE) ) self.eval_dataset = self.args.strategy.experimental_distribute_dataset(self.eval_dataset) def _create_optimizer(self) -> None: """ Create the training optimizer with its name. Allowed names are those listed in the Tensorflow documentation and those contained in the transformers library. """ if self.args.optimizer_name == "adamw": self.optimizer = create_optimizer( self.args.learning_rate, self.train_steps, self.args.warmup_steps, self.args.end_lr ) else: try: self.optimizer = tf.keras.optimizers.get( { "class_name": self.args.optimizer_name, "config": {"learning_rate": self.args.learning_rate, "epsilon": self.args.adam_epsilon}, } ) except TypeError: # This is for the case where the optimizer is not Adam-like such as SGD self.optimizer = tf.keras.optimizers.get( {"class_name": self.args.optimizer_name, "config": {"learning_rate": self.args.learning_rate}} ) logger.info("Created an/a {} optimizer".format(self.optimizer)) def _create_checkpoint_manager(self, max_to_keep: int = 5, load_model: bool = True) -> None: """ Create a checkpoint manager in order to be able to make the training fault-tolerant. Args: max_to_keep: the maximum number of checkpoints to keep in the checkpoint path. load_model: if we want to start the training from the latest checkpoint. """ ckpt = tf.train.Checkpoint(optimizer=self.optimizer, model=self.model) self.model.ckpt_manager = tf.train.CheckpointManager(ckpt, PREFIX_CHECKPOINT_DIR, max_to_keep=max_to_keep) if load_model: ckpt.restore(self.model.ckpt_manager.latest_checkpoint).expect_partial() @tf.function def _evaluate_steps(self, per_replica_features, per_replica_labels): """ One step evaluation across replica. Args: per_replica_features: the batched features. per_replica_labels: the batched labels. Returns: The loss corresponding to the given batch. """ per_replica_loss, per_replica_logits = self.args.strategy.experimental_run_v2( self._run_model, args=(per_replica_features, per_replica_labels, False) ) try: reduced_loss = self.args.strategy.reduce(tf.distribute.ReduceOp.MEAN, per_replica_loss, axis=0) except ValueError: reduced_loss = self.args.strategy.reduce(tf.distribute.ReduceOp.MEAN, per_replica_loss, None) return reduced_loss, per_replica_logits def _prediction_loop( self, dataset: tf.data.Dataset, description: str, prediction_loss_only: Optional[bool] = None ) -> PredictionOutput: logger.info("***** Running %s *****", description) logger.info(" Batch size = %d", self.args.eval_batch_size) label_ids: np.ndarray = None preds: np.ndarray = None step: int = 1 for features, labels in dataset: step = tf.convert_to_tensor(step, dtype=tf.int64) loss, logits = self._evaluate_steps(features, labels) loss = tf.reduce_mean(loss) if not prediction_loss_only: if self.args.n_gpu > 1: for val in logits.values: if preds is None: preds = val.numpy() else: preds = np.append(preds, val.numpy(), axis=0) for val in labels.values: if label_ids is None: label_ids = val.numpy() else: label_ids = np.append(label_ids, val.numpy(), axis=0) else: if preds is None: preds = logits.numpy() else: preds = np.append(preds, logits.numpy(), axis=0) if label_ids is None: label_ids = labels.numpy() else: label_ids = np.append(label_ids, labels.numpy(), axis=0) step += 1 if self.compute_metrics is not None and preds is not None and label_ids is not None: metrics = self.compute_metrics(EvalPrediction(predictions=preds, label_ids=label_ids)) else: metrics = {} metrics["loss"] = loss.numpy() return PredictionOutput(predictions=preds, label_ids=label_ids, metrics=metrics) def evaluate( self, eval_dataset: Optional[tf.data.Dataset] = None, prediction_loss_only: Optional[bool] = None ) -> Dict[str, float]: """ Prediction/evaluation loop, shared by `evaluate()` and `predict()`. """ if eval_dataset is None: eval_dataset = self.eval_dataset output = self._prediction_loop(eval_dataset, description="Evaluation") return output.metrics def train(self) -> None: """ Train method to train the model. """ if self.args.debug: tf.summary.trace_on(graph=True, profiler=True) self.gradient_accumulator.reset() iterations = self.optimizer.iterations if iterations.numpy() > 0: logger.info("Start the training from the last checkpoint") start_epoch = (iterations.numpy() // self.train_steps) + 1 else: start_epoch = 1 tf.summary.experimental.set_step(iterations) epochs = 1 if self.args.max_steps > 0 else self.args.num_train_epochs logger.info("***** Running training *****") logger.info(" Num examples = %d", self.num_train_examples) logger.info(" Num Epochs = %d", epochs) logger.info(" Total optimization steps = %d", self.train_steps) for epoch in range(start_epoch, int(epochs + 1)): for training_loss in self._training_steps(): step = iterations.numpy() if self.args.debug: with self.writer.as_default(): tf.summary.scalar("loss", training_loss, step=step) if step == 1 and self.args.debug: with self.writer.as_default(): tf.summary.trace_export(name="training", step=step, profiler_outdir=self.args.logging_dir) if self.args.evaluate_during_training and step % self.args.eval_steps == 0: logs = {} results = self.evaluate() for key, value in results.items(): eval_key = "eval_{}".format(key) logs[eval_key] = value if callable(self.optimizer.learning_rate): logs["learning_rate"] = self.optimizer.learning_rate(step).numpy() else: logs["learning_rate"] = self.optimizer.learning_rate.numpy() logger.info("Epoch {} Step {} Validation Metrics {}".format(epoch, step, logs)) with self.writer.as_default(): for k, v in logs.items(): tf.summary.scalar(k, v, step=step) if step % self.args.logging_steps == 0: logger.info("Epoch {} Step {} Train Loss {:.4f}".format(epoch, step, training_loss.numpy())) if step % self.args.save_steps == 0: ckpt_save_path = self.model.ckpt_manager.save() logger.info("Saving checkpoint for step {} at {}".format(step, ckpt_save_path)) if step % self.train_steps == 0: break def _training_steps(self): """ Returns a generator over training steps (i.e. parameters update). """ for i, loss in enumerate(self._accumulate_next_gradients()): if i % self.args.gradient_accumulation_steps == 0: self._apply_gradients() yield loss @tf.function def _apply_gradients(self): """Applies the gradients (cross-replica).""" self.args.strategy.experimental_run_v2(self._step) def _step(self): """Applies gradients and resets accumulation.""" gradient_scale = self.gradient_accumulator.step * self.args.strategy.num_replicas_in_sync gradients = [ gradient / tf.cast(gradient_scale, gradient.dtype) for gradient in self.gradient_accumulator.gradients ] gradients = [(tf.clip_by_value(grad, -self.args.max_grad_norm, self.args.max_grad_norm)) for grad in gradients] vars = self.model.trainable_variables if self.args.mode == "token-classification": vars = [var for var in self.model.trainable_variables if "pooler" not in var.name] self.optimizer.apply_gradients(list(zip(gradients, vars))) self.gradient_accumulator.reset() def _accumulate_next_gradients(self): """Accumulates the gradients from the next element in dataset.""" iterator = iter(self.train_dataset) @tf.function def _accumulate_next(): per_replica_features, per_replica_labels = next(iterator) return self._accumulate_gradients(per_replica_features, per_replica_labels) while True: try: yield _accumulate_next() except tf.errors.OutOfRangeError: break def _accumulate_gradients(self, per_replica_features, per_replica_labels): """Accumulates the gradients across all the replica.""" per_replica_loss = self.args.strategy.experimental_run_v2( self._forward, args=(per_replica_features, per_replica_labels) ) try: reduced_loss = self.args.strategy.reduce(tf.distribute.ReduceOp.MEAN, per_replica_loss, axis=0) except ValueError: reduced_loss = self.args.strategy.reduce(tf.distribute.ReduceOp.MEAN, per_replica_loss, None) return reduced_loss def _forward(self, features, labels): """Forwards a training example and accumulates the gradients.""" per_example_loss, _ = self._run_model(features, labels, True) vars = self.model.trainable_variables if self.args.mode == "token-classification": vars = [var for var in self.model.trainable_variables if "pooler" not in var.name] gradients = self.optimizer.get_gradients(per_example_loss, vars) self.gradient_accumulator(gradients) return per_example_loss def _run_model(self, features, labels, training): """ Computes the loss of the given features and labels pair. Args: features: the batched features. labels: the batched labels. training: run the model in training mode or not """ if self.args.mode == "sequence-classification" or self.args.mode == "token-classification": logits = self.model(features, training=training)[0] else: logits = self.model(features, training=training) if self.args.mode == "token-classification": active_loss = tf.reshape(labels, (-1,)) != -1 reduced_logits = tf.boolean_mask(tf.reshape(logits, (-1, shape_list(logits)[2])), active_loss) labels = tf.boolean_mask(tf.reshape(labels, (-1,)), active_loss) loss = self.loss(labels, reduced_logits) else: loss = self.loss(labels, logits) loss += sum(self.model.losses) * (1.0 / self.args.n_gpu) return loss, logits def predict(self, test_dataset: tf.data.Dataset) -> PredictionOutput: """ Run prediction and return predictions and potential metrics. Depending on the dataset and your use case, your test dataset may contain labels. In that case, this method will also return metrics, like in evaluate(). Args: test_dataset: something similar to a PT Dataset. This is just temporary before to have a framework-agnostic approach for datasets. """ test_dataset = test_dataset.batch(self.args.eval_batch_size) test_dataset = self.args.strategy.experimental_distribute_dataset(test_dataset) return self._prediction_loop(test_dataset, description="Prediction") def save_model(self) -> None: """ Save the pretrained model and create a Tensorflow saved model. """ logger.info("Saving model in {}".format(self.args.output_dir)) path = os.path.join(self.args.output_dir, "saved_model") logger.info("Saving model in {}".format(path)) os.makedirs(path, exist_ok=True) self.model.save_pretrained(self.args.output_dir)
the-stack_0_14508
class TableFormat: """This class handles all related things to the visual presentation of a table.""" def __init__(self): self._widths = [] self._columns = [] self._rows = [] def set(self, columns): self._columns = columns self._widths = [len(column) + 2 for column in columns] def add_row(self, rows): rows = [str(row) for row in rows] self._rows.append(rows) for index, row in enumerate(rows): width = len(row) + 2 if width > self._widths[index]: self._widths[index] = width def add(self, rows): for row in rows: self.add_row(row) def render(self): """Renders a table in rST format for graphical presentation in Discord chat.""" table = '+' + ('+'.join('-' * width for width in self._widths)) + '+' to_draw = [table] def get(results): element = '|'.join(f'{result:^{self._widths[index]}}' for index, result in enumerate(results)) return f'|{element}|' to_draw.append(get(self._columns)) to_draw.append(table) for row in self._rows: to_draw.append(get(row)) to_draw.append(table) return '\n'.join(to_draw)
the-stack_0_14516
import logging import datetime from ipyc import AsyncIPyCHost, AsyncIPyCLink host = AsyncIPyCHost() # logging.basicConfig(level=logging.DEBUG) @host.on_connect async def on_connection(connection: AsyncIPyCLink): connection_idx = len(host.connections) print(f'We got a new connection! ({connection_idx})') while connection.is_active(): message = await connection.receive() if message: print(f"[{datetime.datetime.now()}] - Connection {connection_idx} says: {message}") print(f"[{datetime.datetime.now()}] - Connection {connection_idx} was closed!") print('Starting to wait for connections!') host.run()
the-stack_0_14517
import pathlib import os import shutil from flask import Flask import logging import dash import dash_bootstrap_components as dbc import dash_core_components as dcc import dash_daq as daq import dash_html_components as html import numpy as np import plotly.graph_objs as go import roslibpy import time from dash.dependencies import State, Input, Output import pointcloud_msg server = Flask(__name__) log = logging.getLogger('werkzeug') log.setLevel(logging.ERROR) app = dash.Dash( __name__, external_stylesheets=[dbc.themes.SLATE], meta_tags=[ {"name": "viewport", "content": "width=device-width, initial-scale=1.0"} ], title="Open AgroLiDAR Control", server=server ) # This is for gunicorn #server = app.server # Mapbox MAPBOX_ACCESS_TOKEN = "pk.eyJ1IjoiamFqYmVybmkiLCJhIjoiY2oyMXFsZjdsMDAxNTJybzd0bDNxczZyeCJ9.6EKxvkWLdnzNI0RJLAsimA" MAPBOX_STYLE = "mapbox://styles/jajberni/ckk35n9qg3uvw17qg3du25oyb" GPS_FIX_COLORS = {6: "#67d03b", 5: "#f9f025", 4: "#f97654", 3: "#f97654", 2: "#f43c4e", 1: "#f43c4e", 0: "#f43c4e", -1: "#f43c4e"} DEFAULT_FOLDER = "/data" class StatusManager: """Class to store information useful to callbacks""" def __init__(self): self.is_connected = False self.scan_count = 0 self.lat = 0.0 self.lon = 0.0 self.h_accuracy = 0.0 self.v_accuracy = 0.0 self.gps_status = -1 self.lat_path = [] self.lon_path = [] self.fix_path = [] self.speed_kph = 0.0 self.last_cloud = None self.last_gps = None self.last_pose = None self.last_sat_count = 0 self.rtk_listener = None self.cloud_listener = None self.pose_listener = None self.project_talker = None self.project_service = None self.project_list = [] ros_master = '127.0.0.1' if "ROS_MASTER_HOSTNAME" in os.environ: ros_master = os.environ["ROS_MASTER_HOSTNAME"] self.client = roslibpy.Ros(host=ros_master, port=9090) self.connect() def connect(self): try: self.client.run(timeout=50) self.is_connected = True self.create_listeners() except Exception as ex: self.is_connected = False print("Error connecting to ROS") def rtk_callback(self, msg): self.last_gps = msg self.lat = msg['lat'] /1e7 self.lon = msg['lon'] / 1e7 self.h_accuracy = msg['h_acc']/1e3 self.v_accuracy = msg['v_acc']/1e3 self.gps_status = msg['fix_type'] self.lat_path.append(self.lat) self.lon_path.append(self.lon) self.fix_path.append(self.gps_status) self.speed_kph = msg['vel']*0.036 self.last_sat_count = msg['satellites_visible'] #print(msg['cog']/100, msg['fix_type'], msg['dgps_age']) def cloud_callback(self, msg): self.scan_count += 1 self.last_cloud = pointcloud_msg.msg_to_cloud(msg) def pose_callback(self, msg): self.last_pose = msg def start_recording(self, project_name): if self.is_connected: self.project_talker.publish(roslibpy.Message({'data': project_name})) def stop_recording(self): if self.is_connected: self.project_talker.publish(roslibpy.Message({'data': '.'})) def create_listeners(self): if self.is_connected: self.project_talker = roslibpy.Topic(self.client, '/project/name', 'std_msgs/String') self.rtk_listener = roslibpy.Topic(self.client, '/mavros/gpsstatus/gps1/raw', 'mavros_msgs/GPSRAW') self.rtk_listener.subscribe(self.rtk_callback) self.cloud_listener = roslibpy.Topic(self.client, '/laserMapping/laser_points', 'sensor_msgs/PointCloud2') self.cloud_listener.subscribe(self.cloud_callback) self.pose_listener = roslibpy.Topic(self.client, '/mavros/global_position/local', 'nav_msgs/Odometry') self.pose_listener.subscribe(self.pose_callback) self.project_service = roslibpy.Service(self.client, '/project_service', 'agrolaser_node/ProjectService') project_request = roslibpy.ServiceRequest({'request_string': 'list', 'project': ''}) resp = self.project_service.call(project_request) if len(resp['list_strings']) == 0: self.project_list = [{'label': 'Test', 'value': 'Test'}] else: self.project_list = [{'label': project_name, 'value': project_name} for project_name in sorted(resp['list_strings'])] local_vars = StatusManager() # Point Cloud graph components # Helix equation for demo t = np.linspace(0, 10, 50) x, y, z = np.cos(t), np.sin(t), t default_fig = go.Figure(data=[go.Scatter3d(x=x, y=y, z=z, mode='markers', marker=dict( size=1, opacity=0.8 ))]) default_fig.update_layout(hovermode=False) default_fig.update_layout(margin=dict(l=0, r=0, b=0, t=0)) default_fig.update_scenes(aspectmode='manual', aspectratio_z=0.1) cloud_graph_card = dbc.Card( dcc.Graph(id='point-cloud-graph', figure=default_fig, config={ 'displayModeBar': False, }), body=True ) update_button = dbc.Button( "Clear Point Cloud", id="update", n_clicks=0, color="primary", outline=True ) update_button_2 = dbc.Button( "Force Update", id="update-2", n_clicks=0, color="primary", outline=True ) setup_button = html.Div( [ dbc.Button("Options", id="open-setup"), dbc.Modal( [ dbc.ModalHeader("Options"), dbc.ModalBody("This is the content of the modal"), dbc.ModalFooter( dbc.Button("Close", id="close-setup", className="ml-auto") ), ], id="setup-modal", ), ] ) new_project_button = html.Div( [ dbc.Button("New Project", id="new-project-button"), dbc.Modal( [dbc.Row( dbc.Col(dbc.FormGroup( [ dbc.Label("Project Name", className="mr-2"), dbc.Input(id="input-new-project-name", type="text", placeholder="Enter project"), ], className="mr-3", )), form=True), dbc.Row( dbc.Col(dbc.FormGroup( [ dbc.Label("Description", className="mr-2"), dbc.Input(type="text", placeholder="Enter description"), ], className="mr-3", )), form=True), dbc.Row([ dbc.Col(dbc.Button("Accept", color="primary", id="accept-project-button")), dbc.Col(dbc.Button("Cancel", color="primary", id="cancel-project-button")), ], ) ], id="new-project-modal", ), ] ) # Dash_DAQ elements utc = html.Div( id="control-panel-utc", children=[ daq.LEDDisplay( id="control-panel-utc-component", value="16:23", label="Time", size=40, color="#fec036", backgroundColor="#2b2b2b", ) ], n_clicks=0, ) speed = daq.Gauge( id="control-panel-speed-component", label="Speed", min=0, max=10, showCurrentValue=True, value=4.0, size=175, units="km/h", color="#fec036", ) scan_count = daq.LEDDisplay( id="control-panel-scans-component", value="0000000", label="Scans", size=24, color="#fec036", style={"color": "#black"}, backgroundColor="#2b2b2b", ) storage_indicator = html.Div( id="control-panel-disk", children=[ daq.GraduatedBar( id="control-panel-disk-component", label="Disk Capacity", min=0, max=100, value=76, step=1, showCurrentValue=True, color="#fec036", ) ], n_clicks=0, ) battery_indicator = html.Div( id="control-panel-battery", children=[ daq.GraduatedBar( id="control-panel-battery-component", label="Battery-Level", min=0, max=100, value=85, step=1, showCurrentValue=True, color="#fec036", ) ], n_clicks=0, ) longitude = daq.LEDDisplay( id="control-panel-longitude-component", value="0000.0000", label="Longitude", size=24, color="#fec036", style={"color": "#black"}, backgroundColor="#2b2b2b", ) latitude = daq.LEDDisplay( id="control-panel-latitude-component", value="0050.9789", label="Latitude", size=24, color="#fec036", style={"color": "#black"}, backgroundColor="#2b2b2b", ) h_accuracy = daq.LEDDisplay( id="control-panel-h-accuracy-component", value="0.0000", label="H Accuracy (m)", size=24, color="#fec036", style={"color": "#black"}, backgroundColor="#2b2b2b", ) v_accuracy = daq.LEDDisplay( id="control-panel-v-accuracy-component", value="0.0000", label="V Accuracy (m)", size=24, color="#fec036", style={"color": "#black"}, backgroundColor="#2b2b2b", ) satellites = html.Div([ dbc.Row([ dbc.Col( daq.LEDDisplay( id="satellite-count", value="00", label="Satellites", size=24, color="#fec036", style={"color": "#black"}, backgroundColor="#2b2b2b", ) ), dbc.Col( daq.Indicator( id="rtk-indicator", label="RTK Status", labelPosition="bottom", value=True, color="#15e82e", style={"color": "#black"}, ) ), ], no_gutters=True, align="center") ]) gps_card = dbc.Card([ satellites, dbc.Row([ dbc.Col([ latitude, longitude]), dbc.Col([ h_accuracy, v_accuracy]), ]) ]) map_toggle = daq.ToggleSwitch( id="control-panel-toggle-map", value=True, label=["Hide path", "Show path"], color="#ffe102", style={"color": "#black"}, ) # Side panel project_dropdown_text = html.P( id="project-dropdown-text", children=["Control"] ) """project_dropdown = dbc.FormGroup( [ dbc.Label("Camera Position"), dbc.Select( id="project", options=[ {"label": "New Project...", "value": "new_project"}, {"label": "Project 1", "value": "project_1"}, {"label": "Project 2", "value": "project_2"}, ], value="project_1", ), ] ) """ project_select = dbc.InputGroup( [ dbc.InputGroupAddon("Select Project", addon_type="prepend"), dbc.Select( id="project-dropdown-component", options=local_vars.project_list, value=local_vars.project_list[0]['value'] ), dbc.InputGroupAddon( new_project_button, addon_type="append", ), ] ), project_title = html.H1(id="project-name", children="") recording_button = daq.PowerButton( id='recording-button', on=False, color='#FF5E5E', size=80, label='Record', labelPosition='top' ) project_body = html.P( className="project-description", id="project-description", children=[""] ) side_panel_layout = html.Div( id="panel-side", children=[ dbc.Card([ dbc.Row([ dbc.Col(project_select), ]), dbc.Row([ dbc.Col(recording_button), ]), dbc.Row([ dbc.Col(update_button), dbc.Col(update_button_2), dbc.Col(setup_button), ]) ]), ], ) # project location tracker # Helper to straighten lines on the map def flatten_path(xy1, xy2): diff_rate = (xy2 - xy1) / 100 res_list = [] for i in range(100): res_list.append(xy1 + i * diff_rate) return res_list map_data = [ { "type": "scattermapbox", "lat": [0], "lon": [0], "hoverinfo": "text+lon+lat", "text": "LiDAR Path", "mode": "lines", "line": {"width": 3, "color": "#126de3"}, }, { "type": "scattermapbox", "lat": [0], "lon": [0], "hoverinfo": "text+lon+lat", "text": "Current Position", "mode": "markers", "marker": {"size": 10, "color": "#fec036"}, }, ] map_layout = { "mapbox": { "accesstoken": MAPBOX_ACCESS_TOKEN, "style": MAPBOX_STYLE, "center": {"lat": 37.8, "lon": -4.8}, "zoom": 18, }, "showlegend": False, "autosize": True, "paper_bgcolor": "#1e1e1e", "plot_bgcolor": "#1e1e1e", "margin": {"t": 0, "r": 0, "b": 0, "l": 0}, } map_graph = dbc.Card( id="world-map-wrapper", children=[ map_toggle, dcc.Graph( id="world-map", figure={"data": map_data, "layout": map_layout}, config={"displayModeBar": False, "scrollZoom": True}, ) ], body=True ) main_panel_card = html.Div([ dcc.Interval(id="interval", interval=1 * 2000, n_intervals=0), dcc.Interval(id="interval-fast", interval=500, n_intervals=0), dbc.Card([ dbc.Row([ dbc.Col(speed, width=3), dbc.Col([dbc.Row(utc), dbc.Row(scan_count), dbc.Row(storage_indicator)], width=3), dbc.Col(gps_card, width=5) ] ), ]), dbc.Card(dbc.Row([dbc.Col(cloud_graph_card, width=6), dbc.Col(map_graph, width=6)])) ]) # Data generation # Pandas APP_PATH = str(pathlib.Path(__file__).parent.resolve()) # Root root_layout = dbc.Container( [ dcc.Store(id="store-placeholder"), dcc.Store( id="store-data"), html.H1("Open PhenoLiDAR Control"), html.Hr(), dbc.Row([ dbc.Col(main_panel_card, md=8), dbc.Col(side_panel_layout, md=4), ], align="start") ], fluid=True, ) app.layout = root_layout # Callback free space @app.callback( Output("control-panel-disk-component", "value"), [Input("interval", "n_intervals")] ) def update_free_disk(interval): total, used, free = shutil.disk_usage("/") free_pc = 100 * used / total return free_pc # Callbacks Data # Callbacks Components @app.callback( Output("control-panel-utc-component", "value"), [Input("interval", "n_intervals")] ) def update_time(interval): hour = time.localtime(time.time())[3] hour = str(hour).zfill(2) minute = time.localtime(time.time())[4] minute = str(minute).zfill(2) return hour + ":" + minute @app.callback( [ Output("control-panel-latitude-component", "value"), Output("control-panel-longitude-component", "value"), Output("control-panel-h-accuracy-component", "value"), Output("control-panel-v-accuracy-component", "value"), Output("control-panel-scans-component", "value"), Output("satellite-count", "value"), Output("rtk-indicator", "value"), Output("rtk-indicator", "color"), ], [Input("interval", "n_intervals")], ) def update_gps_component(clicks): rtk_status = False rtk_color = "#fec036" if local_vars.gps_status > 5: rtk_status = True if local_vars.gps_status < 3: rtk_color = "#dc1330" elif local_vars.gps_status == 5: rtk_color = "#f9f025" elif local_vars.gps_status == 6: rtk_color = "#6bd71f" else: rtk_color = "#dc1330" return "{:.4f}".format(local_vars.lat), "{:.4f}".format( local_vars.lon), "{:.3f}".format(local_vars.h_accuracy), "{:.3f}".format( local_vars.v_accuracy), "{:08d}".format(local_vars.scan_count), local_vars.last_sat_count, rtk_status, rtk_color @app.callback(Output("control-panel-speed-component", "value"), [Input("interval-fast", "n_intervals")], ) def update_speed_component(clicks): return local_vars.speed_kph @app.callback( Output("point-cloud-graph", "figure"), [Input("update", "n_clicks"), ], [State("point-cloud-graph", "figure")] ) def create_cloud_graph(clicks, graph_data): if local_vars.last_cloud is not None: # print(graph_data) # print(local_vars.last_cloud.points.head()) df = local_vars.last_cloud graph_data['data'] = [ go.Scatter3d( x=df['x'], y=df['y'], z=df['z'], mode='markers', marker=dict( size=1, color=df['intensity'], opacity=0.8 ) ) ] else: print("No data") return graph_data @app.callback( Output("point-cloud-graph", "extendData"), [Input("interval", "n_intervals"), Input("update-2", "n_clicks"), ], [State("point-cloud-graph", "figure")] ) def update_cloud_graph(interval, clicks, graph_data): # print(graph_data['data']) if local_vars.last_cloud is not None: df = local_vars.last_cloud data = [go.Scatter3d( x=df['x'], y=df['y'], z=df['z'], mode='markers', marker=dict( size=1, color=df['intensity'], opacity=0.8 ) )] # print(data[0]['marker']) if graph_data is None: return if len(graph_data['data']) > 0: # return data[0], [0] return dict(x=[data[0]['x']], y=[data[0]['y']], z=[data[0]['z']]), [ 0] # , marker=dict(color=[data[0]['marker']['color']])), [0] # return data @app.callback( Output("world-map", "figure"), [ Input("interval", "n_intervals"), Input("control-panel-toggle-map", "value"), ], [ State("world-map", "figure"), State("store-data", "data"), ], ) def update_word_map(clicks, toggle, old_figure, data): figure = old_figure figure["data"][1]["lat"] = [local_vars.lat] figure["data"][1]["lon"] = [local_vars.lon] figure["data"][1]["marker"]["color"] = GPS_FIX_COLORS[local_vars.gps_status] figure["layout"]["mapbox"]["center"] = {"lat": local_vars.lat, "lon": local_vars.lon} if not toggle: figure["data"][0]["lat"] = [] figure["data"][0]["lon"] = [] else: figure["data"][0]["lat"] = local_vars.lat_path figure["data"][0]["lon"] = local_vars.lon_path return figure @app.callback( [Output("project-dropdown-component", "disabled"), Output("new-project-button", "disabled")], [ Input("recording-button", "on"), Input("project-dropdown-component", "value"), ], ) def recording_control(on, project): if project != 'new_project': if on: print("Start record: " + project) local_vars.start_recording(project) else: local_vars.stop_recording() return on, on @app.callback( Output("setup-modal", "is_open"), [Input("open-setup", "n_clicks"), Input("close-setup", "n_clicks")], [State("setup-modal", "is_open")], ) def toggle_modal(n1, n2, is_open): if n1 or n2: return not is_open return is_open @app.callback( [Output("new-project-modal", "is_open"), Output("project-dropdown-component", "options")], [Input("new-project-button", "n_clicks"), Input("accept-project-button", "n_clicks"), Input("cancel-project-button", "n_clicks"), Input("input-new-project-name", "value")], [State("new-project-modal", "is_open"), State("accept-project-button", "n_clicks"), State("cancel-project-button", "n_clicks")], ) def toggle_modal(n1, n2, n3, new_project_name, is_open, n2_s, n3_s): if n1 is None: return is_open, local_vars.project_list if n2 == n1: print("Create new project: " + new_project_name) resp = local_vars.project_service.call(roslibpy.ServiceRequest({'request_string': 'create', 'project': new_project_name})) project_request = roslibpy.ServiceRequest({'request_string': 'list', 'project': ''}) local_vars.project_list = [{'label': project_name, 'value': project_name} for project_name in sorted(local_vars.project_service.call(project_request)['list_strings'])] return False, local_vars.project_list if n3 == n1: return False, local_vars.project_list if n1: return True, local_vars.project_list return is_open, local_vars.project_list if __name__ == "__main__": debug = True port = 8051 if "DASH_DEBUG_MODE" in os.environ: debug = False if os.environ["DASH_DEBUG_MODE"] == "False" else True if "DASH_PORT" in os.environ: port = os.environ["DASH_PORT"] app.run_server(host="0.0.0.0", port=port, debug=debug)
the-stack_0_14518
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class ConnectToSourceMySqlTaskInput(Model): """Input for the task that validates MySQL database connection. All required parameters must be populated in order to send to Azure. :param source_connection_info: Required. Information for connecting to MySQL source :type source_connection_info: ~azure.mgmt.datamigration.models.MySqlConnectionInfo :param target_platform: Target Platform for the migration. Possible values include: 'AzureDbForMySQL' :type target_platform: str or ~azure.mgmt.datamigration.models.MySqlTargetPlatformType :param check_permissions_group: Permission group for validations. Possible values include: 'Default', 'MigrationFromSqlServerToAzureDB', 'MigrationFromSqlServerToAzureMI', 'MigrationFromMySQLToAzureDBForMySQL' :type check_permissions_group: str or ~azure.mgmt.datamigration.models.ServerLevelPermissionsGroup """ _validation = { 'source_connection_info': {'required': True}, } _attribute_map = { 'source_connection_info': {'key': 'sourceConnectionInfo', 'type': 'MySqlConnectionInfo'}, 'target_platform': {'key': 'targetPlatform', 'type': 'str'}, 'check_permissions_group': {'key': 'checkPermissionsGroup', 'type': 'str'}, } def __init__(self, **kwargs): super(ConnectToSourceMySqlTaskInput, self).__init__(**kwargs) self.source_connection_info = kwargs.get('source_connection_info', None) self.target_platform = kwargs.get('target_platform', None) self.check_permissions_group = kwargs.get('check_permissions_group', None)
the-stack_0_14519
from mavetools.validators import dataset_validators def validate_all(countfile=None, scorefile=None, scorejson=None): """ By calling other helper functions, this function runs all of the validation code """ validate_dataset(countfile, scorefile, scorejson) def validate_dataset(countfile=None, scorefile=None, scorejson=None): """ This function calls all of the validation functions within mavetools/mavetools/validators/dataset_validation.py Returns ------- """ # how to incorporate word limit validator? if scorefile is not None: # open scorefile open(scorefile) # this one returns header scoreheader = dataset_validators.read_header_from_io(file=scorefile) # if the header was returned, do these ones dataset_validators.validate_has_hgvs_in_header(header=scoreheader) dataset_validators.validate_at_least_one_additional_column(header=scoreheader) dataset_validators.validate_header_contains_no_null_columns(header=scoreheader) dataset_validators.validate_scoreset_score_data_input(file=scorefile) if scorejson is not None: # open scorejson open(scorejson) dataset_validators.validate_scoreset_json(dict_=scorejson) if countfile is not None: # open countfile open(countfile) countheader = dataset_validators.read_header_from_io(file=countfile) # if the header was returned, do these ones dataset_validators.validate_has_hgvs_in_header(header=countheader) dataset_validators.validate_at_least_one_additional_column(header=countheader) dataset_validators.validate_header_contains_no_null_columns(header=countheader) dataset_validators.validate_scoreset_count_data_input(file=countfile) if scorefile is not None and countfile is not None: dataset_validators.validate_datasets_define_same_variants( scores=scorefile, counts=countfile )
the-stack_0_14521
import shutil import pytest import yaml from click.testing import CliRunner from kedro.extras.datasets.pandas import CSVDataSet from kedro.io import DataCatalog, MemoryDataSet from kedro.pipeline import Pipeline, node @pytest.fixture def fake_load_context(mocker): context = mocker.MagicMock() return mocker.patch( "kedro.framework.session.KedroSession.load_context", return_value=context ) PIPELINE_NAME = "pipeline" @pytest.fixture def mock_pipelines(mocker): dummy_pipelines = {PIPELINE_NAME: Pipeline([]), "second": Pipeline([])} return mocker.patch("kedro.framework.cli.catalog.pipelines", dummy_pipelines) @pytest.mark.usefixtures( "chdir_to_dummy_project", "fake_load_context", "mock_pipelines" ) class TestCatalogListCommand: def test_list_all_pipelines(self, fake_project_cli, fake_metadata, mocker): yaml_dump_mock = mocker.patch("yaml.dump", return_value="Result YAML") result = CliRunner().invoke( fake_project_cli, ["catalog", "list"], obj=fake_metadata ) assert not result.exit_code expected_dict = { "DataSets in 'pipeline' pipeline": {}, "DataSets in 'second' pipeline": {}, } yaml_dump_mock.assert_called_once_with(expected_dict) def test_list_specific_pipelines(self, fake_project_cli, fake_metadata, mocker): yaml_dump_mock = mocker.patch("yaml.dump", return_value="Result YAML") result = CliRunner().invoke( fake_project_cli, ["catalog", "list", "--pipeline", PIPELINE_NAME], obj=fake_metadata, ) assert not result.exit_code expected_dict = {f"DataSets in '{PIPELINE_NAME}' pipeline": {}} yaml_dump_mock.assert_called_once_with(expected_dict) def test_not_found_pipeline(self, fake_project_cli, fake_metadata): result = CliRunner().invoke( fake_project_cli, ["catalog", "list", "--pipeline", "fake"], obj=fake_metadata, ) assert result.exit_code expected_output = ( "Error: `fake` pipeline not found! Existing pipelines: pipeline, second" ) assert expected_output in result.output def test_no_param_datasets_in_respose( self, fake_project_cli, fake_metadata, fake_load_context, mocker, mock_pipelines ): yaml_dump_mock = mocker.patch("yaml.dump", return_value="Result YAML") mocked_context = fake_load_context.return_value catalog_data_sets = { "iris_data": CSVDataSet("test.csv"), "intermediate": MemoryDataSet(), "parameters": MemoryDataSet(), "params:data_ratio": MemoryDataSet(), "not_used": CSVDataSet("test2.csv"), } mocked_context.catalog = DataCatalog(data_sets=catalog_data_sets) mocker.patch.object( mock_pipelines[PIPELINE_NAME], "data_sets", return_value=catalog_data_sets.keys() - {"not_used"}, ) result = CliRunner().invoke( fake_project_cli, ["catalog", "list"], obj=fake_metadata, ) assert not result.exit_code # 'parameters' and 'params:data_ratio' should not appear in the response expected_dict = { f"DataSets in '{PIPELINE_NAME}' pipeline": { "Datasets mentioned in pipeline": { "CSVDataSet": ["iris_data"], "MemoryDataSet": ["intermediate"], }, "Datasets not mentioned in pipeline": {"CSVDataSet": ["not_used"]}, } } key = f"DataSets in '{PIPELINE_NAME}' pipeline" assert yaml_dump_mock.call_count == 1 assert yaml_dump_mock.call_args[0][0][key] == expected_dict[key] def test_default_dataset( self, fake_project_cli, fake_metadata, fake_load_context, mocker, mock_pipelines ): """Test that datasets that are found in `Pipeline.data_sets()`, but not in the catalog, are outputted under the key "DefaultDataset". """ yaml_dump_mock = mocker.patch("yaml.dump", return_value="Result YAML") mocked_context = fake_load_context.return_value catalog_data_sets = {"some_dataset": CSVDataSet("test.csv")} mocked_context.catalog = DataCatalog(data_sets=catalog_data_sets) mocker.patch.object( mock_pipelines[PIPELINE_NAME], "data_sets", return_value=catalog_data_sets.keys() | {"intermediate"}, ) result = CliRunner().invoke( fake_project_cli, ["catalog", "list"], obj=fake_metadata, ) assert not result.exit_code expected_dict = { f"DataSets in '{PIPELINE_NAME}' pipeline": { "Datasets mentioned in pipeline": { "CSVDataSet": ["some_dataset"], "DefaultDataSet": ["intermediate"], } } } key = f"DataSets in '{PIPELINE_NAME}' pipeline" assert yaml_dump_mock.call_count == 1 assert yaml_dump_mock.call_args[0][0][key] == expected_dict[key] def identity(data): return data # pragma: no cover @pytest.mark.usefixtures("chdir_to_dummy_project") class TestCatalogCreateCommand: PIPELINE_NAME = "de" @staticmethod @pytest.fixture(params=["base"]) def catalog_path(request, fake_repo_path): catalog_path = fake_repo_path / "conf" / request.param / "catalog" yield catalog_path shutil.rmtree(catalog_path, ignore_errors=True) def test_pipeline_argument_is_required(self, fake_project_cli): result = CliRunner().invoke(fake_project_cli, ["catalog", "create"]) assert result.exit_code expected_output = "Error: Missing option '--pipeline' / '-p'." assert expected_output in result.output @pytest.mark.usefixtures("fake_load_context") def test_not_found_pipeline(self, fake_project_cli, fake_metadata, mock_pipelines): result = CliRunner().invoke( fake_project_cli, ["catalog", "create", "--pipeline", "fake"], obj=fake_metadata, ) assert result.exit_code existing_pipelines = ", ".join(sorted(mock_pipelines.keys())) expected_output = ( f"Error: `fake` pipeline not found! Existing " f"pipelines: {existing_pipelines}\n" ) assert expected_output in result.output def test_catalog_is_created_in_base_by_default( self, fake_project_cli, fake_metadata, fake_repo_path, catalog_path ): main_catalog_path = fake_repo_path / "conf" / "base" / "catalog.yml" main_catalog_config = yaml.safe_load(main_catalog_path.read_text()) assert "example_iris_data" in main_catalog_config data_catalog_file = catalog_path / f"{self.PIPELINE_NAME}.yml" result = CliRunner().invoke( fake_project_cli, ["catalog", "create", "--pipeline", self.PIPELINE_NAME], obj=fake_metadata, ) assert not result.exit_code assert data_catalog_file.is_file() expected_catalog_config = { "example_test_x": {"type": "MemoryDataSet"}, "example_test_y": {"type": "MemoryDataSet"}, "example_train_x": {"type": "MemoryDataSet"}, "example_train_y": {"type": "MemoryDataSet"}, } catalog_config = yaml.safe_load(data_catalog_file.read_text()) assert catalog_config == expected_catalog_config @pytest.mark.parametrize("catalog_path", ["local"], indirect=True) def test_catalog_is_created_in_correct_env( self, fake_project_cli, fake_metadata, catalog_path ): data_catalog_file = catalog_path / f"{self.PIPELINE_NAME}.yml" env = catalog_path.parent.name result = CliRunner().invoke( fake_project_cli, ["catalog", "create", "--pipeline", self.PIPELINE_NAME, "--env", env], obj=fake_metadata, ) assert not result.exit_code assert data_catalog_file.is_file() def test_no_missing_datasets( self, fake_project_cli, fake_metadata, fake_load_context, fake_repo_path, mock_pipelines, ): mocked_context = fake_load_context.return_value catalog_data_sets = { "input_data": CSVDataSet("test.csv"), "output_data": CSVDataSet("test2.csv"), } mocked_context.catalog = DataCatalog(data_sets=catalog_data_sets) mocked_context.project_path = fake_repo_path mock_pipelines[self.PIPELINE_NAME] = Pipeline( [node(identity, "input_data", "output_data")] ) data_catalog_file = ( fake_repo_path / "conf" / "base" / "catalog" / f"{self.PIPELINE_NAME}.yml" ) result = CliRunner().invoke( fake_project_cli, ["catalog", "create", "--pipeline", self.PIPELINE_NAME], obj=fake_metadata, ) assert not result.exit_code assert not data_catalog_file.exists() @pytest.mark.usefixtures("fake_repo_path") def test_missing_datasets_appended( self, fake_project_cli, fake_metadata, catalog_path ): data_catalog_file = catalog_path / f"{self.PIPELINE_NAME}.yml" assert not catalog_path.exists() catalog_path.mkdir() catalog_config = { "example_test_x": {"type": "pandas.CSVDataSet", "filepath": "test.csv"} } with data_catalog_file.open(mode="w") as catalog_file: yaml.safe_dump(catalog_config, catalog_file, default_flow_style=False) result = CliRunner().invoke( fake_project_cli, ["catalog", "create", "--pipeline", self.PIPELINE_NAME], obj=fake_metadata, ) assert not result.exit_code expected_catalog_config = { "example_test_x": catalog_config["example_test_x"], "example_test_y": {"type": "MemoryDataSet"}, "example_train_x": {"type": "MemoryDataSet"}, "example_train_y": {"type": "MemoryDataSet"}, } catalog_config = yaml.safe_load(data_catalog_file.read_text()) assert catalog_config == expected_catalog_config def test_bad_env(self, fake_project_cli, fake_metadata): """Test error when provided conf environment does not exist""" env = "no_such_env" cmd = ["catalog", "list", "-e", env, "--pipeline", PIPELINE_NAME] result = CliRunner().invoke(fake_project_cli, cmd, obj=fake_metadata) assert result.exit_code assert "Unable to instantiate Kedro session" in result.output
the-stack_0_14522
"""Dyson test configuration.""" from unittest.mock import patch import pytest from . import CREDENTIAL, HOST, SERIAL from .mocked_mqtt import MockedMQTT @pytest.fixture() def mqtt_client(request: pytest.FixtureRequest) -> MockedMQTT: """Return mocked mqtt client.""" device_type = request.module.DEVICE_TYPE status = request.module.STATUS environmental_data = request.module.ENVIRONMENTAL_DATA mocked_mqtt = MockedMQTT( HOST, SERIAL, CREDENTIAL, f"{device_type}/{SERIAL}/command", f"{device_type}/{SERIAL}/status/current", status, environmental_data, ) with patch("libdyson.dyson_device.mqtt.Client", mocked_mqtt.refersh), patch( "libdyson.dyson_device.TIMEOUT", 0 ): yield mocked_mqtt
the-stack_0_14523
from django.core.paginator import Paginator, EmptyPage, PageNotAnInteger # Yields a list chunk of size n from list def group(list, n): for i in range(0, len(list), n): yield list[i:i+n] # Takes requested data and breaks it up into a number of pages, # each with n pages def pagebreak(request, data, n): paginator = Paginator(data, 1) page = request.GET.get('page') items = paginator.get_page(page) # Generate page numbers to provide a link to from current page page_span = 2 last = paginator.num_pages index = items.number prev = (index - page_span) if index > page_span else 1 next = (index + page_span) if index < (last - page_span) else last page_range = paginator.page_range[prev:next] return items, page_range
the-stack_0_14524
import torch import torch.nn as nn import torch.nn.functional as F import pdb from collections import OrderedDict class LinearFeatureBaseline(nn.Module): """Linear baseline based on handcrafted features, as described in [1] (Supplementary Material 2). [1] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, Pieter Abbeel, "Benchmarking Deep Reinforcement Learning for Continuous Control", 2016 (https://arxiv.org/abs/1604.06778) """ def __init__(self, input_size, reg_coeff=1e-5): super(LinearFeatureBaseline, self).__init__() self.input_size = input_size self._reg_coeff = reg_coeff self.weight = nn.Parameter(torch.Tensor(self.feature_size,), requires_grad=False) self.weight.data.zero_() self._eye = torch.eye(self.feature_size, dtype=torch.float32, device=self.weight.device) @property def feature_size(self): return 2 * self.input_size + 4 def _feature(self, episodes): ones = episodes.mask.unsqueeze(2) observations = episodes.observations time_step = torch.arange(len(episodes)).view(-1, 1, 1) * ones / 100.0 return torch.cat([ observations, observations ** 2, time_step, time_step ** 2, time_step ** 3, ones ], dim=2) def fit(self, episodes): # sequence_length * batch_size x feature_size featmat = self._feature(episodes).view(-1, self.feature_size) # sequence_length * batch_size x 1 returns = episodes.returns.view(-1, 1) # Remove blank (all-zero) episodes that only exist because episode lengths vary flat_mask = episodes.mask.flatten() flat_mask_nnz = torch.nonzero(flat_mask, as_tuple=False) featmat = featmat[flat_mask_nnz].view(-1, self.feature_size) returns = returns[flat_mask_nnz].view(-1, 1) reg_coeff = self._reg_coeff XT_y = torch.matmul(featmat.t(), returns) XT_X = torch.matmul(featmat.t(), featmat) for _ in range(5): try: coeffs, _ = torch.lstsq(XT_y, XT_X + reg_coeff * self._eye) # An extra round of increasing regularization eliminated # inf or nan in the least-squares solution most of the time if torch.isnan(coeffs).any() or torch.isinf(coeffs).any(): raise RuntimeError break except RuntimeError: reg_coeff *= 10 else: raise RuntimeError('Unable to solve the normal equations in ' '`LinearFeatureBaseline`. The matrix X^T*X (with X the design ' 'matrix) is not full-rank, regardless of the regularization ' '(maximum regularization: {0}).'.format(reg_coeff)) self.weight.copy_(coeffs.flatten()) def forward(self, episodes): features = self._feature(episodes) values = torch.mv(features.view(-1, self.feature_size), self.weight) return values.view(features.shape[:2])
the-stack_0_14525
import random from collections import Iterable from dynaconf import settings def lang_raw(lang_code, *path): package = settings.LANG[lang_code] for p in path: package = package[p] return package def lang(lang_code, *path): package = settings.LANG[lang_code] for p in path: package = package[p] if isinstance(package, Iterable) and not isinstance(package, str): return random.choice(list(package)) else: return package def limitation(name): return settings.LIMITATIONS[name]
the-stack_0_14527
""" Code for `daugman_visual_explanation.ipynb` """ import cv2 import numpy as np import matplotlib.pyplot as plt import itertools import random from daugman import daugman from daugman import find_iris from typing import List, Tuple, Iterable class DaugmanVisualExplanation: def __init__(self, img_path: str, start_r=10, end_r=30, circle_step=2, points_step=3): self.img = self._get_new_image(img_path) self.start_r = start_r self.end_r = end_r self.circle_step = circle_step self.points_step = points_step self.all_points = self._get_all_potential_iris_centers(self.img) self.colors = self._get_unique_color_for_each_point(self.all_points) def _get_new_image(self, img_path, gray=False) -> np.ndarray: """ Get properly cropped BGR image, which looks like grayscale """ img = cv2.imread(img_path) img = img[20:130, 20:130] img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) if not gray: img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) return img def _get_all_potential_iris_centers(self, img: np.ndarray) -> List[Tuple[int, int]]: # get all potential points for search (from `find_iris()`) h = img.shape[0] # we will look only on dots within central 1/3 of image single_axis_range = range(int(h / 3), h - int(h / 3), self.points_step) all_points = list(itertools.product(single_axis_range, single_axis_range)) return all_points def _get_unique_color_for_each_point(self, all_points: List[Tuple[int, int]]) -> List[Tuple[int, int, int]]: colors = [(random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) for i in self.all_points] return colors def plot_all_potential_iris_centers(self) -> np.ndarray: # plot all potential points img_dot = self.img.copy() for point, color in zip(self.all_points, self.colors): cv2.circle(img_dot, point, 0, color, -1) _ = plt.imshow(img_dot[::, ::, ::-1]) return img_dot def plot_circles_for_one_center(self, img_dot: np.ndarray, dot_idx=0) -> np.ndarray: img_circles = img_dot.copy() # within circles in radii range from 10px to 1/4 of image side # plot the chosen potential point cv2.circle(img_circles, list(self.all_points)[dot_idx], 0, self.colors[dot_idx], 1) # plot all circle candidates for the single potential point img_circles = self._draw_circles(img_circles, self.all_points[dot_idx], self.colors[dot_idx], start_r=self.start_r, end_r=self.end_r, step=self.circle_step) _ = plt.imshow(img_circles[::, ::, ::-1]) return img_circles def _draw_circles(self, img: np.ndarray, center: Tuple[int, int], color: Tuple[int, int, int], start_r: int, end_r: int, step: int, alpha=0.5) -> np.ndarray: """ Part of ``daugman()`` modified for presentation purposes """ # get separate coordinates x, y = center overlay = img.copy() radii = list(range(start_r, end_r, step)) for r in radii: cv2.circle(overlay, center, r, color, 1) img = cv2.addWeighted(overlay, alpha, img, 1 - alpha, 0) return img def plot_best_circle_for_single_potential_iris_center(self, img_dot: np.ndarray, dot_idx: int, color=None, alpha=0.8) -> np.ndarray: gray_img = cv2.cvtColor(self.img, cv2.COLOR_BGR2GRAY) # get best circle _, best_radius = daugman(gray_img, self.all_points[dot_idx], self.start_r, self.end_r, self.circle_step) # plot best circle if not color: color = self.colors[dot_idx] overlay = img_dot.copy() cv2.circle(overlay, self.all_points[dot_idx], best_radius, color, 1) img_dot = cv2.addWeighted(overlay, alpha, img_dot, 1 - alpha, 0) return img_dot def plot_best_circle_for_a_few_potential_iris_centers(self, img_dot: np.ndarray, idxs: Iterable[int]) -> np.ndarray: img = img_dot.copy() for idx in idxs: img = self.plot_best_circle_for_single_potential_iris_center(img, idx) _ = plt.imshow(img[::, ::, ::-1]) return img_dot def find_iris(self, *, daugman_start, daugman_end, daugman_step, points_step) -> np.ndarray: gray_img = cv2.cvtColor(self.img, cv2.COLOR_BGR2GRAY) answer = find_iris(gray_img, daugman_start=daugman_start, daugman_end=daugman_end, daugman_step=daugman_step, points_step=points_step) iris_center, iris_rad = answer out = self.img.copy() cv2.circle(out, iris_center, iris_rad, (0, 0, 255), 1) _ = plt.imshow(out[::, ::, ::-1]) return out def plot_pixel_intensity_delta_pic(self) -> None: # white image img = np.full([100, 100, 3], 255, dtype=np.uint8) # black circle img = cv2.circle(img, (50, 50), 20, [0, 0, 0], -1) # yellow img = cv2.circle(img, (50, 50), 10, [255, 255, 0], 1) # green img = cv2.circle(img, (50, 50), 15, [0, 255, 0], 1) # red img = cv2.circle(img, (50, 50), 20, [255, 0, 0], 1) # blue img = cv2.circle(img, (50, 50), 25, [0, 0, 255], 1) _ = plt.imshow(img) def find_iris_on_binary_image(self, *, daugman_start, daugman_end, daugman_step, points_step) -> None: # create simple image img = np.full([100, 100, 3], 255, dtype=np.uint8) img = cv2.circle(img, (50, 50), 20, [0, 0, 0], -1) gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) answer = find_iris(gray_img, daugman_start=daugman_start, daugman_end=daugman_end, daugman_step=daugman_step, points_step=points_step) iris_center, iris_rad = answer cv2.circle(img, iris_center, iris_rad, (0, 0, 255), 1) _ = plt.imshow(img[::, ::, ::-1])
the-stack_0_14528
import math import torch.nn as nn class VGG(nn.Module): ''' VGG model ''' def __init__(self, features): super(VGG, self).__init__() self.features = features self.classifier = nn.Sequential( nn.Dropout(), nn.Linear(512, 512), nn.ReLU(True), nn.Dropout(), nn.Linear(512, 512), nn.ReLU(True), nn.Linear(512, 10), ) # Initialize weights for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) m.bias.data.zero_() def forward(self, x): x = self.features(x) x = x.view(x.size(0), -1) x = self.classifier(x) return x def make_layers(cfg, batch_norm=False): layers = [] in_channels = 3 for v in cfg: if v == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1) if batch_norm: layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)] else: layers += [conv2d, nn.ReLU(inplace=True)] in_channels = v return nn.Sequential(*layers) cfg = { 'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'D': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'], 'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'], } def vgg11(): """VGG 11-layer model (configuration "A")""" return VGG(make_layers(cfg['A']))
the-stack_0_14530
"""Very simple breakout clone. A circle shape serves as the paddle, then breakable bricks constructed of Poly-shapes. The code showcases several pymunk concepts such as elasitcity, impulses, constant object speed, joints, collision handlers and post step callbacks. """ import math, sys, random import os import pygame from pygame.locals import * from pygame.color import * import pymunk from pymunk import Vec2d import pymunk.pygame_util width, height = 600,600 collision_types = { "ball": 1, "brick": 2, "bottom": 3, "player": 4, } def spawn_ball(space, position, direction): ball_body = pymunk.Body(1, pymunk.inf) ball_body.position = position ball_shape = pymunk.Circle(ball_body, 5) ball_shape.color = THECOLORS["green"] ball_shape.elasticity = 1.0 ball_shape.collision_type = collision_types["ball"] ball_body.apply_impulse_at_local_point(Vec2d(direction)) # Keep ball velocity at a static value def constant_velocity(body, gravity, damping, dt): body.velocity = body.velocity.normalized() * 400 ball_body.velocity_func = constant_velocity space.add(ball_body, ball_shape) def setup_level(space, player_body): # Remove balls and bricks for s in space.shapes[:]: if s.body.body_type == pymunk.Body.DYNAMIC and s.body not in [player_body]: space.remove(s.body, s) # Spawn a ball for the player to have something to play with spawn_ball(space, player_body.position + (0,40), random.choice([(1,10),(-1,10)])) # Spawn bricks for x in range(0,21): x = x * 20 + 100 for y in range(0,5): y = y * 10 + 400 brick_body = pymunk.Body(body_type=pymunk.Body.KINEMATIC) brick_body.position = x, y brick_shape = pymunk.Poly.create_box(brick_body, (20,10)) brick_shape.elasticity = 1.0 brick_shape.color = THECOLORS['blue'] brick_shape.group = 1 brick_shape.collision_type = collision_types["brick"] space.add(brick_body, brick_shape) # Make bricks be removed when hit by ball def remove_brick(arbiter, space, data): brick_shape = arbiter.shapes[0] space.remove(brick_shape, brick_shape.body) h = space.add_collision_handler( collision_types["brick"], collision_types["ball"]) h.separate = remove_brick def main(): ### PyGame init pygame.init() screen = pygame.display.set_mode((width,height)) clock = pygame.time.Clock() running = True font = pygame.font.SysFont("Arial", 16) ### Physics stuff space = pymunk.Space() draw_options = pymunk.pygame_util.DrawOptions(screen) ### Game area # walls - the left-top-right walls static_lines = [pymunk.Segment(space.static_body, (50, 50), (50, 550), 2) ,pymunk.Segment(space.static_body, (50, 550), (550, 550), 2) ,pymunk.Segment(space.static_body, (550, 550), (550, 50), 2) ] for line in static_lines: line.color = THECOLORS['lightgray'] line.elasticity = 1.0 space.add(static_lines) # bottom - a sensor that removes anything touching it bottom = pymunk.Segment(space.static_body, (50, 50), (550, 50), 2) bottom.sensor = True bottom.collision_type = collision_types["bottom"] bottom.color = THECOLORS['red'] def remove_first(arbiter, space, data): ball_shape = arbiter.shapes[0] space.remove(ball_shape, ball_shape.body) return True h = space.add_collision_handler( collision_types["ball"], collision_types["bottom"]) h.begin = remove_first space.add(bottom) ### Player ship player_body = pymunk.Body(500, pymunk.inf) player_body.position = 300,100 player_shape = pymunk.Segment(player_body, (-50,0), (50,0), 8) player_shape.color = THECOLORS["red"] player_shape.elasticity = 1.0 player_shape.collision_type = collision_types["player"] def pre_solve(arbiter, space, data): # We want to update the collision normal to make the bounce direction # dependent of where on the paddle the ball hits. Note that this # calculation isn't perfect, but just a quick example. set_ = arbiter.contact_point_set if len(set_.points) > 0: player_shape = arbiter.shapes[0] width = (player_shape.b - player_shape.a).x delta = (player_shape.body.position - set_.points[0].point_a.x).x normal = Vec2d(0, 1).rotated(delta / width / 2) set_.normal = normal set_.points[0].distance = 0 arbiter.contact_point_set = set_ return True h = space.add_collision_handler( collision_types["player"], collision_types["ball"]) h.pre_solve = pre_solve # restrict movement of player to a straigt line move_joint = pymunk.GrooveJoint(space.static_body, player_body, (100,100), (500,100), (0,0)) space.add(player_body, player_shape, move_joint) global state # Start game setup_level(space, player_body) while running: for event in pygame.event.get(): if event.type == QUIT: running = False elif event.type == KEYDOWN and (event.key in [K_ESCAPE, K_q]): running = False elif event.type == KEYDOWN and event.key == K_p: pygame.image.save(screen, "breakout.png") elif event.type == KEYDOWN and event.key == K_LEFT: player_body.velocity = (-600,0) elif event.type == KEYUP and event.key == K_LEFT: player_body.velocity = 0,0 elif event.type == KEYDOWN and event.key == K_RIGHT: player_body.velocity = (600,0) elif event.type == KEYUP and event.key == K_RIGHT: player_body.velocity = 0,0 elif event.type == KEYDOWN and event.key == K_r: setup_level(space, player_body) elif event.type == KEYDOWN and event.key == K_SPACE: spawn_ball(space, player_body.position + (0,40), random.choice([(1,10),(-1,10)])) ### Clear screen screen.fill(THECOLORS["black"]) ### Draw stuff space.debug_draw(draw_options) state = [] for x in space.shapes: s = "%s %s %s" % (x, x.body.position, x.body.velocity) state.append(s) ### Update physics fps = 60 dt = 1./fps space.step(dt) ### Info and flip screen screen.blit(font.render("fps: " + str(clock.get_fps()), 1, THECOLORS["white"]), (0,0)) screen.blit(font.render("Move with left/right arrows, space to spawn a ball", 1, THECOLORS["darkgrey"]), (5,height - 35)) screen.blit(font.render("Press R to reset, ESC or Q to quit", 1, THECOLORS["darkgrey"]), (5,height - 20)) pygame.display.flip() clock.tick(fps) if __name__ == '__main__': sys.exit(main())
the-stack_0_14531
""" Module for Optuna hyperparameter optimization (optuna.org) """ from __future__ import print_function from __future__ import unicode_literals from __future__ import division from __future__ import absolute_import from builtins import zip from builtins import range from builtins import open from builtins import str from future import standard_library standard_library.install_aliases() # required to make json saving work in Python 2/3 try: to_unicode = unicode except NameError: to_unicode = str import imp import json import logging import datetime import os import signal import glob from copy import copy from random import Random from time import sleep, time from itertools import product from subprocess import Popen, PIPE import importlib, types import numpy.random as nr import numpy as np import pickle from neuron import h from netpyne import sim, specs import optuna from .utils import createFolder from .utils import bashTemplate from .utils import dcp, sigfig pc = h.ParallelContext() # use bulletin board master/slave # ------------------------------------------------------------------------------- # Optuna optimization # ------------------------------------------------------------------------------- # func needs to be outside of class def runJob(nrnCommand, script, cfgSavePath, netParamsSavePath, simDataPath): """ Function for/to <short description of `netpyne.batch.optuna_parallel.runJob`> Parameters ---------- script : <type> <Short description of script> **Default:** *required* cfgSavePath : <type> <Short description of cfgSavePath> **Default:** *required* netParamsSavePath : <type> <Short description of netParamsSavePath> **Default:** *required* simDataPath : <type> <Short description of simDataPath> **Default:** *required* """ import os print('\nJob in rank id: ',pc.id()) command = '%s %s simConfig=%s netParams=%s' % (nrnCommand, script, cfgSavePath, netParamsSavePath) print(command) with open(simDataPath+'.run', 'w') as outf, open(simDataPath+'.err', 'w') as errf: pid = Popen(command.split(' '), stdout=outf, stderr=errf, preexec_fn=os.setsid).pid with open('./pids.pid', 'a') as file: file.write(str(pid) + ' ') def optunaOptim(self, pc): """ Function for/to <short description of `netpyne.batch.optuna_parallel.optunaOptim`> Parameters ---------- self : <type> <Short description of self> **Default:** *required* pc : <type> <Short description of pc> **Default:** *required* """ import sys # ------------------------------------------------------------------------------- # Optuna optimization: Parallel evaluation # ------------------------------------------------------------------------------- def objective(trial, args): import os ngen = trial.number total_jobs = 0 # options slurm, mpi type = args.get('type', 'mpi_direct') # params paramLabels = args.get('paramLabels', []) minVals = args.get('minVals', []) maxVals = args.get('maxVals', []) # paths to required scripts script = args.get('script', 'init.py') netParamsSavePath = args.get('netParamsSavePath') genFolderPath = self.saveFolder + '/trial_' + str(ngen) # mpi command setup nodes = args.get('nodes', 1) coresPerNode = args.get('coresPerNode', 1) mpiCommand = args.get('mpiCommand', 'mpiexec') nrnCommand = args.get('nrnCommand', 'nrniv -python -mpi') numproc = nodes*coresPerNode # slurm setup custom = args.get('custom', '') folder = args.get('folder', '.') email = args.get('email', '[email protected]') walltime = args.get('walltime', '00:01:00') reservation = args.get('reservation', None) allocation = args.get('allocation', 'csd403') # NSG account # fitness function fitnessFunc = args.get('fitnessFunc') fitnessFuncArgs = args.get('fitnessFuncArgs') maxFitness = args.get('maxFitness') # read params or set defaults sleepInterval = args.get('sleepInterval', 0.2) # create folder if it does not exist createFolder(genFolderPath) # -------------------------------------- # generate param values for optuna trial candidate = [] for paramLabel, minVal, maxVal in zip(paramLabels, minVals, maxVals): candidate.append(trial.suggest_uniform(str(paramLabel), minVal, maxVal)) # remember pids and jobids in a list pids = [] jobids = {} # create a job for the candidate candidate_index = 0 sleep(sleepInterval) # required for slurm # name and path jobName = "trial_" + str(ngen) jobPath = genFolderPath + '/' + jobName # set initial cfg initCfg if len(self.initCfg) > 0: for paramLabel, paramVal in self.initCfg.items(): self.setCfgNestedParam(paramLabel, paramVal) # modify cfg instance with candidate values #print(paramLabels, candidate) for label, value in zip(paramLabels, candidate): print('set %s=%s' % (label, value)) self.setCfgNestedParam(label, value) #self.setCfgNestedParam("filename", jobPath) self.cfg.simLabel = jobName self.cfg.saveFolder = genFolderPath # save cfg instance to file cfgSavePath = jobPath + '_cfg.json' self.cfg.save(cfgSavePath) if type=='mpi_bulletin': # ---------------------------------------------------------------------- # MPI master-slaves # ---------------------------------------------------------------------- pc.submit(runJob, nrnCommand, script, cfgSavePath, netParamsSavePath, jobPath) print('-'*80) else: # ---------------------------------------------------------------------- # MPI job commnand # ---------------------------------------------------------------------- if mpiCommand == '': command = '%s %s simConfig=%s netParams=%s ' % (nrnCommand, script, cfgSavePath, netParamsSavePath) else: command = '%s -n %d %s %s simConfig=%s netParams=%s ' % (mpiCommand, numproc, nrnCommand, script, cfgSavePath, netParamsSavePath) # ---------------------------------------------------------------------- # run on local machine with <nodes*coresPerNode> cores # ---------------------------------------------------------------------- if type=='mpi_direct': executer = '/bin/bash' jobString = bashTemplate('mpi_direct') %(custom, folder, command) # ---------------------------------------------------------------------- # run on HPC through slurm # ---------------------------------------------------------------------- elif type=='hpc_slurm': executer = 'sbatch' res = '#SBATCH --res=%s' % (reservation) if reservation else '' jobString = bashTemplate('hpc_slurm') % (jobName, allocation, walltime, nodes, coresPerNode, jobPath, jobPath, email, res, custom, folder, command) # ---------------------------------------------------------------------- # run on HPC through PBS # ---------------------------------------------------------------------- elif type=='hpc_torque': executer = 'qsub' queueName = args.get('queueName', 'default') nodesppn = 'nodes=%d:ppn=%d' % (nodes, coresPerNode) jobString = bashTemplate('hpc_torque') % (jobName, walltime, queueName, nodesppn, jobPath, jobPath, custom, command) # ---------------------------------------------------------------------- # save job and run # ---------------------------------------------------------------------- print('Submitting job ', jobName) print(jobString) print('-'*80) # save file batchfile = '%s.sbatch' % (jobPath) with open(batchfile, 'w') as text_file: text_file.write("%s" % jobString) if type == 'mpi_direct': with open(jobPath+'.run', 'a+') as outf, open(jobPath+'.err', 'w') as errf: pids.append(Popen([executer, batchfile], stdout=outf, stderr=errf, preexec_fn=os.setsid).pid) else: with open(jobPath+'.jobid', 'w') as outf, open(jobPath+'.err', 'w') as errf: pids.append(Popen([executer, batchfile], stdout=outf, stderr=errf, preexec_fn=os.setsid).pid) #proc = Popen(command.split([executer, batchfile]), stdout=PIPE, stderr=PIPE) sleep(0.1) #read = proc.stdout.read() if type == 'mpi_direct': with open('./pids.pid', 'a') as file: file.write(str(pids)) else: with open(jobPath+'.jobid', 'r') as outf: read=outf.readline() print(read) if len(read) > 0: jobid = int(read.split()[-1]) jobids[candidate_index] = jobid print('jobids', jobids) total_jobs += 1 sleep(0.1) # ---------------------------------------------------------------------- # gather data and compute fitness # ---------------------------------------------------------------------- if type == 'mpi_bulletin': # wait for pc bulletin board jobs to finish try: while pc.working(): sleep(1) #pc.done() except: pass num_iters = 0 jobs_completed = 0 fitness = [None] # just 1 candidate # print outfilestem print("Waiting for jobs from generation %d/%d ..." %(ngen, args.get('maxiters'))) # print "PID's: %r" %(pids) # start fitness calculation while jobs_completed < total_jobs: unfinished = [i for i, x in enumerate(fitness) if x is None ] for candidate_index in unfinished: try: # load simData and evaluate fitness jobNamePath = genFolderPath + "/trial_" + str(ngen) if os.path.isfile(jobNamePath+'.json'): with open('%s.json'% (jobNamePath)) as file: simData = json.load(file)['simData'] fitness[candidate_index] = fitnessFunc(simData, **fitnessFuncArgs) jobs_completed += 1 print(' Candidate %d fitness = %.1f' % (candidate_index, fitness[candidate_index])) elif os.path.isfile(jobNamePath+'.pkl'): with open('%s.pkl'% (jobNamePath), 'rb') as file: simData = pickle.load(file)['simData'] fitness[candidate_index] = fitnessFunc(simData, **fitnessFuncArgs) jobs_completed += 1 print(' Candidate %d fitness = %.1f' % (candidate_index, fitness[candidate_index])) except Exception as e: err = "There was an exception evaluating candidate %d:"%(candidate_index) print(("%s \n %s"%(err,e))) num_iters += 1 print('completed: %d' %(jobs_completed)) if num_iters >= args.get('maxiter_wait', 5000): print("Max iterations reached, the %d unfinished jobs will be canceled and set to default fitness" % (len(unfinished))) for canditade_index in unfinished: fitness[canditade_index] = maxFitness # rerun those that didn't complete; jobs_completed += 1 try: if 'scancelUser' in kwargs: os.system('scancel -u %s'%(kwargs['scancelUser'])) else: os.system('scancel %d' % (jobids[candidate_index])) # terminate unfinished job (resubmitted jobs not terminated!) except: pass sleep(args.get('time_sleep', 1)) # kill all processes if type == 'mpi_bulletin': try: with open("./pids.pid", 'r') as file: # read pids for mpi_bulletin pids = [int(i) for i in file.read().split(' ')[:-1]] with open("./pids.pid", 'w') as file: # delete content pass for pid in pids: try: os.killpg(os.getpgid(pid), signal.SIGTERM) except: pass except: pass elif type == 'mpi_direct': import psutil PROCNAME = "nrniv" for proc in psutil.process_iter(): # check whether the process name matches try: if proc.name() == PROCNAME: proc.kill() except: pass # don't want to to this for hpcs since jobs are running on compute nodes not master print("-" * 80) print(" Completed a generation ") print("-" * 80) return fitness[0] # single candidate for now # ------------------------------------------------------------------------------- # Optuna optimization: Main code # ------------------------------------------------------------------------------- import os from time import sleep try: from mpi4py import MPI comm = MPI.COMM_WORLD size = comm.Get_size() rank = comm.Get_rank() except: size = 1 rank = 0 # create main sim directory and save scripts self.saveScripts() global ngen ngen = -1 # gather **kwargs args = {} args['popsize'] = self.optimCfg.get('popsize', 1) args['minVals'] = [x['values'][0] for x in self.params] args['maxVals'] = [x['values'][1] for x in self.params] args['cfg'] = self.cfg # include here args/params to pass to evaluator function args['paramLabels'] = [x['label'] for x in self.params] args['netParamsSavePath'] = self.saveFolder + '/' + self.batchLabel + '_netParams.py' args['maxiters'] = self.optimCfg['maxiters'] if 'maxiters' in self.optimCfg else 1000 args['maxtime'] = self.optimCfg['maxtime'] if 'maxtime' in self.optimCfg else None args['fitnessFunc'] = self.optimCfg['fitnessFunc'] args['fitnessFuncArgs'] = self.optimCfg['fitnessFuncArgs'] args['maxiter_wait'] = self.optimCfg['maxiter_wait'] args['time_sleep'] = self.optimCfg['time_sleep'] args['maxFitness'] = self.optimCfg.get('maxFitness', 1000) args['direction'] = self.optimCfg['direction'] if 'direction' in self.optimCfg else 'minimize' for key, value in self.optimCfg.items(): args[key] = value for key, value in self.runCfg.items(): args[key] = value # if using pc bulletin board, initialize all workers if self.runCfg.get('type', None) == 'mpi_bulletin': for iworker in range(int(pc.nhost())): pc.runworker() # ------------------------------------------------------------------------------- # Run algorithm # ------------------------------------------------------------------------------- sleep(rank) # each process wiats a different time to avoid saturating sqlite database study = optuna.create_study(study_name=self.batchLabel, storage='sqlite:///%s/%s_storage.db' % (self.saveFolder, self.batchLabel), load_if_exists=True, direction=args['direction']) try: study.optimize(lambda trial: objective(trial, args), n_trials=args['maxiters'], timeout=args['maxtime']) except Exception as e: print(e) # print best and finish if rank == size-1: df = study.trials_dataframe(attrs=('number', 'value', 'params', 'state')) importance = optuna.importance.get_param_importances(study=study) print('\nBest trial: ', study.best_trial) print('\nParameter importance: ', dict(importance)) print('\nBest Solution with fitness = %.4g: \n' % (study.best_value), study.best_params) print('\nSaving to output.pkl...\n') output = {'study': study, 'df': df, 'importance': importance} with open('%s/%s_output.pkl' % (self.saveFolder, self.batchLabel), 'wb') as f: pickle.dump(output, f) sleep(1) print("-" * 80) print(" Completed Optuna parameter optimization ") print("-" * 80) sys.exit()
the-stack_0_14532
# Standard library imports import sqlite3 from dataclasses import asdict # Third party imports import pandas as pd from spotify_flows.spotify.artists import read_artists_from_id from spotify_flows.database import SpotifyDatabase # Main body def main(): db = SpotifyDatabase("data/spotify.db", op_table="operations") df_related, df_artists = db.table_contents(["related", "artists"]) df_related = df_related.drop_duplicates() enriched_artist_ids = df_artists.loc[:, "id"].unique().tolist() all_artist_ids = set( df_related["artist_id"].tolist() + df_related["related_artist_id"].tolist() ) artists_to_enrich = [id for id in all_artist_ids if id not in enriched_artist_ids] remaining_artists = artists_to_enrich while remaining_artists: n = min(len(remaining_artists), 50) artists = read_artists_from_id(artist_ids=remaining_artists[:n]) df_data = pd.DataFrame([asdict(artist) for artist in artists]).drop( columns=["genres"] ) db.enrich_database_table(df_data=df_data, table="artists") remaining_artists = remaining_artists[n:] if __name__ == "__main__": raise SystemExit(main())
the-stack_0_14533
import glob import os import pytest from cli.src.helpers.build_io import get_build_path from cli.src.helpers.data_loader import load_schema_obj, load_all_schema_objs, load_all_schema_objs_from_directory,\ load_template_file, load_json_obj, types, SCHEMA_DIR from tests.unit.helpers.constants import CLUSTER_NAME_LOAD, NON_EXISTING_CLUSTER, TEST_DOCS, OUTPUT_PATH, TEST_INVENTORY, TEST_JSON,\ TEST_JSON_NAME, TEST_CLUSTER_MODEL TEST_MINIMAL_CLUSTER_CONFIG = { 'kind': 'epiphany-cluster', 'title': 'Epiphany cluster Config', 'provider': 'aws', 'name': 'default', 'specification': { 'name': 'name', 'prefix': 'prefix', 'admin_user': { 'name': 'ubuntu', 'key_path': '/shared/.ssh/epiphany-operations/id_rsa' }, 'cloud': { 'k8s_as_cloud_service': False, 'use_public_ips': False, 'credentials': { 'key': 'XXXX-XXXX-XXXX', 'secret': 'XXXXXXXXXXXXXXXX' }, 'default_os_image': 'default' }, 'components': { 'repository': {'count': 1}, 'kubernetes_master': {'count': 1}, 'kubernetes_node': {'count': 2}, 'logging': {'count': 1}, 'monitoring': {'count': 1}, 'kafka': {'count': 2}, 'postgresql': {'count': 1}, 'load_balancer': {'count': 1}, 'rabbitmq': {'count': 1} } } } def test_load_schema_obj(): yaml_obj = load_schema_obj(types.DEFAULT, 'aws', 'configuration/minimal-cluster-config') assert yaml_obj == TEST_MINIMAL_CLUSTER_CONFIG def test_load_all_schema_objs(): yaml_objs = load_all_schema_objs(types.DEFAULT, 'aws', 'configuration/minimal-cluster-config') assert yaml_objs == [TEST_MINIMAL_CLUSTER_CONFIG] def test_load_all_schema_objs_from_directory(): defaults = load_all_schema_objs_from_directory(types.DEFAULT, 'common', 'configuration') directory_path = os.path.join(SCHEMA_DIR, 'common', types.DEFAULT, 'configuration') assert len(defaults) == len(glob.glob(os.path.join(directory_path, '*.yml'))) def test_load_template_file(): template = load_template_file(types.ANSIBLE, '', 'inventory') content = template.render(inventory=TEST_INVENTORY, cluster_model=TEST_CLUSTER_MODEL) assert 'test-1 ansible_host=10.0.0.1' in content assert 'test-2 ansible_host=10.0.0.2' in content assert 'test-3 ansible_host=10.0.0.3' in content assert 'test-4 ansible_host=10.0.0.4' in content assert 'ansible_user=operations' in content assert 'ansible_ssh_private_key_file=id_rsa' in content def test_load_json_obj(): loaded_json = load_json_obj(os.path.join(OUTPUT_PATH, TEST_JSON_NAME)) assert loaded_json == TEST_JSON def test_load_not_existing_manifest_docs(): build_path = get_build_path(NON_EXISTING_CLUSTER) with pytest.raises(Exception): load_manifest(build_path)
the-stack_0_14534
import tempfile from unittest import TestCase from qtlayoutbuilder.lib.multiline_string_utils import MultilineString from qtlayoutbuilder.lib.original_file_rewriter import OriginalFileReWriter class TestOriginalFileReWriter(TestCase): # Lower level functions first. def test_add_backup_location_comment(self): # First check that we get what we expect when the existing # one_big_string, does not already have such a comment in. one_big_string = 'just this text' mock_backup_folder_string = 'mock_backup_folder' output = OriginalFileReWriter._add_backup_location_comment( mock_backup_folder_string, one_big_string) output = MultilineString.normalise(output) expected = MultilineString.normalise(""" # This file has been automatically re-formatted. # Previous versions can be found here: # mock_backup_folder ## just this text """) self.assertEquals(output, expected) # Now ensure that if we do it again - but this time with the # new one_big_string that already has a comment in, the old comment # gets replaced with the new. previous_output = output mock_backup_folder_string = 'DIFFERENT_mock_backup_folder' new_output = \ OriginalFileReWriter._add_backup_location_comment( mock_backup_folder_string, previous_output) new_output = MultilineString.normalise(new_output) expected = MultilineString.normalise(""" # This file has been automatically re-formatted. # Previous versions can be found here: # DIFFERENT_mock_backup_folder ## just this text """) self.assertEquals(new_output, expected) def test_make_backup_of_existing_file(self): # Make a file that we will then back up. orig_fd = tempfile.NamedTemporaryFile(delete=False) orig_file_path = orig_fd.name orig_fd.write('original file content') orig_fd.close() # Back it up backup_folder, backup_file_path = \ OriginalFileReWriter._make_backup_of_existing_file(orig_file_path) # Ensure that the backed up file has the expected content. with open(backup_file_path, 'r') as read_fd: content = read_fd.read() self.assertEqual(content, 'original file content') # Now at API level def test_at_api_level(self): # Make a file that we will then overwrite. orig_fd = tempfile.NamedTemporaryFile(suffix='.txt', delete=False) orig_file_path = orig_fd.name content = MultilineString.shift_left(""" layout QHBoxLayout widget QWidget """) orig_fd.write(content) orig_fd.close() # Mandate the overwrite OriginalFileReWriter.overwrite_original(orig_file_path, 'new content') # Check for both the presence of the new content, and the # backup message. with open(orig_file_path, 'r') as input_file: content = input_file.read() self.assertTrue('new content' in content) self.assertTrue('has been' in content)
