filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_0_15005
"""Basic tests for quadrature GPy wrappers.""" import GPy import numpy as np import pytest from pytest_lazyfixture import lazy_fixture from emukit.model_wrappers.gpy_quadrature_wrappers import ( BaseGaussianProcessGPy, BrownianGPy, ProductBrownianGPy, ProductMatern32GPy, ProductMatern52GPy, RBFGPy, create_emukit_model_from_gpy_model, ) from emukit.quadrature.kernels import ( QuadratureBrownianLebesgueMeasure, QuadratureProductBrownianLebesgueMeasure, QuadratureProductMatern32LebesgueMeasure, QuadratureProductMatern52LebesgueMeasure, QuadratureRBFGaussianMeasure, QuadratureRBFLebesgueMeasure, ) from emukit.quadrature.measures import GaussianMeasure, LebesgueMeasure def get_prod_kernel(kernel_type, n_dim): k = kernel_type(input_dim=1, active_dims=[0]) for i in range(1, n_dim): k = k * kernel_type(input_dim=1, active_dims=[i]) return k def data(n_dim: int): return np.ones([3, n_dim]), np.ones([3, 1]) def integral_bounds(n_dim: int): return n_dim * [(0, 1)] def measure_lebesgue(n_dim: int): return LebesgueMeasure.from_bounds(bounds=n_dim * [(0, 1)]) def measure_gaussian(n_dim: int): return GaussianMeasure(mean=np.ones(n_dim), variance=1.0) # === dimension fixtures start here @pytest.fixture def dim2(): return 2 @pytest.fixture def dim1(): return 1 # === 1D GPy kernel fixtures start here @pytest.fixture def gpy_brownian(dim1): kernel_type = GPy.kern.Brownian return kernel_type(input_dim=dim1), kernel_type, False @pytest.fixture def gpy_matern32(dim1): kernel_type = GPy.kern.Matern32 return kernel_type(input_dim=dim1), kernel_type, False @pytest.fixture def gpy_matern52(dim1): kernel_type = GPy.kern.Matern52 return kernel_type(input_dim=dim1), kernel_type, False # === 2D GPy kernel fixtures start here @pytest.fixture def gpy_rbf(dim2): kernel_type = GPy.kern.RBF return kernel_type(input_dim=dim2), kernel_type, False @pytest.fixture def gpy_prodbrownian(dim2): kernel_type = GPy.kern.Brownian return get_prod_kernel(kernel_type, dim2), kernel_type, True @pytest.fixture def gpy_prodmatern32(dim2): kernel_type = GPy.kern.Matern32 return get_prod_kernel(kernel_type, dim2), kernel_type, True @pytest.fixture def gpy_prodmatern52(dim2): kernel_type = GPy.kern.Matern52 return get_prod_kernel(kernel_type, dim2), kernel_type, True def get_wrapper_dict(n_dim, measure, gpy_kern, gpy_kernel_wrapper_type, emukit_qkernel_type): gpy_kernel, gpy_kernel_type, is_prod = gpy_kern return { "data": data(n_dim), "measure": measure(n_dim), "gpy_kernel": gpy_kernel, "gpy_kernel_type": gpy_kernel_type, "is_prod": is_prod, "gpy_kernel_wrapper_type": gpy_kernel_wrapper_type, "emukit_qkernel_type": emukit_qkernel_type, } # === RBF wrapper test cases @pytest.fixture def wrapper_rbf_1(dim2, gpy_rbf): return get_wrapper_dict(dim2, measure_lebesgue, gpy_rbf, RBFGPy, QuadratureRBFLebesgueMeasure) @pytest.fixture def wrapper_rbf_2(dim2, gpy_rbf): return get_wrapper_dict(dim2, measure_gaussian, gpy_rbf, RBFGPy, QuadratureRBFGaussianMeasure) # === (product) Brownian wrapper test cases @pytest.fixture def wrapper_brownian_1(dim1, gpy_brownian): return get_wrapper_dict(dim1, measure_lebesgue, gpy_brownian, BrownianGPy, QuadratureBrownianLebesgueMeasure) @pytest.fixture def wrapper_brownian_2(dim2, gpy_prodbrownian): return get_wrapper_dict( dim2, measure_lebesgue, gpy_prodbrownian, ProductBrownianGPy, QuadratureProductBrownianLebesgueMeasure ) # === Product Matern32 wrapper test cases @pytest.fixture def wrapper_matern32_1(dim2, gpy_prodmatern32): return get_wrapper_dict( dim2, measure_lebesgue, gpy_prodmatern32, ProductMatern32GPy, QuadratureProductMatern32LebesgueMeasure ) @pytest.fixture def wrapper_matern32_2(dim1, gpy_matern32): return get_wrapper_dict( dim1, measure_lebesgue, gpy_matern32, ProductMatern32GPy, QuadratureProductMatern32LebesgueMeasure ) # === Product Matern52 wrapper test cases @pytest.fixture def wrapper_matern52_1(dim2, gpy_prodmatern52): return get_wrapper_dict( dim2, measure_lebesgue, gpy_prodmatern52, ProductMatern52GPy, QuadratureProductMatern52LebesgueMeasure ) @pytest.fixture def wrapper_matern52_2(dim1, gpy_matern52): return get_wrapper_dict( dim1, measure_lebesgue, gpy_matern52, ProductMatern52GPy, QuadratureProductMatern52LebesgueMeasure ) gpy_test_list = [ lazy_fixture("wrapper_rbf_1"), lazy_fixture("wrapper_rbf_2"), lazy_fixture("wrapper_brownian_1"), lazy_fixture("wrapper_brownian_2"), lazy_fixture("wrapper_matern32_1"), lazy_fixture("wrapper_matern32_2"), lazy_fixture("wrapper_matern52_1"), lazy_fixture("wrapper_matern52_2"), ] @pytest.mark.parametrize("wrapper", gpy_test_list) def test_create_emukit_model_from_gpy_model_types(wrapper): gpy_model = GPy.models.GPRegression(kernel=wrapper["gpy_kernel"], X=wrapper["data"][0], Y=wrapper["data"][1]) emukit_gp = create_emukit_model_from_gpy_model(gpy_model=gpy_model, measure=wrapper["measure"]) assert isinstance(emukit_gp.kern, wrapper["emukit_qkernel_type"]) assert isinstance(emukit_gp.kern.kern, wrapper["gpy_kernel_wrapper_type"]) # product kernel if wrapper["is_prod"]: assert isinstance(wrapper["gpy_kernel"], GPy.kern.Prod) for k in wrapper["gpy_kernel"].parameters: assert isinstance(k, wrapper["gpy_kernel_type"]) assert k.input_dim == 1 else: assert isinstance(emukit_gp.gpy_model.kern, wrapper["gpy_kernel_type"]) def test_create_emukit_model_from_gpy_model_raises_warns(): input_dim = 2 gpy_kernel = GPy.kern.RBF(input_dim=input_dim) gpy_model = GPy.models.GPRegression(kernel=gpy_kernel, X=np.ones([3, input_dim]), Y=np.ones([3, 1])) bounds = input_dim * [(0, 1)] measure = LebesgueMeasure.from_bounds(bounds=bounds) # Neither measure nor bounds given with pytest.raises(ValueError): create_emukit_model_from_gpy_model(gpy_model=gpy_model) # both measure and bounds are given. Bounds will be ignored. with pytest.warns(UserWarning): create_emukit_model_from_gpy_model(gpy_model=gpy_model, integral_bounds=bounds, measure=measure) def test_base_gp_gpy_raises(gpy_prodbrownian): incompatible_offset = -3 n_dim = 2 dat = data(n_dim=n_dim) kern = ProductBrownianGPy(variance=1.0, input_dim=n_dim, offset=incompatible_offset) measure = LebesgueMeasure.from_bounds(bounds=n_dim * [(0, 1)]) qkern = QuadratureProductBrownianLebesgueMeasure(brownian_kernel=kern, measure=measure) # this GPy model and hence the emukit base_gp wrapper are not compatible with the kernel wrapper # for offsets other than zero. gpy_model = GPy.models.GPRegression(kernel=kern.gpy_brownian, X=dat[0], Y=dat[1]) with pytest.raises(ValueError): BaseGaussianProcessGPy(kern=qkern, gpy_model=gpy_model)
the-stack_0_15007
#!/usr/bin/env python #===- lib/asan/scripts/asan_symbolize.py -----------------------------------===# # # The LLVM Compiler Infrastructure # # This file is distributed under the University of Illinois Open Source # License. See LICENSE.TXT for details. # #===------------------------------------------------------------------------===# import argparse import bisect import getopt import os import re import subprocess import sys symbolizers = {} DEBUG = False demangle = False binutils_prefix = None sysroot_path = None binary_name_filter = None fix_filename_patterns = None logfile = sys.stdin allow_system_symbolizer = True force_system_symbolizer = False # FIXME: merge the code that calls fix_filename(). def fix_filename(file_name): if fix_filename_patterns: for path_to_cut in fix_filename_patterns: file_name = re.sub('.*' + path_to_cut, '', file_name) file_name = re.sub('.*asan_[a-z_]*.cc:[0-9]*', '_asan_rtl_', file_name) file_name = re.sub('.*crtstuff.c:0', '???:0', file_name) return file_name def sysroot_path_filter(binary_name): return sysroot_path + binary_name def is_valid_arch(s): return s in ["i386", "x86_64", "x86_64h", "arm", "armv6", "armv7", "armv7s", "armv7k", "arm64", "powerpc64", "powerpc64le", "s390x", "s390"] def guess_arch(addr): # Guess which arch we're running. 10 = len('0x') + 8 hex digits. if len(addr) > 10: return 'x86_64' else: return 'i386' class Symbolizer(object): def __init__(self): pass def symbolize(self, addr, binary, offset): """Symbolize the given address (pair of binary and offset). Overriden in subclasses. Args: addr: virtual address of an instruction. binary: path to executable/shared object containing this instruction. offset: instruction offset in the @binary. Returns: list of strings (one string for each inlined frame) describing the code locations for this instruction (that is, function name, file name, line and column numbers). """ return None class LLVMSymbolizer(Symbolizer): def __init__(self, symbolizer_path, default_arch, system, dsym_hints=[]): super(LLVMSymbolizer, self).__init__() self.symbolizer_path = symbolizer_path self.default_arch = default_arch self.system = system self.dsym_hints = dsym_hints self.pipe = self.open_llvm_symbolizer() def open_llvm_symbolizer(self): cmd = [self.symbolizer_path, '--use-symbol-table=true', '--demangle=%s' % demangle, '--functions=linkage', '--inlining=true', '--default-arch=%s' % self.default_arch] if self.system == 'Darwin': for hint in self.dsym_hints: cmd.append('--dsym-hint=%s' % hint) if DEBUG: print(' '.join(cmd)) try: result = subprocess.Popen(cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE, bufsize=0, universal_newlines=True) except OSError: result = None return result def symbolize(self, addr, binary, offset): """Overrides Symbolizer.symbolize.""" if not self.pipe: return None result = [] try: symbolizer_input = '"%s" %s' % (binary, offset) if DEBUG: print(symbolizer_input) self.pipe.stdin.write("%s\n" % symbolizer_input) while True: function_name = self.pipe.stdout.readline().rstrip() if not function_name: break file_name = self.pipe.stdout.readline().rstrip() file_name = fix_filename(file_name) if (not function_name.startswith('??') or not file_name.startswith('??')): # Append only non-trivial frames. result.append('%s in %s %s' % (addr, function_name, file_name)) except Exception: result = [] if not result: result = None return result def LLVMSymbolizerFactory(system, default_arch, dsym_hints=[]): symbolizer_path = os.getenv('LLVM_SYMBOLIZER_PATH') if not symbolizer_path: symbolizer_path = os.getenv('ASAN_SYMBOLIZER_PATH') if not symbolizer_path: # Assume llvm-symbolizer is in PATH. symbolizer_path = 'llvm-symbolizer' return LLVMSymbolizer(symbolizer_path, default_arch, system, dsym_hints) class Addr2LineSymbolizer(Symbolizer): def __init__(self, binary): super(Addr2LineSymbolizer, self).__init__() self.binary = binary self.pipe = self.open_addr2line() self.output_terminator = -1 def open_addr2line(self): addr2line_tool = 'addr2line' if binutils_prefix: addr2line_tool = binutils_prefix + addr2line_tool cmd = [addr2line_tool, '-fi'] if demangle: cmd += ['--demangle'] cmd += ['-e', self.binary] if DEBUG: print(' '.join(cmd)) return subprocess.Popen(cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE, bufsize=0, universal_newlines=True) def symbolize(self, addr, binary, offset): """Overrides Symbolizer.symbolize.""" if self.binary != binary: return None lines = [] try: self.pipe.stdin.write("%s\n" % offset) self.pipe.stdin.write("%s\n" % self.output_terminator) is_first_frame = True while True: function_name = self.pipe.stdout.readline().rstrip() file_name = self.pipe.stdout.readline().rstrip() if is_first_frame: is_first_frame = False elif function_name in ['', '??']: assert file_name == function_name break lines.append((function_name, file_name)); except Exception: lines.append(('??', '??:0')) return ['%s in %s %s' % (addr, function, fix_filename(file)) for (function, file) in lines] class UnbufferedLineConverter(object): """ Wrap a child process that responds to each line of input with one line of output. Uses pty to trick the child into providing unbuffered output. """ def __init__(self, args, close_stderr=False): # Local imports so that the script can start on Windows. import pty import termios pid, fd = pty.fork() if pid == 0: # We're the child. Transfer control to command. if close_stderr: dev_null = os.open('/dev/null', 0) os.dup2(dev_null, 2) os.execvp(args[0], args) else: # Disable echoing. attr = termios.tcgetattr(fd) attr[3] = attr[3] & ~termios.ECHO termios.tcsetattr(fd, termios.TCSANOW, attr) # Set up a file()-like interface to the child process self.r = os.fdopen(fd, "r", 1) self.w = os.fdopen(os.dup(fd), "w", 1) def convert(self, line): self.w.write(line + "\n") return self.readline() def readline(self): return self.r.readline().rstrip() class DarwinSymbolizer(Symbolizer): def __init__(self, addr, binary, arch): super(DarwinSymbolizer, self).__init__() self.binary = binary self.arch = arch self.open_atos() def open_atos(self): if DEBUG: print('atos -o %s -arch %s' % (self.binary, self.arch)) cmdline = ['atos', '-o', self.binary, '-arch', self.arch] self.atos = UnbufferedLineConverter(cmdline, close_stderr=True) def symbolize(self, addr, binary, offset): """Overrides Symbolizer.symbolize.""" if self.binary != binary: return None atos_line = self.atos.convert('0x%x' % int(offset, 16)) while "got symbolicator for" in atos_line: atos_line = self.atos.readline() # A well-formed atos response looks like this: # foo(type1, type2) (in object.name) (filename.cc:80) match = re.match('^(.*) \(in (.*)\) \((.*:\d*)\)$', atos_line) if DEBUG: print('atos_line: ', atos_line) if match: function_name = match.group(1) function_name = re.sub('\(.*?\)', '', function_name) file_name = fix_filename(match.group(3)) return ['%s in %s %s' % (addr, function_name, file_name)] else: return ['%s in %s' % (addr, atos_line)] # Chain several symbolizers so that if one symbolizer fails, we fall back # to the next symbolizer in chain. class ChainSymbolizer(Symbolizer): def __init__(self, symbolizer_list): super(ChainSymbolizer, self).__init__() self.symbolizer_list = symbolizer_list def symbolize(self, addr, binary, offset): """Overrides Symbolizer.symbolize.""" for symbolizer in self.symbolizer_list: if symbolizer: result = symbolizer.symbolize(addr, binary, offset) if result: return result return None def append_symbolizer(self, symbolizer): self.symbolizer_list.append(symbolizer) def BreakpadSymbolizerFactory(binary): suffix = os.getenv('BREAKPAD_SUFFIX') if suffix: filename = binary + suffix if os.access(filename, os.F_OK): return BreakpadSymbolizer(filename) return None def SystemSymbolizerFactory(system, addr, binary, arch): if system == 'Darwin': return DarwinSymbolizer(addr, binary, arch) elif system == 'Linux' or system == 'FreeBSD': return Addr2LineSymbolizer(binary) class BreakpadSymbolizer(Symbolizer): def __init__(self, filename): super(BreakpadSymbolizer, self).__init__() self.filename = filename lines = file(filename).readlines() self.files = [] self.symbols = {} self.address_list = [] self.addresses = {} # MODULE mac x86_64 A7001116478B33F18FF9BEDE9F615F190 t fragments = lines[0].rstrip().split() self.arch = fragments[2] self.debug_id = fragments[3] self.binary = ' '.join(fragments[4:]) self.parse_lines(lines[1:]) def parse_lines(self, lines): cur_function_addr = '' for line in lines: fragments = line.split() if fragments[0] == 'FILE': assert int(fragments[1]) == len(self.files) self.files.append(' '.join(fragments[2:])) elif fragments[0] == 'PUBLIC': self.symbols[int(fragments[1], 16)] = ' '.join(fragments[3:]) elif fragments[0] in ['CFI', 'STACK']: pass elif fragments[0] == 'FUNC': cur_function_addr = int(fragments[1], 16) if not cur_function_addr in self.symbols.keys(): self.symbols[cur_function_addr] = ' '.join(fragments[4:]) else: # Line starting with an address. addr = int(fragments[0], 16) self.address_list.append(addr) # Tuple of symbol address, size, line, file number. self.addresses[addr] = (cur_function_addr, int(fragments[1], 16), int(fragments[2]), int(fragments[3])) self.address_list.sort() def get_sym_file_line(self, addr): key = None if addr in self.addresses.keys(): key = addr else: index = bisect.bisect_left(self.address_list, addr) if index == 0: return None else: key = self.address_list[index - 1] sym_id, size, line_no, file_no = self.addresses[key] symbol = self.symbols[sym_id] filename = self.files[file_no] if addr < key + size: return symbol, filename, line_no else: return None def symbolize(self, addr, binary, offset): if self.binary != binary: return None res = self.get_sym_file_line(int(offset, 16)) if res: function_name, file_name, line_no = res result = ['%s in %s %s:%d' % ( addr, function_name, file_name, line_no)] print(result) return result else: return None class SymbolizationLoop(object): def __init__(self, binary_name_filter=None, dsym_hint_producer=None): if sys.platform == 'win32': # ASan on Windows uses dbghelp.dll to symbolize in-process, which works # even in sandboxed processes. Nothing needs to be done here. self.process_line = self.process_line_echo else: # Used by clients who may want to supply a different binary name. # E.g. in Chrome several binaries may share a single .dSYM. self.binary_name_filter = binary_name_filter self.dsym_hint_producer = dsym_hint_producer self.system = os.uname()[0] if self.system not in ['Linux', 'Darwin', 'FreeBSD']: raise Exception('Unknown system') self.llvm_symbolizers = {} self.last_llvm_symbolizer = None self.dsym_hints = set([]) self.frame_no = 0 self.process_line = self.process_line_posix def symbolize_address(self, addr, binary, offset, arch): # On non-Darwin (i.e. on platforms without .dSYM debug info) always use # a single symbolizer binary. # On Darwin, if the dsym hint producer is present: # 1. check whether we've seen this binary already; if so, # use |llvm_symbolizers[binary]|, which has already loaded the debug # info for this binary (might not be the case for # |last_llvm_symbolizer|); # 2. otherwise check if we've seen all the hints for this binary already; # if so, reuse |last_llvm_symbolizer| which has the full set of hints; # 3. otherwise create a new symbolizer and pass all currently known # .dSYM hints to it. result = None if not force_system_symbolizer: if not binary in self.llvm_symbolizers: use_new_symbolizer = True if self.system == 'Darwin' and self.dsym_hint_producer: dsym_hints_for_binary = set(self.dsym_hint_producer(binary)) use_new_symbolizer = bool(dsym_hints_for_binary - self.dsym_hints) self.dsym_hints |= dsym_hints_for_binary if self.last_llvm_symbolizer and not use_new_symbolizer: self.llvm_symbolizers[binary] = self.last_llvm_symbolizer else: self.last_llvm_symbolizer = LLVMSymbolizerFactory( self.system, arch, self.dsym_hints) self.llvm_symbolizers[binary] = self.last_llvm_symbolizer # Use the chain of symbolizers: # Breakpad symbolizer -> LLVM symbolizer -> addr2line/atos # (fall back to next symbolizer if the previous one fails). if not binary in symbolizers: symbolizers[binary] = ChainSymbolizer( [BreakpadSymbolizerFactory(binary), self.llvm_symbolizers[binary]]) result = symbolizers[binary].symbolize(addr, binary, offset) else: symbolizers[binary] = ChainSymbolizer([]) if result is None: if not allow_system_symbolizer: raise Exception('Failed to launch or use llvm-symbolizer.') # Initialize system symbolizer only if other symbolizers failed. symbolizers[binary].append_symbolizer( SystemSymbolizerFactory(self.system, addr, binary, arch)) result = symbolizers[binary].symbolize(addr, binary, offset) # The system symbolizer must produce some result. assert result return result def get_symbolized_lines(self, symbolized_lines): if not symbolized_lines: return [self.current_line] else: result = [] for symbolized_frame in symbolized_lines: result.append(' #%s %s' % (str(self.frame_no), symbolized_frame.rstrip())) self.frame_no += 1 return result def process_logfile(self): self.frame_no = 0 for line in logfile: processed = self.process_line(line) print('\n'.join(processed)) def process_line_echo(self, line): return [line.rstrip()] def process_line_posix(self, line): self.current_line = line.rstrip() #0 0x7f6e35cf2e45 (/blah/foo.so+0x11fe45) stack_trace_line_format = ( '^( *#([0-9]+) *)(0x[0-9a-f]+) *\((.*)\+(0x[0-9a-f]+)\)') match = re.match(stack_trace_line_format, line) if not match: return [self.current_line] if DEBUG: print(line) _, frameno_str, addr, binary, offset = match.groups() arch = "" # Arch can be embedded in the filename, e.g.: "libabc.dylib:x86_64h" colon_pos = binary.rfind(":") if colon_pos != -1: maybe_arch = binary[colon_pos+1:] if is_valid_arch(maybe_arch): arch = maybe_arch binary = binary[0:colon_pos] if arch == "": arch = guess_arch(addr) if frameno_str == '0': # Assume that frame #0 is the first frame of new stack trace. self.frame_no = 0 original_binary = binary if self.binary_name_filter: binary = self.binary_name_filter(binary) symbolized_line = self.symbolize_address(addr, binary, offset, arch) if not symbolized_line: if original_binary != binary: symbolized_line = self.symbolize_address(addr, binary, offset, arch) return self.get_symbolized_lines(symbolized_line) if __name__ == '__main__': parser = argparse.ArgumentParser( formatter_class=argparse.RawDescriptionHelpFormatter, description='ASan symbolization script', epilog='Example of use:\n' 'asan_symbolize.py -c "$HOME/opt/cross/bin/arm-linux-gnueabi-" ' '-s "$HOME/SymbolFiles" < asan.log') parser.add_argument('path_to_cut', nargs='*', help='pattern to be cut from the result file path ') parser.add_argument('-d','--demangle', action='store_true', help='demangle function names') parser.add_argument('-s', metavar='SYSROOT', help='set path to sysroot for sanitized binaries') parser.add_argument('-c', metavar='CROSS_COMPILE', help='set prefix for binutils') parser.add_argument('-l','--logfile', default=sys.stdin, type=argparse.FileType('r'), help='set log file name to parse, default is stdin') parser.add_argument('--force-system-symbolizer', action='store_true', help='don\'t use llvm-symbolizer') args = parser.parse_args() if args.path_to_cut: fix_filename_patterns = args.path_to_cut if args.demangle: demangle = True if args.s: binary_name_filter = sysroot_path_filter sysroot_path = args.s if args.c: binutils_prefix = args.c if args.logfile: logfile = args.logfile else: logfile = sys.stdin if args.force_system_symbolizer: force_system_symbolizer = True if force_system_symbolizer: assert(allow_system_symbolizer) loop = SymbolizationLoop(binary_name_filter) loop.process_logfile()
the-stack_0_15008
# Copyright 2022 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). # Adapted from https://mypyc.readthedocs.io/en/latest/getting_started.html#example-program import time def fib(n: int) -> int: if n <= 1: return n else: return fib(n - 2) + fib(n - 1) t0 = time.time() fib(32) if "__file__" in locals(): print("interpreted") else: print("compiled") print(time.time() - t0)
the-stack_0_15009
#!/usr/bin/python3 from pathlib import Path import pytest priv_key = "0x416b8a7d9290502f5661da81f0cf43893e3d19cb9aea3c426cfb36e8186e9c09" addr = "0x14b0Ed2a7C4cC60DD8F676AE44D0831d3c9b2a9E" @pytest.fixture(autouse=True) def no_pass(monkeypatch): monkeypatch.setattr("brownie.network.account.getpass", lambda x: "") def test_save(accounts, tmpdir): a = accounts.add(priv_key) a.save(tmpdir + "/temp.json") assert Path(tmpdir + "/temp.json").exists() accounts._reset() def test_save_nopath(accounts, tmpdir): a = accounts.add(priv_key) path = Path(a.save("temp", True)) assert path.exists() path.unlink() Path(a.save("temp")) assert path.exists() path.unlink() accounts._reset() def test_save_overwrite(accounts, tmpdir): a = accounts.add(priv_key) a.save(tmpdir + "/temp.json") with pytest.raises(FileExistsError): a.save(tmpdir + "/temp.json") a.save(tmpdir + "/temp.json", True) accounts._reset() def test_load(accounts, tmpdir): a = accounts.add(priv_key) a.save(tmpdir + "/temp.json") accounts._reset() assert a not in accounts a = accounts.load(tmpdir + "/temp.json") assert a.address == addr def test_load_nopath(accounts, tmpdir): a = accounts.add(priv_key) path = a.save("temp") accounts._reset() a = accounts.load("temp") assert a.address == addr Path(path).unlink() def test_load_not_exists(accounts, tmpdir): with pytest.raises(FileNotFoundError): accounts.load(tmpdir + "/temp.json") with pytest.raises(FileNotFoundError): accounts.load("temp")
the-stack_0_15011
""" data collector """ from random import randint from time import sleep import csv import re import concurrent.futures import datetime from bs4 import BeautifulSoup import urllib3 import requests from utils.utilities import ProjectCommon OUTPUT_FILE_PATH = 'reviews_with_ranks.csv' SCRAPER_FINAL_OUTPUT = [] MOVIE_REVIEW_URLS = [] class Anonymize: """ anonymize class """ def __init__(self): self.headers = [{'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_5)' ' AppleWebKit/537.36 (KHTML, like Gecko) ' 'Chrome/50.0.2661.102 Safari/537.36'}, {'User-Agent': 'Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; ' 'rv:1.9.1.5) Gecko/20091102 Firefox/3.5.5 ' '(.NET CLR 3.5.30729)'}, {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) ' 'MyAppName/1.0.0 ([email protected])'}] @staticmethod def sleeper(): """ sleeper method used to sleep between requests :return: """ sleep(randint(2, 5)) def randomize_request_headers(self): """ method to randomize request headers for each request :return: """ return self.headers[randint(0, len(self.headers) - 1)] def movie_review_url_collector(): """ function collecting urls with the movie reviews :return:0 """ start_page_urls = ['https://www.csfd.cz/zebricky/nejhorsi-filmy/?show=complete', 'https://www.csfd.cz/zebricky/nejlepsi-filmy/?show=complete'] anonymize = Anonymize() for start_page in start_page_urls: page = requests.get(start_page, headers=anonymize.randomize_request_headers()) soup = BeautifulSoup(page.content, 'html.parser') movie_review_url = soup.find_all('td', attrs={'class': 'film'}) for url_item in movie_review_url[:300]: children = url_item.findChildren("a", recursive=False) movie_name = str(children).split("/")[2] for random_index in ([2, 3, 4, 5, 6, 7]): review_page = str(random_index) MOVIE_REVIEW_URLS.append('https://www.csfd.cz/film/{}/komentare/strana-{}'. format(movie_name, review_page)) return 0 def movie_review_scraper(url_to_scrape): """ function getting the url from the argument, requesting the raw html and scraping the movie review html code :param url_to_scrape: url :return:None """ anonymize = Anonymize() print(f'{datetime.datetime.now()} started scraping {url_to_scrape}') try: anonymize.sleeper() page = requests.get(url, headers=anonymize.randomize_request_headers()) if page.status_code == 200: # the <li> html tag structure we're scraping in loops: # # variation #1 with star count as rank in the img alt text tag: # <li id = "comment-796722" > # <div class ="info" > # <a href = "" > all reviewer's reviews </a>/ # <a href = "" > <img src = "" class ="" ></a> # </div> # <h5 class = "author" > <a href="" > reviewers nickname </a></h5> # <img src = "" class ="rating" width="32" alt="****" / > # <p class ="post" > movie review # <span class ="date desc" > date of review </span></p> # </li> # # variation #2 with 1 word ranking ("odpad!" translates to "junk") in the strong tag: # <li id = "comment-9092651" > # <div class ="info" > # <a href = "" > all reviewer's reviews </a>/ # <a href = "" > <img src = "" class ="" ></a> # </div> # <h5 class ="author" > <a href="" > reviewers nickname </a></h5> # <strong class ="rating" > odpad! </strong> # <p class ="post" > movie review # <span class ="date desc" > date of review </span></p> # </li> soup = BeautifulSoup(page.content, 'html.parser') _l_substring_to_trim_from = '<p class="post">' _r_substring_to_trim_to = '<span class="date desc">' for soup_item in soup.find_all("li", {"id": re.compile(r"comment-*")}): scraper_temp_output = [] img = soup_item.findChildren("img", attrs={'class': 'rating'}) strong = soup_item.findChildren(["strong", "p"], attrs={'class': ['rating', 'post']}) if strong and str(strong).startswith('[<strong class="rating">odpad!</strong>'): _r_trim = len(str(strong)) - str(strong).rfind(_r_substring_to_trim_to) _l_trim = str(strong).rfind(_l_substring_to_trim_from) + len(_l_substring_to_trim_from) scraper_temp_output.append({'rank': -2, 'review': str(strong)[_l_trim:-_r_trim]}) else: _r_trim = len(str(img)) - str(img).rfind(_r_substring_to_trim_to) _l_trim = str(img).rfind(_l_substring_to_trim_from) + len(_l_substring_to_trim_from) if img and str(img).startswith('[<img alt="*"'): scraper_temp_output.append({'rank': -2, 'review': str(img)[_l_trim:-_r_trim]}) elif img and str(img).startswith('[<img alt="**"'): scraper_temp_output.append({'rank': -1, 'review': str(img)[_l_trim:-_r_trim]}) elif img and str(img).startswith('[<img alt="***"'): scraper_temp_output.append({'rank': 1, 'review': str(img)[_l_trim:-_r_trim]}) elif img and str(img).startswith('[<img alt="****"'): scraper_temp_output.append({'rank': 2, 'review': str(img)[_l_trim:-_r_trim]}) elif img and str(img).startswith('[<img alt="*****"'): scraper_temp_output.append({'rank': 2, 'review': str(img)[_l_trim:-_r_trim]}) for item in scraper_temp_output: raw_review = item.get('review') review = ProjectCommon.remove_html(str(raw_review).lower()) rank = item.get('rank') SCRAPER_FINAL_OUTPUT.append((review, rank)) print(f'{datetime.datetime.now()} finished scraping {url}') else: print(f'{datetime.datetime.now()} Invalid request status code ' f'{str(page.status_code)} for {url}') except urllib3.exceptions.ConnectionError as connerr: print(str(connerr)) except Exception as exc: print(str(exc)) if __name__ == "__main__": # fill the list with urls used for movie data scraping movie_review_url_collector() # process the list items in a multi-threaded pool based # scraper function movie_review_scraper with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor: FUTURE_TO_URL = {executor.submit(movie_review_scraper, url): url for url in MOVIE_REVIEW_URLS} for future in concurrent.futures.as_completed(FUTURE_TO_URL): url = FUTURE_TO_URL[future] try: data = future.result() except Exception as exc: print('%r generated an exception: %s' % (url, exc)) # write to OUTPUT_FILE_PATH csv file the scraped movie review data with open(OUTPUT_FILE_PATH, 'w', encoding='utf8', newline='\n') as fw: writer = csv.writer(fw, escapechar='/', quoting=csv.QUOTE_NONNUMERIC) writer.writerows(SCRAPER_FINAL_OUTPUT) print("Movie review data collection phase complete.")
the-stack_0_15012
import os import numpy as np from scipy.io import netcdf_file from pychemia.utils.periodic import atomic_symbol from .htmlparser import MyHTMLParser """ This module provides general routines used by abipython but not requiring the abipython classes """ __author__ = "Guillermo Avendano-Franco" __copyright__ = "Copyright 2016" __version__ = "1.1" __maintainer__ = "Guillermo Avendano-Franco" __email__ = "[email protected]" __status__ = "Development" __date__ = "May 13, 2016" def netcdf2dict(filename): """ Read a NetCDF file and create a python dictionary with numpy arrays for variables Args: filename: NetCDF filename """ if not os.path.isfile(filename): print('ERROR: No such file: ', filename) return None output = {} netcdffile = netcdf_file(filename, 'r', mmap=False) for ii in netcdffile.variables.keys(): output[ii] = netcdffile.variables[ii][:] netcdffile.close() return output def psp_name(atomicnumber, exchange, kind): """ Return the filename of a certain PSP given the atomic number, exchange ('LDA' or 'GGA') and kind ('FHI','TM') :param atomicnumber: (int) Atomic number :param exchange: (str) 'LDA' or 'GGA' :param kind: (str) Source of Pseudopotentials :return: """ atom_symbol = str(atomic_symbol(atomicnumber)) if kind == 'FHI' and exchange == 'LDA': filename = str(atomicnumber).zfill(2) + '-' + atom_symbol + '.LDA.fhi' elif kind == 'FHI' and exchange == 'GGA': filename = str(atomicnumber).zfill(2) + '-' + atom_symbol + '.GGA.fhi' elif kind == 'CORE' and exchange == 'LDA': filename = str(atomicnumber) + atom_symbol.lower() + '.1s_psp.mod' elif kind == 'GTH' and exchange == 'LDA': filename = str(atomicnumber).zfill(2) + atom_symbol.lower() + '.pspgth' elif kind == 'TM' and exchange == 'LDA': filename = str(atomicnumber) + atom_symbol.lower() + '.pspnc' elif kind == 'AE' and exchange == 'DEN': filename = '0.' + str(atomicnumber).zfill(2) + '-' + atom_symbol + '.8.density.AE' elif kind == 'FC' and exchange == 'DEN': filename = str(atomicnumber).zfill(2) + '-' + atom_symbol + '.8.fc' elif kind == 'PAW' and exchange == 'GGA': filename = 'JTH-PBE-atomicdata-0.2/' + atom_symbol + '.GGA_PBE-JTH.xml' elif kind == 'PAW' and exchange == 'LDA': filename = 'JTH-LDA-atomicdata-0.2/' + atom_symbol + '.LDA_PW-JTH.xml' elif kind == 'HGH' and exchange == 'GGA': filename = str(atomicnumber).zfill(2) + atom_symbol.lower() + '.pbe_hgh' elif kind == 'ONC' and exchange == 'PBE': filename = 'pbe_s_sr' + os.sep + atom_symbol + '.psp8' else: print('The combination of exchange=%s and kind=%s is not known' % (exchange, kind)) filename = '' return filename def split_varname(varname): if varname[-2:].isdigit(): prefix = varname[:-2] suffix = varname[-2:] elif varname[-2].isdigit() and varname[-1] == '?': prefix = varname[:-2] suffix = varname[-2:] elif varname[-1].isdigit() and varname[-2] == '?': prefix = varname[:-2] suffix = varname[-2:] elif varname[-1].isdigit(): prefix = varname[:-1] suffix = varname[-1:] elif varname[-1] == '?': prefix = varname[:-1] suffix = varname[-1:] else: prefix = varname suffix = '' return prefix, suffix def plot_simple(variables, varname): from matplotlib.pylab import subplots from numpy import arange, mean, apply_along_axis, linalg from math import sqrt fig, ax = subplots(nrows=1, ncols=1) fig.set_size_inches(15, 4) ndtset = variables['ndtset'][0] lens = np.array([len(variables[varname + str(x + 1)]) for x in range(ndtset)]) x = arange(ndtset) + 1 if max(lens) == min(lens): if lens[0] == 1: y = np.array([variables['etotal' + str(x + 1)][0] for x in range(ndtset)]) elif lens[0] % 3 == 0: y = np.array([mean(apply_along_axis(linalg.norm, 1, variables['fcart' + str(x + 1)].reshape((-1, 3)))) for x in range(ndtset)]) else: y = np.array([sqrt(sum(variables['fcart' + str(x + 1)] ** 2)) for x in range(ndtset)]) ax.plot(x, y, 'ro') ax.plot(x, y, 'b-') ax.set_xlabel('Dataset') ax.set_ylabel(varname) ax.set_xlim(1, ndtset + 1) if ndtset < 30: ax.set_xticks(arange(ndtset + 1)) ax.grid(which='major', axis='both') def abihelp(varname): import json hp = MyHTMLParser() import pychemia.code.abinit as _pdca rf = open(_pdca.__path__[0] + '/ABINIT_variables.json', 'r') variables = json.load(rf) rf.close() if varname not in variables.keys(): print('ERROR: ' + varname + ' is not in the list of variables of ABINIT') return else: abivar = variables[varname] print(varname) print('') print('DEFINITION:', abivar['definition']) print('SECTION: ', abivar['section']) print('DEFAULT: ', hp.feed(abivar['default'])) print('') print(hp.feed(abivar['text'])) print('')
the-stack_0_15016
'''Michael Lange <klappnase (at) freakmail (dot) de> The ToolTip class provides a flexible tooltip widget for Tkinter; it is based on IDLE's ToolTip module which unfortunately seems to be broken (at least the version I saw). INITIALIZATION OPTIONS: anchor : where the text should be positioned inside the widget, must be on of "n", "s", "e", "w", "nw" and so on; default is "center" bd : borderwidth of the widget; default is 1 (NOTE: don't use "borderwidth" here) bg : background color to use for the widget; default is "lightyellow" (NOTE: don't use "background") delay : time in ms that it takes for the widget to appear on the screen when the mouse pointer has entered the parent widget; default is 1500 fg : foreground (i.e. text) color to use; default is "black" (NOTE: don't use "foreground") follow_mouse : if set to 1 the tooltip will follow the mouse pointer instead of being displayed outside of the parent widget; this may be useful if you want to use tooltips for large widgets like listboxes or canvases; default is 0 font : font to use for the widget; default is system specific justify : how multiple lines of text will be aligned, must be "left", "right" or "center"; default is "left" padx : extra space added to the left and right within the widget; default is 4 pady : extra space above and below the text; default is 2 relief : one of "flat", "ridge", "groove", "raised", "sunken" or "solid"; default is "solid" state : must be "normal" or "disabled"; if set to "disabled" the tooltip will not appear; default is "normal" text : the text that is displayed inside the widget textvariable : if set to an instance of Tkinter.StringVar() the variable's value will be used as text for the widget width : width of the widget; the default is 0, which means that "wraplength" will be used to limit the widgets width wraplength : limits the number of characters in each line; default is 150 WIDGET METHODS: configure(**opts) : change one or more of the widget's options as described above; the changes will take effect the next time the tooltip shows up; NOTE: follow_mouse cannot be changed after widget initialization Other widget methods that might be useful if you want to subclass ToolTip: enter() : callback when the mouse pointer enters the parent widget leave() : called when the mouse pointer leaves the parent widget motion() : is called when the mouse pointer moves inside the parent widget if follow_mouse is set to 1 and the tooltip has shown up to continually update the coordinates of the tooltip window coords() : calculates the screen coordinates of the tooltip window create_contents() : creates the contents of the tooltip window (by default a Tkinter.Label) ''' # Ideas gleaned from PySol try: import Tkinter as tkinter except ImportError: import tkinter class ToolTip: def __init__(self, master, text='Your text here', delay=1500, **opts): self.master = master self._opts = {'anchor':'center', 'bd':1, 'bg':'lightyellow', 'delay':delay, 'fg':'black',\ 'follow_mouse':0, 'font':None, 'justify':'left', 'padx':4, 'pady':2,\ 'relief':'solid', 'state':'normal', 'text':text, 'textvariable':None,\ 'width':0, 'wraplength':150} self.configure(**opts) self._tipwindow = None self._id = None self._id1 = self.master.bind("<Enter>", self.enter, '+') self._id2 = self.master.bind("<Leave>", self.leave, '+') self._id3 = self.master.bind("<ButtonPress>", self.leave, '+') self._follow_mouse = 0 if self._opts['follow_mouse']: self._id4 = self.master.bind("<Motion>", self.motion, '+') self._follow_mouse = 1 def configure(self, **opts): for key in opts: if key in self._opts: self._opts[key] = opts[key] else: KeyError = 'KeyError: Unknown option: "%s"' % key raise KeyError ##----these methods handle the callbacks on "<Enter>", "<Leave>" and "<Motion>"---------------## ##----events on the parent widget; override them if you want to change the widget's behavior--## def enter(self, event=None): self._schedule() def leave(self, event=None): self._unschedule() self._hide() def motion(self, event=None): if self._tipwindow and self._follow_mouse: x, y = self.coords() self._tipwindow.wm_geometry("+%d+%d" % (x, y)) ##------the methods that do the work:---------------------------------------------------------## def _schedule(self): self._unschedule() if self._opts['state'] == 'disabled': return self._id = self.master.after(self._opts['delay'], self._show) def _unschedule(self): id = self._id self._id = None if id: self.master.after_cancel(id) def _show(self): if self._opts['state'] == 'disabled': self._unschedule() return if not self._tipwindow: self._tipwindow = tw = tkinter.Toplevel(self.master) # hide the window until we know the geometry tw.withdraw() tw.wm_overrideredirect(1) if tw.tk.call("tk", "windowingsystem") == 'aqua': tw.tk.call("::tk::unsupported::MacWindowStyle", "style", tw._w, "help", "none") self.create_contents() tw.update_idletasks() x, y = self.coords() tw.wm_geometry("+%d+%d" % (x, y)) tw.deiconify() def _hide(self): tw = self._tipwindow self._tipwindow = None if tw: tw.destroy() ##----these methods might be overridden in derived classes:----------------------------------## def coords(self): # The tip window must be completely outside the master widget; # otherwise when the mouse enters the tip window we get # a leave event and it disappears, and then we get an enter # event and it reappears, and so on forever :-( # or we take care that the mouse pointer is always outside the tipwindow :-) tw = self._tipwindow twx, twy = tw.winfo_reqwidth(), tw.winfo_reqheight() w, h = tw.winfo_screenwidth(), tw.winfo_screenheight() # calculate the y coordinate: if self._follow_mouse: y = tw.winfo_pointery() + 20 # make sure the tipwindow is never outside the screen: if y + twy > h: y = y - twy - 30 else: y = self.master.winfo_rooty() + self.master.winfo_height() + 3 if y + twy > h: y = self.master.winfo_rooty() - twy - 3 # we can use the same x coord in both cases: x = tw.winfo_pointerx() - twx / 2 if x < 0: x = 0 elif x + twx > w: x = w - twx return x, y def create_contents(self): opts = self._opts.copy() for opt in ('delay', 'follow_mouse', 'state'): del opts[opt] label = tkinter.Label(self._tipwindow, **opts) label.pack() ##---------demo code-----------------------------------## def demo(): root = tkinter.Tk(className='ToolTip-demo') l = tkinter.Listbox(root) l.insert('end', "I'm a listbox") l.pack(side='top') t1 = ToolTip(l, follow_mouse=1, text="I'm a tooltip with follow_mouse set to 1, so I won't be placed outside my parent") b = tkinter.Button(root, text='Quit', command=root.quit) b.pack(side='bottom') t2 = ToolTip(b, text='Enough of this') root.mainloop() if __name__ == '__main__': demo()
the-stack_0_15017
import json from collections import Counter class Sorter(object): def __init__(self): # These are playlists that are to be edited, this can be changed from configparser import ConfigParser; config = ConfigParser(); \ config.read('config.ini'); \ self.target_playlists = config.get('Settings', 'TargetPlaylists') self.target_playlists = self.target_playlists.split(',') self.target_playlists = [x.strip() for x in self.target_playlists] def findtargetPlaylists(self, playlist_json, length_check=False): found_playlists = {} if(isinstance(playlist_json, (str, bytes))): playlist_json = json.loads(playlist_json) playlist_names = self.findPlaylists(playlist_json) for i, playlist in enumerate(playlist_names): if playlist in self.target_playlists: found_playlists[playlist] = playlist_json['items'][i]['id'] if(length_check): if len(playlist_json['items']) == 20: extension_state=True else: extension_state=False return(found_playlists, extension_state) return(found_playlists) def findPlaylists(self, playlist_json): found_playlists = [] if(isinstance(playlist_json, (str, bytes))): playlist_json = json.loads(playlist_json) for item in playlist_json['items']: found_playlists.append(f"{item['name']}") return(found_playlists) def findSongs(self, recent_json): recent_songs = [] if(isinstance(recent_json, (str, bytes))): recent_json = json.loads(recent_json) for item in recent_json['items']: recent_songs.append(f"{item['track']['name']}:{item['track']['id']}") return(recent_songs) def findtopSongs(self, songs_list): listened_songs = [] for vector in songs_list: listened_songs.append(vector) song_counter = Counter(listened_songs) top_songs = sorted(song_counter, key=lambda x: -song_counter[x]) songs_counted = song_counter.most_common() return(songs_counted) def findtimeAdded(self, playlist_json): if(isinstance(playlist_json, (str, bytes))): playlist_json = json.loads(playlist_json) elif(isinstance(playlist_json, dict)): pass else: return timestamp_list = [item['added_at'] for item in playlist_json['items']] return(timestamp_list) def compare_recent(self, recent_json, new_json): new_songs = self.findSongs(new_json) recent_songs = self.findSongs(recent_json) return not(new_songs == recent_songs)
the-stack_0_15018
#!/usr/bin/env python3 # Copyright (c) 2014-2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the -alertnotify, -blocknotify and -walletnotify options.""" import os from test_framework.test_framework import JdCoinTestFramework from test_framework.util import ( assert_equal, wait_until, connect_nodes, ) class NotificationsTest(JdCoinTestFramework): def set_test_params(self): self.num_nodes = 2 self.setup_clean_chain = True def setup_network(self): self.alert_filename = os.path.join(self.options.tmpdir, "alert.txt") self.block_filename = os.path.join(self.options.tmpdir, "blocks.txt") self.tx_filename = os.path.join(self.options.tmpdir, "transactions.txt") # -alertnotify and -blocknotify on node0, walletnotify on node1 self.extra_args = [["-blockversion=4", "-alertnotify=echo %%s >> %s" % self.alert_filename, "-blocknotify=echo %%s >> %s" % self.block_filename], ["-blockversion=211", "-rescan", "-walletnotify=echo %%s >> %s" % self.tx_filename]] super().setup_network() def run_test(self): self.log.info("test -blocknotify") block_count = 10 blocks = self.nodes[1].generate(block_count) # wait at most 10 seconds for expected file size before reading the content wait_until(lambda: os.path.isfile(self.block_filename) and os.stat(self.block_filename).st_size >= (block_count * 65), timeout=10) # file content should equal the generated blocks hashes with open(self.block_filename, 'r') as f: assert_equal(sorted(blocks), sorted(f.read().splitlines())) self.log.info("test -walletnotify") # wait at most 10 seconds for expected file size before reading the content wait_until(lambda: os.path.isfile(self.tx_filename) and os.stat(self.tx_filename).st_size >= (block_count * 65), timeout=10) # file content should equal the generated transaction hashes txids_rpc = list(map(lambda t: t['txid'], self.nodes[1].listtransactions("*", block_count))) with open(self.tx_filename, 'r') as f: assert_equal(sorted(txids_rpc), sorted(f.read().splitlines())) os.remove(self.tx_filename) self.log.info("test -walletnotify after rescan") # restart node to rescan to force wallet notifications self.restart_node(1) connect_nodes(self.nodes[0], 1) wait_until(lambda: os.path.isfile(self.tx_filename) and os.stat(self.tx_filename).st_size >= (block_count * 65), timeout=10) # file content should equal the generated transaction hashes txids_rpc = list(map(lambda t: t['txid'], self.nodes[1].listtransactions("*", block_count))) with open(self.tx_filename, 'r') as f: assert_equal(sorted(txids_rpc), sorted(f.read().splitlines())) # Mine another 41 up-version blocks. -alertnotify should trigger on the 51st. self.log.info("test -alertnotify") self.nodes[1].generate(51) self.sync_all() # Give jdcoind 10 seconds to write the alert notification wait_until(lambda: os.path.isfile(self.alert_filename) and os.path.getsize(self.alert_filename), timeout=10) with open(self.alert_filename, 'r', encoding='utf8') as f: alert_text = f.read() # Mine more up-version blocks, should not get more alerts: self.nodes[1].generate(2) self.sync_all() with open(self.alert_filename, 'r', encoding='utf8') as f: alert_text2 = f.read() self.log.info("-alertnotify should not continue notifying for more unknown version blocks") assert_equal(alert_text, alert_text2) if __name__ == '__main__': NotificationsTest().main()
the-stack_0_15019
import os def rename_files(): # (1) get file names from a folder file_list = os.listdir("prank") print(file_list) saved_path = os.getcwd() print("Current Working Directory is %s" % saved_path) os.chdir("prank") # (2) for each file, rename filename for file_name in file_list: os.rename(file_name, file_name.translate(None, "0123456789")) os.chdir(saved_path) rename_files() # os.rename("test", "test3") # os.rename("test1", "test2")
the-stack_0_15020
from pymongo import MongoClient client = MongoClient("mongodb://127.0.0.1:27017/") database = "mydb" collections = ["cars", "cops"] database = client[database] cars = database[collections[0]] cops = database[collections[1]] def get_all_cars(): return cars.find() def get_free_cars(): return cars.find({"resolved": 0, "assigned": 0}) def put_car(car): car['cop_id'] = "" car['resolved'] = 0 car['assigned'] = 0 car_id = cars.insert_one(car).inserted_id return car_id def get_all_cops(): return cops.find() def get_available_cops(): return cops.find({"available": 1}) def put_cop(cop): cop['available'] = 1 cop['car_id'] = "" cop_id = cops.insert_one(cop).inserted_id return cop_id def assign_cop_car(cop_id, car_id): if list(cops.find_one({"_id": cop_id}, {"_id": 0, "available": 1}).values()) != [1]: return "failed" if list(cars.find_one({"_id": car_id}, {"_id": 0, "resolved": 1, "assigned": 1}).values()) != [0, 0]: return "failed" cops.update_one({"_id": cop_id}, {"$set": {"available": 0, "car_id": car_id}}) cars.update_one({"_id": car_id}, {"$set": {"assigned": 1, "cop_id": cop_id}}) return "assigned" def complete_assignment(cop_id, car_id): if list(cops.find_one({"_id": cop_id}, {"_id": 0, "available": 1}).values()) != [0]: return "failed" if list(cars.find_one({"_id": car_id}, {"_id": 0, "resolved": 1, "assigned": 1}).values()) != [0, 1]: return "failed" cops.update_one({"_id": cop_id}, {"$set": {"available": 1}}) cops.update_one({"_id": cop_id}, {"$set": {"car_id": ""}}) cars.update_one({"_id": car_id}, {"$set": {"assigned": 0}}) cars.update_one({"_id": car_id}, {"$set": {"resolved": 1}}) cars.update_one({"_id": car_id}, {"$set": {"cop_id": ""}}) return "resolved"
the-stack_0_15021
"""Utilities related archives. """ # The following comment should be removed at some point in the future. # mypy: strict-optional=False # mypy: disallow-untyped-defs=False from __future__ import absolute_import import logging import os import shutil import stat import tarfile import zipfile from pip._internal.exceptions import InstallationError from pip._internal.utils.filetypes import ( BZ2_EXTENSIONS, TAR_EXTENSIONS, XZ_EXTENSIONS, ZIP_EXTENSIONS, ) from pip._internal.utils.misc import ensure_dir from pip._internal.utils.typing import MYPY_CHECK_RUNNING if MYPY_CHECK_RUNNING: from typing import Iterable, List, Optional, Text, Union logger = logging.getLogger(__name__) SUPPORTED_EXTENSIONS = ZIP_EXTENSIONS + TAR_EXTENSIONS try: import bz2 # noqa SUPPORTED_EXTENSIONS += BZ2_EXTENSIONS except ImportError: logger.debug("bz2 module is not available") try: # Only for Python 3.3+ import lzma # noqa SUPPORTED_EXTENSIONS += XZ_EXTENSIONS except ImportError: logger.debug("lzma module is not available") def current_umask(): """Get the current umask which involves having to set it temporarily.""" mask = os.umask(0) os.umask(mask) return mask def split_leading_dir(path): # type: (Union[str, Text]) -> List[Union[str, Text]] path = path.lstrip("/").lstrip("\\") if "/" in path and ( ("\\" in path and path.find("/") < path.find("\\")) or "\\" not in path ): return path.split("/", 1) elif "\\" in path: return path.split("\\", 1) else: return [path, ""] def has_leading_dir(paths): # type: (Iterable[Union[str, Text]]) -> bool """Returns true if all the paths have the same leading path name (i.e., everything is in one subdirectory in an archive)""" common_prefix = None for path in paths: prefix, rest = split_leading_dir(path) if not prefix: return False elif common_prefix is None: common_prefix = prefix elif prefix != common_prefix: return False return True def is_within_directory(directory, target): # type: ((Union[str, Text]), (Union[str, Text])) -> bool """ Return true if the absolute path of target is within the directory """ abs_directory = os.path.abspath(directory) abs_target = os.path.abspath(target) prefix = os.path.commonprefix([abs_directory, abs_target]) return prefix == abs_directory def unzip_file(filename, location, flatten=True): # type: (str, str, bool) -> None """ Unzip the file (with path `filename`) to the destination `location`. All files are written based on system defaults and umask (i.e. permissions are not preserved), except that regular file members with any execute permissions (user, group, or world) have "chmod +x" applied after being written. Note that for windows, any execute changes using os.chmod are no-ops per the python docs. """ ensure_dir(location) zipfp = open(filename, "rb") try: zip = zipfile.ZipFile(zipfp, allowZip64=True) leading = has_leading_dir(zip.namelist()) and flatten for info in zip.infolist(): name = info.filename fn = name if leading: fn = split_leading_dir(name)[1] fn = os.path.join(location, fn) dir = os.path.dirname(fn) if not is_within_directory(location, fn): message = ( "The zip file ({}) has a file ({}) trying to install " "outside target directory ({})" ) raise InstallationError(message.format(filename, fn, location)) if fn.endswith("/") or fn.endswith("\\"): # A directory ensure_dir(fn) else: ensure_dir(dir) # Don't use read() to avoid allocating an arbitrarily large # chunk of memory for the file's content fp = zip.open(name) try: with open(fn, "wb") as destfp: shutil.copyfileobj(fp, destfp) finally: fp.close() mode = info.external_attr >> 16 # if mode and regular file and any execute permissions for # user/group/world? if mode and stat.S_ISREG(mode) and mode & 0o111: # make dest file have execute for user/group/world # (chmod +x) no-op on windows per python docs os.chmod(fn, (0o777 - current_umask() | 0o111)) finally: zipfp.close() def untar_file(filename, location): # type: (str, str) -> None """ Untar the file (with path `filename`) to the destination `location`. All files are written based on system defaults and umask (i.e. permissions are not preserved), except that regular file members with any execute permissions (user, group, or world) have "chmod +x" applied after being written. Note that for windows, any execute changes using os.chmod are no-ops per the python docs. """ ensure_dir(location) if filename.lower().endswith(".gz") or filename.lower().endswith(".tgz"): mode = "r:gz" elif filename.lower().endswith(BZ2_EXTENSIONS): mode = "r:bz2" elif filename.lower().endswith(XZ_EXTENSIONS): mode = "r:xz" elif filename.lower().endswith(".tar"): mode = "r" else: logger.warning( "Cannot determine compression type for file %s", filename, ) mode = "r:*" tar = tarfile.open(filename, mode) try: leading = has_leading_dir([member.name for member in tar.getmembers()]) for member in tar.getmembers(): fn = member.name if leading: # https://github.com/python/mypy/issues/1174 fn = split_leading_dir(fn)[1] # type: ignore path = os.path.join(location, fn) if not is_within_directory(location, path): message = ( "The tar file ({}) has a file ({}) trying to install " "outside target directory ({})" ) raise InstallationError(message.format(filename, path, location)) if member.isdir(): ensure_dir(path) elif member.issym(): try: # https://github.com/python/typeshed/issues/2673 tar._extract_member(member, path) # type: ignore except Exception as exc: # Some corrupt tar files seem to produce this # (specifically bad symlinks) logger.warning( "In the tar file %s the member %s is invalid: %s", filename, member.name, exc, ) continue else: try: fp = tar.extractfile(member) except (KeyError, AttributeError) as exc: # Some corrupt tar files seem to produce this # (specifically bad symlinks) logger.warning( "In the tar file %s the member %s is invalid: %s", filename, member.name, exc, ) continue ensure_dir(os.path.dirname(path)) with open(path, "wb") as destfp: shutil.copyfileobj(fp, destfp) fp.close() # Update the timestamp (useful for cython compiled files) # https://github.com/python/typeshed/issues/2673 tar.utime(member, path) # type: ignore # member have any execute permissions for user/group/world? if member.mode & 0o111: # make dest file have execute for user/group/world # no-op on windows per python docs os.chmod(path, (0o777 - current_umask() | 0o111)) finally: tar.close() def unpack_file( filename, # type: str location, # type: str content_type=None, # type: Optional[str] ): # type: (...) -> None filename = os.path.realpath(filename) if ( content_type == "application/zip" or filename.lower().endswith(ZIP_EXTENSIONS) or zipfile.is_zipfile(filename) ): unzip_file(filename, location, flatten=not filename.endswith(".whl")) elif ( content_type == "application/x-gzip" or tarfile.is_tarfile(filename) or filename.lower().endswith(TAR_EXTENSIONS + BZ2_EXTENSIONS + XZ_EXTENSIONS) ): untar_file(filename, location) else: # FIXME: handle? # FIXME: magic signatures? logger.critical( "Cannot unpack file %s (downloaded from %s, content-type: %s); " "cannot detect archive format", filename, location, content_type, ) raise InstallationError( "Cannot determine archive format of {}".format(location) )
the-stack_0_15022
# -*- coding: utf-8 -*- """ Deeplabv3+ model for Keras. This model is based on TF repo: https://github.com/tensorflow/models/tree/master/research/deeplab On Pascal VOC, original model gets to 84.56% mIOU Now this model is only available for the TensorFlow backend, due to its reliance on `SeparableConvolution` layers, but Theano will add this layer soon. MobileNetv2 backbone is based on this repo: https://github.com/JonathanCMitchell/mobilenet_v2_keras # Reference - [Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation](https://arxiv.org/pdf/1802.02611.pdf) - [Xception: Deep Learning with Depthwise Separable Convolutions] (https://arxiv.org/abs/1610.02357) - [Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation](https://arxiv.org/abs/1801.04381) """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from keras.models import Model from keras import layers from keras.layers import Input from keras.layers import Activation from keras.layers import Concatenate from keras.layers import Add from keras.layers import Dropout from keras.layers import BatchNormalization from keras.layers import Conv2D from keras.layers import DepthwiseConv2D from keras.layers import ZeroPadding2D from keras.layers import AveragePooling2D from keras.engine import Layer from keras.engine import InputSpec from keras.engine.topology import get_source_inputs from keras import backend as K from keras.applications import imagenet_utils from keras.utils import conv_utils from keras.utils.data_utils import get_file WEIGHTS_PATH_X = "https://github.com/bonlime/keras-deeplab-v3-plus/releases/download/1.1/deeplabv3_xception_tf_dim_ordering_tf_kernels.h5" WEIGHTS_PATH_MOBILE = "https://github.com/bonlime/keras-deeplab-v3-plus/releases/download/1.1/deeplabv3_mobilenetv2_tf_dim_ordering_tf_kernels.h5" class BilinearUpsampling(Layer): """Just a simple bilinear upsampling layer. Works only with TF. Args: upsampling: tuple of 2 numbers > 0. The upsampling ratio for h and w output_size: used instead of upsampling arg if passed! """ def __init__(self, upsampling=(2, 2), output_size=None, data_format=None, **kwargs): super(BilinearUpsampling, self).__init__(**kwargs) self.data_format = K.normalize_data_format(data_format) self.input_spec = InputSpec(ndim=4) if output_size: self.output_size = conv_utils.normalize_tuple( output_size, 2, 'output_size') self.upsampling = None else: self.output_size = None self.upsampling = conv_utils.normalize_tuple( upsampling, 2, 'upsampling') def compute_output_shape(self, input_shape): if self.upsampling: height = self.upsampling[0] * \ input_shape[1] if input_shape[1] is not None else None width = self.upsampling[1] * \ input_shape[2] if input_shape[2] is not None else None else: height = self.output_size[0] width = self.output_size[1] return (input_shape[0], height, width, input_shape[3]) def call(self, inputs): if self.upsampling: return K.tf.image.resize_bilinear(inputs, (inputs.shape[1] * self.upsampling[0], inputs.shape[2] * self.upsampling[1]), align_corners=True) else: return K.tf.image.resize_bilinear(inputs, (self.output_size[0], self.output_size[1]), align_corners=True) def get_config(self): config = {'upsampling': self.upsampling, 'output_size': self.output_size, 'data_format': self.data_format} base_config = super(BilinearUpsampling, self).get_config() return dict(list(base_config.items()) + list(config.items())) def SepConv_BN(x, filters, prefix, stride=1, kernel_size=3, rate=1, depth_activation=False, epsilon=1e-3): """ SepConv with BN between depthwise & pointwise. Optionally add activation after BN Implements right "same" padding for even kernel sizes Args: x: input tensor filters: num of filters in pointwise convolution prefix: prefix before name stride: stride at depthwise conv kernel_size: kernel size for depthwise convolution rate: atrous rate for depthwise convolution depth_activation: flag to use activation between depthwise & poinwise convs epsilon: epsilon to use in BN layer """ if stride == 1: depth_padding = 'same' else: kernel_size_effective = kernel_size + (kernel_size - 1) * (rate - 1) pad_total = kernel_size_effective - 1 pad_beg = pad_total // 2 pad_end = pad_total - pad_beg x = ZeroPadding2D((pad_beg, pad_end))(x) depth_padding = 'valid' if not depth_activation: x = Activation('relu')(x) x = DepthwiseConv2D((kernel_size, kernel_size), strides=(stride, stride), dilation_rate=(rate, rate), padding=depth_padding, use_bias=False, name=prefix + '_depthwise')(x) x = BatchNormalization(name=prefix + '_depthwise_BN', epsilon=epsilon)(x) if depth_activation: x = Activation('relu')(x) x = Conv2D(filters, (1, 1), padding='same', use_bias=False, name=prefix + '_pointwise')(x) x = BatchNormalization(name=prefix + '_pointwise_BN', epsilon=epsilon)(x) if depth_activation: x = Activation('relu')(x) return x def _conv2d_same(x, filters, prefix, stride=1, kernel_size=3, rate=1): """Implements right 'same' padding for even kernel sizes Without this there is a 1 pixel drift when stride = 2 Args: x: input tensor filters: num of filters in pointwise convolution prefix: prefix before name stride: stride at depthwise conv kernel_size: kernel size for depthwise convolution rate: atrous rate for depthwise convolution """ if stride == 1: return Conv2D(filters, (kernel_size, kernel_size), strides=(stride, stride), padding='same', use_bias=False, dilation_rate=(rate, rate), name=prefix)(x) else: kernel_size_effective = kernel_size + (kernel_size - 1) * (rate - 1) pad_total = kernel_size_effective - 1 pad_beg = pad_total // 2 pad_end = pad_total - pad_beg x = ZeroPadding2D((pad_beg, pad_end))(x) return Conv2D(filters, (kernel_size, kernel_size), strides=(stride, stride), padding='valid', use_bias=False, dilation_rate=(rate, rate), name=prefix)(x) def _xception_block(inputs, depth_list, prefix, skip_connection_type, stride, rate=1, depth_activation=False, return_skip=False): """ Basic building block of modified Xception network Args: inputs: input tensor depth_list: number of filters in each SepConv layer. len(depth_list) == 3 prefix: prefix before name skip_connection_type: one of {'conv','sum','none'} stride: stride at last depthwise conv rate: atrous rate for depthwise convolution depth_activation: flag to use activation between depthwise & pointwise convs return_skip: flag to return additional tensor after 2 SepConvs for decoder """ residual = inputs for i in range(3): residual = SepConv_BN(residual, depth_list[i], prefix + '_separable_conv{}'.format(i + 1), stride=stride if i == 2 else 1, rate=rate, depth_activation=depth_activation) if i == 1: skip = residual if skip_connection_type == 'conv': shortcut = _conv2d_same(inputs, depth_list[-1], prefix + '_shortcut', kernel_size=1, stride=stride) shortcut = BatchNormalization(name=prefix + '_shortcut_BN')(shortcut) outputs = layers.add([residual, shortcut]) elif skip_connection_type == 'sum': outputs = layers.add([residual, inputs]) elif skip_connection_type == 'none': outputs = residual if return_skip: return outputs, skip else: return outputs def relu6(x): return K.relu(x, max_value=6) def _make_divisible(v, divisor, min_value=None): if min_value is None: min_value = divisor new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) # Make sure that round down does not go down by more than 10%. if new_v < 0.9 * v: new_v += divisor return new_v def _inverted_res_block(inputs, expansion, stride, alpha, filters, block_id, skip_connection, rate=1): in_channels = inputs._keras_shape[-1] pointwise_conv_filters = int(filters * alpha) pointwise_filters = _make_divisible(pointwise_conv_filters, 8) x = inputs prefix = 'expanded_conv_{}_'.format(block_id) if block_id: # Expand x = Conv2D(expansion * in_channels, kernel_size=1, padding='same', use_bias=False, activation=None, name=prefix + 'expand')(x) x = BatchNormalization(epsilon=1e-3, momentum=0.999, name=prefix + 'expand_BN')(x) x = Activation(relu6, name=prefix + 'expand_relu')(x) else: prefix = 'expanded_conv_' # Depthwise x = DepthwiseConv2D(kernel_size=3, strides=stride, activation=None, use_bias=False, padding='same', dilation_rate=(rate, rate), name=prefix + 'depthwise')(x) x = BatchNormalization(epsilon=1e-3, momentum=0.999, name=prefix + 'depthwise_BN')(x) x = Activation(relu6, name=prefix + 'depthwise_relu')(x) # Project x = Conv2D(pointwise_filters, kernel_size=1, padding='same', use_bias=False, activation=None, name=prefix + 'project')(x) x = BatchNormalization(epsilon=1e-3, momentum=0.999, name=prefix + 'project_BN')(x) if skip_connection: return Add(name=prefix + 'add')([inputs, x]) # if in_channels == pointwise_filters and stride == 1: # return Add(name='res_connect_' + str(block_id))([inputs, x]) return x def Deeplabv3(weights='pascal_voc', input_tensor=None, input_shape=(512, 512, 3), classes=21, backbone='mobilenetv2', OS=16, alpha=1.): """ Instantiates the Deeplabv3+ architecture Optionally loads weights pre-trained on PASCAL VOC. This model is available for TensorFlow only, and can only be used with inputs following the TensorFlow data format `(width, height, channels)`. # Arguments weights: one of 'pascal_voc' (pre-trained on pascal voc) or None (random initialization) input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. input_shape: shape of input image. format HxWxC PASCAL VOC model was trained on (512,512,3) images classes: number of desired classes. If classes != 21, last layer is initialized randomly backbone: backbone to use. one of {'xception','mobilenetv2'} OS: determines input_shape/feature_extractor_output ratio. One of {8,16}. Used only for xception backbone. alpha: controls the width of the MobileNetV2 network. This is known as the width multiplier in the MobileNetV2 paper. - If `alpha` < 1.0, proportionally decreases the number of filters in each layer. - If `alpha` > 1.0, proportionally increases the number of filters in each layer. - If `alpha` = 1, default number of filters from the paper are used at each layer. Used only for mobilenetv2 backbone # Returns A Keras model instance. # Raises RuntimeError: If attempting to run this model with a backend that does not support separable convolutions. ValueError: in case of invalid argument for `weights` or `backbone` """ if not (weights in {'pascal_voc', None}): raise ValueError('The `weights` argument should be either ' '`None` (random initialization) or `pascal_voc` ' '(pre-trained on PASCAL VOC)') if K.backend() != 'tensorflow': raise RuntimeError('The Deeplabv3+ model is only available with ' 'the TensorFlow backend.') if not (backbone in {'xception', 'mobilenetv2'}): raise ValueError('The `backbone` argument should be either ' '`xception` or `mobilenetv2` ') if input_tensor is None: img_input = Input(shape=input_shape) else: if not K.is_keras_tensor(input_tensor): img_input = Input(tensor=input_tensor, shape=input_shape) else: img_input = input_tensor if backbone == 'xception': if OS == 8: entry_block3_stride = 1 middle_block_rate = 2 # ! Not mentioned in paper, but required exit_block_rates = (2, 4) atrous_rates = (12, 24, 36) else: entry_block3_stride = 2 middle_block_rate = 1 exit_block_rates = (1, 2) atrous_rates = (6, 12, 18) x = Conv2D(32, (3, 3), strides=(2, 2), name='entry_flow_conv1_1', use_bias=False, padding='same')(img_input) x = BatchNormalization(name='entry_flow_conv1_1_BN')(x) x = Activation('relu')(x) x = _conv2d_same(x, 64, 'entry_flow_conv1_2', kernel_size=3, stride=1) x = BatchNormalization(name='entry_flow_conv1_2_BN')(x) x = Activation('relu')(x) x = _xception_block(x, [128, 128, 128], 'entry_flow_block1', skip_connection_type='conv', stride=2, depth_activation=False) x, skip1 = _xception_block(x, [256, 256, 256], 'entry_flow_block2', skip_connection_type='conv', stride=2, depth_activation=False, return_skip=True) x = _xception_block(x, [728, 728, 728], 'entry_flow_block3', skip_connection_type='conv', stride=entry_block3_stride, depth_activation=False) for i in range(16): x = _xception_block(x, [728, 728, 728], 'middle_flow_unit_{}'.format(i + 1), skip_connection_type='sum', stride=1, rate=middle_block_rate, depth_activation=False) x = _xception_block(x, [728, 1024, 1024], 'exit_flow_block1', skip_connection_type='conv', stride=1, rate=exit_block_rates[0], depth_activation=False) x = _xception_block(x, [1536, 1536, 2048], 'exit_flow_block2', skip_connection_type='none', stride=1, rate=exit_block_rates[1], depth_activation=True) else: OS = 8 first_block_filters = _make_divisible(32 * alpha, 8) x = Conv2D(first_block_filters, kernel_size=3, strides=(2, 2), padding='same', use_bias=False, name='Conv')(img_input) x = BatchNormalization( epsilon=1e-3, momentum=0.999, name='Conv_BN')(x) x = Activation(relu6, name='Conv_Relu6')(x) x = _inverted_res_block(x, filters=16, alpha=alpha, stride=1, expansion=1, block_id=0, skip_connection=False) x = _inverted_res_block(x, filters=24, alpha=alpha, stride=2, expansion=6, block_id=1, skip_connection=False) x = _inverted_res_block(x, filters=24, alpha=alpha, stride=1, expansion=6, block_id=2, skip_connection=True) x = _inverted_res_block(x, filters=32, alpha=alpha, stride=2, expansion=6, block_id=3, skip_connection=False) x = _inverted_res_block(x, filters=32, alpha=alpha, stride=1, expansion=6, block_id=4, skip_connection=True) x = _inverted_res_block(x, filters=32, alpha=alpha, stride=1, expansion=6, block_id=5, skip_connection=True) # stride in block 6 changed from 2 -> 1, so we need to use rate = 2 x = _inverted_res_block(x, filters=64, alpha=alpha, stride=1, # 1! expansion=6, block_id=6, skip_connection=False) x = _inverted_res_block(x, filters=64, alpha=alpha, stride=1, rate=2, expansion=6, block_id=7, skip_connection=True) x = _inverted_res_block(x, filters=64, alpha=alpha, stride=1, rate=2, expansion=6, block_id=8, skip_connection=True) x = _inverted_res_block(x, filters=64, alpha=alpha, stride=1, rate=2, expansion=6, block_id=9, skip_connection=True) x = _inverted_res_block(x, filters=96, alpha=alpha, stride=1, rate=2, expansion=6, block_id=10, skip_connection=False) x = _inverted_res_block(x, filters=96, alpha=alpha, stride=1, rate=2, expansion=6, block_id=11, skip_connection=True) x = _inverted_res_block(x, filters=96, alpha=alpha, stride=1, rate=2, expansion=6, block_id=12, skip_connection=True) x = _inverted_res_block(x, filters=160, alpha=alpha, stride=1, rate=2, # 1! expansion=6, block_id=13, skip_connection=False) x = _inverted_res_block(x, filters=160, alpha=alpha, stride=1, rate=4, expansion=6, block_id=14, skip_connection=True) x = _inverted_res_block(x, filters=160, alpha=alpha, stride=1, rate=4, expansion=6, block_id=15, skip_connection=True) x = _inverted_res_block(x, filters=320, alpha=alpha, stride=1, rate=4, expansion=6, block_id=16, skip_connection=False) # end of feature extractor # branching for Atrous Spatial Pyramid Pooling # Image Feature branch #out_shape = int(np.ceil(input_shape[0] / OS)) b4 = AveragePooling2D(pool_size=(int(np.ceil(input_shape[0] / OS)), int(np.ceil(input_shape[1] / OS))))(x) b4 = Conv2D(256, (1, 1), padding='same', use_bias=False, name='image_pooling')(b4) b4 = BatchNormalization(name='image_pooling_BN', epsilon=1e-5)(b4) b4 = Activation('relu')(b4) b4 = BilinearUpsampling((int(np.ceil(input_shape[0] / OS)), int(np.ceil(input_shape[1] / OS))))(b4) # simple 1x1 b0 = Conv2D(256, (1, 1), padding='same', use_bias=False, name='aspp0')(x) b0 = BatchNormalization(name='aspp0_BN', epsilon=1e-5)(b0) b0 = Activation('relu', name='aspp0_activation')(b0) # there are only 2 branches in mobilenetV2. not sure why if backbone == 'xception': # rate = 6 (12) b1 = SepConv_BN(x, 256, 'aspp1', rate=atrous_rates[0], depth_activation=True, epsilon=1e-5) # rate = 12 (24) b2 = SepConv_BN(x, 256, 'aspp2', rate=atrous_rates[1], depth_activation=True, epsilon=1e-5) # rate = 18 (36) b3 = SepConv_BN(x, 256, 'aspp3', rate=atrous_rates[2], depth_activation=True, epsilon=1e-5) # concatenate ASPP branches & project x = Concatenate()([b4, b0, b1, b2, b3]) else: x = Concatenate()([b4, b0]) x = Conv2D(256, (1, 1), padding='same', use_bias=False, name='concat_projection')(x) x = BatchNormalization(name='concat_projection_BN', epsilon=1e-5)(x) x = Activation('relu')(x) x = Dropout(0.1)(x) # DeepLab v.3+ decoder if backbone == 'xception': # Feature projection # x4 (x2) block x = BilinearUpsampling(output_size=(int(np.ceil(input_shape[0] / 4)), int(np.ceil(input_shape[1] / 4))))(x) dec_skip1 = Conv2D(48, (1, 1), padding='same', use_bias=False, name='feature_projection0')(skip1) dec_skip1 = BatchNormalization( name='feature_projection0_BN', epsilon=1e-5)(dec_skip1) dec_skip1 = Activation('relu')(dec_skip1) x = Concatenate()([x, dec_skip1]) x = SepConv_BN(x, 256, 'decoder_conv0', depth_activation=True, epsilon=1e-5) x = SepConv_BN(x, 256, 'decoder_conv1', depth_activation=True, epsilon=1e-5) # you can use it with arbitary number of classes if classes == 21: last_layer_name = 'logits_semantic' else: last_layer_name = 'custom_logits_semantic' x = Conv2D(classes, (1, 1), padding='same', name=last_layer_name)(x) x = BilinearUpsampling(output_size=(input_shape[0], input_shape[1]))(x) # Ensure that the model takes into account # any potential predecessors of `input_tensor`. if input_tensor is not None: inputs = get_source_inputs(input_tensor) else: inputs = img_input model = Model(inputs, x, name='deeplabv3plus') # load weights if weights == 'pascal_voc': if backbone == 'xception': weights_path = get_file('deeplabv3_xception_tf_dim_ordering_tf_kernels.h5', WEIGHTS_PATH_X, cache_subdir='models') else: weights_path = get_file('deeplabv3_mobilenetv2_tf_dim_ordering_tf_kernels.h5', WEIGHTS_PATH_MOBILE, cache_subdir='models') model.load_weights(weights_path, by_name=True) return model def preprocess_input(x): """Preprocesses a numpy array encoding a batch of images. # Arguments x: a 4D numpy array consists of RGB values within [0, 255]. # Returns Input array scaled to [-1.,1.] """ return imagenet_utils.preprocess_input(x, mode='tf')
the-stack_0_15025
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- import uuid from msrest.pipeline import ClientRawResponse from msrestazure.azure_exceptions import CloudError from .. import models class CertificateRegistrationProviderOperations(object): """CertificateRegistrationProviderOperations operations. You should not instantiate directly this class, but create a Client instance that will create it for you and attach it as attribute. :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. :ivar api_version: API Version. Constant value: "2015-08-01". """ models = models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self.api_version = "2015-08-01" self.config = config def list_operations( self, custom_headers=None, raw=False, **operation_config): """Implements Csm operations Api to exposes the list of available Csm Apis under the resource provider. Implements Csm operations Api to exposes the list of available Csm Apis under the resource provider. :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: An iterator like instance of CsmOperationDescription :rtype: ~azure.mgmt.web.models.CsmOperationDescriptionPaged[~azure.mgmt.web.models.CsmOperationDescription] :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ def prepare_request(next_link=None): if not next_link: # Construct URL url = self.list_operations.metadata['url'] # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') else: url = next_link query_parameters = {} # Construct headers header_parameters = {} header_parameters['Accept'] = 'application/json' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.get(url, query_parameters, header_parameters) return request def internal_paging(next_link=None): request = prepare_request(next_link) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp return response # Deserialize response header_dict = None if raw: header_dict = {} deserialized = models.CsmOperationDescriptionPaged(internal_paging, self._deserialize.dependencies, header_dict) return deserialized list_operations.metadata = {'url': '/providers/Microsoft.CertificateRegistration/operations'}
