filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_0_14659
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import itertools import logging import os import re import threading import time from typing import Callable, Optional, Sequence from unittest import skip, SkipTest from absl.testing import absltest from absl.testing import parameterized import jax from jax import core from jax._src import api from jax.config import config from jax import dtypes from jax.experimental import host_callback as hcb from jax.experimental import PartitionSpec as P from jax.experimental import maps from jax.experimental import pjit from jax import lax from jax import numpy as jnp from jax import test_util as jtu from jax import tree_util from jax.lib import xla_bridge import numpy as np config.parse_flags_with_absl() FLAGS = config.FLAGS class _TestingOutputStream(object): """Use as `output_stream` for tests.""" def __init__(self): self._output = [] self._test_method_name = None def write(self, what: str) -> None: print(f"output_stream[{self._test_method_name}]: {what}", end="") self._output.append(what) @property def output(self): return "".join(self._output) @property def output_sorted_by_device(self): # Assume that the output is a sequence of strings including metadata # and data, with metadata containing `device: xxx` by_device = [] # each element is a pair (device, str_list) for s in self._output: m = re.match(r".*device: (\S+)", s) if m: by_device.append((m.group(1), [])) assert by_device, f"output does not include 'device:': {self._output}" by_device[-1][1].append(s) sorted_by_device = sorted(by_device, key=lambda x: x[0]) return "\n".join(itertools.chain(*[s[1] for s in sorted_by_device])) def __str__(self): return "TestingOutputStream" def reset(self): self._output = [] testing_stream = _TestingOutputStream() def fun1(a): """Function used for several `id_tap` tests.""" y = hcb.id_print(a * 2., what="a * 2", output_stream=testing_stream) y = hcb.id_print(y * 3., what="y * 3", output_stream=testing_stream, result=y) return y ** 2 # Some computation to make the gradient interesting def fun1_equiv(a): # Numerical equivalent of fun1 return (a * 2.) ** 2 def maybe_print(do_print: bool, arg, what: str, tap_with_device: Optional[bool] = False): """Conditionally print on testing_string""" if do_print: return hcb.id_print(arg, what=what, output_stream=testing_stream, tap_with_device=tap_with_device) else: return arg def local_devices(): # Tests require using not more than 2 devices. return api.local_devices()[:2] ignore_jit_of_pmap_warning = partial( jtu.ignore_warning, message=".*jit-of-pmap.*") def assertMultiLineStrippedEqual(tst: jtu.JaxTestCase, expected: str, what: str): """A variant that preprocesses the string to eliminate non-determinism in floating point values, and several uninteresting id_tap primitive params. """ # Sometimes we get floating points in the output; we round them def repl_floats(match_group): matched = match_group.group(0) if matched == ".": return matched x = np.around(float(matched), decimals=2) return f"{x:.2f}" what = re.sub(r"\-?\d*\.[\-\def]*", repl_floats, what) what = re.sub(r"output_stream=[^\]\n,]*,?", "", what) what = re.sub(r"threshold=[^\]\n,]*,?", "", what) what = re.sub(r"bwd=[^\]\n]*", "", what) what = re.sub(r"out_trees=[^\]\n]*", "", what) what = re.sub(r"fwd_jaxpr_thunk=[^\]\n]*", "", what) what = re.sub(r"jvp_jaxpr_thunk=[^\]\n]*", "", what) # Empty lines what = re.sub(r"^\s*\n", "", what, flags=re.MULTILINE) def repl_func(match_group): matched = match_group.group(3) if "function _print_consumer" in matched: return match_group.group(1) + "=_print" else: return match_group.group(1) + "=..." what = re.sub(r"((tap_func_)|(callback))=([^\]\n,]*),?", repl_func, what) tst.assertMultiLineStrippedEqual(expected, what) def helper_set_hlo_dump(): flags_str = os.getenv("XLA_FLAGS", "") import shutil dump_dir = "/tmp/xla_dump" os.environ["XLA_FLAGS"] = f"{flags_str} --xla_dump_to={dump_dir}" if os.path.isdir(dump_dir): logging.warning(f"Deleting old XLA dump directory {dump_dir}") shutil.rmtree(dump_dir) logging.warning(f"Setting XLA dump directory {dump_dir}") # Clear any cached backends so new CPU backend will pick up the env var. xla_bridge.get_backend.cache_clear() def helper_print_optimized_hlo(fun, *args): backend = api.lib.xla_bridge.get_backend() c = api.xla_computation(fun)(*args) print(re.sub(r", metadata.*", "", backend.compile(c).hlo_modules()[0].to_string())) def helper_log_ir(name, f_jax, *args, num_partitions=None, strip_metadata=False): print(f"Jaxpr[{name}]: {jax.make_jaxpr(f_jax)(*args)}") jax_comp = jax.xla_computation(f_jax)(*args) print(f"HLO[{name}]: {jax_comp.as_hlo_text()}") backend = jax.lib.xla_bridge.get_backend() if num_partitions is not None: num_replicas = 1 device_assignment = np.arange(num_partitions * num_replicas) device_assignment = np.reshape(device_assignment, (-1, num_partitions)) use_spmd_partitioning = num_partitions > 1 compile_options = jax.lib.xla_bridge.get_compile_options( num_replicas=num_replicas, num_partitions=num_partitions, device_assignment=device_assignment, use_spmd_partitioning=use_spmd_partitioning, ) else: compile_options = None jax_optimized_hlo = backend.compile( jax_comp, compile_options).hlo_modules()[0].to_string() if strip_metadata: jax_optimized_hlo = re.sub(r", metadata.*", "", jax_optimized_hlo) print(f"Optimized HLO[{name}] for " f"platform {backend.platform}: {jax_optimized_hlo}") prev_xla_flags = None def setUpModule(): global prev_xla_flags # This will control the CPU devices. On TPU we always have 2 devices prev_xla_flags = jtu.set_host_platform_device_count(2) # Reset to previous configuration in case other test modules will be run. def tearDownModule(): prev_xla_flags() def assertMultiDeviceOutputEqual(tst: jtu.JaxTestCase, expected_2CPUs: str): """Check that the multi-device output is equal to the expected. The tests run with 2 devices if available, otherwise 1 device. We adjust the expected output here for 1 device. Args: expected_2CPUs: the expected output for 2 CPUs. If there is only one device, this is trimmed to the first device. If the current device_under_test is not a CPU, then we change the names """ expected = expected_2CPUs if len(local_devices()) == 1: start_device_1 = expected.find('device: cpu:1') if start_device_1 >= 0: expected = expected[0:start_device_1] def replace_device_name(m) -> str: return str(local_devices()[int(m.group(1))]) expected = re.sub(r'cpu:(\d+)', replace_device_name, expected) what = testing_stream.output_sorted_by_device return assertMultiLineStrippedEqual(tst, expected, what) class HostCallbackTapTest(jtu.JaxTestCase): def setUp(self): super().setUp() if jtu.device_under_test() == "gpu" and jax.device_count() > 1: raise SkipTest("host_callback broken on multi-GPU platforms (#6447)") testing_stream.reset() testing_stream._test_method_name = self._testMethodName self.old_flags = os.getenv("XLA_FLAGS", "") def tearDown(self) -> None: if os.getenv("XLA_FLAGS") != self.old_flags: os.environ["XLA_FLAGS"] = self.old_flags xla_bridge.get_backend.cache_clear() hcb.barrier_wait("HostCallbackTapTest.tearDown") super().tearDown() def test_tap_eval(self): self.assertAllClose((5. * 2.) ** 2, fun1(5.)) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ what: a * 2 10.00 what: y * 3 30.00""", testing_stream.output) def test_tap_with_tuple_results(self): def func2(x): x1, y1 = hcb.id_print((x * 2., x * 3.), output_stream=testing_stream) return x1 + y1 self.assertEqual(3. * (2. + 3.), func2(3.)) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ ( 6.00 9.00 )""", testing_stream.output) def test_tap_with_dict_results(self): def func2(x): res = hcb.id_print(dict(a=x * 2., b=x * 3.), output_stream=testing_stream) return res["a"] + res["b"] self.assertEqual(3. * (2. + 3.), func2(3.)) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ { a=6.00 b=9.00 }""", testing_stream.output) def test_tap_with_result(self): def func2(x): x1 = hcb.id_print((x * 2., x * 3.), result=x * 4., output_stream=testing_stream) return x1 self.assertEqual(3. * 4., func2(3.)) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ ( 6.00 9.00 )""", testing_stream.output) def test_tap_with_result_no_arg(self): def tap_func(arg, transforms): testing_stream.write(f"called tap_func with {arg}") def func2(x): x1 = hcb.id_tap(tap_func, None, result=x) return x1 self.assertEqual(3., func2(3.)) hcb.barrier_wait() assertMultiLineStrippedEqual(self, "called tap_func with None", testing_stream.output) def test_tap_result_unused(self): def tap_func(arg, transforms): testing_stream.write(f"called tap_func with {arg}") def func2(x): hcb.id_tap(tap_func, None) return x self.assertEqual(3., func2(3.)) hcb.barrier_wait() assertMultiLineStrippedEqual(self, "called tap_func with None", testing_stream.output) def test_tap_with_device(self): def func2(x): x1 = hcb.id_print((x * 2., x * 3.), result=x * 4., output_stream=testing_stream, tap_with_device=True) return x1 self.assertEqual(3. * 4., func2(3.)) hcb.barrier_wait() assertMultiDeviceOutputEqual(self, """ device: cpu:0 ( 6.00 9.00 )""") def test_tap_eval_exception(self): if not FLAGS.jax_host_callback_outfeed: raise SkipTest("TODO: implement error handling for customcall") # Simulate a tap error def tap_err(*args, **kwargs): raise ValueError("Some user message") def func(x): x1 = hcb.id_print(x + 1, what="x1", output_stream=testing_stream) x2 = hcb.id_tap(tap_err, x1 + 1) x3 = hcb.id_print(x2 + 1, what="x3", output_stream=testing_stream) return x3 with self.assertRaisesRegex( hcb.CallbackException, re.compile("There were exceptions during callback processing. Last one was:.*" "ValueError: Some user message", re.DOTALL)): func(0) hcb.barrier_wait() # We should have received everything before the error assertMultiLineStrippedEqual(self, """ what: x1 1 what: x3 3""", testing_stream.output) def test_tap_empty(self): """Tap empty arrays.""" hcb.id_print((), output_stream=testing_stream) hcb.id_print((1., np.ones((2, 0))), what="second", output_stream=testing_stream) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ ( ) what: second ( 1.00 [] )""", testing_stream.output) def test_tap_jit_simple(self): jit_fun1 = api.jit(lambda x: 3. * hcb.id_print( 2. * x, what="here", output_stream=testing_stream)) self.assertAllClose(6. * 5., jit_fun1(5.)) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ what: here 10.00""", testing_stream.output) def test_tap_jit_no_invars(self): def func(): # jitted function does not take arguments return hcb.id_print(42, output_stream=testing_stream) self.assertAllClose(42, api.jit(func)()) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ 42""", testing_stream.output) def test_tap_jit_multiple_invars(self): def func(x1, x2): return hcb.id_print(x1 + x2, output_stream=testing_stream) self.assertAllClose(42, api.jit(func)(40, 2)) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ 42""", testing_stream.output) def test_tap_jit_constant(self): def func(x): return hcb.id_print(42, result=x, output_stream=testing_stream) self.assertAllClose(5, api.jit(func)(5)) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ 42""", testing_stream.output) def test_tap_jit_sequence1(self): def func(x): x1 = hcb.id_print(x, where="1", output_stream=testing_stream) return hcb.id_print(x1 + 1, where="2", output_stream=testing_stream) logging.info("%s: %s", self._testMethodName, api.make_jaxpr(func)(1)) logging.info("%s: %s", self._testMethodName, api.xla_computation(func)(1).as_hlo_text()) self.assertEqual(2, api.jit(func)(1)) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ where: 1 1 where: 2 2""", testing_stream.output) def test_tap_jit2(self): """A sequence of JIT.""" def func(x): x1 = hcb.id_print(x, where="1", output_stream=testing_stream) x2 = hcb.id_print(x1 + 1, where="2", output_stream=testing_stream) return x2 self.assertEqual(2, api.jit(func)(1)) self.assertEqual(11, api.jit(func)(10)) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ where: 1 1 where: 2 2 where: 1 10 where: 2 11""", testing_stream.output) def test_tap_jit_result_unused(self): """We can id_print even if we don't use the result.""" def func(x): hcb.id_print(x, where="1", output_stream=testing_stream) hcb.id_print(x + 1, where="2", output_stream=testing_stream) return x + 1 self.assertEqual(2, api.jit(func)(1)) self.assertEqual(11, api.jit(func)(10)) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ where: 1 1 where: 2 2 where: 1 10 where: 2 11""", testing_stream.output) def test_tap_jit_nested(self): def func(x): x1 = hcb.id_print(x, where="1", output_stream=testing_stream) def func_nested(x): x2 = hcb.id_print(x + 1, where="nested", output_stream=testing_stream) return x2 x3 = api.jit(func_nested)(x1) return hcb.id_print(x3 + 1, where="3", output_stream=testing_stream) self.assertEqual(3, api.jit(func)(1)) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ where: 1 1 where: nested 2 where: 3 3""", testing_stream.output) def test_tap_jit_devices(self): """Running on multiple devices.""" logging.info(f"{self._testMethodName}: has devices {local_devices()}") def func(x, device_id): x1 = hcb.id_print(x, dev=str(device_id), output_stream=testing_stream) x2 = hcb.id_print(x1 + 1, dev=str(device_id), output_stream=testing_stream) return x2 for d in local_devices(): self.assertEqual(112, api.jit(func, device=d, static_argnums=1)(111, d.id)) hcb.barrier_wait() logging.info(f"{self._testMethodName}: found output {testing_stream.output}") self.assertEqual( len(local_devices()), len(re.findall(r"111", testing_stream.output))) self.assertEqual( len(local_devices()), len(re.findall(r"112", testing_stream.output))) @parameterized.named_parameters( jtu.cases_from_list( dict( testcase_name=f"_with_jit_{with_jit}", with_jit=with_jit) for with_jit in [True, False])) def test_tap_pytree(self, with_jit=False): def func(x, what=""): """Returns some pytrees depending on x""" if what == "pair_1_x": return (1, x) elif what == "pair_x_2x": return (x, 2 * x) elif what == "dict": return dict(a=2 * x, b=3 * x) else: assert False tap_count = 0 def tap_func(a, _, *, what=""): nonlocal tap_count tap_count += 1 self.assertEqual(func(5, what), a) transform = api.jit if with_jit else lambda f: f for what in ("pair_1_x", "pair_x_2x", "dict"): transformed = transform( lambda x: hcb.id_tap( partial(tap_func, what=what), func(x, what), result=func(x * 2, what)) )(5) self.assertEqual(func(10, what), transformed) hcb.barrier_wait() # Wait for receivers to be done self.assertEqual(3, tap_count) @parameterized.named_parameters( jtu.cases_from_list( dict( testcase_name=f"_concurrent_{concurrent}", concurrent=concurrent) for concurrent in [True, False])) def test_tap_multiple(self, concurrent=False): """Call id_tap multiple times, concurrently or in sequence. """ if concurrent and jtu.device_under_test() in ["cpu", "gpu"]: # TODO(necula): if there is device side concurrency, outfeeds from # different computations can be interleaved. For example, it seems that # on GPU if multiple host threads run a jit computation, the multiple # computations are interleaved on the GPU. This can result in the outfeed # trains being interleaved, which will trigger an error. # The solution is to fix on GPU the receiving logic so that we can outfeed # the train as one tuple, and receive it one piece as a time. Then the # trains should be atomic. # See also b/160692602. raise SkipTest("concurrent id_tap not supported on CPU, GPU") received = set() count = 5 def pause_tap(idx, _): received.add(int(idx)) logging.info(f"Starting do_tap {idx}. Sleeping 1sec ...") time.sleep(0.3) logging.info(f"Finish do_tap {idx}") def do_tap(idx): api.jit(lambda idx: hcb.id_tap(pause_tap, idx))(idx) if concurrent: threads = [ threading.Thread( name=f"enqueue_tap_{idx}", target=do_tap, args=(idx,)) for idx in range(count) ] [t.start() for t in threads] [t.join() for t in threads] else: for idx in range(count): do_tap(idx) hcb.barrier_wait() self.assertEqual(received, set(range(count))) # TODO(necula): see comment for test_multiple_tap. Here we disable also # on TPU, because the barrier_wait runs on all devices, including on the CPU # where it would run into concurrency problems. @skip("Concurrency not supported") def test_tap_multiple_barriers(self): """Call barrier_wait concurrently.""" def pause_tap(*args, **kwargs): logging.info("pause_tap waiting") time.sleep(0.3) logging.info("pause_tap done") def long_run(x): return hcb.id_tap(pause_tap, x) api.jit(long_run)(5.) def try_barrier(idx): logging.info(f"Starting test barrier {idx}") hcb.barrier_wait() logging.info(f"Finished test barrier {idx}") threads = [ threading.Thread( name=f"barrier_{idx}", target=try_barrier, args=(idx,)) for idx in range(3) ] [t.start() for t in threads] [t.join() for t in threads] @parameterized.named_parameters( jtu.cases_from_list( dict( testcase_name=f"_with_jit_{with_jit}", with_jit=with_jit) for with_jit in [True, False])) def test_tap_cond(self, with_jit=False): """A conditional""" def func(x): x1 = hcb.id_print(x, where="1", output_stream=testing_stream) x2 = hcb.id_print(x1 + 1, where="2", output_stream=testing_stream) x4 = lax.cond(x % 2 == 0, lambda x: hcb.id_print(x, where="cond_t", output_stream=testing_stream), lambda x: hcb.id_print(-1, where="cond_f", result=x, output_stream=testing_stream), x2 + 1) x5 = hcb.id_print(x4 + 1, where="end", output_stream=testing_stream) return x5 transform = api.jit if with_jit else lambda f: f self.assertEqual(4, transform(func)(1)) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ where: 1 1 where: 2 2 where: cond_f -1 where: end 4""", testing_stream.output) @parameterized.named_parameters( jtu.cases_from_list( dict(testcase_name=f"_with_jit_{with_jit}", with_jit=with_jit) for with_jit in [True, False])) def test_tap_while_cond(self, with_jit=False): def func(x): x1 = hcb.id_print(x, where="1", output_stream=testing_stream) x2 = hcb.id_print(x1 + 1, where="2", output_stream=testing_stream) def body(x): x3 = hcb.id_print(x, where="w_b_1", output_stream=testing_stream) x4 = lax.cond(x % 2 == 0, lambda x: hcb.id_print(x, where="w_b_t", output_stream=testing_stream), lambda x: hcb.id_print(-1, where="w_b_f", result=x, output_stream=testing_stream), x3 + 1) return hcb.id_print(x4, where="w_b_2", output_stream=testing_stream) x10 = lax.while_loop(lambda x: x <= 3, body, x2) res = hcb.id_print(x10, where="end", output_stream=testing_stream) return res transform = api.jit if with_jit else lambda f: f self.assertEqual(4, transform(func)(1)) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ where: 1 1 where: 2 2 where: w_b_1 2 where: w_b_t 3 where: w_b_2 3 where: w_b_1 3 where: w_b_f -1 where: w_b_2 4 where: end 4""", testing_stream.output) def test_tap_jit_while_pred_tap(self): """While with printing in the conditional.""" def func(x): x1 = hcb.id_print(x, where="1") x10 = lax.while_loop(lambda x: hcb.id_print(x < 3, where="w_p", output_stream=testing_stream), lambda x: hcb.id_print(x + 1, where="w_b", output_stream=testing_stream), x1) res = hcb.id_print(x10, where="3", output_stream=testing_stream) return res self.assertEqual(3, api.jit(func)(1)) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ where: w_p True where: w_b 2 where: w_p True where: w_b 3 where: w_p False where: 3 3""", testing_stream.output) @parameterized.named_parameters( jtu.cases_from_list( dict( testcase_name=f"_with_jit_{with_jit}", with_jit=with_jit) for with_jit in [True, False])) def test_tap_scan_cond(self, with_jit=True): def func(x): x1 = hcb.id_print(x, where="1", output_stream=testing_stream) x2 = hcb.id_print(x1 + 1, where="2", output_stream=testing_stream) def body(c, x): x3 = hcb.id_print(x, where="s_1", output_stream=testing_stream) x4 = lax.cond(x % 2 == 0, lambda x: hcb.id_print(x, where="s_t", output_stream=testing_stream), lambda x: hcb.id_print(-1, where="s_f", result=x, output_stream=testing_stream), x3 + 1) return (c, hcb.id_print(x4, where="s_2", output_stream=testing_stream)) _, x10 = lax.scan(body, x2, jnp.arange(3)) res = hcb.id_print(x10, where="10", output_stream=testing_stream) return res if with_jit: func = api.jit(func) res = func(1) self.assertAllClose(jnp.array([1, 2, 3]), res) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ where: 1 1 where: 2 2 where: s_1 0 where: s_t 1 where: s_2 1 where: s_1 1 where: s_f -1 where: s_2 2 where: s_1 2 where: s_t 3 where: s_2 3 where: 10 [1 2 3]""", testing_stream.output) testing_stream.reset() @parameterized.named_parameters( jtu.cases_from_list( dict( testcase_name=f"_shape_{shape}_dtype_{np.dtype(dtype).name}_nr_args={nr_args}", shape=shape, dtype=dtype, nr_args=nr_args) for nr_args in [1, 2] for shape in [(), (2,), (2, 3), (2, 3, 4)] for dtype in jtu.dtypes.all)) def test_tap_jit_dtypes(self, nr_args=2, dtype=jnp.int16, shape=(2,)): if dtype in (jnp.complex64, jnp.complex128, jnp.bool_): raise SkipTest(f"host_callback not implemented for {dtype}.") if dtype == np.bool_: args = [np.random.choice(a=[True, False], size=shape)] else: args = [jnp.arange(np.prod(shape), dtype=dtype).reshape(shape)] if nr_args > 1: args = args * nr_args jit_fun1 = api.jit(lambda xs: hcb.id_print( xs, a_new_test="************", testcase_name=f"shape_{shape}_dtype_{dtype}_nr_args={nr_args}")) res = jit_fun1(args) self.assertAllClose(args, res, check_dtypes=True) def test_tap_jit_large(self): arg = jnp.arange(10000, dtype=jnp.int32).reshape((10, 10, 5, -1)) api.jit(hcb.id_print)(arg) def test_tap_jit_several_together(self): arg = jnp.arange(50, dtype=jnp.int32).reshape((10, 5)) api.jit(lambda x, y: hcb.id_print((x, y, x * 2.)))(arg, jnp.ones(100, dtype=jnp.int32)) def test_tap_jit_interleaving(self): # Several jit's without data dependencies; they may interfere count = 0 # Count tap invocations nr_arrays = 5 def tap_func(arg, _): nonlocal count assert len(arg) == nr_arrays count += 1 # This is the function that we'll run multiple times def func(x, count): for i in range(count): x = hcb.id_tap(tap_func, [x + i for i in range(nr_arrays)])[-1] return x x = jnp.array(1, dtype=np.int32) res = 0 for _ in range(10): # No dependencies between the jit invocations res += api.jit(lambda x: func(x, 10))(x) hcb.barrier_wait() self.assertEqual(100, count) def test_tap_jit_tap_exception(self): if not FLAGS.jax_host_callback_outfeed: raise SkipTest("TODO: implement error handling for customcall") # Simulate a tap error def tap_err(*args, **kwargs): raise NotImplementedError def func(x): x1 = hcb.id_print(x + 1, what="x1", output_stream=testing_stream) x2 = hcb.id_tap(tap_err, x1 + 1) x3 = hcb.id_print(x2 + 1, what="x3", output_stream=testing_stream) return x3 res = api.jit(func)(0) # No error yet with self.assertRaises(hcb.CallbackException): hcb.barrier_wait() # Even though the receiver thread raised, the main thread should still # return 3. self.assertEqual(3, res) # We should have received all others assertMultiLineStrippedEqual(self, """ what: x1 1 what: x3 3""", testing_stream.output) def test_tap_while(self): """Executing while, even without JIT uses compiled code""" y = jnp.ones(5) # captured const def func(x): return lax.while_loop( lambda c: c[1] < 5, lambda c: (y, hcb.id_print(c[1], output_stream=testing_stream) + 1), (x, 1)) func(y) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ 1 2 3 4""", testing_stream.output) def test_tap_jvp(self): jvp_fun1 = lambda x, xt: api.jvp(fun1, (x,), (xt,)) res_primals, res_tangents = jvp_fun1(jnp.float32(5.), jnp.float32(0.1)) self.assertAllClose(100., res_primals, check_dtypes=False) self.assertAllClose(4., res_tangents, check_dtypes=False) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ transforms: ['jvp'] what: a * 2 ( 10.00 0.20 ) transforms: ['jvp'] what: y * 3 ( 30.00 0.60 )""", testing_stream.output) def test_tap_grad_primal_unused(self): # The output of id_print is not needed for backwards pass def func(x): return 2. * hcb.id_print(x * 3., what="x * 3", output_stream=testing_stream) grad_func = api.grad(func) arg = jnp.float32(5.) jaxpr = str(api.make_jaxpr(grad_func)(arg)) # making the Jaxpr does not print anything hcb.barrier_wait() treedef = tree_util.tree_structure(arg) assertMultiLineStrippedEqual(self, f""" {{ lambda ; a. let b = mul a 3.00 c = outside_call[ arg_treedef={treedef} callback=... identity=True transforms=( ) ] b _ = mul c 2.00 d = mul 1.00 2.00 _ = broadcast_in_dim[ broadcast_dimensions=( ) shape=( ) ] 0.00 e = outside_call[ arg_treedef={treedef} callback=... identity=True transforms=(('jvp',), ('transpose',)) ] d f = mul e 3.00 in (f,) }}""", jaxpr) assertMultiLineStrippedEqual(self, "", testing_stream.output) testing_stream.reset() res_grad = grad_func(arg) hcb.barrier_wait() self.assertAllClose(6., res_grad, check_dtypes=False) assertMultiLineStrippedEqual(self, """ what: x * 3 15.00 transforms: ['jvp', 'transpose'] what: x * 3 2.00""", testing_stream.output) def test_tap_grad_simple(self): def func(x): y = hcb.id_print(x * 2., what="x * 2", output_stream=testing_stream) return x * hcb.id_print(y * 3., what="y * 3", output_stream=testing_stream) grad_func = api.grad(func) res_grad = grad_func(jnp.float32(5.)) self.assertAllClose(2. * 5. * 6., res_grad, check_dtypes=False) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ what: x * 2 10.00 what: y * 3 30.00 transforms: ['jvp', 'transpose'] what: y * 3 5.00 transforms: ['jvp', 'transpose'] what: x * 2 15.00""", testing_stream.output) def test_tap_grad_grad(self): def func(x): y = hcb.id_print(x * 2., what="x * 2", output_stream=testing_stream) return x * (y * 3.) grad_func = api.grad(api.grad(func)) # making the Jaxpr does not print anything _ = api.make_jaxpr(grad_func)(5.) hcb.barrier_wait() assertMultiLineStrippedEqual(self, "", testing_stream.output) res_grad = grad_func(jnp.float32(5.)) self.assertAllClose(12., res_grad, check_dtypes=False) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ what: x * 2 10.00 transforms: ['jvp', 'transpose'] what: x * 2 15.00 transforms: ['jvp', 'transpose', 'jvp', 'transpose'] what: x * 2 2.00 transforms: ['jvp', 'transpose'] what: x * 2 3.00""", testing_stream.output) def test_tap_grad_pytree(self): def func(x): x4, x5 = hcb.id_print((x * 2., x * 3.), what="pair", result=(x * 4., x * 5.), output_stream=testing_stream) return x4 + 2. * x5 x = jnp.float32(5.) grad_func = api.grad(func) print(api.make_jaxpr(grad_func)(x)) res_grad = grad_func(x) self.assertAllClose(14., res_grad, check_dtypes=False) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ what: pair ( 10.00 15.00 ) transforms: ['jvp', 'transpose'] what: pair ( 0.00 0.00 )""", testing_stream.output) def test_tap_jvp_float0(self): def f(x, yint): x, yint = hcb.id_tap(lambda arg, _: arg, (x, yint)) return x * yint res = api.jvp(f, (2., 3), (0.2, np.zeros((), dtypes.float0))) self.assertAllClose((6., 0.6), res) def test_tap_grad_float0(self): def func(x, yint): x, yint = hcb.id_print((x, yint), what="pair", output_stream=testing_stream) return x * yint grad_func = api.grad(func) res_grad = grad_func(jnp.float32(5.), jnp.int32(2)) self.assertAllClose(2., res_grad, check_dtypes=False) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ what: pair ( 5.00 2 ) transforms: ['jvp', 'transpose'] what: pair ( 2.00 False )""", testing_stream.output) def test_tap_grad_float0_result(self): # https://github.com/google/jax/issues/7340 # x is a Tuple[f32[2], s32[3]] x = (np.array([.7, .8], dtype=np.float32), np.array([11, 12, 13], dtype=np.int32)) def f_jax(x): x = hcb.id_print(x, result=x, output_stream=testing_stream) # result= is important return (3. * x[0], x[1]) def f_jax_vjp(x): res, pullback = jax.vjp(f_jax, x) g, = pullback((np.ones(x[0].shape, dtype=x[0].dtype), np.zeros(x[1].shape, dtype=dtypes.float0))) return g g = f_jax_vjp(x) self.assertAllClose(np.array([3., 3.], dtype=np.float32), g[0]) self.assertEqual(dtypes.float0, g[1].dtype) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ ( [0.70 0.80] [11 12 13] ) transforms: ['jvp', 'transpose'] ( [0.00 0.00] [False False False] )""", testing_stream.output) def test_tap_higher_order_grad_float0_result(self): # https://github.com/google/jax/issues/7340 # x is a Tuple[f32[2], s32[3]] x = (np.array([.7, .8], dtype=np.float32), np.array([11, 12, 13], dtype=np.int32)) def f_jax(x): x = hcb.id_print(x, result=x, output_stream=testing_stream) # result= is important return (jnp.sin(x[0]), x[1]) def wrap_vjp(f, args, res_f_of_args): # Given a function "f" and "args" return the f_vjp and args_vjp def make_ct(res): res_dtype = np.result_type(res) if res_dtype == dtypes.float0: return res ct_dtype = core.primal_dtype_to_tangent_dtype(res_dtype) return np.ones(np.shape(res), dtype=ct_dtype) cts = tree_util.tree_map(make_ct, res_f_of_args) def f_vjp(args, cts): res, pullback = jax.vjp(f, *args) return pullback(cts) return (f_vjp, (args, cts)) res = f_jax(x) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ ( [0.70 0.80] [11 12 13] )""", testing_stream.output) testing_stream.reset() # 1st order f_jax_vjp1, args_vjp1 = wrap_vjp(f_jax, (x,), res) res_vjp1 = f_jax_vjp1(*args_vjp1) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ ( [0.70 0.80] [11 12 13] ) transforms: ['jvp', 'transpose'] ( [0.00 0.00] [False False False] )""", testing_stream.output) testing_stream.reset() # 2nd order f_jax_vjp2, args_vjp2 = wrap_vjp(f_jax_vjp1, args_vjp1, res_vjp1) res_vjp2 = f_jax_vjp2(*args_vjp2) # 3rd order f_jax_vjp3, args_vjp3 = wrap_vjp(f_jax_vjp2, args_vjp2, res_vjp2) _ = f_jax_vjp3(*args_vjp3) def test_tap_vmap(self): vmap_fun1 = api.vmap(fun1) vargs = jnp.array([jnp.float32(4.), jnp.float32(5.)]) vmap_fun1(vargs) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ transforms: [('batch', {'batch_dims': (0,)})] what: a * 2 [ 8.00 10.00] transforms: [('batch', {'batch_dims': (0,)})] what: y * 3 [24.00 30.00]""", testing_stream.output) def test_tap_vmap_not_batched(self): x = 3. def func(y): # x is not mapped, y is mapped _, y = hcb.id_print((x, y), output_stream=testing_stream) return x + y vmap_func = api.vmap(func) vargs = jnp.array([jnp.float32(4.), jnp.float32(5.)]) _ = vmap_func(vargs) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ transforms: [('batch', {'batch_dims': (None, 0)})] ( 3.00 [4.00 5.00] )""", testing_stream.output) def test_tap_vmap_vmap(self): # A 2D tensor with x[i, j] = i + j using 2 vmap def sum(x, y): return hcb.id_print(x + y, output_stream=testing_stream) def sum_rows(xv, y): return api.vmap(sum, in_axes=(0, None))(xv, y) def sum_all(xv, yv): return api.vmap(sum_rows, in_axes=(None, 0))(xv, yv) xv = jnp.arange(5, dtype=np.int32) yv = jnp.arange(3, dtype=np.int32) # assertMultiLineStrippedEqual(self, "", str(api.make_jaxpr(sum_all)(xv, yv))) _ = sum_all(xv, yv) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ transforms: [('batch', {'batch_dims': (0,)}), ('batch', {'batch_dims': (0,)})] [[0 1 2 3 4] [1 2 3 4 5] [2 3 4 5 6]]""", testing_stream.output) def test_tap_vmap_while(self): """Vmap of while.""" def func(x): # like max(x, 2) x1 = hcb.id_print(x, where="before:x", output_stream=testing_stream) x2 = lax.while_loop( lambda x: x < 2, lambda x: hcb.id_print( x + 1, where="body:x+1", output_stream=testing_stream), x1) res = hcb.id_print(x2, where="after:x", output_stream=testing_stream) return res inputs = np.arange(5, dtype=np.int32) self.assertAllClose( np.array([2, 2, 2, 3, 4]), api.jit(api.vmap(func))(inputs), check_dtypes=False) hcb.barrier_wait() assertMultiLineStrippedEqual( self, """ transforms: [('batch', {'batch_dims': (0,)})] where: before:x [0 1 2 3 4] transforms: [('batch', {'batch_dims': (0,)})] where: body:x+1 [1 2 3 4 5] transforms: [('batch', {'batch_dims': (0,)})] where: body:x+1 [2 3 3 4 5] transforms: [('batch', {'batch_dims': (0,)})] where: after:x [2 2 2 3 4]""", testing_stream.output) def test_tap_vmap_while_tap_cond(self): """Vmap of while, with a tap in the conditional.""" def func(x): # like max(x, 2) x1 = hcb.id_print(x, where="1", output_stream=testing_stream) x2 = lax.while_loop(lambda x: hcb.id_print(x < 2, where="w_c", output_stream=testing_stream), lambda x: hcb.id_print(x + 1, where="w_b", output_stream=testing_stream), x1) res = hcb.id_print(x2, where="3", output_stream=testing_stream) return res inputs = np.arange(5, dtype=np.int32) res = api.jit(api.vmap(func))(inputs) hcb.barrier_wait() self.assertAllClose(np.array([2, 2, 2, 3, 4]), res, check_dtypes=False) assertMultiLineStrippedEqual(self, """ transforms: [('batch', {'batch_dims': (0,)})] where: 1 [0 1 2 3 4] transforms: [('batch', {'batch_dims': (0,)})] where: w_c [ True True False False False] transforms: [('batch', {'batch_dims': (0,)})] where: w_b [1 2 3 4 5] transforms: [('batch', {'batch_dims': (0,)})] where: w_c [ True False False False False] transforms: [('batch', {'batch_dims': (0,)})] where: w_b [2 3 3 4 5] transforms: [('batch', {'batch_dims': (0,)})] where: w_c [False False False False False] transforms: [('batch', {'batch_dims': (0,)})] where: 3 [2 2 2 3 4]""", testing_stream.output) def test_tap_transforms(self): def power3(x): y = x * x # Print both 'x' and 'x^2'. Must pack as a tuple. _, y = hcb.id_print((x, y), what="x,x^2", output_stream=testing_stream) return y * x print(f"impl = {power3(3.)}") hcb.barrier_wait() expected = """ what: x,x^2 ( 3. 9. )""" self.assertMultiLineStrippedEqual(expected, testing_stream.output) testing_stream.reset() print(f"vmap = {jax.vmap(power3)(np.arange(3.))}") hcb.barrier_wait() expected = """ transforms: [('batch', {'batch_dims': (0, 0)})] what: x,x^2 ( [0. 1. 2.] [0. 1. 4.] )""" self.assertMultiLineStrippedEqual(expected, testing_stream.output) testing_stream.reset() print(f"jvp = {jax.jvp(power3, (3.,), (0.1,))}") hcb.barrier_wait() expected = """ transforms: ['jvp'] what: x,x^2 ( ( 3. 9. ) ( 0.1 0.6 ) )""" self.assertMultiLineStrippedEqual(expected, testing_stream.output) testing_stream.reset() print(f"grad = {jax.grad(power3)(3.)}") hcb.barrier_wait() expected = """ what: x,x^2 ( 3. 9. ) transforms: ['jvp', 'transpose'] what: x,x^2 ( 0. 3. )""" self.assertMultiLineStrippedEqual(expected, testing_stream.output) testing_stream.reset() print(f"vmap o grad {jax.vmap(jax.grad(power3))(np.array([2., 3.]))}") hcb.barrier_wait() expected = """ transforms: [('batch', {'batch_dims': (0, 0)})] what: x,x^2 ( [2. 3.] [4. 9.] ) transforms: ['jvp', 'transpose', ('batch', {'batch_dims': (None, 0)})] what: x,x^2 ( 0. [2. 3.] )""" self.assertMultiLineStrippedEqual(expected, testing_stream.output) def test_tap_pmap(self): if len(local_devices()) < 2: raise SkipTest("test requires at least 2 devices") def power3(x): y = x * x # Print both 'x' and 'x^2'. Must pack as a tuple. _, y = hcb.id_print((x, y), what="x,x^2", output_stream=testing_stream, tap_with_device=True) return y * x pmap_power3 = api.pmap(power3, devices=local_devices()) xv = np.array([3, 4], dtype=np.int32) res = pmap_power3(xv) hcb.barrier_wait() self.assertAllClose(xv * xv * xv, res, check_dtypes=False) # Assertion text is for 2 devices (also works for 1 device) assertMultiDeviceOutputEqual( self, """ device: cpu:0 what: x,x^2 ( 3 9 ) device: cpu:1 what: x,x^2 ( 4 16 )""") def test_tap_pmap_vmap(self): # A matrix M[ij] = i * 10 + j nr_devices = len(local_devices()) shape = (nr_devices, 3) matrix = np.fromfunction(lambda i, j: 10. * i + j, shape, dtype=np.int32) def fun1(x, do_print=False): # x: i32 return maybe_print(do_print, x * 2, "x * 2", tap_with_device=True) pmap_vmap_fun1 = api.pmap( api.vmap(partial(fun1, do_print=True)), devices=local_devices()) res = pmap_vmap_fun1(matrix) hcb.barrier_wait() expected_res = api.pmap( api.vmap(partial(fun1, do_print=False)), devices=local_devices())( matrix) self.assertAllClose(expected_res, res, check_dtypes=False) # Assertion text is for 2 devices (also works for 1 device) assertMultiDeviceOutputEqual(self, """ device: cpu:0 transforms: [('batch', {'batch_dims': (0,)})] what: x * 2 [0.00 2.00 4.00] device: cpu:1 transforms: [('batch', {'batch_dims': (0,)})] what: x * 2 [20.00 22.00 24.00]""") def test_tap_pmap_pmap_vmap(self): # A matrix M[ijk] = i * 100 + j * 10 + k nr_devices = len(local_devices()) if nr_devices % 2 != 0: raise SkipTest("test works only on even number of devices") shape = (2, nr_devices // 2, 3) matrix = np.fromfunction(lambda i, j, k: 100. * i + 10. * j + k, shape, dtype=np.float32) def fun1(x, do_print=False): # x: f32 y = maybe_print(do_print, x * 2., "x * 2", tap_with_device=True) return y ** 2 pmap_fun1 = api.pmap( api.pmap(api.vmap(partial(fun1, do_print=True))), devices=local_devices()) res = pmap_fun1(matrix) hcb.barrier_wait() expected_res = api.pmap( api.pmap(api.vmap(partial(fun1, do_print=False))), devices=local_devices())( matrix) self.assertAllClose(expected_res, res, check_dtypes=False) # Assertion text is for 2 devices (also works for 1 device) assertMultiDeviceOutputEqual(self, """ device: cpu:0 transforms: [('batch', {'batch_dims': (0,)})] what: x * 2 [0.00 2.00 4.00] device: cpu:1 transforms: [('batch', {'batch_dims': (0,)})] what: x * 2 [200.00 202.00 204.00]""") @ignore_jit_of_pmap_warning() def test_tap_pmap_pmap_extra(self): """pmap of a pmap surrounded by extra code.""" # A matrix M[ij] = i * 10 + j nr_devices = len(local_devices()) if nr_devices != 2: raise SkipTest("test works only on 2 devices") shape = (2, 1, 3) matrix = np.fromfunction(lambda i, j, k: 100. * i + 10. * j + k, shape, dtype=np.float32) def fun(xv, do_print=False): # This will be printed on all devices, with shape [1, 3] xv = maybe_print(do_print, xv + 1., "before", tap_with_device=True) res = api.pmap(lambda x: maybe_print(do_print, x * 2., "inside", tap_with_device=True))(xv) # This will be printed on all devices, with shape [1, 3] return maybe_print(do_print, res + 1., "after", tap_with_device=True) res = api.pmap(partial(fun, do_print=True))(matrix) self.assertAllClose(fun(matrix, do_print=False), res, check_dtypes=False) hcb.barrier_wait() # Assertion text is for 2 devices (also works for 1 device) assertMultiDeviceOutputEqual(self, """ device: cpu:0 what: before [[1.00 2.00 3.00]] device: cpu:0 what: inside [2.00 4.00 6.00] device: cpu:0 what: after [[3.00 5.00 7.00]] device: cpu:1 what: before [[101.00 102.00 103.00]] device: cpu:1 what: inside [202.00 204.00 206.00] device: cpu:1 what: after [[203.00 205.00 207.00]]""") def test_tap_jvp_pmap_vmap(self): # A matrix M[ijk] = i * 100 + j * 10 * k nr_devices = len(local_devices()) shape = (nr_devices, 2, 3) matrix = np.fromfunction(lambda i, j, k: 100. * i + 10. * j + k, shape, dtype=np.float32) def fun(xv, do_print=False): # x: f32[3] return api.jvp(api.pmap(api.vmap(lambda x: maybe_print(do_print, x * 2., "x * 2", tap_with_device=True))), (xv,), (.1 * jnp.ones_like(xv),)) res = fun(matrix, do_print=True) hcb.barrier_wait() expected_res = fun(matrix, do_print=False) self.assertAllClose(expected_res, res, check_dtypes=False) # Assertion text is for 2 devices (also works for 1 device) # Device 0 will get to execute api.jvp(api.vmap(...)) for matrix[0, :, :] assertMultiDeviceOutputEqual(self, """ device: cpu:0 transforms: [('batch', {'batch_dims': (0,)}), 'jvp'] what: x * 2 ( [[ 0.00 2.00 4.00] [20.00 22.00 24.00]] [[0.20 0.20 0.20] [0.20 0.20 0.20]] ) device: cpu:1 transforms: [('batch', {'batch_dims': (0,)}), 'jvp'] what: x * 2 ( [[200.00 202.00 204.00] [220.00 222.00 224.00]] [[0.20 0.20 0.20] [0.20 0.20 0.20]] )""") def test_tap_vmap_pmap(self): # A matrix M[ijk] = i * 100 + j * 10 * k nr_devices = len(local_devices()) shape = (2, nr_devices, 3) matrix = np.fromfunction(lambda i, j, k: 100. * i + 10. * j + k, shape, dtype=np.float32) def fun(xv, do_print=False): # x: f32[3] return api.vmap(api.pmap(lambda x: maybe_print(do_print, x * 2., "x * 2", tap_with_device=True)))(xv) res = fun(matrix, do_print=True) hcb.barrier_wait() expected_res = fun(matrix, do_print=False) self.assertAllClose(expected_res, res, check_dtypes=False) # Assertion text is for 2 devices (also works for 1 device) # Device 0 will get to execute api.jvp(api.vmap(...)) for matrix[:, 0, :] assertMultiDeviceOutputEqual(self, """ device: cpu:0 transforms: [('batch', {'batch_dims': (0,)})] what: x * 2 [[ 0.00 2.00 4.00] [200.00 202.00 204.00]] device: cpu:1 transforms: [('batch', {'batch_dims': (0,)})] what: x * 2 [[ 20.00 22.00 24.00] [220.00 222.00 224.00]]""") @ignore_jit_of_pmap_warning() def test_tap_jit_pmap_extra(self): """jit of a pmap surrounded by extra code.""" # A matrix M[ij] = i * 10 + j nr_devices = len(local_devices()) assert nr_devices in (1, 2) shape = (nr_devices, 3) matrix = np.fromfunction(lambda i, j: 10. * i + j, shape, dtype=np.float32) def fun(xv, do_print=False): # This will be printed on all devices with shape (nr_devices, 3) xv = maybe_print(do_print, xv + 1., "before", tap_with_device=True) res = api.pmap(lambda x: maybe_print(do_print, x * 2., "inside", tap_with_device=True))(xv) # This will be printed on all devices with shape (nr_devices, 3) return maybe_print(do_print, res + 1., "after", tap_with_device=True) res = api.jit(partial(fun, do_print=True))(matrix) self.assertAllClose(fun(matrix, do_print=False), res, check_dtypes=False) hcb.barrier_wait() if len(local_devices()) == 2: assertMultiDeviceOutputEqual(self, """ device: cpu:0 what: before [[ 1.00 2.00 3.00] [11.00 12.00 13.00]] device: cpu:0 what: inside [2.00 4.00 6.00] device: cpu:0 what: after [[ 3.00 5.00 7.00] [23.00 25.00 27.00]] device: cpu:1 what: before [[ 1.00 2.00 3.00] [11.00 12.00 13.00]] device: cpu:1 what: inside [22.00 24.00 26.00] device: cpu:1 what: after [[ 3.00 5.00 7.00] [23.00 25.00 27.00]]""") else: assert len(local_devices()) == 1 assertMultiDeviceOutputEqual(self, """ device: cpu:0 what: before [[1.00 2.00 3.00]] device: cpu:0 what: inside [2.00 4.00 6.00] device: cpu:0 what: after [[3.00 5.00 7.00]]""") def test_tap_cond_pmap(self): raise SkipTest("cond of pmap does not work in JAX. Issue #5178.") # A matrix M[ij] = i * 10 + j nr_devices = len(local_devices()) shape = (nr_devices, 3) matrix = np.fromfunction(lambda i, j: 10. * i + j, shape, dtype=np.float32) def fun1(x, do_print=False): return maybe_print(do_print, x * 2., "x * 2") def fun2(cond, xv, do_print=False): return lax.cond(cond, api.pmap(partial(fun1, do_print=do_print)), lambda xv: xv, xv) res = fun2(True, matrix) self.assertAllClose(fun2(True, matrix, do_print=False), res, check_dtypes=False) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ TBD""", testing_stream.output) @jtu.skip_on_devices("cpu", "gpu") # TODO(necula): file XLA:GPU bug for the 'Sharding' CustomCall def test_tap_pjit(self): devices = np.array(local_devices()) nr_devices = len(devices) if nr_devices < 2: raise SkipTest("test requires at least 2 devices") print(f"test_tap_pjit is running on devices {devices}.") # x: i32[D, 3] = [[0, 1, 2], [10, 11, 12], ...] # y: i32[3, 4] x = jnp.arange(100, dtype=jnp.int32).reshape((10, 10))[:nr_devices, :3] y = jnp.ones((3, 4), np.int32) @partial(jax.named_call, name="fun1") # for xprof debugging def fun1(x, do_print=False): z = jnp.dot(x, y) return maybe_print(do_print, z, "z", tap_with_device=True) res0 = fun1(x, do_print=False) pjit_fun1 = pjit.pjit( partial(fun1, do_print=True), in_axis_resources=(P("d"),), out_axis_resources=P("d")) with maps.mesh(devices, ["d"]): # Print the internal IR helper_log_ir( f"{self._testMethodName}.pjit", pjit_fun1, x, num_partitions=nr_devices) res = pjit_fun1(x) self.assertAllClose(res0, res) hcb.barrier_wait("before check") # Assertion text is for 2 devices (also works for 1 device) # Note that a single call is made. assertMultiDeviceOutputEqual( self, """ device: cpu:0 what: z [[ 3 3 3 3] [33 33 33 33]]""") def test_tap_tap_scan_custom_jvp(self): """custom JVP, inside scan. This exercises the custom_jvp_call_jaxpr primitives.""" @api.custom_jvp def f(x): return x * hcb.id_print(x, output_stream=testing_stream, what="x") @f.defjvp def f_jvp(primals, tangents): x, = primals x_dot, = tangents primal_out = f(x) tangent_out = 3. * x * hcb.id_print(x_dot, output_stream=testing_stream, what="x_dot") return primal_out, tangent_out def g(x): # Sum f(x_i) return lax.scan(lambda carry, inp: (carry + f(inp), 0.), np.full(x.shape[1:], 0.), # Like x w/o leading dim x)[0] arg = np.full((2,), 0.7) self.assertAllClose(0.7 * 0.7 * 2, g(arg)) hcb.barrier_wait() self.assertMultiLineStrippedEqual(""" what: x 0.7 what: x 0.7""", testing_stream.output) testing_stream.reset() self.assertAllClose(np.array([2.1, 2.1]), api.grad(g)(arg), check_dtypes=False) hcb.barrier_wait() self.assertMultiLineStrippedEqual(""" what: x 0.7 what: x 0.7 transforms: ['transpose'] what: x_dot 2.1 transforms: ['transpose'] what: x_dot 2.1""", testing_stream.output) def test_tap_scan_custom_vjp(self): """custom VJP, inside scan. This exercises the custom_vjp_call_jaxpr primitives.""" @api.custom_vjp def f(x): return x * hcb.id_print(x, output_stream=testing_stream, what="x") # f_fwd: a -> (b, residual) def f_fwd(x): return f(x), 3. * x # f_bwd: (residual, CT b) -> [CT a] def f_bwd(residual, ct_b): return residual * hcb.id_print(ct_b, output_stream=testing_stream, what="ct_b"), f.defvjp(f_fwd, f_bwd) def g(x): # Sum f(x_i) return lax.scan(lambda carry, inp: (carry + f(inp), 0.), np.full(x.shape[1:], 0.), # Like x w/o leading dim x)[0] arg = np.full((2,), 0.7) self.assertAllClose(0.7 * 0.7 * 2, g(arg)) hcb.barrier_wait() self.assertMultiLineStrippedEqual(""" what: x 0.7 what: x 0.7""", testing_stream.output) testing_stream.reset() self.assertAllClose(np.array([2.1, 2.1]), api.grad(g)(arg), check_dtypes=False) hcb.barrier_wait() self.assertMultiLineStrippedEqual(""" what: x 0.7 what: x 0.7 what: ct_b 1. what: ct_b 1.""", testing_stream.output) def test_tap_mask(self): @partial(api.mask, in_shapes=['n'], out_shape='') def padded_sum(x): three_x = hcb.id_print((x, 2 * x), result=3 * x, what="x", output_stream=testing_stream) return jnp.sum(three_x) x = np.arange(5.) self.assertAllClose(9., padded_sum([x], dict(n=3))) hcb.barrier_wait() self.assertMultiLineStrippedEqual(""" transforms: [('mask', {'logical_shapes': 5})] what: x ( ( [0. 1. 2. 3. 4.] [0. 2. 4. 6. 8.] ) ( ( 3 ) ( 3 ) ) )""", testing_stream.output) testing_stream.reset() # With VMAP xv = np.arange(10.).reshape((2, 5)) # logical_shape = 5 self.assertAllClose( np.array([9., 78.]), # batch_size = 2, n=3 and 4 for the two elements api.vmap(padded_sum)([xv], dict(n=np.array([3., 4.])))) hcb.barrier_wait() self.assertMultiLineStrippedEqual(""" transforms: [('mask', {'logical_shapes': 5}), ('batch', {'batch_dims': (0, 0, 0, 0)})] what: x ( ( [[0. 1. 2. 3. 4.] [5. 6. 7. 8. 9.]] [[ 0. 2. 4. 6. 8.] [10. 12. 14. 16. 18.]] ) ( ( [3. 4.] ) ( [3. 4.] ) ) )""", testing_stream.output) testing_stream.reset() # With JVP self.assertAllClose((9., 0.9), api.jvp(lambda arg: padded_sum([arg], dict(n=3)), (x,), (x * 0.1,))) hcb.barrier_wait() self.assertMultiLineStrippedEqual(""" transforms: [('mask', {'logical_shapes': 5}), 'jvp'] what: x ( ( ( [0. 1. 2. 3. 4.] [0. 2. 4. 6. 8.] ) ( ( 3 ) ( 3 ) ) ) ( ( [0. 0.1 0.2 0.3 0.4] [0. 0.2 0.4 0.6 0.8] ) ( ( False ) ( False ) ) ) )""", testing_stream.output) testing_stream.reset() # Now with JIT self.assertAllClose(9., api.jit(padded_sum)([x], dict(n=3))) hcb.barrier_wait() self.assertMultiLineStrippedEqual(""" transforms: [('mask', {'logical_shapes': 5})] what: x ( ( [0. 1. 2. 3. 4.] [0. 2. 4. 6. 8.] ) ( ( 3 ) ( 3 ) ) )""", testing_stream.output) def test_tap_callback_delay(self): hcb.callback_extra = lambda dev: time.sleep(1) def func(x): for i in range(5): x = hcb.id_print(x * i, what="x times i") return x api.jit(func)(np.arange(6, dtype=np.float32).reshape((2, 3))) def test_tap_callback_delay_barrier(self): hcb.callback_extra = lambda dev: time.sleep(2) def func(x): for i in range(1, 4): x = hcb.id_print(x * i, what=f"x times {i}", output_stream=testing_stream) return x api.jit(func)(np.arange(6, dtype=np.float32).reshape((2, 3))) # Wait for the results hcb.barrier_wait("first") expected = """ what: x times 1 [[0. 1. 2.] [3. 4. 5.]] what: x times 2 [[ 0. 2. 4.] [ 6. 8. 10.]] what: x times 3 [[ 0. 6. 12.] [18. 24. 30.]]""" self.assertMultiLineStrippedEqual(expected, testing_stream.output) testing_stream.reset() # Call again api.jit(func)(np.arange(6, dtype=np.float32).reshape((2, 3))) hcb.barrier_wait("second") self.assertMultiLineStrippedEqual(expected, testing_stream.output) def test_tap_error_bad_consumer_id(self): """Try to use reserved consumer ID 0. Check that we get the proper error from the runtime.""" if not hcb._use_outfeed(jtu.device_under_test()): raise SkipTest("test works only for outfeed") comp = xla_bridge.make_computation_builder(self._testMethodName) token = hcb.xops.CreateToken(comp) hcb._initialize_outfeed_receiver() # Needed if this is the sole test with self.assertRaisesRegex(RuntimeError, "Consumer ID cannot be a reserved value: 0"): hcb._callback_handler_data.receiver.add_outfeed( comp, token, 0, [xla_bridge.constant(comp, np.zeros((2, 3), dtype=np.float32))]) def test_tap_error_different_shapes(self): """Try to register different shapes for the same consumer ID.""" if not hcb._use_outfeed(jtu.device_under_test()): raise SkipTest("test works only for outfeed") comp = xla_bridge.make_computation_builder(self._testMethodName) token = hcb.xops.CreateToken(comp) hcb._initialize_outfeed_receiver() # Needed if this is the sole test hcb._callback_handler_data.receiver.add_outfeed( comp, token, 123, [xla_bridge.constant(comp, np.zeros((2, 3), dtype=np.float32))]) with self.assertRaisesRegex( RuntimeError, ".*does not match previous shape element_type.*"): hcb._callback_handler_data.receiver.add_outfeed( comp, token, 123, [xla_bridge.constant(comp, np.zeros((2, 3), dtype=np.int32))]) with self.assertRaisesRegex( RuntimeError, ".*does not match previous shape element_type.*"): hcb._callback_handler_data.receiver.add_outfeed( comp, token, 123, [xla_bridge.constant(comp, np.zeros((2,), dtype=np.float32))]) def test_tap_id_tap_removed_kwargs(self): def func(x, transforms, y): pass with self.assertRaisesRegex(TypeError, r"Support for \*\*kwargs in ``id_tap``"): hcb.id_tap(func, 1, y=2) def test_tap_odeint(self): # TODO: find a smaller repro for bug #4015 # Seems to be xla_call(scan(xla_call)), all under grad. from jax.experimental.ode import odeint def f(x, t, k): x = hcb.id_print(x) return -k * x def loss(k=1.0): t = jnp.linspace(0, 0.001, num=2) xs = odeint(f, 1.0, t, k) return xs[-1] api.grad(loss)(1.0) # should not fail def test_tap_remat(self): def f(i, k): x = hcb.id_print(k + i, output_stream=testing_stream) return k * x def loss(k): return lax.fori_loop(0, 2, api.remat(f), k) print(loss(3)) hcb.barrier_wait() expected = """ 3 10""" self.assertMultiLineStrippedEqual(expected, testing_stream.output) def test_tap_named_call(self): def tap_scalar(init, do_print=False): @partial(api.named_call, name="step") def step(acc, step_nr): acc = acc + step_nr maybe_print(do_print, step_nr, what="step_nr") return acc, None return lax.scan(step, init, np.arange(2)) self.assertAllClose(tap_scalar(3., do_print=False), tap_scalar(3., do_print=True)) hcb.barrier_wait() expected = """ what: step_nr 0 what: step_nr 1""" self.assertMultiLineStrippedEqual(expected, testing_stream.output) class HostCallbackCallTest(jtu.JaxTestCase): """Tests for hcb.call""" def setUp(self): super().setUp() if jtu.device_under_test() == "gpu" and jax.device_count() > 1: raise SkipTest("host_callback broken on multi-GPU platforms (#6447)") testing_stream.reset() testing_stream._test_method_name = self._testMethodName def tearDown(self) -> None: hcb.barrier_wait("HostCallbackCallTest.tearDown") super().tearDown() def call_log_testing_stream(self, func, arg, *, result_shape, name=""): """Call `func` and log inputs and outputs to the testing stream""" def call_log(arg): def val2str(v): return np.array2string(np.array(arg)) testing_stream.write(f"Call {name}({val2str(arg)})\n") res = func(arg) testing_stream.write(f" = {val2str(res)}\n") return res return hcb.call(call_log, arg, result_shape=result_shape) def test_call_simple(self): def f_outside(x): return 2 * x def fun(x): y = hcb.call(f_outside, x + 1, result_shape=x) return 3 * (1 + y) arg = np.arange(24, dtype=np.int32).reshape((2, 3, 4)) self.assertAllClose(3 * (1 + 2 * (arg + 1)), fun(arg)) @parameterized.named_parameters( jtu.cases_from_list( dict(testcase_name=f"_{np.dtype(dtype).name}", dtype=dtype) for dtype in jtu.dtypes.all if dtype != np.bool_)) def test_call_types(self, dtype=np.float64): def f_outside(x): # Use x + x to ensure that the result type is the same return x + x def fun(x): return hcb.call(f_outside, x + x, result_shape=x) arg = np.arange(24, dtype=dtype).reshape((2, 3, 4)) self.assertAllClose(arg + arg + arg + arg, fun(arg), check_dtypes=True) def test_call_types_bool(self, dtype=np.float64): def f_outside(x): return np.invert(x) def fun(x): return hcb.call(f_outside, x, result_shape=x) arg = np.random.choice(a=[True, False], size=(2, 3, 4)) self.assertAllClose(np.invert(arg), fun(arg)) def test_call_tuples(self): def f_outside(args): x, y = args return y, x # Swap the tuple def fun(x): xy = hcb.call(f_outside, (x, x + 1), result_shape=(x, x)) return 2 * xy[0] + 3 * xy[1] arg = np.arange(24, dtype=np.int32).reshape((2, 3, 4)) self.assertAllClose(2 * (arg + 1) + 3 * arg, fun(arg)) def test_call_empty_arg(self): """Call with empty array.""" result = np.ones((2,), dtype=np.float32) def f_outside(_): return result def fun(x): return x + hcb.call(f_outside, (), result_shape=api.ShapeDtypeStruct(result.shape, result.dtype)) self.assertAllClose(2. + result, fun(2.)) def test_call_empty_result(self): """Call returning empty array.""" result_shape = (2, 0) def f_outside(_): return np.ones(result_shape, dtype=np.float32) def fun(x): return x + hcb.call(f_outside, 1., result_shape=api.ShapeDtypeStruct(result_shape, np.float32)) self.assertAllClose(f_outside(0.), fun(2.)) def test_call_empty_result_inside_pytree(self): """Call returning a tuple with an empty array and a non-empty one.""" result_shape_0 = (2, 0) result_shape_2 = (0,) def f_outside(_): return (np.ones(result_shape_0, dtype=np.float32), np.ones((1,), dtype=np.float32), np.ones(result_shape_2, dtype=np.float32)) def fun(x): res = hcb.call(f_outside, 1., result_shape=(api.ShapeDtypeStruct(result_shape_0, np.float32), api.ShapeDtypeStruct((1,), np.float32), api.ShapeDtypeStruct(result_shape_2, np.float32))) self.assertEqual(result_shape_0, res[0].shape) self.assertEqual(result_shape_2, res[2].shape) return x + res[1] self.assertAllClose(2 + np.ones((1,), dtype=np.float32), fun(2.)) def test_call_empty_result_all_pytree(self): """Call returning a tuple of empty arrays.""" result_shape = (2, 0) def f_outside(_): return (np.ones(result_shape, dtype=np.float32), np.ones(result_shape, dtype=np.float32)) def fun(x): res = hcb.call(f_outside, 1., result_shape=(api.ShapeDtypeStruct(result_shape, np.float32), api.ShapeDtypeStruct(result_shape, np.float32))) return x + res[0] + res[1] self.assertAllClose(np.ones(result_shape, dtype=np.float32), fun(2.)) def test_call_no_result(self): def f_outside(arg): self.call_log_testing_stream(lambda x: None, arg, result_shape=None, name="outside") return arg self.assertAllClose((3., 4.), f_outside((3., 4.))) hcb.barrier_wait() expected = """ Call outside([3. 4.]) = [3. 4.]""" self.assertMultiLineStrippedEqual(expected, testing_stream.output) def test_call_cond(self): def f_outside(args): x, y = args return x * y def loop(x, use_outside=True): def body(i, acc): return lax.cond(i % 2 == 1, lambda _: (hcb.call(f_outside, (acc, i), result_shape=acc) if use_outside else f_outside((acc, i))), lambda _: acc, None) return lax.fori_loop(0, 18, body, x) res_inside = loop(1.2, use_outside=False) self.assertAllClose(res_inside, api.jit(loop)(1.2)) def test_call_jit_scan_call(self): def f_outside(x): return x def loop(x, use_outside=True): def body(carry, i): if use_outside: return carry + hcb.call(f_outside, i, result_shape=i), None else: return carry + i, None return lax.scan(body, 0, x) x = np.arange(5, dtype=np.int32) res_outside = api.jit(partial(loop, use_outside=True))(x) self.assertAllClose(res_outside, loop(x, use_outside=False)) def test_call_doc_example1(self): """Examples from the documentation: simplest, call a function""" def host_eig(x): return np.linalg.eigvals(x) shape = (2, 5, 4, 4) m = np.ones(shape, dtype=np.float32) def fun(m): eig_m = hcb.call(host_eig, m, result_shape=api.ShapeDtypeStruct(m.shape[:-1], m.dtype)) return eig_m expected_res = np.linalg.eigvals(m) self.assertAllClose(expected_res, fun(m)) def test_call_doc_example_hlo(self): """Examples from the documentation: simplest, call a function.""" def fun1(m): return jnp.sin(hcb.call(lambda x: np.cos, jnp.cos(m), result_shape=m)) m = np.ones((2,), np.float32) helper_print_optimized_hlo(fun1, m) def fun2(m): x = hcb.call(lambda x: None, 2, result_shape=()) return x m = np.ones((2,), np.float32) helper_print_optimized_hlo(fun2, m) def test_call_with_device(self): def callback_func(x, device=None): testing_stream.write(f"device: {device}\n Called with {x}") return x def func(x): return hcb.call(callback_func, x, result_shape=x, call_with_device=True) self.assertEqual(3., func(3.)) assertMultiDeviceOutputEqual(self, """ device: cpu:0 Called with 3.00""") def test_call_pmap(self): # Works for 1 or 2 devices def callback_func(x, device=None): testing_stream.write(f"device: {device}\n Called with {x}") return x * np.array(3, np.int32) def fun(x): # x: i32 return hcb.call(callback_func, x * 2, result_shape=x, call_with_device=True) xv = jnp.arange(len(local_devices()), dtype=jnp.int32) res = api.pmap(fun)(xv) self.assertAllClose(api.pmap(lambda x: x * 6)(xv), res) # Assertion text is for 2 devices (also works for 1 device) assertMultiDeviceOutputEqual(self, """ device: cpu:0 Called with 0 device: cpu:1 Called with 2""") def test_call_vmap(self): def f_outside(x): return x def fun(x): return hcb.call(f_outside, x, result_shape=x) with self.assertRaisesRegex(NotImplementedError, "batching rules are implemented only for id_tap, not for call"): api.vmap(fun)(np.ones((2, 3))) @jtu.skip_on_devices("cpu", "gpu") # TODO(necula): file XLA:GPU bug for the 'Sharding' CustomCall def test_call_pjit(self): devices = np.array(local_devices()) nr_devices = len(devices) if nr_devices < 2: raise SkipTest("test requires at least 2 devices") print(f"test_call_pjit is running on devices {devices}.") # x: i32[D, 3] = [[0, 1, 2], [10, 11, 12], ...] # y: i32[3, 4] x = jnp.arange(100, dtype=jnp.int32).reshape((10, 10))[:nr_devices, :3] y = jnp.ones((3, 4), np.int32) def callback_x5_func(x, device=None): testing_stream.write(f"device: {device}\n Called with {x}") return x * np.array(5, np.int32) def fun(x): xy = jnp.dot(x, y) return hcb.call( callback_x5_func, xy, result_shape=xy, call_with_device=True) pjit_fun = pjit.pjit( fun, in_axis_resources=(P("d"),), out_axis_resources=P("d")) with maps.mesh(devices, ["d"]): # Print the internal IR helper_log_ir( f"{self._testMethodName}.pjit", pjit_fun, x, num_partitions=nr_devices) res = pjit_fun(x) expected_res = jnp.dot(x, y) * np.array(5, np.int32) self.assertAllClose(expected_res, res, check_dtypes=False) hcb.barrier_wait("before assertion") # Assertion text is for 2 devices (also works for 1 device) assertMultiDeviceOutputEqual( self, """ device: cpu:0 Called with [[ 3 3 3 3] [33 33 33 33]]""") def test_call_error_bad_result_shape(self): with self.assertRaisesRegex( ValueError, "The values must be either numeric scalars, or must have 'shape' and 'dtype' attributes"): hcb.call(lambda x: x, 3., result_shape="string") with self.assertRaisesRegex( ValueError, "The values must be either numeric scalars, or must have 'shape' and 'dtype' attributes"): hcb.call(lambda x: x, 3., result_shape=lambda x: x) hcb.barrier_wait("wait for error") def helper_check_callback_errors(self, thunk: Callable, expected_exc_txt: str): """Calls thunk() and checks for expected exceptions. """ if jtu.device_under_test() == "cpu": # On CPU the runtime crashes, and the tests are all aborted raise SkipTest("TODO: CPU runtime crashes on unexpected infeed") elif jtu.device_under_test() == "gpu": # On GPU we get a nice error back to Python with self.assertRaisesRegex( RuntimeError, "RET_CHECK failure .* Mismatch between infeed source buffer shape s8.12345."): thunk() elif jtu.device_under_test() == "tpu": # On TPU we get no error!!! raise SkipTest("TODO: TPU runtime does not check infeed, and just computes with garbage") # Both on GPU and TPU we also get an error during the barrier_wait at the # end of the test. Run a barrier_wait now, to consume that error. with self.assertRaisesRegex( hcb.CallbackException, re.compile( "There were exceptions during callback processing.*Last one was:.*" + expected_exc_txt, re.DOTALL)): hcb.barrier_wait("Waiting for error") def test_call_error_callback_throws_exception(self): def f_outside(x): raise ValueError("user exception") def fun(x): return hcb.call(f_outside, x, result_shape=x) self.helper_check_callback_errors(lambda: fun(3.), "ValueError: user exception") def test_call_error_callback_returns_unexpected_shape(self): def fun(x): return hcb.call(lambda x: (x, x), x, result_shape=x) self.helper_check_callback_errors(lambda: fun(3.), "Callback func .* should have returned a result with pytree") def test_call_error_then_compute(self): # Continue computation on device after error def f_outside(x): raise ValueError("user exception") def fun(x): x1 = hcb.call(f_outside, x, result_shape=x) return x1 arg = np.arange(3, dtype=np.int32) self.helper_check_callback_errors(lambda: self.assertAllClose(arg, fun(arg)), "ValueError: user exception") def call_jax_other_device(jax_outside_fun, arg, *, device): """Calls a JAX function on a specific device with simple support for reverse AD. Functions whose name starts with "jax_outside" are called on another device, by way of hcb.call. """ def run_jax_outside_fun(arg): return api.jit(jax_outside_fun)(api.device_put(arg, device)) @api.custom_vjp def make_call(arg): return hcb.call(run_jax_outside_fun, arg, result_shape=api.eval_shape(jax_outside_fun, arg)) # Define the fwd and bwd custom_vjp functions def make_call_vjp_fwd(arg): # Return the primal argument as the residual. Use `make_call` for the # primal computation to enable higher-order AD. return make_call(arg), arg # Return the primal argument as the residual def make_call_vjp_bwd(res, ct_res): arg = res # residual is the primal argument def jax_outside_vjp_fun(arg_and_ct): arg, ct = arg_and_ct _, f_vjp = api.vjp(jax_outside_fun, arg) ct_in, = f_vjp(ct) return ct_in return (call_jax_other_device(jax_outside_vjp_fun, (arg, ct_res), device=device),) make_call.defvjp(make_call_vjp_fwd, make_call_vjp_bwd) return make_call(arg) class CallJaxTest(jtu.JaxTestCase): """Tests using `call_jax_other_device`.""" def setUp(self): if jtu.device_under_test() == "gpu" and jax.device_count() > 1: raise SkipTest("host_callback broken on multi-GPU platforms (#6447)") if jtu.device_under_test() != "cpu": assert api.devices("cpu") self.outside_device = api.devices("cpu")[0] else: if len(api.devices("cpu")) == 1: raise SkipTest("Test needs at least two devices. On CPU use XLA_FLAGS=--xla_force_host_platform_device_count=2") self.outside_device = api.devices("cpu")[1] super().setUp() def test_jax_impl(self): def f_jax(x): return jnp.sin(x) def f_outside(x): return call_jax_other_device(f_jax, x, device=self.outside_device) self.assertAllClose(f_jax(3.), f_outside(3.)) self.assertAllClose(f_jax(3.), api.jit(f_outside)(3.)) def test_jax_impl_pytree(self): def f_jax(x): # x : dict(a=..., b=...) and output is a list of two elements return [jnp.sin(x["a"]), jnp.sin(x["b"])] def f_outside(x): return call_jax_other_device(f_jax, x, device=self.outside_device) x = dict(a=3., b=4.) res_jax = f_jax(x) # print(f"outside_jaxpr = {api.make_jaxpr(f_outside)(x)}") res_outside = f_outside(x) self.assertAllClose(res_jax, res_outside) def test_jax_grad(self): def f_jax(x): return 2. * jnp.sin(x) def f_outside(x): return 2. * call_jax_other_device(jnp.sin, x, device=self.outside_device) res_jax = api.grad(f_jax)(3.) self.assertAllClose(res_jax, api.grad(f_outside)(3.)) def test_jax_grad_pytree(self): def f_jax(x): # x : dict(a=..., b=...) and output is a float return 3. * jnp.sin(x["a"]) + jnp.sin(x["b"]) def f_outside(x): return call_jax_other_device(f_jax, x, device=self.outside_device) x = dict(a=3., b=4.) res_jax = api.grad(f_jax)(x) self.assertAllClose(res_jax, api.grad(f_outside)(x)) def test_jax_grad_of_grad(self): def f_jax(x): return 2. * x * x * x def f_outside(x): return 2. * call_jax_other_device(lambda x: x * x * x, x, device=self.outside_device) res_jax = api.grad(api.grad(f_jax))(5.) res_outside = api.grad(api.grad(f_outside))(5.) self.assertAllClose(res_jax, res_outside) class OutfeedRewriterTest(jtu.JaxTestCase): def setUp(self): if jtu.device_under_test() == "gpu" and jax.device_count() > 1: raise SkipTest("host_callback broken on multi-GPU platforms (#6447)") super().setUp() def assertRewrite(self, expected: str, func: Callable, args: Sequence, has_input_token=True, has_output_token=True): """Check that the rewrite of func(*args) matches expected.""" jaxpr = api.make_jaxpr(func)(*args) rewritten = hcb._rewrite_closed_jaxpr(jaxpr, # noqa: F841 has_input_token, has_output_token) # Since it is somewhat annoying to update the Jaxpr assertions when we change # the Jaxpr printing, we do not check these by default. It is recommended that # before making changes to the code generation and Jaxpr rewriting, turn on # the checking, update the expected Jaxpr, and then make the changes. # assertMultiLineStrippedEqual(self, expected, str(rewritten)) del rewritten def test_no_outfeed(self): self.assertRewrite(""" { lambda ; a. let b = mul a a c = add a b in (c,) }""", lambda x: x + x * x, [0], has_input_token=False, has_output_token=False) self.assertRewrite(""" { lambda ; a d e. let b = mul a a c = add a b in (c,) }""", lambda x: x + x * x, [0], has_output_token=False) self.assertRewrite(""" { lambda ; a d e. let b = mul a a c = add a b in (c, d, e) }""", lambda x: x + x * x, [0]) def test_simple_outfeed(self): self.assertRewrite(""" { lambda ; a d e. let b = add a a c f g = outside_call[ arg_treedef=* callback=... has_token=True identity=True ] b d e in (c, f, g) }""", lambda x: hcb.id_print(x + x), [0]) def test_simple_outfeed_without_input_token(self): self.assertRewrite(""" { lambda ; a b. let e = create_token a b f = create_token a b c = add a b d g h = outside_call[ arg_treedef=* callback=... has_token=True identity=True ] c e f in (d,) }""", lambda x1, x2: hcb.id_print(x1 + x2), [1, 2], has_input_token=False, has_output_token=False) def test_simple_outfeed_without_input_token_nor_invars(self): self.assertRewrite(""" { lambda ; . let b = create_token c = create_token a d e = outside_call[ arg_treedef=* callback=... has_token=True identity=True ] 42 b c in (a,) }""", lambda: hcb.id_print(42), [], has_input_token=False, has_output_token=False) def test_multiple_tap_without_dependencies(self): def f(x): hcb.id_print(x, what="x") hcb.id_print(x + 1, what="x + 1") return 2 self.assertRewrite(""" { lambda ; a c d. let _ e f = outside_call[ arg_treedef=* callback=... has_token=True identity=True ] a c d b = add a 1 _ g h = outside_call[ arg_treedef=* callback=... has_token=True identity=True ] b e f in (2, g, h) }""", f, [1]) def test_cond(self): y = jnp.ones(5) # captured const def func(x, z): return lax.cond(z > 0, (1, 2), lambda a: (a[0], jnp.zeros(5)), z, lambda a: (hcb.id_print(a), y)) self.assertRewrite(""" { lambda a ; b c h i. let d = gt c 0 e = convert_element_type[ new_dtype=int32 ] d f g j k = cond[ branches=( { lambda ; a b c d f g. let e h i = outside_call[ arg_treedef=* callback=... has_token=True identity=True ] d f g in (e, a, h, i) } { lambda ; f_ a b c g h. let d = broadcast_in_dim[ broadcast_dimensions=( ) shape=(5,) ] 0.00 in (a, d, g, h) } ) linear=(False, False, False, False, False, False) ] e a 1 2 c h i in (f, g, j, k) }""", func, [y, 5]) def test_while(self): ct_body = jnp.ones(5, np.float32) # captured const for the body ct_cond = jnp.ones(5, np.float32) # captured const for the conditional def func(x): # x: f32[5] # c: (f32[5], f32) return lax.while_loop(lambda c: c[1] < jnp.sum(c[0] + ct_cond), lambda c: (ct_body, hcb.id_print(c[1]) + 1.), (x, np.float32(1.))) self.assertRewrite(""" { lambda a b ; c f g. let d e h i = while[ body_jaxpr={ lambda ; a b c f g. let d h i = outside_call[ arg_treedef=* callback=... has_token=True identity=True ] c f g e = add d 1.00 in (a, e, h, i) } body_nconsts=1 cond_jaxpr={ lambda ; a b c g h. let d = add b a e = reduce_sum[ axes=(0,) ] d f = lt c e in (f,) } cond_nconsts=1 ] a b c 1.00 f g in (d, e, h, i) }""", func, [ct_body]) def test_while_pred_outfeed(self): """A while with outfeed in the pred.""" ct_body = jnp.ones(5) # captured const for the body ct_cond = jnp.ones(2) # captured const for the conditional def func(x): return lax.while_loop(lambda c: hcb.id_print(ct_cond, result=c[1]) < 5, lambda c: (ct_body, hcb.id_print(c[1]) + 1), (x, 1)) self.assertRewrite(""" { lambda a b ; c f g. let j k l = xla_call[ call_jaxpr={ lambda ; a b c g h. let d i j = outside_call[ arg_treedef=* callback=... has_token=True identity=True ] a g h e = id_tap_dep c d f = lt e 5 in (f, i, j) } donated_invars=(False, False, False, False, False) name=cond_before ] a c 1 f g bf d e h i = while[ body_jaxpr={ lambda ; r s t u v w x. let y z ba bb = xla_call[ call_jaxpr={ lambda ; a b c f g. let d h i = outside_call[ arg_treedef=* callback=... has_token=True identity=True ] c f g e = add d 1 in (a, e, h, i) } donated_invars=(False, False, False, False, False) name=body ] s u v w x bc bd be = xla_call[ call_jaxpr={ lambda ; a b c g h. let d i j = outside_call[ arg_treedef=* callback=... has_token=True identity=True ] a g h e = id_tap_dep c d f = lt e 5 in (f, i, j) } donated_invars=(False, False, False, False, False) name=cond_body ] r y z ba bb in (bc, y, z, bd, be) } body_nconsts=2 cond_jaxpr={ lambda ; m n o p q. let in (m,) } cond_nconsts=0 ] a b j c 1 k l in (d, e, h, i) }""", func, [ct_body]) def test_scan(self): y = jnp.ones(5) # captured const def func(x): return lax.scan(lambda c, a: (hcb.id_print(c), y), (1, 2), x) self.assertRewrite(""" { lambda a ; b f g. let c d h i e = scan[ jaxpr={ lambda ; a b c g h d. let e f i j = outside_call[ arg_treedef=PyTreeDef(tuple, [*,*]) callback=... has_token=True identity=True ] b c g h in (e, f, i, j, a) } length=5 linear=(False, False, False, False, False, False) num_carry=4 num_consts=1 reverse=False unroll=1 ] a 1 2 f g b in (c, d, e, h, i) }""", func, [y]) def test_scan_custom_jvp(self): """custom JVP, inside scan. This exercises the custom_jvp_call_jaxpr primitives.""" @api.custom_jvp def f(x): return x * hcb.id_print(x) @f.defjvp def f_jvp(primals, tangents): x, = primals x_dot, = tangents primal_out = f(x) tangent_out = 3. * x * hcb.id_print(x_dot) return primal_out, tangent_out def g(x): # Sum f(x_i) return lax.scan(lambda carry, inp: (carry + f(inp), 0.), np.full(x.shape[1:], 0.), # Like x w/o leading dim x)[0] arg = np.full((5,), 0.7) self.assertRewrite(""" { lambda ; a c d. let b e f _ = scan[ jaxpr={ lambda ; a e f b. let c g h = custom_jvp_call_jaxpr[ fun_jaxpr={ lambda ; a d e. let b f g = outside_call[ arg_treedef=* callback=... has_token=True identity=True ] a d e c = mul a b in (c, f, g) } num_consts=0 ] b e f d = add a c in (d, g, h, 0.00) } length=5 linear=(False, False, False, False) num_carry=3 num_consts=0 reverse=False unroll=1 ] 0.00 c d a in (b, e, f) }""", g, [arg]) self.assertRewrite(""" { lambda ; a d e. let _ _ f g _ b = scan[ jaxpr={ lambda ; a b h i c d. let e j k = custom_jvp_call_jaxpr[ fun_jaxpr={ lambda ; a d e. let b f g = outside_call[ arg_treedef=* callback=... has_token=True identity=True ] a d e c = mul a b in (c, f, g) } num_consts=0 ] c h i f = add a e g = mul c 3.00 in (f, *, j, k, 0.00, g) } length=5 linear=(False, True, False, False, False, True) num_carry=4 num_consts=0 reverse=False unroll=1 ] 0.00 * d e a * _ _ h i _ c = scan[ jaxpr={ lambda ; a b g h c d. let e = mul b d f i j = outside_call[ arg_treedef=* callback=... has_token=True identity=True transforms=(('transpose',),) ] e g h in (*, b, i, j, *, f) } length=5 linear=(True, True, False, False, True, False) num_carry=4 num_consts=0 reverse=True unroll=1 ] * 1.00 f g * b in (c, h, i) }""", api.grad(g), [arg]) def test_scan_custom_vjp(self): """custom VJP, inside scan. This exercises the custom_vjp_call_jaxpr primitives.""" @api.custom_vjp def f(x): return x * hcb.id_print(x) # f_fwd: a -> (b, residual) def f_fwd(x): return f(x), 3. * x # f_bwd: (residual, CT b) -> [CT a] def f_bwd(residual, ct_b): return residual * hcb.id_print(ct_b), f.defvjp(f_fwd, f_bwd) def g(x): # Sum f(x_i) return lax.scan(lambda carry, inp: (carry + f(inp), 0.), np.full(x.shape[1:], 0.), # Like x w/o leading dim x)[0] arg = np.full((2,), 0.7) self.assertRewrite(""" { lambda ; a c d. let b e f _ = scan[ jaxpr={ lambda ; a e f b. let c g h = custom_vjp_call_jaxpr[ fun_jaxpr={ lambda ; a d e. let b f g = outside_call[ arg_treedef=* callback=... has_token=True identity=True ] a d e c = mul a b in (c, f, g) } num_consts=0 ] b e f d = add a c in (d, g, h, 0.00) } length=2 linear=(False, False, False, False) num_carry=3 num_consts=0 reverse=False unroll=1 ] 0.00 c d a in (b, e, f) }""", g, [arg]) self.assertRewrite(""" { lambda ; a d e. let _ _ f g _ b = scan[ jaxpr={ lambda ; a b h i c d. let e j k = custom_vjp_call_jaxpr[ fun_jaxpr={ lambda ; a d e. let b f g = outside_call[ arg_treedef=* callback=... has_token=True identity=True ] a d e c = mul a b in (c, f, g) } num_consts=0 ] c h i f = add a e g = mul c 3.00 in (f, *, j, k, 0.00, g) } length=2 linear=(False, True, False, False, False, True) num_carry=4 num_consts=0 reverse=False unroll=1 ] 0.00 * d e a * _ _ h i _ c = scan[ jaxpr={ lambda ; a b g h c d. let e i j = outside_call[ arg_treedef=* callback=... has_token=True identity=True ] b g h f = mul d e in (*, b, i, j, *, f) } length=2 linear=(True, True, False, False, True, False) num_carry=4 num_consts=0 reverse=True unroll=1 ] * 1.00 f g * b in (c, h, i) }""", api.grad(g), [arg]) def test_remat_loop(self): def f(k, x): x = hcb.id_print(k + x) return -k * x def loss(k): return lax.fori_loop(0, 1, api.remat(f), k) self.assertRewrite(""" { lambda ; a c d. let _ _ b e f = while[ body_jaxpr={ lambda ; a b c f g. let d = add a 1 e h i = remat_call[ call_jaxpr={ lambda ; a b g h. let c = add a b d i j = outside_call[ arg_treedef=* callback=... has_token=True identity=True ] c g h e = neg a f = mul e d in (f, i, j) } concrete=False name=f ] a c f g in (d, b, e, h, i) } body_nconsts=0 cond_jaxpr={ lambda ; a b c e f. let d = lt a b in (d,) } cond_nconsts=0 ] 0 1 a c d in (b, e, f) }""", loss, [2]) def test_named_call(self): def tap_scalar(init, do_print=False): @partial(api.named_call, name="step") def step(acc, step_nr): acc = acc + step_nr maybe_print(do_print, step_nr, what="step_nr") return acc, None return lax.scan(step, init, np.arange(2, dtype=np.int32)) self.assertRewrite(""" { lambda a ; b d e. let c = scan[ jaxpr={ lambda ; a b. let c = named_call[ call_jaxpr={ lambda ; a b. let c = add a b in (c,) } name=step ] a b in (c,) } length=2 linear=(False, False) num_carry=1 num_consts=0 reverse=False unroll=1 ] b a in (c, d, e) }""", tap_scalar, [np.int32(3)]) def test_pmap(self): def f(xv): api.pmap(lambda x: jnp.sin(hcb.id_print(x, tap_with_device=True)), axis_name="i")(xv) self.assertRewrite(""" { lambda ; a b c. let _ d e = xla_pmap[ axis_name=i axis_size=1 backend=None call_jaxpr={ lambda ; a d e. let b f g = outside_call[ arg_treedef=* callback=... has_token=True identity=True ] a d e c = sin b in (c, f, g) } devices=None donated_invars=(False, False, False) global_arg_shapes=(None,) global_axis_size=None in_axes=(0, 0, 0) name=<lambda> out_axes=(0, 0, 0) ] a b c in (d, e) }""", f, [np.array([2.], dtype=np.float32)]) if __name__ == "__main__": absltest.main(testLoader=jtu.JaxTestLoader())
the-stack_0_14660
"""Define a class for managing a thread pool with delayed execution. Attributes: log (logging.Logger): Logger for current module. """ import time import logging from concurrent import futures from threading import Lock from threading import Thread from .singleton import singleton log = logging.getLogger("ECC") @singleton class ThreadPool: """Thread pool that makes sure we don't get recurring jobs. Whenever a job is submitted we check if there is already a job like this running. If it is, we try to cancel the previous job. We are only able to cancel this job if it has not started yet. Example: active: ['update', 'info'] and 'update' is running. incoming: 'update' and then another 'update'. We will try to cancel the first 'update' and will fail as it is running. We still cancel the 'info' job as it has less priority (no need to get info if the translation unit is not up to date). We add a new 'update' to the list. Now there are two 'update' jobs, one running, one pending. Adding another 'update' job will replace the pending update job. """ def __init__(self, max_workers=1): """Create a thread pool. Args: max_workers (int): Maximum number of parallel workers. """ self.__thread_pool = futures.ThreadPoolExecutor( max_workers=max_workers) self.__lock = Lock() self.__progress_lock = Lock() self.__show_animation = False self.__progress_update_delay = 0.1 self.__progress_idle_delay = 0.3 # All the jobs that are currently active are stored here. self.__active_jobs = [] # start animation thread self.__progress_status = None self.__progress_thread = Thread(target=self.__animate_progress, daemon=True).start() @property def progress_status(self): """Return current progress status.""" return self.__progress_status @progress_status.setter def progress_status(self, val): """Set progress status instance.""" with self.__progress_lock: self.__progress_status = val def new_job(self, job): """Add a new job to be submitted to a thread pool. Args: job (ThreadJob): A job to be run asynchronously. """ # Cancel all the jobs with the same name that are already running. # Iterating over a list is atomic in python, so we should be safe. for active_job in self.__active_jobs: if job.overrides(active_job): if active_job.future.cancel(): log.debug("Canceled job: '%s'", job) else: log.debug("Cannot cancel job: '%s'", active_job) # Submit a new job to the pool. future = self.__thread_pool.submit(job.function, *job.args) future.add_done_callback(job.callback) future.add_done_callback(self.__on_job_done) job.future = future # Set the future for this job. with self.__lock: self.__active_jobs.append(job) self.__show_animation = True def __on_job_done(self, future): """Call this when the job is done or cancelled.""" # We want to clear the old list and alter the positions of elements. # This is a potentially dangerous operation, so protect it by a mutex. with self.__lock: self.__active_jobs[:] = [ job for job in self.__active_jobs if not job.future.done()] if len(self.__active_jobs) < 1: self.__show_animation = False def __animate_progress(self): """Change the status message, mostly used to animate progress.""" while True: sleep_time = self.__progress_idle_delay with self.__progress_lock: if not self.__progress_status: sleep_time = self.__progress_idle_delay elif self.__show_animation: self.__progress_status.show_next_message() sleep_time = self.__progress_update_delay else: self.__progress_status.show_ready_message() sleep_time = self.__progress_idle_delay # Allow some time for progress status to be updated. time.sleep(sleep_time)
the-stack_0_14661
import StringIO import os import unittest from rnn_prof import simple_rnn from rnn_prof.data.wrapper import load_data from rnn_prof.data.rnn import build_nn_data TESTDATA_FILENAME = os.path.join(os.path.dirname(__file__), 'data', 'test_assist_data.csv.gz') class TestRnn(unittest.TestCase): def test_initialization(self): """ Just make sure initialize doesn't cause the interpreter to crash """ data, _, item_ids, _, _ = load_data(TESTDATA_FILENAME, 'assistments') num_questions = len(item_ids) nn_data = build_nn_data(data, num_questions) pivot = len(nn_data) // 2 train_data = nn_data[:pivot] test_data = nn_data[pivot:] opts = simple_rnn.RnnOpts(hidden_dim=20) simple_rnn.SimpleRnn(train_data, opts, test_data=test_data) def test_dump_and_load(self): """ Test dumping and loading the SimpleRnn and make sure that all of its properties remain in shape. """ data, _, item_ids, _, _ = load_data(TESTDATA_FILENAME, 'assistments') num_questions = len(item_ids) nn_data = build_nn_data(data, num_questions) pivot = len(nn_data) // 2 train_data = nn_data[:pivot] max_compress_dim = 10 hidden_dim = 20 recurrent = False grad_norm_limit = 1.0 first_learning_rate = 20.0 decay_rate = 0.5 largest_grad = 4.0 batch_threshold = 0.8 opts = simple_rnn.RnnOpts(max_compress_dim=max_compress_dim, hidden_dim=hidden_dim, recurrent=recurrent, grad_norm_limit=grad_norm_limit, largest_grad=largest_grad, batch_threshold=batch_threshold, first_learning_rate=first_learning_rate, decay_rate=decay_rate) original = simple_rnn.SimpleRnn(train_data, opts) dumped = StringIO.StringIO() original.dump(dumped) dumped_str = dumped.getvalue() dumped_reader = StringIO.StringIO(dumped_str) recalled = simple_rnn.SimpleRnn.load(dumped_reader) for attr in ('max_compress_dim', 'recurrent', 'grad_norm_limit', 'first_learning_rate', 'decay_rate', 'largest_grad', 'batch_threshold'): self.assertEqual(getattr(original.opts, attr), getattr(recalled.opts, attr), "%s was changed" % attr)
the-stack_0_14663
# -*- coding: utf-8 -*- import MeCab from .tokenizer_none import NoneTokenizer class TokenizerJaMecab(NoneTokenizer): def __init__(self): self.tagger = MeCab.Tagger("-Owakati") # make sure the dictionary is IPA # sacreBLEU is only compatible with 0.996.5 for now # Please see: https://github.com/mjpost/sacrebleu/issues/94 d = self.tagger.dictionary_info() assert d.size == 392126, \ "Please make sure to use IPA dictionary for MeCab" assert d.next is None def __call__(self, line): """ Tokenizes an Japanese input line using MeCab morphological analyzer. :param line: a segment to tokenize :return: the tokenized line """ line = line.strip() sentence = self.tagger.parse(line).strip() return sentence def signature(self): """ Returns the MeCab parameters. :return: signature string """ signature = self.tagger.version() + "-IPA" return 'ja-mecab-' + signature
the-stack_0_14664
# Linear autoencoder (ie PCA) applied to a 3d dataset projecting to 2d #https://github.com/ageron/handson-ml2/blob/master/17_autoencoders_and_gans.ipynb import numpy as np import matplotlib.pyplot as plt import os figdir = "../figures" def save_fig(fname): plt.savefig(os.path.join(figdir, fname)) import tensorflow as tf from tensorflow import keras from sklearn.decomposition import PCA from mpl_toolkits import mplot3d from mpl_toolkits.mplot3d import Axes3D np.random.seed(4) def generate_3d_data(m, w1=0.1, w2=0.3, noise=0.1): angles = np.random.rand(m) * 3 * np.pi / 2 - 0.5 data = np.empty((m, 3)) data[:, 0] = np.cos(angles) + np.sin(angles)/2 + noise * np.random.randn(m) / 2 data[:, 1] = np.sin(angles) * 0.7 + noise * np.random.randn(m) / 2 data[:, 2] = data[:, 0] * w1 + data[:, 1] * w2 + noise * np.random.randn(m) return data X_train = generate_3d_data(60) X_train = X_train - X_train.mean(axis=0, keepdims=0) np.random.seed(42) tf.random.set_seed(42) encoder = keras.models.Sequential([keras.layers.Dense(2, input_shape=[3])]) decoder = keras.models.Sequential([keras.layers.Dense(3, input_shape=[2])]) autoencoder = keras.models.Sequential([encoder, decoder]) autoencoder.compile(loss="mse", optimizer=keras.optimizers.SGD(lr=1.5)) history = autoencoder.fit(X_train, X_train, epochs=20) codings = encoder.predict(X_train) X = X_train fig = plt.figure().gca(projection='3d') fig.scatter(X[:,0], X[:,1], X[:,2], s=50, marker='o') save_fig("linear-autoecoder-data3d.pdf") plt.show() fig = plt.figure(figsize=(4,3)) plt.plot(codings[:,0], codings[:, 1], "b.") plt.xlabel("$z_1$", fontsize=18) plt.ylabel("$z_2$", fontsize=18, rotation=0) plt.grid(True) save_fig("linear-autoencoder-embedding.pdf") plt.show() # PCA version pca = PCA(n_components=2) mu = np.mean(X_train, axis=0) Xc = X_train - mu # center the data pca.fit(Xc) W = pca.components_.T # D*K Z = np.dot(Xc, W) # N * K latent scores Xrecon = np.dot(Z, W.T) + mu # N*D fig = plt.figure(figsize=(4,3)) plt.plot(Z[:,0], Z[:, 1], "b.") plt.xlabel("$z_1$", fontsize=18) plt.ylabel("$z_2$", fontsize=18, rotation=0) plt.grid(True) save_fig("linear-autoencoder-pca.pdf") plt.show()
the-stack_0_14665
""" Defines the NotebookCell class """ #*************************************************************************************************** # Copyright 2015, 2019 National Technology & Engineering Solutions of Sandia, LLC (NTESS). # Under the terms of Contract DE-NA0003525 with NTESS, the U.S. Government retains certain rights # in this software. # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 or in the LICENSE file in the root pyGSTi directory. #*************************************************************************************************** import json as _json import os as _os class NotebookCell(object): """ Struct representing either a code or markdown cell Parameters ---------- cell_type : str, optional Tag for the cell: either 'code' or 'markdown' source : list, optional A list of strings that are the lines of code/markdown in the cell. """ def __init__(self, cell_type='code', source=None): ''' Build a notebook cell Parameters ---------- cell_type : str, optional tag for the cell: either 'code' or 'markdown' source : list(str), optional lines of code/markdown in the cell ''' if source is None: source = [] self.cellType = cell_type self.source = source def to_json_dict(self): """ Convert this cell to a json representation of a cell, using a default template Returns ------- dict """ if self.cellType == 'markdown': templateFilename = 'MDcell.json' elif self.cellType == 'code': templateFilename = 'CodeCell.json' templateFilename = _os.path.join(_os.path.dirname(_os.path.abspath(__file__)), 'templates', templateFilename) with open(templateFilename, 'r') as infile: cellDict = _json.load(infile) cellDict['source'].extend(self.source) return cellDict
the-stack_0_14667
import os from flask import g, current_app from .utils import Singleton class MediaFinder(metaclass=Singleton): def __init__(self, path): self.path = path self._collection = [] for root, dirs, files in os.walk(path): for name in files: fname = os.path.abspath(os.path.join(root, name)) size = os.stat(fname).st_size self._collection.append({'name': fname, 'size': size}) self._collection.sort(key=lambda x: x['name']) self._collection = {x['name']: x['size'] for x in self._collection} @property def collection(self): return self._collection def get_media_finder(): if 'media_finder' not in g: g.media_finder = MediaFinder(current_app.config['MEDIA_DIR']) return g.media_finder
the-stack_0_14670