the-stack_0_14537
from PIL import ImageGrab #Used to screenshots #it takes board number 1-6!! def screen_board(board_no): grab_displays = ((10,50,630,380), (650,50,1270,380), (1290,50,1910,380), (10,590,630,920), (650,590,1270,920), (1290,590,1910,920)) #Screenshot of whole window number board-1 return ImageGrab.grab(bbox=(grab_displays[board_no-1])) #takes and returns a screenshot of given coords x1 y1 to x2 y2 def screenshot(xyxy): return ImageGrab.grab(bbox=(xyxy))
the-stack_0_14538
# -*- coding: utf-8 -*- settings = { 'source': 'csv', #'source': 'mongodb', 'data_path': './data', 'stock_commission': 3 / 10000.0, 'future_commission': 1 / 10000.0, 'tick_test': False, } class ConfigLog(object): log_level = 'INFO' log_to_file = True log_to_console = True log_path = './log' __all__ = ['settings', 'ConfigLog']
the-stack_0_14539
# _ _ # | | | | # ___ ___ _ __ ___| |_ __ _ _ __ | |_ ___ # / __/ _ \| '_ \/ __| __/ _` | '_ \| __/ __| # | (_| (_) | | | \__ \ || (_| | | | | |_\__ \ # \___\___/|_| |_|___/\__\__,_|_| |_|\__|___/ # """ constants.py various fixed values used elsewhere """ # place to store downloaded imaged DOWNLOAD_DIRECTORY = './downloaded_images/' # directory to save augmented images before sending to S3 TMP_SAVE_DIR = "./aug_img_tmp/" # should reflect number of distinct transformations in transformations.py NUM_POSSIBLE_TRANSFORMS = 6 # redis database host app name HOST = "redis" # redis database key for the jobs JOB_NAME = "job2"
the-stack_0_14540
import datetime from typing import List from unittest.mock import patch import pytz from django.core import mail from django.core.exceptions import ImproperlyConfigured from django.test import TestCase from django.utils import timezone from freezegun import freeze_time from posthog.email import EmailMessage from posthog.models import Event, Organization, Person, Team, User from posthog.tasks.email import send_weekly_email_report class TestEmail(TestCase): def create_person(self, team: Team, base_distinct_id: str = "") -> Person: person = Person.objects.create(team=team) person.add_distinct_id(base_distinct_id) return person @freeze_time("2020-09-21") def setUp(self): super().setUp() self.organization = Organization.objects.create() self.team = Team.objects.create(organization=self.organization, name="The Bakery") self.user = User.objects.create(email="[email protected]") self.user2 = User.objects.create(email="[email protected]") self.organization.members.add(self.user) self.organization.members.add(self.user2) last_week = datetime.datetime(2020, 9, 17, 3, 22, tzinfo=pytz.UTC) two_weeks_ago = datetime.datetime(2020, 9, 8, 19, 54, tzinfo=pytz.UTC) self.persons: List = [self.create_person(self.team, str(i)) for i in range(0, 7)] # Resurrected self.persons[0].created_at = timezone.now() - datetime.timedelta(weeks=3) self.persons[0].save() self.persons[1].created_at = timezone.now() - datetime.timedelta(weeks=4) self.persons[1].save() Event.objects.create(team=self.team, timestamp=last_week, distinct_id=0) Event.objects.create(team=self.team, timestamp=last_week, distinct_id=1) # Retained Event.objects.create(team=self.team, timestamp=last_week, distinct_id=2) Event.objects.create(team=self.team, timestamp=two_weeks_ago, distinct_id=2) Event.objects.create(team=self.team, timestamp=last_week, distinct_id=3) Event.objects.create(team=self.team, timestamp=two_weeks_ago, distinct_id=3) Event.objects.create(team=self.team, timestamp=last_week, distinct_id=4) Event.objects.create(team=self.team, timestamp=two_weeks_ago, distinct_id=4) # New Event.objects.create(team=self.team, timestamp=last_week, distinct_id=5) Event.objects.create(team=self.team, timestamp=last_week, distinct_id=5) # Churned Event.objects.create(team=self.team, timestamp=two_weeks_ago, distinct_id=6) def test_cant_send_emails_if_not_properly_configured(self) -> None: with self.settings(EMAIL_HOST=None): with self.assertRaises(ImproperlyConfigured) as e: EmailMessage("Subject", "template") self.assertEqual( str(e.exception), "Email settings not configured! Set at least the EMAIL_HOST environment variable.", ) @freeze_time("2020-09-21") def test_weekly_email_report(self) -> None: with self.settings( EMAIL_HOST="localhost", SITE_URL="http://localhost:9999", ): send_weekly_email_report() self.assertEqual(len(mail.outbox), 2) self.assertEqual(mail.outbox[0].to, ["[email protected]"]) self.assertEqual(mail.outbox[1].to, ["[email protected]"]) self.assertEqual( mail.outbox[0].subject, "PostHog weekly report for Sep 14, 2020 to Sep 20", ) self.assertEqual( mail.outbox[0].body, "", ) # no plain-text version support yet html_message = mail.outbox[0].alternatives[0][0] # type: ignore self.assertIn( "http://localhost:9999/static/posthog-logo.png", html_message, ) # absolute URLs are used self.assertIn('style="font-weight: 300"', html_message) # CSS is inlined self.assertIn( "Your PostHog weekly report is ready! Your team had 6 active users last week! &#127881;", html_message, ) # preheader @patch("posthog.tasks.email.EmailMessage") @freeze_time("2020-09-21") def test_weekly_email_report_content(self, mock_email_message): with self.settings(EMAIL_HOST="localhost"): send_weekly_email_report() self.assertEqual( mock_email_message.call_args[0][0], "PostHog weekly report for Sep 14, 2020 to Sep 20", ) # Email subject self.assertEqual(mock_email_message.call_args[0][1], "weekly_report") template_context = mock_email_message.call_args[0][2] self.assertEqual(template_context["team"], "The Bakery") self.assertEqual( template_context["period_start"], datetime.datetime(2020, 9, 14, tzinfo=pytz.UTC), ) self.assertEqual( template_context["period_end"], datetime.datetime(2020, 9, 20, 23, 59, 59, 999999, tzinfo=pytz.UTC), ) self.assertEqual( template_context["active_users"], 6, ) self.assertEqual( template_context["active_users_delta"], 0.5, ) self.assertEqual( round(template_context["user_distribution"]["new"], 2), 0.17, ) self.assertEqual( template_context["user_distribution"]["retained"], 0.5, ) self.assertEqual( round(template_context["user_distribution"]["resurrected"], 2), 0.33, ) self.assertEqual( template_context["churned_users"], {"abs": 1, "ratio": 0.25, "delta": None}, )
the-stack_0_14542
"""Given a folder with subfolders, run the schizo test and report on the min, max, etc statistics of each subfolder. """ import argparse import collections import multiprocessing import os import re import subprocess progdir = os.path.dirname(os.path.abspath(__file__)) mainscript = os.path.join(progdir, '../main.py') def dir_arg(s): if os.path.isdir(s): return s raise ArgumentError(f'{s} is not a directory') def get_rmse(fpath): p = subprocess.Popen(['python3', mainscript, fpath], stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = p.communicate() r = p.wait() vals = {} for m in re.finditer(rb'^Max RMSE, (.*) to (.*): ([^\n]+)', stderr, flags=re.M): vals[(m.group(1), m.group(2))] = float(m.group(3)) return vals def main(): ap = argparse.ArgumentParser(description=__doc__) ap.add_argument('folder', type=dir_arg) args = ap.parse_args() pool = multiprocessing.Pool() all_files = [] for path, dirs, files in os.walk(args.folder): for f in files: fpath = os.path.join(path, f) if os.path.isfile(fpath): all_files.append(fpath) results = pool.map(get_rmse, all_files) rmses = sorted(zip(all_files, results), key=lambda k: k[0]) folders = [] class Tracker: def __init__(self): self.items = collections.defaultdict(list) def __str__(self): result = [] for (t1, t2), vals in self.items.items(): result.append(f'{t1} to {t2}: {sum(vals) / len(vals):.4f} ({min(vals):.4f} / {max(vals):.4f})') return ', '.join(result) def add(self, rmse_vals): for k, v in rmse_vals.items(): self.items[k].append(v) def cap(parts, rmse): for fi in reversed(range(len(folders))): if len(parts) <= fi or parts[fi] != folders[fi][0]: fname = '/'.join([ff[0] for ff in folders]) fstr = "\n ".join(str(folders[fi][1]).split(", ")) print(f'{fname}\n {fstr}') folders.pop() else: break for fi in range(len(folders), len(parts)): folders.append([parts[fi], Tracker()]) for f in folders: f[1].add(rmse) for f, r in rmses: remainder = f parts = [] while True: remainder, tail = os.path.split(remainder) if not tail: break parts.insert(0, tail) if not remainder: break cap(parts, r) cap([], None) if __name__ == '__main__': main()
the-stack_0_14543
from __future__ import absolute_import, print_function from django.conf.urls import include, patterns, url from .endpoints.accept_project_transfer import AcceptProjectTransferEndpoint from .endpoints.organization_dashboards import OrganizationDashboardsEndpoint from .endpoints.relay_heartbeat import RelayHeartbeatEndpoint from .endpoints.relay_projectconfigs import RelayProjectConfigsEndpoint from .endpoints.relay_publickeys import RelayPublicKeysEndpoint from .endpoints.relay_index import RelayIndexEndpoint from .endpoints.relay_details import RelayDetailsEndpoint from .endpoints.relay_register import RelayRegisterChallengeEndpoint, \ RelayRegisterResponseEndpoint from .endpoints.api_applications import ApiApplicationsEndpoint from .endpoints.api_application_details import ApiApplicationDetailsEndpoint from .endpoints.api_authorizations import ApiAuthorizationsEndpoint from .endpoints.api_tokens import ApiTokensEndpoint from .endpoints.assistant import AssistantEndpoint from .endpoints.auth_index import AuthIndexEndpoint from .endpoints.authenticator_index import AuthenticatorIndexEndpoint from .endpoints.broadcast_details import BroadcastDetailsEndpoint from .endpoints.broadcast_index import BroadcastIndexEndpoint from .endpoints.catchall import CatchallEndpoint from .endpoints.chunk import ChunkUploadEndpoint from .endpoints.event_attachment_details import EventAttachmentDetailsEndpoint from .endpoints.event_attachments import EventAttachmentsEndpoint from .endpoints.event_details import EventDetailsEndpoint from .endpoints.event_owners import EventOwnersEndpoint from .endpoints.event_apple_crash_report import EventAppleCrashReportEndpoint from .endpoints.event_grouping_info import EventGroupingInfoEndpoint from .endpoints.group_details import GroupDetailsEndpoint from .endpoints.group_events import GroupEventsEndpoint from .endpoints.group_events_latest import GroupEventsLatestEndpoint from .endpoints.group_events_oldest import GroupEventsOldestEndpoint from .endpoints.group_hashes import GroupHashesEndpoint from .endpoints.group_integration_details import GroupIntegrationDetailsEndpoint from .endpoints.group_integrations import GroupIntegrationsEndpoint from .endpoints.group_notes import GroupNotesEndpoint from .endpoints.group_notes_details import GroupNotesDetailsEndpoint from .endpoints.group_participants import GroupParticipantsEndpoint from .endpoints.group_external_issues import GroupExternalIssuesEndpoint from .endpoints.group_external_issue_details import GroupExternalIssueDetailsEndpoint from .endpoints.group_similar_issues import GroupSimilarIssuesEndpoint from .endpoints.group_stats import GroupStatsEndpoint from .endpoints.group_tags import GroupTagsEndpoint from .endpoints.group_tagkey_details import GroupTagKeyDetailsEndpoint from .endpoints.group_tagkey_values import GroupTagKeyValuesEndpoint from .endpoints.group_tombstone_details import GroupTombstoneDetailsEndpoint from .endpoints.group_tombstone import GroupTombstoneEndpoint from .endpoints.group_user_reports import GroupUserReportsEndpoint from .endpoints.organization_incident_details import OrganizationIncidentDetailsEndpoint from .endpoints.organization_incident_seen import OrganizationIncidentSeenEndpoint from .endpoints.index import IndexEndpoint from .endpoints.internal_queue_tasks import InternalQueueTasksEndpoint from .endpoints.internal_quotas import InternalQuotasEndpoint from .endpoints.internal_stats import InternalStatsEndpoint from .endpoints.monitor_checkins import MonitorCheckInsEndpoint from .endpoints.monitor_checkin_details import MonitorCheckInDetailsEndpoint from .endpoints.monitor_details import MonitorDetailsEndpoint from .endpoints.monitor_stats import MonitorStatsEndpoint from .endpoints.organization_access_request_details import OrganizationAccessRequestDetailsEndpoint from .endpoints.organization_activity import OrganizationActivityEndpoint from .endpoints.organization_auditlogs import OrganizationAuditLogsEndpoint from .endpoints.organization_api_key_index import OrganizationApiKeyIndexEndpoint from .endpoints.organization_api_key_details import OrganizationApiKeyDetailsEndpoint from .endpoints.organization_auth_providers import OrganizationAuthProvidersEndpoint from .endpoints.organization_auth_provider_details import OrganizationAuthProviderDetailsEndpoint from .endpoints.organization_auth_provider_send_reminders import OrganizationAuthProviderSendRemindersEndpoint from .endpoints.organization_avatar import OrganizationAvatarEndpoint from .endpoints.organization_details import OrganizationDetailsEndpoint from .endpoints.organization_discover_query import OrganizationDiscoverQueryEndpoint from .endpoints.organization_discover_saved_queries import OrganizationDiscoverSavedQueriesEndpoint from .endpoints.organization_discover_saved_query_detail import OrganizationDiscoverSavedQueryDetailEndpoint from .endpoints.organization_events import OrganizationEventsEndpoint, OrganizationEventsMetaEndpoint, OrganizationEventsStatsEndpoint, OrganizationEventsHeatmapEndpoint from .endpoints.organization_group_index import OrganizationGroupIndexEndpoint from .endpoints.organization_dashboard_details import OrganizationDashboardDetailsEndpoint from .endpoints.organization_dashboard_widget_details import OrganizationDashboardWidgetDetailsEndpoint from .endpoints.organization_dashboard_widgets import OrganizationDashboardWidgetsEndpoint from .endpoints.organization_health import OrganizationHealthTopEndpoint, OrganizationHealthGraphEndpoint from .endpoints.organization_shortid import ShortIdLookupEndpoint from .endpoints.organization_environments import OrganizationEnvironmentsEndpoint from .endpoints.organization_eventid import EventIdLookupEndpoint from .endpoints.organization_slugs import SlugsUpdateEndpoint from .endpoints.organization_incident_activity_index import OrganizationIncidentActivityIndexEndpoint from .endpoints.organization_incident_comment_index import OrganizationIncidentCommentIndexEndpoint from .endpoints.organization_incident_comment_details import OrganizationIncidentCommentDetailsEndpoint from .endpoints.organization_incident_index import OrganizationIncidentIndexEndpoint from .endpoints.organization_incident_subscription_index import OrganizationIncidentSubscriptionIndexEndpoint from .endpoints.organization_incident_suspects_index import OrganizationIncidentSuspectsIndexEndpoint from .endpoints.organization_issues_new import OrganizationIssuesNewEndpoint from .endpoints.organization_issues_resolved_in_release import OrganizationIssuesResolvedInReleaseEndpoint from .endpoints.organization_member_details import OrganizationMemberDetailsEndpoint from .endpoints.organization_member_index import OrganizationMemberIndexEndpoint from .endpoints.organization_member_issues_assigned import OrganizationMemberIssuesAssignedEndpoint from .endpoints.organization_member_issues_bookmarked import OrganizationMemberIssuesBookmarkedEndpoint from .endpoints.organization_member_issues_viewed import OrganizationMemberIssuesViewedEndpoint from .endpoints.organization_member_unreleased_commits import OrganizationMemberUnreleasedCommitsEndpoint from .endpoints.organization_member_team_details import OrganizationMemberTeamDetailsEndpoint from .endpoints.organization_monitors import OrganizationMonitorsEndpoint from .endpoints.organization_onboarding_tasks import OrganizationOnboardingTaskEndpoint from .endpoints.organization_index import OrganizationIndexEndpoint from .endpoints.organization_pinned_searches import OrganizationPinnedSearchEndpoint from .endpoints.organization_plugins import OrganizationPluginsEndpoint from .endpoints.organization_processingissues import OrganizationProcessingIssuesEndpoint from .endpoints.organization_projects import OrganizationProjectsEndpoint from .endpoints.organization_recent_searches import OrganizationRecentSearchesEndpoint from .endpoints.organization_releases import OrganizationReleasesEndpoint from .endpoints.organization_release_details import OrganizationReleaseDetailsEndpoint from .endpoints.organization_release_assemble import OrganizationReleaseAssembleEndpoint from .endpoints.organization_release_files import OrganizationReleaseFilesEndpoint from .endpoints.organization_release_file_details import OrganizationReleaseFileDetailsEndpoint from .endpoints.organization_release_commits import OrganizationReleaseCommitsEndpoint from .endpoints.organization_repositories import OrganizationRepositoriesEndpoint from .endpoints.organization_integration_details import OrganizationIntegrationDetailsEndpoint from .endpoints.organization_integration_repos import OrganizationIntegrationReposEndpoint from .endpoints.organization_integrations import OrganizationIntegrationsEndpoint from .endpoints.organization_config_integrations import OrganizationConfigIntegrationsEndpoint from .endpoints.organization_config_repositories import OrganizationConfigRepositoriesEndpoint from .endpoints.organization_repository_commits import OrganizationRepositoryCommitsEndpoint from .endpoints.organization_repository_details import OrganizationRepositoryDetailsEndpoint from .endpoints.organization_search_details import OrganizationSearchDetailsEndpoint from .endpoints.organization_searches import OrganizationSearchesEndpoint from .endpoints.organization_sentry_apps import OrganizationSentryAppsEndpoint from .endpoints.organization_tagkey_values import OrganizationTagKeyValuesEndpoint from .endpoints.organization_tags import OrganizationTagsEndpoint from .endpoints.organization_user_reports import OrganizationUserReportsEndpoint from .endpoints.organization_users import OrganizationUsersEndpoint from .endpoints.organization_user_details import OrganizationUserDetailsEndpoint from .endpoints.sentry_app_installations import SentryAppInstallationsEndpoint from .endpoints.sentry_app_installation_details import SentryAppInstallationDetailsEndpoint from .endpoints.sentry_app_installation_external_requests import SentryAppInstallationExternalRequestsEndpoint from .endpoints.sentry_app_installation_external_issues import SentryAppInstallationExternalIssuesEndpoint from .endpoints.organization_stats import OrganizationStatsEndpoint from .endpoints.organization_teams import OrganizationTeamsEndpoint from .endpoints.organization_user_issues import OrganizationUserIssuesEndpoint from .endpoints.organization_user_issues_search import OrganizationUserIssuesSearchEndpoint from .endpoints.project_avatar import ProjectAvatarEndpoint from .endpoints.project_details import ProjectDetailsEndpoint from .endpoints.project_transfer import ProjectTransferEndpoint from .endpoints.project_create_sample import ProjectCreateSampleEndpoint from .endpoints.project_docs_platform import ProjectDocsPlatformEndpoint from .endpoints.project_environments import ProjectEnvironmentsEndpoint from .endpoints.project_environment_details import ProjectEnvironmentDetailsEndpoint from .endpoints.project_platforms import ProjectPlatformsEndpoint from .endpoints.project_events import ProjectEventsEndpoint from .endpoints.project_event_details import ProjectEventDetailsEndpoint, EventJsonEndpoint from .endpoints.project_filters import ProjectFiltersEndpoint from .endpoints.project_filter_details import ProjectFilterDetailsEndpoint from .endpoints.project_group_index import ProjectGroupIndexEndpoint from .endpoints.project_group_stats import ProjectGroupStatsEndpoint from .endpoints.project_index import ProjectIndexEndpoint from .endpoints.project_issues_resolved_in_release import ProjectIssuesResolvedInReleaseEndpoint from .endpoints.project_keys import ProjectKeysEndpoint from .endpoints.project_key_details import ProjectKeyDetailsEndpoint from .endpoints.project_key_stats import ProjectKeyStatsEndpoint from .endpoints.project_member_index import ProjectMemberIndexEndpoint from .endpoints.project_ownership import ProjectOwnershipEndpoint from .endpoints.project_plugins import ProjectPluginsEndpoint from .endpoints.project_plugin_details import ProjectPluginDetailsEndpoint from .endpoints.project_release_details import ProjectReleaseDetailsEndpoint from .endpoints.project_release_files import ProjectReleaseFilesEndpoint from .endpoints.project_release_file_details import ProjectReleaseFileDetailsEndpoint from .endpoints.project_release_commits import ProjectReleaseCommitsEndpoint from .endpoints.project_releases import ProjectReleasesEndpoint from .endpoints.project_release_setup import ProjectReleaseSetupCompletionEndpoint from .endpoints.project_releases_token import ProjectReleasesTokenEndpoint from .endpoints.project_rules import ProjectRulesEndpoint from .endpoints.project_rules_configuration import ProjectRulesConfigurationEndpoint from .endpoints.project_rule_details import ProjectRuleDetailsEndpoint from .endpoints.project_searches import ProjectSearchesEndpoint from .endpoints.project_search_details import ProjectSearchDetailsEndpoint from .endpoints.project_stats import ProjectStatsEndpoint from .endpoints.project_tags import ProjectTagsEndpoint from .endpoints.project_tagkey_details import ProjectTagKeyDetailsEndpoint from .endpoints.project_tagkey_values import ProjectTagKeyValuesEndpoint from .endpoints.project_team_details import ProjectTeamDetailsEndpoint from .endpoints.project_teams import ProjectTeamsEndpoint from .endpoints.project_processingissues import ProjectProcessingIssuesEndpoint, \ ProjectProcessingIssuesFixEndpoint, ProjectProcessingIssuesDiscardEndpoint from .endpoints.project_reprocessing import ProjectReprocessingEndpoint from .endpoints.project_servicehooks import ProjectServiceHooksEndpoint from .endpoints.project_servicehook_details import ProjectServiceHookDetailsEndpoint from .endpoints.project_servicehook_stats import ProjectServiceHookStatsEndpoint from .endpoints.project_user_details import ProjectUserDetailsEndpoint from .endpoints.project_user_reports import ProjectUserReportsEndpoint from .endpoints.project_user_stats import ProjectUserStatsEndpoint from .endpoints.project_users import ProjectUsersEndpoint from .endpoints.prompts_activity import PromptsActivityEndpoint from .endpoints.filechange import CommitFileChangeEndpoint from .endpoints.release_deploys import ReleaseDeploysEndpoint from .endpoints.debug_files import DebugFilesEndpoint, DifAssembleEndpoint, \ UnknownDebugFilesEndpoint, AssociateDSymFilesEndpoint from .endpoints.sentry_apps import SentryAppsEndpoint from .endpoints.sentry_app_features import SentryAppFeaturesEndpoint from .endpoints.sentry_apps_stats import SentryAppsStatsEndpoint from .endpoints.sentry_app_components import SentryAppComponentsEndpoint, \ OrganizationSentryAppComponentsEndpoint from .endpoints.sentry_app_details import SentryAppDetailsEndpoint from .endpoints.sentry_app_authorizations import SentryAppAuthorizationsEndpoint from .endpoints.shared_group_details import SharedGroupDetailsEndpoint from .endpoints.system_health import SystemHealthEndpoint from .endpoints.system_options import SystemOptionsEndpoint from .endpoints.team_avatar import TeamAvatarEndpoint from .endpoints.team_details import TeamDetailsEndpoint from .endpoints.team_groups_new import TeamGroupsNewEndpoint from .endpoints.team_groups_trending import TeamGroupsTrendingEndpoint from .endpoints.team_members import TeamMembersEndpoint from .endpoints.team_projects import TeamProjectsEndpoint from .endpoints.team_stats import TeamStatsEndpoint from .endpoints.useravatar import UserAvatarEndpoint from .endpoints.user_appearance import UserAppearanceEndpoint from .endpoints.user_authenticator_index import UserAuthenticatorIndexEndpoint from .endpoints.user_authenticator_enroll import UserAuthenticatorEnrollEndpoint from .endpoints.user_authenticator_details import UserAuthenticatorDetailsEndpoint from .endpoints.user_identity_details import UserIdentityDetailsEndpoint from .endpoints.user_index import UserIndexEndpoint from .endpoints.user_details import UserDetailsEndpoint from .endpoints.user_emails import UserEmailsEndpoint from .endpoints.user_emails_confirm import UserEmailsConfirmEndpoint from .endpoints.user_ips import UserIPsEndpoint from .endpoints.user_organizations import UserOrganizationsEndpoint from .endpoints.user_notification_details import UserNotificationDetailsEndpoint from .endpoints.user_password import UserPasswordEndpoint from .endpoints.user_notification_fine_tuning import UserNotificationFineTuningEndpoint from .endpoints.user_social_identities_index import UserSocialIdentitiesIndexEndpoint from .endpoints.user_social_identity_details import UserSocialIdentityDetailsEndpoint from .endpoints.user_subscriptions import UserSubscriptionsEndpoint from .endpoints.event_file_committers import EventFileCommittersEndpoint from .endpoints.setup_wizard import SetupWizard from .endpoints.grouping_configs import GroupingConfigsEndpoint from .endpoints.grouping_enhancements import GroupingEnhancementsEndpoint from .endpoints.builtin_symbol_sources import BuiltinSymbolSourcesEndpoint urlpatterns = patterns( '', # Relay url( r'^relays/$', RelayIndexEndpoint.as_view(), name='sentry-api-0-relays-index' ), url( r'^relays/register/challenge/$', RelayRegisterChallengeEndpoint.as_view(), name='sentry-api-0-relay-register-challenge' ), url( r'^relays/register/response/$', RelayRegisterResponseEndpoint.as_view(), name='sentry-api-0-relay-register-response' ), url( r'^relays/heartbeat/$', RelayHeartbeatEndpoint.as_view(), name='sentry-api-0-relay-heartbeat' ), url( r'^relays/projectconfigs/$', RelayProjectConfigsEndpoint.as_view(), name='sentry-api-0-relay-projectconfigs' ), url( r'^relays/publickeys/$', RelayPublicKeysEndpoint.as_view(), name='sentry-api-0-relay-publickeys' ), url( r'^relays/(?P<relay_id>[^\/]+)/$', RelayDetailsEndpoint.as_view(), name='sentry-api-0-relays-details' ), # Api Data url( r'^assistant/$', AssistantEndpoint.as_view(), name='sentry-api-0-assistant', ), url( r'^api-applications/$', ApiApplicationsEndpoint.as_view(), name='sentry-api-0-api-applications' ), url( r'^api-applications/(?P<app_id>[^\/]+)/$', ApiApplicationDetailsEndpoint.as_view(), name='sentry-api-0-api-application-details' ), url( r'^api-authorizations/$', ApiAuthorizationsEndpoint.as_view(), name='sentry-api-0-api-authorizations' ), url(r'^api-tokens/$', ApiTokensEndpoint.as_view(), name='sentry-api-0-api-tokens'), url( r'^promptsactivity/$', PromptsActivityEndpoint.as_view(), name='sentry-api-0-promptsactivity', ), # Auth url(r'^auth/$', AuthIndexEndpoint.as_view(), name='sentry-api-0-auth'), # List Authentiactors url(r'^authenticators/$', AuthenticatorIndexEndpoint.as_view(), name='sentry-api-0-authenticator-index'), # Broadcasts url(r'^broadcasts/$', BroadcastIndexEndpoint.as_view(), name='sentry-api-0-broadcast-index'), url(r'^broadcasts/(?P<broadcast_id>[^\/]+)/$', BroadcastDetailsEndpoint.as_view()), # Project transfer url(r'^accept-transfer/$', AcceptProjectTransferEndpoint.as_view(), name='sentry-api-0-accept-project-transfer'), # Monitors url(r'^monitors/(?P<monitor_id>[^\/]+)/$', MonitorDetailsEndpoint.as_view()), url(r'^monitors/(?P<monitor_id>[^\/]+)/checkins/$', MonitorCheckInsEndpoint.as_view()), url(r'^monitors/(?P<monitor_id>[^\/]+)/checkins/(?P<checkin_id>[^\/]+)/$', MonitorCheckInDetailsEndpoint.as_view()), url(r'^monitors/(?P<monitor_id>[^\/]+)/stats/$', MonitorStatsEndpoint.as_view()), # Users url(r'^users/$', UserIndexEndpoint.as_view(), name='sentry-api-0-user-index'), url( r'^users/(?P<user_id>[^\/]+)/$', UserDetailsEndpoint.as_view(), name='sentry-api-0-user-details' ), url( r'^users/(?P<user_id>[^\/]+)/avatar/$', UserAvatarEndpoint.as_view(), name='sentry-api-0-user-avatar' ), url( r'^users/(?P<user_id>[^\/]+)/appearance/$', UserAppearanceEndpoint.as_view(), name='sentry-api-0-user-appearance' ), url( r'^users/(?P<user_id>[^\/]+)/authenticators/$', UserAuthenticatorIndexEndpoint.as_view(), name='sentry-api-0-user-authenticator-index' ), url( r'^users/(?P<user_id>[^\/]+)/authenticators/(?P<interface_id>[^\/]+)/enroll/$', UserAuthenticatorEnrollEndpoint.as_view(), name='sentry-api-0-user-authenticator-enroll' ), url( r'^users/(?P<user_id>[^\/]+)/authenticators/(?P<auth_id>[^\/]+)/(?P<interface_device_id>[^\/]+)/$', UserAuthenticatorDetailsEndpoint.as_view(), name='sentry-api-0-user-authenticator-device-details' ), url( r'^users/(?P<user_id>[^\/]+)/authenticators/(?P<auth_id>[^\/]+)/$', UserAuthenticatorDetailsEndpoint.as_view(), name='sentry-api-0-user-authenticator-details' ), url( r'^users/(?P<user_id>[^\/]+)/emails/$', UserEmailsEndpoint.as_view(), name='sentry-api-0-user-emails' ), url( r'^users/(?P<user_id>[^\/]+)/emails/confirm/$', UserEmailsConfirmEndpoint.as_view(), name='sentry-api-0-user-emails-confirm' ), url( r'^users/(?P<user_id>[^\/]+)/identities/(?P<identity_id>[^\/]+)/$', UserIdentityDetailsEndpoint.as_view(), name='sentry-api-0-user-identity-details' ), url( r'^users/(?P<user_id>[^\/]+)/ips/$', UserIPsEndpoint.as_view(), name='sentry-api-0-user-ips' ), url( r'^users/(?P<user_id>[^\/]+)/organizations/$', UserOrganizationsEndpoint.as_view(), name='sentry-api-0-user-organizations' ), url( r'^users/(?P<user_id>[^\/]+)/notifications/$', UserNotificationDetailsEndpoint.as_view(), name='sentry-api-0-user-notifications' ), url( r'^users/(?P<user_id>[^\/]+)/password/$', UserPasswordEndpoint.as_view(), name='sentry-api-0-user-password' ), url( r'^users/(?P<user_id>[^\/]+)/notifications/(?P<notification_type>[^\/]+)/$', UserNotificationFineTuningEndpoint.as_view(), name='sentry-api-0-user-notifications-fine-tuning' ), url( r'^users/(?P<user_id>[^\/]+)/social-identities/$', UserSocialIdentitiesIndexEndpoint.as_view(), name='sentry-api-0-user-social-identities-index'), url( r'^users/(?P<user_id>[^\/]+)/social-identities/(?P<identity_id>[^\/]+)/$', UserSocialIdentityDetailsEndpoint.as_view(), name='sentry-api-0-user-social-identity-details'), url( r'^users/(?P<user_id>[^\/]+)/subscriptions/$', UserSubscriptionsEndpoint.as_view(), name='sentry-api-0-user-subscriptions' ), # Incidents url( r'^organizations/(?P<organization_slug>[^\/]+)/incidents/(?P<incident_identifier>[^\/]+)/activity/$', OrganizationIncidentActivityIndexEndpoint.as_view(), name='sentry-api-0-organization-incident-activity' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/incidents/(?P<incident_identifier>[^\/]+)/comments/$', OrganizationIncidentCommentIndexEndpoint.as_view(), name='sentry-api-0-organization-incident-comments' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/incidents/(?P<incident_identifier>[^\/]+)/comments/(?P<activity_id>[^\/]+)/$', OrganizationIncidentCommentDetailsEndpoint.as_view(), name='sentry-api-0-organization-incident-comment-details' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/incidents/(?P<incident_identifier>[^\/]+)/$', OrganizationIncidentDetailsEndpoint.as_view(), name='sentry-api-0-organization-incident-details' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/incidents/$', OrganizationIncidentIndexEndpoint.as_view(), name='sentry-api-0-organization-incident-index' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/incidents/(?P<incident_identifier>[^\/]+)/seen/$', OrganizationIncidentSeenEndpoint.as_view(), name='sentry-api-0-organization-incident-seen' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/incidents/(?P<incident_identifier>[^\/]+)/subscriptions/$', OrganizationIncidentSubscriptionIndexEndpoint.as_view(), name='sentry-api-0-organization-incident-subscription-index' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/incidents/(?P<incident_identifier>[^\/]+)/suspects/$', OrganizationIncidentSuspectsIndexEndpoint.as_view(), name='sentry-api-0-organization-incident-suspect-index' ), # Organizations url( r'^organizations/(?P<organization_slug>[^\/]+)/chunk-upload/$', ChunkUploadEndpoint.as_view(), name='sentry-api-0-chunk-upload' ), url( r'^organizations/$', OrganizationIndexEndpoint.as_view(), name='sentry-api-0-organizations' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/$', OrganizationDetailsEndpoint.as_view(), name='sentry-api-0-organization-details' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/discover/query/$', OrganizationDiscoverQueryEndpoint.as_view(), name='sentry-api-0-organization-discover-query' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/discover/saved/$', OrganizationDiscoverSavedQueriesEndpoint.as_view(), name='sentry-api-0-organization-discover-saved-queries' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/discover/saved/(?P<query_id>[^\/]+)/$', OrganizationDiscoverSavedQueryDetailEndpoint.as_view(), name='sentry-api-0-organization-discover-saved-query-detail' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/dashboards/(?P<dashboard_id>[^\/]+)/$', OrganizationDashboardDetailsEndpoint.as_view(), name='sentry-api-0-organization-dashboard-details', ), url( r'^organizations/(?P<organization_slug>[^\/]+)/dashboards/$', OrganizationDashboardsEndpoint.as_view(), name='sentry-api-0-organization-dashboards' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/dashboards/(?P<dashboard_id>[^\/]+)/widgets/$', OrganizationDashboardWidgetsEndpoint.as_view(), name='sentry-api-0-organization-dashboard-widgets', ), url( r'^organizations/(?P<organization_slug>[^\/]+)/dashboards/(?P<dashboard_id>[^\/]+)/widgets/(?P<widget_id>[^\/]+)$', OrganizationDashboardWidgetDetailsEndpoint.as_view(), name='sentry-api-0-organization-dashboard-widget-details', ), url( r'^organizations/(?P<organization_slug>[^\/]+)/health/top/$', OrganizationHealthTopEndpoint.as_view(), name='sentry-api-0-organization-health-top', ), url( r'^organizations/(?P<organization_slug>[^\/]+)/health/graph/$', OrganizationHealthGraphEndpoint.as_view(), name='sentry-api-0-organization-health-graph', ), url( r'^organizations/(?P<organization_slug>[^\/]+)/shortids/(?P<short_id>[^\/]+)/$', ShortIdLookupEndpoint.as_view(), name='sentry-api-0-short-id-lookup' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/eventids/(?P<event_id>[^\/]+)/$', EventIdLookupEndpoint.as_view(), name='sentry-api-0-event-id-lookup' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/slugs/$', SlugsUpdateEndpoint.as_view(), name='sentry-api-0-short-ids-update' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/access-requests/$', OrganizationAccessRequestDetailsEndpoint.as_view(), name='sentry-api-0-organization-access-requests' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/access-requests/(?P<request_id>\d+)/$', OrganizationAccessRequestDetailsEndpoint.as_view(), name='sentry-api-0-organization-access-request-details' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/activity/$', OrganizationActivityEndpoint.as_view(), name='sentry-api-0-organization-activity' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/api-keys/$', OrganizationApiKeyIndexEndpoint.as_view(), name='sentry-api-0-organization-api-key-index' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/api-keys/(?P<api_key_id>[^\/]+)/$', OrganizationApiKeyDetailsEndpoint.as_view(), name='sentry-api-0-organization-api-key-details' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/audit-logs/$', OrganizationAuditLogsEndpoint.as_view(), name='sentry-api-0-organization-audit-logs' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/auth-provider/$', OrganizationAuthProviderDetailsEndpoint.as_view(), name='sentry-api-0-organization-auth-provider' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/auth-providers/$', OrganizationAuthProvidersEndpoint.as_view(), name='sentry-api-0-organization-auth-providers' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/auth-provider/send-reminders/$', OrganizationAuthProviderSendRemindersEndpoint.as_view(), name='sentry-api-0-organization-auth-provider-send-reminders' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/avatar/$', OrganizationAvatarEndpoint.as_view(), name='sentry-api-0-organization-avatar' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/config/integrations/$', OrganizationConfigIntegrationsEndpoint.as_view(), name='sentry-api-0-organization-config-integrations' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/config/repos/$', OrganizationConfigRepositoriesEndpoint.as_view(), name='sentry-api-0-organization-config-repositories' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/events/$', OrganizationEventsEndpoint.as_view(), name='sentry-api-0-organization-events' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/events-stats/$', OrganizationEventsStatsEndpoint.as_view(), name='sentry-api-0-organization-events-stats' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/events-heatmap/$', OrganizationEventsHeatmapEndpoint.as_view(), name='sentry-api-0-organization-events-heatmap' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/events-meta/$', OrganizationEventsMetaEndpoint.as_view(), name='sentry-api-0-organization-events-meta' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/issues/new/$', OrganizationIssuesNewEndpoint.as_view(), ), url( r'^organizations/(?P<organization_slug>[^\/]+)/issues/$', OrganizationGroupIndexEndpoint.as_view(), name='sentry-api-0-organization-group-index' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/integrations/$', OrganizationIntegrationsEndpoint.as_view(), name='sentry-api-0-organization-integrations' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/integrations/(?P<integration_id>[^\/]+)/$', OrganizationIntegrationDetailsEndpoint.as_view(), ), url( r'^organizations/(?P<organization_slug>[^\/]+)/integrations/(?P<integration_id>[^\/]+)/repos/$', OrganizationIntegrationReposEndpoint.as_view(), ), url( r'^organizations/(?P<organization_slug>[^\/]+)/members/$', OrganizationMemberIndexEndpoint.as_view(), name='sentry-api-0-organization-member-index' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/monitors/$', OrganizationMonitorsEndpoint.as_view(), ), url( r'^organizations/(?P<organization_slug>[^\/]+)/pinned-searches/$', OrganizationPinnedSearchEndpoint.as_view(), name='sentry-api-0-organization-pinned-searches' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/recent-searches/$', OrganizationRecentSearchesEndpoint.as_view(), name='sentry-api-0-organization-recent-searches' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/searches/(?P<search_id>[^\/]+)/$', OrganizationSearchDetailsEndpoint.as_view(), name='sentry-api-0-organization-search-details' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/searches/$', OrganizationSearchesEndpoint.as_view(), name='sentry-api-0-organization-searches' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/users/issues/$', OrganizationUserIssuesSearchEndpoint.as_view(), name='sentry-api-0-organization-issue-search' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/users/(?P<user_id>[^\/]+)/issues/$', OrganizationUserIssuesEndpoint.as_view(), name='sentry-api-0-organization-user-issues' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/releases/(?P<version>[^/]+)/resolved/$', OrganizationIssuesResolvedInReleaseEndpoint.as_view(), name='sentry-api-0-organization-release-resolved' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/members/(?P<member_id>[^\/]+)/$', OrganizationMemberDetailsEndpoint.as_view(), name='sentry-api-0-organization-member-details' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/members/(?P<member_id>[^\/]+)/unreleased-commits/$', OrganizationMemberUnreleasedCommitsEndpoint.as_view(), name='sentry-api-0-organization-member-unreleased-commits' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/members/(?P<member_id>[^\/]+)/issues/assigned/$', OrganizationMemberIssuesAssignedEndpoint.as_view(), name='sentry-api-0-organization-member-issues-assigned' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/members/(?P<member_id>[^\/]+)/issues/bookmarked/$', OrganizationMemberIssuesBookmarkedEndpoint.as_view(), name='sentry-api-0-organization-member-issues-bookmarked' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/members/(?P<member_id>[^\/]+)/issues/viewed/$', OrganizationMemberIssuesViewedEndpoint.as_view(), name='sentry-api-0-organization-member-issues-viewed' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/members/(?P<member_id>[^\/]+)/teams/(?P<team_slug>[^\/]+)/$', OrganizationMemberTeamDetailsEndpoint.as_view(), name='sentry-api-0-organization-member-team-details' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/processingissues/$', OrganizationProcessingIssuesEndpoint.as_view(), name='sentry-api-0-organization-processing-issues' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/projects/$', OrganizationProjectsEndpoint.as_view(), name='sentry-api-0-organization-projects' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/repos/$', OrganizationRepositoriesEndpoint.as_view(), name='sentry-api-0-organization-repositories' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/repos/(?P<repo_id>[^\/]+)/$', OrganizationRepositoryDetailsEndpoint.as_view(), name='sentry-api-0-organization-repository-details' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/repos/(?P<repo_id>[^\/]+)/commits/$', OrganizationRepositoryCommitsEndpoint.as_view(), name='sentry-api-0-organization-repository-commits' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/plugins/$', OrganizationPluginsEndpoint.as_view(), name='sentry-api-0-organization-plugins' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/releases/$', OrganizationReleasesEndpoint.as_view(), name='sentry-api-0-organization-releases' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/releases/(?P<version>[^/]+)/$', OrganizationReleaseDetailsEndpoint.as_view(), name='sentry-api-0-organization-release-details' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/releases/(?P<version>[^/]+)/assemble/$', OrganizationReleaseAssembleEndpoint.as_view(), name='sentry-api-0-organization-release-assemble' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/releases/(?P<version>[^/]+)/files/$', OrganizationReleaseFilesEndpoint.as_view(), name='sentry-api-0-organization-release-files' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/releases/(?P<version>[^/]+)/files/(?P<file_id>\d+)/$', OrganizationReleaseFileDetailsEndpoint.as_view(), name='sentry-api-0-organization-release-file-details' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/releases/(?P<version>[^/]+)/commitfiles/$', CommitFileChangeEndpoint.as_view(), name='sentry-api-0-release-commitfilechange' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/releases/(?P<version>[^/]+)/deploys/$', ReleaseDeploysEndpoint.as_view(), name='sentry-api-0-organization-release-deploys' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/releases/(?P<version>[^/]+)/commits/$', OrganizationReleaseCommitsEndpoint.as_view(), name='sentry-api-0-organization-release-commits' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/user-feedback/$', OrganizationUserReportsEndpoint.as_view(), name='sentry-api-0-organization-user-feedback' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/users/$', OrganizationUsersEndpoint.as_view(), name='sentry-api-0-organization-users' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/users/(?P<user_id>[^\/]+)/$', OrganizationUserDetailsEndpoint.as_view(), name='sentry-api-0-organization-user-details' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/sentry-app-installations/$', SentryAppInstallationsEndpoint.as_view(), name='sentry-api-0-sentry-app-installations' ), url( r'^sentry-app-installations/(?P<uuid>[^\/]+)/$', SentryAppInstallationDetailsEndpoint.as_view(), name='sentry-api-0-sentry-app-installation-details' ), url( r'^sentry-app-installations/(?P<uuid>[^\/]+)/external-requests/$', SentryAppInstallationExternalRequestsEndpoint.as_view(), name='sentry-api-0-sentry-app-installation-external-requests' ), url( r'^sentry-app-installations/(?P<uuid>[^\/]+)/external-issues/$', SentryAppInstallationExternalIssuesEndpoint.as_view(), name='sentry-api-0-sentry-app-installation-external-issues' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/sentry-apps/$', OrganizationSentryAppsEndpoint.as_view(), name='sentry-api-0-organization-sentry-apps' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/stats/$', OrganizationStatsEndpoint.as_view(), name='sentry-api-0-organization-stats' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/teams/$', OrganizationTeamsEndpoint.as_view(), name='sentry-api-0-organization-teams' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/tags/$', OrganizationTagsEndpoint.as_view(), name='sentry-api-0-organization-tags' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/tags/(?P<key>[^/]+)/values/$', OrganizationTagKeyValuesEndpoint.as_view(), name='sentry-api-0-organization-tagkey-values' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/onboarding-tasks/$', OrganizationOnboardingTaskEndpoint.as_view(), name='sentry-api-0-organization-onboardingtasks' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/environments/$', OrganizationEnvironmentsEndpoint.as_view(), name='sentry-api-0-organization-environments', ), url( r'^organizations/(?P<organization_slug>[^\/]+)/broadcasts/$', BroadcastIndexEndpoint.as_view(), name='sentry-api-0-organization-broadcasts' ), # Teams url( r'^teams/(?P<organization_slug>[^\/]+)/(?P<team_slug>[^\/]+)/$', TeamDetailsEndpoint.as_view(), name='sentry-api-0-team-details' ), url( r'^teams/(?P<organization_slug>[^\/]+)/(?P<team_slug>[^\/]+)/(?:issues|groups)/new/$', TeamGroupsNewEndpoint.as_view(), name='sentry-api-0-team-groups-new' ), url( r'^teams/(?P<organization_slug>[^\/]+)/(?P<team_slug>[^\/]+)/(?:issues|groups)/trending/$', TeamGroupsTrendingEndpoint.as_view(), name='sentry-api-0-team-groups-trending' ), url( r'^teams/(?P<organization_slug>[^\/]+)/(?P<team_slug>[^\/]+)/members/$', TeamMembersEndpoint.as_view(), name='sentry-api-0-team-members' ), url( r'^teams/(?P<organization_slug>[^\/]+)/(?P<team_slug>[^\/]+)/projects/$', TeamProjectsEndpoint.as_view(), name='sentry-api-0-team-project-index' ), url( r'^teams/(?P<organization_slug>[^\/]+)/(?P<team_slug>[^\/]+)/stats/$', TeamStatsEndpoint.as_view(), name='sentry-api-0-team-stats' ), url( r'^teams/(?P<organization_slug>[^\/]+)/(?P<team_slug>[^\/]+)/avatar/$', TeamAvatarEndpoint.as_view(), name='sentry-api-0-team-avatar' ), # Projects url(r'^projects/$', ProjectIndexEndpoint.as_view(), name='sentry-api-0-projects'), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/$', ProjectDetailsEndpoint.as_view(), name='sentry-api-0-project-details' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/avatar/$', ProjectAvatarEndpoint.as_view(), name='sentry-api-0-project-avatar' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/create-sample/$', ProjectCreateSampleEndpoint.as_view(), name='sentry-api-0-project-create-sample' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/docs/(?P<platform>[\w-]+)/$', ProjectDocsPlatformEndpoint.as_view(), name='sentry-api-0-project-docs-platform' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/environments/$', ProjectEnvironmentsEndpoint.as_view(), name='sentry-api-0-project-environments' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/environments/(?P<environment>[^/]+)/$', ProjectEnvironmentDetailsEndpoint.as_view(), name='sentry-api-0-project-environment-details' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/platforms/$', ProjectPlatformsEndpoint.as_view(), name='sentry-api-0-project-platform-details' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/events/$', ProjectEventsEndpoint.as_view(), name='sentry-api-0-project-events' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/events/(?P<event_id>(?:\d+|[A-Fa-f0-9]{32}))/$', ProjectEventDetailsEndpoint.as_view(), name='sentry-api-0-project-event-details' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/events/(?P<event_id>[\w-]+)/grouping-info/$', EventGroupingInfoEndpoint.as_view(), name='sentry-api-0-event-grouping-info' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/events/(?P<event_id>[\w-]+)/apple-crash-report$', EventAppleCrashReportEndpoint.as_view(), name='sentry-api-0-event-apple-crash-report' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/events/(?P<event_id>[\w-]+)/attachments/$', EventAttachmentsEndpoint.as_view(), name='sentry-api-0-event-attachments' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/events/(?P<event_id>[\w-]+)/attachments/(?P<attachment_id>[\w-]+)/$', EventAttachmentDetailsEndpoint.as_view(), name='sentry-api-0-event-attachment-details' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/events/(?P<event_id>[\w-]+)/committers/$', EventFileCommittersEndpoint.as_view(), name='sentry-api-0-event-file-committers' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/events/(?P<event_id>[\w-]+)/json/$', EventJsonEndpoint.as_view(), name='sentry-api-0-event-json' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/events/(?P<event_id>[\w-]+)/owners/$', EventOwnersEndpoint.as_view(), name='sentry-api-0-event-owners' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/files/dsyms/$', DebugFilesEndpoint.as_view(), name='sentry-api-0-dsym-files' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/files/difs/assemble/$', DifAssembleEndpoint.as_view(), name='sentry-api-0-assemble-dif-files' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/files/dsyms/unknown/$', UnknownDebugFilesEndpoint.as_view(), name='sentry-api-0-unknown-dsym-files' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/files/dsyms/associate/$', AssociateDSymFilesEndpoint.as_view(), name='sentry-api-0-associate-dsym-files' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/filters/$', ProjectFiltersEndpoint.as_view(), name='sentry-api-0-project-filters' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/filters/(?P<filter_id>[\w-]+)/$', ProjectFilterDetailsEndpoint.as_view(), name='sentry-api-0-project-filters' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/hooks/$', ProjectServiceHooksEndpoint.as_view(), ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/hooks/(?P<hook_id>[^\/]+)/$', ProjectServiceHookDetailsEndpoint.as_view(), ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/hooks/(?P<hook_id>[^\/]+)/stats/$', ProjectServiceHookStatsEndpoint.as_view(), ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/(?:issues|groups)/$', ProjectGroupIndexEndpoint.as_view(), name='sentry-api-0-project-group-index' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/(?:issues|groups)/stats/$', ProjectGroupStatsEndpoint.as_view(), name='sentry-api-0-project-group-stats' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/keys/$', ProjectKeysEndpoint.as_view(), name='sentry-api-0-project-keys' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/keys/(?P<key_id>[^\/]+)/$', ProjectKeyDetailsEndpoint.as_view(), name='sentry-api-0-project-key-details' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/keys/(?P<key_id>[^\/]+)/stats/$', ProjectKeyStatsEndpoint.as_view() ), url( r'^projects/(?P<organization_slug>[^/]+)/(?P<project_slug>[^/]+)/members/$', ProjectMemberIndexEndpoint.as_view(), name='sentry-api-0-project-member-index' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/releases/$', ProjectReleasesEndpoint.as_view(), name='sentry-api-0-project-releases' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/releases/token/$', ProjectReleasesTokenEndpoint.as_view(), name='sentry-api-0-project-releases-token' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/releases/completion/$', ProjectReleaseSetupCompletionEndpoint.as_view(), name='sentry-api-0-project-releases-completion-status' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/releases/(?P<version>[^/]+)/$', ProjectReleaseDetailsEndpoint.as_view(), name='sentry-api-0-project-release-details' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/releases/(?P<version>[^/]+)/commits/$', ProjectReleaseCommitsEndpoint.as_view(), name='sentry-api-0-project-release-commits' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/releases/(?P<version>[^/]+)/resolved/$', ProjectIssuesResolvedInReleaseEndpoint.as_view(), name='sentry-api-0-project-release-resolved' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/releases/(?P<version>[^/]+)/files/$', ProjectReleaseFilesEndpoint.as_view(), name='sentry-api-0-project-release-files' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/releases/(?P<version>[^/]+)/files/(?P<file_id>\d+)/$', ProjectReleaseFileDetailsEndpoint.as_view(), name='sentry-api-0-project-release-file-details' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/rules/$', ProjectRulesEndpoint.as_view(), name='sentry-api-0-project-rules' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/rules/configuration/$', ProjectRulesConfigurationEndpoint.as_view(), name='sentry-api-0-project-rules-configuration' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/rules/(?P<rule_id>[^\/]+)/$', ProjectRuleDetailsEndpoint.as_view(), name='sentry-api-0-project-rule-details' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/searches/$', ProjectSearchesEndpoint.as_view(), name='sentry-api-0-project-searches' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/searches/(?P<search_id>[^\/]+)/$', ProjectSearchDetailsEndpoint.as_view(), name='sentry-api-0-project-search-details' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/stats/$', ProjectStatsEndpoint.as_view(), name='sentry-api-0-project-stats' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/tags/$', ProjectTagsEndpoint.as_view(), name='sentry-api-0-project-tags' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/tags/(?P<key>[^/]+)/$', ProjectTagKeyDetailsEndpoint.as_view(), name='sentry-api-0-project-tagkey-details' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/tags/(?P<key>[^/]+)/values/$', ProjectTagKeyValuesEndpoint.as_view(), name='sentry-api-0-project-tagkey-values' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/teams/$', ProjectTeamsEndpoint.as_view(), name='sentry-api-0-project-teams' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/teams/(?P<team_slug>[^\/]+)/$', ProjectTeamDetailsEndpoint.as_view(), name='sentry-api-0-project-team-details' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/transfer/$', ProjectTransferEndpoint.as_view(), name='sentry-api-0-project-transfer' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/users/$', ProjectUsersEndpoint.as_view(), name='sentry-api-0-project-users' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/users/(?P<user_hash>[^/]+)/$', ProjectUserDetailsEndpoint.as_view(), name='sentry-api-0-project-user-details' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/(?:user-feedback|user-reports)/$', ProjectUserReportsEndpoint.as_view(), name='sentry-api-0-project-user-reports' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/user-stats/$', ProjectUserStatsEndpoint.as_view(), name='sentry-api-0-project-userstats' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/processingissues/$', ProjectProcessingIssuesEndpoint.as_view(), name='sentry-api-0-project-processing-issues' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/processingissues/fix$', ProjectProcessingIssuesFixEndpoint.as_view(), name='sentry-api-0-project-fix-processing-issues' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/reprocessing/$', ProjectReprocessingEndpoint.as_view(), name='sentry-api-0-project-reprocessing' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/processingissues/discard/$', ProjectProcessingIssuesDiscardEndpoint.as_view(), name='sentry-api-0-project-discard-processing-issues' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/ownership/$', ProjectOwnershipEndpoint.as_view(), name='sentry-api-0-project-ownership' ), # Load plugin project urls url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/plugins/$', ProjectPluginsEndpoint.as_view(), name='sentry-api-0-project-plugins' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/plugins/(?P<plugin_id>[^\/]+)/$', ProjectPluginDetailsEndpoint.as_view(), name='sentry-api-0-project-plugin-details' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/plugins?/', include('sentry.plugins.base.project_api_urls') ), # Groups url( r'^(?:issues|groups)/(?P<issue_id>\d+)/$', GroupDetailsEndpoint.as_view(), name='sentry-api-0-group-details' ), url( r'^(?:issues|groups)/(?P<issue_id>\d+)/events/$', GroupEventsEndpoint.as_view(), name='sentry-api-0-group-events' ), url( r'^(?:issues|groups)/(?P<issue_id>\d+)/events/latest/$', GroupEventsLatestEndpoint.as_view(), name='sentry-api-0-group-events-latest' ), url( r'^(?:issues|groups)/(?P<issue_id>\d+)/events/oldest/$', GroupEventsOldestEndpoint.as_view(), name='sentry-api-0-group-events-oldest' ), url( r'^(?:issues|groups)/(?P<issue_id>\d+)/(?:notes|comments)/$', GroupNotesEndpoint.as_view(), name='sentry-api-0-group-notes' ), url( r'^(?:issues|groups)/(?P<issue_id>\d+)/(?:notes|comments)/(?P<note_id>[^\/]+)/$', GroupNotesDetailsEndpoint.as_view(), name='sentry-api-0-group-notes-details' ), url( r'^(?:issues|groups)/(?P<issue_id>\d+)/hashes/$', GroupHashesEndpoint.as_view(), name='sentry-api-0-group-events' ), url( r'^issues/(?P<issue_id>\d+)/participants/$', GroupParticipantsEndpoint.as_view(), name='sentry-api-0-group-stats' ), url( r'^(?:issues|groups)/(?P<issue_id>\d+)/stats/$', GroupStatsEndpoint.as_view(), name='sentry-api-0-group-stats' ), url( r'^(?:issues|groups)/(?P<issue_id>\d+)/tags/$', GroupTagsEndpoint.as_view(), name='sentry-api-0-group-tags' ), url( r'^(?:issues|groups)/(?P<issue_id>\d+)/tags/(?P<key>[^/]+)/$', GroupTagKeyDetailsEndpoint.as_view(), name='sentry-api-0-group-tagkey-details' ), url( r'^(?:issues|groups)/(?P<issue_id>\d+)/tags/(?P<key>[^/]+)/values/$', GroupTagKeyValuesEndpoint.as_view(), name='sentry-api-0-group-tagkey-values' ), url( r'^(?:issues|groups)/(?P<issue_id>\d+)/(?:user-feedback|user-reports)/$', GroupUserReportsEndpoint.as_view(), name='sentry-api-0-group-user-reports' ), url( r'^(?:issues|groups)/(?P<issue_id>\d+)/similar/$', GroupSimilarIssuesEndpoint.as_view(), name='sentry-api-0-group-similar-issues' ), url( r'^(?:issues|groups)/(?P<issue_id>\d+)/external-issues/$', GroupExternalIssuesEndpoint.as_view(), name='sentry-api-0-group-external-issues' ), url( r'^(?:issues|groups)/(?P<issue_id>\d+)/external-issues/(?P<external_issue_id>\d+)/$', GroupExternalIssueDetailsEndpoint.as_view(), name='sentry-api-0-group-external-issue-details' ), url( r'^(?:issues|groups)/(?P<issue_id>\d+)/integrations/$', GroupIntegrationsEndpoint.as_view(), name='sentry-api-0-group-integrations' ), url( r'^(?:issues|groups)/(?P<issue_id>\d+)/integrations/(?P<integration_id>\d+)/$', GroupIntegrationDetailsEndpoint.as_view(), name='sentry-api-0-group-integration-details' ), # Load plugin group urls url( r'^(?:issues|groups)/(?P<issue_id>\d+)/plugins?/', include('sentry.plugins.base.group_api_urls') ), url( r'^shared/(?:issues|groups)/(?P<share_id>[^\/]+)/$', SharedGroupDetailsEndpoint.as_view(), name='sentry-api-0-shared-group-details' ), # Tombstone url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/tombstones/$', GroupTombstoneEndpoint.as_view(), name='sentry-api-0-group-tombstones' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/tombstones/(?P<tombstone_id>\d+)/$', GroupTombstoneDetailsEndpoint.as_view(), name='sentry-api-0-group-tombstone-details' ), # Events url( r'^events/(?P<event_id>\d+)/$', EventDetailsEndpoint.as_view(), name='sentry-api-0-event-details' ), # Sentry Apps url( r'^sentry-apps/$', SentryAppsEndpoint.as_view(), name='sentry-api-0-sentry-apps' ), url( r'^sentry-apps-stats/$', SentryAppsStatsEndpoint.as_view(), name='sentry-api-0-sentry-apps-stats' ), url( r'^sentry-apps/(?P<sentry_app_slug>[^\/]+)/$', SentryAppDetailsEndpoint.as_view(), name='sentry-api-0-sentry-app-details' ), url( r'^sentry-apps/(?P<sentry_app_slug>[^\/]+)/features/$', SentryAppFeaturesEndpoint.as_view(), name='sentry-api-0-sentry-app-features' ), url( r'^sentry-apps/(?P<sentry_app_slug>[^\/]+)/components/$', SentryAppComponentsEndpoint.as_view(), name='sentry-api-0-sentry-app-components' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/sentry-app-components/$', OrganizationSentryAppComponentsEndpoint.as_view(), name='sentry-api-0-org-sentry-app-components' ), url( r'^sentry-app-installations/(?P<uuid>[^\/]+)/authorizations/$', SentryAppAuthorizationsEndpoint.as_view(), name='sentry-api-0-sentry-app-authorizations' ), # Grouping configs url( r'^grouping-configs/$', GroupingConfigsEndpoint.as_view(), name='sentry-api-0-grouping-configs' ), url( r'^grouping-enhancements/$', GroupingEnhancementsEndpoint.as_view(), name='sentry-api-0-grouping-enhancements' ), # Symbolicator Builtin Sources url( r'^builtin-symbol-sources/$', BuiltinSymbolSourcesEndpoint.as_view(), name='sentry-api-0-builtin-symbol-sources', ), # Internal url(r'^internal/health/$', SystemHealthEndpoint.as_view(), name='sentry-api-0-system-health'), url( r'^internal/options/$', SystemOptionsEndpoint.as_view(), name='sentry-api-0-system-options' ), url(r'^internal/quotas/$', InternalQuotasEndpoint.as_view()), url(r'^internal/queue/tasks/$', InternalQueueTasksEndpoint.as_view()), url(r'^internal/stats/$', InternalStatsEndpoint.as_view(), name='sentry-api-0-internal-stats'), # Project Wizard url( r'^wizard/$', SetupWizard.as_view(), name='sentry-api-0-project-wizard-new' ), url( r'^wizard/(?P<wizard_hash>[^\/]+)/$', SetupWizard.as_view(), name='sentry-api-0-project-wizard' ), # Catch all url(r'^$', IndexEndpoint.as_view(), name='sentry-api-index'), url(r'^', CatchallEndpoint.as_view(), name='sentry-api-catchall'), # url(r'^api-auth/', include('rest_framework.urls', namespace='rest_framework')) )
the-stack_0_14544
""" Copyright 2020 The OneFlow Authors. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import collections import math from typing import Callable, Dict, Iterator, List, Tuple, Union import oneflow as flow from oneflow.nn.optimizer.optimizer import Optimizer, ParamGroup from oneflow.nn.parameter import Parameter class AdamW(Optimizer): """Implements AdamW algorithm. The original Adam algorithm was proposed in `Adam: A Method for Stochastic Optimization`_. The AdamW variant was proposed in `Decoupled Weight Decay Regularization`_. The optimizer of the Adam-weight-decay algorithm. (More details please refer to `Adam-weight-decay <https://www.fast.ai/2018/07/02/adam-weight-decay/>`_). So we use Adam-weight-decay algorithm to solve this problem. the equation of parameters updating is: .. math:: & V_t = \\beta_1*V_{t-1} + (1-\\beta_1)*grad & S_t = \\beta_2*S_{t-1} + (1-\\beta_2)*{grad} \\odot {grad} & \\hat{g} = learning\\_rate*(\\frac{{V_t}}{\\sqrt{{S_t}}+\\epsilon}+\\lambda*param_{old}) & param_{new} = param_{old} - \\hat{g} Args: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (In the equation is λ, default: 0) amsgrad (bool, optional): whether to use the AMSGrad variant of this algorithm. (default: False) do_bias_correction (bool, optional): Whether do bias correction (default: True) .. _Adam\\: A Method for Stochastic Optimization: https://arxiv.org/abs/1412.6980 .. _Decoupled Weight Decay Regularization: https://arxiv.org/abs/1711.05101 For example: Example 1: .. code-block:: python # Assume net is a custom model. adamw = flow.optim.AdamW(net.parameters(), lr=1e-3) for epoch in range(epochs): # Read data, Compute the loss and so on. # ... loss.backward() adamw.step() adamw.zero_grad() Example 2: .. code-block:: python # Assume net is a custom model. adamw = flow.optim.AdamW( [ { "params": net.parameters(), "lr": learning_rate, "clip_grad_max_norm": 0.5, "clip_grad_norm_type": 2.0, } ], ) for epoch in range(epochs): # Read data, Compute the loss and so on. # ... loss.backward() adamw.clip_grad() adamw.step() adamw.zero_grad() If you want to use clip_grad, you can refer this example. For more details of `clip_grad_max_norm` and `clip_grad_norm_type`, you can refer to :func:`oneflow.nn.utils.clip_grad_norm_`. """ def __init__( self, params: Union[Iterator[Parameter], List[Dict]], lr: float = 0.001, betas: Tuple[float, float] = (0.9, 0.999), eps: float = 1e-08, weight_decay: float = 0, amsgrad: bool = False, do_bias_correction: bool = True, ): assert lr >= 0.0, f"Invalid learning rate: {lr}" assert eps >= 0.0, f"Invalid epsilon value: {eps}" assert ( betas[0] >= 0.0 and betas[0] < 1.0 ), f"Invalid beta parameter at index 0: {betas[0]}" assert ( betas[1] >= 0.0 and betas[1] < 1.0 ), f"Invalid beta parameter at index 1: {betas[1]}" assert weight_decay >= 0.0, f"Invalid weight_decay value: {weight_decay}" options = dict() options["lr"] = lr options["eps"] = eps options["betas"] = betas options["weight_decay"] = weight_decay options["bias_correction1"] = 1.0 options["bias_correction2"] = 1.0 options["do_bias_correction"] = do_bias_correction options["amsgrad"] = amsgrad super().__init__(params, options) for param_group in self.param_groups: for param in param_group.parameters: assert param.is_leaf, "parameters must be leaf tensor" self._state[param] = dict() self._op_with_amsgrad = ( flow.stateful_op("adam_update") .Input("model") .Input("model_diff") .Input("m") .Input("v") .Input("max_v") .Build() ) self._op_without_amsgrad = ( flow.stateful_op("adam_update") .Input("model") .Input("model_diff") .Input("m") .Input("v") .Build() ) def step(self, closure: Callable = None): """Performs a single optimization step. Args: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ with flow.no_grad(): loss = None if closure is not None: loss = closure() for param_group in self.param_groups: if param_group["do_bias_correction"]: param_group["bias_correction1"] = 1.0 - math.pow( param_group["betas"][0], self._state["step"] + 1 ) param_group["bias_correction2"] = 1.0 - math.pow( param_group["betas"][1], self._state["step"] + 1 ) kwargs = { "learning_rate": param_group["lr"], "bias_correction1": param_group["bias_correction1"], "bias_correction2": param_group["bias_correction2"], "weight_decay": param_group["weight_decay"], "beta1": param_group["betas"][0], "beta2": param_group["betas"][1], "epsilon": param_group["eps"], "do_bias_correction": param_group["do_bias_correction"], "amsgrad": param_group["amsgrad"], } for param in param_group.parameters: if param.grad is None: continue if "exp_avg" not in self._state[param]: self._state[param]["exp_avg"] = flow.zeros_like(param) if "exp_avg_sq" not in self._state[param]: self._state[param]["exp_avg_sq"] = flow.zeros_like(param) if param_group["amsgrad"]: if "max_exp_avg_sq" not in self._state[param]: self._state[param]["max_exp_avg_sq"] = flow.zeros_like( param ) m_tensor = self._state[param]["exp_avg"] v_tensor = self._state[param]["exp_avg_sq"] if param_group["amsgrad"]: max_v_tensor = self._state[param]["max_exp_avg_sq"] flow._C.dispatch_adam_update( self._op_with_amsgrad, (param, param.grad, m_tensor, v_tensor, max_v_tensor), **kwargs, ) else: flow._C.dispatch_adam_update( self._op_without_amsgrad, (param, param.grad, m_tensor, v_tensor), **kwargs, ) self._state["step"] += 1 return loss def _generate_conf_for_graph(self, train_conf, vars_conf): new_opt_confs = [] for param_group in self.param_groups: optimizer_conf = train_conf.mutable_optimizer_conf().Add() lr = ( param_group["initial_lr"] if "initial_lr" in param_group else param_group["lr"] ) weight_decay = param_group["weight_decay"] beta1 = param_group["betas"][0] beta2 = param_group["betas"][1] epsilon = param_group["eps"] do_bias_correction = param_group["do_bias_correction"] amsgrad = param_group["amsgrad"] optimizer_conf.set_base_learning_rate(lr) optimizer_conf.mutable_adam_conf().set_beta1(beta1) optimizer_conf.mutable_adam_conf().set_beta2(beta2) optimizer_conf.mutable_adam_conf().set_epsilon(epsilon) optimizer_conf.mutable_adam_conf().set_do_bias_correction( do_bias_correction ) optimizer_conf.mutable_adam_conf().set_amsgrad(amsgrad) optimizer_conf.mutable_weight_decay_conf().set_weight_decay_rate( weight_decay ) self._generate_grad_clip_conf_for_optim_conf(param_group, optimizer_conf) for param in param_group.parameters: if param.requires_grad: optimizer_conf.add_variable_op_names(vars_conf[param].name) new_opt_confs.append(optimizer_conf) return new_opt_confs @property def support_sparse(self): """Whether AdamW Optimizer support sparse update. """ return True
the-stack_0_14545