the-stack_0_15026
''' Copyright 2016 Tom Kenter Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' import theano import theano.tensor as T import lasagne import numpy as np import sys import os import re import _pickle as cPickle #import cPickle def makeOutputFileName(oArgs, iNrOfEmbeddings, iEmbeddingSize): sShareWeights = "sharedWeights" if oArgs.bShareWeights else "noSharedWeights" sReg = "reg" if oArgs.bRegularize else "noReg" sLower = "noLc" if oArgs.bDontLowercase else "lc" sPreInit = "preInit" if oArgs.sWord2VecFile else "noPreInit" sGradientClippingBound = "noGradClip" \ if oArgs.fGradientClippingBound is None \ else ("gradClip_%f" % oArgs.fGradientClippingBound).replace(".", "_") sOutputFile = "%s_%s_%s_lr_%s_%s_epochs_%d_batch_%d_neg_%d_voc_%dx%d_%s_%s_%s.pickle" % \ (oArgs.sLastLayer, sShareWeights, oArgs.sUpdate, re.sub("_?0*$", '', ("%f" % oArgs.fLearningRate).replace(".", "_")), sGradientClippingBound, oArgs.iEpochs, oArgs.iBatchSize, oArgs.iNeg, iNrOfEmbeddings - 1, # -1, because of the 0-embedding iEmbeddingSize, sReg, sLower, sPreInit) return os.path.join(oArgs.OUTPUT_DIR, sOutputFile) def storeWordEmbeddings(sOutputFile, npaWordEmbeddings, oVocab, oArgs): if oArgs.bVerbose: print("Storing word embeddings to %s" % sOutputFile) fhOut = open(sOutputFile, mode='wb') dSCBOW = {"oArgs": oArgs, "npaWordEmbeddings": npaWordEmbeddings, "oVocab": oVocab } cPickle.dump(dSCBOW, fhOut) fhOut.close() class softMaxLayer_matrix(lasagne.layers.MergeLayer): ''' First layer gives a vector (or a batch of vectors, really) Second layer gives a matrix (well, a batch of matrices) We return a vector of numbers, just as many as there are cols in the second layer matrix (NOTE that the second input layer is a transposed version of the layer before it) ''' def __init__(self, incomings, iEmbeddingSize, **kwargs): super(softMaxLayer, self).__init__(incomings, **kwargs) self.iEmbeddingSize = iEmbeddingSize def get_output_shape_for(self, input_shapes): # input_shapes come like this: # [(batch_size, vectors_size), (batch_size, rows, cols)] return (input_shapes[0][0], input_shapes[1][1]) def get_output_for(self, inputs, **kwargs): exps = T.exp((inputs[0].reshape((-1, self.iEmbeddingSize, 1)) * \ inputs[1]).sum(axis=1)) return exps / exps.sum(axis=1).dimshuffle((0, 'x')) class softMaxLayer(lasagne.layers.Layer): def __init__(self, incoming, **kwargs): super(softMaxLayer, self).__init__(incoming, **kwargs) def get_output_shape_for(self, input_shape): ''' The input is just a vector of numbers. The output is also a vector, same size as the input. ''' return input_shape def get_output_for(self, input, **kwargs): ''' Take the exp() of all inputs, and divide by the total. ''' exps = T.exp(input) return exps / exps.sum(axis=1).dimshuffle((0, 'x')) class sigmoidLayer(lasagne.layers.MergeLayer): ''' First layer gives a vector (or a batch of vectors, really) Second layer gives a matrix (well, a batch of matrices) We return a vector of numbers, just as many as there are cols in the second layer matrix (NOTE that the second input layer is a transposed version of the layer before it) ''' def __init__(self, incomings, iEmbeddingSize, **kwargs): super(sigmoidLayer, self).__init__(incomings, **kwargs) self.iEmbeddingSize = iEmbeddingSize def get_output_shape_for(self, input_shapes): # input_shapes come like this: # [(batch_size, vectors_size), (batch_size, rows, cols)] return (input_shapes[0][0], input_shapes[1][1]) def get_output_for(self, inputs, **kwargs): ''' We want a dot product of every row in inputs[0] (a vector) with every row in inputs[1] (a matrix). We do this 'by hand': we do a element-wise multiplication of every vector in inputs[0] with every matrix in inputs[1], and sum the result. ''' dots = (inputs[0].reshape((-1, self.iEmbeddingSize, 1)) * \ inputs[1]).sum(axis=1) # Take the sigmoid return 1.0 / (1.0 + T.exp(dots)) class cosineLayer(lasagne.layers.MergeLayer): ''' First layer gives a vector (or a batch of vectors, really) Second layer gives a matrix (well, a batch of matrices) We return a vector of numbers, just as many as there are cols in the second layer matrix (NOTE that the second input layer is a transposed version of the layer before it) ''' def __init__(self, incomings, iEmbeddingSize, **kwargs): super(cosineLayer, self).__init__(incomings, **kwargs) self.iEmbeddingSize = iEmbeddingSize def get_output_shape_for(self, input_shapes): # input_shapes come like this: # [(batch_size, vectors_size), (batch_size, rows, cols)] return (input_shapes[0][0], input_shapes[1][1]) def get_output_for(self, inputs, **kwargs): ''' We want a dot product of every row in inputs[0] (a vector) with every row in inputs[1] (a matrix). We do this 'by hand': we do a element-wise multiplication of every vector in inputs[0] with every matrix in inputs[1], and sum the result. ''' dots = (inputs[0].reshape((-1, self.iEmbeddingSize, 1)) * \ inputs[1]).sum(axis=1) # Make sure the braodcasting is right norms_1 = T.sqrt(T.square(inputs[0]).sum(axis=1)).dimshuffle(0, 'x') # NOTE that the embeddings are transposed in the previous layer norms_2 = T.sqrt(T.square(inputs[1]).sum(axis=1)) norms = norms_1 * norms_2 return dots / norms class averageLayer(lasagne.layers.Layer): def __init__(self, incoming, fGradientClippingBound=None, **kwargs): super(averageLayer, self).__init__(incoming, **kwargs) self.fGradientClippingBound = fGradientClippingBound def get_output_shape_for(self, input_shape): ''' The input is a batch of word vectors. The output is a single vector, same size as the input word embeddings In other words, since we are averaging, we loose the penultimate dimension ''' return (input_shape[0], input_shape[2]) def get_output_for(self, input, **kwargs): ''' The input is a batch of word vectors. The output the sum of the word embeddings divided by the number of non-null word embeddings in the input. What we do with the normalizers is, we go from [[[.01, .02, .03], # Word embedding sentence 1, word 1 [.02, .3, .01], # Word embedding sentence 1, word 2 [.0, .0, .0]], [[.05, .06, .063], # Word embedding sentence 2, word 1 [.034,.45, .05], [.01, .001, .03]], ... ] first to (so that is the inner non-zero sum(axis=2) part): [[3, 3, 0], # Number of non-zero components per vector in sentence 1 [3, 3, 3], # Number of non-zero components per vector in sentence 1 ... ] and finally to (so that is the outer non-zero sum(axis=1) part): [2, 3, ...] and we reshape that to: [[2], # Number of words in sentence 1 [3], # Number of words in sentence 2 ...] ''' # Sums of word embeddings (so the zero embeddings don't matter here) sums = input.sum(axis=1) # Can we do this cheaper (as in, more efficient)? # NOTE that we explicitly cast the output of the last sum() to floatX # as otherwise Theano will cast the result of 'sums / normalizers' to # float64 normalisers = T.neq((T.neq(input, 0.0)).sum(axis=2, dtype='int32'), 0.0).sum(axis=1, dtype='floatX').reshape((-1, 1)) averages = sums / normalisers if self.fGradientClippingBound is not None: averages = theano.gradient.grad_clip(averages, - self.fGradientClippingBound, self.fGradientClippingBound) return averages class averageLayer_matrix(lasagne.layers.Layer): def __init__(self, incoming, iNrOfSentences=None, fGradientClippingBound=None, **kwargs): super(averageLayer_matrix, self).__init__(incoming, **kwargs) self.iNrOfSentences = iNrOfSentences self.fGradientClippingBound = fGradientClippingBound def get_output_shape_for(self, input_shape): ''' The input is a batch of matrices of word vectors. The output is a batch of vectors, one for each matrix, the same size as the input word embeddings In other words, since we are averaging, we loose the penultimate dimension ''' return (input_shape[0], input_shape[1], input_shape[3]) def get_output_for(self, input, **kwargs): ''' The input is a batch of matrices of word vectors. The output the sum of the word embeddings divided by the number of non-zero word embeddings in the input. The idea with the normalisers is similar as in the normal averageLayer ''' # Sums of word embeddings (so the zero embeddings don't matter here) sums = input.sum(axis=2) # Can we do this cheaper (as in, more efficient)? # NOTE that we explicitly cast the output of the last sum() to floatX # as otherwise Theano will cast the result of 'sums / normalizers' to # float64 normalisers = T.neq((T.neq(input, 0.0)).sum(axis=3, dtype='int32'), 0.0).sum(axis=2, dtype='floatX').reshape((-1, self.iNrOfSentences, 1)) averages = sums / normalisers if self.fGradientClippingBound is not None: averages = theano.gradient.grad_clip(averages, - self.fGradientClippingBound, self.fGradientClippingBound) return averages class gateLayer(lasagne.layers.MergeLayer): def __init__(self, incomings, **kwargs): super(gateLayer, self).__init__(incomings, **kwargs) def get_output_shape_for(self, input_shapes): return input_shapes[1] def get_output_for(self, inputs, **kwargs): ''' First layer is a batch of embedding indices: [[11,21,43,0,0], [234,543,0,0,0,], ... ] Second layer are the embeddings: [ [[.02, .01...], [.004, .005, ...], ..., .0 .0 .0 ... , .0 .0 .0 ...], [[...], .... ] ] ''' return \ T.where(T.eq(inputs[0],0), np.float32(0.0), np.float32(1.0)).dimshuffle((0,1,'x')) * inputs[1] class gateLayer_matrix(lasagne.layers.MergeLayer): def __init__(self, incomings, **kwargs): super(gateLayer_matrix, self).__init__(incomings, **kwargs) def get_output_shape_for(self, input_shapes): return input_shapes[1] def get_output_for(self, inputs, **kwargs): ''' First layer is a batch of matrices of embedding indices: Second layer are the corresponding embeddings: ''' return \ T.where(T.eq(inputs[0],0), np.float32(0.0), np.float32(1.0)).dimshuffle((0,1,2,'x')) * inputs[1] class flipLayer(lasagne.layers.Layer): ''' Flip the word embeddings of the negative examples. So the word embeddings <we> of the negative examples will be become <-we> ''' def __init__(self, incoming, iPos=None, iNrOfSentences=None, **kwargs): super(flipLayer, self).__init__(incoming, **kwargs) # Set all the values to -1 npaFlipper = np.ones(iNrOfSentences, dtype=np.int8) * -1 # Except for the first one/two (the positive examples) npaFlipper[0:iPos] = 1 # Set the broadcasting right self.flipper = theano.shared(npaFlipper).dimshuffle('x', 0, 'x', 'x') def get_output_shape_for(self, input_shape): return input_shape def get_output_for(self, input, **kwargs): return input * self.flipper def preInit(tWeightShape, oW2v, oVocab): assert tWeightShape == (oW2v.syn0.shape[0] + 1, oW2v.syn0.shape[1]) # Copy the embeddings W = np.empty(tWeightShape, dtype=np.float32) # NOTE that we start at 1 here (rather than 0) W[1:tWeightShape[0],:] = oW2v.syn0 # Make a corresponding vocabulary # We start at index 1 (0 is a dummy 0.0 embedding) for i in range(oW2v.syn0.shape[0]): sWord = oW2v.index2word[i] iVocabIndex = i+1 oVocab.dVocab[sWord] = iVocabIndex oVocab.dIndex2word[iVocabIndex] = sWord return W def nextBatch(oSentenceIterator, funcRandomIterator, oVocab=None, npaBatch_1=None, npaBatch_2=None, iMaxNrOfTokens=None, iBatchSize=None, iPos=None, iNeg=None): ''' This function gives back a batch to train/test on. It needs: - a sentence iterator object that yields a triple of sentences: (sentence n, sentence n-1, sentence n+1) which are next to one another in the corpus. These are considered positive examples. - a sentence iterator that yields random sentences (so single sentences) from the corpus. These are used as negative examples. - the vocabulary object is usually empty npaBatch_1 and npaBatch_2 should be pre-allocated arrays of size: npaBatch_1: (iBatchSize, iMaxNrOfTokens) npaBatch_2: (iBatchSize, iNeg + iPos, iMaxNrOfTokens) ''' npaBatch_1[:] = 0.0 # Set the pre-allocated arrays to 0 again npaBatch_2[:] = 0.0 iSentencePairsSampled = 0 # NOTE that because of how we do things, the last batch isn't included if # it's smaller than the batch size for tSentenceTuple in oSentenceIterator: # NOTE in the toronto case, the sentence iterator already yields tokens isTorontoFormat= oSentenceIterator.sName == "torontoSentenceIterator" or \ oSentenceIterator.sName =="week" aWeIndices1 = \ [oVocab[sToken] for sToken in tSentenceTuple[0] \ if oVocab[sToken] is not None] \ if isTorontoFormat else \ [oVocab[sToken] for sToken in tSentenceTuple[0].split(' ') \ if oVocab[sToken] is not None] aWeIndices2 = \ [oVocab[sToken] for sToken in tSentenceTuple[1] \ if oVocab[sToken] is not None] \ if isTorontoFormat else \ [oVocab[sToken] for sToken in tSentenceTuple[1].split(' ') \ if oVocab[sToken] is not None] aWeIndices3 = None if iPos == 2: aWeIndices3 = \ [oVocab[sToken] for sToken in tSentenceTuple[2] \ if oVocab[sToken] is not None] \ if isTorontoFormat else \ [oVocab[sToken] for sToken in tSentenceTuple[2].split(' ') \ if oVocab[sToken] is not None] # We only deal with triples all of which members contain at least one known # word if (len(aWeIndices1) == 0) or (len(aWeIndices2) == 0) or \ ((iPos == 2) and (len(aWeIndices3) == 0)): continue npaBatch_1[iSentencePairsSampled][0:min(len(aWeIndices1),iMaxNrOfTokens)]=\ aWeIndices1[:iMaxNrOfTokens] npaBatch_2[iSentencePairsSampled][0][0:min(len(aWeIndices2),iMaxNrOfTokens)] = aWeIndices2[:iMaxNrOfTokens] if iPos == 2: npaBatch_2[iSentencePairsSampled][1][0:min(len(aWeIndices3),iMaxNrOfTokens)] = aWeIndices3[:iMaxNrOfTokens] iRandomSamples = 0 while 1: # We break from inside the loop if iRandomSamples == iNeg: # So if iNeg == 0, we break right away break aWeIndicesRandom = [] while len(aWeIndicesRandom) == 0: # Get a non-empty random sentence # NOTE that randomSentence is a list of tokens in the Toronto case randomSentence = next(funcRandomIterator) aWeIndicesRandom = \ [oVocab[sToken] for sToken in randomSentence \ if oVocab[sToken] is not None] \ if isTorontoFormat \ else [oVocab[sToken] for sToken in randomSentence.split(' ') \ if oVocab[sToken] is not None] iRandomSamples += 1 npaBatch_2[iSentencePairsSampled][(iPos-1)+iRandomSamples][0:min(len(aWeIndicesRandom),iMaxNrOfTokens)] = aWeIndicesRandom[:iMaxNrOfTokens] iSentencePairsSampled += 1 if iSentencePairsSampled == iBatchSize: # Just yield something (npaBatch_1, npaBatch_2 are filled already) yield 1 # Reset iSentencePairsSampled = 0 def build_scbow(oArgs, iPos=None, oW2v=None, oVocab=None, tWeightShape=None): # Input variable for a batch of sentences (so: sentence n) input_var_1 = T.matrix('input_var_1', dtype='uint32') # Input variable for a batch of positive and negative examples # (so sentence n-1, sentence n+1, neg1, neg2, ...) input_var_2 = T.tensor3('input_var_2', dtype='uint32') W_init_1, W_init_2 = None, None # First embedding input layer llIn_1 = lasagne.layers.InputLayer(shape=(None, oArgs.iMaxNrOfTokens), input_var=input_var_1, name='llIn_1') # Second embedding input layer llIn_2 = lasagne.layers.InputLayer(shape=(None, iPos + oArgs.iNeg, oArgs.iMaxNrOfTokens), input_var=input_var_2, name='llIn_2') W_init_1 = None if oW2v is None: W_init_1 = lasagne.init.Normal().sample(tWeightShape) else: ## Here is the pre-initialization W_init_1 = preInit(tWeightShape, oW2v, oVocab) W_init_1[0,:] = 0.0 # First embedding layer llEmbeddings_1 = lasagne.layers.EmbeddingLayer( llIn_1, input_size=tWeightShape[0], output_size=tWeightShape[1], W=W_init_1, name='llEmbeddings_1') llGate_1 = gateLayer([llIn_1, llEmbeddings_1], name='llGate_1') llAverage_1 = averageLayer(llGate_1, fGradientClippingBound=oArgs.fGradientClippingBound, name='llAverage_1') W_init_2 = None if not oArgs.bShareWeights: if oW2v is None: W_init_2 = lasagne.init.Normal().sample(tWeightShape) else: # We are not sharing, but we are pre-initializing preInit(W_init_2, oW2v, oVocab) W_init_2[0,:] = 0.0 # Second embedding layer, the weights tied with the first embedding layer llEmbeddings_2 = lasagne.layers.EmbeddingLayer( llIn_2, input_size=tWeightShape[0], output_size=tWeightShape[1], W=llEmbeddings_1.W if oArgs.bShareWeights else W_init_2, name='llEmbeddings_2') llGate_2 = gateLayer_matrix([llIn_2, llEmbeddings_2], name='llGate_2') llAverage_2 = None if oArgs.sLastLayer == 'cosine': llAverage_2 = \ averageLayer_matrix(llGate_2, iNrOfSentences=iPos + oArgs.iNeg, fGradientClippingBound=\ oArgs.fGradientClippingBound, name="llAverage_2") else: llFlip_2 = flipLayer(llGate_2, iPos=iPos, iNrOfSentences=iPos + oArgs.iNeg, name='llFlip_2') llAverage_2 = \ averageLayer_matrix(llFlip_2, iNrOfSentences=iPos + oArgs.iNeg, fGradientClippingBound=\ oArgs.fGradientClippingBound, name="llAverage_2") llTranspose_2 = lasagne.layers.DimshuffleLayer(llAverage_2, (0,2,1), name='llTranspose_2') llFinalLayer = None if oArgs.sLastLayer == 'cosine': llCosine = cosineLayer([llAverage_1, llTranspose_2], tWeightShape[1], name='llCosine') llFinalLayer = softMaxLayer(llCosine, name='llSoftMax') else: llFinalLayer = sigmoidLayer([llAverage_1, llTranspose_2], tWeightShape[1], name='llSigmoid') ### That was all the network stuff ### Now let's build the functions # Target var if needed target_var = T.fmatrix('targets') if oArgs.sLastLayer == "cosine" else None if oArgs.bVerbose: print("Building prediction functions") # Create a loss expression for training, i.e., a scalar objective we want # to minimize (for our multi-class problem, it is the cross-entropy loss): prediction = lasagne.layers.get_output(llFinalLayer) if oArgs.bVerbose: print("Building loss functions") # For checking/debugging forward_pass_fn = theano.function([input_var_1, input_var_2], prediction) loss = None if oArgs.sLastLayer == 'cosine': loss = lasagne.objectives.categorical_crossentropy(prediction, target_var) else: # sigmoid loss = - T.log(prediction).sum(axis=1) if oArgs.bRegularize: l2_penalty = regularize_layer_params(llFinalLayer, l2) loss = loss + l2_penalty loss = loss.mean() if oArgs.bVerbose: print("Building update functions") params = lasagne.layers.get_all_params(llFinalLayer, trainable=True) fStartLearningRate = np.float32(oArgs.fLearningRate) thsLearningRate = None updates = None if oArgs.sUpdate == 'nesterov': updates = lasagne.updates.nesterov_momentum( loss, params, learning_rate=oArgs.fLearningRate, momentum=oArgs.fMomentum) elif oArgs.sUpdate == 'adamax': updates = lasagne.updates.adamax(loss, params, learning_rate=oArgs.fLearningRate) elif oArgs.sUpdate == 'adadelta': updates = lasagne.updates.adadelta(loss, params, learning_rate=oArgs.fLearningRate) elif oArgs.sUpdate == "sgd": # This doesn't work with INEX for now... thsLearningRate = theano.shared(fStartLearningRate) updates = lasagne.updates.sgd(loss, params, learning_rate=thsLearningRate) if oArgs.bVerbose: print("Building training function") # Compile a function performing a training step on a mini-batch (by giving # the updates dictionary) and returning the corresponding training loss: train_fn = None if oArgs.sLastLayer == "cosine": train_fn = theano.function([input_var_1, input_var_2, target_var], loss, updates=updates) else: train_fn = theano.function([input_var_1, input_var_2], loss, updates=updates) return llFinalLayer, forward_pass_fn, thsLearningRate, train_fn def updateLearningRate(thsLearningRate, iNrOfBatchesSoFar, fTotalNrOfBatches, oArgs): fNewLearningRate = \ max(oArgs.fLearningRate * 0.0001, oArgs.fLearningRate * (1.0 - (iNrOfBatchesSoFar / fTotalNrOfBatches)) ) thsLearningRate.set_value(fNewLearningRate) if oArgs.bVeryVerbose: print("Batch %d of %.0f" % (iNrOfBatchesSoFar, fTotalNrOfBatches)) print("Learning rate: %f" % thsLearningRate.get_value()) def parseArguments(): import argparse oArgsParser = argparse.ArgumentParser(description='Siamese CBOW') oArgsParser.add_argument('DATA', help="File (in PPDB case) or directory (in Toronto Book Corpus and INEX case) to read the data from. NOTE that the program runs in aparticular input mode (INEX/PPDB/TORONTO) which is deduced from the directory/file name)") oArgsParser.add_argument('OUTPUT_DIR', help="A file to store the final and possibly intermediate word embeddings to (in cPickle format)") oArgsParser.add_argument('-batch_size', metavar="INT", dest="iBatchSize", help="Batch size. Default: 1", type=int, action="store", default=1) oArgsParser.add_argument('-dont_lowercase', dest='bDontLowercase', help="By default, all input text is lowercased. Use this option to prevent this.", action='store_true') oArgsParser.add_argument('-dry_run', dest="bDryRun", help="Build the network, print some statistics (if -v is on) and quit before training starts.", action="store_true") oArgsParser.add_argument('-embedding_size', metavar="INT", dest="iEmbeddingSize", help="Dimensionality of the word embeddings. Default: 300", type=int, action="store", default=300) oArgsParser.add_argument('-epochs', metavar="INT", dest="iEpochs", help="Maximum number of epochs for training. Default: 10", type=int, action="store", default=10) oArgsParser.add_argument('-gradient_clipping_bound', metavar="FLOAT", dest="fGradientClippingBound", help="Gradient clipping bound (so gradients will be clipped to [-FLOAT, +FLOAT]).", type=float, action="store") oArgsParser.add_argument('-last_layer', metavar="LAYER", dest="sLastLayer", help="Last layer is 'cosine' or 'sigmoid'. NOTE that this choice also determines the loss function (binary cross entropy or negative sampling loss, respectively). Default: cosine", action="store", default='cosine', choices=['cosine', 'sigmoid']) oArgsParser.add_argument('-learning_rate', metavar="FLOAT", dest="fLearningRate", help="Learning rate. Default: 1.0", type=float, action="store", default=1.0) oArgsParser.add_argument('-max_nr_of_tokens', metavar="INT", dest="iMaxNrOfTokens", help="Maximum number of tokens considered per sentence. Default: 50", type=int, action="store", default=50) oArgsParser.add_argument('-max_nr_of_vocab_words', metavar="INT", dest="iMaxNrOfVocabWords", help="Maximum number of words considered. If this is not specified, all words are considered", type=int, action="store") oArgsParser.add_argument('-momentum', metavar="FLOAT", dest="fMomentum", help="Momentum, only applies when 'nesterov' is used as update method (see -update). Default: 0.0", type=float, action="store", default=0.0) oArgsParser.add_argument('-neg', metavar="INT", dest="iNeg", help="Number of negative examples. Default: 1", type=int, action="store", default=1) oArgsParser.add_argument('-regularize', dest="bRegularize", help="Use l2 normalization on the parameters of the network", action="store_true") oArgsParser.add_argument('-share_weights', dest="bShareWeights", help="Turn this option on (a good idea in general) for the embedding weights of the input sentences and the other sentences to be shared.", action="store_true") oArgsParser.add_argument('-start_storing_at', metavar="INT", dest="iStartStoringAt", help="Start storing embeddings at epoch number INT. Default: 0. I.e. start storing right away (if -store_at_epoch is on, that is)", action="store", type=int, default=0) oArgsParser.add_argument('-store_at_batch', metavar="INT", dest="iStoreAtBatch", help="Store embeddings every INT batches.", action="store", type=int, default=None) oArgsParser.add_argument('-store_at_epoch', dest="iStoreAtEpoch", metavar="INT", help="Store embeddings every INT epochs (so 1 for storing at the end of every epoch, 10 for for storing every 10 epochs, etc.).", action="store", type=int) oArgsParser.add_argument('-update', metavar="UPDATE_ALGORITHM", dest="sUpdate", help="Update algorithm. Options are 'adadelta', 'adamax', 'nesterov' (which uses momentum) and 'sgd'. Default: 'adadelta'", action="store", default='adadelta', choices=['adadelta', 'adamax', 'sgd', 'nesterov']) oArgsParser.add_argument("-v", dest="bVerbose", action="store_true", help="Be verbose") oArgsParser.add_argument('-vocab', dest="sVocabFile", metavar="FILE", help="A vocabulary file is simply a file, SORTED BY FREQUENCY of frequence<SPACE>word lines. You can take the top n of these (which is why it should be sorted by frequency). See -max_nr_of_vocab_words.", action="store") oArgsParser.add_argument("-vv", dest="bVeryVerbose", action="store_true", help="Be very verbose") oArgsParser.add_argument('-w2v', dest="sWord2VecFile", metavar="FILE", help="A word2vec model can be used to initialize the weights for words in the vocabulary file from (missing words just get a random embedding). If the weights are not initialized this way, they will be trained from scratch.", action="store") oArgsParser.add_argument('-wk',dest="week",action='store') oArgs = oArgsParser.parse_args() if (oArgs.sVocabFile is None) and (oArgs.sWord2VecFile is None): print >>sys.stderr, "[ERROR] Please specify either a word2vec file or a vocab file" exit(1) if oArgs.bVeryVerbose: # If we are very verbose, we are also just verbose oArgs.bVerbose=True return oArgs if __name__ == "__main__": oArgs = parseArguments() iPos=2 # Prepare Theano variables for inputs and targets # Input variable for a batch of left sentences input_var_1 = T.matrix('input_var_1', dtype='int32') # Input variable for a batch of right sentences, plus negative examples input_var_2 = T.tensor3('input_var_2', dtype='int32') target_var = T.fmatrix('targets') if oArgs.sLastLayer == "cosine" else None npaWordEmbeddings = np.array([[.1, .2, .3, .4], [.2, .3, .4, 5], [-.7, -.4, -.5, -.6], [-.8, -.9, -.45, -.56], [.2131, .213, .434, .652]] ).astype(np.float32) dModel = None if oArgs.sStoredModel is not None: import cPickle fhFile = open(oArgs.sStoredModel, mode='rb') dModel = cPickle.load(fhFile) fhFile.close() npaWordEmbeddings = dModel['npaWordEmbeddings'] npaTargets = np.zeros((oArgs.iBatchSize, oArgs.iNeg + iPos), dtype=np.float32) if iPos == 2: npaTargets[:,[0,1]] = .5 else: npaTargets[:,0] = 1.0 iNrOfEmbeddings, iEmbeddingSize = npaWordEmbeddings.shape npaInput_1 = np.array([[0,1], [0,1], [1,0]]).astype('int32') npaInput_2 = np.array([[2,1], [3,2], [1,0]]).astype('int32') npaInput_3 = np.array([[2,3], [1,2], [1,4]]).astype('int32') iMaxNrOfTokens = 2 network = build_scbow(input_var_1, input_var_2, iBatchSize=oArgs.iBatchSize, iPos=iPos, iNeg=oArgs.iNeg, iMaxNrOfTokens=iMaxNrOfTokens, tWeightShape=npaWordEmbeddings.shape, npaWordEmbeddings=npaWordEmbeddings, sLastLayer=oArgs.sLastLayer, bVerbose=oArgs.bVerbose) prediction = lasagne.layers.get_output(network) forward_pass_fn = theano.function([input_var_1, input_var_2], prediction) # We want to maximize the sum of the log probabilities, so we want to # minimize this loss objective # NOTE that we expect the word embeddings of the negative examples to be # reversed (as in: -1 * word embedding) npaLossBoost = np.ones(oArgs.iNeg + iPos, dtype=np.float32) #npaLossBoost[0:iPos] = oArgs.fLossBoost loss = None if oArgs.sLastLayer == 'cosine': loss = lasagne.objectives.categorical_crossentropy(prediction, target_var) else: # sigmoid loss = - (T.log(prediction) * npaLossBoost).sum(axis=1) loss_fn = theano.function([prediction, target_var], loss) # Pre-allocate memory npaBatch_1 = np.zeros((oArgs.iBatchSize, iMaxNrOfTokens), dtype=np.int8) npaBatch_2 = np.zeros((oArgs.iBatchSize, oArgs.iNeg + iPos, iMaxNrOfTokens), dtype=np.int8) # Check that the network is producing anything for i in moetNog(npaInput_1, npaInput_2, npaInput_3, npaBatch_1, npaBatch_2, iNeg=oArgs.iNeg, iBatchSize=oArgs.iBatchSize, bShuffle=False): # Check the batch itself print("Batch (1):\n%s\n (2)\n%s" % (npaBatch_1, npaBatch_2)) npaPredictions = forward_pass_fn(npaBatch_1, npaBatch_2) print("Predictions (%s):\n%s" % (npaPredictions[0].dtype, npaPredictions)) L = loss_fn(npaPredictions, npaTargets) print("Loss: %s" % L)
the-stack_0_15028
# -*- coding: utf-8 -*- """ <application name> Copyright ©<year> <author> Licensed under the terms of the <LICENSE>. See LICENSE for details. @author: <author> """ # Setup PyQt's v2 APIs import sip API_NAMES = ["QDate", "QDateTime", "QString", "QTextStream", "QTime", "QUrl", "QVariant"] API_VERSION = 2 for name in API_NAMES: sip.setapi(name, API_VERSION)
the-stack_0_15032
import datetime import pytz import calendar import os cdt = datetime.datetime.now().date() str_cdt=cdt.strftime("%d/%B") print(str_cdt) #заношу в виде строки date_to_str=str(cdt) #меняю в строке - на _ clear_str=date_to_str.replace('-',' ') #разбиваю на отдельные слова slice_str=clear_str.split() #cоздаю новую дату +2 дня к ней creat_date=datetime.datetime(int(slice_str[0]),int(slice_str[1]),int(slice_str[2])+2) print("созданная дата 17.00 : ",creat_date) # через dimedelta td=datetime.timedelta(minutes=3) print("отнимаем от созаднной даты 3 минуты(td) : ",creat_date-td) #из строки делаем время strptime=datetime.datetime.strptime('1803191327','%d%m%y%H%M') print("из строки далем время",strptime) # import sys # print("sys.path : \n",sys.path) # print("\n fp_date.__file__ : \n",pytz.__file__) # print(fp_date.count_lines()) # print(fp_date.last_word_on_line(6666)) # print(fp_date.def_counter(fp_date.get_ip(1))) print('_'*30) format_date_on_log='17/May/2015:10:05:00' #cоздаю дату из строки введенных данных cdt=datetime.datetime(2020,5,5) print('созданная дата из цфр ',cdt) format_calculate_date='0:00:16.603720' print("format_date_on_log=",format_date_on_log) time_obj=datetime.datetime.strptime(format_date_on_log,'%d/%B/%Y:%H:%M:%S') print("time_obj",time_obj) tz_minsk = pytz.timezone("Europe/Minsk") tz_utc = pytz.timezone('UTC') ct_minsk=datetime.datetime.now() d_minsk=tz_minsk.localize(ct_minsk) utc_minsk=d_minsk.astimezone(tz_utc) print('_'*30) print(utc_minsk) print(d_minsk) #текущее время в UTC # ct_utc=datetime.datetime.utcnow() #текущенее время в +3 # ct_minsk=datetime.datetime.now() # # d_minsk=tz_minsk.localize(ct_minsk) # d_utc=tz_utc.localize(ct_utc) # d_minsk_utc=d_utc.astimezone(tz_utc) # print("Вывод d_minsk в формете +3 Europe/Minsk :",d_minsk) # print("Вывод d_minsk в формете UTC :",d_utc) # print("Вывод d_minsk в формете d_minsk_utc :",d_minsk_utc) os.system('cls' if os.name=='nt' else 'clear')
the-stack_0_15033
# encoding: utf-8 # # # This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this file, # You can obtain one at http://mozilla.org/MPL/2.0/. # # Author: Kyle Lahnakoski ([email protected]) # from __future__ import absolute_import, division, unicode_literals import json import math import time from datetime import date, datetime, timedelta from decimal import Decimal from json.encoder import encode_basestring from math import floor from mo_dots import Data, FlatList, Null, NullType, SLOT, is_data, is_list from mo_future import PYPY, binary_type, is_binary, is_text, long, sort_using_key, text, utf8_json_encoder, xrange from mo_json import ESCAPE_DCT, float2json, scrub from mo_logs import Except from mo_logs.strings import quote from mo_times import Timer from mo_times.dates import Date from mo_times.durations import Duration json_decoder = json.JSONDecoder().decode _get = object.__getattribute__ _ = Except # THIS FILE EXISTS TO SERVE AS A FAST REPLACEMENT FOR JSON ENCODING # THE DEFAULT JSON ENCODERS CAN NOT HANDLE A DIVERSITY OF TYPES *AND* BE FAST # # 1) WHEN USING cPython, WE HAVE NO COMPILER OPTIMIZATIONS: THE BEST STRATEGY IS TO # CONVERT THE MEMORY STRUCTURE TO STANDARD TYPES AND SEND TO THE INSANELY FAST # DEFAULT JSON ENCODER # 2) WHEN USING PYPY, WE USE CLEAR-AND-SIMPLE PROGRAMMING SO THE OPTIMIZER CAN DO # ITS JOB. ALONG WITH THE UnicodeBuilder WE GET NEAR C SPEEDS COMMA = u"," QUOTE = u'"' COLON = u":" QUOTE_COLON = QUOTE + COLON COMMA_QUOTE = COMMA + QUOTE PRETTY_COMMA = u", " PRETTY_COLON = u": " if PYPY: # UnicodeBuilder IS ABOUT 2x FASTER THAN list() from __pypy__.builders import UnicodeBuilder else: class UnicodeBuilder(list): def __init__(self, length=None): list.__init__(self) def build(self): return u"".join(self) append = UnicodeBuilder.append _dealing_with_problem = False def pypy_json_encode(value, pretty=False): """ pypy DOES NOT OPTIMIZE GENERATOR CODE WELL """ global _dealing_with_problem if pretty: return pretty_json(value) try: _buffer = UnicodeBuilder(2048) _value2json(value, _buffer) output = _buffer.build() return output except Exception as e: # THE PRETTY JSON WILL PROVIDE MORE DETAIL ABOUT THE SERIALIZATION CONCERNS from mo_logs import Log if _dealing_with_problem: Log.error("Serialization of JSON problems", e) else: Log.warning("Serialization of JSON problems", e) _dealing_with_problem = True try: return pretty_json(value) except Exception as f: Log.error("problem serializing object", f) finally: _dealing_with_problem = False class cPythonJSONEncoder(object): def __init__(self, sort_keys=True): object.__init__(self) self.encoder = utf8_json_encoder def encode(self, value, pretty=False): if pretty: return pretty_json(value) try: with Timer("scrub", too_long=0.1): scrubbed = scrub(value) param = {"size": 0} with Timer("encode {{size}} characters", param=param, too_long=0.1): output = text(self.encoder(scrubbed)) param["size"] = len(output) return output except Exception as e: from mo_logs.exceptions import Except from mo_logs import Log e = Except.wrap(e) Log.warning("problem serializing {{type}}", type=text(repr(value)), cause=e) raise e def ujson_encode(value, pretty=False): if pretty: return pretty_json(value) try: scrubbed = scrub(value) return ujson_dumps(scrubbed, ensure_ascii=False, sort_keys=True, escape_forward_slashes=False).decode('utf8') except Exception as e: from mo_logs.exceptions import Except from mo_logs import Log e = Except.wrap(e) Log.warning("problem serializing {{type}}", type=text(repr(value)), cause=e) raise e def _value2json(value, _buffer): try: _class = value.__class__ if value is None: append(_buffer, u"null") return elif value is True: append(_buffer, u"true") return elif value is False: append(_buffer, u"false") return type = value.__class__ if type is binary_type: append(_buffer, QUOTE) try: v = value.decode('utf8') except Exception as e: problem_serializing(value, e) for c in v: append(_buffer, ESCAPE_DCT.get(c, c)) append(_buffer, QUOTE) elif type is text: append(_buffer, QUOTE) for c in value: append(_buffer, ESCAPE_DCT.get(c, c)) append(_buffer, QUOTE) elif type is dict: if not value: append(_buffer, u"{}") else: _dict2json(value, _buffer) return elif type is Data: d = _get(value, SLOT) # MIGHT BE A VALUE NOT A DICT _value2json(d, _buffer) return elif type in (int, long, Decimal): append(_buffer, text(value)) elif type is float: if math.isnan(value) or math.isinf(value): append(_buffer, u'null') else: append(_buffer, float2json(value)) elif type in (set, list, tuple, FlatList): _list2json(value, _buffer) elif type is date: append(_buffer, float2json(time.mktime(value.timetuple()))) elif type is datetime: append(_buffer, float2json(time.mktime(value.timetuple()))) elif type is Date: append(_buffer, float2json(value.unix)) elif type is timedelta: append(_buffer, float2json(value.total_seconds())) elif type is Duration: append(_buffer, float2json(value.seconds)) elif type is NullType: append(_buffer, u"null") elif is_data(value): if not value: append(_buffer, u"{}") else: _dict2json(value, _buffer) return elif hasattr(value, '__data__'): d = value.__data__() _value2json(d, _buffer) elif hasattr(value, '__json__'): j = value.__json__() append(_buffer, j) elif hasattr(value, '__iter__'): _iter2json(value, _buffer) else: from mo_logs import Log Log.error(text(repr(value)) + " is not JSON serializable") except Exception as e: from mo_logs import Log Log.error(text(repr(value)) + " is not JSON serializable", cause=e) def _list2json(value, _buffer): if not value: append(_buffer, u"[]") else: sep = u"[" for v in value: append(_buffer, sep) sep = COMMA _value2json(v, _buffer) append(_buffer, u"]") def _iter2json(value, _buffer): append(_buffer, u"[") sep = u"" for v in value: append(_buffer, sep) sep = COMMA _value2json(v, _buffer) append(_buffer, u"]") def _dict2json(value, _buffer): try: prefix = u"{\"" for k, v in value.items(): append(_buffer, prefix) prefix = COMMA_QUOTE if is_binary(k): k = k.decode('utf8') for c in k: append(_buffer, ESCAPE_DCT.get(c, c)) append(_buffer, QUOTE_COLON) _value2json(v, _buffer) append(_buffer, u"}") except Exception as e: from mo_logs import Log Log.error(text(repr(value)) + " is not JSON serializable", cause=e) ARRAY_ROW_LENGTH = 80 ARRAY_ITEM_MAX_LENGTH = 30 ARRAY_MAX_COLUMNS = 10 INDENT = " " def pretty_json(value): try: if value is False: return "false" elif value is True: return "true" elif is_data(value): try: items = sort_using_key(value.items(), lambda r: r[0]) values = [encode_basestring(k) + PRETTY_COLON + pretty_json(v) for k, v in items if v != None] if not values: return "{}" elif len(values) == 1: return "{" + values[0] + "}" else: return "{\n" + ",\n".join(indent(v) for v in values) + "\n}" except Exception as e: from mo_logs import Log from mo_math import OR if OR(not is_text(k) for k in value.keys()): Log.error( "JSON must have string keys: {{keys}}:", keys=[k for k in value.keys()], cause=e ) Log.error( "problem making dict pretty: keys={{keys}}:", keys=[k for k in value.keys()], cause=e ) elif value in (None, Null): return "null" elif value.__class__ in (binary_type, text): if is_binary(value): value = value.decode('utf8') try: if "\n" in value and value.strip(): return pretty_json({"$concat": value.split("\n"), "separator": "\n"}) else: return quote(value) except Exception as e: from mo_logs import Log try: Log.note("try explicit convert of string with length {{length}}", length=len(value)) acc = [QUOTE] for c in value: try: try: c2 = ESCAPE_DCT[c] except Exception: c2 = c c3 = text(c2) acc.append(c3) except BaseException: pass # Log.warning("odd character {{ord}} found in string. Ignored.", ord= ord(c)}, cause=g) acc.append(QUOTE) output = u"".join(acc) Log.note("return value of length {{length}}", length=len(output)) return output except BaseException as f: Log.warning("can not convert {{type}} to json", type=f.__class__.__name__, cause=f) return "null" elif is_list(value): if not value: return "[]" if ARRAY_MAX_COLUMNS == 1: return "[\n" + ",\n".join([indent(pretty_json(v)) for v in value]) + "\n]" if len(value) == 1: j = pretty_json(value[0]) if j.find("\n") >= 0: return "[\n" + indent(j) + "\n]" else: return "[" + j + "]" js = [pretty_json(v) for v in value] max_len = max(*[len(j) for j in js]) if max_len <= ARRAY_ITEM_MAX_LENGTH and max(*[j.find("\n") for j in js]) == -1: # ALL TINY VALUES num_columns = max(1, min(ARRAY_MAX_COLUMNS, int(floor((ARRAY_ROW_LENGTH + 2.0) / float(max_len + 2))))) # +2 TO COMPENSATE FOR COMMAS if len(js) <= num_columns: # DO NOT ADD \n IF ONLY ONE ROW return "[" + PRETTY_COMMA.join(js) + "]" if num_columns == 1: # DO NOT rjust IF THERE IS ONLY ONE COLUMN return "[\n" + ",\n".join([indent(pretty_json(v)) for v in value]) + "\n]" content = ",\n".join( PRETTY_COMMA.join(j.rjust(max_len) for j in js[r:r + num_columns]) for r in xrange(0, len(js), num_columns) ) return "[\n" + indent(content) + "\n]" pretty_list = js output = ["[\n"] for i, p in enumerate(pretty_list): try: if i > 0: output.append(",\n") output.append(indent(p)) except Exception: from mo_logs import Log Log.warning("problem concatenating string of length {{len1}} and {{len2}}", len1=len("".join(output)), len2=len(p) ) output.append("\n]") try: return "".join(output) except Exception as e: from mo_logs import Log Log.error("not expected", cause=e) elif hasattr(value, '__data__'): d = value.__data__() return pretty_json(d) elif hasattr(value, '__json__'): j = value.__json__() if j == None: return " null " # TODO: FIND OUT WHAT CAUSES THIS return pretty_json(json_decoder(j)) elif scrub(value) is None: return "null" elif hasattr(value, '__iter__'): return pretty_json(list(value)) elif hasattr(value, '__call__'): return "null" else: try: if int(value) == value: return text(int(value)) except Exception: pass try: if float(value) == value: return text(float(value)) except Exception: pass return pypy_json_encode(value) except Exception as e: problem_serializing(value, e) def problem_serializing(value, e=None): """ THROW ERROR ABOUT SERIALIZING """ from mo_logs import Log try: typename = type(value).__name__ except Exception: typename = "<error getting name>" try: rep = text(repr(value)) except Exception as _: rep = None if rep == None: Log.error( "Problem turning value of type {{type}} to json", type=typename, cause=e ) else: Log.error( "Problem turning value ({{value}}) of type {{type}} to json", value=rep, type=typename, cause=e ) def indent(value, prefix=INDENT): try: content = value.rstrip() suffix = value[len(content):] lines = content.splitlines() return prefix + (u"\n" + prefix).join(lines) + suffix except Exception as e: raise Exception(u"Problem with indent of value (" + e.message + u")\n" + value) def value_compare(a, b): if a == None: if b == None: return 0 return -1 elif b == None: return 1 if a > b: return 1 elif a < b: return -1 else: return 0 def datetime2milli(d, type): try: if type == datetime: diff = d - datetime(1970, 1, 1) else: diff = d - date(1970, 1, 1) return long(diff.total_seconds()) * long(1000) + long(diff.microseconds / 1000) except Exception as e: problem_serializing(d, e) def unicode_key(key): """ CONVERT PROPERTY VALUE TO QUOTED NAME OF SAME """ if not isinstance(key, (text, binary_type)): from mo_logs import Log Log.error("{{key|quote}} is not a valid key", key=key) return quote(text(key)) # OH HUM, cPython with uJSON, OR pypy WITH BUILTIN JSON? # http://liangnuren.wordpress.com/2012/08/13/python-json-performance/ # http://morepypy.blogspot.ca/2011/10/speeding-up-json-encoding-in-pypy.html if PYPY: json_encoder = pypy_json_encode else: # from ujson import dumps as ujson_dumps # json_encoder = ujson_encode json_encoder = cPythonJSONEncoder().encode
the-stack_0_15035
# Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from copy import deepcopy from nnunet.network_architecture.generic_UNet import Generic_UNet import SimpleITK as sitk import shutil from batchgenerators.utilities.file_and_folder_operations import join def split_4d_nifti(filename, output_folder): img_itk = sitk.ReadImage(filename) dim = img_itk.GetDimension() file_base = filename.split("/")[-1] if dim == 3: shutil.copy(filename, join(output_folder, file_base[:-7] + "_0000.nii.gz")) return elif dim != 4: raise RuntimeError("Unexpected dimensionality: %d of file %s, cannot split" % (dim, filename)) else: img_npy = sitk.GetArrayFromImage(img_itk) spacing = img_itk.GetSpacing() origin = img_itk.GetOrigin() direction = np.array(img_itk.GetDirection()).reshape(4,4) # now modify these to remove the fourth dimension spacing = tuple(list(spacing[:-1])) origin = tuple(list(origin[:-1])) direction = tuple(direction[:-1, :-1].reshape(-1)) for i, t in enumerate(range(img_npy.shape[0])): img = img_npy[t] img_itk_new = sitk.GetImageFromArray(img) img_itk_new.SetSpacing(spacing) img_itk_new.SetOrigin(origin) img_itk_new.SetDirection(direction) sitk.WriteImage(img_itk_new, join(output_folder, file_base[:-7] + "_%04.0d.nii.gz" % i)) def get_pool_and_conv_props_poolLateV2(patch_size, min_feature_map_size, max_numpool, spacing): """ :param spacing: :param patch_size: :param min_feature_map_size: min edge length of feature maps in bottleneck :return: """ initial_spacing = deepcopy(spacing) reach = max(initial_spacing) dim = len(patch_size) num_pool_per_axis = get_network_numpool(patch_size, max_numpool, min_feature_map_size) net_num_pool_op_kernel_sizes = [] net_conv_kernel_sizes = [] net_numpool = max(num_pool_per_axis) current_spacing = spacing for p in range(net_numpool): reached = [current_spacing[i] / reach > 0.5 for i in range(dim)] pool = [2 if num_pool_per_axis[i] + p >= net_numpool else 1 for i in range(dim)] if all(reached): conv = [3] * dim else: conv = [3 if not reached[i] else 1 for i in range(dim)] net_num_pool_op_kernel_sizes.append(pool) net_conv_kernel_sizes.append(conv) current_spacing = [i * j for i, j in zip(current_spacing, pool)] net_conv_kernel_sizes.append([3] * dim) must_be_divisible_by = get_shape_must_be_divisible_by(num_pool_per_axis) patch_size = pad_shape(patch_size, must_be_divisible_by) # we need to add one more conv_kernel_size for the bottleneck. We always use 3x3(x3) conv here return num_pool_per_axis, net_num_pool_op_kernel_sizes, net_conv_kernel_sizes, patch_size, must_be_divisible_by def get_pool_and_conv_props(spacing, patch_size, min_feature_map_size, max_numpool): """ :param spacing: :param patch_size: :param min_feature_map_size: min edge length of feature maps in bottleneck :return: """ dim = len(spacing) current_spacing = deepcopy(list(spacing)) current_size = deepcopy(list(patch_size)) pool_op_kernel_sizes = [] conv_kernel_sizes = [] num_pool_per_axis = [0] * dim while True: # This is a problem because sometimes we have spacing 20, 50, 50 and we want to still keep pooling. # Here we would stop however. This is not what we want! Fixed in get_pool_and_conv_propsv2 min_spacing = min(current_spacing) valid_axes_for_pool = [i for i in range(dim) if current_spacing[i] / min_spacing < 2] axes = [] for a in range(dim): my_spacing = current_spacing[a] partners = [i for i in range(dim) if current_spacing[i] / my_spacing < 2 and my_spacing / current_spacing[i] < 2] if len(partners) > len(axes): axes = partners conv_kernel_size = [3 if i in axes else 1 for i in range(dim)] # exclude axes that we cannot pool further because of min_feature_map_size constraint #before = len(valid_axes_for_pool) valid_axes_for_pool = [i for i in valid_axes_for_pool if current_size[i] >= 2*min_feature_map_size] #after = len(valid_axes_for_pool) #if after == 1 and before > 1: # break valid_axes_for_pool = [i for i in valid_axes_for_pool if num_pool_per_axis[i] < max_numpool] if len(valid_axes_for_pool) == 0: break #print(current_spacing, current_size) other_axes = [i for i in range(dim) if i not in valid_axes_for_pool] pool_kernel_sizes = [0] * dim for v in valid_axes_for_pool: pool_kernel_sizes[v] = 2 num_pool_per_axis[v] += 1 current_spacing[v] *= 2 current_size[v] = np.ceil(current_size[v] / 2) for nv in other_axes: pool_kernel_sizes[nv] = 1 pool_op_kernel_sizes.append(pool_kernel_sizes) conv_kernel_sizes.append(conv_kernel_size) #print(conv_kernel_sizes) must_be_divisible_by = get_shape_must_be_divisible_by(num_pool_per_axis) patch_size = pad_shape(patch_size, must_be_divisible_by) # we need to add one more conv_kernel_size for the bottleneck. We always use 3x3(x3) conv here conv_kernel_sizes.append([3]*dim) return num_pool_per_axis, pool_op_kernel_sizes, conv_kernel_sizes, patch_size, must_be_divisible_by def get_pool_and_conv_props_v2(spacing, patch_size, min_feature_map_size, max_numpool): """ :param spacing: :param patch_size: :param min_feature_map_size: min edge length of feature maps in bottleneck :return: """ dim = len(spacing) current_spacing = deepcopy(list(spacing)) current_size = deepcopy(list(patch_size)) pool_op_kernel_sizes = [] conv_kernel_sizes = [] num_pool_per_axis = [0] * dim kernel_size = [1] * dim while True: # exclude axes that we cannot pool further because of min_feature_map_size constraint valid_axes_for_pool = [i for i in range(dim) if current_size[i] >= 2*min_feature_map_size] if len(valid_axes_for_pool) < 1: break spacings_of_axes = [current_spacing[i] for i in valid_axes_for_pool] # find axis that are within factor of 2 within smallest spacing min_spacing_of_valid = min(spacings_of_axes) valid_axes_for_pool = [i for i in valid_axes_for_pool if current_spacing[i] / min_spacing_of_valid < 2] # max_numpool constraint valid_axes_for_pool = [i for i in valid_axes_for_pool if num_pool_per_axis[i] < max_numpool] if len(valid_axes_for_pool) == 1: if current_size[valid_axes_for_pool[0]] >= 3 * min_feature_map_size: pass else: break if len(valid_axes_for_pool) < 1: break # now we need to find kernel sizes # kernel sizes are initialized to 1. They are successively set to 3 when their associated axis becomes within # factor 2 of min_spacing. Once they are 3 they remain 3 for d in range(dim): if kernel_size[d] == 3: continue else: if spacings_of_axes[d] / min(current_spacing) < 2: kernel_size[d] = 3 other_axes = [i for i in range(dim) if i not in valid_axes_for_pool] pool_kernel_sizes = [0] * dim for v in valid_axes_for_pool: pool_kernel_sizes[v] = 2 num_pool_per_axis[v] += 1 current_spacing[v] *= 2 current_size[v] = np.ceil(current_size[v] / 2) for nv in other_axes: pool_kernel_sizes[nv] = 1 pool_op_kernel_sizes.append(pool_kernel_sizes) conv_kernel_sizes.append(deepcopy(kernel_size)) #print(conv_kernel_sizes) must_be_divisible_by = get_shape_must_be_divisible_by(num_pool_per_axis) patch_size = pad_shape(patch_size, must_be_divisible_by) # we need to add one more conv_kernel_size for the bottleneck. We always use 3x3(x3) conv here conv_kernel_sizes.append([3]*dim) return num_pool_per_axis, pool_op_kernel_sizes, conv_kernel_sizes, patch_size, must_be_divisible_by def get_shape_must_be_divisible_by(net_numpool_per_axis): return 2 ** np.array(net_numpool_per_axis) def pad_shape(shape, must_be_divisible_by): """ pads shape so that it is divisibly by must_be_divisible_by :param shape: :param must_be_divisible_by: :return: """ if not isinstance(must_be_divisible_by, (tuple, list, np.ndarray)): must_be_divisible_by = [must_be_divisible_by] * len(shape) else: assert len(must_be_divisible_by) == len(shape) new_shp = [shape[i] + must_be_divisible_by[i] - shape[i] % must_be_divisible_by[i] for i in range(len(shape))] for i in range(len(shape)): if shape[i] % must_be_divisible_by[i] == 0: new_shp[i] -= must_be_divisible_by[i] new_shp = np.array(new_shp).astype(int) return new_shp def get_network_numpool(patch_size, maxpool_cap=999, min_feature_map_size=4): network_numpool_per_axis = np.floor([np.log(i / min_feature_map_size) / np.log(2) for i in patch_size]).astype(int) network_numpool_per_axis = [min(i, maxpool_cap) for i in network_numpool_per_axis] return network_numpool_per_axis if __name__ == '__main__': # trying to fix https://github.com/MIC-DKFZ/nnUNet/issues/261 median_shape = [24, 504, 512] spacing = [5.9999094, 0.50781202, 0.50781202] num_pool_per_axis, net_num_pool_op_kernel_sizes, net_conv_kernel_sizes, patch_size, must_be_divisible_by = get_pool_and_conv_props_poolLateV2(median_shape, min_feature_map_size=4, max_numpool=999, spacing=spacing)
the-stack_0_15036
# coding: utf-8 """ Schemas The CRM uses schemas to define how custom objects should store and represent information in the HubSpot CRM. Schemas define details about an object's type, properties, and associations. The schema can be uniquely identified by its **object type ID**. # noqa: E501 The version of the OpenAPI document: v3 Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import re # noqa: F401 # python 2 and python 3 compatibility library import six from hubspot.crm.schemas.api_client import ApiClient from hubspot.crm.schemas.exceptions import ApiTypeError, ApiValueError # noqa: F401 class PublicObjectSchemasApi(object): """NOTE: This class is auto generated by OpenAPI Generator Ref: https://openapi-generator.tech Do not edit the class manually. """ def __init__(self, api_client=None): if api_client is None: api_client = ApiClient() self.api_client = api_client def purge(self, object_type, **kwargs): # noqa: E501 """purge # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.purge(object_type, async_req=True) >>> result = thread.get() :param async_req bool: execute request asynchronously :param str object_type: (required) :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: None If the method is called asynchronously, returns the request thread. """ kwargs["_return_http_data_only"] = True return self.purge_with_http_info(object_type, **kwargs) # noqa: E501 def purge_with_http_info(self, object_type, **kwargs): # noqa: E501 """purge # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.purge_with_http_info(object_type, async_req=True) >>> result = thread.get() :param async_req bool: execute request asynchronously :param str object_type: (required) :param _return_http_data_only: response data without head status code and headers :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: None If the method is called asynchronously, returns the request thread. """ local_var_params = locals() all_params = ["object_type"] all_params.extend(["async_req", "_return_http_data_only", "_preload_content", "_request_timeout"]) for key, val in six.iteritems(local_var_params["kwargs"]): if key not in all_params: raise ApiTypeError("Got an unexpected keyword argument '%s'" " to method purge" % key) local_var_params[key] = val del local_var_params["kwargs"] # verify the required parameter 'object_type' is set if self.api_client.client_side_validation and ("object_type" not in local_var_params or local_var_params["object_type"] is None): # noqa: E501 # noqa: E501 raise ApiValueError("Missing the required parameter `object_type` when calling `purge`") # noqa: E501 collection_formats = {} path_params = {} if "object_type" in local_var_params: path_params["objectType"] = local_var_params["object_type"] # noqa: E501 query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params["Accept"] = self.api_client.select_header_accept(["*/*"]) # noqa: E501 # Authentication setting auth_settings = ["hapikey"] # noqa: E501 return self.api_client.call_api( "/crm/v3/schemas/{objectType}/purge", "DELETE", path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get("async_req"), _return_http_data_only=local_var_params.get("_return_http_data_only"), # noqa: E501 _preload_content=local_var_params.get("_preload_content", True), _request_timeout=local_var_params.get("_request_timeout"), collection_formats=collection_formats, )
the-stack_0_15038
from PyQt5.QtWidgets import * from PyQt5.QtCore import Qt, QBasicTimer from PyQt5.QtGui import QPen, QColor, QBrush import time class Settings: BLOCK_WIDTH = 10 BLOCK_HEIGHT = 10 NUM_BLOCKS_X = 50 NUM_BLOCKS_Y = 50 SCREEN_WIDTH = BLOCK_WIDTH * NUM_BLOCKS_X SCREEN_HEIGHT = BLOCK_HEIGHT * NUM_BLOCKS_Y class AppScene(QGraphicsScene): SPEED = 50 def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.lines = [] self.create_ant() self.draw_grid() self.set_opacity(0.7) self.ant_x = 50 self.timer = QBasicTimer() #print(self.itemAt(Settings.NUM_BLOCKS_X // 2, Settings.NUM_BLOCKS_Y // 2, QTransform())) #time.sleep(1) #self.move_ant(Settings.BLOCK_HEIGHT*9, 0) self.start() def start(self): self.addItem(self.ant) self.timer.start(self.SPEED, self) def timerEvent(self, event): if event.timerId() == self.timer.timerId(): self.set_ant(self.ant_x % 500 - 250, -40) self.ant_x += 10 def move_ant(self, dx, dy): self.ant.moveBy(dx, dy) def set_ant(self, x, y): self.ant.setPos(x, y) def create_ant(self): self.ant = QGraphicsEllipseItem(Settings.SCREEN_WIDTH // 2, Settings.SCREEN_HEIGHT // 2, Settings.BLOCK_WIDTH, Settings.BLOCK_HEIGHT) self.ant.setBrush(QBrush(QColor(0, 0, 255), Qt.SolidPattern)) def draw_grid(self): width = Settings.SCREEN_WIDTH height = Settings.SCREEN_HEIGHT self.setSceneRect(0, 0, width, height) pen = QPen(QColor(100, 100, 100), 1, Qt.SolidLine) for x in range(0, Settings.NUM_BLOCKS_X + 1): _x = x * Settings.BLOCK_WIDTH self.lines.append(self.addLine(_x, 0, _x, height, pen)) for y in range(0, Settings.NUM_BLOCKS_Y + 1): _y = y * Settings.BLOCK_HEIGHT self.lines.append(self.addLine(0, _y, width, _y, pen)) def sert_visible(self, visible=True): for line in self.lines: line.setVisible(visible) def draw_rect(self, col, row, color): col = col * Settings.BLOCK_HEIGHT row = row * Settings.BLOCK_WIDTH rect = QGraphicsRectItem(row, col, Settings.BLOCK_WIDTH, Settings.BLOCK_HEIGHT) rect.setBrush(QBrush(color, Qt.SolidPattern)) self.addItem(rect) def delete_grid(self): for line in self.lines: self.removeItem(line) del self.lines[:] def set_opacity(self, opacity): for line in self.lines: line.setOpacity(opacity) class Appview(QGraphicsView): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.setFixedSize(Settings.SCREEN_WIDTH + 10, Settings.SCREEN_HEIGHT + 10) def drawBackground(self, painter, rect): super().drawBackground(painter, rect) if __name__ == "__main__": import sys sys._excepthook = sys.excepthook def exception_hook(exctype, value, traceback): print(exctype, value, traceback) sys._excepthook(exctype, value, traceback) sys.exit(1) sys.excepthook = exception_hook app = QApplication(sys.argv) QScene = AppScene() win = Appview() win.setScene(QScene) win.show() sys.exit(app.exec_())
the-stack_0_15039
import os import shutil from conans.client.source import complete_recipe_sources from conans.errors import ConanException from conans.model.ref import ConanFileReference, PackageReference from conans.util.files import rmdir def _prepare_sources(cache, ref, remote_manager, loader, remotes): conan_file_path = cache.package_layout(ref).conanfile() conanfile = loader.load_class(conan_file_path) complete_recipe_sources(remote_manager, cache, conanfile, ref, remotes) return conanfile.short_paths def _get_package_ids(cache, ref, package_ids): if not package_ids: return [] if package_ids is True: packages = cache.package_layout(ref).packages() if os.path.exists(packages): package_ids = os.listdir(packages) else: package_ids = [] return package_ids def cmd_copy(ref, user_channel, package_ids, cache, user_io, remote_manager, loader, remotes, force=False): """ param package_ids: Falsey=do not copy binaries. True=All existing. []=list of ids """ # It is important to get the revision early, so "complete_recipe_sources" can # get the right revision sources, not latest layout = cache.package_layout(ref) src_metadata = layout.load_metadata() ref = ref.copy_with_rev(src_metadata.recipe.revision) short_paths = _prepare_sources(cache, ref, remote_manager, loader, remotes) package_ids = _get_package_ids(cache, ref, package_ids) package_copy(ref, user_channel, package_ids, cache, user_io, short_paths, force) def package_copy(src_ref, user_channel, package_ids, cache, user_io, short_paths=False, force=False): dest_ref = ConanFileReference.loads("%s/%s@%s" % (src_ref.name, src_ref.version, user_channel)) # Generate metadata src_layout = cache.package_layout(src_ref, short_paths) src_metadata = src_layout.load_metadata() dst_layout = cache.package_layout(dest_ref, short_paths) # Copy export export_origin = src_layout.export() if not os.path.exists(export_origin): raise ConanException("'%s' doesn't exist" % str(src_ref)) export_dest = dst_layout.export() if os.path.exists(export_dest): if not force and not user_io.request_boolean("'%s' already exist. Override?" % str(dest_ref)): return rmdir(export_dest) shutil.copytree(export_origin, export_dest, symlinks=True) user_io.out.info("Copied %s to %s" % (str(src_ref), str(dest_ref))) export_sources_origin = src_layout.export_sources() export_sources_dest = dst_layout.export_sources() if os.path.exists(export_sources_dest): rmdir(export_sources_dest) shutil.copytree(export_sources_origin, export_sources_dest, symlinks=True) user_io.out.info("Copied sources %s to %s" % (str(src_ref), str(dest_ref))) # Copy packages package_revisions = {} # To be stored in the metadata for package_id in package_ids: pref_origin = PackageReference(src_ref, package_id) pref_dest = PackageReference(dest_ref, package_id) package_path_origin = src_layout.package(pref_origin) package_path_dest = dst_layout.package(pref_dest) if os.path.exists(package_path_dest): if not force and not user_io.request_boolean("Package '%s' already exist." " Override?" % str(package_id)): continue rmdir(package_path_dest) package_revisions[package_id] = (src_metadata.packages[package_id].revision, src_metadata.recipe.revision) shutil.copytree(package_path_origin, package_path_dest, symlinks=True) user_io.out.info("Copied %s to %s" % (str(package_id), str(dest_ref))) # Generate the metadata with dst_layout.update_metadata() as metadata: metadata.recipe.revision = src_metadata.recipe.revision for package_id, (revision, recipe_revision) in package_revisions.items(): metadata.packages[package_id].revision = revision metadata.packages[package_id].recipe_revision = recipe_revision
the-stack_0_15040
import _plotly_utils.basevalidators class ColorValidator(_plotly_utils.basevalidators.ColorValidator): def __init__( self, plotly_name="color", parent_name="layout.xaxis.rangeselector.font", **kwargs ): super(ColorValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "plot"), role=kwargs.pop("role", "style"), **kwargs )
the-stack_0_15044
import cv2 cv2_data_dir = '/usr/local/lib/python3.7/dist-packages/cv2/data/' face_cascade = cv2.CascadeClassifier(cv2_data_dir + 'haarcascade_frontalface_default.xml') img = cv2.imread('faces.jpg', cv2.IMREAD_GRAYSCALE) scale_factor = 1.4 min_neighbours = 5 faces = face_cascade.detectMultiScale(img, scale_factor, min_neighbours) print(faces) for (x,y,w,h) in faces: img = cv2.rectangle(img, (x,y), (x+w,y+h), (255, 255, 255), 2) cv2.imshow('image',img) cv2.waitKey(0) cv2.destroyAllWindows()
the-stack_0_15046
import base64 import datetime import plotly import plotly.figure_factory as ff import os import dash import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output, State from dash.exceptions import PreventUpdate import json import dashUI.run as run import dashUI.run_OD as run_OD iterationList = [] lossList = [] epochOfLossList = [] epochOfTop1ErrorList = [] epochOfMeanAPList = [] TrainSet_top1_error_valueList = [] ValidationSet_top1_error_valueList = [] TrainSet_mean_ap_valueList = [] ValidationSet_mean_ap_valueList = [] metricList = [] external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) image_filename = 'C:/Users/930415/PycharmProjects/chadle/dashUI/icon.png' # replace with your own image encoded_image = base64.b64encode(open(image_filename, 'rb').read()) CLProjectNames = ','.join(run.CLProjectList) ODProjectNames = ','.join(run.ODProjectList) app.layout = html.Div([ html.Center(html.Img(src='data:image/png;base64,{}'.format(encoded_image.decode()), width='80', height='70')), # Title html.H1('CHaDLE ', style={ "font": 'verdana', 'textAlign': 'center', 'color': 'Black' } ), # Tabs for CL and OD html.Div([ dcc.Tabs(id='AllTab', value='AllTab', children=[ # Classification Tab dcc.Tab(label='Classification', value='CLTab', children=[ html.Div([html.Th(children='Available Classification Projects: ' + CLProjectNames, colSpan="1"), html.Br(), "Project Name:", dcc.Input( id='ProjectName_CL', value='Animals', type='text' ), html.Br(), "Training Device:", dcc.RadioItems( id='Runtime_CL', options=[{'label': i, 'value': i} for i in ['cpu', 'gpu']], value='cpu', labelStyle={'display': 'inline-block'} ), "Pretrained Model:", dcc.Dropdown( id='PretrainedModel_CL', options=[{'label': i, 'value': i} for i in ["classifier_enhanced", "classifier_compact"]], value='classifier_compact' ), ], style={'width': '25%', 'display': 'inline-block'} ), html.Br(), html.Br(), html.Div([ html.Div([ html.Label('Image Width'), dcc.Input(id='ImWidth_CL', value='100 ', type='number', min=0, step=1, ), html.Label('Image Height'), dcc.Input(id='ImHeight_CL', value='100', type='number', min=0, step=1, ), html.Label('Image Channel'), dcc.Input(id='ImChannel_CL', value='3', type='number', min=0, step=1, ), html.Label('Batch Size'), dcc.Input(id='BatchSize_CL', value='1', type='number', min=0, step=1, ), html.Label('Initial Learning Rate'), dcc.Input(id='InitialLearningRate_CL', value='0.001', type='number', min=0, step=0.00001, ), html.Label('Momentum'), dcc.Input(id='Momentum_CL', value='0.09', type='number', min=0, step=0.00001, ), html.Label('Number of Epochs'), dcc.Input(id='NumEpochs_CL', value='2', type='number', min=0, step=1, ), html.Label('Change Learning Rate @ Epochs'), dcc.Input(id='ChangeLearningRateEpochs_CL', value='50,100', type='text'), html.Label('Learning Rate Schedule'), dcc.Input(id='lr_change_CL', value='0.01,0.05', type='text'), html.Label('Regularisation Constant'), dcc.Input(id='WeightPrior_CL', value='0.001', type='number', min=0, step=0.00001, ), html.Label('Class Penalty'), dcc.Input(id='class_penalty_CL', value='0,0', type='text'), ], style={'width': '20%', 'display': 'inline-block'}), html.Div([ html.Label('Augmentation Percentage'), dcc.Input(id='AugmentationPercentage_CL', value='100', type='number', min=0, max=100, step=1, ), html.Label('Rotation'), dcc.Input(id='Rotation_CL', value='90', type='number', min=-180, max=180, step=90, ), html.Label('Mirror (off,c,r,rc)'), dcc.Input(id='mirror_CL', value='off', type='text', ), html.Label('Brightness Variation'), dcc.Input(id='BrightnessVariation_CL', value='1', type='number', min=-100, max=100, step=1, ), html.Label('Brightness Variation Spot'), dcc.Input(id='BrightnessVariationSpot_CL', value='1', type='number', min=-100, max=100, step=1, ), html.Label('Rotation Range (Step of 1)'), dcc.Input(id='RotationRange_CL', value='1', type='number', min=1, step=1, ), # html.Label('Ignore Direction'), # dcc.Input(id='IgnoreDirection', value='false', type='text'), # html.Label('Class IDs No Orientation Exist'), # dcc.Input(id='ClassIDsNoOrientationExist', value='false', type='text'), # html.Label('Class IDs No Orientation'), # dcc.Input(id='ClassIDsNoOrientation', value='[]', type='text'), ], style={'width': '20%', 'float': 'left', 'display': 'inline-block'}), html.Div([html.H4('Evaluation'), html.Div(id='evaluation_text_CL'), dcc.Graph(id='evaluation_graph_CL'), ], style={'width': '50%', 'float': 'right', }), dcc.Interval( id='interval-evaluation_CL', interval=1 * 1000, # in milliseconds n_intervals=0 ) ]), html.Br(), html.Br(), dcc.Loading( id="loading-1", type="default", children=[html.Div(id="Training_loading_CL"), html.Div(id="Evaluation_loading_CL")] ), html.Div([ # html.Button(id='submit-button-state', n_clicks=0, children='Submit'), html.Button(id='operation_button_CL', n_clicks=0, children='Start Training'), # html.Button(id='train_button', n_clicks=0, children='Train'), # html.Button(id='parameters_out_button', n_clicks=0, children='Output Parameters'), html.Button(id='evaluation_button_CL', n_clicks=0, children='Evaluation'), ], style={ 'width': '70%', 'float': 'right', } ), html.Br(), html.Br(), html.Br(), html.Br(), html.Div(id='Operation_output_CL'), html.Div(id='makeJson_CL'), # html.Div(id='output-state'), # html.Div(id='Train Result'), # html.Div(id='Evaluation Result'), # Graph Plotter html.Div([ html.H1('CHaDLE Training Monitor - Classification', style={ "font": 'Helvetica', 'textAlign': 'center', 'color': 'Black' }), html.Div(id='metrics_CL', style={ "font": 'Helvetica', 'textAlign': 'center', 'color': 'Blue' }), dcc.Graph(id='iteration_loss_graph_CL'), dcc.Graph(id='top1_error_graph_CL'), dcc.Interval( id='interval_graph_CL', interval=1 * 1000, # in milliseconds n_intervals=0 ) ]) ]), # Object Detection Tab dcc.Tab(label='Object Detection', value='ODTab', children=[ # Basic inputs html.Div([html.Th(children='Available Object Detection Projects: ' + ODProjectNames, colSpan="1"), html.Br(), "Project Name:", dcc.Input( id='ProjectName_OD', value='NTBW', type='text' ), html.Br(), "Training Device:", dcc.RadioItems( id='Runtime_OD', options=[{'label': i, 'value': i} for i in ['cpu', 'gpu']], value='cpu', labelStyle={'display': 'inline-block'} ), "Pretrained Model:", dcc.Dropdown( id='PretrainedModel_OD', options=[{'label': i, 'value': i} for i in ["classifier_enhanced", "classifier_compact"]], value='classifier_compact' ), ], style={'width': '15%', 'display': 'inline-block'}), html.Br(), html.Br(), # Parameters inputs html.Div([ html.Div([ html.Label('Number of Classes'), dcc.Input(id='NumClasses_OD', value='5', type='number', min=0, step=1, ), html.Label('Image Width'), dcc.Input(id='ImWidth_OD', value='960', type='number', min=0, step=1, ), html.Label('Image Height'), dcc.Input(id='ImHeight_OD', value='1024', type='number', min=0, step=1, ), html.Label('Image Channel'), dcc.Input(id='ImChannel_OD', value='3', type='number', min=0, step=1, ), html.Label('Capacity'), dcc.Input(id='Capacity_OD', value='medium', type='text', min=0, step=1, ), html.Label('Instance Type'), dcc.Input(id='InstanceType_OD', value='rectangle1', type='text', min=0, step=1, ), html.Label('Training Percent'), dcc.Input(id='TrainingPercent_OD', value='75', type='number', min=0, step=1, ), html.Label('Validation Percent'), dcc.Input(id='ValidationPercent_OD', value='15', type='number', min=0, step=1, ), ], style={'width': '15%', 'display': 'inline-block'}), html.Div([ html.Label('Batch Size'), dcc.Input(id='BatchSize_OD', value='10', type='number', min=0, step=1, ), html.Label('Initial Learning Rate'), dcc.Input(id='InitialLearningRate_OD', value='0.001', type='number', min=0, step=0.00001, ), html.Label('Momentum'), dcc.Input(id='Momentum_OD', value='0.09', type='number', min=0, step=0.00001, ), html.Label('Number of Epochs'), dcc.Input(id='NumEpochs_OD', value='2', type='number', min=0, step=1, ), html.Label('Change Learning Rate @ Epochs'), dcc.Input(id='ChangeLearningRateEpochs_OD', value='50,100', type='text'), html.Label('Learning Rate Schedule'), dcc.Input(id='lr_change_OD', value='0.01,0.05', type='text'), html.Label('Regularisation Constant'), dcc.Input(id='WeightPrior_OD', value='0.001', type='number', min=0, step=0.00001, ), html.Label('Class Penalty'), dcc.Input(id='class_penalty_OD', value='0,0', type='text'), ], style={'width': '15%', 'display': 'inline-block'}), html.Div([ html.Label('Augmentation Percentage'), dcc.Input(id='AugmentationPercentage_OD', value='100', type='number', min=0, max=100, step=1, ), html.Label('Rotation'), dcc.Input(id='Rotation_OD', value='90', type='number', min=-180, max=180, step=90, ), html.Label('Mirror (off,c,r,rc)'), dcc.Input(id='mirror_OD', value='off', type='text', ), html.Label('Brightness Variation'), dcc.Input(id='BrightnessVariation_OD', value='0', type='number', min=-100, max=100, step=1, ), html.Label('Brightness Variation Spot'), dcc.Input(id='BrightnessVariationSpot_OD', value='0', type='number', min=-100, max=100, step=1, ), html.Label('Rotation Range (Step of 1)'), dcc.Input(id='RotationRange_OD', value='10', type='number', min=1, step=1, ), # html.Label('Ignore Direction'), # dcc.Input(id='IgnoreDirection', value='false', type='text'), # html.Label('Class IDs No Orientation Exist'), # dcc.Input(id='ClassIDsNoOrientationExist', value='false', type='text'), # html.Label('Class IDs No Orientation'), # dcc.Input(id='ClassIDsNoOrientation', value='[]', type='text'), ], style={'width': '15%', 'float': 'initial', 'display': 'inline-block', }), # Estimated Value show and input html.Div([ html.H4('Halcon estimated values'), html.P('Key in new desired value or leave it empty: '), html.Br(), html.Div([html.P('Min Level: '), html.Div([html.Div(id='MinLevel_OD'), ], style={"font": 'Helvetica', 'color': 'Blue'}), dcc.Input(id='MinLevel_Input_OD', placeholder='Integer', type='number', min=0, step=1, debounce=True), ]), html.Br(), html.Div([html.P('Max Level: '), html.Div([html.Div(id='MaxLevel_OD'), ], style={"font": 'Helvetica', 'color': 'Blue'}), dcc.Input(id='MaxLevel_Input_OD', placeholder='Integer', type='number', min=0, step=1, debounce=True), ]), html.Br(), html.Div([html.P('Anchor Number of Subscales: '), html.Div([html.Div(id='AnchorNumSubscales_OD'), ], style={"font": 'Helvetica', 'color': 'Blue'}), dcc.Input(id='AnchorNumSubscales_Input_OD', placeholder='Integer', type='number', min=0, step=1, debounce=True), ]), html.Br(), html.Div([html.P('Anchor Aspect Ratios (min,max,mean,deviation): '), html.Div([html.Div(id='AnchorAspectRatios_OD'), ], style={"font": 'Helvetica', 'color': 'Blue'}), dcc.Input(id='AnchorAspectRatios_Input_OD', placeholder='List (0.720, 1.475, 2.125, 2.753)', type='text', min=0, debounce=True, style={'width': '50%', }), ]), # if user wanna change, type in the desired value. # value = Best value among 4 read by halcon # label the value, ], style={'width': '40%', 'float': 'right'}, ), ]), html.Br(), html.Br(), html.Br(), dcc.Loading( id="loading_OD", type="default", children=[html.Div(id="Training_loading_OD"), html.Div(id="Estimate_values_loading_OD")] ), html.Br(), # Buttons html.Div([ html.Button(id='estimate_button_OD', n_clicks=0, children='Halcon Estimate Values'), html.Button(id='operation_button_OD', n_clicks=0, children='Train'), # html.Button(id='parameters_out_button', n_clicks=0, children='Output Parameters'), html.Button(id='evaluation_button_OD', n_clicks=0, children='Evaluation'), ], style={'display': 'flex', 'justify-content': 'center', 'align-items': 'center', 'height': '100px', }, ), html.Div([html.Label(id='training_output_OD'), ], style={'display': 'flex', 'justify-content': 'center', 'align-items': 'center', 'height': '50px', }, ), # Evaluation Graph html.Div([ html.Div([html.H2('Evaluation Graph Coming Soon...', style={ "font": 'Helvetica', 'textAlign': 'center', 'color': 'Black' }), html.Div(id='evaluation_text_OD'), dcc.Graph(id='evaluation_graph_OD'), ], style={'width': '100%', 'float': 'initial'}), dcc.Interval( id='interval-evaluation_OD', interval=1 * 1000, # in milliseconds n_intervals=0 ) ], ), # OD training monitor graph plotter html.Div([ html.H1('CHaDLE Training Monitor - Object Detection', style={ "font": 'Helvetica', 'textAlign': 'center', 'color': 'Black' }), html.Div(id='metrics_OD', style={ "font": 'Helvetica', 'textAlign': 'center', 'color': 'Blue' }), dcc.Graph(id='iteration_loss_graph_OD'), dcc.Graph(id='mean_ap_graph_OD'), dcc.Interval( id='interval_graph_OD', interval=1 * 1000, # in milliseconds n_intervals=0 ) ]) ]), ]), ]), ]) ############################################################################################################ ############################################## Call Backs ################################################## ############################################################################################################ ############################################ Classification ################################## @app.callback(Output('Operation_output_CL', 'children'), Output("Training_loading_CL", "children"), Input('operation_button_CL', 'n_clicks'), State('ProjectName_CL', 'value'), State('Runtime_CL', 'value'), State('PretrainedModel_CL', 'value'), State('ImWidth_CL', 'value'), State('ImHeight_CL', 'value'), State('ImChannel_CL', 'value'), State('BatchSize_CL', 'value'), State('InitialLearningRate_CL', 'value'), State('Momentum_CL', 'value'), State('NumEpochs_CL', 'value'), State('ChangeLearningRateEpochs_CL', 'value'), State('lr_change_CL', 'value'), State('WeightPrior_CL', 'value'), State('class_penalty_CL', 'value'), State('AugmentationPercentage_CL', 'value'), State('Rotation_CL', 'value'), State('mirror_CL', 'value'), State('BrightnessVariation_CL', 'value'), State('BrightnessVariationSpot_CL', 'value'), State('RotationRange_CL', 'value'), ) def operation_CL(operation_button_CL, ProjectName_CL, Runtime_CL, PretrainedModel_CL, ImWidth_CL, ImHeight_CL, ImChannel_CL, BatchSize_CL, InitialLearningRate_CL, Momentum_CL, NumEpochs_CL, ChangeLearningRateEpochs_CL, lr_change_CL, WeightPrior_CL, class_penalty_CL, AugmentationPercentage_CL, Rotation_CL, mirror_CL, BrightnessVariation_CL, BrightnessVariationSpot_CL, RotationRange_CL): ctx_operation_CL = dash.callback_context if not ctx_operation_CL.triggered: button_id = 'Null' else: button_id = ctx_operation_CL.triggered[0]['prop_id'].split('.')