# Copyright 2018, Kay Hayen, mailto:[email protected] # # Part of "Nuitka", an optimizing Python compiler that is compatible and # integrates with CPython, but also works on its own. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Common test infrastructure functions. To be used by test runners. """ from __future__ import print_function import ast import atexit import os import re import shutil import subprocess import sys import tempfile from contextlib import contextmanager from nuitka.Tracing import my_print from nuitka.utils.AppDirs import getAppDir, getCacheDir from nuitka.utils.Execution import check_output from nuitka.utils.FileOperations import makePath, removeDirectory from .SearchModes import ( SearchModeBase, SearchModeByPattern, SearchModeCoverage, SearchModeResume ) def check_result(*popenargs, **kwargs): if "stdout" in kwargs: raise ValueError("stdout argument not allowed, it will be overridden.") process = subprocess.Popen( stdout = subprocess.PIPE, *popenargs, **kwargs ) _unused_output, _unused_err = process.communicate() retcode = process.poll() if retcode: return False else: return True def goMainDir(): # Go its own directory, to have it easy with path knowledge. os.chdir( os.path.dirname( os.path.abspath(sys.modules[ "__main__" ].__file__) ) ) _python_version = None _python_arch = None _python_executable = None def setup(suite = "", needs_io_encoding = False, silent = False, go_main = True): if go_main: goMainDir() if "PYTHON" not in os.environ: os.environ["PYTHON"] = sys.executable # Allow test code to use this to make caching specific. os.environ["NUITKA_TEST_SUITE"] = suite # Allow providing 33, 27, and expand that to python2.7 if len(os.environ["PYTHON"]) == 2 and \ os.environ["PYTHON"].isdigit() and \ os.name != "nt": os.environ["PYTHON"] = "python%s.%s" % ( os.environ["PYTHON"][0], os.environ["PYTHON"][1] ) if needs_io_encoding and "PYTHONIOENCODING" not in os.environ: os.environ["PYTHONIOENCODING"] = "utf-8" version_output = check_output( ( os.environ["PYTHON"], "-c", """\ import sys, os;\ print(".".join(str(s) for s in list(sys.version_info)[:3]));\ print(("x86_64" if "AMD64" in sys.version else "x86") if os.name == "nt" else os.uname()[4]);\ print(sys.executable);\ """, ), stderr = subprocess.STDOUT ) global _python_version, _python_arch, _python_executable # singleton, pylint: disable=global-statement _python_version = version_output.split(b"\n")[0].strip() _python_arch = version_output.split(b"\n")[1].strip() _python_executable = version_output.split(b"\n")[2].strip() if sys.version.startswith('3'): _python_arch = _python_arch.decode("utf-8") _python_version = _python_version.decode("utf-8") _python_executable = _python_executable.decode("utf-8") if not silent: my_print("Using concrete python", _python_version, "on", _python_arch) assert type(_python_version) is str, repr(_python_version) assert type(_python_arch) is str, repr(_python_arch) assert type(_python_executable) is str, repr(_python_executable) if "COVERAGE_FILE" not in os.environ: os.environ["COVERAGE_FILE"] = os.path.join( os.path.dirname(__file__), "..", "..", "..", ".coverage" ) return _python_version tmp_dir = None def getTempDir(): # Create a temporary directory to work in, automatically remove it in case # it is empty in the end. global tmp_dir # singleton, pylint: disable=global-statement if tmp_dir is None: tmp_dir = tempfile.mkdtemp( prefix = os.path.basename( os.path.dirname( os.path.abspath(sys.modules[ "__main__" ].__file__) ) ) + '-', dir = tempfile.gettempdir() if not os.path.exists("/var/tmp") else "/var/tmp" ) def removeTempDir(): removeDirectory( path = tmp_dir, ignore_errors = True ) atexit.register(removeTempDir) return tmp_dir def convertUsing2to3(path, force = False): command = [ os.environ["PYTHON"], "-m", "py_compile", path ] if not force: with open(path) as source_file: if "xrange" not in source_file.read(): with open(os.devnull, 'w') as stderr: if check_result(command, stderr = stderr): return path, False filename = os.path.basename(path) new_path = os.path.join(getTempDir(), filename) # This may already be a temp file, e.g. because of construct creation. try: shutil.copy(path, new_path) except shutil.Error: pass # For Python2.6 and 3.2 the -m lib2to3 was not yet supported. use_binary = sys.version_info[:2] in ((2,6), (3,2)) if use_binary: # On Windows, we cannot rely on 2to3 to be in the path. if os.name == "nt": command = [ sys.executable, os.path.join( os.path.dirname(sys.executable), "Tools/Scripts/2to3.py" ) ] else: command = [ "2to3" ] else: command = [ sys.executable, "-m", "lib2to3", ] command += [ "-w", "-n", "--no-diffs", new_path ] with open(os.devnull, 'w') as devnull: check_output( command, stderr = devnull ) with open(new_path) as result_file: data = result_file.read() with open(new_path, 'w') as result_file: result_file.write("__file__ = %r\n" % os.path.abspath(path)) result_file.write(data) return new_path, True def decideFilenameVersionSkip(filename): """ Make decision whether to skip based on filename and Python version. This codifies certain rules that files can have as suffixes or prefixes to make them be part of the set of tests executed for a version or not. Generally, an ening of "<major><minor>.py" indicates that it must be that Python version or higher. There is no need for ending in "26.py" as this is the minimum version anyway. The "_2.py" indicates a maxmimum version of 2.7, i.e. not Python 3.x, for language syntax no more supported. """ # This will make many decisions with immediate returns. # pylint: disable=too-many-return-statements assert type(filename) is str assert type(_python_version) is str # Skip runner scripts by default. if filename.startswith("run_"): return False # Skip tests that require Python 2.7 at least. if filename.endswith("27.py") and _python_version.startswith("2.6"): return False if filename.endswith("_2.py") and _python_version.startswith('3'): return False # Skip tests that require Python 3.2 at least. if filename.endswith("32.py") and _python_version < "3.2": return False # Skip tests that require Python 3.3 at least. if filename.endswith("33.py") and _python_version < "3.3": return False # Skip tests that require Python 3.4 at least. if filename.endswith("34.py") and _python_version < "3.4": return False # Skip tests that require Python 3.5 at least. if filename.endswith("35.py") and _python_version < "3.5": return False # Skip tests that require Python 3.6 at least. if filename.endswith("36.py") and _python_version < "3.6": return False return True def _removeCPythonTestSuiteDir(): # Cleanup, some tests apparently forget that. try: if os.path.isdir("@test"): removeDirectory("@test", ignore_errors = False) elif os.path.isfile("@test"): os.unlink("@test") except OSError: # TODO: Move this into removeDirectory maybe. Doing an external # call as last resort could be a good idea. # This seems to work for broken "lnk" files. if os.name == "nt": os.system("rmdir /S /Q @test") if os.path.exists("@test"): raise def compareWithCPython(dirname, filename, extra_flags, search_mode, needs_2to3): """ Call the comparison tool. For a given directory filename. The search mode decides if the test case aborts on error or gets extra flags that are exceptions. """ if dirname is None: path = filename else: path = os.path.join(dirname, filename) # Apply 2to3 conversion if necessary. if needs_2to3: path, converted = convertUsing2to3(path) else: converted = False command = [ sys.executable, os.path.join("..", "..", "bin", "compare_with_cpython"), path, "silent" ] if extra_flags is not None: command += extra_flags command += search_mode.getExtraFlags(dirname, filename) # Cleanup before and after test stage directory. _removeCPythonTestSuiteDir() try: result = subprocess.call( command ) except KeyboardInterrupt: result = 2 # Cleanup before and after test stage directory. _removeCPythonTestSuiteDir() if result != 0 and \ result != 2 and \ search_mode.abortOnFinding(dirname, filename): my_print("Error exit!", result) sys.exit(result) if converted: os.unlink(path) if result == 2: sys.stderr.write("Interrupted, with CTRL-C\n") sys.exit(2) def checkCompilesNotWithCPython(dirname, filename, search_mode): if dirname is None: path = filename else: path = os.path.join(dirname, filename) command = [ _python_executable, "-mcompileall", path ] try: result = subprocess.call( command ) except KeyboardInterrupt: result = 2 if result != 1 and \ result != 2 and \ search_mode.abortOnFinding(dirname, filename): my_print("Error exit!", result) sys.exit(result) def checkSucceedsWithCPython(filename): command = [ _python_executable, filename ] result = subprocess.call( command, stdout = open(os.devnull,'w'), stderr = subprocess.STDOUT ) return result == 0 def hasDebugPython(): # On Debian systems, these work. debug_python = os.path.join("/usr/bin/", os.environ["PYTHON"] + "-dbg") if os.path.exists(debug_python): return True # On Windows systems, these work. debug_python = os.environ["PYTHON"] if debug_python.lower().endswith(".exe"): debug_python = debug_python[:-4] debug_python = debug_python + "_d.exe" if os.path.exists(debug_python): return True # For other Python, if it's the one also executing the runner, which is # very probably the case, we check that. We don't check the provided # binary here, this could be done as well. if sys.executable == os.environ["PYTHON"] and \ hasattr(sys, "gettotalrefcount"): return True # Otherwise no. return False def getArchitecture(): if os.name == "nt": if "AMD64" in sys.version: return "x86_64" else: return "x86" else: return os.uname()[4] # @UndefinedVariable def getDependsExePath(): if "APPDATA" not in os.environ: sys.exit("Error, standalone mode cannot find 'APPDATA' environment.") nuitka_app_dir = getAppDir() depends_dir = os.path.join( nuitka_app_dir, _python_arch, ) depends_exe = os.path.join( depends_dir, "depends.exe" ) assert os.path.exists(depends_exe), depends_exe return depends_exe def isExecutableCommand(command): path = os.environ["PATH"] suffixes = (".exe",) if os.name == "nt" else ("",) for part in path.split(os.pathsep): if not part: continue for suffix in suffixes: if os.path.isfile(os.path.join(part, command + suffix)): return True return False def getRuntimeTraceOfLoadedFiles(path, trace_error = True): """ Returns the files loaded when executing a binary. """ # This will make a crazy amount of work, pylint: disable=too-many-branches,too-many-statements result = [] if os.name == "posix": if sys.platform == "darwin" or \ sys.platform.startswith("freebsd"): if not isExecutableCommand("dtruss"): sys.exit( """\ Error, needs 'dtruss' on your system to scan used libraries.""" ) if not isExecutableCommand("sudo"): sys.exit( """\ Error, needs 'sudo' on your system to scan used libraries.""" ) args = ( "sudo", "dtruss", "-t", "open", path ) else: if not isExecutableCommand("strace"): sys.exit( """\ Error, needs 'strace' on your system to scan used libraries.""" ) args = ( "strace", "-e", "file", "-s4096", # Some paths are truncated otherwise. path ) process = subprocess.Popen( args = args, stdout = subprocess.PIPE, stderr = subprocess.PIPE ) _stdout_strace, stderr_strace = process.communicate() exit_strace = process.returncode if exit_strace != 0: if str is not bytes: stderr_strace = stderr_strace.decode("utf8") my_print(stderr_strace, file = sys.stderr) sys.exit("Failed to run strace.") open(path+".strace","wb").write(stderr_strace) for line in stderr_strace.split(b"\n"): if process.returncode != 0 and trace_error: my_print(line) if not line: continue # Don't consider files not found. The "site" module checks lots # of things. if b"ENOENT" in line: continue if line.startswith(b"stat(") and b"S_IFDIR" in line: continue # Allow stats on the python binary, and stuff pointing to the # standard library, just not uses of it. It will search there # for stuff. if line.startswith(b"lstat(") or \ line.startswith(b"stat(") or \ line.startswith(b"readlink("): filename = line[line.find(b"(")+2:line.find(b", ")-1] # At least Python3.7 considers the default Python3 path. if filename == b"/usr/bin/python3": continue if filename in (b"/usr/bin/python3." + version for version in (b"5", b"6", b"7")): continue binary_path = _python_executable if str is not bytes: binary_path = binary_path.encode("utf-8") found = False while binary_path: if filename == binary_path: found = True break if binary_path == os.path.dirname(binary_path): break binary_path = os.path.dirname(binary_path) if filename == os.path.join(binary_path, b"python" + _python_version[:3].encode("utf8")): found = True continue if found: continue result.extend( os.path.abspath(match) for match in re.findall(b'"(.*?)(?:\\\\0)?"', line) ) if sys.version.startswith('3'): result = [s.decode("utf-8") for s in result] elif os.name == "nt": subprocess.call( ( getDependsExePath(), "-c", "-ot%s" % path + ".depends", "-f1", "-pa1", "-ps1", "-pp0", "-pl1", path ) ) inside = False for line in open(path + ".depends"): if "| Module Dependency Tree |" in line: inside = True continue if not inside: continue if "| Module List |" in line: break if ']' not in line: continue # Skip missing DLLs, apparently not needed anyway. if '?' in line[:line.find(']')]: continue dll_filename = line[line.find(']')+2:-1] assert os.path.isfile(dll_filename), dll_filename # The executable itself is of course exempted. if os.path.normcase(dll_filename) == \ os.path.normcase(os.path.abspath(path)): continue dll_filename = os.path.normcase(dll_filename) result.append(dll_filename) os.unlink(path + ".depends") result = list(sorted(set(result))) return result def checkRuntimeLoadedFilesForOutsideAccesses(loaded_filenames, white_list): # A lot of special white listing is required. # pylint: disable=too-many-branches,too-many-statements result = [] for loaded_filename in loaded_filenames: loaded_filename = os.path.normpath(loaded_filename) loaded_filename = os.path.normcase(loaded_filename) loaded_basename = os.path.basename(loaded_filename) ok = False for entry in white_list: if loaded_filename.startswith(entry): ok = True while entry: old_entry = entry entry = os.path.dirname(entry) if old_entry == entry: break if loaded_filename == entry: ok = True break if ok: continue if loaded_filename.startswith("/etc/"): continue if loaded_filename.startswith("/proc/") or loaded_filename == "/proc": continue if loaded_filename.startswith("/dev/"): continue if loaded_filename.startswith("/tmp/"): continue if loaded_filename.startswith("/run/"): continue if loaded_filename.startswith("/sys/"): continue if loaded_filename.startswith("/usr/lib/locale/"): continue if loaded_filename.startswith("/usr/share/locale/"): continue if loaded_filename.startswith("/usr/share/X11/locale/"): continue # Themes may of course be loaded. if loaded_filename.startswith("/usr/share/themes"): continue if "gtk" in loaded_filename and "/engines/" in loaded_filename: continue # Terminal info files are OK too. if loaded_filename.startswith("/lib/terminfo/"): continue # System C libraries are to be expected. if loaded_basename.startswith(( "libc.so.", "libpthread.so.", "libdl.so.", "libm.so.", )): continue # Taking these from system is harmless and desirable if loaded_basename.startswith(( "libz.so", "libutil.so", "libgcc_s.so", )): continue # TODO: Unclear, loading gconv from filesystem of installed system # may be OK or not. I think it should be. if loaded_basename == "gconv-modules.cache": continue if "/gconv/" in loaded_filename: continue if loaded_basename.startswith("libicu"): continue # GTK may access X files. if loaded_basename == ".Xauthority": continue result.append(loaded_filename) return result def hasModule(module_name): result = subprocess.call( ( os.environ["PYTHON"], "-c" "import %s" % module_name ), stdout = open(os.devnull,'w'), stderr = subprocess.STDOUT ) return result == 0 m1 = {} m2 = {} def snapObjRefCntMap(before): import gc if before: m = m1 else: m = m2 for x in gc.get_objects(): if x is m1: continue if x is m2: continue m[ str(x) ] = sys.getrefcount(x) def checkReferenceCount(checked_function, max_rounds = 10): assert sys.exc_info() == (None, None, None), sys.exc_info() print(checked_function.__name__ + ": ", end = "") sys.stdout.flush() ref_count1 = 17 ref_count2 = 17 explain = False import gc assert max_rounds > 0 for count in range(max_rounds): gc.collect() ref_count1 = sys.gettotalrefcount() # @UndefinedVariable if explain and count == max_rounds - 1: snapObjRefCntMap(True) checked_function() # Not allowed, but happens when bugs occur. assert sys.exc_info() == (None, None, None), sys.exc_info() gc.collect() if explain and count == max_rounds - 1: snapObjRefCntMap(False) ref_count2 = sys.gettotalrefcount() # @UndefinedVariable if ref_count1 == ref_count2: result = True print("PASSED") break # print count, ref_count1, ref_count2 else: result = False print("FAILED", ref_count1, ref_count2, "leaked", ref_count2 - ref_count1) if explain: assert m1 assert m2 for key in m1: if key not in m2: print('*' * 80) print("extra", key) elif m1[key] != m2[key]: print('*' * 80) print(m1[key], "->", m2[key], key) else: pass # print m1[key] assert sys.exc_info() == (None, None, None), sys.exc_info() gc.collect() sys.stdout.flush() return result def createSearchMode(): search_mode = len(sys.argv) > 1 and sys.argv[1] == "search" resume_mode = len(sys.argv) > 1 and sys.argv[1] == "resume" start_at = sys.argv[2] if len(sys.argv) > 2 else None coverage_mode = len(sys.argv) > 1 and sys.argv[1] == "coverage" if coverage_mode: return SearchModeCoverage() elif resume_mode: return SearchModeResume( sys.modules["__main__"].__file__ ) elif search_mode and start_at: start_at = start_at.replace('/', os.path.sep) return SearchModeByPattern(start_at) else: class SearchModeImmediate(SearchModeBase): def abortOnFinding(self, dirname, filename): return search_mode and \ SearchModeBase.abortOnFinding(self, dirname, filename) return SearchModeImmediate() def reportSkip(reason, dirname, filename): case = os.path.join(dirname, filename) case = os.path.normpath(case) my_print("Skipped, %s (%s)." % (case, reason)) def executeReferenceChecked(prefix, names, tests_skipped, tests_stderr): import gc gc.disable() extract_number = lambda name: int(name.replace(prefix, "")) # Find the function names. matching_names = tuple( name for name in names if name.startswith(prefix) and name[-1].isdigit() ) old_stderr = sys.stderr # Everything passed result = True for name in sorted(matching_names, key = extract_number): number = extract_number(name) # print(tests_skipped) if number in tests_skipped: my_print(name + ": SKIPPED (%s)" % tests_skipped[number]) continue # Avoid unraisable output. try: if number in tests_stderr: sys.stderr = open(os.devnull, "wb") except OSError: # Windows if not checkReferenceCount(names[name]): result = False else: if not checkReferenceCount(names[name]): result = False if number in tests_stderr: new_stderr = sys.stderr sys.stderr = old_stderr new_stderr.close() gc.enable() return result def checkDebugPython(): if not hasattr(sys, "gettotalrefcount"): my_print("Warning, using non-debug Python makes this test ineffective.") sys.gettotalrefcount = lambda : 0 elif sys.version_info >= (3,7,0) and sys.version_info < (3,7,2): my_print("Warning, bug of CPython 3.7.0/1 breaks reference counting and makes this test ineffective.") sys.gettotalrefcount = lambda : 0 def addToPythonPath(python_path): if type(python_path) in (tuple, list): python_path = os.pathsep.join(python_path) if python_path: if "PYTHONPATH" in os.environ: os.environ["PYTHONPATH"] += os.pathsep + python_path else: os.environ["PYTHONPATH"] = python_path @contextmanager def withPythonPathChange(python_path): if python_path: if type(python_path) not in (tuple, list): python_path = python_path.split(os.pathsep) python_path = [ os.path.normpath(os.path.abspath(element)) for element in python_path ] python_path = os.pathsep.join(python_path) if "PYTHONPATH" in os.environ: old_path = os.environ["PYTHONPATH"] os.environ["PYTHONPATH"] += os.pathsep + python_path else: old_path = None os.environ["PYTHONPATH"] = python_path # print( # "Effective PYTHONPATH in %s is %r" % ( # sys.modules["__main__"], # os.environ.get("PYTHONPATH", "") # ) # ) yield if python_path: if old_path is None: del os.environ["PYTHONPATH"] else: os.environ["PYTHONPATH"] = old_path @contextmanager def withExtendedExtraOptions(*args): assert args old_value = os.environ.get("NUITKA_EXTRA_OPTIONS", None) value = old_value for arg in args: if value is None: value = arg else: value += ' ' + arg os.environ[ "NUITKA_EXTRA_OPTIONS" ] = value yield if old_value is None: del os.environ[ "NUITKA_EXTRA_OPTIONS" ] else: os.environ[ "NUITKA_EXTRA_OPTIONS" ] = old_value def indentedCode(codes, count): """ Indent code, used for generating test codes. """ return '\n'.join( ' ' * count + line if line else "" for line in codes ) def convertToPython(doctests, line_filter = None): """ Convert give doctest string to static Python code. """ # This is convoluted, but it just needs to work, pylint: disable=too-many-branches import doctest code = doctest.script_from_examples(doctests) if code.endswith('\n'): code += "#\n" else: assert False output = [] inside = False def getPrintPrefixed(evaluated, line_number): try: node = ast.parse(evaluated.lstrip(), "eval") except SyntaxError: return evaluated if node.body[0].__class__.__name__ == "Expr": count = 0 while evaluated.startswith(' ' * count): count += 1 if sys.version_info < (3,): modified = (count-1) * ' ' + "print " + evaluated return (count-1) * ' ' + ("print 'Line %d'" % line_number) + '\n' + modified else: modified = (count-1) * ' ' + "print(" + evaluated + "\n)\n" return (count-1) * ' ' + ("print('Line %d'" % line_number) + ")\n" + modified else: return evaluated def getTried(evaluated, line_number): if sys.version_info < (3,): return """ try: %(evaluated)s except Exception as __e: print "Occurred", type(__e), __e """ % { "evaluated" : indentedCode(getPrintPrefixed(evaluated, line_number).split('\n'), 4) } else: return """ try: %(evaluated)s except Exception as __e: print("Occurred", type(__e), __e) """ % { "evaluated" : indentedCode(getPrintPrefixed(evaluated, line_number).split('\n'), 4) } def isOpener(evaluated): evaluated = evaluated.lstrip() if evaluated == "": return False return evaluated.split()[0] in ( "def", "class", "for", "while", "try:", "except", "except:", "finally:", "else:" ) chunk = None for line_number, line in enumerate(code.split('\n')): # print "->", inside, line if line_filter is not None and line_filter(line): continue if inside and line and line[0].isalnum() and not isOpener(line): output.append(getTried('\n'.join(chunk), line_number)) # @UndefinedVariable chunk = [] inside = False if inside and not (line.startswith('#') and line.find("SyntaxError:") != -1): chunk.append(line) elif line.startswith('#'): if line.find("SyntaxError:") != -1: # print "Syntax error detected" if inside: # print "Dropping chunk", chunk chunk = [] inside = False else: del output[-1] elif isOpener(line): inside = True chunk = [line] elif line.strip() == "": output.append(line) else: output.append(getTried(line, line_number)) return '\n'.join(output).rstrip() + '\n' def compileLibraryPath(search_mode, path, stage_dir, decide, action): my_print("Checking standard library path:", path) for root, dirnames, filenames in os.walk(path): dirnames_to_remove = [ dirname for dirname in dirnames if '-' in dirname ] for dirname in dirnames_to_remove: dirnames.remove(dirname) dirnames.sort() filenames = [ filename for filename in filenames if decide(root, filename) ] for filename in sorted(filenames): if not search_mode.consider(root, filename): continue full_path = os.path.join(root, filename) my_print(full_path, ':', end = ' ') sys.stdout.flush() action(stage_dir, path, full_path) def compileLibraryTest(search_mode, stage_dir, decide, action): if not os.path.exists(stage_dir): os.makedirs(stage_dir) my_dirname = os.path.join(os.path.dirname(__file__), "../../..") my_dirname = os.path.normpath(my_dirname) paths = [ path for path in sys.path if not path.startswith(my_dirname) ] my_print("Using standard library paths:") for path in paths: my_print(path) for path in paths: print("Checking path:", path) compileLibraryPath( search_mode = search_mode, path = path, stage_dir = stage_dir, decide = decide, action = action ) search_mode.finish() def run_async(coro): """ Execute a coroutine until it's done. """ values = [] result = None while True: try: values.append(coro.send(None)) except StopIteration as ex: result = ex.args[0] if ex.args else None break return values, result def async_iterate(g): """ Execute async generator until it's done. """ # Test code for Python3, catches all kinds of exceptions. # pylint: disable=broad-except # Also Python3 only, pylint: disable=I0021,undefined-variable res = [] while True: try: g.__anext__().__next__() except StopAsyncIteration: # @UndefinedVariable res.append("STOP") break except StopIteration as ex: if ex.args: res.append("ex arg %s" % ex.args[0]) else: res.append("EMPTY StopIteration") break except Exception as ex: res.append(str(type(ex))) return res def getTestingCacheDir(): cache_dir = getCacheDir() result = os.path.join(cache_dir, "tests_state") makePath(result) return result def getTestingCPythonOutputsCacheDir(): cache_dir = getCacheDir() result = os.path.join(cache_dir, "cpython_outputs", os.environ.get("NUITKA_TEST_SUITE", "")) makePath(result) return result @contextmanager def withDirectoryChange(path, allow_none = False): if path is not None or not allow_none: old_cwd = os.getcwd() os.chdir(path) yield if path is not None or not allow_none: os.chdir(old_cwd) def someGenerator(): yield 1 yield 2 yield 3 def someGeneratorRaising(): yield 1 raise TypeError(2)
the-stack_0_14671
from pazusoba import adventureEx, Profile, ProfileName, Orb import time import random def random_board() -> str: return "".join(random.choice(["L", "R", "G", "B", "D", "H"]) for _ in range(30)) def amen_benchmark(): print("Running amen benchmark...") COUNT = 10 goal_counter = 0 steps = 0 start = time.time() for i in range(COUNT): print("Test {}".format(i + 1)) board = random_board() print("Board: {}".format(board)) result = adventureEx(board, 3, 150, 10000, [ Profile(name=ProfileName.COMBO, target=7), Profile(name=ProfileName.ORB_REMAINING, target=3), ]) if result.goal: goal_counter += 1 steps += result.step time_taken = time.time() - start print("It took {} seconds, {} seconds on average".format( time_taken, time_taken / COUNT)) print("Goal rate: {}/{}".format(goal_counter, COUNT)) print("Average steps: {}".format(steps / COUNT)) def combo_benchmark(): print("Running combo benchmark...") COUNT = 100 goal_counter = 0 steps = 0 start = time.time() for i in range(COUNT): board = random_board() print("{} - {}".format(i + 1, board)) result = adventureEx(board, 3, 150, 1000, [ Profile(name=ProfileName.COMBO, threshold=50) ]) if result.goal: goal_counter += 1 steps += result.step time_taken = time.time() - start print("It took {} seconds, {} seconds on average".format( time_taken, time_taken / COUNT)) print("Goal rate: {}/{}".format(goal_counter, COUNT)) print("Average steps: {}".format(steps / COUNT)) def find_best_small_size_combo(): COUNT = 20 # generate same board boards = [random_board() for _ in range(COUNT)] for x in range(1, 11): size = x * 100 goal_counter = 0 steps = 0 start = time.time() for i in range(COUNT): result = adventureEx(boards[i], 3, 150, 1000, [ Profile(name=ProfileName.COMBO, threshold=20) ]) if result.goal: goal_counter += 1 steps += result.step time_taken = time.time() - start print("Size {} - avg {} s, {}/{}, avg {} steps".format( size, time_taken / COUNT, goal_counter, COUNT, steps / COUNT)) if __name__ == '__main__': print("Running benchmark") # amen_benchmark() combo_benchmark() # find_best_small_size_combo()
the-stack_0_14672
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for XLA JIT compiler.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import unittest import numpy as np from six.moves import xrange # pylint: disable=redefined-builtin from tensorflow.compiler.tests.xla_test import XLATestCase from tensorflow.python.framework import dtypes from tensorflow.python.ops import array_ops from tensorflow.python.ops import bitwise_ops from tensorflow.python.ops import gen_nn_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_ops from tensorflow.python.platform import googletest def nhwc_to_format(x, data_format): """Converts a numpy array from NHWC format to `data_format`.""" rank = len(x.shape) if data_format == "NCHW": return np.transpose(x, [0, rank - 1] + list(range(1, rank - 1))) elif data_format == "NHWC": return x else: raise ValueError("Unknown format {}".format(data_format)) class UnaryOpsTest(XLATestCase): """Test cases for unary operators.""" def _assertOpOutputMatchesExpected(self, op, inp, expected, equality_test=None, rtol=1e-3, atol=1e-5): """Verifies that 'op' produces 'expected' when fed input 'inp' . Args: op: operator to test inp: numpy input array to use as input to 'op'. expected: numpy array representing the expected output of 'op'. equality_test: either None, or a function that tests two numpy arrays for equality. If None, self.assertAllClose is used. rtol: relative tolerance for equality test. atol: absolute tolerance for equality test. """ with self.test_session() as session: with self.test_scope(): pinp = array_ops.placeholder( dtypes.as_dtype(inp.dtype), inp.shape, name="a") output = op(pinp) result = session.run(output, {pinp: inp}) if equality_test is None: self.assertAllCloseAccordingToType( result, expected, rtol=rtol, atol=atol, bfloat16_rtol=0.03) else: equality_test(result, expected, rtol=rtol, atol=atol) def ListsAreClose(self, result, expected, rtol, atol): """Tests closeness of two lists of floats.""" self.assertEqual(len(result), len(expected)) for i in xrange(len(result)): self.assertAllClose(result[i], expected[i], rtol, atol) def testAllTypeOps(self): for dtype in self.numeric_types: self._assertOpOutputMatchesExpected( array_ops.diag, np.array([1, 2, 3, 4], dtype=dtype), np.array([[1, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0], [0, 0, 0, 4]], dtype=dtype)) self._assertOpOutputMatchesExpected( array_ops.diag_part, np.arange(36).reshape([2, 3, 2, 3]).astype(dtype), np.array([[0, 7, 14], [21, 28, 35]], dtype=dtype)) self._assertOpOutputMatchesExpected( array_ops.diag, np.array([[1, 2], [3, 4]], dtype=dtype), np.array( [[[[1, 0], [0, 0]], [[0, 2], [0, 0]]], [[[0, 0], [3, 0]], [[0, 0], [0, 4]]]], dtype=dtype)) self._assertOpOutputMatchesExpected( array_ops.identity, np.array([[-1, 1]], dtype=dtype), expected=np.array([[-1, 1]], dtype=dtype)) self._assertOpOutputMatchesExpected( array_ops.matrix_diag, np.array([[1, 2], [3, 4]], dtype=dtype), np.array([[[1, 0], [0, 2]], [[3, 0], [0, 4]]], dtype=dtype)) self._assertOpOutputMatchesExpected( array_ops.matrix_diag, np.array([1, 2, 3, 4], dtype=dtype), np.array( [[1, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0], [0, 0, 0, 4]], dtype=dtype)) self._assertOpOutputMatchesExpected( array_ops.matrix_diag, np.array( [[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]], dtype=dtype), np.array( [[[[1, 0, 0], [0, 2, 0], [0, 0, 3]], [[4, 0, 0], [0, 5, 0], [0, 0, 6]]], [[[7, 0, 0], [0, 8, 0], [0, 0, 9]], [[10, 0, 0], [0, 11, 0], [0, 0, 12]]]], dtype=dtype)) self._assertOpOutputMatchesExpected( array_ops.matrix_diag_part, np.arange(3 * 2 * 4).reshape([3, 2, 4]).astype(dtype), np.array([[0, 5], [8, 13], [16, 21]], dtype=dtype)) self._assertOpOutputMatchesExpected( array_ops.prevent_gradient, np.array([[-1, 1]], dtype=dtype), expected=np.array([[-1, 1]], dtype=dtype)) self._assertOpOutputMatchesExpected( array_ops.squeeze, np.array([[[[[]]]]], dtype=dtype), expected=np.array([], dtype=dtype)) self._assertOpOutputMatchesExpected( array_ops.squeeze, np.array([[[1], [2]]], dtype=dtype), expected=np.array([1, 2], dtype=dtype)) self._assertOpOutputMatchesExpected( array_ops.squeeze, np.array([[[1]], [[2]]], dtype=dtype), expected=np.array([1, 2], dtype=dtype)) self._assertOpOutputMatchesExpected( array_ops.squeeze, np.array([[[1, 2], [3, 4]]], dtype=dtype), expected=np.array([[1, 2], [3, 4]], dtype=dtype)) self._assertOpOutputMatchesExpected( array_ops.stop_gradient, np.array([[-1, 1]], dtype=dtype), expected=np.array([[-1, 1]], dtype=dtype)) def testFloatOps(self): for dtype in self.float_types: # TODO (b/77694432): Half test failed on CPU, last ran on 04-06-2018. id:177 # https://github.com/imdone/tensorflow/issues/178 if dtype == np.float16 and self.device == "XLA_CPU": continue x = np.arange(-0.90, 0.90, 0.25) self._assertOpOutputMatchesExpected( math_ops.acos, x.astype(dtype), expected=np.arccos(x).astype(dtype)) self._assertOpOutputMatchesExpected( math_ops.asin, x.astype(dtype), expected=np.arcsin(x).astype(dtype)) x = np.arange(-3, 3).reshape(1, 3, 2) self._assertOpOutputMatchesExpected( math_ops.atan, x.astype(dtype), expected=np.arctan(x).astype(dtype)) self._assertOpOutputMatchesExpected( math_ops.acosh, np.array([1, 2, 3, 4], dtype=dtype), expected=np.array([0, 1.3169579, 1.76274717, 2.06343707], dtype=dtype)) self._assertOpOutputMatchesExpected( math_ops.asinh, np.array([1, 2, 3, 4], dtype=dtype), expected=np.array([0.88137359, 1.44363548, 1.81844646, 2.09471255], dtype=dtype)) self._assertOpOutputMatchesExpected( math_ops.atanh, np.array([0.1, 0.2, 0.3, 0.4], dtype=dtype), expected=np.array([0.10033535, 0.20273255, 0.3095196, 0.42364893], dtype=dtype)) self._assertOpOutputMatchesExpected( math_ops.ceil, np.array([[-1.7, 1.2]], dtype=dtype), expected=np.array([[-1, 2]], dtype=dtype)) self._assertOpOutputMatchesExpected( math_ops.cosh, np.array([1, 2, 3, 4], dtype=dtype), expected=np.array([1.54308063, 3.76219569, 10.067662, 27.30823284], dtype=dtype)) self._assertOpOutputMatchesExpected( math_ops.exp, np.array([[-1, 1]], dtype=dtype), expected=np.array([[0.36787945, 2.7182817]], dtype=dtype)) self._assertOpOutputMatchesExpected( math_ops.expm1, np.array([[-1, 1]], dtype=dtype), expected=np.array([[-0.63212056, 1.71828183]], dtype=dtype)) self._assertOpOutputMatchesExpected( math_ops.floor, np.array([[-1.7, 1.2]], dtype=dtype), expected=np.array([[-2, 1]], dtype=dtype)) self._assertOpOutputMatchesExpected( math_ops.is_finite, np.array([[np.NINF, -2, -1, 0, 0.5, 1, 2, np.inf, np.nan]], dtype=dtype), expected=np.array([[0, 1, 1, 1, 1, 1, 1, 0, 0]], dtype=np.bool)) # Tests for tf.nn ops. self._assertOpOutputMatchesExpected( nn_ops.l2_loss, np.array([[[]]], dtype=dtype), expected=dtype(0)) self._assertOpOutputMatchesExpected(nn_ops.l2_loss, dtype(4), dtype(8)) self._assertOpOutputMatchesExpected( nn_ops.l2_loss, np.array([[-2, 4]], dtype=dtype), expected=dtype(10)) self._assertOpOutputMatchesExpected( math_ops.reciprocal, np.array([[1, 2]], dtype=dtype), expected=np.array([[1, 0.5]], dtype=dtype)) self._assertOpOutputMatchesExpected( math_ops.log, np.array([[1, 2]], dtype=dtype), expected=np.array([[0, 0.69314718]], dtype=dtype)) self._assertOpOutputMatchesExpected( math_ops.sin, np.array([[1, 2]], dtype=dtype), expected=np.array([[0.841478, 0.909302]], dtype=dtype)) self._assertOpOutputMatchesExpected( math_ops.cos, np.array([[1, 2]], dtype=dtype), expected=np.array([[0.540297, -0.41614]], dtype=dtype)) # TODO (b/34703906): improve log1p implementation and make tolerance id:332 # https://github.com/imdone/tensorflow/issues/333 # tighter. self._assertOpOutputMatchesExpected( math_ops.log1p, np.array([[1e-14, 1e-15, 0.6]], dtype=dtype), expected=np.log1p(np.array([[1e-14, 1e-15, 0.6]], dtype=dtype))) self._assertOpOutputMatchesExpected( math_ops.rint, np.array([[-1.7, 1.2, 4.0, 0.0], [-3.5, -2.5, -1.5, -0.5], [0.5, 1.5, 2.5, 3.5]], dtype=dtype), expected=np.array([[-2, 1, 4, 0], [-4, -2, -2, 0], [0, 2, 2, 4]], dtype=dtype)) self._assertOpOutputMatchesExpected( math_ops.round, np.array([[-1.7, 1.2, 4.0, 0.0], [-3.5, -2.5, -1.5, -0.5], [0.5, 1.5, 2.5, 3.5]], dtype=dtype), expected=np.array([[-2, 1, 4, 0], [-4, -2, -2, 0], [0, 2, 2, 4]], dtype=dtype)) self._assertOpOutputMatchesExpected( math_ops.rsqrt, np.array([[4, 16]], dtype=dtype), expected=np.array([[0.5, 0.25]], dtype=dtype)) self._assertOpOutputMatchesExpected( math_ops.sigmoid, np.array( [[1, 1, 1, 1], [1, 2, 3, 4]], dtype=dtype), expected=np.array( [[0.7310586, 0.7310586, 0.7310586, 0.7310586], [0.7310586, 0.880797, 0.95257413, 0.98201376]], dtype=dtype)) self._assertOpOutputMatchesExpected( math_ops.sigmoid, np.array([-300, -150, 0, 150, 300], dtype=dtype), expected=np.array([0, 0, 0.5, 1, 1], dtype=dtype)) self._assertOpOutputMatchesExpected( math_ops.sinh, np.array([1, 2, 3, 4], dtype=dtype), expected=np.array([1.17520119, 3.62686041, 10.01787493, 27.2899172], dtype=dtype)) self._assertOpOutputMatchesExpected( math_ops.sqrt, np.array([[4, 9]], dtype=dtype), expected=np.array([[2, 3]], dtype=dtype)) self._assertOpOutputMatchesExpected( math_ops.tan, np.array([1, 2, 3, 4], dtype=dtype), expected=np.array([1.55740772, -2.18503986, -0.14254654, 1.15782128], dtype=dtype)) self._assertOpOutputMatchesExpected( math_ops.tanh, np.array( [[1, 1, 1, 1], [1, 2, 3, 4]], dtype=dtype), expected=np.array( [[0.76159418, 0.76159418, 0.76159418, 0.76159418], [0.76159418, 0.96402758, 0.99505478, 0.99932933]], dtype=dtype)) self._assertOpOutputMatchesExpected( nn_ops.log_softmax, np.array( [[1, 1, 1, 1], [1, 2, 3, 4]], dtype=dtype), expected=np.array( [[-1.3862944, -1.3862944, -1.3862944, -1.3862944], [-3.4401896, -2.4401896, -1.4401897, -0.44018969]], dtype=dtype)) self._assertOpOutputMatchesExpected( nn_ops.elu, np.array([[-1, 0, 1]], dtype=dtype), expected=np.array([[-0.63212056, 0, 1]], dtype=dtype)) self._assertOpOutputMatchesExpected( nn_ops.selu, np.array([[-1, 0, 1]], dtype=dtype), expected=np.array([[-1.11133074, 0., 1.05070099]], dtype=dtype)) self._assertOpOutputMatchesExpected( nn_ops.relu, np.array([[-1, 1]], dtype=dtype), expected=np.array([[0, 1]], dtype=dtype)) self._assertOpOutputMatchesExpected( nn_ops.relu6, np.array([[-0.05, 6.05, 5]], dtype=dtype), expected=np.array([[0, 6, 5]], dtype=dtype)) self._assertOpOutputMatchesExpected( nn_ops.softmax, np.array( [[1, 1, 1, 1], [1, 2, 3, 4]], dtype=dtype), expected=np.array( [[0.25, 0.25, 0.25, 0.25], [0.032058604, 0.087144323, 0.23688284, 0.64391428]], dtype=dtype)) self._assertOpOutputMatchesExpected( nn_ops.softsign, np.array([[-2, -1, 0, 1, 2]], dtype=dtype), expected=np.array([[-0.66666669, -0.5, 0, 0.5, 0.66666669]], dtype=dtype)) self._assertOpOutputMatchesExpected( math_ops.is_finite, np.array( [[42, float("inf"), -123], [float("nan"), 0, -0.0]], dtype=dtype), expected=np.array( [[True, False, True], [False, True, True]], dtype=np.bool)) self._assertOpOutputMatchesExpected( lambda x: array_ops.quantize_and_dequantize_v2(x, -127, 127, True, 8), np.array([-1, -0.5, 0, 0.3], dtype=dtype), expected=np.array([-1, -64.0 / 127, 0, 38.0 / 127], dtype=dtype)) def testComplexOps(self): for dtype in self.complex_types: self._assertOpOutputMatchesExpected( math_ops.acosh, np.array([0.1, 0.2j, 0.3 - 0.1j, 0.4 + 0.5j], dtype=dtype), expected=np.arccosh( np.array([0.1, 0.2j, 0.3 - 0.1j, 0.4 + 0.5j], dtype=dtype))) self._assertOpOutputMatchesExpected( math_ops.asinh, np.array([0.1, 0.2j, 0.3 - 0.1j, 0.4 + 0.5j], dtype=dtype), expected=np.arcsinh( np.array([0.1, 0.2j, 0.3 - 0.1j, 0.4 + 0.5j], dtype=dtype))) self._assertOpOutputMatchesExpected( math_ops.atanh, np.array([0.1, 0.2j, 0.3 - 0.1j, 0.4 + 0.5j], dtype=dtype), expected=np.arctanh( np.array([0.1, 0.2j, 0.3 - 0.1j, 0.4 + 0.5j], dtype=dtype))) self._assertOpOutputMatchesExpected( math_ops.cosh, np.array([1j, 2 - 3j, 3, 4 + 2j], dtype=dtype), expected=np.cosh(np.array([1j, 2 - 3j, 3, 4 + 2j], dtype=dtype))) self._assertOpOutputMatchesExpected( math_ops.sinh, np.array([1, 2j, 2 - 3j, 4 + 5j], dtype=dtype), expected=np.sinh(np.array([1, 2j, 2 - 3j, 4 + 5j], dtype=dtype))) self._assertOpOutputMatchesExpected( math_ops.exp, np.array([[-1 + 2j, 3j, 2 - 3j]], dtype=dtype), expected=np.exp(np.array([[-1 + 2j, 3j, 2 - 3j]], dtype=dtype))) self._assertOpOutputMatchesExpected( math_ops.expm1, np.array([[-1 + 2j, 3j, 2 - 3j]], dtype=dtype), expected=np.expm1(np.array([[-1 + 2j, 3j, 2 - 3j]], dtype=dtype))) self._assertOpOutputMatchesExpected( math_ops.reciprocal, np.array([[1, 2j, 2 + 3j]], dtype=dtype), expected=1.0 / np.array([[1, 2j, 2 + 3j]], dtype=dtype)) self._assertOpOutputMatchesExpected( math_ops.log, np.array([[5j, 3 - 2j]], dtype=dtype), expected=np.log(np.array([[5j, 3 - 2j]], dtype=dtype))) self._assertOpOutputMatchesExpected( math_ops.sin, np.array([[5j, 3 - 2j]], dtype=dtype), expected=np.sin(np.array([[5j, 3 - 2j]], dtype=dtype))) self._assertOpOutputMatchesExpected( math_ops.cos, np.array([[5j, 3 - 2j]], dtype=dtype), expected=np.cos(np.array([[5j, 3 - 2j]], dtype=dtype))) # TODO (b/34703906): improve log1p implementation and make tolerance id:256 # https://github.com/imdone/tensorflow/issues/257 # tighter. self._assertOpOutputMatchesExpected( math_ops.log1p, np.array([[1e-14, 1e-15j, 0.6 - 0.3j]], dtype=dtype), expected=np.log1p( np.array([[1e-14, 1e-15j, 0.6 - 0.3j]], dtype=dtype))) val = np.array([1, 2j, 2 - 3j, 4 + 5j], dtype=dtype) self._assertOpOutputMatchesExpected( math_ops.rsqrt, val, expected=1 / np.sqrt(val)) self._assertOpOutputMatchesExpected( math_ops.sigmoid, val, expected=1 / (1 + np.exp(-val))) self._assertOpOutputMatchesExpected( math_ops.sqrt, val, expected=np.sqrt(val)) self._assertOpOutputMatchesExpected( math_ops.tanh, np.array([1, 2j, 2 - 3j, 4 + 5j], dtype=dtype), expected=np.tanh(np.array([1, 2j, 2 - 3j, 4 + 5j], dtype=dtype))) self._assertOpOutputMatchesExpected( math_ops.tan, np.array([1, 2j, 2 - 3j, 4 + 5j], dtype=dtype), expected=np.tan(np.array([1, 2j, 2 - 3j, 4 + 5j], dtype=dtype))) ctypes = {np.complex64: np.float32} self._assertOpOutputMatchesExpected( math_ops.abs, np.array([[3 - 4j, -1j, np.inf]], dtype=dtype), expected=np.array([[5, 1, np.inf]], dtype=ctypes[dtype])) self._assertOpOutputMatchesExpected( math_ops.negative, np.array([[-1 + 2j, -3j]], dtype=dtype), expected=np.array([[1 - 2j, 3j]], dtype=dtype)) self._assertOpOutputMatchesExpected( math_ops.square, np.array([[-2 - 3j, 3 + 4j, 5j]], dtype=dtype), expected=np.array([[-2 - 3j, 3 + 4j, 5j]], dtype=dtype)**2) self._assertOpOutputMatchesExpected( array_ops.zeros_like, np.array([[4j, 3 - 2j], [2, -1j]], dtype=dtype), expected=np.array([[0, 0], [0, 0]], dtype=dtype)) self._assertOpOutputMatchesExpected( array_ops.ones_like, np.array([[-4j, 3 + 2j], [2, -1j]], dtype=dtype), expected=np.array([[1, 1], [1, 1]], dtype=dtype)) self._assertOpOutputMatchesExpected( math_ops.angle, np.array([1 + 3j, -4 + 7j, 2.7, -3j], dtype=dtype), expected=np.angle(np.array([1 + 3j, -4 + 7j, 2.7, -3j], dtype=dtype))) self._assertOpOutputMatchesExpected( math_ops.conj, np.array([1 + 3j, -4 + 7j, 2.7, -3j], dtype=dtype), expected=np.array([1 - 3j, -4 - 7j, 2.7, 3j], dtype=dtype)) self._assertOpOutputMatchesExpected( math_ops.imag, np.array([1 + 3j, -4 + 7j, 2.7, -3j], dtype=dtype), expected=np.array([3, 7, 0, -3], dtype=ctypes[dtype])) self._assertOpOutputMatchesExpected( math_ops.real, np.array([1 + 3j, -4 + 7j, 2.7, -3j], dtype=dtype), expected=np.array([1, -4, 2.7, 0], dtype=ctypes[dtype])) def testIntOps(self): for dtype in self.int_types: self._assertOpOutputMatchesExpected( bitwise_ops.invert, np.array([0, -1, 1, 16, 42], dtype=dtype), expected=np.array([-1, 0, -2, -17, -43], dtype=dtype)) def testNumericOps(self): for dtype in self.numeric_types: self._assertOpOutputMatchesExpected( math_ops.abs, np.array([[2, -1]], dtype=dtype), expected=np.array([[2, 1]], dtype=dtype)) self._assertOpOutputMatchesExpected( math_ops.negative, np.array([[-1, 1]], dtype=dtype), expected=np.array([[1, -1]], dtype=dtype)) self._assertOpOutputMatchesExpected( math_ops.square, np.array([[-2, 3]], dtype=dtype), expected=np.array([[4, 9]], dtype=dtype)) self._assertOpOutputMatchesExpected( array_ops.zeros_like, np.array([[4, 3], [2, 1]], dtype=dtype), expected=np.array([[0, 0], [0, 0]], dtype=dtype)) self._assertOpOutputMatchesExpected( array_ops.ones_like, np.array([[4, 3], [2, 1]], dtype=dtype), expected=np.array([[1, 1], [1, 1]], dtype=dtype)) # TODO (phawkins): these tests fail unless fastmath optimizations id:202 # https://github.com/imdone/tensorflow/issues/203 # are disabled. Use more robust IsInf/IsNaN detection and enable these # tests. @unittest.skip("test case fails in fast-math mode") def testIsInfAndIsNan(self): for dtype in self.float_types: self._assertOpOutputMatchesExpected( math_ops.is_inf, np.array([[np.NINF, -2, -1, 0, 0.5, 1, 2, np.inf, np.nan]], dtype=dtype), expected=np.array([[1, 0, 0, 0, 0, 0, 0, 1, 0]], dtype=np.bool)) self._assertOpOutputMatchesExpected( math_ops.is_nan, np.array([[np.NINF, -2, -1, 0, 0.5, 1, 2, np.inf, np.nan]], dtype=dtype), expected=np.array([[0, 0, 0, 0, 0, 0, 0, 0, 1]], dtype=np.bool)) def testLogicalOps(self): self._assertOpOutputMatchesExpected( math_ops.logical_not, np.array([[True, False], [False, True]], dtype=np.bool), expected=np.array([[False, True], [True, False]], dtype=np.bool)) def testBiasAddGrad(self): self._assertOpOutputMatchesExpected( gen_nn_ops.bias_add_grad, np.array([[1., 2.], [3., 4.]], dtype=np.float32), expected=np.array([4., 6.], dtype=np.float32)) self._assertOpOutputMatchesExpected( lambda x: gen_nn_ops.bias_add_grad(x, data_format="NCHW"), np.array([[[1., 2.], [3., 4.]], [[5., 6.], [7., 8.]]], dtype=np.float32), expected=np.array([10., 26.], dtype=np.float32)) def testCast(self): shapes = [[], [4], [2, 3], [2, 0, 4]] types = (set([dtypes.bool, dtypes.int32, dtypes.float32]) | self.complex_tf_types) for shape in shapes: for src_type in types: for dst_type in types: src = np.arange(np.prod(shape)).astype(src_type.as_numpy_dtype) if src_type in self.complex_tf_types: src += (np.arange(np.prod(shape)) * 2j).astype( src_type.as_numpy_dtype) src = src.reshape(shape) dst = src.astype(dst_type.as_numpy_dtype) self._assertOpOutputMatchesExpected( lambda x, dst_type=dst_type: math_ops.cast(x, dst_type), src, expected=dst) def testBitcast(self): self._assertOpOutputMatchesExpected( lambda x: array_ops.bitcast(x, dtypes.int32), np.array([1, 0x3f800000], np.int32), expected=np.array([1, 0x3f800000], np.int32)) self._assertOpOutputMatchesExpected( lambda x: array_ops.bitcast(x, dtypes.float32), np.array([1, 0x3f800000], np.int32), expected=np.array([1e-45, 1.0], np.float32)) self._assertOpOutputMatchesExpected( lambda x: array_ops.bitcast(x, dtypes.int32), np.array([1e-45, 1.0], np.float32), expected=np.array([1, 0x3f800000], np.int32)) def testInvertPermutation(self): self._assertOpOutputMatchesExpected( array_ops.invert_permutation, np.array([1, 2, 0], np.int32), expected=np.array([2, 0, 1], dtype=np.int32)) def testRank(self): rank_op = lambda x: array_ops.rank_internal(x, optimize=False) for dtype in self.numeric_types: self._assertOpOutputMatchesExpected( rank_op, dtype(7), expected=np.int32(0)) self._assertOpOutputMatchesExpected( rank_op, np.array( [[], []], dtype=dtype), expected=np.int32(2)) self._assertOpOutputMatchesExpected( rank_op, np.array( [-1, 1], dtype=dtype), expected=np.int32(1)) self._assertOpOutputMatchesExpected( rank_op, np.array( [[-1, 1]], dtype=dtype), expected=np.int32(2)) self._assertOpOutputMatchesExpected( rank_op, np.array([[-1], [1], [4]], dtype=dtype), expected=np.int32(2)) def testShape(self): shape_op = lambda x: array_ops.shape_internal(x, optimize=False) for dtype in self.numeric_types: self._assertOpOutputMatchesExpected( shape_op, dtype(7), expected=np.array([], dtype=np.int32)) self._assertOpOutputMatchesExpected( shape_op, np.array([[], []], dtype=dtype), expected=np.array([2, 0], dtype=np.int32)) self._assertOpOutputMatchesExpected( shape_op, np.array([-1, 1], dtype=dtype), expected=np.array([2], dtype=np.int32)) self._assertOpOutputMatchesExpected( shape_op, np.array([[-1, 1]], dtype=dtype), expected=np.array([1, 2], dtype=np.int32)) self._assertOpOutputMatchesExpected( shape_op, np.array([[-1], [1], [4]], dtype=dtype), expected=np.array([3, 1], dtype=np.int32)) def testSize(self): size_op = lambda x: array_ops.size_internal(x, optimize=False) for dtype in self.numeric_types: self._assertOpOutputMatchesExpected( size_op, dtype(7), expected=np.int32(1)) self._assertOpOutputMatchesExpected( size_op, np.array([[], []], dtype=dtype), expected=np.int32(0)) self._assertOpOutputMatchesExpected( size_op, np.array([-1, 1], dtype=dtype), expected=np.int32(2)) self._assertOpOutputMatchesExpected( size_op, np.array([[-1, 1]], dtype=dtype), expected=np.int32(2)) self._assertOpOutputMatchesExpected( size_op, np.array([[-1], [1], [4]], dtype=dtype), expected=np.int32(3)) def testUnpack(self): self._assertOpOutputMatchesExpected( array_ops.unstack, np.array([[1., 2.], [3., 4.], [5., 6.]], dtype=np.float32), expected=[ np.array([1., 2.], dtype=np.float32), np.array([3., 4.], dtype=np.float32), np.array([5., 6.], dtype=np.float32), ], equality_test=self.ListsAreClose) self._assertOpOutputMatchesExpected( lambda x: array_ops.unstack(x, axis=1), np.array([[1., 2.], [3., 4.], [5., 6.]], dtype=np.float32), expected=[ np.array([1., 3., 5.], dtype=np.float32), np.array([2., 4., 6.], dtype=np.float32), ], equality_test=self.ListsAreClose) def testDepthToSpace(self): def make_op(data_format): def op(x): return array_ops.depth_to_space(x, block_size=2, data_format=data_format) return op for dtype in self.numeric_types: for data_format in ["NCHW", "NHWC"]: self._assertOpOutputMatchesExpected( make_op(data_format), nhwc_to_format(np.array([[[[1, 2, 3, 4]]]], dtype=dtype), data_format), expected=nhwc_to_format(np.array([[[[1], [2]], [[3], [4]]]], dtype=dtype), data_format)) self._assertOpOutputMatchesExpected( make_op(data_format), nhwc_to_format( np.array([[[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]]]], dtype=dtype), data_format), expected=nhwc_to_format( np.array([[[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]], dtype=dtype), data_format)) self._assertOpOutputMatchesExpected( make_op(data_format), nhwc_to_format( np.array([[[[1, 2, 3, 4], [5, 6, 7, 8]], [[9, 10, 11, 12], [13, 14, 15, 16]]]], dtype=dtype), data_format), expected=nhwc_to_format( np.array([[[[1], [2], [5], [6]], [[3], [4], [7], [8]], [[9], [10], [13], [14]], [[11], [12], [15], [16]]]], dtype=dtype), data_format)) def testSpaceToDepth(self): def make_op(data_format): def op(x): return array_ops.space_to_depth(x, block_size=2, data_format=data_format) return op for dtype in self.numeric_types: for data_format in ["NCHW", "NHWC"]: self._assertOpOutputMatchesExpected( make_op(data_format), nhwc_to_format(np.array([[[[1], [2]], [[3], [4]]]], dtype=dtype), data_format), expected=nhwc_to_format(np.array([[[[1, 2, 3, 4]]]], dtype=dtype), data_format)) self._assertOpOutputMatchesExpected( make_op(data_format), nhwc_to_format(np.array([[[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]], dtype=dtype), data_format), expected=nhwc_to_format( np.array([[[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]]]], dtype=dtype), data_format)) self._assertOpOutputMatchesExpected( make_op(data_format), nhwc_to_format(np.array([[[[1], [2], [5], [6]], [[3], [4], [7], [8]], [[9], [10], [13], [14]], [[11], [12], [15], [16]]]], dtype=dtype), data_format), expected=nhwc_to_format( np.array([[[[1, 2, 3, 4], [5, 6, 7, 8]], [[9, 10, 11, 12], [13, 14, 15, 16]]]], dtype=dtype), data_format)) def _assertSoftplusMatchesExpected(self, features, dtype): features = np.array(features, dtype=dtype) zero = np.asarray(0).astype(dtype) expected = np.logaddexp(zero, features) self._assertOpOutputMatchesExpected( nn_ops.softplus, features, expected=expected) def testSoftplus(self): for dtype in self.float_types: self._assertSoftplusMatchesExpected([[-2, 0, 8]], dtype) self._assertSoftplusMatchesExpected( [[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]], dtype) if dtype == dtypes.bfloat16.as_numpy_dtype: log_eps = np.log(np.finfo(np.float32).eps) else: log_eps = np.log(np.finfo(dtype).eps) one = dtype(1) ten = dtype(10) self._assertSoftplusMatchesExpected([ log_eps, log_eps - one, log_eps + one, log_eps - ten, log_eps + ten, -log_eps, -log_eps - one, -log_eps + one, -log_eps - ten, -log_eps + ten], dtype) if __name__ == "__main__": googletest.main()
the-stack_0_14674
# coding: utf-8 import re import six from huaweicloudsdkcore.sdk_response import SdkResponse from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class ShowServerTagsResponse(SdkResponse): """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'tags': 'list[ServerTag]' } attribute_map = { 'tags': 'tags' } def __init__(self, tags=None): """ShowServerTagsResponse - a model defined in huaweicloud sdk""" super(ShowServerTagsResponse, self).__init__() self._tags = None self.discriminator = None if tags is not None: self.tags = tags @property def tags(self): """Gets the tags of this ShowServerTagsResponse. 标签列表 :return: The tags of this ShowServerTagsResponse. :rtype: list[ServerTag] """ return self._tags @tags.setter def tags(self, tags): """Sets the tags of this ShowServerTagsResponse. 标签列表 :param tags: The tags of this ShowServerTagsResponse. :type: list[ServerTag] """ self._tags = tags def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ShowServerTagsResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
the-stack_0_14675
from random import randint palpite = [] jog = [] jogcop = [] qtd = int(input('Digite quantos jogos você quer fazer: ')) i = 0 c = 0 while i < qtd: while c < 6: n1 = randint(1, 60) if n1 not in jog: jog.append(n1) c += 1 jog.sort() palpite.append(jog[:]) jog.clear() c = 0 print(f'{i+1}° jogo: {palpite[i]}.') i += 1
the-stack_0_14676
""" Sample Data""" # published as /alice/index.schema alice_index_schema = ''.join(("doc:/alice/movies/[^/]+$\n" " -> wrapper:/irtf/icnrg/flic\n" " -> wrapper:/alice/homebrewed/ac\n" " mode='CBC'\n" " padding='PKCS5'\n" " => type:/mime/video/mp4\n" "\n" "doc:/alice/public/docs/.*[.]pdf$\n" " -> wrapper:/simple/chunking\n" " => type:/mime/application/pdf\n" "\n" "doc:/alice/public/img/basel.jpg$\n" " -> wrapper:/simple/chunking\n" " => type:/mime/image/jpeg\n")) # published as /alice/homebrewed/ac ac_wrapper_desc = ''.join(("def decap:\n" " $secDek = call:/alice/homebrewed/fetchDEK(#, @id.pub)\n" " $dek = call:/crypto/lib/rsa/decrypt($secDek, @id.priv)\n" " return call:/nist/aes/decrypt(#, $dek, %mode, %padding)\n" "\n" "\n" "def encap:\n" " $secDek = call:/alice/homebrewed/fetchDEK(#, @id.pub)\n", " $dek = call:/crypto/lib/rsa/decrypt($secDek, @id.priv\n", " sreturn call:/nist/aes/encrypt(#, $dek, %mode, %padding)\n"))
the-stack_0_14677
""" This is an end to end release test automation script used to kick off periodic release tests, running on Anyscale. The tool leverages app configs and compute templates. Calling this script will run a single release test. Example: python e2e.py --test-config ~/ray/release/xgboost_tests/xgboost_tests.yaml --test-name tune_small The following steps are then performed: 1. It will look up the test tune_small in the file xgboost_tests.yaml 2. It will fetch the specified app config and compute template and register those with anyscale (if they don’t exist yet) 3. It waits until the app config is built 4. It then kicks off the script defined in the run block 5. When the script is finished, it will fetch the latest logs, the full log output, and any artifacts specified in the artifacts block. 6. The full logs and artifacts will be stored in a s3 bucket 7. It will also fetch the json file specified in the run block as results. This is the file where you should write your metrics to. 8. All results are then stored in a database. Specifically it will store the following fields: - Timestamp - Test name - Status (finished, error, timeout, invalid) - Last logs (50 lines) - results (see above) - artifacts (links to s3 files) Then the script exits. If an error occurs at any time, a fail result is written to the database. Writing a new release test -------------------------- Each release test requires the following: 1. It has to be added in a release test yaml file, describing meta information about the test (e.g. name, command to run, timeout) 2. You need an app config yaml 3. You need a compute template yaml 4. You need to define a command to run. This is usually a python script. The command should accept (or ignore) a single optional `--smoke-test` argument. Usually the command should write its result metrics to a json file. The json filename is available in the TEST_OUTPUT_JSON env variable. 5. Add your test in release/.buildkite/build_pipeline.py. The script will have access to these environment variables: "RAY_ADDRESS": os.environ.get("RAY_ADDRESS", "auto") "TEST_OUTPUT_JSON": results_json_filename "IS_SMOKE_TEST": "1" if smoke_test else "0" For an example, take a look at the XGBoost test suite: https://github.com/ray-project/ray/blob/master/release/xgboost_tests/xgboost_tests.yaml These all use the same app configs and similar compute templates. This means that app configs can be re-used across runs and only have to be built ones. App configs and compute templates can interpret environment variables. A notable one is the `RAY_WHEELS` variable which points to the wheels that should be tested (e.g. latest master wheels). You might want to include something like this in your `post_build_cmds`: - pip3 install -U {{ env["RAY_WHEELS"] | default("ray") }} If you want to force rebuilds, consider using something like - echo {{ env["TIMESTAMP"] }} so that your app configs changes each time the script is executed. If you only want to trigger rebuilds once per day, use `DATESTAMP` instead: - echo {{ env["DATESTAMP"] }} Local testing ------------- For local testing, make sure to authenticate with the ray-ossci AWS user (e.g. by setting the respective environment variables obtained from go/aws), or use the `--no-report` command line argument. Also make sure to set these environment variables: - ANYSCALE_CLI_TOKEN (should contain your anyscale credential token) - ANYSCALE_PROJECT (should point to a project ID you have access to) A test can then be run like this: python e2e.py --no-report --test-config ~/ray/release/xgboost_tests/xgboost_tests.yaml --test-name tune_small The `--no-report` option disables storing the results in the DB and artifacts on S3. If you set this option, you do not need access to the ray-ossci AWS user. Using Compilation on Product + App Config Override -------------------------------------------------- For quick iteration when debugging a release test, go/compile-on-product allows you to easily modify and recompile Ray, such that the recompilation happens within an app build step and can benefit from a warm Bazel cache. See go/compile-on-product for more information. After kicking off the app build, you can give the app config ID to this script as an app config override, where the indicated app config will be used instead of the app config given in the test config. E.g., running python e2e.py --no-report --test-config ~/ray/benchmarks/benchmark_tests.yaml --test-name=single_node --app-config-id-override=apt_TBngEXXXrhipMXgexVcrpC9i would run the single_node benchmark test with the apt_TBngEXXXrhipMXgexVcrpC9i app config instead of the app config given in ~/ray/benchmarks/benchmark_tests.yaml. If the build for the app config is still in progress, the script will wait until it completes, same as for a locally defined app config. Running on Head Node vs Running with Anyscale Connect ----------------------------------------------------- By default release tests run their drivers on the head node. Support is being added to run release tests that execute the driver as a subprocess and run the workload on Anyscale product via Anyscale connect. Note that when the driver in the test is a subprocess of releaser, releaser cannot be terminated before the test finishes. Other known feature gaps when running with Anyscale connect: - Kicking off a test or checking progress is not supported. - Downloading / uploading logs and artifacts are unsupported. - Logs from remote may not have finished streaming, before the driver exits. Long running tests ------------------ Long running tests can be kicked off with by adding the --kick-off-only parameters to the e2e script. The status can then be checked with the --check command. Long running test sessions will be terminated after `timeout` seconds, after which the latest result in the TEST_OUTPUT_JSON will be reported. Thus, long running release tests should update this file periodically. There are also two config options to configure behavior. The `time_key` is needed to track the latest update of the TEST_OUTPUT_JSON and should contain a floating point number (usually `time.time()`). The `max_update_delay` then specified the maximum time in seconds that can be passed without an update to the results json. If the output file hasn't been updated in e.g. 60 seconds, this could indicate that the command is stale/frozen, and thus should fail. Release test yaml example ------------------------- - name: example owner: mail: "[email protected]" # Currently not used slack: "@tune-team" # Currentl not used cluster: app_config: app_config.yaml # Relative to the release test yaml compute_template: tpl_cpu.yaml run: timeout: 600 # in seconds prepare: python wait_cluster.py 4 600 # prepare cmd to run before test script: python workloads/train.py # actual release test command # Only needed for long running test time_key: last_update # Key in the results json indicating current time max_update_delay: 30 # If state hasn't been updated in 30s, terminate # This block is optional artifacts: # Artifact name: location on head node - detailed_output: detailed_output.csv # This block is optional. If present, the contents will be # deep updated for smoke testing smoke_test: cluster: compute_template: tpl_cpu_smoketest.yaml """ # noqa: E501 import argparse import boto3 import collections import copy import datetime import hashlib import jinja2 import json import logging import multiprocessing import os import requests import shutil import subprocess import sys import tempfile import time from queue import Empty from typing import Any, Dict, Optional, Tuple, List import yaml import anyscale import anyscale.conf from anyscale.api import instantiate_api_client from anyscale.controllers.session_controller import SessionController from anyscale.sdk.anyscale_client.sdk import AnyscaleSDK logger = logging.getLogger() logger.setLevel(logging.INFO) handler = logging.StreamHandler(stream=sys.stdout) formatter = logging.Formatter(fmt="[%(levelname)s %(asctime)s] " "%(filename)s: %(lineno)d " "%(message)s") handler.setFormatter(formatter) logger.addHandler(handler) def getenv_default(key: str, default: Optional[str] = None): """Return environment variable with default value""" # If the environment variable is set but "", still return default return os.environ.get(key, None) or default GLOBAL_CONFIG = { "ANYSCALE_USER": getenv_default("ANYSCALE_USER", "[email protected]"), "ANYSCALE_HOST": getenv_default("ANYSCALE_HOST", "https://beta.anyscale.com"), "ANYSCALE_CLI_TOKEN": getenv_default("ANYSCALE_CLI_TOKEN"), "ANYSCALE_CLOUD_ID": getenv_default( "ANYSCALE_CLOUD_ID", "cld_4F7k8814aZzGG8TNUGPKnc"), # cld_4F7k8814aZzGG8TNUGPKnc "ANYSCALE_PROJECT": getenv_default("ANYSCALE_PROJECT", ""), "RAY_VERSION": getenv_default("RAY_VERSION", "2.0.0.dev0"), "RAY_REPO": getenv_default("RAY_REPO", "https://github.com/ray-project/ray.git"), "RAY_BRANCH": getenv_default("RAY_BRANCH", "master"), "RELEASE_AWS_BUCKET": getenv_default("RELEASE_AWS_BUCKET", "ray-release-automation-results"), "RELEASE_AWS_LOCATION": getenv_default("RELEASE_AWS_LOCATION", "dev"), "RELEASE_AWS_DB_NAME": getenv_default("RELEASE_AWS_DB_NAME", "ray_ci"), "RELEASE_AWS_DB_TABLE": getenv_default("RELEASE_AWS_DB_TABLE", "release_test_result"), "RELEASE_AWS_DB_SECRET_ARN": getenv_default( "RELEASE_AWS_DB_SECRET_ARN", "arn:aws:secretsmanager:us-west-2:029272617770:secret:" "rds-db-credentials/cluster-7RB7EYTTBK2EUC3MMTONYRBJLE/ray_ci-MQN2hh", ), "RELEASE_AWS_DB_RESOURCE_ARN": getenv_default( "RELEASE_AWS_DB_RESOURCE_ARN", "arn:aws:rds:us-west-2:029272617770:cluster:ci-reporting", ), "RELEASE_RESULTS_DIR": getenv_default("RELEASE_RESULTS_DIR", "/tmp/ray_release_test_artifacts"), "DATESTAMP": str(datetime.datetime.now().strftime("%Y%m%d")), "TIMESTAMP": str(int(datetime.datetime.now().timestamp())), "EXPIRATION_1D": str((datetime.datetime.now() + datetime.timedelta(days=1)).strftime("%Y-%m-%d")), "EXPIRATION_2D": str((datetime.datetime.now() + datetime.timedelta(days=2)).strftime("%Y-%m-%d")), "EXPIRATION_3D": str((datetime.datetime.now() + datetime.timedelta(days=3)).strftime("%Y-%m-%d")), } REPORT_S = 30 RETRY_MULTIPLIER = 2 def exponential_backoff_retry(f, retry_exceptions, initial_retry_delay_s, max_retries): retry_cnt = 0 retry_delay_s = initial_retry_delay_s while True: try: return f() except retry_exceptions as e: retry_cnt += 1 if retry_cnt > max_retries: raise logger.info(f"Retry function call failed due to {e} " f"in {retry_delay_s} seconds...") time.sleep(retry_delay_s) retry_delay_s *= RETRY_MULTIPLIER def maybe_fetch_api_token(): if GLOBAL_CONFIG["ANYSCALE_CLI_TOKEN"] is None: logger.info( "Missing ANYSCALE_CLI_TOKEN, retrieving from AWS secrets store") # NOTE(simon) This should automatically retrieve # [email protected]'s anyscale token GLOBAL_CONFIG["ANYSCALE_CLI_TOKEN"] = boto3.client( "secretsmanager", region_name="us-west-2" ).get_secret_value( SecretId="arn:aws:secretsmanager:us-west-2:029272617770:secret:" "release-automation/" "anyscale-token20210505220406333800000001-BcUuKB")["SecretString"] class PrepareCommandRuntimeError(RuntimeError): pass class ReleaseTestTimeoutError(RuntimeError): pass class SessionTimeoutError(ReleaseTestTimeoutError): pass class FileSyncTimeoutError(ReleaseTestTimeoutError): pass class CommandTimeoutError(ReleaseTestTimeoutError): pass class PrepareCommandTimeoutError(ReleaseTestTimeoutError): pass # e.g., App config failure. class AppConfigBuildFailure(RuntimeError): pass class State: def __init__(self, state: str, timestamp: float, data: Any): self.state = state self.timestamp = timestamp self.data = data sys.path.insert(0, anyscale.ANYSCALE_RAY_DIR) def anyscale_project_url(project_id: str): return f"{GLOBAL_CONFIG['ANYSCALE_HOST']}" \ f"/o/anyscale-internal/projects/{project_id}" \ f"/?tab=session-list" def anyscale_session_url(project_id: str, session_id: str): return f"{GLOBAL_CONFIG['ANYSCALE_HOST']}" \ f"/o/anyscale-internal/projects/{project_id}" \ f"/clusters/{session_id}" def anyscale_compute_tpl_url(compute_tpl_id: str): return f"{GLOBAL_CONFIG['ANYSCALE_HOST']}" \ f"/o/anyscale-internal/configurations/cluster-computes" \ f"/{compute_tpl_id}" def anyscale_app_config_build_url(build_id: str): return f"{GLOBAL_CONFIG['ANYSCALE_HOST']}" \ f"/o/anyscale-internal/configurations/app-config-details" \ f"/{build_id}" def wheel_url(ray_version, git_branch, git_commit): return f"https://s3-us-west-2.amazonaws.com/ray-wheels/" \ f"{git_branch}/{git_commit}/" \ f"ray-{ray_version}-cp37-cp37m-manylinux2014_x86_64.whl" def wheel_exists(ray_version, git_branch, git_commit): url = wheel_url(ray_version, git_branch, git_commit) return requests.head(url).status_code == 200 def commit_or_url(commit_or_url: str) -> str: if commit_or_url.startswith("http"): # Assume URL return commit_or_url # Else, assume commit os.environ["RAY_COMMIT"] = commit_or_url return wheel_url(GLOBAL_CONFIG["RAY_VERSION"], GLOBAL_CONFIG["RAY_BRANCH"], commit_or_url) def get_latest_commits(repo: str, branch: str = "master") -> List[str]: cur = os.getcwd() with tempfile.TemporaryDirectory() as tmpdir: os.chdir(tmpdir) clone_cmd = [ "git", "clone", "--filter=tree:0", "--no-checkout", # "--single-branch", # "--depth=10", f"--branch={branch}", repo, tmpdir, ] log_cmd = [ "git", "log", "-n", "10", "--pretty=format:%H", ] subprocess.check_output(clone_cmd) commits = subprocess.check_output(log_cmd).decode( sys.stdout.encoding).split("\n") os.chdir(cur) return commits def find_ray_wheels(repo: str, branch: str, version: str): url = None commits = get_latest_commits(repo, branch) logger.info(f"Latest 10 commits for branch {branch}: {commits}") for commit in commits: if wheel_exists(version, branch, commit): url = wheel_url(version, branch, commit) os.environ["RAY_WHEELS"] = url os.environ["RAY_COMMIT"] = commit logger.info( f"Found wheels URL for Ray {version}, branch {branch}: " f"{url}") break return url def populate_wheels_sanity_check(commit: Optional[str] = None): if not commit: cmd = ("python -c 'import ray; print(" "\"No commit sanity check available, but this is the " "Ray wheel commit:\", ray.__commit__)'") else: cmd = (f"python -c 'import ray; " f"assert ray.__commit__ == \"{commit}\", ray.__commit__'") os.environ["RAY_WHEELS_SANITY_CHECK"] = cmd def _check_stop(stop_event: multiprocessing.Event, timeout_type: str): if stop_event.is_set(): if timeout_type == "prepare_command": raise PrepareCommandTimeoutError( "Process timed out in the prepare command stage.") if timeout_type == "command": raise CommandTimeoutError( "Process timed out while running a command.") elif timeout_type == "file_sync": raise FileSyncTimeoutError( "Process timed out while syncing files.") elif timeout_type == "session": raise SessionTimeoutError( "Process timed out while starting a session.") else: assert False, "Unexpected timeout type." def _deep_update(d, u): for k, v in u.items(): if isinstance(v, collections.abc.Mapping): d[k] = _deep_update(d.get(k, {}), v) else: d[k] = v return d def _dict_hash(dt: Dict[Any, Any]) -> str: json_str = json.dumps(dt, sort_keys=True, ensure_ascii=True) sha = hashlib.sha256() sha.update(json_str.encode()) return sha.hexdigest() def _load_config(local_dir: str, config_file: Optional[str]) -> Optional[Dict]: if not config_file: return None config_path = os.path.join(local_dir, config_file) with open(config_path, "rt") as f: # Todo: jinja2 render content = f.read() env = copy.deepcopy(os.environ) env.update(GLOBAL_CONFIG) content = jinja2.Template(content).render(env=env) return yaml.safe_load(content) def has_errored(result: Dict[Any, Any]) -> bool: return result.get("status", "invalid") != "finished" def report_result(test_suite: str, test_name: str, status: str, last_logs: str, results: Dict[Any, Any], artifacts: Dict[Any, Any], category: str): now = datetime.datetime.utcnow() rds_data_client = boto3.client("rds-data", region_name="us-west-2") schema = GLOBAL_CONFIG["RELEASE_AWS_DB_TABLE"] sql = ( f"INSERT INTO {schema} " f"(created_on, test_suite, test_name, status, last_logs, " f"results, artifacts, category) " f"VALUES (:created_on, :test_suite, :test_name, :status, :last_logs, " f":results, :artifacts, :category)") parameters = [{ "name": "created_on", "typeHint": "TIMESTAMP", "value": { "stringValue": now.strftime("%Y-%m-%d %H:%M:%S") }, }, { "name": "test_suite", "value": { "stringValue": test_suite } }, { "name": "test_name", "value": { "stringValue": test_name } }, { "name": "status", "value": { "stringValue": status } }, { "name": "last_logs", "value": { "stringValue": last_logs } }, { "name": "results", "typeHint": "JSON", "value": { "stringValue": json.dumps(results) }, }, { "name": "artifacts", "typeHint": "JSON", "value": { "stringValue": json.dumps(artifacts) }, }, { "name": "category", "value": { "stringValue": category } }] # Default boto3 call timeout is 45 seconds. retry_delay_s = 64 MAX_RDS_RETRY = 3 exponential_backoff_retry( lambda: rds_data_client.execute_statement( database=GLOBAL_CONFIG["RELEASE_AWS_DB_NAME"], parameters=parameters, secretArn=GLOBAL_CONFIG["RELEASE_AWS_DB_SECRET_ARN"], resourceArn=GLOBAL_CONFIG["RELEASE_AWS_DB_RESOURCE_ARN"], schema=schema, sql=sql), retry_exceptions=rds_data_client.exceptions.StatementTimeoutException, initial_retry_delay_s=retry_delay_s, max_retries=MAX_RDS_RETRY) logger.info("Result has been persisted to the databse") def log_results_and_artifacts(result: Dict): results = result.get("results", {}) if results: msg = "Observed the following results:\n\n" for key, val in results.items(): msg += f" {key} = {val}\n" else: msg = "Did not find any results." logger.info(msg) artifacts = result.get("artifacts", {}) if artifacts: msg = "Saved the following artifacts:\n\n" for key, val in artifacts.items(): msg += f" {key} = {val}\n" else: msg = "Did not find any artifacts." logger.info(msg) def _cleanup_session(sdk: AnyscaleSDK, session_id: str): if session_id: # Just trigger a request. No need to wait until session shutdown. sdk.terminate_session( session_id=session_id, terminate_session_options={}) def search_running_session(sdk: AnyscaleSDK, project_id: str, session_name: str) -> Optional[str]: session_id = None logger.info(f"Looking for existing session with name {session_name}") result = sdk.search_sessions( project_id=project_id, sessions_query=dict(name=dict(equals=session_name))) if len(result.results) > 0 and result.results[0].state == "Running": logger.info("Found existing session.") session_id = result.results[0].id return session_id def create_or_find_compute_template( sdk: AnyscaleSDK, project_id: str, compute_tpl: Dict[Any, Any], _repeat: bool = True) -> Tuple[Optional[str], Optional[str]]: compute_tpl_id = None compute_tpl_name = None if compute_tpl: # As of Anyscale 0.4.1, it is an error to use the same compute template # name within the same organization, between different projects. compute_tpl_name = f"{project_id}/compute/{_dict_hash(compute_tpl)}" logger.info(f"Tests uses compute template " f"with name {compute_tpl_name}. Looking up existing " f"templates.") paging_token = None while not compute_tpl_id: result = sdk.search_compute_templates( dict( project_id=project_id, name=dict(equals=compute_tpl_name), include_anonymous=True), paging_token=paging_token) paging_token = result.metadata.next_paging_token for res in result.results: if res.name == compute_tpl_name: compute_tpl_id = res.id logger.info( f"Template already exists with ID {compute_tpl_id}") break if not paging_token: break if not compute_tpl_id: logger.info(f"Compute template not found. " f"Creating with name {compute_tpl_name}.") try: result = sdk.create_compute_template( dict( name=compute_tpl_name, project_id=project_id, config=compute_tpl)) compute_tpl_id = result.result.id except Exception as e: if _repeat: logger.warning( f"Got exception when trying to create compute " f"template: {e}. Sleeping for 10 seconds and then " f"try again once...") time.sleep(10) return create_or_find_compute_template( sdk=sdk, project_id=project_id, compute_tpl=compute_tpl, _repeat=False) raise e logger.info(f"Compute template created with ID {compute_tpl_id}") return compute_tpl_id, compute_tpl_name def create_or_find_app_config( sdk: AnyscaleSDK, project_id: str, app_config: Dict[Any, Any], _repeat: bool = True) -> Tuple[Optional[str], Optional[str]]: app_config_id = None app_config_name = None if app_config: app_config_name = f"{project_id}-{_dict_hash(app_config)}" logger.info(f"Test uses an app config with hash {app_config_name}. " f"Looking up existing app configs with this name.") paging_token = None while not app_config_id: result = sdk.list_app_configs( project_id=project_id, count=50, paging_token=paging_token) paging_token = result.metadata.next_paging_token for res in result.results: if res.name == app_config_name: app_config_id = res.id logger.info( f"App config already exists with ID {app_config_id}") break if not paging_token or app_config_id: break if not app_config_id: logger.info("App config not found. Creating new one.") try: result = sdk.create_app_config( dict( name=app_config_name, project_id=project_id, config_json=app_config)) app_config_id = result.result.id except Exception as e: if _repeat: logger.warning( f"Got exception when trying to create app " f"config: {e}. Sleeping for 10 seconds and then " f"try again once...") time.sleep(10) return create_or_find_app_config( sdk=sdk, project_id=project_id, app_config=app_config, _repeat=False) raise e logger.info(f"App config created with ID {app_config_id}") return app_config_id, app_config_name def install_app_config_packages(app_config: Dict[Any, Any]): os.environ.update(app_config.get("env_vars", {})) packages = app_config["python"]["pip_packages"] for package in packages: subprocess.check_output(["pip", "install", "-U", package], text=True) def install_matching_ray(): wheel = os.environ.get("RAY_WHEELS", None) if not wheel: return assert "manylinux2014_x86_64" in wheel, wheel if sys.platform == "darwin": platform = "macosx_10_15_intel" elif sys.platform == "win32": platform = "win_amd64" else: platform = "manylinux2014_x86_64" wheel = wheel.replace("manylinux2014_x86_64", platform) subprocess.check_output(["pip", "uninstall", "-y", "ray"], text=True) subprocess.check_output(["pip", "install", "-U", wheel], text=True) def wait_for_build_or_raise(sdk: AnyscaleSDK, app_config_id: Optional[str]) -> Optional[str]: if not app_config_id: return None # Fetch build build_id = None last_status = None result = sdk.list_builds(app_config_id) for build in sorted(result.results, key=lambda b: b.created_at): build_id = build.id last_status = build.status if build.status == "failed": continue if build.status == "succeeded": logger.info(f"Link to app config build: " f"{anyscale_app_config_build_url(build_id)}") return build_id if last_status == "failed": raise AppConfigBuildFailure("App config build failed.") if not build_id: raise AppConfigBuildFailure("No build found for app config.") # Build found but not failed/finished yet completed = False start_wait = time.time() next_report = start_wait + REPORT_S logger.info(f"Waiting for build {build_id} to finish...") logger.info(f"Track progress here: " f"{anyscale_app_config_build_url(build_id)}") while not completed: now = time.time() if now > next_report: logger.info(f"... still waiting for build {build_id} to finish " f"({int(now - start_wait)} seconds) ...") next_report = next_report + REPORT_S result = sdk.get_build(build_id) build = result.result if build.status == "failed": raise AppConfigBuildFailure( f"App config build failed. Please see " f"{anyscale_app_config_build_url(build_id)} for details") if build.status == "succeeded": logger.info("Build succeeded.") return build_id completed = build.status not in ["in_progress", "pending"] if completed: raise AppConfigBuildFailure( f"Unknown build status: {build.status}. Please see " f"{anyscale_app_config_build_url(build_id)} for details") time.sleep(1) return build_id def run_job(cluster_name: str, compute_tpl_name: str, cluster_env_name: str, job_name: str, min_workers: str, script: str, script_args: List[str], env_vars: Dict[str, str], autosuspend: int) -> Tuple[int, str]: # Start cluster and job address = f"anyscale://{cluster_name}?autosuspend={autosuspend}" logger.info(f"Starting job {job_name} with Ray address: {address}") env = copy.deepcopy(os.environ) env.update(GLOBAL_CONFIG) env.update(env_vars) env["RAY_ADDRESS"] = address env["RAY_JOB_NAME"] = job_name env["RAY_RELEASE_MIN_WORKERS"] = str(min_workers) proc = subprocess.Popen( script.split(" ") + script_args, env=env, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, text=True) proc.stdout.reconfigure(line_buffering=True) logs = "" for line in proc.stdout: logs += line sys.stdout.write(line) proc.wait() return proc.returncode, logs def create_and_wait_for_session( sdk: AnyscaleSDK, stop_event: multiprocessing.Event, session_name: str, session_options: Dict[Any, Any], ) -> str: # Create session logger.info(f"Creating session {session_name}") result = sdk.create_session(session_options) session_id = result.result.id # Trigger session start logger.info(f"Starting session {session_name} ({session_id})") session_url = anyscale_session_url( project_id=GLOBAL_CONFIG["ANYSCALE_PROJECT"], session_id=session_id) logger.info(f"Link to session: {session_url}") result = sdk.start_session(session_id, start_session_options={}) sop_id = result.result.id completed = result.result.completed # Wait for session logger.info(f"Waiting for session {session_name}...") start_wait = time.time() next_report = start_wait + REPORT_S while not completed: # Sleep 1 sec before next check. time.sleep(1) session_operation_response = sdk.get_session_operation( sop_id, _request_timeout=30) session_operation = session_operation_response.result completed = session_operation.completed _check_stop(stop_event, "session") now = time.time() if now > next_report: logger.info(f"... still waiting for session {session_name} " f"({int(now - start_wait)} seconds) ...") next_report = next_report + REPORT_S return session_id def run_session_command(sdk: AnyscaleSDK, session_id: str, cmd_to_run: str, result_queue: multiprocessing.Queue, env_vars: Dict[str, str], state_str: str = "CMD_RUN") -> Tuple[str, int]: full_cmd = " ".join(f"{k}={v}" for k, v in env_vars.items()) + " " + cmd_to_run logger.info(f"Running command in session {session_id}: \n" f"{full_cmd}") session_url = anyscale_session_url( project_id=GLOBAL_CONFIG["ANYSCALE_PROJECT"], session_id=session_id) logger.info(f"Link to session: {session_url}") result_queue.put(State(state_str, time.time(), None)) result = sdk.create_session_command( dict(session_id=session_id, shell_command=full_cmd)) scd_id = result.result.id return scd_id, result def wait_for_session_command_to_complete(create_session_command_result, sdk: AnyscaleSDK, scd_id: str, stop_event: multiprocessing.Event, state_str: str = "CMD_RUN"): result = create_session_command_result completed = result.result.finished_at is not None start_wait = time.time() next_report = start_wait + REPORT_S while not completed: # Sleep 1 sec before next check. time.sleep(1) result = exponential_backoff_retry( lambda: sdk.get_session_command(session_command_id=scd_id), retry_exceptions=Exception, initial_retry_delay_s=10, max_retries=3) completed = result.result.finished_at if state_str == "CMD_RUN": _check_stop(stop_event, "command") elif state_str == "CMD_PREPARE": _check_stop(stop_event, "prepare_command") now = time.time() if now > next_report: logger.info(f"... still waiting for command to finish " f"({int(now - start_wait)} seconds) ...") next_report = next_report + REPORT_S status_code = result.result.status_code runtime = time.time() - start_wait if status_code != 0: if state_str == "CMD_RUN": raise RuntimeError( f"Command returned non-success status: {status_code}") elif state_str == "CMD_PREPARE": raise PrepareCommandRuntimeError( f"Prepare command returned non-success status: {status_code}") return status_code, runtime def get_command_logs(session_controller: SessionController, scd_id: str, lines: int = 50): result = exponential_backoff_retry( lambda: session_controller.api_client.get_execution_logs_api_v2_session_commands_session_command_id_execution_logs_get( # noqa: E501 session_command_id=scd_id, start_line=-1 * lines, end_line=0), retry_exceptions=Exception, initial_retry_delay_s=10, max_retries=3) return result.result.lines def get_remote_json_content( temp_dir: str, session_name: str, remote_file: Optional[str], session_controller: SessionController, ): if not remote_file: logger.warning("No remote file specified, returning empty dict") return {} local_target_file = os.path.join(temp_dir, ".tmp.json") session_controller.pull( session_name=session_name, source=remote_file, target=local_target_file) with open(local_target_file, "rt") as f: return json.load(f) def get_local_json_content(local_file: Optional[str], ): if not local_file: logger.warning("No local file specified, returning empty dict") return {} with open(local_file, "rt") as f: return json.load(f) def pull_artifacts_and_store_in_cloud( temp_dir: str, logs: str, session_name: str, test_name: str, artifacts: Optional[Dict[Any, Any]], session_controller: SessionController, ): output_log_file = os.path.join(temp_dir, "output.log") with open(output_log_file, "wt") as f: f.write(logs) bucket = GLOBAL_CONFIG["RELEASE_AWS_BUCKET"] location = f"{GLOBAL_CONFIG['RELEASE_AWS_LOCATION']}" \ f"/{session_name}/{test_name}" saved_artifacts = {} s3_client = boto3.client("s3") s3_client.upload_file(output_log_file, bucket, f"{location}/output.log") saved_artifacts["output.log"] = f"s3://{bucket}/{location}/output.log" # Download artifacts if artifacts: for name, remote_file in artifacts.items(): logger.info(f"Downloading artifact `{name}` from " f"{remote_file}") local_target_file = os.path.join(temp_dir, name) session_controller.pull( session_name=session_name, source=remote_file, target=local_target_file) # Upload artifacts to s3 s3_client.upload_file(local_target_file, bucket, f"{location}/{name}") saved_artifacts[name] = f"s3://{bucket}/{location}/{name}" return saved_artifacts def find_session_by_test_name( sdk: AnyscaleSDK, session_controller: SessionController, temp_dir: str, state_json: str, project_id: str, test_name: str, ) -> Optional[Tuple[str, str, Dict[Any, Any]]]: paging_token = None while True: # Will break if paging_token is None after first search result = sdk.search_sessions( project_id=project_id, sessions_query=dict( name=dict(contains=test_name), state_filter=["Running"], paging=dict(count=20, paging_token=paging_token))) for session in result.results: logger.info(f"Found sessions {session.name}") if not session.name.startswith(test_name): continue try: session_state = get_remote_json_content( temp_dir=temp_dir, session_name=session.name, remote_file=state_json, session_controller=session_controller) except Exception as exc: raise RuntimeError(f"Could not get remote json content " f"for session {session.name}") from exc if session_state.get("test_name") == test_name: return session.id, session.name, session_state session_token = result.metadata.next_paging_token if not session_token: return None def get_latest_running_command_id(sdk: AnyscaleSDK, session_id: str ) -> Tuple[Optional[str], Optional[bool]]: scd_id = None paging_token = None success = None while not scd_id: result = sdk.list_session_commands( session_id=session_id, paging_token=paging_token) paging_token = result.metadata.next_paging_token for cmd in result.results: if not scd_id: scd_id = cmd.id completed = cmd.finished_at is not None if completed: if success is None: success = True success = success and cmd.status_code == 0 if not completed: return cmd.id, None return scd_id, success or False def run_test_config( local_dir: str, project_id: str, test_name: str, test_config: Dict[Any, Any], commit_url: str, session_name: str = None, smoke_test: bool = False, no_terminate: bool = False, kick_off_only: bool = False, check_progress: bool = False, upload_artifacts: bool = True, keep_results_dir: bool = False, app_config_id_override: Optional[str] = None, ) -> Dict[Any, Any]: """ Returns: Dict with the following entries: status (str): One of [finished, error, timeout] command_link (str): Link to command (Anyscale web UI) last_logs (str): Last logs (excerpt) to send to owner artifacts (dict): Dict of artifacts Key: Name Value: S3 URL """ # Todo (mid-term): Support other cluster definitions # (not only cluster configs) cluster_config_rel_path = test_config["cluster"].get( "cluster_config", None) cluster_config = _load_config(local_dir, cluster_config_rel_path) app_config_rel_path = test_config["cluster"].get("app_config", None) app_config = _load_config(local_dir, app_config_rel_path) compute_tpl_rel_path = test_config["cluster"].get("compute_template", None) compute_tpl = _load_config(local_dir, compute_tpl_rel_path) stop_event = multiprocessing.Event() result_queue = multiprocessing.Queue() if not session_name: session_name = f"{test_name}_{int(time.time())}" temp_dir = tempfile.mkdtemp() # Result and state files results_json = test_config["run"].get("results", None) if results_json is None: results_json = "/tmp/release_test_out.json" state_json = test_config["run"].get("state", None) if state_json is None: state_json = "/tmp/release_test_state.json" env_vars = { "RAY_ADDRESS": os.environ.get("RAY_ADDRESS", "auto"), "TEST_OUTPUT_JSON": results_json, "TEST_STATE_JSON": state_json, "IS_SMOKE_TEST": "1" if smoke_test else "0", } with open(os.path.join(local_dir, ".anyscale.yaml"), "wt") as f: f.write(f"project_id: {project_id}") os.chdir(local_dir) # Setup interface # Unfortunately, there currently seems to be no great way to # transfer files with the Anyscale SDK. # So we use the session controller instead. sdk = AnyscaleSDK(auth_token=GLOBAL_CONFIG["ANYSCALE_CLI_TOKEN"]) session_controller = SessionController( api_client=instantiate_api_client( cli_token=GLOBAL_CONFIG["ANYSCALE_CLI_TOKEN"], host=GLOBAL_CONFIG["ANYSCALE_HOST"], ), anyscale_api_client=sdk.api_client, ) timeout = test_config["run"].get("timeout", 1800) if "RELEASE_OVERRIDE_TIMEOUT" in os.environ: previous_timeout = timeout timeout = int(os.environ.get("RELEASE_OVERRIDE_TIMEOUT", str(timeout))) logger.warning(f"Release test timeout override: {timeout} " f"(would have been {previous_timeout})") # If a test is long running, timeout does not mean it failed is_long_running = test_config["run"].get("long_running", False) build_id_override = None if test_config["run"].get("use_connect"): autosuspend_mins = test_config["run"].get("autosuspend_mins", 5) assert not kick_off_only, \ "Unsupported for running with Anyscale connect." if app_config_id_override is not None: logger.info( "Using connect and an app config override, waiting until " "build finishes so we can fetch the app config in order to " "install its pip packages locally.") build_id_override = wait_for_build_or_raise( sdk, app_config_id_override) response = sdk.get_cluster_environment_build(build_id_override) app_config = response.result.config_json install_app_config_packages(app_config) install_matching_ray() elif "autosuspend_mins" in test_config["run"]: raise ValueError( "'autosuspend_mins' is only supported if 'use_connect' is True.") # Add information to results dict def _update_results(results: Dict): if "last_update" in results: results["last_update_diff"] = time.time() - results["last_update"] if smoke_test: results["smoke_test"] = True def _process_finished_command(session_controller: SessionController, scd_id: str, results: Optional[Dict] = None, runtime: int = None, commit_url: str = None, session_url: str = None): logger.info("Command finished successfully.") if results_json: results = results or get_remote_json_content( temp_dir=temp_dir, session_name=session_name, remote_file=results_json, session_controller=session_controller, ) else: results = {"passed": 1} _update_results(results) if scd_id: logs = get_command_logs(session_controller, scd_id, test_config.get("log_lines", 50)) else: logs = "No command found to fetch logs for" if upload_artifacts: saved_artifacts = pull_artifacts_and_store_in_cloud( temp_dir=temp_dir, logs=logs, # Also save logs in cloud session_name=session_name, test_name=test_name, artifacts=test_config.get("artifacts", {}), session_controller=session_controller, ) logger.info("Fetched results and stored on the cloud. Returning.") else: saved_artifacts = {} logger.info("Usually I would have fetched the results and " "artifacts and stored them on S3.") # Add these metadata here to avoid changing SQL schema. results["_runtime"] = runtime results["_session_url"] = session_url results["_commit_url"] = commit_url results["_stable"] = test_config.get("stable", True) result_queue.put( State( "END", time.time(), { "status": "finished", "last_logs": logs, "results": results, "artifacts": saved_artifacts, }, )) # When running the test script in client mode, the finish command is a # completed local process. def _process_finished_client_command(returncode: int, logs: str): if upload_artifacts: saved_artifacts = pull_artifacts_and_store_in_cloud( temp_dir=temp_dir, logs=logs, # Also save logs in cloud session_name=session_name, test_name=test_name, artifacts=None, session_controller=None, ) logger.info("Stored results on the cloud. Returning.") else: saved_artifacts = {} logger.info("Usually I would have fetched the results and " "artifacts and stored them on S3.") if results_json: results = get_local_json_content(local_file=results_json, ) else: results = { "passed": int(returncode == 0), } results["returncode"] = returncode _update_results(results) result_queue.put( State( "END", time.time(), { "status": "finished", "last_logs": logs, "results": results, "artifacts": saved_artifacts, }, )) def _run(logger): # These values will be set as the test runs. session_url = None runtime = None anyscale.conf.CLI_TOKEN = GLOBAL_CONFIG["ANYSCALE_CLI_TOKEN"] test_uses_ray_connect = test_config["run"].get("use_connect") session_id = None scd_id = None try: # First, look for running sessions session_id = search_running_session(sdk, project_id, session_name) compute_tpl_name = None app_config_id = app_config_id_override app_config_name = None build_id = build_id_override if not session_id: logger.info("No session found.") # Start session session_options = dict( name=session_name, project_id=project_id) if cluster_config is not None: logging.info("Starting session with cluster config") cluster_config_str = json.dumps(cluster_config) session_options["cluster_config"] = cluster_config_str session_options["cloud_id"] = ( GLOBAL_CONFIG["ANYSCALE_CLOUD_ID"], ) session_options["uses_app_config"] = False else: logging.info("Starting session with app/compute config") # Find/create compute template compute_tpl_id, compute_tpl_name = \ create_or_find_compute_template( sdk, project_id, compute_tpl) logger.info(f"Link to compute template: " f"{anyscale_compute_tpl_url(compute_tpl_id)}") # Find/create app config if app_config_id is None: ( app_config_id, app_config_name, ) = create_or_find_app_config(sdk, project_id, app_config) else: logger.info( f"Using override app config {app_config_id}") app_config_name = sdk.get_app_config( app_config_id).result.name if build_id is None: # We might have already retrieved the build ID when # installing app config packages locally if using # connect, so only get the build ID if it's not set. build_id = wait_for_build_or_raise(sdk, app_config_id) session_options["compute_template_id"] = compute_tpl_id session_options["build_id"] = build_id session_options["uses_app_config"] = True # Start session session_id = create_and_wait_for_session( sdk=sdk, stop_event=stop_event, session_name=session_name, session_options=session_options, ) prepare_command = test_config["run"].get("prepare") # Write test state json test_state_file = os.path.join(local_dir, "test_state.json") with open(test_state_file, "wt") as f: json.dump({ "start_time": time.time(), "test_name": test_name }, f) if prepare_command or not test_uses_ray_connect: if test_uses_ray_connect: logger.info("Found a prepare command, so pushing it " "to the session.") # Rsync up logger.info("Syncing files to session...") session_controller.push( session_name=session_name, source=None, target=None, config=None, all_nodes=False, ) logger.info("Syncing test state to session...") session_controller.push( session_name=session_name, source=test_state_file, target=state_json, config=None, all_nodes=False, ) session_url = anyscale_session_url( project_id=GLOBAL_CONFIG["ANYSCALE_PROJECT"], session_id=session_id) _check_stop(stop_event, "file_sync") # Optionally run preparation command if prepare_command: logger.info( f"Running preparation command: {prepare_command}") scd_id, result = run_session_command( sdk=sdk, session_id=session_id, cmd_to_run=prepare_command, result_queue=result_queue, env_vars=env_vars, state_str="CMD_PREPARE") _, _ = wait_for_session_command_to_complete( result, sdk=sdk, scd_id=scd_id, stop_event=stop_event, state_str="CMD_PREPARE") if test_uses_ray_connect: script_args = test_config["run"].get("args", []) if smoke_test: script_args += ["--smoke-test"] min_workers = 0 for node_type in compute_tpl["worker_node_types"]: min_workers += node_type["min_workers"] # Build completed, use job timeout result_queue.put(State("CMD_RUN", time.time(), None)) returncode, logs = run_job( cluster_name=session_name, compute_tpl_name=compute_tpl_name, cluster_env_name=app_config_name, job_name=session_name, min_workers=min_workers, script=test_config["run"]["script"], script_args=script_args, env_vars=env_vars, autosuspend=autosuspend_mins) _process_finished_client_command(returncode, logs) return # Run release test command cmd_to_run = test_config["run"]["script"] + " " args = test_config["run"].get("args", []) if args: cmd_to_run += " ".join(args) + " " if smoke_test: cmd_to_run += " --smoke-test" scd_id, result = run_session_command( sdk=sdk, session_id=session_id, cmd_to_run=cmd_to_run, result_queue=result_queue, env_vars=env_vars, state_str="CMD_RUN") if not kick_off_only: _, runtime = wait_for_session_command_to_complete( result, sdk=sdk, scd_id=scd_id, stop_event=stop_event, state_str="CMD_RUN") _process_finished_command( session_controller=session_controller, scd_id=scd_id, runtime=runtime, session_url=session_url, commit_url=commit_url) else: result_queue.put( State("END", time.time(), { "status": "kickoff", "last_logs": "" })) except (ReleaseTestTimeoutError, Exception) as e: logger.error(e, exc_info=True) logs = str(e) if scd_id is not None: try: logs = logs + "; Command logs:" + get_command_logs( session_controller, scd_id, test_config.get("log_lines", 50)) except Exception as e2: logger.error(e2, exc_info=True) # Long running tests are "finished" successfully when # timed out if isinstance(e, ReleaseTestTimeoutError) and is_long_running: _process_finished_command( session_controller=session_controller, scd_id=scd_id) else: timeout_type = "" runtime = None if isinstance(e, CommandTimeoutError): timeout_type = "timeout" runtime = 0 elif (isinstance(e, PrepareCommandTimeoutError) or isinstance(e, FileSyncTimeoutError) or isinstance(e, SessionTimeoutError) or isinstance(e, PrepareCommandRuntimeError) or isinstance(e, AppConfigBuildFailure)): timeout_type = "infra_timeout" runtime = None elif isinstance(e, RuntimeError): timeout_type = "runtime_error" runtime = 0 else: timeout_type = "unknown timeout" runtime = None # Add these metadata here to avoid changing SQL schema. results = {} results["_runtime"] = runtime results["_session_url"] = session_url results["_commit_url"] = commit_url results["_stable"] = test_config.get("stable", True) result_queue.put( State( "END", time.time(), { "status": timeout_type, "last_logs": logs, "results": results })) finally: if no_terminate: logger.warning( "`no_terminate` is set to True, so the session will " "*not* be terminated!") else: _cleanup_session(sdk, session_id) def _check_progress(logger): anyscale.conf.CLI_TOKEN = GLOBAL_CONFIG["ANYSCALE_CLI_TOKEN"] should_terminate = False session_id = None scd_id = None try: existing_session = find_session_by_test_name( sdk=sdk, session_controller=session_controller, temp_dir=temp_dir, state_json=state_json, project_id=project_id, test_name=test_name) if existing_session is None: logger.info(f"Found no existing session for {test_name}") result_queue.put( State("END", time.time(), { "status": "nosession", "last_logs": "" })) return session_id, session_name, session_state = existing_session logger.info(f"Found existing session for {test_name}: " f"{session_name}") scd_id, success = get_latest_running_command_id( sdk=sdk, session_id=session_id) latest_result = get_remote_json_content( temp_dir=temp_dir, session_name=session_name, remote_file=results_json, session_controller=session_controller, ) # Fetch result json and check if it has been updated recently result_time_key = test_config["run"].get("time_key", None) maximum_update_delay = test_config["run"].get( "max_update_delay", None) if result_time_key and maximum_update_delay: last_update = latest_result.get(result_time_key, None) if not last_update: result_queue.put( State( "END", time.time(), { "status": "error", "last_logs": f"Test did not store " f"{result_time_key} in the " f"results json." })) return delay = time.time() - last_update logger.info(f"Last update was at {last_update:.2f}. " f"This was {delay:.2f} seconds ago " f"(maximum allowed: {maximum_update_delay})") if delay > maximum_update_delay: raise RuntimeError( f"Test did not update the results json within " f"the last {maximum_update_delay} seconds.") if time.time() - session_state["start_time"] > timeout: # Long running test reached timeout logger.info( f"Test command reached timeout after {timeout} seconds") _process_finished_command( session_controller=session_controller, scd_id=scd_id, results=latest_result) should_terminate = True elif success: logger.info("All commands finished.") _process_finished_command( session_controller=session_controller, scd_id=scd_id, results=latest_result) should_terminate = True else: rest_time = timeout - time.time() + session_state["start_time"] logger.info(f"Test command should continue running " f"for {rest_time} seconds") result_queue.put( State("END", time.time(), { "status": "kickoff", "last_logs": "Test is still running" })) except Exception as e: logger.error(e, exc_info=True) logs = str(e) if scd_id is not None: try: logs = get_command_logs(session_controller, scd_id, test_config.get("log_lines", 50)) logs += f"\n{str(e)}" except Exception as e2: logger.error(e2, exc_info=True) result_queue.put( State("END", time.time(), { "status": "error", "last_logs": logs })) should_terminate = True finally: if should_terminate: logger.warning("Terminating session") _cleanup_session(sdk, session_id) if not check_progress: process = multiprocessing.Process(target=_run, args=(logger, )) else: process = multiprocessing.Process( target=_check_progress, args=(logger, )) build_timeout = test_config["run"].get("build_timeout", 1800) prepare_timeout = test_config["run"].get("prepare_timeout", timeout) project_url = anyscale_project_url( project_id=GLOBAL_CONFIG["ANYSCALE_PROJECT"]) logger.info(f"Link to project: {project_url}") msg = f"This will now run test {test_name}." if smoke_test: msg += " This is a smoke test." if is_long_running: msg += " This is a long running test." logger.info(msg) logger.info(f"Starting process with timeout {timeout} " f"(prepare timeout {prepare_timeout}, " f"build timeout {build_timeout})") process.start() # The timeout time will be updated after the build finished # Build = App config + compute template build and session start timeout_time = time.time() + build_timeout result = {} while process.is_alive(): try: state: State = result_queue.get(timeout=1) except (Empty, TimeoutError): if time.time() > timeout_time: stop_event.set() logger.warning("Process timed out.") if not is_long_running: logger.warning("Terminating process in 10 seconds.") time.sleep(10) logger.warning("Terminating process now.") process.terminate() else: logger.info("Process is long running. Give 2 minutes to " "fetch result and terminate.") start_terminate = time.time() while time.time( ) < start_terminate + 120 and process.is_alive(): time.sleep(1) if process.is_alive(): logger.warning("Terminating forcefully now.") process.terminate() else: logger.info("Long running results collected.") break continue if not isinstance(state, State): raise RuntimeError(f"Expected `State` object, got {result}") if state.state == "CMD_PREPARE": # Reset timeout after build finished timeout_time = state.timestamp + prepare_timeout if state.state == "CMD_RUN": # Reset timeout after prepare command or build finished timeout_time = state.timestamp + timeout elif state.state == "END": result = state.data break while not result_queue.empty(): state = result_queue.get_nowait() result = state.data logger.info("Final check if everything worked.") try: result.setdefault("status", "error (status not found)") except (TimeoutError, Empty): result = {"status": "timeout", "last_logs": "Test timed out."} logger.info(f"Final results: {result}") log_results_and_artifacts(result) if not keep_results_dir: logger.info(f"Removing results dir {temp_dir}") shutil.rmtree(temp_dir) else: # Write results.json with open(os.path.join(temp_dir, "results.json"), "wt") as fp: json.dump(result, fp) out_dir = os.path.expanduser(GLOBAL_CONFIG["RELEASE_RESULTS_DIR"]) logger.info(f"Moving results dir {temp_dir} to persistent location " f"{out_dir}") shutil.rmtree(out_dir, ignore_errors=True) shutil.copytree(temp_dir, out_dir) logger.info(f"Dir contents: {os.listdir(out_dir)}") return result def run_test(test_config_file: str, test_name: str, project_id: str, commit_url: str, category: str = "unspecified", smoke_test: bool = False, no_terminate: bool = False, kick_off_only: bool = False, check_progress: bool = False, report: bool = True, keep_results_dir: bool = False, session_name: Optional[str] = None, app_config_id_override=None) -> Dict[str, Any]: with open(test_config_file, "rt") as f: test_configs = yaml.safe_load(f) test_config_dict = {} for test_config in test_configs: name = test_config.pop("name") test_config_dict[name] = test_config if test_name not in test_config_dict: raise ValueError( f"Test with name `{test_name}` not found in test config file " f"at `{test_config_file}`.") test_config = test_config_dict[test_name] if smoke_test and "smoke_test" in test_config: smoke_test_config = test_config.pop("smoke_test") test_config = _deep_update(test_config, smoke_test_config) local_dir = os.path.dirname(test_config_file) if "local_dir" in test_config: # local_dir is relative to test_config_file local_dir = os.path.join(local_dir, test_config["local_dir"]) if test_config["run"].get("use_connect"): assert not kick_off_only, \ "--kick-off-only is unsupported when running with " \ "Anyscale connect." assert not check_progress, \ "--check is unsupported when running with Anyscale connect." if test_config.get("artifacts", {}): logger.error( "Saving artifacts are not yet supported when running with " "Anyscale connect.") result = run_test_config( local_dir, project_id, test_name, test_config, commit_url, session_name=session_name, smoke_test=smoke_test, no_terminate=no_terminate, kick_off_only=kick_off_only, check_progress=check_progress, upload_artifacts=report, keep_results_dir=keep_results_dir, app_config_id_override=app_config_id_override) status = result.get("status", "invalid") if kick_off_only: if status != "kickoff": raise RuntimeError("Error kicking off test.") logger.info("Kicked off test. It's now up to the `--check` " "part of the script to track its process.") return {} else: # `--check` or no kick off only if status == "nosession": logger.info(f"No running session found for test {test_name}, so " f"assuming everything is fine.") return {} if status == "kickoff": logger.info(f"Test {test_name} is still running.") return {} last_logs = result.get("last_logs", "No logs.") test_suite = os.path.basename(test_config_file).replace(".yaml", "") report_kwargs = dict( test_suite=test_suite, test_name=test_name, status=status, last_logs=last_logs, results=result.get("results", {}), artifacts=result.get("artifacts", {}), category=category, ) if report: report_result(**report_kwargs) else: logger.info(f"Usually I would now report the following results:\n" f"{report_kwargs}") if has_errored(result): raise RuntimeError(last_logs) return report_kwargs if __name__ == "__main__": parser = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument( "--test-config", type=str, required=True, help="Test config file") parser.add_argument("--test-name", type=str, help="Test name in config") parser.add_argument( "--ray-wheels", required=False, type=str, help="URL to ray wheels") parser.add_argument( "--no-terminate", action="store_true", default=False, help="Don't terminate session after failure") parser.add_argument( "--no-report", action="store_true", default=False, help="Do not report any results or upload to S3") parser.add_argument( "--kick-off-only", action="store_true", default=False, help="Kick off only (don't wait for command to finish)") parser.add_argument( "--check", action="store_true", default=False, help="Check (long running) status") parser.add_argument( "--keep-results-dir", action="store_true", default=False, help="Keep results in directory (named RELEASE_RESULTS_DIR), e.g. " "for Buildkite artifact upload.") parser.add_argument( "--category", type=str, default="unspecified", help="Category name, e.g. `release-1.3.0` (will be saved in database)") parser.add_argument( "--smoke-test", action="store_true", help="Finish quickly for testing") parser.add_argument( "--session-name", required=False, type=str, help="Name of the session to run this test.") parser.add_argument( "--app-config-id-override", required=False, type=str, help=("An app config ID, which will override the test config app " "config.")) args, _ = parser.parse_known_args() if not GLOBAL_CONFIG["ANYSCALE_PROJECT"]: raise RuntimeError( "You have to set the ANYSCALE_PROJECT environment variable!") ray_wheels = args.ray_wheels or os.environ.get("RAY_WHEELS", "") maybe_fetch_api_token() if ray_wheels: logger.info(f"Using Ray wheels provided from URL/commit: " f"{ray_wheels}") url = commit_or_url(str(ray_wheels)) # Overwrite with actual URL os.environ["RAY_WHEELS"] = url elif not args.check: url = find_ray_wheels( GLOBAL_CONFIG["RAY_REPO"], GLOBAL_CONFIG["RAY_BRANCH"], GLOBAL_CONFIG["RAY_VERSION"], ) if not url: raise RuntimeError(f"Could not find wheels for " f"Ray {GLOBAL_CONFIG['RAY_VERSION']}, " f"branch {GLOBAL_CONFIG['RAY_BRANCH']}") # RAY_COMMIT is set by commit_or_url and find_ray_wheels populate_wheels_sanity_check(os.environ.get("RAY_COMMIT", "")) test_config_file = os.path.abspath(os.path.expanduser(args.test_config)) result_dict = run_test( test_config_file=test_config_file, test_name=args.test_name, project_id=GLOBAL_CONFIG["ANYSCALE_PROJECT"], commit_url=url, category=args.category, smoke_test=args.smoke_test, no_terminate=args.no_terminate or args.kick_off_only, kick_off_only=args.kick_off_only, check_progress=args.check, report=not args.no_report, session_name=args.session_name, keep_results_dir=args.keep_results_dir, app_config_id_override=args.app_config_id_override, ) if result_dict: # If we get a result dict, check if any alerts should be raised from alert import SUITE_TO_FN, default_handle_result logger.info("Checking if results are valid...") handle_result_kwargs = result_dict.copy() handle_result_kwargs["created_on"] = None test_suite = handle_result_kwargs.get("test_suite", None) test_name = handle_result_kwargs.get("test_name", None) category = handle_result_kwargs.get("category", None) handle_fn = SUITE_TO_FN.get(test_suite, None) if not handle_fn: logger.warning(f"No handle for suite {test_suite}") alert = default_handle_result(**handle_result_kwargs) else: alert = handle_fn(**handle_result_kwargs) if alert: # If we get an alert, the test failed. raise RuntimeError(alert) else: logger.info(f"No alert raised for test {test_suite}/{test_name} " f"({category}) - the test successfully passed!")