import sys import re import numpy as np import pandas as pd from scipy.stats import pearsonr from sklearn.preprocessing import scale import pytest from nibabel import Nifti1Image from nilearn.input_data import NiftiMasker from nilearn.interfaces.fmriprep import load_confounds from nilearn.interfaces.fmriprep.load_confounds import _check_strategy from nilearn._utils.fmriprep_confounds import _to_camel_case from nilearn.interfaces.fmriprep.tests.utils import ( create_tmp_filepath, get_leagal_confound ) def _simu_img(tmp_path, demean): """Simulate an nifti image based on confound file with some parts confounds and some parts noise.""" file_nii, _ = create_tmp_filepath(tmp_path, copy_confounds=True) # set the size of the image matrix nx = 5 ny = 5 # the actual number of slices will actually be double of that # as we will stack slices with confounds on top of slices with noise nz = 2 # Load a simple 6 parameters motion models as confounds # demean set to False just for simulating signal based on the original # state confounds, _ = load_confounds( file_nii, strategy=("motion", ), motion="basic", demean=False ) X = _handle_non_steady(confounds) X = X.values # the number of time points is based on the example confound file nt = X.shape[0] # initialize an empty 4D volume vol = np.zeros([nx, ny, 2 * nz, nt]) vol_conf = np.zeros([nx, ny, 2 * nz]) vol_rand = np.zeros([nx, ny, 2 * nz]) # create random noise and a random mixture of confounds standardized # to zero mean and unit variance if sys.version_info < (3, 7): # fall back to random state for 3.6 np.random.RandomState(42) beta = np.random.rand(nx * ny * nz, X.shape[1]) tseries_rand = scale(np.random.rand(nx * ny * nz, nt), axis=1) else: randome_state = np.random.default_rng(0) beta = randome_state.random((nx * ny * nz, X.shape[1])) tseries_rand = scale(randome_state.random((nx * ny * nz, nt)), axis=1) # create the confound mixture tseries_conf = scale(np.matmul(beta, X.transpose()), axis=1) # fill the first half of the 4D data with the random mixture vol[:, :, 0:nz, :] = tseries_conf.reshape(nx, ny, nz, nt) vol_conf[:, :, 0:nz] = 1 # create random noise in the second half of the 4D data vol[:, :, range(nz, 2 * nz), :] = tseries_rand.reshape(nx, ny, nz, nt) vol_rand[:, :, range(nz, 2 * nz)] = 1 # Shift the mean to non-zero vol = vol + 10 # create an nifti image with the data, and corresponding mask img = Nifti1Image(vol, np.eye(4)) mask_conf = Nifti1Image(vol_conf, np.eye(4)) mask_rand = Nifti1Image(vol_rand, np.eye(4)) # generate the associated confounds for testing test_confounds, _ = load_confounds( file_nii, strategy=("motion",), motion="basic", demean=demean) # match how we extend the length to increase the degree of freedom test_confounds = _handle_non_steady(test_confounds) sample_mask = np.arange(test_confounds.shape[0])[1:] return img, mask_conf, mask_rand, test_confounds, sample_mask def _handle_non_steady(confounds): """Simulate non steady state correctly while increase the length.""" X = confounds.values # the first row is non-steady state, replace it with the input from the # second row non_steady = X[0, :] X[0, :] = X[1, :] # repeat X in length (axis = 0) 10 times to increase # the degree of freedom for numerical stability X = np.tile(X, (10, 1)) # put non-steady state volume back at the first sample X[0, :] = non_steady X = pd.DataFrame(X, columns=confounds.columns) return X def _regression(confounds, tmp_path): """Simple regression with NiftiMasker.""" # Simulate data img, mask_conf, _, _, _ = _simu_img(tmp_path, demean=False) confounds = _handle_non_steady(confounds) # Do the regression masker = NiftiMasker(mask_img=mask_conf, standardize=True) tseries_clean = masker.fit_transform( img, confounds=confounds, sample_mask=None ) assert tseries_clean.shape[0] == confounds.shape[0] @pytest.mark.filterwarnings("ignore") @pytest.mark.parametrize( "test_strategy,param", [ (("motion", ), {}), (("high_pass", ), {}), (("wm_csf", ), {"wm_csf": "full"}), (("global_signal", ), {"global_signal": "full"}), (("high_pass", "compcor", ), {}), (("high_pass", "compcor", ), {"compcor": "anat_separated"}), (("high_pass", "compcor", ), {"compcor": "temporal"}), (("ica_aroma", ), {"ica_aroma": "basic"}), ], ) def test_nilearn_regress(tmp_path, test_strategy, param): """Try regressing out all motion types without sample mask.""" img_nii, _ = create_tmp_filepath( tmp_path, copy_confounds=True, copy_json=True ) confounds, _ = load_confounds(img_nii, strategy=test_strategy, **param) _regression(confounds, tmp_path) def _tseries_std(img, mask_img, confounds, sample_mask, standardize_signal=False, standardize_confounds=True, detrend=False): """Get the std of time series in a mask.""" masker = NiftiMasker( mask_img=mask_img, standardize=standardize_signal, standardize_confounds=standardize_confounds, detrend=detrend ) tseries = masker.fit_transform(img, confounds=confounds, sample_mask=sample_mask) return tseries.std(axis=0) def _denoise(img, mask_img, confounds, sample_mask, standardize_signal=False, standardize_confounds=True, detrend=False): """Extract time series with and without confounds.""" masker = NiftiMasker(mask_img=mask_img, standardize=standardize_signal, standardize_confounds=standardize_confounds, detrend=detrend) tseries_raw = masker.fit_transform(img, sample_mask=sample_mask) tseries_clean = masker.fit_transform( img, confounds=confounds, sample_mask=sample_mask ) return tseries_raw, tseries_clean def _corr_tseries(tseries1, tseries2): """Compute the correlation between two sets of time series.""" corr = np.zeros(tseries1.shape[1]) for ind in range(tseries1.shape[1]): corr[ind], _ = pearsonr(tseries1[:, ind], tseries2[:, ind]) return corr @pytest.mark.filterwarnings("ignore") def test_nilearn_standardize_false(tmp_path): """Test removing confounds with no standardization.""" # niftimasker default: # standardize=False, standardize_confounds=True, detrend=False # Simulate data; set demean to False as standardize_confounds=True (img, mask_conf, mask_rand, confounds, sample_mask) = _simu_img(tmp_path, demean=False) # Check that most variance is removed # in voxels composed of pure confounds tseries_std = _tseries_std(img, mask_conf, confounds, sample_mask, standardize_signal=False, standardize_confounds=True, detrend=False) assert np.mean(tseries_std < 0.0001) # Check that most variance is preserved # in voxels composed of random noise tseries_std = _tseries_std(img, mask_rand, confounds, sample_mask, standardize_signal=False, standardize_confounds=True, detrend=False) assert np.mean(tseries_std > 0.9) @pytest.mark.filterwarnings("ignore") @pytest.mark.parametrize("standardize_signal", ["zscore", "psc"]) @pytest.mark.parametrize("standardize_confounds,detrend", [(True, False), (False, True), (True, True)]) def test_nilearn_standardize(tmp_path, standardize_signal, standardize_confounds, detrend): """Test confounds removal with logical parameters for processing signal.""" # demean is set to False to let signal.clean handle everything (img, mask_conf, mask_rand, confounds, mask) = _simu_img(tmp_path, demean=False) # We now load the time series with vs without confounds # in voxels composed of pure confounds # the correlation before and after denoising should be very low # as most of the variance is removed by denoising tseries_raw, tseries_clean = _denoise( img, mask_conf, confounds, mask, standardize_signal=standardize_signal, standardize_confounds=standardize_confounds, detrend=detrend) corr = _corr_tseries(tseries_raw, tseries_clean) assert np.absolute(np.mean(corr)) < 0.2 # We now load the time series with zscore standardization # with vs without confounds in voxels where the signal is uncorrelated # with confounds. The correlation before and after denoising should be very # high as very little of the variance is removed by denoising tseries_raw, tseries_clean = _denoise( img, mask_rand, confounds, mask, standardize_signal=standardize_signal, standardize_confounds=standardize_confounds, detrend=detrend) corr = _corr_tseries(tseries_raw, tseries_clean) assert corr.mean() > 0.8 def test_confounds2df(tmp_path): """Check auto-detect of confonds from an fMRI nii image.""" img_nii, _ = create_tmp_filepath(tmp_path, copy_confounds=True) confounds, _ = load_confounds(img_nii) assert "trans_x" in confounds.columns @pytest.mark.parametrize("strategy,message", [(["string", ], "not a supported type of confounds."), ("error", "tuple or list of strings"), ((0, ), "not a supported type of confounds."), (("compcor", ), "high_pass")]) def test_check_strategy(strategy, message): """Check that flawed strategy options generate meaningful error messages.""" with pytest.raises(ValueError) as exc_info: _check_strategy(strategy=strategy) assert message in exc_info.value.args[0] SUFFIXES = np.array(["", "_derivative1", "_power2", "_derivative1_power2"]) @pytest.fixture def expected_suffixes(motion): expectation = { "basic": slice(1), "derivatives": slice(2), "power2": np.array([True, False, True, False]), "full": slice(4), } return SUFFIXES[expectation[motion]] @pytest.mark.parametrize("motion", ["basic", "derivatives", "power2", "full"]) @pytest.mark.parametrize( "param", ["trans_x", "trans_y", "trans_z", "rot_x", "rot_y", "rot_z"] ) def test_motion(tmp_path, motion, param, expected_suffixes): img_nii, _ = create_tmp_filepath(tmp_path, copy_confounds=True) conf, _ = load_confounds( img_nii, strategy=("motion", ), motion=motion ) for suff in SUFFIXES: if suff in expected_suffixes: assert f"{param}{suff}" in conf.columns else: assert f"{param}{suff}" not in conf.columns @pytest.mark.parametrize("compcor,n_compcor,test_keyword,test_n", [("anat_combined", 2, "a_comp_cor_", 2), ("anat_combined", "all", "a_comp_cor_", 57), ("temporal", "all", "t_comp_cor_", 6)]) def test_n_compcor(tmp_path, compcor, n_compcor, test_keyword, test_n): img_nii, _ = create_tmp_filepath( tmp_path, copy_confounds=True, copy_json=True ) conf, _ = load_confounds( img_nii, strategy=("high_pass", "compcor", ), compcor=compcor, n_compcor=n_compcor ) assert sum(True for col in conf.columns if test_keyword in col) == test_n def test_not_found_exception(tmp_path): """Check various file or parameter missing scenario.""" # Create invalid confound file in temporary dir img_missing_confounds, bad_conf = create_tmp_filepath( tmp_path, copy_confounds=True, copy_json=False ) missing_params = ["trans_y", "trans_x_derivative1", "rot_z_power2"] missing_keywords = ["cosine"] leagal_confounds = pd.read_csv(bad_conf, delimiter="\t", encoding="utf-8") cosine = [ col_name for col_name in leagal_confounds.columns if "cosine" in col_name ] aroma = [ col_name for col_name in leagal_confounds.columns if "aroma" in col_name ] missing_confounds = leagal_confounds.drop( columns=missing_params + cosine + aroma ) missing_confounds.to_csv(bad_conf, sep="\t", index=False) with pytest.raises(ValueError) as exc_info: load_confounds( img_missing_confounds, strategy=("high_pass", "motion", "global_signal", ), global_signal="full", motion="full", ) assert f"{missing_params}" in exc_info.value.args[0] assert f"{missing_keywords}" in exc_info.value.args[0] # loading anat compcor should also raise an error, because the json file is # missing for that example dataset with pytest.raises(ValueError): load_confounds( img_missing_confounds, strategy=("high_pass", "compcor"), compcor="anat_combined", ) # catch invalid compcor option with pytest.raises(KeyError): load_confounds( img_missing_confounds, strategy=("high_pass", "compcor"), compcor="blah" ) # Aggressive ICA-AROMA strategy requires # default nifti and noise ICs in confound file # correct nifti but missing noise regressor with pytest.raises(ValueError) as exc_info: load_confounds( img_missing_confounds, strategy=("ica_aroma", ), ica_aroma="basic" ) assert "aroma" in exc_info.value.args[0] # Aggressive ICA-AROMA strategy requires # default nifti aroma_nii, _ = create_tmp_filepath( tmp_path, image_type="ica_aroma", suffix="aroma" ) with pytest.raises(ValueError) as exc_info: load_confounds( aroma_nii, strategy=("ica_aroma", ), ica_aroma="basic" ) assert "Invalid file type" in exc_info.value.args[0] # non aggressive ICA-AROMA strategy requires # desc-smoothAROMAnonaggr nifti file with pytest.raises(ValueError) as exc_info: load_confounds( img_missing_confounds, strategy=("ica_aroma", ), ica_aroma="full" ) assert "desc-smoothAROMAnonaggr_bold" in exc_info.value.args[0] # no confound files along the image file (tmp_path / bad_conf).unlink() with pytest.raises(ValueError) as exc_info: load_confounds(img_missing_confounds) assert "Could not find associated confound file." in exc_info.value.args[0] def test_non_steady_state(tmp_path): """Warn when 'non_steady_state' is in strategy.""" # supplying 'non_steady_state' in strategy is not necessary # check warning is correctly raised img, conf = create_tmp_filepath( tmp_path, copy_confounds=True ) warning_message = (r"Non-steady state") with pytest.warns(UserWarning, match=warning_message): load_confounds(img, strategy=('non_steady_state', 'motion')) def test_load_non_nifti(tmp_path): """Test non-nifti and invalid file type as input.""" # tsv file - unsupported input _, tsv = create_tmp_filepath(tmp_path, copy_confounds=True, copy_json=True) with pytest.raises(ValueError): load_confounds(str(tsv)) # cifti file should be supported cifti, _ = create_tmp_filepath( tmp_path, image_type="cifti", copy_confounds=True, copy_json=True ) conf, _ = load_confounds(cifti) assert conf.size != 0 # gifti support gifti, _ = create_tmp_filepath( tmp_path, image_type="gifti", copy_confounds=True, copy_json=True ) conf, _ = load_confounds(gifti) assert conf.size != 0 def test_invalid_filetype(tmp_path): """Invalid file types/associated files for load method.""" bad_nii, bad_conf = create_tmp_filepath(tmp_path, copy_confounds=True) conf, _ = load_confounds(bad_nii) # more than one legal filename for confounds add_conf = "test_desc-confounds_timeseries.tsv" leagal_confounds, _ = get_leagal_confound() leagal_confounds.to_csv(tmp_path / add_conf, sep="\t", index=False) with pytest.raises(ValueError) as info: load_confounds(bad_nii) assert "more than one" in str(info.value) (tmp_path / add_conf).unlink() # Remove for the rest of the tests to run # invalid fmriprep version: confound file with no header (<1.0) fake_confounds = np.random.rand(30, 20) np.savetxt(bad_conf, fake_confounds, delimiter="\t") with pytest.raises(ValueError) as error_log: load_confounds(bad_nii) assert "The confound file contains no header." in str(error_log.value) # invalid fmriprep version: old camel case header (<1.2) leagal_confounds, _ = get_leagal_confound() camel_confounds = leagal_confounds.copy() camel_confounds.columns = [ _to_camel_case(col_name) for col_name in leagal_confounds.columns ] camel_confounds.to_csv(bad_conf, sep="\t", index=False) with pytest.raises(ValueError) as error_log: load_confounds(bad_nii) assert "contains header in camel case." in str(error_log.value) # create a empty nifti file with no associated confound file # We only need the path to check this no_conf = "no_confound_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz" no_confound = tmp_path / no_conf no_confound.touch() with pytest.raises(ValueError): load_confounds(bad_nii) def test_ica_aroma(tmp_path): """Test ICA AROMA related file input.""" aroma_nii, _ = create_tmp_filepath( tmp_path, image_type="ica_aroma", copy_confounds=True ) regular_nii, _ = create_tmp_filepath( tmp_path, image_type="regular", copy_confounds=True ) # Aggressive strategy conf, _ = load_confounds( regular_nii, strategy=("ica_aroma", ), ica_aroma="basic" ) for col_name in conf.columns: # only aroma and non-steady state columns will be present assert re.match("(?:aroma_motion_+|non_steady_state+)", col_name) # Non-aggressive strategy conf, _ = load_confounds( aroma_nii, strategy=("ica_aroma", ), ica_aroma="full" ) assert conf.size == 0 # invalid combination of strategy and option with pytest.raises(ValueError) as exc_info: conf, _ = load_confounds( regular_nii, strategy=("ica_aroma", ), ica_aroma="invalid" ) assert "Current input: invalid" in exc_info.value.args[0] def test_sample_mask(tmp_path): """Test load method and sample mask.""" regular_nii, regular_conf = create_tmp_filepath( tmp_path, image_type="regular", copy_confounds=True ) reg, mask = load_confounds( regular_nii, strategy=("motion", "scrub"), scrub=5, fd_threshold=0.15 ) # the current test data has 6 time points marked as motion outliers, # and one nonsteady state (overlap with the first motion outlier) # 2 time points removed due to the "full" srubbing strategy (remove segment # shorter than 5 volumes) assert reg.shape[0] - len(mask) == 8 # nilearn requires unmasked confound regressors assert reg.shape[0] == 30 # non steady state will always be removed reg, mask = load_confounds(regular_nii, strategy=("motion", )) assert reg.shape[0] - len(mask) == 1 # When no non-steady state volumes are present conf_data, _ = get_leagal_confound(non_steady_state=False) conf_data.to_csv(regular_conf, sep="\t", index=False) # save to tmp reg, mask = load_confounds(regular_nii, strategy=("motion", )) assert mask is None # When no volumes needs removing (very liberal motion threshould) reg, mask = load_confounds( regular_nii, strategy=("motion", "scrub"), scrub=0, fd_threshold=4 ) assert mask is None @pytest.mark.parametrize( "image_type", ["regular", "ica_aroma", "gifti", "cifti"] ) def test_inputs(tmp_path, image_type): """Test multiple images as input.""" # generate files files = [] for i in range(2): # gifti edge case nii, _ = create_tmp_filepath( tmp_path, suffix=f"img{i+1}", image_type=image_type, copy_confounds=True, copy_json=True, ) files.append(nii) if image_type == "ica_aroma": conf, _ = load_confounds(files, strategy=("ica_aroma", )) else: conf, _ = load_confounds(files) assert len(conf) == 2
the-stack_0_14546
# Copyright (c) 2018, NVIDIA CORPORATION. from __future__ import print_function, division import inspect import pytest import numpy as np import pandas as pd from pandas.util.testing import assert_frame_equal from itertools import product import cudf from cudf import queryutils from cudf.dataframe import DataFrame _params_query_parser = [] _params_query_parser.append(('a > @b', ('a', '__CUDF_ENVREF__b'))) _params_query_parser.append(('(a + b) <= @c', ('a', 'b', '__CUDF_ENVREF__c'))) _params_query_parser.append(('a > b if a > 0 else b > a', ('a', 'b'))) @pytest.mark.parametrize('text,expect_args', _params_query_parser) def test_query_parser(text, expect_args): info = queryutils.query_parser(text) fn = queryutils.query_builder(info, 'myfoo') assert callable(fn) argspec = inspect.getfullargspec(fn) assert tuple(argspec.args) == tuple(expect_args) params_query_data = list(product([1, 2, 7, 8, 9, 16, 100, 129], range(2))) params_query_fn = [ (lambda a, b: a < b, 'a < b'), (lambda a, b: a * 2 >= b, 'a * 2 >= b'), (lambda a, b: 2 * (a + b) > (a + b) / 2, '2 * (a + b) > (a + b) / 2'), ] @pytest.mark.parametrize('data,fn', product(params_query_data, params_query_fn)) def test_query(data, fn): # prepare nelem, seed = data expect_fn, query_expr = fn np.random.seed(seed) df = DataFrame() df['a'] = aa = np.arange(nelem) df['b'] = bb = np.random.random(nelem) * nelem # udt expect_mask = expect_fn(aa, bb) df2 = df.query(query_expr) # check assert len(df2) == np.count_nonzero(expect_mask) np.testing.assert_array_almost_equal(df2['a'].to_array(), aa[expect_mask]) np.testing.assert_array_almost_equal(df2['b'].to_array(), bb[expect_mask]) params_query_env_fn = [ (lambda a, b, c, d: a * c > b + d, 'a * @c > b + @d'), (lambda a, b, c, d: ((a / c) < d) | ((b ** c) > d), '((a / @c) < @d) | ((b ** @c) > @d)') ] @pytest.mark.parametrize('data,fn', product(params_query_data, params_query_env_fn)) def test_query_ref_env(data, fn): # prepare nelem, seed = data expect_fn, query_expr = fn np.random.seed(seed) df = DataFrame() df['a'] = aa = np.arange(nelem) df['b'] = bb = np.random.random(nelem) * nelem c = 2.3 d = 1.2 # udt expect_mask = expect_fn(aa, bb, c, d) print(expect_mask) df2 = df.query(query_expr) # check assert len(df2) == np.count_nonzero(expect_mask) np.testing.assert_array_almost_equal(df2['a'].to_array(), aa[expect_mask]) np.testing.assert_array_almost_equal(df2['b'].to_array(), bb[expect_mask]) def test_query_env_changing(): df = DataFrame() df['a'] = aa = np.arange(100) expr = 'a < @c' # first attempt c = 10 got = df.query(expr) np.testing.assert_array_equal(aa[aa < c], got['a'].to_array()) # change env c = 50 got = df.query(expr) np.testing.assert_array_equal(aa[aa < c], got['a'].to_array()) def test_query_splitted_combine(): np.random.seed(0) df = pd.DataFrame({'x': np.random.randint(0, 5, size=10), 'y': np.random.normal(size=10)}) gdf = DataFrame.from_pandas(df) # Split the GDF s1 = gdf[:5] s2 = gdf[5:] # Do the query expr = 'x > 2' q1 = s1.query(expr) q2 = s2.query(expr) # Combine got = cudf.concat([q1, q2]).to_pandas() # Should equal to just querying the original GDF expect = gdf.query(expr).to_pandas() assert_frame_equal(got, expect)
the-stack_0_14547
#!/usr/bin/env python # # Copyright 2020 Confluent Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ============================================================================= # # Produce messages to Confluent Cloud # Using Confluent Python Client for Apache Kafka # # ============================================================================= from confluent_kafka import Producer, KafkaError import json import ccloud_lib if __name__ == '__main__': # Read arguments and configurations and initialize args = ccloud_lib.parse_args() config_file = args.config_file topic = args.topic conf = ccloud_lib.read_ccloud_config(config_file) # Create Producer instance producer = Producer({ 'bootstrap.servers': conf['bootstrap.servers'], 'sasl.mechanisms': conf['sasl.mechanisms'], 'security.protocol': conf['security.protocol'], 'sasl.username': conf['sasl.username'], 'sasl.password': conf['sasl.password'], }) # Create topic if needed ccloud_lib.create_topic(conf, topic) delivered_records = 0 # Optional per-message on_delivery handler (triggered by poll() or flush()) # when a message has been successfully delivered or # permanently failed delivery (after retries). def acked(err, msg): global delivered_records """Delivery report handler called on successful or failed delivery of message """ if err is not None: print("Failed to deliver message: {}".format(err)) else: delivered_records += 1 print("Produced record to topic {} partition [{}] @ offset {}" .format(msg.topic(), msg.partition(), msg.offset())) for n in range(10): record_key = "alice" record_value = json.dumps({'count': n}) print("Producing record: {}\t{}".format(record_key, record_value)) producer.produce(topic, key=record_key, value=record_value, on_delivery=acked) # p.poll() serves delivery reports (on_delivery) # from previous produce() calls. producer.poll(0) producer.flush() print("{} messages were produced to topic {}!".format(delivered_records, topic))
the-stack_0_14548
import argparse import os import numpy as np import math import torchvision.transforms as transforms from torchvision.utils import save_image from PIL import Image from torch.utils.data import DataLoader from torchvision import datasets from torch.autograd import Variable from datasets import * from models import * import torch.nn as nn import torch.nn.functional as F import torch os.makedirs("images", exist_ok=True) parser = argparse.ArgumentParser() parser.add_argument("--n_epochs", type=int, default=200, help="number of epochs of training") parser.add_argument("--batch_size", type=int, default=8, help="size of the batches") parser.add_argument("--dataset_name", type=str, default="img_align_celeba", help="name of the dataset") parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate") parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient") parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient") parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation") parser.add_argument("--latent_dim", type=int, default=100, help="dimensionality of the latent space") parser.add_argument("--img_size", type=int, default=128, help="size of each image dimension") parser.add_argument("--mask_size", type=int, default=32, help="size of random mask") parser.add_argument("--channels", type=int, default=3, help="number of image channels") parser.add_argument("--sample_interval", type=int, default=500, help="interval between image sampling") opt = parser.parse_args() print(opt) cuda = True if torch.cuda.is_available() else False input_shape = (opt.channels, opt.img_size, opt.img_size) # Loss function adversarial_loss = torch.nn.MSELoss() # Initialize generator and discriminator generator = Generator(input_shape) discriminator = Discriminator(input_shape) if cuda: generator.cuda() discriminator.cuda() adversarial_loss.cuda() # Initialize weights generator.apply(weights_init_normal) discriminator.apply(weights_init_normal) # Dataset loader transforms_ = [ transforms.Resize((opt.img_size, opt.img_size), Image.BICUBIC), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ] transforms_lr = [ transforms.Resize((opt.img_size // 4, opt.img_size // 4), Image.BICUBIC), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ] dataloader = DataLoader( ImageDataset("../../data/%s" % opt.dataset_name, transforms_x=transforms_, transforms_lr=transforms_lr), batch_size=opt.batch_size, shuffle=True, num_workers=opt.n_cpu, ) # Optimizers optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2)) optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2)) Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor def apply_random_mask(imgs): idx = np.random.randint(0, opt.img_size - opt.mask_size, (imgs.shape[0], 2)) masked_imgs = imgs.clone() for i, (y1, x1) in enumerate(idx): y2, x2 = y1 + opt.mask_size, x1 + opt.mask_size masked_imgs[i, :, y1:y2, x1:x2] = -1 return masked_imgs def save_sample(saved_samples): # Generate inpainted image gen_imgs = generator(saved_samples["masked"], saved_samples["lowres"]) # Save sample sample = torch.cat((saved_samples["masked"].data, gen_imgs.data, saved_samples["imgs"].data), -2) save_image(sample, "images/%d.png" % batches_done, nrow=5, normalize=True) saved_samples = {} for epoch in range(opt.n_epochs): for i, batch in enumerate(dataloader): imgs = batch["x"] imgs_lr = batch["x_lr"] masked_imgs = apply_random_mask(imgs) # Adversarial ground truths valid = Variable(Tensor(imgs.shape[0], *discriminator.output_shape).fill_(1.0), requires_grad=False) fake = Variable(Tensor(imgs.shape[0], *discriminator.output_shape).fill_(0.0), requires_grad=False) if cuda: imgs = imgs.type(Tensor) imgs_lr = imgs_lr.type(Tensor) masked_imgs = masked_imgs.type(Tensor) real_imgs = Variable(imgs) imgs_lr = Variable(imgs_lr) masked_imgs = Variable(masked_imgs) # ----------------- # Train Generator # ----------------- optimizer_G.zero_grad() # Generate a batch of images gen_imgs = generator(masked_imgs, imgs_lr) # Loss measures generator's ability to fool the discriminator g_loss = adversarial_loss(discriminator(gen_imgs), valid) g_loss.backward() optimizer_G.step() # --------------------- # Train Discriminator # --------------------- optimizer_D.zero_grad() # Measure discriminator's ability to classify real from generated samples real_loss = adversarial_loss(discriminator(real_imgs), valid) fake_loss = adversarial_loss(discriminator(gen_imgs.detach()), fake) d_loss = 0.5 * (real_loss + fake_loss) d_loss.backward() optimizer_D.step() print( "[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]" % (epoch, opt.n_epochs, i, len(dataloader), d_loss.item(), g_loss.item()) ) # Save first ten samples if not saved_samples: saved_samples["imgs"] = real_imgs[:1].clone() saved_samples["masked"] = masked_imgs[:1].clone() saved_samples["lowres"] = imgs_lr[:1].clone() elif saved_samples["imgs"].size(0) < 10: saved_samples["imgs"] = torch.cat((saved_samples["imgs"], real_imgs[:1]), 0) saved_samples["masked"] = torch.cat((saved_samples["masked"], masked_imgs[:1]), 0) saved_samples["lowres"] = torch.cat((saved_samples["lowres"], imgs_lr[:1]), 0) batches_done = epoch * len(dataloader) + i if batches_done % opt.sample_interval == 0: save_sample(saved_samples)
the-stack_0_14549
# -*- coding: utf-8 -*- """ Created on Sun Apr 22 14:23:32 2018 CSV module handles parsing better as delimiter can be part of data as well @author: dongrp2 """ import csv with open('names.csv','r') as names_csv: csv_reader = csv.reader(names_csv) next(csv_reader) # to loop over the first line which is headder for line in csv_reader: #print(line) #print all the lines in list print(line[2]) # 2nd index of the list """Creating a tab delimited file""" with open('names.csv','r') as names_csv: csv_reader = csv.reader(names_csv) with open('new_names.csv','w') as new_names: csv_writer = csv.writer(new_names, delimiter='\t') for line in csv_reader: csv_writer.writerow(line) # with open('new_names.csv','r') as read_new_csv: # csv_new_reader = csv.reader(read_new_csv,delimiter='\t') # for line in csv_new_reader: # print(line) """Using Dictionary Reader where field names are keys of the values""" with open('names.csv','r') as names_csv: csv_reader = csv.DictReader(names_csv) for line in csv_reader: print(line['email']) #accesing the key 'email' """Using Dictionary Writer have to provide the field names""" with open('names.csv','r') as names_csv: csv_reader = csv.DictReader(names_csv) with open('new_names_dict.csv','w') as new_names_dict: fieldnames = ['first_name','last_name','email'] csv_writer = csv.DictWriter(new_names_dict, fieldnames=fieldnames, delimiter='\t') csv_writer.writeheader() for line in csv_reader: #del line['email'] if want to write only first and last name csv_writer.writerow(line) #for line in csv_reader: # print(line['email']) #accesing the key 'email'
the-stack_0_14551
# -*- coding: utf-8 -*- from tests import HangulizeTestCase from hangulize.langs.slk import Slovak class SlovakTestCase(HangulizeTestCase): lang = Slovak() def test_people(self): self.assert_examples({ 'Ján Bahýľ': '얀 바힐', 'Štefan Banič': '슈테판 바니치', 'Anton Bernolák': '안톤 베르놀라크', 'Peter Bondra': '페테르 본드라', 'Zdeno Chára': '즈데노 하라', 'Dominika Cibulková': '도미니카 치불코바', 'Ján Čarnogurský': '얀 차르노구르스키', 'Štefan Marko Daxner': '슈테판 마르코 닥스네르', 'Pavol Demitra': '파볼 데미트라', 'Alexander Dubček': '알렉산데르 둡체크', 'Mikuláš Dzurinda': '미쿨라시 주린다', 'Marián Gáborík': '마리안 가보리크', 'Marek Hamšík': '마레크 함시크', 'Daniela Hantuchová': '다니엘라 한투호바', 'Andrej Hlinka': '안드레이 흘린카', 'Milan Hodža': '밀란 호자', 'Marian Hossa': '마리안 호사', 'Dominik Hrbatý': '도미니크 흐르바티', 'Pavol Hurajt': '파볼 후라이트', 'Jozef Miloslav Hurban': '요제프 밀로슬라우 후르반', 'Gustáv Husák': '구스타우 후사크', 'Hviezdoslav': '흐비에즈도슬라우', 'Dionýz Ilkovič': '디오니스 일코비치', 'Elena Kaliská': '엘레나 칼리스카', 'Michaela Kocianová': '미하엘라 코치아노바', 'Karol Kučera': '카롤 쿠체라', 'Anastasiya Kuzmina': '아나스타시야 쿠즈미나', 'Michal Martikán': '미할 마르티칸', 'Janko Matúška': '얀코 마투슈카', 'Vladimír Mečiar': '블라디미르 메치아르', 'Martina Moravcová': '마르티나 모라우초바', 'Jozef Murgaš': '요제프 무르가시', 'Natália Prekopová': '나탈리아 프레코포바', 'Jozef Roháček': '요제프 로하체크', 'Magdaléna Rybáriková': '마그달레나 리바리코바', 'Zuzana Sekerová': '주자나 세케로바', 'Aurel Stodola': '아우렐 스토돌라', 'Eugen Suchoň': '에우겐 수혼', 'Martin Škrtel': '마르틴 슈크르텔', 'Milan Rastislav Štefánik': '밀란 라스티슬라우 슈테파니크', 'Zuzana Štefečeková': '주자나 슈테페체코바', 'Peter Šťastný': '페테르 슈탸스트니', 'Ľudovít Štúr': '류도비트 슈투르', 'Jozef Tiso': '요제프 티소', 'Vavrinec': '바우리네츠', 'Rudolf Vrba': '루돌프 브르바', 'Vladimír Weiss': '블라디미르 베이스', }) def test_places(self): self.assert_examples({ 'Banská Bystrica': '반스카 비스트리차', 'Bardejov': '바르데요우', 'Bratislava': '브라티슬라바', 'Komárno': '코마르노', 'Košice': '코시체', 'Manínska tiesňava': '마닌스카 티에스냐바', 'Martin': '마르틴', 'Michalovce': '미할로우체', 'Nitra': '니트라', 'Poprad': '포프라트', 'Považská': '포바슈스카', 'Prešov': '프레쇼우', 'Rožňava': '로주냐바', 'Slavín': '슬라빈', 'Spiš': '스피시', 'Trenčín': '트렌친', 'Trnava': '트르나바', 'Váh': '바흐', 'Vlkolínec': '블콜리네츠', 'Vydrica': '비드리차', 'Zvolen': '즈볼렌', 'Žilina': '질리나', 'Žehra': '제흐라', }) def test_miscellaneous(self): self.assert_examples({ 'deväť': '데베티', 'jahôd': '야후오트', 'mäkčeň': '멕첸', 'pätnásť': '페트나스티', })
the-stack_0_14552
import urllib import itertools import json import jinja2 from datasette.plugins import pm from datasette.database import QueryInterrupted from datasette.utils import ( CustomRow, MultiParams, append_querystring, compound_keys_after_sql, escape_sqlite, filters_should_redirect, is_url, path_from_row_pks, path_with_added_args, path_with_removed_args, path_with_replaced_args, sqlite3, to_css_class, urlsafe_components, value_as_boolean, ) from datasette.utils.asgi import NotFound from datasette.filters import Filters from .base import DataView, DatasetteError, ureg from .database import QueryView LINK_WITH_LABEL = ( '<a href="{base_url}{database}/{table}/{link_id}">{label}</a>&nbsp;<em>{id}</em>' ) LINK_WITH_VALUE = '<a href="{base_url}{database}/{table}/{link_id}">{id}</a>' class Row: def __init__(self, cells): self.cells = cells def __iter__(self): return iter(self.cells) def __getitem__(self, key): for cell in self.cells: if cell["column"] == key: return cell["raw"] raise KeyError def display(self, key): for cell in self.cells: if cell["column"] == key: return cell["value"] return None def __str__(self): d = { key: self[key] for key in [ c["column"] for c in self.cells if not c.get("is_special_link_column") ] } return json.dumps(d, default=repr, indent=2) class RowTableShared(DataView): async def sortable_columns_for_table(self, database, table, use_rowid): db = self.ds.databases[database] table_metadata = self.ds.table_metadata(database, table) if "sortable_columns" in table_metadata: sortable_columns = set(table_metadata["sortable_columns"]) else: sortable_columns = set(await db.table_columns(table)) if use_rowid: sortable_columns.add("rowid") return sortable_columns async def expandable_columns(self, database, table): # Returns list of (fk_dict, label_column-or-None) pairs for that table expandables = [] db = self.ds.databases[database] for fk in await db.foreign_keys_for_table(table): label_column = await db.label_column_for_table(fk["other_table"]) expandables.append((fk, label_column)) return expandables async def display_columns_and_rows( self, database, table, description, rows, link_column=False, truncate_cells=0 ): "Returns columns, rows for specified table - including fancy foreign key treatment" db = self.ds.databases[database] table_metadata = self.ds.table_metadata(database, table) sortable_columns = await self.sortable_columns_for_table(database, table, True) columns = [ {"name": r[0], "sortable": r[0] in sortable_columns} for r in description ] pks = await db.primary_keys(table) column_to_foreign_key_table = { fk["column"]: fk["other_table"] for fk in await db.foreign_keys_for_table(table) } cell_rows = [] base_url = self.ds.config("base_url") for row in rows: cells = [] # Unless we are a view, the first column is a link - either to the rowid # or to the simple or compound primary key if link_column: is_special_link_column = len(pks) != 1 pk_path = path_from_row_pks(row, pks, not pks, False) cells.append( { "column": pks[0] if len(pks) == 1 else "Link", "value_type": "pk", "is_special_link_column": is_special_link_column, "raw": pk_path, "value": jinja2.Markup( '<a href="{base_url}{database}/{table}/{flat_pks_quoted}">{flat_pks}</a>'.format( base_url=base_url, database=database, table=urllib.parse.quote_plus(table), flat_pks=str(jinja2.escape(pk_path)), flat_pks_quoted=path_from_row_pks(row, pks, not pks), ) ), } ) for value, column_dict in zip(row, columns): column = column_dict["name"] if link_column and len(pks) == 1 and column == pks[0]: # If there's a simple primary key, don't repeat the value as it's # already shown in the link column. continue # First let the plugins have a go # pylint: disable=no-member plugin_display_value = pm.hook.render_cell( value=value, column=column, table=table, database=database, datasette=self.ds, ) if plugin_display_value is not None: display_value = plugin_display_value elif isinstance(value, bytes): display_value = jinja2.Markup( "&lt;Binary&nbsp;data:&nbsp;{}&nbsp;byte{}&gt;".format( len(value), "" if len(value) == 1 else "s" ) ) elif isinstance(value, dict): # It's an expanded foreign key - display link to other row label = value["label"] value = value["value"] # The table we link to depends on the column other_table = column_to_foreign_key_table[column] link_template = ( LINK_WITH_LABEL if (label != value) else LINK_WITH_VALUE ) display_value = jinja2.Markup( link_template.format( database=database, base_url=base_url, table=urllib.parse.quote_plus(other_table), link_id=urllib.parse.quote_plus(str(value)), id=str(jinja2.escape(value)), label=str(jinja2.escape(label)), ) ) elif value in ("", None): display_value = jinja2.Markup("&nbsp;") elif is_url(str(value).strip()): display_value = jinja2.Markup( '<a href="{url}">{url}</a>'.format( url=jinja2.escape(value.strip()) ) ) elif column in table_metadata.get("units", {}) and value != "": # Interpret units using pint value = value * ureg(table_metadata["units"][column]) # Pint uses floating point which sometimes introduces errors in the compact # representation, which we have to round off to avoid ugliness. In the vast # majority of cases this rounding will be inconsequential. I hope. value = round(value.to_compact(), 6) display_value = jinja2.Markup( "{:~P}".format(value).replace(" ", "&nbsp;") ) else: display_value = str(value) if truncate_cells and len(display_value) > truncate_cells: display_value = display_value[:truncate_cells] + u"\u2026" cells.append( { "column": column, "value": display_value, "raw": value, "value_type": "none" if value is None else str(type(value).__name__), } ) cell_rows.append(Row(cells)) if link_column: # Add the link column header. # If it's a simple primary key, we have to remove and re-add that column name at # the beginning of the header row. if len(pks) == 1: columns = [col for col in columns if col["name"] != pks[0]] columns = [ {"name": pks[0] if len(pks) == 1 else "Link", "sortable": len(pks) == 1} ] + columns return columns, cell_rows class TableView(RowTableShared): name = "table" async def post(self, request, db_name, table_and_format): # Handle POST to a canned query canned_query = await self.ds.get_canned_query( db_name, table_and_format, request.actor ) assert canned_query, "You may only POST to a canned query" return await QueryView(self.ds).data( request, db_name, None, canned_query["sql"], metadata=canned_query, editable=False, canned_query=table_and_format, named_parameters=canned_query.get("params"), write=bool(canned_query.get("write")), ) async def data( self, request, database, hash, table, default_labels=False, _next=None, _size=None, ): canned_query = await self.ds.get_canned_query(database, table, request.actor) if canned_query: return await QueryView(self.ds).data( request, database, hash, canned_query["sql"], metadata=canned_query, editable=False, canned_query=table, named_parameters=canned_query.get("params"), write=bool(canned_query.get("write")), ) db = self.ds.databases[database] is_view = bool(await db.get_view_definition(table)) table_exists = bool(await db.table_exists(table)) if not is_view and not table_exists: raise NotFound("Table not found: {}".format(table)) await self.check_permission(request, "view-instance") await self.check_permission(request, "view-database", database) await self.check_permission(request, "view-table", (database, table)) private = not await self.ds.permission_allowed( None, "view-table", (database, table), default=True ) pks = await db.primary_keys(table) table_columns = await db.table_columns(table) select_columns = ", ".join(escape_sqlite(t) for t in table_columns) use_rowid = not pks and not is_view if use_rowid: select = "rowid, {}".format(select_columns) order_by = "rowid" order_by_pks = "rowid" else: select = select_columns order_by_pks = ", ".join([escape_sqlite(pk) for pk in pks]) order_by = order_by_pks if is_view: order_by = "" # Ensure we don't drop anything with an empty value e.g. ?name__exact= args = MultiParams( urllib.parse.parse_qs(request.query_string, keep_blank_values=True) ) # Special args start with _ and do not contain a __ # That's so if there is a column that starts with _ # it can still be queried using ?_col__exact=blah special_args = {} other_args = [] for key in args: if key.startswith("_") and "__" not in key: special_args[key] = args[key] else: for v in args.getlist(key): other_args.append((key, v)) # Handle ?_filter_column and redirect, if present redirect_params = filters_should_redirect(special_args) if redirect_params: return self.redirect( request, path_with_added_args(request, redirect_params), forward_querystring=False, ) # Spot ?_sort_by_desc and redirect to _sort_desc=(_sort) if "_sort_by_desc" in special_args: return self.redirect( request, path_with_added_args( request, { "_sort_desc": special_args.get("_sort"), "_sort_by_desc": None, "_sort": None, }, ), forward_querystring=False, ) table_metadata = self.ds.table_metadata(database, table) units = table_metadata.get("units", {}) filters = Filters(sorted(other_args), units, ureg) where_clauses, params = filters.build_where_clauses(table) extra_wheres_for_ui = [] # Add _where= from querystring if "_where" in request.args: if not await self.ds.permission_allowed( request.actor, "execute-sql", resource=database, default=True, ): raise DatasetteError("_where= is not allowed", status=403) else: where_clauses.extend(request.args.getlist("_where")) extra_wheres_for_ui = [ { "text": text, "remove_url": path_with_removed_args(request, {"_where": text}), } for text in request.args.getlist("_where") ] # Support for ?_through={table, column, value} extra_human_descriptions = [] if "_through" in request.args: for through in request.args.getlist("_through"): through_data = json.loads(through) through_table = through_data["table"] other_column = through_data["column"] value = through_data["value"] outgoing_foreign_keys = await db.foreign_keys_for_table(through_table) try: fk_to_us = [ fk for fk in outgoing_foreign_keys if fk["other_table"] == table ][0] except IndexError: raise DatasetteError( "Invalid _through - could not find corresponding foreign key" ) param = "p{}".format(len(params)) where_clauses.append( "{our_pk} in (select {our_column} from {through_table} where {other_column} = :{param})".format( through_table=escape_sqlite(through_table), our_pk=escape_sqlite(fk_to_us["other_column"]), our_column=escape_sqlite(fk_to_us["column"]), other_column=escape_sqlite(other_column), param=param, ) ) params[param] = value extra_human_descriptions.append( '{}.{} = "{}"'.format(through_table, other_column, value) ) # _search support: fts_table = special_args.get("_fts_table") fts_table = fts_table or table_metadata.get("fts_table") fts_table = fts_table or await db.fts_table(table) fts_pk = special_args.get("_fts_pk", table_metadata.get("fts_pk", "rowid")) search_args = dict( pair for pair in special_args.items() if pair[0].startswith("_search") ) search = "" search_mode_raw = special_args.get("_searchmode") == "raw" if fts_table and search_args: if "_search" in search_args: # Simple ?_search=xxx search = search_args["_search"] where_clauses.append( "{fts_pk} in (select rowid from {fts_table} where {fts_table} match {match_clause})".format( fts_table=escape_sqlite(fts_table), fts_pk=escape_sqlite(fts_pk), match_clause=":search" if search_mode_raw else "escape_fts(:search)", ) ) extra_human_descriptions.append('search matches "{}"'.format(search)) params["search"] = search else: # More complex: search against specific columns for i, (key, search_text) in enumerate(search_args.items()): search_col = key.split("_search_", 1)[1] if search_col not in await db.table_columns(fts_table): raise DatasetteError("Cannot search by that column", status=400) where_clauses.append( "rowid in (select rowid from {fts_table} where {search_col} match {match_clause})".format( fts_table=escape_sqlite(fts_table), search_col=escape_sqlite(search_col), match_clause=":search_{}".format(i) if search_mode_raw else "escape_fts(:search_{})".format(i), ) ) extra_human_descriptions.append( 'search column "{}" matches "{}"'.format( search_col, search_text ) ) params["search_{}".format(i)] = search_text sortable_columns = set() sortable_columns = await self.sortable_columns_for_table( database, table, use_rowid ) # Allow for custom sort order sort = special_args.get("_sort") sort_desc = special_args.get("_sort_desc") if not sort and not sort_desc: sort = table_metadata.get("sort") sort_desc = table_metadata.get("sort_desc") if sort and sort_desc: raise DatasetteError("Cannot use _sort and _sort_desc at the same time") if sort: if sort not in sortable_columns: raise DatasetteError("Cannot sort table by {}".format(sort)) order_by = escape_sqlite(sort) if sort_desc: if sort_desc not in sortable_columns: raise DatasetteError("Cannot sort table by {}".format(sort_desc)) order_by = "{} desc".format(escape_sqlite(sort_desc)) from_sql = "from {table_name} {where}".format( table_name=escape_sqlite(table), where=("where {} ".format(" and ".join(where_clauses))) if where_clauses else "", ) # Copy of params so we can mutate them later: from_sql_params = dict(**params) count_sql = "select count(*) {}".format(from_sql) _next = _next or special_args.get("_next") offset = "" if _next: if is_view: # _next is an offset offset = " offset {}".format(int(_next)) else: components = urlsafe_components(_next) # If a sort order is applied, the first of these is the sort value if sort or sort_desc: sort_value = components[0] # Special case for if non-urlencoded first token was $null if _next.split(",")[0] == "$null": sort_value = None components = components[1:] # Figure out the SQL for next-based-on-primary-key first next_by_pk_clauses = [] if use_rowid: next_by_pk_clauses.append("rowid > :p{}".format(len(params))) params["p{}".format(len(params))] = components[0] else: # Apply the tie-breaker based on primary keys if len(components) == len(pks): param_len = len(params) next_by_pk_clauses.append( compound_keys_after_sql(pks, param_len) ) for i, pk_value in enumerate(components): params["p{}".format(param_len + i)] = pk_value # Now add the sort SQL, which may incorporate next_by_pk_clauses if sort or sort_desc: if sort_value is None: if sort_desc: # Just items where column is null ordered by pk where_clauses.append( "({column} is null and {next_clauses})".format( column=escape_sqlite(sort_desc), next_clauses=" and ".join(next_by_pk_clauses), ) ) else: where_clauses.append( "({column} is not null or ({column} is null and {next_clauses}))".format( column=escape_sqlite(sort), next_clauses=" and ".join(next_by_pk_clauses), ) ) else: where_clauses.append( "({column} {op} :p{p}{extra_desc_only} or ({column} = :p{p} and {next_clauses}))".format( column=escape_sqlite(sort or sort_desc), op=">" if sort else "<", p=len(params), extra_desc_only="" if sort else " or {column2} is null".format( column2=escape_sqlite(sort or sort_desc) ), next_clauses=" and ".join(next_by_pk_clauses), ) ) params["p{}".format(len(params))] = sort_value order_by = "{}, {}".format(order_by, order_by_pks) else: where_clauses.extend(next_by_pk_clauses) where_clause = "" if where_clauses: where_clause = "where {} ".format(" and ".join(where_clauses)) if order_by: order_by = "order by {} ".format(order_by) extra_args = {} # Handle ?_size=500 page_size = _size or request.args.get("_size") or table_metadata.get("size") if page_size: if page_size == "max": page_size = self.ds.max_returned_rows try: page_size = int(page_size) if page_size < 0: raise ValueError except ValueError: raise DatasetteError("_size must be a positive integer", status=400) if page_size > self.ds.max_returned_rows: raise DatasetteError( "_size must be <= {}".format(self.ds.max_returned_rows), status=400 ) extra_args["page_size"] = page_size else: page_size = self.ds.page_size sql_no_limit = "select {select} from {table_name} {where}{order_by}".format( select=select, table_name=escape_sqlite(table), where=where_clause, order_by=order_by, ) sql = "{sql_no_limit} limit {limit}{offset}".format( sql_no_limit=sql_no_limit.rstrip(), limit=page_size + 1, offset=offset ) if request.args.get("_timelimit"): extra_args["custom_time_limit"] = int(request.args.get("_timelimit")) results = await db.execute(sql, params, truncate=True, **extra_args) # Number of filtered rows in whole set: filtered_table_rows_count = None if ( not db.is_mutable and self.ds.inspect_data and count_sql == "select count(*) from {} ".format(table) ): try: filtered_table_rows_count = self.ds.inspect_data[database]["tables"][ table ]["count"] except KeyError: pass if count_sql and filtered_table_rows_count is None: try: count_rows = list(await db.execute(count_sql, from_sql_params)) filtered_table_rows_count = count_rows[0][0] except QueryInterrupted: pass # facets support if not self.ds.config("allow_facet") and any( arg.startswith("_facet") for arg in request.args ): raise DatasetteError("_facet= is not allowed", status=400) # pylint: disable=no-member facet_classes = list( itertools.chain.from_iterable(pm.hook.register_facet_classes()) ) facet_results = {} facets_timed_out = [] facet_instances = [] for klass in facet_classes: facet_instances.append( klass( self.ds, request, database, sql=sql_no_limit, params=params, table=table, metadata=table_metadata, row_count=filtered_table_rows_count, ) ) for facet in facet_instances: ( instance_facet_results, instance_facets_timed_out, ) = await facet.facet_results() facet_results.update(instance_facet_results) facets_timed_out.extend(instance_facets_timed_out) # Figure out columns and rows for the query columns = [r[0] for r in results.description] rows = list(results.rows) # Expand labeled columns if requested expanded_columns = [] expandable_columns = await self.expandable_columns(database, table) columns_to_expand = None try: all_labels = value_as_boolean(special_args.get("_labels", "")) except ValueError: all_labels = default_labels # Check for explicit _label= if "_label" in request.args: columns_to_expand = request.args.getlist("_label") if columns_to_expand is None and all_labels: # expand all columns with foreign keys columns_to_expand = [fk["column"] for fk, _ in expandable_columns] if columns_to_expand: expanded_labels = {} for fk, _ in expandable_columns: column = fk["column"] if column not in columns_to_expand: continue expanded_columns.append(column) # Gather the values column_index = columns.index(column) values = [row[column_index] for row in rows] # Expand them expanded_labels.update( await self.ds.expand_foreign_keys(database, table, column, values) ) if expanded_labels: # Rewrite the rows new_rows = [] for row in rows: new_row = CustomRow(columns) for column in row.keys(): value = row[column] if (column, value) in expanded_labels and value is not None: new_row[column] = { "value": value, "label": expanded_labels[(column, value)], } else: new_row[column] = value new_rows.append(new_row) rows = new_rows # Pagination next link next_value = None next_url = None if len(rows) > page_size and page_size > 0: if is_view: next_value = int(_next or 0) + page_size else: next_value = path_from_row_pks(rows[-2], pks, use_rowid) # If there's a sort or sort_desc, add that value as a prefix if (sort or sort_desc) and not is_view: prefix = rows[-2][sort or sort_desc] if isinstance(prefix, dict) and "value" in prefix: prefix = prefix["value"] if prefix is None: prefix = "$null" else: prefix = urllib.parse.quote_plus(str(prefix)) next_value = "{},{}".format(prefix, next_value) added_args = {"_next": next_value} if sort: added_args["_sort"] = sort else: added_args["_sort_desc"] = sort_desc else: added_args = {"_next": next_value} next_url = self.ds.absolute_url( request, path_with_replaced_args(request, added_args) ) rows = rows[:page_size] # Detect suggested facets suggested_facets = [] if ( self.ds.config("suggest_facets") and self.ds.config("allow_facet") and not _next ): for facet in facet_instances: suggested_facets.extend(await facet.suggest()) # human_description_en combines filters AND search, if provided human_description_en = filters.human_description_en( extra=extra_human_descriptions ) if sort or sort_desc: sorted_by = "sorted by {}{}".format( (sort or sort_desc), " descending" if sort_desc else "" ) human_description_en = " ".join( [b for b in [human_description_en, sorted_by] if b] ) async def extra_template(): nonlocal sort display_columns, display_rows = await self.display_columns_and_rows( database, table, results.description, rows, link_column=not is_view, truncate_cells=self.ds.config("truncate_cells_html"), ) metadata = ( (self.ds.metadata("databases") or {}) .get(database, {}) .get("tables", {}) .get(table, {}) ) self.ds.update_with_inherited_metadata(metadata) form_hidden_args = [] for arg in ("_fts_table", "_fts_pk"): if arg in special_args: form_hidden_args.append((arg, special_args[arg])) if request.args.get("_where"): for where_text in request.args.getlist("_where"): form_hidden_args.append(("_where", where_text)) # if no sort specified AND table has a single primary key, # set sort to that so arrow is displayed if not sort and not sort_desc: if 1 == len(pks): sort = pks[0] elif use_rowid: sort = "rowid" return { "supports_search": bool(fts_table), "search": search or "", "use_rowid": use_rowid, "filters": filters, "display_columns": display_columns, "filter_columns": columns, "display_rows": display_rows, "facets_timed_out": facets_timed_out, "sorted_facet_results": sorted( facet_results.values(), key=lambda f: (len(f["results"]), f["name"]), reverse=True, ), "extra_wheres_for_ui": extra_wheres_for_ui, "form_hidden_args": form_hidden_args, "is_sortable": any(c["sortable"] for c in display_columns), "path_with_replaced_args": path_with_replaced_args, "path_with_removed_args": path_with_removed_args, "append_querystring": append_querystring, "request": request, "sort": sort, "sort_desc": sort_desc, "disable_sort": is_view, "custom_table_templates": [ "_table-{}-{}.html".format( to_css_class(database), to_css_class(table) ), "_table-table-{}-{}.html".format( to_css_class(database), to_css_class(table) ), "_table.html", ], "metadata": metadata, "view_definition": await db.get_view_definition(table), "table_definition": await db.get_table_definition(table), } return ( { "database": database, "table": table, "is_view": is_view, "human_description_en": human_description_en, "rows": rows[:page_size], "truncated": results.truncated, "filtered_table_rows_count": filtered_table_rows_count, "expanded_columns": expanded_columns, "expandable_columns": expandable_columns, "columns": columns, "primary_keys": pks, "units": units, "query": {"sql": sql, "params": params}, "facet_results": facet_results, "suggested_facets": suggested_facets, "next": next_value and str(next_value) or None, "next_url": next_url, "private": private, "allow_execute_sql": await self.ds.permission_allowed( request.actor, "execute-sql", database, default=True ), }, extra_template, ( "table-{}-{}.html".format(to_css_class(database), to_css_class(table)), "table.html", ), ) class RowView(RowTableShared): name = "row" async def data(self, request, database, hash, table, pk_path, default_labels=False): pk_values = urlsafe_components(pk_path) await self.check_permission(request, "view-instance") await self.check_permission(request, "view-database", database) await self.check_permission(request, "view-table", (database, table)) db = self.ds.databases[database] pks = await db.primary_keys(table) use_rowid = not pks select = "*" if use_rowid: select = "rowid, *" pks = ["rowid"] wheres = ['"{}"=:p{}'.format(pk, i) for i, pk in enumerate(pks)] sql = "select {} from {} where {}".format( select, escape_sqlite(table), " AND ".join(wheres) ) params = {} for i, pk_value in enumerate(pk_values): params["p{}".format(i)] = pk_value results = await db.execute(sql, params, truncate=True) columns = [r[0] for r in results.description] rows = list(results.rows) if not rows: raise NotFound("Record not found: {}".format(pk_values)) async def template_data(): display_columns, display_rows = await self.display_columns_and_rows( database, table, results.description, rows, link_column=False, truncate_cells=0, ) for column in display_columns: column["sortable"] = False return { "foreign_key_tables": await self.foreign_key_tables( database, table, pk_values ), "display_columns": display_columns, "display_rows": display_rows, "custom_table_templates": [ "_table-{}-{}.html".format( to_css_class(database), to_css_class(table) ), "_table-row-{}-{}.html".format( to_css_class(database), to_css_class(table) ), "_table.html", ], "metadata": (self.ds.metadata("databases") or {}) .get(database, {}) .get("tables", {}) .get(table, {}), } data = { "database": database, "table": table, "rows": rows, "columns": columns, "primary_keys": pks, "primary_key_values": pk_values, "units": self.ds.table_metadata(database, table).get("units", {}), } if "foreign_key_tables" in (request.args.get("_extras") or "").split(","): data["foreign_key_tables"] = await self.foreign_key_tables( database, table, pk_values ) return ( data, template_data, ( "row-{}-{}.html".format(to_css_class(database), to_css_class(table)), "row.html", ), ) async def foreign_key_tables(self, database, table, pk_values): if len(pk_values) != 1: return [] db = self.ds.databases[database] all_foreign_keys = await db.get_all_foreign_keys() foreign_keys = all_foreign_keys[table]["incoming"] if len(foreign_keys) == 0: return [] sql = "select " + ", ".join( [ "(select count(*) from {table} where {column}=:id)".format( table=escape_sqlite(fk["other_table"]), column=escape_sqlite(fk["other_column"]), ) for fk in foreign_keys ] ) try: rows = list(await db.execute(sql, {"id": pk_values[0]})) except sqlite3.OperationalError: # Almost certainly hit the timeout return [] foreign_table_counts = dict( zip( [(fk["other_table"], fk["other_column"]) for fk in foreign_keys], list(rows[0]), ) ) foreign_key_tables = [] for fk in foreign_keys: count = ( foreign_table_counts.get((fk["other_table"], fk["other_column"])) or 0 ) foreign_key_tables.append({**fk, **{"count": count}}) return foreign_key_tables
the-stack_0_14553
from datetime import datetime import time if __name__ == "__main__": # get now time now = datetime.now() # convert time into timestamp timstart = datetime.timestamp(now) print("now is ", now,"<<<>", timstart) now_end = datetime.now() timend = now_end.timestamp() print('second ===>', int(timend - timstart)) seconds = 100 minutes, seconds = divmod(seconds,60) hours, minutes = divmod(minutes, 60) print("%02d:%02d:%02d" % (hours, minutes, seconds))
the-stack_0_14554
import numpy as np import matplotlib.pyplot as plt Nx = 81 Nz = 81 Lx = 91.42 Lz = 100.0 xn = np.linspace(0,Lx,Nx) Liton = -0.8*Lz + 0.02*Lz*np.cos(np.pi*xn/Lx) Liton = Liton*1000 f = open("interfaces_creep.txt","w") f.write("C 1.0 1.0\n") f.write("rho -1000. 0.\n") f.write("H 0.0E-12 0.0E-12\n") f.write("A 0.0 0.0\n") f.write("n 0.0 0.0\n") f.write("Q 0.0 0.0\n") f.write("V 0.0 0.0\n") for i in np.arange(Nx): f.write("%lf\n"%(Liton[i])) f.close()
the-stack_0_14555
import json import re import time import typing import warnings import inspect import numpy as np import zmq from weakref import WeakSet import threading import copy import sys class DataSocket: """ Wrapper for ZMQ socket that sends and recieves dictionaries """ def __init__(self, context, port, type, debug, ip_address="127.0.0.1"): # request reply socket self._socket = context.socket(type) self._debug = debug # store these as wekrefs so that circular refs dont prevent garbage collection self._java_objects = WeakSet() # try: if type == zmq.PUSH: if debug: print("binding {}".format(port)) self._socket.bind("tcp://{}:{}".format(ip_address, port)) else: if debug: print("connecting {}".format(port)) self._socket.connect("tcp://{}:{}".format(ip_address, port)) # except Exception as e: # print(e.__traceback__) # raise Exception('Couldnt connect or bind to port {}'.format(port)) def _register_java_object(self, object): self._java_objects.add(object) def __del__(self): # make sure all shadow objects have signaled to Java side to release references before they shut down for java_object in self._java_objects: java_object._close() def _convert_np_to_python(self, d): """ recursively search dictionary and convert any values from numpy floats/ints to python floats/ints so they can be json serialized :return: """ if type(d) != dict: return for k, v in d.items(): if isinstance(v, dict): self._convert_np_to_python(v) elif type(v) == list: for e in v: self._convert_np_to_python(e) elif np.issubdtype(type(v), np.floating): d[k] = float(v) elif np.issubdtype(type(v), np.integer): d[k] = int(v) def _make_array_identifier(self, entry): """ make a string to replace bytes data or numpy array in message, which encode data type if numpy """ # make up a random 32 bit int as the identifier # TODO: change to simple counting identifier = np.random.randint(-(2 ** 31), 2 ** 31 - 1, 1, dtype=np.int32)[0] # '@{some_number}_{bytes_per_pixel}' # if its a numpy array, include bytes per pixel, otherwise just interpret it as raw byts return identifier, "@" + str(int(identifier)) + "_" + str( 0 if isinstance(entry, bytes) else entry.dtype.itemsize ) def _remove_bytes(self, bytes_data, structure): if isinstance(structure, list): for i, entry in enumerate(structure): if isinstance(entry, bytes) or isinstance(entry, np.ndarray): int_id, str_id = self._make_array_identifier(entry) structure[i] = str_id bytes_data.append((int_id, entry)) elif isinstance(entry, list) or isinstance(entry, dict): self._remove_bytes(bytes_data, entry) elif isinstance(structure, dict): for key in structure.keys(): entry = structure[key] if isinstance(entry, bytes) or isinstance(entry, np.ndarray): int_id, str_id = self._make_array_identifier(entry) structure[key] = str_id bytes_data.append((int_id, entry)) elif isinstance(entry, list) or isinstance(entry, dict): self._remove_bytes(bytes_data, structure[key]) def send(self, message, timeout=0): if message is None: message = {} # make sure any np types convert to python types so they can be json serialized self._convert_np_to_python(message) # Send binary data in seperate messages so it doesnt need to be json serialized bytes_data = [] self._remove_bytes(bytes_data, message) message_string = json.dumps(message) if self._debug: print("DEBUG, sending: {}".format(message)) # convert keys to byte array key_vals = [(identifier.tobytes(), value) for identifier, value in bytes_data] message_parts = [bytes(message_string, "iso-8859-1")] + [ item for keyval in key_vals for item in keyval ] if timeout == 0: self._socket.send_multipart(message_parts) else: start = time.time() while 1000 * (time.time() - start) < timeout: try: self._socket.send_multipart(message_parts, flags=zmq.NOBLOCK) return True except zmq.ZMQError: pass # ignore, keep trying return False def _replace_bytes(self, dict_or_list, hash, value): """ Replace placeholders for byte arrays in JSON message with their actual values """ if isinstance(dict_or_list, dict): for key in dict_or_list: if isinstance(dict_or_list[key], str) and "@" in dict_or_list[key]: hash_in_message = int( dict_or_list[key].split("@")[1], 16 ) # interpret hex hash string if hash == hash_in_message: dict_or_list[key] = value return elif isinstance(dict_or_list[key], list) or isinstance(dict_or_list[key], dict): self._replace_bytes(dict_or_list[key], hash, value) elif isinstance(dict_or_list, list): for i, entry in enumerate(dict_or_list): if isinstance(entry, str) and "@" in dict_or_list[key]: hash_in_message = int(entry.split("@")[1], 16) # interpret hex hash string if hash == hash_in_message: dict_or_list[i] = value return elif isinstance(entry, list) or isinstance(entry, dict): self._replace_bytes(entry, hash, value) def receive(self, timeout=0): if timeout == 0: reply = self._socket.recv_multipart() else: start = time.time() reply = None while 1000 * (time.time() - start) < timeout: try: reply = self._socket.recv_multipart(flags=zmq.NOBLOCK) if reply is not None: break except zmq.ZMQError: pass # ignore, keep trying if reply is None: return reply message = json.loads(reply[0].decode("iso-8859-1")) # replace any byte data placeholders with the byte data itself for i in np.arange(1, len(reply), 2): # messages come in pairs: first is hash, second it byte data identity_hash = int.from_bytes(reply[i], byteorder=sys.byteorder) value = reply[i + 1] self._replace_bytes(message, identity_hash, value) if self._debug: print("DEBUG, recieved: {}".format(message)) self._check_exception(message) return message def _check_exception(self, response): if "type" in response and response["type"] == "exception": raise Exception(response["value"]) def close(self): self._socket.close() class Bridge: """ Create an object which acts as a client to a corresponding server running within micro-manager. This enables construction and interaction with arbitrary java objects """ _DEFAULT_PORT = 4827 _EXPECTED_ZMQ_SERVER_VERSION = "4.0.0" thread_local = threading.local() def __new__(cls, *args, **kwargs): """ Only one instance of Bridge per a thread """ if hasattr(Bridge.thread_local, "bridge"): return Bridge.thread_local.bridge else: return super(Bridge, cls).__new__(cls) def __init__( self, port=_DEFAULT_PORT, convert_camel_case=True, debug=False, ip_address="127.0.0.1" ): """ Parameters ---------- port : int The port on which the bridge operates convert_camel_case : bool If True, methods for Java objects that are passed across the bridge will have their names converted from camel case to underscores. i.e. class.methodName() becomes class.method_name() debug : bool If True print helpful stuff for debugging """ self._ip_address = ip_address if not hasattr(self, "_context"): Bridge._context = zmq.Context() if hasattr(self.thread_local, "bridge"): return self.thread_local.bridge = self # cache a thread-local version of the bridge self._convert_camel_case = convert_camel_case self._debug = debug self._master_socket = DataSocket( self._context, port, zmq.REQ, debug=debug, ip_address=self._ip_address ) self._master_socket.send({"command": "connect", "debug": debug}) self._class_factory = _JavaClassFactory() reply_json = self._master_socket.receive(timeout=500) if reply_json is None: raise TimeoutError( "Socket timed out after 500 milliseconds. Is Micro-Manager running and is the ZMQ server option enabled?" ) if reply_json["type"] == "exception": raise Exception(reply_json["message"]) if "version" not in reply_json: reply_json["version"] = "2.0.0" # before version was added if reply_json["version"] != self._EXPECTED_ZMQ_SERVER_VERSION: warnings.warn( "Version mistmatch between Java ZMQ server and Python client. " "\nJava ZMQ server version: {}\nPython client expected version: {}" "\n To fix, update to BOTH latest pycromanager and latest micro-manager nightly build".format( reply_json["version"], self._EXPECTED_ZMQ_SERVER_VERSION ) ) def get_class(self, serialized_object) -> typing.Type["JavaObjectShadow"]: return self._class_factory.create( serialized_object, convert_camel_case=self._convert_camel_case ) def construct_java_object(self, classpath, new_socket=False, args=None): """ Create a new instance of a an object on the Java side. Returns a Python "Shadow" of the object, which behaves just like the object on the Java side (i.e. same methods, fields). Methods of the object can be inferred at runtime using iPython autocomplete Parameters ---------- classpath : str Full classpath of the java object new_socket : bool If True, will create new java object on a new port so that blocking calls will not interfere with the bridges master port args : list list of arguments to the constructor, if applicable Returns ------- Python "Shadow" to the Java object """ if args is None: args = [] # classpath_minus_class = '.'.join(classpath.split('.')[:-1]) # query the server for constructors matching this classpath message = {"command": "get-constructors", "classpath": classpath} self._master_socket.send(message) constructors = self._master_socket.receive()["api"] methods_with_name = [m for m in constructors if m["name"] == classpath] if len(methods_with_name) == 0: raise Exception("No valid java constructor found with classpath {}".format(classpath)) valid_method_spec, deserialize_types = _check_method_args(methods_with_name, args) # Calling a constructor, rather than getting return from method message = { "command": "constructor", "classpath": classpath, "argument-types": valid_method_spec["arguments"], "argument-deserialization-types": deserialize_types, "arguments": _package_arguments(valid_method_spec, args), } if new_socket: message["new-port"] = True self._master_socket.send(message) serialized_object = self._master_socket.receive() if new_socket: socket = DataSocket( self._context, serialized_object["port"], zmq.REQ, ip_address=self._ip_address ) else: socket = self._master_socket return self._class_factory.create( serialized_object, convert_camel_case=self._convert_camel_case )(socket=socket, serialized_object=serialized_object, bridge=self) def _connect_push(self, port): """ Connect a push socket on the given port :param port: :return: """ return DataSocket( self._context, port, zmq.PUSH, debug=self._debug, ip_address=self._ip_address ) def _connect_pull(self, port): """ Connect to a pull socket on the given port :param port: :return: """ return DataSocket( self._context, port, zmq.PULL, debug=self._debug, ip_address=self._ip_address ) def get_magellan(self): """ return an instance of the Micro-Magellan API """ return self.construct_java_object("org.micromanager.magellan.api.MagellanAPI") def get_core(self): """ Connect to CMMCore and return object that has its methods :return: Python "shadow" object for micromanager core """ if hasattr(self, "core"): return getattr(self, "core") self.core = self.construct_java_object("mmcorej.CMMCore") return self.core def get_studio(self): """ return an instance of the Studio object that provides access to micro-manager Java APIs """ return self.construct_java_object("org.micromanager.Studio") class _JavaClassFactory: """ This class is responsible for generating subclasses of JavaObjectShadow. Each generated class is kept in a `dict`. If a given class has already been generate once it will be returns from the cache rather than re-generating it. """ def __init__(self): self.classes = {} def create( self, serialized_obj: dict, convert_camel_case: bool = True ) -> typing.Type["JavaObjectShadow"]: """Create a class (or return a class from the cache) based on the contents of `serialized_object` message.""" if serialized_obj["class"] in self.classes.keys(): # Return a cached class return self.classes[serialized_obj["class"]] else: # Generate a new class since it wasn't found in the cache. _java_class: str = serialized_obj["class"] python_class_name_translation = _java_class.replace( ".", "_" ) # Having periods in the name would be problematic. _interfaces = serialized_obj["interfaces"] static_attributes = {"_java_class": _java_class, "_interfaces": _interfaces} fields = {} # Create a dict of field names with getter and setter funcs. for field in serialized_obj["fields"]: fields[field] = property( fget=lambda instance, Field=field: instance._access_field(Field), fset=lambda instance, val, Field=field: instance._set_field(Field, val), ) methods = {} # Create a dict of methods for the class by name. methodSpecs = serialized_obj["api"] method_names = set([m["name"] for m in methodSpecs]) # parse method descriptions to make python stand ins for method_name in method_names: params, methods_with_name, method_name_modified = _parse_arg_names( methodSpecs, method_name, convert_camel_case ) return_type = methods_with_name[0]["return-type"] fn = lambda instance, *args, signatures_list=tuple( methods_with_name ): instance._translate_call(signatures_list, args) fn.__name__ = method_name_modified fn.__doc__ = "{}.{}: A dynamically generated Java method.".format( _java_class, method_name_modified ) sig = inspect.signature(fn) params = [ inspect.Parameter("self", inspect.Parameter.POSITIONAL_ONLY) ] + params # Add `self` as the first argument. return_type = ( _JAVA_TYPE_NAME_TO_PYTHON_TYPE[return_type] if return_type in _JAVA_TYPE_NAME_TO_PYTHON_TYPE else return_type ) fn.__signature__ = sig.replace(parameters=params, return_annotation=return_type) methods[method_name_modified] = fn newclass = type( # Dynamically create a class to shadow a java class. python_class_name_translation, # Name, based on the original java name (JavaObjectShadow,), # Inheritance { "__init__": lambda instance, socket, serialized_object, bridge: JavaObjectShadow.__init__( instance, socket, serialized_object, bridge ), **static_attributes, **fields, **methods, }, ) self.classes[_java_class] = newclass return newclass class JavaObjectShadow: """ Generic class for serving as a python interface for a micromanager class using a zmq server backend """ _interfaces = ( None # Subclasses should fill these out. This class should never be directly instantiated. ) _java_class = None def __init__(self, socket, serialized_object, bridge: Bridge): self._socket = socket self._hash_code = serialized_object["hash-code"] self._bridge = bridge # register objects with bridge so it can tell Java side to release them before socket shuts down socket._register_java_object(self) self._closed = False # atexit.register(self._close) def _close(self): if self._closed: return if not hasattr(self, "_hash_code"): return # constructor didnt properly finish, nothing to clean up on java side message = {"command": "destructor", "hash-code": self._hash_code} if self._bridge._debug: print("closing: {}".format(self)) self._socket.send(message) reply_json = self._socket.receive() if reply_json["type"] == "exception": raise Exception(reply_json["value"]) self._closed = True def __del__(self): """ Tell java side this object is garbage collected so it can do the same if needed """ self._close() def _access_field(self, name): """ Return a python version of the field with a given name :return: """ message = {"command": "get-field", "hash-code": self._hash_code, "name": name} self._socket.send(message) return self._deserialize(self._socket.receive()) def _set_field(self, name, value): """ Return a python version of the field with a given name :return: """ message = { "command": "set-field", "hash-code": self._hash_code, "name": name, "value": _serialize_arg(value), } self._socket.send(message) reply = self._deserialize(self._socket.receive()) def _translate_call(self, method_specs, fn_args: tuple): """ Translate to appropriate Java method, call it, and return converted python version of its result Parameters ---------- args : args[0] is list of dictionaries of possible method specifications kwargs : hold possible polymorphic args, or none """ # args that are none are placeholders to allow for polymorphism and not considered part of the spec # fn_args = [a for a in fn_args if a is not None] valid_method_spec, deserialize_types = _check_method_args(method_specs, fn_args) # args are good, make call through socket, casting the correct type if needed (e.g. int to float) message = { "command": "run-method", "hash-code": self._hash_code, "name": valid_method_spec["name"], "argument-types": valid_method_spec["arguments"], "argument-deserialization-types": deserialize_types, } message["arguments"] = _package_arguments(valid_method_spec, fn_args) self._socket.send(message) return self._deserialize(self._socket.receive()) def _deserialize(self, json_return): """ method_spec : info about the method that called it reply : bytes that represents return Returns ------- An appropriate python type of the converted value """ if json_return["type"] == "exception": raise Exception(json_return["value"]) elif json_return["type"] == "null": return None elif json_return["type"] == "primitive": return json_return["value"] elif json_return["type"] == "string": return json_return["value"] elif json_return["type"] == "list": return [self._deserialize(obj) for obj in json_return["value"]] elif json_return["type"] == "object": if json_return["class"] == "JSONObject": return json.loads(json_return["value"]) else: raise Exception("Unrecognized return class") elif json_return["type"] == "unserialized-object": # inherit socket from parent object return self._bridge.get_class(json_return)( socket=self._socket, serialized_object=json_return, bridge=self._bridge ) else: return deserialize_array(json_return) def deserialize_array(json_return): """ Convert a serialized java array to the appropriate numpy type Parameters ---------- json_return """ if json_return["type"] in ["byte-array", "int-array", "short-array", "float-array"]: decoded = json_return["value"] if json_return["type"] == "byte-array": return np.frombuffer(decoded, dtype="=u1").copy() elif json_return["type"] == "double-array": return np.frombuffer(decoded, dtype="=f8").copy() elif json_return["type"] == "int-array": return np.frombuffer(decoded, dtype="=u4").copy() elif json_return["type"] == "short-array": return np.frombuffer(decoded, dtype="=u2").copy() elif json_return["type"] == "float-array": return np.frombuffer(decoded, dtype="=f4").copy() def _package_arguments(valid_method_spec, fn_args): """ Serialize function arguments and also include description of their Java types Parameters ---------- valid_method_spec: fn_args : """ arguments = [] for arg_type, arg_val in zip(valid_method_spec["arguments"], fn_args): if isinstance(arg_val, JavaObjectShadow): arguments.append(_serialize_arg(arg_val)) elif _JAVA_TYPE_NAME_TO_PYTHON_TYPE[arg_type] is object: arguments.append(_serialize_arg(arg_val)) elif arg_val is None: arguments.append(_serialize_arg(arg_val)) elif isinstance(arg_val, np.ndarray): arguments.append(_serialize_arg(arg_val)) else: arguments.append(_serialize_arg(_JAVA_TYPE_NAME_TO_PYTHON_TYPE[arg_type](arg_val))) return arguments def _serialize_arg(arg): if arg is None: return None if type(arg) in [bool, str, int, float]: return arg # json handles serialization elif type(arg) == np.ndarray: return arg.tobytes() elif isinstance(arg, JavaObjectShadow): return {"hash-code": arg._hash_code} else: raise Exception("Unknown argumetn type") def _check_single_method_spec(method_spec, fn_args): """ Check if a single method specificiation is compatible with the arguments the function recieved Parameters ---------- method_spec : fn_args : """ if len(method_spec["arguments"]) != len(fn_args): return False for arg_java_type, arg_val in zip(method_spec["arguments"], fn_args): if isinstance(arg_val, JavaObjectShadow): if arg_java_type not in arg_val._interfaces: # check that it shadows object of the correct type return False elif type(arg_val) == np.ndarray: # For ND Arrays, need to make sure data types match if ( arg_java_type != "java.lang.Object" and arg_val.dtype.type != _JAVA_ARRAY_TYPE_NUMPY_DTYPE[arg_java_type] ): return False elif not any( [ isinstance(arg_val, acceptable_type) for acceptable_type in _JAVA_TYPE_NAME_TO_CASTABLE_PYTHON_TYPE[arg_java_type] ] ) and not ( arg_val is None and arg_java_type in _JAVA_NON_PRIMITIVES ): # could be null if its an object # if a type that gets converted return False return True def _check_method_args(method_specs, fn_args): """ Compare python arguments to java arguments to find correct function to call Parameters ---------- method_specs : fn_args : Returns ------- one of the method_specs that is valid """ valid_method_spec = None for method_spec in method_specs: if _check_single_method_spec(method_spec, fn_args): valid_method_spec = method_spec break if valid_method_spec is None: raise Exception( "Incorrect arguments. \nExpected {} \nGot {}".format( " or ".join([", ".join(method_spec["arguments"]) for method_spec in method_specs]), ", ".join([str(type(a)) for a in fn_args]), ) ) # subclass NDArrays to the appropriate data type so they dont get incorrectly reconstructed as objects valid_method_spec = copy.deepcopy(valid_method_spec) deserialize_types = [] for java_arg_class, python_arg_val in zip(valid_method_spec["arguments"], fn_args): if isinstance(python_arg_val, np.ndarray): deserialize_types.append( [ ja for ja, npdt in zip( _JAVA_ARRAY_TYPE_NUMPY_DTYPE.keys(), _JAVA_ARRAY_TYPE_NUMPY_DTYPE.values() ) if python_arg_val.dtype.type == npdt ][0] ) else: deserialize_types.append(java_arg_class) return valid_method_spec, deserialize_types def _parse_arg_names(methods, method_name, convert_camel_case): method_name_modified = ( _camel_case_2_snake_case(method_name) if convert_camel_case else method_name ) # all methods with this name and different argument lists methods_with_name = [m for m in methods if m["name"] == method_name] min_required_args = ( 0 if len(methods_with_name) == 1 and len(methods_with_name[0]["arguments"]) == 0 else min([len(m["arguments"]) for m in methods_with_name]) ) # sort with largest number of args last so lambda at end gets max num args methods_with_name.sort(key=lambda val: len(val["arguments"])) method = methods_with_name[-1] # We only need to evaluate the overload with the most arguments. params = [] unique_argument_names = [] for arg_index, typ in enumerate(method["arguments"]): hint = _CLASS_NAME_MAPPING[typ] if typ in _CLASS_NAME_MAPPING else "object" python_type = ( _JAVA_TYPE_NAME_TO_PYTHON_TYPE[typ] if typ in _JAVA_TYPE_NAME_TO_PYTHON_TYPE else typ ) if hint in unique_argument_names: # append numbers to end so arg hints have unique names i = 1 while hint + str(i) in unique_argument_names: i += 1 arg_name = hint + str(i) else: arg_name = hint unique_argument_names.append(arg_name) # this is how overloading is handled for now, by making default arguments as none, but # it might be better to explicitly compare argument types if arg_index >= min_required_args: default_arg_value = None else: default_arg_value = inspect.Parameter.empty params.append( inspect.Parameter( name=arg_name, kind=inspect.Parameter.POSITIONAL_OR_KEYWORD, default=default_arg_value, annotation=python_type, ) ) return params, methods_with_name, method_name_modified def _camel_case_2_snake_case(name): s1 = re.sub("(.)([A-Z][a-z]+)", r"\1_\2", name) return re.sub("([a-z0-9])([A-Z])", r"\1_\2", s1).lower() _CLASS_NAME_MAPPING = { "boolean": "boolean", "byte[]": "uint8array", "double": "float", "double[]": "float64_array", "float": "float", "int": "int", "int[]": "uint32_array", "java.lang.String": "string", "long": "int", "short": "int", "void": "void", } _JAVA_ARRAY_TYPE_NUMPY_DTYPE = { "byte[]": np.uint8, "short[]": np.uint16, "double[]": np.float64, "int[]": np.int32, } _JAVA_TYPE_NAME_TO_PYTHON_TYPE = { "boolean": bool, "double": float, "float": float, "byte[]": np.ndarray, "short[]": np.ndarray, "double[]": np.ndarray, "int[]": np.ndarray, "int": int, "java.lang.String": str, "long": int, "short": int, "char": int, "byte": int, "void": None, "java.lang.Object": object, } # type conversions that allow for autocasting _JAVA_TYPE_NAME_TO_CASTABLE_PYTHON_TYPE = { "boolean": {bool}, "byte[]": {np.ndarray}, "double": {float, int}, "double[]": {np.ndarray}, "float": {float}, "int": {int}, "int[]": {np.ndarray}, "java.lang.String": {str}, "long": {int}, "short": {int}, "char": {int}, "byte": {int}, "void": {None}, "java.lang.Object": {object}, } _JAVA_NON_PRIMITIVES = {"byte[]", "double[]", "int[]", "java.lang.String", "java.lang.Object"} if __name__ == "__main__": # Test basic bridge operations import traceback b = Bridge() try: s = b.get_studio() except: traceback.print_exc() try: c = b.get_core() except: traceback.print_exc() a = 1