[0] print(button_id) if button_id == 'Null': raise PreventUpdate else: if button_id == 'operation_button_CL': pre_process_param = run.pre_process_CL(ProjectName_CL, Runtime_CL, PretrainedModel_CL, ImWidth_CL, ImHeight_CL, ImChannel_CL, BatchSize_CL, InitialLearningRate_CL, Momentum_CL, NumEpochs_CL, ChangeLearningRateEpochs_CL, lr_change_CL, WeightPrior_CL, class_penalty_CL, AugmentationPercentage_CL, Rotation_CL, mirror_CL, BrightnessVariation_CL, BrightnessVariationSpot_CL, RotationRange_CL) DLModelHandle = pre_process_param[0][0] DLDataset = pre_process_param[1][0] TrainParam = pre_process_param[2][0] run.training_CL(DLModelHandle, DLDataset, TrainParam) metricList.append(DLModelHandle) metricList.append(DLDataset) metricList.append(TrainParam) # run.training(templist[-3], templist[-2], templist[-1]) # run.training(templist[0], templist[1], templist[2]) else: i = 1 # run.training(templist[-3], templist[-2], templist[-1]) return '', '' @app.callback(Output('evaluation_graph_CL', 'figure'), Output('Evaluation_loading_CL', 'children'), Input('evaluation_button_CL', 'n_clicks'), State('ProjectName_CL', 'value'), State('Runtime_CL', 'value'), State('PretrainedModel_CL', 'value'), State('ImWidth_CL', 'value'), State('ImHeight_CL', 'value'), State('ImChannel_CL', 'value'), State('BatchSize_CL', 'value'), State('InitialLearningRate_CL', 'value'), State('Momentum_CL', 'value'), State('NumEpochs_CL', 'value'), State('ChangeLearningRateEpochs_CL', 'value'), State('lr_change_CL', 'value'), State('WeightPrior_CL', 'value'), State('class_penalty_CL', 'value'), State('AugmentationPercentage_CL', 'value'), State('Rotation_CL', 'value'), State('mirror_CL', 'value'), State('BrightnessVariation_CL', 'value'), State('BrightnessVariationSpot_CL', 'value'), # State('RotationRange', 'value'), # State('IgnoreDirection', 'value'), ) def evaluation_CL(evaluation_button_CL, ProjectName_CL, Runtime_CL, PretrainedModel_CL, ImWidth_CL, ImHeight_CL, ImChannel_CL, BatchSize_CL, InitialLearningRate_CL, Momentum_CL, NumEpochs_CL, ChangeLearningRateEpochs_CL, lr_change_CL, WeightPrior_CL, class_penalty_CL, AugmentationPercentage_CL, Rotation_CL, mirror_CL, BrightnessVariation_CL, BrightnessVariationSpot_CL, ): z = [[0, 0], [0, 0]] x = ['Confusion Matrix', 'Confusion Matrix'] y = ['Confusion Matrix', 'Confusion Matrix'] # change each element of z to type string for annotations z_text = [[str(y) for y in x] for x in z] fig = ff.create_annotated_heatmap([[0, 0], [0, 0]], x=x, y=y, annotation_text=z_text, colorscale='Blues') ctx_evaluation_CL = dash.callback_context if not ctx_evaluation_CL.triggered: button_id = 'Null' else: button_id = ctx_evaluation_CL.triggered[0]['prop_id'].split('.')[0] if button_id == 'evaluation_button_CL': print('Evaluation Started') evaluationList = run.evaluation_CL(ProjectName_CL, Runtime_CL, PretrainedModel_CL, ImWidth_CL, ImHeight_CL, ImChannel_CL, BatchSize_CL, InitialLearningRate_CL, Momentum_CL, NumEpochs_CL, ChangeLearningRateEpochs_CL, lr_change_CL, WeightPrior_CL, class_penalty_CL, AugmentationPercentage_CL, Rotation_CL, mirror_CL, BrightnessVariation_CL, BrightnessVariationSpot_CL, ) z.clear() x.clear() y.clear() z_text.clear() confusion_matrix_List = evaluationList[0] mean_precision = evaluationList[1][0] mean_recall = evaluationList[2][0] mean_f_score = evaluationList[3][0] mean_precision = format(mean_precision, '.3f') mean_recall = format(mean_recall, '.3f') mean_f_score = format(mean_f_score, '.3f') categories = run.getImageCategories(ProjectName_CL, 'Classification')[0] labels = run.getImageCategories(ProjectName_CL, 'Classification')[1] # threading.Thread(target=evaluation).start() length = len(categories) sublist = [confusion_matrix_List[i:i + length] for i in range(0, len(confusion_matrix_List), length)] for i in sublist: z.append(i) for i in categories: x.append(i) y.append(i) # change each element of z to type string for annotations # z_text = [[str(y) for y in x] for x in z] # set up figure z_text = [[str(y) for y in x] for x in z] fig = ff.create_annotated_heatmap(z, x=x, y=y, annotation_text=z_text, colorscale='Blues') # change each element of z to type string for annotations # add title fig.update_layout( title_text='Mean Precision: ' + str(mean_precision) + '\n Mean Recall: ' + str( mean_recall) + '\n Mean F Score: ' + str(mean_f_score), ) # add custom xaxis title fig.add_annotation(dict(font=dict(color="black", size=14), x=0.5, y=-0.15, showarrow=False, text="Ground Truth", xref="paper", yref="paper")) # add custom yaxis title fig.add_annotation(dict(font=dict(color="black", size=14), x=-0.1, y=0.5, showarrow=False, text="Prediction", textangle=-90, xref="paper", yref="paper")) # adjust margins to make room for yaxis title fig.update_layout(margin=dict(t=50, l=200)) # add colorbar fig['data'][0]['showscale'] = True return fig, ' ' # Historical method to produce json file of input parameters @app.callback(Output('makeJson_CL', 'children'), # Input('parameters_out_button', 'n_clicks'), Input('ProjectName_CL', 'value'), State('Runtime_CL', 'value'), State('PretrainedModel_CL', 'value'), State('ImWidth_CL', 'value'), State('ImHeight_CL', 'value'), State('ImChannel_CL', 'value'), State('BatchSize_CL', 'value'), State('InitialLearningRate_CL', 'value'), State('Momentum_CL', 'value'), State('NumEpochs_CL', 'value'), State('ChangeLearningRateEpochs_CL', 'value'), State('lr_change_CL', 'value'), State('WeightPrior_CL', 'value'), State('class_penalty_CL', 'value'), State('AugmentationPercentage_CL', 'value'), State('Rotation_CL', 'value'), State('mirror_CL', 'value'), State('BrightnessVariation_CL', 'value'), State('BrightnessVariationSpot_CL', 'value'), State('RotationRange_CL', 'value'), # State('IgnoreDirection', 'value'), # State('ClassIDsNoOrientationExist', 'value'), # State('ClassIDsNoOrientation', 'value'), ) def makeJson_CL(ProjectName_CL, Runtime_CL, PretrainedModel_CL, ImWidth_CL, ImHeight_CL, ImChannel_CL, BatchSize_CL, InitialLearningRate_CL, Momentum_CL, NumEpochs_CL, ChangeLearningRateEpochs_CL, lr_change_CL, WeightPrior_CL, class_penalty_CL, AugmentationPercentage_CL, Rotation_CL, mirror_CL, BrightnessVariation_CL, BrightnessVariationSpot_CL, RotationRange_CL): ParameterDict = {'ProjectName': ProjectName_CL, 'Runtime': Runtime_CL, 'PretrainedModel': PretrainedModel_CL, 'ImWidth': ImWidth_CL, 'ImHeight': ImHeight_CL, 'ImChannel': ImChannel_CL, 'BatchSize': BatchSize_CL, 'InitialLearningRate': InitialLearningRate_CL, 'Momentum': Momentum_CL, 'NumEpochs': NumEpochs_CL, 'ChangeLearningRateEpochs': ChangeLearningRateEpochs_CL, 'lr_change': lr_change_CL, 'WeightPrior': WeightPrior_CL, 'class_penalty': class_penalty_CL, 'AugmentationPercentage': AugmentationPercentage_CL, 'Rotation': Rotation_CL, 'mirror': mirror_CL, 'BrightnessVariation': BrightnessVariation_CL, 'BrightnessVariationSpot': BrightnessVariationSpot_CL, 'RotationRange': RotationRange_CL, } ctx = dash.callback_context if not ctx.triggered: button_id = 'Null' else: button_id = ctx.triggered[0]['prop_id'].split('.')[0] if button_id == 'parameters_out_button': with open('parameters_json.txt', 'w') as outfile: json.dump(ParameterDict, outfile) return 'To json done!' @app.callback(Output('metrics_CL', 'children'), Input('interval_graph_CL', 'n_intervals')) def update_metrics_CL(n): # Indication Text configuration # Extract data from Hdict and show as texts. style = {'padding': '5px', 'fontSize': '16px'} get_metrics = run.get_TrainInfo_CL() if get_metrics: time_elapsed = get_metrics[0] time_remaining = get_metrics[1] epoch_metrics = get_metrics[2] else: time_elapsed = 0 time_remaining = 0 epoch_metrics = 0 return [ html.Span('Time Elapsed: {}'.format(str(datetime.timedelta(seconds=int(time_elapsed)))), style=style), html.Span('Time Remaining: {}'.format(time_remaining), style=style), html.Span('Current Epoch: {}'.format(epoch_metrics), style=style) ] # Multiple components can update everytime interval gets fired. @app.callback(Output('iteration_loss_graph_CL', 'figure'), Input('interval_graph_CL', 'n_intervals')) def iteration_loss_graph_CL(n): # Loss Graph configuration # Using plotly subplots. May consider changing to others. iteration_loss_graph_fig = plotly.tools.make_subplots(rows=1, cols=1, vertical_spacing=1) iteration_loss_graph_fig['layout']['margin'] = { 'l': 80, 'r': 80, 'b': 50, 't': 80, 'autoexpand': False, } iteration_loss_graph_fig['layout']['legend'] = {'x': 0, 'y': 1, 'xanchor': 'left', 'title': 'Loss-Iteration Graph'} iteration_loss_graph_fig.update_layout(legend_title_text=123) iteration_loss_graph_fig.update_xaxes(title_text="Iteration", row=1, col=1) iteration_loss_graph_fig.update_yaxes(title_text="Loss", row=1, col=1) # If Hdict files does not exist, clear graph and lists for plotting. # Therefore, could reset graph by deleting the Hdict files. getTrainInfo = run.get_TrainInfo_CL() if not getTrainInfo: iterationList.clear() epochOfLossList.clear() lossList.clear() else: epoch_TrainInfo = getTrainInfo[2] loss = getTrainInfo[3] iteration = getTrainInfo[4] # Avoid duplicate output from Halcon. # Interval for this web app is set to 1 sec. However feedback from Halcon may take up tp 5 secs. # Using <in> with list, average time complexity: O(n) # if iteration not in iterationList: epochOfLossList.append(epoch_TrainInfo) lossList.append(loss) iterationList.append(iteration) # Add the values to graph and start plotting. iteration_loss_graph_fig.append_trace({ 'x': epochOfLossList, 'y': lossList, 'text': iterationList, 'name': 'iteration vs loss', 'mode': 'lines', 'type': 'scatter' }, 1, 1) return iteration_loss_graph_fig @app.callback(Output('top1_error_graph_CL', 'figure'), Input('interval_graph_CL', 'n_intervals')) def top1_error_graph_CL(n): # Top1 Error Graph configuration. # Using plotly subplots. May consider changing to others. top1_error_graph_fig = plotly.tools.make_subplots(rows=1, cols=1, vertical_spacing=1, ) top1_error_graph_fig['layout']['margin'] = { 'l': 80, 'r': 80, 'b': 100, 't': 80, 'autoexpand': False, } top1_error_graph_fig['layout']['legend'] = {'x': 0, 'y': 1, 'xanchor': 'left'} top1_error_graph_fig.update_xaxes(title_text="Epoch", row=1, col=1) top1_error_graph_fig.update_yaxes(title_text="Top1 Error", row=1, col=1) # If Hdict files does not exist, clear graph and lists for plotting. # Therefore, could reset graph by deleting the Hdict files. getEvaluationInfo = run.get_EvaluationInfo_CL() if not getEvaluationInfo: TrainSet_top1_error_valueList.clear() ValidationSet_top1_error_valueList.clear() epochOfTop1ErrorList.clear() else: epoch_EvaluationInfo = getEvaluationInfo[0] TrainSet_top1_error_value = getEvaluationInfo[1] ValidationSet_top1_error_value = getEvaluationInfo[2] # Avoid duplicate output from Halcon. # Interval for this web app is set to 1 sec. However feedback from Halcon may take up tp 5 secs. # Using <in> with list, average time complexity: O(n) if TrainSet_top1_error_value not in TrainSet_top1_error_valueList: epochOfTop1ErrorList.append(epoch_EvaluationInfo) TrainSet_top1_error_valueList.append(TrainSet_top1_error_value) ValidationSet_top1_error_valueList.append(ValidationSet_top1_error_value) # Add the values to graph and start plotting. # Two plots on the same graph. top1_error_graph_fig.append_trace({ 'x': epochOfTop1ErrorList, 'y': TrainSet_top1_error_valueList, 'name': 'Train Set Top1_error', 'mode': 'lines+markers', 'type': 'scatter' }, 1, 1) top1_error_graph_fig.append_trace({ 'x': epochOfTop1ErrorList, 'y': ValidationSet_top1_error_valueList, 'name': 'Validation Set Top1_error', 'mode': 'lines+markers', 'type': 'scatter' }, 1, 1) return top1_error_graph_fig ############################################ Object Detection ################################ @app.callback(Output('MinLevel_OD', 'children'), Output('MaxLevel_OD', 'children'), Output('AnchorNumSubscales_OD', 'children'), Output('AnchorAspectRatios_OD', 'children'), Output('Estimate_values_loading_OD', 'children'), Input('estimate_button_OD', 'n_clicks'), State('ImWidth_OD', 'value'), State('ImHeight_OD', 'value'), State('TrainingPercent_OD', 'value'), State('ValidationPercent_OD', 'value'), ) def estimate_value_OD(estimate_button_OD, ImWidth_OD, ImHeight_OD, TrainingPercent_OD, ValidationPercent_OD, ): Label_data_OD = 'C:/Users/930415/Desktop/Chadle_Projects/Chadle_Data/Object_Detection/NTBW_Image Analytics/NTBW_Initial_2.hdict' ctx_estimate_value_OD = dash.callback_context if not ctx_estimate_value_OD.triggered: button_id = 'Null' else: button_id = ctx_estimate_value_OD.triggered[0]['prop_id'].split('.')[0] if button_id == 'estimate_button_OD': estimate_value = run_OD.estimate_values_OD(ImWidth_OD, ImHeight_OD, TrainingPercent_OD, ValidationPercent_OD, Label_data_OD) DLDataset_preprocess = (estimate_value[0]) MinLevel_OD = (estimate_value[1]) MaxLevel_OD = (estimate_value[2]) AnchorNumSubscales_OD = (estimate_value[3]) estimate_value = [round(number, 3) for number in estimate_value[4]] print(estimate_value) AnchorAspectRatios_OD_String = ", ".join(str(number) for number in estimate_value) AnchorAspectRatios_OD = AnchorAspectRatios_OD_String return MinLevel_OD, MaxLevel_OD, AnchorNumSubscales_OD, AnchorAspectRatios_OD, ' ' else: return ' ', ' ', ' ', ' ', ' ' @app.callback(Output('training_output_OD', 'children'), Output('Training_loading_OD', 'children'), Input('operation_button_OD', 'n_clicks'), # State('ProjectName_OD', 'value'), State('ImWidth_OD', 'value'), State('ImHeight_OD', 'value'), State('TrainingPercent_OD', 'value'), State('ValidationPercent_OD', 'value'), State('MinLevel_Input_OD', 'value'), State('MaxLevel_Input_OD', 'value'), State('AnchorNumSubscales_Input_OD', 'value'), State('AnchorAspectRatios_Input_OD', 'value'), State('ImChannel_OD', 'value'), State('PretrainedModel_OD', 'value'), State('InstanceType_OD', 'value'), State('NumClasses_OD', 'value'), State('Capacity_OD', 'value'), State('AugmentationPercentage_OD', 'value'), State('Rotation_OD', 'value'), State('mirror_OD', 'value'), State('BrightnessVariation_OD', 'value'), State('BrightnessVariationSpot_OD', 'value'), State('RotationRange_OD', 'value'), State('BatchSize_OD', 'value'), State('InitialLearningRate_OD', 'value'), State('Momentum_OD', 'value'), State('NumEpochs_OD', 'value'), State('ChangeLearningRateEpochs_OD', 'value'), State('lr_change_OD', 'value'), State('WeightPrior_OD', 'value'), State('class_penalty_OD', 'value'), ) def operation_OD(operation_button_OD, ImWidth_OD, ImHeight_OD, TrainingPercent_OD, ValidationPercent_OD, MinLevel_Input_OD, MaxLevel_Input_OD, AnchorNumSubscales_Input_OD, AnchorAspectRatios_Input_OD, ImChannel_OD, PretrainedModel_OD, InstanceType_OD, NumClasses_OD, Capacity_OD, AugmentationPercentage_OD, Rotation_OD, mirror_OD, BrightnessVariation_OD, BrightnessVariationSpot_OD, RotationRange_OD, BatchSize_OD, InitialLearningRate_OD, Momentum_OD, NumEpochs_OD, ChangeLearningRateEpochs_OD, lr_change_OD, WeightPrior_OD, class_penalty_OD): Label_data_OD = 'C:/Users/930415/Desktop/Chadle_Projects/Chadle_Data/Object_Detection/NTBW_Image Analytics/NTBW_Initial_2.hdict' ctx_operation_OD = dash.callback_context if not ctx_operation_OD.triggered: button_id = 'Null' else: button_id = ctx_operation_OD.triggered[0]['prop_id'].split('.')[0] if button_id == 'operation_button_OD': estimate_value = run_OD.estimate_values_OD(ImWidth_OD, ImHeight_OD, TrainingPercent_OD, ValidationPercent_OD, Label_data_OD) DLDataset_preprocess = (estimate_value[0]) # If input empty, use Halcon estimate value. if MinLevel_Input_OD: MinLevel_OD = MinLevel_Input_OD else: MinLevel_OD = (estimate_value[1]) if MaxLevel_Input_OD: MaxLevel_OD = MaxLevel_Input_OD else: MaxLevel_OD = (estimate_value[2]) if AnchorNumSubscales_Input_OD: AnchorNumSubscales_OD = AnchorNumSubscales_Input_OD else: AnchorNumSubscales_OD = (estimate_value[3]) if AnchorAspectRatios_Input_OD: AnchorAspectRatios_OD = AnchorAspectRatios_Input_OD.split(',') else: AnchorAspectRatios_OD = (estimate_value[4]) print(ImChannel_OD) preprocess_OD = run_OD.preprocess_OD(ImWidth_OD, ImHeight_OD, ImChannel_OD, TrainingPercent_OD, ValidationPercent_OD, Label_data_OD, PretrainedModel_OD, InstanceType_OD, DLDataset_preprocess, MinLevel_OD, MaxLevel_OD, AnchorNumSubscales_OD, AnchorAspectRatios_OD, NumClasses_OD, Capacity_OD) DLDatasetFileName = preprocess_OD[0] DLPreprocessParamFileName = preprocess_OD[1] ModelFileName = preprocess_OD[2] prepare_for_training_OD = run_OD.prepare_for_training_OD(AugmentationPercentage_OD, Rotation_OD, mirror_OD, BrightnessVariation_OD, BrightnessVariationSpot_OD, RotationRange_OD, BatchSize_OD, InitialLearningRate_OD, Momentum_OD, NumEpochs_OD, ChangeLearningRateEpochs_OD, lr_change_OD, WeightPrior_OD, class_penalty_OD, DLDatasetFileName, DLPreprocessParamFileName, ModelFileName) DLModelHandle = prepare_for_training_OD[0][0] DLDataset = prepare_for_training_OD[1][0] TrainParam = prepare_for_training_OD[2][0] # Training training_OD = run_OD.training_OD(DLDataset, DLModelHandle, TrainParam) return ' ', ' ' # OD metrics and graphs @app.callback(Output('metrics_OD', 'children'), Input('interval_graph_OD', 'n_intervals')) def update_metrics_OD(n): # Indication Text configuration # Extract data from Hdict and show as texts. style = {'padding': '5px', 'fontSize': '16px'} get_metrics = run_OD.get_TrainInfo_OD() if get_metrics: time_elapsed = get_metrics[0] time_remaining = get_metrics[1] epoch_metrics = get_metrics[2] else: time_elapsed = 0 time_remaining = 0 epoch_metrics = 0 return [ html.Span('Time Elapsed: {}'.format(str(datetime.timedelta(seconds=int(time_elapsed)))), style=style), html.Span('Time Remaining: {}'.format(time_remaining), style=style), html.Span('Current Epoch: {}'.format(epoch_metrics), style=style) ] # Multiple components can update everytime interval gets fired. @app.callback(Output('iteration_loss_graph_OD', 'figure'), Input('interval_graph_OD', 'n_intervals')) def iteration_loss_graph_CL(n): # Loss Graph configuration # Using plotly subplots. May consider changing to others. iteration_loss_graph_fig = plotly.tools.make_subplots(rows=1, cols=1, vertical_spacing=1) iteration_loss_graph_fig['layout']['margin'] = { 'l': 80, 'r': 80, 'b': 50, 't': 80, 'autoexpand': False, } iteration_loss_graph_fig['layout']['legend'] = {'x': 0, 'y': 1, 'xanchor': 'left', 'title': 'Loss-Iteration Graph'} iteration_loss_graph_fig.update_layout(legend_title_text=123) iteration_loss_graph_fig.update_xaxes(title_text="Iteration", row=1, col=1) iteration_loss_graph_fig.update_yaxes(title_text="Loss", row=1, col=1) # If Hdict files does not exist, clear graph and lists for plotting. # Therefore, could reset graph by deleting the Hdict files. getTrainInfo = run_OD.get_TrainInfo_OD() if not getTrainInfo: iterationList.clear() epochOfLossList.clear() lossList.clear() else: epoch_TrainInfo = getTrainInfo[2] loss = getTrainInfo[3] iteration = getTrainInfo[4] # Avoid duplicate output from Halcon. # Interval for this web app is set to 1 sec. However feedback from Halcon may take up tp 5 secs. # Using <in> with list, average time complexity: O(n) if iteration not in iterationList: epochOfLossList.append(epoch_TrainInfo) lossList.append(loss) iterationList.append(iteration) # Add the values to graph and start plotting. iteration_loss_graph_fig.append_trace({ 'x': epochOfLossList, 'y': lossList, 'text': iterationList, 'name': 'iteration vs loss', 'mode': 'lines', 'type': 'scatter' }, 1, 1) return iteration_loss_graph_fig @app.callback(Output('mean_ap_graph_OD', 'figure'), Input('interval_graph_OD', 'n_intervals')) def mean_ap_graph_OD(n): # Mean AP Graph configuration. # Using plotly subplots. May consider changing to others. mean_ap_graph_fig = plotly.tools.make_subplots(rows=1, cols=1, vertical_spacing=1, ) mean_ap_graph_fig['layout']['margin'] = { 'l': 80, 'r': 80, 'b': 100, 't': 80, 'autoexpand': False, } mean_ap_graph_fig['layout']['legend'] = {'x': 0, 'y': 1, 'xanchor': 'left'} mean_ap_graph_fig.update_xaxes(title_text="Epoch", row=1, col=1) mean_ap_graph_fig.update_yaxes(title_text="Top1 Error", row=1, col=1) # If Hdict files does not exist, clear graph and lists for plotting. # Therefore, could reset graph by deleting the Hdict files. getEvaluationInfo = run_OD.get_EvaluationInfo_OD() if not getEvaluationInfo: TrainSet_mean_ap_valueList.clear() ValidationSet_mean_ap_valueList.clear() epochOfMeanAPList.clear() else: epoch_EvaluationInfo = getEvaluationInfo[0] TrainSet_mean_ap_value = getEvaluationInfo[1] ValidationSet_mean_ap_value = getEvaluationInfo[2] # Avoid duplicate output from Halcon. # Interval for this web app is set to 1 sec. However feedback from Halcon may take up tp 5 secs. # Using <in> with list, average time complexity: O(n) # if TrainSet_mean_ap_value not in TrainSet_mean_ap_valueList: epochOfMeanAPList.append(epoch_EvaluationInfo) TrainSet_mean_ap_valueList.append(TrainSet_mean_ap_value) ValidationSet_mean_ap_valueList.append(ValidationSet_mean_ap_value) # Add the values to graph and start plotting. # Two plots on the same graph. mean_ap_graph_fig.append_trace({ 'x': epochOfMeanAPList, 'y': TrainSet_mean_ap_valueList, 'name': 'Train Set Top1_error', 'mode': 'lines+markers', 'type': 'scatter' }, 1, 1) mean_ap_graph_fig.append_trace({ 'x': epochOfMeanAPList, 'y': ValidationSet_mean_ap_valueList, 'name': 'Validation Set Top1_error', 'mode': 'lines+markers', 'type': 'scatter' }, 1, 1) return mean_ap_graph_fig if __name__ == '__main__': app.run_server(debug=True)
the-stack_0_15048
# Copyright (C) 2019 Google Inc. # Licensed under http://www.apache.org/licenses/LICENSE-2.0 <see LICENSE file> from datetime import date from datetime import datetime from freezegun import freeze_time from mock import patch from ggrc.app import db from ggrc.notifications import common from ggrc.models import Notification from ggrc.models import Person from ggrc.models import all_models from ggrc_workflows.models import Cycle from integration.ggrc import TestCase from integration.ggrc.access_control import acl_helper from integration.ggrc.api_helper import Api from integration.ggrc.generator import ObjectGenerator from integration.ggrc_workflows.generator import WorkflowsGenerator class TestOneTimeWorkflowNotification(TestCase): """ This class contains simple one time workflow tests that are not in the gsheet test grid """ def setUp(self): super(TestOneTimeWorkflowNotification, self).setUp() self.api = Api() self.wf_generator = WorkflowsGenerator() self.object_generator = ObjectGenerator() self.random_objects = self.object_generator.generate_random_objects() self.random_people = self.object_generator.generate_random_people( user_role="Administrator" ) self.create_test_cases() def init_decorator(init): def new_init(self, *args, **kwargs): init(self, *args, **kwargs) if hasattr(self, "created_at"): self.created_at = datetime.now() return new_init Notification.__init__ = init_decorator(Notification.__init__) def test_one_time_wf_activate(self): def get_person(person_id): return db.session.query(Person).filter(Person.id == person_id).one() with freeze_time("2015-04-10"): _, wf = self.wf_generator.generate_workflow(self.one_time_workflow_1) _, cycle = self.wf_generator.generate_cycle(wf) self.wf_generator.activate_workflow(wf) person_2 = get_person(self.random_people[2].id) with freeze_time("2015-04-11"): _, notif_data = common.get_daily_notifications() self.assertIn(person_2.email, notif_data) self.assertIn("cycle_started", notif_data[person_2.email]) self.assertIn(cycle.id, notif_data[person_2.email]["cycle_started"]) self.assertIn("my_tasks", notif_data[person_2.email]["cycle_data"][cycle.id]) person_1 = get_person(self.random_people[0].id) with freeze_time("2015-05-03"): # two days befor due date _, notif_data = common.get_daily_notifications() self.assertIn(person_1.email, notif_data) self.assertNotIn("due_in", notif_data[person_1.email]) self.assertNotIn("due_today", notif_data[person_1.email]) with freeze_time("2015-05-04"): # one day befor due date _, notif_data = common.get_daily_notifications() self.assertEqual(len(notif_data[person_1.email]["due_in"]), 1) with freeze_time("2015-05-05"): # due date _, notif_data = common.get_daily_notifications() self.assertEqual(len(notif_data[person_1.email]["due_today"]), 1) @patch("ggrc.notifications.common.send_email") def test_one_time_wf_activate_single_person(self, mock_mail): with freeze_time("2015-04-10"): user = "[email protected]" _, wf = self.wf_generator.generate_workflow( self.one_time_workflow_single_person) _, cycle = self.wf_generator.generate_cycle(wf) self.wf_generator.activate_workflow(wf) with freeze_time("2015-04-11"): _, notif_data = common.get_daily_notifications() self.assertIn("cycle_started", notif_data[user]) self.assertIn(cycle.id, notif_data[user]["cycle_started"]) self.assertIn("my_tasks", notif_data[user]["cycle_data"][cycle.id]) self.assertIn("cycle_tasks", notif_data[user]["cycle_data"][cycle.id]) self.assertIn( "my_task_groups", notif_data[user]["cycle_data"][cycle.id]) self.assertIn("cycle_url", notif_data[user]["cycle_started"][cycle.id]) cycle = Cycle.query.get(cycle.id) cycle_data = notif_data[user]["cycle_data"][cycle.id] for task in cycle.cycle_task_group_object_tasks: self.assertIn(task.id, cycle_data["my_tasks"]) self.assertIn(task.id, cycle_data["cycle_tasks"]) self.assertIn("title", cycle_data["my_tasks"][task.id]) self.assertIn("title", cycle_data["cycle_tasks"][task.id]) self.assertIn("cycle_task_url", cycle_data["cycle_tasks"][task.id]) with freeze_time("2015-05-03"): # two days before due date _, notif_data = common.get_daily_notifications() self.assertIn(user, notif_data) self.assertNotIn("due_in", notif_data[user]) self.assertNotIn("due_today", notif_data[user]) with freeze_time("2015-05-04"): # one day before due date _, notif_data = common.get_daily_notifications() self.assertEqual(len(notif_data[user]["due_in"]), 2) with freeze_time("2015-05-05"): # due date _, notif_data = common.get_daily_notifications() self.assertEqual(len(notif_data[user]["due_today"]), 2) common.send_daily_digest_notifications() self.assertEqual(mock_mail.call_count, 1) def create_test_cases(self): def person_dict(person_id): return { "href": "/api/people/%d" % person_id, "id": person_id, "type": "Person" } role_id = all_models.AccessControlRole.query.filter( all_models.AccessControlRole.name == "Task Assignees", all_models.AccessControlRole.object_type == "TaskGroupTask", ).one().id self.one_time_workflow_1 = { "title": "one time test workflow", "description": "some test workflow", "notify_on_change": True, # admin will be current user with id == 1 "task_groups": [{ "title": "one time task group", "contact": person_dict(self.random_people[2].id), "task_group_tasks": [{ "title": "task 1", "description": "some task", "access_control_list": [ acl_helper.get_acl_json(role_id, self.random_people[0].id) ], "start_date": date(2015, 5, 1), # friday "end_date": date(2015, 5, 5), }, { "title": "task 2", "description": "some task", "access_control_list": [ acl_helper.get_acl_json(role_id, self.random_people[1].id) ], "start_date": date(2015, 5, 4), "end_date": date(2015, 5, 7), }], "task_group_objects": self.random_objects[:2] }, { "title": "another one time task group", "contact": person_dict(self.random_people[2].id), "task_group_tasks": [{ "title": "task 1 in tg 2", "description": "some task", "access_control_list": [ acl_helper.get_acl_json(role_id, self.random_people[0].id) ], "start_date": date(2015, 5, 8), # friday "end_date": date(2015, 5, 12), }, { "title": "task 2 in tg 2", "description": "some task", "access_control_list": [ acl_helper.get_acl_json(role_id, self.random_people[2].id) ], "start_date": date(2015, 5, 1), # friday "end_date": date(2015, 5, 5), }], "task_group_objects": [] }] } user = Person.query.filter(Person.email == "[email protected]").one().id self.one_time_workflow_single_person = { "title": "one time test workflow", "notify_on_change": True, "description": "some test workflow", # admin will be current user with id == 1 "task_groups": [{ "title": "one time task group", "contact": person_dict(user), "task_group_tasks": [{ "title": u"task 1 \u2062 WITH AN UMBRELLA ELLA ELLA. \u2062", "description": "some task. ", "access_control_list": [ acl_helper.get_acl_json(role_id, user) ], "start_date": date(2015, 5, 1), # friday "end_date": date(2015, 5, 5), }, { "title": "task 2", "description": "some task", "access_control_list": [ acl_helper.get_acl_json(role_id, user) ], "start_date": date(2015, 5, 4), "end_date": date(2015, 5, 7), }], "task_group_objects": self.random_objects[:2] }, { "title": "another one time task group", "contact": person_dict(user), "task_group_tasks": [{ "title": u"task 1 \u2062 WITH AN UMBRELLA ELLA ELLA. \u2062", "description": "some task", "access_control_list": [ acl_helper.get_acl_json(role_id, user) ], "start_date": date(2015, 5, 8), # friday "end_date": date(2015, 5, 12), }, { "title": "task 2 in tg 2", "description": "some task", "access_control_list": [ acl_helper.get_acl_json(role_id, user) ], "start_date": date(2015, 5, 1), # friday "end_date": date(2015, 5, 5), }], "task_group_objects": [] }] }
the-stack_0_15049
#!/usr/bin/env python3 import argparse import logging from db_test_meter.database import Database from db_test_meter.util import init_logger, collect_user_input, AppConfig def create_db(db: Database) -> None: """ Utility to create the db and table for the sync check :param db: :return: """ try: log.debug(f'creating database {AppConfig.TEST_DB_NAME}') db.run_query(f"DROP DATABASE IF EXISTS {AppConfig.TEST_DB_NAME}") db.run_query(f"CREATE DATABASE IF NOT EXISTS {AppConfig.TEST_DB_NAME}") log.debug(f'creating table {AppConfig.TEST_DB_TABLE}') db.run_query( f"CREATE TABLE {AppConfig.TEST_DB_NAME}.{AppConfig.TEST_DB_TABLE} (`test_run_id` varchar(50) NOT NULL, `index_id` int(10) unsigned NOT NULL, `created` int(8) NOT NULL)") print(f'Database {AppConfig.TEST_DB_NAME} created') print(f'Table {AppConfig.TEST_DB_NAME}.{AppConfig.TEST_DB_TABLE} created') except Exception as e: print(f'There was an error: {e}') parser = argparse.ArgumentParser( 'simple utility to create the db and table used by failover_test.py. Usage: ./create_failover_sync_db.py') parser.add_argument('--debug', action='store_true') init_logger(debug=parser.parse_args().debug) log = logging.getLogger() print('This will destroy and recreate sync database and tracking table') if (input("enter y to continue, n to exit [n]: ") or 'n').lower() == 'y': db_connection_metadata = collect_user_input() db = Database(db_connection_metadata) create_db(db) else: print('exiting...')
the-stack_0_15051
import numpy as np import torch import torch.nn as nn import torch.nn.functional as F def hidden_init(layer): fan_in = layer.weight.data.size()[0] lim = 1. / np.sqrt(fan_in) return -lim, lim class Actor(nn.Module): """Actor (Policy) Model.""" def __init__(self, state_size, action_size, seed, fc1_units=400, fc2_units=300, batch_norm=True): """Initialize parameters and build model. Params ====== state_size (int): Dimension of each state action_size (int): Dimension of each action seed (int): Random seed fc1_units (int): Number of nodes in first hidden layer fc2_units (int): Number of nodes in second hidden layer """ super(Actor, self).__init__() self.seed = torch.manual_seed(seed) self.batch_norm = batch_norm self.fc1 = nn.Linear(state_size, fc1_units) if batch_norm: self.bn1 = nn.BatchNorm1d(fc1_units) self.fc2 = nn.Linear(fc1_units, fc2_units) if batch_norm: self.bn2 = nn.BatchNorm1d(fc2_units) self.fc3 = nn.Linear(fc2_units, action_size) self.reset_parameters() def reset_parameters(self): self.fc1.weight.data.uniform_(*hidden_init(self.fc1)) self.fc2.weight.data.uniform_(*hidden_init(self.fc2)) self.fc3.weight.data.uniform_(-3e-3, 3e-3) def forward(self, state): """Build an actor (policy) network that maps states -> actions.""" if self.batch_norm: x = F.relu(self.bn1(self.fc1(state))) x = F.relu(self.bn2(self.fc2(x))) else: x = F.relu(self.fc1(state)) x = F.relu(self.fc2(x)) return torch.tanh(self.fc3(x)) class Critic(nn.Module): """Critic (Value) Model.""" def __init__(self, state_size, action_size, seed, fcs1_units=400, fc2_units=300, batch_norm=True): """Initialize parameters and build model. Params ====== state_size (int): Dimension of each state action_size (int): Dimension of each action seed (int): Random seed fcs1_units (int): Number of nodes in the first hidden layer fc2_units (int): Number of nodes in the second hidden layer """ super(Critic, self).__init__() self.seed = torch.manual_seed(seed) self.batch_norm = batch_norm self.fcs1 = nn.Linear(state_size, fcs1_units) self.bn1 = nn.BatchNorm1d(fcs1_units) self.fc2 = nn.Linear(fcs1_units+action_size, fc2_units) self.fc3 = nn.Linear(fc2_units, 1) self.reset_parameters() def reset_parameters(self): self.fcs1.weight.data.uniform_(*hidden_init(self.fcs1)) self.fc2.weight.data.uniform_(*hidden_init(self.fc2)) self.fc3.weight.data.uniform_(-3e-3, 3e-3) def forward(self, state, action): """Build a critic (value) network that maps (state, action) pairs -> Q-values.""" if self.batch_norm: xs = F.relu(self.bn1(self.fcs1(state))) else: xs = F.relu(self.fcs1(state)) x = torch.cat((xs, action), dim=1) x = F.relu(self.fc2(x)) return self.fc3(x)
the-stack_0_15052
from functools import reduce from operator import __mul__ import pytest from treevalue.tree import func_treelize, TreeValue, method_treelize, classmethod_treelize, delayed # noinspection DuplicatedCode @pytest.mark.unittest class TestTreeFuncFunc: def test_tree_value_type(self): class _MyTreeValue(TreeValue): pass @func_treelize(return_type=_MyTreeValue) def ssum(*args): return sum(args) t1 = TreeValue({'a': 1, 'b': 2, 'x': {'c': 3, 'd': 4}}) t2 = TreeValue({'a': 11, 'b': 22, 'x': {'c': 33, 'd': 44}}) tr1 = ssum(t1, t2) assert tr1 != TreeValue({'a': 12, 'b': 24, 'x': {'c': 36, 'd': 48}}) assert tr1 == _MyTreeValue({'a': 12, 'b': 24, 'x': {'c': 36, 'd': 48}}) assert isinstance(tr1, _MyTreeValue) assert isinstance(tr1.x, _MyTreeValue) @func_treelize(return_type=_MyTreeValue) def ssum2(*args): return sum(args), reduce(__mul__, args, 1) tr2 = ssum2(t1, t2) assert tr2 == _MyTreeValue({'a': (12, 11), 'b': (24, 44), 'x': {'c': (36, 99), 'd': (48, 176)}}) @func_treelize(return_type=_MyTreeValue, rise=True) def ssum3(*args): return sum(args), reduce(__mul__, args, 1) tr3, tr4 = ssum3(t1, t2) assert tr3 == _MyTreeValue({'a': 12, 'b': 24, 'x': {'c': 36, 'd': 48}}) assert tr4 == _MyTreeValue({'a': 11, 'b': 44, 'x': {'c': 99, 'd': 176}}) @func_treelize(return_type=_MyTreeValue, subside=True, rise=dict(template=(None, None))) def ssum4(args): return sum(args), reduce(__mul__, args, 1) tr5, tr6 = ssum4([t1, t2]) assert tr5 == _MyTreeValue({'a': 12, 'b': 24, 'x': {'c': 36, 'd': 48}}) assert tr6 == _MyTreeValue({'a': 11, 'b': 44, 'x': {'c': 99, 'd': 176}}) @func_treelize() def ssum5(a, b, c): return a + b * c t3 = TreeValue({'a': 31, 'b': 12, 'x': {'c': 43, 'd': 24}}) assert ssum5(1, c=3, b=5) == 16 assert ssum5(t2, c=t1, b=t3) == TreeValue({ 'a': 42, 'b': 46, 'x': { 'c': 162, 'd': 140, } }) assert ssum5(t2, c=2, b=t3) == TreeValue({ 'a': 73, 'b': 46, 'x': { 'c': 119, 'd': 92, } }) @func_treelize('outer', missing=lambda: 1) def ssum6(a, b, c): return a + b * c t4 = TreeValue({'a': 31, 'b': 12, 'x': {'c': 43}}) with pytest.raises(KeyError): ssum5(t2, c=2, b=t4) assert ssum6(t2, c=2, b=t4) == TreeValue({ 'a': 73, 'b': 46, 'x': { 'c': 119, 'd': 46, } }) @func_treelize('left') def ssum7(a, b, c): return a + b * c with pytest.raises(KeyError): ssum7(t2, c=2, b=t4) @func_treelize(inherit=False) def ssum8(a, b, c): return a + b * c with pytest.raises(TypeError): ssum8(t2, c=2, b=t1) def test_tree_value_type_none(self): @func_treelize(return_type=None) def ssum(*args): return sum(args) t1 = TreeValue({'a': 1, 'b': 2, 'x': {'c': 3, 'd': 4}}) t2 = TreeValue({'a': 11, 'b': 22, 'x': {'c': 33, 'd': 44}}) tr1 = ssum(t1, t2) assert tr1 is None def test_tree_value_type_invalid(self): class _MyTreeValue: pass with pytest.raises(TypeError): # noinspection PyTypeChecker @func_treelize(return_type=_MyTreeValue) def ssum(*args): return sum(args) with pytest.raises(TypeError): # noinspection PyTypeChecker @func_treelize(return_type=233) def ssum(*args): return sum(args) def test_method_treelize(self): class TreeNumber(TreeValue): @method_treelize() def _attr_extern(self, key): return getattr(self, key) @method_treelize('outer', missing=0) def __add__(self, other): return self + other @method_treelize('outer', missing=0) def __radd__(self, other): return other + self @method_treelize('outer', missing=0) def __sub__(self, other): return self - other @method_treelize('outer', missing=0) def __rsub__(self, other): return other - self @method_treelize() def __pos__(self): return +self @method_treelize() def __neg__(self): return -self @method_treelize() def __call__(self, *args, **kwargs): return self(*args, **kwargs) @method_treelize(return_type=TreeValue) def damn_it(self, x): return self + x t1 = TreeNumber({'a': 1, 'b': 2, 'x': {'c': 3, 'd': 4}}) t2 = TreeNumber({'a': 11, 'b': 22, 'x': {'c': 33, 'd': 5}}) assert (t1 + t2 + 1) == TreeNumber({'a': 13, 'b': 25, 'x': {'c': 37, 'd': 10}}) assert (t1 - t2) == TreeNumber({'a': -10, 'b': -20, 'x': {'c': -30, 'd': -1}}) assert (1 - t2) == TreeNumber({'a': -10, 'b': -21, 'x': {'c': -32, 'd': -4}}) assert t1.damn_it(2) == TreeValue({'a': 3, 'b': 4, 'x': {'c': 5, 'd': 6}}) class P: def __init__(self, value): self.__value = value @property def value(self): return self.__value def vv(self): return self.__value + 1 ttt = TreeNumber({"a": P(1), "b": P(2), "x": {"c": P(3), "d": P(4)}}) assert ttt.value == TreeNumber({'a': 1, 'b': 2, 'x': {'c': 3, 'd': 4}}) assert ttt.vv() == TreeNumber({'a': 2, 'b': 3, 'x': {'c': 4, 'd': 5}}) with pytest.warns(UserWarning): class MyTreeValue(TreeValue): @method_treelize(self_copy=True, rise=True) def __iadd__(self, other): return self + other def test_classmethod_treelize(self): class TestUtils: @classmethod @classmethod_treelize('outer', missing=0, return_type=TreeValue) def add(cls, a, b): return cls, a + b @classmethod @classmethod_treelize(return_type=TreeValue) def add2(cls, a, b): return cls, a + b assert TestUtils.add(1, 2) == (TestUtils, 3) assert TestUtils.add(TreeValue({'a': 1, 'b': 2}), 2) == TreeValue({'a': (TestUtils, 3), 'b': (TestUtils, 4)}) assert TestUtils.add2(TreeValue({'a': 1, 'b': 2}), TreeValue({'a': 12, 'b': 22})) == TreeValue( {'a': (TestUtils, 13), 'b': (TestUtils, 24)}) class MyTreeValue(TreeValue): @classmethod @classmethod_treelize() def plus(cls, x, y): return x + y assert MyTreeValue.plus(TreeValue({'a': 1, 'b': 2}), 2) == MyTreeValue({'a': 3, 'b': 4}) def test_missing(self): @func_treelize(mode='outer', missing=lambda: []) def append(arr: list, *args): for item in args: if item: arr.append(item) return arr t0 = TreeValue({}) t1 = TreeValue({'a': 2, 'b': 7, 'x': {'c': 4, 'd': 9}}) t2 = TreeValue({'a': 4, 'b': 48, 'x': {'c': -11, 'd': 54}}) t3 = TreeValue({'a': 9, 'b': -12, 'x': {'c': 3, 'd': 4}}) assert append(t0, t1, t2, t3) == TreeValue({ 'a': [2, 4, 9], 'b': [7, 48, -12], 'x': { 'c': [4, -11, 3], 'd': [9, 54, 4], } }) t0 = TreeValue({}) t1 = TreeValue({'a': 2, 'x': {'c': 4, 'd': 9}}) t2 = TreeValue({'a': 4, 'b': 48, 'x': {'d': 54}}) t3 = TreeValue({'b': -12, 'x': 7, 'y': {'e': 3, 'f': 4}}) assert append(t0, t1, t2, t3) == TreeValue({ 'a': [2, 4], 'b': [48, -12], 'x': { 'c': [4, 7], 'd': [9, 54, 7], }, 'y': { 'e': [3], 'f': [4], }, }) def test_delay_support(self): @func_treelize(return_type=TreeValue) def f(x, y, z): return x + y * 2 + z * 3 t1 = TreeValue({ 'a': 1, 'b': delayed(lambda x: x ** 2, 3), 'c': {'x': 2, 'y': delayed(lambda: 4)}, }) t2 = TreeValue({ 'a': delayed(lambda x: x + 1, t1.a), 'b': delayed(lambda: t1.c.y), 'c': delayed(lambda: 5), }) t3 = delayed(lambda: 6) assert f(t1, t2, t3) == TreeValue({ 'a': 23, 'b': 35, 'c': {'x': 30, 'y': 32}, }) t1 = TreeValue({ 'a': 1, 'b': delayed(lambda x: x ** 2, 3), 'c': {'x': 2, 'y': delayed(lambda: 4)}, }) t2 = TreeValue({ 'a': delayed(lambda x: x + 1, t1.a), 'b': delayed(lambda: t1.c.y), 'c': delayed(lambda: 5), }) t3 = delayed(lambda: 6) assert f(x=t1, y=t2, z=t3) == TreeValue({ 'a': 23, 'b': 35, 'c': {'x': 30, 'y': 32}, }) def test_delayed_treelize(self): t1 = TreeValue({ 'a': 1, 'b': 2, 'x': {'c': 3, 'd': 4}, }) t2 = TreeValue({ 'a': 11, 'b': 23, 'x': {'c': 35, 'd': 47}, }) cnt_1 = 0 @func_treelize(delayed=True) def total(a, b): nonlocal cnt_1 cnt_1 += 1 return a + b # positional t3 = total(t1, t2) assert cnt_1 == 0 assert t3.a == 12 assert cnt_1 == 1 assert t3.x == TreeValue({'c': 38, 'd': 51}) assert cnt_1 == 3 assert t3 == TreeValue({ 'a': 12, 'b': 25, 'x': {'c': 38, 'd': 51} }) assert cnt_1 == 4 # keyword cnt_1 = 0 t3 = total(a=t1, b=t2) assert cnt_1 == 0 assert t3.a == 12 assert cnt_1 == 1 assert t3.x == TreeValue({'c': 38, 'd': 51}) assert cnt_1 == 3 assert t3 == TreeValue({ 'a': 12, 'b': 25, 'x': {'c': 38, 'd': 51} }) assert cnt_1 == 4 # positional, with constant cnt_1 = 0 t3 = total(1, t2) assert cnt_1 == 0 assert t3.a == 12 assert cnt_1 == 1 assert t3.x == TreeValue({'c': 36, 'd': 48}) assert cnt_1 == 3 assert t3 == TreeValue({ 'a': 12, 'b': 24, 'x': {'c': 36, 'd': 48} }) assert cnt_1 == 4 # keyword, with constant cnt_1 = 0 t3 = total(b=1, a=t2) assert cnt_1 == 0 assert t3.a == 12 assert cnt_1 == 1 assert t3.x == TreeValue({'c': 36, 'd': 48}) assert cnt_1 == 3 assert t3 == TreeValue({ 'a': 12, 'b': 24, 'x': {'c': 36, 'd': 48} }) assert cnt_1 == 4 # positional, with delay cnt_1 = 0 t4 = TreeValue({'v': delayed(lambda: t1)}) t5 = TreeValue({'v': delayed(lambda: t2)}) t6 = total(t4, t5) assert cnt_1 == 0 assert t6.v.a == 12 assert cnt_1 == 1 assert t6.v.x == TreeValue({'c': 38, 'd': 51}) assert cnt_1 == 3 assert t6 == TreeValue({ 'v': {'a': 12, 'b': 25, 'x': {'c': 38, 'd': 51}}, }) assert cnt_1 == 4 # keyword, with delay cnt_1 = 0 t4 = TreeValue({'v': delayed(lambda: t1)}) t5 = TreeValue({'v': delayed(lambda: t2)}) t6 = total(a=t4, b=t5) assert cnt_1 == 0 assert t6.v.a == 12 assert cnt_1 == 1 assert t6.v.x == TreeValue({'c': 38, 'd': 51}) assert cnt_1 == 3 assert t6 == TreeValue({ 'v': {'a': 12, 'b': 25, 'x': {'c': 38, 'd': 51}}, }) assert cnt_1 == 4
the-stack_0_15054
__author__ = 'Simon' import json import re import urllib.request import html fnc_base_url = 'http://cbateam.github.io/CBA_A3/docs/index/' fnc_page_names = ['Functions', 'Functions2', 'Functions3'] fncPrefix = 'CBA_fnc_' macro_base_url = 'http://cbateam.github.io/CBA_A3/docs/files/main/script_macros_common-hpp.html' f = urllib.request.urlopen(macro_base_url) content = f.read().decode("utf-8") f.close() allMacros = re.findall(r'<div class=CTopic><h3 class=CTitle><a name="[^"]*"></a>([^<]*)</h3><div class=CBody>(.*?)</div>',content,re.DOTALL) for macroContent in allMacros: c = re.search(r'(.*?)(<h4 class=CHeading>Parameters</h4>.*?)?(<h4 class=CHeading>Example</h4>.*?)?(?:<h4 class=CHeading>Author</h4>.*?)',macroContent[1],re.DOTALL) if c: description = c.group(1) descriptionTable = re.findall(r'<tr><td class=CDLEntry>(.*?)</td><td class=CDLDescription>(.*?)</td></tr>',macroContent[1],re.DOTALL) for tableEntry in descriptionTable: re.search(r'(.*?)(<h4 class=CHeading>Parameters</h4>.*?)?(<h4 class=CHeading>Example</h4>.*?)?(?:<h4 class=CHeading>Author</h4>.*?)',macroContent[1],re.DOTALL) output = [] functionList = [] for fnc_page in fnc_page_names: f = urllib.request.urlopen(fnc_base_url + fnc_page + '.html') content = f.read().decode("utf-8") f.close() allFunctions = re.findall(r'<a[^>]*href\s*=\s*"([^"]*)"[^>]*class=ISymbol[^>]*>([^<]*)',content) for function in allFunctions: outputTemplate = {} outputTemplate['rightLabel'] = "CBA Function" outputTemplate['text'] = '' outputTemplate['description'] = '' outputTemplate['type'] = 'function' outputTemplate['descriptionMoreURL'] = fnc_base_url + function[0] print(function[1]) functionList.append(function[1]) f = urllib.request.urlopen(outputTemplate['descriptionMoreURL']) content = f.read().decode("utf-8") f.close() nameRegex = re.search(r'<a name="([^"]*)">',content) if nameRegex: outputTemplate['text'] = nameRegex.group(1) descriptionRegex = re.search(r'<h4 class=CHeading>Description</h4>(.*)<h4 class=CHeading>Parameters</h4>',content) if descriptionRegex: outputTemplate['description'] = str(html.unescape(re.sub(r'(<[^<]+?>)','',descriptionRegex.group(1)).strip())) output.append(outputTemplate) autocompleteDict = { '.source.sqf': { 'autocomplete': { 'symbols':{ 'CBAfunctions':{ 'suggestions': output } } } } } with open('../settingsAvailable/language-sqf-functions-cba.json', 'w') as f: json.dump(autocompleteDict,f,indent=2) with open('grammars-sqf-functions-cba.json', 'w') as f: f.write('|'.join(functionList)) print("\nCopy contents of 'grammars-sqf-functions-cba.json' into the 'support.function.cba.sqf' section of 'grammars/sqf.json'")
the-stack_0_15056
""" Post-processing function that takes a case_data_set and outputs a csv file """ import csv # pylint: disable=E0611,F0401 from openmdao.main.case import flatten_obj def caseset_query_to_csv(data, filename='cases.csv', delimiter=',', quotechar='"'): """ Post-processing function that takes a case_data_set and outputs a csv file. Should be able to pass tests of current csv case recorder (column ordering, meta column, etc...) Assume query by case (not variable). Inputs: data - results of fetch on Query object """ cds = data.cds drivers = {} for driver in cds.drivers: drivers[driver['_id']] = driver['name'] # Determine inputs & outputs, map pseudos to expression names. expressions = cds.simulation_info['expressions'] metadata = cds.simulation_info['variable_metadata'] inputs = [] outputs = [] pseudos = {} for name in sorted(data[0].keys()): # All inputs and outputs that change. if name in metadata: if metadata[name]['iotype'] == 'in': inputs.append(name) else: outputs.append(name) # Include objectives and constraints from all simulation levels. elif '_pseudo_' in name and not name.endswith('.out0'): for exp_name, exp_dict in expressions.items(): if exp_dict['pcomp_name'] == name: pseudos[name] = '%s(%s)' % (exp_dict['data_type'], exp_name) break else: raise RuntimeError('Cannot find %r in expressions' % name) outputs.append(name) # Allow private vars from components. elif '.' in name: outputs.append(name) # Open CSV file outfile = open(filename, 'wb') csv_writer = csv.writer(outfile, delimiter=delimiter, quotechar=quotechar, quoting=csv.QUOTE_NONNUMERIC) # No automatic data type conversion is performed unless the # QUOTE_NONNUMERIC format option is specified (in which case unquoted # fields are transformed into floats). # Write the data # data is a list of lists where the inner list is the values and metadata # for a case sorted_input_keys = [] sorted_input_values = [] sorted_output_keys = [] sorted_output_values = [] for i, row in enumerate( data ): input_keys = [] input_values = [] for name in inputs: obj = row[ row.name_map[ name ] ] for key, value in flatten_obj(name, obj): input_keys.append(key) input_values.append(value) output_keys = [] output_values = [] for name in outputs: obj = row[ row.name_map[ name ] ] if name in pseudos: name = pseudos[name] for key, value in flatten_obj(name, obj): output_keys.append(key) output_values.append(value) # This should not be necessary, however python's csv writer # is not writing boolean variables correctly as strings. for index, item in enumerate(input_values): if isinstance(item, bool): input_values[index] = str(item) for index, item in enumerate(output_values): if isinstance(item, bool): output_values[index] = str(item) # Sort the columns alphabetically. if len(input_keys) > 0: sorted_input_keys, sorted_input_values = \ (list(item) for item in zip(*sorted(zip(input_keys, input_values)))) if len(output_keys) > 0: sorted_output_keys, sorted_output_values = \ (list(item) for item in zip(*sorted(zip(output_keys, output_values)))) if outfile is None: raise RuntimeError('Attempt to record on closed recorder') if i == 0: headers = ['timestamp', '/INPUTS'] headers.extend(sorted_input_keys) headers.append('/OUTPUTS') headers.extend(sorted_output_keys) headers.extend(['/METADATA', 'uuid', 'parent_uuid', 'msg']) csv_writer.writerow(headers) header_size = len(headers) timestamp = row[ row.name_map[ 'timestamp' ] ] csv_data = [timestamp] csv_data.append('') csv_data.extend(sorted_input_values) csv_data.append('') csv_data.extend(sorted_output_values) exc = row[ row.name_map[ 'error_message' ] ] msg = '' if exc is None else str(exc) case_uuid = row[ row.name_map[ '_id' ] ] parent_uuid = row[ row.name_map[ '_parent_id' ] ] csv_data.extend(['', case_uuid, parent_uuid, msg]) if header_size != len(csv_data): raise RuntimeError("number of data points (%d) doesn't match header" " size (%d) in CSV recorder" % (len(csv_data), header_size)) csv_writer.writerow(csv_data) outfile.close()
the-stack_0_15058
from tkinter import Frame, Canvas, Tk, Text, LEFT, INSERT, END, messagebox, Button, X from alarming_service import time_diff def GUI_present(): root = Tk() canvas = Canvas(root) canvas.pack() frame = Frame(canvas) frame.pack() top_text = Text(frame) top_text.insert( INSERT, "Welcome to the Simple Alarming Service" ) top_text.pack() alarm_set = Button(frame, text="Set and Deploy Alarm", command=time_diff) alarm_set.pack(fill=X) root.mainloop() if __name__ == "__main__": GUI_present()
the-stack_0_15059
""" This is a file includes the main function for gym atari reinforcement learning. """ import os import gym import numpy as np from argparse_decorate import init_parser, add_arg from deep_q_learning import DQLAtari from sac_discrete import SoftActorCriticsDiscrete @init_parser() @add_arg('--start_episode', type=int, default=0, help='A number for start episode index.') @add_arg('--eval', type=bool, default=False, help='True means evaluate model only.') @add_arg('--game_index', type=int, default=1, choices=[0, 1, 2], help='Represent Breakout, MsPacman and Pong respectively.') @add_arg('--env_name', type=str, default=None, help='The name of the gym atari environment.') @add_arg('--memory_size', type=int, default=100000, help='The size of the memory space.') @add_arg('--start_epsilon', type=float, default=1.0, help='The probability for random actions.') @add_arg('--min_epsilon', type=float, default=0.05, help='The probability for random actions.') @add_arg('--reward_clip', type=bool, default=False, help='Clip reward in [-1, 1] range if True.') @add_arg('--live_penalty', type=bool, default=True, help='Penalties when agent lose a life in the game.') @add_arg('--agent', type=str, default='dsac', choices=['dql', 'dsac'], help='Deep Q-learning and discrete soft Actor-Critics algorithms.') def main(**kwargs): """ The main function for gym atari reinforcement learning. """ atari_game = ['BreakoutNoFrameskip-v4', 'MsPacmanNoFrameskip-v4', 'PongNoFrameskip-v4'] env_name = kwargs['env_name'] if kwargs['env_name'] is not None else atari_game[kwargs['game_index']] dirs = './' + env_name if not os.path.exists(dirs): os.makedirs(dirs) img_size = (4, 84, 84) env = gym.make(env_name) memory_par = (kwargs['memory_size'], img_size) action_space = np.array([i for i in range(env.action_space.n)], dtype=np.uint8) game = (env_name, env, kwargs['live_penalty']) if kwargs['agent'] == 'dql': agent = DQLAtari(memory_par=memory_par, action_space=action_space, game=game, reward_clip=kwargs['reward_clip'], epsilon=(kwargs['start_epsilon'], kwargs['min_epsilon'])) elif kwargs['agent'] == 'dsac': agent = SoftActorCriticsDiscrete(memory_par=memory_par, action_space=action_space, game=game, reward_clip=kwargs['reward_clip']) else: raise Exception('The agent does not exist.') agent.simulate(net_path=dirs, start_episodes=kwargs['start_episode'], eval=kwargs['eval'], start_frames=0) if __name__ == '__main__': main()
the-stack_0_15060
class GPX: def __init__(self,filename): self.fd = open(filename,"w") self.fd.write('<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>\n') self.fd.write('<gpx version="1.1"\n') self.fd.write(' creator="Osmawalk - https://github.com/xtompok/osmawalk"\n') self.fd.write(' xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"\n') self.fd.write(' xmlns="http://www.topografix.com/GPX/1/1"\n') self.fd.write(' xsi:schemaLocation="http://www.topografix.com/GPX/1/1 http://www.topografix.com/GPX/1/1/gpx.xsd">\n') self.wpts = [] def close(self): for wpt in self.wpts: self.fd.write(str(wpt)) self.wpts = [] self.fd.write('</gpx>\n'); self.fd.close() def writeTrack(self,track): self.startTrack() for point in track: self.writeTrkpt(point[0],point[1],point[2]) self.endTrack() def addWpt(self,name,lat,lon,ele): self.wpts.append(Wpt(name,lat,lon,ele)) def startTrack(self): self.fd.write('<trk>\n<trkseg>\n') def endTrack(self): self.fd.write('</trkseg>\n</trk>\n') for wpt in self.wpts: self.fd.write(str(wpt)) self.wpts = [] def writeTrkpt(self,lat,lon,ele): self.fd.write(' <trkpt lat="'+str(lat)+'" lon="'+str(lon)+'">\n') self.fd.write(' <ele>'+str(ele)+'</ele>\n') self.fd.write(' </trkpt>\n') class Wpt: def __init__(self,aname,alat,alon,anele): self.name = aname self.lat = alat self.lon = alon self.ele = anele def __str__(self): start='<wpt lat="'+str(self.lat)+'" lon="'+str(self.lon)+'">\n' inner=' <name>'+str(self.name)+'</name>\n <ele>'+str(self.ele)+'</ele>\n' end='</wpt>\n' return start+inner+end
the-stack_0_15063
#!/usr/bin/env python # # __COPYRIGHT__ # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # __revision__ = "__FILE__ __REVISION__ __DATE__ __DEVELOPER__" """ Ensure that projects with multiple translation catalogs maintain translation files correctly. """ # There was a bug that affected the `Translate()` when no targets were provided # explicitelly via argument list. If, for exapmle, `pkg1/SConscript` and # `pkg2/SConscript` scripts in some project `p1` had: # # Translate(LINGUAS_FILE = 1) # # then target languages defined in `pkg1/LINGUAS` would affect the list of # target languages emitted by `pkg2/SConscript` and vice versa. # # The pull request #64 on bitbucket fixes this. Here is the test case to # replicate the bug. import TestSCons from os import path test = TestSCons.TestSCons() if not test.where_is('xgettext'): test.skip_test("could not find 'xgettext'; skipping test(s)\n") if not test.where_is('msgmerge'): test.skip_test("Could not find 'msgmerge'; skipping test(s)\n") if not test.where_is('msginit'): test.skip_test("could not find 'msginit'; skipping test(s)\n") if not test.where_is('msgfmt'): test.skip_test("could not find 'msgfmt'; skipping test(s)\n") ############################################################################# # Test case 1 ############################################################################# test.subdir(['tc1']) test.write( ['tc1', 'SConstruct'], """ env = Environment( tools = ["default", "gettext"] ) env.Replace(POAUTOINIT = 1) env.Replace(LINGUAS_FILE = 1) SConscript(["pkg1/SConscript", "pkg2/SConscript"], exports = ["env"]) """) # package `pkg1` test.subdir(['tc1', 'pkg1']) test.write( ['tc1', 'pkg1', 'LINGUAS'], """ en pl """) test.write( ['tc1', 'pkg1', 'SConscript'], """ Import("env") env.Translate(source = ['a.cpp']) """) test.write(['tc1', 'pkg1', 'a.cpp'], """ gettext("Hello from pkg1/a.cpp") """ ) # package `pkg2` test.subdir(['tc1', 'pkg2']) test.write( ['tc1', 'pkg2', 'LINGUAS'], """ de fr """) test.write( ['tc1', 'pkg2', 'SConscript'], """ Import("env") env.Translate(source = ['b.cpp']) """) test.write(['tc1', 'pkg2', 'b.cpp'], """ gettext("Hello from pkg2/b.cpp") """ ) # NOTE: msgmerge(1) prints its messages to stderr, we must ignore them, # So, stderr=None is crucial here. It is no point to match stderr to some # specific valuse; the messages are internationalized :) ). test.run(arguments = 'po-update', chdir = 'tc1', stderr = None) test.must_exist( ['tc1', 'pkg1', 'en.po'] ) test.must_exist( ['tc1', 'pkg1', 'pl.po'] ) test.must_not_exist(['tc1', 'pkg1', 'de.po'] ) test.must_not_exist(['tc1', 'pkg1', 'fr.po'] ) test.must_exist( ['tc1', 'pkg2', 'de.po'] ) test.must_exist( ['tc1', 'pkg2', 'fr.po'] ) test.must_not_exist(['tc1', 'pkg2', 'en.po'] ) test.must_not_exist(['tc1', 'pkg2', 'pl.po'] ) test.pass_test() # Local Variables: # tab-width:4 # indent-tabs-mode:nil # End: # vim: set expandtab tabstop=4 shiftwidth=4:
the-stack_0_15065
import torch import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 32, 3, 1) self.conv2 = nn.Conv2d(32, 64, 3, 1) self.dropout1 = nn.Dropout(0.25) self.dropout2 = nn.Dropout(0.5) self.fc1 = nn.Linear(9216, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, 2) x = self.dropout1(x) x = torch.flatten(x, 1) x = self.fc1(x) x = F.relu(x) x = self.dropout2(x) x = self.fc2(x) output = F.log_softmax(x, dim=1) return output
the-stack_0_15066
import os import sys import psutil from monk.pytorch_prototype import prototype from monk.compare_prototype import compare from monk.pip_unit_tests.pytorch.common import print_start from monk.pip_unit_tests.pytorch.common import print_status import torch import numpy as np from monk.pytorch.losses.return_loss import load_loss def test_block_inception_c(system_dict): forward = True; test = "test_block_inception_c"; system_dict["total_tests"] += 1; print_start(test, system_dict["total_tests"]) if(forward): try: gtf = prototype(verbose=0); gtf.Prototype("sample-project-1", "sample-experiment-1"); network = []; network.append(gtf.inception_c_block(channels_7x7=3, pool_type="avg")); network.append(gtf.inception_c_block(channels_7x7=3, pool_type="max")); gtf.Compile_Network(network, data_shape=(1, 64, 64), use_gpu=False); x = torch.randn(1, 1, 64, 64); y = gtf.system_dict["local"]["model"](x); system_dict["successful_tests"] += 1; print_status("Pass"); except Exception as e: system_dict["failed_tests_exceptions"].append(e); system_dict["failed_tests_lists"].append(test); forward = False; print_status("Fail"); else: system_dict["skipped_tests_lists"].append(test); print_status("Skipped"); return system_dict
the-stack_0_15067
import asyncio import logging import time from typing import Iterable import uvicorn from fastapi import FastAPI from fastapi.responses import RedirectResponse from async_batch.batch_processor import BatchProcessor, TaskQueue log = logging.getLogger(__file__) LOGGING_CONFIG = { "version": 1, "disable_existing_loggers": False, "formatters": { "default": { "()": "uvicorn.logging.DefaultFormatter", "fmt": "%(asctime)-15s %(levelprefix)s %(message)s", "use_colors": None, }, "access": { "()": "uvicorn.logging.AccessFormatter", "fmt": '%(asctime)-15s %(levelprefix)s %(client_addr)s - "%(request_line)s" %(status_code)s', }, }, "handlers": { "default": { "formatter": "default", "class": "logging.StreamHandler", "stream": "ext://sys.stderr", }, "access": { "formatter": "access", "class": "logging.StreamHandler", "stream": "ext://sys.stdout", }, }, "loggers": { "": {"handlers": ["default"], "level": "DEBUG"}, "uvicorn.error": {"level": "DEBUG"}, "uvicorn.access": {"handlers": ["access"], "level": "DEBUG", "propagate": False}, }, } class ExampleBatchProcessor(BatchProcessor): def _process(self, batch_data: Iterable[int]) -> Iterable[int]: return [x ** 2 for x in batch_data] def __init__(self, batch_size: int): self.batch_size = batch_size def get_batch_size(self) -> int: return self.batch_size tq = TaskQueue( batch_processor=ExampleBatchProcessor(2), max_wait_time=3 ) app = FastAPI( title="Async Batcher Example Project", version="0.1", description="Async Batch Project", ) app.task_queue = tq @app.on_event("startup") async def start_task_queue(): log.info("Starting Task Queue") app.task_queue.start() @app.on_event("shutdown") async def start_task_queue(): log.info("Stopping Task Queue") app.task_queue.stop() @app.get("/") async def read_root(): """ Got to document """ return RedirectResponse("docs") @app.post("/set/interval") async def set_interval(interval: float): """ Got to document """ app.task_queue._interval = interval return {"status": "success"} @app.post("/set/batch_size") async def set_batch_size(batch_size: int): """ Got to document """ app.task_queue._batch_processor.batch_size = batch_size return {"status": "success"} @app.get("/test") async def api_test(number: int): log.info(f"Request come in with number={number}") if not app.task_queue.is_alive(): if not app.task_queue.stop(): app.task_queue.start() start_time = time.time() data = await asyncio.wait_for( app.task_queue.async_submit(number), timeout=app.task_queue._interval + 1.0 ) spent = time.time() - start_time return { "status": "success", "result": data, "used_time": spent } if __name__ == '__main__': uvicorn.run(app, log_config=LOGGING_CONFIG)
the-stack_0_15068
"""Registers functions to be called if an exception or signal occurs.""" import functools import logging import signal import traceback # pylint: disable=unused-import, no-name-in-module from acme.magic_typing import Any, Callable, Dict, List, Union # pylint: enable=unused-import, no-name-in-module from certbot import errors from certbot.compat import os logger = logging.getLogger(__name__) # _SIGNALS stores the signals that will be handled by the ErrorHandler. These # signals were chosen as their default handler terminates the process and could # potentially occur from inside Python. Signals such as SIGILL were not # included as they could be a sign of something devious and we should terminate # immediately. if os.name != "nt": _SIGNALS = [signal.SIGTERM] for signal_code in [signal.SIGHUP, signal.SIGQUIT, signal.SIGXCPU, signal.SIGXFSZ]: # Adding only those signals that their default action is not Ignore. # This is platform-dependent, so we check it dynamically. if signal.getsignal(signal_code) != signal.SIG_IGN: _SIGNALS.append(signal_code) else: # POSIX signals are not implemented natively in Windows, but emulated from the C runtime. # As consumed by CPython, most of handlers on theses signals are useless, in particular # SIGTERM: for instance, os.kill(pid, signal.SIGTERM) will call TerminateProcess, that stops # immediately the process without calling the attached handler. Besides, non-POSIX signals # (CTRL_C_EVENT and CTRL_BREAK_EVENT) are implemented in a console context to handle the # CTRL+C event to a process launched from the console. Only CTRL_C_EVENT has a reliable # behavior in fact, and maps to the handler to SIGINT. However in this case, a # KeyboardInterrupt is raised, that will be handled by ErrorHandler through the context manager # protocol. Finally, no signal on Windows is electable to be handled using ErrorHandler. # # Refs: https://stackoverflow.com/a/35792192, https://maruel.ca/post/python_windows_signal, # https://docs.python.org/2/library/os.html#os.kill, # https://www.reddit.com/r/Python/comments/1dsblt/windows_command_line_automation_ctrlc_question _SIGNALS = [] class ErrorHandler(object): """Context manager for running code that must be cleaned up on failure. The context manager allows you to register functions that will be called when an exception (excluding SystemExit) or signal is encountered. Usage:: handler = ErrorHandler(cleanup1_func, *cleanup1_args, **cleanup1_kwargs) handler.register(cleanup2_func, *cleanup2_args, **cleanup2_kwargs) with handler: do_something() Or for one cleanup function:: with ErrorHandler(func, args, kwargs): do_something() If an exception is raised out of do_something, the cleanup functions will be called in last in first out order. Then the exception is raised. Similarly, if a signal is encountered, the cleanup functions are called followed by the previously received signal handler. Each registered cleanup function is called exactly once. If a registered function raises an exception, it is logged and the next function is called. Signals received while the registered functions are executing are deferred until they finish. """ def __init__(self, func, *args, **kwargs): self.call_on_regular_exit = False self.body_executed = False self.funcs = [] # type: List[Callable[[], Any]] self.prev_handlers = {} # type: Dict[int, Union[int, None, Callable]] self.received_signals = [] # type: List[int] if func is not None: self.register(func, *args, **kwargs) def __enter__(self): self.body_executed = False self._set_signal_handlers() def __exit__(self, exec_type, exec_value, trace): self.body_executed = True retval = False # SystemExit is ignored to properly handle forks that don't exec if exec_type is SystemExit: return retval elif exec_type is None: if not self.call_on_regular_exit: return retval elif exec_type is errors.SignalExit: logger.debug("Encountered signals: %s", self.received_signals) retval = True else: logger.debug("Encountered exception:\n%s", "".join( traceback.format_exception(exec_type, exec_value, trace))) self._call_registered() self._reset_signal_handlers() self._call_signals() return retval def register(self, func, *args, **kwargs): # type: (Callable, *Any, **Any) -> None """Sets func to be run with the given arguments during cleanup. :param function func: function to be called in case of an error """ self.funcs.append(functools.partial(func, *args, **kwargs)) def _call_registered(self): """Calls all registered functions""" logger.debug("Calling registered functions") while self.funcs: try: self.funcs[-1]() except Exception: # pylint: disable=broad-except logger.error("Encountered exception during recovery: ", exc_info=True) self.funcs.pop() def _set_signal_handlers(self): """Sets signal handlers for signals in _SIGNALS.""" for signum in _SIGNALS: prev_handler = signal.getsignal(signum) # If prev_handler is None, the handler was set outside of Python if prev_handler is not None: self.prev_handlers[signum] = prev_handler signal.signal(signum, self._signal_handler) def _reset_signal_handlers(self): """Resets signal handlers for signals in _SIGNALS.""" for signum in self.prev_handlers: signal.signal(signum, self.prev_handlers[signum]) self.prev_handlers.clear() def _signal_handler(self, signum, unused_frame): """Replacement function for handling received signals. Store the received signal. If we are executing the code block in the body of the context manager, stop by raising signal exit. :param int signum: number of current signal """ self.received_signals.append(signum) if not self.body_executed: raise errors.SignalExit def _call_signals(self): """Finally call the deferred signals.""" for signum in self.received_signals: logger.debug("Calling signal %s", signum) os.kill(os.getpid(), signum) class ExitHandler(ErrorHandler): """Context manager for running code that must be cleaned up. Subclass of ErrorHandler, with the same usage and parameters. In addition to cleaning up on all signals, also cleans up on regular exit. """ def __init__(self, func, *args, **kwargs): ErrorHandler.__init__(self, func, *args, **kwargs) self.call_on_regular_exit = True
the-stack_0_15069
# -*- coding: utf-8 -*- # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # # documentation build configuration file, created by # sphinx-quickstart on Thu Jul 23 19:40:08 2015. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import gc import importlib.util import inspect import os from pathlib import Path import shlex import subprocess import sys import sphinx_gallery # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. curr_path = Path(__file__).expanduser().absolute().parent if curr_path.name == "_staging": # Can't use curr_path.parent, because sphinx_gallery requires a relative path. tvm_path = Path(os.pardir, os.pardir) else: tvm_path = Path(os.pardir) sys.path.insert(0, str(tvm_path.resolve() / "python")) sys.path.insert(0, str(tvm_path.resolve() / "vta" / "python")) sys.path.insert(0, str(tvm_path.resolve() / "docs")) # -- General configuration ------------------------------------------------ locale_dirs = ["translates/locales/"] gettext_compact = False # General information about the project. project = "tvm" author = "Apache Software Foundation" copyright = "2020 - 2021, %s" % author github_doc_root = "https://github.com/apache/tvm/tree/main/docs/" os.environ["TVM_BUILD_DOC"] = "1" def git_describe_version(original_version): """Get git describe version.""" ver_py = tvm_path.joinpath("version.py") libver = {"__file__": ver_py} exec(compile(open(ver_py, "rb").read(), ver_py, "exec"), libver, libver) _, gd_version = libver["git_describe_version"]() if gd_version != original_version: print("Use git describe based version %s" % gd_version) return gd_version # Version information. import tvm from tvm import topi from tvm import te from tvm import testing version = git_describe_version(tvm.__version__) release = version # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones extensions = [ "sphinx.ext.autodoc", "sphinx.ext.autosummary", "sphinx.ext.intersphinx", "sphinx.ext.napoleon", "sphinx.ext.mathjax", "sphinx_gallery.gen_gallery", "autodocsumm", ] # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # source_suffix = ['.rst', '.md'] source_suffix = [".rst", ".md"] # The encoding of source files. # source_encoding = 'utf-8-sig' # generate autosummary even if no references autosummary_generate = True # The master toctree document. master_doc = "index" # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ["_build", "_staging"] # The reST default role (used for this markup: `text`) to use for all # documents. # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = "sphinx" # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. # keep_warnings = False # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ---------------------------------------------- # The theme is set by the make target html_theme = os.environ.get("TVM_THEME", "rtd") on_rtd = os.environ.get("READTHEDOCS", None) == "True" # only import rtd theme and set it if want to build docs locally if not on_rtd and html_theme == "rtd": import sphinx_rtd_theme html_theme = "sphinx_rtd_theme" html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"] html_theme_options = { "analytics_id": "UA-75982049-2", "logo_only": True, } html_logo = "_static/img/tvm-logo-small.png" html_favicon = "_static/img/tvm-logo-square.png" # Output file base name for HTML help builder. htmlhelp_basename = project + "doc" # -- Options for LaTeX output --------------------------------------------- latex_elements = {} # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, "%s.tex" % project, project, author, "manual"), ] intersphinx_mapping = { "python": ("https://docs.python.org/{.major}".format(sys.version_info), None), "numpy": ("https://numpy.org/doc/stable", None), "scipy": ("https://docs.scipy.org/doc/scipy-1.8.0/html-scipyorg/", None), "matplotlib": ("https://matplotlib.org/", None), } from sphinx_gallery.sorting import ExplicitOrder examples_dirs = [ tvm_path.joinpath("gallery", "tutorial"), tvm_path.joinpath("gallery", "how_to", "compile_models"), tvm_path.joinpath("gallery", "how_to", "deploy_models"), tvm_path.joinpath("gallery", "how_to", "work_with_relay"), tvm_path.joinpath("gallery", "how_to", "work_with_schedules"), tvm_path.joinpath("gallery", "how_to", "optimize_operators"), tvm_path.joinpath("gallery", "how_to", "tune_with_autotvm"), tvm_path.joinpath("gallery", "how_to", "tune_with_autoscheduler"), tvm_path.joinpath("gallery", "how_to", "work_with_microtvm"), tvm_path.joinpath("gallery", "how_to", "extend_tvm"), tvm_path.joinpath("vta", "tutorials"), ] gallery_dirs = [ "tutorial", "how_to/compile_models", "how_to/deploy_models", "how_to/work_with_relay", "how_to/work_with_schedules", "how_to/optimize_operators", "how_to/tune_with_autotvm", "how_to/tune_with_autoscheduler", "how_to/work_with_microtvm", "how_to/extend_tvm", "topic/vta/tutorials", ] subsection_order = ExplicitOrder( str(p) for p in [ tvm_path / "vta" / "tutorials" / "frontend", tvm_path / "vta" / "tutorials" / "optimize", tvm_path / "vta" / "tutorials" / "autotvm", ] ) # Explicitly define the order within a subsection. # The listed files are sorted according to the list. # The unlisted files are sorted by filenames. # The unlisted files always appear after listed files. within_subsection_order = { "tutorial": [ "introduction.py", "install.py", "tvmc_command_line_driver.py", "tvmc_python.py", "autotvm_relay_x86.py", "tensor_expr_get_started.py", "autotvm_matmul_x86.py", "auto_scheduler_matmul_x86.py", "tensor_ir_blitz_course.py", "topi.pi", "cross_compilation_and_rpc.py", "relay_quick_start.py", ], "compile_models": [ "from_pytorch.py", "from_tensorflow.py", "from_mxnet.py", "from_onnx.py", "from_keras.py", "from_tflite.py", "from_coreml.py", "from_darknet.py", "from_caffe2.py", "from_paddle.py", ], "work_with_schedules": [ "schedule_primitives.py", "reduction.py", "intrin_math.py", "scan.py", "extern_op.py", "tensorize.py", "tuple_inputs.py", "tedd.py", ], "optimize_operators": [ "opt_gemm.py", "opt_conv_cuda.py", "opt_conv_tensorcore.py", ], "tune_with_autotvm": [ "tune_conv2d_cuda.py", "tune_relay_cuda.py", "tune_relay_x86.py", "tune_relay_arm.py", "tune_relay_mobile_gpu.py", ], "tune_with_autoscheduler": [ "tune_matmul_x86.py", "tune_conv2d_layer_cuda.py", "tune_network_x86.py", "tune_network_cuda.py", ], "extend_tvm": [ "low_level_custom_pass.py", "use_pass_infra.py", "use_pass_instrument.py", "bring_your_own_datatypes.py", ], "micro": [ "micro_autotune.py", "micro_reference_vm.py", "micro_tflite.py", "micro_ethosu.py", "micro_tvmc.py", ], } class WithinSubsectionOrder: def __init__(self, src_dir): self.src_dir = src_dir.split("/")[-1] def __call__(self, filename): # If the order is provided, use the provided order if ( self.src_dir in within_subsection_order and filename in within_subsection_order[self.src_dir] ): index = within_subsection_order[self.src_dir].index(filename) assert index < 1e10 return "\0%010d" % index # Otherwise, sort by filename return filename # When running the tutorials on GPUs we are dependent on the Python garbage collector # collecting TVM packed function closures for any device memory to also be released. This # is not a good setup for machines with lots of CPU ram but constrained GPU ram, so force # a gc after each example. def force_gc(gallery_conf, fname): gc.collect() sphinx_gallery_conf = { "backreferences_dir": "gen_modules/backreferences", "doc_module": ("tvm", "numpy"), "reference_url": { "tvm": None, "matplotlib": "https://matplotlib.org/", "numpy": "https://numpy.org/doc/stable", }, "examples_dirs": examples_dirs, "within_subsection_order": WithinSubsectionOrder, "gallery_dirs": gallery_dirs, "subsection_order": subsection_order, "filename_pattern": os.environ.get("TVM_TUTORIAL_EXEC_PATTERN", ".py"), "find_mayavi_figures": False, "download_all_examples": False, "min_reported_time": 60, "expected_failing_examples": [], "reset_modules": ("matplotlib", "seaborn", force_gc), } autodoc_default_options = { "member-order": "bysource", } # Maps the original namespace to list of potential modules # that we can import alias from. tvm_alias_check_map = { "tvm.te": ["tvm.tir"], "tvm.tir": ["tvm.ir", "tvm.runtime"], "tvm.relay": ["tvm.ir", "tvm.tir"], } ## Setup header and other configs import tlcpack_sphinx_addon footer_copyright = "© 2020 Apache Software Foundation | All right reserved" footer_note = " ".join( """ Copyright © 2020 The Apache Software Foundation. Apache TVM, Apache, the Apache feather, and the Apache TVM project logo are either trademarks or registered trademarks of the Apache Software Foundation.""".split( "\n" ) ).strip() header_logo = "https://tvm.apache.org/assets/images/logo.svg" header_logo_link = "https://tvm.apache.org/" header_links = [ ("Community", "https://tvm.apache.org/community"), ("Download", "https://tvm.apache.org/download"), ("VTA", "https://tvm.apache.org/vta"), ("Blog", "https://tvm.apache.org/blog"), ("Docs", "https://tvm.apache.org/docs"), ("Conference", "https://tvmconf.org"), ("Github", "https://github.com/apache/tvm/"), ] header_dropdown = { "name": "ASF", "items": [ ("Apache Homepage", "https://apache.org/"), ("License", "https://www.apache.org/licenses/"), ("Sponsorship", "https://www.apache.org/foundation/sponsorship.html"), ("Security", "https://www.apache.org/security/"), ("Thanks", "https://www.apache.org/foundation/thanks.html"), ("Events", "https://www.apache.org/events/current-event"), ], } html_context = { "footer_copyright": footer_copyright, "footer_note": footer_note, "header_links": header_links, "header_dropdown": header_dropdown, "header_logo": header_logo, "header_logo_link": header_logo_link, } # add additional overrides templates_path += [tlcpack_sphinx_addon.get_templates_path()] html_static_path += [tlcpack_sphinx_addon.get_static_path()] def update_alias_docstring(name, obj, lines): """Update the docstring of alias functions. This function checks if the obj is an alias of another documented object in a different module. If it is an alias, then it will append the alias information to the docstring. Parameters ---------- name : str The full name of the object in the doc. obj : object The original object. lines : list The docstring lines, need to be modified inplace. """ arr = name.rsplit(".", 1) if len(arr) != 2: return target_mod, target_name = arr if target_mod not in tvm_alias_check_map: return if not hasattr(obj, "__module__"): return obj_mod = obj.__module__ for amod in tvm_alias_check_map[target_mod]: if not obj_mod.startswith(amod): continue if hasattr(sys.modules[amod], target_name): obj_type = ":py:func" if callable(obj) else ":py:class" lines.append(".. rubric:: Alias of %s:`%s.%s`" % (obj_type, amod, target_name)) def process_docstring(app, what, name, obj, options, lines): """Sphinx callback to process docstring""" if callable(obj) or inspect.isclass(obj): update_alias_docstring(name, obj, lines) from legacy_redirect import build_legacy_redirect def setup(app): app.connect("autodoc-process-docstring", process_docstring) app.connect("build-finished", build_legacy_redirect(tvm_path))
the-stack_0_15070