the-stack_0_14681
# Copyright (C) 2019 The Raphielscape Company LLC. # # Licensed under the Raphielscape Public License, Version 1.d (the "License"); # you may not use this file except in compliance with the License. # All Credits to https://t.me/azrim89 for timestamp. # All Credits to https://t.me/Devp73 for Offline stamps.. # """ Userbot module which contains afk-related commands """ from datetime import datetime import time from random import randint from telethon.events import StopPropagation from telethon.tl.functions.account import UpdateProfileRequest from userbot import (AFKREASON, CMD_HELP, BOTLOG, BOTLOG_CHATID, PM_AUTO_BAN, bot) from userbot.events import register # ================================================================= global USER_AFK # pylint:disable=E0602 global afk_time # pylint:disable=E0602 global afk_start global afk_end USER_AFK = {} afk_time = None afk_start = {} # ================================================================= @register(outgoing=True, pattern="^.afk(?: |$)(.*)", disable_errors=True) async def set_afk(afk_e): """ For .afk command, allows you to inform people that you are afk when they message you """ afk_e.text string = afk_e.pattern_match.group(1) global ISAFK global AFKREASON global USER_AFK # pylint:disable=E0602 global afk_time # pylint:disable=E0602 global afk_start global afk_end user = await bot.get_me() global reason USER_AFK = {} afk_time = None afk_end = {} start_1 = datetime.now() afk_start = start_1.replace(microsecond=0) if string: AFKREASON = string await afk_e.edit(f"**Gonna go AFK. I'll be right back.**") else: await afk_e.edit("**Gonna go AFK. I'll be right back.**") if user.last_name: await afk_e.client(UpdateProfileRequest(first_name=user.first_name, last_name=user.last_name + " [OFF]")) else: await afk_e.client(UpdateProfileRequest(first_name=user.first_name, last_name=" [OFF]")) if BOTLOG: await afk_e.client.send_message(BOTLOG_CHATID, "#AFK\nYou went AFK!") ISAFK = True afk_time = datetime.now() # pylint:disable=E0602 raise StopPropagation @register(outgoing=True, pattern="^.unafk(?: |$)(.*)", disable_errors=True) async def type_afk_is_not_true(notafk): """ This sets your status as not afk automatically when you write something while being afk """ global ISAFK global COUNT_MSG global USERS global AFKREASON global USER_AFK # pylint:disable=E0602 global afk_time # pylint:disable=E0602 global afk_start global afk_end user = await bot.get_me() last = user.last_name if last and last.endswith(" [OFF]"): raw_last = f"{last}" last1 = raw_last.replace(" [OFF]", "") else: last1 = "" back_alive = datetime.now() afk_end = back_alive.replace(microsecond=0) if ISAFK: ISAFK = False msg = await notafk.edit("**I'm back! Did you guys miss me?**") time.sleep(3) await msg.delete() await notafk.client(UpdateProfileRequest(first_name=user.first_name, last_name=last1)) if BOTLOG: await notafk.client.send_message( BOTLOG_CHATID, "You've recieved " + str(COUNT_MSG) + " messages from " + str(len(USERS)) + " chats while you were away", ) for i in USERS: name = await notafk.client.get_entity(i) name0 = str(name.first_name) await notafk.client.send_message( BOTLOG_CHATID, "[" + name0 + "](tg://user?id=" + str(i) + ")" + " sent you " + "`" + str(USERS[i]) + " messages`", ) COUNT_MSG = 0 USERS = {} AFKREASON = None @register(incoming=True, disable_edited=True) async def mention_afk(mention): """ This function takes care of notifying the people who mention you that you are AFK.""" global COUNT_MSG global USERS global ISAFK global USER_AFK # pylint:disable=E0602 global afk_time # pylint:disable=E0602 global afk_start global afk_end await bot.get_me() back_alivee = datetime.now() afk_end = back_alivee.replace(microsecond=0) afk_since = "**a while ago**" if mention.message.mentioned and not (await mention.get_sender()).bot: if ISAFK: now = datetime.now() datime_since_afk = now - afk_time # pylint:disable=E0602 time = float(datime_since_afk.seconds) days = time // (24 * 3600) time = time % (24 * 3600) hours = time // 3600 time %= 3600 minutes = time // 60 time %= 60 seconds = time if days == 1: afk_since = "**Yesterday**" elif days > 1: if days > 6: date = now + \ datetime.timedelta( days=-days, hours=-hours, minutes=-minutes) afk_since = date.strftime("%A, %Y %B %m, %H:%I") else: wday = now + datetime.timedelta(days=-days) afk_since = wday.strftime('%A') elif hours > 1: afk_since = f"`{int(hours)}h {int(minutes)}m`" elif minutes > 0: afk_since = f"`{int(minutes)}m {int(seconds)}s`" else: afk_since = f"`{int(seconds)}s`" if mention.sender_id not in USERS: if AFKREASON: await mention.reply(f"**I've been AFK.** (Since {afk_since} ago.)\ \n**Reason:** `{AFKREASON}`") else: await mention.reply(f"**I've been AFK.** (Since {afk_since} ago.)") USERS.update({mention.sender_id: 1}) COUNT_MSG = COUNT_MSG + 1 elif mention.sender_id in USERS: if USERS[mention.sender_id] % randint(2, 4) == 0: if AFKREASON: await mention.reply(f"**I'm still AFK.** (Since {afk_since} ago.)\ \n**Reason:** `{AFKREASON}`") else: await mention.reply(f"**I'm still AFK.** (Since {afk_since} ago.)") USERS[mention.sender_id] = USERS[mention.sender_id] + 1 COUNT_MSG = COUNT_MSG + 1 else: USERS[mention.sender_id] = USERS[mention.sender_id] + 1 COUNT_MSG = COUNT_MSG + 1 @register(incoming=True, disable_errors=True) async def afk_on_pm(sender): """ Function which informs people that you are AFK in PM """ global ISAFK global USERS global COUNT_MSG global COUNT_MSG global USERS global ISAFK global USER_AFK # pylint:disable=E0602 global afk_time # pylint:disable=E0602 global afk_start global afk_end await bot.get_me() back_alivee = datetime.now() afk_end = back_alivee.replace(microsecond=0) afk_since = "**a while ago**" if sender.is_private and sender.sender_id != 777000 and not ( await sender.get_sender()).bot: if PM_AUTO_BAN: try: from userbot.modules.sql_helper.pm_permit_sql import is_approved apprv = is_approved(sender.sender_id) except AttributeError: apprv = True else: apprv = True if apprv and ISAFK: now = datetime.now() datime_since_afk = now - afk_time # pylint:disable=E0602 time = float(datime_since_afk.seconds) days = time // (24 * 3600) time = time % (24 * 3600) hours = time // 3600 time %= 3600 minutes = time // 60 time %= 60 seconds = time if days == 1: afk_since = "**yesterday**" elif days > 1: if days > 6: date = now + \ datetime.timedelta( days=-days, hours=-hours, minutes=-minutes) afk_since = date.strftime("%A, %Y %B %m, %H:%I") else: wday = now + datetime.timedelta(days=-days) afk_since = wday.strftime('%A') elif hours > 1: afk_since = f"`{int(hours)}h {int(minutes)}m`" elif minutes > 0: afk_since = f"`{int(minutes)}m {int(seconds)}s`" else: afk_since = f"`{int(seconds)}s`" if sender.sender_id not in USERS: if AFKREASON: await sender.reply(f"**I've been AFK.** (Since {afk_since} ago.)\ \n**Reason:** `{AFKREASON}`") else: await sender.reply(f"**I've been AFK.** (Since {afk_since} ago.)") USERS.update({sender.sender_id: 1}) COUNT_MSG = COUNT_MSG + 1 elif apprv and sender.sender_id in USERS: if USERS[sender.sender_id] % randint(2, 4) == 0: if AFKREASON: await sender.reply(f"**I'm still AFK.** (Since {afk_since} ago.)\ \n**Reason:** `{AFKREASON}`") else: await sender.reply(f"**I'm still AFK.** (Since {afk_since} ago.)") USERS[sender.sender_id] = USERS[sender.sender_id] + 1 COUNT_MSG = COUNT_MSG + 1 else: USERS[sender.sender_id] = USERS[sender.sender_id] + 1 COUNT_MSG = COUNT_MSG + 1 CMD_HELP.update({ "afk": "`.afk` [Optional Reason]\ \nUsage: Sets you as afk.\nReplies to anyone who tags/PM's \ you telling them that you are AFK(reason).\ \n\n`.unafk`\ \nBack from AFK state, anywhere.\ " })
the-stack_0_14682
from ..base.Dat import Dat class VerbWord(): def __init__(self, filename1, filename2): self.__vmDat = Dat(filename=filename1) self.__vdDat = Dat(filename=filename2) self.__tagV = 'v' def adjustTag(self, sentence): if not self.__vmDat or not self.__vdDat: return for i in range(len(sentence) - 1): if sentence[i].tag == self.__tagV and sentence[i + 1].tag == self.__tagV: if self.__vmDat.match(sentence[i].word) != -1: sentence[i].tag = 'vm' elif self.__vdDat.match(sentence[i + 1].word) != -1: sentence[i + 1].tag = 'vd'
the-stack_0_14685
############################################################################## # Copyright 2016-2019 Rigetti Computing # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## r""" Standard gate set, as detailed in Quil whitepaper (arXiV:1608:03355v2) Currently includes: I - identity :math:`\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}` X - Pauli-X :math:`\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}` Y - Pauli-Y :math:`\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}` Z - Pauli-Z :math:`\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}` H - Hadamard :math:`\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}` S - PHASE(pi/2) :math:`\begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}` T - PHASE(pi/4) :math:`\begin{pmatrix} 1 & 0 \\ 0 & e^{i \pi / 4} \end{pmatrix}` PHASE(:math:`\phi`) - PHASE :math:`\begin{pmatrix} 1 & 0 \\ 0 & e^{i \phi} \end{pmatrix}` RX(:math:`\phi`) - RX :math:`\begin{pmatrix} \cos(\phi / 2) & -i \sin(\phi/2) \\ -i \sin(\phi/2) & \cos(\phi/2) \end{pmatrix}` RY(:math:`\phi`) - RY :math:`\begin{pmatrix} \cos(\phi / 2) & -\sin(\phi / 2) \\ \sin(\phi/2) & \cos(\phi/2) \end{pmatrix}` RZ(:math:`\phi`) - RZ :math:`\begin{pmatrix} \cos(\phi/2) - i \sin(\phi/2) & 0 \\ 0 & \cos(\phi/2) + i \sin(\phi/2) \end{pmatrix}` CZ - controlled-Z :math:`P_0 \otimes I + P_1 \otimes Z = \begin{pmatrix} 1&0&0&0 \\ 0&1&0&0 \\ 0&0&1&0 \\ 0&0&0&-1 \end{pmatrix}` CNOT - controlled-X / controlled-NOT :math:`P_0 \otimes I + P_1 \otimes X = \begin{pmatrix} 1&0&0&0 \\ 0&1&0&0 \\ 0&0&0&1 \\ 0&0&1&0 \end{pmatrix}` CCNOT - double-controlled-X :math:`P_0 \otimes P_0 \otimes I + P_0 \otimes P_1 \otimes I + P_1 \otimes P_0 \otimes I + P_1 \otimes P_1 \otimes X` CPHASE00(:math:`\phi`) - controlled-phase-on-|00> :math:`\text{diag}(e^{i \phi}, 1, 1, 1,)` CPHASE01(:math:`\phi`) - controlled-phase-on-|01> :math:`\text{diag}(1, e^{i \phi}, 1, 1,)` CPHASE10(:math:`\phi`) - controlled-phase-on-|10> :math:`\text{diag}(1, 1, e^{i \phi}, 1)` CPHASE(:math:`\phi`) - controlled-phase-on-|11> :math:`\text{diag}(1, 1, 1, e^{i \phi})` SWAP - swap :math:`\begin{pmatrix} 1&0&0&0 \\ 0&0&1&0 \\ 0&1&0&0 \\ 0&0&0&1 \end{pmatrix}` CSWAP - controlled-swap :math:`P_0 \otimes I_2 + P_1 \otimes \text{SWAP}` ISWAP - i-phase-swap :math:`\begin{pmatrix} 1&0&0&0 \\ 0&0&i&0 \\ 0&i&0&0 \\ 0&0&0&1 \end{pmatrix}` PSWAP(:math:`\phi`) - phi-phase-swap :math:`\begin{pmatrix} 1&0&0&0 \\ 0&0&e^{i\phi}&0 \\ 0&e^{i\phi}&0&0 \\ 0&0&0&1 \end{pmatrix}` XY(:math:`\phi`) - XY-interaction :math:`\begin{pmatrix} 1&0&0&0 \\ 0&\cos(\phi/2)&i\sin(\phi/2)&0 \\ 0&i\sin(\phi/2)&\cos(\phi/2)&0 \\ 0&0&0&1 \end{pmatrix}` Specialized gates / internal utility gates: BARENCO(:math:`\alpha, \phi, \theta`) - Barenco gate :math:`\begin{pmatrix} 1&0&0&0 \\ 0&1&0&0 \\ 0&0&e^{i\phi} \cos\theta & -i e^{i(\alpha-\phi)} \sin\theta \\ 0&0&-i e^{i(\alpha+\phi)} \sin\theta & e^{i\alpha} \cos\theta \end{pmatrix}` P0 - project-onto-zero :math:`\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}` P1 - project-onto-one :math:`\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}` """ import cmath from typing import Tuple import numpy as np I = np.array([[1.0, 0.0], [0.0, 1.0]]) X = np.array([[0.0, 1.0], [1.0, 0.0]]) Y = np.array([[0.0, 0.0 - 1.0j], [0.0 + 1.0j, 0.0]]) Z = np.array([[1.0, 0.0], [0.0, -1.0]]) H = (1.0 / np.sqrt(2.0)) * np.array([[1.0, 1.0], [1.0, -1.0]]) S = np.array([[1.0, 0.0], [0.0, 1.0j]]) T = np.array([[1.0, 0.0], [0.0, cmath.exp(1.0j * np.pi / 4.0)]]) def PHASE(phi: float) -> np.ndarray: return np.array([[1.0, 0.0], [0.0, np.exp(1j * phi)]]) def RX(phi: float) -> np.ndarray: return np.array( [[np.cos(phi / 2.0), -1j * np.sin(phi / 2.0)], [-1j * np.sin(phi / 2.0), np.cos(phi / 2.0)]] ) def RY(phi: float) -> np.ndarray: return np.array( [[np.cos(phi / 2.0), -np.sin(phi / 2.0)], [np.sin(phi / 2.0), np.cos(phi / 2.0)]] ) def RZ(phi: float) -> np.ndarray: return np.array( [ [np.cos(phi / 2.0) - 1j * np.sin(phi / 2.0), 0], [0, np.cos(phi / 2.0) + 1j * np.sin(phi / 2.0)], ] ) CZ = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, -1]]) CNOT = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]]) CCNOT = np.array( [ [1, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 1, 0], ] ) def CPHASE00(phi: float) -> np.ndarray: return np.diag([np.exp(1j * phi), 1.0, 1.0, 1.0]) def CPHASE01(phi: float) -> np.ndarray: return np.diag([1.0, np.exp(1j * phi), 1.0, 1.0]) def CPHASE10(phi: float) -> np.ndarray: return np.diag([1.0, 1.0, np.exp(1j * phi), 1.0]) def CPHASE(phi: float) -> np.ndarray: return np.diag([1.0, 1.0, 1.0, np.exp(1j * phi)]) SWAP = np.array([[1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1]]) CSWAP = np.array( [ [1, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1], ] ) ISWAP = np.array([[1, 0, 0, 0], [0, 0, 1j, 0], [0, 1j, 0, 0], [0, 0, 0, 1]]) def PSWAP(phi: float) -> np.ndarray: return np.array( [[1, 0, 0, 0], [0, 0, np.exp(1j * phi), 0], [0, np.exp(1j * phi), 0, 0], [0, 0, 0, 1]] ) def XY(phi: float) -> np.ndarray: return np.array( [ [1, 0, 0, 0], [0, np.cos(phi / 2), 1j * np.sin(phi / 2), 0], [0, 1j * np.sin(phi / 2), np.cos(phi / 2), 0], [0, 0, 0, 1], ] ) # Utility gates for internal QVM use P0 = np.array([[1, 0], [0, 0]]) P1 = np.array([[0, 0], [0, 1]]) # Specialized useful gates; not officially in standard gate set def BARENCO(alpha: float, phi: float, theta: float) -> np.ndarray: lower_unitary = np.array( [ [np.exp(1j * phi) * np.cos(theta), -1j * np.exp(1j * (alpha - phi)) * np.sin(theta)], [-1j * np.exp(1j * (alpha + phi)) * np.sin(theta), np.exp(1j * alpha) * np.cos(theta)], ] ) return np.kron(P0, np.eye(2)) + np.kron(P1, lower_unitary) QUANTUM_GATES = { "I": I, "X": X, "Y": Y, "Z": Z, "H": H, "S": S, "T": T, "PHASE": PHASE, "RX": RX, "RY": RY, "RZ": RZ, "CNOT": CNOT, "CCNOT": CCNOT, "CPHASE00": CPHASE00, "CPHASE01": CPHASE01, "CPHASE10": CPHASE10, "CPHASE": CPHASE, "SWAP": SWAP, "CSWAP": CSWAP, "ISWAP": ISWAP, "PSWAP": PSWAP, "BARENCO": BARENCO, "CZ": CZ, "XY": XY, } def relaxation_operators(p: float) -> Tuple[np.ndarray, np.ndarray]: """ Return the amplitude damping Kraus operators """ k0 = np.array([[1.0, 0.0], [0.0, np.sqrt(1 - p)]]) k1 = np.array([[0.0, np.sqrt(p)], [0.0, 0.0]]) return k0, k1 def dephasing_operators(p: float) -> Tuple[np.ndarray, np.ndarray]: """ Return the phase damping Kraus operators """ k0 = np.eye(2) * np.sqrt(1 - p / 2) k1 = np.sqrt(p / 2) * Z return k0, k1 def depolarizing_operators(p: float) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: """ Return the phase damping Kraus operators """ k0 = np.sqrt(1.0 - p) * I k1 = np.sqrt(p / 3.0) * X k2 = np.sqrt(p / 3.0) * Y k3 = np.sqrt(p / 3.0) * Z return k0, k1, k2, k3 def phase_flip_operators(p: float) -> Tuple[np.ndarray, np.ndarray]: """ Return the phase flip kraus operators """ k0 = np.sqrt(1 - p) * I k1 = np.sqrt(p) * Z return k0, k1 def bit_flip_operators(p: float) -> Tuple[np.ndarray, np.ndarray]: """ Return the phase flip kraus operators """ k0 = np.sqrt(1 - p) * I k1 = np.sqrt(p) * X return k0, k1 def bitphase_flip_operators(p: float) -> Tuple[np.ndarray, np.ndarray]: """ Return the bitphase flip kraus operators """ k0 = np.sqrt(1 - p) * I k1 = np.sqrt(p) * Y return k0, k1 KRAUS_OPS = { "relaxation": relaxation_operators, "dephasing": dephasing_operators, "depolarizing": depolarizing_operators, "phase_flip": phase_flip_operators, "bit_flip": bit_flip_operators, "bitphase_flip": bitphase_flip_operators, } SIC0 = np.array([1, 0]) SIC1 = np.array([1, np.sqrt(2)]) / np.sqrt(3) SIC2 = np.array([1, np.exp(-np.pi * 2j / 3) * np.sqrt(2)]) / np.sqrt(3) SIC3 = np.array([1, np.exp(np.pi * 2j / 3) * np.sqrt(2)]) / np.sqrt(3) """ The symmetric informationally complete POVMs for a qubit. These can reduce the number of experiments to perform quantum process tomography. For more information, please see http://info.phys.unm.edu/~caves/reports/infopovm.pdf """ STATES = { "X": [np.array([1, 1]) / np.sqrt(2), np.array([1, -1]) / np.sqrt(2)], "Y": [np.array([1, 1j]) / np.sqrt(2), np.array([1, -1j]) / np.sqrt(2)], "Z": [np.array([1, 0]), np.array([0, 1])], "SIC": [SIC0, SIC1, SIC2, SIC3], } __all__ = list(QUANTUM_GATES.keys()) + [ "relaxation_operators", "dephasing_operators", "depolarizing_operators", "phase_flip_operators", "bit_flip_operators", "bitphase_flip_operators", "STATES", "SIC0", "SIC1", "SIC2", "SIC3", ]
the-stack_0_14687
#!/usr/bin/env python3 # Copyright 2015-2021 Scott Bezek and the splitflap contributors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json import logging import os import subprocess import sys from svg_processor import SvgProcessor from projection_renderer import Renderer script_dir = os.path.dirname(os.path.abspath(__file__)) source_parts_dir = os.path.dirname(script_dir) repo_root = os.path.dirname(source_parts_dir) sys.path.append(repo_root) from util import rev_info KERF_PRESETS = { 'ponoko-3mm-mdf': 0.18, 'ponoko-3mm-acrylic': 0.1, } if __name__ == '__main__': logging.basicConfig(level=logging.DEBUG) parser = argparse.ArgumentParser() parser.add_argument('--panelize', type=int, default=1, help='Quantity to panelize - must be 1 or an even number') parser.add_argument('--skip-optimize', action='store_true', help='Don\'t remove redundant/overlapping cut lines') kerf_group = parser.add_mutually_exclusive_group() kerf_group.add_argument('--kerf', type=float, help='Override kerf_width value') kerf_group.add_argument('--kerf-preset', choices=KERF_PRESETS, help='Override kerf_width using a defined preset') parser.add_argument('--render-raster', action='store_true', help='Render raster PNG from the output SVG (requires ' 'Inkscape)') parser.add_argument('--thickness', type=float, help='Override panel thickness value') parser.add_argument('--no-etch', action='store_true', help='Do not render laser-etched features') parser.add_argument('--mirror', action='store_true', help='Mirror the assembly so the outside faces are facing up. ' 'Note that this will remove all etched features.') args = parser.parse_args() laser_parts_directory = os.path.join(source_parts_dir, 'build', 'laser_parts') extra_variables = { 'render_revision': rev_info.git_short_rev(), 'render_date': rev_info.current_date(), 'render_etch': not args.no_etch, 'render_2d_mirror': args.mirror, } if args.kerf is not None: extra_variables['kerf_width'] = args.kerf elif args.kerf_preset is not None: extra_variables['kerf_width'] = KERF_PRESETS[args.kerf_preset] if args.thickness is not None: extra_variables['thickness'] = args.thickness print('Variables:\n' + json.dumps(extra_variables, indent=4)) renderer = Renderer(os.path.join(source_parts_dir, 'splitflap.scad'), laser_parts_directory, extra_variables) renderer.clean() svg_output = renderer.render_svgs(panelize_quantity=args.panelize) logging.info('Removing redundant lines') processor = SvgProcessor(svg_output) redundant_lines, merged_lines = None, None if not args.skip_optimize: redundant_lines, merged_lines = processor.remove_redundant_lines() processor.write(svg_output) logging.info('\n\n\nDone rendering to SVG: ' + svg_output) if args.render_raster: # Export to png logging.info('Generating raster preview') raster_svg = os.path.join(laser_parts_directory, 'raster.svg') raster_png = os.path.join(laser_parts_directory, 'raster.png') processor.apply_raster_render_style() if not args.skip_optimize: # Show which redundant lines were removed and lines merged processor.add_highlight_lines(redundant_lines, '#ff0000') processor.add_highlight_lines(merged_lines, '#0000ff') processor.write(raster_svg) logging.info('Resize SVG canvas') subprocess.check_call([ 'inkscape', '--verb=FitCanvasToDrawing', '--verb=FileSave', '--verb=FileClose', '--verb=FileQuit', raster_svg, ]) logging.info('Export PNG') subprocess.check_call([ 'inkscape', '--export-width=320', '--export-png', raster_png, raster_svg, ])
the-stack_0_14688
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from copy import deepcopy from transformers import RobertaConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from .test_configuration_common import ConfigTester from .test_generation_utils import GenerationTesterMixin from .test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, ) from transformers.models.roberta.modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaEmbeddings, create_position_ids_from_input_ids, ) ROBERTA_TINY = "sshleifer/tiny-distilroberta-base" class RobertaModelTester: def __init__( self, parent, ): self.parent = parent self.batch_size = 13 self.seq_length = 7 self.is_training = True self.use_input_mask = True self.use_token_type_ids = True self.use_labels = True self.vocab_size = 99 self.hidden_size = 32 self.num_hidden_layers = 5 self.num_attention_heads = 4 self.intermediate_size = 37 self.hidden_act = "gelu" self.hidden_dropout_prob = 0.1 self.attention_probs_dropout_prob = 0.1 self.max_position_embeddings = 512 self.type_vocab_size = 16 self.type_sequence_label_size = 2 self.initializer_range = 0.02 self.num_labels = 3 self.num_choices = 4 self.scope = None def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return RobertaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) def prepare_config_and_inputs_for_decoder(self): ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = self.prepare_config_and_inputs() config.is_decoder = True encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = RobertaModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_model_as_decoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = RobertaModel(config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, ) result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states, ) result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_for_causal_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): model = RobertaForCausalLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_decoder_model_past_large_inputs( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.is_decoder = True config.add_cross_attention = True model = RobertaForCausalLM(config=config).to(torch_device).eval() # make sure that ids don't start with pad token mask = input_ids.ne(config.pad_token_id).long() input_ids = input_ids * mask # first forward pass outputs = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=True, ) past_key_values = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) # make sure that ids don't start with pad token mask = next_tokens.ne(config.pad_token_id).long() next_tokens = next_tokens * mask next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) output_from_no_past = model( next_input_ids, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_hidden_states=True, )["hidden_states"][0] output_from_past = model( next_tokens, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, output_hidden_states=True, )["hidden_states"][0] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = RobertaForMaskedLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = RobertaForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_multiple_choice( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = RobertaForMultipleChoice(config=config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() result = model( multiple_choice_inputs_ids, attention_mask=multiple_choice_input_mask, token_type_ids=multiple_choice_token_type_ids, labels=choice_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def create_and_check_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = RobertaForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class RobertaModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase): all_model_classes = ( ( RobertaForCausalLM, RobertaForMaskedLM, RobertaModel, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaForMultipleChoice, RobertaForQuestionAnswering, ) if is_torch_available() else () ) all_generative_model_classes = (RobertaForCausalLM,) if is_torch_available() else () fx_compatible = True def setUp(self): self.model_tester = RobertaModelTester(self) self.config_tester = ConfigTester(self, config_class=RobertaConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_model(*config_and_inputs) def test_model_as_decoder(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*config_and_inputs) def test_model_as_decoder_with_default_input_mask(self): # This regression test was failing with PyTorch < 1.3 ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) = self.model_tester.prepare_config_and_inputs_for_decoder() input_mask = None self.model_tester.create_and_check_model_as_decoder( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def test_for_causal_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*config_and_inputs) def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = RobertaModel.from_pretrained(model_name) self.assertIsNotNone(model) def test_create_position_ids_respects_padding_index(self): """Ensure that the default position ids only assign a sequential . This is a regression test for https://github.com/huggingface/transformers/issues/1761 The position ids should be masked with the embedding object's padding index. Therefore, the first available non-padding position index is RobertaEmbeddings.padding_idx + 1 """ config = self.model_tester.prepare_config_and_inputs()[0] model = RobertaEmbeddings(config=config) input_ids = torch.as_tensor([[12, 31, 13, model.padding_idx]]) expected_positions = torch.as_tensor( [[0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx]] ) position_ids = create_position_ids_from_input_ids(input_ids, model.padding_idx) self.assertEqual(position_ids.shape, expected_positions.shape) self.assertTrue(torch.all(torch.eq(position_ids, expected_positions))) def test_create_position_ids_from_inputs_embeds(self): """Ensure that the default position ids only assign a sequential . This is a regression test for https://github.com/huggingface/transformers/issues/1761 The position ids should be masked with the embedding object's padding index. Therefore, the first available non-padding position index is RobertaEmbeddings.padding_idx + 1 """ config = self.model_tester.prepare_config_and_inputs()[0] embeddings = RobertaEmbeddings(config=config) inputs_embeds = torch.empty(2, 4, 30) expected_single_positions = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] expected_positions = torch.as_tensor([expected_single_positions, expected_single_positions]) position_ids = embeddings.create_position_ids_from_inputs_embeds(inputs_embeds) self.assertEqual(position_ids.shape, expected_positions.shape) self.assertTrue(torch.all(torch.eq(position_ids, expected_positions))) @require_torch class RobertaModelIntegrationTest(TestCasePlus): @slow def test_inference_masked_lm(self): model = RobertaForMaskedLM.from_pretrained("roberta-base") input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) with torch.no_grad(): output = model(input_ids)[0] expected_shape = torch.Size((1, 11, 50265)) self.assertEqual(output.shape, expected_shape) # compare the actual values for a slice. expected_slice = torch.tensor( [[[33.8802, -4.3103, 22.7761], [4.6539, -2.8098, 13.6253], [1.8228, -3.6898, 8.8600]]] ) # roberta = torch.hub.load('pytorch/fairseq', 'roberta.base') # roberta.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4)) @slow def test_inference_no_head(self): model = RobertaModel.from_pretrained("roberta-base") input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) with torch.no_grad(): output = model(input_ids)[0] # compare the actual values for a slice. expected_slice = torch.tensor( [[[-0.0231, 0.0782, 0.0074], [-0.1854, 0.0540, -0.0175], [0.0548, 0.0799, 0.1687]]] ) # roberta = torch.hub.load('pytorch/fairseq', 'roberta.base') # roberta.eval() # expected_slice = roberta.extract_features(input_ids)[:, :3, :3].detach() self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4)) @slow def test_inference_classification_head(self): model = RobertaForSequenceClassification.from_pretrained("roberta-large-mnli") input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) with torch.no_grad(): output = model(input_ids)[0] expected_shape = torch.Size((1, 3)) self.assertEqual(output.shape, expected_shape) expected_tensor = torch.tensor([[-0.9469, 0.3913, 0.5118]]) # roberta = torch.hub.load('pytorch/fairseq', 'roberta.large.mnli') # roberta.eval() # expected_tensor = roberta.predict("mnli", input_ids, return_logits=True).detach() self.assertTrue(torch.allclose(output, expected_tensor, atol=1e-4)) # XXX: this might be a candidate for common tests if we have many of those def test_lm_head_ignore_keys(self): keys_to_ignore_on_save_tied = [r"lm_head.decoder.weight", r"lm_head.decoder.bias"] keys_to_ignore_on_save_untied = [r"lm_head.decoder.bias"] config = RobertaConfig.from_pretrained(ROBERTA_TINY) config_tied = deepcopy(config) config_tied.tie_word_embeddings = True config_untied = deepcopy(config) config_untied.tie_word_embeddings = False for cls in [RobertaForMaskedLM, RobertaForCausalLM]: model = cls(config_tied) self.assertEqual(model._keys_to_ignore_on_save, keys_to_ignore_on_save_tied, cls) # the keys should be different when embeddings aren't tied model = cls(config_untied) self.assertEqual(model._keys_to_ignore_on_save, keys_to_ignore_on_save_untied, cls) # test that saving works with updated ignore keys - just testing that it doesn't fail model.save_pretrained(self.get_auto_remove_tmp_dir())
the-stack_0_14689
"""Binary tree === CSC148 Winter 2018 === University of Toronto, Department of Computer Science __author__ = 'Eric K' === Module Description === This module contains a binary tree implementation """ from typing import Union, Optional class BinaryTree: """ A Binary Tree, i.e. arity 2. """ value: object left: Optional['BinaryTree'] right: Optional['BinaryTree'] def __init__(self, value: object, left: Optional['BinaryTree'] = None, right: Optional['BinaryTree'] = None) -> None: """ Create BinaryTree self with value and children left and right. """ self.value, self.left, self.right = value, left, right def __eq__(self, other: Union['BinaryTree', object]) -> bool: """ Return whether BinaryTree self is equivalent to other. >>> BinaryTree(7).__eq__("seven") False >>> b1 = BinaryTree(7, BinaryTree(5)) >>> b1.__eq__(BinaryTree(7, BinaryTree(5), None)) True >>> b1.__eq__(BinaryTree(7, BinaryTree(5,BinaryTree(2)), None)) False """ return (type(self) is type(other) and self.value == other.value and self.left == other.left and self.right == other.right) def __repr__(self) -> str: """ Represent BinaryTree (self) as a string that can be evaluated to produce an equivalent BinaryTree. >>> BinaryTree(1, BinaryTree(2), BinaryTree(3)) BinaryTree(1, BinaryTree(2), BinaryTree(3)) """ if self.value is None: return '' elif self.left is None and self.right is None: return f'BinaryTree({self.value})' else: return "BinaryTree({}, {}, {})".format(repr(self.value), repr(self.left), repr(self.right)) def __str__(self, level: str = '') -> str: """ Return a user-friendly string representing BinaryTree (self) inorder. Indent by indent. >>> b = BinaryTree(1, BinaryTree(2, BinaryTree(3)), BinaryTree(4)) >>> print(b) 4 1 2 3 <BLANKLINE> """ if self.value is None: return '' else: right = self.right.__str__(level + ' ') if self.right else '' left = self.left.__str__(level + ' ') if self.left else '' s = right + "{}{}\n".format(level, str(self.value)) + left return s def __contains__(self, value: object) -> bool: """ Return whether tree rooted at self contains value. >>> t = BinaryTree(5, BinaryTree(7), BinaryTree(9)) >>> 7 in t True >>> t = BinaryTree(5, BinaryTree(7), None) >>> 3 in t False """ # Can also use: self.left.__contains__(value) rather than in # Version 1 if self.value is None: return False elif value == self.value: return True else: return any([self.left is not None and value in self.left, self.right is not None and value in self.right]) # Version 2 # if self.value is None: # return False # else: # return any([self.value == value, # self.left is not None and value in self.left, # self.right is not None and value in self.right]) # Version 3 # if self.value is None: # return False # elif value == self.value: # return True # else: # return any([value in self.left if self.left else False, # value in self.right if self.right else False]) if __name__ == '__main__': import doctest doctest.testmod()
the-stack_0_14695
#!/usr/bin/env python # Licensed to Cloudera, Inc. under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. Cloudera, Inc. licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Interfaces and abstractions for filesystem access. We should be agnostic whether we're using a "temporary" file system, rooted in a local tmp dir, or whether we're using a true HDFS. This file defines the interface. Note that PEP 355 (Path - object oriented filesystem paths) did not pass. Many file system methods are in __builtin__, os, or os.path, and take strings representing filenames as arguments. We maintain this usage of paths as arguments. When possible, the interfaces here have fidelity to the native python interfaces. """ from __future__ import division from future import standard_library from functools import reduce standard_library.install_aliases() from builtins import map from builtins import range from builtins import object import errno import grp import logging import math import os import posixpath import pwd import re import shutil import stat import sys if sys.version_info[0] > 2: from builtins import open as builtins_open else: from __builtin__ import open as builtins_open SEEK_SET, SEEK_CUR, SEEK_END = os.SEEK_SET, os.SEEK_CUR, os.SEEK_END # The web (and POSIX) always uses forward slash as a separator LEADING_DOUBLE_SEPARATORS = re.compile("^" + posixpath.sep*2) def normpath(path): """ Eliminates double-slashes. Oddly, posixpath.normpath doesn't eliminate leading double slashes, but it does clean-up triple-slashes. """ p = posixpath.normpath(path) return LEADING_DOUBLE_SEPARATORS.sub(posixpath.sep, p) class IllegalPathException(Exception): pass class LocalSubFileSystem(object): """ Facade around normal python filesystem calls, for a temporary/local file system rooted in a root directory. This is intended for testing, and is not a secure chroot alternative. So far, this doesn't have a notion of current working dir, so all paths are "absolute". I dislike the state that having cwd's implies, but it may be convenient. TODO(philip): * chown: want to implement with names, not uids. * chmod * stat: perhaps implement "stats" which returns a dictionary; Hadoop and posix have different stats * set_replication: no equivalent * file-system level stats I think this covers all the functionality in "src/contrib/thriftfs/if/hadoopfs.thrift", but there may be some bits missing. The implementation of the file-like object for HDFS will be a bit tricky: open(f, "w") is generally the equivalent of createFile, but it has to handle the case where f already exists (in which case the best we can do is append, if that). """ def __init__(self, root): """ A file system rooted in root. """ self.root = root self.name = "file://%s" % self.root if not os.path.isdir(root): logging.fatal("Root(%s) not found." % root + " Perhaps you need to run manage.py create_test_fs") def _resolve_path(self, path): """ Returns path to use in native file system. """ # Strip leading "/" if not path.startswith("/"): raise IllegalPathException("Path %s must start with leading /." % path) path = path.lstrip("/") joined = os.path.join(self.root, path) absolute = os.path.abspath(joined) normalized = os.path.normpath(absolute) prefix = os.path.commonprefix([self.root, normalized]) if prefix != self.root: raise IllegalPathException("Path %s is not valid." % path) return joined def _unresolve_path(self, path): """ Given an absolute path within the wrapped filesystem, return the path that the user of this class sees. """ # Resolve it to make it realy absolute assert path.startswith(self.root) return path[len(self.root):] def _wrap(f, paths=None, users=None, groups=None): """ Wraps an existing function f, and transforms path arguments to "resolved paths" and user arguments to uids. By default transforms the first (zeroth) argument as a path, but can be customized. This lets us write: def open(self, name, mode="r"): return open(self._resolve_path(name), mode) as open = _wrap(__builtin__.open) NOTE: No transformation is done on the keyword args; they are not accepted. (The alternative would be to require the names of the keyword transformations.) """ if users is None: users = [] if groups is None: groups = [] if paths is None and 0 not in users and 0 not in groups: paths = [0] # complicated way of taking the intersection of three lists. assert not reduce(set.intersection, list(map(set, [paths, users, groups]))) def wrapped(*args): self = args[0] newargs = list(args[1:]) for i in paths: newargs[i] = self._resolve_path(newargs[i]) for i in users: newargs[i] = pwd.getpwnam(newargs[i]).pw_uid for i in groups: newargs[i] = grp.getgrnam(newargs[i]).gr_gid if f == builtins_open and sys.version_info[0] > 2: return f(*newargs, encoding='utf-8') return f(*newargs) return wrapped # These follow their namesakes. open = _wrap(builtins_open) remove = _wrap(os.remove) mkdir = _wrap(os.mkdir) rmdir = _wrap(os.rmdir) listdir = _wrap(os.listdir) rename = _wrap(os.rename, paths=[0,1]) exists = _wrap(os.path.exists) isfile = _wrap(os.path.isfile) isdir = _wrap(os.path.isdir) chmod = _wrap(os.chmod) join = _wrap(os.path.join) # This could be provided with an error_handler rmtree = _wrap(shutil.rmtree) chown = _wrap(os.chown, paths=[0], users=[1], groups=[2]) @property def uri(self): return self.name def stats(self, path, raise_on_fnf=True): path = self._resolve_path(path) try: statobj = os.stat(path) except OSError as ose: if ose.errno == errno.ENOENT and not raise_on_fnf: return None raise ret = dict() ret["path"] = self._unresolve_path(path) ret["size"] = statobj[stat.ST_SIZE] ret["mtime"] = statobj[stat.ST_MTIME] ret["mode"] = statobj[stat.ST_MODE] ret["user"] = pwd.getpwuid(statobj[stat.ST_UID]).pw_name ret["group"] = grp.getgrgid(statobj[stat.ST_GID]).gr_name return ret def setuser(self, user, groups=None): pass def status(self): return FakeStatus() def listdir_stats(self, path): """ This is an equivalent of listdir that, instead of returning file names, returns a list of stats instead. """ listdir_files = self.listdir(path) paths = [posixpath.join(path, f) for f in listdir_files] return [self.stats(path) for path in paths] def __repr__(self): return "LocalFileSystem(%s)" % repr(self.root) class FakeStatus(object): """ A fake implementation of HDFS health RPCs. These follow the thrift naming conventions, but return dicts or arrays of dicts, because they will be encoded as JSON. """ def get_messages(self): """Warnings/lint checks.""" return [ dict(type="WARNING",message="All your base belong to us."), dict(type="INFO", message="Hamster Dance!") ] def get_health(self): o = dict() GB = 1024*1024*1024 o["bytesTotal"] = 5*GB o["bytesUsed"] = math.floor(5*GB / 2) o["bytesRemaining"] = 2*GB o["bytesNonDfs"] = math.floor(GB / 2) o["liveDataNodes"] = 13 o["deadDataNodes"] = 2 o["upgradeStatus"] = dict(version=13, percentComplete=100, finalized=True) return o def get_datanode_report(self): r = [] for i in range(0, 13): dinfo = dict() dinfo["name"] = "fake-%d" % i dinfo["storageID"] = "fake-id-%d" % i dinfo["host"] = "fake-host-%d" % i dinfo["capacity"] = 123456789 dinfo["dfsUsed"] = 23456779 dinfo["remaining"] = 100000010 dinfo["xceiverCount"] = 3 dinfo["state"] = "NORMAL_STATE" r.append(dinfo) for i in range(0, 2): dinfo = dict() dinfo["name"] = "fake-dead-%d" % i dinfo["storageID"] = "fake-dead-id-%d" % i dinfo["host"] = "fake-dead-host-%d" % i dinfo["capacity"] = 523456789 dinfo["dfsUsed"] = 23456779 dinfo["remaining"] = 500000010 dinfo["xceiverCount"] = 3 dinfo["state"] = "DECOMISSION_INPROGRESS" r.append(dinfo) return r
the-stack_0_14697
import anndata as ad import episcanpy as epi import scanpy as sc import pandas as pd import numpy as np import matplotlib.pyplot as plt import plotly.graph_objs as go from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot import plotly.io as pio from scanpy.plotting._tools.scatterplots import _get_palette def river_plot_2_omics(adata, source, target, omic, cell_number=False, title='River plot (Sankey Diagram)', save=None, scale=4): """ cell number count doesn't work in this function yet. """ omics = list(set(adata.obs[omic])) # print(omics[1], ' cells on the left') adata_rna = adata[adata.obs[omic] == omics[1], :].copy() # print(omics[0], ' cells on the right') adata_atac = adata[adata.obs[omic] == omics[0], :].copy() df_nodes_rna, df_links_rna = __tool_sankey(adata_rna, source=source, target=target, cell_number=False) key_infos = pd.crosstab(adata_atac.obs[target], adata_atac.obs[source]) # key_infos label_list = key_infos.columns.tolist() id_list = list(range(df_nodes_rna.shape[0], df_nodes_rna.shape[0] + len(label_list), 1)) nodes = [['ID', 'Label', 'Color']] if source + '_colors' not in adata_atac.uns.keys(): adata_atac.uns[source + '_colors'] = list(_get_palette(adata_atac, source).values()) if type(adata_atac.uns[source + '_colors']) == np.ndarray: adata_atac.uns[source + '_colors'] = adata_atac.uns[source + '_colors'].tolist() colors = adata.uns[source + '_colors'] + adata.uns[target + '_colors'] index = 0 for number in id_list: tmp_list = [number, label_list[index], colors[index]] nodes.append(tmp_list) index += 1 ### merge atac nodes to rna nodes nodes_headers = nodes.pop(0) df_nodes = pd.DataFrame(nodes, columns=nodes_headers) df_nodes = df_nodes_rna.append(df_nodes) index_target = df_nodes_rna.shape[0] - len(nodes) # print(index_target) del nodes ### add cell number if cell_number: df_nodes.index = df_nodes['ID'] key_infos = pd.crosstab(adata_atac.obs[target], adata_atac.obs[source], margins=True) atac_cell_numbers_source = ['(n=' + str(x) + ')' for x in key_infos.loc['All'].tolist()[:-1]] atac_cell_numbers_target = key_infos['All'].tolist()[:-1] key_infos = pd.crosstab(adata_rna.obs[target], adata_rna.obs[source], margins=True) rna_cell_numbers_source = ['(n=' + str(x) + ')' for x in key_infos.loc['All'].tolist()[:-1]] rna_cell_numbers_target = key_infos['All'].tolist()[:-1] rna_cell_numbers_target = [": ".join([str(omics[1]), str(x)]) for x in rna_cell_numbers_target] atac_cell_numbers_target = [": ".join([str(omics[0]), str(x)]) for x in atac_cell_numbers_target] target_cell_numbers = [] index = 0 for rna_count in rna_cell_numbers_target: target_cell_numbers.append('(' + ' & '.join([str(rna_count), str(atac_cell_numbers_target[index])]) + ')') index += 1 total_count = rna_cell_numbers_source + target_cell_numbers + atac_cell_numbers_source new_label = [] index = 0 for n_cells in total_count: new_label.append(' '.join([str(df_nodes['Label'][index]), str(n_cells)])) index += 1 df_nodes['Label'] = new_label ###### LINKS ###### key_infos_values = key_infos.values.tolist() key_infos_index = key_infos.index.tolist() # make the link df links = [['Source', 'Target', 'Value', 'Link Color']] # index_target = len(label_list)-len(key_infos.index.tolist()) # print(key_infos) for index_value in key_infos_values: index_source = df_nodes_rna.shape[0] index_color = 0 for count in index_value: tmp_list = [index_source, index_target, count, colors[index_color]] index_source += 1 index_color += 1 links.append(tmp_list) index_target += 1 ### merge atac links to rna links links_headers = links.pop(0) df_links = pd.DataFrame(links, columns=links_headers) tmp_var = df_links['Source'].tolist() tmp_var2 = df_links['Target'].tolist() df_links['Source'] = tmp_var2 df_links['Target'] = tmp_var del tmp_var, tmp_var2 df_links = df_links_rna.append(df_links) new_title = title + '\n (' + omics[1] + ' cells on the left & ' + omics[0] + ' cells on the right)' __plot_sankey(df_nodes, df_links, title=new_title, save=save, scale=4) def __tool_sankey(adata, source, target, cell_number=True): # extract key_infos in adata key_infos = pd.crosstab(adata.obs[target], adata.obs[source]) ###### NODES ###### # transform key_infos into the nodes df nodes = [['ID', 'Label', 'Color']] if not cell_number: label_list = key_infos.columns.tolist() + key_infos.index.tolist() else: target_cell_nb = pd.crosstab(adata.obs[target], adata.obs[target], margins=True) source_cell_nb = pd.crosstab(adata.obs[source], adata.obs[source], margins=True) source_names = [] for n in range(0, len(key_infos.columns.tolist())): source_names.append(" n=".join([str(key_infos.columns.tolist()[n]), str(source_cell_nb['All'][n])])) target_names = [] index = 0 for target_name in key_infos.index.tolist(): # print(target_name, target_cell_nb['All'][index]) target_names.append(" n=".join([target_name, str(target_cell_nb['All'][index])])) index += 1 label_list = source_names + target_names # print(label_list) id_list = list(range(0, len(label_list), 1)) # Pay attention if clusters_colors or 'orig.ident_colors' missing if source + '_colors' not in adata.uns.keys(): adata.uns[source + '_colors'] = list(_get_palette(adata, source).values()) if target + '_colors' not in adata.uns.keys(): adata.uns[target + '_colors'] = list(_get_palette(adata, target).values()) if type(adata.uns[source + '_colors']) == np.ndarray: adata.uns[source + '_colors'] = adata.uns[source + '_colors'].tolist() if type(adata.uns[target + '_colors']) == np.ndarray: adata.uns[target + '_colors'] = adata.uns[target + '_colors'].tolist() colors = adata.uns[source + '_colors'] + adata.uns[target + '_colors'] for number in id_list: tmp_list = [number, label_list[number], colors[number]] nodes.append(tmp_list) ###### LINKS ###### key_infos_values = key_infos.values.tolist() key_infos_index = key_infos.index.tolist() # make the link df links = [['Source', 'Target', 'Value', 'Link Color']] index_target = len(label_list) - len(key_infos.index.tolist()) for index_value in key_infos_values: index_source = 0 for count in index_value: tmp_list = [index_source, index_target, count, colors[index_source]] index_source += 1 links.append(tmp_list) index_target += 1 # Retrieve headers and build dataframes nodes_headers = nodes.pop(0) links_headers = links.pop(0) df_nodes = pd.DataFrame(nodes, columns=nodes_headers) df_links = pd.DataFrame(links, columns=links_headers) return df_nodes, df_links def __plot_sankey(df_nodes, df_links, title="Draw Sankey Diagram from dataframes", save=None, scale=1): """ """ # Sankey plot setup data_trace = dict( type='sankey', domain=dict( x=[0, 1], y=[0, 1] ), orientation="h", valueformat=".0f", node=dict( pad=10, # thickness = 30, line=dict( color="black", width=0 ), label=df_nodes['Label'].dropna(axis=0, how='any'), color=df_nodes['Color'] ), link=dict( source=df_links['Source'].dropna(axis=0, how='any'), target=df_links['Target'].dropna(axis=0, how='any'), value=df_links['Value'].dropna(axis=0, how='any'), color=df_links['Link Color'].dropna(axis=0, how='any'), ) ) layout = dict( title=title, height=772, font=dict( size=10), ) fig = dict(data=[data_trace], layout=layout) # fig.savefig('test.png') iplot(fig, validate=False) if save: pio.write_image(fig, save, width=700, height=775, scale=scale)
the-stack_0_14698
import argparse import math from urllib.request import urlopen import sys import os import subprocess import glob from braceexpand import braceexpand from types import SimpleNamespace # pip install taming-transformers work with Gumbel, but does works with coco etc # appending the path works with Gumbel, but gives ModuleNotFoundError: No module named 'transformers' for coco etc sys.path.append("taming-transformers") import os.path from omegaconf import OmegaConf from taming.models import cond_transformer, vqgan import torch from torch import nn, optim from torch.nn import functional as F from torchvision import transforms from torchvision.transforms import functional as TF torch.backends.cudnn.benchmark = ( False # NR: True is a bit faster, but can lead to OOM. False is more deterministic. ) # torch.use_deterministic_algorithms(True) # NR: grid_sampler_2d_backward_cuda does not have a deterministic implementation from torch_optimizer import DiffGrad, AdamP, RAdam from perlin_numpy import generate_fractal_noise_2d from CLIP import clip import kornia import kornia.augmentation as K import numpy as np import imageio from PIL import ImageFile, Image, PngImagePlugin ImageFile.LOAD_TRUNCATED_IMAGES = True # or 'border' global_padding_mode = "reflection" global_aspect_width = 1 vqgan_config_table = { "imagenet_f16_1024": "http://mirror.io.community/blob/vqgan/vqgan_imagenet_f16_1024.yaml", "imagenet_f16_16384": "http://mirror.io.community/blob/vqgan/vqgan_imagenet_f16_16384.yaml", "openimages_f16_8192": "https://heibox.uni-heidelberg.de/d/2e5662443a6b4307b470/files/?p=%2Fconfigs%2Fmodel.yaml&dl=1", "coco": "https://dl.nmkd.de/ai/clip/coco/coco.yaml", "faceshq": "https://drive.google.com/uc?export=download&id=1fHwGx_hnBtC8nsq7hesJvs-Klv-P0gzT", "wikiart_1024": "http://mirror.io.community/blob/vqgan/wikiart.yaml", "wikiart_16384": "http://mirror.io.community/blob/vqgan/wikiart_16384.yaml", "sflckr": "https://heibox.uni-heidelberg.de/d/73487ab6e5314cb5adba/files/?p=%2Fconfigs%2F2020-11-09T13-31-51-project.yaml&dl=1", } vqgan_checkpoint_table = { "imagenet_f16_1024": "http://mirror.io.community/blob/vqgan/vqgan_imagenet_f16_1024.ckpt", "imagenet_f16_16384": "http://mirror.io.community/blob/vqgan/vqgan_imagenet_f16_16384.ckpt", "openimages_f16_8192": "https://heibox.uni-heidelberg.de/d/2e5662443a6b4307b470/files/?p=%2Fckpts%2Flast.ckpt&dl=1", "coco": "https://dl.nmkd.de/ai/clip/coco/coco.ckpt", "faceshq": "https://app.koofr.net/content/links/a04deec9-0c59-4673-8b37-3d696fe63a5d/files/get/last.ckpt?path=%2F2020-11-13T21-41-45_faceshq_transformer%2Fcheckpoints%2Flast.ckpt", "wikiart_1024": "http://mirror.io.community/blob/vqgan/wikiart.ckpt", "wikiart_16384": "http://mirror.io.community/blob/vqgan/wikiart_16384.ckpt", "sflckr": "https://heibox.uni-heidelberg.de/d/73487ab6e5314cb5adba/files/?p=%2Fcheckpoints%2Flast.ckpt&dl=1", } # https://stackoverflow.com/a/39662359 def isnotebook(): try: shell = get_ipython().__class__.__name__ if shell == "ZMQInteractiveShell": return True # Jupyter notebook or qtconsole elif shell == "Shell": return True # Seems to be what co-lab does elif shell == "TerminalInteractiveShell": return False # Terminal running IPython else: return False # Other type (?) except NameError: return False # Probably standard Python interpreter IS_NOTEBOOK = isnotebook() if IS_NOTEBOOK: from IPython import display from tqdm.notebook import tqdm else: from tqdm import tqdm # file helpers def real_glob(rglob): glob_list = braceexpand(rglob) files = [] for g in glob_list: files = files + glob.glob(g) return sorted(files) # Functions and classes def sinc(x): return torch.where(x != 0, torch.sin(math.pi * x) / (math.pi * x), x.new_ones([])) def lanczos(x, a): cond = torch.logical_and(-a < x, x < a) out = torch.where(cond, sinc(x) * sinc(x / a), x.new_zeros([])) return out / out.sum() def ramp(ratio, width): n = math.ceil(width / ratio + 1) out = torch.empty([n]) cur = 0 for i in range(out.shape[0]): out[i] = cur cur += ratio return torch.cat([-out[1:].flip([0]), out])[1:-1] # NR: Testing with different intital images def old_random_noise_image(w, h): random_image = Image.fromarray( np.random.randint(0, 255, (w, h, 3), dtype=np.dtype("uint8")) ) return random_image def NormalizeData(data): return (data - np.min(data)) / (np.max(data) - np.min(data)) def random_noise_image(w, h): # scale up roughly as power of 2 if w > 1024 or h > 1024: side, octp = 2048, 7 elif w > 512 or h > 512: side, octp = 1024, 6 elif w > 256 or h > 256: side, octp = 512, 5 else: side, octp = 256, 4 nr = NormalizeData(generate_fractal_noise_2d((side, side), (32, 32), octp)) ng = NormalizeData(generate_fractal_noise_2d((side, side), (32, 32), octp)) nb = NormalizeData(generate_fractal_noise_2d((side, side), (32, 32), octp)) stack = np.dstack((nr, ng, nb)) substack = stack[:h, :w, :] im = Image.fromarray((255.9 * stack).astype("uint8")) return im # testing def gradient_2d(start, stop, width, height, is_horizontal): if is_horizontal: return np.tile(np.linspace(start, stop, width), (height, 1)) else: return np.tile(np.linspace(start, stop, height), (width, 1)).T def gradient_3d(width, height, start_list, stop_list, is_horizontal_list): result = np.zeros((height, width, len(start_list)), dtype=float) for i, (start, stop, is_horizontal) in enumerate( zip(start_list, stop_list, is_horizontal_list) ): result[:, :, i] = gradient_2d(start, stop, width, height, is_horizontal) return result def random_gradient_image(w, h): array = gradient_3d( w, h, (0, 0, np.random.randint(0, 255)), ( np.random.randint(1, 255), np.random.randint(2, 255), np.random.randint(3, 128), ), (True, False, False), ) random_image = Image.fromarray(np.uint8(array)) return random_image # Not used? def resample(input, size, align_corners=True): n, c, h, w = input.shape dh, dw = size input = input.view([n * c, 1, h, w]) if dh < h: kernel_h = lanczos(ramp(dh / h, 2), 2).to(input.device, input.dtype) pad_h = (kernel_h.shape[0] - 1) // 2 input = F.pad(input, (0, 0, pad_h, pad_h), "reflect") input = F.conv2d(input, kernel_h[None, None, :, None]) if dw < w: kernel_w = lanczos(ramp(dw / w, 2), 2).to(input.device, input.dtype) pad_w = (kernel_w.shape[0] - 1) // 2 input = F.pad(input, (pad_w, pad_w, 0, 0), "reflect") input = F.conv2d(input, kernel_w[None, None, None, :]) input = input.view([n, c, h, w]) return F.interpolate(input, size, mode="bicubic", align_corners=align_corners) class ReplaceGrad(torch.autograd.Function): @staticmethod def forward(ctx, x_forward, x_backward): ctx.shape = x_backward.shape return x_forward @staticmethod def backward(ctx, grad_in): return None, grad_in.sum_to_size(ctx.shape) replace_grad = ReplaceGrad.apply class ClampWithGrad(torch.autograd.Function): @staticmethod def forward(ctx, input, min, max): ctx.min = min ctx.max = max ctx.save_for_backward(input) return input.clamp(min, max) @staticmethod def backward(ctx, grad_in): (input,) = ctx.saved_tensors return ( grad_in * (grad_in * (input - input.clamp(ctx.min, ctx.max)) >= 0), None, None, ) clamp_with_grad = ClampWithGrad.apply def vector_quantize(x, codebook): d = ( x.pow(2).sum(dim=-1, keepdim=True) + codebook.pow(2).sum(dim=1) - 2 * x @ codebook.T ) indices = d.argmin(-1) x_q = F.one_hot(indices, codebook.shape[0]).to(d.dtype) @ codebook return replace_grad(x_q, x) def spherical_dist_loss(x, y): x = F.normalize(x, dim=-1) y = F.normalize(y, dim=-1) return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2) class Prompt(nn.Module): def __init__(self, embed, weight=1.0, stop=float("-inf")): super().__init__() self.register_buffer("embed", embed) self.register_buffer("weight", torch.as_tensor(weight)) self.register_buffer("stop", torch.as_tensor(stop)) def forward(self, input): input_normed = F.normalize(input.unsqueeze(1), dim=2) embed_normed = F.normalize(self.embed.unsqueeze(0), dim=2) dists = input_normed.sub(embed_normed).norm(dim=2).div(2).arcsin().pow(2).mul(2) dists = dists * self.weight.sign() return ( self.weight.abs() * replace_grad(dists, torch.maximum(dists, self.stop)).mean() ) def parse_prompt(prompt): vals = prompt.rsplit(":", 2) vals = vals + ["", "1", "-inf"][len(vals) :] # print(f"parsed vals is {vals}") return vals[0], float(vals[1]), float(vals[2]) from typing import cast, Dict, List, Optional, Tuple, Union # override class to get padding_mode class MyRandomPerspective(K.RandomPerspective): def apply_transform( self, input: torch.Tensor, params: Dict[str, torch.Tensor], transform: Optional[torch.Tensor] = None, ) -> torch.Tensor: _, _, height, width = input.shape transform = cast(torch.Tensor, transform) return kornia.geometry.warp_perspective( input, transform, (height, width), mode=self.resample.name.lower(), align_corners=self.align_corners, padding_mode=global_padding_mode, ) cached_spot_indexes = {} def fetch_spot_indexes(sideX, sideY): # make sure image is loaded if we need it cache_key = (sideX, sideY) if cache_key not in cached_spot_indexes: if global_aspect_width != 1: mask_image = Image.open("inputs/spot_wide.png") else: mask_image = Image.open("inputs/spot_square.png") # this is a one channel mask mask_image = mask_image.convert("RGB") mask_image = mask_image.resize((sideX, sideY), Image.LANCZOS) mask_image_tensor = TF.to_tensor(mask_image) # print("ONE CHANNEL ", mask_image_tensor.shape) mask_indexes = mask_image_tensor.ge(0.5).to(device) # print("GE ", mask_indexes.shape) # sys.exit(0) mask_indexes_off = mask_image_tensor.lt(0.5).to(device) cached_spot_indexes[cache_key] = [mask_indexes, mask_indexes_off] return cached_spot_indexes[cache_key] # n = torch.ones((3,5,5)) # f = generate.fetch_spot_indexes(5, 5) # f[0].shape = [60,3] class MakeCutouts(nn.Module): def __init__(self, cut_size, cutn, cut_pow=1.0): global global_aspect_width super().__init__() self.cut_size = cut_size self.cutn = cutn self.cut_pow = cut_pow self.transforms = None augmentations = [] if global_aspect_width != 1: augmentations.append( K.RandomCrop( size=(self.cut_size, self.cut_size), p=1.0, return_transform=True ) ) augmentations.append( MyRandomPerspective(distortion_scale=0.40, p=0.7, return_transform=True) ) augmentations.append( K.RandomResizedCrop( size=(self.cut_size, self.cut_size), scale=(0.15, 0.80), ratio=(0.75, 1.333), cropping_mode="resample", p=0.7, return_transform=True, ) ) augmentations.append( K.ColorJitter(hue=0.1, saturation=0.1, p=0.8, return_transform=True) ) self.augs = nn.Sequential(*augmentations) # self.augs = nn.Sequential( # # K.RandomHorizontalFlip(p=0.5), # NR: add augmentation options # # K.RandomVerticalFlip(p=0.5), # # K.RandomSolarize(0.01, 0.01, p=0.7), # # K.RandomSharpness(0.3,p=0.4), # # K.RandomResizedCrop(size=(self.cut_size,self.cut_size), scale=(0.1,1), ratio=(0.75,1.333), cropping_mode='resample', p=0.5, return_transform=True), # K.RandomCrop(size=(self.cut_size,self.cut_size), p=1.0), # # K.RandomAffine(degrees=15, translate=0.1, p=0.7, padding_mode='border', return_transform=True), # # MyRandomPerspective(distortion_scale=0.40, p=0.7, return_transform=True), # # K.RandomResizedCrop(size=(self.cut_size,self.cut_size), scale=(0.15,0.80), ratio=(0.75,1.333), cropping_mode='resample', p=0.7, return_transform=True), # K.ColorJitter(hue=0.1, saturation=0.1, p=0.8, return_transform=True), # # K.RandomErasing((.1, .4), (.3, 1/.3), same_on_batch=True, p=0.7, return_transform=True), # ) self.noise_fac = 0.1 # Pooling self.av_pool = nn.AdaptiveAvgPool2d((self.cut_size, self.cut_size)) self.max_pool = nn.AdaptiveMaxPool2d((self.cut_size, self.cut_size)) def forward(self, input, spot=None): global i, global_aspect_width sideY, sideX = input.shape[2:4] max_size = min(sideX, sideY) min_size = min(sideX, sideY, self.cut_size) cutouts = [] mask_indexes = None if spot is not None: spot_indexes = fetch_spot_indexes(self.cut_size, self.cut_size) if spot == 0: mask_indexes = spot_indexes[1] else: mask_indexes = spot_indexes[0] # print("Mask indexes ", mask_indexes) for _ in range(self.cutn): # size = int(torch.rand([])**self.cut_pow * (max_size - min_size) + min_size) # offsetx = torch.randint(0, sideX - size + 1, ()) # offsety = torch.randint(0, sideY - size + 1, ()) # cutout = input[:, :, offsety:offsety + size, offsetx:offsetx + size] # cutouts.append(resample(cutout, (self.cut_size, self.cut_size))) # cutout = transforms.Resize(size=(self.cut_size, self.cut_size))(input) # Pooling cutout = (self.av_pool(input) + self.max_pool(input)) / 2 if mask_indexes is not None: cutout[0][mask_indexes] = 0.5 if global_aspect_width != 1: cutout = kornia.geometry.transform.rescale(cutout, (1, 16 / 9)) # if i % 50 == 0 and _ == 0: # print(cutout.shape) # TF.to_pil_image(cutout[0].cpu()).save(f"cutout_im_{i:02d}_{spot}.png") cutouts.append(cutout) if self.transforms is not None: # print("Cached transforms available, but I'm not smart enough to use them") # print(cutouts.shape) # print(torch.cat(cutouts, dim=0).shape) # print(self.transforms.shape) # batch = kornia.geometry.transform.warp_affine(torch.cat(cutouts, dim=0), self.transforms, (sideY, sideX)) # batch = self.transforms @ torch.cat(cutouts, dim=0) batch = kornia.geometry.transform.warp_perspective( torch.cat(cutouts, dim=0), self.transforms, (self.cut_size, self.cut_size), padding_mode=global_padding_mode, ) # if i < 4: # for j in range(4): # TF.to_pil_image(batch[j].cpu()).save(f"cached_im_{i:02d}_{j:02d}_{spot}.png") else: batch, self.transforms = self.augs(torch.cat(cutouts, dim=0)) # if i < 4: # for j in range(4): # TF.to_pil_image(batch[j].cpu()).save(f"live_im_{i:02d}_{j:02d}_{spot}.png") # print(batch.shape, self.transforms.shape) if self.noise_fac: facs = batch.new_empty([self.cutn, 1, 1, 1]).uniform_(0, self.noise_fac) batch = batch + facs * torch.randn_like(batch) return batch def load_vqgan_model(config_path, checkpoint_path): global gumbel gumbel = False config = OmegaConf.load(config_path) if config.model.target == "taming.models.vqgan.VQModel": model = vqgan.VQModel(**config.model.params) model.eval().requires_grad_(False) model.init_from_ckpt(checkpoint_path) elif config.model.target == "taming.models.vqgan.GumbelVQ": model = vqgan.GumbelVQ(**config.model.params) model.eval().requires_grad_(False) model.init_from_ckpt(checkpoint_path) gumbel = True elif config.model.target == "taming.models.cond_transformer.Net2NetTransformer": parent_model = cond_transformer.Net2NetTransformer(**config.model.params) parent_model.eval().requires_grad_(False) parent_model.init_from_ckpt(checkpoint_path) model = parent_model.first_stage_model else: raise ValueError(f"unknown model type: {config.model.target}") del model.loss return model def resize_image(image, out_size): ratio = image.size[0] / image.size[1] area = min(image.size[0] * image.size[1], out_size[0] * out_size[1]) size = round((area * ratio) ** 0.5), round((area / ratio) ** 0.5) return image.resize(size, Image.LANCZOS) def wget_file(url, out): try: output = subprocess.check_output(["wget", "-O", out, url]) except subprocess.CalledProcessError as cpe: output = e.output print("Ignoring non-zero exit: ", output) def do_init(args): global model, opt, perceptors, normalize, cutoutsTable, cutoutSizeTable global z, z_orig, z_targets, z_labels, z_min, z_max, init_image_tensor global gside_X, gside_Y, overlay_image_rgba global pmsTable, pImages, device, spotPmsTable, spotOffPmsTable # Do it (init that is) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") if args.vqgan_config is not None: vqgan_config = args.vqgan_config vqgan_checkpoint = args.vqgan_checkpoint else: # the "vqgan_model" option also downloads if necessary vqgan_config = f"models/vqgan_{args.vqgan_model}.yaml" vqgan_checkpoint = f"models/vqgan_{args.vqgan_model}.ckpt" if not os.path.exists(vqgan_config): wget_file(vqgan_config_table[args.vqgan_model], vqgan_config) if not os.path.exists(vqgan_checkpoint): wget_file(vqgan_checkpoint_table[args.vqgan_model], vqgan_checkpoint) model = load_vqgan_model(vqgan_config, vqgan_checkpoint).to(device) jit = True if float(torch.__version__[:3]) < 1.8 else False f = 2 ** (model.decoder.num_resolutions - 1) for clip_model in args.clip_models: perceptor = ( clip.load(clip_model, jit=jit)[0].eval().requires_grad_(False).to(device) ) perceptors[clip_model] = perceptor # TODO: is one cut_size enought? I hope so. cut_size = perceptor.visual.input_resolution cutoutSizeTable[clip_model] = cut_size if not cut_size in cutoutsTable: make_cutouts = MakeCutouts(cut_size, args.num_cuts, cut_pow=args.cut_pow) cutoutsTable[cut_size] = make_cutouts toksX, toksY = args.size[0] // f, args.size[1] // f sideX, sideY = toksX * f, toksY * f if gumbel: e_dim = 256 n_toks = model.quantize.n_embed z_min = model.quantize.embed.weight.min(dim=0).values[None, :, None, None] z_max = model.quantize.embed.weight.max(dim=0).values[None, :, None, None] else: e_dim = model.quantize.e_dim n_toks = model.quantize.n_e z_min = model.quantize.embedding.weight.min(dim=0).values[None, :, None, None] z_max = model.quantize.embedding.weight.max(dim=0).values[None, :, None, None] # z_min = model.quantize.embedding.weight.min(dim=0).values[None, :, None, None] # z_max = model.quantize.embedding.weight.max(dim=0).values[None, :, None, None] # normalize_imagenet = transforms.Normalize(mean=[0.485, 0.456, 0.406], # std=[0.229, 0.224, 0.225]) # save sideX, sideY in globals (need if using overlay) gside_X = sideX gside_Y = sideY init_image_tensor = None # Image initialisation if args.init_image or args.init_noise: # setup init image wih pil # first - always start with noise or blank if args.init_noise == "pixels": img = random_noise_image(args.size[0], args.size[1]) elif args.init_noise == "gradient": img = random_gradient_image(args.size[0], args.size[1]) else: img = Image.new( mode="RGB", size=(args.size[0], args.size[1]), color=(255, 255, 255) ) starting_image = img.convert("RGB") starting_image = starting_image.resize((sideX, sideY), Image.LANCZOS) if args.init_image: # now we might overlay an init image (init_image also can be recycled as overlay) if "http" in args.init_image: init_image = Image.open(urlopen(args.init_image)) else: init_image = Image.open(args.init_image) # this version is needed potentially for the loss function init_image_rgb = init_image.convert("RGB") init_image_rgb = init_image_rgb.resize((sideX, sideY), Image.LANCZOS) init_image_tensor = TF.to_tensor(init_image_rgb) init_image_tensor = init_image_tensor.to(device).unsqueeze(0) # this version gets overlaid on the background (noise) init_image_rgba = init_image.convert("RGBA") init_image_rgba = init_image_rgba.resize((sideX, sideY), Image.LANCZOS) top_image = init_image_rgba.copy() if args.init_image_alpha and args.init_image_alpha >= 0: top_image.putalpha(args.init_image_alpha) starting_image.paste(top_image, (0, 0), top_image) starting_image.save("starting_image.png") starting_tensor = TF.to_tensor(starting_image) z, *_ = model.encode(starting_tensor.to(device).unsqueeze(0) * 2 - 1) else: # legacy init one_hot = F.one_hot( torch.randint(n_toks, [toksY * toksX], device=device), n_toks ).float() # z = one_hot @ model.quantize.embedding.weight if gumbel: z = one_hot @ model.quantize.embed.weight else: z = one_hot @ model.quantize.embedding.weight z = z.view([-1, toksY, toksX, e_dim]).permute(0, 3, 1, 2) if args.overlay_every: if args.overlay_image: if "http" in args.overlay_image: overlay_image = Image.open(urlopen(args.overlay_image)) else: overlay_image = Image.open(args.overlay_image) overlay_image_rgba = overlay_image.convert("RGBA") overlay_image_rgba = overlay_image_rgba.resize( (sideX, sideY), Image.LANCZOS ) else: overlay_image_rgba = init_image_rgba if args.overlay_alpha: overlay_image_rgba.putalpha(args.overlay_alpha) overlay_image_rgba.save("overlay_image.png") if args.target_images is not None: z_targets = [] filelist = real_glob(args.target_images) for target_image in filelist: target_image = Image.open(target_image) target_image_rgb = target_image.convert("RGB") target_image_rgb = target_image_rgb.resize((sideX, sideY), Image.LANCZOS) target_image_tensor = TF.to_tensor(target_image_rgb) target_image_tensor = target_image_tensor.to(device).unsqueeze(0) * 2 - 1 z_target, *_ = model.encode(target_image_tensor) z_targets.append(z_target) if args.image_labels is not None: z_labels = [] filelist = real_glob(args.image_labels) cur_labels = [] for image_label in filelist: image_label = Image.open(image_label) image_label_rgb = image_label.convert("RGB") image_label_rgb = image_label_rgb.resize((sideX, sideY), Image.LANCZOS) image_label_rgb_tensor = TF.to_tensor(image_label_rgb) image_label_rgb_tensor = ( image_label_rgb_tensor.to(device).unsqueeze(0) * 2 - 1 ) z_label, *_ = model.encode(image_label_rgb_tensor) cur_labels.append(z_label) image_embeddings = torch.stack(cur_labels) print("Processing labels: ", image_embeddings.shape) image_embeddings /= image_embeddings.norm(dim=-1, keepdim=True) image_embeddings = image_embeddings.mean(dim=0) image_embeddings /= image_embeddings.norm() z_labels.append(image_embeddings.unsqueeze(0)) z_orig = z.clone() z.requires_grad_(True) pmsTable = {} spotPmsTable = {} spotOffPmsTable = {} for clip_model in args.clip_models: pmsTable[clip_model] = [] spotPmsTable[clip_model] = [] spotOffPmsTable[clip_model] = [] pImages = [] normalize = transforms.Normalize( mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711], ) # CLIP tokenize/encode # NR: Weights / blending for prompt in args.prompts: for clip_model in args.clip_models: pMs = pmsTable[clip_model] perceptor = perceptors[clip_model] txt, weight, stop = parse_prompt(prompt) embed = perceptor.encode_text(clip.tokenize(txt).to(device)).float() pMs.append(Prompt(embed, weight, stop).to(device)) for prompt in args.spot_prompts: for clip_model in args.clip_models: pMs = spotPmsTable[clip_model] perceptor = perceptors[clip_model] txt, weight, stop = parse_prompt(prompt) embed = perceptor.encode_text(clip.tokenize(txt).to(device)).float() pMs.append(Prompt(embed, weight, stop).to(device)) for prompt in args.spot_prompts_off: for clip_model in args.clip_models: pMs = spotOffPmsTable[clip_model] perceptor = perceptors[clip_model] txt, weight, stop = parse_prompt(prompt) embed = perceptor.encode_text(clip.tokenize(txt).to(device)).float() pMs.append(Prompt(embed, weight, stop).to(device)) for label in args.labels: for clip_model in args.clip_models: pMs = pmsTable[clip_model] perceptor = perceptors[clip_model] txt, weight, stop = parse_prompt(label) texts = [ template.format(txt) for template in imagenet_templates ] # format with class print(f"Tokenizing all of {texts}") texts = clip.tokenize(texts).to(device) # tokenize class_embeddings = perceptor.encode_text(texts) # embed with text encoder class_embeddings /= class_embeddings.norm(dim=-1, keepdim=True) class_embedding = class_embeddings.mean(dim=0) class_embedding /= class_embedding.norm() pMs.append(Prompt(class_embedding.unsqueeze(0), weight, stop).to(device)) for prompt in args.image_prompts: path, weight, stop = parse_prompt(prompt) img = Image.open(path) pil_image = img.convert("RGB") img = resize_image(pil_image, (sideX, sideY)) pImages.append(TF.to_tensor(img).unsqueeze(0).to(device)) # batch = make_cutouts(TF.to_tensor(img).unsqueeze(0).to(device)) # embed = perceptor.encode_image(normalize(batch)).float() # pMs.append(Prompt(embed, weight, stop).to(device)) for seed, weight in zip(args.noise_prompt_seeds, args.noise_prompt_weights): gen = torch.Generator().manual_seed(seed) embed = torch.empty([1, perceptor.visual.output_dim]).normal_(generator=gen) pMs.append(Prompt(embed, weight).to(device)) # Set the optimiser if args.optimiser == "Adam": opt = optim.Adam([z], lr=args.step_size) # LR=0.1 elif args.optimiser == "AdamW": opt = optim.AdamW([z], lr=args.step_size) # LR=0.2 elif args.optimiser == "Adagrad": opt = optim.Adagrad([z], lr=args.step_size) # LR=0.5+ elif args.optimiser == "Adamax": opt = optim.Adamax([z], lr=args.step_size) # LR=0.5+? elif args.optimiser == "DiffGrad": opt = DiffGrad([z], lr=args.step_size) # LR=2+? elif args.optimiser == "AdamP": opt = AdamP([z], lr=args.step_size) # LR=2+? elif args.optimiser == "RAdam": opt = RAdam([z], lr=args.step_size) # LR=2+? # Output for the user print("Using device:", device) print("Optimising using:", args.optimiser) if args.prompts: print("Using text prompts:", args.prompts) if args.spot_prompts: print("Using spot prompts:", args.spot_prompts) if args.spot_prompts_off: print("Using spot off prompts:", args.spot_prompts_off) if args.image_prompts: print("Using image prompts:", args.image_prompts) if args.init_image: print("Using initial image:", args.init_image) if args.noise_prompt_weights: print("Noise prompt weights:", args.noise_prompt_weights) if args.seed is None: seed = torch.seed() else: seed = args.seed torch.manual_seed(seed) print("Using seed:", seed) def synth(z): if gumbel: z_q = vector_quantize(z.movedim(1, 3), model.quantize.embed.weight).movedim( 3, 1 ) # Vector quantize else: z_q = vector_quantize(z.movedim(1, 3), model.quantize.embedding.weight).movedim( 3, 1 ) return clamp_with_grad(model.decode(z_q).add(1).div(2), 0, 1) # dreaded globals (for now) z = None z_orig = None z_targets = None z_labels = None z_min = None z_max = None opt = None model = None perceptors = {} normalize = None cutoutsTable = {} cutoutSizeTable = {} init_image_tensor = None pmsTable = None spotPmsTable = None spotOffPmsTable = None pImages = None gside_X = None gside_Y = None overlay_image_rgba = None device = None # OK, THIS ONE IS AWFUL i = None @torch.no_grad() def z_to_pil(): global z out = synth(z) return TF.to_pil_image(out[0].cpu()) @torch.no_grad() def checkin(args, i, losses): losses_str = ", ".join(f"{loss.item():g}" for loss in losses) tqdm.write(f"i: {i}, loss: {sum(losses).item():g}, losses: {losses_str}") info = PngImagePlugin.PngInfo() info.add_text("comment", f"{args.prompts}") img = z_to_pil() img.save(args.output, pnginfo=info) if IS_NOTEBOOK: display.display(display.Image(args.output)) def ascend_txt(args): global i, perceptors, normalize, cutoutsTable, cutoutSizeTable global z, z_orig, z_targets, z_labels, init_image_tensor global pmsTable, spotPmsTable, spotOffPmsTable, global_padding_mode out = synth(z) result = [] if i % 2 == 0: global_padding_mode = "reflection" else: global_padding_mode = "border" cur_cutouts = {} cur_spot_cutouts = {} cur_spot_off_cutouts = {} for cutoutSize in cutoutsTable: make_cutouts = cutoutsTable[cutoutSize] cur_cutouts[cutoutSize] = make_cutouts(out) if args.spot_prompts: for cutoutSize in cutoutsTable: cur_spot_cutouts[cutoutSize] = make_cutouts(out, spot=1) if args.spot_prompts_off: for cutoutSize in cutoutsTable: cur_spot_off_cutouts[cutoutSize] = make_cutouts(out, spot=0) for clip_model in args.clip_models: perceptor = perceptors[clip_model] cutoutSize = cutoutSizeTable[clip_model] transient_pMs = [] if args.spot_prompts: iii_s = perceptor.encode_image( normalize(cur_spot_cutouts[cutoutSize]) ).float() spotPms = spotPmsTable[clip_model] for prompt in spotPms: result.append(prompt(iii_s)) if args.spot_prompts_off: iii_so = perceptor.encode_image( normalize(cur_spot_off_cutouts[cutoutSize]) ).float() spotOffPms = spotOffPmsTable[clip_model] for prompt in spotOffPms: result.append(prompt(iii_so)) pMs = pmsTable[clip_model] iii = perceptor.encode_image(normalize(cur_cutouts[cutoutSize])).float() for prompt in pMs: result.append(prompt(iii)) # If there are image prompts we make cutouts for those each time # so that they line up with the current cutouts from augmentation make_cutouts = cutoutsTable[cutoutSize] for timg in pImages: # note: this caches and reuses the transforms - a bit of a hack but it works if args.image_prompt_shuffle: # print("Disabling cached transforms") make_cutouts.transforms = None # new way builds throwaway Prompts batch = make_cutouts(timg) embed = perceptor.encode_image(normalize(batch)).float() if args.image_prompt_weight is not None: transient_pMs.append(Prompt(embed, args.image_prompt_weight).to(device)) else: transient_pMs.append(Prompt(embed).to(device)) for prompt in transient_pMs: result.append(prompt(iii)) for cutoutSize in cutoutsTable: # clear the transform "cache" make_cutouts = cutoutsTable[cutoutSize] make_cutouts.transforms = None # main init_weight uses spherical loss if args.target_images is not None: for z_target in z_targets: f = z.reshape(1, -1) f2 = z_target.reshape(1, -1) cur_loss = spherical_dist_loss(f, f2) * args.target_image_weight result.append(cur_loss) if args.image_labels is not None: for z_label in z_labels: f = z.reshape(1, -1) f2 = z_label.reshape(1, -1) cur_loss = spherical_dist_loss(f, f2) * args.image_label_weight result.append(cur_loss) # main init_weight uses spherical loss if args.init_weight: f = z.reshape(1, -1) f2 = z_orig.reshape(1, -1) cur_loss = spherical_dist_loss(f, f2) * args.init_weight result.append(cur_loss) # these three init_weight variants offer mse_loss, mse_loss in pixel space, and cos loss if args.init_weight_dist: cur_loss = F.mse_loss(z, z_orig) * args.init_weight_dist / 2 result.append(cur_loss) if args.init_weight_pix: if init_image_tensor is None: print("OOPS IIT is 0") else: # TF.to_pil_image(out[0].cpu()).save(f"out_1.png") # TF.to_pil_image(init_image_tensor[0].cpu()).save(f"init_1.png") # print(out.shape) # print(init_image_tensor.shape) # print(out[0][0]) # print(init_image_tensor[0][0]) cur_loss = F.l1_loss(out, init_image_tensor) * args.init_weight_pix / 2 result.append(cur_loss) if args.init_weight_cos: f = z.reshape(1, -1) f2 = z_orig.reshape(1, -1) y = torch.ones_like(f[0]) cur_loss = F.cosine_embedding_loss(f, f2, y) * args.init_weight_cos result.append(cur_loss) if args.make_video: img = np.array( out.mul(255).clamp(0, 255)[0].cpu().detach().numpy().astype(np.uint8) )[:, :, :] img = np.transpose(img, (1, 2, 0)) imageio.imwrite(f"./steps/frame_{i:04d}.png", np.array(img)) return result def re_average_z(args): global z, gside_X, gside_Y global model, device # old_z = z.clone() cur_z_image = z_to_pil() cur_z_image = cur_z_image.convert("RGB") if overlay_image_rgba: # print("applying overlay image") cur_z_image.paste(overlay_image_rgba, (0, 0), overlay_image_rgba) cur_z_image.save("overlaid.png") cur_z_image = cur_z_image.resize((gside_X, gside_Y), Image.LANCZOS) new_z, *_ = model.encode(TF.to_tensor(cur_z_image).to(device).unsqueeze(0) * 2 - 1) # t_dist = F.pairwise_distance(new_z, old_z) with torch.no_grad(): z.copy_(new_z) # with torch.no_grad(): # z.copy_(z.maximum(z_min).minimum(z_max)) # torch.autograd.set_detect_anomaly(True) def train(args, i): global z, z_min, z_max opt.zero_grad(set_to_none=True) lossAll = ascend_txt(args) if i % args.display_freq == 0: checkin(args, i, lossAll) loss = sum(lossAll) loss.backward() opt.step() if ( args.overlay_every and i != 0 and (i % (args.overlay_every + args.overlay_offset)) == 0 ): re_average_z(args) with torch.no_grad(): z.copy_(z.maximum(z_min).minimum(z_max)) imagenet_templates = [ "itap of a {}.", "a bad photo of the {}.", "a origami {}.", "a photo of the large {}.", "a {} in a video game.", "art of the {}.", "a photo of the small {}.", ] def do_run(args): global i i = 0 try: with tqdm() as pbar: while True: try: train(args, i) if i == args.iterations: break i += 1 pbar.update() except RuntimeError as e: print("Oops: runtime error: ", e) print("Try reducing --num-cuts to save memory") raise e except KeyboardInterrupt: pass if args.make_video: do_video(settings) def do_video(args): global i # Video generation init_frame = 1 # This is the frame where the video will start last_frame = i # You can change i to the number of the last frame you want to generate. It will raise an error if that number of frames does not exist. min_fps = 10 max_fps = 60 total_frames = last_frame - init_frame length = 15 # Desired time of the video in seconds frames = [] tqdm.write("Generating video...") for i in range(init_frame, last_frame): # frames.append(Image.open(f"./steps/frame_{i:04d}.png")) # fps = last_frame/10 fps = np.clip(total_frames / length, min_fps, max_fps) from subprocess import Popen, PIPE import re output_file = re.compile("\.png$").sub(".mp4", args.output) p = Popen( [ "ffmpeg", "-y", "-f", "image2pipe", "-vcodec", "png", "-r", str(fps), "-i", "-", "-vcodec", "libx264", "-r", str(fps), "-pix_fmt", "yuv420p", "-crf", "17", "-preset", "veryslow", "-metadata", f"comment={args.prompts}", output_file, ], stdin=PIPE, ) for im in tqdm(frames): im.save(p.stdin, "PNG") p.stdin.close() p.wait() # this dictionary is used for settings in the notebook global_clipit_settings = {} def setup_parser(): # Create the parser vq_parser = argparse.ArgumentParser(description="Image generation using VQGAN+CLIP") # Add the arguments vq_parser.add_argument( "-p", "--prompts", type=str, help="Text prompts", default=[], dest="prompts" ) vq_parser.add_argument( "-sp", "--spot", type=str, help="Spot Text prompts", default=[], dest="spot_prompts", ) vq_parser.add_argument( "-spo", "--spot_off", type=str, help="Spot off Text prompts", default=[], dest="spot_prompts_off", ) vq_parser.add_argument( "-l", "--labels", type=str, help="ImageNet labels", default=[], dest="labels" ) vq_parser.add_argument( "-ip", "--image_prompts", type=str, help="Image prompts", default=[], dest="image_prompts", ) vq_parser.add_argument( "-ipw", "--image_prompt_weight", type=float, help="Weight for image prompt", default=None, dest="image_prompt_weight", ) vq_parser.add_argument( "-ips", "--image_prompt_shuffle", type=bool, help="Shuffle image prompts", default=False, dest="image_prompt_shuffle", ) vq_parser.add_argument( "-il", "--image_labels", type=str, help="Image prompts", default=None, dest="image_labels", ) vq_parser.add_argument( "-ilw", "--image_label_weight", type=float, help="Weight for image prompt", default=1.0, dest="image_label_weight", ) vq_parser.add_argument( "-i", "--iterations", type=int, help="Number of iterations", default=None, dest="iterations", ) vq_parser.add_argument( "-se", "--save_every", type=int, help="Save image iterations", default=50, dest="display_freq", ) vq_parser.add_argument( "-ove", "--overlay_every", type=int, help="Overlay image iterations", default=None, dest="overlay_every", ) vq_parser.add_argument( "-ovo", "--overlay_offset", type=int, help="Overlay image iteration offset", default=0, dest="overlay_offset", ) vq_parser.add_argument( "-ovi", "--overlay_image", type=str, help="Overlay image (if not init)", default=None, dest="overlay_image", ) vq_parser.add_argument( "-qua", "--quality", type=str, help="draft, normal, best", default="normal", dest="quality", ) vq_parser.add_argument( "-asp", "--aspect", type=str, help="widescreen, square", default="widescreen", dest="aspect", ) vq_parser.add_argument( "-ezs", "--ezsize", type=str, help="small, medium, large", default=None, dest="ezsize", ) vq_parser.add_argument( "-sca", "--scale", type=float, help="scale (instead of ezsize)", default=None, dest="scale", ) vq_parser.add_argument( "-ova", "--overlay_alpha", type=int, help="Overlay alpha (0-255)", default=None, dest="overlay_alpha", ) vq_parser.add_argument( "-s", "--size", nargs=2, type=int, help="Image size (width height)", default=None, dest="size", ) vq_parser.add_argument( "-ii", "--init_image", type=str, help="Initial image", default=None, dest="init_image", ) vq_parser.add_argument( "-iia", "--init_image_alpha", type=int, help="Init image alpha (0-255)", default=200, dest="init_image_alpha", ) vq_parser.add_argument( "-in", "--init_noise", type=str, help="Initial noise image (pixels or gradient)", default="pixels", dest="init_noise", ) vq_parser.add_argument( "-ti", "--target_images", type=str, help="Target images", default=None, dest="target_images", ) vq_parser.add_argument( "-tiw", "--target_image_weight", type=float, help="Target images weight", default=1.0, dest="target_image_weight", ) vq_parser.add_argument( "-iw", "--init_weight", type=float, help="Initial weight (main=spherical)", default=None, dest="init_weight", ) vq_parser.add_argument( "-iwd", "--init_weight_dist", type=float, help="Initial weight dist loss", default=0.0, dest="init_weight_dist", ) vq_parser.add_argument( "-iwc", "--init_weight_cos", type=float, help="Initial weight cos loss", default=0.0, dest="init_weight_cos", ) vq_parser.add_argument( "-iwp", "--init_weight_pix", type=float, help="Initial weight pix loss", default=0.0, dest="init_weight_pix", ) vq_parser.add_argument( "-m", "--clip_models", type=str, help="CLIP model", default=None, dest="clip_models", ) vq_parser.add_argument( "-vqgan", "--vqgan_model", type=str, help="VQGAN model", default="imagenet_f16_16384", dest="vqgan_model", ) vq_parser.add_argument( "-conf", "--vqgan_config", type=str, help="VQGAN config", default=None, dest="vqgan_config", ) vq_parser.add_argument( "-ckpt", "--vqgan_checkpoint", type=str, help="VQGAN checkpoint", default=None, dest="vqgan_checkpoint", ) vq_parser.add_argument( "-nps", "--noise_prompt_seeds", nargs="*", type=int, help="Noise prompt seeds", default=[], dest="noise_prompt_seeds", ) vq_parser.add_argument( "-npw", "--noise_prompt_weights", nargs="*", type=float, help="Noise prompt weights", default=[], dest="noise_prompt_weights", ) vq_parser.add_argument( "-lr", "--learning_rate", type=float, help="Learning rate", default=0.2, dest="step_size", ) vq_parser.add_argument( "-cuts", "--num_cuts", type=int, help="Number of cuts", default=None, dest="num_cuts", ) vq_parser.add_argument( "-cutp", "--cut_power", type=float, help="Cut power", default=1.0, dest="cut_pow", ) vq_parser.add_argument( "-sd", "--seed", type=int, help="Seed", default=None, dest="seed" ) vq_parser.add_argument( "-opt", "--optimiser", type=str, help="Optimiser (Adam, AdamW, Adagrad, Adamax, DiffGrad, AdamP or RAdam)", default="Adam", dest="optimiser", ) vq_parser.add_argument( "-o", "--output", type=str, help="Output file", default="output.png", dest="output", ) vq_parser.add_argument( "-vid", "--video", type=bool, help="Create video frames?", default=False, dest="make_video", ) vq_parser.add_argument( "-d", "--deterministic", type=bool, help="Enable cudnn.deterministic?", default=False, dest="cudnn_determinism", ) return vq_parser square_size = [144, 144] widescreen_size = [200, 112] # at the small size this becomes 192,112 def process_args(vq_parser, namespace=None): global global_aspect_width if namespace == None: # command line: use ARGV to get args args = vq_parser.parse_args() else: # notebook, ignore ARGV and use dictionary instead args = vq_parser.parse_args(args=[], namespace=namespace) if args.cudnn_determinism: torch.backends.cudnn.deterministic = True quality_to_clip_models_table = { "draft": "ViT-B/32", "normal": "ViT-B/32,ViT-B/16", "better": "RN50,ViT-B/32,ViT-B/16", "best": "RN50x4,ViT-B/32,ViT-B/16", } quality_to_iterations_table = { "draft": 200, "normal": 350, "better": 500, "best": 500, } quality_to_scale_table = {"draft": 1, "normal": 2, "better": 3, "best": 4} # this should be replaced with logic that does somethings # smart based on available memory (eg: size, num_models, etc) quality_to_num_cuts_table = {"draft": 40, "normal": 40, "better": 40, "best": 40} if args.quality not in quality_to_clip_models_table: print("Qualitfy setting not understood, aborting -> ", argz.quality) exit(1) if args.clip_models is None: args.clip_models = quality_to_clip_models_table[args.quality] if args.iterations is None: args.iterations = quality_to_iterations_table[args.quality] if args.num_cuts is None: args.num_cuts = quality_to_num_cuts_table[args.quality] if args.ezsize is None and args.scale is None: args.scale = quality_to_scale_table[args.quality] size_to_scale_table = {"small": 1, "medium": 2, "large": 4} aspect_to_size_table = {"square": [150, 150], "widescreen": [200, 112]} # determine size if not set if args.size is None: size_scale = args.scale if size_scale is None: if args.ezsize in size_to_scale_table: size_scale = size_to_scale_table[args.ezsize] else: print("EZ Size not understood, aborting -> ", argz.ezsize) exit(1) if args.aspect in aspect_to_size_table: base_size = aspect_to_size_table[args.aspect] base_width = int(size_scale * base_size[0]) base_height = int(size_scale * base_size[1]) args.size = [base_width, base_height] else: print("aspect not understood, aborting -> ", argz.aspect) exit(1) if args.aspect == "widescreen": global_aspect_width = 16 / 9 if args.init_noise.lower() == "none": args.init_noise = None # Split text prompts using the pipe character if args.prompts: args.prompts = [phrase.strip() for phrase in args.prompts.split("|")] # Split text prompts using the pipe character if args.spot_prompts: args.spot_prompts = [phrase.strip() for phrase in args.spot_prompts.split("|")] # Split text prompts using the pipe character if args.spot_prompts_off: args.spot_prompts_off = [ phrase.strip() for phrase in args.spot_prompts_off.split("|") ] # Split text labels using the pipe character if args.labels: args.labels = [phrase.strip() for phrase in args.labels.split("|")] # Split target images using the pipe character if args.image_prompts: args.image_prompts = args.image_prompts.split("|") args.image_prompts = [image.strip() for image in args.image_prompts] # legacy "spread mode" removed # if args.init_weight is not None: # args.init_weight_pix = args.init_weight # args.init_weight_cos = args.init_weight # args.init_weight_dist = args.init_weight if args.overlay_every is not None and args.overlay_every <= 0: args.overlay_every = None clip_models = args.clip_models.split(",") args.clip_models = [model.strip() for model in clip_models] # Make video steps directory if args.make_video: if not os.path.exists("steps"): os.mkdir("steps") return args def reset_settings(): global global_clipit_settings global_clipit_settings = {} def add_settings(**kwargs): global global_clipit_settings for k, v in kwargs.items(): if v is None: # just remove the key if it is there global_clipit_settings.pop(k, None) else: global_clipit_settings[k] = v def apply_settings(): global global_clipit_settings settingsDict = None vq_parser = setup_parser() if len(global_clipit_settings) > 0: # check for any bogus entries in the settings dests = [d.dest for d in vq_parser._actions] for k in global_clipit_settings: if not k in dests: raise ValueError( f"Requested setting not found, aborting: {k}={global_clipit_settings[k]}" ) # convert dictionary to easyDict # which can be used as an argparse namespace instead # settingsDict = easydict.EasyDict(global_clipit_settings) settingsDict = SimpleNamespace(**global_clipit_settings) settings = process_args(vq_parser, settingsDict) return settings def main(): settings = apply_settings() do_init(settings) do_run(settings) if __name__ == "__main__": main()
the-stack_0_14699
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2012, Red Hat, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Unit Tests for nova.cert.rpcapi """ from oslo.config import cfg from nova.cert import rpcapi as cert_rpcapi from nova import context from nova.openstack.common import rpc from nova import test CONF = cfg.CONF class CertRpcAPITestCase(test.NoDBTestCase): def _test_cert_api(self, method, **kwargs): ctxt = context.RequestContext('fake_user', 'fake_project') rpcapi = cert_rpcapi.CertAPI() expected_retval = 'foo' expected_version = kwargs.pop('version', rpcapi.BASE_RPC_API_VERSION) expected_msg = rpcapi.make_msg(method, **kwargs) expected_msg['version'] = expected_version self.call_ctxt = None self.call_topic = None self.call_msg = None self.call_timeout = None def _fake_call(_ctxt, _topic, _msg, _timeout): self.call_ctxt = _ctxt self.call_topic = _topic self.call_msg = _msg self.call_timeout = _timeout return expected_retval self.stubs.Set(rpc, 'call', _fake_call) retval = getattr(rpcapi, method)(ctxt, **kwargs) self.assertEqual(retval, expected_retval) self.assertEqual(self.call_ctxt, ctxt) self.assertEqual(self.call_topic, CONF.cert_topic) self.assertEqual(self.call_msg, expected_msg) self.assertIsNone(self.call_timeout) def test_revoke_certs_by_user(self): self._test_cert_api('revoke_certs_by_user', user_id='fake_user_id') # NOTE(russellb) Havana compat self.flags(cert='havana', group='upgrade_levels') self._test_cert_api('revoke_certs_by_user', user_id='fake_user_id', version='1.0') def test_revoke_certs_by_project(self): self._test_cert_api('revoke_certs_by_project', project_id='fake_project_id') # NOTE(russellb) Havana compat self.flags(cert='havana', group='upgrade_levels') self._test_cert_api('revoke_certs_by_project', project_id='fake_project_id', version='1.0') def test_revoke_certs_by_user_and_project(self): self._test_cert_api('revoke_certs_by_user_and_project', user_id='fake_user_id', project_id='fake_project_id') # NOTE(russellb) Havana compat self.flags(cert='havana', group='upgrade_levels') self._test_cert_api('revoke_certs_by_user_and_project', user_id='fake_user_id', project_id='fake_project_id', version='1.0') def test_generate_x509_cert(self): self._test_cert_api('generate_x509_cert', user_id='fake_user_id', project_id='fake_project_id') # NOTE(russellb) Havana compat self.flags(cert='havana', group='upgrade_levels') self._test_cert_api('generate_x509_cert', user_id='fake_user_id', project_id='fake_project_id', version='1.0') def test_fetch_ca(self): self._test_cert_api('fetch_ca', project_id='fake_project_id') # NOTE(russellb) Havana compat self.flags(cert='havana', group='upgrade_levels') self._test_cert_api('fetch_ca', project_id='fake_project_id', version='1.0') def test_fetch_crl(self): self._test_cert_api('fetch_crl', project_id='fake_project_id') # NOTE(russellb) Havana compat self.flags(cert='havana', group='upgrade_levels') self._test_cert_api('fetch_crl', project_id='fake_project_id', version='1.0') def test_decrypt_text(self): self._test_cert_api('decrypt_text', project_id='fake_project_id', text='blah') # NOTE(russellb) Havana compat self.flags(cert='havana', group='upgrade_levels') self._test_cert_api('decrypt_text', project_id='fake_project_id', text='blah', version='1.0')
the-stack_0_14702
# :coding: utf-8 import re import functools from .helper import collapse_all from .helper import get_docstring #: Regular Expression pattern for data _DATA_PATTERN = re.compile( r"(?P<start_regex>(\n|^)) *(?P<export>export +)?(?P<default>default +)?" r"(?P<type>(const|let|var)) (?P<name>[\w._-]+) *= *(?P<value>.+?;)", re.DOTALL ) def fetch_environment(content, module_id): """Return data environment dictionary from *content*. *module_id* represent the identifier of the module. The environment is in the form of:: { "moduleName.DATA": { "id": "moduleName.DATA", "module_id": "moduleName", "exported": False, "default": False, "name": "DATA", "value": "42", "type": "const", "line_number": 2, "description": "Variable doc.\\n\\nDetailed description." } } """ environment = {} lines = content.split("\n") # The comment filter is made during the collapse content process to # preserve the entire value (with semi-colons and docstrings!) content, collapsed_content = collapse_all(content, filter_comment=True) for match in _DATA_PATTERN.finditer(content): data_id = ".".join([module_id, match.group("name")]) line_number = ( content[:match.start()].count("\n") + match.group("start_regex").count("\n") + 1 ) value = match.group("value") if "{}" in value and line_number in collapsed_content.keys(): value = value.replace("{}", collapsed_content[line_number]) # Do not keep semi-colon in value if value.endswith(";"): value = value[:-1] data_environment = { "id": data_id, "module_id": module_id, "exported": match.group("export") is not None, "default": match.group("default") is not None, "name": match.group("name"), "value": functools.reduce(_clean_value, value.split('\n')).strip(), "type": match.group("type"), "line_number": line_number, "description": get_docstring(line_number, lines) } environment[data_id] = data_environment return environment def _clean_value(line1, line2): """Clean up variable value for display.""" _line1 = line1.strip() _line2 = line2.strip() # Let trailing space to make the code easier to read if _line1[-1:] in ["{", "}", "(", ")", "[", "]", ";", ","]: _line1 += " " return _line1 + _line2
the-stack_0_14704
#! /usr/bin/env python ################################################################################ # # DemoFusion.py # """Fusion Demo The Fusion Demo demonstrates a command-line interface to the Fusion Reactor application. Author: Robin D. Knight Email: [email protected] URL: http://www.roadnarrowsrobotics.com Date: 2005.01.05 Copyright (C) 2006. RoadNarrows LLC. """ # # All Rights Reserved # # Permission is hereby granted, without written agreement and without # license or royalty fees, to use, copy, modify, and distribute this # software and its documentation for any purpose, provided that # (1) The above copyright notice and the following two paragraphs # appear in all copies of the source code and (2) redistributions # including binaries reproduces these notices in the supporting # documentation. Substantial modifications to this software may be # copyrighted by their authors and need not follow the licensing terms # described here, provided that the new terms are clearly indicated in # all files where they apply. # # IN NO EVENT SHALL THE AUTHOR, ROADNARROWS LLC, OR ANY MEMBERS/EMPLOYEES # OF ROADNARROW LLC OR DISTRIBUTORS OF THIS SOFTWARE BE LIABLE TO ANY # PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL # DAMAGES ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, # EVEN IF THE AUTHORS OR ANY OF THE ABOVE PARTIES HAVE BEEN ADVISED OF # THE POSSIBILITY OF SUCH DAMAGE. # # THE AUTHOR AND ROADNARROWS LLC SPECIFICALLY DISCLAIM ANY WARRANTIES, # INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND # FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN # "AS IS" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE NO OBLIGATION TO # PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. # ################################################################################ import sys import getopt import Fusion.Core.Reactor as Reactor _Argv0 = '' #-- class Usage(Exception): """ Command-Line Options Usage Exception Class. """ def __init__(self, msg): self.msg = msg #-- def PrintUsageErr(emsg): """ Print Error Usage Message. """ if emsg: print("%s: %s" % (_Argv0, emsg)) else: print("%s: error" % (_Argv0)) print("Try '%s --help' for more information." % (_Argv0)) #-- def PrintUsage(): """ Print Fusion Command-Line Usage Message """ print("usage: %s [options]..." % (_Argv0)) print("""Options and arguments: -i, --ini <filename> : additional ini configuration file. Default: None --debuglevel <num> : debug level 0=off, 1 - 5. Default: 0 --debugfile <filename> : debug output filename. Default: stdout -h, --help : Display this help and exit. Environment variables: FUSION : points to the Fusion package base directory FUSIONSTARTUP : a site/user standard ini configuration file """) #-- def main(argv=None, **kwargs): """ Fusion Main. """ global _Argv0 print('main') if argv is None: argv = sys.argv print('args', repr(argv)) _Argv0 = argv[0] #if 'argv0' in kwargs: # _Argv0 = kwargs['argv0'] #else: # _Argv0 = __file__ # Reactor defaults kwargs = {'vRobot': None, 'vBrain': None, 'iniFileName': None, 'debuglevel': 0, 'debugfout': None} try: try: opts, args = getopt.getopt(argv[1:], "?hi:", ['help', 'ini=', 'debuglevel=', 'debugfile=']) except getopt.error as msg: raise Usage(msg) for opt, optarg in opts: if opt in ('-h', '--help', '-?'): PrintUsage() return 0 elif opt in ('-i', '--ini'): kwargs['iniFileName'] = optarg elif opt in ('--debuglevel'): try: kwargs['debuglevel'] = int(optarg) except ValueError as msg: raise Usage(msg) elif opt in ('--debugfile'): try: fout = open(optarg, 'w') except IOError as msg: raise Usage(msg) kwargs['debugfout'] = fout except Usage as err: PrintUsageErr(err.msg) return 2 reactor = Reactor.Reactor(**kwargs) reactor.mGuiRoot.mainloop() return 0 # run fusion if __name__ == "__main__": sys.exit( main(argv=None) )
the-stack_0_14705
result = 0 instructions = [] registers = { "a": 0, "b": 0 } with open("input.txt", "r") as input: for line in input: line = line.strip().replace(",","").split() opcode = line[0] if opcode == "jmp": offset = int(line[1]) reg = None else: offset = None reg = line[1] if opcode in ["jie", "jio"]: offset = int(line[2]) instructions.append({ "opcode": opcode, "reg": reg, "offset": offset }) i = 0 while 0 <= i < len(instructions): instruction = instructions[i] opcode = instruction["opcode"] reg = instruction["reg"] offset = instruction["offset"] if opcode == "jmp": i += offset elif opcode == "jie": if registers[reg] % 2 == 0: i += offset else: i += 1 elif opcode == "jio": if registers[reg] == 1: i += offset else: i += 1 else: i += 1 if opcode == "inc": registers[reg] += 1 elif opcode == "hlf": registers[reg] //= 2 elif opcode == "tpl": registers[reg] *= 3 else: print("ERROR") result = registers["b"] with open("output1.txt", "w") as output: output.write(str(result)) print(str(result))
the-stack_0_14709
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys import os from time import localtime, strftime import argparse from argparse import RawTextHelpFormatter from gdcmdtools.rm import GDRm from gdcmdtools.base import BASE_INFO from gdcmdtools.base import DEBUG_LEVEL from gdcmdtools.perm import help_permission_text import csv import pprint __THIS_APP = 'gdrm' __THIS_DESCRIPTION = 'Tool to remove file or folder on Google Drive' __THIS_VERSION = BASE_INFO["version"] import logging logger = logging.getLogger(__THIS_APP) def test(): assert True if __name__ == '__main__': arg_parser = argparse.ArgumentParser( description='%s v%s - %s - %s (%s)' % (__THIS_APP, __THIS_VERSION, __THIS_DESCRIPTION, BASE_INFO["app"], BASE_INFO["description"]), formatter_class=RawTextHelpFormatter) arg_parser.add_argument( '-d', '--delete', action='store_true', help='Permanently deletes the file instead of trashing it') arg_parser.add_argument( 'file_id', help='The file id or drive link for the file you\'re going to remove') arg_parser.add_argument('--debug', choices=DEBUG_LEVEL, default=DEBUG_LEVEL[-1], help='define the debug level') args = arg_parser.parse_args() # set debug devel logger.setLevel(getattr(logging, args.debug.upper())) logger.debug(args) rm = GDRm(args) try: response = rm.run() except: raise logger.debug(pprint.pformat(response)) sys.exit(0)
the-stack_0_14710
# BSD 3-Clause License; see https://github.com/scikit-hep/awkward-1.0/blob/main/LICENSE from __future__ import absolute_import import numba import numba.core.typing import numba.core.typing.ctypes_utils import awkward as ak numpy = ak.nplike.Numpy.instance() dynamic_addrs = {} def globalstring(context, builder, pyvalue): import llvmlite.ir.types if pyvalue not in dynamic_addrs: buf = dynamic_addrs[pyvalue] = numpy.array(pyvalue.encode("utf-8") + b"\x00") context.add_dynamic_addr( builder, buf.ctypes.data, info="str({0})".format(repr(pyvalue)) ) ptr = context.get_constant(numba.types.uintp, dynamic_addrs[pyvalue].ctypes.data) return builder.inttoptr( ptr, llvmlite.llvmpy.core.Type.pointer(llvmlite.llvmpy.core.Type.int(8)) ) class ArrayBuilderType(numba.types.Type): def __init__(self, behavior): super(ArrayBuilderType, self).__init__( name="ak.ArrayBuilderType({0})".format( ak._connect._numba.repr_behavior(behavior) ) ) self.behavior = behavior @numba.extending.register_model(ArrayBuilderType) class ArrayBuilderModel(numba.core.datamodel.models.StructModel): def __init__(self, dmm, fe_type): members = [("rawptr", numba.types.voidptr), ("pyptr", numba.types.pyobject)] super(ArrayBuilderModel, self).__init__(dmm, fe_type, members) @numba.core.imputils.lower_constant(ArrayBuilderType) def lower_const_ArrayBuilder(context, builder, arraybuildertype, arraybuilder): layout = arraybuilder._layout rawptr = context.get_constant(numba.intp, arraybuilder._layout._ptr) proxyout = context.make_helper(builder, arraybuildertype) proxyout.rawptr = builder.inttoptr( rawptr, context.get_value_type(numba.types.voidptr) ) proxyout.pyptr = context.add_dynamic_addr( builder, id(layout), info=str(type(layout)) ) return proxyout._getvalue() @numba.extending.unbox(ArrayBuilderType) def unbox_ArrayBuilder(arraybuildertype, arraybuilderobj, c): inner_obj = c.pyapi.object_getattr_string(arraybuilderobj, "_layout") rawptr_obj = c.pyapi.object_getattr_string(inner_obj, "_ptr") proxyout = c.context.make_helper(c.builder, arraybuildertype) proxyout.rawptr = c.pyapi.long_as_voidptr(rawptr_obj) proxyout.pyptr = inner_obj c.pyapi.decref(inner_obj) c.pyapi.decref(rawptr_obj) is_error = numba.core.cgutils.is_not_null(c.builder, c.pyapi.err_occurred()) return numba.extending.NativeValue(proxyout._getvalue(), is_error) @numba.extending.box(ArrayBuilderType) def box_ArrayBuilder(arraybuildertype, arraybuilderval, c): ArrayBuilder_obj = c.pyapi.unserialize( c.pyapi.serialize_object(ak.highlevel.ArrayBuilder) ) behavior_obj = c.pyapi.unserialize( c.pyapi.serialize_object(arraybuildertype.behavior) ) proxyin = c.context.make_helper(c.builder, arraybuildertype, arraybuilderval) c.pyapi.incref(proxyin.pyptr) out = c.pyapi.call_method(ArrayBuilder_obj, "_wrap", (proxyin.pyptr, behavior_obj)) c.pyapi.decref(ArrayBuilder_obj) c.pyapi.decref(behavior_obj) c.pyapi.decref(proxyin.pyptr) return out def call(context, builder, fcn, args): numbatype = numba.core.typing.ctypes_utils.make_function_type(fcn) fcntype = context.get_function_pointer_type(numbatype) fcnval = context.add_dynamic_addr( builder, numbatype.get_pointer(fcn), info=fcn.name ) fcnptr = builder.bitcast(fcnval, fcntype) err = context.call_function_pointer(builder, fcnptr, args) with builder.if_then( builder.icmp_unsigned("!=", err, context.get_constant(numba.uint8, 0)), likely=False, ): context.call_conv.return_user_exc(builder, ValueError, (fcn.name + " failed",)) @numba.core.typing.templates.infer_global(len) class type_len(numba.core.typing.templates.AbstractTemplate): def generic(self, args, kwargs): if ( len(args) == 1 and len(kwargs) == 0 and isinstance(args[0], ArrayBuilderType) ): return numba.intp(args[0]) @numba.extending.lower_builtin(len, ArrayBuilderType) def lower_len(context, builder, sig, args): (arraybuildertype,) = sig.args (arraybuilderval,) = args proxyin = context.make_helper(builder, arraybuildertype, arraybuilderval) result = numba.core.cgutils.alloca_once( builder, context.get_value_type(numba.int64) ) call( context, builder, ak._libawkward.ArrayBuilder_length, (proxyin.rawptr, result), ) return ak._connect._numba.castint( context, builder, numba.int64, numba.intp, builder.load(result) ) @numba.core.typing.templates.infer_getattr class type_methods(numba.core.typing.templates.AttributeTemplate): key = ArrayBuilderType @numba.core.typing.templates.bound_function("clear") def resolve_clear(self, arraybuildertype, args, kwargs): if len(args) == 0 and len(kwargs) == 0: return numba.types.none() else: raise TypeError( "wrong number of arguments for ArrayBuilder.clear" + ak._util.exception_suffix(__file__) ) @numba.core.typing.templates.bound_function("null") def resolve_null(self, arraybuildertype, args, kwargs): if len(args) == 0 and len(kwargs) == 0: return numba.types.none() else: raise TypeError( "wrong number of arguments for ArrayBuilder.null" + ak._util.exception_suffix(__file__) ) @numba.core.typing.templates.bound_function("boolean") def resolve_boolean(self, arraybuildertype, args, kwargs): if ( len(args) == 1 and len(kwargs) == 0 and isinstance(args[0], numba.types.Boolean) ): return numba.types.none(args[0]) else: raise TypeError( "wrong number or types of arguments for ArrayBuilder.boolean" + ak._util.exception_suffix(__file__) ) @numba.core.typing.templates.bound_function("integer") def resolve_integer(self, arraybuildertype, args, kwargs): if ( len(args) == 1 and len(kwargs) == 0 and isinstance(args[0], numba.types.Integer) ): return numba.types.none(args[0]) else: raise TypeError( "wrong number or types of arguments for ArrayBuilder.integer" + ak._util.exception_suffix(__file__) ) @numba.core.typing.templates.bound_function("real") def resolve_real(self, arraybuildertype, args, kwargs): if ( len(args) == 1 and len(kwargs) == 0 and isinstance(args[0], (numba.types.Integer, numba.types.Float)) ): return numba.types.none(args[0]) else: raise TypeError( "wrong number or types of arguments for ArrayBuilder.real" + ak._util.exception_suffix(__file__) ) @numba.core.typing.templates.bound_function("begin_list") def resolve_begin_list(self, arraybuildertype, args, kwargs): if len(args) == 0 and len(kwargs) == 0: return numba.types.none() else: raise TypeError( "wrong number of arguments for ArrayBuilder.begin_list" + ak._util.exception_suffix(__file__) ) @numba.core.typing.templates.bound_function("end_list") def resolve_end_list(self, arraybuildertype, args, kwargs): if len(args) == 0 and len(kwargs) == 0: return numba.types.none() else: raise TypeError( "wrong number of arguments for ArrayBuilder.end_list" + ak._util.exception_suffix(__file__) ) @numba.core.typing.templates.bound_function("begin_tuple") def resolve_begin_tuple(self, arraybuildertype, args, kwargs): if ( len(args) == 1 and len(kwargs) == 0 and isinstance(args[0], numba.types.Integer) ): return numba.types.none(args[0]) else: raise TypeError( "wrong number or types of arguments for ArrayBuilder.begin_tuple" + ak._util.exception_suffix(__file__) ) @numba.core.typing.templates.bound_function("index") def resolve_index(self, arraybuildertype, args, kwargs): if ( len(args) == 1 and len(kwargs) == 0 and isinstance(args[0], numba.types.Integer) ): return arraybuildertype(args[0]) else: raise TypeError( "wrong number or types of arguments for ArrayBuilder.index" + ak._util.exception_suffix(__file__) ) @numba.core.typing.templates.bound_function("end_tuple") def resolve_end_tuple(self, arraybuildertype, args, kwargs): if len(args) == 0 and len(kwargs) == 0: return numba.types.none() else: raise TypeError( "wrong number of arguments for ArrayBuilder.end_tuple" + ak._util.exception_suffix(__file__) ) @numba.core.typing.templates.bound_function("begin_record") def resolve_begin_record(self, arraybuildertype, args, kwargs): if len(args) == 0 and len(kwargs) == 0: return numba.types.none() elif ( len(args) == 1 and len(kwargs) == 0 and isinstance(args[0], numba.types.StringLiteral) ): return numba.types.none(args[0]) else: raise TypeError( "wrong number or types of arguments for ArrayBuilder.begin_record" + ak._util.exception_suffix(__file__) ) @numba.core.typing.templates.bound_function("field") def resolve_field(self, arraybuildertype, args, kwargs): if ( len(args) == 1 and len(kwargs) == 0 and isinstance(args[0], numba.types.StringLiteral) ): return arraybuildertype(args[0]) else: raise TypeError( "wrong number or types of arguments for ArrayBuilder.field" + ak._util.exception_suffix(__file__) ) @numba.core.typing.templates.bound_function("end_record") def resolve_end_record(self, arraybuildertype, args, kwargs): if len(args) == 0 and len(kwargs) == 0: return numba.types.none() else: raise TypeError( "wrong number of arguments for ArrayBuilder.end_record" + ak._util.exception_suffix(__file__) ) @numba.core.typing.templates.bound_function("append") def resolve_append(self, arraybuildertype, args, kwargs): if ( len(args) == 1 and len(kwargs) == 0 and isinstance( args[0], ( ak._connect._numba.arrayview.ArrayViewType, ak._connect._numba.arrayview.RecordViewType, numba.types.Boolean, numba.types.Integer, numba.types.Float, ), ) ): return numba.types.none(args[0]) elif ( len(args) == 1 and len(kwargs) == 0 and isinstance(args[0], numba.types.Optional) and isinstance( args[0].type, (numba.types.Boolean, numba.types.Integer, numba.types.Float), ) ): return numba.types.none(args[0]) elif ( len(args) == 1 and len(kwargs) == 0 and isinstance(args[0], numba.types.NoneType) ): return numba.types.none(args[0]) elif ( len(args) == 2 and len(kwargs) == 0 and isinstance(args[0], ak._connect._numba.arrayview.ArrayViewType) and isinstance(args[1], numba.types.Integer) ): return numba.types.none(args[0], args[1]) else: if len(args) == 1 and arraybuildertype.behavior is not None: for key, lower in arraybuildertype.behavior.items(): if ( isinstance(key, tuple) and len(key) == 3 and key[0] == "__numba_lower__" and key[1] == ak.highlevel.ArrayBuilder.append and ( args[0] == key[2] or ( isinstance(key[2], type) and isinstance(args[0], key[2]) ) ) ): numba.extending.lower_builtin( "append", ArrayBuilderType, args[0] )(lower) return numba.types.none(args[0]) raise TypeError( "wrong number or types of arguments for ArrayBuilder.append" + ak._util.exception_suffix(__file__) ) @numba.core.typing.templates.bound_function("extend") def resolve_extend(self, arraybuildertype, args, kwargs): if ( len(args) == 1 and len(kwargs) == 0 and isinstance(args[0], ak._connect._numba.arrayview.ArrayViewType) ): return numba.types.none(args[0]) else: raise TypeError( "wrong number or types of arguments for ArrayBuilder.extend" + ak._util.exception_suffix(__file__) ) @numba.extending.lower_builtin("clear", ArrayBuilderType) def lower_clear(context, builder, sig, args): (arraybuildertype,) = sig.args (arraybuilderval,) = args proxyin = context.make_helper(builder, arraybuildertype, arraybuilderval) call(context, builder, ak._libawkward.ArrayBuilder_clear, (proxyin.rawptr,)) return context.get_dummy_value() @numba.extending.lower_builtin("null", ArrayBuilderType) def lower_null(context, builder, sig, args): (arraybuildertype,) = sig.args (arraybuilderval,) = args proxyin = context.make_helper(builder, arraybuildertype, arraybuilderval) call(context, builder, ak._libawkward.ArrayBuilder_null, (proxyin.rawptr,)) return context.get_dummy_value() @numba.extending.lower_builtin("boolean", ArrayBuilderType, numba.types.Boolean) def lower_boolean(context, builder, sig, args): arraybuildertype, xtype = sig.args arraybuilderval, xval = args proxyin = context.make_helper(builder, arraybuildertype, arraybuilderval) x = builder.zext(xval, context.get_value_type(numba.uint8)) call(context, builder, ak._libawkward.ArrayBuilder_boolean, (proxyin.rawptr, x)) return context.get_dummy_value() @numba.extending.lower_builtin("integer", ArrayBuilderType, numba.types.Integer) def lower_integer(context, builder, sig, args): arraybuildertype, xtype = sig.args arraybuilderval, xval = args proxyin = context.make_helper(builder, arraybuildertype, arraybuilderval) x = ak._connect._numba.castint(context, builder, xtype, numba.int64, xval) call(context, builder, ak._libawkward.ArrayBuilder_integer, (proxyin.rawptr, x)) return context.get_dummy_value() @numba.extending.lower_builtin("real", ArrayBuilderType, numba.types.Integer) @numba.extending.lower_builtin("real", ArrayBuilderType, numba.types.Float) def lower_real(context, builder, sig, args): arraybuildertype, xtype = sig.args arraybuilderval, xval = args proxyin = context.make_helper(builder, arraybuildertype, arraybuilderval) if isinstance(xtype, numba.types.Integer) and xtype.signed: x = builder.sitofp(xval, context.get_value_type(numba.types.float64)) elif isinstance(xtype, numba.types.Integer): x = builder.uitofp(xval, context.get_value_type(numba.types.float64)) elif xtype.bitwidth < 64: x = builder.fpext(xval, context.get_value_type(numba.types.float64)) elif xtype.bitwidth > 64: x = builder.fptrunc(xval, context.get_value_type(numba.types.float64)) else: x = xval call(context, builder, ak._libawkward.ArrayBuilder_real, (proxyin.rawptr, x)) return context.get_dummy_value() @numba.extending.lower_builtin("begin_list", ArrayBuilderType) def lower_beginlist(context, builder, sig, args): (arraybuildertype,) = sig.args (arraybuilderval,) = args proxyin = context.make_helper(builder, arraybuildertype, arraybuilderval) call(context, builder, ak._libawkward.ArrayBuilder_beginlist, (proxyin.rawptr,)) return context.get_dummy_value() @numba.extending.lower_builtin("end_list", ArrayBuilderType) def lower_endlist(context, builder, sig, args): (arraybuildertype,) = sig.args (arraybuilderval,) = args proxyin = context.make_helper(builder, arraybuildertype, arraybuilderval) call(context, builder, ak._libawkward.ArrayBuilder_endlist, (proxyin.rawptr,)) return context.get_dummy_value() @numba.extending.lower_builtin("begin_tuple", ArrayBuilderType, numba.types.Integer) def lower_begintuple(context, builder, sig, args): arraybuildertype, numfieldstype = sig.args arraybuilderval, numfieldsval = args proxyin = context.make_helper(builder, arraybuildertype, arraybuilderval) numfields = ak._connect._numba.castint( context, builder, numfieldstype, numba.int64, numfieldsval ) call( context, builder, ak._libawkward.ArrayBuilder_begintuple, (proxyin.rawptr, numfields), ) return context.get_dummy_value() @numba.extending.lower_builtin("index", ArrayBuilderType, numba.types.Integer) def lower_index(context, builder, sig, args): arraybuildertype, indextype = sig.args arraybuilderval, indexval = args proxyin = context.make_helper(builder, arraybuildertype, arraybuilderval) index = ak._connect._numba.castint( context, builder, indextype, numba.int64, indexval ) call( context, builder, ak._libawkward.ArrayBuilder_index, (proxyin.rawptr, index), ) return arraybuilderval @numba.extending.lower_builtin("end_tuple", ArrayBuilderType) def lower_endtuple(context, builder, sig, args): (arraybuildertype,) = sig.args (arraybuilderval,) = args proxyin = context.make_helper(builder, arraybuildertype, arraybuilderval) call(context, builder, ak._libawkward.ArrayBuilder_endtuple, (proxyin.rawptr,)) return context.get_dummy_value() @numba.extending.lower_builtin("begin_record", ArrayBuilderType) def lower_beginrecord(context, builder, sig, args): (arraybuildertype,) = sig.args (arraybuilderval,) = args proxyin = context.make_helper(builder, arraybuildertype, arraybuilderval) call( context, builder, ak._libawkward.ArrayBuilder_beginrecord, (proxyin.rawptr,), ) return context.get_dummy_value() @numba.extending.lower_builtin( "begin_record", ArrayBuilderType, numba.types.StringLiteral ) def lower_beginrecord_field(context, builder, sig, args): arraybuildertype, nametype = sig.args arraybuilderval, nameval = args proxyin = context.make_helper(builder, arraybuildertype, arraybuilderval) name = globalstring(context, builder, nametype.literal_value) call( context, builder, ak._libawkward.ArrayBuilder_beginrecord_fast, (proxyin.rawptr, name), ) return context.get_dummy_value() @numba.extending.lower_builtin("field", ArrayBuilderType, numba.types.StringLiteral) def lower_field(context, builder, sig, args): arraybuildertype, keytype = sig.args arraybuilderval, keyval = args proxyin = context.make_helper(builder, arraybuildertype, arraybuilderval) key = globalstring(context, builder, keytype.literal_value) call( context, builder, ak._libawkward.ArrayBuilder_field_fast, (proxyin.rawptr, key), ) return arraybuilderval @numba.extending.lower_builtin("end_record", ArrayBuilderType) def lower_endrecord(context, builder, sig, args): (arraybuildertype,) = sig.args (arraybuilderval,) = args proxyin = context.make_helper(builder, arraybuildertype, arraybuilderval) call(context, builder, ak._libawkward.ArrayBuilder_endrecord, (proxyin.rawptr,)) return context.get_dummy_value() @numba.extending.lower_builtin( "append", ArrayBuilderType, ak._connect._numba.arrayview.ArrayViewType, numba.types.Integer, ) def lower_append_array_at(context, builder, sig, args): arraybuildertype, viewtype, attype = sig.args arraybuilderval, viewval, atval = args viewproxy = context.make_helper(builder, viewtype, viewval) atval = ak._connect._numba.layout.regularize_atval( context, builder, viewproxy, attype, atval, True, True ) atval = ak._connect._numba.castint(context, builder, numba.intp, numba.int64, atval) sharedptr = ak._connect._numba.layout.getat( context, builder, viewproxy.sharedptrs, viewproxy.pos ) proxyin = context.make_helper(builder, arraybuildertype, arraybuilderval) call( context, builder, ak._libawkward.ArrayBuilder_append_nowrap, ( proxyin.rawptr, builder.inttoptr(sharedptr, context.get_value_type(numba.types.voidptr)), atval, ), ) return context.get_dummy_value() @numba.extending.lower_builtin( "append", ArrayBuilderType, ak._connect._numba.arrayview.ArrayViewType ) def lower_append_array(context, builder, sig, args): arraybuildertype, viewtype = sig.args arraybuilderval, viewval = args proxyin = context.make_helper(builder, arraybuildertype, arraybuilderval) call(context, builder, ak._libawkward.ArrayBuilder_beginlist, (proxyin.rawptr,)) lower_extend_array(context, builder, sig, args) call(context, builder, ak._libawkward.ArrayBuilder_endlist, (proxyin.rawptr,)) return context.get_dummy_value() @numba.extending.lower_builtin( "append", ArrayBuilderType, ak._connect._numba.arrayview.RecordViewType ) def lower_append_record(context, builder, sig, args): arraybuildertype, recordviewtype = sig.args arraybuilderval, recordviewval = args recordviewproxy = context.make_helper(builder, recordviewtype, recordviewval) arrayviewproxy = context.make_helper( builder, recordviewtype.arrayviewtype, recordviewproxy.arrayview ) atval = ak._connect._numba.castint( context, builder, numba.intp, numba.int64, recordviewproxy.at ) sharedptr = ak._connect._numba.layout.getat( context, builder, arrayviewproxy.sharedptrs, arrayviewproxy.pos ) proxyin = context.make_helper(builder, arraybuildertype, arraybuilderval) call( context, builder, ak._libawkward.ArrayBuilder_append_nowrap, ( proxyin.rawptr, builder.inttoptr(sharedptr, context.get_value_type(numba.types.voidptr)), atval, ), ) return context.get_dummy_value() @numba.extending.lower_builtin("append", ArrayBuilderType, numba.types.Boolean) def lower_append_bool(context, builder, sig, args): return lower_boolean(context, builder, sig, args) @numba.extending.lower_builtin("append", ArrayBuilderType, numba.types.Integer) def lower_append_int(context, builder, sig, args): return lower_integer(context, builder, sig, args) @numba.extending.lower_builtin("append", ArrayBuilderType, numba.types.Float) def lower_append_float(context, builder, sig, args): return lower_real(context, builder, sig, args) @numba.extending.lower_builtin("append", ArrayBuilderType, numba.types.Optional) def lower_append_optional(context, builder, sig, args): arraybuildertype, opttype = sig.args arraybuilderval, optval = args optproxy = context.make_helper(builder, opttype, optval) validbit = numba.core.cgutils.as_bool_bit(builder, optproxy.valid) with builder.if_else(validbit) as (is_valid, is_not_valid): with is_valid: if isinstance(opttype.type, numba.types.Boolean): lower_boolean( context, builder, numba.types.none(arraybuildertype, opttype.type), (arraybuilderval, optproxy.data), ) elif isinstance(opttype.type, numba.types.Integer): lower_integer( context, builder, numba.types.none(arraybuildertype, opttype.type), (arraybuilderval, optproxy.data), ) elif isinstance(opttype.type, numba.types.Float): lower_real( context, builder, numba.types.none(arraybuildertype, opttype.type), (arraybuilderval, optproxy.data), ) else: raise AssertionError( repr(opttype.type) + ak._util.exception_suffix(__file__) ) with is_not_valid: lower_null( context, builder, numba.types.none(arraybuildertype,), (arraybuilderval,), ) return context.get_dummy_value() @numba.extending.lower_builtin("append", ArrayBuilderType, numba.types.NoneType) def lower_append_none(context, builder, sig, args): return lower_null(context, builder, sig.return_type(sig.args[0]), (args[0],)) @numba.extending.lower_builtin( "extend", ArrayBuilderType, ak._connect._numba.arrayview.ArrayViewType ) def lower_extend_array(context, builder, sig, args): arraybuildertype, viewtype = sig.args arraybuilderval, viewval = args viewproxy = context.make_helper(builder, viewtype, viewval) sharedptr = ak._connect._numba.layout.getat( context, builder, viewproxy.sharedptrs, viewproxy.pos ) proxyin = context.make_helper(builder, arraybuildertype, arraybuilderval) with numba.core.cgutils.for_range(builder, viewproxy.stop, viewproxy.start) as loop: atval = ak._connect._numba.castint( context, builder, numba.intp, numba.int64, loop.index ) call( context, builder, ak._libawkward.ArrayBuilder_append_nowrap, ( proxyin.rawptr, builder.inttoptr( sharedptr, context.get_value_type(numba.types.voidptr) ), atval, ), ) return context.get_dummy_value()
the-stack_0_14711