the-stack_0_14558
# pylint: disable=no-self-use,invalid-name import pytest from allennlp.common import Params from allennlp.common.checks import ConfigurationError from allennlp.data.iterators import BucketIterator from allennlp.tests.data.iterators.basic_iterator_test import IteratorTest class TestBucketIterator(IteratorTest): # pylint: disable=protected-access def test_create_batches_groups_correctly(self): iterator = BucketIterator(batch_size=2, padding_noise=0, sorting_keys=[('text', 'num_tokens')]) iterator.index_with(self.vocab) batches = list(iterator._create_batches(self.instances, shuffle=False)) grouped_instances = [batch.instances for batch in batches] assert grouped_instances == [[self.instances[4], self.instances[2]], [self.instances[0], self.instances[1]], [self.instances[3]]] def test_create_batches_groups_correctly_with_max_instances(self): # If we knew all the instances, the correct order is 4 -> 2 -> 0 -> 1 -> 3. # Here max_instances_in_memory is 3, so we load instances [0, 1, 2] # and then bucket them by size into batches of size 2 to get [2, 0] -> [1]. # Then we load the remaining instances and bucket them by size to get [4, 3]. iterator = BucketIterator(batch_size=2, padding_noise=0, sorting_keys=[('text', 'num_tokens')], max_instances_in_memory=3) iterator.index_with(self.vocab) for test_instances in (self.instances, self.lazy_instances): batches = list(iterator._create_batches(test_instances, shuffle=False)) grouped_instances = [batch.instances for batch in batches] assert grouped_instances == [[self.instances[2], self.instances[0]], [self.instances[1]], [self.instances[4], self.instances[3]]] def test_biggest_batch_first_works(self): iterator = BucketIterator(batch_size=2, padding_noise=0, sorting_keys=[('text', 'num_tokens')], biggest_batch_first=True) iterator.index_with(self.vocab) batches = list(iterator._create_batches(self.instances, shuffle=False)) grouped_instances = [batch.instances for batch in batches] assert grouped_instances == [[self.instances[3]], [self.instances[0], self.instances[1]], [self.instances[4], self.instances[2]]] def test_from_params(self): # pylint: disable=protected-access params = Params({}) with pytest.raises(ConfigurationError): iterator = BucketIterator.from_params(params) sorting_keys = [("s1", "nt"), ("s2", "nt2")] params['sorting_keys'] = sorting_keys iterator = BucketIterator.from_params(params) assert iterator._sorting_keys == sorting_keys assert iterator._padding_noise == 0.1 assert not iterator._biggest_batch_first assert iterator._batch_size == 32 assert not iterator._skip_smaller_batches params = Params({ "sorting_keys": sorting_keys, "padding_noise": 0.5, "biggest_batch_first": True, "batch_size": 100, "skip_smaller_batches": True }) iterator = BucketIterator.from_params(params) assert iterator._sorting_keys == sorting_keys assert iterator._padding_noise == 0.5 assert iterator._biggest_batch_first assert iterator._batch_size == 100 assert iterator._skip_smaller_batches def test_bucket_iterator_maximum_samples_per_batch(self): iterator = BucketIterator( batch_size=3, padding_noise=0, sorting_keys=[('text', 'num_tokens')], maximum_samples_per_batch=['num_tokens', 9] ) iterator.index_with(self.vocab) batches = list(iterator._create_batches(self.instances, shuffle=False)) stats = self.get_batches_stats(batches) # ensure all instances are in a batch assert stats['total_instances'] == len(self.instances) # ensure correct batch sizes assert stats['batch_lengths'] == [2, 2, 1] # ensure correct sample sizes (<= 9) assert stats['sample_sizes'] == [6, 8, 9] def test_maximum_samples_per_batch_packs_tightly(self): token_counts = [10, 4, 3] test_instances = self.create_instances_from_token_counts(token_counts) iterator = BucketIterator( batch_size=3, padding_noise=0, sorting_keys=[('text', 'num_tokens')], maximum_samples_per_batch=['num_tokens', 11] ) iterator.index_with(self.vocab) batches = list(iterator._create_batches(test_instances, shuffle=False)) stats = self.get_batches_stats(batches) # ensure all instances are in a batch assert stats['total_instances'] == len(test_instances) # ensure correct batch sizes assert stats['batch_lengths'] == [2, 1] # ensure correct sample sizes (<= 11) assert stats['sample_sizes'] == [8, 10] def test_skip_smaller_batches_works(self): iterator = BucketIterator(batch_size=2, padding_noise=0, sorting_keys=[('text', 'num_tokens')], skip_smaller_batches=True) iterator.index_with(self.vocab) batches = list(iterator._create_batches(self.instances, shuffle=False)) stats = self.get_batches_stats(batches) # all batches have length batch_size assert all(batch_len == 2 for batch_len in stats['batch_lengths']) # we should have lost one instance by skipping the last batch assert stats['total_instances'] == len(self.instances) - 1
the-stack_0_14559
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import satchmo_utils.fields class Migration(migrations.Migration): dependencies = [ ('product', '0001_initial'), ] operations = [ migrations.CreateModel( name='CustomProduct', fields=[ ('product', models.OneToOneField(primary_key=True, serialize=False, to='product.Product', verbose_name='Product')), ('downpayment', models.IntegerField(default=20, verbose_name='Percent Downpayment')), ('deferred_shipping', models.BooleanField(default=False, help_text='Do not charge shipping at checkout for this item.', verbose_name='Deferred Shipping')), ('option_group', models.ManyToManyField(to='product.OptionGroup', verbose_name='Option Group', blank=True)), ], options={ 'verbose_name': 'Custom Product', 'verbose_name_plural': 'Custom Products', }, bases=(models.Model,), ), migrations.CreateModel( name='CustomTextField', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(max_length=40, verbose_name='Custom field name')), ('slug', models.SlugField(help_text='Auto-generated from name if blank', verbose_name='Slug', blank=True)), ('sort_order', models.IntegerField(default=0, help_text='The display order for this group.', verbose_name='Sort Order')), ('price_change', satchmo_utils.fields.CurrencyField(null=True, verbose_name='Price Change', max_digits=14, decimal_places=6, blank=True)), ('products', models.ForeignKey(related_name='custom_text_fields', verbose_name='Custom Fields', to='custom.CustomProduct')), ], options={ 'ordering': ('sort_order',), }, bases=(models.Model,), ), migrations.CreateModel( name='CustomTextFieldTranslation', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('languagecode', models.CharField(max_length=10, verbose_name='language', choices=[(b'en', b'English')])), ('name', models.CharField(max_length=255, verbose_name='Translated Custom Text Field Name')), ('version', models.IntegerField(default=1, verbose_name='version')), ('active', models.BooleanField(default=True, verbose_name='active')), ('customtextfield', models.ForeignKey(related_name='translations', to='custom.CustomTextField')), ], options={ 'ordering': ('customtextfield', 'name', 'languagecode'), 'verbose_name': 'CustomTextField Translation', 'verbose_name_plural': 'CustomTextField Translations', }, bases=(models.Model,), ), migrations.AlterUniqueTogether( name='customtextfieldtranslation', unique_together=set([('customtextfield', 'languagecode', 'version')]), ), migrations.AlterUniqueTogether( name='customtextfield', unique_together=set([('slug', 'products')]), ), ]
the-stack_0_14563
# Copyright 2013-2020 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class PyTetoolkit(PythonPackage): """TEToolkit is a software package that utilizes both unambiguously (uniquely) and ambiguously (multi-) mapped reads to perform differential enrichment analyses from high throughput sequencing experiments.""" homepage = "http://hammelllab.labsites.cshl.edu/software" pypi = "TEToolkit/TEToolkit-1.5.1.tar.gz" version('2.0.3', sha256='1d0f5928b30c6cd9dbef8e092ae0c11e9e707faf92a19af8eed3e360da7d4e46') version('1.5.1', sha256='22c13ca45bccc89e9d9bf48d59ae6db1fa4c634def64fc56ba9bffd23aa689ac') depends_on('py-setuptools') depends_on('[email protected]:', type=('build', 'run')) depends_on('py-pysam', type=('build', 'run')) depends_on('r-deseq', when='@:1.5.1', type=('build', 'run')) depends_on('r-deseq2', when='@2.0.0:', type=('build', 'run'))
the-stack_0_14567
import json import os import pycspr # A known casper test-net node address. _NODE_ADDRESS = os.getenv("CASPER_NODE_ADDRESS", "3.136.227.9") # A known block hash. _BLOCK_HASH: bytes = bytes.fromhex("c7148e1e2e115d8fba357e04be2073d721847c982dc70d5c36b5f6d3cf66331c") # A known block height. _BLOCK_HEIGHT: int = 20652 def main(): """Retrieves on-chain auction information. """ # Set client. client: pycspr.NodeClient = pycspr.NodeClient(pycspr.NodeConnectionInfo(host=_NODE_ADDRESS)) # Set auction info scoped by current era. auction_info_1: dict = client.queries.get_auction_info() # Set auction info scoped by known hash. auction_info_2: dict = client.queries.get_auction_info(_BLOCK_HASH) # Set auction info scoped by known height. auction_info_3: dict = client.queries.get_auction_info(_BLOCK_HEIGHT) # Verify. assert auction_info_1 != auction_info_2 assert auction_info_2 == auction_info_3 print("-----------------------------------------------------------------------------------------------------") print(f"QUERIED TEST-NET NODE {_NODE_ADDRESS}") print("-----------------------------------------------------------------------------------------------------") print(f"Auction information = {json.dumps(auction_info_1, indent=4)}") print("-----------------------------------------------------------------------------------------------------") if __name__ == "__main__": try: main() except Exception as err: print(f"API ERROR @ NODE {_NODE_ADDRESS} :: {err}")
the-stack_0_14568
from __future__ import absolute_import from selenium import webdriver from shishito.runtime.environment.shishito import ShishitoEnvironment class ControlEnvironment(ShishitoEnvironment): """ Local control environment. """ def get_capabilities(self, config_section): """ Return dictionary of capabilities for specific config combination. :param str config_section: section in platform/environment.properties config :return: dict with capabilities """ get_opt = self.shishito_support.get_opt default_capabilities = super().get_capabilities(config_section) capabilities = { 'marionette': str(get_opt('firefox_marionette')).lower() == 'true', } return {**default_capabilities, **capabilities} def start_driver(self, browser_type, capabilities, config_section=None): """ Prepare selenium webdriver. :param browser_type: type of browser for which prepare driver :param capabilities: capabilities used for webdriver initialization """ # get browser profile browser_profile = self.get_browser_profile(browser_type, capabilities, config_section) # starts local browser if browser_type == "firefox": from selenium.webdriver.firefox.options import Options firefox_options = Options() for arg in self.get_browser_arguments(config_section): firefox_options.add_argument(arg) driver = webdriver.Firefox(browser_profile, desired_capabilities=capabilities, firefox_options=firefox_options) elif browser_type == "chrome": driver = webdriver.Chrome(desired_capabilities=capabilities, chrome_options=browser_profile) elif browser_type == "ie": driver = webdriver.Ie(capabilities=capabilities) elif browser_type == "phantomjs": driver = webdriver.PhantomJS(desired_capabilities=capabilities) elif browser_type == "opera": driver = webdriver.Opera(desired_capabilities=capabilities) # SafariDriver bindings for Python not yet implemented # elif browser == "Safari": # self.driver = webdriver.SafariDriver() else: raise ValueError('Unknown type of browser.') return driver def call_browser(self, config_section): """ Start webdriver for given config section. Prepare capabilities for the browser, set browser resolution. :param str config_section: section in platform/environment.properties config :return: created webdriver """ # get browser capabilities capabilities = self.get_capabilities(config_section) # get browser type browser_type = self.shishito_support.get_opt(config_section, 'browser').lower() # get driver driver = self.start_driver(browser_type, capabilities, config_section=config_section) if browser_type.lower() == 'chrome': self.set_download_path(driver) # set browser size is defined browser_size = self.shishito_support.get_opt(config_section, 'resolution') if browser_size: # default size --> leave it on webdriver width, height = browser_size.split('x') driver.set_window_size(width, height) return driver
the-stack_0_14569
# stdlib import sys from typing import Any from typing import Dict from typing import List from typing import Optional from typing import Tuple from typing import Union # third party from google.protobuf.reflection import GeneratedProtocolMessageType from nacl.signing import SigningKey from nacl.signing import VerifyKey import pandas as pd # syft relative from ....core.pointer.pointer import Pointer from ....decorators import syft_decorator from ....lib import create_lib_ast from ....logger import critical from ....logger import debug from ....logger import error from ....logger import traceback_and_raise from ....proto.core.node.common.client_pb2 import Client as Client_PB from ....proto.core.node.common.metadata_pb2 import Metadata as Metadata_PB from ....util import get_fully_qualified_name from ...common.message import EventualSyftMessageWithoutReply from ...common.message import ImmediateSyftMessageWithReply from ...common.message import ImmediateSyftMessageWithoutReply from ...common.message import SignedEventualSyftMessageWithoutReply from ...common.message import SignedImmediateSyftMessageWithReply from ...common.message import SignedImmediateSyftMessageWithoutReply from ...common.message import SyftMessage from ...common.serde.deserialize import _deserialize from ...common.uid import UID from ...io.location import Location from ...io.location import SpecificLocation from ...io.route import Route from ...io.route import SoloRoute from ...io.virtual import VirtualClientConnection from ...node.common.service.obj_search_service import ObjectSearchMessage from ..abstract.node import AbstractNodeClient from .action.exception_action import ExceptionMessage from .service.child_node_lifecycle_service import RegisterChildNodeMessage class Client(AbstractNodeClient): """Client is an incredibly powerful abstraction in Syft. We assume that, no matter where a client is, it can figure out how to communicate with the Node it is supposed to point to. If I send you a client I have with all of the metadata in it, you should have all the information you need to know to interact with a node (although you might not have permissions - clients should not store private keys).""" @syft_decorator(typechecking=True) def __init__( self, name: Optional[str], routes: List[Route], network: Optional[Location] = None, domain: Optional[Location] = None, device: Optional[Location] = None, vm: Optional[Location] = None, signing_key: Optional[SigningKey] = None, verify_key: Optional[VerifyKey] = None, ): name = f"{name} Client" if name is not None else None super().__init__( name=name, network=network, domain=domain, device=device, vm=vm ) self.routes = routes self.default_route_index = 0 # create a signing key if one isn't provided if signing_key is None: self.signing_key = SigningKey.generate() else: self.signing_key = signing_key # if verify key isn't provided, get verify key from signing key if verify_key is None: self.verify_key = self.signing_key.verify_key else: self.verify_key = verify_key self.install_supported_frameworks() self.store = StoreClient(client=self) @property def icon(self) -> str: icon = "📡" sub = [] if self.vm is not None: sub.append("🍰") if self.device is not None: sub.append("📱") if self.domain is not None: sub.append("🏰") if self.network is not None: sub.append("🔗") if len(sub) > 0: icon = f"{icon} [" for s in sub: icon += s icon += "]" return icon @staticmethod def deserialize_client_metadata_from_node( metadata: Metadata_PB, ) -> Tuple[SpecificLocation, str, UID]: # string of bytes meta = _deserialize(blob=metadata) return meta.node, meta.name, meta.id def install_supported_frameworks(self) -> None: self.lib_ast = create_lib_ast(client=self) # first time we want to register for future updates self.lib_ast.register_updates(self) if self.lib_ast is not None: for attr_name, attr in self.lib_ast.attrs.items(): setattr(self, attr_name, attr) # shortcut syft.lib.python to just python if hasattr(self.lib_ast, "syft"): try: lib_attr = getattr(self.lib_ast.syft, "lib", None) if lib_attr is not None: python_attr = getattr(lib_attr, "python", None) setattr(self, "python", python_attr) except Exception as e: critical(f"Failed to set python attribute on client. {e}") def add_me_to_my_address(self) -> None: traceback_and_raise(NotImplementedError) @syft_decorator(typechecking=True) def register_in_memory_client(self, client: AbstractNodeClient) -> None: # WARNING: Gross hack route_index = self.default_route_index # this ID should be unique but persistent so that lookups are universal route = self.routes[route_index] if isinstance(route, SoloRoute): connection = route.connection if isinstance(connection, VirtualClientConnection): connection.server.node.in_memory_client_registry[ client.address.target_id.id ] = client else: traceback_and_raise( Exception( "Unable to save client reference without VirtualClientConnection" ) ) else: traceback_and_raise( Exception("Unable to save client reference without SoloRoute") ) @syft_decorator(typechecking=True) def register(self, client: AbstractNodeClient) -> None: debug(f"> Registering {client.pprint} with {self.pprint}") self.register_in_memory_client(client=client) msg = RegisterChildNodeMessage( lookup_id=client.id, child_node_client_address=client.address, address=self.address, ) if self.network is not None: client.network = ( self.network if self.network is not None # type: ignore # nested "is not None" else client.network ) # QUESTION # if the client is a network and the domain is not none this will set it # on the network causing an exception # but we can't check if the client is a NetworkClient here because # this is a superclass of NetworkClient # Remove: if self.domain is not None: # then see the test line node_test.py: # bob_network_client.register(client=bob_domain_client) if self.domain is not None: client.domain = ( self.domain if self.domain is not None # type: ignore # nested "is not None" else client.domain ) if self.device is not None: client.device = ( self.device if self.device is not None # type: ignore # nested "is not None" else client.device ) assert self.device == client.device if self.vm is not None: client.vm = self.vm self.send_immediate_msg_without_reply(msg=msg) @property def id(self) -> UID: """This client points to an node, this returns the id of that node.""" traceback_and_raise(NotImplementedError) # TODO fix the msg type but currently tensor needs SyftMessage @syft_decorator(typechecking=True) def send_immediate_msg_with_reply( self, msg: Union[SignedImmediateSyftMessageWithReply, ImmediateSyftMessageWithReply], route_index: int = 0, ) -> SyftMessage: route_index = route_index or self.default_route_index if isinstance(msg, ImmediateSyftMessageWithReply): output = ( f"> {self.pprint} Signing {msg.pprint} with " + f"{self.key_emoji(key=self.signing_key.verify_key)}" ) debug(output) msg = msg.sign(signing_key=self.signing_key) response = self.routes[route_index].send_immediate_msg_with_reply(msg=msg) if response.is_valid: # check if we have an ExceptionMessage to trigger a local exception # from a remote exception that we caused if isinstance(response.message, ExceptionMessage): exception_msg = response.message exception = exception_msg.exception_type(exception_msg.exception_msg) error(str(exception)) traceback_and_raise(exception) else: return response.message traceback_and_raise( Exception("Response was signed by a fake key or was corrupted in transit.") ) # TODO fix the msg type but currently tensor needs SyftMessage @syft_decorator(typechecking=True) def send_immediate_msg_without_reply( self, msg: Union[ SignedImmediateSyftMessageWithoutReply, ImmediateSyftMessageWithoutReply ], route_index: int = 0, ) -> None: route_index = route_index or self.default_route_index if isinstance(msg, ImmediateSyftMessageWithoutReply): output = ( f"> {self.pprint} Signing {msg.pprint} with " + f"{self.key_emoji(key=self.signing_key.verify_key)}" ) debug(output) msg = msg.sign(signing_key=self.signing_key) debug(f"> Sending {msg.pprint} {self.pprint} ➡️ {msg.address.pprint}") self.routes[route_index].send_immediate_msg_without_reply(msg=msg) @syft_decorator(typechecking=True) def send_eventual_msg_without_reply( self, msg: EventualSyftMessageWithoutReply, route_index: int = 0 ) -> None: route_index = route_index or self.default_route_index output = ( f"> {self.pprint} Signing {msg.pprint} with " + f"{self.key_emoji(key=self.signing_key.verify_key)}" ) debug(output) signed_msg: SignedEventualSyftMessageWithoutReply = msg.sign( signing_key=self.signing_key ) self.routes[route_index].send_eventual_msg_without_reply(msg=signed_msg) @syft_decorator(typechecking=True) def __repr__(self) -> str: return f"<Client pointing to node with id:{self.id}>" @syft_decorator(typechecking=True) def register_route(self, route: Route) -> None: self.routes.append(route) @syft_decorator(typechecking=True) def set_default_route(self, route_index: int) -> None: self.default_route = route_index @syft_decorator(typechecking=True) def _object2proto(self) -> Client_PB: obj_type = get_fully_qualified_name(obj=self) routes = [route.serialize() for route in self.routes] network = self.network._object2proto() if self.network is not None else None domain = self.domain._object2proto() if self.domain is not None else None device = self.device._object2proto() if self.device is not None else None vm = self.vm._object2proto() if self.vm is not None else None client_pb = Client_PB( obj_type=obj_type, id=self.id.serialize(), name=self.name, routes=routes, has_network=self.network is not None, network=network, has_domain=self.domain is not None, domain=domain, has_device=self.device is not None, device=device, has_vm=self.vm is not None, vm=vm, ) return client_pb @staticmethod def _proto2object(proto: Client_PB) -> "Client": module_parts = proto.obj_type.split(".") klass = module_parts.pop() obj_type = getattr(sys.modules[".".join(module_parts)], klass) network = ( SpecificLocation._proto2object(proto.network) if proto.has_network else None ) domain = ( SpecificLocation._proto2object(proto.domain) if proto.has_domain else None ) device = ( SpecificLocation._proto2object(proto.device) if proto.has_device else None ) vm = SpecificLocation._proto2object(proto.vm) if proto.has_vm else None routes = [SoloRoute._proto2object(route) for route in proto.routes] obj = obj_type( name=proto.name, routes=routes, network=network, domain=domain, device=device, vm=vm, ) if type(obj) != obj_type: traceback_and_raise( TypeError( f"Deserializing Client. Expected type {obj_type}. Got {type(obj)}" ) ) return obj @staticmethod def get_protobuf_schema() -> GeneratedProtocolMessageType: return Client_PB @property def keys(self) -> str: verify = ( self.key_emoji(key=self.signing_key.verify_key) if self.signing_key is not None else "🚫" ) keys = f"🔑 {verify}" return keys class StoreClient: def __init__(self, client: Client) -> None: self.client = client @property def store(self) -> List[Pointer]: msg = ObjectSearchMessage( address=self.client.address, reply_to=self.client.address ) results = self.client.send_immediate_msg_with_reply(msg=msg).results # This is because of a current limitation in Pointer where we cannot # serialize a client object. TODO: Fix limitation in Pointer so that we don't need this. for result in results: result.gc_enabled = False result.client = self.client return results def __len__(self) -> int: """Return the number of items in the object store we're allowed to know about""" return len(self.store) def __getitem__(self, key: Union[str, int]) -> Pointer: if isinstance(key, str): matches = 0 match_obj: Optional[Pointer] = None for obj in self.store: if key in str(obj.id_at_location.value).replace("-", ""): return obj if key in obj.tags: matches += 1 match_obj = obj if matches == 1 and match_obj is not None: return match_obj elif matches > 1: traceback_and_raise(KeyError("More than one item with tag:" + str(key))) traceback_and_raise(KeyError("No such request found for id:" + str(key))) if isinstance(key, int): return self.store[key] else: traceback_and_raise(KeyError("Please pass in a string or int key")) def __repr__(self) -> str: return repr(self.store) @property def pandas(self) -> pd.DataFrame: obj_lines: List[Dict[str, Any]] = list() for obj in self.store: obj_lines.append( { "ID": obj.id_at_location, "Tags": obj.tags, "Description": obj.description, "object_type": obj.object_type, } ) return pd.DataFrame(obj_lines)
the-stack_0_14570
#!/usr/bin/env python3 """websocket cmd client for wssrv.py example.""" import argparse import asyncio import signal import sys import aiohttp async def start_client(loop: asyncio.AbstractEventLoop, url: str) -> None: name = input("Please enter your name: ") # input reader def stdin_callback() -> None: line = sys.stdin.buffer.readline().decode("utf-8") if not line: loop.stop() else: ws.send_str(name + ": " + line) loop.add_reader(sys.stdin.fileno(), stdin_callback) async def dispatch() -> None: while True: msg = await ws.receive() if msg.type == aiohttp.WSMsgType.TEXT: print("Text: ", msg.data.strip()) elif msg.type == aiohttp.WSMsgType.BINARY: print("Binary: ", msg.data) elif msg.type == aiohttp.WSMsgType.PING: await ws.pong() elif msg.type == aiohttp.WSMsgType.PONG: print("Pong received") else: if msg.type == aiohttp.WSMsgType.CLOSE: await ws.close() elif msg.type == aiohttp.WSMsgType.ERROR: print("Error during receive %s" % ws.exception()) elif msg.type == aiohttp.WSMsgType.CLOSED: pass break # send request async with aiohttp.ClientSession() as client: async with client.ws_connect(url, autoclose=False, autoping=False) as ws: await dispatch() ARGS = argparse.ArgumentParser( description="websocket console client for wssrv.py example." ) ARGS.add_argument( "--host", action="store", dest="host", default="127.0.0.1", help="Host name" ) ARGS.add_argument( "--port", action="store", dest="port", default=8080, type=int, help="Port number" ) if __name__ == "__main__": args = ARGS.parse_args() if ":" in args.host: args.host, port = args.host.split(":", 1) args.port = int(port) url = f"http://{args.host}:{args.port}" loop = asyncio.get_event_loop() loop.add_signal_handler(signal.SIGINT, loop.stop) loop.create_task(start_client(loop, url)) loop.run_forever()
the-stack_0_14573
import os import signal import psutil from rest.api.loghelpers.message_dumper import MessageDumper from rest.service.fluentd import Fluentd class ProcessUtils: def __init__(self, logger): self.logger = logger self.fluentd_utils = Fluentd(logger) self.message_dumper = MessageDumper() def on_terminate(self, proc): self.fluentd_utils.emit(tag="process", msg=self.message_dumper.dump_message( {"proc": str(proc), "returncode": proc.returncode})) def log_process_err(self, proc, err=""): self.fluentd_utils.emit(tag="process", msg=self.message_dumper.dump_message( {"proc": str(proc), "error": err})) @staticmethod def find_procs_by_name(name): """ Return a list of processes matching 'name' """ ls = [] for p in psutil.process_iter(["name", "exe", "cmdline"]): if name == p.info['name'] or \ p.info['exe'] and os.path.basename(p.info['exe']) == name or \ p.info['cmdline'] and p.info['cmdline'][0] == name: ls.append(p) return ls def kill_proc_tree(self, pid=os.getpid(), sig=signal.SIGTERM, include_parent=True, timeout=5): """Kill a process tree (including grandchildren) with signal "sig" and return a (gone, still_alive) tuple. "on_terminate", if specified, is a callback function which is called as soon as a child terminates. """ if pid == os.getpid(): include_parent = False parent = psutil.Process(pid=pid) children = parent.children(recursive=True) if include_parent: children.append(parent) for p in children: try: p.send_signal(sig) except Exception as e: self.log_process_err(proc=p, err=e.__str__()) gone, alive = psutil.wait_procs(children, timeout=timeout, callback=self.on_terminate) return gone, alive
the-stack_0_14575
import discord import sqlite3 import re from datetime import datetime from discord import Message, TextChannel, Member, PartialEmoji from discord.ext import commands class Music(commands.Cog, name="Please don't stop the music"): def __init__(self, client): self.client = client @commands.command(aliases=['history']) @commands.is_owner() async def gethistory(self, ctx): count = 0 async for message in ctx.channel.history(limit = None, oldest_first = True): # if message.author == self.client.user or message.channel.id != 399477609559490560: # print('returned') # return if 'htt' in message.content and message.author != self.client.user : main = sqlite3.connect('music.db') cursor = main.cursor() sql = ("INSERT or IGNORE INTO links(link, date_posted, author, jump_link, count) VALUES(?,?,?,?,?)") val = (str(message.content), str(message.created_at.date()), str(message.author), str(message.jump_url), count) cursor.execute(sql, val) main.commit() cursor.close() main.close() else: pass @commands.Cog.listener() async def on_message(self, message:discord.Message): if message.author == self.client.user: return else: main = sqlite3.connect('music.db') cursor = main.cursor() if message.channel.id == 399477609559490560 and 'http' in message.content: cursor.execute('SELECT link, date_posted, author, jump_link FROM links WHERE link LIKE ?', (message.content,)) result = cursor.fetchone() if not result: sql = ("INSERT INTO links(link, date_posted, author, jump_link) VALUES(?,?,?,?)") val = (str(message.content), str(message.created_at.date()), str(message.author), str(message.jump_url)) cursor.execute(sql, val) else: embed = discord.Embed(colour = 0x7ed321, description = "This song/link was already posted!") embed.timestamp = datetime.utcnow() embed.set_author(name="Jungle Jive") embed.set_footer(text=f'{self.client.user.name}', icon_url=f'{self.client.user.avatar_url}') embed.add_field(name="Original Poster", value=f"{result[2]}") embed.add_field(name="Link to original post", value=f"[Click here]({result[3]})") embed.add_field(name="Date of original post", value=f"{result[1]}") await message.channel.send(embed=embed) main.commit() cursor.close() main.close() @commands.command(aliases=['musicchat', 'chat']) async def music_chat(self, ctx): await ctx.send(file=discord.File('music_channel.png')) def setup(client): client.add_cog(Music(client)) print('Music Cog loaded')
the-stack_0_14576
# -*- coding: utf-8 -*- """ simulation script for benchmark data """ #%% import sys import os sys.path.insert(0, ".." + os.sep + ".." + os.sep) from benchmarking.benchmarking_tools import SurfaceCodeBenchmarkingTool from qiskit.providers.aer.noise import NoiseModel from qiskit.providers.aer.noise.errors import pauli_error, depolarizing_error from surface_code.fitters import GraphDecoder from surface_code.circuits import SurfaceCodeLogicalQubit from qiskit import QuantumCircuit, execute, QuantumRegister, ClassicalRegister, Aer from tqdm import tqdm import multiprocessing as mp # Noise Model Function def get_noise_model(p_err): error_gate1 = pauli_error([("X", p_err / 2), ("Z", p_err / 2), ("I", 1 - p_err)]) noise_model = NoiseModel() noise_model.add_all_qubit_quantum_error(error_gate1, "id") return noise_model if __name__ == "__main__": decoder_keys = [(d, 1) for d in range(3, 11, 2)] benchmarking_tools = [] for decoder_key in tqdm(decoder_keys): d = decoder_key[0] T = decoder_key[1] qubit = SurfaceCodeLogicalQubit(d) qubit.stabilize() qubit.identity_data() qubit.stabilize() qubit.readout_z() benchmarking_tools.append( SurfaceCodeBenchmarkingTool( decoder=GraphDecoder(d=d, T=T), readout_circuit=qubit, noise_model_func=get_noise_model, ) ) print("\nDONE SETTING UP DECODERS!\n") for benchmarking_tool in benchmarking_tools: print( "\nSIMULATE: (d={},T={})\n".format(benchmarking_tool.d, benchmarking_tool.T) ) correct_logical_value = 0 noise_values = [ 5e-5, 1e-4, 2e-4, 5e-4, 1e-3, 2e-3, 4e-3, 5e-3, 6e-3, 7e-3, 8e-3, 9e-3, 1e-2, 2e-2, ] benchmarking_tool.simulate_readout_mp( correct_logical_value=correct_logical_value, noise_values=noise_values ) # %%
the-stack_0_14577
import requests from bs4 import BeautifulSoup import pytest import time import hashlib def find_playstation_price(url): response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') price = soup.find(class_='psw-t-title-m').text return price def find_apple_store_price(url): response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') price = soup.find_all( class_='inline-list__item inline-list__item--bulleted app-header__list__item--price')[0].get_text() return price def find_pioneer_firmware_versions(url): response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') price_str = soup.find(class_='version').text price_arr = price_str.split() price = price_arr[1] return price def find_wacom_price(url): response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') price = soup.find(class_='price').text return price def check_logsdon(url): response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') resp = soup.find(class_='_1Cfot') hashed = hashlib.md5(str(resp).encode()) return hashed.hexdigest() class Common: def setup(self): pass def teardown(self): time.sleep(5) # Sleep for 5 seconds class TestPioneer(Common): def test_pioneer_software_download_updated_firmware(self): url = 'https://www.pioneerelectronics.com/PUSA/Car/NEX/DMH-W4600NEX' expected_firmware = '1.31' dmh_4600_next_fw = find_pioneer_firmware_versions(url) assert expected_firmware in dmh_4600_next_fw class TestLogsdon(Common): def test_logsdon_website_for_any_changes(self): url = 'https://www.farmhousebeer.com/' expected_hashes = ['6adf97f83acf6453d4a6a4b1070f3754', '534952d2d7451c0709c8d0263a50005f'] actual_hash = check_logsdon(url) assert actual_hash in expected_hashes class TestPlaystation(Common): def test_actraiser_renaissance(self): url = 'https://store.playstation.com/en-us/product/UP0082-CUSA25035_00-ACTPS4APPNA00001/' expected_price = '$29.99' price = find_playstation_price(url) assert expected_price == price
the-stack_0_14578
import os import threading import queue import asyncio def convert_video(Q,file): if not Q.empty(): async def covert_720p(): os.system('ffmpeg -i ' + file + ' -r 30 -b 2M -s 1280x720 ' + file + '_720.mp4') print(threading.currentThread()) return '720P covert successfully' async def covert_480p(): os.system('ffmpeg -i ' + file + ' -r 30 -b 1M -s 720x480 ' + file + '_480.mp4') print(threading.currentThread()) return '480P covert successfully' coroutine1 = covert_720p() coroutine2 = covert_480p() thread_list = [ asyncio.ensure_future(coroutine1), asyncio.ensure_future(coroutine2), ] loop = asyncio.get_event_loop() loop.run_until_complete(asyncio.wait(thread_list)) for thread in thread_list: print('thread: ', thread.result()) def main(): Q = queue.Queue() path = 'D:\EC500\Exercise2' for file in os.listdir(path): if file.endswith('.mp4'): Q.put(file) convert_video(Q,file) if __name__ == '__main__': main()
the-stack_0_14579
import click import py42.sdk.queries.alerts.filters as f from py42.exceptions import Py42NotFoundError from py42.sdk.queries.alerts.alert_query import AlertQuery from py42.sdk.queries.alerts.filters import AlertState from py42.sdk.queries.alerts.filters import RuleType from py42.sdk.queries.alerts.filters import Severity from py42.util import format_dict import code42cli.cmds.search.options as searchopt import code42cli.errors as errors import code42cli.options as opt from code42cli.bulk import generate_template_cmd_factory from code42cli.bulk import run_bulk_process from code42cli.click_ext.groups import OrderedGroup from code42cli.cmds.search import SendToCommand from code42cli.cmds.search.cursor_store import AlertCursorStore from code42cli.cmds.search.options import server_options from code42cli.cmds.util import convert_to_or_query from code42cli.cmds.util import create_time_range_filter from code42cli.cmds.util import try_get_default_header from code42cli.date_helper import convert_datetime_to_timestamp from code42cli.date_helper import limit_date_range from code42cli.enums import JsonOutputFormat from code42cli.enums import OutputFormat from code42cli.file_readers import read_csv_arg from code42cli.options import format_option from code42cli.output_formats import OutputFormatter from code42cli.util import hash_event from code42cli.util import parse_timestamp from code42cli.util import warn_interrupt ALERTS_KEYWORD = "alerts" ALERT_PAGE_SIZE = 25 begin = opt.begin_option( ALERTS_KEYWORD, callback=lambda ctx, param, arg: convert_datetime_to_timestamp( limit_date_range(arg, max_days_back=90) ), ) end = opt.end_option(ALERTS_KEYWORD) checkpoint = opt.checkpoint_option(ALERTS_KEYWORD) advanced_query = searchopt.advanced_query_option(ALERTS_KEYWORD) severity_option = click.option( "--severity", multiple=True, type=click.Choice(Severity.choices()), cls=searchopt.AdvancedQueryAndSavedSearchIncompatible, callback=searchopt.is_in_filter(f.Severity), help="Filter alerts by severity. Defaults to returning all severities.", ) filter_state_option = click.option( "--state", multiple=True, type=click.Choice(AlertState.choices()), cls=searchopt.AdvancedQueryAndSavedSearchIncompatible, callback=searchopt.is_in_filter(f.AlertState), help="Filter alerts by status. Defaults to returning all statuses.", ) actor_option = click.option( "--actor", multiple=True, cls=searchopt.AdvancedQueryAndSavedSearchIncompatible, callback=searchopt.is_in_filter(f.Actor), help="Filter alerts by including the given actor(s) who triggered the alert. " "Arguments must match the actor's cloud alias exactly.", ) actor_contains_option = click.option( "--actor-contains", multiple=True, cls=searchopt.AdvancedQueryAndSavedSearchIncompatible, callback=searchopt.contains_filter(f.Actor), help="Filter alerts by including actor(s) whose cloud alias contains the given string.", ) exclude_actor_option = click.option( "--exclude-actor", multiple=True, cls=searchopt.AdvancedQueryAndSavedSearchIncompatible, callback=searchopt.not_in_filter(f.Actor), help="Filter alerts by excluding the given actor(s) who triggered the alert. " "Arguments must match actor's cloud alias exactly.", ) exclude_actor_contains_option = click.option( "--exclude-actor-contains", multiple=True, cls=searchopt.AdvancedQueryAndSavedSearchIncompatible, callback=searchopt.not_contains_filter(f.Actor), help="Filter alerts by excluding actor(s) whose cloud alias contains the given string.", ) rule_name_option = click.option( "--rule-name", multiple=True, cls=searchopt.AdvancedQueryAndSavedSearchIncompatible, callback=searchopt.is_in_filter(f.RuleName), help="Filter alerts by including the given rule name(s).", ) exclude_rule_name_option = click.option( "--exclude-rule-name", multiple=True, cls=searchopt.AdvancedQueryAndSavedSearchIncompatible, callback=searchopt.not_in_filter(f.RuleName), help="Filter alerts by excluding the given rule name(s).", ) rule_id_option = click.option( "--rule-id", multiple=True, cls=searchopt.AdvancedQueryAndSavedSearchIncompatible, callback=searchopt.is_in_filter(f.RuleId), help="Filter alerts by including the given rule id(s).", ) exclude_rule_id_option = click.option( "--exclude-rule-id", multiple=True, cls=searchopt.AdvancedQueryAndSavedSearchIncompatible, callback=searchopt.not_in_filter(f.RuleId), help="Filter alerts by excluding the given rule id(s).", ) rule_type_option = click.option( "--rule-type", multiple=True, type=click.Choice(RuleType.choices()), cls=searchopt.AdvancedQueryAndSavedSearchIncompatible, callback=searchopt.is_in_filter(f.RuleType), help="Filter alerts by including the given rule type(s).", ) exclude_rule_type_option = click.option( "--exclude-rule-type", multiple=True, cls=searchopt.AdvancedQueryAndSavedSearchIncompatible, callback=searchopt.not_in_filter(f.RuleType), help="Filter alerts by excluding the given rule type(s).", ) description_option = click.option( "--description", multiple=True, cls=searchopt.AdvancedQueryAndSavedSearchIncompatible, callback=searchopt.contains_filter(f.Description), help="Filter alerts by description. Does fuzzy search by default.", ) send_to_format_options = click.option( "-f", "--format", type=click.Choice(JsonOutputFormat(), case_sensitive=False), help="The output format of the result. Defaults to json format.", default=JsonOutputFormat.RAW, ) alert_id_arg = click.argument("alert-id") note_option = click.option("--note", help="A note to attach to the alert.") update_state_option = click.option( "--state", help="The state to give to the alert.", type=click.Choice(AlertState.choices()), ) def _get_default_output_header(): return { "id": "Id", "name": "RuleName", "actor": "Username", "createdAt": "ObservedDate", "state": "State", "severity": "Severity", "description": "Description", } def search_options(f): f = checkpoint(f) f = advanced_query(f) f = end(f) f = begin(f) return f def filter_options(f): f = actor_option(f) f = actor_contains_option(f) f = exclude_actor_option(f) f = exclude_actor_contains_option(f) f = rule_name_option(f) f = exclude_rule_name_option(f) f = rule_id_option(f) f = exclude_rule_id_option(f) f = rule_type_option(f) f = exclude_rule_type_option(f) f = description_option(f) f = severity_option(f) f = filter_state_option(f) return f @click.group(cls=OrderedGroup) @opt.sdk_options(hidden=True) def alerts(state): """Get and send alert data.""" # store cursor getter on the group state so shared --begin option can use it in validation state.cursor_getter = _get_alert_cursor_store @alerts.command() @click.argument("checkpoint-name") @opt.sdk_options() def clear_checkpoint(state, checkpoint_name): """Remove the saved alert checkpoint from `--use-checkpoint/-c` mode.""" _get_alert_cursor_store(state.profile.name).delete(checkpoint_name) @alerts.command() @filter_options @search_options @click.option( "--or-query", is_flag=True, cls=searchopt.AdvancedQueryAndSavedSearchIncompatible ) @opt.sdk_options() @click.option( "--include-all", default=False, is_flag=True, help="Display simple properties of the primary level of the nested response.", ) @format_option def search( cli_state, format, begin, end, advanced_query, use_checkpoint, or_query, include_all, **kwargs, ): """Search for alerts.""" output_header = try_get_default_header( include_all, _get_default_output_header(), format ) formatter = OutputFormatter(format, output_header) cursor = _get_alert_cursor_store(cli_state.profile.name) if use_checkpoint else None if use_checkpoint: checkpoint_name = use_checkpoint checkpoint = cursor.get(checkpoint_name) if checkpoint is not None: begin = checkpoint query = _construct_query(cli_state, begin, end, advanced_query, or_query) alerts_gen = cli_state.sdk.alerts.get_all_alert_details(query) if use_checkpoint: checkpoint_name = use_checkpoint # update checkpoint to alertId of last event retrieved alerts_gen = _dedupe_checkpointed_events_and_store_updated_checkpoint( cursor, checkpoint_name, alerts_gen ) alerts_list = [] for alert in alerts_gen: alerts_list.append(alert) if not alerts_list: click.echo("No results found.") return formatter.echo_formatted_list(alerts_list) def _construct_query(state, begin, end, advanced_query, or_query): if advanced_query: state.search_filters = advanced_query else: if begin or end: state.search_filters.append( create_time_range_filter(f.DateObserved, begin, end) ) if or_query: state.search_filters = convert_to_or_query(state.search_filters) query = AlertQuery(*state.search_filters) query.page_size = ALERT_PAGE_SIZE query.sort_direction = "asc" query.sort_key = "CreatedAt" return query def _dedupe_checkpointed_events_and_store_updated_checkpoint( cursor, checkpoint_name, alerts_gen ): """De-duplicates events across checkpointed runs. Since using the timestamp of the last event processed as the `--begin` time of the next run causes the last event to show up again in the next results, we hash the last event(s) of each run and store those hashes in the cursor to filter out on the next run. It's also possible that two events have the exact same timestamp, so `checkpoint_events` needs to be a list of hashes so we can filter out everything that's actually been processed. """ checkpoint_alerts = cursor.get_alerts(checkpoint_name) new_timestamp = None new_alerts = [] for alert in alerts_gen: event_hash = hash_event(alert) if event_hash not in checkpoint_alerts: if alert[f.DateObserved._term] != new_timestamp: new_timestamp = alert[f.DateObserved._term] new_alerts.clear() new_alerts.append(event_hash) yield alert ts = parse_timestamp(new_timestamp) cursor.replace(checkpoint_name, ts) cursor.replace_alerts(checkpoint_name, new_alerts) @alerts.command(cls=SendToCommand) @filter_options @search_options @click.option( "--or-query", is_flag=True, cls=searchopt.AdvancedQueryAndSavedSearchIncompatible ) @opt.sdk_options() @server_options @click.option( "--include-all", default=False, is_flag=True, help="Display simple properties of the primary level of the nested response.", ) @send_to_format_options def send_to(cli_state, begin, end, advanced_query, use_checkpoint, or_query, **kwargs): """Send alerts to the given server address. HOSTNAME format: address:port where port is optional and defaults to 514. """ cursor = _get_cursor(cli_state, use_checkpoint) if use_checkpoint: checkpoint_name = use_checkpoint checkpoint = cursor.get(checkpoint_name) if checkpoint is not None: begin = checkpoint query = _construct_query(cli_state, begin, end, advanced_query, or_query) alerts_gen = cli_state.sdk.alerts.get_all_alert_details(query) if use_checkpoint: checkpoint_name = use_checkpoint alerts_gen = _dedupe_checkpointed_events_and_store_updated_checkpoint( cursor, checkpoint_name, alerts_gen ) with warn_interrupt(): alert = None for alert in alerts_gen: cli_state.logger.info(alert) if alert is None: # generator was empty click.echo("No results found.") def _get_cursor(state, use_checkpoint): return _get_alert_cursor_store(state.profile.name) if use_checkpoint else None def _get_alert_cursor_store(profile_name): return AlertCursorStore(profile_name) @alerts.command() @opt.sdk_options() @alert_id_arg @click.option( "--include-observations", is_flag=True, help="View observations of the alert." ) def show(state, alert_id, include_observations): """Display the details of a single alert.""" formatter = OutputFormatter(OutputFormat.TABLE, _get_default_output_header()) try: response = state.sdk.alerts.get_details(alert_id) except Py42NotFoundError: raise errors.Code42CLIError(f"No alert found with ID '{alert_id}'.") alert = response["alerts"][0] formatter.echo_formatted_list([alert]) # Show note details note = alert.get("note") if note: click.echo("\nNote:\n") click.echo(format_dict(note)) if include_observations: observations = alert.get("observations") if observations: click.echo("\nObservations:\n") click.echo(format_dict(observations)) else: click.echo("\nNo observations found.") @alerts.command() @opt.sdk_options() @alert_id_arg @update_state_option @note_option def update(cli_state, alert_id, state, note): """Update alert information.""" _update_alert(cli_state.sdk, alert_id, state, note) @alerts.group(cls=OrderedGroup) @opt.sdk_options(hidden=True) def bulk(state): """Tools for executing bulk alert actions.""" pass UPDATE_ALERT_CSV_HEADERS = ["id", "state", "note"] update_alerts_generate_template = generate_template_cmd_factory( group_name=ALERTS_KEYWORD, commands_dict={"update": UPDATE_ALERT_CSV_HEADERS}, help_message="Generate the CSV template needed for bulk alert commands.", ) bulk.add_command(update_alerts_generate_template) @bulk.command( name="update", help=f"Bulk update alerts using a CSV file with format: {','.join(UPDATE_ALERT_CSV_HEADERS)}", ) @opt.sdk_options() @read_csv_arg(headers=UPDATE_ALERT_CSV_HEADERS) def bulk_update(cli_state, csv_rows): """Bulk update alerts.""" sdk = cli_state.sdk def handle_row(id, state, note): _update_alert(sdk, id, state, note) run_bulk_process( handle_row, csv_rows, progress_label="Updating alerts:", ) def _update_alert(sdk, alert_id, alert_state, note): if alert_state: sdk.alerts.update_state(alert_state, [alert_id], note=note) elif note: sdk.alerts.update_note(alert_id, note)
the-stack_0_14581
""" Functions for creating and restoring url-safe signed JSON objects. The format used looks like this: >>> signing.dumps("hello") 'ImhlbGxvIg:1QaUZC:YIye-ze3TTx7gtSv422nZA4sgmk' There are two components here, separated by a ':'. The first component is a URLsafe base64 encoded JSON of the object passed to dumps(). The second component is a base64 encoded hmac/SHA1 hash of "$first_component:$secret" signing.loads(s) checks the signature and returns the deserialized object. If the signature fails, a BadSignature exception is raised. >>> signing.loads("ImhlbGxvIg:1QaUZC:YIye-ze3TTx7gtSv422nZA4sgmk") 'hello' >>> signing.loads("ImhlbGxvIg:1QaUZC:YIye-ze3TTx7gtSv422nZA4sgmk-modified") ... BadSignature: Signature failed: ImhlbGxvIg:1QaUZC:YIye-ze3TTx7gtSv422nZA4sgmk-modified You can optionally compress the JSON prior to base64 encoding it to save space, using the compress=True argument. This checks if compression actually helps and only applies compression if the result is a shorter string: >>> signing.dumps(range(1, 20), compress=True) '.eJwFwcERACAIwLCF-rCiILN47r-GyZVJsNgkxaFxoDgxcOHGxMKD_T7vhAml:1QaUaL:BA0thEZrp4FQVXIXuOvYJtLJSrQ' The fact that the string is compressed is signalled by the prefixed '.' at the start of the base64 JSON. There are 65 url-safe characters: the 64 used by url-safe base64 and the ':'. These functions make use of all of them. """ import base64 import datetime import json import re import time import zlib from django.conf import settings from django.utils import baseconv from django.utils.crypto import constant_time_compare, salted_hmac from django.utils.encoding import force_bytes from django.utils.module_loading import import_string _SEP_UNSAFE = re.compile(r'^[A-z0-9-_=]*$') class BadSignature(Exception): """Signature does not match.""" pass class SignatureExpired(BadSignature): """Signature timestamp is older than required max_age.""" pass def b64_encode(s): return base64.urlsafe_b64encode(s).strip(b'=') def b64_decode(s): pad = b'=' * (-len(s) % 4) return base64.urlsafe_b64decode(s + pad) def base64_hmac(salt, value, key): return b64_encode(salted_hmac(salt, value, key).digest()).decode() def get_cookie_signer(salt='django.core.signing.get_cookie_signer'): Signer = import_string(settings.SIGNING_BACKEND) key = force_bytes(settings.SECRET_KEY) # SECRET_KEY may be str or bytes. return Signer(b'django.http.cookies' + key, salt=salt) class JSONSerializer: """ Simple wrapper around json to be used in signing.dumps and signing.loads. """ def dumps(self, obj): return json.dumps(obj, separators=(',', ':')).encode('latin-1') def loads(self, data): return json.loads(data.decode('latin-1')) def dumps(obj, key=None, salt='django.core.signing', serializer=JSONSerializer, compress=False): """ Return URL-safe, hmac/SHA1 signed base64 compressed JSON string. If key is None, use settings.SECRET_KEY instead. If compress is True (not the default), check if compressing using zlib can save some space. Prepend a '.' to signify compression. This is included in the signature, to protect against zip bombs. Salt can be used to namespace the hash, so that a signed string is only valid for a given namespace. Leaving this at the default value or re-using a salt value across different parts of your application without good cause is a security risk. The serializer is expected to return a bytestring. """ data = serializer().dumps(obj) # Flag for if it's been compressed or not is_compressed = False if compress: # Avoid zlib dependency unless compress is being used compressed = zlib.compress(data) if len(compressed) < (len(data) - 1): data = compressed is_compressed = True base64d = b64_encode(data).decode() if is_compressed: base64d = '.' + base64d return TimestampSigner(key, salt=salt).sign(base64d) def loads(s, key=None, salt='django.core.signing', serializer=JSONSerializer, max_age=None): """ Reverse of dumps(), raise BadSignature if signature fails. The serializer is expected to accept a bytestring. """ # TimestampSigner.unsign() returns str but base64 and zlib compression # operate on bytes. base64d = TimestampSigner(key, salt=salt).unsign(s, max_age=max_age).encode() decompress = base64d[:1] == b'.' if decompress: # It's compressed; uncompress it first base64d = base64d[1:] data = b64_decode(base64d) if decompress: data = zlib.decompress(data) return serializer().loads(data) class Signer: def __init__(self, key=None, sep=':', salt=None): # Use of native strings in all versions of Python self.key = key or settings.SECRET_KEY self.sep = sep if _SEP_UNSAFE.match(self.sep): raise ValueError( 'Unsafe Signer separator: %r (cannot be empty or consist of ' 'only A-z0-9-_=)' % sep, ) self.salt = salt or '%s.%s' % (self.__class__.__module__, self.__class__.__name__) def signature(self, value): return base64_hmac(self.salt + 'signer', value, self.key) def sign(self, value): return '%s%s%s' % (value, self.sep, self.signature(value)) def unsign(self, signed_value): if self.sep not in signed_value: raise BadSignature('No "%s" found in value' % self.sep) value, sig = signed_value.rsplit(self.sep, 1) if constant_time_compare(sig, self.signature(value)): return value raise BadSignature('Signature "%s" does not match' % sig) class TimestampSigner(Signer): def timestamp(self): return baseconv.base62.encode(int(time.time())) def sign(self, value): value = '%s%s%s' % (value, self.sep, self.timestamp()) return super().sign(value) def unsign(self, value, max_age=None): """ Retrieve original value and check it wasn't signed more than max_age seconds ago. """ result = super().unsign(value) value, timestamp = result.rsplit(self.sep, 1) timestamp = baseconv.base62.decode(timestamp) if max_age is not None: if isinstance(max_age, datetime.timedelta): max_age = max_age.total_seconds() # Check timestamp is not older than max_age age = time.time() - timestamp if age > max_age: raise SignatureExpired( 'Signature age %s > %s seconds' % (age, max_age)) return value
the-stack_0_14582
import os import sys import miind.include as include import miind.algorithms as algorithms import miind.nodes as nodes import miind.connections as connections import miind.simulation as simulation import miind.variables as variables import xml.etree.ElementTree as ET import argparse import miind.directories as directories XML_EXTENSION = '.xml' # Nothing too fancy for the weight type WEIGHTTYPES = ['double', 'DelayedConnection'] def generate_preamble(outfile): outfile.write('//Machine-generated by miind.py. Edit at your own risk.\n\n') for inc in include.includes: outfile.write(inc +'\n') return def generate_closing(outfile, steps, type, t_step): outfile.write('\tnetwork.configureSimulation(par_run);\n') # outfile.write('\tstd::thread t1(TwoDLib::Display::stat_runthreaded);\n') # outfile.write('\tt1.detach();\n') # outfile.write('\tnetwork.evolve();\n') if type == "DelayedConnection": s = "MPILib::" + type else: s = "double" outfile.write('\tstd::vector<MPILib::NodeId> nodes;\n') outfile.write('\tnodes.push_back(0);\n') outfile.write('\tTwoDLib::Display::getInstance()->animate(true, nodes,' + t_step + ');\n') outfile.write('\tnetwork.startSimulation();\n') outfile.write('\tMPILib::utilities::ProgressBar *pb = new MPILib::utilities::ProgressBar(' + steps + ');\n') outfile.write('\tlong count = 0;\n') outfile.write('\twhile(count < ' + steps + ') {\n') outfile.write('\t\tnetwork.evolveSingleStep(std::vector<MPILib::ActivityType>());\n') outfile.write('\t\tnetwork.reportNodeActivities(nodes);\n') outfile.write('\t\tTwoDLib::Display::getInstance()->updateDisplay(count);\n') outfile.write('\t\tTwoDLib::GridReport<TwoDLib::GridAlgorithm<DelayedConnection>>::getInstance()->reportDensity();\n') outfile.write('\t\t(*pb)++;\n') outfile.write('\t\tcount++;\n') outfile.write('\t}\n') outfile.write('\tnetwork.endSimulation();\n') outfile.write('\t} catch(std::exception& exc){\n') outfile.write('\t\tstd::cout << exc.what() << std::endl;\n') outfile.write('#ifdef ENABLE_MPI\n') outfile.write('\t//Abort the MPI environment in the correct way :\n') outfile.write('\tenv.abort(1);\n') outfile.write('#endif\n') outfile.write('\t}\n\n') outfile.write('\tMPILib::utilities::MPIProxy().barrier();\n') outfile.write('\tt.stop();\n') outfile.write('\tif (MPILib::utilities::MPIProxy().getRank() == 0) {\n') outfile.write('\n\t\tstd::cout << \"Overall time spend\\n\";\n') outfile.write('\t\tt.report();\n') outfile.write('\t}\n') outfile.write('\treturn 0;\n}\n') for t in algorithms.RATEFUNCTIONS: outfile.write(t) return def define_network_type(outfile, type): if type == "DelayedConnection": s = "MPILib::" + type else: s = "double" return 'typedef MPILib::MPINetwork<' + s + ', MPILib::utilities::CircularDistribution> Network;\n' def parse_xml(infile, outfile): tree=ET.fromstring(infile.read()) m=tree.find('WeightType') s = m.text return define_network_type(outfile,s), tree def generate_opening(outfile): outfile.write('int main(int argc, char *argv[]){\n\tNetwork network;\n') outfile.write('\tboost::timer::auto_cpu_timer t;\n\n') outfile.write('#ifdef ENABLE_MPI\n') outfile.write('\t// initialise the mpi environment this cannot be forwarded to a class\n') outfile.write('\tboost::mpi::environment env(argc, argv);\n') outfile.write('#endif\n\n') outfile.write('\ttry {') def model_name(fn): '''Identifies model files mentioned in an XML file. For example used in placing the right model file in the same directory as an XML file.''' infile = open(fn) tree=ET.fromstring(infile.read()) ma = tree.findall('Algorithms/Algorithm') modelnames = [] for a in ma: if a.attrib['type'] == 'MeshAlgorithm' or a.attrib['type'] == 'GridAlgorithm': modelnames.append(a.attrib['modelfile']) return modelnames def matrix_transform_name(fn): '''Identifies matrix transform files mentioned in an XML file. For example used in placing the right model file in the same directory as an XML file.''' infile = open(fn) tree=ET.fromstring(infile.read()) ma = tree.findall('Algorithms/Algorithm') tmatnames = [] for a in ma: if a.attrib['type'] == 'GridAlgorithm': tmatnames.append(a.attrib['transformfile']) return tmatnames def matrix_names(fn): '''Find the file names of all MatrixFiles, mentioned in an XML file.''' infile = open(fn) tree=ET.fromstring(infile.read()) ma = tree.findall('Algorithms/Algorithm/MatrixFile') matrixnames = [] for a in ma: matrixnames.append(a.text) return matrixnames def generate_outputfile(infile, outfile, enable_root): generate_preamble(outfile) nettype, tree = parse_xml(infile,outfile) outfile.write(nettype) outfile.write('\t// defining variables\n') # whatever variables are use are global variable_list = tree.findall('Variable') variables.parse_variables(variable_list,outfile) algies = tree.findall('Algorithms') if len(algies) != 1: raise ValueError alg_list = algies[0].findall('Algorithm') weighttype = tree.find('WeightType') generate_opening(outfile) outfile.write('\t// generating algorithms\n') algorithms.parse_algorithms(alg_list,weighttype,outfile) node_list = tree.findall('Nodes/Node') outfile.write('\t// generating nodes\n') nodes.parse_nodes(node_list,weighttype,outfile) outfile.write('\t// generating connections\n') connection_list = tree.findall('Connections/Connection') connections.parse_connections(connection_list,weighttype,outfile) outfile.write('\t// generation simulation parameter\n') simhand = tree.find('SimulationIO') simulation.parse_simulation(simhand,outfile,enable_root) simpar = tree.find('SimulationRunParameter') simulation.parse_parameter(simpar,outfile) t_begin = tree.find('SimulationRunParameter/t_begin') t_end = tree.find('SimulationRunParameter/t_end') t_step = tree.find('SimulationRunParameter/t_step') m=tree.find('WeightType') s = m.text generate_closing(outfile, '(' + t_end.text + ' - ' + t_begin.text + ') / ' + t_step.text , s , t_step.text) algorithms.reset_algorithms() nodes.reset_nodes()
the-stack_0_14583
# -*- coding: utf-8 -*- """ Code source: https://github.com/KaiyangZhou/deep-person-reid """ from __future__ import division, print_function, absolute_import import math import numpy as np from itertools import repeat from collections import namedtuple, defaultdict import torch __all__ = ['compute_model_complexity'] """ Utility """ def _ntuple(n): def parse(x): if isinstance(x, int): return tuple(repeat(x, n)) return x return parse _single = _ntuple(1) _pair = _ntuple(2) _triple = _ntuple(3) """ Convolution """ def hook_convNd(m, x, y): k = torch.prod(torch.Tensor(m.kernel_size)).item() cin = m.in_channels flops_per_ele = k * cin # + (k*cin-1) if m.bias is not None: flops_per_ele += 1 flops = flops_per_ele * y.numel() / m.groups return int(flops) """ Pooling """ def hook_maxpool1d(m, x, y): flops_per_ele = m.kernel_size - 1 flops = flops_per_ele * y.numel() return int(flops) def hook_maxpool2d(m, x, y): k = _pair(m.kernel_size) k = torch.prod(torch.Tensor(k)).item() # ops: compare flops_per_ele = k - 1 flops = flops_per_ele * y.numel() return int(flops) def hook_maxpool3d(m, x, y): k = _triple(m.kernel_size) k = torch.prod(torch.Tensor(k)).item() flops_per_ele = k - 1 flops = flops_per_ele * y.numel() return int(flops) def hook_avgpool1d(m, x, y): flops_per_ele = m.kernel_size flops = flops_per_ele * y.numel() return int(flops) def hook_avgpool2d(m, x, y): k = _pair(m.kernel_size) k = torch.prod(torch.Tensor(k)).item() flops_per_ele = k flops = flops_per_ele * y.numel() return int(flops) def hook_avgpool3d(m, x, y): k = _triple(m.kernel_size) k = torch.prod(torch.Tensor(k)).item() flops_per_ele = k flops = flops_per_ele * y.numel() return int(flops) def hook_adapmaxpool1d(m, x, y): x = x[0] out_size = m.output_size k = math.ceil(x.size(2) / out_size) flops_per_ele = k - 1 flops = flops_per_ele * y.numel() return int(flops) def hook_adapmaxpool2d(m, x, y): x = x[0] out_size = _pair(m.output_size) k = torch.Tensor(list(x.size()[2:])) / torch.Tensor(out_size) k = torch.prod(torch.ceil(k)).item() flops_per_ele = k - 1 flops = flops_per_ele * y.numel() return int(flops) def hook_adapmaxpool3d(m, x, y): x = x[0] out_size = _triple(m.output_size) k = torch.Tensor(list(x.size()[2:])) / torch.Tensor(out_size) k = torch.prod(torch.ceil(k)).item() flops_per_ele = k - 1 flops = flops_per_ele * y.numel() return int(flops) def hook_adapavgpool1d(m, x, y): x = x[0] out_size = m.output_size k = math.ceil(x.size(2) / out_size) flops_per_ele = k flops = flops_per_ele * y.numel() return int(flops) def hook_adapavgpool2d(m, x, y): x = x[0] out_size = _pair(m.output_size) k = torch.Tensor(list(x.size()[2:])) / torch.Tensor(out_size) k = torch.prod(torch.ceil(k)).item() flops_per_ele = k flops = flops_per_ele * y.numel() return int(flops) def hook_adapavgpool3d(m, x, y): x = x[0] out_size = _triple(m.output_size) k = torch.Tensor(list(x.size()[2:])) / torch.Tensor(out_size) k = torch.prod(torch.ceil(k)).item() flops_per_ele = k flops = flops_per_ele * y.numel() return int(flops) """ Non-linear activations """ def hook_relu(m, x, y): # eq: max(0, x) num_ele = y.numel() return int(num_ele) def hook_leakyrelu(m, x, y): # eq: max(0, x) + negative_slope*min(0, x) num_ele = y.numel() flops = 3 * num_ele return int(flops) """ Normalization """ def hook_batchnormNd(m, x, y): num_ele = y.numel() flops = 2 * num_ele # mean and std if m.affine: flops += 2 * num_ele # gamma and beta return int(flops) def hook_instancenormNd(m, x, y): return hook_batchnormNd(m, x, y) def hook_groupnorm(m, x, y): return hook_batchnormNd(m, x, y) def hook_layernorm(m, x, y): num_ele = y.numel() flops = 2 * num_ele # mean and std if m.elementwise_affine: flops += 2 * num_ele # gamma and beta return int(flops) """ Linear """ def hook_linear(m, x, y): flops_per_ele = m.in_features # + (m.in_features-1) if m.bias is not None: flops_per_ele += 1 flops = flops_per_ele * y.numel() return int(flops) __generic_flops_counter = { # Convolution 'Conv1d': hook_convNd, 'Conv2d': hook_convNd, 'Conv3d': hook_convNd, # Pooling 'MaxPool1d': hook_maxpool1d, 'MaxPool2d': hook_maxpool2d, 'MaxPool3d': hook_maxpool3d, 'AvgPool1d': hook_avgpool1d, 'AvgPool2d': hook_avgpool2d, 'AvgPool3d': hook_avgpool3d, 'AdaptiveMaxPool1d': hook_adapmaxpool1d, 'AdaptiveMaxPool2d': hook_adapmaxpool2d, 'AdaptiveMaxPool3d': hook_adapmaxpool3d, 'AdaptiveAvgPool1d': hook_adapavgpool1d, 'AdaptiveAvgPool2d': hook_adapavgpool2d, 'AdaptiveAvgPool3d': hook_adapavgpool3d, # Non-linear activations 'ReLU': hook_relu, 'ReLU6': hook_relu, 'LeakyReLU': hook_leakyrelu, # Normalization 'BatchNorm1d': hook_batchnormNd, 'BatchNorm2d': hook_batchnormNd, 'BatchNorm3d': hook_batchnormNd, 'InstanceNorm1d': hook_instancenormNd, 'InstanceNorm2d': hook_instancenormNd, 'InstanceNorm3d': hook_instancenormNd, 'GroupNorm': hook_groupnorm, 'LayerNorm': hook_layernorm, # Linear 'Linear': hook_linear, } __conv_linear_flops_counter = { # Convolution 'Conv1d': hook_convNd, 'Conv2d': hook_convNd, 'Conv3d': hook_convNd, # Linear 'Linear': hook_linear, } def _get_flops_counter(only_conv_linear): if only_conv_linear: return __conv_linear_flops_counter return __generic_flops_counter def compute_model_complexity(model, input_size, verbose=False, only_conv_linear=True): """Returns number of parameters and FLOPs. .. note:: (1) this function only provides an estimate of the theoretical time complexity rather than the actual running time which depends on implementations and hardware, and (2) the FLOPs is only counted for layers that are used at test time. This means that redundant layers such as person ID classification layer will be ignored as it is discarded when doing feature extraction. Note that the inference graph depends on how you construct the computations in ``forward()``. Args: model (nn.Module): network model. input_size (tuple): input size, e.g. (1, 3, 256, 128). verbose (bool, optional): shows detailed complexity of each module. Default is False. only_conv_linear (bool, optional): only considers convolution and linear layers when counting flops. Default is True. If set to False, flops of all layers will be counted. """ registered_handles = [] layer_list = [] layer = namedtuple('layer', ['class_name', 'params', 'flops']) def _add_hooks(m): def _has_submodule(m): return len(list(m.children())) > 0 def _hook(m, x, y): params = sum(p.numel() for p in m.parameters()) class_name = str(m.__class__.__name__) flops_counter = _get_flops_counter(only_conv_linear) if class_name in flops_counter: flops = flops_counter[class_name](m, x, y) else: flops = 0 layer_list.append(layer(class_name=class_name, params=params, flops=flops)) # only consider the very basic nn layer if _has_submodule(m): return handle = m.register_forward_hook(_hook) registered_handles.append(handle) default_train_mode = model.training model.eval().apply(_add_hooks) input = torch.rand(input_size) if next(model.parameters()).is_cuda: input = input.cuda() model(input) # forward for handle in registered_handles: handle.remove() model.train(default_train_mode) if verbose: per_module_params = defaultdict(list) per_module_flops = defaultdict(list) total_params, total_flops = 0, 0 for layer in layer_list: total_params += layer.params total_flops += layer.flops if verbose: per_module_params[layer.class_name].append(layer.params) per_module_flops[layer.class_name].append(layer.flops) if verbose: num_udscore = 55 print(' {}'.format('-' * num_udscore)) print(' Model complexity with input size {}'.format(input_size)) print(' {}'.format('-' * num_udscore)) for class_name in per_module_params: params = int(np.sum(per_module_params[class_name])) flops = int(np.sum(per_module_flops[class_name])) print(' {} (params={:,}, flops={:,})'.format(class_name, params, flops)) print(' {}'.format('-' * num_udscore)) print(' Total (params={:,}, flops={:,})'.format(total_params, total_flops)) print(' {}'.format('-' * num_udscore)) return total_params, total_flops
the-stack_0_14586
import os PROJECT_ROOT = os.path.abspath(os.path.join(os.path.dirname(__file__), os.pardir)) PACKAGE_ROOT = os.path.abspath(os.path.dirname(__file__)) BASE_DIR = PACKAGE_ROOT DEBUG = True TEMPLATE_DEBUG = DEBUG DATABASES = { "default": { "ENGINE": "django.db.backends.sqlite3", "NAME": "dev.db", } } # Local time zone for this installation. Choices can be found here: # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name # although not all choices may be available on all operating systems. # On Unix systems, a value of None will cause Django to use the same # timezone as the operating system. # If running in a Windows environment this must be set to the same as your # system time zone. TIME_ZONE = "UTC" # Language code for this installation. All choices can be found here: # http://www.i18nguy.com/unicode/language-identifiers.html LANGUAGE_CODE = "en-us" SITE_ID = int(os.environ.get("SITE_ID", 1)) # If you set this to False, Django will make some optimizations so as not # to load the internationalization machinery. USE_I18N = True # If you set this to False, Django will not format dates, numbers and # calendars according to the current locale. USE_L10N = True # If you set this to False, Django will not use timezone-aware datetimes. USE_TZ = True # Absolute filesystem path to the directory that will hold user-uploaded files. # Example: "/home/media/media.lawrence.com/media/" MEDIA_ROOT = os.path.join(PACKAGE_ROOT, "site_media", "media") # URL that handles the media served from MEDIA_ROOT. Make sure to use a # trailing slash. # Examples: "http://media.lawrence.com/media/", "http://example.com/media/" MEDIA_URL = "/site_media/media/" # Absolute path to the directory static files should be collected to. # Don"t put anything in this directory yourself; store your static files # in apps" "static/" subdirectories and in STATICFILES_DIRS. # Example: "/home/media/media.lawrence.com/static/" STATIC_ROOT = os.path.join(PACKAGE_ROOT, "site_media", "static") # URL prefix for static files. # Example: "http://media.lawrence.com/static/" STATIC_URL = "/site_media/static/" # Additional locations of static files STATICFILES_DIRS = [ os.path.join(PACKAGE_ROOT, "static"), ] # List of finder classes that know how to find static files in # various locations. STATICFILES_FINDERS = [ "django.contrib.staticfiles.finders.FileSystemFinder", "django.contrib.staticfiles.finders.AppDirectoriesFinder", ] # Make this unique, and don't share it with anybody. SECRET_KEY = "yc)7(o27pavgtr&$3i3si@d8zulc&0b#1kpof7f%jo@&+vlc$g" # List of callables that know how to import templates from various sources. TEMPLATE_LOADERS = [ "django.template.loaders.filesystem.Loader", "django.template.loaders.app_directories.Loader", ] TEMPLATE_CONTEXT_PROCESSORS = [ "django.contrib.auth.context_processors.auth", "django.core.context_processors.debug", "django.core.context_processors.i18n", "django.core.context_processors.media", "django.core.context_processors.static", "django.core.context_processors.tz", "django.core.context_processors.request", "django.contrib.messages.context_processors.messages", "account.context_processors.account", "pinax_theme_bootstrap.context_processors.theme", ] MIDDLEWARE_CLASSES = [ "django.middleware.common.CommonMiddleware", "django.contrib.sessions.middleware.SessionMiddleware", "django.middleware.csrf.CsrfViewMiddleware", "django.contrib.auth.middleware.AuthenticationMiddleware", "django.contrib.messages.middleware.MessageMiddleware", ] ROOT_URLCONF = "rakesh.urls" # Python dotted path to the WSGI application used by Django's runserver. WSGI_APPLICATION = "rakesh.wsgi.application" TEMPLATE_DIRS = [ os.path.join(PACKAGE_ROOT, "templates"), ] INSTALLED_APPS = [ "django.contrib.admin", "django.contrib.auth", "django.contrib.contenttypes", "django.contrib.messages", "django.contrib.sessions", "django.contrib.sites", "django.contrib.staticfiles", # theme "bootstrapform", "pinax_theme_bootstrap", # external "account", "eventlog", "metron", "easy_thumbnails", "kaleo", "teams", "wiki", # project "rakesh", "rakesh.profiles", ] # A sample logging configuration. The only tangible logging # performed by this configuration is to send an email to # the site admins on every HTTP 500 error when DEBUG=False. # See http://docs.djangoproject.com/en/dev/topics/logging for # more details on how to customize your logging configuration. LOGGING = { "version": 1, "disable_existing_loggers": False, "filters": { "require_debug_false": { "()": "django.utils.log.RequireDebugFalse" } }, "handlers": { "mail_admins": { "level": "ERROR", "filters": ["require_debug_false"], "class": "django.utils.log.AdminEmailHandler" } }, "loggers": { "django.request": { "handlers": ["mail_admins"], "level": "ERROR", "propagate": True, }, } } FIXTURE_DIRS = [ os.path.join(PROJECT_ROOT, "fixtures"), ] EMAIL_BACKEND = "django.core.mail.backends.console.EmailBackend" ACCOUNT_OPEN_SIGNUP = True ACCOUNT_USE_OPENID = False ACCOUNT_REQUIRED_EMAIL = False ACCOUNT_EMAIL_UNIQUE = True ACCOUNT_EMAIL_CONFIRMATION_REQUIRED = False ACCOUNT_LOGIN_REDIRECT_URL = "home" ACCOUNT_LOGOUT_REDIRECT_URL = "home" ACCOUNT_EMAIL_CONFIRMATION_EXPIRE_DAYS = 2 WIKI_HOOKSET = "rakesh.hooks.ProjectWikiHookset" WIKI_BINDERS = [ "rakesh.binders.UserBinder", "rakesh.binders.TeamBinder" ] AUTHENTICATION_BACKENDS = [ "account.auth_backends.UsernameAuthenticationBackend", "django.contrib.auth.backends.ModelBackend" ] AUTH_PROFILE_MODULE = "profiles.Profile"
the-stack_0_14587