#!/usr/bin/env python # -*- coding: utf-8 -*- import simplejson as json from alipay.aop.api.constant.ParamConstants import * class AlipayOpenAuthAppCancelModel(object): def __init__(self): self._auth_app_id = None self._auth_scene = None self._operator_user_id = None @property def auth_app_id(self): return self._auth_app_id @auth_app_id.setter def auth_app_id(self, value): self._auth_app_id = value @property def auth_scene(self): return self._auth_scene @auth_scene.setter def auth_scene(self, value): self._auth_scene = value @property def operator_user_id(self): return self._operator_user_id @operator_user_id.setter def operator_user_id(self, value): self._operator_user_id = value def to_alipay_dict(self): params = dict() if self.auth_app_id: if hasattr(self.auth_app_id, 'to_alipay_dict'): params['auth_app_id'] = self.auth_app_id.to_alipay_dict() else: params['auth_app_id'] = self.auth_app_id if self.auth_scene: if hasattr(self.auth_scene, 'to_alipay_dict'): params['auth_scene'] = self.auth_scene.to_alipay_dict() else: params['auth_scene'] = self.auth_scene if self.operator_user_id: if hasattr(self.operator_user_id, 'to_alipay_dict'): params['operator_user_id'] = self.operator_user_id.to_alipay_dict() else: params['operator_user_id'] = self.operator_user_id return params @staticmethod def from_alipay_dict(d): if not d: return None o = AlipayOpenAuthAppCancelModel() if 'auth_app_id' in d: o.auth_app_id = d['auth_app_id'] if 'auth_scene' in d: o.auth_scene = d['auth_scene'] if 'operator_user_id' in d: o.operator_user_id = d['operator_user_id'] return o
the-stack_0_15071
# -*- coding: utf-8 -*- import click import json from ..utils.spinner import ( init_spinner, start_spinner, stop_spinner, ) from ..utils.print import ( tbprint, eprint, oprint, opprint, ) @click.group() @click.pass_obj @click.pass_context def command_runner(ctx, obj): """DNA Center Command Runner API (version: 1.3.3). Wraps the DNA Center Command Runner API and exposes the API as native Python commands. """ ctx.obj = obj.command_runner @command_runner.command() @click.option('--headers', type=str, help='''Dictionary of HTTP Headers to send with the Request.''', default=None, show_default=True) @click.option('-pp', '--pretty_print', type=int, help='''Pretty print indent''', default=None, show_default=True) @click.option('--beep', is_flag=True, help='''Spinner beep (on)''') @click.pass_obj def get_all_keywords_of_clis_accepted(obj, pretty_print, beep, headers): """Get valid keywords. """ spinner = init_spinner(beep=beep) start_spinner(spinner) try: if headers is not None: headers = json.loads(headers) result = obj.get_all_keywords_of_clis_accepted( headers=headers) stop_spinner(spinner) opprint(result, indent=pretty_print) except Exception as e: stop_spinner(spinner) tbprint() eprint('Error:', e) click.Context.exit(-1) @command_runner.command() @click.option('--commands', type=str, multiple=True, help='''CommandRunnerDTO's commands (list of strings).''', default=None, show_default=True) @click.option('--description', type=str, help='''CommandRunnerDTO's description.''', default=None, show_default=True) @click.option('--deviceuuids', type=str, multiple=True, help='''CommandRunnerDTO's deviceUuids (list of strings).''', default=None, show_default=True) @click.option('--name', type=str, help='''CommandRunnerDTO's name.''', default=None, show_default=True) @click.option('--timeout', type=int, help='''CommandRunnerDTO's timeout.''', default=None, show_default=True) @click.option('--headers', type=str, help='''Dictionary of HTTP Headers to send with the Request.''', default=None, show_default=True) @click.option('--payload', type=str, help='''A JSON serializable Python object to send in the body of the Request.''', default=None, show_default=True) @click.option('--active_validation', type=bool, help='''Enable/Disable payload validation.''', default=True, show_default=True) @click.option('-pp', '--pretty_print', type=int, help='''Pretty print indent''', default=None, show_default=True) @click.option('--beep', is_flag=True, help='''Spinner beep (on)''') @click.pass_obj def run_read_only_commands_on_devices(obj, pretty_print, beep, commands, description, deviceuuids, name, timeout, headers, payload, active_validation): """Submit request for read-only CLIs. """ spinner = init_spinner(beep=beep) start_spinner(spinner) try: if headers is not None: headers = json.loads(headers) if payload is not None: payload = json.loads(payload) commands = list(commands) commands = commands if len(commands) > 0 else None deviceuuids = list(deviceuuids) deviceuuids = deviceuuids if len(deviceuuids) > 0 else None result = obj.run_read_only_commands_on_devices( commands=commands, description=description, deviceUuids=deviceuuids, name=name, timeout=timeout, headers=headers, payload=payload, active_validation=active_validation) stop_spinner(spinner) opprint(result, indent=pretty_print) except Exception as e: stop_spinner(spinner) tbprint() eprint('Error:', e) click.Context.exit(-1)
the-stack_0_15074
#!/usr/bin/env python # Licensed to Cloudera, Inc. under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. Cloudera, Inc. licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from datetime import datetime, timedelta from django.utils.translation import ugettext as _ from notebook.connectors.dataeng import DataEng, DATE_FORMAT from jobbrowser.apis.base_api import Api LOG = logging.getLogger(__name__) class DataEngClusterApi(Api): def apps(self, filters): api = DataEng(self.user) jobs = api.list_clusters() return { 'apps': [{ 'id': app['crn'], 'name': '%(clusterName)s' % app, 'status': app['status'], 'apiStatus': self._api_status(app['status']), 'type': '%(serviceType)s %(workersGroupSize)s %(instanceType)s %(cdhVersion)s' % app, 'user': app['clusterName'].split('-', 1)[0], 'progress': 100, 'queue': 'group', 'duration': 1, 'submitted': app['creationDate'] } for app in jobs['clusters']], 'total': len(jobs) } def app(self, appid): return {} def action(self, appid, action): return {} def logs(self, appid, app_type, log_name=None, is_embeddable=False): return {'logs': ''} def profile(self, appid, app_type, app_property): return {} def _api_status(self, status): if status in ['CREATING', 'CREATED', 'TERMINATING']: return 'RUNNING' elif status in ['ARCHIVING', 'COMPLETED']: return 'SUCCEEDED' else: return 'FAILED' # KILLED and FAILED class DataEngJobApi(Api): def apps(self, filters): kwargs = {} if 'time' in filters: if filters['time']['time_unit'] == 'minutes': delta = timedelta(minutes=int(filters['time']['time_value'])) elif filters['time']['time_unit'] == 'hours': delta = timedelta(hours=int(filters['time']['time_value'])) else: delta = timedelta(days=int(filters['time']['time_value'])) kwargs['creation_date_after'] = (datetime.today() - delta).strftime(DATE_FORMAT) # Todo: filter on 'cluster_crn' api = DataEng(self.user) jobs = api.list_jobs(**kwargs) return { 'apps': [{ 'id': app['jobId'], 'name': app['creationDate'], 'status': app['status'], 'apiStatus': self._api_status(app['status']), 'type': app['jobType'], 'user': '', 'progress': 100, 'duration': 10 * 3600, 'submitted': app['creationDate'] } for app in jobs['jobs']], 'total': len(jobs) } def app(self, appid): handle = DataEng(self.user).describe_job(job_id=appid) job = handle['job'] common = { 'id': job['jobId'], 'name': job['jobId'], 'status': job['status'], 'apiStatus': self._api_status(job['status']), 'progress': 50, 'duration': 10 * 3600, 'submitted': job['creationDate'], 'type': 'dataeng-job-%s' % job['jobType'], } common['properties'] = { 'properties': job } return common def action(self, appid, action): return {} def logs(self, appid, app_type, log_name=None, is_embeddable=False): return {'logs': ''} def profile(self, appid, app_type, app_property): return {} def _api_status(self, status): if status in ['CREATING', 'CREATED', 'TERMINATING']: return 'RUNNING' elif status in ['COMPLETED']: return 'SUCCEEDED' else: return 'FAILED' # INTERRUPTED , KILLED, TERMINATED and FAILED
the-stack_0_15076
# Import the modules import cv2 import numpy as np import os import imutils from imutils.video import WebcamVideoStream DEBUG = True # Custom functions # define rotate function def rotate(image, angle, center=None, scale=1.0): # get image size (h, w) = image.shape[:2] # if dosen't assign image center, set image center point as center if center is None: center = (w / 2, h / 2) # Do rotation M = cv2.getRotationMatrix2D(center, angle, scale) rotated = cv2.warpAffine(image, M, (w, h)) # return rotated image return rotated # Load the model os.chdir(os.path.dirname(__file__)) net = cv2.dnn.readNet('../model/inference_graph.xml', '../model/inference_graph.bin') # Specify target device net.setPreferableTarget(cv2.dnn.DNN_TARGET_MYRIAD) # Read the Camera vs = WebcamVideoStream(src=0).start() while True: # grab the frame from the threaded video stream and resize it # to have a maximum width of 400 pixels frame = vs.read() frame = imutils.resize(frame, width=600) frame = rotate(frame, 180) # Convert to grayscale and apply Gaussian filtering im_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) im_gray = cv2.GaussianBlur(im_gray, (5, 5), 0) # Threshold the image (_INV: Inverse 黑白反轉) ret, im_th = cv2.threshold(im_gray, 127, 255, cv2.THRESH_BINARY_INV) if DEBUG: im_th_display = im_th.copy() # Find contours in the image ctrs, hier = cv2.findContours(im_th.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # Get rectangles contains each contour rects = [cv2.boundingRect(ctr) for ctr in ctrs] # For each rectangular region, use mnist cnn model to predict. for rect in rects: # detect empty rect # (x, y, w, h) => ex. (0, 0, 600, 450) #ignore too small, too big, bad w:h ratio rect if(rect[2]*rect[3] < 60 or rect[2]*rect[3] > 20000 or rect[2]>rect[3]*10): if DEBUG: print('info:{}, IGNORE'.format(rect)) break else: if DEBUG: print('info:{}, DISPLAY'.format(rect)) else: pass cv2.rectangle(frame, (rect[0], rect[1]), (rect[0] + rect[2], rect[1] + rect[3]), (0, 255, 0), 3) # Make the rectangular region around the digit leng = int(rect[3] * 1.6) pt1 = int(rect[1] + rect[3] // 2 - leng // 2) pt2 = int(rect[0] + rect[2] // 2 - leng // 2) roi = im_th[pt1:pt1+leng, pt2:pt2+leng] # Draw the rectangles if DEBUG: cv2.rectangle(im_th_display, (pt2, pt1), (pt2+leng, pt1+leng), (255, 255, 255), 3) # Prevent error: (-215 Assertion failed) !ssize.empty() in function 'resize' if(roi.size == 0): break # Resize the image roi = cv2.resize(roi, (28, 28), interpolation=cv2.INTER_AREA) # 膨脹 roi = cv2.dilate(roi, (3, 3)) # Inference blob = cv2.dnn.blobFromImage(roi, size=(28, 28), ddepth=cv2.CV_32F) net.setInput(blob) out = net.forward() if out[0][int(np.argmax(out[0]))] > 0.5: #cv2.putText(image, text, coordinate, font, size, color, width of line, type of line) #cv2.putText(影像, 文字, 座標, 字型, 大小, 顏色, 線條寬度, 線條種類) #if DEBUG: cv2.putText(im_th_display, str(np.argmax(out[0])), (rect[0], rect[1]), cv2.FONT_HERSHEY_DUPLEX, 1, (0, 255, 255), 3) cv2.putText(frame, str(np.argmax(out[0])), (rect[0], rect[1]), cv2.FONT_HERSHEY_DUPLEX, 1, (0, 255, 255), 3) if DEBUG: cv2.imshow("Debug", im_th_display) cv2.imshow("Frame", frame) key = cv2.waitKey(1) & 0xFF # do a bit of cleanup cv2.destroyAllWindows() vs.stop()
the-stack_0_15078
# # Copyright 2018 Analytics Zoo Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, Dense, LSTM, Dropout import tensorflow.keras as keras from zoo.automl.model.abstract import BaseModel from zoo.automl.common.util import * from zoo.automl.common.metrics import Evaluator class VanillaLSTM(BaseModel): def __init__(self, check_optional_config=False, future_seq_len=1): """ Constructor of Vanilla LSTM model """ self.model = None self.check_optional_config = check_optional_config self.future_seq_len = future_seq_len self.feature_num = None self.metric = None self.batch_size = None self.loss = None def _get_dropout(self, input_tensor, p=0.5, mc=False): if mc: return Dropout(p)(input_tensor, training=True) else: return Dropout(p)(input_tensor) def _build(self, mc=False, **config): """ build vanilla LSTM model :param config: model hyper parameters :return: self """ super()._check_config(**config) self.metric = config.get('metric', 'mean_squared_error') self.batch_size = config.get('batch_size', 1024) self.feature_num = config["feature_num"] self.loss = config.get("loss", "mse") inp = Input(shape=(None, self.feature_num)) lstm_1 = LSTM(units=config.get('lstm_1_units', 20), return_sequences=True)(inp) dropout_1 = self._get_dropout(lstm_1, p=config.get('dropout_1', 0.2), mc=mc) lstm_2 = LSTM(units=config.get('lstm_2_units', 10), return_sequences=False)(dropout_1) dropout_2 = self._get_dropout(lstm_2, p=config.get('dropout_2', 0.2), mc=mc) out = Dense(self.future_seq_len)(dropout_2) self.model = Model(inputs=inp, outputs=out) self.model.compile(loss=self.loss, metrics=[self.metric], optimizer=keras.optimizers.RMSprop(lr=config.get('lr', 0.001))) return self.model def fit_eval(self, x, y, validation_data=None, mc=False, verbose=0, **config): """ fit for one iteration :param x: 3-d array in format (no. of samples, past sequence length, 2+feature length), in the last dimension, the 1st col is the time index (data type needs to be numpy datetime type, e.g. "datetime64"), the 2nd col is the target value (data type should be numeric) :param y: 2-d numpy array in format (no. of samples, future sequence length) if future sequence length > 1, or 1-d numpy array in format (no. of samples, ) if future sequence length = 1 :param validation_data: tuple in format (x_test,y_test), data used for validation. If this is specified, validation result will be the optimization target for automl. Otherwise, train metric will be the optimization target. :param config: optimization hyper parameters :return: the resulting metric """ config.update({"feature_num": x.shape[2]}) # if model is not initialized, __build the model if self.model is None: self._build(mc=mc, **config) hist = self.model.fit(x, y, validation_data=validation_data, batch_size=self.batch_size, epochs=config.get("epochs", 10), verbose=verbose ) # print(hist.history) if validation_data is None: # get train metrics # results = self.model.evaluate(x, y) result = hist.history.get(self.metric)[0] else: result = hist.history.get('val_' + str(self.metric))[0] return result def evaluate(self, x, y, metric=['mse']): """ Evaluate on x, y :param x: input :param y: target :param metric: a list of metrics in string format :return: a list of metric evaluation results """ y_pred = self.predict(x) return [Evaluator.evaluate(m, y, y_pred) for m in metric] def predict(self, x, mc=False): """ Prediction on x. :param x: input :return: predicted y """ return self.model.predict(x) def predict_with_uncertainty(self, x, n_iter=100): result = np.zeros((n_iter,) + (x.shape[0], self.future_seq_len)) for i in range(n_iter): result[i, :, :] = self.predict(x) prediction = result.mean(axis=0) uncertainty = result.std(axis=0) return prediction, uncertainty def save(self, model_path, config_path): """ save model to file. :param model_path: the model file. :param config_path: the config file :return: """ self.model.save(model_path) # os.rename("vanilla_lstm_tmp.h5", model_path) config_to_save = { # "future_seq_len": self.future_seq_len, "metric": self.metric, "batch_size": self.batch_size } save_config(config_path, config_to_save) def restore(self, model_path, **config): """ restore model from file :param model_path: the model file :param config: the trial config :return: the restored model """ # self.model = None # self._build(**config) self.model = keras.models.load_model(model_path) # self.model.load_weights(file_path) # self.future_seq_len = config["future_seq_len"] # for continuous training self.metric = config["metric"] self.batch_size = config["batch_size"] def _get_required_parameters(self): return { "feature_num" } def _get_optional_parameters(self): return { 'lstm_1_units', 'dropout_1', 'lstm_2_units', 'dropout_2', 'metric', 'lr', 'epochs', 'batch_size', 'loss' }
the-stack_0_15079
"""Support to interface with the Plex API.""" from functools import wraps import json import logging import plexapi.exceptions import requests.exceptions from homeassistant.components.media_player import DOMAIN as MP_DOMAIN, MediaPlayerEntity from homeassistant.components.media_player.const import ( MEDIA_TYPE_MUSIC, SUPPORT_BROWSE_MEDIA, SUPPORT_NEXT_TRACK, SUPPORT_PAUSE, SUPPORT_PLAY, SUPPORT_PLAY_MEDIA, SUPPORT_PREVIOUS_TRACK, SUPPORT_SEEK, SUPPORT_STOP, SUPPORT_VOLUME_MUTE, SUPPORT_VOLUME_SET, ) from homeassistant.const import STATE_IDLE, STATE_PAUSED, STATE_PLAYING from homeassistant.core import callback from homeassistant.exceptions import HomeAssistantError from homeassistant.helpers.dispatcher import ( async_dispatcher_connect, async_dispatcher_send, ) from homeassistant.helpers.entity_registry import async_get_registry from homeassistant.helpers.network import is_internal_request from .const import ( COMMON_PLAYERS, CONF_SERVER_IDENTIFIER, DISPATCHERS, DOMAIN as PLEX_DOMAIN, NAME_FORMAT, PLEX_NEW_MP_SIGNAL, PLEX_UPDATE_MEDIA_PLAYER_SESSION_SIGNAL, PLEX_UPDATE_MEDIA_PLAYER_SIGNAL, PLEX_UPDATE_SENSOR_SIGNAL, SERVERS, ) from .media_browser import browse_media _LOGGER = logging.getLogger(__name__) def needs_session(func): """Ensure session is available for certain attributes.""" @wraps(func) def get_session_attribute(self, *args): if self.session is None: return None return func(self, *args) return get_session_attribute async def async_setup_entry(hass, config_entry, async_add_entities): """Set up Plex media_player from a config entry.""" server_id = config_entry.data[CONF_SERVER_IDENTIFIER] registry = await async_get_registry(hass) @callback def async_new_media_players(new_entities): _async_add_entities(hass, registry, async_add_entities, server_id, new_entities) unsub = async_dispatcher_connect( hass, PLEX_NEW_MP_SIGNAL.format(server_id), async_new_media_players ) hass.data[PLEX_DOMAIN][DISPATCHERS][server_id].append(unsub) _LOGGER.debug("New entity listener created") @callback def _async_add_entities(hass, registry, async_add_entities, server_id, new_entities): """Set up Plex media_player entities.""" _LOGGER.debug("New entities: %s", new_entities) entities = [] plexserver = hass.data[PLEX_DOMAIN][SERVERS][server_id] for entity_params in new_entities: plex_mp = PlexMediaPlayer(plexserver, **entity_params) entities.append(plex_mp) # Migration to per-server unique_ids old_entity_id = registry.async_get_entity_id( MP_DOMAIN, PLEX_DOMAIN, plex_mp.machine_identifier ) if old_entity_id is not None: new_unique_id = f"{server_id}:{plex_mp.machine_identifier}" _LOGGER.debug( "Migrating unique_id from [%s] to [%s]", plex_mp.machine_identifier, new_unique_id, ) registry.async_update_entity(old_entity_id, new_unique_id=new_unique_id) async_add_entities(entities, True) class PlexMediaPlayer(MediaPlayerEntity): """Representation of a Plex device.""" def __init__(self, plex_server, device, player_source, session=None): """Initialize the Plex device.""" self.plex_server = plex_server self.device = device self.player_source = player_source self.device_make = None self.device_platform = None self.device_product = None self.device_title = None self.device_version = None self.machine_identifier = device.machineIdentifier self.session_device = None self._available = False self._device_protocol_capabilities = None self._name = None self._previous_volume_level = 1 # Used in fake muting self._state = STATE_IDLE self._volume_level = 1 # since we can't retrieve remotely self._volume_muted = False # since we can't retrieve remotely # Initializes other attributes self.session = session async def async_added_to_hass(self): """Run when about to be added to hass.""" _LOGGER.debug("Added %s [%s]", self.entity_id, self.unique_id) self.async_on_remove( async_dispatcher_connect( self.hass, PLEX_UPDATE_MEDIA_PLAYER_SIGNAL.format(self.unique_id), self.async_refresh_media_player, ) ) self.async_on_remove( async_dispatcher_connect( self.hass, PLEX_UPDATE_MEDIA_PLAYER_SESSION_SIGNAL.format(self.unique_id), self.async_update_from_websocket, ) ) @callback def async_refresh_media_player(self, device, session, source): """Set instance objects and trigger an entity state update.""" _LOGGER.debug("Refreshing %s [%s / %s]", self.entity_id, device, session) self.device = device self.session = session if source: self.player_source = source self.async_schedule_update_ha_state(True) async_dispatcher_send( self.hass, PLEX_UPDATE_SENSOR_SIGNAL.format(self.plex_server.machine_identifier), ) @callback def async_update_from_websocket(self, state): """Update the entity based on new websocket data.""" self.update_state(state) self.async_write_ha_state() async_dispatcher_send( self.hass, PLEX_UPDATE_SENSOR_SIGNAL.format(self.plex_server.machine_identifier), ) def update(self): """Refresh key device data.""" if not self.session: self.force_idle() if not self.device: self._available = False return self._available = True try: device_url = self.device.url("/") except plexapi.exceptions.BadRequest: device_url = "127.0.0.1" if "127.0.0.1" in device_url: self.device.proxyThroughServer() self._device_protocol_capabilities = self.device.protocolCapabilities for device in filter(None, [self.device, self.session_device]): self.device_make = self.device_make or device.device self.device_platform = self.device_platform or device.platform self.device_product = self.device_product or device.product self.device_title = self.device_title or device.title self.device_version = self.device_version or device.version name_parts = [self.device_product, self.device_title or self.device_platform] if (self.device_product in COMMON_PLAYERS) and self.device_make: # Add more context in name for likely duplicates name_parts.append(self.device_make) if self.username and self.username != self.plex_server.owner: # Prepend username for shared/managed clients name_parts.insert(0, self.username) self._name = NAME_FORMAT.format(" - ".join(name_parts)) def force_idle(self): """Force client to idle.""" self._state = STATE_IDLE if self.player_source == "session": self.device = None self.session_device = None self._available = False @property def should_poll(self): """Return True if entity has to be polled for state.""" return False @property def unique_id(self): """Return the id of this plex client.""" return f"{self.plex_server.machine_identifier}:{self.machine_identifier}" @property def session(self): """Return the active session for this player.""" return self._session @session.setter def session(self, session): self._session = session if session: self.session_device = self.session.player self.update_state(self.session.state) else: self._state = STATE_IDLE @property def available(self): """Return the availability of the client.""" return self._available @property def name(self): """Return the name of the device.""" return self._name @property @needs_session def username(self): """Return the username of the client owner.""" return self.session.username @property def state(self): """Return the state of the device.""" return self._state def update_state(self, state): """Set the state of the device, handle session termination.""" if state == "playing": self._state = STATE_PLAYING elif state == "paused": self._state = STATE_PAUSED elif state == "stopped": self.session = None self.force_idle() else: self._state = STATE_IDLE @property def _is_player_active(self): """Report if the client is playing media.""" return self.state in [STATE_PLAYING, STATE_PAUSED] @property def _active_media_plexapi_type(self): """Get the active media type required by PlexAPI commands.""" if self.media_content_type is MEDIA_TYPE_MUSIC: return "music" return "video" @property @needs_session def session_key(self): """Return current session key.""" return self.session.sessionKey @property @needs_session def media_library_title(self): """Return the library name of playing media.""" return self.session.media_library_title @property @needs_session def media_content_id(self): """Return the content ID of current playing media.""" return self.session.media_content_id @property @needs_session def media_content_type(self): """Return the content type of current playing media.""" return self.session.media_content_type @property @needs_session def media_content_rating(self): """Return the content rating of current playing media.""" return self.session.media_content_rating @property @needs_session def media_artist(self): """Return the artist of current playing media, music track only.""" return self.session.media_artist @property @needs_session def media_album_name(self): """Return the album name of current playing media, music track only.""" return self.session.media_album_name @property @needs_session def media_album_artist(self): """Return the album artist of current playing media, music only.""" return self.session.media_album_artist @property @needs_session def media_track(self): """Return the track number of current playing media, music only.""" return self.session.media_track @property @needs_session def media_duration(self): """Return the duration of current playing media in seconds.""" return self.session.media_duration @property @needs_session def media_position(self): """Return the duration of current playing media in seconds.""" return self.session.media_position @property @needs_session def media_position_updated_at(self): """When was the position of the current playing media valid.""" return self.session.media_position_updated_at @property @needs_session def media_image_url(self): """Return the image URL of current playing media.""" return self.session.media_image_url @property @needs_session def media_summary(self): """Return the summary of current playing media.""" return self.session.media_summary @property @needs_session def media_title(self): """Return the title of current playing media.""" return self.session.media_title @property @needs_session def media_season(self): """Return the season of current playing media (TV Show only).""" return self.session.media_season @property @needs_session def media_series_title(self): """Return the title of the series of current playing media.""" return self.session.media_series_title @property @needs_session def media_episode(self): """Return the episode of current playing media (TV Show only).""" return self.session.media_episode @property def supported_features(self): """Flag media player features that are supported.""" if self.device and "playback" in self._device_protocol_capabilities: return ( SUPPORT_PAUSE | SUPPORT_PREVIOUS_TRACK | SUPPORT_NEXT_TRACK | SUPPORT_STOP | SUPPORT_SEEK | SUPPORT_VOLUME_SET | SUPPORT_PLAY | SUPPORT_PLAY_MEDIA | SUPPORT_VOLUME_MUTE | SUPPORT_BROWSE_MEDIA ) return SUPPORT_BROWSE_MEDIA | SUPPORT_PLAY_MEDIA def set_volume_level(self, volume): """Set volume level, range 0..1.""" if self.device and "playback" in self._device_protocol_capabilities: self.device.setVolume(int(volume * 100), self._active_media_plexapi_type) self._volume_level = volume # store since we can't retrieve @property def volume_level(self): """Return the volume level of the client (0..1).""" if ( self._is_player_active and self.device and "playback" in self._device_protocol_capabilities ): return self._volume_level return None @property def is_volume_muted(self): """Return boolean if volume is currently muted.""" if self._is_player_active and self.device: return self._volume_muted return None def mute_volume(self, mute): """Mute the volume. Since we can't actually mute, we'll: - On mute, store volume and set volume to 0 - On unmute, set volume to previously stored volume """ if not (self.device and "playback" in self._device_protocol_capabilities): return self._volume_muted = mute if mute: self._previous_volume_level = self._volume_level self.set_volume_level(0) else: self.set_volume_level(self._previous_volume_level) def media_play(self): """Send play command.""" if self.device and "playback" in self._device_protocol_capabilities: self.device.play(self._active_media_plexapi_type) def media_pause(self): """Send pause command.""" if self.device and "playback" in self._device_protocol_capabilities: self.device.pause(self._active_media_plexapi_type) def media_stop(self): """Send stop command.""" if self.device and "playback" in self._device_protocol_capabilities: self.device.stop(self._active_media_plexapi_type) def media_seek(self, position): """Send the seek command.""" if self.device and "playback" in self._device_protocol_capabilities: self.device.seekTo(position * 1000, self._active_media_plexapi_type) def media_next_track(self): """Send next track command.""" if self.device and "playback" in self._device_protocol_capabilities: self.device.skipNext(self._active_media_plexapi_type) def media_previous_track(self): """Send previous track command.""" if self.device and "playback" in self._device_protocol_capabilities: self.device.skipPrevious(self._active_media_plexapi_type) def play_media(self, media_type, media_id, **kwargs): """Play a piece of media.""" if not (self.device and "playback" in self._device_protocol_capabilities): _LOGGER.debug( "Client is not currently accepting playback controls: %s", self.name ) return src = json.loads(media_id) if isinstance(src, int): src = {"plex_key": src} playqueue_id = src.pop("playqueue_id", None) if playqueue_id: try: playqueue = self.plex_server.get_playqueue(playqueue_id) except plexapi.exceptions.NotFound as err: raise HomeAssistantError( f"PlayQueue '{playqueue_id}' could not be found" ) from err else: shuffle = src.pop("shuffle", 0) media = self.plex_server.lookup_media(media_type, **src) if media is None: _LOGGER.error("Media could not be found: %s", media_id) return _LOGGER.debug("Attempting to play %s on %s", media, self.name) playqueue = self.plex_server.create_playqueue(media, shuffle=shuffle) try: self.device.playMedia(playqueue) except requests.exceptions.ConnectTimeout: _LOGGER.error("Timed out playing on %s", self.name) @property def device_state_attributes(self): """Return the scene state attributes.""" attributes = {} for attr in [ "media_content_rating", "media_library_title", "player_source", "media_summary", "username", ]: value = getattr(self, attr, None) if value: attributes[attr] = value return attributes @property def device_info(self): """Return a device description for device registry.""" if self.machine_identifier is None: return None return { "identifiers": {(PLEX_DOMAIN, self.machine_identifier)}, "manufacturer": self.device_platform or "Plex", "model": self.device_product or self.device_make, "name": self.name, "sw_version": self.device_version, "via_device": (PLEX_DOMAIN, self.plex_server.machine_identifier), } async def async_browse_media(self, media_content_type=None, media_content_id=None): """Implement the websocket media browsing helper.""" is_internal = is_internal_request(self.hass) return await self.hass.async_add_executor_job( browse_media, self, is_internal, media_content_type, media_content_id, ) async def async_get_browse_image( self, media_content_type, media_content_id, media_image_id=None ): """Get media image from Plex server.""" image_url = self.plex_server.thumbnail_cache.get(media_content_id) if image_url: result = await self._async_fetch_image(image_url) return result return (None, None)
the-stack_0_15080
from django import template register = template.Library() @register.filter_function def attr(obj, arg1): """ Use in templates: {% load field_attrs %} then, in a form field: {{ form.phone|attr:"style=width:143px;background-color:yellow"|attr:"size=30" }} """ att, value = arg1.split("=") obj.field.widget.attrs[att] = value return obj
the-stack_0_15085
import os from celery.schedules import crontab # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # SECURITY WARNING: keep the secret key used in production secret! # Set in local_settings.py SECRET_KEY = 'SECRET_SECRET_SECRET' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = os.getenv('DEBUG_STATUS', True) ALLOWED_HOSTS = ['*'] # Application definition LOGIN_REDIRECT_URL = '/' LOGIN_URL = '/login/' INSTALLED_APPS = [ 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.messages', 'django.contrib.sessions', 'django.contrib.staticfiles', 'simple_pagination', 'compressor', 'common', 'accounts', 'cases', 'contacts', 'emails', 'leads', 'opportunity', 'planner', 'sorl.thumbnail', 'phonenumber_field', 'storages', 'marketing', 'tasks', 'invoices', 'events', 'teams', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.middleware.common.CommonMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'crm.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, "templates"), ], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'crm.wsgi.application' # Database # https://docs.djangoproject.com/en/1.10/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql', 'NAME': 'dj_crm', 'USER': 'postgres', 'PASSWORD': 'root', 'HOST': os.getenv('DB_HOST', '127.0.0.1'), 'PORT': os.getenv('DB_PORT', '5432') } } STATICFILES_DIRS = [os.path.join(BASE_DIR, "static"), ] # Password validation # https://docs.djangoproject.com/en/1.10/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.10/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'Asia/Kolkata' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.10/howto/static-files/ STATIC_URL = '/static/' EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend' # EMAIL_BACKEND = 'django.core.mail.backends.dummy.EmailBackend' # EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend' # EMAIL_HOST = 'localhost' # EMAIL_PORT = 25 # AUTHENTICATION_BACKENDS = ('django.contrib.auth.backends.ModelBackend', ) EMAIL_HOST = 'smtp.sendgrid.net' EMAIL_HOST_USER = os.getenv('SG_USER', '') EMAIL_HOST_PASSWORD = os.getenv('SG_PWD', '') EMAIL_PORT = 587 EMAIL_USE_TLS = True AUTH_USER_MODEL = 'common.User' STORAGE_TYPE = os.getenv('STORAGE_TYPE', 'normal') if STORAGE_TYPE == 'normal': MEDIA_ROOT = os.path.join(BASE_DIR, 'media') MEDIA_URL = '/media/' STATIC_URL = '/static/' STATICFILES_DIRS = (BASE_DIR + '/static',) COMPRESS_ROOT = BASE_DIR + '/static/' elif STORAGE_TYPE == 's3-storage': AWS_STORAGE_BUCKET_NAME = AWS_BUCKET_NAME = os.getenv('AWSBUCKETNAME', '') AM_ACCESS_KEY = AWS_ACCESS_KEY_ID = os.getenv('AWS_ACCESS_KEY_ID', '') AM_PASS_KEY = AWS_SECRET_ACCESS_KEY = os.getenv('AWS_SECRET_ACCESS_KEY', '') S3_DOMAIN = AWS_S3_CUSTOM_DOMAIN = str(AWS_BUCKET_NAME) + '.s3.amazonaws.com' AWS_S3_OBJECT_PARAMETERS = { 'CacheControl': 'max-age=86400', } STATICFILES_STORAGE = 'storages.backends.s3boto3.S3Boto3Storage' DEFAULT_FILE_STORAGE = 'storages.backends.s3boto3.S3Boto3Storage' DEFAULT_S3_PATH = "media" STATICFILES_STORAGE = 'storages.backends.s3boto.S3BotoStorage' STATIC_S3_PATH = "static" COMPRESS_STORAGE = 'storages.backends.s3boto.S3BotoStorage' COMPRESS_CSS_FILTERS = [ 'compressor.filters.css_default.CssAbsoluteFilter', 'compressor.filters.cssmin.CSSMinFilter'] COMPRESS_JS_FILTERS = ['compressor.filters.jsmin.JSMinFilter'] COMPRESS_REBUILD_TIMEOUT = 5400 MEDIA_ROOT = '/%s/' % DEFAULT_S3_PATH MEDIA_URL = '//%s/%s/' % (S3_DOMAIN, DEFAULT_S3_PATH) STATIC_ROOT = "/%s/" % STATIC_S3_PATH STATIC_URL = 'https://%s/' % (S3_DOMAIN) ADMIN_MEDIA_PREFIX = STATIC_URL + 'admin/' CORS_ORIGIN_ALLOW_ALL = True AWS_IS_GZIPPED = True AWS_ENABLED = True AWS_S3_SECURE_URLS = True COMPRESS_ROOT = BASE_DIR + '/static/' COMPRESS_ENABLED = True COMPRESS_OFFLINE_CONTEXT = { 'STATIC_URL': 'STATIC_URL', } STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', 'compressor.finders.CompressorFinder', ) COMPRESS_CSS_FILTERS = [ 'compressor.filters.css_default.CssAbsoluteFilter', 'compressor.filters.cssmin.CSSMinFilter'] COMPRESS_REBUILD_TIMEOUT = 5400 COMPRESS_OUTPUT_DIR = 'CACHE' COMPRESS_URL = STATIC_URL COMPRESS_PRECOMPILERS = ( ('text/less', 'lessc {infile} {outfile}'), ('text/x-sass', 'sass {infile} {outfile}'), ('text/x-scss', 'sass {infile} {outfile}'), ) COMPRESS_OFFLINE_CONTEXT = { 'STATIC_URL': 'STATIC_URL', } DEFAULT_FROM_EMAIL = '[email protected]' # celery Tasks CELERY_BROKER_URL = 'redis://localhost:6379' CELERY_RESULT_BACKEND = 'redis://localhost:6379' CELERY_BEAT_SCHEDULE = { "runs-campaign-for-every-thiry-minutes": { "task": "marketing.tasks.run_all_campaigns", "schedule": crontab(minute=30, hour='*') }, "runs-campaign-for-every-five-minutes": { "task": "marketing.tasks.list_all_bounces_unsubscribes", "schedule": crontab(minute='*/5') }, "runs-scheduled-campaigns-for-every-one-hour": { "task": "marketing.tasks.send_scheduled_campaigns", "schedule": crontab(hour='*/1') }, "runs-scheduled-emails-for-accounts-every-five-minutes": { "task": "accounts.tasks.send_scheduled_emails", "schedule": crontab(minute='*/1') } } MAIL_SENDER = 'AMAZON' INACTIVE_MAIL_SENDER = 'MANDRILL' AM_ACCESS_KEY = os.getenv('AM_ACCESS_KEY', '') AM_PASS_KEY = os.getenv('AM_PASS_KEY', '') AWS_REGION = os.getenv('AWS_REGION', '') MGUN_API_URL = os.getenv('MGUN_API_URL', '') MGUN_API_KEY = os.getenv('MGUN_API_KEY', '') SG_USER = os.getenv('SG_USER', '') SG_PWD = os.getenv('SG_PWD', '') MANDRILL_API_KEY = os.getenv('MANDRILL_API_KEY', '') ADMIN_EMAIL = "[email protected]" URL_FOR_LINKS = "http://demo.django-crm.io" try: from .dev_settings import * except ImportError: pass GP_CLIENT_ID = os.getenv('GP_CLIENT_ID', False) GP_CLIENT_SECRET = os.getenv('GP_CLIENT_SECRET', False) ENABLE_GOOGLE_LOGIN = os.getenv('ENABLE_GOOGLE_LOGIN', False) MARKETING_REPLY_EMAIL = '[email protected]' PASSWORD_RESET_TIMEOUT_DAYS = 3 SENTRY_ENABLED = os.getenv('SENTRY_ENABLED', False) if SENTRY_ENABLED and not DEBUG: if os.getenv('SENTRYDSN') is not None: RAVEN_CONFIG = { 'dsn': os.getenv('SENTRYDSN', ''), } INSTALLED_APPS = INSTALLED_APPS + [ 'raven.contrib.django.raven_compat', ] MIDDLEWARE = [ 'raven.contrib.django.raven_compat.middleware.Sentry404CatchMiddleware', 'raven.contrib.django.raven_compat.middleware.SentryResponseErrorIdMiddleware', ] + MIDDLEWARE LOGGING = { 'version': 1, 'disable_existing_loggers': True, 'root': { 'level': 'WARNING', 'handlers': ['sentry'], }, 'formatters': { 'verbose': { 'format': '%(levelname)s %(asctime)s %(module)s %(process)d %(thread)d %(message)s' }, }, 'handlers': { 'sentry': { 'level': 'ERROR', 'class': 'raven.contrib.django.raven_compat.handlers.SentryHandler', }, 'console': { 'level': 'DEBUG', 'class': 'logging.StreamHandler', 'formatter': 'verbose' } }, 'loggers': { 'django.db.backends': { 'level': 'ERROR', 'handlers': ['console'], 'propagate': False, }, 'raven': { 'level': 'DEBUG', 'handlers': ['console'], 'propagate': False, }, 'sentry.errors': { 'level': 'DEBUG', 'handlers': ['console'], 'propagate': False, }, }, } # Load the local settings file if it exists if os.path.isfile('crm/local_settings.py'): from .local_settings import * else: print("No local settings file found")
the-stack_0_15086
#!/usr/bin/env python3 import os import stat def getFileList(fileDir): fileList = os.listdir(fileDir) newFileList = [] for eachFile in fileList: if eachFile[:31] not in newFileList: newFileList.append(eachFile) return newFileList def createSubmitFile(eventRootName): fileName = str(eventRootName).split("_")[4] submitComtent = """Universe = vanilla Notification = Error Initialdir = /star/u/jhai/selfSC_GL/test/submit/submit6.8_9 Executable = $(Initialdir)/run47.csh Arguments = $(Process) Log = $(Initialdir)/log/job47_$(Process).log Output = $(Initialdir)/log/job47_$(Process).out Error = $(Initialdir)/log/job47_$(Process).err GetEnv = True +Job_Type = "cas" Queue 1""" submitComtentResult = submitComtent.split("\n") fileObject = open(fileName + ".con", "w") for eachLine in submitComtentResult: if eachLine.lower().startswith("executable"): eachLine = "Executable = $(Initialdir)/" + fileName + ".csh" fileObject.write(eachLine+'\n') fileObject.close() def createRunShell(eventRootName): fileName = str(eventRootName).split("_")[4] shellContent = """#!/bin/csh stardev root4star -b -q -l 'doEvents_SCGL_Calib.C(5000,"./output/*19072018_raw_5000008*")' """ shellContentResult = shellContent.split("\n") fileObject = open(fileName + ".csh", "w") for eachLine in shellContentResult: eachLine.strip('\n') if eachLine.lower().startswith("root4star"): eachLine = """root4star -b -q -l 'doEvents_SCGL_Calib.C(5000,"/star/u/jhai/scratch/test/""" + eventRootName + "*" + """")'""" fileObject.write(eachLine+"\n") fileObject.close() os.chmod(fileName + ".csh", stat.S_IRWXU) def main(): fileDir = "/star/u/jhai/scratch/test" eventFileList = getFileList(fileDir) for eachEventFile in eventFileList: eachEventFile = eachEventFile[:31] createRunShell(eachEventFile) createSubmitFile(eachEventFile) if __name__ == "__main__": main()
the-stack_0_15087
import autofit as af import autolens as al from test_autolens.integration.tests.imaging import runner test_type = "lens__source_inversion" test_name = "lens_both__source_rectangular" data_type = "lens_light__source_smooth" data_resolution = "lsst" def make_pipeline(name, phase_folders, optimizer_class=af.MultiNest): class SourcePix(al.PhaseImaging): def customize_priors(self, results): self.galaxies.lens.mass.centre.centre_0 = 0.0 self.galaxies.lens.mass.centre.centre_1 = 0.0 self.galaxies.lens.mass.einstein_radius = 1.6 self.galaxies.source.pixelization.shape_0 = 20.0 self.galaxies.source.pixelization.shape_1 = 20.0 phase1 = SourcePix( phase_name="phase_1", phase_folders=phase_folders, galaxies=dict( lens=al.GalaxyModel( redshift=0.5, light=al.lp.SphericalDevVaucouleurs, mass=al.mp.EllipticalIsothermal, ), source=al.GalaxyModel( redshift=1.0, pixelization=al.pix.Rectangular, regularization=al.reg.Constant, ), ), optimizer_class=optimizer_class, ) phase1.optimizer.const_efficiency_mode = True phase1.optimizer.n_live_points = 60 phase1.optimizer.sampling_efficiency = 0.8 return al.PipelineDataset(name, phase1) if __name__ == "__main__": import sys runner.run(sys.modules[__name__])
the-stack_0_15089
from pymixconf.jsonconf import JSONConf import os def test_yamlconf(): loader = JSONConf(config_directory="test/fixtures", environment_key="TEST_ENV") os.environ["TEST_ENV"] = "dev" data = loader.load_config() expected = { "flask": { "port": 7000 }, "logging": { "level": "INFO" }, "custom": { "users": { "enabled": True, "admins": ["steve"] } } } print(data) assert data == expected
the-stack_0_15090
""" Defines repositories and register toolchains for versions of the tools built from source """ load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive") load("@bazel_tools//tools/build_defs/repo:utils.bzl", "maybe") _ALL_CONTENT = """\ filegroup( name = "all_srcs", srcs = glob(["**"]), visibility = ["//visibility:public"], ) """ # buildifier: disable=unnamed-macro def built_toolchains(cmake_version, make_version, ninja_version): """Register toolchains for built tools that will be built from source""" _cmake_toolchain(cmake_version) _make_toolchain(make_version) _ninja_toolchain(ninja_version) def _cmake_toolchain(version): native.register_toolchains( "@rules_foreign_cc//toolchains:built_cmake_toolchain", ) if version == "3.19.6": maybe( http_archive, name = "cmake_src", build_file_content = _ALL_CONTENT, sha256 = "ec87ab67c45f47c4285f204280c5cde48e1c920cfcfed1555b27fb3b1a1d20ba", strip_prefix = "cmake-3.19.6", urls = [ "https://github.com/Kitware/CMake/releases/download/v3.19.6/cmake-3.19.6.tar.gz", ], ) return fail("Unsupported cmake version: " + str(version)) def _make_toolchain(version): native.register_toolchains( "@rules_foreign_cc//toolchains:built_make_toolchain", ) if version == "4.3": maybe( http_archive, name = "gnumake_src", build_file_content = _ALL_CONTENT, sha256 = "e05fdde47c5f7ca45cb697e973894ff4f5d79e13b750ed57d7b66d8defc78e19", strip_prefix = "make-4.3", urls = [ "http://ftpmirror.gnu.org/gnu/make/make-4.3.tar.gz", ], ) return fail("Unsupported make version: " + str(version)) def _ninja_toolchain(version): native.register_toolchains( "@rules_foreign_cc//toolchains:built_ninja_toolchain", ) if version == "1.10.2": maybe( http_archive, name = "ninja_build_src", build_file_content = _ALL_CONTENT, sha256 = "ce35865411f0490368a8fc383f29071de6690cbadc27704734978221f25e2bed", strip_prefix = "ninja-1.10.2", urls = [ "https://github.com/ninja-build/ninja/archive/v1.10.2.tar.gz", ], ) return fail("Unsupported ninja version: " + str(version))
the-stack_0_15091
# Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. import datetime import json import logging import os import time import dateutil.tz METRICS_DIR = os.environ.get("SAGEMAKER_METRICS_DIRECTORY", ".") logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) class SageMakerFileMetricsWriter(object): """Writes metric data to file.""" def __init__(self, metrics_file_path=None): self._metrics_file_path = metrics_file_path self._file = None self._closed = False def log_metric(self, metric_name, value, timestamp=None, iteration_number=None): """Write a metric to file. Args: metric_name (str): The name of the metric. value (str): The value of the metric. timestamp (datetime): Timestamp of the metric. iteration_number (int): Iteration number of the metric. Raises: SageMakerMetricsWriterException: If the metrics file is closed. """ raw_metric_data = _RawMetricData( metric_name=metric_name, value=value, timestamp=timestamp, iteration_number=iteration_number ) try: logging.debug("Writing metric: %s", raw_metric_data) self._file.write(json.dumps(raw_metric_data.to_record())) self._file.write("\n") except AttributeError: if self._closed: raise SageMakerMetricsWriterException("log_metric called on a closed writer") elif not self._file: self._file = open(self._get_metrics_file_path(), "a", buffering=1) self._file.write(json.dumps(raw_metric_data.to_record())) self._file.write("\n") else: raise def close(self): """Closes the metric file.""" if not self._closed and self._file: self._file.close() self._file = None # invalidate reference, causing subsequent log_metric to fail. self._closed = True def __enter__(self): """Return self""" return self def __exit__(self, type, value, traceback): """Execute self.close()""" self.close() def __del__(self): """Execute self.close()""" self.close() def _get_metrics_file_path(self): pid_filename = "{}.json".format(str(os.getpid())) metrics_file_path = self._metrics_file_path or os.path.join(METRICS_DIR, pid_filename) logging.debug("metrics_file_path=" + metrics_file_path) return metrics_file_path class SageMakerMetricsWriterException(Exception): """SageMakerMetricsWriterException""" def __init__(self, message, errors=None): super().__init__(message) if errors: self.errors = errors class _RawMetricData(object): MetricName = None Value = None Timestamp = None IterationNumber = None def __init__(self, metric_name, value, timestamp=None, iteration_number=None): if timestamp is None: timestamp = time.time() elif isinstance(timestamp, datetime.datetime): # If the input is a datetime then convert it to UTC time. Assume a naive datetime is in local timezone if not timestamp.tzinfo: timestamp = timestamp.replace(tzinfo=dateutil.tz.tzlocal()) timestamp = (timestamp - timestamp.utcoffset()).replace(tzinfo=datetime.timezone.utc) timestamp = timestamp.timestamp() else: timestamp = float(timestamp) if timestamp < (time.time() - 1209600) or timestamp > (time.time() + 7200): raise ValueError( "Supplied timestamp %f is invalid." " Timestamps must be between two weeks before and two hours from now." % timestamp ) value = float(value) self.MetricName = metric_name self.Value = float(value) self.Timestamp = timestamp if iteration_number is not None: assert isinstance(iteration_number, int) self.IterationNumber = iteration_number def to_record(self): return self.__dict__ def __str__(self): return repr(self) def __repr__(self): return "{}({})".format( type(self).__name__, ",".join(["{}={}".format(k, repr(v)) for k, v in vars(self).items()]), )
the-stack_0_15092
from igramscraper.instagram import Instagram import urllib.request import argparse import os def get_media_from_hashtag(tag, media_type, quality, max_images, path): instagram = Instagram() medias = instagram.get_medias_by_tag(tag, count=max_images) count = 1 for media in medias: media.type = 'image' if media.type == 'sidecar' or media.type == 'carousel' else media.type # Extracting Image URL if (media.type == 'image' and media_type == 'image' or media_type == 'all') and not media.is_ad: # Get the links form media all_quality = ['low', 'standard', 'high'] url = media.__getattribute__(f"image_{quality}_resolution_url") # If the preferred quality is not available if not url: all_quality.remove(quality) for q in all_quality: url = media.__getattribute__( f"image_{q}_resolution_url") if url: break # Extracting Video URL if (media.type == 'video' and media_type == 'all' or media_type == 'video') and not media.is_ad: # Get the links form media media = instagram.get_media_by_id(media.identifier) url = media.video_standard_resolution_url or media.video_low_bandwidth_url or media.video_low_resolution_url or media.video_url # Downloading the media if url: urllib.request.urlretrieve( url, f"{path}/{media.type}s/{media.type}{count}.{'jpg' if media.type == 'image' else 'mp4'}") print(f"{count}/{max_images} media downloaded") else: print( f"[{count}] Failed downloading the media {media.link} (id - {media.identifier})") count += 1 if __name__ == "__main__": parser = argparse.ArgumentParser( description='Get All Post From Instagram Hashtag') parser.add_argument('-t', '--tag', required=True, help="valid tag name") parser.add_argument('-p', '--path', required=False, help="Path to save media", default="media") parser.add_argument('-mm', '--max-media', required=False, help="Max number of media to download", type=int, default=10) parser.add_argument('-mt', '--media-type', required=False, help="For Photos => `image` Videos => `video` All => `all` ", default="all") parser.add_argument('-q', '--quality', required=False, help="Media Quality Use either of `low`, `standard` or `high`", default="standard") arguments = parser.parse_args() # Checking if arguments.media_type not in ["video", "image", "all"]: raise ValueError("Media Type should be either videos, images or all") if arguments.quality not in ["low", "high", "standard"]: raise ValueError("Quality should be either low, standard or high") if not os.path.exists(arguments.path): print("Media path not found! \nCreating media path!") os.mkdir(arguments.path) if not os.path.exists(arguments.path + "/images"): os.mkdir(arguments.path + "/images") if not os.path.exists(arguments.path + "/videos"): os.mkdir(arguments.path + "/videos") # Running get_media_from_hashtag(tag=arguments.tag, media_type=arguments.media_type, quality=arguments.quality, max_images=arguments.max_media, path=arguments.path)
the-stack_0_15093
from cricsheet.io_xml.parsers.parser import Parser class MatchParser(Parser): def __init__(self, match_id): self.match_id = match_id self.metadata_parser = MatchMetadataParser() self.outcome_parser = MatchOutcomeParser() self.umpire_parser = UmpireParser() def parse(self, raw): data = {'id': self.match_id} data.update(self.metadata_parser.parse(raw)) data.update(self.outcome_parser.parse(raw['outcome'])) if 'umpires' in raw: data.update(self.umpire_parser.parse(raw['umpires']['umpire'])) return data class MatchMetadataParser(Parser): def __init__(self): pass def parse(self, metadata): if 'player_of_match' in metadata: if type(metadata['player_of_match']['player_of_match']) == list: player_of_match = metadata['player_of_match']['player_of_match'][0] else: player_of_match = metadata['player_of_match']['player_of_match'] else: player_of_match = None return { 'gender': metadata['gender'], 'match_type': metadata['match_type'], 'competition': metadata['competition'] if 'competition' in metadata else None, 'max_overs': metadata['overs'] if 'overs' in metadata else None, 'venue': metadata['venue'] if 'venue' in metadata else None, 'city': metadata['city'] if 'city' in metadata else None, 'start_date': metadata['dates']['date'][0], 'end_date': metadata['dates']['date'][-1], 'team_home': metadata['teams']['team'][0], 'team_away': metadata['teams']['team'][1], 'player_of_match': player_of_match, 'toss_won_by': metadata['toss']['winner'], 'toss_decision': metadata['toss']['decision'] } class MatchOutcomeParser(Parser): def __init__(self): pass def parse(self, outcome): has_winner = (any(result in outcome for result in ('winner', 'eliminator'))) result = 'win' if has_winner else outcome['result'] method = outcome['method'] if 'method' in outcome else \ 'eliminator' if 'eliminator' in outcome else None winner = outcome['winner'] if 'winner' in outcome else \ outcome['eliminator'] if 'eliminator' in outcome else None by = outcome['by'] if 'by' in outcome else None #print(has_winner, result, method, winner, by) if (not has_winner) or ('eliminator' in outcome) or (method == 'Awarded'): won_by_type = None won_by_value = None elif by is not None: if ('innings' in by) and ('wickets' in by): won_by_type = 'innings_and_wickets' won_by_value = by['wickets'] elif ('innings' not in by) and ('wickets' in by): won_by_type = 'wickets' won_by_value = by['wickets'] elif ('innings' in by) and ('runs' in by): won_by_type = 'innings_and_runs' won_by_value = by['runs'] elif ('innings' not in by) and ('runs' in by): won_by_type = 'runs' won_by_value = by['runs'] else: won_by_type = None won_by_value = None return { 'result': result, 'method': method, 'winner': winner, 'won_by_type': won_by_type, 'won_by_value': won_by_value } class UmpireParser(Parser): def __init__(self): pass def parse(self, umpires): if len(umpires) == 2: first, second = umpires third, forth = None, None if len(umpires) == 3: first, second, third = umpires forth = None if len(umpires) == 4: first, second, third, forth = umpires return { 'umpire_first': first, 'umpire_second': second, 'umpire_third': third, 'umpire_forth': forth }
the-stack_0_15095
"""Remove processed notebooks from disk""" import argparse import shutil from reproducemegit.jupyter_reproducibility import config import os from reproducemegit.jupyter_reproducibility import consts from reproducemegit.jupyter_reproducibility.db import Repository, Notebook, connect from reproducemegit.jupyter_reproducibility.utils import vprint, StatusLogger, mount_basedir, check_exit, savepid def apply(session, status, keep, count, interval, reverse, check): """Compress repositories""" filters = [ Repository.processed.op('&')(consts.R_COMPRESS_OK) == 0, ] if interval: filters += [ Repository.id >= interval[0], Repository.id <= interval[1], ] query = session.query(Repository).filter(*filters) if count: print(query.count()) return if reverse: query = query.order_by( Repository.id.desc() ) else: query = query.order_by( Repository.id.asc() ) for repository in query: if check_exit(check): vprint(0, "Found .exit file. Exiting") return status.report() vprint(0, "Compressing {}".format(repository)) vprint(1, "Into {}".format(repository.zip_path)) with mount_basedir(): try: if repository.path.exists(): commit = repository.get_commit() if commit != repository.commit: repository.processed |= consts.R_COMMIT_MISMATCH repository.processed |= consts.R_COMPRESS_ERROR if repository.zip_path.exists() or repository.compress(): if repository.processed & consts.R_COMPRESS_ERROR: repository.processed -= consts.R_COMPRESS_ERROR if not keep: shutil.rmtree(str(repository.path), ignore_errors=True) elif not repository.zip_path.exists(): if repository.processed & consts.R_COMPRESS_ERROR: repository.processed -= consts.R_COMPRESS_ERROR if not repository.path.exists(): repository.processed |= consts.R_UNAVAILABLE_FILES vprint(1, "failed") if repository.zip_path.exists(): vprint(1, "ok") repository.processed |= consts.R_COMPRESS_OK except Exception as err: vprint(1, "Failed: {}".format(err)) session.add(repository) status.count += 1 session.commit() def main(): """Main function""" script_name = os.path.basename(__file__)[:-3] parser = argparse.ArgumentParser( description="Compress processed repositories") parser.add_argument("-v", "--verbose", type=int, default=config.VERBOSE, help="increase output verbosity") parser.add_argument("-z", "--compression", type=str, default=config.COMPRESSION, help="compression algorithm") parser.add_argument("-e", "--retry-errors", action='store_true', help="retry errors") parser.add_argument("-i", "--interval", type=int, nargs=2, default=config.REPOSITORY_INTERVAL, help="id interval") parser.add_argument("-c", "--count", action='store_true', help="count results") parser.add_argument('-r', '--reverse', action='store_true', help='iterate in reverse order') parser.add_argument('-k', '--keep-uncompressed', action='store_true', help='keep uncompressed files') parser.add_argument('--check', type=str, nargs='*', default={'all', script_name, script_name + '.py'}, help='check name in .exit') args = parser.parse_args() config.VERBOSE = args.verbose status = None if not args.count: status = StatusLogger(script_name) status.report() config.COMPRESSION = args.compression with connect() as session, savepid(): apply( session, status, args.keep_uncompressed, args.count, args.interval, args.reverse, set(args.check) ) if __name__ == "__main__": main()
the-stack_0_15096
# Lab 4 Multi-variable linear regression import tensorflow as tf import numpy as np tf.set_random_seed(777) # for reproducibility xy = np.loadtxt('data-01-test-score.csv', delimiter=',', dtype=np.float32) x_data = xy[:, 0:-1] y_data = xy[:, [-1]] # Make sure the sape and data are OK print(x_data.shape, x_data, len(x_data)) print(y_data.shape, y_data) # placeholders for a tensor that will be always fed. X = tf.placeholder(tf.float32, shape=[None, 3]) Y = tf.placeholder(tf.float32, shape=[None, 1]) W = tf.Variable(tf.random_normal([3, 1]), name='weight') b = tf.Variable(tf.random_normal([1]), name='bias') # Hypothesis hypothesis = tf.matmul(X, W) + b # Simplified cost function cost = tf.reduce_mean(tf.square(hypothesis - Y)) # Minimize optimizer = tf.train.GradientDescentOptimizer(learning_rate=1e-5) train = optimizer.minimize(cost) # Launch the graph in a session. sess = tf.Session() # Initializes global variables in the graph. sess.run(tf.global_variables_initializer()) for step in range(2001): feed = {X: x_data, Y: y_data} sess.run(train, feed_dict=feed) if step % 10 == 0: print(step, "Cost: ", sess.run(cost, feed_dict=feed), "\nPrediction:\n", sess.run(hypothesis, feed_dict=feed)) # Ask my score score = np.array([[100, 70, 101]]) print("Your score will be ", sess.run(hypothesis, feed_dict={X: score})) score = np.array([[60, 70, 110], [90, 100, 80]]) print("Other scores will be ", sess.run(hypothesis, feed_dict={X: score})) ''' Your score will be [[ 181.73277283]] Other scores will be [[ 145.86265564] [ 187.23129272]] '''
the-stack_0_15097
import os import subprocess import glob import hashlib import shutil from common.basedir import BASEDIR from selfdrive.swaglog import cloudlog android_packages = ("ai.comma.plus.offroad",) def get_installed_apks(): dat = subprocess.check_output(["pm", "list", "packages", "-f"], encoding='utf8').strip().split("\n") ret = {} for x in dat: if x.startswith("package:"): v, k = x.split("package:")[1].split("=") ret[k] = v return ret def install_apk(path): # can only install from world readable path install_path = "/sdcard/%s" % os.path.basename(path) shutil.copyfile(path, install_path) ret = subprocess.call(["pm", "install", "-r", install_path]) os.remove(install_path) return ret == 0 def start_offroad(): set_package_permissions() system("am start -n ai.comma.plus.offroad/.MainActivity") def set_package_permissions(): try: output = subprocess.check_output(['dumpsys', 'package', 'ai.comma.plus.offroad'], encoding="utf-8") given_permissions = output.split("runtime permissions")[1] except Exception: given_permissions = "" wanted_permissions = ["ACCESS_FINE_LOCATION", "READ_PHONE_STATE", "READ_EXTERNAL_STORAGE"] for permission in wanted_permissions: if permission not in given_permissions: pm_grant("ai.comma.plus.offroad", "android.permission." + permission) appops_set("ai.comma.plus.offroad", "SU", "allow") appops_set("ai.comma.plus.offroad", "WIFI_SCAN", "allow") def appops_set(package, op, mode): system(f"LD_LIBRARY_PATH= appops set {package} {op} {mode}") def pm_grant(package, permission): system(f"pm grant {package} {permission}") def system(cmd): try: cloudlog.info("running %s" % cmd) subprocess.check_output(cmd, stderr=subprocess.STDOUT, shell=True) except subprocess.CalledProcessError as e: cloudlog.event("running failed", cmd=e.cmd, output=e.output[-1024:], returncode=e.returncode) # *** external functions *** def update_apks(): # install apks installed = get_installed_apks() install_apks = glob.glob(os.path.join(BASEDIR, "apk/*.apk")) for apk in install_apks: app = os.path.basename(apk)[:-4] if app not in installed: installed[app] = None cloudlog.info("installed apks %s" % (str(installed), )) for app in installed.keys(): apk_path = os.path.join(BASEDIR, "apk/"+app+".apk") if not os.path.exists(apk_path): continue h1 = hashlib.sha1(open(apk_path, 'rb').read()).hexdigest() h2 = None if installed[app] is not None: h2 = hashlib.sha1(open(installed[app], 'rb').read()).hexdigest() cloudlog.info("comparing version of %s %s vs %s" % (app, h1, h2)) if h2 is None or h1 != h2: cloudlog.info("installing %s" % app) success = install_apk(apk_path) if not success: cloudlog.info("needing to uninstall %s" % app) system("pm uninstall %s" % app) success = install_apk(apk_path) assert success def pm_apply_packages(cmd): for p in android_packages: system("pm %s %s" % (cmd, p)) if __name__ == "__main__": update_apks()
the-stack_0_15100
import os import argparse import pandas as pd from typing import Dict from utils import parse_date, load_colnames from parsers import ( confirmados_diarios_por_estado, negativos_diarios_por_estado, pruebas_pendientes_diarias_por_estado, defunciones_diarias_por_estado, hospitalizados_diarios_por_estado, uci_diarios_por_estado ) func_dict = dict() func_dict['covid19_mex_confirmed.csv'] = confirmados_diarios_por_estado func_dict['covid19_mex_negative.csv'] = negativos_diarios_por_estado func_dict['covid19_mex_awaiting.csv'] = pruebas_pendientes_diarias_por_estado func_dict['covid19_mex_deceased.csv'] = defunciones_diarias_por_estado func_dict['covid19_mex_hospitalised.csv'] = hospitalizados_diarios_por_estado func_dict['covid19_mex_icu.csv'] = uci_diarios_por_estado def write_files(main_df: pd.DataFrame, colnames: Dict[str, str], data_dir: str): for key, func in func_dict.items(): df = func(main_df, colnames) filename = os.path.join(data_dir, key) df.to_csv(filename) return None if __name__ == '__main__': parser = argparse.ArgumentParser(description='parse main dataset (zip file)') parser.add_argument('input_file', help='file containing dataset') parser.add_argument('-d', '--date', type=str, default=None, help="specify the date to use as yyyymmdd") args = parser.parse_args() date_filename, date_iso = parse_date(args) data_dir = os.path.join(os.pardir, 'data') # main dataset input_file = args.input_file assert input_file.endswith(f'{date_filename}.zip') try: main_df = pd.read_csv(input_file, compression='zip') colnames_dict = load_colnames('catalogo_entidades.csv') # names of 32 states write_files(main_df, colnames_dict, data_dir) print(f'Successfully parsed datos_abiertos_{date_filename}.zip') except FileNotFoundError: print('ERROR: Wrong date or missing file')
the-stack_0_15103
import numpy as np import os import cv2 def imread(file_path, c=None): if c is None: im = cv2.imread(file_path) else: im = cv2.imread(file_path, c) if im is None: raise 'Can not read image' if im.ndim == 3 and im.shape[2] == 3: im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) return im def imwrite(file_path, image): if image.ndim == 3 and image.shape[2] == 3: image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) cv2.imwrite(file_path, image) def fold_dir(folder): if not os.path.exists(folder): os.makedirs(folder) return folder def get_mask_BZ(img): if img.ndim==3: gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) else: gray_img = img threhold = np.mean(gray_img)/3-5 #cv2.imshow('gray_img', gray_img) #cv2.waitKey() #print(threhold) _, mask = cv2.threshold(gray_img, max(5,threhold), 1, cv2.THRESH_BINARY) #cv2.imshow('bz_mask', mask*255) #cv2.waitKey() nn_mask = np.zeros((mask.shape[0]+2,mask.shape[1]+2),np.uint8) new_mask = (1-mask).astype(np.uint8) # cv::floodFill(Temp, Point(0, 0), Scalar(255)); # _,new_mask,_,_ = cv2.floodFill(new_mask, nn_mask, [(0, 0),(0,new_mask.shape[0])], (0), cv2.FLOODFILL_MASK_ONLY) _,new_mask,_,_ = cv2.floodFill(new_mask, nn_mask, (0,0), (0), cv2.FLOODFILL_MASK_ONLY) _,new_mask,_,_ = cv2.floodFill(new_mask, nn_mask, (new_mask.shape[1]-1,new_mask.shape[0]-1), (0), cv2.FLOODFILL_MASK_ONLY) mask = mask + new_mask kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (20, 20)) mask = cv2.erode(mask, kernel) mask = cv2.dilate(mask, kernel) return mask def _get_center_by_edge(mask): center=[0,0] x=mask.sum(axis=1) center[0]=np.where(x>x.max()*0.95)[0].mean() x=mask.sum(axis=0) center[1]=np.where(x>x.max()*0.95)[0].mean() return center def _get_radius_by_mask_center(mask,center): mask=mask.astype(np.uint8) ksize=max(mask.shape[1]//400*2+1,3) kernel=cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(ksize,ksize)) mask=cv2.morphologyEx(mask, cv2.MORPH_GRADIENT, kernel) # radius= index=np.where(mask>0) d_int=np.sqrt((index[0]-center[0])**2+(index[1]-center[1])**2) b_count=np.bincount(np.ceil(d_int).astype(np.int)) radius=np.where(b_count>b_count.max()*0.995)[0].max() return radius def _get_circle_by_center_bbox(shape,center,bbox,radius): center_mask=np.zeros(shape=shape).astype('uint8') tmp_mask=np.zeros(shape=bbox[2:4]) center_tmp=(int(center[0]),int(center[1])) center_mask=cv2.circle(center_mask,center_tmp[::-1],int(radius),(1),-1) # center_mask[bbox[0]:bbox[0]+bbox[2],bbox[1]:bbox[1]+bbox[3]]=tmp_mask # center_mask[bbox[0]:min(bbox[0]+bbox[2],center_mask.shape[0]),bbox[1]:min(bbox[1]+bbox[3],center_mask.shape[1])]=tmp_mask return center_mask def get_mask(img): if img.ndim ==3: #raise 'image dim is not 3' g_img=cv2.cvtColor(img,cv2.COLOR_RGB2GRAY) #cv2.imshow('ImageWindow', g_img) #cv2.waitKey() elif img.ndim == 2: g_img =img.copy() else: raise 'image dim is not 1 or 3' h,w = g_img.shape shape=g_img.shape[0:2] #g_img = cv2.resize(g_img,(0,0),fx = 0.5,fy = 0.5) tg_img=cv2.normalize(g_img, None, 0, 255, cv2.NORM_MINMAX) tmp_mask=get_mask_BZ(tg_img) center=_get_center_by_edge(tmp_mask) #bbox=_get_bbox_by_mask(tmp_mask) #print(center) #cv2.imshow('ImageWindow', tmp_mask*255) #cv2.waitKey() radius=_get_radius_by_mask_center(tmp_mask,center) #resize back #center = [center[0]*2,center[1]*2] #radius = int(radius*2) center = [center[0], center[1]] radius = int(radius) s_h = max(0,int(center[0] - radius)) s_w = max(0, int(center[1] - radius)) bbox = (s_h, s_w, min(h-s_h,2 * radius), min(w-s_w,2 * radius)) tmp_mask=_get_circle_by_center_bbox(shape,center,bbox,radius) return tmp_mask,bbox,center,radius def mask_image(img,mask): img[mask<=0,...]=0 return img def remove_back_area(img,bbox=None,border=None): image=img if border is None: border=np.array((bbox[0],bbox[0]+bbox[2],bbox[1],bbox[1]+bbox[3],img.shape[0],img.shape[1]),dtype=np.int) image=image[border[0]:border[1],border[2]:border[3],...] return image,border def supplemental_black_area(img,border=None): image=img if border is None: h,v=img.shape[0:2] max_l=max(h,v) if image.ndim>2: image=np.zeros(shape=[max_l,max_l,img.shape[2]],dtype=img.dtype) else: image=np.zeros(shape=[max_l,max_l],dtype=img.dtype) border=(int(max_l/2-h/2),int(max_l/2-h/2)+h,int(max_l/2-v/2),int(max_l/2-v/2)+v,max_l) else: max_l=border[4] if image.ndim>2: image=np.zeros(shape=[max_l,max_l,img.shape[2]],dtype=img.dtype) else: image=np.zeros(shape=[max_l,max_l],dtype=img.dtype) image[border[0]:border[1],border[2]:border[3],...]=img return image,border def process_without_gb(img, label,radius_list,centre_list_w, centre_list_h): # preprocess images # img : origin image # tar_height: height of tar image # return: # result_img: preprocessed image # borders: remove border, supplement mask # mask: mask for preprocessed image borders = [] mask, bbox, center, radius = get_mask(img) #print('center is: ',center) #print('radius is: ',radius) r_img = mask_image(img, mask) r_img, r_border = remove_back_area(r_img,bbox=bbox) mask, _ = remove_back_area(mask,border=r_border) label, _ = remove_back_area(label,bbox=bbox) borders.append(r_border) r_img,sup_border = supplemental_black_area(r_img) #print(r_img.shape) label,sup_border = supplemental_black_area(label) mask,_ = supplemental_black_area(mask,border=sup_border) borders.append(sup_border) radius_list.append(radius) centre_list_w.append(int(center[0])) centre_list_h.append(int(center[1])) return r_img,borders,(mask*255).astype(np.uint8),label, radius_list,centre_list_w, centre_list_h
the-stack_0_15105