#!/usr/bin/python # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['stableinterface'], 'supported_by': 'community'} DOCUMENTATION = ''' module: route53_zone short_description: add or delete Route53 zones description: - Creates and deletes Route53 private and public zones version_added: "2.0" requirements: [ boto3 ] options: zone: description: - "The DNS zone record (eg: foo.com.)" required: true state: description: - whether or not the zone should exist or not default: present choices: [ "present", "absent" ] vpc_id: description: - The VPC ID the zone should be a part of (if this is going to be a private zone) vpc_region: description: - The VPC Region the zone should be a part of (if this is going to be a private zone) comment: description: - Comment associated with the zone default: '' hosted_zone_id: description: - The unique zone identifier you want to delete or "all" if there are many zones with the same domain name. Required if there are multiple zones identified with the above options version_added: 2.4 delegation_set_id: description: - The reusable delegation set ID to be associated with the zone. Note that you can't associate a reusable delegation set with a private hosted zone. version_added: 2.6 extends_documentation_fragment: - aws - ec2 author: "Christopher Troup (@minichate)" ''' EXAMPLES = ''' - name: create a public zone route53_zone: zone: example.com comment: this is an example - name: delete a public zone route53_zone: zone: example.com state: absent - name: create a private zone route53_zone: zone: devel.example.com vpc_id: '{{ myvpc_id }}' vpc_region: us-west-2 comment: developer domain - name: create a public zone associated with a specific reusable delegation set route53_zone: zone: example.com comment: reusable delegation set example delegation_set_id: A1BCDEF2GHIJKL ''' RETURN = ''' comment: description: optional hosted zone comment returned: when hosted zone exists type: str sample: "Private zone" name: description: hosted zone name returned: when hosted zone exists type: str sample: "private.local." private_zone: description: whether hosted zone is private or public returned: when hosted zone exists type: bool sample: true vpc_id: description: id of vpc attached to private hosted zone returned: for private hosted zone type: str sample: "vpc-1d36c84f" vpc_region: description: region of vpc attached to private hosted zone returned: for private hosted zone type: str sample: "eu-west-1" zone_id: description: hosted zone id returned: when hosted zone exists type: str sample: "Z6JQG9820BEFMW" delegation_set_id: description: id of the associated reusable delegation set returned: for public hosted zones, if they have been associated with a reusable delegation set type: str sample: "A1BCDEF2GHIJKL" ''' import time from ansible.module_utils.aws.core import AnsibleAWSModule from ansible.module_utils.ec2 import boto3_conn, ec2_argument_spec, get_aws_connection_info try: from botocore.exceptions import BotoCoreError, ClientError except ImportError: pass # handled by AnsibleAWSModule def find_zones(module, client, zone_in, private_zone): try: paginator = client.get_paginator('list_hosted_zones') results = paginator.paginate().build_full_result() except (BotoCoreError, ClientError) as e: module.fail_json_aws(e, msg="Could not list current hosted zones") zones = [] for r53zone in results['HostedZones']: if r53zone['Name'] != zone_in: continue # only save zone names that match the public/private setting if (r53zone['Config']['PrivateZone'] and private_zone) or \ (not r53zone['Config']['PrivateZone'] and not private_zone): zones.append(r53zone) return zones def create(module, client, matching_zones): zone_in = module.params.get('zone').lower() vpc_id = module.params.get('vpc_id') vpc_region = module.params.get('vpc_region') comment = module.params.get('comment') delegation_set_id = module.params.get('delegation_set_id') if not zone_in.endswith('.'): zone_in += "." private_zone = bool(vpc_id and vpc_region) record = { 'private_zone': private_zone, 'vpc_id': vpc_id, 'vpc_region': vpc_region, 'comment': comment, 'name': zone_in, 'delegation_set_id': delegation_set_id, } if private_zone: changed, result = create_or_update_private(module, client, matching_zones, record) else: changed, result = create_or_update_public(module, client, matching_zones, record) return changed, result def create_or_update_private(module, client, matching_zones, record): for z in matching_zones: try: result = client.get_hosted_zone(Id=z['Id']) # could be in different regions or have different VPCids except (BotoCoreError, ClientError) as e: module.fail_json_aws(e, msg="Could not get details about hosted zone %s" % z['Id']) zone_details = result['HostedZone'] vpc_details = result['VPCs'] current_vpc_id = None current_vpc_region = None if isinstance(vpc_details, dict): if vpc_details['VPC']['VPCId'] == record['vpc_id']: current_vpc_id = vpc_details['VPC']['VPCId'] current_vpc_region = vpc_details['VPC']['VPCRegion'] else: if record['vpc_id'] in [v['VPCId'] for v in vpc_details]: current_vpc_id = record['vpc_id'] if record['vpc_region'] in [v['VPCRegion'] for v in vpc_details]: current_vpc_region = record['vpc_region'] if record['vpc_id'] == current_vpc_id and record['vpc_region'] == current_vpc_region: record['zone_id'] = zone_details['Id'].replace('/hostedzone/', '') if 'Comment' in zone_details['Config'] and zone_details['Config']['Comment'] != record['comment']: if not module.check_mode: try: client.update_hosted_zone_comment(Id=zone_details['Id'], Comment=record['comment']) except (BotoCoreError, ClientError) as e: module.fail_json_aws(e, msg="Could not update comment for hosted zone %s" % zone_details['Id']) return True, record else: record['msg'] = "There is already a private hosted zone in the same region with the same VPC \ you chose. Unable to create a new private hosted zone in the same name space." return False, record if not module.check_mode: try: result = client.create_hosted_zone( Name=record['name'], HostedZoneConfig={ 'Comment': record['comment'] if record['comment'] is not None else "", 'PrivateZone': True, }, VPC={ 'VPCRegion': record['vpc_region'], 'VPCId': record['vpc_id'], }, CallerReference="%s-%s" % (record['name'], time.time()), ) except (BotoCoreError, ClientError) as e: module.fail_json_aws(e, msg="Could not create hosted zone") hosted_zone = result['HostedZone'] zone_id = hosted_zone['Id'].replace('/hostedzone/', '') record['zone_id'] = zone_id changed = True return changed, record def create_or_update_public(module, client, matching_zones, record): zone_details, zone_delegation_set_details = None, {} for matching_zone in matching_zones: try: zone = client.get_hosted_zone(Id=matching_zone['Id']) zone_details = zone['HostedZone'] zone_delegation_set_details = zone.get('DelegationSet', {}) except (BotoCoreError, ClientError) as e: module.fail_json_aws(e, msg="Could not get details about hosted zone %s" % matching_zone['Id']) if 'Comment' in zone_details['Config'] and zone_details['Config']['Comment'] != record['comment']: if not module.check_mode: try: client.update_hosted_zone_comment( Id=zone_details['Id'], Comment=record['comment'] ) except (BotoCoreError, ClientError) as e: module.fail_json_aws(e, msg="Could not update comment for hosted zone %s" % zone_details['Id']) changed = True else: changed = False break if zone_details is None: if not module.check_mode: try: params = dict( Name=record['name'], HostedZoneConfig={ 'Comment': record['comment'] if record['comment'] is not None else "", 'PrivateZone': False, }, CallerReference="%s-%s" % (record['name'], time.time()), ) if record.get('delegation_set_id') is not None: params['DelegationSetId'] = record['delegation_set_id'] result = client.create_hosted_zone(**params) zone_details = result['HostedZone'] zone_delegation_set_details = result.get('DelegationSet', {}) except (BotoCoreError, ClientError) as e: module.fail_json_aws(e, msg="Could not create hosted zone") changed = True if not module.check_mode: record['zone_id'] = zone_details['Id'].replace('/hostedzone/', '') record['name'] = zone_details['Name'] record['delegation_set_id'] = zone_delegation_set_details.get('Id', '').replace('/delegationset/', '') return changed, record def delete_private(module, client, matching_zones, vpc_id, vpc_region): for z in matching_zones: try: result = client.get_hosted_zone(Id=z['Id']) except (BotoCoreError, ClientError) as e: module.fail_json_aws(e, msg="Could not get details about hosted zone %s" % z['Id']) zone_details = result['HostedZone'] vpc_details = result['VPCs'] if isinstance(vpc_details, dict): if vpc_details['VPC']['VPCId'] == vpc_id and vpc_region == vpc_details['VPC']['VPCRegion']: if not module.check_mode: try: client.delete_hosted_zone(Id=z['Id']) except (BotoCoreError, ClientError) as e: module.fail_json_aws(e, msg="Could not delete hosted zone %s" % z['Id']) return True, "Successfully deleted %s" % zone_details['Name'] else: if vpc_id in [v['VPCId'] for v in vpc_details] and vpc_region in [v['VPCRegion'] for v in vpc_details]: if not module.check_mode: try: client.delete_hosted_zone(Id=z['Id']) except (BotoCoreError, ClientError) as e: module.fail_json_aws(e, msg="Could not delete hosted zone %s" % z['Id']) return True, "Successfully deleted %s" % zone_details['Name'] return False, "The vpc_id and the vpc_region do not match a private hosted zone." def delete_public(module, client, matching_zones): if len(matching_zones) > 1: changed = False msg = "There are multiple zones that match. Use hosted_zone_id to specify the correct zone." else: if not module.check_mode: try: client.delete_hosted_zone(Id=matching_zones[0]['Id']) except (BotoCoreError, ClientError) as e: module.fail_json_aws(e, msg="Could not get delete hosted zone %s" % matching_zones[0]['Id']) changed = True msg = "Successfully deleted %s" % matching_zones[0]['Id'] return changed, msg def delete_hosted_id(module, client, hosted_zone_id, matching_zones): if hosted_zone_id == "all": deleted = [] for z in matching_zones: deleted.append(z['Id']) if not module.check_mode: try: client.delete_hosted_zone(Id=z['Id']) except (BotoCoreError, ClientError) as e: module.fail_json_aws(e, msg="Could not delete hosted zone %s" % z['Id']) changed = True msg = "Successfully deleted zones: %s" % deleted elif hosted_zone_id in [zo['Id'].replace('/hostedzone/', '') for zo in matching_zones]: if not module.check_mode: try: client.delete_hosted_zone(Id=hosted_zone_id) except (BotoCoreError, ClientError) as e: module.fail_json_aws(e, msg="Could not delete hosted zone %s" % hosted_zone_id) changed = True msg = "Successfully deleted zone: %s" % hosted_zone_id else: changed = False msg = "There is no zone to delete that matches hosted_zone_id %s." % hosted_zone_id return changed, msg def delete(module, client, matching_zones): zone_in = module.params.get('zone').lower() vpc_id = module.params.get('vpc_id') vpc_region = module.params.get('vpc_region') hosted_zone_id = module.params.get('hosted_zone_id') if not zone_in.endswith('.'): zone_in += "." private_zone = bool(vpc_id and vpc_region) if zone_in in [z['Name'] for z in matching_zones]: if hosted_zone_id: changed, result = delete_hosted_id(module, client, hosted_zone_id, matching_zones) else: if private_zone: changed, result = delete_private(module, client, matching_zones, vpc_id, vpc_region) else: changed, result = delete_public(module, client, matching_zones) else: changed = False result = "No zone to delete." return changed, result def main(): argument_spec = dict( zone=dict(required=True), state=dict(default='present', choices=['present', 'absent']), vpc_id=dict(default=None), vpc_region=dict(default=None), comment=dict(default=''), hosted_zone_id=dict(), delegation_set_id=dict(), ) mutually_exclusive = [ ['delegation_set_id', 'vpc_id'], ['delegation_set_id', 'vpc_region'], ] module = AnsibleAWSModule( argument_spec=argument_spec, mutually_exclusive=mutually_exclusive, supports_check_mode=True, ) zone_in = module.params.get('zone').lower() state = module.params.get('state').lower() vpc_id = module.params.get('vpc_id') vpc_region = module.params.get('vpc_region') if not zone_in.endswith('.'): zone_in += "." private_zone = bool(vpc_id and vpc_region) client = module.client('route53') zones = find_zones(module, client, zone_in, private_zone) if state == 'present': changed, result = create(module, client, matching_zones=zones) elif state == 'absent': changed, result = delete(module, client, matching_zones=zones) if isinstance(result, dict): module.exit_json(changed=changed, result=result, **result) else: module.exit_json(changed=changed, result=result) if __name__ == '__main__': main()
the-stack_0_14712
"""Support for MyChevy sensors.""" import logging from homeassistant.components.sensor import DOMAIN as SENSOR_DOMAIN, SensorEntity from homeassistant.const import PERCENTAGE from homeassistant.core import callback from homeassistant.helpers.icon import icon_for_battery_level from homeassistant.util import slugify from . import ( DOMAIN as MYCHEVY_DOMAIN, ERROR_TOPIC, MYCHEVY_ERROR, MYCHEVY_SUCCESS, UPDATE_TOPIC, EVSensorConfig, ) _LOGGER = logging.getLogger(__name__) BATTERY_SENSOR = "batteryLevel" SENSORS = [ EVSensorConfig("Mileage", "totalMiles", "miles", "mdi:speedometer"), EVSensorConfig("Electric Range", "electricRange", "miles", "mdi:speedometer"), EVSensorConfig("Charged By", "estimatedFullChargeBy"), EVSensorConfig("Charge Mode", "chargeMode"), EVSensorConfig( "Battery Level", BATTERY_SENSOR, PERCENTAGE, "mdi:battery", ["charging"] ), ] def setup_platform(hass, config, add_entities, discovery_info=None): """Set up the MyChevy sensors.""" if discovery_info is None: return hub = hass.data[MYCHEVY_DOMAIN] sensors = [MyChevyStatus()] for sconfig in SENSORS: for car in hub.cars: sensors.append(EVSensor(hub, sconfig, car.vid)) add_entities(sensors) class MyChevyStatus(SensorEntity): """A string representing the charge mode.""" _name = "MyChevy Status" _icon = "mdi:car-connected" def __init__(self): """Initialize sensor with car connection.""" self._state = None async def async_added_to_hass(self): """Register callbacks.""" self.async_on_remove( self.hass.helpers.dispatcher.async_dispatcher_connect( UPDATE_TOPIC, self.success ) ) self.async_on_remove( self.hass.helpers.dispatcher.async_dispatcher_connect( ERROR_TOPIC, self.error ) ) @callback def success(self): """Update state, trigger updates.""" if self._state != MYCHEVY_SUCCESS: _LOGGER.debug("Successfully connected to mychevy website") self._state = MYCHEVY_SUCCESS self.async_write_ha_state() @callback def error(self): """Update state, trigger updates.""" _LOGGER.error( "Connection to mychevy website failed. " "This probably means the mychevy to OnStar link is down" ) self._state = MYCHEVY_ERROR self.async_write_ha_state() @property def icon(self): """Return the icon.""" return self._icon @property def name(self): """Return the name.""" return self._name @property def native_value(self): """Return the state.""" return self._state @property def should_poll(self): """Return the polling state.""" return False class EVSensor(SensorEntity): """Base EVSensor class. The only real difference between sensors is which units and what attribute from the car object they are returning. All logic can be built with just setting subclass attributes. """ def __init__(self, connection, config, car_vid): """Initialize sensor with car connection.""" self._conn = connection self._name = config.name self._attr = config.attr self._extra_attrs = config.extra_attrs self._unit_of_measurement = config.unit_of_measurement self._icon = config.icon self._state = None self._state_attributes = {} self._car_vid = car_vid self.entity_id = f"{SENSOR_DOMAIN}.{MYCHEVY_DOMAIN}_{slugify(self._car.name)}_{slugify(self._name)}" async def async_added_to_hass(self): """Register callbacks.""" self.hass.helpers.dispatcher.async_dispatcher_connect( UPDATE_TOPIC, self.async_update_callback ) @property def _car(self): """Return the car.""" return self._conn.get_car(self._car_vid) @property def icon(self): """Return the icon.""" if self._attr == BATTERY_SENSOR: charging = self._state_attributes.get("charging", False) return icon_for_battery_level(self.state, charging) return self._icon @property def name(self): """Return the name.""" return self._name @callback def async_update_callback(self): """Update state.""" if self._car is not None: self._state = getattr(self._car, self._attr, None) if self._unit_of_measurement == "miles": self._state = round(self._state) for attr in self._extra_attrs: self._state_attributes[attr] = getattr(self._car, attr) self.async_write_ha_state() @property def native_value(self): """Return the state.""" return self._state @property def extra_state_attributes(self): """Return all the state attributes.""" return self._state_attributes @property def native_unit_of_measurement(self): """Return the unit of measurement the state is expressed in.""" return self._unit_of_measurement @property def should_poll(self): """Return the polling state.""" return False
the-stack_0_14714
#!/usr/bin/env python3 from test_framework.test_framework import BitcoinTestFramework from test_framework.util import * from test_framework.script import * from test_framework.mininode import * from test_framework.address import * from test_framework.qtum import * import sys import random import time class QtumPrematureCoinstakeSpendTest(BitcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 1 def remove_from_staking_prevouts(self, remove_prevout): for j in range(len(self.staking_prevouts)): prevout = self.staking_prevouts[j] if prevout[0].serialize() == remove_prevout.serialize(): self.staking_prevouts.pop(j) break def assert_spend_of_coinstake_at_height(self, height, should_accept): spend_block = self.node.getblock(self.node.getblockhash(height)) spend_coinstake_txid = spend_block['tx'][1] spend_coinstake_txout = self.node.gettxout(spend_coinstake_txid, 1) tx = CTransaction() tx.vin = [CTxIn(COutPoint(int(spend_coinstake_txid, 16), 1))] tx.vout = [CTxOut(int(float(str(spend_coinstake_txout['value']))*COIN - 1000000), scriptPubKey=CScript([OP_TRUE]))] tx = rpc_sign_transaction(self.node, tx) if should_accept: self.node.sendrawtransaction(bytes_to_hex_str(tx.serialize())) else: assert_raises_rpc_error(-26, "bad-txns-premature-spend-of-coinbase", self.node.sendrawtransaction, bytes_to_hex_str(tx.serialize())) tip = self.node.getblock(self.node.getbestblockhash()) next_block_time = (tip['time'] + 0x30) & 0xfffffff0 self.node.setmocktime(next_block_time) block, sig_key = create_unsigned_mpos_block(self.node, self.staking_prevouts, next_block_time, 1000000) block.vtx.append(tx) block.hashMerkleRoot = block.calc_merkle_root() block.rehash() block.sign_block(sig_key) blockcount = self.node.getblockcount() self.node.submitblock(bytes_to_hex_str(block.serialize())) #assert_equal(self.node.getblockcount(), blockcount + (1 if should_accept else 0)) self.remove_from_staking_prevouts(block.prevoutStake) def run_test(self): self.node = self.nodes[0] self.node.setmocktime(int(time.time()) - 1000000) self.node.generate(10 + COINBASE_MATURITY) # These are the privkeys that corresponds to the pubkeys in the pos outputs # These are used by default by create_pos_block for i in range(0xff+1): privkey = byte_to_base58(hash256(struct.pack('<I', i)), 239) self.node.importprivkey(privkey) generatedMpos = activate_mpos(self.node) self.staking_prevouts = collect_prevouts(self.node) last_height = self.node.getblock(self.node.getbestblockhash())['height'] self.log.info('last_height=%s' % (last_height)) self.assert_spend_of_coinstake_at_height(height=last_height, should_accept=False) if generatedMpos > COINBASE_MATURITY: self.assert_spend_of_coinstake_at_height(last_height - generatedMpos + 1, should_accept=True) # Invalidate the last block and make sure that the previous rejection of the premature coinstake spends fails self.node.invalidateblock(self.node.getbestblockhash()) assert_equal(last_height, self.node.getblock(self.node.getbestblockhash())['height'] + 1) #self.log.info('updated last_height=%s' % (self.node.getblock(self.node.getbestblockhash())['height'])) #self.assert_spend_of_coinstake_at_height(height=last_height, should_accept=False) if __name__ == '__main__': QtumPrematureCoinstakeSpendTest().main()
the-stack_0_14715
import getpass import os import re import subprocess import click from .config import * class JumpOutFuckingClick(Exception): """Just to break out the unkown loop""" pass class JumpOutFuckingClick2(Exception): """Just to break out the unkown loop2""" pass def ssl_file_gen(domain,usr,loc,email,key): with open(SSL, "r") as fh: fds = fh.read() fcd = re.sub(r'{{DOMAIN}}', '.'.join(domain.split('.')[-2:]), fds) fce = re.sub(r'{{EMAIL}}', email, fcd) res = re.sub(r'{{KEY}}', key, fce) with open(domain+"/"+domain+'.sh', 'w') as ssl_sh: ssl_sh.write(res) ssl_sh.close() fh.close() click.echo("-4- SSL script: {} create successfully".format(domain+"/"+domain+'.sh')) def ssl_multi_gen(domain,usr,loc,op1,op2,dns_op): with open(SSL, "r") as fh: fds = fh.read() fcd = re.sub(r'{{DOMAIN}}', '.'.join(domain.split('.')[-2:]), fds) fce = re.sub(r'{{OP1}}', op1, fcd) fcf = re.sub(r'{{OP2}}', op2, fce) res = re.sub(r'{{DNS_OP}}', dns_op, fcf) with open(domain+"/"+domain+'.sh', 'w') as ssl_sh: ssl_sh.write(res) ssl_sh.close() fh.close() click.echo("-4- SSL script: {} create successfully".format(domain+"/"+domain+'.sh')) def docker_file_gen(domain,usr,loc): with open(DOCKER, "r") as fh: fds = fh.read() fcd = re.sub(r'{{DOMAIN}}', domain, fds) fcu = re.sub(r'{{usr}}', usr, fcd) res = re.sub(r'{{passwd}}', loc+domain+usr, fcu) with open(domain+"/"+domain+'.run', 'w') as docker_run: docker_run.write(res) docker_run.close() fh.close() click.echo("-3- Docker config script: {} create successfully".format(domain+"/"+domain+'.run')) def uwsgi_file_gen(domain,usr,loc): env = os.path.dirname(loc) with open(uWSGI, 'r') as fh: fds = fh.read() fce = re.sub(r'{{env}}',env,fds) fcu = re.sub(r'{{usr}}',usr,fce) res = re.sub(r'{{loc}}',loc,fcu) with open(domain+"/"+domain+'.ini', 'w') as uwsgi_ini: uwsgi_ini.write(res) uwsgi_ini.close() fh.close() click.echo("-0- uwsgi config file: {} create successfully".format(domain+"/"+domain+'.ini')) #static def nginx_file_gen(domain,usr,loc): with open(NGINX, "r") as fh: fds = fh.read() fcd = re.sub(r'{{DOMAIN}}', domain, fds) res = re.sub(r'{{loc}}', loc, fcd) with open(domain+"/"+domain+'.conf', 'w') as nginx_conf: nginx_conf.write(res) nginx_conf.close() fh.close() click.echo("-1- Nginx config file: {} create successfully".format(domain+"/"+domain+'.conf')) #static def service_file_gen(domain,usr,loc): with open(SERVICE, "r") as fh: fds = fh.read() fcd = re.sub(r'{{DOMAIN}}', domain, fds) fcu = re.sub(r'{{usr}}', usr, fcd) res = re.sub(r'{{loc}}', loc, fcu) with open(domain+"/"+domain+'.service', 'w') as confservice: confservice.write(res) confservice.close() fh.close() click.echo("-2- Systemd service file : {} create successfully".format(domain+"/"+domain+'.service')) def script_files_gen(domain, usr, loc): cmd = [] files = loc+"/"+domain c = None if os.path.exists(files+'.sh'): c = "sudo mkdir -p /etc/nginx/certs" c1 = "sudo /bin/bash "+files+'.sh' cmd.append(c) cmd.append(c1) if os.path.exists(files+'.run'): c = "sudo "+files+'.run' cmd.append(c) if os.path.exists(files+'.conf'): c = "sudo cp "+files+'.conf ' + NGINX_CONF1 c1 = "sudo cp "+files+'.conf ' + NGINX_CONF2 c2 = "sudo nginx -s reload" cmd.append(c) cmd.append(c1) cmd.append(c2) if os.path.exists(files+'.service'): c = "sudo cp "+files+'.service ' + SYSTEMD_CONF c1 = "sudo systemctl enable "+domain+'.service' c2 = "sudo systemctl start "+domain+'.service' cmd.append(c) cmd.append(c1) cmd.append(c2) with open(loc+'/start.sh', 'w') as file: for c in cmd: file.write(c+"\n") file.close() click.echo("-5- One click script file : {} create successfully".format(domain+"/"+'start.sh')) def script_files_run(domain, usr, loc): subprocess.call(['sudo', '/bin/bash',loc+'/start.sh'])
the-stack_0_14716
import timeit from typing import * from subseq import is_subseq_py, is_subseq_rs seq = ['a', 'b', 'c'] * 100 subseq = ['dd', 'ee'] joined_seq = "," + ",".join(seq) + "," joined_subseq = "," + ",".join(subseq) + "," def find_loop(seq, subseq): n = len(seq) m = len(subseq) for i in range(n - m + 1): found = True for j in range(m): if seq[i + j] != subseq[j]: found = False break if found: return True def is_subseq_str(seq, subseq): return subseq in seq is_subseq_py(seq, subseq) n = 10000 timer = timeit.Timer("is_subseq(seq, subseq)", globals={"is_subseq": is_subseq_rs, "seq": seq, "subseq": subseq}) t = timer.timeit(number=n) print(f"rust (rust): {t*10**9/n}") timer = timeit.Timer("is_subseq(seq, subseq)", globals={"is_subseq": is_subseq_py, "seq": seq, "subseq": subseq}) t = timer.timeit(number=n) print(f"rust (py): {t*10**9/n}") timer = timeit.Timer("is_subseq(seq, subseq)", globals={"is_subseq": find_loop, "seq": seq, "subseq": subseq}) t = timer.timeit(number=n) print(f"python: {t*10**9/n}") timer = timeit.Timer("is_subseq(seq, subseq)", globals={"is_subseq": is_subseq_str, "seq": seq, "subseq": subseq}) t = timer.timeit(number=n) print(f"python str: {t*10**9/n}")
the-stack_0_14717
#!/usr/bin/env python # -*- coding: utf-8 -*- import codecs import json import os.path import re import resources import subprocess import sys try: from PyQt5.QtGui import * from PyQt5.QtCore import * from PyQt5.QtWidgets import * except ImportError: # needed for py3+qt4 # Ref: # http://pyqt.sourceforge.net/Docs/PyQt4/incompatible_apis.html # http://stackoverflow.com/questions/21217399/pyqt4-qtcore-qvariant-object-instead-of-a-string if sys.version_info.major >= 3: import sip sip.setapi('QVariant', 2) from PyQt4.QtGui import * from PyQt4.QtCore import * # Add internal libs from bisect import insort from collections import defaultdict from functools import partial from libs.canvas import Canvas from libs.colorDialog import ColorDialog from libs.constants import * from libs.labelDialog import LabelDialog from libs.labelFile import LabelFile, LabelFileError from libs.lib import struct, newAction, newIcon, addActions, fmtShortcut, generateColorByText from libs.loginDialog import Login from libs.pascal_voc_io import PascalVocReader, XML_EXT from libs.settings import Settings from libs.shape import Shape, DEFAULT_LINE_COLOR, DEFAULT_FILL_COLOR from libs.toolBar import ToolBar from libs.ustr import ustr from libs.version import __version__ from libs.zoomWidget import ZoomWidget import lmdb __appname__ = 'vanno_ver' server_path = "../vanno_server/env/" dataset = 'jester' # Utility functions and classes. def have_qstring(): '''p3/qt5 get rid of QString wrapper as py3 has native unicode str type''' return not (sys.version_info.major >= 3 or QT_VERSION_STR.startswith('5.')) def util_qt_strlistclass(): return QStringList if have_qstring() else list class WindowMixin(object): def menu(self, title, actions=None): menu = self.menuBar().addMenu(title) if actions: addActions(menu, actions) return menu def toolbar(self, title, actions=None): toolbar = ToolBar(title) toolbar.setObjectName(u'%sToolBar' % title) # toolbar.setOrientation(Qt.Vertical) toolbar.setToolButtonStyle(Qt.ToolButtonTextUnderIcon) if actions: addActions(toolbar, actions) self.addToolBar(Qt.LeftToolBarArea, toolbar) return toolbar # PyQt5: TypeError: unhashable type: 'QListWidgetItem' class HashableQListWidgetItem(QListWidgetItem): def __init__(self, *args): super(HashableQListWidgetItem, self).__init__(*args) def __hash__(self): return hash(id(self)) class MainWindow(QMainWindow, WindowMixin): FIT_WINDOW, FIT_WIDTH, MANUAL_ZOOM = list(range(3)) def __init__(self,logged_id, defaultFilename=None, defaultPrefdefClassFile=None): super(MainWindow, self).__init__() self.setWindowTitle(__appname__) # Load setting in the main thread self.settings = Settings() self.settings.load() settings = self.settings # Save as Pascal voc xml self.defaultSaveDir = "" self.defaultSaveDir_folder= "" self.usingPascalVocFormat = True # For loading all image under a directory self.mImgList = [] self.mDirList = [] self.dirname = None self.labelHist = [] self.lastOpenDir = None self.old_Filepath=None # self.proj_dir=None # Whether we need to save or not. self.dirty = False self._noSelectionSlot = False self._beginner = True self.screencastViewer = "firefox" self.screencast = "https://youtu.be/p0nR2YsCY_U" self.logged_id=logged_id self.ids = [] # Load predefined classes to the list if defaultPrefdefClassFile is not None: self.loadPredefinedClasses(defaultPrefdefClassFile) # Main widgets and related state. self.labelDialog = LabelDialog(parent=self, listItem=self.labelHist) self.itemsToShapes = {} self.shapesToItems = {} self.prevLabelText = '' listLayout = QVBoxLayout() listLayout.setContentsMargins(0, 0, 0, 0) # Create a widget for using default label self.useDefaultLabelCheckbox = QCheckBox(u'Use default label') self.useDefaultLabelCheckbox.setChecked(False) self.defaultLabelTextLine = QLineEdit() useDefaultLabelQHBoxLayout = QHBoxLayout() useDefaultLabelQHBoxLayout.addWidget(self.useDefaultLabelCheckbox) useDefaultLabelQHBoxLayout.addWidget(self.defaultLabelTextLine) useDefaultLabelContainer = QWidget() useDefaultLabelContainer.setLayout(useDefaultLabelQHBoxLayout) # Create a widget for edit and diffc button self.diffcButton = QCheckBox(u'difficult') self.diffcButton.setChecked(False) self.diffcButton.stateChanged.connect(self.btnstate) self.editButton = QToolButton() self.editButton.setToolButtonStyle(Qt.ToolButtonTextBesideIcon) # self.saveButton = QToolButton() # self.saveButton.setToolButtonStyle(Qt.ToolButtonTextBesideIcon) # self.saveButton.setText("Save checking") # self.saveButton.clicked.connect(self.saveButtonClicked) self.edit_label = QLabel() self.save_label = QLabel() self.anno_label = QLabel() self.id_label = QLabel() # Add some of widgets to listLayout listLayout.addWidget(self.editButton) listLayout.addWidget(self.diffcButton) listLayout.addWidget(useDefaultLabelContainer) # Create and add a widget for showing current label items self.labelList = QListWidget() labelListContainer = QWidget() labelListContainer.setLayout(listLayout) self.labelList.itemActivated.connect(self.labelSelectionChanged) self.labelList.itemSelectionChanged.connect(self.labelSelectionChanged) self.labelList.itemDoubleClicked.connect(self.editLabel) # Connect to itemChanged to detect checkbox changes. self.labelList.itemChanged.connect(self.labelItemChanged) listLayout.addWidget(self.labelList) listLayout.addWidget(self.anno_label) listLayout.addWidget(self.edit_label) listLayout.addWidget(self.save_label) self.dock = QDockWidget(self.logged_id, self) self.dock.setObjectName(u'Labels') self.dock.setWidget(labelListContainer) self.folderListWidget = QListWidget() self.folderListWidget.itemDoubleClicked.connect(self.diritemDoubleClicked) self.folderListWidget.itemChanged.connect(self.diritemChanged) folderlistLayout = QVBoxLayout() folderlistLayout.setContentsMargins(0, 0, 0, 0) # folderlistLayout.addWidget(self.saveButton) ### self.savebtncnt_label = QLabel() folderlistLayout.addWidget(self.savebtncnt_label) # self.savebtn_label = QLabel() # folderlistLayout.addWidget(self.savebtn_label) folderlistLayout.addWidget(self.folderListWidget) folderListContainer = QWidget() folderListContainer.setLayout(folderlistLayout) self.folderdock = QDockWidget(u'Folder List', self) self.folderdock.setObjectName(u'Folders') self.folderdock.setWidget(folderListContainer) # Tzutalin 20160906 : Add file list and dock to move faster self.fileListWidget = QListWidget() self.fileListWidget.itemDoubleClicked.connect(self.fileitemDoubleClicked) filelistLayout = QVBoxLayout() filelistLayout.setContentsMargins(0, 0, 0, 0) filelistLayout.addWidget(self.fileListWidget) fileListContainer = QWidget() fileListContainer.setLayout(filelistLayout) self.filedock = QDockWidget(u'File List', self) self.filedock.setObjectName(u'Files') self.filedock.setWidget(fileListContainer) self.zoomWidget = ZoomWidget() self.colorDialog = ColorDialog(parent=self) self.canvas = Canvas(parent=self) self.canvas.zoomRequest.connect(self.zoomRequest) scroll = QScrollArea() scroll.setWidget(self.canvas) scroll.setWidgetResizable(True) self.scrollBars = { Qt.Vertical: scroll.verticalScrollBar(), Qt.Horizontal: scroll.horizontalScrollBar() } self.scrollArea = scroll self.canvas.scrollRequest.connect(self.scrollRequest) self.canvas.newShape.connect(self.newShape) self.canvas.shapeMoved.connect(self.setDirty) self.canvas.selectionChanged.connect(self.shapeSelectionChanged) self.canvas.drawingPolygon.connect(self.toggleDrawingSensitive) self.setCentralWidget(scroll) self.addDockWidget(Qt.RightDockWidgetArea, self.dock) # Tzutalin 20160906 : Add file list and dock to move faster self.addDockWidget(Qt.RightDockWidgetArea, self.folderdock) self.addDockWidget(Qt.RightDockWidgetArea, self.filedock) # self.filedock.setFeatures(QDockWidget.DockWidgetFloatable) # self.dockFeatures = QDockWidget.DockWidgetClosable | QDockWidget.DockWidgetFloatable # self.dock.setFeatures(self.dock.features() ^ self.dockFeatures) ### self.foldercnt = 0 self.checkList = [] self.verJobList = [] file = QFile(server_path + '../ids.txt') if file.open(QFile.ReadOnly | QFile.Text): while not file.atEnd(): line = bytearray(file.readLine()).decode().strip() insort(self.ids, line) file.close() for id in self.ids: file = QFile(server_path + dataset + '/' + id + '.txt') if file.open(QFile.ReadOnly | QFile.Text): while not file.atEnd(): line = bytearray(file.readLine()).decode().strip() insort(self.verJobList, line) file.close() # file = QFile(server_path + dataset + '/' + self.logged_id + '.txt') # if file.open(QFile.ReadOnly | QFile.Text): # while not file.atEnd(): # line = bytearray(file.readLine()).decode().strip() # insort(self.checkList, line) # file.close() # Actions action = partial(newAction, self) quit = action('&Quit', self.close, 'Ctrl+Q', 'quit', u'Quit application') open = action('&Open', self.openFile, 'Ctrl+O', 'open', u'Open image or label file') opendir = action('&Open Dir', self.openDirDialog, 'u', 'open', u'Open Dir') changeSavedir = action('&Change Save Dir', self.changeSavedirDialog, 'r', 'open', u'Change default saved Annotation dir') openAnnotation = action('&Open Annotation', self.openAnnotationDialog, 'Ctrl+Shift+O', 'open', u'Open Annotation') openNextImg = action('&Next Image', self.openNextImg, 'd', 'next', u'Open Next') openPrevImg = action('&Prev Image', self.openPrevImg, 'a', 'prev', u'Open Prev') verify = action('&Verify Image', self.verifyImg, 'space', 'verify', u'Verify Image') save = action('&Save', self.saveFile, 's', 'save', u'Save labels to file', enabled=False) saveAs = action('&Save As', self.saveFileAs, 'Ctrl+Shift+S', 'save-as', u'Save labels to a different file', enabled=False) close = action('&Close', self.closeFile, 'Ctrl+W', 'close', u'Close current file') resetAll = action('&ResetAll', self.resetAll, None, 'resetall', u'Reset all') color1 = action('Box Line Color', self.chooseColor1, 'Ctrl+L', 'color_line', u'Choose Box line color') createMode = action('Create\nRectBox', self.setCreateMode, 'w', 'new', u'Start drawing Boxs', enabled=False) editMode = action('&Edit\nRectBox', self.setEditMode, 'Ctrl+J', 'edit', u'Move and edit Boxs', enabled=False) create = action('Create\nRectBox', self.createShape, 'w', 'new', u'Draw a new Box', enabled=False) delete = action('Delete\nRectBox', self.deleteSelectedShape, 'Delete', 'delete', u'Delete', enabled=False) copy = action('&Duplicate\nRectBox', self.copySelectedShape, 'Ctrl+D', 'copy', u'Create a duplicate of the selected Box', enabled=False) advancedMode = action('&Advanced Mode', self.toggleAdvancedMode, 'Ctrl+Shift+A', 'expert', u'Switch to advanced mode', checkable=True) hideAll = action('&Hide\nRectBox', partial(self.togglePolygons, False), 'Ctrl+H', 'hide', u'Hide all Boxs', enabled=False) showAll = action('&Show\nRectBox', partial(self.togglePolygons, True), 'Ctrl+A', 'hide', u'Show all Boxs', enabled=False) help = action('&Tutorial', self.showTutorialDialog, None, 'help', u'Show demos') showInfo = action('&Information', self.showInfoDialog, None, 'help', u'Information') zoom = QWidgetAction(self) zoom.setDefaultWidget(self.zoomWidget) self.zoomWidget.setWhatsThis( u"Zoom in or out of the image. Also accessible with" " %s and %s from the canvas." % (fmtShortcut("Ctrl+[-+]"), fmtShortcut("Ctrl+Wheel"))) self.zoomWidget.setEnabled(False) zoomIn = action('Zoom &In', partial(self.addZoom, 10), 'Ctrl++', 'zoom-in', u'Increase zoom level', enabled=False) zoomOut = action('&Zoom Out', partial(self.addZoom, -10), 'Ctrl+-', 'zoom-out', u'Decrease zoom level', enabled=False) zoomOrg = action('&Original size', partial(self.setZoom, 100), 'Ctrl+=', 'zoom', u'Zoom to original size', enabled=False) fitWindow = action('&Fit Window', self.setFitWindow, 'Ctrl+F', 'fit-window', u'Zoom follows window size', checkable=True, enabled=False) fitWidth = action('Fit &Width', self.setFitWidth, 'Ctrl+Shift+F', 'fit-width', u'Zoom follows window width', checkable=True, enabled=False) # Group zoom controls into a list for easier toggling. zoomActions = (self.zoomWidget, zoomIn, zoomOut, zoomOrg, fitWindow, fitWidth) self.zoomMode = self.MANUAL_ZOOM self.scalers = { self.FIT_WINDOW: self.scaleFitWindow, self.FIT_WIDTH: self.scaleFitWidth, # Set to one to scale to 100% when loading files. self.MANUAL_ZOOM: lambda: 1, } edit = action('&Edit Label', self.editLabel, 'Ctrl+E', 'edit', u'Modify the label of the selected Box', enabled=False) self.editButton.setDefaultAction(edit) shapeLineColor = action('Shape &Line Color', self.chshapeLineColor, icon='color_line', tip=u'Change the line color for this specific shape', enabled=False) shapeFillColor = action('Shape &Fill Color', self.chshapeFillColor, icon='color', tip=u'Change the fill color for this specific shape', enabled=False) labels = self.dock.toggleViewAction() labels.setText('Show/Hide Label Panel') labels.setShortcut('Ctrl+Shift+L') # Lavel list context menu. labelMenu = QMenu() addActions(labelMenu, (edit, delete)) self.labelList.setContextMenuPolicy(Qt.CustomContextMenu) self.labelList.customContextMenuRequested.connect( self.popLabelListMenu) # Store actions for further handling. self.actions = struct(save=save, saveAs=saveAs, open=open, close=close, resetAll = resetAll, lineColor=color1, create=create, delete=delete, edit=edit, copy=copy, createMode=createMode, editMode=editMode, advancedMode=advancedMode, shapeLineColor=shapeLineColor, shapeFillColor=shapeFillColor, zoom=zoom, zoomIn=zoomIn, zoomOut=zoomOut, zoomOrg=zoomOrg, fitWindow=fitWindow, fitWidth=fitWidth, zoomActions=zoomActions, fileMenuActions=( open, opendir, save, saveAs, close, resetAll, quit), beginner=(), advanced=(), editMenu=(edit, copy, delete, None, color1), beginnerContext=(create, edit, copy, delete), advancedContext=(createMode, editMode, edit, copy, delete, shapeLineColor, shapeFillColor), onLoadActive=( close, create, createMode, editMode), onShapesPresent=(saveAs, hideAll, showAll)) self.menus = struct( file=self.menu('&File'), edit=self.menu('&Edit'), view=self.menu('&View'), help=self.menu('&Help'), recentFiles=QMenu('Open &Recent'), labelList=labelMenu) # Auto saving : Enable auto saving if pressing next self.autoSaving = QAction("Auto Saving", self) self.autoSaving.setCheckable(True) self.autoSaving.setChecked(settings.get(SETTING_AUTO_SAVE, False)) # Sync single class mode from PR#106 self.singleClassMode = QAction("Single Class Mode", self) self.singleClassMode.setShortcut("Ctrl+Shift+S") self.singleClassMode.setCheckable(True) self.singleClassMode.setChecked(settings.get(SETTING_SINGLE_CLASS, False)) self.lastLabel = None addActions(self.menus.file, (open, opendir, changeSavedir, openAnnotation, self.menus.recentFiles, save, saveAs, close, resetAll, quit)) addActions(self.menus.help, (help, showInfo)) addActions(self.menus.view, ( self.autoSaving, self.singleClassMode, labels, advancedMode, None, hideAll, showAll, None, zoomIn, zoomOut, zoomOrg, None, fitWindow, fitWidth)) self.menus.file.aboutToShow.connect(self.updateFileMenu) # Custom context menu for the canvas widget: addActions(self.canvas.menus[0], self.actions.beginnerContext) addActions(self.canvas.menus[1], ( action('&Copy here', self.copyShape), action('&Move here', self.moveShape))) self.tools = self.toolbar('Tools') self.actions.beginner = ( open, opendir, changeSavedir, openNextImg, openPrevImg, verify, save, None, create, copy, delete, None, zoomIn, zoom, zoomOut, fitWindow, fitWidth) self.actions.advanced = ( open, opendir, changeSavedir, openNextImg, openPrevImg, save, None, createMode, editMode, None, hideAll, showAll) self.statusBar().showMessage('%s started.' % __appname__) self.statusBar().show() # Application state. self.image = QImage() self.filePath = ustr(defaultFilename) self.recentFiles = [] self.maxRecent = 7 self.lineColor = None self.fillColor = None self.zoom_level = 100 self.fit_window = False # Add Chris self.difficult = False ## Fix the compatible issue for qt4 and qt5. Convert the QStringList to python list if settings.get(SETTING_RECENT_FILES): if have_qstring(): recentFileQStringList = settings.get(SETTING_RECENT_FILES) self.recentFiles = [ustr(i) for i in recentFileQStringList] else: self.recentFiles = recentFileQStringList = settings.get(SETTING_RECENT_FILES) size = settings.get(SETTING_WIN_SIZE, QSize(600, 500)) position = settings.get(SETTING_WIN_POSE, QPoint(0, 0)) self.resize(size) self.move(position) saveDir = ustr(settings.get(SETTING_SAVE_DIR, None)) self.lastOpenDir = ustr(settings.get(SETTING_LAST_OPEN_DIR, None)) if saveDir is not None and os.path.exists(saveDir): self.defaultSaveDir = saveDir self.statusBar().showMessage('%s started. Annotation will be saved to %s' % (__appname__, self.defaultSaveDir)) self.statusBar().show() # self.restoreState(settings.get(SETTING_WIN_STATE, QByteArray())) Shape.line_color = self.lineColor = QColor(settings.get(SETTING_LINE_COLOR, DEFAULT_LINE_COLOR)) Shape.fill_color = self.fillColor = QColor(settings.get(SETTING_FILL_COLOR, DEFAULT_FILL_COLOR)) self.canvas.setDrawingColor(self.lineColor) # Add chris Shape.difficult = self.difficult def xbool(x): if isinstance(x, QVariant): return x.toBool() return bool(x) if xbool(settings.get(SETTING_ADVANCE_MODE, False)): self.actions.advancedMode.setChecked(True) self.toggleAdvancedMode() # Populate the File menu dynamically. self.updateFileMenu() # Since loading the file may take some time, make sure it runs in the background. if self.filePath and os.path.isdir(self.filePath): self.queueEvent(partial(self.importDirImages, self.filePath or "")) elif self.filePath: self.queueEvent(partial(self.loadFile, self.filePath or "")) # Callbacks: self.zoomWidget.valueChanged.connect(self.paintCanvas) self.populateModeActions() # Display cursor coordinates at the right of status bar self.labelCoordinates = QLabel('') self.statusBar().addPermanentWidget(self.labelCoordinates) # Open Dir if deafult file if self.filePath and os.path.isdir(self.filePath): self.openDirDialog(dirpath=self.filePath) self.save_label.setText("Save DIR: " + self.defaultSaveDir) ## Support Functions ## def noShapes(self): return not self.itemsToShapes def toggleAdvancedMode(self, value=True): self._beginner = not value self.canvas.setEditing(True) self.populateModeActions() self.editButton.setVisible(not value) if value: self.actions.createMode.setEnabled(True) self.actions.editMode.setEnabled(False) self.dock.setFeatures(self.dock.features() | self.dockFeatures) else: self.dock.setFeatures(self.dock.features() ^ self.dockFeatures) def populateModeActions(self): if self.beginner(): tool, menu = self.actions.beginner, self.actions.beginnerContext else: tool, menu = self.actions.advanced, self.actions.advancedContext self.tools.clear() addActions(self.tools, tool) self.canvas.menus[0].clear() addActions(self.canvas.menus[0], menu) self.menus.edit.clear() actions = (self.actions.create,) if self.beginner()\ else (self.actions.createMode, self.actions.editMode) addActions(self.menus.edit, actions + self.actions.editMenu) def setBeginner(self): self.tools.clear() addActions(self.tools, self.actions.beginner) def setAdvanced(self): self.tools.clear() addActions(self.tools, self.actions.advanced) def setDirty(self): self.dirty = True self.actions.save.setEnabled(True) def setClean(self): self.dirty = False self.actions.save.setEnabled(False) self.actions.create.setEnabled(True) def toggleActions(self, value=True): """Enable/Disable widgets which depend on an opened image.""" for z in self.actions.zoomActions: z.setEnabled(value) for action in self.actions.onLoadActive: action.setEnabled(value) def queueEvent(self, function): QTimer.singleShot(0, function) def status(self, message, delay=5000): self.statusBar().showMessage(message, delay) def resetState(self): self.itemsToShapes.clear() self.shapesToItems.clear() self.labelList.clear() self.filePath = None #self.old_Filepath = None self.imageData = None self.labelFile = None self.canvas.resetState() self.labelCoordinates.clear() self.canvas.itemsToShapes.clear() self.canvas.shapesToItems.clear() def currentItem(self): items = self.labelList.selectedItems() if items: return items[0] return None def addRecentFile(self, filePath): if filePath in self.recentFiles: self.recentFiles.remove(filePath) elif len(self.recentFiles) >= self.maxRecent: self.recentFiles.pop() self.recentFiles.insert(0, filePath) def beginner(self): return self._beginner def advanced(self): return not self.beginner() ## Callbacks ## def showTutorialDialog(self): subprocess.Popen([self.screencastViewer, self.screencast]) def showInfoDialog(self): msg = u'Name:{0} \nApp Version:{1} \n{2} '.format(__appname__, __version__, sys.version_info) QMessageBox.information(self, u'Information', msg) def createShape(self): assert self.beginner() self.canvas.setEditing(False) self.actions.create.setEnabled(False) def toggleDrawingSensitive(self, drawing=True): """In the middle of drawing, toggling between modes should be disabled.""" self.actions.editMode.setEnabled(not drawing) if not drawing and self.beginner(): # Cancel creation. print('Cancel creation.') self.canvas.setEditing(True) self.canvas.restoreCursor() self.actions.create.setEnabled(True) def toggleDrawMode(self, edit=True): self.canvas.setEditing(edit) self.actions.createMode.setEnabled(edit) self.actions.editMode.setEnabled(not edit) def setCreateMode(self): assert self.advanced() self.toggleDrawMode(False) def setEditMode(self): assert self.advanced() self.toggleDrawMode(True) self.labelSelectionChanged() def updateFileMenu(self): currFilePath = self.filePath def exists(filename): return os.path.exists(filename) menu = self.menus.recentFiles menu.clear() files = [f for f in self.recentFiles if f != currFilePath and exists(f)] for i, f in enumerate(files): icon = newIcon('labels') action = QAction( icon, '&%d %s' % (i + 1, QFileInfo(f).fileName()), self) action.triggered.connect(partial(self.loadRecent, f)) menu.addAction(action) def popLabelListMenu(self, point): self.menus.labelList.exec_(self.labelList.mapToGlobal(point)) def editLabel(self): if not self.canvas.editing(): return item = self.currentItem() text = self.labelDialog.popUp(item.text()) if text is not None: item.setText(text) item.setBackground(generateColorByText(text)) self.setDirty() # Tzutalin 20160906 : Add file list and dock to move faster def fileitemDoubleClicked(self, item=None): currIndex = self.mImgList.index(ustr(item.text())) if currIndex < len(self.mImgList): filename = self.mImgList[currIndex] if filename: self.loadFile(filename) def diritemDoubleClicked(self, item=None): currIndex = self.mDirList.index(ustr(item.text())) if currIndex < len(self.mDirList): foldername = self.mDirList[currIndex] if foldername: self.defaultSaveDir_folder = os.path.join(self.defaultSaveDir, foldername) self.importDirImages(os.path.join(self.lastOpenDir,foldername)) self.save_label.setText("Save DIR: " + self.defaultSaveDir_folder) self.fileListWidget.setFocus(True) # self.fileListWidget.setSelected(0) ### def diritemChanged(self, item=None): # QMessageBox.warning(self, u'changed', msg, yes | no) # self.savebtn_label.setText('Not saved') # self.savebtn_label.setStyleSheet('color: red') # if item.text() in self.checkList: # self.checkList.remove(item.text()) # else: # insort(self.checkList, item.text()) # self.savebtncnt_label.setText('{0}/{1}'.format(len(self.checkList), self.foldercnt)) ### with self.lmdb.begin(write=True) as txn: flag = txn.put(item.text().encode('ascii'), "1".encode('ascii'), overwrite=False) if flag: self.checknum += 1 else: # QMessageBox.warning(self, u'Duplicate', "Already checked") txn.delete(item.text().encode('ascii')) self.checknum -= 1 print("put: ",flag) self.savebtncnt_label.setText('{0}/{1}'.format(self.checknum, self.foldercnt)) ### # def saveButtonClicked(self): # self.savebtn_label.setText('') # file = QFile(server_path + dataset + '/'+ self.logged_id + '.txt') # if file.open(QFile.WriteOnly | QFile.Text): # for check in self.checkList: # file.write(bytearray(check + '\n', 'utf8')) # file.close() # print('saved') # Add chris def btnstate(self, item= None): """ Function to handle difficult examples Update on each object """ if not self.canvas.editing(): return item = self.currentItem() if not item: # If not selected Item, take the first one item = self.labelList.item(self.labelList.count()-1) difficult = self.diffcButton.isChecked() try: shape = self.itemsToShapes[item] except: pass # Checked and Update try: if difficult != shape.difficult: shape.difficult = difficult self.setDirty() else: # User probably changed item visibility self.canvas.setShapeVisible(shape, item.checkState() == Qt.Checked) except: pass # React to canvas signals. def shapeSelectionChanged(self, selected=False): if self._noSelectionSlot: self._noSelectionSlot = False else: shape = self.canvas.selectedShape if shape: self.shapesToItems[shape].setSelected(True) else: self.labelList.clearSelection() self.actions.delete.setEnabled(selected) self.actions.copy.setEnabled(selected) self.actions.edit.setEnabled(selected) self.actions.shapeLineColor.setEnabled(selected) self.actions.shapeFillColor.setEnabled(selected) def addLabel(self, shape): item = HashableQListWidgetItem(shape.label) item.setFlags(item.flags() | Qt.ItemIsUserCheckable) item.setCheckState(Qt.Checked) item.setBackground(generateColorByText(shape.label)) self.itemsToShapes[item] = shape self.shapesToItems[shape] = item self.labelList.addItem(item) self.canvas.itemsToShapes[item] = shape self.canvas.shapesToItems[shape] = item for action in self.actions.onShapesPresent: action.setEnabled(True) def remLabel(self, shape): if shape is None: # print('rm empty label') return item = self.shapesToItems[shape] self.labelList.takeItem(self.labelList.row(item)) del self.shapesToItems[shape] del self.itemsToShapes[item] del self.canvas.shapesToItems[shape] del self.canvas.itemsToShapes[item] def loadLabels(self, shapes): s = [] for label, points, line_color, fill_color, difficult in shapes: shape = Shape(label=label) for x, y in points: shape.addPoint(QPointF(x, y)) shape.difficult = difficult shape.close() s.append(shape) if line_color: shape.line_color = QColor(*line_color) else: shape.line_color = generateColorByText(label) if fill_color: shape.fill_color = QColor(*fill_color) else: shape.fill_color = generateColorByText(label) self.addLabel(shape) self.canvas.loadShapes(s) def saveLabels(self, annotationFilePath): annotationFilePath = ustr(annotationFilePath) if self.labelFile is None: self.labelFile = LabelFile() self.labelFile.verified = self.canvas.verified def format_shape(s): return dict(label=s.label, line_color=s.line_color.getRgb(), fill_color=s.fill_color.getRgb(), points=[(p.x(), p.y()) for p in s.points], # add chris difficult = s.difficult) shapes = [format_shape(shape) for shape in self.canvas.shapes] # Can add differrent annotation formats here try: if self.usingPascalVocFormat is True: print ('Img: ' + self.filePath + ' -> Its xml: ' + annotationFilePath) self.labelFile.savePascalVocFormat(annotationFilePath, shapes, self.filePath, self.imageData, self.lineColor.getRgb(), self.fillColor.getRgb()) else: self.labelFile.save(annotationFilePath, shapes, self.filePath, self.imageData, self.lineColor.getRgb(), self.fillColor.getRgb()) return True except LabelFileError as e: self.errorMessage(u'Error saving label data', u'<b>%s</b>' % e) return False def copySelectedShape(self): self.addLabel(self.canvas.copySelectedShape()) # fix copy and delete self.shapeSelectionChanged(True) def labelSelectionChanged(self): item = self.currentItem() if item and self.canvas.editing(): self._noSelectionSlot = True self.canvas.selectShape(self.itemsToShapes[item]) shape = self.itemsToShapes[item] # Add Chris self.diffcButton.setChecked(shape.difficult) def labelItemChanged(self, item): shape = self.itemsToShapes[item] label = item.text() if label != shape.label: shape.label = item.text() shape.line_color = generateColorByText(shape.label) self.setDirty() else: # User probably changed item visibility self.canvas.setShapeVisible(shape, item.checkState() == Qt.Checked) # Callback functions: def newShape(self): """Pop-up and give focus to the label editor. position MUST be in global coordinates. """ if not self.useDefaultLabelCheckbox.isChecked() or not self.defaultLabelTextLine.text(): if len(self.labelHist) > 0: self.labelDialog = LabelDialog( parent=self, listItem=self.labelHist) # Sync single class mode from PR#106 if self.singleClassMode.isChecked() and self.lastLabel: text = self.lastLabel else: text = self.labelDialog.popUp(text=self.prevLabelText) self.lastLabel = text else: text = self.defaultLabelTextLine.text() # Add Chris self.diffcButton.setChecked(False) if text is not None: self.prevLabelText = text generate_color = generateColorByText(text) shape = self.canvas.setLastLabel(text, generate_color, generate_color) self.addLabel(shape) if self.beginner(): # Switch to edit mode. self.canvas.setEditing(True) self.actions.create.setEnabled(True) else: self.actions.editMode.setEnabled(True) self.setDirty() if text not in self.labelHist: self.labelHist.append(text) else: # self.canvas.undoLastLine() self.canvas.resetAllLines() def scrollRequest(self, delta, orientation): units = - delta / (8 * 15) bar = self.scrollBars[orientation] bar.setValue(bar.value() + bar.singleStep() * units) def setZoom(self, value): self.actions.fitWidth.setChecked(False) self.actions.fitWindow.setChecked(False) self.zoomMode = self.MANUAL_ZOOM self.zoomWidget.setValue(value) def addZoom(self, increment=10): self.setZoom(self.zoomWidget.value() + increment) def zoomRequest(self, delta): # get the current scrollbar positions # calculate the percentages ~ coordinates h_bar = self.scrollBars[Qt.Horizontal] v_bar = self.scrollBars[Qt.Vertical] # get the current maximum, to know the difference after zooming h_bar_max = h_bar.maximum() v_bar_max = v_bar.maximum() # get the cursor position and canvas size # calculate the desired movement from 0 to 1 # where 0 = move left # 1 = move right # up and down analogous cursor = QCursor() pos = cursor.pos() relative_pos = QWidget.mapFromGlobal(self, pos) cursor_x = relative_pos.x() cursor_y = relative_pos.y() w = self.scrollArea.width() h = self.scrollArea.height() # the scaling from 0 to 1 has some padding # you don't have to hit the very leftmost pixel for a maximum-left movement margin = 0.1 move_x = (cursor_x - margin * w) / (w - 2 * margin * w) move_y = (cursor_y - margin * h) / (h - 2 * margin * h) # clamp the values from 0 to 1 move_x = min(max(move_x, 0), 1) move_y = min(max(move_y, 0), 1) # zoom in units = delta / (8 * 15) scale = 10 self.addZoom(scale * units) # get the difference in scrollbar values # this is how far we can move d_h_bar_max = h_bar.maximum() - h_bar_max d_v_bar_max = v_bar.maximum() - v_bar_max # get the new scrollbar values new_h_bar_value = h_bar.value() + move_x * d_h_bar_max new_v_bar_value = v_bar.value() + move_y * d_v_bar_max h_bar.setValue(new_h_bar_value) v_bar.setValue(new_v_bar_value) def setFitWindow(self, value=True): if value: self.actions.fitWidth.setChecked(False) self.zoomMode = self.FIT_WINDOW if value else self.MANUAL_ZOOM self.adjustScale() def setFitWidth(self, value=True): if value: self.actions.fitWindow.setChecked(False) self.zoomMode = self.FIT_WIDTH if value else self.MANUAL_ZOOM self.adjustScale() def togglePolygons(self, value): for item, shape in self.itemsToShapes.items(): item.setCheckState(Qt.Checked if value else Qt.Unchecked) def loadFile(self, filePath=None): """Load the specified file, or the last opened file if None.""" self.resetState() self.canvas.setEnabled(False) if filePath is None: filePath = self.settings.get(SETTING_FILENAME) # Make sure that filePath is a regular python string, rather than QString filePath = str(filePath) unicodeFilePath = ustr(filePath) # Tzutalin 20160906 : Add file list and dock to move faster # Highlight the file item if unicodeFilePath and self.fileListWidget.count() > 0: index = self.mImgList.index(unicodeFilePath) fileWidgetItem = self.fileListWidget.item(index) fileWidgetItem.setSelected(True) if unicodeFilePath and os.path.exists(unicodeFilePath): if LabelFile.isLabelFile(unicodeFilePath): try: self.labelFile = LabelFile(unicodeFilePath) except LabelFileError as e: self.errorMessage(u'Error opening file', (u"<p><b>%s</b></p>" u"<p>Make sure <i>%s</i> is a valid label file.") % (e, unicodeFilePath)) self.status("Error reading %s" % unicodeFilePath) return False self.imageData = self.labelFile.imageData self.lineColor = QColor(*self.labelFile.lineColor) self.fillColor = QColor(*self.labelFile.fillColor) else: # Load image: # read data first and store for saving into label file. self.imageData = read(unicodeFilePath, None) self.labelFile = None image = QImage.fromData(self.imageData) if image.isNull(): self.errorMessage(u'Error opening file', u"<p>Make sure <i>%s</i> is a valid image file." % unicodeFilePath) self.status("Error reading %s" % unicodeFilePath) return False self.status("Loaded %s" % os.path.basename(unicodeFilePath)) self.image = image self.filePath = unicodeFilePath self.canvas.loadPixmap(QPixmap.fromImage(image)) if self.labelFile: self.loadLabels(self.labelFile.shapes) self.setClean() self.canvas.setEnabled(True) self.adjustScale(initial=True) self.paintCanvas() self.addRecentFile(self.filePath) self.toggleActions(True) bsucces = True # Label xml file and show bound box according to its filename if self.usingPascalVocFormat is True: if self.defaultSaveDir_folder is not None: basename = os.path.basename( os.path.splitext(self.filePath)[0]) + XML_EXT xmlPath = os.path.join(self.defaultSaveDir_folder, basename) bsucces = self.loadPascalXMLByFilename(xmlPath) else: xmlPath = os.path.splitext(filePath)[0] + XML_EXT if os.path.isfile(xmlPath): bsucces = self.loadPascalXMLByFilename(xmlPath) if bsucces is False: self.anno_label.setText("") self.diffcButton.setChecked(False) self.old_Filepath = str(self.old_Filepath) self.old_Filepath = ustr(self.old_Filepath) # print("old: ",self.old_Filepath) basename_old = os.path.basename( os.path.splitext(self.old_Filepath)[0]) + XML_EXT xmlPath_old = os.path.join(self.defaultSaveDir_folder, basename_old) bsucces = self.loadPascalXMLByFilename(xmlPath_old, False) self.diffcButton.setChecked(False) if bsucces is True: self.actions.save.setEnabled(True) else: self.anno_label.setText(xmlPath) self.anno_label.setStyleSheet('color: red') self.setWindowTitle(__appname__ + ' ' + filePath) # Default : select last item if there is at least one item if self.labelList.count(): self.labelList.setCurrentItem(self.labelList.item(self.labelList.count()-1)) self.labelList.item(self.labelList.count()-1).setSelected(True) self.canvas.setFocus(True) return True return False def resizeEvent(self, event): if self.canvas and not self.image.isNull()\ and self.zoomMode != self.MANUAL_ZOOM: self.adjustScale() super(MainWindow, self).resizeEvent(event) def paintCanvas(self): assert not self.image.isNull(), "cannot paint null image" self.canvas.scale = 0.01 * self.zoomWidget.value() self.canvas.adjustSize() self.canvas.update() def adjustScale(self, initial=False): value = self.scalers[self.FIT_WINDOW if initial else self.zoomMode]() self.zoomWidget.setValue(int(100 * value)) def scaleFitWindow(self): """Figure out the size of the pixmap in order to fit the main widget.""" e = 2.0 # So that no scrollbars are generated. w1 = self.centralWidget().width() - e h1 = self.centralWidget().height() - e a1 = w1 / h1 # Calculate a new scale value based on the pixmap's aspect ratio. w2 = self.canvas.pixmap.width() - 0.0 h2 = self.canvas.pixmap.height() - 0.0 a2 = w2 / h2 return w1 / w2 if a2 >= a1 else h1 / h2 def scaleFitWidth(self): # The epsilon does not seem to work too well here. w = self.centralWidget().width() - 2.0 return w / self.canvas.pixmap.width() def closeEvent(self, event): if not self.mayContinue(): event.ignore() settings = self.settings # If it loads images from dir, don't load it at the begining if self.dirname is None: settings[SETTING_FILENAME] = self.filePath if self.filePath else '' else: settings[SETTING_FILENAME] = '' settings[SETTING_WIN_SIZE] = self.size() settings[SETTING_WIN_POSE] = self.pos() settings[SETTING_WIN_STATE] = self.saveState() settings[SETTING_LINE_COLOR] = self.lineColor settings[SETTING_FILL_COLOR] = self.fillColor settings[SETTING_RECENT_FILES] = self.recentFiles settings[SETTING_ADVANCE_MODE] = not self._beginner if self.defaultSaveDir and os.path.exists(self.defaultSaveDir): settings[SETTING_SAVE_DIR] = ustr(self.defaultSaveDir) else: settings[SETTING_SAVE_DIR] = "" if self.lastOpenDir and os.path.exists(self.lastOpenDir): settings[SETTING_LAST_OPEN_DIR] = self.lastOpenDir else: settings[SETTING_LAST_OPEN_DIR] = "" settings[SETTING_AUTO_SAVE] = self.autoSaving.isChecked() settings[SETTING_SINGLE_CLASS] = self.singleClassMode.isChecked() settings.save() ## User Dialogs ## def loadRecent(self, filename): if self.mayContinue(): self.loadFile(filename) def scanAllImages(self, folderPath): extensions = ['.jpeg', '.jpg', '.png', '.bmp'] images = [] for root, dirs, files in os.walk(folderPath): for file in files: if file.lower().endswith(tuple(extensions)): relativePath = os.path.join(root, file) path = ustr(os.path.abspath(relativePath)) images.append(path) images.sort(key=lambda x: x.lower()) return images def scanAllDirs(self, folderPath): pre_dirs = os.listdir(folderPath) # for root, dirs, files in os.walk(folderPath): # for file in files: # if file.lower().endswith(tuple(extensions)): # relativePath = os.path.join(root, file) # path = ustr(os.path.abspath(relativePath)) # images.append(path) pre_dirs.sort(key=lambda x: x.lower()) return pre_dirs def changeSavedirDialog(self, _value=False): if self.defaultSaveDir is not None: path = ustr(self.defaultSaveDir) else: path = '.' dirpath = ustr(QFileDialog.getExistingDirectory(self, '%s - Save annotations to the directory' % __appname__, path, QFileDialog.ShowDirsOnly | QFileDialog.DontResolveSymlinks)) self.save_label.setText("Save DIR: " + dirpath) if dirpath is not None and len(dirpath) > 1: self.defaultSaveDir = dirpath self.statusBar().showMessage('%s . Annotation will be saved to %s' % ('Change saved folder', self.defaultSaveDir)) self.statusBar().show() def openAnnotationDialog(self, _value=False): if self.filePath is None: self.statusBar().showMessage('Please select image first') self.statusBar().show() return path = os.path.dirname(ustr(self.filePath))\ if self.filePath else '.' if self.usingPascalVocFormat: filters = "Open Annotation XML file (%s)" % ' '.join(['*.xml']) filename = ustr(QFileDialog.getOpenFileName(self,'%s - Choose a xml file' % __appname__, path, filters)) if filename: if isinstance(filename, (tuple, list)): filename = filename[0] self.loadPascalXMLByFilename(filename) def openDirDialog(self, _value=False, dirpath=None): if not self.mayContinue(): return defaultOpenDirPath = dirpath if dirpath else '.' if self.lastOpenDir and os.path.exists(self.lastOpenDir): defaultOpenDirPath = self.lastOpenDir else: defaultOpenDirPath = os.path.dirname(self.filePath) if self.filePath else '.' targetDirPath = ustr(QFileDialog.getExistingDirectory(self, '%s - Open Directory' % __appname__, defaultOpenDirPath, QFileDialog.ShowDirsOnly | QFileDialog.DontResolveSymlinks)) self.importDirs(targetDirPath) def importJobs(self, envpath): envpath = server_path + envpath.split("/")[-1] self.lmdb=lmdb.open(os.path.join(envpath,self.logged_id)) return json.load(open(os.path.join(envpath,"job_assign.json"))) def importDirs(self, dirpath): if not self.mayContinue() or not dirpath: return self.lastOpenDir = dirpath # self.dirname = dirpath # self.filePath = None job_dict = self.importJobs(dirpath) # print(job_dict) ### # job_list = list(chain(job_list)) # job_list = job_dict.values() # job_list = [k for j in job_list for k in j] # print(job_list) job_list = self.verJobList with self.lmdb.begin() as txn: cursor = txn.cursor() for key, value in cursor: # print(key.decode('ascii'), value.decode('ascii')) insort(self.checkList, key.decode('ascii')) self.checknum = len(self.checkList) self.folderListWidget.clear() self.mDirList = self.scanAllDirs(dirpath) # self.openNextImg() ### for dirPath in self.mDirList: if dirPath in job_list: self.foldercnt += 1 item = QListWidgetItem(dirPath) item.setFlags(item.flags() | Qt.ItemIsUserCheckable) if item.text() in self.checkList: item.setCheckState(Qt.Checked) else: item.setCheckState(Qt.Unchecked) self.folderListWidget.addItem(item) self.savebtncnt_label.setText('{0}/{1}'.format(len(self.checkList), self.foldercnt)) self.edit_label.setText("Edit DIR: " + dirpath) def importDirImages(self, dirpath): if not self.mayContinue() or not dirpath: return # self.lastOpenDir = dirpath self.dirname = dirpath self.filePath = None self.fileListWidget.clear() self.mImgList = self.scanAllImages(dirpath) self.openNextImg() self.fileListWidget.setFocus(True) for imgPath in self.mImgList: item = QListWidgetItem(imgPath) self.fileListWidget.addItem(item) self.edit_label.setText("Edit DIR: " + dirpath) def verifyImg(self, _value=False): # Proceding next image without dialog if having any label if self.filePath is not None: try: self.labelFile.toggleVerify() except AttributeError: # If the labelling file does not exist yet, create if and # re-save it with the verified attribute. self.saveFile() self.labelFile.toggleVerify() self.canvas.verified = self.labelFile.verified self.paintCanvas() self.saveFile() def openPrevImg(self, _value=False): # Proceding prev image without dialog if having any label if self.autoSaving.isChecked(): if self.defaultSaveDir is not None: if self.dirty is True: self.saveFile() else: self.changeSavedirDialog() return if not self.mayContinue(): return if len(self.mImgList) <= 0: return if self.filePath is None: return currIndex = self.mImgList.index(self.filePath) if currIndex - 1 >= 0: filename = self.mImgList[currIndex - 1] if filename: self.loadFile(filename) def openNextImg(self, _value=False): # Proceding prev image without dialog if having any label if self.autoSaving.isChecked(): if self.defaultSaveDir is not None: if self.dirty is True: self.saveFile() else: self.changeSavedirDialog() return if not self.mayContinue(): return if len(self.mImgList) <= 0: return # print("now ", self.filePath) self.old_Filepath=self.filePath filename = None if self.filePath is None: filename = self.mImgList[0] else: currIndex = self.mImgList.index(self.filePath) if currIndex + 1 < len(self.mImgList): filename = self.mImgList[currIndex + 1] if filename: self.loadFile(filename) def openFile(self, _value=False): if not self.mayContinue(): return path = os.path.dirname(ustr(self.filePath)) if self.filePath else '.' formats = ['*.%s' % fmt.data().decode("ascii").lower() for fmt in QImageReader.supportedImageFormats()] filters = "Image & Label files (%s)" % ' '.join(formats + ['*%s' % LabelFile.suffix]) filename = QFileDialog.getOpenFileName(self, '%s - Choose Image or Label file' % __appname__, path, filters) if filename: if isinstance(filename, (tuple, list)): filename = filename[0] self.loadFile(filename) def saveFile(self, _value=False): if self.defaultSaveDir_folder is not None and len(ustr(self.defaultSaveDir_folder)): if self.filePath: imgFileName = os.path.basename(self.filePath) savedFileName = os.path.splitext(imgFileName)[0] + XML_EXT savedPath = os.path.join(ustr(self.defaultSaveDir_folder), savedFileName) self._saveFile(savedPath) else: imgFileDir = os.path.dirname(self.filePath) imgFileName = os.path.basename(self.filePath) savedFileName = os.path.splitext(imgFileName)[0] + XML_EXT savedPath = os.path.join(imgFileDir, savedFileName) self._saveFile(savedPath if self.labelFile else self.saveFileDialog()) def saveFileAs(self, _value=False): assert not self.image.isNull(), "cannot save empty image" self._saveFile(self.saveFileDialog()) def saveFileDialog(self): caption = '%s - Choose File' % __appname__ filters = 'File (*%s)' % LabelFile.suffix openDialogPath = self.currentPath() dlg = QFileDialog(self, caption, openDialogPath, filters) dlg.setDefaultSuffix(LabelFile.suffix[1:]) dlg.setAcceptMode(QFileDialog.AcceptSave) filenameWithoutExtension = os.path.splitext(self.filePath)[0] dlg.selectFile(filenameWithoutExtension) dlg.setOption(QFileDialog.DontUseNativeDialog, False) if dlg.exec_(): return dlg.selectedFiles()[0] return '' def _saveFile(self, annotationFilePath): if annotationFilePath and self.saveLabels(annotationFilePath): self.setClean() self.statusBar().showMessage('Saved to %s' % annotationFilePath) self.statusBar().show() def closeFile(self, _value=False): if not self.mayContinue(): return self.resetState() self.setClean() self.toggleActions(False) self.canvas.setEnabled(False) self.actions.saveAs.setEnabled(False) def resetAll(self): self.settings.reset() self.close() proc = QProcess() proc.startDetached(os.path.abspath(__file__)) def mayContinue(self): return not (self.dirty and not self.discardChangesDialog()) def discardChangesDialog(self): yes, no = QMessageBox.Yes, QMessageBox.No msg = u'You have unsaved changes, proceed anyway?' return yes == QMessageBox.warning(self, u'Attention', msg, yes | no) def errorMessage(self, title, message): return QMessageBox.critical(self, title, '<p><b>%s</b></p>%s' % (title, message)) def currentPath(self): return os.path.dirname(self.filePath) if self.filePath else '.' def chooseColor1(self): color = self.colorDialog.getColor(self.lineColor, u'Choose line color', default=DEFAULT_LINE_COLOR) if color: self.lineColor = color Shape.line_color = color self.canvas.setDrawingColor(color) self.canvas.update() self.setDirty() def deleteSelectedShape(self): self.remLabel(self.canvas.deleteSelected()) self.setDirty() if self.noShapes(): for action in self.actions.onShapesPresent: action.setEnabled(False) def chshapeLineColor(self): color = self.colorDialog.getColor(self.lineColor, u'Choose line color', default=DEFAULT_LINE_COLOR) if color: self.canvas.selectedShape.line_color = color self.canvas.update() self.setDirty() def chshapeFillColor(self): color = self.colorDialog.getColor(self.fillColor, u'Choose fill color', default=DEFAULT_FILL_COLOR) if color: self.canvas.selectedShape.fill_color = color self.canvas.update() self.setDirty() def copyShape(self): self.canvas.endMove(copy=True) self.addLabel(self.canvas.selectedShape) self.setDirty() def moveShape(self): self.canvas.endMove(copy=False) self.setDirty() def loadPredefinedClasses(self, predefClassesFile): if os.path.exists(predefClassesFile) is True: with codecs.open(predefClassesFile, 'r', 'utf8') as f: for line in f: line = line.strip() if self.labelHist is None: self.labelHist = [line] else: self.labelHist.append(line) def loadPascalXMLByFilename(self, xmlPath, current=True): if self.filePath is None: return False if os.path.isfile(xmlPath) is False: return False tVocParseReader = PascalVocReader(xmlPath) shapes = tVocParseReader.getShapes() self.loadLabels(shapes) if current: self.canvas.verified = tVocParseReader.verified else: self.canvas.verified = False return True def inverted(color): return QColor(*[255 - v for v in color.getRgb()]) def read(filename, default=None): try: with open(filename, 'rb') as f: return f.read() except: return default def get_main_app(argv=[]): """ Standard boilerplate Qt application code. Do everything but app.exec_() -- so that we can test the application in one thread """ app = QApplication(argv) app.setApplicationName(__appname__) app.setWindowIcon(newIcon("app")) login = Login() # Tzutalin 201705+: Accept extra agruments to change predefined class file # Usage : labelImg.py image predefClassFile if login.exec_() == QDialog.Accepted: # win = MainWindow(login.logged_id,argv[1] if len(argv) >= 2 else None, # argv[2] if len(argv) >= 3 else os.path.join( # os.path.dirname(sys.argv[0]), # 'data', 'predefined_classes.txt')) win = MainWindow(login.logged_id) # win.logged_id=login.logged_id win.show() return app, win else: sys.exit() def main(argv=[]): '''construct main app and run it''' app, _win = get_main_app(argv) return app.exec_() if __name__ == '__main__': sys.exit(main(sys.argv))
the-stack_0_14719
# -*- coding: utf-8 -* import serial import time ser = serial.Serial("/dev/ttyS0", 115200) def getTFminiData(): while True: #time.sleep(0.1) count = ser.in_waiting if count > 8: recv = ser.read(9) ser.reset_input_buffer() # type(recv), 'str' in python2(recv[0] = 'Y'), 'bytes' in python3(recv[0] = 89) # type(recv[0]), 'str' in python2, 'int' in python3 if recv[0] == 0x59 and recv[1] == 0x59: #python3 distance = recv[2] + recv[3] * 256 strength = recv[4] + recv[5] * 256 print('(', distance, ',', strength, ')') ser.reset_input_buffer() if recv[0] == 'Y' and recv[1] == 'Y': #python2 lowD = int(recv[2].encode('hex'), 16) highD = int(recv[3].encode('hex'), 16) lowS = int(recv[4].encode('hex'), 16) highS = int(recv[5].encode('hex'), 16) distance = lowD + highD * 256 strength = lowS + highS * 256 print(distance, strength) # you can also distinguish python2 and python3: #import sys #sys.version[0] == '2' #True, python2 #sys.version[0] == '3' #True, python3 if __name__ == '__main__': try: if ser.is_open == False: ser.open() getTFminiData() except KeyboardInterrupt: # Ctrl+C if ser != None: ser.close()
the-stack_0_14720
from pydantic import BaseModel, validator, Field from typing import List, Dict from datetime import datetime class Agents(BaseModel): name: str integration: str id: str class CampaignTasksOut(BaseModel): name: str scheduled_date: str start_date: str = None end_date: str = None agents: List[Agents] dependencies: List[str] state: str @validator('scheduled_date', pre=True, always=True) def _get_scheduled_date(cls, v): return str(datetime.fromtimestamp(v['$date']/1000)) @validator('start_date', pre=True, always=True) def _get_start_date(cls, v): return None if not v else str(datetime.fromtimestamp(v['$date']/1000)) @validator('end_date', pre=True, always=True) def _get_end_date(cls, v): return None if not v else str(datetime.fromtimestamp(v['$date']/1000)) class CampaignsOut(BaseModel): id: str = Field(None, alias='_id') group_id: str name: str saved_date: str tasks: List[CampaignTasksOut] @validator('id', pre=True, always=True) def _get_id(cls, v): return v['$oid'] @validator('saved_date', pre=True, always=True) def _get_saved_date(cls, v): return str(datetime.fromtimestamp(v['$date']/1000)) # Data input class CommandIn(BaseModel): reference: str = None reference_name: str = None technique_name: str = None kill_chain_phase: str = None technique_id: str = None category: str integration: str module: str input: Dict sleep: str = 1 class DependencyIn(BaseModel): source: str destination: str class CampaignTaskIn(BaseModel): name: str sleep: int scheduled_date: datetime = None commands: List[CommandIn] agents: List[Agents] @validator('scheduled_date', pre=True, always=True) def _set_date(cls, v): return v or datetime.now() class CampaignIn(BaseModel): name: str tasks: List[CampaignTaskIn] dependencies: List[DependencyIn] # Filtered values for denormalization class CampaignTaskDenomIn(BaseModel): name: str scheduled_date: datetime = None agents: List[Agents] @validator('scheduled_date', pre=True, always=True) def _set_date(cls, v): return v or datetime.now() class CampaignDenomIn(BaseModel): name: str group_id: str tasks: List[CampaignTaskDenomIn] dependencies: List[DependencyIn] class CreateCampaignTasksOut(BaseModel): task: str class ScheduledTasksOut(BaseModel): agent: str queue: List[str] class CreateCampaignOut(BaseModel): campaign: str group_id: str scheduled_tasks: List[ScheduledTasksOut]
the-stack_0_14725
# !/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import print_function import argparse import time import torch import torch.utils.data import torch.optim as optim import numpy as np import math import random import os import datetime from optimization.training import train, evaluate from utils.load_data import load_dataset parser = argparse.ArgumentParser(description='PyTorch Discrete Normalizing flows') parser.add_argument('-d', '--dataset', type=str, default='cifar10', choices=['cifar10', 'imagenet32', 'imagenet64'], metavar='DATASET', help='Dataset choice.') parser.add_argument('-nc', '--no_cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--manual_seed', type=int, help='manual seed, if not given resorts to random seed.') parser.add_argument('-li', '--log_interval', type=int, default=20, metavar='LOG_INTERVAL', help='how many batches to wait before logging training status') parser.add_argument('--evaluate_interval_epochs', type=int, default=25, help='Evaluate per how many epochs') parser.add_argument('-od', '--out_dir', type=str, default='snapshots', metavar='OUT_DIR', help='output directory for model snapshots etc.') fp = parser.add_mutually_exclusive_group(required=False) fp.add_argument('-te', '--testing', action='store_true', dest='testing', help='evaluate on test set after training') fp.add_argument('-va', '--validation', action='store_false', dest='testing', help='only evaluate on validation set') parser.set_defaults(testing=True) # optimization settings parser.add_argument('-e', '--epochs', type=int, default=2000, metavar='EPOCHS', help='number of epochs to train (default: 2000)') parser.add_argument('-es', '--early_stopping_epochs', type=int, default=300, metavar='EARLY_STOPPING', help='number of early stopping epochs') parser.add_argument('-bs', '--batch_size', type=int, default=96, metavar='BATCH_SIZE', help='input batch size for training (default: 100)') parser.add_argument('-lr', '--learning_rate', type=float, default=0.001, metavar='LEARNING_RATE', help='learning rate') parser.add_argument('--warmup', type=int, default=10, help='number of warmup epochs') parser.add_argument('--data_augmentation_level', type=int, default=2, help='data augmentation level') parser.add_argument('--variable_type', type=str, default='discrete', help='variable type of data distribution: discrete/continuous', choices=['discrete', 'continuous']) parser.add_argument('--distribution_type', type=str, default='logistic', choices=['logistic', 'normal', 'steplogistic'], help='distribution type: logistic/normal') parser.add_argument('--n_flows', type=int, default=8, help='number of flows per level') parser.add_argument('--n_levels', type=int, default=3, help='number of levels') parser.add_argument('--n_bits', type=int, default=8, help='') # ---------------- SETTINGS CONCERNING NETWORKS ------------- parser.add_argument('--densenet_depth', type=int, default=8, help='Depth of densenets') parser.add_argument('--n_channels', type=int, default=512, help='number of channels in coupling and splitprior') # ---------------- ----------------------------- ------------- # ---------------- SETTINGS CONCERNING COUPLING LAYERS ------------- parser.add_argument('--coupling_type', type=str, default='shallow', choices=['shallow', 'resnet', 'densenet'], help='Type of coupling layer') parser.add_argument('--splitfactor', default=0, type=int, help='Split factor for coupling layers.') parser.add_argument('--split_quarter', dest='split_quarter', action='store_true', help='Split coupling layer on quarter') parser.add_argument('--no_split_quarter', dest='split_quarter', action='store_false') parser.set_defaults(split_quarter=True) # ---------------- ----------------------------------- ------------- # ---------------- SETTINGS CONCERNING SPLITPRIORS ------------- parser.add_argument('--splitprior_type', type=str, default='shallow', choices=['none', 'shallow', 'resnet', 'densenet'], help='Type of splitprior. Use \'none\' for no splitprior') # ---------------- ------------------------------- ------------- # ---------------- SETTINGS CONCERNING PRIORS ------------- parser.add_argument('--n_mixtures', type=int, default=1, help='number of mixtures') # ---------------- ------------------------------- ------------- parser.add_argument('--hard_round', dest='hard_round', action='store_true', help='Rounding of translation in discrete models. Weird ' 'probabilistic implications, only for experimental phase') parser.add_argument('--no_hard_round', dest='hard_round', action='store_false') parser.set_defaults(hard_round=True) parser.add_argument('--round_approx', type=str, default='smooth', choices=['smooth', 'stochastic']) parser.add_argument('--lr_decay', default=0.999, type=float, help='Learning rate') parser.add_argument('--temperature', default=1.0, type=float, help='Temperature used for BackRound. It is used in ' 'the the SmoothRound module. ' '(default=1.0') # gpu/cpu parser.add_argument('--gpu_num', type=int, default=0, metavar='GPU', help='choose GPU to run on.') args = parser.parse_args() args.cuda = not args.no_cuda and torch.cuda.is_available() if args.manual_seed is None: args.manual_seed = random.randint(1, 100000) random.seed(args.manual_seed) torch.manual_seed(args.manual_seed) np.random.seed(args.manual_seed) kwargs = {'num_workers': 4, 'pin_memory': True} if args.cuda else {} def run(args, kwargs): print('\nMODEL SETTINGS: \n', args, '\n') print("Random Seed: ", args.manual_seed) if 'imagenet' in args.dataset and args.evaluate_interval_epochs > 5: args.evaluate_interval_epochs = 5 # ================================================================================================================== # SNAPSHOTS # ================================================================================================================== args.model_signature = str(datetime.datetime.now())[0:19].replace(' ', '_') args.model_signature = args.model_signature.replace(':', '_') snapshots_path = os.path.join(args.out_dir, args.variable_type + '_' + args.distribution_type + args.dataset) snap_dir = snapshots_path snap_dir += '_' + 'flows_' + str(args.n_flows) + '_levels_' + str(args.n_levels) snap_dir = snap_dir + '__' + args.model_signature + '/' args.snap_dir = snap_dir if not os.path.exists(snap_dir): os.makedirs(snap_dir) with open(snap_dir + 'log.txt', 'a') as ff: print('\nMODEL SETTINGS: \n', args, '\n', file=ff) # SAVING torch.save(args, snap_dir + '.config') # ================================================================================================================== # LOAD DATA # ================================================================================================================== train_loader, val_loader, test_loader, args = load_dataset(args, **kwargs) # ================================================================================================================== # SELECT MODEL # ================================================================================================================== # flow parameters and architecture choice are passed on to model through args print(args.input_size) import models.Model as Model model = Model.Model(args) args.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model.set_temperature(args.temperature) model.enable_hard_round(args.hard_round) model_sample = model # ==================================== # INIT # ==================================== # data dependend initialization on CPU for batch_idx, (data, _) in enumerate(train_loader): model(data) break if torch.cuda.device_count() > 1: print("Let's use", torch.cuda.device_count(), "GPUs!") model = torch.nn.DataParallel(model, dim=0) model.to(args.device) def lr_lambda(epoch): return min(1., (epoch+1) / args.warmup) * np.power(args.lr_decay, epoch) optimizer = optim.Adamax(model.parameters(), lr=args.learning_rate, eps=1.e-7) scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda, last_epoch=-1) # ================================================================================================================== # TRAINING # ================================================================================================================== train_bpd = [] val_bpd = [] # for early stopping best_val_bpd = np.inf best_train_bpd = np.inf epoch = 0 train_times = [] model.eval() model.train() for epoch in range(1, args.epochs + 1): t_start = time.time() scheduler.step() tr_loss, tr_bpd = train(epoch, train_loader, model, optimizer, args) train_bpd.append(tr_bpd) train_times.append(time.time()-t_start) print('One training epoch took %.2f seconds' % (time.time()-t_start)) if epoch < 25 or epoch % args.evaluate_interval_epochs == 0: v_loss, v_bpd = evaluate( train_loader, val_loader, model, model_sample, args, epoch=epoch, file=snap_dir + 'log.txt') val_bpd.append(v_bpd) # Model save based on TRAIN performance (is heavily correlated with validation performance.) if np.mean(tr_bpd) < best_train_bpd: best_train_bpd = np.mean(tr_bpd) best_val_bpd = v_bpd torch.save(model, snap_dir + 'a.model') torch.save(optimizer, snap_dir + 'a.optimizer') print('->model saved<-') print('(BEST: train bpd {:.4f}, test bpd {:.4f})\n'.format( best_train_bpd, best_val_bpd)) if math.isnan(v_loss): raise ValueError('NaN encountered!') train_bpd = np.hstack(train_bpd) val_bpd = np.array(val_bpd) # training time per epoch train_times = np.array(train_times) mean_train_time = np.mean(train_times) std_train_time = np.std(train_times, ddof=1) print('Average train time per epoch: %.2f +/- %.2f' % (mean_train_time, std_train_time)) # ================================================================================================================== # EVALUATION # ================================================================================================================== final_model = torch.load(snap_dir + 'a.model') test_loss, test_bpd = evaluate( train_loader, test_loader, final_model, final_model, args, epoch=epoch, file=snap_dir + 'test_log.txt') print('Test loss / bpd: %.2f / %.2f' % (test_loss, test_bpd)) if __name__ == "__main__": run(args, kwargs)
the-stack_0_14727
# using SendGrid's Python Library # https://github.com/sendgrid/sendgrid-python import sendgrid import os from sendgrid.helpers.mail import * def notify_by_email(user, email): sg = sendgrid.SendGridAPIClient(apikey=os.environ['SENDGRID_API_KEY']) from_email = Email('[email protected]') to_email = Email(email) subject = 'You have not solved any problem on Leetcode for a day!' content = Content('text/plain', open('email.txt').read().format(user=user)) mail = Mail(from_email, subject, to_email, content) response = sg.client.mail.send.post(request_body=mail.get()) print("Sent email to %s\'s email %s. Status code: %d." % (user, email, response.status_code)) return response
the-stack_0_14729
from ..context import Context from .base import BaseTag, tag_registry class Compose(BaseTag): ''' arguments: | `value`: The value to apply tags on `tags`: A list of tag names to apply, latest first example: | `!Base64,Var foo` description: | Used internally to implement tag composition. Usually not used in the spelt-out form. See _Tag composition_ below. ''' value_types = (dict,) def enrich(self, context: Context): value = self.data.get('value') for tag_name in reversed(self.data['tags']): tag_class = tag_registry[tag_name] value = tag_class(value) return context.enrich(value)
the-stack_0_14730
import numpy from chainer.backends import cuda from chainer.backends import intel64 from chainer import function_node import chainer.functions from chainer.graph_optimizations import static_code from chainer.utils import type_check class LinearFunction(function_node.FunctionNode): _config_use_ideep = None _supports_static_optimizations = True def check_type_forward(self, in_types): n_in = in_types.size() type_check.expect(2 <= n_in, n_in <= 3) x_type, w_type = in_types[:2] type_check.argname((x_type, w_type), ('x', 'W')) type_check.expect( x_type.dtype.kind == 'f', w_type.dtype.kind == 'f', x_type.ndim == 2, w_type.ndim == 2, x_type.shape[1] == w_type.shape[1], ) if type_check.eval(n_in) == 3: b_type = in_types[2] type_check.argname((b_type,), ('b',)) type_check.expect( b_type.dtype == x_type.dtype, b_type.ndim == 1, b_type.shape[0] == w_type.shape[0], ) @static_code def static_linear_no_bias(self, xp, optimized, inputs, outputs): x, W = inputs y = outputs[0] # NumPy raises an error when the array is not contiguous. # See: https://github.com/chainer/chainer/issues/2744 # TODO(niboshi): Remove this code when NumPy is fixed. if (isinstance(x, numpy.ndarray) and not (x.flags.c_contiguous or x.flags.f_contiguous) and 1 in x.shape): x = numpy.ascontiguousarray(x) if optimized: # Note: We can only call this function when both x and W # have the same dtype. Otherwise, the output type (for y) # may not be as expected (i.e., not the same dtype as x). xp.dot(x, W.T, out=y) else: y[:] = x.dot(W.T).astype(x.dtype, copy=False) @static_code def static_add_bias(self, inputs, outputs): bias = inputs[0] y = outputs[0] y += bias def forward(self, inputs): self._config_use_ideep = chainer.config.use_ideep if (intel64.should_use_ideep('>=auto') and intel64.inputs_all_ready(inputs)): # iDeep implementation return self._forward_ideep(inputs) # Generic implementation if len(inputs) == 3: x, W, b = inputs else: (x, W), b = inputs, None # NumPy raises an error when the array is not contiguous. # See: https://github.com/chainer/chainer/issues/2744 # TODO(niboshi): Remove this code when NumPy is fixed. if (isinstance(x, numpy.ndarray) and not (x.flags.c_contiguous or x.flags.f_contiguous) and 1 in x.shape): x = numpy.ascontiguousarray(x) # In order to be compatible with the "static graph" feature, it is # required that all output arrays of this forward # function be allocated explicitly: xp = cuda.get_array_module(x) y = xp.empty((x.shape[0], W.shape[0])).astype(x.dtype) # This is required because all of the "static_*()" functions # use the convention that any output arrays are supplied # as input arguments to the function. That is because it is # not allowed for a "static_*()" function to return anything # other than `None`. The reason is to prevent dynamic allocation # of output arrays during execution of the static schedule # because it would break the model. self.static_linear_no_bias(xp, x.dtype == W.dtype, inputs=[x, W], outputs=[y]) if len(inputs) == 3: self.static_add_bias(inputs=[b], outputs=[y]) self.retain_inputs((0, 1)) # b is not retained return y, def _forward_ideep(self, inputs): if len(inputs) == 3: x, W, b = inputs else: (x, W), b = inputs, None y = intel64.ideep.linear.Forward( intel64.ideep.array(x), intel64.ideep.array(W), intel64.ideep.array(b) if b is not None else None) self.retain_inputs((0, 1)) return y, def backward(self, indexes, grad_outputs): x, W = self.get_retained_inputs() gy, = grad_outputs ret = [] with chainer.using_config('use_ideep', self._config_use_ideep): if 0 in indexes: gx, = LinearGradData().apply((W, gy)) ret.append(chainer.functions.cast(gx, x.dtype)) if 1 in indexes: gW, = LinearGradWeight(W.dtype).apply((x, gy)) ret.append(chainer.functions.cast(gW, W.dtype)) if 2 in indexes: gb = chainer.functions.sum(gy, axis=0) ret.append(gb) return ret class LinearGradData(function_node.FunctionNode): _config_use_ideep = None def forward(self, inputs): self._config_use_ideep = chainer.config.use_ideep if (intel64.should_use_ideep('>=auto') and intel64.inputs_all_ready(inputs)): # iDeep implementation return self._forward_ideep(inputs) # Generic implementation self.retain_inputs((0, 1)) W, gy = inputs if (isinstance(gy, numpy.ndarray) and not (gy.flags.c_contiguous or gy.flags.f_contiguous) and 1 in gy.shape): gy = numpy.ascontiguousarray(gy) gx = gy.dot(W).astype(gy.dtype, copy=False) return gx, def _forward_ideep(self, inputs): self.retain_inputs((0, 1)) W, gy = inputs gx = intel64.ideep.linear.BackwardData( intel64.ideep.array(W), intel64.ideep.array(gy)) return gx, def backward(self, indexes, grad_outputs): W, gy = self.get_retained_inputs() ggx, = grad_outputs ret = [] with chainer.using_config('use_ideep', self._config_use_ideep): if 0 in indexes: gw, = LinearGradWeight(W.dtype).apply((ggx, gy)) ret.append(chainer.functions.cast(gw, W.dtype)) if 1 in indexes: ggy = linear(ggx, W) ret.append(chainer.functions.cast(ggy, gy.dtype)) return ret class LinearGradWeight(function_node.FunctionNode): _config_use_ideep = None def __init__(self, w_dtype): self._w_dtype = w_dtype def forward(self, inputs): self._config_use_ideep = chainer.config.use_ideep if (intel64.should_use_ideep('>=auto') and self._w_dtype == numpy.float32 and intel64.inputs_all_ready(inputs)): # iDeep implementation return self._forward_ideep(inputs) # Generic implementation self.retain_inputs((0, 1)) x, gy = inputs if (isinstance(gy, numpy.ndarray) and not (gy.flags.c_contiguous or gy.flags.f_contiguous) and 1 in gy.shape): gy = numpy.ascontiguousarray(gy) gW = gy.T.dot(x).astype(self._w_dtype, copy=False) return gW, def _forward_ideep(self, inputs): self.retain_inputs((0, 1)) x, gy = inputs gW = intel64.ideep.linear.BackwardWeights( intel64.ideep.array(x), intel64.ideep.array(gy)) return gW, def backward(self, indexes, grad_outputs): x, gy = self.get_retained_inputs() ggW, = grad_outputs ret = [] with chainer.using_config('use_ideep', self._config_use_ideep): if 0 in indexes: gx, = LinearGradData().apply((ggW, gy)) ret.append(chainer.functions.cast(gx, x.dtype)) if 1 in indexes: ggy = linear(x, ggW) ret.append(chainer.functions.cast(ggy, gy.dtype)) return ret def linear(x, W, b=None, n_batch_axes=1): """Linear function, or affine transformation. It accepts two or three arguments: an input minibatch ``x``, a weight matrix ``W``, and optionally a bias vector ``b``. It computes .. math:: Y = xW^\\top + b. Args: x (:class:`~chainer.Variable` or :class:`numpy.ndarray` or \ :class:`cupy.ndarray`): Input variable, which is a :math:`(s_1, s_2, \ ..., s_n)`-shaped float array. Its first ``n_batch_axes`` dimensions are handled as *minibatch dimensions*. The other dimensions are handled as concatenated one dimension whose size must be :math:`(s_{\\rm n\\_batch\\_axes} * ... * s_n = N)`. W (:class:`~chainer.Variable` or :class:`numpy.ndarray` or \ :class:`cupy.ndarray`): Weight variable of shape :math:`(M, N)`, where :math:`(N = s_{\\rm n\\_batch\\_axes} * ... * s_n)`. b (:class:`~chainer.Variable` or :class:`numpy.ndarray` or \ :class:`cupy.ndarray`): Bias variable (optional) of shape :math:`(M,)`. n_batch_axes (int): The number of batch axes. The default is 1. The input variable is reshaped into (:math:`{\\rm n\\_batch\\_axes} + 1`)-dimensional tensor. This should be greater than 0. Returns: ~chainer.Variable: Output variable. A float array with shape of :math:`(s_1, ..., s_{\\rm n\\_batch\\_axes}, M)`. .. seealso:: :class:`~chainer.links.Linear` .. admonition:: Example >>> x = np.random.uniform(0, 1, (3, 4)).astype(np.float32) >>> W = np.random.uniform(0, 1, (5, 4)).astype(np.float32) >>> b = np.random.uniform(0, 1, (5,)).astype(np.float32) >>> y = F.linear(x, W, b) >>> y.shape (3, 5) """ if n_batch_axes <= 0: raise ValueError('n_batch_axes should be greater than 0.') if n_batch_axes > 1: batch_shape = x.shape[:n_batch_axes] batch_size = numpy.prod(batch_shape) x = x.reshape(batch_size, -1) elif x.ndim > 2: x = x.reshape(x.shape[0], -1) if b is None: args = x, W else: args = x, W, b y, = LinearFunction().apply(args) if n_batch_axes > 1: y = y.reshape(batch_shape + (-1,)) return y
the-stack_0_14732
from idm.objects import dp, Event from idm.api_utils import get_msg_id @dp.event_register('banGetReason') def ban_get_reason(event: Event) -> str: reply = {} if event.obj['local_id'] != 0: reply['reply_to'] = get_msg_id( event.api, event.chat.peer_id, event.obj['local_id'] ) event.api.msg_op(1, event.chat.peer_id, event.obj['message'], **reply) return "ok"
the-stack_0_14735
""" Gaussian Kernel Expansion Diagram --------------------------------- """ # Author: Jake VanderPlas # License: BSD # The figure produced by this code is published in the textbook # "Statistics, Data Mining, and Machine Learning in Astronomy" (2013) # For more information, see http://astroML.github.com # To report a bug or issue, use the following forum: # https://groups.google.com/forum/#!forum/astroml-general import numpy as np from matplotlib import pyplot as plt #---------------------------------------------------------------------- # This function adjusts matplotlib settings for a uniform feel in the textbook. # Note that with usetex=True, fonts are rendered with LaTeX. This may # result in an error if LaTeX is not installed on your system. In that case, # you can set usetex to False. from astroML.plotting import setup_text_plots setup_text_plots(fontsize=8, usetex=True) plt.figure(figsize=(5, 3.75), facecolor='w') ax = plt.axes([0, 0, 1, 1], frameon=False, xticks=[], yticks=[]) ax.add_patch(plt.Rectangle((-0.5, -0.25), 0.8, 0.4, fc='none', ec='k', lw=2)) ax.add_patch(plt.Rectangle((-1.75, 0.1), 0.8, 0.4, fc='none', ec='k', lw=2, linestyle='dashed')) ax.add_patch(plt.Rectangle((0.8, -0.55), 0.8, 0.4, fc='none', ec='k', lw=2, linestyle='dashed')) ax.add_patch(plt.Rectangle((-1.3, -0.95), 0.8, 0.4, fc='none', ec='k', lw=2, linestyle='dashed')) red_pts = np.array([[-0.163, 0.093], [-0.123, -0.22], [0.194, 0.035], [0.146, -0.178], [-0.387, -0.143]]) blue_pts = np.array([[-1.51, 0.17], [-1.17, 0.36], [-1.23, -0.68], [-0.80, -0.83], [1.28, -0.45], [1.41, -0.26]]) x0 = -0.5 + 0.4 y0 = -0.25 + 0.2 ax.scatter(red_pts[:, 0], red_pts[:, 1], c='r') ax.scatter(blue_pts[:, 0], blue_pts[:, 1], c='b') ax.scatter([x0], [y0], c='gray') for pt in blue_pts: ax.annotate("", pt, (x0, y0), arrowprops=dict(arrowstyle='->', linestyle='dashed')) for i, pt in enumerate(red_pts): ax.annotate("", pt, (x0, y0), arrowprops=dict(arrowstyle='<-')) ax.text(pt[0] + 0.03, pt[1] + 0.03, '$r_{j%i}$' % (i + 1), bbox=dict(boxstyle='round', ec='k', fc='w', alpha=0.7)) ax.annotate("R.c", (x0, y0), (0.2, 0.2), arrowprops=dict(arrowstyle='-', color='gray'), bbox=dict(boxstyle='round', ec='k', fc='w')) ax.set_xlim(-1.9, 1.9) ax.set_ylim(-1.2, 0.8) plt.show()
the-stack_0_14737
from __future__ import print_function # # cfg file to unpack RAW L1 GT DAQ data # the options set in "user choices" file # L1Trigger/GlobalTriggerAnalyzer/python/UserOptions.py # V M Ghete 2009-04-03 # V M Ghete 2011-02-09 use UserOptions.py import FWCore.ParameterSet.Config as cms import sys process = cms.Process("TestL1GtUnpacker") print('\n') from L1Trigger.GlobalTriggerAnalyzer.UserOptions_cff import * if errorUserOptions == True : print('\nError returned by UserOptions_cff\n') sys.exit() # source according to data type if dataType == 'StreamFile' : process.source = cms.Source("NewEventStreamFileReader", fileNames=readFiles) else : process.source = cms.Source ('PoolSource', fileNames=readFiles, secondaryFileNames=secFiles, eventsToProcess = selectedEvents ) # number of events to be processed and source file process.maxEvents = cms.untracked.PSet( input=cms.untracked.int32(maxNumberEvents) ) # load and configure modules via Global Tag # https://twiki.cern.ch/twiki/bin/view/CMS/SWGuideFrontierConditions process.load("Configuration.StandardSequences.GeometryDB_cff") process.load('Configuration.StandardSequences.FrontierConditions_GlobalTag_cff') process.GlobalTag.globaltag = useGlobalTag # L1 GT/GMT unpack process.load("EventFilter.L1GlobalTriggerRawToDigi.l1GtUnpack_cfi") # input tag for GT readout collection (before CMSSW_5_0_X) # source = hardware record # #if useRelValSample == True : # daqGtInputTag = 'rawDataCollector' #else : # daqGtInputTag = 'rawDataCollector' daqGtInputTag = 'rawDataCollector' process.l1GtUnpack.DaqGtInputTag = daqGtInputTag #process.l1GtUnpack.DaqGtInputTag = 'l1GtTextToRaw' # Active Boards Mask # no board masked (default) #process.l1GtUnpack.ActiveBoardsMask = 0xFFFF # GTFE only in the record #process.l1GtUnpack.ActiveBoardsMask = 0x0000 # GTFE + FDL #process.l1GtUnpack.ActiveBoardsMask = 0x0001 # GTFE + GMT #process.l1GtUnpack.ActiveBoardsMask = 0x0100 # GTFE + FDL + GMT #process.l1GtUnpack.ActiveBoardsMask = 0x0101 # BxInEvent to be unpacked # all available BxInEvent (default) #process.l1GtUnpack.UnpackBxInEvent = -1 # BxInEvent = 0 (L1A) #process.l1GtUnpack.UnpackBxInEvent = 1 # 3 BxInEvent (F, 0, 1) #process.l1GtUnpack.UnpackBxInEvent = 3 # set it to verbose process.l1GtUnpack.Verbosity = cms.untracked.int32(1) # # l1GtTrigReport module # process.load("L1Trigger.GlobalTriggerAnalyzer.l1GtTrigReport_cfi") # boolean flag to select the input record # if true, it will use L1GlobalTriggerRecord #process.l1GtTrigReport.UseL1GlobalTriggerRecord = True # input tag for GT record: # GT emulator: gtDigis (DAQ record) # GT unpacker: gtDigis (DAQ record) # GT lite record: l1GtRecord process.l1GtTrigReport.L1GtRecordInputTag = "l1GtUnpack" #process.l1GtTrigReport.PrintVerbosity = 10 # print output: 0 = std::cout; 1 = LogTrace; 2 = LogVerbatim; 3 = LogInfo #process.l1GtTrigReport.PrintOutput = 0 # path to be run process.p = cms.Path(process.l1GtUnpack*process.l1GtTrigReport) # Message Logger process.load('FWCore.MessageService.MessageLogger_cfi') process.MessageLogger.debugModules = ['l1GtUnpack', 'l1GtTrigReport'] process.MessageLogger.cerr.enable = False process.MessageLogger.files.L1GtUnpacker_errors = cms.untracked.PSet( threshold = cms.untracked.string('ERROR'), ERROR = cms.untracked.PSet( limit = cms.untracked.int32(-1) ), L1GlobalTriggerRawToDigi = cms.untracked.PSet( limit = cms.untracked.int32(-1) ) ) process.MessageLogger.files.L1GtUnpacker_warnings = cms.untracked.PSet( threshold = cms.untracked.string('WARNING'), WARNING = cms.untracked.PSet( limit = cms.untracked.int32(0) ), ERROR = cms.untracked.PSet( limit = cms.untracked.int32(0) ), L1GlobalTriggerRawToDigi = cms.untracked.PSet( limit = cms.untracked.int32(-1) ) ) process.MessageLogger.files.L1GtUnpacker_info = cms.untracked.PSet( threshold = cms.untracked.string('INFO'), INFO = cms.untracked.PSet( limit = cms.untracked.int32(0) ), WARNING = cms.untracked.PSet( limit = cms.untracked.int32(0) ), ERROR = cms.untracked.PSet( limit = cms.untracked.int32(0) ), L1GtTrigReport = cms.untracked.PSet( limit = cms.untracked.int32(-1) ) ) process.MessageLogger.files.L1GtUnpacker = cms.untracked.PSet( threshold = cms.untracked.string('DEBUG'), DEBUG = cms.untracked.PSet( limit = cms.untracked.int32(0) ), INFO = cms.untracked.PSet( limit = cms.untracked.int32(0) ), WARNING = cms.untracked.PSet( limit = cms.untracked.int32(0) ), ERROR = cms.untracked.PSet( limit = cms.untracked.int32(0) ), L1GlobalTriggerRawToDigi = cms.untracked.PSet( limit = cms.untracked.int32(-1) ) ) # summary process.options = cms.untracked.PSet( wantSummary = cms.untracked.bool(True) ) # output process.outputL1GtUnpack = cms.OutputModule("PoolOutputModule", fileName = cms.untracked.string('L1GtUnpacker.root'), # keep only unpacked data in the ROOT file outputCommands = cms.untracked.vstring('drop *', 'keep *_l1GtUnpack_*_*') ) process.outpath = cms.EndPath(process.outputL1GtUnpack)
the-stack_0_14738