#! /usr/bin/env python3 # -*- coding: utf-8 -*- import os import sys import time try: import frida except ImportError: sys.exit('install frida\nsudo python3 -m pip install frida') def err(msg): sys.stderr.write(msg + '\n') def on_message(message, data): if message['type'] == 'error': err('[!] ' + message['stack']) elif message['type'] == 'send': print('[+] ' + message['payload']) else: print(message) def kill_process(target_process): cmd = 'adb shell pm clear {} 1> /dev/null'.format(target_process) os.system(cmd) def main(): target_process = sys.argv[1] #kill_process(target_process) device = frida.get_usb_device() try: started = False session = device.attach(target_process) except frida.ProcessNotFoundError: print('Starting process {}...\n'.format(target_process)) started = True try: pid = device.spawn([target_process]) except frida.NotSupportedError: sys.exit('An error ocurred while attaching with the procces\n') session = device.attach(pid) script = session.create_script(""" Java.perform(function () { var Log = Java.use("android.util.Log"); Log.e.overload('java.lang.String', 'java.lang.String').implementation = function (tag, entry) { console.log('Log.e( ' + tag + ', ' + entry + ' )'); console.log(''); return this.e.apply(this, arguments); } Log.w.overload('java.lang.String', 'java.lang.String').implementation = function (tag, entry) { console.log('Log.w( ' + tag + ', ' + entry + ' )'); console.log(''); return this.w.apply(this, arguments); } Log.i.overload('java.lang.String', 'java.lang.String').implementation = function (tag, entry) { console.log('Log.i( ' + tag + ', ' + entry + ' )'); console.log(''); return this.i.apply(this, arguments); } Log.d.overload('java.lang.String', 'java.lang.String').implementation = function (tag, entry) { console.log('Log.d( ' + tag + ', ' + entry + ' )'); console.log(''); return this.d.apply(this, arguments); } }); """) script.on('message', on_message) print('[!] Press <Enter> at any time to detach from instrumented program.\n\n') script.load() if started: device.resume(pid) input() session.detach() if __name__ == '__main__': if len(sys.argv) != 2: usage = 'usage {} <process name or PID>\n\n'.format(__file__) sys.exit(usage) main()
the-stack_0_14590
import asyncio import base64 import binascii import hashlib import json import logging import os import random import requests import sys import time from urllib.parse import urlparse from qrcode import QRCode from aiohttp import ClientError from uuid import uuid4 from datetime import date sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) # noqa from runners.support.agent import DemoAgent, default_genesis_txns from runners.support.utils import ( log_json, log_msg, log_status, log_timer, prompt, prompt_loop, require_indy, ) CRED_PREVIEW_TYPE = ( "did:sov:BzCbsNYhMrjHiqZDTUASHg;spec/issue-credential/1.0/credential-preview" ) SELF_ATTESTED = os.getenv("SELF_ATTESTED") LOGGER = logging.getLogger(__name__) TAILS_FILE_COUNT = int(os.getenv("TAILS_FILE_COUNT", 100)) class VSWAgent(DemoAgent): def __init__( self, http_port: int, admin_port: int, tails_server_base_url: str = None, **kwargs, ): super().__init__( "VSW.Agent", http_port, admin_port, prefix="VSW", tails_server_base_url=tails_server_base_url, extra_args=["--auto-accept-invites", "--auto-accept-requests"], **kwargs, ) self.connection_id = None self._connection_ready = asyncio.Future() self.cred_state = {} self.cred_done = asyncio.Future() # TODO define a dict to hold credential attributes # based on credential_definition_id self.cred_attrs = {} self.proof_done = asyncio.Future() async def detect_connection(self): await self._connection_ready async def credential_complete(self): await self.cred_done async def proof_complete(self): await self.proof_done @property def connection_ready(self): return self._connection_ready.done() and self._connection_ready.result() async def handle_connections(self, message): if message["connection_id"] == self.connection_id: if message["state"] == "active" and not self._connection_ready.done(): self.log("Connected") self._connection_ready.set_result(True) async def handle_present_proof(self, message): state = message["state"] presentation_exchange_id = message["presentation_exchange_id"] self.log( "Presentation: state =", state, ", presentation_exchange_id =", presentation_exchange_id, ) if state == "presentation_received": log_status("#27 Process the proof provided by X") log_status("#28 Check if proof is valid") proof = await self.admin_POST( f"/present-proof/records/{presentation_exchange_id}/verify-presentation" ) self.log("Proof =", proof["verified"]) # if presentation is a vsw schema (app publication), # check the values received pres = message["presentation"] self.log("pres:", pres) name = pres['requested_proof']['revealed_attrs']['0_name_uuid']['raw'] url = pres['requested_proof']['revealed_attrs']['0_url_uuid']['raw'] digest = pres['requested_proof']['revealed_attrs']['0_digest_uuid']['raw'] response = requests.get(url, allow_redirects=True) if response.status_code != 200: print("Failed to download file from URL") sys.exit(1) computed = hashlib.sha256(response.content).hexdigest() if computed != digest: print("SHA does not match") print(computed) sys.exit(1) else: open(f'vsw/{name}.wasm', 'wb').write(response.content) self.log("SUCCESS") self.proof_done.set_result(True) async def handle_basicmessages(self, message): self.log("Received message:", message["content"]) async def main( start_port: int, name: str, show_timing: bool = False, ): with open('/home/indy/vsw/.config.json') as f: config = json.load(f) genesis = await default_genesis_txns() if not genesis: print("Error retrieving ledger genesis transactions") sys.exit(1) agent = None try: log_status("#1 Provision an agent and wallet, get back configuration details") agent = VSWAgent( start_port, start_port + 1, genesis_data=genesis, timing=show_timing, ) await agent.listen_webhooks(start_port + 2) # FIXME: This user should not have to publish their DID, but if I remove the next line it fails await agent.register_did() with log_timer("Startup duration:"): await agent.start_process() log_msg("Admin URL is at:", agent.admin_url) log_msg("Endpoint URL is at:", agent.endpoint) # Connect to repo log_status("#9 Connect to repo") connection = await agent.admin_POST("/connections/receive-invitation", config['invitation']) agent.connection_id = connection["connection_id"] log_json(connection, label="Invitation response:") await agent.detect_connection() log_status("#20 Request app credential from repo") req_attrs = [ { "name": "name", "value": name, "restrictions": [{"schema_name": "vsw schema"}] }, { "name": "url", "restrictions": [{"schema_name": "vsw schema"}] }, { "name": "digest", "restrictions": [{"schema_name": "vsw schema"}] } ] req_preds = [] indy_proof_request = { "name": "Retrieve by Name", "version": "1.0", "nonce": str(uuid4().int), "requested_attributes": { f"0_{req_attr['name']}_uuid": req_attr for req_attr in req_attrs }, "requested_predicates": {} } proof_request_web_request = { "connection_id": agent.connection_id, "proof_request": indy_proof_request } # this sends the request to our agent, which forwards it to the repo # (based on the connection_id) await agent.admin_POST( "/present-proof/send-request", proof_request_web_request ) await agent.proof_complete() finally: terminated = True try: if agent: await agent.terminate() except Exception: LOGGER.exception("Error terminating agent:") terminated = False await asyncio.sleep(0.1) if not terminated: os._exit(1) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser(description="Runs a VSW agent.") parser.add_argument( "-p", "--port", type=int, default=8050, metavar=("<port>"), help="Choose the starting port number to listen on", ) parser.add_argument( "--timing", action="store_true", help="Enable timing information" ) parser.add_argument("name", type=str, help="name of app to install") args = parser.parse_args() ENABLE_PYDEVD_PYCHARM = os.getenv("ENABLE_PYDEVD_PYCHARM", "").lower() ENABLE_PYDEVD_PYCHARM = ENABLE_PYDEVD_PYCHARM and ENABLE_PYDEVD_PYCHARM not in ( "false", "0", ) PYDEVD_PYCHARM_HOST = os.getenv("PYDEVD_PYCHARM_HOST", "localhost") PYDEVD_PYCHARM_CONTROLLER_PORT = int( os.getenv("PYDEVD_PYCHARM_CONTROLLER_PORT", 5001) ) if ENABLE_PYDEVD_PYCHARM: try: import pydevd_pycharm print( "VSW remote debugging to " f"{PYDEVD_PYCHARM_HOST}:{PYDEVD_PYCHARM_CONTROLLER_PORT}" ) pydevd_pycharm.settrace( host=PYDEVD_PYCHARM_HOST, port=PYDEVD_PYCHARM_CONTROLLER_PORT, stdoutToServer=True, stderrToServer=True, suspend=False, ) except ImportError: print("pydevd_pycharm library was not found") require_indy() try: asyncio.get_event_loop().run_until_complete( main( args.port, args.name, args.timing, ) ) except KeyboardInterrupt: os._exit(1)
the-stack_0_14593
# -*- coding: utf-8 -*- """ module to do uiauto """ import json import re import codecs import time from urllib2 import URLError from appium import webdriver from selenium.common.exceptions import WebDriverException from logger import logger from emulator import ADB from db import DB from smartmonkey import Navigator, Stabilizer from myexceptions import PathNotDefinedInConfig, IdPHandlingException, EmulatorActionException,\ TestInitException RP_REQUEST_TIMEOUT = 20 IDP_STATUS_TIMEOUT = 20 class UIAction(object): """class to simplify ui action process""" def __init__(self, driver, emulator=None, idp=None, config_file=None, package=None, version=None): if 'udid' in driver.desired_capabilities and driver.desired_capabilities['udid']: self.adb = ADB(serial=driver.desired_capabilities['udid']) elif emulator and emulator.serial: self.adb = ADB(serial=emulator.serial) else: self.adb = ADB() if not package: package = self.adb.current_package() version = self.adb.current_version(package) self.emulator = emulator self.package = package self.driver = driver self.idp = idp self.app_style = 'international' if self.idp == 'fb' else 'chinese' self.config_file = config_file self.config = {} if config_file: self.loaded = self.load_config_from_file(config_file) else: if not idp: raise Exception("IdP not specified") self.loaded = self.load_config_from_db(package, idp, version=version) if self.loaded: if 'home_activity' in self.config and self.config['home_activity']: self.has_home_activity = True else: self.has_home_activity = False self.stabilizer = Stabilizer(self.driver, package=self.package, app_style=self.app_style) def load_config_from_db(self, package, idp, version=None): """load configuration from database""" config = DB().fetch_config(package, idp, version=version) if not config: return False else: logger.debug(u'Config for %s loaded from DB', package) return self.set_config(config) def load_config_from_file(self, filename): """load configuration from config file""" try: with open(filename, 'r') as config_f: result = self.set_config(config_f.read()) logger.debug(u'Config for %s loaded from %s', self.config['package'], filename) return result except EnvironmentError: logger.error(u'Read file error: %s', filename) return False def set_config(self, config): """initialize configuration from json""" try: if isinstance(config, str): config = json.loads(config) # check required objects package_name = config['package'] package_version = config['version'] installed_version = self.adb.current_version(package_name) config_version = package_version if installed_version != config_version: logger.warning(u'Version inconsistent - Installed: %s, Config: %s',\ installed_version, config_version) self.config = config return True except ValueError: logger.error(u'Invalid path format') raise def login(self): """perform navigation to get to login page""" assert self.loaded login_path = self.path_for('login') origin = self.origin_for('login') if origin: self.stabilizer.better_start_activity(origin) else: self.start_home_activity() logger.info(u"[+] Navigate for login") loginer = Navigator(self.driver, path=login_path, package=self.config['package'],\ app_style=self.app_style) return loginer.navigate() def login_from_snapshot(self, tag): """restore session from snapshot""" # check emulator if not self.emulator: raise EmulatorActionException('No emulator instance is specified') # check snapshot tags_in_use = [ x['tag'] for x in self.emulator.list_snapshot()] if tag not in tags_in_use: raise EmulatorActionException('No snapshot with tag {}'.format(tag)) # try to load snapshot if not self.emulator.load_snapshot(tag): raise EmulatorActionException('Fail to load snapshot {}'.format(tag)) # try to restore appium session desired_caps = self.driver.capabilities desired_caps['autoLaunch'] = False try: self.driver = webdriver.Remote(self.driver.command_executor._url, desired_caps) except URLError: raise TestInitException('appium is not running') # try to login if self.idp == 'fb': status = 'IdpNeedLogin' return status def logout(self, reset=False): """perform logout action""" assert self.loaded self.clear_sdcard() if reset: logger.info(u"[+] App reset") return self.driver.reset() else: logout_path = self.path_for('logout') origin = self.origin_for('logout') if origin: self.stabilizer.better_start_activity(origin) else: self.start_home_activity() logger.info(u"[+] Navigate for logout") logoutter = Navigator(self.driver, path=logout_path, package=self.config['package'],\ app_style=self.app_style) return logoutter.navigate() def clear_sdcard(self): """clear sdcard and keep only essential files""" files = self.adb.ls('/sdcard/') files_reserved = ['Android', 'DCIM', 'Download', 'Movies', 'Music', 'Notifications', 'Pictures', 'Podcasts', 'Ringtones', 'UxinSDK', 'backups', 'sina', 'tencent'] for fname in files: if fname in files_reserved: continue self.adb.rm('/sdcard/{}'.format(fname)) def user_info(self): """retrieve user info""" assert self.loaded info_path = self.path_for('user_info') origin = self.origin_for('user_info') if origin: self.stabilizer.better_start_activity(origin) else: self.start_home_activity() logger.info(u"[+] Navigate for user info") user_getter = Navigator(self.driver, path=info_path, package=self.config['package'],\ app_style=self.app_style) status = user_getter.navigate() if status == 'LoggedIn': identities = self.config['paths']['user_info']['identities'] for (k, val) in identities.items(): if re.search(val, self.page_source, re.I): return k return 'Others' else: return status # ----------------- Single Destination ------------------- # match = re.search(self.config['paths']['user_info']['identity_regex'], # self.page_source) # if len(match.groups()) > 0: # return match.group(1) # else: # return match.group(0) # [ example_regex: "(?=<[^<]*user_name[^<]*>)<.*?text=\"(.*?)\".*?>" ] def landing(self): """land on home activity""" home_activity = self.stabilizer.get_home_activity() if self.loaded: if self.has_home_activity and self.config['home_activity'] != home_activity: logger.warning(u'home_activity already exists in config, skip record update\n' u'\tstored: %s, new: %s', self.config['home_activity'],\ home_activity) else: self.has_home_activity = True self.config['home_activity'] = home_activity if self.config_file: self.config['home_activity'] = home_activity with open(self.config_file, 'wb') as config_f: config_f = codecs.getwriter('utf-8')(config_f) json.dump(self.config, config_f, indent=4, sort_keys=True,\ ensure_ascii=False) else: result = DB().update_config(self.config['package'], self.config['idp'],\ {'home_activity': home_activity}, version=self.config['version']) if result: logger.info(u'home_activity:%s stored into config', home_activity) else: logger.info(u'Landed on %s', home_activity) return home_activity def start_home_activity(self, is_retry=False): """better start home activity""" if self.loaded and self.has_home_activity: home_activity = self.config['home_activity'] else: logger.debug(u'home_activity not defined in DB') home_activity = self.landing() if self.stabilizer.better_start_activity(home_activity): return True else: if is_retry: logger.warning('uiaction: start_home_activity mismatch') return False else: self.stabilizer.skip_irrelevant() if self.driver.current_activity == home_activity: return True else: return self.start_home_activity(is_retry=True) def origin_for(self, action): """find origin of the action""" if action not in self.config['paths']: return False if 'origin' in self.config['paths'][action]: return self.config['paths'][action]['origin'] else: return False def path_for(self, action): """find path to the action""" if action in self.config['paths'] and self.config['paths'][action]: return json.dumps(self.config['paths'][action]) else: raise PathNotDefinedInConfig(u"%s not configured for %s - %s" % (action, self.config['package'], self.config['version'])) def fblite_login_handler(self, stab, account=None, password=None): """handler for fblite login""" if not account or not password: account = "[email protected]" password = "evessotest" # very ugly wait for status change logger.debug(u'Wait for status change') time.sleep(IDP_STATUS_TIMEOUT) # if session is stored if self.driver.current_activity != 'com.facebook.browser.lite.BrowserLiteActivity': logger.debug(u'Session is stored') return True # click continue logger.debug(u'Try to click continue') stab.find_elements_by_keyword(u'Continue', clickable_only=True,\ exact=False)[-1].click() # wait for getting out of fblite count = 0 while self.driver.current_activity == 'com.facebook.browser.lite.BrowserLiteActivity': time.sleep(1) count += 1 assert count <= IDP_STATUS_TIMEOUT logger.debug(u'Get out of fblite') return True def fb_login_handler(self, stab, account=None, password=None): """handler for facebook webview login""" if not account or not password: account = "[email protected]" password = "evessotest" keywords = [u"Enter email", u"请输入邮箱", u"輸入電郵"] err_keywords = [u'Error', u'Invalid', u'应用编号无效'] block_keywords = [u'Secure Account'] # wait for correct activity logger.debug(u'Wait for facebook login activity') count = 0 activity = self.driver.current_activity while activity != 'com.facebook.FacebookActivity' and activity != 'com.facebook.LoginActivity': count += 1 activity = self.driver.current_activity assert count <= IDP_STATUS_TIMEOUT # wait for input boxes appear logger.debug(u'Wait for input boxes appear') count = 0 while not self.driver.find_elements_by_class_name('android.widget.EditText'): # in case app does not support fb login at all if any(kw in self.page_source for kw in err_keywords): raise IdPHandlingException('This app does not support facebook login') time.sleep(1) count += 1 assert count <= IDP_STATUS_TIMEOUT # input email and password source = self.page_source logger.debug(u'Try to input email and password') if any(kw in source for kw in keywords): self.driver.find_elements_by_class_name('android.widget.EditText')[0]\ .set_text(account) self.driver.find_elements_by_class_name('android.widget.Button')[-1].click() self.driver.find_elements_by_class_name('android.widget.EditText')[-1]\ .set_text(password) self.driver.find_elements_by_class_name('android.widget.Button')[-1].click() elif any(kw in source for kw in err_keywords): raise IdPHandlingException('This app does not support facebook login') else: inputs = self.driver.find_elements_by_class_name('android.widget.EditText') inputs[0].set_text(account) inputs[-1].set_text(password) self.driver.find_elements_by_class_name('android.widget.Button')[-1].click() # wait for status change logger.debug(u'Wait for status change') status_keywords = [u'身分繼續', u'Continue', u'would like to'] + err_keywords + block_keywords count = 0 while not any(kw in self.page_source for kw in status_keywords): time.sleep(1) count += 1 assert count <= IDP_STATUS_TIMEOUT # handle pages after status change count = 0 logger.debug(u'Try to handle pages after status change') while self.driver.current_activity == 'com.facebook.FacebookActivity'\ or self.driver.current_activity == 'com.facebook.LoginActivity': count += 1 source = self.page_source # in case of any error if any(kw in source for kw in err_keywords): logger.debug(u'Error keywords received') raise IdPHandlingException('This app does not support facebook login') # in case of account has been blocked elif any(kw in self.page_source for kw in block_keywords): raise IdPHandlingException('This account has been blocked!') # in case of continue appears elif 'Continue' in source: logger.debug(u'Try to click Continue') stab.find_elements_by_keyword(u'Continue', clickable_only=True,\ exact=False)[-1].click() # give all possible permisson to the app elif 'would like to' in source: logger.debug(u'Try to offer permission by clicking OK') stab.find_elements_by_keyword(u'OK', clickable_only=True, exact=True)[-1].click() time.sleep(1) assert count <= IDP_STATUS_TIMEOUT logger.debug(u'Get out of facebook login webview') return True def idp_handler(self, status, account=None, password=None): """handler idp login process""" logger.info(u"RP login status: %s, idp: %s", status, self.idp) stab = Stabilizer(self.driver) if status == "Uncertain": if self.idp == 'sina' and stab.wait_for_activities('.SSOAuthorizeActivity'): status = "IdpNeedConfirm" elif self.idp == 'wechat' and stab.wait_for_keyword(u'微信登录|登录后应用将获得以下权限', timeout=60): status = "IdpNeedConfirm" elif self.idp == 'fb' and stab.wait_for_keyword(u'登录 Facebook 帐户', timeout=60): status = "IdpNeedLogin" else: return if status == "IdpNeedConfirm" and self.idp == 'sina': if self.driver.current_activity == '.SSOAuthorizeActivity' and \ stab.wait_for_keyword(u'确定', timeout=60): stab.tap_keyword(u'确定', siblings_on=False) elif status == "IdpNeedConfirm" and self.idp == 'wechat': if stab.wait_for_keyword(u'确认登录', timeout=60): stab.tap_keyword(u'确认登录', siblings_on=False) elif status == "IdpNeedLogin" and self.idp == 'fb': self.fb_login_handler(stab, account=account, password=password) elif status == "LoggedIn": pass else: logger.warning("Cannot handle: status - %s, IdP - %s", status, self.idp) time.sleep(RP_REQUEST_TIMEOUT) def idp_set_session(self, idp, path): """ Set IdP to specific user session by file copying :param idp: fb, sina or wechat :param path: path to the folder or file containing session data. For wechat, no coexisting sessions are allowed, and sessions are bind to device information. :return: True for success """ # make sure adb has root permission, if not exception will be raised self.adb.root() # On-device location of session file for different IdP PKG = { 'fb': 'com.facebook.lite', 'sina': 'com.sina.weibo', 'wechat': 'com.tencent.mm' } DST = { 'fb': '/data/data/com.facebook.lite/shared_prefs/', 'sina': '/data/data/com.sina.weibo/databases/sina_weibo', 'wechat': '/data/data/com.tencent.mm/MicroMsg/' } self.adb.force_stop(PKG[idp]) self.adb.rm(DST[idp]) self.adb.push(path, DST[idp]) self.adb.chmod(DST[idp]) @property def page_source(self): """wrapper around appium page_source to catch exception""" source = None e = None for _ in range(3): try: source = self.driver.page_source if source: break except WebDriverException as e: time.sleep(1) continue else: raise WebDriverException(e) return source
the-stack_0_14594
from setuptools import find_packages, setup with open('README.md') as readme_file: readme = readme_file.read() with open('requirements.txt') as requirements_file: requirements = requirements_file.read().split('\n') setup( author='Philipp Bode, Christian Warmuth', classifiers=[ 'Development Status :: 2 - Pre-Alpha', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Natural Language :: English', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', ], description=( 'neurogaze provides wrapper functionality to record and ' 'visualize eye tracking and application usage data.' ), install_requires=requirements, license='MIT license', long_description=readme, include_package_data=True, name='neurogaze', packages=find_packages(include=['neurogaze']), url='https://github.com/christianwarmuth/neurogaze', version='0.0.1', )
the-stack_0_14597
# coding: utf-8 import os import re from time import gmtime, localtime, strftime, time from django import forms from django.contrib import messages from django.contrib.admin.views.decorators import staff_member_required from django.core.files.storage import (DefaultStorage, FileSystemStorage, default_storage) from django.core.paginator import EmptyPage, InvalidPage, Paginator from django.http import HttpResponseBadRequest, HttpResponseRedirect from django.shortcuts import HttpResponse, render from django.template import RequestContext as Context from django.urls import get_resolver, get_urlconf, reverse from django.utils.encoding import smart_str from django.utils.translation import ugettext as _ from django.views.decorators.cache import never_cache from django.views.decorators.csrf import csrf_exempt from filebrowser import signals # Default actions from filebrowser.actions import (flip_horizontal, flip_vertical, rotate_90_clockwise, rotate_90_counterclockwise, rotate_180) from filebrowser.base import FileListing, FileObject from filebrowser.decorators import file_exists, path_exists from filebrowser.settings import (ADMIN_THUMBNAIL, ADMIN_VERSIONS, CONVERT_FILENAME, DEFAULT_PERMISSIONS, DEFAULT_SORTING_BY, DEFAULT_SORTING_ORDER, DIRECTORY, EXCLUDE, EXTENSION_LIST, EXTENSIONS, LIST_PER_PAGE, MAX_UPLOAD_SIZE, NORMALIZE_FILENAME, OVERWRITE_EXISTING, SEARCH_TRAVERSE, SELECT_FORMATS, UPLOAD_TEMPDIR, VERSIONS, VERSIONS_BASEDIR) from filebrowser.storage import FileSystemStorageMixin from filebrowser.templatetags.fb_tags import query_helper from filebrowser.utils import convert_filename try: import json except ImportError: from django.utils import simplejson as json # Add some required methods to FileSystemStorage if FileSystemStorageMixin not in FileSystemStorage.__bases__: FileSystemStorage.__bases__ += (FileSystemStorageMixin,) # This cache contains all *instantiated* FileBrowser sites _sites_cache = {} def get_site_dict(app_name='filebrowser'): """ Return a dict with all *deployed* FileBrowser sites that have a given app_name. """ if app_name not in _sites_cache: return {} # Get names of all deployed filebrowser sites with a give app_name deployed = get_resolver(get_urlconf()).app_dict[app_name] # Get the deployed subset from the cache return dict((k, v) for k, v in _sites_cache[app_name].items() if k in deployed) def register_site(app_name, site_name, site): """ Add a site into the site dict. """ if app_name not in _sites_cache: _sites_cache[app_name] = {} _sites_cache[app_name][site_name] = site def get_default_site(app_name='filebrowser'): """ Returns the default site. This function uses Django's url resolution method to obtain the name of the default site. """ # Get the name of the default site: resolver = get_resolver(get_urlconf()) name = 'filebrowser' # Django's default name resolution method (see django.core.urlresolvers.reverse()) app_list = resolver.app_dict[app_name] if name not in app_list: name = app_list[0] return get_site_dict()[name] def get_breadcrumbs(query, path): """ Get breadcrumbs. """ breadcrumbs = [] dir_query = "" if path: for item in path.split(os.sep): dir_query = os.path.join(dir_query, item) breadcrumbs.append([item, dir_query]) return breadcrumbs def get_filterdate(filter_date, date_time): """ Get filterdate. """ returnvalue = '' date_year = strftime("%Y", gmtime(date_time)) date_month = strftime("%m", gmtime(date_time)) date_day = strftime("%d", gmtime(date_time)) if filter_date == 'today' and int(date_year) == int(localtime()[0]) and int(date_month) == int(localtime()[1]) and int(date_day) == int(localtime()[2]): returnvalue = 'true' elif filter_date == 'thismonth' and date_time >= time() - 2592000: returnvalue = 'true' elif filter_date == 'thisyear' and int(date_year) == int(localtime()[0]): returnvalue = 'true' elif filter_date == 'past7days' and date_time >= time() - 604800: returnvalue = 'true' elif filter_date == '': returnvalue = 'true' return returnvalue def get_settings_var(directory=DIRECTORY): """ Get settings variables used for FileBrowser listing. """ settings_var = {} # Main # Extensions/Formats (for FileBrowseField) settings_var['EXTENSIONS'] = EXTENSIONS settings_var['SELECT_FORMATS'] = SELECT_FORMATS # Versions settings_var['ADMIN_VERSIONS'] = ADMIN_VERSIONS settings_var['ADMIN_THUMBNAIL'] = ADMIN_THUMBNAIL # FileBrowser Options settings_var['MAX_UPLOAD_SIZE'] = MAX_UPLOAD_SIZE # Normalize Filenames settings_var['NORMALIZE_FILENAME'] = NORMALIZE_FILENAME # Convert Filenames settings_var['CONVERT_FILENAME'] = CONVERT_FILENAME # Traverse directories when searching settings_var['SEARCH_TRAVERSE'] = SEARCH_TRAVERSE return settings_var def handle_file_upload(path, file, site): """ Handle File Upload. """ uploadedfile = None try: file_path = os.path.join(path, file.name) uploadedfile = site.storage.save(file_path, file) except Exception as inst: raise inst return uploadedfile def filebrowser_view(view): "Only let staff browse the files" return staff_member_required(never_cache(view)) class FileBrowserSite(object): """ A filebrowser.site defines admin views for browsing your servers media files. """ filelisting_class = FileListing def __init__(self, name=None, app_name='filebrowser', storage=default_storage): self.name = name self.app_name = app_name self.storage = storage self._actions = {} self._global_actions = self._actions.copy() # Register this site in the global site cache register_site(self.app_name, self.name, self) # Per-site settings: self.directory = DIRECTORY def _directory_get(self): "Set directory" return self._directory def _directory_set(self, val): "Get directory" self._directory = val directory = property(_directory_get, _directory_set) def get_urls(self): "URLs for a filebrowser.site" from django.conf.urls import url # filebrowser urls (views) urlpatterns = [ url(r'^browse/$', path_exists(self, filebrowser_view(self.browse)), name="fb_browse"), url(r'^createdir/', path_exists(self, filebrowser_view(self.createdir)), name="fb_createdir"), url(r'^upload/', path_exists(self, filebrowser_view(self.upload)), name="fb_upload"), url(r'^delete_confirm/$', file_exists(self, path_exists(self, filebrowser_view(self.delete_confirm))), name="fb_delete_confirm"), url(r'^delete/$', file_exists(self, path_exists(self, filebrowser_view(self.delete))), name="fb_delete"), url(r'^detail/$', file_exists(self, path_exists(self, filebrowser_view(self.detail))), name="fb_detail"), url(r'^version/$', file_exists(self, path_exists(self, filebrowser_view(self.version))), name="fb_version"), url(r'^upload_file/$', staff_member_required(csrf_exempt(self._upload_file)), name="fb_do_upload"), ] return urlpatterns def add_action(self, action, name=None): """ Register an action to be available globally. """ name = name or action.__name__ # Check/create short description if not hasattr(action, 'short_description'): action.short_description = action.__name__.replace("_", " ").capitalize() # Check/create applies-to filter if not hasattr(action, 'applies_to'): action.applies_to = lambda x: True self._actions[name] = action self._global_actions[name] = action def disable_action(self, name): """ Disable a globally-registered action. Raises KeyError for invalid names. """ del self._actions[name] def get_action(self, name): """ Explicitally get a registered global action wheather it's enabled or not. Raises KeyError for invalid names. """ return self._global_actions[name] def applicable_actions(self, fileobject): """ Return a list of tuples (name, action) of actions applicable to a given fileobject. """ res = [] for name, action in self.actions: if action.applies_to(fileobject): res.append((name, action)) return res @property def actions(self): """ Get all the enabled actions as a list of (name, func). The list is sorted alphabetically by actions names """ res = list(self._actions.items()) res.sort(key=lambda name_func: name_func[0]) return res @property def urls(self): "filebrowser.site URLs" return self.get_urls(), self.app_name, self.name def browse(self, request): "Browse Files/Directories." filter_re = [] for exp in EXCLUDE: filter_re.append(re.compile(exp)) # do not filter if VERSIONS_BASEDIR is being used if not VERSIONS_BASEDIR: for k, v in VERSIONS.items(): exp = (r'_%s(%s)$') % (k, '|'.join(EXTENSION_LIST)) filter_re.append(re.compile(exp, re.IGNORECASE)) def filter_browse(item): "Defining a browse filter" filtered = item.filename.startswith('.') for re_prefix in filter_re: if re_prefix.search(item.filename): filtered = True if filtered: return False return True query = request.GET.copy() path = u'%s' % os.path.join(self.directory, query.get('dir', '')) filelisting = self.filelisting_class( path, filter_func=filter_browse, sorting_by=query.get('o', DEFAULT_SORTING_BY), sorting_order=query.get('ot', DEFAULT_SORTING_ORDER), site=self) files = [] if SEARCH_TRAVERSE and query.get("q"): listing = filelisting.files_walk_filtered() else: listing = filelisting.files_listing_filtered() # If we do a search, precompile the search pattern now do_search = query.get("q") if do_search: re_q = re.compile(query.get("q").lower(), re.M) filter_type = query.get('filter_type') filter_date = query.get('filter_date') filter_format = query.get('type') for fileobject in listing: # date/type filter, format filter append = False if (not filter_type or fileobject.filetype == filter_type) and \ (not filter_date or get_filterdate(filter_date, fileobject.date or 0)) and \ (not filter_format or filter_format in fileobject.format): append = True # search if do_search and not re_q.search(fileobject.filename.lower()): append = False # always show folders with popups # otherwise, one is not able to select/filter files within subfolders if fileobject.filetype == "Folder": append = True # MODIFIED: Hide folders in search if do_search: append = False # append if append: files.append(fileobject) filelisting.results_total = len(listing) filelisting.results_current = len(files) p = Paginator(files, LIST_PER_PAGE) page_nr = request.GET.get('p', '1') try: page = p.page(page_nr) except (EmptyPage, InvalidPage): page = p.page(p.num_pages) request.current_app = self.name return render(request, 'filebrowser/index.html', { 'p': p, 'page': page, 'filelisting': filelisting, 'query': query, 'title': _(u'FileBrowser'), 'settings_var': get_settings_var(directory=self.directory), 'breadcrumbs': get_breadcrumbs(query, query.get('dir', '')), 'breadcrumbs_title': "", 'filebrowser_site': self }) def createdir(self, request): "Create Directory" from filebrowser.forms import CreateDirForm query = request.GET path = u'%s' % os.path.join(self.directory, query.get('dir', '')) if request.method == 'POST': form = CreateDirForm(path, request.POST, filebrowser_site=self) if form.is_valid(): server_path = os.path.join(path, form.cleaned_data['name']) try: signals.filebrowser_pre_createdir.send(sender=request, path=server_path, name=form.cleaned_data['name'], site=self) self.storage.makedirs(server_path) signals.filebrowser_post_createdir.send(sender=request, path=server_path, name=form.cleaned_data['name'], site=self) messages.add_message(request, messages.SUCCESS, _('The Folder %s was successfully created.') % form.cleaned_data['name']) redirect_url = reverse("filebrowser:fb_browse", current_app=self.name) + query_helper(query, "ot=desc,o=date", "ot,o,filter_type,filter_date,q,p") return HttpResponseRedirect(redirect_url) except OSError as e: errno = e.args[0] if errno == 13: form.errors['name'] = forms.utils.ErrorList([_('Permission denied.')]) else: form.errors['name'] = forms.utils.ErrorList([_('Error creating folder.')]) else: form = CreateDirForm(path, filebrowser_site=self) request.current_app = self.name return render(request, 'filebrowser/createdir.html', { 'form': form, 'query': query, 'title': _(u'New Folder'), 'settings_var': get_settings_var(directory=self.directory), 'breadcrumbs': get_breadcrumbs(query, query.get('dir', '')), 'breadcrumbs_title': _(u'New Folder'), 'filebrowser_site': self }) def upload(self, request): "Multipe File Upload." query = request.GET request.current_app = self.name return render(request, 'filebrowser/upload.html', { 'query': query, 'title': _(u'Select files to upload'), 'settings_var': get_settings_var(directory=self.directory), 'breadcrumbs': get_breadcrumbs(query, query.get('dir', '')), 'breadcrumbs_title': _(u'Upload'), 'filebrowser_site': self }) def delete_confirm(self, request): "Delete existing File/Directory." query = request.GET path = u'%s' % os.path.join(self.directory, query.get('dir', '')) fileobject = FileObject(os.path.join(path, query.get('filename', '')), site=self) if fileobject.filetype == "Folder": filelisting = self.filelisting_class( os.path.join(path, fileobject.filename), sorting_by=query.get('o', 'filename'), sorting_order=query.get('ot', DEFAULT_SORTING_ORDER), site=self) filelisting = filelisting.files_walk_total() if len(filelisting) > 100: additional_files = len(filelisting) - 100 filelisting = filelisting[:100] else: additional_files = None else: filelisting = None additional_files = None request.current_app = self.name return render(request, 'filebrowser/delete_confirm.html', { 'fileobject': fileobject, 'filelisting': filelisting, 'additional_files': additional_files, 'query': query, 'title': _(u'Confirm delete'), 'settings_var': get_settings_var(directory=self.directory), 'breadcrumbs': get_breadcrumbs(query, query.get('dir', '')), 'breadcrumbs_title': _(u'Confirm delete'), 'filebrowser_site': self }) def delete(self, request): "Delete existing File/Directory." query = request.GET path = u'%s' % os.path.join(self.directory, query.get('dir', '')) fileobject = FileObject(os.path.join(path, query.get('filename', '')), site=self) if request.GET: try: signals.filebrowser_pre_delete.send(sender=request, path=fileobject.path, name=fileobject.filename, site=self) fileobject.delete_versions() fileobject.delete() signals.filebrowser_post_delete.send(sender=request, path=fileobject.path, name=fileobject.filename, site=self) messages.add_message(request, messages.SUCCESS, _('Successfully deleted %s') % fileobject.filename) except OSError: # TODO: define error-message pass redirect_url = reverse("filebrowser:fb_browse", current_app=self.name) + query_helper(query, "", "filename,filetype") return HttpResponseRedirect(redirect_url) def detail(self, request): """ Show detail page for a file. Rename existing File/Directory (deletes existing Image Versions/Thumbnails). """ from filebrowser.forms import ChangeForm query = request.GET path = u'%s' % os.path.join(self.directory, query.get('dir', '')) fileobject = FileObject(os.path.join(path, query.get('filename', '')), site=self) if request.method == 'POST': form = ChangeForm(request.POST, path=path, fileobject=fileobject, filebrowser_site=self) if form.is_valid(): new_name = form.cleaned_data['name'] action_name = form.cleaned_data['custom_action'] try: action_response = None if action_name: action = self.get_action(action_name) # Pre-action signal signals.filebrowser_actions_pre_apply.send(sender=request, action_name=action_name, fileobject=[fileobject], site=self) # Call the action to action action_response = action(request=request, fileobjects=[fileobject]) # Post-action signal signals.filebrowser_actions_post_apply.send(sender=request, action_name=action_name, fileobject=[fileobject], result=action_response, site=self) if new_name != fileobject.filename: signals.filebrowser_pre_rename.send(sender=request, path=fileobject.path, name=fileobject.filename, new_name=new_name, site=self) fileobject.delete_versions() self.storage.move(fileobject.path, os.path.join(fileobject.head, new_name)) signals.filebrowser_post_rename.send(sender=request, path=fileobject.path, name=fileobject.filename, new_name=new_name, site=self) messages.add_message(request, messages.SUCCESS, _('Renaming was successful.')) if isinstance(action_response, HttpResponse): return action_response if "_continue" in request.POST: redirect_url = reverse("filebrowser:fb_detail", current_app=self.name) + query_helper(query, "filename=" + new_name, "filename") else: redirect_url = reverse("filebrowser:fb_browse", current_app=self.name) + query_helper(query, "", "filename") return HttpResponseRedirect(redirect_url) except OSError: form.errors['name'] = forms.utils.ErrorList([_('Error.')]) else: form = ChangeForm(initial={"name": fileobject.filename}, path=path, fileobject=fileobject, filebrowser_site=self) request.current_app = self.name return render(request, 'filebrowser/detail.html', { 'form': form, 'fileobject': fileobject, 'query': query, 'title': u'%s' % fileobject.filename, 'settings_var': get_settings_var(directory=self.directory), 'breadcrumbs': get_breadcrumbs(query, query.get('dir', '')), 'breadcrumbs_title': u'%s' % fileobject.filename, 'filebrowser_site': self }) def version(self, request): """ Version detail. This just exists in order to select a version with a filebrowser–popup. """ query = request.GET path = u'%s' % os.path.join(self.directory, query.get('dir', '')) fileobject = FileObject(os.path.join(path, query.get('filename', '')), site=self) request.current_app = self.name return render(request, 'filebrowser/version.html', { 'fileobject': fileobject, 'query': query, 'settings_var': get_settings_var(directory=self.directory), 'filebrowser_site': self }) def _upload_file(self, request): """ Upload file to the server. If temporary is true, we upload to UPLOAD_TEMPDIR, otherwise we upload to site.directory """ if request.method == "POST": folder = request.GET.get('folder', '') temporary = request.GET.get('temporary', '') temp_filename = None if len(request.FILES) == 0: return HttpResponseBadRequest('Invalid request! No files included.') if len(request.FILES) > 1: return HttpResponseBadRequest('Invalid request! Multiple files included.') filedata = list(request.FILES.values())[0] fb_uploadurl_re = re.compile(r'^.*(%s)' % reverse("filebrowser:fb_upload", current_app=self.name)) folder = fb_uploadurl_re.sub('', folder) # temporary upload folder should be outside self.directory if folder == UPLOAD_TEMPDIR and temporary == "true": path = folder else: path = os.path.join(self.directory, folder) # we convert the filename before uploading in order # to check for existing files/folders file_name = convert_filename(filedata.name) filedata.name = file_name file_path = os.path.join(path, file_name) file_already_exists = self.storage.exists(file_path) # construct temporary filename by adding the upload folder, because # otherwise we don't have any clue if the file has temporary been # uploaded or not if folder == UPLOAD_TEMPDIR and temporary == "true": temp_filename = os.path.join(folder, file_name) # Check for name collision with a directory if file_already_exists and self.storage.isdir(file_path): ret_json = {'success': False, 'filename': file_name} return HttpResponse(json.dumps(ret_json)) signals.filebrowser_pre_upload.send(sender=request, path=folder, file=filedata, site=self) uploadedfile = handle_file_upload(path, filedata, site=self) if file_already_exists and OVERWRITE_EXISTING: old_file = smart_str(file_path) new_file = smart_str(uploadedfile) self.storage.move(new_file, old_file, allow_overwrite=True) full_path = FileObject(smart_str(old_file), site=self).path_full else: file_name = smart_str(uploadedfile) filedata.name = os.path.relpath(file_name, path) full_path = FileObject(smart_str(file_name), site=self).path_full # set permissions if DEFAULT_PERMISSIONS is not None: os.chmod(full_path, DEFAULT_PERMISSIONS) f = FileObject(smart_str(file_name), site=self) signals.filebrowser_post_upload.send(sender=request, path=folder, file=f, site=self) # let Ajax Upload know whether we saved it or not ret_json = {'success': True, 'filename': f.filename, 'temp_filename': temp_filename} return HttpResponse(json.dumps(ret_json), content_type="application/json") storage = DefaultStorage() # Default FileBrowser site site = FileBrowserSite(name='filebrowser', storage=storage) site.add_action(flip_horizontal) site.add_action(flip_vertical) site.add_action(rotate_90_clockwise) site.add_action(rotate_90_counterclockwise) site.add_action(rotate_180)
the-stack_0_14598
''' Module for gathering and managing network information ''' # Import python libs import logging # Import salt libs from salt.utils.socket_util import sanitize_host __outputter__ = { 'dig': 'txt', 'ping': 'txt', 'netstat': 'txt', } log = logging.getLogger(__name__) def __virtual__(): ''' Only work on posix-like systems ''' # Disable on Windows, a specific file module exists: if __grains__['os'] in ('Windows',): return False return 'network' def _cidr_to_ipv4_netmask(cidr_bits): ''' Returns an IPv4 netmask ''' netmask = '' for n in range(4): if n: netmask += '.' if cidr_bits >= 8: netmask += '255' cidr_bits -= 8 else: netmask += '{0:d}'.format(256-(2**(8-cidr_bits))) cidr_bits = 0 return netmask def _number_of_set_bits_to_ipv4_netmask(set_bits): ''' Returns an IPv4 netmask from the integer representation of that mask. Ex. 0xffffff00 -> '255.255.255.0' ''' return _cidr_to_ipv4_netmask(_number_of_set_bits(set_bits)) def _number_of_set_bits(x): ''' Returns the number of bits that are set in a 32bit int ''' #Taken from http://stackoverflow.com/a/4912729. Many thanks! x -= (x >> 1) & 0x55555555 x = ((x >> 2) & 0x33333333) + (x & 0x33333333) x = ((x >> 4) + x) & 0x0f0f0f0f x += x >> 8 x += x >> 16 return x & 0x0000003f def _interfaces_ip(out): ''' Uses ip to return a dictionary of interfaces with various information about each (up/down state, ip address, netmask, and hwaddr) ''' import re ret = dict() def parse_network(value, cols): ''' Return a tuple of ip, netmask, broadcast based on the current set of cols ''' brd = None if '/' in value: # we have a CIDR in this address ip, cidr = value.split('/') else: ip = value cidr = 32 if type == 'inet': mask = _cidr_to_ipv4_netmask(int(cidr)) if 'brd' in cols: brd = cols[cols.index('brd')+1] elif type == 'inet6': mask = cidr return (ip, mask, brd) groups = re.compile('\r?\n\d').split(out) for group in groups: iface = None data = dict() for line in group.splitlines(): if not ' ' in line: continue m = re.match('^\d*:\s+([\w.]+)(?:@)?(\w+)?:\s+<(.+)>', line) if m: iface, parent, attrs = m.groups() if 'UP' in attrs.split(','): data['up'] = True else: data['up'] = False if parent: data['parent'] = parent continue cols = line.split() if len(cols) >= 2: type, value = tuple(cols[0:2]) iflabel = cols[-1:][0] if type in ('inet', 'inet6'): if 'secondary' not in cols: ipaddr, netmask, broadcast = parse_network(value, cols) if type == 'inet': if 'inet' not in data: data['inet'] = list() addr_obj = dict() addr_obj['address'] = ipaddr addr_obj['netmask'] = netmask addr_obj['broadcast'] = broadcast addr_obj['label'] = iflabel data['inet'].append(addr_obj) elif type == 'inet6': if 'inet6' not in data: data['inet6'] = list() addr_obj = dict() addr_obj['address'] = ipaddr addr_obj['prefixlen'] = netmask data['inet6'].append(addr_obj) else: if 'secondary' not in data: data['secondary'] = list() ip, mask, brd = parse_network(value, cols) data['secondary'].append({ 'type': type, 'address': ip, 'netmask': mask, 'broadcast': brd, 'label': iflabel, }) del ip, mask, brd elif type.startswith('link'): data['hwaddr'] = value if iface: ret[iface] = data del iface, data return ret def _interfaces_ifconfig(out): ''' Uses ifconfig to return a dictionary of interfaces with various information about each (up/down state, ip address, netmask, and hwaddr) ''' import re ret = dict() piface = re.compile('^(\S+):?') pmac = re.compile('.*?(?:HWaddr|ether) ([0-9a-fA-F:]+)') pip = re.compile('.*?(?:inet addr:|inet )(.*?)\s') pip6 = re.compile('.*?(?:inet6 addr: (.*?)/|inet6 )([0-9a-fA-F:]+)') pmask = re.compile('.*?(?:Mask:|netmask )(?:(0x[0-9a-fA-F]{8})|([\d\.]+))') pmask6 = re.compile('.*?(?:inet6 addr: [0-9a-fA-F:]+/(\d+)|prefixlen (\d+)).*') pupdown = re.compile('UP') pbcast = re.compile('.*?(?:Bcast:|broadcast )([\d\.]+)') groups = re.compile('\r?\n(?=\S)').split(out) for group in groups: data = dict() iface = '' updown = False for line in group.splitlines(): miface = piface.match(line) mmac = pmac.match(line) mip = pip.match(line) mip6 = pip6.match(line) mupdown = pupdown.search(line) if miface: iface = miface.group(1) if mmac: data['hwaddr'] = mmac.group(1) if mip: if 'inet' not in data: data['inet'] = list() addr_obj = dict() addr_obj['address'] = mip.group(1) mmask = pmask.match(line) if mmask: if mmask.group(1): mmask = _number_of_set_bits_to_ipv4_netmask( int(mmask.group(1), 16)) else: mmask = mmask.group(2) addr_obj['netmask'] = mmask mbcast = pbcast.match(line) if mbcast: addr_obj['broadcast'] = mbcast.group(1) data['inet'].append(addr_obj) if mupdown: updown = True if mip6: if 'inet6' not in data: data['inet6'] = list() addr_obj = dict() addr_obj['address'] = mip6.group(1) or mip6.group(2) mmask6 = pmask6.match(line) if mmask6: addr_obj['prefixlen'] = mmask6.group(1) or mmask6.group(2) data['inet6'].append(addr_obj) data['up'] = updown ret[iface] = data del data return ret def interfaces(): ''' Return a dictionary of information about all the interfaces on the minion CLI Example:: salt '*' network.interfaces ''' ifaces = dict() if __salt__['cmd.has_exec']('ip'): cmd1 = __salt__['cmd.run']('ip link show') cmd2 = __salt__['cmd.run']('ip addr show') ifaces = _interfaces_ip(cmd1 + '\n' + cmd2) elif __salt__['cmd.has_exec']('ifconfig'): cmd = __salt__['cmd.run']('ifconfig -a') ifaces = _interfaces_ifconfig(cmd) return ifaces def _get_net_start(ipaddr, netmask): ipaddr_octets = ipaddr.split('.') netmask_octets = netmask.split('.') net_start_octets = [str(int(ipaddr_octets[x]) & int(netmask_octets[x])) for x in range(0, 4)] return '.'.join(net_start_octets) def _get_net_size(mask): binary_str = '' for octet in mask.split('.'): binary_str += bin(int(octet))[2:].zfill(8) return len(binary_str.rstrip('0')) def _calculate_subnet(ipaddr, netmask): return '{0}/{1}'.format(_get_net_start(ipaddr, netmask), _get_net_size(netmask)) def _ipv4_to_bits(ipaddr): ''' Accepts an IPv4 dotted quad and returns a string representing its binary counterpart ''' return ''.join([bin(int(x))[2:].rjust(8, '0') for x in ipaddr.split('.')]) def subnets(): ''' Returns a list of subnets to which the host belongs ''' ifaces = interfaces() subnets = [] for ipv4_info in ifaces.values(): for ipv4 in ipv4_info.get('inet', []): if ipv4['address'] == '127.0.0.1': continue network = _calculate_subnet(ipv4['address'], ipv4['netmask']) subnets.append(network) return subnets def in_subnet(cidr): ''' Returns True if host is within specified subnet, otherwise False ''' try: netstart, netsize = cidr.split('/') netsize = int(netsize) except: log.error('Invalid CIDR \'{0}\''.format(cidr)) return False netstart_bin = _ipv4_to_bits(netstart) if netsize < 32 and len(netstart_bin.rstrip('0')) > netsize: log.error('Invalid network starting IP \'{0}\' in CIDR ' '\'{1}\''.format(netstart, cidr)) return False netstart_leftbits = netstart_bin[0:netsize] for ip_addr in ip_addrs(): if netsize == 32: if netstart == ip_addr: return True else: ip_leftbits = _ipv4_to_bits(ip_addr)[0:netsize] if netstart_leftbits == ip_leftbits: return True return False def ip_addrs(interface=None, include_loopback=False): ''' Returns a list of IPv4 addresses assigned to the host. 127.0.0.1 is ignored, unless 'include_loopback=True' is indicated. If 'interface' is provided, then only IP addresses from that interface will be returned. ''' ret = [] ifaces = interfaces() if interface is None: target_ifaces = ifaces else: target_ifaces = dict([(k,v) for k,v in ifaces.iteritems() if k == interface]) if not target_ifaces: log.error('Interface {0} not found.'.format(interface)) for ipv4_info in target_ifaces.values(): for ipv4 in ipv4_info.get('inet',[]): if include_loopback \ or (not include_loopback and ipv4['address'] != '127.0.0.1'): ret.append(ipv4['address']) return ret def ip_addrs6(interface=None, include_loopback=False): ''' Returns a list of IPv6 addresses assigned to the host. ::1 is ignored, unless 'include_loopback=True' is indicated. If 'interface' is provided, then only IP addresses from that interface will be returned. ''' ret = [] ifaces = interfaces() if interface is None: target_ifaces = ifaces else: target_ifaces = dict([(k,v) for k,v in ifaces.iteritems() if k == interface]) if not target_ifaces: log.error('Interface {0} not found.'.format(interface)) for ipv6_info in target_ifaces.values(): for ipv6 in ipv6_info.get('inet6',[]): if include_loopback \ or (not include_loopback and ipv6['address'] != '::1'): ret.append(ipv6['address']) return ret def ping(host): ''' Performs a ping to a host CLI Example:: salt '*' network.ping archlinux.org ''' cmd = 'ping -c 4 {0}'.format(sanitize_host(host)) return __salt__['cmd.run'](cmd) # FIXME: Does not work with: netstat 1.42 (2001-04-15) from net-tools 1.6.0 (Ubuntu 10.10) def netstat(): ''' Return information on open ports and states CLI Example:: salt '*' network.netstat ''' ret = [] cmd = 'netstat -tulpnea' out = __salt__['cmd.run'](cmd).splitlines() for line in out: comps = line.split() if line.startswith('tcp'): ret.append({ 'inode': comps[7], 'local-address': comps[3], 'program': comps[8], 'proto': comps[0], 'recv-q': comps[1], 'remote-address': comps[4], 'send-q': comps[2], 'state': comps[5], 'user': comps[6]}) if line.startswith('udp'): ret.append({ 'inode': comps[6], 'local-address': comps[3], 'program': comps[7], 'proto': comps[0], 'recv-q': comps[1], 'remote-address': comps[4], 'send-q': comps[2], 'user': comps[5]}) return ret # FIXME: This is broken on: Modern traceroute for Linux, version 2.0.14, May 10 2010 (Ubuntu 10.10) # FIXME: traceroute is deprecated, make this fall back to tracepath def traceroute(host): ''' Performs a traceroute to a 3rd party host CLI Example:: salt '*' network.traceroute archlinux.org ''' ret = [] cmd = 'traceroute {0}'.format(sanitize_host(host)) out = __salt__['cmd.run'](cmd) for line in out: if not ' ' in line: continue if line.startswith('traceroute'): continue comps = line.split() result = { 'count': comps[0], 'hostname': comps[1], 'ip': comps[2], 'ms1': comps[4], 'ms2': comps[6], 'ms3': comps[8], 'ping1': comps[3], 'ping2': comps[5], 'ping3': comps[7]} ret.append(result) return ret def dig(host): ''' Performs a DNS lookup with dig CLI Example:: salt '*' network.dig archlinux.org ''' cmd = 'dig {0}'.format(sanitize_host(host)) return __salt__['cmd.run'](cmd)
the-stack_0_14601
from nintendo.nex import backend, authentication, friends, nintendo_notification from nintendo import account import rpc import time client_id = '472185292636291082' rpc_obj = rpc.DiscordIpcClient.for_platform(client_id) print("RPC connection successful.") # Wii U Console Details DEVICE_ID = 1111111111 SERIAL_NUMBER = "xxxxxxxxxxxx" SYSTEM_VERSION = 0x230 # 5.5.2E REGION = 4 # Europe (PAL) COUNTRY = "GB" # United Kingdom (Great Britain) # Wii U Secondary User/Account Details USERNAME = "PutSecondaryNNIDUsernameHere" PASSWORD = "PutSecondaryNNIDPasswordHere" # Wii U Main User/Account NNID MAINID = "PutMainNNIDUsernameHere" class NotificationHandler(nintendo_notification.NintendoNotificationHandler): def __init__(self): self.name_cache = {} def process_notification_event(self, event): pid = event.pid if pid not in self.name_cache: self.name_cache[pid] = api.get_nnid(pid) name = self.name_cache[pid] if event.type == nintendo_notification.NotificationType.LOGOUT: if name == MAINID: print("Peace!") activity = { } rpc_obj.set_activity(activity) elif event.type == nintendo_notification.NotificationType.PRESENCE_CHANGE: presence = event.data if name == MAINID: print("Gotcha!") title_id = "%016X" %(event.data.game_key.title_id) if title_id == "0000000000000000": title_name = "Wii U Menu" elif title_id == "000500001010ED00": title_name = "MARIO KART 8" elif title_id == "000500001010CD00": title_name = "MARIO KART 8" elif title_id == "0005000010176A00": title_name = "Splatoon" elif title_id == "00050000101C9500": title_name = "Breath of the Wild" elif title_id == "0005000010180700": title_name = "Captain Toad: Treasure Tracker" elif title_id == "0005000010199500": title_name = "Super Mario 64" elif title_id == "0005000010195B00": title_name = "NEW SUPER MARIO BROS." elif title_id == "0005000010172700": title_name = "BAYONETTA 2" elif title_id == "000500301001420A": title_name = "Nintendo eShop" elif title_id == "000500301001620A": title_name = "Miiverse" elif title_id == "000500301001220A": title_name = "Internet Browser" elif title_id == "000500101004A200": title_name = "Mii Maker" elif title_id == "000500101005A200": title_name = "Wii U Chat" elif title_id == "0005000010105A00": title_name = "Netflix" elif title_id == "0005000010105700": title_name = "YouTube" elif title_id == "0005000010102F00": title_name = "Amazon / LOVEFiLM" elif title_id == "0005000010101E00": title_name = "New SUPER MARIO BROS. U" elif title_id == "000500001014B800": title_name = "New SUPER MARIO BROS. U + New SUPER LUIGI U" elif title_id == "0005000010145D00": title_name = "SUPER MARIO 3D WORLD" elif title_id == "000500001018DD00": title_name = "Super Mario Maker" else: title_name = title_id #idDash = title_id[:8] + "-" + title_id[8:] #print("idDash: " + idDash) start_time = time.time() print(title_id + " / " + title_name) activity = { "details": title_name, "timestamps": { "start": start_time }, "assets": { "small_text": MAINID, "small_image": "nn", "large_text": title_name, "large_image": title_id.lower() } } rpc_obj.set_activity(activity) else: print("Unknown notification type %i (from %s)" %(event.type, name)) api = account.AccountAPI() api.set_device(DEVICE_ID, SERIAL_NUMBER, SYSTEM_VERSION, REGION, COUNTRY) api.set_title(friends.FriendsTitle.TITLE_ID_EUR, friends.FriendsTitle.LATEST_VERSION) api.login(USERNAME, PASSWORD) nex_token = api.get_nex_token(friends.FriendsTitle.GAME_SERVER_ID) backend = backend.BackEndClient( friends.FriendsTitle.ACCESS_KEY, friends.FriendsTitle.NEX_VERSION, backend.Settings("friends.cfg") ) backend.connect(nex_token.host, nex_token.port) backend.login( nex_token.username, nex_token.password, None, authentication.NintendoLoginData(nex_token.token) ) backend.nintendo_notification_server.handler = NotificationHandler() input("Press enter to disconnect and exit\n") backend.close()
the-stack_0_14602
"""The Met Office integration.""" import asyncio import logging import datapoint from homeassistant.config_entries import ConfigEntry from homeassistant.const import CONF_API_KEY, CONF_LATITUDE, CONF_LONGITUDE, CONF_NAME from homeassistant.core import HomeAssistant from homeassistant.exceptions import ConfigEntryNotReady from homeassistant.helpers.update_coordinator import DataUpdateCoordinator from .const import ( DEFAULT_SCAN_INTERVAL, DOMAIN, METOFFICE_COORDINATES, METOFFICE_DAILY_COORDINATOR, METOFFICE_HOURLY_COORDINATOR, METOFFICE_NAME, MODE_3HOURLY, MODE_DAILY, ) from .data import MetOfficeData from .helpers import fetch_data, fetch_site _LOGGER = logging.getLogger(__name__) PLATFORMS = ["sensor", "weather"] async def async_setup_entry(hass: HomeAssistant, entry: ConfigEntry) -> bool: """Set up a Met Office entry.""" latitude = entry.data[CONF_LATITUDE] longitude = entry.data[CONF_LONGITUDE] api_key = entry.data[CONF_API_KEY] site_name = entry.data[CONF_NAME] connection = datapoint.connection(api_key=api_key) site = await hass.async_add_executor_job( fetch_site, connection, latitude, longitude ) if site is None: raise ConfigEntryNotReady() async def async_update_3hourly() -> MetOfficeData: return await hass.async_add_executor_job( fetch_data, connection, site, MODE_3HOURLY ) async def async_update_daily() -> MetOfficeData: return await hass.async_add_executor_job( fetch_data, connection, site, MODE_DAILY ) metoffice_hourly_coordinator = DataUpdateCoordinator( hass, _LOGGER, name=f"MetOffice Hourly Coordinator for {site_name}", update_method=async_update_3hourly, update_interval=DEFAULT_SCAN_INTERVAL, ) metoffice_daily_coordinator = DataUpdateCoordinator( hass, _LOGGER, name=f"MetOffice Daily Coordinator for {site_name}", update_method=async_update_daily, update_interval=DEFAULT_SCAN_INTERVAL, ) metoffice_hass_data = hass.data.setdefault(DOMAIN, {}) metoffice_hass_data[entry.entry_id] = { METOFFICE_HOURLY_COORDINATOR: metoffice_hourly_coordinator, METOFFICE_DAILY_COORDINATOR: metoffice_daily_coordinator, METOFFICE_NAME: site_name, METOFFICE_COORDINATES: f"{latitude}_{longitude}", } # Fetch initial data so we have data when entities subscribe await asyncio.gather( metoffice_hourly_coordinator.async_config_entry_first_refresh(), metoffice_daily_coordinator.async_config_entry_first_refresh(), ) hass.config_entries.async_setup_platforms(entry, PLATFORMS) return True async def async_unload_entry(hass: HomeAssistant, entry: ConfigEntry): """Unload a config entry.""" unload_ok = await hass.config_entries.async_unload_platforms(entry, PLATFORMS) if unload_ok: hass.data[DOMAIN].pop(entry.entry_id) if not hass.data[DOMAIN]: hass.data.pop(DOMAIN) return unload_ok
the-stack_0_14603
# Copyright 2016-2017 Workonline Communications (Pty) Ltd. All rights reserved. # # The contents of this file are licensed under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with the # License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. """Views module for prngmgr API.""" from django.db.models import F, Q from django_peeringdb.models import concrete as pdb_models from prngmgr import models as prngmgr_models from prngmgr.api import datatables, serializers from rest_framework import permissions, viewsets from rest_framework.decorators import list_route from rest_framework.response import Response class OrganizationViewSet(viewsets.ReadOnlyModelViewSet): """Organization view set.""" queryset = pdb_models.Organization.objects.all() serializer_class = serializers.OrganizationSerializer permission_classes = (permissions.IsAuthenticated,) class FacilityViewSet(viewsets.ReadOnlyModelViewSet): """Facility view set.""" queryset = pdb_models.Facility.objects.all() serializer_class = serializers.FacilitySerializer permission_classes = (permissions.IsAuthenticated,) class NetworkProxyViewSet(viewsets.ReadOnlyModelViewSet): """Network proxy view set.""" queryset = prngmgr_models.NetworkProxy.objects.all() serializer_class = serializers.NetworkSerializer permission_classes = (permissions.IsAuthenticated,) @list_route() def datatable(self, request, *args, **kwargs): """Render datatable query response.""" query_params = datatables.QueryParams(request) query = datatables.QueryView( query_set=self.queryset, serializer_class=self.serializer_class, query_params=query_params ) return query.response @list_route() def tabledef(self, *args, **kwargs): """Render datatable table definition.""" columns = [ {'title': 'Network Name', 'data': 'name', 'name': 'name'}, {'title': 'Primary ASN', 'data': 'asn', 'name': 'asn'}, {'title': 'IRR Record', 'data': 'irr_as_set', 'name': 'irr_as_set'}, {'title': 'Looking Glass', 'data': 'looking_glass', 'name': 'looking_glass'}, {'title': 'Peering Policy', 'data': 'policy_general', 'name': 'policy_general'}, {'title': 'Possible Sessions', 'data': 'possible_sessions', 'name': 'possible_sessions', 'orderable': False, 'searchable': False}, {'title': 'Provisioned Sessions', 'data': 'provisioned_sessions', 'name': 'provisioned_sessions', 'orderable': False, 'searchable': False}, {'title': 'Established Sessions', 'data': 'established_sessions', 'name': 'established_sessions', 'orderable': False, 'searchable': False}, ] definition = datatables.TableDefView(columns=columns) return definition.response class InternetExchangeProxyViewSet(viewsets.ReadOnlyModelViewSet): """IXP proxy view set.""" queryset = prngmgr_models.InternetExchangeProxy.objects.all() serializer_class = serializers.InternetExchangeSerializer permission_classes = (permissions.IsAuthenticated,) @list_route() def datatable(self, request, *args, **kwargs): """Render datatable query response.""" query_params = datatables.QueryParams(request) query = datatables.QueryView( query_set=self.queryset, serializer_class=self.serializer_class, query_params=query_params ) return query.response @list_route() def tabledef(self, *args, **kwargs): """Render datatable table definition.""" columns = [ {'title': 'IXP Name', 'data': 'name', 'name': 'name', 'path': 'value'}, {'title': 'Country', 'data': 'country', 'name': 'country'}, {'title': 'Region', 'data': 'region_continent', 'name': 'region_continent'}, {'title': 'Participants', 'data': 'participants', 'name': 'participants', 'orderable': True, 'searchable': False}, {'title': 'Possible Sessions', 'data': 'possible_sessions', 'name': 'possible_sessions', 'orderable': False, 'searchable': False}, {'title': 'Provisioned Sessions', 'data': 'provisioned_sessions', 'name': 'provisioned_sessions', 'orderable': False, 'searchable': False}, {'title': 'Established Sessions', 'data': 'established_sessions', 'name': 'established_sessions', 'orderable': False, 'searchable': False}, ] definition = datatables.TableDefView(columns=columns) return definition.response class InternetExchangeFacilityViewSet(viewsets.ReadOnlyModelViewSet): """IXP Facility proxy view set.""" queryset = pdb_models.InternetExchangeFacility.objects.all() serializer_class = serializers.InternetExchangeFacilitySerializer permission_classes = (permissions.IsAuthenticated,) class IXLanViewSet(viewsets.ReadOnlyModelViewSet): """IXP LAN view set.""" queryset = pdb_models.IXLan.objects.all() serializer_class = serializers.IXLanSerializer permission_classes = (permissions.IsAuthenticated,) class IXLanPrefixViewSet(viewsets.ReadOnlyModelViewSet): """IXP LAN prefix view set.""" queryset = pdb_models.IXLanPrefix.objects.all() serializer_class = serializers.IXLanPrefixSerializer permission_classes = (permissions.IsAuthenticated,) class NetworkContactViewSet(viewsets.ReadOnlyModelViewSet): """Network contact view set.""" queryset = pdb_models.NetworkContact.objects.all() serializer_class = serializers.NetworkContactSerializer permission_classes = (permissions.IsAuthenticated,) class NetworkFacilityViewSet(viewsets.ReadOnlyModelViewSet): """Network facility view set.""" queryset = pdb_models.NetworkFacility.objects.all() serializer_class = serializers.NetworkFacilitySerializer permission_classes = (permissions.IsAuthenticated,) class NetworkIXLanViewSet(viewsets.ReadOnlyModelViewSet): """Network IX LAN view set.""" queryset = pdb_models.NetworkIXLan.objects.all() serializer_class = serializers.NetworkIXLanSerializer permission_classes = (permissions.IsAuthenticated,) class PeeringRouterViewSet(viewsets.ModelViewSet): """Peering router view set.""" queryset = prngmgr_models.PeeringRouter.objects.all() serializer_class = serializers.PeeringRouterSerializer permission_classes = (permissions.IsAuthenticated,) @list_route() def datatable(self, request, *args, **kwargs): """Render datatable query response.""" query_params = datatables.QueryParams(request) query = datatables.QueryView( query_set=self.queryset, serializer_class=self.serializer_class, query_params=query_params ) return query.response @list_route() def tabledef(self, *args, **kwargs): """Render datatable table definition.""" columns = [ {'title': 'Hostname', 'data': 'hostname', 'name': 'hostname'}, {'title': 'Peering Interfaces', 'data': 'peering_interfaces', 'name': 'peering_interfaces'}, {'title': 'Possible Sessions', 'data': 'possible_sessions', 'name': 'possible_sessions', 'orderable': False, 'searchable': False}, {'title': 'Provisioned Sessions', 'data': 'provisioned_sessions', 'name': 'provisioned_sessions', 'orderable': False, 'searchable': False}, {'title': 'Established Sessions', 'data': 'established_sessions', 'name': 'established_sessions', 'orderable': False, 'searchable': False}, ] definition = datatables.TableDefView(columns=columns) return definition.response class PeeringRouterIXInterfaceViewSet(viewsets.ModelViewSet): """Peering router IX interface view set.""" queryset = prngmgr_models.PeeringRouterIXInterface.objects.all() serializer_class = serializers.PeeringRouterIXInterfaceSerializer permission_classes = (permissions.IsAuthenticated,) class PeeringSessionViewSet(viewsets.ModelViewSet): """Peering session view set.""" model_manager = prngmgr_models.PeeringSession.objects queryset = model_manager.all() serializer_class = serializers.PeeringSessionSerializer permission_classes = (permissions.IsAuthenticated,) @list_route() def status_summary(self, *args, **kwargs): """Render status summary response.""" summary = self.model_manager.status_summary() return Response(summary) @list_route() def state_changes(self, request, *args, **kwargs): """Render state changes query response.""" query_params = datatables.QueryParams(request) query = datatables.QueryView( query_set=self.queryset, serializer_class=self.serializer_class, query_params=query_params, static_exclude=Q(**{"session_state": F("previous_state")}), static_order='-state_changed', ) return query.response @list_route() def datatable(self, request, *args, **kwargs): """Render datatable query response.""" query_params = datatables.QueryParams(request) query = datatables.QueryView( query_set=self.queryset, serializer_class=self.serializer_class, query_params=query_params ) return query.response @list_route() def tabledef(self, *args, **kwargs): """Render datatable table definition.""" columns = [ {'title': 'IXP', 'data': 'ixp_name', 'name': 'ixp_name', 'responsivePriority': 5}, {'title': 'Peer Name', 'data': 'remote_network_name', 'name': 'remote_network_name', 'responsivePriority': 1}, {'title': 'Peer AS', 'data': 'remote_network_asn', 'name': 'remote_network_asn', 'responsivePriority': 2}, {'title': 'Address Family', 'data': 'address_family', 'name': 'address_family', 'responsivePriority': 3}, {'title': 'Peer Address', 'data': 'remote_address', 'name': 'remote_address'}, {'title': 'Router', 'data': 'router_hostname', 'name': 'router_hostname'}, {'title': 'State', 'data': 'session_state', 'name': 'session_state', 'responsivePriority': 4}, {'title': 'Accepted Prefixes', 'data': 'accepted_prefixes', 'name': 'accepted_prefixes', 'responsivePriority': 6} ] definition = datatables.TableDefView(columns=columns) return definition.response
the-stack_0_14605