import tty import sys import curses import datetime import locale from decimal import Decimal import getpass import electrum from electrum.util import format_satoshis, set_verbosity from electrum.bitcoin import is_address, COIN, TYPE_ADDRESS from electrum.transaction import TxOutput from electrum.wallet import Wallet from electrum.storage import WalletStorage from electrum.network import NetworkParameters from electrum.interface import deserialize_server _ = lambda x:x class ElectrumGui: def __init__(self, config, daemon, plugins): self.config = config self.network = daemon.network storage = WalletStorage(config.get_wallet_path()) if not storage.file_exists(): print("Wallet not found. try 'electrum create'") exit() if storage.is_encrypted(): password = getpass.getpass('Password:', stream=None) storage.decrypt(password) self.wallet = Wallet(storage) self.wallet.start_network(self.network) self.contacts = self.wallet.contacts locale.setlocale(locale.LC_ALL, '') self.encoding = locale.getpreferredencoding() self.stdscr = curses.initscr() curses.noecho() curses.cbreak() curses.start_color() curses.use_default_colors() curses.init_pair(1, curses.COLOR_WHITE, curses.COLOR_BLUE) curses.init_pair(2, curses.COLOR_WHITE, curses.COLOR_CYAN) curses.init_pair(3, curses.COLOR_BLACK, curses.COLOR_WHITE) self.stdscr.keypad(1) self.stdscr.border(0) self.maxy, self.maxx = self.stdscr.getmaxyx() self.set_cursor(0) self.w = curses.newwin(10, 50, 5, 5) set_verbosity(False) self.tab = 0 self.pos = 0 self.popup_pos = 0 self.str_recipient = "" self.str_description = "" self.str_amount = "" self.str_fee = "" self.history = None if self.network: self.network.register_callback(self.update, ['wallet_updated', 'network_updated']) self.tab_names = [_("History"), _("Send"), _("Receive"), _("Addresses"), _("Contacts"), _("Banner")] self.num_tabs = len(self.tab_names) def set_cursor(self, x): try: curses.curs_set(x) except Exception: pass def restore_or_create(self): pass def verify_seed(self): pass def get_string(self, y, x): self.set_cursor(1) curses.echo() self.stdscr.addstr( y, x, " "*20, curses.A_REVERSE) s = self.stdscr.getstr(y,x) curses.noecho() self.set_cursor(0) return s def update(self, event): self.update_history() if self.tab == 0: self.print_history() self.refresh() def print_history(self): width = [20, 40, 14, 14] delta = (self.maxx - sum(width) - 4)/3 format_str = "%"+"%d"%width[0]+"s"+"%"+"%d"%(width[1]+delta)+"s"+"%"+"%d"%(width[2]+delta)+"s"+"%"+"%d"%(width[3]+delta)+"s" if self.history is None: self.update_history() self.print_list(self.history[::-1], format_str%( _("Date"), _("Description"), _("Amount"), _("Balance"))) def update_history(self): width = [20, 40, 14, 14] delta = (self.maxx - sum(width) - 4)/3 format_str = "%"+"%d"%width[0]+"s"+"%"+"%d"%(width[1]+delta)+"s"+"%"+"%d"%(width[2]+delta)+"s"+"%"+"%d"%(width[3]+delta)+"s" b = 0 self.history = [] for tx_hash, tx_mined_status, value, balance in self.wallet.get_history(): if tx_mined_status.conf: timestamp = tx_mined_status.timestamp try: time_str = datetime.datetime.fromtimestamp(timestamp).isoformat(' ')[:-3] except Exception: time_str = "------" else: time_str = 'unconfirmed' label = self.wallet.get_label(tx_hash) if len(label) > 40: label = label[0:37] + '...' self.history.append( format_str%( time_str, label, format_satoshis(value, whitespaces=True), format_satoshis(balance, whitespaces=True) ) ) def print_balance(self): if not self.network: msg = _("Offline") elif self.network.is_connected(): if not self.wallet.up_to_date: msg = _("Synchronizing...") else: c, u, x = self.wallet.get_balance() msg = _("Balance")+": %f "%(Decimal(c) / COIN) if u: msg += " [%f unconfirmed]"%(Decimal(u) / COIN) if x: msg += " [%f unmatured]"%(Decimal(x) / COIN) else: msg = _("Not connected") self.stdscr.addstr( self.maxy -1, 3, msg) for i in range(self.num_tabs): self.stdscr.addstr( 0, 2 + 2*i + len(''.join(self.tab_names[0:i])), ' '+self.tab_names[i]+' ', curses.A_BOLD if self.tab == i else 0) self.stdscr.addstr(self.maxy -1, self.maxx-30, ' '.join([_("Settings"), _("Network"), _("Quit")])) def print_receive(self): addr = self.wallet.get_receiving_address() self.stdscr.addstr(2, 1, "Address: "+addr) self.print_qr(addr) def print_contacts(self): messages = map(lambda x: "%20s %45s "%(x[0], x[1][1]), self.contacts.items()) self.print_list(messages, "%19s %15s "%("Key", "Value")) def print_addresses(self): fmt = "%-35s %-30s" messages = map(lambda addr: fmt % (addr, self.wallet.labels.get(addr,"")), self.wallet.get_addresses()) self.print_list(messages, fmt % ("Address", "Label")) def print_edit_line(self, y, label, text, index, size): text += " "*(size - len(text) ) self.stdscr.addstr( y, 2, label) self.stdscr.addstr( y, 15, text, curses.A_REVERSE if self.pos%6==index else curses.color_pair(1)) def print_send_tab(self): self.stdscr.clear() self.print_edit_line(3, _("Pay to"), self.str_recipient, 0, 40) self.print_edit_line(5, _("Description"), self.str_description, 1, 40) self.print_edit_line(7, _("Amount"), self.str_amount, 2, 15) self.print_edit_line(9, _("Fee"), self.str_fee, 3, 15) self.stdscr.addstr( 12, 15, _("[Send]"), curses.A_REVERSE if self.pos%6==4 else curses.color_pair(2)) self.stdscr.addstr( 12, 25, _("[Clear]"), curses.A_REVERSE if self.pos%6==5 else curses.color_pair(2)) self.maxpos = 6 def print_banner(self): if self.network and self.network.banner: banner = self.network.banner banner = banner.replace('\r', '') self.print_list(banner.split('\n')) def print_qr(self, data): import qrcode try: from StringIO import StringIO except ImportError: from io import StringIO s = StringIO() self.qr = qrcode.QRCode() self.qr.add_data(data) self.qr.print_ascii(out=s, invert=False) msg = s.getvalue() lines = msg.split('\n') try: for i, l in enumerate(lines): l = l.encode("utf-8") self.stdscr.addstr(i+5, 5, l, curses.color_pair(3)) except curses.error: m = 'error. screen too small?' m = m.encode(self.encoding) self.stdscr.addstr(5, 1, m, 0) def print_list(self, lst, firstline = None): lst = list(lst) self.maxpos = len(lst) if not self.maxpos: return if firstline: firstline += " "*(self.maxx -2 - len(firstline)) self.stdscr.addstr( 1, 1, firstline ) for i in range(self.maxy-4): msg = lst[i] if i < len(lst) else "" msg += " "*(self.maxx - 2 - len(msg)) m = msg[0:self.maxx - 2] m = m.encode(self.encoding) self.stdscr.addstr( i+2, 1, m, curses.A_REVERSE if i == (self.pos % self.maxpos) else 0) def refresh(self): if self.tab == -1: return self.stdscr.border(0) self.print_balance() self.stdscr.refresh() def main_command(self): c = self.stdscr.getch() print(c) cc = curses.unctrl(c).decode() if c == curses.KEY_RIGHT: self.tab = (self.tab + 1)%self.num_tabs elif c == curses.KEY_LEFT: self.tab = (self.tab - 1)%self.num_tabs elif c == curses.KEY_DOWN: self.pos +=1 elif c == curses.KEY_UP: self.pos -= 1 elif c == 9: self.pos +=1 # tab elif cc in ['^W', '^C', '^X', '^Q']: self.tab = -1 elif cc in ['^N']: self.network_dialog() elif cc == '^S': self.settings_dialog() else: return c if self.pos<0: self.pos=0 if self.pos>=self.maxpos: self.pos=self.maxpos - 1 def run_tab(self, i, print_func, exec_func): while self.tab == i: self.stdscr.clear() print_func() self.refresh() c = self.main_command() if c: exec_func(c) def run_history_tab(self, c): if c == 10: out = self.run_popup('',["blah","foo"]) def edit_str(self, target, c, is_num=False): # detect backspace cc = curses.unctrl(c).decode() if c in [8, 127, 263] and target: target = target[:-1] elif not is_num or cc in '0123456789.': target += cc return target def run_send_tab(self, c): if self.pos%6 == 0: self.str_recipient = self.edit_str(self.str_recipient, c) if self.pos%6 == 1: self.str_description = self.edit_str(self.str_description, c) if self.pos%6 == 2: self.str_amount = self.edit_str(self.str_amount, c, True) elif self.pos%6 == 3: self.str_fee = self.edit_str(self.str_fee, c, True) elif self.pos%6==4: if c == 10: self.do_send() elif self.pos%6==5: if c == 10: self.do_clear() def run_receive_tab(self, c): if c == 10: out = self.run_popup('Address', ["Edit label", "Freeze", "Prioritize"]) def run_contacts_tab(self, c): if c == 10 and self.contacts: out = self.run_popup('Address', ["Copy", "Pay to", "Edit label", "Delete"]).get('button') key = list(self.contacts.keys())[self.pos%len(self.contacts.keys())] if out == "Pay to": self.tab = 1 self.str_recipient = key self.pos = 2 elif out == "Edit label": s = self.get_string(6 + self.pos, 18) if s: self.wallet.labels[key] = s def run_banner_tab(self, c): self.show_message(repr(c)) pass def main(self): tty.setraw(sys.stdin) try: while self.tab != -1: self.run_tab(0, self.print_history, self.run_history_tab) self.run_tab(1, self.print_send_tab, self.run_send_tab) self.run_tab(2, self.print_receive, self.run_receive_tab) self.run_tab(3, self.print_addresses, self.run_banner_tab) self.run_tab(4, self.print_contacts, self.run_contacts_tab) self.run_tab(5, self.print_banner, self.run_banner_tab) except curses.error as e: raise Exception("Error with curses. Is your screen too small?") from e finally: tty.setcbreak(sys.stdin) curses.nocbreak() self.stdscr.keypad(0) curses.echo() curses.endwin() def do_clear(self): self.str_amount = '' self.str_recipient = '' self.str_fee = '' self.str_description = '' def do_send(self): if not is_address(self.str_recipient): self.show_message(_('Invalid MUE address')) return try: amount = int(Decimal(self.str_amount) * COIN) except Exception: self.show_message(_('Invalid Amount')) return try: fee = int(Decimal(self.str_fee) * COIN) except Exception: self.show_message(_('Invalid Fee')) return if self.wallet.has_password(): password = self.password_dialog() if not password: return else: password = None try: tx = self.wallet.mktx([TxOutput(TYPE_ADDRESS, self.str_recipient, amount)], password, self.config, fee) except Exception as e: self.show_message(str(e)) return if self.str_description: self.wallet.labels[tx.txid()] = self.str_description self.show_message(_("Please wait..."), getchar=False) try: self.network.run_from_another_thread(self.network.broadcast_transaction(tx)) except Exception as e: self.show_message(repr(e)) else: self.show_message(_('Payment sent.')) self.do_clear() #self.update_contacts_tab() def show_message(self, message, getchar = True): w = self.w w.clear() w.border(0) for i, line in enumerate(message.split('\n')): w.addstr(2+i,2,line) w.refresh() if getchar: c = self.stdscr.getch() def run_popup(self, title, items): return self.run_dialog(title, list(map(lambda x: {'type':'button','label':x}, items)), interval=1, y_pos = self.pos+3) def network_dialog(self): if not self.network: return net_params = self.network.get_parameters() host, port, protocol = net_params.host, net_params.port, net_params.protocol proxy_config, auto_connect = net_params.proxy, net_params.auto_connect srv = 'auto-connect' if auto_connect else self.network.default_server out = self.run_dialog('Network', [ {'label':'server', 'type':'str', 'value':srv}, {'label':'proxy', 'type':'str', 'value':self.config.get('proxy', '')}, ], buttons = 1) if out: if out.get('server'): server = out.get('server') auto_connect = server == 'auto-connect' if not auto_connect: try: host, port, protocol = deserialize_server(server) except Exception: self.show_message("Error:" + server + "\nIn doubt, type \"auto-connect\"") return False if out.get('server') or out.get('proxy'): proxy = electrum.network.deserialize_proxy(out.get('proxy')) if out.get('proxy') else proxy_config net_params = NetworkParameters(host, port, protocol, proxy, auto_connect) self.network.run_from_another_thread(self.network.set_parameters(net_params)) def settings_dialog(self): fee = str(Decimal(self.config.fee_per_kb()) / COIN) out = self.run_dialog('Settings', [ {'label':'Default fee', 'type':'satoshis', 'value': fee } ], buttons = 1) if out: if out.get('Default fee'): fee = int(Decimal(out['Default fee']) * COIN) self.config.set_key('fee_per_kb', fee, True) def password_dialog(self): out = self.run_dialog('Password', [ {'label':'Password', 'type':'password', 'value':''} ], buttons = 1) return out.get('Password') def run_dialog(self, title, items, interval=2, buttons=None, y_pos=3): self.popup_pos = 0 self.w = curses.newwin( 5 + len(list(items))*interval + (2 if buttons else 0), 50, y_pos, 5) w = self.w out = {} while True: w.clear() w.border(0) w.addstr( 0, 2, title) num = len(list(items)) numpos = num if buttons: numpos += 2 for i in range(num): item = items[i] label = item.get('label') if item.get('type') == 'list': value = item.get('value','') elif item.get('type') == 'satoshis': value = item.get('value','') elif item.get('type') == 'str': value = item.get('value','') elif item.get('type') == 'password': value = '*'*len(item.get('value','')) else: value = '' if value is None: value = '' if len(value)<20: value += ' '*(20-len(value)) if 'value' in item: w.addstr( 2+interval*i, 2, label) w.addstr( 2+interval*i, 15, value, curses.A_REVERSE if self.popup_pos%numpos==i else curses.color_pair(1) ) else: w.addstr( 2+interval*i, 2, label, curses.A_REVERSE if self.popup_pos%numpos==i else 0) if buttons: w.addstr( 5+interval*i, 10, "[ ok ]", curses.A_REVERSE if self.popup_pos%numpos==(numpos-2) else curses.color_pair(2)) w.addstr( 5+interval*i, 25, "[cancel]", curses.A_REVERSE if self.popup_pos%numpos==(numpos-1) else curses.color_pair(2)) w.refresh() c = self.stdscr.getch() if c in [ord('q'), 27]: break elif c in [curses.KEY_LEFT, curses.KEY_UP]: self.popup_pos -= 1 elif c in [curses.KEY_RIGHT, curses.KEY_DOWN]: self.popup_pos +=1 else: i = self.popup_pos%numpos if buttons and c==10: if i == numpos-2: return out elif i == numpos -1: return {} item = items[i] _type = item.get('type') if _type == 'str': item['value'] = self.edit_str(item['value'], c) out[item.get('label')] = item.get('value') elif _type == 'password': item['value'] = self.edit_str(item['value'], c) out[item.get('label')] = item ['value'] elif _type == 'satoshis': item['value'] = self.edit_str(item['value'], c, True) out[item.get('label')] = item.get('value') elif _type == 'list': choices = item.get('choices') try: j = choices.index(item.get('value')) except Exception: j = 0 new_choice = choices[(j + 1)% len(choices)] item['value'] = new_choice out[item.get('label')] = item.get('value') elif _type == 'button': out['button'] = item.get('label') break return out
the-stack_0_15106
from flask import Flask, render_template, request import sqlite3 as sql app = Flask(__name__) import sqlite3 conn = sqlite3.connect('database.db') # print("Opened database successfully") # conn.execute('CREATE TABLE students (name TEXT, addr TEXT, city TEXT, pin TEXT)') # print("Table created successfully") # conn.close() @app.route('/') def home(): return render_template('index.html') @app.route('/enternew') def new_student(): return render_template('student.html') @app.route('/addrec',methods = ['POST', 'GET']) def addrec(): if request.method == 'POST': try: nm = request.form['nm'] addr = request.form['add'] city = request.form['city'] pin = request.form['pin'] with sql.connect("database.db") as con: cur = con.cursor() #cur.execute("INSERT INTO students (name,addr,city,pin) VALUES (?,?,?,?)",(nm,addr,city,pin) ) con.commit() # msg = "Record successfully added" except: con.rollback() msg = "error in insert operation" finally: return render_template("result.html",msg = msg) con.close() @app.route('/list') def list(): con = sql.connect("database.db") con.row_factory = sql.Row cur = con.cursor() cur.execute("select * from all_month") rows = cur.fetchall(); return render_template("list.html",rows = rows) if __name__ == '__main__': app.run(debug = True)
the-stack_0_15107
"""Module/script to byte-compile all .py files to .pyc (or .pyo) files. When called as a script with arguments, this compiles the directories given as arguments recursively; the -l option prevents it from recursing into directories. Without arguments, if compiles all modules on sys.path, without recursing into subdirectories. (Even though it should do so for packages -- for now, you'll have to deal with packages separately.) See module py_compile for details of the actual byte-compilation. """ import os import sys import importlib.util import py_compile import struct __all__ = ["compile_dir","compile_file","compile_path"] def compile_dir(dir, maxlevels=10, ddir=None, force=False, rx=None, quiet=False, legacy=False, optimize=-1): """Byte-compile all modules in the given directory tree. Arguments (only dir is required): dir: the directory to byte-compile maxlevels: maximum recursion level (default 10) ddir: the directory that will be prepended to the path to the file as it is compiled into each byte-code file. force: if True, force compilation, even if timestamps are up-to-date quiet: if True, be quiet during compilation legacy: if True, produce legacy pyc paths instead of PEP 3147 paths optimize: optimization level or -1 for level of the interpreter """ if not quiet: print('Listing {!r}...'.format(dir)) try: names = os.listdir(dir) except OSError: print("Can't list {!r}".format(dir)) names = [] names.sort() success = 1 for name in names: if name == '__pycache__': continue fullname = os.path.join(dir, name) if ddir is not None: dfile = os.path.join(ddir, name) else: dfile = None if not os.path.isdir(fullname): if not compile_file(fullname, ddir, force, rx, quiet, legacy, optimize): success = 0 elif (maxlevels > 0 and name != os.curdir and name != os.pardir and os.path.isdir(fullname) and not os.path.islink(fullname)): if not compile_dir(fullname, maxlevels - 1, dfile, force, rx, quiet, legacy, optimize): success = 0 return success def compile_file(fullname, ddir=None, force=False, rx=None, quiet=False, legacy=False, optimize=-1): """Byte-compile one file. Arguments (only fullname is required): fullname: the file to byte-compile ddir: if given, the directory name compiled in to the byte-code file. force: if True, force compilation, even if timestamps are up-to-date quiet: if True, be quiet during compilation legacy: if True, produce legacy pyc paths instead of PEP 3147 paths optimize: optimization level or -1 for level of the interpreter """ success = 1 name = os.path.basename(fullname) if ddir is not None: dfile = os.path.join(ddir, name) else: dfile = None if rx is not None: mo = rx.search(fullname) if mo: return success if os.path.isfile(fullname): if legacy: cfile = fullname + ('c' if __debug__ else 'o') else: if optimize >= 0: cfile = importlib.util.cache_from_source( fullname, debug_override=not optimize) else: cfile = importlib.util.cache_from_source(fullname) cache_dir = os.path.dirname(cfile) head, tail = name[:-3], name[-3:] if tail == '.py': if not force: try: mtime = int(os.stat(fullname).st_mtime) expect = struct.pack('<4sl', importlib.util.MAGIC_NUMBER, mtime) with open(cfile, 'rb') as chandle: actual = chandle.read(8) if expect == actual: return success except OSError: pass if not quiet: print('Compiling {!r}...'.format(fullname)) try: ok = py_compile.compile(fullname, cfile, dfile, True, optimize=optimize) except py_compile.PyCompileError as err: if quiet: print('*** Error compiling {!r}...'.format(fullname)) else: print('*** ', end='') # escape non-printable characters in msg msg = err.msg.encode(sys.stdout.encoding, errors='backslashreplace') msg = msg.decode(sys.stdout.encoding) print(msg) success = 0 except (SyntaxError, UnicodeError, OSError) as e: if quiet: print('*** Error compiling {!r}...'.format(fullname)) else: print('*** ', end='') print(e.__class__.__name__ + ':', e) success = 0 else: if ok == 0: success = 0 return success def compile_path(skip_curdir=1, maxlevels=0, force=False, quiet=False, legacy=False, optimize=-1): """Byte-compile all module on sys.path. Arguments (all optional): skip_curdir: if true, skip current directory (default True) maxlevels: max recursion level (default 0) force: as for compile_dir() (default False) quiet: as for compile_dir() (default False) legacy: as for compile_dir() (default False) optimize: as for compile_dir() (default -1) """ success = 1 for dir in sys.path: if (not dir or dir == os.curdir) and skip_curdir: print('Skipping current directory') else: success = success and compile_dir(dir, maxlevels, None, force, quiet=quiet, legacy=legacy, optimize=optimize) return success def main(): """Script main program.""" import argparse parser = argparse.ArgumentParser( description='Utilities to support installing Python libraries.') parser.add_argument('-l', action='store_const', const=0, default=10, dest='maxlevels', help="don't recurse into subdirectories") parser.add_argument('-f', action='store_true', dest='force', help='force rebuild even if timestamps are up to date') parser.add_argument('-q', action='store_true', dest='quiet', help='output only error messages') parser.add_argument('-b', action='store_true', dest='legacy', help='use legacy (pre-PEP3147) compiled file locations') parser.add_argument('-d', metavar='DESTDIR', dest='ddir', default=None, help=('directory to prepend to file paths for use in ' 'compile-time tracebacks and in runtime ' 'tracebacks in cases where the source file is ' 'unavailable')) parser.add_argument('-x', metavar='REGEXP', dest='rx', default=None, help=('skip files matching the regular expression; ' 'the regexp is searched for in the full path ' 'of each file considered for compilation')) parser.add_argument('-i', metavar='FILE', dest='flist', help=('add all the files and directories listed in ' 'FILE to the list considered for compilation; ' 'if "-", names are read from stdin')) parser.add_argument('compile_dest', metavar='FILE|DIR', nargs='*', help=('zero or more file and directory names ' 'to compile; if no arguments given, defaults ' 'to the equivalent of -l sys.path')) args = parser.parse_args() compile_dests = args.compile_dest if args.rx: import re args.rx = re.compile(args.rx) # if flist is provided then load it if args.flist: try: with (sys.stdin if args.flist=='-' else open(args.flist)) as f: for line in f: compile_dests.append(line.strip()) except OSError: print("Error reading file list {}".format(args.flist)) return False success = True try: if compile_dests: for dest in compile_dests: if os.path.isfile(dest): if not compile_file(dest, args.ddir, args.force, args.rx, args.quiet, args.legacy): success = False else: if not compile_dir(dest, args.maxlevels, args.ddir, args.force, args.rx, args.quiet, args.legacy): success = False return success else: return compile_path(legacy=args.legacy, force=args.force, quiet=args.quiet) except KeyboardInterrupt: print("\n[interrupted]") return False return True if __name__ == '__main__': exit_status = int(not main()) sys.exit(exit_status)
the-stack_0_15109
########################################################################################################################################## ## License: Apache 2.0. See LICENSE file in root directory. ## ########################################################################################################################################## import pyrealsense2 as rs import cv2 import numpy as np import time from dynamo.realsense_device_manager import DeviceManager import dynamo.calibration as calibration import dynamo.stream as stream import copy import threading import sys import multiprocessing import pickle import queue import os import argparse if __name__=="__main__": parser = argparse.ArgumentParser() parser.add_argument("--load", help="load calibration", nargs='?') parser.add_argument("--new", help="new calibration", nargs='?',default="new.cal") parser.add_argument("--folder", help="data folder", nargs = '?', default="data") parser.add_argument("--time", help="time to collect data (s)", nargs = '?', default="10") args = parser.parse_args() rsConfig = rs.config() if args.load: print(os.path.join(os.getcwd(),args.load)) file = open(os.path.join(os.getcwd(),args.load),'rb') transformation = pickle.load(file) file.close() #transformation = calibration.load(os.path.join(os.getcwd(),args.load)) print(transformation) deviceManager = DeviceManager(rs.context(), rsConfig) deviceManager.enable_all_emitters() elif args.new: resolutionWidth = 848 resolutionHeight = 480 frameRate = 30 rsConfig.enable_stream(rs.stream.depth, resolutionWidth, resolutionHeight, rs.format.z16, frameRate) rsConfig.enable_stream(rs.stream.color, resolutionWidth, resolutionHeight, rs.format.bgr8, frameRate) deviceManager = DeviceManager(rs.context(), rsConfig) deviceManager.enable_all_emitters() deviceManager.load_settings_json('calibrationSettings.json') cameraOrder = [ '822512060522', '823112060874', '823112060112', '822512060553', '822512060853', '822512061105'] transformation = calibration.newIterative(args.new,deviceManager, cameraOrder, 4,5,0.0762) deviceManager.disable_all_devices() rsConfig.disable_stream(rs.stream.depth) rsConfig.disable_stream(rs.stream.color) resolutionWidth = 848 resolutionHeight = 480 frameRate = 90 rsConfig.enable_stream(rs.stream.depth, resolutionWidth, resolutionHeight, rs.format.z16, frameRate) rsConfig.enable_stream(rs.stream.infrared, 1, resolutionWidth, resolutionHeight, rs.format.y8, frameRate) deviceManager.load_settings_json('markerSettings.json') deviceManager.enable_all_devices() input("Calibration complete, press Enter to continue...") script_path = os.path.abspath(__file__) scriptDir = os.path.split(script_path)[0] if not os.path.isdir(os.path.join(os.getcwd(), args.folder)): os.mkdir(args.folder) #make base folder if it doesn't exist already iteration = 1 while True: loc = args.folder+'\\'+str(format(iteration, '02d')) saveDirectory = os.path.join(os.getcwd(), loc) if not os.path.isdir(saveDirectory): os.mkdir(args.folder+'\\'+str(format(iteration, '02d'))) #make iteration folder if it doesn't exist already data = stream.start(deviceManager, transformation, saveDirectory,args.time) input("Data Collection complete, press Enter to continue...") iteration+=1
the-stack_0_15110
#!/usr/bin/env python3 import binascii import os import struct import time from collections import namedtuple import numpy as np from opendbc import DBC_PATH from common.realtime import Ratekeeper from selfdrive.config import Conversions as CV import selfdrive.messaging as messaging from selfdrive.services import service_list from selfdrive.car import crc8_pedal from selfdrive.car.honda.hondacan import fix from selfdrive.car.honda.values import CAR from selfdrive.car.honda.carstate import get_can_signals from selfdrive.boardd.boardd import can_capnp_to_can_list, can_list_to_can_capnp from selfdrive.can.plant_can_parser import CANParser from selfdrive.car.honda.interface import CarInterface from common.dbc import dbc honda = dbc(os.path.join(DBC_PATH, "honda_civic_touring_2016_can_generated.dbc")) # Trick: set 0x201 (interceptor) in fingerprints for gas is controlled like if there was an interceptor CP = CarInterface.get_params(CAR.CIVIC, {0: {0x201: 6}, 1: {}, 2: {}, 3: {}}) def car_plant(pos, speed, grade, gas, brake): # vehicle parameters mass = 1700 aero_cd = 0.3 force_peak = mass*3. force_brake_peak = -mass*10. #1g power_peak = 100000 # 100kW speed_base = power_peak/force_peak rolling_res = 0.01 g = 9.81 frontal_area = 2.2 air_density = 1.225 gas_to_peak_linear_slope = 3.33 brake_to_peak_linear_slope = 0.3 creep_accel_v = [1., 0.] creep_accel_bp = [0., 1.5] #*** longitudinal model *** # find speed where peak torque meets peak power force_brake = brake * force_brake_peak * brake_to_peak_linear_slope if speed < speed_base: # torque control force_gas = gas * force_peak * gas_to_peak_linear_slope else: # power control force_gas = gas * power_peak / speed * gas_to_peak_linear_slope force_grade = - grade * mass # positive grade means uphill creep_accel = np.interp(speed, creep_accel_bp, creep_accel_v) force_creep = creep_accel * mass force_resistance = -(rolling_res * mass * g + 0.5 * speed**2 * aero_cd * air_density * frontal_area) force = force_gas + force_brake + force_resistance + force_grade + force_creep acceleration = force / mass # TODO: lateral model return speed, acceleration def get_car_can_parser(): dbc_f = 'honda_civic_touring_2016_can_generated.dbc' signals = [ ("STEER_TORQUE", 0xe4, 0), ("STEER_TORQUE_REQUEST", 0xe4, 0), ("COMPUTER_BRAKE", 0x1fa, 0), ("COMPUTER_BRAKE_REQUEST", 0x1fa, 0), ("GAS_COMMAND", 0x200, 0), ] checks = [ (0xe4, 100), (0x1fa, 50), (0x200, 50), ] return CANParser(dbc_f, signals, checks) def to_3_byte(x): # Convert into 12 bit value s = struct.pack("!H", int(x)) return binascii.hexlify(s)[1:] def to_3s_byte(x): s = struct.pack("!h", int(x)) return binascii.hexlify(s)[1:] class Plant(): messaging_initialized = False def __init__(self, lead_relevancy=False, rate=100, speed=0.0, distance_lead=2.0): self.rate = rate if not Plant.messaging_initialized: Plant.logcan = messaging.pub_sock(service_list['can'].port) Plant.sendcan = messaging.sub_sock(service_list['sendcan'].port) Plant.model = messaging.pub_sock(service_list['model'].port) Plant.live_params = messaging.pub_sock(service_list['liveParameters'].port) Plant.health = messaging.pub_sock(service_list['health'].port) Plant.thermal = messaging.pub_sock(service_list['thermal'].port) Plant.driverMonitoring = messaging.pub_sock(service_list['driverMonitoring'].port) Plant.cal = messaging.pub_sock(service_list['liveCalibration'].port) Plant.controls_state = messaging.sub_sock(service_list['controlsState'].port) Plant.plan = messaging.sub_sock(service_list['plan'].port) Plant.messaging_initialized = True self.frame = 0 self.angle_steer = 0. self.gear_choice = 0 self.speed, self.speed_prev = 0., 0. self.esp_disabled = 0 self.main_on = 1 self.user_gas = 0 self.computer_brake,self.user_brake = 0,0 self.brake_pressed = 0 self.angle_steer_rate = 0 self.distance, self.distance_prev = 0., 0. self.speed, self.speed_prev = speed, speed self.steer_error, self.brake_error, self.steer_not_allowed = 0, 0, 0 self.gear_shifter = 8 # D gear self.pedal_gas = 0 self.cruise_setting = 0 self.seatbelt, self.door_all_closed = True, True self.steer_torque, self.v_cruise, self.acc_status = 0, 0, 0 # v_cruise is reported from can, not the one used for controls self.lead_relevancy = lead_relevancy # lead car self.distance_lead, self.distance_lead_prev = distance_lead , distance_lead self.rk = Ratekeeper(rate, print_delay_threshold=100) self.ts = 1./rate self.cp = get_car_can_parser() self.response_seen = False time.sleep(1) messaging.drain_sock(Plant.sendcan) messaging.drain_sock(Plant.controls_state) def close(self): Plant.logcan.close() Plant.model.close() Plant.live_params.close() def speed_sensor(self, speed): if speed<0.3: return 0 else: return speed * CV.MS_TO_KPH def current_time(self): return float(self.rk.frame) / self.rate def step(self, v_lead=0.0, cruise_buttons=None, grade=0.0, publish_model = True): gen_signals, gen_checks = get_can_signals(CP) sgs = [s[0] for s in gen_signals] msgs = [s[1] for s in gen_signals] cks_msgs = set(check[0] for check in gen_checks) cks_msgs.add(0x18F) cks_msgs.add(0x30C) # ******** get messages sent to the car ******** can_msgs = [] for a in messaging.drain_sock(Plant.sendcan, wait_for_one=self.response_seen): can_msgs.extend(can_capnp_to_can_list(a.sendcan, [0,2])) # After the first response the car is done fingerprinting, so we can run in lockstep with controlsd if can_msgs: self.response_seen = True self.cp.update_can(can_msgs) # ******** get controlsState messages for plotting *** controls_state_msgs = [] for a in messaging.drain_sock(Plant.controls_state, wait_for_one=self.response_seen): controls_state_msgs.append(a.controlsState) fcw = None for a in messaging.drain_sock(Plant.plan): if a.plan.fcw: fcw = True if self.cp.vl[0x1fa]['COMPUTER_BRAKE_REQUEST']: brake = self.cp.vl[0x1fa]['COMPUTER_BRAKE'] * 0.003906248 else: brake = 0.0 if self.cp.vl[0x200]['GAS_COMMAND'] > 0: gas = self.cp.vl[0x200]['GAS_COMMAND'] / 256.0 else: gas = 0.0 if self.cp.vl[0xe4]['STEER_TORQUE_REQUEST']: steer_torque = self.cp.vl[0xe4]['STEER_TORQUE']*1.0/0xf00 else: steer_torque = 0.0 distance_lead = self.distance_lead_prev + v_lead * self.ts # ******** run the car ******** speed, acceleration = car_plant(self.distance_prev, self.speed_prev, grade, gas, brake) distance = self.distance_prev + speed * self.ts speed = self.speed_prev + self.ts * acceleration if speed <= 0: speed = 0 acceleration = 0 # ******** lateral ******** self.angle_steer -= (steer_torque/10.0) * self.ts # *** radar model *** if self.lead_relevancy: d_rel = np.maximum(0., distance_lead - distance) v_rel = v_lead - speed else: d_rel = 200. v_rel = 0. lateral_pos_rel = 0. # print at 5hz if (self.frame % (self.rate//5)) == 0: print("%6.2f m %6.2f m/s %6.2f m/s2 %.2f ang gas: %.2f brake: %.2f steer: %5.2f lead_rel: %6.2f m %6.2f m/s" % (distance, speed, acceleration, self.angle_steer, gas, brake, steer_torque, d_rel, v_rel)) # ******** publish the car ******** vls_tuple = namedtuple('vls', [ 'XMISSION_SPEED', 'WHEEL_SPEED_FL', 'WHEEL_SPEED_FR', 'WHEEL_SPEED_RL', 'WHEEL_SPEED_RR', 'STEER_ANGLE', 'STEER_ANGLE_RATE', 'STEER_TORQUE_SENSOR', 'STEER_TORQUE_MOTOR', 'LEFT_BLINKER', 'RIGHT_BLINKER', 'GEAR', 'WHEELS_MOVING', 'BRAKE_ERROR_1', 'BRAKE_ERROR_2', 'SEATBELT_DRIVER_LAMP', 'SEATBELT_DRIVER_LATCHED', 'BRAKE_PRESSED', 'BRAKE_SWITCH', 'CRUISE_BUTTONS', 'ESP_DISABLED', 'HUD_LEAD', 'USER_BRAKE', 'STEER_STATUS', 'GEAR_SHIFTER', 'PEDAL_GAS', 'CRUISE_SETTING', 'ACC_STATUS', 'CRUISE_SPEED_PCM', 'CRUISE_SPEED_OFFSET', 'DOOR_OPEN_FL', 'DOOR_OPEN_FR', 'DOOR_OPEN_RL', 'DOOR_OPEN_RR', 'CAR_GAS', 'MAIN_ON', 'EPB_STATE', 'BRAKE_HOLD_ACTIVE', 'INTERCEPTOR_GAS', 'INTERCEPTOR_GAS2', 'IMPERIAL_UNIT', ]) vls = vls_tuple( self.speed_sensor(speed), self.speed_sensor(speed), self.speed_sensor(speed), self.speed_sensor(speed), self.speed_sensor(speed), self.angle_steer, self.angle_steer_rate, 0, 0,#Steer torque sensor 0, 0, # Blinkers self.gear_choice, speed != 0, self.brake_error, self.brake_error, not self.seatbelt, self.seatbelt, # Seatbelt self.brake_pressed, 0., #Brake pressed, Brake switch cruise_buttons, self.esp_disabled, 0, # HUD lead self.user_brake, self.steer_error, self.gear_shifter, self.pedal_gas, self.cruise_setting, self.acc_status, self.v_cruise, 0, # Cruise speed offset 0, 0, 0, 0, # Doors self.user_gas, self.main_on, 0, # EPB State 0, # Brake hold 0, # Interceptor feedback 0, # Interceptor 2 feedback False ) # TODO: publish each message at proper frequency can_msgs = [] for msg in set(msgs): msg_struct = {} indxs = [i for i, x in enumerate(msgs) if msg == msgs[i]] for i in indxs: msg_struct[sgs[i]] = getattr(vls, sgs[i]) if "COUNTER" in honda.get_signals(msg): msg_struct["COUNTER"] = self.frame % 4 if "COUNTER_PEDAL" in honda.get_signals(msg): msg_struct["COUNTER_PEDAL"] = self.frame % 0xf msg = honda.lookup_msg_id(msg) msg_data = honda.encode(msg, msg_struct) if "CHECKSUM" in honda.get_signals(msg): msg_data = fix(msg_data, msg) if "CHECKSUM_PEDAL" in honda.get_signals(msg): msg_struct["CHECKSUM_PEDAL"] = crc8_pedal(msg_data[:-1]) msg_data = honda.encode(msg, msg_struct) can_msgs.append([msg, 0, msg_data, 0]) # add the radar message # TODO: use the DBC if self.frame % 5 == 0: radar_state_msg = b'\x79\x00\x00\x00\x00\x00\x00\x00' radar_msg = to_3_byte(d_rel*16.0) + \ to_3_byte(int(lateral_pos_rel*16.0)&0x3ff) + \ to_3s_byte(int(v_rel*32.0)) + \ b"0f00000" radar_msg = binascii.unhexlify(radar_msg) can_msgs.append([0x400, 0, radar_state_msg, 1]) can_msgs.append([0x445, 0, radar_msg, 1]) # add camera msg so controlsd thinks it's alive msg_struct["COUNTER"] = self.frame % 4 msg = honda.lookup_msg_id(0xe4) msg_data = honda.encode(msg, msg_struct) msg_data = fix(msg_data, 0xe4) can_msgs.append([0xe4, 0, msg_data, 2]) # Fake sockets that controlsd subscribes to live_parameters = messaging.new_message() live_parameters.init('liveParameters') live_parameters.liveParameters.valid = True live_parameters.liveParameters.sensorValid = True live_parameters.liveParameters.posenetValid = True live_parameters.liveParameters.steerRatio = CP.steerRatio live_parameters.liveParameters.stiffnessFactor = 1.0 Plant.live_params.send(live_parameters.to_bytes()) driver_monitoring = messaging.new_message() driver_monitoring.init('driverMonitoring') driver_monitoring.driverMonitoring.faceOrientation = [0.] * 3 driver_monitoring.driverMonitoring.facePosition = [0.] * 2 Plant.driverMonitoring.send(driver_monitoring.to_bytes()) health = messaging.new_message() health.init('health') health.health.controlsAllowed = True Plant.health.send(health.to_bytes()) thermal = messaging.new_message() thermal.init('thermal') thermal.thermal.freeSpace = 1. thermal.thermal.batteryPercent = 100 Plant.thermal.send(thermal.to_bytes()) # ******** publish a fake model going straight and fake calibration ******** # note that this is worst case for MPC, since model will delay long mpc by one time step if publish_model and self.frame % 5 == 0: md = messaging.new_message() cal = messaging.new_message() md.init('model') cal.init('liveCalibration') md.model.frameId = 0 for x in [md.model.path, md.model.leftLane, md.model.rightLane]: x.points = [0.0]*50 x.prob = 1.0 x.std = 1.0 if self.lead_relevancy: d_rel = np.maximum(0., distance_lead - distance) v_rel = v_lead - speed prob = 1.0 else: d_rel = 200. v_rel = 0. prob = 0.0 md.model.lead.dist = float(d_rel) md.model.lead.prob = prob md.model.lead.relY = 0.0 md.model.lead.relYStd = 1. md.model.lead.relVel = float(v_rel) md.model.lead.relVelStd = 1. md.model.lead.relA = 0.0 md.model.lead.relAStd = 10. md.model.lead.std = 1.0 cal.liveCalibration.calStatus = 1 cal.liveCalibration.calPerc = 100 cal.liveCalibration.rpyCalib = [0.] * 3 # fake values? Plant.model.send(md.to_bytes()) Plant.cal.send(cal.to_bytes()) Plant.logcan.send(can_list_to_can_capnp(can_msgs)) # ******** update prevs ******** self.frame += 1 if self.response_seen: self.rk.monitor_time() self.speed = speed self.distance = distance self.distance_lead = distance_lead self.speed_prev = speed self.distance_prev = distance self.distance_lead_prev = distance_lead else: # Don't advance time when controlsd is not yet ready self.rk.keep_time() self.rk._frame = 0 return { "distance": distance, "speed": speed, "acceleration": acceleration, "distance_lead": distance_lead, "brake": brake, "gas": gas, "steer_torque": steer_torque, "fcw": fcw, "controls_state_msgs": controls_state_msgs, } # simple engage in standalone mode def plant_thread(rate=100): plant = Plant(rate) while 1: plant.step() if __name__ == "__main__": plant_thread()
the-stack_0_15114
# coding=utf-8 import os import xml.etree.ElementTree as ET import matplotlib.pyplot as plt path = os.path.join(os.getcwd(), 'images', 'annotations') if not os.path.exists(path): raise ValueError('The images\\annotations firectory does not exist') else: files = os.listdir(path) results = {} files = [file for file in files if file.endswith('.XML') or file.endswith('.xml')] for file in files: objectsDetected = 0 filePath = os.path.join(path, file) tree = ET.parse(filePath) root = tree.getroot() for member in root.findall('object'): label = member[0].text if label != 'hoja' and label != 'dano': objectsDetected = objectsDetected + 1 if objectsDetected in results: results[objectsDetected] = results[objectsDetected] + 1 else: results[objectsDetected] = 1 print("Cantidad de objetos, Cantidad de imagenes") for key, value in results.items(): print("{0},{1}".format(key, value)) plt.bar(list(results.keys()), results.values(), color='g', width=0.9) plt.ylabel('Cantidad de imágenes') plt.xlabel('Cantidad de objetos anotados (Excluyendo hojas y daños)') plt.show()
the-stack_0_15119
#!/usr/bin/env python3 # Copyright (c) 2016-2019 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test segwit transactions and blocks on P2P network.""" from decimal import Decimal import math import random import struct import time from test_framework.blocktools import create_block, create_coinbase, add_witness_commitment, get_witness_script, WITNESS_COMMITMENT_HEADER from test_framework.key import ECKey from test_framework.messages import ( BIP125_SEQUENCE_NUMBER, CBlock, CBlockHeader, CInv, COutPoint, CTransaction, CTxIn, CTxInWitness, CTxOut, CTxWitness, MSG_WITNESS_FLAG, NODE_NETWORK, NODE_WITNESS, msg_no_witness_block, msg_getdata, msg_headers, msg_inv, msg_tx, msg_block, msg_no_witness_tx, ser_uint256, ser_vector, sha256, uint256_from_str, FromHex, ) from test_framework.mininode import ( P2PInterface, mininode_lock, ) from test_framework.script import ( CScript, CScriptNum, CScriptOp, MAX_SCRIPT_ELEMENT_SIZE, OP_0, OP_1, OP_16, OP_2DROP, OP_CHECKMULTISIG, OP_CHECKSIG, OP_DROP, OP_DUP, OP_ELSE, OP_ENDIF, OP_EQUAL, OP_EQUALVERIFY, OP_HASH160, OP_IF, OP_RETURN, OP_TRUE, SIGHASH_ALL, SIGHASH_ANYONECANPAY, SIGHASH_NONE, SIGHASH_SINGLE, SegwitV0SignatureHash, LegacySignatureHash, hash160, ) from test_framework.test_framework import BitcoinTestFramework from test_framework.util import ( assert_equal, connect_nodes, disconnect_nodes, softfork_active, hex_str_to_bytes, assert_raises_rpc_error, bytes_to_hex_str, ) from test_framework.eqpayconfig import * from test_framework.eqpay import generatesynchronized from test_framework.messages import COIN # The versionbit bit used to signal activation of SegWit VB_WITNESS_BIT = 1 VB_PERIOD = 144 VB_TOP_BITS = 0x20000000 MAX_SIGOP_COST = 80000 // FACTOR_REDUCED_BLOCK_TIME SEGWIT_HEIGHT = 2020 if ENABLE_REDUCED_BLOCK_TIME else 520 class UTXO(): """Used to keep track of anyone-can-spend outputs that we can use in the tests.""" def __init__(self, sha256, n, value): self.sha256 = sha256 self.n = n self.nValue = value def get_p2pkh_script(pubkeyhash): """Get the script associated with a P2PKH.""" return CScript([CScriptOp(OP_DUP), CScriptOp(OP_HASH160), pubkeyhash, CScriptOp(OP_EQUALVERIFY), CScriptOp(OP_CHECKSIG)]) def sign_p2pk_witness_input(script, tx_to, in_idx, hashtype, value, key): """Add signature for a P2PK witness program.""" tx_hash = SegwitV0SignatureHash(script, tx_to, in_idx, hashtype, value) signature = key.sign_ecdsa(tx_hash) + chr(hashtype).encode('latin-1') tx_to.wit.vtxinwit[in_idx].scriptWitness.stack = [signature, script] tx_to.rehash() def get_virtual_size(witness_block): """Calculate the virtual size of a witness block. Virtual size is base + witness/4.""" base_size = len(witness_block.serialize(with_witness=False)) total_size = len(witness_block.serialize()) # the "+3" is so we round up vsize = int((3 * base_size + total_size + 3) / 4) return vsize def submit_old_blocks(node, n): node.importprivkey("cRComRro8wTGnDTGqgpyP5vwwo24Tn831cPu3PZEdr2532JVPjrZ") pubkey = "03716d5678c829d09cdfdb4bec058712de3ecd99968a4a064336ffb592342e21f9" num_blocks_old = node.getblockcount() for i in range(0, n): tip = node.getbestblockhash() height = node.getblockcount() + 1 block_time = node.getblockheader(tip)["mediantime"] + 1 block = create_block(int(tip, 16), create_coinbase(height), block_time) block.vtx[0].vout[0].scriptPubKey = CScript([hex_str_to_bytes(pubkey), OP_CHECKSIG]) block.vtx[0].rehash() block.hashMerkleRoot = block.calc_merkle_root() block.rehash() block.solve() node.submitblock(bytes_to_hex_str(block.serialize())) assert_equal(node.getblockcount(), num_blocks_old+n) def test_transaction_acceptance(node, p2p, tx, with_witness, accepted, reason=None): """Send a transaction to the node and check that it's accepted to the mempool - Submit the transaction over the p2p interface - use the getrawmempool rpc to check for acceptance.""" reason = [reason] if reason else [] with node.assert_debug_log(expected_msgs=reason): p2p.send_and_ping(msg_tx(tx) if with_witness else msg_no_witness_tx(tx)) assert_equal(tx.hash in node.getrawmempool(), accepted) def test_witness_block(node, p2p, block, accepted, with_witness=True, reason=None): """Send a block to the node and check that it's accepted - Submit the block over the p2p interface - use the getbestblockhash rpc to check for acceptance.""" reason = [reason] if reason else [] with node.assert_debug_log(expected_msgs=reason): p2p.send_and_ping(msg_block(block) if with_witness else msg_no_witness_block(block)) assert_equal(node.getbestblockhash() == block.hash, accepted) class TestP2PConn(P2PInterface): def __init__(self): super().__init__() self.getdataset = set() # Avoid sending out msg_getdata in the mininode thread as a reply to invs. # They are not needed and would only lead to races because we send msg_getdata out in the test thread def on_inv(self, message): pass def on_getdata(self, message): for inv in message.inv: self.getdataset.add(inv.hash) def announce_tx_and_wait_for_getdata(self, tx, timeout=60, success=True): with mininode_lock: self.last_message.pop("getdata", None) self.send_message(msg_inv(inv=[CInv(1, tx.sha256)])) if success: self.wait_for_getdata(timeout) else: time.sleep(timeout) assert not self.last_message.get("getdata") def announce_block_and_wait_for_getdata(self, block, use_header, timeout=60): with mininode_lock: self.last_message.pop("getdata", None) self.last_message.pop("getheaders", None) msg = msg_headers() msg.headers = [CBlockHeader(block)] if use_header: self.send_message(msg) else: self.send_message(msg_inv(inv=[CInv(2, block.sha256)])) self.wait_for_getheaders() self.send_message(msg) self.wait_for_getdata() def request_block(self, blockhash, inv_type, timeout=60): with mininode_lock: self.last_message.pop("block", None) self.send_message(msg_getdata(inv=[CInv(inv_type, blockhash)])) self.wait_for_block(blockhash, timeout) return self.last_message["block"].block class SegWitTest(BitcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 3 # This test tests SegWit both pre and post-activation, so use the normal BIP9 activation. self.extra_args = [ ["-acceptnonstdtxn=1", "-segwitheight={}".format(SEGWIT_HEIGHT), "[email protected]"], ["-acceptnonstdtxn=0", "-segwitheight={}".format(SEGWIT_HEIGHT)], ["-acceptnonstdtxn=1", "-segwitheight=-1"], ] self.supports_cli = False def skip_test_if_missing_module(self): self.skip_if_no_wallet() def setup_network(self): self.setup_nodes() connect_nodes(self.nodes[0], 1) connect_nodes(self.nodes[0], 2) self.sync_all() # Helper functions def build_next_block(self, version=4): """Build a block on top of node0's tip.""" tip = self.nodes[0].getbestblockhash() height = self.nodes[0].getblockcount() + 1 block_time = self.nodes[0].getblockheader(tip)["mediantime"] + 1 block = create_block(int(tip, 16), create_coinbase(height), block_time) block.nVersion = version block.rehash() return block def update_witness_block_with_transactions(self, block, tx_list, nonce=0): """Add list of transactions to block, adds witness commitment, then solves.""" block.vtx.extend(tx_list) add_witness_commitment(block, nonce) block.solve() def run_test(self): # Setup the p2p connections # self.test_node sets NODE_WITNESS|NODE_NETWORK self.test_node = self.nodes[0].add_p2p_connection(TestP2PConn(), services=NODE_NETWORK | NODE_WITNESS) # self.old_node sets only NODE_NETWORK self.old_node = self.nodes[0].add_p2p_connection(TestP2PConn(), services=NODE_NETWORK) # self.std_node is for testing node1 (fRequireStandard=true) self.std_node = self.nodes[1].add_p2p_connection(TestP2PConn(), services=NODE_NETWORK | NODE_WITNESS) assert self.test_node.nServices & NODE_WITNESS != 0 # Keep a place to store utxo's that can be used in later tests self.utxo = [] self.log.info("Starting tests before segwit activation") self.segwit_active = False self.test_non_witness_transaction() self.test_v0_outputs_arent_spendable() self.test_block_relay() self.test_getblocktemplate_before_lockin() self.test_unnecessary_witness_before_segwit_activation() self.test_witness_tx_relay_before_segwit_activation() self.test_standardness_v0() self.log.info("Advancing to segwit activation") self.advance_to_segwit_active() # Segwit status 'active' self.test_p2sh_witness() self.test_witness_commitments() self.test_block_malleability() self.test_witness_block_size() self.test_submit_block() self.test_extra_witness_data() self.test_max_witness_push_length() self.test_max_witness_program_length() self.test_witness_input_length() self.test_block_relay() self.test_tx_relay_after_segwit_activation() self.test_standardness_v0() self.test_segwit_versions() self.test_premature_coinbase_witness_spend() self.test_uncompressed_pubkey() self.test_signature_version_1() self.test_non_standard_witness_blinding() self.test_non_standard_witness() self.test_upgrade_after_activation() self.test_witness_sigops() self.test_superfluous_witness() # Individual tests def subtest(func): # noqa: N805 """Wraps the subtests for logging and state assertions.""" def func_wrapper(self, *args, **kwargs): self.log.info("Subtest: {} (Segwit active = {})".format(func.__name__, self.segwit_active)) # Assert segwit status is as expected assert_equal(softfork_active(self.nodes[0], 'segwit'), self.segwit_active) func(self, *args, **kwargs) # Each subtest should leave some utxos for the next subtest assert self.utxo self.sync_blocks() # Assert segwit status is as expected at end of subtest assert_equal(softfork_active(self.nodes[0], 'segwit'), self.segwit_active) return func_wrapper @subtest def test_non_witness_transaction(self): """See if sending a regular transaction works, and create a utxo to use in later tests.""" # Mine a block with an anyone-can-spend coinbase, # let it mature, then try to spend it. block = self.build_next_block(version=4) block.solve() self.test_node.send_and_ping(msg_no_witness_block(block)) # make sure the block was processed txid = block.vtx[0].sha256 submit_old_blocks(self.nodes[0], COINBASE_MATURITY - 1) # let the block mature # Create a transaction that spends the coinbase tx = CTransaction() tx.vin.append(CTxIn(COutPoint(txid, 0), b"")) tx.vout.append(CTxOut(int((INITIAL_BLOCK_REWARD-Decimal('0.01')) * COIN), CScript([OP_TRUE, OP_DROP] * 15 + [OP_TRUE]))) tx.calc_sha256() # Check that serializing it with or without witness is the same # This is a sanity check of our testing framework. assert_equal(msg_no_witness_tx(tx).serialize(), msg_tx(tx).serialize()) self.test_node.send_and_ping(msg_tx(tx)) # make sure the block was processed assert tx.hash in self.nodes[0].getrawmempool() # Save this transaction for later self.utxo.append(UTXO(tx.sha256, 0, (INITIAL_BLOCK_REWARD-1) * 100000000)) self.nodes[0].generate(1) self.segwit_status = 'started' # we will advance to started immediately... @subtest def test_unnecessary_witness_before_segwit_activation(self): """Verify that blocks with witnesses are rejected before activation.""" tx = CTransaction() tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) tx.vout.append(CTxOut(self.utxo[0].nValue - 1000, CScript([OP_TRUE]))) tx.wit.vtxinwit.append(CTxInWitness()) tx.wit.vtxinwit[0].scriptWitness.stack = [CScript([CScriptNum(1)])] # Verify the hash with witness differs from the txid # (otherwise our testing framework must be broken!) tx.rehash() assert tx.sha256 != tx.calc_sha256(with_witness=True) # Construct a segwit-signaling block that includes the transaction. block = self.build_next_block(version=(VB_TOP_BITS | (1 << VB_WITNESS_BIT))) self.update_witness_block_with_transactions(block, [tx]) # Sending witness data before activation is not allowed (anti-spam # rule). test_witness_block(self.nodes[0], self.test_node, block, accepted=False, reason='unexpected-witness') # But it should not be permanently marked bad... # Resend without witness information. self.test_node.send_and_ping(msg_no_witness_block(block)) # make sure the block was processed assert_equal(self.nodes[0].getbestblockhash(), block.hash) # Update our utxo list; we spent the first entry. self.utxo.pop(0) self.utxo.append(UTXO(tx.sha256, 0, tx.vout[0].nValue)) @subtest def test_block_relay(self): """Test that block requests to NODE_WITNESS peer are with MSG_WITNESS_FLAG. This is true regardless of segwit activation. Also test that we don't ask for blocks from unupgraded peers.""" blocktype = 2 | MSG_WITNESS_FLAG # test_node has set NODE_WITNESS, so all getdata requests should be for # witness blocks. # Test announcing a block via inv results in a getdata, and that # announcing a version 4 or random VB block with a header results in a getdata block1 = self.build_next_block() block1.solve() self.test_node.announce_block_and_wait_for_getdata(block1, use_header=False) assert self.test_node.last_message["getdata"].inv[0].type == blocktype test_witness_block(self.nodes[0], self.test_node, block1, True) block2 = self.build_next_block(version=4) block2.solve() self.test_node.announce_block_and_wait_for_getdata(block2, use_header=True) assert self.test_node.last_message["getdata"].inv[0].type == blocktype test_witness_block(self.nodes[0], self.test_node, block2, True) block3 = self.build_next_block(version=(VB_TOP_BITS | (1 << 15))) block3.solve() self.test_node.announce_block_and_wait_for_getdata(block3, use_header=True) assert self.test_node.last_message["getdata"].inv[0].type == blocktype test_witness_block(self.nodes[0], self.test_node, block3, True) # Check that we can getdata for witness blocks or regular blocks, # and the right thing happens. if not self.segwit_active: # Before activation, we should be able to request old blocks with # or without witness, and they should be the same. chain_height = self.nodes[0].getblockcount() # Pick 10 random blocks on main chain, and verify that getdata's # for MSG_BLOCK, MSG_WITNESS_BLOCK, and rpc getblock() are equal. all_heights = list(range(chain_height + 1)) random.shuffle(all_heights) all_heights = all_heights[0:10] for height in all_heights: block_hash = self.nodes[0].getblockhash(height) rpc_block = self.nodes[0].getblock(block_hash, False) block_hash = int(block_hash, 16) block = self.test_node.request_block(block_hash, 2) wit_block = self.test_node.request_block(block_hash, 2 | MSG_WITNESS_FLAG) assert_equal(block.serialize(), wit_block.serialize()) assert_equal(block.serialize(), hex_str_to_bytes(rpc_block)) else: # After activation, witness blocks and non-witness blocks should # be different. Verify rpc getblock() returns witness blocks, while # getdata respects the requested type. block = self.build_next_block() self.update_witness_block_with_transactions(block, []) # This gives us a witness commitment. assert len(block.vtx[0].wit.vtxinwit) == 1 assert len(block.vtx[0].wit.vtxinwit[0].scriptWitness.stack) == 1 test_witness_block(self.nodes[0], self.test_node, block, accepted=True) # Now try to retrieve it... rpc_block = self.nodes[0].getblock(block.hash, False) non_wit_block = self.test_node.request_block(block.sha256, 2) wit_block = self.test_node.request_block(block.sha256, 2 | MSG_WITNESS_FLAG) assert_equal(wit_block.serialize(), hex_str_to_bytes(rpc_block)) assert_equal(wit_block.serialize(False), non_wit_block.serialize()) assert_equal(wit_block.serialize(), block.serialize()) # Test size, vsize, weight rpc_details = self.nodes[0].getblock(block.hash, True) assert_equal(rpc_details["size"], len(block.serialize())) assert_equal(rpc_details["strippedsize"], len(block.serialize(False))) weight = 3 * len(block.serialize(False)) + len(block.serialize()) assert_equal(rpc_details["weight"], weight) # Upgraded node should not ask for blocks from unupgraded block4 = self.build_next_block(version=4) block4.solve() self.old_node.getdataset = set() # Blocks can be requested via direct-fetch (immediately upon processing the announcement) # or via parallel download (with an indeterminate delay from processing the announcement) # so to test that a block is NOT requested, we could guess a time period to sleep for, # and then check. We can avoid the sleep() by taking advantage of transaction getdata's # being processed after block getdata's, and announce a transaction as well, # and then check to see if that particular getdata has been received. # Since 0.14, inv's will only be responded to with a getheaders, so send a header # to announce this block. msg = msg_headers() msg.headers = [CBlockHeader(block4)] self.old_node.send_message(msg) self.old_node.announce_tx_and_wait_for_getdata(block4.vtx[0]) assert block4.sha256 not in self.old_node.getdataset @subtest def test_v0_outputs_arent_spendable(self): """Test that v0 outputs aren't spendable before segwit activation. ~6 months after segwit activation, the SCRIPT_VERIFY_WITNESS flag was backdated so that it applies to all blocks, going back to the genesis block. Consequently, version 0 witness outputs are never spendable without witness, and so can't be spent before segwit activation (the point at which blocks are permitted to contain witnesses).""" # node2 doesn't need to be connected for this test. # (If it's connected, node0 may propagate an invalid block to it over # compact blocks and the nodes would have inconsistent tips.) disconnect_nodes(self.nodes[0], 2) # Create two outputs, a p2wsh and p2sh-p2wsh witness_program = CScript([OP_TRUE]) witness_hash = sha256(witness_program) script_pubkey = CScript([OP_0, witness_hash]) p2sh_pubkey = hash160(script_pubkey) p2sh_script_pubkey = CScript([OP_HASH160, p2sh_pubkey, OP_EQUAL]) value = self.utxo[0].nValue // 3 tx = CTransaction() tx.vin = [CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b'')] tx.vout = [CTxOut(value, script_pubkey), CTxOut(value, p2sh_script_pubkey)] tx.vout.append(CTxOut(value, CScript([OP_TRUE]))) tx.rehash() txid = tx.sha256 # Add it to a block block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx]) # Verify that segwit isn't activated. A block serialized with witness # should be rejected prior to activation. test_witness_block(self.nodes[0], self.test_node, block, accepted=False, with_witness=True, reason='unexpected-witness') # Now send the block without witness. It should be accepted test_witness_block(self.nodes[0], self.test_node, block, accepted=True, with_witness=False) # Now try to spend the outputs. This should fail since SCRIPT_VERIFY_WITNESS is always enabled. p2wsh_tx = CTransaction() p2wsh_tx.vin = [CTxIn(COutPoint(txid, 0), b'')] p2wsh_tx.vout = [CTxOut(value, CScript([OP_TRUE]))] p2wsh_tx.wit.vtxinwit.append(CTxInWitness()) p2wsh_tx.wit.vtxinwit[0].scriptWitness.stack = [CScript([OP_TRUE])] p2wsh_tx.rehash() p2sh_p2wsh_tx = CTransaction() p2sh_p2wsh_tx.vin = [CTxIn(COutPoint(txid, 1), CScript([script_pubkey]))] p2sh_p2wsh_tx.vout = [CTxOut(value, CScript([OP_TRUE]))] p2sh_p2wsh_tx.wit.vtxinwit.append(CTxInWitness()) p2sh_p2wsh_tx.wit.vtxinwit[0].scriptWitness.stack = [CScript([OP_TRUE])] p2sh_p2wsh_tx.rehash() for tx in [p2wsh_tx, p2sh_p2wsh_tx]: block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx]) # When the block is serialized with a witness, the block will be rejected because witness # data isn't allowed in blocks that don't commit to witness data. test_witness_block(self.nodes[0], self.test_node, block, accepted=False, with_witness=True, reason='unexpected-witness') # When the block is serialized without witness, validation fails because the transaction is # invalid (transactions are always validated with SCRIPT_VERIFY_WITNESS so a segwit v0 transaction # without a witness is invalid). # Note: The reject reason for this failure could be # 'block-validation-failed' (if script check threads > 1) or # 'non-mandatory-script-verify-flag (Witness program was passed an # empty witness)' (otherwise). # TODO: support multiple acceptable reject reasons. test_witness_block(self.nodes[0], self.test_node, block, accepted=False, with_witness=False) connect_nodes(self.nodes[0], 2) self.utxo.pop(0) self.utxo.append(UTXO(txid, 2, value)) @subtest def test_getblocktemplate_before_lockin(self): txid = int(self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 1), 16) for node in [self.nodes[0], self.nodes[2]]: gbt_results = node.getblocktemplate({"rules": ["segwit"]}) if node == self.nodes[2]: # If this is a non-segwit node, we should not get a witness # commitment. assert 'default_witness_commitment' not in gbt_results else: # For segwit-aware nodes, check the witness # commitment is correct. assert 'default_witness_commitment' in gbt_results witness_commitment = gbt_results['default_witness_commitment'] # Check that default_witness_commitment is present. witness_root = CBlock.get_merkle_root([ser_uint256(0), ser_uint256(txid)]) script = get_witness_script(witness_root, 0) assert_equal(witness_commitment, script.hex()) # Clear out the mempool self.nodes[0].generate(1) self.sync_blocks() @subtest def test_witness_tx_relay_before_segwit_activation(self): # Generate a transaction that doesn't require a witness, but send it # with a witness. Should be rejected for premature-witness, but should # not be added to recently rejected list. tx = CTransaction() tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) tx.vout.append(CTxOut(self.utxo[0].nValue - 100000, CScript([OP_TRUE, OP_DROP] * 15 + [OP_TRUE]))) tx.wit.vtxinwit.append(CTxInWitness()) tx.wit.vtxinwit[0].scriptWitness.stack = [b'a'] tx.rehash() tx_hash = tx.sha256 tx_value = tx.vout[0].nValue # Verify that if a peer doesn't set nServices to include NODE_WITNESS, # the getdata is just for the non-witness portion. self.old_node.announce_tx_and_wait_for_getdata(tx) assert self.old_node.last_message["getdata"].inv[0].type == 1 # Since we haven't delivered the tx yet, inv'ing the same tx from # a witness transaction ought not result in a getdata. self.test_node.announce_tx_and_wait_for_getdata(tx, timeout=2, success=False) # Delivering this transaction with witness should fail (no matter who # its from) assert_equal(len(self.nodes[0].getrawmempool()), 0) assert_equal(len(self.nodes[1].getrawmempool()), 0) test_transaction_acceptance(self.nodes[0], self.old_node, tx, with_witness=True, accepted=False) test_transaction_acceptance(self.nodes[0], self.test_node, tx, with_witness=True, accepted=False) # But eliminating the witness should fix it test_transaction_acceptance(self.nodes[0], self.test_node, tx, with_witness=False, accepted=True) # Cleanup: mine the first transaction and update utxo self.nodes[0].generate(1) assert_equal(len(self.nodes[0].getrawmempool()), 0) self.utxo.pop(0) self.utxo.append(UTXO(tx_hash, 0, tx_value)) @subtest def test_standardness_v0(self): """Test V0 txout standardness. V0 segwit outputs and inputs are always standard. V0 segwit inputs may only be mined after activation, but not before.""" witness_program = CScript([OP_TRUE]) witness_hash = sha256(witness_program) script_pubkey = CScript([OP_0, witness_hash]) p2sh_pubkey = hash160(witness_program) p2sh_script_pubkey = CScript([OP_HASH160, p2sh_pubkey, OP_EQUAL]) # First prepare a p2sh output (so that spending it will pass standardness) p2sh_tx = CTransaction() p2sh_tx.vin = [CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")] p2sh_tx.vout = [CTxOut(self.utxo[0].nValue - 100000, p2sh_script_pubkey)] p2sh_tx.rehash() # Mine it on test_node to create the confirmed output. test_transaction_acceptance(self.nodes[0], self.test_node, p2sh_tx, with_witness=True, accepted=True) self.nodes[0].generate(1) self.sync_blocks() # Now test standardness of v0 P2WSH outputs. # Start by creating a transaction with two outputs. tx = CTransaction() tx.vin = [CTxIn(COutPoint(p2sh_tx.sha256, 0), CScript([witness_program]))] tx.vout = [CTxOut(p2sh_tx.vout[0].nValue - 1000000, script_pubkey)] tx.vout.append(CTxOut(800000, script_pubkey)) # Might burn this later tx.vin[0].nSequence = BIP125_SEQUENCE_NUMBER # Just to have the option to bump this tx from the mempool tx.rehash() # This is always accepted, since the mempool policy is to consider segwit as always active # and thus allow segwit outputs test_transaction_acceptance(self.nodes[1], self.std_node, tx, with_witness=True, accepted=True) # Now create something that looks like a P2PKH output. This won't be spendable. script_pubkey = CScript([OP_0, hash160(witness_hash)]) tx2 = CTransaction() # tx was accepted, so we spend the second output. tx2.vin = [CTxIn(COutPoint(tx.sha256, 1), b"")] tx2.vout = [CTxOut(700000, script_pubkey)] tx2.wit.vtxinwit.append(CTxInWitness()) tx2.wit.vtxinwit[0].scriptWitness.stack = [witness_program] tx2.rehash() test_transaction_acceptance(self.nodes[1], self.std_node, tx2, with_witness=True, accepted=True) # Now update self.utxo for later tests. tx3 = CTransaction() # tx and tx2 were both accepted. Don't bother trying to reclaim the # P2PKH output; just send tx's first output back to an anyone-can-spend. self.sync_mempools([self.nodes[0], self.nodes[1]]) tx3.vin = [CTxIn(COutPoint(tx.sha256, 0), b"")] tx3.vout = [CTxOut(tx.vout[0].nValue - 100000, CScript([OP_TRUE, OP_DROP] * 15 + [OP_TRUE]))] tx3.wit.vtxinwit.append(CTxInWitness()) tx3.wit.vtxinwit[0].scriptWitness.stack = [witness_program] tx3.rehash() if not self.segwit_active: # Just check mempool acceptance, but don't add the transaction to the mempool, since witness is disallowed # in blocks and the tx is impossible to mine right now. assert_equal(self.nodes[0].testmempoolaccept([tx3.serialize_with_witness().hex()]), [{'txid': tx3.hash, 'allowed': True}]) # Create the same output as tx3, but by replacing tx tx3_out = tx3.vout[0] tx3 = tx tx3.vout = [tx3_out] tx3.rehash() assert_equal(self.nodes[0].testmempoolaccept([tx3.serialize_with_witness().hex()]), [{'txid': tx3.hash, 'allowed': True}]) test_transaction_acceptance(self.nodes[0], self.test_node, tx3, with_witness=True, accepted=True) self.nodes[0].generate(1) self.sync_blocks() self.utxo.pop(0) self.utxo.append(UTXO(tx3.sha256, 0, tx3.vout[0].nValue)) assert_equal(len(self.nodes[1].getrawmempool()), 0) @subtest def advance_to_segwit_active(self): """Mine enough blocks to activate segwit.""" assert not softfork_active(self.nodes[0], 'segwit') height = self.nodes[0].getblockcount() self.nodes[0].generate(SEGWIT_HEIGHT - height - 2) assert not softfork_active(self.nodes[0], 'segwit') self.nodes[0].generate(1) assert softfork_active(self.nodes[0], 'segwit') self.segwit_active = True @subtest def test_p2sh_witness(self): """Test P2SH wrapped witness programs.""" # Prepare the p2sh-wrapped witness output witness_program = CScript([OP_DROP, OP_TRUE]) witness_hash = sha256(witness_program) p2wsh_pubkey = CScript([OP_0, witness_hash]) p2sh_witness_hash = hash160(p2wsh_pubkey) script_pubkey = CScript([OP_HASH160, p2sh_witness_hash, OP_EQUAL]) script_sig = CScript([p2wsh_pubkey]) # a push of the redeem script # Fund the P2SH output tx = CTransaction() tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) tx.vout.append(CTxOut(self.utxo[0].nValue - 100000, script_pubkey)) tx.rehash() # Verify mempool acceptance and block validity test_transaction_acceptance(self.nodes[0], self.test_node, tx, with_witness=False, accepted=True) block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx]) test_witness_block(self.nodes[0], self.test_node, block, accepted=True, with_witness=True) self.sync_blocks() # Now test attempts to spend the output. spend_tx = CTransaction() spend_tx.vin.append(CTxIn(COutPoint(tx.sha256, 0), script_sig)) spend_tx.vout.append(CTxOut(tx.vout[0].nValue - 100000, CScript([OP_TRUE]))) spend_tx.rehash() # This transaction should not be accepted into the mempool pre- or # post-segwit. Mempool acceptance will use SCRIPT_VERIFY_WITNESS which # will require a witness to spend a witness program regardless of # segwit activation. Note that older bitcoind's that are not # segwit-aware would also reject this for failing CLEANSTACK. with self.nodes[0].assert_debug_log( expected_msgs=(spend_tx.hash, 'was not accepted: non-mandatory-script-verify-flag (Witness program was passed an empty witness)')): test_transaction_acceptance(self.nodes[0], self.test_node, spend_tx, with_witness=False, accepted=False) # Try to put the witness script in the scriptSig, should also fail. spend_tx.vin[0].scriptSig = CScript([p2wsh_pubkey, b'a']) spend_tx.rehash() with self.nodes[0].assert_debug_log( expected_msgs=(spend_tx.hash, 'was not accepted: mandatory-script-verify-flag-failed (Script evaluated without error but finished with a false/empty top stack element)')): test_transaction_acceptance(self.nodes[0], self.test_node, spend_tx, with_witness=False, accepted=False) # Now put the witness script in the witness, should succeed after # segwit activates. spend_tx.vin[0].scriptSig = script_sig spend_tx.rehash() spend_tx.wit.vtxinwit.append(CTxInWitness()) spend_tx.wit.vtxinwit[0].scriptWitness.stack = [b'a', witness_program] # Verify mempool acceptance test_transaction_acceptance(self.nodes[0], self.test_node, spend_tx, with_witness=True, accepted=True) block = self.build_next_block() self.update_witness_block_with_transactions(block, [spend_tx]) # If we're after activation, then sending this with witnesses should be valid. # This no longer works before activation, because SCRIPT_VERIFY_WITNESS # is always set. # TODO: rewrite this test to make clear that it only works after activation. test_witness_block(self.nodes[0], self.test_node, block, accepted=True) # Update self.utxo self.utxo.pop(0) self.utxo.append(UTXO(spend_tx.sha256, 0, spend_tx.vout[0].nValue)) @subtest def test_witness_commitments(self): """Test witness commitments. This test can only be run after segwit has activated.""" # First try a correct witness commitment. block = self.build_next_block() add_witness_commitment(block) block.solve() # Test the test -- witness serialization should be different assert msg_block(block).serialize() != msg_no_witness_block(block).serialize() # This empty block should be valid. test_witness_block(self.nodes[0], self.test_node, block, accepted=True) # Try to tweak the nonce block_2 = self.build_next_block() add_witness_commitment(block_2, nonce=28) block_2.solve() # The commitment should have changed! assert block_2.vtx[0].vout[-1] != block.vtx[0].vout[-1] # This should also be valid. test_witness_block(self.nodes[0], self.test_node, block_2, accepted=True) # Now test commitments with actual transactions tx = CTransaction() tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) # Let's construct a witness program witness_program = CScript([OP_TRUE]) witness_hash = sha256(witness_program) script_pubkey = CScript([OP_0, witness_hash]) tx.vout.append(CTxOut(self.utxo[0].nValue - 100000, script_pubkey)) tx.rehash() # tx2 will spend tx1, and send back to a regular anyone-can-spend address tx2 = CTransaction() tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b"")) tx2.vout.append(CTxOut(tx.vout[0].nValue - 100000, witness_program)) tx2.wit.vtxinwit.append(CTxInWitness()) tx2.wit.vtxinwit[0].scriptWitness.stack = [witness_program] tx2.rehash() block_3 = self.build_next_block() self.update_witness_block_with_transactions(block_3, [tx, tx2], nonce=1) # Add an extra OP_RETURN output that matches the witness commitment template, # even though it has extra data after the incorrect commitment. # This block should fail. block_3.vtx[0].vout.append(CTxOut(0, CScript([OP_RETURN, WITNESS_COMMITMENT_HEADER + ser_uint256(2), 10]))) block_3.vtx[0].rehash() block_3.hashMerkleRoot = block_3.calc_merkle_root() block_3.rehash() block_3.solve() test_witness_block(self.nodes[0], self.test_node, block_3, accepted=False) # Add a different commitment with different nonce, but in the # right location, and with some funds burned(!). # This should succeed (nValue shouldn't affect finding the # witness commitment). add_witness_commitment(block_3, nonce=0) block_3.vtx[0].vout[0].nValue -= 1 block_3.vtx[0].vout[-1].nValue += 1 block_3.vtx[0].rehash() block_3.hashMerkleRoot = block_3.calc_merkle_root() block_3.rehash() assert len(block_3.vtx[0].vout) == 4 # 3 OP_returns block_3.solve() test_witness_block(self.nodes[0], self.test_node, block_3, accepted=True) # Finally test that a block with no witness transactions can # omit the commitment. block_4 = self.build_next_block() tx3 = CTransaction() tx3.vin.append(CTxIn(COutPoint(tx2.sha256, 0), b"")) tx3.vout.append(CTxOut(tx.vout[0].nValue - 100000, witness_program)) tx3.rehash() block_4.vtx.append(tx3) block_4.hashMerkleRoot = block_4.calc_merkle_root() block_4.solve() test_witness_block(self.nodes[0], self.test_node, block_4, with_witness=False, accepted=True) # Update available utxo's for use in later test. self.utxo.pop(0) self.utxo.append(UTXO(tx3.sha256, 0, tx3.vout[0].nValue)) @subtest def test_block_malleability(self): # Make sure that a block that has too big a virtual size # because of a too-large coinbase witness is not permanently # marked bad. block = self.build_next_block() add_witness_commitment(block) block.solve() block.vtx[0].wit.vtxinwit[0].scriptWitness.stack.append(b'a' * 10000000) assert get_virtual_size(block) > MAX_BLOCK_BASE_SIZE # We can't send over the p2p network, because this is too big to relay # TODO: repeat this test with a block that can be relayed self.nodes[0].submitblock(block.serialize().hex()) assert self.nodes[0].getbestblockhash() != block.hash block.vtx[0].wit.vtxinwit[0].scriptWitness.stack.pop() assert get_virtual_size(block) < MAX_BLOCK_BASE_SIZE self.nodes[0].submitblock(block.serialize().hex()) assert self.nodes[0].getbestblockhash() == block.hash # Now make sure that malleating the witness reserved value doesn't # result in a block permanently marked bad. block = self.build_next_block() add_witness_commitment(block) block.solve() # Change the nonce -- should not cause the block to be permanently # failed block.vtx[0].wit.vtxinwit[0].scriptWitness.stack = [ser_uint256(1)] test_witness_block(self.nodes[0], self.test_node, block, accepted=False) # Changing the witness reserved value doesn't change the block hash block.vtx[0].wit.vtxinwit[0].scriptWitness.stack = [ser_uint256(0)] test_witness_block(self.nodes[0], self.test_node, block, accepted=True) @subtest def test_witness_block_size(self): # TODO: Test that non-witness carrying blocks can't exceed 1MB # Skipping this test for now; this is covered in p2p-fullblocktest.py # Test that witness-bearing blocks are limited at ceil(base + wit/4) <= 1MB. block = self.build_next_block() assert len(self.utxo) > 0 # Create a P2WSH transaction. # The witness program will be a bunch of OP_2DROP's, followed by OP_TRUE. # This should give us plenty of room to tweak the spending tx's # virtual size. NUM_DROPS = 200 # 201 max ops per script! NUM_OUTPUTS = 100 // FACTOR_REDUCED_BLOCK_TIME witness_program = CScript([OP_2DROP] * NUM_DROPS + [OP_TRUE]) witness_hash = uint256_from_str(sha256(witness_program)) script_pubkey = CScript([OP_0, ser_uint256(witness_hash)]) prevout = COutPoint(self.utxo[0].sha256, self.utxo[0].n) value = self.utxo[0].nValue parent_tx = CTransaction() parent_tx.vin.append(CTxIn(prevout, b"")) child_value = int(value / NUM_OUTPUTS) for i in range(NUM_OUTPUTS): parent_tx.vout.append(CTxOut(child_value, script_pubkey)) parent_tx.vout[0].nValue -= 50000 assert parent_tx.vout[0].nValue > 0 parent_tx.rehash() child_tx = CTransaction() for i in range(NUM_OUTPUTS): child_tx.vin.append(CTxIn(COutPoint(parent_tx.sha256, i), b"")) child_tx.vout = [CTxOut(value - 100000, CScript([OP_TRUE]))] for i in range(NUM_OUTPUTS): child_tx.wit.vtxinwit.append(CTxInWitness()) child_tx.wit.vtxinwit[-1].scriptWitness.stack = [b'a' * 195] * (2 * NUM_DROPS) + [witness_program] child_tx.rehash() self.update_witness_block_with_transactions(block, [parent_tx, child_tx]) vsize = get_virtual_size(block) additional_bytes = (MAX_BLOCK_BASE_SIZE - vsize) * 4 i = 0 while additional_bytes > 0: # Add some more bytes to each input until we hit MAX_BLOCK_BASE_SIZE+1 extra_bytes = min(additional_bytes + 1, 55) block.vtx[-1].wit.vtxinwit[int(i / (2 * NUM_DROPS))].scriptWitness.stack[i % (2 * NUM_DROPS)] = b'a' * (195 + extra_bytes) additional_bytes -= extra_bytes i += 1 update_vtixinwit_index = int(i/(2*NUM_DROPS)) update_stack_index = i%(2*NUM_DROPS) update_base_length = len(block.vtx[-1].wit.vtxinwit[update_vtixinwit_index].scriptWitness.stack[update_stack_index]) block.vtx[-1].wit.vtxinwit[update_vtixinwit_index].scriptWitness.stack[update_stack_index] += b'a'*4 block.vtx[0].vout.pop() # Remove old commitment add_witness_commitment(block) block.solve() vsize = get_virtual_size(block) assert_equal(vsize, MAX_BLOCK_BASE_SIZE + 1) # Make sure that our test case would exceed the old max-network-message # limit assert len(block.serialize()) > (2 * 1024 * 1024) // FACTOR_REDUCED_BLOCK_TIME test_witness_block(self.nodes[0], self.test_node, block, accepted=False) # Now resize the second transaction to make the block fit. #cur_length = len(block.vtx[-1].wit.vtxinwit[0].scriptWitness.stack[0]) #block.vtx[-1].wit.vtxinwit[0].scriptWitness.stack[0] = b'a' * (cur_length - 1) #block.vtx[0].vout.pop() block.vtx[-1].wit.vtxinwit[update_vtixinwit_index].scriptWitness.stack[update_stack_index] = b'a'*4 if ENABLE_REDUCED_BLOCK_TIME else b'a'*8 add_witness_commitment(block) block.solve() print(get_virtual_size(block), MAX_BLOCK_BASE_SIZE) assert get_virtual_size(block) == MAX_BLOCK_BASE_SIZE test_witness_block(self.nodes[0], self.test_node, block, accepted=True) # Update available utxo's self.utxo.pop(0) self.utxo.append(UTXO(block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue)) @subtest def test_submit_block(self): """Test that submitblock adds the nonce automatically when possible.""" block = self.build_next_block() # Try using a custom nonce and then don't supply it. # This shouldn't possibly work. add_witness_commitment(block, nonce=1) block.vtx[0].wit = CTxWitness() # drop the nonce block.solve() self.nodes[0].submitblock(block.serialize().hex()) assert self.nodes[0].getbestblockhash() != block.hash # Now redo commitment with the standard nonce, but let bitcoind fill it in. add_witness_commitment(block, nonce=0) block.vtx[0].wit = CTxWitness() block.solve() self.nodes[0].submitblock(block.serialize().hex()) assert_equal(self.nodes[0].getbestblockhash(), block.hash) # This time, add a tx with non-empty witness, but don't supply # the commitment. block_2 = self.build_next_block() add_witness_commitment(block_2) block_2.solve() # Drop commitment and nonce -- submitblock should not fill in. block_2.vtx[0].vout.pop() block_2.vtx[0].wit = CTxWitness() self.nodes[0].submitblock(block_2.serialize().hex()) # Tip should not advance! assert self.nodes[0].getbestblockhash() != block_2.hash @subtest def test_extra_witness_data(self): """Test extra witness data in a transaction.""" block = self.build_next_block() witness_program = CScript([OP_DROP, OP_TRUE]) witness_hash = sha256(witness_program) script_pubkey = CScript([OP_0, witness_hash]) # First try extra witness data on a tx that doesn't require a witness tx = CTransaction() tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) tx.vout.append(CTxOut(self.utxo[0].nValue - 2000, script_pubkey)) tx.vout.append(CTxOut(1000, CScript([OP_TRUE]))) # non-witness output tx.wit.vtxinwit.append(CTxInWitness()) tx.wit.vtxinwit[0].scriptWitness.stack = [CScript([])] tx.rehash() self.update_witness_block_with_transactions(block, [tx]) # Extra witness data should not be allowed. test_witness_block(self.nodes[0], self.test_node, block, accepted=False) # Try extra signature data. Ok if we're not spending a witness output. block.vtx[1].wit.vtxinwit = [] block.vtx[1].vin[0].scriptSig = CScript([OP_0]) block.vtx[1].rehash() add_witness_commitment(block) block.solve() test_witness_block(self.nodes[0], self.test_node, block, accepted=True) # Now try extra witness/signature data on an input that DOES require a # witness tx2 = CTransaction() tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b"")) # witness output tx2.vin.append(CTxIn(COutPoint(tx.sha256, 1), b"")) # non-witness tx2.vout.append(CTxOut(tx.vout[0].nValue, CScript([OP_TRUE]))) tx2.wit.vtxinwit.extend([CTxInWitness(), CTxInWitness()]) tx2.wit.vtxinwit[0].scriptWitness.stack = [CScript([CScriptNum(1)]), CScript([CScriptNum(1)]), witness_program] tx2.wit.vtxinwit[1].scriptWitness.stack = [CScript([OP_TRUE])] block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx2]) # This has extra witness data, so it should fail. test_witness_block(self.nodes[0], self.test_node, block, accepted=False) # Now get rid of the extra witness, but add extra scriptSig data tx2.vin[0].scriptSig = CScript([OP_TRUE]) tx2.vin[1].scriptSig = CScript([OP_TRUE]) tx2.wit.vtxinwit[0].scriptWitness.stack.pop(0) tx2.wit.vtxinwit[1].scriptWitness.stack = [] tx2.rehash() add_witness_commitment(block) block.solve() # This has extra signature data for a witness input, so it should fail. test_witness_block(self.nodes[0], self.test_node, block, accepted=False) # Now get rid of the extra scriptsig on the witness input, and verify # success (even with extra scriptsig data in the non-witness input) tx2.vin[0].scriptSig = b"" tx2.rehash() add_witness_commitment(block) block.solve() test_witness_block(self.nodes[0], self.test_node, block, accepted=True) # Update utxo for later tests self.utxo.pop(0) self.utxo.append(UTXO(tx2.sha256, 0, tx2.vout[0].nValue)) @subtest def test_max_witness_push_length(self): """Test that witness stack can only allow up to 520 byte pushes.""" MAX_SCRIPT_ELEMENT_SIZE = 128000 block = self.build_next_block() witness_program = CScript([OP_DROP, OP_TRUE]) witness_hash = sha256(witness_program) script_pubkey = CScript([OP_0, witness_hash]) tx = CTransaction() tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) tx.vout.append(CTxOut(self.utxo[0].nValue - 100000, script_pubkey)) tx.rehash() tx2 = CTransaction() tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b"")) tx2.vout.append(CTxOut(tx.vout[0].nValue - 100000, CScript([OP_TRUE]))) tx2.wit.vtxinwit.append(CTxInWitness()) # First try a 521-byte stack element tx2.wit.vtxinwit[0].scriptWitness.stack = [b'a' * (MAX_SCRIPT_ELEMENT_SIZE + 1), witness_program] tx2.rehash() self.update_witness_block_with_transactions(block, [tx, tx2]) test_witness_block(self.nodes[0], self.test_node, block, accepted=False) # Now reduce the length of the stack element tx2.wit.vtxinwit[0].scriptWitness.stack[0] = b'a' * (MAX_SCRIPT_ELEMENT_SIZE) add_witness_commitment(block) block.solve() test_witness_block(self.nodes[0], self.test_node, block, accepted=True) # Update the utxo for later tests self.utxo.pop() self.utxo.append(UTXO(tx2.sha256, 0, tx2.vout[0].nValue)) @subtest def test_max_witness_program_length(self): """Test that witness outputs greater than 10kB can't be spent.""" MAX_SCRIPT_ELEMENT_SIZE = 128000 MAX_PROGRAM_LENGTH = 129000 # This program is 19 max pushes (9937 bytes), then 64 more opcode-bytes. long_witness_program = CScript([b'a' * (MAX_SCRIPT_ELEMENT_SIZE-50)] + [b'a'*996] + [OP_DROP]*46 + [OP_TRUE]) assert(len(long_witness_program) == MAX_PROGRAM_LENGTH + 1) long_witness_hash = sha256(long_witness_program) long_script_pubkey = CScript([OP_0, long_witness_hash]) block = self.build_next_block() tx = CTransaction() tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) tx.vout.append(CTxOut(self.utxo[0].nValue - 100000, long_script_pubkey)) tx.rehash() tx2 = CTransaction() tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b"")) tx2.vout.append(CTxOut(tx.vout[0].nValue - 100000, CScript([OP_TRUE]))) tx2.wit.vtxinwit.append(CTxInWitness()) tx2.wit.vtxinwit[0].scriptWitness.stack = [b'a'] * 44 + [long_witness_program] tx2.rehash() self.update_witness_block_with_transactions(block, [tx, tx2]) test_witness_block(self.nodes[0], self.test_node, block, accepted=False) # Try again with one less byte in the witness program witness_program = CScript([b'a' * (MAX_SCRIPT_ELEMENT_SIZE-50)] + [b'a'*996] + [OP_DROP]*45 + [OP_TRUE]) assert(len(witness_program) == MAX_PROGRAM_LENGTH) witness_hash = sha256(witness_program) script_pubkey = CScript([OP_0, witness_hash]) tx.vout[0] = CTxOut(tx.vout[0].nValue, script_pubkey) tx.rehash() tx2.vin[0].prevout.hash = tx.sha256 tx2.wit.vtxinwit[0].scriptWitness.stack = [b'a'] * 43 + [witness_program] tx2.rehash() block.vtx = [block.vtx[0]] self.update_witness_block_with_transactions(block, [tx, tx2]) test_witness_block(self.nodes[0], self.test_node, block, accepted=True) self.utxo.pop() self.utxo.append(UTXO(tx2.sha256, 0, tx2.vout[0].nValue)) @subtest def test_witness_input_length(self): """Test that vin length must match vtxinwit length.""" witness_program = CScript([OP_DROP, OP_TRUE]) witness_hash = sha256(witness_program) script_pubkey = CScript([OP_0, witness_hash]) # Create a transaction that splits our utxo into many outputs tx = CTransaction() tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) value = self.utxo[0].nValue for i in range(10): tx.vout.append(CTxOut(int(value / 10), script_pubkey)) tx.vout[0].nValue -= 1000 assert tx.vout[0].nValue >= 0 block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx]) test_witness_block(self.nodes[0], self.test_node, block, accepted=True) # Try various ways to spend tx that should all break. # This "broken" transaction serializer will not normalize # the length of vtxinwit. class BrokenCTransaction(CTransaction): def serialize_with_witness(self): flags = 0 if not self.wit.is_null(): flags |= 1 r = b"" r += struct.pack("<i", self.nVersion) if flags: dummy = [] r += ser_vector(dummy) r += struct.pack("<B", flags) r += ser_vector(self.vin) r += ser_vector(self.vout) if flags & 1: r += self.wit.serialize() r += struct.pack("<I", self.nLockTime) return r tx2 = BrokenCTransaction() for i in range(10): tx2.vin.append(CTxIn(COutPoint(tx.sha256, i), b"")) tx2.vout.append(CTxOut(value - 3000, CScript([OP_TRUE]))) # First try using a too long vtxinwit for i in range(11): tx2.wit.vtxinwit.append(CTxInWitness()) tx2.wit.vtxinwit[i].scriptWitness.stack = [b'a', witness_program] block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx2]) test_witness_block(self.nodes[0], self.test_node, block, accepted=False) # Now try using a too short vtxinwit tx2.wit.vtxinwit.pop() tx2.wit.vtxinwit.pop() block.vtx = [block.vtx[0]] self.update_witness_block_with_transactions(block, [tx2]) test_witness_block(self.nodes[0], self.test_node, block, accepted=False) # Now make one of the intermediate witnesses be incorrect tx2.wit.vtxinwit.append(CTxInWitness()) tx2.wit.vtxinwit[-1].scriptWitness.stack = [b'a', witness_program] tx2.wit.vtxinwit[5].scriptWitness.stack = [witness_program] block.vtx = [block.vtx[0]] self.update_witness_block_with_transactions(block, [tx2]) test_witness_block(self.nodes[0], self.test_node, block, accepted=False) # Fix the broken witness and the block should be accepted. tx2.wit.vtxinwit[5].scriptWitness.stack = [b'a', witness_program] block.vtx = [block.vtx[0]] self.update_witness_block_with_transactions(block, [tx2]) test_witness_block(self.nodes[0], self.test_node, block, accepted=True) self.utxo.pop() self.utxo.append(UTXO(tx2.sha256, 0, tx2.vout[0].nValue)) @subtest def test_tx_relay_after_segwit_activation(self): """Test transaction relay after segwit activation. After segwit activates, verify that mempool: - rejects transactions with unnecessary/extra witnesses - accepts transactions with valid witnesses and that witness transactions are relayed to non-upgraded peers.""" # Generate a transaction that doesn't require a witness, but send it # with a witness. Should be rejected because we can't use a witness # when spending a non-witness output. tx = CTransaction() tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) tx.vout.append(CTxOut(self.utxo[0].nValue - 100000, CScript([OP_TRUE, OP_DROP] * 15 + [OP_TRUE]))) tx.wit.vtxinwit.append(CTxInWitness()) tx.wit.vtxinwit[0].scriptWitness.stack = [b'a'] tx.rehash() tx_hash = tx.sha256 # Verify that unnecessary witnesses are rejected. self.test_node.announce_tx_and_wait_for_getdata(tx) assert_equal(len(self.nodes[0].getrawmempool()), 0) test_transaction_acceptance(self.nodes[0], self.test_node, tx, with_witness=True, accepted=False) # Verify that removing the witness succeeds. self.test_node.announce_tx_and_wait_for_getdata(tx) test_transaction_acceptance(self.nodes[0], self.test_node, tx, with_witness=False, accepted=True) # Now try to add extra witness data to a valid witness tx. witness_program = CScript([OP_TRUE]) witness_hash = sha256(witness_program) script_pubkey = CScript([OP_0, witness_hash]) tx2 = CTransaction() tx2.vin.append(CTxIn(COutPoint(tx_hash, 0), b"")) tx2.vout.append(CTxOut(tx.vout[0].nValue - 100000, script_pubkey)) tx2.rehash() tx3 = CTransaction() tx3.vin.append(CTxIn(COutPoint(tx2.sha256, 0), b"")) tx3.wit.vtxinwit.append(CTxInWitness()) # Add too-large for IsStandard witness and check that it does not enter reject filter p2sh_program = CScript([OP_TRUE]) p2sh_pubkey = hash160(p2sh_program) witness_program2 = CScript([b'a' * 400000]) tx3.vout.append(CTxOut(tx2.vout[0].nValue - 100000, CScript([OP_HASH160, p2sh_pubkey, OP_EQUAL]))) tx3.wit.vtxinwit[0].scriptWitness.stack = [witness_program2] tx3.rehash() # Node will not be blinded to the transaction self.std_node.announce_tx_and_wait_for_getdata(tx3) test_transaction_acceptance(self.nodes[1], self.std_node, tx3, True, False, 'tx-size') self.std_node.announce_tx_and_wait_for_getdata(tx3) test_transaction_acceptance(self.nodes[1], self.std_node, tx3, True, False, 'tx-size') # Remove witness stuffing, instead add extra witness push on stack tx3.vout[0] = CTxOut(tx2.vout[0].nValue - 100000, CScript([OP_TRUE, OP_DROP] * 15 + [OP_TRUE])) tx3.wit.vtxinwit[0].scriptWitness.stack = [CScript([CScriptNum(1)]), witness_program] tx3.rehash() test_transaction_acceptance(self.nodes[0], self.test_node, tx2, with_witness=True, accepted=True) test_transaction_acceptance(self.nodes[0], self.test_node, tx3, with_witness=True, accepted=False) # Get rid of the extra witness, and verify acceptance. tx3.wit.vtxinwit[0].scriptWitness.stack = [witness_program] # Also check that old_node gets a tx announcement, even though this is # a witness transaction. self.old_node.wait_for_inv([CInv(1, tx2.sha256)]) # wait until tx2 was inv'ed test_transaction_acceptance(self.nodes[0], self.test_node, tx3, with_witness=True, accepted=True) self.old_node.wait_for_inv([CInv(1, tx3.sha256)]) # Test that getrawtransaction returns correct witness information # hash, size, vsize raw_tx = self.nodes[0].getrawtransaction(tx3.hash, 1) assert_equal(int(raw_tx["hash"], 16), tx3.calc_sha256(True)) assert_equal(raw_tx["size"], len(tx3.serialize_with_witness())) weight = len(tx3.serialize_with_witness()) + 3 * len(tx3.serialize_without_witness()) vsize = math.ceil(weight / 4) assert_equal(raw_tx["vsize"], vsize) assert_equal(raw_tx["weight"], weight) assert_equal(len(raw_tx["vin"][0]["txinwitness"]), 1) assert_equal(raw_tx["vin"][0]["txinwitness"][0], witness_program.hex()) assert vsize != raw_tx["size"] # Cleanup: mine the transactions and update utxo for next test self.nodes[0].generate(1) assert_equal(len(self.nodes[0].getrawmempool()), 0) self.utxo.pop(0) self.utxo.append(UTXO(tx3.sha256, 0, tx3.vout[0].nValue)) @subtest def test_segwit_versions(self): """Test validity of future segwit version transactions. Future segwit versions are non-standard to spend, but valid in blocks. Sending to future segwit versions is always allowed. Can run this before and after segwit activation.""" NUM_SEGWIT_VERSIONS = 17 # will test OP_0, OP1, ..., OP_16 if len(self.utxo) < NUM_SEGWIT_VERSIONS: tx = CTransaction() tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) split_value = (self.utxo[0].nValue - 400000) // NUM_SEGWIT_VERSIONS for i in range(NUM_SEGWIT_VERSIONS): tx.vout.append(CTxOut(split_value, CScript([OP_TRUE]))) tx.rehash() block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx]) test_witness_block(self.nodes[0], self.test_node, block, accepted=True) self.utxo.pop(0) for i in range(NUM_SEGWIT_VERSIONS): self.utxo.append(UTXO(tx.sha256, i, split_value)) self.sync_blocks() temp_utxo = [] tx = CTransaction() witness_program = CScript([OP_TRUE]) witness_hash = sha256(witness_program) assert_equal(len(self.nodes[1].getrawmempool()), 0) for version in list(range(OP_1, OP_16 + 1)) + [OP_0]: # First try to spend to a future version segwit script_pubkey. script_pubkey = CScript([CScriptOp(version), witness_hash]) tx.vin = [CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")] tx.vout = [CTxOut(self.utxo[0].nValue - 100000, script_pubkey)] tx.rehash() test_transaction_acceptance(self.nodes[1], self.std_node, tx, with_witness=True, accepted=False) test_transaction_acceptance(self.nodes[0], self.test_node, tx, with_witness=True, accepted=True) self.utxo.pop(0) temp_utxo.append(UTXO(tx.sha256, 0, tx.vout[0].nValue)) self.nodes[0].generate(1) # Mine all the transactions self.sync_blocks() assert len(self.nodes[0].getrawmempool()) == 0 # Finally, verify that version 0 -> version 1 transactions # are standard script_pubkey = CScript([CScriptOp(OP_1), witness_hash]) tx2 = CTransaction() tx2.vin = [CTxIn(COutPoint(tx.sha256, 0), b"")] tx2.vout = [CTxOut(tx.vout[0].nValue - 100000, script_pubkey)] tx2.wit.vtxinwit.append(CTxInWitness()) tx2.wit.vtxinwit[0].scriptWitness.stack = [witness_program] tx2.rehash() # Gets accepted to both policy-enforcing nodes and others. test_transaction_acceptance(self.nodes[0], self.test_node, tx2, with_witness=True, accepted=True) test_transaction_acceptance(self.nodes[1], self.std_node, tx2, with_witness=True, accepted=True) temp_utxo.pop() # last entry in temp_utxo was the output we just spent temp_utxo.append(UTXO(tx2.sha256, 0, tx2.vout[0].nValue)) # Spend everything in temp_utxo into an segwit v1 output. tx3 = CTransaction() total_value = 0 for i in temp_utxo: tx3.vin.append(CTxIn(COutPoint(i.sha256, i.n), b"")) tx3.wit.vtxinwit.append(CTxInWitness()) total_value += i.nValue tx3.wit.vtxinwit[-1].scriptWitness.stack = [witness_program] tx3.vout.append(CTxOut(total_value - 1000000, script_pubkey)) tx3.rehash() # First we test this transaction against fRequireStandard=true node # making sure the txid is added to the reject filter self.std_node.announce_tx_and_wait_for_getdata(tx3) test_transaction_acceptance(self.nodes[1], self.std_node, tx3, with_witness=True, accepted=False, reason="bad-txns-nonstandard-inputs") # Now the node will no longer ask for getdata of this transaction when advertised by same txid self.std_node.announce_tx_and_wait_for_getdata(tx3, timeout=5, success=False) # Spending a higher version witness output is not allowed by policy, # even with fRequireStandard=false. test_transaction_acceptance(self.nodes[0], self.test_node, tx3, with_witness=True, accepted=False, reason="reserved for soft-fork upgrades") # Building a block with the transaction must be valid, however. block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx2, tx3]) test_witness_block(self.nodes[0], self.test_node, block, accepted=True) self.sync_blocks() # Add utxo to our list self.utxo.append(UTXO(tx3.sha256, 0, tx3.vout[0].nValue)) @subtest def test_premature_coinbase_witness_spend(self): block = self.build_next_block() # Change the output of the block to be a witness output. witness_program = CScript([OP_TRUE]) witness_hash = sha256(witness_program) script_pubkey = CScript([OP_0, witness_hash]) block.vtx[0].vout[0].scriptPubKey = script_pubkey # This next line will rehash the coinbase and update the merkle # root, and solve. self.update_witness_block_with_transactions(block, []) test_witness_block(self.nodes[0], self.test_node, block, accepted=True) spend_tx = CTransaction() spend_tx.vin = [CTxIn(COutPoint(block.vtx[0].sha256, 0), b"")] spend_tx.vout = [CTxOut(block.vtx[0].vout[0].nValue, witness_program)] spend_tx.wit.vtxinwit.append(CTxInWitness()) spend_tx.wit.vtxinwit[0].scriptWitness.stack = [witness_program] spend_tx.rehash() # Now test a premature spend. generatesynchronized(self.nodes[0], COINBASE_MATURITY-2, None, self.nodes) self.sync_blocks() block2 = self.build_next_block() self.update_witness_block_with_transactions(block2, [spend_tx]) test_witness_block(self.nodes[0], self.test_node, block2, accepted=False) # Advancing one more block should allow the spend. self.nodes[0].generate(1) block2 = self.build_next_block() self.update_witness_block_with_transactions(block2, [spend_tx]) test_witness_block(self.nodes[0], self.test_node, block2, accepted=True) self.sync_blocks() @subtest def test_uncompressed_pubkey(self): """Test uncompressed pubkey validity in segwit transactions. Uncompressed pubkeys are no longer supported in default relay policy, but (for now) are still valid in blocks.""" # Segwit transactions using uncompressed pubkeys are not accepted # under default policy, but should still pass consensus. key = ECKey() key.generate(False) pubkey = key.get_pubkey().get_bytes() assert_equal(len(pubkey), 65) # This should be an uncompressed pubkey utxo = self.utxo.pop(0) # Test 1: P2WPKH # First create a P2WPKH output that uses an uncompressed pubkey pubkeyhash = hash160(pubkey) script_pkh = CScript([OP_0, pubkeyhash]) tx = CTransaction() tx.vin.append(CTxIn(COutPoint(utxo.sha256, utxo.n), b"")) tx.vout.append(CTxOut(utxo.nValue - 100000, script_pkh)) tx.rehash() # Confirm it in a block. block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx]) test_witness_block(self.nodes[0], self.test_node, block, accepted=True) # Now try to spend it. Send it to a P2WSH output, which we'll # use in the next test. witness_program = CScript([pubkey, CScriptOp(OP_CHECKSIG)]) witness_hash = sha256(witness_program) script_wsh = CScript([OP_0, witness_hash]) tx2 = CTransaction() tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b"")) tx2.vout.append(CTxOut(tx.vout[0].nValue - 100000, script_wsh)) script = get_p2pkh_script(pubkeyhash) sig_hash = SegwitV0SignatureHash(script, tx2, 0, SIGHASH_ALL, tx.vout[0].nValue) signature = key.sign_ecdsa(sig_hash) + b'\x01' # 0x1 is SIGHASH_ALL tx2.wit.vtxinwit.append(CTxInWitness()) tx2.wit.vtxinwit[0].scriptWitness.stack = [signature, pubkey] tx2.rehash() # Should fail policy test. test_transaction_acceptance(self.nodes[0], self.test_node, tx2, True, False, 'non-mandatory-script-verify-flag (Using non-compressed keys in segwit)') # But passes consensus. block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx2]) test_witness_block(self.nodes[0], self.test_node, block, accepted=True) # Test 2: P2WSH # Try to spend the P2WSH output created in last test. # Send it to a P2SH(P2WSH) output, which we'll use in the next test. p2sh_witness_hash = hash160(script_wsh) script_p2sh = CScript([OP_HASH160, p2sh_witness_hash, OP_EQUAL]) script_sig = CScript([script_wsh]) tx3 = CTransaction() tx3.vin.append(CTxIn(COutPoint(tx2.sha256, 0), b"")) tx3.vout.append(CTxOut(tx2.vout[0].nValue - 100000, script_p2sh)) tx3.wit.vtxinwit.append(CTxInWitness()) sign_p2pk_witness_input(witness_program, tx3, 0, SIGHASH_ALL, tx2.vout[0].nValue, key) # Should fail policy test. test_transaction_acceptance(self.nodes[0], self.test_node, tx3, True, False, 'non-mandatory-script-verify-flag (Using non-compressed keys in segwit)') # But passes consensus. block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx3]) test_witness_block(self.nodes[0], self.test_node, block, accepted=True) # Test 3: P2SH(P2WSH) # Try to spend the P2SH output created in the last test. # Send it to a P2PKH output, which we'll use in the next test. script_pubkey = get_p2pkh_script(pubkeyhash) tx4 = CTransaction() tx4.vin.append(CTxIn(COutPoint(tx3.sha256, 0), script_sig)) tx4.vout.append(CTxOut(tx3.vout[0].nValue - 100000, script_pubkey)) tx4.wit.vtxinwit.append(CTxInWitness()) sign_p2pk_witness_input(witness_program, tx4, 0, SIGHASH_ALL, tx3.vout[0].nValue, key) # Should fail policy test. test_transaction_acceptance(self.nodes[0], self.test_node, tx4, True, False, 'non-mandatory-script-verify-flag (Using non-compressed keys in segwit)') block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx4]) test_witness_block(self.nodes[0], self.test_node, block, accepted=True) # Test 4: Uncompressed pubkeys should still be valid in non-segwit # transactions. tx5 = CTransaction() tx5.vin.append(CTxIn(COutPoint(tx4.sha256, 0), b"")) tx5.vout.append(CTxOut(tx4.vout[0].nValue - 100000, CScript([OP_TRUE]))) (sig_hash, err) = LegacySignatureHash(script_pubkey, tx5, 0, SIGHASH_ALL) signature = key.sign_ecdsa(sig_hash) + b'\x01' # 0x1 is SIGHASH_ALL tx5.vin[0].scriptSig = CScript([signature, pubkey]) tx5.rehash() # Should pass policy and consensus. test_transaction_acceptance(self.nodes[0], self.test_node, tx5, True, True) block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx5]) test_witness_block(self.nodes[0], self.test_node, block, accepted=True) self.utxo.append(UTXO(tx5.sha256, 0, tx5.vout[0].nValue)) @subtest def test_signature_version_1(self): key = ECKey() key.generate() pubkey = key.get_pubkey().get_bytes() witness_program = CScript([pubkey, CScriptOp(OP_CHECKSIG)]) witness_hash = sha256(witness_program) script_pubkey = CScript([OP_0, witness_hash]) # First create a witness output for use in the tests. tx = CTransaction() tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) tx.vout.append(CTxOut(self.utxo[0].nValue - 100000, script_pubkey)) tx.rehash() test_transaction_acceptance(self.nodes[0], self.test_node, tx, with_witness=True, accepted=True) # Mine this transaction in preparation for following tests. block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx]) test_witness_block(self.nodes[0], self.test_node, block, accepted=True) self.sync_blocks() self.utxo.pop(0) # Test each hashtype prev_utxo = UTXO(tx.sha256, 0, tx.vout[0].nValue) for sigflag in [0, SIGHASH_ANYONECANPAY]: for hashtype in [SIGHASH_ALL, SIGHASH_NONE, SIGHASH_SINGLE]: hashtype |= sigflag block = self.build_next_block() tx = CTransaction() tx.vin.append(CTxIn(COutPoint(prev_utxo.sha256, prev_utxo.n), b"")) tx.vout.append(CTxOut(prev_utxo.nValue - 100000, script_pubkey)) tx.wit.vtxinwit.append(CTxInWitness()) # Too-large input value sign_p2pk_witness_input(witness_program, tx, 0, hashtype, prev_utxo.nValue + 1, key) self.update_witness_block_with_transactions(block, [tx]) test_witness_block(self.nodes[0], self.test_node, block, accepted=False) # Too-small input value sign_p2pk_witness_input(witness_program, tx, 0, hashtype, prev_utxo.nValue - 1, key) block.vtx.pop() # remove last tx self.update_witness_block_with_transactions(block, [tx]) test_witness_block(self.nodes[0], self.test_node, block, accepted=False) # Now try correct value sign_p2pk_witness_input(witness_program, tx, 0, hashtype, prev_utxo.nValue, key) block.vtx.pop() self.update_witness_block_with_transactions(block, [tx]) test_witness_block(self.nodes[0], self.test_node, block, accepted=True) prev_utxo = UTXO(tx.sha256, 0, tx.vout[0].nValue) # Test combinations of signature hashes. # Split the utxo into a lot of outputs. # Randomly choose up to 10 to spend, sign with different hashtypes, and # output to a random number of outputs. Repeat NUM_SIGHASH_TESTS times. # Ensure that we've tested a situation where we use SIGHASH_SINGLE with # an input index > number of outputs. NUM_SIGHASH_TESTS = 500 temp_utxos = [] tx = CTransaction() tx.vin.append(CTxIn(COutPoint(prev_utxo.sha256, prev_utxo.n), b"")) split_value = prev_utxo.nValue // NUM_SIGHASH_TESTS for i in range(NUM_SIGHASH_TESTS): tx.vout.append(CTxOut(split_value, script_pubkey)) tx.wit.vtxinwit.append(CTxInWitness()) sign_p2pk_witness_input(witness_program, tx, 0, SIGHASH_ALL, prev_utxo.nValue, key) for i in range(NUM_SIGHASH_TESTS): temp_utxos.append(UTXO(tx.sha256, i, split_value)) block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx]) test_witness_block(self.nodes[0], self.test_node, block, accepted=True) block = self.build_next_block() used_sighash_single_out_of_bounds = False for i in range(NUM_SIGHASH_TESTS): # Ping regularly to keep the connection alive if (not i % 100): self.test_node.sync_with_ping() # Choose random number of inputs to use. num_inputs = random.randint(1, 10) # Create a slight bias for producing more utxos num_outputs = random.randint(1, 11) random.shuffle(temp_utxos) assert len(temp_utxos) > num_inputs tx = CTransaction() total_value = 0 for i in range(num_inputs): tx.vin.append(CTxIn(COutPoint(temp_utxos[i].sha256, temp_utxos[i].n), b"")) tx.wit.vtxinwit.append(CTxInWitness()) total_value += temp_utxos[i].nValue split_value = total_value // num_outputs for i in range(num_outputs): tx.vout.append(CTxOut(split_value, script_pubkey)) for i in range(num_inputs): # Now try to sign each input, using a random hashtype. anyonecanpay = 0 if random.randint(0, 1): anyonecanpay = SIGHASH_ANYONECANPAY hashtype = random.randint(1, 3) | anyonecanpay sign_p2pk_witness_input(witness_program, tx, i, hashtype, temp_utxos[i].nValue, key) if (hashtype == SIGHASH_SINGLE and i >= num_outputs): used_sighash_single_out_of_bounds = True tx.rehash() for i in range(num_outputs): temp_utxos.append(UTXO(tx.sha256, i, split_value)) temp_utxos = temp_utxos[num_inputs:] block.vtx.append(tx) # Test the block periodically, if we're close to maxblocksize if (get_virtual_size(block) > MAX_BLOCK_BASE_SIZE - 1000): self.update_witness_block_with_transactions(block, []) test_witness_block(self.nodes[0], self.test_node, block, accepted=True) block = self.build_next_block() if (not used_sighash_single_out_of_bounds): self.log.info("WARNING: this test run didn't attempt SIGHASH_SINGLE with out-of-bounds index value") # Test the transactions we've added to the block if (len(block.vtx) > 1): self.update_witness_block_with_transactions(block, []) test_witness_block(self.nodes[0], self.test_node, block, accepted=True) # Now test witness version 0 P2PKH transactions pubkeyhash = hash160(pubkey) script_pkh = CScript([OP_0, pubkeyhash]) tx = CTransaction() tx.vin.append(CTxIn(COutPoint(temp_utxos[0].sha256, temp_utxos[0].n), b"")) tx.vout.append(CTxOut(temp_utxos[0].nValue, script_pkh)) tx.wit.vtxinwit.append(CTxInWitness()) sign_p2pk_witness_input(witness_program, tx, 0, SIGHASH_ALL, temp_utxos[0].nValue, key) tx2 = CTransaction() tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b"")) tx2.vout.append(CTxOut(tx.vout[0].nValue, CScript([OP_TRUE]))) script = get_p2pkh_script(pubkeyhash) sig_hash = SegwitV0SignatureHash(script, tx2, 0, SIGHASH_ALL, tx.vout[0].nValue) signature = key.sign_ecdsa(sig_hash) + b'\x01' # 0x1 is SIGHASH_ALL # Check that we can't have a scriptSig tx2.vin[0].scriptSig = CScript([signature, pubkey]) block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx, tx2]) test_witness_block(self.nodes[0], self.test_node, block, accepted=False) # Move the signature to the witness. block.vtx.pop() tx2.wit.vtxinwit.append(CTxInWitness()) tx2.wit.vtxinwit[0].scriptWitness.stack = [signature, pubkey] tx2.vin[0].scriptSig = b"" tx2.rehash() self.update_witness_block_with_transactions(block, [tx2]) test_witness_block(self.nodes[0], self.test_node, block, accepted=True) temp_utxos.pop(0) # Update self.utxos for later tests by creating two outputs # that consolidate all the coins in temp_utxos. output_value = sum(i.nValue for i in temp_utxos) // 2 tx = CTransaction() index = 0 # Just spend to our usual anyone-can-spend output tx.vout = [CTxOut(output_value, CScript([OP_TRUE]))] * 2 for i in temp_utxos: # Use SIGHASH_ALL|SIGHASH_ANYONECANPAY so we can build up # the signatures as we go. tx.vin.append(CTxIn(COutPoint(i.sha256, i.n), b"")) tx.wit.vtxinwit.append(CTxInWitness()) sign_p2pk_witness_input(witness_program, tx, index, SIGHASH_ALL | SIGHASH_ANYONECANPAY, i.nValue, key) index += 1 block = self.build_next_block() self.update_witness_block_with_transactions(block, [tx]) test_witness_block(self.nodes[0], self.test_node, block, accepted=True) for i in range(len(tx.vout)): self.utxo.append(UTXO(tx.sha256, i, tx.vout[i].nValue)) @subtest def test_non_standard_witness_blinding(self): """Test behavior of unnecessary witnesses in transactions does not blind the node for the transaction""" # Create a p2sh output -- this is so we can pass the standardness # rules (an anyone-can-spend OP_TRUE would be rejected, if not wrapped # in P2SH). p2sh_program = CScript([OP_TRUE]) p2sh_pubkey = hash160(p2sh_program) script_pubkey = CScript([OP_HASH160, p2sh_pubkey, OP_EQUAL]) # Now check that unnecessary witnesses can't be used to blind a node # to a transaction, eg by violating standardness checks. tx = CTransaction() tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) tx.vout.append(CTxOut(self.utxo[0].nValue - 100000, script_pubkey)) tx.rehash() test_transaction_acceptance(self.nodes[0], self.test_node, tx, False, True) self.nodes[0].generate(1) self.sync_blocks() # We'll add an unnecessary witness to this transaction that would cause # it to be non-standard, to test that violating policy with a witness # doesn't blind a node to a transaction. Transactions # rejected for having a witness shouldn't be added # to the rejection cache. tx2 = CTransaction() tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), CScript([p2sh_program]))) tx2.vout.append(CTxOut(tx.vout[0].nValue - 100000, script_pubkey)) tx2.wit.vtxinwit.append(CTxInWitness()) tx2.wit.vtxinwit[0].scriptWitness.stack = [b'a' * 400] tx2.rehash() # This will be rejected due to a policy check: # No witness is allowed, since it is not a witness program but a p2sh program test_transaction_acceptance(self.nodes[1], self.std_node, tx2, True, False, 'bad-witness-nonstandard') # If we send without witness, it should be accepted. test_transaction_acceptance(self.nodes[1], self.std_node, tx2, False, True) # Now create a new anyone-can-spend utxo for the next test. tx3 = CTransaction() tx3.vin.append(CTxIn(COutPoint(tx2.sha256, 0), CScript([p2sh_program]))) tx3.vout.append(CTxOut(tx2.vout[0].nValue - 100000, CScript([OP_TRUE, OP_DROP] * 15 + [OP_TRUE]))) tx3.rehash() test_transaction_acceptance(self.nodes[0], self.test_node, tx2, False, True) test_transaction_acceptance(self.nodes[0], self.test_node, tx3, False, True) self.nodes[0].generate(1) self.sync_blocks() # Update our utxo list; we spent the first entry. self.utxo.pop(0) self.utxo.append(UTXO(tx3.sha256, 0, tx3.vout[0].nValue)) @subtest def test_non_standard_witness(self): """Test detection of non-standard P2WSH witness""" pad = chr(1).encode('latin-1') # Create scripts for tests scripts = [] scripts.append(CScript([OP_DROP] * 100)) scripts.append(CScript([OP_DROP] * 99)) scripts.append(CScript([pad * 59] * 59 + [OP_DROP] * 60)) scripts.append(CScript([pad * 59] * 59 + [OP_DROP] * 61)) p2wsh_scripts = [] tx = CTransaction() tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) # For each script, generate a pair of P2WSH and P2SH-P2WSH output. outputvalue = (self.utxo[0].nValue - 1000000) // (len(scripts) * 2) for i in scripts: p2wsh = CScript([OP_0, sha256(i)]) p2sh = hash160(p2wsh) p2wsh_scripts.append(p2wsh) tx.vout.append(CTxOut(outputvalue, p2wsh)) tx.vout.append(CTxOut(outputvalue, CScript([OP_HASH160, p2sh, OP_EQUAL]))) tx.rehash() txid = tx.sha256 test_transaction_acceptance(self.nodes[0], self.test_node, tx, with_witness=False, accepted=True) self.nodes[0].generate(1) self.sync_blocks() # Creating transactions for tests p2wsh_txs = [] p2sh_txs = [] for i in range(len(scripts)): p2wsh_tx = CTransaction() p2wsh_tx.vin.append(CTxIn(COutPoint(txid, i * 2))) p2wsh_tx.vout.append(CTxOut(outputvalue - 5000000, CScript([OP_0, hash160(hex_str_to_bytes(""))]))) p2wsh_tx.wit.vtxinwit.append(CTxInWitness()) p2wsh_tx.rehash() p2wsh_txs.append(p2wsh_tx) p2sh_tx = CTransaction() p2sh_tx.vin.append(CTxIn(COutPoint(txid, i * 2 + 1), CScript([p2wsh_scripts[i]]))) p2sh_tx.vout.append(CTxOut(outputvalue - 5000000, CScript([OP_0, hash160(hex_str_to_bytes(""))]))) p2sh_tx.wit.vtxinwit.append(CTxInWitness()) p2sh_tx.rehash() p2sh_txs.append(p2sh_tx) # Testing native P2WSH # Witness stack size, excluding witnessScript, over 100 is non-standard p2wsh_txs[0].wit.vtxinwit[0].scriptWitness.stack = [pad] * 101 + [scripts[0]] test_transaction_acceptance(self.nodes[1], self.std_node, p2wsh_txs[0], True, False, 'bad-witness-nonstandard') # Non-standard nodes should accept test_transaction_acceptance(self.nodes[0], self.test_node, p2wsh_txs[0], True, True) # Stack element size over 80 bytes is non-standard p2wsh_txs[1].wit.vtxinwit[0].scriptWitness.stack = [pad * 81] * 100 + [scripts[1]] test_transaction_acceptance(self.nodes[1], self.std_node, p2wsh_txs[1], True, False, 'bad-witness-nonstandard') # Non-standard nodes should accept test_transaction_acceptance(self.nodes[0], self.test_node, p2wsh_txs[1], True, True) # Standard nodes should accept if element size is not over 80 bytes p2wsh_txs[1].wit.vtxinwit[0].scriptWitness.stack = [pad * 80] * 100 + [scripts[1]] test_transaction_acceptance(self.nodes[1], self.std_node, p2wsh_txs[1], True, True) # witnessScript size at 3600 bytes is standard p2wsh_txs[2].wit.vtxinwit[0].scriptWitness.stack = [pad, pad, scripts[2]] test_transaction_acceptance(self.nodes[0], self.test_node, p2wsh_txs[2], True, True) test_transaction_acceptance(self.nodes[1], self.std_node, p2wsh_txs[2], True, True) # witnessScript size at 3601 bytes is non-standard p2wsh_txs[3].wit.vtxinwit[0].scriptWitness.stack = [pad, pad, pad, scripts[3]] test_transaction_acceptance(self.nodes[1], self.std_node, p2wsh_txs[3], True, False, 'bad-witness-nonstandard') # Non-standard nodes should accept test_transaction_acceptance(self.nodes[0], self.test_node, p2wsh_txs[3], True, True) # Repeating the same tests with P2SH-P2WSH p2sh_txs[0].wit.vtxinwit[0].scriptWitness.stack = [pad] * 101 + [scripts[0]] test_transaction_acceptance(self.nodes[1], self.std_node, p2sh_txs[0], True, False, 'bad-witness-nonstandard') test_transaction_acceptance(self.nodes[0], self.test_node, p2sh_txs[0], True, True) p2sh_txs[1].wit.vtxinwit[0].scriptWitness.stack = [pad * 81] * 100 + [scripts[1]] test_transaction_acceptance(self.nodes[1], self.std_node, p2sh_txs[1], True, False, 'bad-witness-nonstandard') test_transaction_acceptance(self.nodes[0], self.test_node, p2sh_txs[1], True, True) p2sh_txs[1].wit.vtxinwit[0].scriptWitness.stack = [pad * 80] * 100 + [scripts[1]] test_transaction_acceptance(self.nodes[1], self.std_node, p2sh_txs[1], True, True) p2sh_txs[2].wit.vtxinwit[0].scriptWitness.stack = [pad, pad, scripts[2]] test_transaction_acceptance(self.nodes[0], self.test_node, p2sh_txs[2], True, True) test_transaction_acceptance(self.nodes[1], self.std_node, p2sh_txs[2], True, True) p2sh_txs[3].wit.vtxinwit[0].scriptWitness.stack = [pad, pad, pad, scripts[3]] test_transaction_acceptance(self.nodes[1], self.std_node, p2sh_txs[3], True, False, 'bad-witness-nonstandard') test_transaction_acceptance(self.nodes[0], self.test_node, p2sh_txs[3], True, True) self.nodes[0].generate(1) # Mine and clean up the mempool of non-standard node # Valid but non-standard transactions in a block should be accepted by standard node self.sync_blocks() assert_equal(len(self.nodes[0].getrawmempool()), 0) assert_equal(len(self.nodes[1].getrawmempool()), 0) self.utxo.pop(0) @subtest def test_upgrade_after_activation(self): """Test the behavior of starting up a segwit-aware node after the softfork has activated.""" # Restart with the new binary self.stop_node(2) self.start_node(2, extra_args=["-segwitheight={}".format(SEGWIT_HEIGHT)]) connect_nodes(self.nodes[0], 2) self.sync_blocks() # Make sure that this peer thinks segwit has activated. assert softfork_active(self.nodes[2], 'segwit') # Make sure this peer's blocks match those of node0. height = self.nodes[2].getblockcount() start_height = height while height > 0: block_hash = self.nodes[2].getblockhash(height) assert_equal(block_hash, self.nodes[0].getblockhash(height)) block_0 = self.nodes[0].getblock(block_hash) block_2 = self.nodes[2].getblock(block_hash) for key in ['hash', 'confirmations', 'strippedsize', 'size', 'weight', 'height', 'version', 'versionHex', 'merkleroot', 'hashStateRoot', 'hashUTXORoot', 'tx', 'time', 'mediantime', 'nonce', 'bits', 'difficulty', 'chainwork', 'nTx', 'previousblockhash', 'nextblockhash', 'flags', 'modifier']: if height == start_height and key == 'nextblockhash': continue # the chain tip won't have a nextblockhash assert_equal(block_0[key], block_2[key]) height -= 1 @subtest def test_witness_sigops(self): """Test sigop counting is correct inside witnesses.""" # Keep this under MAX_OPS_PER_SCRIPT (201) witness_program = CScript([OP_TRUE, OP_IF, OP_TRUE, OP_ELSE] + [OP_CHECKMULTISIG] * 5 + [OP_CHECKSIG] * 193 + [OP_ENDIF]) witness_hash = sha256(witness_program) script_pubkey = CScript([OP_0, witness_hash]) sigops_per_script = 20 * 5 + 193 * 1 # We'll produce 2 extra outputs, one with a program that would take us # over max sig ops, and one with a program that would exactly reach max # sig ops outputs = (MAX_SIGOP_COST // sigops_per_script) + 2 extra_sigops_available = MAX_SIGOP_COST % sigops_per_script # We chose the number of checkmultisigs/checksigs to make this work: assert extra_sigops_available < 100 # steer clear of MAX_OPS_PER_SCRIPT # This script, when spent with the first # N(=MAX_SIGOP_COST//sigops_per_script) outputs of our transaction, # would push us just over the block sigop limit. witness_program_toomany = CScript([OP_TRUE, OP_IF, OP_TRUE, OP_ELSE] + [OP_CHECKSIG] * (extra_sigops_available + 1) + [OP_ENDIF]) witness_hash_toomany = sha256(witness_program_toomany) script_pubkey_toomany = CScript([OP_0, witness_hash_toomany]) # If we spend this script instead, we would exactly reach our sigop # limit (for witness sigops). witness_program_justright = CScript([OP_TRUE, OP_IF, OP_TRUE, OP_ELSE] + [OP_CHECKSIG] * (extra_sigops_available) + [OP_ENDIF]) witness_hash_justright = sha256(witness_program_justright) script_pubkey_justright = CScript([OP_0, witness_hash_justright]) # First split our available utxo into a bunch of outputs split_value = self.utxo[0].nValue // outputs tx = CTransaction() tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")) for i in range(outputs): tx.vout.append(CTxOut(split_value, script_pubkey)) tx.vout[-2].scriptPubKey = script_pubkey_toomany tx.vout[-1].scriptPubKey = script_pubkey_justright tx.rehash() block_1 = self.build_next_block() self.update_witness_block_with_transactions(block_1, [tx]) test_witness_block(self.nodes[0], self.test_node, block_1, accepted=True) tx2 = CTransaction() # If we try to spend the first n-1 outputs from tx, that should be # too many sigops. total_value = 0 for i in range(outputs - 1): tx2.vin.append(CTxIn(COutPoint(tx.sha256, i), b"")) tx2.wit.vtxinwit.append(CTxInWitness()) tx2.wit.vtxinwit[-1].scriptWitness.stack = [witness_program] total_value += tx.vout[i].nValue tx2.wit.vtxinwit[-1].scriptWitness.stack = [witness_program_toomany] tx2.vout.append(CTxOut(total_value, CScript([OP_TRUE]))) tx2.rehash() block_2 = self.build_next_block() self.update_witness_block_with_transactions(block_2, [tx2]) test_witness_block(self.nodes[0], self.test_node, block_2, accepted=False) # Try dropping the last input in tx2, and add an output that has # too many sigops (contributing to legacy sigop count). checksig_count = (extra_sigops_available // 4) + 1 script_pubkey_checksigs = CScript([OP_CHECKSIG] * checksig_count) tx2.vout.append(CTxOut(0, script_pubkey_checksigs)) tx2.vin.pop() tx2.wit.vtxinwit.pop() tx2.vout[0].nValue -= tx.vout[-2].nValue tx2.rehash() block_3 = self.build_next_block() self.update_witness_block_with_transactions(block_3, [tx2]) test_witness_block(self.nodes[0], self.test_node, block_3, accepted=False) # If we drop the last checksig in this output, the tx should succeed. block_4 = self.build_next_block() tx2.vout[-1].scriptPubKey = CScript([OP_CHECKSIG] * (checksig_count - 1)) tx2.rehash() self.update_witness_block_with_transactions(block_4, [tx2]) test_witness_block(self.nodes[0], self.test_node, block_4, accepted=True) # Reset the tip back down for the next test self.sync_blocks() for x in self.nodes: x.invalidateblock(block_4.hash) # Try replacing the last input of tx2 to be spending the last # output of tx block_5 = self.build_next_block() tx2.vout.pop() tx2.vin.append(CTxIn(COutPoint(tx.sha256, outputs - 1), b"")) tx2.wit.vtxinwit.append(CTxInWitness()) tx2.wit.vtxinwit[-1].scriptWitness.stack = [witness_program_justright] tx2.rehash() self.update_witness_block_with_transactions(block_5, [tx2]) test_witness_block(self.nodes[0], self.test_node, block_5, accepted=True) # TODO: test p2sh sigop counting def test_superfluous_witness(self): # Serialization of tx that puts witness flag to 3 always def serialize_with_bogus_witness(tx): flags = 3 r = b"" r += struct.pack("<i", tx.nVersion) if flags: dummy = [] r += ser_vector(dummy) r += struct.pack("<B", flags) r += ser_vector(tx.vin) r += ser_vector(tx.vout) if flags & 1: if (len(tx.wit.vtxinwit) != len(tx.vin)): # vtxinwit must have the same length as vin tx.wit.vtxinwit = tx.wit.vtxinwit[:len(tx.vin)] for i in range(len(tx.wit.vtxinwit), len(tx.vin)): tx.wit.vtxinwit.append(CTxInWitness()) r += tx.wit.serialize() r += struct.pack("<I", tx.nLockTime) return r class msg_bogus_tx(msg_tx): def serialize(self): return serialize_with_bogus_witness(self.tx) self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(address_type='bech32'), 5) self.nodes[0].generate(1) unspent = next(u for u in self.nodes[0].listunspent() if u['spendable'] and u['address'].startswith('qcrt')) raw = self.nodes[0].createrawtransaction([{"txid": unspent['txid'], "vout": unspent['vout']}], {self.nodes[0].getnewaddress(): 1}) tx = FromHex(CTransaction(), raw) assert_raises_rpc_error(-22, "TX decode failed", self.nodes[0].decoderawtransaction, serialize_with_bogus_witness(tx).hex()) with self.nodes[0].assert_debug_log(['Superfluous witness record']): self.nodes[0].p2p.send_and_ping(msg_bogus_tx(tx)) raw = self.nodes[0].signrawtransactionwithwallet(raw) assert raw['complete'] raw = raw['hex'] tx = FromHex(CTransaction(), raw) assert_raises_rpc_error(-22, "TX decode failed", self.nodes[0].decoderawtransaction, serialize_with_bogus_witness(tx).hex()) with self.nodes[0].assert_debug_log(['Unknown transaction optional data']): self.nodes[0].p2p.send_and_ping(msg_bogus_tx(tx)) if __name__ == '__main__': SegWitTest().main()
the-stack_0_15121
# -*- coding: utf-8 -*- from .models import Team from rest_framework import serializers class TeamSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = Team fields = ('code', 'name', 'strength_defence_home', 'strength_attack_home', 'strength_overall_home', 'strength_attack_away', 'strength_defence_away', 'strength_overall_away')
the-stack_0_15123
import pytest from numbers import Number from numpy import ndarray from hypothesis import given import hypothesis.strategies as hst from qcodes.dataset.param_spec import ParamSpec @pytest.fixture def version_0_serializations(): sers = [] sers.append({'name': 'dmm_v1', 'paramtype': 'numeric', 'label': 'Gate v1', 'unit': 'V', 'inferred_from': [], 'depends_on': ['dac_ch1', 'dac_ch2']}) sers.append({'name': 'some_name', 'paramtype': 'array', 'label': 'My Array ParamSpec', 'unit': 'Ars', 'inferred_from': ['p1', 'p2' ], 'depends_on': []}) return sers @pytest.fixture def version_0_deserializations(): """ The paramspecs that the above serializations should deserialize to """ ps = [] ps.append(ParamSpec('dmm_v1', paramtype='numeric', label='Gate v1', unit='V', inferred_from=[], depends_on=['dac_ch1', 'dac_ch2'])) ps.append(ParamSpec('some_name', paramtype='array', label='My Array ParamSpec', unit='Ars', inferred_from=['p1', 'p2'], depends_on=[])) return ps @given(name=hst.text(min_size=1), sp1=hst.text(min_size=1), sp2=hst.text(min_size=1), inff1=hst.text(min_size=1), inff2=hst.text(min_size=1), paramtype=hst.lists( elements=hst.sampled_from(['numeric', 'array', 'text']), min_size=6, max_size=6)) def test_creation(name, sp1, sp2, inff1, inff2, paramtype): invalid_types = ['np.array', 'ndarray', 'lala', '', Number, ndarray, 0, None] for inv_type in invalid_types: with pytest.raises(ValueError): ParamSpec(name, inv_type) if not inff1.isidentifier(): inff1 = 'inff1' if not sp1.isidentifier(): sp1 = 'sp1' if not name.isidentifier(): with pytest.raises(ValueError): ps = ParamSpec(name, paramtype[0], label=None, unit='V', inferred_from=(inff1, inff2), depends_on=(sp1, sp2)) name = 'name' ps = ParamSpec(name, paramtype[1], label=None, unit='V', inferred_from=(inff1, inff2), depends_on=(sp1, sp2)) assert ps.inferred_from == f'{inff1}, {inff2}' assert ps.depends_on == f'{sp1}, {sp2}' ps1 = ParamSpec(sp1, paramtype[2]) p1 = ParamSpec(name, paramtype[3], depends_on=(ps1, sp2)) assert p1.depends_on == ps.depends_on ps2 = ParamSpec(inff1, paramtype[4]) p2 = ParamSpec(name, paramtype[5], inferred_from=(ps2, inff2)) assert p2.inferred_from == ps.inferred_from @given(name=hst.text(min_size=1)) def test_repr(name): okay_types = ['array', 'numeric', 'text'] for okt in okay_types: if name.isidentifier(): ps = ParamSpec(name, okt) expected_repr = (f"ParamSpec('{name}', '{okt}', '', '', " "inferred_from=[], depends_on=[])") assert ps.__repr__() == expected_repr else: with pytest.raises(ValueError): ps = ParamSpec(name, okt) alphabet = "".join([chr(i) for i in range(ord("a"), ord("z"))]) @given( name1=hst.text(min_size=4, alphabet=alphabet), name2=hst.text(min_size=4, alphabet=alphabet), name3=hst.text(min_size=4, alphabet=alphabet) ) def test_add_depends_on(name1, name2, name3): ps1 = ParamSpec(name1, "numeric") ps2 = ParamSpec(name2, "numeric") ps3 = ParamSpec(name3, "numeric") ps1.add_depends_on([ps2, ps3]) assert ps1.depends_on == f"{ps2.name}, {ps3.name}" @given( name1=hst.text(min_size=4, alphabet=alphabet), name2=hst.text(min_size=4, alphabet=alphabet), name3=hst.text(min_size=4, alphabet=alphabet) ) def test_add_inferred_from(name1, name2, name3): ps1 = ParamSpec(name1, "numeric") ps2 = ParamSpec(name2, "numeric") ps3 = ParamSpec(name3, "numeric") ps1.add_inferred_from([ps2, ps3]) assert ps1.inferred_from == f"{ps2.name}, {ps3.name}" @given( name1=hst.text(min_size=4, alphabet=alphabet), name2=hst.text(min_size=4, alphabet=alphabet), name3=hst.text(min_size=4, alphabet=alphabet), ) def test_copy(name1, name2, name3): ps_indep = ParamSpec(name1, "numeric") ps = ParamSpec(name3, "numeric", depends_on=[ps_indep]) ps_copy = ps.copy() att_names = ["name", "type", "label", "unit", "_inferred_from", "_depends_on"] attributes = {} for att in att_names: val = getattr(ps, att) valc = getattr(ps_copy, att) assert val == valc attributes[att] = val # Modifying the copy should not change the original for att in att_names: if not att.startswith('_'): setattr(ps_copy, att, attributes[att] + "_modified") else: setattr(ps_copy, att, attributes[att] + ['bob']) assert getattr(ps, att) == attributes[att] def test_serialize(): p1 = ParamSpec('p1', 'numeric', 'paramspec one', 'no unit', depends_on=['some', 'thing'], inferred_from=['bab', 'bob']) ser = p1.serialize() assert ser['name'] == p1.name assert ser['paramtype'] == p1.type assert ser['label'] == p1.label assert ser['unit'] == p1.unit assert ser['depends_on'] == p1._depends_on assert ser['inferred_from'] == p1._inferred_from def test_deserialize(version_0_serializations, version_0_deserializations): for sdict, ps in zip(version_0_serializations, version_0_deserializations): deps = ParamSpec.deserialize(sdict) assert ps == deps
the-stack_0_15124
# # Copyright 2021- IBM Inc. All rights reserved # SPDX-License-Identifier: Apache2.0 # import numpy as np from scipy.sparse import issparse from sklearn.utils.extmath import row_norms class PHKMeansOptimizer: def __init__(self, n_clusters, n_features, n_samples, x, x_squared_norm): self.n_clusters = n_clusters self.n_features = n_features self.n_samples = n_samples self.x = x self.x_squared_norm = x_squared_norm self.sparse = issparse(x) def init_partition(self, labels, t_size, t_centroid_sum, t_centroid_avg, t_squared_norm): sparse = issparse(self.x) for i in range(self.n_samples): t = labels[i] t_size[t] += 1 if sparse: i_start = self.x.indptr[i] i_end = self.x.indptr[i + 1] v_indices = self.x.indices[i_start:i_end] v_data = self.x.data[i_start:i_end] t_centroid_sum[t, v_indices] += v_data else: t_centroid_sum[t, :] += self.x[i, :] np.multiply(t_centroid_sum, (1 / t_size)[:, None], out=t_centroid_avg) if sparse: t_squared_norm[:] = row_norms(t_centroid_avg, squared=True) else: t_squared_norm[:] = 0 # calculate inertia inertia = 0 for i in range(self.n_samples): t = labels[i] if sparse: i_start = self.x.indptr[i] i_end = self.x.indptr[i + 1] v_indices = self.x.indices[i_start:i_end] v_data = self.x.data[i_start:i_end] inertia += (t_squared_norm[t] + self.x_squared_norm[i] - 2 * np.dot(t_centroid_avg[t, v_indices], v_data)) else: subtraction = t_centroid_avg[t, :] - self.x[i, :] inertia += np.dot(subtraction, subtraction) return inertia def optimize(self, x_permutation, t_size, t_centroid_sum, t_centroid_avg, t_squared_norm, labels, inertia, ref_labels=None): return self.iterate(True, self.n_samples, self.x, self.x_squared_norm, x_permutation, t_size, t_centroid_sum, t_centroid_avg, t_squared_norm, labels, None, inertia, ref_labels) def infer(self, n_samples, x, x_squared_norm, t_size, t_centroid_sum, t_centroid_avg, t_squared_norm, labels, costs, ref_labels=None): return self.iterate(False, n_samples, x, x_squared_norm, None, t_size, t_centroid_sum, t_centroid_avg, t_squared_norm, labels, costs, None, ref_labels) def iterate(self, clustering_mode, n_samples, x, x_squared_norm, x_permutation, t_size, t_centroid_sum, t_centroid_avg, t_squared_norm, labels, costs, inertia, ref_labels=None): n_changes = 0 total_cost = 0 if not self.sparse: tmp_delta = np.empty_like(t_centroid_avg) else: tmp_delta = None for i in range(n_samples): x_id = x_permutation[i] if x_permutation is not None else i old_t = labels[x_id] if clustering_mode and t_size[old_t] == 1: continue # if t is a singleton cluster we do not reduce it any further # obtain local references if self.sparse: x_start = x.indptr[x_id] x_end = x.indptr[x_id + 1] x_indices = x.indices[x_start:x_end] x_data = x.data[x_start:x_end] x_squared_norm_x = x_squared_norm[x_id] else: x_indices = None x_data = x[x_id, :] x_squared_norm_x = None if clustering_mode: # withdraw x from its current cluster if self.sparse: t_centroid_sum[old_t, x_indices] -= x_data dot_product = np.dot(x_data, t_centroid_sum[old_t, x_indices]) t_squared_norm[old_t] = (t_squared_norm[old_t] * (t_size[old_t] ** 2) - x_squared_norm_x - 2 * dot_product) / ((t_size[old_t] - 1) ** 2) else: t_centroid_sum[old_t, :] -= x_data np.multiply(t_centroid_sum[old_t, :], 1 / (t_size[old_t] - 1), out=t_centroid_avg[old_t, :]) t_size[old_t] -= 1 # select new_t if self.sparse: dot_product = (t_centroid_sum[:, x_indices] @ x_data) / t_size tmp_costs = t_squared_norm + x_squared_norm_x - 2 * dot_product else: np.subtract(t_centroid_avg, x_data[np.newaxis, :], out=tmp_delta) tmp_costs = (tmp_delta[:, None, :] @ tmp_delta[..., None]).ravel() tmp_costs *= t_size / (t_size + 1) new_t = np.argmin(tmp_costs).item() if ref_labels is not None: ref_t = ref_labels[x_id] if new_t != ref_t and not np.isclose(tmp_costs[new_t], tmp_costs[ref_t]): print("override t of cost=%.8f, with cost=%.8f" % (tmp_costs[new_t], tmp_costs[ref_t])) new_t = ref_t if clustering_mode: # update membership if self.sparse: dot_product = np.dot(x_data, t_centroid_sum[new_t, x_indices]) t_squared_norm[new_t] = (t_squared_norm[new_t] * (t_size[new_t] ** 2) + x_squared_norm_x + 2 * dot_product) / ((t_size[new_t] + 1) ** 2) t_centroid_sum[new_t, x_indices] += x_data else: t_centroid_sum[new_t, :] += x_data np.multiply(t_centroid_sum[new_t, :], 1 / (t_size[new_t] + 1), out=t_centroid_avg[new_t, :]) t_size[new_t] += 1 # update stats if new_t != old_t: n_changes += 1 inertia -= tmp_costs[old_t] - tmp_costs[new_t] else: total_cost += tmp_costs[new_t] costs[x_id, :] = tmp_costs labels[x_id] = new_t if clustering_mode: return n_changes / self.n_samples if self.n_samples > 0 else 0, inertia else: return total_cost
the-stack_0_15125
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) """The pty module handles pseudo-terminals. Currently, the infrastructure here is only used to test llnl.util.tty.log. If this is used outside a testing environment, we will want to reconsider things like timeouts in ``ProcessController.wait()``, which are set to get tests done quickly, not to avoid high CPU usage. Note: The functionality in this module is unsupported on Windows """ from __future__ import print_function import multiprocessing import os import re import signal import sys import time import traceback import llnl.util.tty.log as log from spack.util.executable import which termios = None try: import termios as term_mod termios = term_mod except ImportError: pass class ProcessController(object): """Wrapper around some fundamental process control operations. This allows one process (the controller) to drive another (the minion) similar to the way a shell would, by sending signals and I/O. """ def __init__(self, pid, controller_fd, timeout=1, sleep_time=1e-1, debug=False): """Create a controller to manipulate the process with id ``pid`` Args: pid (int): id of process to control controller_fd (int): controller fd attached to pid's stdin timeout (int): time in seconds for wait operations to time out (default 1 second) sleep_time (int): time to sleep after signals, to control the signal rate of the controller (default 1e-1) debug (bool): whether ``horizontal_line()`` and ``status()`` should produce output when called (default False) ``sleep_time`` allows the caller to insert delays after calls that signal or modify the controlled process. Python behaves very poorly if signals arrive too fast, and drowning a Python process with a Python handler with signals can kill the process and hang our tests, so we throttle this a closer-to-interactive rate. """ self.pid = pid self.pgid = os.getpgid(pid) self.controller_fd = controller_fd self.timeout = timeout self.sleep_time = sleep_time self.debug = debug # we need the ps command to wait for process statuses self.ps = which("ps", required=True) def get_canon_echo_attrs(self): """Get echo and canon attributes of the terminal of controller_fd.""" cfg = termios.tcgetattr(self.controller_fd) return ( bool(cfg[3] & termios.ICANON), bool(cfg[3] & termios.ECHO), ) def horizontal_line(self, name): """Labled horizontal line for debugging.""" if self.debug: sys.stderr.write( "------------------------------------------- %s\n" % name ) def status(self): """Print debug message with status info for the minion.""" if self.debug: canon, echo = self.get_canon_echo_attrs() sys.stderr.write("canon: %s, echo: %s\n" % ( "on" if canon else "off", "on" if echo else "off", )) sys.stderr.write("input: %s\n" % self.input_on()) sys.stderr.write("bg: %s\n" % self.background()) sys.stderr.write("\n") def input_on(self): """True if keyboard input is enabled on the controller_fd pty.""" return self.get_canon_echo_attrs() == (False, False) def background(self): """True if pgid is in a background pgroup of controller_fd's tty.""" return self.pgid != os.tcgetpgrp(self.controller_fd) def tstp(self): """Send SIGTSTP to the controlled process.""" self.horizontal_line("tstp") os.killpg(self.pgid, signal.SIGTSTP) time.sleep(self.sleep_time) def cont(self): self.horizontal_line("cont") os.killpg(self.pgid, signal.SIGCONT) time.sleep(self.sleep_time) def fg(self): self.horizontal_line("fg") with log.ignore_signal(signal.SIGTTOU): os.tcsetpgrp(self.controller_fd, os.getpgid(self.pid)) time.sleep(self.sleep_time) def bg(self): self.horizontal_line("bg") with log.ignore_signal(signal.SIGTTOU): os.tcsetpgrp(self.controller_fd, os.getpgrp()) time.sleep(self.sleep_time) def write(self, byte_string): self.horizontal_line("write '%s'" % byte_string.decode("utf-8")) os.write(self.controller_fd, byte_string) def wait(self, condition): start = time.time() while (((time.time() - start) < self.timeout) and not condition()): time.sleep(1e-2) assert condition() def wait_enabled(self): self.wait(lambda: self.input_on() and not self.background()) def wait_disabled(self): self.wait(lambda: not self.input_on() and self.background()) def wait_disabled_fg(self): self.wait(lambda: not self.input_on() and not self.background()) def proc_status(self): status = self.ps("-p", str(self.pid), "-o", "stat", output=str) status = re.split(r"\s+", status.strip(), re.M) return status[1] def wait_stopped(self): self.wait(lambda: "T" in self.proc_status()) def wait_running(self): self.wait(lambda: "T" not in self.proc_status()) class PseudoShell(object): """Sets up controller and minion processes with a PTY. You can create a ``PseudoShell`` if you want to test how some function responds to terminal input. This is a pseudo-shell from a job control perspective; ``controller_function`` and ``minion_function`` are set up with a pseudoterminal (pty) so that the controller can drive the minion through process control signals and I/O. The two functions should have signatures like this:: def controller_function(proc, ctl, **kwargs) def minion_function(**kwargs) ``controller_function`` is spawned in its own process and passed three arguments: proc the ``multiprocessing.Process`` object representing the minion ctl a ``ProcessController`` object tied to the minion kwargs keyword arguments passed from ``PseudoShell.start()``. ``minion_function`` is only passed ``kwargs`` delegated from ``PseudoShell.start()``. The ``ctl.controller_fd`` will have its ``controller_fd`` connected to ``sys.stdin`` in the minion process. Both processes will share the same ``sys.stdout`` and ``sys.stderr`` as the process instantiating ``PseudoShell``. Here are the relationships between processes created:: ._________________________________________________________. | Minion Process | pid 2 | - runs minion_function | pgroup 2 |_________________________________________________________| session 1 ^ | create process with controller_fd connected to stdin | stdout, stderr are the same as caller ._________________________________________________________. | Controller Process | pid 1 | - runs controller_function | pgroup 1 | - uses ProcessController and controller_fd to | session 1 | control minion | |_________________________________________________________| ^ | create process | stdin, stdout, stderr are the same as caller ._________________________________________________________. | Caller | pid 0 | - Constructs, starts, joins PseudoShell | pgroup 0 | - provides controller_function, minion_function | session 0 |_________________________________________________________| """ def __init__(self, controller_function, minion_function): self.proc = None self.controller_function = controller_function self.minion_function = minion_function # these can be optionally set to change defaults self.controller_timeout = 1 self.sleep_time = 0 def start(self, **kwargs): """Start the controller and minion processes. Arguments: kwargs (dict): arbitrary keyword arguments that will be passed to controller and minion functions The controller process will create the minion, then call ``controller_function``. The minion process will call ``minion_function``. """ self.proc = multiprocessing.Process( target=PseudoShell._set_up_and_run_controller_function, args=(self.controller_function, self.minion_function, self.controller_timeout, self.sleep_time), kwargs=kwargs, ) self.proc.start() def join(self): """Wait for the minion process to finish, and return its exit code.""" self.proc.join() return self.proc.exitcode @staticmethod def _set_up_and_run_minion_function( tty_name, stdout_fd, stderr_fd, ready, minion_function, **kwargs): """Minion process wrapper for PseudoShell. Handles the mechanics of setting up a PTY, then calls ``minion_function``. """ # new process group, like a command or pipeline launched by a shell os.setpgrp() # take controlling terminal and set up pty IO stdin_fd = os.open(tty_name, os.O_RDWR) os.dup2(stdin_fd, sys.stdin.fileno()) os.dup2(stdout_fd, sys.stdout.fileno()) os.dup2(stderr_fd, sys.stderr.fileno()) os.close(stdin_fd) if kwargs.get("debug"): sys.stderr.write( "minion: stdin.isatty(): %s\n" % sys.stdin.isatty()) # tell the parent that we're really running if kwargs.get("debug"): sys.stderr.write("minion: ready!\n") ready.value = True try: minion_function(**kwargs) except BaseException: traceback.print_exc() @staticmethod def _set_up_and_run_controller_function( controller_function, minion_function, controller_timeout, sleep_time, **kwargs): """Set up a pty, spawn a minion process, execute controller_function. Handles the mechanics of setting up a PTY, then calls ``controller_function``. """ os.setsid() # new session; this process is the controller controller_fd, minion_fd = os.openpty() pty_name = os.ttyname(minion_fd) # take controlling terminal pty_fd = os.open(pty_name, os.O_RDWR) os.close(pty_fd) ready = multiprocessing.Value('i', False) minion_process = multiprocessing.Process( target=PseudoShell._set_up_and_run_minion_function, args=(pty_name, sys.stdout.fileno(), sys.stderr.fileno(), ready, minion_function), kwargs=kwargs, ) minion_process.start() # wait for subprocess to be running and connected. while not ready.value: time.sleep(1e-5) pass if kwargs.get("debug"): sys.stderr.write("pid: %d\n" % os.getpid()) sys.stderr.write("pgid: %d\n" % os.getpgrp()) sys.stderr.write("sid: %d\n" % os.getsid(0)) sys.stderr.write("tcgetpgrp: %d\n" % os.tcgetpgrp(controller_fd)) sys.stderr.write("\n") minion_pgid = os.getpgid(minion_process.pid) sys.stderr.write("minion pid: %d\n" % minion_process.pid) sys.stderr.write("minion pgid: %d\n" % minion_pgid) sys.stderr.write( "minion sid: %d\n" % os.getsid(minion_process.pid)) sys.stderr.write("\n") sys.stderr.flush() # set up controller to ignore SIGTSTP, like a shell signal.signal(signal.SIGTSTP, signal.SIG_IGN) # call the controller function once the minion is ready try: controller = ProcessController( minion_process.pid, controller_fd, debug=kwargs.get("debug")) controller.timeout = controller_timeout controller.sleep_time = sleep_time error = controller_function(minion_process, controller, **kwargs) except BaseException: error = 1 traceback.print_exc() minion_process.join() # return whether either the parent or minion failed return error or minion_process.exitcode
the-stack_0_15128
# MIT License # # Copyright (c) 2018 Mahmoud Aslan # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from tensorflow.python.ops import math_ops def cyclic_learning_rate(global_step, learning_rate=0.01, max_lr=0.1, step_size=20., gamma=0.99994, mode='triangular', name=None): """Applies cyclic learning rate (CLR). From the paper: Smith, Leslie N. "Cyclical learning rates for training neural networks." 2017. [https://arxiv.org/pdf/1506.01186.pdf] This method lets the learning rate cyclically vary between reasonable boundary values achieving improved classification accuracy and often in fewer iterations. This code varies the learning rate linearly between the minimum (learning_rate) and the maximum (max_lr). It returns the cyclic learning rate. It is computed as: ```python cycle = floor( 1 + global_step / ( 2 * step_size ) ) x = abs( global_step / step_size – 2 * cycle + 1 ) clr = learning_rate + ( max_lr – learning_rate ) * max( 0 , 1 - x ) ``` Polices: 'triangular': Default, linearly increasing then linearly decreasing the learning rate at each cycle. 'triangular2': The same as the triangular policy except the learning rate difference is cut in half at the end of each cycle. This means the learning rate difference drops after each cycle. 'exp_range': The learning rate varies between the minimum and maximum boundaries and each boundary value declines by an exponential factor of: gamma^global_step. Example: 'triangular2' mode cyclic learning rate. '''python ... global_step = tf.Variable(0, trainable=False) optimizer = tf.train.AdamOptimizer(learning_rate= clr.cyclic_learning_rate(global_step=global_step, mode='triangular2')) train_op = optimizer.minimize(loss_op, global_step=global_step) ... with tf.Session() as sess: sess.run(init) for step in range(1, num_steps+1): assign_op = global_step.assign(step) sess.run(assign_op) ... ''' Args: global_step: A scalar `int32` or `int64` `Tensor` or a Python number. Global step to use for the cyclic computation. Must not be negative. learning_rate: A scalar `float32` or `float64` `Tensor` or a Python number. The initial learning rate which is the lower bound of the cycle (default = 0.1). max_lr: A scalar. The maximum learning rate boundary. step_size: A scalar. The number of iterations in half a cycle. The paper suggests step_size = 2-8 x training iterations in epoch. gamma: constant in 'exp_range' mode: gamma**(global_step) mode: one of {triangular, triangular2, exp_range}. Default 'triangular'. Values correspond to policies detailed above. name: String. Optional name of the operation. Defaults to 'CyclicLearningRate'. Returns: A scalar `Tensor` of the same type as `learning_rate`. The cyclic learning rate. Raises: ValueError: if `global_step` is not supplied. @compatibility(eager) When eager execution is enabled, this function returns a function which in turn returns the decayed learning rate Tensor. This can be useful for changing the learning rate value across different invocations of optimizer functions. @end_compatibility """ if global_step is None: raise ValueError("global_step is required for cyclic_learning_rate.") with ops.name_scope(name, "CyclicLearningRate", [learning_rate, global_step]) as name: learning_rate = ops.convert_to_tensor(learning_rate, name="learning_rate") dtype = learning_rate.dtype global_step = math_ops.cast(global_step, dtype) step_size = math_ops.cast(step_size, dtype) def cyclic_lr(): """Helper to recompute learning rate; most helpful in eager-mode.""" # computing: cycle = floor( 1 + global_step / ( 2 * step_size ) ) double_step = math_ops.multiply(2., step_size) global_div_double_step = math_ops.divide(global_step, double_step) cycle = math_ops.floor(math_ops.add(1., global_div_double_step)) # computing: x = abs( global_step / step_size – 2 * cycle + 1 ) double_cycle = math_ops.multiply(2., cycle) global_div_step = math_ops.divide(global_step, step_size) tmp = math_ops.subtract(global_div_step, double_cycle) x = math_ops.abs(math_ops.add(1., tmp)) # computing: clr = learning_rate + ( max_lr – learning_rate ) * max( 0, 1 - x ) a1 = math_ops.maximum(0., math_ops.subtract(1., x)) a2 = math_ops.subtract(max_lr, learning_rate) clr = math_ops.multiply(a1, a2) if mode == 'triangular2': clr = math_ops.divide(clr, math_ops.cast(math_ops.pow(2, math_ops.cast( cycle - 1, tf.int32)), tf.float32)) if mode == 'exp_range': clr = math_ops.multiply(math_ops.pow(gamma, global_step), clr) return math_ops.add(clr, learning_rate, name=name) if not context.executing_eagerly(): cyclic_lr = cyclic_lr() return cyclic_lr
the-stack_0_15129
from unittest import TestCase from mock import Mock, patch from data import FlixsterMovieDetails, Actor, RottenTomatoesMovieDetails, Movie from data.parsers.movies import get_flixster_movie_details, get_rotten_tomatoes_movie_details, parse_actors, \ parse_release_date, parse_trailer_url, parse_flixster_movie_details, parse_actor, parse_rotten_tomatoes_movie_details, \ parse_movie class TestGetFlixsterDetails(TestCase): def test_returns_none_for_missing_details(self): self.assertIsNone(get_flixster_movie_details({})) @patch("data.parsers.movies.parse_flixster_movie_details") def test_returns_parsed_flixster_movie_details(self, mocked_details_parser): details = "details" mocked_details_parser.return_value = details self.assertEqual(details, get_flixster_movie_details({"flixster": "foo"})) class TestGetRottenTomatoesMovieDetails(TestCase): def test_returns_none_for_missing_details(self): self.assertIsNone(get_rotten_tomatoes_movie_details({})) @patch("data.parsers.movies.parse_rotten_tomatoes_movie_details") def test_returns_parsed_rotten_tomatoes_movie_details(self, mocked_details_parser): details = "details" mocked_details_parser.return_value = details self.assertEqual(details, get_rotten_tomatoes_movie_details({"rottenTomatoes": "foo"})) class TestGetReleaseDate(TestCase): def test_returns_none_for_empty_release_date(self): self.assertIsNone(parse_release_date("")) @patch("dateutil.parser.parse") def test_returns_parsed_date(self, mocked_date_parser): parsed_date = "parsed date" mocked_date_parser.return_value = parsed_date self.assertEqual(parsed_date, parse_release_date("foo")) class TestGetActors(TestCase): @patch("data.parsers.movies.parse_actor") def test_returns_actors(self, mocked_actors_parser): parsed_actor = "parsed actor" mocked_actors_parser.return_value = parsed_actor expected = [parsed_actor, parsed_actor] self.assertEqual(expected, parse_actors([1, 2])) class TestGetTrailerUrl(TestCase): def test_returns_none_for_empty_hd_trailer(self): self.assertIsNone(parse_trailer_url({})) def test_returns_hd_trailer(self): self.assertEqual("foo", parse_trailer_url({"hd": "foo"})) class TestParseFlixsterMovieDetails(TestCase): average = "average" not_interested_count = "not interested count" likability_score = "likability score" scores_count = "scores count" want_to_see_count = "want to see count" popcorn_score = "popcorn score" movie_details = { "average": average, "numNotInterested": not_interested_count, "likeability": likability_score, "numScores": scores_count, "numWantToSee": want_to_see_count, "popcornScore": popcorn_score } expected = FlixsterMovieDetails(average_rating=average, not_interested_count=not_interested_count, likability_score=likability_score, scores_count=scores_count, want_to_see_count=want_to_see_count, popcorn_score=popcorn_score) def test_parses_successfully(self): self.assertEqual(self.expected, parse_flixster_movie_details(self.movie_details)) class TestParseActor(TestCase): id = "id" name = "name" url = "url" actor_details = { "id": id, "name": name, "url": url } expected = Actor(fid=id, name=name, url=url) def test_parses_successfully(self): self.assertEqual(self.expected, parse_actor(self.actor_details)) class TestParseRottenTomatoesMovieDetails(TestCase): rating = "rating" is_certified_fresh = "certified fresh" consensus = "consensus" movie_details = { "rating": rating, "certifiedFresh": is_certified_fresh, "consensus": consensus } expected = RottenTomatoesMovieDetails(rating=rating, is_certified_fresh=is_certified_fresh, consensus=consensus) @patch("data.parsers.movies.clean_html") def test_parses_successfully(self, mocked_html_cleaner): mocked_html_cleaner.return_value = self.consensus self.assertEqual(self.expected, parse_rotten_tomatoes_movie_details(self.movie_details)) class TestParseMovie(TestCase): id = "id" release_date = "release date" title = "title" mpaa_rating = "mpaa rating" run_time = "run time" is_live = "is live" is_opening = "is opening" trailer_url = "trailer url" actors = "actors" flixster_movie_details = "flixster movie details" rotten_tomatoes_movie_details = "rotten tomatoes movie details" reviews = "reviews" movie_details = { "id": id, "releaseDate": release_date, "title": title, "mpaa": mpaa_rating, "runningTime": run_time, "isLive": is_live, "isOpening": is_opening, "trailer": trailer_url, "actors": actors, "reviews": reviews } @patch("data.parsers.movies.parse_release_date") @patch("data.parsers.movies.parse_trailer_url") @patch("data.parsers.movies.parse_actors") @patch("data.parsers.movies.get_flixster_movie_details") @patch("data.parsers.movies.get_rotten_tomatoes_movie_details") def test_parses_successfully(self, mocked_rotten_tomatoes_movie_details, mocked_flixster_movie_details, mocked_actors, mocked_trailer_url, mocked_release_date): rotten_tomatoes_movie_details = "mocked rotten tomatoes movie details" flixster_movie_details = "mocked flixster movie details" actors = "mocked actors" trailer_url = "mocked trailer url" release_date = "mocked release date" mocked_rotten_tomatoes_movie_details.return_value = rotten_tomatoes_movie_details mocked_flixster_movie_details.return_value = flixster_movie_details mocked_actors.return_value = actors mocked_trailer_url.return_value = trailer_url mocked_release_date.return_value = release_date expected = Movie(fid=self.id, release_date=release_date, title=self.title, mpaa_rating=self.mpaa_rating, run_time=self.run_time, is_live=self.is_live, is_opening=self.is_opening, trailer_url=trailer_url, actors=actors, flixster_movie_details=flixster_movie_details, rotten_tomatoes_movie_details=rotten_tomatoes_movie_details) self.assertEqual(expected, parse_movie(self.movie_details))
the-stack_0_15130
# -*- coding=utf -*- from __future__ import absolute_import from cubes.browser import * from cubes.errors import * from cubes.model import * from .store import DEFAULT_TIME_HIERARCHY from .utils import * from collections import defaultdict from datetime import datetime import pytz class _MixpanelResponseAggregator(object): def __init__(self, browser, responses, aggregate_names, drilldown, split, actual_time_level): """Aggregator for multiple mixpanel responses (multiple dimensions) with drill-down post-aggregation. Arguments: * `browser` – owning browser * `reposnes` – mixpanel responses by `measure_names` * `aggregate_names` – list of collected measures * `drilldown` – a `Drilldown` object from the browser aggregation query * `split` - a split Cell object from the browser aggregation query Object attributes: * `aggregate_names` – list of measure names from the response * `aggregate_data` – a dictionary where keys are measure names and values are actual data points. * `time_cells` – an ordered dictionary of collected cells from the response. Key is time path, value is cell contents without the time dimension. """ self.browser = browser self.logger = browser.logger self.drilldown = drilldown self.aggregate_names = aggregate_names self.actual_time_level = actual_time_level # Extract the data self.aggregate_data = {} for aggregate in aggregate_names: self.aggregate_data = responses[aggregate]["data"]["values"] # Get time drilldown levels, if we are drilling through time time_drilldowns = drilldown.drilldown_for_dimension("time") if time_drilldowns: time_drilldown = time_drilldowns[0] self.last_time_level = str(time_drilldown.levels[-1]) self.time_levels = ["time."+str(l) for l in time_drilldown.levels] self.time_hierarchy = str(time_drilldown.hierarchy) else: time_drilldown = None self.last_time_level = None self.time_levels = [] self.time_hierarchy = DEFAULT_TIME_HIERARCHY self.drilldown_on = None for obj in drilldown: if obj.dimension.name != "time": # this is a DrilldownItem object. represent it as 'dim.level' or just 'dim' if flat self.drilldown_on = ( "%s.%s" % (obj.dimension.name, obj.levels[-1].name) ) if ( not obj.dimension.is_flat ) else obj.dimension.name self.drilldown_on_value_func = lambda x: x if self.drilldown_on is None and split: self.drilldown_on = SPLIT_DIMENSION_NAME self.drilldown_on_value_func = lambda x: True if x == "true" else False # Time-keyed cells: # (time_path, group) -> dictionary self.time_cells = {} self.cells = [] # Do it: # # Collect, Map&Reduce, Order # ========================== # # Process the response. The methods are operating on the instance # variable `time_cells` self._collect_cells() # TODO: handle week if actual_time_level != self.last_time_level: self._reduce_cells() self._finalize_cells() # Result is stored in the `cells` instance variable. def _collect_cells(self): for aggregate in self.aggregate_names: self._collect_aggregate_cells(aggregate) def _collect_aggregate_cells(self, aggregate): """Collects the cells from the response in a time series dictionary `time_cells` where keys are tuples: `(time_path, group)`. `group` is drill-down key value for the cell, such as `New York` for `city`.""" # Note: For no-drilldown this would be only one pass and group will be # a cube name # TODO: To add multiple drill-down dimensions in the future, add them # to the `group` part of the key tuple for group_key, group_series in self.aggregate_data.items(): for time_key, value in group_series.items(): time_path = time_to_path(time_key, self.last_time_level, self.time_hierarchy) key = (time_path, group_key) # self.logger.debug("adding cell %s" % (key, )) cell = self.time_cells.setdefault(key, {}) cell[aggregate] = value # FIXME: do this only on drilldown if self.drilldown_on: cell[self.drilldown_on] = group_key def _reduce_cells(self): """Reduce the cells according to the time dimensions.""" def reduce_cell(result, cell): # We assume only _sum aggergation # All measures should be prepared so we can to this for aggregate in self.aggregate_names: result[aggregate] = result.get(aggregate, 0) + \ cell.get(aggregate, 0) return result # 1. Map cells to reduced time path # reduced_map = defaultdict(list) reduced_len = len(self.time_levels) for key, cell in self.time_cells.items(): time_path = key[0] reduced_path = time_path[0:reduced_len] reduced_key = (reduced_path, key[1]) # self.logger.debug("reducing %s -> %s" % (key, reduced_key)) reduced_map[reduced_key].append(cell) self.browser.logger.debug("response cell count: %s reduced to: %s" % (len(self.time_cells), len(reduced_map))) # 2. Reduce the cells # # See the function reduce_cell() above for aggregation: # reduced_cells = {} for key, cells in reduced_map.items(): # self.browser.logger.debug("Reducing: %s -> %s" % (key, cells)) cell = reduce(reduce_cell, cells, {}) reduced_cells[key] = cell self.time_cells = reduced_cells def _finalize_cells(self): """Orders the `time_cells` according to the time and "the other" dimension and puts the result into the `cells` instance variable. This method also adds the time dimension keys.""" # Order by time (as path) and then drilldown dimension value (group) # The key[0] is a list of paths: time, another_drilldown order = lambda left, right: cmp(left[0], right[0]) cells = self.time_cells.items() cells.sort(order) # compute the current datetime, convert to path current_time_path = time_to_path( pytz.timezone('UTC').localize(datetime.utcnow()).astimezone(self.browser.timezone).strftime("%Y-%m-%d %H:00:00"), self.last_time_level, self.time_hierarchy) self.cells = [] for key, cell in cells: # If we are aggregating at finer granularity than "all": time_key = key[0] if time_key: # if time_key ahead of current time path, discard if time_key > current_time_path: continue cell.update(zip(self.time_levels, time_key)) # append the drilldown_on attribute ref if self.drilldown_on: cell[self.drilldown_on] = self.drilldown_on_value_func(key[1]) self.cells.append(cell)
the-stack_0_15131