# Train an agent from scratch with PPO2 and save package and learning graphs # from OpenGL import GLU import os import glob import time import subprocess import shutil import gym import wandb import random import logging from collections import defaultdict from gym_smartquad.envs import quad_env import numpy as np import pandas as pd import matplotlib.pyplot as plt import customMonitor import datetime import imageio from stable_baselines3.ppo import MlpPolicy from stable_baselines3.common.vec_env import SubprocVecEnv, DummyVecEnv, VecNormalize, sync_envs_normalization from stable_baselines3.common.callbacks import BaseCallback from stable_baselines3.common.vec_env import VecFrameStack from stable_baselines3.common.evaluation import evaluate_policy from stable_baselines3 import PPO from stable_baselines3.common.monitor import Monitor from stable_baselines3.common.results_plotter import load_results, ts2xy from stable_baselines3.common.cmd_util import make_vec_env from stable_baselines3.common import logger from tensorboard.backend.event_processing.event_accumulator import EventAccumulator import json class smartCurriculumCallback(BaseCallback): """ A custom callback that derives from ``BaseCallback``. :param verbose: (int) Verbosity level 0: no output 1: info 2: debug """ def __init__(self, envFunct, refreshRate, betaRate, initCurriculum, endDomain, targetDomain, domainPowers, ADRMethod = 'ep_reward_mean',targetReliability=None, targetReward=None, renders = True, verbose=1): super(smartCurriculumCallback, self).__init__(verbose) self.refreshRate = refreshRate self.evalRate = 100000 self.betaRate = betaRate self.n_calls = 0 self.oldLoss = None self.newLoss = None self.oldStep = 0 self.oldEvalStep = 0 self.meanRew = 0 self.rewardScale = 700 #TO BE FULLY INTEGRATED self.envFunct = envFunct self.curriculum = initCurriculum self.initCurriculum = initCurriculum self.endDomain = endDomain self.progress = 0 self.targetDomain = targetDomain self.domainPowers = domainPowers self.targetReliability = targetReliability self.targetReward = targetReward self.best_min = np.NINF self.best_mean = np.NINF self.ADRMethod = ADRMethod self.n_eval_episodes = 15 self.evaluations_results = [] self.evaluations_mins = [] self.evaluations_timesteps = [] self.gif_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "tmp_gif/") self.models_tmp_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models_tmp/") self.renders = renders # Those variables will be accessible in the callback # The RL model # self.model = None # type: BaseRLModel # An alias for self.model.get_env(), the environment used for training # self.training_env = None # type: Union[gym.Env, VecEnv, None] # Number of time the callback was called # self.n_calls = 0 # type: int # self.num_timesteps = 0 # type: int # local and global variables # self.locals = None # type: Dict[str, Any] # self.globals = None # type: Dict[str, Any] self.logger_dir = None #self.logger_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "logger/") #logger.make_output_format('csv', self.logger_dir, log_suffix = 'progresslog') def _on_training_start(self) : """ This method is called before the first rollout starts. """ self.logger_dir = self.logger.get_dir() +'/'+ os.listdir(self.logger.get_dir())[0] def _on_rollout_start(self) : """ A rollout is the collection of environment interaction using the current policy. This event is triggered before collecting new samples. """ pass def _on_step(self) : #Basic curriculum progression, every self.refreshRate timesteps if self.num_timesteps-self.oldStep >= self.refreshRate : self.oldStep = self.num_timesteps print(self.num_timesteps) #Loss based ADR if self.ADRMethod == 'loss': self.lossMethod() if self.ADRMethod == 'ep_reward_mean': self.rewardMethod() #evaluation if self.num_timesteps - self.oldEvalStep >= self.evalRate : self.oldEvalStep = self.num_timesteps evalEnv = self.envFunct(self.targetDomain) #sync_envs_normalization(self.training_env, evalEnv) episode_rewards, episode_lengths = evaluate_policy(self.model, evalEnv, n_eval_episodes=self.n_eval_episodes, return_episode_rewards=True) print(episode_rewards) self.evaluations_results.append(np.mean(episode_rewards)) self.evaluations_mins.append(np.min(episode_rewards)) self.evaluations_timesteps.append(self.num_timesteps) #remembering the best results : if np.mean(episode_rewards) == np.max(self.evaluations_results): self.best_mean = np.mean(episode_rewards) self.best_min = np.min(episode_rewards) #wandb.log({"best_mean": self.best_mean, "best_min": self.best_min}, step=self.num_timesteps) self.model.save(self.models_tmp_dir +"best_network"+".plk") #TO IMPLEMENT : SAVE THE NETWORK #External logging wandb.log({"eval_reward": self.evaluations_results[-1]}, step=self.num_timesteps) wandb.log({"best_mean": self.best_mean, "best_min": self.best_min}, step=self.num_timesteps) print('average score in a real environment : '+str(self.evaluations_results[-1])) print('minimum score in a real environment : '+str(self.evaluations_mins[-1])) self.model.save(self.models_tmp_dir +"step_"+str(self.num_timesteps)+".plk") if self.renders : self.createGif(evalEnv) else : evalEnv.close() #Not used yet if self.targetReliability!=None and self.targetReward!=None: goalReached = True for i in range(self.n_eval_episodes): if episode_rewards < self.targetReward : goalReached = False if goalReached : return False return True def rewardMethod(self): summary_iterators = EventAccumulator(self.logger_dir).Reload() tags = summary_iterators.Tags()['scalars'] out = defaultdict(list) for tag in tags: #steps = [e.step for e in summary_iterators.Scalars(tag)] for events in summary_iterators.Scalars(tag): out[tag].append([e for e in events]) out = np.array(out['rollout/ep_rew_mean']) #print(out) #May help debugging in case anything happens try : self.meanRew = out[-1,2] except : #if there is only one logged element try : self.meanRew = out[2] except : #if nothing is logged yet return True print(self.curriculum) for i in range(len(self.curriculum)): self.progress = self.meanRew/self.rewardScale if self.progress < 0 : self.progress = 0 elif self.progress > 1 : self.progress = 1 #For now, the only supported progression goes from the simplest to the most difficult self.curriculum[i] = self.initCurriculum[i] + (self.endDomain[i]-self.initCurriculum[i])*self.progress**self.domainPowers[i] #print(self.progress) self.training_env.env_method('refresh',self.curriculum) wandb.log({"domain_progress": self.progress}, step=self.num_timesteps) def lossMethod(self): summary_iterators = EventAccumulator(self.logger_dir).Reload() tags = summary_iterators.Tags()['scalars'] out = defaultdict(list) for tag in tags: #steps = [e.step for e in summary_iterators.Scalars(tag)] for events in summary_iterators.Scalars(tag): out[tag].append([e for e in events]) out = np.array(out['train/loss']) #print(out) #May help debugging in case anything happens try : meanLoss = out[:,2] except : #if there is only one logged element try : meanLoss = out[2] except : #if nothing is logged yet return True try : meanLoss = np.mean(meanLoss[-5:]) #may be edited except : meanLoss = meanLoss[-1] if self.oldLoss != None : self.oldLoss = self.newLoss self.newLoss = meanLoss lossDiff = self.newLoss-self.oldLoss #Updating the curriculum if lossDiff > 0 : print(self.curriculum) for i in range(len(self.curriculum)): progressStep = self.betaRate*lossDiff #Clipping progress : if progressStep > 0.05 : progressStep = 0.05 self.progress += progressStep #For now, the only supported progression goes from the simplest to the most difficult if self.progress>1 : self.progress=1 self.curriculum[i] = self.initCurriculum[i] + (self.endDomain[i]-self.initCurriculum[i])*self.progress**self.domainPowers[i] #print(self.progress) self.training_env.env_method('refresh',self.curriculum) wandb.log({"domain_progress": self.progress, "loss_dif": lossDiff}, step=self.num_timesteps) print(self.num_timesteps) else : self.newLoss = meanLoss self.oldLoss = self.newLoss def createGif(self,evalEnv): gif_name = "PPO_"+str(self.num_timesteps) save_str = self.gif_dir + gif_name + '.gif' model = PPO.load(self.models_tmp_dir +"step_"+str(self.num_timesteps)+".plk", env=evalEnv) images = [] obs = evalEnv.reset() img = evalEnv.sim.render( width=400, height=400, camera_name="isometric_view") for _ in range(600): action, _ = model.predict(obs) obs, _, _, _ = evalEnv.step(action) img = evalEnv.sim.render( width=400, height=400, camera_name="isometric_view") images.append(np.flipud(img)) #print("creating gif...") imageio.mimsave(save_str, [np.array(img) for i, img in enumerate(images) if i % 2 == 0], fps=29) print("gif created...") evalEnv.close() def _on_rollout_end(self) : """ This event is triggered before updating the policy. """ pass def _on_training_end(self) : """ This event is triggered before exiting the `learn()` method. """ pass class PPOtraining(): def __init__(self, envFunct, trainingSteps, targetDomain, domainPowers, domainProgressRate, learningRate = 0.0003, batchSize = 256, ADRMethod ='loss', autoParameters = False, startDomain=None, endDomain=None, targetReliability=None, targetReward=None, initModelLoc=None, render=False, verbose = 1, tag="") : """Trains a model using PPO (baselines3, based on PyTorch). Env : Must be imported at the beginning of the file, and declared in the 'updateEnv' method. Please do check out the evaluation section of the Callback class. Currently supports Gym structure. WARNING : In order to support smart curriculum learning, the environment must incorporate a 'refresh' method, which updates domains parameters. Note that this additionnal method is different from a reset method, but can simply update values that will be used in the 'reset' method (especially true for geometrical parameters). As for noise parameters, they can be directly used after being updated, even in the middle of an episode. Args: envFunct : function. See the aforementioned 'Env' section. trainingSteps : int. Total number of steps for the training. autoParameters : bool. False by default. Automatically assess the impact of domain variable on the performance of the neural network, and infers custom progress parameters for the ADR. targetDomain : vector (1D) of domain parameters estimated as representative of the real environment. If possible, it is recommended to characterize such values by performing measurements of the sub-systems (sensors/actuators), or environmental parameters. These parameters can also be infered from the system requirements. Set to a Null vector to ignore Domain Randomization. domainPowers : same dimension as targetDomains. Vector of empirical parameters. Default should be np.ones(targetDomain.shape). 1 means that that this parameter will be more or less linearly increased throughout the learning. x<1 means that the parameter will mostly increase in the final phase of the learning. x>1 means that that parameter will mostly increase in the early phase of the learning. Base function is parameters = (progress)**domainPowers, with progress belonging in [0,1]. Set to a 0.00001 vector to ignore Curriculum Learning. domainProgressRate : float < 1. Describes of fast is the ADR going to progress. Requires a bit of fine-tuning. Set such as the domain_progress reaches 1 toward the end of the training. A uniform parameter sweep is probably the best best way to go. KwArgs : startDomain : vector (1D) of domain parameters to begin the learning with. None by default, meaning that all of these parameters will be 0. endDomain : vector (1D) of domain parameters to end the learning with. By default, equals to None, and is automatically chosen as being equal to targetDomain. targetReliability : float in [0,1]. Enables validation to be performed every now and then, and the learning process to be stopped when the model achieves a targetReliability rate of success (achieving targetReward with an environment defined with targetDomain) targetReward : float. initModelLoc : path to a stable_baselines model. Enables a previously trained model to be improved with domain randomization render : bool. Default is 0. Renders Gifs of the target environment every 100000 steps. verbose : bool. Default is 1. Display essential learning data in the shell. tag : str. fefault is "". Puts a label on the best saved network """ self.step_total = trainingSteps self.verbose = verbose self.env = None self.envFunct = envFunct self.n_cpu = 8 self.modelLoc = initModelLoc self.model = None self.batchSize = batchSize self.learningRate = learningRate self.tag = tag self.createDirectories() #Callbacks parameters self.refreshRate = 30000 self.betaRate = domainProgressRate self.targetDomain = targetDomain self.domainPowers = domainPowers if not isinstance(startDomain,np.ndarray) : self.curriculum = np.zeros(targetDomain.shape) else : self.curriculum = startDomain if not isinstance(endDomain,np.ndarray) : self.endDomain = self.targetDomain else : self.endDomain = endDomain self.renders = render self.ADRMethod = ADRMethod #External logging self.updateEnv(self.curriculum) self.updateModel() self.train() wandb.join() def train(self): start = time.time() #evalEnv = self.envFunct(self.targetDomain) #self.model.learn(total_timesteps=self.step_total, eval_env = evalEnv, eval_freq = 20000, n_eval_episodes= 15,log_interval=1, tb_log_name="PPO",callback=smartCurriculumCallback(self.refreshRate, self.betaRate, self.curriculum, self.targetDomain, self.domainPowers, targetReliability=None, targetReward=None, renders = False, verbose=1)) #Using callbacks to perform evaluations instead : callbackFunction = smartCurriculumCallback(self.envFunct, self.refreshRate, self.betaRate, self.curriculum, self.endDomain, self.targetDomain, self.domainPowers, ADRMethod = self.ADRMethod, targetReliability=None, targetReward=None, renders = self.renders , verbose=1) self.model.learn(total_timesteps=self.step_total,log_interval=1, tb_log_name="PPO",callback=callbackFunction) end = time.time() training_time = end - start t = time.localtime() timestamp = time.strftime('%b-%d-%Y_%H%M', t) src_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models_tmp/best_network.plk") dst_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models/best_network"+wandb.run.name+self.tag+timestamp+".plk") shutil.copy(src_dir,dst_dir) #Performance summary is now handled by the validation log. def updateEnv(self, initCurriculum): if self.env != None : self.env.close() self.env = self.envFunct(initCurriculum) self.env = customMonitor.Monitor(self.env, allow_early_resets=True) self.env = DummyVecEnv( [lambda: self.env for i in range(self.n_cpu)] ) def updateModel(self): if self.modelLoc==None: self.model = PPO(MlpPolicy, self.env, tensorboard_log="./logger/",verbose=1, device='cuda',n_steps = 2048, n_epochs=10, batch_size= self.batchSize, learning_rate= self.learningRate) self.modelLoc = self.models_dir else : pass def createDirectories(self): self.models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models/") self.models_tmp_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models_tmp/") self.log_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "tmp") self.gif_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "tmp_gif/") self.plt_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "plot") self.logger_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "logger/") os.makedirs(self.log_dir, exist_ok=True) os.makedirs(self.gif_dir, exist_ok=True) os.makedirs(self.models_dir, exist_ok=True) os.makedirs(self.models_tmp_dir, exist_ok=True) os.makedirs(self.plt_dir, exist_ok=True) os.makedirs(self.logger_dir, exist_ok=True) if __name__ == '__main__': for i in range(5): params_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "paramsADR.json") with open(params_path) as json_file: params = json.load(json_file) tag = params["tag"] wandb.init(project="Smart_Quad_Friction", sync_tensorboard=True, allow_val_change=True, reinit=True, tags=[tag]) print(str(wandb.run.name)) wandb.config.progress_rate = params["progress_rate"] wandb.config.domain_powers = None wandb.config.learningRate = 0.002 wandb.config.batchSize = 1800 training = PPOtraining(quad_env.QuadEnv, 2000000, np.array(params["targetDomain"]), np.array(params["domainPowers"]), wandb.config.progress_rate , learningRate = wandb.config.learningRate, batchSize = wandb.config.batchSize, startDomain= np.array(params["startDomain"]), endDomain = np.array(params["endDomain"]), ADRMethod = 'loss', targetReliability=None, targetReward=None, initModelLoc=None, render = False, verbose = 1, tag = tag) for i in range(5): params_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "paramsDR.json") with open(params_path) as json_file: params = json.load(json_file) tag = params["tag"] wandb.init(project="Smart_Quad_Friction", sync_tensorboard=True, allow_val_change=True, reinit=True, tags=[tag]) wandb.config.progress_rate = params["progress_rate"] wandb.config.domain_powers = None wandb.config.learningRate = 0.002 wandb.config.batchSize = 1800 training = PPOtraining(quad_env.QuadEnv, 2000000, np.array(params["targetDomain"]), np.array(params["domainPowers"]), wandb.config.progress_rate , learningRate = wandb.config.learningRate, batchSize = wandb.config.batchSize, startDomain= np.array(params["startDomain"]), endDomain = np.array(params["endDomain"]), ADRMethod = 'loss', targetReliability=None, targetReward=None, initModelLoc=None, render = False, verbose = 1, tag = tag) for i in range(5): params_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "paramsNoDR.json") with open(params_path) as json_file: params = json.load(json_file) tag = params["tag"] wandb.init(project="Smart_Quad_Friction", sync_tensorboard=True, allow_val_change=True, reinit=True, tags=[tag]) wandb.config.progress_rate = params["progress_rate"] wandb.config.domain_powers = None wandb.config.learningRate = 0.002 wandb.config.batchSize = 1800 training = PPOtraining(quad_env.QuadEnv, 2000000, np.array(params["targetDomain"]), np.array(params["domainPowers"]), wandb.config.progress_rate , learningRate = wandb.config.learningRate, batchSize = wandb.config.batchSize, startDomain= np.array(params["startDomain"]), endDomain = np.array(params["endDomain"]), ADRMethod = 'loss', targetReliability=None, targetReward=None, initModelLoc=None, render = False, verbose = 1, tag = tag)
the-stack_0_14740
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import logging import sys from collections import defaultdict from datetime import datetime from operator import attrgetter from time import time from typing import List, Optional, Tuple from urllib.parse import quote # Using `from elasticsearch import *` would break elasticsearch mocking used in unit test. import elasticsearch import pendulum from elasticsearch_dsl import Search from airflow.configuration import conf from airflow.models import TaskInstance from airflow.utils import timezone from airflow.utils.log.file_task_handler import FileTaskHandler from airflow.utils.log.json_formatter import JSONFormatter from airflow.utils.log.logging_mixin import ExternalLoggingMixin, LoggingMixin # Elasticsearch hosted log type EsLogMsgType = List[Tuple[str, str]] class ElasticsearchTaskHandler(FileTaskHandler, ExternalLoggingMixin, LoggingMixin): """ ElasticsearchTaskHandler is a python log handler that reads logs from Elasticsearch. Note logs are not directly indexed into Elasticsearch. Instead, it flushes logs into local files. Additional software setup is required to index the log into Elasticsearch, such as using Filebeat and Logstash. To efficiently query and sort Elasticsearch results, we assume each log message has a field `log_id` consists of ti primary keys: `log_id = {dag_id}-{task_id}-{execution_date}-{try_number}` Log messages with specific log_id are sorted based on `offset`, which is a unique integer indicates log message's order. Timestamp here are unreliable because multiple log messages might have the same timestamp. """ PAGE = 0 MAX_LINE_PER_PAGE = 1000 LOG_NAME = 'Elasticsearch' def __init__( self, base_log_folder: str, filename_template: str, log_id_template: str, end_of_log_mark: str, write_stdout: bool, json_format: bool, json_fields: str, host_field: str = "host", offset_field: str = "offset", host: str = "localhost:9200", frontend: str = "localhost:5601", es_kwargs: Optional[dict] = conf.getsection("elasticsearch_configs"), ): """ :param base_log_folder: base folder to store logs locally :param log_id_template: log id template :param host: Elasticsearch host name """ es_kwargs = es_kwargs or {} super().__init__(base_log_folder, filename_template) self.closed = False self.client = elasticsearch.Elasticsearch([host], **es_kwargs) self.log_id_template = log_id_template self.frontend = frontend self.mark_end_on_close = True self.end_of_log_mark = end_of_log_mark self.write_stdout = write_stdout self.json_format = json_format self.json_fields = [label.strip() for label in json_fields.split(",")] self.host_field = host_field self.offset_field = offset_field self.handler = None self.context_set = False def _render_log_id(self, ti: TaskInstance, try_number: int) -> str: if self.json_format: execution_date = self._clean_execution_date(ti.execution_date) else: execution_date = ti.execution_date.isoformat() return self.log_id_template.format( dag_id=ti.dag_id, task_id=ti.task_id, execution_date=execution_date, try_number=try_number ) @staticmethod def _clean_execution_date(execution_date: datetime) -> str: """ Clean up an execution date so that it is safe to query in elasticsearch by removing reserved characters. # https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-query-string-query.html#_reserved_characters :param execution_date: execution date of the dag run. """ return execution_date.strftime("%Y_%m_%dT%H_%M_%S_%f") def _group_logs_by_host(self, logs): grouped_logs = defaultdict(list) for log in logs: key = getattr(log, self.host_field, 'default_host') grouped_logs[key].append(log) # return items sorted by timestamp. result = sorted(grouped_logs.items(), key=lambda kv: getattr(kv[1][0], 'message', '_')) return result def _read_grouped_logs(self): return True def _read( self, ti: TaskInstance, try_number: int, metadata: Optional[dict] = None ) -> Tuple[EsLogMsgType, dict]: """ Endpoint for streaming log. :param ti: task instance object :param try_number: try_number of the task instance :param metadata: log metadata, can be used for steaming log reading and auto-tailing. :return: a list of tuple with host and log documents, metadata. """ if not metadata: metadata = {'offset': 0} if 'offset' not in metadata: metadata['offset'] = 0 offset = metadata['offset'] log_id = self._render_log_id(ti, try_number) logs = self.es_read(log_id, offset, metadata) logs_by_host = self._group_logs_by_host(logs) next_offset = offset if not logs else attrgetter(self.offset_field)(logs[-1]) # Ensure a string here. Large offset numbers will get JSON.parsed incorrectly # on the client. Sending as a string prevents this issue. # https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/MAX_SAFE_INTEGER metadata['offset'] = str(next_offset) # end_of_log_mark may contain characters like '\n' which is needed to # have the log uploaded but will not be stored in elasticsearch. loading_hosts = [ item[0] for item in logs_by_host if item[-1][-1].message != self.end_of_log_mark.strip() ] metadata['end_of_log'] = False if not logs else len(loading_hosts) == 0 cur_ts = pendulum.now() # Assume end of log after not receiving new log for 5 min, # as executor heartbeat is 1 min and there might be some # delay before Elasticsearch makes the log available. if 'last_log_timestamp' in metadata: last_log_ts = timezone.parse(metadata['last_log_timestamp']) if ( cur_ts.diff(last_log_ts).in_minutes() >= 5 or 'max_offset' in metadata and int(offset) >= int(metadata['max_offset']) ): metadata['end_of_log'] = True if int(offset) != int(next_offset) or 'last_log_timestamp' not in metadata: metadata['last_log_timestamp'] = str(cur_ts) # If we hit the end of the log, remove the actual end_of_log message # to prevent it from showing in the UI. def concat_logs(lines): log_range = (len(lines) - 1) if lines[-1].message == self.end_of_log_mark.strip() else len(lines) return '\n'.join(self._format_msg(lines[i]) for i in range(log_range)) message = [(host, concat_logs(hosted_log)) for host, hosted_log in logs_by_host] return message, metadata def _format_msg(self, log_line): """Format ES Record to match settings.LOG_FORMAT when used with json_format""" # Using formatter._style.format makes it future proof i.e. # if we change the formatter style from '%' to '{' or '$', this will still work if self.json_format: try: return self.formatter._style.format(_ESJsonLogFmt(self.json_fields, **log_line.to_dict())) except Exception: pass # Just a safe-guard to preserve backwards-compatibility return log_line.message def es_read(self, log_id: str, offset: str, metadata: dict) -> list: """ Returns the logs matching log_id in Elasticsearch and next offset. Returns '' if no log is found or there was an error. :param log_id: the log_id of the log to read. :type log_id: str :param offset: the offset start to read log from. :type offset: str :param metadata: log metadata, used for steaming log download. :type metadata: dict """ # Offset is the unique key for sorting logs given log_id. search = Search(using=self.client).query('match_phrase', log_id=log_id).sort(self.offset_field) search = search.filter('range', **{self.offset_field: {'gt': int(offset)}}) max_log_line = search.count() if 'download_logs' in metadata and metadata['download_logs'] and 'max_offset' not in metadata: try: if max_log_line > 0: metadata['max_offset'] = attrgetter(self.offset_field)( search[max_log_line - 1].execute()[-1] ) else: metadata['max_offset'] = 0 except Exception: self.log.exception('Could not get current log size with log_id: %s', log_id) logs = [] if max_log_line != 0: try: logs = search[self.MAX_LINE_PER_PAGE * self.PAGE : self.MAX_LINE_PER_PAGE].execute() except Exception: self.log.exception('Could not read log with log_id: %s', log_id) return logs def emit(self, record): if self.handler: record.offset = int(time() * (10 ** 9)) self.handler.emit(record) def set_context(self, ti: TaskInstance) -> None: """ Provide task_instance context to airflow task handler. :param ti: task instance object """ self.mark_end_on_close = not ti.raw if self.json_format: self.formatter = JSONFormatter( fmt=self.formatter._fmt, json_fields=self.json_fields + [self.offset_field], extras={ 'dag_id': str(ti.dag_id), 'task_id': str(ti.task_id), 'execution_date': self._clean_execution_date(ti.execution_date), 'try_number': str(ti.try_number), 'log_id': self._render_log_id(ti, ti.try_number), }, ) if self.write_stdout: if self.context_set: # We don't want to re-set up the handler if this logger has # already been initialized return self.handler = logging.StreamHandler(stream=sys.__stdout__) # type: ignore self.handler.setLevel(self.level) # type: ignore self.handler.setFormatter(self.formatter) # type: ignore else: super().set_context(ti) self.context_set = True def close(self) -> None: # When application exit, system shuts down all handlers by # calling close method. Here we check if logger is already # closed to prevent uploading the log to remote storage multiple # times when `logging.shutdown` is called. if self.closed: return if not self.mark_end_on_close: self.closed = True return # Case which context of the handler was not set. if self.handler is None: self.closed = True return # Reopen the file stream, because FileHandler.close() would be called # first in logging.shutdown() and the stream in it would be set to None. if self.handler.stream is None or self.handler.stream.closed: self.handler.stream = self.handler._open() # Mark the end of file using end of log mark, # so we know where to stop while auto-tailing. self.handler.stream.write(self.end_of_log_mark) if self.write_stdout: self.handler.close() sys.stdout = sys.__stdout__ super().close() self.closed = True @property def log_name(self) -> str: """The log name""" return self.LOG_NAME def get_external_log_url(self, task_instance: TaskInstance, try_number: int) -> str: """ Creates an address for an external log collecting service. :param task_instance: task instance object :type: task_instance: TaskInstance :param try_number: task instance try_number to read logs from. :type try_number: Optional[int] :return: URL to the external log collection service :rtype: str """ log_id = self._render_log_id(task_instance, try_number) scheme = '' if '://' in self.frontend else 'https://' return scheme + self.frontend.format(log_id=quote(log_id)) @property def supports_external_link(self) -> bool: """Whether we can support external links""" return bool(self.frontend) class _ESJsonLogFmt: """Helper class to read ES Logs and re-format it to match settings.LOG_FORMAT""" # A separate class is needed because 'self.formatter._style.format' uses '.__dict__' def __init__(self, json_fields: List, **kwargs): for field in json_fields: self.__setattr__(field, '') self.__dict__.update(kwargs)
the-stack_0_14741
import pathlib from setuptools import find_packages, setup # The directory containing this file HERE = pathlib.Path(__file__).parent # The text of the README file README = (HERE / "README.md").read_text() # This call to setup() does all the work setup( name="sectoolkit", version="0.2.4", description="Tools for working with Securities and Exchange Commission (SEC) indices, SGML header files, filing archives and individual filing documents.", long_description=README, long_description_content_type="text/markdown", url="https://github.com/dlouton/sectoolkit", author="Dave Louton", author_email="[email protected]", license="MIT", classifiers=[ "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.7", ], packages=find_packages(exclude=("tests",)), include_package_data=True, install_requires=["bs4", "numpy", "pandas", "xmltodict", "tqdm"], # entry_points={ # "console_scripts": [ # "realpython=reader.__main__:main", # ] # }, )
the-stack_0_14742
#!/usr/bin/env python3 # Copyright 2014 BitPay Inc. # Copyright 2016-2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test framework for crackedcoin utils. Runs automatically during `make check`. Can also be run manually.""" import argparse import binascii import configparser import difflib import json import logging import os import pprint import subprocess import sys def main(): config = configparser.ConfigParser() config.optionxform = str config.read_file(open(os.path.join(os.path.dirname(__file__), "../config.ini"), encoding="utf8")) env_conf = dict(config.items('environment')) parser = argparse.ArgumentParser(description=__doc__) parser.add_argument('-v', '--verbose', action='store_true') args = parser.parse_args() verbose = args.verbose if verbose: level = logging.DEBUG else: level = logging.ERROR formatter = '%(asctime)s - %(levelname)s - %(message)s' # Add the format/level to the logger logging.basicConfig(format=formatter, level=level) bctester(os.path.join(env_conf["SRCDIR"], "test", "util", "data"), "bitcoin-util-test.json", env_conf) def bctester(testDir, input_basename, buildenv): """ Loads and parses the input file, runs all tests and reports results""" input_filename = os.path.join(testDir, input_basename) raw_data = open(input_filename, encoding="utf8").read() input_data = json.loads(raw_data) failed_testcases = [] for testObj in input_data: try: bctest(testDir, testObj, buildenv) logging.info("PASSED: " + testObj["description"]) except: logging.info("FAILED: " + testObj["description"]) failed_testcases.append(testObj["description"]) if failed_testcases: error_message = "FAILED_TESTCASES:\n" error_message += pprint.pformat(failed_testcases, width=400) logging.error(error_message) sys.exit(1) else: sys.exit(0) def bctest(testDir, testObj, buildenv): """Runs a single test, comparing output and RC to expected output and RC. Raises an error if input can't be read, executable fails, or output/RC are not as expected. Error is caught by bctester() and reported. """ # Get the exec names and arguments execprog = os.path.join(buildenv["BUILDDIR"], "src", testObj["exec"] + buildenv["EXEEXT"]) execargs = testObj['args'] execrun = [execprog] + execargs # Read the input data (if there is any) stdinCfg = None inputData = None if "input" in testObj: filename = os.path.join(testDir, testObj["input"]) inputData = open(filename, encoding="utf8").read() stdinCfg = subprocess.PIPE # Read the expected output data (if there is any) outputFn = None outputData = None outputType = None if "output_cmp" in testObj: outputFn = testObj['output_cmp'] outputType = os.path.splitext(outputFn)[1][1:] # output type from file extension (determines how to compare) try: outputData = open(os.path.join(testDir, outputFn), encoding="utf8").read() except: logging.error("Output file " + outputFn + " can not be opened") raise if not outputData: logging.error("Output data missing for " + outputFn) raise Exception if not outputType: logging.error("Output file %s does not have a file extension" % outputFn) raise Exception # Run the test proc = subprocess.Popen(execrun, stdin=stdinCfg, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True) try: outs = proc.communicate(input=inputData) except OSError: logging.error("OSError, Failed to execute " + execprog) raise if outputData: data_mismatch, formatting_mismatch = False, False # Parse command output and expected output try: a_parsed = parse_output(outs[0], outputType) except Exception as e: logging.error('Error parsing command output as %s: %s' % (outputType, e)) raise try: b_parsed = parse_output(outputData, outputType) except Exception as e: logging.error('Error parsing expected output %s as %s: %s' % (outputFn, outputType, e)) raise # Compare data if a_parsed != b_parsed: logging.error("Output data mismatch for " + outputFn + " (format " + outputType + ")") data_mismatch = True # Compare formatting if outs[0] != outputData: error_message = "Output formatting mismatch for " + outputFn + ":\n" error_message += "".join(difflib.context_diff(outputData.splitlines(True), outs[0].splitlines(True), fromfile=outputFn, tofile="returned")) logging.error(error_message) formatting_mismatch = True assert not data_mismatch and not formatting_mismatch # Compare the return code to the expected return code wantRC = 0 if "return_code" in testObj: wantRC = testObj['return_code'] if proc.returncode != wantRC: logging.error("Return code mismatch for " + outputFn) raise Exception if "error_txt" in testObj: want_error = testObj["error_txt"] # Compare error text # TODO: ideally, we'd compare the strings exactly and also assert # That stderr is empty if no errors are expected. However, bitcoin-tx # emits DISPLAY errors when running as a windows application on # linux through wine. Just assert that the expected error text appears # somewhere in stderr. if want_error not in outs[1]: logging.error("Error mismatch:\n" + "Expected: " + want_error + "\nReceived: " + outs[1].rstrip()) raise Exception def parse_output(a, fmt): """Parse the output according to specified format. Raise an error if the output can't be parsed.""" if fmt == 'json': # json: compare parsed data return json.loads(a) elif fmt == 'hex': # hex: parse and compare binary data return binascii.a2b_hex(a.strip()) else: raise NotImplementedError("Don't know how to compare %s" % fmt) if __name__ == '__main__': main()
the-stack_0_14743
from matplotlib import colors, colorbar from mpl_toolkits.axes_grid1 import make_axes_locatable # Add colorbar to existing imshow def imshow_add_color_bar(fig, ax, img): divider = make_axes_locatable(ax) cax = divider.append_axes('right', size='5%', pad=0.05) fig.colorbar(img, cax=cax, orientation='vertical') # Adds fake colorbar to any axis. That colorbar will linearly interpolate an existing colormap def imshow_add_fake_color_bar(fig, ax, cmap, vmin=0, vmax=1): divider = make_axes_locatable(ax) cax = divider.append_axes('right', size='5%', pad=0.05) norm = colors.Normalize(vmin=vmin, vmax=vmax) cb1 = colorbar.ColorbarBase(cax, cmap=cmap, norm=norm, orientation='vertical')
the-stack_0_14744
import asyncio import pytest import time from hddcoin.consensus.block_rewards import calculate_base_farmer_reward, calculate_pool_reward from hddcoin.protocols.full_node_protocol import RespondBlock from hddcoin.server.server import HDDcoinServer from hddcoin.simulator.simulator_protocol import FarmNewBlockProtocol, ReorgProtocol from hddcoin.types.peer_info import PeerInfo from hddcoin.util.ints import uint16, uint32, uint64 from hddcoin.wallet.util.transaction_type import TransactionType from hddcoin.wallet.transaction_record import TransactionRecord from hddcoin.wallet.wallet_node import WalletNode from hddcoin.wallet.wallet_state_manager import WalletStateManager from tests.setup_nodes import self_hostname, setup_simulators_and_wallets from tests.time_out_assert import time_out_assert, time_out_assert_not_none from tests.wallet.cc_wallet.test_cc_wallet import tx_in_pool @pytest.fixture(scope="module") def event_loop(): loop = asyncio.get_event_loop() yield loop class TestWalletSimulator: @pytest.fixture(scope="function") async def wallet_node(self): async for _ in setup_simulators_and_wallets(1, 1, {}): yield _ @pytest.fixture(scope="function") async def two_wallet_nodes(self): async for _ in setup_simulators_and_wallets(1, 2, {}): yield _ @pytest.fixture(scope="function") async def two_wallet_nodes_five_freeze(self): async for _ in setup_simulators_and_wallets(1, 2, {}): yield _ @pytest.fixture(scope="function") async def three_sim_two_wallets(self): async for _ in setup_simulators_and_wallets(3, 2, {}): yield _ @pytest.mark.asyncio async def test_wallet_coinbase(self, wallet_node): num_blocks = 10 full_nodes, wallets = wallet_node full_node_api = full_nodes[0] server_1: HDDcoinServer = full_node_api.full_node.server wallet_node, server_2 = wallets[0] wallet = wallet_node.wallet_state_manager.main_wallet ph = await wallet.get_new_puzzlehash() await server_2.start_client(PeerInfo(self_hostname, uint16(server_1._port)), None) for i in range(0, num_blocks): await full_node_api.farm_new_block(FarmNewBlockProtocol(ph)) await full_node_api.farm_new_transaction_block(FarmNewBlockProtocol(ph)) await full_node_api.farm_new_transaction_block(FarmNewBlockProtocol(ph)) funds = sum( [ calculate_pool_reward(uint32(i)) + calculate_base_farmer_reward(uint32(i)) for i in range(1, num_blocks + 2) ] ) async def check_tx_are_pool_farm_rewards(): wsm: WalletStateManager = wallet_node.wallet_state_manager all_txs = await wsm.get_all_transactions(1) expected_count = (num_blocks + 1) * 2 if len(all_txs) != expected_count: return False pool_rewards = 0 farm_rewards = 0 for tx in all_txs: if tx.type == TransactionType.COINBASE_REWARD: pool_rewards += 1 elif tx.type == TransactionType.FEE_REWARD: farm_rewards += 1 if pool_rewards != expected_count / 2: return False if farm_rewards != expected_count / 2: return False return True await time_out_assert(10, check_tx_are_pool_farm_rewards, True) await time_out_assert(5, wallet.get_confirmed_balance, funds) @pytest.mark.asyncio async def test_wallet_make_transaction(self, two_wallet_nodes): num_blocks = 5 full_nodes, wallets = two_wallet_nodes full_node_api = full_nodes[0] server_1 = full_node_api.full_node.server wallet_node, server_2 = wallets[0] wallet_node_2, server_3 = wallets[1] wallet = wallet_node.wallet_state_manager.main_wallet ph = await wallet.get_new_puzzlehash() await server_2.start_client(PeerInfo(self_hostname, uint16(server_1._port)), None) for i in range(0, num_blocks): await full_node_api.farm_new_transaction_block(FarmNewBlockProtocol(ph)) funds = sum( [calculate_pool_reward(uint32(i)) + calculate_base_farmer_reward(uint32(i)) for i in range(1, num_blocks)] ) await time_out_assert(5, wallet.get_confirmed_balance, funds) await time_out_assert(5, wallet.get_unconfirmed_balance, funds) tx = await wallet.generate_signed_transaction( 10, await wallet_node_2.wallet_state_manager.main_wallet.get_new_puzzlehash(), 0, ) await wallet.push_transaction(tx) await time_out_assert(5, wallet.get_confirmed_balance, funds) await time_out_assert(5, wallet.get_unconfirmed_balance, funds - 10) for i in range(0, num_blocks): await full_node_api.farm_new_transaction_block(FarmNewBlockProtocol(ph)) new_funds = sum( [ calculate_pool_reward(uint32(i)) + calculate_base_farmer_reward(uint32(i)) for i in range(1, (2 * num_blocks)) ] ) await time_out_assert(5, wallet.get_confirmed_balance, new_funds - 10) await time_out_assert(5, wallet.get_unconfirmed_balance, new_funds - 10) @pytest.mark.asyncio async def test_wallet_coinbase_reorg(self, wallet_node): num_blocks = 5 full_nodes, wallets = wallet_node full_node_api = full_nodes[0] fn_server = full_node_api.full_node.server wallet_node, server_2 = wallets[0] wallet = wallet_node.wallet_state_manager.main_wallet ph = await wallet.get_new_puzzlehash() await server_2.start_client(PeerInfo(self_hostname, uint16(fn_server._port)), None) for i in range(0, num_blocks): await full_node_api.farm_new_transaction_block(FarmNewBlockProtocol(ph)) funds = sum( [calculate_pool_reward(uint32(i)) + calculate_base_farmer_reward(uint32(i)) for i in range(1, num_blocks)] ) await time_out_assert(5, wallet.get_confirmed_balance, funds) await full_node_api.reorg_from_index_to_new_index(ReorgProtocol(uint32(2), uint32(num_blocks + 6), 32 * b"0")) funds = sum( [ calculate_pool_reward(uint32(i)) + calculate_base_farmer_reward(uint32(i)) for i in range(1, num_blocks - 2) ] ) await time_out_assert(5, wallet.get_confirmed_balance, funds) @pytest.mark.asyncio async def test_wallet_send_to_three_peers(self, three_sim_two_wallets): num_blocks = 10 full_nodes, wallets = three_sim_two_wallets wallet_0, wallet_server_0 = wallets[0] full_node_api_0 = full_nodes[0] full_node_api_1 = full_nodes[1] full_node_api_2 = full_nodes[2] full_node_0 = full_node_api_0.full_node full_node_1 = full_node_api_1.full_node full_node_2 = full_node_api_2.full_node server_0 = full_node_0.server server_1 = full_node_1.server server_2 = full_node_2.server ph = await wallet_0.wallet_state_manager.main_wallet.get_new_puzzlehash() # wallet0 <-> sever0 await wallet_server_0.start_client(PeerInfo(self_hostname, uint16(server_0._port)), None) for i in range(0, num_blocks): await full_node_api_0.farm_new_transaction_block(FarmNewBlockProtocol(ph)) all_blocks = await full_node_api_0.get_all_full_blocks() for block in all_blocks: await full_node_1.respond_block(RespondBlock(block)) await full_node_2.respond_block(RespondBlock(block)) funds = sum( [calculate_pool_reward(uint32(i)) + calculate_base_farmer_reward(uint32(i)) for i in range(1, num_blocks)] ) await time_out_assert(5, wallet_0.wallet_state_manager.main_wallet.get_confirmed_balance, funds) tx = await wallet_0.wallet_state_manager.main_wallet.generate_signed_transaction(10, 32 * b"0", 0) await wallet_0.wallet_state_manager.main_wallet.push_transaction(tx) await time_out_assert_not_none(5, full_node_0.mempool_manager.get_spendbundle, tx.spend_bundle.name()) # wallet0 <-> sever1 await wallet_server_0.start_client(PeerInfo(self_hostname, uint16(server_1._port)), wallet_0.on_connect) await time_out_assert_not_none(5, full_node_1.mempool_manager.get_spendbundle, tx.spend_bundle.name()) # wallet0 <-> sever2 await wallet_server_0.start_client(PeerInfo(self_hostname, uint16(server_2._port)), wallet_0.on_connect) await time_out_assert_not_none(5, full_node_2.mempool_manager.get_spendbundle, tx.spend_bundle.name()) @pytest.mark.asyncio async def test_wallet_make_transaction_hop(self, two_wallet_nodes_five_freeze): num_blocks = 10 full_nodes, wallets = two_wallet_nodes_five_freeze full_node_api_0 = full_nodes[0] full_node_0 = full_node_api_0.full_node server_0 = full_node_0.server wallet_node_0, wallet_0_server = wallets[0] wallet_node_1, wallet_1_server = wallets[1] wallet_0 = wallet_node_0.wallet_state_manager.main_wallet wallet_1 = wallet_node_1.wallet_state_manager.main_wallet ph = await wallet_0.get_new_puzzlehash() await wallet_0_server.start_client(PeerInfo(self_hostname, uint16(server_0._port)), None) await wallet_1_server.start_client(PeerInfo(self_hostname, uint16(server_0._port)), None) for i in range(0, num_blocks): await full_node_api_0.farm_new_transaction_block(FarmNewBlockProtocol(ph)) funds = sum( [calculate_pool_reward(uint32(i)) + calculate_base_farmer_reward(uint32(i)) for i in range(1, num_blocks)] ) await time_out_assert(5, wallet_0.get_confirmed_balance, funds) await time_out_assert(5, wallet_0.get_unconfirmed_balance, funds) assert await wallet_0.get_confirmed_balance() == funds assert await wallet_0.get_unconfirmed_balance() == funds tx = await wallet_0.generate_signed_transaction( 10, await wallet_node_1.wallet_state_manager.main_wallet.get_new_puzzlehash(), 0, ) await wallet_0.push_transaction(tx) # Full node height 11, wallet height 9 await time_out_assert(5, wallet_0.get_confirmed_balance, funds) await time_out_assert(5, wallet_0.get_unconfirmed_balance, funds - 10) for i in range(0, 4): await full_node_api_0.farm_new_transaction_block(FarmNewBlockProtocol(32 * b"0")) # here it's num_blocks + 1 because our last reward is included in the first block that we just farmed new_funds = sum( [ calculate_pool_reward(uint32(i)) + calculate_base_farmer_reward(uint32(i)) for i in range(1, num_blocks + 1) ] ) # Full node height 17, wallet height 15 await time_out_assert(5, wallet_0.get_confirmed_balance, new_funds - 10) await time_out_assert(5, wallet_0.get_unconfirmed_balance, new_funds - 10) await time_out_assert(5, wallet_1.get_confirmed_balance, 10) tx = await wallet_1.generate_signed_transaction(5, await wallet_0.get_new_puzzlehash(), 0) await wallet_1.push_transaction(tx) for i in range(0, 4): await full_node_api_0.farm_new_transaction_block(FarmNewBlockProtocol(32 * b"0")) await wallet_0.get_confirmed_balance() await wallet_0.get_unconfirmed_balance() await wallet_1.get_confirmed_balance() await time_out_assert(5, wallet_0.get_confirmed_balance, new_funds - 5) await time_out_assert(5, wallet_0.get_unconfirmed_balance, new_funds - 5) await time_out_assert(5, wallet_1.get_confirmed_balance, 5) # @pytest.mark.asyncio # async def test_wallet_finds_full_node(self): # node_iters = [ # setup_full_node( # test_constants, # "blockchain_test.db", # 11234, # introducer_port=11236, # simulator=False, # ), # setup_wallet_node( # 11235, # test_constants, # None, # introducer_port=11236, # ), # setup_introducer(11236), # ] # # full_node_api = await node_iters[0].__anext__() # wallet, wallet_server = await node_iters[1].__anext__() # introducer, introducer_server = await node_iters[2].__anext__() # # async def has_full_node(): # outbound: List[WSHDDcoinConnection] = wallet.server.get_outgoing_connections() # for connection in outbound: # if connection.connection_type is NodeType.FULL_NODE: # return True # return False # # await time_out_assert( # 2 * 60, # has_full_node, # True, # ) # await _teardown_nodes(node_iters) @pytest.mark.asyncio async def test_wallet_make_transaction_with_fee(self, two_wallet_nodes): num_blocks = 5 full_nodes, wallets = two_wallet_nodes full_node_1 = full_nodes[0] wallet_node, server_2 = wallets[0] wallet_node_2, server_3 = wallets[1] wallet = wallet_node.wallet_state_manager.main_wallet ph = await wallet.get_new_puzzlehash() await server_2.start_client(PeerInfo(self_hostname, uint16(full_node_1.full_node.server._port)), None) for i in range(0, num_blocks): await full_node_1.farm_new_transaction_block(FarmNewBlockProtocol(ph)) funds = sum( [calculate_pool_reward(uint32(i)) + calculate_base_farmer_reward(uint32(i)) for i in range(1, num_blocks)] ) await time_out_assert(5, wallet.get_confirmed_balance, funds) await time_out_assert(5, wallet.get_unconfirmed_balance, funds) assert await wallet.get_confirmed_balance() == funds assert await wallet.get_unconfirmed_balance() == funds tx_amount = 3200000000000 tx_fee = 10 tx = await wallet.generate_signed_transaction( tx_amount, await wallet_node_2.wallet_state_manager.main_wallet.get_new_puzzlehash(), tx_fee, ) fees = tx.spend_bundle.fees() assert fees == tx_fee await wallet.push_transaction(tx) await time_out_assert(5, wallet.get_confirmed_balance, funds) await time_out_assert(5, wallet.get_unconfirmed_balance, funds - tx_amount - tx_fee) for i in range(0, num_blocks): await full_node_1.farm_new_transaction_block(FarmNewBlockProtocol(32 * b"0")) new_funds = sum( [ calculate_pool_reward(uint32(i)) + calculate_base_farmer_reward(uint32(i)) for i in range(1, num_blocks + 1) ] ) await time_out_assert(5, wallet.get_confirmed_balance, new_funds - tx_amount - tx_fee) await time_out_assert(5, wallet.get_unconfirmed_balance, new_funds - tx_amount - tx_fee) @pytest.mark.asyncio async def test_wallet_create_hit_max_send_amount(self, two_wallet_nodes): num_blocks = 5 full_nodes, wallets = two_wallet_nodes full_node_1 = full_nodes[0] wallet_node, server_2 = wallets[0] wallet_node_2, server_3 = wallets[1] wallet = wallet_node.wallet_state_manager.main_wallet ph = await wallet.get_new_puzzlehash() await server_2.start_client(PeerInfo(self_hostname, uint16(full_node_1.full_node.server._port)), None) for i in range(0, num_blocks): await full_node_1.farm_new_transaction_block(FarmNewBlockProtocol(ph)) funds = sum( [calculate_pool_reward(uint32(i)) + calculate_base_farmer_reward(uint32(i)) for i in range(1, num_blocks)] ) await time_out_assert(5, wallet.get_confirmed_balance, funds) primaries = [] for i in range(0, 600): primaries.append({"puzzlehash": ph, "amount": 100000000 + i}) tx_split_coins = await wallet.generate_signed_transaction(1, ph, 0, primaries=primaries) await wallet.push_transaction(tx_split_coins) await time_out_assert( 15, tx_in_pool, True, full_node_1.full_node.mempool_manager, tx_split_coins.spend_bundle.name() ) for i in range(0, num_blocks): await full_node_1.farm_new_transaction_block(FarmNewBlockProtocol(32 * b"0")) funds = sum( [ calculate_pool_reward(uint32(i)) + calculate_base_farmer_reward(uint32(i)) for i in range(1, num_blocks + 1) ] ) await time_out_assert(90, wallet.get_confirmed_balance, funds) max_sent_amount = await wallet.get_max_send_amount() # 1) Generate transaction that is under the limit under_limit_tx = None try: under_limit_tx = await wallet.generate_signed_transaction( max_sent_amount - 1, ph, 0, ) except ValueError: assert ValueError assert under_limit_tx is not None # 2) Generate transaction that is equal to limit at_limit_tx = None try: at_limit_tx = await wallet.generate_signed_transaction( max_sent_amount, ph, 0, ) except ValueError: assert ValueError assert at_limit_tx is not None # 3) Generate transaction that is greater than limit above_limit_tx = None try: above_limit_tx = await wallet.generate_signed_transaction( max_sent_amount + 1, ph, 0, ) except ValueError: pass assert above_limit_tx is None @pytest.mark.asyncio async def test_wallet_prevent_fee_theft(self, two_wallet_nodes): num_blocks = 5 full_nodes, wallets = two_wallet_nodes full_node_1 = full_nodes[0] wallet_node, server_2 = wallets[0] wallet_node_2, server_3 = wallets[1] wallet = wallet_node.wallet_state_manager.main_wallet ph = await wallet.get_new_puzzlehash() await server_2.start_client(PeerInfo(self_hostname, uint16(full_node_1.full_node.server._port)), None) for i in range(0, num_blocks): await full_node_1.farm_new_transaction_block(FarmNewBlockProtocol(ph)) funds = sum( [calculate_pool_reward(uint32(i)) + calculate_base_farmer_reward(uint32(i)) for i in range(1, num_blocks)] ) await time_out_assert(5, wallet.get_confirmed_balance, funds) await time_out_assert(5, wallet.get_unconfirmed_balance, funds) assert await wallet.get_confirmed_balance() == funds assert await wallet.get_unconfirmed_balance() == funds tx_amount = 3200000000000 tx_fee = 300000000000 tx = await wallet.generate_signed_transaction( tx_amount, await wallet_node_2.wallet_state_manager.main_wallet.get_new_puzzlehash(), tx_fee, ) # extract coin_solution from generated spend_bundle for cs in tx.spend_bundle.coin_solutions: if cs.additions() == []: stolen_cs = cs # get a legit signature stolen_sb = await wallet.sign_transaction([stolen_cs]) now = uint64(int(time.time())) add_list = list(stolen_sb.additions()) rem_list = list(stolen_sb.removals()) name = stolen_sb.name() stolen_tx = TransactionRecord( confirmed_at_height=uint32(0), created_at_time=now, to_puzzle_hash=32 * b"0", amount=0, fee_amount=stolen_cs.coin.amount, confirmed=False, sent=uint32(0), spend_bundle=stolen_sb, additions=add_list, removals=rem_list, wallet_id=wallet.id(), sent_to=[], trade_id=None, type=uint32(TransactionType.OUTGOING_TX.value), name=name, ) await wallet.push_transaction(stolen_tx) await time_out_assert(5, wallet.get_confirmed_balance, funds) await time_out_assert(5, wallet.get_unconfirmed_balance, funds - stolen_cs.coin.amount) for i in range(0, num_blocks): await full_node_1.farm_new_transaction_block(FarmNewBlockProtocol(32 * b"0")) # Funds have not decreased because stolen_tx was rejected outstanding_coinbase_rewards = 2000000000000 await time_out_assert(5, wallet.get_confirmed_balance, funds + outstanding_coinbase_rewards) await time_out_assert(5, wallet.get_confirmed_balance, funds + outstanding_coinbase_rewards) @pytest.mark.asyncio async def test_wallet_tx_reorg(self, two_wallet_nodes): num_blocks = 5 full_nodes, wallets = two_wallet_nodes full_node_api = full_nodes[0] fn_server = full_node_api.full_node.server wallet_node, server_2 = wallets[0] wallet_node: WalletNode = wallet_node wallet_node_2, server_3 = wallets[1] wallet = wallet_node.wallet_state_manager.main_wallet wallet_2 = wallet_node_2.wallet_state_manager.main_wallet ph = await wallet.get_new_puzzlehash() ph2 = await wallet_2.get_new_puzzlehash() await server_2.start_client(PeerInfo(self_hostname, uint16(fn_server._port)), None) await server_3.start_client(PeerInfo(self_hostname, uint16(fn_server._port)), None) for i in range(0, num_blocks): await full_node_api.farm_new_transaction_block(FarmNewBlockProtocol(ph)) funds = sum( [calculate_pool_reward(uint32(i)) + calculate_base_farmer_reward(uint32(i)) for i in range(1, num_blocks)] ) # Waits a few seconds to receive rewards all_blocks = await full_node_api.get_all_full_blocks() # Ensure that we use a coin that we will not reorg out coin = list(all_blocks[-3].get_included_reward_coins())[0] await asyncio.sleep(5) tx = await wallet.generate_signed_transaction(1000, ph2, coins={coin}) await wallet.push_transaction(tx) await full_node_api.full_node.respond_transaction(tx.spend_bundle, tx.name) await time_out_assert(5, wallet.get_confirmed_balance, funds) for i in range(0, 2): await full_node_api.farm_new_transaction_block(FarmNewBlockProtocol(32 * b"0")) await time_out_assert(5, wallet_2.get_confirmed_balance, 1000) await time_out_assert(5, wallet_node.wallet_state_manager.blockchain.get_peak_height, 7) peak_height = full_node_api.full_node.blockchain.get_peak().height print(peak_height) # Perform a reorg, which will revert the transaction in the full node and wallet, and cause wallet to resubmit await full_node_api.reorg_from_index_to_new_index( ReorgProtocol(uint32(peak_height - 3), uint32(peak_height + 3), 32 * b"0") ) funds = sum( [ calculate_pool_reward(uint32(i)) + calculate_base_farmer_reward(uint32(i)) for i in range(1, peak_height - 2) ] ) await time_out_assert(7, full_node_api.full_node.blockchain.get_peak_height, peak_height + 3) await time_out_assert(7, wallet_node.wallet_state_manager.blockchain.get_peak_height, peak_height + 3) # Farm a few blocks so we can confirm the resubmitted transaction for i in range(0, num_blocks): await asyncio.sleep(1) await full_node_api.farm_new_transaction_block(FarmNewBlockProtocol(32 * b"0")) # By this point, the transaction should be confirmed print(await wallet.get_confirmed_balance()) await time_out_assert(15, wallet.get_confirmed_balance, funds - 1000) unconfirmed = await wallet_node.wallet_state_manager.tx_store.get_unconfirmed_for_wallet(int(wallet.id())) assert len(unconfirmed) == 0 tx_record = await wallet_node.wallet_state_manager.tx_store.get_transaction_record(tx.name) removed = tx_record.removals[0] added = tx_record.additions[0] added_1 = tx_record.additions[1] wallet_coin_record_rem = await wallet_node.wallet_state_manager.coin_store.get_coin_record(removed.name()) assert wallet_coin_record_rem.spent coin_record_full_node = await full_node_api.full_node.coin_store.get_coin_record(removed.name()) assert coin_record_full_node.spent add_1_coin_record_full_node = await full_node_api.full_node.coin_store.get_coin_record(added.name()) assert add_1_coin_record_full_node is not None assert add_1_coin_record_full_node.confirmed_block_index > 0 add_2_coin_record_full_node = await full_node_api.full_node.coin_store.get_coin_record(added_1.name()) assert add_2_coin_record_full_node is not None assert add_2_coin_record_full_node.confirmed_block_index > 0
the-stack_0_14745
""" Copyright (c) 2020 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from abc import ABC, abstractmethod import tensorflow_datasets as tfds from beta.examples.tensorflow.common.logger import logger from beta.examples.tensorflow.common.utils import set_hard_limit_num_open_files class BaseDatasetBuilder(ABC): """Abstract dataset loader and input processing.""" def __init__(self, config, is_train, num_devices): self._config = config self._is_train = is_train self._num_devices = num_devices self._global_batch_size = config.batch_size # Dataset params self._dataset_dir = config.dataset_dir self._dataset_name = config.get('dataset', None) self._dataset_type = config.get('dataset_type', 'tfds') self._as_supervised = False # Dataset loader self._dataset_loader = None # TFDS params self._skip_decoding = False # Dict with TFRecordDatasets self._tfrecord_datasets = {} self._split = 'train' if self._is_train else 'validation' @property def is_train(self): """Returns a `bool` flag which specifies whether it is a training or evaluation dataset.""" return self._is_train @property def batch_size(self): """Returns per replica batch size.""" return self._global_batch_size // self._num_devices @property def global_batch_size(self): """Returns global batch size.""" return self.batch_size * self._num_devices @property def steps_per_epoch(self): """Returns steps per epoch""" return self.num_examples // self.global_batch_size @property @abstractmethod def num_examples(self): """Returns number of examples in the current dataset.""" @property @abstractmethod def num_classes(self): """Returns number of classes in the current dataset.""" @abstractmethod def _pipeline(self, dataset): """The pipeline which decodes and preprocesses the input data for model.""" def build(self): dataset_builders = { 'tfds': self._load_tfds, 'tfrecords': self._load_tfrecords, } builder = dataset_builders.get(self._dataset_type, None) if builder is None: raise ValueError('Unknown dataset type {}'.format(self._dataset_type)) dataset = builder() dataset = self._pipeline(dataset) return dataset def _load_tfds(self): logger.info('Using TFDS to load data.') set_hard_limit_num_open_files() self._dataset_loader = tfds.builder(self._dataset_name, data_dir=self._dataset_dir) self._dataset_loader.download_and_prepare() decoders = {'image': tfds.decode.SkipDecoding()} \ if self._skip_decoding else None read_config = tfds.ReadConfig( interleave_cycle_length=64, interleave_block_length=1) dataset = self._dataset_loader.as_dataset( split=self._split, as_supervised=self._as_supervised, shuffle_files=True, decoders=decoders, read_config=read_config) return dataset def _load_tfrecords(self): logger.info('Using TFRecords to load data') dataset_key = self._dataset_name.replace('/', '') if dataset_key in self._tfrecord_datasets: self._dataset_loader = self._tfrecord_datasets[dataset_key]( config=self._config, is_train=self._is_train ) else: raise ValueError('Unknown dataset name: {}'.format(self._dataset_name)) dataset = self._dataset_loader.as_dataset() return dataset
the-stack_0_14746
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Test the analysis code for the model chat task. """ import glob import os import pytest from pytest_regressions.file_regression import FileRegressionFixture import parlai.utils.testing as testing_utils try: from parlai.crowdsourcing.tasks.model_chat.analysis.compile_results import ( ModelChatResultsCompiler, ) from parlai.crowdsourcing.utils.tests import check_stdout class TestCompileResults: """ Test the analysis code for the model chat task. """ @pytest.fixture(scope="module") def setup_teardown(self): """ Call code to set up and tear down tests. Run this only once because we'll be running all analysis code before checking any results. """ outputs = {} # Paths analysis_samples_folder = os.path.join( os.path.dirname(os.path.abspath(__file__)), 'analysis_samples' ) analysis_outputs_folder = os.path.join( os.path.dirname(os.path.abspath(__file__)), 'test_model_chat_analysis' ) outputs['expected_stdout_path'] = os.path.join( analysis_outputs_folder, 'test_stdout.txt' ) prefixes = ['results', 'worker_results'] with testing_utils.tempdir() as tmpdir: # Run analysis with testing_utils.capture_output() as output: arg_string = f"""\ --results-folders {analysis_samples_folder} --output-folder {tmpdir} """ parser_ = ModelChatResultsCompiler.setup_args() args_ = parser_.parse_args(arg_string.split()) ModelChatResultsCompiler(vars(args_)).compile_and_save_results() stdout = output.getvalue() # Define output structure filtered_stdout = '\n'.join( [line for line in stdout.split('\n') if not line.endswith('.csv')] ) # Don't track lines that record where a file was saved to, because filenames # are timestamped outputs['stdout'] = filtered_stdout for prefix in prefixes: results_path = list(glob.glob(os.path.join(tmpdir, f'{prefix}_*')))[ 0 ] with open(results_path) as f: outputs[prefix] = f.read() yield outputs # All code after this will be run upon teardown def test_stdout(self, setup_teardown): """ Check the output against what it should be. """ outputs = setup_teardown check_stdout( actual_stdout=outputs['stdout'], expected_stdout_path=outputs['expected_stdout_path'], ) def test_results_file( self, setup_teardown, file_regression: FileRegressionFixture ): """ Check the results file against what it should be. We don't use DataFrameRegression fixture because the results might include non-numeric data. """ prefix = 'results' outputs = setup_teardown file_regression.check(outputs[prefix], basename=prefix) def test_worker_results_file( self, setup_teardown, file_regression: FileRegressionFixture ): """ Check the worker_results file against what it should be. We don't use DataFrameRegression fixture because the results might include non-numeric data. """ prefix = 'worker_results' outputs = setup_teardown file_regression.check(outputs[prefix], basename=prefix) except ImportError: pass
the-stack_0_14748
# coding:utf-8 ''' 温度补偿自动化测试 ''' import os import datetime import re import json from shutil import copyfile import time import modbus_tk import threading import atexit from asgiref.sync import async_to_sync from .api.fsv import FSVCtrl from .baseboard.handle_board import BT2KHandler from .excel.common_excel import BoardExcel from commoninterface.master import THDevice from .ftp.ftp_client import MyFTP from .api.file_process import FlatProcess, GainProcess from commoninterface.utils import PropagatingThread class TcompTEST(object): def __init__(self,chl_name,chl_layer,log): self.channel_name = chl_name self.channel_layer = chl_layer self.logger = log self.fsv = FSVCtrl() # 频谱仪 self.bd = None self.bdexl = BoardExcel() # excel模板 self.th_dev = None self.process_flat = FlatProcess() self.process_gain = GainProcess() self.adjust_evt = threading.Event() self.adjust_evt.clear() self.wait_evt = threading.Event() self.wait_evt.clear() self.wait_thread = PropagatingThread(target=self.check_cpu_temp) self.wait_thread.setDaemon(True) self.wait_thread.start() self.adjust_thread = None atexit.register(self.clean) def rpt_message(self, msg): try: if self.channel_layer and self.channel_name: print('rpt_msg') async_to_sync(self.channel_layer.send)( self.channel_name, { "type": "send.message", "message": msg } ) except Exception as e: print('rpt_msg error:{}'.format(e)) def clean(self): self.fsv.close_inst() self.bdexl.close_file() def init_all(self, fsvconf, bdconf, thconf): try: fsvip = fsvconf['IP'] exlpath = fsvconf['DIR'] self.bd = BT2KHandler(**bdconf) bip = bdconf['IP'] # 设备IP if thconf: self.th_dev = THDevice() # 高低温箱初始化 ret = self.bd.read_bb_sn() if ret is None: raise RuntimeError('no serial number or productno') bbver, sn, productno = ret # 返回BB版本,序列号,物料号 excel_path = self.make_dirs(exlpath, sn, bbver, productno) # 复制excel模板 fsvoffset = self.read_offset(excel_path) # for test self.fsv.init_inst(fsvip) self.fsv.set_offset(fsvoffset) # 设置衰减值 self.fsv.reset_fsv() self.fsv.close_inst() params_lst = [productno, excel_path, bip, fsvip] self.gd_test(*params_lst, **thconf) return True,excel_path except Exception as e: self.logger.error('error.{}.'.format(e)) self.rpt_message('ERROR.{}.'.format(e)) return False finally: self.bdexl.close_file() self.fsv.close_inst() def make_dirs(self, exlpath, sn, bbver, pno): ''' 根据excel测试模板复制一份excel :param exlpath: :return: ''' try: today = datetime.date.today().strftime('%y-%m-%d') # 返回字符串 dirname = os.path.dirname(exlpath) new_path = os.path.join(dirname, today) if sn: new_path = os.path.join(new_path, sn) if not os.path.exists(new_path): os.makedirs(new_path) # newexl_name = str(sn) + '.xlsx' newexl_name = '1.xlsx' end_path = os.path.join(new_path, newexl_name) if os.path.exists(end_path): return end_path else: copyfile(exlpath, end_path) if self.bdexl.open_excel(end_path): # 写入bb ver,serialnumber self.bdexl.write_bbver_sn(bbver, sn) self.bdexl.write_productno(pno) else: return None return end_path except Exception as e: self.logger.error(e) finally: self.bdexl.close_file() def gd_test(self, *args, **kwargs): try: thconf = kwargs # if not thconf: # raise ModuleNotFoundError('高低温箱没有配置项') port = thconf.get('PORT', None) # for test # self.do_test(*args) if self.th_dev.connect_th(PORT='COM{}'.format(port)): self.logger.info('高低温箱connected**') self.th_dev.set_fixed_mode() self.th_dev.start_dev() self.do_test(*args) self.logger.debug('高低温箱20度运行') # self.th_dev.stop_dev() # 停止运行 self.th_dev.set_temp_sv(int(20 * 10)) # 设置成20度 except modbus_tk.modbus.ModbusError as e: self.logger.exception('{}'.format(e)) raise StopIteration('th_dev') def do_test(self, *args): productno, excel_path, bip, fsvip = args if excel_path is None: raise RuntimeError('excel does not exist!') if not self.bd.do_set_bd(): raise RuntimeError('强建小区失败') self.do_test_on_cellid(productno, excel_path, bip, fsvip) self.bd.switch_reboot() # 开启检测不到采集就重启的开关 def set_bd_rf(self, freqpoint_dict): key_bands = freqpoint_dict.keys() for cellband in key_bands: if 'CELL0' in cellband.upper(): cellid = '0' self.bd.set_rf('1', 0) else: cellid = '1' self.bd.set_rf('0', 0) freq_points = freqpoint_dict[str(cellband)] self.conf_board_on_some_freq(cellid, freq_points[0]) def do_test_on_cellid(self, productno, excel_path, bip, fsvip): freqpoint_dict, freq_dict = self.read_boardtype(excel_path) # 返回各band的频点,频率 self.logger.debug(freqpoint_dict) self.logger.debug(freq_dict) power_range, test_temp, centertemp = self.read_excel_txatt_norm(excel_path) # 功率的指标[下限,标准值,上限] self.logger.debug(power_range) test_temp = [float(item) for item in test_temp] centertemp = float(centertemp) if not self.bd.do_compensation('0'): return # 初始化温补,频补表 self.init_flat_and_gain_comp(productno, freqpoint_dict, test_temp, centertemp, bip, excel_path) # 打开该打开的射频开关并将档位设置成0档 self.set_bd_rf(freqpoint_dict) self.set_cpu_temp(centertemp, 0,0) if self.process_flat.read_and_set(freqpoint_dict, centertemp): self.update_bb_flat_comp(productno, bip, excel_path) if self.process_gain.read_and_set(freqpoint_dict): self.update_bb_gain_comp(productno, bip, excel_path) # for test flg = self.repeat_flat_comp(centertemp, fsvip, freqpoint_dict, freq_dict, power_range, productno, bip, excel_path) if not flg: self.rpt_message('基准温度补偿失败') raise RuntimeError('基准温度补偿失败') self.repeat_gain_comp(test_temp, centertemp, fsvip, power_range, freqpoint_dict, freq_dict, productno, bip, excel_path) def repeat_gain_comp(self, test_temp, centertemp, fsvip, power_range, freqpoint_dict, freq_dict, productno, bip, excel_path): ''' 温度补偿 :return: ''' key_bands = freqpoint_dict.keys() target = power_range[1] length = len(test_temp) centeridx = test_temp.index(centertemp) # 测试不同温度下补偿值 self.logger.debug('开始温度补偿测试') self.rpt_message('开始温度补偿测试') # 温度[20,10,0,-10,-20,40,50,60,70] if centeridx >= 1: newrange = list(range(centeridx - 1, -1, -1)) + list(range(centeridx + 1, length)) # 序号[] else: newrange = list(range(centeridx + 1, length)) self.logger.debug(newrange) for index, idx in enumerate(newrange): # 按从基准温度降温到最低温度再升温度 temp = test_temp[idx] # 取温度 self.logger.debug('待测温度{}'.format(temp)) self.rpt_message('待测温度{}'.format(temp)) tempidx = self.process_gain.read_tempidx(temp) # 取下一温度的tempidx nexttemp = None nexttempidx = None if temp < centertemp: nexttemp = int(temp) - 10 # 减10度,20,10,0,-10,-20,... self.logger.debug('下一复制温度{}'.format(nexttemp)) nexttempidx = self.process_gain.read_tempidx(nexttemp) else: nexttemp = int(temp) + 10 # 加10度,40,50,60,70 nexttempidx = self.process_gain.read_tempidx(nexttemp) self.logger.debug('下一复制温度{}'.format(nexttemp)) if temp > 0: self.set_cpu_temp(temp - 1, 1, 1) # 低于目标温度1度即可,因为运行着温度会上升 else: self.set_cpu_temp(temp + 1, 1, -1) # 低温时,最好高于目标温度1度,因为温度会下降 # fg = self.set_temp_comp(fsvip, target, freqpoint_dict, freq_dict, tempidx, nexttempidx) # if not fg: # raise RuntimeError('温度补偿失败') # self.update_bb_gain_comp(productno, bip, excel_path) self.logger.debug('复测{}度'.format(temp)) power_dict = dict() # {'B41':[power,power,power],'E':[power,power,power]} d1 = dict() try: self.conf_device(fsvip) for cellband in key_bands: if 'CELL0' in cellband.upper(): cellid = '0' self.bd.set_rf('1', 0) else: cellid = '1' self.bd.set_rf('0', 0) bandstr = cellband.split('_')[-1] band = re.sub('\D', '', bandstr) # band的数字,1/3/41/38/39 freq_points = freqpoint_dict[str(cellband)] freqs = freq_dict[str(cellband)] power_dict.setdefault(cellband, [('', '')] * len(freq_points)) d1.setdefault(cellband, [''] * len(freq_points)) for ii, freq_point in enumerate(freq_points): if not freq_point: continue freq = freqs[ii] if not self.conf_board_on_some_freq(cellid, freq_point): # 设置基带板一类参数,并返回PCI self.logger.error('设置一类参数异常') continue i = 0 while True: i = i + 1 if i > 10: self.logger.error('{}-{}温补失败'.format(temp, freq_point)) self.rpt_message('{}-{}温补失败'.format(temp, freq_point)) self.fsv.close_inst() os.system('pause') break result = self.power_test_on_some_freq(cellid, fsvip, freq, power_range) if result is None: self.conf_board_on_some_freq(cellid, freq_point) continue if result[0]: power_dict[cellband][ii] = result[1:] break else: # if i > 7: # self.logger.error('{}-{}温补失败'.format(temp, freq_point)) # self.rpt_message('{}-{}温补失败'.format(temp, freq_point)) # self.fsv.close_inst() # os.system('pause') # break # for test currenttemp = self.bd.repeat_get_temp() # 获取基带板温度 self.logger.debug('复补当前设备温度{}'.format(currenttemp)) self.rpt_message('复补当前设备温度{}'.format(currenttemp)) if abs(currenttemp - temp) >= 2: if temp > 0: self.set_cpu_temp(temp - 1, 1, 1) else: self.set_cpu_temp(temp + 1, 1, -1) result = self.power_test_on_some_freq(cellid, fsvip, freq, power_range) if result is None: self.conf_board_on_some_freq(cellid, freq_point) continue power = result[1] # 获取功率 self.logger.debug('fsv read power={}'.format(power)) self.rpt_message('fsv read power={}'.format(power)) value = float(power) - float(target) # if i > 1: # value = value * 0.6 if abs(value)<=0.4: value=0.15 if value>0 else -0.15 self.logger.debug('power-target={}'.format(value)) self.rpt_message('power-target={}'.format(value)) self.process_gain.set_bandinfo(tempidx, nexttempidx, band, freq_point, float('%6.2f' % value)) self.update_bb_gain_comp(productno, bip, excel_path) d1[cellband][ii] = self.process_gain.read_bandinfo(tempidx, band, freq_point) except Exception as e: self.logger.error(e) self.rpt_message('ERROR:{}'.format(e)) finally: self.fsv.close_inst() try: eid = (list(range(-20, 80, 10))).index(temp) if self.bdexl.open_excel(excel_path): self.bdexl.write_cali(eid, **d1) self.bdexl.write_power(eid, **power_dict) except Exception as e: self.logger.error(e) finally: self.bdexl.close_file() # 增加-30,-40度的补偿值,复制-20度的补偿值 self.process_gain.copy_30and40() self.process_gain.copy_70() self.update_bb_gain_comp(productno, bip, excel_path) def update_bb_gain_comp(self, productno, bip, excel_path): ''' 将本地温补表更新到BB :return: ''' self.logger.debug('update_bb_gain_comp') i = 0 while 1: if i > 3: raise RuntimeError('补偿文件异常') try: if self.bd.remove_gain_comp_json(): # 删除原gaincomp.json文件 if self.write_gain_comp_json(productno, bip, excel_path): # 写文件并上传 self.bd.refresh_comp() # 刷新 break else: self.reset_bd() time.sleep(3) i = i + 1 except Exception as e: self.reset_bd() i = i + 1 def update_bb_flat_comp(self, productno, bip, excel_path): self.logger.debug('update_bb_flat_comp') i = 0 while 1: if i > 3: raise RuntimeError('补偿文件异常') try: if self.bd.remove_flat_comp_json(): # 删除原gaincomp.json文件 if self.write_flat_comp_json(productno, bip, excel_path): # 写文件并上传 self.bd.refresh_comp() # 刷新 break else: self.reset_bd() time.sleep(3) i = i + 1 except Exception as e: self.reset_bd() i = i + 1 def init_flat_and_gain_comp(self, productno, freqpoint_dict, test_temp, centertemp, bip, excel_path): ''' 初始化温补,频补表到内存 :return: ''' ret = self.bd.read_flat_and_gain_json(productno) if ret is None: self.process_flat.init_flat_comp(freqpoint_dict, test_temp, centertemp) self.process_gain.init_gain_comp(freqpoint_dict, test_temp) self.update_bb_flat_comp(productno, bip, excel_path) self.update_bb_gain_comp(productno, bip, excel_path) else: fj, gj = ret if fj is None: self.process_flat.init_flat_comp(freqpoint_dict, test_temp, centertemp) self.update_bb_flat_comp(productno, bip, excel_path) else: self.process_flat.init_comp_from_file(fj) if gj is None: self.process_gain.init_gain_comp(freqpoint_dict, test_temp) self.update_bb_gain_comp(productno, bip, excel_path) else: self.process_gain.init_comp_from_file(gj) def repeat_flat_comp(self, centertemp, fsvip, freqpoint_dict, freq_dict, power_range, productno, bip, excel_path): ''' 多次平坦度补偿,直到达标 :return: ''' target = float(power_range[1]) lower = float(power_range[0]) # 下限 upper = float(power_range[2]) # 上限 freq_keys = freqpoint_dict.keys() freq_values = freqpoint_dict.values() tempidx = list(range(-20, 80, 10)).index(centertemp) # self.set_flat_comp(fsvip, target, freqpoint_dict, freq_dict, productno, bip, excel_path) # 基准温度下温补默认为0 temp_cali_dict = dict(zip(freq_keys, [[0] * len(list(freq_values)[0])] * len(freq_keys))) power_dict = dict() # {'B41':[power,power,power],'E':[power,power,power]} try: self.conf_device(fsvip) for cellband in freq_keys: self.logger.debug('cellband={}'.format(cellband)) self.rpt_message('cellband={}'.format(cellband)) if 'CELL0' in cellband.upper(): cellid = '0' self.bd.set_rf('1', 0) else: cellid = '1' self.bd.set_rf('0', 0) bandstr = cellband.split('_')[-1] band = re.sub('\D', '', bandstr) # band的数字,1/3/41/38/39 freq_points = freqpoint_dict[str(cellband)] freqs = freq_dict[str(cellband)] power_dict.setdefault(cellband, [('', '')] * len(freq_points)) for idx, point in enumerate(freq_points): freq = freqs[idx] self.conf_board_on_some_freq(cellid, point) # 设置基带板频点 i = 0 while 1: i = i + 1 if i > 9: return False # 复测 # for test plst = self.get_fsv_power(fsvip, target, freq) if plst is None: time.sleep(10) continue power = float(plst) # 读取频谱仪功率 if lower <= power <= upper: power_dict[cellband][idx] = power, 'PASS' break power_dict[cellband][idx] = power, 'FAIL' delta = power - target if abs(delta)<=0.4: delta=0.15 if delta>0 else -0.15 self.logger.debug('flat delta={}'.format(delta)) cali = float('%.2f' % delta) self.process_flat.set_bandinfo(band, point, cali) # 更新设备频补补偿表 self.update_bb_flat_comp(productno, bip, excel_path) else: return True except Exception as e: self.logger.error(e) finally: self.fsv.close_inst() try: if self.bdexl.open_excel(excel_path): self.bdexl.write_power(tempidx, **power_dict) self.bdexl.write_cali(tempidx, **temp_cali_dict) except Exception: pass finally: self.bdexl.close_file() def power_test_on_some_freq(self, cellid, fsvip, freq, power_range): ''' freq:频率 power_range:功率标准[下限,理想值,上限,] :return: ''' lower = float(power_range[0]) # 下限 upper = float(power_range[2]) # 上限 # for test plst = self.get_fsv_power(fsvip, float(power_range[1]), freq) if plst is None: return None power = float(plst) # 读取频谱仪功率 # txatt = self.bd.read_txatt(cellid) if power >= lower and power <= upper: return True, power, 'PASS' elif power > upper: # self.bd.set_rf(cellid, 0) # 关闭射频 self.logger.error('功率{}超限'.format(power)) else: # self.bd.set_rf(cellid, 0) # 关闭射频 self.logger.error('功率{}不达标'.format(power)) return False, power, 'FAIL' def conf_board_on_some_freq(self, cellid, freq): ''' 基于某频点 freq:频点 :return: ''' self.logger.debug('conf_board_on_some_freq') try: flag = self.bd.conf_para(cellid, freq) # 设置频点并打开功放 return flag except Exception as e: self.logger.error(e) return False def get_and_send_powercali(self, cellid, fsvip, band, freq_points, freqs, target): ''' 遍历band的三个频点,得到功率补偿,发送给BB band: freq_points:频点,用于发给基带板 freqs:频率,用于设置频谱仪 target:功率理想值dBm return [[int(freq), float(cali),温度],,] ''' temp = self.bd.repeat_get_temp() # 获取基带板温度 if temp is None: raise IOError('get temp failed') self.logger.debug('current temp={}'.format(temp)) for idx, point in enumerate(freq_points): freq = freqs[idx] self.conf_board_on_some_freq(cellid, point) # 设置基带板频点 plst = self.get_fsv_power(fsvip, target, freq) if plst is None: raise IOError('read fsv power failed') power = plst self.logger.debug('fsv read power={}'.format(power)) value = float(power) - float(target) cali = float('%.2f' % value) self.process_flat.set_bandinfo(band, point, cali) # 更新内存 def get_fsv_power(self, fsvip, upper, freq): ''' 读取频谱仪功率 upper:输出功率上限,用来设置ref level,ref level=upper+3 :return: ''' i = 0 ref_level = float(upper) + 7 lowedge = float(upper) - 21 - 4 while 1: try: if i >= 3: return None i = i + 1 self.fsv.set_for_txatt(ref_level, freq) time.sleep(1) plst = [] j = 0 # sweep time 1s,读5次取平均值 # 12.23 频谱仪读平均值5次 while j < 1: power = self.fsv.get_power(ref_level, freq) # 读取频谱仪功率,返回列表 self.logger.debug('get_fsv_power={}'.format(power[0])) if power is not None: # plst.append(power) # for test if float(power[0]) > lowedge: plst.append(power) else: self.logger.error('before reset_bd,power={}'.format(power[0])) self.reset_bd() # 可能设备重启了,导致输出-19以下 return None else: break j = j + 1 if plst: plst = [float(item[0]) for item in plst] self.logger.debug('power list={}'.format(plst)) return sum(plst) / len(plst) time.sleep(3) except Exception as e: self.logger.error(e) time.sleep(3) self.fsv.close_inst() self.conf_device(fsvip) time.sleep(3) continue def reset_bd(self): if not self.bd.do_set_bd(): raise RuntimeError('强建小区失败') def read_excel_txatt_norm(self, excel_path): ''' 读取excel的上下行功率,频点等参数 :param excel_path: :return: ''' try: if self.bdexl.open_excel(excel_path): normlist = self.bdexl.get_txatt_norm() # 读取输出功率标准 templist = self.bdexl.read_cpu_temp() # 读取一系列待测温度 centertemp = self.bdexl.read_cpu_center_temp() # 读取基准温度 return normlist, templist, centertemp except Exception as e: raise RuntimeError(e) finally: self.bdexl.close_file() def read_boardtype(self, excel_path): ''' 从excel中读取board类型及主从片频点,频率 :param excel_path: :return: ''' try: if self.bdexl.open_excel(excel_path): freqpoint_dict, freq_dict = self.bdexl.get_set_condition() return freqpoint_dict, freq_dict except Exception as e: raise RuntimeError('read_boardtype ERROR:{}'.format(e)) finally: self.bdexl.close_file() def read_offset(self, excel_path): try: if self.bdexl.open_excel(excel_path): self.bdexl.get_dl_rows() offset = self.bdexl.get_offset() return offset except Exception as e: raise RuntimeError('read_offset ERROR:{}'.format(e)) finally: self.bdexl.close_file() def conf_device(self, fsvip): ''' 仪器初始化 :return: ''' self.logger.debug('conf_fsv') # for test i = 0 while 1: i = i + 1 if i >= 3: self.logger.error('fsv error') raise RuntimeError('fsv error') try: self.fsv.init_inst(fsvip) time.sleep(1) self.fsv.reset_fsv() time.sleep(1) except Exception as e: self.logger.error(e) time.sleep(10) self.fsv.close_inst() else: break def set_flat_comp(self, fsvip, target, freqpoint_dict, freq_dict, productno, bip, excel_path): ''' 平坦度补偿 :return: ''' try: self.logger.debug('基准平坦度补偿') key_bands = freqpoint_dict.keys() self.conf_device(fsvip) for cellband in key_bands: self.logger.debug('cellband={}'.format(cellband)) if 'CELL0' in cellband.upper(): cellid = '0' self.bd.set_rf('1', 0) else: cellid = '1' self.bd.set_rf('0', 0) bandstr = cellband.split('_')[-1] band = re.sub('\D', '', bandstr) # band的数字,1/3/41/38/39 freq_points = freqpoint_dict[str(cellband)] freqs = freq_dict[str(cellband)] self.get_and_send_powercali(cellid, fsvip, band, freq_points, freqs, target) # 写平坦度补偿表 # 更新设备频补补偿表 self.update_bb_flat_comp(productno, bip, excel_path) except Exception as e: self.logger.error(e) raise RuntimeError(e) finally: self.fsv.close_inst() def set_temp_comp(self, fsvip, target, freqpoint_dict, freq_dict, tempidx, nexttempidx): ''' 温度补偿 :return:补偿值{'':[],'':[]} ''' i = 0 while 1: if i > 3: return False try: key_bands = freqpoint_dict.keys() self.conf_device(fsvip) for cellband in key_bands: self.logger.debug('cellband={}'.format(cellband)) if 'CELL0' in cellband.upper(): cellid = '0' self.bd.set_rf('1', 0) else: cellid = '1' self.bd.set_rf('0', 0) bandstr = cellband.split('_')[-1] band = re.sub('\D', '', bandstr) # band的数字,1/3/41/38/39 # bandinfo=self.process_gain.read_bandinfo(int(band)) freq_points = freqpoint_dict[str(cellband)] freqs = freq_dict[str(cellband)] for idx, point in enumerate(freq_points): freq = freqs[idx] self.conf_board_on_some_freq(cellid, point) # 设置基带板频点 # for test plst = self.get_fsv_power(fsvip, target, freq) if plst is None: raise IOError('read fsv power failed') power = plst self.logger.debug('fsv read power={}'.format(power)) value = float(power) - float(target) self.process_gain.set_bandinfo(tempidx, nexttempidx, band, point, float('%6.2f' % value)) return True except Exception as e: self.logger.error(e) i = i + 1 finally: self.fsv.close_inst() def set_cpu_temp(self, target, bias, direction): ''' 设定设备到达某温度 target:温度 bias:偏离目标温度多少度 :return: ''' # for test # logger.debug('wait for test...') # time.sleep(10) self.logger.debug('温度设定目标{}'.format(target)) self.rpt_message('温度设定目标{}'.format(target)) # time.sleep(3) # for test if not self.adjust_thread or not self.adjust_thread.is_alive(): self.adjust_thread = PropagatingThread(target=self.adjust_cpu_temp, args=(target, bias, direction)) self.adjust_evt.set() self.adjust_thread.setDaemon(True) self.adjust_thread.start() self.adjust_thread.join() def write_gain_comp_json(self, productno, bip, excel_path): ''' 写文件并ftp上传给T2K :return: ''' myftp = MyFTP(str(bip)) try: js = self.process_gain.get_json() dirname = os.path.dirname(excel_path) pno = productno remote_file = '/mnt/flash/scbs/{}_GainComp.json'.format(pno) local_file = os.path.join(dirname, 'GainComp.json') with open(local_file, 'wb') as f: f.write(json.dumps(js, indent=4, ensure_ascii=False).encode('utf-8')) if myftp.rpt_json(local_file, remote_file): return True except Exception as e: self.logger.error('write_gain_comp_json ERROR:{}'.format(e)) return False finally: myftp.close() def write_flat_comp_json(self, productno, bip, excel_path): ''' 将本地频补表上传给BB :param productno: :param bip: :param excel_path: :return: ''' myftp = MyFTP(str(bip)) try: js = self.process_flat.get_json() dirname = os.path.dirname(excel_path) pno = productno remote_file = '/mnt/flash/scbs/{}_FlatComp.json'.format(pno) local_file = os.path.join(dirname, 'FlatComp.json') with open(local_file, 'wb') as f: f.write(json.dumps(js, indent=4, ensure_ascii=False).encode('utf-8')) if myftp.rpt_json(local_file, remote_file): return True except Exception as e: self.logger.error('write_flat_comp_json ERROR:{}'.format(e)) return False finally: myftp.close() def check_cpu_temp(self): ''' 读取设备温度 :return: ''' a, b, c, d, e = [-100] * 5 i = 0 MAX = 90 while True: if i > MAX: break if self.wait_evt.is_set(): temp = self.bd.repeat_get_temp() # 获取基带板温度 self.logger.debug('current cpu temp={}'.format(temp)) self.rpt_message('current cpu temp={}'.format(temp)) if temp is None: i = i + 1 continue f = temp a, b, c, d, e = b, c, d, e, f if a == e or abs(a - e) <= 1: self.logger.debug('cpu hit {}'.format(e)) self.rpt_message('cpu hit {}'.format(e)) self.wait_evt.clear() # self.adjust_flag = True self.adjust_evt.set() else: time.sleep(50) else: self.logger.debug('wait evt') self.wait_evt.wait() i = 0 a, b, c, d, e = [-100] * 5 i = i + 1 def adjust_cpu_temp(self, target, bias, direction=1): ''' :param target: :param bias: :param direction: 1,表示目标温度为正,-1表示目标温度为负或0 :return: ''' x = 0.7 y = 0.4 z = 0.7 i = 0 period = 1 oldt = None if bias == 0: trg = [0, 0] else: if direction > 0: trg = [-2, 0] else: trg = [0, 2] while True: Tset = self.th_dev.get_temp_pv() / 10.0 # 温箱温度 self.logger.debug('th temp={}'.format(Tset)) self.logger.debug('last th setvalue={}'.format(oldt)) if oldt is not None and abs(Tset - oldt) >= 0.3: time.sleep(30) self.logger.debug('wait th-dev hit setvalue') continue if oldt is not None and self.adjust_evt.is_set(): self.wait_evt.set() self.adjust_evt.clear() self.logger.debug('wait adjust_evt') self.adjust_evt.wait() try: if self.adjust_evt.is_set(): Tact = self.bd.repeat_get_temp() # 获取基带板温度 self.logger.debug('cpu temp={}'.format(Tact)) self.rpt_message('cpu temp={}'.format(Tact)) if Tact is None: raise IOError('get temp failed') delta = float(target) - float(Tact) self.logger.debug('temp delta={}'.format(delta)) if trg[0] <= delta <= trg[1]: i += 1 time.sleep(30) elif abs(delta) >= 10: i = 0 T = Tset + delta * x oldt = T self.logger.debug('SET T={}'.format(T)) self.th_dev.set_temp_sv(int(T * 10)) time.sleep(60 * 10) elif abs(delta) >= 3: i = 0 T = Tset + delta * y oldt = T self.logger.debug('SET T={}'.format(T)) self.th_dev.set_temp_sv(int(T * 10)) time.sleep(60 * int(period)) else: i = 0 if delta > 0: T = Tset + z else: T = Tset - z oldt = T self.th_dev.set_temp_sv(int(T * 10)) time.sleep(30 * 1) # 1分钟 if i >= 1: self.logger.debug('hit target') break except Exception as e: self.logger.error(e) self.reset_bd()
the-stack_0_14749
import argparse import os import data import models import visualize def main(): parser = argparse.ArgumentParser(description='Yelp Rating Interpretation') parser.add_argument('--n-estimators', type=int, default=100) parser.add_argument('--criterion', type=str, default='gini', choices=['gini', 'entropy']) parser.add_argument('--max-depth', type=int, default=20) parser.add_argument('--seed', type=int, default=23) parser.add_argument('--top-n-features', type=int) parser.add_argument('--train-datafile', type=str, default='data/train.csv') parser.add_argument('--test-datafile', type=str, default='data/test.csv') parser.add_argument('--model-path', type=str, default='models/model.pkl') parser.add_argument('--fig-path', type=str, default='figure/importance.png') args = parser.parse_args() model = models.RatingInterpreter(n_estimators=args.n_estimators, criterion=args.criterion, max_depth=args.max_depth, seed=args.seed, top_n_features=args.top_n_features) # if os.path.exists(args.model_path): # model.load(args.model_path) # else: train_dataset = data.Dataset(args.train_datafile) test_dataset = data.Dataset(args.test_datafile) # acc, rmse = model.train(train_dataset, test_dataset) acc = model.train(train_dataset, test_dataset) model.save(args.model_path) importances, std = model.get_importance() # visualize.display(importances, std, acc, rmse, args.fig_path, # top_n_features=args.top_n_features) visualize.display(importances, std, acc, args.fig_path, top_n_features=args.top_n_features) if __name__ == '__main__': main()
the-stack_0_14751
# Copyright 2015 Yelp Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections import socket from paasta_tools.smartstack_tools import get_multiple_backends def get_replication_for_services(synapse_host, synapse_port, services): """Returns the replication level for the provided services This check is intended to be used with an haproxy load balancer, and relies on the implementation details of that choice. :param synapse_host: The hose that this check should contact for replication information. :param synapse_port: The port number that this check should contact for replication information. :param services: A list of strings that are the service names that should be checked for replication. :returns available_instance_counts: A dictionary mapping the service names to an integer number of available replicas :returns None: If it cannot connect to the specified synapse host and port """ backends = get_multiple_backends( services=services, synapse_host=synapse_host, synapse_port=synapse_port, ) counter = collections.Counter([b['pxname'] for b in backends if backend_is_up(b)]) return dict((sn, counter[sn]) for sn in services) def backend_is_up(backend): """Returns whether a server is receiving traffic in HAProxy. :param backend: backend dict, like one of those returned by smartstack_tools.get_multiple_backends. :returns is_up: Whether the backend is in a state that receives traffic. """ return str(backend['status']).startswith('UP') def ip_port_hostname_from_svname(svname): """This parses the haproxy svname that smartstack creates, which is in the form ip:port_hostname. :param svname: A string in the format ip:port_hostname :returns ip_port_hostname: A tuple of ip, port, hostname. """ ip, port_hostname = svname.split(':', 1) port, hostname = port_hostname.split('_', 1) return ip, int(port), hostname def get_registered_marathon_tasks( synapse_host, synapse_port, service, marathon_tasks, ): """Returns the marathon tasks that are registered in haproxy under a given service (nerve_ns). :param synapse_host: The host that this check should contact for replication information. :param synapse_port: The port that this check should contact for replication information. :param service: A list of strings that are the service names that should be checked for replication. :param marathon_tasks: A list of MarathonTask objects, whose tasks we will check for in the HAProxy status. """ backends = get_multiple_backends([service], synapse_host=synapse_host, synapse_port=synapse_port) healthy_tasks = [] for backend, task in match_backends_and_tasks(backends, marathon_tasks): if backend is not None and task is not None and backend['status'].startswith('UP'): healthy_tasks.append(task) return healthy_tasks def match_backends_and_tasks(backends, tasks): """Returns tuples of matching (backend, task) pairs, as matched by IP and port. Each backend will be listed exactly once, and each task will be listed once per port. If a backend does not match with a task, (backend, None) will be included. If a task's port does not match with any backends, (None, task) will be included. :param backends: An iterable of haproxy backend dictionaries, e.g. the list returned by smartstack_tools.get_multiple_backends. :param tasks: An iterable of MarathonTask objects. """ backends_by_ip_port = collections.defaultdict(list) # { (ip, port) : [backend1, backend2], ... } backend_task_pairs = [] for backend in backends: ip, port, _ = ip_port_hostname_from_svname(backend['svname']) backends_by_ip_port[ip, port].append(backend) for task in tasks: ip = socket.gethostbyname(task.host) for port in task.ports: for backend in backends_by_ip_port.pop((ip, port), [None]): backend_task_pairs.append((backend, task)) # we've been popping in the above loop, so anything left didn't match a marathon task. for backends in backends_by_ip_port.values(): for backend in backends: backend_task_pairs.append((backend, None)) return backend_task_pairs
the-stack_0_14753
# -*- coding: ISO-8859-15 -*- # ============================================================================= # Copyright (c) 2009 Tom Kralidis # # Authors : Tom Kralidis <[email protected]> # Angelos Tzotsos <[email protected]> # # Contact email: [email protected] # ============================================================================= """ ISO metadata parser """ from __future__ import (absolute_import, division, print_function) import warnings from owslib.etree import etree from owslib import util from owslib.namespaces import Namespaces # default variables def get_namespaces(): n = Namespaces() ns = n.get_namespaces(["gco","gfc","gmd","gml","gml32","gmx","gts","srv","xlink"]) ns[None] = n.get_namespace("gmd") return ns namespaces = get_namespaces() class MD_Metadata(object): """ Process gmd:MD_Metadata """ def __init__(self, md=None): if md is None: self.xml = None self.identifier = None self.parentidentifier = None self.language = None self.dataseturi = None self.languagecode = None self.datestamp = None self.charset = None self.hierarchy = None self.contact = [] self.datetimestamp = None self.stdname = None self.stdver = None self.locales = [] self.referencesystem = None self.identification = None self.serviceidentification = None self.identificationinfo = [] self.contentinfo = [] self.distribution = None self.dataquality = None else: if hasattr(md, 'getroot'): # standalone document self.xml = etree.tostring(md.getroot()) else: # part of a larger document self.xml = etree.tostring(md) val = md.find(util.nspath_eval('gmd:fileIdentifier/gco:CharacterString', namespaces)) self.identifier = util.testXMLValue(val) val = md.find(util.nspath_eval('gmd:parentIdentifier/gco:CharacterString', namespaces)) self.parentidentifier = util.testXMLValue(val) val = md.find(util.nspath_eval('gmd:language/gco:CharacterString', namespaces)) self.language = util.testXMLValue(val) val = md.find(util.nspath_eval('gmd:dataSetURI/gco:CharacterString', namespaces)) self.dataseturi = util.testXMLValue(val) val = md.find(util.nspath_eval('gmd:language/gmd:LanguageCode', namespaces)) self.languagecode = util.testXMLAttribute(val, 'codeListValue') val = md.find(util.nspath_eval('gmd:dateStamp/gco:Date', namespaces)) self.datestamp = util.testXMLValue(val) if not self.datestamp: val = md.find(util.nspath_eval('gmd:dateStamp/gco:DateTime', namespaces)) self.datestamp = util.testXMLValue(val) self.charset = _testCodeListValue(md.find(util.nspath_eval('gmd:characterSet/gmd:MD_CharacterSetCode', namespaces))) self.hierarchy = _testCodeListValue(md.find(util.nspath_eval('gmd:hierarchyLevel/gmd:MD_ScopeCode', namespaces))) self.contact = [] for i in md.findall(util.nspath_eval('gmd:contact/gmd:CI_ResponsibleParty', namespaces)): o = CI_ResponsibleParty(i) self.contact.append(o) val = md.find(util.nspath_eval('gmd:dateStamp/gco:DateTime', namespaces)) self.datetimestamp = util.testXMLValue(val) val = md.find(util.nspath_eval('gmd:metadataStandardName/gco:CharacterString', namespaces)) self.stdname = util.testXMLValue(val) val = md.find(util.nspath_eval('gmd:metadataStandardVersion/gco:CharacterString', namespaces)) self.stdver = util.testXMLValue(val) self.locales = [] for i in md.findall(util.nspath_eval('gmd:locale/gmd:PT_Locale', namespaces)): self.locales.append(PT_Locale(i)) val = md.find(util.nspath_eval('gmd:referenceSystemInfo/gmd:MD_ReferenceSystem', namespaces)) if val is not None: self.referencesystem = MD_ReferenceSystem(val) else: self.referencesystem = None # TODO: merge .identificationinfo into .identification warnings.warn( 'the .identification and .serviceidentification properties will merge into ' '.identification being a list of properties. This is currently implemented ' 'in .identificationinfo. ' 'Please see https://github.com/geopython/OWSLib/issues/38 for more information', FutureWarning) val = md.find(util.nspath_eval('gmd:identificationInfo/gmd:MD_DataIdentification', namespaces)) val2 = md.find(util.nspath_eval('gmd:identificationInfo/srv:SV_ServiceIdentification', namespaces)) if val is not None: self.identification = MD_DataIdentification(val, 'dataset') self.serviceidentification = None elif val2 is not None: self.identification = MD_DataIdentification(val2, 'service') self.serviceidentification = SV_ServiceIdentification(val2) else: self.identification = None self.serviceidentification = None self.identificationinfo = [] for idinfo in md.findall(util.nspath_eval('gmd:identificationInfo', namespaces)): if len(idinfo) > 0: val = list(idinfo)[0] tagval = util.xmltag_split(val.tag) if tagval == 'MD_DataIdentification': self.identificationinfo.append(MD_DataIdentification(val, 'dataset')) elif tagval == 'MD_ServiceIdentification': self.identificationinfo.append(MD_DataIdentification(val, 'service')) elif tagval == 'SV_ServiceIdentification': self.identificationinfo.append(SV_ServiceIdentification(val)) self.contentinfo = [] for contentinfo in md.findall(util.nspath_eval('gmd:contentInfo/gmd:MD_FeatureCatalogueDescription', namespaces)): self.contentinfo.append(MD_FeatureCatalogueDescription(contentinfo)) val = md.find(util.nspath_eval('gmd:distributionInfo/gmd:MD_Distribution', namespaces)) if val is not None: self.distribution = MD_Distribution(val) else: self.distribution = None val = md.find(util.nspath_eval('gmd:dataQualityInfo/gmd:DQ_DataQuality', namespaces)) if val is not None: self.dataquality = DQ_DataQuality(val) else: self.dataquality = None def get_default_locale(self): """ get default gmd:PT_Locale based on gmd:language """ for loc in self.locales: if loc.languagecode == self.language: return loc return None class PT_Locale(object): """ process PT_Locale """ def __init__(self, md=None): if md is None: self.id = None self.languagecode = None self.charset = None else: self.id = md.attrib.get('id') self.languagecode = md.find(util.nspath_eval('gmd:languageCode/gmd:LanguageCode', namespaces)).attrib.get('codeListValue') self.charset = md.find(util.nspath_eval('gmd:characterEncoding/gmd:MD_CharacterSetCode', namespaces)).attrib.get('codeListValue') class CI_Date(object): """ process CI_Date """ def __init__(self, md=None): if md is None: self.date = None self.type = None else: val = md.find(util.nspath_eval('gmd:date/gco:Date', namespaces)) if val is not None: self.date = util.testXMLValue(val) else: val = md.find(util.nspath_eval('gmd:date/gco:DateTime', namespaces)) if val is not None: self.date = util.testXMLValue(val) else: self.date = None val = md.find(util.nspath_eval('gmd:dateType/gmd:CI_DateTypeCode', namespaces)) self.type = _testCodeListValue(val) class CI_ResponsibleParty(object): """ process CI_ResponsibleParty """ def __init__(self, md=None): if md is None: self.name = None self.organization = None self.position = None self.phone = None self.fax = None self.address = None self.city = None self.region = None self.postcode = None self.country = None self.email = None self.onlineresource = None self.role = None else: val = md.find(util.nspath_eval('gmd:individualName/gco:CharacterString', namespaces)) self.name = util.testXMLValue(val) val = md.find(util.nspath_eval('gmd:organisationName/gco:CharacterString', namespaces)) self.organization = util.testXMLValue(val) val = md.find(util.nspath_eval('gmd:positionName/gco:CharacterString', namespaces)) self.position = util.testXMLValue(val) val = md.find(util.nspath_eval('gmd:contactInfo/gmd:CI_Contact/gmd:phone/gmd:CI_Telephone/gmd:voice/gco:CharacterString', namespaces)) self.phone = util.testXMLValue(val) val = md.find(util.nspath_eval('gmd:contactInfo/gmd:CI_Contact/gmd:phone/gmd:CI_Telephone/gmd:facsimile/gco:CharacterString', namespaces)) self.fax = util.testXMLValue(val) val = md.find(util.nspath_eval('gmd:contactInfo/gmd:CI_Contact/gmd:address/gmd:CI_Address/gmd:deliveryPoint/gco:CharacterString', namespaces)) self.address = util.testXMLValue(val) val = md.find(util.nspath_eval('gmd:contactInfo/gmd:CI_Contact/gmd:address/gmd:CI_Address/gmd:city/gco:CharacterString', namespaces)) self.city = util.testXMLValue(val) val = md.find(util.nspath_eval('gmd:contactInfo/gmd:CI_Contact/gmd:address/gmd:CI_Address/gmd:administrativeArea/gco:CharacterString', namespaces)) self.region = util.testXMLValue(val) val = md.find(util.nspath_eval('gmd:contactInfo/gmd:CI_Contact/gmd:address/gmd:CI_Address/gmd:postalCode/gco:CharacterString', namespaces)) self.postcode = util.testXMLValue(val) val = md.find(util.nspath_eval('gmd:contactInfo/gmd:CI_Contact/gmd:address/gmd:CI_Address/gmd:country/gco:CharacterString', namespaces)) self.country = util.testXMLValue(val) val = md.find(util.nspath_eval('gmd:contactInfo/gmd:CI_Contact/gmd:address/gmd:CI_Address/gmd:electronicMailAddress/gco:CharacterString', namespaces)) self.email = util.testXMLValue(val) val = md.find(util.nspath_eval('gmd:contactInfo/gmd:CI_Contact/gmd:onlineResource/gmd:CI_OnlineResource', namespaces)) if val is not None: self.onlineresource = CI_OnlineResource(val) else: self.onlineresource = None self.role = _testCodeListValue(md.find(util.nspath_eval('gmd:role/gmd:CI_RoleCode', namespaces))) class MD_Keywords(object): """ Class for the metadata MD_Keywords element """ def __init__(self, md=None): if md is None: self.keywords = [] self.type = None self.thesaurus = None self.kwdtype_codeList = 'http://standards.iso.org/ittf/PubliclyAvailableStandards/ISO_19139_Schemas/resources/codelist/gmxCodelists.xml#MD_KeywordTypeCode' else: self.keywords = [] val = md.findall(util.nspath_eval('gmd:keyword/gco:CharacterString', namespaces)) for word in val: self.keywords.append(util.testXMLValue(word)) self.type = None val = md.find(util.nspath_eval('gmd:type/gmd:MD_KeywordTypeCode', namespaces)) self.type = util.testXMLAttribute(val, 'codeListValue') self.thesaurus = None val = md.find(util.nspath_eval('gmd:thesaurusName/gmd:CI_Citation', namespaces)) if val is not None: self.thesaurus = {} thesaurus = val.find(util.nspath_eval('gmd:title/gco:CharacterString', namespaces)) self.thesaurus['title'] = util.testXMLValue(thesaurus) thesaurus = val.find(util.nspath_eval('gmd:date/gmd:CI_Date/gmd:date/gco:Date', namespaces)) self.thesaurus['date'] = util.testXMLValue(thesaurus) thesaurus = val.find(util.nspath_eval('gmd:date/gmd:CI_Date/gmd:dateType/gmd:CI_DateTypeCode', namespaces)) self.thesaurus['datetype'] = util.testXMLAttribute(thesaurus, 'codeListValue') class MD_DataIdentification(object): """ process MD_DataIdentification """ def __init__(self, md=None, identtype=None): if md is None: self.identtype = None self.title = None self.alternatetitle = None self.aggregationinfo = None self.uricode = [] self.uricodespace = [] self.date = [] self.datetype = [] self.uselimitation = [] self.uselimitation_url = [] self.accessconstraints = [] self.classification = [] self.otherconstraints = [] self.securityconstraints = [] self.useconstraints = [] self.denominators = [] self.distance = [] self.uom = [] self.resourcelanguage = [] self.resourcelanguagecode = [] self.creator = [] self.publisher = [] self.contributor = [] self.edition = None self.abstract = None self.abstract_url = None self.purpose = None self.status = None self.contact = [] self.keywords = [] self.keywords2 = [] self.topiccategory = [] self.supplementalinformation = None self.extent = None self.bbox = None self.temporalextent_start = None self.temporalextent_end = None self.spatialrepresentationtype = [] else: self.identtype = identtype val = md.find(util.nspath_eval('gmd:citation/gmd:CI_Citation/gmd:title/gco:CharacterString', namespaces)) self.title = util.testXMLValue(val) val = md.find(util.nspath_eval('gmd:citation/gmd:CI_Citation/gmd:alternateTitle/gco:CharacterString', namespaces)) self.alternatetitle = util.testXMLValue(val) val = md.find(util.nspath_eval('gmd:aggregationInfo', namespaces)) self.aggregationinfo = util.testXMLValue(val) self.uricode = [] for i in md.findall(util.nspath_eval('gmd:citation/gmd:CI_Citation/gmd:identifier/gmd:RS_Identifier/gmd:code/gco:CharacterString', namespaces)) + \ md.findall(util.nspath_eval('gmd:citation/gmd:CI_Citation/gmd:identifier/gmd:MD_Identifier/gmd:code/gco:CharacterString', namespaces)): val = util.testXMLValue(i) if val is not None: self.uricode.append(val) self.uricodespace = [] for i in md.findall(util.nspath_eval('gmd:citation/gmd:CI_Citation/gmd:identifier/gmd:RS_Identifier/gmd:codeSpace/gco:CharacterString', namespaces)): val = util.testXMLValue(i) if val is not None: self.uricodespace.append(val) self.date = [] self.datetype = [] for i in md.findall(util.nspath_eval('gmd:citation/gmd:CI_Citation/gmd:date/gmd:CI_Date', namespaces)): self.date.append(CI_Date(i)) self.uselimitation = [] self.uselimitation_url = [] for i in \ md.findall(util.nspath_eval('gmd:resourceConstraints/gmd:MD_LegalConstraints/gmd:useLimitation/gco:CharacterString', namespaces)) + \ md.findall(util.nspath_eval('gmd:resourceConstraints/gmd:MD_Constraints/gmd:useLimitation/gco:CharacterString', namespaces)): val = util.testXMLValue(i) if val is not None: self.uselimitation.append(val) for i in \ md.findall(util.nspath_eval('gmd:resourceConstraints/gmd:MD_LegalConstraints/gmd:useLimitation/gmx:Anchor', namespaces)) + \ md.findall(util.nspath_eval('gmd:resourceConstraints/gmd:MD_Constraints/gmd:useLimitation/gmx:Anchor', namespaces)): val = util.testXMLValue(i) val1 = i.attrib.get(util.nspath_eval('xlink:href', namespaces)) if val is not None: self.uselimitation.append(val) self.uselimitation_url.append(val1) self.accessconstraints = [] for i in md.findall(util.nspath_eval('gmd:resourceConstraints/gmd:MD_LegalConstraints/gmd:accessConstraints/gmd:MD_RestrictionCode', namespaces)): val = _testCodeListValue(i) if val is not None: self.accessconstraints.append(val) self.classification = [] for i in md.findall(util.nspath_eval('gmd:resourceConstraints/gmd:MD_LegalConstraints/gmd:accessConstraints/gmd:MD_ClassificationCode', namespaces)): val = _testCodeListValue(i) if val is not None: self.classification.append(val) self.otherconstraints = [] for i in md.findall(util.nspath_eval('gmd:resourceConstraints/gmd:MD_LegalConstraints/gmd:otherConstraints/gco:CharacterString', namespaces)): val = util.testXMLValue(i) if val is not None: self.otherconstraints.append(val) self.securityconstraints = [] for i in md.findall(util.nspath_eval('gmd:resourceConstraints/gmd:MD_SecurityConstraints/gmd:classification/gmd:MD_ClassificationCode', namespaces)): val = _testCodeListValue(i) if val is not None: self.securityconstraints.append(val) self.useconstraints = [] for i in md.findall(util.nspath_eval('gmd:resourceConstraints/gmd:MD_LegalConstraints/gmd:useConstraints/gmd:MD_RestrictionCode', namespaces)): val = _testCodeListValue(i) if val is not None: self.useconstraints.append(val) self.denominators = [] for i in md.findall(util.nspath_eval('gmd:spatialResolution/gmd:MD_Resolution/gmd:equivalentScale/gmd:MD_RepresentativeFraction/gmd:denominator/gco:Integer', namespaces)): val = util.testXMLValue(i) if val is not None: self.denominators.append(val) self.distance = [] self.uom = [] for i in md.findall(util.nspath_eval('gmd:spatialResolution/gmd:MD_Resolution/gmd:distance/gco:Distance', namespaces)): val = util.testXMLValue(i) if val is not None: self.distance.append(val) self.uom.append(i.get("uom")) self.resourcelanguagecode = [] for i in md.findall(util.nspath_eval('gmd:language/gmd:LanguageCode', namespaces)): val = _testCodeListValue(i) if val is not None: self.resourcelanguagecode.append(val) self.resourcelanguage = [] for i in md.findall(util.nspath_eval('gmd:language/gco:CharacterString', namespaces)): val = util.testXMLValue(i) if val is not None: self.resourcelanguage.append(val) self.creator = [] self.publisher = [] self.contributor = [] for val in md.findall(util.nspath_eval('gmd:pointOfContact/gmd:CI_ResponsibleParty', namespaces)): role = val.find(util.nspath_eval('gmd:role/gmd:CI_RoleCode', namespaces)) if role is not None: clv = _testCodeListValue(role) rp = CI_ResponsibleParty(val) if clv == 'originator': self.creator.append(rp) elif clv == 'publisher': self.publisher.append(rp) elif clv == 'author': self.contributor.append(rp) val = md.find(util.nspath_eval('gmd:edition/gco:CharacterString', namespaces)) self.edition = util.testXMLValue(val) val = md.find(util.nspath_eval('gmd:abstract/gco:CharacterString', namespaces)) self.abstract = util.testXMLValue(val) val = md.find(util.nspath_eval('gmd:abstract/gmx:Anchor', namespaces)) self.abstract_url = None if val is not None: self.abstract = util.testXMLValue(val) self.abstract_url = val.attrib.get(util.nspath_eval('xlink:href', namespaces)) val = md.find(util.nspath_eval('gmd:purpose/gco:CharacterString', namespaces)) self.purpose = util.testXMLValue(val) self.status = _testCodeListValue(md.find(util.nspath_eval('gmd:status/gmd:MD_ProgressCode', namespaces))) self.contact = [] for i in md.findall(util.nspath_eval('gmd:pointOfContact/gmd:CI_ResponsibleParty', namespaces)): o = CI_ResponsibleParty(i) self.contact.append(o) self.spatialrepresentationtype = [] for val in md.findall(util.nspath_eval('gmd:spatialRepresentationType/gmd:MD_SpatialRepresentationTypeCode', namespaces)): val = util.testXMLAttribute(val, 'codeListValue') if val: self.spatialrepresentationtype.append(val) warnings.warn( 'The .keywords and .keywords2 properties will merge into the ' '.keywords property in the future, with .keywords becoming a list ' 'of MD_Keywords instances. This is currently implemented in .keywords2. ' 'Please see https://github.com/geopython/OWSLib/issues/301 for more information', FutureWarning) self.keywords = [] for i in md.findall(util.nspath_eval('gmd:descriptiveKeywords', namespaces)): mdkw = {} mdkw['type'] = _testCodeListValue(i.find(util.nspath_eval('gmd:MD_Keywords/gmd:type/gmd:MD_KeywordTypeCode', namespaces))) mdkw['thesaurus'] = {} val = i.find(util.nspath_eval('gmd:MD_Keywords/gmd:thesaurusName/gmd:CI_Citation/gmd:title/gco:CharacterString', namespaces)) mdkw['thesaurus']['title'] = util.testXMLValue(val) val = i.find(util.nspath_eval('gmd:MD_Keywords/gmd:thesaurusName/gmd:CI_Citation/gmd:date/gmd:CI_Date/gmd:date/gco:Date', namespaces)) mdkw['thesaurus']['date'] = util.testXMLValue(val) val = i.find(util.nspath_eval('gmd:MD_Keywords/gmd:thesaurusName/gmd:CI_Citation/gmd:date/gmd:CI_Date/gmd:dateType/gmd:CI_DateTypeCode', namespaces)) mdkw['thesaurus']['datetype'] = util.testXMLAttribute(val, 'codeListValue') mdkw['keywords'] = [] for k in i.findall(util.nspath_eval('gmd:MD_Keywords/gmd:keyword', namespaces)): val = k.find(util.nspath_eval('gco:CharacterString', namespaces)) if val is not None: val2 = util.testXMLValue(val) if val2 is not None: mdkw['keywords'].append(val2) self.keywords.append(mdkw) self.keywords2 = [] for mdkw in md.findall(util.nspath_eval('gmd:descriptiveKeywords/gmd:MD_Keywords', namespaces)): self.keywords2.append(MD_Keywords(mdkw)) self.topiccategory = [] for i in md.findall(util.nspath_eval('gmd:topicCategory/gmd:MD_TopicCategoryCode', namespaces)): val = util.testXMLValue(i) if val is not None: self.topiccategory.append(val) val = md.find(util.nspath_eval('gmd:supplementalInformation/gco:CharacterString', namespaces)) self.supplementalinformation = util.testXMLValue(val) # There may be multiple geographicElement, create an extent # from the one containing either an EX_GeographicBoundingBox or EX_BoundingPolygon. # The schema also specifies an EX_GeographicDescription. This is not implemented yet. val = None val2 = None val3 = None extents = md.findall(util.nspath_eval('gmd:extent', namespaces)) extents.extend(md.findall(util.nspath_eval('srv:extent', namespaces))) for extent in extents: if val is None: for e in extent.findall(util.nspath_eval('gmd:EX_Extent/gmd:geographicElement', namespaces)): if e.find(util.nspath_eval('gmd:EX_GeographicBoundingBox', namespaces)) is not None or e.find(util.nspath_eval('gmd:EX_BoundingPolygon', namespaces)) is not None: val = e break self.extent = EX_Extent(val) self.bbox = self.extent.boundingBox # for backwards compatibility if val2 is None: val2 = extent.find(util.nspath_eval('gmd:EX_Extent/gmd:temporalElement/gmd:EX_TemporalExtent/gmd:extent/gml:TimePeriod/gml:beginPosition', namespaces)) if val2 is None: val2 = extent.find(util.nspath_eval('gmd:EX_Extent/gmd:temporalElement/gmd:EX_TemporalExtent/gmd:extent/gml32:TimePeriod/gml32:beginPosition', namespaces)) self.temporalextent_start = util.testXMLValue(val2) if val3 is None: val3 = extent.find(util.nspath_eval('gmd:EX_Extent/gmd:temporalElement/gmd:EX_TemporalExtent/gmd:extent/gml:TimePeriod/gml:endPosition', namespaces)) if val3 is None: val3 = extent.find(util.nspath_eval('gmd:EX_Extent/gmd:temporalElement/gmd:EX_TemporalExtent/gmd:extent/gml32:TimePeriod/gml32:endPosition', namespaces)) self.temporalextent_end = util.testXMLValue(val3) class MD_Distributor(object): """ process MD_Distributor """ def __init__(self, md=None): if md is None: self.contact = None self.online = [] else: self.contact = None val = md.find(util.nspath_eval('gmd:MD_Distributor/gmd:distributorContact/gmd:CI_ResponsibleParty', namespaces)) if val is not None: self.contact = CI_ResponsibleParty(val) self.online = [] for ol in md.findall(util.nspath_eval('gmd:MD_Distributor/gmd:distributorTransferOptions/gmd:MD_DigitalTransferOptions/gmd:onLine/gmd:CI_OnlineResource', namespaces)): self.online.append(CI_OnlineResource(ol)) class MD_Distribution(object): """ process MD_Distribution """ def __init__(self, md=None): if md is None: self.format = None self.version = None self.distributor = [] self.online = [] pass else: val = md.find(util.nspath_eval('gmd:distributionFormat/gmd:MD_Format/gmd:name/gco:CharacterString', namespaces)) self.format = util.testXMLValue(val) val = md.find(util.nspath_eval('gmd:distributionFormat/gmd:MD_Format/gmd:version/gco:CharacterString', namespaces)) self.version = util.testXMLValue(val) self.distributor = [] for dist in md.findall(util.nspath_eval('gmd:distributor', namespaces)): self.distributor.append(MD_Distributor(dist)) self.online = [] for ol in md.findall(util.nspath_eval('gmd:transferOptions/gmd:MD_DigitalTransferOptions/gmd:onLine/gmd:CI_OnlineResource', namespaces)): self.online.append(CI_OnlineResource(ol)) class DQ_DataQuality(object): ''' process DQ_DataQuality''' def __init__(self, md=None): if md is None: self.conformancetitle = [] self.conformancedate = [] self.conformancedatetype = [] self.conformancedegree = [] self.lineage = None self.lineage_url = None self.specificationtitle = None self.specificationdate = [] else: self.conformancetitle = [] for i in md.findall(util.nspath_eval('gmd:report/gmd:DQ_DomainConsistency/gmd:result/gmd:DQ_ConformanceResult/gmd:specification/gmd:CI_Citation/gmd:title/gco:CharacterString', namespaces)): val = util.testXMLValue(i) if val is not None: self.conformancetitle.append(val) self.conformancedate = [] for i in md.findall(util.nspath_eval('gmd:report/gmd:DQ_DomainConsistency/gmd:result/gmd:DQ_ConformanceResult/gmd:specification/gmd:CI_Citation/gmd:date/gmd:CI_Date/gmd:date/gco:Date', namespaces)): val = util.testXMLValue(i) if val is not None: self.conformancedate.append(val) self.conformancedatetype = [] for i in md.findall(util.nspath_eval('gmd:report/gmd:DQ_DomainConsistency/gmd:result/gmd:DQ_ConformanceResult/gmd:specification/gmd:CI_Citation/gmd:date/gmd:CI_Date/gmd:dateType/gmd:CI_DateTypeCode', namespaces)): val = _testCodeListValue(i) if val is not None: self.conformancedatetype.append(val) self.conformancedegree = [] for i in md.findall(util.nspath_eval('gmd:report/gmd:DQ_DomainConsistency/gmd:result/gmd:DQ_ConformanceResult/gmd:pass/gco:Boolean', namespaces)): val = util.testXMLValue(i) if val is not None: self.conformancedegree.append(val) val = md.find(util.nspath_eval('gmd:lineage/gmd:LI_Lineage/gmd:statement/gco:CharacterString', namespaces)) self.lineage = util.testXMLValue(val) val = md.find(util.nspath_eval('gmd:lineage/gmd:LI_Lineage/gmd:statement/gmx:Anchor', namespaces)) if val is not None: self.lineage = util.testXMLValue(val) self.lineage_url = val.attrib.get(util.nspath_eval('xlink:href', namespaces)) val = md.find(util.nspath_eval('gmd:report/gmd:DQ_DomainConsistency/gmd:result/gmd:DQ_ConformanceResult/gmd:specification/gmd:CI_Citation/gmd:title/gco:CharacterString', namespaces)) self.specificationtitle = util.testXMLValue(val) self.specificationdate = [] for i in md.findall(util.nspath_eval('gmd:report/gmd:DQ_DomainConsistency/gmd:result/gmd:DQ_ConformanceResult/gmd:specification/gmd:CI_Citation/gmd:date/gmd:CI_Date', namespaces)): val = util.testXMLValue(i) if val is not None: self.specificationdate.append(val) class SV_ServiceIdentification(object): """ process SV_ServiceIdentification """ def __init__(self, md=None): if md is None: self.title = None self.abstract = None self.contact = None self.identtype = 'service' self.type = None self.version = None self.fees = None self.bbox = None self.couplingtype = None self.operations = [] self.operateson = [] else: val = md.find(util.nspath_eval('gmd:citation/gmd:CI_Citation/gmd:title/gco:CharacterString', namespaces)) self.title=util.testXMLValue(val) val = md.find(util.nspath_eval('gmd:abstract/gco:CharacterString', namespaces)) self.abstract = util.testXMLValue(val) self.contact = None val = md.find(util.nspath_eval('gmd:citation/gmd:CI_Citation/gmd:citedResponsibleParty/gmd:CI_ResponsibleParty', namespaces)) if val is not None: self.contact = CI_ResponsibleParty(val) self.identtype = 'service' val = md.find(util.nspath_eval('srv:serviceType/gco:LocalName', namespaces)) self.type = util.testXMLValue(val) val = md.find(util.nspath_eval('srv:serviceTypeVersion/gco:CharacterString', namespaces)) self.version = util.testXMLValue(val) val = md.find(util.nspath_eval('srv:accessProperties/gmd:MD_StandardOrderProcess/gmd:fees/gco:CharacterString', namespaces)) self.fees = util.testXMLValue(val) val = md.find(util.nspath_eval('srv:extent/gmd:EX_Extent', namespaces)) if val is not None: self.bbox = EX_Extent(val) else: self.bbox = None self.couplingtype = _testCodeListValue(md.find(util.nspath_eval('gmd:couplingType/gmd:SV_CouplingType', namespaces))) self.operations = [] for i in md.findall(util.nspath_eval('srv:containsOperations', namespaces)): tmp = {} val = i.find(util.nspath_eval('srv:SV_OperationMetadata/srv:operationName/gco:CharacterString', namespaces)) tmp['name'] = util.testXMLValue(val) tmp['dcplist'] = [] for d in i.findall(util.nspath_eval('srv:SV_OperationMetadata/srv:DCP', namespaces)): tmp2 = _testCodeListValue(d.find(util.nspath_eval('srv:DCPList', namespaces))) tmp['dcplist'].append(tmp2) tmp['connectpoint'] = [] for d in i.findall(util.nspath_eval('srv:SV_OperationMetadata/srv:connectPoint', namespaces)): tmp3 = d.find(util.nspath_eval('gmd:CI_OnlineResource', namespaces)) tmp['connectpoint'].append(CI_OnlineResource(tmp3)) self.operations.append(tmp) self.operateson = [] for i in md.findall(util.nspath_eval('srv:operatesOn', namespaces)): tmp = {} tmp['uuidref'] = i.attrib.get('uuidref') tmp['href'] = i.attrib.get(util.nspath_eval('xlink:href', namespaces)) tmp['title'] = i.attrib.get(util.nspath_eval('xlink:title', namespaces)) self.operateson.append(tmp) class CI_OnlineResource(object): """ process CI_OnlineResource """ def __init__(self,md=None): if md is None: self.url = None self.protocol = None self.name = None self.description = None self.function = None else: val = md.find(util.nspath_eval('gmd:linkage/gmd:URL', namespaces)) self.url = util.testXMLValue(val) val = md.find(util.nspath_eval('gmd:protocol/gco:CharacterString', namespaces)) self.protocol = util.testXMLValue(val) val = md.find(util.nspath_eval('gmd:name/gco:CharacterString', namespaces)) self.name = util.testXMLValue(val) val = md.find(util.nspath_eval('gmd:description/gco:CharacterString', namespaces)) self.description = util.testXMLValue(val) self.function = _testCodeListValue(md.find(util.nspath_eval('gmd:function/gmd:CI_OnLineFunctionCode', namespaces))) class EX_GeographicBoundingBox(object): def __init__(self, md=None): if md is None: self.minx = None self.maxx = None self.miny = None self.maxy = None else: val = md.find(util.nspath_eval('gmd:westBoundLongitude/gco:Decimal', namespaces)) self.minx = util.testXMLValue(val) val = md.find(util.nspath_eval('gmd:eastBoundLongitude/gco:Decimal', namespaces)) self.maxx = util.testXMLValue(val) val = md.find(util.nspath_eval('gmd:southBoundLatitude/gco:Decimal', namespaces)) self.miny = util.testXMLValue(val) val = md.find(util.nspath_eval('gmd:northBoundLatitude/gco:Decimal', namespaces)) self.maxy = util.testXMLValue(val) class EX_Polygon(object): def __init__(self, md=None): if md is None: self.exterior_ring = None self.interior_rings = [] else: linear_ring = md.find(util.nspath_eval('gml32:Polygon/gml32:exterior/gml32:LinearRing', namespaces)) if linear_ring is not None: self.exterior_ring = self._coordinates_for_ring(linear_ring) interior_ring_elements = md.findall(util.nspath_eval('gml32:Polygon/gml32:interior', namespaces)) self.interior_rings = [] for iring_element in interior_ring_elements: linear_ring = iring_element.find(util.nspath_eval('gml32:LinearRing', namespaces)) self.interior_rings.append(self._coordinates_for_ring(linear_ring)) def _coordinates_for_ring(self, linear_ring): coordinates = [] positions = linear_ring.findall(util.nspath_eval('gml32:pos', namespaces)) for pos in positions: tokens = pos.text.split() coords = tuple([float(t) for t in tokens]) coordinates.append(coords) return coordinates class EX_GeographicBoundingPolygon(object): def __init__(self, md=None): if md is None: self.is_extent = None self.polygons = [] else: val = md.find(util.nspath_eval('gmd:extentTypeCode', namespaces)) self.is_extent = util.testXMLValue(val) md_polygons = md.findall(util.nspath_eval('gmd:polygon', namespaces)) self.polygons = [] for val in md_polygons: self.polygons.append(EX_Polygon(val)) class EX_Extent(object): """ process EX_Extent """ def __init__(self, md=None): if md is None: self.boundingBox = None self.boundingPolygon = None self.description_code = None else: self.boundingBox = None self.boundingPolygon = None if md is not None: bboxElement = md.find(util.nspath_eval('gmd:EX_GeographicBoundingBox', namespaces)) if bboxElement is not None: self.boundingBox = EX_GeographicBoundingBox(bboxElement) polygonElement = md.find(util.nspath_eval('gmd:EX_BoundingPolygon', namespaces)) if polygonElement is not None: self.boundingPolygon = EX_GeographicBoundingPolygon(polygonElement) val = md.find(util.nspath_eval('gmd:EX_GeographicDescription/gmd:geographicIdentifier/gmd:MD_Identifier/gmd:code/gco:CharacterString', namespaces)) self.description_code = util.testXMLValue(val) class MD_ReferenceSystem(object): """ process MD_ReferenceSystem """ def __init__(self, md=None): if md is None: self.code = None self.codeSpace = None self.version = None else: val = md.find(util.nspath_eval('gmd:referenceSystemIdentifier/gmd:RS_Identifier/gmd:code/gco:CharacterString', namespaces)) if val is not None: self.code = util.testXMLValue(val) else: self.code = None val = md.find(util.nspath_eval('gmd:referenceSystemIdentifier/gmd:RS_Identifier/gmd:codeSpace/gco:CharacterString', namespaces)) if val is not None: self.codeSpace = util.testXMLValue(val) else: self.codeSpace = None val = md.find(util.nspath_eval('gmd:referenceSystemIdentifier/gmd:RS_Identifier/gmd:version/gco:CharacterString', namespaces)) if val is not None: self.version = util.testXMLValue(val) else: self.version = None def _testCodeListValue(elpath): """ get gco:CodeListValue_Type attribute, else get text content """ if elpath is not None: # try to get @codeListValue val = util.testXMLValue(elpath.attrib.get('codeListValue'), True) if val is not None: return val else: # see if there is element text return util.testXMLValue(elpath) else: return None class CodelistCatalogue(object): """ process CT_CodelistCatalogue """ def __init__(self, ct): val = ct.find(util.nspath_eval('gmx:name/gco:CharacterString', namespaces)) self.name = util.testXMLValue(val) val = ct.find(util.nspath_eval('gmx:scope/gco:CharacterString', namespaces)) self.scope = util.testXMLValue(val) val = ct.find(util.nspath_eval('gmx:fieldOfApplication/gco:CharacterString', namespaces)) self.fieldapp = util.testXMLValue(val) val = ct.find(util.nspath_eval('gmx:versionNumber/gco:CharacterString', namespaces)) self.version = util.testXMLValue(val) val = ct.find(util.nspath_eval('gmx:versionDate/gco:Date', namespaces)) self.date = util.testXMLValue(val) self.dictionaries = {} for i in ct.findall(util.nspath_eval('gmx:codelistItem/gmx:CodeListDictionary', namespaces)): id = i.attrib.get(util.nspath_eval('gml32:id', namespaces)) self.dictionaries[id] = {} val = i.find(util.nspath_eval('gml32:description', namespaces)) self.dictionaries[id]['description'] = util.testXMLValue(val) val = i.find(util.nspath_eval('gml32:identifier', namespaces)) self.dictionaries[id]['identifier'] = util.testXMLValue(val) self.dictionaries[id]['entries'] = {} for j in i.findall(util.nspath_eval('gmx:codeEntry', namespaces)): id2 = j.find(util.nspath_eval('gmx:CodeDefinition', namespaces)).attrib.get(util.nspath_eval('gml32:id', namespaces)) self.dictionaries[id]['entries'][id2] = {} val = j.find(util.nspath_eval('gmx:CodeDefinition/gml32:description', namespaces)) self.dictionaries[id]['entries'][id2]['description'] = util.testXMLValue(val) val = j.find(util.nspath_eval('gmx:CodeDefinition/gml32:identifier', namespaces)) self.dictionaries[id]['entries'][id2]['identifier'] = util.testXMLValue(val) val = j.find(util.nspath_eval('gmx:CodeDefinition', namespaces)).attrib.get('codeSpace') self.dictionaries[id]['entries'][id2]['codespace'] = util.testXMLValue(val, True) def getcodelistdictionaries(self): return list(self.dictionaries.keys()) def getcodedefinitionidentifiers(self, cdl): if cdl in self.dictionaries: ids = [] for i in self.dictionaries[cdl]['entries']: ids.append(self.dictionaries[cdl]['entries'][i]['identifier']) return ids else: return None class MD_FeatureCatalogueDescription(object): """Process gmd:MD_FeatureCatalogueDescription""" def __init__(self, fcd=None): if fcd is None: self.xml = None self.compliancecode = None self.language = [] self.includedwithdataset = None self.featuretypenames = [] self.featurecatalogues = [] else: if hasattr(fcd, 'getroot'): # standalone document self.xml = etree.tostring(fcd.getroot()) else: # part of a larger document self.xml = etree.tostring(fcd) self.compliancecode = None val = fcd.find(util.nspath_eval('gmd:complianceCode/gco:Boolean', namespaces)) val = util.testXMLValue(val) if val is not None: self.compliancecode = util.getTypedValue('boolean', val) self.language = [] for i in fcd.findall(util.nspath_eval('gmd:language/gco:CharacterString', namespaces)): val = util.testXMLValue(i) if val is not None: self.language.append(val) self.includedwithdataset = None val = fcd.find(util.nspath_eval('gmd:includedWithDataset/gco:Boolean', namespaces)) val = util.testXMLValue(val) if val is not None: self.includedwithdataset = util.getTypedValue('boolean', val) self.featuretypenames = [] for i in fcd.findall(util.nspath_eval('gmd:featureTypes/gco:LocalName', namespaces)): val = util.testXMLValue(i) if val is not None: self.featuretypenames.append(val) for i in fcd.findall(util.nspath_eval('gmd:featureTypes/gco:ScopedName', namespaces)): val = util.testXMLValue(i) if val is not None: self.featuretypenames.append(val) self.featurecatalogues = [] for i in fcd.findall(util.nspath_eval('gmd:featureCatalogueCitation', namespaces)): val = i.attrib.get('uuidref') val = util.testXMLValue(val, attrib=True) if val is not None: self.featurecatalogues.append(val) class FC_FeatureCatalogue(object): """Process gfc:FC_FeatureCatalogue""" def __init__(self, fc=None): if fc is None: self.xml = None self.identifier = None self.name = None self.versiondate = None self.producer = None self.featuretypes = [] else: if hasattr(fc, 'getroot'): # standalone document self.xml = etree.tostring(fc.getroot()) else: # part of a larger document self.xml = etree.tostring(fc) val = fc.attrib['uuid'] self.identifier = util.testXMLValue(val, attrib=True) val = fc.find(util.nspath_eval('gmx:name/gco:CharacterString', namespaces)) self.name = util.testXMLValue(val) val = fc.find(util.nspath_eval('gmx:versionDate/gco:Date', namespaces)) self.versiondate = util.testXMLValue(val) if not self.versiondate: val = fc.find(util.nspath_eval('gmx:versionDate/gco:DateTime', namespaces)) self.versiondate = util.testXMLValue(val) self.producer = None prod = fc.find(util.nspath_eval('gfc:producer/gmd:CI_ResponsibleParty', namespaces)) if prod is not None: self.producer = CI_ResponsibleParty(prod) self.featuretypes = [] for i in fc.findall(util.nspath_eval('gfc:featureType/gfc:FC_FeatureType', namespaces)): self.featuretypes.append(FC_FeatureType(i)) class FC_FeatureType(object): """Process gfc:FC_FeatureType""" def __init__(self, ft=None): if ft is None: self.xml = None self.identifier = None self.typename = None self.definition = None self.isabstract = None self.aliases = [] self.attributes = [] else: if hasattr(ft, 'getroot'): # standalone document self.xml = etree.tostring(ft.getroot()) else: # part of a larger document self.xml = etree.tostring(ft) val = ft.attrib['uuid'] self.identifier = util.testXMLValue(val, attrib=True) val = ft.find(util.nspath_eval('gfc:typeName/gco:LocalName', namespaces)) self.typename = util.testXMLValue(val) val = ft.find(util.nspath_eval('gfc:definition/gco:CharacterString', namespaces)) self.definition = util.testXMLValue(val) self.isabstract = None val = ft.find(util.nspath_eval('gfc:isAbstract/gco:Boolean', namespaces)) val = util.testXMLValue(val) if val is not None: self.isabstract = util.getTypedValue('boolean', val) self.aliases = [] for i in ft.findall(util.nspath_eval('gfc:aliases/gco:LocalName', namespaces)): self.aliases.append(util.testXMLValue(i)) self.attributes = [] for i in ft.findall(util.nspath_eval('gfc:carrierOfCharacteristics/gfc:FC_FeatureAttribute', namespaces)): self.attributes.append(FC_FeatureAttribute(i)) class FC_FeatureAttribute(object): """Process gfc:FC_FeatureAttribute""" def __init__(self, fa=None): if fa is None: self.xml = None self.membername = None self.definition = None self.code = None self.valuetype = None self.listedvalues = [] else: if hasattr(fa, 'getroot'): # standalone document self.xml = etree.tostring(fa.getroot()) else: # part of a larger document self.xml = etree.tostring(fa) val = fa.find(util.nspath_eval('gfc:memberName/gco:LocalName', namespaces)) self.membername = util.testXMLValue(val) val = fa.find(util.nspath_eval('gfc:definition/gco:CharacterString', namespaces)) self.definition = util.testXMLValue(val) val = fa.find(util.nspath_eval('gfc:code/gco:CharacterString', namespaces)) self.code = util.testXMLValue(val) val = fa.find(util.nspath_eval('gfc:valueType/gco:TypeName/gco:aName/gco:CharacterString', namespaces)) self.valuetype = util.testXMLValue(val) self.listedvalues = [] for i in fa.findall(util.nspath_eval('gfc:listedValue/gfc:FC_ListedValue', namespaces)): self.listedvalues.append(FC_ListedValue(i)) class FC_ListedValue(object): """Process gfc:FC_ListedValue""" def __init__(self, lv=None): if lv is None: self.xml = None self.label = None self.code = None self.definition = None else: if hasattr(lv, 'getroot'): # standalone document self.xml = etree.tostring(lv.getroot()) else: # part of a larger document self.xml = etree.tostring(lv) val = lv.find(util.nspath_eval('gfc:label/gco:CharacterString', namespaces)) self.label = util.testXMLValue(val) val = lv.find(util.nspath_eval('gfc:code/gco:CharacterString', namespaces)) self.code = util.testXMLValue(val) val = lv.find(util.nspath_eval('gfc:definition/gco:CharacterString', namespaces)) self.definition = util.testXMLValue(val)
the-stack_0_14754