import dbProvider as db import json from operator import itemgetter from flask import Flask, url_for, render_template, abort, make_response, redirect app = Flask(__name__) serverName = '146.185.179.193:5000' # serverName = 'otkachkaseptika.ru' def getStaticPath(relativePath): # return '/static/' + relativePath return url_for('static', filename=relativePath) app.config['SERVER_NAME'] = serverName # Helpers @app.context_processor def utility_processor(): def getLinkForRegionService(regionId = None, serviceId = None, order = False, subdomain = None): if regionId == None: if serviceId == None: return url_for("RegionNoService", subdomain = 'www' if subdomain == None else subdomain) else: service = db.getServiceById(serviceId) return url_for("RegionService", routeString = service['nameTranslit'], subdomain = 'www' if subdomain == None else subdomain) else: region = db.getRegionById(regionId) subdomain = db.getSubdomainByMainRegionId(regionId) if subdomain == None: isMainRegion = False subdomain = db.getSubdomainByRegionId(regionId) else: isMainRegion = True if serviceId == None: if isMainRegion: return url_for("RegionNoService", subdomain = subdomain) else: return url_for("RegionService", routeString = getPathForRegionId(regionId), subdomain = subdomain) else: service = db.getServiceById(serviceId) if isMainRegion: return url_for("RegionService", routeString = service['nameTranslit'], subdomain = subdomain) else: if not (region['hasChildren']): order = True if order: routeString = service['nameTranslit'] + "-v-" + region['dativeTranslit'] return url_for("RegionService", routeString = routeString, subdomain = subdomain) else: routeString = service['nameTranslit'] + getPathForRegionId(regionId) return url_for("RegionService", routeString = routeString, subdomain = subdomain) def getLen(array): return len(array) return dict(getLinkForRegionService=getLinkForRegionService, getLen=getLen, getServiceImgUrl=getServiceImgUrl) def getPathForRegionId(regionId): path = "" parents = db.getRegionParentsSorted(regionId) for parent in parents: path += "/" + parent["nameTranslit"] region = db.getRegionById(regionId) path += "/" + region["nameTranslit"] return path def getRegionByPathAndParentId(path, parentId): regions = path.split('/') for regionName in regions: region = db.getRegionByNameTranslitAndParentId(regionName, parentId) if region == None: return None parentId = region['id'] return region def getServiceImgUrl(service, region, size = None): imgNumber = db.getServiceRandomImgNumber(service, region['id']) if imgNumber == None: service = db.getServiceById(5) imgNumber = db.getServiceRandomImgNumber(service, region['id']) sizeStr = '' if size != None: sizeStr = '-' + size return getStaticPath('img/' + service['nameTranslit'] + '/' + service['nameTranslit'] + '-' + str(imgNumber) + sizeStr + '.jpg') def replaceDataInContent(content, region, service): result = [] for block in content: imgUrl = getServiceImgUrl(service, region) replaced = block.replace('{N}', region['dativeCaseName']).replace('{imgSrc}', imgUrl).replace('{imgAlt}', service['name'] + ' в ' + region['dativeCaseName']) result.append(replaced) return result # Redirects from no subdomains to www # @app.route('/') # def Redirect(): # return redirect("http://www." + serverName + "/", code=301) # @app.route('/<path:routeString>') # def RedirectWithPath(routeString): # return redirect("http://www." + serverName + "/" + routeString, code=301) # With subdomain @app.route('/') @app.route('/', subdomain="<subdomain>") def RegionNoService(subdomain = ''): print('Subdomain ' + subdomain) region = db.getRegionBySubdomain(subdomain) if region == None: region = 0 return render_template('selectServiceForRegion.html', siteName = db.getText("header", "siteName"), motto = db.getText("header", "motto").format(region['dativeCaseName']), mainPhone = db.getPhoneByRegionId(region['id'])['phoneString'], mainPhoneMeta = db.getText("phoneDescription", "other"), mainPhoneLink = db.getPhoneByRegionId(region['id'])['phoneNormal'], subdomain = subdomain, title = db.getText("regionNoService", "title").format(region['dativeCaseName']), description = db.getText("regionNoService", "description").format(region['dativeCaseName']), keywords = db.getText("regionNoService", "keywords").format(region['dativeCaseName']), h1 = db.getText("regionNoService", "h1").format(region['dativeCaseName']), copyright = db.getText("footer", "copyright"), services = db.getServices(), region = region, parentRegions = db.getRegionParentsSorted(region['id']), regions = db.getRegionsTree(parentIds=[region['id']]) ) @app.route('/<path:routeString>', subdomain = '') @app.route('/<path:routeString>', subdomain="<subdomain>") def RegionService(routeString, subdomain): print('Subdomain ' + subdomain) mainRegion = db.getRegionBySubdomain(subdomain) if mainRegion == None: mainRegion = 0 serviceAndRegion = routeString.split("/") service = db.getServiceByNameTranslit(serviceAndRegion[0]) if service != None: regionPath = routeString.replace(service['nameTranslit'] + "/", "") region = getRegionByPathAndParentId(path=regionPath, parentId=mainRegion['id']) dativeRegionName = mainRegion['dativeCaseName'] parentIds=[mainRegion['id']] parentRegions = db.getRegionParentsSorted(mainRegion['id']) regionOrMainRegion = mainRegion if region != None: dativeRegionName = region['dativeCaseName'] parentIds=[region['id']] parentRegions = db.getRegionParentsSorted(region['id']) regionOrMainRegion = region return render_template('selectRegionForService.html', siteName = db.getText("header", "siteName"), motto = db.getText("header", "motto").format(mainRegion['dativeCaseName']), mainPhone = db.getPhoneByRegionId(mainRegion['id'])['phoneString'], mainPhoneMeta = db.getText("phoneDescription", "other"), mainPhoneLink = db.getPhoneByRegionId(mainRegion['id'])['phoneNormal'], subdomain = subdomain, title = db.getText("mainRegionService", "title").format(service['name'], dativeRegionName), description = db.getText("mainRegionService", "description").format(service['name'], dativeRegionName, service['description']), keywords = db.getText("mainRegionService", "keywords").format(service['name'], dativeRegionName), h1 = db.getText("mainRegionService", "h1").format(service['name'], dativeRegionName), service = service, parentRegions = parentRegions, copyright = db.getText("footer", "copyright"), regions = db.getRegionsTree(parentIds, 2), region = regionOrMainRegion ) else: serviceAndRegion = routeString.split("-v-") service = db.getServiceByNameTranslit(serviceAndRegion[0]) if service == None: region = getRegionByPathAndParentId(serviceAndRegion[0], mainRegion['id']) if region == None: region = 0 return render_template('selectServiceForRegion.html', siteName = db.getText("header", "siteName"), motto = db.getText("header", "motto").format(mainRegion['dativeCaseName']), mainPhone = db.getPhoneByRegionId(mainRegion['id'])['phoneString'], mainPhoneMeta = db.getText("phoneDescription", "other"), mainPhoneLink = db.getPhoneByRegionId(mainRegion['id'])['phoneNormal'], subdomain = subdomain, title = db.getText("regionNoService", "title").format(region['dativeCaseName']), description = db.getText("regionNoService", "description").format(region['dativeCaseName']), keywords = db.getText("regionNoService", "keywords").format(region['dativeCaseName']), h1 = db.getText("regionNoService", "h1").format(region['dativeCaseName']), copyright = db.getText("footer", "copyright"), services = db.getServices(), region = region, parentRegions = db.getRegionParentsSorted(region['id']), regions = db.getRegionsTree(parentIds = [mainRegion['id']]) ) if len(serviceAndRegion) > 1: region = db.getRegionByDativeTranslitAndMainRegion(serviceAndRegion[1], mainRegion['id']) if region == None: region = 0 services = db.getServices()[:] services.remove(service) content = db.getRandomizedTexts("orderService", subdomain, str(service['id']), region['id']) content = replaceDataInContent(content, region, service) return render_template('orderService.html', siteName = db.getText("header", "siteName"), motto = db.getText("header", "motto").format(mainRegion['dativeCaseName']), mainPhone = db.getPhoneByRegionId(mainRegion['id'])['phoneString'], mainPhoneLink = db.getPhoneByRegionId(mainRegion['id'])['phoneNormal'], mainPhoneMeta = db.getText("phoneDescription", "other"), subdomain = subdomain, title = db.getText("orderService", "title").format(service['name'], region['dativeCaseName']), description = db.getText("orderService", "description").format(service['name'], region['dativeCaseName']), keywords = db.getText("orderService", "keywords").format(service['name'], region['dativeCaseName']), h1 = db.getText("orderService", "h1").format(service['name'], region['dativeCaseName']), copyright = db.getText("footer", "copyright"), services = services, region = region, service = service, parentRegions = db.getRegionParentsSorted(region['id']), regions = db.getRegionsTree(parentIds = [mainRegion['id']]), otherServicesHeader = "Другие услуги в {}".format(region['dativeCaseName']), contentBlocks = content, imgUrl = getServiceImgUrl(service, region) ) #robots.txt @app.route('/robots.txt', subdomain="<subdomain>") def Robots(subdomain): mainRegion = db.getRegionBySubdomain(subdomain) if mainRegion == None: mainRegion = 0 robots = 'User-agent: *\nAllow: /\nHost:' + subdomain + '.' + serverName + '\nsitemap: http://' + subdomain + '.' + serverName + '/sitemap.xml' response= make_response(robots) response.headers["Content-Type"] = "text/plain" return response #sitemap.xml sitemapCount = 50 lastMod = '2017-07-16' @app.route('/sitemap.xml', subdomain="<subdomain>") def SitemapIndex(subdomain): mainRegion = db.getRegionBySubdomain(subdomain) if mainRegion == None: mainRegion = 0 sitemapIndex = render_template('sitemapindex.xml', urlRoot='http://' + subdomain + '.' + serverName, sitemapCount = sitemapCount, lastMod = lastMod) response= make_response(sitemapIndex) response.headers["Content-Type"] = "application/xml" return response @app.route('/sitemap<index>.xml', subdomain="<subdomain>") def Sitemap(index, subdomain): mainRegion = db.getRegionBySubdomain(subdomain) if mainRegion == None: mainRegion = 0 index = int(index) if index > sitemapCount: abort(404) services = db.getServices() regions = db.getAllChildrenRegionIds(mainRegion['id']) start = (index - 1) * len(regions)/sitemapCount if start < 0: abort(404) if start > len(regions): start = len(regions) end = index * len(regions)/sitemapCount if end > len(regions): end = len(regions) start = int(start) end = int(end) sitemapTemplate = 'sitemap1.xml' if index == 1: sitemapTemplate = 'sitemap.xml' sitemapXml = render_template(sitemapTemplate, urlRoot='http://' + subdomain + '.' + serverName, services = services, regions = regions[start:end], lastMod = lastMod, subdomain = subdomain) response= make_response(sitemapXml) response.headers["Content-Type"] = "application/xml" return response #verification @app.route('/google450d69197dedc081.html', subdomain="<subdomain>") def GoogleVerification(subdomain): mainRegion = db.getRegionBySubdomain(subdomain) if mainRegion == None: mainRegion = 0 return 'google-site-verification: google450d69197dedc081.html' @app.route('/df439bf5423b.html', subdomain="<subdomain>") def YandexVerificationMsk(subdomain): mainRegion = db.getRegionBySubdomain(subdomain) if mainRegion == None: mainRegion = 0 return 'd085889e17e4' @app.route('/yandex_d6b8a19aaea0ecfe.html', subdomain="<subdomain>") def YandexVerificationSpb(subdomain): mainRegion = db.getRegionBySubdomain(subdomain) if mainRegion == None: mainRegion = 0 return render_template('yandex_d6b8a19aaea0ecfe.html') @app.route('/wmail_557011f651d368ddfb70a33d8e147a72.html', subdomain="<subdomain>") def MailVerificationSpb(subdomain): mainRegion = db.getRegionBySubdomain(subdomain) if mainRegion == None: mainRegion = 0 return render_template('wmail_557011f651d368ddfb70a33d8e147a72.html') @app.route('/yandex_fb5d169c5c36f5d3.html', subdomain="<subdomain>") def YandexVerificationKrasnodar(subdomain): mainRegion = db.getRegionBySubdomain(subdomain) if mainRegion == None: mainRegion = 0 return render_template('yandex_fb5d169c5c36f5d3.html') @app.route('/wmail_076dfddb21e2e2bdee0afae71729a13a.html', subdomain="<subdomain>") def MailVerificationKrasnodar(subdomain): mainRegion = db.getRegionBySubdomain(subdomain) if mainRegion == None: mainRegion = 0 return render_template('wmail_076dfddb21e2e2bdee0afae71729a13a.html') # Error handling @app.errorhandler(404) def page_not_found(error): region = db.getRegionById(0) return render_template('404.html', mainPhone = db.getPhoneByRegionId(region['id'])['phoneString'], mainPhoneMeta = db.getText("phoneDescription", "other"), mainPhoneLink = db.getPhoneByRegionId(region['id'])['phoneNormal'], siteName = db.getText("header", "siteName"), motto = db.getText("header", "motto").format(region['dativeCaseName']), subdomain = db.getSubdomainByMainRegionId(region['id']), title = "Страница не найдена", copyright = db.getText("footer", "copyright")),404 if __name__ == '__main__': app.run(host='0.0.0.0', port=5000, debug=True)
the-stack_0_14609
#!/usr/bin/env python3 # Copyright (c) 2017-2018 The Bitcoin Core developers # Copyright (c) 2019 Chaintope Inc. # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Tests NODE_NETWORK_LIMITED. Tests that a node configured with -prune=550 signals NODE_NETWORK_LIMITED correctly and that it responds to getdata requests for blocks correctly: - send a block within 288 + 2 of the tip - disconnect peers who request blocks older than that.""" from test_framework.messages import CInv, msg_getdata, msg_verack, NODE_BLOOM, NODE_NETWORK_LIMITED, NODE_WITNESS from test_framework.mininode import P2PInterface, mininode_lock from test_framework.test_framework import BitcoinTestFramework from test_framework.util import assert_equal, disconnect_nodes, connect_nodes_bi, sync_blocks, wait_until class P2PIgnoreInv(P2PInterface): firstAddrnServices = 0 def on_inv(self, message): # The node will send us invs for other blocks. Ignore them. pass def on_addr(self, message): self.firstAddrnServices = message.addrs[0].nServices def wait_for_addr(self, timeout=5): test_function = lambda: self.last_message.get("addr") wait_until(test_function, timeout=timeout, lock=mininode_lock) def send_getdata_for_block(self, blockhash): getdata_request = msg_getdata() getdata_request.inv.append(CInv(2, int(blockhash, 16))) self.send_message(getdata_request) class NodeNetworkLimitedTest(BitcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 3 self.extra_args = [['-prune=550', '-addrmantest'], [], []] def disconnect_all(self): disconnect_nodes(self.nodes[0], 1) disconnect_nodes(self.nodes[1], 0) disconnect_nodes(self.nodes[2], 1) disconnect_nodes(self.nodes[2], 0) disconnect_nodes(self.nodes[0], 2) disconnect_nodes(self.nodes[1], 2) def setup_network(self): super(NodeNetworkLimitedTest, self).setup_network() self.disconnect_all() def run_test(self): node = self.nodes[0].add_p2p_connection(P2PIgnoreInv()) expected_services = NODE_BLOOM | NODE_NETWORK_LIMITED self.log.info("Check that node has signalled expected services.") assert_equal(node.nServices, expected_services) self.log.info("Check that the localservices is as expected.") assert_equal(int(self.nodes[0].getnetworkinfo()['localservices'], 16), expected_services) self.log.info("Mine enough blocks to reach the NODE_NETWORK_LIMITED range.") connect_nodes_bi(self.nodes, 0, 1) blocks = self.nodes[1].generate(292, self.signblockprivkey) sync_blocks([self.nodes[0], self.nodes[1]]) self.log.info("Make sure we can max retrieve block at tip-288.") node.send_getdata_for_block(blocks[1]) # last block in valid range node.wait_for_block(int(blocks[1], 16), timeout=3) self.log.info("Requesting block at height 2 (tip-289) must fail (ignored).") node.send_getdata_for_block(blocks[0]) # first block outside of the 288+2 limit node.wait_for_disconnect(5) self.log.info("Check local address relay, do a fresh connection.") self.nodes[0].disconnect_p2ps() node1 = self.nodes[0].add_p2p_connection(P2PIgnoreInv()) node1.send_message(msg_verack()) node1.wait_for_addr() #must relay address with NODE_NETWORK_LIMITED assert_equal(node1.firstAddrnServices, 1028) self.nodes[0].disconnect_p2ps() node1.wait_for_disconnect() # connect unsynced node 2 with pruned NODE_NETWORK_LIMITED peer # because node 2 is in IBD and node 0 is a NODE_NETWORK_LIMITED peer, sync must not be possible connect_nodes_bi(self.nodes, 0, 2) try: sync_blocks([self.nodes[0], self.nodes[2]], timeout=5) except: pass # node2 must remain at heigh 0 assert_equal(self.nodes[2].getblockheader(self.nodes[2].getbestblockhash())['height'], 0) # now connect also to node 1 (non pruned) connect_nodes_bi(self.nodes, 1, 2) # sync must be possible sync_blocks(self.nodes) # disconnect all peers self.disconnect_all() # mine 10 blocks on node 0 (pruned node) self.nodes[0].generate(10, self.signblockprivkey) # connect node1 (non pruned) with node0 (pruned) and check if the can sync connect_nodes_bi(self.nodes, 0, 1) # sync must be possible, node 1 is no longer in IBD and should therefore connect to node 0 (NODE_NETWORK_LIMITED) sync_blocks([self.nodes[0], self.nodes[1]]) if __name__ == '__main__': NodeNetworkLimitedTest().main()
the-stack_0_14610
import os import argparse import numpy as np from algos import construct_classifier, classifier_types from utils.data_utils import get_dataset, dataset_names from utils.misc import increment_path from utils.tf_utils import launch_tensorboard from utils.vis_utils import plot_embeddings masterdir = "/tmp/fairml-farm/" base_datadir = masterdir + "data/" base_logdir = masterdir + "logs/" parser = argparse.ArgumentParser(description="Evaluate an individual fairness " "algorithm.\nNOTE: classifier-specific " "arguments should be specified in area " "in the script itself.") parser.add_argument("--experiment-name", default="default", help="Name for the experiment base directory, " "used as the extension relative to {}".format(base_logdir)) parser.add_argument("--load-dir", help="Path to a previous experiment subdirectory, used to " "load model weights, relative to {}.".format(base_logdir)) parser.add_argument("--train", action="store_true", help="train the classifier") parser.add_argument("-epochs", type=int, default=20) parser.add_argument("--visualize", action="store_true", help="visualize " "learned latent space") parser.add_argument("-classifier", choices=[c.name for c in classifier_types], default="simplenn", help="Name of the type of fairness algorithm to use.") parser.add_argument("-dataset", choices=dataset_names, default="adult", help="Name of dataset to train on.") args = parser.parse_args() loaddir = None if args.load_dir is not None: loaddir = os.path.join(base_logdir, args.load_dir) logdir = increment_path(os.path.join(base_logdir, args.experiment_name, "run")) os.makedirs(logdir, exist_ok=True) print("Logging data to {}".format(logdir)) print("Loading {} dataset...".format(args.dataset)) train_dataset, validation_dataset = get_dataset(args.dataset, base_datadir=base_datadir) print("Launching Tensorboard.\nTo visualize, navigate to " "http://0.0.0.0:6006/\nTo close Tensorboard," " press ctrl+C") tensorboard_process = launch_tensorboard(logdir) # ===== SPECIFY HYPERPARAMETERS (INCLUDING CLASSIFIER-TYPE) ===== inputsize = train_dataset["data"].shape[1] layersizes = [100] classifier_type = "paritynn" hparams = { "classifier_type": classifier_type, "layersizes": layersizes, "inputsize": inputsize, } # =============================================================== print("Initializing classifier...") classifier = construct_classifier(hparams, loaddir=loaddir) if args.train: print("Training network...") classifier.train(train_dataset, logdir, epochs=args.epochs, validation_dataset=validation_dataset) savepath = classifier.save_model(logdir) if args.visualize: # Plot out the learned embedding space n = validation_dataset["label"].shape[0] # get an equal number of male and female points n_males = sum(validation_dataset["label"]) limiting_gender = n_males > n - n_males # 1 if men, 0 if women n_limiting_gender = sum(validation_dataset["label"] == limiting_gender) max_points_per_gender = 500 n_per_gender = min(max_points_per_gender, n_limiting_gender) inds = np.concatenate([ np.where(validation_dataset["label"] == limiting_gender)[0][:n_per_gender], np.where(validation_dataset["label"] != limiting_gender)[0][:n_per_gender]], axis=0) vis_dataset = {k:v[inds, ...] for k, v in validation_dataset.items()} val_embeddings = classifier.compute_embedding(vis_dataset["data"]) plot_embeddings(val_embeddings, vis_dataset["label"], vis_dataset["protected"], plot3d=True, subsample=False, label_names=["income<=50k", "income>50k"], protected_names=["female", "male"]) tensorboard_process.join()
the-stack_0_14612
#!/usr/bin/env python3 # -*- coding: utf-8 -*- ' a test module' __author__ = 'DANTE FUNG' import sys def test(): args = sys.argv if len(args) == 1: print('Hello world!') elif len(args) == 2: print('Hello, %s!' % args[1]) else: print('Too many arguments!') if __name__ == '__main__': test()
the-stack_0_14613
from typing import List, Any def quick_sort(array: List[Any], arr_length: int) -> List[Any]: def __quick_sort(start: int, end: int) -> None: if start >= end: return pivot = array[(start + end) // 2] left, right = start, end while left <= right: while array[left] < pivot: left += 1 while array[right] > pivot: right -= 1 if left <= right: array[left], array[right] = array[right], array[left] left += 1 right -= 1 __quick_sort(start, right) __quick_sort(left, end) __quick_sort(0, arr_length - 1) return array
the-stack_0_14614
#!/usr/bin/env python # -*- coding: utf-8 -*- import datetime import json import os import random as _random import sys import traceback from getopt import getopt, GetoptError from multiprocessing import Process from os import environ from wsgiref.simple_server import make_server import requests as _requests from jsonrpcbase import JSONRPCService, InvalidParamsError, KeywordError, \ JSONRPCError, InvalidRequestError from jsonrpcbase import ServerError as JSONServerError from biokbase import log from abbyjergerContigFilter.authclient import KBaseAuth as _KBaseAuth try: from ConfigParser import ConfigParser except ImportError: from configparser import ConfigParser DEPLOY = 'KB_DEPLOYMENT_CONFIG' SERVICE = 'KB_SERVICE_NAME' AUTH = 'auth-service-url' # Note that the error fields do not match the 2.0 JSONRPC spec def get_config_file(): return environ.get(DEPLOY, None) def get_service_name(): return environ.get(SERVICE, None) def get_config(): if not get_config_file(): return None retconfig = {} config = ConfigParser() config.read(get_config_file()) for nameval in config.items(get_service_name() or 'abbyjergerContigFilter'): retconfig[nameval[0]] = nameval[1] return retconfig config = get_config() from abbyjergerContigFilter.abbyjergerContigFilterImpl import abbyjergerContigFilter # noqa @IgnorePep8 impl_abbyjergerContigFilter = abbyjergerContigFilter(config) class JSONObjectEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, set): return list(obj) if isinstance(obj, frozenset): return list(obj) if hasattr(obj, 'toJSONable'): return obj.toJSONable() return json.JSONEncoder.default(self, obj) class JSONRPCServiceCustom(JSONRPCService): def call(self, ctx, jsondata): """ Calls jsonrpc service's method and returns its return value in a JSON string or None if there is none. Arguments: jsondata -- remote method call in jsonrpc format """ result = self.call_py(ctx, jsondata) if result is not None: return json.dumps(result, cls=JSONObjectEncoder) return None def _call_method(self, ctx, request): """Calls given method with given params and returns it value.""" method = self.method_data[request['method']]['method'] params = request['params'] result = None try: if isinstance(params, list): # Does it have enough arguments? if len(params) < self._man_args(method) - 1: raise InvalidParamsError('not enough arguments') # Does it have too many arguments? if(not self._vargs(method) and len(params) > self._max_args(method) - 1): raise InvalidParamsError('too many arguments') result = method(ctx, *params) elif isinstance(params, dict): # Do not accept keyword arguments if the jsonrpc version is # not >=1.1. if request['jsonrpc'] < 11: raise KeywordError result = method(ctx, **params) else: # No params result = method(ctx) except JSONRPCError: raise except Exception as e: # log.exception('method %s threw an exception' % request['method']) # Exception was raised inside the method. newerr = JSONServerError() newerr.trace = traceback.format_exc() if len(e.args) == 1: newerr.data = repr(e.args[0]) else: newerr.data = repr(e.args) raise newerr return result def call_py(self, ctx, jsondata): """ Calls jsonrpc service's method and returns its return value in python object format or None if there is none. This method is same as call() except the return value is a python object instead of JSON string. This method is mainly only useful for debugging purposes. """ rdata = jsondata # we already deserialize the json string earlier in the server code, no # need to do it again # try: # rdata = json.loads(jsondata) # except ValueError: # raise ParseError # set some default values for error handling request = self._get_default_vals() if isinstance(rdata, dict) and rdata: # It's a single request. self._fill_request(request, rdata) respond = self._handle_request(ctx, request) # Don't respond to notifications if respond is None: return None return respond elif isinstance(rdata, list) and rdata: # It's a batch. requests = [] responds = [] for rdata_ in rdata: # set some default values for error handling request_ = self._get_default_vals() self._fill_request(request_, rdata_) requests.append(request_) for request_ in requests: respond = self._handle_request(ctx, request_) # Don't respond to notifications if respond is not None: responds.append(respond) if responds: return responds # Nothing to respond. return None else: # empty dict, list or wrong type raise InvalidRequestError def _handle_request(self, ctx, request): """Handles given request and returns its response.""" if 'types' in self.method_data[request['method']]: self._validate_params_types(request['method'], request['params']) result = self._call_method(ctx, request) # Do not respond to notifications. if request['id'] is None: return None respond = {} self._fill_ver(request['jsonrpc'], respond) respond['result'] = result respond['id'] = request['id'] return respond class MethodContext(dict): def __init__(self, logger): self['client_ip'] = None self['user_id'] = None self['authenticated'] = None self['token'] = None self['module'] = None self['method'] = None self['call_id'] = None self['rpc_context'] = None self['provenance'] = None self._debug_levels = set([7, 8, 9, 'DEBUG', 'DEBUG2', 'DEBUG3']) self._logger = logger def log_err(self, message): self._log(log.ERR, message) def log_info(self, message): self._log(log.INFO, message) def log_debug(self, message, level=1): if level in self._debug_levels: pass else: level = int(level) if level < 1 or level > 3: raise ValueError("Illegal log level: " + str(level)) level = level + 6 self._log(level, message) def set_log_level(self, level): self._logger.set_log_level(level) def get_log_level(self): return self._logger.get_log_level() def clear_log_level(self): self._logger.clear_user_log_level() def _log(self, level, message): self._logger.log_message(level, message, self['client_ip'], self['user_id'], self['module'], self['method'], self['call_id']) def provenance(self): callbackURL = os.environ.get('SDK_CALLBACK_URL') if callbackURL: # OK, there's a callback server from which we can get provenance arg_hash = {'method': 'CallbackServer.get_provenance', 'params': [], 'version': '1.1', 'id': str(_random.random())[2:] } body = json.dumps(arg_hash) response = _requests.post(callbackURL, data=body, timeout=60) response.encoding = 'utf-8' if response.status_code == 500: if ('content-type' in response.headers and response.headers['content-type'] == 'application/json'): err = response.json() if 'error' in err: raise ServerError(**err['error']) else: raise ServerError('Unknown', 0, response.text) else: raise ServerError('Unknown', 0, response.text) if not response.ok: response.raise_for_status() resp = response.json() if 'result' not in resp: raise ServerError('Unknown', 0, 'An unknown server error occurred') return resp['result'][0] else: return self.get('provenance') class ServerError(Exception): ''' The call returned an error. Fields: name - the name of the error. code - the error code. message - a human readable error message. data - the server side stacktrace. ''' def __init__(self, name, code, message, data=None, error=None): super(Exception, self).__init__(message) self.name = name self.code = code self.message = message if message else '' self.data = data or error or '' # data = JSON RPC 2.0, error = 1.1 def __str__(self): return self.name + ': ' + str(self.code) + '. ' + self.message + \ '\n' + self.data def getIPAddress(environ): xFF = environ.get('HTTP_X_FORWARDED_FOR') realIP = environ.get('HTTP_X_REAL_IP') trustXHeaders = config is None or \ config.get('dont_trust_x_ip_headers') != 'true' if (trustXHeaders): if (xFF): return xFF.split(',')[0].strip() if (realIP): return realIP.strip() return environ.get('REMOTE_ADDR') class Application(object): # Wrap the wsgi handler in a class definition so that we can # do some initialization and avoid regenerating stuff over # and over def logcallback(self): self.serverlog.set_log_file(self.userlog.get_log_file()) def log(self, level, context, message): self.serverlog.log_message(level, message, context['client_ip'], context['user_id'], context['module'], context['method'], context['call_id']) def __init__(self): submod = get_service_name() or 'abbyjergerContigFilter' self.userlog = log.log( submod, ip_address=True, authuser=True, module=True, method=True, call_id=True, changecallback=self.logcallback, config=get_config_file()) self.serverlog = log.log( submod, ip_address=True, authuser=True, module=True, method=True, call_id=True, logfile=self.userlog.get_log_file()) self.serverlog.set_log_level(6) self.rpc_service = JSONRPCServiceCustom() self.method_authentication = dict() self.rpc_service.add(impl_abbyjergerContigFilter.run_abbyjergerContigFilter, name='abbyjergerContigFilter.run_abbyjergerContigFilter', types=[dict]) self.method_authentication['abbyjergerContigFilter.run_abbyjergerContigFilter'] = 'required' # noqa self.rpc_service.add(impl_abbyjergerContigFilter.run_abbyjergerContigFilter_max, name='abbyjergerContigFilter.run_abbyjergerContigFilter_max', types=[dict]) self.method_authentication['abbyjergerContigFilter.run_abbyjergerContigFilter_max'] = 'required' # noqa self.rpc_service.add(impl_abbyjergerContigFilter.status, name='abbyjergerContigFilter.status', types=[dict]) authurl = config.get(AUTH) if config else None self.auth_client = _KBaseAuth(authurl) def __call__(self, environ, start_response): # Context object, equivalent to the perl impl CallContext ctx = MethodContext(self.userlog) ctx['client_ip'] = getIPAddress(environ) status = '500 Internal Server Error' try: body_size = int(environ.get('CONTENT_LENGTH', 0)) except (ValueError): body_size = 0 if environ['REQUEST_METHOD'] == 'OPTIONS': # we basically do nothing and just return headers status = '200 OK' rpc_result = "" else: request_body = environ['wsgi.input'].read(body_size) try: req = json.loads(request_body) except ValueError as ve: err = {'error': {'code': -32700, 'name': "Parse error", 'message': str(ve), } } rpc_result = self.process_error(err, ctx, {'version': '1.1'}) else: ctx['module'], ctx['method'] = req['method'].split('.') ctx['call_id'] = req['id'] ctx['rpc_context'] = { 'call_stack': [{'time': self.now_in_utc(), 'method': req['method']} ] } prov_action = {'service': ctx['module'], 'method': ctx['method'], 'method_params': req['params'] } ctx['provenance'] = [prov_action] try: token = environ.get('HTTP_AUTHORIZATION') # parse out the method being requested and check if it # has an authentication requirement method_name = req['method'] auth_req = self.method_authentication.get( method_name, 'none') if auth_req != 'none': if token is None and auth_req == 'required': err = JSONServerError() err.data = ( 'Authentication required for ' + 'abbyjergerContigFilter ' + 'but no authentication header was passed') raise err elif token is None and auth_req == 'optional': pass else: try: user = self.auth_client.get_user(token) ctx['user_id'] = user ctx['authenticated'] = 1 ctx['token'] = token except Exception as e: if auth_req == 'required': err = JSONServerError() err.data = \ "Token validation failed: %s" % e raise err if (environ.get('HTTP_X_FORWARDED_FOR')): self.log(log.INFO, ctx, 'X-Forwarded-For: ' + environ.get('HTTP_X_FORWARDED_FOR')) self.log(log.INFO, ctx, 'start method') rpc_result = self.rpc_service.call(ctx, req) self.log(log.INFO, ctx, 'end method') status = '200 OK' except JSONRPCError as jre: err = {'error': {'code': jre.code, 'name': jre.message, 'message': jre.data } } trace = jre.trace if hasattr(jre, 'trace') else None rpc_result = self.process_error(err, ctx, req, trace) except Exception: err = {'error': {'code': 0, 'name': 'Unexpected Server Error', 'message': 'An unexpected server error ' + 'occurred', } } rpc_result = self.process_error(err, ctx, req, traceback.format_exc()) # print('Request method was %s\n' % environ['REQUEST_METHOD']) # print('Environment dictionary is:\n%s\n' % pprint.pformat(environ)) # print('Request body was: %s' % request_body) # print('Result from the method call is:\n%s\n' % \ # pprint.pformat(rpc_result)) if rpc_result: response_body = rpc_result else: response_body = '' response_headers = [ ('Access-Control-Allow-Origin', '*'), ('Access-Control-Allow-Headers', environ.get( 'HTTP_ACCESS_CONTROL_REQUEST_HEADERS', 'authorization')), ('content-type', 'application/json'), ('content-length', str(len(response_body)))] start_response(status, response_headers) return [response_body.encode('utf8')] def process_error(self, error, context, request, trace=None): if trace: self.log(log.ERR, context, trace.split('\n')[0:-1]) if 'id' in request: error['id'] = request['id'] if 'version' in request: error['version'] = request['version'] e = error['error'].get('error') if not e: error['error']['error'] = trace elif 'jsonrpc' in request: error['jsonrpc'] = request['jsonrpc'] error['error']['data'] = trace else: error['version'] = '1.0' error['error']['error'] = trace return json.dumps(error) def now_in_utc(self): # noqa Taken from http://stackoverflow.com/questions/3401428/how-to-get-an-isoformat-datetime-string-including-the-default-timezone @IgnorePep8 dtnow = datetime.datetime.now() dtutcnow = datetime.datetime.utcnow() delta = dtnow - dtutcnow hh, mm = divmod((delta.days * 24 * 60 * 60 + delta.seconds + 30) // 60, 60) return "%s%+02d:%02d" % (dtnow.isoformat(), hh, mm) application = Application() # This is the uwsgi application dictionary. On startup uwsgi will look # for this dict and pull its configuration from here. # This simply lists where to "mount" the application in the URL path # # This uwsgi module "magically" appears when running the app within # uwsgi and is not available otherwise, so wrap an exception handler # around it # # To run this server in uwsgi with 4 workers listening on port 9999 use: # uwsgi -M -p 4 --http :9999 --wsgi-file _this_file_ # To run a using the single threaded python BaseHTTP service # listening on port 9999 by default execute this file # try: import uwsgi # Before we do anything with the application, see if the # configs specify patching all std routines to be asynch # *ONLY* use this if you are going to wrap the service in # a wsgi container that has enabled gevent, such as # uwsgi with the --gevent option if config is not None and config.get('gevent_monkeypatch_all', False): print("Monkeypatching std libraries for async") from gevent import monkey monkey.patch_all() uwsgi.applications = {'': application} except ImportError: # Not available outside of wsgi, ignore pass _proc = None def start_server(host='localhost', port=0, newprocess=False): ''' By default, will start the server on localhost on a system assigned port in the main thread. Excecution of the main thread will stay in the server main loop until interrupted. To run the server in a separate process, and thus allow the stop_server method to be called, set newprocess = True. This will also allow returning of the port number.''' global _proc if _proc: raise RuntimeError('server is already running') httpd = make_server(host, port, application) port = httpd.server_address[1] print("Listening on port %s" % port) if newprocess: _proc = Process(target=httpd.serve_forever) _proc.daemon = True _proc.start() else: httpd.serve_forever() return port def stop_server(): global _proc _proc.terminate() _proc = None def process_async_cli(input_file_path, output_file_path, token): exit_code = 0 with open(input_file_path) as data_file: req = json.load(data_file) if 'version' not in req: req['version'] = '1.1' if 'id' not in req: req['id'] = str(_random.random())[2:] ctx = MethodContext(application.userlog) if token: user = application.auth_client.get_user(token) ctx['user_id'] = user ctx['authenticated'] = 1 ctx['token'] = token if 'context' in req: ctx['rpc_context'] = req['context'] ctx['CLI'] = 1 ctx['module'], ctx['method'] = req['method'].split('.') prov_action = {'service': ctx['module'], 'method': ctx['method'], 'method_params': req['params']} ctx['provenance'] = [prov_action] resp = None try: resp = application.rpc_service.call_py(ctx, req) except JSONRPCError as jre: trace = jre.trace if hasattr(jre, 'trace') else None resp = {'id': req['id'], 'version': req['version'], 'error': {'code': jre.code, 'name': jre.message, 'message': jre.data, 'error': trace} } except Exception: trace = traceback.format_exc() resp = {'id': req['id'], 'version': req['version'], 'error': {'code': 0, 'name': 'Unexpected Server Error', 'message': 'An unexpected server error occurred', 'error': trace} } if 'error' in resp: exit_code = 500 with open(output_file_path, "w") as f: f.write(json.dumps(resp, cls=JSONObjectEncoder)) return exit_code if __name__ == "__main__": if (len(sys.argv) >= 3 and len(sys.argv) <= 4 and os.path.isfile(sys.argv[1])): token = None if len(sys.argv) == 4: if os.path.isfile(sys.argv[3]): with open(sys.argv[3]) as token_file: token = token_file.read() else: token = sys.argv[3] sys.exit(process_async_cli(sys.argv[1], sys.argv[2], token)) try: opts, args = getopt(sys.argv[1:], "", ["port=", "host="]) except GetoptError as err: # print help information and exit: print(str(err)) # will print something like "option -a not recognized" sys.exit(2) port = 9999 host = 'localhost' for o, a in opts: if o == '--port': port = int(a) elif o == '--host': host = a print("Host set to %s" % host) else: assert False, "unhandled option" start_server(host=host, port=port) # print("Listening on port %s" % port) # httpd = make_server( host, port, application) # # httpd.serve_forever()
the-stack_0_14617
# Copyright (c) University of Utah from IPython.display import display from traitlets import Bool, Dict, HasTraits, Instance, Int, List, Tuple, Unicode, observe, Set, link from ipywidgets import HBox, VBox, IntRangeSlider, FloatRangeSlider import ipywidgets as widgets from . import BaseTreeView from .filters import AttrFilter, Trigger, GroupUIFilter class TreeView(BaseTreeView): options = List(Unicode(), ['span', 'fitness', 'parent_fitness', 'child_fitness', 'shared_fitness', 'coef_change', 'coef_similarity', 'inv_fitness', 'min', 'max', 'unique_max', 'unique_min', 'dim_parent', 'dim_child', 'dim_min', 'dim_max', 'q_fitness', ]) x_value = Tuple(default_value=(0, 1)) y_value = Tuple(default_value=(0, 1)) def __init__(self, src=None, auto=True, x=None, y=None, **kwargs): super().__init__(**kwargs) self._filters = {} self.box = VBox() self._links = [] self._group_filter = GroupUIFilter() self._trigger = Trigger(self._group_filter, func=self._apply_filter) self._filters = {} self._auto = auto self._auto_filter = None self.show_measure = False # setup controls self._ctrls = HBox() self._menu = widgets.Dropdown( options=self.options, description='Attribute:', value=self.attr, disabled=False, ) self.x_slider = IntRangeSlider(min=0, max=1, value=(0, 1), description='Points:') self.y_slider = FloatRangeSlider(min=0, max=1, value=(0,1), description='Persistence:', step=0.001) self._ctrls = HBox([self._menu, self.y_slider, self.x_slider]) link((self, 'x_value'), (self.x_slider, 'value')) link((self, 'y_value'), (self.y_slider, 'value')) self._auto_filter = AttrFilter(attr=self._menu.value) if self._auto: self._group_filter.add(self._auto_filter, name='auto') widgets.link((self, 'attr'), (self._menu, 'value')) self.observe(self._auto_update, names=['attr']) # setup view self._links = [ widgets.link((self, 'x'), (self.x_slider, 'value')), widgets.link((self, 'y'), (self.y_slider, 'value')), ] self._update_children() if src is not None: self.src = src if x is not None: self.x = x if y is not None: self.y = y def _apply_filter(self): if self.tree is not None: self.show = self.tree.filter(self._group_filter) def _auto_update(self, change): self._auto_filter.attr = self.attr self._auto_filter.update_range(self.tree) @observe('tree') def tree_view_tree_changed(self, change): if self.tree is None: self.x_slider.value = (self.x_slider.min, self.x_slider.max) else: reset = self.x_slider.value[1] == self.x_slider.max self.x_slider.max = self.tree.regulus.pts.size() if reset: self.x_slider.value = self.x_slider.value[0], self.x_slider.max @property def filters(self): return self._group_filter @filters.setter def filters(self, f): if f == self._group_filter: return self._trigger.remove(self._group_filter) self._group_filter = f if self._auto: self._group_filter.insert(0, self._auto_filter, name='auto') self._trigger.add(self._group_filter) self._update_children() @property def opts(self): return self._menu.options @opts.setter def opts(self, opts): self._menu.options = opts def add_option(self, attr): if attr not in self._menu.options: self._menu.options = list(self.options) + [attr] self.attr = attr def remove_option(self, attr): if attr in self._menu.options: opts = list(self._menu.options) del opts[attr] self._menu.options = opts if self.attr == attr: self.attr = opts[0] if len(opts) > 0 else None def _update_children(self): children = [self._ctrls, self, self._group_filter] self.box.children = children def find_filter(self, name): return self._group_filter.find(name) def add_filter(self, *args, **kwargs): f = self._group_filter.add(*args, **kwargs) if self.tree and hasattr(f, 'update_range'): f.update_range(self.tree) return f def insert_filter(self, idx, *args, **kwargs): f = self._group_filter.insert(idx, *args, **kwargs) if self.tree and hasattr(f, 'update_range'): f.update_range(self.tree) def remove_filter(self, item): self._group_filter.remove(item) @property def auto(self): return self._auto @auto.setter def auto(self, value): if value != self._auto: self._auto = value if self._auto: self._group_filter.insert(0, self._auto_filter) else: self._group_filter.remove(self._auto_filter) def _ipython_display_(self, **kwargs): display(self.box)
the-stack_0_14619
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from opteryx.storage import BasePartitionScheme def _safe_get_next_element(lst, item): """get the element from a list which follows a given element""" try: index = lst.index(item) return lst[index + 1] except IndexError: return None def _extract_as_at(path): for part in path.split("/"): if part.startswith("as_at_"): return part return "" def _extract_by(path): for part in path.split("/"): if part.startswith("by_"): return part _is_complete = lambda blobs, as_at: any( blob for blob in blobs if as_at + "/frame.complete" in blob ) _is_invalid = lambda blobs, as_at: any( blob for blob in blobs if (as_at + "/frame.ignore" in blob) ) class MabelPartitionScheme(BasePartitionScheme): """ Handle reading data using the Mabel partition scheme. """ def partition_format(self): return "year_{yyyy}/month_{mm}/day_{dd}" def _inner_filter_blobs(self, list_of_blobs, statistics): # The segments are stored in folders with the prefix 'by_', as in, # segments **by** field name list_of_segments = { _extract_by(blob) for blob in list_of_blobs if "/by_" in blob } chosen_segment = "" # If we have multiple 'by_' segments, pick one - pick the first one until # we start making cost-based decisions if list_of_segments: list_of_segments = sorted(list_of_segments) chosen_segment = list_of_segments.pop() # Do the pruning list_of_blobs = [ blob for blob in list_of_blobs if f"/{chosen_segment}/" in blob ] # build a list of the segments we're going to read, for example, if we have # data which are segmented by hour, this will be the hour=00 part if chosen_segment == "": segmented_folders = {""} else: segmented_folders = { _safe_get_next_element(blob.split("/"), chosen_segment) for blob in list_of_blobs } # count the segments we're planning to read statistics.segments_scanned += len(segmented_folders) # go through the list of segments, getting the active frame for each for segment_folder in segmented_folders: # we get the blobs for this segment by looking for the path to contain # a combination of the segment and the segmented folder segment_blobs = [ blob for blob in list_of_blobs if f"{chosen_segment}/{segment_folder}" in blob ] # work out if there's an as_at part as_ats = { _extract_as_at(blob) for blob in segment_blobs if "as_at_" in blob } if as_ats: as_ats = sorted(as_ats) as_at = as_ats.pop() while not _is_complete(segment_blobs, as_at) or _is_invalid( segment_blobs, as_at ): if len(as_ats) > 0: as_at = as_ats.pop() else: return [] # get_logger().debug(f"Reading Frame `{as_at}`") yield from (blob for blob in segment_blobs if (as_at in blob)) else: yield from list_of_blobs def filter_blobs(self, list_of_blobs, statistics): return list(self._inner_filter_blobs(list_of_blobs, statistics))
the-stack_0_14621
from typing import TypeVar, Optional T = TypeVar("T") def ensure(value: Optional[T]) -> T: if value is None: raise RuntimeError("Expected a non-None value to be present.") return value
the-stack_0_14622
import collections.abc import copy import datetime import decimal import operator import uuid import warnings from base64 import b64decode, b64encode from functools import partialmethod, total_ordering from django import forms from django.apps import apps from django.conf import settings from django.core import checks, exceptions, validators from django.db import connection, connections, router from django.db.models.constants import LOOKUP_SEP from django.db.models.query_utils import DeferredAttribute, RegisterLookupMixin from django.utils import timezone from django.utils.datastructures import DictWrapper from django.utils.dateparse import ( parse_date, parse_datetime, parse_duration, parse_time, ) from django.utils.duration import duration_microseconds, duration_string from django.utils.functional import Promise, cached_property from django.utils.ipv6 import clean_ipv6_address from django.utils.itercompat import is_iterable from django.utils.text import capfirst from django.utils.translation import gettext_lazy as _ __all__ = [ 'AutoField', 'BLANK_CHOICE_DASH', 'BigAutoField', 'BigIntegerField', 'BinaryField', 'BooleanField', 'CharField', 'CommaSeparatedIntegerField', 'DateField', 'DateTimeField', 'DecimalField', 'DurationField', 'EmailField', 'Empty', 'Field', 'FilePathField', 'FloatField', 'GenericIPAddressField', 'IPAddressField', 'IntegerField', 'NOT_PROVIDED', 'NullBooleanField', 'PositiveBigIntegerField', 'PositiveIntegerField', 'PositiveSmallIntegerField', 'SlugField', 'SmallAutoField', 'SmallIntegerField', 'TextField', 'TimeField', 'URLField', 'UUIDField', ] class Empty: pass class NOT_PROVIDED: pass # The values to use for "blank" in SelectFields. Will be appended to the start # of most "choices" lists. BLANK_CHOICE_DASH = [("", "---------")] def _load_field(app_label, model_name, field_name): return apps.get_model(app_label, model_name)._meta.get_field(field_name) # A guide to Field parameters: # # * name: The name of the field specified in the model. # * attname: The attribute to use on the model object. This is the same as # "name", except in the case of ForeignKeys, where "_id" is # appended. # * db_column: The db_column specified in the model (or None). # * column: The database column for this field. This is the same as # "attname", except if db_column is specified. # # Code that introspects values, or does other dynamic things, should use # attname. For example, this gets the primary key value of object "obj": # # getattr(obj, opts.pk.attname) def _empty(of_cls): new = Empty() new.__class__ = of_cls return new def return_None(): return None @total_ordering class Field(RegisterLookupMixin): """Base class for all field types""" # Designates whether empty strings fundamentally are allowed at the # database level. empty_strings_allowed = True empty_values = list(validators.EMPTY_VALUES) # These track each time a Field instance is created. Used to retain order. # The auto_creation_counter is used for fields that Django implicitly # creates, creation_counter is used for all user-specified fields. creation_counter = 0 auto_creation_counter = -1 default_validators = [] # Default set of validators default_error_messages = { 'invalid_choice': _('Value %(value)r is not a valid choice.'), 'null': _('This field cannot be null.'), 'blank': _('This field cannot be blank.'), 'unique': _('%(model_name)s with this %(field_label)s ' 'already exists.'), # Translators: The 'lookup_type' is one of 'date', 'year' or 'month'. # Eg: "Title must be unique for pub_date year" 'unique_for_date': _("%(field_label)s must be unique for " "%(date_field_label)s %(lookup_type)s."), } system_check_deprecated_details = None system_check_removed_details = None # Field flags hidden = False many_to_many = None many_to_one = None one_to_many = None one_to_one = None related_model = None descriptor_class = DeferredAttribute # Generic field type description, usually overridden by subclasses def _description(self): return _('Field of type: %(field_type)s') % { 'field_type': self.__class__.__name__ } description = property(_description) def __init__(self, verbose_name=None, name=None, primary_key=False, max_length=None, unique=False, blank=False, null=False, db_index=False, rel=None, default=NOT_PROVIDED, editable=True, serialize=True, unique_for_date=None, unique_for_month=None, unique_for_year=None, choices=None, help_text='', db_column=None, db_tablespace=None, auto_created=False, validators=(), error_messages=None): self.name = name self.verbose_name = verbose_name # May be set by set_attributes_from_name self._verbose_name = verbose_name # Store original for deconstruction self.primary_key = primary_key self.max_length, self._unique = max_length, unique self.blank, self.null = blank, null self.remote_field = rel self.is_relation = self.remote_field is not None self.default = default self.editable = editable self.serialize = serialize self.unique_for_date = unique_for_date self.unique_for_month = unique_for_month self.unique_for_year = unique_for_year if isinstance(choices, collections.abc.Iterator): choices = list(choices) self.choices = choices self.help_text = help_text self.db_index = db_index self.db_column = db_column self._db_tablespace = db_tablespace self.auto_created = auto_created # Adjust the appropriate creation counter, and save our local copy. if auto_created: self.creation_counter = Field.auto_creation_counter Field.auto_creation_counter -= 1 else: self.creation_counter = Field.creation_counter Field.creation_counter += 1 self._validators = list(validators) # Store for deconstruction later messages = {} for c in reversed(self.__class__.__mro__): messages.update(getattr(c, 'default_error_messages', {})) messages.update(error_messages or {}) self._error_messages = error_messages # Store for deconstruction later self.error_messages = messages def __str__(self): """ Return "app_label.model_label.field_name" for fields attached to models. """ if not hasattr(self, 'model'): return super().__str__() model = self.model app = model._meta.app_label return '%s.%s.%s' % (app, model._meta.object_name, self.name) def __repr__(self): """Display the module, class, and name of the field.""" path = '%s.%s' % (self.__class__.__module__, self.__class__.__qualname__) name = getattr(self, 'name', None) if name is not None: return '<%s: %s>' % (path, name) return '<%s>' % path def check(self, **kwargs): return [ *self._check_field_name(), *self._check_choices(), *self._check_db_index(), *self._check_null_allowed_for_primary_keys(), *self._check_backend_specific_checks(**kwargs), *self._check_validators(), *self._check_deprecation_details(), ] def _check_field_name(self): """ Check if field name is valid, i.e. 1) does not end with an underscore, 2) does not contain "__" and 3) is not "pk". """ if self.name.endswith('_'): return [ checks.Error( 'Field names must not end with an underscore.', obj=self, id='fields.E001', ) ] elif LOOKUP_SEP in self.name: return [ checks.Error( 'Field names must not contain "%s".' % (LOOKUP_SEP,), obj=self, id='fields.E002', ) ] elif self.name == 'pk': return [ checks.Error( "'pk' is a reserved word that cannot be used as a field name.", obj=self, id='fields.E003', ) ] else: return [] @classmethod def _choices_is_value(cls, value): return isinstance(value, (str, Promise)) or not is_iterable(value) def _check_choices(self): if not self.choices: return [] if not is_iterable(self.choices) or isinstance(self.choices, str): return [ checks.Error( "'choices' must be an iterable (e.g., a list or tuple).", obj=self, id='fields.E004', ) ] choice_max_length = 0 # Expect [group_name, [value, display]] for choices_group in self.choices: try: group_name, group_choices = choices_group except (TypeError, ValueError): # Containing non-pairs break try: if not all( self._choices_is_value(value) and self._choices_is_value(human_name) for value, human_name in group_choices ): break if self.max_length is not None and group_choices: choice_max_length = max([ choice_max_length, *(len(value) for value, _ in group_choices if isinstance(value, str)), ]) except (TypeError, ValueError): # No groups, choices in the form [value, display] value, human_name = group_name, group_choices if not self._choices_is_value(value) or not self._choices_is_value(human_name): break if self.max_length is not None and isinstance(value, str): choice_max_length = max(choice_max_length, len(value)) # Special case: choices=['ab'] if isinstance(choices_group, str): break else: if self.max_length is not None and choice_max_length > self.max_length: return [ checks.Error( "'max_length' is too small to fit the longest value " "in 'choices' (%d characters)." % choice_max_length, obj=self, id='fields.E009', ), ] return [] return [ checks.Error( "'choices' must be an iterable containing " "(actual value, human readable name) tuples.", obj=self, id='fields.E005', ) ] def _check_db_index(self): if self.db_index not in (None, True, False): return [ checks.Error( "'db_index' must be None, True or False.", obj=self, id='fields.E006', ) ] else: return [] def _check_null_allowed_for_primary_keys(self): if (self.primary_key and self.null and not connection.features.interprets_empty_strings_as_nulls): # We cannot reliably check this for backends like Oracle which # consider NULL and '' to be equal (and thus set up # character-based fields a little differently). return [ checks.Error( 'Primary keys must not have null=True.', hint=('Set null=False on the field, or ' 'remove primary_key=True argument.'), obj=self, id='fields.E007', ) ] else: return [] def _check_backend_specific_checks(self, **kwargs): app_label = self.model._meta.app_label for db in connections: if router.allow_migrate(db, app_label, model_name=self.model._meta.model_name): return connections[db].validation.check_field(self, **kwargs) return [] def _check_validators(self): errors = [] for i, validator in enumerate(self.validators): if not callable(validator): errors.append( checks.Error( "All 'validators' must be callable.", hint=( "validators[{i}] ({repr}) isn't a function or " "instance of a validator class.".format( i=i, repr=repr(validator), ) ), obj=self, id='fields.E008', ) ) return errors def _check_deprecation_details(self): if self.system_check_removed_details is not None: return [ checks.Error( self.system_check_removed_details.get( 'msg', '%s has been removed except for support in historical ' 'migrations.' % self.__class__.__name__ ), hint=self.system_check_removed_details.get('hint'), obj=self, id=self.system_check_removed_details.get('id', 'fields.EXXX'), ) ] elif self.system_check_deprecated_details is not None: return [ checks.Warning( self.system_check_deprecated_details.get( 'msg', '%s has been deprecated.' % self.__class__.__name__ ), hint=self.system_check_deprecated_details.get('hint'), obj=self, id=self.system_check_deprecated_details.get('id', 'fields.WXXX'), ) ] return [] def get_col(self, alias, output_field=None): if output_field is None: output_field = self if alias != self.model._meta.db_table or output_field != self: from django.db.models.expressions import Col return Col(alias, self, output_field) else: return self.cached_col @cached_property def cached_col(self): from django.db.models.expressions import Col return Col(self.model._meta.db_table, self) def select_format(self, compiler, sql, params): """ Custom format for select clauses. For example, GIS columns need to be selected as AsText(table.col) on MySQL as the table.col data can't be used by Django. """ return sql, params def deconstruct(self): """ Return enough information to recreate the field as a 4-tuple: * The name of the field on the model, if contribute_to_class() has been run. * The import path of the field, including the class:e.g. django.db.models.IntegerField This should be the most portable version, so less specific may be better. * A list of positional arguments. * A dict of keyword arguments. Note that the positional or keyword arguments must contain values of the following types (including inner values of collection types): * None, bool, str, int, float, complex, set, frozenset, list, tuple, dict * UUID * datetime.datetime (naive), datetime.date * top-level classes, top-level functions - will be referenced by their full import path * Storage instances - these have their own deconstruct() method This is because the values here must be serialized into a text format (possibly new Python code, possibly JSON) and these are the only types with encoding handlers defined. There's no need to return the exact way the field was instantiated this time, just ensure that the resulting field is the same - prefer keyword arguments over positional ones, and omit parameters with their default values. """ # Short-form way of fetching all the default parameters keywords = {} possibles = { "verbose_name": None, "primary_key": False, "max_length": None, "unique": False, "blank": False, "null": False, "db_index": False, "default": NOT_PROVIDED, "editable": True, "serialize": True, "unique_for_date": None, "unique_for_month": None, "unique_for_year": None, "choices": None, "help_text": '', "db_column": None, "db_tablespace": None, "auto_created": False, "validators": [], "error_messages": None, } attr_overrides = { "unique": "_unique", "error_messages": "_error_messages", "validators": "_validators", "verbose_name": "_verbose_name", "db_tablespace": "_db_tablespace", } equals_comparison = {"choices", "validators"} for name, default in possibles.items(): value = getattr(self, attr_overrides.get(name, name)) # Unroll anything iterable for choices into a concrete list if name == "choices" and isinstance(value, collections.abc.Iterable): value = list(value) # Do correct kind of comparison if name in equals_comparison: if value != default: keywords[name] = value else: if value is not default: keywords[name] = value # Work out path - we shorten it for known Django core fields path = "%s.%s" % (self.__class__.__module__, self.__class__.__qualname__) if path.startswith("django.db.models.fields.related"): path = path.replace("django.db.models.fields.related", "django.db.models") elif path.startswith("django.db.models.fields.files"): path = path.replace("django.db.models.fields.files", "django.db.models") elif path.startswith("django.db.models.fields.proxy"): path = path.replace("django.db.models.fields.proxy", "django.db.models") elif path.startswith("django.db.models.fields"): path = path.replace("django.db.models.fields", "django.db.models") # Return basic info - other fields should override this. return (self.name, path, [], keywords) def clone(self): """ Uses deconstruct() to clone a new copy of this Field. Will not preserve any class attachments/attribute names. """ name, path, args, kwargs = self.deconstruct() return self.__class__(*args, **kwargs) def __eq__(self, other): # Needed for @total_ordering if isinstance(other, Field): return self.creation_counter == other.creation_counter return NotImplemented def __lt__(self, other): # This is needed because bisect does not take a comparison function. if isinstance(other, Field): return self.creation_counter < other.creation_counter return NotImplemented def __hash__(self): return hash(self.creation_counter) def __deepcopy__(self, memodict): # We don't have to deepcopy very much here, since most things are not # intended to be altered after initial creation. obj = copy.copy(self) if self.remote_field: obj.remote_field = copy.copy(self.remote_field) if hasattr(self.remote_field, 'field') and self.remote_field.field is self: obj.remote_field.field = obj memodict[id(self)] = obj return obj def __copy__(self): # We need to avoid hitting __reduce__, so define this # slightly weird copy construct. obj = Empty() obj.__class__ = self.__class__ obj.__dict__ = self.__dict__.copy() return obj def __reduce__(self): """ Pickling should return the model._meta.fields instance of the field, not a new copy of that field. So, use the app registry to load the model and then the field back. """ if not hasattr(self, 'model'): # Fields are sometimes used without attaching them to models (for # example in aggregation). In this case give back a plain field # instance. The code below will create a new empty instance of # class self.__class__, then update its dict with self.__dict__ # values - so, this is very close to normal pickle. state = self.__dict__.copy() # The _get_default cached_property can't be pickled due to lambda # usage. state.pop('_get_default', None) return _empty, (self.__class__,), state return _load_field, (self.model._meta.app_label, self.model._meta.object_name, self.name) def get_pk_value_on_save(self, instance): """ Hook to generate new PK values on save. This method is called when saving instances with no primary key value set. If this method returns something else than None, then the returned value is used when saving the new instance. """ if self.default: return self.get_default() return None def to_python(self, value): """ Convert the input value into the expected Python data type, raising django.core.exceptions.ValidationError if the data can't be converted. Return the converted value. Subclasses should override this. """ return value @cached_property def validators(self): """ Some validators can't be created at field initialization time. This method provides a way to delay their creation until required. """ return [*self.default_validators, *self._validators] def run_validators(self, value): if value in self.empty_values: return errors = [] for v in self.validators: try: v(value) except exceptions.ValidationError as e: if hasattr(e, 'code') and e.code in self.error_messages: e.message = self.error_messages[e.code] errors.extend(e.error_list) if errors: raise exceptions.ValidationError(errors) def validate(self, value, model_instance): """ Validate value and raise ValidationError if necessary. Subclasses should override this to provide validation logic. """ if not self.editable: # Skip validation for non-editable fields. return if self.choices is not None and value not in self.empty_values: for option_key, option_value in self.choices: if isinstance(option_value, (list, tuple)): # This is an optgroup, so look inside the group for # options. for optgroup_key, optgroup_value in option_value: if value == optgroup_key: return elif value == option_key: return raise exceptions.ValidationError( self.error_messages['invalid_choice'], code='invalid_choice', params={'value': value}, ) if value is None and not self.null: raise exceptions.ValidationError(self.error_messages['null'], code='null') if not self.blank and value in self.empty_values: raise exceptions.ValidationError(self.error_messages['blank'], code='blank') def clean(self, value, model_instance): """ Convert the value's type and run validation. Validation errors from to_python() and validate() are propagated. Return the correct value if no error is raised. """ value = self.to_python(value) self.validate(value, model_instance) self.run_validators(value) return value def db_type_parameters(self, connection): return DictWrapper(self.__dict__, connection.ops.quote_name, 'qn_') def db_check(self, connection): """ Return the database column check constraint for this field, for the provided connection. Works the same way as db_type() for the case that get_internal_type() does not map to a preexisting model field. """ data = self.db_type_parameters(connection) try: return connection.data_type_check_constraints[self.get_internal_type()] % data except KeyError: return None def db_type(self, connection): """ Return the database column data type for this field, for the provided connection. """ # The default implementation of this method looks at the # backend-specific data_types dictionary, looking up the field by its # "internal type". # # A Field class can implement the get_internal_type() method to specify # which *preexisting* Django Field class it's most similar to -- i.e., # a custom field might be represented by a TEXT column type, which is # the same as the TextField Django field type, which means the custom # field's get_internal_type() returns 'TextField'. # # But the limitation of the get_internal_type() / data_types approach # is that it cannot handle database column types that aren't already # mapped to one of the built-in Django field types. In this case, you # can implement db_type() instead of get_internal_type() to specify # exactly which wacky database column type you want to use. data = self.db_type_parameters(connection) try: return connection.data_types[self.get_internal_type()] % data except KeyError: return None def rel_db_type(self, connection): """ Return the data type that a related field pointing to this field should use. For example, this method is called by ForeignKey and OneToOneField to determine its data type. """ return self.db_type(connection) def cast_db_type(self, connection): """Return the data type to use in the Cast() function.""" db_type = connection.ops.cast_data_types.get(self.get_internal_type()) if db_type: return db_type % self.db_type_parameters(connection) return self.db_type(connection) def db_parameters(self, connection): """ Extension of db_type(), providing a range of different return values (type, checks). This will look at db_type(), allowing custom model fields to override it. """ type_string = self.db_type(connection) check_string = self.db_check(connection) return { "type": type_string, "check": check_string, } def db_type_suffix(self, connection): return connection.data_types_suffix.get(self.get_internal_type()) def get_db_converters(self, connection): if hasattr(self, 'from_db_value'): return [self.from_db_value] return [] @property def unique(self): return self._unique or self.primary_key @property def db_tablespace(self): return self._db_tablespace or settings.DEFAULT_INDEX_TABLESPACE @property def db_returning(self): """ Private API intended only to be used by Django itself. Currently only the PostgreSQL backend supports returning multiple fields on a model. """ return False def set_attributes_from_name(self, name): self.name = self.name or name self.attname, self.column = self.get_attname_column() self.concrete = self.column is not None if self.verbose_name is None and self.name: self.verbose_name = self.name.replace('_', ' ') def contribute_to_class(self, cls, name, private_only=False): """ Register the field with the model class it belongs to. If private_only is True, create a separate instance of this field for every subclass of cls, even if cls is not an abstract model. """ self.set_attributes_from_name(name) self.model = cls cls._meta.add_field(self, private=private_only) if self.column: # Don't override classmethods with the descriptor. This means that # if you have a classmethod and a field with the same name, then # such fields can't be deferred (we don't have a check for this). if not getattr(cls, self.attname, None): setattr(cls, self.attname, self.descriptor_class(self)) if self.choices is not None: if not hasattr(cls, 'get_%s_display' % self.name): setattr( cls, 'get_%s_display' % self.name, partialmethod(cls._get_FIELD_display, field=self), ) def get_filter_kwargs_for_object(self, obj): """ Return a dict that when passed as kwargs to self.model.filter(), would yield all instances having the same value for this field as obj has. """ return {self.name: getattr(obj, self.attname)} def get_attname(self): return self.name def get_attname_column(self): attname = self.get_attname() column = self.db_column or attname return attname, column def get_internal_type(self): return self.__class__.__name__ def pre_save(self, model_instance, add): """Return field's value just before saving.""" return getattr(model_instance, self.attname) def get_prep_value(self, value): """Perform preliminary non-db specific value checks and conversions.""" if isinstance(value, Promise): value = value._proxy____cast() return value def get_db_prep_value(self, value, connection, prepared=False): """ Return field's value prepared for interacting with the database backend. Used by the default implementations of get_db_prep_save(). """ if not prepared: value = self.get_prep_value(value) return value def get_db_prep_save(self, value, connection): """Return field's value prepared for saving into a database.""" return self.get_db_prep_value(value, connection=connection, prepared=False) def has_default(self): """Return a boolean of whether this field has a default value.""" return self.default is not NOT_PROVIDED def get_default(self): """Return the default value for this field.""" return self._get_default() @cached_property def _get_default(self): if self.has_default(): if callable(self.default): return self.default return lambda: self.default if not self.empty_strings_allowed or self.null and not connection.features.interprets_empty_strings_as_nulls: return return_None return str # return empty string def get_choices(self, include_blank=True, blank_choice=BLANK_CHOICE_DASH, limit_choices_to=None, ordering=()): """ Return choices with a default blank choices included, for use as <select> choices for this field. """ if self.choices is not None: choices = list(self.choices) if include_blank: blank_defined = any(choice in ('', None) for choice, _ in self.flatchoices) if not blank_defined: choices = blank_choice + choices return choices rel_model = self.remote_field.model limit_choices_to = limit_choices_to or self.get_limit_choices_to() choice_func = operator.attrgetter( self.remote_field.get_related_field().attname if hasattr(self.remote_field, 'get_related_field') else 'pk' ) qs = rel_model._default_manager.complex_filter(limit_choices_to) if ordering: qs = qs.order_by(*ordering) return (blank_choice if include_blank else []) + [ (choice_func(x), str(x)) for x in qs ] def value_to_string(self, obj): """ Return a string value of this field from the passed obj. This is used by the serialization framework. """ return str(self.value_from_object(obj)) def _get_flatchoices(self): """Flattened version of choices tuple.""" if self.choices is None: return [] flat = [] for choice, value in self.choices: if isinstance(value, (list, tuple)): flat.extend(value) else: flat.append((choice, value)) return flat flatchoices = property(_get_flatchoices) def save_form_data(self, instance, data): setattr(instance, self.name, data) def formfield(self, form_class=None, choices_form_class=None, **kwargs): """Return a django.forms.Field instance for this field.""" defaults = { 'required': not self.blank, 'label': capfirst(self.verbose_name), 'help_text': self.help_text, } if self.has_default(): if callable(self.default): defaults['initial'] = self.default defaults['show_hidden_initial'] = True else: defaults['initial'] = self.get_default() if self.choices is not None: # Fields with choices get special treatment. include_blank = (self.blank or not (self.has_default() or 'initial' in kwargs)) defaults['choices'] = self.get_choices(include_blank=include_blank) defaults['coerce'] = self.to_python if self.null: defaults['empty_value'] = None if choices_form_class is not None: form_class = choices_form_class else: form_class = forms.TypedChoiceField # Many of the subclass-specific formfield arguments (min_value, # max_value) don't apply for choice fields, so be sure to only pass # the values that TypedChoiceField will understand. for k in list(kwargs): if k not in ('coerce', 'empty_value', 'choices', 'required', 'widget', 'label', 'initial', 'help_text', 'error_messages', 'show_hidden_initial', 'disabled'): del kwargs[k] defaults.update(kwargs) if form_class is None: form_class = forms.CharField return form_class(**defaults) def value_from_object(self, obj): """Return the value of this field in the given model instance.""" return getattr(obj, self.attname) class BooleanField(Field): empty_strings_allowed = False default_error_messages = { 'invalid': _('“%(value)s” value must be either True or False.'), 'invalid_nullable': _('“%(value)s” value must be either True, False, or None.'), } description = _("Boolean (Either True or False)") def get_internal_type(self): return "BooleanField" def to_python(self, value): if self.null and value in self.empty_values: return None if value in (True, False): # 1/0 are equal to True/False. bool() converts former to latter. return bool(value) if value in ('t', 'True', '1'): return True if value in ('f', 'False', '0'): return False raise exceptions.ValidationError( self.error_messages['invalid_nullable' if self.null else 'invalid'], code='invalid', params={'value': value}, ) def get_prep_value(self, value): value = super().get_prep_value(value) if value is None: return None return self.to_python(value) def formfield(self, **kwargs): if self.choices is not None: include_blank = not (self.has_default() or 'initial' in kwargs) defaults = {'choices': self.get_choices(include_blank=include_blank)} else: form_class = forms.NullBooleanField if self.null else forms.BooleanField # In HTML checkboxes, 'required' means "must be checked" which is # different from the choices case ("must select some value"). # required=False allows unchecked checkboxes. defaults = {'form_class': form_class, 'required': False} return super().formfield(**{**defaults, **kwargs}) class CharField(Field): description = _("String (up to %(max_length)s)") def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.validators.append(validators.MaxLengthValidator(self.max_length)) def check(self, **kwargs): return [ *super().check(**kwargs), *self._check_max_length_attribute(**kwargs), ] def _check_max_length_attribute(self, **kwargs): if self.max_length is None: return [ checks.Error( "CharFields must define a 'max_length' attribute.", obj=self, id='fields.E120', ) ] elif (not isinstance(self.max_length, int) or isinstance(self.max_length, bool) or self.max_length <= 0): return [ checks.Error( "'max_length' must be a positive integer.", obj=self, id='fields.E121', ) ] else: return [] def cast_db_type(self, connection): if self.max_length is None: return connection.ops.cast_char_field_without_max_length return super().cast_db_type(connection) def get_internal_type(self): return "CharField" def to_python(self, value): if isinstance(value, str) or value is None: return value return str(value) def get_prep_value(self, value): value = super().get_prep_value(value) return self.to_python(value) def formfield(self, **kwargs): # Passing max_length to forms.CharField means that the value's length # will be validated twice. This is considered acceptable since we want # the value in the form field (to pass into widget for example). defaults = {'max_length': self.max_length} # TODO: Handle multiple backends with different feature flags. if self.null and not connection.features.interprets_empty_strings_as_nulls: defaults['empty_value'] = None defaults.update(kwargs) return super().formfield(**defaults) class CommaSeparatedIntegerField(CharField): default_validators = [validators.validate_comma_separated_integer_list] description = _("Comma-separated integers") system_check_removed_details = { 'msg': ( 'CommaSeparatedIntegerField is removed except for support in ' 'historical migrations.' ), 'hint': ( 'Use CharField(validators=[validate_comma_separated_integer_list]) ' 'instead.' ), 'id': 'fields.E901', } class DateTimeCheckMixin: def check(self, **kwargs): return [ *super().check(**kwargs), *self._check_mutually_exclusive_options(), *self._check_fix_default_value(), ] def _check_mutually_exclusive_options(self): # auto_now, auto_now_add, and default are mutually exclusive # options. The use of more than one of these options together # will trigger an Error mutually_exclusive_options = [self.auto_now_add, self.auto_now, self.has_default()] enabled_options = [option not in (None, False) for option in mutually_exclusive_options].count(True) if enabled_options > 1: return [ checks.Error( "The options auto_now, auto_now_add, and default " "are mutually exclusive. Only one of these options " "may be present.", obj=self, id='fields.E160', ) ] else: return [] def _check_fix_default_value(self): return [] class DateField(DateTimeCheckMixin, Field): empty_strings_allowed = False default_error_messages = { 'invalid': _('“%(value)s” value has an invalid date format. It must be ' 'in YYYY-MM-DD format.'), 'invalid_date': _('“%(value)s” value has the correct format (YYYY-MM-DD) ' 'but it is an invalid date.'), } description = _("Date (without time)") def __init__(self, verbose_name=None, name=None, auto_now=False, auto_now_add=False, **kwargs): self.auto_now, self.auto_now_add = auto_now, auto_now_add if auto_now or auto_now_add: kwargs['editable'] = False kwargs['blank'] = True super().__init__(verbose_name, name, **kwargs) def _check_fix_default_value(self): """ Warn that using an actual date or datetime value is probably wrong; it's only evaluated on server startup. """ if not self.has_default(): return [] now = timezone.now() if not timezone.is_naive(now): now = timezone.make_naive(now, timezone.utc) value = self.default if isinstance(value, datetime.datetime): if not timezone.is_naive(value): value = timezone.make_naive(value, timezone.utc) value = value.date() elif isinstance(value, datetime.date): # Nothing to do, as dates don't have tz information pass else: # No explicit date / datetime value -- no checks necessary return [] offset = datetime.timedelta(days=1) lower = (now - offset).date() upper = (now + offset).date() if lower <= value <= upper: return [ checks.Warning( 'Fixed default value provided.', hint='It seems you set a fixed date / time / datetime ' 'value as default for this field. This may not be ' 'what you want. If you want to have the current date ' 'as default, use `django.utils.timezone.now`', obj=self, id='fields.W161', ) ] return [] def deconstruct(self): name, path, args, kwargs = super().deconstruct() if self.auto_now: kwargs['auto_now'] = True if self.auto_now_add: kwargs['auto_now_add'] = True if self.auto_now or self.auto_now_add: del kwargs['editable'] del kwargs['blank'] return name, path, args, kwargs def get_internal_type(self): return "DateField" def to_python(self, value): if value is None: return value if isinstance(value, datetime.datetime): if settings.USE_TZ and timezone.is_aware(value): # Convert aware datetimes to the default time zone # before casting them to dates (#17742). default_timezone = timezone.get_default_timezone() value = timezone.make_naive(value, default_timezone) return value.date() if isinstance(value, datetime.date): return value try: parsed = parse_date(value) if parsed is not None: return parsed except ValueError: raise exceptions.ValidationError( self.error_messages['invalid_date'], code='invalid_date', params={'value': value}, ) raise exceptions.ValidationError( self.error_messages['invalid'], code='invalid', params={'value': value}, ) def pre_save(self, model_instance, add): if self.auto_now or (self.auto_now_add and add): value = datetime.date.today() setattr(model_instance, self.attname, value) return value else: return super().pre_save(model_instance, add) def contribute_to_class(self, cls, name, **kwargs): super().contribute_to_class(cls, name, **kwargs) if not self.null: setattr( cls, 'get_next_by_%s' % self.name, partialmethod(cls._get_next_or_previous_by_FIELD, field=self, is_next=True) ) setattr( cls, 'get_previous_by_%s' % self.name, partialmethod(cls._get_next_or_previous_by_FIELD, field=self, is_next=False) ) def get_prep_value(self, value): value = super().get_prep_value(value) return self.to_python(value) def get_db_prep_value(self, value, connection, prepared=False): # Casts dates into the format expected by the backend if not prepared: value = self.get_prep_value(value) return connection.ops.adapt_datefield_value(value) def value_to_string(self, obj): val = self.value_from_object(obj) return '' if val is None else val.isoformat() def formfield(self, **kwargs): return super().formfield(**{ 'form_class': forms.DateField, **kwargs, }) class DateTimeField(DateField): empty_strings_allowed = False default_error_messages = { 'invalid': _('“%(value)s” value has an invalid format. It must be in ' 'YYYY-MM-DD HH:MM[:ss[.uuuuuu]][TZ] format.'), 'invalid_date': _("“%(value)s” value has the correct format " "(YYYY-MM-DD) but it is an invalid date."), 'invalid_datetime': _('“%(value)s” value has the correct format ' '(YYYY-MM-DD HH:MM[:ss[.uuuuuu]][TZ]) ' 'but it is an invalid date/time.'), } description = _("Date (with time)") # __init__ is inherited from DateField def _check_fix_default_value(self): """ Warn that using an actual date or datetime value is probably wrong; it's only evaluated on server startup. """ if not self.has_default(): return [] now = timezone.now() if not timezone.is_naive(now): now = timezone.make_naive(now, timezone.utc) value = self.default if isinstance(value, datetime.datetime): second_offset = datetime.timedelta(seconds=10) lower = now - second_offset upper = now + second_offset if timezone.is_aware(value): value = timezone.make_naive(value, timezone.utc) elif isinstance(value, datetime.date): second_offset = datetime.timedelta(seconds=10) lower = now - second_offset lower = datetime.datetime(lower.year, lower.month, lower.day) upper = now + second_offset upper = datetime.datetime(upper.year, upper.month, upper.day) value = datetime.datetime(value.year, value.month, value.day) else: # No explicit date / datetime value -- no checks necessary return [] if lower <= value <= upper: return [ checks.Warning( 'Fixed default value provided.', hint='It seems you set a fixed date / time / datetime ' 'value as default for this field. This may not be ' 'what you want. If you want to have the current date ' 'as default, use `django.utils.timezone.now`', obj=self, id='fields.W161', ) ] return [] def get_internal_type(self): return "DateTimeField" def to_python(self, value): if value is None: return value if isinstance(value, datetime.datetime): return value if isinstance(value, datetime.date): value = datetime.datetime(value.year, value.month, value.day) if settings.USE_TZ: # For backwards compatibility, interpret naive datetimes in # local time. This won't work during DST change, but we can't # do much about it, so we let the exceptions percolate up the # call stack. warnings.warn("DateTimeField %s.