# -*- coding: utf-8 -*- """Test that models can be executed.""" import importlib import os import unittest from typing import Optional import numpy import torch import pykeen.experiments import pykeen.models from pykeen.models import ( ERModel, EntityEmbeddingModel, EntityRelationEmbeddingModel, Model, MultimodalModel, _MODELS, _NewAbstractModel, _OldAbstractModel, model_resolver, ) from pykeen.models.predict import get_novelty_mask, predict from pykeen.models.unimodal.trans_d import _project_entity from pykeen.nn import Embedding from pykeen.utils import all_in_bounds, clamp_norm, extend_batch from tests import cases from tests.constants import EPSILON SKIP_MODULES = { Model.__name__, _OldAbstractModel.__name__, _NewAbstractModel.__name__, 'DummyModel', MultimodalModel.__name__, EntityEmbeddingModel.__name__, EntityRelationEmbeddingModel.__name__, ERModel.__name__, 'MockModel', 'SimpleInteractionModel', } for cls in MultimodalModel.__subclasses__(): SKIP_MODULES.add(cls.__name__) class TestComplex(cases.ModelTestCase): """Test the ComplEx model.""" model_cls = pykeen.models.ComplEx class TestConvE(cases.ModelTestCase): """Test the ConvE model.""" model_cls = pykeen.models.ConvE embedding_dim = 12 create_inverse_triples = True model_kwargs = { 'output_channels': 2, 'embedding_height': 3, 'embedding_width': 4, } # 3x batch norm: bias + scale --> 6 # entity specific bias --> 1 # ================================== # 7 num_constant_init = 7 class TestConvKB(cases.ModelTestCase): """Test the ConvKB model.""" model_cls = pykeen.models.ConvKB model_kwargs = { 'num_filters': 2, } # two bias terms, one conv-filter num_constant_init = 3 class TestDistMult(cases.ModelTestCase): """Test the DistMult model.""" model_cls = pykeen.models.DistMult def _check_constraints(self): """Check model constraints. Entity embeddings have to have unit L2 norm. """ entity_norms = self.model.entity_embeddings(indices=None).norm(p=2, dim=-1) assert torch.allclose(entity_norms, torch.ones_like(entity_norms)) def _test_score_all_triples(self, k: Optional[int], batch_size: int = 16): """Test score_all_triples. :param k: The number of triples to return. Set to None, to keep all. :param batch_size: The batch size to use for calculating scores. """ top_triples, top_scores = predict(model=self.model, batch_size=batch_size, k=k) # check type assert torch.is_tensor(top_triples) assert torch.is_tensor(top_scores) assert top_triples.dtype == torch.long assert top_scores.dtype == torch.float32 # check shape actual_k, n_cols = top_triples.shape assert n_cols == 3 if k is None: assert actual_k == self.factory.num_entities ** 2 * self.factory.num_relations else: assert actual_k == min(k, self.factory.num_triples) assert top_scores.shape == (actual_k,) # check ID ranges assert (top_triples >= 0).all() assert top_triples[:, [0, 2]].max() < self.model.num_entities assert top_triples[:, 1].max() < self.model.num_relations def test_score_all_triples(self): """Test score_all_triples with a large batch size.""" # this is only done in one of the models self._test_score_all_triples(k=15, batch_size=16) def test_score_all_triples_singleton_batch(self): """Test score_all_triples with a batch size of 1.""" self._test_score_all_triples(k=15, batch_size=1) def test_score_all_triples_large_batch(self): """Test score_all_triples with a batch size larger than k.""" self._test_score_all_triples(k=10, batch_size=16) def test_score_all_triples_keep_all(self): """Test score_all_triples with k=None.""" # this is only done in one of the models self._test_score_all_triples(k=None) class TestERMLP(cases.ModelTestCase): """Test the ERMLP model.""" model_cls = pykeen.models.ERMLP model_kwargs = { 'hidden_dim': 4, } # Two linear layer biases num_constant_init = 2 class TestERMLPE(cases.ModelTestCase): """Test the extended ERMLP model.""" model_cls = pykeen.models.ERMLPE model_kwargs = { 'hidden_dim': 4, } # Two BN layers, bias & scale num_constant_init = 4 class TestHolE(cases.ModelTestCase): """Test the HolE model.""" model_cls = pykeen.models.HolE def _check_constraints(self): """Check model constraints. Entity embeddings have to have at most unit L2 norm. """ assert all_in_bounds(self.model.entity_embeddings(indices=None).norm(p=2, dim=-1), high=1., a_tol=EPSILON) class TestKG2EWithKL(cases.BaseKG2ETest): """Test the KG2E model with KL similarity.""" model_kwargs = { 'dist_similarity': 'KL', } class TestMuRE(cases.ModelTestCase): """Test the MuRE model.""" model_cls = pykeen.models.MuRE num_constant_init = 2 # biases class TestKG2EWithEL(cases.BaseKG2ETest): """Test the KG2E model with EL similarity.""" model_kwargs = { 'dist_similarity': 'EL', } class TestNTNLowMemory(cases.BaseNTNTest): """Test the NTN model with automatic memory optimization.""" model_kwargs = { 'num_slices': 2, } training_loop_kwargs = { 'automatic_memory_optimization': True, } class TestNTNHighMemory(cases.BaseNTNTest): """Test the NTN model without automatic memory optimization.""" model_kwargs = { 'num_slices': 2, } training_loop_kwargs = { 'automatic_memory_optimization': False, } class TestProjE(cases.ModelTestCase): """Test the ProjE model.""" model_cls = pykeen.models.ProjE class TestRESCAL(cases.ModelTestCase): """Test the RESCAL model.""" model_cls = pykeen.models.RESCAL class TestRGCNBasis(cases.BaseRGCNTest): """Test the R-GCN model.""" model_kwargs = { 'interaction': "transe", 'interaction_kwargs': dict(p=1), 'decomposition': "bases", "decomposition_kwargs": dict( num_bases=3, ), } #: one bias per layer num_constant_init = 2 class TestRGCNBlock(cases.BaseRGCNTest): """Test the R-GCN model with block decomposition.""" embedding_dim = 6 model_kwargs = { 'interaction': "distmult", 'decomposition': "block", "decomposition_kwargs": dict( num_blocks=3, ), 'edge_weighting': "symmetric", 'use_batch_norm': True, } #: (scale & bias for BN) * layers num_constant_init = 4 class TestRotatE(cases.ModelTestCase): """Test the RotatE model.""" model_cls = pykeen.models.RotatE def _check_constraints(self): """Check model constraints. Relation embeddings' entries have to have absolute value 1 (i.e. represent a rotation in complex plane) """ relation_abs = ( self.model .relation_embeddings(indices=None) .view(self.factory.num_relations, -1, 2) .norm(p=2, dim=-1) ) assert torch.allclose(relation_abs, torch.ones_like(relation_abs)) class TestSimplE(cases.ModelTestCase): """Test the SimplE model.""" model_cls = pykeen.models.SimplE class _BaseTestSE(cases.ModelTestCase): """Test the Structured Embedding model.""" model_cls = pykeen.models.StructuredEmbedding def _check_constraints(self): """Check model constraints. Entity embeddings have to have unit L2 norm. """ norms = self.model.entity_embeddings(indices=None).norm(p=2, dim=-1) assert torch.allclose(norms, torch.ones_like(norms)) class TestSELowMemory(_BaseTestSE): """Tests SE with low memory.""" training_loop_kwargs = { 'automatic_memory_optimization': True, } class TestSEHighMemory(_BaseTestSE): """Tests SE with low memory.""" training_loop_kwargs = { 'automatic_memory_optimization': False, } class TestTransD(cases.DistanceModelTestCase): """Test the TransD model.""" model_cls = pykeen.models.TransD model_kwargs = { 'relation_dim': 4, } def _check_constraints(self): """Check model constraints. Entity and relation embeddings have to have at most unit L2 norm. """ for emb in (self.model.entity_embeddings, self.model.relation_embeddings): assert all_in_bounds(emb(indices=None).norm(p=2, dim=-1), high=1., a_tol=EPSILON) def test_score_hrt_manual(self): """Manually test interaction function of TransD.""" # entity embeddings weights = torch.as_tensor(data=[[2., 2.], [4., 4.]], dtype=torch.float) entity_embeddings = Embedding( num_embeddings=2, embedding_dim=2, ) entity_embeddings._embeddings.weight.data.copy_(weights) self.model.entity_embeddings = entity_embeddings projection_weights = torch.as_tensor(data=[[3., 3.], [2., 2.]], dtype=torch.float) entity_projection_embeddings = Embedding( num_embeddings=2, embedding_dim=2, ) entity_projection_embeddings._embeddings.weight.data.copy_(projection_weights) self.model.entity_projections = entity_projection_embeddings # relation embeddings relation_weights = torch.as_tensor(data=[[4.], [4.]], dtype=torch.float) relation_embeddings = Embedding( num_embeddings=2, embedding_dim=1, ) relation_embeddings._embeddings.weight.data.copy_(relation_weights) self.model.relation_embeddings = relation_embeddings relation_projection_weights = torch.as_tensor(data=[[5.], [3.]], dtype=torch.float) relation_projection_embeddings = Embedding( num_embeddings=2, embedding_dim=1, ) relation_projection_embeddings._embeddings.weight.data.copy_(relation_projection_weights) self.model.relation_projections = relation_projection_embeddings # Compute Scores batch = torch.as_tensor(data=[[0, 0, 0], [0, 0, 1]], dtype=torch.long) scores = self.model.score_hrt(hrt_batch=batch) self.assertEqual(scores.shape[0], 2) self.assertEqual(scores.shape[1], 1) first_score = scores[0].item() self.assertAlmostEqual(first_score, -16, delta=0.01) # Use different dimension for relation embedding: relation_dim > entity_dim # relation embeddings relation_weights = torch.as_tensor(data=[[3., 3., 3.], [3., 3., 3.]], dtype=torch.float) relation_embeddings = Embedding( num_embeddings=2, embedding_dim=3, ) relation_embeddings._embeddings.weight.data.copy_(relation_weights) self.model.relation_embeddings = relation_embeddings relation_projection_weights = torch.as_tensor(data=[[4., 4., 4.], [4., 4., 4.]], dtype=torch.float) relation_projection_embeddings = Embedding( num_embeddings=2, embedding_dim=3, ) relation_projection_embeddings._embeddings.weight.data.copy_(relation_projection_weights) self.model.relation_projections = relation_projection_embeddings # Compute Scores batch = torch.as_tensor(data=[[0, 0, 0]], dtype=torch.long) scores = self.model.score_hrt(hrt_batch=batch) self.assertAlmostEqual(scores.item(), -27, delta=0.01) batch = torch.as_tensor(data=[[0, 0, 0], [0, 0, 0]], dtype=torch.long) scores = self.model.score_hrt(hrt_batch=batch) self.assertEqual(scores.shape[0], 2) self.assertEqual(scores.shape[1], 1) first_score = scores[0].item() second_score = scores[1].item() self.assertAlmostEqual(first_score, -27, delta=0.01) self.assertAlmostEqual(second_score, -27, delta=0.01) # Use different dimension for relation embedding: relation_dim < entity_dim # entity embeddings weights = torch.as_tensor(data=[[1., 1., 1.], [1., 1., 1.]], dtype=torch.float) entity_embeddings = Embedding( num_embeddings=2, embedding_dim=3, ) entity_embeddings._embeddings.weight.data.copy_(weights) self.model.entity_embeddings = entity_embeddings projection_weights = torch.as_tensor(data=[[2., 2., 2.], [2., 2., 2.]], dtype=torch.float) entity_projection_embeddings = Embedding( num_embeddings=2, embedding_dim=3, ) entity_projection_embeddings._embeddings.weight.data.copy_(projection_weights) self.model.entity_projections = entity_projection_embeddings # relation embeddings relation_weights = torch.as_tensor(data=[[3., 3.], [3., 3.]], dtype=torch.float) relation_embeddings = Embedding( num_embeddings=2, embedding_dim=2, ) relation_embeddings._embeddings.weight.data.copy_(relation_weights) self.model.relation_embeddings = relation_embeddings relation_projection_weights = torch.as_tensor(data=[[4., 4.], [4., 4.]], dtype=torch.float) relation_projection_embeddings = Embedding( num_embeddings=2, embedding_dim=2, ) relation_projection_embeddings._embeddings.weight.data.copy_(relation_projection_weights) self.model.relation_projections = relation_projection_embeddings # Compute Scores batch = torch.as_tensor(data=[[0, 0, 0], [0, 0, 0]], dtype=torch.long) scores = self.model.score_hrt(hrt_batch=batch) self.assertEqual(scores.shape[0], 2) self.assertEqual(scores.shape[1], 1) first_score = scores[0].item() second_score = scores[1].item() self.assertAlmostEqual(first_score, -18, delta=0.01) self.assertAlmostEqual(second_score, -18, delta=0.01) def test_project_entity(self): """Test _project_entity.""" # random entity embeddings & projections e = torch.rand(1, self.model.num_entities, self.embedding_dim, generator=self.generator) e = clamp_norm(e, maxnorm=1, p=2, dim=-1) e_p = torch.rand(1, self.model.num_entities, self.embedding_dim, generator=self.generator) # random relation embeddings & projections r = torch.rand(self.batch_size, 1, self.model.relation_dim, generator=self.generator) r = clamp_norm(r, maxnorm=1, p=2, dim=-1) r_p = torch.rand(self.batch_size, 1, self.model.relation_dim, generator=self.generator) # project e_bot = _project_entity(e=e, e_p=e_p, r=r, r_p=r_p) # check shape: assert e_bot.shape == (self.batch_size, self.model.num_entities, self.model.relation_dim) # check normalization assert (torch.norm(e_bot, dim=-1, p=2) <= 1.0 + 1.0e-06).all() class TestTransE(cases.DistanceModelTestCase): """Test the TransE model.""" model_cls = pykeen.models.TransE def _check_constraints(self): """Check model constraints. Entity embeddings have to have unit L2 norm. """ entity_norms = self.model.entity_embeddings(indices=None).norm(p=2, dim=-1) assert torch.allclose(entity_norms, torch.ones_like(entity_norms)) class TestTransH(cases.DistanceModelTestCase): """Test the TransH model.""" model_cls = pykeen.models.TransH def _check_constraints(self): """Check model constraints. Entity embeddings have to have unit L2 norm. """ entity_norms = self.model.normal_vector_embeddings(indices=None).norm(p=2, dim=-1) assert torch.allclose(entity_norms, torch.ones_like(entity_norms)) class TestTransR(cases.DistanceModelTestCase): """Test the TransR model.""" model_cls = pykeen.models.TransR model_kwargs = { 'relation_dim': 4, } def test_score_hrt_manual(self): """Manually test interaction function of TransR.""" # entity embeddings weights = torch.as_tensor(data=[[2., 2.], [3., 3.]], dtype=torch.float) entity_embeddings = Embedding( num_embeddings=2, embedding_dim=2, ) entity_embeddings._embeddings.weight.data.copy_(weights) self.model.entity_embeddings = entity_embeddings # relation embeddings relation_weights = torch.as_tensor(data=[[4., 4], [5., 5.]], dtype=torch.float) relation_embeddings = Embedding( num_embeddings=2, embedding_dim=2, ) relation_embeddings._embeddings.weight.data.copy_(relation_weights) self.model.relation_embeddings = relation_embeddings relation_projection_weights = torch.as_tensor(data=[[5., 5., 6., 6.], [7., 7., 8., 8.]], dtype=torch.float) relation_projection_embeddings = Embedding( num_embeddings=2, embedding_dim=4, ) relation_projection_embeddings._embeddings.weight.data.copy_(relation_projection_weights) self.model.relation_projections = relation_projection_embeddings # Compute Scores batch = torch.as_tensor(data=[[0, 0, 0], [0, 0, 1]], dtype=torch.long) scores = self.model.score_hrt(hrt_batch=batch) self.assertEqual(scores.shape[0], 2) self.assertEqual(scores.shape[1], 1) first_score = scores[0].item() # second_score = scores[1].item() self.assertAlmostEqual(first_score, -32, delta=0.01) def _check_constraints(self): """Check model constraints. Entity and relation embeddings have to have at most unit L2 norm. """ for emb in (self.model.entity_embeddings, self.model.relation_embeddings): assert all_in_bounds(emb(indices=None).norm(p=2, dim=-1), high=1., a_tol=1.0e-06) class TestTuckEr(cases.ModelTestCase): """Test the TuckEr model.""" model_cls = pykeen.models.TuckER model_kwargs = { 'relation_dim': 4, } #: 2xBN (bias & scale) num_constant_init = 4 class TestUM(cases.DistanceModelTestCase): """Test the Unstructured Model.""" model_cls = pykeen.models.UnstructuredModel class TestTesting(unittest.TestCase): """Yo dawg, I heard you like testing, so I wrote a test to test the tests so you can test while you're testing.""" def test_documentation(self): """Test all models have appropriate structured documentation.""" for name, model_cls in sorted(model_resolver.lookup_dict.items()): with self.subTest(name=name): try: docdata = model_cls.__docdata__ except AttributeError: self.fail('missing __docdata__') self.assertIn('citation', docdata) self.assertIn('author', docdata['citation']) self.assertIn('link', docdata['citation']) self.assertIn('year', docdata['citation']) def test_testing(self): """Check that there's a test for all models. For now, this is excluding multimodel models. Not sure how to test those yet. """ model_names = { model_cls.__name__ for model_cls in model_resolver.lookup_dict.values() if not issubclass(model_cls, ERModel) } model_names -= SKIP_MODULES tested_model_names = { value.model_cls.__name__ for name, value in globals().items() if ( isinstance(value, type) and issubclass(value, cases.ModelTestCase) and not name.startswith('_') and not issubclass(value.model_cls, (ERModel, MultimodalModel)) ) } tested_model_names -= SKIP_MODULES self.assertEqual(model_names, tested_model_names, msg='Some models have not been tested') def test_importing(self): """Test that all models are available from :mod:`pykeen.models`.""" models_path = os.path.abspath(os.path.dirname(pykeen.models.__file__)) model_names = set() for directory, _, filenames in os.walk(models_path): for filename in filenames: if not filename.endswith('.py'): continue path = os.path.join(directory, filename) relpath = os.path.relpath(path, models_path) if relpath.endswith('__init__.py'): continue import_path = 'pykeen.models.' + relpath[:-len('.py')].replace(os.sep, '.') module = importlib.import_module(import_path) for name in dir(module): value = getattr(module, name) if ( isinstance(value, type) and issubclass(value, Model) ): model_names.add(value.__name__) star_model_names = _remove_non_models(set(pykeen.models.__all__) - SKIP_MODULES) model_names = _remove_non_models(model_names - SKIP_MODULES) self.assertEqual(model_names, star_model_names, msg='Forgot to add some imports') def test_models_have_experiments(self): """Test that each model has an experiment folder in :mod:`pykeen.experiments`.""" experiments_path = os.path.abspath(os.path.dirname(pykeen.experiments.__file__)) experiment_blacklist = { 'DistMultLiteral', # FIXME 'ComplExLiteral', # FIXME 'UnstructuredModel', 'StructuredEmbedding', 'RESCAL', 'NTN', 'ERMLP', 'ProjE', # FIXME 'ERMLPE', # FIXME 'PairRE', } model_names = _remove_non_models(set(pykeen.models.__all__) - SKIP_MODULES - experiment_blacklist) for model in _remove_non_models(model_names): with self.subTest(model=model): self.assertTrue( os.path.exists(os.path.join(experiments_path, model.lower())), msg=f'Missing experimental configuration for {model}', ) def _remove_non_models(elements): rv = set() for element in elements: try: model_resolver.lookup(element) except ValueError: # invalid model name - aka not actually a model continue else: rv.add(element) return rv class TestModelUtilities(unittest.TestCase): """Extra tests for utility functions.""" def test_abstract(self): """Test that classes are checked as abstract properly.""" self.assertTrue(EntityEmbeddingModel._is_base_model) self.assertTrue(EntityRelationEmbeddingModel._is_base_model) self.assertTrue(MultimodalModel._is_base_model) for model_cls in _MODELS: self.assertFalse( model_cls._is_base_model, msg=f'{model_cls.__name__} should not be marked as a a base model', ) def test_get_novelty_mask(self): """Test `get_novelty_mask()`.""" num_triples = 7 base = torch.arange(num_triples) mapped_triples = torch.stack([base, base, 3 * base], dim=-1) query_ids = torch.randperm(num_triples).numpy()[:num_triples // 2] exp_novel = query_ids != 0 col = 2 other_col_ids = numpy.asarray([0, 0]) mask = get_novelty_mask( mapped_triples=mapped_triples, query_ids=query_ids, col=col, other_col_ids=other_col_ids, ) assert mask.shape == query_ids.shape assert (mask == exp_novel).all() def test_extend_batch(self): """Test `_extend_batch()`.""" batch = torch.tensor([[a, b] for a in range(3) for b in range(4)]).view(-1, 2) all_ids = [2 * i for i in range(5)] batch_size = batch.shape[0] num_choices = len(all_ids) for dim in range(3): h_ext_batch = extend_batch(batch=batch, all_ids=all_ids, dim=dim) # check shape assert h_ext_batch.shape == (batch_size * num_choices, 3) # check content actual_content = set(tuple(map(int, hrt)) for hrt in h_ext_batch) exp_content = set() for i in all_ids: for b in batch: c = list(map(int, b)) c.insert(dim, i) exp_content.add(tuple(c)) assert actual_content == exp_content
the-stack_0_15132
import grpc import hello_pb2 import hello_pb2_grpc def run(): # connect grpc server channel = grpc.insecure_channel('localhost:8089') # send grpc stub = hello_pb2_grpc.GreeterStub(channel) response = stub.SayHello(hello_pb2.Request(name = 'cpx')) print("Greeter client received: " + response.message) if __name__ == '__main__': run()
the-stack_0_15134
# -*- coding: utf-8 -*- from __future__ import absolute_import from datetime import datetime, timedelta from sentry.constants import STATUS_RESOLVED, STATUS_UNRESOLVED from sentry.models import GroupBookmark, GroupTagValue from sentry.search.django.backend import DjangoSearchBackend from sentry.testutils import TestCase class DjangoSearchBackendTest(TestCase): def create_backend(self): return DjangoSearchBackend() def setUp(self): self.backend = self.create_backend() self.project1 = self.create_project(name='foo') self.project2 = self.create_project(name='bar') self.group1 = self.create_group( project=self.project1, checksum='a' * 32, message='foo', times_seen=5, status=STATUS_UNRESOLVED, last_seen=datetime(2013, 8, 13, 3, 8, 24, 880386), first_seen=datetime(2013, 7, 13, 3, 8, 24, 880386), ) self.event1 = self.create_event( event_id='a' * 32, group=self.group1, tags={ 'server': 'example.com', 'env': 'production', } ) self.group2 = self.create_group( project=self.project1, checksum='b' * 32, message='bar', times_seen=10, status=STATUS_RESOLVED, last_seen=datetime(2013, 7, 14, 3, 8, 24, 880386), first_seen=datetime(2013, 7, 14, 3, 8, 24, 880386), ) self.event2 = self.create_event( event_id='b' * 32, group=self.group2, tags={ 'server': 'example.com', 'env': 'staging', 'url': 'http://example.com', } ) for key, value in self.event1.data['tags']: GroupTagValue.objects.create( group=self.group1, key=key, value=value, ) for key, value in self.event2.data['tags']: GroupTagValue.objects.create( group=self.group2, key=key, value=value, ) GroupBookmark.objects.create( user=self.user, group=self.group2, project=self.group2.project, ) self.backend.index(self.event1) self.backend.index(self.event2) def test_query(self): backend = self.create_backend() results = self.backend.query(self.project1, query='foo') assert len(results) == 1 assert results[0] == self.group1 results = self.backend.query(self.project1, query='bar') assert len(results) == 1 assert results[0] == self.group2 def test_sort(self): backend = self.create_backend() results = self.backend.query(self.project1, sort_by='date') assert len(results) == 2 assert results[0] == self.group1 assert results[1] == self.group2 results = self.backend.query(self.project1, sort_by='new') assert len(results) == 2 assert results[0] == self.group2 assert results[1] == self.group1 results = self.backend.query(self.project1, sort_by='freq') assert len(results) == 2 assert results[0] == self.group2 assert results[1] == self.group1 def test_status(self): results = self.backend.query(self.project1, status=STATUS_UNRESOLVED) assert len(results) == 1 assert results[0] == self.group1 results = self.backend.query(self.project1, status=STATUS_RESOLVED) assert len(results) == 1 assert results[0] == self.group2 def test_tags(self): results = self.backend.query(self.project1, tags={'env': 'staging'}) assert len(results) == 1 assert results[0] == self.group2 results = self.backend.query(self.project1, tags={'env': 'example.com'}) assert len(results) == 0 def test_bookmarked_by(self): results = self.backend.query(self.project1, bookmarked_by=self.user) assert len(results) == 1 assert results[0] == self.group2 def test_project(self): results = self.backend.query(self.project2) assert len(results) == 0 def test_limit_and_offset(self): results = self.backend.query(self.project1, limit=1) assert len(results) == 1 results = self.backend.query(self.project1, offset=1, limit=1) assert len(results) == 1 results = self.backend.query(self.project1, offset=2, limit=1) assert len(results) == 0 def test_first_seen_date_filter(self): backend = self.create_backend() results = self.backend.query( self.project1, date_from=self.group2.first_seen, date_filter='first_seen') assert len(results) == 1 assert results[0] == self.group2 results = self.backend.query( self.project1, date_to=self.group1.first_seen + timedelta(minutes=1), date_filter='first_seen') assert len(results) == 1 assert results[0] == self.group1 results = self.backend.query( self.project1, date_from=self.group1.first_seen, date_to=self.group1.first_seen + timedelta(minutes=1), date_filter='first_seen', ) assert len(results) == 1 assert results[0] == self.group1 def test_last_seen_date_filter(self): backend = self.create_backend() results = self.backend.query( self.project1, date_from=self.group1.last_seen, date_filter='last_seen') assert len(results) == 1 assert results[0] == self.group1 results = self.backend.query( self.project1, date_to=self.group1.last_seen - timedelta(minutes=1), date_filter='last_seen') assert len(results) == 1 assert results[0] == self.group2 results = self.backend.query( self.project1, date_from=self.group2.last_seen, date_to=self.group1.last_seen - timedelta(minutes=1), date_filter='last_seen', ) assert len(results) == 1 assert results[0] == self.group2
the-stack_0_15135
#!/usr/bin/env python """Unit test for the linux cmd parser.""" import os from grr.lib import flags from grr.lib import rdfvalue from grr.lib import test_lib from grr.parsers import linux_cmd_parser class LinuxCmdParserTest(test_lib.GRRBaseTest): """Test parsing of linux command output.""" def testDpkgCmdParser(self): """Ensure we can extract packages from dpkg output.""" parser = linux_cmd_parser.DpkgCmdParser() content = open(os.path.join(self.base_path, "dpkg.out")).read() out = list(parser.Parse("/usr/bin/dpkg", ["--list"], content, "", 0, 5, None)) self.assertEqual(len(out), 181) self.assertTrue(isinstance(out[1], rdfvalue.SoftwarePackage)) self.assertTrue(out[0].name, "acpi-support-base") def main(args): test_lib.main(args) if __name__ == "__main__": flags.StartMain(main)
the-stack_0_15139
from logging import getLogger from typing import Optional from state_manager.models.state_managers.base import back_to_pre_state_, BaseStateManager from state_manager.models.state import StateData from state_manager.types.aiogram import aiogram_context from state_manager.types.generals import Data logger = getLogger(__name__) class AiogramStateManager(BaseStateManager): context: aiogram_context async def set_next_state(self, state_name: str, *, data: Data = None) -> None: logger.debug(f"set_next_state, state_name={state_name}, data={data}") state_data = StateData(current_state=state_name, data=data) await self.storage.put(self.context.from_user.id, state_data) async def back_to_pre_state(self, *, data: Data = None) -> None: logger.debug(f"back_to_pre_state, data={data}") await back_to_pre_state_(self.storage, self.context.from_user.id, data) async def _get_state_data(self) -> Optional[StateData]: logger.debug(f"get_storage") return await self.storage.get(self.context.from_user.id) class Config: arbitrary_types_allowed = True
the-stack_0_15140
# -*- coding:utf-8 -*- # # Copyright (C) 2020-2021, Saarland University # Copyright (C) 2020-2021, Maximilian Köhl <[email protected]> # Copyright (C) 2020-2021, Michaela Klauck <[email protected]> from __future__ import annotations import dataclasses as d import typing as t import enum from . import errors, expressions, operators, types if t.TYPE_CHECKING: from . import context @d.dataclass(frozen=True) class Aggregate(expressions.Expression): """ Applies an aggregation function over a set of states. Attributes ---------- function: The aggregation function to apply. values: The values to aggregate over. predcate: The predicate used to identify the states to aggregate over. """ function: operators.AggregationFunction values: expressions.Expression predicate: expressions.Expression def infer_type(self, scope: context.Scope) -> types.Type: predicate_type = self.predicate.infer_type(scope) if not predicate_type == types.BOOL: raise errors.InvalidTypeError( f"expected types.BOOL but got {predicate_type}" ) values_type = self.values.infer_type(scope) if values_type not in self.function.allowed_values_type: raise errors.InvalidTypeError( f"invalid type {values_type} of values in filter function" ) return self.function.infer_result_type(values_type) @property def children(self) -> t.Sequence[expressions.Expression]: return (self.predicate,) class StatePredicate(enum.Enum): """ An enum of state predicates to be used with :class:`Aggregate`. """ INITIAL = "initial" """ The state is an initial state. """ DEADLOCK = "deadlock" """ The state is a deadlock state. """ TIMELOCK = "timelock" """ The state is a timelock state. """ @d.dataclass(frozen=True) class StateSelector(expressions.Expression): """ State selector expression using :class:`StatePredicate`. Attributes ---------- predicate: A :class:`StatePredicate`. """ predicate: StatePredicate def infer_type(self, scope: context.Scope) -> types.Type: return types.BOOL @property def children(self) -> t.Sequence[expressions.Expression]: return () INITIAL_STATES = StateSelector(StatePredicate.INITIAL) DEADLOCK_STATES = StateSelector(StatePredicate.DEADLOCK) TIMELOCK_STATES = StateSelector(StatePredicate.TIMELOCK) @d.dataclass(frozen=True) class Probability(expressions.Expression): """ Probability property. Attributes ---------- operator: *Min* or *max* probability (:class:`~momba.model.operators.MinMax`). formula: Boolean expression to compute the probability for. """ operator: operators.MinMax formula: expressions.Expression def infer_type(self, scope: context.Scope) -> types.Type: formula_type = self.formula.infer_type(scope) if not formula_type == types.BOOL: raise errors.InvalidTypeError(f"expected types.BOOL but got {formula_type}") return types.REAL @property def children(self) -> t.Sequence[expressions.Expression]: return (self.formula,) @d.dataclass(frozen=True) class PathQuantifier(expressions.Expression): """ A temporal path quantifier property. Attributes ---------- quantifier: The quantifier (:class:`~momba.model.operators.Quantifier`). formula: The inner formula. """ quantifier: operators.Quantifier formula: expressions.Expression def infer_type(self, scope: context.Scope) -> types.Type: formula_type = self.formula.infer_type(scope) if not formula_type == types.BOOL: raise errors.InvalidTypeError(f"expected types.BOOL but got {formula_type}") return types.BOOL @property def children(self) -> t.Sequence[expressions.Expression]: return (self.formula,) class AccumulationInstant(enum.Enum): """ En enumeration of reward accumulation instants. """ STEPS = "steps" """ Accumulate at each step. """ TIME = "time" """ Accumulate with the progression of time. """ EXIT = "exit" """ Accumulate after exiting a state. """ @d.dataclass(frozen=True) class ExpectedReward(expressions.Expression): """ Expected reward property. Attributes ---------- operator: *Min* or *max* probability (:class:`~momba.model.operators.MinMax`). reward: Expression to compute the reward. accumulate: A set of accumulation instants. reachability: step_instant: time_instant: reward_instants: """ operator: operators.MinMax reward: expressions.Expression accumulate: t.Optional[t.FrozenSet[AccumulationInstant]] = None reachability: t.Optional[expressions.Expression] = None step_instant: t.Optional[expressions.Expression] = None time_instant: t.Optional[expressions.Expression] = None reward_instants: t.Optional[t.Sequence[RewardInstant]] = None def infer_type(self, scope: context.Scope) -> types.Type: # TODO: check the types of the provided arguments return types.REAL @property def children(self) -> t.Sequence[expressions.Expression]: children: t.List[expressions.Expression] = [] if self.reachability is not None: children.append(self.reachability) if self.step_instant is not None: children.append(self.step_instant) if self.time_instant is not None: children.append(self.time_instant) if self.reward_instants is not None: for reward_instant in self.reward_instants: children.extend(reward_instant.children) return children @d.dataclass(frozen=True) class RewardInstant: """ A reward instant. Attributes ---------- expression: accumulate: instant: """ expression: expressions.Expression accumulate: t.FrozenSet[AccumulationInstant] instant: expressions.Expression @property def children(self) -> t.Sequence[expressions.Expression]: return (self.expression, self.instant) @d.dataclass(frozen=True) class SteadyState(expressions.Expression): """ A *steady-state* property. Attributes ---------- operator: formula: accumulate: """ operator: operators.MinMax formula: expressions.Expression accumulate: t.Optional[t.FrozenSet[AccumulationInstant]] = None def infer_type(self, scope: context.Scope) -> types.Type: # TODO: check the types of the provided arguments return types.REAL @property def children(self) -> t.Sequence[expressions.Expression]: return (self.formula,) @d.dataclass(frozen=True) class BinaryPathFormula(expressions.Expression): """ A temporal binary path formula. Attributes ---------- operator: left: right: step_bounds: time_bounds: reward_bounds: """ operator: operators.BinaryPathOperator left: expressions.Expression right: expressions.Expression step_bounds: t.Optional[Interval] = None time_bounds: t.Optional[Interval] = None reward_bounds: t.Optional[t.Sequence[RewardBound]] = None def infer_type(self, scope: context.Scope) -> types.Type: left_type = self.left.infer_type(scope) if left_type != types.BOOL: raise errors.InvalidTypeError(f"expected types.BOOL but got {left_type}") right_type = self.left.infer_type(scope) if right_type != types.BOOL: raise errors.InvalidTypeError(f"expected types.BOOL but got {right_type}") # TODO: check the types of the other arguments return types.BOOL @property def children(self) -> t.Sequence[expressions.Expression]: children: t.List[expressions.Expression] = [self.left, self.right] if self.step_bounds is not None: children.extend(self.step_bounds.expressions) if self.time_bounds is not None: children.extend(self.time_bounds.expressions) if self.reward_bounds is not None: for reward_bound in self.reward_bounds: children.extend(reward_bound.expressions) return children @d.dataclass(frozen=True) class UnaryPathFormula(expressions.Expression): """ A temporal unary path formula. Attributes ---------- operator: formula: step_bounds: time_bounds: reward_bounds: """ operator: operators.UnaryPathOperator formula: expressions.Expression step_bounds: t.Optional[Interval] = None time_bounds: t.Optional[Interval] = None reward_bounds: t.Optional[t.Sequence[RewardBound]] = None def infer_type(self, scope: context.Scope) -> types.Type: formula_type = self.formula.infer_type(scope) if formula_type != types.BOOL: raise errors.InvalidTypeError(f"expected types.BOOL but got {formula_type}") # TODO: check the types of the other arguments return types.BOOL @property def children(self) -> t.Sequence[expressions.Expression]: children: t.List[expressions.Expression] = [self.formula] if self.step_bounds is not None: children.extend(self.step_bounds.expressions) if self.time_bounds is not None: children.extend(self.time_bounds.expressions) if self.reward_bounds is not None: for reward_bound in self.reward_bounds: children.extend(reward_bound.expressions) return children @d.dataclass(frozen=True) class Interval: """ An interval. Attributes ---------- lower: The lower bound of the interval or :code:`None`. upper: The upper bound of the interval or :code:`None`. lower_exclusive: Whether the lower bound is exclusive. upper_exclusive: Whether the upper bound is exclusive. """ lower: t.Optional[expressions.Expression] = None upper: t.Optional[expressions.Expression] = None lower_exclusive: t.Optional[expressions.Expression] = None upper_exclusive: t.Optional[expressions.Expression] = None @property def expressions(self) -> t.Sequence[expressions.Expression]: return [ expr for expr in [ self.lower, self.upper, self.lower_exclusive, self.upper_exclusive, ] if expr is not None ] @d.dataclass(frozen=True) class RewardBound: """ A *reward bound*. Attributes ---------- expression: accumulate: bounds: """ expression: expressions.Expression accumulate: t.FrozenSet[AccumulationInstant] bounds: Interval @property def expressions(self) -> t.Sequence[expressions.Expression]: expressions = [self.expression] expressions.extend(self.bounds.expressions) return expressions def aggregate( function: operators.AggregationFunction, values: expressions.Expression, states: expressions.Expression = INITIAL_STATES, ) -> expressions.Expression: """ Creates an :class:`Aggregate` property. """ return Aggregate(function, values, states) def min_prob(formula: expressions.Expression) -> expressions.Expression: """ Constructs a :math:`P_\\mathit{min}` property. """ return Probability(operators.MinMax.MIN, formula) def max_prob(formula: expressions.Expression) -> expressions.Expression: """ Constructs a :math:`P_\\mathit{max}` property. """ return Probability(operators.MinMax.MAX, formula) def forall_paths(formula: expressions.Expression) -> expressions.Expression: """ CTL :math:`\\forall` path operator. """ return PathQuantifier(operators.Quantifier.FORALL, formula) def exists_path(formula: expressions.Expression) -> expressions.Expression: """ CTL :math:`\\exists` exists operator. """ return PathQuantifier(operators.Quantifier.EXISTS, formula) def min_expected_reward( reward: expressions.Expression, *, accumulate: t.Optional[t.AbstractSet[AccumulationInstant]] = None, reachability: t.Optional[expressions.Expression] = None, step_instant: t.Optional[expressions.Expression] = None, time_instant: t.Optional[expressions.Expression] = None, reward_instants: t.Optional[t.Sequence[RewardInstant]] = None, ) -> expressions.Expression: """ Constructs a :math:`E_\\mathit{min}` property. """ return ExpectedReward( operators.MinMax.MIN, reward, accumulate=None if accumulate is None else frozenset(accumulate), reachability=reachability, step_instant=step_instant, time_instant=time_instant, reward_instants=reward_instants, ) def max_expected_reward( reward: expressions.Expression, *, accumulate: t.Optional[t.AbstractSet[AccumulationInstant]] = None, reachability: t.Optional[expressions.Expression] = None, step_instant: t.Optional[expressions.Expression] = None, time_instant: t.Optional[expressions.Expression] = None, reward_instants: t.Optional[t.Sequence[RewardInstant]] = None, ) -> expressions.Expression: """ Constructs a :math:`E_\\mathit{max}` property. """ return ExpectedReward( operators.MinMax.MAX, reward, accumulate=None if accumulate is None else frozenset(accumulate), reachability=reachability, step_instant=step_instant, time_instant=time_instant, reward_instants=reward_instants, ) def min_steady_state( formula: expressions.Expression, *, accumulate: t.Optional[t.AbstractSet[AccumulationInstant]] = None, ) -> expressions.Expression: """ Constructs a :math:`S_\\mathit{min}` property. """ return SteadyState( operators.MinMax.MIN, formula, accumulate=None if accumulate is None else frozenset(accumulate), ) def max_steady_state( formula: expressions.Expression, *, accumulate: t.Optional[t.AbstractSet[AccumulationInstant]] = None, ) -> expressions.Expression: """ Constructs a :math:`S_\\mathit{max}` property. """ return SteadyState( operators.MinMax.MAX, formula, accumulate=None if accumulate is None else frozenset(accumulate), ) def until( left: expressions.Expression, right: expressions.Expression, *, step_bounds: t.Optional[Interval] = None, time_bounds: t.Optional[Interval] = None, reward_bounds: t.Optional[t.Sequence[RewardBound]] = None, ) -> expressions.Expression: """ Constructs a temporal *until* property. """ return BinaryPathFormula( operators.BinaryPathOperator.UNTIL, left, right, step_bounds=step_bounds, time_bounds=time_bounds, reward_bounds=reward_bounds, ) def weak_until( left: expressions.Expression, right: expressions.Expression, *, step_bounds: t.Optional[Interval] = None, time_bounds: t.Optional[Interval] = None, reward_bounds: t.Optional[t.Sequence[RewardBound]] = None, ) -> expressions.Expression: """ Constructs a temporal *weak-until* property. """ return BinaryPathFormula( operators.BinaryPathOperator.WEAK_UNTIL, left, right, step_bounds=step_bounds, time_bounds=time_bounds, reward_bounds=reward_bounds, ) def release( left: expressions.Expression, right: expressions.Expression, *, step_bounds: t.Optional[Interval] = None, time_bounds: t.Optional[Interval] = None, reward_bounds: t.Optional[t.Sequence[RewardBound]] = None, ) -> expressions.Expression: """ Constructs a temporal *release* property. """ return BinaryPathFormula( operators.BinaryPathOperator.RELEASE, left, right, step_bounds=step_bounds, time_bounds=time_bounds, reward_bounds=reward_bounds, ) def eventually( formula: expressions.Expression, *, step_bounds: t.Optional[Interval] = None, time_bounds: t.Optional[Interval] = None, reward_bounds: t.Optional[t.Sequence[RewardBound]] = None, ) -> expressions.Expression: """ Constructs a temporal *evenutally* property. """ return UnaryPathFormula( operators.UnaryPathOperator.EVENTUALLY, formula, step_bounds=step_bounds, time_bounds=time_bounds, reward_bounds=reward_bounds, ) def globally( formula: expressions.Expression, *, step_bounds: t.Optional[Interval] = None, time_bounds: t.Optional[Interval] = None, reward_bounds: t.Optional[t.Sequence[RewardBound]] = None, ) -> expressions.Expression: """ Constructs a temporal *globally* property. """ return UnaryPathFormula( operators.UnaryPathOperator.GLOBALLY, formula, step_bounds=step_bounds, time_bounds=time_bounds, reward_bounds=reward_bounds, )
the-stack_0_15141
import unittest import numpy import chainer from chainer import cuda from chainer import functions from chainer import gradient_check from chainer import testing from chainer.testing import attr from chainer.testing import condition class TestSpatialPyramidPooling2D(unittest.TestCase): pyramid_height = 3 output_dim = 63 # channels(c=3) * (1 + 4 + 16) = 63 n, c, h, w = 2, 3, 9, 8 pooling_class = functions.MaxPooling2D def setUp(self): # Avoid unstability of numerical gradient self.x = numpy.random.randn( self.n, self.c, self.h, self.w).astype(numpy.float32) self.one = numpy.ones( (self.n, self.c, self.h, self.w)).astype(numpy.float32) self.gy = numpy.random.uniform(-1, 1, (self.n, self.output_dim, 1, 1)) self.gy = self.gy.astype(numpy.float32) def check_forward(self, x_data, use_cudnn=True): x = chainer.Variable(x_data) y = functions.spatial_pyramid_pooling_2d( x, self.pyramid_height, self.pooling_class, use_cudnn=use_cudnn) self.assertEqual(y.data.dtype, numpy.float32) y_data = cuda.to_cpu(y.data) self.assertEqual(self.gy.shape, y_data.shape) def check_forward_ones(self, x_data, use_cudnn=True): x = chainer.Variable(x_data) y = functions.spatial_pyramid_pooling_2d( x, self.pyramid_height, self.pooling_class, use_cudnn=use_cudnn) y_data = cuda.to_cpu(y.data) self.assertEqual((self.n, self.output_dim, 1, 1), y_data.shape) gradient_check.assert_allclose(y_data, numpy.ones_like(y_data)) @condition.retry(3) def test_forward_cpu(self): self.check_forward(self.x) self.check_forward_ones(self.one) @attr.cudnn @condition.retry(3) def test_forward_gpu(self): self.check_forward(cuda.to_gpu(self.x)) self.check_forward_ones(cuda.to_gpu(self.one)) @attr.gpu @condition.retry(3) def test_forward_gpu_no_cudnn(self): self.check_forward(cuda.to_gpu(self.x), False) self.check_forward_ones(cuda.to_gpu(self.one), False) def check_backward(self, x_data, y_grad, use_cudnn=True): x = chainer.Variable(x_data) y = functions.spatial_pyramid_pooling_2d( x, self.pyramid_height, self.pooling_class, use_cudnn=use_cudnn) y.grad = y_grad y.backward() func = y.creator f = lambda: func.forward((x.data,)) gx, = gradient_check.numerical_grad(f, (x.data,), (y.grad,)) gradient_check.assert_allclose( cuda.to_cpu(gx), cuda.to_cpu(x.grad), atol=1e-04) @condition.retry(3) def test_backward_cpu(self): self.check_backward(self.x, self.gy) @attr.cudnn @condition.retry(3) def test_backward_gpu(self): self.check_backward(cuda.to_gpu(self.x), cuda.to_gpu(self.gy)) @attr.gpu @condition.retry(3) def test_backward_gpu_no_cudnn(self): self.check_backward(cuda.to_gpu(self.x), cuda.to_gpu(self.gy), False) testing.run_module(__name__, __file__)
the-stack_0_15142
from conans import ConanFile, tools, CMake import os class SDL2ImageConan(ConanFile): name = "sdl2_image" description = "SDL_image is an image file loading library" topics = ("sdl2_image", "sdl_image", "sdl2", "sdl", "images", "opengl") url = "https://github.com/bincrafters/community" homepage = "https://www.libsdl.org/projects/SDL_image/" license = "MIT" exports_sources = ["CMakeLists.txt"] generators = ["cmake", "cmake_find_package_multi"] settings = "os", "arch", "compiler", "build_type" options = { "shared": [True, False], "fPIC": [True, False], "bmp": [True, False], "gif": [True, False], "lbm": [True, False], "pcx": [True, False], "pnm": [True, False], "svg": [True, False], "tga": [True, False], "xcf": [True, False], "xpm": [True, False], "xv": [True, False], "jpg": [True, False], "tif": [True, False], "png": [True, False], "webp": [True, False], "imageio": [True, False]} default_options = { "shared": False, "fPIC": True, "bmp": True, "gif": True, "lbm": True, "pcx": True, "pnm": True, "svg": True, "tga": True, "xcf": True, "xpm": True, "xv": True, "jpg": True, "tif": True, "png": True, "webp": True, "imageio": False } _cmake = None _source_subfolder = "source_subfolder" _build_subfolder = "build_subfolder" def config_options(self): del self.settings.compiler.libcxx del self.settings.compiler.cppstd if self.settings.os == "Windows": del self.options.fPIC if self.settings.os != "Macos": del self.options.imageio def requirements(self): self.requires("sdl2/2.0.14@bincrafters/stable") if self.options.tif: self.requires("libtiff/4.0.9") if self.options.jpg: self.requires("libjpeg/9d") if self.options.png: self.requires("libpng/1.6.37") if self.options.webp: self.requires("libwebp/1.0.3") self.requires("zlib/1.2.11") def source(self): tools.get(**self.conan_data["sources"][self.version]) extracted_dir = "SDL2_image-" + self.version os.rename(extracted_dir, self._source_subfolder) def _configure_cmake(self): if self._cmake: return self._cmake self._cmake = CMake(self) self._cmake.definitions["BMP"] = self.options.bmp self._cmake.definitions["GIF"] = self.options.gif self._cmake.definitions["IMAGEIO"] = self.options.get_safe("imageio") self._cmake.definitions["JPG"] = self.options.jpg self._cmake.definitions["LBM"] = self.options.lbm self._cmake.definitions["PCX"] = self.options.pcx self._cmake.definitions["PNG"] = self.options.png self._cmake.definitions["PNM"] = self.options.pnm self._cmake.definitions["SVG"] = self.options.svg self._cmake.definitions["TGA"] = self.options.tga self._cmake.definitions["TIF"] = self.options.tif self._cmake.definitions["WEBP"] = self.options.webp self._cmake.definitions["XCF"] = self.options.xcf self._cmake.definitions["XPM"] = self.options.xpm self._cmake.definitions["XV"] = self.options.xv # TODO: https://github.com/bincrafters/community/pull/1317#pullrequestreview-584847138 self._cmake.definitions["TIF_DYNAMIC"] = self.options["libtiff"].shared if self.options.tif else False self._cmake.definitions["JPG_DYNAMIC"] = self.options["libjpeg"].shared if self.options.jpg else False self._cmake.definitions["PNG_DYNAMIC"] = self.options["libpng"].shared if self.options.png else False self._cmake.definitions["WEBP_DYNAMIC"] = self.options["libwebp"].shared if self.options.webp else False self._cmake.definitions["SDL_IS_SHARED"] = self.options["sdl2"].shared self._cmake.configure(build_dir="build") return self._cmake def build(self): cmake = self._configure_cmake() cmake.build() def package(self): self.copy(pattern="COPYING.txt", dst="license", src=self._source_subfolder) cmake = self._configure_cmake() cmake.install() def package_info(self): self.cpp_info.libs = ["SDL2_image"] self.cpp_info.includedirs.append(os.path.join("include", "SDL2")) # TODO: Add components in a sane way. SDL2_image might be incorrect, as the current dev version uses SDL2::image # The current dev version is the first version with official CMake support self.cpp_info.names["cmake_find_package"] = "SDL2_image" self.cpp_info.names["cmake_find_package_multi"] = "SDL2_image"
the-stack_0_15143
"""LaTeX Exporter class""" # Copyright (c) Jupyter Development Team. # Distributed under the terms of the Modified BSD License. import os from traitlets import Unicode, default from traitlets.config import Config from nbconvert.filters.highlight import Highlight2Latex from nbconvert.filters.filter_links import resolve_references from .templateexporter import TemplateExporter class LatexExporter(TemplateExporter): """ Exports to a Latex template. Inherit from this class if your template is LaTeX based and you need custom tranformers/filters. Inherit from it if you are writing your own HTML template and need custom tranformers/filters. If you don't need custom tranformers/filters, just change the 'template_file' config option. Place your template in the special "/latex" subfolder of the "../templates" folder. """ export_from_notebook = "latex" @default('file_extension') def _file_extension_default(self): return '.tex' @default('template_file') def _template_file_default(self): return 'article.tplx' # Latex constants @default('default_template_path') def _default_template_path_default(self): return os.path.join("..", "templates", "latex") @default('template_skeleton_path') def _template_skeleton_path_default(self): return os.path.join("..", "templates", "latex", "skeleton") #Extension that the template files use. template_extension = Unicode(".tplx").tag(config=True) output_mimetype = 'text/latex' def default_filters(self): for x in super(LatexExporter, self).default_filters(): yield x yield ('resolve_references', resolve_references) @property def default_config(self): c = Config({ 'NbConvertBase': { 'display_data_priority' : ['text/latex', 'application/pdf', 'image/png', 'image/jpeg', 'image/svg+xml', 'text/markdown', 'text/plain'] }, 'ExtractOutputPreprocessor': { 'enabled':True }, 'SVG2PDFPreprocessor': { 'enabled':True }, 'LatexPreprocessor': { 'enabled':True }, 'SphinxPreprocessor': { 'enabled':True }, 'HighlightMagicsPreprocessor': { 'enabled':True } }) c.merge(super(LatexExporter,self).default_config) return c def from_notebook_node(self, nb, resources=None, **kw): langinfo = nb.metadata.get('language_info', {}) lexer = langinfo.get('pygments_lexer', langinfo.get('name', None)) self.register_filter('highlight_code', Highlight2Latex(pygments_lexer=lexer, parent=self)) return super(LatexExporter, self).from_notebook_node(nb, resources, **kw) def _create_environment(self): environment = super(LatexExporter, self)._create_environment() # Set special Jinja2 syntax that will not conflict with latex. environment.block_start_string = "((*" environment.block_end_string = "*))" environment.variable_start_string = "(((" environment.variable_end_string = ")))" environment.comment_start_string = "((=" environment.comment_end_string = "=))" return environment
the-stack_0_15145
""" Solves problem 7 of the One Hundred Dollars, One Hundred Digits Challenge. """ import numpy as np from pysparse.sparse import spmatrix from pysparse.itsolvers.krylov import minres from pysparse.precon import precon def get_primes(nofPrimes): primes = np.zeros(nofPrimes, 'i') primes[0] = 2 nof = 1 i = 3 while 1: for p in primes[:nof]: if i%p == 0 or p*p > i: break if i%p != 0: primes[nof] = i nof += 1 if nof >= nofPrimes: break i = i+2 return primes n = 20000 print('Generating first %d primes...' % n) primes = get_primes(n) print('Assembling coefficient matrix...') A = spmatrix.ll_mat_sym(n, n*8) d = 1 while d < n: for i in range(d, n): A[i,i-d] = 1.0 d *= 2 for i in range(n): A[i,i] = 1.0 * primes[i] A = A.to_sss() K = precon.ssor(A) print('Solving linear system...') b = np.zeros(n); b[0] = 1.0 x = np.empty(n) info, iter, relres = minres(A, b, x, 1e-16, n, K) print(info, iter, relres) print('%.16e' % x[0])
the-stack_0_15147
import numpy as np import scipy.interpolate as si import tools def stdextr(data, x1, x2, variance=None, mask=None, interp=False): """ Standard box extraction of spectrum. Step 4 of Horne (1989). Parameters: ----------- data: 2D float ndarray Sky-subtracted spectrum image of shape [nwavelength, nposition]. x1: Integer Left X boundary of region to extract the spectrum. x2: Integer Right X boundary of region to extract the spectrum. Note that: 0 <= x1 <= x2 <= nx variance: 2D float ndarray Variance image from processed image. mask: 2D integer ndarray Mask of the data image (1 = good pixel, 0 = bad pixel). interp: Bool If True, lineraly interpolate the data for bad pixels. Returns: -------- stdspec: 1D float ndarray The extracted spectrum. stdvar: 1D float ndarray Variance of extracted spectrum. Example: -------- >>> import sys >>> import astropy.io.fits as fits >>> import matplotlib.pyplot as plt >>> sys.path.append("./src/") >>> import stdextr as se >>> data = fits.getdata("./images/ex1.fits") >>> spec, sstd = se.stdextr(data, 230, 270) >>> plt.plot(spec) """ # Check inputs: nwave, nx = np.shape(data) if variance is None: variance = np.ones((nwave, nx), np.double) if mask is None: mask = np.ones((nwave, nx), np.byte) if x1 < 0 or x2 <= x1 or nx < x2: tools.error("Invalid x1, x2 boundaries (={:d}, {:d}), the values must " "satisfy:\n 0 <= x1 < x2 <= nx (={:d}).".format(x1, x2, nx)) if np.shape(variance) != (nwave, nx): tools.error("Incompatible shapes between data image ({:d}, {:d}) and " "variance image ({:d}, {:d}).".format(nwave, nx, *np.shape(variance))) if np.shape(mask) != (nwave, nx): tools.error("Incompatible shapes between data image ({:d}, {:d}) and " "mask image ({:d}, {:d}).".format(nwave, nx, *np.shape(mask))) # Interpolate over bad pixels: if interp: stdspec = np.zeros(nwave) for i in np.arange(nwave): bad = np.where(mask[i, x1:x2] == 0) good = np.where(mask[i, x1:x2] == 1) datav = np.copy(data[i, x1:x2]) if len(bad) != 0: interpol = si.interp1d(datav[good], good[0], kind="linear") datav[bad] = interpol(bad[0]) stdspec[i] = np.sum(datav) return stdspec, np.zeros(nwave) # Standard extraction: stdspec = np.sum((data * mask)[:, x1:x2], axis=1) stdvar = np.sum((variance * mask)[:, x1:x2], axis=1) return stdspec, stdvar
the-stack_0_15149
# Copyright (c) OpenMMLab. All rights reserved. import argparse import copy import os import os.path as osp import time import warnings import mmcv import torch from mmcv import Config, DictAction from mmcv.runner import get_dist_info, init_dist from mmcls import __version__ from mmcls.apis import init_random_seed, set_random_seed, train_model from mmcls.datasets import build_dataset from mmcls.models import build_classifier from mmcls.utils import collect_env, get_root_logger, setup_multi_processes def parse_args(): parser = argparse.ArgumentParser(description='Train a model') parser.add_argument('config', help='train config file path') parser.add_argument('--work-dir', help='the dir to save logs and models') parser.add_argument( '--resume-from', help='the checkpoint file to resume from') parser.add_argument( '--no-validate', action='store_true', help='whether not to evaluate the checkpoint during training') group_gpus = parser.add_mutually_exclusive_group() group_gpus.add_argument( '--device', help='device used for training. (Deprecated)') group_gpus.add_argument( '--gpus', type=int, help='number of gpus to use ' '(only applicable to non-distributed training)') group_gpus.add_argument( '--gpu-ids', type=int, nargs='+', help='ids of gpus to use ' '(only applicable to non-distributed training)') parser.add_argument('--seed', type=int, default=None, help='random seed') parser.add_argument( '--deterministic', action='store_true', help='whether to set deterministic options for CUDNN backend.') parser.add_argument( '--options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file (deprecate), ' 'change to --cfg-options instead.') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') parser.add_argument( '--launcher', choices=['none', 'pytorch', 'slurm', 'mpi'], default='none', help='job launcher') parser.add_argument('--local_rank', type=int, default=0) args = parser.parse_args() if 'LOCAL_RANK' not in os.environ: os.environ['LOCAL_RANK'] = str(args.local_rank) if args.options and args.cfg_options: raise ValueError( '--options and --cfg-options cannot be both ' 'specified, --options is deprecated in favor of --cfg-options') if args.options: warnings.warn('--options is deprecated in favor of --cfg-options') args.cfg_options = args.options if args.device: warnings.warn( '--device is deprecated. To use cpu to train, please ' 'refers to https://mmclassification.readthedocs.io/en/latest/' 'getting_started.html#train-a-model') return args def main(): args = parse_args() cfg = Config.fromfile(args.config) if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) # set multi-process settings setup_multi_processes(cfg) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True # work_dir is determined in this priority: CLI > segment in file > filename if args.work_dir is not None: # update configs according to CLI args if args.work_dir is not None cfg.work_dir = args.work_dir elif cfg.get('work_dir', None) is None: # use config filename as default work_dir if cfg.work_dir is None cfg.work_dir = osp.join('./work_dirs', osp.splitext(osp.basename(args.config))[0]) if args.resume_from is not None: cfg.resume_from = args.resume_from if args.gpu_ids is not None: cfg.gpu_ids = args.gpu_ids else: cfg.gpu_ids = range(1) if args.gpus is None else range(args.gpus) # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) _, world_size = get_dist_info() cfg.gpu_ids = range(world_size) # create work_dir mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir)) # dump config cfg.dump(osp.join(cfg.work_dir, osp.basename(args.config))) # init the logger before other steps timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) log_file = osp.join(cfg.work_dir, f'{timestamp}.log') logger = get_root_logger(log_file=log_file, log_level=cfg.log_level) # init the meta dict to record some important information such as # environment info and seed, which will be logged meta = dict() # log env info env_info_dict = collect_env() env_info = '\n'.join([(f'{k}: {v}') for k, v in env_info_dict.items()]) dash_line = '-' * 60 + '\n' logger.info('Environment info:\n' + dash_line + env_info + '\n' + dash_line) meta['env_info'] = env_info # log some basic info logger.info(f'Distributed training: {distributed}') logger.info(f'Config:\n{cfg.pretty_text}') # set random seeds seed = init_random_seed(args.seed) logger.info(f'Set random seed to {seed}, ' f'deterministic: {args.deterministic}') set_random_seed(seed, deterministic=args.deterministic) cfg.seed = seed meta['seed'] = seed model = build_classifier(cfg.model) model.init_weights() datasets = [build_dataset(cfg.data.train)] if len(cfg.workflow) == 2: val_dataset = copy.deepcopy(cfg.data.val) val_dataset.pipeline = cfg.data.train.pipeline datasets.append(build_dataset(val_dataset)) # save mmcls version, config file content and class names in # runner as meta data meta.update( dict( mmcls_version=__version__, config=cfg.pretty_text, CLASSES=datasets[0].CLASSES)) # add an attribute for visualization convenience train_model( model, datasets, cfg, distributed=distributed, validate=(not args.no_validate), timestamp=timestamp, device='cpu' if args.device == 'cpu' else 'cuda', meta=meta) if __name__ == '__main__': main()
the-stack_0_15150
import numpy as np import logging from pyrfr import regression from smac.epm.base_epm import AbstractEPM from smac.configspace import ( CategoricalHyperparameter, UniformFloatHyperparameter, UniformIntegerHyperparameter, Constant, ) class RandomForestWithInstances(AbstractEPM): """ Base EPM. Very similar to SMAC3s EPM. Interface to the random forest that takes instance features into account. Attributes ---------- rf_opts : Random forest hyperparameter n_points_per_tree : int rf : regression.binary_rss_forest Only available after training hypers: list List of random forest hyperparameters seed : int types : list bounds : list rng : np.random.RandomState logger : logging.logger """ def __init__(self, configspace, types: np.ndarray, bounds: np.ndarray, seed: int, num_trees: int = 10, do_bootstrapping: bool = True, n_points_per_tree: int = -1, ratio_features: float = 5. / 6., min_samples_split: int = 3, min_samples_leaf: int = 3, max_depth: int = 20, eps_purity: int = 1e-8, max_num_nodes: int = 2 ** 20, logged_y: bool = True, **kwargs): """Constructor Parameters ---------- configspace: ConfigurationSpace configspace to be passed to random forest (used to impute inactive parameter-values) types : np.ndarray (D) Specifies the number of categorical values of an input dimension where the i-th entry corresponds to the i-th input dimension. Let's say we have 2 dimension where the first dimension consists of 3 different categorical choices and the second dimension is continuous than we have to pass np.array([2, 0]). Note that we count starting from 0. bounds : np.ndarray (D, 2) Specifies the bounds for continuous features. seed : int The seed that is passed to the random_forest_run library. num_trees : int The number of trees in the random forest. do_bootstrapping : bool Turns on / off bootstrapping in the random forest. n_points_per_tree : int Number of points per tree. If <= 0 X.shape[0] will be used in _train(X, y) instead ratio_features : float The ratio of features that are considered for splitting. min_samples_split : int The minimum number of data points to perform a split. min_samples_leaf : int The minimum number of data points in a leaf. max_depth : int The maximum depth of a single tree. eps_purity : float The minimum difference between two target values to be considered different max_num_nodes : int The maxmimum total number of nodes in a tree logged_y: bool Indicates if the y data is transformed (i.e. put on logscale) or not """ super().__init__(configspace=configspace, types=types, bounds=bounds, seed=seed, **kwargs) self.configspace = configspace self.types = types self.bounds = bounds self.rng = regression.default_random_engine(seed) self.rf_opts = regression.forest_opts() self.rf_opts.num_trees = num_trees self.rf_opts.do_bootstrapping = do_bootstrapping max_features = 0 if ratio_features > 1.0 else \ max(1, int(types.shape[0] * ratio_features)) self.rf_opts.tree_opts.max_features = max_features self.rf_opts.tree_opts.min_samples_to_split = min_samples_split self.rf_opts.tree_opts.min_samples_in_leaf = min_samples_leaf self.rf_opts.tree_opts.max_depth = max_depth self.rf_opts.tree_opts.epsilon_purity = eps_purity self.rf_opts.tree_opts.max_num_nodes = max_num_nodes self.rf_opts.compute_law_of_total_variance = False # Always off. No need for this in our base EPM self.n_points_per_tree = n_points_per_tree self.rf = None # type: regression.binary_rss_forest self.logged_y = logged_y # This list well be read out by save_iteration() in the solver self.hypers = [num_trees, max_num_nodes, do_bootstrapping, n_points_per_tree, ratio_features, min_samples_split, min_samples_leaf, max_depth, eps_purity, seed] self.seed = seed self.impute_values = {} self.logger = logging.getLogger(self.__module__ + "." + self.__class__.__name__) def _impute_inactive(self, X: np.ndarray) -> np.ndarray: X = X.copy() for idx, hp in enumerate(self.configspace.get_hyperparameters()): if idx not in self.impute_values: parents = self.configspace.get_parents_of(hp.name) if len(parents) == 0: self.impute_values[idx] = None else: if isinstance(hp, CategoricalHyperparameter): self.impute_values[idx] = len(hp.choices) elif isinstance(hp, (UniformFloatHyperparameter, UniformIntegerHyperparameter)): self.impute_values[idx] = -1 elif isinstance(hp, Constant): self.impute_values[idx] = 1 else: raise ValueError nonfinite_mask = ~np.isfinite(X[:, idx]) X[nonfinite_mask, idx] = self.impute_values[idx] return X def _train(self, X: np.ndarray, y: np.ndarray, **kwargs): """Trains the random forest on X and y. Parameters ---------- X : np.ndarray [n_samples, n_features (config + instance features)] Input data points. Y : np.ndarray [n_samples, ] The corresponding target values. Returns ------- self """ self.X = self._impute_inactive(X) self.y = y.flatten() if self.n_points_per_tree <= 0: self.rf_opts.num_data_points_per_tree = self.X.shape[0] else: self.rf_opts.num_data_points_per_tree = self.n_points_per_tree self.rf = regression.binary_rss_forest() self.rf.options = self.rf_opts data = self.__init_data_container(self.X, self.y) self.rf.fit(data, rng=self.rng) return self def __init_data_container(self, X: np.ndarray, y: np.ndarray): """ Biggest difference to SMAC3s EPM. We fit the forrest on a transformation and predict the untransformed result. Fills a pyrfr default data container, s.t. the forest knows categoricals and bounds for continous data Parameters ---------- X : np.ndarray [n_samples, n_features] Input data points y : np.ndarray [n_samples, ] Corresponding target values Returns ------- data : regression.default_data_container The filled data container that pyrfr can interpret """ # retrieve the types and the bounds from the ConfigSpace data = regression.default_data_container(X.shape[1]) if self.logged_y: y = y.reshape((-1, 1)) y = np.hstack((y, np.power(10, y))) for i, (mn, mx) in enumerate(self.bounds): if np.isnan(mx): data.set_type_of_feature(i, mn) else: data.set_bounds_of_feature(i, mn, mx) for row_X, row_y in zip(X, y): data.add_data_point(row_X, row_y) return data def _predict(self, X: np.ndarray, cov_return_type='diagonal_cov'): """Predict means and variances for given X. Parameters ---------- X : np.ndarray of shape = [n_samples, n_features (config + instance features)] Returns ------- means : np.ndarray of shape = [n_samples, 1] Predictive mean vars : np.ndarray of shape = [n_samples, 1] Predictive variance """ if len(X.shape) != 2: raise ValueError( 'Expected 2d array, got %dd array!' % len(X.shape)) if X.shape[1] != len(self._initial_types): raise ValueError('Rows in X should have %d entries but have %d!' % (len(self._initial_types), X.shape[1])) if cov_return_type != 'diagonal_cov': raise ValueError("'cov_return_type' can only take 'diagonal_cov' for this model") means, vars_ = [], [] X = self._impute_inactive(X) for row_X in X: mean, var = self.rf.predict_mean_var(row_X) means.append(mean) vars_.append(var) means = np.array(means) vars_ = np.array(vars_) return means.reshape((-1, 1)), vars_.reshape((-1, 1))
the-stack_0_15152
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('training', '0003_training_published_mecc_url'), ] operations = [ migrations.AddField( model_name='training', name='is_existing_rof', field=models.BooleanField(verbose_name="Témoin d'existence dans ROF", default=True), ), migrations.AddField( model_name='training', name='recup_atb_ens', field=models.BooleanField(verbose_name='Témoin de récupération des responsables, coef. et notes seuil', default=False), ), ]
the-stack_0_15154
"""Computes the similarity of molecular scaffolds between two datasets.""" from itertools import product import math import os import sys from typing import List from typing_extensions import Literal import numpy as np from rdkit import Chem from rdkit import DataStructs from rdkit.Chem import AllChem from tqdm import tqdm from tap import Tap # pip install typed-argument-parser (https://github.com/swansonk14/typed-argument-parser) sys.path.append(os.path.dirname(os.path.dirname(os.path.realpath(__file__)))) from chemprop.data import get_data, scaffold_to_smiles class Args(Tap): data_path_1: str # Path to first data CSV file data_path_2: str # Path to second data CSV file smiles_column_1: str = None # Name of the column containing SMILES strings for the first data. By default, uses the first column. smiles_column_2: str = None # Name of the column containing SMILES strings for the second data. By default, uses the first column. similarity_measure: Literal['scaffold', 'morgan'] # Similarity measure to use to compare the two datasets radius: int = 3 # Radius of Morgan fingerprint sample_rate: float = 1.0 # Rate at which to sample pairs of molecules for Morgan similarity (to reduce time) def scaffold_similarity(smiles_1: List[str], smiles_2: List[str]): """ Determines the similarity between the scaffolds of two lists of smiles strings. :param smiles_1: A list of smiles strings. :param smiles_2: A list of smiles strings. """ # Get scaffolds scaffold_to_smiles_1 = scaffold_to_smiles(smiles_1) scaffold_to_smiles_2 = scaffold_to_smiles(smiles_2) scaffolds_1, smiles_sets_1 = zip(*scaffold_to_smiles_1.items()) scaffolds_2, smiles_sets_2 = zip(*scaffold_to_smiles_2.items()) smiles_to_scaffold = {smiles: scaffold for scaffold, smiles_set in scaffold_to_smiles_1.items() for smiles in smiles_set} smiles_to_scaffold.update({smiles: scaffold for scaffold, smiles_set in scaffold_to_smiles_2.items() for smiles in smiles_set}) # Determine similarity scaffolds_1, scaffolds_2 = set(scaffolds_1), set(scaffolds_2) smiles_1, smiles_2 = set(smiles_1), set(smiles_2) all_scaffolds = scaffolds_1 | scaffolds_2 all_smiles = smiles_1 | smiles_2 scaffolds_intersection = scaffolds_1 & scaffolds_2 # smiles_intersection is smiles with a scaffold that appears in both datasets smiles_intersection = {smiles for smiles in all_smiles if smiles_to_scaffold[smiles] in scaffolds_intersection} smiles_in_1_with_scaffold_in_2 = {smiles for smiles in smiles_1 if smiles_to_scaffold[smiles] in scaffolds_2} smiles_in_2_with_scaffold_in_1 = {smiles for smiles in smiles_2 if smiles_to_scaffold[smiles] in scaffolds_1} sizes_1 = np.array([len(smiles_set) for smiles_set in smiles_sets_1]) sizes_2 = np.array([len(smiles_set) for smiles_set in smiles_sets_2]) # Print results print() print(f'Number of molecules = {len(all_smiles):,}') print(f'Number of scaffolds = {len(all_scaffolds):,}') print() print(f'Number of scaffolds in both datasets = {len(scaffolds_intersection):,}') print(f'Scaffold intersection over union = {len(scaffolds_intersection) / len(all_scaffolds):.4f}') print() print(f'Number of molecules with scaffold in both datasets = {len(smiles_intersection):,}') print(f'Molecule intersection over union = {len(smiles_intersection) / len(all_smiles):.4f}') print() print(f'Number of molecules in dataset 1 = {np.sum(sizes_1):,}') print(f'Number of scaffolds in dataset 1 = {len(scaffolds_1):,}') print() print(f'Number of molecules in dataset 2 = {np.sum(sizes_2):,}') print(f'Number of scaffolds in dataset 2 = {len(scaffolds_2):,}') print() print(f'Percent of scaffolds in dataset 1 which are also in dataset 2 = {100 * len(scaffolds_intersection) / len(scaffolds_1):.2f}%') print(f'Percent of scaffolds in dataset 2 which are also in dataset 1 = {100 * len(scaffolds_intersection) / len(scaffolds_2):.2f}%') print() print(f'Number of molecules in dataset 1 with scaffolds in dataset 2 = {len(smiles_in_1_with_scaffold_in_2):,}') print(f'Percent of molecules in dataset 1 with scaffolds in dataset 2 = {100 * len(smiles_in_1_with_scaffold_in_2) / len(smiles_1):.2f}%') print() print(f'Number of molecules in dataset 2 with scaffolds in dataset 1 = {len(smiles_in_2_with_scaffold_in_1):,}') print(f'Percent of molecules in dataset 2 with scaffolds in dataset 1 = {100 * len(smiles_in_2_with_scaffold_in_1) / len(smiles_2):.2f}%') print() print(f'Average number of molecules per scaffold in dataset 1 = {np.mean(sizes_1):.4f} +/- {np.std(sizes_1):.4f}') print('Percentiles for molecules per scaffold in dataset 1') print(' | '.join([f'{i}% = {int(np.percentile(sizes_1, i)):,}' for i in range(0, 101, 10)])) print() print(f'Average number of molecules per scaffold in dataset 2 = {np.mean(sizes_2):.4f} +/- {np.std(sizes_2):.4f}') print('Percentiles for molecules per scaffold in dataset 2') print(' | '.join([f'{i}% = {int(np.percentile(sizes_2, i)):,}' for i in range(0, 101, 10)])) def morgan_similarity(smiles_1: List[str], smiles_2: List[str], radius: int, sample_rate: float): """ Determines the similarity between the morgan fingerprints of two lists of smiles strings. :param smiles_1: A list of smiles strings. :param smiles_2: A list of smiles strings. :param radius: The radius of the morgan fingerprints. :param sample_rate: Rate at which to sample pairs of molecules for Morgan similarity (to reduce time). """ # Compute similarities similarities = [] num_pairs = len(smiles_1) * len(smiles_2) # Sample to improve speed if sample_rate < 1.0: sample_num_pairs = sample_rate * num_pairs sample_size = math.ceil(math.sqrt(sample_num_pairs)) sample_smiles_1 = np.random.choice(smiles_1, size=sample_size, replace=True) sample_smiles_2 = np.random.choice(smiles_2, size=sample_size, replace=True) else: sample_smiles_1, sample_smiles_2 = smiles_1, smiles_2 sample_num_pairs = len(sample_smiles_1) * len(sample_smiles_2) for smile_1, smile_2 in tqdm(product(sample_smiles_1, sample_smiles_2), total=sample_num_pairs): mol_1, mol_2 = Chem.MolFromSmiles(smile_1), Chem.MolFromSmiles(smile_2) fp_1, fp_2 = AllChem.GetMorganFingerprint(mol_1, radius), AllChem.GetMorganFingerprint(mol_2, radius) similarity = DataStructs.TanimotoSimilarity(fp_1, fp_2) similarities.append(similarity) similarities = np.array(similarities) # Print results print() print(f'Average dice similarity = {np.mean(similarities):.4f} +/- {np.std(similarities):.4f}') print(f'Minimum dice similarity = {np.min(similarities):.4f}') print(f'Maximum dice similarity = {np.max(similarities):.4f}') print() print('Percentiles for dice similarity') print(' | '.join([f'{i}% = {np.percentile(similarities, i):.4f}' for i in range(0, 101, 10)])) if __name__ == '__main__': args = Args().parse_args() data_1 = get_data(path=args.data_path_1, smiles_column=args.smiles_column_1) data_2 = get_data(path=args.data_path_2, smiles_column=args.smiles_column_2) if args.similarity_measure == 'scaffold': scaffold_similarity(data_1.smiles(), data_2.smiles()) elif args.similarity_measure == 'morgan': morgan_similarity(data_1.smiles(), data_2.smiles(), args.radius, args.sample_rate) else: raise ValueError(f'Similarity measure "{args.similarity_measure}" not supported.')