import socket sock = socket.socket() sock.connect(('127.0.0.1', 9900)) sock.send(b"Hello, server!\n") data = sock.recv(1024) udata = data.decode("utf-8") print(udata) sock.close()
the-stack_0_14756
# Copyright 2020 - 2021 MONAI Consortium # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Callable, Dict, Optional, Sequence, Union import numpy as np import torch from monai.config import IndexSelection, KeysCollection from monai.networks.layers import GaussianFilter from monai.transforms import Resize, SpatialCrop from monai.transforms.transform import MapTransform, Randomizable, Transform from monai.transforms.utils import generate_spatial_bounding_box from monai.utils import InterpolateMode, ensure_tuple_rep, min_version, optional_import measure, _ = optional_import("skimage.measure", "0.14.2", min_version) distance_transform_cdt, _ = optional_import("scipy.ndimage.morphology", name="distance_transform_cdt") # Transforms to support Training for Deepgrow models class FindAllValidSlicesd(Transform): """ Find/List all valid slices in the label. Label is assumed to be a 4D Volume with shape CDHW, where C=1. Args: label: key to the label source. sids: key to store slices indices having valid label map. """ def __init__(self, label: str = "label", sids: str = "sids"): self.label = label self.sids = sids def _apply(self, label): sids = [] for sid in range(label.shape[1]): # Assume channel is first if np.sum(label[0][sid]) != 0: sids.append(sid) return np.asarray(sids) def __call__(self, data): d: Dict = dict(data) label = d[self.label] if label.shape[0] != 1: raise ValueError("Only supports single channel labels!") if len(label.shape) != 4: # only for 3D raise ValueError("Only supports label with shape CDHW!") sids = self._apply(label) if sids is not None and len(sids): d[self.sids] = sids return d class AddInitialSeedPointd(Randomizable): """ Add random guidance as initial seed point for a given label. Note that the label is of size (C, D, H, W) or (C, H, W) The guidance is of size (2, N, # of dims) where N is number of guidance added. # of dims = 4 when C, D, H, W; # of dims = 3 when (C, H, W) Args: label: label source. guidance: key to store guidance. sids: key that represents list of valid slice indices for the given label. sid: key that represents the slice to add initial seed point. If not present, random sid will be chosen. connected_regions: maximum connected regions to use for adding initial points. """ def __init__( self, label: str = "label", guidance: str = "guidance", sids: str = "sids", sid: str = "sid", connected_regions: int = 5, ): self.label = label self.sids_key = sids self.sid_key = sid self.sid = None self.guidance = guidance self.connected_regions = connected_regions def randomize(self, data): sid = data.get(self.sid_key, None) sids = data.get(self.sids_key, None) if sids is not None: if sid is None or sid not in sids: sid = self.R.choice(sids, replace=False) else: sid = None self.sid = sid def _apply(self, label, sid): dimensions = 3 if len(label.shape) > 3 else 2 default_guidance = [-1] * (dimensions + 1) dims = dimensions if sid is not None and dimensions == 3: dims = 2 label = label[0][sid][np.newaxis] # Assume channel is first label = (label > 0.5).astype(np.float32) blobs_labels = measure.label(label.astype(int), background=0) if dims == 2 else label if np.max(blobs_labels) <= 0: raise AssertionError("Not a valid Label") pos_guidance = [] for ridx in range(1, 2 if dims == 3 else self.connected_regions + 1): if dims == 2: label = (blobs_labels == ridx).astype(np.float32) if np.sum(label) == 0: pos_guidance.append(default_guidance) continue distance = distance_transform_cdt(label).flatten() probability = np.exp(distance) - 1.0 idx = np.where(label.flatten() > 0)[0] seed = self.R.choice(idx, size=1, p=probability[idx] / np.sum(probability[idx])) dst = distance[seed] g = np.asarray(np.unravel_index(seed, label.shape)).transpose().tolist()[0] g[0] = dst[0] # for debug if dimensions == 2 or dims == 3: pos_guidance.append(g) else: pos_guidance.append([g[0], sid, g[-2], g[-1]]) return np.asarray([pos_guidance, [default_guidance] * len(pos_guidance)]) def __call__(self, data): d = dict(data) self.randomize(data) d[self.guidance] = self._apply(d[self.label], self.sid) return d class AddGuidanceSignald(Transform): """ Add Guidance signal for input image. Based on the "guidance" points, apply gaussian to them and add them as new channel for input image. Args: image: key to the image source. guidance: key to store guidance. sigma: standard deviation for Gaussian kernel. number_intensity_ch: channel index. batched: whether input is batched or not. """ def __init__( self, image: str = "image", guidance: str = "guidance", sigma: int = 2, number_intensity_ch: int = 1, batched: bool = False, ): self.image = image self.guidance = guidance self.sigma = sigma self.number_intensity_ch = number_intensity_ch self.batched = batched def _get_signal(self, image, guidance): dimensions = 3 if len(image.shape) > 3 else 2 guidance = guidance.tolist() if isinstance(guidance, np.ndarray) else guidance if dimensions == 3: signal = np.zeros((len(guidance), image.shape[-3], image.shape[-2], image.shape[-1]), dtype=np.float32) else: signal = np.zeros((len(guidance), image.shape[-2], image.shape[-1]), dtype=np.float32) sshape = signal.shape for i in range(len(guidance)): for point in guidance[i]: if np.any(np.asarray(point) < 0): continue if dimensions == 3: p1 = max(0, min(int(point[-3]), sshape[-3] - 1)) p2 = max(0, min(int(point[-2]), sshape[-2] - 1)) p3 = max(0, min(int(point[-1]), sshape[-1] - 1)) signal[i, p1, p2, p3] = 1.0 else: p1 = max(0, min(int(point[-2]), sshape[-2] - 1)) p2 = max(0, min(int(point[-1]), sshape[-1] - 1)) signal[i, p1, p2] = 1.0 if np.max(signal[i]) > 0: signal_tensor = torch.tensor(signal[i]) pt_gaussian = GaussianFilter(len(signal_tensor.shape), sigma=self.sigma) signal_tensor = pt_gaussian(signal_tensor.unsqueeze(0).unsqueeze(0)) signal_tensor = signal_tensor.squeeze(0).squeeze(0) signal[i] = signal_tensor.detach().cpu().numpy() signal[i] = (signal[i] - np.min(signal[i])) / (np.max(signal[i]) - np.min(signal[i])) return signal def _apply(self, image, guidance): if not self.batched: signal = self._get_signal(image, guidance) return np.concatenate([image, signal], axis=0) images = [] for i, g in zip(image, guidance): i = i[0 : 0 + self.number_intensity_ch, ...] signal = self._get_signal(i, g) images.append(np.concatenate([i, signal], axis=0)) return images def __call__(self, data): d = dict(data) image = d[self.image] guidance = d[self.guidance] d[self.image] = self._apply(image, guidance) return d class FindDiscrepancyRegionsd(Transform): """ Find discrepancy between prediction and actual during click interactions during training. If batched is true: label is in shape (B, C, D, H, W) or (B, C, H, W) pred has same shape as label discrepancy will have shape (B, 2, C, D, H, W) or (B, 2, C, H, W) Args: label: key to label source. pred: key to prediction source. discrepancy: key to store discrepancies found between label and prediction. batched: whether input is batched or not. """ def __init__( self, label: str = "label", pred: str = "pred", discrepancy: str = "discrepancy", batched: bool = True ): self.label = label self.pred = pred self.discrepancy = discrepancy self.batched = batched @staticmethod def disparity(label, pred): label = (label > 0.5).astype(np.float32) pred = (pred > 0.5).astype(np.float32) disparity = label - pred pos_disparity = (disparity > 0).astype(np.float32) neg_disparity = (disparity < 0).astype(np.float32) return [pos_disparity, neg_disparity] def _apply(self, label, pred): if not self.batched: return self.disparity(label, pred) disparity = [] for la, pr in zip(label, pred): disparity.append(self.disparity(la, pr)) return disparity def __call__(self, data): d = dict(data) label = d[self.label] pred = d[self.pred] d[self.discrepancy] = self._apply(label, pred) return d class AddRandomGuidanced(Randomizable): """ Add random guidance based on discrepancies that were found between label and prediction. If batched is True, input shape is as below: Guidance is of shape (B, 2, N, # of dim) where B is batch size, 2 means positive and negative, N means how many guidance points, # of dim is the total number of dimensions of the image (for example if the image is CDHW, then # of dim would be 4). Discrepancy is of shape (B, 2, C, D, H, W) or (B, 2, C, H, W) Probability is of shape (B, 1) else: Guidance is of shape (2, N, # of dim) Discrepancy is of shape (2, C, D, H, W) or (2, C, H, W) Probability is of shape (1) Args: guidance: key to guidance source. discrepancy: key that represents discrepancies found between label and prediction. probability: key that represents click/interaction probability. batched: whether input is batched or not. """ def __init__( self, guidance: str = "guidance", discrepancy: str = "discrepancy", probability: str = "probability", batched: bool = True, ): self.guidance = guidance self.discrepancy = discrepancy self.probability = probability self.batched = batched self._will_interact = None def randomize(self, data=None): probability = data[self.probability] if not self.batched: self._will_interact = self.R.choice([True, False], p=[probability, 1.0 - probability]) else: self._will_interact = [] for p in probability: self._will_interact.append(self.R.choice([True, False], p=[p, 1.0 - p])) def find_guidance(self, discrepancy): distance = distance_transform_cdt(discrepancy).flatten() probability = np.exp(distance) - 1.0 idx = np.where(discrepancy.flatten() > 0)[0] if np.sum(discrepancy > 0) > 0: seed = self.R.choice(idx, size=1, p=probability[idx] / np.sum(probability[idx])) dst = distance[seed] g = np.asarray(np.unravel_index(seed, discrepancy.shape)).transpose().tolist()[0] g[0] = dst[0] return g return None def add_guidance(self, discrepancy, will_interact): if not will_interact: return None, None pos_discr = discrepancy[0] neg_discr = discrepancy[1] can_be_positive = np.sum(pos_discr) > 0 can_be_negative = np.sum(neg_discr) > 0 correct_pos = np.sum(pos_discr) >= np.sum(neg_discr) if correct_pos and can_be_positive: return self.find_guidance(pos_discr), None if not correct_pos and can_be_negative: return None, self.find_guidance(neg_discr) return None, None def _apply(self, guidance, discrepancy): guidance = guidance.tolist() if isinstance(guidance, np.ndarray) else guidance if not self.batched: pos, neg = self.add_guidance(discrepancy, self._will_interact) if pos: guidance[0].append(pos) guidance[1].append([-1] * len(pos)) if neg: guidance[0].append([-1] * len(neg)) guidance[1].append(neg) else: for g, d, w in zip(guidance, discrepancy, self._will_interact): pos, neg = self.add_guidance(d, w) if pos: g[0].append(pos) g[1].append([-1] * len(pos)) if neg: g[0].append([-1] * len(neg)) g[1].append(neg) return np.asarray(guidance) def __call__(self, data): d = dict(data) guidance = d[self.guidance] discrepancy = d[self.discrepancy] self.randomize(data) d[self.guidance] = self._apply(guidance, discrepancy) return d class SpatialCropForegroundd(MapTransform): """ Crop only the foreground object of the expected images. Difference VS :py:class:`monai.transforms.CropForegroundd`: 1. If the bounding box is smaller than spatial size in all dimensions then this transform will crop the object using box's center and spatial_size. 2. This transform will set "start_coord_key", "end_coord_key", "original_shape_key" and "cropped_shape_key" in data[{key}_{meta_key_postfix}] The typical usage is to help training and evaluation if the valid part is small in the whole medical image. The valid part can be determined by any field in the data with `source_key`, for example: - Select values > 0 in image field as the foreground and crop on all fields specified by `keys`. - Select label = 3 in label field as the foreground to crop on all fields specified by `keys`. - Select label > 0 in the third channel of a One-Hot label field as the foreground to crop all `keys` fields. Users can define arbitrary function to select expected foreground from the whole source image or specified channels. And it can also add margin to every dim of the bounding box of foreground object. Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.MapTransform` source_key: data source to generate the bounding box of foreground, can be image or label, etc. spatial_size: minimal spatial size of the image patch e.g. [128, 128, 128] to fit in. select_fn: function to select expected foreground, default is to select values > 0. channel_indices: if defined, select foreground only on the specified channels of image. if None, select foreground on the whole image. margin: add margin value to spatial dims of the bounding box, if only 1 value provided, use it for all dims. meta_key_postfix: use `{key}_{meta_key_postfix}` to to fetch/store the meta data according to the key data, default is `meta_dict`, the meta data is a dictionary object. For example, to handle key `image`, read/write affine matrices from the metadata `image_meta_dict` dictionary's `affine` field. start_coord_key: key to record the start coordinate of spatial bounding box for foreground. end_coord_key: key to record the end coordinate of spatial bounding box for foreground. original_shape_key: key to record original shape for foreground. cropped_shape_key: key to record cropped shape for foreground. allow_missing_keys: don't raise exception if key is missing. """ def __init__( self, keys: KeysCollection, source_key: str, spatial_size: Union[Sequence[int], np.ndarray], select_fn: Callable = lambda x: x > 0, channel_indices: Optional[IndexSelection] = None, margin: int = 0, meta_key_postfix="meta_dict", start_coord_key: str = "foreground_start_coord", end_coord_key: str = "foreground_end_coord", original_shape_key: str = "foreground_original_shape", cropped_shape_key: str = "foreground_cropped_shape", allow_missing_keys: bool = False, ) -> None: super().__init__(keys, allow_missing_keys) self.source_key = source_key self.spatial_size = list(spatial_size) self.select_fn = select_fn self.channel_indices = channel_indices self.margin = margin self.meta_key_postfix = meta_key_postfix self.start_coord_key = start_coord_key self.end_coord_key = end_coord_key self.original_shape_key = original_shape_key self.cropped_shape_key = cropped_shape_key def __call__(self, data): d = dict(data) box_start, box_end = generate_spatial_bounding_box( d[self.source_key], self.select_fn, self.channel_indices, self.margin ) center = list(np.mean([box_start, box_end], axis=0).astype(int)) current_size = list(np.subtract(box_end, box_start).astype(int)) if np.all(np.less(current_size, self.spatial_size)): cropper = SpatialCrop(roi_center=center, roi_size=self.spatial_size) box_start = cropper.roi_start box_end = cropper.roi_end else: cropper = SpatialCrop(roi_start=box_start, roi_end=box_end) for key in self.key_iterator(d): meta_key = f"{key}_{self.meta_key_postfix}" d[meta_key][self.start_coord_key] = box_start d[meta_key][self.end_coord_key] = box_end d[meta_key][self.original_shape_key] = d[key].shape image = cropper(d[key]) d[meta_key][self.cropped_shape_key] = image.shape d[key] = image return d # Transforms to support Inference for Deepgrow models class AddGuidanceFromPointsd(Transform): """ Add guidance based on user clicks. We assume the input is loaded by LoadImaged and has the shape of (H, W, D) originally. Clicks always specify the coordinates in (H, W, D) If depth_first is True: Input is now of shape (D, H, W), will return guidance that specifies the coordinates in (D, H, W) else: Input is now of shape (H, W, D), will return guidance that specifies the coordinates in (H, W, D) Args: ref_image: key to reference image to fetch current and original image details. guidance: output key to store guidance. foreground: key that represents user foreground (+ve) clicks. background: key that represents user background (-ve) clicks. axis: axis that represents slices in 3D volume. (axis to Depth) depth_first: if depth (slices) is positioned at first dimension. dimensions: dimensions based on model used for deepgrow (2D vs 3D). slice_key: key that represents applicable slice to add guidance. meta_key_postfix: use `{ref_image}_{postfix}` to to fetch the meta data according to the key data, default is `meta_dict`, the meta data is a dictionary object. For example, to handle key `image`, read/write affine matrices from the metadata `image_meta_dict` dictionary's `affine` field. """ def __init__( self, ref_image, guidance: str = "guidance", foreground: str = "foreground", background: str = "background", axis: int = 0, depth_first: bool = True, dimensions: int = 2, slice_key: str = "slice", meta_key_postfix: str = "meta_dict", ): self.ref_image = ref_image self.guidance = guidance self.foreground = foreground self.background = background self.axis = axis self.depth_first = depth_first self.dimensions = dimensions self.slice = slice_key self.meta_key_postfix = meta_key_postfix def _apply(self, pos_clicks, neg_clicks, factor, slice_num): pos = neg = [] if self.dimensions == 2: points = list(pos_clicks) points.extend(neg_clicks) points = np.array(points) slices = list(np.unique(points[:, self.axis])) slice_idx = slices[0] if slice_num is None else next(x for x in slices if x == slice_num) if len(pos_clicks): pos_clicks = np.array(pos_clicks) pos = (pos_clicks[np.where(pos_clicks[:, self.axis] == slice_idx)] * factor)[:, 1:].astype(int).tolist() if len(neg_clicks): neg_clicks = np.array(neg_clicks) neg = (neg_clicks[np.where(neg_clicks[:, self.axis] == slice_idx)] * factor)[:, 1:].astype(int).tolist() guidance = [pos, neg, slice_idx] else: if len(pos_clicks): pos = np.multiply(pos_clicks, factor).astype(int).tolist() if len(neg_clicks): neg = np.multiply(neg_clicks, factor).astype(int).tolist() guidance = [pos, neg] return guidance def __call__(self, data): d = dict(data) meta_dict_key = f"{self.ref_image}_{self.meta_key_postfix}" if meta_dict_key not in d: raise RuntimeError(f"Missing meta_dict {meta_dict_key} in data!") if "spatial_shape" not in d[meta_dict_key]: raise RuntimeError('Missing "spatial_shape" in meta_dict!') original_shape = d[meta_dict_key]["spatial_shape"] current_shape = list(d[self.ref_image].shape) if self.depth_first: if self.axis != 0: raise RuntimeError("Depth first means the depth axis should be 0.") # in here we assume the depth dimension was in the last dimension of "original_shape" original_shape = np.roll(original_shape, 1) factor = np.array(current_shape) / original_shape fg_bg_clicks = [] for key in [self.foreground, self.background]: clicks = d[key] clicks = list(np.array(clicks).astype(int)) if self.depth_first: for i in range(len(clicks)): clicks[i] = list(np.roll(clicks[i], 1)) fg_bg_clicks.append(clicks) d[self.guidance] = self._apply(fg_bg_clicks[0], fg_bg_clicks[1], factor, d.get(self.slice)) return d class SpatialCropGuidanced(MapTransform): """ Crop image based on guidance with minimal spatial size. - If the bounding box is smaller than spatial size in all dimensions then this transform will crop the object using box's center and spatial_size. - This transform will set "start_coord_key", "end_coord_key", "original_shape_key" and "cropped_shape_key" in data[{key}_{meta_key_postfix}] Input data is of shape (C, spatial_1, [spatial_2, ...]) Args: keys: keys of the corresponding items to be transformed. guidance: key to the guidance. It is used to generate the bounding box of foreground spatial_size: minimal spatial size of the image patch e.g. [128, 128, 128] to fit in. margin: add margin value to spatial dims of the bounding box, if only 1 value provided, use it for all dims. meta_key_postfix: use `key_{postfix}` to to fetch the meta data according to the key data, default is `meta_dict`, the meta data is a dictionary object. For example, to handle key `image`, read/write affine matrices from the metadata `image_meta_dict` dictionary's `affine` field. start_coord_key: key to record the start coordinate of spatial bounding box for foreground. end_coord_key: key to record the end coordinate of spatial bounding box for foreground. original_shape_key: key to record original shape for foreground. cropped_shape_key: key to record cropped shape for foreground. allow_missing_keys: don't raise exception if key is missing. """ def __init__( self, keys: KeysCollection, guidance: str, spatial_size, margin=20, meta_key_postfix="meta_dict", start_coord_key: str = "foreground_start_coord", end_coord_key: str = "foreground_end_coord", original_shape_key: str = "foreground_original_shape", cropped_shape_key: str = "foreground_cropped_shape", allow_missing_keys: bool = False, ) -> None: super().__init__(keys, allow_missing_keys) self.guidance = guidance self.spatial_size = list(spatial_size) self.margin = margin self.meta_key_postfix = meta_key_postfix self.start_coord_key = start_coord_key self.end_coord_key = end_coord_key self.original_shape_key = original_shape_key self.cropped_shape_key = cropped_shape_key def bounding_box(self, points, img_shape): ndim = len(img_shape) margin = ensure_tuple_rep(self.margin, ndim) for m in margin: if m < 0: raise ValueError("margin value should not be negative number.") box_start = [0] * ndim box_end = [0] * ndim for di in range(ndim): dt = points[..., di] min_d = max(min(dt - margin[di]), 0) max_d = min(img_shape[di], max(dt + margin[di] + 1)) box_start[di], box_end[di] = min_d, max_d return box_start, box_end def __call__(self, data): d: Dict = dict(data) guidance = d[self.guidance] original_spatial_shape = d[self.keys[0]].shape[1:] box_start, box_end = self.bounding_box(np.array(guidance[0] + guidance[1]), original_spatial_shape) center = list(np.mean([box_start, box_end], axis=0).astype(int)) spatial_size = self.spatial_size box_size = list(np.subtract(box_end, box_start).astype(int)) spatial_size = spatial_size[-len(box_size) :] if len(spatial_size) < len(box_size): # If the data is in 3D and spatial_size is specified as 2D [256,256] # Then we will get all slices in such case diff = len(box_size) - len(spatial_size) spatial_size = list(original_spatial_shape[1 : (1 + diff)]) + spatial_size if np.all(np.less(box_size, spatial_size)): if len(center) == 3: # 3D Deepgrow: set center to be middle of the depth dimension (D) center[0] = spatial_size[0] // 2 cropper = SpatialCrop(roi_center=center, roi_size=spatial_size) else: cropper = SpatialCrop(roi_start=box_start, roi_end=box_end) # update bounding box in case it was corrected by the SpatialCrop constructor box_start = np.array([s.start for s in cropper.slices]) box_end = np.array([s.stop for s in cropper.slices]) for key in self.key_iterator(d): if not np.array_equal(d[key].shape[1:], original_spatial_shape): raise RuntimeError("All the image specified in keys should have same spatial shape") meta_key = f"{key}_{self.meta_key_postfix}" d[meta_key][self.start_coord_key] = box_start d[meta_key][self.end_coord_key] = box_end d[meta_key][self.original_shape_key] = d[key].shape image = cropper(d[key]) d[meta_key][self.cropped_shape_key] = image.shape d[key] = image pos_clicks, neg_clicks = guidance[0], guidance[1] pos = np.subtract(pos_clicks, box_start).tolist() if len(pos_clicks) else [] neg = np.subtract(neg_clicks, box_start).tolist() if len(neg_clicks) else [] d[self.guidance] = [pos, neg] return d class ResizeGuidanced(Transform): """ Resize the guidance based on cropped vs resized image. This transform assumes that the images have been cropped and resized. And the shape after cropped is store inside the meta dict of ref image. Args: guidance: key to guidance ref_image: key to reference image to fetch current and original image details meta_key_postfix: use `{ref_image}_{postfix}` to to fetch the meta data according to the key data, default is `meta_dict`, the meta data is a dictionary object. For example, to handle key `image`, read/write affine matrices from the metadata `image_meta_dict` dictionary's `affine` field. cropped_shape_key: key that records cropped shape for foreground. """ def __init__( self, guidance: str, ref_image: str, meta_key_postfix="meta_dict", cropped_shape_key: str = "foreground_cropped_shape", ) -> None: self.guidance = guidance self.ref_image = ref_image self.meta_key_postfix = meta_key_postfix self.cropped_shape_key = cropped_shape_key def __call__(self, data): d = dict(data) guidance = d[self.guidance] meta_dict: Dict = d[f"{self.ref_image}_{self.meta_key_postfix}"] current_shape = d[self.ref_image].shape[1:] cropped_shape = meta_dict[self.cropped_shape_key][1:] factor = np.divide(current_shape, cropped_shape) pos_clicks, neg_clicks = guidance[0], guidance[1] pos = np.multiply(pos_clicks, factor).astype(int).tolist() if len(pos_clicks) else [] neg = np.multiply(neg_clicks, factor).astype(int).tolist() if len(neg_clicks) else [] d[self.guidance] = [pos, neg] return d class RestoreLabeld(MapTransform): """ Restores label based on the ref image. The ref_image is assumed that it went through the following transforms: 1. Fetch2DSliced (If 2D) 2. Spacingd 3. SpatialCropGuidanced 4. Resized And its shape is assumed to be (C, D, H, W) This transform tries to undo these operation so that the result label can be overlapped with original volume. It does the following operation: 1. Undo Resized 2. Undo SpatialCropGuidanced 3. Undo Spacingd 4. Undo Fetch2DSliced The resulting label is of shape (D, H, W) Args: keys: keys of the corresponding items to be transformed. ref_image: reference image to fetch current and original image details slice_only: apply only to an applicable slice, in case of 2D model/prediction mode: {``"constant"``, ``"edge"``, ``"linear_ramp"``, ``"maximum"``, ``"mean"``, ``"median"``, ``"minimum"``, ``"reflect"``, ``"symmetric"``, ``"wrap"``, ``"empty"``} One of the listed string values or a user supplied function for padding. Defaults to ``"constant"``. See also: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html align_corners: Geometrically, we consider the pixels of the input as squares rather than points. See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample It also can be a sequence of bool, each element corresponds to a key in ``keys``. meta_key_postfix: use `{ref_image}_{meta_key_postfix}` to to fetch the meta data according to the key data, default is `meta_dict`, the meta data is a dictionary object. For example, to handle key `image`, read/write affine matrices from the metadata `image_meta_dict` dictionary's `affine` field. start_coord_key: key that records the start coordinate of spatial bounding box for foreground. end_coord_key: key that records the end coordinate of spatial bounding box for foreground. original_shape_key: key that records original shape for foreground. cropped_shape_key: key that records cropped shape for foreground. allow_missing_keys: don't raise exception if key is missing. """ def __init__( self, keys: KeysCollection, ref_image: str, slice_only: bool = False, mode: Union[Sequence[Union[InterpolateMode, str]], InterpolateMode, str] = InterpolateMode.NEAREST, align_corners: Union[Sequence[Optional[bool]], Optional[bool]] = None, meta_key_postfix: str = "meta_dict", start_coord_key: str = "foreground_start_coord", end_coord_key: str = "foreground_end_coord", original_shape_key: str = "foreground_original_shape", cropped_shape_key: str = "foreground_cropped_shape", allow_missing_keys: bool = False, ) -> None: super().__init__(keys, allow_missing_keys) self.ref_image = ref_image self.slice_only = slice_only self.mode = ensure_tuple_rep(mode, len(self.keys)) self.align_corners = ensure_tuple_rep(align_corners, len(self.keys)) self.meta_key_postfix = meta_key_postfix self.start_coord_key = start_coord_key self.end_coord_key = end_coord_key self.original_shape_key = original_shape_key self.cropped_shape_key = cropped_shape_key def __call__(self, data): d = dict(data) meta_dict: Dict = d[f"{self.ref_image}_{self.meta_key_postfix}"] for key, mode, align_corners in self.key_iterator(d, self.mode, self.align_corners): image = d[key] # Undo Resize current_shape = image.shape cropped_shape = meta_dict[self.cropped_shape_key] if np.any(np.not_equal(current_shape, cropped_shape)): resizer = Resize(spatial_size=cropped_shape[1:], mode=mode) image = resizer(image, mode=mode, align_corners=align_corners) # Undo Crop original_shape = meta_dict[self.original_shape_key] result = np.zeros(original_shape, dtype=np.float32) box_start = meta_dict[self.start_coord_key] box_end = meta_dict[self.end_coord_key] spatial_dims = min(len(box_start), len(image.shape[1:])) slices = [slice(None)] + [slice(s, e) for s, e in zip(box_start[:spatial_dims], box_end[:spatial_dims])] slices = tuple(slices) result[slices] = image # Undo Spacing current_size = result.shape[1:] # change spatial_shape from HWD to DHW spatial_shape = list(np.roll(meta_dict["spatial_shape"], 1)) spatial_size = spatial_shape[-len(current_size) :] if np.any(np.not_equal(current_size, spatial_size)): resizer = Resize(spatial_size=spatial_size, mode=mode) result = resizer(result, mode=mode, align_corners=align_corners) # Undo Slicing slice_idx = meta_dict.get("slice_idx") if slice_idx is None or self.slice_only: final_result = result if len(result.shape) <= 3 else result[0] else: slice_idx = meta_dict["slice_idx"][0] final_result = np.zeros(tuple(spatial_shape)) final_result[slice_idx] = result d[key] = final_result meta = d.get(f"{key}_{self.meta_key_postfix}") if meta is None: meta = dict() d[f"{key}_{self.meta_key_postfix}"] = meta meta["slice_idx"] = slice_idx meta["affine"] = meta_dict["original_affine"] return d class Fetch2DSliced(MapTransform): """ Fetch one slice in case of a 3D volume. The volume only contains spatial coordinates. Args: keys: keys of the corresponding items to be transformed. guidance: key that represents guidance. axis: axis that represents slice in 3D volume. meta_key_postfix: use `key_{meta_key_postfix}` to to fetch the meta data according to the key data, default is `meta_dict`, the meta data is a dictionary object. For example, to handle key `image`, read/write affine matrices from the metadata `image_meta_dict` dictionary's `affine` field. allow_missing_keys: don't raise exception if key is missing. """ def __init__( self, keys, guidance="guidance", axis: int = 0, meta_key_postfix: str = "meta_dict", allow_missing_keys: bool = False, ): super().__init__(keys, allow_missing_keys) self.guidance = guidance self.axis = axis self.meta_key_postfix = meta_key_postfix def _apply(self, image, guidance): slice_idx = guidance[2] # (pos, neg, slice_idx) idx = [] for i in range(len(image.shape)): idx.append(slice_idx) if i == self.axis else idx.append(slice(0, image.shape[i])) idx = tuple(idx) return image[idx], idx def __call__(self, data): d = dict(data) guidance = d[self.guidance] if len(guidance) < 3: raise RuntimeError("Guidance does not container slice_idx!") for key in self.key_iterator(d): img_slice, idx = self._apply(d[key], guidance) d[key] = img_slice d[f"{key}_{self.meta_key_postfix}"]["slice_idx"] = idx return d
the-stack_0_14758
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # @Time : 2019/3/13 10:58 # @Author : Money # @Site : # @File : middlewareloginrequired.py # @Software: PyCharm from functools import wraps from django.conf import settings from django.shortcuts import HttpResponseRedirect from django.urls import RegexURLPattern # django2.0以上替换为:from django.urls import URLPattern from . import urls class MiddlewareLoginRequired(object): """ 需要用户登录之后才能访问页面的中间件, 使用session判断用户是否登录 """ _NO_NEED_LOGIN = [] #用来存放不需要做登录认证的view def __init__(self, get_response): self.get_response = get_response def __call__(self, request, *args, **kwargs): response = self.get_response(request) user_hash = request.session.get('_auth_user_hash','') if not user_hash: url = request.path if url in self.exclude_url_path(): return response else: return HttpResponseRedirect(settings.LOGIN_URL + '?next=' + url) return response @staticmethod def no_need_login(func): view_func = func.__module__ + '.' + func.__name__ MiddlewareLoginRequired._NO_NEED_LOGIN.append(view_func) def get_all_urls(self, patterns, pre_fix, result): """ 获取所有的view函数和url的映射关系, :param patterns: urlpatterns :param pre_fix: :param result: 字典,{view函数:url} :return: """ for item in patterns: part = item.regex.pattern.strip("^$") #django2.0以上替换为:part = item.pattern.regex.pattern.strip("^$") if isinstance(item, RegexURLPattern): #django2.0以上替换为:if isinstance(item, URLPattern): # django2.0以上替换为:url_path = item.pattern.regex.pattern.strip("^$").replace('\\', "") url_path = item.regex.pattern.strip("^$").replace('\\', "") view_func = item.callback.__module__ + '.' + item.callback.__name__ if view_func.startswith(('django',)): continue result.setdefault(view_func, pre_fix + url_path) else: self.get_all_urls(item.url_patterns, pre_fix + part, result=result) return result def exclude_url_path(self): view_url_dicts = self.get_all_urls(urls.urlpatterns, pre_fix="/", result={}) url_paths = list([view_url_dicts[view] for view in self._NO_NEED_LOGIN if view in view_url_dicts]) return url_paths def login_excepted(func=None): """ 类似login_required, 使用这个函数装饰的view不需要登录就可以访问, 使用方法:@login_excepted 或者 @login_excepted() :param func: :return: """ def _wrapped(func): MiddlewareLoginRequired.no_need_login(func) @wraps(func) def inner(*args, **kwargs): return func(*args, **kwargs) return inner if not func: return _wrapped return _wrapped(func)
the-stack_0_14759
import re #This function writes to terms.txt file def prepTerms(inFile): termsFile = open("terms.txt", "w+") #Creates terms.txt with w+ (writing and reading) rights with open(inFile, 'r') as file: #Opens inFile (xml file passed as argument) for line in file: #for loop for each line if line.startswith("<mail>"): #Only take lines starting with <mail> if line.split("<subj>")[1].split("</subj>")[0] != "": #checks if <subj> content is non-empty for term in re.split("[^A-Za-z0-9\-_]+", re.sub("&.*?;", " ", line.split("<subj>")[1].split("</subj>")[0])): #splits by all chars except [A-Za-z0-9_-], substitutes all instances of &xxx; with space char, splits by <subj> and </subj> to get contents if len(term) > 2: #only write to file if the term length is greater than 2 termsFile.write("s-%s:%s\n" %(term.lower(), line.split("<row>")[1].split("</row>")[0])) #write the term and row id if line.split("<body>")[1].split("</body>") != "": #checks if <body> content is non-empty for term in re.split("[^A-Za-z0-9\-_]+", re.sub("&.*?;", " ", line.split("<body>")[1].split("</body>")[0])): #splits the same as above for <subj> if len(term) > 2: #only write term length > 2 termsFile.write("b-%s:%s\n" %(term.lower(), line.split("<row>")[1].split("</row>")[0])) #write the term and row id #This functions write to emails.txt file def prepEmails(inFile): emailsFile = open("emails.txt", "w+") #same as above but for emails.txt with open(inFile, 'r') as file: #same as above for line in file: #same as above if line.startswith("<mail>"): #same as above emailsFile.write("from-%s:%s\n" %(line.split("<from>")[1].split("</from>")[0],line.split("<row>")[1].split("</row>")[0])) #write <from> contents into file. No condition since will always have from email if line.split("<to>")[1].split("</to>")[0] != "": #checks if <to> content is non-empty for email in line.split("<to>")[1].split("</to>")[0].split(","): #for loop to print all emails in <to> split by ',' emailsFile.write("to-%s:%s\n" %(email,line.split("<row>")[1].split("</row>")[0])) #writes <to> contents and row id to file if line.split("<cc>")[1].split("</cc>")[0] != "": #checks if <cc> content is non-empty for email in line.split("<cc>")[1].split("</cc>")[0].split(","): #for loop to print all emails in <cc> split by ',' emailsFile.write("cc-%s:%s\n" %(email,line.split("<row>")[1].split("</row>")[0])) #writes <cc> contents and row id to file if line.split("<bcc>")[1].split("</bcc>")[0] != "": #checks if <bcc> content is non-empty for email in line.split("<bcc>")[1].split("</bcc>")[0].split(","): #for loop to print all emails in <bcc> split by ',' emailsFile.write("bcc-%s:%s\n" %(email,line.split("<row>")[1].split("</row>")[0])) #writes <bcc> contents and row id to file def prepDates(inFile): datesFile = open("dates.txt", "w+") #same as above but for dates.txt with open(inFile, 'r') as file: #same as above for line in file: #same as above if line.startswith("<mail>"): #same as above datesFile.write("%s:%s\n" %(line.split("<date>")[1].split("</date>")[0],line.split("<row>")[1].split("</row>")[0])) #writes <date> content and row id def prepRecs(inFile): recsFile = open("recs.txt", "w+") #same as above but for recs.txt with open(inFile, 'r') as file: #same as above for line in file: #same as above if line.startswith("<mail>"): #same as above recsFile.write("%s:%s" %(line.split("<row>")[1].split("</row>")[0], line)) #writes row id and full line
the-stack_0_14760
# -*- coding: utf-8 -*- # File: graph.py """ Graph related callbacks""" import tensorflow as tf import os import numpy as np from six.moves import zip from ..utils import logger from .base import Callback from ..tfutils.common import get_op_tensor_name __all__ = ['RunOp', 'RunUpdateOps', 'ProcessTensors', 'DumpTensors', 'DumpTensor', 'DumpTensorAsImage', 'DumpParamAsImage'] class RunOp(Callback): """ Run an Op. """ _chief_only = False def __init__(self, op, run_before=True, run_as_trigger=True, run_step=False, verbose=False): """ Args: op (tf.Operation or function): an Op, or a function that returns the Op in the graph. The function will be called after the main graph has been created (in the `setup_graph` callback). run_before (bool): run the Op before training run_as_trigger (bool): run the Op on every :meth:`trigger()` call. run_step (bool): run the Op every step (along with training) verbose (bool): print logs when the op is run. Example: The `DQN Example <https://github.com/tensorpack/tensorpack/blob/master/examples/DeepQNetwork/>`_ uses this callback to update target network. """ if not callable(op): self.setup_func = lambda: op # noqa else: self.setup_func = op self.run_before = run_before self.run_as_trigger = run_as_trigger self.run_step = run_step self.verbose = verbose def _setup_graph(self): self._op = self.setup_func() if self.run_step: self._fetch = tf.train.SessionRunArgs(fetches=self._op) def _before_train(self): if self.run_before: self._print() self._op.run() def _trigger(self): if self.run_as_trigger: self._print() self._op.run() def _before_run(self, _): if self.run_step: self._print() return self._fetch def _print(self): if self.verbose: logger.info("Running Op {} ...".format(self._op.name)) class RunUpdateOps(RunOp): """ Run ops from the collection UPDATE_OPS every step. The ops will be hooked to `trainer.hooked_sess` and run along with each `sess.run` call. """ def __init__(self, collection=tf.GraphKeys.UPDATE_OPS): """ Args: collection (str): collection of ops to run. Defaults to ``tf.GraphKeys.UPDATE_OPS`` """ name = 'UPDATE_OPS' if collection == tf.GraphKeys.UPDATE_OPS else collection def f(): ops = tf.get_collection(collection) if ops: logger.info("Applying collection {} of {} ops.".format(name, len(ops))) return tf.group(*ops, name='update_ops') else: return tf.no_op(name='empty_update_ops') super(RunUpdateOps, self).__init__( f, run_before=False, run_as_trigger=False, run_step=True) class ProcessTensors(Callback): """ Fetch extra tensors **along with** each training step, and call some function over the values. It uses `_{before,after}_run` method to inject `tf.train.SessionRunHooks` to the session. You can use it to print tensors, save tensors to file, etc. Example: .. code-block:: python ProcessTensors(['mycost1', 'mycost2'], lambda c1, c2: print(c1, c2, c1 + c2)) """ def __init__(self, names, fn): """ Args: names (list[str]): names of tensors fn: a function taking all requested tensors as input """ assert isinstance(names, (list, tuple)), names self._names = names self._fn = fn def _setup_graph(self): tensors = self.get_tensors_maybe_in_tower(self._names) self._fetch = tf.train.SessionRunArgs(fetches=tensors) def _before_run(self, _): return self._fetch def _after_run(self, _, rv): results = rv.results self._fn(*results) class DumpTensors(ProcessTensors): """ Dump some tensors to a file. Every step this callback fetches tensors and write them to a npz file under ``logger.get_logger_dir``. The dump can be loaded by ``dict(np.load(filename).items())``. """ def __init__(self, names): """ Args: names (list[str]): names of tensors """ assert isinstance(names, (list, tuple)), names self._names = names dir = logger.get_logger_dir() def fn(*args): dic = {} for name, val in zip(self._names, args): dic[name] = val fname = os.path.join( dir, 'DumpTensor-{}.npz'.format(self.global_step)) np.savez(fname, **dic) super(DumpTensors, self).__init__(names, fn) class DumpTensorAsImage(Callback): """ Dump a tensor to image(s) to ``logger.get_logger_dir()`` once triggered. Note that it requires the tensor is directly evaluable, i.e. either inputs are not its dependency (e.g. the weights of the model), or the inputs are feedfree (in which case this callback will take an extra datapoint from the input pipeline). """ def __init__(self, tensor_name, prefix=None, map_func=None, scale=255): """ Args: tensor_name (str): the name of the tensor. prefix (str): the filename prefix for saved images. Defaults to the Op name. map_func: map the value of the tensor to an image or list of images of shape [h, w] or [h, w, c]. If None, will use identity. scale (float): a multiplier on pixel values, applied after map_func. """ op_name, self.tensor_name = get_op_tensor_name(tensor_name) self.func = map_func if prefix is None: self.prefix = op_name else: self.prefix = prefix self.log_dir = logger.get_logger_dir() self.scale = scale def _before_train(self): self._tensor = self.graph.get_tensor_by_name(self.tensor_name) def _trigger(self): val = self.trainer.sess.run(self._tensor) if self.func is not None: val = self.func(val) if isinstance(val, list) or val.ndim == 4: for idx, im in enumerate(val): self._dump_image(im, idx) else: self._dump_image(val) self.trainer.monitors.put_image(self.prefix, val) def _dump_image(self, im, idx=None): assert im.ndim in [2, 3], str(im.ndim) fname = os.path.join( self.log_dir, self.prefix + '-ep{:03d}{}.png'.format( self.epoch_num, '-' + str(idx) if idx else '')) res = im * self.scale res = np.clip(res, 0, 255) cv2.imwrite(fname, res.astype('uint8')) try: import cv2 except ImportError: from ..utils.develop import create_dummy_class DumpTensorAsImage = create_dummy_class('DumpTensorAsImage', 'cv2') # noqa # alias DumpParamAsImage = DumpTensorAsImage DumpTensor = DumpTensors
the-stack_0_14763
# -*- coding: utf-8 -*- import json import shutil import logging from pathlib import Path from tempfile import TemporaryDirectory import numpy as np import rasterio import rasterio.mask from retrying import retry try: import gdal except ModuleNotFoundError as e: try: from osgeo import gdal except ModuleNotFoundError: raise e from ost.helpers import vector as vec from ost.helpers import helpers as h logger = logging.getLogger(__name__) def create_timeseries_mosaic_vrt(list_of_args): ts_dir, product, outfiles = list_of_args gdal.BuildVRT( str(ts_dir.joinpath(f'{product}.Timeseries.vrt')), [str(outfile) for outfile in outfiles], options=gdal.BuildVRTOptions(srcNodata=0, separate=True) ) @retry(stop_max_attempt_number=3, wait_fixed=1) def mosaic(filelist, outfile, config_file, cut_to_aoi=None, harm=None): if outfile.parent.joinpath(f'.{outfile.name[:-4]}.processed').exists(): logger.info(f'{outfile} already exists.') return logger.info(f'Mosaicking file {outfile}.') with open(config_file, 'r') as ard_file: config_dict = json.load(ard_file) temp_dir = config_dict['temp_dir'] aoi = config_dict['aoi'] epsg = config_dict['processing']['single_ARD']['dem']['out_projection'] if not harm: harm = config_dict['processing']['mosaic']['harmonization'] if not cut_to_aoi: cut_to_aoi = config_dict['processing']['mosaic']['cut_to_aoi'] logfile = outfile.parent.joinpath(f'{str(outfile)[:-4]}.errLog') with TemporaryDirectory(prefix=f'{temp_dir}/') as temp: temp = Path(temp) # get datatype from first image in our mosaic filelist with rasterio.open(filelist.split(' ')[0]) as src: dtype = src.meta['dtype'] dtype = 'float' if dtype == 'float32' else dtype if cut_to_aoi: tempfile = temp.joinpath(outfile.name) else: tempfile = outfile harm = 'band' if harm else 'none' cmd = ( f"otbcli_Mosaic -ram 8192 -progress 1 " f"-comp.feather large " f"-harmo.method {harm} " f"-harmo.cost rmse " f"-tmpdir {str(temp)} " f"-interpolator bco" f" -il {filelist} " f" -out {str(tempfile)} {dtype}" ) return_code = h.run_command(cmd, logfile) if return_code != 0: if tempfile.exists(): tempfile.unlink() return if cut_to_aoi: # get aoi in a way rasterio wants it aoi_gdf = vec.wkt_to_gdf(aoi) features = vec.gdf_to_json_geometry(aoi_gdf.to_crs(epsg=epsg)) # import raster and mask with rasterio.open(tempfile) as src: out_image, out_transform = rasterio.mask.mask(src, features, crop=True) out_meta = src.meta.copy() ndv = src.nodata out_image = np.ma.masked_where(out_image == ndv, out_image) out_meta.update({ 'driver': 'GTiff', 'height': out_image.shape[1], 'width': out_image.shape[2], 'transform': out_transform, 'tiled': True, 'blockxsize': 128, 'blockysize': 128 }) with rasterio.open(outfile, 'w', **out_meta) as dest: dest.write(out_image.data) # remove intermediate file tempfile.unlink() # check return_code = h.check_out_tiff(outfile) if return_code != 0: if outfile.exists(): outfile.unlink() else: check_file = outfile.parent.joinpath( f'.{outfile.name[:-4]}.processed' ) with open(str(check_file), 'w') as file: file.write('passed all tests \n') def gd_mosaic(list_of_args): filelist, outfile, config_file = list_of_args mosaic(filelist, outfile, config_file) def _burst_list(track, date, product, subswath, config_dict): from shapely.wkt import loads import geopandas as gpd aoi = loads(config_dict['aoi']) processing_dir = Path(config_dict['processing_dir']) # adjust search pattern in case of coherence search_last = f'*.{product}.tif' if 'coh' in product else f'{product}.tif' # search for all bursts within subswath(s) in time-series list_of_files = list(processing_dir.glob( f'[A,D]{track}_{subswath}*/Timeseries/' f'*.{date}.{search_last}' )) # search for timescans (in case timeseries not found) if not list_of_files: list_of_files = list(processing_dir.glob( f'[A,D]{track}_{subswath}*/Timescan/' f'*.{product}.{date}.tif' )) if not list_of_files: return None # get a list of all extent files to check for real AOI overlap if config_dict['processing']['time-series_ARD']['apply_ls_mask']: list_of_extents = processing_dir.glob( f'*{track}_{subswath}*/*{track}*.valid.json' ) else: list_of_extents = processing_dir.glob( f'*{track}_{subswath}*/*{track}*.min_bounds.json' ) list_of_actual_extents = [] for burst_extent in list_of_extents: burst = gpd.read_file(burst_extent) if any(burst.intersects(aoi)): burst_name = Path(str(burst_extent).split('.')[-3]).name list_of_actual_extents.append(burst_name) # filter the bursts for real AOI overlap list_of_files = [ file for file in list_of_files for pattern in list_of_actual_extents if pattern in str(file) ] # and join them into a otb readable list list_of_files = ' '.join([str(file) for file in list_of_files]) return list_of_files def mosaic_slc_acquisition(track, date, product, outfile, config_file): # ------------------------------------- # 1 load project config with open(config_file, 'r') as ard_file: config_dict = json.load(ard_file) temp_dir = Path(config_dict['temp_dir']) # create a list of bursts that actually overlap theAOI list_of_iw12 = _burst_list(track, date, product, 'IW[1,2]', config_dict) list_of_iw3 = _burst_list(track, date, product, 'IW3', config_dict) if list_of_iw12: logger.info( f'Pre-mosaicking {product} acquisition\'s IW1 and IW2 subswaths ' f'from {track} taken at {date}.' ) temp_iw12 = temp_dir.joinpath(f'{date}_{track}_{product}_IW1_2.tif') mosaic(list_of_iw12, temp_iw12, config_file, harm=False) if list_of_iw3: logger.info( f'Pre-mosaicking {product} acquisition\'s IW3 subswath ' f'from {track} taken at {date}.' ) temp_iw3 = temp_dir.joinpath(f'{date}_{track}_{product}_IW3.tif') mosaic(list_of_iw3, temp_iw3, config_file, harm=False) if list_of_iw12 and list_of_iw3: mosaic( ' '.join([str(temp_iw12), str(temp_iw3)]), outfile, config_file, False, harm=True ) temp_iw12.unlink() temp_iw3.unlink() elif list_of_iw12 and not list_of_iw3: shutil.move(temp_iw12, outfile) elif not list_of_iw12 and list_of_iw3: shutil.move(temp_iw3, outfile) else: return def gd_mosaic_slc_acquisition(list_of_args): track, date, product, outfile, config_file = list_of_args mosaic_slc_acquisition(track, date, product, outfile, config_file)
the-stack_0_14766
from discord import Game from aiohttp import ClientSession from discord.ext import commands, tasks # ----------------------------------------------------- #-------------------- START CONFIG -------------------- # ----------------------------------------------------- discordBotToken = "" #type: str battleMetricsServerID = None #type: int # ----------------------------------------------------- #--------------------- END CONFIG --------------------- # ----------------------------------------------------- client = commands.Bot(command_prefix="-",help_command=None) @client.event async def on_command_error(ctx, error): if isinstance(error, commands.errors.CommandNotFound): pass @client.event async def on_ready(): print(f"Bot successfully started\n") @tasks.loop(seconds=60) async def change_status(): await client.wait_until_ready() serverData = await makeWebRequest(f"https://api.battlemetrics.com/servers/{battleMetricsServerID}") if serverData == None: return serverPlayers = serverData['data']['attributes']['players'] serverMaxPlayers = serverData['data']['attributes']['maxPlayers'] serverQueue = serverData['data']['attributes']['details']['rust_queued_players'] if serverQueue > 0: await client.change_presence(activity=Game(f"{serverPlayers}/{serverMaxPlayers} Queue {serverQueue}")) else: await client.change_presence(activity=Game(f"{serverPlayers}/{serverMaxPlayers}")) async def makeWebRequest(URL): async with ClientSession() as session: async with session.get(URL) as preJSData: if preJSData.status == 200: return await preJSData.json() else: print(f"BattleMetrics Error [Code {preJSData.status}]") change_status.start() client.run(discordBotToken)
the-stack_0_14768
"""Definitions of common enumerations to be used together with ``Enum`` property. """ from __future__ import absolute_import from six import string_types from . import colors, icons, palettes class Enumeration(object): pass def enumeration(*values): if not (values and all(isinstance(value, string_types) and value for value in values)): raise ValueError("expected a non-empty sequence of strings, got %s" % values) if len(values) != len(set(values)): raise ValueError("enumeration items must be unique, got %s" % values) attrs = dict([ (value, value) for value in values ]) attrs.update({ "__slots__": [], "_values": list(values), "_default": values[0], }) return type("Enumeration", (Enumeration,), attrs)() LineJoin = enumeration("miter", "round", "bevel") LineDash = enumeration("solid", "dashed", "dotted", "dotdash", "dashdot") LineCap = enumeration("butt", "round", "square") FontStyle = enumeration("normal", "italic", "bold") TextAlign = enumeration("left", "right", "center") TextBaseline = enumeration("top", "middle", "bottom", "alphabetic", "hanging") Direction = enumeration("clock", "anticlock") Units = enumeration("screen", "data") AngleUnits = enumeration("deg", "rad") DatetimeUnits = enumeration("microseconds", "milliseconds", "seconds", "minsec", "minutes", "hourmin", "hours", "days", "months", "years") Dimension = enumeration("width", "height", "x", "y") Anchor = enumeration("top_left", "top_center", "top_right", "right_center", "bottom_right", "bottom_center", "bottom_left", "left_center", "center") Location = enumeration("above", "below", "left", "right") Orientation = enumeration("top_right", "top_left", "bottom_left", "bottom_right") DashPattern = enumeration("solid", "dashed", "dotted", "dotdash", "dashdot") ButtonType = enumeration("default", "primary", "success", "warning", "danger", "link") NamedColor = enumeration(*colors.__colors__) NamedIcon = enumeration(*icons.__icons__) Palette = enumeration(*palettes.__palettes__) MapType = enumeration("satellite", "roadmap", "terrain", "hybrid") DateFormat = enumeration("ATOM", "W3C", "RFC-3339", "ISO-8601", "COOKIE", "RFC-822", "RFC-850", "RFC-1036", "RFC-1123", "RFC-2822", "RSS", "TICKS", "TIMESTAMP") RoundingFunction = enumeration("round", "nearest", "floor", "rounddown", "ceil", "roundup") NumeralLanguage = enumeration("be-nl", "chs", "cs", "da-dk", "de-ch", "de", "en", "en-gb", "es-ES", "es", "et", "fi", "fr-CA", "fr-ch", "fr", "hu", "it", "ja", "nl-nl", "pl", "pt-br", "pt-pt", "ru", "ru-UA", "sk", "th", "tr", "uk-UA")
the-stack_0_14770
# Copyright 2018 The Cirq Developers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Tuple import cirq from cirq import Extensions, ops from cirq import abc from cirq.ops import gate_features class QCircuitDiagrammable(metaclass=abc.ABCMeta): @abc.abstractmethod def qcircuit_diagram_info(self, args: ops.TextDiagramInfoArgs ) -> ops.TextDiagramInfo: pass def _escape_text_for_latex(text): escaped = (text .replace('\\', '\\textbackslash{}') .replace('^', '\\textasciicircum{}') .replace('~', '\\textasciitilde{}') .replace('_', '\\_') .replace('{', '\\{') .replace('}', '\\}') .replace('$', '\\$') .replace('%', '\\%') .replace('&', '\\&') .replace('#', '\\#')) return '\\text{' + escaped + '}' class _HardcodedQCircuitSymbolsGate(QCircuitDiagrammable): def __init__(self, *symbols: str) -> None: self.symbols = symbols def qcircuit_diagram_info(self, args: ops.TextDiagramInfoArgs ) -> ops.TextDiagramInfo: return ops.TextDiagramInfo(self.symbols) def _get_multigate_parameters(gate: ops.TextDiagrammable, args: ops.TextDiagramInfoArgs ) -> Optional[Tuple[int, int]]: if not isinstance(gate, gate_features.InterchangeableQubitsGate): return None if args.qubit_map is None or args.known_qubits is None: return None indices = [args.qubit_map[q] for q in args.known_qubits] min_index = min(indices) n_qubits = len(args.known_qubits) if sorted(indices) != list(range(min_index, min_index + n_qubits)): return None return min_index, n_qubits class _TextToQCircuitDiagrammable(QCircuitDiagrammable): def __init__(self, sub: ops.TextDiagrammable) -> None: self.sub = sub def qcircuit_diagram_info(self, args: ops.TextDiagramInfoArgs ) -> ops.TextDiagramInfo: info = self.sub.text_diagram_info(args) multigate_parameters = _get_multigate_parameters(self.sub, args) if multigate_parameters is not None: min_index, n_qubits = multigate_parameters name = _escape_text_for_latex(str(self.sub).rsplit('**', 1)[0]) if info.exponent != 1: name += '^{' + str(info.exponent) + '}' box = '\multigate{' + str(n_qubits - 1) + '}{' + name + '}' ghost = '\ghost{' + name + '}' assert args.qubit_map is not None assert args.known_qubits is not None symbols = tuple(box if (args.qubit_map[q] == min_index) else ghost for q in args.known_qubits) return ops.TextDiagramInfo(symbols, exponent=info.exponent, connected=False) s = [_escape_text_for_latex(e) for e in info.wire_symbols] if info.exponent != 1: s[0] += '^{' + str(info.exponent) + '}' return ops.TextDiagramInfo(tuple('\\gate{' + e + '}' for e in s)) class _FallbackQCircuitGate(QCircuitDiagrammable): def __init__(self, sub: ops.Gate) -> None: self.sub = sub def qcircuit_diagram_info(self, args: ops.TextDiagramInfoArgs ) -> ops.TextDiagramInfo: name = str(self.sub) qubit_count = ((len(args.known_qubits) if (args.known_qubits is not None) else 1) if args.known_qubit_count is None else args.known_qubit_count) symbols = tuple(_escape_text_for_latex('{}:{}'.format(name, i)) for i in range(qubit_count)) return ops.TextDiagramInfo(symbols) fallback_qcircuit_extensions = Extensions() fallback_qcircuit_extensions.add_cast( QCircuitDiagrammable, ops.TextDiagrammable, _TextToQCircuitDiagrammable) fallback_qcircuit_extensions.add_recursive_cast( QCircuitDiagrammable, ops.GateOperation, lambda ext, op: ext.try_cast(QCircuitDiagrammable, op.gate)) fallback_qcircuit_extensions.add_cast( QCircuitDiagrammable, ops.RotXGate, lambda gate: _HardcodedQCircuitSymbolsGate('\\targ') if gate.half_turns == 1 else None) fallback_qcircuit_extensions.add_cast( QCircuitDiagrammable, ops.MeasurementGate, lambda gate: _HardcodedQCircuitSymbolsGate('\\meter')) fallback_qcircuit_extensions.add_cast( QCircuitDiagrammable, cirq.google.ExpWGate, lambda gate: _HardcodedQCircuitSymbolsGate('\\targ') if gate.half_turns == 1 and gate.axis_half_turns == 0 else None) fallback_qcircuit_extensions.add_cast( QCircuitDiagrammable, ops.Rot11Gate, lambda gate: _HardcodedQCircuitSymbolsGate('\\control', '\\control') if gate.half_turns == 1 else None) fallback_qcircuit_extensions.add_cast( QCircuitDiagrammable, ops.CNotGate, lambda gate: _HardcodedQCircuitSymbolsGate('\\control', '\\targ')) fallback_qcircuit_extensions.add_cast( QCircuitDiagrammable, ops.Gate, _FallbackQCircuitGate)
the-stack_0_14772
import numpy as np import time from deprecated import deprecated from sklearn.ensemble import GradientBoostingClassifier from sklearn import datasets from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error from sklearn import ensemble from scipy.special import expit, logsumexp from CartTree_regression_xrh import * from sklearn.metrics import accuracy_score from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score from sklearn.metrics import precision_recall_curve import matplotlib.pyplot as plt from sklearn.metrics import roc_curve class GBDT_Regressor: """ 适用于 回归问题 的 梯度提升树 基分类器为 CART 回归树 Author: xrh Date: 2021-04-04 ref: https://blog.csdn.net/zpalyq110/article/details/79527653 test0: 回归 任务 数据集:boston房价 数据集 参数: error_rate_threshold=0.01, max_iter=100, max_depth=3,learning_rate=0.1 训练集数量:455 测试集数量:51 测试集的 MSE: 7.610308909461337 模型训练时长:160s """ def __init__(self, square_loss_threshold=0.05, max_iter=10, max_depth=3): # 训练中止条件 square_loss < self.square_loss_threshold ( 若当前得到的基分类器的组合 平方损失 小于阈值, 则停止训练) self.square_loss_threshold = square_loss_threshold # 最大迭代次数 self.max_iter = max_iter self.max_depth = max_depth self.G = [] # 弱分类器 集合 def fit(self, X, y, learning_rate): """ 对训练数据进行学习 """ f = 0 # 基分类器 的加权和 y_predict = np.mean(y) # y_predict =0 self.G.append(y_predict) f += y_predict feature_value_set = RegresionTree.get_feature_value_set(X) # 可供选择的特征集合 , 包括 (特征, 切分值) for m in range(self.max_iter): # 进行 第 m 轮迭代 r = y - f # 残差 RT = RegresionTree(threshold=0.01, max_depth=self.max_depth,print_log=False) # RT=DecisionTreeRegressor(max_depth=self.max_depth) # sklearn 的 回归树 RT.fit(X, r, feature_value_set=feature_value_set) y_predict = RT.predict(X) self.G.append((learning_rate, RT)) # 存储 基分类器 # 当前 所有弱分类器加权 得到的 最终分类器 的 分类错误率 f += learning_rate * y_predict square_loss = np.average(np.square(f - y)) # 平方误差损失 print('round:{}, square_loss:{}'.format(m, square_loss)) print('======================') if square_loss < self.square_loss_threshold: # 错误率 已经小于 阈值, 则停止训练 break def predict(self, X): """ 对新数据进行预测 """ f = 0 # 最终分类器 f += self.G[0] # 第一个 存储的是 初始化情况 for alpha, RT in self.G[1:]: y_predict = RT.predict(X) f += alpha * y_predict return f def score(self, X, y): """对训练效果进行评价""" f = self.predict(X) square_loss = np.average(np.square(f - y)) # 平方误差损失 return square_loss class GBDT_2Classifier: """ 适用于 二分类 问题 的 梯度提升树 基分类器为 CART 回归树 Author: xrh Date: 2021-04-10 ref: https://zhuanlan.zhihu.com/p/89549390 test1: 二分类任务 数据集:Mnist 参数: error_rate_threshold=0.01, max_iter=30, max_depth=3,learning_rate=0.2 训练集数量:60000 测试集数量:10000 正确率: 0.9891 模型训练时长:205.7052161693573 """ def __init__(self, error_rate_threshold=0.05, max_iter=10, max_depth=1): """ :param error_rate_threshold: 训练中止条件, 若当前得到的基分类器的组合 的错误率 小于阈值, 则停止训练 :param max_iter: 最大迭代次数 :param max_depth: CART 回归树 的最大深度 """ # 训练中止条件 error_rate < self.error_rate_threshold ( 若当前得到的基分类器的组合 的错误率 小于阈值, 则停止训练) self.error_rate_threshold = error_rate_threshold # 最大迭代次数 self.max_iter = max_iter # CART 回归树 的最大深度 self.max_depth = max_depth self.G = [] # 弱分类器 集合 def sigmoid( self , X ): """ sigmoid 激活函数 :param X: :return: """ return 1 / (1 + np.exp(-X)) def fit(self, X, y, learning_rate): """ 用 训练数据 拟合模型 :param X: 特征数据 , shape=(N_sample, N_feature) :param y: 标签数据 , shape=(N_sample,) :param learning_rate: 学习率 :return: """ N = np.shape(X)[0] # 样本的个数 f = 0 # 基分类器 的加权和 P_1 = len(y[y == 1]) / len(y) y_predict = np.log(P_1 / (1 - P_1)) self.G.append(y_predict) f += y_predict feature_value_set = RegresionTree.get_feature_value_set(X) # 可供选择的特征集合 , 包括 (特征, 切分值) for m in range(self.max_iter): # 进行 第 m 轮迭代 r = y - self.sigmoid(f) # 残差 RT = RegresionTree_GBDT(min_square_loss=0.1, max_depth=self.max_depth,print_log=False) RT.fit(X, r, y, feature_value_set=feature_value_set) y_predict = RT.predict(X) self.G.append((learning_rate, RT)) # 存储 基分类器 f += learning_rate * y_predict # 计算 当前 所有弱分类器加权 得到的 最终分类器 的 分类错误率 G = self.sigmoid(f) #TODO: 负例 设置为 -1 会导致 在训练集的 训练误差率无法下降 \ # 原因: 二分类时 ,默认 y = {0,1}, 若要 改为 y={-1,1} 则 损失函数 要使用另外的形式 G[G >= 0.5] = 1 # 概率 大于 0.5 被标记为 正例 G[G < 0.5] = 0 # 概率 小于 0.5 被标记为 负例 err_arr = np.ones(N, dtype=int) err_arr[G == y] = 0 err_rate = np.mean(err_arr) print('round:{}, err_rate:{}'.format(m, err_rate)) print('======================') if err_rate < self.error_rate_threshold: # 错误率 已经小于 阈值, 则停止训练 break def predict(self, X): """ 对 测试 数据进行预测, 返回预测的标签 :param X: 特征数据 , shape=(N_sample, N_feature) :return: """ f = 0 # 最终分类器 f += self.G[0] # 第一个 存储的是 初始化情况 for alpha, RT in self.G[1:]: y_predict = RT.predict(X) f += alpha * y_predict # print('f:',f) G = self.sigmoid(f) # print('G:',G) G[G >= 0.5] = 1 # 概率 大于 0.5 被标记为 正例 G[G < 0.5] = 0 # 概率 小于 0.5 被标记为 负例 return G def predict_proba(self, X): """ 对 测试 数据进行预测, 返回预测的 概率值 :param X: 特征数据 , shape=(N_sample, N_feature) :return: """ f = 0 # 最终分类器 f += self.G[0] # 第一个 存储的是 初始化情况 for alpha, RT in self.G[1:]: y_predict = RT.predict(X) f += alpha * y_predict # print('f:',f) G = self.sigmoid(f) return G def score(self, X, y): """ 使用 测试数据集 对模型进行评价, 返回正确率 :param X: 特征数据 , shape=(N_sample, N_feature) :param y: 标签数据 , shape=(N_sample,) :return: 正确率 accuracy """ N = np.shape(X)[0] # 样本的个数 G = self.predict(X) err_arr = np.ones(N, dtype=int) err_arr[G == y] = 0 err_rate = np.mean(err_arr) accuracy = 1 - err_rate return accuracy class GBDT_MultiClassifier: """ 适用于 二分类 问题 的 梯度提升树 基分类器为 CART 回归树 Author: xrh Date: 2021-04-18 ref: https://zhuanlan.zhihu.com/p/91652813 test1: 多分类任务 数据集:Mnist 参数: error_rate_threshold=0.01, max_iter=20, max_depth=3 , learning_rate=0.5 训练集数量:60000 测试集数量:10000 正确率: 0.915 模型训练时长:1542s """ def __init__(self, error_rate_threshold=0.05, max_iter=10, max_depth=1): """ :param error_rate_threshold: 训练中止条件, 若当前得到的基分类器的组合 的错误率 小于阈值, 则停止训练 :param max_iter: 最大迭代次数 :param max_depth: CART 回归树 的最大深度 """ # 训练中止条件 error_rate < self.error_rate_threshold ( 若当前得到的基分类器的组合 的错误率 小于阈值, 则停止训练) self.error_rate_threshold = error_rate_threshold # 最大迭代次数 self.max_iter = max_iter # CART 回归树 的最大深度 self.max_depth = max_depth self.G = [] # 弱分类器 集合 def sigmoid( self , X ): """ sigmoid 激活函数 :param X: :return: """ return 1 / (1 + np.exp(-X)) @deprecated(version='1.0', reason="You should use another function") def softmax_v1_0(self,X): """ softmax处理,将结果转化为概率 :param X: :return: """ #TODO: 导致 上溢出 和 下溢出 问题 return np.exp(X) / np.sum( np.exp(X) , axis=0 ) # softmax处理,将结果转化为概率 @deprecated(version='1.1', reason="You should use another function") def softmax_v1_1(self,X): """ softmax处理,将结果转化为概率 解决了 softmax的 上溢出 和 下溢出的问题 ref: https://www.cnblogs.com/guoyaohua/p/8900683.html :param X: shape (K,N) :return: shape (N,) """ X_max= np.max( X, axis=0) X= X-X_max return np.exp(X) / np.sum( np.exp(X) , axis=0 ) # softmax处理,将结果转化为概率 def softmax(self,X): """ softmax处理,将结果转化为概率 解决了 softmax的 溢出问题 np.nan_to_num : 使用0代替数组x中的nan元素,使用有限的数字代替inf元素 ref: sklearn 源码 MultinomialDeviance -> def negative_gradient :param X: shape (K,N) :return: shape (N,) """ return np.nan_to_num( np.exp(X - logsumexp(X, axis=0)) ) # softmax处理,将结果转化为概率 def fit(self, X, y, learning_rate): """ 用 训练数据 拟合模型 :param X: 特征数据 , shape=(N_sample, N_feature) :param y: 标签数据 , shape=(N_sample,) :param learning_rate: 学习率 :return: """ N = np.shape(X)[0] # 样本的个数 self.K = len({ele for ele in y}) # y 中有多少种不同的标签, K分类 print('according to the training dataset : K={} classification task'.format(self.K)) F_0 = np.zeros( (self.K ),dtype=float) # shape : (K,) for k in range(self.K): # 遍历 所有的 类别 F_0[k] = len(y[y == k]) / len(y) self.G.append(F_0) F = np.transpose([F_0] * N) # 对 F_0 进行复制, shape : (K, N) feature_value_set = RegresionTree.get_feature_value_set(X) # 可供选择的特征集合 , 包括 (特征, 切分值) y_one_hot = (y == np.array(range(self.K)).reshape(-1, 1)).astype( np.int8) # 将 预测向量 扩展为 one-hot , shape: (K,N) for m in range(1,self.max_iter): # 进行 第 m 轮迭代 p = self.softmax( F ) # shape: (K,N) DT_list=[] for k in range(self.K): # 依次训练 K 个 二分类器 print( '======= train No.{} 2Classifier ======='.format(k) ) r = y_one_hot[k] - p[k] # 残差 shape:(N,) # 训练 用于 2分类的 回归树 DT = RegresionTree_GBDT(min_square_loss=0.1, max_depth=self.max_depth,print_log=True) DT.fit(X, r, y_one_hot[k], feature_value_set=feature_value_set) y_predict = (self.K / (self.K-1)) * ( DT.predict(X) ) # shape:(N,) DT_list.append(DT) F[k] += learning_rate * y_predict # F[k] shape:(N,) # print('======= end =======') self.G.append( (learning_rate, DT_list) ) # 存储 基分类器 # 计算 当前 所有弱分类器加权 得到的 最终分类器 的 分类错误率 G = self.softmax( F ) # F shape: (K,N) G_label = np.argmax( G, axis=0 ) # 取 概率最大的 作为 预测的标签 err_arr = np.ones( N, dtype=int ) err_arr[G_label == y] = 0 err_rate = np.mean(err_arr) # 计算训练误差 print('round:{}, err_rate:{}'.format(m, err_rate)) print('======================') if err_rate < self.error_rate_threshold: # 错误率 已经小于 阈值, 则停止训练 break def predict(self, X): """ 对 测试 数据进行预测, 返回预测的标签 :param X: 特征数据 , shape=(N_sample, N_feature) :return: """ N = np.shape(X)[0] # 样本的个数 F_0 = self.G[0] # G中 第一个 存储的是 初始化情况 F = np.transpose([F_0] * N) # shape : (K, N) for alpha, DT_list in self.G[1:]: for k in range(self.K): DT = DT_list[k] y_predict = (self.K / (self.K - 1)) * (DT.predict(X)) # shape:(N,) F[k] += alpha * y_predict # F[k] shape:(N,) G = self.softmax(F) G_label = np.argmax(G, axis=0) return G_label def predict_proba(self, X): """ 对 测试 数据进行预测, 返回预测的 概率值 :param X: 特征数据 , shape=(N_sample, N_feature) :return: """ F = self.G[0] # 第一个 存储的是 初始化情况 for alpha, DT_list in self.G[1:]: for k in range(self.K): DT = DT_list[k] y_predict = (self.K / (self.K - 1)) * (DT.predict(X)) # shape:(N,) DT_list.append(DT) F[k] += alpha * y_predict # F[k] shape:(N,) G = self.softmax(F) return G def score(self, X, y): """ 使用 测试数据集 对模型进行评价, 返回正确率 :param X: 特征数据 , shape=(N_sample, N_feature) :param y: 标签数据 , shape=(N_sample,) :return: 正确率 accuracy """ N = np.shape(X)[0] # 样本的个数 G = self.predict(X) err_arr = np.ones(N, dtype=int) err_arr[G == y] = 0 err_rate = np.mean(err_arr) accuracy = 1 - err_rate return accuracy class Test: def test_tiny_regress_dataset(self): """ 利用 https://blog.csdn.net/zpalyq110/article/details/79527653 中的数据集 测试 GBDT 回归 :return: """ # 获取训练集 dataset = np.array( [[5, 20, 1.1], [7, 30, 1.3], [21, 70, 1.7], [30, 60, 1.8], ]) columns = ['id', 'age', 'weight', 'label'] X = dataset[:, 0:2] y = dataset[:, 2] # 开始时间 start = time.time() # 创建决策树 print('start create model') clf = GBDT_Regressor(max_iter=5, max_depth=3) clf.fit(X, y, learning_rate=0.1) print(' model complete ') # 结束时间 end = time.time() print('time span:', end - start) # 测试数据集 X_test = np.array([ [25, 65] ]) y_predict = clf.predict(X_test) print('res: ', y_predict) def test_regress_dataset(self): """ 利用 boston房价 数据集 测试 GBDT 回归 :return: """ # 加载sklearn自带的波士顿房价数据集 dataset = load_boston() # 提取特征数据和目标数据 X = dataset.data y = dataset.target # 将数据集以9:1的比例随机分为训练集和测试集,为了重现随机分配设置随机种子,即random_state参数 X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.9, test_size=0.1, random_state=188) # 实例化估计器对象 params = {'n_estimators': 100, 'max_depth': 3, 'min_samples_split': 2, 'learning_rate': 0.1, 'loss': 'ls'} gbr = ensemble.GradientBoostingRegressor(**params) # 估计器拟合训练数据 gbr.fit(X_train, y_train) # 训练完的估计器对测试数据进行预测 y_pred = gbr.predict(X_test) # 输出特征重要性列表 # print(gbr.feature_importances_) start = time.time() print('start create model') clf = GBDT_Regressor(max_iter=100, max_depth=3) clf.fit(X_train, y_train, learning_rate=0.1) print(' model complete ') # 结束时间 end = time.time() print('time span:', end - start) y_pred_test = clf.predict(X_test) print('by sklearn , the squared_error:', mean_squared_error(y_test, y_pred)) # the squared_error: 8.46788133276128 print('by xrh , the squared_error:', mean_squared_error(y_test, y_pred_test)) # def test_tiny_2classification_dataset(self): """ 利用 https://blog.csdn.net/zpalyq110/article/details/79527653 中的数据集 测试 GBDT 回归 :return: """ dataset = np.array( [[5, 20, 0], [7, 30, 0], [21, 70, 1], [30, 60, 1], ]) columns = ['age', 'weight', 'label'] X = dataset[:, 0:2] y = dataset[:, 2] clf = GBDT_2Classifier(error_rate_threshold=0.0, max_iter=5, max_depth=3) clf.fit(X, y, learning_rate=0.1) X_test = np.array( [[25, 65]]) print('y predict:', clf.predict(X_test)) def loadData_2classification(self, fileName, n=1000): ''' 加载文件 将 数据集 的标签 转换为 二分类的标签 :param fileName:要加载的文件路径 :param n: 返回的数据集的规模 :return: 数据集和标签集 ''' # 存放数据及标记 dataArr = [] labelArr = [] # 读取文件 fr = open(fileName) cnt = 0 # 计数器 # 遍历文件中的每一行 for line in fr.readlines(): if cnt == n: break # 获取当前行,并按“,”切割成字段放入列表中 # strip:去掉每行字符串首尾指定的字符(默认空格或换行符) # split:按照指定的字符将字符串切割成每个字段,返回列表形式 curLine = line.strip().split(',') # 将每行中除标记外的数据放入数据集中(curLine[0]为标记信息) # 在放入的同时将原先字符串形式的数据转换为整型 # 此外将数据进行了二值化处理,大于128的转换成1,小于的转换成0,方便后续计算 dataArr.append([int(int(num) > 128) for num in curLine[1:]]) # 将标记信息放入标记集中 # 转换成二分类任务 # 标签0设置为1,反之为0 # 显然这会导致 正负 样本的 分布不均衡, 1 的样本很少(10%), 而0 的很多 if int(curLine[0]) == 0: labelArr.append(1) else: labelArr.append(0) # if int(curLine[0]) <= 5: # labelArr.append(1) # else: # labelArr.append(0) cnt += 1 fr.close() # 返回数据集和标记 return dataArr, labelArr def test_Mnist_dataset_2classification(self, n_train, n_test): """ 将 Mnist (手写数字) 数据集 转变为 二分类 数据集 测试 GBDT, 并对 模型效果做出评估 :param n_train: 使用训练数据集的规模 :param n_test: 使用测试数据集的规模 :return: """ # 获取训练集 trainDataList, trainLabelList = self.loadData_2classification('../Mnist/mnist_train.csv', n=n_train) print('train data, row num:{} , column num:{} '.format(len(trainDataList), len(trainDataList[0]))) trainDataArr = np.array(trainDataList) trainLabelArr = np.array(trainLabelList) # 开始时间 print('start training model....') start = time.time() ''' sklearn GradientBoostingClassifier 调参: loss:损失函数。有deviance和exponential两种。deviance是采用对数似然,exponential是指数损失,后者相当于AdaBoost。 n_estimators:最大弱学习器个数,默认是100,调参时要注意过拟合或欠拟合,一般和learning_rate一起考虑。 learning_rate:步长,即每个弱学习器的权重缩减系数,默认为0.1,取值范围0-1,当取值为1时,相当于权重不缩减。较小的learning_rate相当于更多的迭代次数。 subsample:子采样,默认为1,取值范围(0,1],当取值为1时,相当于没有采样。小于1时,即进行采样,按比例采样得到的样本去构建弱学习器。这样做可以防止过拟合,但是值不能太低,会造成高方差。 init:初始化弱学习器。不使用的话就是第一轮迭代构建的弱学习器.如果没有先验的话就可以不用管 由于GBDT使用CART回归决策树。以下参数用于调优弱学习器,主要都是为了防止过拟合 max_feature:树分裂时考虑的最大特征数,默认为None,也就是考虑所有特征。可以取值有:log2,auto,sqrt max_depth:CART最大深度,默认为None min_sample_split:划分节点时需要保留的样本数。当某节点的样本数小于某个值时,就当做叶子节点,不允许再分裂。默认是2 min_sample_leaf:叶子节点最少样本数。如果某个叶子节点数量少于某个值,会同它的兄弟节点一起被剪枝。默认是1 min_weight_fraction_leaf:叶子节点最小的样本权重和。如果小于某个值,会同它的兄弟节点一起被剪枝。一般用于权重变化的样本。默认是0 min_leaf_nodes:最大叶子节点数 ''' """ sklearn 性能指标 参数 learning_rate=0.1, n_estimators=50 , max_depth=3 train data, row num:6000 , column num:784 training cost time : 9.30972957611084 test data, row num:1000 , column num:784 test dataset accuracy: 0.976 """ clf = GradientBoostingClassifier(loss='deviance', learning_rate=0.1, n_estimators=50 , max_depth=3 ) clf.fit(trainDataArr, trainLabelArr) # clf = GBDT_2Classifier( error_rate_threshold=0.01, max_iter=30, max_depth=3 ) # clf.fit(trainDataArr, trainLabelArr,learning_rate=0.2) # 结束时间 end = time.time() print('training cost time :', end - start) # 获取测试集 testDataList, testLabelList = self.loadData_2classification('../Mnist/mnist_test.csv', n=n_test) print('test data, row num:{} , column num:{} '.format(len(testDataList), len(testDataList[0]))) testDataArr = np.array(testDataList) testLabelArr = np.array(testLabelList) # print('test dataset accuracy: {} '.format(clf.score(testDataArr, testLabelArr))) # 模型评估 y_pred = clf.predict(testDataArr) y_true = testLabelArr # 1.正确率 print('test dataset accuracy: {} '.format(accuracy_score(y_true, y_pred))) print('====================') # 2.精确率 # print(precision_score(y_true, y_pred, average='macro')) # # print(precision_score(y_true, y_pred, average='micro')) # # print(precision_score(y_true, y_pred, average='weighted')) # print('pos-1 precision: ', precision_score(y_true, y_pred, average='binary')) precision_list = precision_score(y_true, y_pred, average=None) print('neg-0 precision:{}, pos-1 precision:{} '.format(precision_list[0], precision_list[1])) print('====================') # 3. 召回率 # print(recall_score(y_true, y_pred, average='macro')) # # print(recall_score(y_true, y_pred, average='micro')) # # print(recall_score(y_true, y_pred, average='weighted')) # print('pos-1 recall: ', recall_score(y_true, y_pred, average='binary')) recall_list = recall_score(y_true, y_pred, average=None) print('neg-0 recall:{}, pos-1 recall:{} '.format(recall_list[0], recall_list[1])) print('====================') # 4. F1-score # print(f1_score(y_true, y_pred, average='macro')) # print(f1_score(y_true, y_pred, average='micro')) # print(f1_score(y_true, y_pred, average='weighted')) print('pos-1 f1_score: ', f1_score(y_true, y_pred, average='binary')) f1_score_list = f1_score(y_true, y_pred, average=None) print('neg-0 f1_score:{}, pos-1 f1_score:{} '.format(f1_score_list[0], f1_score_list[1])) print('====================') # 画出 P-R 曲线 # sklearn 的 GBDT 作为基线 clf2 = GradientBoostingClassifier(loss='deviance', learning_rate=0.1, n_estimators=30 , max_depth=3 ) clf2.fit(trainDataArr, trainLabelArr) y_pred = clf.predict(testDataArr) y_scores = clf.predict_proba(testDataArr) y_true = testLabelArr precision, recall, thresholds = precision_recall_curve(y_true, y_scores) y_scores2 = clf2.predict_proba(testDataArr)[:, 1] # 第 1 列 , 表示为 正例的概率 precision2, recall2, thresholds2 = precision_recall_curve(y_true, y_scores2) # disp = PrecisionRecallDisplay(precision=precision, recall=recall) # disp.plot() plt.plot(recall, precision, label="GDBT_2Classifier(xrh)", color='navy') # plt.plot(recall2, precision2, label="GradientBoostingClassifier(sklearn)", color='turquoise') plt.title(' Precision-Recall curve ') # plt.ylim([0.0, 1.05]) # Y 轴的取值范围 # plt.xlim([0.0, 1.0]) # X 轴的取值范围 plt.xlabel("recall") plt.ylabel("precision") plt.legend(loc=(0, -.38), prop=dict(size=14)) # 图例 plt.show() # ROC 曲线 fpr, tpr, _ = roc_curve(y_true, y_scores) fpr2, tpr2, _ = roc_curve(y_true, y_scores2) plt.plot([0, 1], [0, 1], color='navy', linestyle='--') plt.plot(fpr, tpr, label="GDBT_2Classifier(xrh)", color='darkorange') # plt.plot(fpr2, tpr2, label="GradientBoostingClassifier(sklearn)", color='turquoise') # plt.xlim( [0.0, 1.0] ) # plt.ylim( [0.0, 1.05] ) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.legend(loc=(0, -.38), prop=dict(size=14)) # 图例 plt.show() def test_tiny_multiclassification_dataset(self): """ 使用 https://zhuanlan.zhihu.com/p/91652813 中的数据测试 GBDT-多分类 :return: """ X_train =np.array( [[6], [12], [14], [18], [20], [65], [31], [40], [1], [2], [100], [101], [65], [54], ]) y_train = np.array([[0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [2], [2], [2], [2]]).ravel() clf = GBDT_MultiClassifier( error_rate_threshold=0.01, max_iter=5, max_depth=1 ) clf.fit(X_train, y_train,learning_rate=1) def loadData(self, fileName, n=1000): ''' 加载文件 :param fileName:要加载的文件路径 :param n: 返回的数据集的规模 :return: 数据集和标签集 ''' # 存放数据及标记 dataArr = [] labelArr = [] # 读取文件 fr = open(fileName) cnt = 0 # 计数器 # 遍历文件中的每一行 for line in fr.readlines(): if cnt == n: break # 获取当前行,并按“,”切割成字段放入列表中 # strip:去掉每行字符串首尾指定的字符(默认空格或换行符) # split:按照指定的字符将字符串切割成每个字段,返回列表形式 curLine = line.strip().split(',') # 将每行中除标记外的数据放入数据集中(curLine[0]为标记信息) # 在放入的同时将原先字符串形式的数据转换为整型 # 此外将数据进行了二值化处理,大于128的转换成1,小于的转换成0,方便后续计算 dataArr.append([int(int(num) > 128) for num in curLine[1:]]) # 将标记信息放入标记集中 labelArr.append(int(curLine[0])) cnt += 1 fr.close() # 返回数据集和标记 return dataArr, labelArr def test_Mnist_dataset(self, n_train, n_test): """ Mnist (手写数字) 数据集 测试 AdaBoost 的 多分类 :param n_train: 使用训练数据集的规模 :param n_test: 使用测试数据集的规模 :return: """ # 获取训练集 trainDataList, trainLabelList = self.loadData('../Mnist/mnist_train.csv', n=n_train) print('train data, row num:{} , column num:{} '.format(len(trainDataList), len(trainDataList[0]))) trainDataArr = np.array(trainDataList) trainLabelArr = np.array(trainLabelList) # 开始时间 print('start training model....') start = time.time() """ 调参: loss:损失函数。有deviance和exponential两种。deviance是采用对数似然,exponential是指数损失,后者相当于AdaBoost。 n_estimators:最大弱学习器个数,默认是100,调参时要注意过拟合或欠拟合,一般和learning_rate一起考虑。 criterion: 切分叶子节点时, 选择切分特征考虑的误差函数, 默认是 “ friedman_mse”( Friedman 均方误差),“ mse”(均方误差)和“ mae”(均绝对误差) learning_rate:步长,即每个弱学习器的权重缩减系数,默认为0.1,取值范围0-1,当取值为1时,相当于权重不缩减。较小的learning_rate相当于更多的迭代次数。 subsample:子采样,默认为1,取值范围(0,1],当取值为1时,相当于没有采样。小于1时,即进行采样,按比例采样得到的样本去构建弱学习器。这样做可以防止过拟合,但是值不能太低,会造成高方差。 init:初始化弱学习器。不使用的话就是第一轮迭代构建的弱学习器.如果没有先验的话就可以不用管 由于GBDT使用CART回归决策树。以下参数用于调优弱学习器,主要都是为了防止过拟合 max_feature:树分裂时考虑的最大特征数,默认为None,也就是考虑所有特征。可以取值有:log2,auto,sqrt max_depth:CART最大深度,默认为None min_sample_split:划分节点时需要保留的样本数。当某节点的样本数小于某个值时,就当做叶子节点,不允许再分裂。默认是2 min_sample_leaf:叶子节点最少样本数。如果某个叶子节点数量少于某个值,会同它的兄弟节点一起被剪枝。默认是1 min_weight_fraction_leaf:叶子节点最小的样本权重和。如果小于某个值,会同它的兄弟节点一起被剪枝。一般用于权重变化的样本。默认是0 min_leaf_nodes:最大叶子节点数 ref: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html 测试1: max_depth=3, n_estimators=30, learning_rate=0.8, n_train=60000 n_test=10000 训练时间 : 795.5719292163849 准确率: 0.8883 测试2: max_depth=3, n_estimators=20, learning_rate=0.5, n_train=60000 n_test=10000 训练时间 : 589 s 准确率: 0.9197 """ # clf = GradientBoostingClassifier(loss='deviance',criterion='mse', n_estimators=20, learning_rate=0.5, # max_depth=3) # # clf.fit(trainDataArr, trainLabelArr) clf = GBDT_MultiClassifier( error_rate_threshold=0.01, max_iter=20, max_depth=3 ) clf.fit( trainDataArr, trainLabelArr,learning_rate= 0.5 ) # # 结束时间 end = time.time() print('training cost time :', end - start) # 获取测试集 testDataList, testLabelList = self.loadData('../Mnist/mnist_test.csv', n=n_test) print('test data, row num:{} , column num:{} '.format(len(testDataList), len(testDataList[0]))) testDataArr = np.array(testDataList) testLabelArr = np.array(testLabelList) print('test dataset accuracy: {} '.format(clf.score(testDataArr, testLabelArr))) def test_iris_dataset(self): # 使用iris数据集,其中有三个分类, y的取值为0,1,2 X, y = datasets.load_iris(True) # 包括150行记录 # 将数据集一分为二,训练数据占80%,测试数据占20% X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=188) # clf = GradientBoostingClassifier(loss='deviance',n_estimators=3, learning_rate=0.1, # max_depth=2) # clf.fit(X_train, y_train) clf = GBDT_MultiClassifier( error_rate_threshold=0.01, max_iter=5, max_depth=3 ) clf.fit(X_train, y_train,learning_rate=0.8) print(clf.score(X_test, y_test)) if __name__ == '__main__': test = Test() # test.test_tiny_regress_dataset() # test.test_regress_dataset() # test.test_Mnist_dataset_2classification(60000,10000) # test.test_tiny_2classification_dataset() # test.test_tiny_multiclassification_dataset() # test.test_Mnist_dataset(6000, 1000) # test.test_Mnist_dataset(60000,10000) test.test_iris_dataset()
the-stack_0_14774
"""main.py # Facial Expression Recognition **Author**: Christopher Holzweber **Description**: Bachelorthesis - Prototype for FER **Institution**: Johannes Kepler University Linz - Institute of Computational Perception This file handles starts the FER application by creating an instance of the GUI class and call the run() method. """ from Application.UserInterface import GUI if __name__ == '__main__': app = GUI() app.run()
the-stack_0_14775
""" This script creates a test that fails when garage.tf.algos.NPO performance is too low. """ import gym import pytest import tensorflow as tf from garage.envs import normalize from garage.experiment import LocalRunner from garage.tf.algos import NPO from garage.tf.baselines import GaussianMLPBaseline from garage.tf.envs import TfEnv from garage.tf.policies import GaussianMLPPolicy from tests.fixtures import TfGraphTestCase class TestNPO(TfGraphTestCase): def setup_method(self): super().setup_method() self.env = TfEnv(normalize(gym.make('InvertedDoublePendulum-v2'))) self.policy = GaussianMLPPolicy( env_spec=self.env.spec, hidden_sizes=(64, 64), hidden_nonlinearity=tf.nn.tanh, output_nonlinearity=None, ) self.baseline = GaussianMLPBaseline( env_spec=self.env.spec, regressor_args=dict(hidden_sizes=(32, 32)), ) @pytest.mark.large def test_npo_pendulum(self): """Test NPO with Pendulum environment.""" with LocalRunner(sess=self.sess) as runner: algo = NPO( env_spec=self.env.spec, policy=self.policy, baseline=self.baseline, max_path_length=100, discount=0.99, gae_lambda=0.98, policy_ent_coeff=0.0) runner.setup(algo, self.env) last_avg_ret = runner.train(n_epochs=10, batch_size=2048) assert last_avg_ret > 20 def test_npo_with_unknown_pg_loss(self): """Test NPO with unkown pg loss.""" with pytest.raises(ValueError, match='Invalid pg_loss'): NPO( env_spec=self.env.spec, policy=self.policy, baseline=self.baseline, pg_loss='random pg_loss', ) def test_npo_with_invalid_entropy_method(self): """Test NPO with invalid entropy method.""" with pytest.raises(ValueError, match='Invalid entropy_method'): NPO( env_spec=self.env.spec, policy=self.policy, baseline=self.baseline, entropy_method=None, ) def test_npo_with_max_entropy_and_center_adv(self): """Test NPO with max entropy and center_adv.""" with pytest.raises(ValueError): NPO( env_spec=self.env.spec, policy=self.policy, baseline=self.baseline, entropy_method='max', center_adv=True, ) def test_npo_with_max_entropy_and_no_stop_entropy_gradient(self): """Test NPO with max entropy and false stop_entropy_gradient.""" with pytest.raises(ValueError): NPO( env_spec=self.env.spec, policy=self.policy, baseline=self.baseline, entropy_method='max', stop_entropy_gradient=False, ) def test_npo_with_invalid_no_entropy_configuration(self): """Test NPO with invalid no entropy configuration.""" with pytest.raises(ValueError): NPO( env_spec=self.env.spec, policy=self.policy, baseline=self.baseline, entropy_method='no_entropy', policy_ent_coeff=0.02, ) def teardown_method(self): self.env.close() super().teardown_method()
the-stack_0_14778
# Copyright 2018-2019 Geek Guild Co., Ltd. # ============================================================================== import glob from PIL import Image import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation import os """Gif module. """ def generate_gif_animation(src_file_path_list, dst_file_path, interval=500, repeat_delay=1000): # prepare figure fig = plt.figure() # clearn the figure edge ax = plt.subplot(1, 1, 1) ax.spines['right'].set_color('None') ax.spines['top'].set_color('None') ax.spines['left'].set_color('None') ax.spines['bottom'].set_color('None') ax.tick_params(axis='x', which='both', top='off', bottom='off', labelbottom='off') ax.tick_params(axis='y', which='both', left='off', right='off', labelleft='off') image_list = [] for src_file_path in src_file_path_list: image_file = Image.open(src_file_path) # spline36 image_list.append([plt.imshow(image_file, interpolation="spline36")]) # animation ani = animation.ArtistAnimation(fig, image_list, interval=interval, repeat_delay=repeat_delay) ani.save(dst_file_path) if __name__ == '__main__': # sample src_dir_path = "/var/tensorflow/tsp/sample/animation/" src_file_path_list = glob.glob(src_dir_path + "*.png") generate_gif_animation(src_file_path_list, src_file_path_list)
the-stack_0_14779
from ektelo import util from ektelo.mixins import Marshallable import hashlib class Base(Marshallable): def __init__(self, short_name=None): if short_name is None: self.short_name = 'ektelo_' + self.__class__.__name__ else: self.short_name = short_name @property def hash(self): m = hashlib.sha1() m.update(util.prepare_for_hash(self.short_name)) for key, value in util.prepare_for_hash(self.init_params).items(): m.update(key.encode('utf-8')) m.update(repr(value).encode('utf-8')) return m.hexdigest()
the-stack_0_14780
from .supported import EXCEPTIONS, LICENSES def normalize_license_expression(license_expression): if not license_expression: return license_expression # First normalize to lower case so we can look up licenses/exceptions # and so boolean operators are Python-compatible license_expression = license_expression.lower() # Then pad parentheses so tokenization can be achieved by merely splitting on white space license_expression = license_expression.replace('(', ' ( ').replace(')', ' ) ') # Now we begin parsing tokens = license_expression.split() # Rather than implementing boolean logic we create an expression that Python can parse. # Everything that is not involved with the grammar itself is treated as `False` and the # expression should evaluate as such. python_tokens = [] for token in tokens: if token not in ('or', 'and', 'with', '(', ')'): python_tokens.append('False') elif token == 'with': python_tokens.append('or') elif token == '(' and python_tokens and python_tokens[-1] not in ('or', 'and'): raise ValueError('Invalid license expression') else: python_tokens.append(token) python_expression = ' '.join(python_tokens) try: assert eval(python_expression) is False except Exception: raise ValueError('Invalid license expression') # Take a final pass to check for unknown licenses/exceptions normalized_tokens = [] for token in tokens: if token in ('or', 'and', 'with', '(', ')'): normalized_tokens.append(token.upper()) continue if normalized_tokens and normalized_tokens[-1] == 'WITH': if token not in EXCEPTIONS: raise ValueError('Unknown license exception: {}'.format(token)) normalized_tokens.append(EXCEPTIONS[token]['id']) else: if token.endswith('+'): token = token[:-1] suffix = '+' else: suffix = '' if token not in LICENSES: raise ValueError('Unknown license: {}'.format(token)) normalized_tokens.append(LICENSES[token]['id'] + suffix) # Construct the normalized expression normalized_expression = ' '.join(normalized_tokens) # Fix internal padding for parentheses normalized_expression = normalized_expression.replace('( ', '(').replace(' )', ')') return normalized_expression
the-stack_0_14782
import sqlite3 import databaseCreate #file for deleting the choosen entries #RUN THE SQL STATEMENT TO DELETE THE SELECTED RECORD db=sqlite3.connect("SongStorage.db") def deleteSong(songToDelete): try: databaseCreate.createDb() delete = "DELETE song FROM song WHERE title = ?",(songToDelete,) cur = db.cursor() cur.execute(delete) db.commit() cur.close() db.close() input("Item deleted, press enter to continue: ") except: print ("THERE WAS A PROBLEM DELETING THE RECORD") input("Press Enter to continue: ") #TAKE USER INPUT AND RUN FUNCTION TO DELETE THE SELECTED RECORD def DeleteItem(): print ("===============================") print ("DELEte A SONG RECORD:") print ("===============================") songToDelete = input("\nEnter the title of the DVD to delete:\t") delete = "DELETE song FROM song WHERE title = ? "(songToDelete,) try: cur = db.cursor() cur.execute(delete) searchResult = cur.fetchall() if searchResult[0] == (): raise except: print ("THERE WAS A PROBLEM ACCESSING THE RECORD IN THE DATABASE!") input("Press Enter to continue: ") return print( "===============================") print ("delete song RECORD:") print( "===============================") print ("1 - Title:\t" + modifyResult[0][0]) print ("2 - Star:\t" + modifyResult[0][1]) print ("3 - Costar:\t" + modifyResult[0][2]) print ("4 - Year:\t" + modifyResult[0][3]) print ("5 - Genre\t"+ modifyResult[0][4]) print ("===============================") input("Press enter to continue: ") print(""" Are you sure you want to delete? Enter a choice and press enter (Y/y = yes, Anything else = No) """) choice = input("\t") if (choice == "Y" or choice == "y"): deleteSong(songToDelete) else: c.close() db.close() input("Item NOT deleted, press enter to continue: ")
the-stack_0_14783
import numpy as np from zest import zest from plumbum import local from plaster.run.sigproc_v2 import synth from plaster.tools.test_tools.test_tools import ( integration_before, integration_after, run_p, ) # The only reason I'm not entirely deleting sigproc_v1 is because # Angela has a paper in the works @zest.skip("sigproc_v1 deprecated") @zest.group("integration") def zest_sigproc_v1_integration(): # If test_folder is None it will be set by _before() # otherwise you can set it here to reuse a debugging folder test_folder = None # test_folder = ( # "/erisyon/internal/jobs_folder/_integration_tests/it_runs_sigproc_v1/1613159055" # ) dim = (512, 512) amps_constant_val = 6000 n_peaks = 1000 bg_mean = 100.0 bg_std = 30.0 channel_scale_factor = (1.0, 0.5) channel_peak_width_scale_factor = (1.0, 0.8) psf_width = 1.5 def _synth_field(n_cycles): with synth.Synth(n_channels=2, n_cycles=n_cycles, dim=dim) as s: peaks = ( synth.PeaksModelGaussianCircular(n_peaks=n_peaks) .locs_randomize() .widths_uniform(psf_width) .channel_scale_factor(channel_scale_factor) .channel_peak_width_scale_factor(channel_peak_width_scale_factor) ) synth.CameraModel(bg_mean=bg_mean, bg_std=bg_std) synth.HaloModel() synth.IlluminationQuadraticFalloffModel() return s, peaks def _synth_save_field(s, fl_i, source_folder): chcy_ims = s.render_chcy(0) for ch_i in range(chcy_ims.shape[0]): for cy_i in range(chcy_ims.shape[1]): np.save( str( source_folder / f"area_{fl_i:03d}_cell_000_{ch_i:03d}nm_{cy_i:03d}.npy" ), chcy_ims[ch_i, cy_i], ) def _synth_dyts(source_folder): n_fields = 3 for fl_i in range(n_fields): s, peaks = _synth_field(n_cycles=4) peaks.dyt_random_choice( [[3, 2, 2, 1], [2, 1, 1, 0], [1, 0, 0, 0]], [0.5, 0.3, 0.2] ) peaks.gain_constant(amps_constant_val) _synth_save_field(s, fl_i, source_folder) def _it_runs_sigproc_v1(): job_folder = test_folder / "sigproc_v1" source_folder = test_folder / "sigproc_source" source_folder.mkdir() _synth_dyts(source_folder) run_p( [ f"gen", f"sigproc_v1", f"--job={job_folder}", f"--sigproc_source={source_folder}", f"--sample=foo", f"--force", ] ) run_p(["run", job_folder, "--no_progress"]) # def _it_runs_sigclass(): # """ # Test that classification can run on sigprov_v2 data # """ # # csv_file = test_folder / "protein.csv" # job_folder = test_folder / "sigproc_v1_class" # source_folder = test_folder / "sigproc_source" # source_folder.mkdir() # # csv_contents = ( # "Name,Abundance,POI,Seq\n" # "ACE,28,1," # "MGAASGRRGPGLLLPLPLLLLLPPQPALALDPGLQPGNFSADEAGAQLFAQSYNSSAEQV" # "LFQSVAASWAHDTNITAENARRQEEAALLSQEFAEAWGQKAKELYEPIWQNFTDPQLRRI" # "IGAVRTLGSANLPLAKRQQYNALLSNMSRIYSTAKVCLPNKTATCWSLDPDLTNILASSR" # "SYAMLLFAWEGWHNAAGIPLKPLYEDFTALSNEAYKQDGFTDTGAYWRSWYNSPTFEDDL" # "EHLYQQLEPLYLNLHAFVRRALHRRYGDRYINLRGPIPAHLLGDMWAQSWENIYDMVVPF" # "PDKPNLDVTSTMLQQGWNATHMFRVAEEFFTSLELSPMPPEFWEGSMLEKPADGREVVCH" # "ASAWDFYNRKDFRIKQCTRVTMDQLSTVHHEMGHIQYYLQYKDLPVSLRRGANPGFHEAI" # "GDVLALSVSTPEHLHKIGLLDRVTNDTESDINYLLKMALEKIAFLPFGYLVDQWRWGVFS" # "GRTPPSRYNFDWWYLRTKYQGICPPVTRNETHFDAGAKFHVPNVTPYIRYFVSFVLQFQF" # "HEALCKEAGYEGPLHQCDIYRSTKAGAKLRKVLQAGSSRPWQEVLKDMVGLDALDAQPLL" # "KYFQPVTQWLQEQNQQNGEVLGWPEYQWHPPLPDNYPEGIDLVTDEAEASKFVEEYDRTS" # "QVVWNEYAEANWNYNTNITTETSKILLQKNMQIANHTLKYGTQARKFDVNQLQNTTIKRI" # "IKKVQDLERAALPAQELEEYNKILLDMETTYSVATVCHPNGSCLQLEPDLTNVMATSRKY" # "EDLLWAWEGWRDKAGRAILQFYPKYVELINQAARLNGYVDAGDSWRSMYETPSLEQDLER" # "LFQELQPLYLNLHAYVRRALHRHYGAQHINLEGPIPAHLLGNMWAQTWSNIYDLVVPFPS" # "APSMDTTEAMLKQGWTPRRMFKEADDFFTSLGLLPVPPEFWNKSMLEKPTDGREVVCHAS" # "AWDFYNGKDFRIKQCTTVNLEDLVVAHHEMGHIQYFMQYKDLPVALREGANPGFHEAIGD" # "VLALSVSTPKHLHSLNLLSSEGGSDEHDINFLMKMALDKIAFIPFSYLVDQWRWRVFDGS" # "ITKENYNQEWWSLRLKYQGLCPPVPRTQGDFDPGAKFHIPSSVPYIRYFVSFIIQFQFHE" # "ALCQAAGHTGPLHKCDIYQSKEAGQRLATAMKLGFSRPWPEAMQLITGQPNMSASAMLSY" # "FKPLLDWLRTENELHGEKLGWPQYNWTPNSARSEGPLPDSGRVSFLGLDLDAQQARVGQW" # "LLLFLGIALLVATLGLSQRLFSIRHRSLHRHSHGPQFGSEVELRHS\n" # "ACE2,12,1," # "MSSSSWLLLSLVAVTAAQSTIEEQAKTFLDKFNHEAEDLFYQSSLASWNYNTNITEENVQ" # "NMNNAGDKWSAFLKEQSTLAQMYPLQEIQNLTVKLQLQALQQNGSSVLSEDKSKRLNTIL" # "NTMSTIYSTGKVCNPDNPQECLLLEPGLNEIMANSLDYNERLWAWESWRSEVGKQLRPLY" # "EEYVVLKNEMARANHYEDYGDYWRGDYEVNGVDGYDYSRGQLIEDVEHTFEEIKPLYEHL" # "HAYVRAKLMNAYPSYISPIGCLPAHLLGDMWGRFWTNLYSLTVPFGQKPNIDVTDAMVDQ" # "AWDAQRIFKEAEKFFVSVGLPNMTQGFWENSMLTDPGNVQKAVCHPTAWDLGKGDFRILM" # "CTKVTMDDFLTAHHEMGHIQYDMAYAAQPFLLRNGANEGFHEAVGEIMSLSAATPKHLKS" # "IGLLSPDFQEDNETEINFLLKQALTIVGTLPFTYMLEKWRWMVFKGEIPKDQWMKKWWEM" # "KREIVGVVEPVPHDETYCDPASLFHVSNDYSFIRYYTRTLYQFQFQEALCQAAKHEGPLH" # "KCDISNSTEAGQKLFNMLRLGKSEPWTLALENVVGAKNMNVRPLLNYFEPLFTWLKDQNK" # "NSFVGWSTDWSPYADQSIKVRISLKSALGDKAYEWNDNEMYLFRSSVAYAMRQYFLKVKN" # "QMILFGEEDVRVANLKPRISFNFFVTAPKNVSDIIPRTEVEKAIRMSRSRINDAFRLNDN" # "SLEFLGIQPTLGPPNQPPVSIWLIVFGVVMGVIVVGIVILIFTGIRDRKKKNKARSGENP" # "YASIDISKGENNPGFQNTDDVQTSF\n" # "ACTB,7,1," # "MDDDIAALVVDNGSGMCKAGFAGDDAPRAVFPSIVGRPRHQGVMVGMGQKDSYVGDEAQS" # "KRGILTLKYPIEHGIVTNWDDMEKIWHHTFYNELRVAPEEHPVLLTEAPLNPKANREKMT" # "QIMFETFNTPAMYVAIQAVLSLYASGRTTGIVMDSGDGVTHTVPIYEGYALPHAILRLDL" # "AGRDLTDYLMKILTERGYSFTTTAEREIVRDIKEKLCYVALDFEQEMATAASSSSLEKSY" # "ELPDGQVITIGNERFRCPEALFQPSFLGMESCGIHETTFNSIMKCDVDIRKDLYANTVLS" # "GGTTMYPGIADRMQKEITALAPSTMKIKIIAPPERKYSVWIGGSILASLSTFQQMWISKQ" # "EYDESGPSIVHRKCF\n" # ) # csv_contents = "\n".join(csv_contents.split()) + "\n" # csv_file.write(csv_contents) # # _synth_dyts(source_folder) # # # DEBUGGING HINT: Comment out following to debug report only # run_p( # [ # f"gen", # f"classify_v1", # f"--sample=KidneyBiomarkers1", # f"--job={job_folder}", # f"--protein_csv={csv_file}", # f"--label_set=C,DE", # f"--protease=trypsin", # f"--n_pres=1", # f"--n_mocks=1", # f"--n_edmans=2", # f"--rf", # f"--decoys=reverse", # f"--force", # f"--sigproc_source={source_folder}", # ] # ) # # run_p(["run", job_folder, "--no_progress"]) def _before(): nonlocal test_folder if test_folder is None: test_folder = integration_before() test_folder = local.path(test_folder) def _after(): integration_after() def it_runs_sigproc_v1(): # zest randomizes order so the following ensures order... # WHEN DEBUGGING: # * Set the test_folder to the folder that failed rather then None # (indicated in the blue trace). # * Comment out the following tests that you don't need to iterate on # (Example, _it_runs_calib and _it_runs_sigproc_v2_with_calib has already passed # and you just want to run _it_runs_sigclass over and over until it passes) _it_runs_sigproc_v1() # _it_runs_sigclass() zest()
the-stack_0_14784
#!/usr/bin/env python3 import os import subprocess from typing import List, Optional from functools import lru_cache from common.basedir import BASEDIR from selfdrive.swaglog import cloudlog TESTED_BRANCHES = ['devel', 'release3-staging', 'dashcam3-staging', 'release3', 'dashcam3'] training_version: bytes = b"0.2.0" terms_version: bytes = b"2" def cache(user_function, /): return lru_cache(maxsize=None)(user_function) def run_cmd(cmd: List[str]) -> str: return subprocess.check_output(cmd, encoding='utf8').strip() def run_cmd_default(cmd: List[str], default: Optional[str] = None) -> Optional[str]: try: return run_cmd(cmd) except subprocess.CalledProcessError: return default @cache def get_commit(branch: str = "HEAD", default: Optional[str] = None) -> Optional[str]: return run_cmd_default(["git", "rev-parse", branch], default=default) @cache def get_short_branch(default: Optional[str] = None) -> Optional[str]: return run_cmd_default(["git", "rev-parse", "--abbrev-ref", "HEAD"], default=default) @cache def get_branch(default: Optional[str] = None) -> Optional[str]: return run_cmd_default(["git", "rev-parse", "--abbrev-ref", "--symbolic-full-name", "@{u}"], default=default) @cache def get_origin(default: Optional[str] = None) -> Optional[str]: try: local_branch = run_cmd(["git", "name-rev", "--name-only", "HEAD"]) tracking_remote = run_cmd(["git", "config", "branch." + local_branch + ".remote"]) return run_cmd(["git", "config", "remote." + tracking_remote + ".url"]) except subprocess.CalledProcessError: # Not on a branch, fallback return run_cmd_default(["git", "config", "--get", "remote.origin.url"], default=default) @cache def get_normalized_origin(default: Optional[str] = None) -> Optional[str]: origin: Optional[str] = get_origin() if origin is None: return default return origin.replace("git@", "", 1) \ .replace(".git", "", 1) \ .replace("https://", "", 1) \ .replace(":", "/", 1) @cache def get_version() -> str: with open(os.path.join(BASEDIR, "common", "version.h")) as _versionf: version = _versionf.read().split('"')[1] return version @cache def get_short_version() -> str: return get_version().split('-')[0] # type: ignore @cache def is_prebuilt() -> bool: return os.path.exists(os.path.join(BASEDIR, 'prebuilt')) @cache def is_comma_remote() -> bool: # note to fork maintainers, this is used for release metrics. please do not # touch this to get rid of the orange startup alert. there's better ways to do that origin: Optional[str] = get_origin() if origin is None: return False return origin.startswith('[email protected]:sunnyhaibin') or origin.startswith('https://github.com/sunnyhaibin') @cache def is_tested_branch() -> bool: return get_short_branch() in TESTED_BRANCHES @cache def is_dirty() -> bool: origin = get_origin() branch = get_branch() if (origin is None) or (branch is None): return True dirty = False try: # Actually check dirty files if not is_prebuilt(): # This is needed otherwise touched files might show up as modified try: subprocess.check_call(["git", "update-index", "--refresh"]) except subprocess.CalledProcessError: pass dirty = (subprocess.call(["git", "diff-index", "--quiet", branch, "--"]) != 0) except subprocess.CalledProcessError: cloudlog.exception("git subprocess failed while checking dirty") dirty = True return dirty if __name__ == "__main__": from common.params import Params params = Params() params.put("TermsVersion", terms_version) params.put("TrainingVersion", training_version) print(f"Dirty: {is_dirty()}") print(f"Version: {get_version()}") print(f"Short version: {get_short_version()}") print(f"Origin: {get_origin()}") print(f"Normalized origin: {get_normalized_origin()}") print(f"Branch: {get_branch()}") print(f"Short branch: {get_short_branch()}") print(f"Prebuilt: {is_prebuilt()}")