%s received a naive datetime " "(%s) while time zone support is active." % (self.model.__name__, self.name, value), RuntimeWarning) default_timezone = timezone.get_default_timezone() value = timezone.make_aware(value, default_timezone) return value try: parsed = parse_datetime(value) if parsed is not None: return parsed except ValueError: raise exceptions.ValidationError( self.error_messages['invalid_datetime'], code='invalid_datetime', params={'value': value}, ) try: parsed = parse_date(value) if parsed is not None: return datetime.datetime(parsed.year, parsed.month, parsed.day) except ValueError: raise exceptions.ValidationError( self.error_messages['invalid_date'], code='invalid_date', params={'value': value}, ) raise exceptions.ValidationError( self.error_messages['invalid'], code='invalid', params={'value': value}, ) def pre_save(self, model_instance, add): if self.auto_now or (self.auto_now_add and add): value = timezone.now() setattr(model_instance, self.attname, value) return value else: return super().pre_save(model_instance, add) # contribute_to_class is inherited from DateField, it registers # get_next_by_FOO and get_prev_by_FOO def get_prep_value(self, value): value = super().get_prep_value(value) value = self.to_python(value) if value is not None and settings.USE_TZ and timezone.is_naive(value): # For backwards compatibility, interpret naive datetimes in local # time. This won't work during DST change, but we can't do much # about it, so we let the exceptions percolate up the call stack. try: name = '%s.%s' % (self.model.__name__, self.name) except AttributeError: name = '(unbound)' warnings.warn("DateTimeField %s received a naive datetime (%s)" " while time zone support is active." % (name, value), RuntimeWarning) default_timezone = timezone.get_default_timezone() value = timezone.make_aware(value, default_timezone) return value def get_db_prep_value(self, value, connection, prepared=False): # Casts datetimes into the format expected by the backend if not prepared: value = self.get_prep_value(value) return connection.ops.adapt_datetimefield_value(value) def value_to_string(self, obj): val = self.value_from_object(obj) return '' if val is None else val.isoformat() def formfield(self, **kwargs): return super().formfield(**{ 'form_class': forms.DateTimeField, **kwargs, }) class DecimalField(Field): empty_strings_allowed = False default_error_messages = { 'invalid': _('“%(value)s” value must be a decimal number.'), } description = _("Decimal number") def __init__(self, verbose_name=None, name=None, max_digits=None, decimal_places=None, **kwargs): self.max_digits, self.decimal_places = max_digits, decimal_places super().__init__(verbose_name, name, **kwargs) def check(self, **kwargs): errors = super().check(**kwargs) digits_errors = [ *self._check_decimal_places(), *self._check_max_digits(), ] if not digits_errors: errors.extend(self._check_decimal_places_and_max_digits(**kwargs)) else: errors.extend(digits_errors) return errors def _check_decimal_places(self): try: decimal_places = int(self.decimal_places) if decimal_places < 0: raise ValueError() except TypeError: return [ checks.Error( "DecimalFields must define a 'decimal_places' attribute.", obj=self, id='fields.E130', ) ] except ValueError: return [ checks.Error( "'decimal_places' must be a non-negative integer.", obj=self, id='fields.E131', ) ] else: return [] def _check_max_digits(self): try: max_digits = int(self.max_digits) if max_digits <= 0: raise ValueError() except TypeError: return [ checks.Error( "DecimalFields must define a 'max_digits' attribute.", obj=self, id='fields.E132', ) ] except ValueError: return [ checks.Error( "'max_digits' must be a positive integer.", obj=self, id='fields.E133', ) ] else: return [] def _check_decimal_places_and_max_digits(self, **kwargs): if int(self.decimal_places) > int(self.max_digits): return [ checks.Error( "'max_digits' must be greater or equal to 'decimal_places'.", obj=self, id='fields.E134', ) ] return [] @cached_property def validators(self): return super().validators + [ validators.DecimalValidator(self.max_digits, self.decimal_places) ] @cached_property def context(self): return decimal.Context(prec=self.max_digits) def deconstruct(self): name, path, args, kwargs = super().deconstruct() if self.max_digits is not None: kwargs['max_digits'] = self.max_digits if self.decimal_places is not None: kwargs['decimal_places'] = self.decimal_places return name, path, args, kwargs def get_internal_type(self): return "DecimalField" def to_python(self, value): if value is None: return value if isinstance(value, float): return self.context.create_decimal_from_float(value) try: return decimal.Decimal(value) except decimal.InvalidOperation: raise exceptions.ValidationError( self.error_messages['invalid'], code='invalid', params={'value': value}, ) def get_db_prep_save(self, value, connection): return connection.ops.adapt_decimalfield_value(self.to_python(value), self.max_digits, self.decimal_places) def get_prep_value(self, value): value = super().get_prep_value(value) return self.to_python(value) def formfield(self, **kwargs): return super().formfield(**{ 'max_digits': self.max_digits, 'decimal_places': self.decimal_places, 'form_class': forms.DecimalField, **kwargs, }) class DurationField(Field): """ Store timedelta objects. Use interval on PostgreSQL, INTERVAL DAY TO SECOND on Oracle, and bigint of microseconds on other databases. """ empty_strings_allowed = False default_error_messages = { 'invalid': _('“%(value)s” value has an invalid format. It must be in ' '[DD] [[HH:]MM:]ss[.uuuuuu] format.') } description = _("Duration") def get_internal_type(self): return "DurationField" def to_python(self, value): if value is None: return value if isinstance(value, datetime.timedelta): return value try: parsed = parse_duration(value) except ValueError: pass else: if parsed is not None: return parsed raise exceptions.ValidationError( self.error_messages['invalid'], code='invalid', params={'value': value}, ) def get_db_prep_value(self, value, connection, prepared=False): if connection.features.has_native_duration_field: return value if value is None: return None return duration_microseconds(value) def get_db_converters(self, connection): converters = [] if not connection.features.has_native_duration_field: converters.append(connection.ops.convert_durationfield_value) return converters + super().get_db_converters(connection) def value_to_string(self, obj): val = self.value_from_object(obj) return '' if val is None else duration_string(val) def formfield(self, **kwargs): return super().formfield(**{ 'form_class': forms.DurationField, **kwargs, }) class EmailField(CharField): default_validators = [validators.validate_email] description = _("Email address") def __init__(self, *args, **kwargs): # max_length=254 to be compliant with RFCs 3696 and 5321 kwargs.setdefault('max_length', 254) super().__init__(*args, **kwargs) def deconstruct(self): name, path, args, kwargs = super().deconstruct() # We do not exclude max_length if it matches default as we want to change # the default in future. return name, path, args, kwargs def formfield(self, **kwargs): # As with CharField, this will cause email validation to be performed # twice. return super().formfield(**{ 'form_class': forms.EmailField, **kwargs, }) class FilePathField(Field): description = _("File path") def __init__(self, verbose_name=None, name=None, path='', match=None, recursive=False, allow_files=True, allow_folders=False, **kwargs): self.path, self.match, self.recursive = path, match, recursive self.allow_files, self.allow_folders = allow_files, allow_folders kwargs.setdefault('max_length', 100) super().__init__(verbose_name, name, **kwargs) def check(self, **kwargs): return [ *super().check(**kwargs), *self._check_allowing_files_or_folders(**kwargs), ] def _check_allowing_files_or_folders(self, **kwargs): if not self.allow_files and not self.allow_folders: return [ checks.Error( "FilePathFields must have either 'allow_files' or 'allow_folders' set to True.", obj=self, id='fields.E140', ) ] return [] def deconstruct(self): name, path, args, kwargs = super().deconstruct() if self.path != '': kwargs['path'] = self.path if self.match is not None: kwargs['match'] = self.match if self.recursive is not False: kwargs['recursive'] = self.recursive if self.allow_files is not True: kwargs['allow_files'] = self.allow_files if self.allow_folders is not False: kwargs['allow_folders'] = self.allow_folders if kwargs.get("max_length") == 100: del kwargs["max_length"] return name, path, args, kwargs def get_prep_value(self, value): value = super().get_prep_value(value) if value is None: return None return str(value) def formfield(self, **kwargs): return super().formfield(**{ 'path': self.path() if callable(self.path) else self.path, 'match': self.match, 'recursive': self.recursive, 'form_class': forms.FilePathField, 'allow_files': self.allow_files, 'allow_folders': self.allow_folders, **kwargs, }) def get_internal_type(self): return "FilePathField" class FloatField(Field): empty_strings_allowed = False default_error_messages = { 'invalid': _('“%(value)s” value must be a float.'), } description = _("Floating point number") def get_prep_value(self, value): value = super().get_prep_value(value) if value is None: return None try: return float(value) except (TypeError, ValueError) as e: raise e.__class__( "Field '%s' expected a number but got %r." % (self.name, value), ) from e def get_internal_type(self): return "FloatField" def to_python(self, value): if value is None: return value try: return float(value) except (TypeError, ValueError): raise exceptions.ValidationError( self.error_messages['invalid'], code='invalid', params={'value': value}, ) def formfield(self, **kwargs): return super().formfield(**{ 'form_class': forms.FloatField, **kwargs, }) class IntegerField(Field): empty_strings_allowed = False default_error_messages = { 'invalid': _('“%(value)s” value must be an integer.'), } description = _("Integer") def check(self, **kwargs): return [ *super().check(**kwargs), *self._check_max_length_warning(), ] def _check_max_length_warning(self): if self.max_length is not None: return [ checks.Warning( "'max_length' is ignored when used with %s." % self.__class__.__name__, hint="Remove 'max_length' from field", obj=self, id='fields.W122', ) ] return [] @cached_property def validators(self): # These validators can't be added at field initialization time since # they're based on values retrieved from `connection`. validators_ = super().validators internal_type = self.get_internal_type() min_value, max_value = connection.ops.integer_field_range(internal_type) if min_value is not None and not any( ( isinstance(validator, validators.MinValueValidator) and ( validator.limit_value() if callable(validator.limit_value) else validator.limit_value ) >= min_value ) for validator in validators_ ): validators_.append(validators.MinValueValidator(min_value)) if max_value is not None and not any( ( isinstance(validator, validators.MaxValueValidator) and ( validator.limit_value() if callable(validator.limit_value) else validator.limit_value ) <= max_value ) for validator in validators_ ): validators_.append(validators.MaxValueValidator(max_value)) return validators_ def get_prep_value(self, value): value = super().get_prep_value(value) if value is None: return None try: return int(value) except (TypeError, ValueError) as e: raise e.__class__( "Field '%s' expected a number but got %r." % (self.name, value), ) from e def get_internal_type(self): return "IntegerField" def to_python(self, value): if value is None: return value try: return int(value) except (TypeError, ValueError): raise exceptions.ValidationError( self.error_messages['invalid'], code='invalid', params={'value': value}, ) def formfield(self, **kwargs): return super().formfield(**{ 'form_class': forms.IntegerField, **kwargs, }) class BigIntegerField(IntegerField): description = _("Big (8 byte) integer") MAX_BIGINT = 9223372036854775807 def get_internal_type(self): return "BigIntegerField" def formfield(self, **kwargs): return super().formfield(**{ 'min_value': -BigIntegerField.MAX_BIGINT - 1, 'max_value': BigIntegerField.MAX_BIGINT, **kwargs, }) class IPAddressField(Field): empty_strings_allowed = False description = _("IPv4 address") system_check_removed_details = { 'msg': ( 'IPAddressField has been removed except for support in ' 'historical migrations.' ), 'hint': 'Use GenericIPAddressField instead.', 'id': 'fields.E900', } def __init__(self, *args, **kwargs): kwargs['max_length'] = 15 super().__init__(*args, **kwargs) def deconstruct(self): name, path, args, kwargs = super().deconstruct() del kwargs['max_length'] return name, path, args, kwargs def get_prep_value(self, value): value = super().get_prep_value(value) if value is None: return None return str(value) def get_internal_type(self): return "IPAddressField" class GenericIPAddressField(Field): empty_strings_allowed = False description = _("IP address") default_error_messages = {} def __init__(self, verbose_name=None, name=None, protocol='both', unpack_ipv4=False, *args, **kwargs): self.unpack_ipv4 = unpack_ipv4 self.protocol = protocol self.default_validators, invalid_error_message = \ validators.ip_address_validators(protocol, unpack_ipv4) self.default_error_messages['invalid'] = invalid_error_message kwargs['max_length'] = 39 super().__init__(verbose_name, name, *args, **kwargs) def check(self, **kwargs): return [ *super().check(**kwargs), *self._check_blank_and_null_values(**kwargs), ] def _check_blank_and_null_values(self, **kwargs): if not getattr(self, 'null', False) and getattr(self, 'blank', False): return [ checks.Error( 'GenericIPAddressFields cannot have blank=True if null=False, ' 'as blank values are stored as nulls.', obj=self, id='fields.E150', ) ] return [] def deconstruct(self): name, path, args, kwargs = super().deconstruct() if self.unpack_ipv4 is not False: kwargs['unpack_ipv4'] = self.unpack_ipv4 if self.protocol != "both": kwargs['protocol'] = self.protocol if kwargs.get("max_length") == 39: del kwargs['max_length'] return name, path, args, kwargs def get_internal_type(self): return "GenericIPAddressField" def to_python(self, value): if value is None: return None if not isinstance(value, str): value = str(value) value = value.strip() if ':' in value: return clean_ipv6_address(value, self.unpack_ipv4, self.error_messages['invalid']) return value def get_db_prep_value(self, value, connection, prepared=False): if not prepared: value = self.get_prep_value(value) return connection.ops.adapt_ipaddressfield_value(value) def get_prep_value(self, value): value = super().get_prep_value(value) if value is None: return None if value and ':' in value: try: return clean_ipv6_address(value, self.unpack_ipv4) except exceptions.ValidationError: pass return str(value) def formfield(self, **kwargs): return super().formfield(**{ 'protocol': self.protocol, 'form_class': forms.GenericIPAddressField, **kwargs, }) class NullBooleanField(BooleanField): default_error_messages = { 'invalid': _('“%(value)s” value must be either None, True or False.'), 'invalid_nullable': _('“%(value)s” value must be either None, True or False.'), } description = _("Boolean (Either True, False or None)") def __init__(self, *args, **kwargs): kwargs['null'] = True kwargs['blank'] = True super().__init__(*args, **kwargs) def deconstruct(self): name, path, args, kwargs = super().deconstruct() del kwargs['null'] del kwargs['blank'] return name, path, args, kwargs def get_internal_type(self): return "NullBooleanField" class PositiveIntegerRelDbTypeMixin: def rel_db_type(self, connection): """ Return the data type that a related field pointing to this field should use. In most cases, a foreign key pointing to a positive integer primary key will have an integer column data type but some databases (e.g. MySQL) have an unsigned integer type. In that case (related_fields_match_type=True), the primary key should return its db_type. """ if connection.features.related_fields_match_type: return self.db_type(connection) else: return IntegerField().db_type(connection=connection) class PositiveBigIntegerField(PositiveIntegerRelDbTypeMixin, IntegerField): description = _('Positive big integer') def get_internal_type(self): return 'PositiveBigIntegerField' def formfield(self, **kwargs): return super().formfield(**{ 'min_value': 0, **kwargs, }) class PositiveIntegerField(PositiveIntegerRelDbTypeMixin, IntegerField): description = _("Positive integer") def get_internal_type(self): return "PositiveIntegerField" def formfield(self, **kwargs): return super().formfield(**{ 'min_value': 0, **kwargs, }) class PositiveSmallIntegerField(PositiveIntegerRelDbTypeMixin, IntegerField): description = _("Positive small integer") def get_internal_type(self): return "PositiveSmallIntegerField" def formfield(self, **kwargs): return super().formfield(**{ 'min_value': 0, **kwargs, }) class SlugField(CharField): default_validators = [validators.validate_slug] description = _("Slug (up to %(max_length)s)") def __init__(self, *args, max_length=50, db_index=True, allow_unicode=False, **kwargs): self.allow_unicode = allow_unicode if self.allow_unicode: self.default_validators = [validators.validate_unicode_slug] super().__init__(*args, max_length=max_length, db_index=db_index, **kwargs) def deconstruct(self): name, path, args, kwargs = super().deconstruct() if kwargs.get("max_length") == 50: del kwargs['max_length'] if self.db_index is False: kwargs['db_index'] = False else: del kwargs['db_index'] if self.allow_unicode is not False: kwargs['allow_unicode'] = self.allow_unicode return name, path, args, kwargs def get_internal_type(self): return "SlugField" def formfield(self, **kwargs): return super().formfield(**{ 'form_class': forms.SlugField, 'allow_unicode': self.allow_unicode, **kwargs, }) class SmallIntegerField(IntegerField): description = _("Small integer") def get_internal_type(self): return "SmallIntegerField" class TextField(Field): description = _("Text") def get_internal_type(self): return "TextField" def to_python(self, value): if isinstance(value, str) or value is None: return value return str(value) def get_prep_value(self, value): value = super().get_prep_value(value) return self.to_python(value) def formfield(self, **kwargs): # Passing max_length to forms.CharField means that the value's length # will be validated twice. This is considered acceptable since we want # the value in the form field (to pass into widget for example). return super().formfield(**{ 'max_length': self.max_length, **({} if self.choices is not None else {'widget': forms.Textarea}), **kwargs, }) class TimeField(DateTimeCheckMixin, Field): empty_strings_allowed = False default_error_messages = { 'invalid': _('“%(value)s” value has an invalid format. It must be in ' 'HH:MM[:ss[.uuuuuu]] format.'), 'invalid_time': _('“%(value)s” value has the correct format ' '(HH:MM[:ss[.uuuuuu]]) but it is an invalid time.'), } description = _("Time") def __init__(self, verbose_name=None, name=None, auto_now=False, auto_now_add=False, **kwargs): self.auto_now, self.auto_now_add = auto_now, auto_now_add if auto_now or auto_now_add: kwargs['editable'] = False kwargs['blank'] = True super().__init__(verbose_name, name, **kwargs) def _check_fix_default_value(self): """ Warn that using an actual date or datetime value is probably wrong; it's only evaluated on server startup. """ if not self.has_default(): return [] now = timezone.now() if not timezone.is_naive(now): now = timezone.make_naive(now, timezone.utc) value = self.default if isinstance(value, datetime.datetime): second_offset = datetime.timedelta(seconds=10) lower = now - second_offset upper = now + second_offset if timezone.is_aware(value): value = timezone.make_naive(value, timezone.utc) elif isinstance(value, datetime.time): second_offset = datetime.timedelta(seconds=10) lower = now - second_offset upper = now + second_offset value = datetime.datetime.combine(now.date(), value) if timezone.is_aware(value): value = timezone.make_naive(value, timezone.utc).time() else: # No explicit time / datetime value -- no checks necessary return [] if lower <= value <= upper: return [ checks.Warning( 'Fixed default value provided.', hint='It seems you set a fixed date / time / datetime ' 'value as default for this field. This may not be ' 'what you want. If you want to have the current date ' 'as default, use `django.utils.timezone.now`', obj=self, id='fields.W161', ) ] return [] def deconstruct(self): name, path, args, kwargs = super().deconstruct() if self.auto_now is not False: kwargs["auto_now"] = self.auto_now if self.auto_now_add is not False: kwargs["auto_now_add"] = self.auto_now_add if self.auto_now or self.auto_now_add: del kwargs['blank'] del kwargs['editable'] return name, path, args, kwargs def get_internal_type(self): return "TimeField" def to_python(self, value): if value is None: return None if isinstance(value, datetime.time): return value if isinstance(value, datetime.datetime): # Not usually a good idea to pass in a datetime here (it loses # information), but this can be a side-effect of interacting with a # database backend (e.g. Oracle), so we'll be accommodating. return value.time() try: parsed = parse_time(value) if parsed is not None: return parsed except ValueError: raise exceptions.ValidationError( self.error_messages['invalid_time'], code='invalid_time', params={'value': value}, ) raise exceptions.ValidationError( self.error_messages['invalid'], code='invalid', params={'value': value}, ) def pre_save(self, model_instance, add): if self.auto_now or (self.auto_now_add and add): value = datetime.datetime.now().time() setattr(model_instance, self.attname, value) return value else: return super().pre_save(model_instance, add) def get_prep_value(self, value): value = super().get_prep_value(value) return self.to_python(value) def get_db_prep_value(self, value, connection, prepared=False): # Casts times into the format expected by the backend if not prepared: value = self.get_prep_value(value) return connection.ops.adapt_timefield_value(value) def value_to_string(self, obj): val = self.value_from_object(obj) return '' if val is None else val.isoformat() def formfield(self, **kwargs): return super().formfield(**{ 'form_class': forms.TimeField, **kwargs, }) class URLField(CharField): default_validators = [validators.URLValidator()] description = _("URL") def __init__(self, verbose_name=None, name=None, **kwargs): kwargs.setdefault('max_length', 200) super().__init__(verbose_name, name, **kwargs) def deconstruct(self): name, path, args, kwargs = super().deconstruct() if kwargs.get("max_length") == 200: del kwargs['max_length'] return name, path, args, kwargs def formfield(self, **kwargs): # As with CharField, this will cause URL validation to be performed # twice. return super().formfield(**{ 'form_class': forms.URLField, **kwargs, }) class BinaryField(Field): description = _("Raw binary data") empty_values = [None, b''] def __init__(self, *args, **kwargs): kwargs.setdefault('editable', False) super().__init__(*args, **kwargs) if self.max_length is not None: self.validators.append(validators.MaxLengthValidator(self.max_length)) def check(self, **kwargs): return [*super().check(**kwargs), *self._check_str_default_value()] def _check_str_default_value(self): if self.has_default() and isinstance(self.default, str): return [ checks.Error( "BinaryField's default cannot be a string. Use bytes " "content instead.", obj=self, id='fields.E170', ) ] return [] def deconstruct(self): name, path, args, kwargs = super().deconstruct() if self.editable: kwargs['editable'] = True else: del kwargs['editable'] return name, path, args, kwargs def get_internal_type(self): return "BinaryField" def get_placeholder(self, value, compiler, connection): return connection.ops.binary_placeholder_sql(value) def get_default(self): if self.has_default() and not callable(self.default): return self.default default = super().get_default() if default == '': return b'' return default def get_db_prep_value(self, value, connection, prepared=False): value = super().get_db_prep_value(value, connection, prepared) if value is not None: return connection.Database.Binary(value) return value def value_to_string(self, obj): """Binary data is serialized as base64""" return b64encode(self.value_from_object(obj)).decode('ascii') def to_python(self, value): # If it's a string, it should be base64-encoded data if isinstance(value, str): return memoryview(b64decode(value.encode('ascii'))) return value class UUIDField(Field): default_error_messages = { 'invalid': _('“%(value)s” is not a valid UUID.'), } description = _('Universally unique identifier') empty_strings_allowed = False def __init__(self, verbose_name=None, **kwargs): kwargs['max_length'] = 32 super().__init__(verbose_name, **kwargs) def deconstruct(self): name, path, args, kwargs = super().deconstruct() del kwargs['max_length'] return name, path, args, kwargs def get_internal_type(self): return "UUIDField" def get_prep_value(self, value): value = super().get_prep_value(value) return self.to_python(value) def get_db_prep_value(self, value, connection, prepared=False): if value is None: return None if not isinstance(value, uuid.UUID): value = self.to_python(value) if connection.features.has_native_uuid_field: return value return value.hex def to_python(self, value): if value is not None and not isinstance(value, uuid.UUID): input_form = 'int' if isinstance(value, int) else 'hex' try: return uuid.UUID(**{input_form: value}) except (AttributeError, ValueError): raise exceptions.ValidationError( self.error_messages['invalid'], code='invalid', params={'value': value}, ) return value def formfield(self, **kwargs): return super().formfield(**{ 'form_class': forms.UUIDField, **kwargs, }) class AutoFieldMixin: db_returning = True def __init__(self, *args, **kwargs): kwargs['blank'] = True super().__init__(*args, **kwargs) def check(self, **kwargs): return [ *super().check(**kwargs), *self._check_primary_key(), ] def _check_primary_key(self): if not self.primary_key: return [ checks.Error( 'AutoFields must set primary_key=True.', obj=self, id='fields.E100', ), ] else: return [] def deconstruct(self): name, path, args, kwargs = super().deconstruct() del kwargs['blank'] kwargs['primary_key'] = True return name, path, args, kwargs def validate(self, value, model_instance): pass def get_db_prep_value(self, value, connection, prepared=False): if not prepared: value = self.get_prep_value(value) value = connection.ops.validate_autopk_value(value) return value def contribute_to_class(self, cls, name, **kwargs): assert not cls._meta.auto_field, ( "Model %s can't have more than one auto-generated field." % cls._meta.label ) super().contribute_to_class(cls, name, **kwargs) cls._meta.auto_field = self def formfield(self, **kwargs): return None class AutoFieldMeta(type): """ Metaclass to maintain backward inheritance compatibility for AutoField. It is intended that AutoFieldMixin become public API when it is possible to create a non-integer automatically-generated field using column defaults stored in the database. In many areas Django also relies on using isinstance() to check for an automatically-generated field as a subclass of AutoField. A new flag needs to be implemented on Field to be used instead. When these issues have been addressed, this metaclass could be used to deprecate inheritance from AutoField and use of isinstance() with AutoField for detecting automatically-generated fields. """ @property def _subclasses(self): return (BigAutoField, SmallAutoField) def __instancecheck__(self, instance): return isinstance(instance, self._subclasses) or super().__instancecheck__(instance) def __subclasscheck__(self, subclass): return subclass in self._subclasses or super().__subclasscheck__(subclass) class AutoField(AutoFieldMixin, IntegerField, metaclass=AutoFieldMeta): def get_internal_type(self): return 'AutoField' def rel_db_type(self, connection): return IntegerField().db_type(connection=connection) class BigAutoField(AutoFieldMixin, BigIntegerField): def get_internal_type(self): return 'BigAutoField' def rel_db_type(self, connection): return BigIntegerField().db_type(connection=connection) class SmallAutoField(AutoFieldMixin, SmallIntegerField): def get_internal_type(self): return 'SmallAutoField' def rel_db_type(self, connection): return SmallIntegerField().db_type(connection=connection)
the-stack_0_14623
data = ( 'jjwaels', # 0x00 'jjwaelt', # 0x01 'jjwaelp', # 0x02 'jjwaelh', # 0x03 'jjwaem', # 0x04 'jjwaeb', # 0x05 'jjwaebs', # 0x06 'jjwaes', # 0x07 'jjwaess', # 0x08 'jjwaeng', # 0x09 'jjwaej', # 0x0a 'jjwaec', # 0x0b 'jjwaek', # 0x0c 'jjwaet', # 0x0d 'jjwaep', # 0x0e 'jjwaeh', # 0x0f 'jjoe', # 0x10 'jjoeg', # 0x11 'jjoegg', # 0x12 'jjoegs', # 0x13 'jjoen', # 0x14 'jjoenj', # 0x15 'jjoenh', # 0x16 'jjoed', # 0x17 'jjoel', # 0x18 'jjoelg', # 0x19 'jjoelm', # 0x1a 'jjoelb', # 0x1b 'jjoels', # 0x1c 'jjoelt', # 0x1d 'jjoelp', # 0x1e 'jjoelh', # 0x1f 'jjoem', # 0x20 'jjoeb', # 0x21 'jjoebs', # 0x22 'jjoes', # 0x23 'jjoess', # 0x24 'jjoeng', # 0x25 'jjoej', # 0x26 'jjoec', # 0x27 'jjoek', # 0x28 'jjoet', # 0x29 'jjoep', # 0x2a 'jjoeh', # 0x2b 'jjyo', # 0x2c 'jjyog', # 0x2d 'jjyogg', # 0x2e 'jjyogs', # 0x2f 'jjyon', # 0x30 'jjyonj', # 0x31 'jjyonh', # 0x32 'jjyod', # 0x33 'jjyol', # 0x34 'jjyolg', # 0x35 'jjyolm', # 0x36 'jjyolb', # 0x37 'jjyols', # 0x38 'jjyolt', # 0x39 'jjyolp', # 0x3a 'jjyolh', # 0x3b 'jjyom', # 0x3c 'jjyob', # 0x3d 'jjyobs', # 0x3e 'jjyos', # 0x3f 'jjyoss', # 0x40 'jjyong', # 0x41 'jjyoj', # 0x42 'jjyoc', # 0x43 'jjyok', # 0x44 'jjyot', # 0x45 'jjyop', # 0x46 'jjyoh', # 0x47 'jju', # 0x48 'jjug', # 0x49 'jjugg', # 0x4a 'jjugs', # 0x4b 'jjun', # 0x4c 'jjunj', # 0x4d 'jjunh', # 0x4e 'jjud', # 0x4f 'jjul', # 0x50 'jjulg', # 0x51 'jjulm', # 0x52 'jjulb', # 0x53 'jjuls', # 0x54 'jjult', # 0x55 'jjulp', # 0x56 'jjulh', # 0x57 'jjum', # 0x58 'jjub', # 0x59 'jjubs', # 0x5a 'jjus', # 0x5b 'jjuss', # 0x5c 'jjung', # 0x5d 'jjuj', # 0x5e 'jjuc', # 0x5f 'jjuk', # 0x60 'jjut', # 0x61 'jjup', # 0x62 'jjuh', # 0x63 'jjweo', # 0x64 'jjweog', # 0x65 'jjweogg', # 0x66 'jjweogs', # 0x67 'jjweon', # 0x68 'jjweonj', # 0x69 'jjweonh', # 0x6a 'jjweod', # 0x6b 'jjweol', # 0x6c 'jjweolg', # 0x6d 'jjweolm', # 0x6e 'jjweolb', # 0x6f 'jjweols', # 0x70 'jjweolt', # 0x71 'jjweolp', # 0x72 'jjweolh', # 0x73 'jjweom', # 0x74 'jjweob', # 0x75 'jjweobs', # 0x76 'jjweos', # 0x77 'jjweoss', # 0x78 'jjweong', # 0x79 'jjweoj', # 0x7a 'jjweoc', # 0x7b 'jjweok', # 0x7c 'jjweot', # 0x7d 'jjweop', # 0x7e 'jjweoh', # 0x7f 'jjwe', # 0x80 'jjweg', # 0x81 'jjwegg', # 0x82 'jjwegs', # 0x83 'jjwen', # 0x84 'jjwenj', # 0x85 'jjwenh', # 0x86 'jjwed', # 0x87 'jjwel', # 0x88 'jjwelg', # 0x89 'jjwelm', # 0x8a 'jjwelb', # 0x8b 'jjwels', # 0x8c 'jjwelt', # 0x8d 'jjwelp', # 0x8e 'jjwelh', # 0x8f 'jjwem', # 0x90 'jjweb', # 0x91 'jjwebs', # 0x92 'jjwes', # 0x93 'jjwess', # 0x94 'jjweng', # 0x95 'jjwej', # 0x96 'jjwec', # 0x97 'jjwek', # 0x98 'jjwet', # 0x99 'jjwep', # 0x9a 'jjweh', # 0x9b 'jjwi', # 0x9c 'jjwig', # 0x9d 'jjwigg', # 0x9e 'jjwigs', # 0x9f 'jjwin', # 0xa0 'jjwinj', # 0xa1 'jjwinh', # 0xa2 'jjwid', # 0xa3 'jjwil', # 0xa4 'jjwilg', # 0xa5 'jjwilm', # 0xa6 'jjwilb', # 0xa7 'jjwils', # 0xa8 'jjwilt', # 0xa9 'jjwilp', # 0xaa 'jjwilh', # 0xab 'jjwim', # 0xac 'jjwib', # 0xad 'jjwibs', # 0xae 'jjwis', # 0xaf 'jjwiss', # 0xb0 'jjwing', # 0xb1 'jjwij', # 0xb2 'jjwic', # 0xb3 'jjwik', # 0xb4 'jjwit', # 0xb5 'jjwip', # 0xb6 'jjwih', # 0xb7 'jjyu', # 0xb8 'jjyug', # 0xb9 'jjyugg', # 0xba 'jjyugs', # 0xbb 'jjyun', # 0xbc 'jjyunj', # 0xbd 'jjyunh', # 0xbe 'jjyud', # 0xbf 'jjyul', # 0xc0 'jjyulg', # 0xc1 'jjyulm', # 0xc2 'jjyulb', # 0xc3 'jjyuls', # 0xc4 'jjyult', # 0xc5 'jjyulp', # 0xc6 'jjyulh', # 0xc7 'jjyum', # 0xc8 'jjyub', # 0xc9 'jjyubs', # 0xca 'jjyus', # 0xcb 'jjyuss', # 0xcc 'jjyung', # 0xcd 'jjyuj', # 0xce 'jjyuc', # 0xcf 'jjyuk', # 0xd0 'jjyut', # 0xd1 'jjyup', # 0xd2 'jjyuh', # 0xd3 'jjeu', # 0xd4 'jjeug', # 0xd5 'jjeugg', # 0xd6 'jjeugs', # 0xd7 'jjeun', # 0xd8 'jjeunj', # 0xd9 'jjeunh', # 0xda 'jjeud', # 0xdb 'jjeul', # 0xdc 'jjeulg', # 0xdd 'jjeulm', # 0xde 'jjeulb', # 0xdf 'jjeuls', # 0xe0 'jjeult', # 0xe1 'jjeulp', # 0xe2 'jjeulh', # 0xe3 'jjeum', # 0xe4 'jjeub', # 0xe5 'jjeubs', # 0xe6 'jjeus', # 0xe7 'jjeuss', # 0xe8 'jjeung', # 0xe9 'jjeuj', # 0xea 'jjeuc', # 0xeb 'jjeuk', # 0xec 'jjeut', # 0xed 'jjeup', # 0xee 'jjeuh', # 0xef 'jjyi', # 0xf0 'jjyig', # 0xf1 'jjyigg', # 0xf2 'jjyigs', # 0xf3 'jjyin', # 0xf4 'jjyinj', # 0xf5 'jjyinh', # 0xf6 'jjyid', # 0xf7 'jjyil', # 0xf8 'jjyilg', # 0xf9 'jjyilm', # 0xfa 'jjyilb', # 0xfb 'jjyils', # 0xfc 'jjyilt', # 0xfd 'jjyilp', # 0xfe 'jjyilh', # 0xff )
the-stack_0_14624
import matplotlib.pyplot as plt import numpy as np import pandas as pd from matplotlib.ticker import MultipleLocator from mpl_toolkits.mplot3d import Axes3D import hanshu proapp=pd.read_excel("C:\\Users\\eric\\Desktop\\月报数据\\月报数据.xlsx",'省公司每月检测缺陷密度') proapp0=hanshu.zyzh(proapp) print(proapp0) fig = plt.figure(5) ax=fig.add_subplot(1,1,1,projection='3d') #绘制三维图 x=proapp['org_id'] y=proapp['yue'] #获取x轴数据,y轴数据 z=proapp['rat'] #获取z轴数据 # ax.plot_surface(x,y,z,rstride=2,cstride=1,cmap=plt.cm.coolwarm,alpha=0.8) #绘制三维图表面 ax.set_xlabel('x-name') #x轴名称 ax.set_ylabel('y-name') #y轴名称 ax.set_zlabel('z-name') #z轴名称 plt.savefig('12.png',dpi=400,bbox_inches='tight') plt.show()
the-stack_0_14625
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.4' # jupytext_version: 1.1.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # s_dyn_principal_component_var [<img src="https://www.arpm.co/lab/icons/icon_permalink.png" width=30 height=30 style="display: inline;">](https://www.arpm.co/lab/redirect.php?code=s_dyn_principal_component_var&codeLang=Python) # For details, see [here](https://www.arpm.co/lab/redirect.php?permalink=eb-dyn-pc-var). import numpy as np import matplotlib.pyplot as plt from matplotlib import gridspec from arpym.statistics import simulate_var1, simulate_normal, multi_r2 from arpym.tools import transpose_square_root, add_logo # ## [Input parameters](https://www.arpm.co/lab/redirect.php?permalink=s_dyn_principal_component_var-parameters) n_ = 2 # number of target variables k_ = 1 # number of factors t_ = int(1e4) # length of VAR(1) process j_ = int(1e2) # number of scenarios delta_omega = 1e-3 sigma2 = np.eye(n_) # scale matrix # ## [Step 0](https://www.arpm.co/lab/redirect.php?permalink=s_dyn_principal_component_var-implementation-step00): Setup parameters # + t_vec = np.arange(t_) tau_vec = np.arange(-j_, j_+1) omega_vec = np.arange(-np.pi, np.pi, delta_omega) m_ = len(omega_vec) gamma = (2 * np.random.rand(4) - 1) * 0.99 theta = gamma * np.pi / 2 b = np.array([[np.sin(theta[0]), 0], [np.sin(theta[3])*np.sin(theta[2]), np.sin(theta[3])*np.cos(theta[2])]]) mu_epsi = np.zeros(n_) s_1 = np.cos(theta[0]) s_2 = np.cos(theta[3]) rho = np.sin(theta[1]) sigma2_epsi = np.array([[s_1**2, rho*s_1*s_2], [rho*s_1*s_2, s_2**2]]) # - # ## [Step 1](https://www.arpm.co/lab/redirect.php?permalink=s_dyn_principal_component_var-implementation-step01): Simulate VAR(1) process # + mu_inf = np.linalg.solve(np.eye(n_) - b, mu_epsi) sigma2_inf = np.linalg.solve(np.eye(n_**2) - np.kron(b, b), sigma2.reshape(n_**2, 1)).reshape(n_, n_) x_tnow = simulate_normal(mu_inf, sigma2_inf, 1).reshape(n_) x = simulate_var1(x_tnow, b, mu_epsi, sigma2_epsi, t_, j_=1).squeeze() mu_x = np.linalg.solve((np.eye(n_) - b), mu_epsi) sigma2_x = np.linalg.solve(np.eye(n_ ** 2) - np.kron(b, b), sigma2_epsi.reshape(n_ ** 2, 1)).reshape(n_, n_) # - # ## [Step 2](https://www.arpm.co/lab/redirect.php?permalink=s_dyn_principal_component_var-implementation-step02): Compute spectral density # + ktilde_x = np.zeros((m_, n_, n_), dtype=complex) sigma_epsi = transpose_square_root(sigma2_epsi) for m in range(m_): ktilde_x_temp = np.linalg.solve(np.eye(n_, dtype=complex) - np.exp(-omega_vec[m]*1j) * b, sigma_epsi) ktilde_x[m, :, :] = ktilde_x_temp @ ktilde_x_temp.conj().T # - # ## [Step 3](https://www.arpm.co/lab/redirect.php?permalink=s_dyn_principal_component_var-implementation-step03): Principal components decomposition # + lam, e = np.linalg.eigh(ktilde_x) lam_k = lam[:, -k_:][:, ::-1] e_k = e[:, :, -k_:][:, :, ::-1] sigma = transpose_square_root(sigma2) beta_tilde_f = np.einsum('ij,ljk->lik', sigma, e_k) gamma_tilde_f = np.einsum('ijk,kl->ijl', e_k.conj().transpose((0, 2, 1)), np.linalg.inv(sigma)) # - # ## [Step 4](https://www.arpm.co/lab/redirect.php?permalink=s_dyn_principal_component_var-implementation-step04): Computation of the filter h # + h_tilde_f = np.einsum('ijk,ikl->ijl', beta_tilde_f, gamma_tilde_f) coef = np.exp(1j * np.outer(tau_vec, omega_vec)) h_f = np.real(np.tensordot(coef, h_tilde_f, axes=(1, 0)) * delta_omega / (2 * np.pi)) gamma_f = np.tensordot(coef, gamma_tilde_f, axes=(1, 0)) * \ delta_omega / (2 * np.pi) alpha_f = (np.eye(n_) - np.sum(h_f, axis=0)) @ mu_x # - # ## [Step 5](https://www.arpm.co/lab/redirect.php?permalink=s_dyn_principal_component_var-implementation-step05): Compute the spectral density of predicted process ktilde_x_pc_bar = np.einsum('ijk,ilk->ijl', np.einsum('ijk,ikl->ijl', h_tilde_f, ktilde_x), h_tilde_f.conj()) # ## [Step 6](https://www.arpm.co/lab/redirect.php?permalink=s_dyn_principal_component_var-implementation-step06): Compute the principal components predicted process # + t_vec_pc = t_vec[tau_vec[-1]:-tau_vec[-1]] t_pc = t_vec_pc.shape[0] x_pc_bar = np.zeros((t_pc, n_), dtype=complex) z_pc = np.zeros((t_pc, k_), dtype=complex) for t in range(t_pc): x_tau = x[t_vec_pc[t] + tau_vec, :][::-1, :] x_pc_bar[t, :] = np.einsum('ijk,ik->j', h_f, x_tau) + alpha_f z_pc[t, :] = np.einsum('ijk,ik->j', gamma_f, x_tau) x_pc_bar = np.real(x_pc_bar) z_pc = np.real(z_pc) # - # ## [Step 7](https://www.arpm.co/lab/redirect.php?permalink=s_dyn_principal_component_var-implementation-step07): update times of original process x x = x[t_vec_pc, :] # ## [Step 8](https://www.arpm.co/lab/redirect.php?permalink=s_dyn_principal_component_var-implementation-step08): Compute r-squared u = x - x_pc_bar sigma2_u = np.einsum('ijk,ilk->ijl', np.einsum('ijk,ikl->ijl', np.eye(n_) - h_tilde_f, ktilde_x), (np.eye(n_) - h_tilde_f).conj()) sigma2_u = np.sum(np.real(sigma2_u), axis=0) * delta_omega / (2 * np.pi) r_2 = multi_r2(sigma2_u, sigma2_x, sigma2) # ## Plots # + plt.style.use('arpm') t_plot = t_vec_pc[1:150] xlim = [t_plot[0], t_plot[-1]] ylim = [-4, 4] fig1, axes = plt.subplots(1, 2) axes[0].plot(t_plot, x[t_plot, 0], 'b') axes[0].plot(t_plot, x[t_plot, 0], 'r--') axes[0].set_xlabel('$t$') axes[0].set_ylabel('$x_1$') axes[0].set_xlim(xlim) axes[0].set_ylim(ylim) axes[0].legend(['Process', 'Predicted process']) axes[1].plot(t_plot, x[t_plot, 1], 'b') axes[1].plot(t_plot, x[t_plot, 1], 'r--') axes[1].set_xlabel('$t$') axes[1].set_ylabel('$x_2$') axes[1].set_xlim(xlim) axes[1].set_ylim(ylim) axes[1].legend(['Process', 'Predicted process']) add_logo(fig1, size_frac_x=1/8) plt.tight_layout() fig2 = plt.figure() gs = gridspec.GridSpec(1, 3, width_ratios=[1, 3, 1]) ax0 = plt.subplot(gs[0]) ax0.plot(ylim, ylim, 'k') ax0.plot(x[t_plot, 0], x_pc_bar[t_plot, 0], 'r.') ax0.set_xlabel('$x_1$') ax0.set_ylabel('$\overline{x}_{1}^{pc}$') ax0.set_xlim(ylim) ax0.set_ylim(ylim) ax1 = plt.subplot(gs[1]) ax1.plot(t_plot, z_pc[t_plot, 0], 'b') ax1.set_xlabel('$t$') ax1.set_ylabel('$Z^{pc}$') ax1.set_xlim(xlim) ax2 = plt.subplot(gs[2]) ax2.plot(ylim, ylim, 'k') ax2.plot(x[t_plot, 1], x_pc_bar[t_plot, 1], 'r.') ax2.set_xlabel('$x_2$') ax2.set_ylabel('$\overline{x}_{2}^{pc}$') ax2.set_xlim(ylim) ax1.set_ylim(ylim) add_logo(fig2, size_frac_x=1/4) plt.tight_layout() fig3, axes = plt.subplots(2, 4) for i in range(2): for j in range(2): axes[i, j].plot(omega_vec, np.real(ktilde_x[:, i, j]), 'b') axes[i, j].plot(omega_vec, np.imag(ktilde_x[:, i, j]), 'r') axes[i, j].set_xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi]) axes[i, j].set_xticklabels(['$-\pi$', '$-\pi/2$', '$0$', '$\pi$', '$\pi/2$']) axes[i, j].set_ylabel(r'$[\tilde{k}_x(\omega)]_{'+str(i+1)+str(j+1)+'}$') for j in range(2): axes[i, j+2].plot(omega_vec, np.real(ktilde_x_pc_bar[:, i, j]), 'b') axes[i, j+2].plot(omega_vec, np.imag(ktilde_x_pc_bar[:, i, j]), 'r') axes[i, j+2].set_xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi]) axes[i, j+2].set_xticklabels(['$-\pi$', '$-\pi/2$', '$0$', '$\pi$', '$\pi/2$']) axes[i, j+2].set_ylabel(r'$[\tilde{k}_{\bar{x}}(\omega)]^{pc}_{'+str(i+1)+str(j+1)+'}$') add_logo(fig3, size_frac_x=1/4, location=1) plt.tight_layout()
the-stack_0_14630
# Something, something words with digit N times import re pattern_word = re.compile(r'\b\w+\b') pattern_sentence = re.compile(r'^[A-Z].*[\.\!\?]$') criteria = list(input()) letter, times = criteria[0], int(criteria[1]) result = [] while True: user_input = input() if user_input == 'end': break sentence = re.search(pattern_sentence, user_input) if sentence is not None: words = re.finditer(pattern_word, sentence.group()) for word in words: cur_word = word.group() letter_count = cur_word.count(letter) if letter_count == times: result.append(cur_word) print(*result, sep = ', ')
the-stack_0_14631
# ---------------------------------------------------------------------------- # CLASSES: nightly # # Test Case: queriesOverTime.py # # Tests: queries - Database # # Defect ID: none # # Programmer: Kathleen Bonnell # Date: March 31, 2004 # # Modifications: # # Hank Childs, Tue Apr 13 13:00:15 PDT 2004 # Rename surface area query. # # Kathleen Bonnell, Tue Apr 20 09:42:30 PDT 2004 # Added TestFilledBoundary. # # Kathleen Bonnell, Tue Apr 27 12:10:44 PDT 2004 # Added TestExpressions, TestOperators. # # Kathleen Bonnell, Thu Jun 24 09:49:35 PDT 2004 # Added TestTransientVariable. # # Kathleen Bonnell, Wed Jul 21 16:51:31 PDT 2004 # Added TestSpecifyTimeQueryWindow. # # Kathleen Bonnell, Wed Sep 8 10:53:58 PDT 2004 # Renamed 'WorldPick' as 'Pick'. # # Kathleen Bonnell, Mon Dec 20 15:54:04 PST 2004 # Changed 'Variable by Node' to 'PickByNode'. # # Kathleen Bonnell, Thu Jan 6 11:06:29 PST 2005 # Added TestTimeVaryingSIL. # # Kathleen Bonnell, Wed Mar 16 11:13:40 PST 2005 # Added TestQueryAfterQueryOverTime. # # Kathleen Bonnell, Wed Jul 6 16:21:34 PDT 2005 # Added TestMili. # # Kathleen Bonnell, Thu Nov 10 08:21:54 PST 2005 # Added TrajectoryByZone to TestMili. # # Mark C. Miller, Wed Jan 20 07:37:11 PST 2010 # Added ability to swtich between Silo's HDF5 and PDB data. # # Cyrus Harrison, Fri Feb 5 09:27:37 PST 2010 # Turn off color cycling to avoid possible propagation of error from # one failed test to several. # # Kathleen Bonnell, Thu Mar 3 11:47:09 PST 2011 # Added MultiVarTimePick tests. # # Kathleen Biagas, Thu Jul 14 10:44:55 PDT 2011 # Use named arguments. # # Alister Maguire, Tue Oct 17 16:54:48 PDT 2017 # Added TestPickRangeTimeQuery # # Alister Maguire, Wed May 9 10:13:26 PDT 2018 # Added TestReturnValue. # # Alister Maguire, Wed May 30 14:16:28 PDT 2018 # Added tests for performing pick ranges over time with and # without plotting and returning the curves. # # Alister Maguire, Wed May 22 08:49:30 PDT 2019 # Updated mili tests to reflect new plugin changes. # # Alister Maguire, Tue Oct 1 11:48:15 MST 2019 # Make sure to set use_actual_data to true when we want # to use data from the pipeline output. # # Alister Maguire, Fri Oct 11 13:12:36 PDT 2019 # Added TestDirectDatabaseRoute. I also updated several tests to # use actual data so that they continue to test the old QOT route. # # Kathleen Biagas, Thu Jan 30 13:37:50 MST 2020 # Added TestOperatorCreatedVar. (github bugs #2842, #3489). # # Alister Maguire, Tue Feb 25 13:46:24 PST 2020 # Added tests for handling vectors in the direct database route. # # Alister Maguire, Mon Mar 9 15:16:36 PDT 2020 # I've removed the use_actual_data flag for Pick queries as this # is now handled internally. # # ---------------------------------------------------------------------------- RequiredDatabasePlugin(("PDB", "Mili", "SAMRAI")) def InitAnnotation(): # Turn off most annotations a = AnnotationAttributes() a.axes2D.visible = 1 a.axes2D.xAxis.label.visible = 1 a.axes2D.yAxis.label.visible = 1 a.axes2D.xAxis.title.visible = 1 a.axes2D.yAxis.title.visible = 1 a.axes3D.triadFlag = 0 a.axes3D.bboxFlag = 0 a.userInfoFlag = 0 a.databaseInfoFlag = 0 a.legendInfoFlag = 0 a.backgroundMode = a.Solid a.foregroundColor = (0, 0, 0, 255) a.backgroundColor = (255, 255, 255, 255) SetAnnotationAttributes(a) def SetCurvePlotDefaults(): # Disable Color Cycling, default to a blue curve. catts = CurveAttributes() catts.lineWidth = 0 catts.color = (0, 0, 255, 255) catts.showLabels = 1 catts.designator = "" catts.showPoints = 0 catts.showLegend = 1 catts.cycleColors = 0 catts.renderMode = catts.RenderAsLines SetDefaultPlotOptions(catts) def TestAllTimeQueries(): OpenDatabase(silo_data_path("wave.visit")) AddPlot("Pseudocolor", "pressure") DrawPlots() # Do some database queries. QueryOverTime("3D surface area") SetActiveWindow(2) InitAnnotation() Test("AllTimeQueries_01") DeleteAllPlots() SetActiveWindow(1) QueryOverTime("Volume") SetActiveWindow(2); Test("AllTimeQueries_02") DeleteAllPlots() SetActiveWindow(1) QueryOverTime("Min") SetActiveWindow(2); Test("AllTimeQueries_03") DeleteAllPlots() SetActiveWindow(1) QueryOverTime("Max") SetActiveWindow(2); Test("AllTimeQueries_04") DeleteAllPlots() SetActiveWindow(1) QueryOverTime("Variable Sum") SetActiveWindow(2); Test("AllTimeQueries_05") DeleteAllPlots() SetActiveWindow(1) QueryOverTime("Weighted Variable Sum") SetActiveWindow(2); Test("AllTimeQueries_06") DeleteAllPlots() SetActiveWindow(1) pa = GetPickAttributes() pa.doTimeCurve = 1 pa.timePreserveCoord = 0 SetPickAttributes(pa) PickByNode(15947) # reset some defaults pa.doTimeCurve = 0 pa.timePreserveCoord = 1 SetPickAttributes(pa) SetActiveWindow(2); Test("AllTimeQueries_07") # delete window 2 DeleteWindow() # remove plots from window 1 DeleteAllPlots() def TestFilledBoundary(): # bug '4708 OpenDatabase(silo_data_path("wave.visit")) AddPlot("FilledBoundary", "Material") DrawPlots() TurnMaterialsOff(("1 barrier", "2 water")) SetActiveWindow(1) QueryOverTime("3D surface area") SetActiveWindow(2) InitAnnotation() Test("FBTimeQuery_01") DeleteAllPlots() SetActiveWindow(1) DeleteAllPlots() AddPlot("Pseudocolor", "pressure") DrawPlots() TurnMaterialsOff(("1 barrier", "2 water")) QueryOverTime("3D surface area") SetActiveWindow(2) Test("FBTimeQuery_02") # delete window 2 DeleteWindow() # remove plots from window 1 TurnMaterialsOn() DeleteAllPlots() def TestOperators(): # bug '4818 OpenDatabase(silo_data_path("wave*.silo database")) AddPlot("Pseudocolor", "pressure") AddOperator("Isovolume") iso = IsovolumeAttributes() iso.lbound = 0.1 iso.ubound = 1.0 SetOperatorOptions(iso) DrawPlots() SetActiveWindow(1) QueryOverTime("Volume", stride=10, use_actual_data=1) SetActiveWindow(2) InitAnnotation() Test("TimeQuery_ops_01") DeleteAllPlots() SetActiveWindow(1) DeleteAllPlots() AddPlot("Pseudocolor", "mesh_quality/jacobian") AddOperator("Slice") slice = SliceAttributes() slice.axisType = slice.Arbitrary slice.normal = (-0.689, -0.0416, 0.7233) slice.originType = slice.Point slice.originPoint = (2.0011, -0.4084, -1.1279) slice.upAxis = (-0.08584, 0.996007, -0.0245) slice.project2d = 1 SetOperatorOptions(slice) DrawPlots() QueryOverTime("2D area", stride=10, use_actual_data=1) SetActiveWindow(2) InitAnnotation() Test("TimeQuery_ops_02") # prepare for next test-set # delete plots from window 2 & l DeleteAllPlots() SetActiveWindow(1) DeleteAllPlots() def TestExpressions(): #bug '4784 OpenDatabase(data_path("pdb_test_data/dbA00.pdb")) AddPlot("Pseudocolor", "mesh/ireg") pa = PseudocolorAttributes() pa.minFlag = 1 pa.maxFlag = 1 pa.min = 1 pa.max = 4 SetPlotOptions(pa) DrawPlots() pt = (4., 3., 0.) pick = GetPickAttributes() pick.doTimeCurve = 1 SetPickAttributes(pick) Pick(pt) SetActiveWindow(2) InitAnnotation() Test("TimeQuery_expr_01") DeleteAllPlots() SetActiveWindow(1) DeleteAllPlots() # test a scalar expression OpenDatabase(silo_data_path("wave*.silo database")) DefineScalarExpression("p2", "pressure*pressure") AddPlot("Pseudocolor", "p2") DrawPlots() QueryOverTime("Variable Sum", stride=10) SetActiveWindow(2) Test("TimeQuery_expr_02") # prepare for next test-set # delete plots from window 2 & l DeleteAllPlots() SetActiveWindow(1) DeleteAllPlots() OpenDatabase(data_path("pdb_test_data/dbA00.pdb")) DefineScalarExpression("m", "matvf(material, 1)") AddPlot("Pseudocolor", "m") DrawPlots() QueryOverTime("Variable Sum") SetActiveWindow(2) Test("TimeQuery_expr_03") # prepare for next test-set # delete plots from window 2 & l DeleteAllPlots() SetActiveWindow(1) DeleteAllPlots() def TestTransientVariable(): #bug '4906 # Do what is necessary to get access to the transient variable, # because QueryOverTime requires an active drawn plot. db = silo_data_path("wave_tv*.silo database") OpenDatabase(db) SetTimeSliderState(17) ReOpenDatabase(db) AddPlot("Pseudocolor", "transient") DrawPlots() qt = GetQueryOverTimeAttributes() qt.timeType = qt.Timestep SetQueryOverTimeAttributes(qt) QueryOverTime("Variable Sum") SetActiveWindow(2) InitAnnotation() Test("TimeQuery_trans_01") DeleteAllPlots() SetActiveWindow(1) pick = GetPickAttributes() pick.doTimeCurve = 1 pick.timePreserveCoord = 0 SetPickAttributes(pick) PickByNode(327) pick.doTimeCurve = 0 pick.timePreserveCoord = 1 SetPickAttributes(pick) SetActiveWindow(2) InitAnnotation() Test("TimeQuery_trans_02") # Prepare for next test DeleteAllPlots() SetActiveWindow(1) DeleteAllPlots() def TestSpecifyTimeQueryWindow(): # bug '5163 OpenDatabase(silo_data_path("wave.visit")) AddPlot("Pseudocolor", "pressure") DrawPlots() qt = GetQueryOverTimeAttributes() qt.timeType = qt.Timestep SetQueryOverTimeAttributes(qt) QueryOverTime("3D surface area") SetActiveWindow(2) InitAnnotation() Test("SpecifyTimeQueryWindow_01") DeleteAllPlots() SetActiveWindow(1) TurnMaterialsOff(("1 barrier")) DrawPlots() qot = GetQueryOverTimeAttributes() qot.createWindow = 0 qot.windowId = 3 SetQueryOverTimeAttributes(qot) QueryOverTime("3D surface area") SetActiveWindow(3) InitAnnotation() Test("SpecifyTimeQueryWindow_02") DeleteAllPlots() SetActiveWindow(1) TurnMaterialsOff(("2 water")) DrawPlots() qot.windowId = 2 SetQueryOverTimeAttributes(qot) QueryOverTime("3D surface area") SetActiveWindow(2) InitAnnotation() Test("SpecifyTimeQueryWindow_03") # Prepare for next test DeleteAllPlots() DeleteWindow() SetActiveWindow(3) DeleteWindow() SetActiveWindow(1) DeleteAllPlots() def TestTimeVaryingSIL(): #bug '5473 OpenDatabase(data_path("samrai_test_data/sil_changes/dumps.visit")) cfileName = "./temp.curve" curveFile = open(cfileName, "wt") curveFile.write("#3D surface area\n") nframes = TimeSliderGetNStates() for i in range(nframes): Query("3D surface area") val = GetQueryOutputValue() curveFile.write("%g %g\n" % (i, val)) TimeSliderNextState() curveFile.close() AddWindow() SetActiveWindow(2) DeleteAllPlots() OpenDatabase(cfileName) AddPlot("Curve", "3D surface area") DrawPlots() SetActiveWindow(1) # Go ahead and use default plot for now. qt = GetQueryOverTimeAttributes() qt.timeType = qt.Timestep qt.createWindow = 0 qt.windowId = 2 SetQueryOverTimeAttributes(qt) QueryOverTime("3D surface area") SetActiveWindow(2) InitAnnotation() cv = GetViewCurve(); cv.domainCoords = (-0.534115, 10.5341) cv.rangeCoords = (4029.87, 5856.13) SetViewCurve(cv) SetActivePlots((0, 1)) c = CurveAttributes() c.showPoints = 1 SetPlotOptions(c) Query("Area Between Curves") s = GetQueryOutputString() text = CreateAnnotationObject("Text2D") text.text = s text.height = 0.02 text.position = (0.55, 0.4) Test("TimeQuery_sil_01") text.Delete() os.unlink(cfileName) # Prepare for next test DeleteAllPlots() SetActiveWindow(2) DeleteWindow() SetActiveWindow(1) DeleteAllPlots() def TestQueryAfterQueryOverTime(): # bug '5823 OpenDatabase(silo_data_path("wave_tv.visit")) SetTimeSliderState(17) ReOpenDatabase(silo_data_path("wave_tv.visit")) AddPlot("Pseudocolor", "transient") DrawPlots() QueryOverTime("Volume") Query("Volume") s = GetQueryOutputString() QueryOverTime("Max") Query("Max") s = s + GetQueryOutputString() SetActiveWindow(2) DeleteAllPlots() SetActiveWindow(1) DeleteAllPlots() # bug '6042 OpenDatabase(silo_data_path("wave.visit")) AddPlot("Pseudocolor", "pressure") DrawPlots() TurnMaterialsOn() QueryOverTime("3D surface area", stride=10) SetActiveWindow(2) DeleteAllPlots() SetActiveWindow(1) Query("3D surface area") s = s + GetQueryOutputString() TestText("QueryAfterQueryOverTime", s) SetActiveWindow(2) DeleteAllPlots() SetActiveWindow(1) DeleteAllPlots() def TestMili(): # bug '6430 OpenDatabase(data_path("mili_test_data/single_proc/m_plot.mili")) AddPlot("Pseudocolor", "Primal/node/nodvel/vz") DrawPlots() ResetQueryOverTimeAttributes() QueryOverTime("Volume") SetActiveWindow(2) ResetView() InitAnnotation() Test("TimeQuery_mili_01") DeleteAllPlots() SetActiveWindow(1) QueryOverTime("Max") SetActiveWindow(2) InitAnnotation() Test("TimeQuery_mili_02") DeleteAllPlots() SetActiveWindow(1) p = GetPickAttributes() p.doTimeCurve = 1 p.timePreserveCoord = 0 SetPickAttributes(p) NodePick(122, 161) p.doTimeCurve = 0 SetPickAttributes(p) SetActiveWindow(2) InitAnnotation() Test("TimeQuery_mili_03") DeleteAllPlots() SetActiveWindow(1) qvars = ("Primal/shell/edv1", "Primal/shell/edv2") QueryOverTime("TrajectoryByZone", element=242, vars=qvars) SetActiveWindow(2) ResetView() InitAnnotation() Test("TimeQuery_mili_04") DeleteAllPlots() SetActiveWindow(1) DeleteAllPlots() def MultiVarTimePick(): OpenDatabase(silo_data_path("wave.visit")) AddPlot("Pseudocolor", "pressure") DrawPlots() pa = GetPickAttributes() pa.doTimeCurve = 1 pa.timeCurveType = pa.Single_Y_Axis SetPickAttributes(pa) vars =("pressure", "v", "direction_magnitude") PickByNode(8837, vars) SetActiveWindow(2); InitAnnotation() Test("TimePick_MultiVar_01") DeleteAllPlots() SetActiveWindow(1) pa.timeCurveType = pa.Multiple_Y_Axes SetPickAttributes(pa) PickByNode(8837, vars) SetActiveWindow(2); Test("TimePick_MultiVar_02") DeleteAllPlots() # remove plots from window 1 SetActiveWindow(1) DeleteAllPlots() OpenDatabase(data_path("mili_test_data/single_proc/m_plot.mili")) AddPlot("Pseudocolor", "Primal/shell/inteng") DrawPlots() pa.timePreserveCoord = 0 pa.timeCurveType = pa.Single_Y_Axis SetPickAttributes(pa) vars = ("default", "Primal/shell/normal_magnitude") PickByZone(233, vars) SetActiveWindow(2); Test("TimePick_MultiVar_03") DeleteAllPlots() SetActiveWindow(1) pa.timeCurveType = pa.Multiple_Y_Axes SetPickAttributes(pa) PickByZone(233, vars) SetActiveWindow(2); Test("TimePick_MultiVar_04") DeleteAllPlots() SetActiveWindow(1) DeleteAllPlots() def TestPickRangeTimeQuery(): OpenDatabase(silo_data_path("wave_tv.visit")) SetTimeSliderState(17) AddPlot("Pseudocolor", "v") DrawPlots() pickAtts = GetPickAttributes() pickAtts.doTimeCurve = 0 pickAtts.variables = ("default", "v") pickAtts.timeCurveType = pickAtts.Single_Y_Axis SetPickAttributes(pickAtts) # # Return the curves without plotting, and show # highlights. # pickAtts.showPickHighlight = 1 SetPickAttributes(pickAtts) options = {} options["pick_range"] = "100-105, 100, 1" options["do_time"] = 0 options["return_curves"] = 1 output_dict = PickByZone(options) s = str(output_dict) Test("TimePickRange_00") TestText("TimePickRangeDict_00",s) ClearPickPoints() # # Plot the curves, but don't return them. # pickAtts.showPickHighlight = 0 SetPickAttributes(pickAtts) options = {} options["pick_range"] = "100-105, 100, 1" options["do_time"] = 1 options["return_curves"] = 0 options["start_time"] = 10 options["end_time"] = 14 options["stride"] = 2 output_dict = PickByNode(options) s = str(output_dict) SetActiveWindow(2) Test("TimePickRange_01") TestText("TimePickRangeDict_01",s) ClearPickPoints() SetActiveWindow(1) # # Plot the curves, and return them. # pickAtts.showPickHighlight = 0 SetPickAttributes(pickAtts) options = {} options["pick_range"] = "100-105" options["do_time"] = 1 options["return_curves"] = 1 options["start_time"] = 20 options["end_time"] = 60 options["stride"] = 2 output_dict = PickByNode(options) s = str(output_dict) SetActiveWindow(2) Test("TimePickRange_02") TestText("TimePickRangeDict_02",s) SetActiveWindow(1) ClearPickPoints() DeleteAllPlots() ResetPickLetter() SetActiveWindow(1) ClearPickPoints() DeleteAllPlots() ResetPickLetter() def TestReturnValue(): # # There used to be a bug where the return value # from previous picks would propagate to the following # time query. Let's make sure this isn't re-introduced. # OpenDatabase(silo_data_path("wave.visit")) AddPlot("Pseudocolor", "v") DrawPlots() pickAtts = GetPickAttributes() pickAtts.doTimeCurve = 0 pickAtts.variables = ("default", "v") pickAtts.timeCurveType = pickAtts.Single_Y_Axis SetPickAttributes(pickAtts) time1 = NodePick(coord=(3, .5, 3), do_time=1, start_time=0, end_time=70) no_time = NodePick(coord=(2, .2, 2), do_time=0) time2 = NodePick(coord=(3, .5, 3), do_time=1, start_time=0, end_time=70) AssertEqual("Pick Updated", type(time1), type(time2)) ClearPickPoints() DeleteAllPlots() ResetPickLetter() def TestDirectDatabaseRoute(): # # Cleanup any plots that haven't been deleted yet. # SetActiveWindow(2) DeleteAllPlots() SetActiveWindow(1) DeleteAllPlots() OpenDatabase(data_path("mili_test_data/single_proc/d3samp6_10_longrun.plt.mili")) AddPlot("Pseudocolor", "Primal/Shared/edrate") DrawPlots() element = 116 domain = 0 element = 116 preserve = 0 start = 0 stride = 1 stop = 10000 vars = ("default") # # First, let's time the query. This hard to predict because of it being dependent # on the machine's architecture, but we can make an educated guess. The direct # route should take under a second, and the old route should take at least # 30 seconds. We'll give ourselves a threshold of 10 seconds to be safe. # import time thresh = 10 timer_start = time.time() PickByZone(curve_plot_type=0, vars=vars, do_time=1, domain=domain, element=element, preserve_coord=preserve, end_time=stop, start_time=start, stride=stride) timer_stop = time.time() res = timer_stop - timer_start AssertLTE("Timing Direct Database Query", res, thresh) SetActiveWindow(2) Test("Direct_Database_Route_00") DeleteAllPlots() SetActiveWindow(1) # # Like the original QOT, the direct route creates a clone, but this clone # differs in that its resulting dataset will NOT match the original dataset. # Let's make sure the active dataset is being updated to the old plot by # performing a new pick (not through time). # PickByZone(do_time=0, domain=domain, element=element) Test("Direct_Database_Route_01") # # Test basic range settings. # start = 100 stop = 900 stride = 10 PickByZone(curve_plot_type=0, vars=vars, do_time=1, domain=domain, element=element, preserve_coord=preserve, end_time=stop, start_time=start, stride=stride) stride = 1 start = 0 stop = 10000 SetActiveWindow(2) Test("Direct_Database_Route_02") DeleteAllPlots() SetActiveWindow(1) DeleteAllPlots() AddPlot("Pseudocolor", "Primal/node/nodacc/ax") DrawPlots() # This tests two things: # 1. Plotting a node pick curve. # 2. Using a direct route query on magnitude expression. # vars=("Primal/node/nodacc_magnitude") PickByNode(curve_plot_type=0, vars=vars, do_time=1, domain=domain, element=element, preserve_coord=preserve, end_time=stop, start_time=start, stride=stride) SetActiveWindow(2) Test("Direct_Database_Route_03") DeleteAllPlots() SetActiveWindow(1) DeleteAllPlots() OpenDatabase(data_path("mili_test_data/single_proc/m_plot.mili")) AddPlot("Pseudocolor", "Primal/brick/stress/sx") DrawPlots() # # Test plotting multiple variables at once. # element = 489 vars=("Primal/brick/stress/sz", "Primal/brick/stress/sx") PickByZone(curve_plot_type=0, vars=vars, do_time=1, domain=domain, element=element, preserve_coord=preserve, end_time=stop, start_time=start, stride=stride) SetActiveWindow(2) Test("Direct_Database_Route_04") DeleteAllPlots() SetActiveWindow(1) # # Testing the multi curve plot. # PickByZone(curve_plot_type=1, vars=vars, do_time=1, domain=domain, element=element, preserve_coord=preserve, end_time=stop, start_time=start, stride=stride) SetActiveWindow(2) Test("Direct_Database_Route_05") DeleteAllPlots() SetActiveWindow(1) # # Test multi-domain data. # DeleteAllPlots() OpenDatabase(data_path("mili_test_data/multi_proc/d3samp6.plt.mili")) AddPlot("Pseudocolor", "Primal/Shared/edrate") DrawPlots() domain = 1 element = 11 vars = ("default") PickByZone(curve_plot_type=0, vars=vars, do_time=1, domain=domain, element=element, preserve_coord=preserve, end_time=stop, start_time=start, stride=stride) SetActiveWindow(2) Test("Direct_Database_Route_06") DeleteAllPlots() SetActiveWindow(1) DeleteAllPlots() # # Now let's test a variable that is not defined on all # timesteps. # db = silo_data_path("wave_tv*.silo database") OpenDatabase(db) SetTimeSliderState(17) ReOpenDatabase(db) AddPlot("Pseudocolor", "transient") DrawPlots() pick = GetPickAttributes() pick.doTimeCurve = 1 pick.timePreserveCoord = 0 SetPickAttributes(pick) PickByNode(element=327) pick.doTimeCurve = 0 pick.timePreserveCoord = 1 SetPickAttributes(pick) SetActiveWindow(2) InitAnnotation() Test("Direct_Database_Route_07") DeleteAllPlots() SetActiveWindow(1) DeleteAllPlots() # # Next, let's test a vector plot. The vectors should be reduced # to their magnitudes. # AddPlot("Vector", "direction") DrawPlots() pick = GetPickAttributes() pick.doTimeCurve = 1 pick.timePreserveCoord = 0 SetPickAttributes(pick) PickByNode(element=10) SetActiveWindow(2) InitAnnotation() Test("Direct_Database_Route_08") DeleteAllPlots() SetActiveWindow(1) DeleteAllPlots() def TestOperatorCreatedVar(): OpenDatabase(silo_data_path("wave.visit")) DefineVectorExpression("normals", "cell_surface_normal(quadmesh)") AddPlot("Pseudocolor", "operators/Flux/quadmesh") fluxAtts = FluxAttributes() fluxAtts.flowField = "direction" SetOperatorOptions(fluxAtts) AddOperator("Slice") sliceAtts = SliceAttributes() sliceAtts.axisType = sliceAtts.Arbitrary sliceAtts.normal = (0, 1, 0) sliceAtts.originType = sliceAtts.Percent sliceAtts.originPercent = 50 sliceAtts.project2d = 0 SetOperatorOptions(sliceAtts) AddOperator("DeferExpression") deferAtts = DeferExpressionAttributes() deferAtts.exprs = ("normals") SetOperatorOptions(deferAtts) # we want slice before flux, so demote it DemoteOperator(1) DrawPlots() qt = GetQueryOverTimeAttributes() qt.timeType = qt.Cycle SetQueryOverTimeAttributes(qt) QueryOverTime("Weighted Variable Sum") SetActiveWindow(2) InitAnnotation() Test("OperatorCreatedVar_01") DeleteAllPlots() SetActiveWindow(1) DeleteAllPlots() DeleteExpression("normals") CloseDatabase(silo_data_path("wave.visit")) def TimeQueryMain(): TestAllTimeQueries() TestFilledBoundary() TestOperators() TestExpressions() TestTransientVariable() TestSpecifyTimeQueryWindow() TestTimeVaryingSIL() TestQueryAfterQueryOverTime() TestMili() MultiVarTimePick() TestPickRangeTimeQuery() TestReturnValue() TestDirectDatabaseRoute() TestOperatorCreatedVar() # main InitAnnotation() SetCurvePlotDefaults() TimeQueryMain() Exit()
the-stack_0_14633
from pydub import AudioSegment import requests import easygui # get the stuff for making the mp3 text = easygui.enterbox(msg='Enter the text for the spooky man to say.', title='Damon, I love you!', default='', strip=True) headers = { 'Connection': 'keep-alive', 'Accept': '*/*', 'Origin': 'https://fasthub.net', 'X-Requested-With': 'XMLHttpRequest', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.117 Safari/537.36', 'Content-Type': 'application/x-www-form-urlencoded', 'Sec-Fetch-Site': 'same-origin', 'Sec-Fetch-Mode': 'cors', 'Referer': 'https://fasthub.net/', 'Accept-Encoding': 'gzip, deflate, br', 'Accept-Language': 'en-US,en;q=0.9', } # fasthub.net macintalk voice whisper data = { 'text': text, 'lang': 'en-us en en-US', 'langTrans': 'en-us en en-US', 'voiceType': 'whisper', 'amplitude': '109', 'pitch': '51', 'speed': '80', 'repeat': '0' } response = requests.post('https://fasthub.net/plauder', headers=headers, data=data) mp3stop = response.text.split('#') mp3url = 'https://fasthub.net/speak/' + mp3stop[0] + '.mp3' mp3 = requests.get(mp3url, allow_redirects=True) open('mp3ofVoice.mp3', 'wb').write(mp3.content) #Put it together voice = easygui.fileopenbox(title='Choose speech audio') mp3fromweb = AudioSegment.from_mp3("mp3ofVoice.mp3") mp3voice = AudioSegment.from_mp3(voice) mp3guitar = AudioSegment.from_mp3("guitarwail.mp3") length=len(mp3voice) combined = mp3guitar.overlay(mp3voice, gain_during_overlay=-12) final = mp3fromweb + combined gaming = final.export(text+".mp3", format="mp3")
the-stack_0_14634