the-stack_0_15156
""" Windowing processes for windowing over days """ import udatetime import datetime from numpy import argmin, abs, array from sit2standpy.v2.base import _BaseProcess, PROC, DATA __all__ = ['WindowDays'] class WindowDays(_BaseProcess): def __init__(self, hours=[8, 20], **kwargs): """ Window data into days, with the default behaviour to take the hours of most likely wakefulness Parameters ---------- hours : list-like of int Hours to include in the windowed data. Default is 8 to 20, which excludes the night from the detection of sit-to-stand transfers. """ super().__init__(**kwargs) self._hours = hours def _call(self): utime = self.data['Sensors']['Lumbar']['Unix Time'] # get the first timepoint to know which day to start and end with time_sdt = udatetime.utcfromtimestamp(utime[0]) time_edt = udatetime.utcfromtimestamp(utime[-1]) n_days = (time_edt.date() - time_sdt.date()).days if time_edt.hour > self._hours[0]: n_days += 1 # set the start and end hours for the first day day_start = time_sdt.replace(hour=self._hours[0], minute=0, second=0, microsecond=0) day_end = time_sdt.replace(hour=self._hours[1], minute=0, second=0, microsecond=0) iend = 10 # set so can reference in the i=0 loop for i in range(n_days): istart = argmin(abs(utime[iend-10:] - day_start.timestamp())) + iend - 10 iend = argmin(abs(utime[istart:] - day_end.timestamp())) + istart + 1 self.data = (PROC.format(day_n=i+1, value='Indices'), array([istart, iend])) day_start += datetime.timedelta(days=1) day_end += datetime.timedelta(days=1)
the-stack_0_15157
import logging from PyQt5 import QtCore, QtGui, QtWidgets from hackedit.app import settings from hackedit.app.forms import dlg_preferences_ui from hackedit.app.widgets import preference_pages from hackedit.api import system def _logger(): return logging.getLogger(__name__) class DlgPreferences(QtWidgets.QDialog): _dlg = None closed = QtCore.pyqtSignal() color_highlight_background = None color_highlight_text = None def __init__(self, parent, app): super().__init__(parent) if DlgPreferences.color_highlight_background is None: DlgPreferences.color_highlight_background = \ self.palette().color(QtGui.QPalette.Highlight).name() if DlgPreferences.color_highlight_text is None: DlgPreferences.color_highlight_text = self.palette().color( QtGui.QPalette.HighlightedText).name() self.app = app self._ui = dlg_preferences_ui.Ui_Dialog() self._ui.setupUi(self) self._connect_slots() # force reload of settings settings.load() self._setup_builtin_pages() self._setup_editor_pages() self._setup_plugin_pages() self._ui.categories.sortByColumn(0, QtCore.Qt.AscendingOrder) self._ui.categories.expandAll() self.restore_state() btns = self._ui.buttons btns.button(btns.Reset).setToolTip( _('Reset changes made to the current page.')) btns.button(btns.RestoreDefaults).setToolTip( _('Restore factory defaults for the current page.')) btns.button(btns.Apply).setToolTip( _('Apply changes but keep dialog open.')) btns.button(btns.Ok).setToolTip( _('Apply changes and close dialog.')) btns.button(btns.Cancel).setToolTip( _('Close dialog and cancel any changes.')) self._ui.pages.setContentsMargins(0, 0, 0, 0) def closeEvent(self, event): super().closeEvent(event) self.closed.emit() @staticmethod def edit_preferences(parent, app): QtWidgets.qApp.setOverrideCursor(QtCore.Qt.WaitCursor) dlg = DlgPreferences(parent, app) dlg.restore_state() QtWidgets.qApp.restoreOverrideCursor() if system.DARWIN: dlg.showMaximized() else: dlg.show() dlg.exec_() def goto_page(self, page_name): def get_page(): for i in range(self._ui.categories.topLevelItemCount()): item = self._ui.categories.topLevelItem(i) if item.text(0) == page_name: return item for j in range(item.childCount()): child_item = item.child(j) if child_item.text(0) == page_name: return child_item return None item = get_page() self._ui.categories.setCurrentItem(item) def _find_item_by_index(self, index): for i in range(self._ui.categories.topLevelItemCount()): item = self._ui.categories.topLevelItem(i) idx = item.data(0, QtCore.Qt.UserRole) if idx == index: return item assert isinstance(item, QtWidgets.QTreeWidgetItem) for j in range(item.childCount()): child_item = item.child(j) idx = child_item.data(0, QtCore.Qt.UserRole) if idx == index: return child_item return None def _on_item_activated(self, item): index = item.data(0, QtCore.Qt.UserRole) text = item.text(0) if item.parent() is not None: text = '%s - %s' % (item.parent().text(0), text) self._ui.label_title.setText(text) self._ui.label_title.setStyleSheet('''background-color: %s; color: %s; padding: 10px; border-radius:3px;''' % (DlgPreferences.color_highlight_background, DlgPreferences.color_highlight_text)) self._ui.pages.setCurrentIndex(index) w = self._ui.pages.currentWidget() buttons = self._ui.buttons buttons.button(buttons.Reset).setVisible(w.can_reset) buttons.button(buttons.RestoreDefaults).setVisible( w.can_restore_defaults) buttons.button(buttons.Apply).setVisible(w.can_apply) def _reset(self): self._ui.pages.currentWidget().reset() def _restore_defaults(self): QtWidgets.qApp.setOverrideCursor(QtCore.Qt.WaitCursor) self._ui.pages.currentWidget().restore_defaults() self._reset() QtWidgets.qApp.restoreOverrideCursor() for i in range(self._ui.pages.count()): page = self._ui.pages.widget(i) page.save() def _apply(self): # save all settings QtWidgets.qApp.setOverrideCursor(QtCore.Qt.WaitCursor) try: for i in range(self._ui.pages.count()): page = self._ui.pages.widget(i) page.save() self.app.apply_preferences() for i in range(self._ui.pages.count()): page = self._ui.pages.widget(i) page.reset() finally: QtWidgets.qApp.restoreOverrideCursor() def restore_state(self): index = int(QtCore.QSettings().value( '_cache/preferences_page_index', 0)) item = self._find_item_by_index(index) self._ui.categories.setCurrentItem(item) def _setup_builtin_pages(self): env = preference_pages.Environment() self._add_page(env) self._add_page(preference_pages.Editor()) self._add_page(preference_pages.Behaviour()) colors = preference_pages.EditorColors() env.colors = colors self._add_page(colors) self._add_page(preference_pages.EditorDisplay()) self._add_page(preference_pages.Indexing()) self._add_page(preference_pages.Mimetypes()) self._add_page(preference_pages.Notifications()) self._add_page(preference_pages.Shortcuts()) self._add_page(preference_pages.Templates()) self._add_page(preference_pages.Workspaces()) def _setup_plugin_pages(self): pages = [] for p in self.app.plugin_manager.preferences_page_plugins: pages.append(p.get_preferences_page()) for p in sorted(pages, key=lambda x: x.category is not None): self._add_page(p) pages[:] = [] for p in self.app.plugin_manager.workspace_plugins.values(): page = p.get_preferences_page() if page: pages.append(page) for p in sorted(pages, key=lambda x: x.category is not None): self._add_page(p) def _setup_editor_pages(self): for p in self.app.plugin_manager.editor_plugins: p = p.get_specific_preferences_page() if p: p.category = _('Editor') self._add_page(p) def _connect_slots(self): self._ui.categories.currentItemChanged.connect( self._on_item_activated) self._ui.buttons.button(self._ui.buttons.Reset).clicked.connect( self._reset) bt_restore_defaults = self._ui.buttons.button( self._ui.buttons.RestoreDefaults) bt_restore_defaults.clicked.connect(self._restore_defaults) self._ui.buttons.button(self._ui.buttons.Apply).clicked.connect( self._apply) def accept(self): self._apply() QtCore.QSettings().setValue( '_cache/preferences_page_index', self._ui.pages.currentIndex()) super().accept() def reject(self): QtCore.QSettings().setValue( '_cache/preferences_page_index', self._ui.pages.currentIndex()) super().reject() def _add_page(self, widget): """ Adds a settings page to the dialog :param widget: page widget :type widget: hackedit.api.widgets.PreferencePage """ if widget is None: return widget.setContentsMargins(0, 0, 0, 0) index = self._ui.pages.count() self._ui.pages.addWidget(widget) item = QtWidgets.QTreeWidgetItem() item.setText(0, widget.name) if widget.icon is not None: item.setIcon(0, widget.icon) item.setData(0, QtCore.Qt.UserRole, index) parent = None if widget.category: parent = self._ui.categories.findItems( widget.category, QtCore.Qt.MatchExactly, 0) if parent: parent = parent[0] else: print('parent not found', widget.category) if parent: parent.addChild(item) else: self._ui.categories.addTopLevelItem(item) widget.app = self.app widget.reset() def keyPressEvent(self, ev): if ev.key() == QtCore.Qt.Key_Enter or \ ev.key() == QtCore.Qt.Key_Return: return super().keyPressEvent(ev)
the-stack_0_15158
import urllib.request as urlr import urllib.parse as urlp import urllib.error as urle import http.cookiejar as ck import pickle as pk import re import zlib import time import random as r from datetime import datetime, timedelta import os from lxml import etree import tkinter.messagebox from tkinter import * def get_Pkls(path): if os.path.exists(path+'userdata.pkl'): with open(path+'userdata.pkl', 'rb') as f1: user_data = pk.load(f1) else: user_data = dict() with open(path+'headers.pkl', 'rb') as f2: head = pk.load(f2) with open(path+'urls.pkl', 'rb') as f3: url = pk.load(f3) return (user_data, head, url) def gzip_decode(rsp,code='utf-8'): if rsp != None: content = rsp.read() gzipped = rsp.headers.get('Content-Encoding') if gzipped: html = zlib.decompress(content, zlib.MAX_WBITS | 32).decode(code,errors='ignore') else: html = content.decode(code) return html return '' def get_FormHash(html): tgt = re.search(r'name="formhash" value="(.+?)"',html) if tgt: return tgt.group(1) return '' def get_loginhash(html): tgt = re.search(r'<div id="main_messaqge_(.+?)">',html) if tgt: return tgt.group(1) return '' def set_pgvs(): curMs = datetime.utcnow().second pgv_ssid = "s" + str( (round(r.random() * 2147483647) * curMs) % 10000000000 ) pgv_pvi = (round(r.random() * 2147483647) * curMs) % 10000000000 return (pgv_ssid, pgv_pvi) class WebService: def __init__(self, path): self.cookie_name = 'cookie.txt' self.code = 'utf-8' self.path = path self.userdata, self.headers, self.urls = get_Pkls(self.path) self.init_userdata() self.init_cookie() self.new_opener() self.error = False self.get_saylist() def init_userdata(self): if self.userdata.get('mission') == None: self.userdata['mission'] = True if self.userdata.get('autologin') == None: self.userdata['autologin'] = True def init_cookie(self): self.cookie = ck.LWPCookieJar(self.path + self.cookie_name) try: self.cookie.load(self.path + self.cookie_name, True, True) except FileNotFoundError: self.cookie.save(self.path + self.cookie_name, True, True) def save_cookie(self): self.cookie.save(self.path + self.cookie_name, True, True) def new_opener(self): self.opener = urlr.build_opener(urlr.HTTPCookieProcessor(self.cookie)) def get_prelogin_data(self): self.data = {} self.data['username'] = self.userdata['username'] self.data['password'] = self.userdata['password'] self.data['loginfield'] = 'username' self.data['cookietime'] = '2592000' self.data['quickforward'] = 'yes' self.data['handlekey'] = 'ls' self.post_data = urlp.urlencode(self.data).encode(self.code) def get_response(self, url, data=None, headers=None): temp_headers = self.headers if headers==None else headers if data: req = urlr.Request(url, data, temp_headers) else: req = urlr.Request(url, headers=temp_headers) try: response = self.opener.open(req) except urle.URLError as e: if hasattr(e,'reason'): print('We failed to reach a server.') print('Reason: ', e.reason) prompt = 'We failed to reach a server.\nReason: ' + str(e.reason) elif hasattr(e, 'code'): print('The server could\' fulfill the request.') print('Error code: ', e.code) prompt = 'The server could\' fulfill the request.\nError code: ' + str(e.code) tkinter.messagebox.showerror('出错啦!', prompt) response = None except ConnectionResetError as e: print(e) tkinter.messagebox.showerror('出错啦!', e) response = None finally: return response def get_Verify_img(self): os.chdir(self.path) response = self.get_response(self.urls['code_url']) if response: img = response.read() with open('code.png', 'wb') as f: f.write(img) os.chdir(os.pardir) def get_login_data(self, code): self.data.pop('quickforward') self.data.pop('handlekey') self.data['formhash'] = get_FormHash(self.html) self.data['tsdm_verify'] = code#获取Entry值 self.data['answer'] = '' self.data['questionid'] = '0' self.data['referer'] = 'https://www.tsdm39.net/forum.php' self.post_data = urlp.urlencode(self.data).encode(self.code) def add_cookie(self, name, value): temp_cookie = ck.Cookie( version=0, name=name, value=value, port=None, port_specified=False, domain=".tsdm39.net", domain_specified=True, domain_initial_dot=False, path="/", path_specified=True, secure=False, expires=None, discard=False, comment=None, comment_url=None, rest={} ) self.cookie.set_cookie(temp_cookie) def get_pgv_cookie(self): os.chdir(self.path) if os.path.exists('pgv.txt'): with open('pgv.txt') as f: pgv_str = f.read() tgt = re.search(r'pgv_pvi=(.+); pgv_info=(.+)', pgv_str) self.add_cookie('pgv_pvi', tgt.group(1)) self.add_cookie('pgv_info', tgt.group(2)) si = re.search(r'ssi=(.+)', tgt.group(2)).group(1) r3 = int(r.random() * 450) + 350 url = 'http://pingtcss.qq.com/pingd?dm=www.tsdm39.net&url=/forum.php&arg=-&rdm=-&rurl=-&adt=-&rarg=-&pvi=' + tgt.group(1) +'&si=' + si + '&ui=0&ty=1&rt=forum&pn=1&qq=000&r2=8480046&scr=1366x768&scl=24-bit&lg=zh-cn&jv=0&pf=Win32&tz=-8&fl=26.0%20r0&ct=-&ext=bc=0;adid=&r3=' + str(r3) self.get_response(url) else: pgv_ssid, pgv_pvi = set_pgvs() r3 = int(r.random() * 450) + 350 url = 'http://pingtcss.qq.com/pingd?dm=www.tsdm39.net&url=/forum.php&arg=-&rdm=-&rurl=-&adt=-&rarg=-&pvi=' + str(pgv_pvi) +'&si=' + str(pgv_ssid) + '&ui=0&ty=1&rt=forum&pn=1&qq=000&r2=8480046&scr=1366x768&scl=24-bit&lg=zh-cn&jv=0&pf=Win32&tz=-8&fl=26.0%20r0&ct=-&ext=bc=0;adid=&r3=' + str(r3) self.get_response(url) pgv_str = 'pgv_pvi=' + str(pgv_pvi) +'; pgv_info=ssi=' + str(pgv_ssid) with open('pgv.txt', 'wt') as f: f.write(pgv_str) self.add_cookie('pgv_pvi',str(pgv_pvi)) self.add_cookie('pgv_info','ssi=' + str(pgv_ssid)) os.chdir(os.pardir) def autoLogin(self): response = self.get_response(self.urls['first_url']) self.html = gzip_decode(response) return re.search(r'title="访问我的空间">(.+)</a>',self.html) def is_login(self, html): return re.search(self.userdata['username'], html) def get_enter_url(self, account, passwd): self.userdata['username'] = account self.userdata['password'] = passwd self.get_prelogin_data() response = self.get_response(self.urls['login_url'], self.post_data) self.save_cookie() self.html = gzip_decode(response) self.urls['enter_url'] = self.urls['enter_url_start'] + get_loginhash(self.html) + self.urls['enter_url_end'] self.get_Verify_img() def save_userdata(self): with open(self.path + 'userdata.pkl', 'wb') as f: pk.dump(self.userdata, f) def get_author_image(self): html = etree.HTML(self.html) src = html.xpath('//div[@id="um"]/div[@class="avt y"]/a/img/@data-original')[0] rsp = self.get_response(src) if rsp: img = rsp.read() with open(self.path+'author.jpg','wb') as f: f.write(img) def get_saylist(self): if os.path.exists(self.path+'saylist.txt'): self.saylist = [] with open(self.path+'saylist.txt') as f: for each in f: each = each.strip() if each: self.saylist.append(each) else: prompt = '天使奏赛高!!!\n真白赛高~~~\n日常签到。。。\n' self.saylist = ['天使奏赛高!!!','真白赛高~~~','日常签到。。。'] with open(self.path+'saylist.txt' ,'wt') as f: f.write(prompt) def get_sign_data(self): rsp = self.get_response(self.urls['to_sign_url']) self.html = gzip_decode(rsp) sign_data = {} sign_data['todaysay'] = r.choice(self.saylist) sign_data['qdxq'] = 'kx' sign_data['qdmode'] = '1' sign_data['formhash'] = get_FormHash(self.html) sign_data['fastreply'] = '1' self.post_data = urlp.urlencode(sign_data).encode(self.code) def do_sign(self): rsp = self.get_response(self.urls['sign_url'], self.post_data) self.save_cookie() self.html = gzip_decode(rsp) rand_money = re.findall(r'恭喜你签到成功!(.+?)</div>', self.html) signed = re.search(r'您今日已经签到', self.html) if rand_money: return ('签到成功!%s' % rand_money[0]) elif signed: return '您今日已经签到,请明天再来!' else: return None def pre_mission(self): rsp = self.get_response(self.urls['to_mission_url']) self.html = gzip_decode(rsp) return self.is_login(self.html) def do_mission(self): mission_data = {'act': 'clickad'} self.post_data = urlp.urlencode(mission_data).encode(self.code) rsp = self.get_response(self.urls['mission_url'], self.post_data) self.html = gzip_decode(rsp) wait = re.search(r'您需要等待(.+)后即可进行。',self.html) time.sleep(r.randint(2,5)) if wait: return wait.group(1) else: for i in range(5): rsp = self.get_response(self.urls['mission_url'], self.post_data) time.sleep(r.randint(2,5)) mission_data['act'] = 'getcre' self.post_data = urlp.urlencode(mission_data).encode(self.code) rsp = self.get_response(self.urls['mission_url'],self.post_data) self.save_cookie() self.html = gzip_decode(rsp) self.mission_money = re.search(r'恭喜,您已经(成功领取了奖励天使币.+)<br />(每间隔.+可进行一次)。',self.html) fail = re.search(r'不要作弊哦,重新进行游戏吧!',self.html) if fail: return 'fail' return None class Logs: def __init__(self, path=os.curdir, filename='logs.pkl'): self.logname = filename self.path = path self.init_logs() def init_logs(self): if os.path.exists(self.path + self.logname): with open(self.path + self.logname, 'rb') as f: self.logs = pk.load(f) else: self.logs = dict() def save_logs(self): with open(self.path + self.logname, 'wb') as f: pk.dump(self.logs, f) def log2file(self, content): prompt = self.date2str(self.now())+content+'\n' if os.path.exists(self.path+'logs.txt'): with open(self.path+'logs.txt', 'at') as f: f.write(prompt) else: with open(self.path+'logs.txt', 'wt') as f: f.write(prompt) def datelist2str(self, datelist): return (str(datelist[0])+'年'+str(datelist[1])+'月'+str(datelist[2])+'日<-'+str(datelist[3])+':'+str(datelist[4])+':'+str(datelist[5])+'->:') def date2str(self, date): return (str(date.year)+'年'+str(date.month)+'月'+str(date.day)+'日<-'+str(date.hour)+':'+str(date.minute)+':'+str(date.second)+'->:') def update_log(self, name, time=datetime.now(), save=True): self.logs[name] = self.date2list(time) if save: self.save_logs() def now(self): return datetime.now() def dt_list2sec(self, datelist2, datelist1): dt = self.list2date(datelist2) - self.list2date(datelist1) return dt.seconds def date2list(self, date): datelist = [] datelist.append(date.year) datelist.append(date.month) datelist.append(date.day) datelist.append(date.hour) datelist.append(date.minute) datelist.append(date.second) return datelist def list2date(self, datelist): return datetime(datelist[0],datelist[1],datelist[2],datelist[3],datelist[4],datelist[5]) def sign_avaliable(self): if self.logs.get('sign'): dt = self.now() - self.list2date(self.logs['sign']) if (self.now().day - self.logs['sign'][2] >= 1) or (dt.seconds > 24*60*60): return True else: return False return True def mission_avaliable(self): if self.logs.get('mission'): delta = self.now() - self.list2date(self.logs['mission']) dt = 6*60*60 - delta.seconds if dt > 0: return dt return True def get_missionedtime(self, dtlist): dt = timedelta(hours=6) - timedelta(hours=dtlist[0], minutes=dtlist[1], seconds=dtlist[2]) self.update_log('mission', self.now() - dt)
the-stack_0_15160
"""Provides macros for working with yoga library.""" YOGA_ROOTS = ["//..."] JAVA_TARGET = "//java:java" INFER_ANNOTATIONS_TARGET = "//lib/infer-annotations:infer-annotations" JSR_305_TARGET = "//lib/jsr-305:jsr-305" JUNIT_TARGET = "//lib/junit:junit" PROGRUARD_ANNOTATIONS_TARGET = "//java/proguard-annotations/src/main/java/com/facebook/proguard/annotations:annotations" SOLOADER_TARGET = "//lib/soloader:soloader" GTEST_TARGET = "//lib/gtest:gtest" JNI_TARGET = "//lib/jni:jni" FBJNI_TARGET = "//lib/fb:fbjni" FBJNI_JAVA_TARGET = "//lib/fb/src/main/java/com/facebook/jni:jni" APPCOMPAT_TARGET = "//lib/appcompat:appcompat" APPLE = "" ANDROID = "" ANDROID_SUPPORT_TARGET = "//lib/android-support:android-support" ANDROID_TARGET = "//android:android" ANDROID_JAVA_TARGET = "//android/src/main/java/com/facebook/yoga/android:android" ANDROID_RES_TARGET = "//android:res" ANDROID_SAMPLE_JAVA_TARGET = "//android/sample/java/com/facebook/samples/yoga:yoga" ANDROID_SAMPLE_RES_TARGET = "//android/sample:res" CXX_LIBRARY_WHITELIST = [ "//:yoga", "//lib/fb:fbjni", "//java:jni", ] BASE_COMPILER_FLAGS = [ "-fno-omit-frame-pointer", "-fexceptions", "-Wall", "-Werror", "-O3", "-ffast-math", ] LIBRARY_COMPILER_FLAGS = BASE_COMPILER_FLAGS + [ "-fPIC", ] def _paths_join(path, *others): """Joins one or more path components.""" result = path for p in others: if p.startswith("/"): # absolute result = p elif not result or result.endswith("/"): result += p else: result += "/" + p return result def subdir_glob(glob_specs, exclude = None, prefix = ""): """Returns a dict of sub-directory relative paths to full paths. The subdir_glob() function is useful for defining header maps for C/C++ libraries which should be relative the given sub-directory. Given a list of tuples, the form of (relative-sub-directory, glob-pattern), it returns a dict of sub-directory relative paths to full paths. Please refer to native.glob() for explanations and examples of the pattern. Args: glob_specs: The array of tuples in form of (relative-sub-directory, glob-pattern inside relative-sub-directory). type: List[Tuple[str, str]] exclude: A list of patterns to identify files that should be removed from the set specified by the first argument. Defaults to []. type: Optional[List[str]] prefix: If is not None, prepends it to each key in the dictionary. Defaults to None. type: Optional[str] Returns: A dict of sub-directory relative paths to full paths. """ if exclude == None: exclude = [] results = [] for dirpath, glob_pattern in glob_specs: results.append( _single_subdir_glob(dirpath, glob_pattern, exclude, prefix), ) return _merge_maps(*results) def _merge_maps(*file_maps): result = {} for file_map in file_maps: for key in file_map: if key in result and result[key] != file_map[key]: fail( "Conflicting files in file search paths. " + "\"%s\" maps to both \"%s\" and \"%s\"." % (key, result[key], file_map[key]), ) result[key] = file_map[key] return result def _single_subdir_glob(dirpath, glob_pattern, exclude = None, prefix = None): if exclude == None: exclude = [] results = {} files = native.glob([_paths_join(dirpath, glob_pattern)], exclude = exclude) for f in files: if dirpath: key = f[len(dirpath) + 1:] else: key = f if prefix: key = _paths_join(prefix, key) results[key] = f return results def yoga_dep(dep): return "//" + dep def yoga_android_aar(*args, **kwargs): native.android_aar(*args, **kwargs) def yoga_android_binary(*args, **kwargs): native.android_binary(*args, **kwargs) def yoga_android_library(*args, **kwargs): native.android_library(*args, **kwargs) def yoga_android_resource(*args, **kwargs): native.android_resource(*args, **kwargs) def yoga_apple_library(*args, **kwargs): native.apple_library(*args, **kwargs) def yoga_apple_test(*args, **kwargs): native.apple_test(*args, **kwargs) def yoga_cxx_binary(*args, **kwargs): kwargs.pop("platforms", None) native.cxx_binary(*args, **kwargs) def yoga_cxx_library(*args, **kwargs): # Currently unused kwargs.pop("platforms", None) native.cxx_library(*args, **kwargs) def yoga_cxx_test(*args, **kwargs): native.cxx_test(*args, **kwargs) def yoga_java_binary(*args, **kwargs): native.java_binary(*args, **kwargs) def yoga_java_library(*args, **kwargs): native.java_library(*args, **kwargs) def yoga_java_test(*args, **kwargs): native.java_test(*args, **kwargs) def yoga_prebuilt_cxx_library(*args, **kwargs): native.prebuilt_cxx_library(*args, **kwargs) def yoga_prebuilt_jar(*args, **kwargs): native.prebuilt_jar(*args, **kwargs) def is_apple_platform(): return True def yoga_apple_binary(): if is_apple_platform(): yoganet_ios_srcs = [] for arch in [ "iphonesimulator-x86_64", "iphoneos-arm64", ]: name = "yoganet-" + arch yoganet_ios_srcs.append(":" + name) native.genrule( name = name, srcs = [ yoga_dep(":yogaApple#%s,static" % arch), yoga_dep("YogaKit:YogaKitApple#%s,static" % arch), yoga_dep("csharp:yoganetApple#%s,static" % arch), ], out = "libyoga-%s.a" % arch, cmd = "libtool -static -o $OUT $SRCS", visibility = [yoga_dep("csharp:yoganet-ios")], ) native.genrule( name = "yoganet-ios", srcs = yoganet_ios_srcs, out = "libyoga.a", cmd = "lipo $SRCS -create -output $OUT", visibility = ["PUBLIC"], ) yoganet_macosx_target = "csharp:yoganetAppleMac#macosx-%s,dynamic" native.genrule( name = "yoganet-macosx", srcs = [ yoga_dep(yoganet_macosx_target % "x86_64"), ], out = "libyoga.dylib", cmd = "lipo $SRCS -create -output $OUT", visibility = ["PUBLIC"], )
the-stack_0_15161
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. from botbuilder.core import CardFactory, MessageFactory from botbuilder.dialogs import ( ComponentDialog, DialogSet, DialogTurnStatus, WaterfallDialog, WaterfallStepContext, ) from botbuilder.dialogs.prompts import TextPrompt, PromptOptions from botbuilder.schema import ( ActionTypes, Attachment, AnimationCard, AudioCard, HeroCard, VideoCard, ReceiptCard, SigninCard, ThumbnailCard, MediaUrl, CardAction, CardImage, ThumbnailUrl, Fact, ReceiptItem, ) from .resources.adaptive_card_example import ADAPTIVE_CARD_CONTENT from helpers.activity_helper import create_activity_reply MAIN_WATERFALL_DIALOG = "mainWaterfallDialog" class MainDialog(ComponentDialog): def __init__(self): super().__init__("MainDialog") # Define the main dialog and its related components. self.add_dialog(TextPrompt("TextPrompt")) self.add_dialog( WaterfallDialog( MAIN_WATERFALL_DIALOG, [self.choice_card_step, self.show_card_step] ) ) # The initial child Dialog to run. self.initial_dialog_id = MAIN_WATERFALL_DIALOG """ 1. Prompts the user if the user is not in the middle of a dialog. 2. Re-prompts the user when an invalid input is received. """ async def choice_card_step(self, step_context: WaterfallStepContext): menu_text = ( "Which card would you like to see?\n" "(1) Adaptive Card\n" "(2) Animation Card\n" "(3) Audio Card\n" "(4) Hero Card\n" "(5) Receipt Card\n" "(6) Signin Card\n" "(7) Thumbnail Card\n" "(8) Video Card\n" "(9) All Cards" ) # Prompt the user with the configured PromptOptions. return await step_context.prompt( "TextPrompt", PromptOptions(prompt=MessageFactory.text(menu_text)) ) """ Send a Rich Card response to the user based on their choice. self method is only called when a valid prompt response is parsed from the user's response to the ChoicePrompt. """ async def show_card_step(self, step_context: WaterfallStepContext): response = step_context.result.lower().strip() choice_dict = { "1": [self.create_adaptive_card], "adaptive card": [self.create_adaptive_card], "2": [self.create_animation_card], "animation card": [self.create_animation_card], "3": [self.create_audio_card], "audio card": [self.create_audio_card], "4": [self.create_hero_card], "hero card": [self.create_hero_card], "5": [self.create_receipt_card], "receipt card": [self.create_receipt_card], "6": [self.create_signin_card], "signin card": [self.create_signin_card], "7": [self.create_thumbnail_card], "thumbnail card": [self.create_thumbnail_card], "8": [self.create_video_card], "video card": [self.create_video_card], "9": [ self.create_adaptive_card, self.create_animation_card, self.create_audio_card, self.create_hero_card, self.create_receipt_card, self.create_signin_card, self.create_thumbnail_card, self.create_video_card, ], "all cards": [ self.create_adaptive_card, self.create_animation_card, self.create_audio_card, self.create_hero_card, self.create_receipt_card, self.create_signin_card, self.create_thumbnail_card, self.create_video_card, ], } # Get the functions that will generate the card(s) for our response # If the stripped response from the user is not found in our choice_dict, default to None choice = choice_dict.get(response, None) # If the user's choice was not found, respond saying the bot didn't understand the user's response. if not choice: not_found = create_activity_reply( step_context.context.activity, "Sorry, I didn't understand that. :(" ) await step_context.context.send_activity(not_found) else: for func in choice: card = func() response = create_activity_reply( step_context.context.activity, "", "", [card] ) await step_context.context.send_activity(response) # Give the user instructions about what to do next await step_context.context.send_activity("Type anything to see another card.") return await step_context.end_dialog() """ ====================================== Helper functions used to create cards. ====================================== """ # Methods to generate cards def create_adaptive_card(self) -> Attachment: return CardFactory.adaptive_card(ADAPTIVE_CARD_CONTENT) def create_animation_card(self) -> Attachment: card = AnimationCard( media=[MediaUrl(url="http://i.giphy.com/Ki55RUbOV5njy.gif")], title="Microsoft Bot Framework", subtitle="Animation Card", ) return CardFactory.animation_card(card) def create_audio_card(self) -> Attachment: card = AudioCard( media=[MediaUrl(url="http://www.wavlist.com/movies/004/father.wav")], title="I am your father", subtitle="Star Wars: Episode V - The Empire Strikes Back", text="The Empire Strikes Back (also known as Star Wars: Episode V – The Empire Strikes " "Back) is a 1980 American epic space opera film directed by Irvin Kershner. Leigh " "Brackett and Lawrence Kasdan wrote the screenplay, with George Lucas writing the " "film's story and serving as executive producer. The second installment in the " "original Star Wars trilogy, it was produced by Gary Kurtz for Lucasfilm Ltd. and " "stars Mark Hamill, Harrison Ford, Carrie Fisher, Billy Dee Williams, Anthony " "Daniels, David Prowse, Kenny Baker, Peter Mayhew and Frank Oz.", image=ThumbnailUrl( url="https://upload.wikimedia.org/wikipedia/en/3/3c/SW_-_Empire_Strikes_Back.jpg" ), buttons=[ CardAction( type=ActionTypes.open_url, title="Read more", value="https://en.wikipedia.org/wiki/The_Empire_Strikes_Back", ) ], ) return CardFactory.audio_card(card) def create_hero_card(self) -> Attachment: card = HeroCard( title="", images=[ CardImage( url="https://sec.ch9.ms/ch9/7ff5/e07cfef0-aa3b-40bb-9baa-7c9ef8ff7ff5/buildreactionbotframework_960.jpg" ) ], buttons=[ CardAction( type=ActionTypes.open_url, title="Get Started", value="https://docs.microsoft.com/en-us/azure/bot-service/", ) ], ) return CardFactory.hero_card(card) def create_video_card(self) -> Attachment: card = VideoCard( title="Big Buck Bunny", subtitle="by the Blender Institute", text="Big Buck Bunny (code-named Peach) is a short computer-animated comedy film by the Blender " "Institute, part of the Blender Foundation. Like the foundation's previous film Elephants " "Dream, the film was made using Blender, a free software application for animation made by " "the same foundation. It was released as an open-source film under Creative Commons License " "Attribution 3.0.", media=[ MediaUrl( url="http://download.blender.org/peach/bigbuckbunny_movies/" "BigBuckBunny_320x180.mp4" ) ], buttons=[ CardAction( type=ActionTypes.open_url, title="Learn More", value="https://peach.blender.org/", ) ], ) return CardFactory.video_card(card) def create_receipt_card(self) -> Attachment: card = ReceiptCard( title="John Doe", facts=[ Fact(key="Order Number", value="1234"), Fact(key="Payment Method", value="VISA 5555-****"), ], items=[ ReceiptItem( title="Data Transfer", price="$38.45", quantity="368", image=CardImage( url="https://github.com/amido/azure-vector-icons/raw/master/" "renders/traffic-manager.png" ), ), ReceiptItem( title="App Service", price="$45.00", quantity="720", image=CardImage( url="https://github.com/amido/azure-vector-icons/raw/master/" "renders/cloud-service.png" ), ), ], tax="$7.50", total="90.95", buttons=[ CardAction( type=ActionTypes.open_url, title="More Information", value="https://azure.microsoft.com/en-us/pricing/details/bot-service/", ) ], ) return CardFactory.receipt_card(card) def create_signin_card(self) -> Attachment: card = SigninCard( text="BotFramework Sign-in Card", buttons=[ CardAction( type=ActionTypes.signin, title="Sign-in", value="https://login.microsoftonline.com", ) ], ) return CardFactory.signin_card(card) def create_thumbnail_card(self) -> Attachment: card = ThumbnailCard( title="BotFramework Thumbnail Card", subtitle="Your bots — wherever your users are talking", text="Build and connect intelligent bots to interact with your users naturally wherever" " they are, from text/sms to Skype, Slack, Office 365 mail and other popular services.", images=[ CardImage( url="https://sec.ch9.ms/ch9/7ff5/" "e07cfef0-aa3b-40bb-9baa-7c9ef8ff7ff5/" "buildreactionbotframework_960.jpg" ) ], buttons=[ CardAction( type=ActionTypes.open_url, title="Get Started", value="https://docs.microsoft.com/en-us/azure/bot-service/", ) ], ) return CardFactory.thumbnail_card(card)
the-stack_0_15162
# ParallelContext transfer functionality tests. # This uses nonsense models and values to verify transfer takes place correctly. import sys from io import StringIO from neuron import h #h.nrnmpi_init() pc = h.ParallelContext() rank = pc.id() nhost = pc.nhost() if nhost > 1: if rank == 0: print("nhost > 1 so calls to expect_error will return without testing.") def expect_error(callable, args, sec=None): """ Execute callable(args) and assert that it generated an error. If sec is not None, executes callable(args, sec=sec) Skips if nhost > 1 as all hoc_execerror end in MPI_ABORT Does not work well with nrniv launch since hoc_execerror messages do not pass through sys.stderr. """ if nhost > 1: return old_stderr = sys.stderr sys.stderr = my_stderr = StringIO() err = 0 try: if sec: callable(*args, sec=sec) else: callable(*args) except: err=1 errmes = my_stderr.getvalue() sys.stderr = old_stderr if errmes: errmes = errmes.splitlines()[0] errmes = errmes[(errmes.find(':')+2):] print("expect_error: %s" % errmes) if err == 0: print("expect_error: no err for %s%s" % (str(callable), str(args))) assert(err) # HGap POINT_PROCESS via ChannelBUilder. # Cannot use with extracellular. ks = h.KSChan(1) ks.name("HGap") ks.iv_type(0) ks.gmax(0) ks.erev(0) # Cell with enough nonsense stuff to exercise transfer possibilities. class Cell(): def __init__(self): self.soma = h.Section(name="soma", cell=self) self.soma.diam = 10. self.soma.L = 10. self.soma.insert("na_ion") # can use nai as transfer source # can use POINT_PROCESS range variable as targets self.ic = h.IClamp(self.soma(.5)) self.vc = h.SEClamp(self.soma(.5)) self.vc.rs = 1e9 # no voltage clamp current self.hgap = [None for _ in range(2)] # filled by mkgaps def run(): pc.setup_transfer() h.finitialize() h.fadvance() model = None # Global allows teardown of model def teardown(): """ destroy model """ global model pc.gid_clear() model = None def mkmodel(ncell): """ Destroy existing model and re-create with ncell Cells. """ global model if model: teardown() cells = {} for gid in range(rank, ncell, nhost): cells[gid] = Cell() pc.set_gid2node(gid, rank) pc.cell(gid, h.NetCon(cells[gid].soma(.5)._ref_v, None, sec=cells[gid].soma)) model = (cells, ncell) def mkgaps(gids): ''' For list of gids, full gap, right to left ''' gidset = set() for gid in gids: g = [gid, (gid + 1)%model[1]] sids = [i + 1000 for i in g] for i, j in enumerate([1,0]): if pc.gid_exists(g[i]): cell = model[0][g[i]] if g[i] not in gidset: # source var sid cannot be used twice pc.source_var(cell.soma(.5)._ref_v, sids[i], sec=cell.soma) gidset.add(g[i]) assert(cell.hgap[j] is None) cell.hgap[j] = h.HGap(cell.soma(.5)) pc.target_var(cell.hgap[j], cell.hgap[j]._ref_e, sids[j]) cell.hgap[j].gmax = 0.0001 def transfer1(amp1=True): """ round robin transfer v to ic.amp and vc.amp1, nai to vc.amp2 """ ncell = model[1] for gid, cell in model[0].items(): s = cell.soma srcsid = gid tarsid = (gid+1)%ncell pc.source_var(s(.5)._ref_v, srcsid, sec=s) pc.source_var(s(.5)._ref_nai, srcsid+ncell, sec=s) pc.target_var(cell.ic, cell.ic._ref_amp, tarsid) if amp1: pc.target_var(cell.vc, cell.vc._ref_amp1, tarsid) pc.target_var(cell.vc, cell.vc._ref_amp2, tarsid+ncell) def init_values(): """ Initialize sources to their sid values and targets to 0 This allows substantive test that source values make it to targets. """ ncell = model[1] for gid, c in model[0].items(): c.soma(.5).v = gid c.soma(.5).nai = gid+ncell c.ic.amp = 0 c.vc.amp1 = 0 c.vc.amp2 = 0 def check_values(): """ Verify that target values are equal to source values. """ values = {} for gid, c in model[0].items(): vi = c.soma(.5).v if (h.ismembrane("extracellular", sec = c.soma)): vi += c.soma(.5).vext[0] values[gid] = {'v':vi, 'nai':c.soma(.5).nai, 'amp':c.ic.amp, 'amp1':c.vc.amp1, 'amp2':c.vc.amp2} x = pc.py_gather(values, 0) if rank == 0: values = {} for v in x: values.update(v) ncell = len(values) for gid in values: v1 = values[gid] v2 = values[(gid+ncell-1)%ncell] assert(v1['v'] == v2['amp']) assert(v1['v'] == v2['amp1']) assert(v1['nai'] == v2['amp2']) def test_partrans(): # no transfer targets or sources. mkmodel(4) run() # invalid source or target sid. if 0 in model[0]: cell = model[0][0] s = cell.soma expect_error(pc.source_var, (s(.5)._ref_v, -1), sec=s) expect_error(pc.target_var, (cell.ic, cell.ic._ref_amp, -1)) # target with no source. if pc.gid_exists(1): cell = pc.gid2cell(1) pc.target_var(cell.ic, cell.ic._ref_amp, 1) expect_error(run, ()) mkmodel(4) # source with no target (not an error). if pc.gid_exists(1): cell = pc.gid2cell(1) pc.source_var(cell.soma(.5)._ref_v, 1, sec=cell.soma) run() # No point process for target if pc.gid_exists(1): cell = pc.gid2cell(1) pc.target_var(cell.vc._ref_amp3, 1) run() # ok pc.nthread(2) expect_error(run, ()) # Do not know the POINT_PROCESS target pc.nthread(1) # Wrong sec for source ref and wrong point process for target ref. mkmodel(1) if pc.gid_exists(0): cell = pc.gid2cell(0) sec = h.Section(name="dend") expect_error(pc.source_var, (cell.soma(.5)._ref_v, 1), sec=sec) expect_error(pc.source_var, (cell.soma(.5)._ref_nai, 2), sec=sec) del sec expect_error(pc.target_var,(cell.ic, cell.vc._ref_amp3, 1)) # source sid already in use expect_error(pc.source_var, (cell.soma(.5)._ref_nai, 1), sec=cell.soma) # partrans update: could not find parameter index # pv2node checks the parent mkmodel(1) s1 = h.Section(name="dend") s2 = h.Section(name="soma") ic = h.IClamp(s1(.5)) pc.source_var(s1(0)._ref_v, rank, sec=s1) pc.target_var(ic, ic._ref_amp, rank) run() assert(s1(0).v == ic.amp) ''' # but following changes the source node and things get screwed up # because of continuing to use a freed Node*. The solution is # beyond the scope of this pull request and would involve replacing # description in terms of Node* with (Section*, arc_position) s1.connect(s2(.5)) run() print(s1(0).v, ic.amp) assert(s1(0).v == ic.amp) ''' # non_vsrc_update property disappears from Node* s1.insert("pas") # not allowed to uninsert ions :( pc.source_var(s1(.5)._ref_e_pas, rank+10, sec=s1) pc.target_var(ic, ic._ref_delay, rank+10) run() assert(s1(.5).e_pas == ic.delay) s1.uninsert("pas") expect_error(run, ()) teardown() del ic, s1, s2 # missing setup_transfer mkmodel(4) transfer1() expect_error(h.finitialize, (-65,)) # round robin transfer v to ic.amp and vc.amp1, nai to vc.amp2 ncell = 5 mkmodel(ncell) transfer1() init_values() run() check_values() # nrnmpi_int_alltoallv_sparse h.nrn_sparse_partrans = 1 mkmodel(5) transfer1() init_values() run() check_values() h.nrn_sparse_partrans = 0 # impedance error (number of gap junction not equal to number of pc.transfer_var) imp = h.Impedance() if 0 in model[0]: imp.loc(model[0][0].soma(.5)) expect_error(imp.compute, (1, 1)) del imp # For impedance, pc.target_var requires that its first arg be a reference to the POINT_PROCESS" mkmodel(2) if pc.gid_exists(0): cell = pc.gid2cell(0) pc.source_var(cell.soma(.5)._ref_v, 1000, sec=cell.soma) cell.hgap[1] = h.HGap(cell.soma(.5)) pc.target_var(cell.hgap[1]._ref_e, 1001) if pc.gid_exists(1): cell = pc.gid2cell(1) pc.source_var(cell.soma(.5)._ref_v, 1001, sec=cell.soma) cell.hgap[0] = h.HGap(cell.soma(.5)) pc.target_var(cell.hgap[0]._ref_e, 1000) pc.setup_transfer() imp = h.Impedance() h.finitialize(-65) if pc.gid_exists(0): imp.loc(pc.gid2cell(0).soma(.5)) expect_error(imp.compute, (10, 1, 100)) del imp, cell # impedance ncell = 5 mkmodel(ncell) mkgaps(list(range(ncell-1))) pc.setup_transfer() imp = h.Impedance() h.finitialize(-65) if 0 in model[0]: imp.loc(model[0][0].soma(.5)) niter=imp.compute(10, 1, 100) if rank == 0: print("impedance iterations=%d"%niter) # tickle execution of target_ptr_update for one more line of coverage. if 0 in model[0]: model[0][0].hgap[1].loc(model[0][0].soma(0)) model[0][0].hgap[1].loc(model[0][0].soma(.5)) niter=imp.compute(10, 1, 100) del imp #CoreNEURON gap file generation mkmodel(ncell) transfer1() # following is a bit tricky and need some user help in the docs. # cannot be cache_efficient if general sparse matrix solver in effect. cvode = h.CVode() assert(cvode.use_mxb(0) == 0) assert(cvode.cache_efficient(1) == 1) pc.setup_transfer() h.finitialize(-65) pc.nrncore_write("tmp") # CoreNEURON: one thread empty of gaps mkmodel(1) transfer1() s = h.Section("dend") pc.set_gid2node(rank+10, rank) pc.cell(rank+10, h.NetCon(s(.5)._ref_v, None, sec=s)) pc.nthread(2) pc.setup_transfer() h.finitialize(-65) pc.nrncore_write("tmp") pc.nthread(1) teardown() del s # There are single thread circumstances where target POINT_PROCESS is needed s = h.Section("dend") pc.set_gid2node(rank, rank) pc.cell(rank, h.NetCon(s(.5)._ref_v, None, sec=s)) pc.source_var(s(.5)._ref_v, rank, sec=s) ic=h.IClamp(s(.5)) pc.target_var(ic._ref_amp, rank) pc.setup_transfer() expect_error(h.finitialize, (-65,)) teardown() del ic, s # threads mkmodel(ncell) transfer1() pc.nthread(2) init_values() run() check_values() pc.nthread(1) # extracellular means use v = vm+vext[0] for cell in model[0].values(): cell.soma.insert("extracellular") init_values() run() check_values() teardown() if __name__ == "__main__": test_partrans() pc.barrier() h.quit()
the-stack_0_15163
import argparse import sys sys.setrecursionlimit(100000) from interpreter import executeFunctions as executionFunctions from interpreter import imageFunctions as imageWrapper from GUI import main as GUIMain parser = argparse.ArgumentParser(description='Interprets a piet image') parser.add_argument("-f", "--file", required=True, type=str, help="complete filepath to a .png or .gif image") parser.add_argument("-v", "--verbose", action="store_true", help="Outputs number of steps to STDOUT") parser.add_argument("-g", "--graphical", action="store_true", help="Opens GUI with the file loaded") args = parser.parse_args() if not args.graphical: executionFunctions.interpret(imageWrapper.getImage(args.file)) if args.verbose: print("\nTotal steps: {}".format(executionFunctions.takeStep.counter)) else: app = GUIMain.GUI() app.setFileText(args.file) app.loadFile() app.run()
the-stack_0_15167
# -*- coding: utf-8 -*- """ TencentBlueKing is pleased to support the open source community by making 蓝鲸智云-用户管理(Bk-User) available. Copyright (C) 2017-2021 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from enum import auto from typing import Any, Callable, Dict, List import regex from bkuser_core.categories.constants import CategoryType from bkuser_core.categories.models import ProfileCategory from bkuser_core.common.enum import AutoLowerEnum from bkuser_core.departments.models import Department from bkuser_core.profiles.models import DynamicFieldInfo, Profile from django.utils.translation import ugettext_lazy as _ class IAMCallbackMethods(AutoLowerEnum): LIST_ATTR = auto() LIST_ATTR_VALUE = auto() LIST_INSTANCE = auto() FETCH_INSTANCE_INFO = auto() LIST_INSTANCE_BY_POLICY = auto() SEARCH_INSTANCE = auto() _choices_labels = ( (LIST_ATTR, "查询某个资源类型可用于配置权限的属性列表"), (LIST_ATTR_VALUE, "获取一个资源类型某个属性的值列表"), (LIST_INSTANCE, "根据过滤条件查询实例"), (FETCH_INSTANCE_INFO, "批量获取资源实例详情"), (LIST_INSTANCE_BY_POLICY, "根据策略表达式查询资源实例"), (SEARCH_INSTANCE, "搜索资源实例"), ) class PrincipalTypeEnum(AutoLowerEnum): USER = auto() class IAMAction(AutoLowerEnum): # 用户字段 MANAGE_FIELD = auto() VIEW_FIELD = auto() # 审计 VIEW_AUDIT = auto() # 目录相关 CREATE_LOCAL_CATEGORY = auto() CREATE_LDAP_CATEGORY = auto() CREATE_MAD_CATEGORY = auto() CREATE_CUSTOM_CATEGORY = auto() MANAGE_CATEGORY = auto() VIEW_CATEGORY = auto() # 部门 CREATE_ROOT_DEPARTMENT = auto() MANAGE_DEPARTMENT = auto() VIEW_DEPARTMENT = auto() @classmethod def get_choice_label(cls, action_id: "IAMAction") -> str: return { cls.MANAGE_FIELD: "用户字段管理", cls.VIEW_FIELD: "查看字段", cls.VIEW_AUDIT: "审计信息查看", cls.CREATE_LOCAL_CATEGORY: "本地用户目录新建", cls.CREATE_LDAP_CATEGORY: "LDAP目录新建", cls.CREATE_MAD_CATEGORY: "MAD目录新建", cls.CREATE_CUSTOM_CATEGORY: "自定义目录新建", cls.MANAGE_CATEGORY: "目录管理", cls.VIEW_CATEGORY: "查看目录", cls.CREATE_ROOT_DEPARTMENT: "根组织新建", cls.MANAGE_DEPARTMENT: "组织和成员管理", cls.VIEW_DEPARTMENT: "组织和成员查看", }[action_id] @classmethod def get_global_actions(cls) -> tuple: """不需要和任何资源绑定,只需要判断某人是否有某个操作的权限""" return ( cls.VIEW_AUDIT, cls.VIEW_FIELD, cls.MANAGE_FIELD, cls.CREATE_MAD_CATEGORY, cls.CREATE_LDAP_CATEGORY, cls.CREATE_LOCAL_CATEGORY, cls.CREATE_CUSTOM_CATEGORY, ) @classmethod def get_action_by_category_type(cls, category_type: str) -> "IAMAction": return { # type: ignore CategoryType.LOCAL.value: cls.CREATE_LOCAL_CATEGORY, CategoryType.LDAP.value: cls.CREATE_LDAP_CATEGORY, CategoryType.MAD.value: cls.CREATE_MAD_CATEGORY, }[category_type] @classmethod def is_global_action(cls, action_id: "IAMAction") -> bool: for i in cls.get_global_actions(): if action_id == i: return True return False @classmethod def get_related_resource_types(cls, action_id: "IAMAction") -> list: return { cls.MANAGE_CATEGORY: [ResourceType.CATEGORY], cls.VIEW_CATEGORY: [ResourceType.CATEGORY], cls.VIEW_DEPARTMENT: [ResourceType.DEPARTMENT], cls.MANAGE_DEPARTMENT: [ResourceType.DEPARTMENT], cls.CREATE_ROOT_DEPARTMENT: [ResourceType.CATEGORY], }[action_id] class ResourceType(AutoLowerEnum): FIELD = auto() CATEGORY = auto() DEPARTMENT = auto() PROFILE = auto() @classmethod def get_type_name(cls, resource_type: "ResourceType") -> str: return { cls.FIELD: _("用户字段"), cls.CATEGORY: _("用户目录"), cls.DEPARTMENT: _("组织"), cls.PROFILE: _("用户"), }[resource_type] @classmethod def get_by_model(cls, instance) -> "ResourceType": return { # type: ignore Department: cls.DEPARTMENT, ProfileCategory: cls.CATEGORY, DynamicFieldInfo: cls.FIELD, Profile: cls.PROFILE, }[type(instance)] @classmethod def get_attr_by_model(cls, instance, index: int) -> str: """通过 model instance 获取""" type_ = cls.get_by_model(instance) id_name_pair = cls.get_id_name_pair(type_) return getattr(instance, id_name_pair[index]) @classmethod def get_attributes_mapping(cls, instance) -> dict: """获取模型和权限中心属性对应""" def get_department_path_attribute(obj): start = f"/category,{obj.category_id}/" ancestor_ids = obj.get_ancestors(include_self=True).values_list("id", flat=True) for ancestor_id in ancestor_ids: start += f"department,{ancestor_id}/" return {"_bk_iam_path_": start} _map: Dict[Any, Callable] = { cls.DEPARTMENT: get_department_path_attribute, } try: return _map[cls.get_by_model(instance)](instance) except KeyError: return {} @classmethod def get_key_mapping(cls, resource_type: "ResourceType") -> dict: def parse_department_path(data): """解析 department path""" value = data["value"] field_map = {"department": "parent_id", "category": "category_id"} value_pattern = r"^\/((?P<resource_type>\w+),(?P<resource_id>\d+)\/)+" r = regex.match(value_pattern, value).capturesdict() r = list(zip(r["resource_type"], r["resource_id"])) the_last_of_path = r[-1] # 非叶子节点的策略,直接返回路径最后的 id 作为资源 id if "node_type" in data and data["node_type"] == "non-leaf": field_map["department"] = "id" return field_map[the_last_of_path[0]], int(the_last_of_path[1]) _map: Dict[Any, dict] = { cls.DEPARTMENT: { "department.id": "id", "department._bk_iam_path_": parse_department_path, }, cls.CATEGORY: {"category.id": "id"}, cls.FIELD: {"field.id": "name"}, cls.PROFILE: {}, } return _map[resource_type] @classmethod def get_id_name_pair(cls, resource_type: "ResourceType") -> tuple: """获取 id name 对""" _map: Dict[Any, tuple] = { cls.DEPARTMENT: ("id", "name"), cls.CATEGORY: ("id", "display_name"), cls.FIELD: ("id", "display_name"), cls.PROFILE: ("id", "username"), } return _map[resource_type] @classmethod def get_instance_resource_nodes(cls, instance: Any) -> list: """通过数据库实例获取依赖授权路径""" if not instance: return [] def get_parent_nodes(i: Department) -> List[dict]: """获取父路径的 resource nodes""" # 请求 callback 需要完整的资源路径 parents = i.get_ancestors(include_self=True) d_nodes = [{"type": cls.get_by_model(d).value, "id": d.pk, "name": d.name} for d in parents] category = ProfileCategory.objects.get(id=i.category_id) return [ {"type": cls.CATEGORY.value, "id": category.id, "name": category.display_name}, *d_nodes, ] special_map: Dict[Any, Callable] = { cls.DEPARTMENT: get_parent_nodes, } try: return special_map[cls.get_by_model(instance)](instance) except KeyError: return [ { "type": cls.get_by_model(instance).value, "id": instance.pk, "name": getattr( instance, cls.get_constants_by_model(instance, "get_id_name_pair")[1], ), } ] @classmethod def get_constants_by_model(cls, instance, target: str) -> Any: """通过数据模型实例来获取配置常量 :param instance: 数据模型实例 :param target: 目标方法 """ return getattr(cls, target)(cls.get_by_model(instance))
the-stack_0_15168
import socket sock = socket.socket(socket.AF_INET,socket.SOCK_STREAM) #绑定 sock.bind(("0.0.0.0",5566)) #监听 sock.listen(20) #接收 conn,addr = sock.accept(); print("address is :",addr) data = conn.recv(1024) print(data) msg = """HTTP/1.1 200 OK Content-Type:text/html <meta charset='utf-8'> <h1>人生苦短,我用python</h1> """ # 发送数据 conn.sendto(msg.encode("utf-8"),addr) conn.close() sock.close()
the-stack_0_15170
import cv2 import numpy as np import threading class Webcam2rgb(): def start(self, callback, cameraNumber=0, width = None, height = None, fps = None, directShow = False): self.callback = callback try: self.cam = cv2.VideoCapture(cameraNumber + cv2.CAP_DSHOW if directShow else cv2.CAP_ANY) if not self.cam.isOpened(): print('opening camera') self.cam.open(0) if width: self.cam.set(cv2.CAP_PROP_FRAME_WIDTH,width) if height: self.cam.set(cv2.CAP_PROP_FRAME_HEIGHT,height) if fps: self.cam.set(cv2.CAP_PROP_FPS, fps) self.running = True self.thread = threading.Thread(target = self.calc_BRG) self.thread.start() self.ret_val = True except: self.running = False self.ret_val = False def stop(self): self.running = False self.thread.join() def calc_BRG(self): while self.running: try: self.ret_val = False self.ret_val, img = self.cam.read() h, w, c = img.shape brg = img[int(h/2),int(w/2)] self.callback(self.ret_val,brg) except: self.running = False def cameraFs(self): return self.cam.get(cv2.CAP_PROP_FPS)
the-stack_0_15173
import random from raiden.constants import ABSENT_SECRET from raiden.settings import DEFAULT_WAIT_BEFORE_LOCK_REMOVAL from raiden.transfer import channel, routes from raiden.transfer.architecture import Event, TransitionResult from raiden.transfer.events import EventPaymentSentFailed, EventPaymentSentSuccess from raiden.transfer.identifiers import CANONICAL_IDENTIFIER_GLOBAL_QUEUE from raiden.transfer.mediated_transfer.events import ( EventRouteFailed, EventUnlockFailed, EventUnlockSuccess, SendLockedTransfer, SendSecretReveal, ) from raiden.transfer.mediated_transfer.state import ( InitiatorTransferState, TransferDescriptionWithSecretState, ) from raiden.transfer.mediated_transfer.state_change import ( ReceiveSecretRequest, ReceiveSecretReveal, ) from raiden.transfer.state import ( ChannelState, NettingChannelState, RouteState, message_identifier_from_prng, ) from raiden.transfer.state_change import Block, ContractReceiveSecretReveal, StateChange from raiden.transfer.utils import is_valid_secret_reveal from raiden.utils.typing import ( MYPY_ANNOTATION, Address, BlockExpiration, BlockNumber, ChannelID, Dict, List, MessageID, NodeNetworkStateMap, Optional, PaymentWithFeeAmount, Secret, SecretHash, ) def events_for_unlock_lock( initiator_state: InitiatorTransferState, channel_state: NettingChannelState, secret: Secret, secrethash: SecretHash, pseudo_random_generator: random.Random, ) -> List[Event]: """ Unlocks the lock offchain, and emits the events for the successful payment. """ # next hop learned the secret, unlock the token locally and send the # lock claim message to next hop transfer_description = initiator_state.transfer_description message_identifier = message_identifier_from_prng(pseudo_random_generator) unlock_lock = channel.send_unlock( channel_state=channel_state, message_identifier=message_identifier, payment_identifier=transfer_description.payment_identifier, secret=secret, secrethash=secrethash, ) payment_sent_success = EventPaymentSentSuccess( token_network_registry_address=channel_state.token_network_registry_address, token_network_address=channel_state.token_network_address, identifier=transfer_description.payment_identifier, amount=transfer_description.amount, target=transfer_description.target, secret=secret, route=initiator_state.route.route, ) unlock_success = EventUnlockSuccess( transfer_description.payment_identifier, transfer_description.secrethash ) return [unlock_lock, payment_sent_success, unlock_success] def handle_block( initiator_state: InitiatorTransferState, state_change: Block, channel_state: NettingChannelState, pseudo_random_generator: random.Random, ) -> TransitionResult[Optional[InitiatorTransferState]]: """ Checks if the lock has expired, and if it has sends a remove expired lock and emits the failing events. """ secrethash = initiator_state.transfer.lock.secrethash locked_lock = channel_state.our_state.secrethashes_to_lockedlocks.get(secrethash) if not locked_lock: if channel_state.partner_state.secrethashes_to_lockedlocks.get(secrethash): return TransitionResult(initiator_state, list()) else: # if lock is not in our or our partner's locked locks then the # task can go return TransitionResult(None, list()) lock_expiration_threshold = BlockExpiration( locked_lock.expiration + DEFAULT_WAIT_BEFORE_LOCK_REMOVAL ) lock_has_expired = channel.is_lock_expired( end_state=channel_state.our_state, lock=locked_lock, block_number=state_change.block_number, lock_expiration_threshold=lock_expiration_threshold, ) events: List[Event] = list() if lock_has_expired and initiator_state.transfer_state != "transfer_expired": is_channel_open = channel.get_status(channel_state) == ChannelState.STATE_OPENED if is_channel_open: expired_lock_events = channel.send_lock_expired( channel_state=channel_state, locked_lock=locked_lock, pseudo_random_generator=pseudo_random_generator, ) events.extend(expired_lock_events) if initiator_state.received_secret_request: reason = "bad secret request message from target" else: reason = "lock expired" transfer_description = initiator_state.transfer_description payment_identifier = transfer_description.payment_identifier # TODO: When we introduce multiple transfers per payment this needs to be # reconsidered. As we would want to try other routes once a route # has failed, and a transfer failing does not mean the entire payment # would have to fail. # Related issue: https://github.com/raiden-network/raiden/issues/2329 payment_failed = EventPaymentSentFailed( token_network_registry_address=transfer_description.token_network_registry_address, token_network_address=transfer_description.token_network_address, identifier=payment_identifier, target=transfer_description.target, reason=reason, ) route_failed = EventRouteFailed( secrethash=secrethash, route=initiator_state.route.route, token_network_address=transfer_description.token_network_address, ) unlock_failed = EventUnlockFailed( identifier=payment_identifier, secrethash=initiator_state.transfer_description.secrethash, reason=reason, ) lock_exists = channel.lock_exists_in_either_channel_side( channel_state=channel_state, secrethash=secrethash ) initiator_state.transfer_state = "transfer_expired" return TransitionResult( # If the lock is either in our state or partner state we keep the # task around to wait for the LockExpired messages to sync. # Check https://github.com/raiden-network/raiden/issues/3183 initiator_state if lock_exists else None, events + [payment_failed, route_failed, unlock_failed], ) else: return TransitionResult(initiator_state, events) def try_new_route( channelidentifiers_to_channels: Dict[ChannelID, NettingChannelState], nodeaddresses_to_networkstates: NodeNetworkStateMap, candidate_route_states: List[RouteState], transfer_description: TransferDescriptionWithSecretState, pseudo_random_generator: random.Random, block_number: BlockNumber, ) -> TransitionResult[Optional[InitiatorTransferState]]: initiator_state = None events: List[Event] = list() amount_with_fee: PaymentWithFeeAmount = PaymentWithFeeAmount( transfer_description.amount + transfer_description.allocated_fee ) channel_state = None route_state = None reachable_route_states = routes.filter_reachable_routes( candidate_route_states, nodeaddresses_to_networkstates ) for reachable_route_state in reachable_route_states: forward_channel_id = reachable_route_state.forward_channel_id candidate_channel_state = forward_channel_id and channelidentifiers_to_channels.get( forward_channel_id ) assert isinstance(candidate_channel_state, NettingChannelState) is_channel_usable = channel.is_channel_usable_for_new_transfer( channel_state=candidate_channel_state, transfer_amount=amount_with_fee, lock_timeout=transfer_description.locktimeout, ) if is_channel_usable: channel_state = candidate_channel_state route_state = reachable_route_state break if route_state is None: if not reachable_route_states: reason = "there is no route available" else: reason = "none of the available routes could be used" transfer_failed = EventPaymentSentFailed( token_network_registry_address=transfer_description.token_network_registry_address, token_network_address=transfer_description.token_network_address, identifier=transfer_description.payment_identifier, target=transfer_description.target, reason=reason, ) events.append(transfer_failed) initiator_state = None else: assert channel_state is not None message_identifier = message_identifier_from_prng(pseudo_random_generator) lockedtransfer_event = send_lockedtransfer( transfer_description=transfer_description, channel_state=channel_state, message_identifier=message_identifier, block_number=block_number, route_state=route_state, route_states=reachable_route_states, ) assert lockedtransfer_event initiator_state = InitiatorTransferState( route=route_state, transfer_description=transfer_description, channel_identifier=channel_state.identifier, transfer=lockedtransfer_event.transfer, ) events.append(lockedtransfer_event) return TransitionResult(initiator_state, events) def send_lockedtransfer( transfer_description: TransferDescriptionWithSecretState, channel_state: NettingChannelState, message_identifier: MessageID, block_number: BlockNumber, route_state: RouteState, route_states: List[RouteState], ) -> SendLockedTransfer: """ Create a mediated transfer using channel. """ assert channel_state.token_network_address == transfer_description.token_network_address lock_expiration = channel.get_safe_initial_expiration( block_number, channel_state.reveal_timeout, transfer_description.locktimeout ) # The payment amount and the fee amount must be included in the locked # amount, as a guarantee to the mediator that the fee will be claimable # on-chain. total_amount = PaymentWithFeeAmount( transfer_description.amount + transfer_description.allocated_fee ) lockedtransfer_event = channel.send_lockedtransfer( channel_state=channel_state, initiator=transfer_description.initiator, target=transfer_description.target, amount=total_amount, message_identifier=message_identifier, payment_identifier=transfer_description.payment_identifier, expiration=lock_expiration, secrethash=transfer_description.secrethash, route_states=routes.prune_route_table( route_states=route_states, selected_route=route_state ), ) return lockedtransfer_event def handle_secretrequest( initiator_state: InitiatorTransferState, state_change: ReceiveSecretRequest, channel_state: NettingChannelState, pseudo_random_generator: random.Random, ) -> TransitionResult[InitiatorTransferState]: is_message_from_target = ( state_change.sender == initiator_state.transfer_description.target and state_change.secrethash == initiator_state.transfer_description.secrethash and state_change.payment_identifier == initiator_state.transfer_description.payment_identifier ) lock = channel.get_lock( channel_state.our_state, initiator_state.transfer_description.secrethash ) # This should not ever happen. This task clears itself when the lock is # removed. assert lock is not None, "channel is does not have the transfer's lock" already_received_secret_request = initiator_state.received_secret_request # lock.amount includes the fees, transfer_description.amount is the actual # payment amount, for the transfer to be valid and the unlock allowed the # target must receive an amount between these values. is_valid_secretrequest = ( state_change.amount <= lock.amount and state_change.amount >= initiator_state.transfer_description.amount and state_change.expiration == lock.expiration and initiator_state.transfer_description.secret != ABSENT_SECRET ) if already_received_secret_request and is_message_from_target: # A secret request was received earlier, all subsequent are ignored # as it might be an attack iteration = TransitionResult(initiator_state, list()) elif is_valid_secretrequest and is_message_from_target: # Reveal the secret to the target node and wait for its confirmation. # At this point the transfer is not cancellable anymore as either the lock # timeouts or a secret reveal is received. # # Note: The target might be the first hop # message_identifier = message_identifier_from_prng(pseudo_random_generator) transfer_description = initiator_state.transfer_description recipient = transfer_description.target revealsecret = SendSecretReveal( recipient=Address(recipient), message_identifier=message_identifier, secret=transfer_description.secret, canonical_identifier=CANONICAL_IDENTIFIER_GLOBAL_QUEUE, ) initiator_state.transfer_state = "transfer_secret_revealed" initiator_state.received_secret_request = True iteration = TransitionResult(initiator_state, [revealsecret]) elif not is_valid_secretrequest and is_message_from_target: initiator_state.received_secret_request = True iteration = TransitionResult(initiator_state, list()) else: iteration = TransitionResult(initiator_state, list()) return iteration def handle_offchain_secretreveal( initiator_state: InitiatorTransferState, state_change: ReceiveSecretReveal, channel_state: NettingChannelState, pseudo_random_generator: random.Random, ) -> TransitionResult[Optional[InitiatorTransferState]]: """ Once the next hop proves it knows the secret, the initiator can unlock the mediated transfer. This will validate the secret, and if valid a new balance proof is sent to the next hop with the current lock removed from the pending locks and the transferred amount updated. """ iteration: TransitionResult[Optional[InitiatorTransferState]] valid_reveal = is_valid_secret_reveal( state_change=state_change, transfer_secrethash=initiator_state.transfer_description.secrethash, ) sent_by_partner = state_change.sender == channel_state.partner_state.address is_channel_open = channel.get_status(channel_state) == ChannelState.STATE_OPENED if valid_reveal and is_channel_open and sent_by_partner: events = events_for_unlock_lock( initiator_state=initiator_state, channel_state=channel_state, secret=state_change.secret, secrethash=state_change.secrethash, pseudo_random_generator=pseudo_random_generator, ) iteration = TransitionResult(None, events) else: events = list() iteration = TransitionResult(initiator_state, events) return iteration def handle_onchain_secretreveal( initiator_state: InitiatorTransferState, state_change: ContractReceiveSecretReveal, channel_state: NettingChannelState, pseudo_random_generator: random.Random, ) -> TransitionResult[Optional[InitiatorTransferState]]: """ When a secret is revealed on-chain all nodes learn the secret. This check the on-chain secret corresponds to the one used by the initiator, and if valid a new balance proof is sent to the next hop with the current lock removed from the pending locks and the transferred amount updated. """ iteration: TransitionResult[Optional[InitiatorTransferState]] secret = state_change.secret secrethash = initiator_state.transfer_description.secrethash is_valid_secret = is_valid_secret_reveal( state_change=state_change, transfer_secrethash=secrethash ) is_channel_open = channel.get_status(channel_state) == ChannelState.STATE_OPENED is_lock_expired = state_change.block_number > initiator_state.transfer.lock.expiration is_lock_unlocked = is_valid_secret and not is_lock_expired if is_lock_unlocked: channel.register_onchain_secret( channel_state=channel_state, secret=secret, secrethash=secrethash, secret_reveal_block_number=state_change.block_number, ) if is_lock_unlocked and is_channel_open: events = events_for_unlock_lock( initiator_state, channel_state, state_change.secret, state_change.secrethash, pseudo_random_generator, ) iteration = TransitionResult(None, events) else: events = list() iteration = TransitionResult(initiator_state, events) return iteration def state_transition( initiator_state: InitiatorTransferState, state_change: StateChange, channel_state: NettingChannelState, pseudo_random_generator: random.Random, ) -> TransitionResult[Optional[InitiatorTransferState]]: if type(state_change) == Block: assert isinstance(state_change, Block), MYPY_ANNOTATION iteration = handle_block( initiator_state, state_change, channel_state, pseudo_random_generator ) elif type(state_change) == ReceiveSecretRequest: assert isinstance(state_change, ReceiveSecretRequest), MYPY_ANNOTATION iteration = handle_secretrequest( initiator_state, state_change, channel_state, pseudo_random_generator ) elif type(state_change) == ReceiveSecretReveal: assert isinstance(state_change, ReceiveSecretReveal), MYPY_ANNOTATION iteration = handle_offchain_secretreveal( initiator_state, state_change, channel_state, pseudo_random_generator ) elif type(state_change) == ContractReceiveSecretReveal: assert isinstance(state_change, ContractReceiveSecretReveal), MYPY_ANNOTATION iteration = handle_onchain_secretreveal( initiator_state, state_change, channel_state, pseudo_random_generator ) else: iteration = TransitionResult(initiator_state, list()) return iteration