the-stack_0_14785
import time import torch from torch.autograd import Variable from torch.utils.data.sampler import SubsetRandomSampler from archived.elasticache.Memcached import memcached_init from archived.s3.get_object import get_object from archived.s3 import put_object from archived.old_model import LogisticRegression from data_loader.libsvm_dataset import DenseDatasetWithLines # lambda setting grad_bucket = "async-grads" model_bucket = "async-updates" local_dir = "/tmp" w_prefix = "w_" b_prefix = "b_" w_grad_prefix = "w_grad_" b_grad_prefix = "b_grad_" # algorithm setting learning_rate = 0.1 #np.arange(0.09,0.15,0.01) batch_size = 100000 num_epochs = 55 validation_ratio = .2 shuffle_dataset = True random_seed = 42 def handler(event, context): start_time = time.time() bucket = event['bucket'] key = event['name'] num_features = event['num_features'] num_classes = event['num_classes'] elasti_location = event['elasticache'] endpoint = memcached_init(elasti_location) print('bucket = {}'.format(bucket)) print('key = {}'.format(key)) key_splits = key.split("_") worker_index = int(key_splits[0]) num_worker = event['num_files'] batch_size = 100000 batch_size = int(np.ceil(batch_size/num_worker)) torch.manual_seed(random_seed) # read file(dataset) from s3 file = get_object(bucket, key).read().decode('utf-8').split("\n") print("read data cost {} s".format(time.time() - start_time)) parse_start = time.time() dataset = DenseDatasetWithLines(file, num_features) preprocess_start = time.time() print("libsvm operation cost {}s".format(parse_start - preprocess_start)) # Creating data indices for training and validation splits: dataset_size = len(dataset) print("dataset size = {}".format(dataset_size)) indices = list(range(dataset_size)) split = int(np.floor(validation_ratio * dataset_size)) if shuffle_dataset: np.random.seed(random_seed) np.random.shuffle(indices) train_indices, val_indices = indices[split:], indices[:split] # Creating PT data samplers and loaders: train_sampler = SubsetRandomSampler(train_indices) valid_sampler = SubsetRandomSampler(val_indices) train_loader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, sampler=train_sampler) validation_loader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, sampler=valid_sampler) print("preprocess data cost {} s".format(time.time() - preprocess_start)) model = LogisticRegression(num_features, num_classes) # Loss and Optimizer # Softmax is internally computed. # Set parameters to be updated. criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate) train_loss = [] test_loss = [] test_acc = [] total_time = 0 # Training the Model epoch_start = time.time() for epoch in range(num_epochs): tmp_train = 0 for batch_index, (items, labels) in enumerate(train_loader): #batch_start = time.time() print("------worker {} epoch {} batch {}------".format(worker_index, epoch, batch_index)) items = Variable(items.view(-1, num_features)) labels = Variable(labels) # Forward + Backward + Optimize optimizer.zero_grad() outputs = model(items) loss = criterion(outputs, labels) loss.backward() optimizer.step() w = model.linear.weight.data.numpy() b = model.linear.bias.data.numpy() file_postfix = "{}_{}".format(batch_index,epoch) #asynchronization / shuffle starts from that every worker writes their gradients of this batch and epoch #upload individual gradient if batch_index == 0 and epoch == 0: hset_object(endpoint, model_bucket, w_prefix, w.tobytes()) hset_object(endpoint, model_bucket, b_prefix, b.tobytes()) time.sleep(0.0001) #randomly get one from others. (Asynchronized) w_new = np.fromstring(hget_object(endpoint, model_bucket, w_prefix), dtype=w.dtype).reshape(w.shape) b_new = np.fromstring(hget_object(endpoint, model_bucket, b_prefix), dtype=b.dtype).reshape(b.shape) else: w_new = np.fromstring(hget_object(endpoint, model_bucket, w_prefix), dtype=w.dtype).reshape(w.shape) b_new = np.fromstring(hget_object(endpoint, model_bucket, b_prefix), dtype=b.dtype).reshape(b.shape) hset_object(endpoint, model_bucket, w_prefix, w.tobytes()) hset_object(endpoint, model_bucket, b_prefix, b.tobytes()) model.linear.weight.data = torch.from_numpy(w_new) model.linear.bias.data = torch.from_numpy(b_new) #report train loss and test loss for every mini batch if (batch_index + 1) % 1 == 0: print('Epoch: [%d/%d], Step: [%d/%d], Loss: %.4f' % (epoch + 1, num_epochs, batch_index + 1, len(train_indices) / batch_size, loss.data)) tmp_train += loss.item() total_time += time.time()-epoch_start train_loss.append(tmp_train) tmp_test, tmp_acc = test(model, validation_loader, criterion) test_loss.append(tmp_test) test_acc.append(tmp_acc) epoch_start = time.time() print("total time = {}".format(total_time)) end_time = time.time() print("elapsed time = {} s".format(end_time - start_time)) loss_record = [test_loss, test_acc, train_loss, total_time] put_object("async-model-loss", "async-loss{}".format(worker_index), pickle.dumps(loss_record)) def test(model, testloader, criterion): # Test the Model correct = 0 total = 0 total_loss = 0 count = 0 with torch.no_grad(): for items,labels in testloader: outputs = model(items) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum() loss = criterion(outputs,labels) total_loss += loss.data count = count+1 return total_loss/count, float(correct)/float(total)*100
the-stack_0_14786
import pandas as pd import numpy as np import scipy.stats from pandas import DataFrame from typing import List from blacksheep._constants import * SampleList = List[str] def _convert_to_outliers( df: DataFrame, samples: SampleList, num_iqrs: float, up_or_down: str ) -> DataFrame: """Calls outliers on a given values table. Args: df: Input DataFrame with samples as columns and genes or sites as rows. \ Index should be an identifier for each row. samples: List of samples to be considered in the distribution when defining median, \ IQR and outliers. num_iqrs: How many inter-quartile ranges (IQRs) above or below the median to consider \ something an outlier. up_or_down: Whether to call outliers above the median (up) or below the median (down) Returns: A DataFrame with outlier calls for each value. 0 means not an outlier; 1 means there is \ an outlier. Missing values are propagated. """ if num_iqrs <= 0: raise ValueError("num_iqrs must be greater than 0") df = df.copy() df[row_iqr_name] = scipy.stats.iqr(df[samples], axis=1, nan_policy="omit") df[row_median_name] = np.nanquantile(df[samples], q=0.5, axis=1) outlier_df = pd.DataFrame() if up_or_down == "up": df[row_upper_bound_name] = df[row_median_name] + (num_iqrs * df[row_iqr_name]) outlier_df[samples] = ( df[samples].gt(df[row_upper_bound_name], axis=0).astype(int) ) outlier_df[df[samples].isnull()] = np.nan return outlier_df elif up_or_down == "down": df[row_lower_bound_name] = df[row_median_name] - (num_iqrs * df[row_iqr_name]) outlier_df[samples] = ( df[samples].lt(df[row_lower_bound_name], axis=0).astype(int) ) outlier_df[df[samples].isnull()] = np.nan return outlier_df raise ValueError("up_or_down must be either 'up' or 'down'") def _convert_to_counts( df: DataFrame, samples: SampleList, aggregate: bool, ind_sep: str ) -> DataFrame: """Counts outliers and non-outlier values for each sample and each row (if aggregate=False) or each unique identifier (if aggregate=True). Args: df: Outlier DataFrame from convertToOutliers function. samples: List of samples to consider. Should be same list as input to convertToOutliers. aggregate: Whether or not to collapse multiple rows with identical identifiers before \ a separater. Collapsing values is done by counting outliers and non-outliers for each \ sample per unique identifier. ind_sep: The separator used in the index to separate a more general ID and less specific \ ID. e.g. in RAG2-S365 the separater is "-". Returns: Outlier DataFrame that has a column with counts of non-outliers and outliers for \ each sample, with a row for each input site (if no aggregation) or each unique identifier \ (with aggregation). This table is the input for the comparison function. """ not_outlier_cols = [x + col_seps + col_not_outlier_suffix for x in samples] outlier_cols = [x + col_seps + col_outlier_suffix for x in samples] if aggregate: df.index = [ind.split(ind_sep)[0] for ind in df.index] df_inv = df == 0 output_df = pd.DataFrame() output_df[not_outlier_cols] = df_inv.groupby(level=0)[samples].sum() output_df[outlier_cols] = df.groupby(level=0)[samples].sum() elif not aggregate: output_df = pd.DataFrame(index=df.index) output_df[outlier_cols] = df[samples] output_df[not_outlier_cols] = 1 - df[samples] return output_df
the-stack_0_14787
from functools import partial from inspect import signature from itertools import product from itertools import chain from itertools import permutations import numpy as np import scipy.sparse as sp import pytest from sklearn.datasets import make_multilabel_classification from sklearn.preprocessing import LabelBinarizer from sklearn.utils.multiclass import type_of_target from sklearn.utils.validation import _num_samples from sklearn.utils.validation import check_random_state from sklearn.utils import shuffle from sklearn.utils._testing import assert_allclose from sklearn.utils._testing import assert_almost_equal from sklearn.utils._testing import assert_array_equal from sklearn.utils._testing import assert_array_less from sklearn.utils._testing import ignore_warnings from sklearn.metrics import accuracy_score from sklearn.metrics import average_precision_score from sklearn.metrics import balanced_accuracy_score from sklearn.metrics import brier_score_loss from sklearn.metrics import cohen_kappa_score from sklearn.metrics import confusion_matrix from sklearn.metrics import coverage_error from sklearn.metrics import d2_tweedie_score from sklearn.metrics import det_curve from sklearn.metrics import explained_variance_score from sklearn.metrics import f1_score from sklearn.metrics import fbeta_score from sklearn.metrics import hamming_loss from sklearn.metrics import hinge_loss from sklearn.metrics import jaccard_score from sklearn.metrics import label_ranking_average_precision_score from sklearn.metrics import label_ranking_loss from sklearn.metrics import log_loss from sklearn.metrics import max_error from sklearn.metrics import matthews_corrcoef from sklearn.metrics import mean_absolute_error from sklearn.metrics import mean_absolute_percentage_error from sklearn.metrics import mean_squared_error from sklearn.metrics import mean_tweedie_deviance from sklearn.metrics import mean_poisson_deviance from sklearn.metrics import mean_gamma_deviance from sklearn.metrics import median_absolute_error from sklearn.metrics import multilabel_confusion_matrix from sklearn.metrics import mean_pinball_loss from sklearn.metrics import precision_recall_curve from sklearn.metrics import precision_score from sklearn.metrics import r2_score from sklearn.metrics import recall_score from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_curve from sklearn.metrics import zero_one_loss from sklearn.metrics import ndcg_score from sklearn.metrics import dcg_score from sklearn.metrics import top_k_accuracy_score from sklearn.metrics._base import _average_binary_score # Note toward developers about metric testing # ------------------------------------------- # It is often possible to write one general test for several metrics: # # - invariance properties, e.g. invariance to sample order # - common behavior for an argument, e.g. the "normalize" with value True # will return the mean of the metrics and with value False will return # the sum of the metrics. # # In order to improve the overall metric testing, it is a good idea to write # first a specific test for the given metric and then add a general test for # all metrics that have the same behavior. # # Two types of datastructures are used in order to implement this system: # dictionaries of metrics and lists of metrics with common properties. # # Dictionaries of metrics # ------------------------ # The goal of having those dictionaries is to have an easy way to call a # particular metric and associate a name to each function: # # - REGRESSION_METRICS: all regression metrics. # - CLASSIFICATION_METRICS: all classification metrics # which compare a ground truth and the estimated targets as returned by a # classifier. # - THRESHOLDED_METRICS: all classification metrics which # compare a ground truth and a score, e.g. estimated probabilities or # decision function (format might vary) # # Those dictionaries will be used to test systematically some invariance # properties, e.g. invariance toward several input layout. # REGRESSION_METRICS = { "max_error": max_error, "mean_absolute_error": mean_absolute_error, "mean_squared_error": mean_squared_error, "mean_pinball_loss": mean_pinball_loss, "median_absolute_error": median_absolute_error, "mean_absolute_percentage_error": mean_absolute_percentage_error, "explained_variance_score": explained_variance_score, "r2_score": partial(r2_score, multioutput="variance_weighted"), "mean_normal_deviance": partial(mean_tweedie_deviance, power=0), "mean_poisson_deviance": mean_poisson_deviance, "mean_gamma_deviance": mean_gamma_deviance, "mean_compound_poisson_deviance": partial(mean_tweedie_deviance, power=1.4), "d2_tweedie_score": partial(d2_tweedie_score, power=1.4), } CLASSIFICATION_METRICS = { "accuracy_score": accuracy_score, "balanced_accuracy_score": balanced_accuracy_score, "adjusted_balanced_accuracy_score": partial(balanced_accuracy_score, adjusted=True), "unnormalized_accuracy_score": partial(accuracy_score, normalize=False), # `confusion_matrix` returns absolute values and hence behaves unnormalized # . Naming it with an unnormalized_ prefix is necessary for this module to # skip sample_weight scaling checks which will fail for unnormalized # metrics. "unnormalized_confusion_matrix": confusion_matrix, "normalized_confusion_matrix": lambda *args, **kwargs: ( confusion_matrix(*args, **kwargs).astype("float") / confusion_matrix(*args, **kwargs).sum(axis=1)[:, np.newaxis] ), "unnormalized_multilabel_confusion_matrix": multilabel_confusion_matrix, "unnormalized_multilabel_confusion_matrix_sample": partial( multilabel_confusion_matrix, samplewise=True ), "hamming_loss": hamming_loss, "zero_one_loss": zero_one_loss, "unnormalized_zero_one_loss": partial(zero_one_loss, normalize=False), # These are needed to test averaging "jaccard_score": jaccard_score, "precision_score": precision_score, "recall_score": recall_score, "f1_score": f1_score, "f2_score": partial(fbeta_score, beta=2), "f0.5_score": partial(fbeta_score, beta=0.5), "matthews_corrcoef_score": matthews_corrcoef, "weighted_f0.5_score": partial(fbeta_score, average="weighted", beta=0.5), "weighted_f1_score": partial(f1_score, average="weighted"), "weighted_f2_score": partial(fbeta_score, average="weighted", beta=2), "weighted_precision_score": partial(precision_score, average="weighted"), "weighted_recall_score": partial(recall_score, average="weighted"), "weighted_jaccard_score": partial(jaccard_score, average="weighted"), "micro_f0.5_score": partial(fbeta_score, average="micro", beta=0.5), "micro_f1_score": partial(f1_score, average="micro"), "micro_f2_score": partial(fbeta_score, average="micro", beta=2), "micro_precision_score": partial(precision_score, average="micro"), "micro_recall_score": partial(recall_score, average="micro"), "micro_jaccard_score": partial(jaccard_score, average="micro"), "macro_f0.5_score": partial(fbeta_score, average="macro", beta=0.5), "macro_f1_score": partial(f1_score, average="macro"), "macro_f2_score": partial(fbeta_score, average="macro", beta=2), "macro_precision_score": partial(precision_score, average="macro"), "macro_recall_score": partial(recall_score, average="macro"), "macro_jaccard_score": partial(jaccard_score, average="macro"), "samples_f0.5_score": partial(fbeta_score, average="samples", beta=0.5), "samples_f1_score": partial(f1_score, average="samples"), "samples_f2_score": partial(fbeta_score, average="samples", beta=2), "samples_precision_score": partial(precision_score, average="samples"), "samples_recall_score": partial(recall_score, average="samples"), "samples_jaccard_score": partial(jaccard_score, average="samples"), "cohen_kappa_score": cohen_kappa_score, } def precision_recall_curve_padded_thresholds(*args, **kwargs): """ The dimensions of precision-recall pairs and the threshold array as returned by the precision_recall_curve do not match. See func:`sklearn.metrics.precision_recall_curve` This prevents implicit conversion of return value triple to an higher dimensional np.array of dtype('float64') (it will be of dtype('object) instead). This again is needed for assert_array_equal to work correctly. As a workaround we pad the threshold array with NaN values to match the dimension of precision and recall arrays respectively. """ precision, recall, thresholds = precision_recall_curve(*args, **kwargs) pad_threshholds = len(precision) - len(thresholds) return np.array( [ precision, recall, np.pad( thresholds.astype(np.float64), pad_width=(0, pad_threshholds), mode="constant", constant_values=[np.nan], ), ] ) CURVE_METRICS = { "roc_curve": roc_curve, "precision_recall_curve": precision_recall_curve_padded_thresholds, "det_curve": det_curve, } THRESHOLDED_METRICS = { "coverage_error": coverage_error, "label_ranking_loss": label_ranking_loss, "log_loss": log_loss, "unnormalized_log_loss": partial(log_loss, normalize=False), "hinge_loss": hinge_loss, "brier_score_loss": brier_score_loss, "roc_auc_score": roc_auc_score, # default: average="macro" "weighted_roc_auc": partial(roc_auc_score, average="weighted"), "samples_roc_auc": partial(roc_auc_score, average="samples"), "micro_roc_auc": partial(roc_auc_score, average="micro"), "ovr_roc_auc": partial(roc_auc_score, average="macro", multi_class="ovr"), "weighted_ovr_roc_auc": partial( roc_auc_score, average="weighted", multi_class="ovr" ), "ovo_roc_auc": partial(roc_auc_score, average="macro", multi_class="ovo"), "weighted_ovo_roc_auc": partial( roc_auc_score, average="weighted", multi_class="ovo" ), "partial_roc_auc": partial(roc_auc_score, max_fpr=0.5), "average_precision_score": average_precision_score, # default: average="macro" "weighted_average_precision_score": partial( average_precision_score, average="weighted" ), "samples_average_precision_score": partial( average_precision_score, average="samples" ), "micro_average_precision_score": partial(average_precision_score, average="micro"), "label_ranking_average_precision_score": label_ranking_average_precision_score, "ndcg_score": ndcg_score, "dcg_score": dcg_score, "top_k_accuracy_score": top_k_accuracy_score, } ALL_METRICS = dict() ALL_METRICS.update(THRESHOLDED_METRICS) ALL_METRICS.update(CLASSIFICATION_METRICS) ALL_METRICS.update(REGRESSION_METRICS) ALL_METRICS.update(CURVE_METRICS) # Lists of metrics with common properties # --------------------------------------- # Lists of metrics with common properties are used to test systematically some # functionalities and invariance, e.g. SYMMETRIC_METRICS lists all metrics that # are symmetric with respect to their input argument y_true and y_pred. # # When you add a new metric or functionality, check if a general test # is already written. # Those metrics don't support binary inputs METRIC_UNDEFINED_BINARY = { "samples_f0.5_score", "samples_f1_score", "samples_f2_score", "samples_precision_score", "samples_recall_score", "samples_jaccard_score", "coverage_error", "unnormalized_multilabel_confusion_matrix_sample", "label_ranking_loss", "label_ranking_average_precision_score", "dcg_score", "ndcg_score", } # Those metrics don't support multiclass inputs METRIC_UNDEFINED_MULTICLASS = { "brier_score_loss", "micro_roc_auc", "samples_roc_auc", "partial_roc_auc", "roc_auc_score", "weighted_roc_auc", "average_precision_score", "weighted_average_precision_score", "micro_average_precision_score", "samples_average_precision_score", "jaccard_score", # with default average='binary', multiclass is prohibited "precision_score", "recall_score", "f1_score", "f2_score", "f0.5_score", # curves "roc_curve", "precision_recall_curve", "det_curve", } # Metric undefined with "binary" or "multiclass" input METRIC_UNDEFINED_BINARY_MULTICLASS = METRIC_UNDEFINED_BINARY.union( METRIC_UNDEFINED_MULTICLASS ) # Metrics with an "average" argument METRICS_WITH_AVERAGING = { "precision_score", "recall_score", "f1_score", "f2_score", "f0.5_score", "jaccard_score", } # Threshold-based metrics with an "average" argument THRESHOLDED_METRICS_WITH_AVERAGING = { "roc_auc_score", "average_precision_score", "partial_roc_auc", } # Metrics with a "pos_label" argument METRICS_WITH_POS_LABEL = { "roc_curve", "precision_recall_curve", "det_curve", "brier_score_loss", "precision_score", "recall_score", "f1_score", "f2_score", "f0.5_score", "jaccard_score", "average_precision_score", "weighted_average_precision_score", "micro_average_precision_score", "samples_average_precision_score", } # Metrics with a "labels" argument # TODO: Handle multi_class metrics that has a labels argument as well as a # decision function argument. e.g hinge_loss METRICS_WITH_LABELS = { "unnormalized_confusion_matrix", "normalized_confusion_matrix", "roc_curve", "precision_recall_curve", "det_curve", "precision_score", "recall_score", "f1_score", "f2_score", "f0.5_score", "jaccard_score", "weighted_f0.5_score", "weighted_f1_score", "weighted_f2_score", "weighted_precision_score", "weighted_recall_score", "weighted_jaccard_score", "micro_f0.5_score", "micro_f1_score", "micro_f2_score", "micro_precision_score", "micro_recall_score", "micro_jaccard_score", "macro_f0.5_score", "macro_f1_score", "macro_f2_score", "macro_precision_score", "macro_recall_score", "macro_jaccard_score", "unnormalized_multilabel_confusion_matrix", "unnormalized_multilabel_confusion_matrix_sample", "cohen_kappa_score", } # Metrics with a "normalize" option METRICS_WITH_NORMALIZE_OPTION = { "accuracy_score", "top_k_accuracy_score", "zero_one_loss", } # Threshold-based metrics with "multilabel-indicator" format support THRESHOLDED_MULTILABEL_METRICS = { "log_loss", "unnormalized_log_loss", "roc_auc_score", "weighted_roc_auc", "samples_roc_auc", "micro_roc_auc", "partial_roc_auc", "average_precision_score", "weighted_average_precision_score", "samples_average_precision_score", "micro_average_precision_score", "coverage_error", "label_ranking_loss", "ndcg_score", "dcg_score", "label_ranking_average_precision_score", } # Classification metrics with "multilabel-indicator" format MULTILABELS_METRICS = { "accuracy_score", "unnormalized_accuracy_score", "hamming_loss", "zero_one_loss", "unnormalized_zero_one_loss", "weighted_f0.5_score", "weighted_f1_score", "weighted_f2_score", "weighted_precision_score", "weighted_recall_score", "weighted_jaccard_score", "macro_f0.5_score", "macro_f1_score", "macro_f2_score", "macro_precision_score", "macro_recall_score", "macro_jaccard_score", "micro_f0.5_score", "micro_f1_score", "micro_f2_score", "micro_precision_score", "micro_recall_score", "micro_jaccard_score", "unnormalized_multilabel_confusion_matrix", "samples_f0.5_score", "samples_f1_score", "samples_f2_score", "samples_precision_score", "samples_recall_score", "samples_jaccard_score", } # Regression metrics with "multioutput-continuous" format support MULTIOUTPUT_METRICS = { "mean_absolute_error", "median_absolute_error", "mean_squared_error", "r2_score", "explained_variance_score", "mean_absolute_percentage_error", "mean_pinball_loss", } # Symmetric with respect to their input arguments y_true and y_pred # metric(y_true, y_pred) == metric(y_pred, y_true). SYMMETRIC_METRICS = { "accuracy_score", "unnormalized_accuracy_score", "hamming_loss", "zero_one_loss", "unnormalized_zero_one_loss", "micro_jaccard_score", "macro_jaccard_score", "jaccard_score", "samples_jaccard_score", "f1_score", "micro_f1_score", "macro_f1_score", "weighted_recall_score", # P = R = F = accuracy in multiclass case "micro_f0.5_score", "micro_f1_score", "micro_f2_score", "micro_precision_score", "micro_recall_score", "matthews_corrcoef_score", "mean_absolute_error", "mean_squared_error", "median_absolute_error", "max_error", # Pinball loss is only symmetric for alpha=0.5 which is the default. "mean_pinball_loss", "cohen_kappa_score", "mean_normal_deviance", } # Asymmetric with respect to their input arguments y_true and y_pred # metric(y_true, y_pred) != metric(y_pred, y_true). NOT_SYMMETRIC_METRICS = { "balanced_accuracy_score", "adjusted_balanced_accuracy_score", "explained_variance_score", "r2_score", "unnormalized_confusion_matrix", "normalized_confusion_matrix", "roc_curve", "precision_recall_curve", "det_curve", "precision_score", "recall_score", "f2_score", "f0.5_score", "weighted_f0.5_score", "weighted_f1_score", "weighted_f2_score", "weighted_precision_score", "weighted_jaccard_score", "unnormalized_multilabel_confusion_matrix", "macro_f0.5_score", "macro_f2_score", "macro_precision_score", "macro_recall_score", "log_loss", "hinge_loss", "mean_gamma_deviance", "mean_poisson_deviance", "mean_compound_poisson_deviance", "d2_tweedie_score", "mean_absolute_percentage_error", } # No Sample weight support METRICS_WITHOUT_SAMPLE_WEIGHT = { "median_absolute_error", "max_error", "ovo_roc_auc", "weighted_ovo_roc_auc", } METRICS_REQUIRE_POSITIVE_Y = { "mean_poisson_deviance", "mean_gamma_deviance", "mean_compound_poisson_deviance", "d2_tweedie_score", } def _require_positive_targets(y1, y2): """Make targets strictly positive""" offset = abs(min(y1.min(), y2.min())) + 1 y1 += offset y2 += offset return y1, y2 def test_symmetry_consistency(): # We shouldn't forget any metrics assert ( SYMMETRIC_METRICS | NOT_SYMMETRIC_METRICS | set(THRESHOLDED_METRICS) | METRIC_UNDEFINED_BINARY_MULTICLASS ) == set(ALL_METRICS) assert (SYMMETRIC_METRICS & NOT_SYMMETRIC_METRICS) == set() @pytest.mark.parametrize("name", sorted(SYMMETRIC_METRICS)) def test_symmetric_metric(name): # Test the symmetry of score and loss functions random_state = check_random_state(0) y_true = random_state.randint(0, 2, size=(20,)) y_pred = random_state.randint(0, 2, size=(20,)) if name in METRICS_REQUIRE_POSITIVE_Y: y_true, y_pred = _require_positive_targets(y_true, y_pred) y_true_bin = random_state.randint(0, 2, size=(20, 25)) y_pred_bin = random_state.randint(0, 2, size=(20, 25)) metric = ALL_METRICS[name] if name in METRIC_UNDEFINED_BINARY: if name in MULTILABELS_METRICS: assert_allclose( metric(y_true_bin, y_pred_bin), metric(y_pred_bin, y_true_bin), err_msg="%s is not symmetric" % name, ) else: assert False, "This case is currently unhandled" else: assert_allclose( metric(y_true, y_pred), metric(y_pred, y_true), err_msg="%s is not symmetric" % name, ) @pytest.mark.parametrize("name", sorted(NOT_SYMMETRIC_METRICS)) def test_not_symmetric_metric(name): # Test the symmetry of score and loss functions random_state = check_random_state(0) y_true = random_state.randint(0, 2, size=(20,)) y_pred = random_state.randint(0, 2, size=(20,)) if name in METRICS_REQUIRE_POSITIVE_Y: y_true, y_pred = _require_positive_targets(y_true, y_pred) metric = ALL_METRICS[name] # use context manager to supply custom error message with pytest.raises(AssertionError): assert_array_equal(metric(y_true, y_pred), metric(y_pred, y_true)) raise ValueError("%s seems to be symmetric" % name) @pytest.mark.parametrize( "name", sorted(set(ALL_METRICS) - METRIC_UNDEFINED_BINARY_MULTICLASS) ) def test_sample_order_invariance(name): random_state = check_random_state(0) y_true = random_state.randint(0, 2, size=(20,)) y_pred = random_state.randint(0, 2, size=(20,)) if name in METRICS_REQUIRE_POSITIVE_Y: y_true, y_pred = _require_positive_targets(y_true, y_pred) y_true_shuffle, y_pred_shuffle = shuffle(y_true, y_pred, random_state=0) with ignore_warnings(): metric = ALL_METRICS[name] assert_allclose( metric(y_true, y_pred), metric(y_true_shuffle, y_pred_shuffle), err_msg="%s is not sample order invariant" % name, ) @ignore_warnings def test_sample_order_invariance_multilabel_and_multioutput(): random_state = check_random_state(0) # Generate some data y_true = random_state.randint(0, 2, size=(20, 25)) y_pred = random_state.randint(0, 2, size=(20, 25)) y_score = random_state.normal(size=y_true.shape) y_true_shuffle, y_pred_shuffle, y_score_shuffle = shuffle( y_true, y_pred, y_score, random_state=0 ) for name in MULTILABELS_METRICS: metric = ALL_METRICS[name] assert_allclose( metric(y_true, y_pred), metric(y_true_shuffle, y_pred_shuffle), err_msg="%s is not sample order invariant" % name, ) for name in THRESHOLDED_MULTILABEL_METRICS: metric = ALL_METRICS[name] assert_allclose( metric(y_true, y_score), metric(y_true_shuffle, y_score_shuffle), err_msg="%s is not sample order invariant" % name, ) for name in MULTIOUTPUT_METRICS: metric = ALL_METRICS[name] assert_allclose( metric(y_true, y_score), metric(y_true_shuffle, y_score_shuffle), err_msg="%s is not sample order invariant" % name, ) assert_allclose( metric(y_true, y_pred), metric(y_true_shuffle, y_pred_shuffle), err_msg="%s is not sample order invariant" % name, ) @pytest.mark.parametrize( "name", sorted(set(ALL_METRICS) - METRIC_UNDEFINED_BINARY_MULTICLASS) ) def test_format_invariance_with_1d_vectors(name): random_state = check_random_state(0) y1 = random_state.randint(0, 2, size=(20,)) y2 = random_state.randint(0, 2, size=(20,)) if name in METRICS_REQUIRE_POSITIVE_Y: y1, y2 = _require_positive_targets(y1, y2) y1_list = list(y1) y2_list = list(y2) y1_1d, y2_1d = np.array(y1), np.array(y2) assert_array_equal(y1_1d.ndim, 1) assert_array_equal(y2_1d.ndim, 1) y1_column = np.reshape(y1_1d, (-1, 1)) y2_column = np.reshape(y2_1d, (-1, 1)) y1_row = np.reshape(y1_1d, (1, -1)) y2_row = np.reshape(y2_1d, (1, -1)) with ignore_warnings(): metric = ALL_METRICS[name] measure = metric(y1, y2) assert_allclose( metric(y1_list, y2_list), measure, err_msg="%s is not representation invariant with list" % name, ) assert_allclose( metric(y1_1d, y2_1d), measure, err_msg="%s is not representation invariant with np-array-1d" % name, ) assert_allclose( metric(y1_column, y2_column), measure, err_msg="%s is not representation invariant with np-array-column" % name, ) # Mix format support assert_allclose( metric(y1_1d, y2_list), measure, err_msg="%s is not representation invariant with mix np-array-1d and list" % name, ) assert_allclose( metric(y1_list, y2_1d), measure, err_msg="%s is not representation invariant with mix np-array-1d and list" % name, ) assert_allclose( metric(y1_1d, y2_column), measure, err_msg=( "%s is not representation invariant with mix " "np-array-1d and np-array-column" ) % name, ) assert_allclose( metric(y1_column, y2_1d), measure, err_msg=( "%s is not representation invariant with mix " "np-array-1d and np-array-column" ) % name, ) assert_allclose( metric(y1_list, y2_column), measure, err_msg=( "%s is not representation invariant with mix list and np-array-column" ) % name, ) assert_allclose( metric(y1_column, y2_list), measure, err_msg=( "%s is not representation invariant with mix list and np-array-column" ) % name, ) # These mix representations aren't allowed with pytest.raises(ValueError): metric(y1_1d, y2_row) with pytest.raises(ValueError): metric(y1_row, y2_1d) with pytest.raises(ValueError): metric(y1_list, y2_row) with pytest.raises(ValueError): metric(y1_row, y2_list) with pytest.raises(ValueError): metric(y1_column, y2_row) with pytest.raises(ValueError): metric(y1_row, y2_column) # NB: We do not test for y1_row, y2_row as these may be # interpreted as multilabel or multioutput data. if name not in ( MULTIOUTPUT_METRICS | THRESHOLDED_MULTILABEL_METRICS | MULTILABELS_METRICS ): with pytest.raises(ValueError): metric(y1_row, y2_row) @pytest.mark.parametrize( "name", sorted(set(CLASSIFICATION_METRICS) - METRIC_UNDEFINED_BINARY_MULTICLASS) ) def test_classification_invariance_string_vs_numbers_labels(name): # Ensure that classification metrics with string labels are invariant random_state = check_random_state(0) y1 = random_state.randint(0, 2, size=(20,)) y2 = random_state.randint(0, 2, size=(20,)) y1_str = np.array(["eggs", "spam"])[y1] y2_str = np.array(["eggs", "spam"])[y2] pos_label_str = "spam" labels_str = ["eggs", "spam"] with ignore_warnings(): metric = CLASSIFICATION_METRICS[name] measure_with_number = metric(y1, y2) # Ugly, but handle case with a pos_label and label metric_str = metric if name in METRICS_WITH_POS_LABEL: metric_str = partial(metric_str, pos_label=pos_label_str) measure_with_str = metric_str(y1_str, y2_str) assert_array_equal( measure_with_number, measure_with_str, err_msg="{0} failed string vs number invariance test".format(name), ) measure_with_strobj = metric_str(y1_str.astype("O"), y2_str.astype("O")) assert_array_equal( measure_with_number, measure_with_strobj, err_msg="{0} failed string object vs number invariance test".format(name), ) if name in METRICS_WITH_LABELS: metric_str = partial(metric_str, labels=labels_str) measure_with_str = metric_str(y1_str, y2_str) assert_array_equal( measure_with_number, measure_with_str, err_msg="{0} failed string vs number invariance test".format(name), ) measure_with_strobj = metric_str(y1_str.astype("O"), y2_str.astype("O")) assert_array_equal( measure_with_number, measure_with_strobj, err_msg="{0} failed string vs number invariance test".format(name), ) @pytest.mark.parametrize("name", THRESHOLDED_METRICS) def test_thresholded_invariance_string_vs_numbers_labels(name): # Ensure that thresholded metrics with string labels are invariant random_state = check_random_state(0) y1 = random_state.randint(0, 2, size=(20,)) y2 = random_state.randint(0, 2, size=(20,)) y1_str = np.array(["eggs", "spam"])[y1] pos_label_str = "spam" with ignore_warnings(): metric = THRESHOLDED_METRICS[name] if name not in METRIC_UNDEFINED_BINARY: # Ugly, but handle case with a pos_label and label metric_str = metric if name in METRICS_WITH_POS_LABEL: metric_str = partial(metric_str, pos_label=pos_label_str) measure_with_number = metric(y1, y2) measure_with_str = metric_str(y1_str, y2) assert_array_equal( measure_with_number, measure_with_str, err_msg="{0} failed string vs number invariance test".format(name), ) measure_with_strobj = metric_str(y1_str.astype("O"), y2) assert_array_equal( measure_with_number, measure_with_strobj, err_msg="{0} failed string object vs number invariance test".format( name ), ) else: # TODO those metrics doesn't support string label yet with pytest.raises(ValueError): metric(y1_str, y2) with pytest.raises(ValueError): metric(y1_str.astype("O"), y2) invalids_nan_inf = [ ([0, 1], [np.inf, np.inf]), ([0, 1], [np.nan, np.nan]), ([0, 1], [np.nan, np.inf]), ([0, 1], [np.inf, 1]), ([0, 1], [np.nan, 1]), ] @pytest.mark.parametrize( "metric", chain(THRESHOLDED_METRICS.values(), REGRESSION_METRICS.values()) ) @pytest.mark.parametrize("y_true, y_score", invalids_nan_inf) def test_regression_thresholded_inf_nan_input(metric, y_true, y_score): with pytest.raises(ValueError, match="contains NaN, infinity"): metric(y_true, y_score) @pytest.mark.parametrize("metric", CLASSIFICATION_METRICS.values()) @pytest.mark.parametrize( "y_true, y_score", invalids_nan_inf + # Add an additional case for classification only # non-regression test for: # https://github.com/scikit-learn/scikit-learn/issues/6809 [([np.nan, 1, 2], [1, 2, 3])], # type: ignore ) def test_classification_inf_nan_input(metric, y_true, y_score): """check that classification metrics raise a message mentioning the occurrence of non-finite values in the target vectors.""" err_msg = "Input contains NaN, infinity or a value too large" with pytest.raises(ValueError, match=err_msg): metric(y_true, y_score) @pytest.mark.parametrize("metric", CLASSIFICATION_METRICS.values()) def test_classification_binary_continuous_input(metric): """check that classification metrics raise a message of mixed type data with continuous/binary target vectors.""" y_true, y_score = ["a", "b", "a"], [0.1, 0.2, 0.3] err_msg = ( "Classification metrics can't handle a mix of binary and continuous targets" ) with pytest.raises(ValueError, match=err_msg): metric(y_true, y_score) @ignore_warnings def check_single_sample(name): # Non-regression test: scores should work with a single sample. # This is important for leave-one-out cross validation. # Score functions tested are those that formerly called np.squeeze, # which turns an array of size 1 into a 0-d array (!). metric = ALL_METRICS[name] # assert that no exception is thrown if name in METRICS_REQUIRE_POSITIVE_Y: values = [1, 2] else: values = [0, 1] for i, j in product(values, repeat=2): metric([i], [j]) @ignore_warnings def check_single_sample_multioutput(name): metric = ALL_METRICS[name] for i, j, k, l in product([0, 1], repeat=4): metric(np.array([[i, j]]), np.array([[k, l]])) @pytest.mark.parametrize( "name", sorted( set(ALL_METRICS) # Those metrics are not always defined with one sample # or in multiclass classification - METRIC_UNDEFINED_BINARY_MULTICLASS - set(THRESHOLDED_METRICS) ), ) def test_single_sample(name): check_single_sample(name) @pytest.mark.parametrize("name", sorted(MULTIOUTPUT_METRICS | MULTILABELS_METRICS)) def test_single_sample_multioutput(name): check_single_sample_multioutput(name) @pytest.mark.parametrize("name", sorted(MULTIOUTPUT_METRICS)) def test_multioutput_number_of_output_differ(name): y_true = np.array([[1, 0, 0, 1], [0, 1, 1, 1], [1, 1, 0, 1]]) y_pred = np.array([[0, 0], [1, 0], [0, 0]]) metric = ALL_METRICS[name] with pytest.raises(ValueError): metric(y_true, y_pred) @pytest.mark.parametrize("name", sorted(MULTIOUTPUT_METRICS)) def test_multioutput_regression_invariance_to_dimension_shuffling(name): # test invariance to dimension shuffling random_state = check_random_state(0) y_true = random_state.uniform(0, 2, size=(20, 5)) y_pred = random_state.uniform(0, 2, size=(20, 5)) metric = ALL_METRICS[name] error = metric(y_true, y_pred) for _ in range(3): perm = random_state.permutation(y_true.shape[1]) assert_allclose( metric(y_true[:, perm], y_pred[:, perm]), error, err_msg="%s is not dimension shuffling invariant" % (name), ) @ignore_warnings def test_multilabel_representation_invariance(): # Generate some data n_classes = 4 n_samples = 50 _, y1 = make_multilabel_classification( n_features=1, n_classes=n_classes, random_state=0, n_samples=n_samples, allow_unlabeled=True, ) _, y2 = make_multilabel_classification( n_features=1, n_classes=n_classes, random_state=1, n_samples=n_samples, allow_unlabeled=True, ) # To make sure at least one empty label is present y1 = np.vstack([y1, [[0] * n_classes]]) y2 = np.vstack([y2, [[0] * n_classes]]) y1_sparse_indicator = sp.coo_matrix(y1) y2_sparse_indicator = sp.coo_matrix(y2) y1_list_array_indicator = list(y1) y2_list_array_indicator = list(y2) y1_list_list_indicator = [list(a) for a in y1_list_array_indicator] y2_list_list_indicator = [list(a) for a in y2_list_array_indicator] for name in MULTILABELS_METRICS: metric = ALL_METRICS[name] # XXX cruel hack to work with partial functions if isinstance(metric, partial): metric.__module__ = "tmp" metric.__name__ = name measure = metric(y1, y2) # Check representation invariance assert_allclose( metric(y1_sparse_indicator, y2_sparse_indicator), measure, err_msg=( "%s failed representation invariance between " "dense and sparse indicator formats." ) % name, ) assert_almost_equal( metric(y1_list_list_indicator, y2_list_list_indicator), measure, err_msg=( "%s failed representation invariance " "between dense array and list of list " "indicator formats." ) % name, ) assert_almost_equal( metric(y1_list_array_indicator, y2_list_array_indicator), measure, err_msg=( "%s failed representation invariance " "between dense and list of array " "indicator formats." ) % name, ) @pytest.mark.parametrize("name", sorted(MULTILABELS_METRICS)) def test_raise_value_error_multilabel_sequences(name): # make sure the multilabel-sequence format raises ValueError multilabel_sequences = [ [[1], [2], [0, 1]], [(), (2), (0, 1)], [[]], [()], np.array([[], [1, 2]], dtype="object"), ] metric = ALL_METRICS[name] for seq in multilabel_sequences: with pytest.raises(ValueError): metric(seq, seq) @pytest.mark.parametrize("name", sorted(METRICS_WITH_NORMALIZE_OPTION)) def test_normalize_option_binary_classification(name): # Test in the binary case n_classes = 2 n_samples = 20 random_state = check_random_state(0) y_true = random_state.randint(0, n_classes, size=(n_samples,)) y_pred = random_state.randint(0, n_classes, size=(n_samples,)) y_score = random_state.normal(size=y_true.shape) metrics = ALL_METRICS[name] pred = y_score if name in THRESHOLDED_METRICS else y_pred measure_normalized = metrics(y_true, pred, normalize=True) measure_not_normalized = metrics(y_true, pred, normalize=False) assert_array_less( -1.0 * measure_normalized, 0, err_msg="We failed to test correctly the normalize option", ) assert_allclose( measure_normalized, measure_not_normalized / n_samples, err_msg=f"Failed with {name}", ) @pytest.mark.parametrize("name", sorted(METRICS_WITH_NORMALIZE_OPTION)) def test_normalize_option_multiclass_classification(name): # Test in the multiclass case n_classes = 4 n_samples = 20 random_state = check_random_state(0) y_true = random_state.randint(0, n_classes, size=(n_samples,)) y_pred = random_state.randint(0, n_classes, size=(n_samples,)) y_score = random_state.uniform(size=(n_samples, n_classes)) metrics = ALL_METRICS[name] pred = y_score if name in THRESHOLDED_METRICS else y_pred measure_normalized = metrics(y_true, pred, normalize=True) measure_not_normalized = metrics(y_true, pred, normalize=False) assert_array_less( -1.0 * measure_normalized, 0, err_msg="We failed to test correctly the normalize option", ) assert_allclose( measure_normalized, measure_not_normalized / n_samples, err_msg=f"Failed with {name}", ) @pytest.mark.parametrize( "name", sorted(METRICS_WITH_NORMALIZE_OPTION.intersection(MULTILABELS_METRICS)) ) def test_normalize_option_multilabel_classification(name): # Test in the multilabel case n_classes = 4 n_samples = 100 random_state = check_random_state(0) # for both random_state 0 and 1, y_true and y_pred has at least one # unlabelled entry _, y_true = make_multilabel_classification( n_features=1, n_classes=n_classes, random_state=0, allow_unlabeled=True, n_samples=n_samples, ) _, y_pred = make_multilabel_classification( n_features=1, n_classes=n_classes, random_state=1, allow_unlabeled=True, n_samples=n_samples, ) y_score = random_state.uniform(size=y_true.shape) # To make sure at least one empty label is present y_true += [0] * n_classes y_pred += [0] * n_classes metrics = ALL_METRICS[name] pred = y_score if name in THRESHOLDED_METRICS else y_pred measure_normalized = metrics(y_true, pred, normalize=True) measure_not_normalized = metrics(y_true, pred, normalize=False) assert_array_less( -1.0 * measure_normalized, 0, err_msg="We failed to test correctly the normalize option", ) assert_allclose( measure_normalized, measure_not_normalized / n_samples, err_msg=f"Failed with {name}", ) @ignore_warnings def _check_averaging( metric, y_true, y_pred, y_true_binarize, y_pred_binarize, is_multilabel ): n_samples, n_classes = y_true_binarize.shape # No averaging label_measure = metric(y_true, y_pred, average=None) assert_allclose( label_measure, [ metric(y_true_binarize[:, i], y_pred_binarize[:, i]) for i in range(n_classes) ], ) # Micro measure micro_measure = metric(y_true, y_pred, average="micro") assert_allclose( micro_measure, metric(y_true_binarize.ravel(), y_pred_binarize.ravel()) ) # Macro measure macro_measure = metric(y_true, y_pred, average="macro") assert_allclose(macro_measure, np.mean(label_measure)) # Weighted measure weights = np.sum(y_true_binarize, axis=0, dtype=int) if np.sum(weights) != 0: weighted_measure = metric(y_true, y_pred, average="weighted") assert_allclose(weighted_measure, np.average(label_measure, weights=weights)) else: weighted_measure = metric(y_true, y_pred, average="weighted") assert_allclose(weighted_measure, 0) # Sample measure if is_multilabel: sample_measure = metric(y_true, y_pred, average="samples") assert_allclose( sample_measure, np.mean( [ metric(y_true_binarize[i], y_pred_binarize[i]) for i in range(n_samples) ] ), ) with pytest.raises(ValueError): metric(y_true, y_pred, average="unknown") with pytest.raises(ValueError): metric(y_true, y_pred, average="garbage") def check_averaging(name, y_true, y_true_binarize, y_pred, y_pred_binarize, y_score): is_multilabel = type_of_target(y_true).startswith("multilabel") metric = ALL_METRICS[name] if name in METRICS_WITH_AVERAGING: _check_averaging( metric, y_true, y_pred, y_true_binarize, y_pred_binarize, is_multilabel ) elif name in THRESHOLDED_METRICS_WITH_AVERAGING: _check_averaging( metric, y_true, y_score, y_true_binarize, y_score, is_multilabel ) else: raise ValueError("Metric is not recorded as having an average option") @pytest.mark.parametrize("name", sorted(METRICS_WITH_AVERAGING)) def test_averaging_multiclass(name): n_samples, n_classes = 50, 3 random_state = check_random_state(0) y_true = random_state.randint(0, n_classes, size=(n_samples,)) y_pred = random_state.randint(0, n_classes, size=(n_samples,)) y_score = random_state.uniform(size=(n_samples, n_classes)) lb = LabelBinarizer().fit(y_true) y_true_binarize = lb.transform(y_true) y_pred_binarize = lb.transform(y_pred) check_averaging(name, y_true, y_true_binarize, y_pred, y_pred_binarize, y_score) @pytest.mark.parametrize( "name", sorted(METRICS_WITH_AVERAGING | THRESHOLDED_METRICS_WITH_AVERAGING) ) def test_averaging_multilabel(name): n_samples, n_classes = 40, 5 _, y = make_multilabel_classification( n_features=1, n_classes=n_classes, random_state=5, n_samples=n_samples, allow_unlabeled=False, ) y_true = y[:20] y_pred = y[20:] y_score = check_random_state(0).normal(size=(20, n_classes)) y_true_binarize = y_true y_pred_binarize = y_pred check_averaging(name, y_true, y_true_binarize, y_pred, y_pred_binarize, y_score) @pytest.mark.parametrize("name", sorted(METRICS_WITH_AVERAGING)) def test_averaging_multilabel_all_zeroes(name): y_true = np.zeros((20, 3)) y_pred = np.zeros((20, 3)) y_score = np.zeros((20, 3)) y_true_binarize = y_true y_pred_binarize = y_pred check_averaging(name, y_true, y_true_binarize, y_pred, y_pred_binarize, y_score) def test_averaging_binary_multilabel_all_zeroes(): y_true = np.zeros((20, 3)) y_pred = np.zeros((20, 3)) y_true_binarize = y_true y_pred_binarize = y_pred # Test _average_binary_score for weight.sum() == 0 binary_metric = lambda y_true, y_score, average="macro": _average_binary_score( precision_score, y_true, y_score, average ) _check_averaging( binary_metric, y_true, y_pred, y_true_binarize, y_pred_binarize, is_multilabel=True, ) @pytest.mark.parametrize("name", sorted(METRICS_WITH_AVERAGING)) def test_averaging_multilabel_all_ones(name): y_true = np.ones((20, 3)) y_pred = np.ones((20, 3)) y_score = np.ones((20, 3)) y_true_binarize = y_true y_pred_binarize = y_pred check_averaging(name, y_true, y_true_binarize, y_pred, y_pred_binarize, y_score) @ignore_warnings def check_sample_weight_invariance(name, metric, y1, y2): rng = np.random.RandomState(0) sample_weight = rng.randint(1, 10, size=len(y1)) # top_k_accuracy_score always lead to a perfect score for k > 1 in the # binary case metric = partial(metric, k=1) if name == "top_k_accuracy_score" else metric # check that unit weights gives the same score as no weight unweighted_score = metric(y1, y2, sample_weight=None) assert_allclose( unweighted_score, metric(y1, y2, sample_weight=np.ones(shape=len(y1))), err_msg="For %s sample_weight=None is not equivalent to sample_weight=ones" % name, ) # check that the weighted and unweighted scores are unequal weighted_score = metric(y1, y2, sample_weight=sample_weight) # use context manager to supply custom error message with pytest.raises(AssertionError): assert_allclose(unweighted_score, weighted_score) raise ValueError( "Unweighted and weighted scores are unexpectedly " "almost equal (%s) and (%s) " "for %s" % (unweighted_score, weighted_score, name) ) # check that sample_weight can be a list weighted_score_list = metric(y1, y2, sample_weight=sample_weight.tolist()) assert_allclose( weighted_score, weighted_score_list, err_msg=( "Weighted scores for array and list " "sample_weight input are not equal (%s != %s) for %s" ) % (weighted_score, weighted_score_list, name), ) # check that integer weights is the same as repeated samples repeat_weighted_score = metric( np.repeat(y1, sample_weight, axis=0), np.repeat(y2, sample_weight, axis=0), sample_weight=None, ) assert_allclose( weighted_score, repeat_weighted_score, err_msg="Weighting %s is not equal to repeating samples" % name, ) # check that ignoring a fraction of the samples is equivalent to setting # the corresponding weights to zero sample_weight_subset = sample_weight[1::2] sample_weight_zeroed = np.copy(sample_weight) sample_weight_zeroed[::2] = 0 y1_subset = y1[1::2] y2_subset = y2[1::2] weighted_score_subset = metric( y1_subset, y2_subset, sample_weight=sample_weight_subset ) weighted_score_zeroed = metric(y1, y2, sample_weight=sample_weight_zeroed) assert_allclose( weighted_score_subset, weighted_score_zeroed, err_msg=( "Zeroing weights does not give the same result as " "removing the corresponding samples (%s != %s) for %s" ) % (weighted_score_zeroed, weighted_score_subset, name), ) if not name.startswith("unnormalized"): # check that the score is invariant under scaling of the weights by a # common factor for scaling in [2, 0.3]: assert_allclose( weighted_score, metric(y1, y2, sample_weight=sample_weight * scaling), err_msg="%s sample_weight is not invariant under scaling" % name, ) # Check that if number of samples in y_true and sample_weight are not # equal, meaningful error is raised. error_message = ( r"Found input variables with inconsistent numbers of " r"samples: \[{}, {}, {}\]".format( _num_samples(y1), _num_samples(y2), _num_samples(sample_weight) * 2 ) ) with pytest.raises(ValueError, match=error_message): metric(y1, y2, sample_weight=np.hstack([sample_weight, sample_weight])) @pytest.mark.parametrize( "name", sorted( set(ALL_METRICS).intersection(set(REGRESSION_METRICS)) - METRICS_WITHOUT_SAMPLE_WEIGHT ), ) def test_regression_sample_weight_invariance(name): n_samples = 50 random_state = check_random_state(0) # regression y_true = random_state.random_sample(size=(n_samples,)) y_pred = random_state.random_sample(size=(n_samples,)) metric = ALL_METRICS[name] check_sample_weight_invariance(name, metric, y_true, y_pred) @pytest.mark.parametrize( "name", sorted( set(ALL_METRICS) - set(REGRESSION_METRICS) - METRICS_WITHOUT_SAMPLE_WEIGHT - METRIC_UNDEFINED_BINARY ), ) def test_binary_sample_weight_invariance(name): # binary n_samples = 50 random_state = check_random_state(0) y_true = random_state.randint(0, 2, size=(n_samples,)) y_pred = random_state.randint(0, 2, size=(n_samples,)) y_score = random_state.random_sample(size=(n_samples,)) metric = ALL_METRICS[name] if name in THRESHOLDED_METRICS: check_sample_weight_invariance(name, metric, y_true, y_score) else: check_sample_weight_invariance(name, metric, y_true, y_pred) @pytest.mark.parametrize( "name", sorted( set(ALL_METRICS) - set(REGRESSION_METRICS) - METRICS_WITHOUT_SAMPLE_WEIGHT - METRIC_UNDEFINED_BINARY_MULTICLASS ), ) def test_multiclass_sample_weight_invariance(name): # multiclass n_samples = 50 random_state = check_random_state(0) y_true = random_state.randint(0, 5, size=(n_samples,)) y_pred = random_state.randint(0, 5, size=(n_samples,)) y_score = random_state.random_sample(size=(n_samples, 5)) metric = ALL_METRICS[name] if name in THRESHOLDED_METRICS: # softmax temp = np.exp(-y_score) y_score_norm = temp / temp.sum(axis=-1).reshape(-1, 1) check_sample_weight_invariance(name, metric, y_true, y_score_norm) else: check_sample_weight_invariance(name, metric, y_true, y_pred) @pytest.mark.parametrize( "name", sorted( (MULTILABELS_METRICS | THRESHOLDED_MULTILABEL_METRICS | MULTIOUTPUT_METRICS) - METRICS_WITHOUT_SAMPLE_WEIGHT ), ) def test_multilabel_sample_weight_invariance(name): # multilabel indicator random_state = check_random_state(0) _, ya = make_multilabel_classification( n_features=1, n_classes=10, random_state=0, n_samples=50, allow_unlabeled=False ) _, yb = make_multilabel_classification( n_features=1, n_classes=10, random_state=1, n_samples=50, allow_unlabeled=False ) y_true = np.vstack([ya, yb]) y_pred = np.vstack([ya, ya]) y_score = random_state.randint(1, 4, size=y_true.shape) metric = ALL_METRICS[name] if name in THRESHOLDED_METRICS: check_sample_weight_invariance(name, metric, y_true, y_score) else: check_sample_weight_invariance(name, metric, y_true, y_pred) @ignore_warnings def test_no_averaging_labels(): # test labels argument when not using averaging # in multi-class and multi-label cases y_true_multilabel = np.array([[1, 1, 0, 0], [1, 1, 0, 0]]) y_pred_multilabel = np.array([[0, 0, 1, 1], [0, 1, 1, 0]]) y_true_multiclass = np.array([0, 1, 2]) y_pred_multiclass = np.array([0, 2, 3]) labels = np.array([3, 0, 1, 2]) _, inverse_labels = np.unique(labels, return_inverse=True) for name in METRICS_WITH_AVERAGING: for y_true, y_pred in [ [y_true_multiclass, y_pred_multiclass], [y_true_multilabel, y_pred_multilabel], ]: if name not in MULTILABELS_METRICS and y_pred.ndim > 1: continue metric = ALL_METRICS[name] score_labels = metric(y_true, y_pred, labels=labels, average=None) score = metric(y_true, y_pred, average=None) assert_array_equal(score_labels, score[inverse_labels]) @pytest.mark.parametrize( "name", sorted(MULTILABELS_METRICS - {"unnormalized_multilabel_confusion_matrix"}) ) def test_multilabel_label_permutations_invariance(name): random_state = check_random_state(0) n_samples, n_classes = 20, 4 y_true = random_state.randint(0, 2, size=(n_samples, n_classes)) y_score = random_state.randint(0, 2, size=(n_samples, n_classes)) metric = ALL_METRICS[name] score = metric(y_true, y_score) for perm in permutations(range(n_classes), n_classes): y_score_perm = y_score[:, perm] y_true_perm = y_true[:, perm] current_score = metric(y_true_perm, y_score_perm) assert_almost_equal(score, current_score) @pytest.mark.parametrize( "name", sorted(THRESHOLDED_MULTILABEL_METRICS | MULTIOUTPUT_METRICS) ) def test_thresholded_multilabel_multioutput_permutations_invariance(name): random_state = check_random_state(0) n_samples, n_classes = 20, 4 y_true = random_state.randint(0, 2, size=(n_samples, n_classes)) y_score = random_state.normal(size=y_true.shape) # Makes sure all samples have at least one label. This works around errors # when running metrics where average="sample" y_true[y_true.sum(1) == 4, 0] = 0 y_true[y_true.sum(1) == 0, 0] = 1 metric = ALL_METRICS[name] score = metric(y_true, y_score) for perm in permutations(range(n_classes), n_classes): y_score_perm = y_score[:, perm] y_true_perm = y_true[:, perm] current_score = metric(y_true_perm, y_score_perm) if metric == mean_absolute_percentage_error: assert np.isfinite(current_score) assert current_score > 1e6 # Here we are not comparing the values in case of MAPE because # whenever y_true value is exactly zero, the MAPE value doesn't # signify anything. Thus, in this case we are just expecting # very large finite value. else: assert_almost_equal(score, current_score) @pytest.mark.parametrize( "name", sorted(set(THRESHOLDED_METRICS) - METRIC_UNDEFINED_BINARY_MULTICLASS) ) def test_thresholded_metric_permutation_invariance(name): n_samples, n_classes = 100, 3 random_state = check_random_state(0) y_score = random_state.rand(n_samples, n_classes) temp = np.exp(-y_score) y_score = temp / temp.sum(axis=-1).reshape(-1, 1) y_true = random_state.randint(0, n_classes, size=n_samples) metric = ALL_METRICS[name] score = metric(y_true, y_score) for perm in permutations(range(n_classes), n_classes): inverse_perm = np.zeros(n_classes, dtype=int) inverse_perm[list(perm)] = np.arange(n_classes) y_score_perm = y_score[:, inverse_perm] y_true_perm = np.take(perm, y_true) current_score = metric(y_true_perm, y_score_perm) assert_almost_equal(score, current_score) @pytest.mark.parametrize("metric_name", CLASSIFICATION_METRICS) def test_metrics_consistent_type_error(metric_name): # check that an understable message is raised when the type between y_true # and y_pred mismatch rng = np.random.RandomState(42) y1 = np.array(["spam"] * 3 + ["eggs"] * 2, dtype=object) y2 = rng.randint(0, 2, size=y1.size) err_msg = "Labels in y_true and y_pred should be of the same type." with pytest.raises(TypeError, match=err_msg): CLASSIFICATION_METRICS[metric_name](y1, y2) @pytest.mark.parametrize( "metric, y_pred_threshold", [ (average_precision_score, True), (brier_score_loss, True), (f1_score, False), (partial(fbeta_score, beta=1), False), (jaccard_score, False), (precision_recall_curve, True), (precision_score, False), (recall_score, False), (roc_curve, True), ], ) @pytest.mark.parametrize("dtype_y_str", [str, object]) def test_metrics_pos_label_error_str(metric, y_pred_threshold, dtype_y_str): # check that the error message if `pos_label` is not specified and the # targets is made of strings. rng = np.random.RandomState(42) y1 = np.array(["spam"] * 3 + ["eggs"] * 2, dtype=dtype_y_str) y2 = rng.randint(0, 2, size=y1.size) if not y_pred_threshold: y2 = np.array(["spam", "eggs"], dtype=dtype_y_str)[y2] err_msg_pos_label_None = ( "y_true takes value in {'eggs', 'spam'} and pos_label is not " "specified: either make y_true take value in {0, 1} or {-1, 1} or " "pass pos_label explicit" ) err_msg_pos_label_1 = ( r"pos_label=1 is not a valid label. It should be one of " r"\['eggs', 'spam'\]" ) pos_label_default = signature(metric).parameters["pos_label"].default err_msg = err_msg_pos_label_1 if pos_label_default == 1 else err_msg_pos_label_None with pytest.raises(ValueError, match=err_msg): metric(y1, y2)
the-stack_0_14791
"""A class to represent a chemical species.""" # The MIT License (MIT) # # Copyright (c) 2018 Institute for Molecular Systems Biology, ETH Zurich. # Copyright (c) 2019 Novo Nordisk Foundation Center for Biosustainability, # Technical University of Denmark # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from typing import ( Dict, TypeVar ) from logging import ( Logger, getLogger ) from copy import deepcopy from chemlite import Compound from rplibs.rpObject import rpObject class rpCompound(Compound, rpObject): """A class to implement a chemical species enriched with FBA and thermodynamics informations. """ __thermo_str = 'standard_dg_formation' __fba_str = 'shadow_price' def __init__( self, id: str, smiles: str = '', inchi: str = '', inchikey: str = '', formula: str = '', name: str = '', compartment_id: str = 'c', logger: Logger = getLogger(__name__) ): """Create a rpCompound object with default settings. Parameters ---------- id: str smiles: str, optional inchi: str, optional inchikey: str, optional formula: str, optional name: str, optional compartment_id: str, optional logger : Logger, optional """ Compound.__init__( self, id=id, smiles=smiles, inchi=inchi, inchikey=inchikey, formula=formula, name=name, logger=logger ) rpObject.__init__(self) self.set_compartment(compartment_id) def _to_dict( self, full: bool = True ) -> Dict: """Get attributes as a dictionary. Parameters ---------- full: bool, optional If set to False, the returned dictionary will not contain attributes inherited from Compound class (default: True). """ if full: return { **Compound._to_dict(self), **rpObject._to_dict(self), **self.__to_dict() } else: return { **self.__to_dict(), **rpObject._to_dict(self) } def __to_dict(self) -> Dict: """Returns a dictionary which contains attributes only from rpCompound class excluding inherited ones.""" return { # 'compartment': self.get_compartment() } # def __eq__(self, other) -> bool: # """Returns the equality between two rpCompound objects.""" # return super(Compound, self).__eq__(other) def get_thermo_standard_dg_formation(self) -> TypeVar: """Get thermodynamics dG formation cost.""" return self.get_thermo_info(rpCompound.__thermo_str) def get_fba_biomass_shadow_price(self) -> TypeVar: """Get flux shadow price during biomass production.""" return self.get_fba_info(f'biomass_{rpCompound.__fba_str}') def get_fba_fraction_shadow_price(self) -> TypeVar: """Get flux shadow price during fraction of reaction analysis.""" return self.get_fba_info(f'fraction_{rpCompound.__fba_str}') def get_fba_fba_shadow_price(self) -> TypeVar: """Get flux shadow price during balance analysis.""" return self.get_fba_info(f'fba_{rpCompound.__fba_str}') def get_fba_pfba_shadow_price(self) -> TypeVar: """Get flux shadow price during parcimonious balance analysis.""" return self.get_fba_info(f'pfba_{rpCompound.__fba_str}') def get_compartment(self) -> str: """Get compound compartment ID.""" return self.__compartment def set_thermo_standard_dg_formation(self, value: float) -> None: """Set dG formation cost. Parameters ---------- value: float """ self.add_thermo_info(rpCompound.__thermo_str, value) def set_fba_biomass_shadow_price(self, value: float) -> None: """Set flux shadow price during biomass production. Parameters ---------- value: float """ self.add_fba_info(f'biomass_{rpCompound.__fba_str}', value) def set_fba_fraction_shadow_price(self, value: float) -> None: """Set flux shadow price during fraction of reaction analysis. Parameters ---------- value: float """ self.add_fba_info(f'fraction_{rpCompound.__fba_str}', value) def set_fba_fba_shadow_price(self, value: float) -> None: """Set flux shadow price during balance analysis.. Parameters ---------- value: float """ self.add_fba_info(f'fba_{rpCompound.__fba_str}', value) def set_fba_pfba_shadow_price(self, value: float) -> None: """Set flux shadow price during parcimonious balance analysis. Parameters ---------- value: float """ self.add_fba_info(f'pfba_{rpCompound.__fba_str}', value) def set_compartment(self, compartment: str) -> None: """Set compartment ID of the compound. Parameters ---------- compartment: str """ self.__compartment = compartment @staticmethod def from_compound( compound:Compound, compartment_id:str='c', logger: Logger = getLogger(__name__) ) -> 'rpCompound': '''Create a rpCompound object from a Compound object :param compound: A Compound object :param compartment_id: A compartment id (Default: 'c') :param logger: A logging object (Default: create one) :type compound: Compound :type compartment_id: str :type logger: logging :return: An rpCompound object :rtype: rpCompound ''' return rpCompound( id=compound.get_id(), smiles=compound.get_smiles(), inchi=compound.get_inchi(), inchikey=compound.get_inchikey(), formula=compound.get_formula(), name=compound.get_name(), compartment_id=compartment_id, logger=logger )
the-stack_0_14792
from setuptools import setup, find_packages import codecs import os def get_lookup(): """get version by way of sourcecred.version, returns a lookup dictionary with several global variables without needing to import singularity """ lookup = dict() version_file = os.path.join("sourcecred", "version.py") with open(version_file) as filey: exec(filey.read(), lookup) return lookup # Read in requirements def get_reqs(lookup=None, key="INSTALL_REQUIRES"): """get requirements, mean reading in requirements and versions from the lookup obtained with get_lookup """ if lookup == None: lookup = get_lookup() install_requires = [] for module in lookup[key]: module_name = module[0] module_meta = module[1] if "exact_version" in module_meta: dependency = "%s==%s" % (module_name, module_meta["exact_version"]) elif "min_version" in module_meta: if module_meta["min_version"] == None: dependency = module_name else: dependency = "%s>=%s" % (module_name, module_meta["min_version"]) install_requires.append(dependency) return install_requires # Make sure everything is relative to setup.py install_path = os.path.dirname(os.path.abspath(__file__)) os.chdir(install_path) # Get version information from the lookup lookup = get_lookup() VERSION = lookup["__version__"] NAME = lookup["NAME"] AUTHOR = lookup["AUTHOR"] AUTHOR_EMAIL = lookup["AUTHOR_EMAIL"] PACKAGE_URL = lookup["PACKAGE_URL"] KEYWORDS = lookup["KEYWORDS"] DESCRIPTION = lookup["DESCRIPTION"] LICENSE = lookup["LICENSE"] with open("README.md") as filey: LONG_DESCRIPTION = filey.read() ################################################################################ # MAIN ######################################################################### ################################################################################ if __name__ == "__main__": INSTALL_REQUIRES = get_reqs(lookup) TESTS_REQUIRES = get_reqs(lookup, "TESTS_REQUIRES") setup( name=NAME, version=VERSION, author=AUTHOR, author_email=AUTHOR_EMAIL, maintainer=AUTHOR, maintainer_email=AUTHOR_EMAIL, packages=find_packages(), include_package_data=True, zip_safe=False, url=PACKAGE_URL, license=LICENSE, description=DESCRIPTION, long_description=LONG_DESCRIPTION, long_description_content_type="text/markdown", keywords=KEYWORDS, setup_requires=["pytest-runner"], install_requires=INSTALL_REQUIRES, tests_require=TESTS_REQUIRES, classifiers=[ "Intended Audience :: Science/Research", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "License :: OSI Approved :: Apache Software License", "Programming Language :: Python", "Topic :: Software Development", "Topic :: Scientific/Engineering", "Operating System :: Unix", "Programming Language :: Python :: 3.7", ], entry_points={"console_scripts": ["sourcecred=sourcecred.cli:main"]}, )
the-stack_0_14794
from random import randint import codecs import time compteur = False def traitement(mot): liste = [] for x in range(1, len(mot)-1): liste.append(mot[x]) res = mot while res == mot: alea = [] cp_liste = liste.copy() n = None for x in range(0, len(cp_liste)): n = randint(0, len(cp_liste)-1) alea.append(cp_liste[n]) cp_liste.remove(cp_liste[n]) alea = ''.join(alea) res = mot[0]+alea+mot[-1] return res sortie = [] i = 0 print(f"Traitement en cours...") try: if compteur: print("") fichier = codecs.open("input.txt", "r", "utf-8") texte = fichier.read() texte2 = texte lignes = texte.split("\n") nb_mots = len(texte2.split(" ")) + len(lignes) - 1 fichier.close() tps1 = time.time() for x in range(0, len(lignes)): lignes[x] = lignes[x].split(" ") sortie_lignes = [] for mot in lignes[x]: if len(mot.split("-")) > 1: tirets = [] for tiret in mot.split("-"): if len(tiret) >= 4: tirets.append(f"{traitement(tiret)}") else: tirets.append(f"{tiret}") tirets = '-'.join(tirets) sortie.append(tirets) else: if len(mot) >= 4: sortie.append(traitement(mot)) else: sortie.append(mot) if compteur: i = i + 1 p = "{:06.2F}".format(i * 100 / nb_mots) print(f"[{p}%] {i} sur {nb_mots} Traité") sortie.append("\n") tps2 = time.time() with codecs.open("output.txt","w", "utf-8") as fichier: for x in range(0, len(lignes)): sortie_lignes = " ".join(sortie).split("\n") sortie_lignes[x] = sortie_lignes[x].strip() fichier.write(f"{sortie_lignes[x]}\n") fichier.close() print(f"\n {nb_mots} mots en {(tps2 - tps1)} seconde(s)") print(f" {int(nb_mots/(tps2 - tps1))} Mots/s\n") except Exception as e: print(f" /!\\ Erreur: {e}\n")
the-stack_0_14796
#!/usr/bin/python import math import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib import colors as mcolors import matplotlib.ticker as ticker from matplotlib import cm import sys sys.path.append('../../python') from instance import Instance import visualizer import histogram #------------------------------------------------------------------------------ # Load the gene clusters from text files #------------------------------------------------------------------------------ def load_clusters(filename): file = open(filename, 'r') content = file.read().splitlines() file.close() gene_clusters = [] for line in content: gene_cluster = [] atoms_str = line.split(' ') for elt in atoms_str: tokens = elt.split('_') if len(tokens) == 2: atom = (tokens[0], int(tokens[1])) gene_cluster.append(atom) gene_clusters.append(gene_cluster) return gene_clusters #------------------------------------------------------------------------------ # Print the gene clusters formatted in LaTex #------------------------------------------------------------------------------ def print_cluster_latex(instance, cluster): print(cluster) cluster_values = { (0,3):0, (0,2):1, (0,1):2, (1,3):3, (1,2):4, (2,3):5, (1,1):6, (2,2):7, (3,3):9} ordered_cluster = cluster.copy() ordered_cluster.sort(key = lambda atom: cluster_values[(atom[1], instance.n_values[atom[0]]-1)]) # output the clusters formatted in LaTex res = '' for elt in ordered_cluster: atom_index = instance.get_atom_index(elt) val = elt[1] nval = instance.n_values[elt[0]] color_str = None if nval == 2: if val == 0: color_str = 'BrickRed' elif val == 1: color_str = 'OliveGreen' elif nval == 3: if val == 0: color_str = 'BrickRed' elif val == 1: color_str = 'Goldenrod' elif val == 2: color_str = 'OliveGreen' elif nval == 4: if val == 0: color_str = 'BrickRed' elif val == 1: color_str = 'Orange' elif val == 2: color_str = 'SpringGreen' elif val == 3: color_str = 'OliveGreen' res += '\\textcolor{' + color_str + '}{$\\boldsymbol{\\textit{' + elt[0] + '}' + '_{' + str(elt[1]) + '/' + str(nval-1) + '}}$}, ' print(res) return #------------------------------------------------------------------------------ # Print the gene clusters #------------------------------------------------------------------------------ def print_gene_clusters(gene_clusters): for ind_cluster in range(len(gene_clusters)): print('gene cluster ', ind_cluster, ': ') str_clusters = '' for atom in gene_clusters[ind_cluster]: str_clusters += atom[0] + '_' + str(atom[1]) + ', ' print(str_clusters) print('\n\n') return #------------------------------------------------------------------------------ # Plot the rule matching error for a body #------------------------------------------------------------------------------ def plot_rule_error(df_discrete, df_coordinates, instance, body, ax): histo = histogram.Histogram(instance, body, histogram.Histogram_type.GLOBAL) plasma = cm.get_cmap('plasma_r', 256) cnorm = mcolors.Normalize(vmin=0, vmax=len(histo.positive_histogram)) cell_score = {barcode : error for error in range(len(histo.positive_histogram)) for barcode in histo.positive_histogram[error]} # sort all the cells according to the score barcodes = [index for index in df_coordinates.index] barcodes.sort(key = lambda elt: cell_score[elt], reverse=True) df_coordinates_sorted = df_coordinates.loc[barcodes] col = [cell_score[barcode] for barcode in df_coordinates_sorted.index] ax.scatter(df_coordinates_sorted['UMAP_1'].values, df_coordinates_sorted['UMAP_2'].values, c=col, cmap=plasma, norm=cnorm, s=3) # remove UMAP coordinates ax.xaxis.set_major_locator(ticker.NullLocator()) ax.yaxis.set_major_locator(ticker.NullLocator()) ax.set_xlabel('UMAP 1') ax.set_ylabel('UMAP 2') # squared plots # ax.set_aspect((ax.get_ylim()[1]-ax.get_ylim()[0])/(ax.get_xlim()[1]-ax.get_xlim()[0])) ax.set_aspect((ax.get_xlim()[1]-ax.get_xlim()[0])/(ax.get_ylim()[1]-ax.get_ylim()[0])) cbar = ax.get_figure().colorbar(cm.ScalarMappable(norm=cnorm, cmap=plasma), ax=ax) cbar.set_label('Matching error') # cbar.set_label('Erreur de couv.') return #------------------------------------------------------------------------------ # Plot the cell scores for each cluster #------------------------------------------------------------------------------ def plot_cell_scores(df_discrete, df_coordinates, gene_clusters, cluster_selection = None, n_col = 3, title=None): instance = Instance.create_random_instance(df_discrete.copy(deep=False), 0.5) if cluster_selection == None: cluster_indexes = [ind for ind in range(len(gene_clusters))] else: cluster_indexes = cluster_selection n_line = math.ceil(len(cluster_indexes)/n_col) fig, axs = plt.subplots(n_line, n_col) # fig.tight_layout() ind_plot = 0 for ind_line in range(n_line): for ind_col in range(n_col): if ind_plot < len(cluster_indexes): ax = axs[ind_line, ind_col] ind_cluster = cluster_indexes[ind_plot] body = [instance.get_atom_index(atom) for atom in gene_clusters[ind_cluster] ] plot_rule_error(df_discrete, df_coordinates, instance, body, ax) ax.set_title('cluster ' + str(ind_cluster)) ind_plot += 1 # title = None if title != None: fig.suptitle(title) return #------------------------------------------------------------------------------ # create a dataframe with the gene clusters identity #------------------------------------------------------------------------------ def create_dataframe_clusters(filename, gene_clusters): genes = np.concatenate(gene_clusters) data = [ [int(elt[1]) ] for elt in genes] for ind_gene in range(len(genes)): for ind_cluster in range(len(gene_clusters)): gene_cluster = gene_clusters[ind_cluster] if (genes[ind_gene][0], int(genes[ind_gene][1])) in gene_cluster: data[ind_gene].append(1) else: data[ind_gene].append(0) df_gene_clusters = pd.DataFrame(data, index=[elt[0] for elt in genes], columns=['gene_value'] + ['cluster_'+str(ind) for ind in range(len(gene_clusters))]) df_gene_clusters.to_csv(filename) return #------------------------------------------------------------------------------ # create a dataframe containing the matching error for all cells on the clusters #------------------------------------------------------------------------------ def create_cell_score_dataframe(filename, df_discrete, gene_clusters): instance = Instance.create_random_instance(df_discrete.copy(deep=False), 0.5) data = [[] for _ in df_discrete.index] barcode_to_ind = { df_discrete.index[ind]:ind for ind in range(len(df_discrete.index))} for ind_cluster in range(len(gene_clusters)): print('gene cluster index: ', ind_cluster) body = [instance.get_atom_index(atom) for atom in gene_clusters[ind_cluster] ] histo = histogram.Histogram(instance, body, histogram.Histogram_type.GLOBAL) for error in range(len(body)+1): cell_score = 1.-error/len(body) for barcode in histo.positive_histogram[error]: data[barcode_to_ind[barcode]].append(cell_score) df_cell_score = pd.DataFrame(data, index=df_discrete.index, columns=['gene_cluster_' + str(ind) for ind in range(len(gene_clusters))]) df_cell_score.to_csv(filename) return #------------------------------------------------------------------------------ # create a discrete dataframe with a subset of the cells #------------------------------------------------------------------------------ def create_sub_dataframe(filename, df_discrete, selected_cells): df_sub_discrete = df_discrete.copy() df_sub_discrete = df_sub_discrete.loc[selected_cells] df_sub_discrete = df_sub_discrete.loc[:, (df_sub_discrete != df_sub_discrete.iloc[0]).any()] # remove potential constant columns # print(df_sub_discrete) # print('filename: ', filename) df_sub_discrete.to_csv(filename) return #------------------------------------------------------------------------------ # compose the cells into two subset based on the cluster matching error #------------------------------------------------------------------------------ def decompose_cluster(df_coordinates, instance, gene_clusters, cluster_index, error_threshold, all_cells = False): # plot global histogram from cluster 6 and select cells with a small matching error body = [instance.get_atom_index(atom) for atom in gene_clusters[cluster_index] ] histo = histogram.Histogram(instance, body, histogram.Histogram_type.GLOBAL) fig,ax = plt.subplots() visualizer.plot_global_histogram(ax, histo) ax.set_ylabel('cell proportion') title = 'Matching error of cluster ' + str(cluster_index) if all_cells: title += ' on all cells' else: title += ' on the myeloids' ax.set_title(title) selected_cells = [cell for error in range(error_threshold+1) for cell in histo.positive_histogram[error]] selected_cells remaining_cells = [barcode for barcode in df_coordinates.index if not barcode in selected_cells] # plot the selected cells from cluster 6 in the UMAP fig, ax = plt.subplots() ax.scatter(df_coordinates.loc[selected_cells]['UMAP_1'].values, df_coordinates.loc[selected_cells]['UMAP_2'].values, s=3, c='red', zorder=1, label='selected cells') ax.scatter(df_coordinates.loc[remaining_cells]['UMAP_1'].values, df_coordinates.loc[remaining_cells]['UMAP_2'].values, s=3, zorder=0, c='black', label='other cell') ax.legend() title = 'Cells selected from the matching error on cluster ' + str(cluster_index) if all_cells: title += ' (on all cells)' ax.set_title(title) # export the cells corresponding to cluster 6 in a csv file df_selection = pd.DataFrame([1 for _ in selected_cells] + [0 for _ in remaining_cells], index=selected_cells+remaining_cells, columns=['selection']) filename = '../../dataset/Imagine/coexpression/myeloid_c' + str(cluster_index) + '_selection' if all_cells: filename += '_all_cells' filename += '.csv' df_selection.to_csv(filename) return #------------------------------------------------------------------------------ # process the global clusters #------------------------------------------------------------------------------ def process_global_clusters(): # read the discrete matrix filename = '../../dataset/Imagine/discrete_matrix.csv' df_discrete = pd.read_csv(filename, index_col=0) # print(df_discrete) # read the embedding coordinates df_coordinates = pd.read_csv('../../dataset/Imagine/umap_coordinates.csv', index_col=0) # read the gene clusters gene_clusters = load_clusters('../../dataset/Imagine/coexpression/gene_clusters.txt') print('number of gene clusters: ', len(gene_clusters)) # create an artifial instance instance = Instance.create_random_instance(df_discrete.copy(deep=False), 0.5) # output the clusters formatted in LaTex # for cluster_index in range(len(gene_clusters)): # cluster = gene_clusters[cluster_index] # print('gene cluster ', cluster_index, '(', len(cluster), ' atoms)') # print_cluster_latex(instance, gene_clusters[cluster_index]) # print('\n\n') # Display the cell score for each gene cluster on the UMAP plot_cell_scores(df_discrete, df_coordinates, gene_clusters, None, 2, 'Matching error of the gene clusters on the cells') # display gene cluster 5 cell score in a histogram ind_cluster = 5 body = [instance.get_atom_index(atom) for atom in gene_clusters[ind_cluster] ] histo = histogram.Histogram(instance, body, histogram.Histogram_type.GLOBAL) # visualization of the matching error histogram of cluster #4 on all the cells fig,ax = plt.subplots() values = [ error for error in range(len(histo.positive_histogram)) for _ in histo.positive_histogram[error] ] ax.hist(values, 50, density=True, edgecolor='black') # print(ax.get_ylim()) temp_ylim = ax.get_ylim() ax.plot([193, 193], [ax.get_ylim()[0], ax.get_ylim()[1]], '--', color='red') ax.set_ylim(temp_ylim) # print(ax.get_ylim()) ax.set_ylabel('cell proportion') ax.set_xlabel('matching error') ax.set_title('Matching error of gene cluster ' + str(ind_cluster) + ' on all cells') # ax.set_ylabel('proportion de cellules') # ax.set_xlabel('erreur de couverture') # select the cells that have the lower score threshold = 193 selected_cells = [] other_cells = [] for error in range(threshold+1): selected_cells += histo.positive_histogram[error] for error in range(threshold+1,len(histo.positive_histogram)): other_cells += histo.positive_histogram[error] # plot a UMAP with the selected cells fig, ax = plt.subplots() ax.set_xlabel('UMAP 1') ax.set_ylabel('UMAP 2') # ax.set_title('Selected cells from gene cluster ' + str(ind_cluster)) colors = ['red' if barcode in selected_cells else 'black' for barcode in df_coordinates.index] ax.scatter(df_coordinates.loc[selected_cells]['UMAP_1'], df_coordinates.loc[selected_cells]['UMAP_2'], c='red', s=3, label='selected cells', zorder=1) # ax.scatter(df_coordinates.loc[selected_cells]['UMAP_1'], df_coordinates.loc[selected_cells]['UMAP_2'], c='red', s=3, label='cellules sélectionnées', zorder=1) ax.scatter(df_coordinates.loc[other_cells]['UMAP_1'], df_coordinates.loc[other_cells]['UMAP_2'], c='black', s=3, label='other cells', zorder=0) # ax.scatter(df_coordinates.loc[other_cells]['UMAP_1'], df_coordinates.loc[other_cells]['UMAP_2'], c='black', s=3, label='autres cellules', zorder=0) ax.set_aspect((ax.get_xlim()[1]-ax.get_xlim()[0])/(ax.get_ylim()[1]-ax.get_ylim()[0])) ax.set_title('Cells selected through the matching error from cluster ' + str(ind_cluster)) ax.legend(loc='upper right') # print the gene clusters print('\n\nList of the gene clusters:\n\n') print_gene_clusters(gene_clusters) # creation of a DataFrame with the gene clusters #create_dataframe_clusters('../../coexpression/gene_clusters.csv', gene_clusters) # creation of a dataframe with the cell scores (between 0 and 1) #create_cell_score_dataframe('../../coexpression/gene_cluster_cell_scores.csv', df_discrete, gene_clusters) # create a sub dataset with the selected cells (presumably Myeloids) create_sub_dataframe('../../dataset/Imagine/sub_dataset_discrete.csv', df_discrete, selected_cells) plt.show() return #------------------------------------------------------------------------------ # process the sub network clusters #------------------------------------------------------------------------------ def process_sub_network_clusters(): # read the sub discrete matrix (with only cells selected from the first network) filename = '../../dataset/Imagine/sub_dataset_discrete.csv' df_discrete_sub = pd.read_csv(filename, index_col=0) # print(df_discrete_sub.head()) # print(df_discrete_sub.shape) # read the complete discrete matrix (to visualize the cluster matching error on all the cells) filename = '../../dataset/Imagine/discrete_matrix.csv' df_discrete = pd.read_csv(filename, index_col=0) # read the embedding coordinates df_coordinates = pd.read_csv('../../dataset/Imagine/umap_coordinates.csv', index_col=0) df_coordinates_sub = df_coordinates.loc[df_discrete_sub.index] # select only cells in the sub dataset # read the gene clusters gene_clusters = load_clusters('../../dataset/Imagine/coexpression/sub_network_gene_clusters.txt') ########################################################################### # Manual sub selection of the myeloids selected_indexes = [] for index in df_coordinates_sub.index: pos = (df_coordinates_sub['UMAP_1'][index], df_coordinates_sub['UMAP_2'][index]) if pos[0] >= -8 and pos[0] <= 8.0: if pos[1] >= -16 and pos[1] <= -11: selected_indexes.append(index) df_coordinates_sub_manual = df_coordinates_sub.loc[selected_indexes] print(df_coordinates_sub.shape[0]-df_coordinates_sub_manual.shape[0], ' cells are discarded for the visualization') ########################################################################### print('number of clusters: ', len(gene_clusters)) print('\n\nList of the gene clusters:\n\n') print_gene_clusters(gene_clusters) # create a artificial instance to compute the matching error instance = Instance.create_random_instance(df_discrete_sub.copy(deep=False), 0.5) selected_clusters = [2,3,5,6] print('Selection of clusters: ', selected_clusters) # Display the cell score for each gene cluster on the UMAP plot_cell_scores(df_discrete_sub, df_coordinates_sub_manual, gene_clusters, selected_clusters, 2, 'Clusters matching error (sub graph) on the myeloids') # Same visualization on all the cells this time plot_cell_scores(df_discrete, df_coordinates, gene_clusters, selected_clusters, 2, 'Clusters matching error (sub graph) on all the cells') # analysis of cluster 5 matching error # cluster_index = 5 # error_threshold = 6 # decompose_cluster(df_coordinates_sub, instance, gene_clusters, cluster_index, error_threshold, False) instance_global = Instance.create_random_instance(df_discrete.copy(deep=False), 0.5) # create a artificial instance on al cells # output the clusters formatted in LaTex # for cluster_index in selected_clusters: # cluster = gene_clusters[cluster_index] # print('gene cluster ', cluster_index, '(', len(cluster), ' atoms)') # # print_cluster_latex(instance, gene_clusters[cluster_index]) # print_cluster_latex(instance_global, gene_clusters[cluster_index]) # print('\n\n') # analysis of cluster 5 matching error on all cells # cluster_index = 5 # error_threshold = 8 # decompose_cluster(df_coordinates, instance_global, gene_clusters, cluster_index, error_threshold, True) # cluster 5: inflammed cells # analysis of cluster 5: selection of cells and decomposition into two groups: cells in the sub dataset and other cells cluster_index = 5 # visualization of the matching error histogram of cluster #5 on all the cells body = [instance.get_atom_index(atom) for atom in gene_clusters[cluster_index] ] histo = histogram.Histogram(instance_global, body, histogram.Histogram_type.GLOBAL) fig,ax = plt.subplots() visualizer.plot_global_histogram(ax, histo) # values = [ error for error in range(len(histo.positive_histogram)) for _ in histo.positive_histogram[error] ] # print('n values: ', len(values)) # print('len body: ', len(body)) # print(values[:50]) # ax.hist(values, 10, density=True, edgecolor='black') ax.set_ylabel('cell proportion') ax.set_xlabel('matching error') ax.set_title('Matching error of cluster ' + str(cluster_index) + ' on all cells') # visualisation of the selected cells on the umap error_threshold = 5 body = [instance_global.get_atom_index(atom) for atom in gene_clusters[cluster_index] ] histo = histogram.Histogram(instance_global, body, histogram.Histogram_type.GLOBAL) selected_cells = [cell for error in range(error_threshold+1) for cell in histo.positive_histogram[error]] other_cells = [barcode for barcode in df_discrete.index if not barcode in selected_cells] positive_cells = [barcode for barcode in selected_cells if barcode in df_discrete_sub.index] negative_cells = [barcode for barcode in selected_cells if not barcode in positive_cells] fig,ax = plt.subplots() ax.scatter(df_coordinates.loc[other_cells]['UMAP_1'].values, df_coordinates.loc[other_cells]['UMAP_2'].values, c='k', s=3, label='other cells') ax.scatter(df_coordinates.loc[positive_cells]['UMAP_1'].values, df_coordinates.loc[positive_cells]['UMAP_2'].values, c='r', s=3, label='selected myeloids') ax.scatter(df_coordinates.loc[negative_cells]['UMAP_1'].values, df_coordinates.loc[negative_cells]['UMAP_2'].values, c='b', s=3, label='other cells selected') ax.set_title('Cells selected from cluster 5 (red and blue)' + ' threshold = ' + str(error_threshold)) ax.set_xlabel('UMAP_1') ax.set_ylabel('UMAP_2') ax.legend() df_selection = pd.DataFrame([1 for _ in positive_cells] + [0 for _ in negative_cells], index=positive_cells+negative_cells, columns=['selection']) filename = '../../dataset/Imagine/coexpression/myeloid_c5_selection_myeloid_vs_others.csv' df_selection.to_csv(filename) # analysis of cluster 6 (CD8) matching error cluster_index = 6 body = [instance.get_atom_index(atom) for atom in gene_clusters[cluster_index] ] body_global = [instance_global.get_atom_index(atom) for atom in gene_clusters[cluster_index]] # print(body) histo_global = histogram.Histogram(instance_global, body_global, histogram.Histogram_type.GLOBAL) fig,ax = plt.subplots() visualizer.plot_global_histogram(ax, histo_global) ax.set_ylabel('cell proportion') ax.set_xlabel('matching error') ax.set_title('Matching error of cluster ' + str(cluster_index) + ' on all cells') error_threshold = 9 decompose_cluster(df_coordinates_sub, instance, gene_clusters, cluster_index, error_threshold, False) # display the selected cells selected_cells = [elt for error in range(error_threshold) for elt in histo.positive_histogram[error]] other_cells = [barcode for barcode in df_discrete.index if not barcode in selected_cells] fig, ax = plt.subplots() ax.scatter(df_coordinates.loc[other_cells]['UMAP_1'].values, df_coordinates.loc[other_cells]['UMAP_2'].values, c='k', s=3, label = 'other cells') ax.scatter(df_coordinates.loc[selected_cells]['UMAP_1'].values, df_coordinates.loc[selected_cells]['UMAP_2'].values, c='red', s=3, label='selected cells') ax.set_title('Cells selected from the matching error of cluster ' + str(cluster_index) + ' (threshold = ' + str(error_threshold) + ')') ax.set_xlabel('UMAP_1') ax.set_ylabel('UMAP_2') ax.legend() # fig, ax = plt.subplots() # plot_rule_error(df_discrete, df_coordinates, instance_global, body_global, ax) # print the gene clusters # print_gene_clusters(gene_clusters) # creation of a DataFrame with the gene clusters # create_dataframe_clusters('../../dataset/Imagine/coexpression/sub_network_gene_clusters.csv', gene_clusters) # creation of a dataframe with the cell scores (between 0 and 1) # create_cell_score_dataframe('../../dataset/Imagine/coexpression/sub_network_gene_cluster_cell_scores.csv', df_discrete, gene_clusters) plt.show() return process_global_clusters() process_sub_network_clusters()
the-stack_0_14797
# -*- coding: utf-8 -*- from anima import logger from anima.ui.lib import QtGui, QtWidgets class VersionsTableWidget(QtWidgets.QTableWidget): """A QTableWidget derivative specialized to hold version data """ def __init__(self, parent=None, *args, **kwargs): QtWidgets.QTableWidget.__init__(self, parent, *args, **kwargs) self.setEditTriggers(QtWidgets.QAbstractItemView.NoEditTriggers) # self.setAlternatingRowColors(True) self.setSelectionMode(QtWidgets.QAbstractItemView.SingleSelection) self.setSelectionBehavior(QtWidgets.QAbstractItemView.SelectRows) self.setShowGrid(False) self.setColumnCount(5) self.setObjectName("previous_versions_table_widget") self.setColumnCount(5) self.setRowCount(0) self.setHorizontalHeaderItem(0, QtWidgets.QTableWidgetItem()) self.setHorizontalHeaderItem(1, QtWidgets.QTableWidgetItem()) self.setHorizontalHeaderItem(2, QtWidgets.QTableWidgetItem()) self.setHorizontalHeaderItem(3, QtWidgets.QTableWidgetItem()) self.setHorizontalHeaderItem(4, QtWidgets.QTableWidgetItem()) self.horizontalHeader().setStretchLastSection(True) self.verticalHeader().setStretchLastSection(False) tool_tip_html = \ "<html><head/><body><p>Right click to:</p><ul style=\"" \ "margin-top: 0px; margin-bottom: 0px; margin-left: 0px; " \ "margin-right: 0px; -qt-list-indent: 1;\"><li><span style=\" " \ "font-weight:600;\">Copy Path</span></li><li><span style=\" " \ "font-weight:600;\">Browse Path</span></li><li><span style=\" " \ "font-weight:600;\">Change Description</span></li></ul>" \ "<p>Double click to:</p><ul style=\"margin-top: 0px; " \ "margin-bottom: 0px; margin-left: 0px; margin-right: 0px; " \ "-qt-list-indent: 1;\"><li style=\" margin-top:12px; " \ "margin-bottom:12px; margin-left:0px; margin-right:0px; " \ "-qt-block-indent:0; text-indent:0px;\"><span style=\" " \ "font-weight:600;\">Open</span></li></ul></body></html>" try: self.setToolTip( QtWidgets.QApplication.translate( "Dialog", tool_tip_html, None, QtWidgets.QApplication.UnicodeUTF8 ) ) except AttributeError: self.setToolTip( QtWidgets.QApplication.translate( "Dialog", tool_tip_html, None ) ) self.versions = [] self.labels = [ '#', 'App', 'Created By', 'Updated By', 'Size', 'Date', 'Description', ] self.setColumnCount(len(self.labels)) def clear(self): """overridden clear method """ QtWidgets.QTableWidget.clear(self) self.versions = [] # reset the labels self.setHorizontalHeaderLabels(self.labels) def select_version(self, version): """selects the given version in the list """ # select the version in the previous version list index = -1 for i, prev_version in enumerate(self.versions): if self.versions[i].id == version.id: index = i break logger.debug('current index: %s' % index) # select the row if index != -1: item = self.item(index, 0) logger.debug('item : %s' % item) self.setCurrentItem(item) @property def current_version(self): """returns the current selected version from the table """ index = self.currentRow() try: version = self.versions[index] return version except IndexError: return None def update_content(self, versions): """updates the content with the given versions data """ import os import datetime logger.debug('VersionsTableWidget.update_content() is started') self.clear() self.versions = versions self.setRowCount(len(versions)) def set_published_font(item): """sets the font for the given item :param item: the a QTableWidgetItem """ my_font = item.font() my_font.setBold(True) item.setFont(my_font) foreground = item.foreground() foreground.setColor(QtGui.QColor(0, 192, 0)) item.setForeground(foreground) # update the previous versions list from anima import defaults for i, version in enumerate(versions): is_published = version.is_published absolute_full_path = os.path.normpath( os.path.expandvars(version.full_path) ).replace('\\', '/') version_file_exists = os.path.exists(absolute_full_path) c = 0 # ------------------------------------ # version_number item = QtWidgets.QTableWidgetItem(str(version.version_number)) # align to center and vertical center item.setTextAlignment(0x0004 | 0x0080) if is_published: set_published_font(item) if not version_file_exists: item.setBackground(QtGui.QColor(64, 0, 0)) self.setItem(i, c, item) c += 1 # ------------------------------------ # ------------------------------------ # created_with item = QtWidgets.QTableWidgetItem() if version.created_with: from anima.ui import utils as ui_utils app_icon = ui_utils.get_icon(version.created_with.lower()) if app_icon: item.setIcon(app_icon) if is_published: set_published_font(item) if not version_file_exists: item.setBackground(QtGui.QColor(64, 0, 0)) self.setItem(i, c, item) c += 1 # ------------------------------------ # ------------------------------------ # user.name created_by = '' if version.created_by_id: created_by = defaults.user_names_lut[version.created_by_id] item = QtWidgets.QTableWidgetItem(created_by) # align to left and vertical center item.setTextAlignment(0x0001 | 0x0080) if is_published: set_published_font(item) if not version_file_exists: item.setBackground(QtGui.QColor(64, 0, 0)) self.setItem(i, c, item) c += 1 # ------------------------------------ # ------------------------------------ # user.name updated_by = '' if version.updated_by_id: updated_by = defaults.user_names_lut[version.updated_by_id] item = QtWidgets.QTableWidgetItem(updated_by) # align to left and vertical center item.setTextAlignment(0x0001 | 0x0080) if is_published: set_published_font(item) if not version_file_exists: item.setBackground(QtGui.QColor(64, 0, 0)) self.setItem(i, c, item) c += 1 # ------------------------------------ # ------------------------------------ # file size # get the file size # file_size_format = "%.2f MB" file_size = -1 if version_file_exists: file_size = float( os.path.getsize(absolute_full_path)) / 1048576 from anima import defaults item = QtWidgets.QTableWidgetItem( defaults.file_size_format % file_size ) # align to left and vertical center item.setTextAlignment(0x0001 | 0x0080) if is_published: set_published_font(item) if not version_file_exists: item.setBackground(QtGui.QColor(64, 0, 0)) self.setItem(i, c, item) c += 1 # ------------------------------------ # ------------------------------------ # date # get the file date file_date = datetime.datetime.today() if version_file_exists: file_date = datetime.datetime.fromtimestamp( os.path.getmtime(absolute_full_path) ) item = QtWidgets.QTableWidgetItem( file_date.strftime(defaults.date_time_format) ) # align to left and vertical center item.setTextAlignment(0x0001 | 0x0080) if is_published: set_published_font(item) if not version_file_exists: item.setBackground(QtGui.QColor(64, 0, 0)) self.setItem(i, c, item) c += 1 # ------------------------------------ # ------------------------------------ # description item = QtWidgets.QTableWidgetItem(version.description) # align to left and vertical center item.setTextAlignment(0x0001 | 0x0080) if is_published: set_published_font(item) if not version_file_exists: item.setBackground(QtGui.QColor(64, 0, 0)) self.setItem(i, c, item) c += 1 # ------------------------------------ # resize the first column self.resizeRowsToContents() self.resizeColumnsToContents() self.resizeRowsToContents() logger.debug('VersionsTableWidget.update_content() is finished')
the-stack_0_14798
""" AWR + SAC from demo experiment """ from railrl.demos.source.dict_to_mdp_path_loader import DictToMDPPathLoader from railrl.demos.source.mdp_path_loader import MDPPathLoader, MDPPathLoader from railrl.launchers.experiments.ashvin.awr_sac_rl import experiment import railrl.misc.hyperparameter as hyp from railrl.launchers.arglauncher import run_variants if __name__ == "__main__": variant = dict( num_epochs=100, num_eval_steps_per_epoch=5000, num_trains_per_train_loop=1000, num_expl_steps_per_train_loop=1000, min_num_steps_before_training=1000, max_path_length=1000, batch_size=256, replay_buffer_size=int(1E6), algorithm="SAC", version="normal", collection_mode='batch', layer_size=256, policy_kwargs=dict( hidden_sizes=[256, 256], ), trainer_kwargs=dict( discount=0.99, soft_target_tau=5e-3, target_update_period=1, policy_lr=3E-4, qf_lr=3E-4, reward_scale=1, beta=1, use_automatic_entropy_tuning=True, bc_num_pretrain_steps=10000, q_num_pretrain_steps=10000, policy_weight_decay=1e-4, bc_loss_type="mle", ), num_exps_per_instance=1, region='us-west-2', path_loader_class=DictToMDPPathLoader, path_loader_kwargs=dict( obs_key="state_observation", demo_path=["demos/icml2020/hand/door.npy"], demo_off_policy_path=[ "/home/ashvin/data/s3doodad/ashvin/icml2020/hand/door/demo-bc5/run0/id*/video_*.p", # "ashvin/icml2020/hand/door/demo-bc1/run4/video_*.p", # "ashvin/icml2020/hand/door/demo-bc1/run5/video_*.p", ], ), logger_variant=dict( tensorboard=True, ), load_demos=True, pretrain_policy=True, pretrain_rl=True, ) search_space = { 'env': ["door-v0", ], 'seedid': range(5), 'trainer_kwargs.beta': [10, ], } sweeper = hyp.DeterministicHyperparameterSweeper( search_space, default_parameters=variant, ) variants = [] for variant in sweeper.iterate_hyperparameters(): variants.append(variant) run_variants(experiment, variants, run_id=0)
the-stack_0_14799
#!/usr/bin/python import math import sys from PIL import Image from util import Helper, ImageHelper from util.CharType import CharType, maps as char_maps from util.ImageType import ImageType BRAILLE_BASE = int('0x2800', 16) def convert(pixel, char_type=CharType.ASCII): return char_maps[char_type][pixel // (256 // len(char_maps[char_type]))] def convert_to_braille(image, threshold=128, use_dot_spacing=False): """ convert sets of 2x4 pixels into their braille equivalent by checking if a given pixel should be displayed or not and setting its respective bit see https://en.wikipedia.org/wiki/Braille_Patterns#Block for more info """ width, height = image.size text = [[0] * math.ceil(width / 2) for _ in range(math.ceil(height / 4))] data = image.load() # convert every 2x4 area in its braille equivalent for y in range(0, height, 4): for x in range(0, width, 2): unicode_offset = 0 for i in range(2): for j in range(4): if x + i < width and y + j < height: # mark bit index if pixel is white or not unicode_offset += (data[x + i, y + j] <= threshold) << ((i * 4) + j) if use_dot_spacing and unicode_offset == 0: unicode_offset = 4 # blank braille char has kerning issues for some fonts text[y // 4][x // 2] = chr(BRAILLE_BASE + unicode_offset) return text def convert_to_text(image, char_type=CharType.ASCII): if char_type == CharType.BRAILLE: return convert_to_braille(image) text = [] data = image.load() for y in range(image.height): text.append([]) for x in range(image.width): text[y].append(convert(data[x, y], char_type)) return text def setup_text_image(text): image = '' for i in range(len(text)): image += ''.join(text[i]) + '\n' return image def store_text(text, input_filename): with open(ImageHelper.resource_folder(f'output/{input_filename}.txt'), 'w', encoding='utf-8') as output_file: output_file.write(text) def gray_scale_image(): image = Image.new('L', [255, 255]) data = image.load() for x in range(image.width): for y in range(image.height): data[x, y] = x return image def to_ascii_from_image(image, name='image', invert=True, char_type=CharType.BRAILLE, image_type=ImageType.DITHER): """ convert to text via the following steps: 1. fit image to terminal screen size 2. invert image if needed 3. convert image based on given ImageType 4. convert pixels in image to their given CharType equivalent 5. join the 2d image array into a single string """ image = Helper.fit_image_to_terminal(image, char_type == CharType.BRAILLE) if invert: image = ImageHelper.invert(image) image = ImageHelper.convert_image(image, image_type) text_array = convert_to_text(image, char_type) ascii_text = setup_text_image(text_array) if ImageHelper.DEBUG: store_text(ascii_text, name) return ascii_text def to_ascii(input_filename): return to_ascii_from_image(Image.open(input_filename).convert('RGB'), input_filename) def main(): if len(sys.argv) < 2: raise RuntimeError('Usage: this_script.py <input file>') input_filename = sys.argv[1] text = to_ascii(input_filename) print(text) if __name__ == '__main__': main() # input('Press enter to exit')
the-stack_0_14801
#!/usr/bin/env python ## ## Copyright (C) 2017, Amit Aides, all rights reserved. ## ## This file is part of Camera Network ## (see https://bitbucket.org/amitibo/cameranetwork_git). ## ## Redistribution and use in source and binary forms, with or without modification, ## are permitted provided that the following conditions are met: ## ## 1) The software is provided under the terms of this license strictly for ## academic, non-commercial, not-for-profit purposes. ## 2) Redistributions of source code must retain the above copyright notice, this ## list of conditions (license) and the following disclaimer. ## 3) Redistributions in binary form must reproduce the above copyright notice, ## this list of conditions (license) and the following disclaimer in the ## documentation and/or other materials provided with the distribution. ## 4) The name of the author may not be used to endorse or promote products derived ## from this software without specific prior written permission. ## 5) As this software depends on other libraries, the user must adhere to and keep ## in place any licensing terms of those libraries. ## 6) Any publications arising from the use of this software, including but not ## limited to academic journal and conference publications, technical reports and ## manuals, must cite the following works: ## Dmitry Veikherman, Amit Aides, Yoav Y. Schechner and Aviad Levis, "Clouds in The Cloud" Proc. ACCV, pp. 659-674 (2014). ## ## THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR IMPLIED ## WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF ## MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO ## EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, ## INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, ## BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ## DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ## LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE ## OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ## ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.## """ Clean memory of the odroid. The script moves captured date to a backup folder. To remove the backup folder (and clear the memory) use the ``--delete`` flag. """ import argparse import CameraNetwork.global_settings as gs import datetime import os import shutil import warnings gs.initPaths() BACKUP_FOLDER = os.path.expanduser( datetime.datetime.now().strftime("~/BACKUP_%Y_%m_%d") ) def move(src_path): _, tmp = os.path.split(src_path) dst_path = os.path.join(BACKUP_FOLDER, tmp) if not os.path.exists(src_path): print("Source path does not exist: {}".format(src_path)) return assert not os.path.exists(dst_path),"Destination path exists: {}".format(dst_path) shutil.move(src_path, dst_path) def main(delete_backup=False): if not os.path.exists(BACKUP_FOLDER): os.makedirs(BACKUP_FOLDER) print("Created backup folder: {}".format(BACKUP_FOLDER)) move(gs.CAPTURE_PATH) move(gs.DEFAULT_LOG_FOLDER) move(gs.MASK_PATH) move(gs.SUN_POSITIONS_PATH) if delete_backup: answer = raw_input("Remove backup? [y/n]:") if answer == 'y': shutil.rmtree(BACKUP_FOLDER) print("Backup folder removed!") else: print("Backup folder NOT removed!") if __name__ == "__main__": parser = argparse.ArgumentParser(description="Clean memory of the odroid.") parser.add_argument( '--delete', action='store_true', help='When set, the backup folder will be deleted.' ) args = parser.parse_args() main(args.delete)
the-stack_0_14802
""" """ import time import unittest import threading from pynetworking import ClientManager, MultiServerCommunicator from pynetworking.tests.example_functions import DummyServerCommunicator, DummyMultiServerCommunicator, \ DummyClientCommunicator from pynetworking.Logging import logger from pynetworking import Communication_general logger.setLevel(10) class TestManyClients(unittest.TestCase): address = "127.0.0.1", 5000 def setUp(self): self.manager = ClientManager(self.address, DummyClientCommunicator) self.manager.start() Communication_general.ENCRYPTED_COMMUNICATION = False def tearDown(self): DummyMultiServerCommunicator.close_all_connections() logger.debug(self.manager.clients) self.manager.stop_listening() self.manager.stop_connections() def test_many(self): clients = [] thread_pool = [] def client_exe(client: DummyMultiServerCommunicator): client.connect(self.address) c_id = client.remote_functions.return_client_id() print(c_id) time.sleep(5) client.close_connection() for i in range(20): clients.append(DummyMultiServerCommunicator(i)) thread_pool.append(threading.Thread(target=client_exe, args=(clients[i],))) thread_pool[i].start() time.sleep(0.1) time.sleep(1) logger.debug("Finished")
the-stack_0_14804
from pythonds.graphs import PriorityQueue, Graph, Vertex def dijkstra(aGraph: Graph, start: Vertex): pq = PriorityQueue() start.setDistance(0) pq.buildHeap([(v.getDistance(), v) for v in aGraph]) while not pq.isEmpty(): currentVert = pq.delMin() for nextVert in currentVert.getConnections(): newDist = currentVert.getDistance() + currentVert.getWeight(nextVert) if newDist < nextVert.getDistance(): nextVert.setDistance(newDist) nextVert.setPred(currentVert) pd.decreaseKey(nextVert, newDist)
the-stack_0_14806
# Copyright (c) 2010-2012 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. # See http://code.google.com/p/python-nose/issues/detail?id=373 # The code below enables nosetests to work with i18n _() blocks from __future__ import print_function import sys import os try: from unittest.util import safe_repr except ImportError: # Probably py26 _MAX_LENGTH = 80 def safe_repr(obj, short=False): try: result = repr(obj) except Exception: result = object.__repr__(obj) if not short or len(result) < _MAX_LENGTH: return result return result[:_MAX_LENGTH] + ' [truncated]...' from eventlet.green import socket # make unittests pass on all locale import swift setattr(swift, 'gettext_', lambda x: x) from swift.common.utils import readconf # Work around what seems to be a Python bug. # c.f. https://bugs.launchpad.net/swift/+bug/820185. import logging logging.raiseExceptions = False def get_config(section_name=None, defaults=None): """ Attempt to get a test config dictionary. :param section_name: the section to read (all sections if not defined) :param defaults: an optional dictionary namespace of defaults """ config = {} if defaults is not None: config.update(defaults) config_file = os.environ.get('SWIFT_TEST_CONFIG_FILE', '/etc/swift/test.conf') try: config = readconf(config_file, section_name) except IOError: if not os.path.exists(config_file): print('Unable to read test config %s - file not found' % config_file, file=sys.stderr) elif not os.access(config_file, os.R_OK): print('Unable to read test config %s - permission denied' % config_file, file=sys.stderr) except ValueError as e: print(e) return config def listen_zero(): """ The eventlet.listen() always sets SO_REUSEPORT, so when called with ("localhost",0), instead of returning unique ports it can return the same port twice. That causes our tests to fail, so open-code it here without SO_REUSEPORT. """ sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.bind(("127.0.0.1", 0)) sock.listen(50) return sock
the-stack_0_14807