#!/usr/bin/env python # encoding: utf-8 # Modifications copyright Amazon.com, Inc. or its affiliates. # Carlos Rafael Giani, 2006 (dv) # Tamas Pal, 2007 (folti) # Nicolas Mercier, 2009 # Matt Clarkson, 2012 import os, sys, re, tempfile from waflib import Utils, Task, Logs, Options, Errors from waflib.Logs import debug, warn from waflib.Tools import c_preproc, ccroot, c, cxx, ar from waflib.Configure import conf from waflib.TaskGen import feature, after, after_method, before_method import waflib.Node # The compiler will issue a warning if some flags are specified more than once. # The command is constructed from subsets that may have conflicting flags # This list of lists contains all the set of flags that are made unique UNIQUE_FLAGS_LIST = [ ["/arch:IA32", "/arch:SSE", "/arch:SSE2", "/arch:AVX", "/arch:AVX2"], # code gen for arch ["/clr", "/clr:initialAppDomain", "/clr:noAssembly", "/clr:nostdlib", "/clr:pure", "/clr:safe"], # common language runtime ["/EHs", "/EHa", "/EHac", "/EHsc"], # exception handling ["/errorReport:none", "/errorReport:prompt", "/errorReport:queue", "/errorReport:send"], # report internal compiler errors ["/favor:blend", "/favor:ATOM", "/favor:AMD64", "/favor:INTEL64"], # optimize for arch ["/fp:precise", "/fp:except", "/fp:except-", "/fp:fast", "/fp:strict"], # floating point behavior ["/Gd", "/Gr", "/Gv", "/Gz"], # calling convention ["/GL", "/GL-"], # whole program optimization ["/GR", "/GR-"], # runtime type information ["/GS", "/GS-"], # buffer security checks ["/Gs", "/Gs0", "/Gs4096"], # control stack checking calls ["/Gw", "/Gw-"], # global data optimization ["/Gy", "/Gy-"], # enable function level linking ["/O1", "/O2", "/Od", "/Ox"], # optimization level ["/Ob0", "/Ob1", "/Ob2"], # inline expansion ["/Oi", "/Oi-"], # intrinsics ["/Os", "/Ot"], # favor small code/ fast code ["/Oy", "/Oy-"], # frame pointer omission ["/MD", "/MT", "/LD", "/MDd", "/MTd", "/LDd"], # runtime library ["/RTC1","/RTCc","/RTCs","/RTCu"], # runtime error checks ["/volatile","/volatile:iso", "/volatile:ms"], # volatile keyword handling ["/vd0", "/vd1", "/vd2"], # disable construction displacements ["/ZW", "/ZW:nostdlib"], # windows runtime compilation ["/sdl", "/sdl-"], # enable additional security checks ["/vmb", "/vmg"], # always declare a class before using a pointer to it ["/vmm", "/vms", "/vmv"], # inheritance of yet-to-be-defined classes ["/W0", "/W1", "/W2", "/W3", "/W4"], # error level ["/WX", "/WX-", "/WX:NO"], # treat warnings as errors ["/Z7", "/Zi", "/ZI"], # debug information format ["/Za", "/Ze"], # disable language extensions ["/Zc:forScope", "/Zc:forScope-"], # for loop scope conformance ["/Zc:wchar_t", "/Zc:wchar_t-"], # wchar_t maps to __wchar_t ["/Zc:auto", "/Zc:auto-"], # deduce variable type ["/Zc:trigraphs", "/Zc:trigraphs-"], # character substitutions if character isn't in charpage ["/Zc:rvalueCast", "/Zc:rvalueCast-"], # enforce type conversion rules ["/Zc:strictStrings", "/Zc:strictStrings-"], # disable string literal type conversion ["/Zc:inline", "/Zc:inline-"], # remove unreferenced comdat sections ["/Zp", "/Zp:1", "/Zp:2", "/Zp:4", "/Zp:8", "/Zp:16"] # struct member alignment ] # convert list of flags that must be unique to dictionary UNIQUE_FLAGS_DICT = {} for idx, flags in enumerate(UNIQUE_FLAGS_LIST): assert(isinstance(flags,list)) for flag in flags: UNIQUE_FLAGS_DICT[flag] = idx # all flags from the list have the same value, just using index as a dummy unique val def exec_mf(self): """ Create the manifest file """ env = self.env mtool = env['MT'] if not mtool: return 0 self.do_manifest = False outfile = self.outputs[0].abspath() manifest = None for out_node in self.outputs: if out_node.name.endswith('.manifest'): manifest = out_node.abspath() break if manifest is None: # Should never get here. If we do, it means the manifest file was # never added to the outputs list, thus we don't have a manifest file # to embed, so we just return. return 0 # embedding mode. Different for EXE's and DLL's. # see: http://msdn2.microsoft.com/en-us/library/ms235591(VS.80).aspx mode = '' if 'cprogram' in self.generator.features or 'cxxprogram' in self.generator.features: mode = '1' elif 'cshlib' in self.generator.features or 'cxxshlib' in self.generator.features: mode = '2' debug('msvc: embedding manifest in mode %r' % mode) lst = [] lst.append(env['MT']) lst.extend(Utils.to_list(env['MTFLAGS'])) lst.extend(['-manifest',manifest]) if hasattr(self.generator, 'additional_manifests'): if not isinstance(self.generator.additional_manifests, list): # the additional manifests could be a string self.generator.additional_manifests = [self.generator.additional_manifests] for element in self.generator.additional_manifests: # add each one with its own path lst.append( self.generator.path.abspath() + '/' + element) lst.append('-outputresource:%s;%s' % (outfile, mode)) # note that because we call exec_command and give it a list of params, these become the subprocess argv* # and thus it is not necessary for us to escape them with quotes or anything like that. lst = [lst] return self.exec_command(*lst) def quote_response_command(self, flag): flag = flag.replace('\\', '\\\\') # escape any backslashes flag = flag.replace('"', '\\"') # escape any quotes if flag.find(' ') > -1: for x in ('/LIBPATH:', '/IMPLIB:', '/OUT:', '/I'): if flag.startswith(x): flag = '%s"%s"' % (x, flag[len(x):]) break else: flag = '"%s"' % flag return flag def exec_response_command(self, cmd, **kw): # not public yet try: tmp = None if sys.platform.startswith('win') and isinstance(cmd, list) and len(' '.join(cmd)) >= 16384: tmp_files_folder = self.generator.bld.get_bintemp_folder_node().make_node('TempFiles') program = cmd[0] #unquoted program name, otherwise exec_command will fail cmd = [self.quote_response_command(x) for x in cmd] # Determine an appropriate filename for the output file (displayed by Incredibuild) if self.outputs and len(self.outputs[0].abspath()): tmp_file_name = os.path.basename(self.outputs[0].abspath()) else: # strips quotes off the FRONT in case its a string like '"something="somethingelse"' which would cause issues out_file = os.path.split(cmd[-1].strip('"')) tmp_file_name = out_file[1] (fd, tmp) = tempfile.mkstemp(prefix=tmp_file_name, dir=tmp_files_folder.abspath()) os.write(fd, '\r\n'.join(cmd[1:]).encode()) os.close(fd) cmd = [program, '@' + tmp] # no return here, that's on purpose ret = self.generator.bld.exec_command(cmd, **kw) finally: if tmp: try: os.remove(tmp) except OSError: pass # anti-virus and indexers can keep the files open -_- return ret ########## stupid evil command modification: concatenate the tokens /Fx, /doc, and /x: with the next token def exec_command_msvc(self, *k, **kw): """ Change the command-line execution for msvc programs. Instead of quoting all the paths and keep using the shell, we can just join the options msvc is interested in """ # If bullseye coverage tool is in the environment, and we are executing the CXX or C compiler, then # we prefix with the bullseye coverage tool. Otherwise, just run the regular tools. # Ideally we need a way to do this cleanly on other platforms, but this implies a post hook of some kind to change # the CXX task run_str, and I could not immediately see a clean way to do that, especially conditionally as # we need to do below. if 'BULL_COVC' in self.env: excluded_modules = getattr(self.generator.bld.options,'bullseye_excluded_modules',"").replace(' ', '').split(',') if "" in excluded_modules: excluded_modules.remove("") # Figure out which package we are building, and check if it is in the list of packages we want coverage for # If the package list is empty, then we do coverage building for the whole project. # This applies to the CC/CXX steps. We must always link with coverage if we are going to get measurements. included_modules = getattr(self.generator.bld.options,'bullseye_included_modules',"").replace(' ', '').split(',') if "" in included_modules: included_modules.remove("") if self.generator.name not in excluded_modules and (not included_modules or self.generator.name in included_modules): if k[0][0] == self.env['CXX'] or k[0][0] == self.env['CC']: k = ([self.env['BULL_COVC'], '--file', self.env['BULL_COV_FILE']] + k[0],) # We must link with bullseye regardless of which way the project is set (with or without coverage) to avoid link errors with included libraries. if 'BULL_COVLINK' in self.env and (k[0][0] == self.env['LINK'] or k[0][0] == self.env['LINK_CXX'] or k[0][0] == self.env['LINK_CC']): k = ([self.env['BULL_COVLINK']] + k[0],) # 1) Join options that carry no space are joined e.g. /Fo FilePath -> /FoFilePath # 2) Join options that carry a ':' as last character : e.g. /OUT: FilePath -> /OUT:FilePath if isinstance(k[0], list): lst = [] carry = '' join_with_next_list_item = ['/Fo', '/doc', '/Fi', '/Fa'] for a in k[0]: if a in join_with_next_list_item or a[-1] == ':': carry = a else: lst.append(carry + a) carry = '' k = [lst] bld = self.generator.bld try: if not kw.get('cwd', None): kw['cwd'] = bld.cwd except AttributeError: bld.cwd = kw['cwd'] = bld.variant_dir ret = self.exec_response_command(k[0], **kw) if not ret and getattr(self, 'do_manifest', None): ret = self.exec_mf() return ret def wrap_class(class_name): """ Manifest file processing and @response file workaround for command-line length limits on Windows systems The indicated task class is replaced by a subclass to prevent conflicts in case the class is wrapped more than once """ cls = Task.classes.get(class_name, None) if not cls: return derived_class = type(class_name, (cls,), {}) def exec_command(self, *k, **kw): if self.env['CC_NAME'] == 'msvc': return self.exec_command_msvc(*k, **kw) else: return super(derived_class, self).exec_command(*k, **kw) # Chain-up monkeypatch needed since exec_command() is in base class API derived_class.exec_command = exec_command # No chain-up behavior needed since the following methods aren't in # base class API derived_class.exec_response_command = exec_response_command derived_class.quote_response_command = quote_response_command derived_class.exec_command_msvc = exec_command_msvc derived_class.exec_mf = exec_mf return derived_class for k in 'c cxx cprogram cxxprogram cshlib cxxshlib cstlib cxxstlib'.split(): wrap_class(k) @feature('cxxprogram', 'cxxshlib', 'cprogram', 'cshlib', 'cxx', 'c') @after_method('apply_incpaths') @after_method('add_pch_to_dependencies') def set_pdb_flags(self): if not 'msvc' in (self.env.CC_NAME, self.env.CXX_NAME): return if not self.bld.is_option_true('generate_debug_info'): return # find the last debug symbol type of [/Z7, /Zi, /ZI] applied in cxxflags. last_debug_option = '' for opt in reversed(self.env['CXXFLAGS']): if opt in ['/Z7', '/Zi', '/ZI']: last_debug_option = opt break if last_debug_option in ['/Zi', '/ZI']: # Compute PDB file path pdb_folder = self.path.get_bld().make_node(str(self.idx)) pdb_cxxflag = '/Fd{}'.format(pdb_folder.abspath()) # Make sure the PDB folder exists pdb_folder.mkdir() # Add CXX and C Flags for t in getattr(self, 'compiled_tasks', []): t.env.append_value('CXXFLAGS', pdb_cxxflag) t.env.append_value('CFLAGS', pdb_cxxflag) # Add PDB also to Precompiled header. pch_task is not in compiled_tasks if getattr(self, 'pch_task', None): self.pch_task.env.append_value('CXXFLAGS', pdb_cxxflag) self.pch_task.env.append_value('CFLAGS', pdb_cxxflag) def is_node_qt_rc_generated(self,node): if node.is_child_of(self.bld.bldnode): raw_name = os.path.splitext(os.path.basename(node.abspath()))[0] if raw_name.endswith('_rc'): return True return False @feature('cxx') @before_method('process_source') def add_pch_msvc(self): if not 'msvc' in (self.env.CC_NAME, self.env.CXX_NAME): return if Utils.unversioned_sys_platform() != 'win32': return # Create Task to compile PCH if not getattr(self, 'pch', ''): return if not self.bld.is_option_true('use_precompiled_header'): return # Always assume only one PCH File pch_source = self.to_nodes(self.pch)[0] self.pch_header = pch_source.change_ext('.h') self.pch_header_name = os.path.split(self.pch_header.abspath())[1] # Generate PCH per target project idx # Avoids the case where two project have the same PCH output path but compile the PCH with different compiler options i.e. defines, includes, ... self.pch_file = pch_source.change_ext('.%d.pch' % self.idx) self.pch_object = pch_source.change_ext('.%d.obj' % self.idx) # Create PCH Task self.pch_task = pch_task = self.create_task('pch_msvc', pch_source, [self.pch_object, self.pch_file]) pch_task.env.append_value('PCH_NAME', self.pch_header_name) pch_task.env.append_value('PCH_FILE', '/Fp' + self.pch_file.abspath()) pch_task.env.append_value('PCH_OBJ', self.pch_object.abspath()) @feature('cxx') @after_method('apply_incpaths') def add_pch_to_dependencies(self): if not 'msvc' in (self.env.CC_NAME, self.env.CXX_NAME): return # Create Task to compile PCH if not getattr(self, 'pch_object', ''): return pch_abs_path = self.pch_file.abspath() pch_flag = '/Fp' + pch_abs_path pch_header = '/Yu' + self.pch_header_name # Append PCH File to each compile task for t in getattr(self, 'compiled_tasks', []): input_file = t.inputs[0].abspath() file_specific_settings = self.file_specifc_settings.get(input_file, None) if file_specific_settings and 'disable_pch' in file_specific_settings and file_specific_settings['disable_pch'] == True: continue # Don't append PCH to files for which we don't use them if getattr(t, 'disable_pch', False) == True: continue # Don't append PCH to files for which we don't use them if t.__class__.__name__ in ['cxx','qxx']: #Is there a better way to ensure cpp only? if is_node_qt_rc_generated(self,t.inputs[0]): t.env.append_value('CXXFLAGS', '/Y-') else: t.env.append_value('CXXFLAGS', pch_header) t.env.append_value('CXXFLAGS', pch_flag) # Append PCH to task input to ensure correct ordering t.dep_nodes.append(self.pch_object) # Append the pch object to the link task if getattr(self, 'link_task', None): self.link_task.inputs.append(self.pch_object) class pch_msvc(waflib.Task.Task): run_str = '${CXX} ${PCH_CREATE_ST:PCH_NAME} ${CXXFLAGS} ${CPPPATH_ST:INCPATHS} ${DEFINES_ST:DEFINES} ${SRC} ${CXX_TGT_F}${PCH_OBJ} ${PCH_FILE}' scan = c_preproc.scan color = 'BLUE' def exec_command(self, *k, **kw): return exec_command_msvc(self, *k, **kw) def exec_response_command(self, *k, **kw): return exec_response_command(self, *k, **kw) def quote_response_command(self, *k, **kw): return quote_response_command(self, *k, **kw) def exec_mf(self, *k, **kw): return exec_mf(self, *k, **kw) def strip_all_but_last_dependent_options(flags): seen = set() delete = [] for idx, flag in enumerate(reversed(flags)): try: val = UNIQUE_FLAGS_DICT[flag] if val not in seen: seen.add(val) continue # mark for delete delete.append(len(flags) -1 -idx) except: pass for idx in reversed(delete): del flags[idx] def verify_options_common(env): strip_all_but_last_dependent_options(env.CFLAGS) strip_all_but_last_dependent_options(env.CXXFLAGS) @feature('c', 'cxx') @after_method('apply_link') @after_method('add_pch_to_dependencies') def verify_compiler_options_msvc(self): if not 'msvc' in (self.env.CC_NAME, self.env.CXX_NAME): return if Utils.unversioned_sys_platform() != 'win32': return # Verify compiler option (strip all but last for dependant options) for t in getattr(self, 'compiled_tasks', []): verify_options_common(t.env) # Verify pch_task options (strip all but last for dependant options) if hasattr(self, 'pch_task'): verify_options_common(self.pch_task.env) # Strip unsupported ARCH linker option if hasattr(self, 'link_task'): del self.link_task.env['ARCH'] ############################################################################# # Code for auto-recognition of Visual Studio Compiler and Windows SDK Path # Taken from the original WAF code ############################################################################# all_msvc_platforms = [ ('x64', 'amd64')] """List of msvc platforms""" @conf def auto_detect_msvc_compiler(conf, version, target, windows_kit): conf.env['MSVC_VERSIONS'] = [version] conf.env['MSVC_TARGETS'] = [target] conf.autodetect(windows_kit, True) conf.find_msvc() @conf def autodetect(conf, windows_kit, arch = False): v = conf.env if arch: compiler, version, path, includes, libdirs, arch = conf.detect_msvc(windows_kit, True) v['DEST_CPU'] = arch else: compiler, version, path, includes, libdirs = conf.detect_msvc(windows_kit) v['PATH'] = path v['INCLUDES'] = includes v['LIBPATH'] = libdirs v['MSVC_COMPILER'] = compiler try: v['MSVC_VERSION'] = float(version) except Exception: v['MSVC_VERSION'] = float(version[:-3]) @conf def detect_msvc(conf, windows_kit, arch = False): versions = get_msvc_versions(conf, windows_kit) return setup_msvc(conf, versions, arch) def setup_msvc(conf, versions, arch = False): platforms = getattr(Options.options, 'msvc_targets', '').split(',') if platforms == ['']: platforms=Utils.to_list(conf.env['MSVC_TARGETS']) or [i for i,j in all_msvc_platforms] desired_versions = getattr(Options.options, 'msvc_version', '').split(',') if desired_versions == ['']: desired_versions = conf.env['MSVC_VERSIONS'] or [v for v,_ in versions][::-1] versiondict = dict(versions) for version in desired_versions: try: targets = dict(versiondict [version]) for target in platforms: try: arch,(p1,p2,p3) = targets[target] compiler,revision = version.rsplit(' ', 1) if arch: return compiler,revision,p1,p2,p3,arch else: return compiler,revision,p1,p2,p3 except KeyError: continue except KeyError: continue conf.fatal('msvc: Impossible to find a valid architecture for building (in setup_msvc)') MSVC_INSTALLED_VERSIONS = {} @conf def get_msvc_versions(conf, windows_kit): """ :return: list of compilers installed :rtype: list of string """ global MSVC_INSTALLED_VERSIONS if not windows_kit in MSVC_INSTALLED_VERSIONS: MSVC_INSTALLED_VERSIONS[windows_kit] = '' if len(MSVC_INSTALLED_VERSIONS[windows_kit]) == 0: lst = [] conf.gather_wsdk_versions(windows_kit, lst) conf.gather_msvc_versions(windows_kit, lst) MSVC_INSTALLED_VERSIONS[windows_kit] = lst return MSVC_INSTALLED_VERSIONS[windows_kit] def gather_msvc_detected_versions(): #Detected MSVC versions! version_pattern = re.compile('^(\d\d?\.\d\d?)(Exp)?$') detected_versions = [] for vcver,vcvar in [('VCExpress','Exp'), ('VisualStudio','')]: try: prefix = 'SOFTWARE\\Wow6432node\\Microsoft\\'+vcver all_versions = Utils.winreg.OpenKey(Utils.winreg.HKEY_LOCAL_MACHINE, prefix) except WindowsError: try: prefix = 'SOFTWARE\\Microsoft\\'+vcver all_versions = Utils.winreg.OpenKey(Utils.winreg.HKEY_LOCAL_MACHINE, prefix) except WindowsError: continue index = 0 while 1: try: version = Utils.winreg.EnumKey(all_versions, index) except WindowsError: break index = index + 1 match = version_pattern.match(version) if not match: continue else: versionnumber = float(match.group(1)) detected_versions.append((versionnumber, version+vcvar, prefix+"\\"+version)) def fun(tup): return tup[0] detected_versions.sort(key = fun) return detected_versions @conf def gather_msvc_versions(conf, windows_kit, versions): vc_paths = [] for (v,version,reg) in gather_msvc_detected_versions(): try: try: msvc_version = Utils.winreg.OpenKey(Utils.winreg.HKEY_LOCAL_MACHINE, reg + "\\Setup\\VC") except WindowsError: msvc_version = Utils.winreg.OpenKey(Utils.winreg.HKEY_LOCAL_MACHINE, reg + "\\Setup\\Microsoft Visual C++") path,type = Utils.winreg.QueryValueEx(msvc_version, 'ProductDir') vc_paths.append((version, os.path.abspath(str(path)))) except WindowsError: continue for version,vc_path in vc_paths: vs_path = os.path.dirname(vc_path) conf.gather_msvc_targets(versions, version, windows_kit, vc_path) pass @conf def gather_msvc_targets(conf, versions, version, windows_kit, vc_path): #Looking for normal MSVC compilers! targets = [] if os.path.isfile(os.path.join(vc_path, 'vcvarsall.bat')): for target,realtarget in all_msvc_platforms[::-1]: try: targets.append((target, (realtarget, conf.get_msvc_version('msvc', version, target, windows_kit, os.path.join(vc_path, 'vcvarsall.bat'))))) except conf.errors.ConfigurationError: pass elif os.path.isfile(os.path.join(vc_path, 'Common7', 'Tools', 'vsvars32.bat')): try: targets.append(('x86', ('x86', conf.get_msvc_version('msvc', version, 'x86', windows_kit, os.path.join(vc_path, 'Common7', 'Tools', 'vsvars32.bat'))))) except conf.errors.ConfigurationError: pass elif os.path.isfile(os.path.join(vc_path, 'Bin', 'vcvars32.bat')): try: targets.append(('x86', ('x86', conf.get_msvc_version('msvc', version, '', windows_kit, os.path.join(vc_path, 'Bin', 'vcvars32.bat'))))) except conf.errors.ConfigurationError: pass if targets: versions.append(('msvc '+ version, targets)) def _get_prog_names(conf, compiler): if compiler=='intel': compiler_name = 'ICL' linker_name = 'XILINK' lib_name = 'XILIB' else: # assumes CL.exe compiler_name = 'CL' linker_name = 'LINK' lib_name = 'LIB' return compiler_name, linker_name, lib_name @conf def get_msvc_version(conf, compiler, version, target, windows_kit, vcvars): """ Create a bat file to obtain the location of the libraries :param compiler: ? :param version: ? :target: ? :vcvars: ? :return: the location of msvc, the location of include dirs, and the library paths :rtype: tuple of strings """ debug('msvc: get_msvc_version: %r %r %r %r', compiler, version, target, windows_kit) batfile = conf.bldnode.make_node('waf-print-msvc.bat') batfile.write("""@echo off set INCLUDE= set LIB= call "%s" %s %s echo PATH=%%PATH%% echo INCLUDE=%%INCLUDE%% echo LIB=%%LIB%%;%%LIBPATH%% """ % (vcvars,target,windows_kit)) sout = conf.cmd_and_log(['cmd', '/E:on', '/V:on', '/C', batfile.abspath()]) lines = sout.splitlines() if not lines[0]: lines.pop(0) MSVC_PATH = MSVC_INCDIR = MSVC_LIBDIR = None for line in lines: if line.startswith('PATH='): path = line[5:] MSVC_PATH = path.split(';') elif line.startswith('INCLUDE='): MSVC_INCDIR = [i for i in line[8:].split(';') if i] elif line.startswith('LIB='): MSVC_LIBDIR = [i for i in line[4:].split(';') if i] if not MSVC_PATH or not MSVC_INCDIR or not MSVC_LIBDIR: conf.fatal('msvc: Could not find a valid architecture for building (get_msvc_version_3)') # Check if the compiler is usable at all. # The detection may return 64-bit versions even on 32-bit systems, and these would fail to run. env = dict(os.environ) env.update(PATH = path) compiler_name, linker_name, lib_name = _get_prog_names(conf, compiler) cxx = conf.find_program(compiler_name, path_list=MSVC_PATH, silent_output=True) cxx = conf.cmd_to_list(cxx) # delete CL if exists. because it could contain parameters wich can change cl's behaviour rather catastrophically. if 'CL' in env: del(env['CL']) try: try: conf.cmd_and_log(cxx + ['/help'], env=env) except Exception as e: debug('msvc: get_msvc_version: %r %r %r %r -> failure' % (compiler, version, target, windows_kit)) debug(str(e)) conf.fatal('msvc: cannot run the compiler (in get_msvc_version)') else: debug('msvc: get_msvc_version: %r %r %r %r -> OK', compiler, version, target, windows_kit) finally: conf.env[compiler_name] = '' # vcvarsall does not always resolve the windows sdk path with VS2015 + Win10, but we know where it is winsdk_path = _get_win_sdk_path(windows_kit, target) if winsdk_path: MSVC_PATH.append(winsdk_path) return (MSVC_PATH, MSVC_INCDIR, MSVC_LIBDIR) def _get_win_sdk_path(windows_kit, arch): path = _find_win_sdk_root(windows_kit) if path: is_valid, version, bin_path = _is_valid_win_sdk(path, windows_kit.startswith('10'), windows_kit) if is_valid: if version == windows_kit: return str(os.path.join(bin_path, arch)) else: Logs.debug('winsdk: Found a working windows SDK (%s), but it does not match the requested version (%s)' % (version, windows_kit)) return '' def _is_valid_win_sdk(path, is_universal_versioning, desired_version=''): # Successfully installed windows kits have rc.exe. This file is a downstream dependency of vcvarsall.bat. def _check_for_rc_file(path): rc_x64 = os.path.join(path, 'x64\\rc.exe') rc_x86 = os.path.join(path, 'x86\\rc.exe') return os.path.isfile(rc_x64) or os.path.isfile(rc_x86) bin_dir = os.path.join(path, 'bin') include_dir = os.path.join(path, 'include') if is_universal_versioning: potential_sdks = [desired_version] if desired_version else [] if os.path.isdir(include_dir): # lexically sort the 10.xxx versions in reverse so that latest/highest is first potential_sdks += sorted(os.listdir(include_dir), reverse=True) sdk10_versions = [entry for entry in potential_sdks if entry.startswith('10.')] for sub_version in sdk10_versions: sub_version_folder = os.path.join(include_dir, sub_version) if os.path.isdir(os.path.join(sub_version_folder, 'um')): # check for rc.exe in the sub_version folder's bin, or in the root 10 bin, we just need at least one for bin_path in (os.path.join(os.path.join(path, 'bin'), sub_version), bin_dir): if _check_for_rc_file(bin_path): return True, sub_version, bin_path else: if _check_for_rc_file(bin_dir): version = path.split('\\')[-2] return True, version, bin_dir return False, '', '' def _find_win_sdk_root(winsdk_hint): """ Use winreg to find a valid installed windows kit. Returns empty string if no valid version was found. See visual studio compatibility charts here: https://www.visualstudio.com/en-us/productinfo/vs2015-compatibility-vs """ try: installed_roots = Utils.winreg.OpenKey(Utils.winreg.HKEY_LOCAL_MACHINE, 'SOFTWARE\\Wow6432node\\Microsoft\\Windows Kits\\Installed Roots') except WindowsError: try: installed_roots = Utils.winreg.OpenKey(Utils.winreg.HKEY_LOCAL_MACHINE, 'SOFTWARE\\Microsoft\\Windows Kits\\Installed Roots') except WindowsError: return '' if winsdk_hint.startswith('10'): try: path, type = Utils.winreg.QueryValueEx(installed_roots, 'KitsRoot10') return path except WindowsError: pass elif winsdk_hint.startswith('8'): try: path, type = Utils.winreg.QueryValueEx(installed_roots, 'KitsRoot81') return path except WindowsError: pass return '' @conf def find_valid_wsdk_version(conf): path = _find_win_sdk_root("10") if path: is_valid, version, bin_path = _is_valid_win_sdk(path, True) if is_valid: return version # No root for sdk 10 found, try 8.1 path = _find_win_sdk_root("8.1") if path: is_valid, version, bin_path = _is_valid_win_sdk(path, False) if is_valid: return version return '' @conf def gather_wsdk_versions(conf, windows_kit, versions): """ Use winreg to add the msvc versions to the input list :param versions: list to modify :type versions: list """ version_pattern = re.compile('^v..?.?\...?.?') try: all_versions = Utils.winreg.OpenKey(Utils.winreg.HKEY_LOCAL_MACHINE, 'SOFTWARE\\Wow6432node\\Microsoft\\Microsoft SDKs\\Windows') except WindowsError: try: all_versions = Utils.winreg.OpenKey(Utils.winreg.HKEY_LOCAL_MACHINE, 'SOFTWARE\\Microsoft\\Microsoft SDKs\\Windows') except WindowsError: return index = 0 while 1: try: version = Utils.winreg.EnumKey(all_versions, index) except WindowsError: break index = index + 1 if not version_pattern.match(version): continue try: msvc_version = Utils.winreg.OpenKey(all_versions, version) path,type = Utils.winreg.QueryValueEx(msvc_version,'InstallationFolder') except WindowsError: continue if os.path.isfile(os.path.join(path, 'bin', 'SetEnv.cmd')): targets = [] for target,arch in all_msvc_platforms: try: targets.append((target, (arch, conf.get_msvc_version('wsdk', version, '/'+target, windows_kit, os.path.join(path, 'bin', 'SetEnv.cmd'))))) except conf.errors.ConfigurationError: pass versions.append(('wsdk ' + version[1:], targets)) pass @conf def find_msvc(conf): """Due to path format limitations, limit operation only to native Win32. Yeah it sucks.""" if sys.platform == 'cygwin': conf.fatal('MSVC module does not work under cygwin Python!') # the autodetection is supposed to be performed before entering in this method v = conf.env path = v['PATH'] compiler = v['MSVC_COMPILER'] version = v['MSVC_VERSION'] compiler_name, linker_name, lib_name = _get_prog_names(conf, compiler) v.MSVC_MANIFEST = (compiler == 'msvc' and version >= 8) or (compiler == 'wsdk' and version >= 6) or (compiler == 'intel' and version >= 11) # compiler cxx = None if v['CXX']: cxx = v['CXX'] elif 'CXX' in conf.environ: cxx = conf.environ['CXX'] cxx = conf.find_program(compiler_name, var='CXX', path_list=path, silent_output=True) cxx = conf.cmd_to_list(cxx) # before setting anything, check if the compiler is really msvc env = dict(conf.environ) if path: env.update(PATH = ';'.join(path)) if not conf.cmd_and_log(cxx + ['/nologo', '/help'], env=env): conf.fatal('the msvc compiler could not be identified') # c/c++ compiler v['CC'] = v['CXX'] = cxx[0] v['CC_NAME'] = v['CXX_NAME'] = 'msvc' # Bullseye code coverage if conf.is_option_true('use_bullseye_coverage'): # TODO: Error handling for this is opaque. This will fail the MSVS 2015 tool check, # and not say anything about bullseye being missing. try: covc = conf.find_program('covc',var='BULL_COVC',path_list = path, silent_output=True) covlink = conf.find_program('covlink',var='BULL_COVLINK',path_list = path, silent_output=True) covselect = conf.find_program('covselect',var='BULL_COVSELECT',path_list = path, silent_output=True) v['BULL_COVC'] = covc v['BULL_COVLINK'] = covlink v['BULL_COV_FILE'] = conf.CreateRootRelativePath(conf.options.bullseye_cov_file) # Update the coverage file with the region selections detailed in the settings regions parameters # NOTE: should we clear other settings at this point, or allow them to accumulate? # Maybe we need a flag for that in the setup? regions = conf.options.bullseye_coverage_regions.replace(' ','').split(',') conf.cmd_and_log(([covselect] + ['--file', v['BULL_COV_FILE'], '-a'] + regions)) except: Logs.error('Could not find the Bullseye Coverage tools on the path, or coverage tools are not correctly installed. Coverage build disabled.') # linker if not v['LINK_CXX']: link = conf.find_program(linker_name, path_list=path, silent_output=True) if link: v['LINK_CXX'] = link else: conf.fatal('%s was not found (linker)' % linker_name) v['LINK'] = link if not v['LINK_CC']: v['LINK_CC'] = v['LINK_CXX'] # staticlib linker if not v['AR']: stliblink = conf.find_program(lib_name, path_list=path, var='AR', silent_output=True) if not stliblink: return v['ARFLAGS'] = ['/NOLOGO'] # manifest tool. Not required for VS 2003 and below. Must have for VS 2005 and later if v.MSVC_MANIFEST: conf.find_program('MT', path_list=path, var='MT', silent_output=True) v['MTFLAGS'] = ['/NOLOGO'] # call configure on the waflib winres module to setup the environment for configure # conf.load('winres') caches the environment as part of the module load key, and we just modified # the environment, causing the cache to miss, and extra calls import/load the module # winres is loaded try: module = sys.modules['waflib.Tools.winres'] func = getattr(module,'configure',None) if func: func(conf) except Error as e: warn('Resource compiler not found. Compiling resource file is disabled')
the-stack_0_14635
import logging import numpy as np import torch import torch.utils.data as data import torchvision.transforms as transforms from .datasets import CIFAR10_truncated logging.basicConfig() logger = logging.getLogger() logger.setLevel(logging.INFO) # generate the non-IID distribution for all methods def read_data_distribution(filename='./data_preprocessing/non-iid-distribution/CIFAR10/distribution.txt'): distribution = {} with open(filename, 'r') as data: for x in data.readlines(): if '{' != x[0] and '}' != x[0]: tmp = x.split(':') if '{' == tmp[1].strip(): first_level_key = int(tmp[0]) distribution[first_level_key] = {} else: second_level_key = int(tmp[0]) distribution[first_level_key][second_level_key] = int(tmp[1].strip().replace(',', '')) return distribution def read_net_dataidx_map(filename='./data_preprocessing/non-iid-distribution/CIFAR10/net_dataidx_map.txt'): net_dataidx_map = {} with open(filename, 'r') as data: for x in data.readlines(): if '{' != x[0] and '}' != x[0] and ']' != x[0]: tmp = x.split(':') if '[' == tmp[-1].strip(): key = int(tmp[0]) net_dataidx_map[key] = [] else: tmp_array = x.split(',') net_dataidx_map[key] = [int(i.strip()) for i in tmp_array] return net_dataidx_map def record_net_data_stats(y_train, net_dataidx_map): net_cls_counts = {} for net_i, dataidx in net_dataidx_map.items(): unq, unq_cnt = np.unique(y_train[dataidx], return_counts=True) tmp = {unq[i]: unq_cnt[i] for i in range(len(unq))} net_cls_counts[net_i] = tmp logging.debug('Data statistics: %s' % str(net_cls_counts)) return net_cls_counts class Cutout(object): def __init__(self, length): self.length = length def __call__(self, img): h, w = img.size(1), img.size(2) mask = np.ones((h, w), np.float32) y = np.random.randint(h) x = np.random.randint(w) y1 = np.clip(y - self.length // 2, 0, h) y2 = np.clip(y + self.length // 2, 0, h) x1 = np.clip(x - self.length // 2, 0, w) x2 = np.clip(x + self.length // 2, 0, w) mask[y1: y2, x1: x2] = 0. mask = torch.from_numpy(mask) mask = mask.expand_as(img) img *= mask return img def _data_transforms_cifar10(): CIFAR_MEAN = [0.49139968, 0.48215827, 0.44653124] CIFAR_STD = [0.24703233, 0.24348505, 0.26158768] train_transform = transforms.Compose([ transforms.ToPILImage(), transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(CIFAR_MEAN, CIFAR_STD), ]) train_transform.transforms.append(Cutout(16)) valid_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(CIFAR_MEAN, CIFAR_STD), ]) return train_transform, valid_transform def load_cifar10_data(datadir): train_transform, test_transform = _data_transforms_cifar10() cifar10_train_ds = CIFAR10_truncated(datadir, train=True, download=True, transform=train_transform) cifar10_test_ds = CIFAR10_truncated(datadir, train=False, download=True, transform=test_transform) X_train, y_train = cifar10_train_ds.data, cifar10_train_ds.target X_test, y_test = cifar10_test_ds.data, cifar10_test_ds.target return (X_train, y_train, X_test, y_test) def partition_data(dataset, datadir, partition, n_nets, alpha): logging.info("*********partition data***************") X_train, y_train, X_test, y_test = load_cifar10_data(datadir) n_train = X_train.shape[0] # n_test = X_test.shape[0] if partition == "homo": total_num = n_train idxs = np.random.permutation(total_num) batch_idxs = np.array_split(idxs, n_nets) net_dataidx_map = {i: batch_idxs[i] for i in range(n_nets)} elif partition == "hetero": min_size = 0 K = 10 N = y_train.shape[0] logging.info("N = " + str(N)) net_dataidx_map = {} while min_size < 10: idx_batch = [[] for _ in range(n_nets)] # for each class in the dataset for k in range(K): idx_k = np.where(y_train == k)[0] np.random.shuffle(idx_k) proportions = np.random.dirichlet(np.repeat(alpha, n_nets)) ## Balance proportions = np.array([p * (len(idx_j) < N / n_nets) for p, idx_j in zip(proportions, idx_batch)]) proportions = proportions / proportions.sum() proportions = (np.cumsum(proportions) * len(idx_k)).astype(int)[:-1] idx_batch = [idx_j + idx.tolist() for idx_j, idx in zip(idx_batch, np.split(idx_k, proportions))] min_size = min([len(idx_j) for idx_j in idx_batch]) for j in range(n_nets): np.random.shuffle(idx_batch[j]) net_dataidx_map[j] = idx_batch[j] elif partition == "hetero-fix": dataidx_map_file_path = './data_preprocessing/non-iid-distribution/CIFAR10/net_dataidx_map.txt' net_dataidx_map = read_net_dataidx_map(dataidx_map_file_path) if partition == "hetero-fix": distribution_file_path = './data_preprocessing/non-iid-distribution/CIFAR10/distribution.txt' traindata_cls_counts = read_data_distribution(distribution_file_path) else: traindata_cls_counts = record_net_data_stats(y_train, net_dataidx_map) return X_train, y_train, X_test, y_test, net_dataidx_map, traindata_cls_counts # for centralized training def get_dataloader(dataset, datadir, train_bs, test_bs, dataidxs=None): return get_dataloader_CIFAR10(datadir, train_bs, test_bs, dataidxs) # for local devices def get_dataloader_test(dataset, datadir, train_bs, test_bs, dataidxs_train, dataidxs_test): return get_dataloader_test_CIFAR10(datadir, train_bs, test_bs, dataidxs_train, dataidxs_test) def get_dataloader_CIFAR10(datadir, train_bs, test_bs, dataidxs=None): dl_obj = CIFAR10_truncated transform_train, transform_test = _data_transforms_cifar10() train_ds = dl_obj(datadir, dataidxs=dataidxs, train=True, transform=transform_train, download=True) test_ds = dl_obj(datadir, train=False, transform=transform_test, download=True) train_dl = data.DataLoader(dataset=train_ds, batch_size=train_bs, shuffle=True, drop_last=True) test_dl = data.DataLoader(dataset=test_ds, batch_size=test_bs, shuffle=False, drop_last=True) return train_dl, test_dl def get_dataloader_test_CIFAR10(datadir, train_bs, test_bs, dataidxs_train=None, dataidxs_test=None): dl_obj = CIFAR10_truncated transform_train, transform_test = _data_transforms_cifar10() train_ds = dl_obj(datadir, dataidxs=dataidxs_train, train=True, transform=transform_train, download=True) test_ds = dl_obj(datadir, dataidxs=dataidxs_test, train=False, transform=transform_test, download=True) train_dl = data.DataLoader(dataset=train_ds, batch_size=train_bs, shuffle=True, drop_last=True) test_dl = data.DataLoader(dataset=test_ds, batch_size=test_bs, shuffle=False, drop_last=True) return train_dl, test_dl def load_partition_data_distributed_cifar10(process_id, dataset, data_dir, partition_method, partition_alpha, client_number, batch_size): X_train, y_train, X_test, y_test, net_dataidx_map, traindata_cls_counts = partition_data(dataset, data_dir, partition_method, client_number, partition_alpha) class_num = len(np.unique(y_train)) logging.info("traindata_cls_counts = " + str(traindata_cls_counts)) train_data_num = sum([len(net_dataidx_map[r]) for r in range(client_number)]) # get global test data if process_id == 0: train_data_global, test_data_global = get_dataloader(dataset, data_dir, batch_size, batch_size) logging.info("train_dl_global number = " + str(len(train_data_global))) logging.info("test_dl_global number = " + str(len(test_data_global))) train_data_local = None test_data_local = None local_data_num = 0 else: # get local dataset dataidxs = net_dataidx_map[process_id - 1] local_data_num = len(dataidxs) logging.info("rank = %d, local_sample_number = %d" % (process_id, local_data_num)) # training batch size = 64; algorithms batch size = 32 train_data_local, test_data_local = get_dataloader(dataset, data_dir, batch_size, batch_size, dataidxs) logging.info("process_id = %d, batch_num_train_local = %d, batch_num_test_local = %d" % ( process_id, len(train_data_local), len(test_data_local))) train_data_global = None test_data_global = None return train_data_num, train_data_global, test_data_global, local_data_num, train_data_local, test_data_local, class_num def load_partition_data_cifar10(dataset, data_dir, partition_method, partition_alpha, client_number, batch_size): X_train, y_train, X_test, y_test, net_dataidx_map, traindata_cls_counts = partition_data(dataset, data_dir, partition_method, client_number, partition_alpha) class_num = len(np.unique(y_train)) logging.info("traindata_cls_counts = " + str(traindata_cls_counts)) train_data_num = sum([len(net_dataidx_map[r]) for r in range(client_number)]) train_data_global, test_data_global = get_dataloader(dataset, data_dir, batch_size, batch_size) logging.info("train_dl_global number = " + str(len(train_data_global))) logging.info("test_dl_global number = " + str(len(test_data_global))) test_data_num = len(test_data_global) # get local dataset data_local_num_dict = dict() train_data_local_dict = dict() test_data_local_dict = dict() for client_idx in range(client_number): dataidxs = net_dataidx_map[client_idx] local_data_num = len(dataidxs) data_local_num_dict[client_idx] = local_data_num logging.info("client_idx = %d, local_sample_number = %d" % (client_idx, local_data_num)) # training batch size = 64; algorithms batch size = 32 train_data_local, test_data_local = get_dataloader(dataset, data_dir, batch_size, batch_size, dataidxs) logging.info("client_idx = %d, batch_num_train_local = %d, batch_num_test_local = %d" % ( client_idx, len(train_data_local), len(test_data_local))) train_data_local_dict[client_idx] = train_data_local test_data_local_dict[client_idx] = test_data_local return train_data_num, test_data_num, train_data_global, test_data_global, \ data_local_num_dict, train_data_local_dict, test_data_local_dict, class_num, traindata_cls_counts
the-stack_0_14637
# pylint: disable=protected-access, unused-argument import os import glob import radical.utils as ru from .test_common import setUp from radical.pilot.agent.launch_method.jsrun import JSRUN try: import mock except ImportError: from unittest import mock # ------------------------------------------------------------------------------ # def tearDown(): rs = glob.glob('%s/*.rs' % os.getcwd()) for fold in rs: os.remove(fold) # ------------------------------------------------------------------------------ # @mock.patch.object(JSRUN, '__init__', return_value=None) @mock.patch.object(JSRUN, '_configure',return_value='jsrun') @mock.patch('radical.utils.raise_on') def test_create_resource_set_file(mocked_init, mocked_configure, mocked_raise_on): test_cases = setUp('lm', 'jsrun') component = JSRUN(name=None, cfg=None, session=None) for unit, _, resource_file, _ in test_cases: slot = unit['slots'] uid = unit['uid'] component._create_resource_set_file(slots=slot, uid=uid, sandbox='.') print(uid) with open('%s.rs' % uid) as rs_layout: assert rs_layout.readlines() == resource_file tearDown() # ------------------------------------------------------------------------------ # @mock.patch.object(JSRUN, '__init__', return_value=None) @mock.patch.object(JSRUN, '_configure', return_value='jsrun') @mock.patch('radical.utils.raise_on') def test_construct_command(mocked_init, mocked_configure, mocked_raise_on): test_cases = setUp('lm', 'jsrun') component = JSRUN(name=None, cfg=None, session=None) component._create_resource_set_file = mock.Mock() component._log = ru.Logger('dummy') component.launch_command = 'jsrun' for unit, result, _ , resource_filename in test_cases: component._create_resource_set_file.return_value = resource_filename command, hop = component.construct_command(unit, None) assert([command, hop] == result) # ------------------------------------------------------------------------------
the-stack_0_14638
from setuptools import setup with open("README.md", "r", encoding="utf-8") as f: long_description = f.read() ## edit below variables as per your requirements - REPO_NAME = "Movie-Recommender-System" AUTHOR_USER_NAME = "Nitin" SRC_REPO = "src" LIST_OF_REQUIREMENTS = ['streamlit'] setup( name=SRC_REPO, version="0.0.1", author=AUTHOR_USER_NAME, description="A small package for Movie Recommender System", long_description=long_description, long_description_content_type="text/markdown", url=f"https://github.com/{AUTHOR_USER_NAME}/{REPO_NAME}", author_email="[email protected]", packages=[SRC_REPO], license="MIT", python_requires=">=3.7", install_requires=LIST_OF_REQUIREMENTS )
the-stack_0_14640
import os import pathlib import subprocess from sphinx.ext.doctest import (Any, Dict, DocTestBuilder, TestcodeDirective, TestoutputDirective, doctest, sphinx) from sphinx.locale import __ class JavaDocTestBuilder(DocTestBuilder): """ Runs java test snippets in the documentation. """ name = "javadoctest" epilog = __( "Java testing of doctests in the sources finished, look at the " "results in %(outdir)s/output.txt." ) def compile( self, code: str, name: str, type: str, flags: Any, dont_inherit: bool ) -> Any: # go to project that contains all your arrow maven dependencies path_arrow_project = pathlib.Path(__file__).parent.parent / "source" / "demo" # create list of all arrow jar dependencies subprocess.check_call( [ "mvn", "-q", "dependency:build-classpath", "-DincludeTypes=jar", "-Dmdep.outputFile=.cp.tmp", ], cwd=path_arrow_project, text=True, ) if not (path_arrow_project / ".cp.tmp").exists(): raise RuntimeError( __("invalid process to create jshell dependencies library") ) # get list of all arrow jar dependencies with open(path_arrow_project / ".cp.tmp") as f: stdout_dependency = f.read() if not stdout_dependency: raise RuntimeError( __("invalid process to list jshell dependencies library") ) # execute java testing code thru jshell and read output # JDK11 support '-' This allows the pipe to work as expected without requiring a shell # Migrating to /dev/stdin to also support JDK9+ proc_jshell_process = subprocess.Popen( ["jshell", "--class-path", stdout_dependency, "-s", "/dev/stdin"], stdin=subprocess.PIPE, stdout=subprocess.PIPE, text=True, ) out_java_arrow, err_java_arrow = proc_jshell_process.communicate(code) if err_java_arrow: raise RuntimeError(__("invalid process to run jshell")) # continue with python logic code to do java output validation output = f"print('''{self.clean_output(out_java_arrow)}''')" # continue with sphinx default logic return compile(output, name, self.type, flags, dont_inherit) def clean_output(self, output: str): if output[-3:] == '-> ': output = output[:-3] if output[-1:] == '\n': output = output[:-1] output = (4*' ').join(output.split('\t')) return output def setup(app) -> Dict[str, Any]: app.add_directive("testcode", TestcodeDirective) app.add_directive("testoutput", TestoutputDirective) app.add_builder(JavaDocTestBuilder) # this config value adds to sys.path app.add_config_value("doctest_path", [], False) app.add_config_value("doctest_test_doctest_blocks", "default", False) app.add_config_value("doctest_global_setup", "", False) app.add_config_value("doctest_global_cleanup", "", False) app.add_config_value( "doctest_default_flags", doctest.DONT_ACCEPT_TRUE_FOR_1 | doctest.ELLIPSIS | doctest.IGNORE_EXCEPTION_DETAIL, False, ) return {"version": sphinx.__display_version__, "parallel_read_safe": True}
the-stack_0_14641
import numpy as np k = lambda x:3*np.sin(x)*np.exp(np.sqrt(x))/(2*x) def cordes_para(f,x0,epsilon,gamma,maxiter=50): xn = x0 for i in range(maxiter): xn_ = xn xn = xn-f(xn)/gamma print(xn, f(xn)) return (xn, np.abs(xn_-xn)<epsilon) print(cordes_para(lambda x:k(x)-0.25, 3.5, 1, 5))
the-stack_0_14644
#!/usr/bin/env python # -*- coding: utf-8 -*- # # hydroengine documentation build configuration file, created by # sphinx-quickstart on Fri Jun 9 13:47:02 2017. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. # If extensions (or modules to document with autodoc) are in another # directory, add these directories to sys.path here. If the directory is # relative to the documentation root, use os.path.abspath to make it # absolute, like shown here. # import os import sys sys.path.insert(0, os.path.abspath('..')) import hydroengine # -- General configuration --------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.viewcode'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # General information about the project. project = u'hydro-engine' copyright = u"2018, Gennadii Donchyts" author = u"Gennadii Donchyts" # The version info for the project you're documenting, acts as replacement # for |version| and |release|, also used in various other places throughout # the built documents. # # The short X.Y version. version = hydroengine.__version__ # The full version, including alpha/beta/rc tags. release = hydroengine.__version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'alabaster' # Theme options are theme-specific and customize the look and feel of a # theme further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # -- Options for HTMLHelp output --------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = 'hydroenginedoc' # -- Options for LaTeX output ------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass # [howto, manual, or own class]). latex_documents = [ (master_doc, 'hydroengine.tex', u'hydro-engine Documentation', u'Gennadii Donchyts', 'manual'), ] # -- Options for manual page output ------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'hydroengine', u'hydro-engine Documentation', [author], 1) ] # -- Options for Texinfo output ---------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'hydroengine', u'hydro-engine Documentation', author, 'hydroengine', 'One line description of project.', 'Miscellaneous'), ]
the-stack_0_14645
import sys import torch from setuptools import setup, find_packages from torch.utils.cpp_extension import BuildExtension, CUDAExtension, CppExtension def trt_inc_dir(): return "/usr/include/aarch64-linux-gnu" def trt_lib_dir(): return "/usr/lib/aarch64-linux-gnu" ext_modules = [] exclude_dir = ["torch2trt/contrib","torch2trt/contrib.*"] plugins_ext_module = CUDAExtension( name='plugins', sources=[ 'torch2trt/plugins/plugins.cpp' ], include_dirs=[ trt_inc_dir() ], library_dirs=[ trt_lib_dir() ], libraries=[ 'nvinfer' ], extra_compile_args={ 'cxx': ['-DUSE_DEPRECATED_INTLIST'] if torch.__version__ < "1.5" else [], 'nvcc': [] } ) if '--plugins' in sys.argv: ext_modules.append(plugins_ext_module) sys.argv.remove('--plugins') if '--contrib' in sys.argv: exclude_dir=[] sys.argv.remove('--contrib') setup( name='torch2trt', version='0.3.0', description='An easy to use PyTorch to TensorRT converter', packages=find_packages(exclude=exclude_dir), ext_package='torch2trt', ext_modules=ext_modules, cmdclass={'build_ext': BuildExtension} )
the-stack_0_14646
from train import CoordParser def cluster(file_list, output, n_clusters=None, max_files=None): import warnings warnings.filterwarnings("ignore", category=DeprecationWarning) from mpl_toolkits.basemap import Basemap import numpy as np if n_clusters is None: n_clusters = 100 # Parse the coordinates parser = CoordParser() c = np.array([parser(l) for l in open(file_list,'r')]) # Create the basemap parameters bnd = 0 basemap_params = dict(projection='merc',llcrnrlat=np.min(c[:,0])-bnd,urcrnrlat=np.max(c[:,0])+bnd, llcrnrlon=np.min(c[:,1])-bnd,urcrnrlon=np.max(c[:,1])+bnd) # Select a subset of the coordinates to cluster if max_files is None: max_files = 100000 np.random.shuffle(c) c = c[:max_files] # Project the coordinates into x, y coordinates m = Basemap(**basemap_params) x,y = m(c[:,1],c[:,0]) from sklearn import cluster km = cluster.MiniBatchKMeans(n_clusters=n_clusters).fit(np.concatenate((x[:,None],y[:,None]),axis=1)) np.save(output,(basemap_params,km.cluster_centers_)) def main(): from argparse import ArgumentParser from time import time parser = ArgumentParser() parser.add_argument('--file-list', type=str, default='/fastdata/finder/streetview_train.txt', help='path to the streetview training file') parser.add_argument('-n', '--n-clusters', type=int, default=100, help='number of cluster') parser.add_argument('--max-files', type=int, help='maximum number of files to cluster') parser.add_argument('output', type=str, help='output file (e.g. clusters.npy)') args = parser.parse_args() cluster(args.file_list, args.output, args.n_clusters, args.max_files) if __name__ == "__main__": main()
the-stack_0_14648
# # Licensed to Dagda under one or more contributor # license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright # ownership. Dagda licenses this file to you under # the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # import datetime import requests import json import traceback from threading import Thread from analysis.static.os import os_info_extractor from analysis.static.dependencies import dep_info_extractor from analysis.static.av import malware_extractor from api.internal.internal_server import InternalServer from log.dagda_logger import DagdaLogger from analysis.static.util.utils import extract_filesystem_bundle from analysis.static.util.utils import clean_up # Analyzer class class Analyzer: # -- Public methods # Analyzer Constructor def __init__(self, dagda_server_url=None): super(Analyzer, self).__init__() self.is_remote = False if dagda_server_url is not None: self.dagda_server_url = dagda_server_url self.is_remote = True else: self.mongoDbDriver = InternalServer.get_mongodb_driver() self.dockerDriver = InternalServer.get_docker_driver() # Evaluate image from image name or container id def evaluate_image(self, image_name, container_id, file_path): if InternalServer.is_debug_logging_enabled(): DagdaLogger.get_logger().debug( "ENTRY to the method for analyzing a docker image" ) # Init data = {} # -- Static analysis if not file_path: self.dockerDriver.get_docker_image_name_by_container_id( container_id ) if container_id else image_name os_packages = [] malware_binaries = [] dependencies = [] temp_dir = None try: # Get OS packages if InternalServer.is_debug_logging_enabled(): DagdaLogger.get_logger().debug( "Retrieving OS packages from the docker image ..." ) if file_path: # no OS packages to scan because not contained in a docker image temp_dir = extract_filesystem_bundle( image_name=image_name, image_path=file_path, ) elif container_id is None: # Scans the docker image os_packages = os_info_extractor.get_soft_from_docker_image( docker_driver=self.dockerDriver, image_name=image_name ) temp_dir = extract_filesystem_bundle( docker_driver=self.dockerDriver, image_name=image_name ) else: # Scans the docker container os_packages = os_info_extractor.get_soft_from_docker_container_id( docker_driver=self.dockerDriver, container_id=container_id ) temp_dir = extract_filesystem_bundle( docker_driver=self.dockerDriver, container_id=container_id ) if InternalServer.is_debug_logging_enabled(): DagdaLogger.get_logger().debug( "OS packages from the docker image retrieved" ) # Get malware binaries in a parallel way malware_thread = Thread( target=Analyzer._threaded_malware, args=(self.dockerDriver, temp_dir, malware_binaries), ) malware_thread.start() # Get programming language dependencies in a parallel way dependencies_thread = Thread( target=Analyzer._threaded_dependencies, args=(self.dockerDriver, image_name, temp_dir, dependencies), ) dependencies_thread.start() # Waiting for the threads malware_thread.join() dependencies_thread.join() except Exception as ex: message = "Unexpected exception of type {0} occurred: {1!r}".format( type(ex).__name__, ex.get_message() if type(ex).__name__ == "DagdaError" else ex.args, ) DagdaLogger.get_logger().error(message) if InternalServer.is_debug_logging_enabled(): traceback.print_exc() data["status"] = message # -- Cleanup if temp_dir is not None: clean_up(temporary_dir=temp_dir) # -- Prepare output if InternalServer.is_debug_logging_enabled(): DagdaLogger.get_logger().debug("Preparing analysis output ...") if "status" not in data or data["status"] is None: data["status"] = "Completed" data["image_name"] = image_name data["timestamp"] = datetime.datetime.now().timestamp() data["static_analysis"] = self.generate_static_analysis( image_name, os_packages, dependencies, malware_binaries ) if InternalServer.is_debug_logging_enabled(): DagdaLogger.get_logger().debug("Analysis output completed") # -- Return if InternalServer.is_debug_logging_enabled(): DagdaLogger.get_logger().debug( "EXIT from the method for analyzing a docker image" ) return data # Generates the result of the static analysis def generate_static_analysis( self, image_name, os_packages, dependencies, malware_binaries ): data = {} data["os_packages"] = self.generate_os_report(image_name, os_packages) data["prog_lang_dependencies"] = self.generate_dependencies_report( image_name, dependencies ) data["malware_binaries"] = malware_binaries return data # Generates dependencies report def generate_dependencies_report(self, image_name, dependencies): data = {} dep_details = {} dep_details["java"] = [] dep_details["python"] = [] dep_details["nodejs"] = [] dep_details["js"] = [] dep_details["ruby"] = [] dep_details["php"] = [] fp_count = 0 for dependency in dependencies: d = {} splitted_dep = dependency.split("#") d["product"] = splitted_dep[1] d["version"] = splitted_dep[2] d["product_file_path"] = splitted_dep[3] d["vulnerabilities"] = self.get_vulnerabilities(d["product"], d["version"]) # purpose of this code is to not throw away the cve_id reported by 3grander/4depcheck container process dep_check_cve_id = splitted_dep[4] # DagdaLogger.get_logger().debug(f"dep_check_cve_id: {dep_check_cve_id}") included_vuln_ids = [] for vuln in d["vulnerabilities"]: included_vuln_ids.extend(str(vuln.keys())) # DagdaLogger.get_logger().debug( # f"included_vuln_ids: {json.dumps(included_vuln_ids)}" # ) if not dep_check_cve_id in included_vuln_ids: info = {} cve_info = {} cve_data = self.mongoDbDriver.db.cve_info.find_one( {"cveid": dep_check_cve_id} ) # DagdaLogger.get_logger().debug(f"cve_data: {cve_data}") if cve_data is not None: cve_info = cve_data.copy() cve_info["mod_date"] = cve_data["mod_date"].strftime("%d-%m-%Y") cve_info["pub_date"] = cve_data["pub_date"].strftime("%d-%m-%Y") del cve_info["_id"] info[dep_check_cve_id] = cve_info # DagdaLogger.get_logger().debug(f"info: {json.dumps(info)}") d["vulnerabilities"].append(info) # DagdaLogger.get_logger().debug( # f"d['vulnerabilities']: {json.dumps(d['vulnerabilities'])}" # ) d["is_vulnerable"] = True d["is_false_positive"] = self.is_fp(image_name, d["product"], d["version"]) if d["is_false_positive"]: fp_count += 1 dep_details[splitted_dep[0]].append(d) # Prepare output data["vuln_dependencies"] = ( len(dep_details["java"]) + len(dep_details["python"]) + len(dep_details["nodejs"]) + len(dep_details["js"]) + len(dep_details["ruby"]) + len(dep_details["php"]) - fp_count ) data["dependencies_details"] = dep_details # Return return data # Generates os report def generate_os_report(self, image_name, os_packages): data = {} products_status = [] vuln_products = 0 fp_count = 0 for package in os_packages: p = {} p["product"] = package["product"] p["version"] = package["version"] p["vulnerabilities"] = self.get_vulnerabilities( package["product"], package["version"] ) if len(p["vulnerabilities"]) > 0: p["is_vulnerable"] = True vuln_products += 1 else: p["is_vulnerable"] = False p["is_false_positive"] = self.is_fp( image_name, package["product"], package["version"] ) if p["is_false_positive"]: fp_count += 1 products_status.append(p) # Prepare output vuln_products -= fp_count data["total_os_packages"] = len(products_status) data["vuln_os_packages"] = vuln_products data["ok_os_packages"] = data["total_os_packages"] - vuln_products data["os_packages_details"] = products_status # Return return data # Gets vulnerabilities by product and version def get_vulnerabilities(self, product, version): if not self.is_remote: return self.mongoDbDriver.get_vulnerabilities(product, version) else: if product is not None: product += "/" + version r = requests.get(self.dagda_server_url + "/vuln/products/" + product) if r.status_code == 200: return json.loads(r.content.decode("utf-8")) return [] # Check if it is a false positive def is_fp(self, image_name, product, version): if not self.is_remote: return self.mongoDbDriver.is_fp(image_name, product, version) else: if product is not None: product += "/" + version r = requests.get( self.dagda_server_url + "/history/" + image_name + "/fp/" + product ) return r.status_code == 204 # Get malware binaries thread @staticmethod def _threaded_malware(dockerDriver, temp_dir, malware_binaries): # Get malware binaries if InternalServer.is_debug_logging_enabled(): DagdaLogger.get_logger().debug( f'Retrieving malware files from the docker image in "{temp_dir}"...' ) malware_binaries.extend( malware_extractor.get_malware_included_in_docker_image( docker_driver=dockerDriver, temp_dir=temp_dir ) ) if InternalServer.is_debug_logging_enabled(): DagdaLogger.get_logger().debug( "Malware files from the docker image retrieved" ) # Get programming language dependencies thread @staticmethod def _threaded_dependencies(dockerDriver, image_name, temp_dir, dependencies): # Get programming language dependencies if InternalServer.is_debug_logging_enabled(): DagdaLogger.get_logger().debug( f'Retrieving dependencies from the docker image in "{temp_dir}...' ) dependencies.extend( dep_info_extractor.get_dependencies_from_docker_image( docker_driver=dockerDriver, image_name=image_name, temp_dir=temp_dir ) ) if InternalServer.is_debug_logging_enabled(): DagdaLogger.get_logger().debug( "Dependencies from the docker image retrieved" ) # DagdaLogger.get_logger().debug(f"dependencies: {json.dumps(dependencies)}")
the-stack_0_14652
import os import sys module_path = os.path.abspath(os.path.join('..')) if module_path not in sys.path: sys.path.append(module_path) from src.PanelMethod import * import numpy as np from scipy.special import exp1 def wave_source(x,y,xs,ys,K): "Source plus generated free surface waves" r2 = (x-xs)**2+(y-ys)**2 # source square-distance m2 = (x-xs)**2+(y+ys)**2 # mirror sink square-distance Z = K*(y+ys+1j*abs(x-xs)) # wave number scaled complex vector eZ = np.exp(Z) # propagating wave potential fZ = np.real(eZ*exp1(Z)) # standing wave potential return 0.5*np.log(r2/m2)-2j*np.pi*eZ-2*fZ from matplotlib.animation import FuncAnimation def wave_video(x,y,q,XY,G=wave_source,args=(4,),size=(16,6)): "Animate the induced flow over a cycle of motion" # Get complex velocity def uv(i): return q[i]*velocity(*XY, x[i], y[i], x[i+1], y[i+1], G, args) UV = sum(uv(i) for i in range(len(x)-1)) # Plot flow and segments fig, ax = plt.subplots(1,1,figsize=size) Q = ax.quiver(*XY, *UV)#, pivot='mid') ax.plot(x,y,c='b') ax.set_ylim(None,0.5) ax.set_aspect('equal', adjustable='box') plt.close() # run through a wave period def update_quiver(num, Q): Q.set_UVC(*np.real(UV*np.exp(-2j*np.pi*num/101))) return Q, # create the animation return FuncAnimation(fig, update_quiver, fargs=(Q,), interval=50)
the-stack_0_14653
"""Support for Tellstick sensors.""" from collections import namedtuple import logging from tellcore import telldus import tellcore.constants as tellcore_constants import voluptuous as vol from homeassistant.components.sensor import PLATFORM_SCHEMA from homeassistant.const import CONF_ID, CONF_NAME, CONF_PROTOCOL, TEMP_CELSIUS import homeassistant.helpers.config_validation as cv from homeassistant.helpers.entity import Entity _LOGGER = logging.getLogger(__name__) DatatypeDescription = namedtuple("DatatypeDescription", ["name", "unit"]) CONF_DATATYPE_MASK = "datatype_mask" CONF_ONLY_NAMED = "only_named" CONF_TEMPERATURE_SCALE = "temperature_scale" CONF_MODEL = "model" DEFAULT_DATATYPE_MASK = 127 DEFAULT_TEMPERATURE_SCALE = TEMP_CELSIUS PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend( { vol.Optional( CONF_TEMPERATURE_SCALE, default=DEFAULT_TEMPERATURE_SCALE ): cv.string, vol.Optional( CONF_DATATYPE_MASK, default=DEFAULT_DATATYPE_MASK ): cv.positive_int, vol.Optional(CONF_ONLY_NAMED, default=[]): vol.All( cv.ensure_list, [ vol.Schema( { vol.Required(CONF_ID): cv.positive_int, vol.Required(CONF_NAME): cv.string, vol.Optional(CONF_PROTOCOL): cv.string, vol.Optional(CONF_MODEL): cv.string, } ) ], ), } ) def setup_platform(hass, config, add_entities, discovery_info=None): """Set up the Tellstick sensors.""" sensor_value_descriptions = { tellcore_constants.TELLSTICK_TEMPERATURE: DatatypeDescription( "temperature", config.get(CONF_TEMPERATURE_SCALE) ), tellcore_constants.TELLSTICK_HUMIDITY: DatatypeDescription("humidity", "%"), tellcore_constants.TELLSTICK_RAINRATE: DatatypeDescription("rain rate", ""), tellcore_constants.TELLSTICK_RAINTOTAL: DatatypeDescription("rain total", ""), tellcore_constants.TELLSTICK_WINDDIRECTION: DatatypeDescription( "wind direction", "" ), tellcore_constants.TELLSTICK_WINDAVERAGE: DatatypeDescription( "wind average", "" ), tellcore_constants.TELLSTICK_WINDGUST: DatatypeDescription("wind gust", ""), } try: tellcore_lib = telldus.TelldusCore() except OSError: _LOGGER.exception("Could not initialize Tellstick") return sensors = [] datatype_mask = config.get(CONF_DATATYPE_MASK) if config[CONF_ONLY_NAMED]: named_sensors = {} for named_sensor in config[CONF_ONLY_NAMED]: name = named_sensor[CONF_NAME] proto = named_sensor.get(CONF_PROTOCOL) model = named_sensor.get(CONF_MODEL) id_ = named_sensor[CONF_ID] if proto is not None: if model is not None: named_sensors["{}{}{}".format(proto, model, id_)] = name else: named_sensors["{}{}".format(proto, id_)] = name else: named_sensors[id_] = name for tellcore_sensor in tellcore_lib.sensors(): if not config[CONF_ONLY_NAMED]: sensor_name = str(tellcore_sensor.id) else: proto_id = "{}{}".format(tellcore_sensor.protocol, tellcore_sensor.id) proto_model_id = "{}{}{}".format( tellcore_sensor.protocol, tellcore_sensor.model, tellcore_sensor.id ) if tellcore_sensor.id in named_sensors: sensor_name = named_sensors[tellcore_sensor.id] elif proto_id in named_sensors: sensor_name = named_sensors[proto_id] elif proto_model_id in named_sensors: sensor_name = named_sensors[proto_model_id] else: continue for datatype in sensor_value_descriptions: if datatype & datatype_mask and tellcore_sensor.has_value(datatype): sensor_info = sensor_value_descriptions[datatype] sensors.append( TellstickSensor(sensor_name, tellcore_sensor, datatype, sensor_info) ) add_entities(sensors) class TellstickSensor(Entity): """Representation of a Tellstick sensor.""" def __init__(self, name, tellcore_sensor, datatype, sensor_info): """Initialize the sensor.""" self._datatype = datatype self._tellcore_sensor = tellcore_sensor self._unit_of_measurement = sensor_info.unit or None self._value = None self._name = f"{name} {sensor_info.name}" @property def name(self): """Return the name of the sensor.""" return self._name @property def state(self): """Return the state of the sensor.""" return self._value @property def unit_of_measurement(self): """Return the unit of measurement of this entity, if any.""" return self._unit_of_measurement def update(self): """Update tellstick sensor.""" self._value = self._tellcore_sensor.value(self._datatype).value
the-stack_0_14654
""" Author: Alex Kiernan Desc: Fact model """ from app import db class Fact(db.Model): __tablename__ = 'prediction_facts' pf_date = db.Column('pf_date', db.Date, primary_key=True) pf_time_of_day = db.Column('pf_time_of_day', db.Integer, primary_key=True) user_id = db.Column('user_id', db.Integer, primary_key=True) bg_value = db.Column('bg_value', db.Float) ins_value = db.Column('ins_value', db.Float) food_value = db.Column('food_value', db.Integer) exercise_value = db.Column('exercise_value', db.Integer) def serialize(self): return { 'pf_date' : self.pf_date.strftime("%A, %d %b %Y"), 'pf_time_of_day' : self.pf_time_of_day, 'user_id' : self.user_id, 'bg_value' : self.bg_value, 'ins_value': self.ins_value, 'food_value': self.food_value, 'exercise_value': self.exercise_value } def fact_serialize(self): return { 'timestamp': self.pf_time_of_day, 'bg_value': self.bg_value, 'carbs': self.food_value, 'exercise': self.exercise_value, 'insulin_dosage': self.ins_value }
the-stack_0_14655
# -*- coding: utf-8 -*- # # Copyright (C) 2005-2020 Edgewall Software # Copyright (C) 2005-2006 Christian Boos <[email protected]> # All rights reserved. # # This software is licensed as described in the file COPYING, which # you should have received as part of this distribution. The terms # are also available at https://trac.edgewall.org/wiki/TracLicense. # # This software consists of voluntary contributions made by many # individuals. For the exact contribution history, see the revision # history and logs, available at https://trac.edgewall.org/log/. # # Author: Christian Boos <[email protected]> import re from trac.config import ConfigSection from trac.core import * from trac.util.html import Element, Fragment, find_element, tag from trac.util.translation import N_, _, tag_ from trac.web.api import IRequestHandler from trac.wiki.api import IWikiMacroProvider from trac.wiki.formatter import extract_link class InterTracDispatcher(Component): """InterTrac dispatcher.""" implements(IRequestHandler, IWikiMacroProvider) is_valid_default_handler = False intertrac_section = ConfigSection('intertrac', """This section configures InterTrac prefixes. Option names in this section that contain a `.` are of the format `<name>.<attribute>`. Option names that don't contain a `.` define an alias. The `.url` attribute is mandatory and is used for locating the other Trac. This can be a relative path when the other Trac environment is located on the same server. The `.title` attribute is used for generating a tooltip when the cursor is hovered over an InterTrac link. Example configuration: {{{#!ini [intertrac] # -- Example of setting up an alias: t = trac # -- Link to an external Trac: genshi.title = Edgewall's Trac for Genshi genshi.url = https://genshi.edgewall.org }}} """) # IRequestHandler methods def match_request(self, req): match = re.match(r'^/intertrac/(.*)', req.path_info) if match: if match.group(1): req.args['link'] = match.group(1) return True def process_request(self, req): link = req.args.get('link', '') parts = link.split(':', 1) if len(parts) > 1: resolver, target = parts if target[:1] + target[-1:] not in ('""', "''"): link = '%s:"%s"' % (resolver, target) from trac.web.chrome import web_context link_frag = extract_link(self.env, web_context(req), link) if isinstance(link_frag, (Element, Fragment)): elt = find_element(link_frag, 'href') if elt is None: raise TracError( _("Can't view %(link)s. Resource doesn't exist or " "you don't have the required permission.", link=link)) href = elt.attrib.get('href') else: href = req.href(link.rstrip(':')) req.redirect(href) # IWikiMacroProvider methods def get_macros(self): yield 'InterTrac' def get_macro_description(self, name): return 'messages', N_("Provide a list of known InterTrac prefixes.") def expand_macro(self, formatter, name, content): intertracs = {} for key, value in self.intertrac_section.options(): idx = key.rfind('.') if idx > 0: # 0 itself doesn't help much: .xxx = ... prefix, attribute = key[:idx], key[idx+1:] intertrac = intertracs.setdefault(prefix, {}) try: intertrac[attribute] = value except TypeError: # alias pass else: intertracs[key] = value # alias intertracs.setdefault('trac', {'title': _('The Trac Project'), 'url': 'https://trac.edgewall.org'}) def generate_prefix(prefix): intertrac = intertracs[prefix] if isinstance(intertrac, basestring): yield tag.tr(tag.td(tag.strong(prefix)), tag.td(tag_("Alias for %(name)s", name=tag.strong(intertrac)))) else: url = intertrac.get('url') if url: title = intertrac.get('title', url) yield tag.tr(tag.td(tag.a(tag.strong(prefix), href=url + '/timeline')), tag.td(tag.a(title, href=url))) return tag.table(class_="wiki intertrac")( tag.tr(tag.th(tag.em(_("Prefix"))), tag.th(tag.em(_("Trac Site")))), [generate_prefix(p) for p in sorted(intertracs)])
the-stack_0_14657
from tridesclous import get_dataset from tridesclous.peakdetector import get_peak_detector_class import time import itertools import scipy.signal import numpy as np import sklearn.metrics.pairwise from matplotlib import pyplot from tridesclous.tests.test_signalpreprocessor import offline_signal_preprocessor from tridesclous.peakdetector import make_sum_rectified, detect_peaks_in_rectified, get_mask_spatiotemporal_peaks from tridesclous.peakdetector import HAVE_PYOPENCL import matplotlib.pyplot as plt def get_normed_sigs(chunksize=None): # get sigs sigs, sample_rate = get_dataset(name='olfactory_bulb') #~ sigs = np.tile(sigs, (1, 20)) #for testing large channels num if sigs.shape[0] % chunksize >0: sigs = sigs[:-(sigs.shape[0] % chunksize), :] nb_channel = sigs.shape[1] #~ print('nb_channel', nb_channel) geometry = np.zeros((nb_channel, 2)) geometry[:, 0] = np.arange(nb_channel) * 50 # um spacing # normalize sigs highpass_freq = 300. preprocess_params = dict( highpass_freq=highpass_freq, common_ref_removal=True, backward_chunksize=chunksize+chunksize//4, output_dtype='float32') normed_sigs = offline_signal_preprocessor(sigs, sample_rate, **preprocess_params) return sigs, sample_rate, normed_sigs, geometry def offline_peak_detect_global(normed_sigs, sample_rate, geometry, peak_sign='-',relative_threshold = 5, peak_span_ms=0.5, smooth_radius_um=None): n_span = int(sample_rate * peak_span_ms / 1000.)//2 if smooth_radius_um is None: spatial_matrix = None else: d = sklearn.metrics.pairwise.euclidean_distances(geometry) spatial_matrix = np.exp(-d/smooth_radius_um) spatial_matrix[spatial_matrix<0.01] = 0. sum_rectified = make_sum_rectified(normed_sigs, relative_threshold, peak_sign, spatial_matrix) mask_peaks = detect_peaks_in_rectified(sum_rectified, n_span, relative_threshold, peak_sign) ind_peaks, = np.nonzero(mask_peaks) ind_peaks += n_span return ind_peaks, sum_rectified def offline_peak_detect_geometrical(normed_sigs, sample_rate, geometry, peak_sign='-',relative_threshold = 5, peak_span_ms=0.5, adjacency_radius_um=None, smooth_radius_um=None): assert smooth_radius_um is None assert adjacency_radius_um is not None nb_channel = normed_sigs.shape[1] n_span = int(sample_rate * peak_span_ms / 1000.)//2 d = sklearn.metrics.pairwise.euclidean_distances(geometry) neighbour_mask = d<=adjacency_radius_um nb_neighbour_per_channel = np.sum(neighbour_mask, axis=0) nb_max_neighbour = np.max(nb_neighbour_per_channel) nb_max_neighbour = nb_max_neighbour neighbours = np.zeros((nb_channel, nb_max_neighbour), dtype='int32') neighbours[:] = -1 for c in range(nb_channel): neighb, = np.nonzero(neighbour_mask[c, :]) neighbours[c, :neighb.size] = neighb peak_mask = get_mask_spatiotemporal_peaks(normed_sigs, n_span, relative_threshold, peak_sign, neighbours) peaks, chan_inds = np.nonzero(peak_mask) return peaks def test_compare_offline_online_engines(): #~ HAVE_PYOPENCL = True engine_names = [ ('global', 'numpy'), ('geometrical', 'numpy'), ('geometrical', 'numba'), ] if HAVE_PYOPENCL: #~ engine_names += [('global', 'opencl'), #~ ('geometrical', 'opencl')] engine_names += [('geometrical', 'opencl')] chunksize=1024 sigs, sample_rate, normed_sigs, geometry = get_normed_sigs(chunksize=chunksize) #params peak_sign = '-' relative_threshold = 8 peak_span_ms = 0.9 smooth_radius_um = None adjacency_radius_um = 200. nb_channel = sigs.shape[1] #~ print('n_span', n_span) nloop = sigs.shape[0]//chunksize print('sig duration', sigs.shape[0]/sample_rate) offline_peaks = {} t1 = time.perf_counter() peaks, rectified_sum = offline_peak_detect_global(sigs, sample_rate, geometry, peak_sign=peak_sign, relative_threshold=relative_threshold, peak_span_ms=peak_span_ms, smooth_radius_um=smooth_radius_um) t2 = time.perf_counter() print('offline global', 'process time', t2-t1) offline_peaks['global', 'numpy'] = peaks offline_peaks['global', 'opencl'] = peaks t1 = time.perf_counter() peaks = offline_peak_detect_geometrical(sigs, sample_rate, geometry, peak_sign=peak_sign, relative_threshold=relative_threshold, peak_span_ms=peak_span_ms, smooth_radius_um=smooth_radius_um, adjacency_radius_um=adjacency_radius_um) t2 = time.perf_counter() print('offline geometrical', 'process time', t2-t1) offline_peaks['geometrical', 'numpy'] = peaks offline_peaks['geometrical', 'numba'] = peaks offline_peaks['geometrical', 'opencl'] = peaks online_peaks = {} for method, engine in engine_names: print(engine) EngineClass = get_peak_detector_class(method, engine) #~ buffer_size = chunksize*4 peakdetector = EngineClass(sample_rate, nb_channel, chunksize, 'float32', geometry) peakdetector.change_params(peak_sign=peak_sign, relative_threshold=relative_threshold, peak_span_ms=peak_span_ms, smooth_radius_um=smooth_radius_um, adjacency_radius_um=adjacency_radius_um) all_online_peaks = [] t1 = time.perf_counter() for i in range(nloop): #~ print(i) pos = (i+1)*chunksize chunk = sigs[pos-chunksize:pos,:] time_ind_peaks, chan_peak_index, peak_val_peaks = peakdetector.process_buffer_stream(pos, chunk) #~ print(n_peaks) if time_ind_peaks is not None: #~ all_online_peaks.append(chunk_peaks['index']) all_online_peaks.append(time_ind_peaks) online_peaks[method, engine] = np.concatenate(all_online_peaks) t2 = time.perf_counter() print(engine, 'process time', t2-t1, 'size', online_peaks[method, engine].size) # remove peaks on border for comparison for method, engine in engine_names: peaks = online_peaks[method, engine] peaks = peaks[(peaks>chunksize) & (peaks<sigs.shape[0]-chunksize)] online_peaks[method, engine] = peaks peaks = offline_peaks[method, engine] peaks = peaks[(peaks>chunksize) & (peaks<sigs.shape[0]-chunksize)] offline_peaks[method, engine] = peaks # compare for method, engine in engine_names: print('compare', method, engine) onlinepeaks = online_peaks[method, engine] offlinepeaks = offline_peaks[method, engine] print(onlinepeaks.size, offlinepeaks.size) # TODO #~ assert offlinepeaks.size==onlinepeaks.size, '{} nb_peak {} instead {}'.format(engine, offlinepeaks.size, onlinepeaks.size) #~ assert np.array_equal(offlinepeaks, onlinepeaks) def test_detect_geometrical_peaks(): chunksize=1024 sigs, sample_rate, normed_sigs, geometry = get_normed_sigs(chunksize=chunksize) nb_channel = sigs.shape[1] n_span = 4 thresh = 5 peak_sign = '-' d = sklearn.metrics.pairwise.euclidean_distances(geometry) nb_neighbour = 4 neighbours = np.zeros((nb_channel, nb_neighbour+1), dtype='int64') for c in range(nb_channel): nearest = np.argsort(d[c, :]) #~ print(c, nearest) neighbours[c, :] = nearest[:nb_neighbour+1] # include itself #~ print(neighbours) mask = get_mask_spatiotemporal_peaks(normed_sigs, n_span, thresh, peak_sign, neighbours) peak_inds, chan_inds = np.nonzero(mask) peak_inds += n_span print(peak_inds.size) #~ fig, ax = plt.subplots() #~ plot_sigs = normed_sigs.copy() #~ for c in range(nb_channel): #~ plot_sigs[:, c] += c*30 #~ ax.plot(plot_sigs, color='k') #~ ampl = plot_sigs[peak_inds, chan_inds] #~ ax.scatter(peak_inds, ampl, color='r') #~ plt.show() # test two way mask_neg = get_mask_spatiotemporal_peaks(normed_sigs, n_span, thresh, '-', neighbours) mask_pos = get_mask_spatiotemporal_peaks(-normed_sigs, n_span, thresh, '+', neighbours) assert np.array_equal(mask_neg, mask_pos) #~ print(peak_inds) #~ print(chan_inds) def benchmark_speed(): chunksize=1024 #~ chunksize=1025 #~ chunksize= 1024 + 256 #~ chunksize=2048 #~ chunksize = 1024 * 10 #~ chunksize=950 sigs, sample_rate, normed_sigs, geometry = get_normed_sigs(chunksize=chunksize) #~ sigs = np #***for testing large channels num*** sigs = np.tile(sigs, (1, 20)) normed_sigs = np.tile(normed_sigs, (1, 20)) geometry = np.zeros((sigs.shape[1], 2), dtype='float64') geometry[:, 0] = np.arange(sigs.shape[1]) * 50. #*** nb_channel = sigs.shape[1] print('nb_channel', nb_channel) engine_names = [ #~ ('global', 'numpy'), #~ ('geometrical', 'numpy'), ('geometrical', 'numba'), ] if HAVE_PYOPENCL: engine_names += [ #~ ('global', 'opencl'), ('geometrical', 'opencl'), ] args = (sample_rate, nb_channel, chunksize, 'float32', geometry) params = dict(peak_span_ms = 0.9, relative_threshold = 5, peak_sign = '-') online_peaks = {} for method, engine in engine_names: peakdetector = get_peak_detector_class(method, engine)(*args) peakdetector.change_params(**params) #~ print(peakdetector.n_span, peakdetector.dtype) nloop = normed_sigs.shape[0]//chunksize peak_inds = [] peak_chans = [] t1 = time.perf_counter() for i in range(nloop): pos = (i+1)*chunksize chunk = normed_sigs[pos-chunksize:pos,:] time_ind_peaks, chan_peak_index, peak_val_peaks = peakdetector.process_buffer_stream(pos, chunk) if time_ind_peaks is not None: peak_inds.append(time_ind_peaks) if chan_peak_index is not None: peak_chans.append(chan_peak_index) t2 = time.perf_counter() peak_inds = np.concatenate(peak_inds) if len(peak_chans) > 0: peak_chans = np.concatenate(peak_chans) else: peak_chans = np.argmin(normed_sigs[peak_inds, :], axis=1) online_peaks[method, engine] = peak_inds print(method, engine, ':' , peak_inds.size) print(method, engine, 'process time', t2-t1) #~ fig, ax = plt.subplots() #~ plot_sigs = normed_sigs.copy() #~ for c in range(nb_channel): #~ plot_sigs[:, c] += c*30 #~ ax.plot(plot_sigs, color='k') #~ ampl = plot_sigs[peak_inds, peak_chans] #~ ax.scatter(peak_inds, ampl, color='r') #~ plt.show() def test_peak_sign_symetry(): chunksize=1024 raw_sigs, sample_rate, normed_sigs, geometry = get_normed_sigs(chunksize=chunksize) nb_channel = normed_sigs.shape[1] #~ print('nb_channel', nb_channel) args = (sample_rate, nb_channel, chunksize, 'float32', geometry) params = dict(peak_span_ms = 0.9, relative_threshold = 5) engine_names = [ ('global', 'numpy'), ('geometrical', 'numpy'), ('geometrical', 'numba'), ] if HAVE_PYOPENCL: engine_names += [ ('global', 'opencl'), ('geometrical', 'opencl'), ] online_peaks = {} for method, engine in engine_names: peakdetector = get_peak_detector_class(method, engine)(*args) for peak_sign in ['-', '+']: if peak_sign=='-': sigs = normed_sigs elif peak_sign=='+': sigs = -normed_sigs peakdetector.change_params(peak_sign=peak_sign, **params) nloop = normed_sigs.shape[0]//chunksize peaks = [] t1 = time.perf_counter() for i in range(nloop): #~ print(i) pos = (i+1)*chunksize chunk = sigs[pos-chunksize:pos,:] #~ print(chunk.shape) time_ind_peaks, chan_peak_index, peak_val_peaks = peakdetector.process_buffer_stream(pos, chunk) #~ print(n_peaks) #~ print(chunk_peaks) if time_ind_peaks is not None: #~ all_online_peaks.append(chunk_peaks['index']) peaks.append(time_ind_peaks) peak_inds = np.concatenate(peaks) online_peaks[method, engine, peak_sign] = peak_inds t2 = time.perf_counter() print(method, engine, 'peak_sign', peak_sign,':' , peak_inds.size, 'unique peak size', np.unique(peak_inds).size) #~ print(name, 'process time', t2-t1) assert np.array_equal(online_peaks[method, engine, '-'], online_peaks[method, engine, '+']) if HAVE_PYOPENCL: assert np.array_equal(online_peaks['global', 'numpy', '-'], online_peaks['global', 'opencl', '-']) assert np.array_equal(online_peaks['geometrical', 'numpy', '-'], online_peaks['geometrical', 'numba', '-']) # TODO this should be totally equal assert np.array_equal(online_peaks['geometrical', 'numpy', '-'], online_peaks['geometrical', 'opencl', '-']) assert np.array_equal(online_peaks['geometrical', 'numba', '-'], online_peaks['geometrical', 'opencl', '-']) if __name__ == '__main__': test_compare_offline_online_engines() #~ test_detect_geometrical_peaks() #~ benchmark_speed() #~ test_peak_sign_symetry()
the-stack_0_14658
from urllib.request import urlopen, Request import os import src.util as util def save_image_tag(bs_object, conf): # Header for passing header checker if conf['site_name'] == conf['comic_sites'][0]: headers = conf['headers']['m'] elif conf['site_name'] == conf['comic_sites'][1]: headers = conf['headers']['w'] #이미지 소스 선택 targetString = 'https://' targetlen = len(targetString) #썸네일 사진 패스하기 thumbnailString = conf['thumbnail_link'] thumbnaillen = len(thumbnailString) #그 외 불필요 이미지 파일 패스하기 otherString = conf['unnecessary_link'] otherStringlen = len(otherString) # 인스턴스의 find_all 이라는 함수에 img 태그가 있으면 img_data에 넣어줌 img_data = bs_object.find_all("img") num_comic_img = 2 img_idx = 1 ''' structure of img tag(prop list) 1. src 2. data-.... 3. style ''' for img_tag in img_data: # print(list(img_tag.attrs.keys())) attr_list = list(img_tag.attrs.keys()) # if lenght of attribute is less than 3 # it isn't comic image if len(attr_list) < 2: continue # print(attr_list) isComicImg = False # if it is comic image, # attribute list must contain 'data class' for attr in attr_list: if attr[:4] == 'data': isComicImg = True data_tag = attr # some image tag contains 'itemprop' class if conf['site_name'] == conf['comic_sites'][0]: if 'itemprop' in attr_list: isComicImg = True data_tag = 'content' elif conf['site_name'] == conf['comic_sites'][1]: if 'alt' in attr_list: isComicImg = True data_tag = 'src' if not isComicImg: continue print(img_idx, img_tag.attrs[data_tag]) srcString = img_tag.attrs[data_tag] #썸네일은 건너뛰기 if srcString[:thumbnaillen] == thumbnailString: print("pass thumbnail") continue if 'assets' in srcString: print("pass img of assets") continue #서버 이미지면 저장 그만하기 #모든 만화 이미지는 외부 서버에 있음 print("img index=", img_idx) if (srcString[:otherStringlen] == otherString): print("break othrestring") continue #구글 드라이브 혹은 타서버에 저장된 만화 이미지 파일 처리 if srcString[0:targetlen] == targetString: #딕셔너리를 순서대로 넣어줌 imgReq = Request(url=img_tag.attrs[data_tag], headers=headers) try: imageDownload = urlopen(imgReq).read() except: continue #파일 이름 생성 filename = "image"+str(img_idx).zfill(2)+'.jpg' folder_path = os.path.join(conf['comic_name'], str(conf['number'])) #폴더 생성 path = util.create_dir(conf['comic_path'], folder_path) #파일 생성 경로 filepath = os.path.join(path, filename) #파일 생성 with open(filepath,"wb") as f: f.write(imageDownload) print('save => "' + path + "'/" + str(conf['number']) + '"') img_idx += 1