# Lint as: python3 # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """API for Tensorflow Model Analysis.""" # TODO(b/149126671): Put ValidationResultsWriter in a separate file. from __future__ import absolute_import from __future__ import division # Standard __future__ imports from __future__ import print_function import os import tempfile from typing import Any, Dict, Iterator, List, Optional, Set, Text, Union from absl import logging import apache_beam as beam import pandas as pd import pyarrow as pa import tensorflow as tf from tensorflow_model_analysis import config from tensorflow_model_analysis import constants from tensorflow_model_analysis import model_util from tensorflow_model_analysis import types from tensorflow_model_analysis.eval_saved_model import constants as eval_constants from tensorflow_model_analysis.evaluators import evaluator from tensorflow_model_analysis.evaluators import metrics_and_plots_evaluator from tensorflow_model_analysis.evaluators import metrics_and_plots_evaluator_v2 from tensorflow_model_analysis.extractors import batched_input_extractor from tensorflow_model_analysis.extractors import batched_predict_extractor_v2 from tensorflow_model_analysis.extractors import extractor from tensorflow_model_analysis.extractors import input_extractor from tensorflow_model_analysis.extractors import predict_extractor from tensorflow_model_analysis.extractors import slice_key_extractor from tensorflow_model_analysis.extractors import tfjs_predict_extractor from tensorflow_model_analysis.extractors import tflite_predict_extractor from tensorflow_model_analysis.extractors import unbatch_extractor from tensorflow_model_analysis.post_export_metrics import post_export_metrics from tensorflow_model_analysis.proto import metrics_for_slice_pb2 from tensorflow_model_analysis.proto import validation_result_pb2 from tensorflow_model_analysis.slicer import slicer_lib as slicer from tensorflow_model_analysis.validators import validator from tensorflow_model_analysis.view import util from tensorflow_model_analysis.view import view_types from tensorflow_model_analysis.writers import eval_config_writer from tensorflow_model_analysis.writers import metrics_plots_and_validations_writer from tensorflow_model_analysis.writers import writer from tfx_bsl.arrow import table_util from tfx_bsl.tfxio import tensor_adapter from tfx_bsl.tfxio import tf_example_record from tensorflow_metadata.proto.v0 import schema_pb2 def _assert_tensorflow_version(): """Check that we're using a compatible TF version.""" # Fail with a clear error in case we are not using a compatible TF version. major, minor, _ = tf.version.VERSION.split('.') if (int(major) not in (1, 2)) or (int(major) == 1 and int(minor) < 15): raise RuntimeError( 'Tensorflow version >= 1.15, < 3 is required. Found (%s). Please ' 'install the latest 1.x or 2.x version from ' 'https://github.com/tensorflow/tensorflow. ' % tf.version.VERSION) if int(major) == 2: logging.warning( 'Tensorflow version (%s) found. Note that TFMA support for TF 2.0 ' 'is currently in beta', tf.version.VERSION) def _is_legacy_eval( eval_shared_model: Optional[types.MaybeMultipleEvalSharedModels], eval_config: Optional[config.EvalConfig]): """Returns True if legacy evaluation is being used.""" # A legacy evaluation is an evalution that uses only a single EvalSharedModel, # has no tags (or uses "eval" as its tag), and does not specify an eval_config # (or specifies an eval_config with no metrics). The legacy evaluation is # based on using add_metrics_callbacks to create a modified version of the # graph saved with an EvalSavedModel. The newer version of evaluation supports # both add_metrics_callbacks as well as metrics defined in MetricsSpecs inside # of EvalConfig. The newer version works with both "eval" and serving models # and also supports multi-model evaluation. This function is used by code to # support backwards compatibility for callers that have not updated to use the # new EvalConfig. return (eval_shared_model and not isinstance(eval_shared_model, dict) and not isinstance(eval_shared_model, list) and ((not eval_shared_model.model_loader.tags or eval_constants.EVAL_TAG in eval_shared_model.model_loader.tags) and (not eval_config or not eval_config.metrics_specs))) def _default_eval_config(eval_shared_models: List[types.EvalSharedModel], slice_spec: Optional[List[slicer.SingleSliceSpec]], write_config: Optional[bool], compute_confidence_intervals: Optional[bool], min_slice_size: int): """Creates default EvalConfig (for use in legacy evaluations).""" model_specs = [] for shared_model in eval_shared_models: example_weight_key = shared_model.example_weight_key example_weight_keys = {} if example_weight_key and isinstance(example_weight_key, dict): example_weight_keys = example_weight_key example_weight_key = '' model_specs.append( config.ModelSpec( name=shared_model.model_name, example_weight_key=example_weight_key, example_weight_keys=example_weight_keys)) slicing_specs = None if slice_spec: slicing_specs = [s.to_proto() for s in slice_spec] options = config.Options() options.compute_confidence_intervals.value = compute_confidence_intervals options.min_slice_size.value = min_slice_size if not write_config: options.disabled_outputs.values.append(eval_config_writer.EVAL_CONFIG_FILE) return config.EvalConfig( model_specs=model_specs, slicing_specs=slicing_specs, options=options) def _model_types( eval_shared_model: Optional[types.MaybeMultipleEvalSharedModels] ) -> Optional[Set[Text]]: """Returns model types associated with given EvalSharedModels.""" eval_shared_models = model_util.verify_and_update_eval_shared_models( eval_shared_model) if not eval_shared_models: return None else: return set([m.model_type for m in eval_shared_models]) def _update_eval_config_with_defaults( eval_config: config.EvalConfig, eval_shared_model: Optional[types.MaybeMultipleEvalSharedModels] ) -> config.EvalConfig: """Returns updated eval config with default values.""" eval_shared_models = model_util.verify_and_update_eval_shared_models( eval_shared_model) maybe_add_baseline = eval_shared_models and len(eval_shared_models) == 2 return config.update_eval_config_with_defaults( eval_config, maybe_add_baseline=maybe_add_baseline) MetricsForSlice = metrics_for_slice_pb2.MetricsForSlice def load_metrics(output_path: Text, output_file_format: Text = '') -> Iterator[MetricsForSlice]: """Read and deserialize the MetricsForSlice records.""" for m in metrics_plots_and_validations_writer.load_and_deserialize_metrics( output_path, output_file_format): yield m PlotsForSlice = metrics_for_slice_pb2.PlotsForSlice def load_plots(output_path: Text, output_file_format: Text = '') -> Iterator[PlotsForSlice]: """Read and deserialize the PlotsForSlice records.""" for p in metrics_plots_and_validations_writer.load_and_deserialize_plots( output_path, output_file_format): yield p # Define types here to avoid type errors between OSS and internal code. ValidationResult = validation_result_pb2.ValidationResult def load_validation_result(output_path: Text, output_file_format: Text = '') -> ValidationResult: """Read and deserialize the ValidationResult.""" return metrics_plots_and_validations_writer.load_and_deserialize_validation_result( output_path, output_file_format) def make_eval_results(results: List[view_types.EvalResult], mode: Text) -> view_types.EvalResults: """Run model analysis for a single model on multiple data sets. Args: results: A list of TFMA evaluation results. mode: The mode of the evaluation. Currently, tfma.DATA_CENTRIC_MODE and tfma.MODEL_CENTRIC_MODE are supported. Returns: An `tfma.view.EvalResults` object containing all evaluation results. This can be used to construct a time series view. """ return view_types.EvalResults(results, mode) def load_eval_results( output_paths: Union[Text, List[Text]], output_file_format: Optional[Text] = '', mode: Text = constants.MODEL_CENTRIC_MODE, model_name: Optional[Text] = None) -> view_types.EvalResults: """Loads results for multiple models or multiple data sets. Args: output_paths: A single path or list of output paths of completed tfma runs. output_file_format: Optional file extension to filter files by. mode: The mode of the evaluation. Currently, tfma.DATA_CENTRIC_MODE and tfma.MODEL_CENTRIC_MODE are supported. model_name: Filters to only return results for given model. If unset all models are returned. Returns: An EvalResults containing the evaluation results serialized at output_paths. This can be used to construct a time series view. """ results = [] if not isinstance(output_paths, list): output_paths = [output_paths] for output_path in output_paths: if model_name is None: _, _, _, model_locations = eval_config_writer.load_eval_run(output_path) model_names = list(model_locations.keys()) else: model_names = [model_name] for model_name in model_names: results.append( load_eval_result( output_path, output_file_format, model_name=model_name)) return make_eval_results(results, mode) def load_eval_result( output_path: Text, output_file_format: Optional[Text] = '', model_name: Optional[Text] = None) -> view_types.EvalResult: """Loads EvalResult object for use with the visualization functions. Args: output_path: Output directory containing config, metrics, plots, etc. output_file_format: Optional file extension to filter files by. model_name: Optional model name. Required if multi-model evaluation was run. Returns: EvalResult object for use with the visualization functions. """ # Config, metrics, and plots files should all exist under the given output # directory, but fairness plugin has a use-case where only the metrics are # provided so we support all files as being optional (the EvalResult will have # corresponding None values for files that are not present). eval_config, data_location, file_format, model_locations = ( eval_config_writer.load_eval_run(output_path)) metrics_list = [] for p in metrics_plots_and_validations_writer.load_and_deserialize_metrics( output_path, output_file_format): metrics = util.convert_metrics_proto_to_dict(p, model_name=model_name) if metrics is not None: metrics_list.append(metrics) plots_list = [] for p in metrics_plots_and_validations_writer.load_and_deserialize_plots( output_path, output_file_format): plots = util.convert_plots_proto_to_dict(p, model_name=model_name) if plots is not None: plots_list.append(plots) if not model_locations: model_location = '' elif model_name is None: model_location = list(model_locations.values())[0] else: model_location = model_locations[model_name] return view_types.EvalResult( slicing_metrics=metrics_list, plots=plots_list, config=eval_config, data_location=data_location, file_format=file_format, model_location=model_location) def default_eval_shared_model( eval_saved_model_path: Text, add_metrics_callbacks: Optional[List[types.AddMetricsCallbackType]] = None, include_default_metrics: Optional[bool] = True, example_weight_key: Optional[Union[Text, Dict[Text, Text]]] = None, additional_fetches: Optional[List[Text]] = None, blacklist_feature_fetches: Optional[List[Text]] = None, tags: Optional[List[Text]] = None, model_name: Text = '', eval_config: Optional[config.EvalConfig] = None, custom_model_loader: Optional[types.ModelLoader] = None ) -> types.EvalSharedModel: """Returns default EvalSharedModel. Args: eval_saved_model_path: Path to EvalSavedModel. add_metrics_callbacks: Optional list of callbacks for adding additional metrics to the graph (see EvalSharedModel for more information on how to configure additional metrics). Metrics for example count and example weights will be added automatically. include_default_metrics: True to include the default metrics that are part of the saved model graph during evaluation. Note that eval_config.options.include_default_metrics must also be true. example_weight_key: Example weight key (single-output model) or dict of example weight keys (multi-output model) keyed by output name. additional_fetches: Prefixes of additional tensors stored in signature_def.inputs that should be fetched at prediction time. The "features" and "labels" tensors are handled automatically and should not be included. blacklist_feature_fetches: List of tensor names in the features dictionary which should be excluded from the fetches request. This is useful in scenarios where features are large (e.g. images) and can lead to excessive memory use if stored. tags: Model tags (e.g. 'serve' for serving or 'eval' for EvalSavedModel). model_name: Optional name of the model being created (should match ModelSpecs.name). The name should only be provided if multiple models are being evaluated. eval_config: Eval config. Only used for setting default tags. custom_model_loader: Optional custom model loader for non-TF models. """ if not eval_config: model_type = constants.TF_ESTIMATOR if tags is None: tags = [eval_constants.EVAL_TAG] else: model_spec = model_util.get_model_spec(eval_config, model_name) if not model_spec: raise ValueError('ModelSpec for model name {} not found in EvalConfig: ' 'config={}'.format(model_name, eval_config)) model_type = model_util.get_model_type(model_spec, eval_saved_model_path, tags) if tags is None: # Default to serving unless estimator is used. if model_type == constants.TF_ESTIMATOR: tags = [eval_constants.EVAL_TAG] else: tags = [tf.saved_model.SERVING] # Backwards compatibility for legacy add_metrics_callbacks implementation. if model_type == constants.TF_ESTIMATOR and eval_constants.EVAL_TAG in tags: # PyType doesn't know about the magic exports we do in post_export_metrics. # Additionally, the lines seem to get reordered in compilation, so we can't # just put the disable-attr on the add_metrics_callbacks lines. # pytype: disable=module-attr if not add_metrics_callbacks: add_metrics_callbacks = [] # Always compute example weight and example count. example_count_callback = post_export_metrics.example_count() add_metrics_callbacks.append(example_count_callback) if example_weight_key: if isinstance(example_weight_key, dict): for output_name, key in example_weight_key.items(): example_weight_callback = post_export_metrics.example_weight( key, metric_tag=output_name) add_metrics_callbacks.append(example_weight_callback) else: example_weight_callback = post_export_metrics.example_weight( example_weight_key) add_metrics_callbacks.append(example_weight_callback) # pytype: enable=module-attr model_loader = custom_model_loader if not model_loader and model_type in constants.VALID_TF_MODEL_TYPES: model_loader = types.ModelLoader( construct_fn=model_util.model_construct_fn( eval_saved_model_path=eval_saved_model_path, add_metrics_callbacks=add_metrics_callbacks, include_default_metrics=include_default_metrics, additional_fetches=additional_fetches, blacklist_feature_fetches=blacklist_feature_fetches, model_type=model_type, tags=tags), tags=tags) return types.EvalSharedModel( model_name=model_name, model_type=model_type, model_path=eval_saved_model_path, add_metrics_callbacks=add_metrics_callbacks, include_default_metrics=include_default_metrics, example_weight_key=example_weight_key, additional_fetches=additional_fetches, model_loader=model_loader) def default_extractors( # pylint: disable=invalid-name eval_shared_model: Optional[types.MaybeMultipleEvalSharedModels] = None, eval_config: config.EvalConfig = None, slice_spec: Optional[List[slicer.SingleSliceSpec]] = None, materialize: Optional[bool] = True, tensor_adapter_config: Optional[tensor_adapter.TensorAdapterConfig] = None, custom_predict_extractor: Optional[extractor.Extractor] = None ) -> List[extractor.Extractor]: """Returns the default extractors for use in ExtractAndEvaluate. Args: eval_shared_model: Shared model (single-model evaluation) or list of shared models (multi-model evaluation). Required unless the predictions are provided alongside of the features (i.e. model-agnostic evaluations). eval_config: Eval config. slice_spec: Deprecated (use EvalConfig). materialize: True to have extractors create materialized output. tensor_adapter_config: Tensor adapter config which specifies how to obtain tensors from the Arrow RecordBatch. If None, we feed the raw examples to the model. custom_predict_extractor: Optional custom predict extractor for non-TF models. Raises: NotImplementedError: If eval_config contains mixed serving and eval models. """ if slice_spec and eval_config: raise ValueError('slice_spec is deprecated, only use eval_config') if eval_config is not None: eval_config = _update_eval_config_with_defaults(eval_config, eval_shared_model) if _is_legacy_eval(eval_shared_model, eval_config): # Backwards compatibility for previous add_metrics_callbacks implementation. if not eval_config and slice_spec: eval_config = config.EvalConfig( slicing_specs=[s.to_proto() for s in slice_spec]) return [ custom_predict_extractor or predict_extractor.PredictExtractor( eval_shared_model, materialize=materialize), slice_key_extractor.SliceKeyExtractor( eval_config=eval_config, materialize=materialize) ] elif eval_shared_model: model_types = _model_types(eval_shared_model) eval_shared_models = model_util.verify_and_update_eval_shared_models( eval_shared_model) if (not model_types.issubset(constants.VALID_TF_MODEL_TYPES) and not custom_predict_extractor): raise NotImplementedError( 'either a custom_predict_extractor must be used or model type must ' 'be one of: {}. evalconfig={}'.format( str(constants.VALID_TF_MODEL_TYPES), eval_config)) if model_types == set([constants.TF_LITE]): # TODO(b/163889779): Convert TFLite extractor to operate on batched # extracts. Then we can remove the input extractor. return [ input_extractor.InputExtractor(eval_config=eval_config), (custom_predict_extractor or tflite_predict_extractor.TFLitePredictExtractor( eval_config=eval_config, eval_shared_model=eval_shared_model)), slice_key_extractor.SliceKeyExtractor( eval_config=eval_config, materialize=materialize) ] elif constants.TF_LITE in model_types: raise NotImplementedError( 'support for mixing tf_lite and non-tf_lite models is not ' 'implemented: eval_config={}'.format(eval_config)) if model_types == set([constants.TF_JS]): return [ input_extractor.InputExtractor(eval_config=eval_config), (custom_predict_extractor or tfjs_predict_extractor.TFJSPredictExtractor( eval_config=eval_config, eval_shared_model=eval_shared_model)), slice_key_extractor.SliceKeyExtractor( eval_config=eval_config, materialize=materialize) ] elif constants.TF_JS in model_types: raise NotImplementedError( 'support for mixing tf_js and non-tf_js models is not ' 'implemented: eval_config={}'.format(eval_config)) elif (eval_config and model_types == set([constants.TF_ESTIMATOR]) and all(eval_constants.EVAL_TAG in m.model_loader.tags for m in eval_shared_models)): return [ custom_predict_extractor or predict_extractor.PredictExtractor( eval_shared_model, materialize=materialize, eval_config=eval_config), slice_key_extractor.SliceKeyExtractor( eval_config=eval_config, materialize=materialize) ] elif (eval_config and constants.TF_ESTIMATOR in model_types and any(eval_constants.EVAL_TAG in m.model_loader.tags for m in eval_shared_models)): raise NotImplementedError( 'support for mixing eval and non-eval estimator models is not ' 'implemented: eval_config={}'.format(eval_config)) else: return [ batched_input_extractor.BatchedInputExtractor( eval_config=eval_config), (custom_predict_extractor or batched_predict_extractor_v2.BatchedPredictExtractor( eval_config=eval_config, eval_shared_model=eval_shared_model, tensor_adapter_config=tensor_adapter_config)), unbatch_extractor.UnbatchExtractor(), slice_key_extractor.SliceKeyExtractor( eval_config=eval_config, materialize=materialize) ] else: return [ batched_input_extractor.BatchedInputExtractor(eval_config=eval_config), unbatch_extractor.UnbatchExtractor(), slice_key_extractor.SliceKeyExtractor( eval_config=eval_config, materialize=materialize) ] def default_evaluators( # pylint: disable=invalid-name eval_shared_model: Optional[types.MaybeMultipleEvalSharedModels] = None, eval_config: config.EvalConfig = None, schema: Optional[schema_pb2.Schema] = None, compute_confidence_intervals: Optional[bool] = False, min_slice_size: int = 1, serialize: bool = False, random_seed_for_testing: Optional[int] = None) -> List[evaluator.Evaluator]: """Returns the default evaluators for use in ExtractAndEvaluate. Args: eval_shared_model: Optional shared model (single-model evaluation) or list of shared models (multi-model evaluation). Only required if there are metrics to be computed in-graph using the model. eval_config: Eval config. schema: A schema to use for customizing default evaluators. compute_confidence_intervals: Deprecated (use eval_config). min_slice_size: Deprecated (use eval_config). serialize: Deprecated. random_seed_for_testing: Provide for deterministic tests only. """ disabled_outputs = [] if eval_config: eval_config = _update_eval_config_with_defaults(eval_config, eval_shared_model) disabled_outputs = eval_config.options.disabled_outputs.values if (_model_types(eval_shared_model) == set([constants.TF_LITE]) or _model_types(eval_shared_model) == set([constants.TF_JS])): # no in-graph metrics present when tflite or tfjs is used. if eval_shared_model: if isinstance(eval_shared_model, dict): eval_shared_model = { k: v._replace(include_default_metrics=False) for k, v in eval_shared_model.items() } elif isinstance(eval_shared_model, list): eval_shared_model = [ v._replace(include_default_metrics=False) for v in eval_shared_model ] else: eval_shared_model = eval_shared_model._replace( include_default_metrics=False) if (constants.METRICS_KEY in disabled_outputs and constants.PLOTS_KEY in disabled_outputs): return [] if _is_legacy_eval(eval_shared_model, eval_config): # Backwards compatibility for previous add_metrics_callbacks implementation. if eval_config is not None: if eval_config.options.HasField('compute_confidence_intervals'): compute_confidence_intervals = ( eval_config.options.compute_confidence_intervals.value) if eval_config.options.HasField('min_slice_size'): min_slice_size = eval_config.options.min_slice_size.value return [ metrics_and_plots_evaluator.MetricsAndPlotsEvaluator( eval_shared_model, compute_confidence_intervals=compute_confidence_intervals, min_slice_size=min_slice_size, serialize=serialize, random_seed_for_testing=random_seed_for_testing) ] else: return [ metrics_and_plots_evaluator_v2.MetricsAndPlotsEvaluator( eval_config=eval_config, eval_shared_model=eval_shared_model, schema=schema, random_seed_for_testing=random_seed_for_testing) ] def default_writers( output_path: Optional[Text], eval_shared_model: Optional[types.MaybeMultipleEvalSharedModels] = None, eval_config: Optional[config.EvalConfig] = None, display_only_data_location: Optional[Text] = None, display_only_data_file_format: Optional[Text] = None, output_file_format: Text = '', add_metric_callbacks: List[types.AddMetricsCallbackType] = None ) -> List[writer.Writer]: # pylint: disable=invalid-name """Returns the default writers for use in WriteResults. Note, sharding will be enabled by default if an output_file_format is provided. Filenames will be <output_path>-SSSSS-of-NNNNN.<output_file_format> where SSSSS is the shard number and NNNNN is the number of shards. Args: output_path: Output path. eval_shared_model: Optional shared model (single-model evaluation) or list of shared models (multi-model evaluation). Only required if legacy add_metrics_callbacks are used. eval_config: Eval config for writing out config along with results. Also used for to check for missing slices. display_only_data_location: Optional path indicating where the examples were read from. This is used only for display purposes - data will not actually be read from this path. display_only_data_file_format: Optional format of the input examples. This is used only for display purposes. output_file_format: File format to use when saving files. Currently only 'tfrecord' is supported. add_metric_callbacks: Optional list of metric callbacks (if used). """ writers = [] if not add_metric_callbacks: add_metric_callbacks = [] # The add_metric_callbacks are used in the metrics and plots serialization # code to post process the metric data by calling populate_stats_and_pop. # While both the legacy (V1) and new (V2) evaluation implementations support # EvalSavedModels using add_metric_callbacks, this particular code is only # required for the legacy evaluation based on the MetricsAndPlotsEvaluator. # The V2 MetricsAndPlotsEvaluator output requires no additional processing. # Since the V1 code only supports a single EvalSharedModel, we only set the # add_metrics_callbacks if a dict is not passed. if (eval_shared_model and not isinstance(eval_shared_model, dict) and not isinstance(eval_shared_model, list)): add_metric_callbacks = eval_shared_model.add_metrics_callbacks if eval_config: model_locations = {} eval_shared_models = model_util.verify_and_update_eval_shared_models( eval_shared_model) for v in (eval_shared_models or [None]): k = '' if v is None else v.model_name model_locations[k] = ('<unknown>' if v is None or v.model_path is None else v.model_path) writers.append( eval_config_writer.EvalConfigWriter( output_path, eval_config=eval_config, data_location=display_only_data_location, data_file_format=display_only_data_file_format, model_locations=model_locations)) output_paths = { constants.METRICS_KEY: os.path.join(output_path, constants.METRICS_KEY), constants.PLOTS_KEY: os.path.join(output_path, constants.PLOTS_KEY), constants.VALIDATIONS_KEY: os.path.join(output_path, constants.VALIDATIONS_KEY) } writers.append( metrics_plots_and_validations_writer.MetricsPlotsAndValidationsWriter( output_paths=output_paths, # Empty EvalConfig supported for backwards compatibility. eval_config=eval_config or config.EvalConfig(), add_metrics_callbacks=add_metric_callbacks, output_file_format=output_file_format)) return writers @beam.ptransform_fn # TODO(b/156538355): Find out why str is also required instead of just bytes # after adding types.Extracts. @beam.typehints.with_input_types(Union[bytes, str, types.Extracts]) @beam.typehints.with_output_types(types.Extracts) def InputsToExtracts( # pylint: disable=invalid-name inputs: beam.pvalue.PCollection) -> beam.pvalue.PCollection: """Converts serialized inputs (e.g. examples) to Extracts if not already.""" def to_extracts(x: Union[bytes, str, types.Extracts]) -> types.Extracts: result = {} if isinstance(x, dict): result.update(x) else: result[constants.INPUT_KEY] = x return result return inputs | 'AddInputKey' >> beam.Map(to_extracts) @beam.ptransform_fn @beam.typehints.with_input_types(Union[bytes, pa.RecordBatch]) @beam.typehints.with_output_types(types.Extracts) def BatchedInputsToExtracts( # pylint: disable=invalid-name batched_inputs: beam.pvalue.PCollection) -> beam.pvalue.PCollection: """Converts Arrow RecordBatch inputs to Extracts.""" def to_extracts(x: Union[bytes, pa.RecordBatch]) -> types.Extracts: result = {} if isinstance(x, dict): result.update(x) else: result[constants.ARROW_RECORD_BATCH_KEY] = x return result return batched_inputs | 'AddArrowRecordBatchKey' >> beam.Map(to_extracts) @beam.ptransform_fn @beam.typehints.with_input_types(types.Extracts) @beam.typehints.with_output_types(Any) def ExtractAndEvaluate( # pylint: disable=invalid-name extracts: beam.pvalue.PCollection, extractors: List[extractor.Extractor], evaluators: List[evaluator.Evaluator]) -> evaluator.Evaluation: """Performs Extractions and Evaluations in provided order.""" # evaluation[k] = list of values for k evaluation = {} def update(evaluation: Dict[Text, Any], new_evaluation: Dict[Text, Any]): for k, v in new_evaluation.items(): if k not in evaluation: evaluation[k] = [] evaluation[k].append(v) return evaluation # Run evaluators that run before extraction (i.e. that only require # the incoming input extract added by ReadInputs) for v in evaluators: if not v.run_after: update(evaluation, extracts | v.stage_name >> v.ptransform) for x in extractors: extracts = (extracts | x.stage_name >> x.ptransform) for v in evaluators: if v.run_after == x.stage_name: update(evaluation, extracts | v.stage_name >> v.ptransform) for v in evaluators: if v.run_after == extractor.LAST_EXTRACTOR_STAGE_NAME: update(evaluation, extracts | v.stage_name >> v.ptransform) # Merge multi-valued keys if necessary. result = {} for k, v in evaluation.items(): if len(v) == 1: result[k] = v[0] continue # Note that we assume that if a key is multivalued, its values are # dictionaries with disjoint keys. The combined value will simply be the # disjoint union of all the dictionaries. result[k] = ( v | 'FlattenEvaluationOutput(%s)' % k >> beam.Flatten() | 'CombineEvaluationOutput(%s)' % k >> beam.CombinePerKey( _CombineEvaluationDictionariesFn())) return result class _CombineEvaluationDictionariesFn(beam.CombineFn): """CombineFn to combine dictionaries generated by different evaluators.""" def create_accumulator(self) -> Dict[Text, Any]: return {} def _merge(self, accumulator: Dict[Text, Any], output_dict: Dict[Text, Any]) -> None: intersection = set(accumulator) & set(output_dict) if intersection: raise ValueError( 'Dictionaries generated by different evaluators should have ' 'different keys, but keys %s appeared in the output of multiple ' 'evaluators' % intersection) accumulator.update(output_dict) def add_input(self, accumulator: Dict[Text, Any], output_dict: Dict[Text, Any]) -> Dict[Text, Any]: if not isinstance(output_dict, dict): raise TypeError( 'for outputs written to by multiple evaluators, the outputs must all ' 'be dictionaries, but got output of type %s, value %s' % (type(output_dict), str(output_dict))) self._merge(accumulator, output_dict) return accumulator def merge_accumulators( self, accumulators: List[Dict[Text, Any]]) -> Dict[Text, Any]: result = self.create_accumulator() for acc in accumulators: self._merge(result, acc) return result def extract_output(self, accumulator: Dict[Text, Any]) -> Dict[Text, Any]: return accumulator @beam.ptransform_fn # TODO(b/157600974): Add input typehint. @beam.typehints.with_output_types(beam.pvalue.PDone) def WriteResults( # pylint: disable=invalid-name evaluation_or_validation: Union[evaluator.Evaluation, validator.Validation], writers: List[writer.Writer]) -> beam.pvalue.PDone: """Writes Evaluation or Validation results using given writers. Args: evaluation_or_validation: Evaluation or Validation output. writers: Writes to use for writing out output. Raises: ValueError: If Evaluation or Validation is empty. Returns: beam.pvalue.PDone. """ if not evaluation_or_validation: raise ValueError('Evaluations and Validations cannot be empty') for w in writers: _ = evaluation_or_validation | w.stage_name >> w.ptransform return beam.pvalue.PDone(list(evaluation_or_validation.values())[0].pipeline) def is_batched_input(eval_shared_model: Optional[ types.MaybeMultipleEvalSharedModels] = None, eval_config: config.EvalConfig = None) -> bool: """Returns true if batched input should be used. We will keep supporting the legacy unbatched V1 PredictExtractor as it parses the features and labels, and is the only solution currently that allows for slicing on transformed features. Eventually we should have support for transformed features via keras preprocessing layers. Args: eval_shared_model: Shared model (single-model evaluation) or list of shared models (multi-model evaluation). Required unless the predictions are provided alongside of the features (i.e. model-agnostic evaluations). eval_config: Eval config. Returns: A boolean indicating if batched extractors should be used. """ if _is_legacy_eval(eval_shared_model, eval_config): return False elif eval_shared_model: model_types = _model_types(eval_shared_model) eval_shared_models = model_util.verify_and_update_eval_shared_models( eval_shared_model) if (model_types == set([constants.TF_LITE]) or model_types == set([constants.TF_JS])): return False elif (eval_config and model_types == set([constants.TF_ESTIMATOR]) and all(eval_constants.EVAL_TAG in m.model_loader.tags for m in eval_shared_models)): return False return True @beam.ptransform_fn @beam.typehints.with_input_types(Any) @beam.typehints.with_output_types(beam.pvalue.PDone) def ExtractEvaluateAndWriteResults( # pylint: disable=invalid-name examples: beam.pvalue.PCollection, eval_shared_model: Optional[types.MaybeMultipleEvalSharedModels] = None, eval_config: config.EvalConfig = None, extractors: Optional[List[extractor.Extractor]] = None, evaluators: Optional[List[evaluator.Evaluator]] = None, writers: Optional[List[writer.Writer]] = None, output_path: Optional[Text] = None, display_only_data_location: Optional[Text] = None, display_only_file_format: Optional[Text] = None, slice_spec: Optional[List[slicer.SingleSliceSpec]] = None, write_config: Optional[bool] = True, compute_confidence_intervals: Optional[bool] = False, min_slice_size: int = 1, random_seed_for_testing: Optional[int] = None, tensor_adapter_config: Optional[tensor_adapter.TensorAdapterConfig] = None, schema: Optional[schema_pb2.Schema] = None) -> beam.pvalue.PDone: """PTransform for performing extraction, evaluation, and writing results. Users who want to construct their own Beam pipelines instead of using the lightweight run_model_analysis functions should use this PTransform. Example usage: ```python eval_config = tfma.EvalConfig(slicing_specs=[...], metrics_specs=[...]) eval_shared_model = tfma.default_eval_shared_model( eval_saved_model_path=model_location, eval_config=eval_config) with beam.Pipeline(runner=...) as p: _ = (p | 'ReadData' >> beam.io.ReadFromTFRecord(data_location) | 'ExtractEvaluateAndWriteResults' >> tfma.ExtractEvaluateAndWriteResults( eval_shared_model=eval_shared_model, eval_config=eval_config, ...)) result = tfma.load_eval_result(output_path=output_path) tfma.view.render_slicing_metrics(result) ``` Note that the exact serialization format is an internal implementation detail and subject to change. Users should only use the TFMA functions to write and read the results. Args: examples: PCollection of input examples or Arrow Record batches. Examples can be any format the model accepts (e.g. string containing CSV row, TensorFlow.Example, etc). If the examples are in the form of a dict it will be assumed that input is already in the form of tfma.Extracts with examples stored under tfma.INPUT_KEY (any other keys will be passed along unchanged to downstream extractors and evaluators). eval_shared_model: Optional shared model (single-model evaluation) or list of shared models (multi-model evaluation). Only required if needed by default extractors, evaluators, or writers and for display purposes of the model path. eval_config: Eval config. extractors: Optional list of Extractors to apply to Extracts. Typically these will be added by calling the default_extractors function. If no extractors are provided, default_extractors (non-materialized) will be used. evaluators: Optional list of Evaluators for evaluating Extracts. Typically these will be added by calling the default_evaluators function. If no evaluators are provided, default_evaluators will be used. writers: Optional list of Writers for writing Evaluation output. Typically these will be added by calling the default_writers function. If no writers are provided, default_writers will be used. output_path: Path to output results to (config file, metrics, plots, etc). display_only_data_location: Optional path indicating where the examples were read from. This is used only for display purposes - data will not actually be read from this path. display_only_file_format: Optional format of the examples. This is used only for display purposes. slice_spec: Deprecated (use EvalConfig). write_config: Deprecated (use EvalConfig). compute_confidence_intervals: Deprecated (use EvalConfig). min_slice_size: Deprecated (use EvalConfig). random_seed_for_testing: Provide for deterministic tests only. tensor_adapter_config: Tensor adapter config which specifies how to obtain tensors from the Arrow RecordBatch. If None, we feed the raw examples to the model. schema: A schema to use for customizing evaluators. Raises: ValueError: If EvalConfig invalid or matching Extractor not found for an Evaluator. Returns: PDone. """ eval_shared_models = model_util.verify_and_update_eval_shared_models( eval_shared_model) if eval_config is None: eval_config = _default_eval_config(eval_shared_models, slice_spec, write_config, compute_confidence_intervals, min_slice_size) else: eval_config = _update_eval_config_with_defaults(eval_config, eval_shared_model) config.verify_eval_config(eval_config) if not extractors: extractors = default_extractors( eval_config=eval_config, eval_shared_model=eval_shared_model, materialize=False, tensor_adapter_config=tensor_adapter_config) if not evaluators: evaluators = default_evaluators( eval_config=eval_config, eval_shared_model=eval_shared_model, random_seed_for_testing=random_seed_for_testing, schema=schema) for v in evaluators: evaluator.verify_evaluator(v, extractors) if not writers: writers = default_writers( output_path=output_path, eval_shared_model=eval_shared_model, eval_config=eval_config, display_only_data_location=display_only_data_location, display_only_data_file_format=display_only_file_format) # pylint: disable=no-value-for-parameter if is_batched_input(eval_shared_model, eval_config): extracts = ( examples | 'BatchedInputsToExtracts' >> BatchedInputsToExtracts()) else: extracts = (examples | 'InputsToExtracts' >> InputsToExtracts()) _ = ( extracts | 'ExtractAndEvaluate' >> ExtractAndEvaluate( extractors=extractors, evaluators=evaluators) | 'WriteResults' >> WriteResults(writers=writers)) return beam.pvalue.PDone(examples.pipeline) def run_model_analysis( eval_shared_model: Optional[types.MaybeMultipleEvalSharedModels] = None, eval_config: config.EvalConfig = None, data_location: Text = '', file_format: Text = 'tfrecords', output_path: Optional[Text] = None, extractors: Optional[List[extractor.Extractor]] = None, evaluators: Optional[List[evaluator.Evaluator]] = None, writers: Optional[List[writer.Writer]] = None, pipeline_options: Optional[Any] = None, slice_spec: Optional[List[slicer.SingleSliceSpec]] = None, write_config: Optional[bool] = True, compute_confidence_intervals: Optional[bool] = False, min_slice_size: int = 1, random_seed_for_testing: Optional[int] = None, schema: Optional[schema_pb2.Schema] = None, ) -> Union[view_types.EvalResult, view_types.EvalResults]: """Runs TensorFlow model analysis. It runs a Beam pipeline to compute the slicing metrics exported in TensorFlow Eval SavedModel and returns the results. This is a simplified API for users who want to quickly get something running locally. Users who wish to create their own Beam pipelines can use the Evaluate PTransform instead. Args: eval_shared_model: Optional shared model (single-model evaluation) or list of shared models (multi-model evaluation). Only required if needed by default extractors, evaluators, or writers. eval_config: Eval config. data_location: The location of the data files. file_format: The file format of the data, can be either 'text' or 'tfrecords' for now. By default, 'tfrecords' will be used. output_path: The directory to output metrics and results to. If None, we use a temporary directory. extractors: Optional list of Extractors to apply to Extracts. Typically these will be added by calling the default_extractors function. If no extractors are provided, default_extractors (non-materialized) will be used. evaluators: Optional list of Evaluators for evaluating Extracts. Typically these will be added by calling the default_evaluators function. If no evaluators are provided, default_evaluators will be used. writers: Optional list of Writers for writing Evaluation output. Typically these will be added by calling the default_writers function. If no writers are provided, default_writers will be used. pipeline_options: Optional arguments to run the Pipeline, for instance whether to run directly. slice_spec: Deprecated (use EvalConfig). write_config: Deprecated (use EvalConfig). compute_confidence_intervals: Deprecated (use EvalConfig). min_slice_size: Deprecated (use EvalConfig). random_seed_for_testing: Provide for deterministic tests only. schema: Optional tf.Metadata schema of the input data. Returns: An EvalResult that can be used with the TFMA visualization functions. Raises: ValueError: If the file_format is unknown to us. """ _assert_tensorflow_version() if output_path is None: output_path = tempfile.mkdtemp() if not tf.io.gfile.exists(output_path): tf.io.gfile.makedirs(output_path) if eval_config is None: eval_shared_models = model_util.verify_and_update_eval_shared_models( eval_shared_model) eval_config = _default_eval_config(eval_shared_models, slice_spec, write_config, compute_confidence_intervals, min_slice_size) else: eval_config = _update_eval_config_with_defaults(eval_config, eval_shared_model) tensor_adapter_config = None with beam.Pipeline(options=pipeline_options) as p: if file_format == 'tfrecords': if is_batched_input(eval_shared_model, eval_config): tfxio = tf_example_record.TFExampleRecord( file_pattern=data_location, schema=schema, raw_record_column_name=constants.ARROW_INPUT_COLUMN) if schema is not None: tensor_adapter_config = tensor_adapter.TensorAdapterConfig( arrow_schema=tfxio.ArrowSchema(), tensor_representations=tfxio.TensorRepresentations()) data = p | 'ReadFromTFRecordToArrow' >> tfxio.BeamSource() else: data = p | 'ReadFromTFRecord' >> beam.io.ReadFromTFRecord( file_pattern=data_location, compression_type=beam.io.filesystem.CompressionTypes.AUTO) elif file_format == 'text': data = p | 'ReadFromText' >> beam.io.textio.ReadFromText(data_location) else: raise ValueError('unknown file_format: {}'.format(file_format)) # pylint: disable=no-value-for-parameter _ = ( data | 'ExtractEvaluateAndWriteResults' >> ExtractEvaluateAndWriteResults( eval_config=eval_config, eval_shared_model=eval_shared_model, display_only_data_location=data_location, display_only_file_format=file_format, output_path=output_path, extractors=extractors, evaluators=evaluators, writers=writers, random_seed_for_testing=random_seed_for_testing, tensor_adapter_config=tensor_adapter_config, schema=schema)) # pylint: enable=no-value-for-parameter if len(eval_config.model_specs) <= 1: return load_eval_result(output_path) else: results = [] for spec in eval_config.model_specs: results.append(load_eval_result(output_path, model_name=spec.name)) return view_types.EvalResults(results, constants.MODEL_CENTRIC_MODE) def single_model_analysis( model_location: Text, data_location: Text, output_path: Text = None, eval_config: Optional[config.EvalConfig] = None, slice_spec: Optional[List[slicer.SingleSliceSpec]] = None ) -> view_types.EvalResult: """Run model analysis for a single model on a single data set. This is a convenience wrapper around run_model_analysis for a single model with a single data set. For more complex use cases, use tfma.run_model_analysis. Args: model_location: Path to the export eval saved model. data_location: The location of the data files. output_path: The directory to output metrics and results to. If None, we use a temporary directory. eval_config: Eval config. slice_spec: Deprecated (use EvalConfig). Returns: An EvalResult that can be used with the TFMA visualization functions. """ # Get working_dir ready. if output_path is None: output_path = tempfile.mkdtemp() if not tf.io.gfile.exists(output_path): tf.io.gfile.makedirs(output_path) if slice_spec and eval_config: raise ValueError('slice_spec is deprecated, only use eval_config') if slice_spec: eval_config = config.EvalConfig( slicing_specs=[s.to_proto() for s in slice_spec]) return run_model_analysis( eval_config=eval_config, eval_shared_model=default_eval_shared_model( eval_saved_model_path=model_location), data_location=data_location, output_path=output_path) # pytype: disable=bad-return-type def multiple_model_analysis(model_locations: List[Text], data_location: Text, **kwargs) -> view_types.EvalResults: """Run model analysis for multiple models on the same data set. Args: model_locations: A list of paths to the export eval saved model. data_location: The location of the data files. **kwargs: The args used for evaluation. See tfma.single_model_analysis() for details. Returns: A tfma.EvalResults containing all the evaluation results with the same order as model_locations. """ results = [] for m in model_locations: results.append(single_model_analysis(m, data_location, **kwargs)) return view_types.EvalResults(results, constants.MODEL_CENTRIC_MODE) def multiple_data_analysis(model_location: Text, data_locations: List[Text], **kwargs) -> view_types.EvalResults: """Run model analysis for a single model on multiple data sets. Args: model_location: The location of the exported eval saved model. data_locations: A list of data set locations. **kwargs: The args used for evaluation. See tfma.run_model_analysis() for details. Returns: A tfma.EvalResults containing all the evaluation results with the same order as data_locations. """ results = [] for d in data_locations: results.append(single_model_analysis(model_location, d, **kwargs)) return view_types.EvalResults(results, constants.DATA_CENTRIC_MODE) def analyze_raw_data( data: pd.DataFrame, eval_config: config.EvalConfig = None, output_path: Optional[Text] = None, add_metric_callbacks: List[types.AddMetricsCallbackType] = None ) -> view_types.EvalResult: """Runs TensorFlow model analysis on a pandas.DataFrame. This function allows you to use TFMA with Pandas DataFrames. The dataframe must include a 'predicted' column for the predicted label and a 'label' column for the actual label. In addition to a DataFrame, this function requires an eval_config, a `tfma.EvalConfig` object containing various configuration parameters (see [config.proto](https://github.com/tensorflow/model-analysis/blob/master/tensorflow_model_analysis/proto/config.proto) for a comprehensive list)... * the metrics to compute * the slices to compute metrics on * the DataFrame's column names for example labels and predictions ('label' and 'prediction' by default) * confidence interval options This function returns a `tfma.EvalResult`, which contains TFMA's computed metrics and can be used to generate plots with `tfma.view.render_slicing_metrics`. Example usage: ```python model_specs = [ config.ModelSpec( prediction_key='prediction', label_key='label') ] config.options.compute_confidence_intervals.value metrics_specs = [ config.MetricsSpec(metrics=[ config.MetricConfig(class_name='Accuracy'), config.MetricConfig(class_name='ExampleCount') ]) ] slicing_specs = [ config.SlicingSpec(), # the empty slice represents the overall dataset config.SlicingSpec(feature_keys=['language']) ] eval_config = config.EvalConfig( model_specs=model_specs, metrics_specs=metrics_specs, slicing_specs=slicing_specs) result = model_eval_lib.analyze_raw_data(df, eval_config) tfma.view.render_slicing_metrics(result) # Example with Fairness Indicators from tensorflow_model_analysis.addons.fairness.post_export_metrics import fairness_indicators from tensorflow_model_analysis.addons.fairness.view import widget_view add_metrics_callbacks = [ tfma.post_export_metrics.fairness_indicators(thresholds=[0.25, 0.5, 0.75]) ] result = model_eval_lib.analyze_raw_data( data=df, metrics_specs=metrics_specs, slicing_specs=slicing_specs, add_metric_callbacks=add_metrics_callbacks ) widget_view.render_fairness_indicator(result) ``` Args: data: A pandas.DataFrame, where rows correspond to examples and columns correspond to features. One column must indicate a row's predicted label, and one column must indicate a row's actual label. eval_config: A `tfma.EvalConfig`, which contains various configuration parameters including metrics, slices, and label/prediction column names. output_path: Path to write EvalResult to. add_metric_callbacks: Optional list of metric callbacks (if used). Returns: A tfma.EvalResult to extract metrics or generate visualizations from. Raises: KeyError: If the prediction or label columns are not found within the DataFrame. """ for model_spec in eval_config.model_specs: model_spec.prediction_key = model_spec.prediction_key or 'prediction' model_spec.label_key = model_spec.label_key or 'label' if model_spec.prediction_key not in data.columns: raise KeyError( 'The prediction_key column was not found. Looked for %s but found: %s' % (model_spec.prediction_key, list(data.columns))) if model_spec.label_key not in data.columns: raise KeyError( 'The label_key column was not found. Looked for %s but found: %s' % (model_spec.label_key, list(data.columns))) # TODO(b/153570803): Validity check / assertions for dataframe structure if eval_config.slicing_specs is None: eval_config.slicing_specs = [config.SlicingSpec(feature_keys=[''])] if output_path is None: output_path = tempfile.mkdtemp() arrow_data = table_util.CanonicalizeRecordBatch( table_util.DataFrameToRecordBatch(data)) beam_data = beam.Create([arrow_data]) writers = default_writers( output_path, eval_config=eval_config, add_metric_callbacks=add_metric_callbacks) with beam.Pipeline() as p: _ = ( p | beam_data | 'ExtractEvaluateAndWriteResults' >> ExtractEvaluateAndWriteResults( # pylint: disable=no-value-for-parameter writers=writers, eval_config=eval_config, output_path=output_path)) return load_eval_result(output_path)
the-stack_0_14808
""" Utilities for general use """ import pandas as pd import random def cartesianproduct(*args): """Create full cartesian product of all objects passed""" # Create a random string to name a new random column for merging key_col = randomstring(16) out = pd.DataFrame(args[0].drop_duplicates()) out[key_col] = 1 for itm in args[1:]: itm = pd.DataFrame(itm.drop_duplicates()) itm[key_col] = 1 out = out.merge(itm, on=key_col) out.drop(columns=key_col, inplace=True) return out
the-stack_0_14809
#!/usr/bin/env python # -*- coding: utf-8 -*- from bincrafters import build_template_default import os import platform if __name__ == "__main__": CONAN_USERNAME = os.environ.get("CONAN_USERNAME", "yjjnls") CONAN_UPLOAD = 'https://api.bintray.com/conan/%s/%s' % (CONAN_USERNAME, 'stable') os.environ['CONAN_UPLOAD'] = CONAN_UPLOAD os.environ['CONAN_CHANNEL'] = 'stable' os.environ['CONAN_UPLOAD_ONLY_WHEN_STABLE'] = 'False' os.environ['CONAN_USERNAME'] = CONAN_USERNAME DEPENDENT_BINTRAY_REPO = os.environ.get( "DEPENDENT_BINTRAY_REPO", CONAN_USERNAME) os.environ['DEPENDENT_BINTRAY_REPO'] = DEPENDENT_BINTRAY_REPO builder = build_template_default.get_builder() builds = [] for settings, options, env_vars, build_requires, reference in builder.items: # dynamic only if not options["gstreamer-custom:shared"]: continue # release only if settings["build_type"] == "Debug": continue # Visual Sutido 2017 only if platform.system() == "Windows": if settings["compiler"] == "Visual Studio": if settings["compiler.version"] == '14': builds.append( [settings, options, env_vars, build_requires]) elif platform.system() == "Linux": if settings["compiler"] == "gcc": if settings["compiler.version"] == '4.9' and settings["arch"] == 'x86_64': builds.append( [settings, options, {'DEPENDENT_BINTRAY_REPO': DEPENDENT_BINTRAY_REPO}, build_requires]) builder.builds = builds builder.run()
the-stack_0_14810
conv_encoder = km.Sequential(name="ConvEncoderModel") conv_encoder.add(kl.Conv2D(16, (3,3) , activation='relu', input_shape=(28,28,1) , padding='same' )) conv_encoder.add(kl.MaxPooling2D((2, 2), padding='same')) conv_encoder.add(kl.Conv2D(8, (3, 3), activation='relu', padding='same')) conv_encoder.add(kl.MaxPooling2D((2, 2), padding='same')) conv_encoder.add(kl.Conv2D(8, (3, 3), activation='relu', padding='same')) conv_encoder.add(kl. MaxPooling2D((2, 2), padding='same')) conv_decoder = km.Sequential(name="ConvDecoderModel") conv_decoder.add(kl.Conv2D(8, (3, 3), activation='relu', input_shape = (4, 4, 8), padding='same')) conv_decoder.add(kl.UpSampling2D((2, 2))) conv_decoder.add(kl.Conv2D(8, (3, 3), activation='relu', padding='same')) conv_decoder.add(kl.UpSampling2D((2, 2))) conv_decoder.add(kl.Conv2D(16, (3, 3), activation='relu')) conv_decoder.add(kl.UpSampling2D((2, 2))) conv_decoder.add(kl.Conv2D(1, (3, 3), activation='sigmoid', padding='same')) conv_autoencoder = km.Sequential(name="ConvAutoencoderModel") conv_autoencoder.add(conv_encoder) conv_autoencoder.add(conv_decoder) conv_autoencoder.compile(optimizer='adam', loss='binary_crossentropy') conv_autoencoder.fit(x_train_noisy, x_train_conv, epochs=10, batch_size=256, validation_data=(x_test_noisy, x_test_conv))
the-stack_0_14811
import bluetooth bd_addr = "98:D3:31:F5:B9:E6" port = 1 sock = bluetooth.BluetoothSocket(bluetooth.RFCOMM) sock.connect((bd_addr,port)) while 1: a = sock.recv(1) print(a) sock.close()
the-stack_0_14812
from nltk.stem.wordnet import WordNetLemmatizer from SentimentAnalysis.common_functions import preprocess_one_line, remove_duplicates lemmatizer = WordNetLemmatizer() lemmatize_flag = True pos_raw_file = open('/home/data/positive-words-raw.txt', 'r') neg_raw_file = open('/home/data/negative-words-raw.txt', 'r') pos_file = open('/home/data/positive-words.txt', 'w') neg_file = open('/home/data/negative-words.txt', 'w') positives_raw = pos_raw_file.readlines() negatives_raw = neg_raw_file.readlines() positives = [] for pos_line in positives_raw: new_pos_line = preprocess_one_line(pos_line, lemmatizer, lemmatize_flag, []) # last arg is stopwords -- there are none by definition positives.append(new_pos_line) positives = remove_duplicates(positives) negatives = [] for neg_line in negatives_raw: new_neg_line = preprocess_one_line(neg_line, lemmatizer, lemmatize_flag, []) negatives.append(new_neg_line) negatives = remove_duplicates(negatives) for word in negatives: neg_file.write(word+'\n') neg_file.close() for word in positives: pos_file.write(word+'\n') pos_file.close()
the-stack_0_14814
#!/usr/bin/env python3 # # Copyright (c) 2021 Nordic Semiconductor ASA # # SPDX-License-Identifier: Apache-2.0 # from unittest import TestCase, main from subprocess import Popen, PIPE from re import sub from pathlib import Path from pprint import pprint # from ecdsa import VerifyingKey from hashlib import sha256 import cbor2 try: import cddl_gen except ImportError: print(""" The cddl_gen package must be installed to run these tests. During development, install with `python3 setup.py develop` to install in a way that picks up changes in the files without having to reinstall. """) import sys sys.exit(1) p_root = Path(__file__).absolute().parents[2] p_tests = Path(p_root, 'tests') p_manifest12 = Path(p_tests, 'cases', 'manifest12.cddl') p_manifest14 = Path(p_tests, 'cases', 'manifest14.cddl') p_test_vectors12 = tuple(Path(p_tests, 'cases', f'manifest12_example{i}.cborhex') for i in range(6)) p_test_vectors14 = tuple(Path(p_tests, 'cases', f'manifest14_example{i}.cborhex') for i in range(6)) p_optional = Path(p_tests, 'cases', 'optional.cddl') p_cose = Path(p_tests, 'cases', 'cose.cddl') p_manifest14_priv = Path(p_tests, 'cases', 'manifest14.priv') p_manifest14_pub = Path(p_tests, 'cases', 'manifest14.pub') class Testn(TestCase): def decode_file(self, data_path, *cddl_paths): data = bytes.fromhex(data_path.read_text().replace("\n", "")) self.decode_string(data, *cddl_paths) def decode_string(self, data_string, *cddl_paths): cddl_str = " ".join((Path(p).read_text() for p in cddl_paths)) self.my_types = cddl_gen.DataTranslator.from_cddl(cddl_str, 16).my_types cddl = self.my_types["SUIT_Envelope_Tagged"] self.decoded = cddl.decode_str(data_string) class Test0(Testn): def __init__(self, *args, **kwargs): super(Test0, self).__init__(*args, **kwargs) self.decode_file(p_test_vectors12[0], p_manifest12) def test_manifest_digest(self): self.assertEqual( bytes.fromhex("5c097ef64bf3bb9b494e71e1f2418eef8d466cc902f639a855ec9af3e9eddb99"), self.decoded.suit_authentication_wrapper.SUIT_Digest_bstr.suit_digest_bytes) def test_signature(self): self.assertEqual( 1, self.decoded.suit_authentication_wrapper.SUIT_Authentication_Block_bstr[0].COSE_Sign1_Tagged.protected.uintint[0].uintint_key) self.assertEqual( -7, self.decoded.suit_authentication_wrapper.SUIT_Authentication_Block_bstr[0].COSE_Sign1_Tagged.protected.uintint[0].uintint) self.assertEqual( bytes.fromhex("a19fd1f23b17beed321cece7423dfb48c457b8f1f6ac83577a3c10c6773f6f3a7902376b59540920b6c5f57bac5fc8543d8f5d3d974faa2e6d03daa534b443a7"), self.decoded.suit_authentication_wrapper.SUIT_Authentication_Block_bstr[0].COSE_Sign1_Tagged.signature) def test_validate_run(self): self.assertEqual( "suit_condition_image_match", self.decoded.suit_manifest.SUIT_Unseverable_Members.suit_validate[0].suit_validate.union[0].SUIT_Condition.union_choice) self.assertEqual( "suit_directive_run", self.decoded.suit_manifest.SUIT_Unseverable_Members.suit_run[0].suit_run.union[0].SUIT_Directive.union_choice) def test_image_size(self): self.assertEqual(34768, self.decoded.suit_manifest.suit_common.suit_common_sequence[0].suit_common_sequence.union[0].SUIT_Common_Commands.suit_directive_override_parameters.map[3].suit_parameter_image_size) class Test1(Testn): def __init__(self, *args, **kwargs): super(Test1, self).__init__(*args, **kwargs) self.decode_file(p_test_vectors12[1], p_manifest12) def test_components(self): self.assertEqual( [b'\x00'], self.decoded.suit_manifest.suit_common.suit_components[0][0].bstr) def test_uri(self): self.assertEqual( "http://example.com/file.bin", self.decoded.suit_manifest.SUIT_Severable_Manifest_Members.suit_install[0].suit_install.union[0].SUIT_Directive.suit_directive_set_parameters.map[0].suit_parameter_uri) class Test2(Testn): def __init__(self, *args, **kwargs): super(Test2, self).__init__(*args, **kwargs) self.decode_file(p_test_vectors12[2], p_manifest12) def test_severed_uri(self): self.assertEqual( "http://example.com/very/long/path/to/file/file.bin", self.decoded.SUIT_Severable_Manifest_Members.suit_install[0].suit_install.union[0].SUIT_Directive.suit_directive_set_parameters.map[0].suit_parameter_uri) def test_severed_text(self): self.assertIn( "Example 2", self.decoded.SUIT_Severable_Manifest_Members.suit_text[0].suit_text.SUIT_Text_Keys.suit_text_manifest_description[0]) self.assertEqual( [b'\x00'], self.decoded.SUIT_Severable_Manifest_Members.suit_text[0].suit_text.SUIT_Component_Identifier[0].SUIT_Component_Identifier_key.bstr) self.assertEqual( "arm.com", self.decoded.SUIT_Severable_Manifest_Members.suit_text[0].suit_text.SUIT_Component_Identifier[0].SUIT_Component_Identifier.SUIT_Text_Component_Keys.suit_text_vendor_domain[0]) self.assertEqual( "This component is a demonstration. The digest is a sample pattern, not a real one.", self.decoded.SUIT_Severable_Manifest_Members.suit_text[0].suit_text.SUIT_Component_Identifier[0].SUIT_Component_Identifier.SUIT_Text_Component_Keys.suit_text_component_description[0]) class Test3(Testn): def __init__(self, *args, **kwargs): super(Test3, self).__init__(*args, **kwargs) self.decode_file(p_test_vectors12[3], p_manifest12) def test_A_B_offset(self): self.assertEqual( 33792, self.decoded.suit_manifest.suit_common.suit_common_sequence[0].suit_common_sequence.union[1].SUIT_Common_Commands.suit_directive_try_each.SUIT_Directive_Try_Each_Argument.SUIT_Command_Sequence_bstr[0].union[0].SUIT_Directive.suit_directive_override_parameters.map[0].suit_parameter_component_offset) self.assertEqual( 541696, self.decoded.suit_manifest.suit_common.suit_common_sequence[0].suit_common_sequence.union[1].SUIT_Common_Commands.suit_directive_try_each.SUIT_Directive_Try_Each_Argument.SUIT_Command_Sequence_bstr[1].union[0].SUIT_Directive.suit_directive_override_parameters.map[0].suit_parameter_component_offset) class Test4(Testn): def __init__(self, *args, **kwargs): super(Test4, self).__init__(*args, **kwargs) self.decode_file(p_test_vectors12[4], p_manifest12) def test_load_decompress(self): self.assertEqual( 0, self.decoded.suit_manifest.SUIT_Unseverable_Members.suit_load[0].suit_load.union[1].SUIT_Directive.suit_directive_set_parameters.map[3].suit_parameter_source_component) self.assertEqual( "SUIT_Compression_Algorithm_zlib", self.decoded.suit_manifest.SUIT_Unseverable_Members.suit_load[0].suit_load.union[1].SUIT_Directive.suit_directive_set_parameters.map[2].suit_parameter_compression_info.suit_compression_algorithm) class Test5(Testn): def __init__(self, *args, **kwargs): super(Test5, self).__init__(*args, **kwargs) self.decode_file(p_test_vectors12[5], p_manifest12) def test_two_image_match(self): self.assertEqual( "suit_condition_image_match", self.decoded.suit_manifest.SUIT_Severable_Manifest_Members.suit_install[0].suit_install.union[3].SUIT_Condition.union_choice) self.assertEqual( "suit_condition_image_match", self.decoded.suit_manifest.SUIT_Severable_Manifest_Members.suit_install[0].suit_install.union[7].SUIT_Condition.union_choice) def dumps(obj): return cbor2.dumps(obj, canonical=True) def loads(string): return cbor2.loads(string) class Test6(Testn): def __init__(self, *args, **kwargs): super(Test6, self).__init__(*args, **kwargs) self.decode_file(p_test_vectors14[0], p_manifest14, p_cose) def test_authentication(self): digest = bytes.fromhex("a6c4590ac53043a98e8c4106e1e31b305516d7cf0a655eddfac6d45c810e036a") signature = bytes.fromhex("d11a2dd9610fb62a707335f584079225709f96e8117e7eeed98a2f207d05c8ecfba1755208f6abea977b8a6efe3bc2ca3215e1193be201467d052b42db6b7287") sig_struct = bytes.fromhex("846a5369676e61747572653143a10126405820a6c4590ac53043a98e8c4106e1e31b305516d7cf0a655eddfac6d45c810e036a") # key = VerifyingKey.from_pem(p_manifest14_pub.read_text()) # key.verify_digest(signature, digest) # key.verify(signature, digest, hashfunc=sha256) # key.verify(signature, sig_struct, hashfunc=sha256) self.assertEqual("COSE_Sign1_Tagged", self.decoded.suit_authentication_wrapper.SUIT_Authentication_Block_bstr[0].union_choice) self.assertEqual(-7, self.decoded.suit_authentication_wrapper.SUIT_Authentication_Block_bstr[0].COSE_Sign1_Tagged.Headers.protected.header_map_bstr.Generic_Headers.uint1union[0].int) manifest_signature = self.decoded.suit_authentication_wrapper.SUIT_Authentication_Block_bstr[0].COSE_Sign1_Tagged.signature sig_struct = ["Signature", self.decoded.suit_authentication_wrapper.SUIT_Authentication_Block_bstr[0].COSE_Sign1_Tagged.Headers.protected.header_map_bstr_bstr, b'', b'', b''] sig_struct_encoded = dumps(sig_struct) # self.assertEqual(dumps(self.decoded.suit_manifest.orig_obj), self.decoded.orig_obj[3]) manifest_str = dumps(self.decoded.suit_manifest_bstr) # manifest_hash = sha256(manifest_str).digest() manifest_hash = dumps(sha256(manifest_str).digest()) manifest_suit_digest = self.decoded.suit_authentication_wrapper.SUIT_Digest_bstr_bstr # manifest_suit_digest = dumps(dumps(self.decoded.suit_authentication_wrapper.SUIT_Digest_bstr.orig_obj)) sig_struct_encoded = sig_struct_encoded[:-1] + manifest_hash # sig_struct_encoded = sig_struct_encoded[:-1] + dumps(manifest_hash) # sig_struct_encoded = sig_struct_encoded[:-1] + dumps(manifest_suit_digest) # sig_struct_encoded = sig_struct_encoded[:-1] + dumps(dumps(manifest_suit_digest)) # res = self.my_types["Sig_structure"].validate_str(sig_struct_encoded) # print (sig_struct_encoded.hex()) loaded = loads(sig_struct_encoded) # key = VerifyingKey.from_pem(p_manifest14_pub.read_text()) # print(sig_struct_encoded.hex()) # print(key.to_string().hex()) # print(manifest_signature.hex()) # res = key.verify(manifest_signature, dumps(self.decoded.orig_obj[3]), hashfunc=sha256) # res = key.verify_digest(manifest_signature, manifest_hash) # res = key.verify(manifest_signature, manifest_hash, hashfunc=sha256) # res = key.verify(manifest_signature, dumps(manifest_hash), hashfunc=sha256) # res = key.verify(manifest_signature, manifest_suit_digest, hashfunc=sha256) # res = key.verify(manifest_signature, dumps(manifest_suit_digest), hashfunc=sha256) # res = key.verify(manifest_signature, dumps(sig_struct_encoded), hashfunc=sha256) # res = key.verify(manifest_signature, sig_struct_encoded, hashfunc=sha256) # print(res) class Test7(Testn): def __init__(self, *args, **kwargs): super(Test7, self).__init__(*args, **kwargs) self.decode_file(p_test_vectors14[1], p_manifest14, p_cose) def test_structure(self): self.assertEqual("COSE_Sign1_Tagged", self.decoded.suit_authentication_wrapper.SUIT_Authentication_Block_bstr[0].union_choice) self.assertEqual(-7, self.decoded.suit_authentication_wrapper.SUIT_Authentication_Block_bstr[0].COSE_Sign1_Tagged.Headers.protected.header_map_bstr.Generic_Headers.uint1union[0].int) self.assertEqual(bytes.fromhex("60c61d6eb7a1aaeddc49ce8157a55cff0821537eeee77a4ded44155b03045132"), self.decoded.suit_authentication_wrapper.SUIT_Digest_bstr.suit_digest_bytes) self.assertEqual(1, self.decoded.suit_manifest.suit_manifest_sequence_number) self.assertEqual(bytes.fromhex("fa6b4a53d5ad5fdfbe9de663e4d41ffe"), self.decoded.suit_manifest.suit_common.suit_common_sequence[0].suit_common_sequence.union[0].SUIT_Common_Commands.suit_directive_override_parameters.map[0].suit_parameter_vendor_identifier.RFC4122_UUID) self.assertEqual(bytes.fromhex("1492af1425695e48bf429b2d51f2ab45"), self.decoded.suit_manifest.suit_common.suit_common_sequence[0].suit_common_sequence.union[0].SUIT_Common_Commands.suit_directive_override_parameters.map[1].suit_parameter_class_identifier) self.assertEqual(bytes.fromhex("00112233445566778899aabbccddeeff0123456789abcdeffedcba9876543210"), self.decoded.suit_manifest.suit_common.suit_common_sequence[0].suit_common_sequence.union[0].SUIT_Common_Commands.suit_directive_override_parameters.map[2].suit_parameter_image_digest.suit_digest_bytes) self.assertEqual('cose_alg_sha_256', self.decoded.suit_manifest.suit_common.suit_common_sequence[0].suit_common_sequence.union[0].SUIT_Common_Commands.suit_directive_override_parameters.map[2].suit_parameter_image_digest.suit_digest_algorithm_id.union_choice) self.assertEqual(34768, self.decoded.suit_manifest.suit_common.suit_common_sequence[0].suit_common_sequence.union[0].SUIT_Common_Commands.suit_directive_override_parameters.map[3].suit_parameter_image_size) self.assertEqual(4, len(self.decoded.suit_manifest.suit_common.suit_common_sequence[0].suit_common_sequence.union[0].SUIT_Common_Commands.suit_directive_override_parameters.map)) self.assertEqual(15, self.decoded.suit_manifest.suit_common.suit_common_sequence[0].suit_common_sequence.union[1].SUIT_Condition.suit_condition_vendor_identifier.SUIT_Rep_Policy) self.assertEqual(15, self.decoded.suit_manifest.suit_common.suit_common_sequence[0].suit_common_sequence.union[2].SUIT_Condition.suit_condition_class_identifier.SUIT_Rep_Policy) self.assertEqual(3, len(self.decoded.suit_manifest.suit_common.suit_common_sequence[0].suit_common_sequence.union)) self.assertEqual(2, len(self.decoded.suit_manifest.suit_common.suit_common_sequence[0].suit_common_sequence.union[0])) self.assertEqual(2, len(self.decoded.suit_manifest.suit_common.suit_common_sequence[0].suit_common_sequence.union[0].SUIT_Common_Commands)) self.assertEqual(1, len(self.decoded.suit_manifest.suit_common.suit_common_sequence[0].suit_common_sequence.union[0].SUIT_Common_Commands.suit_directive_override_parameters)) self.assertEqual(4, len(self.decoded.suit_manifest.suit_common.suit_common_sequence[0].suit_common_sequence.union[0].SUIT_Common_Commands.suit_directive_override_parameters.map)) self.assertEqual(2, len(self.decoded.suit_manifest.suit_common.suit_common_sequence[0].suit_common_sequence.union[0].SUIT_Common_Commands.suit_directive_override_parameters.map[0])) def test_cbor_pen(self): data = bytes.fromhex(p_test_vectors14[1].read_text().replace("\n", "")) struct = loads(data) struct2 = loads(struct.value[3]) # manifest struct3 = loads(struct2[3]) # common sequence struct4 = loads(struct3[4]) # override params self.assertEqual(struct4[0], 20) self.assertTrue(isinstance(struct4[1][1], bytes)) struct4[1][1] = cbor2.CBORTag(112, struct4[1][1]) # Add the tag for cbor-pen struct3[4] = dumps(struct4) struct2[3] = dumps(struct3) struct.value[3] = dumps(struct2) data = dumps(struct) self.decode_string(data, p_manifest14, p_cose) class Test7Inv(Testn): def test_inv0(self): data = bytes.fromhex(p_test_vectors14[1].read_text().replace("\n", "")) struct = loads(data) struct2 = loads(struct.value[2]) # authentication struct3 = loads(struct2[1]) struct3.tag = 99999 # invalid tag for COSE_Sign1 struct2[1] = dumps(struct3) struct.value[2] = dumps(struct2) data = dumps(struct) try: self.decode_string(data, p_manifest14, p_cose) except cddl_gen.CddlValidationError as e: return else: assert False, "Should have failed validation" def test_inv1(self): data = bytes.fromhex(p_test_vectors14[1].read_text().replace("\n", "")) struct = loads(data) struct2 = loads(struct.value[3]) # manifest struct2[1] += 1 # invalid manifest version struct.value[3] = dumps(struct2) data = dumps(struct) try: self.decode_string(data, p_manifest14, p_cose) except cddl_gen.CddlValidationError as e: return else: assert False, "Should have failed validation" def test_inv2(self): data = bytes.fromhex(p_test_vectors14[1].read_text().replace("\n", "")) struct = loads(data) struct.value[23] = b'' # Invalid integrated payload key data = dumps(struct) try: self.decode_string(data, p_manifest14, p_cose) except (cddl_gen.CddlValidationError, cbor2.CBORDecodeEOF) as e: return else: assert False, "Should have failed validation" def test_inv3(self): data = bytes.fromhex(p_test_vectors14[1].read_text().replace("\n", "")) struct = loads(data) struct2 = loads(struct.value[3]) # manifest struct3 = loads(struct2[3]) # common sequence struct4 = loads(struct3[4]) # override params self.assertEqual(struct4[0], 20) self.assertTrue(isinstance(struct4[1][1], bytes)) struct4[1][1] += b'x' # vendor ID: wrong length struct3[4] = dumps(struct4) struct2[3] = dumps(struct3) struct.value[3] = dumps(struct2) data = dumps(struct) try: self.decode_string(data, p_manifest14, p_cose) except cddl_gen.CddlValidationError as e: return else: assert False, "Should have failed validation" class Test8(Testn): def __init__(self, *args, **kwargs): super(Test8, self).__init__(*args, **kwargs) self.decode_file(p_test_vectors14[2], p_manifest14, p_cose) def test_text(self): self.assertEqual( bytes.fromhex('2bfc4d0cc6680be7dd9f5ca30aa2bb5d1998145de33d54101b80e2ca49faf918'), self.decoded.suit_manifest.SUIT_Severable_Members_Choice.suit_text[0].SUIT_Digest.suit_digest_bytes) self.assertEqual( bytes.fromhex('2bfc4d0cc6680be7dd9f5ca30aa2bb5d1998145de33d54101b80e2ca49faf918'), sha256(dumps(self.decoded.SUIT_Severable_Manifest_Members.suit_text[0].suit_text_bstr)).digest()) self.assertEqual('arm.com', self.decoded.SUIT_Severable_Manifest_Members.suit_text[0].suit_text.SUIT_Component_Identifier[0].SUIT_Component_Identifier.SUIT_Text_Component_Keys.suit_text_vendor_domain[0]) self.assertEqual('This component is a demonstration. The digest is a sample pattern, not a real one.', self.decoded.SUIT_Severable_Manifest_Members.suit_text[0].suit_text.SUIT_Component_Identifier[0].SUIT_Component_Identifier.SUIT_Text_Component_Keys.suit_text_component_description[0]) # Check manifest description. The concatenation and .replace() call are there to add # trailing whitespace to all blank lines except the first. # This is done in this way to avoid editors automatically removing the whitespace. self.assertEqual('''## Example 2: Simultaneous Download, Installation, Secure Boot, Severed Fields ''' + ''' This example covers the following templates: * Compatibility Check ({{template-compatibility-check}}) * Secure Boot ({{template-secure-boot}}) * Firmware Download ({{firmware-download-template}}) This example also demonstrates severable elements ({{ovr-severable}}), and text ({{manifest-digest-text}}).'''.replace("\n\n", "\n \n"), self.decoded.SUIT_Severable_Manifest_Members.suit_text[0].suit_text.SUIT_Text_Keys.suit_text_manifest_description[0]) class Test9(Testn): def __init__(self, *args, **kwargs): super(Test9, self).__init__(*args, **kwargs) self.decode_file(p_test_vectors14[3], p_manifest14, p_cose) def test_try_each(self): self.assertEqual(2, len(self.decoded.suit_manifest.SUIT_Severable_Members_Choice.suit_install[0].SUIT_Command_Sequence_bstr.union[0].SUIT_Directive.suit_directive_try_each.SUIT_Directive_Try_Each_Argument.SUIT_Command_Sequence_bstr)) self.assertEqual(33792, self.decoded.suit_manifest.SUIT_Severable_Members_Choice.suit_install[0].SUIT_Command_Sequence_bstr.union[0].SUIT_Directive.suit_directive_try_each.SUIT_Directive_Try_Each_Argument.SUIT_Command_Sequence_bstr[0].union[0].SUIT_Directive.suit_directive_set_parameters.map[0].suit_parameter_component_slot) self.assertEqual(541696, self.decoded.suit_manifest.SUIT_Severable_Members_Choice.suit_install[0].SUIT_Command_Sequence_bstr.union[0].SUIT_Directive.suit_directive_try_each.SUIT_Directive_Try_Each_Argument.SUIT_Command_Sequence_bstr[1].union[0].SUIT_Directive.suit_directive_set_parameters.map[0].suit_parameter_component_slot) class Test10(Testn): def __init__(self, *args, **kwargs): super(Test10, self).__init__(*args, **kwargs) self.decode_file(p_test_vectors14[4], p_manifest14, p_cose) def test_components(self): self.assertEqual(3, len(self.decoded.suit_manifest.suit_common.suit_components[0])) self.assertEqual(b'\x00', self.decoded.suit_manifest.suit_common.suit_components[0][0].bstr[0]) self.assertEqual(b'\x02', self.decoded.suit_manifest.suit_common.suit_components[0][1].bstr[0]) self.assertEqual(b'\x01', self.decoded.suit_manifest.suit_common.suit_components[0][2].bstr[0]) class Test11(Testn): def __init__(self, *args, **kwargs): super(Test11, self).__init__(*args, **kwargs) self.decode_file(p_test_vectors14[5], p_manifest14, p_cose) def test_validate(self): self.assertEqual(4, len(self.decoded.suit_manifest.SUIT_Unseverable_Members.suit_validate[0].suit_validate.union)) self.assertEqual(15, self.decoded.suit_manifest.SUIT_Unseverable_Members.suit_validate[0].suit_validate.union[1].SUIT_Condition.suit_condition_image_match.SUIT_Rep_Policy) class Test11Inv(Testn): def test_invalid_rep_policy(self): data = bytes.fromhex(p_test_vectors14[5].read_text().replace("\n", "")) struct = loads(data) struct2 = loads(struct.value[3]) # manifest struct3 = loads(struct2[10]) # suit_validate struct3[3] += 16 # invalid Rep_Policy struct2[10] = dumps(struct3) struct.value[3] = dumps(struct2) data = dumps(struct) try: self.decode_string(data, p_manifest14, p_cose) except cddl_gen.CddlValidationError as e: return else: assert False, "Should have failed validation" class TestCLI(TestCase): def get_std_args(self, input): return ["cddl-gen", "--cddl", p_manifest12, "--default-max-qty", "16", "convert", "--input", input, "-t", "SUIT_Envelope_Tagged"] def do_testn(self, n): call0 = Popen(self.get_std_args(p_test_vectors12[n]) + ["--output", "-", "--output-as", "cbor"], stdout=PIPE) stdout0, _ = call0.communicate() self.assertEqual(0, call0.returncode) call1 = Popen(self.get_std_args("-") + ["--input-as", "cbor", "--output", "-", "--output-as", "json"], stdin=PIPE, stdout=PIPE) stdout1, _ = call1.communicate(input=stdout0) self.assertEqual(0, call1.returncode) call2 = Popen(self.get_std_args("-") + ["--input-as", "json", "--output", "-", "--output-as", "yaml"], stdin=PIPE, stdout=PIPE) stdout2, _ = call2.communicate(input=stdout1) self.assertEqual(0, call2.returncode) call3 = Popen(self.get_std_args("-") + ["--input-as", "yaml", "--output", "-", "--output-as", "cbor"], stdin=PIPE, stdout=PIPE) stdout3, _ = call3.communicate(input=stdout2) self.assertEqual(0, call3.returncode) self.assertEqual(stdout0, stdout3) call4 = Popen(self.get_std_args("-") + ["--input-as", "cbor", "--output", "-", "--output-as", "cborhex"], stdin=PIPE, stdout=PIPE) stdout4, _ = call4.communicate(input=stdout3) self.assertEqual(0, call4.returncode) call5 = Popen(self.get_std_args("-") + ["--input-as", "cborhex", "--output", "-", "--output-as", "json"], stdin=PIPE, stdout=PIPE) stdout5, _ = call5.communicate(input=stdout4) self.assertEqual(0, call5.returncode) self.assertEqual(stdout1, stdout5) self.maxDiff = None with open(p_test_vectors12[n], 'r') as f: self.assertEqual(sub(r"\W+", "", f.read()), sub(r"\W+", "", stdout4.decode("utf-8"))) def test_0(self): self.do_testn(0) def test_1(self): self.do_testn(1) def test_2(self): self.do_testn(2) def test_3(self): self.do_testn(3) def test_4(self): self.do_testn(4) def test_5(self): self.do_testn(5) class TestOptional(TestCase): def test_0(self): with open(p_optional, 'r') as f: cddl_res = cddl_gen.DataTranslator.from_cddl(f.read(), 16) cddl = cddl_res.my_types['cfg'] test_yaml = """ mem_config: - 0 - 5""" decoded = cddl.decode_str_yaml(test_yaml) self.assertEqual(decoded.mem_config[0].READ.union_choice, "uint0") self.assertEqual(decoded.mem_config[0].N, [5]) if __name__ == "__main__": main()
the-stack_0_14817
import argparse import time from pyspark.sql import SparkSession from pyspark.sql.types import StructType, StructField, FloatType, LongType, DecimalType, IntegerType, StringType, DateType def run_convert_files(): with SparkSession.builder.appName("convert_files").getOrCreate() as spark: sc = spark.sparkContext block_size = 1024 * 1024 * 1024 # 1GB sc._jsc.hadoopConfiguration().setInt("dfs.blocksize", block_size) sc._jsc.hadoopConfiguration().setInt("parquet.block.size", blockSize) def convert_files(src, dst, schema): df = sc.read.option("header", "false").option("delimiter","|")\ .schema(schema)\ .csv(src) df.write.parquet(dst) return path_src = "s3://tpc-h-small/" path_dst = "s3://tpc-h-small/parquet/" src_lineitem = path_src + "lineitem.tbl" dst_lineitem = path_dst + "lineitem" schema_lineitem = StructType()\ .add("l_orderkey",LongType(),False)\ .add("l_partkey",LongType(),True)\ .add("l_suppkey",LongType(),True)\ .add("l_linenumber",IntegerType(),True)\ .add("l_quantity",DecimalType(10,2),True)\ .add("l_extendedprice",DecimalType(10,2),True)\ .add("l_discount",DecimalType(10,2),True)\ .add("l_tax",DecimalType(10,2),True)\ .add("l_returnflag",StringType(),True)\ .add("l_linestatus",StringType(),True)\ .add("l_shipdate",DateType(),True)\ .add("l_commitdate",DateType(),True)\ .add("l_receiptdate",DateType(),True)\ .add("l_shipinstruct",StringType(),True)\ .add("l_shipmode",StringType(),True)\ .add("l_comment",StringType(),True) convert_files(src_lineitem, dst_lineitem, schema_lineitem) # src_orders = path_src + "orders.tbl" # dst_orders = path_dst + "orders" # schema_orders = StructType()\ # .add("o_orderkey",LongType(),False)\ # .add("o_custkey",LongType(),False)\ # .add("o_orderstatus",StringType(),True)\ # .add("o_totalprice",DecimalType(10,2),True)\ # .add("o_orderdate",DateType(),True)\ # .add("o_orderpriority",StringType(),True)\ # .add("o_clerk",StringType(),True)\ # .add("o_shippriority",IntegerType(),True)\ # .add("o_comment",StringType(),True) # convert_files(src_orders, dst_orders, schema_orders) if __name__ == "__main__": run_convert_files()
the-stack_0_14818
# Copyright 2019 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r"""Unit tests for the states.py fock probabilities methods""" import pytest import numpy as np import tensorflow as tf from scipy.special import factorial as fac from strawberryfields import backends from strawberryfields import utils MAG_ALPHAS = np.linspace(0, 0.8, 3) PHASE_ALPHAS = np.linspace(0, 2 * np.pi, 3, endpoint=False) @pytest.mark.parametrize("a", MAG_ALPHAS) @pytest.mark.parametrize("phi", PHASE_ALPHAS) class TestFockProbabilities: """Tests for the fock_prob state method""" def test_gaussian(self, a, phi, setup_backend, cutoff, tol): """Tests that probabilities of particular Fock states |n> are correct for a gaussian state.""" backend = setup_backend(1) alpha = a * np.exp(1j * phi) n = np.arange(cutoff) ref_state = np.exp(-0.5 * np.abs(alpha) ** 2) * alpha ** n / np.sqrt(fac(n)) ref_probs = np.abs(ref_state) ** 2 backend.prepare_coherent_state(np.abs(alpha), np.angle(alpha), 0) state = backend.state() for n in range(cutoff): prob_n = state.fock_prob([n]) assert np.allclose(prob_n, ref_probs[n], atol=tol, rtol=0) @pytest.mark.backends("fock", "tf") def test_nongaussian(self, a, phi, setup_backend, cutoff, tol): """Tests that probabilities of particular Fock states |n> are correct for a nongaussian state.""" backend = setup_backend(2) alpha = a * np.exp(1j * phi) n = np.arange(cutoff) ref_state = np.exp(-0.5 * np.abs(alpha) ** 2) * alpha ** n / np.sqrt(fac(n)) ref_probs = np.abs(ref_state) ** 2 backend.prepare_coherent_state(np.abs(alpha), np.angle(alpha), 0) backend.prepare_fock_state(cutoff // 2, 1) state = backend.state() for n in range(cutoff): prob_n = state.fock_prob([n, cutoff // 2]) assert np.allclose(prob_n, ref_probs[n], atol=tol, rtol=0) @pytest.mark.backends("fock", "tf", "gaussian") @pytest.mark.parametrize("a", MAG_ALPHAS) @pytest.mark.parametrize("phi", PHASE_ALPHAS) class TestAllFockProbs: """Tests for the all_fock_probs state method""" def test_pure(self, a, phi, setup_backend, cutoff, batch_size, tol): """Tests that the numeric probabilities in the full Fock basis are correct for a one-mode pure state.""" backend = setup_backend(1) alpha = a * np.exp(1j * phi) n = np.arange(cutoff) ref_state = np.exp(-0.5 * np.abs(alpha) ** 2) * alpha ** n / np.sqrt(fac(n)) ref_probs = np.abs(ref_state) ** 2 backend.prepare_coherent_state(np.abs(alpha), np.angle(alpha), 0) state = backend.state() probs = state.all_fock_probs(cutoff=cutoff) if isinstance(probs, tf.Tensor): probs = probs.numpy() probs = probs.flatten() if batch_size is not None: ref_probs = np.tile(ref_probs, batch_size) assert np.allclose(probs, ref_probs, atol=tol, rtol=0) def test_two_mode_gaussian(self, a, phi, setup_backend, batch_size, cutoff, tol): """Tests that the numeric probabilities in the full Fock basis are correct for a two-mode gaussian state.""" if a == 0.0: pytest.skip("Test only runs for states with non-zero displacement") backend = setup_backend(2) alpha = a * np.exp(1j * phi) n = np.arange(cutoff) ref_state1 = np.exp(-0.5 * np.abs(alpha) ** 2) * alpha ** n / np.sqrt(fac(n)) ref_state2 = ( np.exp(-0.5 * np.abs(-alpha) ** 2) * (-alpha) ** n / np.sqrt(fac(n)) ) ref_state = np.outer(ref_state1, ref_state2) ref_probs = np.abs(np.reshape(ref_state ** 2, -1)) if batch_size is not None: ref_probs = np.tile(ref_probs, batch_size) backend.prepare_coherent_state(np.abs(alpha), np.angle(alpha), 0) backend.prepare_coherent_state(np.abs(alpha), np.angle(alpha)+np.pi, 1) state = backend.state() for n in range(cutoff): for m in range(cutoff): probs = state.all_fock_probs(cutoff=cutoff) if isinstance(probs, tf.Tensor): probs = probs.numpy() assert np.allclose(probs.flatten(), ref_probs, atol=tol, rtol=0)
the-stack_0_14819
############################################################################## # # Copyright (c) 2002 Zope Foundation and Contributors. # All Rights Reserved. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ############################################################################## """Adjustments are tunable parameters. """ import getopt import socket from waitress.compat import ( PY2, WIN, string_types, HAS_IPV6, ) truthy = frozenset(('t', 'true', 'y', 'yes', 'on', '1')) def asbool(s): """ Return the boolean value ``True`` if the case-lowered value of string input ``s`` is any of ``t``, ``true``, ``y``, ``on``, or ``1``, otherwise return the boolean value ``False``. If ``s`` is the value ``None``, return ``False``. If ``s`` is already one of the boolean values ``True`` or ``False``, return it.""" if s is None: return False if isinstance(s, bool): return s s = str(s).strip() return s.lower() in truthy def asoctal(s): """Convert the given octal string to an actual number.""" return int(s, 8) def aslist_cronly(value): if isinstance(value, string_types): value = filter(None, [x.strip() for x in value.splitlines()]) return list(value) def aslist(value): """ Return a list of strings, separating the input based on newlines and, if flatten=True (the default), also split on spaces within each line.""" values = aslist_cronly(value) result = [] for value in values: subvalues = value.split() result.extend(subvalues) return result def slash_fixed_str(s): s = s.strip() if s: # always have a leading slash, replace any number of leading slashes # with a single slash, and strip any trailing slashes s = '/' + s.lstrip('/').rstrip('/') return s class _str_marker(str): pass class _int_marker(int): pass class Adjustments(object): """This class contains tunable parameters. """ _params = ( ('host', str), ('port', int), ('ipv4', asbool), ('ipv6', asbool), ('listen', aslist), ('threads', int), ('trusted_proxy', str), ('url_scheme', str), ('url_prefix', slash_fixed_str), ('backlog', int), ('recv_bytes', int), ('send_bytes', int), ('outbuf_overflow', int), ('inbuf_overflow', int), ('connection_limit', int), ('cleanup_interval', int), ('channel_timeout', int), ('log_socket_errors', asbool), ('max_request_header_size', int), ('max_request_body_size', int), ('expose_tracebacks', asbool), ('ident', str), ('asyncore_loop_timeout', int), ('asyncore_use_poll', asbool), ('unix_socket', str), ('unix_socket_perms', asoctal), ) _param_map = dict(_params) # hostname or IP address to listen on host = _str_marker('0.0.0.0') # TCP port to listen on port = _int_marker(8080) listen = ['{}:{}'.format(host, port)] # mumber of threads available for tasks threads = 4 # Host allowed to overrid ``wsgi.url_scheme`` via header trusted_proxy = None # default ``wsgi.url_scheme`` value url_scheme = 'http' # default ``SCRIPT_NAME`` value, also helps reset ``PATH_INFO`` # when nonempty url_prefix = '' # server identity (sent in Server: header) ident = 'waitress' # backlog is the value waitress passes to pass to socket.listen() This is # the maximum number of incoming TCP connections that will wait in an OS # queue for an available channel. From listen(1): "If a connection # request arrives when the queue is full, the client may receive an error # with an indication of ECONNREFUSED or, if the underlying protocol # supports retransmission, the request may be ignored so that a later # reattempt at connection succeeds." backlog = 1024 # recv_bytes is the argument to pass to socket.recv(). recv_bytes = 8192 # send_bytes is the number of bytes to send to socket.send(). Multiples # of 9000 should avoid partly-filled packets, but don't set this larger # than the TCP write buffer size. In Linux, /proc/sys/net/ipv4/tcp_wmem # controls the minimum, default, and maximum sizes of TCP write buffers. send_bytes = 18000 # A tempfile should be created if the pending output is larger than # outbuf_overflow, which is measured in bytes. The default is 1MB. This # is conservative. outbuf_overflow = 1048576 # A tempfile should be created if the pending input is larger than # inbuf_overflow, which is measured in bytes. The default is 512K. This # is conservative. inbuf_overflow = 524288 # Stop creating new channels if too many are already active (integer). # Each channel consumes at least one file descriptor, and, depending on # the input and output body sizes, potentially up to three. The default # is conservative, but you may need to increase the number of file # descriptors available to the Waitress process on most platforms in # order to safely change it (see ``ulimit -a`` "open files" setting). # Note that this doesn't control the maximum number of TCP connections # that can be waiting for processing; the ``backlog`` argument controls # that. connection_limit = 100 # Minimum seconds between cleaning up inactive channels. cleanup_interval = 30 # Maximum seconds to leave an inactive connection open. channel_timeout = 120 # Boolean: turn off to not log premature client disconnects. log_socket_errors = True # maximum number of bytes of all request headers combined (256K default) max_request_header_size = 262144 # maximum number of bytes in request body (1GB default) max_request_body_size = 1073741824 # expose tracebacks of uncaught exceptions expose_tracebacks = False # Path to a Unix domain socket to use. unix_socket = None # Path to a Unix domain socket to use. unix_socket_perms = 0o600 # The socket options to set on receiving a connection. It is a list of # (level, optname, value) tuples. TCP_NODELAY disables the Nagle # algorithm for writes (Waitress already buffers its writes). socket_options = [ (socket.SOL_TCP, socket.TCP_NODELAY, 1), ] # The asyncore.loop timeout value asyncore_loop_timeout = 1 # The asyncore.loop flag to use poll() instead of the default select(). asyncore_use_poll = False # Enable IPv4 by default ipv4 = True # Enable IPv6 by default ipv6 = True def __init__(self, **kw): if 'listen' in kw and ('host' in kw or 'port' in kw): raise ValueError('host and or port may not be set if listen is set.') for k, v in kw.items(): if k not in self._param_map: raise ValueError('Unknown adjustment %r' % k) setattr(self, k, self._param_map[k](v)) if (not isinstance(self.host, _str_marker) or not isinstance(self.port, _int_marker)): self.listen = ['{}:{}'.format(self.host, self.port)] enabled_families = socket.AF_UNSPEC if not self.ipv4 and not HAS_IPV6: # pragma: no cover raise ValueError( 'IPv4 is disabled but IPv6 is not available. Cowardly refusing to start.' ) if self.ipv4 and not self.ipv6: enabled_families = socket.AF_INET if not self.ipv4 and self.ipv6 and HAS_IPV6: enabled_families = socket.AF_INET6 wanted_sockets = [] hp_pairs = [] for i in self.listen: if ':' in i: (host, port) = i.rsplit(":", 1) # IPv6 we need to make sure that we didn't split on the address if ']' in port: # pragma: nocover (host, port) = (i, str(self.port)) else: (host, port) = (i, str(self.port)) if WIN and PY2: # pragma: no cover try: # Try turning the port into an integer port = int(port) except: raise ValueError( 'Windows does not support service names instead of port numbers' ) try: if '[' in host and ']' in host: # pragma: nocover host = host.strip('[').rstrip(']') if host == '*': host = None for s in socket.getaddrinfo( host, port, enabled_families, socket.SOCK_STREAM, socket.IPPROTO_TCP, socket.AI_PASSIVE ): (family, socktype, proto, _, sockaddr) = s # It seems that getaddrinfo() may sometimes happily return # the same result multiple times, this of course makes # bind() very unhappy... # # Split on %, and drop the zone-index from the host in the # sockaddr. Works around a bug in OS X whereby # getaddrinfo() returns the same link-local interface with # two different zone-indices (which makes no sense what so # ever...) yet treats them equally when we attempt to bind(). if ( sockaddr[1] == 0 or (sockaddr[0].split('%', 1)[0], sockaddr[1]) not in hp_pairs ): wanted_sockets.append((family, socktype, proto, sockaddr)) hp_pairs.append((sockaddr[0].split('%', 1)[0], sockaddr[1])) except: raise ValueError('Invalid host/port specified.') self.listen = wanted_sockets @classmethod def parse_args(cls, argv): """Pre-parse command line arguments for input into __init__. Note that this does not cast values into adjustment types, it just creates a dictionary suitable for passing into __init__, where __init__ does the casting. """ long_opts = ['help', 'call'] for opt, cast in cls._params: opt = opt.replace('_', '-') if cast is asbool: long_opts.append(opt) long_opts.append('no-' + opt) else: long_opts.append(opt + '=') kw = { 'help': False, 'call': False, } opts, args = getopt.getopt(argv, '', long_opts) for opt, value in opts: param = opt.lstrip('-').replace('-', '_') if param == 'listen': kw['listen'] = '{} {}'.format(kw.get('listen', ''), value) continue if param.startswith('no_'): param = param[3:] kw[param] = 'false' elif param in ('help', 'call'): kw[param] = True elif cls._param_map[param] is asbool: kw[param] = 'true' else: kw[param] = value return kw, args
the-stack_0_14822
#!/usr/bin/env python3 import argparse import os import sys import logging from vapi_json_parser import Field, Struct, Enum, Union, Message, JsonParser,\ SimpleType, StructType, Alias class CField(Field): def get_c_name(self): return "vapi_type_%s" % self.name def get_c_def(self): if self.type.get_c_name() == 'vl_api_string_t': if self.len: return "u8 %s[%d];" % (self.name, self.len) else: return "vl_api_string_t %s;" % (self.name) else: if self.len is not None and type(self.len) != dict: return "%s %s[%d];" % (self.type.get_c_name(), self.name, self.len) else: return "%s %s;" % (self.type.get_c_name(), self.name) def get_swap_to_be_code(self, struct, var): if self.len is not None and type(self.len) != dict: if self.len > 0: return "do { unsigned i; for (i = 0; i < %d; ++i) { %s } }"\ " while(0);" % ( self.len, self.type.get_swap_to_be_code(struct, "%s[i]" % var)) else: if self.nelem_field.needs_byte_swap(): nelem_field = "%s(%s%s)" % ( self.nelem_field.type.get_swap_to_host_func_name(), struct, self.nelem_field.name) else: nelem_field = "%s%s" % (struct, self.nelem_field.name) return ( "do { unsigned i; for (i = 0; i < %s; ++i) { %s } }" " while(0);" % (nelem_field, self.type.get_swap_to_be_code( struct, "%s[i]" % var))) return self.type.get_swap_to_be_code(struct, "%s" % var) def get_swap_to_host_code(self, struct, var): if self.len is not None and type(self.len) != dict: if self.len > 0: return "do { unsigned i; for (i = 0; i < %d; ++i) { %s } }"\ " while(0);" % ( self.len, self.type.get_swap_to_host_code(struct, "%s[i]" % var)) else: # nelem_field already swapped to host here... return ( "do { unsigned i; for (i = 0; i < %s%s; ++i) { %s } }" " while(0);" % (struct, self.nelem_field.name, self.type.get_swap_to_host_code( struct, "%s[i]" % var))) return self.type.get_swap_to_host_code(struct, "%s" % var) def needs_byte_swap(self): return self.type.needs_byte_swap() def get_vla_field_length_name(self, path): return "%s_%s_array_size" % ("_".join(path), self.name) def get_alloc_vla_param_names(self, path): if self.is_vla(): result = [self.get_vla_field_length_name(path)] else: result = [] if self.type.has_vla(): t = self.type.get_alloc_vla_param_names(path + [self.name]) result.extend(t) return result def get_vla_calc_size_code(self, prefix, path): if self.is_vla(): result = ["sizeof(%s.%s[0]) * %s" % ( ".".join([prefix] + path), self.name, self.get_vla_field_length_name(path))] else: result = [] if self.type.has_vla(): t = self.type.get_vla_calc_size_code(prefix, path + [self.name]) result.extend(t) return result def get_vla_assign_code(self, prefix, path): result = [] if self.is_vla(): result.append("%s.%s = %s" % ( ".".join([prefix] + path), self.nelem_field.name, self.get_vla_field_length_name(path))) if self.type.has_vla(): t = self.type.get_vla_assign_code(prefix, path + [self.name]) result.extend(t) return result class CAlias(CField): def get_c_name(self): return "vapi_type_%s" % self.name def get_c_def(self): if self.len is not None: return "typedef %s vapi_type_%s[%d];" % ( self.type.get_c_name(), self.name, self.len) else: return "typedef %s vapi_type_%s;" % ( self.type.get_c_name(), self.name) class CStruct(Struct): def get_c_def(self): return "\n".join([ "typedef struct __attribute__((__packed__)) {\n%s" % ( "\n".join([" %s" % x.get_c_def() for x in self.fields])), "} %s;" % self.get_c_name()]) def get_vla_assign_code(self, prefix, path): return [x for f in self.fields if f.has_vla() for x in f.get_vla_assign_code(prefix, path)] def get_alloc_vla_param_names(self, path): return [x for f in self.fields if f.has_vla() for x in f.get_alloc_vla_param_names(path)] def get_vla_calc_size_code(self, prefix, path): return [x for f in self.fields if f.has_vla() for x in f.get_vla_calc_size_code(prefix, path)] class CSimpleType (SimpleType): swap_to_be_dict = { 'i16': 'htobe16', 'u16': 'htobe16', 'i32': 'htobe32', 'u32': 'htobe32', 'i64': 'htobe64', 'u64': 'htobe64', } swap_to_host_dict = { 'i16': 'be16toh', 'u16': 'be16toh', 'i32': 'be32toh', 'u32': 'be32toh', 'i64': 'be64toh', 'u64': 'be64toh', } __packed = "__attribute__((packed))" pack_dict = { 'i8': __packed, 'u8': __packed, 'i16': __packed, 'u16': __packed, } def get_c_name(self): return self.name def get_swap_to_be_func_name(self): return self.swap_to_be_dict[self.name] def get_swap_to_host_func_name(self): return self.swap_to_host_dict[self.name] def get_packed_string(self): return self.pack_dict[self.name] def get_swap_to_be_code(self, struct, var, cast=None): x = "%s%s" % (struct, var) return "%s = %s%s(%s);" % (x, "(%s)" % cast if cast else "", self.get_swap_to_be_func_name(), x) def get_swap_to_host_code(self, struct, var, cast=None): x = "%s%s" % (struct, var) return "%s = %s%s(%s);" % (x, "(%s)" % cast if cast else "", self.get_swap_to_host_func_name(), x) def needs_byte_swap(self): try: self.get_swap_to_host_func_name() return True except KeyError: pass return False def get_packed(self): return self.pack_dict.get(self.name, "") class CEnum(Enum): def get_c_name(self): return "vapi_enum_%s" % self.name def get_c_def(self): return "typedef enum {\n%s\n} %s %s;" % ( "\n".join([" %s = %s," % (i, j) for i, j in self.value_pairs]), self.type.get_packed(), self.get_c_name() ) def needs_byte_swap(self): return self.type.needs_byte_swap() def get_swap_to_be_code(self, struct, var): return self.type.get_swap_to_be_code(struct, var, self.get_c_name()) def get_swap_to_host_code(self, struct, var): return self.type.get_swap_to_host_code(struct, var, self.get_c_name()) class CUnion(Union): def get_c_name(self): return "vapi_union_%s" % self.name def get_c_def(self): return "typedef union {\n%s\n} %s;" % ( "\n".join([" %s %s;" % (i.get_c_name(), j) for i, j in self.type_pairs]), self.get_c_name() ) def needs_byte_swap(self): return False class CStructType (StructType, CStruct): def get_c_name(self): return "vapi_type_%s" % self.name def get_swap_to_be_func_name(self): return "%s_hton" % self.get_c_name() def get_swap_to_host_func_name(self): return "%s_ntoh" % self.get_c_name() def get_swap_to_be_func_decl(self): return "void %s(%s *msg)" % ( self.get_swap_to_be_func_name(), self.get_c_name()) def get_swap_to_be_func_def(self): return "%s\n{\n%s\n}" % ( self.get_swap_to_be_func_decl(), "\n".join([ " %s" % p.get_swap_to_be_code("msg->", "%s" % p.name) for p in self.fields if p.needs_byte_swap()]), ) def get_swap_to_host_func_decl(self): return "void %s(%s *msg)" % ( self.get_swap_to_host_func_name(), self.get_c_name()) def get_swap_to_host_func_def(self): return "%s\n{\n%s\n}" % ( self.get_swap_to_host_func_decl(), "\n".join([ " %s" % p.get_swap_to_host_code("msg->", "%s" % p.name) for p in self.fields if p.needs_byte_swap()]), ) def get_swap_to_be_code(self, struct, var): return "%s(&%s%s);" % (self.get_swap_to_be_func_name(), struct, var) def get_swap_to_host_code(self, struct, var): return "%s(&%s%s);" % (self.get_swap_to_host_func_name(), struct, var) def needs_byte_swap(self): for f in self.fields: if f.needs_byte_swap(): return True return False class CMessage (Message): def __init__(self, logger, definition, json_parser): super(CMessage, self).__init__(logger, definition, json_parser) self.payload_members = [ " %s" % p.get_c_def() for p in self.fields if p.type != self.header ] def has_payload(self): return len(self.payload_members) > 0 def get_msg_id_name(self): return "vapi_msg_id_%s" % self.name def get_c_name(self): return "vapi_msg_%s" % self.name def get_payload_struct_name(self): return "vapi_payload_%s" % self.name def get_alloc_func_name(self): return "vapi_alloc_%s" % self.name def get_alloc_vla_param_names(self): return [x for f in self.fields if f.has_vla() for x in f.get_alloc_vla_param_names([])] def get_alloc_func_decl(self): return "%s* %s(struct vapi_ctx_s *ctx%s)" % ( self.get_c_name(), self.get_alloc_func_name(), "".join([", size_t %s" % n for n in self.get_alloc_vla_param_names()])) def get_alloc_func_def(self): extra = [] if self.header.has_field('client_index'): extra.append( " msg->header.client_index = vapi_get_client_index(ctx);") if self.header.has_field('context'): extra.append(" msg->header.context = 0;") return "\n".join([ "%s" % self.get_alloc_func_decl(), "{", " %s *msg = NULL;" % self.get_c_name(), " const size_t size = sizeof(%s)%s;" % ( self.get_c_name(), "".join([" + %s" % x for f in self.fields if f.has_vla() for x in f.get_vla_calc_size_code("msg->payload", [])])), " /* cast here required to play nicely with C++ world ... */", " msg = (%s*)vapi_msg_alloc(ctx, size);" % self.get_c_name(), " if (!msg) {", " return NULL;", " }", ] + extra + [ " msg->header._vl_msg_id = vapi_lookup_vl_msg_id(ctx, %s);" % self.get_msg_id_name(), "".join([" %s;\n" % line for f in self.fields if f.has_vla() for line in f.get_vla_assign_code("msg->payload", [])]), " return msg;", "}"]) def get_calc_msg_size_func_name(self): return "vapi_calc_%s_msg_size" % self.name def get_calc_msg_size_func_decl(self): return "uword %s(%s *msg)" % ( self.get_calc_msg_size_func_name(), self.get_c_name()) def get_calc_msg_size_func_def(self): return "\n".join([ "%s" % self.get_calc_msg_size_func_decl(), "{", " return sizeof(*msg)%s;" % "".join(["+ msg->payload.%s * sizeof(msg->payload.%s[0])" % ( f.nelem_field.name, f.name) for f in self.fields if f.nelem_field is not None ]), "}", ]) def get_c_def(self): if self.has_payload(): return "\n".join([ "typedef struct __attribute__ ((__packed__)) {", "%s " % "\n".join(self.payload_members), "} %s;" % self.get_payload_struct_name(), "", "typedef struct __attribute__ ((__packed__)) {", (" %s %s;" % (self.header.get_c_name(), self.fields[0].name) if self.header is not None else ""), " %s payload;" % self.get_payload_struct_name(), "} %s;" % self.get_c_name(), ]) else: return "\n".join([ "typedef struct __attribute__ ((__packed__)) {", (" %s %s;" % (self.header.get_c_name(), self.fields[0].name) if self.header is not None else ""), "} %s;" % self.get_c_name(), ]) def get_swap_payload_to_host_func_name(self): return "%s_payload_ntoh" % self.get_c_name() def get_swap_payload_to_be_func_name(self): return "%s_payload_hton" % self.get_c_name() def get_swap_payload_to_host_func_decl(self): return "void %s(%s *payload)" % ( self.get_swap_payload_to_host_func_name(), self.get_payload_struct_name()) def get_swap_payload_to_be_func_decl(self): return "void %s(%s *payload)" % ( self.get_swap_payload_to_be_func_name(), self.get_payload_struct_name()) def get_swap_payload_to_be_func_def(self): return "%s\n{\n%s\n}" % ( self.get_swap_payload_to_be_func_decl(), "\n".join([ " %s" % p.get_swap_to_be_code("payload->", "%s" % p.name) for p in self.fields if p.needs_byte_swap() and p.type != self.header]), ) def get_swap_payload_to_host_func_def(self): return "%s\n{\n%s\n}" % ( self.get_swap_payload_to_host_func_decl(), "\n".join([ " %s" % p.get_swap_to_host_code("payload->", "%s" % p.name) for p in self.fields if p.needs_byte_swap() and p.type != self.header]), ) def get_swap_to_host_func_name(self): return "%s_ntoh" % self.get_c_name() def get_swap_to_be_func_name(self): return "%s_hton" % self.get_c_name() def get_swap_to_host_func_decl(self): return "void %s(%s *msg)" % ( self.get_swap_to_host_func_name(), self.get_c_name()) def get_swap_to_be_func_decl(self): return "void %s(%s *msg)" % ( self.get_swap_to_be_func_name(), self.get_c_name()) def get_swap_to_be_func_def(self): return "\n".join([ "%s" % self.get_swap_to_be_func_decl(), "{", (" VAPI_DBG(\"Swapping `%s'@%%p to big endian\", msg);" % self.get_c_name()), " %s(&msg->header);" % self.header.get_swap_to_be_func_name() if self.header is not None else "", " %s(&msg->payload);" % self.get_swap_payload_to_be_func_name() if self.has_payload() else "", "}", ]) def get_swap_to_host_func_def(self): return "\n".join([ "%s" % self.get_swap_to_host_func_decl(), "{", (" VAPI_DBG(\"Swapping `%s'@%%p to host byte order\", msg);" % self.get_c_name()), " %s(&msg->header);" % self.header.get_swap_to_host_func_name() if self.header is not None else "", " %s(&msg->payload);" % self.get_swap_payload_to_host_func_name() if self.has_payload() else "", "}", ]) def get_op_func_name(self): return "vapi_%s" % self.name def get_op_func_decl(self): if self.reply.has_payload(): return "vapi_error_e %s(%s)" % ( self.get_op_func_name(), ",\n ".join([ 'struct vapi_ctx_s *ctx', '%s *msg' % self.get_c_name(), 'vapi_error_e (*callback)(struct vapi_ctx_s *ctx', ' void *callback_ctx', ' vapi_error_e rv', ' bool is_last', ' %s *reply)' % self.reply.get_payload_struct_name(), 'void *callback_ctx', ]) ) else: return "vapi_error_e %s(%s)" % ( self.get_op_func_name(), ",\n ".join([ 'struct vapi_ctx_s *ctx', '%s *msg' % self.get_c_name(), 'vapi_error_e (*callback)(struct vapi_ctx_s *ctx', ' void *callback_ctx', ' vapi_error_e rv', ' bool is_last)', 'void *callback_ctx', ]) ) def get_op_func_def(self): return "\n".join([ "%s" % self.get_op_func_decl(), "{", " if (!msg || !callback) {", " return VAPI_EINVAL;", " }", " if (vapi_is_nonblocking(ctx) && vapi_requests_full(ctx)) {", " return VAPI_EAGAIN;", " }", " vapi_error_e rv;", " if (VAPI_OK != (rv = vapi_producer_lock (ctx))) {", " return rv;", " }", " u32 req_context = vapi_gen_req_context(ctx);", " msg->header.context = req_context;", " %s(msg);" % self.get_swap_to_be_func_name(), (" if (VAPI_OK == (rv = vapi_send_with_control_ping " "(ctx, msg, req_context))) {" if self.reply_is_stream else " if (VAPI_OK == (rv = vapi_send (ctx, msg))) {" ), (" vapi_store_request(ctx, req_context, %s, " "(vapi_cb_t)callback, callback_ctx);" % ("true" if self.reply_is_stream else "false")), " if (VAPI_OK != vapi_producer_unlock (ctx)) {", " abort (); /* this really shouldn't happen */", " }", " if (vapi_is_nonblocking(ctx)) {", " rv = VAPI_OK;", " } else {", " rv = vapi_dispatch(ctx);", " }", " } else {", " %s(msg);" % self.get_swap_to_host_func_name(), " if (VAPI_OK != vapi_producer_unlock (ctx)) {", " abort (); /* this really shouldn't happen */", " }", " }", " return rv;", "}", "", ]) def get_event_cb_func_decl(self): if not self.is_reply and not self.is_event: raise Exception( "Cannot register event callback for non-reply message") if self.has_payload(): return "\n".join([ "void vapi_set_%s_event_cb (" % self.get_c_name(), " struct vapi_ctx_s *ctx, ", (" vapi_error_e (*callback)(struct vapi_ctx_s *ctx, " "void *callback_ctx, %s *payload)," % self.get_payload_struct_name()), " void *callback_ctx)", ]) else: return "\n".join([ "void vapi_set_%s_event_cb (" % self.get_c_name(), " struct vapi_ctx_s *ctx, ", " vapi_error_e (*callback)(struct vapi_ctx_s *ctx, " "void *callback_ctx),", " void *callback_ctx)", ]) def get_event_cb_func_def(self): if not self.is_reply and not self.is_event: raise Exception( "Cannot register event callback for non-reply function") return "\n".join([ "%s" % self.get_event_cb_func_decl(), "{", (" vapi_set_event_cb(ctx, %s, (vapi_event_cb)callback, " "callback_ctx);" % self.get_msg_id_name()), "}"]) def get_c_metadata_struct_name(self): return "__vapi_metadata_%s" % self.name def get_c_constructor(self): has_context = False if self.header is not None: has_context = self.header.has_field('context') return '\n'.join([ 'static void __attribute__((constructor)) __vapi_constructor_%s()' % self.name, '{', ' static const char name[] = "%s";' % self.name, ' static const char name_with_crc[] = "%s_%s";' % (self.name, self.crc[2:]), ' static vapi_message_desc_t %s = {' % self.get_c_metadata_struct_name(), ' name,', ' sizeof(name) - 1,', ' name_with_crc,', ' sizeof(name_with_crc) - 1,', ' true,' if has_context else ' false,', ' offsetof(%s, context),' % self.header.get_c_name() if has_context else ' 0,', (' offsetof(%s, payload),' % self.get_c_name()) if self.has_payload() else ' VAPI_INVALID_MSG_ID,', ' sizeof(%s),' % self.get_c_name(), ' (generic_swap_fn_t)%s,' % self.get_swap_to_be_func_name(), ' (generic_swap_fn_t)%s,' % self.get_swap_to_host_func_name(), ' VAPI_INVALID_MSG_ID,', ' };', '', ' %s = vapi_register_msg(&%s);' % (self.get_msg_id_name(), self.get_c_metadata_struct_name()), ' VAPI_DBG("Assigned msg id %%d to %s", %s);' % (self.name, self.get_msg_id_name()), '}', ]) vapi_send_with_control_ping = """ static inline vapi_error_e vapi_send_with_control_ping (vapi_ctx_t ctx, void *msg, u32 context) { vapi_msg_control_ping *ping = vapi_alloc_control_ping (ctx); if (!ping) { return VAPI_ENOMEM; } ping->header.context = context; vapi_msg_control_ping_hton (ping); return vapi_send2 (ctx, msg, ping); } """ def emit_definition(parser, json_file, emitted, o): if o in emitted: return if o.name in ("msg_header1_t", "msg_header2_t"): return if hasattr(o, "depends"): for x in o.depends: emit_definition(parser, json_file, emitted, x) if hasattr(o, "reply"): emit_definition(parser, json_file, emitted, o.reply) if hasattr(o, "get_c_def"): if (o not in parser.enums_by_json[json_file] and o not in parser.types_by_json[json_file] and o not in parser.unions_by_json[json_file] and o.name not in parser.messages_by_json[json_file] and o not in parser.aliases_by_json[json_file]): return guard = "defined_%s" % o.get_c_name() print("#ifndef %s" % guard) print("#define %s" % guard) print("%s" % o.get_c_def()) print("") function_attrs = "static inline " if o.name in parser.messages_by_json[json_file]: if o.has_payload(): print("%s%s" % (function_attrs, o.get_swap_payload_to_be_func_def())) print("") print("%s%s" % (function_attrs, o.get_swap_payload_to_host_func_def())) print("") print("%s%s" % (function_attrs, o.get_swap_to_be_func_def())) print("") print("%s%s" % (function_attrs, o.get_swap_to_host_func_def())) print("") print("%s%s" % (function_attrs, o.get_calc_msg_size_func_def())) if not o.is_reply and not o.is_event: print("") print("%s%s" % (function_attrs, o.get_alloc_func_def())) print("") print("%s%s" % (function_attrs, o.get_op_func_def())) print("") print("%s" % o.get_c_constructor()) if o.is_reply or o.is_event: print("") print("%s%s;" % (function_attrs, o.get_event_cb_func_def())) elif hasattr(o, "get_swap_to_be_func_def"): print("%s%s" % (function_attrs, o.get_swap_to_be_func_def())) print("") print("%s%s" % (function_attrs, o.get_swap_to_host_func_def())) print("#endif") print("") emitted.append(o) def gen_json_unified_header(parser, logger, j, io, name): d, f = os.path.split(j) logger.info("Generating header `%s'" % name) orig_stdout = sys.stdout sys.stdout = io include_guard = "__included_%s" % ( j.replace(".", "_").replace("/", "_").replace("-", "_").replace("+", "_")) print("#ifndef %s" % include_guard) print("#define %s" % include_guard) print("") print("#include <stdlib.h>") print("#include <stddef.h>") print("#include <arpa/inet.h>") print("#include <vapi/vapi_internal.h>") print("#include <vapi/vapi.h>") print("#include <vapi/vapi_dbg.h>") print("") print("#ifdef __cplusplus") print("extern \"C\" {") print("#endif") if name == "memclnt.api.vapi.h": print("") print("static inline vapi_error_e vapi_send_with_control_ping " "(vapi_ctx_t ctx, void * msg, u32 context);") else: print("#include <vapi/vlib.api.vapi.h>") print("") for m in parser.messages_by_json[j].values(): print("extern vapi_msg_id_t %s;" % m.get_msg_id_name()) print("") print("#define DEFINE_VAPI_MSG_IDS_%s\\" % f.replace(".", "_").replace("/", "_").replace("-", "_").upper()) print("\\\n".join([ " vapi_msg_id_t %s;" % m.get_msg_id_name() for m in parser.messages_by_json[j].values() ])) print("") print("") emitted = [] for e in parser.enums_by_json[j]: emit_definition(parser, j, emitted, e) for u in parser.unions_by_json[j]: emit_definition(parser, j, emitted, u) for t in parser.types_by_json[j]: emit_definition(parser, j, emitted, t) for a in parser.aliases_by_json[j]: emit_definition(parser, j, emitted, a) for m in parser.messages_by_json[j].values(): emit_definition(parser, j, emitted, m) print("") if name == "vlib.api.vapi.h": print("%s" % vapi_send_with_control_ping) print("") print("#ifdef __cplusplus") print("}") print("#endif") print("") print("#endif") sys.stdout = orig_stdout def json_to_c_header_name(json_name): if json_name.endswith(".json"): return "%s.vapi.h" % os.path.splitext(json_name)[0] raise Exception("Unexpected json name `%s'!" % json_name) def gen_c_unified_headers(parser, logger, prefix, remove_path): if prefix == "" or prefix is None: prefix = "" else: prefix = "%s/" % prefix for j in parser.json_files: if remove_path: d, f = os.path.split(j) else: f = j with open('%s%s' % (prefix, json_to_c_header_name(f)), "w") as io: gen_json_unified_header( parser, logger, j, io, json_to_c_header_name(f)) if __name__ == '__main__': try: verbose = int(os.getenv("V", 0)) except: verbose = 0 if verbose >= 2: log_level = 10 elif verbose == 1: log_level = 20 else: log_level = 40 logging.basicConfig(stream=sys.stdout, level=log_level) logger = logging.getLogger("VAPI C GEN") logger.setLevel(log_level) argparser = argparse.ArgumentParser(description="VPP C API generator") argparser.add_argument('files', metavar='api-file', action='append', type=str, help='json api file' '(may be specified multiple times)') argparser.add_argument('--prefix', action='store', default=None, help='path prefix') argparser.add_argument('--remove-path', action='store_true', help='remove path from filename') args = argparser.parse_args() jsonparser = JsonParser(logger, args.files, simple_type_class=CSimpleType, enum_class=CEnum, union_class=CUnion, struct_type_class=CStructType, field_class=CField, message_class=CMessage, alias_class=CAlias) # not using the model of having separate generated header and code files # with generated symbols present in shared library (per discussion with # Damjan), to avoid symbol version issues in .so # gen_c_headers_and_code(jsonparser, logger, args.prefix) gen_c_unified_headers(jsonparser, logger, args.prefix, args.remove_path) for e in jsonparser.exceptions: logger.warning(e)
the-stack_0_14823
import pickle from graph_features import GraphFeatures import numpy as np from loggers import BaseLogger, PrintLogger import os MOTIFS_VAR_PATH = os.path.join(__file__.rsplit(os.sep, 1)[0]) class MotifRatio: def __init__(self, ftr: GraphFeatures, is_directed, logger: BaseLogger=None): self._is_directed = is_directed # are the graphs directed self._index_ftr = None # list of ftr names + counter [ ... (ftr_i, 0), (ftr_i, 1) ...] self._logger = logger if logger else PrintLogger("graphs logger") # self._graph_order = graph_order if graph_order else [g for g in sorted(graph_ftr_dict)] self._gnx_ftr = ftr self._set_index_to_ftr(self._gnx_ftr) # list index in motif to number of edges in the motif self._motif_index_to_edge_num = {"motif3": self._motif_num_to_number_of_edges(3), "motif4": self._motif_num_to_number_of_edges(4)} self._ftr_mx = self._gnx_ftr.to_matrix(dtype=np.float32, mtype=np.matrix, should_zscore=False) self._headers = [] self._motif_ratio_vec = None self._motif_ratio_matrix = None # load motif variation file def _load_variations_file(self, level): fname = "%d_%sdirected.pkl" % (level, "" if self._is_directed else "un") fpath = os.path.join(MOTIFS_VAR_PATH, "motif_variations", fname) return pickle.load(open(fpath, "rb")) # return dictionary { motif_index: number_of_edges } def _motif_num_to_number_of_edges(self, level): motif_edge_num_dict = {} for bit_sec, motif_num in self._load_variations_file(level).items(): motif_edge_num_dict[motif_num] = bin(bit_sec).count('1') return motif_edge_num_dict # map matrix columns to features + count if there's more then one from a single feature def _set_index_to_ftr(self, gnx_ftr): if not self._index_ftr: sorted_ftr = [f for f in sorted(gnx_ftr) if gnx_ftr[f].is_relevant()] # fix feature order (names) self._index_ftr = [] for ftr in sorted_ftr: len_ftr = len(gnx_ftr[ftr]) # fill list with (ftr, counter) self._index_ftr += [(ftr, i) for i in range(len_ftr)] # get feature vector for a graph def _build_vector(self): # get gnx gnx final_vec = np.zeros((1, self._ftr_mx.shape[1])) motif3_ratio = None motif4_ratio = None for i, (ftr, ftr_count) in enumerate(self._index_ftr): if ftr == "motif3": # calculate { motif_index: motif ratio } motif3_ratio = self._count_subgraph_motif_by_size(self._ftr_mx, ftr) if not motif3_ratio else motif3_ratio final_vec[0, i] = motif3_ratio[ftr_count] self._headers.append("motif3_" + str(self._motif_index_to_edge_num["motif3"][ftr_count]) + "_edges") elif ftr == "motif4": # calculate { motif_index: motif ratio } motif4_ratio = self._count_subgraph_motif_by_size(self._ftr_mx, ftr) if not motif4_ratio else motif4_ratio final_vec[0, i] = motif4_ratio[ftr_count] self._headers.append("motif4_" + str(self._motif_index_to_edge_num["motif4"][ftr_count]) + "_edges") else: # calculate average of column final_vec[0, i] = np.sum(self._ftr_mx[:, i]) / self._ftr_mx.shape[0] self._headers.append(ftr + "_" + str(ftr_count)) return final_vec def _build_matrix(self): sum_dictionaries_motifs3 = [] sum_dictionaries_motifs4 = [] # 3: [ ... row(node): { num_edges_in_motif3: count (for_this_node_only) } ... ] for i in range(self._ftr_mx.shape[0]): sum_dictionaries_motifs3.append({}) sum_dictionaries_motifs4.append({}) for j, (ftr, ftr_count) in enumerate(self._index_ftr): if ftr == "motif3": key = self._motif_index_to_edge_num[ftr][ftr_count] sum_dictionaries_motifs3[i][key] = sum_dictionaries_motifs3[i].get(key, 1e-3) + self._ftr_mx[i, j] elif ftr == "motif4": key = self._motif_index_to_edge_num[ftr][ftr_count] sum_dictionaries_motifs4[i][key] = sum_dictionaries_motifs4[i].get(key, 1e-3) + self._ftr_mx[i, j] return_mx = self._ftr_mx.copy() for i in range(self._ftr_mx.shape[0]): for j, (ftr, ftr_count) in enumerate(self._index_ftr): if ftr == "motif3": # calculate { motif_index: motif ratio } return_mx[i, j] /= sum_dictionaries_motifs3[i][self._motif_index_to_edge_num[ftr][ftr_count]] if i == 0: self._headers.append("motif3_" + str(self._motif_index_to_edge_num["motif3"][ftr_count]) + "_edges") elif ftr == "motif4": # calculate { motif_index: motif ratio } return_mx[i, j] /= sum_dictionaries_motifs4[i][self._motif_index_to_edge_num[ftr][ftr_count]] if i == 0: self._headers.append("motif4_" + str(self._motif_index_to_edge_num["motif4"][ftr_count]) + "_edges") else: if i == 0: self._headers.append(ftr + "_" + str(ftr_count)) return return_mx def motif_ratio_vector(self): self._motif_ratio_vec = self._motif_ratio_vec if self._motif_ratio_vec else self._build_vector() return self._motif_ratio_vec[0] def motif_ratio_matrix(self): self._motif_ratio_matrix = self._motif_ratio_matrix if self._motif_ratio_matrix else self._build_matrix() return self._motif_ratio_matrix def get_headers(self): return self._headers # return { motif_index: sum motif in index/ total motifs with same edge count } def _count_subgraph_motif_by_size(self, ftr_mat, motif_type): sum_dict = {ftr_count: np.sum(ftr_mat[:, i]) for i, (ftr, ftr_count) in enumerate(self._index_ftr) if ftr == motif_type} # dictionary { motif_index: sum column } sum_by_edge = {} # dictionary { num_edges_in_motif: sum of } for motif_count, sum_motif in sum_dict.items(): key = self._motif_index_to_edge_num[motif_type][motif_count] sum_by_edge[key] = sum_by_edge.get(key, 0) + sum_motif # rewrite dictionary { motif_index: sum column/ total motifs with same edge count } for motif_count in sum_dict: key = self._motif_index_to_edge_num[motif_type][motif_count] sum_dict[motif_count] = sum_dict[motif_count] / sum_by_edge[key] if sum_by_edge[key] else 0 return sum_dict # return [ ... (motif_type, counter) ... ] def _get_motif_type(self, motif_type, num_motifs): header = [] for i in range(num_motifs): header.append((motif_type, i)) return header @staticmethod def is_motif(ftr): return ftr == 'motif4' or ftr == "motif3" if __name__ == "__main__": import networkx as nx from feature_meta import NODE_FEATURES gnx = nx.Graph() gnx.add_edges_from([ (1, 2), (1, 3), (2, 3), (2, 7), (7, 8), (3, 6), (4, 6), (6, 8), (5, 6), ]) gnx_ftr = GraphFeatures(gnx, NODE_FEATURES, ".", is_max_connected=True) gnx_ftr.build() m = MotifRatio(gnx_ftr, False) e = 0